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ADVERTISEMENT.

nriHE present volume contains 69 papers numbered 417 to 485 published

-- for the most part in the years 1866 to 1872; they include a series

of astronomical papers published in the Memoirs and Monthly Notices of

the Royal Astronomical Society.

The Portrait in Volume VI. is from the Painting in Oil by Mr Lowes

Dickenson in the year 1874, presented by the Subscribers to Trinity College,

Cambridge, and now in the Hall of the College : the portrait in the

present volume is a photograph of a pencil sketch by Mr Lowes Dickenson

in the year 1893.
^

The Table for the seven volumes is

^ol . L Numbers 1 to 100.

IL 101 158.

in. 159 222.

IV. 223 299.

V. 300 383.

VL 384 416.

VII. 417 485.
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I

417.

ON THE LOCUS OF THE FOCI OF THE CONICS WHICH PASS

THROUGH FOUR GIVEN POINTS.

[From the Philosophical Magazine, vol. xxxii. (1866), pp. 362—365.]

The curve which is the locus of the foci of the conies which pass through four

given points is, as appears from a general theorem of M. Chasles, a sextic curve

having a double point at each of the circular points at infinity ; and Professor

Sylvester, in his " Supplemental Note on the Analogues in Space to the Cartesian Ovals

in piano " (Phil. Mag., May 1866), has further remarked that the lines (eight in all)

joining the circular points at infinity with any one of the four points are all of them

double tangents of the curve ; whence each of these points is a focus (more accurately

a quadruple focus) of the curve. It is to be added that, besides the circular points

at infinity, the curve has 6 double points (3 of these are the centres of the quadrangles

formed by the 4 points), in all 8 double points ; the class is therefore = 14. Hence

also the number of tangents to the curve from a circular point at infinity is = 10

;

viz. these are the 4 double tangents each reckoned twice, and 2 single tangents ; and

the theoretical number of foci is = 100 ; viz. we have

16 quadruple foci, or intersections of a double
] 4_ ra

tangent by a double tangent . . j

16 double foci, or intersections of a double 16x2^ 32
tangent by a single tangent

4 single foci, or intersections of a single tan- 1 . i _ 4
gent by a single tangent . . . j __

100

To verify the foregoing results, consider- any two given points /, J, and the series

of conies which pass through four given points A, B, C, D; we have thus a curve

C. VII. 1



2 ON THE LOCUS OF THE FOCI OF THE [417

the locus of the intersections of the tangents from / and the tangents from J to any

conic of the series; which curve, if /, / are the circular points at infinity, is the

required curve of foci. Taking U + \V = for the equation of a conic of the series,

the pair of tangents from I is given by an equation of the form

(\, l)=(*-, y, 2)' = 0,

and the pair of tangents from / by an equation of the like form

(X, \y{x, y, zy=0;

and by eliminating \ from these equations, we obtain the equation of the required

curve. This in the first instance presents itself as an equation of the eighth order

;

but it is to be observed that in the series of conies there are two conies each of them
touching the line IJ, and that, considering the tangents drawn to either of these

conies, the line // presents itself as part of the locus; that is, the line IJ twice

repeated is part of the locus ; and the residual curve is thus of the order 8 — 2, = 6

;

that is, the required curve is of the order 6. The consideration of the same two

conies shows that each of the points /, J is a double point on the curve. Moreover,

by taking for the conic any one of the line-pairs through the four points, it appears

that each of the points (AB.CD), (AC . BD), {AD .EC) is a double point on the curve:

this establishes the existence of five double points. The two conies of the series which

touch the line lA are a single conic taken twice, and the consideration of this conic

shows that the line lA is a double tangent to the curve ; similarly each of the

eight lines I {A, B, C, D) and J {A, B, C, D) is a double tangent to the curve.

Instead of seeking to establish directly the existence of the remaining three double

points, the easier course is to show that, besides the four double tangents from /, the

number of tangents from / to the curve is = 2 ; for, this being so, the total number

of tangents from / to the curve will be (2x4 + 2=) 10; that is, / being a double

point, the class of the curve is = 14 ; and assuming that the depression (6 x 5 — 14 =) 16

in the class of the curve is caused by double points, the number of double points

will be =8. But observing that in the series of conies there is one conic which

passes through J, so that the tangents from J to this conic are the tangent at J
twice repeated, then it is easy to see that the tangents from / to this conic, at the

points where they meet the tangent at J, touch the required curve, and that these

two tangents are in fact (besides the double tangents) the only tangents from / to

the curve ; that is, the number of tangents from / to the curve is = 2.

Considering /, J as the circular points at infinity, and writing A, B, G, D to

denote the squared distances of a point P from the four points A, B, G, D respectively,

then, as remarked by Professor Sylvester, the equation

\'/A.+fj,'/B+v'\/G + 7r\/B =

(where X, fi, v, ir are constants) is in general a curve of the order 8 ; but the ratios

X : fi : V : "TT may be so determined that the order of the curve in question shall be
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= 6; the resulting curve of the order 6 is (not one of a group of cur\-es, but the
very curve) the locus of the foci of the conies through the four points. And the
determination of the ratios \ : fi : v : ir is in fact quite simple ; for writing

A = {x-ay + {y-a,y-

= p- — 2 (ax + Or^y) + &c.

(it p' = a^ + y^),

and therefore

P

with similar values for V£, -JC, ^1D, it is easy to see that, considering \, /i, v, it as

standing for + X, ± /t, ±v, ±-rr respectively, the conditions for the reduction to the
order 6 are

\ +yU +J/ +7r =0,

X.a + /ii + i/c + Trrf = 0,

\ff, + /i6i + l/C, + TTC^i = 0,

and hence that the required equation of the curve of foci is

2{!l, 1, 1 V(a;-a)^ + (y -«!)'}= 0,

I 6 , c , d
I

I 6i, ci, di

or, as this may also be written,

2 ± (B, 0, Z>) VZ = 0,

where (B, C, D), &c are the areas of the triangles B, C, D, &c.

I remark, in conclusion, that the number of conditions to be satisfied in order that

a curve may have for double points two given points /, J, may have besides six double

points, and may have for double tangents eight given lines, is (3 + 3 + 6 + 1G=)28

;

the number of constants contained in the general equation of the order 6 is = 27.

The conditions that a curve of the order 6 shall have for double points two given

points /, J, shall besides have six double points, and shall have for double tangents

four given lines through / and four given lines through J, are more than sufficient

for the determination of the sextic curve ; and the existence of a sextic curve satisfying

these conditions is therefore a theorem.

In the case where the points /, J lie on a conic of the series, the consideration

of this conic shows that the curve has a ninth double point, the pole of the lipe

IJ in regard to the conic in question : in this case the sextic curve, as is kno'wn,

breaks up into two cubic curves. [It need not do so, for a proper sextic curve may
have nine (or indeed ten) double points.]

1—2
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P.S. In general the curve X *JA + /x VJB + v VO + tt */D = has (exclusively of

multiple points at infinity) six double points ; viz. these are situate at the intersections

of the pairs of circles,

(\'/A+ti^ = 0, vVG + 7r\/5 = 0),

(\V5 + 7rV5 = 0, fi-^B+v -^0=0).

In the case of the curve of foci, the first, second, and third pairs of cii'cles intersect

respectively in the points (AB . CD), (AC . BD), (AD.BC), which, as mentioned above,

are double points on the curve; and they besides intersect in three other points,

which are the other three double points mentioned above.

Professor Sylvester reminds me that he mentioned to me in convei-sation that he

had himself obtained the foregoing equation S + (B, C, D) '/A = 0, for the locus of the

foci of the conies which pass through the four points A, B, G, D.

Cambridge, October 10, 1866.
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418.

A REMARK ON DIFFERENTIAL EQUATIONS.

[From the Philosophical Magazine, vol. xxxii. (1866), pp. .379—381.]

Consider a differential equation /(x, y, p) = 0, of the first order, but of the degree

n, where / is a rational and integral function of (x, y, p) not rationally decomposable

into factors : the integral equatioq contains an arbitrary constant c, and represents

therefore a system of curves, for any one of which curves the differential equation is

satisfied : the differential equation is assumed to be such that the curves are algebraical

curves. The curves in question may be considered as undecomposable curves ; in fact, if

the curve U*V^Wt ... =0 (composed of the undecomposable curves t/' = 0, V=0, W = 0,..)

satisfies the differential equation, then either the curves U = 0, V=0, W=0,.. each

satisfy the differential equation, and instead of the curve U'V^W^... =0 we have

thus the undecomposable curves U= 0, V=0, W = 0,.. each satisfying the differential

equation ; or if any of these curves, for instance W=0, &c., do not satisfy the differential

equation, then Wy, &c. are mere extraneous factors which may and ought to be rejected,

and instead of the original curve U'V^Wy... =0, we have the undecomposable curves

U=0, V=0 satisfying the differential equation. Assuming, as above, the existence of

an algebraical solution, this may always be expressed in the form <j) (x, y, c) = 0, where

^ is a rational and integral function of (x, y, c), of the degree n as regards the

arbitrary constant c : this appears by the consideration that for given values (x„, y^
of {x, y) the differential equation and the integral equation must each of them give

the same number of values of p. It is to be observed that <^ regarded as a function

of (x, y, c) cannot be rationally decomposable into factors ; for if the equation were

<^=^^... =0, *, ^, &c. being each of them rational and integral functions of {x, y, c),

then the differential equation would be satisfied by at least one of the equations

^ = 0, ^ = 0, . . . that is, by an equation of a degree less than n in the arbitrary

constant c.
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But the equation
<f>

(x, y, c) = Ls not of necessity the equation of an undecom-

posable curve, and the undecomposable curve which constitutes the proper solution of

the diiferential equation cannot always be represented by an equation of the form in

question. For although (^ regarded as a function of {x, y, c) is not rationally decom-

posable into factoi-s, yet it may very well happen that <^ regarded as a function of

{x, y) is rationally decomposjible into factors (geometrically the sections by the planes

z = c of the undecomposable surface ^ {x, y, z)=0 may each of them be composed of

two or more distinct curves); and assuming that the function <^ is thus decomposed

into its prime factors, then each factor equated to gives an undecomposable curve

satisfying the dififerential equation, and constituting the proper solution thereof

It may be observed that, by the foregoing process of decomposition, we sometimes

reduce the original equation <^(x, y, c) = into a like equation <^i (a?, y, c,) = of a

more simple form. Thus, for instance, if we have <^{x, y, c)= U'- — c = 0, U being a

rational and integral function of {x, y), then instead of ^= U- — c = we have the

equations ^7+^0 = 0, t7 — Vc = 0, each of which is an equation of the form U—Ci = 0,

or we pass from the original equation <f){x, y, c)= U-— c = to the simplified equation

^i («. y, Ci)= f/'-c, =0.

Again, to take a somewhat more complicated instance, if the given integral equation be

<f){x, y, c)=U* + c'V*+(c + l)-W-'-2cU'V'-2(c + l)U'W'-2c{c+l)V'W"- = 0,

then the equation [/"+ FVc-I- TFVc + 1 =0, writing therein vc=——~, and therefore

Vc+ 1 = ^—, , becomes
Ci -1

Uici'-1) + V.2c+W{ei'+1) = 0;

so that we pass from the original equation
<f)

(x, y, c) = to the simplified equation

</).(«, 2/. c,)= f/(cr-l)+F.2c,+ F(c,^ + 1) = 0.

But observe that the possibility of the rationalization depends on the form of the

radicals Vc and Vc + 1 ; if we had had Vc and Vc=+i (or c and Vc*-I- 1), the rationali-

zation could not have been effected.

Returning to the case of an integi-al equation
<f)

{x, y, c) = 0, where ^ regarded as

a function of {x, y) is decomposable into factors, then equating to zero any one of the

prime factors of
<f>,

we obtain an integral equation •>^{x, y, c,, Cj, ...Ct) = 0, where

Ci , Ci...Ck are irrational functions (not of necessity representable by radicals, and \vithout

any superior limit to the number of these functions) of c: here i/r regarded as a

fimction of {x, y) is of course undecomposable, and the equation •<^{x, y, Cj, c.,, ...Ct) =
belongs to the undecomposable curve which is the proper solution of the differential

equation. The result may be stated under a quasi-geometrical form ; viz. regarding

c,, C2,...Ci as the coordinates of a point in ^'-dimensional space, then as these are



418] A EEMARK ON DIFFERENTIAL EQUATIONS. 7

functions of the single parameter c, the point to which they belong is an arbitrary

point on a certain curve or (^• — l)fold locus C in the A;-dimensional space. And this

curve must be such that to given values of {x, y) there shall correspond n points on the

curve ; that is, treating {x, y) as constants, the surface or onefold locus -^{x, y, Cj, C2...Ct)=0,

and the curve or (^• — l)fold locus Q, shall meet in n points. The conclusion stated

in the foregoing quasi-geometrical form is, that the solution of the differential equation

may be exhibited in the form ^(x, y, Cj, C3...Ci) = 0; viz. i/r is a rational and integral

ftinction of (x, y, d, C;. ... c^), where (ci, C2...Ck) are the coordinates of an arbitrary or

variable point on a curve or (k — l)fold locus in a A-dimensional space, which curve

meets the surface or onefold locus 'i]r(x, y, Ci, Ci-.-Ci) in n points, and where yjr

regarded as a function of (x, y) is not rationally decomposable into factors.

Cambridge, October 13, 1866.
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A THEOREM ON DIFFERENTIAL OPERATORS.

[From a paper by Prof. Sylvester, "Note on the Test Operators which occur in the

Calculus of Invariants, d-c," Philosophical Magazine, vol. xxxil. (1866), pp. 461—472,

see p. 471.]

The paper concludes with an Observation from Professor Cayley as follows

:

"In the case of two variables, if

Pi = (ax + by)^ + (cx + dy)^

then in the notation of matrices,

A = a, b\ , , f d d
{<^> y)

[^c, d] ^ ' ^' \dx ' dyl

'

''•=*i::3"'-»'(s'l)^
whence also

d d\
dyl

which accords with your theorem,

E, * E.,* =E^* E,* = E^E,* + SE^*."

P.ft.P,.P, = i{«Jf(„,)(|_^.)=3f.,

I have taken the liberty of writing in the above ^ , j- for S^:, 8^, and P for B

in the original. It will be useful to bear in mind that in any operator such as

El* or E^*, the asterisk forms an integral part of the symbol. Thus Ei*E„*, if we

choose, may be written under the form of E^* multiplied by E^*, i.e. (^,») x (£"5*),

where the cross is the sign of ordinary algebraical multiplication.
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420.

ON RICCATI'S EQUATION.

[From the Philosophical Magazine, vol. xxxvi. (1868), pp. 348—351.]

The following is, it appears to me, the proper form in which to present the

solation of Riccati's equation.

The equation may be written

^£ + f=a,^-

which is integrable by algebraic and exponential functions if (2i-|- 1)5' = + 1, i being zero,

or a positive integer. To effect the integration, writing y = - -^ , we have

da^
= a.'='9-^M.

The peculiar advantage of this well-known transformation has not (so far as I am aware)

been explicitly stated ; it puts in evidence the form under which the sought-for function

y contains the constant of integration. In fact if u = P, u = Q be two particular solutions

of the equation in u, then the general solution is m = CP + DQ ; and denoting by

P, Q the derived functions, the value of y is

y =
cp + pq
CP +DQ •

showing the form under which the constant of integration C -r- D is contained in y.

To complete the solution, assume

1

u — 26' ;

C. VII.
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we find

consideriug first the particular integral of the form

z = A+Bafl + Ca?9 + Da*? + &c.,

we find that the equation will be satisfied if

( 5-1)^+ q{ q-\)B = 0,

(Sq-l)B +2q(2q-l)G = 0,

(5q-l)C +Sq(Sq-l)D = 0,

Oq-l)D + 'iq{4:q-l)E = 0,

If ^ = 1, this is

&c.

^= 1,

B = - '-'^

qiq--^)'

(g-l)(3g-l)
-^q(q-l)2q{2q-l)'

D = -
(g-l)(3g-l)(5g-l)

qiq-l)2q(2q-l)m3q-l)'

&c.,

where it is to be noticed that the series may be considered to stop so soon as there

is in the numerator a factor = 0. For instance, if oq — l= 0, then if the particulai*

integral had been assumed to be z = A+ Bx^ + Cafi, the only conditions to be satisfied

by the coefficients are the first and second equations giving the foregoing values of

A, B, G. It is immaterial that the analytical expressions of F and the subsequent

coefficients contain in the denominators the evanescent factor ^q — \\ the coefficients

after C do not ever come into consideration.

Thus if (2i+l)5 = + l, the series terminates, and we have for u the finite

particular solution

V «7(?-l) q{q-\)2q{2q-\) I

and it is easy to see that we may herein change the sign of afl, thereby obtaining

another finite particular solution,

\ q{q-l) q{q-\)2q{2q-l) ]

9
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Reverting to the equation in z, we have next a particular solution of the form

z = Ax-\- Bx9+' + Ca^i+' + Da^+' + &c.,

giving between the coefficients the relation

( q+l)A+( q+l) qB = 0,

{3q + l)B+(2q + l)2qG = (),

(5q + l)C + i3q + 1) Sq B = 0,

{7q + l)D + (4q + l)^E=0,

Ji A =1, we have
&c.

A= 1,

B = -^^±^

^^^ iq + l)(3q+l)

(q + l)q{2q+l)2q'

Z) = - (q + l)m + l)(5q+l)

iq+l)q{2q + l)2qiSq+l)3q

&C.,

where, as in the former case, the series is considered to terminate as soon as there

is an evanescent factor in the numerator, without any regard to the subsequent

coefficients which contain in the denominators the same evanescent factor. [In particular,

q = —1, we have the solution z = x.]

Hence if we have {2i+l)q = — l, the series terminates, and we have for u the

finite particular solution,

„ = P = ..(l--?+l a.+ ^4^tl)|2±J^^-&c.)>,
V (9 + 1)9 (9 + 1)9(29 + 1)29 J

from which, changing the sign of X^, we deduce the other finite particular solution,

\ (9 + 1)9 (9+l)9(29 + l)2g /

Hence, in the equation

^ + «' = afi^,
da; "

where q(2i+l)= ±1, we have (writing D=l)

_CP'+Q'
y CP + Q'

2—2
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where G is the constant of integi-ation, P, Q are finite series as above, and P', Q'

are the derived functions of P and Q. Writing successively i = 0, i = l, i = 2, &c., we

may tabulate the solutions

g + 2^ = l, P = ^, Q = e-,

^ + y^ = x-*, P = xe'', Q = xe'

,

ax

^ + 2/» = «-*, P = (1 - 3«^) e3«*, Q = (1 + 3**) e-3**

,

^ + y2 = a,'-t, P = (l-.5a;* + ^a;«)es*^ Q = (1 + oa;i + ^a;?)e-6**,

&c.

It is hai'dly necessary to make the final step of calculating P' and Q' and sub-

stituting in y ; but, as an example, take the above equation ^ + y^ = x'^: we have

y ^ 2 1

C (1 - 3a!') e^** + (1 + 3a;*) e-3**

'

which is readily identified with the solution, p. 98 of Boole's Differential Equations

(Cambridge, 1859).

Cambridge, September 29, 1868.
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421.

NOTE ON THE SOLVIBILITY OF EQUATIONS BY MEANS OF
RADICALS.

[From the Philosophical Magazine, vol. xxxvi. (1868), pp. 386, 387.]

In regard to the theorem that the general quintic equation of the nth. order is

not solvible by radicals, I believe that the proofs which have been given depend, or

at any rate that a proof may be, given that shall depend, on the following two
lemmas

:

I. A one-valued (or symmetrical) function of n letters is a perfect Ath power,

only when the kth root is a one-valued function of the n letters.

There is an exception in the case k = 1, whatever be the value of n : viz. the

product of the squares of the differences is a one-valued function, a perfect square;

but its square root, or the product of the simple differences, is a two-valued function.

It is in virtue of this exception that a quadric equation is solvible by radicals; we
have the one-valued function (a;, — x^Y, the square of a two-valued function «, — ^a, and

thence the two roots are each expressible in the form

II. A two-valued function of n letters is a perfect Artih power, only when the

^h root is a two-valued function of the n letters.

There is an exception in the case k = S, when n = S or 4 : viz. for w = 3 we have

(a;, -f- wajj -h M'djj)' (w an imaginary cube root of unity) a two-valued function, and a

perfect cube ; whereas its cube root is the six-valued function Xi + mXt -\- m'x^. And
similarly for n = 4 we have, for instance,

{XiX, + X,Xi + 0) {XjX, + X^^ -1- 0)= {x^Xi + x^3)Y
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a two-valued function, and a perfect cube, whereas its cube root is a six-valued

function. And it is in virtue of this exception that a cubic or a quartic equation

is solvible by radicals. But I assume that for w > 4 the lemma is true without

exception.

The course of demonstration would be something as follows: Imagine, if possible,

the root of an equation expressed, by means of radicals, in terms of the coefficients

;

the expression cannot contain any radical such as ^X, p>2, where X is a one-valued

(or rational) function of the coefficients, not a perfect ^th power, for the reason that,

expressing the coefficients in terms of the roots, such function ^X is not a rational

function of the roots ; if it were so, by lemma I. it would be a one-valued (that is,

a symmetrical) function of the roots ; consequently a rational function of the coefficients,

or X expressed in terms of the coefficients, would be a perfect pth power.

The expression may however contain a radical VX, X a one-valued (or rational)

ftinction of the coefficients, not a perfect square: viz. X may be any square function

multiplied into that function of the coefficients which is equal to the product of the

squared differences of the roots, or, say, multiplied into the discriminant; that is, we

may have X = Q'V , or VZ = Q /V

.

We have next to consider whether the expression can contain any radical ^X,
where X, not being a rational function of the coefficients, is a function expressible by

radicals. But the foregoing reasoning shows that if this be so, X cannot contain any

radical other than the radical VQ^V or QVV, as above; that is, X must be

=P+ Q^/V , where P and Q are rational functions of the coefficients, and where we

may assume that P+QVV is not a perfect ^th power of a function of the like form

P'-fQ'VV. But then, expressing the coefficients in terms of the roots, we have

P -I- Q VV , a (rational) two-valued function of the roots ; and there is no radical

vP + QVV, which is a rational function of the roots; for by lemma II., if such

radical existed we should have vP-J-QVV a (rational) two-valued function of the

roots; that is, it would be =P'-f-Q'VV, P' and Q' one-valued (symmetrical) functions

of the roots, consequently rational functions of the coefficients; or P+Q'J'^ would

be a perfect pih power {F + Q'V^y.

The conclusion is that for n>4 there is not (besides the function P-i- Q\V)
any function of the coefficients, expressible by means of radicals, which, when the

coefficients are expressed in terms of the roots, will be a rational function of the

roots, and consequently there is no possibility of expressing the roots in terms of the

coefficients by means of radicals.

Cavihridge, October 1, 1868.
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422.

ON THE GEODESIC LINES ON AN OBLATE SPHEROID.

[From the Philosophical Magazine, vol. XL. (1870), pp. 329—340.]

The theory of the geodesic lines on an oblate spheroid of any excentricity what-

ever was investigated by Legendre (') ; and the general course of them is well known,

viz. each geodesic line undulates between two parallels equidistant from the equator

(being thus either a closed curve, or a curve of indefinite length, according to the

distance between the two parallels): , at a point of contact with the parallel the curve

is, of course, at right angles to the meridian ; say this is V, a vertex of the geodesic

line, and let the meridian through V meet the equator in A ; the geodesic line proceeds

from V to meet the equator in a point N, the node, where AN is at most = 90°

;

and the undulations are obtained by the repetition of this portion VN of the geodesic

line alternately on each side of the equator and of the meridian.

' ilim. de I'Irut. 1806 ; see also the Exer. de Calcul Integral, t. i. (1811), p. 178, and the Traite de»

Fonetiotu ElliptUiuet, t. i. (1825), p. 360.
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I consider in the present paper the series of geodesic lines which cut at right

angles a given meridian AC, or, say, a series of geodesic normals. It may be remarked

that as V passes from the position A on the equator to the pole C, the angulai-

distance AN increases from a certain determinate value (equal, as will appear, to

-J
90°, if C, A are the polar and equatorial axes respectively) up to the value 90''

;

and it thus appears that, attending only to their course after they first meet the

equator, the geodesic normals have an envelope resembling in its general appearance

the evolute of an ellipse (see fig. 1 and also fig. 2), the centre hereof being the point

B at the distance BA =90°, and the axes coinciding in direction with the equator

BA and meridian BG : this is in fact a real geodesic evolute of the meridian CA.

The point a is, it is clear, the intersection of the equator by the geodesic line for

which V is consecutive to the point A (so that Z 50.4 = M - —
j
90°) ; and the point

7 is the intersection of the meridian CB by the geodesic line for which V is con-

secutive to the point G ; and its position will be in this way presently determined.

I was anxious, with a view to the construction of a drawing and a model, to obtain

some numerical results in relation to a spheroid of considerable excentricity, and I

G
selected that for which j = i (polar axis = J equatorial).

Before proceeding further, I remark that Legendre's expression " reduced latitude

"

is used in what is not, I think, the ordinary sense ; and I propose to substitute the

Fio. 3.

T M K

term "parametric latitude": viz., in fig. 3, referring the point P on the ellipse by means
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of the ordinate MPQ to a point Q on the circle, radius 0K{= OA, fig. 1), and drawing

the normal PT, then we have for the point P the three latitudes,

\ = Z PTK, normal latitude,

\" = /. POK, central latitude,

\' = Z QOK
, parametric latitude

;

viz. \' is the parameter most convenient for the expression of the values of the

coordinates x, y {x = A cos X', y = C sin \') of a point P on the ellipse. The relations

between the three latitudes are

C G"
tan \" = —r tan X' = -r- tan \,A A^

so that X", X', X are in the order of increasing magnitude. I use in like manner

/, I', I" in regard to the vertex V. Thez^xourse of a geodesic line is determined by the

equation

cos X' sin a = const.,

where X' is the reduced latitude of any point P on the geodesic line, and a is at

this point the azimuth of the geodesic line, or its inclination to the meridian. Hence,

if V be the parametric latitude of the vertex V, the equation is

cos X' sin a = cos V

( whence also, when X' = 0, a = 90 ' — I' ; that is, the geodesic line cuts the equator at

'an angle = I', the parametric latitude of the vertex). The equation in question,

cosX' sin o=cos I', leads at once to Legendre's other equations : viz. taking, as above, A, G for

/ C^
the equatorial and polar semiaxes respectively, and 8 for the excentricity, ^=\/l~~j^'

and to determine the position of P on the meridian, using (instead of the parametric

latitude X') the angle
<f>

determined by the equation

, sin X'
cos = "—TT ,^ sm(

and writing, moreover, s to denote the geodesic distance VP, and A to denote the

longitude of P measured from the meridian CA which passes through the vertex V,

these are

da = d<l> '/G' + A'S^ ainH' cos"
<l>,

cosl' d<t> V"<7- + A^'S"- sin" I' eos^ 4>
" A l-sin^/'cos''^ '

which differential expressions are to be integrated from <^ = ; and the equations then

determine X', 8, and A, all in terms of the angle ^,— that is, virtually s and A, the

length and longitude, in terms of the parametric latitude X'.

c. VII. '
3
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Writing, with Legendre,

«l80

c c
oA cos ( A cos Z

then the formulae become

J.— _
b

Q
d8= rd<^Vl-c=8in»^,

j» „rf(f> Vl -c^sin'<^

1 + M sin^

Hence integrating from = 0, and using the notations F, E, 11 of elliptic functions,

we have

C
8=^E(C, <j)),

M
A=-{(n + c')n(n, c, (f>)-c'F{c, <f>)};

viz. these belong to any point P whatever on the geodesic line, parametric latitude

of vertex = I' ; and if we write herein <^ = 90°, then they will refer to the node N,

or point of intersection with the equator.

The position of the point a is at once obtained by writing I' = : viz. this gives

G C
c = 0, 6=1, M= -j, n=0: the differential expressions are ds = Gd(f), dA=-jd<f>. Or

C
integrating from ^ = to = ^7r, we have s = A. -j-i'"', A = -j.J'7r, agreeing with each

C f G\
other, and giving longitude of a = -j. ^tt ; or, what is the same thing, Z aOB = ^tt f 1 — "t )•

Writing in the formulae V = 90°, we have c = 8, b = -.
,
^ = ; whence dA = 0, or

A = const., = ^TT, since the geodesic line here coincides with the meridian CB ; and

moreover s = AE(B,
<f>)

; viz. this is merely the expression of the distance from G of

a point P on the meridian GB. But we do not thus obtain the position of the point 7.

To find it we must consider a position of V consecutive to G, say, I' = ^rr — €, where

€ is indefinitely small ; n is thus indefinitely large, and the integral 11 (n, c, 4>) is not

conveniently dealt with. But it may be replaced by an expression depending on
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- , c, <f>j,
where - is indefinitely small ; viz. (Legendre, Fmct. Ellipt. vol. i. p. 69)

n(«. c. ,/.)=^(c, ,^)+ 1 tan->^£i*^-n(^\ c. <!>).
va V 1 - c' sin= ^ \« /

a = (l+n)(l + ^).

we have

where

We thus have

A = — \nF(c, <^)+ —^- tan-' Jl, - (c" + w) 11 -
, c, A k

where, - being small.

ng, «,*)./
c2^

^1 + - sin= ^) Vl - c^ sin" ^

(1 sin^
<f>j d(f>

;/ - , = fl - -) ^(c, <^) + - ^(c, if,).

V 1 - c» sm" ^ \ nj "• ^' n ^ '
^'-\

And expanding also the tan"' term, we thus have

Vl — c* sin'
<l>

Vi

n I vT+n
Jtt- tan^ V(l+n){(f + n)

vn
"I

= f {(..g^(c, .)-(!. 3^(0. ,).^-^^i.-„-^cot,Vfr^W-4,

which, in the term in
{ } neglecting negative powers of n, becomes

A-— |Vn.i7r + &'F(c, <p)-E(c, <^)-cot<^ Vl -c^sin'i^l .

£7 1 iJ/

We may moreover write c=S, ft = -T' ^=90°-V, w=p, ilf=6, and therefore — = €, so

that the formula is

A = e |- . i-TT + b'Fic 90' - \') -E(c, 90° - \') - tan V Vl-c^cos'xj ,

= iTT - 6 {tanV Vl-c»co8«\' + J? (c, 90^ - X') - 6='i?' (c, 90' - \')}.

/ C' C
where I retain c, 6 as standing for A/ 1 — "p . 2 respectively.

3—2
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Writing herein X' = 0, we have

\ = ^7r-e(E,c-b'F,c),

where the coefficient E,c — b^F^ c is

1" cos»^<Z^

d'aia'd

consequently positive ; that is, A, the longitude of the node, is less than 90°, as it

should be. Hence in order that A may be = 90°, we must have \' negative, say,

\' = — fi, where fi' is positive ; and, observing that we may under the signs E, F
write 90° — fi instead of 90° + /jf, we thus have

^,r = ^TT + e {Vl-c»cosV tan/ - ^ (c, 90° -/*') + l^Fic 90° - /)}

;

that is, we must have

ta,nfi'^l-c^cof^^,i' = E(c, 90° - ^') - ¥F (c, 90° -/x');

viz. fi is here the parametric latitude (south) of the intersection of the meridian OB
with the consecutive geodesic line—that is, of the point y. As fi' increases from

to 90°, the left-hand side increases from to oo ; and the right-hand side, beginning

from a positive value and either attaining a maximum or not, ultimately decreases

to 0; there is consequently a real root, which is easily found by trial.

C
Thus -T = i, C=^V'3 (angle of modulus =60°), b = ^; or the equation

tan / Vl-fcos>' = E (90° - /) - ^^^(90° - fi').

18

Using Legendre's Table IX., we have

^'• 90°-/. E. F. E^iF. tan /Vl- J cos*/.

0° 90° 1-21105 2-15651 -6719 -0

10 80 1-12248 1-81252 -6693

20 70 1-02663 1-49441 -6530

30 60 -91839 1-21253 •6153 •3819

40 50 -79538 •96465 -5542 -6278

80 that we see the required value is between 30° and 40° ; and a rough interpolation

gives the value /4' = 37°40'. But repeating the calculation with the values 37° and

38°, we have

m'- 90°-/. E. F. E-iF. tan/\/l-|co8'i/.

37°

38

53°

52

•833879
•821197

1-035870
1-011849

•57419

-56823

54425
-57108

whence, interpolating, fi' = 37° 55'.
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The semiaxes of the geodesic evolute, measured according to their longitude and

parametric latitude respectively, are thus Ba, long, of a = 45° ; By, param. lat. = 37° 55'.

But measuring them according to their geodesic distance, the equatorial radius A being

taken = 1, we have

Ba = l-rr = -78540,

By=(^- l) {E, - i5:(52° 5')} = 1-21106 - -82225 = -38881.

Reverting to the general formulae for s, A, but writing therein A = \, and therefore

C=Vl — g*; writing also </> = 90° (that is, making the formulae to refer to the node

N of the geodesic line), we have

s = Vl-S^

Vl - S' sin^ I

A = ^^M" |(n + c^) n, (», c) - d'F, c]
;MCOS (

but for the calculation of the second of these formulae by means of Legendre's Tables

it is necessary to express n,(», c) in terms of the functions E, F.

The proper formula is given in Fonct Ellipt. vol. i. p. 137 ; viz. this is

^Tc^^"'^"' '>=^'^ + Sl^^*' ^)^^o+KoF(b, 0)-F,cE(b, 0)-E,cF{b, 6),

where A (6, 5) = Vl — 6^ sin" B. is an angle given by the equation cot = Vw ; we

have n = tan' I' ; consequently = 90° — l'. Substituting this value, except that for

shortness I retain E{b, 0), F(b, 0) in place of E{h, 90° -0. ^Q}, 90° - 0, we have

A (6, ^) = Vl^^i»co^/',

= \/l-(l-a»sin'Ocos''^' , =sml-,

and thence

tan ^A (b, 0) = cot Z sin i = -. ;

whence

n,(„, c) = «i5^^'|i,r + J',c[^^ + i^(6, 0)-E{b, 0)\^-E,cF(b, 0)

But

n + (? = tan" V + S- sin= i = sin" I sec" i.

Hence

(ra + c") n, {n, c) -(?F,c=- sin" Z {sec" VTi^ (n, c) - B'F, c]
;
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and multiplying this by

Vl-g" ^ '/l-B'cosl

ncoal ' tan" l' cos' I

the exterior factor is

Vr^S^ COS I tan' I cos I

tan" r ' Vl — 5»

'

and we have

A = -E£LL (see" I'U, (n, c) - S'-F, c],

which is the formula I used in the calculations. It would, however, have been better

to reduce a step further; viz. we have

cos
^{i,r+^,c[^^ + ^(6, 0)-E(b, 0)yE,cF{b,

^)J.

cos

and thence

^1 ^"{^^+F,c[F{b. e)-E{h, e)]-E,cF(b. e)}+F^c,

sec'ra,(w, c)- h^F^ c = "^^^ {^ir + F,c['^ I -B'^ COS I + F{b, 0)-E(b, e)]-E,cF{b, 0)}

;

or, finally,

A = ^-7r + F,cF(b, 0)-F,cE{b, 0)-E,cF{b, 0) + s/l- B' con lF,c.

It is easy with this expression of A to obtain the results already found for the

extreme values I' = 0°, I' = 90°.

As Legendre's Tables have for argument, not the modulus c, but the angle of the

modulus, say x (that is, sinx = c = B sin I), it is convenient to replace v 1 — S' sin* I by

its value cos^; and the formula? thus are

Vl - S' g. ,
-fir, C,

cos;i^

A =- ^-TT +F,c ['^l-B' cos l+F(b, 0)-E{b, 0)]-E,cF(b, 0),

. where

C=smx = Bsinl, tan T = Vr^Han ^, e=00''-l';

and in the case intended to be numerically discussed, S = ^ V 3, v 1 — S* = ^. I take I'

as the argument, giving it the values 0\ 10", ... 90^ and perform the calculation as

shown in the Table.



422] ON THE GEODESIC LINES ON AN OBLATE SPHEKOID. 23

~' Q» ~
u

II

II

1

-J i

ft.-

1

ft."

5
a

ft.

a

ft!

o

10
O

80
o '

19 26 16-75 73-25 -47151 20548 18686 1-6050 1-5376 2-08962 1-03762

20 70 36 3 30-63 59-37 -40425 22814 16532 1-6'JlO 1-4633 1-48840 1-02962

30 60 49 6 40-90 49-10 -32737 25478 14167 1-7980 1-3857 1-16024 -95214

40 50 69 13 48-07 41-93 -25589 27626 12163 1-8891 1-3232 -92141 -82827

60 40 67 14 52-98 37-02 •19349 29935 10645 1-9923 1-2777 -71820 -67903

60 30 73 34 56-32 33-68 •13866 31479 09557 2-0644 1-2461 -53083 -51655

70 20 79 41 58-43 31-67 •08954 32340 08850 2-1154 1-2260 -35099 -34716

80 10 84 58 59-62 30-38 •04387 33169 08446 21463 1-2147 -17475 -17431

90 60-0 08316

aJ

- s

i
a

ft."

1

jH oj

1

1

i-H

+ 6
epeo

•^
1

a 1
6

o
•7854

o

45 -7854

10 1-52308 -18272 •38820 2-4446 -32007 -50693 3-2132 -8022 45 58 20569 1-6058 -8029

20 -86318 1-93610 -16424 1-4596 -17272 -33804 21779 -8525 48 51 23075 1-7012 -8506

30 -53547 1-72874 1-98352 -9627 -06455 -20622 1-6078 -9257 53 2 26323 1-8333 -9166

40 -34903 i-54286 1-81912 -6594 i-96445 -08608 1-2192 1-0110 57 56 29668 1-9801 -9900

60 -23266 i-36672 1-66607 •4635 i-85625 1-96270 -9177 1-1166 63 59 32682 2-1224 1-0612

60 -16292 1-18446 1-49923 -3157 i-72496 1-82053 -6615 1-2250 70 11 35178 2-2479 1-1239

70 -09327 2-96974 1-29514 -1973 1-54529 1-63379 -4303 1-3378 76 39 36939 2-3410 1-1705

80 •04431 2-64650 2-97819 -0951 1-24242 1-32688 -2123 1-4536 83 17 38454 2-4240 1-2120

90 1-5708 90 1-2111

X.
90° -X in degrees and decimals of a degree, to correspond with Legendre's Tables.

where the columns marked with an » show respectively the longitude of the node,

and the length (or distance of node from vertex), for the geodesic lines belonging to

the different values of the argument I'.
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The remarks which follow have reference to the stereographic projection of the

figure on the plane of the equator, the centre of projection being the pole (say the

South Pole) of the spheroid. It is to be remarked that if a point P of the spheroid

is projected as above, by means of an ordinate into the point Q of the sphere radius

OK(=OA), then projecting stereographically as to the spheroid and the sphere from

the south poles thereof respectively, the points P and Q have the same projection.

And it is hence easy to show that an azimuth a at a point of the meridian

(parametric latitude \', normal latitude \, and therefore tan\' = -j tanXj is projected

into an angle (a) such that

. , . sinX'
tan (a) = -;— , tan a.

sm X

In fact in fig. 3, if we take therein OK, OC for the axes of x, z respectively,

and the axis of y at right angles to the plane of the paper, and if we have at P
on the surface of the spheroid an element of length PR at the inclination a to the

meridian PK, then if x, y, z are the coordinates of P, and x-\-hx, y + By, z+Sz those

of R, we have
Sx= p cos a sin X,

Sz = — p cos a cos X,

By = p sin a,

and thence

By
tan a = "^

.

V S*-' + Bz^

Now, if the meridian and the points P, R axe referred by lines parallel to Oz to the

surface of the sphere radius OA, the only diiference is that the ordinates z are

increased in the ratio C : A ; so that if the projected angle be (a), we have

tan(a)= ^^

^Ba- + ~Bz^

and then projecting the sphere stereographically from its south pole, the angle in the

projection is = (a). And according to the foregoing remark, the angle (a) thus obtained

is also the projection of a from the south pole of the spheroid. We have thus

tan(a)_ '^Ba^+Bz^ _ Vsin'X + cos^X /l+cot=X
tana / ^ A' ' 1 A'- ' Vl+cot=X"

y/Ba^ + -^Bz"- ysm=X+^cos=X

sinX'

sinX

which is the required relation.

The foregoing equations,

cos X' sin a = cos l', tan X' = -j tan X,

, , sinX'
tan (a) = -^— tan a,

^ '^ smX
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determine in the stereographic projection the inclination (a) to the radius, or projection

of the meridian, of the geodesic line (parametric latitude of vertex =1') at the point

the parametric latitude of which is =\': viz. they enable the construction (in the

projection) of the direction of the successive elements of the geodesic line. There

would be no difficulty in performing the construction geometrically; but it would,

I think, be more convenient to calculate (o) numerically for a given value of l' and

for the successive values of X'. Observe that for \' = we have (as above) 90° — a = l', and

then ".—^ = :—^- = -r , consequently tan (a) = -; cot I' : but we have also cot I' = -ri cot /,smXtanX^ ^ ^ ^ ' A G
so that this equation becomes tan (a) = cot I, or we have 90° — («) = ?; viz. in the

projection, the geodesic line cuts the equator at an angle i = the normal latitude of

the vertex of the geodesic line.

The preceding formulae and results have enabled me to construct a drawing, on

a large scale, of the stereographic projection of the geodesic lines for the spheroid,

polar axis =^ equatorial axis.

C, VII.
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423.

ON THE PLANE REPRESENTATION OF A SOLID FIGURE.

[From the Philosophical Magazine, vol. XLi. (1871), pp. 286—290.]

We represent in piano the position of a point P whose coordinates in space are

{a;, y, z) by drawing these coordinates, on the same scale or on different scales, and

in given directions from a fixed origin in the plane ; OM = x, MP' = y, P'P" = z. But

observe that the point P" alone does not completely represent the point P; in fact

P" represents a whole series of points lying in a line ; any one such point is the

P"

P'

''M

point whose coordinates are Om, mp', p'P". For the complete representation of P we

require the two points P', P" : these might be distinguished as the projection P", and

the foot-point P". The two points P', P" are obviously such that the line joining them

is in a given direction.

The preceding is, of course, the ordinary method of orthogonal projection, or

geometrical delineation of a solid figure : it may be used under various forms ; for

example, the coordinates a>, y, z may be taken on the same scale and in directions

inclined to each other at angles of 120° (isometrical projection) ; or the coordinates x, y
may be drawn on the same scale and at their actual inclination, 90^, to each other

;
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and the coordinate z on the same or an altered scale in any given direction; the

points P' then give a true ground-plan of the solid figure, and the lengths of the

lines F'P" give the altitudes of the several points P: this is also a method in

ordinary use.

But it is to be observed that the points P', P" are both of them projectimis,

and that the general theory is as follows: we represent the position of the point P

by means of its projections P', P", from two fixed points D,', H" respectively ; the

line joining these points passes, it is clear, through a fixed point D, which is the

intersection of the plane of projection 'by the line which joins the two points fl', fl".

Hence we say that a point P in space is represented in piano by any two points

P', P" which are such that the line joining them passes through a fixed point il.

And we have thus a system of constructive geometry which is the more simple on

account of the generality of its basis, and which is at once applicable to any of the

special projections above referred to. I establish the fundamental notions of such a

geometry, and by way of illustration apply it to the solution of the well-known pro-

blem of finding the lines which meet four giveo lines in space.

A point P (as already mentioned) is given by its projections P', P", which are

points such that the line joining them passes through the fixed point 12.

A line L is given by its projections L', L", which are any two lines in the plane.

We speak of the point {P, P"), meaning the point P whose projections are P', P";

and similarly of the line {L, L"), meaning the line whose projections are L, L".

If F, P" coincide, then the point P is in the plane of projection ; and so if

L', L" coincide, then the line L is in the plane of projection.

If through ft we draw a line meeting L', L" in the points P', P" respectively,

these are the projections of a point P on the line L. In particulai- the intersection

of L, L" (considered as two coincident points) represents the intersection of the line

L with the plane of projection.

4—2
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The line through the points (R, P") and (Q', Q') has for its projections the lines

FQ and P"Q''-

Two lines (L', L") and (M', M") intersect each other if only the intersections L'M'

and L"M" are the projections of a point P—that is, if the line through the points

L'M' and L"M" passes through VI. And then clearly P is the intersection of the two

linea

A plane 11 is conveniently given by means of its trace B on the plane of pro-

jection, and of the projections {P", P") of a point on the plane ; or, say, by means

of the trace B, and of a point P on the plane.

Suppose, however, that a plane is given by means of a line L and a point P
on the plane. The trace passes through the point of intersection of the line L with

the plane of projection—that is, through the point of intersection of the projections

L', L". To find another point on the trace, we have only to imagine on the line L
a point Q, and, joining this with P, to suppose the line PQ produced to meet the

plane of projection. The construction is obvious ; but by way of illustration I give it

in full. Through fl draw a line meeting L', L" in Q', Q' respectively (then these are

the projections of a point Q on the line L) ; the lines P'Q' and P"Q" are the pro-

jections of the line PQ, and the intersection of P'Q' and P"Q" is therefore the required

point on the trace 0.

The line of intersection of two planes passes through the point of intersection of

their traces 0i, %^\ whence, if the planes have in common a point P, the line of

intersection is the line joining P with the intersection of the traces 0,, 02.

In what precedes we have the solution of the following problem :
—

" Given a point

P, and two lines Zi, Zj, to find a line through P meeting the two lines Z,, Zj." The

required line is in fact the line of intersection of the planes (P, Zj) and (P, Zj) ; we
have seen how to construct the traces ©j and 02 of these planes respectively ; and

the required line is the line joining P. with the intersection of 0i and 0.,.

I proceed now to the problem to find the two lines, each of them meeting four

given lines, Zi, Zo, Zj, Z4 (these being, of course, given by means of their projections

(Zj', Zj") &c.). The question is in efifect to find on the line Z, a point P such that,

drawing from it a line to meet Zj, Z3, and also a line to meet L.,, Zj, these shall

be one and the same line.

Now, considering in the first instance P as an arbitrary point on the line Z,,

the line from P to meet Zj, L^ is any line whatever meeting the lines Z,, Zj, Z,

:

say it is a generating line of the hyperboloid whose directrices ai"e Zi, Z2, Z3, or of

the hyperboloid LJ^J^^. Hence projecting from any point fl' whatever, the generating

lines and directrices are projected into tangents of one and the same conic. We know

the projections Zj', Z./, Z3' of the directrices ; to find two other tangents of the conic,

we take two arbitrary positions of P on the line Z,, and construct as above the pro-

jections M.', N' of the lines from these to meet the lines Z.,, Lj. The conic is then
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given as the conic touching the five lines Z/, L.!, L^, M', N' : say this is the conic

1'. Similarly, instead of il', considering the point ft", we have the lines Li", L", L,'

and the lines M", N", which are the other projections of the lines through the two
positions of P ; and touching these five lines we have a conic S". Each tangent T'

of 2', combined with the corresponding tangent T" of 2", represents a line T meeting

Z,, Z„ Zj; to establish the correspondence, observe that, inasmuch as the line T meets

Z,, the intersections of T', Z,' and of T", Z/' must lie in a line with fl; if T' be

given, the point {T", Z/') is thus imiquely determined, and therefore also T" (since Z/'

is a tangent of 2") ; and similarly if T" be given, T' is uniquely determined ; the

correspondence 7", T" is thus, as it should be, a (1, 1) coiTespondence.

Considering in like manner the lines which meet Zi, Z^, Z4, we have touching

Z,', Z/, Z/, M', N' a conic 2'; and touching Z,", Z/', Z/', M", N" a conic 2"; each

tangent T' of 2', combined with the corresponding tangent T" of 2", represents a line

meeting Z,, Zj, Z4, the correspondence being a (1, 1) correspondence such as in the

former case.

The conies 2', 2' both touch Z/, Z/ ; hence they have in common two tangents.

Say one of these is T' = 7", the corresponding tangents T" and T" will coincide

with each other and be a common tangent of 2", 2" (these conies both touch Z/', L",

and have thus in common two tangents). We have thus T' = T', and T" = T", as the

projections of a line meeting Zj, Z„, Z3, Zi ; and taking the other common tangents

of 2', 2' and of 2", 2", we have the projections of the other line meeting Zj, Zj, L,, Z4.

The whole process is :—Construct' M', M" and N', N" each of them the projections

of a line through a point P of Z,, which meets Z,, L^; and M', M" and N', N" each

of them the projections of a line through a point P of Z,, which meet^ L^, Z^; we

have then the conies

2', 2" touching Z/, Z;, Z,', M', N\ and Z/', Z/', Z/', M", N" respectively,

2', 2" „ z/, z;, z;, Jr, F', „ z/', z,", z/', ¥", F" „ ;

and then the projections of each of the required lines are T' = T', a common tangent

of 2', 2', and T" = T", the corresponding common tangent of 2", 2".

It is material to remark how the construction is simplified when there is given

one of the lines, say, M, which meets Zj, Z^, Z3, Z^. Here if is a common directrix

of the two hyperboloids ; we may for the hyperbolas 2' and 2" consider, instead of

Zi, Zo, Zj and two new generating lines, the lines Zi, L^, Z3, M, and a single new

generating line N ; and similarly for the hyperbolas 2', 2" the lines Zj, Zj, Z4, M and

a single new generating line N. 2', 2' have thus in common the three tangents

Z,', Li, M', and therefore only a single other common tangent, T' = T' ; and similarly

2", 2" have in common the three tangents L", Zj", M", and therefore only a single

other common tangent, T" = T" ; and we have thus the other line cutting the four

given lines.



30 ON THE PLANE REPRESENTATION OF A SOLID FIGURE.

I take the opportunity of mentioning the following theorem

:

[423

" If in a given triangle we inscribe a variable triangle of given form, the envelope

of each side of the variable triangle is a conic touching the two sides (of the given

triangle) which contain the extremities of the variable side in question."

We have thence a solution of the problem (Principia, Book I. Sect. V. Lemma
XXVII.), in a given quadrilateral to inscribe a quadrangle of given form. The question

in effect is : in the triangle ABC to inscribe a triangle a^y of given form ; and in

the triangle ADE a triangle CL'^y of given form, in such wise that the sides 07, a'y'

may be coincident. The envelope of ay is a conic touching AD, AE, and the envelope

of a'y a conic also touching AD, AE : there are thus two other common tangents, either

of which may be taken for the position of the side ay=(x'y' ; and the problem admits

accordingly of two solutions.
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424.

ON THE ATTRACTION OF A TERMINATED STRAIGHT LINE.

[From the Philosophical Magazine, vol. XLi. (1871), pp. 3-58—360.]

Write for shortness (a, b, c; e) to denote the shell included between the ellipsoids

a? f z'^ ^ , a? y" z^ ,,

(where e is indefinitely small) ; then, if the ellipsoids

^+1 + ^ = 1 and ^, + ^4 + ^. = l

are confocal, the attractions of the shells (a, 6, c ; e) and (a', 6', c' ; e) upon any exterior

point P are proportional to their masses. Hence, considering a prolate spheroid of

revolution, c = 6, the attractions of the shell (a, 6, 6 ; e) will be proportional to those

of the shell (Va' - A, V6» - A, Vfr'-A ; «) ; or if, as usual, 6» = a' (1 - e^), then, if h increases

and becomes ultimately equal to 6^ to those of the shell (ae, 0, ; e) ; viz. this last

is the portion of the axis of x included between the limits ao = — ae,x— + ae; or say

it is the terminated line x=± ae; and I say that the mass is distributed over this line

uniformly.

jjfi 'ifl 4- z^
To see that this is so, observe in general that, in the spheroid -7^+ wj— = 1, the

volume included between the planes x = a, x = a + da, is = (y' + z^) da, = tt b'" j-^a') da;

and thence, writing a' (1 + e), b' (1 + e) for a', b', in the shell (a', b', b' ; e) the volume

included between the planes x=a, a;=a+da is =Trb'''.2e'da; viz. this is independent

of o, and simply proportional to da. Hence, writing b' = 0, when the shell shrinks

up into a line, the mass must be disturbed uniformly over the line. It follows that

for a line of uniform density the equipotential surfaces are each of them a prolate
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spheroid of revolution having the extremities of the line for its foci, and that, if

we have a shell bounded by any such surface and the consecutive similai- surface, with

its mass equal to that of the line, then such shell and the line will exert the same

attractions upon any point P exterior to the shell. The attractions of the line are

obtained most easily by means of its potential ; viz. taking S, H for the extremities

of the line, and, as above, the origin at the middle point, and the axis of x in the

direction of the line, and writing 2ae for the length of the line, x, y, z for the

coordinates of P, and r, s for the values of HP, SP (that is, r= "J (x— aef + 'f + z",

ten

F=iog;

8 — V(a; + aef 4- y^ + z*), then the potential is at once found to be

x->rae-\- s

' X— ae+r'

and we can hereby verify that the equipotential surface is in fact a spheroid of

revolution having the foci S, H ; for, taking the equation of such a spheroid to be

^°
I

y' + ^'
=1

(a is an arbiti-ary parameter, since only the value of ae has been defined), we have

and thence

s = a + ft», r = a — ex

x+ ae + s = (1 + e)(x+ a),

X— ae+7' = (l — e)(x+ a),

l+(
and the quotient is =^j , a constant value, as it should be. The equation F= const.

may in fact be written

1 + e _x + ae + 8

1 —e x — ae+r'

viz. this equation, apparently of the foui-tli order, breaks up into the twofold plane

a? iP -\- z"
I/- = 0, and the spheroid — + -—^ = 1.
•^ ^ a^ a^\ -e-)

The foregoing results in regard to the attraction of a line are not new. See

Green's Essay on Electricity, 1828, and Collected Works, Cambridge, 1871, p. 68 ; also
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Joachimsthal, " On the Attraction of a Straight Line," with Sir W. Thomson's Note,

Camb. and Dubl. Math. Joum., vol. iii. (1848), p. 93; but it does not appear to have

been noticed that they are, in fact, included in the theory of the attraction of

ellipsoids.

The like considerations show that the attractions of the ellipsoidal shell {a, b, c; e)

upon an exterior point are equal to those of an elliptic disk z = 0, — -+ .
^ -^

= ^'

the mass of which is equal to that of the shell, and which has the density at the

point (X, y) proportional to
|^1
- ^^—^ - ^j^-^;,j •

Sir W. Thomson informs me that the foregoing results have long been familiar to

him.

C. VII.
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425.

NOTE ON THE GEODESIC LINES ON AN ELLIPSOID.

[From the Philosophical Magazine, vol. XLi. (1871), pp. 534, 535.]

• The general configuration of the geodesic lines on an ellipsoid is established by

means of the known theorem (an immediate consequence of Jacobi's fundamental formulae,

but which was first given by Mr Michael Roberts, Comptes Rendus, vol. xxi. p. 1470,

Dec. 1845) that every geodesic line touches a curve of curvature ; that is, attending

to the two opposite ovals which constitute the curve of curvature, the geodesic line is in

general an infinite curve undulating between these opposite ovals, and so touching each

of them an infinite number of times (but possibly in particular cases it is a reentrant

curve touching each oval a finite number of times). The geodesic lines thus divide

themselves into two kinds, accordingly as they touch a curve of curvature of the one

or the other kind ; and there is besides a third limiting kind, the lines which pass

through an umbilicus : any .such geodesic line passes through the opposite umbilicus,

and is in general an infinite curve passing an infinite number of times alternately

through the two umbilici; but possibly it is in particular cases a reentrant curve

passing a finite number of times through the two umbilici. I annex a figure giving

a general idea of the configuration of the geodesic lines drawn in different directions

from a given point P on the surface of the ellipsoid : this is drawn (as it were) on

the plane of the greatest and least axes ; but it is not a perspective or geometrical

representation of any kind, but a mere diagram for the pui-pose in question. We have

A, A, B, C, C the extremities of the axes; fT,, Ui, Ug, U^ the umbilici; P the point

on the surface ; 1P2 and 1P4 the curves of curvature through P, viz. these are ovals
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containing the umbilici Uj, U^ and t/,, U^ respectively. Then U1PU3 and UiPUt are

the limiting geodesies passing through the umbilici ; the line TPT' represents a

T n

)

\

I

geodesic line of the one kind, viz. this at T touches an oval (curve of curvature) UiUt,

and at T' the conjugate oval UJJi. Similarly SP^' is a geodesic line of the other

kind, viz. this at S touches an oval (curve of curvature) UiTJ^, and at S' the conjugate

oval UiUi ; the dotted figure-of-eight curves are the loci of the points of contact

T, r, S, 8'.

—

1
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426.

ON A SUPPOSED NEW INTEGRATION OF DIFFERENTIAL

EQUATIONS OF THE SECOND ORDER.

[From the Philosophical Magazine, vol. XLII. (1871), pp. 197—199.]

This refers to a paper, Challls, " On the Application of a new Integration of Differential Equations

of the Second Order to some unsolved Problems in the Calculus of Variations," Phil. Mag. same volume,

pp. 28—40.
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427.

ON GAUSS'S PENTAGRAMMA MIRIFICUM.

[From the Philosophical Magazine, vol. XLli. (1871), pp. 311, 312.]

Take on a sphere (in the northern hemisphere) two points, A, B, whose longitudes

differ by 90", and refer them to the equator by the meridians AE and BG respectively

;

join A, B by an arc of great circle, and take in the southern hemisphere the pole

D of this circle ; and join D with E and C respectively by arcs of great circle. We
have a spherical pentagon ABODE, which is in fact the "Pentagramma mirificum,"

considered by Gauss, as appearing vol. III. pp. 481—490 of the Collected Works. Among
its properties we have

the distance of any two non-adjacent summits^

the inclination of any two non-adjacent sides
J

so that each summit is the pole of the opposite side, or the pentagon is its own

reciprocal.

Each angle is the supplement of the opposite side.

If the squared tangents of the sides (or angles) taken in order are a, /3, 7, S, e, then

l+a = 78, \+^ = Ze, l+7 = ea, 1 + 8=0^5, 1 + 6 = ^87,

equivalent to three independent equations, so that any three of the quantities may be

expressed in terms of the remaining two. (This agrees with the foregoing construction,

where the arbitrary quantities are the latitudes oi A, B respectively.)
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Projecting from the centre of the sphere upon any plane, we have a plane

pentagon which is such that the perpendiculars let fall from the summits upon the

opposite sides respectively meet in a point. This (as easily seen) implies that the two

portions into which each pei-pendicular is divided by the point in question have the

same product.

Convei"sely, starting from the plane pentagon, and erecting from the point of inter-

section a perpendicular to the plane, the length of this perpendicular being equal to

the square root of the product in question, we have the centre of a sphere such that

the projection upon it of the plane polygon is the pentagramma mirificum.

I remark as to the analytical theory, that, taking the origin at the intersection

of the pei-pendiculars, and for the coordinates of the summits (a,, yS,), ... (a^, 0^) respectively,

then we have ^

a.a^ +AA = o(.A, + ^-A = a^ai + 0A = a^^i +^A = «.«»+ Ms, = - T*.

where y is the above-mentioned product, or y is the radius of the sphere.

Cambridge, September 14, 1871.
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428.

NOTE SUR LA CORRESPONDANCE DE DEUX POINTS SUR UNE
COURBE.

[From the Comptes Rendus de I'Acaddmie des Sciences de Paris, torn. lxii. (Janvier—
Juin, 1866), pp. 586—590.]

This is to the same effect with the paper 38.5, "On the Correspondence of two Points on a Curve";

four examples of the theory are given, the first, second, and third of them the same as in this paper—the

fourth example is as follows:

4". Recherche du ruymbre des points sextactiques, c'est-k-dire des points qui sont tela

que par chacuu passe une conique qui a dans ce point un contact du cinquifeme ordre

avec la courbe. II faut prendre pour les points P les intersections avec la courbe de

la conique qui a au point P' un contact du quatrieme ordre : les points unis seront

ceux dent il s'agit. La courbe 0=0 est la conique qui a au point P' un contact

du quatrieme ordre. On a ainsi parmi les intersections le point P' 5 fois ; done k= 5.

A chaque point P" correspondent 2m — 5 points P ; a chaque point P lOm' — 20m — 5 — 205

points P" (j'emprunte le terme — 20S d'une formule que vient de donner M. Zeuthen)

;

done la formule donne pour le nombre des points unis

10m'-18m-10-20S + 10A
c'est-k-dire

ISm'-SSm-SOS.

Mais cette expression comprend le nombre 3m (m — 2) — 6 8 des inflexions ; en efFet pour

un point d'inflexion la conique avec contact du quatrieme ordre se rt^duit k la tan-

gente prise deux fois, ce qui est une conique avec contact du cinqui^me ordre. Done

enfin le nombre des points sextactiques sera

TO (12 m -27)- 24 S,

ou, pour une courbe sans points doubles

TO (12 TO -27),

ce qui s'accorde avec la valeur que j'ai trouv^e pai- d'autres moyens.
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429.

SUR LES CONIQUES DETERMINEES PAR CINQ CONDITIONS DE

CONTACT AVEC UNE COURBE DONNEE.

[From the Gomptes Rmdus de I'Acudinde des Sciences d, Paris, torn. LXlii. (Juillet—
D^cembre, 1866), pp. 9—12.]

This paper (dated Cambridge, 26 June 1866), contains the expressions for the numbers (5), (4, 1), (3, 2)

(3, 1, 1), (2, 2, 1), (2, 1, 1, 1) and (1, 1, 1, 1, 1), of the conies which satisfy five conditions of contact with a

given curve, as obtained in the paper 406 " On the Curves which satisfy given conditions," see p. 214, and

which expressions were found by the same process, viz. by consideration of functional equations obtained by

supposing the given curve to break up into two curves of the orders m and ni' respectively; there wa-s in

the expression for (1, 1, 1, 1, 1) a numerical error as mentioned in the footnote of the same page. The
paper contains also the formula /t" - ^ k"+ fp" - cr"= 0, and the expression for (2.V, Sif) given, pp. 203, 204.
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430.

NOTE SUR QUELQUES FORMULES DE M. E. DE JONQUIERES,
RELATIVES AUX COURBES QUI SATISFONT A DES CON-

DITIONS DONNEES.

[From the Comptes Rendus de I'Academie des Sciences de Paris, torn. LXiii. (Juillet-

D^cembre, 1866), pp. 666—670.]

Les formules dont il s'agit sont publiees dans les Comptes Rendus, stances du 3

et du 17 septembre 1866. En faisant une simple transformation algebrique pour y
introduire la classe J/(=m^ — m) de la courbe donn^e f/™, et en changeant un peu la

forme, les th^oremes de M. de Jonqui^res peuvent s'enoncer comme il suit

:

1°. Le nombre des contacts des courbes C'' qui ont un contact de I'ordre n avec

une courbe fixe U"*, et qui passent en outre par ^r (r + S) — n points donnds, est

= ^{n+l)[nM + {2r-2n)m].

Observation. Enoncd de cette manifere, le th^orfeme s'applique meme au cas n = 0.

En effet, pour n = 0, le nombre donn^ par le th^or^me est =mr, qui est le nombre
des contacts de I'ordre (intersections simples) de la courbe donn^e t/^ avec une

courbe d^tennin^e de I'ordre r.

2
'. Le nombre des contacts de I'ordre n' (= ou < n) des courbes C'' qui ont deux

contacts des ordres n et n' respectivement avec une courbe fixe U"^, et qui passent

en outre par Jr(r+3)— n — n' points donnas est

= i (« + 1) («' + 1) {inM+ (2r - 2n) m] [n'M+ (2r - 2re') m]

- 2 (n' + nn' + n'' + n + n')M
+ [- 4r (71 + m' -t- 1) + 4 (w' + nn' + n'^+n + n')] m}.

c. VII. 6
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Observation. Enonc^ de cette maniere, le thdorfeme s'applique menie aux cas

n' = 0, et »' = n. En effet, pour n' = 0, le nombre donne par le theorfeme est

= {rm — n — 1) . l{n + I) [nM + {2r — 2n) m], ce qui est ^gal au nombre des courbes C
qui ont avec la courbe donnde U"* un contact de I'ordre n, multipli^ par rm — n — 1,

nombre des contacts de I'ordre (intersections simples) de chacune de ces courbes avec

la courbe U"*. Et pour n' = n, le nombre des contacts est le double du nombre des

courbes C'.

Je remarque que les deux th^or^mes peuvent se d^montrer de la maniere dont

je me suis servi en cherchant le nombre des coniques qui satisfont k cinq conditions

donn^es; car, en rempla9ant la courbe m par I'ensemble de deux courbes m et m',

on trouve que pour le th^oreme 1° le nombre cherch^ est

ot les coefficients (a, y9) ne dependent que de (r, n) ; et puis, en supposant que ce

th^orfeme soit connu, on trouve que pour le th^orfeme 2° le nombre cherch^ est

= J (n + 1) (w' + 1) [nM + (2r - 2«) m] [n'M + (2r - 2n') m] + aM + fim,

oil de meme les coefficients (a, /9) ne dependent que de (r, n).

Or voici comment on pent determiner les coefficients dans les deux thi^orfemes:

Pour le th&rfeme 1°, on demontre que pour U"* une droite, le nombre cberch^

est = (n + 1) (r — w) ; et que pour W" une conique, le nombre cherch^ se deduit de

1^ en ^crivant 2r au lieu de r ; c'est-a-dire, que pour la conique, le nombre est

= (ra + 1) (2r — n). On a done

/8 = (n+l)(r--n), = ^ {n + I) (tr - 2n},

2a + 2/S = (n + l)(2r-n),
et de la

a = ^ (ft + l)n ;

ce qui achfeve la demonstration.

Pour le th^orfeme 2°, on demontre que pour f7'" une droite, le nombre cherch6

est ={n+ l){n' + l)(r — n — n'){r — n — 7i' — 1), et que pour JJ"* une conique, le nombre

cherche se deduit de la en dcrivant 2r au lieu de r ; c'est-a-dire, pour la conique,

le nombre est

= (n + l}(n' + l)(2r-n- n') (2r-n- n' - 1).

On a done

(n+l)(n'-M)( r-n-n')( r-n- n' -l) = {n + l)(n' + 1)( r-n){ r~n') + 0,

(n + 1) («,' +I)i2r-n- w') {2r- n-n -l) = (n + 1) («'
-I- 1) (2r

-

n) (2r - ?i') -t- 2a -f 2/3

;

cela donne pour a et les valeurs

a = ^ (n -I- 1) (n' + 1) [- 2 (n^ + nn' + n'" + n + n')],

/3 = }(«+ 1) (n' + 1) [- 4r (n +7i +l) + 4> (n= -I- toi' + n'' + n + w')]

;

et la demonstration est ainsi achevee.
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Je remarque que sous les formes ici donndes les deux thdor^mes s'appliquent k

une courbe U'" avec des points doubles, mais sans point de rebroussement.

Le theoreme dont je me suis servi pour la determination des coefficients pent

s'dnoncer sous la forme plus gdn^rale que voici, savoir:

En d^notant par (f>(r, n, n',...) le nombre des courbes C^ qui ont avec une droite

donn^e des contacts des ordres n, n' et qui passent en outre par |r(r + 3) — n — k'...

points donnes, alors si, au lieu de la droite donn^e, on a une conique donnee, le

nombre des courbes C'' sera =i^(2?', n, n', ...).

En efiFet, I'^quation de la courbe cherchee G^ contient des coefficients ind^termin^s,.

lesquels, par les conditions de passer par les points donnes, se reduisent lin^airement

k n+n'... + l coefficients; en d^notant par (A, B, ...) ces coefficients, I'^quation de la

courbe contiendra lineairement (A, B,...) et sera ainsi de la forme {A, B, ...'^x,y, zY = 0.

L'^quation de la droite donnee est satisfaite en prenant pour {x, y, z) des fonctions

lineaires d^terminees d'un paramfetre variable 6 ; done, en coupant la courbe O'' par

la droite donnee, on obtient une equation {A, B, ...\6, 1)'' = 0, et en exprimant que

cette equation ait n racines egales, n' racines egales, etc., on obtient entre {A, B, C, ...)

des Equations, lesquelles, en ^lirainant tous les coefficients, excepts deux quelconques

(A, B), conduisent k une Equation finale (A, B)p = 0, et le degr^ p de cette Equation

est 06 qu'il s'agissait de trouver, le nombre des courbes C^. Si au lieu d'une droite

donnee on a une conique donnee, il n'y a rien k changer, sinon que les coordonndes

(x, y, z) doivent etre remplacdes par des fonctions quadratiques de 0; on a ainsi une

Equation {A, B, ...\d, 1)*' = 0, qui conduit a une Equation finale {A, B)p =0, ou p
est la meme fonction de (2r, n, n,...) qu'est p de (r, n, n', ...); et le nombre des

courbes C' est =p'. Le th^rfeme est done d^montre. Et, pr^cis^nient de la meme
maniere, on d^montre le theoreme encore plus general:

En denotant par <f){r, n, n',...) le nombre des courbes C" qui ont avec une droite

donnee des contacts des ordres n, n',...,et qui passent en outre par ^r(r + S)—n — n'...

points donnas, alors si, au lieu de la droite donnee, on a une courbe unicursale donnee

de I'ordre to, le nombre des courbes C' est =<f)(mr, n, n', ...).

On aurait pu se servir directement de cela pour ddmontrer les th^oremes 1° et 2°.

Par exemple, pour le theoreme 1°, la consideration de la courbe unicursale ?7"' donne

aM + /Sto = a {2m — 2) + ^m = (n + 1) {mr — n)

;

c'est-k-dire

a = i(w + l)n, /3 = Hw + l)(2r-2n),

comme auparavant.

6—2
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431.

SUE LA TRANSFORMATION CUBIQUE D'UNE FONCTION

ELLIPTIQUE.

[From the Comptes Rendus de VAcadimie des Sciences de Paris, torn. LXlv. Janvier—
Juin, 1867, pp. 560—563.]

SoiT U= (a, b, c, d, e^ai, ly une fonction quartique quelconque de x: I, J les

deux invariants:

(I=ae- 4ibd + Sd', J=ace- ad' - h'e + 2hcd - <f),

P — 27J'
€t prenons fi = ^ pour Tinvariant absolu de U. Soient de meme U' = {a', b', ...^x, 1)*

J'3 _ 21J'' I—
et Xi' = jT, I'invariant absolu de U'. En supposant que 'JU, vV soient les

radicaux des deux fonctions elliptiques li^es par la transformation du troisi^me ordre

ou cubique, on peut se proposer la question quelle est la relation entre les deux

invariants absolus fl, fl' ? J'ai trouvd cette relation d'abord par des considerations

g^om^triques qui me fiirent sugg^r^es par une lettre de M. Sylvestre; puis je I'ai d^uite

des formules pour la transformation cubique donnees par M. Hermite, Crelle, t. LX., 1862,

p. 304), et enfin, h, I'aide d'une consideration tir^e de ces formules, j'ai r^ussi k

I'obtenir a moyen des formules des Fundamenta Nova. Je vais donner ici cette derniere

investigation de la relation dont il s'agit.

En supposant que les fonctions U, U' soient transformdes lineairement en

(1 — ar") (1 — Ar'ar'), (1 — y'') (1 — \y) respectivement, pour exprimer la liaison entre les

modules A', V, au lieu de I'^quation explicite entre \/k, \/\ {Fund. Nova, p. 23), je

me sere des formules, p. 25, lesquelles eu y ^crivant

_^ = ,« + 2

2a+l'
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c'est-a-dire

deviennent

2aS + a + ^ = 2,

Les transformations lin^res donnent sans peine

__ lOSk'iJd'-iy , 108V (\^-l)*

(A< + 14A=' + 1)' (X* + 14X» + If
'

et il s'agit entre ces Equations d'dliminer a, yS, k, \ de manifere a obtenir une Equation

entre il, fl'.

J'dcris

i(2a + l)(a+2)(a-iy ^2/8 + 1 ) (/9 + 2) (y3 - 1/
(a» + 4a+l)' '

'^
(/3' + 4/3 + l)»

L'^qiiation entre a, /3 donne

2fl + l---Z^ P + 2- ^" « - 3(a + l) o.,4o,i_ 3 (a' + 4a +l)

et on a de \k

If
pais, en faisant attention k I'identit^

(2a+ 1) (a + 2) (a- 1)^ + 27a (a + 1^ = 2 (a^+ 4a + 1)=,

on obtient entre a', ff, la relation tres simple a' + /3' = 1.

L'expression de k' donne

0^(0 + 2)
*^~ 2a+l '

ifc»-l =
(a-l)(a+l)'

2a + 1

A* + 14A» + 1 = 2^-j-^ {a« (a + 2f + 14a» (a + 2) (2a + 1) + (2a + !)«},

= (25Tl> ^^"^ + ^« + 1) ('»' + 3«* + 16a^ + 3a= + 1)},

et on a de la

n = lOSo' (2a + 1) (g + 2) (a - 1)* (a + 1)"

(a» + 4a + 1)' . (a» + 3a* + 16a» + 3a^ + 1)»

"
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Or on a

> ,_i(2a +l)(a + 2)(a-l)«-(a' + 4a + l)' ^-J^a(a + iy
"

(a» + 4a + l)' ' (a» + 4a+l)»

4(2a+l)(a4-2)(a-l)* + (a' + 4a+l)' ^ 9(a' + 3a* + 16a'4- 3a'+ 1)^"'"^~
(a» + 4a+l)»

'

(a« + 4a+l)»

_64a'(a' — IV
et de 1^, en formant I'expression de la fonction — ,„ ,

^
^' , on la trouve dgale k

la valeur qui vient d'etre donnfe pour fl en termes de a : on a done

_ 64a'(a'-iy"~ {Sa+iy

et de mSme

n' = -

(8/3' + 1)'

Avec la relation a' + /8'=l, lelimination de a', /9' entre ces equations ne prdsente

pas de diflBcult^.



432] 47

432.

THEOREME RELATIF A LA THEORIE DES SUBSTITUTIONS.

Extrait d'une lettre adress^e a M. J. A. Serret.

[From the Comptes Rendus de VAcademie des Sciences de Paris, torn. LXVii. (Juillet—
Decembre, 1868), pp. 784, 785.]

On peut enoncer par rapport aux substitutions un theorfeme qui comprend les

trois th^oremes iii. IV. v., t. ii. pp. 260—263 de votre Cours d'Algebre Superieure.

Pour un nombre quelconque fi on peut former avec les <f>(ix) nombres inf^rieurs

et premiers a /* plusieurs systfemes de nombres lesquels sout chacun un systfeme

conjugud (mod. /*); c'est-k-dire que le produit de deux nombres quelconques d'un tel

systfeme est congru suivant le module fi,, k un nombre du systfeme. Comme cas

extremes, I'unit^ est un tel systfemte, et les <f>{fi) nombres forment aussi un systfeme

conjugue.

Pour fi premier, en ddnotant par a une racine primitive de fi et par / un

diviseur quelconque de /— 1, les nombres = a-'" (mod. fi), a dtant un entier quelconque,

forment un systeme conjugud. Et g^n^ralement pour un nombre
fj,

quelconque ce

nombre a des racines qua.si- primitives a, /8, 7,..., aux exposants A, B, C,..., tels que

ar* = 1 (mod. fi), yS* = 1 (mod. fi), ... et ABC ...=</> (fi). En choisissant une combinaison quel-

conque, par exemple a, S de ces racines, soient /, g des diviseurs quelconques de A, B
respectivement, les nombres =a^"6^^(mod. fi) forment un systeme conjugu^, I'ordre du

AB
systfeme ou nombre des termes ^tant = ^—

.

Cela ^tant, on a ce th^orfeme :

Une substitution T quelconque de I'ordre fi 4tant forniAe avec n lettres, Von forme

Unites les substitutions S telles que le produit STS~^ se rSduise cb une puissance de T
dont Vexposant soil un nowhre quelconque appartenant d un systeme conjugui {mod. fi),

les substitutions S constitueront un systeme conjuguS de I'ordre 0M, oil 9 denote I'ordre

du systems conjugue {mod. /x) et M le nombre des substitutions ^changeables avec T.

La demonstration est tout a fait la meme que celle que vous donnez p. 62 pour

votre th^rfeme iv, en y ajoutant seulement que les nombres i, j qui appartiennent

au systfeme conjugue (mod. /i) auront leur produit ij congru k un nombre de ce meme
systfeme conjugud
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433.

SUR LES SURFACES TETRAEDRALES.

[Notes to the work De la Gournerie, " Recherches sur les surfaces reglees tdtraedrcdes

symetriques," 8vo. Paris, 1867.]

Premier Memoire. Notes pp. 190—193.

Equations de certaines

1°. L'^quation

= + b''(^f^a^ + c^ayy^

-2c''bfiaf-bg)af>f

+ 2c-'ag {af-hg)fa?

- 2¥ah (ch -af)2^ a? + 1a%h (bg - ch) ^y-

+ 2pgh {bg - ch) vfa? + tg'hf {ch - af) wy

+ a' {by + c^h^ - 4<bgch) y^z" + 6" {d'h" + a?f*

+P (by + c=A= - 4:bgch) vj^jc* + g^ {c'h'' + a>/»

+ 2bf {afbg + c-h- - 2chx) a*z-W

- 2ag {afbg + c'/t" - 2chx) y^vt'z^

+ 2ah {chaf+ by - 2bgx) z^hu^ - 2bh {bgch + a^f' - 2afx) z^^a?

- 2gh {bcgh + af^- 2afx) w'y^z'' - 2Jif {calif + by - 2bgx) w*z'it^

+ 2ihf^'z'v/'
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SURFACES DU HUITlilME OEDRE.

+ Wcf{ch-af)afiz''

— ^a^cg {hg — ch) ^2*

->r2h*fg{af-hg)vfz^

- 2bcf^ {hg - ch ) aNJ"

- Icag^ {ch - af) fv?

- 2ahh^ {af -bg)z^^

— ichaf) 2*0!*

— 4ichaf)w^y^

+ c» (aV^ + l^g^ - *afbg) x*y*

+ h^ {a-f + h^g^ - ^afbg) vf'sf'

- Icf {chaf +h'f - 2bgx) x^vjy + 26c {bcgh + a'/' - 2afx) cc^y^z'

+ 2cg {bgch + a'/' - 2a/x) y^ar'w^ + 2ca {cahf+ by - 2bgx) y*z^x^

+ 2ab {abfg + c'h" - 2chx) z*a^y''

- Vg {abfg + (^h^ - 2chx) 'ufx'y''

C. VII.
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(oil, pour abr^ger, on a ^rit ;^ = a/ + J^r + cA, et fl est une quantity quelconque) est

celle d'une surface du huitifeme ordre qui a pour courbes doubles les quatre coniques

fl! = 0, +cf -bz'' +fu/' = ;

y = 0, -ca^ +az' + gw' = 0;

« =0, +baf-ay' +Aw» = 0;

«; = 0, -fx'-gy' -hz' =0.

En determinant fl, savoir, en ecrivant \ + /j.+ v = 0, af\^ + hgiJ? + chi^ = (ce qui

donne deux systfemes de valeurs de \ : /x : v), et puis

en = 42^ (a/+ bgy ch - 22 /*%-^V(a/+ i^y _ 4 („/_ hg) (hg _ ch) (ch - af),

la surface devient une surface r^gl^e, savoir, la quadrispinale de M. de la Gournerie

;

et, en particulier, en supposant ^+r"+"T = 0> °^ obtient

^
111
af bg ch

en = (- 2 - 4 =) - 6 {af- bg) {bg - ch) {ch - af),

et la surfisice sera d^veloppable.

2°. L'dquation

= + ayz* + ¥z^x^ + (?3fy^ + f's^vf + g'^'^if' + A=^*w*

+ Ibfa^z-'v? - IcfsxHj^vfi + 26car»y=^=

- lagi^z^vfi ... + 2cg-tfx^'' + 1caa?y*z^

+ 2ahz*y^w' -2bhz*x^w^ ... +2abafy''z*

- 2ghw*y^z^ - 2hfw'z^a? - 2fgwi'a?y^

+ 2Q,a?y^z''vf

(ou fl est une quantite quelconque) est celle d'une surface du huiti^me ordre ayant

pour courbes doubles les quatre courbes du quatrifeme ordre

« = 0, hz'^w^ - gw^y- + ay^z"^ =

7/ = 0, - hzhi)^ -^fw^a? + bz'a? =

« = 0, + gyhxl' -fw^i? + ca^y' =

w = 0, — ajfs? - bis^a? - ca?y^ = 0.

En Ecrivant

of^bgchXH.^ + . = 0, g +
f,
+ ^' =
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(ce qui donne quatre systemes de valeurs de X : fi : v), et puis

12 = af-~- + hg V ch :

la surface devient une surface T4g\6e, savoir, la quadricuspidale de M. de la Gournerie

;

et, en supposant

et

\ : M : «' = (a/)* : (bg)^ : (cht
ce qui donne

' n= |^(a/)*-(65r)*] r(6£r)*-(cA)*] [w*-(a/)*] :

la surface devient de'veloppable.

Cambridge, 18 Octchre 1866.

Deuxi^me M&moire. Notes pp. 279—283.

Note I. SuR la d^omposition du lieu des generatrices en surfaces

tEtraEdrales distinctes.

II me semble qu'une de vos conclusions a besoin d'etre modifide. Ainsi la surface

tdtra^drale d^riv^e de deux courbes triangulaires ^ exposant — {m ^tant un entier

positif), laquelle, selon un de vos thdorfemes, serait de I'ordre 2m', parait se decomposer

en m surfaces chacune de I'ordre 2rn. II y a pour cela une raison a priori; en eflfet.

Plan 2=0

Planw=0 (X
\o'

pour deux triangulaires de la forme en question, en employant votre construction, on

peut etablir une correspondance non-seulement entre les deux systfemes de points

7—2
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A, B,..., et A', R raais aussi entre chaque point A et un seul point correspondant

A', car r^quation de la premiere courbe dtant de la formeill
on satis&it k cette equation en ^crivant

x : y : ^ = a(5+a)'» : b(d + 0)'" : 0(^ + 7)'",

oil est un parametre variable. De mSme, I'^quation de la seconde courbe ^tant111
on satisfait a cette Equation en ^crivant

X : y : w = a' (^' + a')« : 6'(^ + ^)« : d'(d' + BT,

oil ff est aussi un paramfetre variable.

Pour la droite OP, on a

a; _ g (g + g )"*

y-bW+W'
et pour la droite O'P'

X _ a'J^ + a'y^

y~}fW+Jr''

done, la condition pour la correspondance des droites est

a(0 + a)"' a'C^' + a'r
6(6l + ;9)'» 6' (6'' + /3')""

ce qui donne m valeurs diff^rentes pour & en termes de 6. Mais chacune de ces

valeurs est de la forme

^_ Ae + B
G0 -\-D'

et, en ne faisant attention qa'k une seule valeur de d', on a le point

X : y : z =a (0 + a)"^ : b (0 + ^ y : c (0 + y)"",

qui correspond k un point unique

X : y : w = a'(0' +aT : b'(0' +^T d'(0' + BY-

Pour le cas de I'exposant ^, on a, de cette mani^re, une surface de I'ordre 6.

J'ai vdrifi^ cela dans le cas particulier de la surface d^veloppable. II est trfes-singulier

(c'est M. Salmon qui m'a fait cette remarque) qu'en dcrivant dans cette Equation

(x', y, z^, V)') au lieu de (x, y, z, w), on obtient I'^quation d'une surface du douzifeme

ordre, lieu des centres de courbure d'un ellipsoide.

Cambridge, 15 Fdvrier 1866.
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Note II. A l'occasion de l'ordre des surfaces t^tra^drales.

Je crois que j'ai negligd de vous faire connaitre un thdoreme assez gdn^ral au

sujet de l'ordre de ces surfaces. En considerant dans I'espace deux courbes (planes ou

a double courbure) des ordres m et m respectiveraent, et en supposant qu'il y ait

entre les points de ces deux courbes une correspondance (a, o'), (c'est-k-dire qu'k un

point donn^ de la courbe m correspondent a! points sur la courbe m', et a un point

donnd de la courbe m' con-espondent a points sur la courbe m), alors la surface

r^gl^e que Ton obtient en unissant par des droites les points correspondants des courbes

m et m' sera de l'ordre md + met.

Cambridge, 18 Octobre, 1866.

Note III. Sur la surface complementaire.

Je puis reconnaitre, par mes propres formules, que, des pq' surfaces de l'ordre

2p'q, il n'y en a que pq qui passent par la troisieme directrice. En effet, le rapport

anharmonique k est donnd en termes des pararaetres de la troisifeme directrice, au
p

moyen d'une Equation qui coutient la quantity irrationnelle A;'. En rationalisant cette

Equation, on obtient pour k une Equation de l'ordre pq ; a chaque racine ki corres-

pendent q surfaces, savoir celles qui appartiennent aux q valeurs de ki^ ; mais
p

r^quation irrationnelle n'est satisfaite que par une seule valeur de k^'' , h savoir la

p

valeur de A;,' donn^e par I'^quation irrationnelle, en y substituant pour k, en tant que

k y entre rationnellement, la valeur k = ki. Done, k chaque racine k^ correspond une

seule surface qui passe par la troisiferae directrice. La question h, laquelle donne lieu

cette circonstance parait trfes-int^ressante. La surface d^terminee par les trois directrices

est compos^e de pq surfaces chacune de l'ordre 2p''q, et d'une surface residuale de

l'ordre 2p^ {(f
—

(f).
Quelles sont la nature et les proprietes de cette surface residuale ?

Je serais bien aise de savoir si vous avez fait des recherches k ce sujet.

Cambridge, 29 Mars 1866.
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434.

ON CERTAIN SKEW SURFACES, OTHERWISE SCROLLS.

[From the Transactions of the Cambridge Philosophical Society, vol. xi. Part li. (1869),

pp. 277—289. Read Nov. 11, 1867.]

The investigations contained in the present Memoir were suggested to me by the

Memoirs of M. De la Goumerie, presented by him to the Academy of Sciences in

1865 and 1866, published in extract in the Comptes Rendus, and reproduced in his

work " Recherches sur les surfaces reglees tdtroMrales symdtriques, par Jules De la

Goumerie, avec des notes par Arthur Cayley," 8vo. Paris, 1867. Although the results

or the greater part of them, agi-ee with those in the work just referred to, the mode

of treatment is different, and more general, the orders, &c. of the different scrolls being

obtained by considerations founded on the theory of Correspondence, and I have thought

it not improper to submit to geometers in this altered form the theory of the very

interesting class of Scrolls for which they are indebted to M. De la Gournerie's researches.

Article Nos. 1 to 10. Geometrical Construction of a Glass of Scrolls.

1. Consider any two curves (plane or of double curvature) U, U', of the ordera

m, ni respectively, and let the points of U have with those of U' an (a, o') corre-

spondence ; viz. let the points of the two curves be so related that to each point of

U correspond o' points of U', and to each point of U' correspond a points of U

:

then the lines joining the corresponding points of U, U' form a scroll the order of

which is = ma! + m'a.

2. In particular let U, U' be plane curves in the planes 11, 11' respectively ; and

let the correspondence between the points of the two curves be established as follows;

viz. consider in the plane 11 a curve fi of the class ft, and in the plane EL' a curve

fl' of the class fi! ; and (to avoid useless generality) let the tangents of these two

curves Xi, fi' have to each other a (1, 1) coiTespondence ; that is, to each tangent of
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n there corresponds a single tangent of fl', and to each tangent of D,' a single tangent

of n (this assumes that the curves 12, fl' are rational transformations one of the

other, and that they have consequently the same Deficiency). This being so, let the

points of U which lie on any tangent of fl and the points of U' which lie on the

corresponding tangent of D,' be taken to be corresponding points of U, U'. The corre-

spondence is then (fi7n', fi'm) : in fact through a given point of U there pass
fj.

tangents

of il, and the corresponding /a tangents of fl' meet V in fim points, that is, to a

given point of U correspond fim' points of U' ; and similarly to a given point of U'

correspond /x'm points of U. And hence the order of the scroll formed by the lines

joining the corresponding points of U, U' is = (^ + fi') mm'.

3. This conclusion may be otherwise established as follows ; let K, K' be any two

corresponding points of U, U', so that the scroll we are concerned with is that gene-

rated by the series of lines KK' ; and let / denote the line of intersection of the

planes 11, 11'. The line / meets the curve J7 in m points, and taking one of these

points for a point K we may from this point draw fi tangents to the curve n, that

is, the point in question is a point K in respect of /t different tangents of the curve

fl ; to each of these tangents there corresponds a single tangent of fl', and such

tangent of fl' meets the curve U' in m' points, that is, to the point K in question

there correspond fim' points K' and consequently fim' lines KK' in the plane IT'

;

hence to each of the m points K on the line / there correspond fim lines KK' in

the plane 11' ; and we have thus fimm' generating lines in the plane 11' ; there are

in like manner fi'mm,' generating lines in the plane n.

Take K an arbitrary point on the curve V ; there are /im' corresponding points

K', and consequently fim' generating lines through K, that is, through each point of

the curve U; or the curve U (which is of the order m) is a ^m'-tuple line on the

scroll ; similarly the curve U' (which is of the order m') is a /i'wt-tuple line on the scroll.

The complete section of the scroll by the plane IT consists of the curve U taken

fim' times (order fj,mm') and of the fi'mm' generating lines in the plane IT ; that is,

the order of the section is = {fi + ft!) mm' ; and we thus see that the order of the

scroll is = (fl -H fl') mm'. Of course in like manner the complete section of the scroll

by the plane IT' consists of the curve U' taken ft'm times (order fji'mm') and of the

/imwi' generating lines in the plane IT', the order of the section being thus —{fj,+/jL')mm'.

4. There are on the scroll certain singular tangent planes ; viz. if we have two

corresponding tangents of fl, fl' meeting the line 7 in the same point, then we have

TO points K and m' points K' all lying in the plane of the two tangents ; and of

course the mm' lines KK' will all lie in the plane of the two tangents ; that is, the

intersection of the scroll by the plane in question will be made up of the mm' lines,

and of a curve of the order (fi + ^^,' — 1) mm' ; and the plane in question is thus a

singular tangent plane.

5. The number of these singular tangent planes is = /i -f- /ti' ; in fact considering

as corresponding jx)ints on the line /, the intersection of this line by any tangent of

fl and the intersection by the corresponding tangent of fl', the correspondence is
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obviously (ji, fi) ; viz. through a given point P considered as belonging to the first

system there pass fi tangents of fl, and corresponding thereto we have
fj,

tangents of

fl' each intersecting / in a single point P' ; that is, to a given point P correspond

/I points jP; and similarly to a given point P' correspond /j.' points P'. And this

being so, the number of united points, that is, points of / through which pass corre-

sponding tangents of Q, fi', is = fi+ ft.'.

6. In particular the curves H, H' may reduce themselves each to a point: the

tangents to the two curves are here the lines passing through the points fi, fi'

respectively: and the condition for the (1, 1) correspondence of the two tangents is

that the pencils of lines shall be homographically related ; or, what is the same thing,

that these two pencils shall determine on the line / two ranges which are homo-

graphically related; the entire construction is then as follows:

Given in the plane IT a curve U and a point 12, and in the plane 11' a curve

U' and a point fi'; and taking in the plane 11 a pencil of lines through fi, and in

the plane 11' a pencil of lines through fi', in such wise that the two pencils corre-

spond homogi-aphically ; then if a line of the first pencil meets the curve U in the

m points K, and the con-esponding line of the second pencil meets the curve U' in

the ni' points K', the scroll in question is that generated by the mm' lines KK'.

7. By what precedes, the scroll is of the order 2mm' ; the curve 17 is a m'-tuple

line, and the complete section by the plane II is made up of this curve taken m'

times and of mm generating lines ; similarly the curve U' is a m-tuple line, and the

complete section by the plane II' is made up of this curve taken m times and of

mm' generating lines ; there are two singular tangent planes such that the section by

each of them is made up of mm' generating lines and of a curve of the order mm';

the planes in question are obviously those through the lines fifi' and the coincident

points of the two ranges on the line /, say the points A, B respectively.

8. The foregoing results will be modified in special cases. Suppose, for instance,

that the curve U passes w times, a. times, and /3 times through the points fi. A, B,

respectively, and that the curve U' passes a times, a times, and yS' times through the

points fi'. A, B respectively. Then to each point on the curve U there correspond

the m' — o)' intersections (other than the point fi') on a line through fi', so that U'

is a (m' — ti)')tuple line on the surface. The curve U' meets the line / in m' points

and coiTesponding to each of them we have a line through fi meeting the curve U
in (m — (o) points, exclusive of the point f i ; this would give m' {m — w) generating

lines in the plane II ; but among the m' points are included the point Aa' times,

and the point Bff times ; the (m — w) points corresponding to A include the point

Aa times, and we have thus the point A corresponding to itself ao' times, and giving

a reduction = act in the number m' {m — a) of generating lines : similarly the m — a>

points corresponding to B include the point B^ times, and we have thus the point

B corresponding to itself /3/3' times and giving a reduction =fi& in the number
m'(m — a>) of generating lines; the number of generating lines in the plane 11 is thus

= m' (m — (o) — aa' — P^. The complete section by the plane 11 is made up of the
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curve U(m — (o') times (order m(m' — w')) and of the m'(m — (o) — aa' — ^^' generating

lines ; the order of the section, and consequently also the order of the scroll, is thus

= 2nim' — jno)' — m'ft) — aa' — /S/3'. It is clear that in like manner the curve U' is a

(m — a>)tuple line on the surface, and that the complete section hy the plane 11' is made
up of this curve taken (m — co) times, order m! {m — w), and of m (m' — «o') — aa' — /8/8'

generating lines.

9. The section by the tangent plane through A is made up of (m — o)){m' — ay) — aa'

generating lines (viz. these are, the line VIA a.'(m — w — a) times, the line !^'A a (m — «' — a')

times, and (m — io — a) (m' — to' — a') other generating lines) and of a curve of the order

7nm' — oxu' — /3/3' : similarly the section by the tangent plane through B is made up of

(m — a>) (m' — o)') — ySyS' generating lines (viz. these ai-e, the line ilB y3'(TO — w — /3) times,

the line il'B ^(vi' — co' — ^) times, and (m — to — fi) (m' — co' — ^') other generating lines),

and of a curve of the order mm' — toco' — aa'.

10. A very interesting case is when (m, m' being each even) we have

'" = °'='^ = 2^' '"' = «' = /3' = im'.

Here the curve fT is a ^m'-tuple line on the scroll, and the complete section by the

plane IT is this curve taken ^wi' times ; the order of the section, and therefore of the

scroll is thus =\mm' ; of course in like manner the curve U' is a ^m-tuple line on

the scroll, and the complete section by this plane is the curve U' taken ^m times:

the section by each of the planes £ID,'A, ilil'B is a curve of the order \mm', the

planes in question being in the present case no longer singular tangent planes, or even

tangent planes at all, of the scroll.

Article Nos. 11 to 14. Analytical Theory.

11. It will be convenient to denote by D, C respectively the point,s heretofore

called n, fl' respectively : this being so, we have a tetrahedron ABGD, of which the

faces ABD, ABC are the planes heretofore called IT, 11' respectively, and the other

two faces CDA, CDB are the singular tangent planes Q.Q,'A, ilil'B respectively. And
then, taking

x = 0, y=0, z=0, w==0

for the equations of the faces BCD, CDA, DAB, ABC of the tetrahedron, we may write

for the equations of the curve U, z = 0, f, {x, y, w) = 0, for those of the curve U', w = 0,

fi {x, y, z) = 0; and take the homographic ranges on the line I {z = 0, w = 0) to be

given as the intersections of this line with the pencils of planes x — dy, x — kdy =
respectively {6 a variable parameter, k a constant). The points K are therefore given by

X- 0y = O, z =0, f,{x, y, w) = 0,

the points K' by
x-k9y = 0, w = 0, /^(x, y, z) = ;

and then the lines KK' belonging to the different values of the parameter 6 gene-

rate the scroll.

C. VII.
, 8
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12. Or, what is the same thing, taking (X, Y, Z, W) as the coordinates of K,

(X', Y', Z', W) as the coordinates of K', we have

X - eY=0, Z =0. /,(Z, Y, W) = 0.

X' -kdY = 0, W' = 0. f, (X', Y', Z') = 0,

and then the equations of the line KK' are

a? , y .
z , w = 0:

X, Y, 0, w\
X', Y', Z\ 1

¥ WY'z + 7^'w = 0,

- WX'z - ZZ'w = 0,

or, as these may be written,

- WZ'y +

WZ'x +

-W'Yx+ WX'y . +(XY'-X'Y)w = 0,

- YZ'x + XZ'y -{XY'-X'Y)z . =0,

equivalent of course to two equations. The elimination of X, Y, W, X', Y', Z', 6 from

all the equations gives the equation of the scroll.

13. Substituting the values X = 6Y, X' = kdY', we have

MdY, Y, W)=o. MkdY', r, z') = o,

- WZ' y+ WY'z+ YZ'w = 0,

WZ'x . - kdWY'z- eYZ'w==^0,

- WY'x + kO WY'y . +d{l-k)YY'w = 0,

-YZ' X + eYZ'y-e{l-k)YY'z . =0;

W Z'
or, what is the same thing, writing y = w, and y> = f, we have

= 0,

e^w = 0,

0{l-k)w = O,

= 0.

f,{0. 1, «) = 0, f,ik9, 1,

— (ofy + (0Z +

(o^x . — kOcoz —

— a x->r kdtoy . +

fr+ %- e{l-k)z

Recollecting that the last four equations are equivalent to two equations only, and

substituting for w, f their values in terms of 6, we have in effect two equations, which

by the elimination of 6 lead to a relation in {x, y, z, w), the equation of the scroll.

14. We may find the sections of the scroll by the planes a; = 0, y = respectively.

Writing first a; = 0, we have
k—\

<oy = —^w, ^y = -(Jc-\)z.
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Hence taking the other two equations in the form

and putting 6y = u, we have

/.(.,., ^-^") = o,/.(„,|,z<^>o,

from which eliminating u we obtain an equation /, (y, z, w) = 0, the equation of the

section by the plane a; = 0.

Similarly, writing y=0, we have

'^ = -(k-l)w, f=(k-l)z,

whence taking the equations in the form

and writing ^ = f, we have

/, {x, v,-(k-l) lu) = 0, f, [kx, i;, (^ - 1) 0) = 0,

from which, eliminating v, we obtain an equation /, {x, z, w) =± 0, the equation of the

flection by the plane y = 0. ^

Article Nos. 15 to 29. Tke Curves U, U' are henceforward "triangular" curves.

15. Let r = + -, where p, q are positive integers prime to each other, and let the

given sections be
z =0, Ax' + By"" . +Dw'- = 0,

w = 0, A'af + B'y' + (7V . = 0,

where it is to be observed that r being = + -, the two given sections are of the

order pq, the order of the scroll is =2p'^q^, each of the given sections is a jD^-'tuple

line on the scroll, and the plane thereof meets the scroll in the section taken pq times,

and in the pq generating lines: but r being = — -, the two given sections are each

of the order 2pq, with three /jg-tuple points (&>= a = ^=pq, a' = a = 0' = pq), and thence

the order of the scroll is ^ {^pqf, = ^p^c^ ; each of the sections is a pq-t\\^\e line on

the scroll, and the plane meets the scroll only in the section taken pq times. But

in either case, if §> be > 1, that is, if r be fractional, it will presently appear that

the scroll of the order ip^tf breaks up into q scrolls each of the order 2p^q.

8—2
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16. To find the section by the plane a; = 0, we have

Au^' + B y"" . + i) ( -^ wj = 0.

and eliminating u we obtain

[AR^-A'BJyr + AC (-^)%- ^T (^)V = :

writing (tllj^(-y (LzJ'J, this is ^

or, what is the same thing, it is

AH'— A' Hhr

And in regard to this and the other equations which contain (—)"", it is to be observed

that r being integral we have (—)"' = (—)'', and that r being fractional, every value of

(—)"* is also a value of (—X; so that we may in every case write (—)* in place of (—)~^.

Similarly for the section by the plane 2/ = 0, we have

Aoif-\-Bv^ . +Z)(-(/fc-l) w)'- = 0,

A" {kxy + BV + C{{k- 1) zY . = 0,

and ehminating v, we have

{AF - A'BItf) of - BC (/t - lyz'- + BD {- {k - l)y tu' = ;

or, what is the same thing,

—fl^fy—^ - (-r ^CV + B'D vf = 0.

17. The four sections thus are

<c = 0. . - i-y
(1 _ly

- r - (-y AC'z'^ + A'DW = 0,

A J}' A' Tlhr

y^^'
(1 -ky "^ ' -i-rBGV + B'Dvf = 0.

z = 0, Aaf -vBf . ->rBvf = %
^ = 0, A'af +fiy+ CV . =0.

It will be convenient to speak of these four curves as directrices of the scroll.
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18. Suppose for a moment that r is integral ; as either of the given equations

tmay be multiplied by a constant, we may assume that D = — (—)" C" ; substituting this

value and dividing the first and second equations each by G', we have

A TV A I J}7,r

AK — A' TWr

z = 0, Aar+ By" . -(-yC'vf = 0,

w=0, A'af+ B'y''+ CV . =0,

so that the diagonally opposite coefficients differ only by the factor — (—/ ; viz. the

matrix is symmetrical or skew symmetrical according as r is odd or even.

19. If r be fractional, it is to be observed that, although the three symbols (—

y

and the two symbols (1 — ky which enter into the first and second equations of No. 17,

do not in the first instance represent of necessity the same values of (— )'' and (1 — ky
respectively, yet there is no loss of generality in assuming that they do so—the

irrational equations are mere symbols for the rational equations to which they respectively

give rise—and the irrationalities (—)' and {1 — ky will on the rationalisation of the

equations disappear along with the irrationalities of, y^, z^, to which they are attached.

But the case is otherwise with the irrationality k'^ involved in the expression AB'— A'Bk'';

writing as before r=±—(p and q positive integers prime to each other), the symbol

k^ has q different values ; and there is not in the first instance any relation between

the k^ of the first equation and the k" of the second equation : for each of these

equations the rationalised equation (that is, the equation rationalised in regard to the

coordinates) will contain the irrationality A;', and will thus for each of the q values

of k^ represent a distinct curve. The given equations (viz. the first and second equations)

represent each of them a single curve of the order pq or 2pq, according as r is

positive or negative; the first and second equations represent each of them q such

curves.

20. Hence, starting from the two given curves in the planes z = and w = 0,

respectively, and with a given value of k, the section of the scroll by the plane y =
is made up of q curves, viz. the curves obtained from the second equation of No. 17,

by assigning to the radical kf each of its q different values ; t.he scroll consequently

breaks up into q different scrolls, viz. the lines passing through the two given curves,

and any one of the q curves in the plane y = 0, constitute a distinct scroll. The lines

in question meet the plane a; = 0, not indifferently in any one of the q curves in that

plane, but in a certain one of these curves, viz. in that curve for which the radical

k' has the same value as for the curve in question in the plane y = 0. Hence we

may in the first and second equations regard the radicals l^ as having the same

meaning, and the system of four equations in effect breaks up into q systems, viz. the

systems obtained by giving to the radical k'' its q different values ; each of these

systems gives a scroll, and the scroll derived from the two given curves with a given
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value of it is made up of these q scrolls. And hence, attaching a unique value to each

of the symbols (-)', {l-kf, and Af, we may, as before, write D=(-yG', and so reduce

the original equations as in the case r integral, to the form No. 18, in which the

diagonally opposite coeflScients differ only by the factor — (—y.

21. Let the two given equations be taken to be

z = 0, baf-i-yay" . +hw'- = 0,

w=o, -{-rf!>f-{-ygf-{-yh^ =o;

we have then

AB'-A 'Bl^ ^ (-ybg + a/kT

{i-kyc' ~i-yh(i-ky'

or, putting this = — (—^c, that is, writing

a/k' + bg(-iy + chil-ky = 0,

the four equations become

x=0, . cy'--i-ybz''+/vf = 0,

y = 0, -(-year . + az'' + gw-'=0,

z =0, baf- {-y ay' . +hw'- = 0,

w = 0, -(-yfaf-{-ygyr-{-yhz' . =0;

where c being considered as given, k is determined as mentioned above, or, what is

the same thing, k : -\ : \-k = \ : fi : v, \iQ have \ : fi : v, and thence k, determined

by the equations

X + /M + V =0,

afK" + bgijT + chv' = 0.

22. Consider for a moment \, /a, v, as the coordinates of a point in a plane, then

{r=±- as before), the equation afX" + bg/jT + chv' = 0, is that of a curve of the order pq

or 2pq, according as r is positive or negative : and this curve is met by the line \+/m+v = 0,

in pq or 2pq points, that is, k has this number pq or 2pq, of values: but to each of

these values of k there corresponds (not q values but) only a single value of k', viz.

that value for which a/kf + bg(—iy + ch(l — ky = 0; that is, starting from the two

directrices in the planes z = 0, w = 0, respectively, and a given third directrix in the

plane y =0 (or in the plane x = 0), we may by means of each of the pq or 2pq values

of k construct a scroll passing through the three directrices, and which will also pass

through the fourth directrix in the plane x = (or in the plane y = 0), but such scroll is

only one (not each) of the q scrolls which can be constructed from the two given sections

in the planes a = 0, w=0, respectively, and from the assumed value of k. It has been

mentioned that whether r is =+-, or = — ", the total scroll constructed from the two
9 9

given directrices in the planes .2 = 0, w = 0, and from a given value of A; is of the order
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'ip'q^, and that such scroll breaks up into q distinct scrolls, hence the order of each

of the distinct scrolls is = 2p^q. Whence, starting with the given directrices in the

planes z = Q, w = 0, and a given third directrix in the plane y = (or in the plane

ar= 0), we have pq or 2pq scrolls each of the order 2p''q, and passing through these

three directrices, and through the given fourth directrix in the plane a; = (or in the

plane y = 0).

23. It is to be observed that when g is > 1, then considering the three directrices

as given, the pq or 2pq scrolls each of the order 2p^q, do not make up the total

scroll generated by the lines which pass through the three given directrices. I call

to mind that for three given directrices the orders of which are m, n, p, respectively,

and which meet, the second and third, the third and first, and the first and second,

in a points, ^ points, and 7 points respectively, the order of the scroll generated by

the lines which meet the three directrices is = 2mnp — am, — /9ft — yp. Suppose first,

that r= + - , then the directrices are each of the order pq, and they do not any two

of them meet ; the order of the scroll is = 2p^q'. Suppose secondly, r = — - , then the

directrices are each of the order 2pq, but each two of them have in common two

pq-tup\e points counting as 2p'q' intersections ; the order of the scroll is thus

{16 — 2 . 4:) pi'q^ = 4;}fq\ In the first case the lines which meet the three directrices

generate a residuary scroll of the order 2;/ (q- — q'), and the pq scrolls each of the

order 2p'g ; in the second case they generate a residuary scroll of the order 4p' (q^ — q'),

and the 2^)^ scrolls each of the order 2pq.

24. In the case r = + -, by way of illustration of the origin of the pq scrolls each

of the order 2p^q, I consider the particular case p=l, that is, r — -, the reciprocal of

a positive integer q, and where it is to be shown that we have q scrolls each of the

order 2q. The given directrices are here

1 1 1

z = 0, Axi+Byi . +I>w»=0,111
w = 0, A'x't+EyiJrC'z'i . =0,

each of them a unicursal curve ; we may in fact satisfy the two equations respectively,

by writing in the first of them

X : y : w=a{^ +0)'' : h {^ + ^)i
: d{<i> ¥ 8)«;

and in the second

X : y : z =a'(<f>' + ay : 6'(f + y8')» : c'((f>' + yy,

where a, b, d, a, /9, S, a', b', c', «', /3', 7' are properly determined constants, ^, (f>'
are

variable parameters. It follows that, considering the points K, K' which are the inter-

sections of the first curve by the line x— 6y=0, and of the second curve by the

corresponding line x — k0y = 0, we have not only a correspondence of q points K with
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k points K', but we may establish, and that in q different manners, a correspondence

between single points K and K'. For, substituting the foregoing values of a; : y in the

equations x— dy = and x — kOy = respectively, we have

a(jM^)« tfl_a' (*' + «')«
*'

" 6 (^ + ;8)« '
*"" ~ V (^'~+ )9')«

'

and thence

« (0 + a)9 _ 1 (/(</)' + a' y
b(<i> + ^Yi"k b' (<f>'+^y'

so that, extracting the qth root of each side, we have, in q different ways corresponding

to the a values of the radical (r tt- l'. a relation of the form <f)' =—-—
; and con-^

\.k oaJ ^ n4) + r

sidering 0' as having this value, the points K, K' as given by the equations

z =0, X : y : w=a{^ +a)i : 6 (^ + yS )« : d (^ + 8 )»,

and

m;=0, X : y : z =a'(<^' + a')« : b' (<j)' -\- ^'f : c' (<^' + 7')'.

respectively, correspond as single points to each other. We have thus in q differeut

ways a series of con-esponding points K, K', and consequently q series of lines KK'
each of them genei-ating a scroll which (as the order of the scroll generated by all

the q series is = 25-), must be each of them of the order 2q ; and the decomposition

in question is thus explained.

25. In the scroll of the order 2^', each directrix is a gf-tuple line, and the com-

plete section by the plane of the directrix is made up of the directrix q times (order q^),

and of 5* generating lines, in fact, of q 5'- fold generating Hues: to show that this is so,111
consider the directrix in the plane ^ = 0, viz. the equation of this is Ax-i + Byi + Dw'' = 0.

1 1

Writing herein w = 0, we have Ax^ + Byi = 0, that is, .4% — (—)' £'y = ; it is clear

that the rationalised equation must reduce itself to [A^x — (—)« B^y]^ = 0, and that the line

w = 0, is thus a tangent of g'-pointic intersection at the point w = 0, A^x — (—)« B'ly = 0.

Taking K at this point we have, in each of the scrolls of the order 2q, q coincident

positions of K', that is, a g'-fold line KK' in the plane w = ; and the like for the

plane z = 0, so that the total section by the plane z = is made up of the directrix

q times and of q g-fold generating lines ; and it follows that for each of the scrolls

of the order 2q, the section by the plane z = is made up of the directrix once, and

of a g-fold generating line.

26. It is easy to see that in the general case r = + - , the like conclusion holds

;

for the scroll of the order Zjfq', the section by the plane of the directrix consists of

the directrix pq times (order p'q'), and of p'q g-fold generating lines ; whence for each

of the q component scrolls of the order 2]fq, the section is made up of the directrix

p times (that is, the directrix is a j)-tuple line on the scroll) and of p' q-iold generating

lines.
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27. lu the case r — — -, where the order of the directrix is = 2pq', then in the

scroll of the order 2^-^', the directrix is a ^jg tuple line on the scroll, and taken pg
times it constitutes the complete section by the plane of the directrix ; whence in

each of the q component scrolls of the order 2^'^', the directrix is a jo-tuple line ; and

taken p times it constitutes the complete section by the plane of the directrix.

28. It is convenient to exhibit the foregoing results in a tabular form as follows:

1 1

Each directrix is of order pq. Each directrix is of order 2pq, with three

pg'-tuple points.

Scroll belonging to two directrices, and a given value of k, is of the order

2p'9>, . 2pV.

breaking up into q scrolls each of order 'ip'q, breaking up into q scrolls each of the order

each which scroll of the order Ij^q has each '^p'q, each which scroll of the order 2p^q has

directrix for a p-tuple line and has besides p^ each directrix for a p-tuple line, and conse-

g-fold generating lines in the plane of the quently no generating line in the plane of the

directrix. directrix.

Considering two directrices and a given third directrix,

k has pq values. k has 2pq values.

Total scroll for the three directrices is made up of

pq scrolls each of order ip'q (viz. one for each 2pq scrolls each of order 2p^q (viz. one for

value of k), and residuary scroll of order each value of k), and residuary scroll of order

^P'iq'-f)- *p'{q'-q^).

29. The following are noticeable cases ; r = 1 gives the hyperboloid as derived from

three directrix lines ; r = — 1 the hyperboloid as derived from three plane sections

thereof; r=2, an octic surl'ace, M. De la Gournerie's Quadrispinal ; r = — 2, an octic

surface, his Quadricuspidal ; r=J, a sextic surface which (as remarked by Dr Salmon),

on writing therein (x', y', z', w% in place of {x, y, z, w), is converted into a surface

of the twelfth order, locus of the centres of curvature of an ellipsoid.

C. VII.
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435.
s

ON THE SIX COORDINATES OF A LINE.

[From the Transactions of the Cambridge Philosophical Society, vol. XL Part II. (1869),

pp. 290—323. Read November 11, 1867.]

The notion of the six coordinates of a line was, so far as I am aware, first

established in my paper " On a new analytical representation of Curves in Space," Quart.

Math. Jour. t. Iil. (1860), pp. 225—236, [284] ; see p. 226, where writing p, q, r, s, t, u

for the six determinants of the matrix \ J '
-, L I remark that these values give

identically ps-\-qt-\-ru = ^\ and I consider a cone as represented by a homogeneous

equation F=0 between the six coordinates (p, q, r, s, t, u); and many of the investi-

gations of the present memoir, in which these coordinates are employed, have been in

my possession for some years past. But these coordinates presented themselves inde-

pendently to Prof Pliicker, and the theory of them is set forth in his most interesting

and valuable memoir, " On a new Geometry of Space," Phil. Trans, t. CLV. (1865),

pp. 725—791 ; the course of development there given to the theory is however

altogether different from that in the present memoir. They have also more recently

been made use of in a paper by Herr Liiroth, " Zur Theorie der windschiefen Flachen,"

Crelle, t. lxii. (1867), pp. 130—152.

I have in the present memoir applied these coordinates to the question of the

Involution of six lines ; the notion of this relation of six lines is due to Prof. Sylvester,

to whom it presented itself in the year 1861, in connexion with a theorem in the

Lehrbuch der Statik, by Mobius (Leipzig, 1837), that if four forces acting on a solid

body are in equilibrium the lines along which the forces act are the generating lines

of a hyperboloid. Prof Sylvester was thereby led to consider six lines such that

(regarding them as lines in a solid body) there exist along them forces which are in

equilibrium ; and he thence obtained, by the statical considerations reproduced in the

present memoir, the construction (when five of the lines are given) of a sixth line to

pass through a given point or to be situate in a given plane.
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Article, Nos. 1 to 8. The Six Coordinates of a Line ; definition and general notions.

1. Using any quadriplanar coordinates {x, y, z, w) whatever, consider a line ; on

the line two points the coordinates of which are (a, /8, 7, S) and (a', ^'
,
7', 8') respectively

;

and through the line two planes, the equations whereof are {A, B, C, D^x, y, z, w) = 0,

and {A', B , C, D'^x, y, z, w) = respectively ; we have

(A, B, C, 2)$a, ^, 7, S) = 0,

(A.B,G,Dla'. ^',y',S') = 0,

(A',B', C',D'J_a, /3, 7, 8) = 0,

{A',F, C, D'la', ^', y', S') = 0.

2. From the first and second equations, eliminating successively A, B, C, D, we find

, a/3'-o'/3, -(7a'-7'a), aB'-a'B (A, B, C, D) = 0,

-(a^-a'^l , /87'-y8'7, /88' -/S'S

y^' -y'a, -{^y'-ffy), Q , 7S' - 7'^

.
- (aS' - a'S), - (/38' - /3'8), - (7S' - 7'S),

and from the third and fourth equations we find the like system with {A', B', C, D')

in place of {A, B, C, B). Comparing the corresponding equations of the two systems,

we find an equality of ratios, as will presently be mentioned.

3. From the first and third equations, eliminating successively a, /3, 7, B, we find

, AB'-A'B, -(CA'-C'A), AD'-A'B (a, ^, y, B) = 0,

-(AF-A'B), , BC'-B'G
,
BD'-FD

CA'-C'A, -{BC'-B'G), , CU -CD
-(AU-A'D), -{BU-ED), -{CD' -CD),

and from the second and fourth equations we find the like system with (a', /8', 7', S')

in place of {a, 0, 7, B) : comparing the corresponding equations of the two systems, we

find the same equality of ratios as before, viz.

4. This is

fiY -^y : yo[ -y'n : a^ - a'/3 : aB' -a'B : /9S' -0'B : yB' -y'B

=AU-A'D -.BD'-FD : CD'-CD : BC'-B'G : CA'-C'A : AB'-A'B,

and putting each of these two equal sets of ratios

= a : b : c : f : g : h,

then the quantities {a, h, c, f, g, h), which it is easy to see satisfy the condition

a/+bg + ch = 0,

9—2
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are said to be the ' six coordinates ' of the line : as only the ratios of the six quantities

are material, and as the last-mentioned equation establishes a single relation between

these ratios, the system of the six coordinates contain four arbitrary ratios or parameters,

for the determinaticMi of the particular line.

5. A line is thus determined by its six coordinates (a, b, c, f, g, h), which are

such that 0/+ hg + ch = 0; and conversely any six quantities (a, h, c, /, g, h) satisfying

this relation may be taken to be the six coordinates of a line.

6. It is proper to show that the ratios a : b : c : / : g : h are independent of

the particular two points on the line, or two planes through the line, used for their

determination. In fact, if instead of the points

«, /3, 7. S>

«'. ^'. 7'. S'.

we have any other two points on the line, say the points

\a + /j^, X/3+/1/3', \7+/i7', \B + fiB\

va+pa.', v^+p^', vy+py', vB + pB',

then the six determinants have their original values each multiplied by Xp— fiv ; and

the ratios are unaltered.

And the like is the case, if instead of the planes

A, B, C, D,

A', B', C, D',

we have any other two planes through the line, say the planes

XA+fiA', XB + fiB, \C + fj.C', \D + fiir,

vA + pA', vB + pB', vC + pC, vD + pU

,

the determinants have their original values each multiplied by \p - fiv; and the ratios

are unaltered.

7. It may be remarked, that the theory of the six coordinates considered as derived

from the two points (a, /3, 7, h), (a', /3', y', B'), and as derived from the two planes

{A, B, C, D), {A', B, C, D'\ is precisely the same in each case ; and we may confine

ourselves to the first point of view, regarding therefore the six coordinates as derived

from the two points (o, /8, 7, B), (a', ^, 7', S). I further remark, that I do not at

present in anywise fix the absolute magnitudes of the coordinates (a, 6 c, /, g, h) : it

is only the ratios that we are concerned with.

8. The values of the ratios a : b : c : / : g : h of the six coordinates do how-
ever depend on the particular coordinate planes a; = 0, y—0, 2 = 0, w = 0, made use of

for their determination; and in the sequel it will be necessary to investigate the
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formulae of transformation to a new set of coordinate planes x^ = 0, 3/0= 0, Zo = 0, w,, = 0.

And I shall also show in what manner the absolute magnitudes of the coordinates may
be fixed. But deferring the consideration of these questions, I consider the planes

a; = 0, y=0, 2 = 0, w = as given planes, and take the six coordinates (a, b, c, /, g, h)

of a line to be determined as above in reference to these given planes, the absolute

values of these coordinates remaining indeterminate, and their ratios only being attended

to. And I proceed to consider the various questions which present themselves in the

geometry of the line, considered as thus determined by means of its six coordinates

(a, b. c, f, g, h).

Article, Nos. 9 to 18. (Various Sub-headings.) Elementary Theorems.

Condition that a line may be in a given plane.

9. Taking the line to be (a, b, c, f, g, K), the equation of the given plane to be

{A,B, Q, I)\x, y,z,w)=0;

then if (a, /9, 7, S), (or', ^, <y', S') are the coordinates of any two points on the line,

we have the system of equations ante, No. 2, and substituting therein for ySy' — yS'y,

&c. the values (a, b, 0, /, g, h), we find

0, c, -b, f
-c, 0, a, g

b, —a, 0, h

-/. -ff. -h,

which equations, equivalent to a twofold relation, are the required condition. It may
be remarked that, treating {A, B, C, B) as current plane coordinates, each equation of

the system is that of a point lying in the line.

{A,.B, C,B) = 0;

Condition that a line may pass through a given point.

10. The coordinates of the given point are taken to be (a, ^9, 7, 8). If

{A, B, C, D\x, y, z, w) = 0, {A', F, C, DJx, y, z, w) = 0,

are the equations of any two planes through the line, then we have the system of

equations ante No. 3, and substituting therein for AB! — A'B, &c. their values in terms

of the coordinates (a, b, c, f, g, h) of the line, we have

0, h, -g, a (a. A 7, S)=0;

-h, 0, /, b

— a, — b, - c,

which equations, equivalent to a twofold relation, are the required condition. It is

obvious that, treating (a, /3, 7, S) as current point coordinates, each equation of the

system is the equation of a plane through the given line.
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Condition for the intersection of two lines.

11. The coordinates of the lines are taken to be (a, b, c,f, g, h), and (a„ h,, c„f, g,, h),

respectively. If (a, p, y, S), (a', ^, 7', S'), are the coordinates of any two points in the

first line, and {a„ /3„ 7,, S,), (a/, /S/, 7/, 8/), are the coordinates of any two points on

the second line, then the four points are in a plane, that is, we have

a, /3, 7, S =0,

a', P', 7'. ^'

a,. fi,> 7,. K
a/. ^:, %'. V

that is, expanding the determinant and substituting for /37' — /3'7, &c. and P,y,' — 0,'y„

&c. their values in termB of the coordinates of the two lines respectively, we have

a// +H + c^/ +A + ff^i +K = 0,

or, as this may also be written,

(/. 9,' K' «,. ^/. c,$a, b, c,f, g, h) = 0,

for the condition that the two lines may intersect.

12. The same result will be obtained if we take

{A, B, C, D^x, y, z, m;) = 0, {A', B', C, D'^a;, y, z, w)=0,

for the equations of any two planes through the first line, and

(,A„ B„ C„ D,lx, y, z. w) = 0, {AJ, B,'. G,', Df^x, y. z, w) = 0,

for the equations of any two planes through the second line. The four planes will

meet in a point, that is, we have

A , B , C , D =0,

A', B', C, D'

A> B,, G„ D,

a:, b;, c;. d;

or, expanding and substituting, we have the same condition as before.

13. In the case of any two lines (a, b, c, f, g, h), and (a , 6,, c,, /, g,, h^), we

may define the 'moment' of the two lines to be the function

a/ + h, + ch, +fa, + gb, + hc„

it being understood that we have not as yet any complete quantitative definition of

the moment; this being so, we have, in what precedes, the theorem that the moment

of two intersecting lines is = 0.
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Plane through two intersecting lines.

14. Let (.4, B, C, B^x, y, z, w) = be the equation of the plane through the

two intersecting lines (a, h, c, /, g, h) and (a,, h^, c„ /,, g^, h). We have two systems

of equations, as in No. 9, and comparing the corresponding equations of the two

systems, we find in the first instance

A : B -.C : D = \ :hf,-hj:cf,-c,f

= «5'/ -^,9 • /* •• <^9, - ^,9

= ah^ — ah : hh^ — b^h : v

= gh,-g,h : hf, - hj : fg, -f,g

-{bc,-b,c)

- {ca, - c,a)

-(ab,-a,b)

P

where \, n, v, p, are in the first instance unknown; the different sets of ratios are

of course identical in virtue of the relation

(/. 9/. K' o-.' k. c,$a, b, c, /, g, h)= 0,

and comparing them we have equations which lead to the values of \, /j,, v, p; and

we thus obtain more completely.

A : B : C : D=/,a +b,g + c,h

= ag, - a,g

= aA, — a^h

=g\-9,^

¥.+U of,-oJ
a,f+g,b + cji : eg, -c,g

hh, — b,h : a,f-\- b,g + h,c

V/ - ^J •• f9, -f,9

-{bc,-b,c)

- (ca, - c,a)

-(ab,-a,b)

«// + ^9, + c\ •

15. It is in these equations easy to verify the identity of the different sets of

values: we ought, for instance, to have

o,/+ bg 4- h,c ab. — ab

that is.

/9, -f,9 of, + ^9. + ch,

'

• ih,c + aj+ b,g) {h,c + a/ + bg,) + (ab, - a,b) (fg, -f,g) = 0,

and, observing that

the left-hand side is

K/+ ^.9) W. + «•£'-) + («^ - a,^') (A -1.9)

= (af^- bg) {a,f, + b,g,), = ch . c,h„

= ch, (ch, + af, + bg, + a,f+ b,g + c,h),

= ch, (af, + bg, + ch, +fa, + gb, + he, ), = 0.

Point on two intersecting lines.

16. Let (a, /3, 7, B) be the coordinates of the point of intersection of the two

intersecting lines (a, b, c, /, g, h) and (a,, b„ c,, /,, g„ h,). We have two systems of
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equations such as io No. 10, and comparing the corresponding equations of the two

systems, we find

/8; 7 : S= L • ag. - ^,9 ah, - a,h : gh, - g,h

= 6/ -hj M bh,-h,h .hf,-h,f

= cf, -of eg, -c,9 N :Jg,-f.g

= - {be, - b,c) - {ca, - c,a) : -{ah,-a,h) : P ,

where L, M, N, P, are in the first instance unknown ; but, comparing the different

seta of values, we have equations for finding the values of these quantities, and we

thus obtain the more complete system

a : /S : 7 : S = /a + b,g + c,h : ag, - a,g

= bf,-bj : aj+g,b+c,h

= cf, - cj eg, - c,g

= -(bc,-b,c) : -{ca,-c,a)

ah, — a,h : gh, — g,h

bh,-bfi -hl-h,/

aj+b,g + h,c -.fg.-f.g

- (ah, - a,b) /,a + g,b+ h,c,

where it is to be observed that the right-hand side considered as a matrix is the

transposed mai;rix of that which occurs in No. 13, in the formula for A : B : G : D.

The verification of the identity of the different sets of values can of course be effected

as in No. 15.

Expression for an arbitrary plane through a line.

17. The condition in order that the plane (A, B, C, D\x, y, z, w) = 0, may pass

through the line (a, b, c, f, g, h), is the twofold relation given, No. 9 ; it is satisfied

by any one of the four systems

A : B : C : D h : 9 a.

or = -h : f:b.

or = g -/^ : c,

and consequently also by
or = — a -b . -c : 0;

A : B : C : D= ( 0, -h, g. -«$?>'?.§'. w)

: ( h, 0, -f - ^ $ ^ ^, ?, ")

'(-g, /. 0, - c $ f 17, ?, 0))

or, what ia the same thing, by

: ( a. b, c, 0$?. V, K, «);

A : B : C : D= ( 0, h, -g' a$f. V, ?. «)

{-h. 0, /. i $ f. V, K, «)

•( g. --/. 0, c $ ^. '7, ?, «)

:(-a. --b, -c, ^11 rj, r. 0,)

where (^, 17, f, w) are arbitrary : there is, however, no loss of generality in putting any
two of these quantities = 0.
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Expression for an arbitrary point in a line.

18. The condition in order that the point (a, /3, 7, S), may lie in the line

(a, b, c, f, g, h), is the twofold relation given, No. 10 ; it is satisfied by any one of

the four systems

a : /9 : 7 : S = : c -h :/,

or = — c : a : g,

or = b :
— a : h,

or=-/:- a h : 0;

and consequently, also by

a : /3 : 7 : S = ( 0, - c, b, -f\x, y, z, w)

:( c. 0, -a, - 5' $ «. y. ^. w)

: (- b, 0, 0, — h\x, y, z, w)

( /. 9. h, j[ «, y, z, w)

or, what is the same thing, by

0:^:7:8= ( 0, c, -h. / $ «, S', ^. w)

:(-c, 0, a, 9 \ a;, y, z, w)

:( b, - a, 0, h^x, y, z, w)

:(-/. -
9' -h. $ «, y, z, w)

where (x, y, z, w) are arbitrary : there is, however, no loss of generality in putting two

of these quantities =0.

Article Nos. 19 to 25. Geometrical considerations in regard to three, four, five,

and six lines.

Before proceeding further, I will establish certain geometrical notions in regard to

three, four, five, and six lines. I use the term 'tractor' to denote a line which

meets any given lines.

19. Three given lines have an infinity of tractors; viz. these are the generating

lines of a hyperboloid having the three given lines for directrices.

20. Four given lines may be directrices (generating lines) of the same hyperboloid,

viz. every tractor of any three of the four lines is then a tractor of all the four

lines. But in general, four given lines have a pair of tractors; viz. considering the

tractors of any three of the four lines, these form a hyperboloid having the three

lines for directrices; the fourth line meets this hyperboloid in two points, and the

generating line through either of these points is a line meeting each of the four

given lines, that is, it is a tractor of the four given lines.

c. VII. 10
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21. The fourth line may however touch the hyperboloid ; and in this case, instead

of a pair of tractors, the four lines have a twofold tractor. The relation of the four

lines to each other is a symmetrical one ; and we have thence the theorem, that if

any one of four given lines touch the hyperboloid through the other three lines, then

will each of the four given lines touch the hyperboloid through the other three lines.

But the relation to each other of four lines having a twofold tractor may be other-

wise expressed as follows; viz. considering a tractor of the four given lines, each line

determines with the tractor a point, the intersection of the line and tractor; and it

also determines a plane, viz. the plane containing the line and tractor; we have

therefore a range of four points on the tractor, and a pencil of four planes through

the tractor; and if the tractor be a two-fold tractor, the range and pencil will be

homographic ; and conversely, if the range and pencil are homographic, the tractor will

be a twofold tractor. This is easily obtained as a limiting case from the general

one where the four lines have a pair of tractors; each line determines with the one

tractor a point and a plane as above, and this plane intersects the second tractor in

a point ; we have thus through the first tractor a pencil of planes, and on the second

tractor a range of points, and these two are homographic. But, in the case of a

twofold tractor, the range on the second tractor coincides with that on the first

tractor; that is, the range of points on the tractor is homographic with the pencil

of planes through the tractor.

22. Given any four lines, and a point 0, then either in the general case where

the four lines have a pair of tractors, or in the special case where they have a

twofold tractor, there exists and can be found through the point a single fifth line

such that the five lines have (as the case may be) a pair of tractors, or a twofold

tractor. And similarly, given the four lines and a plane fi, there exists and can be

found in the plane O a single fifth line such that the five lines have (as the case

may be) a pair of tractors, or a twofold tractor.

23. Five given lines have not in general any tractor ; the five lines may be

directrices (generating lines) of the same hyperboloid, and they have then an infinity

of tractors 5 or they may have a pair of tractors, viz. the fifth line may be a line

meeting the tractors of the other four lines; or (as a particular case of the last

relation) the five lines may have a twofold tractor; or the five lines may have a
single tractor.

24. Given any five lines and a point 0; then, selecting any four of the given
lines, we may through draw a line having with the four lines a pair of tractors.

Treating in this manner each of the five sets of four lines, we obtain through the

point five lines constructed as above; we have the theorem which will be proved
in the sequel, that these five lines lie in a plane fi. And similarly, given the five

lines, and a plane Xi, then selecting any four of the five lines, we may in the plane

11 draw a line having with the four lines a pair of tractors; treating in this manner
each of the five sets of four lines, we obtain in the plane Q, five lines; and we have
then the theorem that these five lines meet in a point 0.
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25. In the case of six given lines, we may have between the lines the like

relations to those for the case of five given lines ; or we niay have the more general

relation of the involution of six lines, depending on the last-mentioned theorems, viz.

given any five lines, and the point or the plane fl, then determining in the one

case the plane D, and in the other case the point 0, and taking as a sixth line any

line whatever through the point and in the plane fl, the six lines are said to be

in involution, or to form an involution of six lines. I now revert to the analytical

theory of the line.

Article Nos. 26 to 51. {Various sub-headings.) Cases of a linear relation or linear

relatioDis between the six Coordinates.

26. If the coordinates (o, 6, c, /, g, h) of a line are regarded as variable quantities

connected by a single equation or by two or three equations, we have a system of

lines with three or two arbitrary parameters or with a single arbitrary parameter; and

so if there are four equations the system consists of a determinate number of lines.

For a linear relation, the coeflBcients may be either (F, G, H, A, B, C), not the

coordinates of a line, that is, not satisfying the relation AF+BG+CH=0, or they

may be the coordinates of a line, satisfying the relation in question. I consider the

several cases in order as follows

:

Linear relation {F, G, H, A, B, C^a, b, c, /, g, h) = 0, where (A, B, C, F, G, H)
are not the coordinates of a line.

27. Considering any six lines which satisfy the relation in question, we may
eliminate the coefficients F, G, H, A, B, C, and thus obtain an equation'V =0, where

V is the determinant formed with the coordinates of the six lines; this equation,

regarding therein the coordinates of five of the six lines as given, is in regard to

the coordinates of the remaining line, say the original line (a, b, c, f g, h), a linear

relation equivalent to the original linear relation (F, G, H, A, B, C\a, b, c, f, g, h) = 0.

The equation in its new form, viz. the equation V =0, establishes between the six

lines a relation which is in fact the relation of involution already referred to ; viz. it

will be shown in the sequel that, starting from the equation V = as the definition

of the relation of involution, we are led to a construction for a line in involution

with five given lines the same as the construction explained ante No. 25.

Linear relation {F, G, H, A, B, C^a, b, c, f, g, h)=0, where (A, B, C, F, G, H)
are the coordinates of a line.

28. The linear relation expresses that the two lines (a, b, c,f g, h\A, B, C, F, G, H)

intersect, or what is the same thing, that the line (a, b, c, f, g, h) ia any line whatever

meeting the line {A, B, C, F, G, H).

Two linear relations (F , G , H , A , B , C ^a, b, c, f g, h) = 0,

(F„ G„ H„ A„ B„ C,\a, b, c, f g, h) = 0,

where the two sets of coefficients respectively are or are not the coordinates of a line.

10—2
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29. If the two sets of coefficients axe each of them the coordinates of a line,

then the two equations express that the line (a, b, c, /, g, h) is any line whatever

cutting each of the two given lines. And the general case is in fact reducible to

this particular one ; for suppose that neither set of coefficients belongs to a line, then

we may from the two given linear relations form the relation

(\F+\Fi, \0 +\0u \H+ \Hi, \A+X,A„ \B + X,5„ \C + \,C,$a, b, c, f, g, A) = 0,

and if the ratio X : X, be properly determined, then (X^l + Xi.4,, ...) will be the

coordinates of a line. This will in fact be the case if

(X^ + \A){\F+\,F,) + (X5 + X,B,) (XG + \G,) + (XC + X,C,) {XH + X,H,) = 0,

that is, if

(.4^^*+ BO + GH, AF, + BG, + GH, + FA, + GB, + GH„ A,F, + Bfi, + G,H,\X, \f = 0,

a quadric equation giving two values of the ratio X : X,, that is, two linear relations

in each of which the coefficients are the coordinates of a line : we have thus two

derived lines, and the line (a, b, c, f, g, h) meets each of these derived lines.

There is no real difference if one or the other of the given systems of coefficients,

say the system (A, B, G, F, G, H), are the coordinates of a line. We have then

AF+BG + GH = 0; the quadric equation in X : Xj has a root X, : X=0, and rejecting

it, the other root is determined by a simple equation : this only means that the line

(A, B, G, F, G, H) is itself one of the two derived lines.

But there is a real difference in the case where the equation in X : Xj has equal

roots; to explain this special case, observe that if in the general case we consider the

two derived lines as a pair of tractors of any four lines, then the linear relations

express that the line (a, b, c, /, g, h) has with these four lines a pair of tractors;

and in the special case under consideration the linear relations express that the line

(a, b, c, /, g, h) has with the four lines, or (what is the same thing) with any three

of them, that is with some three lines, a twofold tractor. According to what precedes

(No. 21), the construction of the line (a, b, c, f, g, h) is in feet as follows, viz. if on

the twofold tractor considered as given, we take a series of points p, and through

the tractor, homographic with the range, a pencil of planes P, then the sought-for

line will be any line through a point p, in the corresponding plane P. But it is

proper to give an analytical proof of the construction.

30. I observe that we may without loss of generality assume -4i.fi + ^iG, + G,Hi = 0,

and this being so, the condition for the equality of the roots of the quadric equation is

AF, + BG, + CH, + FA, + BG, + CH, = 0,

that is, writing (a,, b,, c,, /,, g,, h,) in place of {A,, B,, C,, ^i, G,, H,), the case in

question may be taken to be that of

Two linear relations

ifu gu K, a,, 6,, c,\a, b, c, f, g, A) = 0,

(F, G, H, A, B, C^a, b, c, f, g, h) = 0.
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where {a^, h^, Ci, /i, g^, Aj) are, {A, B, G, F, G, H) are not, the coordinates of a point,

Q/TKL tuhcVB

(A, 9u h, a„ h„ c\A, B, C, F,G,H)=0;

that is, where the twofold derived line is in fact the original line

(Oi, fci, Ci, /i, g^, Ih).

31. To simplify, we may take x=0, y = for the equations of the line; the

coordinates of the line then are {a^, b^, c^, f, g^, Ai) = (0, 0, 0, 0, 0, 1). Taking more-

over a; = 0, y = 0, - = -^ for the coordinates of the point p, and - = ^ for the equation

of the plane P, the homographic relation of the point and plane is given by an

equation of the form
- J^/37+ Oarf - Aah - B^B = 0,

or, as this may be written,

(F, 0, H, A, B, 0$-/37, a7, 0, - aS, -^h, (o) = 0,

where H and <u, being each multiplied by 0, do not really enter into the equation.

The equations of any line whatever through the point p and in the plane P
may be written ^x — ay=0, A'x + B'y + Sz — ya = 0, where A', B' are arbitrary: hence

arranging the coefficients in the order

^ , - a , 0, 0,

A'i B', B, -y,

the coordinates (a, b, c, f g, h) of the line in question are

(-^87, ay, 0, -aB, -^B, A'a + B'0);

so that we have

(/i. ffi, fh, Oi, bi, c$a, b, c, f g, h)

= (0,0,1,0,0, 0\a, b, c, f g, h), = c, =
;

and morever the homographic relation, replacing therein the arbitrary quantity w by

A'a + K^, becomes
{F, G, H, A, B, 0$a, b, c. /, g, A) = 0.

Hence the linear relations satisfied by the coordinates (a, b, c, f, g, h) of the line in

question are

(/i, 91, K, <h, bi, Ci^a, i, c, f g, h) = 0,

(F, G, H, A, B, CP^a, b, c, f g, h) = 0,

with the coefficients

(/., gu K, a,, 6„ c,) = (0, 0, 1, 0, 0, 0),

{A, B, C, F, G, H) = {A, B, 0, F, G, H),

values which satisfy the condition

(/i, gi, K, <h, h, ca$4, B, C, F, G, H) = 0.
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Hence the line (a, b, c, /, g, h) through the point p and in the plane P is a line

the coordinates of which satisfy two linear relations as mentioned in the heading; and

the theorem is thus proved. The demonstration would be simplified by taking, as is

allowable, the homographic relation to be o = ^'
f •

32. It appears from the foregoing examination of the case of two linear relations

that in the following cases of three or more linear relations there is no real loss of

generality in assuming that the coefficients of each set are the coordinates of a line;

for if originally this be not so, we have only to replace the given relations by linear

functions of these relations, and to assign such values to the multipliers \, \i, Xj...

as in each case to make the new coefficients to be the coordinates of a line ; and as

there are two or more arbitrary ratios X : Xj : X, . . . to be assigned at pleasure and

only a single condition to be satisfied, no cases of failure can arise. The remaining

cases may consequently be stated in a more simple form.

Three linear relations, the coefficients of each set being the coordinates of a line.

33. The three relations express that the line (a, b, c, f g, h) meets each of the

three given lines ; that is, that the line is any generating line of a hyperboloid having

the three given lines for directrices.

Four linear relations, the coefficients of each set being the coordinates of a line.

34. The four relations express that the line (a, b, c, f g, h) meets each of four

given lines; or what is the same thing, that the line is a tractor of four given

lines. It is to be noticed that the four linear relations serve to express the ratios

a : b : c : f : g : h linearly in terms of any one of these ratios, or what is the same

thing, to express the several ratios in terms of an arbitrary ratio u : v. Substituting

the resulting values in the equation

af+ bg + ch = 0,

we have a quadric equation for the determination of the remaining ratio, or of the

ratio u : v; and then each of the ratios of the coordinates can be expressed rationally

in terms of either root of the quadric equation ; we thus obtain the coordinates of

each of the two tractors of the four given lines ; or we have a complete analytical

solution of the problem, to find the ti-actors of four given lines. The quadric equation

may have equal roots ; that is, the four given lines may have a twofold tractor, which is

then determined linearly.

35. The theory of the linear relations of the coordinates (a, 6, c, /, g, h) of a line

may be considered in a different manner. It will be convenient to take the difierent

cases in a reverse order, beginning with the extreme case (not before mentioned) of

a fivefold relation and ascending to the case of a onefold or single relation.
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I

Case of the fivefold relation.

36. The fivefold relation

a. &. c
, f , g , h =0,

Oi. &i. Ci, /,, (7j, h,

expresses that the quantities (a, h, c, f, g, h) are proportional to (oi, b^, Ci, /i, 5^1 , /ti).

As the former set are by hypothesis the coordinates of a line, the given set (oi, h^, Ci,f\, ffi, ^)
must, it is clear, also be the coordinates of a line, and the relation then expresses

that the line (a, b, c, f, g, h) coincides with the given line.

Case of the fourfold relation.

37. The fourfold relation is

a . 6 . c , /, g , h ! = 0,

Oi. 61. Ci, /i, (/i, hi

Oi, h, c,, /,, g.2, A3

or what is the same thing, we have the six equations \a + Xi(ii + \2a2 = 0, &c., involving

the indeterminate quantities \, Xj, X,. If the coefficients

(oi. bi, c„/i, g^, K), (ttj, 6,, c^, f, g^, h^)

are not either set the coordinates of a line ; then substituting the foregoing values

— Xa = Xiaj +X,aj, &c. in the equation af+bg + ch=0, we have a quadric equation in

(X, : X,) : and for each root of this equation, the coefficients Xjai+XjOa, &c. will be the

coordinates of a line. There are thus in general two derived lines; and the fourfold

relation expresses that the line (a, b, c, f g, h) coincides with one or other of these

derived lines. There is no real difference if one or the other of the two sets

(a,, 6,, Ci, ji, gi, Aj), (a^, b,, Ci, f, g„ h^), or if each set, are the coordinates of a line;

one of the derived lines or both of them will in these cases coincide with one or

both of the given lines. And if the quadric equation has equal roots, then instead of

two derived lines there is a twofold derived line, and the line (a, b, c, f, g, h) must

coincide with this twofold line.

38. A case presenting peculiarity is however that in which the coefficients of the

quadric equation vanish identically; this is only so when the coefficients {a^, bi, Ci,/i, g^, h^)

and (a,, b„ c„ /j, g^, h,) are the coordinates of two intersecting lines. The equations

— >M, = \iai + X,a2, &c. here show that every line whatever which meets each of the

two lines (oj, bj, (h, fi, gi, A,) and (a^, b^, Cj, f, g^, h^) meets also the line (a, b, c, f g, A);

that is, the line (a, b, c, f g, A) is any line whatever in the plane and through the

point of intersection of the two intersecting lines. We see moreover that not only

Oi/a + bi9i + CiAj + O3/1 + b^gi + CsAi = 0,
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but also that a/, + 65^1 + ch^ +f(h + 9^1 + cAi = and a/^ + bg, + ch^ +/a, + gbi + chi = ;

that is, the moment of each pair of lines is =0. It may be remarked that the ratios

X : \i : \2 may be determined from any two of the six equations

\a + XiOi + XjOj = 0, . . . XA + XjA, + Xj As = ;

but that in consequence of the moments being each = 0, there is not for the deter-

mination of these ratios any such set of equations as occur in the cases subsequently

considered of a threefold relation, &c.

39. In what follows we have three or more sets {o^i, bi, c^, f^, g^, A,), &c.; and we

may without loss of generality assume that each of these are the coordinates of a line : for

replacing the several coefficients Oj, ... by linear functions /^lOi + zu^o., + /ttsas+ &c., &c., the

multipliers may be determined so that these are the coordinates of a point: and since

for each set there is only a single condition to be satisfied by the two or more

ratios /*, : /aj : /xj . .
.

, it is easy to see that no cases of failure will arise.

Case of the threefold relation.

40. The threefold relation is

a, b, c, f, g, h
|

= 0,

<h, bi, d, f, gu hi

<h, h, Ca, f, g^, Aj

fht "3> C3, js, g^, /is

where (aj,...), (oj, ...)(a3, ...) are each the coordinates of a line. Here writing

Xa + XjO, + X^Bj + Xjtts = 0. . .
,

it is clear that every line which meets each of the lines (oi,...), (a^, ...), (a,,...) vrill

also meet the line (a, b, c, f, g, A); the lines which meet the first-mentioned three lines

are the generating lines of a hyperboloid having these three .lines for directrices, and

it hence appears that the Hue {a, b, c, f g, A) is any directrix line whatever of the

hyperboloid in question.

41. Using the notations 01, 02, 12, &c. to denote the moments of the several pairs

of lines, viz.

01 = af + b gi + c A; +fa, + gb,+ h c,,

12 = Oi/a-l- big^ + Ci A„ +fa^ +gA+ A, c.,,

&c.,

then from the equations Xa + ^ai+Xna^ -|-X3a3 = 0, &c., we deduce

X,01 + X2O2 + Xs03 = 0,

XIO + . + Xil2 + X3l3=0,

X20 + X,21 + X323 = 0,

X30 + X,31 + X,32 . =0,



435] ox THE SIX COORDINATES OF A LINE.

and hence eliminating \, \i, X,, X3, we find

. 01, 02, 03

12, 1310, .

20, 21,

30, 31, 32,

23

= 0.

a relation between the momenta satisfied in virtue of the given threefold relation ; but

which as a mere onefold relation is of course not equivalent to the threefold relation.

It will subsequently appear that the equation expresses that any one of the four lines,

say the line (a, b, c, f, g, h) touches the hyperboloid having the other three lines for

generatrices ; this condition is satisfied in virtue of the threefold relation which, as we

have seen, expresses that the line (a, h, c, f, g, h) lies wholly in the hyperboloid in

question.

42. The last mentioned determinant is the Norm of

vol . 23 + V02731 + ^03712;

80 that the equation may be written

vol. 23 + V02 . 31 + ^03712 = 0,

or, what is the same thing.

VolV23 + V02\/:31 + V03\/r2 = 0,

it being of course understood that the signs of the radicals must be determined in

accordance with this equation; we then find

\ : X, : X, : Xs = V23 . 31 . 12 : V02 . 03 . 23 : V03 . 01 . 31 : VOl . 02 . 12,

or say

= V23 V3I V12 : v^ v^ V23 : V03 Voi V3I : Voi V02 Vl2
;

in fact, substituting these last values in the linear equations for X, Xj, X,, X,, we find

that the equations are all satisfied in virtue of the single equation

Vol V23 + V02 Vsi + V03 \/l2 = 0.

43. We have here

Case of the twofold relation.

a, b, c, f, g, h =0,

Oi. bi, Ci, /i, gi, hi

di, O2, C2, ji, g^, fit

(h> "3> ^3) J3> gst 1^3

i 04. ^4, C4, ft, gt, hi

where (a,, ...) (a,, ...)(a3, ...)(a4, ...), are each the coordinates of a line. Here, writing

Xa + XjOi + XjOj+ XjO, + \at = ;

C. VII. 11
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it is clear that every line which meets each of the four given lines, will also meet the

line (a, b, c, f, g, h) ; but the only lines meeting the four given lines are two deter-

minate lines, the tractors of the four given lines ; and the conclusion is, that the line

(a, b, c, f, g, h) is any line whatever which meets the two tractors.

44. If, however, the four given lines have a twofold tractor, then the line (a, b, c,f, g, h)

is still a line having two conditions, imposed upon it; it is in fact a line determined

as in No. 21, viz. if on the tractor we take a series of points p, and through the

tractor a series of planes P, corresponding homographically to the points, then the line

(a, b, c, f, g, h) is any line through a point p, in the corresponding plane P.

45. Using as before 01, 02, ... 12, &c. to denote the moments of the several pairs

of lines, we have
X, 01 + X,02 + \,03 + X,04 = 0,

XIO . +X2l2+X3l3 + XJ4 = 0,

X20 + X,21 . -f X,23 + X424 = 0,

X30 + Xi31 + X,32 . +X434=0,

and thence also

X40-l-X,41+X542+X»43 = 0,

. 01, 02, 03, 04 = 0,

, 10, . 12, 13, 14

20, 21, . 23, 24

30, 31, 32, . 34

40, 41, 42, 43, ,

a relation between the moments satisfied in virtue of the original twofold relation ; but

which, as a single equation, is of course not equivalent to the twofold relation. It is

in fact easy to see that this equation expresses that the five lines have a common

tractor; this is true, since in virtue of the twofold relation there are really two

common tractors.

I have not obtained from the linear equations any symmetrical expressions for the

ratios X : Xj : Xj : Xj.

Case of a onefold relation.

46. The onefold relation is

a , b

,

c

,

f, g ,
h

«!, bi, Ci, /i, g^, hi

Oj, Oj, Cj, /a, g2, II3

(^»> ^ji c-i, J2, gz, «3

a*, h, C4, f, g^, ht

a., bi, c„ /„ g^, hi

0,
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where (a^, ...), (Oj, ...), (a,, ...), (Ut, ...), (a,, ...), are each the coordinates of points in a line.

The preceding mode of dealing with the question is inapplicable, since there is not in

general any line which meets the five given lines ; in the particular case, however,

where the five given lines are met by a single line, say when they have a common
tractor, then the line (a, b, c, f, g, h) is any line meeting this common tractor. The

general case is that of the involution of six lines, mentioned No. 2-5, and the con-

sideration of which was deferred.

that

47. The onefold relation implies that we can find multipliers \, /i, v, p, cr, t, such

\a + fib +VC + pf + a-g + rh = 0,

Xffi + phi + vCi + pfi + agi + tIii = 0,

Xtts + pbi + VCi + pfi + <^9i + ^K = 0,

we may by means of the last five equations determine the ratios of \, //., v, p, a, r,

viz. these quantities will be proportional to the determinants formed out of the matrix

<h, k, c,, /;, gi, hi

ctj, Oj, Cj, ji, g^, lii

dz, h, Cs, /a, ffs, hi

a*, K Ci, ft, gt, ht

di, K Ci, fi, fffy /'o

and the first equation is then a linear relation in (a, b, c, /, g. h), expressing the

relation that exists between these coordinates.

48. Consider an arbitrary point on the line (a, b, c, f, g, h) ;
taking this point

as origin, the coordinates of are 0, 0, 0, 1 ; and if x, y, z, w, are the coordinates

of any other point on the line, then writing

x, y, z, w,

0, 0, 0, 1,

we find

and the equation

a : h : c
:
f

:
g : h=Q : : : X : y : z

;

'\a + tib + vc + pf+crg + rh =

becomes simply px + ay+TZ = 0; viz. this equation expresses that the line (a,b, c,f, g, h),

assumed to pass through a given point 0, lies in a determinate plane il through this

point.

49. To construct this plane fi, I consider any four of the five given lines, say

the lines 2, 3, 4, 5, and I endeavour to find the line OQi through 0, which has

with these lines a pair of tractors
;
qvA line through 0, the coordinates of the line in

question may be taken to be 0, 0, 0, Fi, (?,, 5, (where Fi, Gi, Hi, are in fact the

11—2



84 ON THE SIX COORDINATES OF A LINE. [435

coordinates x, y, z, of any point on the line OQ,); and then the condition for the

pair of tractors may be written

PtO^ + P»<h + P^a* + Pi<h = 0,

Piht +pA +pA +pA = 0,

PiC +PsCt+ p^C^ + p.Cj = 0,

Pif'.+Pifi +Ptf* +P>fi = Fi.

Pi9» +P393 +Pi9i +ptgi = Oi,

pA +i>A + p^K +pX = -ffi.

where p^, p^... are arbitrary coefficients; and we hence deduce

but in precisely the same way, if the line OQ^ have with the lines 1, 3, 4, 5, a pair

of tractors, and if F«, G,, H^, be the coordinates of a point on the line OQ^, and

similarly for the lines OQ3, OQt, OQ^, and the coordinates (F3, G3, H,), {F^, <?<, Ht)
{F„ G„ H,\ we have

pFi + (TGi-irTH., = Q,

pFs + a-G^ + tH, = 0,

pFt-\-aGi + TH, = 0,

pF, + aG, + rH, = 0,

and these equations show that the five lines OQi, OQ^, OQ3, OQt, OQ^, lie in the plane

px + a-y + rz = ;

80 that this plane is given as the plane through the lines OQ,, OQ^, OQ3, OQi, OQ^;

and we have thus (given the lines 1, 2, 3, 4, 5, and the arbitrary point 0) the con-

struction of the line (a, b, c, f, g, h) through in involution with the given lines.

50. The original onefold relation may be replaced by the six equations

\a + XiOi + XaOa + Xjaj + X^ai + XjOj = 0,

\6 + X161 + X262 4- X363 -\-\ihi+ X565 = 0,

\h + Xi^i + \.h^ + Xj/fa + 'Kjii + \K = 0,

and hence denoting as before the moments by 01, 02, 12, &c. we have

. X,01-l-X,02-l-X303+X404 + X505 = 0,

XIO . +X2l2 + X3l3 + X4l4+X5l5=0,

X20 + X.21 . +X323-f-X424+X525 = 0,

X.S0 + X,31+Xj32 . +X,34 + X,35 = 0,

X40+X,41 + X242 + X343 . +X54o=0,

X50+ Xi51+X,52 + X353 + X454 . =0,
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. 01, 02, 03, 04, 05 =0,

10, . 12, 13, 14, 15

20, 21, . 23, 24, 25

30, 31, 32, . 34, 35

40, 41, 42, 43, . 45

50, 51, 52, 53, 54, .

a relation between the moments equivalent to the original onefold relation, and con-

sequently expressing that the six lines are in involution. I have not obtained a

symmetrical system of values for the ratios \ : Xi : Xj : X., : Xj : Xj.

51. Reverting to the relation which exists between the point and the plane fi,

it is proper to remark that, since to any given point there corresponds a single

plane il, and to any given plane 12 a single point 0, it follows that the point

and plane fl are reciprocal figures ; viz. they are reciprocals of the particular kind

treated of by Mobius, wherein the reciprocal of a point is a plane through the point,

and the reciprocal of a plane a point in the plane ; and of which the analytical

character is that the reciprocal of the point (a, yS, 7, S) is the plane

( . h^ -gy+lh)x

+ (-ha . -I-/7 + mS) y

+ ( goL^f^ . +nl)z

+ (— la — m/3 —ny . )w = 0.

Article No. 52. A geometrical property of an involution of six lines.

52. The figure of six lines in involution is connected in various ways with the theory

of cubic curves in space, for instance, considering a point A of the curve, this determines

with any given line I a plane meeting the curve in two other points, and the line X
which joins these two points may be called the projection of the line I. This being

so, if in any osculating plane of the cubic we have six lines, I, li, l^, I3, l^, l^,

tangents of a conic in that plane, the six projections X, Xj, X2, X3, X4, X5 of these

tangents will be a set of lines in involution. I do not stop to prove this theorem

or to develope any of its consequencea

Article No. 53. To find the condition that four given lines may have a twofold tractor.

53. Taking the coordinates of the given lines to be

(a, h, c, f g, h), (a,, 6,, c,,/,, <7i, Aj), (a^, b.^, c^, f, g^, h,), (a,, 63, c,, f, ga, h,)
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then if {A, B, C, F, G, H) he the coordinates of a ti-actor of these lines, we have

(F, G, H,A, B, Cfa, b, c,/,g, h) = 0,

(F G, H, A, B, C^a,, b„ c„ /.. g„ h,) = 0,

(F, G, H, A, B, C^a^, b^, c„ /„ g^, A,) = 0,

(F, G, H, A, B, C^Ot, 63, C3, /a, gi, h,) = 0.

In virtue of these relations the ratios A : B : G : F : G : H are given linear

functions of any one of these ratios or of an arbitrary ratio u : v; and we then have

AF + BG + CH = 0, a quadric equation for determining the unknown ratio. In the

case of a twofold tractor, this equation must have equal roots; whence employing as

usual the method of indeterminate multipliers, we find

A +\a + XiOi + XjCtj + XjOa = 0,

B +Xb + XA + Xjftj + X363 = 0,

C +Xc + \Ci + XjCj + XjCs = 0,

-f + X/ + X./i + X,/» + Xa/s = 0,

G + \g + X^gi + X^g^ + X^g^ = 0,

H+XJi + XA + Xji^ + X3A3 = 0.

Hence representing as before the moments of the pairs of lines by 01, 02, &c.,

we deduce
. X.Ol + Xfi2 + X3O3 = 0,

X10+ . +Xsl2 + X3l.3 = 0,

X20 + X,21 . + X323 = 0,

X30 + X,31 + X^2

so that, as already mentioned, we have

. 01, 02,

0,

03

13

23

10, . 12,

20, 21, .

30, 31, 32,

as the condition that the four given lines may have a twofold tractor.

0,

Article Nos. 54 to 56. Hyperholoid passing through three given lines.

54. The direct investigation is somewhat tedious ; but I write down, and will

afterwards verify, the equation of the hyperboloid passing through the three given lines

(«!. k, Ci, fi, gy, /(,), (a„, 63, c/s, g^, h^), (a-3, 6,, c^, f„ g^, h,).

Writing for shortness {agh), &c. to denote the determinants

, &c.a,. 9i' h.

a„ g^, K
a>, 9z, h.
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the equation of the hyperboloid is

{agh) a? + {hhf) f + (cfg) 2^ -\- (ahc) w'

+ [(«%) - (cah)] anu + [{hfg) + {chf)] yz

+ [(6cA) -{ahf)-\yw^{{cg}i) +{afg)-\zx

+ [(ca/) - Q)cg) ] zw + [(aA/) + (6^A)] xy = 0.

In fact, we have

(agh) = a, (^r.^j - ^TsA.,) + ^r, (A^aj - AjOj) + A, (ajgr, - Os^r,)

= a . gh + g.ha +h.ag,

where a, &c. stand for a,, &c. and gh, &c. for ^r^As — g^h^, &e. Hence the foregoing

equation may be written

«* (a.gh+g .ha + h. ag)

+ f(b.kf + h.fb+f.bh)

+ z' (c./g+f.gc+g.cf)

+ v^{a .be + b .ca + c . ah)

k-xwi
<^-^9 + b.ga+g.ab\ / b .fg +f .gb + g .bf\

\— c .ah— a.hc —h.caj ^ \+ c .hf+ h . fc + f . ch)

+ yw

+ z%v

t b . ch + c .hb — h.bc\

[-a.bf-b.fa -f.ab)
+ zx

bf-b.fa-f.

c.af+a.fc +f.ca _ . , ., ^
— b.cg — c.gb—g.bcJ \+ b .gh + g .hb + h.bg

hf+h.fc +f.

/ c .gh + g .he +h. eg

\+a.fg+f.ga+g.af.

a .hf+h .fa +f . ch'

)-0.

55. This is

be .wt hy — gz + aw)

+ ca.w{— hx +fz +bw)

+ ab .Wi 9^ -fy + cw)

+ gh.x {'cue + by + ez)

+ hf.y{[ax + by + cz)

+/ff-^ {[ax + by + cz)

+ af[w{ax + by + ez) — x{ hy — gz + aw)}

+ bg {w{ ax + by + cz) — y{— hx +fz + bw)}

+ ch {w{ ax + by + cz) — z ( gx--fy + cw)}

-hf.y (
hy—gz + aw)

-cf.z (
hy-gz+aw)

-cg.z (
— hx +fz + bw)

-ag.x [—hx +fz+bw)

— ah.x i9<^ -fy + cw

)

-bh.y {
^x —fy + cw ) = 0.
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56. Hence writing

(Z, Y, Z, W)= . , h, - g, a, (x, y, z, w),

- h, . , f, b,

g, -/. • . c,

-a, -b, - c, .

the foregoing equation is

bc.wX +ca.w7 + ab.wZ -gh.xW-hf.yW -fg.zW

-af{wW + xX) -bg(wW+ yY) -ch(ivW + zZ)

— bf. yX — eg . zY —ah.xZ —cf.zX —ag. xY —bh.yZ = 0;

or, collecting and arranging, this is

X [—a/.x — bf.y — cf.z + bc.w]

+ Y {—ag.x — bg.y — cg.z + ca.w}

+ Z [—ah.x — bh.y — ch.z + ab.w]

+ W{-gh.x-hf.y-fg.z + (af. + bg. + ch.)w}^0,

which is satisfied by X = 0, F=0, Z=0, Tf=0; that is, since (a, b, c, f, g, h) have

been written in place of (Oi, 6,, c^, fi, g^, K), by X, = 0, F, = 0, Z, = 0, F, = (if we

thus denote the corresponding functions of (oj, 6,, Cj, /i, gi, hi)), that is, the hyperboloid

passes through the line (a^, b,, Ci,/i, gi, hi); and similarly it passes through the other

two lines.

Article Nos. 57 and 58. The six coordinates defined as to their absolute magnitudes.

57. In all that precedes, the absolute magnitudes of the coordinates have been

left indeterminate, only the ratios being attended to. But the magnitudes of the six

coordinates may be fixed in a very simple manner as follows ; viz. using ordinary

rectangular coordinates, then for any line, if x^, y^, Zg are the coordinates of a particular

point on this line, and a, /3, 7 the inclinations of the line to the axes, the coordinates

of another point on the line are

Xi, + r cos a, y^ + r cos /9, z^ + r cos 7

;

and hence writing

a?„ + r cos a, y^ + r cos ^, Zo + rcosy, 1,

«» , yo , ^0 , 1>

we have

a :b : c :/: g : h = z„ cos /8 — 3/0 cos 7 : x, cos 7—^0 cos a : y,, cos /3 — x, cos a : cos a : cos j9 : cos 7.

Or we may take

a = ^0 cos /9 — yo cos 7, /=cosa,

6 =3;,, cos 7 —Zj cos a, g = cosfi,

c = yo cos a — x„ cos y3, h = cos 7,

i
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values which of course satisfy, as they should do, the relation 0/"+ bg + ch = 0. It is

hardly necessary to remark, that the values of a, b, c are not altered on substituting

for a:„, y„ z, the coordinates a;, + « cos at, y„ + scos/3, z^ + s cosy of any other point on

the line.

58. Considering any two lines (a, b, c, /, g, h), (a,, hi, Ci, /i, gi, hj), if we define

the moment of the two lines to be the product of the perpendicular distance into the

sine of the inclination of the two lines, then we have. Moment

= afi + igi + ch, +f(h + gbi + Ac,

,

viz. we have now a quantitative definition of the function of the coordinates previously

called the moment of the two lines.

For the demonstration of this formula it is to be remarked, that taking on the

first line a segment of the length r, the coordinates of its extremities being {x^, y„, z^)

and (iTo + r cos a, y^-\-r cos /8, z^ + r cos 7),

and on the second line a segment of the length r, the coordinates of its extremities

being (V. y^, ^o') and {x^ + r, cos a„ y„' + r, cos /3,, z„' 4- r^ cos 7,) and joining the extremities

of these segments so as to form a tetrahedron, the volume of the tetrahedron is

= im (a/i + ^9i + cK +f<h. +gh + hci).

But the volume of the tetrahedron is also equal to ^ of the product of the opposite

edges into their perpendicular distance into the sine of the inclination of the two

edges (') ; that is, it is = ^/t, into the moment of the two lines, and we have thus

the formula in question.

Article Nos. 59 to 75. Statical and Kinematical Applications.

The coordinates (a, b, c, /, g, h), as last defined, are peculiarly convenient in

kinematical and mechanical questions, as will appear from the following investigations.

59. Using the term rotation to denote an infinitesimal rotation, I say first that

a rotation \ round the line (a, b, c, f, g, h) produces in the point {x, y, z) rigidly

connected with this line the displacements

8a; = \ ( . — hy + gz — a),

Sy = X( kx . -fz-b),
S2 = \{- gx +fy . -c).

' I take the opportnnity of mentioning a very simple demonstration of this formula : taking the opposite

edges to be r, r^, their inclination =0, and perpendicular distance =h; the section of the tetrahedron by a

plane parallel to the two edges at the distances 2, h-z from the two edges respectively is a parallelogram,

the sides of which are
*"' ~''

and ^ respectively, and their inclination is =e ; the area of the section is

A h

therefore ^Bme.z(h-z) and the volume of the tetrahedron is = jJ sin 9 / z(h-z)dz, =irr, ft sin S. The
hr "Jo

same result is however obtained still more simply by drawing a plane through one of the two edges perpen-

dicular to the other edge ; the volume is then equal to the sum or the difference of the volumes of two

tetrahedra standing on a common triangular base ; and the required result at once follows.

c. VII. ' 12
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In fact assuming for a moment that the axis of rotation passes through the origin,

then for the point P coordinates x, y, z, the square of the perpendicular distance from

the axis is

( . —y cos 7 + ^ cos /Sy

+ ( X cos 7 . — z cos a )*

+ (— a; cos /8 + y cos o . )*,

and the expressions which enter into this formula denote as follows; viz. if through

the point P at right angles to the plane through P and the axis of rotation we

draw a line PQ, = perpendicular distance of P from the axis of rotation, then the

coordinates of Q referred to P as origin are

— y cos 7 + z cos /9,

X cos 7 . —z cos a

,

— xcos^ + y cos a . ,

respectively. Hence the foregoing quantities each multiplied by \ are the displacements

of the point P in the directions of the axes, produced by the rotation \.

60. Suppose that the axis of rotation (instead of passing through the origin) pass

through the point (x„, y^, z^); the only difference is that we must in the formula

write {x — Xi,, y — ya, z — z^) in place of {x, y, z): and attending to the significations of

the six coordinates, it thus appears that the displacements produced by the rotation

ai'e equal to \ into the expressions

. - hy + gz - a,

hx . —fz — b,

- 9^ -^fy • - c.

respectively; which is the theorem in question.

61. I say secondly that considering in a solid body the point (x, y, z) situate in

the line (a, h, c, f, g, h), and writing

a, b, c, f, g, h = z cos ^ — y cos y, x cos y — z cos a, y cos a — x cos /3, cos a, cos /3, cos 7,

then for any infinitesimal motion of the solid body the displacement of the point in

the direction of the line is

= ap + bq + cr +fl +gm + hn,

where p, q, r, I, m, n are constants depending on the infinitesimal motion.

In fact for any infinitesimal motion of a solid body the displacements of the point

{x, y, z) are

Bx = l . +ry — qz,

Sy=m — rx . +pz,

Bz = n +qx -py . ,
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and hence the displacement in the direction of the line is

= cos aBx + cos ^By + cos 7 Sz,

which attending to the significations of (a, b, c, f, g, h) is

= ap + bq + cr +fl +gm + hn,

and we have thus the theorem in question.

62. It thus appears that for a system of rotations

Xi about the line (oi, bi, Ci, fi, g^, h^),

Aj „ (Oj, O2, Cj, j^, g^, Aj),

&C. „ &c.

the displacements of the point {x, y, z) rigidly connected with the several lines are

hjc= . — yXhK + z'S.gX — Sa\,

By = xthX . - zlf\ - Ibt,

Bz = — x^gX + y'^fX . — 2cX,

and when the rotations are in equilibrium then the displacements (Bx, By, Bz) of any

point (x, y, z) whatever must each of them vanish ; that is, we must have

lXa = 0, 2X6 = 0, 2Xc = 0, SX/=0, lXg = 0, %\h = 0,

which are therefore the conditions for the equilibrium of the system of rotations

63. And it further appears that for a system of forces acting on a rigid body,

\ along the line (oi, 6,, Ci, /,, ^r,, Jh),

Xj „ (dj, Oj, Cj, J2, gt, hi).

Sec

the conditions of equilibrium as given by the Principle of Virtual Velocities is

XX (ap + bq i- cr +fl +gm + hn) = 0,

or what is the same thing, that we have

SXa = 0, 2X6 = 0, 2Xc = 0, 2X/= 0, "ZXg = 0, l.Xh = 0,

for the conditions of equilibrium of the system of forces X,, X,, &c. The conditions

of equilibrium are thus precisely the same in the case of a system of rotations

(infinitesimal rotations) and in that of a system of forces.

64. It now appears that the greater portion of the investigations in the first

part of the present paper are applicable, and may be considered as relating, to the

equilibrium of forces (or of rotations ; but as the two theories are identical, it is

suflScient to attend to one of them), and that we have in effect solved the following

12—2
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question, "Given any system of two, three, four, five or six lines considered as belonging

to a solid body, to determine the relations between these lines in order that there

may exist along them forces which are in equilibrium ;" but for greater clearness I

will consider the several cases in order; it is hardly necessary to remark that when
the forces exist the equilibrium will depend on the ratios only, and that the absolute

magnitude of any one of the forces may be assumed at pleasure.

65. The condition in the case of two lines is of course that these shall coincide

together, or form one and the same line ; and the forces are then equal and opposite

forces.

66. In the case of three lines, these must meet in a point and lie in a plane;

and the force along each line must then be as the sine of the angle between the

other two lines.
'

67. Supposing that the forces are X along the line (a, b, c, f, g, h), Xj along the

line (a,, bi, Cj, /i, gi, hi), and X, along the line (ttj, b^, Cj, /,, g.^, k^), the conditions of

equilibrium are Xa + Xia, +X2a^ = 0, XA + XjAj + Xj^'a = 0, any two of which determine

the ratios X : X, : X,; these ratios were not worked out ante No. 38 for the reason

that with the coordinates there made use of, a symmetrical solution was not obtainable

;

but in the present case, selecting the last three equations, these are

X cos a + Xj cos «! + Xa cos a^ = 0,

X cos /3 + Xi cos /3i + Xj cos /S3 = 0,

X cos 7 + Xi cos 7, + Xj cos 72 = 0,

giving in the first instance an equation which expresses that the three lines (assumed

to meet in a point) lie in the same plane: and then if 01, 02, 12 be the angles

between the pairs of lines respectively, giving by an easy transformation

X + Xi cos 01 + Xj cos 02 = 0,

XcoslO + Xi +X2 cos 12 = 0,

X cos 20 + X, cos 21 + Xi =0.

68. Putting for shortness A, B, G in the place of 12, 20, 01 respectively, we
thence find

= 0,1 COS C , COS.B

cosC 1 , COS A

cos 5 COS J. , 1

that is

1 - COS'A - cos" B - cos'' C+2 cos A cos BcoaC = 0,

equivalent to A + B+ =:27r; and then from the fii-st and second equations

X : Xi : X3 = C0S.4 cos C— cos£ : cos 5 cos (7 — cos .4 : 1— cos'(7,

= sin A siuC : sin BsinC : sin' C,

= sin ^ : sin B : sin C,

which is the required formula.

I
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69. In the case of four given lines the condition (as noticed by Mobius) is that

the four lines shall be generating lines of the same hyperboloid. In fact every line

which meets three of the four lines must also meet the fourth line ; for otherwise

the moment of the system about such line would not be = 0. Calling the lines

0, 1, 2, 3 and writing as before 01, 02, &c. for the moments of the several pairs of

lines, then taking the moments of the system about the four lines respectively, we
obtain directly the before-mentioned system of equations

\,01+X202+\303 = 0,

XIO . +\jl2 + \3l3 = 0,

X20 + Xi21 . -1-X323 = 0,

X30 + X,31+Xi41 . =0,

leading as before to the relation

Voi V23 + V02 VSII + V03 Vl2 = 0,

and to the values

X : Xi : X, : X, = \/i2 v^ ^31 : V23 V30 Vof : V30 Voi Vl3 : Voi \^ ^20

for the proportional magnitudes of the forces. These last equations give

XXj 01 = X2X3 ZOf

which, representing each force by a segment on the line along which the force acts,

denotes that the tetrahedron of any two of the forces is equal to the tetrahedron of

the other two forces; this is in fact equivalent to the theorem of M. Chasles, that

if a system of forces be in any mariner whatever reduced to two forces, the tetra-

hedron formed by these two forces has a constant volume.

70. In the case of five given lines, the lines must have a pair of tractors. Any
four of the lines have in fact two tractors; and each of these tractors must meet

the fifth line, for otherwise the moment of the system about the tractor would not

be = 0. In the case where the four lines have a twofold tractor, the foregoing con-

sideration shows only that the fifth line meets the twofold tractor, but it fails to

show that the twofold tractor is a twofold tractor in regard to the fifth line.

71. I stop to consider this particular case under the present statical point of

view. Taking the twofold tractor for the axis of z; let the line meet this line in

the point (0, 0, c), the coordinates (a, b, c, f, g, h) of this line being consequently

(c cos /3, — c cos a, 0, cos a, cos yS, cos y)

and the like for the other four lines 1, 2, 3, 4. Using the sign 2 to refer to the

last-mentioned four lines the equations of equilibrium become

Xc cos /3 + 2x,Ci cos /3, = 0,

Xc cos a -I- SXiCi cos a, = 0,

X cos a + SXi cos Oi = 0,

X cos /3 + SXi cos y8i = 0,

X cos 7 + SXj cos 7i = 0.
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These equations give

2XiC, cos /9, _ c cos /9

2\,cosa, cos a
*

we may without loss of generality take the homographic conditions which express that

the axis of z is a twofold tractor of the four lines to be

Ci cos /8i _ Ca cos ySj _ C, COS /9, _ C4 COS ^t _ ,

cos a, cos Oa COS a, cos 04

and this being so, the last-mentioned equation becomes

c COS j9
,

cos a

and it thus appears that the axis of ^ is a twofold tractor in regard also to the line 0.

72. In the case of six lines such that there exist along them forces which are in

equilibrium, taking this as a definition of the involution of six lines, we may very

readily obtain from statical considerations the before-mentioned construction of the sixth

line; viz. it may be shown that given any five of the lines, say the lines 1, 2, 3, 4, •">

and a point 0, we can through the point determine a plane Xi, such that any

line whatever through the point and in the plane n is in involution with the five

given lines. Consider the tractors of any four of the lines, say the lines 2, 3, 4, 5
;

we may through the point draw a line OA meeting the two tractors ; that is, the

lines 2, 3, 4, 5 and the line OA will have a pair of common tractors. There con-

sequently exist along these lines forces which are in equilibrium ; and since only the

ratios are material, the absolute magnitude of the force along the line OA may be

anything whatever. Similarly, considering the tractors of the lines 1, 3, 4, 5, and through

a line OB meeting these tractors, then there exist along the lines 1, 3, 4, 5 and

the line OB forces which are in equilibrium, and the absolute magnitude of the force

along the line OB may be anything whatever. Hence, combining the two sets of

forces, we have, along a line through in the plane OA, OB, but otherwise indeter-

minate in its direction, a force in equilibrium with forces along the lines 1, 2, 3, 4, 5 ;

that is, the line found as above is a line in involution with the lines 1, 2, 3, 4, 5.

73. It is to be added, that through we cannot, out of the plane OA, OB, draw

a line in involution with the lines 1, 2, 3, 4, 5 ; for if any such line OK existed,

then we should have along each of the lines OA, OB, OK forces in equilibrium with

forces along the lines 1, 2, 3, 4, 5 ; and the magnitudes of the three forces being

each of them anything whatever, it would follow that along any line whatever through

the point there would exist a force in equilibrium with forces along the lines

1, 2, 3, 4, 5; that is, any line whatever through the point would be a line in

involution with these lines.

74. It hence appears?, that drawing OA to meet the tractors of 2, 3, 4, 5; OB
to meet those of 3, 4, 5, 1 ; 00 to meet those of 4, 5, 1, 2 ; OD to meet those of

.5, 1, 2, 3; and OE to meet those of 1, 2, 3, 4; the lines OA, OB, 00, OD, OE will

be in one plane, say the plane H: and that any line through in the plane £L will

be a line in involution with the lines 1, 2, 3, 4, 5.

i
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75. There is another statical representation of the involution of six lines. If a

system of forces act on a solid body, then taking six lines at random, the system

will be in equilibrium if the sum of the moments be =0 in regard to each of the

six lines. But if the six lines be in involution; then, for the very reason that a

rotation about one of these lines is resolvable into rotations about the other five lines,

if the sum of the moments be = for each of the five lines, it will also be = for

the sixth line: that is, it is not sufficient for the equilibrium of the forces that the

sum of the moments shall be = for each of the six lines. And we thus see that

six lines in involution are lines such that the equilibrium of a system of forces about

each of the six lines as axes does not insure the equilibrium of the system.

Article Nos. 76 and 77. Transformation of Coordinates.

76. Reverting to the general definition of the six coordinates (a, h, c, f g, h) of

a line by means of the points (a, y8, 7, S) and (a', /3', 7', 8') on the line ; suppose that

instead of the original coordinate planes x=0, y = 0, z = 0, w = (forming a tetrahedron

ABCD) -we have new coordinate planes iKo = 0, yo=0. •2^0 = 0, Wo = (forming a tetrahedron

AdBoCuDi,); and that the relations between the two sets of current coordinates are given

by the equations

: (Xj, /i,, Vi, pi$^X(,, yo, Zo, Wo)

: (Xj, 1x3, 1/3, ps^Xo, y„, Zo, tVo)

: (\,KH-4, "4. Pt^^o, yo, ^0. w„),

with, of course, the like relations between the original coordinates {1, /9, 7, S) and new

coordinates (««, /S,. 7o, ^o), and between the original coordinates (a', ^, 7', S') and the

new coordinates (a/, /S,', 70', So'), of the two points on the line (a, h, c, f, g, h); then

taking (a,, h^, Co, /«, g^, K) as the new values of the six coordinates of the line, viz.

writing

Oo bo Co fo ffo K
= y3o7o' — /9o'7o '• 7o"o'— 7o'«o : "o/So — "o'^o : OoV— ^o'So : ^o^o'— A'^o : 7oSo' — 7o'^o.

we obtain a system of formulae which may be conveniently written as follows:

a : b : c : f : g : h

_fiv I'X , \fi \p J. fip vp ,

" 23"" "^
23 '"''23 ''' ^ 23^° + 23

^° "''
23

»

31

12

14

24

34

viz. the top line stands for (ptVt— iHVt)<^o + {viXi—Vi\^bo-\- Sic., and the other lines are

obtained from this by mere alterations of the suSixes.
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thea

77. As to the interpretation of these formulae, taking

A B CD aa the fundamental tetrahedron for (x
, y , z , w),

(Xi, fii, vi, pi^x^, yo, ^«. «'„)= is the equation of plane BCD,

(X>, Ms, "2, /3j][ ., )=0 „ CDA,

(X„ tH. V3, /3,$ „ ) = „ DAB,

whence, observing that the second and third equations belong to two planes each

passing through the line DA, it appears that the coefficients

fiv vK \fi \p fip vp

23' 23' 23' 23' 23 ' 23

'

are the six coordinates of the line DA, expressed in regard to the tetrahedron

(^o^o^oA); and similarly that the coefficients in the six expressions of the trans-

formation formula are the six coordinates of the lines AD, BD, CD, BG, GA, AB
respectively in regard to the tetrahedron {A^B^G^D^

In the preceding formulae for the transformation of coordinates the ratios only have

been attended to, no determinate absolute magnitudes have been assigned to the

coordinates (a, h, c, f, g, h). But I will nevertheless show how we may attribute

absolute magnitudes to these coordinates.

Article Nos. 78 to 80. New definition of tJie six coordinates as to their absolute

magnitudes.

78. I assume (x, y, z, w) to be "volume" coordinates; viz. taking as before ABGD
for the fundamental tetrahedron, and denoting the point {x, y, z, w) by P, I assume

that we have

x : y : z : w : 1= PBGD : APGD : ABPD : ABGP : ABGD,

where PBGD, &c. denote the volumes of the several tetrahedra PBGD, &c. It is to

be noticed that the volume is in every case taken with a determinate sign: analytically

the sign may be fixed by taking (xa, y,, Zg), &c., as the Cartesian coordinates of the

points A, &c. and writing

PBGD = Xp, xi,, Xe, Xa \, &ic

Vv yi> y<" yd

Zp, Z^, Zc, Zn

1 , 1. 1, 1

(whence of course PBGD = PGDA = — PCBD, &c. according to the rule of signs) : or

we may in an equivalent manner, but less easily, determine the sign, by considering

the sense of the rotation about GD (considered as an axis drawn from G to D) which

would be produced by a force along PB (from P to B).
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79. It is to be observed that the foregoing values give identically x + y + z + w = l,

so that the equation of the plane infinity is x + y + z + w = 0. The values of the

coordinates (x, y, z, w) may be written

X : y : z :w : 1=PBCD : PCAD : PABD : PGBA : ABGD;

or in the original form

X : y : z : w : 1= PBCD : APCB : ABPD : ABCP : ABGD,

as may be most convenient.

80. Denoting the points (a, /3, 7, S) and (a, /8', 7', 8') by Q, Q' respectively, we

a : yS : 7 : S : 1 = QBGD : AQGD : ABQD : ABGQ : ABGD

a' : /S' : 7' : S' : 1 = Q'BGD : AQ'GD : ABQ'D : ABGQ' : ABGD,

and writing

(a, b. c,f, g, A) = (/37'-^7, 7a'-7'a, a/3'-a'/3, aS'-a'g, /38'-;8'S, 7S'-7'S),

viz. the two sets being taken to be equal, a = ^y — ^'y, &c. instead of merely pro-

portional, then it is easily seen that we obtain

a : b : c : f : g : h : 1

= AQQ^D : Q'BQD : QQ'GD : QBCQ' : AQGQ : ABQQ' : ABGD,

that is, in order to form the first six combinations we successively replace

(B, (7), (C A), U B), {A, D), (B, D), {G, D)

in ABGD by (Q, Q).

have

and

Article No. 81. Resulting formulas of Transformation.

81. For the transformation of coordinates if we assume

X =(X,, /^,, I/,, /3,5«„, 2/0, Zo, Wo),

y =(K, fi^, Vi, p^ „ ),

z =0^, /*s, "3, /33$ » ).

«' = (Xi, fii, Vi, pt\ „ ),

and take also (a, 6, c, f, g, h), {a^, bo, c^, f, go, K) respectively equal, instead of merely

proportional, to the foregoing values, then, observing that for the point Ao we have

(xo, yo, Zo, w^ = {\, 0, 0, 0) we see that X,, Xj, X,, X4 are the .4 £(7i) — coordinates of

^0 ; and the like as to the other sets of coefficients ; viz. we have

ABGD\ X, \. \ 1 = AoBGD : AAoGD : ABAoD ABGAo

/*1 : M2 : Ms /*4 l=Bo ., • w -Oo » H -^0 »J .. Bo

"1 : v^ • "3 : V, l = Co „ » ^0 » )> ^0 »» » t7o

pi P2 : pi P* 1 =A „ . IJ -^0 « „ Do,, „ A
C. VII. 13
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and we hence find

IMP

23 23 23 23
MP
23 23

= AB,C,D : ACoAoD : AAoBoD : AA,D,D : ABoD^D : AG,D,D : ABCD

viz. multiplying the last-mentioned set of terms by A„B(,CJ)o-i-ABCD, in order to

make the last term equal to unity, we see that the coeflScients ^ , &c. are equal
Zo Zo

to
A^BJJf,D„
A u n T\ ^^^ *^® ^^ {ABGD\ — coordinates respectively of the line AD by means

of the points A, D thereof. And similarly in the six expressions which enter into the

ABCD
formula of transformation, the coefficients are =^ riT^W" into the six (.4 5(7i))(, — coordinates

of the

line AD in regard to points A, D thereof

BD „ B, D

CD „ C, D
BG „ B, C

ijA. „ O, ^
AB „ A, B

The foregoing theory of the transformation of coordinates seemed to me interesting

for its own sake, and I have developed it in preference to the more simple theory

which might easily be established of the case in which the coordinates are quantitatively

defined as being equal to

(zo cos /S — 2/o cos 7, Xo cos y — Zo cos a, y^ cos ^ — x^ cos a, cos o, cos /3, cos 7)

respectively.
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436.

ON A CERTAIN SEXTIC TORSE.

[From the Transactions of the Cambridge Philosophical Society, vol. xi. Part iii. (1871),

pp. 507—.523. Read Nov. 8, 1869.]

The torse (developable surface) intended to be considered is that which has for its

edge of regression an excubo-quartic curve, or say a wnicursal quartic curve. I call

to mind that (excluding the plane quartic) a quartic curve is either a quadriquadric,

viz. it is the complete intersection of two quadric surfaces ; or else it is an excubo-

quartic, viz. there is through the curve only one quadric surface, and the curve is the

partial intersection of this quadric surface with a cubic surface through two generating

lines (of the same kind) of the quadric surface. Returning to the quadriquadric curve,

this may be general, nodal, or cuspidal ; viz. if the two quadric surfaces have an

ordinary contact, the curve of intersection is a nodal quadriquadric ; if they have a

stationary contact, the curve is a cuspidal quadriquadric.

The unicursal quartic is a curve such that the coordinates (x, y, z, w) of any point

thereof are proportional to rational and integral quartic functions {*\0, 1)* of a

variable parameter 6 ; and the general unicursal quartic is in fact the excubo-quartic

;

but included as particular cases of the unicui-sal curve (although not as cases of the

excubo-quartic as above defined) we have the nodal quadriquadric and the cuspidal

quadriquadric. The torse having for its edge of regression a unicursal curve is a sextic

torse; and this is in fact the order of the torse derived from the excubo-quartic, and

from the nodal quadriquadric; but for the cuspidal quadriquadric, there is a depression

of one, and the torse becomes a quintic torse. The equations have been obtained of

(1) the sextic torse derived from the nodal quadriquadric, (2) the quintic torse derived

from the cuspidal quadriquadric, (3) the sextic torse derived from a certain special

excubo-quartic ; but the equation of the torse derived from the general unicursal quartic

has not yet been found. To show at the outset what the analytical problem is, I

13—2
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anticipate the remark that the coordinates {x, y, z, w) of a point on the curve may

by an obvious reduction be rendered proportional to the fourth powers (O + a)*, (0+^y,
(ff+yY, {d + By in the parameter 6; this leads to an equation

y w
(d+ay'^(e + ^Y'^(e + yy'^(0 + sy ^'

for the osculating plane at the point {x, y, z, w) ; or observing that this equation,

when integralised, is of the form {x, y, z, w\d, 1)' = 0, we see that the equation is

obtained by equating to zero the discriminant of a certain sextic function in 6; the

discriminant is of the order 10 in the coordinates (x, y, z, w), but it obviously contains

the factor xyzw, or throwing this out we have an equation of the order 6, so that

the torse is (as above stated) a sextic torse.

Theorem relating to Four Binary Qtmrtics,

1. Consider the four quartics:

(Oi, ^1, c,, di, ei\x, yy,

(a,, bi, Cj, d,, e^'^x, yy,

(oa, 63, C3, da, Csja;, yy,

{a*, h, C4, d^, etjx, yy,

then if \,, X,, X^, \, are any four quantities, these may be determined, and that in

four different ways, so that

\(aj,...^x, yy + 7^{a^,...'^x, yy + X,{a^,...'$^x, yy + \t(at, ...'$_x, yy={^x + ayy,

a perfect fourth power ; in fact, equating the coefficients of the different powers

of (x, yy, we have five equations, which determine the ratios of the unknown quantities

\, \i> \, \', a> iS: eliminating X,,, X3, \, \, we find the equation

y3^ ^a, 0^0.^ /3a?, a* =0,

Cli , Ox , C] , Cti , 61

(ti , 02 , C3 , U2 ) 69

(h , O3 , C3 , da , e^

'^4 ) O4 > C4 , dt , 64

giving four different values of the ratio a : /3; or, assigning at pleasure a value to

a or ^ (say ^ = 1), then to each of the four sets of values of (a, /9) there correspond

a determinate set of values of (Xj, X,, X,, \); that is, we have as stated four sets of

values of \,, \, \, \; a, /3.
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Standard Equation of the Unicursal Quartic.

2. The coordinates (x, y, z, w) being originally taken to be proportional to any

four given quartic functions (*$^, 1)* of the parameter 6, then forming a linear

function of the coordinates, we have four sets of values of the multipliers, each reducing

the function of ^ to a perfect fourth power; that is, writing {X, Y, Z, W) for the

linear functions of the original coordinates, and taking {X, Y, Z, W) as cooi'dinates, it

appears that the unicursal quartic may be represented by the equations

X -.Y : Z : W= {e + aY : {6 + ^Y : {O + yY : (B + By.

Tangent Line, and Osculating Plane of the Unicursal Quartic.

3. The equations of the tangent line at the point (0) (that is, the point the

coordinates whereof are as (O + aY : (d + ^Y '• i^ + y)* ' {^ + ^Y) are at once seen to be

X. Y, Z, W
(e + aY, {0 + fiY, (O + yY, (9 + BY

(0 + aY, (e+^Y, (0-^yY, (0-^BY

and that of the osculating plane to be

0,

X.

(0 + aY,

{e+aY,

(0+aY,

Writing as in the sequel

Y, Z, W
{0+^Y. {G+fY. (o+^y

{0-h0Y, (0 + yY, (0+BY

(0+0Y, (0 + yY, {0+SY

= 0.

a = /3-7, f=a-S,
b=y-a, (7 = /3-S,

c = a— /3, h = y — B,

the equations of the tangent line become

hY gZ aZ

hX
'{0 + aY

_^
{0+aY (0 + f:iY

aX bY

{0 + ^Y i0 + yY i0 + By

fZ bZ
'^{0 + yY'^{0 + By

cZfY
{0 + By

cZ

= 0,

= 0,

= 0,

= 0.
{0 + aY (0 + ^Y i^ + yf

(equivalent of course to two equations), and the equation of the osculating plane becomes

ahgX WY gfcZ abcW ^
(0-\-cLf'^{0 + ^Y {S'-^yf {S + ^f
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Modification of the foregoing notation, and final form for the Uniciirsal Quartic.

4. If instead of the coordinates {X, Y, Z, W) we introduce the coordinates {x, y, z, w)

connected therewith by the relations

ahgX : hbfY : gfcZ : abcW= x : y : z : w,

or, what is the same thing,

X : Y : Z : Tf = hcfx : cagy : abhz : fghw,

then the curve is given by the equations

X : y : z : w = ahg{0 + a.y : hbf(0 + ^y : cfg^d+y)* : abc(0 + By.

The equations of the tangent line are

cy bz fv) _
(d+Jy~(eTyy'^(d+Jr~

ex az gw _

.

bx ay hw „

fx gy hz _
'(e+ay~'{0+^~(eTyy • ~ '

and the equation of the osculating plane is

(0 + ay^(e + 0y^ (d + yy^(e + By
"•

Determination of the Sextic Torse.

5. Starting from the equation of the osculating plane written under the form

x(d + 0y{e + yyid+8y

+ y(0+yy(d+By(0+ay

+ z(0+By{0 + ay(0 + ^y

+ w{0+ay{0 + 0y{0+yy = o,

the equation of the torse is obtained by equating to zero the discriminant of the sextic

function. Writing as before

a = ^-y, f = a-B,

b = y-a, 5r = y3-8,

C = a-^, h = y-S,
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equations which give

h -g +a =0,

-h . +f +b =0,

g -f . +c =0,

—a—b—c . =0,

hfi-gy+aB = 0,

-ha . +fy+bB=0,

ga-f^ . +cS=0,

— aa—bfi — cy . =0,

af+ bg+ch = 0,

and also

then the discriminant is a function of (x, y, z, w), {a, b, c, f, g, h) of the degree 10

in {x, y, z, w) and the degree 30 in (a, b, c, f, g, h). But the equation in 6 has two

equal roots, or the discriminant vanishes, if any one of the quantities {x, y, z, w) is

= ; and again, if any one of the differences a — /S, &c. (that is any one of the

quantities a, b, c, /, g, h) is = : the discriminant thus contains the factors xyzw and

{ahcfghf, and throwing these out, we have an equation of the form

A=(a, h, c,f, g, hy»{x, y, z, w)« = 0,

which is the equation of the sextic torse.

\

Principal Sections of the Torse.

6. Consider for instance the section by the plane w = 0. Writing w = 0, the equation

of the osculating plane is

{e+Bf[x(,d + ^f{e-yyf-\-y{d+yy{d + ay+z{d^-<if{e+^y] = o.

The discriminant of the sextic function vanishes identically in virtue of the double

factor {6 + hf. But omitting this factor, the equation becomes

x{e + ^y^e + yf-k- y{d -\-yy{e +df + z{e +ay {d ^ ^y =0.

The discriminant of this quartic function of 5 is a function of x, y, z, a, b, c of

the degree 6 in (x, y, z) and 12 in (a, b, c); it contains however the factors xyz, a?bH^,

and the remaining factor is of the degree 3 in (x, y, z) and 6 in (a, b, c) ; this

remaining factor is as will presently be seen

= {a?x + b^y + d'zf - ^1a?b'd' xyz.

The last mentioned sextic equation in 6 will have a triple root d = — h, if only

the value 6 = — Z makes to vanish the factor in [ ], that is if we have

0=g'-h^x + h'py +fYz.
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The foregoing results lead to the conclusion that for w = 0, we have

A = (^h*x + h}py -iff^g^zf \{a?x +% + (?zy - 27a'iV xyz\
;

but this will appear more distinctly as follows.

7. First, BR to the factor {a?x + Ify + c^zf — 27a^b^(f xyz : writing in the equation of

the osculating plane w = 0, the equation becomes

X y z ^

which equation is therefore that of the trace of the osculating plane on the plane

w= ; the envelope of the trace in question is a part of the section of the torse by

the plane w = 0. To find the equation of this envelope we must eliminate 6 fi-om the

foregoing, and its derived equation

the two equations give

X : y : z^a{d + ay : 6(^ + /3)» : c(^+7)»,
and thence

(a?xf + {h-hif + {d'zf = a (^ + a) + 6 (^ + y3) + c (5 + 7) = 0,

that is, we have

ia?xf + Q^f + {(?z)^ = 0,

or, what is the same thing,

(a?x + hHj + c'zy - 27a%'c'' xyz =

for a part of the section in question.

8. I have said that the foregoing cubic is a part of the section ; the equations

X : y : z : w =- ahg {6 + a)* : bhf(d + ^y : c/g(e + yy : abc (0 + By,

which for w = give 6= — B, and thence x : y : z =af : bg' : ch', show that the last

mentioned point is a four-pointic intersection of the curve with the plane w = 0.

But the curve, having four consecutive points, will have three consecutive tangents in

the plane w = ; that is, the tangent at the point in question will present itself as

a threefold factor in the equation of the torse. Writing in the equations of the tangent

VI = 0, = — B, we find for the equation of the tangent in question

r-g'^h^ '

or, what is the same thing,

g^h^x + h?py Vfg'^z = 0.

Hence the section by the plane w = is made up of this line taken three times,

and of the last mentioned cubic curve.
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9. By symmetry, we conclude that the sections by the principal planes x = 0,

y = 0, z = 0, w = 0, are each made up of a line taken three times, and of a cubic

curve : viz. these are

X =0, . ypy + cpz + h^dHu = 0,

y = 0, ay* . egH + eahu = 0,

z =0, a'h'x+b'h'y . +a''b^w = 0,

w = 0, g%^x+h''py+fYz . =0,

• {h'yf + {9"-zf + {a?wf = 0,

(h'xf . +(fzf + (bHv)^ = 0,

ig'xf + ij'yf +(c%;)*=0,

(a=a;)* + (%)* + (c'z)* =0,

where for shortness I have \vritten the equations of the four cubics in their irrational

forms respectively.

Partial Determination of the Equation.

10. As the value of A is known when any one of the coordinates x, y, z, w is

put =0, we in fact know all the terms of A, except those which contain the factor

xyzw, which unknown terms, as A is of the degree 6, are of the form {*\x, y, z, w)l

I remark that if (xyzw) is any homogeneous function (*^x, y, z, vif, and {xyz), (xy),

(x) are what (xyzw) become on putting therein (w = 0), (^ = 0, w = 0), (y = 0, z = 0, w = 0)

respectively, and the like for the other similar symbols, then that

(xyzw) = (x) + (y) + (z) + (w)

- (fu) - («^) - ip^) - (y^) - (yw) - (zw)

+ (xyz) + (xyw) + (xzw) + (yzw)

+ terms multiplied by xyzw

;

in fact, omitting the last line, this equation on writing therein a; = or y = Oor^ =
or w = 0, becomes an identity, that is, the difference of the two sides vanishes when

any one of these equations is satisfied, and such difference contains therefore the factor

xyzw ; which pi'oves the theorem. It hence appears that the equation A = of the

torse is

A = ayh'af' + 6«A«/y + c^fg^zf + a'bVw'

- (g'h'x + h-pyj (aH + Ij^yj

-(h'f'y+fV^y(h-'y +d'zy

- (g'h'x +fyzy (a'x + &zf
- (a'h^x + a'lhvf (g'x + dhvf

- (b-'k'y + a^bHvf (f'y + c'wf

- (cyz + c'ahu)' (pz + bhvy

+ (Wy + '^P^ + b'^d'wy [(h'y + g'z + ahvy - llayh-yzw]

+ (ayx + cyz + d'aHvy [(li'x +/»z + Ihuy - 27b^h*f^zxw]

+ (aVi'x + Wi^y + a^b'wy [(g^-x +py + c'wy - -Zlc'fyxyw]

+ (g'h'x + h'fy +fyzf [(a^x + b-y + c'z f - 27a^b'c^xyz
]

+ xyzw)(»^.v, y, z, wf,

where the ten coefficients of (*^x, y, z, wy remain to be found.

c. VII. • 14
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Process for tlie Determination of the Unknown Coefficients.

11. At a point of the cubic curve in the plane w = 0, we have

X : y : z = a{e + ay : 1(6 + 0)' : cid+yY;

and the tangent plane at this point is the osculating plane of the curve; that is, it

is the plane

{e+ay^(0 + 0y^(e+yy^id+8y

if for a moment (x', y', z, w') are the current coordinates of a point in the tangent

plane. But the equation of the tangent plane as deduced from the equation A = is

, dA , dA , dA , dA _
dx '' dy dz dw '

where in the differential coefficients of A, the coordinates {x, y, z, w) are considered

as having the values

X : y : z : w = a{d + ay : h{d+0y : 0(6 + yy : 0.

Hence, with these values of {x, y, z, w), we have

dA dA dA dA 1 1 1 1

dx ' dy ' dz ' dw (6+ ay "

((9 + /9)»
' {0 + yy ' (0 + Sy'

conditions which determine the values of certain of the coefficients of (*^x, y, z, tvy,

viz. the six coefficients of the terms independent of w; and when these are known

the values of the remaining four coefficients are at once obtained by symmetry.

12. To develope this process, disregarding the higher powers of w, we may write

^ — %-\-Zw^ + xyzw{*'^x, y, zy,

where denotes the terms independent of w, 3u)$ the known terms which contain

the factor w, and xyzw {*\x, y, zy the unknown terms which contain this same

factor ; the value of (» \x, y, zy being clearly = {*§x, y, z, Oy.

We have, moreover,

© = (g%^x+ li'f^y +f-fzy [(a'x + b-y + c-zy - 27a=6V- xyz],

and
* = f* {hhj + &z y \a?p (hy- - IhYyz + (7^2^ ) (6=y + d'z) + ¥(? (Ii'y + g''zy]

+ g* {a^x + d'z )-' [Ix'f {h*a? - 1h^f'-xz +f*z^ ) {d'x 4- c^^) + d'ar {Ji^ +/=2)']

+ h^ {a?x + Pyy [c* (^a? - Ifh^xy +fY ) {a-x + ¥y) + aJ'b- (g-x +fhjy]

-a'h*g*(by +c'h^)a^

-l/'h*f*{(?h? +a?f^)f

-c'f*g*{aY' + by )2=.
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13. The equations, putting after the differentiations w=0, and writing for shortness

(») in place of (*$«, y, zf, become

d0 .
d© . d© 1 1 1 1

dx dy ' dz ' +'^y^(*) (0 + ay
'

(0 + ^y '

{d + yf
' (d+Sf

Now, observing that the second factor of © vanishes for the values

a(e + ay, b{6 + 0y, c(9 + yy of (a;, y, z),

we have simply

d&
-^ = (g'h^x + h'fh/ +fYzy . Sa^ [(aJ'x + 1^ + (?zy - 96»c»y^].

But
a?x + ¥y + d'z =^a?id + o)= + h^{e + ^y + (^{6 + 7)',

in virtue of the relation a (^ 4- a) + 6 (^ + /9) + c (^ + 7) = and hence

[{d'x+% + <?zf - Wd'yz] = m<? (0 + ^y{0 + yy. [a= (0 + a)« -bc(0 + /3) {0 + 7)],

= 96V((? + /3)=(^+7)^Q,
where

Q = a''(0 + ay-bc{0 + ^)(0 + y),

= b' (0 + ^y- ca(0 + y)(0 + a),

= c» {0 + yy-ab(0 + a){0 + ^).

Hence (

dd~ = 27a^b'cF (fh'x + h^py +/yzy (0 + 0y (0 + 7)^ Q,

and similarly

Y = 27a'6»c' (fh'x + h'/hj +fyzy {0 + yy{0 + ay Q,

^ = 27a'b'c' ifh'^x + k-py +fyzy (0 + «)= {0 + /3)= Q

;

whence the above-mentioned conditions reduce themselves to the single condition

(0 + Sy {3<I>+ xyz (*)} = 27a%'c' (g'h'x + h'f'y +fyzy {0 + ay (0 + ^y {0 + 7)' Q.

14. But we have

g'h'x + h'f'y +fyz
=

ff"-/!?
a{0+B +fy + h'fb (0 + B + gy +fyc {0 + h + hy,

= (0 + ^r Wh'a + h^pb +fyc) (0 + S) + 3 (gka + h/b +f9c)fgh],

= - abc (0 + By [(gh + hf+fg) {0 + B) + Sfgh],

= - abc (0 + By [gh {0 + a) + hf{0+ ^) +fg {0 + 7)],

= -abc{0 + ByP,

14—2
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Hence, substituting,

3* + ate (^ + a)' (^ + /3)» (^ + 7)' ( *) = - 27 {ahcf {9 + By{0 + af(d + ^y{d + 7)^ P'Q

;

which when the values a(^+a)', 6(^4-/8)', 0(^ + 7)' for (a;, y, z) are substituted in

the functions ^ and {»), will be an identical equation in 6.

15. It is right to remark that what we require is the expression of (*), ={*^x, y, zf;

the foregoing equation leads to the value of (*) expressed in terms of B\ and it is

necessary to show that this leads back to the expression for (•) as a function of

(x, y, z)\ in fact, that the function of 5 is transformable in a definite manner into a

function of {x, y, z). Suppose that the function of 6 could be expressed in two

different mannera as a function of (x, y, z) ; then we should have two different

functions (x, y, zj- each equivalent to the same function of d\ and the difference of

these functions would be identically =0; that is, we should have a function (x, y, zf
vanishing identically by the substitution

X : y : z = a(6^af : 6(0 + /3)' : 0(^ + 7)^;

but these relations are equivalent to the single relation

{a?x + h-y + c"zf - 27a^6»c^ xyz = 0,

which, 5wd cubic equation, is not equivalent to any equation whatever of the form

(a;, y, 2)^ = 0;

that is, the function of Q is equivalent to a definite functi m («, y, zf.

16. To proceed with the reduction, I remark that we have

^ = {a-x +% + d'zf

+ xyzil

where

+ (/* [by {h*a? - Ih-'pxz ^-fz") {o?x + c=^) + (?a? {h?x +/'^)']

+ U \eh? (g'a? - Ig'pxy +/y) {a?x + ¥y) + d^' {fx +f-yf]

- a?h*g* (by + cy'h? ) a?

{-c'fy{a'P + hy )^

- II = 2 Qi'd'Aa? + c-a^%^ + a=6»C2-)

+ {My + Nz) {a*x + 2a^b''y + 2a''d'z)

+ (Oz + Px) (2a''6»a; + h*y + 2¥&z)

+ {Qx + Ry) (2a=c=x + 2¥c^y + cz ),
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if for shortuess

A=aYh* (l^g- +c^A^ ),

M =ph^ {a}p&k- - 1a-f"}fif + Wg'eU ), N =/y (- la^f'(?h^ + a^fh^ + 36^0^^=
),

= g'p {b'g-a-'f- - Ib^crh? + Sc^kW/"), P = g'fi' (- Ibya'f- + 6yc^A= + Sc%^a^f '),

Q = hy (c-UhY - Id'h'a^b^ + ^a?f^¥g% R = hf" (- Iti'h-'bY + c'li'cC'f- + 3a2/%»)

;

and I represent the foregoing equation by

* = {a'x + b-y + d'zf U+ xyzQ,.

Hence, writing for x, y, z the foregoing values, we have

* = 9a?¥c? {0 + a.f{d + 0y (0 + yyU'+ abc {0 + af (0 + ^y {0 + 7)' H

;

and thence

27 i;"+^ (^ + a) (5 + /3) (^ + 7) (3fl + (*)) = - 27 (a6c)» (0 + Sy P»Q

;

that is

27 [f7 + {obey (0 + Sy P'Q] + ^(0 + a)(0 + 0){0 + 7) (311 + (*)) = 0.

In order that this may be the casi, it is clear that we must have

U+iabcyi0 + SyP'Q = (0 + a)(0 + 0)i0+y) M,

viz. the left-hand side expressed as a function of must be divisible by the product

(0 + a.)(0 + ^)(0+ y). Assuming for a moment that this is so, the quotient M will be

a function (0, ly expressible in a unique manner in the form (x, y, zy, and assuming

it to be 80 expressed, we have
27ilfa6c-l-3n + (») = 0;

which equation, without any further substitution of the ^-values of {x, y, z), gives (»)

in its proper form as a function of (x, y, z).

Reduction of the EqiuUion, U+ (obey {0 + By P^Q = {0 + a){0 + /3) (0 + y) M.

17. We have by an easy transformation

U= (a^x +% + c'z) ( a"/' (hy - 1h?ghjz + g'z*)
">

-! + 6y {f*z' - IfVi'zx + h*a?)

[ + &h' (ff*x' - Igf'xy+/y)

,

+ 7 {a*f* + b*g* + c'h*)fy}v' xyz

+ U',
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+ yz^ . ¥g*f* (Sc^h- - b'g' )

+ z'x . cC'fy (Sd'h- -a'/»)

+ zw' . c'hy (Sa^f- - &h? )

+ ^y.bYh* {Sa^f^-by)

+ x%f . a?f*h* {Sby - a"/').

Substituting the ^-values, the terms of U, other than U', are at once ' seen to

contain the factor {6 + a)(6 + yS) (0 + y), and we have

M= 3abc ( a?p{hy -Ihyyz +g*z''y

+ ty (/'^' - 7/*xra; + h*a?)

.+ c* (5r*a^ - 7f/'xy +fy),

+ 7 (a*/* + by + Ch')f-gVi' abc {6 + a)» (5 + /3)^ {6 + y)"

+ M'.

where
. W + (obey {e + hf P^Q= {0 + a){0 + 0) {0 + 7) M'.

18, Write for shortness p, q, r = {af, bg, cA); after a complicated rediictiou, I obtain

3a6c M' = ayh?' (r -p){p-q){-2p* + 5p^qr - e^V" ) x^

-f b^h^f (p -q){q- r) (- 2q* + bq^p - GqY) y^

+ c'/y (q-r){r - p) (- 2i-* + br^pq - Hff) z"

+ 2f- g-h''¥c' (7p* - 20p^qr + 45=»-=
) yz

+ 2fyh^c-a- (7q* - 20pq'r + 4>7'^p* ) zx

+ 2fyhheb^ (7r* - 20pqr"- + ^iy)xy

- 2fyh'' {p' + 5* + r*) {a?x + b-y + (fz)-.

We then have

as above; and

9(i6c M= terms {x, y, zf + 9a6c M', ft = terms {x, y, z)

27Mabc + Sn + (») = 0,

which gives (*).

19, After all reductions we find:

- J () = ayh- (28;)' - 84ip*qr + 62fq^ - 28(^7^) a^

+ b^h^'p (28g'« - 84pq*r + 622fqV - 28?-='^») y"

+ c»/y (28?^ - 84!pqr + Q2pYr - 28jp»5') z^

+/= (- Sf + I'ip'qr- 130p*gV - 136pY»-= + i2q*>-*) yz

+ g' (- Sq" + Upq'r - UOp'q*i^ - 136p'q-)^ + 42j-*j/) zx

+ h' (- 3?-« + 14p5?-« - ISOp-qh-^ - 136pY»"° + ^^PV) xy

;

i
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or observing that the coefficients of a^g-hJ^a?, iPh^f-y'^ and c-f^g'^z^ are equal to each other

and to

62p=2¥2 - 28 {(fr^ + t^p^ +p\%
the equation becomes

(«) = -3 (62;)Y"^ - 28 {(fr^ + r^f + ja^) {aYh?a? + b^h'fy + c''f- g^z^)

+ 3 (3p« - 14pV + 130^*5^2 + imp-q^r^ - i2q*7-*)f^yz

+ 3 (3g» - Uq'pr + VSOq*p-r'' + UGgYr" - 42r*p0 f^x

+ 3 (3r« - 14^pq + lSOr*pY- + lS6r"-pY - 42pV) h-xy
;

and we thence obtain by symmetry the complete value of (*$«, y, z, w)-, viz. we have

only to complete the literal parts of the foregoing expression into the forms

f-yz + d-xw,

g^zx + bh/w,

(?xy + d?zw,

respectively.

20. The equation of the torse thus is

A = ayh'af + b^h^fy + cfffz' + a'b'd'u/'

- g' {pz + h^xj {&z + d?x y

- h* (y X -\-pyy {p?x +% y

-a*{g^x-k-&wy(h?x +b'wy

-lf(h'y + ahvy (f^y + c^y

- c" {pz + b^y {g-z + a^y

+ {ayx + c=(7=2 + cVwy [ifz + A"* + 6=w)^ - 21b"h^p zxw]

+ (a'h'x + h'lv'y + a?b-wy [(g-x +py + c-wy - 27c-fy xyw]

+ ((/*« + hfy +fyzy [(w'x + ¥y + c^z )' - -ITa'^c- xyz
]

+ xyzw (*$«, y, z, wy = 0.

I recall that

a = /3-7, / = « -S. !> = «/=(« -8) (^-7).

b=y-a, g=^-B, 3 = 6r/ = (/3-S)(y-a),

c=a-j8, A = 7-S, r=c/t = (7-S)(a-/3).

Developing, we have finally the equation of the torse in the form following.

h
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Equation of the Sextic Torse.
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\-xyzw

21. The equation is

0= (ayh; b'h'f, cf/y, a'b'cfjiaf, y, !*, vf)

+ 3 (5= + r=) {h*h*f\ &g*f\ g*h*a\ b*c*a''^y'z, yz', oN), xvf)

+ 3 (»•= + p») (c*/V, a*h*f, h*/*b', c*a'b''$_z>x, zof, fw, yvf)

+ 3 if + 9") {a^g^h^^ , b*/*h\ fycf, a*¥(f\cc'y, xf, s^iu, za?
)

+ 3 (g* + 3?V» + r*) {b%^f^ cYf\ S^'/iW , b\''a%y*z\ y^z*, xW, a?w*)

+ 3 (r* + 3ry + _p*) (c»/y, a^h?f , h^pb', d'a^b''^z*af , afz*, y^, yHv*}

+ 3(p*-\-Sp'q^+q*){ayh\ b'f'h'./yc^, a^b^c'J^x*y', a?y*, z'uf, ^vf)

+ {&p* + 9pY + dp^'- 21qV){aYh* , a'b^c^, f'h*b*, fyc^^x^yz, u&yz, y*wx, nfwy)

+ (69* + 95V + 9qY - 21r^p'){b'k*f\ 6VaS g^'^c', g%*a*^y*zx, vj*zx, zhvy, xHoz)

+ {6r*+9ry + 9r'q^-21p'q'')((^fy, c^a*b*, hya\ h^f*b*'^z*xy, vfny, x*wz, y*wx)

+ {q' + 95V + 95V + r«) (/«, a''^y'2r>, x'w')

+ (?•' + 9r*p- + 9rY+p') (g*. b'^z^x'
, fiu')

+ (^« + 9pV + 9pY + 9^) (^*'
-

c' Js^y'. ^*«^ )

+ 9 {q*r- + q'h-* + r*p'' + r'p* +py + jyy - lip'q'r-)

X (/yA', /'6V, £r'c"o', }i'arb^'$^!i^y^z-, y^zhju\ z^a?vf', x'y-w^)

+ 3\p' + 3p* (2q- + ?-^) + Sp^ {q* - Iqh^) + 5V}

X {g'^h\ h*^, g'c^, (^b'^^^ififz, yhvx^, ^^x, v?yz*)

+ 3 {5« +35* (2r2 + ^=) + 39" (r* - Tr'p') + ry

j

X (/''/^ /*c', /tW, a<c'$a^s=, ^»wy^ a^Wy, «;»2ar')

+ 3 {?« + 3r< (2^9" + 5" ) + 3r'' (;>* - Ifff) +pY)
X (/y, a/'o?, pb, b*a%a?yz\ x'wz-, yhv'z, iv'xy'')

+ 3 [p' + Sp* (2j-2 + g2) ^ 3p2 (^ _ 7^2^) ^ ^2^1

X (5f*A,', h*b*, g*c-, c%*'^a^yz^, y^v?x, z^wa?, iv'y'z)

+ 3 j^ + Sq" (2p' + r') + Sq' (p* - 7?-»p») + r>*)

X (A*/=, /V, h*a\ a^'c^^ayz, zihuy', xhuy", w'z^x)

+ 3 {r« + Sr* (2^ + p>) + Sr^ (q* - Ip'f) +py\
X (jy, gW, /*b\ b'a'''^xy'z', aM'z, y>wz\ w'a^)

( - 3 {62p»(y-?-» - 28 {(fr" + t^p^ + p'^^l (ay^'. ^'/i'/'. <:-fy, a^b^c'^x', y\ z\ w') ^

+ 3 (3p« - 1 4^Y' + 130pY?^ + 1 36J3Y''' - 42?*?-*

)

(/', a'Jy^ , xw)

+ 3 (35* - 1 45«rp + ISOg^y + ISG^Vp' - 42r«;)*) (^r' , b%zx, yw)

+ 3 (S?" - 1 4r«jw/ + 1 30i-*py + 1 36ry9» - 42pY) (^' . c" $a^. .^w)
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Comparison with the Eqimtion of the Centro-sur/ace of an Ellipsoid.

22. In the Equation

y .+ w
,
= 0,

for X, y, z, w write p, rf, ^, w^, and then S = x , the equation is converted into

{0j^ay~^(0 + ^y'^{0 + r^)
+ 0)^ = 0;

or ^vriting a^ ¥, d^ for a, /8, 7, and understanding f^ rf, tp, to^ to mean a'a?, b^f, d'z^,

— 1, this is

a'x' by-
,+

c'z-
1=0.

{d+a.^y^(0 + b'y^{0 + cj

This is an equation, the envelope of which in regard to the variable parameter 0, gives

a^ ifi z^
the surface which is the locus of the centres of curvature of the ellipsoid -; + rr +—j = 1.^ a* 0^ c^

or say the Centro-surface of the Ellipsoid. (Salmon's Solid Geometry, Ed. 2, p. 400,

[Ed. 4, p. 465].)

Making the same substitution in the foregoing equation {*\x, y, z, wf = 0, the

quantities /, g, h become equal to — B, and p, q, r to — aB, — bB, — cB respectively, and

the whole equation divides by 8"; ^throwing out this factor, we have a result which is

obtained more simply by changing

mto
X, y, z , w, a, b, c,f, g, h, p, q, r,

^, i', ^-, (o\ a, /3, 7, 1, 1, 1, a, A 7.

where a, /3, 7 now signify 6" — c^ c- — a", a" — b' respectively, and p, rj^, ^, w^ are retained

as standing for aV, Ifly', (fz^, — 1 respectively ; viz. the equation of the centro-surface

is found to be

(a«, /3», 7», a«yS«7«$p^ 1;'=, ^"-, a'^)=

(/3^ 7=, a', a'^y^v'V, v'^', ?"«', f«'°)

(7*, a=, ;8«, /3«/a^$r'°l': f^?", <«^ »?'«'")

(aS /3=, 7», 7«a*/8*$f»7,-, fjj'", f^to^, f^oj'")

(/3^, 7=, a«, a»y8•Y5'/'r^ V?'. f«»^ r^')

(7^ a-, /3«, /3«7^a-5f«^S f^f , 7?8w\ Vm')

(a-, /3-, 7«, 7«a=/3^$fV, fV . T^'. T*"')

+ 3(20* +3a»yS=+3aY -7^y)(a% a=/3V. /8^. Yl^'vV, <»'vV, v'<»T, K'^W)

+ 3 (2;S* + 3^=7= + 3y8=a= - 77V ) (/3^ /JYa'. 7'. ^'ll'^'^'f- «'?T. ?'«V. f^'H

+ 3(2y +3r'a= + 37^/3^ - Ta^'/S^ ) (7% 7''a''/S'. «'. /S^J^fV, -"'fV, f«T> '?''»'?)

+ 3(/9' + t')

+ 3 (7» + a=

)

+ 3(a»+/3»)

+ 3(/3* + 3/9Y + y*)

+ 3 (7* + 87^8^ + a«

)

+ 3 (0* + 3a=/3 + /3*)

C. VII. 15
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+ (a* + 9a*/3-- + 9a-/3^ + y3«)

(1, c^-^vV, f«»')

(1, ;3«$i:»r, v'o>')

(1, 7«]lf,,^, fw")

+ Slcf +3a» (2y3-^ + y) + 3a^ (/3*-7y3V) + ^Y)(l. ^% Y*. /S^^If'/'r^ "V'^^^ ?"«''r-', coV?*)

+ S{^ + 30'{2'f +a.^) + 3^{'f-7'fa') + Ya'}(l. T, o} , 'fa^^nV^', f-wV, ^^V, o)"?^?')

+ 3 ly + 3-/ (2a' + fi') + Sy (a« - lo?^) + a.*^] (1, a^ ^, a'yS^^r^V. r^'^?', '?'«*?». w-'f^*)

+ 3 {0* + 3a* (27-' + /3») + 3a' (y - 7y3Y) + yS''/} (L t". /3*. /8Y$rT?^ ?"«^^ ';'«T. '"VD

+ 3 {y3«+ 3/3^23' +70 + 3/3'(a* -77'a») + 7'a*}(l, a', y, '/a'$7,«f'|\ f^V, f-wV. ""r^H

+ 3 {t* + 3y (2/3^ + a' ) + 37M/3* - loi'^) + a-'^S (1, &\ o^, a^^^jrfV. V-"'?'. r^'?". '""I^'jO

+ 9 (/SV + ySV + ya' + Va' + a'/S* + "'/S* - 14a=/3V')

(1, /3V. ya'', <^^^\^WK*, vVf^*> K*^*<i>\ i*ri*<o*)

+ f^T'«' i

C-3{62a»/3^7-^-28(/3V + y'a» + a»;80}(a-, /S"-, 7=, oi'^'rl^*' v\ ?S «0
^

+ 3 (3a« - 14a«^7 + 130a*/3°Y + ISGa'/S^y - 42/3Y) (1. «' W^> I"*"')

+ 3 (3;8» - 14;8Va + 130^'a' + 136y3-Ya' - 42yaO (1, ^W^'' v'^^)

i+ 3 (37»-147«a/3+13(Va=/9=+1367='a'/8»- 420^/3^) (1, y^fV. ?"«') J

This agrees with the result given in Salmon's Solid Geometry, Ed. 2, p. 151, [Ed. 4,

p. 178], and Quarterly Mathematical Journal, vol. Ii. p. 220 (1858); in the latter place,

however, the term

jS-Vf* + 'frj*^ + a'^cD' + a«/3Yf<«'

is by mistake written

0^^^* + 7^'?* + a'f«' + /3yfW

;

viz. a factor a* is omitted in one of the coefficients.

Some of the coefficients are presented under slightly different forms ; viz. instead of

62a=/3'Y - 28 (/Sy + Va' + <^^)

14 (/3V + &V + ya' + ya' +a^ff' + a'/S") + 20a?^'f ;

3,8 _ i4o«;87 + 130a'^Y + 136a^/3Y - 42/3Y.

Salmon has

and instead of

he has

- 4a8 + 7a« (/J" + 7=') + 196a*;SY - SSa^/SY (^' + i') - 42(8Y,

but these different forms are respectively equivalent in virtue of the relation

a + /3 + 7=0.
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437.

DEMONSTRATION NOUVELLE DU THEOREME DE M. CASEY

PAR RAPPORT AUX CERCLES QUI TOUCHENT A TROIS

CERCLES DONNES.

[From the Annali di Mate)natica pura ed applicata, torn. i. (1867), pp. 132—134.]

This is in fact tbe investigation contained in the paper 414, " On Polyzomal Curves otherwise! the curves

\'P+v K+<S;c.=0," Annex n. pp. .568—573, "On Casey's theorem for the circle which touches three given

circles," viz. it is based on the identity of the two problems 1° to find a circle touching three given circles,

2*^ to find a cone-sphere (sphere of radius zero) passing through three given points in space.

15—2
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438.

NOTE SUR QUELQUES TORSES SEXTIQUES.

[From the Annali di Matenmtica pura ed appliccUa, torn. II. (1868), pp. 99, 100.]

Je ddsire d'appeler attention aux surfaces ddveloppables, ou torses, donn^es par

r^uation

(ae- - 46d + Sc'f - 27 (ace -ad^- 6»e + 2bcd - c")' = 0.

Dans cette Equation (a, b, c, d, e) sont des fonctions lindaires quelconques des

quatre coordonn^es {x, y, z, t) ; ces quantit^s sont done li^es par une equation lin^ire

^a + 456 + 60c + 42)d + ^e = 0,

et je remarque que la classification des torses comprises sous Tequation mentionn^

depend des proprieties invariantives de la fonction {A, B, C, D, E^r, 1)*.

En efFet la torse a une courbe cuspidale, ou arete de rebroussement, donn^e par

ics Equations

ae-4M + Sc" =0, ace- ad' — b'e + 2bcd - c^ = 0,

et une courbe nodale donn^e par les Equations

ac — l^_ad — bc_a^ + 2bd — Sc^ _be — cd _ce — d^

a " 26~ ~ 6c
~ •2d~ ~ e '

ces deux courbes se rencontrent dans les points donnas par les Equations

a_ ft _ c_ d

b~c~d~e'

lesquels sont des points stationnaires de la courbe cuspidale. Pour trouver ces points,

en ^rivant a : b : c : d : e= r* : r^ : t' : t : 1, on obtient pour le paramfetre t I'equation

(A,B,C,D,Elr,iy=0
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et Ton voit aiusi qu'il y a nn i-apport entre la th^orie de la surface et cette equation
;

k fcoute particularity invariantive de I'^uation, il y correspondra quelque particularity

de la torse.

Les cas a consid^rer sont:

1°. Racines inegales, sans aucune relation invariantive. C'est le cas general; je

I'ai considere dans le Mdmoire, " On a certain Sextic Developable," Quart. Math. Joum.,

t. IX. (1868), pp. 129—142. [398].

2°. Deux racines egales. Ce cas n'a pas etd consider^; je reniarque que la

courbe cuspidale est du cinquieme ordre. En effet on peut supposer que les racines

dgales soient =0, ce qui revient a prendre 2) = 0, E=0. On a done Aa + 4tBb + 6Gc = 0,

c'est-a-dire les equations a = 0, 6 = impliquent I'equation c = ; et on voit de la que

lea surfaces ae — 4tbd +Sc' — 0, ace — a<P — b^e+ 2bcd — c' = se coupent selon la droite

11 = 0, 6 = 0; il reste ainsi une courbe du cinquieme ordre pour la courbe cuspidale.

3°. Trois racines egales. On peut supposer que ces racines sont = 0, ce qui donne

C=0, D = 0, E=0; et Ton a ainsi Aa+ 436 = 0, c'est-a-dire les plans « = 0, 6=0
-sent ici un seul plan. L'^uation de la torse contient le facteur a, et en I'^cartant

elle se rAiuit au cinquieme ordre; on obtient ainsi la torse generale du cinquieme ordre.

4i'\ Deux paii'es de racines Egales. On peut supposer que ces racines sont =oo, 0;

cela donne A =0, B = 0, D = 0, E=0, et Ton a ainsi identiquement c=0. L'dquation

de la torse est (ae — 46d)' — 27 (— ac^ — b^eY = 0. J'ai consid^rd ce cas dans le Me^moire,

" On a Special Sextic Developable," Quart. Math. Journ., t. vii. (1866), pp. 105—113,

[373] ; la courbe cuspidale est du quatrifeme ordre, une courbe excubo-quartique d'une

forme particuliere.

•5°. Quatre racines egales ; en prenant ces i-acines =U, on a B = G = D = E=0, done

identiquement a = 0; r6]uation de la torse contient le facteur 6-, et en lecartant elle

.se r^uit au quatrieme ordre: on a dans ce cas la torse generale du quatrieme ordre.

D y a encore deux cas h, consid^rer.

6". L'invariant / de la fonction (.4, B, C, I), E\t, If est =0;

T. L'invariant J de cette fonction est = ;

Mais je n'ai pas encore examind ce que cela veut dire ('), II n'y a pas le cas

a considerer oil Ton a ^ la fois I = 0,J = 0; car cela revient au cas 3° de trois racines

egalea

Cambridge, le Id mai 1868.

' La courbe cuspidale ^tant dn genre (unicurBale), on peut considerer la serie des points de la courbe
conune correspondant anharmoniquement anx points d'une droite. Si le syst^me des quatre points stationnaires

«8t haimoniqae on a J=0; si ce s^rst^me est £qai-anhamiomque, on a /=0.
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439.

ADDITION A LA NOTE SUE QUELQUES TORSES SEXTIQUES.

[From the Annali di Matematica pura ed applicata, torn. II. (1868), pp. 219—221.]

Je viens de trouver ce que siguifie la condition J—0. Considdrons deux surfaces

quadriques qui se touchent (d'un contact ordinaire). Les Equations tangentielles peuvent

8'6:rire sous la forme

et Ton satisfait a ces Equations par des valeurs de f, r], f, w qui contiennent un para-

mfetre arbitraire 6, en ^crivant

en efFet cela donne

aa^ + b^ + 2nye = 0, 2a a- - 26 ,3= + c e= + 2?!, Se = 0.

aV + b'^ + 2n'ye = 0, 2a'a= - 26'/3= + c'e^ + 2?i'Se = 0,

ce qui determine les valeurs de a : yS : 7 : S : e. L'dquation du plan tangent commun
sera done

ou, en multipliant par 12^, cette Equation sera

(a, b. c. d, e^e, ly = 0,

7^ + 4 +S = 0,
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les valeurs des coefficients ^tant

a = 12 fw,

c = 2 (Sw + ez ),

e = 12 yw.

En repr^sentant par Aa + ^Bb + 6(7c + ^Dd + Ee = I'equation qui lie les fonctions

lineaires a, b, c, d, e, cette Equation sera a — e==0; on a done A=— E= l, B= C = D = 0;

Tinvariant J de la fonction (A, B, C, D, E'^r, l)* est done =0.

Nous arrivons ainsi a la conclusion que la torse sextique

{ae - 4bd + 3c=y - 27 (ace - ad^ - ¥e - c^ + 2bcdy = 0,

oh. les fonctions lineaires a, b, c, d, e sont liees par une Equation

Aa + ^Bb + 6Cc + ^Dd + Ee=0,

telle que I'invariant

J=ACE-Air--EB'-G'-2BCB

de la fonction (A, B, 0, D, E\t, If est =0 (cas 7° de la Note), est la torse enve-

lopp^e par le plan tangent commun de deux surfaces quadriques qui se touchent d'un

contact ordinaire. J'ai trouv^ I'equation de cette torse dans le M^moire, " On the

Developable Surfaces which arise from two Surfaces of the Second Order," Gamb. and

Dubl. Math. Jour., t. v. (1850), pp. 46—57, voir p. 56, [85] : a, b, c, n, a', b', c', n' y
ddnotent les mSmes coefficients comme a present, et en ^crivant

be' — b'c =f, an' — a'n =p,

ca' — c'a =g, bn' — b'n = q,

ah' — a'b = h, en' — c'n = r,

(et de 1^ p/+ qg + rh = 0), I'equation trouv^e est

/yhHif ...+ ipqr {qa? + py^f = 0.

Je vaifl verifier ces termes. Partant de I'equation (a, b, c, d, e^d, \y = 1, I'equation

tie la torse, en y introduLsant pour commodity le facteur —-^pqr, sera

~^pqr\^ [{hu + ezf + I27V - 3 (aV - /?>/)]'

- [2 (Sw + ezf - 9 (Sw + ez) (oV - ^y^) - 27 (hu + ez) rfuf + 54 (a^af + ^y) yw]'] = 0.
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En prenant ye = ab' — a'b = h, on obtient pour a, /8, 7, 8, e les valeui-s

et de \k

7' = -,
AV y_ i/p-9qy ^ f^'>-- + ¥9P9 ^^,^^¥9^ j»_4y=i^.

2p5r8p9 '
" 2pqr

Les termes en vf et (a?, y")* sont

- ih M'" {[* (^ + 12f)' - (2a-'' - 72<fSy] vf - 108 (aV - ^y^y\.

ces termes sont done

= _^ ^5,. {4327= (8= - 4'y'y w/! - 108 (aV - ^y'f} ;

= -^M^ {- 432 g^ .

^-^Z'
w"- + 864 (.y^» + P57}

comme eela doit etre.

Cambridge, le 22 septemhre 1868.
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440.

NOTE SUR UNE TRANSFORMATION GEOMETRIQUE.

[From the Journal fur die reine und angewandte Mathematik (Crelle), torn. LXVii. (1867),

pp. 95, 96.]

La lecture de la Note de M. Hesse, "Ein Uebertragungsprincip " (t. LXVI. p. l.S

de ce Journal) m'a sugger^ les remarqiies suivantes

:

Soient (Oi, 6,, Cj, d,), (a,, 6,, Cj, dj), (a,, h^, Cs, d^) des constantes donn^es, on peut

supposer que les coordonn^es {x, y) d'un point quelconque dans un plan soient exprim^es

en fonctions des paramfetres variables («, v) par les Equations

X = ai-\-hiU+ CiV + diuv a.2 + h^u + cffl + djMV

a, + 63W + CsV + diUv

'

En introduisant une nouvelle ind^termin^e s, ces Equations peuvent etre ecrites dans la

forme

sa; = ct, + 6jM + CiV + d,Mv,

sy = ai+ biU + c^v + dawv,

S = Oj + 631* + C3U + (ZaMt) ;

pour des valeurs donn^es des coordonn^es («, y) la quantity « est en g^n^ral d^ter-

min^e par une Equation quadratique, et les parametres m et w sont des fonctions lindaires

donn^es de s ; il y a cependant deux cas particuliers qu'il convient de distinguer.

1°. L'^quation quadratique en s peut avoir la racine s = et, d^barrass6e de ce

facteur, se rdduire par consequent k une Equation iindaire ; ce cas particulier a lieu si

C. VII. 16
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la condition (ahc) (bed) = (abd) (acd) est remplie, oh la notation (ahc) d^signe le deter-

minant

Ol. bu Ol

Oj, b„ c,

a,, h. c>

Dans ce cas u et v sont des fonctions rationnelles de {x, y) et la transfoi'mation a la

signification g^om^trique suivante

:

En considdrant deux droites quelconques L, M dans I'espace et en menant par le

point donn^ («, y) la droite unique qui rencontre ces deux droites, on pent supposer

que M et V soient des paramfetres qui d^terminent les positions des points de rencontre

8ur les deux droites respectivement ; c. a. d. que u soit la distance d'un point fixe sur

la droite L au point de rencontre avec la droite G, et de meme que v soit la distance

d'un point fixe sur la droite M au point de rencontre avec la droite G.

2°. Supposons 6i : 01 = 63 : 03 = 63 : C3, ou ce qui est au fond la mSme chose

6, — C = 0, 62 — C2 = 0, 6j — C3 = ; alors s est ddtermin^e par une Equation simple, mais

M et I) ne sont plus des fonctions rationnelles de s ; on voit que dans ce cas u + v

et uv sont des fonctions rationnelles de (a;, y), et que par consequent m et sont les

i-acines d'une Equation quadratique qui contient {x, y) lineairement. On pent supposer

que u et v soient les paramfetres de deux points sur une droite donn^e, c. k. d. que

M et t) soient les distances de ces deux points respectivement a un point fixe situ^

sur la droite donnde ; on a ainsi la transformation de M. Hesse.

Je n'ai pas cherchd la signification geometrique des formules gen^rales.

Cambridge, 10 octobre 1866.
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441.

NOTE SUE L'ALGORITHME DES TANGENTES DOUBLES D'UNE

COURBE DU QUATRIEME ORDRE.

[From the Journal filr die reine und angewandte Mathematik (Crelle), torn. LXViii. (1868),

pp. 176—179.]

On n'a pas, je crois, assez fait attention a ralgorithme (tire de la consideration

d'une figure dans I'espace) qu'a trouv^ M. Hesse (dans le mdmoire " Ueber die Doppel-

tangenten der Curven vierter Ordnung," t. XLix de ce Journal, 1855) pour ddnoter

les tangentes doubles (ou bitangentes) d'une courbe du quatrifeme ordre. Voici en quoi

cet algorithme consiste. En employant les huit symboles 1, 2, 3, ...8, les 28 bitangentes

sont reprdsentt?es par les combinaisons binaires 12, 13, 14, ...78. Cela posd, considerons

une expression quelconque 12.13.14, ou 12.34,... ou disons un "terme" qui repr^-

seote un systferae d'une seule ou de plusieurs des bitangentes. On pent operer sur ce

terme avec deux esp^ces de substitutions ; la substitution ordinaire qui consiste a

changer I'arrangement 12345678 des huit symboles en un autre arrangement quelconque;

at la substitution " bifide " reprdsentee par un symbole tel que 1234.5678, lequel denote

qu'il faut entrechanger les combinaisons 12 et 34, 13 et 24, 14 et 23, 56 et 78,

57 et 68, 58 et 67, en ne changeant pas les autres combinaisons. Par exemple en

operant avec 1234.5678 sur 34.45.56.17 on obtient 12.45.78.17. Le nombre de

C€8 substitutions bifides est 35, ou en comptant la substitution, unitd, qui ne change

aucune des combinaisons, ce nombre est 36.

Appelons " homotypiques " deux termes qui se derivent I'un de I'autre par une sub-

stitution ordinaire ;
" syntypiques " qui se derivent I'un de I'autre par une substitution

ordinaire ou bifide ;
" sous-groupe " le systfeme entier des termes homotypiques a un

terme donnd :
" groupe " le systfeme entier des termes syntypiques a un terme donnd.

Un groupe peut contenir un seul sous-groupe, ou phisieurs sous-groupes ; mais il importe

de remarquer que la notion du sous-groupe n'a pas de signification geometrique, et ne

16—2
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sert que comme moyen de former les tennes du groupe. Cela ^tant, le thdoreme

g^tn^trique est celui-ci ;
" les systeraes de bitangentes representees par des tennes

syntypiques (ou autrement dit, par des termes qui appartiennent au m^me groupe) ont

les memes propri^t^s geometriques."

Par exemple, en considc^rant les bitangentes deux k deux, on a deux sous-groupes,

I'un compost de termes homotypiques k 12.13; I'autre, de termes homotypiques a

12.34—ou disons, le sous-groupe 12.13 de 168 termes et le sous-groupe 12.34 de 210

termes ; mais ces deux sous-groupes ne forment qu'un seul groupe : pour montrer

cela il suffit d'op^rer sur 12.13, par exemple avec la substitution 1245.3678, ce qui

donne 45.13, terme homotypique a 12.34. Cela veut dire qu'il n'y a pas de combi-

naison de deux bitangentes qui se distingue d'une nianiere quelconque de toute autre

combinaison de deux bitangentes.

Mais en combinant les bitangentes trois k trois, on a les deux sous-groupes

12.34.56 (420 termes) et 12.23.34 (840 termes) qui forment un groupe de 1260

termes; les trois bitangentes representees par un quelconque des 1260 termes ont leurs

six points de contact sur une meme conique. Les trois autres sous-gi'oupes 12.23.31

(56 termes), 12 . 23 . 45 (1680 termes) et 12.13. 14 (280 termes) forment un groupe de

2016 termes, et pour trois bitangentes representees par un terme quelconque de ce

groupe, les six points de contact ne sont pas situ^s sur une meme conique.

Comme un autre exemple j'explique la constitution des 63 " groupes " de Steiner

(voir le m^moire de Steiner, " Eigenschaften der Curven vierten Grades nicksichtlich

ihrer Doppeltangenten," t. XLix. de ce journal, 1855) ou (pour ^viter I'emploi de ce

mot groupe dans une nouvelle signification) disons les 63 termes G de Steiner, chaque

terme composd de 6 paires de bitangentes. On a ici un sous-groupe de 35 termes G,

de la forme

12.34; 13.42; 14.23; 56.78; 57.86; .58.67

(pour abreger on pent ddnoter ce terme par 1234 . 5678), et un sous-groupe de 28

termes G, de la forme

13.32; 14.42; 15.52; 16.62; 17.72; 18.82

(pour abreger on pent de meme d^noter ce terme par 12.345678), les deux sous-

groupes forment le groupe des 63 termes G.

Steiner a de plus consider^ les " systemes " ou disons les termes Si, S„ composes

chacun de trois termes G ; savoir 315 termes Si et 336 termes S^. Les 315 termes

Si sont ici un groupe compost d'un sous-groupe de 105 termes 3(?, de la forme

1234.5678; 1256.3478; 1278.3456

et un sous-groupe de 210 termes 2Gj + Gj de la forme

12.345678; 34.125678 et 1234..5678.

Et de meme les 336 termes iSj sont un gi-oupe composd d'un sous-groupe de 280

termes 2(?, + C, de la forme

1234 . 5678 ; 5234 . 1678 et 15 . 234678
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et un sous-groiipe de 56 termes SG.2 de la forme

12.34.3678; 13.24.5678; 31.245678.

II va sans dire que je me suis servi de I'abreviation 1234.5678 pour denoter le terme

12.34; 13.42; 14.23; .56.78; 57.86; .58.67; et de mSme pour les autres termes

Oi ou G,.

M. Aronhold (dans le m^moire "Ueber den gegenseitigen Zusammenhang der

28 Doppeltangenten einer allgemeinen Curve vierten Grades," Bei-l. Monatsber. Juli 1864),

partant de 7 bitangentes donndes, a trouvd une construction pour les autres 21 bitan-

gentes. Les bitangentes donn^es doivent etre independantes ; savoir pour trois quelconques

de ces 7 bitangentes, les six points de contact ne sont pas situes sur une meme couique.

Les bitangentes representees par les termes 12, 13, 14, 15, 16, 17, 18 sont un tel

systeme de bitangentes indt^pendantes ; et en denotant de cette maniere les 7 bitan-

gentes donnees, la bitangente construite par le moyen de la conique qui touche cinq

de ces droites, par exemple les droites 38, 48, 58, 68, 78, (ou conique 34567) pent Stre

dt^notee par 12, et de meme pour les autres bitangentes cherch^es ; on a ainsi le

systeme entier des bitangentes d^not^es comme auparavant par 12, 13, 14,... 78.

J'ajoute que le groupe qui contient 18, 28, 38, 48, 58, 68, 78 est compose d'un sous-

groupe 18, 28, 38, 48, 58, 68, 78 de 8 termes, et d'un sous-groupe 12, 23, 31, 48, 58, 68, 78

de 280 termes ; le groupe contient done 288 termes ; savoir il y a ce nombre 288

de syst^mes de sept bitangentes independantes qui peuvent chacun servir a trouver

par la construction d'Aronhold les autres 21 bitangentes.

P.S. J'ai trouv^ k propos de la methode de M. Aronhold une forme commode

pour I'dquation de la couique qui touche cinq droites donnees ; en supposant que Ton

ait identiquement x-^y + z-\-w=Q, et que les droites donnees soient x=0, y = Q, z = Q,w = 0,

et ax + hy + cz + dw = 0, I'^quation de la conique est

(a - dy (b - cy (xw + yz)+(b- dy (c - ay {yiu + zx) + (c - dy (a - by {zw + xy) = 0.

J'ajoute qu'en ^crivant pour abr^ger

a : y3 : y={a-d)ib-c) : {b-d){c-a) : (c-d){a-b)

(d'ou a + /3 + 7 = 0) les coordonn^es {x, y, z, w) des points de contact avec les droites

a,- = 0, y = 0, 2 = 0, w=0 sont (0, 7, /3, a), (7, 0, a, /3), O, a, 0, 7), (a, ^, 7, 0)

respectivement ; et que les coordonnees du point de contact avec la droite ax+by+cz+dw =
sont

X : y : z : w = (bed) : — (cda) : (dab) : — (abc)

oh, pour abrdger, (bed) denote (6 — c)(c— d) {d — b), et de mdme pour (cda), (dab), (abc).

Caiitbridge, le 23 septemhre 1867.

i
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442.

NOTE SUR LA SURFACE DU QUATRIEME ORDRE DOUEE DE
SEIZE POINTS SINGULIERS ET DE SEIZE PLANS SINGULIERS.

[From the Journal filr die reine und angewa)\dte Mathematik (Crelle), torn. LXXlil. (1871),

pp. 292—293.]

L'^QUATION de M. Kummer se transforme sans difficult^ en celle-ci

^ax (yYy - ^'^'z -^ + ^J^y
{a.'a"z -H'x -

|) +^^z (p'ff'x - a'a"y -
^)

= 0,

oil

a + /3 + 7 = 0, a' + /3' + 7' = 0, a" + ;S" + 7" = 0.

Or cette Equation rendue rationnelle prend, aprfes toutes les reductions n^cessaires, la

forme suivante

:

v^ (id^ + y^ + z"" - 2yz - 2zx - 2xy)

+ 2w (aa'a" (fz - yz^) + /3/3'/9" {z'x - zaf) + 777" (xfy - xy") + Gxyz)

+ {aa't^'yz + ^^'^"zx -•-
'r/'i"<^y'f = 0.

oil, pour abr^ger, Ton a 6crit

e = (/3 -7)a'a" + (7 _a)^'^" + (a -B)H'>
= (/3' -7')a"a +(y -a')/?"^ +(«' -^')7"7.

= (/3" - 7") a a! + (7" - a") /S ^' + (a" - /3") 7 7 ,

= - i {(/9 - 7) (/9' - 7') (/9" - 7") + (7 - «) (7 - «') (7" - «") + (« - /9) («' - /9') (a" - ^")}.

I'identit^ de ces dift'<$rentes valeura de d dtant facile k verifier.
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En representant par Aw" + 2Bw + (7=0 la forme rationnelle de requation de la

surface, on trouve pour le discriminant AC — B^ de cette (Equation du second degrd en w
la valeur

Q" ' ''

P 7
^C-^3 = Wa"^^/3'V7"-2/^(M +

5) (5 + 1 +
1) (5 + ^ +

L'dquation de la surface rendue rationnelle est sym^trique par rapport aux trois

systemes de quantites (a, /S, 7), (o', /8', 7'), (a", y8", 7"); la forme UTationnelle de la

meme Equation peut done ^tre presentee de trois manieres diffdrentes, savoir:

^ax (7VV - ^^"z - 1) + sj^y [dot'z - 77";. - ^ ) + sj^z (yS'/S"* - a'a'V "
^

) = 0,

^Jct'xi^'y -fiffz -J) +y^'y (aa'^ - ry'a' - 1^) + /y/7"^ (/3/8'* - a«'y "
7')

= »

et Ton voit de plus que les Ajuations des seize plans singuliers sont

a; = 0, y = 0, ^ = 0, w = 0,

X y z - X y z . x y z -

-+i + - = 0, -+|; + - = 0, v^+^' + - = 0,
a p y a p y a p y

y'y'y-^^'z-'^ =0, a:a:'z -y'y"x-'^ =0, 0'^"x-a'a"y-^ =0.
a p y

y"yy - ff'^z - '^ = 0, <^"az - i'yx - g = 0, ^"fix - a"ay --,=Q,
a p y

r/y -0 0'z-^ = O, adz -yy'* -|> = 0' /3)8'^-«a'y -^,= 0,

les quantites o, /8, 7, etc. ^tant lides entre elles par les trois Equations

a+ /3 + 7 = 0, a' + /3'+7'=0, a" + /8" + 7"=0.

Voila ce me semble la forme la plus simple pour I'dquation de cette surface.

Cambridge, le 23 fivrier 1871.
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443.

NOTE ON THE SOLUTION OF THE QUARTIC EQUATION

[From the Mathematische Annalen, vol. i. (1869), pp. -54, .55.]

If U denote the quartic function (a, b, c, d, e\x, y)*, H its Hessian

= {ac- b\ 2 (ad - be), ae + 26d - 3c=, 2 {be - cd), ce - d-'\x, yf,

a and constants, then we may find the linear factors of the function all+Q^H
(or what is the same thing solve the equation aU + G^H = 0) by a formula almost

identical with that given by me (Fifth Memoir on Quantics, Phil. Trans, vol. CXLVIII.

(1858), see p. 446, [156]) in regard to the original quartic function U.

In fact (reproducing the investigation) if /, J are the two invariants, •^=x7s'
<i> the cubicovariant

= (- a-d + ^abc - 26', Sx^a; y)\

then the identical equation JU^-IU^H+^H^=-<^\ maybe written (1, 0, -M, M\IH, JUf
= — \I^^, whence if Wj, Wj, 0)3 are the roots of the equation (1, 0, —M, M\<i}, \y = 0,

or what is the same thing w' -i/(6D — 1) = ; then the functions

IH-(o,JU, IH-<o.^U, IH-toJU

are each of them a square : writing

io,,-(o,){IH-(o,JU) = X\

(m,-a,,)ilH-a,,JU)= F=,

i<o, - a>,) (IE -co,JU) = Z\
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SO that identically X'+Y^ + Z'' = 0, the expression aX+^Y+yZ will be a square if

only a= + ^=+ 7^=0. (To see this obsen^e that in virtue of the equation X^+Y^ + Z-= 0,

we have X + iY, X — iY each of them a square, and thence

aZ + y3F+ 7^, = H" + ^/3) {X - iY) + \{<x- i^) {X - iY) - ^i VX^ + Y\

is a square if the condition in question be satisfied.)

Hence in particular wiiting

Vwj - o)s s/al+Q^a^J, .... Vw, - w^ VaZ+C/SwaJ",

for a, /3, 7, we have

(0)2 - aJs) Va/+ 6)8a),J V/Zf + 0)1 Jt/"+ . . . + (o)i - o)^) Vo/ + 6/80)3/V/if+ Wa./'C/'

a perfect square, and since the product of the four different values is a multiple of

{aU+6^Hy (this is most readily seen by observing that for aU+ 6^11=0, the

irrational expression omitting a factor is (0)3— 0)3) (a/ +6/80)1J) +... +(0)1 — 0)3) (a/ + G/So),/),

which vanishes identically) it follows that the expression in question is the square of

a linear factor of all+G^H.

It thus appears that the radicals (other than those arising from the solution of

Z7=0) contained in the solution of the equation aU+6^H = are the three roots

Va/+6/3o)iJ; ;VaZ+G/So).,/, Va/ + 6/30)3/.

Cambridge, September 2, 1868.

c. vn. 17
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444.

ON THE CENTRO-SUEFACE OF AN ELLIPSOID.

[From the Proceedings of the London Mathematical Society, vol in. (1869—1871),

pp. 16—18.]

The President [Prof. Cayley] gave an account of his investigations on the centro-

Burface of an ellipsoid (locus of the centres of curvature of the ellipsoid). The surface

has been studied by Dr Salmon, and also by Prof. Clebsch, but in particular the theory

of the nodal curve on the surface admits of further development. The position of a

point on the ellipsoid is determined by means of the parameters, or elliptic coordinates,

h, k; viz., if as usual a, b, c are the semi-axes, and if X, Y, Z are the coordinates of

the point in question, then

a^ + h'^b' + h'^c' + h '

Z' F' Z' ^
a^ + k'^b' + k'^ c' + k '

and hence
- ^yX' = a" (a' + h) (a» + k),

-yaY' =b^ (6^ + A)(6'+i),

-a/3Z= =c' ((f+h)(c^+k),

if for shortness

a = 6'' - c^ ^ = <y'-a'', 7 = a= - ^>^ (a + /3 + 7 = 0).

This being so, the coordinates of the point of intersection of the normal at (X, Y, Z)

by the normal at the consecutive point of the curve of curvature

X^ F» Z^

al' + k b^+ k Cf' + k
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are given by the formulae

- ^•ya?a? = (a? + h)" (a> + k),

- yaby = {¥ + hy (b" + k),

- afid'z^ = (c= + hy (d'+k);

viz., these equations, considering therein (h, k) as arbitrary parameters, determine the

coordinates (x, y, z) of a point on the centre-surface. The principal sections (as is

known) consist each of them of an ellipse counting three times, and of an evolute of

an ellipse; the evolute and ellipse have four contacts (two-fold intersections) and four

simple intersections, but the contacts and intersections respectively are in the different

sections real and imaginary ; and if (as we may without loss of generality assume)

o' + c'>26^ then the form of the principal sections is as shown in the figure (which

represents only an octant of the surface) ; viz., there is a real contact at P in the

plane of xz, and a real intersection at Q in the plane of xy. The surface has thus

an exterior and an interior sheet, but (instead of meeting in a conical point, as in

the wave surface) these intersect in a nodal curve QP. The curve has a cusp at Q,

and a node at P ; viz., the curve extends beyond P, but from that point is acnodal,

or without any real sheet of the surface passing through it. For the nodal curve

there must be two values {h, k), (hi, ki), giving the same values of (x, y, z) ; viz.,

there must exist the relations

(a' -I- hy (a" + k) = (a' -f- h^y (a' + k^),

{b'' + hy(b'' + k) = (b' + h,y(b' + ki),

(c» + hy (c' + k) = (c^ -f- h,y (c» + h) ;

from which equations eliminating A, and A,, we should have between h, k a. relation

which, combined with the expressions of x, y, z in terms of (h, k), determines the

nodal curve. But the better course is to eliminate k, k^, thus obtaining a relation

between h and A,, in virtue whereof lii may be regarded as a known function of h;

k and i, can then be readily expressed in terms of h, li^ ; that is, we have A; as a

function of h, /tj, or in effect as a function of h. The relation between h, hi (after a

17—2

I
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reduction of some complexity) assumes ultimately a form which ia very simple and

remarkable; viz., writing

the relation is

P = a' + b' + c\ Q = lPd' + <fa'> + a'b', R = a?h'(?,

(QR + 3Q/^ + PA=)

+ K (3Q + 4PA + 3/i»

)

+ V(-P +3A ) = 0;

this is a (2, 2) correspondence between the two parameters h, hi; the united values

hi = h, are given by the equation 6(R + Qh + Ph^ + h^) = 0, that is

viz., the two points on the ellipsoid which have their common centre of curvature on

the nodal curve are only situate on the same curve of curvature when this curve is

a principal section of the ellipsoid.

{Since the date of the foregoing communication, Prof. Cayley has found that the

squared coordinates aP, y', z^ of a point on the nodal curve can be expressed as

i-ational functions of a single variable parameter o-.j
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445.

A MEMOIR ON QUARTIC SURFACES.

[From the Proceedings of the London Mathematical Society, vol. iii. (1869—1871),

pp. 19—69. Read February 10, 1870.]

The present Memoir is intended as a commencement of the theory of the quartic

surfaces which have nodes (conical points). A quartic surface may be without nodes,

or it may have any number of nodes up to 16. I show that this is so, and I con-

sider how many of the nodes may be given points. Although it would at first sight

appear that the number is 8, it is in fact 7 ; viz., we can, with 7 given points as

nodes (but not in a proper sense with 8 or more given points), find a quartic surface

;

such surface contains in its equation 6 constants, which may be such that the surface

has an additional node or nodes. Suppose that the surface has an 8th node :—there

are two distinct cases; viz., (1) the 8 nodes are the points of intersection of 3 quadric

surfaces, or say they are an octad, and the surface is said to be octadic
; (2) the 8th

node is any point whatever on a certain sextic surface determined by means of the

7 given nodes, and called the dianodal surface of these 7 points ; the quartic surface

is said to be a dianome. The two cases are in general exclusive of each other; viz.,

the 7 given points being any points whatever, the dianodal surface does not pass

through the 8th point of the octad; and thus the quaitic surface with the 8 nodes is

either octadic or else a dianome. Assuming it to be a dianome, the constants may be

further determined so that there shall be a 9th node ; it is necessary to examine

whether this forms with 7 of the 8 nodes an octad. Supposing that it does not (viz.,

that there are not any 8 nodes in regard to which the surface is octadic), the 9th

node is then any point whatever on a certain curve of the order 18, determined by

means of the 8 nodes, and called the dianodal curve of these 8 points. And, finally,

the constants may be further determined so that there shall be a 10th node ; supposing,

as before, that this does not form an octad with any 7 of the 9 nodes (viz., that
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there are not any 8 nodes in regard to which the surface is octadic), the 10th node

is then any one of a system of 22 [should be 13] points determined by means of the

9 nodes, and called the dianodal system of these 9 points. But the quartic surface is

now completely determined; viz., starting with any 7 given points as nodes, we have a

dianome with 8 nodes, 9 nodes, or 10 nodes, say, an octodianome, enneadianome, or

decadianome, but not with any greater number of nodes ; these can only present them-

selves when particular conditions are satisfied in regard to the 7 given nodes, and to

the 8th and 9th node ; and the consideration of the quartic surfaces with more than

10 nodes would thus form a separate branch of the subject.

The case of the decadianome (or quartic surface ^vith 10 nodes formed as above

with 7 given points as nodes) is peculiarly interesting. I identify this with the surface

which I call a symmetroid ; viz., the surface represented by an equation A = 0, where

A is a syinmetrical determinant of the 4th order the several terms whereof are linear

functions of the coordinates {x, y, z, w); this surface is related to the Jacobian surface

of 4 quadric surfaces (itself a very remarkable surface), and this theory of the symmetroid

and the Jacobian, and of questions connected therewith, forms a large portion of the

present Memoir.

The theory of the Jacobian is connected also with the researches in regaixi to

nodal quartic surfaces in general ; and, for greater clearness, it has seemed to me
proper to commence the Memoir with certain definitions, &c., in regard to this theory.

It will be seen in what manner I extend the notion of the Jacobian.

I remark that the present researches on Quartic Surfaces were suggested to me
by Professor Kummer's most interesting Memoir "Ueber die algebraischen Strahlen-

systeme u.s.w.," Berl. Ahh. 1866, in which, without entering upon the general theory, he

is led to consider the quartic surfaces, or certain quartic surfaces, with 16, 15, 14, 13, 12,

or 11 nodes; the last of these, or surface with 11 nodes, being in fact a particular

case of the symmetroid.

Considerations in regard to the Jacobian of four, or more or less than four, Surfaces.

1. In the case of any four surfaces, P = 0, Q = 0, i2 = 0, S = 0, the differential

coefficients of P, Q, R, S in regard to the coordinates {x, y, z, w) may be arranged

as a square matrix in either of the ways

P. Q, R, S ; hx. By, Bi, 8„

P

Q
R
8
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and with either arrangement we may form one and the same determinant, the Jacobian
aeterminant J{P, Q, R S), or, equating it to zero, the Jacobian surface J(P O R S) =
ot the four surfaces. \ >

%> > / .

2. In the case of more than four surfaces, adopting the arrangement

P. Q, B, S, T,..

8,„

and considenng the several determmants which can be formed with any four columnsof the matn^, these equated to zero establish a more than one-fold relation betweenthe coordmates; viz., m the ca^e of five surfm^es, we have J(P, Q R S T)^0 atwofold relation representing a curve ; and in the case of six surfaces, J(P, Q R S T U)'=0a threefold relation representing a point-system; and (since with fou c'oo;di;ates arelation is at most threefold) these are the only cases to be considered.

3. In the case of fewer than four surfaces, adopting the arrangement

^X, Sy, Si, Sy,

I

P

Q

and considering the several determinants which can be formed with any 3 or 2 columnsof the matrix and equating these to zero, we have in like manner a more than oT
S(pt S-0*T

the coordinates; viz.. in the case of three surfaces, we have

s.Zes J PO^ T \ T."
representing a curve; and in the case of two

^T^tL^l^By.sT^'^pTpZQTo^^^^ a point-system, (viz.. this

we should hf. a fourfold%elati;n. -atft-hf^L^^^ ^^^o^^Z:"^^:'^
If the notation were used, J^(P)^0 would denote B,P = 0. S„P=0 SP-0 Tpequations which are satisfied simultaneously by the coordinates (.,' / .iTrnynode of the surface P=0. Although in what precedes I have used the ign = the"IIS no objection to using, and I shall in the sequel use, the ordinary sign -

Tt' beSunde^tood ,ha^ whi,e^(P, Q ,,^ ^ denotes a single equation ^rTefJd re.^
J(P O'/'S T^m\ /.P ^;

^> = \"^" ^^«h denote a twofold relation, and-fiP. Q. R.S,T,U)^0 or J (P. Q) = each of them a threefold relation.

4. It is not asserted that ...J(P,Q,R) = o, J(P, Q, R. S) = 0, J(P, Q R 8 T)-0form a contmuous series of analogous relations; and there might ev n be' a l^rtt;

n Teld jT '° '""^
Z ™T ''''^'''' '• '-'' ^^ -^-^'

«
^°- - fewer' iSan inverted J (viz., m regard to four surfaces, either symbol indifferentlv) • but there:s no ambiguity m. and I have preferred to adopt, the use of the single^mbol /
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6. Suppose that the orders of the surfaces P = 0, Q = 0, ... are o + l, 6 + 1,... (so

that the orders of the differential coefficients of P, Q... are a, b,...), then we have

for the oitiers of the several loci,

J{P, Q) = 0, point-system, order a' + a-6 + oi' + t';

J(P, Q, R) = 0, curve, „ d' + b' + c' + bc + ca + ab;

J(P, Q, R, S) = 0, surface, „ a + b + c + d;

J {P, Q, R, 8, T) = 0, curve, „ ab + ac ... + de;

J{P, Q, R, 8, T, U) = 0, point-system, „ abc + aM ... + def;

see, as to this, Salmon's Solid Geometry, Ed. 2, (1865), Appendix IV., " On the Order

of Systems of Equations" [not reproduced in the later editions]. In particular, if

a = b = c ... = 1, then the orders are 4, 6, 4, 10, 20.

As to the Surface obtained by equating to zero a Symmetrical Determinant.

6. It is also shown (Salmon, Ed. 2, p. 495) that the surface obtained by equating

to zero any symmetrical determinant has a determinate number of nodes ; viz., if the

orders of the terms in the diagonal be a, b, c, &c., then the number of nodes is

= ^ (Sa . 2a6 — 2a6c), or, as this may also be written, ^ (Za'b + 2^abc). In particular,

the formula applies to the case of the surface

A, H, G, L =0,

F, M
C, N
N, D

{a, b, c, d) being here the orders of A, B, C, D respectively, and the orders of F, G, &c.,

being J (6 + c), i (a + c), &c. If the terms are all of them linear functions of the

coordinates, or a = b = c = d = l, then the number of nodes is = 10.

7. That the surface has nodes is, in fact, clear from the consideration that any

point for which the minors of the determinant all vanish will be a node ; and that

(for the symmetrical determinant), by making the minors all of them vanish, we
establish only a threefold relation between the coordinates. The expression for the

number of the nodes is, I think, obtained most readily as follows

:

The nodes will be points of intersection of the curve and surface

H, B,

G, F,

L, M,

A, H,

H, B,

G, F,

G, L = 0, B, F, M
F, M F, C, N
C, N M, N, D

I the points

H, B, F, M = 0;

G, F. C, K

= 0,
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and not only so, but they touch at the points in question ; so that, multiplying

together the ordere of the curve and surface, and subtracting twice the order of the

point-system, we obtain the expression for the number of nodes. In the particular case

where the functions are all linear, we have a sextic curve and cubic surface inter-

secting in 18 points ; but the curve and surface touch in 4 points, and the number
of nodes is (18 — 2. 4) =10. And in the same way the formula may be established for

the general case.

8. The subsidiary theorem of the contact of the curve and surface requires, how-

ever, to be proved. Seeking for the equation of the tangent plane of the surface at

any one of the points in question, we have first

hB. BF. BM -f

F, c, N
M, N, D

B, F, M +

BF, BC. BN

M, N, D

B, F, M
F, c, N

BM, BN. BD

= 0.

where, in virtue of the equations

H, B, F, M
G, F, G, N

= 0,

the last term vanishes. Expanding the other two terms, the equation becomes

D (CBB + BBC - 2FBF) - {N'BB - 2MhF+ M'BC) + BM (FN - CM) + BN (BN - MF) = ;

rbut,

in vii-tue of the same equations, the coefficients of BM and BN each of them

vanish, and we have also

we find between the differentials BA, BB, &c., a twofold linear relation, expressible by

means of the foregoing equation CBB + BBC - 2FBF= 0, and one other equation; that

is, at each of the points in question the tangent of the curve lies in the tangent

plane of the surface, or, what is the same thing, the curve and surface touch at these

points.

c. vu.
,

18

N'BB + M'BC - 2MNBF=^ (CBB + BBC - 2FBF)

;

so that the equation becomes finally CBB + BBC — 2FBF — 0. Investigating by a like

process the equation of the tangent of the curve

= 0,A, H, G, L

H. B, F M
0, F, c. N
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Surfaces represented by an equation F{P, Q) = 0, &c.

9 In the remarks which follow as to the surfaces F(P, Q) = 0, FiP. Q. R) = 0, &c.,

the function F is a rational and integral function of (P, Q), (P. Q. R), &c not in

general homogeneous in regard to P. Q. R but of such degrees m regard to these

fiinctions respectively as to be homogeneous in regard to the cooi-dinates (x, y, z, w).

The surface F{P, Q) = has in general a nodal curve
^;f =^^^«f=^;

^""^ '^

it has besides any nodes, these are points of the point-system J {P, y)-0.

The surfece F(P, Q, R)=0 has in general nodes 8^P = 0, ^^^= ^^^^^^'' ^""^

if it has besides any nodes, these are points on the curve J(P, Q, K)-0.

The surface F(P,Q,R,S)^0 has not in general, but it may have, nodes

8^P=0, BqF=0, 8^P=0, BsF=0; if it has any other nodes, these are points on the

surface J- (P, Q, R, S)=0.

Nodes of a QuaHic Surface ; CircumscHbed Gone having its vertex at a Node.

10 A quartic surface maybe without nodes; or it may have any number of nodes

up to 'le. Consider a quartic surface having a node or nodes; and take the single

Zde or (if more nodes than one) any one of the nodes, as the vertex of a circumscnbed

Lt; then, considering any plane through the vertex, the section will be a quartic

curve having a node at the vertex, and the generatmg hues in the plane will be the

tangents from the node to the quartic curve; the number ot them is therefore 6. and

the order of the cii-cumscribed cone is thus =6. Each tangent intersects the quartic

curve in the node counting as two intersections, and in the point of contact counting

as two intersections; there are consequently no singular tangents; and therefore in the

circumscribed cone no singular lines arising from a singular tangency of the generating

line. Hence, in the case of a single node on the surface, the circumscribed cone is

a cone of the order 6 without nodal or stationary lines; and the class is =3a but

in the case of more than one node, say k nodes, the circumscribed cone passes through

the remaining k-1 nodes, and the generating line through each of these nodes is a

nodal line of the cone; that is, the cone has k-1 nodal lines, and its class is

= 30-2A; + 2. The cone is not of necessity a proper cone; the maximum number ot

nodal lines is when it breaks up into 6 planes, and we have then t-l = lo; that is,

the number of nodes of the surface is at most =16.

11 It is easy to form a table of the different pnmd facie possible forms of the

sextic cone, according to the number of nodes of the surfa<:e; viz.. writmg 6 for a

proper sextic cone without nodal lines, 6„ 6, ... 6„ for the proper sextic cone with

1 2 .. or 10 nodal lines; and so 5, 5, ... 5. for the proper quintic cones,

*, 4i,' 4,. 43. 3. 3.. 2 for the quartic, cubic, and quadric cones, and 1 for the plane, the

table is
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Circumscribed Sextic Cone.

Nodes of

Snrfaoe.

1 6

2 6,

3 6,

4 6,

5 64

6 65; 5, 1

7 6.; 5., 1

8 6,; 5„ 1

9 6a; 5„ 1 ; 4, 2

10 6.; 5„ 1 ; 4u 2; 4 1. 1; 3 3

11 6..; 5., 1 4„ 2; 4., 1, 1; 3, 3

12 5.. 1-
4a. 2; 4„ 1, 1; 3., 3:; 3, % 1

13 • • ... 43, 1. 1; .. 3, 2, 1; 3, 1, 1, 1; 2, 2, 2

14 ... ... ... ... 3„ 1, 1, 1; 2 , 2, 1, 1

15 ... ... ... ... ... 2„ 1, 1, 1, 1

16 . .

.

. .

.

•

, ... 1, 1. 1, 1. 1, 1;

and moreover, in the cases where there are two or more forms of the sextic cone,

then the h sextic cones may be of the different forms in various combinations. The

total number of cases pi'imd facie possible is thus very great ; but only a comparatively

small number of them actually exist.

12. In the case where there is a plane 1, the sextic cone breaks up into this

plane, and into a (proper or improper) quintic cone intersecting the plane in 5 lines

;

that is, there will be in the plane 6 nodes; the plane is, in fact, a singular tangent

plane meeting the surface in a conic twice repeated ; and the 6 nodes lie on this

conic. Taking any one of these nodes as vertex, the corresponding sextic cone breaks

up into the plane, and into a (proper or improper) quintic cone.

13. In the cases k=l, 2, 3, 4, 5, and ^=15, 16, there is only one form of sextic

cone; so that each node (at least so far as appears) stands in the same relation to

the surface. Considering the last mentioned two cases; A; =16,—each of the 16 nodes

gives 6 singular tangent planes, but each of these passes through 6 nodes ; therefore

the number of plaues is =16: similarly. A; =15, the number of singular tangent planes

is 15x4-r6, =10.

18—2
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For JS;=14, the cones are 3,, 1, 1, 1, or 2, 2, 1, 1 : it is easy to see that we have

only the three cases

Cones 3], 1, 1, 1 : 2, 2, 1, 1 Singular tangent planes

. may be 14 , gives (14 , 3 + . 2) ^ 6, = 7

» 8 6 „ ( 8 . 3 + 6 . 2) - 6, = 6

» 2 , 12 „ ( 2.3 + 12.2)-6, = 5

and we may in the like manner limit the number of possible cases, for other values

of k. But I do not at present further pursue the inquiry.

As to the Number of Constants contained in a Surface.

14. We say that a surface P = contains or depends upon a certain number of

constants ; viz., this is the number of constants contained in the equation P = of the

surface, taking the coefficient of any one term to be equal to unity; thus the general

quadric surface contains 9 constants ; the surface can in fact be determined so as to

satisfy 9 conditions ; or, as we might express it, the Postulation of the surface is = 9.

[I have elsewhere said Postulandmn and Capacity : I prefer this last expression.]

And if, in the general equation so containing 9 constants, k of these are given, or,

what is the same thing, if the quadric surface be made to satisfy any k conditions,

then the number of constants, or postulation of the surface, is =9-4.

15. But a different form of expression is sometimes convenient; the conditions to

be satisfied are frequently such that, being satisfied by the surfaces P = 0, Q = 0, . . .

,

they will be satisfied by the surface oP + /3Q+ ... = 0, where a, /8, ... are any constant

multipliers whatever. When this is so, there will be a certain number of solutions

P = 0, Q = 0, . . . not connected by any such relation, or say of asyzygetic solutions, such

that the general surface satisfying the conditions in question is aP + ySQ + . . . = ; and

hence, taking one of these coefficients as unity, the number of constants, or postulation

of the surface, is equal to the number of the remaining coefficients, or, what is the

same thing, it is less by unity than the number of the asyzygetic solutions P = 0,

Q = Instead of considering the number of constants, or postulation, we may consider

the number of solutions (that is, asyzygetic solutions) or surfaces P = 0, Q = 0, . . . which

satisfy the conditions in question.

16. Thus, for the quadric not subjected to any conditions, there are 10 surfaces

(for example, these may be taken to be the surfaces a^ = 0, y" = 0, z^ — 0, v^ = 0, yz= 0,

zx = 0, xy=0, aw = 0, yw = 0, zw = 0); and the general quadric surface is by means of

these expressed linearly in the form (a, ...'^x, y, z, wy = 0. So for the quadric surfaces

through k given points, the number of these is =10 — k; thus for the surfaces

through 4 given points, say the points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

the 6 given surfaces may be taken to be yz =0, zx = 0, xy = 0, xw = 0, yw = 0, zw = 0,

and every other quadric surface through the 4 points is by means of these expressed

linearly in the form (a, ...$y^, zx, xy, xw, yw, zw) = 0; for the quadric surfaces through

8 points there are two surfaces P=0, Q = 0; and every quadric surface through the
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8 points is by means of these expressed linearly in the form oP + 0Q =
; and (as

the extreme case) if the quadric sui-face passes through 9 given points, then there is

the single quadric surface P = 0.

17. In the questions in which such quadric surfaces present themselves, it is in

general quite immaterial what particular surfaces are selected as the surfaces P = 0,

Q = 0, ... ; the selection may be made at pleasure and, being so made, the surfaces are

to be regarded as completely determinate ; viz., there would be no gain of generality

if these were replaced by any other surfaces aP + /3Q . . . = 0. For instance, in the

theory of the quartic surfaces with 6 given points as nodes, we have through the 6

given points the 4 quartic surfaces P = 0, Q = 0, jR = 0, S = 0, and we consider the

quartic functions (a, ..-JP, Q, R, S)- and J (P, Q, R, S): each of these is unaltered

as to its form when P, Q, R, S are replaced each of them by any linear function of

these quantities; viz., (a, ...$P, Q, R, Sf is changed into a new quadric function

(a', . . . ^P, Q, R, Sf, and J (P, Q, R, S) into a mere constant multiple of its original

value. We have herein a justification of the expressions in question, through 6 given

points there are 4 (juadric surfaces, &c.

General theory of the Quartic Surface with a given Node or Nodes.

18. A quartic surface contains 34 constants ; and the number of conditions to

be satisfied in order that a given point may be a node is = 4. Hence, if the surface

has k given points as nodes, the number of constants is = 34 — 4A ; and it would at

first sight appear that k might be = 8, and that with the 8 given points as nodes

we should have a quartic surface containing 2 constants. But this is not so in a

proper sense ; for through the 8 given points we have 2 quadric surfaces P = 0, Q = ;

and we can by means of these form a quartic surface {a, b, c\P, Q)" = 0, containing

2 constants, and having in a sense the 8 points as nodes. This, however, is no

proper quartic surface, but is a system of 2 quadric surfaces, each of them passing

through the 8 points, and the two quadric surfaces therefore intersecting in a quadri-

quadric curve through the 8 points; which curve is therefore a nodal curve on the

compound surface; and it is only as points on this nodal curve, and not in a proper

sense, that the 8 given points are nodes of the quartic surface. The greatest value

of k is thus k = 7.

19. Of course, if A = 0, we have the general quartic surface U=0, containing 34

constants. The cases k = l, k = 2, A; = 3 (viz., a single given node, 2 given nodes, 3

given nodes), may be at once disposed of; taking for instance the 1st node to be the

point (1, 0, 0, 0), the 2nd node the point (0, 1, 0, 0), the 3rd node the point

(0, 0, 1, 0), we find at once an equation 17 = 0, with 30, 26, or 22 constants, having

the given node or nodes.

Four given Nodes,

20. The case of 4 given nodes is just as easy; but in reference to what follows,

it is proper to consider it more in detail. The equation should contain 18 constants;

we have through the 4 given points 6 quadric surfaces, P=0, Q = 0, R = 0, S=0, T=0,
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17= 0, and we can by means of them form a quartic equation (a, ...$P, Q, R, S, T, Uy = 0,

having the 4 given points as nodes ; this contains, however, (21 — 1 =) 20 constants

;

the reduction to the right number 1 8 occurs by reason that the functions (P, Q, R, S, T, U),

although linearly independent, are connected by two quadric equations

(*$P, Q, R, S, T, Uy = 0, (.'^P, Q, R, S, T, Uf = 0;

hence writing the equation of the quartic surface in the form

(a, ...5„)»-\ (*$„)'- At (*5„y = 0.

the coefficients X, /x may be so determined as to reduce to zero the coefficients of

any two terms of the equation, and the number of constants really is 20 — 2 = 18, as

it should be. i

21. In proof, observe that, taking the 4 given nodes to be the points (1, 0, 0, 0),

(0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0), the quadric surfaces may be taken to be yz = Q,

zx=0, xy = 0, anv = 0, yw = 0, zw=0; the equation of the quartic surface will thus be

(a, ...^yz, zx, xy, xw, yw, zwf = 0;

but we have between the functions acy, &c., the two identical relations

xy . zw — xz . yw = 0, xy . zm — xw.yz = 0;

and the number of constants is thus = 18.

Five given Nodes.

22. In the case of 5 given nodes, the number of constants should be = 14. We
have through the 5 given points, 5 quadric surfaces P = 0, Q = 0, R = 0, S = 0, T= 0,

and we form herewith the quartic equation (a, ...JP, Q, R, S, Ty = 0, containing the

right number 14 of arbitrary constants. The functions P, Q, &c. are in this case not

connected by any quadric relation, and the equation just written down is in fact the

general equation of the quartic surface with the 5 given nodes.

23. In verification, take the first 4 nodes to be as above, and the 5th node to

be the point (1, 1, 1, 1); we may write

(P, Q, R, S, T)={x(y-z), x(y-w), y{x-z), y(x-w), xy-zw};

and if from the 5 equations P = x(y —z), &c., we eliminate (a?, y, z, w), we obtain

one, and only one, relation between the functions P, Q, R, S, T; this is found to be

P8{Q + R-T)- QRiP + S-T) = 0,

or, what is the same thing,

R(P-Q)(S-T)-P(R-S)(Q-T)=^0;

viz., it is a cubic relation, and there is consequently no quadric relation between the

o functions.
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Six given Nodes.

24. In the case of 6 given nodes, the quartic surface should contain 10 constants.

We have through the 6 given points 4 quadric surfaces P =0, Q = 0, R = 0, S = 0;

but if we form herewith the quartic surface (a, . . .$P, Q, R, /S)" = 0, this contains only

9 constants. It is to be shown that the Jacobian surface J (P, Q, R, S) = of the

4 quadric surfaces (or say of the 6 points) is a quartic surface having the 6 given

points as nodes, and not included in the foregoing form (a, ...5.P, Q, R, Sy = 0; this

being so, we have the quartic surface

(a,...$P, Q, R, Sy + 0J(P, Q. R, S) = 0,

having the 6 given points as nodes, and containing the complete number of constants,

viz., 10.

25. The 6 given nodes being any points whatever, their coordinates may be taken

to be (1, 0, 0, 0), (0, 1. 0, 0), (0, 0. 1, 0), (0, 0, 0, 1), (1. 1, 1, 1), and (a, ^ 7, S). I

proceed to find the Jacobian of these 6 points. For this purpose, let (a, b, c, f, g, h)

be the 6 coordinates of the line through the points (1, 1, 1, 1) and (a, )8, 7, S), viz.,

a = ^-j, f=a-S,
b=y-a, g = 0-8,

c = a — /3, /t = 7 — S,

whence a/+ bg + ch = 0, and also

'

. h — g + a=0,

- h . +/+ 6=0,

,7 -/ + c = 0,

— a — b —c . = 0,

we have through the 6 points the plane pairs

a; ( . — ha; — gz + aw) = 0,

y {—hx . +fz+btu) = 0,

'^ ( i/*' -fU + cw ) = 0,

w(—ax — by — cz . ) = 0,

where, adding the four equations, we have identically = 0. For this reason, we cannot

take these to be the equations of the 4 quadric surfaces, but we may take the first

3 of them for the surfaces P = 0, Q = 0, R = 0; and for the 4th surface S=0, I take

the quadric cone having its vertex at the point (0, 0, 0, 1); viz., the equation is

aayz + bfizx + cyxy =
;

that is, I write

(P, Q, R, 8)= {x (hy — gz + aw), y (— hx +fz + bw), z {gx —fy + cw), (aayz + h^zx + cyxy)].
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26. The Jacobian is then easily found to be

(b^zx + oyxy) (- agh, bhf, cfg, abc, -af\ -gB, hC, aA, bfg, -<?h\x, y, z, wf

+ (cyxy+aayz)(agh, -bhf, cfg, abc, fA, -bg\ -hC, -a% bB, d'h \x, y, z, wf

+ (aayz + b^za:){agh, bhf, -cfg, abc, -fA, gB, -ch\ a'f -b'g, cG \x, y, z, w)« = 0;

where for the moment A, B, G denote bg-ch, ch-af af-bg respectively. Collecting

and reducing, the whole divides by 2abc ; and if finally we replace a, b, c, f, g, h by

their values, the result is

( (/3 - 7) y^ ("w' - &B=) + (a - 3) nw i^z"- - 73/-)

'

J = \ + {y - a) zx {ffw^ - Sy^) + (^ - B) yw {yx~ - az^ ) - = 0.

[+(a -^)xy {yw^ ~ Bz^) + (y-B) zw {ay- - ^a^)

,

27. It may be shown d post&fioi-i that / is not a quadrie function of P, Q, R, S. For,

attempting to express it in this form, J does not contain the terms or'w^, yhu'', z^w", and it

thence at once appears that the coeflBcients of P^, Q^, R' each of them vanish. Hence,

introducing for convenience the factor 2, 1 assume (0, 0, 0, D, F, G, H, L, M, N'^P, Q, R, S)-=2J.

Comparing the terms in w^{yz, zx, xy), we obtain

bcF= aa, caG = b^, nbH = cy
;

and comparing the coefficients of w {y^z, z^x, afy, yz^, zoe^, xy-), we obtain

-Ff + aaM=^, Ff + aaN = -^-^,
c

-Gg + b^N^^. Gg + b^L = Jf,

-Hh+cyL=^-^,
0/

Hh+cyM^--^^;

substituting for F, G, H their values, we obtain from the first 3 equations L, M, N
=

, ,
— -

, —r, and from the second 3 equations, L, M, N'=j-, — , —
, ; that is,

be ca ab ^
be ca ab

the equations are inconsistent, and the function / is not expressible in the form in

question.

Jacobian Surface of Six given Points.

28. The equation J=0 is the locus of the vertices of the quadrie cones which

pass through the given 6 points ; calling these 1, 2, 3, 4, 5, 6, we see at once that

the surface passes through the 15 lines 12, 13, ...56, and also through the ten lines

123. 45G (viz., line of intersection of the planes through 1, 2, 3, and through 4, 5, 6),

&c. In fact, taking the vertex at any point in the line 1, 2, the lines drawni

to the six points are 01 = 02, 03, 04, 05, 06 ; viz., there are only five lines, so that

these lie in a quadrie cone. And taking the vertex at any point in the line 123 . 456,
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the lines to the 6 points lie in these planes 123 and 456 respectively, and the quadric

cone is in fact this plane-pair. Moreover, the surface containing the lines 12, 13, 14, 15, 16,

must have the point 1 for a node ; and similarly, the points 2, 3, 4, 5, 6 are each

of them a node on the surface. It is to be added that the surface contains the skew

cubic through the 6 points, or say the skew cubic 123456. See, as to this, ^Jost No. 108.

29. The surface in question (the Jacobian of the 6 points) is a particular case

of the Jacobian of any 4 quadric surfaces. This more general surface will be considered

in the sequel ; I only remark here that it contains 10 lines, corresponding to the

10 lines 123.456, &c., but it has not any other lines, or any nodes.

Jacobian Curve of Seven given Points, or of an Octad of Points.

30. In connexion with what precedes, we may here consider a curve which presents

itself in the sequel ; viz., the curve which is the locus of the vertices of the quadric

cones which pass through seven given points. The general case is when no one of

the points is the vertex of a quadric cone through the other 6 points. We have

through the 7 points the three quadric surfaces P = 0, Q = 0, R=0 ; hence, forming

the equation aP + /9Q + yR = of the general quadric surface through the 7 points,

and making this a cone, we find as the locus of the vertex J (P, Q, R)= ; the

analytical form shows that this is a sextic curve. It appeai-s, moreover, that the curve

is symmetrically related to all the 8 points P = 0, Q=0, R = 0; and instead of calling

it the Jacobian of the 7 points, we may call it the Jacobian of the octad. But in

further explanation, take the points to be 1, 2, 3, 4, 5, 6, 7 ; the vertex will lie on

each of the Jacobian surfaces 123456' and 123457; and it is at present assumed that

7 is not a point on the first surface, nor 6 a point on the second surface. The two

surfaces have in common the lines 12, 13, ...45, and they consequently besides intersect

in a curve of the 6th order, or sextic curve, which is the locus in question. At the

point 1 there is on the first surface a tangent cone through the lines 12, 13, 14, 15, 16,

and on the second surface a tangent cone through the lines 12, 13, 14, 15, 17 ; these

two cones have for their complete intersection the lines 12, 13, 14, 15, which lines

belong to the complete intersection of the two surfaces, but not to the sextic curve.

It thus appears, a posteriori, that the sextic curve does not pass through the point 1

;

and similarly, that it does not pass through any of the points 2, 3, 4, or 5. As to

the points 6 and 7, each of these is on only one of the quartic surfaces, and there-

fore the curve of intersection does not pass through either of these points.

31. Suppose, however, that one of the seven points is the vertex of a cone

through the other six ; it is of course the same thing whether we take this to be

one of the points 1, 2, 3, 4, 5, or one of the points G and 7, but the result comes

out more easily in the latter case; viz., in the former case, taking 1 to be the point

in question, the two tangent cones at 1 are one and the same cone, and all that

appeai-s is that there is nothing to hinder a branch or branches of the sextic curve

from passing through the point 1. But in the latter case, taking 7 for the point in

question, then 7 lies on the surface 123456, being a simple point on this surface, but

a node on the surface 123457; and it thus appears that there are through 7 two

C. VII. 19
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branches of the sextic curve ; so that any one of the seven points, being the vertex of

a cone through the other six, is an actual double point on the sextic curve.

32. In the case where two of the points are each of them the vertex of a cone

through the other six points, then the seven points lie on a skew cubic ; and the

sextic curve of the general case becomes this skew cubic twice repeated.

Seven given Nodes.

33. In the case of 7 given nodes, the number of constants should be = 6 ; the

7 given points determine 3 quadric surfaces P = 0, Q = 0, R = : and we have hence

the quartic surface (a,...^P, Q, Ry = 0, containing 5 constants only. That this is not

the general quartic surface with the 7 given nodes, is also clear from the consideration

that the surface in question has 8 nodes ; viz., the 8 points of intersection of the

three quadric surfaces. Suppose that a particular quartic surface, having the 7 given

nodes, but not of the last mentioned form, is A = ; then a quartic surface having the

7 given nodes is

(a,...][P, Q, i2)» + ^A = 0;
•

and this, as containing 6 constants, will be the general' quartic surface with the 7 given

nodes.

34. It follows that, if A' = be another quartic surface having the 7 given nodes,

we must have identically A' —pA = {*^P, Q, R)', where p is a determinate constant and

{»$P, Q, Ry a determinate quadric function of (P, Q, R). The formula extends to

the case where A' = has the 8 nodes (P = 0, Q = 0, R = 0), but we have then p = 0,

and the meaning is simply that the general quartic surface having the 8 nodes is

(*$P, Q, E)» = 0.

35. A particular quartic surface having (in an improper sense) the 7 given nodes,

but not having the 8th node, is Mil = 0, where M=0 in the plane through any 3 of

the 7 points and fl = is the cubic surface through these same 3 points, and having

the remaining 4 points as nodes. The equation of the cubic surface, if the 4 points

are taken to be (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), is obviously of the form

-H 1 h- =0, (that is, ayziu + hzxw + cxyw + dxyz = 0),

and by making the surface pass through the 3 points we determine linearly the

coefficients (a, b, c, d), that is, their ratios. The equation of the quartic surface thus is

(a, ...$p, q, Ry+eiMn = o,

the 7 given points being here proper nodes ; and the formula being precisely equi-

valent to the preceding one containing A.

36. We can with the 7 given points form 35 such combinations Mil = of a

plane and a cubic surface, and so present the equation of the quartic surface under

35 different forms; these are of course equivalent in virtue of the before mentioned

formula for A'—pA; viz., we must have identically MO. - pM'il'=(*'^P, Q, Rf: a

theorem of some interest, which it might be difficult to verify d posterion.
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Investigation of the cases of 8 Nodes.

37. It has already been shown that a quartic surface cannot in a proper sense

have 8 given nodes. In regaixi to the quartic surfaces with 8 nodes, we start from

the surface with 7 given nodes ; viz.,

ia,...^P, Q, RY+dW =0,

or, what is the same thing,

(a,...5;p, Q, Ry + eMD. = 0;

and we inquire in what cases this surface has an 8th node, Obviously if ^ = 0. that

is, if the surface is (a, ...$P, Q, Ry=0, the surface will have an 8th node, the

remaining intei-section of the quadric surfaces P = 0, Q = 0, R = (observe that this is

a point in no wise depending on the particular quadric surfaces, but uniquely deter-

mined by means of the 7 given points) ; and we have thus one kind, say the

" octadic " surface, of the quartic surfaces with 8 nodes ; viz., the nodes are the

8 points of intersection of any 3 quadric surfaces, or they are an octad of points.

By what precedes, 7 of the nodes may be given points, and the remaining node is

then a uniquely determinate point, the 8th point of the octad.

38. But if 6 be not = 0, there may still be an 8th node ; viz., this must then

be a point on the Jacobian surface J (P, Q, R, V ) = 0, which is of the order 6. It

is clear a, priori that this must be a surface depending only on the 7 points, but

independent of the particular surfaces P = 0, Q = 0, P = 0, V = ; to verify this, observe

that, substituting for V the functioA V, =^V +{*'^P, Q, Ry, we in fact leave the

Jacobian unaltered ; I call it the dianodal surface of the 7 points.

39. I say that the 8th node may be any point whatever on the dianodal surface
;

in fact, regarding for a moment the coordinates of the node as given, and expressing

that the point is a node on the quartic surface, we have 4 equations containing

aP,+ hQ„+gR„. hP, + hQ,+fR„ gPo+fQo + cRo,

(Po. Qo. Ro the values of P, Q, R at the node,) but which, if only the point be on

the dianodal surface, reduce themselves to three equations ; viz., we have between the

coefficients (a, b, c, f, g, h) and three equations which being satisfied, the point in

question will be a node. And it thus appears that, taking the 8th node to be a

given point on the dianodal surface, the equation (a, ...^P, Q, Rf + 6^ = of the

quartic surface will contain 3 constants. Observe that we may through the 8 nodes

draw 2 quadric surfaces P = 0, Q=0 ; and this being so if A = be a particular quartic

surface with the 8 nodes, then the general quartic surface will be

(o, b, c'^^p, Qy+eA = o,

containing the right number 3 of constants. But there is not here any simple form

of the surface A = 0, such as the form MQ = for the surface through 7 given points.

19—2
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40 It is clear d priori that the relation between the 8 nodes is a symmetrical

one • so that the 8th point being situate anywhere on the dianodal surface of the

7 T)i>ints each of the points will be situate on the dianodal surface of the remaining

7 ^inrs! This is a remarkable property of the dianodal surface, which will have to

be again considered.

41 In what precedes, we have the second kind of quartic surfaces with 8 nodes.

«ay the "dianome"; viz.. each node is a point on the dianodal surface of the remaming

r nodes- any 7 of the nodes may be taken to be given points, and the remaining

node to be any point whatever on the dianodal surface of the 7 points.

The Dianodal Surface.

42. Consider the seven points 1, 2, 3. 4, 5, 6, 7. As already mentioned, through

three of these say 1, 2, 3, we may draw a plane M = 0; and through the same three

X. vtl tke -maining points 4, 5. 6, 7 as nodes (3 -. 4 . 4 = 19 conditions), a cubic

^Ice fl = 0; this surfJpa^sing through the six lines, 45, 46,...67. Hence we have

A = Jim =0, a quartic surface with the seven points as nodes. And using this form

of A it' may be shown that the dianodal J {P. Q, ii, A) = passes through the 21

lines 'l2. 13, ...67, and through 35 plane cubics such as Jl/=0, n = 0; viz. this is a

.cubic in th; plaice 123 passing through the points 1. 2, 3. and through the inter-

ectionro the' plane with each of the six lines 45. 46.. .^67 (nine points determining

the cubic); the complete intellection by the plane 123 being therefore composed of

this cubic and of the three lines 12, 13, 23. For the passage through the cubic, we

have only to observe that

J{P, Q, R. Mii) = J{P, Q. R, n)M + JiP, Q, R, M)n = o

is satisfied by iV=0. n = 0; and for the passage through the lines, taking x = 0, y =

.-ot = for the equations of the planes 567. 674, 745. and 456 respectively each

of the functions P, Q, R is of the form ayz+bza= + cxy+pw+gyw + hzw and the

function n is of the form Ayzw + Bzwx + Cwxy + Dxyz. Hence, writing in the derived

functions for instance . = 0, «> = 0. the first and second hues of the determinant

J{P, Q, R, n) will be of the form

cy. c'y, c"y,

ex, c'a;, c"x,

or the determinant vanishes for . = 0. n, = 0; that is for any p,int of the line 45 we

have n = and also J {P, Q, R, n) = 0; consequently J (P. Q, R, Mn)=0. and the

like for the other lines. The theorem is thus proved.

43 I say that the dianodal surface passes through each of the 7 skew cubics.

such as 123456. To prove this, it is only necessary to show that the skew cubic



445] A MEMOIR ON QUARTIC SURFACES. 149

123456 lies on the dianodal surface. For this purpose it will be enough to show that

the skew cubic meets the plane 712 in a point of the surface; for then it will, in

like manner, meet each of the 15 planes 712, 713, ...756 in a point of the surface;

that is, we shall have 15 intersections of the curve and surface, and there are, besides,

the intersections 1, 2, 3, 4, 5, 6, in all 21 intersections ; that is, the skew cubic must lie

on the surface.

44. The plane 712 meets the surface in three lines and in a plane cubic deter-

mined by the points 7, 1, 2 and the six intersections of the plane with the lines

34, 35, ... 56. We have therefore to show that this plane cubic meets the skew cubic

123456. Consider for a moment the points 1, 2, 3, 4, 5, 6 and another point 7'. As
seen above, we have in general, through the points 1, 2, 7' and with the points

3, 4, 5, 6 as nodes, a determinate cubic surface, which surface passes through the lines

34, 35, ... 56. But the cubic surface becomes indeterminate if the points 1, 2, 7', 3, 4, 5, 6

are on the same skew cubic ; that is, if 7' is any point whatever on the skew cubic

123456 (the proof presently). Taking, then, 7' as the intersection of the skew cubic

by the plane 712, we have in this plane the points 7', 1, 2, and the intersections of

the plane by the lines 34, 35, ... 56, nine points through which there pass an infinity

of plane cubics ; that is, the plane cubic determined by the points 7, 1,2 and the

six intersections will pass through the point 7'; viz., it meets the skew cubic 123456.

45. For the subsidiary theorem, taking X, Y, Z, W as current coordinates, viz.,

X = 0, F= 0, Z =0, W = as the equations of the planes 456, 563, 634, 345 respectively,

{x^, yi, Zi, Wi) and (ar,, y„ z^, w^ as the coordinates of the points 1 and 2 respectively,

and {x, y, z, w) for those of 7'; the equation of the cubic surface passing through

7', 1, 2, and having the nodes 3, 4, 5, 6, is

1 1 1 1

z- F' Z' W
1 1 1 1

x' y' z' w

1 1 1 1

~x,' yi' z.' Wl

1 1 1 1

y» w.

= 0;

and this ceases to be a determinate function if only

1 1 1 1

x' y' z' w

1 1 1 1

X,

yi

y* w.

= 0:
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viz., considering (a;,, y,, e,, w,), (a^i, yt, Zj, w,) as given, this is a twofold relation

between the coordinates (x, y, z, w) of the point 7'. The relation may be represented

by the four equations {yzw)=^0, {zivx)=0, (wxy)=0, {xyz) = 0, if for shortness

(yzw) = yz , zw , wy

yi'x, ZitUi, w^yi

y,Zt, z^w^, w,y,

and- the like as to the other symbols. The four equations represent quadric surfaces,

each two intersecting in a line [e.g., (yzw) = 0, (zwx) = in the line z = 0, m; = 0], and

the four surfaces besides intersecting in a skew cubic, which is the required locus of

the point 7', and which, as is seen at once, passes through the points 1, 2, 3, 4, 5, 6.

46. By what precedes, we have on the dianodal surface through the point 1 the

lines 12, 13, 14, 15, 16, 17, and the skew cubics 123456, &c. The six lines are not on

the same quadric cone, and it thus appears that the point 1 must be a cubic-node

(point where, instead of the tangent plane, we have a cubic cone) on the surface. It

is to be remarked that the lines 12, 13, 14, 15, 16, and the tangent at 1 to the

skew cubic 123456, lie in a quadric cone ; viz., this tangent is given as the sixth

intersection of the cubic cone with the quadric cone through the lines 12, 13, 14, 15, 16.

47. I revert to the equation of the dianodal surface as given in the form

J=J{P, Q, R, MQ,) = 0, where M = is the plane through the points 1, 2, 3, and

fl = the cubic surface through these points, and having the points 4, 5, 6, 7, as nodes.

We can find the orders of the several functions P, Q, R, M, fl in the coordinates

(a'n 2/i I -^i. w,), &c., of the several points; viz., writing for shortness x^ to denote the

order 2 in regard to (a;,, y,, ^,, Wi), and so in other cases, we have

x^^(^^xC='A'"(^5, Xq, x-j) \Xi , x^t x-if x^)~j

M=x {x^, Xf, X,),

iZ = iZr yX^i Xqj X^) \Xif X.2f X^f X^)
,

{where, of course, the ar', x, afi show in like manner the orders in regard to the

current coordinates (x, y, z, w) ; the proof in regard to fl is easily supplied.) The
order of J is equal that of PQRMH, less 4 as regards the current coordinates, by

reason of the differentiations; that is, we have J= xf (xiXiX^y" {x^XiXfXjY' ; and we thus

see that the equation of the dianodal surface as above obtained is encumbered with

a constant factor of the form (xiX^x^)* (xtX^XeXyf. In fact, the relation between the 7

points and the current, point (x, y, z, w), or say the point 8, as expressing that the

8 points are the nodes of a dianome, should be a symmetrical one in regard to the

coordinates of the several points; and being of the order 6 in regard to the coordi-

nates (x, y, z, w), it should be of the same order in regard to the other coordinates

;

that is, the true form would be J ={xxiX.iX3XiXtXtX^y =^0.

48. It is possible that taking the 4 points, say 1, 2, 3, 4, to be (1, 0, 0, 0),

(0, 1, 0, 0), (0, 0, 1, 0). (0, 0, 0, 1), and the 3 points, say 5, 6, 7, to be (1, 1, 1, 1),

(". ^, 7. ^). (*'> /9'. 7'. S'). the extraneous factor might exhibit itself, and that the
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equation divested of this factor might be of a tolerably simple form. I have not,

however, worked this out, but I have, by an independent process, obtained in regard

to the dianodal surface of the 7 points a result which may be interesting.

49. The dianodal surface, qua surface having the first-mentioned 4 points for cubic

nodes, has its equation of the form

yzw(y, z, wy + zxu)(z, x, wf >r xijw {x, y, wf-\-xyz{x, y, zf \-xyz'w{x, y, z, w)- = 0;

where in the cubic functions the terms a?, -if, !?, n? none of them appear. If for

instance «; = 0, the equation becomes {x, y, zf = 0, which, by what precedes, is a

known cubic curve, viz., the curve through the points 1, 2, S and the intersections of

the plane 123 by the lines 4.5, 46, 47, .56, 57, 67 ; and we can by this consideration

find the cubic function {x, y, zf, and thence by symmetiy the other cubic functions.

I take

(a, h, c, f , g, h)^

(a', b', c', /', g', h')

(a, b, c, f
, g, h)

respectively ; viz., I \vrite

« = /3-7, /=a-S
6=7-0, f/ = /3-S

c = a — 8, A = 7—

S

and I write moreover

for coordinates of line through

a' = /3'--7. / = a' - S'

h' =y--a', 9' = /S' - S'

c' = a'-B'. h' = 7'-S'

\

I

h - g + a,

/* = _ h . +f +b,

V = g- f . + c,

vr = - a — b -c .

(1, 1, 1, 1), (a, /3, 7, 8)

(1, 1 , 1, 1). (a', /3', 7', 5')

U«, A 7, S), (a', A, 7, S')

a = /37' - /8'7, f = aS' - a'8

b = 7a'-7'a, g = ;8S'-/3'S

c = a/3'-a'/3, h = 7S'-7'8

50. This being so, the cubic curve through the last-mentioned six points has its

equation of the form

A G D
ax + by + cz a'x + b'y + c'z &x + hy + gz \x + fiy + vz

= 0;

and to make this pass through the points 1, 2, 3, we write therein successively

(y = 0, z = 0), (z = 0, x = 0), (a; = 0, y = 0) ; viz., we have for the ratios A : B : G : B
the three equations

a a

DA B C ^ ^

b n fi

A B G D ^- + --I- -+- = 0.
c g V
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In eliminating, for instance, B for the first and second equations, the resulting equation

divides by ab' — a'b, =a + b4-c, and we thus obtain, between A, C, D, the three

equations (equivalent to two)

be be fiv

ri + ^'+^.o,
ca ca v\

4 + c^x + ^^o
ab ab \/it '

from which the ratios A : C : D may be obtained by actual calculation. After all

reductions, we have

A= abc {(a'S' + ^V) af+ (/3'5' + yV) bg + {y'S' + a'^) ch}

,

B =- a'b'c' {(aB + ^y)ai+(0B +7 a)bg+ (7S + a^)ch},

C = abc {(aa'X + y3/3> + 771' + BS'nr],

D=-Xfip {(aa'a. + /3/9'b + 77'c}

;

viz.. A, B, C, D are proportional to these values respectively. Multiplying by the pro-

duct of the denominators, I find without much difficulty that the resulting cubic

function is divisible by a + b + c ; hence, introducing the factor xyz, and an indeterminate

multiplier I, I write

an/z {x, y, zj = r i^yz {ax + by + cz) (a'x + b'y + c'z) (aa; + by -I- cz) {Kx + /J-y + vz)
a "T~ D ^ C

f A B G D )

\ax +by + cz a'x + b'y + c'z ax + hy + cz \x + jiy + vz)
'

where A, B, C, B have the values above written down.

51. Considering the orders in regard to (a, /3, 7, B), (a', y8', 7', B'), and observing

that a, b, c and a', b', c' are linear functions of the two sets respectively, but that

a, b ... h, \... tsr, are linear in the two sets conjointly, or say

a, ...=(i, a', ... =0.'
\ a, . . . = aa'

;

we have
Aa'aX = ofa* . aV = aW,

so that after the division by a + b + c, = aa', the order will be aV. Hence I will be

a mere numerical factor, and the last-mentioned equation gives, without any extraneous

factor, the terms xyz {x, y, zf in the equation of the dianodal surface of the seven points.

Octadic Surfaces with 9 or 10 Nodes.

.52. In regard to the surfaces with 9 and 10 nodes, I consider first the octadic

surfaces. Starting as before with the given points 1, 2, 3, 4, .5, 6, 7, we have a deter-

minate point 8 completing the octad, and the surface with the 8 nodes is

(a,...-JP, Q, Ky = 0,
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(-5 constants). Suppose that there is another node 9 ; this must be a point on the

Jacobian curve J (P, Q, R) = 0, which (as was seen) is a sextic curve not passing

through any of the 8 points ; the node 9 may be any point on this curve, viz , taking

its coordinates as given, the condition of its being a node gives 4 equations, and these

for the very reason that the point is on the Jacobian curve, reduce themselves to

2 equations, which can be satisfied by means of the constants {a, ...); the resulting

eiiuatioQ should therefore contain 3 constants.

53. In order to find it, taking as above 9 a given point on the Jacobian curve,

this will be the vertex of a quadric cone, say P = 0, through the 8 points; we may
draw through the 9 points another quadric surface Q=0, and through the 8 points a quadric

surface R = : this being so, we have the quartic surface (a, b, 0, 0, g, A$P, Q, Rf = 0,

having the 9 nodes, and containing, as it should do, 3 constants; this may be written

iaP + 2hQ + 2gR)P + bQ' = 0;

viz., if bR' = aP + 2hQ + 2gR, that is, if R' = be the general quadric surface through the

8 points, then the equation is Q= — PR' = 0, where observe that R' is considered as

containing implicitly 3 constants.

54. If there is a 10th node, say 10, this is also a point on the Jacobian curve

J{P, Q, R)=0, and it may be any point whatever on the curve; taking it as a given

point on the curve, the resulting equation should contain 1 constant. We may take

P= to be the quadric cone, vertex 9, through the 8 points, iJ = the quadric cone,

vertex 10, through the 8 points, Q = the quadric surface through the 8 points and

the points 9 and 10 (viz., the surface through 9, 10 and any 7 of the 8 points will

pass through the remaining 8th point). The equation of the quartic surface then is

(0, b. 0, 0, g, 0$P, Q, Ry = 0;

that is, bQ° + 2gPR = 0, containing 1 constant ; we may reduce this to Q^ — PR = 0, the

constant being considered as contained implicitly in one of the functions. It is clear

that the constant cannot be so determined as to give rise to an 11th node, nor

indeed to any other singularity in the surface.

55. In the case of the surface with 9 nodes, it is clear that this is octadic in

one way only ; the node 9 cannot form an octad with any 7 of the remaining nodes.

But in the case of the surface with 10 nodes, the question arises whether the nodes

9 and 10 may not be such as to form an octad with some six, say with the nodes

1, 2, 3, 4, 5, 6 of the remaining 8 nodes; that is, whether we can have 1, 2, 3, 4, 5, 6, 7, 8

forming an octad, and also 1, 2, 3, 4, 5, 6, 9, 10 forming an octad. I will show that

this is impossible if only the points 1, 2, 3, 4, 5, 6 are given points, that is, points

assumed at pleasure and not specially related to each other. For this purpose, assuming

that the points form 2 octads as above, take through 1, 2, 3, 4, 5, 6, 7, 9 the quadric

surfaces P = 0, Q = 0, then each of these passes through 8, 10 ; take R = any other

quadric surface through 1, 2, 3, 4, 5, 6, 7, 8, and S=0 any other quadric surface

through 1, 2, 3, 4, 5, 6, 9, 10. Then P = 0, Q=0, jR = intersect in the Ist octad,

C. VII. 20
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and P = 0, Q=0, S=i) intersect in the 2nd octad ; the quaitic surface (if it exists)

must be simultaneously of the forms (*$P, Q, Rf^O, (^P, Q, Sy = 0; and this implies

an identical equation {•^P, Q. R, Sy = 0. The quadric surfaces axe surfaces through

the points 1, 2, 3, 4, 5, 6, and taking through these six points any other quadric

surfaces A =0, C = 0, E=0, H = 0,y/e have P, Q, R, S each of them a linear function of

A C,E,H; and the relation between P, Q, R, S gives a like relation {*'^A, C, E, Hy =

between A, C, E, H. I assume ^ = 123 . 456, E= 134 . 256, H = \Vo. 236, 0= 152. 346 ;

viz., .4 = is the plane-pair fanned by the planes through 1, 2, 3 and 4, 5, 6 respectively

;

and so for the others : we have to show that there is not any such identical relation

(*liA,C,E,Hy = ().

56. We may through 3 draw the lines LM, QT to meet 14, 26 and 12, 46

respectively; and through 5 the lines RS, NP to meet 14, 26 and 12, 46 respectively.

Observe that the points in the figure are apparent intersections only; viz., NP does

not meet QT, luyr LM meet RS. In fact, if NP met QT it would be a line in the

series of lines meeting 14, QT, 26 ; or 5 would be situate in a hyperboloid, determined

by means of the points 1, 2, 4, 6, 3; viz., 5 would not be an aibitrary point: and

so LM does not meet RS. Now the quadrics E, H meet in the lines 14, 26, LM, NP,

and the quadrics A, C in the lines 12, 46, QT, RS. Suppose that we had identically

{*'^A, G, E, Hy = 0; putting therein E=0, H = 0, we should have (*^A, C>' = 0, viz.,

{A + '\C){A+fiG) = 0; or there would exist quadrics of the forms A + XC = containing

the lines 14, 26, LM, NP. Now there is no quadric surface A + \G=0 containing

the line NP; for A+\G = is a quadric containing the sides of the quadrilateral

QRST; the generating lines of the one kind meet each of the lines RS, QT; those

of the other kind neither. Hence NP, which meets RS but not QT, cannot be a

generating line of either kind ; and we have no identical relation (.4, G, E, ITf = 0.

57. In the octadic surface with 9 nodes ; starting with any 7 nodes of the octad,

9 is not the 8th point of the octad, and hence (by the theory of the dianome) it

must lie in the dianodal surface of the 7 points; that is, the dianodal surface of the

7 points must pass through 9, viz., through any point whatever of the Jacobian curve

of the 7 points, that is, of the octad; or (what is the same thing) the dianodal surface

of the 7 points passes through the Jacobian curve of the octad. This is an obvious

property of the dianodal surface, the surface J{P, Q, R, V) = contains the Jacobian

curve J{P, Q, R)=0. But it further appears that, starting with any G points of the

octad and with the point 9 (that is, any point whatever of the Jacobian curve), the



'*^^J ^ MEMOIR ON QUARTIC SURFACES. 155

diauodal surface of these 7 points must contain the remaining 2 points of the octadAnd in the octadic surface with 10 nodes, staiting with any 5 points of the octad
and wi h the points 9 and 10 (that is, any two points on the Jacobian curve) the
dianodal surface of these 7 points must contain the remaining three points of the
octad. I have not attempted to verify these last properties of the dianodal surface.

Dianomes with 9 or 10 Nodes.

form^^"
^ °'*'' ''°°'''^^'^ *^^ dianomes with 9 and 10 nodes. Starting from the general

(a, b, cllP, Qy+0A = O,

7uT-Au^ ^ ^ particular quartic surface having the 8 nodes, it at once appears

rfp n .r.'' ^ °°^'' "^^ ^' *^^ '""^^ ^' ^ P^i'^t «° the Jacobian curveJ{r, y, A)=0, or say on the dianodal curve of the 8 points, viz. (a = 6=1 c = 3 in
the formula No. .5), this is a curve of the order 18; the node may be any point
whatever on this curve, and taking it to be a given point on the curve, the number
of constants m the resulting equation should be 1. Hence if P = be the quadric
surface through the 9 points, and A = a particular quartic surface having the 9 points
as nodes, the general equation is aP- + 0A=0.

o r

59. But we may consider the question somewhat differently. Starting with the
7 given points 1, 2, 3, 4, 5, 6, 7 and with 8 a given point on the dianodal surface
o the 7 points; it is clear that 9 must be on the dianodal surface 1234567 and
also on the dianodal surface 1234568; the complete intersection is of the order 36and we have to consider how this breaks up so as to contain a^ part of itself the
dianodal curve of the order 18.

Dianodal Curve of 8 Points.

60. Consider first any 8 points whatever 1, 2, 3, 4, 5, 6, 7, 8 ; where 8 is not on
the dianodal surface 1234567, nor 7 on the dianodal surface 1234568. The two surfaces
have in common the 15 lines 12, 13,... 56 and the skew cubic 123456, they therefore
besides intersect in a curve of the order 18. At the point 1 the tangent cubic
cones of the two surfaces intersect in the lines 12, 13, 14, 15, 16 and the tangent
to the skew cubic 123456, 6 lines lying in a quadric cone; they therefore besides
intersect in 3 Imes lying in a plane; that is, the point 1 is on the curve of the
order 18 an ax:tual triple point, the 3 tangents lying in piano; and the like of coursem regard to each of the points 2, 3, 4. 5, 6. But as 7, 8 lie each of them on only
one of the two surfaces, the curve of the order 18 does not pass through 7 or 8.

61. If, however, 8 lies on the dianodal surface 1234567, then each of the S points
will he on the dianodal surface of the other 7; and in particular 7 will lie on the
dianodal surface 1234568. The surf-aces intersect as before in a residual curve of the
order 18; the only difference is that 7 and 8 are now points on each surface- viz
each of them is on one of the surfaces an ordinary point, and on the other a 'cubic
node; the pomts 7 and 8 are thus each of them an actual triple point on the curve-
and at each of them the 3 tangents are in piano. We thus see that the dianodal'

20—2
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curve 12345678 is a curve of the order 18, such that each of the 8 points is a triple

point on the curve, the tangents at each of them being in piano.

Ten Nodes.

62. Suppose there is a 10th node, say 10; starting from the equation aP*+dA =
(P = the quadric surface through the .9 points, A = a particular quartic surface having

the 9 points as nodes), it at once appears that the node must be one of the points

J (P, A) = ; hence, taking it to be one of these points, we have 4 equations, which,

in virtue of the node being one of the points in question, reduce themselves to a

single equation determining the ratio a : 6 ; we have thus a completely determinate

surface, say 0=0 having the 10 points as nodes. The number of points J (P, A),

writing in the formula No. 5, a = 1, 6=3, is obtained as 1 + 3 + 9 + 27 = 40, but it

is to be observed that the surface P = passes through each of the 9 nodes of the

surface A = ; these count twice among the points / (P, A) = 0, and the number of

residual points (or say the dianodal centres of the 9 points) is 40 — 18 = 22 ; viz., this

is the number of positions of the node 10. [The nine points count each three times

and the number of residual point.s, or positions of the node 10, is thus not 40 — 18 = 22,

but 40 - 27, = 13.]

Dianodal Centres of 9 Points.

63. In further explanation, observe that 9 is any point on the dianodal curve

1 2345678 ; the node 10 must lie on this same curve, and also on the dianodal surface

1234569. Take P = the quadric through all the 9 points, Q=0 a quadric through

all but the point 9, P = through all but the point 8, S — through all but the

point 7. The dianodal curve 12345678 is J{P, Q, V)=0, and the dianodal surface

1234569 is J{P, R, S, V) = ; the total number of intersections is 6 x 18 = 108 ; these

include the 4x18 = 72 points of intersection of the dianodal curve J{P, Q, A) = with

the Jacobian surface J(P, Q, R, S)=0, except the four points J(P, Q) = 0, which ai'e

the vertices of the 4 quadric cones through 1, 2, 3, 4, 5, 6, 7, 8 Avhich 4 points are not

situate on the curve / (P, P, /S) = 0), and there are besides 40 points (108 = (72- 4) + 40}

which are the before mentioned points J{P, A) = 0; viz., these are the 9 points each

twice [three times], and the residual 22 [13] points which ai-e the dianodal centres of the

9 points.

General residt as to the Dianomes.

64. We have thus established the theory of the dianome quartic surfaces ; viz., we
have

The octodianome, 8 nodes, 7 of them aibitrary, and the 8th an arbitraiy point »

on the dianodal surface (order 6) of the 7 points.

The enneadianome, 9 nodes, the 9th an arbitrary point on the dianodal curve

(order 18) of the 8 points.

The decadianome, 10 nodes, the 10th any one of the 22 [13] dianodal centres of

the 9 points.

And as already mentioned, so long as the first 7 nodes are arbitrary, there cannot

be more than 10 nodes in all.

I

1
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I

The Symmetroid.

The Lineolinear Correspondence of Qiutrtic Surfaces.

65. I consider four equations S = 0, T = 0, U= 0, V=0, lineolinear in regard to

the two sets of coordinates («, y, z, w) and (a, /3, y, B) ; viz., each of these equations

is of the form

(•$«. y, z, w^a, /3> 7. S)=0.

This implies that the point (a;, y, z, w) lies on a certain quartic surface @ = 0, and

the point (a, /8, y, S) on a certain quartic surface A = 0, and that the two surfaces

correspond point to point to each other. In fact, writing the four equations in the form

La+ M^+ Ny+ PS=0,

L'a+ M'^+ N'y+ P'S = 0,

L"a + M"^ + N"y + F'i = 0,

L"'a + M'"^ + N"'y + P"'S = 0,

where L, &c., are linear functions of {x, y, z, w), then eliminating (a, /3, y, S), we obtain

the equation
%= L , M , N , P =0;

L , M' , N' , P'

L" , M", N", P"

L", M'", N"\ P'"

and similarly, writing the four equations in the form

Ax -If By+ Cz+ Dw = 0,

A'x+ Fy+ C'z+ iyw = 0,

A"x + B"y + G"z + jy'w = 0,

A"'x + E"y + C"'z + D"'w = 0,

where A, &c., are linear functions of (a, /8, y, S), then eliminating (x, y, z, w), we

obtain the equation

A= A , B , G , D =0.

A' , B' , G' , I)'

A", B", G", D"

A'", E", G'", D'"

Moreover, @ being = 0, the four linear equations in (a, /8, y, 8) are equivalent to three

equations, and give for instance (o, /3, y, S) proportional to the determinants formed

with the matrix
L' , M' , N' , F
L", M" , N", P"

L", M"\ N'", P'"
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and similarly, A being = 0, the four linear equations in {x, y, z, w) are equivalent to

three equations, and give for instance {x, y, z, w) proportional to the determinants

formed with the matrix
A' , B' , C , jy

A", B", G", D"

A'", B'", C", D"'

which establishes the point-to-point correspondence of the two surfaces.

66. It would at firet sight appear that any quartic surface (•$a, /9, 7, S)* = what-

ever might have its equation expressed in the foregoing determinant form A = 0. This

equation seems, in fact, to contain homogeneously as many as 64 constants. But if

we multiply the determinant line into line by a constant determinant

b . c , d

b', c' . d'

b", c", d'

h'", c'", d'

and then column into column by another constant determinant, the coefficients, all but

one of them, of these constant determinants may be used to specialize the form of the

resulting equation, [say they are apoclastic constants] ; this equation will really contain

64 — (2. 16 — 1) = 33 constants; and in order that the quartic surface (*$a, /9, 7, S)= =
may have its equation expressible in the form A = 0, a single relation must hold good

among the coefficients : but this in passing (').

67. Returning to the quartic surface

A = A
,
B

,
c

, D
A' , B', c

.
U

A". B", 0", D"

A'", B'", G"\ jy;

= 0,

we may connect this not only with the foregoing surface 0=0, but in a similar

manner with another quartic surface ^ = ; viz., taking the current coordinates (f, if, f, o)),

we may form the lineolinear equations

4f+^'i7 + ^"f-|-.l"'« = 0,

fif-l-£'7,-|-B"?+fi"'<O = 0,

Of-l-C'^-l-r7"f-l-(7"'w = 0,

' Applying the same reasoning to a cubic detei-minant A=0, the number of constants is 3e-(2. 9- 1) = 19;

80 that a cubic surface is expressible in the form in question. And so for the quadric determinant A= 0,

the number of constants is 16 -(2 . 4-1) = 9; so that a quadric surface is expressible in the form in question,

an is otherwise obvious.
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«

which, by the elimination of (f, rj, f, w), give A = 0, and by the elimination of (a, /8, 7, S)

a determinant quai-tic equation ^ = between the coordinates (f , 77, ^, to) ; and of

course the two surfaces A = 0, <I> = have a point-to-point correspondence such as exists

between the surfaces = 0, A = 0. The relation of the point (o, /S, y, B) on the surface

A = to the point (x, y, z, w) on the surface 0=0, and to the point (f, t}, ^, to) on

the surface <I> = 0, may be conveniently indicated by means of the diagram

« , 11 .
2 , w

A ,
B

, , D
A'

,
B'

,
c

,

D'

A", B". C", D"

A'", F", C", U"

\^.

68. It is to be observed that, writing for A, B, ... their values as linear functions

of (a, /8, 7, 8), we have in all 64 constant coefficients, which we may conceive an-anged

in the form of a cube, thus

:

a b

a' b'

<h h —
Oi' bi

and taking these in fours height-wise, (a, a,, a^, a^, &c., we compose with them the

linear functions aa-)-a,/3 + a27-l-a3S, &c., which enter into the equation A=0; taking

them in fours length-wise, (a, b, c, d), &c., we compose the linear functions ax+ by+cz+dw,
&c., which enter into the equation = 0; and taking them in fours breadth-wise

(a, a', a", a'"), &c., we compose the linear functions a^ + a'r) + a"^ + a"'a), &c., which

lenter into the equation 4> = 0.

69. The process may be indefinitely repeated; we obtain always the same three

surfaces over and over again, but on them an indefinite series of corresponding points

;

viz., we may write

...e, A , <I>, 0, A, 4>, 0, A, *...

...P„ Qu A, P, Q, R, F, q, R...

viz., a point Q on A corresponds to a point P on and to a point i2 on 4> ; i2

corresponds to ^ on A and to a new point P' on ; P' to i2 on <t> and to a new
point Q' on A, and so on. And in the opposite direction P corresponds to Q on A,

and to a new point iJ, on <I> ; 72, to P on and to a new point Q, on A ; and so

on.' And of course the correspondence of any two points of the series, whether belonging

to the same surface or to different surfaces, is a one-to-one con-espondence.



160 A MEMOIR ON QUARTIC SURFACES. [445

The Symmetrical Case; Symmetroid and Jacobian.

70. I have established the foregoing general theory; but it is only a particular

case of it which connects itself with the theory of nodal quaitics ; viz., the cube of

coeflScients is a symmetrically arranged cube

a h g I

h b f m

9 f c n

I m n d

a, /«i ...

or say its upper face is the symmetrical square matrix

a, h, g, I

h, b, f, m

9, /, c, n

I, m, n, d

and the other horizontal planes, the like squares with the several tenns affected by

suffixes.

The surface V =0 is here a surface of the form

V = =A, H, G, L

H, B, F, M
G, F, C, N
L, M, N, P

\A, B, &c. linear functions of (a, /3, y, S)] viz., V is a symmetrical determinant; I call

this a symmetroid ; the surfaces V = 0, "JJ = are one and the same surface, the Jacobian

of 4 quadric surfaces ; moreover the points P and R are one and the same point, and

the correspondence i2 to P' is a reciprocal one ; so that, instead of the indefinite

series of points, we have only 2 points Q, Q' on the surface V, and 2 points P, P'

on the surface ©(=*); viz., the diagram is

...A, ©, e, A, e, 0, A...

...Q', P', P, Q, P, F, Q'...

moreover the symmetroid surface V = is a surface with 10 nodes, which is clearly

not octadic, and which is therefore the decadianome.
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71. Consider the quadric surfaces

S = (a, b, c, d, f, g, h, I, 7n, n^x, y, z, wf = 0,

r=(a„... ^ „ )= = 0,

U={a„... 5 „ )= = 0,

161

V={a„.. )— 0,

and a point (a, ^S, y, B) in the same or in a different space, such that the surface

aS + 0T+'yU+ SV=0 is a cone, or say for shortness,

aS + 0T+yU+ SV= cone;

(a, /9, y, B) is said to be the determining point, or determinator of the cone. And if

we establish the equations

B^(aS + 0T+yU+BV) = O,

M „ ) = 0,

«.( „ ) = 0,

8»( „ ) = 0,

which express that the surface is a cone, then the point {x, y, z, w) is the vertex of

the cone. We have thus 4 equations lineolinear in {x, y, z, w) and also in (a, yS, y, B),

so that the relation between the 2 points is of the nature of that above considered.

The relation between (a;, y, z, w) is given by the equation

J{^, T, U, V) = 0;

viz., the locus is the Jacobian of the 4 quadric surfaces. The relation between (a, /3, y, B)

is given by the equation

V= aa + ai^ + cuy + a.^B, ha + ...
,

ga+..., la +... =0,

ha+ ...
,

ba + ...

ga+ ... , fa +...

la + ...
,
ma+ ...

,

so that the locus is (by the foregoing definition) the symmetroid. And the deter-

minator point on the symmetroid thus corresponds to the cone-vertex on the Jacobian.

72. But the Jacobian may be obtained in a different manner ; viz., if we establish

the equations

{^B^+V^y + ^^z + 'oB^)S = 0,

( „ )T = 0,

( „ )U = 0,

( ,, )V=0.

then the elimination of (f, r], f, ta) leads to the equation J{S, T, U, V) = of the

Jacobian surface. And since each of the equations is symmetrical in regard to (x, y, z, w)

c. vu, 21

ga + ... , lo. +

/a + ... , via +

COL + ... , iia +

no + . .

.

, da +
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and (f, fj, f, to), it appears that the point (f, t), f, m) is also a point on the Jacobian

surface. We have on the symmetroid a point related to (f, rj, f, w) in the same way

that (a, /8, 7, B) on the symmetroid is related to the point (a;, y, z, w) ; and this completes

the system of the 4 points, Q on the symmetroid, P and P" on the Jacobian, Q' on

the sjrmmetroid; but in what follows I make no use of this last point Q'.

73. The points (x, y, z, w), (f, rj, f, w) on the Jacobian correspond in such wise that,

taking the polar planes of either of them in regard to the quadrics S=0,T=0, U =0, F = 0,

these intersect in a single point, viz., in the other of the two corresponding points.

Or, what is the same thing, the line joining the two points cuts each of the four

quadrics harmonically, whence also it cuts harmonically any quadric surface whatever

of the series aS + fiT + yU+BV=0, (a, y3, 7, B being here arbitrary multipliers); viz.,

this property is an immediate interpretation of the equation

i^^x + V^y + ?S, + a)8„) iaS + fiT+ yU+BV) = 0,

or, as this is more conveniently written,

(a, ...51, V, K, «$«. y, ^. M') = 0,

if for a moment (a,...) denote the coefficients of the quadric function aS + /82'+7?7+ SF.

74. Consider any 6 pairs of points (ajj, y^, z^, wj, (f,, 77,, ^j, mj), &c., related as

above ; the quartic surfaces S = 0, T = 0, U = 0, F= are surfaces cutting harmonically

the lines joining the two pairs of points respectively ; or say they are quadrics cutting

harmonically 6 given segments ; and the general quadric surface which cuts harmonically

the 6 given segments is aS + ^T + ylJ + BV = 0. We thus see that the Jacobian surface

J{S, T, U, F) = is in fact the locus of the vertices of the quadric cones which cut

harmonically 6 given segments. The surface so defined by M. Chasles {Comptes Rendus,

torn. Lil., 1861, pp. 1157—62), and shown by him to be a quartic surface, is thus

identified with the Jacobian of any 4 quartic surfaces ; and included herein we have

the particular ca.se, also considered by him, of the locus of the vertices of the quadric

cones which pass through 6 given points, or Jacobian of the 6 given points.

7.5. It is to be shown that there are 10 systems of values (a, /3, 7, h), or, what

is the same thing, 10 points on the symmetroid, for each of which the quartic surface

a/S + /8r + 7?7+SF= is a plane-pair. For any such system of values the plane-pair

may be regarded as a cone, having its vertex at any point whatever on the line

which is the axis of the plane-paii*; that is, each point of this line is the vertex of

a cone of the system of surfaces aS+ ^T+yU+BV=0; or, what is the same thing,

the axis of the plane-pair lies on the Jacobian surface ; viz., there will be on the

Jacobian surface 10 lines. Moreover, to the point (a, /3, 7, S) on the symmetroid there

corresponds indifferently any point whatever on the axis of the plane-pair. The analytical

expressions for {x, y, z, w) in terms of (a, y3, 7, S) must therefore, for the values in

question of (a, /8, 7, 8), become indeterminate ; and this can only happen if for the

values in question the first minors of the determinant V all of them vanish. But a

point (at, $, 7, 8), for which the minors of V all of them vanish, is obviously a node

on the symmetroid ; and it thus appears that there are on the symmetroid 10 nodes,
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each corresponding to a line on the Jacobian, and that the condition for determining

these is

aS+ ^T+yU+BV= plane-pair

;

viz., the values of (a, /3, 7, B), which satisfy this condition, belong to a node of the

symmetroid, and the line on the Jacobian is the axis of the plane-pair.

76. Reverting to the equation V = of the symmetroid, where V is a symmetrical

determinant the terms of which are linear functions of the coordinates (a, /3, 7, 8), it

has already been shown, ante No. 7, that this is a surface with 10 nodes; but this

may be also proved as follows. Writing as before

aS + 0T + yU+BV=(A, B, C, D, F, G, H, L, M, JST^x, y, z, wy=0,

the condition that this shall be a plane-pair implies a threefold relation between the

coefficients A, B, &c., and the required number of nodes is equal to the order of this

threefold relation. Establishing between the coefficients A, B, &c., any 6 linear relations

whatever, we should have a ninefold relation to determine the ratios of the 10 quantities;

and the number of solutions would be equal to the order of the threefold relations.

But taking the 6 linear relations to be of the form (A, ... ^x^
, y^, 2, , w^y = 0, the

question is in fact to find the number of the plane-pairs which pass through 6 given

points ; and this is clearly =10.

77. Applying the conclusion to the system of quadric surfaces a8 + ^T+yU + SV= 0,

we see that there are in the system 10 plane-pairs; and that the lines of intersection,

or axes of the plane-pairs, are lines upon the Jacobian surface.

78. The equation V = of the symmetroid seems to contain homogeneously 40

constants. But starting with any given symmetrical determinant, we may multiply it

line into' line by a constant determinant, and then column into column by the same

constant determinant, in such wise that the resulting product is still a symmetrical

detenninant ; and the coefficients of the constant determinant may then be used to

specialise the form of the equation. The equation V =0 of the symmetroid- thus really

contains 40 — 1 6 = 24 constants ; this is as it should be, for the symmetroid, qua quartic

surface with 10 nodes, contains 34 — 10 = 24 constants.

Symmetroid with given Nodes.

79. A symmetroid can be formed with 7 given points as nodes ; but there is no

proper symmetroid with 8 given points as nodes. If we endeavour to form such a

symmetroid, we obtain a system of 2 quadric cones, each of them passing through the

8 points ; viz., these are any 2 out of the 4 quadric cones which pass through the

8 points. This will be shown in a moment; for the complete a posteriori identification

with the decadianome, it would be necessary to show that a .symmetroid could be found

having for nodes 7 given points, an 8th point anywhere on the dianodal surface, and

a 9th point anywhere on the dianodal curve; but this I have not succeeded in

effecting.

21—2
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80. We have for any node (a, /8, 7, S) of the symmetroid,

aS+ 0T + yU+SV= plane-pair.

If, then, 4 of the given nodes are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), we

must have S, T, U, V each of them a plane-paii-. We may without loss of generality

assume S= a? + 'i^, T= z'' + w^; this, however, does not determine the signification of

the coordinates (x, y, z, w), for S will remain unaltered if we write therein

X cos 6 +y mid , xsm 6 —y cos for x, y ;

and similarly T vdll remain unaltered if we write therein

z cos 61 + w sin 01, z sin ^, — lu cos ^, for z, w.

Hence, if we go on to assume

U = k {x + m y +nz + pw){x + m' y+ n z + p' w),

V = ki(x +miy +ih2+PiW)(x + nii'y + n^z +pi'w),

we may imagine the 6, 0i so determined that, for instance,

m + m' = 0, p,+pi=0;
we have thus

T= z^ + w\

U=k (x + my +n z +pw){x — m y +n' z+p'w),

V=ki(x + ntiy +niZ +piw) (x + m^y + rij'z—piw) ;

formulae which contain the 12 constants

(k, m, n, p, n', p', k^, m^, n^, p,, m,', «,').

This is right, for the symmetroid containing 24 constants, the symmetroid with 4 given

nodes should contain (24 — 4.3=) 12 constants. And each additional given node will

determine 3 constants : hence for 4 new given nodes the expressions become deter-

minate (not of necessity uniquely so).

81. But for any 4 new nodes, the equations may be satisfied by writing therein

n = n', p= —p', m = — mi', n, = n,'; viz., they then assume the form

S = x'+ f;

T= z^ -V uF,

U={ax + czy + (by + dwy,

V= (a'x + c'zf + (b'y + d'wy,

containing 8 constants, which may be determined so that the nodes shall be the 4 given

points. If now with the last mentioned values we form the value of aS + ^T+yll+SV,
this will consist of two terms (*][a;, zf and {*^y, wf, the first of which will be a

square if

(a + ya' + 8a'») (/3 -I- yc' + Sc'') - (ycic + Sa'cJ = 0, say this is A = 0,
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and the second will be a square if

(a + 76" + Bb'^) (/3 + yd^ + Sd'') - {ybd + Bb'd'Y = 0, say this is A' = ;

so that the condition

a/S + /3r+7f/'+SF=cone

will be satisfied if A = 0, or if A' = ; that is, the equation of the symmetroid will

be AA' = 0, or the symmetroid breaks up into the 2 quadric surfaces A = 0, A' = 0,

each of which is a cone.

82. It is to be further observed that, considering the first mentioned 4 points

(1, 0, 0, 0), &c., and any other 4 given points whatever, the equation of any one of

the 4 quadric cones through these 8 points will be of the form

(*$/37. 7a. a/8, aS, m, 78)= 0;

viz., any equation of this form, being a cone, will admit of being expressed, and that

in one way only, in the form A = 0. Consider then any one of the 4 cones through

the 8 points, and let its equation be thus expressed ; we have the values of the

coefficients a, c, a', c', which enter into the expressions of S, T, U, V; and similarly,

considering any other of the 4 cones, and expressing its equation in the like form, we
have the values of the coefficients b, d, b', d' which enter into the expressions of

8, T. U, V.

83. If instead of taking 2 different cones through the 8 points, we take in each

case the same cone, the expressions for S, T, U, V would be

S = w^ + If,

T= z' + lu";

U=(ax + cz)- + (ay+ cw)

V= {a'x + c'zf + (ay + c'wf ;

and we have identically

{ac' - a'c) {aa'S - cc'T) - a'c'U + acV = 0.

iThis solution may be disregarded.

84. Instead of the assumption S=af+y^, T = z^-]-'uf, we may take x=0, y = 0,

z = 0, tu = to be planes of the plane-pairs S, T, U, V respectively ; it is then easy

to fix the remaining constants so that the oth and 6th nodes of the symmetroid shall

be given points. Suppose that the coordinates of the 5th node are (1, 1, 1, 1); to

obtain the result in the most simple manner, I take for the moment fl an arbitrary

quadric function {x, y, z, wf, and I write

S —X {K^ +h.y — gz + aw),

T =y (Syfl - hx +fz + 6w),

U = z (S^n +gx-fy + cw),

V=w (Sa,f2 — ax — by—cz ),
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where the coefficients are arbitrary. We have identically S+T+ U+ V=2il; wherefore

the given point (1, 1, 1, 1) will be a node of the symmetroid if only n = be a

plane-pair ; and it is easy to see that we may without loss of generality take one

factor to be x + y + z + w, and write

n = {x + y + z + w)(lx + my +m { pw) ;

viz., n having this value, the symmetroid, aS + 0T+ yU + SV= cone, will have the 5

given nodes; the equation contains, as it should do, 9 constants.

85. In order that the symmetroid may have a 6th given node {a^, /Sj, 7,, S,), I

observe that the constants may be determined so that UiS + ^iT+yiU + SiV shall be

equal to an arbitrary quadric function, say

a,S + fi^T + y,U+S,V=(si, b, c, d, f, g, h, 1, m, n$a;, y, z, wf;

this in fact gives

., . / a b c d \

(1, m, n, p)= -, ^, - , K- ;

and then, completing the comparison,

-{
a

J la, -/3, a, - /3i V^i yj

+ r_%___7^(a^cNl ^r_Jl _^(a dXl
I|_ai - 7i Oi - 7, Voj 7i/J L«i - ^1 «! - <h Va, d, /J

r 2f 7, fh c \1 r 2m 8, _ / b^ d\]
^ k - 7. "A^i Ui "^

yJl ^ "^U - «. A - S.U ^ SJJ
"')

lL7i-«i 7i-aiWi aWj L7i - A Ti-AVTi Pi/J

L7i J L71 - Si 7i - ^1 Wi ^1 /

„ fr 21 «! /d a\1 r 2m /3, /d b\"

r 2n _ 7, /d c^N"] T d

L^i - 7i ^1 - 7i V^i 7i/ J L^i

viz., these values give

S+ T+ U+ V=(x + y+z + w)(-x + -^y+-z + -^w],

]"}

a,S + 0,T + y,U + S,V = {&, b, c, d, f, g, h, 1, m. n'^w, y, z, w);

hence, taking the function (a, ...Ja;, y,z,wy to be a plane-pair equal to (x + iy+jz + kw)

(x + iiy + jiZ + k,^u) suppose, or considering the coefficients (a, ...) as given functions of

(». j, k, i], ji, ki), we have the symmetroid having the 6 given nodes and containing the

last mentioned 6 constants.
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The Jacobian with given Lines.

86. The Jacobian contains 24 constants ; obviously it is uniquely determined if

4 of the plane-pairs thereof are given ; and it is also determined, but not uniquely,

if 6 of the lines thereof are given. We may enquire how many given nodes of the

symmetroid may be considered as corresponding to given plane-pairs, or lines of the

Jacobian. Take as given any 4 nodes of the symmetroid ; the corresponding 4 plane-

pairs may be taken to be given plane-pairs ; and we may besides take as given a

5th node of the symmetroid. For let the first 4 nodes of the symmetroid be (1, 0, 0, 0),

(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1); the given plane-pairs P,4=0, P^Q«. = 0, P3Q, = 0,

PiQi = 0; (li, L, I3, It) any system of values such that we have

hPiQ, + hP^Qi + hPsQi + hPiQi = plane-pair

;

and (1, 1, 1, 1) the 5th node of the symmetroid ; we have only to assume

(S, T, U, V) = (l,P,Q„ /,P,Q,, 4P3Q3, hPM.

87. Suppose, however, that on the Jacobian we have given, not the 4 plane-pairs,

but only the 4 axes of the plane-pairs ; the plane-pairs may be taken to be

(1, b„ cJP„ Q.y^o, (1, b„ c,\P„ Q,y = o,

wliere the 8 constants (61, b,, 63, 64, c,, c^, C3, C4) are in the first instance undetermined.

If we attempt to find I,, I,, I3, It, so that

li{l, bi, Ci'^Pi, Qif +h{^> ^i> <^i\Pi> ^4)" = plane-pair of given axis,

we have between the coefficients {b, c) 4 equations; and similarly, if we attempt to

find vix, TOj, m,, m^ such that

«t,(l, 6], Ci$Pi, Qif +m4(l, hi, Ci^Pi, Qj)^ = plane-pair of another given axis,

we have 4 more equations between the coefficients (b, c) ; viz., these will be deter-

mined by the 8 equations (this is in fact the before mentioned property that 6 lines

of the Jacobian may be taken to be given lines). But considering only the first

system of equations ; in order that to the given axis may correspond a given node

[lOn the symmetroid, say the node (1, 1, 1, 1), we have only to write

8=lAh h. (hJiPu Q^y, V=l,il, 64, C45P4, QiY;

that is, we may take as given o nodes of the symmetroid, and the corresponding

6 lines of the Jacobian ; the formulae will contain 4 constants ; we may by means

of them make the Jacobian have a 6th given line, thus determining the constants

;

or we may make the symmetroid have a 6th given node, leaving in this case one

constant arbitrary.

I
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Correspondence on the Jacnbian: Lines and Skew Cubics.

88. I consider the correspondence of two points on the Jacobian; it is to be

shown that when one of the points is on a line of the Jacobian, the corresponding

point will be on a skew cubic ; that is, that corresponding to each line of the

Jacobian we have (on the Jacobian) a skew cubic. Call the plane-paii-s of the system

of quadric surfaces 1, 2, 3, ...10; selecting any 4 of these, say 1, 2, 3, 4, the polar

planes of any point of the Jacobian in regard to these 4 plane-pairs will meet in a

point which will be the required corresponding point. And observe that, in regard

to any one of the plane-pairs, say 1, the polar plane of a point P is the plane

through the axis harmonic to the plane through the axis and the point P. Hence,

for a point on the axis of 1, the polar plane in regard to 1 is indeterminate ; the

polar planes in regard to the plane-pairs 2, 3, 4 respectively meet in a point which

is the required corresponding point. We may for any point whatever take the polar

planes in regard to the plane-pairs 2, 3, 4 respectively, and call the intersection of

these planes the corresponding point ; this being so, if the first mentioned point

moves along a line, the corresponding point moves along a curve, which is easily

shown to be a skew cubic cutting the axis of each plane-pair twice ; that is, in

regard to the plane-pairs 2, 3, 4, the locus corresponding to any line whatever is a

skew cubic cutting the axis of each plane-pair twice. In particular, the corresponding

curve of the axis of 1, is a skew cubic cutting the axis of the plane-pairs 2, 3, 4

each twice; but the axis of 1 does not stand in any special relation to the plane-

pairs 2, 3, 4, as distinguished from the remaining plane-pairs 5, 6... 10; we have

therefore the more complete theorem, that the skew cubic cuts the axes of the plane-

pairs 2, 3, ...10 each twice; or, instead of the plane-pairs, speaking of the line 1, 2,

3, ...10, we may say that corresponding to any one of the lines we have a skew cubic

meeting the other 9 lines each of them twice.

89. I stop for a moment to prove the subsidiary theorem assumed in the fore-

going demonstration. Let the 3 plane-pairs be PQ = 0, RS = 0, TU=0, and let the

line be that joining the points («„, yo, z<„ Wo) and (a;,, y,, Zi, Wj); the coordinates

of any point in the line may be taken to be \x^ + fiXj , Xy,, + /*y, , X^o + fJ-Zi , XWo + /iWi

;

and hence for the polar plane in regard to the plane-pair PQ = we have

{(\a;„ -H /ua-i) ^x • • + O^w^ + /^w,) S,,,) PQ = ;

viz., this equation may be written

X (PQo + PoQ) + H- (PQi + PiQ) = ;

forming the like equations in regard to the other 2 plane-pairs respectively, and

eliminating X, /x, we obtain for the required locus

PQo + PoQ. RS, + R^, TU„ + T,U

PQ, + P,Q. RS, + RA TU, + T,U

= 0.
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a skew cubic
;
and on writing herein P = 0, Q = 0, the equations become

RS, + I{,S, TU, + T,u\

viz., the line (P = 0, Q = 0) meets the skew cubic in the points where the line meets
the quadric surface determined by this last equation, that is in 2 points.

90. We have thus on the Jacobiau the 10 lines 1, 2, ... 9, 10, and corresponding
thereto respectively the 10 skew cubics ]', 2',... 9', 10', where each line meets twice
each of the skew cubics except that denoted by the same number; a relation similar
to that which exists between the lines 1, 2, 3, 4, 5, 6 and 1', 2', 3', 4', 5', 6', which
compose a double-sixer on a cubic surface.

Suppose that there are given on the Jacobian the lines 1, 2, 3, 4, ,5, 6; meeting
each of these twice, we have the skew cubics 7', 8', 9', 10' ; and then

7 8', 9', 10'

8 9' 10' 7'
the lines meet twice each of the cubics '

"> '„ luccu tvYiue t-acii Oi ine CUDICS , „,^ 10, 7, 8'

7', 8', 9'10

so that the determination of the remaining 4 lines depends upon that of the skew
cubics 7', 8', 9', 10', which meet each of the given lines twice.

91. To determine a skew cubic cutting twice each of 6 given lines I proceed
aa follows. Let the lines be 1, 2, 3, '4, 5, 6; take U = the general quadric surface
through the lines 1 and 2, V=0 the general quadric surface through the lines 1,
3 (the equations contain each of them homogeneously 4 constants). The 2 surfaces
intersect in the line 1, and in a skew cubic cutting twice each of the lines 1, 2, 3;
we have therefore to determine the constants so that the 2 surfaces may meet the'
hne 4 in the same 2 points, the line o in the same 2 points, the line 6 in the
same two points. Imagine for a moment the equations of any one of the lines 4,
5, fi to be ^ = 0, w=0; the equations of the 2 surfaces, substituting therein these
values, would assume the forms

(a, b, c$a;, yy=0, (a', b', c'$a;, y)= = 0;

and the conditions for the intersection in the same 2 points would be - = ^ = - =»
a' b' c" ^

suppose. This is in fact the form of the conditions, understanding a, b, c to be linear
functions of the coefficients of U, and a', b', c' to be linear functions of the coefficients
of V. We have in this, manner 3 sets of equations involving respectively the indeter-
mmate quantities p, q, r; viz., these may be represented by

a = pa', b=j)b', c=pc'- d = qd', e = qe,f=qf'; g = rg\ h = rh', i = ri';

where the unaccented letters a, b,...i are linear functions of the coefficients of U
and the accented letters a, b',... i' linear functions of the coefficients of V. Eliminating

C. VII.
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the coefficienta of U, V, we have between p, q, r a twofold relation, which may be

represented as follows: 111111111 =0,

111111111
111111111
111111111
pppqyqrrr
pppqqqrrr
pppqqqrrr
pppqqqrrr

it being understood that the I's represent constants, and the p'a, q's, and r'a linear

functions of these vaiiables respectively. The several equations of the system, regarding

therein p, q, r as coordinates, represent each of them a quartic curve ; any 2 of these

intersect in 16 points ; but the number of points common to all the curves is = 10.

But each of the curves passes through the 3 points (1, 0, 0), (0, 1, 0), (0, 0, 1); these

are consequently included among the 10 points, but they do not give a proper solution

of the question ; and the number of solutions is thus reduced to 10 — 3 = 7. There

is yet another solution to be rejected ; viz., U = being a quadric surface through

the lines 1, 2, and F=0 the quadric surface through the lines 1, 3, it is possible

to determine the coefficients of U, V so that each of these surfaces shall be the

quadric surface through the lines 1, 2, 3; and if we then have identically U=9V,
it is clear that corresponding values of p, q, r are p = q=:r(=0). We have thus the

point p = q = r common to all the curves of the system ; this solution counts, I believe,

once only, and the number of relevant solutions is 7—1=6.

92. It may be observed, in regard to the foregoing solution, that if we take

123 = as the equation of the quadric surface through the lines 1, 2, 3, and so in

other cases, then the equation of the surfaces 17 = and V = may be taken to be

\ . 123 + /t . 124 + V . 125 + jO . 126 = 0,

v. 132 + /. 134 + 1/'. 135 + /. 136 = 0,

respectively, the coefficients of the two surfaces being here put in evidence. And it

is clear that for
ij,
= v = p = 0, fi' = v' = p' = 0, the surfaces become each of them the

surface through the lines 1, 2, 3.

93. The conclusion is, that touching twice each of the six lines 1, 2, 3, 4, 5, 6,

we have six skew cubics; it would appear that any four of these may be taken for

the skew cubics 7', 8', 9', 10' (so that there are 15 such tetrads of cubics). I am
not, however, able to verify that we then have the remaining 4 lines each cutting

twice 3 of the 4 skew cubics ; assuming that for each system of 4 skew cubics there

is one and only one, such system of lines, then of course to the given system of

lines 1, 2, 3, 4, 5, 6, there will belong 15 systems of lines 7, 8, 9, 10, and there-

fore also 15 Jacobian surfaces.
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Further Investigations as to the Jacobian, dbc.

94. Taking (f, t?, f, &>) as plane-coordinates, two quadric surfaces

(a, 6, c, d, /, g, h, I, m, n\^, rj, f, m)^ =
and

(A, B, C, D, F, G, H, L, M, NJx, y, z, wf =

are said to be interverts (or interverse) one of the other, when we have between the

coefficients the relation

(a, h, c, d, f, g, h, I, m, n^A, B, C, D, F, 0, H, L, M, N) = 0,

that is

aA + ... + 2fF+...=0.

The condition that the two surfaces may be interverts of each other is linear in

regard to the coefficients of each surface separately; hence, using a before explained

locution, we may say—interverse to a given quadric surface we have 9 quadrics

;

interverse to two given quadrics 8 quadrics ; or generally, that interverse to k given

quadrics we have 10 — k quadrics. And, moreover, if the quadrics of the two systems

be Z = 0, if=0, &c., and S = 0, T=0, 17 = 0, &c., then every quadric \L +fj.M+ ... =0
is interverse to each of the quadrics aS+ ^T+yU + ... =0.

If the quadric («,•••$?, v> ?> w)^ = be an intervert of the plane-pair

(Ix+ my + nz + pvi^l'x + m'y -f n'z + p'w) = 0,

the condition is

(a, . . ][i, m, n, p^V, mf, n', p') = ;

viz., this expresses that the two planes are harmonics in regard to the pair of planes

drawn through the axis of the plane-pair to touch the quadric surface ; or say, that

the plane-pair is harmonic in regard to the quadric.

95. To apply this to the Jacobian surface, I recall that, starting with the given

quadric surfaces iSi=0, T=0, U = 0, V=0, and taking (a, /3, y, B) to be such that

aS + ^T+yU+SV= plane-pair,

there are 10 such plane-paire, and that the axes of these are the lines of the Jacobian.

If instead of the given quadric surfaces, we consider the six interverse surfaces

1. •••$?. V> ?. «<>)' = 0, ...(a,, ...5f, V' ?> <»)'' = 0. then the condition is that the plane-

lir shall be harmonic in regard to each of these surfaces. Let the quadric surfaces

called 1, 2, 3, 4, 5, 6 ; then, attending to any three of these, say 1, 2, 3, the

"^plane-pair is harmonic in regard to these three surfaces. Through the axis of the

plane-pair draw tangent planes to 1, 2, and 3 respectively; each of these pairs of

planes is harmonic in regard to the planes of the plane-pair; that is, the three pairs

of tangent planes are in involution ; or, as we may also express it, the axis is (quoad

its planes) in involution in regard to the three quadric surfaces. Conversely, when

the axis is thus in involution in regard to the surfaces 1, 2, and 3, we may by

22—2
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means of the surfaces 1 and 2 determine the two planes of the plane-pair, and then

these will be harmonics in regard to the surface 3. It thus appears that the axis

is given as a line which is (quoad its planes) in involution in regard to the surfaces

1, 2, 3, to the surfaces 1, 2, 4, the surfaces 1, 2, 5, and the surfaces 1, 2, 6,

respectively ; or, as we may express it, as a line which is (quoad its planes) in

involution in regard to the surfaces 1, 2, 3, 4, 5, 6.

96. It is substantially the same thing, but it is rather easier, to consider the

whole question under the reciprocal form; viz., instead of a plane-pair and a quadric

surface represented by an equation in plane-coordinates, to take a point-pair and a

quadric surface represented by au equation in point-coordinates ; we have thus a line

which is (quoad its points) in involution in regard to three given quadric surfaces,

or as we may more simply express it, which cuts in involution the three given surfaces

;

and we thus anive at the problem of finding a line which cuts in involution six

given quadric surfaces; viz., this is equivalent to the above problem where the line

has to satisfy (quoad its planes) the like condition ; and in each problem the number
of solutions should be - 10.

97. Consider a line which cuts in involution the three given surfaces (a, , . . .^x, y, z, w)=0,

(Oa, ...'^x, y, z, wY = 0, (a.j, ...j^a;, y, z, wf=0. I will presently show that this implies

a cubic relation ( * $a, b, c, f, g, h)' between the six coordinates of the line. But
jissuming it for the moment, suppose that the line cuts in involution the three

surfaces and a fourth quadric surface (04, ...\x, y, z, wf=Q. Considering the line as

cutting in involution the surfaces 1, 2, 4, we have between the six coordinates a

second cubic relation; there is, however, a reduction, and the oi"der of the resulting

twofold relation between the coordinates is 3.3 — 4 = 5. To explain this, observe

that every line which cuts in the same two points the surfaces 1 and 2 respectively

(that is, which cuts the curve of iutersection twice) will in an improper sense cut in

involution the surfaces 1, 2, 3, and also the surfaces 1, 2, 4. There is thus a reduction

equal to the order in the six coordinates of the twofold relation which expresses

that the line cuts twice the curve of intersection of the surfaces 1 and 2. Join

hereto the relations that the line meets each of two given lines ; the coordinates of

the line are determined by the twofold relation (say its order is = X) two linear

equations, and the universal equation af+ bg-f- ch = 0; the number of solutions is = 2X.

But the number of solutions is equal to that of the lines which meet the quadri-

quadric curve of intersection twice, and meet also each of two given lines ; or what

is the same thing, it is equal to the order of the scroll generated by the lines which

meet the curve twice, and al.so a given line. We have for the cui've of intersection

(m the order, h the number of apparent double points) 7)i = 4, A = 2 ; whence order of

the scroll is 2-t-^.4.3=8; that is, 2X = 8, or X = 4, which is the required reduction.

98. If the line cut in involution .5 given quadric surfaces {say the 5th surface is

(a„...$a!, y, z, w)^ = 0}; then we have between the 6 cooi-dinates a threefold relation,

the order of which is 3.5 —reduction. This should be = 10, and con.sequently the reduction

= 5 ; for admitting the value to be 10, the order (in the ordinary sense) of the scroll

generated by the lines which cut in involution the 5 given quadrics should be =20;
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and conversely. But the value 20 may be verified without difficulty. For the question

may be transformed as follows:—If a point-pair be harmonic in regard to each of

5 given quadrics, how many of the axes (or lines through the 2 points of a point-

pair) cut a given line. Take (x, y, z, w), (a?', y', z', lu') as the coordinates of the

2 points of a point-pair; the hamionic condition in i*egard to a quadric surface U=0
is x'hxU -^ y'hylJ + z'hzU ¥ w'h^^U = (where U is regarded as a function of the {x,y,z,w)

belonging to a point of the point-pair} ; the condition for the intersection with a given

line is a lineolinear equation in the coordinates {x, y, z, lu) and («', y', z', to'), or say

it is Lx' + My' + Nz' + Pw' = 0, where L, M, N, P are linear functions of the coordi-

nates; we have thence for (x, y, z, w) the threefold relation

L, S^Uu B^U,, S^U„ KU„ KU, =0,

M, SyU, .

N, S,U, .

which denotes a system of ^ . 6 . 5 . 4 = 20 points.

It would seem that if the line cuts in involution 6 given quadrics, there should

be between the 6 coordinates a fourfold relation of the order ^ . 10 = .5 ; this would imply

a reduction 25, viz. we should have .5 = 3 . 10 — 25. I do not understand this, and I drop

the question.

99. I return to the question to find the relation between the coordinates (a, b, c, f, g, h)

of a line which cuts in involution the 3 quadric surfaces

(Oi, 6,, c,,d,,/,,5r,, A,, lurrh, ^h\x,y,z, w)-= 0, {a„,...\x, y,z,wy = 0, {ch,...'^x,y,z,wy=0.

Writing down any two of the equations of the line, for instance

hy — gz + a,w = 0,

— ha; +fz +hw = 0,

if we substitute the values of (x, y) in the equation of the first surface, it becomes

(O], ...$f2-l-bw, gz — aw, hz, hwy = 0;

or if we write for shortness

n = (f, g, h, o), n' = (b, - a, o, h),

then the equation is

(ai....^ny.z- + 2(a„...^n'$^U'}.zw + {a^,...'^U'y.iv' = 0,

and forming the like equations for the other two surfaces, the condition of involution

is at once found to be

(a„...$nn (a„...]in5n'), ia„...^n'y

(a„...iuy. («„ ...^njn'), (a,,...iny

(a„...iuy, (a3,...$n5n'), (03,. ..$n')^

= 0.

i
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100. It is convenient, in working this out, to consider 11, IT' as standing, in the

first instance, for {x, y, z, w), (of, y', /, w'), these symbols being ultimately replaced by

the above-mentioned values. Writing also, for shortness, {abc) to denote the deter-

minant a, (tjCj — ijCs) + &c., and so in other cases, it is at once seen that the function

on the right-hand side is a sum of such determinants each into a proper factor, con-

taining the coordinates (a, b, c, f, g, h), originally of the order 6, but where each term

contains the factor h', which may be omitted; or finally the result is of the order 3

in the coordinates. Thus we have a term

(abc) a?, xx', of*

y\ yy', y''

«S zz, z'^

where the second factor is

!i?i/z' {yz' — y'z) + y-z'x' {zx — z'x) + z-x'y {xy' — x'y), = z'^xy',{xy' — x'y),

= h''(-ab)(-af-bg), = - abch',

or, omitting the factor — h', the term is (ahc) abc.

101. There are in all 120 terms, but 16 of these are found to vanish (viz., these

are the terms in agh, hhf, cfg ; ahl, bfm, cgn ; agl, bhm, cfn ; dmn, dnl, dim
; fgn, ghl, hfm).

The final result contains therefore 104 terms ; viz., as a further abbreviation writing

ahc &c., instead of {abc) &c., to denote the above-mentioned determinants, the equation is

abc . abc — bed . agh — cad . bhf— abd . cfg

+ bcf .a? +cag.)f +ahh.d> +adl .P +bdm .g' + cdn .h*

+ abn . c (bg — af ) -t- adf . f (ch — bg)

¥bcl .a (ch — bg) -|- bdg
. g (af — ch)

+ cam . b (af - ch ) + cdh . h (bg — af

)

— beg . a^b — bch . arc + bcm . a^g — ben . a'^h

— cah . b'^c — cor/, b'a -|- can . b'h — cal . h-i

— abf . c'a — abg .c?h + abl . c=f — abm . c^g

- adg .hP +adh. cP + adm . fg + adn . Ph

- bdh . eg'' + bdf . ag°- -t- bdn . g=h + bdl . gH

- cdf . ah" + cdg . bh» -f cdl . hH + cdm . h'g

afg .h^-afh. be" -|- afl . bcf- afm . c'h - afn . b"g

'

+ 2-1 + bgh. c'a - bgf . ca" -1- bgm . cag - bgl . a'f - bgl . c'h

-I- chf . a»b - chg . ab» -|- chn . abh- chm . b>g - chm . a,H

,



445] A MEMOIR ON QUARTIO SURFACES. 175

' agm . bcf- agn . b=f - ahm . c=f + aim . bcf

+ 2 -; + bhn . cag - bfl . c-g — hfn .a?g+hfl . cag

^+ cfl . abh— chm . a-h - cgl . Vh + cgm . abh J

' — amw . af^ — aiil . bf^ - aim . cP + d/g . ch-

+ 2 - - bnl . hg" - bhn . cg^ - bmn . ag^ + dgh . a{-

.
- ch)i . ch'' — cvin . ah= — cnl . bh= + dA/" . bg^

(-d/l . fgh- dfm . g% - d/n . gh=
]

+ 2 -j
- d</»i . fgh- dgn . h^f - dgl . hP

\,
— dim . fgh — dhl . Pg — dhm. fg-

' fgh .hch—fgm.ach—fmii.agh-fnl .hgh-flm.cgh^

+ 4 - + ghm . caf — gkn . h&i—gnl . bhf — glm . chf - gmn . ahf

. + h/n . abg — /(/i . cbg- him . cfg - hmn . afg — hnl . bfg

,

— ifgh . abc = 0.

And observe, by what precedes, this triple system of lines contains each of the following

double systems: viz., the lines which meet the quadriquadric curve (2, 3) twice, those

which meet the curve (3, 1) twice, those which meet the curve (1, 2) twice.

Persymmetrkal Case : the Hessian of a Cubic.

102. Reverting to the general equation

fl&S 4- /Sr + 7 U' + SF= cone,

which connects the symmetroid and Jacobian, it is evident that if 8, T, U, V are the

derivatives, in regard to the coordinates, of a single cubic function U, = i*^a;, y, z, wf,
then the symmeti-oid and the Jacobian become one and the same surface ; viz., this is

the Hessian surface H=0 derived from the given cubic surface. The two corresponding

points on the symmetroid and the Jacobian respectively, and the two corresponding

points on the Jacobian, become one and the same pair of corresponding points on the

Hessian ; viz., either of these points is such that its first polar surface in regard to

the cubic is a quadric cone having for its vertex the other corresponding point. And
the Hessian surface unites the properties of the Jacobian and the symmetroid, viz., it

has 10 nodes and 10 lines. It is, in fact, known that there are five planes such that

the intersection of every two of them is a line on the Hessian surface, and the inter-

section of every three of them a node on the surface ; viz., if the equations of the five

planes are x = 0, y = 0, z=0, w = 0, u=0, then the equation of the Hessian surface is

xyzwu
\x y

b c d e\ ^
+ -+- + - =0,

y z w ul

a form which puts in evidence the properties just referred to.
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Quartics with W or more Nodes.

103. I mention two results which, although they relate to quadiic surfaces with

more than 10 nodes, present themselves in such immediate connexion with the present

Memoir, that it is natural to speak of them. If, in the equation

A, H, G, L =0,

H, B, F, M
G, F, C, N
L, M, N, D

of the symmetroid (A, B,... linear functions of the coordinates), we have identically

^ = 0, then the surface has evidently a node H = 0, G = 0, L = 0; viz., this is a

node in addition to the usual 10 nodes, or the surface has in all 11 nodes. And so

also if (identically in every case) B is =0, there are 12 nodes; if C is =0, there are

13 nodes ; and if Z) is = 0, there are 14 nodes. These are, in fact, quartic surfaces

with 11, 12, 13, and 14 nodes respectively, mentioned in Kuinmer's Memoir.

104. We may consider the symmetroid derived from the quadric surfaces which

pass through 6 given points; viz., taking as before (see No. 2-5) the coordinates of the

6 points to be (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). (1, 1, 1, 1), (a, /3, y. 8).

and (a, b, c, f, g, h) as the coordinates of the line joining the last-mentioned two

points ; and, to avoid confusion, taking for the present purpose (X, Y, Z, W) instead

of (a, j9, 7, S) for the coordinates of a point on the symmetroid, the equation is obtained

by arranging in the form of a determinant the coefficients of the quadric form

Xx ( hy — gz-¥ mu)

+ Yy (- hx + fz + hw)

+ Zz
{
gx- fy + cw)

+ W (aa yz + b^ zx + cy xy )

;

viz., the equation in question is

, h{X-Y) + (^W, giZ-X) + b/3W, aX =0;

h{X-Y) + cyW, .
, fiY-Z) + aaW, bY

giZ-X) + b^W. f{Y-Z) + aaW, . , cZ

aX , bY , cZ , .

or, as it may be more simply written,

V^ZlTXF^) + ooTTi + 4bY\g{Z-X)+b^W\ + 4cZ{h{X-Y) + cyW]=(i.

This is, in fact, a surface with 16 nodes. It would appear that additional nodes correspond

to the six common intersections of the quadric surfaces, or nodes of the Jacobian

;

and it would seem that for four quadric surfaces having in common 1, 2, 3, 4, 5, or

6 points, the corresponding symmetroid would have 11, 12, 13, 14, 15, or 16 nodes.

But I reserve this for future consideration.
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I take the opportunity of mentioning some results which have a connexion, although

not an immediate one, with the subject of the present Memoir.

Quadric Surface through three given Lines.

105. To find the equation to the quadric surface through the three lines

(fli, h, c„/i, ffi, hi), (o^, 62, C2,/2, g^, A3), (as, 63, c^, fa, g,, h,). Take on one of the lines

the points (a, /8, 7, B) and (a', /S', 7', S'); then the equation of a quadric surface through

this line will be of the form

x* y- z^ w^

a^ ^- rf B'

2aa' 2/3/3' 277' 28S'

a's ^'-2 ys 3'i

yz zx xy sow yw zw

/37 72 a^ aB /3S yS

j3y' + ^'y ya!+y'a a/3' + a'/3 aS' + a'8 /98' + yS'S 78' + 7'S

H'y y'a' a'/3' a'B' ^'B' y'B'

=0;

and if we form thus a determinant with three of its lines relating to the line 1,

three of them to the line 2, and three to the line 3, we have the equation of the

quadric surface through the three lines. But considering in the determinant the three

lines which refer to the line 1, it is clear that the determinant is a function of the

order 3 of the coordinates (a,, 61, c,,/,, g^, A,) of the line in question; and the like

as regards the other two lines respectively. Now observe that if two of the lines

intersect, the problem becomes indeterminate (in fact, the plane of the intersecting

lines, and any plane whatever throughi. the third line, constitute a solution) ; the con-

dition for the intersection of the lines 1 and 2 is Oi/s + aj/i +61^2 + ^s^'i +C2A, + CjA., = ;

hence, if this condition be satisfied, the determinant must vanish ; it therefore divides

by the factor flh/j+Ac; but, similarly, it divides by the factors a„/3+&c. and Oj/j + fec;

and throwing out the three factors, the result should be of the order 1, that is

linear, in regard to the three sets of coordinates respectively. I have obtained this

reduced result in my " Memoir on the Six Coordinates of a Line " {Gamb. Phil. Trans.,

t. XI., 1869, p. 311 [435]); viz., writing {ahc) to denote the determinant Oj (tjjCj — ftjCj) + &c.,

and so for the other like determinants, the result is

{agh)af-\-(bhf)y- + (cfg) z' + (abc) w'

+ [(abg) - (cah)] sow + [(bfg) + (chf)] yz

+ [{bch ) - {abf)] yw + [{cgh) + (afg)] zx

+ [(c«/) - (%) ] ^w + [(aV) +(6^A)]a;y = 0.

Condition that five given lines may lie in a Cubic Surface.

106. Taking the lines to be (a,, 6,, c,, _/,, gi, A,), ...(aj, 65, Cj, f, g^, h,), and

(o, /3, 7, B), (a', yS', 7', 8') the coordinates of any two points on one of the lines, the

equation of a cubic surface through this line would be

C. VIT. 23
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u^, ...

2a2'/3 +a'/3',

2aa';S' + a'»/9,

xyz,

ayS'y + o'/Sy + a/3'7',

a/37,

= 0;

and hence it at once appears that, forming a determinant of 20 lines, wherein four

lines relate to the line 1, four to the line 2 , four to the line 5, and equating

this to zero, we have the required condition. But the condition so obtained is of the

order (^4. 3=) 6 in regard to the coordinates of each line; and, as for the quadric, it

is satisfied identically if we have any such equation as Oj/j + &c. = ; it consequently

contains the several factors ajfs+&c., which can be formed with the coordinates of any

two of the five lines ; and throwing out these factors, the condition should be of the

order 2 in regard to the coordinates of each line. We in fact know that the required

relation between the five lines is that they shall all of them be cut by a sixth line

;

and moreover that, writing a,/j + 03/1 + ^i^fj + 625'! + Cj/ij + Cj/ti = 12, &c., then that the

condition for this is

= 0,• > 12, 13, 14, 15

21, ' ) 23, 24, 25

31, 32, • 7 34, 35

41, 42, 43, .
,

45

51, 52, 53, 54,

being, as it should be, of the order 2 in regard to the coordinates of each line.

Condition that 7 given lines shall lie on a Quartic Surface.

107. Taking the lines to be («], fc,, c,, /,, g^, h^), ... (a,, b,, &,, /,, g,, ft,), then in

precisely the same way we form a determinant of the order (^5.4=) 10 in regard

to the coordinates of each line ; this determinant however divides out by the several

factors Oi/s 4- &c., which can be formed with the seven lines ; or throwing these out

and equating the quotient to zero, we have an equation of the order 4 in regard to

the coordinates of each line. It would not be practicable to obtain the reduced

equation in this manner, and I do not know how to obtain it otherwise, but the

material conclusion is that the order is = 4.

The Jacohian of 6 points.

108. Any 6 points whatever may be regarded as points on a skew cubic ; and

the coordinates (.«, y, e, w) may be taken so that the equations of the skew cubic

']^ X, y, z
shall be = 0. This being so, tiie coordinates of the 6 given points may be

II y, z, w
taken to be (1, i,, t^, «i»), ...(1, <„ <,«, <,»); and the equation of the Jacohian surface of

J
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the 6 points can then be expressed in a very simple form, putting in evidence the

passage of the surface through the skew cubic; viz. writing

moreover,

D = i (Gxyzw — ^!? — iy'w + Sy'z" — a^'),

and therefore

^a;D = - a?)v^-2z' + Syzw,

Sy D = Syz* — 6y'w + Sxzw,

B^O = Sy^z — 6xz^ + Sxyz,

8y,a = - oohjo-lf + 7,xyz
;

then the equation of the Jacobian surface is

3 ( ocp^ + zpi — 2w ) 8a, D
+ ( 22^3 - w;j,) hy D

+ ( *?5 - 22/P4 ) Iz

+ 3 (2aj>j - ypi - wp^) 8„ D = 0.

There is not much difficulty in the direct investigation; but a simple verification may
be obtained by showing that the surface contains upon it the 15 lines 12, 13, ...56.

Write in the equation

{x, y, z, w) = (X + ^, Xs + iit, Xs^+fif, \^ + fj^),

the values S^D &c. are found to contain the factor \fi(s — ty, and omitting this common
factor the values are as

the equation thus becomes

{X(-2s» + «^,+ p,) + fi(-2t> + t'p,+ p,)} (\s' - fit')

-{X(- s'p,+28'p, )+m(- t'p, + 2fp, )}(\s'-/xt')

+ [K (- 2spt + p, ) + M (- 2<p4 + p, )} (Xs- fit)

- [\ (- S'p, - Sp, + 2p,) + fl(- t'p^ - tp, + 2jO,)! {\ - ytl ) = 0,

^z., collecting the terms, the coefficient of \fi vanishes, and the whole is

-2\.''(1, pi, Pi, Pi, pt, Pi, pt^s, -ly

+ 2fi'{l, pi, j3j, ^3, P*, P>, PtSj^, -iy = o;

viz., this equation is satisfied if s denote any one of the quantities (^i, to, t,, tt, t^, t^),

and t any one of the same 6 quantities ; that is, the equation of the surface is satisfied

when (x, y, z, w) are the coordinates of a point on the line joining any 2 of the 6

points.

23—2
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Locus of the vertex of a Quadric Cone which touches each of Six given Lines.

109. Representing as before each line by means of its six coordinates, let {x, y, z, w)

be the coordinates of the vertex, and (X, Y, Z, W) current coordinates. Suppose that

(a, b, c, /, g, h) are the coordinates of any one of the lines, the equation of the plane

through this line and the vertex is

a(xW-wX) + b{yW-wY)-i!-c{zW -wZ)

+/ {yZ -zY)+g(zX -xZ)+h(xY -yX)=0;

or, what is the same thing, writing for shortness

P = . hy-gz + aw,

Q = —hx. +fz + bw,

R= gx -fy . + cw,

S = —ax— by — cz .

the equation is

FX + QY+ EZ + SW = 0.

The plane in question is a tangent plane to the coue touched by the 6 lines. Now
when 6 planes touch a quadric cone, their traces on any plane whatever touch a conic

the intersection of the cone by that plane. Hence taking the plane 1^=0, the equation

of the trace is

PX + QY+RZ = 0,

and forming in like manner tne equations belonging to each of the given lines, the

condition that the 6 traces may touch a conic is

(i^, Q^ R^, QR, RP, PQ) = 0,

where the left-hand side represents a determinant of 6 lines, the several lines being

respectively Pi^, Qi', Ri", QiRi, RiPi, PiQi, P^, &c Or more simply we may denote

the equation by
[(P, Q, P)»J = 0.

To ascertain the form of this, write for a moment y = 0, z = 0; the equation is

[(aw, —hx-\- bw, gx+ cwY\ = 0,

or attending only to the highest and lowest powers of w, this is

«;>» [(a, b, cy\ . . . + «;V [(a, - h, gf] = ;

and it is thence easy to infer that the whole equation divides by t<;*; so that, omitting

this factor, the form of the equation is

((o, b, c, / g, h)%x, y, z, wY = 0;

viz., the equation is of the order 8 in the coordinates (x, y, z, w), and of the degree

2 in the coordinates (a, b, c, / g, h) of each of the lines. It would not be very
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difficult to actually develope the equation ; in fact, starting from the term -uf [{a, b, c)"] the

other terms are obtained therefrom by changing a, b, c into a-\— Qiy—gz), h-\— {—ho+fz),

c+—{gx—fy) respectively; the equation may therefore be written in the symbolic form

vf . exp. i {{hy - gz)K + {-hx ^fz) h + (300 -fy) K] [(«, b, cf\ = 0,

or, what is the same thing,

w» . exp. - {x (gSc - hSt) + y {hBa -/S^) + 2 (fSb ~ g^)} [(«. b, cf] = 0,

where exp. (read exponential) denotes e*, and [(a, b, cf] represents a determinant as

above explained. The equation contains, it is clear, the four terms

a^ [(a. - h, gy] + f [(- A, b, -ff] + ^ [(- g, /, cf\ + vf [(a, b, cf].

I am not sure whether this surfJEice of the eighth order has been anywhere considered.
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446.

ON THE MECHANICAL DESCRIPTION OF A NODAL BICIRCULAR
QUARTIC.

[From the Proceedings of the London Mathematical Society, vol. III. (1869—1871),

pp. 100—106.]

The ingenious method, devised by Mr S. Roberts (Proceedings, vol. il. p. 133) for

the description of a nodal bicircular quartic suggests a further investigation. We have

a quadrilateral OAA'O', in which the adjacent sides OA, AA' are equal to each other,

and the other two adjacent sides 00', O'A' are also equal to each other ; 0, 0' are

fixed points; and we have thus a link AA' , the extremities of which are connected

with the radii OA, O'A' respectively, and consequently describe circles about the centres

0, 0' respectively, the radius OA of the one circle being equal to the length AA' of

the link, and the radius O'A' of the other circle being equal to the distance 00' of

the centres. The theorem is, that any point G, rigidly connected with the link A A',

describes a nodal bicircular quartic, that is, a quartic curve with three nodes (or

unicursal quartic), two of the nodes being the circular points at infinity. Any such

curve is the inverse of a conic, and it is also the antipode of a conic ; viz., if at each
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point of the curve we draw a line at right angles to the radius vector from the node,

these lines envelope a conic having for its pedal the curve in question. It is worth

noticing at the outset that to a given position of A' there correspond two positions

of A, viz., the broken line OAA' may occupy two positions situate symmetrically on

the opposite sides of the line OA' . But to a given position of A, there corresponds

only one position of A' ; viz., the broken line AA'O' is situate symmetrically with AOO'
on the opposite side of the axis of symmetry Q/A ; the only other position would be

A' coinciding with 0, that is, AA' with AO, and the locus of C would then be a

circle. If the equalities QA=AA', 0'A' = 00' did not subsist, then to a given position

of A' there would correspond two positions of A, and to a given position of A two

positions of A', and the locus of C would be of a higher order than in the actual

problem.

I have called AA' the link ;
00' may be called the bar. OA is then the link-

radius, O'A' the bar-radius ; moreover AA'C may be called the constant triangle ; and,

producing OA, O'A' to meet in K, then AA'K may be called the variable triangle.

Since at any instant the motion of ^ is normal to KA, and the motion of A' normal

to KA', it is clear that the motion at that instant of the constant triangle is a motion

of rotation about the point K.

Imagine any two positions of the link ; say these are A^A^', and A^A^'. Join

AiAi, and at its mid-point draw a perpendicular thereto
;
join in like manner A/A,,

and at its mid-point draw a perpendicular thereto ; and let these two perpendiculars meet

in r ; we have the two equal triangles AjA/r, A^A-ZT (viz., F^, = FJj, FAi =TAi',

A,A,' — A^A^) with the common vertex F, and which may be brought to coincide with

each other by a finite rotation about this point F. Considering any particular given

position of F, if we take the constant triangle AA'C equal to AiAiT or A^A^T
(viz., .4(7= ^jF, A'C=Ai'r), then the constant triangle AA'C will, in the course of

its motion, come at two diflFerent times to coincide with the triangles A^AiT and

AiA^T respectively; that is, F will be a node on the locus described by the point

C; and moreover, if iT, and K, be the corresponding positions of K, then by what

precedes, the directions of the motion (or tangents at the node) will be normal to KiT
and K^r respectively.

It is to be observed that the point F is determined by means of two arbitrary

positions AjA,', A,A,' of the link; that is, the position of F depends upon two

arbitrary parameters, and therefore F may be any point whatever in the plane ; if, for

an assumed position of F, the two positions AiA^', A^A^ of the link are real, then F is

a crunode on the locus; but if imaginary, then F is an acnode on the locus. The

transition case is when the two positions AiAi, A^A^, coincide with each other, F being

in this case a cusp on the locus. But from the foregoing general construction for F,

it appears that when .4, .4/ and A^A^ coincide, F is in fact the point K, the vertex

of the variable triangle. I find that the locus of .fiT is a nodal bicircular quartic,

symmetrical in regard to the axis 00^, and having the point for a node ; viz., when,

as in the figure, .4.4' is < 00', then the point is an acnode, but when -4.4' is > 00',

then the point is a crunode. The curve in question—say the " cuspidal locus "

—
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is a curve such that any point whatever thereof is a cusp on the curve described by

some point C; it separates those points F, such that each of them is a crunode on

the curve described by some point G, from the points F which are such that each of

them is an acnode of the curve, described by some point C. If yea in the figure)

AA' is < 00', then the cuspidal cur\'e is a closed curve (the inverse of an ellipse),

the interior region being crunodal, and the exterior region acnodal. If AA' is > 00',

then the cuspidal curve is a figure of eight (inverse of a hyperbola), the two interior

regions being crunodal, and the exterior region acnodal.

Passing now to the analytical investigation, I take the origin at 0, the axis of

X being in the direction from to 0', and the axis of y, at right angles thereto,

upwards from 0. The inclinations of OA, AA', O'A' to the axis Ox, are taken to be

6, <j>, ff respectively. I write also OA = AA' = a, and 00' = O'A' = a ; and

m= a —a
a' + a'

or, what is the same thing,

m : 1 : 1 + m : 1 —m = a —a : a' + a : 2a' : 2a

;

and finally AB = b, BC=c.

Observing that the angle AA'O' is =6, we have 6'—d + <f);
and then, in the

quadrilateral OAA'O', the angles A, 0' are =7r — ^+0, v — 6 — d> respectively; whence,

projecting on the diagonal OA', we have

a cos ^(6 — <f>)
= a' cos ^(6 + tf>),

which, attending to the value of m, is

tan ^0 tan ^<^ = m

;

tan ^0 = u.

whence, writing

we have

tan^^ =
m

and the sines and cosines of the angles 0, ^, 0' can be all of them expressed in terms

of the single parameter u.

For the locus of G we have

.r = a cos + b cos
<f>
— c sin

<f),

y=a sin + h sin ^ + c cos <^,

or, instead of 0,
(f>

introducing m, we have

x= — m' — 1 , u' — m' 2mu
•m' M' + m'

2m , 2mu m" - m'
j

'
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which, in fact, show that the locus is a bicircular quartic. To put in evidence the

third node, I assume that the values belonging thereto are u = iti, u^u^, and that

the coordinates of the node are a, ^ ; we have thus

Vn' — 1 , Ui" — Tn" 2mu, u^ — \ , u^ — w? 2miu

and then

'wi^+l ui' + m' u.^ + m?' <+l u^^ + m^ u^^ + m^'

2t<i , 2miti ?/i*
— m^ _ 2n^ , 2mu, u^ + m?

These give 6, c, a, /3 in terms of a, m, Vri, u^; and we may then express the values

of a; — a, y — /3 in terms of a, m, u^, u^, u. I find

«" — 1 a ( t m +

1

r/ ^» /-. X /- , ^) m" - m'
^ = -"^^^l + mr^-^ (V + l)(»,' + l)

t<^ + ^>+<^-"^)(^-^^'>]f^?Tl^

a ( TO +

1

r ^ X ^ N n1 2tom

2m a f , TO +

1

p, V. /, V /, .0 2tom

af m + li
r / ^ x/ n Om»-to»

a TO + 1

and then

2(TO+l)a (m— «i)(m — M») r/, x/ » s ^, >^ V -

(--«> = - (vTiyc^'TT) k+iHu' + J) ^ K^ - "•'^^ <"' + "^> + (1 - TO) («. + «, )
u],

(y-^)=-
(V+l)(u.»+l) (u» + r)(.' + m'> ^<"- + "' )(«= + -)-(l-m)(l -.,..)«],

where, of course, the factors (m — m,), (m — Mj) indicate the node (a, 0). We have moreover

V^ «;--^vy Pr
(m,« + 1)(m,»+1) (w«+1)(m» + wi=)'

so that, writing

x — a ^ 1 [(1 — iijU^) (u^ + to) + (1 - to) (ui + lUj) u]

(x-ay + (y-fiy~ 2(TO + l)a (u-ii,){u-u,)

y-

^

1 [(wi + m,)(m° + to) — (1 — to) (1 —v^u^ u\
(x-ay + (y-^y~ 2(m + l)a {u - v^) (u - u^)

c. vu. 24
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we have the locus as the inverse of a conic. To exhibit it as the antipode of a conic,

taking X, Y as current coordinates measured from the node as origin, the equation of

the line through a point of the locus, at right angles to the radius vector bova the

node, is

X{x-a)+Y(y-^)-{x-aY-(y-^y^Q;

or, substituting for («-a), (y— /3) their values, this is

X [(1 - t^M,) (u» + m) + (1 - »i) (tt, + Mj) m]

+ 7[(t*i+tts )(M» + m)-(l-m)(l -M,M,)M] + 2(m+l)o(M-it,)(M-ti,)= 0;

and the antipodal conic is thus the envelope of the line represented by this equation.

Putting for shortness

P =Z(1 -«,«,)+ y (Ml + M, ), Q = Z(m, + u, ) -F(1 -ttiMj),

the equation is

«> {P + 2 (m + 1) a} + M {(1 - m) Q - 2 (m + 1) a (ui + «,)} +mP + 2 (m + 1) a m,«, = 0,

and the equation of the conic therefore is

4 {P + 2 (m + 1) a} [mP + 2 (m + 1) a u^v^\ - {(1 - w) Q - 2 (m + 1) a («, + m,)}» = 0,

80 that the conic touches each of the lines P+2(m+l)a = 0, mP + 2 (m + l)aM,ttj =

at its intersection with the line (1 — m) Q — 2 (to+ l)aMi = 0. If these lines were con-

structed, one other condition would suffice for the construction of the conic.

The before-mentioned equations

give

and thence

a m + 1

"mK» +!)(«,» -1-1)

/3

a m + \

~m {u,^ + l){u:'+l)

a» + /3»^
a^ (m + iy^

~ m?{u'+\){u^+l)

a m 1 — MiM,

a'4-/9« (m-l-l)a m-(-ttiU,'

y3 m Wj + Mj

(1 — t<i Mj) (m -1- Mjitj),

(wi-l-Mj )(m4-iiiM,),

0? +^ (m + l)a m-f-MiMj'

which determine m, + Uj and m,W2 rationally in terms of a, /3. For the cuspidal curve,

writing «, = «, = v, we have
a _ m 1 — t/"

a' -I-
^~ (m+1) a m+1/''

;9 _ m 2p

a' + /S"
~ (m + 1) a m + »»

'
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which show that the cuspidal curve is the inverse of a conic (viz., of an ellipse, if,

as in the figure, m is positive). The result in the very same form would be obtained

by considering the curve as the locus of the vertex K of the variable triangle.

If we imagine a plane rigidly connected with the link AA', and carried along

with it, then (b, c) are the coordinates of the point G in this moveable plane ; and

if, as above, (a, y8) are the coordinates of the node, then (6, c) and also (a, /9), are

given functions of (itj, ii^. We have thus (6, c) functions of (a, /3), and reciprocally

(a, /S) functions of (6, c); that is, we have a correspondence between the points of the

fixed plane and those of the variable plane. It is worth while to investigate the nature

of this correspondence, although the result does not appear to be one of any elegance.

Writing
. Cm+l)aA=- —

a-+^'

[we may, in place of (a, /8), consider the point in the fixed plane as given by means

I of the inverse coordinates (A, B). And then, i{ p = 11^ + 03, g' = l — MjWa, we have

whence

^=-^ , 5 =m+l —q

^=-1+1-' ^
=(m+iyB

"

1 + A

m + l-q'

(m + l) A
l + A '

{m+iy{A' + &)

Hence
(1 + ^)^

TO/, a\ m + 1 r „ , ,XT
a \ ml p' ^q^'-^ ^ ' ^•'

c = -r-;—r»(m-l+o),

which determine (6, c) in terms of (p, q) ; that is, of {A, B) or of (a, /3).

In reference to some other constructions given in Mr Roberts' paper, it may be

remarked that if we have a moveable plane Hi always coincident with a fixed plane

n, and if a condition of the motion is that a circle (7,, fixed in the plane IIi and

carried along with it, always touches a fixed circle in the plane IT, then this same

condition may be expressed indifferently in either of the forms—(1) a circle C, in the

plane Hi always passes through a fixed point of 11 ; (2) a point in the plane 11, is

always situate on a fixed circle C in the plane IT. But if either of the circles G, 0,

reduce itself to a line, then we have two distinct forms of condition ; viz., first, if a

fixed line Z, in the plane IT, always touches a fixed circle G in the plane 11, this

is equivalent to the condition that a fixed line X, in the plane 11, always passes

24—2
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through a fixed point of the plane 11. And secondly, if a fixed circle 0, in the plane IT,

always touches a fixed line L in the plane II, this is equivalent to the condition that

a fixed point in the plane 11, is always situate in a fixed line Li in the plane n,.

The diflferent forms of condition therefore are

:

(a) A fixed circle C, in the plane 11, always touches a fixed circle C in the

plane IT (where, as above, either circle indififerently may be reduced to a point).

(yS) A fixed line Z, in the plane 11, always passes through a fixed point C in

the plane IT.

(7) A fixed point C, in the plane 11, is always situate in a fixed line L of the

plane II.

Hence, if the motion of the plane 11, satisfy any two such conditions (of the

same form or of different forms, viz., the conditions may be each a, or they may be

a and /8, &c.), then the motion of the plane 11, will depend on a single variable

parameter, and the question arises as to the locus described by a given point, or

enveloped by a given line, of the plane 11 ; and again of the locus traced out, or

enveloped, on the moving plane II, by a given point of the plane TI. The case con-

sidered in the present paper is of course a particular case of the two conditions being

each of them of the form a.

It may be remarked, that if the two conditions be each of them ^, then there

will be in the plane II, a fixed point 0, which describes a circle ; and similarly, if

the two conditions be each of them </, then there will be in the plane H, a fixed

point C, which describes a circle (') ; that is, the combination ^^ is a particular case

of a/3, and the combination 77 a particular case of 07.

' The theorem is, that if an isosceles triangle, on the base A A' and with angle —2id at the vertex C,

slide between two lines OA, OA' inclined to each other at an angle w, in such manner that C is the centre

of the circle circumscribed about OAA', then the locus of C is a circle having for its centre.

i
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447.

rON THE RATIONAL TRANSFORMATION BETWEEN TWO SPACES.

[From the Proceedings of the London Mathematical Society, vol. III. (1869—1871),

pp. 127—180. Account of the Paper given at the Meeting 11 March 1869.]

Two figures are rationally transformable each into the other (or, say, there is a

rational transformation between the two figures) when to a variable point of each of

them there corresponds a single variable point of the other. The figures may be

either loci in a space, or locus in quo of any number of dimensious ; or they may
be such spaces themselves. Thus the figures may be each a line (or space of one

dimension), each a plane (or space of two dimensions), or each a space of three

dimensions ; these last are the cases intended to be considered in the present Memoir,

which is accordingly entitled, " On the Rational Transformation between Two Spaces."

I observe in explanation (to fix the ideas, attending to the case of two planes), that

any rational transformation between two planes gives rise to a rational transformation

between curves in these planes respectively (one of these curves being any curve what-

ever) : but non constat, and it is not in fact the case, that every rational transformation

between two plane curves thus arises out of a rational transformation between two

planes. The problem of the rational transformation between two planes (or generally

between two spaces) is thus a distinct problem from that of the rational transformation

between two plane curves (or loci in the two spaces respectively).

I consider in the Memoir, (1) the rational transformation between two lines;

this is simply the homographic transformation: (2) the rational transformation between

two planes; and here there is little added to what has been done by Prof Cremona

in his memoirs, " SuUe Trasforraazioni Geometriche delle Figure Piane," {Mem. di

Bologna, t. II., 1863, and t. v., 1865 ; see also " On the Geometrical Transformation

of Plane Curves," British Assoc. Report, 1864) : (3) the rational transformation between

two spaces; in regard hereto I examine the general theory, but attend mainly to

what I call the lineo-linear transformation ; viz., it is assumed that the coordinates
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of a point in the one space, and the coordinates of the corresponding point in the

other space are connected by three lineo-linear equations (that is, each equation is

linear in the two sets of coordinates respectively). The lineo-linear transformation

presents itself in the preceding two cases; viz., between two lines, the homographic

transformation (which, as already mentioned, is the only rational transformation) is

lineo-linear; and between two planes, the lineo-linear transformation is in fact the

well-known inverse transformation Ix : y' : i^ = -:-:-) . As regards two spaces, the
\ X y zj

lineo-linear transformation has not, I think, been discussed in a general manner, and

it gives rise to a theory of some complexity, and of great interest.

The Oeneral Principle of the Rational Transformation between Two Spaces.

1. In all that follows, the two spaces (lines, planes, or three dimensional spaces,

as the case may be), or any corresponding loci in the two spaces respectively, are

referred to as the first and second figures respectively. The two figures are in general

considered, not as superimposed or situate in a common space, but as existing, each

independently of the other, as a separate locus in quo or figure in such locus. The

unaccented coordinates (x, y), {x, y, z), or (x, y, z, w), as the case may be, refer

throughout to a point of the first figure ; the accented coordinates refer in like

manner to the corresponding point of the second figure ('). Moreover X, Y, ... are

used to denote functions of the same order, say n, of the coordinates (x, y, ...); viz.,

(X, T) are each of them of the form {*^x, 3/)"; {X, Y, Z) each of the form

(•$a!, y, zY, (X, Y, Z, W) each of the form {*'^x, y, z, w)", as the case may be;

and in like manner X', Y', ... are used to denote functions of the same order, say

n', of the coordinates (x', y\ ...). This being so:

The condition of a rational transformation is that we have simultaneously

a;' : y\... = X: F, ... ; x : y,...=Z' : F',...

viz., these equations must be such that either set shall imply the other set.

2. If, to fix the ideas, we attend to the case of two planes, or take the sets

to be

x' -y'
: z'^X : Y : Z; x : y : z = X' : Y' : Z',

' The coordinates {x, y) of a point in a line may be conceived as proportional to given multiples

(a times, p times) of the distances of the point from two fixed points on the line ; similarly the coordinates

(ac, y, z) of a point in a plane aa proportional to given multiples (o times, j3 times, y times) of the perpen-

dicular distances of the point from three fixed lines in the plane ; and the coordinates («, y, z, w) of a

point in a space as proportional to given multiples (o times, /3 times, 7 times, S times) of the perpendicular

distances of the point from four fixed plsuies in the space. Observe that even if the coordinates (x, y) and
{x", y') refer to the same line, and to the same two fixed points in this line, they are not of necessity the

same coordinates; viz., the factors for x, y may be o, ;S, and those for x', y' may be a', fi'. If these are

proportional (viz., if o : ^= 0' : /S*), then (x*, y') will be the same coordinates of P' that (x, y) are of P\
and in this case, but not otherwise, the equation xy'-x'y = Q will imply the coincidence of the points P, P".

The like remarks apply to the coordinates (x, y, z) and (x, y, z, w).
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then starting with the set of : y' : z = X : Y : Z, for any given point (x, y, z) what-

ever in the first figure, we have a single con-esponding point {x\ y , z') in the second

figure ; but for any given point («', y', z') in the second figure, we have prima facie

a system of n" points in the second figure, viz., these are the common points of

intersection of the curves x' : y' : z" =X : Y : Z (in which equations x', y', z' are

regarded as given parameters, x, y, z z& current coordinates, and the equations there-

fore represent curves of the order n in the first figure). The curves may however

have only a single variable point of intersection ; viz., this will be the case if each

of the curves passes through the same n' — 1 fixed points (points, that is, the positions

of which are independent of al,
i/, nf); and in order that the curves in question may

each pass through the w' - 1 points, it is necessary and sufiicient that these shall be

common points of intersection of the curves X = 0, F=0, Z=0. {Observe that the

condition thus imposed upon the curves X =0, F = 0, Z = will in certain cases

imply that the curves have n' common intersections ; or, what is the same thing, that

the functions X, Y, Z are connected by an identical equation, or syzygy, aX + /9F+7^=0.
This must not happen ; for if it did, not only there will be no variable point of

intersection, and the transformation will on this account fail ; but there would also

arise a relation ax' + ^y' + yz' =0 between (x', y', z'), contrary to the hypothesis that

(a/, y, /) are the coordinates of any point whatever of the second figure. It thus

becomes necessary to show that there exist curves X = 0, F=0, Z = 0, satisfying the

required condition of the n' — 1 common intersections, but without a remaining common
intersection, or, what is the same thing, without any syzygy aX + ^Y+'yZ=0.}

3. The curves x : y : z' = X ; Y : Z having then a single variable point of

intersection, if we take {x, y, z) to be the coordinates of this point, the ratios x : y : z

will be determined rationally ; that is, as a consequence of the first set of equations,

we obtain a second set x : y : z = X' : Y' : Z', where X', Y', Z' will be rational

and integral functions of the same order, say n', of the coordinates («', y' , z) ; that

is, we have a second set of equations, and consequently a rational transformation, as

mentioned above.

4. It is easy to see that we have n' = n\ in fact, consider in the first figure

a curve aX -f- /3F -|- 7Z = 0, and an arbitrary line cur + 6y + c^ = ; to these respec-

tively correspond, in the second figure, the line ax + 0y' + 7^' = 0, and the curve

aX' + iy + cZ' = 0; the curves are of the orders «, n' respectively, or the curve and

line of the first figure intersect in n points, and the line and curve of the second

figure intersect in n points ; which two systems of points must correspond point to

point to each other ; that is, we must have n' = n. It will presently appear how

different the analogous relation is in the transformation between two spaces.

5. Ascending to the case of two spaces, we have here the two sets

x' : y' : 2f w' = Z : Y : Z : W ; x : y : z : w = X' : Y' : Z' : W,

the theorj' is analogous; the surfaces x' : y' : / : w' =X : Y : Z : W (surfaces of the

order n in the first figure) must have a single variable point of intersection, and they

must therefore have a common fixed intersection equivalent to n?—l points of inter-
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section : I say equivalent to n'—l points, for this fixed intersection need not be

n' — 1 points, but it may be or include a curve of intersection ('). The surfaces

X = 0, Y=0, Z=0, W = must consequently have a common intersection equivalent

to n'—l points ; there is (as in the preceding case) a cause of failure to be guarded

against, viz., the condition as to the intersection must not be such as to imply

one more point of intersection, that is, to imply an identical equation or syzygy

aX +0Y+yZ+BW=O between the functions X, Y, Z, W; but it is assumed that

they are not thus connected. There is, then, a single variable point of intersection of

the surfaces x' : y' : z : w = X : Y : Z : W; or taking the coordinates of this point

to be (x, y, z, w), we have the ratios x : y : z : w rationally determined ; that is, we
have a second set of equations x : y : z : w = X' : Y' : Z' : W, where X', Y', Z', W
are rational and integral functions of the same order, say «', in the coordinates

(«', y, /, w") \ viz., we have the rational transformation, as above, between the two

spaces.

6. Suppose that the common intersection of the surfaces X = 0, F=0, -^ = 0, Tr=
is or includes a curve of the order v ; and consider in the first figure the two surfaces

and the arbitrary plane cue + 6y + c^ + dw = 0. The two surfaces intersect in the fixed

curve V, and in a residual curve of the order r^ —v ; hence the two surfaces and the

plane meet in v points on the fixed curve, and in n^— p other points. Corresponding

to the surfaces and plane in the first figure, we have in the second figure the two

planes
*»' + /3y' + yz' + Sw' = 0, a^x' + ^iy'+yiz'+ S,m;' = 0,

and the surface aX' + bY' + cZ' + dW' = of the order n' : these intersect in n' points,

being a system corresponding point to point with the n^ — v points of the first figure

;

that is, we must have n' = n' — v. And conversely, it follows that in the second figure

the common intersection of the surfaces X' =0, Y' = 0, Z' = 0, W = will be or include

a curve of the order v ; and that we shall have n = n^— v. Hence also

v-v' = {n- n') (« + n' + 1).

7. The principle of the rational transformation comes out more clearly in the

foregoing two cases than in the case of two lines, which from its very simplicity fails

to exhibit the principle so well ; and I have accordingly postponed the consideration of

it : but the theory is similar to that of the foregoing cases. We must have the

two sets (each a single equation) x : y' = X : Y, and x : y = X' : Y'. The equation

a! : y' =X : Y must give for the ratio x : y & single variable value ; viz., there must

be n — 1 constant values (values, that is, independent of x', y') ; this can only be the

case by reason of the functions having a common factor M of the order n—\; but

this being so, the common factor divides out, and the equation assumes the form

x' : y' = X : Y, where X, Y are linear functions of (x, y) : and we have then reciprocally

' The ourye of intersection may consist of distinct curves, each or any of which may be a singular

curve of any kind in regard to the several surfaces.
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X : y = X' : Y', where X', Y' are linear functions of (»', y'). Thus in the present case,

instead of an infinity of transformations for different values of n, n', we have only the

well-known hoinographic transformation wherein n=n'=l.

8. In the discussion of the foregoing cases of the transformation between two

planes and two spaces, it was tacitly assumed that n was greater than 1, and the

transformations considered were thus different from the homographic transformation;

but it is hardly necessary to remark that the homographic transformation applies to

these cases also ; viz., for two planes we may have x' : y' : z' = X : Y : Z, and

X : y : z = X' : Y' : Z', where (X, Y, Z), (X', Y', Z') are linear functions of the two

sets of coordinates respectively ; and similarly for two spaces of : if : z' : w' = X -.Y : Z : W
a.n6. X : y : z : w = X' : Y' : Z': W, where (Z, F, Z, W), {X', Y', Z', W) are linear

functions of the two sets of coordinates respectively. We may, if we please, separate

oflf the homographic transformation (as between two lines, planes, and spaces respectively),

and restrict the notion of the rational transformation to the higher or non-linear trans-

formations ; in this point of view, the case of two lines would not be considered at

all, but the theory of the rational transformation would begin with the case of the

two planes. Such severance of the theory is, however, somewhat arbitrary ; and more-

over the homographic transformation between two lines (being, as mentioned, the only

rational transformation) is analogous not only to the homographic transformation between

two planes, and to the homographic transformation between two spaces, but it is also

analogous to the lineo-linear (or quadric) transformation between two planes, and to the

Uneo-linear (which is a cubic) transformation between two spaces.

9. For the sake of bringing out this analogy, I shall consider in some detail the

homographic transformation between two lines ; but as regards the homographic trans-

formations between two planes and between two spaces respectively (although there is

room for a like discussion) the theories may be considered as substantially known, and

I do not propose to go into them.

The Hoinographic Transformation between Two Lines.

10. By what precedes, it appears that we have x' : y' — X : Y, where {X, Y) are

linear functions of {x, y) ; and conversely, x : y = X' : Y', where X', Y' are linear

functions of («', y') ; or what is the same thing, the relation is expressed by a single

equation

{ax + by) x' + {ex + dy) y' = Q
;

at, as this may conveniently be written,

(a, b

(:;^][^.y)(^.3/') = o.

or, when the expression of the actual values of the coefficients is unnecessary,

{*lx, y){x', y') = 0.

We thus see that the rational transformation between two lines is in fact the homo-

graphic transformation ; and also that it is the lineo-linear transformation.

C. VII. 25
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11. A special case is when

Writing here

the equation is

that is

ad — bc — 0.

c d b'

a a

(ax + by) ( a;' + my) = 0,

(ax + by) (a'x + b'^) = ;

viz., either ax + by=Q, without any relation between x', y' ; or else a'x + b'y = 0,

without any relation between x, y; that is, to the single point ax + by = of the first

figure there corresponds any point whatever of the second figure ; and to the single

point a'x' + b'y' = of the second figure there corresponds any point whatever of the

first figure.

1 2. In the general case where ad — 6c ^ 0, we may either by a linear transformation

(ax + by, ex + dy into y, — a; or into x, — y) of the coordinates of a point of the first

figure, or by a linear transformation (ax' + cy', ba/ +dy' into y', —x or into x', —y) of

the coordinates of a point in the second figure (or in a variety of ways by simultaneous

linear transformations of the two sets of coordinates) transform the relation indifferently

into either of the forms xy — xy = 0, xx — yy' = ; the former of these, or «'
: y'= a; : y, is

the most simple expression of the homographic transformation ; the latter, or a:' : y' = - : -

,

X y
is its expression as an inverse transformation.

13. If, to fix the precise signification of the coordinates (x, y), we employ the

distances from a fixed point in the line ; taking the distances of the two fixed

points (say A, B) to he a, /S, and that of the variable point P to be p, then we
have X, y proportional to given multiples p(p—a), q(p—^) of the distances from the

two fixed points ; or writing - = n, we may say that the coordinate - of the point

P is =n-—7,; or in particular, if n=l, then the coordinate is =-—3. If for
p-fi "^ p-p

n-—7j we write - --— -~, and then take /9=oo, we see that in a particular system

of coordinates, A a.t 0, B a,t oo , the coordinate - is = p. Proceeding in the same
if

manner in regard to the coordinates (of, y'), for a particular system of coordinates,

A' at 0', B' sX CO , the coordinate — of P* will be = p'. And the correspondence
if

of the points P, P" will be given by an equation

app' + bp' + cp + d = 0.

14. The equation just mentioned is often convenient for obtaining a precise statement

of theorems. Thus taking A, B at pleasure on the first line, A', B" the corresponding

points on the second line, we have

' = _ '^P +^
'' " ap + b'
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and thence

«'_
aa+b'

195

a = —

y8' =
a/3 + 6'

and consequently

which is of the form

/-/8' =

p -a

, _ (ad — bc)( p — a)

^ ~ (aa+b ){ap + b)'

(ad-bc)( p-^)_
(a^+b){ap+ 6)'

aff+b p — 3

p'-^ ai +6 p-/3'

p—a. p—a

where (the correspondence app + bp' + cp + d = being given, and also the fixed points

A, B) m has a determinate value not assumable at pleasure. If, however, the fixed

points A, B he not given, then we may determine a relation between them, such that

m shall have any given value not being = 1 ; we have in fact only to write

that is

a/3 + 6 = m (aa + 6),

a(/9-ma)+6(l-m) = 0,

(m = 1 would give a = y3 and the transformation would fail). In particular we may write

m = — 1, we have then

a(a + y3) + 26 = 0;

26
or the sum of the two distances OA, OB has a given value = dependent on the

transformation; one of these points being assumed at pleasure, the other is known;
the points A', B" are also known, and the equation of correspondence is

P-<^ ^P- ;=o;

it is moreover easy to show that we have

a{a' + ^) + 2c = 0.

15. In what precedes, the two lines are considered as distinct lines, not of

necessity existing in a common space. But they may be considered, not only as

existing in the common space, but as superimposed the one on the other. Suppose

this is so, and moreover that the fixed points A', R coincide with A, B respectively,

and that the coordinates (x, y) and (x', y') are the same coordinates ; so that the

equation xy' — x'y = will imply the coincidence of the points P, P.

25—2
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16. If ad — bc=0, the equation of correspondence becomes

(ax + by){a'a;' + by)=0,

and as before, to a single given point ax + by=0, considered as belonging to the first

figure, there corresponds every point whatever of the line, or second figure: to a

single given point a'a/ + b'r/ = (the same as, or different from, the first point),

considered as belonging to the second figure, there corresponds every point whatever

of the line, or first figure.

17. Excluding the foregoing case, or assuming ad — bcf^O, there are in general on

the line two points such that to each of them considered as belonging to either

figure there corresponds the same point considered as belonging to the other figure,

or say there are two united points : in fact, writing x' : y' = x : y, we find

aai' +(b + c)xy + dy" = 0, a quadric equation for the determination of the points in

question. Unless 4ad — (b + c)" = 0, this equation will have two unequal roots ; and

taking the two points so determined for the fixed points A = A', B= B', the equation

of correspondence will assume the form xy' — kx'y = 0. In this equation k cannot be = 1

;

for if it were so, the equation would be xy — x'y = ; that is, the points P, P would

be always one and the same point. The equation may, however, be xi/ + x'y = ; the

points P, P' are then harmonics in regard to the fixed points A, B. It is to be

observed, that if the equation xy' — kx'y = be unaltered by the interchange of (x, y)

and (x, y") we must have P — 1 = 0, or since = 1 is excluded, we must have ^ = — 1.

18. The original equation (ax + by) x' + (ex + dy) y' = is unaltered by the inter-

change, only if 6 — c = ; the equation 4arf — (6 + c)^ = becomes in this case ad — bc = 0,

which by hypothesis is not satisfied ; the two distinct points A = A', B= R consequently

exist. That is, if the correspondence between the two points P, P' is such that

whether P be considered as belonging to the first figure or to the second figure,

there corresponds to it in the other figure the same point P'—or say if the

correspondence between the points P, P' is a symmetrical correspondence—then as

united points in the superimposed figures we have the two distinct points A, B:
and the correspondence of the points P, P' is given by the condition that these are

harmonics in regard to the points A, B.

19. There is still the case to be considered where iiod — (6 + c)" = ; the equation

cui^ + (b + c)xy +dy^=0 has here equal roots, or the two united points coincide

together, or form a single point. Taking this point to be the point A, the coordinate

whereof is a; : y = : 1, we must, it is clear, have d = 0, and therefore also 6 + c=0:
the relation between the coordinates (x, y) and (x', y') is then axx' + b (xy" — x'y) = ;

viz., this is the form assumed by the equation of correspondence when instead of two

united points there is a double united point, and this is taken to be the fixed

point A.

20. It is to be observed, that we cannot have either 6 = 0, for this would give

xx' — 0, which belongs to the excluded case ad — bc=0; nor a = 0, for this would give

xi/ — x'y = 0: excluding the.se cases, the equation is of necessity altered by the inter-
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change of (x, y) and {x', y') ; that is, in the case of a double united point, the

transformation is essentially unsymmetrical.

By what precedes, if the other fixed point be taken to be at infinity, the coordi-

nates X : y and x' : y' may be taken to be p, p respectively ; viz., p, p will denote

the distances of the points P, P' from the double united point A ; and the equation

of correspondence then becomes pp + 6 (/a — p') = ; that is, (p — 6) {p + &) + 6" = 0.

21. The original equation axx' + hya^ + cxy' + dyy = can be reduced to the

inverse form xx' — yy' = only (it is clear) in the symmetrical case b=c; here, trans-

forming to the united points, the equation is, by what precedes {ante. No. 17) xy +x'y=0.

This equation can be written {Ix + my)(lx' + my') — (lx — my)(lx' — my') = 0, where I : m
is arbitrary ; viz., we have thus an equation of the required form.

22. In further explanation, start from the equation app' + b(p+p') + d=0; that

is, {ap + b) {ap' + b) + ad — b' = 0, or say (p — a) (p' — a) — Id' = ; this may be reduced to

pp' —1=0 ; viz.. the point from which are measured the distances p, p is here the

mid-point between the two united points A, B; and the unit of distance is ^AB;
the equation expresses that the points P, P', harmonics in regard to the two points

A, B, are the images one of the other in regard to the circle described upon AB
as diameter. Take any two corresponding points L, L' ; if the distances of these be

X, X', we have XX' = 1 ; and hence

(p-X)(p'-X)=l-X (p+p')4-X" =X (X + X'-p-p'),

(p - X') (p' _ X') = 1 - X' (p -f- p') + X'= = X' (X -I- X' - p - p')
;

and consequently

p — X p' — X X

p - X' p' - X'
~ X"

which, writing

X k(p-\) x' k{p'-\)
y- p-X' ' y'- p'-X'

^=--;(so that i'^l); or, A; = X = -,,
' X X

"becomes xaf — yi/ = ; that is, the correspondence of the points P, P' being symmetrical,

if the coordinate - of P be taken to be a multiple of the ratio of the distances
y

PL, PL' of P from any two corresponding points L L' (and of course the coordinate

a/
-> of P' to be the same multiple of the ratio of the distances P'L, P'L'), the equation

of correspondence is obtained in the inverse form xx' — yy' = 0.

The Rational Transformation between Two Planes.

23. Starting from the equations x' : tf : z' = X : Y : Z, where .3^ = 0, Y =0, Z=0
are curves in the first plane, of the same order n, it has been seen that in order

that we may thence have a rational transformation between the two planes, the curves
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X~0, F=0, Z = must have a common intersection of /i'— 1 points, and no more;

that is, they must not have a complete common intersection of n« points. In the case

n = 2, taking the n' — 1 points in the first plane to be any three points whatever, the

condition that the curves shall be conies passing through the three points does not in

anywise imply that the conies shall have a common fourth point of intersection ; and

we have thus a rational transformation as required ; viz., the first set of equations is

m' : y : z' = X : Y : Z, where Z = 0, F = 0, Z = are conies passing through the same

three points of the first plane ; and as it is easy to see (but which will be subsequently

shown more in detail), the second set is the similar one x : y : z = X' : Y' : Z', where

X' = 0, F' = 0, Z' = are conies passing through the same three points in the second

plane ; this may be called the quadric transformation between the two planes.

24. But the like theory would not apply to the case n = 3 ; if the n' — 1 points

in the first plane were any eight points whatever, the cubics X =0, F = 0, Z = 0,

intersecting in these eight points, would have a common ninth point of intersection,

and the transformation would fail ; and so for any higher value of n, taking at pleasure

any |n(n + 3)— 1 of the n" — 1 points of the first plane, the curves X = 0, F = 0, Z =
of the order n passing through these |n(»i + 3)— 1 points, would have in common all

their remaining points of intersection, and the transformation would fail. A trans-

formation can only be obtained by taking the n* — 1 points in such wise that these

can be made to be tlie common intersection of the curves, and at the same time that

the number of conditions imposed upon each of the curves X=0, Y=0, Z =0 shall be

at most = Jn (n + 3) — 1.

25. And this requirement may be satisfied ; viz., the number of conditions may

be made to be = Jn (n + 3) — 1, by assuming that certain of the n'—l points of inter-

sections are multiple intei-sections of the curves. For if we have a given point which

is an a-tuple point on each of the curves X = 0, F = 0, Z = 0, then this counts for

a' points of intersection of any two of the curves, and thus for a" points of the n' — 1

points: but the condition that the given point shall be on any one of the curves,

say the curve X=0, an a-tuple point, imposes on the curve, not a', but only ia(a+l)
conditions : and we have in this way a reduction whereby the number of conditions

for passing through the n' — 1 points can be lowered from n' — 1 to the required number

in(n+3)-l.

26. In particular, for w = 3, we may for the n' — I points of the first plane take a

point as a double point on each of the cubic curves X = 0, F= 0, Z=0 (which therefore

reckons as four points), and take any other four points. Each of the curves is determined

by the conditions of having a given point for double point, and of passing through

the same four other given points ; that is, by 3+4 = 7 conditions ; and the three cubic

curves .X' = 0, F= 0, Z=0 have for the common intersection the double point reckoning

as four points, and the given other four points ; that is, they have a common inter-

section of 4 + 4 = 8 points ; but this does not imply that they have a common ninth

point of intersection ; we have therefore a rational transformation as required ; viz., the

first set of equations is x' : y' : z' = X : Y : Z ; where .^^ = 0, F = 0, Z = are cubics

in the first plane having each of them a double point at the same given point and
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also each passing through the same four given points ; the second set of equations is

X : y : z = X' : Y' : Z', where X' = 0, F' = 0, Z' = are like cubics in tlie second plane.

27. Generally suppose that the n' - 1 points in the firet plane are made up of

Oi points, which are simple points; a^ points, which are double points; as points, which

are triple points, . . . «„_, points, which are (n — l)tuple points (o^i = 1 or 0), on each of

the three curves ; these ^vill represent a system of «» — 1 points if only

a, + 4aa4 9a, ... + (n- l)»a„_, = ?i2- 1.

The number of conditions imposed on each of the curves X =0, F= 0, Z = will bo

a, + 3a,+ 6a3... + ^«(« — 1) a„_, ; for the reason presently appearing, I exclude the case

of this being < ^n(?t + 3) — 2 ; and therefore assume it to be =^n(n+3)-2. In fact,

writing

a, + 3a3 + 6a,... +\n{n-\) a^^ = \n{n + ^)--l,

this combined with the former equation gives

a, + 3a,...+i(n-l)(n-2) a„_, = i(n- 1)(«- 2)

;

viz., the singularities are equivalent to J (« — 1) in — 2) double points, that is, to the

maximum number of double points of a curve of the order n; or say each of the

curves X = 0, F=0, Z-=0 is a curve of the order n having a deficiency =0; that is,

it is a unicursal curve of the order n. Hence also, taking (a, b, c) any constant factors

whatever, the curve aX + bY \- cZ= is unicursal.

28. It is important to remark that the conclusion follows directly from the general

notion of the rational transformation; in fact, the equation aX + bY+cZ={) is satisfied

if X : y : z = X' : Y' : Z' ; ax' + by" + c/ = 0. The last of these equations determines

the ratios a^ : y' : / in terms of a single parameter (e.g. the ratio x' : y), and we
have then x : y : z expressed as rational functions of this parameter; that is, the curve

is unicursal.

29. Suppose for a moment that it was possible to have

a, + 3a, + 6y, ...+ i^Cn- l)a„_, < ^w(n + 3)- 2.

Combining in the same way with the first equation, it would follow that

a,+ 3a,...+i(n-l)(n-2)a^, >i(n-l)(w-2),

which would imply that the curves Z=0, F = 0, Z=0 break up each of them into

inferior curves : but more than this, the coefficients a, b, c being arbitrary, it would

imply that (he curve aX + bY + cZ = breaks up into inferior curves; this can only be

the case if X, Y, Z have a common factor, say M ; that is, if X, F, Z = MXi, il/F,, MZy-,

but we could then omit the common factor, and in place of x' : y" : z' = X : Y : Z
write x : y' : z' = X, : Y, : Zi, where Xj=0, F, = 0, Zi=0, are proper curves, not

breaking up ; the above supposition may therefore be excluded fi'om consideration.



200 ON THE RATIONAL TRANSFORMATION BETWEEN TWO SPACES. [447

30. We have thus a transformation in which the first set of equations is

X ; jjf
: i! = X : Y : Z, where Z = 0, F= 0, Z=0 are curves in the first plane, of the

same order n, having in common a,, «,...»„_, points which are simple points, double

points,... (n — l)tuple points respectively on each of the curves; these numbers satisfy the

conditions

a, + 4a5+9a, ... + (n-l)»a„_, =n'- 1,

ai+3a, + 6a, ...+ \n(n-\) a„_i = i (n' + 3n)-2;

conditions which give, as above,

a,+ 3a,...+i(n-l)(n-2)a„_,=i(n-l)(n-2),
and also

a, + 22, + 3a3...+ (n - l)a^i = 3n- 3;

so that the relations between a, , a, . . . a„_i are given by any two of these four equations.

31. The second set of equations then \b x -.y : z = X' -.Y' -.Z', where X'=0, F'=0, Z'=0

are curves in the second plane, of the same order n\ and it is clear that these must

be curves such as those in the first plane; viz., they must have in common a,', a,', .. a',^_,

points, which are simple points, double points, ... (n — l)tuple points respectively on each

of the curves, the relations between these numbers being expressed by any two of the

four equations

a/ + 4ai,' + Qa/ . . . + (n-Vf at^-x = n= - 1,

ai'+3aa' + 6a,' ...+ \n{n-\) a'„_i = i»i (n + 3) - 2,

a',+3a3'...+i(7i-l)(n-2)aV.=i(n-l)(n-2).

a/ + 2a; + 3a3'...+ (« - 1) aVi =3n -3.

32. To any line ax + hy' + c/ = in the second plane there corresponds in the

first plane a curve aX + 6F+cZ of the order n; and to any line a'a; + 6'y + c'^ = in

the first plane there corresponds in the second plane a curve a'X' + 6'F'+c'Z' = of

the same order n; the curves aX+6F + cZ = in the first plane are, it is clear, a

system, and the entire system, of curves each satisfying the conditions which have

been stated in regard to the individual curves X = 0, F= 0, ^ = 0, and being as

already mentioned unicursal ; and similarly the curves a!X' + 6'F + cZ = in the second

plane are a system, and the entire system, of curves each satisfying the conditions

which have been stated in regard to the individual curves X' = 0, F = 0, ^ =
; and

being also unicursal. We may say that to the lines of the second plane there

corresponds in the first plane the reseau of curves aX -\-hY+cZ= 0; and to the lines

of the first plane there corresponds in the second plane the r4seau of curves

a'X' +b'Y' -\-c'Z' = Q; these reseau being systems satisfying respectively the conditions

just referred to.

33. We have next to enquire what are the curves in the second plane which

correspond to the a,+ a, ... + a„_i points of the first plane. I remark that the

«! + Ho . . . + a„_, points are termed by Cremona the principal points of the first plane,

and the corresponding curves the principal cui-ves of the second plane. But it will be

i
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more convenient to say that the Bj + Bj ... +0,^1 points are the principal system of the

first plane, and the con-esponding curves the principal count&r-system of the second

plane. And of course the 0/ + a.' . . . + a'„_i points will be the principal system of the

second plane, and the corresponding curves the principal counter-system of the first

plane.

.34. The Jacobian (curve) of the curves X = 0, F=0, Z = is, of course, the

Jacobian of any three curves aX + hY + cZ = of the first plane, or it may be called

the Jacobian of the reseau of the first plane ; and similarly, the Jacobian of the curves

X' = 0, F' = 0, Z' = is the Jacobian of the reseau of the second plane.

35. I say that to each point a, of the first figure there corresponds in the second

figure a line; to each point au a conic; to each point a^ a nodal cubic; ... and

generally, to each point o, a unicursal r-thic curve ; the entire system of the curves

corresponding to the ai + Oj-l- a,... + o„_i points, that is, the principal counter- system of

the second plane, is thus made up of a, lines, ou conies, a^ nodal cubics, . . . 0^ uni-

cursal r-thics, ...a,t_i unicursal (w — l)thics. It is thus a curve of the aggregate order

0, + 2aj-(-3aj ... -t-(«— l)a„_,, =3)i — 3; and it is in fact the Jacobian of the reseau of

the second plane; as such, it passes through each point «/ two times, each point a^

five times, ... each point a/ 3r — 1 times, ... each point a',i_i 3n — 4 times.

36. The reciprocal theorem is of course true. The Jacobian of the reseau of the

first plane is thus made up of a/ lines, a^ conies, a^ nodal cubics, ... o^' unicursal

r-thics, ... a',;_j unicursal (n — l)thics. Calculating the Jacobian of the reseau of the

first plane, we have thus the numbefrs a/, a/, ... a',^i, which determine the nature of

the principal system of the second plane.

37. I indicate as follows the analytical proof of the theorem that to a principal

point Or of the first plane there corresponds in the second plane a unicursal r-thic.

Consider the simplest case, r = 1 ; if in the equations x : y' : z = X : Y : Z the

coordinates {x, y, z) are considered as belonging to a point a,, these values give identi-

cally X = 0, F=0, Z = 0; hence for the consecutive point x+Bx, y-\-Sy, z + Bz, if

(A, B, (J) denote the derived functions of X, {A^, B^, 0,) those of Y, {A^, B^, Cj) those

of Z, we have
a! : y' : z' = ABx->rBhy^Ghz

: AM-VB^hy-vC-fiz

: A^Bx + BiBy -f G^Bz.

We have = 0, for the determinant is the value, at the point a, inA , B , G

^i, Bi, 0,

Aj, B„ G-i

•juestion, of the Jacobian of the reseau of the first plane ; and the Jacobian curve

passing through a, (in fact, having there a double point), the value is = 0.

38. Hence x', y', /, considered as corresponding to a point indefinitely near to a^,

are connected by a linear equation. Corresponding to Kj we have in the second figure

C. vil. 26
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a line. But it is to be observed, further, that the equation of the line is that

obtained bv writing in the foregoing equations, say Bz = 0, and eliminating the remaining

quantities Sip, By. or, what is the same thing, we may consider the equation of the

line as given by the equations

x' : 1/ : z'= A Bx + B By

: AiBx + BiBy

: AiBx + BuBy,

where Sx, By are indeterminate parameters to be eliminated.

39. In the case of a point 0, we have in like manner

a/ : y : z' = (a , ...^Bx, By, BzY

: (uu-.-^Bx, By, BzY

: (a,. ...$&r. By, BzY,

where (a,...), (a,,...), (ctj, ...) ai-e the r-th derived functions of X, Y, Z respectively.

In virtue of the relation of the point av to the curves X = 0, F=0, Z = 0, the coefficients

will be such as to allow of the simultaneous elimination from these equations of the

three quantities Bx, By, Bz. The result of the elimination will be the same as if,

writing say Bz = 0, we eliminate Bx, By ; or, what is the same thing, the relation of

al, y, s! may be regarded as given by the equations

x' : y : zf = (a ,...'^Bx, ByY

: {a„...^Bx, ByY

: (oj, ...$8a;, ByY,

where Bx, By are indeterminate parameters. These equations obviously express that the

point {x', y', z') is situate on a unicursal curve of the order r.

40. It is further to be shown that the r-thic curve thus corresponding to a^ is

part of the Jacobian of the reseau of the second plane. The Jacobian in question is

the locus of the new double point of those curves of the reseau which have a new
double point; that is, a double point not included among the a2' + «3'...+ a',i_, singular

points of the principal system of the second plane. But a curve of the reseau being

unicursal, can only acquire a new double point by breaking up into inferior curves.

Consider, in the first figure, any line through ol,., the corresponding curve in the second

figure is made up of the unicursal r-thic curve, which coiTesponds to the point a,,

together with a residual curve variable with the line through a,; this is a unicursal

curve of the order n — r. The aggregate curve of the order r + (n — r) has singulai-

points equivalent to ^ (?i — l)(n — 2)+l double points('); that is, the singularities are

those belonging to the principal system of the second plane, together with a new double

' In general, if r +/= »», and the carves r, r' are each unicursal, then the aggregate singnlarity arising

from the singularities of the two curves and from their intersections, is equivalent to J(r-l)(r-2) +
4(f'-l)(r'-2) + rr', that is, to > (r+ r'-l) (r+ r'-2) + l, or i(n-l) (n-2) + l double points.

t
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point constituted by an intersection of the curves r, n — r. {Observe that the two curves

have only this single intersection ; viz., the remaining r (n — ?•) — ! intersections are

at points a.,' + Oj' . . . + a'„_i of the principal system of the second plane.] We have thus,

in the second plane, a series of curves, each of them having a new double point

;

viz., these are the several curves which correspond to the lines through a^ in the first

figure. Each of the curves is a fixed curve r together with a variable curve n — r.

The new double point is an intersection of the two curves ; that is, it is a variable

point on the curve r. The locus of the new double point is thus the curve r ; thei-efore

the curve r is part of the Jacobian of the reseau of the second plane. Since each

point a, gives a curve r, the curves in question form an aggregate curve of the order

3, + 20, ... 4-(n — l)a,v_,, =3n— 3; viz., this is the order of the Jacobian; or, as stated,

the curves r (that is, the principal counter-system of the second plane) constitute the

Jacobian of the reseau of this plane.

41. The numerical systems (a,, ',.,... a„_i) and (a/, a.,' ... a.',t_j) are each of them a

solution of the same two indeterminate equations

2r'a, = n-— 1, 2ra, = 3« — 3,

but not every solution of these equations is admissible ; for instance, if r > ^n, then

a, is = or 1, for 0^= 2 would imply a curve of the order n with two r-tuple points,

and the line joining these would meet the curve in more than r points ; similarly,

/• > f n, Ur is =4 at most, for a^ = 5 would imply a curve of the order n with five

r-tuple points, and the conic through these would meet the curve in more than 2»

points; and there are of course other like restrictions. The different admissible systems

up to n = 10 are tabulated in Cremona's Memoir : and he has also given systems

belonging to certain specified forms of n : these results are as follows

:

26—2
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n 2 3 4 5 6 7

«X 3 4 6 3 8 3 10 1 r*!
12 2 5 3

Ol 1 3 3 6 4 1 4 3 3 5

"I 1 1 2 3 2 4 3

«>4 1 1 1 1

»f 1 1

«^ 1

«7

Og

o»

1 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

[447

n 8 9

*_^ ,
,

;W^ /—-—

^

,_<_,
Ol 14 3 1 3 6 2 3 16 4 2 3 7 1 3 1

<h 2 3 6 5 3 1 3 4 7 4 3 1

<h 3 2 7 1 2 5 4 1 3 4 3 3

04 2 3 1 3 2 4 3 1 1 3

<h 1 1 1 1 1 1

o« 1 1 1

07 1

Os
'-' '-'

1

<H
'"' '~^

1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 10

n 10

fh 18 5 1 r"8
2 4 r^ 3 3 r^ 1

Oj 4 2 8 3 3 1 3 3 6 1

<h 5 2 7 4 3 2 3 1 5 2

<l4 2 3 1 2 2 1 3 6 5

<h 2 1 3 2 3 3 2

o* 1 1 1 1

07 1 1

<H 1

a. 1

1 2 3 4 5 6 7 8 9 10 11 12.13 14 15 16 17

' Omitted by Cremoiia.
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n = p

a, =2p-2

205

n=2p n=-2p + 1 n == 3;,

<»1 = 3 2p-2 Ol =. 3 2p-l a, = 1 2p-3 a, = 4 2p-2

"s = 2p-2 o.. = 2p-l a, = 4 a, = 1

'h-l = 1 ap = 3 a, =2p-3 a, =2;>-2

"p = 3 S+i = 1 ap = 4 »,..= 1

'hp-,= 1 <hp-i = 1 »P+. = 1 a, = 4

<hp-i =

»3j,-3 = 1

I ^ =

a-ap-s = 1

1

'
1

ji = 3p+ 1 n = 3p + 2

a. = 2 2;j-2 Ol = 5 2p-l a, = 3 2p-l Oi = 2;>-2

Oj = 3 <»3 = 2p-l oj = 2 OUj = 5

a, =2;) -2 1;, = 5 O.J =2p-l a, =2^-2

a, = 3 <^^1= 1 ap = 2 «P« = 5

ap.i = 2

1

<Hp-»= 1 a,., =

<hp.,=

»3p-l = 1

3

1

a^ =

«3p-l = 1

1

a^ =

o»-j= 1

'^
Y' '

'

n- ip

-. = 1 2p-3

«, = 3

a, = 2

a4 = 2;j - 3

«p = 3

<h*i= 1

0^-1= 1

<hp = 2

n*j.-i = 1

a, = 2 2p-4

Oj = 5

»* = 2j9-4

«i' = 5

Op^l = 2

»»P-i
= 1

«4p-4 = 1

"i
= 3

a. = 3

Oj = 2p-2

ttp-i =

";,
=

O-ip =

»4P-i
— 1

22J-2

1

3

3

O',

^4

Op

»!'

«3p

"4P-4

= 6

= 1

= 2;?- 2

ap.i =

=

=

= 1

2p-2

1

6

1
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n = 4p+ 1

a, = 2p-3 o, -= 2 2;>-2 °i = 3 2;,-

3

a, = 7 2p-l

«, = 3 a, = 3 "s := 4 O, =2j9-l

«. = 3 a, = 1 «4 = 2j»-3 ap = 7

«4 =2p-Z at =2p-2 °P - 4 «^P.i = 1

«, = 1

3

ap =

«P.. =

3

1

«P + 1
=

=

3

1

a4p-.i = 1

^ =

a^p., -= 1

V

3

<»<p-S ^ 1

2

1

"^p- .= 1

>

n = ip + 2

1.

a, = 2;>-4 a, = 1 2p-2 aj = 3 2/,-l a, = 4 2p-2

<H = 7 a, = 3 Oo = 3 oa = 3

«, =2p-4 a, = 2 a, =2;,-! a, =2p-2

«P*i = 7 a, =2;>-2 ap = 3 ap = 3

«» = 1 Op = 1 ap,, --= 1 ap„ = 4

a4p-a = 1 ap.i=

<hp =

'hp^i=

3

1

2

a^.i=

a4p-3= 1

3 a,p =

a4p-! = 1

1

a*-i = 1

ra = 4;o + 3

«, =

oj = 3

«, = 3

04 =2p-

op^, =

«sp+i=

«4p-l = 1

2

2j9-2

3

1

3

"l = 9

Os = 6

04 = 2p- 3

°-p*l
=

°-p*i
=

<hp*i =

a4p-, = 1

2jo-3

6

1

1

"2p + l
-

a2p+3 =

<V-1 =

= 2

= 3

= 1

= 2/)-l

=

=

1

2p-l

1

3

2

1

a, = 5

a, = 2

a, =2p-l

Op =

ap^.1 =

<hp+i =

a4p-i = 1

2p-l

2

5

1
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42. The system (a,, Oj.-.o,^,) geometrically determines completely the system

(a/, o/ . . . o',^,) ; it ought therefore to determine it arithmetically ; that is, given the

one series of numbers, we ought to be able to determine, or at least to select from

the table, the other series of numbers. Cremona has shown that the two series

consist of the same numbers in the same or a different order. By examination of the

tables, it appears that there are certain columns which are single (that is, no other

column contains in a different order the same numbers), others that occur in pairs,

the two columns of a paii- containing the same numbers in a different order. Where
the column is single, it is clear that this must give as well the values of (a/, a/ ... a'„_i)

as of (a,, a^...a,i_i). Where there is a pair of columns, as far as Cremona has

examined, if the one column is taken to be (Oj , a^--- «n-i) the other column is

(oj', a^' ... a'n-i); it appears, however, not to be shown that this is universally the case;

viz., it is not shown but that the two columns, instead of being reckoned as a pair,

might be reckoned as two separate columns, each by itself representing the values as

well of (fli, ai...an-i) as of (a/, a/ ... a'„_i) ; neither is it shown that there are not,

in any case, more than two columns having the same numbers in different orders.

It seems, however, natural to suppose that the law, as exhibited in the tables, holds

good generally; viz., that the tables contain only single columns, each giving the values

as well of (a,, a2...a„_i) as of (a/, o,' . . . a',^_j) ; or else pairs of columns, one giving

the values of (a,, a.^... «„_,), and the other those of (a/, a^' . . . a'„_,) ; or, say, that the

partitions are either sibi-reciprocal, or else conjugate.

43. Assuming that the two systems (ai, a2...a„_i) and (a,', a./...a'„_i) are each

known, there is still a question of grouping to be settled ; viz., the Jacobian of the

first plane consists of a,' lines, (t,' conies, ... o',i_i unicursal (w — l)-thics; each line, each

conic, &c., passes a certain number of times through certain of the points Oi, a2...a„_i:

but through which of them ? For instance, each of the a/ lines will pass through two

of the points a,, (t,, ...On-i'- will these be points a^, or points a„, &c., or a point a,

and a point a,, &c. ? The mere symmetry of the different groups of points determines

certain conditions of the solution ('); for instance, if any particulai- one of the aj' lines

passes through two points a,, then each of the a/ lines must pass through two

points a,; arid since the points a^ are symmetrical, we must in this way use all the

, pairs of points a, ; that is, if a,' = ^ a, (o^ + 1), but not otherwise, it may be that each

lof the a,' lines passes through two of the points a^. In the case of an equality

a, = a, we could not hereby decide whether the line passed through two points a^ or

through two points a,. So, again, if any one of the a/ lines pass through a point a^

and a point a„ then each of the a,' lines must do so likewise, and we must hereby

lexhaust the combinations of a point a, with a point a,; viz., the assumed relation

'can only hold good if ai' = arag. Similarly, each of the a^' conies will pass through

(five of the points Bj, aj...a,i_, ; each of the a^' nodal cubics will pass twice through

I

one (have a double point there) and through six others of the points a, , a^ ... a,i_,

:

which are the points so passed through ? I do not know how a general solution is

to be obtained, but most of the cases within the limits of the foregoing table have

' It 18 by such considerations of symmetry that Cremona has demonstrated the before mentioned theorem

of the identity of the nambers (oj, a,... a„-i) and (O]', cb,' ... a'„_,).
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been investigated by Cremona. The results may conveniently be stated in a tabular

form; the tables exhibit in the outside upper line the values of a,, a,...a,^_,, and in

the outside left-hand line the values of a/, a/...a'„_,, and they are to be read as

!«,'
lines

1

Oj' conies > passes ( ) times through ( ) of the points «,, at, ... a,^_,

&c. )

respectively; the numbers in the table being those of the points passed through, and

the indices in the table (index = 1 when no index is expressed) showing the number

of times of passage, that is, showing whether the point is a simple, double, triple, &c.,

point on the curve referred to.

44. Thus (in the tables which follow) the last of the tables w = 6 gives the con-

stitution of the Jacobian of the first plane, where the principal system is (3, 4, 0, 1, 0);

and it is to be read:

of the points Oj and through the point a,;

of the points a, and through the point a^;

of the points Si, 4 of the points a™, and twice

through the point a, (that is, a, is a double

point on each cubic).

It is hardly necessary to remark that the tables are sibi-reciprocal, or else conjugate,

as appeai-s by the outer lines of each table.

Table n = 2.

Each of the 4 lines passes through 1

The 1 conic „ „ 4

Each of the 3 cubics „ „ 2

(i

N

3

a,' =3 2 [was originally printed, 3.]

Table n = 3.

a, a,

II II

4 1

aa'.= 4 1 1

a-=\ 4 1

Tab LES M=4

II

6

"3

11

<h

II

1

11

3

11

3

<»3

II

Oi' = 6 1 • 1

6 1 1»
! 1

2

2 3
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a,' =

o,' =

a; = i

<h Oj Oj o<

II II II

1

1 1

8 '
1'

Tables n = 5.

"1 ^h "h <"* f^i <h <h "4

II II II II

6

1 1

61 3 1 5

3 3 P

Tables n=Q.

Ol "S O3 "4 Is

II II II II II

10 1

a,' =10 1 1

<h'=

03'=

10

I

a;=

a;= 1 1'

1

Oj' = 3

a,'= 4

<h'=

a;= 1

a,'=

«i "s "3

II II II

4 1 3

2

1 1 3

4 1 3»

ttj do 03 04 a,

II II II II II

3 4 10
4 1 1

1 4 1

3 2 4 1"

* Bead, "Each of the two cnbica passes through the point aj, the four points o,, and, (1^, 1), twice

throQgh one and once through the other of the points Oj
."

c. vn, 27
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45. It is to be remarked upon the tables—first, as regards the lines; if we add

the numbers in each line, reckoning mP as mp, (that is, each multiple point, according

to the number of branches through it,) the sums for the successive lines are

2, 5, 8, 11, 14, &c. ; that is, each line passes through 2 points, each conic through

5 points, each cubic through 8 points, each quartic through 11 points, &c. But if we

add the numbers reckoning m^ aa m.ip(p+l), (that is, each multiple point according

to its effect in the determination of the curve,) then the sums are 2, 5, 9, 14, 20, &c.,

that is, all the curves are completely determined, viz., the line by 2 conditions, the

conic by 5 conditions, the cubic by 9 conditions, &c. Secondly, as regards the columns,

if for any column, reckoning m*" as mp, we multiply each number by the corresponding

outside left-hand number, add, and divide the sum by the outside number at the head

of the column, the successive results are 2, 5, 8, 11, 14, &c.; this merely expresses the

known circumstance that the Jacobian passes 3r— 1 times through each point «,•

46. The analogous tables showing the passage of the Jacobian through the

principal system, in the solutions belonging to certain special forms of n, are

Table n=p.

a-i aj,_i

II II

2p-2 1

a/ =2;. -2

a'j,-! = 1

1 1

2p-2 lP-»

I

^

oi' =2;?-

2

o,' =

«'p-i= 1

V = 3

Tables n = 2p.

II

2jB-2
II II

"2P-2
II

1

II

2p-2
II

Op-l

II

1

Op

II

3

II

1 ,

2p-2 lp->

2 2p-2 11.-'

Oj' = 3

:.,' = 2» - 2

'p-1 =

«p

a'sg,_, = 1

2

1 1 3

2;>-2 p-3 3P-1

f
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Tables 7i=2p-\-l.

Ol <H •h "p+i "•-

II il II II ll

3 2p-l 1

= 2^-1

a.,' =

ttp' = 3

o'„+i = 1

o'»p-i=

1 1

1 2p-l 1^.-1

3 2p-l 1"

= 3

< =2p~l

«; =

«'i-+l =

« !ip-l = 1

TABLES n = 3p.

= 2p-3

=

Oj' =

a; = 4

a'n+l = 1

a'jp-l = 1

»V.=

I

1

II

4

"a

II

2;j-3

"p

II

"/) + ! "2P-1
II

1

1 1

3 2j9-3 p-i

1 4 2;>-3 IP

1 4 (2jt^3)' 12P-3

27—2
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i <h <h »!. <h*i •Hp-i <hp-t

II II II II II II II

2p-3 4 1 1

a,' = 1 1 1

a,' = 4 3 1 1

o,' =2p-3 1 4 1 1»

< =

aVa=

aV.=

a'3p_»= 1 2p-3 4^-1 1" l^-»

Ol o. "s «p-i a^ <hp

II II II II il II

4 1 2p-2

oi' = 2p - 2

"s =

a,' =

a'o-i = 1

.' = 4

o'jp = 1

o'«.-»=

1 I 1

'2p-2 lP->

1 1 2;»-2 p-i

4 1 (2p-2)» piJ-2
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II

2p-2

'2

II II II

4

(hp

1

o,- = 4

03 = 1

a,' =2p-2

a',-1 =

Oj,' =

a'^ =

aV3= 1

1 1

4 1

1 1 4 P

2p-2 p-2 4P-1 ]^l»»-2

47. The before mentioned theorem, that (a^, a^...an-.i) and (a/, a/...a'„_i) are the

'same series of numbers, of course implies Sa^ = Sor' ; this relation Cremona demonstrates

independently, by consideration of the pencil of curves (aX + bY+cZ) + d{(hX + b-jr+CiZ)=Q,

(6 a variable parameter,) which corresponds in the first plane to the pencil of lines

(ax' + by' + c/) + (oio/ + b^' + Cyz') = 0, which pass through a fixed point (ax' + by' + cz' = 0,

Oix' + bii/ + Ci/ = 0) in the second figure. In general, in the pencil U+ 6V=0 (U, V
bgiven functions of the order n) there are 3 (w — 1)' values of 0, each giving a nodal

Icurve. But in the present case each of the curves U — 0, V=0 has multiple points

lat the principal points ot^ of the first plane : the question is to obtain the number of

I
values which give a curve having one new double point; and this is found to be

3 (n - 1)» - S (r - 1) (3r + 1) (v. We have 2r»a, = n' - 1, l,rar = 3n - 3 ; or, substituting,

jthe value of ^ is =2a,. But the curves which have an additional double point are

liose which correspond to the lines which in the second figure pass through one of

ftbe principal points a/ ; viz., these are the lines drawn from the point (ax' + by' + cz' = 0,

|oi«' + 6iJ/' + 01/ = 0) to the several principal points o^'; and the number of them is

: Sor'. We have thus the required relation Sa^ = 2a/.

The Quadric Transformation between Two Planes.

48. This is of course given by what precedes. The principal system in each plane

is a set of three points ; and the Jacobian of the same plane is the set of three

lines joining each pair of points ; that is, the three lines of either plane are the

principal counter-system of the other plane. But to give the analytical investigation
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directly: taking the coordinates (x, y, z) to refer to the principal system of the first

plane (viz., taking the three points to be the vertices of the triangle formed by the

lines x=0, y—0, z=0), then X = 0, F=0, Z=0 being conies through the three points,

the functions X, Y, Z will be each of them of the form fyz + gzx + hxy ; x', %/, £
being proportional to three such functions, there will be linear functions of x' ,

y', /
proportional to yz, zx, xy; or taking these linear functions of the original (x, y\ /) for

the coordinates (ar', y', y) of a point in the second plane, the formulae of transformation

will be af : y' : 2^ — yz : zx : xy, and we have then conversely x : y : z = y'z' : sia! : naif ;

that is, the formulae for the transformation in question are

x' : y : n^ = yz : zx : xy, and x : y : z = yV : z'x' : x'y.

We at once verify a posteriori that the Jacobian in the first plane is xyz = 0, and

that in the second plane is x'y'z' = 0.

The equations may be written

a! : y : z =-:-:- , and x : y : z = - : - : -,," X y z X y z

or, if we please, xx' = yy' = zz' ; the transformation is thus given as an inverse trans-

fonnation.

(49. With respect to the metrical interpretation and actual construction of the

transformation, it is to be observed that if x, y, z be taken to be proportional (not

to given multiples of the perpendicular distances, but) to the perpendicular distances

of P firom the sides of the triangle in the first plane, and similarly a/, y', z to be

proportional to the perpendicular distances of F" from the sides of the triangle in the

second plane, then in general the equations of transformation must be written, not as

SC3C lilt ZZ
above, but in the form , =^^ = -r- , involving arbitrary multipliers f : g : h. We may

J 9 ">

imagine in the second plane a point P" determined by coordinates {x", y", z"),—the

same coordinates as {x, ]/, z'), that is, proportional to the perpendicular distances of

P" from the sides of the triangle in the second plane,—which point P" corresponds

homographically to P in such wise that -^ : ^ : -j^
= x" : y" : z". We have then, in

the second plane, the two points P', P" corresponding to each other in such wise

that aV = y'y" = aV ; and either of these points being given, the other can at once

be constructed; viz., it is obvious that, joining P", P" with any vertex, say A', of the

triangle A'SC, the lines A'P", A'P" are equally inclined to the bisectors of the

angle A'; and consequently, P being given, we have the three lines A'P', RP", CP"
intersecting in a common point P", which is therefore determined by means of any

two of these lines. We have thus a geometrical construction of the transformation

between P and P".}

50. The analysis assumes that the principal points A, B, G of the first figure

are three distinct points; but they may two of them, or all three, coincide. In the

first case, say if J5, (7 coincide, the line BC is still to be regarded as having a

definite direction ; and taking a; = for this line, y = for the line joining A with



447] ON THE RATIONAL TRANSFORMATION BETWEEN TWO SPACES. 215

(BC), and 2r = an arbitrary line through A , the functions X, Y, Z will be each of

them of the form h]f' + ^gzx + ^hxy ; and replacing, as before, the original «', y' , 2! by-

linear functions of these quantities, these linear functions being taken for the coordinates

(a;', 2/, z), we may write x : y : z = y- : xy : xz. Forming the converse system, the

equations for the transformation are

x' : y : z' = y^ : xy : xz, and x : y : z = y'^
: x'y" : x'z

,

80 that the points A', B, C in the second plane are related as the points in the

first plane ; viz., R, C coincide, the line BC being definite.

It is easy to verify that the Jacobian in the first plane is xy^ = 0, and the

Jacobian in the second plane is x'y'^ = 0.

51. Secondly, ii A, B, C all coincide, these being however consecutive points on

a curve of finite curvature, or say on a conic ; then, taking a; = for the tangent at

{ABC), z = for any other tangent, and y = for the chord of contact, the functions

X, Y, Z will be of the form aa? + b (y^ — zx) + 2hxy ; whence we may write

al : 1/ : si = a? : xy : 1^ — xz. Forming the converse equations, the equations of trans-

formation are

x' : 1/ : z' = a? : xy : y^ — xz, and x : y : z = oi/^ : x'y : y- — a;V

;

so that the points A', B, C in the second plane are related as those of the first

plane ; viz., they are the consecutive points of a curve of continuous curvature.

We may verify that the Jacobian of the first plane is a^ = 0, and the Jacobian

of the second plane x'' = 0.

writing these in the form

The I/ineo-linear Transformati<m between Two Planes.

52. We have two equations of the form

(a ,...$«, y, zJlx', y', z') = 0,

(ai,...'$^x, y, z\a!, y', /) = 0;

F,x'^q^y'^R,z' = 0,

where (P, Q, R, P,, Q,, i?,) are linear functions of {x, y, z), we have

P, Q, R

Pi. Qi, Ri

that is to X : Y : Z, where X = Q, Y=0, Z = are conies each passing through the

same three points ia the first plane.

And conversely, writing the equations in the form

P'x+Qy + R'z = 0,

Pr'x+Q,'y + R,'z=0,

x ,
y' , z' proportional to
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where (/**, Q*. R', P,', Q,', RT} are linear functions of (a;', y', /), we have

m, y, z proportional to
P/, Qi', Rl

that is to Z', y, Z, where Z' = 0, F' = 0, Z' = ^ are conies each passing through the

same three points in the second plane.

53. The lineo-linear transformation is thus the same thing as the quadric trans-

formation. It is, moreover, clear that the equations must, by linear transformations on

the two sets of variables respectively, and by linear combination of the two equations,

be reducible into forms giving the before-mentioned values oi x : y : z and x' : -i/ : z'

respectively. Thus, in the general case, where in each plane the three points are

distinct points, the lineo-linear equations will be reducible to

xaf — yy' = 0, xx' — zz' =0;

in the case where B, C in the first plane, and R, C in the second plane respectively

coincide, the forms will be
xx'-yy' = 0, yz'-y'z=0;

and in the case where A, B, C in the first plane, and A', S, C in the second plane

respectively coincide, the forms will be

xy' — yx = 0, xz' — yy' -f- zx' = 0.

The determination of the actual formulae for these reductions would, it is probable,

give rise to investigations of considerable interest.

The General Rational Transformation between Two Planes (resumed).

54. Consider, as above, the first plane or figure with a principal system (oi, flL,...a„_,),

and the second plane or figure with a principal system (a,', Oa' . . . a'„_i). To a line in

the second plane there corresponds in the first plane a curve of the order n passing

1 time through each of the points a^, 2 times through each of the points o^, 3 times

through each of the points a,, &c. ; or, as we may write this

:

Points a,

First figure.

Oa Oj ... (V-i Points a,

Second figure.

Oj' Ch' ... o'n-i

n-1

n-1
n-1

- curve order n

n-1

n-1
curve order 1

viz., the I's denote the number of times which the curve of the order n passes through

the several points a, respectively; the 2'8 the number of times which the curve passes

through the several points Oj respectively ; and so on.
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55. We may, iu the second figure, in the place of a line consider a curve of

the order k'. If the equation hereof is (*][«', y\ /)*' = 0, then the coiTesponding curve

in the first figure is {*\X, Y. ZY = ; viz., this is a curve of the order k = nk'. If,

however, the curve in the second figure passes once or more times through all or any

of the points a/, a^, ... a',v_i , then there will be a depression in the order of the

corresponding curve in the first figure ; and, moreover, this curve will pass a certain

number of times through all or some of the points a^, ou, as, ...a^^i. The diagram of

the correspondence will be

:

First figure.

Ol. O3. M3. •••fltn-i

Second figure.

Oi cu a,

6. b, h

c, c, '

a'

b„-i curve order k

1 Ofn (t^ (I j^

' ^ *
»-i

^ curve order k'

Cx : : c n—

1

where Oj, 6,, Cj... denote the number of times that the curve of the order k passes

through the several points a^ respectively, (viz., the number of the letters a,, 61, Cj...

is =a,, any or all of them being zeros,) a„, 6,, c,... the number of times that the

curve passes through the several points ou respectively, (viz., the number of the letters

fla. h, Cj... is =02, any or all of them being zeros,) and so on; and the like for the

curve in the second figure.

56. By what precedes, it is easy to see that, if the curve k' passes through a

point a,', then the curve k throws off a Line, and the depression of order is = 1 ; so,

if the curve passes 2 times, 3 times, ... or Oi' times through the point in question,

then the curve throws off the line repeated 2 times, 3 times, ... a/ times, or the

depression of order is =2, 3, ... or Oj' ; and the like for each of the points a,' ; so

that, writing for shortness Oj' + 6,' + c,' + . . . = Xch', the depression of order on account

of the passagies through the several points a^ is = Soi'. Similarly, for each time of

passage through a point a,', there is thrown off a conic ; or if a,' + ^2' + • • • = -«2'> then

the depression of order is = 2Saa', and so on ; and the like for the figure in the

other plane ; and we thus arrive at the equations

k = fn - 2(ai' + 2a,' + 3as' ... + n - 1 a'„_,)

k' = kn -S((ii +203+803 ... + n-l an-i )•

57. The simplest case is when the curve k' does not pass through any of the

oints Oi', Oj', ... a'„_,. We have then

a,' = 6,' = c/. .!=(), a,' = 6;... = 0, a'„_, = 6'„_j . . . = ;

consequently k = k'n. And, moreover, it is easy to see that

a, = 6i ... = A;', 0^ = 6, ... =24', a„_i = 6„_i ... =(n - 1) 4'

;

C. VII. 28
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80 that the correspondence is:

First Figure. Second Figure.

]? 2k' Hk' (n-l)k' \
0~

]

' L
A;' 2k' 3k' („_ l)^ ^

curve order i-rrw A;' curve order &',

We have
2a, = A;'a„ 2as = 2i'a, l(i,(ai~l) = k' {k' -l)aj, &c.,

and the formulae for k, k' become

k = k'n, k' = kn - k' {ai + 4ta.i ... + {n — ^)- a„_]
]

;

viz., the second equation is here k' = kn — k' (v?-l); that is, k'n^ = kn, agreeing, as it

should do, with the first equation.

58. Moreover, the deficiency-relation is

is(k-l)ik-2)--S.^[k'{k'-l)+2k'(2k'-l)...+n-l}^(n-lkf-l)]=^ik'-l){k'-2);

or, what is the same thing, this is

{nJc' - 1) (nk' - 2) - {k' - 1) {k' - 2) = k'' [a, + ici, . . . + (n - If a,^,}.

- k' {a. + 2a, ... + (w - 1) a^^}.

The right-hand side is

jfc'> (n' - 1) - k' (3n - 3) = (« - 1) {{n + 1 ^•'= - M')},

and we have thus the identical equation

(vJc' - 1) {nk' -2)-{k'-l) {¥ - 2) = (« - 1) k' {{n + 1) k' - 3}.

59. It should be possible, when the nature of the correspondence between the

two planes is completely given, to express each of the numbers a,, h^, Ci,...a„_,, 6,^_,, ...

in terms of kf, a^, 6/, Ci', ... a',^_l, 6',^i, ...; and reciprocally each of the numbers

ffli'. ^i', Cj'i ••• a'n-ii t'«-i, ••• in terms of k, Oj, 6,, Cj, ... a^-i, bn-i, ; thus completing a

system of relations between the two sets

(A, Oj , O] , . . . ffltv-i , Oji—i ,...), (A; , fti , Oi , . . . a „—i > o «—i , • • • ) j

but even if the theory was known, there would be considerable diflSculty in forming

a proper algorithm for the expression of these relations.

60. The two curves must have each of them the same deficiency. It is to be

noticed, that if the curve in the first plane passes any number of times through a

point P, which is not one of the points a,, (tj, a,,... or a„_,, then the coiTCsponding

curve in the second plane will pass the same number of times through the corre-

sponding point r, which point will not be one of the points a,', a,', ... a'„_i- The
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points P, P" will therefore contribute equal values to the deficiencies of the two curves

respectively; so that, in equating the two deficiencies, we may disregard P, P', and

attend only to the points a^, a^, ...a„_i of the first plane, and a/, Oa', ...a'„_i of the

second plane. The required relation thus is

i (^• - 1) (i- - 2) - S i {a, (oi - 1) + a, (a,-l)...+ a„_, (a„_, - 1)} ,

= i(A/-l)(i'-2)-2i{a,'(a,'-l) + a,'(a,'-l)...+a'„_i(a'„_i-l)}.

61. In the case of the quadric transformation n = 2, we have in the first plane

the three points Oj, say these are A, B, C; and in the second plane the three points

a/, say these are A', R, C. And if in the first plane the curve of the order k

passes a, b, c times through the three points respectively, and in the second plane

the corresponding curve of the order k' passes a, b', c' times through the three points

respectively, then it is easy to obtain

k' = 2k — a — b — c,

a'= k — b—c,

b' = k — c —a,

c — k — a — b.

k = 2k' -a'-b'- c',

a= k' — b' — c',

b= k'-c' - a',

c= k'-a -b'.

The Quadric Transformation any number of times repeated.

62. We may successively repeat the quadric transformation according to the type

:

First Fig. Second Fig. Third Fig. Fourth Fig.

A, B, c a; B', C
U, E', F D", E", F'

0", H", I" G'", H'", F"

viz., in the transformation between the first and second figures, the principal systems

are ABC and A'BC respectively; in that between the second and third figures,

they are L/EF' and D"E"F" respectively ; in that between the third and fourth

figures, they are G"H"I" and G"'H"'r"; and so on. And it is then easy to see that

between the first and any subsequent figure we have a rational transformation of

the order 2 for the second figure, 4 for the third figure, 8 for the fourth figure, and

so on.

6.3. But to further explain the relation, we may complete the diagram, by taking,

in the transformation between the second and third figures. A", B", C" to correspond

to A', B', C; similarly, in that between the third and fourth. A'", B'", C" to

correspond to A", B", C" ; and U", E'", F'" to correspond to D", E", W. And so in

the transformation between the second and third figure, we may make Q', H', /'

28—2
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correspond to G", H", I", and between the first and second figures make D, E, F

correspond to U, E\ F, and G, H. I to G', H', I', the diagram being thus:

First Fig. Second Fig. Third Fig. Fourth Fig.

-J:irC A'. F. G-
1

A", B". 0" A'", B". C"

'dTWf
I

D', E', F ly, F', F'
I

D"\ E", F"

G, H, I G', H'. I' G", H". I" G'", H'". T

Observe that in the principal systems (for instance, A, B, C and ^', ^'5)^he pointe

A, B, C coiTespond, not to the points A'. B', C, but to the hnes BC
,
GA, AS

respectively; and so in the other case.

64 Consider now a line in the first figure: there corresponds hereto in the

second figure a conic through the points A', B', C ;
and to this conic there corre-

sponds in the third figure a quartic curve passing through each of the pomts

A" F', C" once, and through each of the points D", E". F' twice. And conversely,

to a line in the third figure coiTesponds in the second figure a conic through the

points U E F- and hereto in the first figure a quartic through the points D, E, F,

once and 'through 'the points A, B, G twice; that is, we have between the first and

third figures a quartic transformation wherein a^ = c^=S and a/ = a/ = 3, or say a

quartic transformation 3,3, and 3,3,. In like manner, passing to the fourth figure, to

a line in the first figure corresponds in the fourth figure an octic curve passing

through A'" B'", C" once, through D'", E'", F" twice, and through G'", H'", I'" four

times- and conversely, to a line in the fourth figure there corresponds in the fii-st

figure an octic curve passing through the points G, H, I once, the points D E, J>

twice, and the points A, B, C four times; that is, between the first and^ fourth figures

we have an octic transformation, wherein a, = 0(2 = 24 = 3, a,' = Oj' = a/ = 3, or say a

transformation, order 8, of the form 3,3,3, and 3,3,3,. And so between the first and

fifth figures there is a transformation, order 16, of the form 3,3o3438 and 3,3,3A.

65. It is, moreover, easy to find the Jacobians or counter-systems in the several

transformations respectively. Thus, in the transformation between the first^ and second

figures in the second figure the Jacobian consists of 3 lines such as B'C (viz., these

are, of course, the lines B'C, GA', A'B). Hence, in the transformation between the

first and third figures, the Jacobian in the third figure consists of

3 conies B"G" {D"E"F'),

3 lines U'E";

viz., one of the conies is that through the five points B', C", D", E", F', one of the

lines that through the two points D", E". And so in the fourth figure, the Jacobian

consists of

3 quartics B"C"' (D"'E"'F"\{G"'H"T"\,

3 conies iy"E"' {G"'H"T'%

3 lines G"'H"';
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viz., one of the quartics passes through B'", C" ; through D'", E'", F'" each once; and
through G'", H'", I'" each twice. And so in the fifth figure the Jacohian consists of

3 octics B""C"" {D""E""F""\ {G""H""r"\ {J""K""L""\,

3 quartics iy"'E"" {G""H""I""\{J""K""L""\,

3 conies G""H"" {J""K""L""\,

3 lines J""K"",

and so on.

66. The conditions are in each case sufficient for the determination of the curve.

This depends on the numerical relation

4 + 3 {1 . 2 + 2 . 3 + 4 . + 8 . 9 ... + 2» (2» + 1)} = 2»+' (2»+i + 3).

"The term in
{ } is

l+4 + 16... + 2=«

+ 1 + 2+ 4... +2«,

that is

which is

2M+2 _ 1 99+1 _ \

^-\ 2-1 '

= ^[2=»+^ + 3.2»+i-4];

and the relation is thus identically true.

67. Conversely, in the transformation between the first figure and the several

( other figures respectively, the Jacobian of the first figure is

3 lines AB ; and so

3 conies DE{ABG\

3 lines AB

3 quartics GH {DEF),{ABC).,

3 conies DE (ABC),

3 lines AB

for order 2, between first and second figures;

I- for order 4, between first and third figures

;

!- for order 8, between first and fourth figures

;

I

3 octics JK {GHI\ {DEF\ (ABC), \

3 quartics GH (DEF\(ABG)^

3 conies DE (ABC\
|

3 lines AB ]

and 80 on.

for order 16, between first and fifth figures;
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Special Cases—Reduction of the General Rational Transformation to a Series of Qtrndric

Transformations.

68. It was remarked by Mr Clifford that any Cremona-transfomiation whatever

may be obtained by this method of repeated quadric transformations, if only the

principal systems, instead of being completely arbitrary, are properly related to each

other. To take the simplest instance ; suppose that we have

First figure. Second figure. Third figure.

A, B, C A', E, C B", G"
II

E, F D', E', F' D", E", F"

viz., in the transformation between the fii-st and second figures, we have the principal

systems ABC and A'B'C (arbitrary as before) ; but in the transformation between the

second and third figures, the principal systems are UE'F' and D"E"F", where U,
instead of being arbitrary, coincides with A'. And we then have B", C" in the third

figure corresponding to B', C in the second figure, and E, F in the first figure corre-

sponding to E', F' in the second figure. This being so, to a line in the first figure

corresponds in the second figure a conic through A', B', C But A' = D' ; viz., this

conic passes through a point D' of the principal system of the second figure, in regard

to the transformation between the second and third figures. That is, (Jc, a, b, c referring

to the second figure, and k', a', b', c' to the third figure, k = 2, a=l, 6=0, c = 0, and

therefore k' =3, a' = 2, b' —I, c' = 1,) corresponding to the conic we have in the third

figure a curve, order 3 (cubic curve), passing twice through B", but once through E"
and F" respectively; this cubic curve passes also through the points B', C" which

correspond to B', C respectively ; that is,

cubic passes through E", F", B", C" each 1 time

„ „ D" 2 times

;

or, corresponding to a line in the first figure, we have in the third figure a curve,

order 3, passing through four fixed points each 1 time, and through one fixed point

2 times. That is, we have w = 3, a,' =4, a^' = 1. And in the same manner, to a line

in the third figure there corresponds in the first figure a cubic through four fixed

points (viz., B, C, E, F) each 1 time, and through one fixed point, A, 2 times ; so

that also ai=4, 03 = 1. The transformation is thus of the order 3, and the form

4i Ij and 4i 1, (this is in fact the only cubic transformation ; see the Tables, ante, No. 41).

69. Mr Clifford has also devised a very convenient algorithm for this decom-

position of a transformation of any order into quadric transformations. The quadric

transformation is denoted by [3], the cubic transformation by [41], the quartic trans-

formations by [601], [330], the quintic ones by [8001], [3310], [0600], and so on ; see

the Tables just referred to. (This is substantially the same as a notation employed

above, the zeros enabling the omission of the suffixes ; viz., [8001] = 8, I4 ; and so in other

cases.)
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70. The foregoing result is represented thus [4, 1] = [3J0, 0, 1), which I proceed

to explain. Consider in the first figure a line ; the symbol [3] denotes that in the

second figure we have a conic with three points (a/). We are about to apply to this

a quadric transformation ; (0, 0, 0) would denote that the three points of the principal

system in the second figure were all of them arbitrary
; (0, 0, 1) that one of these

points was a point a/
; (0, 1, 1) that two of them were points a/

; (1, 1, 1) that all

three of them were points a,
; (0, 0, 2) would denote that one of the points was a

point a/; only in the present case we can have no such symbol, by reason that there

are no points a/. Hence [3^^001 ) denotes that the conic has applied to it a quadric

transformation such that, in the transformation thereof, one point of the principal system

coincides with one of the points (o/) on the conic. To [3], qua quadric transformation,

belongs the number 2; and from 2, (001) we derive 3, (112), {in general k, (a, b, c)

gives k', (a', b', c'), where k' = 2k— a — b — c, a' = k—b — c, b' = k—c — a, c' = k — a—b}.

k=2 corresponds to a symbol [3] of one number, k' = 3 to a symbol of two numbers

;

viz., we change [3] into [30] ; we then, in the symbols (112) and (001), consider the

frequencies of the several numbers 1, 2,... taking those in the first symbol as positive,

and those in the second symbol as negative ; or, what is the same thing, representing

the frequency as an index, we have 1° 2^ 1~' ; or, combining, 1^~' 2^ ; these indices

are then added on to the numbers of [30] ; viz., the index of 1 to the first number,

the index of 2 to the second number (and, in the case of more numbers, so on)

:

[30] is thus converted into [41], and we have the required equation

[4i] = [33;ooi),

where the rationale of this algorithmic process appears by the explanation, ante, No. 68.

71. As another example take

[8001] = [6013;003).

'o [601], qud quartic transformation, belongs the number 4; and from 4, (003) we form

5, (114); where the 5 indicates that [601] is to be changed into [6010]; then (114),

(003), writing them in the form 1"2''3~'4', show that to the numbers of [6010] we are

to arid 2, 0, — 1, 1 ; thus changing the symbol into [8001], so that we have the required

relation.

72. Mr Clifford calculated in this way the following table, showing how any trans-

formation of an order not exceeding 8 can be expressed by means of a series of quadric

transformations ; the symbols Cr. 3, Cr. 4 . 1 ; 4.2, &c., refer to the order and number

of Cremona's tables, ante, No. 41.

Cr. 3 . = [ 41] = [33;001),

Cr. 4 . 1 = [601] = [413;002) = [3^001 ][002),

4.2 = [330] = [ 3^000) = [413;011) = [33;001][011),
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Cr. 5.1 = [8001]

5.2 = [3310]

5.3 = [0600]

Cr. 6 . 1 = [10,0001]

6.2 = [14200]

6.3 = [41300]

6.4 = [34010]

Cr. 7 . 1 = [12,00001]

7.2 = [330J:001)

7.3 = [034000]

7.4 = [503100]

7. 5 = [350010]

Cr. 8 . 1 = [14,000001]

8.2 = [3230100]

8.3 = [1322000]

8.4 = [0070000]

8.5 = [3C00010]

8.6 = [6013000]

8.7 = [0520100]

8.8 = [2051000]

8.9 = [3.303000]

= [601J003)

= [ 4i3;ooi)

= [3303;iii)

= [8001J004)
= [ 330^011)

= [ GOipil)

= [33103;022)

= [ 3303;002)

= [.S310pi3)

= [3P01$002$003),

= [3^001 $001),

= [SJOOOJIII) = [3J001$011$111),

= [35;001$002$003][004),

= [spoopii) =[33;ooi$oii$oii),

= [33'001$002$011)1

= [3J0015001$022)J
L VI. X

/.

= [3JOOO$002),

= [33;ooi3;ooi$oi3),

= [10,00013;005) = [33;O01$O02$003$004]j;O05),

= PJOOO^OOl) = [232100],

= [33io3;iii) = [.spoipoi^iii),

= [ 601J001) = [33;ooi3;oo2$ooi),

= [33 10^00.3) = [3J001$001$003),

= [ 33;001$002$003$004$005$006),

= [ 3310J002) = [3^00 1^001 $002),

= [33;ooi$ooi$oii),

= [.33;001$001$111$222),

= [3303;0O2$O04) = [33;000$002$004),

= [33;001$002$000),

= [3p00$lll$222),

= [3J001$000$112),

= [ 3310^011)

= [0340003;222)

= [ 34010J004)

= [ eoijooo)

= [ 0600J002)

= [ 413003;il2)

= [ 33;ooo$ooo$ooo).

73. The reduction as above of a transformation to a series of quadric transfor-

mations, enables the determination of the reciprocal transformation ; or, what is the

same thing, the determination of the Jacobian of the first figure; see the example,

ante, No. 67, where it appears that the reciprocal transformation of [41] is [41]. But

I do not see any easy algorithmic process for the determination of the reciprocal trans-

formation, or still less any general form in which the result can be expressed ; and

I do not at present pursue the inquiry.

The Rational Traiisformation between Two Spaces.

74. The general principles have been already explained : the two systems

w' : 1/ : z' : w' = X : Y : Z : W &nd x : y : z : w= X' : Y' : Z' : W must be derivable

the one from the other; and starting with the first system, this will be the case if
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only the surfaces X = 0, T=0, Z= 0, W=0 have a common intersection equivalent to

n'— 1 points of intersection, but not equivalent to a complete common intersection of

n' points. The last-mentioned circumstance would arise, if the condition of the common
intersection should impose upon the surface more than ^(re + l)(n+ 2)(n + 3) — 4 con-

ditions ; viz., the surfaces would then be connected by an identical equation or syzygy

aX + ^Y+yZ+ BW=0. The common intersection is a figure composed of points and

curves : say it is the principal system in the first space ; the problem is, to determine

a principal system equivalent to n~ — 1 points of intersection but such that the number
of conditions to be satisfied by a surface passing through it is not more than

^(n + l)(n + 2)(n + S)-i.

75. The following locutions are convenient. We may say that the number of

conditions imposed upon a surface of the order n which passes through the common
intersection is the Postidation of this intersection ; and that the number of points

represented by the common intersection (in regard to the points of intersection of any

three surfaces each of the order n which pass through it) is the Equivalence of this

intersection. The conditions above referred to are thus

Equivalence = n' — 1,

Postulation > ^ (m -|- 1) (re -f 2) (n -f- 3) - 4.

76. It would appear by the analogy of the rational transformation between two

planes, that the only cases to be considered are those for which

Postulation = J(n-»- l)(re-|- 2)(7i + 3) -4;

but I cannot say whether this is so.

77. In the transformation between two planes, the two conditions lead, as was

seen, to the result that the curve aX + bY+cZ=0 is unicursal. I do not see that

in the present case of two spaces, the two conditions lead to the corresponding result

that the surface aX + bY+ cZ + dW=0 is unicursal; that this is so, appears, however,

at once from the general notion of the rational transformation. In fact, the equation

in question aX + bY+cZ+dW=0 is satisfied hy x : y : z : w = X' : Y' : Z' : W' and

oaf + bt/ + c/ + dv/ = ; the last equation determines the ratios x' : y' : z" : w' in terms

of two arbitrary parameters (say these are x' : y' and x' : z'), and we have then

x-.y-.z-.w proportional to rational functions of these two parameters ; that is, the surface

aX -^-bY ^-cZ -^ dW = () is unicursal. And similarly the surface aX' + bY' + cZ' + dW' =
is unicursal.

78. In the most general point of view, the principal system will contain a given

number of points which are simple points, a given number which are quadriconical

points, a given number which are cubiconical points, &c. &c., on the surfaces; and

similarly a given number of curves which are simple curves, a given number which

are double curves, &c. &c., on the surfaces. But, to simplify, I will consider that it

includes only points which are simple points, and a curve which is a simple curve

C. VII. 29



226 ON THE RATIONAL TRANSFORMATION BETWEEN TWO SPACES. [447

on the surfaces : this curve may, however, break up into separate curves, and we thus,

in fact, admit the case where there are any number of separate curves each of them

a simple curve on the surfaces. It is right to remark that we cannot assert d priori—
and it is not in fact the case—that the principal system in the second space will be

subject to the like restrictions: starting with such a principal system in the first

space, we may be led in the second space to a principal system including a curve

which is a double curve on the surfaces : an instance of this will in fact occur.

79. It is shown (Salmon's Solid Geometry, 2nd ed., p. 283, [Ed. 4, p. 321]), that in

the intersection of three surfaces of the orders fi, v, p respectively, a curve of inter-

section of the order m and class r counts as m(/ii + i' + p — 2)— r points of intersection.

For a curve without actual double points or stationary points, we have r= m{m — \) — 2h,

where h is the number of apparent double points; or, substituting, we have the curve

counting for m (/* + k + /j — 2) — m (m — 1) + 2A points of intersection ; this is in fact a

more general form of the formula, inasmuch as it extends to the case of a curve with

a,ctual double points and stationary points. Or, what is the same thing, the three

surfaces intersecting in the curve of the order m with h apparent double points, will

besides intersect in /ti/p — m(/i+ v+p — 2) + m(m— 1) — 2A points; viz., the curve may,

besides the apparent double points, have actual double points and stationary points;

but these do not affect the formula.

80. Some caution is necessary in the application of the theorem. For instance,

to consider cases that will present themselves in the sequel : let the surfaces .be cubics

(yit = i; = p = 3); the number of remaining intersections is given as = 27 —1m + m{m—\)—'2,h.

Suppose that the curve consists of four non-iutersecting lines, m = 4, A = 6, the number

is given as = — 1. But observe in this case there are two lines each meeting the

four given lines ; that is, any cubic surface passing through the four given lines meets

these two lines each of them in four points, that is, the cubic passes also through

each of the two lines ; the complete c«rj;e-intersection of the surfaces is made up of the

six lines m = 6, A = 7 (since each of the two lines, as intersecting the four lines, gives

actual double points, but the two lines together give one apparent double point),

and the expression for the number of the remaining points of intersection becomes

= 27-42+30-14 = 1, which is correct.

81. Similarly, if the given curve of intersection be a conic and two non-intersecting

lines, there is here in the plane of the conic a line meeting each of the two given

lines, and therefore meeting the cubic surface, in four points, that is, lying wholly in

the cubic surface : the complete CM?T;e-intersection consists of the conic, the two given

lines, and the last-mentioned line, m = 5, A = 5, and the number of points of intersection

18 = 27 — 35 + 20 — 10, = 2, which is correct. Again, if the given curve of intersection

be two conies, here the line of intersection of the planes of the conies lies in the

cubic surface ; or, for the complete cwrve-intersection we have m = 5, A = 4 ; and the

number of points is 27-35 + 20-8, =4. If in this last case each or either of the

conies become a pair of intersecting lines, or if in the preceding case the conic becomes

a pair of intersecting lines, the results remain unaltered.
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82. If a surface of the order ^ pass through a curve of the order m and class-

r without stationary points or actual double points, this imposes on the surface a

number of conditions = (/a + 1) m — ^n In the case in question, the value of r is

= m(m — 1) — 2A; or, substituting, the number of conditions is =(fi+l)m — ^m{m—l)+h'f
and the formula in this form holds good even in the case where the curve has

stationary points and actual double points. Thus /* = 3, the number of conditions is

= 4m — im(m— 1) + A. If the curve be a line, m = l, h = 0, number of conditions is

= 4 ; if the curve be a pair of non-intersecting lines, m = 2, A = 1, number of con-

ditions is = 8. And so in general, if the curve consist of k non-intersecting lines

(/fc = 4 at most), then m=k, h=^k(k—l), and the number of conditions is =4ik. If

the curve be a conic, or a pair of intersecting lines, m = 2, h=l, and the number of

conditions is =7. If the curve consist of k lines, such that there are pairs of inter-

secting lines, then m = k, h = ^k(k — l)— d, and the number of conditions is =ik—0.
It is obvious that, the number of conditions for a line being = 4, that for the k lines

with intersecting pairs must have the foregoing value 4A; — 0. In fact, when the

lines do not intersect, we take on each line 4 points, and the cubic surface passing

through any such 4 points will contain the line ; but for two lines which intersect,

taking this point, and on each of the intersecting lines 3 other points, the cubic

surface through the 7 points will pass through the two lines ; and so in other cases.

83. The formula must, in some instances, be applied with caution. Thus, given

five non-intersecting lines k = 5, = 0, and the number of conditions is = 20 ; and a

cubic surface cannot be, in general, made to pass through the lines. But if the five

lines are met by any other line, then a cubic surface, if it pass through the five

lines, will pass through this sixth line ; for the six lines k = 6, = 5, and the number

of conditions is 24 — 5 = 19 ; so that there is a determinate cubic surface through the

six lines, and therefore through the five lines related in the manner just refei'red to.

84. Recurring to the problem of transformation, it appears by what precedes, that

if the principal system in the first plane consists of a, points, and of a curve of the

order rrii with hi apparent double points (the ai points being simple points, and the

curve a simple curve on the surfaces), then the conditions for a transformation are

(3n — 2) TOj — TTij (t^i — 1) + 2Ai -f- o, = n' — 1,

( n-f-l)mi-i7w,(wi,-l)-t- hi+ai=^(n + l)(n + 2)(n + 3)-4!,

where, in the second line, instead of
:f>

I have written =. I remark, in passing,

that I have ascertained that an actual triple point counts as an apparent double

point ; or, what is the same thing, that if the curve has ^ actual triple points, then

we may, instead of A,, write hi + ti. The equations give

wii(4re-5-7Wi) = ^(n-l)(5n»- n-12)-2hi,

(n - 4) wix - a = ^ (n - 1) (2«' - 4n - 15),

to which may be joined

(3n + 8)mi- 2mi(nh - 1) -f- 4Ai-|- 5oi = (n-l) {6n + 17).

29—2
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The first two equations for the successive values of n give

n = 2, m,(3-m,)= 2-2/ii, 2m, + Oi= 5

n = 3, wi,( 7-m,)= 20-2/ii, mi + ai= 6

n = 4, mi(ll-»ii)= 64-2A,, o, = - 1

n = 5, m,(15-»»i) = 14.4-2A„ - mi + o, = -20

n = 6. m, (19 - 7?ii) = 270 - 2A„ - 27?ii + a. = - 55

&c. &c. &c.

85. It is remarkable that for n = 4 there is no solution of the geometrical

problem ; in fact, a, = — 1, a negative value of Oi, shows that this is so. For the

higher values of n, there seem to be solutions with large values of m,, A,, a,; for

example, n = 5, we have 7»,= 20 + ai, is =20 at least. Writing mi=20, we have

-100 = 144-2^, or 2Ai = 244. The highest value of 2Ai is =(toi - l)(?n, - 2), which

for 7»i = 20 is =342; or the foregoing value 2Ai = 244 is admissible. Thus m, = 20,

hi = 122, a, = gives a solution; and, moreover, any larger value of mj, say mi = 20 + a,

gives an admissible solution, tHj = 20 + a, /^ = 122 + ^a(a + 25), a, = a. And so for n = 6,

&c. ; but I have not further examined any of these cases, and do not understand

them.

There remain the cases n = 2, w = 3. For n = 2, since 2mi + tt) = 5, we have m, = 0,

1, or 2 ; mi = gives hi = 0, which is not admissible. The remaining solutions are

wii = 1, hi = 0, «! = 3 ; and wij = 2, ^ = 0, Oj = 1.

For w = 3, since mi + 0-^ = 6, we have mi = 0, 1, 2, 3, 4, 5, or 6. mi = gives

Ai = 10 ; 7?ii = 1 gives Ai = 7 ; mi = 2 gives /t, = 5 ; mi = 3 gives Aj = 4 : these values are

not geometrically admissible. The remaining cases are ?Wi = 4, A, = 4, Oi = 2 ; tti, = 5,

Ai = 5, Oi = 1 ; m, = 6, hi = 7, Oi = 0.

86. The reciprocal transformation is in every case of the order n' = n^ — tWi.

Hence considering the quadric transformations:

First, the case n = 2, 7?ii=l, hi = 0, ai = 3; the reciprocal transformation is of the

order n' = 3. Suppose for a moment that the principal system in the second space is

of the same nature as that above considered in the first space, consisting of a,'

points, and a curve of the order m/ with h^' apparent double points (the o/ points

each a simple point, and the curve a simple curve on the surfaces X' = 0, &c.).

Passing back to the original transformation, we should have 2 = 9- m/, that is, m^' = 7.

But it has just been seen that, for n = 3, the only values of mi are 4, 5, 6 ; hence

for n' = 3 we cannot have tKi' = 7. The explanation is, that the principal system in

the second space is not of the form in question; it, in fact, consists (as will appear)

of three lines each a simple line, and of another line which is a double line on the

surfaces X' = 0, &c. In the intersection of any two of these surfaces, the three lines

count each once, the double line four times, and the order of the curve of intersection

is thus 3 + 4 = 7, as it should be. The principal system may be characterized «/ = 0,

ni,' = 3, V = 3, m,' = l, V = 0.

I
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Next, the case « = 2, mi = 2, fh = 0, Oj = 1 : the reciprocal transformation is of the

order n' = 2; it is evidently not of the form above considered (for this would make
the original transformation to be of the order 3). Hence, assuming (as it seems

allowable to do) that the principal system does not contain any multiple point or

curve, the reciprocal transformation will be of the same form as the original one

;

viz., we shall have n = 2, mj' = 2, A/ = 0, a/ = 1.

87. Considering next the cubic transformations, or those belonging to n = 3 ; in

the case mj = 4, Aj = 4, Oj = 2, the reciprocal transformation is of the order 9 — 4, = .5

;

and in the case wij = 5, h^ = 5, a, = 1, the reciprocal transformation is of the order

9 — 5, = 4 : I do not consider these cases. But «ii =6, Aj = 7, Oi = 0, the reciprocal

transformation is of the order 9 — 6, = 3 ; and assuming (as seems allowable) that the

principal system does not contain any multiple point or curve, it must be of the

same form as the original transformation, that is, we must have n' = 3, mj' = 6, A/ = 7,

:«i'=o.

88. The transformations to be studied are thus,— 1° The quadri-quadric trans-

' formation n = 2, m, = 2, Ai = 0, ai=l, and n' = 2, m/ = 2, Ai' = 0, ai'=l; the principal

system in each space consists of a point and of a conic (which may be a pair of

intersecting lines); and the surfaces are quadrics. 2° The quadri-cubic transformation

ft = 2, mi = l, Ai = 0, a, = 3, and m' = 3, a,'=0, m/ = 3. A/ = 3, 7712' = !, h^ = Q: in the first

space the principal system consists of three points and a line, and the surfaces are

quadrics : in the second figure, the principal system consists of three simple lines and a

double line ; and the surfaces are cubic surfaces passing through this principal system,

that is, they are cubic scrolls. 3° The cubo-cubic transformation w = 3, «! = 0, mi = Q,

A, = 7, and n = 3, o,' = 0, wi,' = 6, h/=7 ; in each space the principal system is a sextic

curve with seven apparent double points (but there are different cases to be considered

according as the sextic curve does or does not break up into inferior curves), and

the surfaces are cubic surfaces through the sextic curve.

«

The Quadri-quadric Transformation between Two Spaces.

89. Starting from the equations it' : y' : sf : w' = X : Y : Z : W, we have here

X = 0, &c., quadric surfaces passing through a given point and a given conic (which

may be a pair of intersecting lines). Take x = 0, y = 0, z=0 for the coordinates of

the given point ; w = for the equation of the plane of the conic ; the conic is then

given as the intersection of this plane by a cone having the given point for its

vertex; or say the equations of the conic are w = 0, {a,...\x, y, zy = 0; the general

equation of a quadric through the point and conic is w {ax + ySy + 7^) + h{a, . -.^x, y, zf = 0;

and it hence appears that the equations of the transformation may be taken to be

a! : y' : n! : w' = xw : yw : zw : {a, ...^x, y, z)^;

these give at once a reciprocal system of the same form ; viz., the two sets are

a/ : y' : z" : w' = xw : yw : zw : (a, ...'^x, y, zy,

X : y : z w =x'w' : y'w' : z'w' : (a, ...^x', y', z')'.

and
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90. The Jacobian of the first space is at once found to be

w»(o. ...$a;, y, zf = 0;

that of the second space is of course

w''{a,...Jcc',y', ^r = 0.

The two spaces are similar to each other; we may say that there is in each of them

a principal point and a principal conic ; that the plane of the conic is the principal

plane, and the cone having its vertex at the point and passing through the conic is

the principal cone. To the principal point of either space corresponds any point

whatever in the principal plane of the other space; and conversely. More definitely, the

points of the one principal plane and the infinitesimal elements of direction through the

principal point of the other space correspond according to the equations a; : y : z = a;' : y' : /.

To any point on the principal conic of either space corresponds in the other space, not

a mere element of direction through the principal point of the other space, but a

line of the principal cone ; that is, to the points of the principal conic of the one

space correspond the lines of the principal cone of the other space. The Jacobian

of either space, consisting of the principal plane twice, and of the principal cone, is

thus the principal counter-system of the other space.

91. {Writing (a, ...$«, y, zf = (j^-\-y"-\-z^, w = w' = l, the equations of transformation

become
a! : x/ : z : \=x : y : z : a? 'r if' -V z-

,

and
X : y : z : 1 = x : y' : z" : x'^ + y'^ + z'",

or, what is the same thing, if for shortness

a^ + y' + z" = r^, «'= + 2/'=^ + /'= /",

the equations are

, X , y , z , x' y' /
'^ = ^' 2/=^. ^=^-. and a; = p-,, y = ^, z = ^^,

whence also r/ = 1 ; this is the well known transformation by reciprocal radius vectors.}

92. The principal conic may be a pair of intersecting lines; taking its equations

to be w = 0, xy = 0, the equations of transformation here become

and

There is no difficulty in the further development of the theory.

The Quadri-cubic Transformation between Two Spaces.

93. It will be convenient to have the unaccented letters (x, y, z, w) refening to

the cubic surfaces. I will therefore take the quadric surfaces in the second figure;

viz., I will start from the equations x : y -. z : w = X' : T : Z' : W, where X' = 0,

y : z' : w =xw yw : zw ^,

y : z : w ^a/w' : y'w' : z'w' xY
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F = 0, Z' = 0, W' = are quadric surfaces passing through three fixed points (say the

principal points) and through a fixed line (say the principal line) in the second figure.

Taking x' = 0, y' = for the planes passing through the principal line and through

two of the principal points respectively ; z' = for the plane passing through the

three principal points, w' = for an arbitrary plane passing through the first mentioned

two principal points, the implicit factors of x', y', w may be so determined that for

the third principal point x' = y' = — w'. That is, we shall have

for principal line x' = 0, y' = 0,

for principal points {x' = 0, z' = 0, w' = 0),

(2/'=0, ^ = 0, m;' = 0),

(x=y' = -w', z' = 0),

and this being so, the equation of a quadric surface through the principal points and

line will be
(euc' + /3y')/+ yx' (y' + w') + By' (x' + w'),

and the equations of transformation may be taken to be

X : y : z : w =a/iif : y'z' : x'(y' + w') : y'{x' + w').

94. Writing these in the extended form

X : y : z : w : x — y : z — w = a;V : y'/ : x' (y' + w') : y' (x' + w') : z' (x' — y') : w' (x — y")

and forming also the equation

xy : (xw — yz) = z' : x' — y',

rwe at once derive the reciprocal system of equations

Ittf : y : zf : v/ =x(xw — yz) : y(xw—yz) : {x — y)xy : (z — w)xy,

180 that this is a cubic transformation. And the cubic surface in the first space

[(corresponding to an arbitrary plane ax' + by' + cz' + dw' = of the second space) is

\{aa;+by){xw —yz) + c(x — y)xy + d{z — w)xy=0; viz., this is a cubic surface having

I

the fixed double line (x=Q, y = 0), the fixed simple lines (x = 0, z = 0), (y = 0, w = 0),

and (« — y = 0, ^ —w = 0) ; it has also the variable simple line {dz + cx = 0, dw + cy = 0).

The principal figure of the first space thus consists of the three simple lines (x = 0,

[«=0), (y=0, w = 0), {x— y = 0, z — w = 0), and of the line {x=0, y = 0), a double line

[Counting four times in the intersection of two of the cubic surfaces.

95. The cubic surface as having the double line (a; = 0, y = 0) is a cubic scroll,

'and this line is the nodal directrix thereof; the line {dz + cx = 0, dw+cy=0) is the

simple 'directrix; the lines {x = 0, z = 0), (y=0, w = 0), (x — y = 0, z-w=0) are at once

seen to be lines meeting each of these directrix lines; and they are generating lines

of the scroll. To explain the generation of the scroll, observe that the section by

any plane is a cubic curve having a given double point (viz., the intersection of the

plane with the nodal directrix) ; and three other given points (viz., the intersections of
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the plane with the three generating lines respectively); this cubic also passes through

the intersection of the plane with the simple directrix. Conversely, if the plane be

assumed at pleasure, and if, taking for the simple directrix any line which meets the

given generating lines, we draw a cubic as above, then the scroll is the scroll

generated by a line which meets each of the directrix lines, and also the cubic.

If the plane be taken to pass through any generating line, then the cubic section

breaks up into this line, and a conic ; the conic does not meet the simple directrix,

but it meets the nodal directrix ; and any such conic will serve as a directrix ; viz.,

the scroll is generated by the lines which meet the two directrix lines and the conic.

96. Any two scrolls as above meet in the three fixed generating lines, and in

the nodal directrix counting four times ; they consequently meet besides in a curve of

the second order, which is a conic (one of the conies just referred to). In order to

further explain the theory, suppose for a moment that the two scrolls had only a

common nodal directrix ; they would besides meet in a quintic curve ; this curve would

meet the nodal directrix in four points, viz., the points at which the two scrolls have

a common tangent plane. Now if at any point of the nodal directrix the two scrolls

have a common generating line, then the plane through this line and the nodal line

is one of the two tangent planes of each scroll ; that is, the scrolls have this plane

for a common tangent plane. Hence, in the case of the common three generating

lines, the points where these meet the nodal line are three of the four points just

referred to; there remains therefore one point, which is the point where the conic

meets the nodal line; through this point there are for each of the scrolls two

generating lines; one of these for the first scroll, and one for the second scroll, lie in

a plane with the nodal line ; the other two determine the plane of the conic ; and

the tangent to the conic at its intersection with the nodal line is the intersection of

the plane of the conic with the plane of the first-mentioned two generating lines.

97. Analytically we have the two equations

c {x — y)ivy + {ax +by) (xw — yz) + d {z — w) xy = 0,

c' {x— y)xy + (a'x + b'y) {xw — yz) + d' {z — w)xy=0;

or, combining these equations so as to eliminate successively the terms in x {xw — yz)

and y {xw — yz), and for this purpose writing

(be' - h'c, ca' - c'a, ah' — a'b, ad' — a'd, bd' — b'd, cd' — c'd) = (a, b, c, f, g, h),

and therefore

af + bg + ch = 0,

we have

h{x — y)x — c {xw — yz) — i{z — w)x = 0,

-&{x-y)y + c{xw-yz)-g{z-w)y = 0,

and multiplying the first of these by c + g and the second by c-f, and adding, the

whole divides by x—y, and the final result is

(c + g)(ba;-fj)-(c-f)(ay+g«;) = 0;

viz., this is the equation of the plane of the conic. C
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98. Any two scrolls as above meeting in a conic, a third scroll mil meet the

conic in six points ; but these include the point on the nodal directrix twice, and

the points on the three fixed generating lines each once; there is left a single point

of intersection, viz., this is the one variable point of intersection of the three scrolls

;

which is in accordance with the theory.

99. For the Jacobian of the second space, we have

/ , , x'.

. z' , y'>

j/ + v/. of , 0,

/ .
x'+w', 0, 1/

= 0;

that is, ^afy'af (x — y') = ; viz., / = is the plane containing the three principal

points ; and x' = 0, yf = 0, x' — y' =0 are the planes which pass through the principal

line and the three principal points respectively.

100. For the Jacobian of the first space, we have

2xw — yz, — xz , — xy, a? =
;

yw , xw-lyz, -y', xy

Ixy - / , a?- Ixy, ,

{z-w)y, {z-w)x, xy, - xy

that is, Sa^y (x — yY (xw — yz) = ; viz., x=0, y = 0, x — y = are the planes through the

nodal directrix and the three fixed generators respectively (each plane therefore occurring

twice) ; and xiv — yz = is the quadric scroll generated by the lines which meet each

lof the three generators (a;= 0, ^ = 0), (y = 0, w = 0), (x — y = 0, z — w = 0); this scroll

[passing also through the nodal directrix x = 0, y = 0.

The Cubo-cubic Transformation between Two Spaces.

101. The principal system in the first space is a sextic curve with 7 apparent

double points ; but this curve may be either a single curve, or it may break up into

[inferior curves. I have not examined all the cases which may arise; but the two

extreme cases are—(A) The sextic curve breaks up into six lines, viz., two non-

intersecting lines, and four other lines each meeting each of the two lines (this

implies that no two of the four lines meet each other): here the two lines give

1 apparent double point, and the four lines give 6 apparent double points ; total

number is = 7, as it should be. (B) The curve is a proper sextic curve, with

7 apparent double points: this gives, as will be shown, the general lineo-linear trans-

formation. The two cases are each of them symmetrical.

C. VII. 30



284 ON THE RATIONAL TRANSFORMATION BETWEEN TWO SPACES. [447

(A) The Principal System consists of Six Lines.

102. Taking in the first space, for the equations of the two lines, (a; = 0, y = 0) and

{z = 0, w = 0), and for the equations of the four lines, {x = 0, z = 0), (y = 0, w = 0),

(a; — y = 0, z — w=Oi), {x — py = 0, z — qw = 0), then, if the equations of transformation

Are taken to be

x' —py' : x' — y' : z' —qw' : z' — w'= (x —py)( xw— yz)

• (« - y) {qoiw - pyz)

: {z — qw) ( xw— yz)

: (z — w)(qxw — pyz);

these lead conversely (see post, No. 104) to a like system,

X —py : X — y : z — qw : z —w = (x' —py')M'

{ai- y')N'

(/ - qw')M
(/- vf)W,

"where for shortness

M =p{q—Xf xw' -qip — Vf y'z + {pq — l)(p — q) y'w',

N'= (q-iyx'w'- (p-iyy'z'+(j)q-l)(p-q)y'it/;

•or, as these are better written,

M'^-q{p-l)y'{{p-l)z'-(pq-l)w'\+p{q-l)w'{(q-l)x'-(pq-l)y'},

Jf = - (p-l)y'{(p-l)z'-(pq-l)w'}+ (q-l)w'{(q-l)x'-{pq-l)y'].

Hence the principal system in the second plane is composed of the two non-inter-

secting lines {x' = 0, y' = 0), (z' = 0, w/=0) and the four Imes {(p — l)z' — (pq — l)w' = 0,

{q-l)x'-(pq-l)y' = 0}, (y'=0, w' = 0), {a/-y' = 0, /-w' = 0), (x' -py' = 0, z' - qw' = 0),

each meeting each of the two lines.

103. The Jacobian of the first space is

2xw — yz—pyw, —xz — pom}+2pys, —y{x—py)
,

x(x—py) =0,

2qxw —pyz — qyw, —pxz — qxw + 2pyz, —py{^ — y) > 3^; (a; — y)

w(z- qw)
,

—z(z — qw)
, xw — 2yz + qyw , xz — 2qxw + qyz

qw{z — w)
, —pz(z — w) , qxw — 2pyz+pyw, qxz — 2qxw+pyz

viz., this is xyzw{x — y){x—py){z — w){z — qw) = 0, the equation of the planes each

passing through one of the four lines and one of the two lines.

Similarly, the Jacobian of the second space is

1(3 -\)x'- {pq - 1) y'} [{p-\)z'- {pq - 1) w'\ {x' - y') (/ - w') {x' -py') (/ - qw') y'w' = ;

viz., this is the equation of the eight planes each passing through one of the four

lines and one of the two lines.

r
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these give

104. To effect the foregoing transformation, writing

x' : y' : z : w' = {^—py){ xw— yz)

(«- y) {q'>:'>" - py^)

: {z — qw) { anu — yz)

: (z — w) {qxw — pyz)
;

or what will ultimately be the same thing, but it is more convenient for working with,

x' = {x-py)( WW- yz),

y' = (x- y){qxw-pyz),

/ = {z—qw){ XV)— yz),

w' = (z — w) {qxw —pyz)

;

X — py = M'x',

X- y = N'y',

z — qw = M'z',

z — w = iV'w',

where W, W are quantities which have to be determined; and thence

(1 -p)x = M'x — pN'y,

(l-p)y=M'a^- N'y',

{\-q)z=M'/-qN'w',

{\-q)w = M'2f- Fw';
whence also

(1 -p) (1 - 9) ( an/; - yz) = N'[ {(?- 1) afw' - (p - l)y'z'} M' + {p- q) y'w'N'],

(1 - p) (1 - q) {qxw - pyz) = M' [- {p - q) adzM + \{pq - q) x'w' - (pq -p) yW] N']

;

but we have

or, substituting,

xw — yz _x' x—py_x' M'x' _N\
qxw — pyz y' ' x — y y'

' N'y' M'

'

M'{ (q- 1) x'w' -(p-l) y'z'} + N' (p - q) y'w'

= M' {- (p - q) x'z'] + N' l(p3
- q) afw' -(pq-p) y'z'}

;

that is

M' {(q -l)a^w'-(j)-l)y'z' + {p-q) x'z'] = N' [(pq - q) x'v/ - (pq -p)y'2^- (p - q) y'w'} ;

lor, what is the same thing,

M'=(pq- q)x'ti/ - (pq - p) y'z' -(p- q)y'w',

N' = ( q-\)x'w'-( p-\)y'z' + (p-q)x'!f;

30—2
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viz., M, If having these values, the original equations

of : y : z' : w' = {x — py) { xw — yz)

: {x — y)(pxw — qyz)

: (z — qw) { xw — yz)

: (z — w) (pxw — qyz),

X—py : x — y : z — qw : z — w = Mx' : N'y : M'/ : N'v/.

give

If, in these equations, in place of (x', y", z, w') we write {a! — py", x' — y', z' — qvt/, z' — w'),

the new values of M', N' are found to be

M' =p (q - ly x'w' -qip-lfy'/ + (pq - 1) (p - q) y'w,

N' = (q- If x'w'- {p-lfy'z' + (pq-l)(p-q)y'w',

and we have the formulae of No. 102.

(B) 'The Principal System of a Proper Sextic Curve; the Lineo-linear Transformaiion

between Two Spaces.

105. I start with the lineo-linear transformation, and show that this is in fact

a transformation such that the principal system in either space is a sextic curve with

seven apparent double points. I do not attempt any formal proof, but assume that

the lineo-linear transformation is the most general one which gives rise to such a

principal system.

We have between (x, y, z, w), {x', y', z, w') three lineo-linear equations; writing

these first under the form

{Pu Q„ R,, S,lx',y', z', w') = 0,

(P., Q.. R2, S,^x', y', z', «;') = 0,

(Ps. Qs, i?3. 8,Jx', y', z', m;') = 0,

we have x' : y' : z' : w' = X : Y : Z : W, where X, Y, Z, W are the determinants

(each with its proper sign) formed out of the matrix

Pi. Qi, R\, Si

Pj, Qs, -Bs, Ss

106. Each of the surfaces X = 0, F=0, Z = 0, W-0, or generally any surface

aX + bY+cZ+dW=0, is thus a cubic surface passing through the curve

-Pi, Qi, Ri, Si

Pji Qi, -Ba> ^j

'3. Qa, -Ks, S3

= 0,
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which is at once seen to be of the order 6. In fact any two of these surfaces, for

instance

Pi, Qi. Ri

Pa, Qs. -Ka

-P3, Q3, -Rs

have in common a curve

= and P:, Qu s.

P„ Q., s.

P3, Q3, s.

= 0,

= 0,

which is of the order 3 ; they consequently besides intersect in a curve of the order 6,

which is the before mentioned curve of intersection of all the surfaces. And it further

appears that the number of the apparent double points is = 7 ; in fact the formula

in the case of two surfaces of the orders fi, v, the complete intersection of which consists

of a curve of the order m with h apparent double points, and of a curve of the

order m' with h' apparent double points, the numbers to, to', h, k' are connected by the

equation 2 {h — h') = (m — m) {/j, — \) (v — 1). (Salmon's Solid Geometry, 2nd Ed., p. 273

[Ed. 4, p. 311]). Hence, in the case of the two cubic surfaces intersecting as above (since

for the cubic curve we have to' = 3, h' = l, and for the sextic to =6), the formula becomes

2(A— 1)=12, that isA = l + 6 = 7; or the number of apparent double points is =7.

107. It thus appears that the principal system in the first plane is a curve of

the order 6, with seven apparent double points : it is to be added that there are

not in general any actual double points or stationary points, so that the class of the

curve is 6.5 — 2.7, =16, and its deficiency is ^.5.4 — 7, =3. For convenience I will

refer to this as the curve 2.

The transformation is obviously a symmetrical one; hence the principal system in

the second space is in like manner a curve of the order 6, with seven apparent

double points ; say it is the curve S'.

108. Consider in the first space any point P on the curve 2 ; for this point the

three equations

{P,.Q,,R,. S,\x', y', 2f, w')=0,

{P,, Q., R,, S,~i „ ) = 0,

(Pa, Q., Rt, -8,$ „ ) = 0,

are not independent, but are equivalent to two linear equations in («', y, z', w')
;

that is, to the point P on the curve 2 there corresponds in the second space, not

Sk determinate point P', but any point whatever on a certain line L' ; or say to the

point P on 2 there corresponds a line Z'; and as P describes the curve 2,

L' describes a scroll 11'; that is, to the curve 2 there corresponds a scroll 11', the

principal counter-system in the second space. Similarly to the curve 2' there corresponds

a scroll n, the principal counter-system of the first space.

109. The scroll IT is the Jacobian of the first space ; and as such it is of the

order 8, having the curve 2 for a triple line—and it thus appears that the Jacobian
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of the first space is a scroll (a theorem the analytical verification of which seems by

no means easy). But without assuming the identity of the scroll 11 with this Jacobian,

or taking the order of the scroll to be known, I proceed to show that the scroll 11

is the scroll generated by the lines each of which meets the curve 2 three times;

it will thereby appear that the order is = 8, and that the curve is a triple line on

the scroll.

Consider a point P" on 2', and the corresponding line L of the first space: take

%' a plane in the second space; corresponding to it the cubic surface in the first

space. By imposing a single relation on the coeflScients (a, h, c, rf; in the equation

ax' + h/ + c/ + dw' = of the plane 0', we make it pass through the point R ;

therefore by imposing this same single relation on the coefficients (a, 6, c, d) of the

cubic surface ©, we make it pass through the line L, % \s & cubic surface through 2

;

and it is easy to see that the effect will be as above only if the line L cuts the

curve 2 three times; this being so, the general cubic surface meets L in three

points (viz., the three intersections of L with 2), and if be made to pass through

a fourth point on the line L, it will pass through the line L ; it thus appears that

the line L meets 2 three times, and consequently that the scroll 11 is generated by

the lines which meet 2 three times.

110. The theory of a scroll so generated is considered in my "Memoir on Skew Surfaces,

otherwise Scrolls"('). Writing m = Q, h=7 and therefore if [= — ^m(m— l) + /i], = — 8,

the order of the scroll is (^ [m]' + (m — 2) ilf= 40 — 32) = 8 ; but calculating the values of

NG (m') = i [m]« + 6m + Jlf (3 [mf - I2m + 33) + MKS,

JV^iZ (m») =^ [m]« + 1 [m]» - i [m]» - 3m + ilf (^M - Hm]»- 4m» + 8mi -20)+if' (^ [mP-27ft)

;

these are found to be respectively =0; viz., there are no nodal generators, and no

nodal residue ; the sextic curve 2 is a triple curve on the surface, and there is not

any other multiple line.

111. It may be remarked that any plane 0' meets the sextic curve 2' in six

points; hence the corresponding cubic surface contains six lines, generatrices of 11,

and, therefore, each meeting the curve 2 three times ; say six lines L. Through one

of these lines L, draw to the cubic surface a triple tangent plane meeting it in the

line L and in two other lines, say M, N; this plane must meet 2 in three new points

which must lie on the lines M, N; viz., one of these lines must pass through two

of the points, and the other line through the third point.

Addition—September, 1870.

[Some corrections have been made in accordance with the concluding paragraph of a

paper "Note on the Rational Transformation and on Special Systems of Points," 450.]

The formulae of No. 84 are included in the following more general formulae ; viz.,

if the principal system consist of a, points, each a simple point, a, points each a

• Phil. Tram. vol. CLin. 1«63, pp. 453—483, [339]. Sec the Table S (m») Ac, p. 457 ; in the value of

NB (m') instead of term + 3m read - 3m. [This correction should have been made in the present Beprint.]
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quadri-conical point, a, points each a cubi-conical point, &c., and of a simple curve

order Wj ynth. Aj apparent double points, a double curve order mj with h, apparent

double points, and so on; and if moreover, the curves mj, m, intersect in A;,_, points,

the curves m,, m, in ^1,3 points, &c. ; then writing in general p = ^m(m — 1) — A; that

is, pi = ^;n, (7»i— 1) — Aj, /)3 = ^?nj(mj — 1) — Aj, &c., I find that the general condition of

equivalence is

ai + ( 3re- 2) mi- 2/3i

+ 80, + (12w - 16) m, - 16pj

y = n»-l;+ r»ar + (3r»n - 2r») »v - 2?-'/)^

- 5A,,,-8A;,,,...-(3r-l)Z;i,,

-28A,,,

and that the general condition of postulation is

«! + ( W + 1) 7«i - pi

+ ir(r + l)(r+2)ttr

+ [Jr (r + 1) » - ^r (r + 1) (2r - 5)] m,

-^[('•-l)(^-2)(r-3)(r-4)
^
= ^(„ + l)(„ + 2) (« + 3)- 4:

+ 4r(r+l)(2r + l)]pr

^ itKi 2
"~ oA/j 3 • • • ~~ •"'1. T

-8i,.,

-i«(« + l){r + l-J(« + 2)lA-,,,(s<r)J

in which formulae it is however assumed that the curves have not any actual multiple

points. This implies that if any one of the curves, say ttv, ^break up into two or

more curves, the component curves do not intersect each other ; for, of course, any

such point of intersection would be an actual double point on the curve r/v. I believe,

however, that the formulae will extend to this case by admitting for s the value s = r;

viz., if we suppose the curve jw, to be the aggregate of the two curves m/, m/' inter-

secting in Kr points, then that the corresponding terms in the equivalence-equation are

{Zfn - 2H) (W -I- mr") - 1r> (p/ + fr") - 'i-r'Kr,

and that those in the postulation-equation are

[ir (r-H)» - Jr (r -I- 1) (2r - 5)] (m,' -f- ot/')

-A [(»•- 1 ) C'-
- 2) (^ - 3) (r - 4) + 4r (r -Hi) (2r -f. 1)] (p/ -H p/')

-Jr(r-H)(2r+l)/r,.
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Let the r-tiiple curve consist of three right lines meeting in a point: this is an

actual triple point, and the formulae do not apply. But calculating the postulation-

terms by the formula, we have mr = 3, pr = i3.2-0, =3; and the terms are

[ir(r+l)n-ir(r + l)(2r-5)]3-H('--l)('--2)(»--3)(r-4) + 4r(r + l)(2r + l)],

which are

= ir(r+l)(3ft-4r + 4)-i(r-l)(r-2)(r-3)(r-4),

or say

= ir (r + 1) (3w - 4r + 4) + ^ (- r* + 10r» - 3.5r» + 507- - 24).

I have found by an independent investigation that this value requires the correction

+ 1 [r< - 8r»+ 30r= - 56r + 24 + ^ {1 - (-)» 1}],

and that the true value of the postulation is

= Jr(r+l)(3n-4r + 6) +H 2r^-5r» - 6r + ^ [1 -(-)'• 1{],

viz., that this is the number of the conditions to be satisfied that a surface of the

order n may have for an r-tuple curve three given right lines meeting in a point.
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448.

NOTE ON THE CARTESIAN WITH TWO IMAGINARY AXIAL
FOCI.

[From the Proceedings of the London Matliematical Society, vol. ill. (1869—1871),

pp. 181, 182. Read June 9, 1870.]

Let a, A', B, B' be a pair of points and antipoiats ; viz.,

i

(A, A') the two imaginary points, coordinates (+ /9i, 0),

(B, R) the two real points, coordinates (0, + /S)

;

|and write p, p', a, a' tor the distances of a point (x, y) from the four points respectively

;

*y

p =>J{x-ir0if + f, o- =\/ar' + (y + /Sf,

p' = ^{x-pif + y\ cT' = \/a^ + {y-^y.
fWe have

f^+p^ = 2af + 2y= - 2/3-- = <T-' + a'" - 4;S»,

pp' = V(ir + /Si + y{)(x + ^i — yi) (x — /9t + yi) (x — /Si - yi) = aa
;

od thence

lor say

{p+py = (<T+ay-^^,

{p-pJ={cr-ay-4,^;

p + p =v'(o-+<7')'-4/3»,

i (p - p') = V4/3'-(o--o-')».

The equation of a Cartesian having the two imaginary axial foci A, A' is

{p+qi)p + {p-qi)p' + ''2.1<? = 0;

C. VII. 31
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viz., this is

or, what is the same thing, it is

p V(o- + a'f + 4/9' + q V4/8» - (<r - <r')' + 2^-' = 0,

which is the equation expressed in terms of the distances a, a from the non-axial

real foci B, F. Of coui-se, the radicals are to be taken with the signs +. This

equation gives, however, the Cartesian in combination with an equal curve situate

symmetrically therewith in regard to the axis of y.

The distances a, a may conveniently be expressed in terms of a single vaiiable

parameter 6; in feet, we may write

±p*J(,<T + ay-A'^=-k'-ke,

that is

And therefore

*^-(<r-ay^'^(k-ey;

a + ^0^+-{jc + e)\

<T-a'=±^^^-^^{k-er:

so that, assigning to 6 any given value, we have a, a', and thence the position of

the point on the curve. We may draw the hyperbola y'' = 4/8" + - of, and the ellipse

k'
y^ = 4/8* ~ ^^'j ^nd then measuring off in these two curves respectively the ordinates

which belong to the abscissae k+6 for the hyperbola, k — d for the ellipse, we have

4

»

the values <r + a' and a- - o-', which determine the point on the curve. Considering

k, p, q, ^ &s disposable quantities, the conies may be any ellipse and hyperbola whatever,

having a pair of vertices in common; and the complete construction is,—From the
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fixed point K in the axis of x, measure off in opposite directions the equal distances

KM, KN, and take

a+ <t' the ordinate at M in the hyperbola,

+ (cr — a) „ „ N „ ellipse

;

where <t, a denote the distances of the required point from the fixed points B and B'

respectively, the distance of each of these from the origin being = ^ the common

semi-axis. We may imagine N travelling from one extremity of the a;-axis of the

ellipse to the other, the value of <t + a' will be real and greater than BB', that of

a — a' real and less than BB", and the point {a, <t') will be real. The construction

gives, it will be observed, the two symmetrically situated curves.

The a;-semi-axis of the ellipse is j 2/3, and the form of the curve depends chiefly

on the value of the ratio k : j-^; or, what is the same thing, k'^ : 2/8g. We see, for
k

instance, that, in order that the curve may meet the axis of y in two real points

between the foci, the value = —k must give a real value of a— a'; viz., that we

4it* Q
must have 4/8' > -; that is, ^q^>k^, or k'K^q. If k has this value, viz., A; = J I 2/3 =

J^ semi-axis, the curve touches the axis of y at the origin; if A; < J semi-axis, the curve

cots the axis of y in two real points between the foci ; if k >\ semi-axis, the curve

does not cut the axis of y between the foci.

31—2
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^ 449.

SKETCH OF EECENT RESEARCHES UPON QUARTIC AND
QUINTIC SURFACES.

[From the Proceedings of the London Mathematical Society, vol. III. (1869—1871),

pp. 186—195. Read Nov. 10, 1870.]

The classification of quartic surfaces is even as to its highest divisions incomplete;

and it is by no means easy to make it at once exhaustive and precise ; an enumera-

tion of all the prima facie possible cases would include forms which do not really

exist. Thus the singular curve (if any) is of the order 1, 2, or 3—but in the case

where the order is = 3, the curve, as is at once evident, cannot be a plane cubic,

nor (among other excluded forms) a system of three non-intersecting lines. And certain

forms of the singular curve, e.g. all but one of the admissible forms of a curve of

the order 3, make the surface to be a scroll, so that, if (as is convenient) we wish to

separate the scrolls, certain forms otherwise admissible must be excluded. The expression

" singular " means double or cuspidal, or refers to a higher singularity, but the cases

of higher singularity are very special. I will, at the cost of some inaccuracy, use the

expression " nodal " as meaning, in general, double, but as including the signification

" cuspidal " ; and, if there are any cases of higher singularity, as extending to cases of

higher singularity : and I provisionally arrange the non-scrolar quartic surfaces as follows

:

1. Without a nodal curve.

2. With a nodal line.

3. With a nodal conic, or line-pair (pair of intersecting lines).

4. With three nodal lines (not in the same plane) meeting in a point.

(Observe that the omitted cases are cases which, as I believe, ought to be omitted

;

thus the case of a nodal skew cubic is omitted, because the surface is then of necessity

a scroll.) And to these I join

:

5. The quartic scrolls;

omitting altogether the torse and cones.
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The references, by the name of the author, and number (if any) of his paper, are

to the subjoined list of Memoirs.

As to the scrolls, we have Cayley (3) and (4), and Cremona ; the division into

12 species is, I believe, complete : see post, the remarks upon Schwarz's paper on

quintic scrolls.

As regards the non-scrolar surfaces

:

1. Without a singular curve. The surface may be without a cnicnode (conical

point), or it may have any number of cnicnodes up to 16, Cayley (7) : the cases of

singularity higher than a cnicnode are probably very numerous, but they have been

scarcely at all examined. The memoir just referred to relates chiefly to the several

cases of not more than 10 nodes; the cases of 11, 12, 13, 14, 15, 16 nodes are con-

sidered incidentally, Kummer (2), but it was not the object of his paper to make an

enumeration, and there may be cases which are not considered ; the discussion of the

cases considered is very full and interesting. The case of 16 nodes is also considered,

Kummer (1). As to the surface with 16 nodes, it is to be remarked that the wave-

surface, or generally the surface obtained by the homographic deformation of the wave-

surface—called, Cayley (1), the " tetrahedroid "—is a special form of surface with 16

nodes : its relation to the general surface is explained, Cayley (2).

2. Quartic surface with nodal line : considered incidentally, Clebsch (2) and (3).

There are through the nodal line 8 planes, each meeting the surface in a line-pair

:

considering any 7 of these, and taking out of each of them a line, the 7 lines are

met by a conic which also meets a determinate line out of the remaining line-pair

;

there are thus on the surface 2', = 128, conies ; viz., these form 64 pairs, each pair

lying in a plane, and being the complete intersection of the surface by such plane

;

the number of these planes is of course =64.

Although not properly included in the present case, I mention the quartic surface

which is the reciprocal of the cubic surface XIX = 12 — .Bg— (7j, Cayley (5): the nodal

curve is here an oscnodal line counting as three nodal lines.

3. Quartic surfaces with nodal conic. Such a surface may be without cnicnodes,

or it may have 1, 2, 3, or 4 cnicnodes ; the cases, other than that of 3 cnicnodes, are

mentioned, Kummer (3) ; but the question is examined, and the remaining case of 3

cnicnodes established, Cayley (6).

The general case of the nodal conic without cnicnodes is elaborately considered,

Clebsch (1): it is shown that there are on the surface 16 lines, each meeting the

conic, and which in their arrangement are strikingly analogous to the 27 lines on a

cubic surface ; viz., if on a cubic surface we select at pleasure any one of the 27

lines, and through this line draw a plane which besides meets the cubic surface in a

conic ; then, disregarding the line in question and the 1 lines which meet it, the

remaining 16 lines each meet the conic, and are related to it and to each other in

the same manner that the 16 lines of the quartic surface are related to the nodal
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conic and to each other. And the gionnd hereof appears, Geiser; viz., it is shown

that the quartic surface with the nodal conic, is rationally transformable into a cubic

surface, the 16 lines and the nodal conic coiresponding respectively to the 16 lines and

the conic of the cubic surface.

The several cases of 1, 2, 3, and 4 cnicnodes are considered, Korndorfer.

In the case where the nodal conic is the circle at infinity, the surfaces have been

termed " anallagmatic " (perhaps "bicircular" would be a more convenient name), and

a great deal has been written upon these surfaces by Moutard, Clifford, and others.

Such a surface may of course have 1, 2, 3, or 4 cnicnodes ; these surfaces, viz. the

cnicnodal anallagmatics, in fact arise from the inversion of a quadric surface by the

method of reciprocal radius vectors f that is, by the change of x, y, z into —
, ^ , - )

:

the centre of inversion is a node on the quartic surface. If the quadric surface is

a coue, there is another node, the inverse point of the vertex ; if the quadric surface

is one of revolution, there are two other nodes ; and if it is a cone of revolution,

there are three other nodes— viz., in ail, four nodes. The last-mentioned surface is, or

includes, the Cyclide ; viz., this is a quartic surface having the circle at infinity for

a nodal curve, and having besides four nodes, which are a system of skew antipoints.

The surface was first considered by Dupin {Applications de Geometne &c., 1822) as the

envelope of a sphere touching three given spheres—its lines of curvature are thus

circles; and the surface has been very frequently considered in reference to this

property and otherwise: see Maxwell, where a classification (not quite complete) is made
of the different forms of the surface, and also stereographic drawings given. It is to

be observed, that one interesting form, the parabolic cyclide, is not a quartic but a cubic

surface.

In the class of surfaces which have been under consideration, the cnicnodes have

been points not on the nodal conic—in fact, a point on a nodal curve cannot be,

properly speaking, a cnicnode, though it may be a point of higher singularity in the

nature of a cnicnode ; viz., there may be on the nodal curve points which, in the

classification of the surfaces, must be counted as cnicnodes. Such a case presents itself

in the " Conic Torus," or surface generated by the rotation of a conic about a line

whether not in or in the plane of the conic. The surface has been considered,

De la Goumerie (1), although more in reference to the constructions of descriptive

geometry than as a theory of pure geometry, and Cayley (6). The surface has a

nodal circle, and upon it two singular points, the circular points at infinity; so that

it belongs to the case of a nodal conic with two cnicnodes. In the particular case

where the axis of rotation is in the plane of the conic, then there are on the axis

two cnicnodes; so that the case is that of a nodal conic and four cnicnodes; and
when the generating conic is a circle, viz., when the surface is the ordinary torus, or

anchor ring, generated by the rotation of a circle about a line in its own plane, then

the nodal conic is the circle at infinity having upon it two cnicnodal points (its inter-

sections by the planes at right angles to the axis) and the surface has also two
cnicnodes on the axis: the surface, although presenting considerable peculiarity, may be
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regarded as a particular case of the cyclide. In reference to the plane sections of the

conic torus and its various particular cases, see De la Gournerie (2) ; the ordinary

torus has been the subject of numerous papers by Darboux and others, and possesses

very interesting properties.

In connexion with the foregoing, I speak of the surfaces having a cuspidal conic:

the general case is briefly referred to, Cayley (6) ; viz., this is the surface (AA) the

equation of which is V'- — a^i/ = 0, and which it is shown has a reciprocal of the order 6.

A special cjise is the surface (AB) having a reciprocal of the order 3 ; viz., the

quartic surface is here the reciprocal of the cubic surface XX = 12 — f/g, Cayley (5).

And it appears from the memoir last referred to, that there is another cubic surface,

XVII = 12 — 253— Cj, the reciprocal of which is a quartic surface having a cuspidal

conic. But the theory of the quartic sui-faces with a cuspidal conic has been hardly

at all considered.

I do not know that anything has been done in regard to the quartic surfaces

where the nodal conic becomes a line-pair ; that is, where we have two intersecting

nodal lines. Although not properly belonging to the case in question, I mention here

the quartic surface which is the reciprocal of the cubic surface XVIII = 12 — ^4 — 2C2,

Cayley (-5); the nodal curve consists of two intersecting lines, but one of them is

tacnodal, counting as two nodal lines.

4. Quai-tic surface with three nodal lines (not in the same plane) meeting in a

point. This is, in fact, Steiner's quartic surface ; and it has been the subject of

numerous investigations.

The equation of the surface may be taken to be V^ + Vy + V^ + \/iv = ; and the

surface thus presents itself as the reciprocal of the cubic surface -H 1 1— = 0,•^ '^ X y z w
(XVI = 12-4(7,,) with four enicnodes (').

It was convenient to make the foregoing enumeration before speaking of Kummer's

paper (3), and of the several memoirs which relate to the Abbildung of certain quartic

and quintic surfaces.

As regards Kummer's paper, the object appears by the title, viz., he considers in

what cases a quartic surface has upon it a system of conies; or, what is the same

thing, in what cases there is a system of planes each intersecting the surface in two

conies. It is, in the first place, remarked that there is no proper quartic surface cut

by every plane . in a pair of conies, or even a proper quartic surface cut in a pair of

conies by every plane through a fixed point. The cases considered are—I., where the

planes are non-tangent planes ; II., where they are single tangent planes ; and III.,

where they are double tangent planes. The case I. is—(1) when there is a nodal conic

and two enicnodes ; viz., any plane through the 2 enicnodes gives a section with 4

nodes, therefore a pair of conies, (and the special case of 4 enicnodes is noticed

' The Aathor exhibited, aiid pointed out aoihe of the properties of, a model of Steiner's surface.
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incidentally) ;—(2) when there is a nodal line ; any plane through the nodal line besides

meets the surface in a conic ;—(3) when the surface has two " Selbstberiihrungspuncte"

;

viz., either of these is a point where the tangent plane is replaced by two coincident

planes, and which, when a plane passes through it, gives in the section a tacnode,

= 2 nodes; the section by a plane through two such points, consists of two conies

touching each other at the point in question: the equation of such a surface is

<f>'=(*'^p,qy, where
<f>

is a. quadric function, and p, q linear functions of the coordinates.

In all the cases the planes pass through a fixed line, and the surface may be con-

sidered as the locus of a variable conic, the plane of which always passes through

such line. II. is—(1) Steiner's surface, where every tangent plane meets the surface

in a pair of conies ; and (2) surface with a nodal conic and one cnicnode, where everj'

tangent plane through the cnicnode meets the surface in a pair of conies. And

III. is (1) the surface with a nodal conic, where every double tangent plane meets

the surface in a pair of conies : it is shown that there are 5 quadric cones, such that

a tangent plane of any one of these cones is always a double tangent plane of the

surface. Or the surface is (2) a quartic scroll; any plane through two intersecting lines

of the surface besides meets the surface in a conic.

It is in the paper, Cayley (6), remarked, that the quartic surface {*^U, V, WY =
can also be expressed in the form UW — F' = ; under which form the surface is

seen to be the envelope of the series of quadric surfaces {U, V, W^d, 1)' = 0; and

by reason of this property it is very easy to find the equations of the reciprocal

surfaces, or plane-equations of the quartic surfaces in question. And, in the same paper,

it is noticed that the surfaces of the form in question include the reciprocals of

several interesting surfaces of the orders 6, 8, 9, 10, and 12 ; viz., order 6, parabolic

ring : order 8, elliptic ring : order 9, centro-surface of paraboloid : order 10, parallel

surface of paraboloid ; envelope of planes through the points of an ellipsoid at right

angles to the radius vectors from the centre : order 12, centro-surface of ellipsoid

;

parallel surface of ellipsoid.

It will be noticed that several of the papers by Clebsch and others refer in their

titles to the "Abbildung" of a surface; viz., they show that a (1, 1) correspondence

exists between the points of the surface and the points of a plane. The most simple

instance is the quadric surface ; here, taking any fixed point on the surface, the

line OP drawn to any point P on the surface meets a plane in a point P', and the

points P, P" have, it is clear, a (1, 1) correspondence. And, of course, to any curve

on the quadric surface there corresponds a curve on the plane, and the discussion of

the nature of the plane curves which correspond to the different curves on the quadric

surface would constitute a theory of the Abbildung of the quadric surface.

Similarly, as remarked, Clebsch (2), for a cubic surface, taking upon it any two

lines which do not meet, if from a point P on the surface we draw, meeting each

of the two lines, a line to meet the plane in P', then the point P on the cubic

surface and the point P' on the plane will have a (1, 1) correspondence; and we have

thus a like theory for the cubic surface. The Abbildung of a cubic surface had been,

however, previously effected by Clebsch jin the paper "Die Geometric auf den Flacheu
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dritter Ordniing," Grelle, t. LXV. (1866), pp. 359—380}, and by Cremona, in a different

and really the most simple manner ('), but having a less obvious geometrical signification.

For surfaces of the higher orders, it is only certain surfaces which admit of an

Abbildung, or (1, 1) correspondence of the points thereof with the points of a plane

:

viz. (in the same way as a plane curve, in order to its being unicursal, must have a

suflScient number of nodes or cusps) a surface, in order that it may thus correspond

with the plane (or say, in order that it may be unicursal), must have a sufficient

singularity in the way of a nodal or cuspidal curve. The quartic and quintic surfaces

considered in the enumerated memoirs are there considered for the sake of the

Abbildung theory which they give rise to ; whereas, in the present sketch, the Abbildung

theory is considered only for the sake of the quartic and quintic surfaces to which

the theory has been applied. But the methods of the theory furnish results in relation

to these surfaces ; and it is proper to give some account of them.

Clebsch's memoirs (2) and (3) relate to the same subject, which is elaborately

treated in the latter of them : the former of them contains, however, some valuable

remarks which are not reproduced in the other. In these memoirs (2) and (3), after

explaining the above method of the transformation of a cubic surface by means of

two of the lines thereof, the author goes on to notice that the like method is

applicable to certain quartic and quintic surfaces ; viz., (1) quartic surface with a nodal

conic : there are here, as already mentioned, 16 lines, each meeting the conic ; if,

selecting any one of these, from a point P on the surface we draw, meeting the line

and the conic, a line to cut the plan^ in P*, then the points P on the surface and

P' on the plane have a (1, 1) correspondence. (2) Quartic surface with a nodal line

:

as already mentioned, there are on the surface 128 conies, each meeting the nodal

line ; selecting any one of these, if from a point P of the surface we draw, meeting

the nodal line and the conic, a line cutting the plane in P', then the point P on

I

the surface, and the point P' on the plane, have a (1, 1) correspondence.

Similarly, (3), for a quintic surface having a nodal skew cubic ; then if from a

point P on the surface we draw, meeting the skew cubic twice, a line to cut the

plane in P', the point P on the surface and the point P' on the plane have a (1, 1)

correspondence. The nodal skew cubic may break up into a conic and line which

meets it, or into three lines, two of them not meeting each other, but each met by

the third line ; and the like theory applies to these quintic surfaces.

It is to be noticed that (as for the cubic surface) the above methods of Abbildung,

although they have the most obvious geometrical significations, are (as explained in the

foregoing foot-note) not the most simple ones ; but for each of the foregoing cases (1),

(2), (3), the most simple transformation is established in the memoirs now under con-

sideration. The memoir [Memoirs (1) and (2)] of Korndorfer, as indicated by its title, relates

to the Abbildung of a quartic surface having a nodal conic and 1, 2, 3, or 4 cnicnodes.

' Any method of tran-sformation leads to an expression of the coordinates of a point on the surface as

proportional to rational and integral functions of a given degree v of the coordinates (x, y, z) of a point on

the plane, and that transformation is the more simple for which v has the smaller value : for the method

of the text, the value is i'= 3, but for the methods previously given by Clebsch and Cremona, it is v = 2.

bi c, VII. 32
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Clebsch's paper (4) relates to the Abbildung of a quartic scroll

As regards quintic surfaces (not being scrolls), we have, so far as I am aware,

only the before-mentioned paper, Clebsch (3), relating to quintic surfaces with a nodal

skew cubic ; and the paper, Clebsch (5), which relates to the Abbildung of a quintic

surface having a nodal quadriquadric. The method employed is that of a preliminary

Abbildung upon a twofold plane (2-blattrige Ebene) ; that is, it consists in establishing,

in the first instance, a (1, 2) correspondence between the surface and the plane ; and

by means hereof it is shown that there exist on the surface the conies K and G
presently referred to, and which give, ultimately, an ordinary Abbildung or (1, 1) corre-

spondence of the points of the surfs^ce with those of the plane ; viz., this final result

is as follows

:

There is on the surface a system of conies K, such that their planes pass through

a point and envelope a quadricone ; and also 64 conies G each meeting each of the

conies .ff^ in a single point: we select one of these and call it the conic G.

Take now the plane jB, of a conic K^ of the series of conies K, which plane J5i

passes, of course, through the vertex V of the cone enveloped by the planes of the

conies K\ viz., these planes intersect the plane £, in a series of lines passing through

the point V.

Take a point P on the surface ; this lies on a conic K meeting the conic G in

a point f; and if we draw the line ^P to meet the plane J5, in P', then P on

the quintic surface, and P' on the plane B^, will have a (1, 1) correspondence; in

fact, it appears that, given P, there exists a single position of P' ; and conversely,

given P', this lies on a line VP' through which there passes the plane B^ and one

other tangent plane of the cone : this tangent plane contains a conic K meeting

the conic (7 in a point f ; and joining ^P', this meets the conic K in one other point P
;

viz., given P', there is a single position of P ; and there is thus a (1, 1) correspondence.

There are, as originally shown by Schlafli, and as further appears by my memoir

on cubic surfaces, Cayley (5), 3 kinds of cubic surfaces of the class 5 ; viz., these are

the surfaces XIII = 12 -53-20, , XIV = 12 - i?, - C„ and XV =12 -IT,; for each of

these the reciprocal surface is a quintic surface of the class 3, having a nodal line

and a cuspidal quartic curve. For the reciprocal of XIII, the cuspidal curve is a

quadriquadric ; for that of XIV, the cuspidal curve breaks up into the nodal line (viz.,

this is a cuspnodal line) and into a skew cubic ; for that of XV, the cuspidal curve is

a cuspidal quadriquadric, or curve of intersection of two quadric surfaces with singular

contact.

It only remains to speak of Schwarz's memoir on quintic scrolls : it is to be

remarked that the theory of scrolls is allied more closely with that of plane curves

than with that of surfaces ; viz., considering any plane section of the scroll, the lines

of the scroll have, in general, a (1, 1) correspondence with the points of the plane section,

and the scrolls of any given order are properly arranged according to the deficiency

of the plane section. This is what is done by Cremona in the memoir on quartic

\
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scrolls above referred to ; viz., for a quartic scroll the deficiency is either or 1

;

and of the 12 species, there are 10 for which the deficiency is = (or which are

unicursal), and 2 for which the deficiency is =1. And this is the principle of classi-

fication in Schwarz's memoir; viz., for a quintic scroll the deficiency is =0, 1, or 2;

the number of species established being 10, 4, and 1 for these deficiencies respectively.

List of Memoirs.

Cayley. 1. Sur la surface des ondes. Liouv. t. xi. (1846), pp. 291—296, [47].
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3. Second Memoir on Skew Surfaces, otherwise Scrolls. Phil. Trans., vol. CLiv.
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450.

NOTE ON THE THEORY OF THE RATIONAL TRANSFORMATION
BETWEEN TWO PLANES, AND ON SPECIAL SYSTEMS OF
POINTS.

[From the Proceedings of the London Mathematical Society, vol. ill. (1869—1871),

pp. 196—198. Read December 8, 1870.]

I

In Prof. Cremona's theory of the transformation of plane curves, the fundamental

equations are taken to be

a, + 4aa + 9a3+ ... =«»-l (1),

o,+ 3a,+ 6a3 + ... =H«'+3«)-2 (2);

and from these we have as a consequence

a, + 3a,+ ...=i(n-l)(«-l) (3);

\
viz., the first equation expresses that any two curves of the system intersect in a

single variable point ; the second, that the curves form a riseau, or system containing

two arbitrary parameters; and the third, that the curves are unicui-sal.

In the equivalent theory of the rational transformation between two planes, as

given in my " Memoir on the Rational Transformation between Two Spaces," [447], we

have the equation (1) ; but instead of the equation (2), it would primd fade appear

to be sufficient if we had the inequation

but on the ground there explained, the case

a, +3a, + Ga3+ ...<i(n'' + 3n)-2

is excluded, and we thus have the equation (2), giving with (1) the equation (3).
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I believe the better course is to assume (1) and (3) as the fundamental equations,

from them deducing (2); and we thus also get over a difficulty presently referred to,

but which did not occur to me when the memoir was written.

In fact, starting with the equations x' : y' : zf =^ X : Y : Z (which are to give

X : y : z = X' : Y' : Z'), we have in the first instance the equation (1). Moreover,

establishing for x', y, / a linear equation ax' + by' + cz' = 0, we have corresponding hereto

a curve aX + bY+cZ = 0, and the coordinates x, y, z of a point on this curve are

proportional to X' : Y : Z' ; that is, substituting for z' the value — (ax' + 6y'), they

are proportional to rational and integral (homogeneous) functions of (x', y'), that is, to

rational and integral functions of the single parameter x' : y'
; wherefore the curve

oX + 6F + c^ = is unicursal ; whence the equation (3). The like change may be

made in the theory of the rational transformation between two spaces; and it is in

this case a more important one.

The difficulty is as follows: It is not self-evident that we are at liberty to assume

a, + Sa, + fitts •• ^ i(n' + 37i) - 2

;

for imagine that we had a system of (a,, a., as,...) points, such that ai + 4a2+... being

= 71"— 1, and ai + 3a2+... being > ^ (?i- + 3n) — 2, the points were such that the conditions

in question (viz., the condition that the curve passes once through each of the points a,,

twice through each of the points a,...) should be less than aj + Sa^H-..., and in fact

= or < I (n^ + 3n) — 2 ; then the functions X, Y, Z would not of necessity be coimected

by a linear relation \X + /x.F+ j'.^= 0, and the ground for the assumption in question,

a, + 3aj + . . . < i (n* + 3n) — 2, would no longer exist. And except by the process now

adopted of deriving the equation (2) from the equations (1) and (3), I do not know

how the impossibility of such a system is to be established; viz., I do not know how

we are to prove the following theorem:—There is not any system of (a,, a.,, 03...)

points, where

a, + 402+903... =n2- 1,

a, + 3ao + 683 ... > i {n^ + 3„) _ 2,

such that (for a curve of the order n passing once through each point aj, twice through

each point a.^, ...) the number of conditions actually imposed on the curve is = or

<i(n»+3n)-2.

A system of (a,, a,...) points such that the number of actually imposed conditions

is less than a, + 30, + . .
. , may be termed a special system ; we have, of course, the

well-known case (a, = w') of a system of n' points, such that any curve of the order n

passing through ^(n'' + 3n)— 1 of these passes through all the remaining points {or what

is the same thing, where the number of conditions actually imposed is =^(m« + 37)) — 1}
;

,

and we have the following special system, which presented itself to Dr Clebsch, in
j

his researches on the Abbildung of a quintic surface with two non-intersecting nodal
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lines ; viz., " a, = 12, a„ = 2. We may have 12 points and 2 points such that, for a

quintic curve passing once through each of the 12 points and twice through each of

the 2 points, the number of conditions actually imposed (instead of being 12 + 3.2, =18)
is =17." The construction is as follows: viz., starting with the 2 points and any

10 points, we may draw a quartic passing twice through the first of the 2 points,

once through the second of them, and through the 10 points ; and another quartic

passing twice through the second of the 2 points, once through the first of them, and

through the 10 points: the two quartics intersect in the 2 points each twice, in the

10 points, and in 2 new points, forming, with the 10 points, a system of 12 points;

and the first-mentioned 2 points and the 12 points form the system in question.

A more complicated case, Mj = 10, Sa = 6, Os = 1, occurs in Dr Nother's paper, " Ueber

Flachen, welche Schaaren rationaler Curven besitzen," [Math. Ami., t. iii. (1871), pp.

161—227]. Except these two, I do not know any other case of a special system for

which 0-2, a^... are not all =0; the investigation of such systems would, I think, be very

interesting.

[A concluding paragraph of seven lines gave some corrections to the "Memoir on

the Rational Transformation between Two Spaces," 447, which corrections are made in

the present reprint of that paper.]

'\
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451.

A SECOND MEMOIR ON QUARTIC SURFACES.

[From the Proceedings of the Londmi Mathematical Society, vol. in. (1869—1871),

pp. 198—202. Read December 8, 1870.]

In my Memoir on Quartic Surfaces, ante pp. 19—69, [445], although remarking (see

No. 79) that the identification was not completely made out, I tacitly assumed that the

symmetroid and the decadianome (each of them a quartic surface with 10 nodes) were

in fact identical. There is yet a good deal which I cannot completely explain ; but the

truth appears to be, that the decadianome includes two cases of coordinate generality,

say the sextic decadianome, and the bicubic decadianome = symmetroid : viz., in the first

of these the circumscribed cone, having for vertex any one of the 10 nodes, is a proper

sextic cone with 9 double lines ; in the second it is a system of two cubic cones,

intersecting, of course, in 9 lines, which are double lines of the aggregate sextic cone:

or, in the notation of the Table No. 11, in the case of the sextic decadianome, the cir-

cumscribed cones are each of them 6, ; in that of the bicubic decadianome = symmetroid,

they are each of them (3, 3). We thus arrive at a very remarkable system of 10 points

in space, viz., giving the name "ennead" to any 9 points in piano, which are the

intersections of two cubic curves, or to any 9 lines through a point which are the

intersections of two cubic cones ; the 10 points in space are such that, taking any one

whatever of them as vertex, and joining it with the remaining points, the 9 lines form

an ennead. I purpose in the present short Memoir to consider the theories in question

:

the paragraphs are numbered consecutively with those of the Memoir on Quartic

Surfaces.

Plane Sextic Curve with 9 Nodes.

110. A sextic curve contains 27 constants; and the number of conditions to be

satisfied in order that a given point may be a node is = 3. Hence it would at first

sight appear that the curve could be found so as to have 9 given nodes; this would
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be 9 X 3, = 27 conditions, or the curve would be completely determinate. But observe

that through the 9 given points we have a determinate cubic curve U =0; we have

therefore U^ = a sextic curve, and the only sextic curve with the 9 given nodes;

that is, there is not in a proper sense any sextic curve with the 9 given nodes. The

number of given nodes is thus = 8 at most.

111. The sextic curve with 8 given nodes should contain 27 — 3.8 = 3 constants.

We may through the 8 given points draw the two cubics P = 0, Q = ; and we have

then (a, b, c^P, Qf = 0, a bicubic, or improper sextic curve having the 8 nodes, and

also a ninth node, viz., the remaining point of intereection of the two cubic curves,

or say the remaining point of the ennead. Hence if V = be any particular sextic

curve having the 8 given nodes, we have

(a, b, c\P, Qy + 0V =0

a proper sextic curve having the 8 given nodes; and this, as containing the right

number (=3) of constants, will be the general sextic curve having the 8 given nodes.

112. There will be a ninth node if ^ = 0; viz., the curve is then (a, b, c^P, Qy = 0,

a bicubic, or improper sextic curve, having for nodes the 9 points of the ennead.

Observe that the ninth node is here a point completely and uniquely determined by

means of the given 8 nodes. Moreover the number of constants is =2, so that we

have here a general (improper) solution of the question of finding a sextic curve with

9 nodes, 8 of them given.
,

113. But if d is not = 0, then the ninth node must be a point on the curve

J{P, Q, V) = 0; viz., this is a curve of the order 9, determined by means of the

given 8 points; say it is the "dianodal curve" of these 8 points, and, as is easy to

see, it has each of these 8 points for a node. The ninth node of the sextic may be

any point whatever on the dianodal curve ; and regarding it as a given point, the

sextic will still contain 1 constant ; that is, we have the general solution of the

problem of finding a sextic curve with 9 nodes, 8 of them given, and the 9th a given

point on the dianodal curve.

114. So long as the 8 points are arbitrary, the dianodal curve does not pass

through the 9th point of the ennead, and the two cases above considered are mutually

exclusive. It will be noticed how closely analogous this theory of the plane sextic

with 9 nodes, is to that of the quartic surface with 8 nodes.

11.5. Of course, instead of the plane sextic curve, we may have a sextic cone;

such a cone has at most 8 given double lines ; and if there be a 9th double line,

then there are the two cases of coordinate generality; viz., (1), the new double line

hi the ninth line of the ennead, the cone being in this case not a proper sextic cone, but

a bicubic cone
; (2), the new dQuble line may be any line whatever on the dianodal

cone, (cone of the order 9 determined by the 8 given lines, and having each of these

for a double line,) and regarding it as a given line on the dianodal cone, the sextic

cone contains 1 constant.

c. VII. 33
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Each circumscnbed cone of the Symnietroid is (3, 3).

116. Using (a;, y, z, w) as current coordinates of a point of the sjonmetroid, I

take S, T, U, V to he quadric functions of the cooi-dinates (a, /9, y, B) ; the equation

of the symmetroid is therefore given by

xS + yT+zU + tuV= cone,

and the nodes thereof are determined by

xS + yT+ zU'+tvV= plane-pair.

Suppose that a node is (« = 0, y = 0, w = 0) ; the condition for this is V= plane-paii-

;

and we may without loss of generality write V='f+B\ Hence, putting for shortness

(i=xS + yT+zU, that is a quadric function

(a, b, c, d, f, g, h, I, m, ri^a, y9, y, Bf,

wherein the coefficients a, b, ... are arbitrary linear functions of (x, y, z), but not con-

taining w, the equation of the symmetroid is given by

% + w {rf j^ ^t) = cone.

117. It follows that the equation is

a, h, g

h, b , f , m

g, /, c + w, n

I , TO, n , d + w

= 0;

viz., this ia

V +w{B,+ Bd)V +^t(^(B, + Baf^ =0,

where V denotes the foregoing determinant, writing therein w = 0. Or, observing that

V contains c and d each only linearly, the equation may be written

V -1- w (a„ -h Sd) V + «;^8„SdV = 0,

which is a quartic surfe,ce having, as it should have, the point (0, 0, 0) for one of its

ten nodea

118. The equation of the circumscribed cone is

or, what is the same thing, it is

(ScV-SrfVy-h4(8,V.SrfV- V.SAV) = 0.

But we have identically

SoV.S,V-(iS,.V)^=V.S<,SdV;
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80 that the equation is

(S,V-5^V)»+(S„V)^ = 0;

a sextic cone breaking up into the two cubic cones

8,V-SrfV+i5„V=0,

80 that the cone is (3, 3). And since clearly the point (0, 0, 0) may be regarded as
representing any one whatever of the 10 nodes, it follows that for any node whatever
of the symmetroid, the circumscribed cone is (3, 3), so that, as stated above, bicubic
decadianome = symmetroid.

Deductions from the foregoing tlieory.

119. Referring to No. 8.5 of the original memoir, it appears that, with 6 given
pomts as nodes, we can actually find for the symmetroid an equation containing 6 con-
stants. I cannot discover any ground for doubting that 3 of these may be determined

iBo as to give to the symmetroid a seventh given node ; and I therefore assume that
^with 7 given points as nodes, an equation can be found with 3 constants. The

I

symmetroid is certiainly not octadic, hence the eighth node must lie on the dianodal

I

surface of the 7 given points. I can discover no ground for doubting but that two
I of the constants may be determined so that the eighth node shall be any given point
I whatever on the dianodal surface of the 7 points; and (this being so) that further
I the remaining constant may be determined so that the ninth node shall be any given
point whatever on the dianodal curve of the 8 points. But if all this be so, the
consequence is very remarkable; the tenth node is not any one whatever of the 22
dianodal centres of the 9 points, but it is a uniquely determinate " enneadic centre,"
viz., we must have the following theorem :

120. "Take any 7 points; an eighth point at pleasure on the dianodal surface
of the 7 points; a ninth point at pleasure on the dianodal curve of the 8 points.
In the system of 9 points so determined, take any one as vertex, and joining it with
the remaining 8, construct the ninth line of the ennead. Performing this construction
with each of the 9 points successively as vertex, we obtain 9 lines passing through
the 9 points respectively. These 9 lines meet in a point which is the 'enneadic
centre' of the 9 points: and further, the 10 points form a completely symmetrical
system, so that each one of them is the enneadic centre of the remaining 9."

121. Assuming that the 9 lines do intersect so as to give rise to an enneadic
centre, there is no difficulty in conceiving that the loci, which by their intersection
determine the dianodal centres, do each of them pass through the enneadic centre;
so that this enneadic centre counts once or more among the dianodal centres, and the
number of proper dianodal centres, instead of being =22, will be suppose '=22-<b
and if, further, the 9 points, together with the enneadic centre, are the nodes of a
symmetroid, but the 9 points together with any one of the 22 -« dianodal centres
are the nodes of a sextic decadianome, then we must also have as follows

:

33—2
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122. " Considering any 9 points as above ; taking any one as vertex, and joining

it wath the remaining 8, these 8 lines determine a dianodal ninthic cone. We have

thns 9 dianodal cones, which cones pass all of them through the same 22 — w points."

123. I am not able to verify these theorems A posteriori. It appeai*s to me that

the theorem in regard to the enneadic centre subsists for a system of 9 points such

as referred to in the statement ; but that if by possibility the statement be too general,

the theorem must, at all events, subsist for a more special system of 9 points; and

that there certainly exist systems of 10 points, such that each 9 of the points have

as an enneadic centre the tenth point. (I have since ascertained that if a quartic

surface with 10 nodes has a single node (3, 3), the surface is a symmetroid ; whence,

by what precedes, the remaining nine nodes are each of them (3, 3). Added 25 March,

1871.}

124. I notice, as a subject of investigation, the following system of correspondence

viz., given any 8 points in space : then to every point in space corresponds a line

through this point, viz., the ninth line of the ennead obtained by joining the point

with the 8 given points respectively; and to each line in space a point or points on

the line, viz., the point or points for each of which the line is the ninth line of the

ennead obtained by joining the point with the eight given points respectively.
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452.

ON AN ANALYTICAL THEOKEM FROM A NEW POINT OF VIEW.

[From the Proceedings of the London Matlietnatical Society, vol. in. (1869—1871),

pp. 220, 221. Read February 9, 1871.]

The theorem is a well-known one, derived from the equation

{az^ + 26^ + c) «/> + 2 (a'i» + 2b'z -irc')w + a"z^ + 2b"z + c" = ;

viz., considering this equation as establishing a relation between the variables z and w,

and writing it in the forms

•2u = Avfi+2Bw + G=A'z' + 2Sz + G' = Q,

(where, of course. A, B, G are quadric functions of z, and A', E, C' quadric functions

of w,) we have

= j" dw + $* dz, = {Aw + B)dw + (A'z + R) dz;
dw dz ^

but in viitue of the equation m = 0, we have Aw + B = ^&- AG, and A'z + B' = s/B'' - A'G',

and the differential equation thus becomes

dw dz

4E^-A'G' ^B-'-AG

where ff' — A'G' and B' — AG are quartic functions of w and z respectively. This is,

of course, integiable (viz., the integral Is the original equation u = 0) ; and it follows,

fi'om the theory of elliptic functions, that the two quartic functions must be linearly

transformable into each other ; viz., they must have the same absolute invariant P -i- J".

It is, in fact, easy to verify, not only that this is so, but that the two functions

have the same quadrinvariant /, and the same cubinvariant J.
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The new point of view is, that we take the coefficients a, b, &c., to be homogeneous

functions of {x, y), their degrees being such that the equation « = is a quartic

equation (« "^x, y, z, w)* = : viz., this equation now represents a quartic surface having

a node (conical point) at the point (x = 0, y = 0, z = 0), and also a node at the point

(ir = 0, y = 0, w = 0), say, these points are 0,0' respectively. The equation B'- — A'C' =
gives the circumscribed sextic cone having for its vertex, and the equation B* — AC=0
the circumscribed sextic cone having 0' for its vertex ; each of these cones has the

line 00' (x =0, y = 0) for a nodal line, as appears geometrically, and also by the

equations containing z, tv respectively in the degree 4. Con-sidering B^ — A'C as a

quartic function of z, its quadrinvariant is a function {x, yf, and its cubin variant a

function (x, y)"; and similarly, considering B' — AC as a quartic function of w, its

invaiiants are functions (x, yf and (x, yy^. We have thus, between the two cones, a

geometrical relation answering to the analytical one of the identity of the invariants;

but the nature of this geometrical relation is not obvious; and it presents itself as an

interesting subject of investigation.

r
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453.

ON A PROBLEM IN THE CALCULUS OF VARIATIONS.

[From the Proceedings of the London Mathenmtical Society, vol. iii. (1869—1871),

pp. 221, 222. Read February 9, 1871.]

max. orThe problem is, ^ = ^ (3a;— i/') y, to find y a function oi x such that \zdx =

min., subject to a given condition \ydx = c (the limits of each integral being x^, x„,

where these ijuantities are each positive, and x,>Xo). The ordinary method of solution

gives y^ = x + \, where (a;, + \) — (iSo + X)' = |c ; so long as c is not less than (xi — Xa),

there is a real value of \, but for a smaller value of c there is no real value. The
difficulty arising in this last case is somewhat illustrated by replacing the original

problem by a like problem of ordinary maxima and minima; viz., Xi, x^.-.x^ being

given positive values of x, in the order of increasing magnitude ; and if, in general,

Zi = ('3xi — yi')yi, then the problem is to find y; a function of xi, such that 2^i=max.
or mia, subject to the condition 2yi = c. We have here yi' — xi + \ where X is to be

determined by the condition 2y,- = c ; the remainder of the investigation turns on the

question of the sign yi = + Va;,- + X or yi = — v «< + X, to be taken for the several values

of i respectively.

I
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454.

A THIRD MEMOIR ON QUARTIC SURFACES.

[From the Proceedings of the London Mathematical Society, vol. iii. (1869—1871),

pp. 234—266. Read April 13, 1871.]

The present Memoir is a continuation of my former researches on Nodal Quartie

Surfaces, [445, 451]. The leading idea is, that for a quartie surface with i-nodes, given

the nature of the circumscribed, (k — 1) nodal, sextic cone belonging to any one node of

the surface {for instance, k=10, that it is a cone (3, 3) composed of two cubic cones),

we thereby detei-mine the equation of the quartie surface, and consequently the nature

of the remaining (A; — 1) nodes thereof. By means of this general theory I complete,

in an es.sential point, the theory of the Symmetroid ; viz., I show that a 10-nodal

quartie surface having a single node (3, 3) is a Symmetroid ; whence, as appears hy

my second Memoir, [451], each of the remaining nine nodes is also a node (3, 3); and

we have the theory of the remarkable system of len points in space such that, joining

any one of them with the remaining nine, the nine lines thus obtained are the inter-

sections of two cubic cones. A large part of the Memoir is devoted to the consideration

of the surfaces with 16, 15, 14, and 13 nodes: this is substantially a reproduction of

the results obtained by Kummer in the Memoir " Ueber die algebraischen Strahlen-

systeme, &c.," already referred to; but the results in question are brought into

connexion with the theory of the present Memoir, and they are, by a change of the

constants, exhibited in a form of much greater sjanmetry and elegance. I attach

importance also to the square diagrams by means of which I have exhibited, in a

compendious form, the relation between the several nodes and circumscribed sextic cones.

The paragraphs are numbered consecutively with those of the first and second

Memoirs.

Preliminary Consideratiwis and Classification.

125. I call to mind that if a quartie surface has a node (conical point), then

there is for this node a tangent quadricone and a circumscribed sextic cone ; viz., if

the surface has (k — l) other nodes, or in all k nodes, then the sextic cone has (k — 1)
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nodal lines (passing through the other nodes respectively), and we have thus for the

different forms of the sextic the table No. 11 ; viz., this is

Circumscribed Sextic Cone.
Nodes of

Surface.

NodalLines
of Cones.

1

2 1

3 2

4 3

5 4

6 5

7 6

8 7

9 8

10 9

11 10

12 11

13 12

14 13

15 14

16 15

6

6.

6,

6,

6.

6. 5

6. 5i

6r 5,

6, 5, 4, 2

6, 5< 4„ 2 4, 1, 1 3, 3

6,0 5. 4,, 2 4„ 1, 1 3n 3

5, 4„ 2 4,. 1. 1 3i, 3i 3 2, 1 '

... • • ... 4,. 1, 1 ... 3. 2, 1 3, 1, 1, 1 2, 2, 2

... .. ... ... ... • .. 3,. 1, 1, 1 2, 2, 1, 1

... • • ... ... ... • • • ... 2:, 1, 1, 1, 1

... .. ... ... • • • • . 1, 1, 1, 1, 1, 1

viz., 6 denotes a proper sextic cone without nodal lines; 6, a proper sextic cone with

one nodal line; 5, 1 a proper quintic cone and a plane, &c.

We may distinguish the nodes according to the sextic cones; thus, a node 6 means

a node for which the circumscribed cone is a proper sextic cone, (1, 1, 1, 1, 1, 1)

a node where the circumscribed cone breaks up into six planes, &c.

126. A 16-nodal surface has 16 nodes (1, 1, 1, 1, 1, 1), and a 15-nodal surface

has 15 nodes (2, 1, 1, 1, 1); but, for a 14-nodal surface, the question arises how many
nodes are (3,, 1, 1, 1), and how many (2, 2, 1, 1). It was remarked, No. 13, that the

only possible cases were 14, 0; 8, 6; or 2, 12; and that we might, in like manner,

limit the number of possible cases for other values of k; but that the inquiry was

not then further pursued. I resume this inquiry, but without obtaining as yet a

complete answer.

127. It is to be observed that a line joining any two nodes is not, in general,

a line on the surface, but that it may be so; the surfaces for which this is so

(viz., any surface which contains upon it a line through two nodes) form, however,

C. VII. 34
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a class by themselves, which at present I altogether exclude from consideration. This

being so, it will appear in the sequel that there is but one kind of surface having

a node (2, 2, 1, 1), and but one kind of surface having a node (3i, 1, 1, 1). Now there

is a surface, Rummer's 14-nodal, the nodes of which are 8(3,, 1, 1, l) + 6(2, 2, 1, 1);

wherefore the two kinds are identical, and are each of them Kummer's 14-nodal surface.

Similarly, for the 13-nodal surfaces, there is but one kind having a node (4„ 1, 1),

but one kind having a node (3, 1, 1, 1), and moreover but one kind having a node

(3,, 2, 1); and we have Kummer's 13-nodal surface with the nodes 3(4„ 1, 1)

+ 1(3, 1, 1, l) + 9(3i, 2, 1); hence the three kinds are identical with each other and

with Kummer's. Moreover, there is but one kind having a node (2, 2, 2) ; hence all

the other nodes must be (2, 2, 2), and we have a surface 13 (2, 2, 2) not given by

Kummer. And in like manner for the 12-nodal surfaces, we have the two kinds given

by Kummer, and a third kind 12 (4,, 1, 1) not given by him ; the arrangement thus

far being

No. of Nodes. Character of Svuface.

16 16 (1, 1, 1, 1, 1, 1),

15 15 (2, 1, 1, 1, 1),

14 8(3„ 1, 1, 1)-H6(2, 2, 1, 1),

13(a) 3(4,, 1, 1)-|-1(3, 1, 1, l) + 9(3„ 2, 1),

„ (/3) 13(2, 2, 2).

12 (a) 12(4,, 2),

„ (/3) 2(5„ 1)-H6(3„ 3.) -I- 4 (3, 2, 1),

„ (y) 12(4,, 1, 1).

128. But in the next following case we have Kummer's surface, viz.

11(a) 1(6,„) + 10(3„ 3),

and I do not know whether one, two, or three kinds of surface having nodes (4,, 1, 1),

(4,, 2), and (05, 1). And in the next case we have (as will appear) the Symmetroid, viz.,

10(a) 10(3,3),

and I do not know how many kinds of surfaces having a node or nodes 6„ (5,, 1), (4,, 2),

(4. 1, 1).

It will be observed that the present division has nothing to do vnth the octadic

and disinodal division in the former Memoir.

129. I consider a conic -4=0, and any six tangents thereof, i, = 0, <, = 0, t, = 0, i^ = 0,

t, = 0, tt = 0; we have an identical equation which might be written AC—B'=titit,t^tit,,

but it will be convenient, introducing a constant factor K, to write it

AC - B' = Kt,t,t3tJ,tt,

B being a cubic function and C a quartic function of the coordinates.
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I

Consider now the series of factors, such as

lA +mtiti,

sA +mtitit3,

UA +mt,<s<s<4,

VA + mtit^t^tit^,

WA {mtit^titititt,

where m is a constant, I a constant, s a linear function, U, V, W functions of the

degrees 2, 3, 4 respectively; and compose with one or more such factors an expression

involving the term KtjtitstitiU; for instance, such an expression is

> (sA + mtiUta) {I'A +m%Q t,
;

this is, of the form An + Kt^t^t^U^t,, viz., An+(AC-B'), or A(n + Cr)-B', say Ar-&;
or what is the same thing, introducing a new coordinate w, we have a quadric function

Aw' + 2Bw + r,

the discriminant of which, AV — B', is equal to the expression in question.

130. In the sequel (x, y, z, w) are considered as the coordinates of a point in

space ; .4=0 is thus a quadric cone, <, = 0, <„ = . . . ^, = 0, any six tangent planes

thereof; and hence A'u^ + 2Bw+V = a quartic surface, having the point {x = Q, y = 0,

z = 0) for a node, whereof the circumsqribed cone AT — 8^ = breaks up in the assumed

manner.

Thus, in order that the circumscribed cone may be as above

{sA +mtitiQ (I'A + vi'UU) tt,

we have only to assume

T=C+ , (sl'A + sm'Ut, + I'mtiUQ t„mm
and so in other cases. Observe that sA + mt-f,ji^ = is a cubic cone, which, so long as

8, m are arbitrary, has no nodal line ; but establishing a single relation (say s remains

arbitrary, but a proper value is assigned to m) it will be a cubic cone having a

nodal line. And so UA + mtit^tstt = is a quartic cone without any nodal line, but

by particularising the constants it may be made to have one, two, or three nodal lines.

Such nodal determinations are obviously required in order that the formula may extend

to all the before-mentioned forms of the circumscribed cone. The foregoing analysis

is the foundation of the whole theory: I have given it, as above, apart fiom the

theory, in order that the nature of it may be the better perceived ; but I have now to

bring it into connexion with the theory.

On the Sextic Curves, A^Bi—G^= 0.

131. I revert to the consideration of plane curves. The equation of a sextic

curve (*$a;, y, zf-Q cannot be in general expressed in the form AC — B'=(i, where

34—2
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the degrees of A, B, C are 2, 3, 4 respectively; in fact, the existence of such a form

implies that there is a conic A = touching the sextic 6 times ; and since a conic

can only be made to satisfy 5 conditions, there is not in general any such conic.

132. Such conic, when it exists, is said to be inscribed in the sextic, and the

sextic to be circumscribed about the conic, or to be an " amphigram ;

" and then,

.4 = being the equation of the conic, that of the sextic is expressible in the form

in question AC—B' = 0. It is clear that B = is a cubic curve passing through the

6 points of contact of the conic with the sextic, and that any such curve may be

taken for the curve B ; in fact if a particular cubic through the 6 points is R = 0,

and the equation of the sextic is AC — B'' = 0, then taking p an arbitrary linear

function of the coordinates, the equation of the general cubic is B = B'+pA=0; and

then writing

A=A.
B =R + pA,

G = C + 2Rp + Ap',

vfehAveAG-R^AC-R'; so that the original form AC'-R'' = hecomea AG -R = 0.

But the cubic B = being assumed at pleasure, the quartic = is a determinate curve.

133. It is to be observed that a sextic curve may be an amphigram in more

than one way: certainly in two, three, or four, and possibly in a greater number of

ways. For the equation of the curve contains 27 constants, and hence determining

the sextic so as to touch 4 given conies each of them 6 times, there are still

3 constants ; and the curve will be an amphigram in regard to each of the 4 conies

;

say it is a quadruple amphigram. But in the sequel we are only concerned with a

sextic curve considered as an amphigram in regard to a given conic .4 = (no

attention being paid to the other inscribed conies, if any) ; and then, by what precedes,

taking B = any cubic whatever through the 6 points of contact, we have a determinate

quartic curve (7 = 0, and the equation of the sextic curve assumes the form AG —R = 0.

134. The curves .4=0, B = 0, = contain respectively 5, 9, 14 constants; whence

considering the function B as containing an arbitrary constant factor, for the curve

AG — R = 0, the number of constants is primd facie 5 + 9+14+1 = 29; but on account

of the arbitrary linear function p, the real number is 29 — 3 = 26 : this is right, for a

sextic curve contains 27 constants; and the curve being an amphigram, there is one

relation between the constants, 27 — 1 = 26.

135. Suppose now that the sextic curve AG —R = breaks up into two or more

separate curves, say into the two curves P = 0, Q = of the orders /, g respectively

;

f+g = 6. We have

AG-R = PQ = 0;

and the conic 4. = touching the sextic six times, must, it is clear, touch the curves

P = 0, Q = 0, f and g times respectively. And so when the sextic breaks up into any

number of curves, each component curve P = of the order / must touch the sextic

g times.
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136. It follows that if the sextic break up into six lines, sa,y AC — B^ = tit.2t3t^tfte = 0,

then that each of the lines <i = 0, ^2 = 0, . . . <« = is a tangent to the conic. And con-

versely, starting with the conic .4=0 and any six tangents thereof ti = 0, ^^ = 0, . . . f, = 0,

we have an identity of the form in question. In fact, taking any two of the tangents,

say ti = and t, = 0, then, if p = be the equation of the line joining their points

of intersection, the equation of the conic will be of the form tit2 + p^ = 0, that is, we

may write A=titi+p'', or what is the same thing, tit2 = A—p^. (Considering A as a,

given quadric function of the coordinates, this of course implies that the implicit

constant factors of t,, t,, p are properly determined.) Similarly, ^ = being the line

through the points of contact of t,, U, and r = that through the points of contact

of (5, te, we have ^3^4 = A—q' and igte = A —r'; whence, to satisfy the equation

AC-B' = t,UUUt,t„

we have only to assume B = IA + pqr, I an arbitrary linear function of the coordinates,

and the equation then gives

C=^A''-A{p^+q^+ r-) + (5V + r^p'+pY) + 1"-^ + ^Ipqr.

137. It will be observed that the gi-ouping of the six tangents into pairs is

arbitrary. By altering this grouping, we merely alter the linear function I, but do not

obtain any new solution. Thus, say that the new form is B = l'A +p'q'r', then, by

properly determining the linear function I, we can reduce this to the original form

B=lA+pqr; viz., we can satisfy identically the equation (I — I') A + pqr — p'q'r'' = ; or

what is the same thing, \A + pqr — p'q'r' = 0, where \ is a linear function of the

coordinates. We have, in fact, the conic A =0 and the cubic pqr = intersecting in

the six points of contact any other cubic through these six points; and consequently

the cubic p'(jfr' = must be expressible in the form \A +pqr = 0, and we have thus

the identity in question.

138. We have ju.st seen that the value of B is necessarily of the form B=IA +pqr,

but we are not concerned with its expression in this particular form. What we require

in the sequel is a value of B, and thence one of C, satisfying the identity in question,

AC— B' = tit,t^tititt; or what is the same thing, introducing for convenience a constant

factor K, the identity

AC - B' = Kt^t^UUkU.

139. Instead of C, I write F, and consider the sextic amphigram .4r — B^ =
touched by the conic .4 = in the points of contact of the conic with the six tangents

<j = 0, <a
= 0, ...<, = 0. Suppose the sextic curve breaks up into factors ; if one of

these factors is a line, it is one of the six tangents, say the tangent t^ = 0. If there

is a conic factor, this is a conic touching the conic A=Q at its points of contact with

two of the tangents, say the equation is IA + nitfii = 0. Similarly, if there is a cubic,

quartic, or quintic factor, then the equation hereof is s.4 + mij ^2^3 = 0, UA->r'nvtitit,ti = 0,

or VA+m^titititi = 0. Or going on to the next case of a sextic factor (being of course

the whole curve), we may say that this is WA+mtit2t3titiU=0. (Observe that since

AG— B' = KtrititiUtit,, this means only that the equation of the sextic amphigram is

of the assumed form AT — B' = ().)
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140. By what precedes we can, for a sextic amphigram which breaks up in any

assigned manner, determine the value of F. For instance, let the amphigram break

up into two cubic curves; say these are aA + TrUittt, = 0, 8'A+m'Uttt,=^0. Assume

then this equation is

that is, we have

Ar-B' =—, {sA + vitiUt,) (s'A + m%UU),mm

Ar-B'= -n [as'A* + {sm'Ut,U + s'mUUQ A\-\-AC-B*;mm

IT

r = C+—-, (ss'A + sm'UUU + s'mtiUi),mm
and so in any other case.

I have already adverted to the question of the "nodal determination" of the

formulae, and it might be properly here considered ; viz., the question is as to the

determination of the constants in such manner that, for instance, sA+mtit.it3 = may

be a nodal cubic, UA + mtititjti = a nodal, binodal, or trinodal quartic, &c. ; but I

defer it for the moment in order first to apply the theory to the quartic surfaces.

Application to Quartic Surfaces.

141. If a quartic surface has a node or nodes, we may take for a node the point

a;=0, y = 0, z = 0; the equation of the quartic surface is then of the form

A'ui'+2Bw + r = 0,

where A, B, T are functions of x, y, z of the degrees 2, 3, 4 respectively. J. = is

the tangent quadricone at the node in question ; and the circumscribed cone is

AT — B' = 0. By what precedes, this is an amphigram touching the quadricone along

six generating lines thereof ; say the tangent planes of the cone -4 = along these

six lines respectively are <i
= 0, <., = 0, . . . tg = 0. We have then an identical equation

AC - B' = Ktit^t^tttJe,

viz., regarding for a moment this equation as an equation for the determination of B,

and R as any particular solution thereof, then its general solution is R + tA, where

< is an arbitrary linear function of (x, y, z), and the B in the equation of the surface

is properly =B'-^-tA. But by the substituting w — t in place of w, the B of the

equation of the surface would then be made = J5' ; and it thus appeal's that we may,

without loss of generality, take the B of this equation to be any particular value

satisfying the identity in question ; and then, B having such particular value, C is a

quartic function of {x, y, z) completely determined by the same identity. And we then,

by what precedes, at once determine F so that the circumscribed cone AT — B' =
may be a cone breaking up in any assigned manner; for instance, if it be a cone
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(3, 3), then, as just mentioned, the two cubic cones are sA+mtit2ts = 0, a'A+m%titis = 0;

and r has the value

above obtained.

r = (7 H , (ss'A + sm'tJite + s'mtit^ts),

On the Nodal Determination.

I

142. I am not able to discuss with much completeness the question of nodal

determination. We have to consider a cubic curve sA + mtitit3 = 0, a quartic curve

UA +mtit,t3ti = 0, &c., as the case may be, and to determine the constants so that

this shall have a node or nodes. Consider for a moment the form PA + tiQ = 0, where

Q denotes the product mtj:^ ... of all or any of the tangents t,, .. t^; the orders of

PA, t^Q are of course equal, that iS; the order of P is less by unity than that of Q.

I say that, by establishing a single relation between the constants, this may be made to

have a node at the point of contact A = 0, ti = 0. In fact, writing A=XSx + ^iBy+vB^,

where \, fi, v are arbitrary, there will be a node at any point if for that point

A {PA + tiO) = 0. But for the point .4 = 0, <j = this becomes PA.4 + QAt^ = ;

moreover, if t = be any other tangent of the conic .4=0, and ii p = be the line

joining the points of contact of the tangents t, ti, then we may write A = tti—p^, and

thence (since at the point in question, .4=0, ^ = 0, we have also p = Q) we find

Ail=<Afi, and the foregoing equation thus becomes (tP+Q)A<i = 0; viz., this equation

is satisfied irrespectively of the values of X,
fj,,

v, if only at the point in question

(that is, for the values of the coordinates which belong to the point t, = 0, A =0) we
have tP + Q=0, which is a single relation between the constants.

143. In particular the cubic curve sA + nitit^t, = may be made to have a node

at the point of contact of any one of the three tangents; the quartic curve

fM +m<i(a<3<i= 0, a node, or two or three nodes, at the point or points of contact of

any one, two, or three of the four tangents; and so in other cases. These are not

the only solutions, and they are in fact solutions which (as afterwards explained)

I propose to reject, attending in each ca.se only to the remaining or proper solutions

of the problem.

144. To obtain in a different manner the foregoing result, consider again the

cubic curve sA +»n^<,<3 = 0; regarding this as a given curve, the conic A = is a conic

determined (not of course completely) as a conic having therewith 3 points of 2-pointic

intersection ; viz., if the cubic has a node, then the cone .4 = is either a conic

passing through the node and besides touching the curve twice, or else it is a conic

touching the curve 3 times; the former is of course the above mentioned case where

there is a node at one of the points of contact on the conic .4=0; the latter is

regarded as the proper solution. So in the case of a quartic curve UA + mtititatt = 0,

regarding this as a given curve, the conic .4 = is a conic having therewith four

points of 2-pointic intersection ; viz., if the quartic curve has one, two, or three nodes,

then the conic is either a conic passing through one, two, or three nodes, and besides

touching the quartic thrice, twice, or once ; or else it is a conic touching the quartic
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four times. The former is the above mentioned case where there is a node or nodes

at a point or points of contact with the conic .4=0; the latter is regarded aa the

proper solution.

145. To fix the ideas, and at the same time obtain a result which will be

afterwards useful, I work out the formulae for the cubic curve sA + mtittt,^0, taking

this equation under the form

(^ +- + -](a:^ + y* + z* — 2yz — 2zx — 2a:y) + m xyz — 0.

This may have a node in two different ways; viz.,

1°, At the point of contact of one of the tangents x = 0, y = 0, z = with the

conic il = ; say at the point of contact of a; = 0, that is, the point a; = 0, y — z = 0.

4 4 11
The value of vi is =-+-; hence - = l-i»n; and, substituting, the equation of

fJi p V n
o ^

the curve becomes

S *" ^^) l^ - 2« (y + ^) + (y - ^)'l + i '^ (* + y - ^)' = 0.

which has obviously a node at the point in question.

2°. The node may be at a point not on the conic ^ = 0, viz. the value of m

18 =-^—r^- -, the equation is
Kitv

(^^.y- + '-^(a? + f + z^-2yz-'2zx-2xy)-\-^^^^^^^^ooyz = 0.

In fact, writing for shortness

— X + fi + v — L,

\ — fi. + v = M,

\ + fi — v = N
X + fi + v = P,

the node is at the point x : y : z = L\ : Mfi : Nv ; which is at once verified, if we
remark that, writing for convenience x, y, z = L\, Mfi, Nv, then we have

— x-\-y-\-z = MN,

x — y + z = NL,

x + y — z = LM,

^ + ^ + ^ = P, ai> + y' + z'-2yz-2zx-2xy = - LMNP (= A).

For, of the three equations for the coordinates of a node, the first is

II

|i
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that is, for the values in question,

- 1 LMNP + P{- 2MN) + ^— MN^^v = 0,

that is

- LMNP - IXMNP + P'MN = 0,

or, finally, — Zi — 2\ + P = 0, which is satisfied ; and similarly the other two equations

are satisfied.

Quartic Surfaces resumed.

146. Passing now from curves to cones, and to the theory of the quartic surface,

suppose that there is a component cone having a nodal line, say the cubic cone

«j4 + wit,<2<3= 0: if the remaining factor is tttit,, then we have

m
Suppose the nodal line is a line of contact with the cone .4=0, say its equations

are t,=0, p = (p a linear function), then 8A + mtit,tt is a quadric function (*J^i, p'),

(of course with variable coeflScients) ; hence AF — B' is a quadric function; and A
being a linear function (•^J^, p), it follows that 5 is a linear function, and thence

that r is also a linear function ; that is. A, B, F are each of them a linear function

(»$<,, p), or the line in question (viz. the line of contact A=0, <i
= 0) is a line on the

quartic surface Av^ + 2Bw + F = 0. As already mentioned, / exclude from consideration

the surfaces which have upon them a line through two nodes; that is, I exclude

from consideration the case in question where any component cone, or say where the

sextic cone, has a nodal line which is a line on the tangent cone A = 0.

147. Now, excluding the case just referred to, / assume as a postulate that there

is but one way in which the cubic cone «4 + m<i<2<3 = can be made to have a nodal

line, or the quartic cone t/^^ +m^ <,<,<< = one, two, or three nodal lines &c., as the case

may be. It is to be understood that this does not mean that the constants are in

any of these cases completely determined, but that there is between them a relation

or relations constituting a general solution which includes in itself every particular

solution whatever, I have no doubt that as regards the cubic cone at least the

assumption is correct. This being so, the character of a single node determines the

nature of the surface; for instance, if there is a node (3,, 3), then taking this as

the point {x = 0, y = 0, z = 0) the equation of the surface is Az^ + 2Bw + F = 0, where

r = C H -, (ss'A + I'stftita + ls%tM,mm

a surface of a determinate nature ; so that the character of all the remaining nodes

is completely determined.

148. The point to be attended to is, that if for instance there were two essentially

distinct ways of giving the cubic cone »4+m<,ij<, = a nodal line (such as there

would be if the excluded case were considered admissible), then the foregoing equation

C. VII. 35
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of the surface would or might include two distinct forms of equation applying to

different kinds of surface. The conclusion is that there is but one kind of quartic

surface having a node (S,, 3). Admitting this, and similarly that there is but one kind

of quartic surface having a node 6,o, it follows that if (as the fact is) there is a

surface having the nodes 1 (6io)+ 10(3,, .3) (Kummer's 11-nodal surface), then that the

two first-mentioned kinds are in fact each of them this last-mentioned kind of

surface ; and it was in this manner that I arrived at the enumeration given near the

beginning of the present Memoir.

149. The reasoning is, of course, in place of a direct demonstration which would

consist in showing that a surface having a node (3i, 3) has 9 other like nodes, and

also a node 6]o; and that a surface having a node 6io has 10 other nodes (3,, 3);

and that, starting from either form of equation, we could, by passing to a node of

the other kind, obtain the other form of equation.

Enumeration of the Gases.

150. I collect the results as follows : I call to mind that we have always the identical

equation AC — B' = Ktit^t^titst,, that the equation of the surface is Aw'' + 2Bw + T = 0,

and that the circumscribed cone is AT — If = 0. The equation of a surface having

different kinds of nodes will assume different forms according as the origin (or point

a; = 0, y = 0, z = 0) is taken to be at a node of one or other of these kinds ; these

forms of the equations are distinguished as "node-forms,"— viz., we speak of the node-

form (3i, 3) when the origin is a node (3i, 3), and so in other cases.

The 16-nodal surface

node-form

cone is

and

viz., equation is

The lo-nodal surface

node-form

cone is

and

16(1, 1, 1, 1. 1, 1).

(1, 1, 1, 1, 1, 1),

Avj' + 2Bw +(7 = 0.

15(2, 1, 1, 1, 1),

(2, 1, 1, 1, 1)

{IA + mtit^ tititttt = 0,

Kl
r = -I-

— t^t,t,t^ = 0.
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The 14-nodal surface

8(3„ 1, 1, l) + 6(2, 2. 1, 1),

node-form

(3„ 1, 1, 1),

{sA + mtitits) <4<5<6 = 0,

sA +mtit2ts=0 is a nodal cubic 3i,

Ks
m

(2, 2, 1, 1).

{lA + mt,Q {I'A + m%U) Uo = 0,

r = C + , (ll'A + lm%U + I'mt^Q Ut,.mm
The 13(a)-nodal surface

3(4„ 1, 1)+1(3. 1, 1, l)+9(3., 2, 1),

275

cone IS

where

and

node-form

cone is

and

node-form

cone is

where

and

node-form

cone is

and

node-form

cone is

where

and

(4,. 1, 1),

{UA + mli <,<3<«) titi = 0,

UA -|-m^<3<j<4=0 is a trinodal quartic 4„

m

(3, 1, 1, 1),

(sA + mtit^ts) tJtte = 0,

m

(3„ 2, 1),

(sA H- mi]<j<3) (I'A + m'Uti) U = 0,

8A +mt^titi = is a nodal cubic 3i,

r = C -f , (al'A + m'st^U + ml't^UQ U-mm.

35—2
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The 13(y8)-nodal surface

13(2, 2, 2),

node-form
(2, 2, 2),

cone is

(M + mt^U) {I'A + m%U) {I"A + m"UU) = 0,

and

r = C + -iL_ [ii'i" A-' + (ITmUU + l"lm'U^ + U'm"t,U) Ammm '

+ lm'm,'%UtiU + l'in"mtttftiU-\- Vmrn'titittt^.

The 12(a)-nodal surface

12(4,, 2),

node-form

(43, 2),

cone is

( UA + mt^tit^tt) {I'A + m%U) = 0,

where

UA -f- mtitittti = is a trinodal quartic 43,

and

r = C + ^, (I'UA + m'm^tt + I'mt^UUU).mm
The 12(/9)-nodal surface

2(5., l) + 6(3,, 30-H4(3, 2, 1),

node-form

cone is

where

and

(5„ 1),

FJ. +m(i<at3^4i5 = is a 6-nodal quintic 5,,

r = C + - Fit,;m
node-form

cone IS

where

(3i. 3.),

(sA + mtitit,) (s'A + m'UtiU) = 0,

s4+m<,t2(s = and s'J. + m'<4<5<5 = are each of them a nodal cubic 3i,

and

T = G+—> (ss'A + m'stittU + msXtiti)

;

mm
node-form

(3, 2, 1),

cone is

(sA + mt^Uh) {I'A + m%tt) «, = 0,

and
ir

r = C+ -AlsA+m'sttU+l'mtitits)tfmm
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The 12 (7)-nodal surface,

node-form

277

cone IS

where

and

12 (4„ 1, 1),

(4„ 1, 1),

UA +mtitjt3ti = is a binodal quartic 43,

The 11 (o)-nodal surface,

node -form

cone IS

m

1(6„) + 10(3„ 3)

(6,„),

WA + mtitititMi = 0,

where this is a 10-nodal sextic 610,

and

T = C + -W;m
node-form

cone is

where

and

(3„ 3),

(sA + mtiiit,) (s'A + m'tJiQ = 0,

sJ.+m^<2<3 = is a nodal cubic 3i,

T = C+ —, (as'A + m'stttnU + ms%tM-

Other 11-nodal surfaces,

node-form

cone 13

where

and

node-form

cone is

where

and

(5„ 1),

{VA + mt.Ut^UQ U = (i,

VA +m<i<jt,<4<j= is a 5-nodal quintic 65,

m

(4=, 2),

(UA + vitit^tiQ (I'A + m'UU) = 0,

UA+mtitit^ti = is a binodal quartic ^j,

T = C+ ,(l'UA + m'Ut,t, + l'mt^t^U,);mm
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node-form

cone IS

where

and

(4. 1. 1).

UA + mtitititt is a nodal quartic 4,,

but whether these node-forms belong to the same or to dififerent surfaces is not

ascertained.

The enumeration is not extended to the 10-nodal surfaces, but I consider one case

of these surfaces.

The 10 {a)-nodal surface 10 (3, 3).

151. I assume only that there is a single node (3, 3): taking the cone to be

(sA + nditit,) (s'A + m'ttUU) = ; |

then for the equation of the surface, in the node-form (3, 3) in question, we have

r = C H ; {ss'A + sm'ti (5 <e+ s'mti t^ t,).

iftJifh

But I present this result under a different form, as follows: I write

A^p^^-ftiti = q^-VgUU = r'' + hUU.

where /, g, h are constants, and, as before, ^ = 0, q = 0, r=0 are the lines joining the

points of contact of ^, t^; t^, 1^; and t^, t^ respectively: we have

sA + mtitits = sA + mts (—-J^] , and s'A + m'titit^ = s'A + m% I —r— j

;

or in place of s, s' introducing new linear functions a, a-', the cubic curves may be

taken to be <r.4.
— -^jj"^, <t'A — j- r^tf, so that we have

•^ / , A„ A "t' „ . , A in „. '"nm! , „ .4 — o'\

mm V h f fh g J

whence B=lj-j] (pqr + tA), where i is a linear fiinction of the coordinates; and we

then have
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where A may be considered as standing for q'+gtstt. The equation Aw'+2Bw + T =
of the surface, substituting throughout for A its value, is therefore

(?' + gtsU) w» + 2 (^J {pqr + t(q' + gt,t,)} w

where the cone is

f

152. Writing in the equation of the surface wf^j instead of w, it becomes

(f+ gt^h) w= + 2 [pqr + < (?» + gUU)] w

fqh r ,.„ ,,. m', ,m„. mml „ „

f f9h
+ t'{q'' + gt,U)+2tpqr=0;

m
and then writing > cr and j- a for <t and o-' respectively, this is

(g» + gt,U) w= + 2/)grw + 2tw {q^ + fir^s^O

+ 9\Ff' (q' + gUU) -a-r't,- <t'p^ 1, + - pV] + t^ (q^ + gt,Q + 2tpqr = 0.

i
^

We may consider ^, <« as denoting not the functions originally so represented, but

these functions each multiplied by a suitable con.stant, and thereupon write g = — I
;

viz., <j = 0, U = 0, will now denote any two tangents to the conic .4=0, the implicit

factors being so determined that A = q^ — tsti. The equation of the surface is

(q'- UU) vfi + 2pqrw + 2tw {q^ - t,Q

-aa'(q'-tttt) + <rrHt+(T'p't,+p^r' + t'(q''-t3U) + 2pqH = 0;
viz., this is

(3*- t,U) [(w + ty- a-a'] + 2pqr (iv + t) + ar'U + a'pHt H-p'r' = 0,

[the sextic cone being

[a (9» - t,U) -p'U] [a' if - t,U) - r^U] = 0.

163. But the foregoing equation of the surface is

— a',w + t, . , r =0,

w + t, -<T, p ,

. , p , U , -q

r , . , -q, t,

as is at once seen by developing the determinant; the functions w + t, a-, <T',p, q, r, t^, ti

are all of them linear; and the detenninant is thus a symmetrical quartic determinant

the terms whereof are linear functions of the coordinates; viz. the surface is a
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symmetroid. That is, a surface having a single node (3, 3) is a symmetroid ; but I

have shown (Second Memoir, No. 116) that a symmetroid has each of its ten nodes

(3, 3); wherefore the surface having a single node (3, 3) is the 10(a)-nodal surface,

nodes 10(3, 3).

154. Start from two cubic cones U=0, V=0, having each the same vertex

(x = 0, y = 0, ^ = 0); we may in a variety of ways determine the two cones aU+ ffV=0,
yU+BV = 0, having a common inscribed quadric cone .4 = (viz., a : /9 being assumed

at pleasure, then y : 8 will be determined ; not, I believe, uniquely, but I do not

know what the multiplicity is). This being so, the quadric cone A =0 is uniquely

determined ; and then, assuming at pleasure the plane w = 0, the 10 (a)-nodal surface

Aw' + 2Bw + T = is uniquely determined: consequently the remaining nine nodes are

determinate points on the nine lines U=0, V=0 respectively. And we have thus

a system of ten points in space such that, joining any one of them with the remaining

nine, the nine lines so obtained are the intersections of two cubic cones, or say that

they are an ennead of lines.

Notation for the Gases afterwards considered.

155. I proceed to further develope the theory of some of the dififerent surfaces.

The same node-form of equation will, of course, assume different shapes according to

the actual expressions in terms of the coordinates {x, y, z) of the several functions

A, &c., which enter into it. I have found it convenient to attribute to A and B
certain specific values which are not in every case those of the coefficients of v^, w in

the equation of the surface : this means that we must, in the equation of the surface,

substitute new symbols for these coefficients, and write the equation say in the form

A'vj- + 2B'w + V =0 ; the change of notation, when it occurs, will be duly explained.

156. It is in general (but not always) convenient to take the equation of the

tangent cone to be a? + y^ + z^ — 2yz — 2zx — locy = ; for then any plane -+a + -=0,
a P 7

where a + /S + 7 = 0, will be a tangent plane ; so that six tangent planes may be

represented by x = 0, y = 0, z = 0, and by three equations of the form just referred to.

And in reference to this assumed form of the equation of the tangent cone, and to

what follows, I write

a + y9 +7=0,
a' +/3' +7=0,
a" + /3"+7" = 0,

a /3^7'

a'^^'^7"

P" - £. X 1- J- :L
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X =a (7'7"y-/9'/S'H

Y =^ (da!' z-ii'x\
^ =7 iP'^'-x-a'd'y),

Z'=a' (7"7 y-/3"^2).

F' =y3' (a"a z-r^''^^ x),

Z' = 7' (/3"/3 ^ - «"a y),

Z"=a" (7 7'y-/3^z),

F" =/3"(a «'2-7 7' a,-),

Z" =7"(/3^'^;-«a'y),

A = x' + y^+ z'^- 2yz-2zx-2xy,

B = aa'o" (fz - yz^) + /8/3';S" {z^x - za?) + 777" {x^y - xy") + Mxyz,

G = {aa'a"yz + ^ff^"zx + Tfi'i^)- \

where

Jlf=(/3 -7 )a'a" + (7 -a);9'^"+(« -/3 )7'7",

= (/8' - 7' ) a"a + (7' - a' ) y3"y3 + (a' - ff ) i'^,

= (y8"-7")aa' +(y'-a")^y9' + («" - /3") 7 7.

= - i {(/3 - 7) (-8' - 7') (/8" - 7") + (7 - a) (7 - «') (7" - a") + (a - /3) («' - ^') («" - /3")1

;

also

A'=4aa'a"/3/3'/9"77'7":

and we have identically

7%e 16-nodai Surface 16(1, 1, 1, 1, 1, 1).

157. Kummer starts from an irrational equation, which is readily converted into

the following

•JxiX-w) + Vy(y-w) + ^z{Z-w) = 0,

and then, rationalizing, we have

.4w» + 2fiw + C=0,

where as above

AG-B'-^KxyzPFF'.

This agrees with the foregoing theory ; viz., the point (a; = 0, y = 0, 2 = 0) being a node,

the rationalized equation must, of course, be in the node-form (1, 1, 1, 1, 1, 1), (being

the only node-form); and the symmetry of the formulae enables us at once to write

C. VII. 36
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down the equations of the 16 singular planes, and thence to deduce the coordinates

of the 16 nodes; viz.,

the singular planes are

(1) X =0,

(2) y = o,

(3) z=0,

(4) w = 0,

(5) Z-w = 0,

(6) F - w = 0,

(7) Z - w = 0,

(8) P = 0,

(9) X'-w = 0,

(10) F - w = 0.

(11) Z' -w = Q,

(12) P' =0,

(18) Z"-ty = 0,

(14) Y"-w = 0,

(15) Z" -w = 0.

(16) P"=0,

and the nodes are

(1) ( , -0. 7 .
a'a"^7 ),

(2) (.
a

. , -7. /S'/3"7« ).

(3) ( -a. ^ , , 7'7"a/9 ),

(4) <
;a'a", yS-yS", 77". ).

(5) (: 1 > , , ).

(6) [ , 1 . , ),

(7) [ , , 1 . ),

(8) [ , , , 1 ).

(9) ( ,
-/9', 7. a"«/3'7').

(10) (
a'

. ,

/-7. y8"/37V),

(11) (-«', ^'

,

, 7V'y3').

(12) (a"a, /8"/3, 7"7. ),

(13) ( ,
-/3", 7 .

aa'^y).

(14) [
a"

. ,
-7", /3/3'7"a"),

(15) [-a". r, , 77'a"/9"),

(16) [ac^
,

/3/3', 77. ),

where the nodes and planes are numbered as by Kummer; and by means of his

(differently arranged) diagram of the relation between the several nodes and planes,

I was enabled to form the following square diagram, which exhibits this relation in,

I think, the most convenient form. To explain this, observe that in the upper and

left-hand margins, the numbers refer to the nodes; in the body of the table, and in

the right-hand margin to the planes, the table shows that for the node 1, the

circumscribed cone is made up of the planes 1, 6, 7, 8, 9, 13 ; and that the remaining

15 nodes are situate on the nodal lines of this cone, the node 2 on the intersection

of the planes 7, 8 ; the node 3 on the intersection of the planes 6, 8, and so on

;

and the like as regards the other lines of the table.
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158. The before mentioned irrational equation may be written

VlTS +V276 +V3T7 =0,

and by symmetry we see that also

vT79 + V2 . 10 + VsTTi = 0,

VmS + V2 . 14 + V3^l5 = ;

viz., these are three equations each containing the planes 1, 2, 3, which are three of

the planes belonging to the node 1 ; the other three planes in any such equation

(for instance, the planes 5, 6, 7, in the first equation) being three planes belonging to

another node. Instead of the planes 1, 2, 3, we may have any other three planes

belonging to the node 1; and instead of the node 1, any other node; but each

equation belongs to two nodes: the number of equations is thus

Y^^ X 16 X 3 -- 2, == 480.

159. To obtain the planes belonging to any such equation, combine any two of

the outside right-hand lines of the diagram, these contain in common two numbera

the places of which are interchanged ; striking these out, we have four columns, and

taking out of these any three columns, we have the corresponding sets of planes. For

instance, lines 1 and 2 contain 78 and 87 respectively; striking these out, the lines are

1, 9, 13, 6;

2, 10, 14, 5;

whence we have the sets (1, 9, 13) and (2, 10, 14) ; viz., there is an in-ational equation

of the form

V1T2 + ^/WTTo + V13TT4 = 0,

but it is probably necessary to introduce constant factoi-s along with the products

1.2, 9.10, and 13.14 respectively. There are ^16.15, =120 pairs of lines, and each

line gives 4 equations; in all 120 x 4, =480 equations, as above.

160. I stop to remark that Kummer gives for his 13-nodal surface an equation

containing three arbitrary constants, say X, fi, v, such that, putting one of these = 0,

we have the 14-nodal surface; putting two of them each =0, the 15-nodal surface;

putting all three of them =0, the 16-nodal surface. The equations for the 16-nodal

surface and that for the 14-nodal surface, made use of by Kummer, are, in fact, those

deduced as above from the equation of the 13 (a)-nodal surface; and the like form

might have been used for the 15-nodal surface. But the form actually used by

Kummer, as presently appearing, is an equivalent form not thus deducible from the

equation of the 13 (a)-nodal surface.

I
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The lb-nodal Surface 15(2, 1, 1, 1, 1).

161. Rummer's equation is readily converted into the following:

K1
Avfi + IBw + C+—xuzP = 0,m ^

the circumscribed cone being thus

{lA+mFP")xyzP = 0,

and the equation being in the node-form (2, 1, 1, 1, 1).

The formulae for the 1.5 nodes and the 10 singular planes depend upon a quadric

[equation, for the symmetrical expression of which I write

a'a" - ^'V = &'^' - 7"a' = H' - a"/3' = m,

o'a" - y8'7" = /?'/3" - 7'a" = 7Y' - a'^" = ^
;

so that
a' tt alt I t^ii ti^t ^f a" ^n ai

0) —nr = py — p y = yCL — y a = a p — a/3,

ft) + Br = aa +PP +77 :

the equation in question then is

ip - a)) (/J - or) +

so that, calling the roots of it p^, p„ we have

Kl
4a/87?rt

Pi+pt= (o + m, piPi = wa +

= 0;

Kl
4ta^ym

'

or we may ^vrite

if for shortness

p, = i(a, + t!r + Vn), =i (a'a" + ^'/3" + 7-7" + V"),

P, = ^{co + ::t- v'n), = i (a'a" + /3'r + 77" - V^i),

n = («a-sr>'-
Kl

afiym'

162. I write also for shortness

a=(/3-7)a'a" +a(0'^' -y'y"),

b = (7 - a) ^'/3" + /3 (7'7" - a'o"),

c=(a-^)7'7"+7(«'a"-/S'/3");

and I say that the singular planes are

(1) (1) «=0,

(2) (2) 2^ = 0,

(3) (3) z = 0.
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,„ (9) _^(Z'-«;) + (p.-«)(| + ?)=0.

(10) -l(F'-«;) + (p.-a,)(i + 3=0.

(11) -^^(Z'-«;) + (p.-a.)g+|)=0.

(13) -^^(Z"-«;) + (p,-«.)(| + £) = 0,

(8, (14) -l(F"-«;) + (p.-^)(^ + f)=0,

(9) (15) _^(Z"-w) + (p,-^)g + |)
= 0,

[454

(8)

(«)

(7)

(10) (8) P = 0;

and that the nodes are

(1) (1)

(2) (2)

(5) (3)

W (9)

(0) (10)

(6) (11)

(7) (13)

(8) (14)

(9) (15)

(10) (8)

(11) (5)

(12) (6)

(13) (7)

(14) (16)

0, -A
a . .

-«, ys ,

- (p, - y'y"),

-ipi-y'y").

Pi — /3'/8"
,

0, 0, 0, 1),

1, 0, 0. 0).

0, 1, 0, 0),

0. 0, 1, 0),

7 .

-1

,

a'a"/37),

/3'^V),

, 7'7"a/3),

pi-77 .

-(/>.-«'«"),

P.-7'7" .

-(P:-a'a").

- (p, - /3'^"), a (/>. - 7'7"
) (P= - y8'/3")}

/,,-a'a" , /3(/,,-a'a")(ft-y7")}

, 7(p.-/8'r)(p.-a'a")}

- {p, - ^'r), a (p. - 77" ) (Pi - /S'^')}

p,-a'a" ,
^(p,-a'a")(p,-7'7")}

, 7 (p.-zS'rXp, -«'«")}

H
ia(a-aVn), i/3(b -/3 V"), ^7(0-7^^), —j ,

(16) (12) (ia(a + aVfi), i/3(b + /SVn), i7(c + 7Vn), ^^) •

163. The small reference numbers are those used by Kummer. It is, I think,

better to retain the reference numbers belonging to the case of the 16-nodal surface

;

viz., there are here given, large, 1, 2, 3, 8, 9, 10, 11, 13, 14, 15 for the planes, and

1, 2, 3, 5, 6, ... to 16 for the nodes. Belonging to each node (that is, with the node

as vertex) there is a quadric cone passing through 8 other nodes; and each node lies

(exclusively of the cone whose vertex it is) in 8 such cones. We have thus the

following square diagram:

i
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164. The arrangement is the same as in the 16-nodal square diagram ; only, in

the right-hand margin, a bi-acket (6, 7) denotes that instead of the planes (6, 7) we

have a quadric cone ; which cones are, in the body of the table, denoted by C. Thus

for the node 1 the sextic cone is made up of the planes 1, 8, 9, 13 and of a quadric

cone (6, 7), =C: the remaining 14 nodes lie on the nodal lines of the sextic cone,

viz., the node 2 on an intersection of the cone C with the plane 8, the node 3 on

an intersection of the same cone and plane, the node 5 on the intersection of the

planes 9, 13, and so on.

The Equation of Hie lo-nodal Surface, as deduced from thai of the 13(a)-«odai.

165. If, in the equation hereafter given for the 13-uodal surface, we ^vrite i' = 0,

1^ = 0, or (what is the same thing) in that of the 14-no<ial surface we write /* = U, the

form is

+ 2w (fi - iXyz X)

+ = 0.

The circumscribed sextic cone is thus (2, 1, 1, 1, 1),

{•Ko?yz + /37ar= + 7<m/ + a^xz) yz {F - p,P') {F - p,F') = 0,

where pi, p, now denote the roots of the equation

X (pa - a"r - ry}, , „ (« - "^y pa'a" = 0.

PP 7 7
The singular planes are

(4) w = 0,

(12) P'-piP" = 0,

(16) F -p,F' = 0,

(8) z = 0,

(2) y = 0,

(15) ^5^ p. (Z' - w) - {Z" - «;) = 0,

(11) i^f^. p, (Z' -w)- {Z" - «;) = 0,
70 p

(14) |J^,p.(F'-w)-(r"-«;) = 0,

(10) |V?;p,(7'-«;)-(F"-«;) = 0,

(5) Z-w = 0,

and we have then the same square table as before : the coordinates of the 15 nodes

may be obtained without difficulty.
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166. The form is really equivalent to that first considered in regard to the

15-nodal surface. To show that this is so, we have only to arrange according to powers

of x; viz., the equation thus becomes

^ {(77V')' y' + (^0^7 z' + w"- - WP'^"zw + 2nWwy + 2^^'/3"77W}
+ 2x {TvV'aaVy^^ + aa'a"^^'^"yz'' + ^^'^''z'w - ziv'- - iu"-y - fi'i'wf + Myzw]

+ {aa'a"yz + wy - wzy — iXyzw (X — w) = 0,

-where, if for a moment A denotes the coefficient of of, we have y = 0, z = 0, ly = 0,

[X — w — 0, four tangent planes of the quadric cone .4=0.

l^nodal Surface 8(3i, 1, 1, l) + 6(2, 2, 1, 1), Node-form (3„ 1, 1, 1).

167. In the equation hereafter given for the 13-nodal surface, writing v = 0, the

fsextic cone becomes

4z (Xay^ + ii^za^ + ^'fai'y + 700;?/= + a^xyz) (P' - p,P") {F - p^P") = ;

[viz., this is of the form in question (3i, 1, 1, 1); and the equation of the surface is

vPA + 4 (\y + fix) z — 4i\fiz^

+ 2w (5 - 2 {\yX + ^ixY)z}

+ C=0.

The singular planes are

7'«"/3"

w =0,

P'-p,P" = 0.

P'-p,F' = 0.

z =0,

p, {Z' - w) - iZ" - w) = 0,

and the nodes are

il^,p,(^Z'-w)-{Z"-w) = ^,

(0, 0, 0, 1),

(1, 0, 0, 0),

(0, 1, 0, 0),

(0, 0, 1, 0),

i ^-J^b «"-°
^/>' yyV'(r-/gp.)(a"-«pO\

r ^/9" ' a'a" '
' ' a"y3"7' - «'^V>i ''

( 0'-0P' «"-«>^ Wy"(0'-0'P.)(o^"-cc'p,)\

\ ^S'yS" ' a'a"
•"'

a"^"y'-a'^y"p, J'

(4) w

(12) (2)

(16) (3)

(3) (1)

(15) (6)

(11) (6)

(8) (1)

(5) (13)

(6) (U)

(7) (5)

C. VII.

(11) (4)

(15) (3)

37
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/ oa'a" _^^ _rHL \ (16) (7,

\,a -ffp, ff -fip, y -ypi I

\o -apt /3 -/Sps y -yPi J

( a'a" , ff^' . yV' . ). (4) (s)

( -« . /S , , 7'7"ay3), (3) («

two nodes on line

'^y,^,p,{Z'-iu)-{Z"-w) = 0,' F-p,F' = 0, (13,14) (mo)

and two nodes on line

%^,p,{Z'-w)-{Z"-w) = 0, F-p,F' = Q, (9,10) ai,«)

where the large numbers are those for the 16-nodal surface, the small numbere are

Kummer's.

168. In these formulae, p^, p^ denote the roots of the equation

{\ff'^ + pa."'){poL0y

+ (Xy3'«+/.a'»)(a"ry^

277"
- 2 \\ff^' + ^a'a" +^„ (m - ^f pa^a'ff'^O.

169. The relation of the nodes and sextic cones is given by means of the square

diagram on the opposite page

:

II
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where the arrangement is the same as before ; only in the right-hand margin, a

bracket (5, 6, 8) denotes that, instead of the planes 5, 6, 8, we have a nodal cubic

cone (5, 6, 8), which is in the body of the table referred to as (7, and the nodal line

thereof by x ; and the brackets (2, 5), (9, 13) denote that, instead of the planes 2, 5,

we have a quadric cone (2, 5), and instead of the planes 9, 13, a quadric cone (9, 13);

which cones are in the body of the table referred to as D, D' respectively. And it

is to be understood that each vacant square of the table should contain the symbol

(Z), i)'), this being omitted only for the purpose of better exhibiting the form of the

table.

170. The equation of the surface may be presented in the irrational form

V(P' - p,F') W'a'^p, {Z'-w)- y'a-^'W^^^

+ V(P' - p,F") ii'a'^'p, {Z' -w)- 7'a"/8" {Z" - w)]

+ (p. - P=) /x/a'/S-o-r (^, + p^ zw = 0.

In fact the norm of the left-hand side is

= (pi - pif (« - '^y {w" [-4 + 4« {\y + pa) — 4\/w»]

+ 2w[B- 2z (KyX + paY)]

+C }.

To partially verify this, observe that, writing the equation under the form it/R + ii/8+ '/T = 0,

on writing therein w = 0, we ought to have

{R - Sy = (p, - p,y (« - st)» (aa'a"yz + fi^^'zx + riV^^yf-

But writing w = 0, we have

R-8= (F - p. P") {i'a'ffp,Z' - 7'a"/9"Z")

- (P' - p,F') (y"a0'p,Z' - y<x"^"Z").

= {p„, - p,) (y'W^T'Z' - y'a"^'P"Z"),

= (Ps - Pi) [y" ifi'y'^ + ya'y + a'^'z) m"x - aa"y)

- y {^"y"x + y"<i"y + a"^"z) {^ffx - aoly)].

which is easily found to be

= - (P2 - Pi) (ft) - w) (aa'aV + ^^^'zx + yy'y'xy) ;

and thus {R —^ has the value in question.

171. In further verification, observe that, writing x, y, z = a'a", y3'/8", 77", and
therefore P' = 0, P" = 0, we ought to have

(Pi -p.)' {a'^a"^J Qr^ + ^^ zHd" = (p, - p,y (» - ^)» vfi [A + iz (Xy +fix)- i\fiz%

observing that, for the values in question, B, X, Y, C all vanish.



454]

This is

A THIRD MEMOIR ON QUARTIC SURFACES. 293

(JH - P.r (a'^a"^y (^3 + ^„J (yVf
= (« - ^f {{co - «r)= + 47V' (X/3'y3" + ^a'a" - Xf^'y'%

[Trhich is in fact the value of (pi — p^f obtained from the equation in p.

ne 13(a)-nodal Surface 3(4„ 1, 1)+1(3, 1, 1, l) + 9(3., 2, 1).

172. The equation, node-form (43, 1, 1), is

iir'{A + i (\yz + fizx+ vxy) — 4 {fivx^ + vXy- + Xfiz"^)}

+ 2m; (B - 2 {XyzX + fizxY + vxyZ)]

+ (7 = 0;

L, for the circumscribed cone we have

{^ + 4 {Xyz + fizx + vxy) — 4 (fivaf + vXy" + Xfiz^)} C

- {B-2 (XyzX + fj.zxY+ vxyZ)Y

= 4 {Xayz= + ix^z""!!? + vi'ic'y^ + ^yodhfz + yay^zx + a^z^xy]

( X^ Y^ Z^ 1

'^r^^-'^lj-V"^
a'a"/3'/3'Y7"i"P"}

,

where, on the right-hand side, the first factor, equated to zero, represents a trinodal

quartic cone, the nodal lines whereof are (y = 0, z = 0), (^ = 0, x= 0), (a; = 0, y = 0).

173. As regards the second factor, it is to be observed that, writing as above

eu - -sr = /3V' - /3'V. =7'a''-7"a', =a'^"-a"^',

we have identically

n'jy — n"P" — <*• ~ ^_ ^

B'P' - 8"P" = -^*-^'' -
7'7"a'a" ^S

'

/re "ry (O — tn Z

80 that the second factor is

1

(ft» - vf
{- X {^'ff'iiJ {a'F - ci'P'J - p. {yYa'a'J (^F - /3"P")=

- V (ttfa'B'^y (y'F - y'FJ + {to-my a'a'B'B"y'y"FP"}
;
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«r, what is the same thing,

j^y {- [^ (/8'V? + M Way + .' ia'TT] («'^VP')=

- V^ (y3'7? + M (7'«? + " («'/3')'] {ci"^YP"y

+ 2 [\ (/9Vy3"7") + M (yaV'a") + v (a'^a"^') + ^ (« - w)=] x a$'y'P'c^'^'y"F'},

so that, equating to zero, we have a pair of planes, each passing through the line

P" = 0, P" = 0, and which it is clear must be the tangent planes from this line to the

quadric cone ^' = 0. I will presently return to this, but I consider first the foregoing

identical equation in regard to the circumscribed cone.

174. In verification hereof, observe first that, if as=0, the equation becomes

{(y - «)' + 4Xy^ - 4X. (^2^' + fiz')} (aaV)" t/V - (aaV (y^z - yz') - 2\yza {H'y - 0^"z)Y

= ^\fz' {- \a\yYy - 0'fi"zy - {aa'a'J (vf + ^z') - aVa" {y'y + ^z) (y"y + ff'z)],

viz., omitting terms which destroy each other, this is

[(y -2f-\- ^\yz] {aa'a'J fz^ - [aa'a" {fz - yz'') - 2\yza {y'y"y - /3'/3"^)]»

= ^Xfz-^ [- \a? {yy"y - ^'0'zT - a»a'a" (y'y + ffz) {y"y + ^'z)].

Or again, this is

^\yz (aa'a'J y'z^ + ^\yz aVa" {fz - ys^) {y'y'y - /9'/3"^)

= - 4\2/V a^a'a" {y'y + ffz) (y"y + ^'z)
;

viz., this is

a'c^'yz +{y-z) (y'y"y - ff^'z) = {y'y + ffz) {y"y + ^"z),

which is at once seen to be true.

175. Again, compare the terms which contain a^yz. On the right-hand side, we
have

^^ytd'yz X term in a;^' of (-K^-fi^-v~ + a'a"^^'y'y"P'P"y,

viz., the coefiicient is

= 4/37 {- /^ (77")' - V i^'^y + yS'/3"7'7"!.

On the left-hand side, that is in A'G - B'\ the only terms which give rise to the
terms in question are

in A', {I - ifiv) x^ ; in C, 2^0'fi"yy'y" ofyz;

and in B"

{yy'y" _ 2^7/3'/9")x% - {^ff^" - 2f,/3y'y") a?z

whence the coefficient is

2^/3'/9"77'7" (1 - 4^1/) -H 2 (77V' - 2i^/8'/9") {^^'^" - 2/^/877").
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= i^y {- ,1, (7V7 - " i^n' + ^0"yY\.

which is right; and the verification may be completed without difficulty.

176. The singular planes are

and the nodes are

w = 0, (4)

P'-p,P" = 0, (12)

P'-p,P"=0, (16);

(0, 0, 0, 1), (8) (1)

(1. 0, 0, 0), (5) (5)

(0, 1, 0, 0), (6) (6)

(0, 0, 1, 0), (7) (7)

/ aa'a" y8y3'/3" 777"

U'-a'p.' ^'-^W 7"-7>i'
«)- (16) (2)

/ aa'a" /S/g-yS"
1 ft

y77
'\ (12) (3)

W'-a'p,' 0'-^p,' y"-yW
( «'«"

, /S'/S" , 77" . 0), (4) (4)

three nodes in P'—pi,P" = (13, 14, 15)1 (8, 9. 10)

,. „ P'-P,P" = (9- 10, 11) (11, 12, IS)
;

where the small numbers are those used by Kummer, the large ones aie those

referring to the 16-nodal surface, and are here adopted. In the foregoing forraulse

p,, pt are the roots of

[\ (/S-VT + M (y'a'? + " («"/9")'] (p«'y3'7')^

+ [X (^' 7' )» + M (7 «')"+" (a'^ r\ («"/3"7")^

- 2 [Xffi^V + /*7'a'7"a" + i/a'/3'a"/3" + i (a, - sr)'] pa'ffy'a"^'Y = 0.

177. We have the square diagram in the following page

:
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where for greater clearness I have omitted the symbol GC, which is to be understood

as occupying each of the vacant squares.

The arrangement is the same as before; the right-hand margin shows the sextic

cone ; viz., for the node 4 this is made up of the singular planes 4, 12, 16 and of

a cubic cone represented by (5, 6, 7) (as replacing the planes 5, 6, 7 in the case of

the 16-nodal surface). Similarly for the node 5, the sextic cone is made up of the

singular plane 4, the nodal cubic cone (2, 3 ; 5), and the quadric cone (9, 13) (the

numbers in these last symbols indicating the planes in the case of the 16-nodal

surface, which are here replaced by cones). So for the node 8, the sextic cone is

made up of the singular planes 12, 16 and of the trinodal quartic cone (8; 1, 2, 3).

As regards a nodal cubic cone, for example (2, 3 ; 5), the semicolon is used to indicate

> that the nodal line replaces the intersection of the planes 2, 3 ; the other intersections

2, 5 and 3, 5 having disappeared. And so for a trinodal quartic cone (8 ; 1, 2, 3),

the semicolon is used to indicate that the nodal lines replace the intersection (1, 2),

the intersection (1, 3), and the intersection (2, 3) respectively ; the other intersections

1, 2 ; 2, 8 ; and 3, 8 having disappeared. Finally, in the body of the table, G is used

to denote the cubic or the quartic cone (as the case may be); x to denote a nodal

line of either of these cones ; and C" the quadric cone ; as already mentioned, the

vacant places are considered to be (7(7.

The reading of the table is then as follows; viz., for the node 4, the remaining

twelve nodes lie on the nodal lines of the sextic cone 4, 12, 16, (5, 6, 7), as shown
;

viz., 5, 6, 7 are each of them on the .intersection of the cubic cone with the plane 4

;

8 is on the intersection of the planes 12 and 16 ; and so on.

I reserve for another Memoir the discussion of the 13 (/3)-nodal surface, and the

surfeces with less than 13 nodes.

C. VII, 38
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455.

ON PLtJCKER'S MODELS OF CERTAIN QUARTIC SURFACES.

[From the Proceedings of the London Mathematical Society, vol. III. (1869

—

1871),

pp. 281—285. Read June 8, 1871.]

The Society possesses a series of 14 wooden models of surfaces, constructed under

the direction of the late Prof. Pliicker, in illustration of the theory developed in his

posthumous work, " Neue Geometrie des Raumes gegriindet auf die Betrachtung der

geraden Linie als Raumelemente," Leipzig, 1869. These all of them represent, I believe.

Equatorial Surfaces ; viz., models 1 to 8 represent cases of the 78 forms of equatorial

surfaces " deren Breiten-Curven eine feste Axenrichtung besitzen," vol. ii. pp. 3.52—363,

the remaining models, Nos. 9—14, I have not completely identified. I propose to go

into the theory only so far as is required for the explanation of the models.

In a " Complex," or triply infinite system of lines, there is in any plane whatever

a singly infinite system of lines enveloping a curve ; and if we attend only to the

curves the planes of which pass through a given fixed line, the locus of these curves

is a "complex surface." Similarly, there is through any point whatever a single infinite

series of lines generating a cone ; and if we attend only to the cones which have

their vertices in the given fixed line, then the envelope of these cones is the same

complex surface. In the case considered of a complex of the second degree, the curves

and cones are each of them of the second order ; the fixed line is a double line on

the surface, so that (attending to the first mode of generation) the complete section

by any plane through the fixed line is made up of this line twice, and of a conic

;

the surface is thus of the order 4 : it is also of the class 4 ; the surface has, in

fact, the nodal line, and also 8 nodes (^conical points), and we have thus a reduction

= 32 in the class of the surface.

In the particular case where the nodal line is at infinity, the complex surface

becomes an equatorial surface ; viz., (attending to the first mode of generation) we have
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here a series of parallel planes each containing a conic, and the locus of these conies

is the equatorial surface.

It is convenient to remark that, taking a, h, h to be homogeneous functions of

(«, w) of the order 2
; /, (/ of the order 1 ; and c of the order (a constant) ; then

the equation of a complex surface (see vol. i. p. 162) is

= 0;y. z, 1

y> a, h, 9

z, h, b, f
1, 9. f> c

and that, writing w = 1, or considering a, h, b; f, g; c as functions of x of the orders

2, 1, respectively, we have an equatorial surface.

A particular form of equatorial surface is thus bcy^ + caz^ + ab = 0, or taking c=l,

this is by' +a2'' + cih = 0, where a, b are quadric functions of x.

The surface is still, in general, of the fourth order : it may however degenerate

into a cubic surface, or even into a quadric surface ; the last case is however excluded

from the enumeration. The section by any plane parallel to that of yz is a conic

;

the section by the plane y = is made up of the pair of lines a = 0, and of the conic

z' + b = ; that by the plane z = is made up of the pair of lines 6 = 0, and of the

conic y^+a = 0; the last-mentioned planes may be called the principal planes, and the

conies contained in them principal conies. The surface is thus the locus of a variable

conic, the plane of which is parallel to that of yz, and which has for its vertices the

intersections of its plane with the two principal conies respectively. And we have thus

the particular equatorial surfaces considered by Plucker, vol. il. pp. 346—363 (as already

mentioned), under the form

Ex'+iUx + G^ Fx'-^Rx + B

and of which he enumerates 78 kinds; viz., these are

+ 1 = 0,

1 to 17 Principal conies each proper.

18 „ 29 One of them a line-pair.

30 „ 32 Each a line-pair.

33 „ 39 Principal conies, each proper, but having a common point.

40 „ 43 One of them a line-pair, its centre on the other principal conic.

44 „ 61 One principal conic a parabola.

62 „ 73 One principal conic a pair of parallel lines.

74 „ 76 Principal conies each a parabola.

77 and 78 Principal conies, one of them a parabola, the other a pair of parallel lines.

38—2
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The models 1 to 8 correspond hereto, as follows:

Mod. 1 is 13, i.e. 2 is Mod.

„ 2 9 3

„ 3 40 4

„ 4 34 9

., 5 2 13

,. 6 3 32

„ 7 4 34

„ 8 32 40

Mod. 5 is 2: the form of the equation is here

f f

P\(x-ay + ^\ r» \{x - a'y+ /9'»]
= 1;

viz., the principal conies are one of them a hyperbola, the other imaginary; hence the

generating conic has always two, and only two, real vertices, viz., it is always a hyperbola

:

there are no real lines.

Mod. 6 is 3 : the form of the equation is

}? [{x - af + ^\ l'^ {{x - a'y + /3'»]
= 1;

viz., the principal conies are each of them a hyperbola ; the generating conic has four

real vertices, viz., it is always an ellipse : there are no real lines.

Mod. 7 is 4 : the form of the equation is

t + f + 1 =

The principal conies are one of them an ellipse, the other imaginary ; for values

of X between y and S, the variable conic has two real vertices or it is a hyperbola

;

for any other values it is imaginary, so that the surface lies wholly between the planes

x = y, x=S: the surface contains the real lines y = 0, x = y and y = 0, x = B.

Mod. 2 is 9 : the form of the equation is

l^x - y){x-B)'^l"(x-y') (x-B')'^^"
"'

where, say the values y, 8 lie between the values y', B' : the principal conies are each

of them an ellipse, the vertices (on the axis or line y = 0,z = 0) of the one ellipse

lying between those of the other ellipse. The variable conic for values of x between

7, B has four real vertices, or it is an ellipse; for values beyond these limits, but

within the limits y, B'—say from 7 to 7', and from B to B'—there are two real vertices,

or the conic is a hyperbola; and for values beyond the limits 7', B', the variable conic

is ima^nary.

i
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There are four real lines (y = 0, a; = 7), (y — O, x= S), (^^ = 0, x = 7'), (^ = 0, x = S').

The surface consists of a central pillow-like portion, joined on by two conical points

to an upper portion, and by two conical points to an under portion, the whole being

included between the planes a; = 7', x=h'.

Mod. 1 is 13 : the form of the equation is

f
-, + 1 = 0;

l-'(x-'i){x-h) l'^{x-rf'){x-S)

the values 7', S' lying between 7, S ; the principal conies are one of them a hyperbola,

the other an ellipse, the vertices (on the axis or line y = 0,z=0) of the hyperbola

lying between those of the ellipse.

The variable conic, for values of x between 7', 8', has two real vertices, or it is

a hyperbola ; for the values, say, from 7' to 7, and h' to h, there are four real vertices,

or the conic is an ellipse ; for values beyond the limits 7, S, there are two real vertices,

and the conic is a hyperbola. There are the four real lines (y = 0, x = 7), (y=0, x= S),

and (^=0, a; =7'), {z = 0, x=8')- The surface consists of 8 portions joined to each

Other by 8 conical points, but the form can scarcely be explained by a description.

Mod. 8 is 32 : the form of the equation is

f
l'{x-yyV l''(x-yy

= 1

viz., the principal conies are each of them a line-pair, the variable conic is always an

ellipse.

There are the two real nodal lines (y = 0, x = y) and (z = 0, x = 7'), each of these

being in the neighbourhood of the axis crunodal, and beyond certain limits acnodal

;

the surface is a scroll, being, in fact, the well-known surface which is the boundary

of a small circular pencil of rays obliquely reflected, and consequently passing through

two focal lines.

Mod. 4 is 34 : the equation is

/>(« -y){x-l)'^ l'^{x - 7') {x - 8)
+ 1=0,

where x = S is not intermediate between the values x=y and x = y ; say the order is

S, 7, 7'. The surface is thus a cubic surface ; the principal conies are ellipses having

on the axis a common vertex at the point x = B, and the remaining two vertices on

the same side of the last-mentioned one. The variable conic for values between S and

7 has four real vertices, or it is an ellipse; for values between 7 and y two real

vertices, or it is a hyperbola ; and for values beyond the limits S, y it is imaginary.

There are on the surface the two real lines (y = 0, x = y) and (^ = 0, x = y'). The surface

consists of a finite portion joined on by two conical points to the remaining portion.
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Mod. 3 is 40 : the form of equation is

2/' ^ »"

f(a;-y)(x-S)^r^x-By + 1 = 0.

The surface is thus a cubic surface ; the principal conies are, one of them an ellipse,

the other a pair of imaginary lines intersecting on the ellipse ; for values of x between

7 and B, the variable conic has thus two real vertices, and it is a hyperbola ; for values

beyond these limits it is imaginary, and the whole surface is thus included between

the planes a; = 7 and ai = S. There are the two real lines (y = 0, a; = 7) and {2 = 0, x= B).

Taking 1^=1'' = !, the surface is

{x-y)(x-By{x-By^ '

which is a particular case of the parabolic cyclide.

As already mentioned, I have not completely identified the remaining models 9 to

14, but I will say a few words about them.

The equatorial surfaces, not included in the preceding 78 cases, Plucker distinguishes

(vol. II. p. 363) as " gedrehte " or " tordirte," say as twisted equatorial surfaces ; the

equation of such a surface is

by'' + 2hyz + az'^ + a6 - h^ = 0,

where

b=Fa?-2Rx + B,

a = Ex^+2Ux-\-G,

h = Ka^ — Ox - G (or in particular = — Ox — 6).

Mod. 13 is such a surface, being a twisted form of model 2.

Mod. 9 and Mod. 14 belong, I think, to the case a = ; viz., the form of the

equation is by^ + 2hyz —h' = 0. The variable conic is a hyperbola, the direction of one

of the asymptotes being constant (vol. 11. p. 368).

There are moreover (p. 372) equatorial surfaces in which the variable conic is

always a parabola, and where there are on the surface four real or imaginary lines.

Mods. 10, 11, and 12 seem to represent such surfaces.
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456.

if 6 = 0, c = 0, the form is

NOTE ON THE DISCKIMINANT OF A BINARY QUANTIC.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. x. (1870), p. 23.]

It is well known that the discriminant of a binary quantic (a, b, c, d, ...'^t, 1)" is

of the form

Ma + Nb',

but it is further to be remarked that if 6 = 0, then the form is

a (Ma + JSTc'),

a' (Ma + Nd*),

and so on, until only the lowest tWo coefficients are not put = 0. Or, what is the

same thing, if in the discriminant of the original function we put a = 0, then the

discriminant divides by b'; if 6 = 0, the discriminant divides by a, and, omitting this

factor, if we then write a = 0, it divides by c^ ; if 6 = 0, c = 0, the discriminant divides

by a', and omitting this factor, if we then write a = 0, it divides by d* ; and so on,

until as before.

Thus if 6 = 0, the discriminant of (a, 0, c, d, e^t, 1)*, divides by a, and omitting

this factor it is

oV
- 18 ac'^

+ 54 acd'e

- 27 ad'

+ 81c*e

-54c»(?

which for a = has the factor c"; if 6 = 0, c = 0, the discriminant of (a, 0, 0, d, e^t, \)*

has the factor a', and omitting this factor it is

ae'

- 27 d\

which for a = has the factor d* ; the series of theorems here terminates, since the

lowest two coefficients d, e are not to be put = 0.
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457.

ON THE QUARTIC SURFACES {*'^U, V, Wy = 0.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. X. (1870),

pp. 24—34]

I PROPOSE to myself for investigation the quartic surfaces represented by an

equation

{*^U, V, W)^ = 0,

where IT, V, W are quadric functions of the coordinates.

Such a surface has 8 nodes (conical points), viz., these are the points of inter-

section of the quadric surfaces U = 0, V = 0, W =0. It is to be observed, that not

every quartic surface with 8 nodes is included under the above form ; in fact the

equation of a quartic surface contains (homogeneously) 35 coefficients, or say 34 arbitrary

parameters ; in order that a given point may be a node, 4 conditions must be satisfied,

and it is consequently possible to find a quartic surface having 8 given points as

nodes (and having in its equation (34 — 8.4=) 2 arbitrary parameters) : but 8 given

points are not in general the intersections of three quadric surfaces, and such a quartic

surface is therefore not in general included under the above fonn. I think, however,

that it may be assumed that the above form includes all the quartic surfaces having

8 nodes, points of intersection of three quadric surfaces. It will presently appear that,

included in the form, we have surfaces where (instead of the 8 nodes) there is a nodal

or cuspidal conic ; and that these are the most general forms of such quartic surfaces.

A quartic surface has at most 16 nodes, and the general form with 8 nodes must

admit of being particularised so that the surface shall acquire any number not exceeding

8 of additional nodes. This does not show, but it is probable, that the above special

form with 8 nodes can be particularised so that the surface shall in like manner

acquire any number not exceeding 8 of additional nodes. Similarly, a quartic surface

with a nodal conic may have besides 1, 2, 3, or 4 nodes ; and it will be shown in the

fl



457] ON THE QUARTIC SURFACES (*'^U, V, Wy = 0. 305

F

I

sequel how the form, particularised so as to give a nodal conic, may be further

particularised so as to give the 1, 2, 3, or 4 nodes. So a quartic surface with a cuspidal

conic may besides have 1 node, and it will be shown how the form, particularised so

as to give a cuspidal conic, may be further particularised so as to give 1 node.

Starting from the equation (»][ U, V, W)'^ = 0, we may, by substituting for U, V, W
lineal- functions of these expressions, transform the equation precisely in the manner of

a conic, and therefore into any of the forms under which the equation of a conic can

be exhibited; for instance, in the forms all' +bV^ + cW- = 0, fVW+gWU+hlIV=0,
UW—V^ = 0, &c. I attend at present only to the last-mentioned form UW —¥^ = 0,

which, it thus appears, is equally general with the original form {*^U, V, Wy = 0.

The quartic surface

UW- P =

where U, V, W are any quadric functions of the coordinates, may be considered as

the envelope of the quadric surface

{u, V, wi0, iy=o,

where is an arbitrary parameter. And it thus appears that it is very easy to

reciprocate (in regard to any given quadric surface) the quartic surface. For the

reciprocal of the quartic surface is clearly the envelope of the reciprocal of the variable

quadric surface ; this reciprocal is itself a quadric surface, and the reciprocal of the

quartic surface is thus given in the same form as the original surface, viz., as the

envelope of a quadric surface the equation whereof contains rationally the variable

parameter d; the equation of the reciprocal surface is consequently obtained by equating

to zero the discriminant in regard to d, of the equation of the reciprocal quadric

surface.

It is to be observed that, inasmuch as the equation of the reciprocal quadric

surface is of the third degree in the coefficients of the original quadric, it is in

general of the degree 6 in the parameter ; we have thus a sextic function of 0,

the coefficients whereof are quadric functions of the coordinates ; and the discriminant

is a function of the order 10 in these coefficients, that is, of the order 20 in the coordi-

nates. The reciprocal of the quartic surface is thus a surface of the order 20 ; this is

right, for in a general quartic surface the order of the reciprocal surface is = 36, and

the 8 nodes reduce the order by 16; 36—16 = 20.

In the equation UW — V' = 0, or say V'—UW = 0; if U reduce itself to the square

of a linear function, 17 = 1^, the equation becomes V' — P'W=0, which is the general

form of the quartic surface having the nodal conic F = 0, P = 0. And if, moreover,

W be the product of this same linear function P by another linear function Q, W= PQ,

then the form is F" — P'Q = 0, which is the general form of the quartic surface having

the cuspidal conic F= 0, P = 0.

Writing for greater convenience x, y in the place of P, Q respectively, we have

the quartic

{AA) V-a?y = Q,

C, VII. 39
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having the cuspidal conic V = 0, x = ; and which has besides the conic of plane con-

tact V=0, y = 0. In virtue of the cuspidal conic the reciprocal surface should be of

the order 6 ; and by the foregoing method of obtaining the equation of the reciprocal

surface, I will verify that this is so. To effect this as simply as possible, I fix the

remaining coordinates ^;, w as follows. The line ic=0, y = is not in general a tangent

to the surface V=0; it therefore meets this surface in two points, and we may take

z = 0, w = to be the equations of the tangent planes at these two points respectively

;

we have thus V= oaf + 2hxy + by^ + 2nzw, Introducing for convenience the numerical

factor 2, and taking the equation of the surface to be

(oaf + 2hxy + by^ + 2nzwf - 2iifiy = 0,

this is the envelope of the quadric surface

e^a? + 26 {aa? + 2hxy + by'' + 2mw) + 2xy = 0,

which is a surface (a, b, c, d, f, g, h, I, m, n^x, y, z, luy = 0, where a = ^ -I- 2a5, b = 26b,

h = 26h +1, 71 = 2dn, and where all the other coefficients vanish. Assuming, as usual,

that the reciprocation is effected in regard to the surface a? + y"^ + z^ + vj' = 0, the general

equation is

a? .d{bc -p) -cm^~ bn? + 2fmn

+ y"" ,d(ca-g'^)-ari? -cP +2gnl

+ z^ .d{ah- ¥) - bP - am= + 2hlm

+ v^.ahc- af-bg" - ch? + 2fgh

+ 2yz . d (gh — af) + P/ + amn — hnl — glm

+ 2zx . d (hf —bg) + w?g + bnl -fhn — hmn

+ 2xy . d(fg — ch)+ n-h + elm — gmn —fnl

+ 2XW.-1 (be -p) - n (hf - bg) - m (fg - ch)

+ 2yw. - m (ca -g^y-l (fg -ch)-n (gh - af)

+ 2zw. -n (ab- h^) -m{gh- af) -I (hf - bg),

(I write down this general result as it will be useful for reference in other cases)

;

in the present case this becomes simply

a!*. - bri" + y^. - ari" + 2!>>y . nh' + 22w {-nab + nh?) = 0,

where a, 6, n, h have the foregoing values; the equation is thus only of the order 4

in regard to 6; but it in fact divides by n(=2dn) and thus reduces itself to the

third order, viz. it becomes

n(baf + af) - 2h^xy + 2(ab- ¥) zw = 0,

or, substituting for a, h, n, h their values, this is

x". 4ibne' + 2/» (2ne^ + 4aw^) + 2zw (26^ + 4a6^) -2{xy + zw) (2dh + 1)» = 0,

I
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say this is

(A, B, G, D^e, iy = o,

where A, B, C, D are each of them a quadric function of the coordinates ; it being

observed that C and D are respectively numerical multiples of the same function

(cy + zw. Hence equating the discriminant to zero, we have

A--D' + 4^ C" + iB^B - SB'C"- - 6ABGB = 0,

which equation, inasmuch as every term contains either or D as a factor, divides

by i^y + 2w, and thus becomes an equation of the order 6 in the coordinates : that

is the order of the reciprocal surface is = 6. Multiplying by | to avoid fractions, the

actual values of -4, B, G, D ai-e

A= 3 (ji3/= + 2hzw),

if = 2 [hia? + any'' + lahzw — 2h^ (wy + zw)},

G = — 4fh (xy + ziu),

, Z> = - 3 {xy + zw),

or say J. = 3a, B = 2/9, G= — 'ihy, D = — 87 ; where y = xy + zw; substituting these values

and omitting the factor 87, the equation is

27a='7 - 256h'ay' - 32/3' - 64A^;8^7 - lUha^y = 0,

which is an equation of the form (^a, /3, 7)' = 0. The sextic surface has thus singular

points a = 0, /S = 0, 7 = 0, viz. these are the two points (x = 0, y =0, z= 0), (x= 0, y=0, w=0)
each four times. The further discussion of the sextic surface is reserved for another

occasion.

I do not at present attempt to enumerate the particular cases of the surface

V — a?y = 0, but content myself with the discussion of a particular case in which the

order of the reciprocal surface is =3. Suppose that F=0 is a cone, y = Q a, tangent

plane to the cone (so that the conic y = 0, F=0 breaks up into a line twice repeated),

x = an arbitrary plane (so that we have still the proper cuspidal conic x = 0, F=0).

Any other tangent plane of the cone may be taken for the plane 2 = 0; the plane

containing the lines of contact of the two tangent planes for the plane w = ; the

equation of the conic then is F= dw^ + 2fyz = ; and the equation of the surface is

{AB) {dw^ + 2fyzf -a^y = 0.

For convenience of comparison, I change x, y, w, z into y, w, z, x, and assign numerical

values to the coefficients, writing the equation under the form

{AB) 27 (4aw + z^y- 64)fw = 0.

The quartic is here the envelope of the quadric surface

^ . 4yw + ^ . 9 (4m' + 2^) + 12y2 = 0,

viz., comparing with the general form

(a, b, c, d, f, g, h, I, m, n\x, y, z, wf = 0,

39—2
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we have 5 = 12, c = 9d, 1 = 180, m = 2d', all the other coefficients vanishing. The

reciprocal equation is

a!» (- cm') + y' (- cl') + z^ (- W) + 2a^ . dm + 2ot; (- i6c) = 0,

or substituting for h, c, I, m their values, this is found to be

e(ex-9yy+108(2^+anv) = 0.

Representing this by (.4, B, C, D\d, 1)' = 0, the discriminant in regard to 6 would, in

virtue of the values of A, B, C, contain D as a, factor; the reason of this appears

from the original form; in fact, forming the derived equation in regard to 0, this is

found to be (0x — 9y) {0x — 3y) = ; the value 0x — 9y = O gives as a factor of the

discriminant z'-hxw; the value 0x — 3y = O gives 3y (— 6y)'+ 108a;(^'' + aOT), that is the

factor y' + x{z^ + xw) ; the complete value of the discriminant as obtained by sub-

stitution of the values oi A, B, G, D being a?{!!^ + xy){y^ + x{z^ 'rxw)]; the equation

of the reciprocal surface is

y^ + X {z'^ + xw) = 0,

viz. this is a cubic surface. Prof. Schlafli's Case xx., having a uniplanar point

x=0, y = 0, z = reducing the class by 8, and so giving a reciprocal surface of the

order (12 — 8 =) 4, viz. the surface 27 (4:xw + z'^)- — Giy'w = 0. See the Memoir, Schlafli,

"On the distribution of surfaces of the third order into species in reference to the

absence or presence of singular points and the reality of their lines," Fhil. Trans.,

vol. CLiii, (1853), pp. 193—241.

I pass to the case of a surface

V^- 1^17 =

having a nodal conic V=0, P = 0, but not having in general any nodes. And I pro-

pose to show how the constants may be determined so that the surface shall have

1, 2, 3, or 4 nodes. It is to be remarked that in the above equation the plane P =
is a determinate plane, but the quadric surface V= is not a determinate quadric,

we may in fact substitute for it the quadric V + \P' = 0, writing the equation under

the form

(F+ XP»)» - P" ( t/"+ 2\F -f- X^P"),

80 that we may without loss of generality, by means of the disposable constant \,

subject the surface F= to any single condition ; for instance, take it to be a cone,

or to pass through a given point, &c.

Taking the planes x = 0, y = 0, z = 0, m> = to be arbitrary planes, the implicit

constant factors in these equations may be determined in such wise that the equation

of the given plane P=0 shall be x + y + z + w = 0. The equation of the surface will

then be

{(a, 6, c, d, f, g, h, I, m, nT^x, y, z, «/)")»

= (x + y + z + wy.(a', V, c', d',f', g', h', I', m, n'^x, y, z, wf,
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and we may assume that the node or nodes (if any) lie at a vertex or vertices of

the tetrahedron x = 0, y = 0, z = 0, w =0, say at the points A, B, G, D. The conditions

for a node at each of these points are at once found to be

Node at ^, Node at J5, Node at (7, Node at i),

2a'' =a' + a' 2bh=h'+b' 2cg=g'+c' 2dl =1' +d'

2aA=A' + a' 26^=6' +6' 2cf=f' + c' 2dm = m' + d'

2ag =g' + a' 2hf =/' + h' 2c^ =c' +c' 2dn = n' + d'

2al =r +a' 2bm=m'+ V 2cn = n + c' 2d^ =d' +d'

The first set of equations gives

a'=a', h' = 2ah-a\ g'^2ag-g\ l'^2al-a:\

If the first and second sets are satisfied simultaneously, we have 2{a—h)h = a'^— ¥,

that is a = b, or else h = ^{a + b); that is, the two sets may be satisfied in two

different ways according as a and b are equal or unequal. Similarly the first, second, and

third sets may be satisfied in three different ways and the four sets in five different

ways according as there are or are not any equalities between a, b, c, and between

a, b, c and d respectively. The several solutions are shown in the annexed table, viz.,

in the line I no set is satisfied ; in the line II only the first set ; in the lines III

and IV the first and second sets ; in the lines V to VII the first, second, and third

sets; and in the lines VIII to XII the four sets.

[See next page for this Table, whibh should come in here.]

I is the general case, V' = P'U, of a quartic and a nodal conic but without nodes.

{AC).

II is the case of a single node ; writing, as without loss of generality we may
do, a = 0, the equation is

[(0, b, c, d, f, g, h, I, m, n^x, y, z, wYf = {x + y + z + wf. (6, c, d, n, m, /$y, z, wf,

viz. the quadric U=0 is here a cone having its vertex on the quadric V= 0. {AD).

in and IV are two cases each of them with two nodes, viz. Ill, the equation is

{{ax+ by) {x + y) + cz^ + 2nzw + dvf + 2x {gz + Iw) + 2y {fz + mw)}"

= (a;+ y + ^ + w)^ \(ax + byy + c'z^ + 2n'zw + d'w= {AE)

+ 2x [{2ag -a?)z + {2al - a') w]

+ 2y {(26/ -b')z + (26m - ¥) w}],

where it is to be observed that the line z = 0, w = joining the two nodes {y = 0,z = 0,io= 0)

and (w = 0, ^ = 0, a; = 0) is a line on the surface. Writing, as we may do, a = 0, the

equation assumes the more simple form

{by{x + y) + cz''+2nzw + d'w'+2x{gz + lw)+2y{fz + mw)Y
'

{AE)

= {x-iry + z + wf [by + c'z" + 2v:zw +dV + 2y {(26/- 6^) z + (26m - 6'') w\\
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In rV the equation is

{a {a? + y") + 2hxy + cz" + dM;= + 2nzw + Iv (gz + Iw) + 2y {fz + mw)]''

= {x + y+z-{-wf [a= {a? + 1/') + 2 (2a/- a=) xy + cV + 2m'0m; + d'vf (AF)

+ 2x{{2ag-a'^)z + (2al -a'')w}

+ 2y {(2a/ - a^!) £: + (2am - a^) w}],

where it will be observed that the line z = 0, w = joining the two nodes is not a

line on the surface.

Writing, as we may do, a = 0, the equation becomes

{2hxy + cz' + 2nzw + dvP +2x(ffz + Iw) + 2y (fz + mw)}"

= {x + y + z + wy (c'z^ + 2h'zw + d'w% {AF)

viz. the form is F^ = P^QR, the quadric surface JI=0 breaking up into the two planes

Q = 0, iJ = ; and the nodes being situate at the intersections of the line Q = 0, R = Q

with the surface F= 0.

V, VI, VII are apparently cases with three nodes, but in fact VI is the only

case of a proper quartic surface with three nodes. For in V the equation is

{{ax + by + cz){x+y + z) + dtif + 2w {Ix + my + nz)Y

= {x + y + z + wy [{ax + by + czy + d'vf^ + 2w {{2al -a?)x + (26m - 6=) y + (2cw- &) z]],

which is satisfied by w = 0, and the siirface thus breaks up into the plane w = and

a cubic surface.

And in VII the equation is

[a {a? -^^ y^ + 1^) + dm" + 2fyz+ 2gzx + 2hxy + 2lxw + 2'm,yw + 2nzwY

= {x+y-¥z->twy[a^{a? + y'' +z^ + d''U)'

+ 2 [(2a/- a") yz + {2ag - a?) zx + (2a/t - a') xy

+ {2al— a'')xw + {2am, — a^)yw + {2an — a^)zw}\

which putting a = is

{dvF + 2fyz + 2gzx + 2hxy + 2tew -I- 2myw + 2nzwy = {x + y + z + wy d'n^,

viz. this is a pair of quadric surfiices.

In the remaining case VI the equation is

{a (a:» + y) + 2hxy + cz' + dw^ + {a+ c) {yz + zx) + 2w {Ix + my + nz)Y {A Q)

= {x + y + z+wy[a' {se' + y'') + d'z' ^-d'vfi + 2m:z {x + y) + 2 {2ah - a") xy

+ 2w [{2al -a^)x + {2am -a^)y + {2an - a=) z}],

which putting therein a = is

{2hxy + dvfi + cz{x + y + z) + 2w {Ix + my + nz)Y

= {x + y+z + wy{cV + d'itr' + 2{2cn-(^)zw},
,

{AG)
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which is a surface having the nodes A, B, C; and it is to be observed that the lines

CA, CB, but not the line AB, are lines on the surface.

IX, X, XI, XII are apparently cases with four nodes, but it is only XI which is

a proper quartic with four nodes. In fact IX is

{(aa;+ ay + cz + dw) (x + y + z + w) + 2{h — a) xy]*

= (x + y + z + wy {{ax + ay + cz + dwY + 4a (A — a) xy},

which is satisfied if x = or if y = ; that is, the surface breaks up into the two

planes x=0, y = 0, and a quadric surface.

X is
^

{a(a^ + y' + z'') + dtv'+ 2fyz+ 2gzx + 2hxy + (a + d) (xw + yw + zw)}^

= (x + y+ z + wy {a' (a^ + y2 + z") + dhif

+ 2 (2a/- a') yz-\-2 (2ag - a') zx+2 (2a/- a") xy + 2ad (xw + yw + zw)],

which putting therein a = is

{dw (x+y + z + w) + 2fyz + 2gzx + 2hxyY ={x + y + z + wy d?vfi,

and thus breaks up into two quadrics.

And XII is

[a? {a? + y^ + z-+v/') + 2fyz + 2gzx + 2hxy + 2lxw + 2myw + 2nwY

= (a; + y + 2 + «;)= [a? {a? + y^ + z'^ + w=)

+ 2 (2a/- a'') yz +2 (2ag - a') zx +2 (2ah - a') xy

+ 2 {2al -a'')xw + 2 (2am - a") yw + 2 (2ah - a^) zw},

which putting a = is

(2/yz + 2gzx + 2hxy + 2I00W + 2myw + 2nzwy= 0,

and is thus a quadric surface twice repeated.

There remains XI, and here the equation is

{(oar ^ay \-cz-¥ cw) (x + y + z + w) + 2(h — a)xy+2(n — c) zw]'

= (x + y+z + wy {(ax + ay + cz+ cwy + 4a (A — a) xy + 4c (« — c) zw],

or writing h + a, n + c in place of a, c respectively, this is

{(ax + ay + cz + cw) (x + y+ z + w) + 2hxy + 2nwY

= (x->ry + z-\- wy] (ax + ay-\-cz-\- cwy + 4ahxy + icnzw]', (Aff)

or putting herein a = it is

{c(z + w)(x + y + z + w) + 2hxy + 2nzw]' -c(x + y + z + wy{c(z + wy+ <tnzw], (AH)

I

f

!
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which may also be written

c(x + y + z+w) {hay (z + w)- nzw {x + y)] + Qucy + nzwy = 0, (AH)

the equation of a quartic surface with the four nodes A, B, G, JD; it is to be observed

that the lines AC, AD, BC, BD are, the lines AB and CD are not, lines on the

surface.

A more simple form may be given to the equation as follows ; using the second

of the above forms, multiplying the equation by 4, and writing therein

p = \/(c) (x+y+z + w),Iqr =c(z + wy + 4!nziv,

8t = c(x + yy — ^hxw,

q, r, and s, t being the linear factors of the two quadric functions respectively, we have

\ qr — st=c{x + y + z + io)(—x — y + z + w) + 4-hxy + ^nzw,

and thence

p^ + qr — st= 2c {z + w){x + y + z + w) + ihxy + 4>nzw,

wherefore the equation is

ip' +qr- sty = 4ip''qr, {AH)
or, what is the same thing,

i> + V(?»:)+\/(sO = 0, {AH)

where p, q, r, s, t are any linear functions of the coordinates; this is the equation of

a quartic surface having the nodal conic p = 0, qr — st=0; and the four nodes

{q = Q,r = 0,p — st = 0) and {s = 0,t = 0,p — qr = 0). It includes the Cyclide, the equation

of which may be written

i

i

\

6^ = >J[{ax - eky + %'} + \/{(e« - aky - b^z%

I remark that Prof. Kummer in his most valuable Memoir, " Ueber die Flachen

vierten Grades auf welchen Schaaren von Kegelschnitten liegen," Crelle, t. Lxvi. (1864),

pp. 66—76, has considered several of the cases of a quartic surface with a nodal conic,

viz. no node, {AC); a single node, {AD); two nodes (the case AF); and four nodes,

{AH); but he has not considered two nodes, the case {AE); nor three nodes, {AO).

In reference to the general case of a quartic surface with a nodal conic, some

most interesting properties have recently been obtained by Prof. Clebsch, see Berl,

Monatsh., April 30, 1868, where it is shown that there are on the surface 16 right

lines forming 20 systems of double-fours, analogous in some respect to the 27 lines

and 36 systems of double-sixes of a cubic surface.

C. VII.
' 40
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458.

«

ON THE ANHAEMONIC-RATIO SEXTIC.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. x. (1870),

pp. 56, 57.]

Mr Walker's equation is AQ\?-\ + iy + P (X^ - X)^ = ; changing the sign of X,

and also the numerical multipliers of /, A (so as to convert the discriminant equation

into its standard form A = P — 27J% the equation is

4A (X» + X + 1)= - 27/» (X" + X)= = 0.

I remark that this is most readily obtained as follows ; writing

A={a-d)(b-c),

B = {b-d){c-a),

G = (c-d)(a-b),

then we have A+B + C=0,

I=^(A^ + B'+C') = -^(BC+CA + AB),

J=:(h(B-G)(0-A)(A-B),

^{^) = ^ABC,

see my Fifth Memoir on Quantics, Phil. Trans., vol. CXLVIII. (1858), pp. 429—460, [156].

And observe also, that in virtue of the relation A + B +C=0, we have

,12I = A'^-i-AB + B"- = A"- + AC+C"- = R- + BC+C"-.

Hence writing

u =

I

i
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ABA C B C
when X has any one of the values „ , -r, -p^ , —r, -p^, „ j we see that u assumes' B A G A C B
only the values A, B, G, and u is thus determined by the equation

«' -12/(6- 16 V(A) = 0.

Eliminating u, we obtain

16V(A)|^.(x+l-HlJ-(x + l + l)-l} = 0,

or, what is the same thing,

that is

the required equation.

4A (V + X + ly - 27/»X» (X + ly= 0,

40—2
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459.

ON THE DOUBLE-SIXERS OF A CUBIC SURFACE.

[From the QuaHerly Journal of Pure and Applied Mathematics, vol. x. (1870),

pp. 58—71.]

The 27 lines on a cubic surface include, and that in 36 different ways, a double-

sixer ; viz. a system of two sets of six lines 1, 2, 3, 4, 5, 6 ;
1', 2', 3', 4', 5', 6', such

that every line of the one set intersects all the non-corresponding lines of the other

set, thus
12 3 4 5 6

there being in all 30 intersections.

Any line say 4, of the one set, intersects five lines 1', 2', 3', 5', 6' of the other

set; and these six lines being given the double-sixer may be constructed; viz. (besides

the line 4) we have a line 1 meeting the lines 2', 3', 5', 6' ; a line 2 meeting the

lines 3', 5', 6', 1' ; a line 3 meeting the lines 5', 6', 1', 2' ; a line 5 meeting the lines

6', 1', 2', 3'; and a line 6' meeting the lines 1', 2', 3', 5'; and then the lines 1, 2, 3, 5, 6

are all of them met by a single line 4', which completes the system.

We may, if we please, consider the lines 4, 2 as given, and then 1', 3', 5', 6' will

be any four lines each of them meeting the two given lines 4, 2; 2' will be any

line meeting 4; and we have to determine a line 4' meeting 2, such that there may
exist the lines 1, 3, 5, 6, completing the system as above. Or what is the same

thing, we have a skew quadrilateral 1', 2, 3', 4; 5' and 6' meet 2 and 4; 2' meets
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4, and 4' meets 2: 5 and 6 meet 1' and 3'; 1 meets 3' and 3 meets 1'; and the

two sets 2', 4', 5', 6' and 1, 3, 5, 6 meet thus

I

13 5 6

2' ....
4'

• • • •

5'
• « •

6'
.

Hence, starting with the skew quadrilateral 1'23'4, and taking x = 0, y=0, z = 0, w=
for the equations of the four planes 41', 1'2, 23', 3'4 respectively ; or what is the same

thing x = 0, y = for the equations of the line 1'
; y = 0, z = for those of the line 2

;

z=0, w = for those of the line 3' ; and w=0, x = for those of the line 4 ; the

several lines may be determined, each of them by means of its six coordinates, as

follows

:

a b c f g h

where

1' 1

2 1

8' 1

4 1

2' A,. B, G, G, B,

4' B, c. F. G, H.

5' A c. G. H,

6' B, c, G, H,

1

3

5

6

Oi bj

a, h

BA +

B,G,+

B,G,+

B,G,+

Chfi +

fhfz +

atfe +

<h fx g,

/a g^

/» g,

/« g,

C,H, = 0,

G,H, = 0,

C,H, = 0,

GgHf = 0,

bigi = 0,

bsgs = 0,

b^g, = 0,

b^ge = 0.
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The conditions in regard to the intersections of the lines 2', 4', 5', 6' and 1, 3, 5, 6,

are formed by means of the diagi-am

1 /i ^71 «i ''i Ci

3 /, gs As Os is

5 /. 5'» Oj 6,

viz. we have the equations

first set,

A, B, C, G, H, 2',

B, G, F, G, H,

B, C, G, H,

B, C, G, H,

4',

5',

6'.

second set,

third set,

fourth set,

f,A^ + g,B,, + brG, + CrH, = 0,

g,Bt + Oii', + biG^ + c,Ht = 0,

giB, + biG, + c,H,==0,

.

g.B, + b,Ge + c^He = 0;

f,A, + g,B, + h,C, + b,G,=0.

g,B, + k,C, + a,F, + bsG, =0,

glB, + hC, + 6,<?5=0,

g,B, + h,C, + hG,=0;

ft-A-i+gA + hG,=0,

g.B, + a,F, + b,G,=0,

g.B, + b,G,=0;

f^A^ +gA + b,G,=0,

g.B, + a,F, + b,G,=0,

g.B, + b,G,=0;

and it is to be shown, that taking as given the coordinates of 2', 5', 6', that is

(^2, Bi, Ca, Gi, H3), {Bs, Cj, Gi, if,) and (Bg, C^, Gg, H,), we can find the coordinates

of the remaining lines 4', 1, 3, 5, 6.

The first set of equations gives

9u bi, c, = Bis, G„, Ha

B„ Ge, He

viz. 5^1, 61, Ci are proportional, but as only the ratios are material, they may be taken

equal, to the determinants GsH,— GeH^, H^B^— H^B^, B^Gf — BtGi. And then retaining

gi, bj, Ci to signify these values respectively, the first equation gives f^A^, and the

second equation gives OiF,; multiplying together these values, and writing aifi = — bigi,

we find

(5,5,, G,G„ H,H„ G,H,+ G,H„ H,B, + H,B„ B,G, + B,G, + A,F,'^„ b„ c,y = 0. 1
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or since

this is

Proceeding in a similar manner with the second set of equations, we have first

(observe h3 = GiBs-0^B^, = - Ci),

and then

{B,B„ C,G„ G,G,, C,G,+ C,G,, G,B, + G,B, + A,F„ BX, + B,C,^„ h,, 60^ = 0.

The third set gives more simply

g-^B,B, + ffA (-B, G, + B,G, + A,F,) + WG,G, = 0,

ffs h= Gg : —Bg,

O^B,B, - G,B, (B,G, + B,G, + A„F,) + BiG.G, = 0,

and similarly, the fourth set gives

g,^B,B, +gA (B.G, + B,G,+ A,F,) + hiG.G, = 0,

or since ^5 : b^=Gi : —5,, this is

G^B,B,- G,B,{B,G, + B,G, + A,F,) + B.^GA = :

and these last two results lead to the values of the ratios of B^Bt, B^Gi+BtGi+A-^Ft, Gfii;

viz. these are proportional to expressions containing the common factor B^G^— B^G^,

and omitting this common factor, and taking them equal instead of merely proportional

to the resulting expressions (which is allowable, since the absolute values are not

material), we have

B,B„ B,G,+ B,G, + A,F„ G,G, = B,B„ B,G, + B,G„ G,G,.

Returning to the result obtained from the first set of equations, this now becomes

(B,B., G,G„ H,H„ G,H, + G,H„ H,B, + H,B„ B,G, + B,G,Jg„ h„ cO= = 0:

but the terms containing g^, 6, are (Bsgi+Gsbi)(Begi + G^h), viz. this is = — H^Ci. — H^Ci,

that is HiHtC^; the whole equation is thus divisible by c,, and omitting this factor,

it becomes

g, {H,B, + H,B,) + 6, {G,H, + G,H,) + c, (H,H, + H,H,) = 0.

Proceeding in like manner with the result obtained from the second set of equations,

this becomes

(£,£.. C^G„ G,G„ C,G, + C,G„ B,G, + B,G„ B,G, + B,C,^„ h„ hy- = 0,

where the terms containing g,, b, are (Bgi+G^b^XBg^+GJ)), viz. this is -h3G^.-h.,,0s=h^Gfif-,

the whole equation divides by h^, and it then becomes

g,{B,G,+B,G,) +Ih(G,G, +G,G,) +b,(G,G, +G,G,) =0.

Considering £4, Gt, Ft as given by the equations

B,B,= B,B„ G,G, = G,G„ B,G, + G,B, + A,F, = B,G, + B, G„
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the equations last obtained determine the values of H^ and C, viz. these equations may

be written

{g,B, + h,C,+ b,0,)C, + C, (g»B, + b,G,) + KG,C, =0;

but in order that the values (B^, C«, F^, 64, Ht) given by these five equations may

belong to a line (0, B^, C^, F^, Gt, H^, they must satisfy the equation

B,G,+ C,H, = 0,

viz. in order to the existence of the line 4, this equation must be satisfied identically

by the foregoing values ; and I proceed to show that it is in fact thus satisfied.

Multiplying the values of C4, Hi, and writing CiHi = — BiGt, the identity to be verified is

(jT,-Bj + 61 G'j + Ci ZiTs) (^r, jBa + As Cj + 65GO -84 <?4

+ {H, (g,B, + b, G,) + (hH,H,] [C, (g,B, + b,G,) + h,C,C,] = 0.

The first line includes the terms

{9i9,B.? + bAG," + (b^g, + b,g^) B,G, + cAC^H,} B,G„

which, writing CiH2 = — B^G^ and B2Bi = B^B,, GiGt= G^Gt, are

= g,g,B,G,B,Be + bAG,B,G,G, + {b,g^ +gA - cA) B,B,G^G,.

The second line includes the terms

C,H,(g,B, + 6, G,) {gA + hG,) + cAC,H,C,H,.

which, reducing in like manner, are

= -gig,G,B,B,B, - bAB,G,G,G, - {b,g, +gA- cJh) B,B,G,G„

and these are together

= {g,gAB, - bAG.G,) (B,G, - B,G,).

The remaining terms from the first line are at once reduced to

(gACA + (hg,H,G,) B,B, + (bAG.B, + cAH.B,) G,G„

and those from the second line are

G,C, H, (gXB, + bAG,) + H,H,C, (c,g,B, + cb,G,).

Hence, attending to the relation Ci= — h3, and collecting and arranging, the equation to

be verified is

{g,g,B,B, - bAG.G,) (B,G, - B,G,)

+ }hG,G,(g,B,B,-b,H,H,)

+ KHA(g,C,C,-b,G,G,)

+ h,C,B,(b,G,G,-g,H,H,)

+ KHJG, (6. 0, G, - g,B, B,) = 0.

i
t

r
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g,B,B, - hH^H, = B,B, (G^H, - G,H,) - HM.{BiG, - BgCg)

= B,H, (B, G, + C, H,) - B,H, {B, G, + CgH,) = 0,
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g,GiG,-h,GiG,^0,

hGiG,-g,HA=0,

b,CiC,-g,BiB, = 0.

Moreover, writing giB^Bg^hiHiHt, we have

g^g^B^Be-b^biGiGg

= b,ig,HiH,-b,GiG,) = 0.

and the five terms of the equation in question thus separately vanish ; and the

equation is consequently verified.

We may collect the results as follows

:

Data are lines 1', 2, 3', 4, 2', 5', 6';

and then, for the remaining lines, 1, 3, 5, 6, 4' the coordinates are as follows

:

For 4',

B,B, = BiB„ G,G, = GiG„ A,F, = BiG, + B,Gi-B,G,-B,G„ A, = 0,

= 0,

0,

B„ 0„ H, H, ^ H^Bi, H^Gi, HiHg

Bg, Gi, Hi Bi. Gi. Hi

B„ G„ H, Bi, G„ Hi

B,, C,, G, c,+ C,B„ Gid, C,G,

Bi, Gi, G. Bi. Gi, Gi

y
B„ Cg. (?. Bi. Ci. Gi

{B^G, + GMi = 0, identity).

For 1,

(gubi,c,)= Bi, Gi Hi , ^=/. = - B,, G,, H, , F,a,=

B„ G, H, B„ Gi, Hi

B„ G„ Hi

(o,/, + bigi = 0, identity).

For 3,

(£r„ hj, h)= A. Gg. Gi . A,/,= - A, C„ G, , FtO-i =

B„ c». G, Bi, C„ Gi

Bi, Gi, Gi

(«3./.+ K7s = 0, identity).

J?4, G,, H,

Bi, Gi, Hi

Bi, Gi, Hi

^ = 0,

B,, G,, G,

Bi, Gi. Gi

Bi, Gi. Gi

C3 = 0,

C. VII. 41
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For 5,

For 6,
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g, = 0„ 6. B„ A,/, = B,0,-B,G„ F,a, = B,G,-B,G„ c, = 0, h, = 0,

(a^fi + b,(f, = 0, identity).

5r.= G., b, = -B„ AJ, = B,G,-B,0,, F,a, = B,G,- B,G„ c = 0, A,= 0;

and, for actual calculation, it is convenient to remark that as only the ratios are

material, a set of six coordinates may be multiplied or divided by any common number

at pleasure.

But these results may be further reduced. Writing

(ga, K, h) =

-Oj, Gt, Ga

we have

- (3A + KC,+ \G,) C, = G,
(g,
^ + b,^«) + }hC,C, = ^^^ ig,B,BA+hG,G,B,)+h,C,C,.

But

R R^ j.nnji -I B,B,G,(C,G,-C,G,)\_j B,G,C,(B,G,-B,G,)\
g,B,B,G. + 63(.»(x.i^, -

1^ ^^^^^^ ^^^^^ _ ^^^^^
-

\_^B^g^c. ^g^s^ _ g^^jj

(-H,{B,G,-B,G,)\
= ^'''"'

-GA)][-E,{G,B

= C,G, {B, (G,H, - GA) + G, {B,H, - B,H,)}

= C,G,{B,g, + GA),

smce

{gi, K Ci) = B;,, Gi, He

Be, Ge, Hf

the equation obtained is thus

We then have

g>B, + hG, = ^^(g,B, + b,G,).

GsCt- (9,B, + h,G, + hG,) G,= ^ [C, (g,B, + 6. G,) + h,B, (?J

=^^ [C, (g^B, + b, G,) + c C.,H,]

= -^'(g^B., + hG, + c,H,),

that is

C =^'^' giBi + biG, + CjH,
* H, g»B, + h,C, + b,G,'

^i
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and in like maimer

- (g,B, + b,G, + c^H,) H, = -^^ {g, G,B,B, + hB,G,G,) + c, H,H,

GiB^Bg (GilTa — GiH^)
g,G,B,B, + b,B,G,G,

= HsHt

^r G,B,B,(G,H,-G,H.)'\^( B,G,H,(G,B,-G,B,)\

t+ B,G,G,{H,B, - H,G,)] \+B,G,H, (B, G,-B,G,)j

— Of, (G^Bg — GgBs)

Cg(B„Gs —BsG^)

= H,H, [B, {C,C, = C,G,) + G, (B,C, - B,G,}]

= H,H,{B,g, + GA);

the equation obtained is thus

{:: :}

and then

that is

g,B, + hG,= ^j {B,g, + GA)

;

- (g,B, + b,G, + c,H,) H, = ^^ {H, {B,g, + GA) + c,B, G, ]

= -
%l^l

[H, {B,g, + GA) + fhC,H,}

= -^^(B,g, + C,h, + GA),

rj- _ HjH^ ga-Ba + ^ Ca + 63 G^

^'~
C, g'Sr+KGr+cTH,'

which values of C„ Ht satisfy, as they should do, the relation

B^GsGe G^B^Cg
We have also

AjF^ = BiGi + Bg G;

1

B^G,

1

G, B,

iG,B,-BA){G,B,-B,G,)

(G,B,-B,G,)(G,B,-B,G,),

which gives F^

Moreover

-F,a, = g,B,+ h,G, + cH,= --^jj^{gA + hA) cT 9A-^h,0,. + c,H..
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- H,H. ig.B, + 6,Ga) {g.B, + h,G, + c,H,)

G^H^igi B^ + 6,G=j + c, H^) \+ {g,B^ + hGj + h, G^) h,H^

— H^Hg

C,H,ig,B, + bA + cH,)

which combined with the foregoing value of Ft, gives a^.

KgA + h G,) igA + 61 <?a) + ci/^£a G^]

,

41—2
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Again,

- F,a,= g^B, + lHC, + hO, = -^^^ (g^B, + b, &,) =-^^ ^A + T^»G:+b;G,

~
CtH,(3,B,+~KC, + b,G,)\+{g^B, + b,G, + (HH,)(hC, ]

^°f^ ^ ira ^ {(^.^.+ ^i^») (9^B, + b,G,) + o,KB,C,],~
C,H,(ci,B, + h:,G, + b,G,)

which combined with the foregoing value of J\, gives 03.

Write

we have

that is

and similarly

a> = B,G, + B,G, + C,H, + G,H,,

b,g, = {H,B, - H,B,) {G,H, - G,H,)

= - H^B.G, - H.'B, G, + H,H, {B, G, + 5. G,)

= H,H, (C,H, + C,H, + B,G, + £,(?.),

baffa = 0, Os W,

bib3 = BiBi CO,

9ig3= G, Ge (o,

higs -Vbsgi + Cih^- {B> G, + B^ G,) to,

(b,G,+g,B,)(hG,+gaB,) + cKB.G, = {G,'B,B, + B,'G,G, -BA (B.G, + B,G,)} «

= {G,B, - B,G,) (GA - B,G,) m,

which last value is to be substituted for the left-hand function in the formulae for Oi

and Oj respectively.

Whence, finally recollecting that

B,G, + G,H, = 0, B,G, + G,H, = 0, B,G, + C,H, = 0,

and

we have

a> = C,H, + G,H, + B,G, + B,G„

For 1

hgi = HiHefO.

B,, Gi, Hi

B„ G„ H,
'

f,
= -\-{gA^-b,G, + c,H,\

A

a,=
A^HiHfCo

giB^ + hiGi + c^H.
, h = 0.
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For 3 {

iOi, hs, 63) =

where observe that Cj + A3 = 0.

(/ii=Ge, bs = —Be,

c, = , h,= 0,

For 5

Og =
ffsSa + KG^ + baO.,

, K=0,

A=j;^(G.B,-B,G,),

A^B.Ge
a, =

OA-B,G,-

For 6

f, = ^(G,B,-B,G,),

Ofi =
G^B^ — B^Gi'

For 4'

£,= BjBe

B, '

gt^Gt,, bt=-Bs,

c, =0 , Ag= 0,

^4=-0,

A.3L13IJ3
,

p _ C5O. g,B^ + biG, + c,H^
"^^

ZT, gA + KG,+ bA'

TT _ H^jHf gsBj + hsG^ + bsG,

*~
C'j giB^ + b.Gi + CiHj'

I have thought it worth while to effect the numerical calculations for enabling

[the construction of a drawing or model. For this purpose taking X, Y, Z as ordinary

rectangular coordinates, I write

x= Z+F+Z-10,

z = -X+Y+Z-10,

w= 7,

that is, I take 1' and 2 to be lines in the plane of XY, defined by the equations

'X+F=10 and X—Y= — 10 respectively, and 3' and 4 to be lines in the plane of

\XZ defined by the equations X — Z= — 10, X + Z=10 respectively. And I take 5' to

be the line joining the points (2, 0, 8) and (—9, 1, 0); 6' the line joining the points

US, 0, 7) and (-8, 2, 0); 2' the line joining the points (9, 0, 1) and (-3, 7, 4). We
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calculate then for each of the lines the xyztu coordinates of two points thereof; and

thence the six coordinates of the line, viz.

:

reduced

X y a w X y s w A B CFG H A B C F G H

6' 0, 8, - 4, - 18, 0, 0, I 0, 72, 144, 0, 8, - 4 0, 18, 36, 0, 2, - 1

6' 0. 7, - 6, - 16, 0, 0, 2 0, 96, 112, 0, 14, - 12 0, 48, 56, 0, 7, - 6

2* 0, 1, -18, - 2, 4, 4, 7 76, 36, 2, 0, 7, -126 76, 36, 2, 0, 7, -126

and effecting the calculations for the remaining lines, we have

A B OF 6 H

4' 24 -944
9

38
2

3

59

380 385
1

59
60 30

19
- 5

3 127680 -720 15

19
140 -30

6 304

152

- 48
21

19

27

7

6
3

- 18
38

/

or reducing to integers, the values are

B G H

5' 18 36 2 - 1

6' 48 56 7 - 6

2' 76 36 2 7 -126

4' 53808 -2116448 -531 4484 114

1 1444 13452 6726 10443 -1121

3 485184 - 2736 3 532 -114

5 5776 - 912 21 133

6 5776 - 2052 81 228

/
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I

The line (a, b, c, /, g, h) is given as the intersection of any two of the four planes

I
o

( h, -g, a $«, y, z, w)=0,

-A, / h

9' -f> c

— a, —b, — c,

or substituting for x, y, z, w the values X + Y+ Z -10, Z, — X +Y+Z-10, Y, these

become

(

I

or, what is the same thing,

I

9 ,
a-9

.
f^-9

-f-h, b+/-h, f-h

9 '
c + g , g-f ,

-g

c — a, —c—a, — c — a — b, c + a

g ^Z, F, Z, 10) =0,

h-g

2g-f-h , -1g \X,Y,Z,\0) = Q.

— 2g + a — c, . , a + b + c +f— h, —a—c
-2g+/+h, -a-b-c-f+ h, . , -f+h

2g , a + c , -f+h

And substituting, we have the equations of the several lines, viz.:

(1') Z-t-F=10, Z=Q,

(2) -Z+F= 10, Z = 0,

(3') -Z + .^=10, F=0,

(4) X+Z=10, F=0,

(50 ( 40,

(6') (

-40, • >

- 5, -55,

4. 36,

• > -35,

-35,
1

-10, — 55,

7, 28,

55,

• >

- 1.

10,

55,

- 3,

- 4 \X, F, Z, 10) = 0,

-36

- 7 $Z, Y,Z, 10) = 0,

-28
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(20 (

(*') (

- 30. 70, - 7 ^Z, F, Z, 10) = 0,

(1) (

30, . . 120, -39

-70. - 120, . , 63

7.

• >

39, - 63,

- 2107480, 9

2107480, • >
-2063

- 9385, 2063285, .

8968, -2116448,

• » 3040, -- 12685,

- 3040, > 32065,

12685, - 32065, • »

- 2242, 8170, -- 10443,

9385. - 8968 \X, Y, Z, 10) = 0,

2116448

- 645

645,

2242 $X, Y, Z, 10) = 0.

- 8170

10443

(3) ( . , -484120, 1175,

484120, . , 482565,

-1175, -482565, . ,

1064, 485184, - 117,

- 1064 \X, Y, Z, 10) = 0,

- 485184

117

(5) (

(6)

1 5510, 245, - 266 \X, Y, Z, 10) = 0,

- 5510, • > 4885, -5776

- 245, -4885, • 3 21

266, 5776, - 21, •

, . - 5320, 375, - 456 \X, F, Z, 10) =0

5320, * 3805, -5776

-3751, - 3805, ' » 81

456, 5776, - «1, •
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The several lines intersect as they should do, the coordinates of the points of

intersection being as follows

:

1' 3' 4' 5' 6'

\^ 305

9693|

-21U1073
106 4 J

9

1

24211

-1891-=- 233

I52J

424171

-mi-r- 5098

8968J

-4721

-2U 47

oj

- 2484j

66U24727

25I464J

47521

42U 6521

71744J

\-r- 727

2

8

2

3

7

10801

-42l-t- 283

2128]

viz. the coordinates of 12' (intersection of lines 1 and 2') are (ffj, -^^, fff), and so

in other cases ; where there is no divisor the coordinates are integers. I find however,

on laying down the figure, that the lines 3 and 4, 3' and 4' come so close together,

that the figure cannot be obtained with any accuracy.

C. VII. 42
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460.

NOTE ON MR FROST'S PAPER ON THE DIRECTION OF

LINES OF CURVATURE IN THE NEIGHBOURHOOD OF

AN UMBILICUS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. x. (1870),

pp. 111—113.]

I REMARK as follows

:

1. In regard to a quadric surface, it is not, I think, correct to say that the

generatrices through an umbiiic are curves of curvature ; notwithstanding that, as shown

p. 80, the normals at every point of such generatrix lie in one plane and consequently

intersect. The way in which these generatrices as ^'Masi-curves-of-curvature present them-

selves is as follows

:

The curves of curvature satisfy a certain differential equation, the complete integral

of which gives these curves as the intersections of the given quadric surface by the

a? 'tfl z^
series of confocal surfaces —^—a + a» T + T /

~^' '^ heing the constant of integration
a "r ft "7" fi C ~T' ft'

of the differential equation. The singular solution of the differential equation, or envelope

of the curves of curvature determined as above, gives the unibilicar generatrices.

2. In regard to a surface in general, I think it must be considered, not that

there pa.s8 through the umbiiic three distinct curves, but that the umbilicar curve of

curvature is a curve having at the umbiiic a triple point, or rather a point at which

there are in general three distinct directions of the curve. The umbilicar curve of

curvature in fact presents itself as the curve belonging to a certain value of the

constant of integration h ; in order that the curve of curvature may pass thiough a

given point on the surface, h must satisfy a certain quadratic equation, that is for a

given point of the surface there are two values of h, and therefore two curves of

I
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I

curvature : but an umbilic is a point for which (as in effect shown, p. 81, for the

particular case of & quadric sur&ce) the two values of h become equal; that is, there

is through the umbilic only a singular curve of curvature ; but -^ is determined by a

cubic equation, and the umbilic is thus (as just mentioned) a point at which there are

in general three distinct directions of the curve,

3. Some researches on the subject are contained in my paper "On Differential Equations

and UmbUici," PkiL Mag., voL XXVL (1863\ pp. 373—379 and 441—452, [330]. It is

noticeable that in the integral equations which I have there obtained for the differential

equations cy(j)*— l)+(a—c)xp=0, and the more general form (bjt + cy)(p'—l)+2(fe+gif)=0,
which belong to the neighbourhood of an umbilic, the curve through the umbilic does

break up into three distinct curves ; and the same is the case with the umbilic on the

sur&ce xyi — 1 presently referred ta

4. In the paper " M^moire sur les sur&ces orthogonales," Lione., t xii. (1847),

ppt 241—254, M. Serret has given two very remarkable cases of three systems of sur&ces

intersecting each other at right angles, and consequently in the curves of curvature of

the sur&ces of each system. It was only on referring to this paper, in connexion with

that of Mr Frost, that I perceived an obvious enough simplification of M. Serret's

formube, whereby it appears Uiat the curves oi curvature on the soi&oe xys = l are

given as the intersection of this sur&ce with the series of sur&ces

A = (*» + wy*
+f^«»)»

+(«» +wy+ •«»)•.

where w is an imaginaiy cube root of unity ; the rationalised equation is of the

twelfth order in (x, y, m\ and for the particular value A = 0, reduces itself as is easily

seen to = (y — t^f {t^ — a^f {j^ — y'y. The point 4r = y = x=l is obviously an umbilic

on the sur&ce xyx^I, and the corresponding value of A being A=0, the equation just

obtained determines the umbilicar curves of curvature. \'iz. combining therewith the

equation xys = 1 of the sur&ce, we have the three hyperbdic curves

(jr«*, jry"=l), (x =*iy«»-lX (x-y. «*»=1X

I
42—2
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461.

ON THE GEOMETRICAL INTERPRETATION OF THE COVARIANTS
OF A BINARY CUBIC.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. x. (1870),

pp. 148—149.]

CoNSiDEK the binary cubic U=(a, b, c, d^x, yf, and its covariants, viz. the dis-

criminant (invariant)

V = a?d- - Gabcd + iac" + 46'd - Sb-c-,

the Hessian

and the cubicovariant

H = {ac- 6") a^ + (ad-bc)xy + (bd

-

c=) y-,

4> = ( a^d- Sabc + 2b')ai'

- (- Sabd + 6ac- - 36=c) a^y

+ (- Sacd + 6bd^ - 36c0 a^'

-( ad'' -36cd + 2c» )y,

connected by the identical equation

*= _ V fT^ = - 4>HK

Then if we regard (a, b, c, d) as the coordinates of a point in space, but (x, y)

as variable parameters, the equation

V =0

represents a quartic torse, having for its cuspidal curve the skew cubic ac—b'' = 0,

ad — bc = 0, bd— c^ = 0; the equation

U=0



461] ON THE GEOMETRICAL INTERPRETATION &C. 333

is that of the tangent plane to the torse along the line aa? + Ihxy + cy' = 0,

ha? + Icxy + dy^ = : this line meets the cuspidal curve in the point whose coordinates are

a ;}) : c : d = y^ : —xy- : a?y : —y'. The equation

is that of a quadric cone having the last mentioned point for its vertex, and passing

through the cuspidal curve: and the equation

is that of the cubic surface which is the first polar of the same point in regard to

the torse.

The equation <t>- — V U' = — iH', writing therein ^7=0, gives <I>2 = -4ff', a result

which implies that U=0, H=0 is a certain curve repeated twice, and that U—0,
4> = is the same curve repeated three times. The curve in question is at once

seen to be the line of contact BxU=0, SyU= 0; it thus appears that the tangent

plane U=0 meets the cubic surface <1> = in this line taken three times. This can

only be the case if the equation ^ = be expressible in the form MU + (BxUy=0, or,

what is the same thing,

MU+(aSxU+^ByUy = 0,

a and ^ constants, M a quadric function of (a, b, c, d); that is, ^ must be equal to

a function of the form

MU + (aSxU + mvUy-

Seeking for this expression of <I>, and writing the symbols out at length, I find that

the required identical equation is

''
( a'd- Sabc + 26' ) ar"

'

- (- SaM + 6ac» - 36=c) a?y

+ (- Sacd + 6bd'' - 3bc') xy^

\-{- ad? - 3bcd + 2(f)f )

(a, b, c, d\x, yf.{ 2a' , Qcib , 66=

Qab , 12ac + 66= , 3ad + 156c,

66= , 3ad + 156c, 126d + 6c»,

-od4-36c, 6c= , Qcd

- {^x - ayf + 2 {a {aa? + 2hxy + cf) + ^ (ba? + Icxy + dy^)]" =

ad + 3bc )\{x, yy(a, BY,

6c=

6cd

2d=

(where the f indicates that the binomial coefficients are not to be inserted, viz. the

function on the right hand is {Za'a?+ Gabx'y + 6b'xf + {- ad + Sbc) y'} o.^ + &c.). As a

verification remark that for x = a, 2/ = /3, the equation becomes simply 2U'= 17.211^
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462.

A NINTH MEMOIR ON QUANTICS.

[From the Philosophical Transactions of the Royal Society of London, vol. CLXI. (for the

year 1871), pp. 17—50. Received April 7,—Read May 19, 1870.]

It was shown not long ago by Professor Gordan that the number of the

irreducible covariants of a binary quantic of any order is finite (see his memoir

"Beweis dass jede Covariante und Invariante einer binaren Form eine ganze Function

mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist," Crelle,

t. LXix. (1869), Memoir dated 8 June 1868), and in particular that for a binary quintic

the number of iiTeducible covariants (including the quintic and the invariants) is =23,

and that for a binary sextic the number is = 26. From the theory given in my
" Second Memoir on Quantics," Phil. Trawi., 1856, [141], I derived the conclusion, which,

as it now appears, was erroneous, that for a binary quintic the number of irreducible

covariants was infinite. The theory requires, in fact, a modification, by reason that

certain linear relations, which I had assumed to be independent, are really not

independent, but, on the contrary, linearly connected together: the interconnexion in

question does not occur in regard to the quadric, cubic, or quartic ; and for these cases

respectively the theory is true as it stands; for the quintic the interconnexion first

presents itself in regard to the degree 8 in the coefficients and order 14 in the

variables, viz. the theory gives correctly the number of covariants of any degree not

exceeding 7, and also those of the degree 8 and order less than 14 ; but for the

order 14 the theory as it stands gives a non-existent irreducible covariant (a, . .f {x, y)",

viz. we have, according to the theory, 5 = (10 — 6) + 1, that is, of the form in question

there are 10 composite covariants connected by 6 syzygies, and therefore equivalent to

10 — 6, =4 asyzygetic covariants ; but the number of asyzygetic covariants being = 5,

there is left, according to the theory, 1 irreducible covariant of the form in question.

The fact is that the 6 syzygies being interconnected and equivalent to 5 independent

syzygies only, the composite covariants are equivalent to 10 — 5, = 5, the full number
of the asyzygetic covariants. And similarly the theory as it stands gives a non-existent
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irreducible covariant (a, . .f {x, yf. The theory being thus in error, by reason that it

omits to take account of the interconnexion of the syzygies, there is no difficulty in

conceiving that the effect is the introduction of an infinite series of non-existent

irreducible covariants, which, when the error is cori-ected, will disappear, and there will

be left only a finite series of irreducible covariants.

Although I am not able to make this correction in a general manner so as to

show from the theory that the number of the in-educible covariants is finite, and so

to present the theory in a complete form, it nevertheless appears that the theory can

be made to accord with the facts; and I reproduce the theory, as well to show that

this is so as to exhibit certain new formulae which appear to me to place the theory

in its true light. I remai-k that although I have in my Second Memoir considered

the question of finding the number of irreducible covariants of a given degree 6 in

the coefficients but of any order whatever in the vai-iables, the better course is to

separate these according to their order in the variables, and so consider the question

of finding the number of the irreducible covariants of a given degree 6 in the

coefficients, and of a given order n in the variables. (This is, of course, what has to

be done for the enumeration of the irreducible covariants of a given quantic ; and

what is done completely for the quadiic, the cubic, and the quartic, and for the quintic

up to the degree 6 in my Eighth Memoir, Phil. Trans. 1867, [405].) The new formulae

exhibit this separation ; thus (Second Memoir, No. 49), writing a instead of x, we

have for the quadric the expression 7^ ^yrj jr, showing that we have irreducible

covariants of the degrees 1 and 2 respectively, viz. the quadric itself and the dis-

criminant: the new expression is jz , — , showing that the covariants in

question are of the actual forms (o, . .$a:, y)' and (a, . .y respectively. Similarly for

1 — a'
the cubic, instead of the expression No. 55, -pi r-r^ -rr-rz -r-r; ^r , we have

'^
(1 — a)(l — a')(l — a')(l — a^

1 — a'a^
,- -— T-rr-n , ., ,, 77 , exhibiting the irreducible covariants of the forms
(1 - aa?) (1 — aW) (1 - a'oc') (1 - a*)

^

(a, . .'^x, yf, (a, . .f {x, yf, {a

.

.)' {x, yf, and (a, . .)*, connected by a syzygy of the form

(o, . .y (x, yY ; and the like for quantics of a higher order.

In the present Ninth Memoir I give the last-mentioned formulae; I caiTy on the

theory of the quintic, extending the Table No. 82 of the Eighth Memoir up to the

degree 8, calculating all the syzygies, and thus establishing the interconnexions in

virtue of which it appears that there are really no irreducible covariants of the forms

(a,..y(x, yf*, and (a, ..'$«, y)". I reproduce in part Gordan's theory so far as it

applies to the quintic, and I give the expressions of such of the 23 covariants

as are not given in my former memoirs; these last were calculated for me by

Mr \V. Barrett Davis, by the aid of a grant from the Donation Fund at the disposal

of the Royal Society. [The expressions referred to are in fact printed, 143.] The

paragraphs of the present memoir are numbered consecutively with those of the former

memoirs on Quantics.
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Article Nos. 328 to 332. Reproduction of my original Theory as to the Number of

the Irreducible Covariants.

328. I reproduce to some extent the considerations by which, in my Second

Memoir on Quantics, I endeavoured to obtain the number of the irreducible covariants

of a given binary quantic (a, b, ... ^x, y)".

Considering in the first instance the covariants as functions of the coefficients

(a, b, c,

.

.), without regai'ding the variables (x, y), and attending only to the following

properties—1°, a covariant is a rational and integral homogeneous function of the

coefficients ; 2°, if P, Q, R, ... are covariants, any rational and integral function

F(P, Q, R, ...), homogeneous in regard to the coefficients, is also a covariant,—we say

that the covariants X, Y, ... of the same degree in regard to the coefficients, and

not connected by any identical equation aX + ^Y ... = (where a, yS, ... are quantities

independent of the coefficients (a, b, c, ...)), are asyzygetic covariants, and that a covariant

not expressible as a rational and integral function of covariants of lower degrees is an

irreducible covariant ; and it is assumed that we know the number of the asyzygetic

covariants of the degrees 1, 2, 3,....; say, these are A^, Ai, A,,..., or, what is the

same thing, that the number of the asyzygetic covariants of the degree 6, or form

(a, b,...y, is equal to the coefficient of a* in a given function

4){a) = l + Aia + A^^...+Aea^+...,

where I have purposely written a, as a representative of the coefficients (a, b, c, ...),

in place of the x of my Second Memoir.

329. The theory was, that determining Kj, Oa, ... by the conditions

^2 =K («i + 1) + 02,

-^3 =K («! + 1) («! + 2) + fliOj + a,,

that is, throwing
1 + Aitt + A^'' + Asa^ + ...

into the form

(1 - o)— ' (1 - a")— (1 - a»)— ....

the index a, would express the number of irreducible covariants of the degree r less

the number of the (irreducible) linear relations, or syzygies, between the composite or

non-irreducible covariants of the same degree. Thus ^, = Oj , there would be «!

covariants of the degree 10; these give rise to ^a, (oi + 1) composite covariants of

the degree 2 ; or, assuming that these are connected by k, syzygies, the number of

asyzygetic composite covariants of the degree 2 would be ^Oj (ajifl) — A;,; and thence

there would be .4j — ^a, (Oj + 1) + ^j, that is, ai + Ic^ irreducible covariants of the same

degree ; so that (irreducible invariants less syzygies) (a^ + k,) — ^j is = Oj.

' For the case of covariants, oi is of course = 1 ; bat in the investigation the term covariant properly

stands for any fanotion satisfying the conditions 1° and 2°.
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330. The k^ syzygies are here irreducible syzygies ; for, calling P, Q, R, ... the

COvariants of the degi'ee 1, there is no identical relations between the terms P^ Q-,

PQ,...: imagine for a moment that we could have l^ such identical relations (viz.

this might very well be the case if instead of the ^ai(ai + l) functions P*, Q^, PQ,...,

we were dealing with the same number of other quadric functions of these quantities),

that is, relations not establishing any relation between P^, Q", PQ,..., and besides these

k^ non-identical relations as above; then the number of irreducible invariants would

be a, + k-i + 4, and the number of irreducible syzygies being as before k^, the difPerence

would be not a, but a., + L. The L identical relations are here relations between

composite covariants, and the effect (if any such relation could subsist) would, it

appears, be to increase a,; between syzygies such identical relations do actually exist,

and the effect is contrariwise to diminish the a ; we may, for instance, for the

degree s have irreducible covaiiants less irreducible syzygies =ag — lg.

331. Assume for a moment that, for a given value of s, a^ is positive; but for

the term I, it would of course follow that there was for the degree in question a

certain number of irreducible covariants ; and it was in this manner that I was led to

infer that the number of the covariants of a quintic was infinite—viz. the transformed

expression for the number of asyzygetic covariants is

= coeff. a" in (1 - a*)-' (1 - a»)-' (1 - a'=)"* (1 - a'*)-* ...,

a product which does not terminate, and as to which it is also assumed that the-

series of negative indices does not terminate.

332. The principle is the sanie, but the discussion as to the number of the

irreducible covariants becomes more precise, if we attend to the covariants as involving

not only the coefficients (o, b,...) but also the variables (x, y); we have then to con-

sider the covariants of the form (a, b, ...y(x, yy-, or, say, of the form a^af^ (degree 6

and order fi), and the number of the asyzygetic covariants of this form is given as

the coefficient of a'af- in a given function of (a, x), (I write a instead of the z of

my Second Memoir in the formulae which contain x and z): by taking account of the

composite covariants and syzygies, we successively determine, from the given number of

asyzygetic covariants for each value of 6 and /i,, the number of the irreducible

covariants for the same values of 6 and /x. This is, in fact, done for the quintic in

my Eighth Memoir up to the covariants and syzygies of the degree 6. But before

resuming the discussion for the quintic, I will consider the preceding cases of the

quadric, the cubic, and the quartic.

Article Nos. 333 to 336. New formulae for the number of Asyzygetic Covariants.

333. For the quadric (a, b, c^x, yf, the number of asyzygetic covariants a*a^

\ — x
= coeff. a*a;*-i'' in — — -,

(1 — a) (1 — ax) (1 — aa?)

(see Second Memoir, No. 35, observing that q is there =6 — ^/t, and that the sub-

traction of successive coefficients is effected by means of the factor \ —x in the

c. VII. 43

4
T
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numerator. See also Eighth Memoir, No. 251, where a like form is used for the

quintic). Writing aa? for a, and — for x, this is

= coeffi a^af- in

•4
(l-ox»)(l-a)(l-^)

The development is

-I 1

+ a=(ic*+l)
/I ^

+ a' (ic* + 1^) -^4)
+ a* {a? + al^ -\- V) -S4-)

which is

=^(')4^© 1

where

^(a')-/i „„,N/i „2\'

and, since -^ J. (-
J
contains only negative powers, the required number is

= coeff. a^af- in jz. —-j^ ,
,

(1 — aa?) (1 — a=)

indicating that the covariants are powers and products of {aa? and a^), the quadric

itself, and the discriminant. Compare Second Memoir, No. 49, according to which,

writing therein a for x, the number of asyzygetic covariants is

= coeff. a* in

\-x

(l-a)(l-a')-

334. For the cubic (a, b, c, d'^x, yf the number of asyzygetic covariants a'^r" is

= coeff. a'a^i^ in

or transforming as before, this is

= coeff. a*a^ in

(1 - a) (1 - aa;) (1 - cue") (1 - ow;=)

'

-i
{l-aa^){l- cue) (1 - oar') (1 - ax-')

I
t
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the function is here

A NINTH MEMOIB ON QUANTICS. 3'69

where

A(a:) =
1 — aW

(l-a^){l- aW)(l - aV){l - a*)

(that this is so may be easily verified) ; and since the second term contains only

negative powers, the required number is = coeff. a'af- in A (x). The formula, in fact,

indicates that the covariants are made up of {ax^, a?a?, aV, a*), the cubic itself, the

Hessian, the cubicovariant, and the discriminant, these being connected by a syzygy

(a'af) of the degree 6 and order 6. Compare Second Memoir, No. 50, according- to

which the number of covariants of degree is

= coeff. o* in
1-a'

(l-a)(l-a»)(l-a»)(l-a*)'

335. For the quartic (a, b, c, d, e'^x, y)* the number of asyzygetic covariants a*a^ is

= coeff. a^af~ii^ in
1 -X

or trjinsforming as before, this is

= coeff. a'af- in

(1 - a) (1 - oa;) (1 - cwr') (1 - aa^) (1 - a«*)

'

1-a;-

(1 - ax*) (1 - ax^) (1 - a) (1 - ax-^) (1 - ax-*)
"

the function is here

where

A{x) =
{I -ax*) {I- a^oi*) (1 - a») (1 - a") (1 - aV)

'

and the second term containing only negative powers, the required number is = coeff. a*a^

in A {x). The formula indicates that the covariants are made up of {ax*, a-x*, a', a', aV),

the quartic itself, the Hessian, the quadrinvariant, the cubinvariant, and the cubi-

covariant, these being connected by a syzygy (a"*") of the degree 6 and order 12.

Compare Second Memoir, No. 51, according to which the number of covariants of degree

6 is

= coeff. a* in
l-a«

{l-a)(l-ayil-a'y

336. For the quintic (a, b, c, d, e, /$«, yf the number of asyzygetic covariants

a^af^ is

l-x
= coeff. a'a;*"*" in

(1 - a) (1 - ax) (1 - ax^) (1 - ax')(l -ax*) (1 -ax^)

'

AS—

2

i



340 A NINTH MEMOIR ON QUANTIC8,

or transforming as before, this is

= coeflF. o.'a.i^ in

[462

\-ar*

(1 - a*') (1 - ax'){l-ax) (\- ax-') (I -oar') (1 -a.ir-«)

'

The developed expression is

1
1

^aa?

+ a''(.i'"'+ a;« + a')

a?
1

+ a'(ar-"' + a;-« + a;-'')

but' here there is not any finite function A (x) such that this development is

The numerical coefficients are of course the eame as those in the development of

the untransformed function ; viz. they are the numbers given in the third column of

Table No. 82 (Eighth Memoir), and also (carried further) in the third column of the

following Table, No. 87. And we can, from the discussion of these coefficients, deduce

the form of A («), viz. this is

1

1-o'a^
1

l-aV» 1-aV (i~avy ...

14 13 (10)^

12 11 (8)»

10 (9)" ( 6)'

8 7

6

1-aaf 1-aV l-a'a? 1 - aV 1-aV 1-aV 1-aV 1-aV 1-a" ...

2 5

3

4 3

1

2 1

20

14

where, for shortness, I have written 1 — aV to stand for (1 — aV) (1 — aV), and so in

2

other cases : moreover in the third column of the numerator the (9)' shows that the

factor is (1 — aW)', and so in other cases : this will be further explained presently.

Compare herewith the form, Second Memoir, No. 52, viz. the number of asyzygetic

covariants of the degree 6 is

= coeff. a* in (1 - a)-' (1 - a^)-' (1 - a')-' (1 - a*)-' (1 - a')-^ (1 - a'Y (1 - a')" (1 - a»)« . .

.

each index being, it will be observed, equal to the number of factors in the numerator,

less the number of factors in the denominator, in the corresponding column of the

new formula.
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Article Nos. 337 to 346. The 23 Fundamental Covariants.

337. Gordan's result is that the entire number of the irreducible covariants of

the binary quintic is =23. I represent these by the letters A, B, C, ..., W, identifying

such of them as were given in my former Memoirs on Quantics with the Tables of

these Memoirs, and the new ones, 0, P, R, 8, T, V, with the Tables Nos. 90, 91, 92,

93, 94, 9-5 of the present Memoir.

Table No. 87. Identification of the 23 irreducible covariants of the binary quintic.

Table No

A ('a, h, c, d, e, / $ x, yy f 13

B= ^^hr^iA, AY ([ y( y ^=(f/y 14

C = ^{A, Ar ([ Ti y </>=(//)' 15

D=-^{A,Br ([ y( y i ={f^y 16

E= ^(A.B) [ fi y (/O 17

F- M^>G) ( y( y (/«/>) 18

G=-^(B, By
{ y( y {,tf 19

N^-iiB, Cr + iB' [ )M y p = (<f>iy 20

I =-HB. 0) '• ([ y( y (</>') 21

j=-i(B,Dy ({ y( y a = ijiy 22

K (B, D) ( y( y (iO 23

L=-i,(A,H) + iBE { yi y ifp) 24

M = -is(B,Hy-iBG { y( y T=(p,y 83

N= HB.H) { )»( y iv) 84

0=-(B.J)
{ y( y (ca) *90

P=-i{A,M)-BK ( y{ y (/t) *91

Q=h(B,My ([ y( y ('T? 25

i2=-H5. M) [ y( y (r.) *92

8 96(Z), M) + UB0-1GK [ y{ y (r) *93

T =-(J, M) ([
)"( y 7 = (•^a) *94

U=MJ>0) + ^OQ { n y (('«). «) 29

V=-{B,T) { n y (^7) *95

F = -i(0. T) ( n y (('«). 7) 29a
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338. The Table exhibits the generation of the several covariants; viz. (A, B)

denotes d^A .dyB-dyA .d^B, {A, Bf denotes dM-'dy^B-^^yA .d^yB + dy^A.d^^B. &c.

(see post. No. 348). The column f, 1 = {ffy> &c. shows Gordan's notation, and the

generation of his 23 forms {{//)* written as with him for (/, /)*, &c.): it will be

observed that the forms are not identical ; if the calculations had been made de novo,

I should have adopted his values, simply omitting numerical factors of the several

forms (thus every term of t, ={//)* contains the factor 2.(120)S =28800): of course

the presence of these numerical factors renders the /, t, ^, &c. as they stand

inconvenient for the expression of results; and the numerical fixation of the values

was no part of Gordan's object. But by reason of the existing Tables the change of

notation is in fact more than this; thus H instead of being a submultiple of {B, (Tf,

that is, of |), is in fact =—\{B, Cy + ^B'; and so in other cases. If the occasion for

it arises, there is no difficulty in expressing any one of the forms /, t, </>, &c. in terras

of the {A, B, G .,V, W); thus in the instance just referred to, p = {4>Cf, we have

and

</> = (#)' = (^. ^)^ = 800C,

t =^{ffy = i^, Ay = 2^smB,

whence jj = 2304000 (5, Of; also (J8, Of = - bH -\- 2R ; and therefore, finally,

2J = - 11520000 IT + 4608000 5-^.

339. I remark upon the value S = -96(i), M) + lQBO-'JGK, that S is the

complete value of a covariant ( )' ( )', the leading coefficient of which is given in

Table No. 86 of my Eighth Memoir; the form {D, M), omitting a numerical factor

(if any), would have had smaller numerical coefficients, but there is in the form

actually adopted the advantage that it vanishes for a = 0, 6 = 0, that is, when the

quintic has two equal roots, [see post. No. 346].

340. I now form the following Table No. 88, viz. this is the Table No. 82 of

my Eighth Memoir, carried as far as a?, but with the composite covariants expressed

by means of the foregoing letters A, B, G, ... , W; instead of giving the syzygies as

in Table No. 82, I transfer them to a separate Table, No. 89. In all other respects

the arrangement is as explained. Eighth Memoir, No. 253; but in place of N, S, /S'

I have written *, %, S' to denote new covariant, new syzygy, derived syzygy,

respectively; and I have, as to the terms aV*, a'a^ respectively, introduced the new

symbol a- to denote an interconnexion of syzygies, as appearing by the Table No. 89,

and as will be further explained.
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Table No. 88.

[In this Table and the subsequent Table 89, I have for convenience used, instead

of capitals, the small italic letters a, b, c, ...w to denote the 23 irreducible covariants of

the quintic]

Ind. a. Ind. a:. Coeff.

1 5

3

1

1 a *

2 10

8

6

4

2

1

1

1

a"

c

h

#

*

3 15

13

11

9

7

5

3

1

1

1

1

1

1

1

a"

\

f
ah

e

d

*

*

*

4 20

18

16

14

12

10

8

6

4

2

1

1

1

2

1

2

1

2

1

a?

a'c

«/

a'b, <?

ae

ad, he

i

V, h

9

*

*

*
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Table No. 88 (continued).

[462

Ind. a. Ind.«. Coeff.

5 25

23

1 a»

21 1 a'c

19 1 «y
17 2 a% ae'

15 2 a'e, cf

13 2 a^d, abc

11 2 at, hf, ce S

9 3 ah\ ah, cd

7 2 be, I \

5 2 ag, bd

3 1 k

1 1 J «

6 30

28

26

24

1

1

1

a'

a'c

22 2 a*b, aV
20 2 a'e, acf .

18 3 a'd, a^bc, <?,
/' S

16 2 a-i, abf, ace 2'

14 4 aW, aVi, acd, be', ef 2
12 3 abe, al, ci, df 2

j

10 4 org, abd, h\ ch, e" 2

8 2 ok, bi, de 2
6 4 aj, ¥, bh, eg, <P 2
4 1 n «

2 2 bg, m

7 35

33

1 a'

31 1 a'c

29 1 aV
27 2 a%, rtV

25 2 a*e, a^cf

23 3 a*d, a'bc, ac^, a/^ 2'

21 3 a\ a^bf, a^ce, <?f
2'

19 4 aW, aVi, a^cd, ahc', aef 2'

17 4 a%e, aH, aci, adf, be/, <?e 22'

15 5 a^g, a'bd, ab\ ach, ae\ c^d, fi 2', 2
13 4 a% abi, ode, b% bee, cf, J7t 2
11 5 a^, ab% abh, acg, acP, bed, ei 2
9 4 an, b\ bl, ck, di, eJt, fg 32
7 4 ahg, am, ¥d, ej, dh 2
5 3 hk, p, eg *

3 2 kj, dg

1 1 «
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Table No. 88 (concluderiV

345

Ind. a. Ind. X. Coeft.

8 40

38

1 «'

36 1 ««c

34 1 «y
32 2 o«6, aV
30 2 a'e, a\f
28 3 a^d, a*bc, aV, o^y"' 2'

26 3 aH, a^hf, a?ce, ai?f 2'

24 5 a*b\ a% a'cd, a'bc^ a?e.f, c/", c*
2'

22 4 a'6e, «'Z, a'et, o^f//*, <ibcf, M?e 22'

20 6 a*g, a?bil, a%\ a?ch, aV, a<?d, afi, be\ bf% cef <j

18 5 a% a'bi, a'de, ah'f, abce, ad, afh, c\ cdf 42'

16 7 a?j, a'b^ a'bh, a'cg, a'd', abed, aei, Wc\ bef, c% ce\ fl .
52'

14 5 a^n, ab\ abl, ack, adi, aeh, afg, bci, bdf, cde o-

12 7 a'bg, ahn, ab% acj, adh, b% bch, be", c% C(P, el, fk, i^ . 32

10 5 abk, aeg, ap, bH, bde, en, dl, fj, hi 32

8 6 abj, adg, b*, bVi,, beg, bd', cm, ek, h^ 22

6 3 ao, bn, dk, ej, gi 22

4 4 ifg, bm, dj, gh \

2 1 r *

2 f, 7

341. The syzygies and interconnexions of syzygies are given in

Table No. 89.

[See ante Table No. 88.]

(6. 11) ai + bf- ce =

(6, 18) cfd - a'bc + ie" +P =0

(6. 14) o'A - &acd -ibc^-ef =0

(6. 12) al - 2ci +3df =0

(6, 10) a'g -Uabd -46=0-6= =0

(6, 8) ok + 2bi -Zde =0

(6, 6) aj - 6' + 26A - c</ - gflP =

(7. 15) c?bd— ed>'c+ ach—&(^d—/i =

(7, 13) a'k - obi - 36=/+6ci +3fh =

(7. 11) a'j - ab^ + abh-9ad:^-6bcd--ei =

(7, 9) an — b'e - 6di + 2e/i - fg =

m + &di - eh + fg =

2ck - Udi + eh - fg =

(7, 7) am +2bH + cj -Mh =

C. VII. 44

V
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, Table No. 89 (continued).

[462

<r, (8, 20) . a' (aV - I2abd - ib^c - e«) iuprh (6, 10)

-a(a'bd - abe'+ euA - Gc'd -ft] „ (7, 15)

+ b {a'd - a^bc + ic' + /«) „ (6, 18)

+ c{a'h - 6acd-ibc' - ef) „ (6. 14)

-/{ai + bf - ce) = „ (5, 11)

«r, (8, 14) . a(an- ft'e - Mi + 2eh -fg) mprd, (7, 9)

+ a( 26Z + Mi- eh+fg) » ( ,. )

+ a( 2ck~\2di+ eh-fg) .. ( .. )

-2b(cd -2ci + 3d/) „ (6, 12)

-2c (ok + 2bi - 3de) „ (6, 8)

+ 6d{ai + bf - ce) = „ (5, 11)

(8, 12) ab^d-b'c + 2bch- c'g + v' =

~3adh -2bch+2c'g + l8cd'+/k~2i» =

el+fk- 2t' =

(8, 10) abk - en — Ml — 'Ifj + hi =

ap + 2cm + Jj =0
b-i + cn + 3dl+ /j-2hi =

(8, 8) abj -b* + ib'h- 9bd'+l2cm-ek- 3A' =

adg + 26% - 1 2bdr- + Sctn-ek- 2A= =

(8, 6) ao + Mk - 3ej +2gi =

bn + 3dk — ej + gi —

I

.342. In illustration take any one of the lines of Table No. 88, for instance

[resuming the notation by capital letters] the line

(7, 17)
I

4
]

A^BE, A"-L, ACI, ADF, BCF. OE \ 2S'
|

there are here 6 composite covariants, but the number of asyzygetic covariants is =4:
there must therefore be 6 — 4, = 2 syzygies ; we have however (see Table No. 89) two

derived syzygies of the right form, viz. these are

A {AL - 2CI + SDF) = 0,

C(AI+ BF- CE) = 0,

which are designated as 22', and there is consequently no new syzygy 2.

But in the line

(7, 15)
I

5
I

A'G, A'BD. AR-G, ACH, AE', CD, FI
|
2', 2

|

there are 7 composite covariants, but the number of asyzygetic covariants is =5;
there must therefore be 7—5, =2 syzygies. One of these is the derived syzygy

A (A'G -E'- 12ABD - 45»(7) = 0,
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which is designated by S' ; the other is a new syzygy (see Table No. 89),

A'BD - ABC^ +ACH- GCD -FI=0,
designated by 2.

343. Take now the line

(8, 20)
I

6
I

A*G. A^BD, A^B'C, A'CH, A^E\ AOD, AFI, BG\ BF', GEF \ ol', a
\ ;

there are here 10 composite covariauts, but the number of irreducible covariants is

= 6 ; there should therefore be 10 — 6, = 4 syzygies. There are, however, the •') derived

syzygies

A'(A'G-12ABD-4:R-G-E') = 0, &c. (see Table No. 89)

designated by .5S'; since these are equivalent to 4 syzygies only there must be

1 identical relation between them (designated by a-), viz. this is the equation =
obtained by adding the several syzygies, multiplied each by the proper numerical factor

as shown Table No. 89.

344. Again, for the line

(8. 14)
I
5

I
A^Jff, AB'E, ABL, AGK, ADI, A EH, AFG, BGI, BDF, GDE \ 62', a

\

there are here 10 composite covariants, but only 5 irreducible covariants; there should

therefore be 10 — .5, =-5 syzygies; we have in fact the 6 derived syzygies

A(AN-B'E-6DI + 2Eff-FG) = &c. (see Table No. 89)

designated by 62'; these must therefore be connected by 1 identical relation (designated

by a), viz. this is the equation = obtained by adding the several syzygies, each

multiplied by the proper numerical factor as shown Table No. 89.

345. These two cases (o-) are in fact the instances which present themselves where

a correction is required to my original theory. The two identical relations in question

were disregarded in my original theory, and this accordingly gave the two non-existent

irreducible covariants (a, . .f (x, yf* and (a, . .f (x, yf- And reverting to No. 336, these

give in the denominator of A (x) the factors (1 — a'x'") (1 — a'a;"). In virtue hereof,

(1 — a'Y"
writing x = l, we have in A (x) the factor

function (1 — )~' (1 — a)"

(l-ay -'(I -«')"' agreeing with the

..{1 —a'Y .... And we thus see that the denominator factors

of A (x) do not all of them refer to irreducible covariants ; viz. we have

aa', aV, oV, a*af, aW, a*af, a^ifi, a*a^, a*, aV, aW, a?x, aV, a'a?, d!a?, a?x, a^a?, a^,

each referring to an irreducible covariant, but a*a^ and aV* each referring to an

identical relation (a) or interconnexion of syzygies. And we thus understand how,

consistently with the number of the irreducible covariants being finite, the expression

for A (x) may be as above the quotient of two infinite products ; viz. there will be

in the denominator a finite number of factors each referring to an irreducible covariant,

but the remaining infinite series of denominator factors will refer each factor to an

44—2
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identical relation or interconnexion of syzygies. But I do not see how we can by

the theory distinguish between the two classes of factors, so as to determine the

number of the irreducible covariants, or even to make out affirmatively that the

number of them is finite.

346. The new covaiiants 0, P, B, S, T, V are as follows:

[Table No. 90 (Covariant 0).

Table No. 91 (Covariant P),

Table No. 92 (Covariant R),

Table No. 93 (Covariant S),

Table No. 94 (Covariant V),

printed in the paper 143, "Tables of the Covariants Af to TT of the Binary Quintic:

from the second, third, fifth, eighth, ninth and tenth Memoirs on Quantics" with the

insertion as therein mentioned of the terms with zero coefficients. The covariant

S, = — 96{D, M)+lQBO—TGK, of the present Memoir is there called S', and there is

given the more simple form S = (D, M), of this covariant.]

Article Nos. 347 to 3C5. Sketch of Professor Gordan's proof for the finite Number,

= 23, of the Covariants of a Binary Quintic.

347. I propose to reproduce the leading points of Professor Gordan's proof that

the binary quintic (a, b, c, d, e, f\x, y)' has a finite system of 23 covariants, viz. a

system such that every other covariant whatever is a rational and integral function

of these 23 covariants.

348. Derivation. Consider for a moment any two binary quantics
<f>,

i/r of the

same or different orders, and which may be either independent quantics, or they may
be both or one of them covariants, or a covariant, of a binary quantic /. We may
form the series of derivatives

(</,, t)" = <^t.

(<f>, t)' = 12 <^t, = d^ . ^y^}r - dy<f> . d^f,

{<!>. yfrf = 12'
<f>,y}r, = 3/,^ . dy'^ -2djdy<f>. djdy^jr + 9/./. . d^hfr.

where, however, there is no occasion to use the notation
((f>,

t/t)" (as this is simply the

product <f)yjr), and the succeeding derivatives may (when there is no risk of ambiguity)

be written more shortly (</)</r), (^1^)=, (<^i^)», &c.; in all that follows the word
"derivative" (Gordan's Uebereinanderschiebung) is to be understood in this special sense.

349. The degree of the derivative (<^i^)* is the sum of the degrees of the con-

stituents tf>, -tfr ; the order of the derivative is the sum of the orders less 2k ; it

being understood throughout that the woi-d degree refers to the coefficients, and the
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word order to the variables. In speaking generally of the covariants or of all the

covariants of a quantic /, or of the covariants or all the covariants of a given degree

or order, we of course exclude from consideration covariants linearly connected with

other covariants (for otherwise the number of terms would be infinite) ; but unless it

is expressly so stated, we do not carry this out rigorously so as to make the system

to consist of asyzygetic covariants ; viz. it is assumed that the system is complete, but

not that it is divested of superfluous terms.

350. Theorem A. The covariants of a quantic / of a given degree m can be all

of them obtained by derivation from / and the covariants of the next inferior degree

(m-1).

In particular for the degree 1 the only covariant is the quantic / itself; for the

degree 2 the covariants are (ff)", (f/y, (//)*,...: using for a moment /3 to denote

each of these in succession, the covariants of the third degree are (0/)", (/3/')S (/S/")", . .
.

;

and so on.

351. Suppose that the covariants of the second degree {//)", (f/y, (ffY ... are

in this order represented by /S,, /Sj, /Ss-.., then the covariants of the third degree

written in the order

(A/)», (A/). (A/)^ •••(y9,/)«, (/S,/), (/3./)s ...(A/)», (A/), (/s,/)^..

may be represented by 71, 72, 73,..., the covariants of the fourth degree written in

the order \

iyi/r. (71/). iyjy. -(7./)°, (7./). (yjy. ••.(7»/)°. (73/). (73/?-

may be represented by B,, 8,, 83..., and so on: we thus obtain in a definite order

the covaiiants of a given degree to; say, these are fjUi, fi^, fJ-a, H-i>---'- ^^Y term fi^ is

said to be a later term than the preceding terms /Aj, fju^, and an earlier tenn than

the following ones, fit, /j^, &c.

Observe that each term /*, is a derivative (X,/)*, the derivatives of an earlier X
are earlier tlian those of a later X; and as regards the derivatives of the same \,

the derivative with a less index of derivation is earlier than that with a greater

index of derivation, or, what is the same thing, those are earlier which are of the

higher order.

352. The series /j^, /j^, fia, fit... is not asyzygetic; we make it so, by considering

in succession whether the several terms fi,, ^, ... respectively are expressible as linear

functions of the earlier tei-ms, and by omitting every term which is so expressible.

The reduced series thus obtained is called Tj, T,, T3,.... Observe that not every fi

is a r, but that every T is a fi; every T therefore arises from a derivation upon f
and a certain term X; which term X (supposing the X series reduced in like manner

to Si, S„ S,,...) is a linear function of certain of the S's. Each later T is derived

from later S's, or it may be from the same S's as an earlier T; viz. if the later T is

derived from (S,, <S'j, .../S'«), then the earlier T is derived, it may be, from {Si, (Sj, .../Sj),

or from (S,, Si, . . . Se-k), but so that there is not in the series any term later than S^.
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And if, considering any T as thus derived from certain of the S'&, and in like

manner each of these (SCs as derived from certain of the iZ's, and so on, we descend

to any preceding series,

Ml, ifj, if, ...

it will appear that the T is derived from a certain number (Jfi, M^.-.M^) of the

terms of this series.

353. The quadricovariants (//)", {/ff, {//)*,••• are of diflferent orders, and con-

sequently asyzygetic. They form therefore a series such as the T-series, and they may

be represented by
Bi, B^, B,

Supposing / to be of the order n, B^ is of the order 2/i, B^ of the order 2n — 4,

B, of the order 2w — 8, and so on. Those terms which are of an order greater than n,

are said to be of the form W (agreeing with a subsequent more general definition

of W); those which are of an order equal to or less than n, are said to be of the

form X' ^^ ^^a* *^® earlier terms of the B series are W, and the later terms are xi
viz. the X terms taken in order, beginning with the earliest, are Xi> X») X»

354 By whait precedes any particular T is derived from certain terms B^, £3, ... J9«,

of the B series. This series, 5,, fij, ...jBj, may stop short of the terms X' ^^ i* '^'^y

include a certain number of them, say Xi> X^>---X<-
'^^^ terms derived from the x's

are in the sequel denoted by P^.

355. Every covariant whatever is a form or sum of forms such as

Ti' 13^ 23'... /,/„.../,„;

writing in regard to any such expression

S ind. l=i, 2 ind. 2=j,...

(viz. i is the sum of all those indices a, ^, &c. which belong to a term containing

the symbolic number 1, j the sum of all the indices a, y, &c. which belong to a term

containing the symbolic number 2, and so on) then esich of the numbei-s i, j,... is at

most = n, that is n — i,n —j, .

.

. may be any of them = 0, but they cannot be any of

them negative; the degree of the function is =m, and its order is =mn — i—j... It

is to be further observed that the form is a function of the differential coefficients

of y of the orders n — i, n—j, &c. respectively. It follows that if n — i, n—j,... are

none of them =0, the form in question may be obtained from a like form belonging

to a quantic /' of the next inferior order n—1 by replacing therein the coefficients

a', b',... by ax + hy, bx+cy, &c. respectively: for example, if/ denote the cubic function

(a, b, c, d^x, yY, then the Hessian hereof is 12 /i/^; the like form in regard to the

quadric f =(a', b', c'\x, yf is 12 f/f^', which is =a'c' — b''; and substituting herein
—

3

ax + by, bx + cy, cx + dy for a, b', c' respectively, we have the Hessian 12 /,/j of the

cubic. A covariant of / derivable in this manner from a covariant of the next inferior

quantic /' is said to be a special covariant.
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,1

356. Reverting to the form

12" 13" 23*.../,/,.../„;

if, as before, n — 1, « —j, &c. are each of them > ; if there is at least one index i

which is = or < ^w (that is, for which n — i>^n), and if the order mn—i—j... be

> n, then the form, or any sum of such forms, is said to be a form or covariant W.

Every covariant W is thus a special covariant, but not conversely. In the particular

case m = 2, the form is

I2V1/..

which will be a form W if n. — a > |n, or, what is the same thing, 2w — 2a > n, that

is if the order be >n. Hence, as already mentioned, the covariants T of the degree 2

are W, or else ;^, according as the order is greater than n, or as it is equal to or

less than n.

3.57. Theorem B. If any covariant T be expressible as the sum of a form W
aod of earlier Ts than itself, then forming the derivative {Tf)*', either this is not a

form T, or being a form T, it is expressible as the sum of a form W and of earlier

Tb than itself; or, what is the same thing, (Tf'f, if it be a form T, is (like the

original T) the sum of a form W and of earlier T'a than itself

Hence also every form T is the sum of a form W, and of forms derived from

the functions Xi> X'< •••' ^y

or, what is the same thing, every covariant whatever is of the form W \- P^.

358. The proof that for a form / of the order n the number of covariants is

finite, depends on the assumption that the number is finite for a form /' of the next

inferior order w — 1 : this being so, the number of the special covariants of / will be

finite; say these are .4,, A.^, ^s.--- (/ is itself one of the series, but we may separate

it, and speak of the form / and its special covariants): the forms W are functions

of the special covariants, and hence every covariant whatever of / is of the form

F{A)-\-P^\ but it requires still a long investigation to pass from this to the theorem

of the existence of a finite number of forms V such that every covariant whatever

is F{V). I pass this over, and reproduce only the investigation for the case of the

quintic.

359. Starting from the assumed system of forms,

/. 4'=iffr, i=(/fy. j=ifiy> «=(>?, p=(<^in r^ipiy, 7=^,
(f4>). (M (A). (JT),

(ia ), {iy), (uj, {(ia), a), (ir)', ((w), 7),

say, the 23 forms U, it is to be shown that every other covaiiant whatever of the

quintic is of the form F{U).
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The special covarianta are /, <f>, (/4>), i, j, which are forms U ; the only form x
is i, so that instead of P^ writing Pi, every covariant whatever of/ is

^FiU) + Pr,

and it remains to show that every form Pi is F(U); or, what is the same thing,

that if H be any form F{U) whatever, then that (Hi) and (Hiy are each of them

F(U).

360. In order to show that every covariant of a degree not exceeding m is

F(U), it will be sufficient to show that the several forms {Hi) and {Hif of a degree

not exceeding m are each of them F(U): and if for this purpose we assume that

it is shown that every covariant of a degree not exceeding m — 1 is F(U), then in

regard to the forms (Hi) and (Hiy of the degree m, it will be sufficient to show that

any such form is a function of covarianta of a degree inferior to m.

361. First for the form (Hi): we have (PQ, i) = P (Qi) + Q (Pi) ; and hence we

see that (Hi) will be F(U) if only (Ui) is always F(U).

In forming the derivative of i with the several covariants U, we may omit i

itself, and also the four invariants (iif, (irf, {(ia), a), {(ia), 7), since in each of these

cases the derivative is = 0. We have therefore to consider the derivative of i with

/, <}>, j. % P, T, 7. (M. ifp), (M Ur), (M (<W. (ji). (pi), (-n). (ia), (vy).

respectively: the first seven of these are each of them 117 ; the remaining eleven are each

of them of the form {(PQ), i). Now {(PQ), i) is a linear function of P(Qi)S Q(Piy,

and i (PQy, that is {(PQ), i) is a function of covariants of a lower degree than itself

362. Next for the form (Hiy, we have (PQ, iy, a linear function of P(Qiy,

Q(Piy, i(PQy; and we hence see that (Hiy will be F(V) if only (Uiy is always

F(U).

In forming the second derivative of i with the several covariants U, we may
•omit as before the four invariants, and also omit the four linear covariants a, ia, 7, iy;

we have therefore to consider the second derivatives of i with

/ <!>, i, j, P. r, (/<!>), (fp), (fr), (jr), (fi), (it), (ji). (pi), (ri),

respectively: the first six of these are each of them U; the remaining nine aie each

of the form {(PQ), t)>. Now {(PQ), i)» is a linear function of {(Piy, Q), {(Qiy, P),

P(Qiy, and Q(Piy. The first two of these are terms of the same form; (Piy, as a

covariant of a lower degree than {(PQ), i)', is F(U), and hence {(Piy, Q) will be
F(U) i{ only (U, Q) is F(U); Q being here any one of the functions/, ^, i, j, p, t,

and U being any one of the functions

/ <f>.
i.j, P. T, a, 7, (/,},), (fp), (fr), (jr), (fi), (i>t)(ji)(pi)(Ti)(ia)(iy).
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363. For U equal to any one of the last eleven values, the form is (Q, S) R
which is =R{QS) + S{QR), and is thus a function of covariants of a lower degree;

there remains only the derivatives formed with two of the functions / <p, i, j, p, r, or

of one of these with a or y. But these are all U other than the derivatives

(M m, (<l>Pl i<i>r), (pr); (fa), i<f>a), (jcc), (pa); (fy), (,^7), (jy), (py), (r^).

and since 7 = (Ta), the derivatives containing 7 will depend upon covariants of a lower

degree; there remain therefore only (fj), (<^j), (^p), (c^t), (pr); (fa), ((f>a), (ja), (pa):

each of these can be actually calculated in the form F(U).

Hence finally, assuming that every covariant of a degree inferior to m is F(U),
it follows that every covariant of the degree m is F(U)\ whence every covariant

whatever is F(U), viz. it is a rational and integral function of the 23 covariants U.

364. It will be observed that, writing A, B, G for P, Q, i, the proof depends on

the theorems

{(AB), C), a linear function of A (BG)\ B (CA)\ C (AB)\

(AB, Cf „ „ do. do. do.

{(AB), Cy „ „ {(ACf, B), {(B0)\ A), B(AO)\ G(ABf.

which are theorems relating to any three functions A, B, C whatever.

365. I remark upon the proof that the really fundamental theorem seems to be

that which I have called theorem A. As to the forms W it is difficult to see

d priori why such forms are to be considered, or what the essential property involved

in their definition is ; and in fact in a more recent paper, " Die simultanea Systeme

binaren Formen" {Math. Annalen, t. II. (1869), see p. 256), Professor Gordan has

modified the definition of the forms W by omitting the condition that the order of

the function shall exceed n ; if it were possible further to omit the condition of at

least one index being = or < ^w, and so only retain the conditions n — i, n —j, &c.,

each of them >0, then the essential property of the forms W would be that any

such form was a rational and integral function of the special covariants formed, as

above, by means of the quantic of the next inferior order. And moreover, as regards

the theorem B, there seems something indirect and artificial in the employment of

such a property; one sees no reason why, when a system of irreducible covariants is

once written down, it should not be possible to show that the derivatives of F(U)
with the original quantic / are each of them F(U), instead of having to show this

in regard to the derivatives of F (U) with the several covariants )(^: as regards the

quintic, where there is a single covariant ;^, the quadric function i, there is obviously

a great abbreviation in this employment of i in place of /; but for the higher

orders, assuming that the proof could be conducted by means of the quantic f itself,

it does not appear that there would be even an abbreviation in the employment in

its stead of the several covariants %. The like remarks apply to the proof in the

last-mentioned paper. I cannot but hope that a more simple proof of Professor

Gordan's theorem will be obtained—a theorem the importance of which, in reference

to the whole theory of forms, it is impossible to estimate too highly.
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463.

NOTE ON A DIFFERENTIAL EQUATION.

[From the Memoirs of the Literary and Philosophical Society of Manchester,

vol. II. (1865), pp. 111—114. Read February 18, 1862.]

The following investigation was suggested to me by Mr Harley's " Remarks on

the Theory of the Transcendental Solution of Algebraic Equations," communicated to

the Society at the Meeting of the 4th of February.

Mr Harley's equation

y* — ny + (n — l)x =

may be written

or putting

n-1 1
x = u, - =a,

n n

it becomes

y = u+ ay",

which equation may be considered instead of the original equation ; and it is to be

nhown that y, regarded as a function of m, satisfies a certain linear differential equation

of the order n — 1. In fact, expanding y by Lagrange's theorem, we have

y = M + au» +
J 2

(""*)' + j-g-s
<"'")" + ^•'

= u + au'' + y-q 2n .
«"•-' + , ^ .. 3w (3« - 1 ) «'»-' + &c.,



463] NOTE ON A DIFFERENTIAL EQUATION. 355

1

the law whereof is obvious, and using the ordinary notation of factorials, viz.

[jiY = n (n - 1) . . . (n - r + 1), we may write

where extends from to oo

.

It is now very easy to show that y satisfies the differential equation

r d

du
y = na

n d In— 1

n—\ du n — \
M"-' y.

In fact, using on the left-hand side the foregoing value of y, and on the right-hand

side the following value of «"~' y, obtained from that of y by writing ^ — 1 in the

place of 6, viz.

«»-iy = £rj
\ne-n\ »-2

tl«-l «'»-"«+'

d
and observing that in general the symbol u-j-, as regards «"*, is =m, the equation

in question will be satisfied, if only

where the right-hand side is

and the equation may be written

that is,

{nd - !]»-' [(« - 1) ^ + 1]"-' = [nd - 1]"-' {lie - «]«-',

which, since each side of the equation is = \n6 — !]*+""', is obviously true.

The foregoing differential equation is developable in the form

but to find the coefficients a„, Oj, ... a„_i, I start from this form, and proceed to sub-

stitute in the equation the value of y, which on the left-hand side I use in the

original form, and on the right-hand side in the form obtained by writing 6 +\ in

the place of 9, viz.

45—2
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The equation to be satisfied is

^l?r
(''°"^"' [(n-l)^+ ]] + «,[(«- 1)0+1]' ... + a^, [(n- 1)0+ 1]"-)

or, what is the same thing,

Observing that the right-hand side may be written

1 n(g+l)[n0 + n -l]»+"-'

n
•

(0 + 1) [0j»

the equation becomes

a<,[7!0]«-'+«,[«0j»+ a,[n0]»+' . . . + a^, [re0]»+"-» =[w0 + n-l ]•+»-',

or, what is the same thing,

00+ a,[(n-l)0+l]'+ 3,[(n-l)0+l]^.. + a„_,[(n-l)0 + l]-' = [«0 + n-l]»->;

so that ffo, a,, ... of„_i are the coefficieuts of the expansion of [n0 + n — 1]"~' (which is

a rational and integral function of Q, of the degree w — 1) in a factorial series, as

shown by the left-hand side of the equation.

To determine the actual values, write

(n-l)0+l=^,
this gives

n^ + n— 1 =-

and we have therefore

and thus the general expression is

' [s]' V «-l /'

where A denotes the difference in regard to ^ (A f/"^ = C7^+, - f/'^), and, after the

operation A' is performed, ^ is to be put equal to zero.

i
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464.

NOTE ON PLANA'S LUNAR THEORY.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxili. (1862:—1863),.

pp. 211—215.]

I HAVE been much surprised to find that there is an error of the order m^y,
lots

arising from the omission of a factor (1 + y)~', in the expression for -j~ + Bu, as
i ctv

given by the equation (II.)' (Thdorie de la Lune, t. I., p. 267), being the equation.

made use of in the theory for the determination of Su, the perturbation of the

reciprocal of the radius vector. This error may probably be the cause of some of the

discrepancies in the terms of the fourth and higher orders, between Plana's results

and those of Pont^coulant and Delaunay.

Plana's equation (6), t. I., p. 260, is

j-T- + bu= a.R
dv*

+/(e, y) Q'e cos (cv — I srdv)

-{/(.,7)a+,-)(i+.T'-'^^

+/(«. 7>?7"(i+'!,'r'e.
if for shortness

e = f t"
- (1 + i V) cos {2gv - 2\edv) + ^7=' cos {^gv - 4 ledv).

R" (p. 256) should be

du %Mv

R" =
1 ^--s^^-(^^-')-^^/ Udv
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but, by an error which is implicitly corrected, the o- which multiplies (1 + s") ' 2 1 Udv

is omitted. Hence the equation (6) becomes

+ (1 + 2 f Udv)f{e, y) Q'e cos (cv - jwdv)

-(1 + 2JUdv) [f{e. 7)(1 +'f)(l +V)-»-^f;y")^[

+ (1 + 2JUdv)/ie, y) Py' (1 + «;)-« 0,

in which equation

_dn s dil _„ „., dn _ aa^
fT, p. 265,

t(e, 7) = X"ni+7'r*. /(e, 7) = >^^ (1 + 7^)^ P- 261.

But retaining for greater convenience the function /(e, 7) in two of the terms,

we have

1,
' [au u as \S (14-^)3 av J )aa,.

+ (1 + 2 f Udv)/{e, 7) Q'e cos (cv -
j
zrdv)

- (1 + 2 f Udv) \^ (1 + 7=)J 1(1 + s/)-* - 1: (1 + s»)

-

+ ( 1 + 2 [ Udv)f{e, 7) Pt' (1 + 5/)- i

-afT
c2u

dv

- - \? (1 + 7^)* (1 + s=)-8 2 f IT'dt/

+ (1 + 2 j Udv)f{e, y) Q'e cos (c?; - f wdt;)

-(1 + 2 j" frdr;)\S(l +-/)S |(l +s,»)-»-^(l + a')-«1

+ (1 + 2
J

rat-)/(e, 7) P7» (1 + s;0" * 0,

I

I

i

I
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which is

<T&, \au u dv

jy dn— all -r-
(IV

-^X^il+'f)* {l+s') ' 2
I
Udv (destroyed by term infra)

+ (1 + 2 [ Udv)/(e, 7) Q'e cos (cv - j ^dv)

X«(l+70^|(l+s,r»-^(l+5»)-i|

Udv-X,*(l+70*(l+s/)~*2[ i

+ * X^ (1 + V)* (1 + S-)
"^ 2 [ TJdv (destroyed by term supra)

+ (1 + 2 j" Udv)f{e, 7) Pf (1 + s/) -« ©
;

or, putting u = - (m^ + Sm), this becomes

(1 + 2 j t^d.)
( ^^

+ S.) = ^^ X? (1 + y)^ (-^- + - ^

- X' (1 + 7)' (1 + sj^y ' 2 [ f/cip

+ (1 + 2
I

Udv)/(e, 7) Q'e cos (cu -
j
vrdv)

- X! (1+ 7')* |(1 + V)
-« - 1 (1 + sO -«|

+ (1 + 2
J
Udv)f(e, 7) P7'' (1 + «;)

-* 0,

agreeing with the Formula II. p. 265, except that in Plana's last term, instead of

the factor /(e, 7) (= X* (1 + 7')*), we have the factor X^(l + 70*. That is, the last

term, aa given by Plana, should be divided by 1 + 7''. And this error is introduced

,. Ai
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from the formula (II.) into the formula (II.)', p. 267^ viz. the incorrect factor

X*(l+7*)^ is there replaced by its value q; wherea.s, the true value being X^(l+y)^,

the factor in (II.)' should be =
,

.

The corrected formula (II.)' is

~W ~ ^" " ~ ^ ITy °°^ (cv-jmdv)

+ g{(i+0'*-f(i + «')»}

. / Ti Ti X „ fdu_ dBu\ „

- 2/x= |~" + Bu+q(l + «/)-* - j^^^ cos (cv -j^dv)\ j R, dv

- Pgrf (1 +7=)-' (1 +«;)"* (1 - 2iJ.'JR,dv) X

If 7' - (1 + i r") cos (2gv - lledv) + ^ 7» cos {^gv - 4 [ ^dt;)|

.

Observing that P is of the order m', and that q is approximately equal to unity,

the error in —,-- + hu is of the order mV, as noticed above. It may be right to

mention that I obtained the correction in the first instance by starting from the

fundamental equations, and not as here from the intermediate equation (6), so that

there is not in that equation any error afterwards implicitly corrected in the trans-

formation to (II.)'.

I
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465.

NOTE ON THE LUNAR THEORY.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxv. (1864—1865),

pp. 182—189.]

I ATTEND, in the expressions for the lunar coordinates, only to the coeiEcients

independent of m. Plana's values, taken to the fourth order only, are as follows; for

greater simplicity I write a = 1 ; and, instead of nt + constant, cnt + constant, gnt + con-

stant, I write I, c, g respectively ; viz., I is the mean longitude, c the mean anomaly,

g the mean distance from node : this being so, then r, v, y, denoting the radius vector

longitude and latitude respectively, we have

I

i (Plana) =
T

e-ie>- krfe COS c

+ e» - J e* - ^ 7V 1} 2c

+ 1 e' >t 3c

+ f e* f, 4c

- f -/^ ti ^g

- f i'e )l c-2g

(but I omit Plana's term + ^ 7=6^ COS 2c + 2g

V (Plana) = i +
+ 2 e - i e» - J 7^e sin c

+ f ^-i^e'-Hr'^ ti 2c

+ \^e^ it 3c

+W^ )i 4c

- i y-^ye= + iy a 2y

+ i rfe » c-2g

2c + 2g which should be = 0).

C. VII. 46
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-i-fe sjin c + 2^

-iT'e' j» 2c -2^

-H-f^^ If 2c + 25r

+ ^7* » 4^.

y (Plana) =
7 - 7«'-|7' '

dn 9

+ ye -§7e» »» c — 9

+ ye -
J 7e» -It's )i c + 9

+ 17^' }> 2c- 9

+ § 76= )> 2c + 9

+ ^7^' i> 3c- 9

+ J 76* 71 3c

+

9
-^7^ » 3^

+ ii'e » C-S^r

-i'fe « c+35r.

To compare these with the elliptic values, it is necessary to write 6(1+^7^) in

place of e. Making this change, or say reducing Plana's («,7) to the elliptic (e, 7),

I ^vrite down in a first column the transformed coefficients, and in a second column

the elliptic coefficients, as follows:

Plana, with Elliptic e, y EUipti(

1 1
— ^S — ^
r r

1 1

+ e-ie' + e-J e» cos c

+ e»-K + e»-^ e« )» 2c

+ ^e> + |e» » 3c

+ ie' + Je« » 4c

-fT"*" » 2^7

-We ti c-2g.

Plana, with Elliptic «, y ElUptic •

V = ?; =

I I

+ 2 e -Je' + 2 e -ie» sin c

+ 1 e»-He'-T%ye> + f e»-He* }i 2c

+ if e* + i^e' II 3c

+We' + We^ II 4c

- i 7"-T^7'e' + i7' - i 'f + y'^ + i'f II %
+ f 7>e - \ rfe II c-2g
- i ye - i 7'e II c-^2g

- i T-e* + A7'e' II 2c -2g

-il7'«' - i« 'f<^ II 2c+2g

+ A7* + 3^7* II ^g.

i

\
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y=
Plana, with EUiptio e, 7 Elliptic

V =

7 - 76=- It' + 76- 76=--ly sin 9

+ 76- f7e»--§7^6 + 76- 176^--|7»6 )> c+ 5r

+ 76- §7e»4 i^e + 76 --17^6 )) c- 5'

+ f 7e» + ^76' i> 2c- g

+ §76' + 1 76= » 1c + g

+ M7e' + ^76' » 3c- g

+ f 76' + ^76' j> Sc+ g

-^vy -ii-f » S9

H-iyc -ir-e i> c-3g

- lye -4 7^6
)j c + Sg,

where, for greater clearness, I remark that the values called " elliptic " of e, 7, c, g,

refer to an ellipse, such that the longitude of the node, and the longitude (in orbit)

of the pericentre, vary uniformly with the time,—viz., we have mean distance = 1,

excentricity = e, tangent of inclination = 7, mean longitude = I, mean anomaly = c,

distance from node =g.

have therefore

r -f 7'6= cos 25^

- |7«e » 6-25-

Bv = -^J'e^ sin 2c

-ff7»6» tt S^r

+ f 7*6
i»

C-S^r

-A7"6' »>
2c-25r

Sy = - f 7e'+57'6 >i 6- 9

+ 176' >t 2c- g

+ ^ye> » 3c- 5-

+ i'fe ») c-S^r,

viz., these are the increments to be added to the elliptic values of -
, v, y, respectively,

in order to obtain the disturbed values of -, v, y, attending only to the coefficients

independent of m ; ihay represent, in fact, the Iv/nar inequalities which rise two orders by

integration.

The elliptic values of - and y are functions, and that of v, is equal 1 + , a. function,

of 6, 7, c, g, and the foregoing disturbed values may be obtained by affecting each of

46—2
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the quantities e, y, c, g, and I, with an inequality depending on the argument 2c - 2gf,

viz., these inequalities are

he = — ^ 'fe cos 2c — 2^

gc = I 7* sin 2c - 2g

Sy= § 76* cos 2c — 2*7

Bg= I
6=" sin 2c - 2g

Bl =-^ye»sin2c-25r.

The verification may be effected without difficulty; thus, for instance, starting from

the elliptic value of - , we have to the fourth order

^1 5 / e-cos c\ f— e sin c\ ^ ( cos c\
^~ = *'-

-J = U2c»8in2cr' + U2eco8 2cJ

1 _ 5,
/' e" cos cN

r~ \+ e cos 2c/

= I ye (— sin c sin 2c — 25r — cos c cos 2c - Ig)

+ f y^ (~ sin 2c sin 2c — 2g — cos 2c cos 2c — 2g)

=—^'fe cose — g

— f rf^ cos 2g,

which is right ; and the verification of the values of Bv, By, may be effected in a

similar manner.

I have, in order to fix the ideas, preferred to give in the first instance the fore-

going d posteriori proof; but I now inquire genei'ally as to the form of the values of

- , V, y, or say of r, v, y, taking account only of coefficients independent of m ; and
T

I proceed to show that these may be obtained from the elliptic values expressed as

above in terms of I, e, 7, c, g, by affecting I, e, 7, c, g, each with an inequality

depending on the multiple sines or cosines of c—g.

Writing for greater simplicity n = 1, we have l = t + L, c=et + C, g = gt + G, where

c = 1 — fm''4-&c., g = l + f m''+ &c. ; viz., c, g, are constants which differ from unity by

terms involving m".

The required values of r, v, y, satisfy the undisturbed equations of motion, if after

the differentiations we write in the coefficients (which coefficients are functions of m
through c, g) m = ; that is, if we write in the coefficients c = 1, g = 1. In fact, the

required values of r, v, y, are what the complete values become, upon writing in the

coefficients of the complete values m= ; that is, the required values of r, v, y, differ

from the complete values by terms the coefficients whereof contain »i as a fiictor; and

the disturbed equations differ from the undisturbed equations in that they contain the

differential coefficients of the disturbing function ; that is, terms the coefficients whereof

have the factor m\ Imagine the complete values of r, v, y, substituted in the disturbed

equations of motion ; the resulting equations are satisfied identically ; and, therefore,

whatever be the value of m ; that is, they are satisfied if in these equations respectively



465] NOTE ON THE LUNAR THEORY. 365

t

I

we write m = : it requires a little consideration to see that this is so, if in the

coefficients only we write m = ; but recollecting that c, g, stand for functions ct + 0,

gt+ G, so that, for example, c- g, =(c — g)t + C—0, upon writing therein m = 0,

becomes equal, not to zero, but to the constant value G—G, the identity subsists in

regard to the coefficient of the sine or cosine of each separate argument ac + ^g,

and, consequently, it subsists notwithstanding that in the arguments c and g, instead

of being each put = 1, are left indeterminate. And granting this (viz. that the

equations are satisfied if in the coefficients only we write m = 0), then it is clear that,

as above stated, the required values of r, v, y, satisfy the undisturbed equations of

motion, if after the differentiations we write in the coefficients c = 1, g = 1.

The required values of r, v, y, are of the form r=tf)(c, g), y = -^ (c, g), v = l + x (c. g),

but writing w = v + c — l, = c + x(c, g), the last mentioned property will equally subsist

in regard to the functions r, w, y: in fact, v enters into the differential equations

and the differential coefficients of v and w,
dv

only through its differential coefficient ^-

,

that is, o{ I + X (c, g) and c + xi'^' 9)' differ only by the quantity c — 1, which becomes

= 0, in virtue of the assumed relations c = 1, g = l.

Hence the undisturbed equations are satisfied by the values r = ^ (c, g), y = '^ (c, g)>

w = c + xi^' 9)< when after the differentiations we write in the coefficients c = 1, g = 1

;

the foregoing values contain t through the quantities c, g, only; and we have, therefore,

d d d— ^ C — 4- ST ~

—

dt dc ^ dg'
\

Hence, writing in the coefficients c=l, g = l, we have
d

dt
-r + T^; that is, the
dc dg

values r = (p(c, g), y = -^ (c, g), w = x (c, g), regarding r, v, y, as functions of c, g,

satisfy the partial differential equations obtained from the undisturbed equations of

motion by writing therein t- + ;t- in place of -j Hence also, considering r, w, y, as

d d'
functions of c and c — g, then observing that (t" + j")(c — ^f) is =0, the values of

r, V, y, satisfy the partial differential equations obtained by writing ^ in place of -j-

;

dc

and inasmuch as these partial differential equations do not contain
dg

they are to

be integrated as ordinary differential equations in regard to c as the independent

variable, the constants of integration being replaced by arbitrary functions of c — g.

Consider the pure elliptic values of r, v, y, in an elliptic orbit with the following

elements: A, the mean distance; i\r, the mean motion {N^A' — \ and therefore A=N~^);
E, the excentricity ; Nt+ D, the mean anomaly ; Nt-\- H, the mean distance from node

;

Nt + K, the mean longitude ; then writing c in place of t, we have

r = iV- i elqr (i?, iVc + Z*),

v{=l-c + w)=l-c + Nc-\-K + P{E, r, Nc + D, Nc + H),

y = Q(E,T,Nc + I), Nc + H),
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where N, E, V, D, H, K, are arbitrary functions of c—g: P and Q denote given

functional expressions. But, in order that r, v, y, considered as functions of c and g
may be of the proper form, it is necessary as regards N to write simply N=\; we

have then

r = elqr {E, c + D),

v = l + K + P(E,r, c + D, c + H),

y= Q{E,r,c + D,c + H),

where E, F, D, H, K, are arbitrary functions of c — ^r; or, what is the same thing,

writing for these quantities respectively e-\-Ze, 7 + 87, he, g — c + Bg, SI, where Se, By,

Be, Bg, Bl are arbitrary functions of e — g, we have

r = elqr (e + Be, e + Be),

v=l + Bl + P(e + Be, y + By, c + Bc, g + Bg),

y= Q(e+Se, y + By, c + Bc, g + Bg),

that is, the values of 7; v, y, are obtained from the elliptic values

r = elqr (e, c),

V =l + P(e, 7, c, g),

y= Q(e, 7. c, g),

by aflfecting each of the quantities e, y, c, g, I, with an inequality which is a function

of c - gr.

)
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466.

SECOND NOTE ON THE LUNAR THEORY.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxv. (18G4—1865),

pp. 203—207.]

are functions of

The elliptic values of

r, the radius vector,

V, the lotagitude,

y, the latitude,

a, the mean distance,

e, the excentricity,

7, the tangent of the inclination,

I, the mean longitude,

c, the mean anomaly,

g, the mean distance from node

;

see my Note in the last Monthly Notice, p. 182, [465], where, for the present purpose, -

should be written instead of - ; and it is there shown that the disturbed values,
r

attending only to the coefficients independent of m, are obtained by affecting a, e, <y, c, g, I,

with the inequalities

Ba=

Be=-^y'e COS 2c -2g

By = +^ye? »» 2c -2g
Sc =+f 7= sin 2c -2g
Bg = + ^ e" jj 2c-2g
Bl=-^'fd' » 2c -2g,
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or, what is the same thing, adding to the elliptic values the inequalities

a^ = -fy^ COB 25'

-1 ye » c-^g,

Sv =-^y'd' sin 2c

-U'/^ » 2^

+ i'fe it c-2g

-^'f^ ft 2c -2g,

2y =- 1 7«'+l7*« sin c- 9

+ f 7e* >» 2c- g

+ f 76" M 3c- g
4-1 ye it c-Sg.

i

f

I propose to show how these results may be obtained by the method of the

variation of the elements. For this purpose, treating a, e, y, c, g, I, as elements, the

proper formulae are obtained very readily from those given in my " Memoir on the Pro-

blem of Disturbed Elliptic Motion," Mem. R. Ast. Soc.,\o\. xxvii. (1859), pp. 1—29, [212];

viz., writing c in place of g, the formulae, p. 25, give the vai-iations of a, e, c, tj, 6,
<f>;

we have then
g^c + t
l=c + t> + d

7 = tan
(f>,

and therefore

dg = dc + dC

dl =dc+ dC + dd

dy = (l+ y') d4>,

which give for the transformation of the differential coefficients of fl,

dn ^ (m dn dn
dc dc dg dl

dn_ dn dil

dC dg dl

dn.^ da
dd dl

dn dn

and the formulae finally become

da^^^cMl 2_ dn 2 dn
dt"^ na dc na dg'*' na dl

'

de^_l-^dn 1 - gs- Vf-

>

dn i-e'-Vr^ dn
dt na^e dc na?e dg

"*"

na'e H

'
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dy

dt

dc

di
''
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2^ dil

na da

dn (1+ 7") (1 - Vl + y") dn
na-'Jl -e'y dg nn'^l-e^^ dl

'

na^e de
'

ey

d£__ 2 dn 1 - e' - Vl -^ dn
dt
~ na da na'e de

1+7=
d7'

dt

na'e ae na" '/l — e''y

2 dn l-e°-Vl + e^ dn (1 + t') (1 - Vl + 7') dn
d7na da iia^e de na? Vl — e^ 7

The disturbing function contains the term

mWa" (+ jl eY) cos 2c - 1g.

If after the difiFerentiations we write for greater simplicity a = l, n — \, we have

-T- = +^ m?e'f cos 2c - ^g,

f = + ¥-'« 7=

: + J^ mV7

2c - tg,

2c - 25r,

^ = _J^7ji'eV sin 2c-25r,

dn
di

'lo-lg.

= 0,

and the formulae for the variations give

da
di~

(dn dn
^[dc^ dg

de

dt~
1 dn
e dc

dn 1 dn
dt 7 dg

dc 1 dn
dt e de

dg_
dt

1 dn
7 d7

— -1^ m'ey' sin 2c - 2g,

- 1^ mV7 „ 2c - 2g,

—^ 7n?y"' cos 2c — 2g,

-J^m'e= „ 2c -2^,

but this value of 37 ia, as will presently be seen, incomplete.
dt

C. VII.

2c - 2g,

47
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Writing a + Ba, e + Be, &c., in place of a, e, Sui., and observing that the divisor for

the integration of the term in 2c — 2g ia 2 (c — g), = — 87/1", the first five equations

give respectively

Sa= 0,

Be = — ^'fe cos 2c — 2g,

S7 = + f7e» „ 2c- 2(7,

Sc = + § 7= sin 2c - 2g,

Sgr= + fc' „ 2c-25r.

The constant term in fl is

= m^iW (i + 1 e= - 1 7=),

and this gives in

dt'
~ da ' de ' dy'

a term

which is

m=(-l-|e' + f7»

= m\- 1-f e^ + fV).

Substituting for e, 7, their con-ect values e + Be, y + By, it appears that t- contains

the term

m" (- 1 eSe + 1 787),

which is

= ™nM + M=)M eY COS 2c -25-,

f|m»eV .. 2c -2(7,

and joining to this the before-mentioned term

-J^m'^eV „ 2c-25r,

we find

ft= m-^=)ll»iW „ 2c-2(7,

whence, writing as above l + Bl for I, and integrating, we have

Bl= -V^ eV sin 2c-25r,

and it thus appears that the values of Sa, Be, By, Be, Bg, Bl, agree with those obtained

in my former Note.

I

I
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467.

EXPKESSIONS FOR PLANA'S e, y IN TERMS OF THE ELLIPTIC e, y.

[From the Monthly Notices of the Royal Astronomical Society, vol, xxv. (1864—1865),

pp. 265—271.]

The coeflficient of sin cnt in Plana's expression for the true longitude v (see

Plana, t. i. p. 574), putting therein E' = e' = e', that is, neglecting the terms which

depend on the variation of the solar exdentricity, is

= e

+ e>

+ e=

+ erf

+ eV
+ e»7»

+ ey

+ eY

+ 67'

+ ee'^

+ e»e'»

+ e6V

+ ee'«

+ e6*

+ ee'^¥

jmh)

-m)

liSo)

(- ^ + f =)-9m= + (-<W + W=)-*H^"*'
+ (- m^^ -m=)- ^^#^ ^n^)

( ^Ws^ - fM =) + ^M^ "»')

-J^m»)

-"'
47-2
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Taking this to the fifth order only, and comparing it with the coefficient in the

elliptic theory, we have
Plana. Elliptic.

= e ( 2- f m»-^»ft»-«^OT*) = e ( 2)

+ e» (- J-17m») +e'{- i)

+ e' ( 4) +«•( /ff)

+ ey ("i-S?*"')

+ 67* (- f)

+ ee'' (- 9?rt«)- S

The coefficient of sin^rn^ in Plana's expression for the latitude (see t. I. p. 704) is

+ 7^ (i)

But according to the calculation of Prof. Adams (quoted by M. Delaunay,

Comptes Rendus, t. Liv. (1862), this should be

= 7 ( ^ + ik^'-^^^'-^mr>i'-^"ii?im')

+ 76^ ( -h-m^)
+ 'f (- § + T§5"i'- t¥s »0

+ 7^ ( il)

+ 7e'^( Irti'-m^' + mk^')'

Adopting this as the true expression according to Plana's theory, taking it to the

fifth order only, and comparing with the elliptic value of the same coefficient, we have

i|

J

Plana.

7 ( 1 +^^m»-^m*)

+ 76* ( 1%)

+ 7" (- i + T§H rn?)

+ 7'e»( M)
+ 7° ( H)
+ 7e'» ( § m»)

Elliptic.

= 7(1)
+ 76^ (- I)

+ 7«*( A)
+ 7^ (- 1)

+ 7'e»( %)

+ 7^ ( M)-

I
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We have thus two equations for the determination of Plana's e, 7 in terms of

the elliptic e, 7. And the solution of these equations give

Elliptic,

e (Plana) = e ( 1 - f m=+ T^\m^ +^^mO
+ e» ( ^mO

+ 7»e^(-|)

+ ye( i)

+ ee'^( fm=),

7 (Plana) = 7 {\ - 3z^m^ ^ ^wF)

+ 76* ( - A)
+ 7^ ( -tIb"*')

+ ye»( ii)

+ 7^ ( f)

+ 7e'H - I m^).

I annex the verification of these expressions; we have

e (2 + §m'-^m'-J^^mr)= e {z-^m- -t ^m- -^Ytt'"'

+ f m'^ - § m«

-H"^' -i^m^)

+ e» ( W"')
+ e7» G+ If m=

+ i wt')

, + eV(-i)

+ 67* ( i)

+ ee'» (9m=),

^ (- i - 17m'') = e^ (-i + Am=
- 17 ni')

+ e'7'(- A).

^ ( ife)
= e" ( ife).

e7M- i-M"i')

+^ (- ^ )

e-yC ?t)
= e=7=( ft)

ey (--1) = erfi-l)

ee'' (--9m') = ee'' (- 9?n'),
1
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whence, adding, we have the first equation.

And, moreover,

7 (l+t^m»-^m«) = 7 (
l-^i^m' + ^m*

+ 7e»( Hi'"')

+ 7° (§)

+ 7e'^( - § m^),

76* (A) = 7^^ (fk).

y (-l + iisw') = 7" (-l+Tfr?™')

7»e»( §1) = T-eH If)

7° ( H) = 7° ( H)

76" ( I W) = 7e'=( I m'),

whence, adding, we have the second equation.

It may be noticed that, taking the foregoing expressions only as far as the third

order, we have

Plana. Elliptic,

e = e (l + iy-fm^),

7 = 7-

And moreover that, attending only to the terms which are independent of m,

we have

e = e(l+ir- % rf +J7«),

7 = 7(l-Ae« + /5ey-|y).

which are formulae that may be found useful.
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468.

ADDITION TO SECOND NOTE ON THE LUNAR THEORY.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxvii. (1866—1867),

pp. 267—269.]

Writing as in my Second Note, Monthly Notices, Vol. xxv., pp. 203—207 (May

186.5), [466], for the Moon,

a, the mean distance,

e, the excentricity,

7, the tangent of the inclination,

I, the mean longitude,

c, the mean anomaly,

g, the mean distance from node,

I obtained by the ordinary method of the variation of the elements, from the constant

term of R and the term involving cos (2c

variations,

Sa= 0,

8e = — I ye

S7 = +§7e=

Bc=+ ^y'

S5r = +f e=

Bl = + ^'fe'

2g), the following expressions of the

2c - 2g,

2c - 2g,

2c - 2g,

2c - 2g.

2c - 2g,

viz. if in the elliptic expressions of the radius vector, longitude, and latitude, we
apply to a, e, 7, c, g, I, the foregoing increments, we obtain to the fourth order in

(e, 7) the portions independent of rn in the expressions of the radius vector, latitude.

cos

sm
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and longitude. I wish to notice that the results, to the very limited extent to which

they go, agree with those obtained by M. Delaunay in his "Thdorie du Mouvement

de la Lune," from his 49th operation, the object of which is to take away the term

(63) of R, that is the term involving cos (2c — 2g). The formulae (see vol I. p. 788),

taken only to the necessary degree of approximation are

a replaced by a,

^ e»--Sye" cos 2g,

r y' + i'f^ ., 2g,

I I --§7= sin 2g,

h + g + 1 h+g + l +f7=e= „ ^g,

which, observing that

h

7

h +K „ 2g,

(Del.) = i 7 (for present purpose),

I = c.

9+^ =9'

h+g+ 1 = 1,

and therefore

become
9

a

= -(c-5').

replaced by a,

e= e^ - f ye= cos 2c -2g.

r v'+f^e' ») 2c - 2g,

c c + § r sin 2c - 2g,

I I -T^7'e» » 2c - 2g,

I -9 » 1-9 -i^' it 2c - 2g,

the last of which may be changed into

9 + 2c - 2g,

or if the new values of a, e, y, c, g, I, are called a + Ba, e + Se, 7 + Sy, c + Sc, g + Sg, 1 + SI,

then the increments Ba, Be, By, So, Sg, Bl, have the values given above. The process of

my Second Note, taken as a first transformation, has in fact the object of removing

the term cos (2c — 2^), and to the degree of appi'oximation regarded, the result is not

aflfected by the previous transformations, or by the substitution, t. II. p. 800, introducing

for a, e, 7, their standard elliptic values.
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469.

ON AN EXPRESSION FOR THE ANGULAR DISTANCE OF TWO
PLANETS.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxvir. (1866—1867),

pp. 312—315.]

If for the planet m, referred to any fixed plane and origin of longitudes, we have
i

V, the longitude in orbit,

6, the longitude of node,

<^, the inclination,

and similarly for the planet m' referred to the same fixed plane and origin of

longitudes, if the corresponding quantities are v, ff,
<f)' ; then the angular distance of

the two planets will of course be expressible in terms of v, 0, </>, v', &, cf)', but I am
not aware that the actual expression has been given. To obtain it in the most

simple manner, I write further tor the planet m:

d + x, the reduced longitude,

y, the latitude,

2, the distance from node,

so that z {=v~ 6), X, y, are the hypothenuse, base, and perpendicular of a right-angled

spherical triangle, the base angle of which is =^^. And similarly d' + x', y, /, have

the like significations for the planet m. I write also r, r', for the distances of the

two planets respectively.

This being so, the rectangular coordinates of the planet m are

r cos y cos {6 + x),

r cos y sin {6 + x),

r sin y.

C. VII. 48
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But observing that from the right-angled triangle we have

cos z = cos X cos y,

cos <^ = tan X cot z,

sin a; = cot ^ tan y,

sin y = sin ^ sin z,

and therefore also

sin X cos y = cot <^ sin y, = cos <^ sin «,

the expressions for the coordinates become

r (cos z cos B — sin ^ sin Q cos 0),

r (cos z sin ^ + sin z cos cos ^),

r ( sin ^; sin (|)).

Fonning the analogous expressions for the coordinates of m, then if H be the

angulai' distance of the two planets, we deduce at once the expression for cos K, viz.

this is

CosH= (cos z cos ^ — sin ^ sin d cos <^) (cos z' cos 0' — sinz' sin 0" cos
(f>')

+ (cos 2 sin ^ + sin 2 cos 6 cos ^) (cos z' sin ^' + sin / cos 0' cos 0')

+ ( sin ^; sin ^ ) ( sin ^;' sin
<l>' ),

or, multiplying out, this is

CosH= cosz cos z' cos {6 — 6')

+ cos z sin s^ sin (^ — ^) cos ^'

— sin ^ cos y sin (^ — 6') cos ^

+ sin z sin / (cos (^ — ff) cos </> cos ^' + sin ^ sin ^'),

say this is

= J. cos ^ cos/

+ B cos z sin ^

+ C sin 2: cos z'

+ D sin ^ sin z,

cos(2-/). }iA+\D

+ sin(0-z').-i5-|- JO

+ cos(« + ^'). i^-JZ)

+ 8in(« + ^'). J 5+^(7.
But we have

z-z' = v-v' -e-{-ff, z + z' = v + v'-0-d',

I

viz. it is

I
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whence the expression becomes

CosH= cos(i;-t)') . {JiA + ^D)cos{6-0')-i-^B + ^Cr)sin(e-9')

+ sm(v-v') . {^A+^D)sm{0-e') + (-iB + ^C)cosie-e')

+ cos(t; + ?;') . i^A-^D)cos(e + 0')-( ^B + ^C)sm{e+e')

+ sm(v + v') . i^A-JsD)sin{e + e') + { ^ B + ^C)cos(e + d'),

or substituting for A, B, C, D, their values, and after a few easy reductions, we find

f^ + ^ cos ^ cos ^' - ^ (1 - cos 4>) (1 - cos <^') sin' {6 - ^')^

+ 1 sin (^ sin 0' cos {6 — ff)]

Cos H = cos (

+ sin {v — v') (

1+

k (1 - cos (ji) (1 - cos <^') sin {6 - &) cos {6 - 6')

^ sin sin <^' sin {6 — ff) 1

+ cos {v + v') i (1 - COS ^ cos <^') COS {6 - ff) cos (6 + ff)

+ i (cos <ji - cos <p') sin {9 - ff) sin {0 + ff)

^
— ^ sin ^ sin (^' cos {0 4- ff)

+ 8in(t) + z0 r i (1 - cos <^ cos ^') cos (^ - (9') sin (^ + ^')

- — J (cos ^ -r- cos ^') sin (0 — ff) cos (^ + 6')

— ^sin^sin<^' sin (0 + ^')

i

For
(f)
=

<f>'
= 0, the formula becomes, as of course it should do,

CosH = cos {v — v').

It may be added, that if /, /' are the true anomalies, to, w' the longitudes of

pericentre in orbit, then v = a) +f, if = as' +/' ; and we thence have for cos H, formulae

of the like form, containing cos/cos /', cos/sin/', sin/cos/', sin/sin/', or containing

cos (/—/'), sin (/—/'), cos (/+/'), sin (/+/'), respectively, in place of the like functions

of z, z', but with of course altered values of the coefficients.

\

48—2



380 [470

470.

NOTE ON THE ATTRACTION OF ELLIPSOIDS.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxix. (1868—1869),

pp. 254—257.]

If an indefinitely thin shell of uniform density, bounded by two similar and

similarly-situated ellipsoids, attracts a point P on its outer surface, it has been shown

geometrically by M. Chasles that the attraction is in the direction of the normal at

P, and is equal to twice the attraction of an infinite plate, the thickness of which is

equal to the normal thickness at P. Assuming that the attraction is in the direction

of the normal, the proof is in fact as follows:—with P as vertex, circumscribe to the

interior surface a cone; this divides the shell into three parts; the one, D+E+ F,

exterior to the cone, the other two, A + B and C, interior to the cone. It is shown

that in the dii-ectio;i of the normal the attraction of C is equal to that of .4 +B;

and it is assumed that in comparison with these the attraction of D +E+F may be

neglected ; the whole attraction is thus equal to twice that of the portion A + B. At
the point where the normal at P meets the internal surface draw the tangent plane

to the internal surface, thus dividing the portion A + B into the solid cone A a»d
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a remaining portion B ; it is assumed that in comparison with that of A the attraction

of B may be neglected ; the whole attraction is thus equal to twice the attraction of

the solid cone A ; and the attraction of this solid cone is in the limit (the aperture

or solid angle then becoming = 27r) equal to the attraction of an infinite plate whose

thickness is equal to the altitude of the solid cone, that is, to the normal thickness

at P. And the attraction of the whole ellipsoidal shell is thus ultimately (that is,

when the shell is indefinitely thin) equal to twice the attraction of the infinite plate.

It is interesting to ascertain the orders of magnitude of the attractions of the

several portions of the shell, which attractions are compared in the foregoing investi-

gation ; and this can be done very easily, when, instead of the ellipsoidal shell, we

have a spherical shell (bounded by two concentric spherical surfaces). The tangent plane

to the inner surface divides the portion D + E+F into two portions I) and E + F;

and if with P as vertex we describe a cone standing on the circle in which the

tangent plane meets the outer surface, the last-mentioned portion is hereby divided into

the portions E and F; the whole shell is thus divided into the portions A, B, C, D, E, F,

each of them symmetrical in regard to the normal or radius at P, and consequently

attracting in the direction of this radius. I proceed to find the attractions of each

of these portions ; it will appear, in accordance with the assumptions of the foregoing

investigation, that, taking the radii to be 1 and 1 + a, that is, a the thickness of the

shell, and supposing ultimately a to become indefinitely small, the attractions of A
and C are each ultimately = 27ra, that is = to the attraction of the infinite plate,

while the attractions of the other portions are of the order a% and thus vanish in

comparison with that of .4 or C

The attraction of an indefinitely thin cone or frustum of a cone, length r and

solid angle da is = rdco ; considering any such cone having P for its vertex, if the

inclination of r to the radius through P is = 0, and if the azimuth of the plane

through r and the radius is = <}>, then we have dco = sin d0 d<f), the attraction rdw is

= rsin 0d0d<f), and this attraction resolved in the direction of the radius is =?'sin ^cos 0d0d(f>.

For the sevetal cases which have to be considered, the value of r is independent of <j>,

and the integration in regard to ^ is always from (p = to <f)=27r ;—the attraction

is thus in each case = 27r| rsin ^cos^d^, the expression of r in the terms of 0, and

the limits of being known for each of the several portions of the shell. Taking 0^

for the semi-angle of the tangent cone, we have it is clear 1

sin 01 =
1 + a'

„ \/2a + a^
cos v, ——

5

;

.' 1 + a '

and taking 0. for the semi-angle of the cone which divides the portions E, F,

V a ' \/2(l-t-,) V2(H-a)
tan(
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For F we have

r = 2(l + o)cos5, ^ = ^stod = f7r.

Integral is

= 2 (1 + a) [sin (9 cos» 5 d^, = | (1 + a) cos' Q.,.

For D + E -we have

r = 2(l + a)cos0, 6 -- 6, to d = 0.,,

Integral is

= 2 (1 + a) f sin cos= edd, = ^{l+a) (cos' ^, - cos' 6^).

For ^ we have

»' = -—., ^=^, to ^=ft,,
cos a

Integral is

= a
I
sin ^ rf^, = a (cos 0^ — cos ^3).

For A we have

r =— ., 6' = to e = ^.,
cos tf

Integral is

= a [sin ede, = a{l- cos 0,).

For j4 + £ we have

r = (1 + a) cos (9 - Vl - (1"+ a)!i sin" ^, 0=0 to ^ = ^1,

Integral is

=
[ {(1 + a) cos - '/l-{l + aysui'0] sin cos d0,

= (1 + a) (- i cos' 0) + ,, {1 - (1 + af sin'' 0}^, between the limits,

= i|(l + a)(l-cos»0,)-(i^}>

and subtracting the above value of the integral for A, it at once appears that, for B,

the integral is

= 27r|a(- 1 +cos0,) +Hl + «)(! -cos'^0- J(xhi>'}"
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Hence, calculating the approximate values, and restoring in each case the omitted

factor, 2'7r, we have

Attraction A = lira. — 2 V2 Tra^,

or, if we please,

» B = 1 V2 Tra',

» C = 27ra -- f V2 Tra*

99 B = |V2 7ra',

»> E = 1 V2 Tra',

» F = jv'2 7ra';

Attraction A-^B— 2'rra --AV2 7ra*

» G=2'ira-- f V2 Tra*

3> D+E+F= §V27ra*;

so that ultimately the attraction of the portion B + E + F vanishes in comparison with

those of the portions A +B and C ; and the attraction of these last, that is, of the

whole shell, is = 47ra, twice the attraction of an infinite plate of the thickness a.
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471.

NOTE ON THE PROBLEM OF THE DETERMINATION OF A

PLANET'S ORBIT FROM THREE OBSERVATIONS.

[From the Monthly Notices of the Royal Astroncymical Society, vol. xxix. (1868—1869),

pp. 257—259.]

The principle of the solution given in the Tlworia Motus may be explained very

simply as follows

:

Consider three successive positions of G, C, C", of a planet revolving about the

focus S; let n, n', n", denote the doubles of the triangular areas CSC", CSC, and

CSC" respectively (viz. the triangular area means the area of the triangle included

between the two radius vectors and the chord joining their extremities), r the radius

vector SC ; 6", 6, the times of describing the arcs CC and CC" respectively, the

units of time and distance being such that the time is equal to the double ai'ea

divided by the square root of the half latus rectum (t=2'7ra^ for the Period in a

circular or elliptic orbit).

Then writing
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(observe that n + n" — n' is = twice the triangle CC'C"), for neighbouring positions of

6"
the planet, the values of P and Q are approocimately = -^ and 6 6" respectively : the

solution consists in the determination of an orbit for which P and Q have these

approximate values ; then, by means of such approximate orbit, the values of P and Q
are more accurately determined, and by means of these new values of P and Q, a

new determination is effected of the orbit : and so on, to the requisite accuracy of

approximation.

The foregoing approximate values of P and Q respectively are deduced from the

accurate values

e-'^ 6ff^ r^ 1
— a I" W — " „' '/

6'7?"' ^ ijrt" r'r" cosfcosf cosf"
where r, r', r" are the radius vectors 80, SC, SG"

; % 2/', 2/" are the angular

distances Q'SG", CSC", CSC (f =/+/") and tj, t)', rj" are the ratios of the sectorial

areas CSC", CSC", CSC", to the triangular areas represented by the same letters

respectively : the doubles of the sectorial areas are thus nrj, n'rj', and vf'r)", and if the

half latus rectum be denoted by p, then we have

I- _n,r] _nr) _ n'r)"J

~ 6"

(j 77

and it thus at once appears that the accurate value of P is = d^n, as above. To

obtaui the expression for Q, taking <^ <^', <^" for the true anomalies (and, for greater

symmetry, writing for the moment v, -v, v", <j, —g, g" in place of n, n', n",f,f',f"

respectively), we have

P

r =

1 + e cos (/)
'

P
1 + e cos <\)'

'

2g =4>" -<}>',

2g'^<}> - </.",

whence identically

or writing

this is

1 + e cos (p

{g + g' + g"^0);

sin 2g sin 2g' sin 2g" _ _ 4 sin g sin g' sin /'
^^^"^^^

r" " p

V = r'r" sin 2g, v = r"r sin 2g', v" = rt-' sin 2g",

irr'r" sin g sin g' sin g"
v+v+v =

{rr'r"f sin 2g sin 2g' sin 2g"

2prr'r" cos g cos g" cos g"

jnV^

2prr'¥' cos ^r cos g' cos //"

"

C. VII. 49
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This is, in fact.

n — n +11 =
,2pr/r"coafcoaJ' coa/"

or since

rm" ^ 06"

p w"'
it is

ee"
r/ f // J* j*^ j*f/ t

r)r] rrr cos/ cos/ cos/

viz. multiplying by r'', it is v^

^ 06" r^ .

^
7]7)" rr" cos/cos/' cos/'

the above-mentioned value of Q.

7 _^„ ^'/ »

«l
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472.

NOTE ON LAMBERT'S THEOREM FOR ELLIPTIC MOTION.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxix. (1868—1869),

pp. .318—320.]

Consider any two positions, A, B, in an elliptic orbit, focus S, and semi-axis

major = a; then if p, p', c denote the radius vectors SA, SB, and the chord AB

respectively, and if P, =
. — , be the iperiodic time, the time of passage from A to B

is given by the formula

Time ^5 = 2^ (X - x' - sin X + sin x')

where
2a cos X = 2a — /> — p' — c, 2a cos ^' = 2a — p — p' + c.

To fix the ideas we may consider the time of passage as being in every case

positive; and, for Time AB, the motion from A as being towards the apocentre;

Time BA will, of course, in like manner denote that the motion from B is towards the

apocentre; and we thus have according to the positions of A, B, either Time .4J3 = Time
BA; or else Time ^5 + Time BA=P.

This being so (see the Theoria Motiis, p. 120), ^ ^'1 ^® always a positive arc

between and 360°
; x' a positive or negative arc between and + 180° ; and

moreover x ^i'l ^ positive or negative according as the described focal angle is

< 180° or >180°; whence, cos;]^' being known, the arc x! is determined without

ambiguity.

But as noticed in the place referred to, there is when only p, p', c, a, are known,

a real ambiguity as regards the arc x ' ^^- X niay be either the arc > 180^ or the

arc < 180°, having for its cosine the given value of cos;!^;. For, given the points

<Sf, A, B, and the semi-axis major a, there exist two elliptic orbits determined by

these data ; and the two values of x correspond to the times of passage between

A and B, in these two orbits respectively. If, however, the actual orbit be given,

49—2
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there is no longer any real ambiguity; and it must be possible to decide between

the two values of x- ^^^ criterion is, in fact, a very simple one, viz. drawing a chord

from A through the other focus H of the ellipse, this either separates, or it does not

separate, B from the force-focus S; and I say that in the expression of Time AB,

in the former case (viz. when chord .4 is a separator) we have p^< 180°; in the latter

case (viz. when chord A is not a separator) we have x > 180°.

It of course follows that, in the case of transition, when the line AB passes

through H, we must have ;^ = 180°: this is at once seen to be so; for 5^ = 180" gives

the condition ia — p + p' + c; but if a, <r', are the distances oi AB from the focus H,

then 2a = p + a; 2a = p' + a-', and the condition becomes a- + a' =c; that is AB must

pass through H.

As a verification of the new criterion, I consider the point A as having a fixed

position on the orbit, but the point B as having successively diflferent positions ; and

writing down the two formulae

Time AB = x~x' ~^^^X'^ ^^^ X'

Time BA = «o — w' — sin <» + sin a,

(where for simplicity the constant factor P -i- 2ir is omitted) I proceed to compare

these for different positions of the point B. We have, in every case, cos (o = cos x> and

cos &)' = cos x ', whence (x, <o being each positive and less than 360°) o> = x or else

<B + ;^ = 3C0°, viz. the former equation subsists if co, x< ^^^ ^^^^ l^^s or each gi-eater

than 180°, the latter if the one is greater, the other less than 180°. And again

{Xf «»' being each less than + 180°) we have a = x> or else w' = — x, according as

to, j^ have the same or opposite signs.

Now in the figure, suppose that B occupies successively the different positions

jB,, Bt,...Bt, the criteria for x> X C^'' *"• '"') S^^^ ^ follows,

Ch. A. Ch. B. therefore /. AS /L BSA
1 sep.

2 sep.

3 not

4 not

5 not

not X < 180° 0) > 180° or w + ^ = 27r < 180° > 180°
x'
= + o>' = - or <o

sep. < < .. <" = X << + +
not > > „ 03 = x > > + +
not > > „ o) = x > > — -

sep. > < „ a> + x = 2'7r > < —

= -X'

= X'

= X'

= x'.
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Hence substituting for tu, a>' their values in terms of )^, ;^', we have

Time AB,..

BA,

BA.

389

BA,

BA,

BA,

X - X - sin % + sin X
= 27r -

;!^ + ;;^' + sin X - sin x'

X - %' - sin X + sin X

X - X' - sin X + sin x

X - X' - sin X + sin
x',

= 27r - X + x' + sin X - sin x J

and thence (restoring the omitted factor P -f- 27r)

Time AB, + Time BA^ = P,

„ ^5,- „ BA„.=:0,

„ AB,- „ BA, = 0,

„ AB^- „ BA, = 0,

„ AB,+ „ BA, = P,

which are the relations which in fact subsist between the times ABi and BA^ &c.



390 [473

473.

ON THE GRAPHICAL CONSTRUCTION OF THE UMBRAL OR
PENUMBRAL CURVE AT ANY INSTANT DURING A SOLAR
ECLIPSE.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxx. (1869—1870),

pp. 162—164.]

The curve in question, say the penumbral curve, is the intei-section of a sphere

by a right cone,—I wish to show that the stereographic projection of this curve may

be constructed as the envelope of a variable circle, having its centre on a given conic,

and cutting at right angles a fixed circle ; this fixed circle being in fact the projection

of the circle which is the section of the sphere by the plane through the centre and

the axis of the cone, or say by the axial plane. The construction thus arrived at is

Mr Casey's construction for a bicircular quartic; and it would not be difficult to show

that the stereogi-aphic projection of the penumbral curve is in fact a bicircular quartic.

The construction depends on the remark that a right cone is the envelope of a

variable sphere, having its centre on a given line and its radius proportional to the

distance of the centre from a given point on this line; and on the following theorem

of plane geometry:

Imagine a fixed circle, and a variable circle having its centre on a given line

and its radius proportional to the distance of the centre from a given point on the

line (or, what is the same thing, the vaiiable circle always touches a given line); then

the locus of the pole in regard to the fixed circle, of the common chord of the two

circles (or, what is the same thing, the locus of the centre of a new variable circle

which cuts the fixed circle at right angles in the points where it is met by the

first-mentioned variable circle) is a conic.

To fix the ideas, say that P is the centre of the first variable circle ; ^45 its

common chord with the fixed circle; Q the centre of the circle which cuts the fixed

circle at right angles in the points A and B; then the locus of Q is a conic.
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To prove this, take «= + 3/^ = 1 for the equation of the fixed circle, {x — a)- + {y — ^f = 'f

for that of the variable circle ; the foregoing law of variation being in fact such

that a, /3, 7, are linear functions of a variable parameter 6; the equation of the

common chord AB is — 2.ax — 2^y + l + a.^ + ff^ — 'f = 0; viz., this equation contains

quadratically ; hence the envelope of the common chord is a conic ; and thence

(reciprocating in regard to the fixed circle) the locus of the pole of AB, that is, of

the point Q, is also a conic.

Consider now a solid figure in which the circles are replaced by spheres; viz.

we have a fixed sphere, and a variable sphere having its centre on a given line and

its radius proportional to the distance of the centre from a given point on the line.

The envelope of the variable sphere is a right cone; the intersection of the cone

with the fixed sphere is the envelope of the small circle of the sphere, say the

circle AB, which is the intersection of the fixed sphere by the variable sphere. This

circle AB is also the intersection of the fixed sphere by a sphere, centre Q, which

cuts the fixed sphere at right angles ; and by what precedes the locus of Q is a

conic. Hence the penumbral curve is given as the envelope of the circle AB which

is the intersection of the fixed sphere by a sphere which has its centre Q on a

conic, and which cuts the fixed sphere at right angles. It is obvious that the circle

AB always cuts at right angles the great circle which is the section of the fixed

sphere by the axial plane, or say the axial circle. Project the whole figure stereo-

graphically; the projection of the circle AB is a variable circle which cuts at right

angles the circle which is the projection of the axial circle, and which has for its

centre the point Q' which is the projection of Q. But the locus of Q being a conic,

the locus of its projection Q' is also a conic ; and we have thus the projection of

the penumbral curve as the envelope of a variable circle which has its centre on a

conic, and which cuts at right angles a fixed circle.

We may in the axial plane construct five points of the conic which is the locus

of Q, by means of any five assumed positions of the variable circle, and somewhat

simplify the construction by a proper choice of the five positions of the variable circle.

This is not a convenient construction, and even if it were accomplished we should

still have to construct the projection of the conic so obtained, in order to find, in

the figure of the stereographic projection, the conic which is the locus of Q'. I do

not at present perceive any direct construction for the last-mentioned conic ; but

assuming that a tolerably simple construction can be obtained, the construction of the

projection of the penumbral curve as the envelope of the variable circle is as easy

and rapid as possible. Probably the easiest course would be (without using the conic

at all) to calculate numerically, for a given position of the variable sphere, the

terrestrial latitude and longitude of the two points of intersection of the variable

sphere by the axial circle ; laying these down on the projection, we have then a

position of the variable circle; and a small number of properly selected positions would

give the penumbral curve with tolerable accuracy.

I have throughout spoken of the penumbral curve, as it is in regard hereto that

a graphical construction is most needed ; but the theory is applicable, without any

alteration, to the urabral curve.
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474.

ON THE GEOMETRICAL THEORY OF SOLAR ECLIPSES.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxx. (1869—1870),

pp. 164—168.]

The fundamental equation in a solar eclipse is, I think, most readily established as

follows

:

Take the centre of the Earth for origin, and consider a set of axes fixed in the

Earth and moveable with it ; viz., the axis of z directed towards the North Pole

;

those of X, y, in the plane of the Equator; the axis of x directed towards the point

longitude 0° ; that of y towards the point longitude 90° W. of Greenwich. Take

a, h, c, for the coordinates of the Moon ; k for its radius (assuming it to be spherical)

;

a', b', c', for the coordinates of the Sun; k' for its radius (assuming it to be spherical);

then, writing 6 +
<f)
= l, the equation

{d{x-a) + ,i>(x-a')]' + {0(y-b) + <f>(y-b')}' + {e(z - c)+ 4>{z-c')Y = (ek ± <t>ky

is the equation of the surface of the Sun or Moon, according as 0,
(f>
= l, or =0, 1

:

and for any values whatever of 0,
(f>,

it is that of a variable sphere, such that the

whole series of spheres have a common tangent cone. Writing the equation in the form

^ {(x - ay + iy- by + {z- cy - k'}

+ 2e<li\{x-a)(x- a') + (y-b)(y- b') + {z-c){z- c') + kk'}

+ ^^ [{x - a'y + (2/ - bj + (^ - cj - *'»} = 0,

or, putting for shortness,

p =a= +b- +C' -k"
p' = a'» + 6'2 + c'= - k'^

a = oa' + 66' + cc' + M'
P = cue + 6y + c^

F = a:x-\- b'y + c'z,
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the equation is

^ («= + 2/= + ^2 - 2P + p)

+ 20<i> {a:-' + f- + z^ - P -r + <t)

+ <f>'{x' + f- + Z''- 2P' + p') = 0,

and the equation of the envelope consequently is

{x' + y'' + z^-2P + p)(x' + y^- + z^ -2P' + p)-{x^ + y^ + z''-P -P' + a-f = 0,

that is

(a^+y^ + z'')(p + p'-2<r)-(P-P'f-2{p'-a)P-2(p-a)P' + pp'-<r"- = 0,

which is the equation of the cone in question.

Observe that one sphere of the series is a point, viz., taking first the upper signs

if we have 6k + <f>k' = 0, that is

then the sphere in question is the point the coordinates whereof are

x =
kfa — ka'

k'-k •
y-

k'b - kh' k'c — kc'
'' kf-k '

which point is the vertex of the cone : it hence appears that, taking the upper signs,

the cone is the umbral cone, having its vertex on this side of the Moon; and
similarly taking the lower signs, then if we have dk — (f>k' = 0, that is

k[_ . k

k'-k-k'
= 1?'^.. 4> = Tr.

k' + k'

then the variable sphere will be the point the coordinates of which are

kfa + ka' Mb + kb' Mc + kc'

t + k k' + k k' + k

which point is the vertex of the cone ; viz. the cone is here the penumbral cone

having its vertex between the Sun and Moon.

Taking as unity the Earth's equatorial radius, if p, p are the parallaxes, k, k

the angular semi-diameters of the Moon and Sun respectively, then the distances are

1 1 81Q K SID /C

and the radii are -^
,

~. > respectively ; hence, if h, h' are the hour-
sin p ' smp sin p sm p
angles west from Greenwich, A, A' the N.P.D.'s of the Moon and Sun respectively,

we have

a = -:— sin A cos h,
map

b = '-.— sin A sin h,
saxp

a =

6' =

c =
1

k =

siap

sin K

sin^

cos A c =

sm^

J.
smp

1

k' =

sin
J)

sin «'

sin p'

-, sin A' cos h',

, sin A' sin h',

-, cos A',

0. Vll. 50
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and thence

p =-=-r (l-8in»«'),

p' =^,(l-8in»/c'),

a = -: ;

—

, [cos A cos A' + sin A sin A' cos (K — K)T sin k sin k],
ampsiap *• \ / j'

P = -— {sin A (x cos h + v sin A ) + ^ cos A ],
sin/j '

^ ^ ' >'

P' — -.—> (sin A' (x cos h' + y sin h') + z cos A'l.
sin/) '

J >

Moreover, if the right ascensions of the Moon and Sun are a, a' respectively, and

if the RA. of the meridian of Greenwich (or sidereal time in angular measure) be

= S, then we have

^ = S-o, A' = 2-a'.

It is to be observed that h—h'. A, A' are slowly varying quantities, viz., their

variation depends upon the variation of the celestial positions of the Sun and Moon
;

but h and h' depend on the diurnal motion, thus varying about 15° per hour; to

put in evidence the rate of variation of the several angles h, h'. A, A' during the

continuance of the eclipse, instead of the foregoing values of h, h', I write

*'-{^+(' + ^'}"-.

where t is the Greenwich mean time, E, E^ are the values (reckoned in parts of an

hour) of the Equation of Time at the preceding and following mean noons respectively,

taken positively or negatively, so that E, Ej are the mean times of the two successive

apparent noons respectively; whence also

h=i^E+(l + ^^^^t^l5°-a + a';

and moreover

o =A +m (t-T),

a =A + m' (t - T),

A =D +n (t-T),

A' =U + n' (t-T),

if r be the time of conjunction. A, A, D, D' the values at that instant of the

RA's and N.P.D.'s; m, m' and n, n' the horary motions in R.A. and N.P.D. respectively.
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It appears to me not impossible but that the foregoing form of equation,

(0^+ f + ^){p + p' -2a)-(P - Py -2(p' -a)P -2{p -a)P' + pp' - a' = 0.

for the umbral or penumbral cone might present some advantage in reference to the

calculation of the phenomena of an eclipse over the Earth generally : but in order to

obtain in the most simple manner the equation of the same cone referred to a set

of principal axes, I proceed as follows:

Writing

a, =bc' — b'c,

b = ca' — c'a,

e =ab' — a'b,

(and therefore

f = a — a',

g=b-b'.

h = c -c',

af+bg + ch = 0).

Then, if

_ _ (bh — eg) a: + (cf — ah) y + (ag —b{)z~
Va» + b= + c' Vf2 + g= + h»

F = ax + hy + CZ

\la? + b' + c'

'

ix + gy + hz

Vf> + g" + h'i

'

X, Y, Z, will be coordinates referring to a new set of rectangular axes ; viz., the

origin is, as before, at the centre of the Earth, the axis of Z is parallel to the line

joining the centres of the Sun and Moon ; the axis of X cuts at right angles the

last-mentioned line; and the axis of Y is perpendicular to the plane of the other

two axes; or, what is the same thing, to the plane through the centres of the Earth,

Sun, and Moon.

The coordinates of the vertex of the cone are therefore X^, Y^, Z^, where these

denote what the foregoing values of X, Y, Z, become on substituting therein for cc, y, z,

the values

k'a + ka' k'b + kb' k'c + kc'

'Yrk^' lcTk~' k' + k '

and the equation of the cone therefore is

(X -XJ' + (Y- YJ = tan= X(Z- ZJ,

k' + k

where

smX =
G

50—2
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if for a moment denotes the distance between the centres of the Sun and Moon.

We have therefore

or since

this is in fact

tan \ = ,

Q^^{a'-af + (b' - by + (c' - c)=,

k'Tk
tanX =

Vp + p' - 2ff
'

where p, p', <t signify as before ; and thus X„, Y^, Z^, tan X are all of them given

fiinctions of a, b, c, k, a, b', c', k', and consequently of the before-mentioned astronomical

data of the problem. The form is substantially the same as Bessel's equation (3),

Ast. Nach. No. 321 (1837), (but the direction of the axes of X, Y is not identical

with those of his x, y); and it is therefore unnecessary to consider here the application

of it to the calculation of the eclipse for a given point on the Earth.

i
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475.

ON A PROPERTY OF THE STEREOGRAPHIC PROJECTION.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxx. (1869—1870),

pp. 205—207.]

I AM not aware whether it has been noticed that the very same circles which

in the direct stereographic projection of a hemisphere (viz., that wherein the projection

is on the plane of a meridian) represent the meridians and parallels respectively,

—

represent also in the oblique projection of the hemisphere meridians and parallels

respectively. In fact, in the direct projection where the poles N, S, are in the

horizon-meridian, or bounding circle of the projection, if we take a chord AB at right

angles to NS, and on AB as diameter describe a circle, the original (meridian and

parallel) circles will, as the appearance of the figure at once suggests, represent

meridians and parallels in the oblique projection in which the horizon or bounding

circle of the projection is the circle diameter AB, and where consequently the North

Pole N is brought into view, the South Pole S being beyond the limits of the

projection. That this really is so, is clear from the consideration that in any stereo-

graphic projection whatever, the meridians will be circles passing through two fixed

points N, S, and the parallels be circles cutting the meridians at right angles. (Or,

what is the same thing, the parallels also pass each of them through two fixed

imaginary points, the antipoints of If, S, but this in passing.) And moreover since in

the oblique, as well as in the direct, projection, the longitude of any meridian, as

reckoned from the central meridian NS, is the angle at N between the two meridians,

the longitude for a given meridian is the same in the two projections respectively.

But the CO- latitudes are not the same in the two projections respectively; viz., a

circle which in the direct projection represents the parallel co-latitude c, will in the

oblique projection represent the parallel of a different co-latitude c'. The relation

between the values of c, c', will of course depend upon the position of the bounding
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circle AB of the oblique direction: to define this position, we may use either the arc

NM which in the direct projection determines the co-latitude of the centre M of the

oblique projection (say JV^M=A, that is, NV=dk), or by the arc NM which in the

oblique projection determines the distance of N from the centre, or co-latitude of the

centre (say NM= A', that is, BW = A'). The obliquity in the oblique projection" is thus

90° — A', viz., this is the inclination of the plane of projection to that of the horizon-

meridian in the direct projection. We have also c = N'X, c'=WY. The relation

between the angles A, A', is easily found to be

tan J A = tan- ^A',

viz., talcing the radius in the direct projection to be =1, we have

OM = tan i (90° -A),

MA= 'Jl- tan^ ^ (90° - A),

MN:= l-tanH'JO°-^);

wherefore

and thence

Vl - tan' J (90' - A) . tan J A'= 1 - tan i (90° - A),

^ ,, ., 1 - tan i (90° - A) , ,
.

the required relation.
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We have moreover

iV<7 = 1 - tan i (90° -c) = AM {tan | A' - tan | (A' - c')},

= sin A' {tan i A'- tan|(A'-c')},

= 2 sin- J A' - sin A' tan \ (A' - c'),

that is

tan i (90° - c) = cos A' + sin A' tan i (A' - c'),

C08-^(A' + C')

or, what is the same thing,

that is

cos ^ (A' — c')
'

1 — tan ^c _ 1 + S tan i c' tan | A'

1+tan^c 1 + tan I c' tan ^A' '

tan \c= tan \ A' tan \c,

399

which is the required relation between c and c'. In the particular case A = A' = 90°,

the two projections coincide, and we have, as we should do, c' = c.

I
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476.

ON THE DETERMINATION OF THE ORBIT OF A PLANET FROM
THREE OBSERVATIONS.

[From the Memoirs of the Royal Astronomical Society, vol. xxxviii, (1870), pp. 17—111.

Read December 10, 1869.]

I PROPOSE to consider from a geometiical point of view the problem of the

determination of the orbit of a planet from three observations. The oi'bit is a conic,

having the Sun for a focus ; and each observation shows that the planet is at the

date thereof in a given line. We have thus a given point or focus S, and three

given lines, say the " rays." The orbit-plane, if known, would, by its intersections

with the three rays, determine the three positions of the planet ; that is, we should

have the focus and three points on the orbit ; or (what is the same thing) three

radius vectors from the focus, say a "trivector." Geometrically, through three given

points, and with a given focus, there may be described four conies ; but (as will be

explained) there is only one of these which can be the orbit; we may therefore say

that the orbit will be determined, and that uniquely, by means of a given trivector.

The problem is therefore to find the orbit-plane, such that in the orbit determined by

means of the trivector the times of passage between the three positions on the orbit

may have the observed values ; or (what is the same thing) that the orbital areas,

each divided by the square root of the latus rectum, may have given values. If,

instead of the orbit-plane, we consider the orbit-axis (that is, the line normal to the

orbit-plane at the point S), or. what is more convenient, the orbit-pole, or intersection

of the axis with a sphere about the centre S ; then to a given position of the orbit-

pole, there corresponds, as above, a determinate orbit ; and the problem is to find the

position of the orbit-pole, so that in the orbit belonging thereto the times of passage

may have given values as already mentioned; and it is clear that the required position

of the orbit-pole may be obtained as the intersection of two spherical curves; the onej

of them, the locus of those positions of the orbit-pole for which the time of passage!
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between the first and second points on the orbit has its proper given value ; the other

of them, the locus of those positions for which the time of passage between the second

and third points on the orbit has its proper given value : and in connexion therewith

we may consider other isoparametric loci of the orbit-pole ; for instance, the iseccentric

lines, or loci of the orbit-pole such that along each of them the eccentricity of the

orbit has a given value. It is in this point of view that the problem is considered

in the present memoir, viz., the object proposed is the discussion of the configuration,

&c. of these loci. I consider, in the first instance, any three given rays whatever;

but in the ulterior discussion of the spherical curves, which it is difficult to caiTy out

otherwise than numerically, I have confined myself to the case of a particular symmetrical

position of the three rays ; viz., these are taken to be lines each of them at an inclination

of 60" to a fixed plane through S, and such that their projections on this plane form

an equilateral triangle having S for its centre, and that each ray cuts the plane in

the mid-point of the corresponding side of the triangle.

The general theory as above explained is further developed in the memoir; and

I consider the formulae for the determination of the orbit, &c. by means of a given

trivector ; those relating to the determination of the trivector obtained as above by

means of a variable plane passing through a given point and intersecting three given

rays; and lastly, the application to the particular system of three rays already referred

to. The Plates refer to this particular system ; they are as follow

:

Plate 1. General Planogram for a single ray,
'

„ 2. Planogram for Meridian' 90°—270°,

„ 3. Planogram for Meridian 0°—180°,

„ 4. Spherogram for the Eccentricity,

„ 5, Spherogram for the Time.

See Nos. 8—10 for explanation

!- of the terms Planogram and

Spherogram.

Article Nos. 1 to 14. Considerations on the General Theory.

1. As explained in the introduction, we have a point or focus S, and three

lines called the " rays." The orbit-plane is any plane through S ; it meets the rays in

three points, which are points on the orbit ; and joining these with S, we have a

" trivector." The orbit is for the present considered as in general uniquely determined

by means of the trivector.

2. There are certain critical positions of the orbit-plane.

First, the orbit-plane may be parallel to one of the rays ; or (what is the same

thing) it may pass through the line through 8 parallel to the ray: the point on the

ray is at infinity ; or say that it is at an indefinitely great distance in one direction

or in the other direction along the ray ; and (from the particular way in which the

orbit is selected as one of four conies) there is, as will appear (see post, No. 20), a

discontinuity of orbit as the point passes from the one to the other of these positions.

c, VII. 51
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3. Secondly, the orbit-plane may be parallel to two of the rays; or (what is the

same thing) it may pass through the lines through S parallel to these two rays ; the

points on the two rays are each at infinity; viz. each of them is at an indefinitely

great distance in one or the other direction along the ray ; and there is a discontinuity

of the orbit as each point passes from the one to the other of its two positions.

4. Thirdly, the orbit-plane may be such that the orbit is a right line. To see

how this arises, observe that we may consider a system of lines meeting each of the

three rays, and of course generating a hyperboloid ; say these are the generating lines :

there is on the hyperboloid another system of lines, say the directrix lines, in which

are included the three rays; the point S is not on the hyperboloid. Then, if the

orbit-plane pass through a generating line, it will meet the three rays in the points

in which these are met by the generating line : and the orbit is, consequently, the

generating line (described, as being a right line not passing through 8, with a velocity

= 00 ). Any plane through S and a generating line also meets the hyperboloid in a

directrix line ; and consequently touches it at the intersection of the two lines, viz.

it is a tangent plane of the hyperboloid. The planes in question thus envelope the

circumscribed cone whose vertex is /S; or (what is the same thing) when the orbit-

plane is any tangent-plane of this cone, the orbit is a right line.

5. The only exception is, fourthly, when the orbit-plane passes through one of

the rays. Observe that the plane then meets the hyperboloid in another line, that

is, a generating line, or the case under consideration is included in the third case

;

it is also included in the first case. The point on the ray in question is here not

a determinate point, but any point whatever of the ray ; the points on the other two

rays being (as in general) determinate : the orbit is consequently indeterminate ; viz.

to any point selected at pleasure as the intersection of the orbit-plane with the ray

contained therein, there corresponds a determinate orbit (in particular, the selected

point may be such that the orbit is, as in the third case, a right line) ; and, corre-

sponding to the position in question of the orbit-plane, we have the entire system of

such orbits.

6. Consider now the corresponding positions of the orbit-pole on a sphere described

about the centre S. It will be convenient for the moment to attend to the two

opposite positions of the orbit-pole belonging to any position of the orbit-plane, and

thus to regard the orbit-pole as moving over the entire spherical surface. The parallel

through (S to a ray meets the sphere in two points, poles of a great circle which I

call a "separator;" we have thus three separators, each two meeting in a pair of

opposite points which I call the points B ; viz., these are the intersections with the

sphere of a line through S perpendicular to the plane containing the parallels of the

two rays. A line through S perpendicular to the plane through a ray meets the sphere

in a pair of opposite points which I call the points A ; these lying on the corre-

sponding separator; there are thus three pairs of points A. The cone reciprocal to

the circumscribed cone (that is, generated by a line through S at right angles to any

tangent plane of the circumscribed cone) meets the sphere in a spherical conic which

I call the " regulator
;

" this touches each of the separators at the pair of points A
on such separator.
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7. I say that in the fi^st of the cases above considered the locus of the orbit-

pole is a separator ; in the second case the orbit-pole is a point B ; in the third case

the locus is the regulator; and in the fourth case the orbit-pole is a point A.

8. In the absence of models, the spherical figure must be represented by a pro-

jection ; the stereographic projection is convenient for facility of description ; and it has

the very great advantage that we can by means of it exhibit, no matter how large

a portion of the spherical surface. In the figures called " spherograms," afterwards

referred to, the representation of a hemisphere is all that is required ; but, to give a

more distinct general idea, I annex a figure representing a larger portion of the

surface; the data are those belonging to the particular symmetrical case referred to as

intended to be specially considered : and the regulator conic is accordingly a pair of

opposite small circles, the points A and B being related to it symmetrically ; but,

disregarding these specialities, the figure is adapted to the illustration of the general

I

case (at least if the point S be situate within the hyperboloid), and it ia here given

for that purpose. The circle marked " Ecliptic " does not properly belong to the figure

:

it is added as showing the boundary of a hemisphere, so that, by omitting all that

lies outside this circle, the figure would be limited to the representation of a hemi-

sphere; and the orbit-pole be in every case represented, no longer as a pair of opposite

points, but as a single point ; we should have the separators each as a half circle, and

the regulator as a single small circle ; the separators would intersect in pairs, in the

three points B, and would touch the regulator in the three points A, &c.

9. The figure constructed as above, but omitting so much of it as lies outside

the ecliptic circle, is the representation of a hemisphere—say of the northern hemi-

51—2
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sphere. It is readily seen that the central triangle BBB and the three circumjacent

triangles BBB, represent also the half-surface of the sphere, viz., instead of the omitted

portions of the northern hemisphere we have the equal opposite portions of the

southern hemisphere. The adoption of this figure as the representation of the half-

surface of the sphere has the great advantage that the spherical curves can be delineated

without the apparent breaks which would othenvise occur at their intersections with

the ecliptic circle : I accordingly adopt it, and call the figure in question (viz., that

composed of the four triangles) a blank " spherogram." We wish for any given position

thereon of the orbit-pole to determine the values of certain parameters (eccentricity,

latus rectum, time of passage between two rays, &c., as the case may be) belonging

to the orbit, with a view to the subsequent delineation of the corresponding isopara-

metric (iseccentric, isochronic, &c.) lines, so constructing a " spherogram " for any such

parameter, or system of lines.

10. It is for this purpose convenient to consider the values of the parameter

corresponding to a single series of positions of the orbit-pole, viz., we consider the

orbit-pole as describing on the sphere a curve selected at pleasure. Consider for a

moment the orbit-plane as a material plane rigidly connected with the orbit-axis ; the

motion of the orbit-pole does not absolutely determine the motion of the orbit-plane,

inasmuch as the orbit-plane, occupying the same position in space, might rotate about

the orbit-axis ; but if we exclude any such motion by the assumption that the motion

of the orbit-plane is always about an axis in the orbit-plane, then the motion of the

orbit-pole determines that of the orbit-plane, viz., the orbit-plane envelopes a cone, the

reciprocal to that described by the orbit-axis. If then on the orbit-plane in each

position thereof we mark, as well its line of contact with the enveloped cone, as also

its intersections with the three rays, we obtain a figure (which may, if we please, be

regarded as drawn on the orbit-plane in some particular position thereof), such figure

consisting of a series of trivectors, and (belonging to each of them) a line through S
serving to fix the position of the trivector in space. The locus of each extremity of

the trivector is a certain curve, and the construction establishes a point-to-point corre-

spondence between these three curves ; viz., to any point on one of them there

corresponds on each of the other two a single point, the three points being the

extremities of a trivector. The figure would be rendered more complete by drawing

the orbit belonging to each trivector thereof. Such a figure (with or without the

orbits) is termed a " planogram."

11. The most simple case is when the orbit-pole describes a great circle; the

orbit-plane here rotates about a fixed line, the axis of the circle, or (what is the

same thing) the enveloped cone reduces itself to this axis of rotation ; and the line

of contact is thus a fixed line in the orbit-plane; or (what is the same thing) the

lines through S in the planogram are here a single fixed line, the axis of rotation.

I say that, for each extremity of the trivector, the locus is a hyperbola, having the

axis of rotation for its conjugate axis. In fact, attending to any one ray, it is the

same thing whether the orbit-plane be made to revolve round the axis of rotation, so

as continually to intersect the ray, or whether, considering the orbit-plane as fixed.
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and the ray as rigidly connected with the axis, we make the ray to rotate about this

axis, so as continually to intersect the orbit-plane. But in this last case the ray

describes about the axis a hyperboloid of revolution, and the orbit-plane, as an axial

plane, meets this surface in a hyperbola having the axis for its conjugate axis ; which

hj^perbola is the required locus of the trivector-extremity. It is moreover easy to see

that if the angle of position of the variable orbit-plane, or (what is the same thing)

the angle of position of the orbit-pole in the great circle which it describes be =g'

(where q is measured from any fixed plane or point), and if the coordinates x' and y'

be measured from S in the direction of and perpendicular to the axis of rotation,

then the coordinates of the point on the hyperbola are expressed in the form

a-! = a+a tan (5 -I- /S), y' = h sec {q + /3), where o, a, b, /3, are constants depending on the

position of the ray in regard to the axis of rotation : see as to this post, No, 49.

12. Considering the orbit-pole as describing a given curve, the value for the

several positions thereof of any parameter of the orbit may be exhibited by means

of a " diagram," viz., we may take for abscissa any quantity serving to fix the position

of the orbit-pole on the described curve, and for ordinate the value of the parameter in

question. In the particular case where the orbit-pole describes a great circle passing

through the axis of the stereographic projection, and which is consequently in the

spherogram represented by a diameter of the ecliptic or bounding circle, it is natural

to take for the abscissa the distance (from the centre) of the representation of the

orbit-pole ; the diagram will then fit on to the diameter, and for any position of the

orbit-pole on such diameter give at once the value of the parameter to which the

diagram relates.

13. It is right to remark that the construction of planograms and diagrams is

merely subsidiary to that of the spherograms ; the information given by any number

of planograms or diagrams would be all of it embodied in a spherogram for the same

parameter. And theoretically the construction of a spherogram is a mere matter of

geometry; for a given position of the orbit-pole we construct the trivector, thence the

orbit, and in relation thereto any parameters which it is desired to consider; and so,

for a sufficient number of points on the spherogram, determine the value of the

parameter, or parameters; and lay down the isoparametric lines. The construction of

the orbit from a given trivector, and in particular the selection of the orbit as one

of the four conies given by the trivector, has not yet been explained : in connexion

herewith we have the discontinuity of orbit which arises when the orbit-pole is upon

a separator, and which is a leading circumstance in the theory ; until it is gone into,

there is little more to be said in the way of general explanation as to the spherogram,

or the isoparametric lines thereof.

14. It may however be noticed that for any parameter whatever, the points A of the

spherogram are common points, through which pass in general the lines belonging to

any value whatever of the parameter ; the reason of course is that the orbit-plane

then passing through the ray, and the orbit itself being indeterminate, the value of

any parameter belonging to the orbit is also indeterminate. Moreover, for some

parameters the curve belonging to any particular value of the parameter not only
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passes through the points A, but passes through each point twice, or (what is the

same thing) has each of the points A for a nodal point ; when this is so, then it

is to be further observed that, for certain values of the parameters, they will be

acnodal points, properly belonging to the curve, although there is not any real branch

of the curve passing through the points A ; for others they will be criinodal points,

with two real branches through each ; and in the transition between the two cases

they will be cuspidal points on the isoparametric curve ; it will appear in the sequel

that this is really the case in regard to the iseccentric lines.

Article Nos. 15 to 30. Determination of the Orbit from a given Trivector.

15. With a given point S as focus, and through three given points, that is with

a given trivector, there may be described four conies. This appears from the general

theory according to which a given focus is equivalent to two given tangents; and also

Fig. 2.

from the geometrical construction, Principia, book I. sect. 4 ; Scholium to Prop. xxi.

:

viz. given the focus S and the points 1, 2, 3, then if

On 23 we find a so that a 2

,. 31 „ b „ bS

„ 12 „ c „ c 1

a3 = S2 : 83,

bl=SS : SI,

c 2 = iS 1 : -S 2,

the points a, b, c, are each of them on the directrix, so that any two of them deter-

mine the directrix. In the figure (as in Newton's) the distances Si, S2, SS, are
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each regarded as positive, but the very same construction, taking two of the distances

each as positive and negative successively, would lead to three other positions of the

directrix ; or the construction would give in all four conies.

16. In the figure the directrix lies on the same side of the three points; and

the conic is thus an ellipse or parabola, or, if a hyperbola, then the three points lie

in the same branch thereof; and it is consequently an orbit such that along it a

body can pass through the three points successively. The construction as varied would

give in each case a directrix having on one side of it one, and on the other side

two, of the three points; so that the conic would be a hyperbola having the three

points not on the same branch thereof; consequently it would not be an orbit such

that along it a body could pass through the three points successively.

And it thus appears that though the trivector really determines four conies, yet

it is only one of these in which the directrix lies on the same side of the three

points ; and this conic I call the " orbit
:

" the given trivector thus determines a single

orbit.

17. It is to be noticed however that the orbit constructed as above may be a

hyperbolic branch separated by the directrix from the focus S, and consequently convex

to the focus S; viz., the three points lie here in a hyperbolic branch convex to S,

and which is therefore not an orbit which can be described under the action of an

attractive force at S: say we have a "convex orbit." I regard this as a real orbit,

but the times of passage therein as imaginary, or rather as non-existent, and the case

is thus excluded from consideration in the formulte and figures which relate to the

times of passage.

18. The same results are established analytically in a very similar manner, viz.,

taking the focus for origin and starting from the focal equation

r = AxJrBy + G\

then if we take (a;,, y,), (a;,, y,), (a;,, y,), as the coordinates of the three given points

and write

r, = V^' + 2/,», r^ = 'JxlVyi, n = '^xf+y'^,

we have for the determination of the constants

7-1 = Axi + Byi + 0,

and the equation therefore is

7-2 = Axn + By^ + G,

r, = Ax., + Bys + C,

r , X
, y , 1 = 0,

n, an, Vi, 1

rj, ijjj, yj, 1

n, x^, 2/3, 1
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which, attributing therein to r,, r^, r,, the signs +, — at pleasure, represents eight

different equations: these however give only four conies, viz., we have the same conic

whether we attribute to r^, r^, r„ any particular combination of signs, or reverse all

the signs simultaneously.

19. But the focal equation r= Ax + By + C is precisely equivalent to the equation

r =
1 + eC0H {d-isr)'

and in this equation (taking as is allowable p as positive) then if ±e be = or < 1,

that is for an ellipse or parabola whatever be the value of — •or, r is always

positive ; but if ± e be > 1, that is for a hyperbola, r is positive for those values

of d — w which belong to one branch, negative for those which belong to the other

branch, of the curve. Hence in the determinant equation, unless r,, r^, r,, have the

same sign, the curve will be a hyperbola with the points two of them on one branch,

the third on the other branch thereof But in the remaining case, when r,, r,, r,,

have all the same sign, or say when they are all positive, then the conic is an ellipse

or parabola, or else it is a hyperbola with the three points on the same branch

thereof; that is, the foregoing determinant equation, regarding therein rj, r^, r^, as all

of them positive, gives the orbit.

20. When one of the points is at infinity on a given line there is a discontinuity

of orbit. To explain this, suppose that the point (x^, y^ is situate on the line

y = xt&na, at an indefinitely great distance r, in one or the other direction along the

line ; viz., r^ is an indefinitely large positive quantity, and we have in the one case

^i> 2/i
= »'iC0sa, j-jsina; and in the other case a;,, yi = — 7'icosa, — ?-iSina: the con^e-

sponding equations of the orbit, putting therein ultimately rj = + oo , are

0,

«

r
,

CO, V' 1

1, cos a, sin a,

r^, Xi, Vi, 1

rz, «3. yz> 1

r ,
x, y. 1 = 0,

1. — cos a. — sin a.

^2, *2l 2/2, 1

n. ^3, 2/3, 1

which equations belong, it is clear, to two distinct conies; or as the point (a;,, y,)

passes from a positive to a negative infinity along the given line, there is an abrupt

change of orbit. It is proper to remark that the two orbits are the very same as

would be obtained by writing a;,, yi = riCosa, rjsina, ri = +oo and ri = — x in the

determinant equation : that is, the orbit passes abruptly from one to another of the

four conies which belong to the position (x^, y^), and we thus understand how the

transition from + oo to — oo , which is geometrically no breach of continuity, occasions

in the actual problem a discontinuity.

21. The same thing appears from the geometrical construction; and we derive a

further result which will be useful. Suppose first that the point 1 is at infinity in

the direction shown by the arrow ; then drawing 2c = 2/S and 36 = 'AS each in the

direction opposite to S 1, we have the points h, c on the directrix, which is thus the
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line D joining these points. But if 1 is at infinity on the same line in the opposite

direction, then instead of c, h we have the points c', h', and the directrix is the line

ly joining these points.

Fig. 3.

22. Observe that in the first case the focus S and the three points are on
opposite sides of the directrix D, or the orbit is convex ; but in the second case the

focus S and the three points are on the same side of the directrix U, and the orbit

is concave. That is, the line S^ does not separate the two points 2, 3, and the orbits

are the one convex, the other concave.

23. But if 1 be at infinity along the line S{\) first in the direction shown by

the arrow, and then in the opposite direction ; in the first case the directrix is {D)

not separating the focus S from the three points, and the orbit is concave ; in the

second case the orbit is {!/), not separating S from the three points, and the orbit

is still concave; here the line 8{1) does separate the points 2, 3, and the orbits are

both concave.

24. And we thus see in general that as the point 1 passes from a positive to

a negative infinity along a line passing through S; then, according as the line

through S does not or does separate the remaining two points 2, 3, the orbits corre-

sponding to the two positions of 1 are the one convex, the other concave, or they

are both concave.

2.5. The points 1 and 2 may be each of them at infinity along a given ray; we
have here in a similar manner Xi, 3/1 = r, cos a,, r-j sin a,, or else = — rjcosa,, — rjsinai,

where r, is an indefinitely large positive quantity; and x^, yi = riCoscti, r^&ma^, or else

c. VII. 52
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= — r, cosoa, — rjsina,, where r, is an indefinitely large positive quantity. And writing

ultimately j-j = + x , rj = + oo , the equation of the orbit is obtained in the form

r, X , y , 1 =0,

1, ±008 0], ±sinai,

1 , + cos Oj, + sin flo,

where the + of the second line and the + of the third line have each of them the

value + or — at pleasure. There are consequently four distinct orbits, corresponding

to the combinations of each of the two directions of the point 1 with each of the

two directions of the point 2. And it is moreover clear that these are the very conies

which are obtained from the determinant equation by writing therein x^, y, = riCOsa,,

r-jsina, ; x^, yi = r^cos a^, rasinoj and ri = + oo, —00; rj = +x, — x successively; viz.,

the orbit changes abiiiptly between the four conies which correspond to the given

position of the points 1, 2, 3.

Fig. 4.

26. The geometrical construction is very simple indeed ; viz., measuring ofif from

3 in the directions S\, S2, and in the opposite directions respectively, a distance

= >Si3, we have four points, the angles of a rectangle; and joining these in pairs, we

have the four positions of the directrix : the figure shows at once that the orbits are

three of them concave, the remaining one convex.

27. The determinant equation obtained for the orbit is an equation of the form

^• = Ax+Bi/+C;

and it is clear that the equation of the directrix is Ax + By + C =0. By what

precedes, this line will lie on the same side of the three points; viz., either it does

not separate them from the focus, and the orbit is then concave, or it does separate

them from the focus, and the orbit is then convex. Although in general the sign of

C is no criterion (for the equations r = Ax + By + C and r = — Ax — By — C represent
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the same curve) yet in the present case it is so; for, observe that, in taking r^, r,, »"3

each of them positive, we make r to be positive for the orbit, that is, for the entire

curve if an ellipse or parabola, but for the branch containing the three points if the

curve is a hyperbola. Hence, considering the radius vector through 8 parallel to the

directrix, this is positive for a concave, negative for a convex orbit ; or writing

Ax + By = 0, we have r = C positive for a concave, negative for a convex orbit •

wherefore the orbit is concave or convex according as C is positive or negative.

28. Comparing the equation with

r = e{a: cos ct + y sin in-) + a (1 — e-),

we see that the eccentricity and semiaxis major, taken to be each of them positive, ai'e

e = '/A' + B\ a =
+ C

l-4»-5"

(+(7 or —C, according as e<l or e>l); and inasmuch as the focus and directrix

are known, there is no ambiguity as to the position of the orbit: it may be added

that the cooi-dinates of the centre are given by

(^A^-\)x + AB y + AG=0,

AB x + (B'-l)y + BC = 0,

that is, we have for the coordinates of tjhe centre

AC BG
x =

f
and thence also

l-A^'-R-'

2AC
l-A'^-R'

y-

y =

l-A'^-R-'

2BG
l-A'-R-

for the coordinates of the other focus.

29. But to effect the comparison rather more precisely it is to be observed that

a, e being positive, then for a concave orbit, if X be measured from the focus in the

direction away from the directrix, we should have

r=eZ + a(l-e^)

(+ for the ellipse, — for the hyperbola, so that + a(l — e^) is positive) : whence

-^A- + R l-A^-R

(by what precedes, C is = +, so that the formula gives as it should do a = +).

And similarly for a convex orbit, if X be measured in the direction towards the

directrix, we should have
r = eX — a{e- — \);

52—2
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whence

i-rz rS tr -^a! + By —C
^/A' + B' A' + B'-l'

where by what precedes C is = — , and the formula gives as it should do a = +

.

30. It is not necessary for the purpose of the present memoir, but I notice an

elegant form of the polar equation of the orbit belonging to a given trivector; viz.,

taking (r, 6) as polar coordinates, and therefore (rj, ^i), (r^, ^2), (»•,, 6^, as the coordinates

of the given points, the equation of the orbit is

1^-1 sip H^ - ^i) s'P \(S - Oz)

r~ r, sin i (^1 - 6^ sin \ {O^ - 83)

'

In fact, it is clear that this is an equation of the form

that is of the form

- = \ cos ^ + u sin ^ + v

;

r

and that it thus represents a conic with the given focus; and moreover that the

equation is satisfied by writing therein (r,, ^1), {r^, d,), or ('"s. ^3). in place of (r, 0);

that is, the conic passes through the three given points. The foregoing remarks as

to the signs of r^, r^, r,, apply without alteration to this polar equation.

Article Nos. 31 to 41. Time Formuke; Lambert's Equation.

31. Suppose for a moment that the orbit is an ellipse ; as the ellipse may be

described in either direction, the time of passage between any two points, 1 to 2, or

2 to 1, indifferently, may be regarded as positive. With only two points 1, 2, we

might pass, say from 1 to 2, in either direction along the ellipse, and the time of

passage would have ambiguously either of two positive values. In the case however

where we have on the ellipse three points, 1, 2, 3, this ambiguity is avoided; viz., it

is assumed that the passage between any two of the points is along the elliptic arc

which does not contain the thii-d point ; the three times of passage are thus all of

them positive, and their sum is equal to the periodic time, or time of describing the

entire ellipse.

32. But if the orbit be a parabola or concave hyperbolic branch, then, if the

points taken in their order of position along the orbit be 1, 2, 3, we have in like

manner a positive time of passage between 1 and 2, and also a positive time of

passage between 2 and 3 ; but, inasmuch as there is no passage between 1 and 3

except through 2 (which mode is excluded from consideration), I say that there is no

time of passage between 1 and 3; and so consider only two times of passage; viz.,

between 1 and 2, and between 2 and 3.

33. In the case of a convex hyperbolic branch, since this cannot be described under

the action of an attractive force, there is not any time of passage to be considered.



p
476] ORBIT OF A PLANET FROM THREE OBSERVATIONS. 413

In the transition case of a right line not passing through the focus, since, as

mentioned, the velocity is infinite, if the order of the points on the line is 1, 2, 3,

the times of passage from 1 to 2 and from 2 to 3 are each =0; and these are the

only times of passage which are to be considered.

34. The preceding conventions are of course to be attended to in the application

of any formula to the calculation of the times of passage between given points of

the orbit; in the case of a parabolic or hyperbolic orbit we have only to ascertain

which are the two times of passage to be calculated ; but, in the case of an ellipse,

we must take care that the time of passage between each two of the three points is

calculated along the arc not containing the third point ; viz., it is in some cases to

be calculated through the angle < ir between the two radius vectors, and in other

cases through the angle > ir between the two radius vectors ; or, more simply, the time

to be calculated is sometimes the longer, and at other times the shorter time of passage.

35. For the purpose of the present memoir the unit of time is so fixed that

the periodic time in a circle radius 1 shall be equal 3. The period in a circle or

ellipse, radius or semiaxis major = a, is thus = 3a*, and generally

Time = -
Area

" V^ latus rectum

The time formulae are first the ordinary ones in which the time from pericentre

is expressed in terms of an angle (the eccentric anomaly for an ellipse or hyperbola,

true anomaly for the parabola) ; secondly, Lambert's formulae, in which the time between

any two points on the orbit is expressed by means of the two radius vectors and the

chord.

36. The first set of formulae may be written

:

Ellipse, u, the eccentric anomaly from pericentre, viz. a;=a(cosM — e), y=aVl—e^sinw,

if X, y, are the coordinates from the focus, x measured in the direction towards the

directrix.

q
Time from pericentre = - a* (m — esin it).

Parabola. 6, the true anomaly, viz., r=p?,e<i^^6, if p be the pericentric distance

or J -latus rectum.

3 «*
Time from pericentre = - S^ (tan ^6 + \ tan' J ff).

tr V2

Hyperbola ; concave branch, u, the eccentric anomaly from pericentre, viz.,

x = a (sec u — e), y=a Ve' — 1 tan u, if x, y are the coordinates from the focus, x measured

in the direction away from the directrix.

3a^
Time from pericentre = g— {e tan u — hyp. log tan (Jtt + \ u)].

and by taking the sum or the difference of two of these expressions, we obtain the

time of passage between two given points of the orbit.
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37. I remark that as to the elliptic and parabolic orbits, I have preferred using

Lambert's equations, and I should have done the same for the hyperbolic orbits, but

for the absence of a table (see post, No. 39). As it is, for the few hyperbolic orbits

which it was necessary to calculate, I have used the foregoing formula ('): a table of

hyp. log tan (J TT + J m), m = 0° to w = 90°, at intervals of 30' to 12 places of decimals, with

fifth differences is given, Table IV. Legendre, Traite des Fonctiom Elliptiques, t. ii.

pp. 256—259.

38. The other set of formulae may be written

:

Ellipse, r, / the radius vectors, y the chord.

2a cos 1^ = 2a — ? — 7-' — 7, 2a cos ;\;' = 2a — r — r' + 7.

3 1

Time =
2:^

a'^ (x - x' - siQ X + sm x')-

Parabola, r, r', 7, ut suprA;

Time = — {(r + r' + yf - (r + r' - 7)^ j.

Hyperbola

2a cosh X = 2a +?• + ?•' + 7, 2a cosh x' = 2a + r + »•' — 7.

3 3

Time = 9- a' (- % + x' + sinh x - smh
x').

where cosh, sinh, denote the hyperbolic cosine and sine of x. viz.

:

cosh X = i (^ + «"''). sinh x = i (ex - e'").

39. The logarithms (ordinary) of the functions cosh x, sinh x, and of tanh x are

tabulated by Gudermann, Crelle, tt. viii. and ix. from x = 2'000 to
;:^
= 800 at intervals

of "001 and subsequently of '01 to eight places of decimals. I do not know why the

tabulation was not commenced from % = 0, but the omission from them of the values

to 2 rendered the tables unavailing for the present purpose, and I therefore, for the

hyperbolic orbits, resorted to the first set of formulae.

40. As regards the elliptic formulae it remains to be explained how the values

of Xi X ^^^ *° ^® selected from those which satisfy the requu'ed conditions

2a cos X = 2a — r — r — 7, 2a cos x'
= 2a — r — r' + 7.

It is remarked in Gauss' Theoria Mohls, p. 120, that x i^ ^ positive angle between
0° and 360°

; x' ^ positive or negative angle between + 180°, — 180°, viz. x' is positive

' I rather regret that I did not use the foregoing formulis in all cases.

J
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or negative according as the angle between the two radius vectors is < 180° or > 180°.

This determines )(, but it is said that •^^^ is really indeterminate ; viz. it is so if only

the values r, r', y, a, are given, for there are then two orbits in which these quantities

liave their given values, and the times in these have different values. But when, as

in the case here considered the orbit is known, ;^ will of course have a determinate

signification, and it is easy to explain how this is to be fixed. I observe, in the first

place, that if x^""" "^^ ^^^^ j = {2a — r) + {2a — r'), that is, the chord y passes through

the other focus of the ellipse. The criterion thus depends on the position of the two

points on the ellipse in relation to the other focus, and it is easy to see that it is

as follows : viz. let the time between the points 1, 2, on the ellipse be understood

to mean the time of passage from 1 through apocentre to 2 ; then I say that, in the

preceding formula

3 3
Time = 2^ a* (x - x' - sin

;)(: + sin %').

X will be < 180° or > 180° according as the chord from 1 through the other focus H
does not or does separate the point 2 from the focus S.

41. It is hardly necessary to remark that in the application of the formulae,

X, X must be reckoned according to their lengths as circular arcs to the radius unity

:

a table for the conversion of degrees and minutes to such circular measure, is given

in most collections of Trigonometrical Tables.

i

Article Nos. 42 to 45. Formulae for the Transformation between two sets of Rectangular

Axes.

42. Consider an arbitrary set of fixed rectangular axes, Sx, Sy, Sz, which are con-

sidered as intersecting the sphere, centre S, in the points X, Y, Z, and so the axes

Sx', Sy', Sz', afterwards defined are considered as intersecting the sphere in the points

X', V, Z. For convenience Sx is considered as an origin of longitudes, which are

measured in the plane of xy in the direction towards y ; and an angular distance

from Sz is termed a polar distance or colatitude ; so that the position of any line

through S, or point on the sphere, will be determined by its longitude h and colatitude c.

43. It is wished in the sequel to made the orbit-pole revolve about an arbitrary

line So!, and for this purpose I take the new set of rectangular axes, Sx', Sxf , &',

or points on the sphere X' , Y', Z', as follows,

X', longitude G, colatitude 90° -(- N.

Y'Z, is then a great circle, pole X', meeting ZX' in a point 11, longitude 0, colatitude

N, and the position of Z' in this great circle is fixed by its distance from IT, YIZ' = H,

the distance of Y' being 11 F' = 90°
-I- H, and these being each of them reckoned from 11

in the direction of longitude X to Y. The position of the new axes Sx', Sy', Sz',

or points X', Y', Z', is thus fixed by means of the three angles G, N, H.
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It is to be added that if the angle X'ZZ' is called q, and if h, c, are the

longitude and colatitude of Z', then we have sin iV= cot q tan H, which gives q, and

then
6 = G + 3

cos c = cosN cos H.

Fig. 5.

44. The transformation-formulae between the two sets of axes are at once found to be

X T Z

X' cos G cosN sin G' cos iV -siniV

Y' — sin G cos U— cos G sinH sinN cos GcoaH — sin G^ sin fi" sin JT — sin^cosiV^

Z' — sin C sin ZT + cos G cos //sin N cos G sin /f+ sin (? cos H sin^ cos HcosN^

which are for shortness represented by

X Y Z

X' a P y

Y'
1

a P y

Z' a" /?" y"



r
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45 In the particular case where Sx' is in the plane of xy, iV"=0; 11 coincides

with Z, and the longitude and colatitude of Z' are b = G + 90°, c = H. Writing

accordingly in the formula N = 0, and introducing b, c in the place of G, H, the

formulse become

X r Z

J" sin h — cos 6

T' cos h cos c sin h cos c -sine

Z cos h sin c sLn 6 sin c cose

and in particular if c = 0, (S^ here coincides with Sz, and the axes Sa;', S'lf, are in the

plane of ooy) then we have simply

I

I

J

X Y Z

X' sin 6 — cos h

Y' cos 6 sin 6

Z' 1

Article Nos. 46 to 60. Application to finding the Intersection of the Orbit-plane by a

Single Ray.

46. The equations of the ray referred to the fixed axes are taken to be

X — A y — B z—G „—^ =^—-=-^ , = R suppose,

or, what is the same thing,

x = Ai-Ri,

y = B + Rg,

z = C + Rh,

and if in the foregoing formulae the point Z' is taken to be the orbit-pole (longitude

6=6 + 90", and colatitude c = cos"' cos iV cos JBT as above) then the equation of the

c. VII. 53
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orbit-plane is / = 0. We have therefore merely to transform the equations of the ray

to the new axes by writing for x, y, z, the values

ax' + a'y' + a'z',

^x' + ^'y'+^'z',

'id! + yY + 7'V,

and then putting z' = 0, we find a;', y', the coordinates in the orbit-plane of its inter-

sections with the ray.

47. The equations thus become,

ax' -^r ay' -A -Ri =0,

fix' + ^y'-B -Rg = 0.

yx'+y'y'-G -R\i=0,

or, what is the same thing, we have

R : 1

1

a, a', f, A

/8, y9', g, B

7. 7'. h, G

X : y

= 1

I

a, a', f, A

^, /3', g, B

7. y'> h, G

-1 :

a, a', f, A

^, ^, g, B

7. 7'. li> (^

a', f, ^

/8', g, 5

7'. h, C

A, cc, a' :

B, 0, /3'

c, 7. 7'

-1

a, a', f, il

/3, /3', g, 5

7, 7', h, C

f, a, a'

g. )9. /»'

h, 7, 7'

a, f, 4

/3, g, 5

7. h, G

In these formulae we have identically

^y - /3'7. 7a' - 7'«> a/S- - a'/3 = a", /3", 7".

and if we write moreover

a, b, c, = Og - Bh, Ah - GA, Bi- Ag,

{whence identically af-|-bg + ch = 0, and where (a, b, c, f, g, h) are the "six coordinates"

of the ray), then we have the very simple formulas

x' : y' : R :\

= (a, b, c$a', ^', 7') : -(a, b, c$a, y8, 7) : {A, B, GJpi', /3", 7") : (f, g, h$a", /9", 7").

or omitting (as not required for the present purpose) one of the proportional terms, we

have

x' -.y' : l=(a, b, c$«', ^, y') : -(a, b, c$«, /3, 7) : (f, g. h5«". /3". 7").

which are the required expressions for the coordinates.
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48. Consider in the equations just obtained the axis of x as fixed but H as

variable ; that is, let the orbit-pole Z' describe a great circle about the fixed pole X'

(longitude G, colatitude W \-B\ We have a/, y', 1, proportional to linear functions of

sin H, cos K ; viz., writing for shortness

Xc = — a sin G' + b cos G,

Xg = (— a cos G — b sin G) sin iV — c cos N,

Yo = (- a cos (r — b sin G) cos iV"+ c sin N,

Wc = { f cos (r + g sin G) sin iV -t- h cos N,

Ws = {- f sin G + gcos G),

we have

a; =

y =

Xc cosH +Xg sin H
WcCosH+WgsinH'

To

WcCOsH+ WgsinH-

49. I write

iW, 1 .

„ =— cosA,
T„ m

W, 1 . .

X I

I ^ = — cos A — cot B sin A,
Yo m
X I '^ = — sin A + cot S cos A,

\ Yo m

equations which determine m, A, I, 8, viz., we have

W, „ Yo

l = m

tanA^^_^,

Xc cos A + X, sin A
Yo

m=

cot 8 =
— Xc sin A + X, cos A

1

Wo' + W-

1

F„ VTf,«+ Tf/

{XcWo + XgWg),

{X,Wo-XoW,).

and we then very easily find

and thence also

x' = l-\-m cot 8 tan {H — A),

y'= m sec (H — A),

y'^-(x'-l)Han'8 = m';

viz. the orbit-plane revolving about the fixed axis SX', meets the ray in a series of

points forming in the orbit-plane a hyperbola having the line SX' for its conjugate

axis.

53—2
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50. As already remarked {ante. No. 11), this hyperbola Ls nothing else than the

intersection of the orbit-plane regarded as fixed, by the hyperboloid generated by the

rotation of the ray about the axis SX'. And we thus see the interpretation of the

constants, viz.

I is the distance from S along the axis SX' of the "arm," or shortest distance

of SX' and the ray.

m is the length of this arm.

S is the inclination of the ray to the axis SX'

;

and for the remaining quantity A, imagine parallel to the ray a line through S
meeting the sphere in L (L is the pole of the separator), I say that A —H is the

angle LX'Z': or (what is the same thing) drawing X'L to meet UZ'Y' in A, we have

HA = A = iT + ^A, or (what is the same thing) Z'A = A-H.

51. To verify this, observe that the cosine distances of L from X, Y, Z, are as

f : g : h ; and thence its cosine distances from X', Y', Z, are as (f, g, hj^a, ^, y)

:

(f, g, h$a', ^, 7') : (f, g, hja", /3". v"); say, for a moment, as {'
: g' : h'.

Now LA is the perpendicular from L on the side Y'Z' of the quadrantal spherical

triangle LY'Z', and we thence have

h' COSAF' ^
I, „, , ,. rT\

—. = T-f^ = tan AZ = tan (A - H),
g cos AZ

if A has the geometrical signification just assigned to it. But this equation is

g cos {H-A) + h' sin (Zf - A) = 0,

that is

g' cos H +h' sinH
tan A = —^j~.—ff—CT TT >— g siaJi + a cos iz

or substituting for g', h' their values, the numerator is

f (a' cos II + a" sin H) + g (^ cos H + /3" sin H) + h {y' cosH + y" sin H),

which is

= — f sinG + gcos (?, =We,

and the denominator is

f (- o' sin J? + a" cos ff ) + g (- /3' sin if+ /3" cos H) + h(- y' sin H+y" cos fl"),

which is

= (fcosG-t-gsinG')sini\r+hcosi\r, =17^

so that the formula becomes

tanA=^.

which is the original expression of tan A.
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52. We might in the equations

a;' : / : 1 =(a, b, eja', &, 7') : -(a, b, c][a, /3, 7) : (f, g, h$a", /3", 7")

consider for instance (? or iV as alone variable, and then eliminate the variable

parameter so as to obtain a locus ; but the results would be complicated and the

geometrical interpretations not very obvious.

53. I assume (as was done before) iV=0, (r=6 — 90°, H = c, that is, the position

of the orbit-pole Z' is longitude h, colatitude c, and the axis SX' is the line of nodes

or intersection of the orbit-plane with the ecliptic, viz., the longitude of this line is

= h- 90°.

The formulae become

a;' : 2/ : 1 = (a cos 6 -j- b sin h) cos c — c sin c

: — a sin & -f b cos h

: (f cos 6 + g sin h) sin c -I- h cos c.

or if these are

, _ Xc cos c + Xg sin c

Wc cos c+ TFg sin c
'

To

We cos c -f TFj sin c

'

the values now are

Xc= a cos 6 -I- b sin h,

{

X, = — c,

Fo = — a sin 6 -I- b cos 6,

We= h,

PFg = f cos 6 + g sin h,

and thence forming as before the values of tan A, I, m, cotS, and putting for shortness

'JWj+W}, =Vh» + (fcos6-i-gsin6)^ =n

we find after some easy reductions

f T ff • 7

tan A = r cos -f- g sin 0,
a. n

?n = ^ (— a sin 6 -(- b cos h),

cot 8 = =pf^ (— a sin 6 -f b cos h) (— f sin 6 -1- g cos h),

= ^(-fsin6 + gcosi!)),
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and with these values

a' = l + vi cot S tan (c — A),

y' = m sec (c — A),

and thence

y'2 - (a;' - O'tatf 8 = m',

viz., this is the hyperbola obtained by rotating the orbit-plane about the line of nodes,

longitude 6-90°.

54. Imagine the orbit-plane (having upon it the hyperbola) brought by such

rotation into the plane z = 0, or plane of the ecliptic, so that the hyperbola will be

a curve in this plane, the inclination to Sx, or longitude of the axis Sx', being of

course =b — 90°. Transforming the equation to axes Sx, Sy, we must write in the

equation

x' = X sin b — y cos h,

y' — X cos 6 + y sin 6,

and the equation thus becomes

(x cos 6 -f y sin hf — (xsvah—y cos h — If tan^ S = m?.

55. It will be recollected that the equations of the ray were

X — A_y — B_z — G

writing herein z = we find

^ = ^-h^'= h'

y=B-[G,=-l,

and it is clear that this point (r- , — r) should lie on the hyperbola.

Substituting for (a;, y) the values in question, we have first

b sin 6 -I- a cos h — \l

~ ni K^' + (^^'os 6 -I- g sin hf) (b sin 6 -(- a cos 6) - h (ah - cf ) (cos 6 -I- (bh - eg) sin 6)}

=
|Y»

{(f cos 6 + g sin hf (b sin 6 -H a cos 6) -|- (f cos 6 -1- g sin 6) ch}

= |r^ (f cos 6 -I- g sin 6) {(f cos i -I- g sin 6) (b sin 6 -|- a cos h) \- ch (cos' h 4- sin» h)\

=^ (f cos 6 -I- g sin 6) (- a sin 6 -I- b cos h) (f sin 6 — g cos 6)

;
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or observing that

42d

tanS =

-n

we have

f sin b — g cos b
'

1
(b sin 6 + a cos 6 — hi) tan S = — ^ (f cos 6 + g sin b) (- a sin 6 + b cos b)

;

and hence the result of the substitution is at once found to be

(— a sin 6 + b cos by — ^^ (— a sin 6 + b cos b)" (g sin 6 + f cos by
12'

= m%^ = h^ (- a sin 6 + b cos by

viz., the factor (— a sin 6 + b cos by divides out, and the equation then becomes

1 h^
1 -

ffa (g
Sin 6 + f cos by =

^^

that is

tion.

n= = h= + (g sin 6 + f cos by,

which is in fact the value of fl-.

56. I seek for the direction of the hyperbola at the point (j-, —r) in questic

We have

dx : dy= (b cos 6 — a sin b) sin b + cos b tan- 8 (b sin 6 + a cos b — h.1)

: — (b cos 6 — a sin b) dos 6 + sin 6 tan' S (b sin 6 + a cos b — hi),

and from the above values of (b sin 6 + a cos b — hi) and tan S, we have

. o t. /I -I ? i_ 7v e sin 6 + f cos b , . , , ,
'

tan' d (b sin + a cos o — m) = °— , , (— a sm 6 + b cos 6)

;

^
I sm — g cos

whence

dx : dy= (bcosi — asin6)8in 6(fsin6— gcos6) + (gsin6 + f co86)cos6(— asin6 + bcos6)

: — (bcosi — a8in6)cos6(f sin6 — gco86) + (gsin6 + f cos6)8in6(— asin6 + b cos b),

which, multiplying out and reducing by means of the relation af+bg + ch = 0, becomes

dx : dy = (— a sin 6 + b cos b) (sin" b + cos'' b)i : (— a sin 6 + b cos b) (sin' b + cos' b) g

;

that is

d^:dy = i:g, or| =
f,

which shows that the hyperbola, at the point ( r , — r) where it meets the ray, touches

the projection

x—A y—B
~( g~

of the ray on the plane of xy, which contains the hyperbola.



424 ON THE DETERMINATION OF THE [476

57. We may consider various particular forms of the hyperbola y'' — («' — ly tan' B = wi'.

1". If tan S = 0, the hyperbola is the pair of parallel lines y'" = m".

This can only happen if h = 0, f cos 6 + g sin 6 = 0. The first equation gives af+ bg = 0,

, i i f b u i.u
— asin6 + bcos6 , - , . • ^ ^ ..i_whence tan o=— = -

; we nave thus m= ^ = - , which is consistent with
g a il

m finite. The equations show that the ray is parallel to the line of nodes.

2°. If tan S = 00 , the hyperbola is (x — ly = 0, viz., the line a/ = 1 twice : the

condition is — f sin 6 + gcos6 = 0; viz., the ray (not in general cutting the line of

nodes) is at right angles to the line of nodes.

3°. If m = 0, the hyperbola is the pair of intersecting lines y'" = (x — ly tan' B. The

condition is — a sin 6 + b cos 6 = 0, signifjdng that the ray cuts the line of nodes.

4°. We may have simultaneously tan S = oo , m = 0. The hyperbola (as in 2°) is

(x' — ly = 0. The conditions are — f sin 6 + g cos 6 = 0, — a sin 6 + b cos 6 = 0, whence

tan 6 = ^=-, and therefore also ag — bf=0; these signify that the ray cuts at right
1 oil

angles the line of nodes.

The line af = l passes through the point (y, — r), that is, we ought to have

h'P= a" + b^. The value of I is in the first instance given in the form

Z = -— {(ah — cf) cos 6 + (bh — eg) siu b],

where

il" = h» + (f cos 6 + g sin by = h= + f^ + g= - (- fsin 6 + g cos 6)= = P + g' + h'.

But observe that the equations

ag - bf = 0,

bg + af = — ch,

give

and thence

consequently

which is right.

f_ — ch _ — ch ^

*~^M^^' ^"a' + b'"'

n' = f= + g' + h' =h'fl + -^) ^ h'(a' + b' + c')
ii

1 +g +n n l^i + a^+bV a= + b^-

, . .a' + b' + c' a
ah-cf=ah

^^_^^^
=^a,

,

,

, , a' + b» + c' b „
bh-cg = bh

^^^^^
=gn,

I = n^TT (a cos 6 + b sin i) ft' = ^ (a cos 6 + b sin 6) = r Va' + b*,
11' n h h
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58. I return to the equation of the hyperbola written in the form

{x cosb+y sin bf — {x sin b — ycosb — If tan^ 8 = m^
;

being (as was shown) a hyperbola passing through the point (r, — r) where its plane

X — A _y — B
g

is met by the ray, and touching at this point the projection

If in the equation we consider b as variable, we have a series of hyperbolas, viz.,

these are the intersections of the plane of xy with the hyperboloids of revolution

obtained by making the ray rotate successively round the several lines x cos b + y sin 6 =

through the focus S. And, as just seen, these hyperbolas all of them touch at (r, — r

the projection of the ray.

59. The hyperbola to any particular angle b is the hyperbola belonging to the

ray, in the planogram for an orbit-plane rotating about the axis x cos b + y sin 6 = 0;

so that the system of hyperbolas would be useful for the construction of any such

planogram. And there is another series of cui-ves which, if they could be constructed

with moderate facility, would be very useful for the same purpose ; viz., reverting to

the equations

x' : y' : \= (a cos 6 + b sin 6) cos c — c sin c

: — a sin 6 + b cos 6

: (fi cos 6 + g sin 6) sin c + h cos c,

which determine in the orbit-plane the coordinates x, y of the intersection thereof with

the ray : imagine as before that the point is marked on the orbit-plane, and let it by a

rotation of the orbit-plane be brought into the plane of xy ; so that «', y', will be

the coordinates in the direction of and perpendicular to the line of nodes of a point on

the hyperbola y'^ — (x' — Vf tan' S = m', or {x cos 6 -)- y sin 6)'' — (« sin 6 — y cos 6 — Vf tan' 8 = m',

viz., of the point corresponding to an orbit-pole, colatitude c. Suppose that x, y, are

the coordinates of this same point referred to the fixed axes, we have

x= x' smb + y cos 6,

x = — x cos 6 + y' sin 6,

and thence

X : y : \= (a cos 6 -J- b sin 6) sin 6 cos c — c sin 6 sin c + (— a sin 6 -f- b cos 6) cos 6

: — (a cos 6 -(- b sin 6) cos 6 cos c + c cos 6 sin c -I- (— a sin 6 -f- b cos 6) sin 6

: (f cos 6 -I- g sin 6) sin c + h cos c,

the coordinates of the point just referred to. Now, if from these equations we could

eliminate 6, we should have a series of curves containing the variable parameter c,

intersecting the series of hyperbolas; and thus marking out on each of these hyperbolas

the points which belong to the successive values of the parameter c; we should thus

have in the plane of xy the point corresponding to an orbit-pole longitude 6 and

C. VII. 54
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colatitude c. The series of curves in question may be called "graduation curves," viz.,

they would serve for the graduation of the hyperbola in the planogram for an orbit-

plane rotating round any line xcoBb + ysinb = in the plane of xy. But the elimination

cannot be easily effected, and I am not in possession of any method of tracing the

series of curves.

60. I remark that from the equations

x' : y' : 1 = (a cos 6 + b sin b) cos c — c sin c

: — a sin 6 + b cos b

: (f cos 6 + g sin b) sin c + h cos c,

we may without difiBculty eliminate b ; the result is, in fact,

[x' (— ah cos c) + y (— bh cos* c — eg sin'' c) — ac sin c]*

+ [x' ( bh cos c) + y' (— ah cos' c + cf sin* c) + be sin c]'

= [x' ( ch sin c) + y' { ag — bf) sin c cos c + (a' — b') cos c]*,

a conic; but the geometrical signification of this result is not obvious, and I do not

make any use of it.

Article Nos. 61 to 63. Tlie Trivector and the Orbit.

61. Considering now the three i-ays, these are determined by their six coordinates,

(a,, bi, c,, fi, gi, hi),

(a„, b^, Co, f,, g.,, hj),

(^> Oji Cj, I3, gs, II3),

respectively ; and the intersections with the orbit-plane are given by

-(a,, b„ cja', /3', 7') : (f„ g„ hja", /S", 7"),

- (aj. \, C2$ „ ) : (fa, g2, hj$ „ ),

-(83, bs, C3][ „ ) : (fs, gs, hj$ „ ),

where the axes Sx', Sy', are an arbitrary set of rectangular axes in the orbit-plane;

or where, as before, the axis Sx' may be taken to be the line of nodes.

X,' :y.' : l = (ai, b„ c,$a, /S, 7)

X,' :y.' : 1 = (a,, b„ Cj$ „ )

X,' :2/a' : 1 = (a^, h„ 03$ „ )

There is no difficulty in finding the equation of the orbit. Writing », = Va;,* + y,',

we have

r, =

if

(fa, gu h.Ja", yS", 7")'

. = ± ^/[(a.. b,. cja', ^, 7')]'+[(a>. b„ c,]^a, 0, 7)]'.
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f

the sign being taken in such manner that r^ shall be positive ; viz., the sign must

be the same as that of (f,, g,, hi][a", /S", 7"). And we have the like formulae for

r-i and r^. Substituting these values, the equation of the orbit becomes

r
,

of
,

y'
, \ =0.

u„ (a,, b„ c,$a', ^, 7'), -(a,, b., c,$a. A 7). (fx, g„ h.^a", /3", 7")

Vi, (as, bj, c,$ „ ), -(a^j, b^, q,j^ „ ), (fa, gj, h^J „ )

Ms. (as, bs, CsJ „ ), -(a^, ba, CjJ „ ), (fa, gs, hs$ „ )

62. Considering the minor determinants formed with the terms under the x' and y',

for instance

(a,, b,, Ci'Ja', ^', 7').-(a2, b^, c^^a, /3, 7)

+ (»!. b„ Ci$a, ;8, 7). (a.,, b^, c^Ja', ^8', 7')

this is

= (bic, - bA)W - ^y) + (Ciaj - c^a,) (7a' - 7'a ) + (a^b^ - a,b,) (afi' - a'/3)

= a" (bjC, - bjCi) + j8" (Cj a» - Coai) + 7" (Oib., - a^bi),

or, what is the same thing,

= (biC3-bjCi, Cjaj-Caai, aibo-ajbi^Ja", /3", 7");

with the like expressions for the other two minors. And we thus obtain the following

developed form of the equation, viz.

K(a., b„ c,-^a, fi, f) + y'{2^, \, c,$a', ^, i)}[-u,{i„ g,, ha^a", ^', 7")

+ uAt.,g„ h,$a", /3", 7")]

+ {a;'(aj, b,. CjJ „ ) + y' (a,, bj, c^J „ ))[-«.. (fi , gu hj^ „ )

+ Mi(f3, gs. hsj „ )]

+ {.^'(aa, b„ c,$ „ ) + y'(a„ ba, C3$ „ )} [-Wi(f,, g^, h^]^ „ )

+ Ma(fi, gi. hi5; „ )]

+ (b,C3-b,c„ c,a,-ca„ &,h,-a,\-^<i", ^', y")[riU, g>, h,$a", /3", 7")-Mi]

+ (bjCi-biC,, c,a,-c,a„ ajbi-aibsj „ ) [r-(f2, gs, h,$ „ ) - mJ

+ (b,c,-bjC,, Claj-Cjaj, a,b2-a,b,5 >. ) [^(fs, gs. h,]^ „ ) - Mj] = 0,

being an equation of the form ilr = Ax' + By' + C.

63. The coefficient of ?• is a quadric function of (a", yS", 7"), and if this vanish

the orbit is a right line. It thus appears that the orbit will be a right line provided

only the orbit-axis be situate in a certain quadric cone, or (what is the same thing)

the orbit-pole be situate in a cei-tain spherical conic: agreeing with a preceding result,

viz. the cone is that reciprocal to the cone, vertex 8, circumscribed about the hyper-

54—2
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boloid which contains the three rays. And we see that the equation of this reciprocal

coue is

a", /3". 7" =0.

(f., g,. h,][a", /3", 7"), a,, b., c

(fs. gi, K^ „ ), a, , b,. , c,

(f», gs, h,^ „ ), a,, bj , c.

Article Nos. 64 and 65. The Special Symmetrical System of three Rays.

64. In what follows I consider the three rays forming a symmetrical system as

already referred to: viz. the three rays intersect the plane of the ecliptic at points

equidistant from S at longitudes 0°, 120°, 240°; each of them is at right angles to

Fig. 6.

the line joining S with the intersection with the plane of the ecliptic, and at an

inclination = 60° to this plane : the figure shows the projection on the plane of the

ecliptic of the portions which lie above this plane of the three rays respectively.

The three rays lie on a hyperboloid of revolution having the line Sz for its axis;

the circumscribed or asymptotic cone vertex S, is a right cone of the semi-aperture

= 30° ; the reciprocal cone is therefore a right cone semi-aperture 60°, or (what is the

same thing) the regulator is a small circle, angular radius 60°, and the regulator and

separators have the positions shown in fig. 1, see No. 8.

Taking S1=S2 = SS — 1, and writing down the equations of the three rays in the

forms

x-l
1/

1 tan 60°

«^+^cos60^ _ y - sin 60° _ z

- 8in~60^ ~ - cos 60°' ~ tan 60°

'

jg + cos 60° _ y -I- sin 60° _ z

sin 60°^ ~ - cos 60° ~ tan60"

'
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I

x{ :y.' : 1 = ;8'V3 - 7'

x^ : 2/2' : 1 = 3a'+y3'V3 + 27'

x: :y/ :
1=--3a' + /9'V3 + 2y

we obtain the six coordinates of the three rays respectively

(a„ b„ c„ f„ g., h,) = ( 0, V3, -1, 0, 1, V3),

(a,, b,. c„ f„g„ h,) = ( 3, V3, 2, V3, 1, - 2 V3),

(a,, b3. c„ f„ g3, h,) = (- 3, V3, 2, - ^3, 1. -2V3),

whence the intersections with the orbit-plane are given by

-/3V3+ -y :
;3" + 7"V3,

-3a-;3V3-27: a" Vs + /3" - 2 V37",

3a - /3 V3 - 27 :
- a" V3 + /3" - 2 V37",

where if (as before) the position of the orbit-plane be determined by means of the

longitude b and colatitude c of the orbit-pole, we have

a
, /3 , 7 = sin 6 ,

— cos h , ,

a' , ff ,
7' = cos b cos c, sin b cos c, — sin c,

«". /8", 7" = cos 6 sin c, sin 6 sin c, cos c,

and the passage from the coordinates a.', ?/, to x, y, is given by

or conversely

65. To develope the results, I consider the orbit-pole as passing through certain

series of positions. The locus may be a meridian circle : by reason of the symmetry

of the system, the results are not altered by a change of 120° in the longitude of

the meridian ; so that, by considering the two meridians 0''—180° and 90°—270°, we,

in fact, consider twelve half meridians at the intervals of 30°. An illustration is

afforded by Plate I. ; the orbit-pole describes successively the meridians 0°, 30°, 60°, 90°,

and the line 1, by its intersection with the orbit-plane, traces out on this plane a

series of hyperbolas shown in the figure ; the hyperbola for the meridian 90° is a

right line, but (except for the position where the orbit-plane passes through the

line 1) the locus is a determinate point on this line. Pianogram No. 1 (Plate II.)

refers to the meridian 90°—270°, and Planogiam No. 2 (Plate III.) to the meridian
0°—180'. Next, if the orbit-pole be at one of the points A, that is, if the orbit-

plane pass through a ray—though the position of the orbit-pole be here determinate,

yet as there is a series of orbits, this also will give rise to a pianogram : I call it

Pianogram No. 3. The orbit-pole may pass along a separator circle (viz. the orbit-

plane be parallel to a ray), this is Pianogram No. 4. And, lastly, the orbit-pole may
pass along the ecliptic (or the orbit-plane may pass through the axis SZ), I call this

Pianogram No. 5. But the last three planograms are not considered in the like detail

as the first two, and I have not, in regard to them, tabulated the results, nor given

any Plates.

x' = x smb — y cos b,

y = X cos b + y sin b,

X = x' sin 6 -f- y' cos b,

y = — x' cos b-^y sin b.
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Article Nos. 66 to 82. Planogram No. 1, the Meridian 90°—270° (see Plate II.).

66. Supposing that the orbit-plane rotates about the axis SI (fig. 6, see No. 64)

in the plane of the ecliptic, the orbit-pole will describe the meridian 90"—270°, the

position of the orbit-pole being 6 = 90°, c = 0° to 90°, or else 6=270°, c = 0° to 90°.

But the same analytical formula extends to the two half meridians, viz., we may take

6=90", and extend c over 180°, in the final results making c an arc between 0° and

90°, and 6 = 90°, or =270°, as the case requires.

67. Assuming then 6 = 90°, we have

a, yS, 7 =1, , ,

a'
,

j8'
,
7' = 0, cos c, — sin c,

at", ^', 7" = 0, sin c, cos c,

and, moreover, x', y' = x, y: so that instead of {x^ , y/), &c., we may write at once

{xi, yi). &c. The formulae become

a^i : y, : 1 = V3 cos c+ sin c : : sin c -I- v'S cos c,

x.i : y^ : \ = V3 cos c — 2 sin c : — 3 : sin c — 2 V3 cos c,

a"3 : ya : 1 = v'3 cos c — 2 sin c : 3 : sin c — 2 ^3 cos c,

that is

x^ = 1. yi = 0.

(viz. the orbit-plane, as is evident, meets the ray 1 in a fixed point, its intersection

with the plane of xy)
;

V3 cos c — 2 sin c
•*'2
— 7^

»

.sin c — 2 V 3 cos c
••-S
— *2>

-3
ys = -y,.

sin c - 2 V3 cos c

'

and writing

2V3 1
-7=- = cos ft), -7= = sin ft),

Vl3 Vl3
—

r=. = tan ft),

2V3

(whence ca = 16° 6') we find

« 3V3, ,

i^i = --h+ ~i^
tan (c -I- o>),

y,= -^-^ sec (c + ft)),

and we thence have for the hyperbola, the locus of {x^, y^ and {x^, y,)
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viz. the points (a;,, y^ and {x^, y^ are situate on the hyperbola, symmetrically on

opposite sides of the axis of x. For c = 0, we have Xi = — \, y2 = h'/3, {x„^ + y./ = l), and

the hyperbola at this point touches the circle x- + y- = l; and similarly for x^, y^.

The inclination of the asjTnptotes to the axis of y is given by tan if = V^, r) = 22° .56'.

68. The orbits are conies, focus S and vertex 1. It will be convenient to con-

sider c as passing from 0' to 90° — a, and from 0° to — (90° + m) ; that is, from

0° to 73°54'-e, and from 0° to -116° 6' + 6, if e be indefinitely small: the point

2 will thus traverse the upper branch (alone shown in the Plate) of the guide-

hyperbola, viz., for c=0° it will be at the point of contact with the circle; for

c = 73° 54' - e it will be at oo , and for c = - 106° 6' + e at ao '. For c = 0° the orbit

is the circle ; as c increases positively, it becomes an ellipse of increasing eccentricity

and major axis, until for a certain value (c = 46° 48' as will appear) it becomes a

parabola ; it then becomes a hyperbola (concave branch) ; for c = .52° 45' it becomes the

hyperbola S' subsequently referred to ; and for c = 60° (the point 2 being then on the

line shown in the figure) the orbit becomes this right line. As c continues to increase,

the orbit becomes a hyperbola (convex branch) ; and ultimately for c = 73° 54' — e, the

point 2 goes to oo , and the orbit becomes a hyperbola (convex) S, having an asymptote

parallel to that of the guide-hyperbola : the inclination to the axis of x being thus

90° - 22° 56', = 67° 4'.

69. Next as c increases negatively, the point 2 moves from the point of contact

in the other direction to oo ' : for c = 0° the orbit is of course the circle, and as c

increases negatively the orbits are at first the very same series of orbits as those

belonging to the positive values ('), viz., they are first ellipses, of increasing eccentricity

and major axis ; then for c = — 92° 54' the orbit is the parabola ; the orbits are then

hyperbolas (concave), and finally for c = — 106° 6'
-I- e, when 2 is at oo ', the orbit is a

hyperbola 2', the asymptote of which is parallel to that of the guide-hyperbola, viz.,

the inclination to the axis of jr is = 67° 4'.

70. It will be observed that the orbits from the circle to the hyperbola S' each

intersect the guide-hyperbola (that is, the branch shown in the figure) in two points,

the one corresponding to a positive, the other to a negative value of c; in the positive

series, the remaining orbits from the hyperbola S', through the right line to the convex

hyperbola 2, each intersect the guide-hyperbola (same branch) in a single point only,

for which c is positive.

71. There is, in the passage of the orbit-pole from c = — 106°6' + 6 to c=73°54'-6,
say at c = 73° 54', a discontinuity of orbit, viz., an abrupt change from the concave

hyperbola 2' to the concave hyperbola 2 ; observe that the direction of the asymptotes

being the same in each, the eccentricity e has the same value.

' Of coarse, as corresponding to different values of c, they are not the same orbits in space, but they

are only the same curves in the planogram.
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The point in question (b = 90°, c = 73° 54') is one of the points B of the spherograra,

and the hyperbolas S, S' are two of the four orbits belonging to this point. And, by

what precedes, it appears that as the orbit-pole passes through this point along a

meridian downwards to the ecliptic the change is from a concave to a convex orbit.

72. On account of the symmetry in regard to the axis of x, the equation of the

orbit will be of the form r = Ax + B ; viz., the equation is at once found to be

ajj — 1
^

73. The eccentricity is the coeflBcient A taken positively (e = ±A): it is in the

present case proper to attend to the value of the coefficient itself,

a-j —

1

the sign of A will then indicate the position of the centre of the orbit, viz., according

as J. is positive or negative the centre will be on the negative or the positive side

of the focus S. To investigate the variation of A, we may express it as a function of

tan c, = \ suppose. We have

VS - 2\ - 3

and thence

X-2N/3' " X-2^'

r., = ^—7= R,, i?„ = + "712 - 4 V3\ + ISX''

;

viz., r^ must be positive, that is, R^ is positive or negative according to the sign of

X - 2 ^3 ; negative if X, < 2 V3 or c < 73° 54', positive if \ > 2 V^ or c> 73° 54'. And we

have then

.^ \-2'/S-R^
3(\-V3)

But a more convenient formula is obtained by writing

5 = — cot c H r_
,

2V3

10= —-=,,

2V3
we then have

which determines the sign of the radical, viz., this must have the same sign as 6
;

and then for the coefficient

2
^ = 3(^)(-^l+^ + ^)-
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74. For c a small arc = e, ^ is large and negative, and Vl + ff', having the same

sign as 0, is =6 +^ nearly ; we have therefore

^ = rrM=-^^pp''°^^"'^*'^y-

I

t

I

For c nearly = 60°, say c = 60° + e,

cot c = cot 60° + e cosec^ 60° =^ + -j^ ,

2V3 3 3 2\/3

and thence

-H-\/l3 4e V3 -I+V13
2V3 3-8 6

viz., this is — X for c = 60° — e, and +00 for c = 60° + e.

For c nearly = 90° — w, say first c = 73° 54' — e, we have

cot c =
2V3

whence

+ i|e, = -^e, e + a.

14

2^/3'
\/l + ^ = -l.

^ = — = 2-30940

;

\/3

»

but if c = 73° 54' + e, then ^ = if e, d + a-
2\/3

, Vl + ^ = + 1, and

4 = - ^ = - 2-30940,
v3

4 4..
viz., there is an abrupt change from A =+ —^ to A =—p ; corresponding to the dis-

continuity of orbit already referred to. We may diminish c by 180°, and consider the

4
last-mentioned value, A = — -1=

, as belonging to c = — 90° — to + e = — (106° 6' — e).

75. Consider next that c passes from to — (106°6' — e). First if c is a small

negative quantity c = — e, is large and positive, and n/1 + 0^ having the same sign as

1 2—11
(positive) is —0+q7, nearly, we have therefore J. =^ . —^ = —

oas (same as for
20 30' 20 30^

c = + e). And it is easy to see that as c increases negatively, A is always increasing

I-V13
negatively, its value for c = — 90° being A = - = --8685, and for c = -106°6' + e

being = — 2-30940 as above. We have a diagram of A (see next page).

C. VII. 55
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4
76. It thus appears that from ^ = to A =—-_, there are always to any given

value of A two values of c, or positions of the orbit-pole. In particular if A be

= — 1, the curve will be a parabola ; the values of c lying between 0°, 60° and

between 73° 54', 90° respectively.

Fig. 7.

106°6

or

To find them, writing ^=—1, we have

-3^-3a = 20-2VH-^, that is, 5^ + .3a = 2Vl + ^,

21^ + 30a^ + 9a=-4 = 0,

1
that is, substituting for a its value =

2V3'

or

that is

giving

or

21^+5V30--^ = O, (14^V3 + 5/=116,

- 5 ± Vile

14 V3 '

e = - -65034, e = -23797,

cot c = + -93902, cot c = + -05071,

c= 46° 48', c= 87° 6'.

4
77. It has been seen that c = 73° 54' + e gives A=- --:= = - 230940 ; there will

be between 0° and 60° another value of c, giving for A this same value ; to find

4
this value write A =—== , then we have

V3

-*'^(^ +^) = ^^"^^^"'^'
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that is

(l + 2\/3)6l+l=VrT^,
or

(12 + 4 V3) ^ + (2 + 4 V3) 6' = 0,

satisfied as it should be by 0= 0, and also by

2 (3 + VS)
giving

cot c = -76038 or c = 52° 45'.

78. Representing the equation of the orbit by

r = Ax±a{l - A^),

we have for the point 1,

1 = ^ ±a{l-A"-),

that is

+ 1

where the sign is to be taken so that a shall be positive.

79. With a view to the calculation of the times of passage, I calculate a series

of values of ar,, y,, r^, A, a, for values of c at the intervals of 5° and for a few

intermediate values; we have a;,, ys, r3 = x„, y^, r^, so that these are known; so long

as the orbit is an ellipse, the time of passage between the points 2 and 3, say T^,

may be calculated by Lambert's equation, the length of the chord y^ — y^, = ^y^ being

known without any fresh calculation. And then the times T^ and T^i being equal,

and the sum T^^ +7*23+ T-^ being equal to the whole periodic time (reckoned as = 3a*)

the times T^ and T^ are also known. But when the orbit is a concave hyperbola

there is no time T^, and the other two times T^, = 2\i must be calculated. For the

reason referred to (ante. No. 39) I did not use Lambert's equation,—and it was less

necessary to do so, by reason that, the transverse axis coinciding with the axis of x,

the other formula could be employed without difficulty.

80. The formulae for a;,, y^ adapted to logarithmic calculation are

log (ar, + -615.39) = 11 60174 + log tan (c + 16° 6'),

log yj = n-92015 + log sec (c + 16° 6'),

where y^ is always positive, but the sign of x^ must be attended to. The values of r^

and its inclination ^ to the axis of x are then to be calculated from

tan<^j = — ; r2 = a:2sec^2 or =y^co8ec<f>.,,

(viz. for rj it is proper to use the first or the second value, according as x^ is greater

or less than y,).

55—2
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We have then e = (±A) and a from the foregoing formulae

^^r.-l ±1
a = -

' x^-V " 1+A'

where a, e are each of them positive.

And then for the Times

2'- = 2^^ (X-X- sin X + sin x) ;
(log g^ = 1-67894)

,

where
a cos X = o. — 'i'i — yu

acos')^ = a — r.i + y^,

and attention is necessary in order to the selection of the proper values of the angles

X' X-

And finally

81. I subjoin a specimen ; the characteristics of the logarithms are (as in the

actual calculations) omitted.

6 = 90° c = 20°,

c + 16° 6' = 36° 6'

log sec 09259 log tan 86285

92015 60174 »

01274 46459

2/2 = 10297 61539

Xi ..

29147

•32.392

log = 51044

01274 02046

51044 01274

50230 03320

^j=72°3.3' r.== 10794

•0794 log = 89982 •94003 log = 97314

1-3239 log = 12185 comp = 02686

77797
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t

I

r
i

A = - 059975 a = 1-0638

1-0638

10794

A-r« = - 0156

y, = + 1-0297

1-0141 = acos;^'

— 10453 = a cos X

00608 01924

02686 02686

97922 99238

X'
= 17°35' ;^(=Supp. 10°42') = 169°18' x-%' = 151°4.3'

151° 2-63544

48' -01250

-sinx - •18566

sinx' •30209

log = 44160

02686

2-95003

•18566

01343

47712

51741

2-76437

02686 Sai = 3-2916

01343 1-4482

67894
1-8434

T^ = 1-4482 16083 T,. = T,, = -9217

I

82. For the Time in a hyperbola, we have

where

Tj3 = T^ = ~- ai {etanu,- h . I. tan (45° + ^ u^)},

tan its=—, —

V

•
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Taking as a specimen the case c = 75°, we have here

a = -9004 6 = 21106 y, = 43-341

log = •95444 log= -32441 log= 1-63690

o(e»-l) = 31106

log „ = -49284

and then the calculation is

log a = 95444

„ a(e»-l)= 49284

44728

„ aVe»-l= 22364

log 2/2
= 63690

If = 87° 47'log tan M = 41326

32441 h . I tan (45° + ^ u)

e tan u = 54-660

= 3-95140

73767

3-951

50-709

log = 70508

95444

47722

67894

31568

r,,= r3,= 20-686

83. In the case of the parabola p=l, and the expression for the Times is

^" = ^- =L {(P + P' + 7)* -iP + P- 7)*}.

where for

we have

47r

c = 46° 48'

c = 87° 6'

2ij = jTsi = -787,

Tii, = r,, = 2-588.
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Planogram No. 1, first part, b = 90°.

439

M

c .^2 y-i «^2 '-2 A a -'13 T^ ^1

Circle 0° - -500 + -866 60° 1-000 1-000 1-000 1-000 1-000

/
5 -461 •892 62° 39' 1004 - -003 1-003

10 •420 •927 65 38 1-017 -012 1-012 -960 1-135 •960

15 •374 •972 68 56 1-041 -030 1031 . .

20 •324 1-030 72 33 1-079 -060 1-064 •922 r448 -922

Ellipses
25

30

•267

200

1-104

1-200

76 26

80 32

1-136

1-216

•107

-180

1-120

1-220 -887 2^275 -887

35 •120 1325 84 49 1-330 -295 1-418

40 - -021 1^492 90 48 1-492 -482 1-931 •838 6-371 -838

40° 54' •000 1^515 90 1-515 -515 2-061

45 + •lOQ 1^722 93 37 1-725 -814 5-362

Parab. 46° 48' •166 1^826 95 11 1-834 1-000 00 •787 00 •787

( 50 -287 2-054 97' 57 2-074 1-505 1-981 •750 ~ •750

Hyperbs. - 52° 45' •418 2-306 100 16 2-344 2-309 -764 ~

*.
55 -552 2-569 102 8 2-627 - 3-632 -380 -628 ~ -628

Line 60

65

1-000

1^937

3-464

5-378

196 6

109 48

3-605

5^716

- 00

+ 00

+ 5-032

-000

-166

-000 ~ -000

Convex .

70 + 5^248 12-233 113 13 13-311 2-898 -257 Convex orb it.

73° 54'
+ 00

— 00
00

115 39

64 21
30

+ 2-309

- 2-309

-302

-764 00 ~ GO

76 -21^432 43-341 63 42 48-346 2-111 •900 20-68 ~ 20-68

Hy])erbs. 80 4-356 7-830 60 55 8-960 1-486 2-056 3-856 ~ 3-856

85 2-653 4-322 58 27 5-072 M15 8-718 2-912 ~ 2-912

Parab. 87° 6' 2-320 3-644 57 31 4^320 1-000 00 2-588 00 2-588

Kllipse 90 - 2-000 3^000 56 18 3^606 - -869 7-622 2-255 58-62 2-255

The mark ~ in the T~, column shows that there is no Time T™
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Planogram No. 1, second part, b — 270°

c X, y7 •h r^ A a ^,« T„ y«

CHrc. 0° - -500 + ^866 60° ' 1-000 1-000 1-000 1-000 1-000

5 •537 848 57 39 V003 --002 1-002

10 •573 •837 55 37 1^014 -009 1-009 1^044 •951 1-044

15 •608 •832 53 52 r030 -019 1019

20 643 •834 52 23 1053 032 1-033 1091 •969 1091

25 678 •842 51 10 1-081 -048 1051

30 714 •857 50 11 M16 -068 1-073 1-145 r043 M45

35 •752 •879 49 27 1157 -090 1-098

£ 40 793 •910 48 51 1^207 -115 1-130 1^207 1-192 1-207

45 836 •950 48 40 1^266 -145 1-169

50 •884 V002 48 36 r336 -179 1-217 1^283 1-464 1-283

55 •938 1^069 48 45 b442 •218 1-278

60 1^000 M54 49 7 1-527 •264 1-358 1^377 1-983 1-377

65 1074 V266 49 42 1660 •318 1-466

70 M64 1^412 50 31 1-830 -383 1-622 1506 3-036 1-506

75 1^280 1-611 51 35 2-056 -464 1-864

80 1-431 r89i 52 53 2-372 •564 2295 1-771 6-888 1-771

85 1651 2^311 54 28 2-840 •694 3-269

90 - 2000 + S^OOO 56 18 3-606 -•869 7-622 2^255 68-62 2-255
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Article Nos. 84 to 94. Planogram No. 2, the Meridian 0°—180° (see Plate III.).

84. The orbit-plane here rotates about an axis in the plane of the ecliptic at

right angles to S 1 (Fig. 6). The entire meridian is given by 6 = 0°, c = 0° to 90°,

and 6=180°, c = 0° to 90°, but it is sufBcient to consider one of these half meridians,

say the latter of them, as the series of valiies is the same for each of them, with

only an interchange of the points 2, 3. I write therefore, b = 180°, so that we have

a
, /3 , 7 = 0,1, ,

a'
,

/8'
,
7' = — cos c, 0, — sin c,

consequently

a;/ : Vi

a", /3", 7" = — sin c, 0, cos c,

1 = sin c : - V.3

1 = _ 3 cos c - 2 sin c : - Vs

1 = 3 cos c - 2 sin c : - VS

V3 cos c,

- V3 sin c - 2 V3 cos c,

V3 sin c — 2 V3 cos c.

and moreover x =y, y'= — x; so that, introducing into the formulae («,, y,), &c., in

place of the («,', y/), &c., we have

Xi = sec c,

x.=

sin c + 2 cos t

'

-1
sin c — 2 cos c

'

y,=—= tan c,
^ V3

_ 1 2 sin c + 3 cos c

"*
\/3 sin c + 2 cos c

'

_ 1 2 sin c — 3 cos c
~
V3 sin c — 2 cos c

'

which, putting

become

cos8 = -7-, 8in8 = ^, tan8=i, 8 = 26° 34',

V5 v5

fl/j ^ sec C( y, = -^tanc.

a;j = --^8ec(c-8), y^^;^! f + * tan (c - 8)),

a;, = -J^8ec(c + 8), y, = ^{-f + itan(c + 8)}

;

so that the guide-hyperbolas are

x? — 3y,' =1, J angle of asymptotes = 30°

a;,»=15y,'-16V3yj+13, tan"
Vl.^

14° 28'

a;.'=15y,' + 16V3y,-f-13,

C. VII. 56
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It is easy to verify that

Hyperbola 2 passes through Xt=—^, yj= i^/3, and touches there circle ai' + y'^l,

And we thus have the figure in the Plate.

85. The figure shows the motion of the points 1, 2, 3, along their respective

hyperbolas, viz. c = 0° to 90°, the point 1 moves from contact with the circle, along a

half branch to infinity: 2 moves from contact along a small portion of the half

branch ; 3 moves from contact, along the half branch to infinity for c = tan~' 2 = 63" 26',

and then reappearing at the opposite infinity, as c increases to 90° describes a portion

of the opposite half branch.

86. For c = 0, the orbit is the circle ; as c increases the orbit becomes elliptic

;

then parabolic, c = 51°, and afterwards hyperbolic (concave); until for c = 60°, the three

points are on the horizontal line of the figure, and the orbit is this right line ; it

is to be noticed that the arrangement of the points on these orbits is 1, 2, 3 ; so

that for the parabola, T^ is = oo , and for the hyperbolas and right line Ta does not

«xist.

87. For c < 60° until c = 63° 26' the orbit is a convex hyperbola, the arrangement

of the points being still 1, 2, 3 : say for c = 63° 26' — e, the orbit is the convex

hyperbola il. At c = 63° 26' there is an abrupt change of orbit ; say for c = 63° 26' + e

the orbit is a concave hyperbola H, ; and for c = 65° 52' the orbit is a parabola;

the arrangement of the points on these orbits is 2, 1, 3; so that for the hyperbolas

7*23 does not exist, and Toj is = <x> for the parabola. Observe also that for the

hyperbola flj, the point 3 is at infinity, or we have Tji = oo . As c continues to

increase, the orbit becomes an ellipse, the eccentricity having a minimum value = '628

(about), for c = 69° (about). For c = 89° 20' the orbit is again a parabola, and then

until c = 90° it is a hyperbola; the order of the points on the last-mentioned

parabola and hyperbolas being 1, 3, 2 ; so that for the parabola T^ is = » , and for

the hyperbolas T^^ does not exist. In the hyperbola for c = 90°, say the hyperbola O',

the point 1 is at infinity, or we have r,^ = oo . The foregoing results, obtained (except

as to the numerical values) by consideration of the figure, will be confirmed by means

of the calculated values of e.

88. The equation of the orbit may be written

V3 y
1^

V3
'

V3'

r, cos c , 1, sin c , cos c

r, (sin c + 2 cos c), — 1, 2 sin c + 3 cos c, sin c + 2 cos c

r, (sin c — 2 cos c), 1, — 2 sin c + 3 cos c, sin c - 2 cos c

= 0,
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or developing, this is

r
-7= 6 (sin- c — 3 cos" c),

OR

-i^\ 4r, (sin' c — 3 cos' c) cos c
n/3

— 7*2 (sin c 4- 2 cos c) (sin* c — 3 cos* c)

+ ra (sin c - 2 cos c) (sin- c — 3 cos" c)}

+ y {— 2ri sin c cos c

-f rj (— sin'' c -)- sin c cos c -f 6 cos' c)

+ r, ( sin" c -1- sin c cos c — 6 cos" c))

= { r,. — & cos" c
a/3'

+ Srj (sin" c -f sin c cos c — 2 cos" c)

+ 37-3 (sin" c — sin c cos c — 2 cos" c)} = ;

(observe that the orbit will be a right line if sin" c — 3 cos" c = 0, that is if c = 60°,

which is right, since 60^ is the angular radius of the regulator circle).

89. Putting in the equation tan c = \, and therefore cos c = — ^^^

, the equation
V 1 + X"

becomes

—^ f4?-,
- (\ + 2) r^-KX- 2) rs) a;

« V 1 + x» \ /

^
2V3(X'-3) (^^ ''' "^ ^^ "^ ^^ ^^ " '^^ "' ~ ^^ "^ ^^ ^^ " ^^ ''') ^

'-2ri + (X-l)(X + 2)r, + (X + l)(X- 2)7-3
2(X"-3)

We have

_A/r~Ti _ - vi -HV _ Vi+x"
a^-Vl + X, 'I'i!-- ^^2 '

^'~ X-2 •

_ 1 _ J^ 2X+3 _ 1 2X - 3

^'"V3 ' ^'~V3X-f2' ^/^--^gX^g.

and thence, writing for shortness

ii,= Vl + ^X",

1
E3= 4=V7X"-i-12X-|-12,

V3

i?, = ^V7X"-12X + 12,

56—2



444

we have

ON THE DETERMINATION OF THE [476

r,(\ + 2) = R„

r.(\-2) = 22,.

where r,, r,, r, are positive, and the signs of iJ,, iJ,, iZ, must be determined accordingly;

viz., Ri is always positive, and (c = 0° to c = 90°, as here supposed) R^ is also positive

;

but iJj has the same sign as X. — 2 ; viz., c = 0° to c = 63° 26', iZ, is negative ; and

c = 63° 26' to c = 90°, iis is positive. It is to be observed that this position,

c = tan~^ 2 = 63° 26', of the pole is the intersection of the meridian b = 180° by a

separator circle, and corresponds to an intersection at infinity on the ray 3.

90. Substituting the foregoing values of r^, r,, r,, the equation of the orbit becomes

1

6Vl+\»

1

2V'3(V-3)

1

2(X»-3)

{X(2R, + R^- R,)-3iR, + R,)} y

[\ {R, + ii,) - 2R, -R, + R,],

where \ = tan c ; and the equation of the orbit may thence be calculated for any given

value of c.

91. The analytical expression for the eccentricity is

Fig. 8.

t 1 r-

I

where, as above,

A =

B =

6 Vl + X»

1

2V3(X'-3)

HRi-R, + R,),

{\ (2iJ, + R,- R,) - 3 (R, + R,)}
;
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but this expression is too complicated to allow of an analytical discussion of the

series of values of e (such as was given for A, = + e, in planogram No. 1). The
numerical calculation gives the results mentioned ante No. 87, viz., c = 0, e = 0; c = .51°,

e = l; c = 60°, e=»; c = 63''26'-e, e = 4-912; c = 63°26' + 6, e=l-853; c = 69°, e = -628'

<min.); = 89^20', (viz. \ = 86-176), e=l; c=90°, e = 1-018; values which are ex-

hibited in the diagram in the preceding page.

92. It may be further remarked, in reference to the formula

that for c = 60°, that is \ = V3, we have A finite, B and G each infinite, but equal

and of opposite signs; viz., the equation becomes r = -2242 a; + oo {y — \), that is y=l,
orbit a right line as above.

The abrupt change at c = 63° 26', X = 2, arises from the change of sign of i?,

;

viz., c = 63° 26' - e, ii, = - A = _ 2-309, but c = 63° 26' + e, R, =~ = + 2309 ; the two

orbits are

c=63°26'-c, r = -234 a; + 4-906 y- 3-671, e = 4-912, a= -159,

c = 63°26' + e, r = -578 a;- 1761 y + 3257, e= 1-8.53, a = 1-338

For c = 90° the equation is

= -770 a; + -666 1/ + 1-527

and therefore e = Vp=l-018 as above; a = 9 V21 =41243.

It is to be added that for c nearly =90°, or \ very large, we have

v3

and thence

A- * ^ i-
3V3 V21 X

-770- -430?^,
A.

B- i ^ ^-^- ^ -
V7 X-

-666-1-890^,

C= V^ - 4= ?= 1-527 -1-555^.
^ V3 X X

It wa.s, in fact, by means of these expressions that the value X = 86176 (c = 89°20')

corresponding to the last-mentioned parabolic orbit was obtained.
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93. For the calculation of the table we have

log a?i = 10 + log sec c,

log yi = 10*76144 + log tan c,

log ar, = l()-65052 + log sec (c - 26° 34'),

log (2/2 - -92376) = 10-06247 + log tan (c - 26° 34'),

log a;, = 10-65052 + log sec (c + 26° 34'),

log (y, + -92376) = 1006247 + log sec (c + 26° 34'),

the values of Vi, r^, r,, are then calculated from

aj, = r'iC0S (^1, y, = risin<^,

or say

— = tandi, ri = a;, sec <^i, &c.

and those of the chords 712, 723, 731, from

a;, _ a;„ = 7,2 cos O^^, yi - 2/2 = 7i3 sin ^12,

or say

tan ^12 = — '
, 7i2 = (oni — ^i) sec ^1,.

We have then to find the equation of the orbit r = Ax + By+C; this might be done

by substituting in the determinant expression the numerical values of Xi, y^, r^, x^, y,, r„

a^s, 2/3, ^s, and so calculating the result, but I have preferred to employ the formula of

No. 90, using only the calculated values of r,, r^, r,; viz. we have

r, = Ri,

7-2 (\ + 2) = R.„

n (\ - 2) = E,.

which gives the values of ^, iJj, R3. And then we have e, ts, a, from the equations

+ C
A = e cos vs, 5 = e sin in-, a =

1-e^'

e and a being each regarded as positive. The times in the elliptic, and parabolic

orbits are then calculated from Lambert's equation, as explained in regard to Planogram

No. 1, but for the hyperbolic orbits, the other formulae were made use of.
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94. I annex a specimen ; the characteristics of the logarithms are omitted.

c=20°.

20° , -6° 34' +46° 34'

02701 56107 00286 06113 16272 02376

76144 65052 06247 65052 06247

32251

P
x^ = 1-06418

32251

02701

y, = -21014

02701

00830

29950

<^i = ll" 10'

03531

n = 10847

65338

X. = - -45017

12360

•92367

•01329

2/2 = -f -91038

log = -95922

95922 95922

65338 04752

81324

a;„ = - -65049

08623

-92367

•12196

yz = -80171

log y^ = 90402

90402 90402

81324 10980

09078 0138230584 00674

</>a (= 63° 41') = 116° 19', r, = 10157 4>^ (= 50° 57') = 230° 57', r, = 10323.

The calculation of the equation of the orbit is then as follows

:

i

\ = -36397

log = 56107

12214

X» = -13248

V - 3 = - 2-86752

log = 45750

log R, = 03531

R, = 1-0847

\ + 2 = 2-36397

logVl + V = 02701

77815

log 6 'JT+V = 80516 (a)

45750

30103

log = 37364

logrj= 00674

38038

iJj = + 2-4010

X - 2 = - 1-63603

log = 21378

log 7-3 = 01382

log 2 (\» - 3) = 75853 (c)

23856

22760

i?,, = - 1-6889

log2V3(\=-3) = 99709 (6)
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4jBx = 4-3388

-iZ, -2-4010

+ R, -1-6889

.0899

•2489

log= 39602

(o)= 80516

59086

A = -038982

2Rr = 2-1694

+ R, 2-4010

- R:, 1-6889

6-2593«

log= 79653

X= 56107

35760

+ 2-2782

- SB, - 7-2032

- SRj 50667

7-3449

7-2032

01417

log= 15137

(6) = 99709

15428

5 = -014265

ii,= 2-4010

R, = - 1-6889

+ •7121

log = 85254

X = 56107

41361

+ -25919

- 6'2593*

- 600011

log = 77818

(c) = 75853

•01965

c= + 10464

log B = 15428

log A = 59086

66342

tr (= 20° 6') = 160° 52'

02729

59086

61815

e = -04151

23630

e» = -001723

1 - e' = -998277

a = 10481

log C = 01965

log = 99925

02040
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The calculation of the Times is similar to that for the first planogram, and

requires no further illustration.

The Table for Planogram No. 2 is as follows:

C. VII. 57
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Planogram

c
all + all + all- all +

ai y* n «^ n *. •. i

Circle 0° 1-000 -000 -500 -866 - -500 - -866 1-000 0° 0' 1-000 120° 0' 1-000 240

f 5 1-004 -051 -481 •878 -525 -853 1-005 2 52 1-001 118 42 1-001 238

10 1-015 -102 -467 -889 -557 -838 1-020 5 44 1-004 117 41 1-006 236

15 1-035 -156 -456 -900 -598 -821 1-047 8 30 1-009 116 54 1-016 233

20 1-064 -210 •450 -910 -650 -802 1-085 11 10 1-016 116 19 1-032 230

Ellipses
-

25

30

1-103

1-155

-269

-333

-447

-448

-921

-931

•719

-812

-778

•749

1-136

1-202

13 43

16 6

1-024

1-033

115 55

115 42

1-060

1104

227

222

35 1-221 •404 -452 -941 -939 •710 1-286 18 19 1-044 115 40 1-178 217

40 1-305 -484 -460 -951 1125 •657 1-392 20 21 1-056 116 48 1-302 210

45 1-414 -577 •471 -962 1-414 •577 1-527 22 12 1-071 116 6 1-528 202

w
50 1-656 •688 •487 -974 1-925 •440 1-701 23 51 1-088 116 35 1-975 192

Parab. 51° 0' 1-589 -713 •491 •976 2-077 •400 1-741 24 9 1-093 116 43 2-115 190

52 1-624 -739 •495 •978 2-256 •353 1-787 24 28 1-097 116 51 2-283 188

Hyperbs. -

54 1-701 -795 •504 •984 2-729 •229 1-878 25 2 1-105 117 7 2-738 184

55 1-743 -824 -509 •986 3-049 - -145 1-928 25 18 1-109 117 16 3-053 182

56° 18' 1-802 -866 -515 •990 3-601 -000 1-999 25 39 1-116 117 30 3-601 180

69 1-942 -961 -530 •997 5-786 + -566 2-166 26 20 1-129 118 59 5-813 174

Line 60 2-000 1-000 -536 1^000 7-468 1-000 2-236 26 34 1-134 118 11 7-534 172

Oonvez \

61

63° 26' -£
63° 26' + c

2063

2-236

1-042

1-155

•542

•559

roo3

lOlO

- 10-53

00

+ 00

+ 1-793

+ 00

— 00

2-311

2-517

26 48

27 19

1-140

1-155

118 24

118 57

10-68

00

170

fl65

1345

Hyperbs.-!
64 2-281 1-184 •563 1-012 + 45-22 - 12-60 2-570 27 26 1-157 119 6 46-94 344

65 2-366 1-238 •571 1-015 16-36 5-146 2-670 27 37 1-165 119 21 17-15 342

Parab. 65° 52' 2-446 1-289 •578 1019 10-12 3-552 2-765 27 47 1-171 119 35 10-80 340

66 2-459 1-297 •579 1-019 9-987 3-500 2-779 27 48 1-172 119 37 10-59 340

68 2-669 1-429 •596 1-026 5-617 2-369 3-028 28 10 1-186 120 11 6-090 337

70 2-924 1-586 -616 1-033 3-912 1-927 3-326 28 29 1-202 120 48 4-360 ,?"'

Ellipses 72 3-237 1-777 -638 1-041 3-008 1-694 3-693 28 47 1-221 121 29 3-455

75 3-864 2-155 674 1-054 2^230 1-488 4-424 29 9 1-251 122 36 2-681

80 5-759 3-274 751 1-079 1^568 1-312 6-624 29 37 1-315 124 49 2-045 32(

85 11-47 6-599 -854 1-112 1217 1-216 13-25 29 54 1-402 127 32 1-720 31f

Parab. 89° 20' 86-41 49-79 •979 1148 1^024 1-161 99-5 29 56 r508 130 24 1-548 311

Hyperbs. 90 -€ 00 00 1-000 1-155 + 1^000 - 1-155 00 30 1-527 130 54 1-527 31(<
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6=180°, c = 0° to 90°.

Equation of Orbit.

r = Ax +By +C e tn- a ya 731 ?I2 T^ T,: Tn

•000 •000 + l^OOO 000 ind.° ' rooo 1732 1-732 1-732 1^000 1^000 1-000 0°

5

10+ •0101 - •oois 10104 •010 171 19 1^010 1^729 1-832 1-678 •987 M06 -953

15

•039 •014 1046 •041 160 52 1^048 1^724 1-991 1-668 •956 1-316 -946 20

25

30•083 •061 1126 •103 143 48 M38 r718 2-244 1-710 •924 1-777 -962

35

•135 •209 1317 •248 122 54 1^404 1^740 2-684 1-826 •878 3^238 •966 40

•161 •395 1^527 •426 112 12 r867 1-805 3-055 1-925 45

•186 •815 1972 •836 102 50 6^554 2-016 3-659 2-063 •878 48^60 •849 50

191 •982 2-140 1^000 101 14 00 2^100 3831 2097 •879 00 •820 51° 0'

•196 1^150 2^319 M66 99 39 6434 52

•203 1-719 2-898 1^720 96 44 1^481 54

•207 2-18^ 3366 2^192 95 25 •8§5 2^781 4-890 2-258 -895 ~ •665 55

•212 3-074 4227 3^081 93 56 •498 56° 18'

•221 -1415 + 15-42 1415 90 30 •077 59

•224 ± « (y

+ 4^906

- 1761

-1)

- 3671

+ 3^257

00

4912
1^853

90

87 17

108 11

•000

•159

1^338

6-932

00

9^468

00

2-536

2-799

•000 **. •000 60

61

63° 26'

63° 26' :3

•234

Convex Orbits.

578 #w 00 •909

64

•587 •979 2^494 M34 120 21 8^666 18-014 15^380 2-945 65

•591 805 2-257 1^000 126 19 00 11-633 9-072 3-036 00 7-746 1-386 65° 52'

•593 •779 2-221 •979 127 15 5383 66

•606 •338 1-894 •693 150 53 3645 68

619 - ^120 1-708 •630 169 2^834 5-409 3-649 3-584 5^735 6-343 2-685 70

•635 + ^027 1599 •636 182 25 2-674 72

654 •185 1-497 •680 195 47 2-783 3-859 3-981 4-644 2-62 6-68 4-64 75

•692 •366 1-439 •783 207 52 3^716 3-327 6^212 6-870 1^97 1021 9-343 80

•740 514 1-4.55 •892 214 47 7^721 3-115 12^895 13-480 85

•764 645 1-505 1^000 219 51 00 3-055 9943 102-7 r200 225-4 00 89° 20'

- 770 + ^666 + 1-527 1018 220 6 41^000 3-055 00 00 M48 00 ~ 90 -c

The mark ~- in any of the T columns shows that the Time does not exist.

57—2
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Article Nos. 95 to 98. Planogram No. 3, the Orbit-pole at one of the points A.

95. When the orbit-pole is at one of the points A, the orbit-plane passes through

one of the rays, and as there is no longer on this ray any determinate point of

intersection, the orbit (as was seen) becomes indeterminate. Thus consider the point

A for which 6=270°, c = 60°: we have

a, /S, 7 =-1, , ,

a, 0', y = 0, -h , -iV3.

a", 0", 7"= 0, -W3, h .

FiR. 9.

and consequently the formula gives

X3 : 2/3

1 =

1 = -jVs-Vs

1 = _^V3_\/3

3

-3

-iV3-V3,

-iV.3-V3,

and, moreover, x = — x', y = — y'. From the formula the value of a^' or «, is given as

J, but the true value is obviously Xi = \; the value of y^ is actually indeterminate.

The formulae give the values of {x.^, y^), {x,, y,), viz. the system is

x^= 1, yi = ind.

3^2= ,^, whence n = r3 = Vf,

x, = -l,
^' = -V3-
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SO that the orbits in the planogram are the whole series of conies having a given

focus, S, and passing through two fixed points, 2, 3, having the common abscissa

2
x = —l, and at equal distances .- (= 1'15470) on opposite sides of the axis. The axis

of X is obviously the common transverse axis for all the orbits ; that is, the equation of

the orbit will be of the form r:=Ax + B; and writing « = — 1, we have V| = — ^ + 5,

viz. the equation is r—'J^ = A{x + l); the value of A will be determined if we

assume for the point 1 a determinate position on the line x = l, say its ordinate is =yi;

for then if n = Vl + yi' we have r, — \/| = 2A, and the equation is r — V| = | (?-i
— V|)(a;+ 1).

In particular if yi=0, we have ri = l, and the equation of the orbit is r— V|= J(1— V|) (x+1):

this is the orbit, eccentricity J (V| — 1), = -264, belonging to the point J. as a point

in planogram No. 1 : for the value of y, being in that planogram originally assumed

•=0, is of course =0 when the orbit-pole comes to be the point A.

96. We may conversely take the equation of the orbit, or say the value of

A(=±e)ia the equation r — '/l = A (x+1), to be given; and then writing a; =a:i = l,

we have

r, = Vf + 2A, that is yi' - (V| + 2Ay - 1
;

for

r, = 1 or y, = 0, ^ = 1(1 - Vf) = - -264,

and as >•, increases to ?•, = Vj , or y^ increases to + ,-, A diminishes from — 264 to ; viz.,

v3
- 2

'

/- 2
for r, = V| , or y, = + -^ , the orbit is a circle ; as rj increases from v

J, or y, from + -.l.
,

A increases from positively; for r, = V|-(-2, =3527, or yi^ +y „
. = + 2*896,

A becomes =1; that is, the orbit is a parabola; and for larger positive values of r,,

or positive or negative values of y,, the orbit is a hyperbola (concave) ; and ultimately

for r, = X or yi = ± oo , the orbit is the right line a; + 1 = 0. Thus A extends from

— '264 to 0, and thence from positively to + oo

.

97. In further illustration, suppose that the orbit-pole, instead of being at A, is

a point in the immediate neighbourhood of A, say that the rectangular spherical

coordinates, measured from A in the direction of the meridian and perpendicular

thereto, are f and if, the colatitude and longitude of the orbit-pole being thus

2
c = 60° -(- f, and b = 270° -!-._';; we have then, ^, rj being indefinitely small,

v3

2

J r^ , 1 1 '^3 ^ V3 , ^
a', ^,7' =^'7, -i + -Y^'

"2"*^'

V3 Vs
a", r, 7" = V . -^-if i --{"'



454 ON THE DETERMINATION OF THE [476

and thence

<^= (-i+Y^)^3 + -2 +*f= 2f

2

V3
y»' •--?7i'^- '^ ' ~^i

V^ , ^ /, V3
:-=^^-«.(i-';^)« :-2|;

that is, a^' = — 1, yx=\, or what is the same thing, a;i = — 1, yi = j; the values of

Xj, i/i, and a;s, 3/3, differ from their former values only by terms in f, 17, which may
2 2

be neglected; that is, we have as before a;3 = — 1, ^j=-t= and 373 = — 1, y,^— y^; and
v3 v3

we thus see that the foregoing determination of the orbit for an arbitrary value

of yi, writing therein yj = — ^ for what would be the same thing 2/i=e) gives the

2
orbit for the neighbouring position c = 60°4-f, and b = '270° + -j=:r] of the orbit-pole.

V t>

Writing for greater convenience f= pcoS'^, 77 = psin-i^, the indefinitely small quantity

p will denote the distance of the orbit-pole from A, and its azimuth measured from

the meridian will be = -^jr. We then have yi = — tan ifr, and r, = Vl -f- y," = + sec yfr, or,

if to fix the ideas, i/r be considered as < + 90°, then r, = sec ijr : we have thus

(A=±e as before) ^ = J (— V| -f- sec i/r) ; viz., observing that \^= 1-527, we obtain

Vr = 0, .4=--i(V|:-l) = --264

yfr = sec-i V| = ± 49° 6', ^ =

Vr = sec-U2V|-l)= + 60°52', A= ^(Vf- 1) = + -264

^ = sec->( V|-f2)= + 73°32', A =1
^= ± (90° - e), A = + 00

.

98. These results will have to be further considered in reference to the course

of the iseccentric curves through the point A. I remark here that, although it

appears that although for eccentricities less than '264, and in particular for the

eccentricity =0, there are real directions of passage from A to a, neighbouring point,

yet there are not through A any real branches of the corresponding iseccentric curves;

viz., .4 Lb in regard to these curves, an isolated point with real tangents; that is a

point in the nature of an evanescent lemniscate. As regards the eccentricity =0, it

is obvious that this must be so; viz., there can be no real branch through A. In

fact, the orbit can only be a circle when the intersection by the orbit-plane of the

hyperboloid which contains the three rays is also a circle; that is, the orbit is a circle

only when the orbit-plane coincides with the plane of the ecliptic.
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Article Nos. 99 to 103. Planogram No. 4, the Orbit-pole in the Ecliptic.

99. When the orbit-pole describes the circle of the ecliptic, the orbit-plane passes

through the axis of z, or polar axis. We have c = 90°, and consequently

a
, /8 , 7 = sin 6, — cos 6, 0,

a', ;S', 7' = , 0,-1,
a", ff',

7" = cos h, sin h, 0.

Reverting for a moment to the general case where the six coordinates of the ray are

(a, b, c, f, g, h), the formulae for the intersection by the orbit-plane are

af:y':\= (a, h, c^a' ,
^'

,
y')^-c

: — (a, b, c^a
, ;3 , 7 ) : — a sin 6 -(- b cos 6

: (f, g, hja", /3", 7") : fcos6 + gsin6.

that is

If 7 K • 7 fv
-7 + - cos -f- - sin 6 = 0,
X c c

and thence

1 : cos 6 : sin 6 =

1/ h 7 a . , ^
S + - cos — sin = ;

X c c

af-tg
.
g2/' + a

_
b-fy

I

consequently

c"
' ca/ ' ex'

= hx' : gy' + a : -fy' + h;

W^ = igj/ + ay + {{y'-hy,

or, what is the same thing,

ha/' = {P' + ^)y'' + 2(a.g-h{)y' + a? + ]:^,

I

or, in particular, if (as in the special symmetrical case) ag — bf=0, then»haf' = (P + g'')y'^ + 0? + h-.

f 100. For the symmetrical system of rays we have as before

^

a,, b„ c„ f., g„ hi= 0, V3, -1, 0, 1, V3,

I a,, b„ c„ f„ g„ h,= 3, V3, 2, V3, 1. - 2 Vs,

a,, b,, C3, f„ g3, h3 = -3, V3, 2, ^/3, 1, -2\/3,

and thence

V3 cos 6 : sin 6
,

— 3 sin 6 -f- V3 cos 6 : sin 6 -I- V.S cos b,

3 sin 6 + ^^ cos b : sin 6 — V3 cos b,

y^ 1= 1 :

:yi : l = -2 :

yi : 1 = - 2 :
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or, what is the same thing,

Xi = cosec b , y,' = VS cot b,

-1

[476

sin 6 + Vji cos b

'

sin 6 — V3 cos b

'

or as these may also be written

,_ V3(co8 6-V3sin6)

sinft + VScost

, _ V3(cos6+ V3 8in6)

sin 6 — V3 cos 6

y,' = V3 cot b
,

y/ = V3cot(6 + 60°),

y,' = V3cot(6-60°),

«,'= cosec 6
,

«/ = - cosec (b + 60°),

ir/ = — cosec (6 — 60°),

so that for each of these sets we have

(The curve is in fact a section of the hyperboloid of revolution, of+7/* — ^z* = l,

which passes through the three rays.)

101. As regards the equation of the orbit I will first consider the particular

cases 6 = 90°, 6 = 0°, which should agree with the orbits for c = 90° in the planograms

1 and 2 respectively.

For b = 90° we have x = x, y' = y and

<= 1, yi'= 0,

x,' = -2, y,' = -S,

ooi = -% yl= 3,

and the orbit is at once found to be

r = Hi-^^i3)(*'-i),

the eccentricity (regarded as positive) being thus ^(VIS — 1), =-7685 as before. For

6 = 0° there is a discontinuity, and I write successively 6 = + e, and 6 = — e. For 6 = + e

we have x' = — y, y' = x, and

!ci= 00 , 2/,' = 00 V3,

a;.' =—-p., w.,'= — 1,
V3

"'

^3-= ^, y,' = -l,
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and the orbit is found to be

r= fa/ +^/ +^= -666 a; + -7702/ + 1-527;

457

and similarly for b= — e the equation is

, _/ 4 , V7
a; + -770 y + 1-527;

hence the eccentricity is

e = vfl, = 1-018, as before.

102. Considering now the general case where 6 has any value whatever, the

equation of the orbit is

r , of, ^ , \ =0,

ri sin 6 , 1

,

Vs cos 6 , sin h

rj (sin 6 + V3 cos 6), - 2 , - 3 sin 6 + V3 cos h, sin 6 + Vs cos h

r, (sin 6 — Vs cos b), — 2 , 3 sin 6 + V3 cos b, sin 6 — VS cos b

{of = xsm.b — y cos b, tj = x cos 6 + y sin b, as before).

The coefficient of r is readily found to be - 6 v 3 (sin* b + cos'' 6), = — 6 V3 ; hence

completing the development, dividing by 6 ^/3, and transposing, the equation of the

orbit is

r = \ [2ri sin 6 —r.^ (sin 6 + V3 cos 6) — r, (sin 6 — Vs cos 6)] a;'

H ;_ [4ri sin 6 cos 6 + r-j (- 2 sin & cos 6 + V3 (cos'' 6 — sin'' 6))
6v3

+ ^ [4ri sin* 6

where

+ rs (- 2 sin 6 cos 6 - V3 (cos" b - sin" 6))] y'

+ rj (sin" 6+3 cos" 6 + 2 V3 sin 6 cos b)

+ r3 ( sin" 6 + 3 cos" 6 - 2 V3 sin b cos 6)]

,

n =
Vsin" 6 + 4 cos" b

sin b
'

r,=

r,=

•JIS sin' 6 + 7 cos" 6 - 6 V3 sin b cos b

sin 6 + V3 cos 6

n/i3 sin" 6+7 cos" 6 + 6 '/S sin 6 cos 6

sin 6 — V3 cos 6

in which expressions the signs of the radicals must be such that Vj, r^, r^ shall be

positive. Hence writing tan 6 = 77, (sec 6 = Vl + ?;", which determines the sign of Vl+ij"),

also

i2j = Vi;" + 4, ^ = 7l37?" - 6 \/3 17 + 7, iJ3 = N/l3r + 6V3 7; + 7,

C. VII. 58
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and therefore

ON THE DETERMINATION OF THE

vr, = Ri, (7; + V3)r, = i2„ (i? - VS) r, = iJ,,

[476

which last equations determine the signs of Ri, R^, R3 respectively, the equation of

the orbit is

r= ,i
. {2Bi-Ri-R,)x'

6 VI + 9?»

1

6(1 + V)'^
(4i2, + ii, (1 - 97 V3) + iZ, (1 + ., V3)) y

6 (1 + V')

Thus if b = + e, then also 17 = + e,

and the equation is

V7
• = *4a;' + ^8y' + ^2V7V3, =§a;' + ^2/' + ^-, = -666^' + 770y+lo27,

R, = ^^, R. =^. -R3 = -
2V13
3 '

as before ; and similarly if 6 = 90°.

And moreover, if & = 30°, then

1

whence the equation of the orbit is

r = i (Vl3 -!)«' + y' + H^^i3 + 2),

•868a;' + 0y'+ 1-868.

103. The equation of the orbit should be tabulated from 6 = to b = 30°, the

equations for the remainder of the circumference will be then found by successive

repetition of this interval in direct and reverse order, with however a change of sign,

in the manner about to be explained.

6 = 6,

6 = 30°,

6 = 60° - e,

6 = 60° + e,

6 = 90°,

r = + -666 x' + -770 y + 1-527,

r = + -868a;'+ y'+ 1-868,

r = + -666 x' - -770 y' + 1-527,

-666 a;'
+

-770 y' + 1-527,

-868 a;' + 2/' +1-868,

666 a;'- -770 y' + 1-527,

30° + /9 same as 30° — ;9, reversing sign of the y' coefficient.

90° + /S same as 90° — /3, reversing sign of the y' coefficient, and whole interval

60° to 120° same as interval 0° to 60°, except that the signs of the x coefficient

are reversed, and the remaining two intervals, 120° to 240° and 240° to 360°, are

merely repetitions of the interval 0° to 120°.

6 = 120°-e, r = -
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As regards the interval 0° to 30° the only intermediate value that I have

calculated is 6 = 15°, viz., we then have

6 = 15°, r = -811 a;' + -403 2/'+ 1-787.

Calculating for the foregoing values 6 = 0°, 6 = 15°, 6 = 30°, the values of e, «r, a,

these are found to be

6= 0°, 6 = 1-018 cr = 220° 6' a = 41-24

6 = 15°, e= -906 BT = 206° 27' a = 10-008

6 = 30°, e= -868 nr = 180° a= 7-604

I

Article Nos. 104 to 113. Planogram No. 5. The Orbit-pole on a Separator.

104. If the orbit-plane rotate round a line parallel to one of the rays, the

orbit-pole will describe a separator circle, and conversely. I consider the general case

of a ray the six coordinates of which are (a, b, c, f, g, h), and for which the inter-

sections with the orbit-plane are given by

X -.y' : 1 =(a, b, c][«', ^, i) : -(a. b, cja, /9, 7) : (f, g, h$a", ^", 7").

The axis of x' is parallel to the ray

x—A . y—B_z —

G

~r-^-^ -fa-'
that is, we have

o : /3 : 7 = f : g : h,

whence, putting for shortness

n = Vp +"^Th= and U = VfM^',
we have

a=j=c = co8JVcos(r, /9= ^ = cosiVsin(?, y = ^ = -8mN,

and thence
r TT

tanG= = |, 8inG = ^, cosGf = jj,
cosN = -^,

and we thus obtain the values of a', ^, 7'; a", /3", 7" in terms of f, g, h and the

variable angle H, viz., these are

g cosH hf sin H „ _ - g sin .g _ hf cos H
" =- li~ + ^fKr~' "^

- n nn •

^ fcosfl" ghsmH a" _ f sin H hg cosH

WsinH „_ IPcosfl;

-mi-' ^
- nn

58—2
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where H is the angular distance of the orbit-pole, along the separator, from the

point A, The foregoing values give

(a, b. c$a, /3, 7) = 0,

n(a, b, c$a', /9'. 7') = -i {(ag-bf)co8£r + cnsin fl"}.

(f, g,h]la" r, 7") = 0,

80 that the coordinates x', y of the intersection with the ray are given in the form

a;' : / : l=ilf : : 0,

that is

, M ,0

but the value of y is determinate, viz., this is equal to the perpendicular distance of

the ray from the point S.

105. In particular when the rays are the special symmetrical system before

considered, then if (a, b, c, f, g, h) refer to the ray 1, we have f=0, g = l, h = V3,

n = 1, fl = 2, and thence

a,/3,7=0 ,J ,
\^l ,

a'
,

/3'
, 7 = - cos H, I Vs sin H, - ^ sin H,

a", 0', y" = - sin H, ^ V3 cos H, i cos H.

For the intersection with the ray 1 we have

and for the intersections with the other two lines

Xt : ya' : 1 =

(3, V3, 2 )(-co3H, ^VSsinF, - ^ sin 1?) =- 3 cos^' + ^sinfl'

: -( 3, V3, 2 )( 0, 1, iV3) : f V3

: (V3, 1, - 2 vH) (- sin ZT, -^VScosF, |cos.ff) : - VSsinfl-fVScosF,

and

X,' : y,' : 1 =

(- 3. V3, 2 )(-cos^, ^V'Ssin.ff, -^sin.^= 3 cos if + i sin fl"

: -(- 3, V3, 2 )( 0, i,' i^f3) :fV3

: (-V3, 1, - 2 \/3) (- sin ff, -jVScosF, ^cobH) : VSsinfl'-fVScosfl,
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that is, we have

461

, _ 1 6 cos fl^ — sinH
*"' ~V3 3 cos if+ 2 sin if'

3
y^
=

,_ 1 6 cos IT+ sinZf

"'""vl 3cosfi--2sin^'

3

3cos^ + 2siiiir'

106. Writing herein

y« =
3 cos fT- 2 sin if

cos CD = "7= , sin 6> = -;=-. , tan o) = |, w = 33° 41'
^/l3 Vl3

^

the fonnulae are readily converted into

1

13 V3
_ {16 - 15 tan {H- m)], x,' = -= {- 16-1.5 tan {H + »)},

lo Vo

y^' =^ sec (H- to). Vi = -/jK sec (i^ + «),

where, in regard to this angle w, it is to be observed that it represents the angular

distance from the ecliptic along the separator to a point B, or what is the same

thing, the complement of the angular distance on the separator, of the points

A and B. We have, in fact, a right-angled spherical triangle ZAB, /.Z = 60°,

/.A = m\ ZA = 60' whence sin 60° = tan ^Scot 60°, that is, tan ^5 = sin 60° tan 60° =
f,

or .45= 90' -w.

Hence, fl^= + 90°, the orbit-pole is on the ecliptic, jET= + (90° — w), it is at a

point B (the intersection of the sepai-ator by one of the other two separators), and

if = 0, it is at the point A on the separator.

The foregoing values of (a^', y,') satisfy the equation

2.5y» = 39a^-32a;V3 + 37,

and similarly the values of (a;,', y,') satisfy

25y» = 39x' + 32* V3 -I- 37,

results which would be useful for the delineation of the planogram.

107. As regards the equation of the orbit we have a;,' = + oo , and consequently

(C' = + r, = Br^ if for convenience be written to stand for +1. The equation of the

orbit then is

= r

1

a!

e , 0,

1

r, (3 COS ir+ 2 sin iO, j-( 6 cos J? - sin if), 3, 3 cos if + 2 sin fl"

r, (3 cos if - 2 sin iT), ]_(- 6 cos i? - sin iT), 3, 3co8ir-2sinir
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that is

-(re-a/)12ainH =

1/ \^- (36 cos' i? + 4 sin' H) - Or, (9 cos' JS - 4 sin' H) + On (9 sin'H-i cos' Hyt

- 12 V3 cos fl^ + 3^ (3 cos -ff + 2 sin iT) r, - 3^ (3 cos /T - 2 sin F) r„

where

r» =

V21 cos^ H — 4:008 H sin if+^sin' H
3 cos if + 2 sin if

V2I cos' H + 4>cosH sin ir + ^8in= H
3 cos if -2 sin if

Hence, writing tan if = \, and therefore secfl'=Vl + X', which determines the sign

of Vl + \', and moreover

i2,= V21-4\ + 3^\', i4 = V21 + 4\ + ^\',-

and thence also

(3 + 2\)r,= i2„ (3-2\)r3 = i2„

which last equations, since r-j, t-, must be positive, determine the signs of the radicals

i2j, Rz ; the equation of the orbit is

r = ex'+ ^L^ l-t (36 + 4X') - (3 - 2X) iJ, + (3 + 2\) rX +

'

12xVrTx'K3 J

where d it will be recollected denotes +1 or — 1 at pleasure.

4A,

108. I remark that ^ = + 1 and ^ = - 1 may be considered as belonging to

positions of the orbit-pole indefinitely near the separator on the opposite sides thereof

B'"

respectively ; the annexed figure represents a portion of the blank spherogram, and

the two sides of the half-separator A'C will be traversed by the orbit-pole, if H
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extend from 0° to 90° -« (=56° 19', value at B') and thence to 90°, = +! belonging

to the side marked + in the figure, and ^ = - 1 to the opposite side. But the same
result may be stated, more conveniently, in reference to the blank spherogram, as

follows

:

H= 0° to H= 56° 19', ^ = +1 belongs to the outside of AB', viz. to positions

within the region of convex orbits,

^ = — 1, to inside of AB',

fl"=56°19' to fi^= 90° , ^ = + 1 belongs to inside of B'C,

H=W to ir=123° 41', ^ = +1 belongs to inside of G'B,

the last-mentioned values being identical with those for if =90° to ^=56° 19', ^ = -1:
viz. the formula for .H = 90° + .fir, ^= + 1 is equivalent to that for H=QQ°-K, 6 = -!.

109. I consider some particular cases.

Orbit-pole at A : here H=0 and therefore X = 0, iij = -Kj = V21 ; the orbit is

r=6x' + (y' — 1), viz. it is the right line y —1 = 0.
A.

Orbit-pole in the neighbourhood of B. Suppose first H = 90° — m — e, \ = cot w — e

cosec' «i> = | — J^e, 3 — 2\, =-^e, is positive, and therefore R3 is positive, and we have

ii,= 6, jB, = 4 VS ; whence the equation is

r = ex+ y',^(ioe+u)+i-~^{e+i),
9V13

'
V3^ ^

viz. ^ = — 1, this is _

and 6 = + \, it is

r = x' + 'J^y+\-^,

and so secondly, if fl" = 90° — « + e, \ = f + J^ 6, 3 — 2X, = — -^ e, is negative, or ij, is

also negative, viz. iZj = 6, iZ, = — 4 V.3, and the equation is

viz. 6 = -\-\, this is

and = — 1, it is

9V13 V3

r = a/-V^y-|-l,

V3'

At the point B there are thus four orbits: viz. jH'= — 90° — o> — e, ^ = + 1, and

11=90" -ay + €, 6 = —l, these are orbits wherein the eccentricity is = V^-, = 2-309,

agreeing with that found for the point B in planogram No. 1, or say for an orbit-

pole near B in the direction of the meridian ; whereas for H= 90° — w — e, 6 = — l

and Zf = 90°-w + e, = +l the eccentricity is Vjf = ri01.
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Suppose again that the orbit-pole is on the ecliptic, or say fl'=90' — €, \= + »,

i2, = 2V|\, i2,= -2V|v, and Vl + V = \, and the equation is

-*(''%-V3)*^''

and similarly for ^ = 90°-|-€, \ = -oo , i?a = 2Vj\, jR3 = -2Vj\, Vl-|-\»= X, and the

equation still is

viz. retaining the same sign, there is no discontinuity in the passage through 90°.

The eccentricity, whether ^ = + 1 or = — 1, is Vp, =1018, agreeing with Piano-

gram No. 2.

110. For the more complete discussion of the eccentricity, we have

The eccentricity cannot be less than 1, which is evidently right, for the point 3 being

at infinity, the orbit cannot be an ellipse. We may have e = 1 (or the orbit a parabola),

viz. this will be the case if

^(9 + XO -(3 - 2\)ii, + (3 + 2\)i23= 0.

v3

Proceeding to rationalize this equation, we have first

(3 - 2\)= R„J + (3 + 2\)= ii,' - J^ (9 + V)' = 2 (9 - 4V) iJj-Bs.

viz. substituting for R^, R^ their values V'21 - 4\ +^V and V21 + 4X. + 3f\\ this is

found to be

2(9-4V)\/(21 + |^y-16V = -54 + 336X» + ^V;

or, what is the same thing,

(9 - 4X») V3969 + 3384 \»+ 784 \< = - 81 + .504 \= + 104 \*

whence, squaring and reducing, we have

432 (4\» - 248 \« - 819V + 162 X= + 729) = ;

or, what is the same thing,

432 {\^ + 1) (4\« - 252 V- 567 \» + 729) = 0,

or, finally, the condition for a parabola is

4^ - 2.52 \ ^ - 567 V + 729 = 0.
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111. I stop to remark that this equation may be obtained differently, as follows.

Since the point 1 is at infinity on the axis of x, this line will be the axis of the

parabola; or the equation of the parabola will be

and we have therefore

- y^+ 4aa; + 4a- = 0,

- y,^ + iax^ + 4a= = 0,

- y^ + 4taxt + 4a" = 0,

that is

and therefore

1 : 4a : 4a» = a;2-a;3 : y^-y^ : -y^x^Jry^x^,

{y? - yij 4 (a;, - x^ {jjix^ - yi X,)

as the condition for a parabola.

But the values of x^, y,; x,, y-^, ante No. 104, introducing \ in the place of H, are

1 6-\ _ 1 6 + \
" V3 3 + 2\' ' '/3 3-2\'

y^ =
3 Vl 4- \°

3 + 2\ ' y»
3 Vl + X'

3-2\ '

and thence

X^ ~~ Xa ^
i_ 9-fX'

V3 9 - 4V

'

y^ y^ - (9 _ 4,xj
'

y*!Ct-y»!^i=-
36 (l-f-VXQ-V)

V3 (9- 4V)-'

l+V
and substituting these values and omitting a factor y^ ^±-^i^t ^^^ result is

243\»(1+X.'')

(9 - 4X''f

= (9 + V)(9-\"),

viz. this is

that is

as before.

9-4X»

(4V - 9) (V - 81) - 243\^ (V + 1) = 0,

4X« - 252X*- 567X2 + 729 = 0,

112. The equation considered as a cubic equation in X" has its three roots real,

but only two of them are positive ; viz. there is a root not very different from 1, and
which is easily approximated to by writing X" = 1 — a:, this gives

4a;» + 240*'' - 1068a! + 86 = 0,

C. VII, 59
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or nearly a; = y§§^ = "08 ; a second approximation gives a; = '0802; or we have X'' = "9198,

\ = "9592, whence H = 43° 49'. Substituting in the equation

^(9 + 4\')- (3 - 2X) i2,+ (3 + 2\)ie, = 0,
V3

this will be satisfied by ^ = — 1, viz, the parabola belongs (as it obviously should do)

to a point of AF within the triangle BB'B".

To obtain the other positive root we may write the equation in the form

:,,-63, l^l-'^5 18225

the approximate value \° = 63, gives more nearly V = 65 and then

141-75 128-24
X»=63 + -

, =65-177,
65 4225

whence X'= 8'073 or H= 82° 56'. Substituting in the equation

4^

V3
(9 + 4X=)- (3- 2X)jRs+ (3 + 2\)R3 = 0,

we have ^ = + 1, viz, this parabola belongs to a point of B'G' within the triangle

BB'B".

The two values of e for ^ = + 1 and ^ = — 1, are each infinite for X = 0, and

they become equal for X= x (viz. when the orbit-pole is on the ecliptic), but

not in any other case ; in fact they can only do so for 9 + X^ = 0, or else for

(3 - 2X) iis = (3 + 2X) ^3 , that is, X (288 + 128 X^ = 0, viz., X (9 + 4X=') = 0.

113. In further explanation I give a diagram of the eccentricity.

Fig. 11.

The base AFC'B is here the broken line AB'G'B' of figure 10: the ordinates

along the base ^C"(=90°) of the two continuous curves exhibit the values of e, as
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given by ^ = + 1 and ^ = — 1 respectively ; the dotted curve on the base G'B (= G'B')

is merely the upper curve on the base C'B^ transferred to the base G'B; and the

curve composed of the lower curve on the base AG' and of the dotted curve gives

by its ordinates the value of the eccentricity as the orbit-pole moves along AB'B
within the triangle B'BB": the upper curve on the base AR gives by its ordinates

the value of the eccentricity as the orbit-pole moves along AB' on the other side

thereof, that is, within the convex region.

The base of the diagram is graduated not for the value of H, but for that of

the angular distance (or distance in longitude) of the orbit-pole from the point A
(or A') ; viz. this is the angle opposite H in a. right-angled spherical triangle, the sides

and bypothenuse of which are 60°, H, c ; writing /3 for the angle in question we have

2
. „/ 2\>

cose = i cos £r, tan/9 = -^tanfl'(= -y-)

,

v3 \ v3/

and any position of the orbit-pole on the separator may be conveniently laid down by

means of this angle /9. The values of /3 corresponding to the before-mentioned values

\ = -9592 and \ = 807.3 are yS = 47° 54' and jS = 83° 53' respectively.

Article Nos. 114 and 115. The Spherogram and Isoparametric Lines—Oeneral

GoTisiderations.

114. We first construct a blank 'spherogram, as already explained (and see also

Plates IV. and V.), viz., we draw on the stereographic projection a hemisphere—say

the northern hemisphere : the meridians being radii and the parallels of colatitude

circles with the pole as centre ; the parallel of 60° is the regulator circle, and the

separators are great circles touching this at the points A, A, A, in longitudes 30°, 150°,

270° respectively ; the separators intersect in the points B, B, B, in the northern hemi-

sphere, and they are produced to meet again in the points B, B, B, of the southern

hemisphere ; but instead of taking the whole northern hemisphere, we omit portions

thereof, and take in the opposite portions of the southern hemisphere ; the spherogram

being thus bounded by portions of the separator circles, and consisting of the inner

spherical triangle B, B, B, and three surrounding triangles B, B, B. The inner triangle

contains the regulator-circle, touching its sides at the points A, A, A respectively, and

dividing it into an inner circular region and three surrounding regions A, B, A; these

last are the loci in quibus of the orbit-poles which correspond to convex orbits; and

to mark them off from the other regions, it is proper to shade them in the sphero-

gram. Excluding them from consideration, we have the inner circular region and the

outer triangular regions separated off from each other by the shaded regions, except

at the points A, where these are thinned away to nothing. The points A are positions

of the orbit-pole for which the orbit is indeterminate ; and consequently any parameter

belonging to the orbit is also indeterminate. Hence the isoparametric line for any

given value of the parameter will always pass through the points A ; that is, all the

isoparametric lines will pass through these points, which are thus points of connexion

59—2
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between the inner circular region and the three outer regions, but it must be recol-

lected that for certain given values of the parameter, the points A may be isolated

points on the isoparametric line.

115. It is sometimes necessary (more particularly as regards the Time-spherogram

and isochronic lines) to distinguish from each other the several points A and B; and

for this purpose I consider the several points, as situated in the spherogram, to be

accented in the following manner:

B^ R B

A' A
F" A" F'

B^

so that the inner triangle is B'F'F" and the outer triangles are BFB", FB'^F" and

F"F'F' respectively; this distinction has been already partially made in Fig. 10.

Article Nos. 116 to 122. The e-spherogram and Iseccentric Lines, See Plate IV.

116. Constructing a blank spherogram as above, we may from the tables for

planograms Nos. 1 and 2 lay down numerically the values of the eccentricity at the

several points of each meridian for the longitudes 0°, 30°, . . 3.30°, viz.

Longitudes Planogram No. 2 shows that e increases from at

0°, 60°, 120°, 180°, 240°, 300°. the centre to oo at 60°, then, 60° to 63° 26' (shaded

region), it diminishes from oo to 4'912 ; on passing 63° 26'

it changes abruptly to 1"853 ; thence diminishes to a

minimum = "628 at 59°, and again increases to I'OIS at

90°.

Longitudes Planogram No. 1, part 1, shows that e increases

10°, 210°, 330°. from at the centre to oo at 60°, then, 60° to 73° 54'

(shaded region), it diminishes from x to 2"309, this last

value being at a point B, the termination of the sphero-

gram.

Longitudes Planogram No. 1, part 2, and for values over 90°,

30°, 150°, 210°, part 1, shows that e increases from at the centre to

•264 at 60° (point A), '869 at 90°, and 2309 at 100° 6',

point B.

It will be recollected that, although e has the same value, 2'309 at the two

opposite points B, yet there is an abrupt change of orbit, indicated by the change of

sign of J. (= + e).

117. Planogram No. 3 shows the directions at the points A of the several

iseccentric lines. Planogram No. 4, if the calculations were completed, would give the
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value of the eccentricity at the several points of the ecliptic, but besides the already-

mentioned values 1-018 at 0°, 60°, fee, and -868 at 30°, 90°, &c, the only value

calculated is -906 at 15°, 45°, &c. It thus appears that the eccentricity = I'OIS for

longitude 0° diminishes through "906 at 15° to '868 at 30°, and then again increases

through '906 at 45° to I^OIS at 60°, and so on through successive intervals of 60°.

118. Planogram No. 5, if the calculations were completed, would give the value

of e for the arc AB within the shaded region (but no values have been found except

those given by Planograms 1 and 2, viz. e = oo at A, =4-912 at longitude 30° from A,

and = 2-309 at B) ; and it would also give the value of e for the whole bounding

arc ABB within the exterior triangular region. We have e = ao at A, = 1-853 at

longitude 30° from A, =1 at distance Zr = 43° 49' from A, =1-101 at B, and then

proceeding along the arc BB, =1 at distance 5' =82° 56' from A, =1-018 on the

ecliptic, and, finally, =2-309 at B. The two values e = l are very important, as will

presently appear, with regard to the parabolic curve.

119. It is now easy to trace the form of the iseccentric lines.

e = 0, the curve is a point at the centre, and for any value less than -264 it is

a trigonoid form surrounding the centre, the maxima radii being directed towards the

points A. The points A belong as isolated points to all these curves.

e = -264, the curve is tricuspidal, having a cusp at each of the points A. The
numerical values seem to show a singularly blunt form of cusp (the points A are, in

fact, not ordinary cusps, but singular points of a higher order) ; but the data do not

enable me to draw with certainty thfe precise forms of the arcs between the three

cusps : the wavy form was drawn purposely, but there is no sufficient evidence for its

correctness.

120. It is convenient to pass at once to the case e = l, or say the parabolic

curve, locus of the orbit-pole when the orbit is a parabola. This is a three-looped

curve cutting itself (having a node) at each of the points A ; and it appears from

planogram No. 5 that each loop touches at four points (two points, H — 43° 49', and

two points, It =82° 56'), the sides of the bounding triangle BBB. The loop thus divides

the triangle BBB into six regions, viz. one within the loop, two subjacent, two lateral,

and one superjacent.

For any value between e = '264 and e = 1, the curve is a three-looped curve inter-

secting itself at the points A, and such that the loops lie wholly within those of the

parabolic curve, and the remaining portions between the parabolic and cuspidal curves.

121. For any value of e>l, we must imagine a three-looped curve intersecting

itself at the points A, the loops respectively containing those of the parabolic curve,

and the remaining portions within the regulator-circle lying between the regulator-circle

and the parabolic curve; and we must then obliterate so much of each loop as lies

in the shaded regions, or outside the spherogram ; viz. instead of a continuous loop

there will be thus a broken loop with detached portions thereof in the subjacent

regions, the lateral regions, and the superjacent region respectively. More precisely
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this is the form for any value of e from e = 1 to 6 — I'lOl, but for this last value the

unobliterated portion for each lateral region evanesces ; for any value of e between

e=l"101 and e= 2309, the unobliterated portions lie wholly within the subjacent regions

and the superjacent region ; for e = 2309 the portion within the superjacent region

evanesces ; and for any greater value of e the unobliterated portion lies wholly \vithin

the subjacent regions, the loop being thus a mere fragment.

122. The iseccentric curves within the shaded regions form a distinct system : such

curves belong to the values e= 2"309 to e = co , and any one of them is a fragment

of a three-looped curve intersecting itself at the points A, obtained by obliterating so

much of the complete curve as lies outside the shaded regions. But it is perhaps

better to disregard these curves altogether, thus in efifect excluding the shaded regions

from the spherogram.

Article Nos. 123 to 143. The Time-spherogram and Isochronic Lines. See Plate V.

123. We construct a blank spherogi-am, and lay down upon it the parabolic

curve ; we may then lay down (as will be explained) the numerical values, say of the

times Tj3, but in order to gain some idea of the form of the Tij-lines I will firat

consider the question in a more general manner.

124. When the orbit is a line, parabola, or hyperbola, we may distinguish it by

the letters L, P, H accordingly ; and by the numbers 1, 2, 3, written in the proper

order, show the arrangement of the three points on the orbit ; observe that if 1 be

the middle point on the orbit, we may write indifferently 213 or 312, and so in other

cases, the fixation of the middle number is alone material. When the orbit is a line

the distances of the points are always finite ; and if the orbit be, for example, L 123,

then Tij and T^ are each =0, but T,, is non-existent. For the parabola and h)^erbola

the distances are in general finite ; but it is necessary to distinguish for the parabola,

e.g. the case P 123 where an extreme point, and for the hyperbola, e.g. the cases

if i23 and 5"l23 where one or each of the extreme points, is at infinity. We have

in these cases respectively

P123, Ti2 finite, T23 finite, rsi = <»

Pi23, T,,= x, ^23 finite, T^^x

and it may be added, as regards P123, that, by a continuous change of the parabolic

orbit the point 1 may change over to infinity on the other half-branch of the parabola,

or the arrangement become P23i. And, moreover

if 123, Tjj finite, T^^mte, ^3, non-existent.

II\2Z, I'm = 00
, T^ finite, T^ non-existent.

if i2S, 7,0=00, Ta = oo, Tsi non-existent.

Thus the proper symbol L 123, P 123, &c. as the case may be, will always at once

indicate as to each of the times 2^2, T^, T^^, whether this is =0, finite, infinite, or

non-existent.
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125. We may without difficulty attach to the several portions of the regulator,

the separators and the parabolic curve, to each portion its proper symbol L, P, H
and 123, 123, &c. as the case may be.

First, as to the regulator, it is obvious that this is separated by the points A
into the three portions L 213, L 321, L 132, respectively. And inside the regulator,

adjacent to these, we have portions of the parabolic curve P 213, P 321, P 132,

respectively.

Again, for one of the separators, say B^B'AF'R' (see here and in all that follows

the notation-diagram. No. 115) ; since the point 2 is here at infinity this must be at

ever}' portion thereof either jH'132 or else if 312. The point B" is ^^132 and the

point B is £"312; consequently, as the orbit-pole passes along the separator from

B^ to B', the symbol is at first iri32 and at last 5 312; the transition takes place

at the point of contact of the parabolic curve which is indifferently P 132 or P 213.

(In further explanation of the transition, consider the orbit-pole as passing from

B^ to B, not on the separator, but indefinitely near it ; it can only do so by

twice crossing the parabolic curve near the point of contact; the orbit is first Zfl32,

or say H 132, then P 132, then an ellipse, which when the orbit-pole again arrives

at the parabolic curve changes into P 312; and it finally becomes i?312 or HZlt.)

126. Again, since, on the two separators through 5'^, in the portions adjacent to

B^^, the symbols are Jyi32 and ^"132, it is clear that in the adjacent portion of

the parabolic curve (terminated each way by a point of contact with these separators

respectively) the symbol must be P132; at the point of contact with the first-

mentioned separator B^^'FAF'R', this becomes P 132, =P213; and beyond the point

of contact it becomes P213, continuing so until it arrives at the next point of contact

with the separator EA'E' : there is always in the symbol for the parabolic curve this

change of form as we pass through a point of contact with a separator ; and there

is the same change, when travelling along the loop (that is without going inside the

regulator) we pass through a point A. The foregoing considerations fully explain how

the proper symbol is to be attached to each portion of the regulator, the separators,

and the parabolic curve : to avoid confusion, I have abstained from attaching them in

the Plate.

127. Ima^ning the symbols attached as above, it at once appears that, for the

two portions A'A and AA" of the regulator curve, we have Ta = 0; while, for the

arc A"A' of the parabolic curve we have Tu= oo. Moreover, T,, can only be infinite

on one of the separators through B"' and on the parabolic curve ; and the symbols

show that the curve T^ is made up, in a peculiar discontinuous manner, of portions

of these two separators and of the parabolic curve, as shown by the strongly marked

line of the figure ; we have thus the boundary of certain lightly shaded regions within

which (as well as within the shaded regions) T^, is non-existent ; excluding these, the

remaining regions (instead of a trilateral symmetry) have a symmetry about the axis

BF" ; there are still four regions which may be distinguished as the inner region, the

axial outer region, and the lateral outer regions; or, more shortly, as the inner, axial,

and lateral regions.
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128. The times r,2, T.^, Tj, are calculated, Planogram 1, part 1, for the meridian

long. 90°, and ditto part 2 for the meridian long. 270" ; and in Planogram 2 for the

meridian long. 180°. As regards these last values, it is easy to see that, in order to

pass to the meridian long. 0°, the numbers 2, 3 must be interchanged; that is,

long. 0°, the Tu, T^, T^ are respectively equal to the values, long. 180°, T„, Ta, T^.

Moreover, the numbers 1, 2, 3 may be changed into 2, 3, 1, or into 3, 1, 2, provided

the longitude is increased by 120° and 240° in the two cases respectively ; that is,

Ta long, a = T31 long, a

= !r^long. (a + 120°)

= T^ long, (a + 240°).

129. By means of the foregoing two relations, Tu for the several longitudes

0°, 30°, 60°, ... 330°, is given as equal to the T^, T^, or T,,, for long. 90°, 270°, or

180°, that is, to the T^, T^, or T^i, of Planogram Xo. 1, part 1 or 2, or of Planogram

No. 2. For example, T^ long. 240° = T^, loug. 0° = T^ long. 180°, that is, it is equal to

the Tn of Planogram No. 2. We thus find

Long. T,3 is =

0° . . . r„ of Plan. No. 2

30° Tj, of Plan. No. 1, pt. 2

60° . . . T,,

90° Tu of Plan. No. 1, pt. 1

120° . . . T^

150° r„

180° . . . T^ „

210° T^

240° . . . T,,

270° r„

300° . . . Ta

330° Z,

and observing that for Planogram No. 1, part 1 or 2, we have Tu = T^, it hence

appears as above, that the meridian 30°—210° is an axis of symmetry of the

spherogram. In what precedes it has been assumed that the colatitudes only extend

from 0° to 90°, but in the spherogram they extend for the meridians 30°, 150°, 270°,

to the colatitude 106° 6', the values for the colatitudes above 90° are those for the

omitted portions 90° to 73° 54' of the opposite meridian.

N.B. A meridian extends from the pole in one direction only, unless the contrary

is expressed or implied, as in speaking of a meridian 0°—180°.
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130. I attend, in the first instance, to the axis of symmetry or meridian 30°—210°.

Proceeding along the meridian long. 30° or towards the point A, the value of T^
decreases from 1 at the centre to a minimum = '950 at colatitude 11° (call this the

point X), and it then increases to 1-983 at A, and thence to 58'62 at 90° and oo

at the parabolic boundary of the axial region. In the opposite direction it increases

from 1 at the centre to oo at the parabolic boundary of the inner region. The
minimum value '950 on the axis of symmetry indicates a node on the isochronic

curve ; that is, the point X is a node on the isochronic r,, = •950. This will consist

of two branches, proceeding from A', A", respectively, cutting the axis and each other

at X, then again cutting at A, and thence passing on into the axial region, and

respectively terminating on the separator boundary B'AB" thereof

131. This curve, which I call the nodal isochronic, divides the inner region into

a loop, antiloop, and two side regions. On each of the meridians 0°, 60°, the value

of Tis diminishes from 1 at the centre to a minimum which is less, and then

increases to a maximum which is greater, than •9.50; the value then diminishes to

on the regulator: on emergence of the meridian from the shaded into the axial

region, the value is = '909, and it thence increases to oo at the parabolic boundary

of the axial region; these data further determine the form of the nodal isochronic,

viz., each of the two half meridians cuts the loop twice, and again cuts the curve in

the axial region.

The nodal isochronic, at each of the points A', A", continues its course into the

lateral region, returning to the same point A or A', so as to form in each of the

lateral regions a loop. Considering the loop as formed of two branches, each proceeding

from A' or A", the one which is the continuation of the course within the inner

region I call the lower branch ; the other, the upper branch ; and I say that the

upper branch touches the separator at A' or A". The two branches and the entire

loop lie on the left-hand side (or side away from A) of the meridians through

A' or A". As to the contact of the upper branch of this and other isochronics at

A' or A" with the separator, see post No. 142.

132. It is convenient at this point to consider the form of the isochronic curves

within the axial region. The parabolic boundary thereof is an isochronic Tjs = oo , and

it thence appears that for any large value of T^ the isochronic curve (portion of the

curve) is a curve not meeting the parabolic boundary, and terminated each way in

the separator boundary EAB". As the value of 7,3 diminishes, the curve (which is

of course always symmetrical in regard to the axis) bends inwards towards the point

A and for Ti3=l'983 (value on the axis at A) the curve acquires a cusp at A.

I call this the cuspidal isochronic; I remark that it intersects in the axial region

each of the meridians 0° and 60°.

As Ta further diminishes to any value between 1'983 and ^950, the curve,

commencing in the separator boundary, passes through A into the inner region, and,

forming a loop within the loop of the nodal isochronic, emerges through A into the

axial region, terminating again in the separator boundary.

c. VII. 60
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133. On the meridians 90°, 330°, through the points B", B", respectively, the value

of Ti, diminishes from 1 at the centre to at the regulator, where these meridians

are considered as terminating.

On the meridians 120°, 300° (meridian at right angles to the axis of symmetry),

the value of T^ diminishes from 1 at the centre to a minimum less than "878, and

then increasing to a maximum of over "895 diminishes to at the regulator. On
emergence of the meridian from the shaded and half-shaded region on the parabolic

boundary of the lateral region the value is = oo , and it thence diminishes to 1"148

on the separator boundary B^B" or B'^B".

On the meridians 150°, 270°, which pass through A', A", respectively, the value

of Tia increases from 1 at the centre to 1"377 at the regulator, and thence through

2-255 at 90° to oo at B"^ or R'.

And finally, on the meridians 180°, 240°, the value of T^ increases from 1 at

the centre to go at the parabolic inner boundary, and then on emergence from the

half-shaded and shaded region at the separator boundary B"'A' or B"'A", the value

is = 00 , and it thence diminishes to a minimum under 6343, and again increases to

00 at the separator boundary E"B^'' or B"R'.

134. By what precedes, it appears that on the separator boundary B^B' or B^B"

of either of the lateral regions, the values of T^^ is at each extremity = oo , and at an

intermediate point =1"148; there is consequently a minimum value less than 1*148,

and therefore two points at each of which the value is = 1983.

Now resuming the consideration of the cuspidal isochrouic (Tij = 1'983) as regards

the remaining portions thereof, viz., those in the lateral and inner regions; and con-

sidering first the lateral region B"'B^''B', there will be from each of the points just

referred to on the boundary B'^B' a branch; one (which I call the lower branch) from

the point nearer B', passes, on the right-hand side of the meridian through A', to A';

the other (which I call the upper branch) proceeding from the point nearer £'^, cuts

the same meridian, and then on the left-hand side thereof arrives at A', touching

there the separator: at A" in the other lateral region there are in like manner an

upper and a lower branch (situate symmetrically, in regard to the axis, with the upper

and lower branches at A'); and continuous with the two lower branches there is a

branch from A' to A", through the antiloop of the inner region.

135. Imagine the given value of T^ as continuously increasing from the value

•950, which belongs to the nodal isochronic ; and attend in the first instance to the

form within the lateral regions. There will be a loop of continually increasing

magnitude (viz., the loop for a larger value of T^ will always wholly include that for

a smaller value); each loop formed by an upper branch, which at A' touches the

separator, and a lower branch the direction of which from A' is vai'iable. So long

as Ta is less than 1-377 (value at A' along the meridian) the lower branch, and

consequently the whole loop, will lie on the left hand of the meridian; but when Ta
is = 1'377, the lower branch touches the meridian, and for any greater value of 2*,,

lies on the right of the meridian; and in either of the last-mentioned cases the loop
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is cut by the meridian, and thus lies partly on the left, and partly on the right

thereof.

136. Now by what precedes there is on the separator boundary B'l?^ of the

lateral region a point where T^s has a minimum value less than 1-148, and con-

sequently, for any given value, say for a value between this minimum and 1-377, there

are on RB^ two points where T^ has the given value. These points cannot lie on

the loop of the cui-ve belonging to the given value (for this loop is wholly on the

left hand of the meridian); hence the complete curve for the given value of T^ will

include (within the lateral region) besides the loop, a branch uniting the two points

in question ; say a link branch.

137. It follows that there is between ^13= 1-377 and 1-983, a value (to fix the

ideas, say = 1*80 ?, it being understood that I do not attempt to determine this value)

for which the loop and link branch will unite themselves together, the point of

junction becoming as usual a node ; viz., there will be a curve Ti, = 1-80 ? having in

[the two lateral regions respectively the nodes Y, Y' ; or say the curve has in each

lateral region a self-intersecting loop. For any greater value of T13 (as for example

the value 1"983 belonging to the cuspidal curve) there are two branches inclosing the

self-intersecting loop ; for a less value, as has been seen, instead of the self-intersecting

loop, there is a loop and link branch; at least this is the case until for the minimum

value < 1-148 of T^ on the separator boundary B^B' the link branch disappears. For

smaller values down to T^ = '950, which belongs to the nodal isochronic, there is no

link branch, but only the loop ; and as T^^ diminishes below this value, there is still

a continually diminishing loop, lying wholly on the left hand of the meridian, and

with its upper branch always touching the separator; and ultimately for 2^3 = the

loop vanishes.

138. We have attended wholly to the lateral regions; but the consideration of

the axial and inner regions is very easy: for any value between the values 1-983 and

•950, there are in the axial region (between the nodal and cuspidal curves) two

branches each proceeding from the separator to A, where they unite, and, crossing

each other, pass into the inner region, forming a loop within the loop of the nodal

isochronic; and, moreover, there is in the inner region a branch, the continuation of

the lower branches of the lateral loops, uniting the points A', A", and lying between

the nodal and cuspidal isochronic. And for 713 less than '950 there are in the axial

region, between the nodal curve and the separatoi-, two branches, each proceeding from

the separator to A, where, crossing each other, they enter the inner region passing

outside the nodal curve (or in the side regions of the inner region) to the points

A', A", where they respectively join on to the lower branches of the lateral loops.

Ultimately, for 2*13=0, the curve coincides with the finite portions AA', AA" of the

regulator circle.

139. We have finally to consider the case T^ greater than 1-983: there is in

the axial region a branch lying outside the cuspidal curve, and extending from

separator to separator; in each lateral region two branches (lying outside those of

the cuspidal curve) each proceeding from A' (or J.") to the separator boundary B'B^"'

60—2
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or B"B^, an upper brauch touching the separator at A' or A", and a lower branch

;

and in the inner region, a branch (continuation of the lower branches) lying between

the cuspidal curve and the parabolic boundary of the antiloop, and uniting the points

A', A". In the ultimate case 2*13 = 00, the curve coincides with the before-mentioned

discontinuous curve composed of portions of the parabolic curve and of two separators.

140. To obtain a comprehensive statement of the foregoing results, we may (as

in the case of the iseccentric lines) imagine the curves completed and rendered

continuous by the insertion of portions lying outside the spherogram, or within the

half-shaded and shaded regions; which inserted portions are to be ultimately obliterated.

The upper and under branches terminating in the separator boundary of a lateral

region are thus completed into a loop ; the link branch into a closed curve or oval

;

the vanishing of the link branch happens when the oval, on the point of passing

outside the separator boundary of the lateral region, just touches this boundary ; as

Ti3 diminishes to the value for which this happens, and continues still further to

diminish, I think it may be assumed that there is some value (to fix the ideas, say

Tis = 1"10 ?, but I do not attempt to determine it) for which the oval becomes a

conjugate point, viz., for this value T13 = I'lO ? the curve will have two conjugate

points (nodes) Z', Z", outside the two lateral regions respectively.

141. We may now state the forms of the curve. The points A, A', A", are

always nodes, viz.. A', A", nodes with real branches, but A is either a conjugate point,

a cusp, or a node with real branches.

Tij>l'983: two-looped curve, containing within it J. as a conjugate point:

as Tij diminishes, the curve bends inwards towards A, and

2'ij=l'983: cuspidal isochronic; A, a cusp.

Tis < 1"983, the curve cuts itself at A, having thus acquired an internal loop : as

Tu diminishes, changes occur first as regards the lateral loops, and afterwards as regards

the internal loop; viz., each of the lateral loops is gradually pinched together until

Tin = I'SO ? there are two new nodes T', T", each lateral loop being a figure of 8.

As 2*13 diminishes the figure-of-8-loop breaks up into a loop and oval, which oval

continually diminishes until for

2'i,= l"10? the ovals have each become conjugate points, or there is a curve with

two conjugate points Z', Z". As 2*13 diminishes the conjugate points have disappeared,

and we have again a curve with an internal and two lateral loops; but in the

meantime the internal loop and the branch A'A" are continually approaching each

other ; and, T^ = "950, nodal isochronic, there is a node X on the axis. The curve

consists of two figures of 8, each crossing itself at one of the points A', A", and the

two crossing each other at the points A, X.

As Ta diminishes, the curve breaks off from X on each side of the axis so as

not any longer to cross the axis (except at A), that is
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T^ < "OoO ; curve is a chain intersecting itself at A', A, A" ; viz., from each loop

there pass two branches, one inside, the other outside, the regulator, uniting themselves

at A with the branches from the other loop outside and inside the regulator

respectively; and finally

Tis — 0, the curve is the arc A'AA" of the regulator circle.

142. There is not in the several cui-ves any discontinuity of direction at the

point A' or A": the branch from A within the shaded or half-shaded region, emerges

at A' or A" into the lateral region, uniting itself with the upper branch of the loop;

it can only do this in virtue of its being at A' or A" a tangent to the separator

(for otherwise it would cross the separator and regulator into the inner region)

;

that is, the continuation thereof, or upper branch of the loop, must at the point A'

or A" touch the separator; it has been previously throughout assumed that this is so.

143. It is to be observed, both as regards the iseccentric and the isochronic

curves, that there is a real meaning in the obliterated portions ; viz., to any position

of the orbit-pole on such obliterated portion of the curve there corresponds a conic

determined by means of a given trivector, but which, by reason of its being a convex

hyperbola, or hyperbola such that the three points do not lie on the same branch

thereof, is not regarded as an orbit. The obliterated portions have been in the present

Memoir considered only so far as they present themselves in continuity with the curves

which are the loci of the pole of a proper orbit, and for the purpose of explaining

the course of these curves; and the curves completed as above are not the complete

loci which would be obtained if, instead of the selected conic called the orbit, we

had considered simultaneously the four conies determined by means of any given

trivector ; such extension of the theory would, it is probable, be interesting geometrically

;

but it would be devoid of all astronomical significance.
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477.

ON THE GRAPHICAL CONSTRUCTION OF A SOLAR ECLIPSE.

[From the Memoirs of the Royal Astronomical Society, vol. xxxix. (1870—1871),

pp. 1—17. Read January 13, 1871.]

The present Memoir contains the explanation of a Graphical Construction of a

Solar Eclipse, which (it appears to me) is at once easy, and susceptible of considerable

accuracy: I think that if made on tihe suggested scale (radius =12 inches) we might

by means of it construct a diagram such as the eclipse-diagrams of the Nautical

Almanac, with at least as much accuracy as could be exhibited in a diagram on that

scale.

Article Nos. 1 to 9. General Explanation of the Construction.

1. We may imagine the celestial sphere as seen from the centre of the Earth

stereographically projected at each instant during the eclipse—the radius of the bounding

circle of the projected hemisphere being a given length, say twelve inches, which is

taken as unity—in such wise that the centre of the Moon is always at the centre of

the projection, say M, and the pole (suppose the north pole, say N) of the Earth on

a given radius: its position on this radius will in strictness be variable, viz. distance

from centre = projection of Moon's N. P. D. = tan^A. Suppose, for a moment, that the

position at each instant of the Sun's centre were also laid down on the projection,

80 as to obtain the projection of the Sun's relative orbit ; this will be a terminated

short line A'l^ (fig. 1), nearly straight, and lying near the centre of the projection

(this relative orbit is not to be actually laid down, but it is replaced, as will presently

be explained, by a relative orbit on a very enlarged scale) ; if at any instant the

position of the Sun on the relative orbit be denoted by S', then the straight line

MS' Ls the projection of the arc of great circle through the centres of the Moon and

Sun, so that E being the angular distance of the centres, the length of the line

MS' is =t&a^E, or (£ being small) it is, =\E.
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2. Produce S'M through the centre M to a point Z, and consider Z as repre-

senting a point on the Earth's surface : to determine the geographical position of Z,

we must consider the projected meridian NZ which passes through Z: the arc NZ,

Fig. 1.

regarded as a projection, represents the N. P. D. or colatitude of Z, and the actual

angle at N which the tangent of NZ makes with the line NM is equal to the

celestial angle ZNM which is = Moon's hour-angle from Z, or what is the same thing

= difference of Moon's hour-angle from Greenwich and of the longitude of Z (as the

figure is drawn, Z ZNM = Moon's hour-angle E. of Green^vich, less E. longitude of Z).

3. Now, considering the Moon and Sun as seen from Z, we may disregard the

parallactic depression of the Sun, and attribute to the Moon a displacement equal to

the difference of the parallactic displacements of the Moon and Sun ; that is, regarding

the zenith distances ZM, ZS' as equal, we may consider the Moon's centre as depressed

by parallax in the direction of the arc MS' through an arc MQ', = sin~' P' sin ZM,

where P' = "DQSS? (a — tt') is the quantity thus designated in the Appendix to the

Nautical Almanac for 1836, viz. it is =a' — "k' , the difference of the equatoreal horizontal

parallaxes at the time of the eclipse, multiplied by a factor "99837, which answers to

a distance of Z from the Earth's centre = Earth's radius for latitude 45°. And if we

take Q[ such that its angular distance from ;S' = sum of angular semidiameters of the

Sun and Moon, the locus of Q' is very nearly a circle about the centre S', and the

corresponding positions of Z give the positions on the Earth where the limbs are in

exterior contact, or, what is the same thing, give the penumbral curve on the Earth's

surface for the position S' of the Sun.

4. Instead of

we may write

Arc Mq = sin->F sin ZM,

ArcMQ'= r sm ZM,
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or, using p to denote the linear distance ZM in the projection, we have p = tan ^ZM,

and therefore sin ZM= —-^ , hence
p^ + 1

Arc MQ' = F -^£-
p' + l'

and the linear distance MQ' in the projection is = tan J arc ilfQ', say this is = ^ arc MQ',
or calling this linear distance / we have

i

p'+l'

5. Hence, if instead of the original representation of the Sun's relative orbit we
consider an enlarged representation thereof and of the depressed positions Q' of the

Moon, obtained by increasing the several distances from the centre of the projection

in the ratio hP" to 1, and if instead of A', B", 8', Q', we use A, B, S, Q, as referring

to this enlarged representation, then representing by r the linear distance MQ, we have

2
r=-p; r', and consequently

p'+l

We have here r representing the parallactic depression corresponding to the zenith

distance ZM, where p = tan ^ZM; that is, ZM= 90°, p = l, and therefore r = l; but for

ZM= 90" the parallactic depression is =P'; that is, the scale of the enlarged repre-

sentation of the Sun's relative orbit, or say simply the scale of the relative orbit (for

on the original scale it was never actually constructed at all) is such that we have

P' (= about 60') represented by the radius of the bounding circle of the projected

hemisphere, =12 inches.

6. The process is, construct the relative orbit on the scale P'= radius of bounding

circle : take S for the position at any given instant of the Sun in the relative orbit,

and with centre S and radius =s+ a- (sum of the angular semidiameters, of course

on the same scale) describe a circle. The positions A and B of the Sun at the

beginning and end of the eclipse respectively are such that this circle just touches

the bounding circle externally, viz. the distances of A and B from the centre of the

projection are each = radius of bounding circle +s + o-. At any intermediate instant

the circle, radius s + a; lies wholly or partly within the bounding circle ; in the latter

case we attend only to the arc thereof which lies within the bounding circle. Taking

then Q any point whatever on the circle or arc in question, we join Q with the

centre M of the projection, and produce this line through ilf to a point Z, such that

the distances MQ, MZ, being r, p respectively, we have as above

2p
T ^

P»+l'

or, what is the same thing, writing Q in place of z, and regarding this angle 6 as

a variable parameter, the relation between r, p, may be expressed by means of the

two equations, p = tan ^0, r = sin 6.

c. vn. 61



482 ON THE GRAPHICAL CONSTRUCTION OF A SOLAR ECLIPSE. [477

7. Practically the construction may be performed very easily by means of a straight

edge twenty-four inches long, graduated from the centre, one half of it for the values

of r, and the other half for the corresponding values of p (that is, the first half is

j^raduated for sin 0, and the second half for tan i^d) : we have thus, corresponding to

the circle or arc of circle which is the locus of Q, a closed curve, or arc thereof

terminated each way at the bounding circle, for the locus of Z: which curve or arc

of a curve is the penumbral curve on the Earth's surface for the position S of the

Sun in the relative orbit.

8. The north pole of the Earth occupies in the projection a given position, viz.

it is situate on a given radius at a distance = tan ^ Moon's N.P.D. ; which N.P.D.

may be considered as being throughout the eclipse constant, and equal to its value

at the middle of the eclipse. But in order to arrive at the geogiaphical signification

of the figure it is necessary to lay down on the projection the position of the

meridian of Greenwich ; which position, it will be remembered, varies according to the

position of S. Supposing this done, we could of coui-se (at least theoretically) draw

the whole series of meridians and parallels, and thereby determine the latitudes and

longitudes of the several points of the penumbral curve, or (if need is) transfer it

to a diflferent projection of the Earth's surface. The actual description of the meridians

and parallels would, however, be very laborious, and fortunately it can be avoided by

means of a single blank projection and a slight modification of the foregoing process,

as will be explained.

9. But before considering how this is, it is proper to remark that constructing as

above a figure of the penumbral curves corresponding to the several positions of the

Sun: by what precedes these different curves may indeed be considered as belonging to

the same position of the north pole in the projection, but they belong to different

positions of the meridian of Greenwich ; and thus they do not constitute a represen-

tation of the penumbral curves each in its proper terrestrial position, but only a repre-

sentation in which the penumbral curves are affected each of them by a different

displacement in longitude.

Article Nos. 10 to 13. Modification in order to the Applicability of a Single Blank

Projection.

10. Imagine a stereographic projection of the meridians and parallels on tlie plane

of a meridian, radius of this meridian, that is of the bounding circle of the projected

hemisphere, being =12 inches as before; and the poles N, S being of course opposite

points on the circumference of the bounding circle—the meridians and parallels are,

however, to be produced outside the bounding circle ; say this is the " blank projection,"

and let its centre be denoted by ifj. Then, if at any point M on the radius MN,
we draw the chord CD at right angles to MiN, and on CD as diameter describe a

circle, this will cut out from the blank projection a new projection having the last-

mentioned circle for its bounding circle, and in which N is the north pole; viz. the

meridians of the blank projection will be meridians, and the parallels of the blank

projection will be parallels, in this new projection. And, moreover, if the longitudes

are reckoned from the meridian NMMi, then the meridian of a given longitude in

the blank projection will in the new projection be the meridian of the savie



477] ON THE GRAPHICAL CONSTRUCTION OF A SOLAR ECLIPSE. 483

longitude—but the parallel of a given colatitude c in the blank projection will, in

the new projection, be the parallel of a different colatitude c',—the relation of c, c'

being, however, a very simple one, as presently explained.

Fig. 2.

11. The blank projection thus at once gives a projection in which the north

pole iV has any assumed position whatever; and it is easy to see that in order that

its distance MN from the centre of the projection may represent a given angle A,

we have only to take ifi3f = cosA (that is = 12 inches x cos A), the corresponding value

of MC being ilf(7 = sinA (that is =12 inches x sin A). Hence A denoting the Moon's

N.P.D. at the middle of the eclipse, we can by means of the blank projection construct

a projection such as that above referred to, only the radius of its bounding circle,

instead of being unity (12 inches), is in the reduced ratio of 1 : sin A.

12. The figure of the penumbral curves as originally constructed requires, therefore,

to be reduced in the ratio 1 : sin A, viz. each of the distances from the centre M
should be reduced in this ratio; this could of course be done easily enough with a

pair of proportional compa.sses ; but by means of a different graduation of the straight

edge we may, in the first instance, construct the penumbral curves on the proper

reduced scale ; viz. assuming that we have on the proper scale a proportional-scale

figure such as is here shown, the line Mr (=12 inches) being graduated for sin 6,

and the line MA (also =12 inches) for tan \6, and a set of parallel lines being drawn

through the last-mentioned graduations—then taking the distance Mp = sin A, that is

= 12 inches x sin A, and drawing the line Mp, this line will, it is clear, be graduated

for sin A tan i^d: so that we may from the figure graduate the straight edge, the one

half of it by means of the line Mr, and the other half of it by means of the line

Mp; and with the straight edge thus graduated, at once lay down the penumbral

curve on the scale now in question. And we thus obtain a figure containing as well

61—2
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the penumbral curves, as the meridians and parallels which serve to fix their terrestrial

position.

Fig. 3.

13. It remains in the new projection to find the colatitude belonging to any

^ven parallel. Supposing that the colatitude in the blank projection is =c', then it

may be shown that the colatitude c of the same parallel in the reduced projection is

given by means of the equation

tan i c = cot iA tan ^ c',

from which c might be calculated numerically: but the required value may also be

obtained graphically. In fact, considering the parallel which cuts iVS (see fig. 2) in

a point R, then, if by lines drawn from (7 as a centre we project N, R, S, on the

circumference of the bounding circle of the new projection—say the projections of these

points are n, r, s, respectively, the arc )is is a semicircle, and the arcs nr, sr, are

respectively the N.P.D. and the S.P.D. of the parallel in question. It may be added

that in the new projection the equator is represented by the parallel through the

points C, D; so that if this cuts JV2 in Q, and the point Q be in like manner

projected on the bounding circle—say its projection is q, then the arcs nq, sq, will be

each of them a quadrant, and the arc qr will be the latitude of the parallel in

question.

Article Nos. 14 to 18. As to the Construction of the Relative Orbits.

14. It is convenient to notice that if e, e', be the values of the equation of

time at the preceding and following Greenwich Mean Noons (viz. e or e' =G.M.T. of

apparent Noon) then that the Sun's hour-angle E. of Greenwich at the Greenwich

mean time t is

^' = e + e(l +V)
f
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and that if a, a', are the RA.'s of the Moon and Sun respectively, then h'-h = a'-a,
which is also of the form A + Bt. In the reduced projection, the Moon is always at

the centre M ; by means of the values of h' — h we lay down at any instant the

Sun's position in R.A. and then by means of the values of h', the position of the

meridian of Greenwich; and we thus at any instant read off the terrestrial longitude

of any point of the reduced projection, or say, of a point on the penumbral curve.

15. With regard to the construction of the relative orbit, it is to be observed

that if at any instant the hour-angle and N.P.D. of the Moon are h, A, and those

of the Sun, A', A', then taking M as origin, and the axes Mx, My, in the direction

Fig. i.

of NM produced, and perpendicular hereto to the right (or eastwards), then the

rectangular coordinates of S' are approximately x=h (A' — A), y = ^(h' — h) sin A, where

h' — h is equal to the difference of R.A. of the Sun and Moon. Hence, in the adopted

relative orbit, the coordinates of S would be

« =—p; 12 m. y=
h'-h
F sin A . 12 in.

where, P' being reckoned in minutes, A' — A and h' — h are also reckoned in minutes.

16. Moreover, A may be considered as constant during the eclipse: and the relative

orbit, assumed to be a straight line, will be determined by means of two points

thereof; viz. knowing the values of A' — A, and h' — h at about the time of the

beginning and at about the time of the end of the eclipse, we construct by these

formulse two points of the orbit, and joining them by a straight line, we have the

orbit. Also the position at any instant of the Sun in this relative orbit will be

obtained by considering its motion therein as being uniform. I think there is no

advantage in the adoption of a more accurate construction : for although we may for

any given instant use the accurate values of h, A, h'. A', and so construct the position

in the relative orbit, and the corresponding penumbral curve, yet if in the deter-
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mination of the geogiuphical significance thereof, we were to use for each curve a

different value of A, the simplicity of the construction would disappear ; and it is,

moreover, doubtful whether the trifling corrections would not be within the limits of

the necessary errors of the drawing.

17. But if MS' be =E, and Z.xMS' = d, the accurate values for the coordiuates

of S' are a; = tan J £? . cos d, y = \An^E.s,\a6, and the values for the coordinates of 8
2 2

are x = ^, ^,tan i .E.cos ^. 12in., y = -o; j, tan iJ?, sin 5. 12 in., where F is still
Jr . arc 1 Jr . arc 1

reckoned in minutes, and of course arc 1' =
. As the scale is considerable, it is

lUoOU

worth while to inquire whether the employment of the accurate formulae would produce

an appreciable difference in the position of S.

We have sin ^ -r sin A' = sin {h' — h)-i- sin E, that is, sin J? sin ^ = sin {h' — h) sin A', and

cos E= cos A cos A' + sin A sin A' cos {h' — h): or putting for shortness A' — A = a, h' — h = ^,

we have sin ^ sin ^ = sin /3 sin A', and cos .ff = cos a — sin A sin A' . 2 sin* ^ /3. Hence,

attending to the equations cos'' \ E =2 (cos- ^ a - sin A sin A' sin* J /9) and sin* ^ E =
2 (sin* ^ a + sin A sin A' sin* ^ yS), we find

1 rr • /I sin i /3 cos i /3 sin A'
tan I JF sm 5 = ^^ ^

cos* ^ a — sin A sin A' sin* ^ /3

'

and

1 p a - /sin* I g + sin A sin A' sin* ^
0~ sin* ^ /3 cos* ^ /3 sin* A'

an
^

cos -^ cos^ ^ « - sin A sin A' sin* |~/3 (cos* ^ a - sin A sin A' sin* ^ ^f
'

whence, considering a, yS as small quantities of the same order, and neglecting terms

of the third order, we have tan \E sinO = 5va | /S cos | ;8 sin A', or what is the same

thing, = sin ^ /S sin A, or finally, = ^ /8 sin A, that is ^ {h' — h) sin A, which is the foregoing

approximate value, and thus in the adopted orbit y = —p,— 12 in. = approx. value. As

regards the expression for tan ^^cos 6, writing for. a moment 11 = sec* ^ o sin A sin A' sin* ^/S,

the quantity under the radical sign is

tan* I g + n _ sin* ^ /3 cos* ^ ^ sin* A '

1-n "cos'' i g
.
(1 -ny '

'

and, taking this to the third order, it is

X » «-. /, ,1 N
sin*i/Scos*iy9sin*A'= tan* g + n (1 + tan* A g) ^-^

-f-^ ,
•* cos*^a

which, substituting for fl its value, is

= tan* J o + s^PH^sinA' ^ _ ^.^ ^, ^^^,
cos*^a

where sin A - sin A' cos* J /8 = sin A - sin (A + g) cos* J /8,
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or neglecting herein terms of the second order, this is

= sin A — (sin A + sin a cos A) cos^ ^ /S,

= — sin a cos A, = — 2 tan ^ a cos^ ^ a cos A,

so that to the third order the quantity under the radical sign is

2 1 2 1^"^ i '^ sin^^ yS sin A cos A
_— tan ^2 — —

;

'

*
cos'' J a '

and to the second order, that is finally neglecting terms of the third order,

1 rr /I ^ 1 sin^ i i3 sin A cos A
tan iEcoao = tan A a -"^

^, ,

or, what is the same thing,

= ^ a — sin A cos A . J ^'\

18. Hence, writing a = (A' — A) arc 1', /S = (/i' — h) arc 1', and passing to the adopted

orbit, we have

x = —p7— 12 in. — ^ sin A cos A „, 12 in. x (^' — h) arc 1',

viz. putting

we have

or say

h' — h . . T T .

y = ^pf sin A . 12 in.

X — —p)
— 12 in. — y . ^ cos A x (A' — h) arc 1',

=—p- 1 2 in. - y . i cos A {h' - h) -^ .

The value of the second term may amount to about -^ of an inch, and thus be

sensible, but there is no difficulty in taking account of it.

Article No. 19. As to the Equation r =
p^ + 1

19. It may be remarked that the equation >= 2_^t. which served for the

graduation of the straight edge, was in effect obtained from the equations

r = p> tan ^E, P" sinz = sin E, p = tan ^ z

by assuming therein tan ^E=^E and sin ^ = £^ respectively. But the elimination of E
, ^ , . , , . • • u . „ 2 tan i.e P'r

and z can be effected without this assumption, viz. we have sin E = ytT
—trp ~ i +i. p^i~i >
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and then as before, sin ^ = .—, . f , = ,— - -
, whence the relation between r and p is

1 + tan' ^z l+p' ^

found to be
r_ 2p

which however assumes that P" is reckoned in parts of the radius; reckoning it as

F IT
before in minutes, we must, instead of F, write F arc 1' = f^r^,,^ , viz. the numerical

value is about ^, and taking it to be this number, the formula is

r _ 2p

^ 144.00

where r, p are reckoned in parts of the radius (=12 inches). Supposing that r, is

2p_

and Vi being = 1 at most, the correction is inappreciable : if however this were not

the case, the more accurate formula might have been used ; the only difference being

that the making of the graduation would have been more laborious.

calculated from the formula ri=,—-—-, then we have verv nearly »• = », (1 +,,'.)

,

^ 1+p^' - ^
\ 14400/

Article No. 20. Remark as to the Geometrical Theory of the Projection of the Penumbral

Curve.

20. The stereographic projection of the penumbral curve on the Earth's surface

(assumed to be spherical) is, as I have elsewhere shown, a bicircular quartic. It ma}'

be shown that the stereographic projection, as given by the foregoing approximate

method, is a bicircular quartic : we have, in fact a circle, the equation of which in the

polar coordinates r, 6 is

(r cos e-af + »•= sin^ 6 = ^,

and where {6 being unaltered) r is changed into p, where r =^~ , that is - = i (/9+ -

The equation of the circle is

?-2 - 2ar cos d + oi- - fi' = 0,

or say

. 2a cos 6 a- — /S= _
1 ir— + —j^— - "'

and the transformed equation is therefore

l-acos^fp+i)+i(a»-/9^)(p+-y =0,

that is

(a' - /S") (p= + 1)5 - 4a cos dp {p^ + 1) + 4/3= = 0,

or in rectangular coordinates

4
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that is

where p'' = a^ + y-; the form of the equation shows that the curve is a bicircular

2
quartic. Writing for shortness

^ _ = to, the equation is

p*-2maxp'' + {2 + 2m)p^ + l-2max = 0,

that is

{/3=' -m(ax-l)+lY- m" (ax - 1)- - 2m = 0,

or, what is the same thing,

{(x-^may + y''~l7n?a? + m+lY-m-(ax-iy-2m = 0,

which putting x + ^ma for x is

(x' + y^'-^m-a" + m + iy -ni'iouv + ima.^ - ly - 2m = 0,

viz. the terms of the fourth order being (x' + y^y, and there being no terms of the

third order, the curve represented by this equation is a bicircular quartic.

Article Nos. 21 to 30. Practical Details and Application to Eclipse of December 21-22,

1870.

21. There are some practical details which it is proper to explain, using to fix

the ideas the eclipse of December 21-22, 1870 : the constant value of A (see infrd)

is taken to be +90° + 22°35'C)-

I have a blank projection (radius 12 in. as above) with the meridians and parallels

each at intervals of 5°. And also another blank form which has on it merely a

circle, radius 12 in., graduated as to one quadrant thereof with lines about l^in. long,

inwards towards the centre. It contains also in a corner the foregoing proportional-

scale figure.

22. On the blank projection I measure off, downwards from the centre, a distance

Jlf,Jlf= 12 sin 22° 35' (= 4'61), distances all in inches; and then with the centre ilf and

radius 3/0= 12 cos 22° 35' (= 11*08 ), describe a circle which is the bounding circle of

the reduced projection. With this same radius I describe on the second form, con-

centric with the 12-inch circle and above the horizontal diameter thereof, a semicircle:

and, cutting out the included area, replace it with tracing cloth. The foi-m thus

prepared is placed over the blank projection, so that the semicircle shall coincide with

the corresponding semicircle on the blank projection, and the two sheets are fixed

together by their lower edges, and by folding down the remaining sides. We have

thus the upper half of the reduced projection, represented by the semicircle, with the

' See Plate, which exhibits in dotted lines the blank projection under the other blank form ; the part within

the red semicircle, as seen through the tracing cloth, the rest really hidden.

c. VII. 62
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meridians and parallels marked out thereon by lines seen through the tracing cloth.

See the Plate; the dotted line shows a paper scale afterwards affixed to the second

form or upper sheet. Observe that so far the only eclipse-datum made use of is the

value A = 90° + 22° 35'.

23. We have for the eclipse in question, taking t for the G.M.T. in hours,

positive or negative according as the time is after or before G.M. Noon, Dec. 22, and

h' also in hours,

A' = 0'-02 + <-9996,

and then taking the values of a, a', A, A' from the N.A. we have as follows:

G.M.T.
1870, Dec. h'+2*'= o= a'= A=90°+ A'=90o+

A'-A
in Minntos
of Arc.

W - h
in ditto.

d h

21 22

22 3

h m 8

1 13-42

5 1 7-37

h m 8

17 56 1-84

18 9 26-74

h m 8

18 1 48-72

18 2 44-27

22 27 8-5

22 43 12-5

o ' "

23 27 17-1

23 27 13-9

h m 8

7 0-30

4 54 24-90

1

60143

44-023

- 86-620

+ 100-632

and moreover

Moon's Parallax a' = 60' 38"-6

Sun's ditto 7r'= 9'1

o-'-7r' = 60 29-5 = 60'-49

r =60 -39

Moon's Semidiam. s =16'33"-2

Sun's ditto s' = 16 17 '9

s + s' = 32 51 -2 = 32'-85

whence

s + s
12 in. = 6-53

viz. this is the radius of the circles used in the construction of the penumbral curves.

24. We have for w, y the fbrmulsB

X = ^ ~^
12 in. + 2/ (h' - h) 0-00006,

y =—K7- 12 in. X sin A,

viz. I find Dec. 21, 22'',

P'

a;= 11-95 -06= 11*89,

y - 15-80,

M
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and Dec. 22—3^
a;= 8-75 + -11= 8-85,

y= + 18-45,

where I have taken account of the small corrections to the approximate values of x:

it may be added that, using the conjunction-value 52' 9"'4 of A' - A, we have at

conj unction,

a; = 10-36, y=0.

25. We thus lay down on the relative orbit the two points 22'' and S**, and the

point of conjunction or intersection with the axis of x; the three points are found

to be sensibly in a straight line: the distance between the extreme points is about

34 inches, representing 5 hours, so that the scale is nearly 7 inches to an hour: the

line is then graduated to quarters of an hour. We then, by means of the distance

12 + 6-53 = 18-53, mark off on the relative orbit, the points B, E, which correspond to

the beginning and end of the eclipse respectively: the times as read off from my
figure, and compared with the true times given in the N. A. are

&om fignre K. A.

Beginning 22'> 12'"-5 22 13-6

End 2 40 -5 2 41-1

26. With centre B describing a circle radius 6-53 this will of course just touch

the 12-inch circle, and the penumbral curve will be a mere point, viz., this is the

point 5' on the bounding circle, opposite to the point of contact. And so with

centre E describing a circle of the same radius 6-53, that will just touch the 12-inch

circle, and the penumbral curve will be a mere point, viz., the point E' on the

bounding circle, opposite the point of contact.

27. I draw the circles corresponding to the times 22'' SO", 45"", 23'' 0"", viz., so

much of each as lies within the 12-inch circle. Each of these is then transformed

into a penumbral curve, drawn in the upper semicircle on the tracing cloth. For

this purpose we construct a straight edge of paper, the one half graduated for

12 sin ^, the other half for 11-08 tanJ^^, by means of the proportional-scale figure, as

already explained : ^ = 0° to 90° at intervals of 5°, is quite sufficient ; the points on

any particular penumbral curve are laid down in pairs with the utmost facility, and

the curve is traced by hand from 4 or 5 pairs of points.

28. We then graduate for latitude ; viz., we see through the tracing cloth, the

equator cutting the vertical radius in Q, and a parallel cutting the same radius, say

in R; drawing lines from G, we refer these to the points q, r on the bounding

circle, viz., on the quadrant thereof which is graduated by means of the graduation-

lines of the 12-inch circle; and we thus read off the latitude of the parallel in

question ; this latitude is then marked for each parallel on the vertical radius from

Q up to the bounding circle, viz., not on the tracing cloth, but on the paper affix;

and we then on this same radius (on the paper affix) interpolate the positions where

this would be intersected by the parallels for the colatitudes, 5°, 10°, 15°, &a Or

62—2
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(what is perhaps better) we may without marking the latitudes of the parallels of

the blank form, construct directly the last-mentioned graduations; viz., marking off on

the bounding circle from the point q, equal intervals of 5°, and from any such mark

drawing to C, a line to meet the vertical radius, the point of intersection is the

point belonging to the parallel, latitude equal to the corresponding multiple of 5°,

29. Finally, we must (not on the tracing cloth but on the paper affix) graduate

an arc of the equator for the position of the meridian of Greenwich, that is for h.

We have htns lims o '

At 22" A = - 2" + 7 0-30 = - 1 52 52-30 = - 28 13-08

At 3" A = - 2'' + 4 54 24-90 = + 2 54 24-90 = + 43 36-20

The equator is already graduated in longitude by means of the meridians of the

blank projection : hence we lay down the marks for 22'' and 3'' in the positions

belonging to — 28° 13', and + 43° 36' respectively. And then since the interval of

5 hours answers to 71° 49', that of 1 hour will answer to 14° 22', so that, measuring ofif

these intervals of longitude, we have the marks for the intermediate times 23'', 0'', l"", 2''

;

or it might be proper to find in this way the marks corresponding to each interval

of 20"° of time, answering to about 5° of longitude ; the further subdivisions would be

proportional to the intervals of time.

30. I have in this way read off the positions of the points R and E' belonging

to the beginning and end of the eclipse; the values, as compared with the true

ones, are

From Figure N.A.
/

B' latitude N,
o

34 35 37

longitude W. 47 45 44

E' latitude N. 26 26 5

longitude W. 38^ 37 16

I remark that my figure, although drawn careful!}', is not drawn with anything

like the degree of accuracy which would be easily attainable ; and I think that far

better results might be obtained. I merely from a scale lay down tenths and estimate

hundredths of an inch, but certainly fiftieths might be laid down from a scale.
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478.

ON THE GEODESIC LINES ON AN ELLIPSOID.

[From the Memoirs of the Royal Astronomical Society, vol. xxxix. (1872), pp. 31—53.

Bead January 13, 1871.]

The fundamental equations, in regard to the geodesic lines on an ellipsoid, were

established by Jacobi, viz., representing by a, b, c, the squares of the semiaxes, that is,

taking the ellipsoid to be \

a? ifl z^ .

- + IT + - =1
a c

(where a > 6 > c), if we introduce the elliptic coordinates h, k, and write

a+h h+h c+h '

or, what is the same thing.

a? y g° _
a + k'^h+k c + k~ '

a(a + h)(a + k)

f =

(a-b)(a-c) '

b(b + h)(b + k)

Q>-c)(b-a) '

^_ c(c + h)(c + k)

{c-a)(c-b) '

then, if /3 be an arbitrary constant, the differential equation of a geodesic line is

(1) const.
=J<^^V(a + /,)(j + A)(c+ ^)(/S + ;i) "*" J

'^'^ \/(a + k)ib + k){c + k)i^ + k)

'
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and the expression for the length of any arc of the curve is given by

{Z) s-J^y/ ^a + h){b + h)(c + h)^)'^''V (a + k)(b + k){c + ky

I propose in the present Memoir to develope the theory to the extent of showing

how we can, by means of the first of these equations, explain the course of the

geodesic lines; and for given numerical values of a, b, c, calculate, construct, and

exhibit in a drawing the course of these lines : I attend more particularly to the

series of geodesic lines through an umbilicus (which lines pass also through the

opposite umbilicus), and to the case where the semiaxes are connected by the equation

ac — b'=0, a relation which simplifies the formulae.

General Considerations as to the Course of the Lines.

1. It will be observed that h and k enter into the formulae symmetrically: it

will be convenient to distinguish between these coordinates by considering //, as

extending between the values —a, —b; and k as extending between the values —b, — c.

Thus:

h = const, denotes a curve of curvature of the one kind, viz.

:

h = — a, the principal section ABA' (or major-mean section), h=: — b, the curves

UU' and U"U"' (or portions of the umbilicar section ACA'C); similarly,

k = const, denotes a curve of curvature of the other kind, viz.

:

k = — c, the principal section GBC (or minor-mean section), k = — b, the curves UU'"

and U'U" (remaining portions of the umbilicar section ACA'C).

^ -!^

/

2. To any given (admissible) values of h, k there correspond eight points, situate

in the eight octants of the surface respectively ; but, unless the contrary is expressed,

it is assumed that the coordinates x, y, z, are positive, and that the point is situate

in the octant ABC.

3. The constant /3 may have any value from +a to + c ; viz., if it has a value

between o and h, or say, if — /3 has an A-value, then the geodesic lines wholly
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between the two ovals of the curve of curvature A = — /3 (being in general an indefinite

undulating curve touching each oval an indefinite number of times). Similarly, if /9

has any value between b and c, or say, if — ^ has a ^--value, then the geodesic line

lies wholly between the two ovals of the curve of curvature k — — (being in general

an indefinite undulating curve touching each oval an indefinite number of times).

The intermediate case is when = b, or say when — /3 has the umbilicar value : here

the geodesic line is in general an indefinite undulating curve passing an infinite

number of times through the opposite umbilici U, U", or U', U"' ; to fix the ideas,

say through U, U".

Lines through an Umhilicus.

4. I attend in particular to the last-mentioned case, and thus write /3 = 6. We
may in the formula (1) fix at pleasure a limit of each integral; and wiiting for

convenience

^^*^"ii b + kV {a + k){c + ky

I

the equation (1) becomes
Const. = n(/i) + ^(i).

5. It is to be observed, in regard to these integi-als, that writing h = — a + u, we

have

n(A)=r-^-^"—7 /-"
^ ,

J o ft — — !< V M (a — c — ?«)

which, for u small, is

_ 1 / fi^_ f" ^« _ 2Vm / a

~ a — bv a — cjoWu' ~ a—b\ a — c'

By the assistance of this formula the value of the integral may be calculated by

quadratures; viz., the formula gives the integral for any small value of u, and we

can then proceed by the method of quadratures. The integral becomes infinite for

h = — b: suppose that we have by quadratures calculated it up to h= — b — m (m small),

then to calculate it up to any value —b—m + u nearer to — b, we have

n(A) =n(-6-m)+/;^^^ b + m — u

b — 'm + u)(b — c + m — u)

= "(-^-"'> + V(a-6)(6-c)L,^r31i

= n(-6-m)-v/(^:ri^)'og(^-3.C)

where the second terra is positive, and the value thus increases slowly with u,

becoming as it should do = oo for ti=in or h = — b.

' Except when the contrary is stated, the symbol "log" denotes throughout the hyperbolic logarithm.
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6. Similarly in the second integral writing k = — c — v, we have

'^(^) = j^b-c-vW {a-c-v)v'
which, for v small, is

_ ^ / c f dv _ 2Vt> / c

"5—cV a — cj njy' ~h—c\ a — c'

which is of the like assistance in regard to the calculation by quadratures. And if

we have by quadratures calculated the integral up to h= — h + n {n small), then, to

calculate it up to any value —h + n — v nearer to —6, we have

•T. /iv ,T, / 7 \ r dv I b — n + v

where the second term is positive, and the value thus increases slowly with v,

becoming as it should do = x for v = n, or k= — b.

7. It may be remarked that in TS.(h) and '^(k) respectively the coefficient of the

logarithmic term has in each case the same value =A/' t
—
_^wfe_ v ^ regards the

initial terms Vm and Vv, the coefficients are ; a/ and ^ a/ respec-

tively, which are equal if 7 r. . = ,, rz , or ac — b- = 0.
'' ^

(a — 0) (0 — c)'

8. We may consider the two geodesic lines 11 (A) + ^ (k) = const. ; suppose that

these each of them pass through the point P, coordinates (A„, ko) in the ABC octant

of the ellipsoid ; then for one of them we have IT (h) — * (k) = II (A„) -^ (ko), and for

the other of them we have 11 (h) +^ (A;) = 11 (A„) +^ (ko) : I attend first to the former

of these, say n (A) - * (^) = C (where C is = 11 (A„) - "^ (A'„)) ; and I say that this

denotes the curve UPU". In fact, by reason of the equation TlQi) and ^ {k) must both

increase or both diminish ; they both increase as h passes from h^ to — b, and as k passes

from A;„ to — 6 : we may have h = — b + u, k = — b + v where u and v are both indefiuitelj-

small, the functions IT and "^ being then indefinitely large, but II - '"I' = C ; and we

have thus a series of points nearer and nearer to the umbilicus U; that is, we have

the portion PU ot the curve. Tracing the curve in the opposite direction, or con-

sidering h as passing from A,, to — a, and k as passing from k^ to - c, then if C be

positive, k will attain the value — c, before h attains the value — a, say that we have

simultaneously h=hu k=-c; the equation is 11 (Aj)
- * (- c) = C, that is, U(h^) = C;

and the geodesic line then arrives at a point P, on the arc CB of the minor-mean



47 S] ON THE GEODESIC LINES ON AN ELLIPSOID. 497

principal section. The function ^ tlien changes its sign, viz., considering it as always
positive, the equation is now Uih) + ^{k)=C, k passing from the value -c towards
-b, that is, ^(k) increasing, and therefore 11 (h) diminishing, or /; passing from A,

towards the value -a; until at last, say for k = k„ we have h = -a, that is,

C = n (- a) + "¥ (k,), or C=^{k.^; the geodesic line here arrives at a point P, on the
arc BA' of the major mean principal section. The function 11 then changes its sign,

viz., n denoting a positive function as before, the equation is -U(h) + ^{k) = G;
h parses from -a towards -h, that is 11 (A) increases, and therefore ^{k) must also
increase, or k pass from k^ towards -b: we have at length h = -b-u, k = -b + v,

u and V being each indefinitely small; and therefore U and ^ each indefinitely large
(but -U + ^ = C): that is, we arrive at the umbilicus U", completing the geodesic
line UPU".

9. If instead of C = + we have C = -, everything is similar, but the geodesic
line proceeding from U in the direction UP will first cut the arc BA of the major
mean section at a point Pj ; then the arc BC of the minor mean section at a
point Pi] and, finally, arrive as before at the umbilicus U'".

10. The intermediate case is when (7=0, viz., we have here ll(h)-^(k) = 0;
the geodesic line here passes from U in the direction UP to B (extremity of the
mean axis, h = -a, k = -c); U and SP' then each change their sign, so that, con-
sidering them as positive, the equation still is 11 (A) - "^ (A;) = 0, and the geodesic line

at last arrives at the umbilicus U". It will be easily understood how in the like

manner H (A) + -^ (^-) = refers to the line U'PU'".

11. Reverting to the equation 11 (A) - '^ (A) = C, or as I will now write it

n(A)-^(^) = n(A„)-^(A;„),

which belongs to the portion UP of the geodesic line UPU", we require when A
is =—b — u, and k= —b + v (u and v indefinitely small) to know the ratio of the

increments u, v; this in fact serves to determine the direction at U of the geodesic

line through the given point (Ao, k„).

12. For this purpose writing h= — b — u, we find

which is

n (h\ - [""* — / b + u

^^~Ju u V (a-b-u)(b-c + u)'

~i« M |V (a-6-u)(6-c + M) V(a-6)(6-c)J

+ \V-6K6-c)^"^"

and, when u is indefinitely small, this is

"^^^"J„ "^ {V(a-6-M)(6-c + M)~V (^^6)76^)1 "''V (a-6)(6-c) '""^
~ix

a — b

u

c. vn. 63
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Similarly, when k = — b + v, where v is indefinitely small

^^*^"io ir|V (a-6 + t»)(6-c-v)~V (o-6)(6-c)) '"V (a-6)(6-c) ^°^ "^T"

13. Each of the integrals is of the dimension — ^ in a, b, c, and the difierence

of the integrals may be represented by

^V (o-6)(6-c)'
we have therefore

where

U(k)-^ik)^^^^f^^^^[M^lo,l-^J,

I b /•-» du f / b + u /
V(a-6)(6-c) Jo u \V (a-b-u)(b-c + u) V(a-

b

b)ib-c)

j„ v\'\{a-b-\-v){b-c-v) V(a- 6)(6-c)[-

14. Suppose the inferior limits replaced by the indefinitely small positive quantities

€, e' respectively ; and for the variable in the second integral write — u ; then

M-f'^'l^ / ^ + ^ / b I

j_,6_, tw V (a-6-M)(6-c + «) V (a-6)(6-c))'

it being understood that the values « = — e' to m = + € are omitted from the integration

;

this is

_/«-* dw / 6 + M / b . a-b e~
./_,»_„ '^V (a-b-u)(b-c+ u) V (a -W^

-

-^
""^

-tb-c) u\{a-b — u)(b — c+u) \ {a-b)(b — c) " e b — c

with the same convention as to the integral; or if 6' = e, then

where

/ b ~ j,„^f "-* dw / b + u /•-"
d/i / h ~~

y {a-b)(b-c) ~J-ib-<) u V {a-b-u)(b-c + u)~J_ab + h'V (a + h)(c + h)'

the omitted elements being from m = — e to M = + e; that is (in the language of

Cauchy) we take for the integral its principal value. And hence

15. By what precedes this is = U (ho) - "^ (h) ; or if we write simply (h, k)

instead of (h,, A,), that is, consider the geodesic line UP, which is drawn from the

i
r
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point P, coordinates {h, k), to the umbilicus U, the coordinates of a point consecutive

to the umbilicus are —b — u, —h + v, where u, v are connected by the last-mentioned

equation, in which M' is a transcendental function depending on (a, h, c) but inde-

pendent of the particular geodesic line.

16. If for the geodesic line through the point B, or say for the jB-geodesic

- = — , then M' = — log — , and we have in jreneral
M Mo Mo

a result which I proceed to further transform as follows:

If x„, yt, Za refer to the umbilicus U, then considering first the consecutive

point P on the geodesic line (coordinates —b—u, —b + v) and next the consecutive

!

point Q on the umbilicar section, we have for these two points respectively,

ua-O -

V(a -b){a--c)'

dyo =
s/b'Juv

V(^-b){b--c)'

dzi,=
\/(6 - c)\a

X'T -
iVa

•/{a -b){a--0)'

%o == 0,

Sz„ =

-iVc
V(6 - c)\a'--0)'

63—2
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say these are a, j8, 7, and a', ^, y ; and then

aa' + /3/3' + 77' = i (
.

j^, + ,-t ^? \ (v - u),^^ " * [{a- h) (a -c) (b- c) (a - c))
^ '

_ ^(v — u) f_a_ ,
c ] _ Ib(v-u)

~ a-c yr^ * b^) ' ~ (a-b)(b-c) '

a= + ^ + 7= = I, r5 N + ru~h nI • i (« " «')' + / -~^7u x((a - 6) (a - c) (6 - c) (o - c)j * ^ ' (a - 6) (6 - c)

(a — 6) (0 - c) * '

h
'''+^"-^^" = (a-6)(6-c) -^'

whence

and hence

aa' + /9/3' + 77'
cos^ =

_D — M

that is,

cos (180° -6) = ^^-^, or tanH<^ = -,
^ U+V ^^ V

where it U is the umbilicus, P the consecutive point —b — u, —b + v, and UQ the

element of the umbilicar principal section, <f>=zPUQ, 180° — ^= <cPUQ'. For the

5-geodesic we have

21ogtan^<^„ = log^ = Jf.
"0

17. The foregoing equation for n(h)—^(k) now becomes

tan"
^<f>„ .

(a-b)ib-c)^tan^4> '

viz., (^0 is the south azimuth of the 5-geodesic at the umbilicus, a mere function of

(a, b, c) and
<f)

is the south azimuth at the umbilicus, of the geodesic line under

consideration, so that we may consider the geodesic line to be determined by the

south azimuth ^ as its parameter.

f
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Formulce for the case ac — h^ = 0.

18. I annex the following investigation in regard to the case ac — ¥ = 0.

We have in general

1 d^, '•J-xja- b) (6 - c) + V- & (g + x) (c + x)

Vi (a - b) (6-^) dx °^ ^/-a;{a- b) {b - c) - V- 6 (a + a;) (c + x)

501

b Va; (a + a;) (c + x)

1 J_ / a;

6 6 + a; V (a + a;) (c + a;)

__1 / a;

6a; + ac V (a + a;) (c +a;)

"

P + Q
In fact, denoting the logarithm by log „ _ .^ , we have

where

d ,P + Q_ 2(P(^-P'Q)
dx^P-Q~ P'-Q^

2iPQ'-P'Q) = 2PQ[^-^) = ^/x(a + x)(c+x)b(a-bKb-c)[^^ +^^-l
V6 (a - 6) (6 - c)

(a:^ — ac)

;

that is

Va; (a +x)(c+ x)

F'-Q' = -x{a-b)(b-c) + b(a+x)(c + x)

= (&a; + ac) (b+ x);

2{PQ'-P'Q) _ V6 (a - 6)(6-c) a^- ac

P'-Q' '\/x(a + x){c + x) (f>x+ ac) (b + x)'

_ V6 (g -b)(b- c) j_ 1 « ,
a; 1

~
'Jx(a + x)(c + x) I i 6(6 + a;) 6a!+acj'

which proves the theorem.

19. Hence in the particular case ac = b'' we have

log
'^-h{a-b)(b-c) + '/-b(a + h){c + h)

^b(a-h){b-c) ^'^-h(a-b)(b-c)-^-b(a + h)(c + h)

dh__1 p _
bJ-aVh(a+h){c + h)

~bl^ bTh V(a + h)ic + h) r ^ 6 " '^^n
'

I
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that is

^/-hia-bXb-c) + y-b(a + h)(c + h)
"^^> = ^/-!! vMa+t)(c + fe)

-"^\/(^^^^)'°^b){b-c) * V-A(a-6)(6-c)-V-6(a + /i)(c + A)'

or say

, f
* dh . / 6

^^
l+JT

*i^V/i(a + A)(c + A) *V(a-6)(6-c) ''^l-fi"'

where

_ & (a + /t)(c + A)

(a-b){b-c) h

viz. we see that 11 (A) depends on the more simple integral

dh

I Wh(a + h){c+ h)

20. Similarly

1
.

V-k(a- b)(b - c) + ^^b{a + k) (c +lc)

\/6(a-6)(6-c) °^ V- A; (a -T)(V-^) - V-6(a + ^)(c+¥)

1 /•-<'
dA;

2/-<' dk I
k f.|2,p(^A

that is

,j,(^.. .p dA; _
/

^ V-fc(a-6)(6-c) + V-6(a+A;)(c+fc)

^^ *i tVA;(a + A)(c + A;) *V (a_5)(i,_c) ^ V-A;(a-6)(6-c)-V-6(a+A;)(c+fc)

or say

log;'Pg-^^ iT ^-— iLv/ ^ ...

where

y,_ & (a + Z;)(c + A;)

~(a-6)(6-c) A;

that is, *'(A;) depends on the more simple integral,

p dk

J k\/k{a + k)(c + k)'

Write h = — b — u, k= — b + v, where it and v are indefinitely small, then

"»-*«=4£Ivra7TT)*V(;rj^)'»«Hi^F-
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where

1 +

TTa ^ u. — I// \ 1/ — I// bu" / !•
(J = = 1 —

7 TT-7T ttj——

c

(attendme to oc = o"),M (a — b)(b — c) (o + j()
^ ° ^

b

and

(>-.-^,)0-,4-J
J7-2-

^ ^-W V »-U/ ^
J _ 6W'

,_v ia-b)(b-c)(b-v)'
b

21. Comparing with the result obtained for the general case the two agree,

if only

p dh I h r

J-^b +hV (a + h)(c + h)-'^J.

dh

(a + h)(c + h) ^J-a\/h{a + h){c + h)'

where on the left-hand side the integral has its principal value : a result which must

therefore hold good when ac = H'.

Calculation of the Umbilicar Geodesies for Ellipsoid a:6:c = 4:2:l.

22. As a specimen of the way in which we may, on a given ellipsoid, calculate

the course of a geodesic line, I take the semiaxes to be as 2 : V2 : 1, or, for con-

venience, a = 1000, b = 500, c = 250 ; and, considering the geodesic lines through the

umbilicus, I calculate by quadratures the functions

r * — dA / h

''^^^-''^'''^'^l_,^500ThV iiooo+h)(250+hy

The results do not pretend to minute accuracy: I have not attempted to estimate

or correct for any error occasioned by the intervals (10 units) being too large; and

there may possibly be accidental errors.
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Table I.

-h= n' n(A) -h n' n{h) -h n' U{h)

1000 00 840 27-6 6746 630 51-5 13972

999 231-4 462 830 27-8 7023 620 54-1 14499

998 164 659 820 27-9 7301 610 59-2 15066

997 134-2 809 810 28-1 7582 600 65-5 15689

996 116-5 934 800 28-4 7865 590 72-1 16377

995 104-4 1044 790 28-7 8151 580 80-9 17142

990 74-6 1492 780 29-2 8440 570 930 18011

980 540 2135 770 29-7 8735 560 106-8 19010

970 45-1 2630 760 30-3 9035 550 127-6 20183

960 40-1 3056 750 31-0 9341 540 1591 21616

950 36-6 3439 740 31-8 9655 530 211-5 23469

940 34-2 3794 730 32-6 9977 520 316-7 26111

930 32-5 4127 720 33-6 10308 510 632-7 30858

920 31-2 4446 710 34-7 10650 505 1265 35602

910 30-2 4753 700 36-0 11004 504 1581-2 37014

900 29-4 5051 690 37-4 11371 503 2107-7 38834

890 28-8 5342 680 39-0 11754 502 3162-3 41398

880 28-4 5628 670 40-8 12153 501 6324-1 45792

870 28-1 5911 660 42-0 12567 500 00 00

860 27-9 6190 650 45-4 13005

860 27-8 6469 640 48-2 13473
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Table II.

-k *' *(A) -k *' *(A) -k *' *(^)

250 00 320 45-5 4655 440 107-1 12207

251 232-2 462 330 461 5114 450 127-9 13383

252 165-5 661 340 473 5581 460 159-2 14818

253 136-0 811 350 48-9 6062 470 211-6 16673

254 118-6 939 360 51-1 6562 480 316-7 19314

255 106-8 1051 370 53-8 7086 490 632-7 24062

260 78-1 1514 380 57-2 7641 495 1265-0 28806

270 60-5 2207 390 61-4 8235 496 1581-2 30218

280 51-7 2768 400 66-7 8875 497 2108-1 32037

290 48-2 3268 410 73-2 9575 498 3162-3 34602

300 46-3 3741 420 81-6 10349 499 6234-1 38995

310 45-5 4200 430 91-4 11214 500 00 oo

23. But it is obviously convenient to revert these Tables so as to have for the

common arguments a series of uniformly increasing values of 11 or ^, viz., we obtain

by interpolation the values of h and k belonging to the given values of 11 or ^,

and thus obtain the following Table. Here, in any line of the Table the values of

h, k are such that 11 (h) —^ (k) = 0, viz., the values in question belong to successive

points of the 5-geodesic. And to obtain the values for any other geodesic line

n (A) — ^ (k) = ± 500 m, we have only to take each value of k from the line m lines

above or below the line from which h is taken ; and similarly the table gives at once

the values belonging to a geodesic line U. {h) + '^ (k) = 500 m.

C. VIL 64
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Table III.

n = *= h D. k D. n = * = h D. k D.

1000
1-2

250
1-4

13000 650-1
20-6

446-7
7-8

500 998-8
3-4

251-4
3-1

14000 629-5
18-3

454-5
6-5

1000 995-4
5-5

254-5
5-2

15000 611-2
15-7

461-0
5-3

1500 989-9
7-8

259-7
i

7-3
16000 595-5

13-6
466-3

4-9

2000 982-1
9-5

267-0
8-2

17000 581-9
11-8

471-2
3-8

2500 972-6
11-5

275-2
9-4

18000 570-1
10-0

475-0
3-8

3000 961-1
12-8

284-6
10-3

19000 560-1
8-5

478 8
2-6

3500 948-3
14-5

294-9
10-7

20000 551-6
7-3

481-4
2-2

4000 933-8
15-6

305-6
11-0

21000 544-3
6-2

483-6
2-0

4500 918-2
16-5

316-6
10-9

22000 538-1

4-9

485-6
2-2

5000 901-7
17-2

327-5
10-8

23000 533-2
4-6

487-8
21

5500 884-5
17-7

338-3
10-4

24000 528-6

8-1

489-9
2-1

6000 866-8
17-9

348-7
10-1

26000 520-5

4-5

492-0
2-1

6500 848-9
18-1

358-8
9-5

28000 516-0
4-2

494-1
1-7

7000 830-8
17-9

368-3
9-2

30000 511-8

3-0

495-8
1-2

7500 812-9
17-6

377-5
8-6

32000 508-8

2-1

497-0
0-8

8000 795-3
17-3

386-1
8-0

34000 506-7

2-0

497-8
0-5

8500 778-0
16-8

394-1
7-7

• 36000 504-7

1-2

498-3
0-5

9000 761-2
16-3

401-8
7-1

38000 503-5

1-0

498-8

9500 744-9
15-6

408-9
6-6

39000 499-0

10000 729-3
14-9

415-5
6-2

40000 502-5

0-6
10500 714-4

14-3
421-7

5-9
42000 501-9

0-6
11000 700-1

13-5
427-6

5-3
44000 501-4

0-4
11500 686-6

12-8
432-9

5-0
45800 501-0

12000 673-8
23-7

437-9
8-8

00 500 500
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Graphical Construction: Projection on the Umbilicar Plane.

24. The most convenient mode of delineation of the geodesic lines is obtained

by projecting them orthogonally on the umbilicar plane: the contour of the figure ia

here the umbilicar section, or ellipse —|- - = 1 • and the curves of curvature of each
'^ a c

series are projected into elliptic arcs lying within the ellipse in question, the one set

cutting at right angles the axes AA', the other cutting at right angles the axes CC;
the equations of the complete ellipses being

„ a—b „ c—b
a(a->rh) c{c + h)

and

a{a + k) c(c + K)

25. I constructed, by means of the table, a drawing of this kind for the ellipsoid

a, b, c = 1000, 500, 250, the lengths Va and Vc being taken to be 12 inches and

6 inches respectively : the process consists in taking from the table for a series of

values !!=«' (say !! = »? =1000, =2000 &c.), the values of h and k, laying down for

such values the elliptic arcs which represent the two curves of curvature respectively,

thus dividing the bounding ellipse into a series of curvilinear rectangles, and then

obtaining the geodesic lines by drawing the diagonals of these rectangles, and of

course rounding oflf the corners so as to form continuous curves. The Plate shows on

a reduced scale so much of the drawing as is comprised within a quadrant of the

bounding ellipse (viz. it is a representation of an octant of the ellipsoid).

Elliptic-Function Formulce.

26. I have in all that precedes abstained from the use of elliptic functions, since

obviously the form Vl— /fc^sin'^ of the radical of an elliptic function is in nowise

specially appropriate to the present question. But (more particularly in the above-

mentioned case ac-&'=0, where the radical is V/i (a + A) (c + A) without any exterior

factor b + h in the denominator) the formulae are expressible easily and elegantly by

elliptic functions, and it is desirable to make the transformation. Reverting to the

formulae which, in the case in question (viz. when ac-b'= 0), give the values of

U{h) and ^(A); and writing therein h = -a + (a- c)sm'
(f>,

A; = - a + (a - c) sin= i|r, also

we have

J -a VA (a + A) (c + A) ^0 Va - (a - c) sm" (/> va

J t^k(a + k)(c + k) J *Va-(a-c)sm^A|r Va I

64—2
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27. Hence

where

U(h)= ]-F(k, A) +—=i=log—^,

jr _ {1 - ie')siu (^ COB ^ ^

(observe, as h passes from —a to —b,^ passes from ^ = to sin' ^ =
:j

and H
from J3"=0 to H=l).

Similarly

where

„ _ (1 + «') sin 1^ cos yjr

Vl — /c' sin" yfr

and as A; passes from — c to —b,y}r passes from Jtt to sin''^ = =
, and K from to 1.

28. The before-mentioned identical equation

/•-" dh I h
~"
_ ., p dh

is by the same transformation converted into

i^ l-{l-K')sm^(j> d4>

h 1-(1 + ^')(! + *') sin''
<f>
Vl - /<;» sin"

<f)

To prove this, I remark that the equation is

j_o "^ 1 -(!+«') sin" <^ A<^'

viz. this is

« =m^' + m"'<-l-'^')-

or, what is the same thing.

Ui-l-.') = -'-^F„

where D, (— 1 — k) denotes the principal value of the integral

fi' ,

,

1 1_

Jo ^1 -(1 -l-/c')sin"(f. Ad."
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Now (Leg. Fonct. Ellip., t. i., p. 71), we have

where, upon examination, it will appear that 11^ (

—

^^ra] i° ^^^^ represents the principal

value of the integral.

1 K
Writing herein sin' 6 = ^j , , and therefore cos'' 6 = ^ , , or tan" 6 = k', this is

-I.
^~ IC 1. 'J' K

n,(-i+«') + nx-i-«'), =F„

and the formula {p'), p. 141, attributing therein to 6 the foregoing value, becomes

n, (- 1 - k') =e, + ~ \F,E{e) - Ej{e)\^ .

But 6 is the value for the bisection of the function F^, viz., we have

2Fid) = F„

2E{e) = E, + l-K', '

whence
F,Eid)-E,Fie) = ia->c')fn

or the formula in question gives

n,(-i + «')= ~^'^..

whence

n,(-i-^') =-^jf„
the result which was to be proved.

2k

29. The value of M' (observing that ^ txtt. \ = —?= 7=- = "~7i ^ I is

V
^ (a-b){b-c) (•^a-'/cy aO--itfl

dh

which is

\ M' = i I -

V^(l-«') ^J-a'^h(a + h)(c + h)'

that is we have

or, what is the same thing,

that is

M' = (l-K')F,iK),

1- K
log tan i (^0 = —2— -f, («).

l-«'
^,w)tan ^ <^o - 1 2

(<^o the South azimuth of the 5-geodesic at the umbilicus).

30. I purposely calculated the Table by quadratures as being a method available

where the equation 00-6^ = is not satisfied; but in the present case, where this
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equation is satisfied, the table might have been calculated from Legendre's Tables of

Elliptic Integrals. Observe that a = 1000, b = 500, c = 250, gives k = ^ V3 or angle of

modulus = 60°. As an instance of the comparison C), suppose h = — 800, then sin' </> =^=^,
log sin <f>

= 9-71298,
<f>
= 31° 5'.

V(a-b)(b-c) Vo(a_6)(6-c) V 500.250 50
'

„, 500.200.550 110 , tqtaiq^' =
800.500. 250 = 200-

l«g = 1-87018,

„ .,,,,- l + 2f 1-7416 „^,-„5 = -7416j— ^=2:ggj=6-7582,

n (h) = -03163 ^"(31° 5') + -03163 h. 1. 6-7582,

2?* 31° = -56166

163

i?'31°5'= -56329

h. 1.6-7582= 1-91075

2-47404

X by -03163

•0782043

or multiplying by 100,000 (factor introduced into my Table) this is =782043. The

value n (— 800) = 7864 given by my Table agrees sufficiently well with this, the correct

value.

31. I calculate also the angle ^o. viz. we have

h. 1. tan i ^0 = ^-^ F,K, = i F, (60°). Leg. vol. iii. Table viii.

= i 2-15651 = -53913,

whence by Leg. Table iv.

i<|>„
= 45° + i.29°29'-64

= 59° 44'-82

or

<^o = 119°29'-64.

This exceeds 90°, and since at the umbilicus the tangent plane is at right angles

to the plane of projection, the 5-geodesic should in the drawing proceed (as it in

fact does) from U in the sense UG, touching the bounding ellipse at the point U.

• In the present calculation, log denotes an ordinary logarithm, the hyperbolic logarithm being distinguished

aa b. L

i
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479.

THE SECOND PART OF A MEMOIR ON THE DEVELOPMENT
OF THE DISTURBING FUNCTION IN THE LUNAR AND
PLANETARY THEORIES.

[From the Memoirs of the Royal Astronomical Society, vol. xxxix. (1872), pp. 55—74.

Read January 12, 1872.]

The present communication is a sequel to my paper, "The First Part of a Memoir
on the Development of the Disturbing Function in the Lunar and Planetary Theories,"

Memoirs R.A.S., vol. xxviii. (1859), pp. 187—215, [214], and I have therefore entitled it

as above, but it, in fact, relates only to the Planetary Theory. In the First Part, I gave

in effect, but not explicitly, an expression for the general coefficient D{j, f) in terms

of the coeflScients of the multiple cosines of 6 in the expansions of the several powers

{r'-\-r'*-2rr'cosd)-'-i, or say (a' + a''-2aa' cos6)-'-i; viz., at the foot of page 208

I speak of the term involving cos(jU +j'U') as having a certain given value; the

term in question ia D {j, j') cos (jU +j'U'') ; and consequently the expression for

D(j, j') is
'

D a 3) = 2
"'g~^^ rr tM^^R,^ ;

the omission was, however, a material one, inasmuch as this expression for the general

coefficient serves to connect my formulae with Leverrier's development, Annales de I'Observ.

de Paris, t. i. (1855), pp. 275—330 and 358—383, and I resume the question for the

purpose of applying it.

Formula for the general Coefficient D (j, /).

In the First Part, the reciprocal of the distance of the two planets, or function

{r> 4- r'» - 2rr' (cos Ucos V + sin U sin U' cos <!>)}-*
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is taken to be developed in multiple cosines of U, W, the general term being

DU.JloosijU+j'W).

where j, j' have each of them any integer value from — oo to + x (zero not excluded), but

so that j,j' are simultaneously even or simultaneously odd. We have D{—j, —j') = D{j,j')

and D (j', j) = D (j, j') ; and it hence appears that the really distinct values of the

coefficient may be taken to be those for which j is not negative, and as regards

absolute magnitude is not less than / ; and for such values of
_;,

j' we have the above-

mentioned expression

D {j. j') = S ^'^^~^^
v^ ^M,^RA

which I proceed to explain and develope.

Hi (jv — ^) and Ux {x being a positive integer) denote respectively ^ . | . . . (a; — ^),

and 1.2. 3... a;; in particular for x = 0, the value of each factorial is = 1.

7) denotes sin ^ <1>.

The coefficients jR^* are those of the multiple cosines in certain developments, viz.

we have

T^r'" {r" + r'2 - 2rr' cos (
[/"- U"')}"*-* = Si?/ cos i{U- U'),

where, as usual, i extends from — oo to oo and Rx~* = -K/. Writing with Leverrier

{a-' + a'= - 2aa' cos if)
"
* = ^ lA' cos iH,

aa' (a' + a' - 2aa' cos iO ~
' = i ^^ cos iH,

a'a'' (a= + a' - 2aa' cos H)-i = J SC' cos iH,

a?a'' {a?+ a'» - 2aa' cos fi") " ? = ^ ID' cos iH,

then 2iJo*, 2i2i*, 2jBj*, 2ii,' are the same functions of r, r that A\ B\ C\ D' respectively

are of a, a'.

The expression of if,* is

3f,» = (-)»>-* (j+i'>

n^(x-j-^)U^{x+j' + ^) U)i(x-j + '^)Uh{x+j'-^)'

and, finally, in the expression for D {j, j'), x has every integer value from to x

,

and, for any given value of x, ^ extends by steps of two units from the inferior

value —{x—j') to the superior value x—j.

It is convenient to write x—}^{j+j')-\-s; we have then ^ extending from

-iO -?')-« to -Hi -/)+«. or writing ^ = - i (j -/) + ^, has the s+l values s,

8-2, s-4, ...-S, vi?. for s = 2p-{-l the values are ±1, + 3, ... + (2p + 1), and for

8=2p they are 0, ± 2, + 4, ... ± 2p.
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Making these changes we have

where

w-ic;-/)+9 ^ , y n{|(j+j') + s} n(^(j+j') + s}

viz. this is (—)* into the product of two binomial coefficients, each belonging to the

exponent ^ (j +j') + s.

Particulai- Cases, j +j' = 0, 2, 4, 6, being those required in the Planetary Theory.

Considering successively the cases j +j' = 0, 2, 4, 6, we have, first,

^u. J> - lis ^ ^^ '^\u^{s-d)n^(s+d)\ ^'

which, developed as far as 77', is

(*) I>{h-j)= i^-^'

- \ vmB-i^' + B^-')

2.4.0

where, and in what immediately follows. A, B, C, D are used to denote functions (not

of (a, a'), but) of r, r'.

Secondly,

n(g+i) o-^+i+H

which, developed to if, is

(*) Z)(i, -j + 2) = 7?^{ I
.45^+'

2.4.0 J

c. VII. 65
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Thirdly.

jj(j, j + t) Zjj^^_^2^i7 .^7, ^ r| n^{8- 0)11^(8+ e) + 2

ni(«+^)n^(s-^)+2 •+« r
which, developed to 17', is

(•) D(j,-j + *) = V*\ \^-i(^^

and, fourthly,

n(s+3) D-j+3+»
ni(s+6i)n^(5-6') + 3 '+»

which, developed to 17', is simply

(•) i> (J. - j + 6) = ^^ ^^76 • *
^*'-

The foregoing formulae, although obtained on the supposition j = 0, or positive,

apply mthout alteration to the case j = negative, and the entire series of terms of an

order not exceeding 6 as regards tj may be written,

D{j,-j) cos ijU-jU')

+ 2D ij, -J + 2) cos {jU + i-j + 2) U')

+ 2D (j, -j + 4) cos (jU+(-j + 4,) U')

+ 2D (j, -j + 6) cos {jU+ (-j + 6) U'),

where j has every integer value from — 00 to + 00

,

Comparison mth Leverrier.

This is in fact what Leverrier's expression becomes on putting therein e = e' = 0.

To verify this, observe that Leverrier having defined his A*, B^, C, D\ as above, writes

further

E^ = ^
(£«-i + £•+>),

6* = I
(Ci-" + 4(7' + 0'+"),

W = ^ (i>-» + 9i)'+' + 9i)''+' + !)<+»),

U = J ((?•-= + C'),

S' = |§
(!)•-= + W^' + i)'+0,
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(consequently E-' = E\ G-' = G\ H-' = H\ i-'+« = Z*, S~'+^ = S\ T-^+*=T'), and that the

terms in question, putting in the coefficients e = e' = 0, are with him

{{ly

+

(11)* i?» + (17 y v*+i2o y vi cos (w - 1\),

{(212)' 7)'- + (218)* V + (221)' v'} cos [W - (i - 2) \ - 2t'],

{(372y V* + (375)' 7?"} cos [W - (i - 4) \ - W],

{(449)< 7)'} cos [il' -(i-6)\- 6t'],

where, substituting for (1)', (11)', &c., their values, the coefficients are

= iA^-r,Ki (£''-1 + £<+') + v*--k ((^~^ + 4C"' + 0^+") - '7^^ (ly-' 4 9i)'-i + 91)'+' + i)'+')

;

7}'.iB^-'-ri*.L* + 7)'S', =17" . I ^+>-V(JO'"-^ + C') + 7?8.|f(i>-» + 3X>'-' -i-Z)<+i);

V . I O'-^ - ^« T"', = i7< . I C"-' - i7« . 11
(!)'-= + i)'-')

;

and

Writing herein j in place of i, and for A^, BJ~^, &c., the equal values A'^, 5"^"+', &c.,

we have precisely the foregoing coefficients D{j, —j), ... D(j, —j+6).

The Development in Powers of e, e'.

The complete expression of the reciprocal of the distance is obtained from

DU.-J) COS ijU-jU')

+ 2D {j, -j + 2) cos {jU+ (-j + 2) U')

+ 2D {j, -j + 4) cos {jU + i-j + 4) U')

+ 2D (j, -j + 6) cos {jU + (-j + 6) U'),

by writing therein for r, r', U, U', instead of the circular, the elliptic values, that is

the values

r =a elqr (e , Z — 11

)

, = a {\ + x),

r' = a' elqr (e', U -Tl') , = a' (1 + x'),

U = n - + elta {e, L-H), =U-% +f,

C-' = n'-0' + elta(e', U -W), =n'-0'+/';

L, n, the mean longitude in orbit, longitude of perihelion in orbit, and longitude of

node; and the like for L', 11', 0'; " elqr " = elliptic quotient radius, " elta " = elliptic true

anomaly ; or, what is the same thing, if we write elta (e, Z — 11) = Z - 11 + eltt (e, L — 11),

and the like for elta(e', Z'-Il'), then

J7 =X -0 +eltt(e, i -n), =L-@+y,
U' = L'-@' + eltt (e', L' - W), = Z' - 0' + y'.

G5- 2
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The process for doing this is explained, First Part, pp. 205—207, [214], viz., writing

r = a{l+x), r' = a'(l +a;'), and restoring j" (instead of its value —j, ...—j + 6, as the

case may be), we have a general term

where D (j, j') now denotes the value obtained by writing a, a' in place of r, r and

f, f are the true anomalies elta (e, L — U) and elta (e', L' — 11'). And the second

factor, x'x''^' into the cosine, is given as a series

S2 ([cos]< + [sin]*) ([cos]'" + [sin]'") cos [i (L-U) + i' {JU - H') +j (O - 6) - j' (D' - ©')],

where [cos]*, [sin]* are functions of e, [cos]'', [sin]*' functions of e'. Or, what is better,

the term a;*
«'"' into the cosine may be written of- a;'"' cos [j (X — + y) +/ (Z' - 0' + y')],

and the expansion then is

2S ([cos]* + [sin]*) ([cos]'' + [sin]') cos [z (i - H) + 1 (JJ - H') +j (L - 0) +j' (L' - 0')],

where as before [cos]*', [sin]' are functions of e, [cos]'", [sin]'' are the same functions

of e', viz. the e-functions are those given in the two " datum-tables " {of ... id') cosjy
and (of ...os') sin jy, taken from Leverrier, which I have given in my "Tables of the

Developments of Functions in the Theory of Elliptic Motion," Memoirs R.A.S. vol. xxix.

(1861), pp. 191—306, [216]. In order to better show which are the symbols referred to,

we may, instead of [cos]*, &c., write [af^ cosjy]*, &c., the formula will then be

a;" a;'-' cos [j (L-& + y) +j' (L'-&+ y')] =

22 {[of cosjy]' + [x' sin jy]*) ([a;'"' cos j'y']'' + [x'' sin j'y']'')

X cos [i iL-U) + i' (JJ - n') +j (i - 0) +j' (Z' - 0')]

;

and if we attribute to i, i' any given values, that is, attend to any particular multiple

cosine,

cos [i {L-U) + i' {U - W) +j (Z - 0) + j'{L' - &)],

the coefficient hereof will be

where a, a' each extend from zero to infinity, but to obtain the expression up to a

given order p in e, e, we take only the values up to a + a'=p.

Particular Case.

Thus, for instance, in cos [j (L — 0) —/ (L' — 0')] the terms independent of e' are

-D U' -j ) ![*" COS jy]" + [of sin jy]"}

+
I

« (^) -0(j. -j')i[^'cosiy]'' + [a.'sinjy]«l

+ 1-2 "' (S'^ ^^- ~^ ^ ^^'^ ""^ ^y^ "^ ^^ siiiiy]"}.

+ &c.
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which, observing that in the present case the sine terms vanish, is
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^ I 384 46080

1

1 d
T "^

1.2 " \d^)

1.2.3 «UJ •

OU, -J)

1 -8/ + 96/

-54/

- 1280/

+ 3920/

- 3440/

+ 4 -48/ - 360/

+ 4 -96/ + 1920/

- 1320/

+ 144 - 2880/

+ 144 - 5760/ 1.2.3.4^* [da)

i

+ 14400 1.2..5"W

1 ,/dy
1.2..6"W •+ 14400

1.2..7"UJ

viz. the term in e" is

viz. writing ij = 0, and therefore D {j, —j)=hA-K the term in e^ is

which, conformably with Leverrier's subscript notation
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I write

The term in question is given by Leverrier as (^e)°(2)', =e'.i(2), A=t and K^ = A\
=: ^ . \ {- 21? A^ + A^^ Jr A^), which agrees.

Similarly the term in e* is

g^l96j«-54j»-48j»( )x-96j'( ),+ 144( )3 + 144( ),]\A->,

= b|^ {(96j* - 54/0 ^-^' - 48;' 4,-^' - 96j»^,-^ + 144^,-^' + 144ilr-'},

and the term in question is given by Leverrier as (^ ef (4)* = e* . ^ (4), h = r and

K' = A\

which agrees. I have not made the comparison of any more terms.

Leverrier's Results expressed in terms of the Arguments, L' — @', L' -II', Z — 0, L — 11.

The angles which Leverrier uses in his arguments are I', \, co, w', and t', viz.

we have,

I' =& + (L' -&),

\ =& + {£ -0),

st' =& + {U'-&),

o> =0'+(n -0),

t'=0',

where L, H, are the mean longitude of the planet m, its perihelion and the mutual

node, all in the orbit of m; and similarly L', 11', 0' are the mean longitude of the

planet m', of its perihelion and of the mutual node, all in the orbit of m'. On
substituting the foregoing values of I', X, &c., 0', as it should do, disappears, and the

arguments are all of them linear functions of L' — 0', 11' — 0', Z — 0, 11 — ; or, if

we please, of L' — &, L' — Tl', Z — 0, L — H, that is of the distances of each planet

from its own perihelion and from the mutual node. It is, I think, convenient to use

these last angular distances, and accordingly in Leverrier's arguments, I write,

I' =0' + (Z'-0'),

\ = 0'
. . . . + (Z - 0),

zt' = 0' + (Z' - 0') - (Z' - n'),

« =0' +(Z-0)-(Z-n),

t' = 0',
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and for the purpose of reference form as it were an Index to his result as follows:

Reciprocal of Distance = as follows

:

Terms of order zero : terms of orders 2, 4, 6, having the same arguments.

L' -& L'-n' L-® z-n

(ly
( 1 . 20) . cos i - i

(2i)'a«) (io (21 . 30) i +

1

— i -

1

(31)'(i«r(ie7 (31 ..34) . I + 2 — i _ 2

(35)'(ie)'(^«r (35 . 35) i + 3 - i -3
(36)'(ie)V (36 . 39) i -i + 2 _ 2

m'(he)(ke)rf (40 . 43) . i - 1 -i + 2 - 1

(44)'(iOV (44 . 47) . i - 2 -i+2
(48y(Je)»(|0'?-^ (48 . 48) . i + 1 -i+2 -3
(\^Y{^e)(\eJrf (49 . 49) i - 3 -i+2 + 1

Terms of the first order : terms of orders 3, 5, 7, having the same arguments.

L'-& L'-n' L-@ Z-n

( 50)' he ( 50 . . 69) cos - i + 1

( 70)' le' ( 70 . . 89) . )) + 1 — i

( 90)'(ie)^(ie') (
90 . . 99) J> + 1 - i - 2

(100)'(ie)(Je7 (100 . . 109) ))
+ 2 - i -1

(110)'(ie)MJ«r (110 . . 113) J>
+ 2 — i -3

(114)'(ie)»(iey (114 . . 117) n + 3 — i - 2

(118)'(ie)'(ier (118 . . 118) i>
+ 3 - i -4

(119)'(i«)'a«T (119 • . 119) ti
+ 4 — i -3

(120)'(Je),= (120 . . 129) »j
• -i+2 - 1

(130)' (^e) rf (130 . . 139) »»
- 1 -i + 2

(140)'(Je)V (140 .
. 143) )» -i+2 - 3

(144)'(ie)»(^e'),»(144 . . 147) » + 1 -i+2 - 2

(148)'(i«)Mi«')'f (148 . . 151) j»
- 1 -i + 2 -2

(152)' (^e) (iOV (152 . . 155) )»
— 2 -i + 2 - 1

(156)' ie (^efr,' (156 . . 159) J) i - 2 -i + 2 + 1

(160)' (^eT 7,' (160 . . 163) » i -3 -i + 2

(164)'(ie)«(Je'),f (164 . . 164) ft i + 1 -i + 2 -4
(165)'(Je)'(Je')V(165 . . 165) »» i + 2 -i+2 -3
(166)*(je)'(^e77j='(16G . . 166) )) i -3 -i + 2 + 2

{I67y(ie)lierr,'(l67 . . 167) ») i -4 -i + 2 + 1

(168)'(Je)''?* (168 . 168) j» i -i + 2 -3
(169)'(Je)'(Je')V(169 . . 169) » i - 1 - i + 4 - 2

(170)«(iO(i«TV(170 . . 170) »j i _ 2 - i + 4 - 1

(171)' (J e')''?* (171 •
. 171) )j i -3 - i + 4

«
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Terms of second order : terms of orders 4, 6, having the sam^ arguments.

L'-& L'-n' L-® L-U

(172)'(Je)» (172 . . 181) cos i - i + 2

(182)'(ie)(ie') (182 . . 191) »l i + 1 — i + 1

(192)' (JO' (192 . . 201) 11
+ 2 — i

(202)«(Je)»(^') (202 . . 205) >» + 1 - i -3

(206)'(ie) (Jey (206 . . 209) 11
+ 3 — i -1

(210)*(Je)*(^e7 (210 . . 210) »J
+ 2 — i -4

(211)'(ie)'(ie7 (211 . . 211) » + 4 — i -2

(212)' ,;» (212 . . 221) t*
-t+2

(222)'(Je)(Je'),,= (222 . . 225) )>
+ 1 -i + 2 - 1

(226)'(|e)(|e'),» (226 . . 229) 1)
- 1 -t + 2 + 1

(230)'(Je)V (230 . . 230) >»
-t+2 - 4

(231)'(Je)'(ie')^ (231 . . 231) >»
-1 -i + 2 -3

(232)'(^e)=(^«7,^ (232 . . 232) }}
- 2 -i + 2 -2

(233)' (^e) i^e-frf (233 . . 233) )J
-3 -i + 2 - 1

(234)' (ie')*,;'' (234 . . 234) »J
-4 -i+2

(235)' (J67(^0= ,^(235 . . 235) })
+ 2 -i + 2 -2

(236y{^ef{^eyrf{23& . . 236) }1
_ 2 -i+2 + 2

(237)'(ie)»,' (237 . . 237) »J
-t + 4 -2

{238Y{^e){U')r,* (238 . . 238) n - 1 -i+4 -1

(239)' (^e7V (239 . . 239)
>f i -2 -t + 4

Terms of third order: terms of orders 5, 7, having the same arguments.

L'-& L'-W L-® L-U

(240)'(Je)» (240 . . 249) cos i - i + 3

(250)'(ie)Mie') (250 . . 259) }> i + 1 — i + 2

(260)'(i«)(i«T (260 . . 269) »» i + 2 - i + 1

(270)' (i«7 (270 . . 279) t1 i + 3 - i
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Terms of third order (concluded):

521

X'-©' L'-n' Z-0 z-n

(280)'(Je)Mi«') (280 . . 283) cos t + 1 — i -4

(284)'(iO(i«T (284 . . 287)
J»

i + 4 — i -1

(288)'(Je)=(Je')' (288 . . 289)
>l

i + 2 - i -5

(290)'(Je)''(Je7 (290 . . 299) )l i -i + 2 + 1

(300)' (JO if (300 . . 309) »» i + 1 -i + 2

(3\0y{l,efi^e')r,' (310 . . 313) 1) i -1 -i + 2 + 2

{3Uy{he){herrf'(3U . . 317) )f
i + 2 -i+2 - 1

(318)'(Je)V (318 . . 318) H i -i + 2 -5

(319)'(Je)MJe')Tj'(319 . 319)
))

-1 -i+ 2 -4

(320)'(Je)'(Je7,,' (320 . . 320)
If

- 2 -i+ 2 -3

(321)'(Je)'(|eT>/= (321 . . 321)
»>

-3 -t-+ 2 -2

(322)'(Je)(|e')V (322 . . 322) »
-4 - i+ 2 - 1

(323)'
(
J e')» ij'' (323 . . 323) »

-5 -i + 2

(324)'(i«)'(ie')V(324 . . 324) »»
-2 -i+ 2 + 3

(325)'(Je)'(i«')V(325 . . 325)
»l

+ 3 -i + 2 -2 i

(326)'(J«)V (326 . . 329)' . .
1) -i + 4 -1

(330)' (J «') V (330 . . 333) »» * -1 -i + 4 '

(334)* (Je)' (J 0^(334 . . 334) »J
r + 1 -t + 4 -2

(335)'(J«)(i«?V(335 . . 335) >» i - 2 -i + 4 + 1

Terms of fourth order: terms of order 6, and of same argument.

L'-& L'-n' L-® Z-n

(336)' (J «)^ (336 . 339) cos i — i + 4

(340)'(Je)'(i«') (340 . 343) i +

1

— i + 3

(344)'(ie)»(J«7 (344 . 347) J) I + 2 — i + 2

(348)'(J«)(J«')' (348 . 351) i + 3 — i + 1

(352)' (J 0* (352 . 355) i + 4 — i

(356)'(ie)»(^e') (356 . 356) i + 1 - i -5

(357)'(Jc)(j67 (357 . 357) i + 5 -i-1

c. vu. 66
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Terms of fourth order (concluded):

L'-& L'-n' L-@ z-n

(358)'(^e)V (358 . . 358) 008 i -t + 2 + 2

(362)*Ge)ae'),« (362 . . 364) i + 1 -t+ 2 + 1

(366)* (1 e')' y (366 . . 369) i + 2 -i+ 2

{370Y{le)'(ie')rf (370 . . 370) i -1 -t+ 2 + 3

(371)'(^e)(i«')V (371 . . 371) i + 3 -»+2 -1

(372)' V (372 . . 375) ' i -t+4
(376)*(^e)(^e')V (376 . . 376) i + 1 -t + 4 -1

(377)'(ie)(^e')V (377 . . 377) i -1 -i + 4 + 1

Terms of fifth order: terms of order 7 having the same arguments.

L'-& L'-n' L-& Z-n

(378)' (^e)» (378 . . 381) cos — i + 5

(382)'(»e)'(^e') (382 . . 385) ))
+ 1 -i + 4

(386)'(|e)»(^e7 (386 . . 389) »» + 2 -i + 3

(390)'(le)^(ie7 (390 . . 393) II + 3 - i + 2

(394)' (10 iiej (394 . . 397) 11
+ 4 -i + 1

(398)' (|e7 (398 . . 401) 11
+ 5 - i

(402)' (10' (10 (402 .
. 402)

II
+ 1 - i -6

(403)'(l«)(le')» (403 . . 403)
II

+ 6 — i -1

(404)' (1 e y rf (404 . . 407) II -i + 2 + 3

(408)'(le)»(le')f (408 . . 411) II + 1 -t + 2 + 2

(412)'(le)(le7^>(412 . . 415) 11 i + 2 -i+2 + 1

(416)* de')',," (416 . . 419)
II

+ 3 -» + 2

(420)' (10^ (10,^420 . . 420)
11

-1 -t + 2 + 4

(421)*(le) (ley,>(421 . . 421)
II i + 4 -i+2 -1

(422)'(le)V (422 . . 425)
II -i + 4 + 1

(426)'(le')n* (426 . . 429) 11
i + 1 -i + 4

(430)*(le)'(le')^' (430 . . 430)
11

i -1 -t + 4 + 2

(431)'(1«)(|«')V (431 . . 431) 11
i + 2 -t + 4 -1

(432)'(le),« (432 . . 432) II
i -i + 6 -1

(433)' (1 6') y (433 . . 433) 11
i -1 -i + 6
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Terms of sixth order.

L'-& L'-W L-& L-n

(434)'(ie)« (434 . . 434) COB — i + 6

(435)'(^e)»ae') (435 . . 435)
JJ + 1 - i + 5

(436)* (^ e )^ (^ «7 (436 . . 436)
)) + 2 — i + 4

(437)' a 0' (10' (437 . . 437)
)

+ 3 — i + 3

{ii%n\ef {ley (438 . . 438) >
+ 4 - i + 2

(439)'- (ie) {\ej (439 . . 439)
J i + 5 - i + 1

(440)' (J e'Y (440 . . 440) > + 6 — i

(441)'(^e)V (441 . . 441) ) i -i+2 + 4

{U2f{ief{^e-)rf (442 . . 442) > i + 1 -i + 2 + 3

(443)*(J«)»(|e')V(443 . . 443) ) i + 2 -i + 2 + 2

(444)' (>e) (>e7,«(444 . . 444) J i + 3 -i + 2 + 1

(445)' (i e'Y yf (445 . . 445) > i + 4 -i + 2

(446)' (|e)',* (446 . . 446) ) i -i + i + 2

(447)'(ie)(^e')V (447 . . 447) t i + 1 - i + i + 1

(448)' (1 «')' 7,* (448 . . 448) ) i + 2 -i + i

(449)' yf (449 . . 449) 1
i — i + 6

Terms of seventh order.

L'-Qi L'-W L-® L-TL

(450)' a e)' (450 . 450) cos i — i + 7

(451)' (i «)'(!«? (451 . 451) i 1 - i + 6

(452)'(|«)»(|e7 (452 . 452) i 2 - i + 5

(453)'(>e)Mi«7 (453 . 453) i 3 — i + 4

(454)'(^e)'(ieT (454 . 454) i 4 — i + 3

(455)'(ie)M^er (455 . 455) i 5 — i + 2

(456)'(iO(ie')' (456 . 456) i 6 — i + 1

(457)' (^0' (457 . 457) i 7 — i

(458)'(le)V (458 . 458) i -i + 2 + 5

66—2

I
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Terms of seventh order (concluded)

:

[479

L'-& L'-W L-& i-n

+ 4(my ik eras') rf{m . . 459) COS i + 1 -i+2

(460)*(ie)'(ie')V(460 . . 460) i + 2 -»+2 + 3

(461)'(^0M1«')V(461 . . 461) i + 3 -+2 + 2

(462)' a e) i^e'Yrfim . . 462) i + 4 -i + 2 + 1

(463)'(^e')V (463 . . 463) i + 5 -»+ 2

(464)* (^e)'^* (464 . . 464) i -i+ 4 + 3

(465)'(|e)»(*«')V (465 . . 465) i + 1 - t + 4 + 2

(466)' (|e) (^e')NM466 . . 466) i + 2 -i + 4 + 1

(467)'(|e7V (467 . . 467) i + 3 -t + 4

(468)' (i e ) 7,' (468 . . 468) i -i + 6 + 1

(469)'(^e')ij« (469 . . 469) . i + 1 -t + 6

Here the several coefficients are ultimately given in tei-ms of the before-mentioned

quantities A\ R, C\ D\ E^, G\ H\ L\ S^, T- (functions of a, a), and their differential

coefficients in regard to a

{^^'-\4a^'' ^''^O'^S^-H'

as follows:—we have Leverrier, pp. 299—330, a list of functions (1), (2), ...(154) of the

form {\) = \K\ (2) = -2h'K' + K,' + Ki\ (S) = -2v'K' + K,^ + K,\ &c., involving i, h, and

K* and its derived functions Ki\ K^, &c. The coefficients of the several cosines are

given by means of the functions in question, thus, first coefficient, above denoted as

<1)'(1...20), is

= (!)' + (2)' {\ e) + (3)' (i e') • • • + (20)" v'

where (1)'' = (1), (2)' = (2) ... writing in the functions (1), (2) ... (10), h = i, and K' = A^;

(11)< = (1), (12)* = (2), &c., writing h = i and K^ = -E\

(20y = (l), writing A = i and isT' = - ^S

and so on for the various component coefficients (1)', (2)* . . . (469)'.

But the resulting expressions, for the several integer values i = — 10 to + 10, are

worked out in the Addition II. (Numerical Tables for t/ie Calculation of the Coefficients

of the Development of the Disturbing Function), pp. 358—383. And this Addition

contains also, indicated by the letters 8 and A respectively, the expressions of the
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terms which experience an alteration in passing from the development of the reciprocal
of the distance to those of the disturbing functions m' upon m, and m upon m'
respectively.

We have

Disturbing Function m upon m

= m i
— r cos H 1

+
P]

Disturbing Function m upon rti'

= m |—
r' cos H 1

Ihe expressions of - -,— and
^
—

, developed to the third order in the

eccentricities and inclination, are given, Leverrier, pp. 272 and 274. Expressed in the

terms of the foregoing arguments L — 0', &c., and in terms of a, a' in place of a
and a, these are as follows:

rcosH a .

L'-@' L'-n' L-@ L-n

-l+|(e» + e'=) + jf cos 1 — 1

-«[ + 1 + 1 - 1 -1

+ |e-fee'»-fe,/» + 1 -1 + 1

-\e + \ee^ + ^e? + leri' + 1 -1 -1

-2e' + eV +fe''+2eV + 1 + 1 - 1

-fe»«' + 1 + 1 - 1 -2

+ ^«'" -1 + 2 + 1 -1

-H««" + 1 + 2 -1 -1

+ !«'/' + 1 + 1 -1
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toobH a .

ii'-0' Z'-n' L-& z-n

-!«• COS + 1 _ \ + 2

-I** n + 1 - 1 -2

+ 3 ee'
»)

+

1

+ 1 - 1 + 1

- s e
It

-

1

+ 2 + 1

-Y«^ )f
+

1

- 2 - 1

-rf >>
+

1

+ 1
!

-^Ve' tl
+ 1 - 1 + 3

-\ ^ •• »>
+

1

- 1 -3

- i e"e'
IJ

+ 1 + 1 - 1 + 2

-A*'" )»
-

1

+ 2 + 1 + 1

+ f^«'' »»
+

1

+ 2 - 1 + 1

-i«" »»
-

1

4-3 + 1

-Y"" fl
+

1

+ 3 - 1

-h^ )1 + 1 + 1 + 1

- 2 e'lf jy +

1

+ 1 + 1

r'coaH a' . ^ L'-& Z'-n' L-® .-n

-1 + H«'' + «'')+'?' COS 1 — 1

- e«' .

.

fl + 1 + 1 - 1 -

1

-2e+ee'»+|e^+2ei;= J) + 1 - 1 -

1

+ ^ e'_fe»e'-|eV f*
-

1

+ 1 + 1

- Ae' + Je»e'+|e'^ + ^eV •• )»
+

1

+ 1 - 1

+ A«v • » + 2 -1 - 2 + 2

-|Je'«' fl
+

1

+ 1 - 1 -2

-}««" 1}
+ 1 + 2 - 1 - 1

+ f«'V »»
+ 1 - 1 + 1

-
If

e- » + 1 - I + 2

ST ^S
f» + 1 - 1 -2

+ 3 etf' l»
-1 + 1 + 1 + 1

1 jt** » -

1

+ 2 + 1
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r ' COS H a .—--— = "2 into
r* or

/,'-©' Z'-n' L-® L-n

- t e'» cos + 1 + 2 - 1

-v" j» +

1

+ 1

_ 1 p3
ly +

1

-1 + 3

-^^
)}

+

1

-1 -3

+ U^e- . ij
-

1

+

1

+ 1 + 2

-^e'e' .
l» +

1

+

1

-1 + 2

- i ee"
)» -I + 2 + 1 + 1

-A«'= »»
-

1

+ 3 + 1

-he- 91
+ 1 + 3 -1

- 2 erf ii
+

1

+ 1 + 1

- h e'rf . . »» + 1 + 1 + 1

It is hardly necessary to observe that, to obtain the expressions of the Disturbing

Functions, these additional terms are to be combined with the corresponding terms

in the expression of the reciprocal of the distance : thus, in the Disturbing Function

ft (m upon m), the entire term depending on cos [L' —& — (L — @)] is

= m'k(l,... 20),=, + ^^{-l+^{ef> + e'^) + v')\ cos [{L' - ©') - (Z - ©)],

where, however, the supplemental term is taken to the third order only.
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480.

ON THE EXPRESSION OF DELAUNAY'S I g, h, IN TERMS OF
HIS FINALLY ADOPTED CONSTANTS.

[From the Mmithly Notices of the Royal Astronomical Society, vol. XXXII. (1871—72),

pp. 8—16.]

We have in Delaunay's lunar theory,

I, the mean anomaly of the Moon,

g, the mean distance of perigee from ascending node,

/(, the mean longitude of ascending node,

quantities which vary directly as the time, the coefficients of t, or values of t- , ^ , -37

,

being given in his Theorie du Mouvement de la Lune, vol. II. pp. 237, 238. But

these values are not expressed in terms of his constants a (or n), e, y, finally adopted

as explained p. 800, and it seems very desirable to obtain the expressions of I, g, h,

in terms of these finally adopted constants : I have accordingly effected this trans-

formation (which I found less laborious than I had anticipated). It will be convenient

to imagine the a, n, e, 7 of pp. 237, 238 replaced by A, N, E, T respectively. This

71

being so, and writing m for the -, of p. 800 we have, p. 800,

+ (- 1 + 3^ - f e" - e'^ - 27^ + f 7V + f 7'e'» - tV e* - 1 e»e'' - J e'«) m^

+ (- 1V -W e* + ^y +^ 7''e= - ^ fe'* -I- fi|f e* -^ e=e'') m»

+ 2f§^ m\

m
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and hence calculating N from the formula iV"'^' = wW, we find

529

N=n\ l + [|«*' + ¥i¥"i'}^.

+ (¥ 7" + e/^ e^ -W 7" -^ 7'e' + -«^ 7V= --^ e* +4P eVn m'

+ (-W+ ^^ i'+ m^^- ¥# e'')m*

+ (- %¥ + ^ffl^ 7= + ^m^ e-' - ^'-iP- e'-) m^

+ (--ffF)™'.

= n{l + Q) suppose.

The values of E, F are given p. 800, but for the present purpose we only require

£*, and P to the fifth order, viz. the values of these are at once found to be

r^=7ni+^«i^-ie'»').
whence also E* = e^ and F* = y*.

The formulae of pp. 237—238 now give

^r

(1 + Q)-'

(i + QT
r(-^ +^7» -%a e^ - W- e'= -^ 7* + -41^ 7'e' + ^^ 7'e''+ ^W^^-^W «'«'') «*'!

+ (^i^7'-^W^e')»n'

+ {- ^m + m^ 'f- hW e'- ^W e'»)m*(H-Q)-'

+(-mW +^^i^r-^We'-^^e")m>{l + Q)-*

+ (- -^•'tW^)"^'(i + <3)-°

(Observe that writing herein Q = 0, and omitting the terms in m" and m' in the

coefficient of (1 + Q)-', and the term in m" in the coefficient of (1 + Q)-\ we have the

original formula of p. 237)

9 = nti^[nm' + ^^m']^^

C. VII.

(1 + Qr

67
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f
(1+Q)-

+(^w _ l«l« ^_ ^^ e» + a|||5 e'«) ^4 (i + Q)->

+ (HIF - 2^W^ 7* - ^4Ht^ e" + s^ft^O m» (1 + Q)-*

+ *^W^ TO'(1 + Q)-'

{where writing Q = 0, and omitting the terms in m* and ?rt° in the coeflScient of

(1 + Q)~', and the term in m° in the coefficient of (1 + Q)~*, we have the original

formula of p. 237). And ,

+ (Hiy-Me=)m' [(1 + Q)-'

+ (^^^ -^^ 7" - ^Ml^ e» + Ij^^ e'») m» (1 + Q)-*

+ W^ TO" (1 + Q)-'

+ ^flffM*TO'(i + Q)-

M' (1 + QY

(where writing Q = 0, and omitting the terms in m* and 7rt' in the coefficient of

(1 + Q)~', and the term in m' in the coefficient of (1 + Q)~-, we have the original

formula of p. 238). We hence have

I =nt[A + 0. + B)q^Gqp},

= nt{A-¥Q + BQ + Cq%

g=ra{A' + B'Q + C'Q'},

h=fa{A" + B"Q+C"Q%

where (omitting the terms in -r^

A = l + (- ^ + ^ r" - I e» - V «'" + ¥ 7* - TT r'e'+ ^ y'e'- | efe'' - J^ e'*) m'

+ (-W + ¥7" - We"-W e'»-^ 7* + J^f^TV + ^^7=6'"+
^?iW^ e'-^i-e'*) m'

+ (- ^r^ + ^f^ y- -4^ e>- ^^HF) m*

+ (-Hm*+^?^ 7"- ^4M^ e» - iJV^s e'») m»

+ (- '¥AW ) TO«

1
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+ ^W "**

C = - '^ m^

- ^ TO'.

^' = (i - ¥ r + I e^ + I e'^ - ^ y + 15 7V -
^i- 7V^- fj e* + H e^e'" + ffe'*) «i'

+ (¥-Wy - ¥4'- ^' +W «'' +^ -/ - ^t^ 7'e— i^ 7V^ + IM e* - -^IF eV») "»'

+ (^S^ - ^4MP 7= - ^IHF e= + ^sW^ «'^) »«'

C" = I m'

4"= (_ I + 5 y- f e=- I e''-^7'e'+ f 7^' +^ e* - | e'e''- ff e'* )to''

+ ( m - HI y- 2^ e^+ ^^ 0»n'

+ ^^^^ «^'

£" = + ( f -
i 7'+ I e'+ I e'^)m»

- W "»*

C" = - f m'

+ Mto».
,^ 67—2
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And in terms BQ, BQ, B"Q, we have

Q= (l-fy +K + ^O"!'

and in the terms CQ", O'Q", C"Q^, simply Q" = »»*. Hence finally the required values of

I, g, h, are *

*

Z = n<|l + [-em'-:!^m>]J, S

g^nt

+ (- f + ey + f e» - |e'» +^ 7* - «#7»e» + 97»e'» + A «* + 1^ e'e'" - 1^ e'*) to'

+ (- ^SMF + ^^ft^ 7" + -Ma^W^ e» - u^f^ e'») m»

+ (¥ -W t' -^ e» + i^ e'» + ^F 7* - 1^^ 7=e» - -4|i fe'» + Mf e* --^ eV») TO'

+ (^4IF - ^fMf^ y - -"m^ e" + fi^?iV^ c") TO»

h = nt^ [_|4^»_j^w.)^

+ (- f + f r"- § «»- |e''-V7'e=+ f ye'^ + fi e* -f e'e''- |f e'« )to»

+ ( A-?i7"-We» + §|e'» + f|7* +^ ^e' - ?| 7^e'» - |M e* -W e»e'') »>i'

+ ( HI - fff y- ^iW e'^- AiV^ e")m«
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which values satisfy, as they should do, the equation l + g + h = nt. I recall that the
precise signification of the constants is as follows: n is the coefficient of t in the
expression of the Moon's longitude in terms of the time, a the corresponding elliptic
value of the mean distance (w»a» = sum of masses), e the eccentricity, such that in the
expression of the longitude the coefficient of the leading term of the equation of the
centre has its elliptic value

5 „5

and 7 the sine of the half-inclination, such that in the expression of the latitude the
coefficient of the leading term has its elliptic value

= 27- 276^- i 7* + 3^5 7^* + i r'e' - ill ye"

n', a' are the mean motion and mean distance of the Sun, 7?i = -, and e' is the
n

eccentricity of the Sun's orbit, considered as constant.

i
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481.

ON THE EXPRESSION OF M. DELAUNAY'S ^ + ^ IN TERMS OF
HIS FINALLY ADOPTED CONSTANTS.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxxii. (1871—72),

p. 74.]

I HAD the pleasure of receiving from M. Delaunay a letter dated Paris, 17th Dec.

1871, in which he informs me that, on referring to his papers, he had found there

expressions for I, g, h, identical with those given by me in the November Number of

the Monthly Notices,—with only a single typographical error, §|e'°m' instead of §|e''m'

[ante p. 532, corrected] in my expression of A.

M. Delaunay mentions also that he had obtained four additional terms in the

expression for h-\-g (longitude of the Moon's perigee), and that the complete expression

in terms of the finally adopted constants ia

+ (
W - -4* 7" -W e" +W e'" + -4F 7" + M Ve* -^ ye'" - =^ e'e'") m"

+ [M«^'+Vi¥m»]^,}.

[Observe that h-\-g is =nt — l, and compare with the expression for I, ante p. 532.]
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482.

NOTE ON A PAIE OF DIFFERENTIAL EQUATIONS IN THE
LUNAR THEORY.

[From the Monthly Notices of the Royal Agronomical Society, vol. xxxii. (1871—72),

pp. 31—32.]

1

The equations

ItJt-p(^J + }^-'^'^'f^^^^'^^^''-'^^^'^^'

d ^dv

di^ di
=jmy {

- f sin i2v - 2mt)],

taking therein j = k=l in effect present themselves in the Lunar Theory, and

particular integrals in series have been obtained, the development being carried to a

great extent ; but I give the results only as far as m*, viz., writing

we have
t — mt = D,

+ Wi '^* sin 4Z),

; = 1 + i m» -mm*

+ ( m^ + ^m' + ^m*) cos 2n

+ I m* cos 4i).

In the Lunar Theory j and k are properly each = -^ {E the mass of the

1 + —m
Earth, m' that of the Sun), but they are taken to be = 1 ; the numerical difference

is inappreciable; but there would be a considerable theoretical advantage in retaining
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in the equations the coeflBcients j, k [regarded as each of them = i] : in fact, the

developments could then be arranged according to the powers of k, that is according to

the powers of the disturbing force ; whereas, when k is taken =1, we have only a

development in powers of to, and since m also presents itself through the coefficient

2 — 2in of t in 2v — 2mt, terms which are really of dififerent orders in regard to the

disturbing force, are united together into a single term : so that, instead of a term

of the form {Ak + Bk^ + &c.) vi^, where A, B, are numerical, we have the term

(A +B +. .) mP, where of course A + B .. is given as a single numerical coeflScient.

There is no equal advantage in retaining the two coefficients k, j, as this only serves

to show how a term arises from the central and tangential forces respectively; thus

retaining these coefficients, the integrals as far as m'' are

V — t +(^k + y)m^8ixi2D,

1 = l+im^k + (^k + ^j) m= cos 2D,

agreeing with the former result when k=j=l; but there is, nevertheless, some interest

in retaining the two coefficients. I hope to develope the results somewhat further,

and to communicate them to the Society.

fl
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483.

ON A PAIR OF DIFFERENTIAL EQUATIONS IN THE LUNAR
THEORY.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxxii. (1871—72),

pp. 201—206.]

I CONSIDER the differential equations

it{p'm) =J^y{ -|sin(2t,-2m0},

which when j = k=\ give the following equations in the lunar theory {D = t— mt)

:

i = 1+ i m» -^ m^ - fl m» - Ul w*' -4^ m' - ^^^L.'^ m« - ift^tHB^ m»

+ cos 2i)K + -yt m' +^ m* + %8^ m» + A5>;f^ m« + ^|§|fi m'

+co8 4i)[gm*+^^m'

+

^m^ ^'+w^^'+Hmm¥^' + ^-'im^^m^^']

+ cos SD [U^ m? + \%WM rn'l

or as far as m',

+ cos 4i) [- 1 m« -J^ m» - ^^^^ m« - HiffF "»']

+ cos 6i) [-^ m" - Jg^V^ m'J

c. viL 68
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(-is given by M. Delaunay only as far as m", the additional terms of - and expression

for p were kindly communicated to me by Prof. Adamsj ; and

v = t

+ sin 42? (1^ m« + ffl m' + Aj^^ m*+ HfSM^ ^' + ' "AW/oWo"^ "*')

+ am 6Dimi 711' +mm m')

(Delaunay, t. ii. pp. 815, 836, 845). ^

To integrate the original equations write

/} = ! +pi + pi+ ...,

V =t +v, + v« + ...,

where the suffixes indicate the degrees in the coefficients k, j conjointly : the equations

for pn, Vn take the form

dt dt
^''" ^ dt^ '^"~^"'

d (dVn

dt

where V„, Un, Pn, Qn do not contain p„ or Vn. From the second equation we have

-^+2p„ + n„ = nn+jp„dt,

where il„ is a constant of integration, the integral jPndt containing only periodic

terms; and then adding twice this to the first equation we have

I ^t
+Pn+Vn + 2Un = 2n„ + Q„ + 2

Jp,.
<,di

which determines p„; and substituting its value in the other equation we have
dv„

di'

and thence t;„ ; the constant fl„ is determined so that

term. We have

d^
dt

may contain no constant

^'=-[-dt)-^p^di+^p^''

^'-'^li dt~^P'dt-PAdi)

- 2pj -^ + Qpip2 - 4p,»,

&c.

f^3 = 2/,.^^' + (2;,,+ p.=)^>2p,p„
dt dt

&c.



483] EQUATIONS IN THE LUNAR THEORY. 539

Qi = im»(i + fcos2i)),

Qj = km? |3t)i sin 2i) + p, (J + f cos 2D)},

Qs = km^ {- 3fo sin 2i) - Svi'' cos 2D

+ pi», . 3 sin 2D

+ p,(i + fcos2Z))},

Pi=jm''(-f sin2Z>),

P„_ =:jm? (- 3i;i cos D - 3/j, sin 2D),

Ps =3^? {- 3i)j cos 2D + 3y,'' sin 2D

— 6piV, cos 2D

+ (2p, + p,»).-fsin2D},

&c.

In particular attending to the values of P,, Qi the equations for pi, Vi are in their

original form

d (dvi

jtQ-^'p^) =>^( -^^-2^)'

whence in the transformed form they are

It
~ + 2pi = fii + xTiy-^^^ cos 2D,
'^*

'^
4 (1 — m)

and

?^,' + Pi = 2fti + )tm''(i + f cos 2D) +1^ cos 2D.

Thus the constant term of pi is 2fli +'^km^, giving in ~jj a constant term — 3fli — km*

this must vanish, or we have fij = — ^ km^ ; and the equations thus become

g>+2p. = -iA:TO= + ^-|^^^cos2D,

^^'+ P:=-iW+(fA:m=+i^)cos2D,

and then completing the integration

Pr = -H^' +
|3_8to+W + (l-m)(3-8m +W ^°^ 2^'

f f^^' .
§im'(7-8TO + 4m')

]
"'~

|(l-m)(3-8OT + 4m')"^(l-m)»(3-8m+4m»)j

which are the accurate values of pi and Vj.

Expanding as far as m' we have

ft
= ;fc(-^TO«) + co8 2D{ A;(-im»- f m^- ^m^- J^m»- ^ m")

+j(_^ m^-i^m?- ff m*- ^'^ to»- ^^l m«)),

which for j = A; is = k{- m'-J^m»-i^m^- ^TO»- 5^m«),
68—2
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and

t>,=

which for j = k is

ON A PAIR OF DIFFERENTIAL EQUATIONS IN THE LUNAR THEORY. [483

sin 2Z> { k{ ^ m» + Jy- wi» + ff m* + J^ m» + s^ m*)

= )fc( v-»i'' + H»«' + W«i*+ W »«° + 4^'»')•

I have, not in general, but for the value j = k, calculated p„ and v, as far as m'

:

I have not made the calculation for ps and v,, but their values may be deduced from

the foregoing values oi p, v; the final expressions (when_; = ^) of p, =1 +p, + /3j + p, + ...

and V, =t + Vt + V3 + Vs ... are

p = l

+ k{-im-' )

+^( -\m^')

+ cos 2Z) { k (- m" - i^m? - ^m* - ^ m' - s^ m")

+ /fc"( f m«+ ^ m'>+ 5^ m«)

+ ^( -MMm')}

+ cos 4I> { Ar" (
- f m* -J^ m» - XA/^ to«)

+ k>{ + ^ m«))

+ cos6D{ k'i - ^ m%

+ sin2Z) { k (JgLm= + f|m» + ^m*+ ^ m»+ A||^ m«)

+ Ar" (
- ^ m* - fl m' - ^ m')

+ sin4i){ A;H M w* + f^ m» + 4/^^ m")

+ 8in6i){ fc'C + MH ™'')1;

which for ^ = 1 agree with the foregoing formulae (verifying them as far as m») ; the

present formulae exhibit the manner in which the expressions depend on the several

powers of the disturbing force.

and

v=t



484] 541

484.

ON THE VAEIATIONS OF THE POSITION OF THE ORBIT IN

THE PLANETARY THEORY.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxxil. (1871—72),

pp. 206—211.]

It has always appeared to me that in the Planetary Theory, more especially when
the method of the variation of the elements is made use of, there is a difficulty as

to the proper mode of dealing with the inclinations and longitudes of the nodes,

hindering the ulterior development of the theory. Considering the case of two planets

m, m', and referring their orbits to any fixed plane and fixed origin of longitudes

therein, let 6, 6' be the longitudes of the nodes, </>, ^' the inclinations {p = tan (j) sin 6,

q = tan <j> cos d, &c., as usual) ; then the disturbing functions for m, m! respectively are

developed, not explicitly in terms of 0, ^', 6, 6', but in terms of *, the mutual

inclination of the two orbits, and of @, ©' the longitudes in the two orbits respectively

of the mutual node of the two orbits; <I> and 0, 0' being functions (and complicated

ones) of
<f>, <f)',

9, ff. Moreover, although in the general theory of the secular variations

of the orbits of the planetary system, 6, <)>, &c., are, as above, referred to one fixed

plane (the ecliptic of a certain date), yet in the theory of each particular planet it

is the practice, and obviously the convenient one, to refer for such planet the 6, ^
to its own fixed plane (the orbit of the planet at a certain date), the effect of course

being that
<f>,

and consequently p, q, instead of being of the order of the inclinations

to the ecliptic, are only of the order of the disturbing forces. It has occurred to me
that the last-mentioned plan should be adhered to throughout; viz., that for each

planet m, the position of its variable orbit should be determined by d, the longitude

of its node, and
<f>,

the inclination in reference to the appropriate fixed plane (orbit

of the planet at a certain date) and origin of longitude therein. The disturbing

functions for the planets m and m' will of course depend not only on 0, 6',
<f),

0',

but on the quantities *, 6, ©' which determine the mutual positions of the two fixed
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planes of reference and origins of longitude therein, tliese last being however absolute

constants not affected by any variation of the elements; so that as regards the variation

of the elements the disturbing functions are in fact given as explicit functions of the

variable elements 0, &,
<f),

<})'
; and where

<f),
<#>' and therefore also p, q, p', g' are only

of the order of the disturbing forces.

I proceed to work out this idea, for the present considering the development of

the Disturbing Function only as far as the first powers of p, q, &c. For comparison

with the ordinary theory, observe that in this theory the disturbing function contains

only the second powers of the p, q, &c., made use of therein ; these are in fact of a

form such as P+p, Q + q, ••• where P, Q are absolute constants and p, q, ... are the

p, q, ... of the present theory ; the ordinary theory gives therefore in the disturbing

function a series of terms involving (P+p)^, (P+p) (Q + q), ... which I now take

account of only as far as the first powers of p, q, ... viz., they are in effect reduced

to P" + 2Pp, PQ + Pq + Qp, &c. . . . The present theory is thus not now developed to

the extent of giving the p, q, ... of the ordinary theory in the more complete form

as the solutions of a system of simultaneous linear differential equations, but only to

the extent of obtaining for these p, q,... respectively the terms which are proportional

to the time.

I commence with the following subsidiary problem. Consider a spherical triangle

ABC (sides a, b, a, angles A, B, C, as usual), and taking the side c as constant, but

the angles A and B as variable, let it be required to find the variations of C, a, b

in terms of variations dA, dB and the variable elements C, a, b themselves. Although

the geometrical proof would be more simple, I give the analytical one, as it may be

useful.

We have

and thence

cos G = — cos A cos 5 + sin .4 sin B cos c,

— sin CdC = (sin AcosB+ cos A sin B cos c) dA

+ (sin B cos A + sin A cos B cos c) dB

sin 5 sin c , . sin .4 sin c , „dA H r—-— dB,

that is

or finally

Next

or, differentiating.

sin G
dG =

tan 6

sin B cos b

sin c sin b

— dG= cos bdA + cos adB.

sin A

tana

, . sin .4 cos a , „dA +—-. dB,
sm a

sm a = sm c

sm c

sinO'

cosoda= .- r-~(sin(7cos J.c^^ — cos Csin .4rfC)
sm» G ^ '
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or, substituting for dC its value,

~„ A dA (sin C cos ^ + cos Csin A cos b) + dB cos G sin A cos a
[,

sine

sin-"

sin c (,. sin J. sin 6 cos a , „ ^ . , )
{cLA -. 1- dB cos C sin ^ cos ak
^

sm a
J

sin^C

that is

sin C (

da= ^^^ \dA—. sin 6 + d£ cos (7 sin 4 1 -r
^^'^—

,

sin a sin c

or, on the right-hand writing --.— instead of —;

—

- , this is" ° sin a sin c

and similarly

da = -;

—

^ (dA sin b + dB cos C sin a)

:

db = -.—^ (dB sin a+ dA cos C sin 6).
sin C '

Now let the continuous lines represent the orbits of m, m' at certain dates,

0, Q the origins of longitude therein; and the dotted lines the variable orbits of the

planets respectively.

Write
00 = 0, CA = e, ^CAC' =

<f>,

QC = 6', GB = &, £ GBG = f

,

Z0 = *.

Then, answering to the notation of the lemma, we have

a = d', b = 6, G = <t>, dA = <li,

or say = tan <(>,

whence

G'B = a + da,

dB = - f

,

= — tan
<f)',

= 6' + -.—:i- (tan (bs'inO — tan <b' cos <P sin 6'),

sm <1> ^ ^ ^

= 0'+^—-{p-p' cos ^),
sm <P

^
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C'A=b + db.

= + . —J- (— tan 6" sin d>' + tan 6 cos * sin 6),
sin <1>

^ ^ ^

= 6—;--i^ (»' —p cos 4>),
sin <I)

^^ ^ -"

^ (7' = + d(7 = <I> - cos 5 tan <^ + cos 0" tan ^', =^-q + q.

Suppose V, v' are the longitudes of the planets in their two orbits respectively;

that is

V =0A + Am =% + + Am

,

v' = QB + Bm' =^ + 0' + Bm',

whence

Cm = C'A + Am, = v - - -r—^ {p' - p cos $),

1
Cm' = G'B + Bm, =v'-& +

/iC =

^{P - P cos «I>),

sin ^ ^^ ^ "

^-q+q\

say these values are ?; — © + «,?)' — 0' + x, <I> + y. Then if H is the angular distance

mvi of the two planets,

cosH— cos{v — %-\-x) cos {v' — 0' + x') + sin (t) — + «) (sin v' — %' + x) cos (^ + y),

- cos {v — 0) cos (t)' - 0') 4- sin {v — 0) sin {v' - 0') cos <I>

+ a; [- sin (« - 0) cos («' — 0') + cos {v — 0) sin {v' — 0') cos 4>]

+ x' [— cos (t) - 0) sin {v — ©') + sin {v - 0) cos {v' - 0') cos *]

+ y [— sin (t; — 0) sin {v' — ©') sin *],

= cosH+ V suppose.

The disturbing function for the planet m disturbed by m' is

^^
tv'^ + r'»_2rr' COBS' '^'

i

(n = — jR, if R is the disturbing function of the M4canique Celeste) ; and the term

hereof which involves V is

d . cos H
where after the differentiation cos H is replaced by cos H,

l(r» + r'»

7T^

Irr' cos H)^ r'
+ 4iv.



484] THE ORBIT IN THE PLANETARY THEORY. 545

viz., this is a linear function of x, x', y, that is of p, q, p', q', with coefficients which of

course involve the other variable elements and the time ; but it will be remembered

that ©, 0', 4> are not variable elements, but are absolute constants. The variations

of p depend upon -j- and those of ^ on -^ , and the quantities p, q, p', </,...

disappear from these differential coefficients -j- , -w— ; that is, disregarding periodic

terms, and the variations of the elements, we obtain -y- , -~ as absolute constants, or
at at

reckoning the time from the epoch belonging to the fixed orbit of m, we have p, q

as mere multiples of the time (p = At, q = Bt, where A and B are constants); agreeing

with the statement preceding the investigation.

Observe that the p, q, as used above, have reference not only to the fixed orbit of

m, but also to the node thereon of the fixed orbit of m': we may, if we please, write

p = tan ^ sin (0 + 0), q = tan (j) cos (0 + 6), that is, p = g' sin +;) cos 0, Q = g cos -p sin

(or jj = p cos 0— q sin 0, 5-= P sin + q cos 0), and in place of p, q introduce into the

formulae p and q, which have reference only to the fixed orbit of m, and similarly

writing p' - tan 0' sin (0' + 6'), q' = tan
(f>'

cos (0 + 6'), instead of p', q' introduce p', q'

which have reference only to the fixed orbit of m'.

I remark that a table for the relative positions of the orbits of the eight Planets

for the Epoch 1st January, 1850, is given in Leverrier's Annates de I'Observ. de Paris,

t. u. (1856), pp. 64—66.

c. vn. 69
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485.

PKOBLEMS AND SOLUTIONS.

[From the Mathematical Questions with their Solutions from the Educational Times,

vols. V. to XII. (1866—1869).]

[Vol. v., January to July, 1866, p. 17.]

1791. (Proposed by Professor Cayley.)—Given a quartic curve U=0,to find three

cubic curves P = 0, Q = 0, R = 0, each meeting the quartic in the same six points

1, 2, 3, 4, 5, 6, and such that P = 0, R=0 may besides meet the quai-tic in the same

three points a, b, c, and that Q = 0, iJ = may besides meet the quartic in the same

three points a, j8, 7.

[Vol. V. pp. 25, 26.]

Note on the Problems in regard to a Conic defined by five Conditions of l7itersection.

I use the word " intersection " rather than " contact " because it extends to the

case of a 1-pointic intei-section, which cannot be termed a contact. The conditions

I'efen-ed to are that the conic shall have with a given curve, at a point given or

not given, a 1-pointic intersection, a 2-pointic intersection (= ordinary contact), a

3-pointic intersection, &c., as the case may be. It may be noticed that when ttie

point on the curve is a given point, the condition of a ^•-pointic intersection is really

only the condition that the conic shall pass through k given points ; though from the

circumstance that these are consecutive points on a conic, the formulae for a conic

passing through k discrete points require material alteration; for instance, in the two

questions to find the equation of a conic passing through five given points, and to

find the equation of a conic having at a given point of a given curve .5-pointic inter-

.section with the curve, the forms of the solutions are very different from each other.

The foregoing remark shows, however, that it is proper to detach the conditions

which relate to intersections at given points ; and consequently attending only to the
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conditions which relate to intersection at an unascertained poiat (of course the inter-

sections referred to must be at least 2-pointic, for otherwise there is no condition at

all) we may consider the conies which pass through four points and satisfy one con-

dition ; or which pass through three points and satisfy two conditions ; or which pass

through two points and satisfy three conditions ; or which pass through one point and
satisfy four conditions ; or which satisfy five conditions. Considering in particular the

last case, let 1 denote that the conic has 2-pointic intersection, 2 that it has 3-pointic

intersection, ... 5 that it has 6-pointic intersection with a given curve at an unascertained

point.

Then the problems are in the first instance

5 ; 4, 1 ; 3, 2 ; 3, 1, 1 ; 2, 2, 1 ; 2, 1, 1, 1 ; 1, 1, 1, 1, 1.

But the intersections may be intersections with the same given curve or with different

given curves ; and we have thus in all 27 problems, viz. these are as given in the

following table, where the colons (:) separate those conditions which refer to different

curves

:

No. of

Prob.
Conditions.

No. of

Prob.
Conditions.

No. of

Prob.
Conditions.

1 5 10 3, 1:1 19 3:1:1

2 4, 1 11 3:1, 1 20 2:2:1

3 3, 2 12 2 2-1 21 2, 1 : 1 : 1

4 3, 1, 1 13 2, 1:2 22 2 : 1, 1 : 1

5 2, 2, 1 14 2, 1, 1 : 1 23 1, 1, 1:1:1

6 2, 1, 1, 1 15 2,1:1,1 24 1, 1:1, 1:1

7 1, 1, 1, 1, 1 16 2:1, 1, 1 ! 25 2:1:1:1

8 4:1 17 1, 1, 1, 1:1 26 1, 1:1:1:1

9 3:2 18 1, 1, 1:1, 1 ! 27 1:1:1:1:1

Thus Problem 1 is to find a conic having 6-pointic intersection with a given curve

;

Problem 2 a conic having 5-pointic intersection and also 2-pointic intersection with a

given curve... Problem 7 is to find a conic having five 2-pointic intersections with

(touching at five distinct points) a given curve....Problem 27 is to find a conic having

2-pointic intersection with (touching) each of five given curves. Or we may in each

case take the problem to be merely to find the number of the conies which satisfy

the required conditions. This number is known in Prob. 1, for the case of a curve

of the order m without singularities, viz. the number is =m(12m-27). It is also

known in Problems 25 and 26 in the case where the first curve (that to which the

symbol 2, or 1, 1 relates) is a curve without singularities ; and it is known in Prob. 27,

viz. if m, n, p, q, r be the orders and if, N, P, Q, R the classes of the five curves

69—2
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respectively, then the number is =(M, m)(N', n){P, p){Q, q){R, r)[\, 2, 4, 4, 2, 1}, that

is, 1 MNPQR + 2 1MNPQ r + &c. The number is not, I believe, known in any other

of the problems. In particular, (Prob. 7) we do not as yet know the number of the

conies which touch a given curve at five points. It would be interesting to obtain this

number ; but (judging from the analogous question of finding the double tangents of a

curve) the problem is probably a very diflBcult one.

[Vol. V. p. 37.]

1857. (Proposed by Professor Cayley.)—If for shortness we put

P=a^ + y^ + z^, Q = yz" + yz + za? + z'x + xy^ + a^y, R =xyz,

P„= a" + ¥ + <:?, Qo = ic" + 6'c + ca^ + c»a + aft" + a'& , Ro=abc;

then (a, /3, 7) being arbitrary, show that the cubic curves a
, /3 , 7 =0 pass all

P, Q, R

of them through the same nine points, lying six of them upon a conic and three of

them upon a line; and find the equations of the conic and line, and the coordinates

of the nine points of intersection ; find also the values of (a : /3 : 7) in order that

the cubic curve may break up into the conic and line.

[Vol. V. p. 37.]

1730. (Proposed by Professor Cayley.)—Show that (I) the condition in order that

the roots A;,, k^, k^ of the equation

yk'+(-g-)^a + ifi + ly)}<^ + (-g-^a-^^ +^)k-a = (A)

may be connected by a relation of the form

k,(k,-k,)-{k,-k) = 0, (1)

and (II) the result of the elimination of a, b, c from the equations

a«(6 + c) = -2a, (2)

b"-(c + a)= W, (3)

c»(a + 6)=-27, (4)

(6 -c){c — a){a — b)= — 4,g, (5)

are each

4 (/3 - 7) (7 - o) (a-0)g'+4> (- Sa'/S + ila'^ - 2lct>^y) g-

+ W-y)(y-ct)(a-^)g + 2i0-yyiy-ay(a-^y = O. (B)

I*

I
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[Vol. V. pp. 38, 39.]

1834. (Proposed by Professor Catley.)— 1. It is required to find on a given cubic
curve three points A, B, C, such that, ^vriting x=0,y = 0,z = for the equations of
the hues BG, CA, AB respectively, the cubic curve may be transformable into itself by
the inverse substitution (opj-', ^y-\ 7^-1) in place of x, y, z respectively, a, ^, 7 being
disposable constants.

2. In the cubic curve ax{f ^ z'')^.hy{z-' ^ a?)^cz{a? ^f)-^'2Xxyz^() the inverse
points {x, y, z) and {x-\ y-\ sr^) are corresponding points (that is, the tangents at
these two points meet on the curve).

Solution by the Proposer, S. Roberts, M.A., and others.

Since the points A, B, G are on the curve, the equation is of the form

fy^z+ gz'x+ hafyJr iyz^+ jzx^ + hxy' + 2lxyz =0;

hence this equation must be equivalent to

f^_^ grfa ^ h^^ i^ jya? ka/^ 2la^

^

fz ^x x'y yz' za? xy" xyz

or,

j| fz^k- z'x + i ^ a;»y irf- A
^

yz'^ +/^ zx'+g'^ xf + 2lxyz = 0,

which will be the case if

This implies fgh = ijk ; and if this condition be satisfied, then a : /3 : 7 can be deter-

mined, viz. we have a : ^ : •^=if : ij : hf, which satisfy the remaining equations, so

that the only condition is fgh = ijk.

Writing in the equation of the curve a; = 0, we find fy^z + iyz^ = 0, that is, the line

a;=0 meets the curve in the points (a; = 0, y = 0), (x = 0, z = 0), and (x=0, fy + iz = 0).

We have thus on the curve the three points

{x = 0, fy+ iz = 0), {y = 0, gz +jx = 0), {z = 0, ha; + ky = 0),

and in virtue of the assumed relation fgh = ijk, these three points lie in a line.

Hence the points A, B, G must be such that BG, GA, AB respectively meet the curve

in points A', B", G', which three points lie in a line ; that is, we have a quadrilateral

whereof the six angles A, B, G, A', B, G' all lie on the curve. It is well known
that the opposite angles A and A', B and B', G and G' must be corresponding pmnts,

that is, points the tangents at which meet on the curve. And conversely taking A, G
any two points on the curve. A' a corresponding point to A (any one of the four

I
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corresponding points), then AG, A'G will meet the curve in the corresponding points

E, B; and AB, A'B' will meet on the curve in a point C" corresponding to C, giving

the inscribed quadrilateral {A, B, C, A', F, C) ; the triangle ABC is therefore constructed.

It is to be remarked that the equation fgh = ijk being satisfied, we may without

any real loss of generality write f=j,g=k,h-i, and therefore a = ^=y; hence

changing the constants we have the theorem : the inverse points (x, y, z), («"', y~', ^~')

are corresponding points on the curve

ax {y" + a^) + by {z- + a^) + ex («= + y-) + 2lxyz = 0.

[Vol. V. pp. 57, 58.]

Addition to the Note on the Problems in regard to a Conic defined by five Conditions of

Intersection.

Since writing the Note in question, I have found that a solution of Problem 7

has been given by M. De Jonqui^res in the paper " Du Contact des Courbes Planes,

&c.," Nouvelles Annales de Mathimatiques, vol. in. (1864), pp. 218—222: viz. the number

of conies which touch a curve of the order n in five distinct points is stated to be

n{n-l){n-2){n-^){n-^)
^^, ^ ^ .^, _ ^ .^3 _ ^^ .^, + i584„ + 15).

There are given also the following results; the number of conies which pass

through two given points and touch a curve of the order n in three distinct points is

n(w-l)(n-2)
-^^ ^ (w' + on- — 19»i — 12),

and the number of conies which pass through a given point and touch a curve of

the order n in four distinct points is

n{n-l){n-2){n-Z)
^^,^ 10,.3-37«'- 118ri + 282).

1.2.0.4

These formulae are given without demonstration, and with an expression of doubt as

regards their exactness—(" elles sent exactes, je crois ") ; they apply, of course, to a

curve of the order n without singularities; but assuming them to be accurate, the

means exist for adapting them to the case of a curve with singularities.

[There is also a paper on the same subject in the Annales for January, 1866

(pp. 17—20), from the Editor's Note to which we have introduced a correction (+15
instead of - 35) in the formula given above.]
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[Vol. V. pp. 58, .59.]

1876. (Proposed by R. Ball, M.A.)—If three of the roots of the equation

(a, b, c, d, e^x, 1)^ = be in arithmetical progression, sho:v that

55296 H^J - 2304 aH'I^ - 16632 a?HIJ + 625 a'P - 9261 a'J' = 0,

where

H = ac-h-, I = ae - 4'bd + Sc\ J= ace + 2bcd - ad" - b^e - c^.

Solution by Professor Cayley.

Write (a, b, c, d, e^x, iy = a{x-a)(x-0){x-y){x-S); then putting for a moment
/3 + y+ B—p, 0y + /3S + yB = q, 0yB = r, and forming the equation

(^ + 7-2S)(y8+S-27)(7+8- 2/3)=0,

this is easily reduced to

- 2p' + 9pq - 27r = 0.

But we have

a(a^ — p3ifl + qx — r)(x — a)={a, b, c, d, e^x, \)*,

and hence
46 6c 46 , 4d 6c 46 , ,p = o, o = 1 a + a- r = a «- — al
a a a a a a

Substituting these values of p, q, r, the foregoing equation becomes, after all reductions,

(20 a», 20 a% -Wab-+ 36 a'c, 128 6' - 216 abc + 108 a^dja, If = 0,

and from this and the equation (a, b, c, d, e^a, 1)''=0, eliminating a, we should find

the condition for three roots in arithmetical progression. But it appears from the theory

of invariants that the result of the elimination may be obtained by writing 6 = 0, and

expressing the result so obtained in terms of a, H, I, J. Hence, writing in the two

equations 6=0, the first equation contain.s the factor 4a^ and throwing this out, the

equations become

oao* + 27ca + 27d = 0, aa* + Qco? + Ma + e = Q
;

or multiplying the first by a and reducing by means of the second, the two equations

become
baa? + 27ca + 27d = 0, 3ca- - Ida + 5e = 0.

The result is of the degree 5 in the coefficients, but in order to avoid fractions in

the final result it is proper to multiply it by a*; it then becomes

625 aV - 4050 aVe» + 6561 a*(fe - 1890 a'ced" + 13122 aVd^ + 9261 a'd* = 0.

But writing as above 6 = 0, we have

H I 3H' .^ J
,
HI iH'

a = a, c = -, « = ---,7s-. <^--a+-^-'a^'
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and substituting these values, the result is found to contain the terms — , — with

coefficients which vanish ; viz. the coefficient of the first of these terms is

+ 16875 + 24300+ 6561+ 7560 + 18792 - 74088, = ;

and the coefficient of the second of the two terms is

- 16875 - 36450 - 19683 - 75168 + 148176, = 0.

The remaining terms give

+ 625 = + 625 a^P ^

- 5625-4050-1890 + 9261 =- 2304^ aH'P

+ 1890 - 18522 = - 16632 o-fi"// 1 = 0,

- 18792 + 74088 = + 55296 H'J

+ 9261 = + 9261 a'J2

which is the required result; a more convenient form of writing it is

(55296 J, - 768 P, - 5544 IJ, 625 P + 9261 J'^H, af = 0.

Remark. If / and J denote as above the two invariants of the form U={a, b, c, d, e^x, 1)*,

and if we now use H to denote the Hessian of the form, viz.

H = (ac-¥, ^(ad-bc), ^ (ae + 2bd - Sc'}, ^(be-cd), ce-d^Jx, If,

then it appears by the theory of invariants that the equation of the twelfth order

(55296 J, -768P, -5544//, Q2oP + ^2UJ%H, Uf = 0,

is such that each of its roots forms with some three of the roots of the equation

i7= a harmonic progression ; viz. if the three roots are )8, 7, S, then we have

2 1 1 2/SS-(/3 + 8)7
0,-7 x-^ x-8' /S+S-27 '

so that the roots of the equation of the twelfth order are the twelve values of the

last-mentioned function of three roots.

[Vol. V. pp. 65, 60.]

On the Problems in regard to a Conic defined by five Conditions of Intersection.

There has been recently published in the Comptes Rendus (t. LXii. pp. 177—183,

January, 1866) an extract of a memoir " Additions to the Theory of Conies," by

M. H. G. Zeuthen (of Copenhagen). The extract gives the solutions of fourteen pro-

blems, with a brief indication of the method employed for obtaining them. Of these

problems, four relate to intersections at given points, the remaining ten are included

I
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among the twenty-seven problems enumerated in my Note on this subject in the

January Number of the Educational Times {Reprint, vol. v., p. 25) ; but two of these

ten are the problems 25 and 26 which are in my Note stated to have been solved

;

there are, consequently, of the twenty-seven problems, in all twelve which are solved

:

viz. these are where it is to be observed that Zeuthen's solutions apply to the case

No. of Prob. 1, 8, 10, 12, 14, 17, 19, 21, 23, 25, 26, 27

Zeuthen's No. -, 14, 13, 11, 8, 3, 12, 7, 2, 6, 1, -

of a curve of a given order with given numbers of double points and cusps. The

problems 25 and 26 had been previously solved only in the case of a curve without

singularities. As to Prob. 27, the solution mentioned in my former Note is in fact

applicable to the general case. The solution for Prob. 1 may also be extended to this

general case, viz. for a curve of the order m with S double points and k cusps the

required number is =m (12?>i, — 27) — 24S — 27«; or, if n be the class, then this number

is = 12n — 15m-)-9/«; so that all the twelve problems are solved in the general case.

The results obtained by M. de Jonquieres, as stated in my Note in the March

Number (Repnnt, vol. v., p. 57), seem to be all of them erroneous. In fact, for the

number of conies passing through two given points and touching a curve of the order

m in three distinct points (which is a particular case of Prob. 23), Zeuthen's formula

applied to a curve without singularities gives this

instead of the value

which is

= ^m(m - 2}{m* + om^ -11 m- - 49 m + 108)

iTO(m-l)(m-2)(m'4- em'' -19m- 12)

= ^ m (m - 2) (m* -i- bm? - 25 m- -I- 1m + 12)

;

and I have by my own investigation verified Zeuthen's Number. So for the number

of conies through a given point and touching a curve of the order m in four distinct

points (which is a particular case of Prob. 17), Zeuthen's formula applied to a curve

without singularities gives this

= 5^m (m - 2) {m - 3) (m» + 9m* - 15 m' - 225 m'' -I- 140 m + 1050)

instead of the value

^m(m - l)(m - 2) (m- 3)(m* -I- 10 m» - 37 m= - 118 m + 282)

which is

= 5ijm(m-2)(m-3)(m»-(-9m*- 47 m' - 81 m= -f- 400 m - 282),

and it may I think be inferred that the expression obtained for the number of conies

which touch a given curve in five distinct points (Prob. 7), containing as it does the

factor (m — 1), is also erroneous.

c. VII.
' 70
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I have obtained for Prob. 2 a solution which I believe to be accurate ; viz. the

number of the conies (4, 1), (that is, the conies which have with a given curve a

5-pointic intersection and also a 2-pointic intersection, or ordinary contact), is

= 10«' + 10«7n.-20m'-130n + 140m+10Ac(m + n-9)-4[Oi-3)/(: + (m-3)t]

where i (the number of inflexions) is = 3re - 3m + k, but I prefer to retain the fore-

going form, without effecting the substitution.

[Vol. V. pp. 88, 89.]

1890. (Proposed by Professor Cayley.)—Find the equation of a conic passing

through three given points and having double contact with a given conic.

Solution by the Proposer.

Let the given points be the angles of the triangle {x = 0, y=0, z = 0), and let

the equation of the given conic be U=(a, b, c, f, g, h\x, y, zf = 0; then the equation

of the required conic is

U- (x ^/a + y s/b + z ^/cy = 0,

for this is a conic having double contact with the conic U=0, and, since the terms

in (a?, 2/^ z") each vanish, it is also a conic passing through the given points.

It is clear that there are four conies satisfying the conditions of the Problem,

viz. putting for shortness

P =x tja + y KJb +z »Jc, P-i=— x^Ja + y^Jb + z-Jc,

P2 = X f/a - y n/b + z <Jc, P3 = x>Ja + y >Jb — z Vc,

the four conies are

f7-P» = 0, I7-P,» = 0, U-Pi = 0, U-P,- = 0.

It may be remarked that the conies P, P, have a fourth intersection Ijing on the

line y \Jb -^ z \Jc = 0, and the conies Po, P3 a fourth intersection lying on the line

y i\Jh — z >Jc; which two lines are harmonics in regard to the lines y = 0, z — O.

Similarly the conies Pj , Pj have a fourth intersection on the line x>Ja-\-z>Jc = 0,

and the conies P, P3 a fourth intersection on the line x tja— z\/c = 0; which two lines

are harmonics in regard to the lines z = 0, x = 0. And the conies Pj, P3 have a fourth

intersection on the line x \/a + y >s/b = 0, and the conies P, P^ a fourth intersection on

the line x^a — y\/b = 0; which two lines are harmonics in regard to the lines

a; = 0, y = 0. It may further be remarked that the equations of any two of the four

conies may be taken to be

ayz + ^zx + r^xy = 0, a'yz + ffzx + f'xy = 0.
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The general equation of a conic having double contact with each of these conies then is

mV - in (7a' + 7'a) yz - 2n (7/8' + 7'/3) zx - ^nr/^'xy + [(ySy - ySV) x - (ya' - 7'a) yf = 0,

where n is arbitrary : and, having double contact with this conic, we have (besides

the above-mentioned two conies) two new conies each passing through the angles of

the triangle ; viz. writing for greater convenience

^ ^ (^y'-0'y)iya'-y'a)
^^ j^ ^ - ^W - /3'y) jya' - y'<x)

K —yy'' ^'
11

then the equations of the two new conies are

7'a yz + 7/8' zx + Kxy = 0, 7a' yz + y'0 zx + Kxy = 0.

In fact, writing the equation under the form

[xz + (/Sy - ^'7) x + {ya: - 7'a) yj

— 4 {^y — /3'7) (7a' — 7'a) ayy — ^lyy'xy

— 2n (187' - ^y) xz-'2n (0y' + ^y) xz

— 2n (7a' — 7'a) yz — 2n (7a' + 7'a) yz = 0,

we at once see that this is a conic having double contact with the conic y'ayz+y^zx+Kxy=0,

the equation of the chord of contact being nz + {^y — /3'y) x + (7a' — 7'a) y = 0: and similarly

it has double contact with the conic 7a' yz + y'l3 zx + Kxy = 0, the equation of the chord

of contact being nz - {fiy
— ^'y) x — (7a' — 7'a) y = 0.

[Vol. V. pp. 99, 100.]

1554. (Proposed by Professor Cayley.)—Show that, in the ellipse and its circles

of maximum and minimum curvature respectively, the semi-ordinates through the focus

of the ellipse are

For the circle of maximum curvature 3/1 = a(l — e)(l +2e)4,

for the ellipse ys = a(l-e=),

, ^ • , f • . a((l- e'+e^)»-e'}
for the cu-cle of minimum curvature 3/3 = -^—^~

_"^i >

and that these values are in the order of increasing magnitude.

[Vol. VI., July to December, 1866, pp. 18, 19.]

1931. (Proposed by Professor Cayley.)—Find the stationary tangents (or tangents

at the inflexions) of the nodal cubic

x(y-zy + y(z- xf + z{x- y)- = 0.

70—2
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Solution by the Proposer.

The equation may be transformed into the form

{-8x + y + z)^+ (a;-8y + «)*+ {x + y-Sz)^ = 0,

and it thence follows immediately that the stationary tangents are the lines

— Sx + y + z = 0, x-8y + z=0, x + y-8z =0,

respectively, and that the three points of contact, or inflexions, are the intersections of

these lines with the line x + y + z = (.).

In fact, writing

X = kx + y + z, Y = X + ky + z, Z = x + y + kz,

we have identically

(X+Y + Zy-27XYZ

= (k + 2y(x + y + zy-27(kx+y + z){x + ky + z)(x + y + kz),

(a^ + y> + i^){{k + 2y-27k}

+ 5(yz' + fz + za?-\- ^x + xy* \- a?y) {{k + 2y -^{k? + k+ 1)}

+ Zxyz\2ik + 2)» - 9 (P + 3A; + 2)}

= {k-\y{k+8){a? + y' + i^)-^^{k-\y{yz^ + y^z -It zx" + z''x + xf + a?y)-^{k-iy(yk + 2)xyz.

Hence, writing k= — 8, we have

(Z+Y+Zy- 27XYZ= - 2187 {ysi'+ y^z + zx' + z^x + xy' + a^y - Gxyz],

= -2187 {x {y - zy + y (z-xy + z(x-yy}.

The equation of the given curve is therefore

{X+Y+Z)'-27XYZ = 0, or Z*+r* + Z* = 0,

where of course X, Y, Z have the values

X = -8x+y + z, Y = x-8y + z, Z= x + y — 8z.

[Vol. VI. pp. 35—39.]

1990. (Proposed by Professor Sylvester.)—Prove that the three points in which

a circular cubic is cut by any transversal are the foci of a Cartesian oval passing

through the four foci of the cubic.

Solution by Professor CAYLEy.

Some preliminary explanations are required in regard to this remarkable theorem.

1. I call to mind that a circular cubic (or cubic through the two circular points

at infinity) has 16 foci, which lie 4 together on 4 different circles ; and that the
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property of 4 concyclic foci is that taking any three of them A, B, G, the distances

of a point P of the curve from these three foci are connected by a linear relation

X .AP + ft, . BP + V . CP = 0, where X + ^ + j; = 0, or if as is more convenient the distances

are considered as + , then where \ + /m + v = 0. A circular cubic may be determined

so as to satisfy 7 conditions ; having a focus at a given point is 2 conditions ; hence

a circular cubic may be determined so as to pass through three given points, and to

have as foci two given points.

2. A Cartesian, or bicircular cuspidal quai-tic (that is a quartic having a cusp

at each of the circular points at infinity) has nine foci, but of these there are three

which lie in a line with the centre of the Cartesian (or intersection of the cuspidal

tangents), and which are preeminently the foci of the Cartesian. We may, therefore,

say that the Cartesian has three foci, which foci lie in a line, the axis of the

Cartesian. A Cartesian may be determined to satisfy 6 conditions; having a focus at

a given point is 2 conditions ; but having for foci three given points on a line is

5 conditions ; and hence a Cartesian may be found having for foci three given points

on a line, and passing through a given point ; there are in fact two such Cartesians,

intersecting at right angles at the given point.

3. The theorem at first sight appears impossible; for take any three points

F, G, H in a line and any other point A ; then, as just remarked, there are, having

F, G, H for foci and passing through A, two Cartesians. And we may draw through

F, G, H, and with A for focus, a circular cubic depending upon two arbitrary

parameters ; the position of a second focus of the circular cubic is (on account of

the two arbitrary parameters) prima facie indeterminate ; and this is confirmed by the

remark that the circular cubic can actually be so determined as to have for focus an

arbitrary point B; and yet the theorem in effect asserts that the foci concyclic with A,

of the circular cubic, lie on one or other of the two Cartesians.

4. To explain this, it is to be remarked that the arbitrary point 5 is a focus

which is either concyclic with A or else not concyclic with A. In the latter case,

although B is arbitrary, yet the foci concyclic with A may and in fact do lie on

one of the Cartesians ; the difficulty is in the former case if it arises ; viz., if we

can describe a cubic through the points F, G, H in a, line, and with A and B as

concyclic foci; that is, if we can find a third focus 0, such that the distances from

A, j5, (7 of a point P on the curve are connected by a relation \ . AP + fi . BP + v . CP = 0,

where \ + ti + v = 0. It may be shown that this is in a sense possible, but that the

resulting cubic is not a proper circular cubic, but is the cubic made up of the line

FGH taken twice, and of the line infinity. To show this, since the required cubic

passes through the points F, G, H we have

\ . AF +fi.BF+v.GF=0 and thence

\.AG + fj-.BG +i>.CG =0

\.AH+iJ..BH + v.CH =

\ +
fj.

+v =0

AF, AG, AH, 1

BF, BG, BH, 1

CF, CG, CH, 1

= 0.
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being two conditions for the determination of the position of the point G; these give

CO, CH as linear functions of CF; the distances CF, CG, CH of the point C from

the points F, 0, H in the line FOH are connected by a quadratic equation, and hence

substituting for GO, GH their values in terms of GF, we have a quadratic equation

for GF\ as the given conditions are satisfied when G coincides with A or with B,

the roots of this equation are GF=AF and GF = BF. But if GF=AF, then the

linear relations give GO — AO and GH=AH, that is, (7 is a point opposite to A in

regard to the line FOH. And similarly if GF=BF, then G is a. point opposite to

B in regard to the line FOH. But G being opposite to A or B, the fourth concyclic

focus D will be opposite to jB or ^ ; that is, the pairs A, B and G, D of concyclic

foci lie symmetrically on opposite sides of the line FOH; this of course implies that

the four points lie on a circle.

.5. Taking F= as the equation of the line FOH, !i?-\-y^—\—0 as the equation

of the circle through the four points A, B, G, D, then these lie on a proper cubic

{a? + y''+\)x-\-la? + ny- =

(not passing through the points F, 0, H) and the four foci are given as the inter-

sections with the circle a^ + y" — 1 = of tbe pair of lines

a? - 2nx - nl = 0.

But if we attempt to describe with the same four foci a cubic

{a?-\-y''+l)y-\-l'a? + 2m'xy + n'y- = 0,

then the foci are given as the inteisections with the circle aj' +y — 1 = of the conic

y + 2m'X - 2l'y + m'^ - n'l' = 0.

In order that these may coincide with the points {A, B, G, D) we must have

{a?-2.nx- nl) + (y= + 2m'x- 2l'y + m"" - n'l') ^x' + y^-l;
that is

m' = n, r = 0, -nl + n--n'l' = -l.

The last equation is n'l' = n^ + 1 — 7il, which, assuming that nl is not equal to n^+1,
{in this case the cubic (af + y- + l)x + lx'' + my'=0 would reduce itself to the line

and conic {x + n)laf + y^ + -j=:0], since r = 0, gives ?^' = oo , and therefore the cubic

(x'+y- + l)y + I'a^ + 2m'xy + n'y- = 0,

reduces itself to y'- = 0, that is, the cubic in question reduces itself to the line

FOH twice repeated, and the line infinity.

6. The conclusion is that F, 0, H being given points on a line, and A and B
being any other given points, there is not any proper cubic passing through F, 0, H
and having A, B for concyclic foci : and the priind facte objection to the truth of

the theorem is thus removed.
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7. Considering the points F, G, H on a line and the point A as given, it has

been seen that there are two Cartesians through A with the foci F, G, H; and the

theorem asserts that in the circular cubics through F, G, H with the focus A, the

foci concyclic with A lie on one or other of the two Cartesians : there are consequently

through F, G, H with the focus A two systems of circular cubics corresponding to

the two Cartesians respectively, each system depending upon two arbitrary parameters.

But if we attend only to one of the two Cartesians and to the corresponding system

of cubics, then the Cartesian passes through the four foci of each cubic, and if

(instead of taking as given the points F, G, H and the focus A) we take as given

the four concyclic foci A, B, C, D oi & cubic, the theorem asserts that we have

through A, B, G, D a Cartesian depending on two arbitrary parameters (or having for

its axis an arbitrary line), and such that the foci of the Cartesian are the points of

intersection F, G, H of its axis with the cubic. And I proceed to the proof of the

theorem in this form.

8. The equation of a circular cubic having four foci on the circle *' + y- — 1 = is

(a? + y"+ 1) (Px + Qy) ->rla? + ^mxy + mf = ;

and this being so, the four foci are the intersections of the circle with the conic

{Qx-Pyy+2(-nP+mQ)x +2{mP-lQ)y+in--nl = Q.

9. The general equation of a Cartesian is

(ar* + 2/^+ 2Ax + 2By + €f+2Dx + 2Ey + F= 0,

and by assuming for A, B, C, D, E, F, the following values which contain the two

arbitrary parameters a and 9, viz. by writing

2A = dQ. 2B=-eP, C = a-l, D = - nff'P + {md' - aO) Q,

E=(mff'+a0)P- Iff'Q, i^= - a^ + ^ (m^

-

nl),

we have the equation of a system (the selected one out of two systems) of Cartesians

through the four foci; in fact, substituting the foregoing values, the equation of the

Cartesian is

{af + y+d(Qx-Py) + a-lY-2a0{Qx-Py)

+ 2^ (- nP + viQ) X + 26' {mP -lQ)y-a' + e' (m" - nl) = 0,

and writing herein af^ + y^-l =0, the equation reduces itself to

e'[{Qx-Pyy + 2{-nP + mQ)x + 2(mP-lQ)y + m^-nl\=0,

verifying that the Cartesian passes through the four foci.

The coordinates of the centre of the Cartesian are x = — A, y = -B, and the

equation of its axis is E{x-irA)-D{y + B) = 0; we have therefore to show that the

points of intersection of this line with the cubic are the foci of the Cartesian.
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10. To find where the line in question meets the cubic

(x'' + f+l){Pa; + Qy)+lai'+2mxy + n}/'=0,

writing in this equation
x=-A+Dn, y = -B+En.

we have for the determination of fl the equation

{A' + B' + l-2(AD + BE)n + {D' + E')n'}x

{-AP-BQ + (DP + EQ)n}+(l. m,n^-A + Dn, -B + Eny = 0,

or observing that we have AP + BQ = 0, this equation becomes

(D' + E')(DP + EQ)n^

+ {- 2 {AD + BE) (DP + EQ) +10-- + 2mDE + nE^] fi'

+ {
(^' + j?' + l)(Z>P + J?Q) -2lAD-'im{AE + BD)-2nBE]il

+
{

IA^ + 2mAB + nB'} = 0.

11. Substituting for A, B, D, E their values in terms of (P, Q, a, 6), we find

DP+ EQ= -d'{nP^-2mPQ + lQ'),

lA^ + 2mAB + nB' = ^^ (nP» - 2toPQ + iQ»).

IAD + m {AE+ BD) + iiBE = - ^a^ (nP' - 2mPQ + 1(^),

lD' + 2viDE + nE' = {{nl - m') 6" + n'O') (71P' - 2mPQ + IQ'),

and substituting these values in the equation for fl, the whole equation divides by

ff' {nP' - 2mPQ + IQ"), and it then becomes

4,{D' + E')n' + 4:{-2iAD + BE)-{nl-m^)0'-a']n' + 4>{A^ + B'+l-a}n-l = O,

or, putting for shortness

C'=C-A--B-, = a-l-A'-B',

F' =F-2{AD + BE), =-a?- 0- {nl - m') - 2 (AD + BE),

the equation in il is

4 (i)»

+

E^) n»

+

4iF'n'' - 4(7'n -1 = 0,

so that, fl satisfying this equation, the intersections of the axis with the cubic are given

hy x = -A + Dn, y = -B-^ En.

12. The equation of the Cartesian, writing therein a;+A = u and y + B = v, and

attending to the values of C and F', is

{U' + v^ + Cy + 2Du + 2Ev + F' = 0.

And to find the foci, writing in this equation u + p, v + ip in place of u, v, we find

[«» + v» + C + 2 (m + t)t)p}» + 2 (2) + Ei) p + 2Du + 2Ev + F' = 0,
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that is

(u' + v- + Gy + 2Du+2Ev + F'+{2{u + vi)(u^+v^ + G') + D + Ei}2p + 4!(u + viyp^=0.

Expressing that this equation in p has two equal roots, we find

•i (m + viy [{u^ + v^- + C'f + 2Du + 2Ev + F']-{2(u + vi) (u' + v"- + C') + D + Ei}"- = 0,

that is

4 {2Du + 2Ev + F') {u + vif - 4 {ii? + v''+ C) (« + vi) {D + Ei) -{D- Ely = 0,

which equation is in fact the equation of the three tangents from one of the circular

points at infinity. Writing it under the form U+Vi=0, the nine foci of the

Cartesian are given as the intersections of the two cubics 17" =0, V=0. But of these

nine points, three, the foci that we are concerned with, lie on the axis, or line

Eu — Dv = 0; in fact, we have

U=4!{u'-v')(2Du + 2Ev + F)

-4!(uD-vE)(ti^ + v' + C')

-{D'-E%
and hence

V=8uv{2Du + 2Ev-\-F')

-^{uE + vD)(v? + v'' + C')

-2DE;

2DEU - (2> - E') V=(Eu - Dv) {8 {Bu + Ev) (2Du + 2Ev + F')-4> (D' + E') (u' + v' + G')} = 0,

which shows that the nine points lie three of them on the line Eu — Dv = 0, and the

remaining six on the conic

2 (Du + Ev) (2Du + 2Ev + F')-{D'+ E") («»+ 1;= + C") = 0.

13. We have thus the three foci given as the intersections of the axis Eu — Dv = 0,

with the cubic

U = 'i{n:'-V'){2Du+ 2Ev + F')-'i (uD-vE)(u' + v'- + G')-(D' - E') = 0;

or, writing in this last equation u = DD,, v = EH, that is x = - A + DD,, y = — B + ED.,

we have
v?-'d' = {B^-E^)n\ uD-vE=:(B''-E')n.

The whole equation divides by {D^-E"), and omitting this factor, it is

4n» {2{1> + E')n + F'] - 4fl {{D' + E') n» + C"} - 1 = 0.

that is

4 (Z)^

+

E") n^ + 4:F'n^ - 4G'n, -1 = 0,

the same equation as the equation in CI before obtained; that is the intersections of

the cubic with the axis are the three foci of the Cartesian.

[Vol. VI. pp. 57—59.]

1949. (Proposed by Professor Cayley.)—Find the conic of five-pointic intersection

at any point of the cuspidal cubic y^ = x-z.

C. VIT.
' '^l
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Solution by the Proposer.

The equation if = a?z, is satisfied by the values x : y : z = l : d : 6'; and con-

versely, to any given value of the parameter 6 there corresponds a point on the cubic

y' = a^z. Consider the five points corresponding to the values (^i, 6^, 0„ dt, 6^) respec-

tively; the equation of the conic through these five points is

a?, y\ z\ yz, zx, xy -0,

1, B,\ d,', 0,*, e,', 0,

where the remaining four lines of the determinant are obtained from the second line

by writing therein ^„ 0„ 0t, 0, successively in place of 0i. Writing for shortness

^(01, 02, 03, 0i, 0s) to denote the product of the differences of the quantities

{01, 01, 03, 0i, 0i), the equation contains the factor ?*(^,, 0i, 03, 0*, ^«). and we may

therefore write it in the simplified form

^H0u e„ 03, 0„ 0,)

«". f, 2"
>

yz, zx, ^2/

1, 01^ 0i\ 0,\ 0^\ 01

= 0.

Hence putting in this equation 0i= 02 = 03 = 0^=01=
<f),

we have the equation of the

conic of five-pointic intersection at the point (<^). The result in its reduced form

may be obtained directly without much difficulty, but it is obtained most easily as

follows: let the function on the left hand of the foregoing equation be represented by

(a, h, c, /, g, h\x, y, ^)^

then writing x : y : z = \ : : 0^, we have

(a, b, c, f, g, h-$l. 0, ^)»

1, 0"-, 0^, 6*, 0\

?*(^i, 02, 03, 0., 0.) 1. 0i\ 0i\ 0^\ 0,\ 01

(0-0,){0-0,){0-0,)(0-0,)(0-0,)\l, 0^, 0^, 0*, ^,

r* (0, 01, 02, 03, 0„ 0,) 1, 0i\ 0i\ e,\ 0i\ 01

= (0 - 0i)(0 - 0,){0-0,)(e - 0,){0 - 0,){0 + 01 + 0, + 0, + 0,+ 6,);

for the determinant, which is a function of the order 16 in the quantities (0, 0i, 02, 03, 0t, 0^)

conjointly, divides by f*(^, ^i, ^„, 0^, 0^, 0^), which is a function of the order 15; and

as the quotient is a symmetrical function of 0, 6i, 02, 03, 0i, 0.,, it must be equal,

save to a numerical factor which may be disregarded, to + 0i + 02 + 0s-¥0i-\- 0^.
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Hence if <(> be the parameter of the given point, writing 5,= ^, = 5, = ^4 = 5, = 0,
we have

(a, b, c,f, g, ]i\\, e, ^)^ = (0_,^)»(0 + 50)

= (1, 0, - 15, + 40, - 45, + 24, - o%d, 0)»,

where the left-hand side is

a + bd'+ cd'+fe^ + ge^+hd, ={c, O,/ g, b. h. a] {6, 1)«,

that is we have

c = l, /=-15</)^ 5r = 40^^ ^) = -45<^^ a = 240°, a=-5.^«,

and the equation of the conic of five-pointic intersection therefore is

(_5^6 _45^4^ 1^ -15<^^ 40^', 24<^%, y, zy = 0,

or, what is the same thing,

- bt^^a? - 4:5<l>*i/^ + z^- locfy'yz + iOcfy'zx + 24(^'a!y = 0,

which is the required result.

Note. The condition in order that any six points (^,, O^, d,, 6^, 6^, 6^) of the

cubic 'f = a?z may lie on a conic, is

[Vol. VI. p. 65.]

1872. (Proposed by Professor Cayley.)—Show that the surfaces

xyz =1, yz + zx + xy + x + y-\-z-\-^ = 0,

intersect in two distinct cubic curves; and find the equations of the cubic cones

which have their vertices at the origin and pass through these curves respectively.

[Vol. VI. pp. 67—69.]

1969. (Proposed by Professor Sylvester.)—In two given great circles of a sphere

intersecting at are taken respectively two points P and Q, the arc joining which

is of given length : prove that S, H two fixed points, and M a fixed line, in a plane

may be found such that, for all positions of the arc PQ, a point M in the fixed

line may be found satisfying the equations

SM ± HM = sin OP, SM + HM = sin OQ.

• 71—2
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Solution by Professoh Cayley.

1. In the spherical triangle OPQ, whereof the sides OP, OQ, PQ are 6, <j), /3 and

_ .
, , • , , ^. i..,- • cos /8 — cos cos <A

the angle is = a, the relation between these quantities is cos a = ;

—

„—•—r

—

-
;° ^

Bin ^ sin 9
hence treating a, ^ as constants, and 6, <f>

as variable angles connected by the fore-

going equation, it is required to show that we can find two fixed points <S, H and

a fixed line, such that taking M a variable point in this line and writing SM = r,

HM = s, the relation between r and « (or equation of the fixed line in terms of

r, s as coordinates of a point thereof) is obtained by substituting in the foregoing

equation for and <^ the values given by the two equations

sin = (r + s), sin <}>= {r — s),

or as, for the sake of homogeneity, it will be more convenient to write these equations,

msinO = (r + s), m sin ^ = (r — s).

2. Suppose that the perpendicular distances of S, H from the fixed line are

a and h, and that the distance between the feet of the two perpendiculars is 2c, then

if X denote the distance of the point M from the midway point between the feet of

the two perpendiculars, we have

and (a, h, c) being properly determined, the elimination of x from these equations

should give between (r, s) a relation equivalent to that obtained by the elimination

of {6, <f>)
from the before-mentioned equations. Or, what is the same thing, the

elimination of (r, s, x) from the equations

visind = r + s, «isin <^ = r-s, r = >^{(c + xf + a-}, s = V{(c - «)' -I- 6^'

should give between (0, <f))
the relation

cos 8 — cos cos d>

cos a = :
—^—.—-J

—^
;

sin sin <p

that is, the last-mentioned equation should be obtained by the elimination of x from

the equations

m (sin + sin 0) = 2Vl(c -I- x)' + a'], m (sin - sin
<f))
= 2V{(c - xy + hf}.

3. The equation in (0, (j>) may be written

cos /S — cos a sin 6sin^ = cos cos (p,

OTi squaring and reducing,

sin' + sin''
<f)
= sin' /8 -t- 2 cos a cos /8 sin ^ sin <^ + sin' a sin' sin' tf),

I

that is

• , a • o . 1 - cos' a — cos' /S / . A , cos a cos /8\'
sin' -f sin' 6 = : -|- sm « sm 5 sin <A -H = .^

sin'

a

V ^ sma /
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But from the two equations in x, we have

m- (sin^ e + sin^ <})) = id' + 2a^ + 26^ + 4,x\ ni' sin sin </> = icx + a^- 6^

whence

- _b'-a^+m? sin sin
(f>

2c

therefore

sin^ e + sin^ 6 = ^^'±^^±lSl + (
b^ - a^ + m' sin 6 .in cj^V

m^ \ 2cm /

Hence, comparing the two results, we have

l-cos'g-cos'/3 _ 4c' + 26" + 2a' cos a cos _b'' - a" . _ m
_

sin' a
~

m' ' sin a ~ ~2em
' ~2c'

or, as these may also be written,

whence

sm a = — , cos' a + cos' /3 = ——— , 2 cos a cos yS = -^-^

-a' , ^,. -&,s m
(cos a + cos /9)' =—— ,

(cos a — cos Sf = —— , sin a = „
c' ' c' 2c

so that m being put equal to unity, or otherwise assumed at pleasure, a, b, c are

given functions of a, /3. Or conversely, if a, b, c are assumed at pleasure, then a, /3, m
are given functions of these quantities.

i

5. It is to be remarked that (a, 0) being real, a and b will be imaginary, and

consequently the points S, H of Professor Sylvester's theorem are imaginary ('); if, how-

ever, we write —a', —6' in place of a", 6' respectively, then the radicals \/{(c + «)' — a'},

\/{(c — ar)* — 6*} have a real geometrical interpretation. The system of relations between

(a, /9, a, b, c, m) becomes

a? 6' m
(cos o + cos /3)' = —

,
(cos a — cos /9)' = — , sin a = —

;

c c so

and considering (a, 6, c) as given, we may write

cos a = —-— , cos /3 = -^— , m = V{4c' - (a + 6)'j,

viz. we have either this system or the similar system obtained by writing — 6 in

place of h.

6. Consider two circles with the radii a, b and having the distance of their

centres = 2c, and to fix the ideas assume that 2c> a + b, that is, that the circles are

• Prof. Sylvester remarks that according as /3 is less or greater than o, we may find real values of

d, ip eqaal to one another in the one case and supplementary in the other. Hence we must in any case

be able to make r = and « = indifferently, which shows a priori that the line being supposed real, each

point S, H must be imaginary, but so that the squared distance of either from the line must be a i^l

negative quantity, conformably to Prof. Cayley's important observation in the text. W. J. M.
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exterior to each other. The foregoing equations signify that 90° — a, 90° — yS are the

inclinations to the line of centres of the inverse and the direct common tangents

respectively, and that m is the length of the inverse common tangent. And the

theorem is, that considering two circles as above, and taking M a variable point in

n
the line of centres, if r, s denote the tangential distances of M from the two circles

respectively, and if m be the length of the inverse common tangent of the two

circles, then the angles 0, ^ determined by the equations

m sin ^ = ?• + s, vi sin
<f>
= r — s,

are connected by the relation

cos /9 = cos cos ^ + sin ^ sin <^ cos a,

(a, ;8) being constant angles, determined as above.

7. It is to be remarked that, assuming
«

k-
sin a _ V{4c'-(a + 6)'}

sinyS Vi4c=-(a-6)»}

'

that is, A; = inverse common tangent -=- direct common tangent, then we have

cos a = V(l - ^-^ sin" /S) = A/3,

or the equation in 6, tf> becomes

cos /9 = cos 6 cos (^ + sin sin <^ A/3,

which is the algebraical equation connecting the amplitudes of the elliptic functions

in the relation F (6) + F (6) = F (^).

8. It is very noticeable that the above figure leads to another relation in elliptic

functions, viz. it is the very figure employed for that purpose by Jacobi ; in fact,

considering therein YM as a variable tangent meeting the circle A in the two points

X and X', then if 2i/r, 2i/r' denote the angles GAX, GAX' respectively, it is easy to

see geometrically that we have dip' : difr' = YX : YX' ; where

(YXy = {BXf - b", = 4c' + a- + 4ac cos 2i|r - 6=, = (2c + a)= - 6= - 8ac sin' i/r,

Sac
and similarly (YX')' = (2c + af - ¥ - Sac ein^ yjr' , that is, writing l' =

differential equation is

(2c + ay-b'
, the

d^ df
V( 1 - i' sin' yjr) ^/(l- I' sin' f)

7T = 0.
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corresponding to an integral equation

the modulus of the elliptic functions being

, _ VSac
' ~V{(2c + a)»-6V

In the problem above considered the modulus is

' V{4c^-(a-6)V

and it is not very easy to see the connexion between the two results.

[Vol. VI. p. 81.]

Theorem: by Professor Cayley.

If (A, A'), (B, B') are four points (two real and the other two imaginary) related

to each other as foci and antifoci (that is, if the lines AA', BE' intersect at right

angles in a point in such wise that OA = OA' = i .OB = i.OB'), then the product

of the distances of any point P from the points A, -4' is equal to the product of

the distances of the same point P from the points B, B'.

In fact, the coordinates of A, A' may be taken to be (a, 0), (— a, 0), and those

of B, B' to be (0, ai), (0, — at) ; whence, if {x, y) are the coordinates of P, we have

{AP )' = {x — a)'^ + y^ = (x — a + iy)(x — a — iy),

{A'Pf = (a; + a)2 + y" = (a; + a + iy) (a; + a - iy),

{BP y=x' + (y — iaf = {x + iy + 2)(x — iy — a),

(B'Py = x' + (y+ iaf = (x + iy-a.){x-iy+ a),

from which the theorem is at once seen to be true.

An important application of the theorem consists in the means which it affords

of passing from the foci (A, B, C, D) of a bicircular quartic, to the antifoci {A, B) and

(C, D); viz. if these are {A', B', C, U), then the equation l>^{A) + m>J{B) + 'n sJ{G) =
must be transformable into l'»J(A') + my(B') + 7i' i/{C') = 0. Writing these respectively

under the forms

I'A + m'B - n'C + 2lm s!{AB) = 0, I'^A' + m'^E - n"-C' + n'm' -JiA'B') = 0,

the two radicals >J{AB), ^/(A'B') are identical; and the remaining terms in the two

equations respectively are rational functions, which when the ratios V : m! : n' are

properly determined will be to each other in the ratio In : I'm ; the two equations

being thus identical.
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[Vol VI. p. 99.]

1970. (Proposed by Professor Cayley.)—Find the conditions in order that the

U={a, b, c.f, g, h\x, y, zf^O, U' = (a', b', c', f, g', h'^x. y. zy = 0.

may have double contact.

comes

Solution by the Proposer.

The coefficients of the two conies must be so related that for a properly deter-

mined value of we shall have identically U—6U' — (\x + fiy+vzy; but when this

is so, the inverse coeflScients of the quadric function U — 6U' are each =0; that is,

writing

(^, B, C, F, G, H) = {bc-f\ ca-f, ab - h\ gh -af, hf-bg,fg-ch)

{A', E, C", F', G', H') = {b'c' -p, .

.

gK - a'f, . .)

(31. 33, e, S , @, ^) = (6c' +6'c-2//',.. gh' +cfh-af' -a'f,..),

then we have the six equations A — d%-ir&-A' = Q, &c.

Or, eliminating 0, the required conditions are

A, B, G, F, G, H
A', B', C, F', G', H'

s(, s, e, g, ®, ^

equivalent to three relations between the two sets of coefficients.

= 0,

[Vol. VIL, January to July, 1867, pp. 17—19.]

2110. (Proposed by Professor Cayley.)—Prove that the locus of the foci of the

parabolas which pass through three given points is a unicursal quintic curve passing

through the two circular points at infinity.

Solution by the Proposer.

More generally it may be sho^vn that for the conies which pass through three given

points and touch a given line, the locus of the intersection of the tangents drawn

from two fixed points Q, Q' on this line to each conic of the series is a unicursal

quintic passing through the two points Q and Q'.

Taking the three given points to be the angles of the triangle (*' = 0, y = 0, 2 = 0),

and the points Q, Q' to be the points (a, yS, 7) and (a', /8', 7') respectively, the equation

of a conic through the three points is

fyz + gzx+ hxy = 0,



485] PROBLEMS AND SOLUTIONS. 569

which conic will touch the line through the points (a, /8, 7) (a, /3', 7'), if

V{/(^7' - ffy)} + ^[9 (7«' - 7'a)} + VIA (a^' - a'yS)} = 0.

The equation of the pair of tangents from (a, /3, 7) to the conic is

(/=, f, h\ - gh, - hf, - bg\r^y -^z, az- r^x, 0x - ayf = 0,

that is

a? (gy + h^f + f- {ha +fyy + z' (//3 + gaf

+ 2yz {2ghcC' - {ha +fy){f^+ga)}

+ 2zx {2hg^- - (/8 + ga ) {gy + A/3)}

+ 2xy [2fgrf - {gy + h^) {hz +fy )} = 0,

but one of the tangents through (a, /3, 7) being

X {^y' - ^'7) + y (7«' - 7'a) + ^ (a^' - a'^) = 0,

it follows that the other tangent is

^(gy±A^l ,

JhcL+fyy
,
J//g + ff«)° ^n

/37' - /9'7 "^ ^ 7a' - 7'a "^ a^S' - a'/3

Hence, writing for shortness

A=:gy+h^, B=ha+fy, G^f^+ga,

A'^gy' + h^', B' = ha'+fy', C'^f^'+gu.',

the equations of the tangents from Q, Q' respectively are

Ai ^
I

Ra __^ .(72 ^ =^ ^7'-/3'7^ 7a' -ya^'' ay8'-a'y9 "'

yS7 — p 7 ya —yoL ap —ap

and for the coordinates of the intersection of these tangents, we have

1 . ?-—- = R-C''-B''C'- : (?A''-C''A^ : A^B'^-A'-'B":

W-fi'y ' 7a' -7'a ' a/ti'-a'/8

BC - B'C = / {-/(/87' - ^'7) + 9 (7a' - 7'«) + '^ («/3' - «'/3)}

BC" + BC = 2r7Aaa' +/ {
/{/Sy + I3'y) + g (7a' + 7'a) + h (a^' + a'/3)}.

To satisfy the equation

V i/(/37'
- /3'7)} + V (^ (7«' - 7'«)} + V {A (a^' " «'/3)l,

write

, ^ _ _J!_ . c^

f-^y'-^y' ff-ya'-y'a' a/3'-a'0'

and therefore a + 6 + c=0; we then have

-f{^y'
- 0'y) + g (7a' - 7'a) + h (a/3' - a'/3), =-a- + b"- + c"; = - 26c

;

C. VIL ^2
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and thence

f[-fi.M -^y)+ff (7«' - 7'a) + h (ays' - a'/9)) =^^^ (- 26c).

and the equations become

a; : y : z = a{BG'-^EG) : h{CA'-\-C'A) : dAR + A'S),

where £C' + FC, CA' + C'A, AF + A'B, substituting therein for f, g, h the values

a^ b' (^

n^i—?v .
—

} ~r . -:}i /J . are respectively functions of the fourth degree in a, h,c;
PI ~ Pt fOL —yd ap—ap'-'
hence (a, b, c) being connected by the relation a + b + c = 0, x, y, z are proportional

to quintic functions of (a, h, c), or what is the same thing, writing a, b, c= 1, 6,—\ — d,

then X, y, z are proportional to quintic functions of 6, that is, the locus is a unicursal

quintic curve.

That the curve passes through the points (a', ^,
7') and (a, /3, 7) appears by cou-

aidering the conies fyz + gzx + lixy = 0, which pass through these points respectively.

For the first of these conies we have f:g:h = a {^y — fi'y) : ^(ya'-y'a) : a {By'-^'y)
;

the equation

A»
-4-7-V +^-T^^' - + ^ -»'-—'o = 0,
Py — Py 7a — 7 a ap —ap

reduces itself to x {^y — ^'y) + y (7a' — y'a) + z (a/3' — o'/3) = 0, and as the other equation

py — Py ya — y a ya. — y a

is that of a line through (a', /3', 7') the two lines meet of course in the point

(«', 0', y). And the like for the conic

f -g .h = a' (By' - B'y) : ^' (7a' - 7'*) : 7 («/3' " «'^)-

If the triangle is equilateral, and {x, y, z) are respectively proportional to the

perpendicular distances from the three sides, then we have for the circular points at

infinity

(a, B. 7) = (1> «". "=), (a', yS', 7') = (1. < <^\

where to is an imaginary cube root of unity. These values give

By — B'y = 7a' — y'<^ = a/3' — *'/3 = ft)- — w

aa' = /3/3' = 77' = 1, /Sy + /9'7 = 7a' + 7'a = a/3' + a'/3= - 1

;

and the expressions for (x, y, z) take the form

X : y : z = a [2b^c^ - a? {a'' + If + &)]

: b{2d'a'-b^{iv'-\- ¥ + (?)]

: c {2a«i^ - d' {a' + 6" + (?)],

or, what is the same thing, reducing by means of the relation a + 6 + c = 0,

X : y : z = a{a*- 2a»6c - 26V) : b(b*- Wca - 2c?a?) : c{C- 2(^a6 - 2a'6'),
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and the equation of the curve is obtained by eliminating (a, b, c) from these equations

and the before mentioned equation a + 6 + c = 0.

N.B. The above is a particular case of the following general theorem of M. Chasles:

If the conies of a system (fi, v) all of them touch the line QQ', the locus of the

intersection of the tangents through Q, Q' to each conic of the series is a curve of

the order ^ /x + v, having a (^ /i)-tuple point at the points Q, Q' respectively.

[Vol. VII. pp. 26, 27.]

2250. (Proposed by Professor Cayley.)—From the focal equation of + y'' = (Ix + nf

of a conic, deduce the remaining three focal equations.

Solution by the Proposer.

We are to find a, ^, L, M, N such that the equation

{x - of + (y- ^f = {Lx + My + Nf

may be identical with the given equation. It is at once seen that we must have

M = or else 2/ = ; the first supposition gives two solutions, one of which is the

given equation itself, the other is

The second supposition, i = 0, gives two solutions, which only differ by the sign of

i (=inj — \), viz. these are

/ In Y f _ Ini y - (ly ± nif

There is, of course, no difficulty in verifying the identity of each of the three forms

with the given form or' + y' = (lx + n)\

[Vol. vii. pp. 3.3, 34]

1991. (Proposed by Professor Cayley.)—Given a point and three lines; it is

required to draw through the point a plane meeting the three lines in three points

equidistant from the given point.

Solution by the Proposer.

Let be the given point, OA' = a, OB' = b, OC" = c the perpendiculars let fall

from on the given lines respectively. Take 6 an arbitrary line, and from the points

72—2
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A', E, C measure off on the three lines respectively the distances ^'-4 = + V(^- «').

B'B=± 's/(0^-b''), C'0= ± VC^-c*). or, considering each radical as containing implicitly

the sign +, what is the same thing, the distances A'A=\/{&' — a'), B'B = »J(6^—l^),

C'C=\/{9' — d'), then we have OA = OB = OC(= 6); and consequently the problem is

to determine in such wise that the plane ABC may pass through the given point

0: for we shall then have through a plane meeting the three given lines in the

points A, B, C equidistant from 0.

The coordinates of A, B, G are linear functions of the radicals \J{d^ — a?), •Ji&' — h''),

V(^— C) respectively. Taking as origin, the condition in order that the plane ABC
may pa-ss through is

h, Vu 1 =0,

1^3. 2/s- 1

and substituting for the coordinates their values in terms of 6, this is an equation

linear in each of the three radicals, or say, an equation of the form

(V(^ - a% 1) (V(^ -n 1) (V(^ - cO. 1) = 0.

But we may represent any one of the three radicals, say >J{&^ — (f) by a single letter s
;

and this being so, we have V(^— ^0= V(«^+ c^ — «") = V-P suppose, and >J(&- — b-)

= ^/{s^ + c" — b-) = VQ suppose ; and it is to be observed that there is no loss of generality

in assuming that the distance C'c = s is measured off from C in a determinate sense,

for as s passes from — x to + x , we thus obtain for c every position whatever on the

line in question ; whereas the other two distances A'A, B'B, represented by the radicals

V-P and VQ respectively, remain each of them with the double sense +. The equation

in s is of the form

(.9, i)(VP, i)WQ. i) = o,

or, what is the same thing, it is of the form

aV(-PQ) + ^VP+7VQ + S = (),

where (a, yS, y, S) are respectively linear functions of s.

Proceeding to rationalise the equation, we have first

a»PQ + 2aS ^(PQ) + S^ = /S'^P + y-Q + Wl »/{PQ),

and then finally

(a?PQ -^P-rfQ+ ^J = 4 (/37 - aBy PQ,

which, observing that P, Q are each of them of the second order in s, is an equation

of the twelfth order in s; that is, the number of solutions is =12.

The solution of the problem is greatly simplified when a = b = c, that is, when
the three given lines are tangents to a sphere having its centre at the given point.

We have in this case VP = ±s, VQ = + «, or the equation in s is

(s. l)(±s, l)(±s, 1) = 0;

4
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that is, the equation of the twelfth order breaks up into four equations each of the

third order. The geometrical theory may also be further developed. In fact, assuming

on each of the three lines respectively a certain sense as positive (and thus isolating

a set of three solutions) the construction is, on the three lines, from the points A', B', C
respectively, measure oflF the distances A'A = B'B == C'C= s. Then the points A, B, C
form on the three lines respectively three homographic series; that is, the lines

BC, CA, AB are respectively generating lines of three hyperboloids, viz. hyperboloids

which pass respectively through the second and third lines, the third and first lines,

and the first and second lines. Taking the given point as the centre of projection,

and projecting the whole figure on any plane whatever, the projections of the lines

BC are the tangents of a conic v/hich is the projection of the visible contour of the

hyperboloid generated by the lines BC ; and the like for the lines CA and AB.
Hence in the projection, or plane figure, we have a triangle whereof the sides A', B', C
are the projections of the three given lines respectively ; inscribed in this triangle we
have a variable triangle ABC, such that the side

BC envelopes a conic, say (.4), which touches B' and C",

CA envelopes a conic, say (B), which touches C and A',

AB envelopes a conic, say (G), which touches A' and B'.

The conies (A)(B){C) have three common tangents, say L, M, N; the conies

(B) and ((7) having besides the common tangent A'

,

(C) and {A) having besides the common tangent B',

(A) and (B) having besides the common tangent C,

so that the common tangents of the conies (B) and (C), (C) and (A), (A) and (B) are

tlie lines A', B', C each once, and the lines L, M, N each three times. In the entire

series of triangles ABC there are three triangles which degenerate into the lines L, M, N
respectively, these being in fact the projections of the triangles ABC of the solid

figure which lie in a plane with 0. Or, what is the same thing, the planes of the

required triangles ABC of the solid figure are the planes through and the three

lines L, M, and N, respectively.

[Vol. VII. pp. 34—86.]

1993. (Proposed by T. Cotterill, M.A.)—If P is a point on a circle, in which

A and B are fixed points on a diameter at equal distances from its centre, the curve

envelope of lines cutting harmonically the two circles whose centres are A and B and

radii AP, BP respectively, is independent of the position of P on the circle.

Solution by Professor Cayley.

1. More generally, the problem may be thus stated: If two conies touch at I, J
the lines 01, OJ respectively ; if P be a variable point on the first conic, and OAB



574 PROBLEMS AND SOLUTIONS. [485

a fixed line through meeting the second conic in the points A and B; then con-

sidering the conic which passes through P and touches at /, J the lines AI, AJ
respectively, and also the conic which passes through P and touches at /, J the lines

BI, BJ respectively; the envelope of the lines which cut harmonically the last-mentioned

two conies is a conic independent of the position of P.

2. Taking a; = 0, 3/ = 0, 2=0 for the equations of the lines 01, JI, and OJ
respectively, the equations of the two given conies are

xz — y- = 0, kxz — r/° = ;

hence the coordinates of P may be taken to be

X : y : z = \ : 6 : &-,

and the coordinates of the points A and B may be taken to be

X : y : z—\ : ka : ka-, and x : y : z = 1 : —koi : ka.'.

The equations of the lines AI, AJ are

kax — y = 0, z — ay = 0;

hence the equation of the conic touching these lines at the points /, J respectively,

and also passing through the point P, is

(kax-y){z-ay)_f
{ka-e){0-a) "6'

and similarly the equations of the lines BI, BJ being 1

kax+y = 0, z+ay = 0,

the equation of the conic touching these lines at the points /, J respectively, and

also passing through the point P, is

(kax + y) {z + ay) ^ tf_
-

{k(i+e){e + a) 6' k

or multiplying out and reducing, if the equations of the two conies are represented by ,

(a, h, c, f, g, K^x, y, zf = 0, (a', h', c, /', g', h'\x, y, zj = 0,

respectively, then the values of the coefficients are

a = 0, a' = 0,

6 = 2 {ka +6"-- kae), 6' = 2 (- ka' -&'- kad),

c = 0, c' = 0,

f=-e, f'-e,

g = Oka, g' = Oka,

h = - Oka", h' = Oka\
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Now the tangential equation of the envelope of the line which cuts harmonically the
last-mentioned two conies, is

(6c' + h'c -W. . gh' + g'h -af'-a'f,., .\l rj, 0'
;

or substituting for a &c. a &c., their values, it is found that the coefficients of this

equation have all of them the common factor 2^, and that omitting this factor the

equation is independent of 6, viz. the tangential equation of the envelope in question is

(1, -td', ^•=a•', 0, ^^(2^•-l)a^ o$f, v, O'=o,

which proves the theorem.

3. In particular, if ^=1, that is if the points A, B lie on the conic xz—y- = 0,

then the tangential equation of the envelope is

(1, -«••=, a\ 0, a^ 0$f ,?, 0—0,
that is

f - aY + 0"^' + 2a=|f= ;

or, what is the same thing, the equation is

and thus the envelope breaks up into the two points

^-a7; + a-f=0, f + 077 + 0=^=0;

that is, the points (1, —a, a^) and (I, a, a'^), which are the points A and B respectively.

That is, in the problem in its original form, if the points A and B are the

extremities of a diameter of a given circle, then the two constructed circles are a

pair of orthotomic circles with the centres A and B respectively ; and the theorem is

the very obvious one, that any line through the centre of either circle cuts the two

circles harmonically.

[Vol. vil. pp. 52, 53.]

2270. (Proposed by Professor Cayley.)—To reduce the equation of a bicircular

quartic into the form SS' — li?L = Q, where S— 0, S'=0 are the equations of two circles,

Z = the equation of a line. (See Salmon's Higher Plane Curves, p. 128.)

Solution by the Proposer.

The equation of a bicircular quartic may be taken to be

(oF + ff + («, + Mo) («' + y"-) + % +v, + v„ = 0,

where, and in what follows, the subscript numbers denote the degrees in the coordinates

(x, y) of the several functions to which they are attached.
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Introducing an arbitraiy constant ^„, and putting the equation under the form

this may be identified with

(a^ + y' + ;j. +iJo) (a:' + y' + g. + 9o) + r, + r„ = ;

viz. the conditions in order to this identity are

Pi + p„ + qi + qo = 'Ui+ Vo - 0„

(Pi + Po) (qi + ?o) + n + n = 0o {a'= + y-) + v. + Vi + Vo,

that is

Pi + qi = Wi. po + q<, = Mo - ^0.

Piqi = 0o{^ + y'') + v., Piqo+Poqi + ri=Vi, p,qc + r, = v,.

Hence
ipi-qiy=Ui'-'i>v„,-4!e,{x' + y^),

where the right-hand side is a quadric function (x, y)-, which, when the discriminant

thereof is put = 0, (that is, when 6^ is determined as the root of a quadric equation,)

is a perfect square, Pi — qi is then a known linear function, and Pi + qi being equal to

the linear function Ui, we have pi and q^ as linear functions of (x, y). We may take

for the constants p^ and q„ any values satisfying the equation p^ + q^ = u^— B^-. and we

then have

ri = Vi-piqo-poqi, n = v„-p^q„,

which completes the determination ; the form

{a? + y-+i\ +po) (ar' + 2/- + 5, + (?„) +r-, + r„ =

is of course the same as the proposed form SS' — k^L = 0.

Cor. a somewhat more convenient form is UU' — k^V= 0, where U=0, U' =
are the equations of two evanescent circles (pairs of imaginary lines), F=0 the equation

of a circle ; in fact the original form SS' — k'L = may be written (S — a) (S' — a')

+ (aS' + a'S—aa! — k^L) = 0, which, when a, a' are so determined that S-a = 0, S' -a'=0
may be evanescent circles, is of the required form UV — k-V=0. The equation UU'=0
is that of the two pairs of tangents to the curve at the circular points at infinity

respectively; in fact, writing U=pq, U'=p'q', each of the lines p = 0, q = 0, p' = 0, q' =
meets the circle V=0 in one or other of the circular points at infinity, and therefore

only in a single point not at infinity; hence each of these lines meets the curve

UU' — k^V=0 three times in one of the circular points at infinity, that is, the line

in question is a tangent to one of the two branches through the circular point at

infinity.

[Vol. VII. pp. 87, 88.]

2309. (Proposed by Professor Cayley.)—Show that for n things

1 - (no, of partitions into 2 parts) +1.2 (no. of partitions into .3 parts)

+ 1 . 2. 3.. (tt — l)(no. of partitions into ?i parts) = 0.

I
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For instance, n = 4 ;
partitions of (a, b, c, d) into two parts are (a, hcd), {b, cda),

(c, dah), {d, abc), (ab, cd), (ac, db), (ad, be) ; no. is = 7. Partitions into three parts are

(ab, c, d), (ac, b, d), (ad, b, c), (be, a, d), (b, d, ac), (cd, a, b) ; no. is = 6. Partition into

4 parts is (a, b, c, d) ; no. is = 1. And we have

1-1.7 + 2.6-6.1 = 13-13=0.

Solution by the Proposer,

Write n = aa + b^ + cy + ... , where a, /3, 7. . . are positive integers all of them
different, and a, /3, 7. . . are positive integers ; and consider the partitions wherein we
have a parts each of o things, b parts each of y8 things, &c. Writing as usual

n («)= 1 . 2.3 ... «, the number of partitions of the form in question is

Un
na.Ub...(naf(Uf3)'>...'

whence, putting for shortness a + /3 + ... = p, the theorem may be written

U(p-l)Un
Ua.Ub...(Ua)<'(U^f...

the summation extending to all the partitions n= aa-\-b^ + ... , as explained above.

Now if the n quantities x, y, z,.., are the nth. roots of unity, we have x + y + z... =0,

and therefore also (x + y +z...)"=0, and the general term of the left-hand is

^"^
[a«/3^..],

(^a)«(^;8)^.

where [a"/?*...] denotes the symmetrical function Xx'y'...(a {actors) ttPifi ... (b factors)...

of the root's x, y, z, u, v...oi the equation ^—1=0; where, as above, n = aa + b^+....

Now by a formula not, I believe, generally known, but which is given on p. 17.5 of

the translation of Hirsch's Algebra (Hirsch's Collection of Examples dx. on the Literal

Calculus and Algebra, translated by the Rev. J. A. Ross, London, 1827), the value of

the sum in question is = (-)p~' „
txI

^'' ^^®^® p = a + b+ ... ,
(the sign +, given

in the formula as quoted, is at once seen to be (—)^'-) ; whence, substituting and

omitting the factor n, we have

t(-)P-^ "(P-1)"" =^^ -* na.n6...(na)«(n/3)\.. '

which is the required theorem.

Observation. In Cauchy's Exercices d'Analyse d-c, t. in., p. 173, is given a

formula relating to the same mode of partition of the number n, viz. this is

^-
. = n..

na.n6...a«/3''..

c. VII, 73
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I have somewhere made the remark that, on the left-hand side, the terms which

belong to the odd and the even values of a + b+ ...(=p) are equal, and that we have

therefore

^^ ' na.n6...a»y9»... "'

which is a theorem having a curious analogy with that demonstrated above.

[Vol. vil. pp. 99—102.]

2286. (Proposed by W. H. Lavertt.)—If we have (n - 2) sets of n quantities

€ach, (a,, a» ... a,i), (A. /Sa ••• /8„), ... (Xj, Xj ... X„), connected with the n quantities

(rj, rj...r,j) by ^n{n — \) equations of which the type form is

(a* - a^y + (/3i - y9,)' + . . . (\i - Xj)= = r-i' + »-,»

;

then show that

A +A+-+A = and 5 + ^^ + ...;?-" = 0.

where P is any one of the quantities a, /9, 7 . . . X.

Solution by Professor Cayley.

Consider the case n = 4; we have between (Oi, o^, 03, a^), (ySi, /80, /S3, ^t),... (n, r^, r,, r,)

six equations, such as the equation

(a:-a,)^ + (A-yS.)^ = n^ + r,»; (12)

and it is in effect required to show that these equations give

1111
= (234) : -(341) : (412) : -(123),

'V 'a' '3' '4"

where
j-i* r-j" r^" 7-4

(12.3) =

viz. considering (a^, ySj), (oj, jSa), (a^, yS^), (a^, /Sj) as the rectangular cooi-dinates of four

points in a plane, then (123) is the area (taken with a proper sign) of the triangle

formed by the points 1, 2, 3 ; and the like for (234) &c.

Combining the equations as follows,

(12) + (34) -(13) -(24),

the r'a disappear, and we have an equation

{<z, - a,) (a, - 0,) + (A - /S,) (/8, - y8,) = 0,
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which shows that the lines 14 and 23 intersect at right angles ; similarly the lines 12

and 34, and also the lines 13 and 24, intersect at right angles ; or starting from the

given points 1, 2, 3, the point 4 is the intersection of the perpendiculars let fall from

the angles 1, 2, 3 of the triangle 123 on the opposite sides respectively.

Again combining the equations as follows,

(12) + (13) -(23).

ri' = (a, - Ok) (a, - a,) + (y8, - ft) (A - ^3)-

we obtain

The entire system of equations will remain unaltered if we pass from the original axes

to any other system of rectangular axes ; hence taking the axes of x in the sense

from 1 to 2 along the line 12, /3i — /Sa becomes = 0, and we have

a, -a, = 12, 03 -a, = 1(12, 34);

viz. o^ — a, is the distance 12 of the points 1 and 2, «3— Oi is the distance 1(12, 34)

of the point 1 from the point (12, 34) which is the intersection of the lines 12 and

34 ; we have therefore

n'=12.1(12, 34).

But similarly

r,^ = 21.2(12, 34), =12.(12, 34)2,

(since 21 = - 12 and 2(12, 34) =-(12, 34)2). And we have therefore

n= : r,^ = l(12, 34) : (12, 34)2, or \ : ^ = (12, 34)2 : 1(12, 34).

Write

\ = (12, 34)2

12
M12, 34)

'^
12

where 1 (12, 34) and (12, 34) 2 are as above the distances from 1 to (12, 34) and from

(12, 34) to 2 ; and, in the denominators, 12 is the distance from 1 to 2 ; we have

\+^ = l; the coordinates of (12, 34) are XSi+fia.,, X/3i + /u./3j, and the values of X,
fj,

are obtained by writing Xoi + /xot,, X/3i + /i/32, X + ya for x, y, 1 in the equations

X , y , 1
I
=

a^
, ^84, 1

of the line 34. Making this substitution, we find

X (134)+ ^ (234) = 0,

where as above

(134) = «!, A, 1

Os, A. 1

O4, A, 1

, &c.,

73—2
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we have therefore

\ : ^=(234) : -(134) = (234) : -(341),

or, what is the same thing,

(12, 34)2 : 1(12, 34) =(234) : -(341);

and consequently

1 :
A =(234): -(341);

or completing the system by symmetry

1111
r^ ri r} r/

= (234) : -(341) : (412) : -(123),
'» 'i

which is the required result.

In the case ?i = 5, we have between

(a,, Oi, flj, dt, ttj), (/3,, ^2, ^3, ^4, A), (Vi' 7a. 73. 74. 7»). ('"i. "^f »*»' ^*' ^«)

ten equations such as the equation

(a, - a,y + (y8. - ^,r + (7i - 7O' = n^ + r,'. (12)

We obtain as before the equation

(a, - a,) (0, - 03) + (/3, - A) (0, - A) + (7: - 7*) (7. " 73) = 0.

which, considering (oj, /81, 71) &c. as the rectangular coordinates of five points 1, 2, 3, 4, 5

in space, signifies that the line 14 is at right angles to the line 23 ; the five points

are therefore such that the line joining any two of them is at right angles to the

line joining any other two of them, whence also the line joining any two is at right

angles to the plane through the remaining three points. (The points 1, 2, 3, 4 form

a tetrahedron such that that 12 and 34, also 13 and 42, also 14 and 23 are at right

angles to each other, two of these conditions imply the third ; and this being so, if

a further condition be satisfied, the perpendiculars from 1, 2, 3, and 4 on the opposite

faces respectively, will meet in a point 5, and we shall have the system of points

1, 2, 3, 4, 5 related as above.)

We further obtain as before

r-r = (a, - a,) (a, - a,) + (A - ^,) (^. - ^,) + (7, - 7^) (7. - 7,),

or taking the axis of x in the sense from 1 to 2 along the line 12, we have

/9, ~ /9a = 0, 7i — 7a = 0, and the equation becomes

n= = 12 . 1 (12, 345),
and similarly

n» = 12.(12, 345)2;
whence

^, : -?-, = (12, .345)2 : (12, 345)1.
~i "a
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(12.345)2 1(12, .345) ,,,.., ,, « j /^ x/i=—^—^^j (and therefore \+/i = l) we nnd (\, /i)Writing them X= ^^ , ,
— ^^

by substituting Xaj + ^Oa, '^^^i + fJ,^., X71 + /t7,, \ + /i for a;, y, 2, 1 in the equation

, 1
1

=

«3, 03, 73.

«j, A, 74,

atj, /35, 75,

of the plane 345 ; we have thus

X (1345) + /u, (2345) = 0,

\ : /i = (2.345) : -(1345) = (2345) : (3451),

(12,345)2 : 1(12, 345) =(2.345) : (3451),

that is

whence

that is

1^

or completing by sjonmetry

1^

= (2345) : (3451),

= (2345) : (.3451) : (4512) : (5123) : (1234),

which is the theorem for the case n = 5. The general case depends, it is clear, upon

similar reasoning in a (n — 2)dimensional geometry ; leading to the conception in this

geometry of a figure of (n—l) points such that the line joining any two of them is

at right angles to the line joining any other two of them.

[Vol. VII. p. 106.]

2331. (Proposed by Professor Cayley.)—Show that it is possible to find (X, Y, Z)

linear functions of the trilinear coordinates {x,y,z) such that the equations xX=^yY=zZ
may determine four given points.

[Vol. VIIL, July to December, 1867, p. 26.]

2321. (Proposed by Professor Cayley.)—Given a conic, to find four points such

that all the conies through the four points may have their centres in the given conic.

[Vol. VIIL p. 36.]

2371. (Proposed by Professor Cayley.)—(4). If P, Q be two points taken at

random within the triangle ABC, what is the chance that the points A, B, P, Q may
form a convex quadrangle ?
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[Vol. VIII. pp. 51, 52.]

Note on Question 1990. By Professor Cayley.

The theorem of paragraph 4 (Reprint, vol. vi. p. 88), (ascribed by Professor

Sylvester to Mr Crofton), that " if a circle and a straight line be cut by any transversal

in three points, these will be the foci of a system of Cartesian ovals having double

contact with one another at two fixed points," may be enunciated under a more

complete form, as follows

:

If in a given circle the chords PPu BC meet in A, then each of the two

Cartesians, foci A, B, C, which pass through P, will also pass through P,; and more-

over, if a, a' be the diametrals of the chord PPi (that is, the extremities of the

diameter at right angles to PPi) then the tangents at P, Pj to one of the Cartesians

will be aP, aPi respectively, and to the other of them o'P, a'Pi respectively, these

tangents being thus independent of the position of the chord BC; and thence also thus;

Given the points A, B, in lined, and the point P

;

through P, B, C draw a circle (A) and let PA meet this in P,,

„ P, C, A „ (B) „ PB „ P„

„ P, A, B „ (G) „ PC „ P„

then each of the Cartesians, foci A, B, G, which pass through P will also pass through

Pi, Pj, Pa; and if

a, a' are the diametrals of PP^ in circle {A),

/9, ^ „ PP, „ (B),

7- 7 » PP^ ..
(C),

then (the points of the several pairs being properly selected) the points (a, /3, 7) and

the points (a', /3', 7') will each lie in a line through P, viz. the lines Pa^y and

Pa'/Sy will be the tangents at P to the two Cartesians respectively.

The two Cartesians meet iu the points P, P,, P.,, P3, and in the symmetrically

situated points in regard to the axis ABC; the theorem contains as part of itself

the well-known property that the two Cartesians cut at right angles at each of their

points of intersection ; it gives moreover the construction of the following problem :

—

given the foci A, B, C, and one intersection P of a pair of tricon focal Cartesians, to

find the remaining intersections, and the tangents at each of the intersections.

[Vol. VIII. pp. 70—72.]

1911. (Proposed by Professor Cayley.)—Given four points, and also the "conic of

centres"— viz. the conic which is the locus of the centres of the several conies which

pass through the four given points; then if a conic through the four given points

has for its centre a given point on the conic of centres, it is required to find a

construction for the asymptotes of this conic.

!
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Solution by the Proposer.

1. Consider four given points, and in connection therewith a given line IJ; the

locus of the poles of IJ, in regard to the several conies which pass through the four

points, is a conic, the "conic of poles." Consider a particular conic 0, through the

four points ; the pole of // in regard to the conic is a point G on the conic of

poles, and the tangents from C to the conic meet the conic of poles in two points

H, K; the chord of intersection HK passes through the point 11 which is the pole

of IJ in regard to the conic of poles. Moreover, the polars of a point C, in regard

to the several conies through the four points, meet in a point H', the "common
pole " of C, and in particular if C be the point G on the conic of poles, then the

common pole is a point fl on the line //; this being so, the line HK passes (as

already mentioned) through 11, and the lines HK and IIO are harmonics in regard

to the conic of poles.

2. Assuming the foregoing properties, then, given the four points, the line //,

the conic of poles, and the point C on this conic ; we may construct 11 the pole of

IJ in regard to the conic of poles; and also fl the common pole of G; the line HK
is then given as a line passing through 11, and harmonic to YID, in regard to the

conic of poles ; this line meets the conic of poles in the points H, K ; and then

CH, CK are the tangents from C to a conic which passes through the four points.

3. In particular if IJ be the line infinity, then the conic of poles is the conic

of centres; IT is the centre of this conic; il is as before the common pole of G;

HK is given as the diameter of the conic of centres, conjugate to Ilfl ; H, K are

the extremities of this diameter ; and then GH, GK are the asymptotes of the conic

through the four points, which has the point G for its centre ; and the asymptotes

are therefore constructed as required. If the points H, K are imaginary, the asymptotes

will be also imaginary ; the conic is in this case an ellipse.

4. It is hardly necessaiy to remark, in regard to the construction of the point D,,

that we have among the conies through the four points, three pairs of lines meeting

in points P, Q, R respectively (it is clear that the conic of poles passes through these

three points) ; the harmonics of GP, GQ, GR in regard to the three pairs of lines

respectively meet in a point, which is the required point fl. In the particular case

where the point C is on the conic of centres, the three harmonics are parallel; it

is therefore sufficient to construct owe of them ; and the line HK is then the diameter

of the conic of poles, conjugate to the harmonic so constructed.

5. It remains to prove the properties assumed in (1). We may take z = for

the equation of the line IJ, x = 0, y = for the equations of the tangents to the

conic at its intersections with the line //, so that we have {x = 0, y = 0) for the

coordinates of the point G; the equation of the conic © will be of the form z'' — wi/ = 0,

and the four points may then be taken to be the intersections of the conic z^ — xy = 0,

and the arbitrary conic

(a, h, c, /, (J,
K^x, y, zf = 0.

The equation of the conic of centres is found to be

w(ax + hy + gz)-y(hx + by+fz) = 0, or aa? -hy^ ¥ gzx-hxy = ;
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or, as it may also be written,

(2a, -26, 0, -/, g, 0$a;, y, ^)' = 0;

and it is convenient to remark that the equation in line coordinates (or condition that

this conic may be touched by the line ^x + rjy + }^z = 0) is

(-/". -9"-> -*ab. 2a/, 2bg, -fgll v. r)^ = 0.

The line x = meets the conic of poles in the point x = 0, by+fz = 0, and the line

y = meets the same conic in the point y = 0, ax + gz = ; hence the line HK, which

is the line joining these two points, has for its equation

afx + bgy+fgz = 0;

and it only remains to be shown that this line passes through the point 11, and is

the harmonic of the line Ilfl in regard to the conic of centres. The point 11 is

the pole of the line z = in regard to the conic of centres, its coordinates are at

once found to be
X : y : z = bg : af : — 2ab

;

and we thence see that 11 is a point on the line HK. The point fl is given as the inter-

section of the polars of C in regard to the conies z^ — xy = 0, and (a, b, c,f, g, h'^x, y, zf =
respectively; that is, as the intersection of the lines = 0, and gx +fy + cz=-Q\ its

coordinates therefore are

X : y : z=-f : g : 0.

Hence the equation of the line Iin is

2abg x+ 2abfy + (a/" + bf)z = 0.

Now, in general, if we have a conic the line-equation whereof is {A, B, C, F, G, H\^, r/, ^f = 0,

then the condition in order that, in regard thereto, the lines \x + fj,y + vz = and

X'x + fi'y +v'z = may be harmonics, is

{A, B, C, F, G, H^X, M, p-^X', ^', p') = 0;

that is

AXX' + Btifi' + Cvv' + F i^Lv' + fi'v) + G {vX' + v'X) + H (X/jl' + \» = 0.

Hence, in order that the two lines HK and Ilfl may be harmonics in regard to the I
conic of centres, we should have

(-/^ -f> -4a6, 2af,2bg, -/gjaf, bg, fg\2abg, 2abf, ap + bg')=0.

But developing, and omitting the common factor abfg, which enters into all the

terms, this equation is r

J

- {2a/') - {2bg') - 4 {a/' + bf) + {4a/^ + 2 {af^ + bg')} + {^bf + 2 {af- + bg')] - 2 {af- + bg') = 0,

which is identically true ; and the lines HK and Iin are therefore harmonics in

regard to the conic of centres.

J
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[Vol VIII. p. 74.]

2371. (Proposed by Professor Catley.)—If P, Q be two points taken at random
within the triangle ABC, what is the chance that the points A, B, P, Q may form

a convex quadrangle ?

[Vol. VIII. pp. 86, 87.]

2466. (Proposed by H. Murphy.)—If four points A, B, G, D he either in the

same plane or not, and if the three rectangles AB.CD, AG.DB, AD . BG be taken;

the sum of any two of them is greater than the third, except when the points lie on

the circumference of a circle.

Solution by Professor Cayley.

Write for shortness BG=f, GA=g, AB = h; AD=a, BD = b, CD = c; then, Lemma,
if r be the radius of the sphere circumscribed about the tetrahedron ABGD, we have

4r^ - = 2b'c-g-h- + 2c-a%-f' + 2a'b-fY- - a*/* - by - c*h\

( - a^p - by - (fh- -fyli- ^

+ {aT+b'(^)(g' + Ji^-r-)

+ (by + cW)(h'+f'-f)

{+ {&h? + a^h') {p +f - h^)

,

where the left-hand side is = olGV'^f-, if V be the volume of the tetrahedron.

Suppose first that the points are not in the same plane, then the left-hand side

(= .576 V'^r^) is positive ; therefore the right-hand side is also positive, or putting for

shortness o/=o, bg = 0, ch = y, we have

2/3Y + 27-a- + 2a2^ -a*-^*-r/=+, that is, 4^Y - (a= - ^S- - 7=)= = -|-,

and thence a < /9 + 7 ; for if a were equal to or greater than /3 + 7, say 0=^-1-7+5;,

the left-hand side would be 4/3^7* — {2/37 + 2{^ + y)x + x^}'', which vanishes if x = 0,

and is negative for x positive. Similarly ^<y + a, 7<a-|-/3; and the theorem is thus

proved for the case where the four points are not in a plane.

Starting from this general case, if we imagine the point D continually to approach

and ultimately to coincide with the plane ABG, but so as not to be in the cu-cle

ABC, then the expression 2y3'-7= -f- 27V -)- 2a=/3'-' — a^ — /S'' - 7*, which does not vanish in the

limit, is throughout equal to the positive quantity 576 F^y^ (in the limit F is =
and r =x , but Vr is finite, and of course FV is positive), that is, the expression in

question is =+, and the theorem follows as before. Of course when the four points

are in a circle, then the expression is = 0, and consequently one of the quantities

o, /3, 7 is equal to the sum of the other two.

c. VII.
' 74



586 PROBLEMS AND SOLUTIONS, [48;

The lemma is at once proved by means of my theorem for the relation between

the distances of five points in space, {Cambridge Mathematical Journal, vol. II. (1841),

p. 269, [1],} viz. if the point 1 is the centre of the circumscribed sphere, and the points

2, 3, 4, 5 are the points A, B, G, D respectively, then the relation in question, viz.

, (12)», (13)^ (14)«, (15)«. 1

(21)», , (23)=, (24)', (25)^ 1

(31 )^ (32)^, , (34)«. (35)^ 1

(41)^ (42)5, (43)•^ . (4o)», 1

(51)», (52)', (53)^ (54)', , 1

1 . 1 , 1 , 1 . 1,0

=

becomes

0, r"; r-, ?•', 7-', 1 =0.

r\ 0, h\ f, a\ 1

1^ h\ 0, /^ b\ 1

r', g\ f\ 0, c\ 1

r", a\ h\ c\ 0, 1

1. 1, 1, 1, 1,

Multiplying the last line by — r* and adding it to the first Hue, this is

- »•',
, , , , 1 =0,

^. 0, /i-, g-, a\ 1

r\ h\ 0, /', h\ 1

r\ g\ A 0, c\ 1

r^, a', b-, c\ 0, 1

1

,

1

,

1
,

1
,

1
,

and then proceeding in the same way with the first and last columns the equation is

- 2r=, , , , ,

, 0, h\ g\ a%

, h\ 0, /', ¥,

, f. f\ 0, &,

, a', 6S C-, 0,

1 , 1, 1, 1. 1,

which is in fact the equation of the Lemma. See my papers in the Qttarterly

Journal of Mathematics, vol. III. (1859), pp. 275—277, [286], and vol. v. (1861),

pp. 381—384, [297].
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Cor.—It appears by the demonstration that for any four points not in the same
plane, the expression

+ {a^f- + 6=cO {g-- + h"- -p) + (6y + cW) Qi'+p - g') + {cVi' + a=6=) (/' + ^= - h')

is always positive.

[Vol. VIII. pp. 105, 106.]

2472. (Proposed by Professor Cayley.)—Through four points on a circle to draw

a conic such that an axis may pass through the centre of the circle.

Solution by the Proposer.

Let the equation of the conic be (a, h, c, f, g, h\x, y, \f = 0, then if as usual

the inverse coeflBcients are represented by {A, B, C, F, 0, H), the equation of the two

axes is

(a - b) (Cx - G) (Cy -F) + h [{Cw - Gf - {Cy - Ff] = 0,

whence if an axis pass through the origin

{a-b)FG + h{G''-F^) = 0.

Consider now the circle «= + y- — 1 = and on it the four points in which it is inter-

sected by the conic (a, b, c, f, g, h\x, y, 1)'- =
; then for any conies through the four

points we have
(a, b, c, f, g, h\x, y, \y + \{x' + y- -\) = 0;

so that, taking this for the equation of the required conic, and representing it by

(a', b', c, /', r/, h'\x, y, If = 0,

the values of the coefficients are

a' = a + X, b' = b + X, c' = c + X, /'=/, g'—g, h' = h,

and we thence have

F' = F-\f, G' = G-\g, a-b' = a-b, h' = h.

The required relation is

(a' - b') F'G' + h' (G" - F"-} = 0,

that is

(a -b){F- \f) (G -\g) + h [{G - Xgf -(F- Xff} = 0,

a quadric equation in \ ; and substituting for \ each of its two values, we have the

two required conies

(a. b, c,f, g, h-$_x, y, l)^ + X(^ + y^- 1) = 0,

for each of which an axis passes through the centre of the circle.

74—2
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[Vol. IX., January to June, 1868, pp. 20, 21.]

Note on Question 2471. By Prof&ssor Cayley.

In the singularly beautiful solution which Mr Woolhouse has given of this

question (see Reprint, vol. Vlll. p. 100), it is important to note what is the analytical

problem solved, and how the solution is obtained. Considering a plane area bounded

loy any closed convex curve, and in it three points P, P', P", Mr Woolhouse investi-

gates the average area of the triangle PPT", viz. this depends on the sextuple integral

/ ± Wy" — """y' + ^"y

—

^" + ^' — *'yl ^ <iy^ ^y ^" ^y"'

where the sign + has to be taken so that +
{ } shall be positive, and where the

integration in respect to each set of cooixlinates extends over the entire closed area

;

the difficulty is as to the mode of dealing with the discontinuous sign. It is remarked

that the integral is

= 6 [+ [afy" - x"y' + x"y - xy" + xy'- afy] dx dy dx' d^ dx" dy"
;

the variables in this last expression being restricted in such wise that x, af', x are in

the order of increasing magnitude ; the term +
{ } is of the form + (a;' — x) (y" — /S),

where /3 is independent of y, and where (as is easily seen) if v", u" be the upper

and lower ordinate corresponding to the abscissa a;", then /3 lies between the values

m" and d". But x —x is positive, hence the sign + must be so taken that ± {y" — /8)

shall be positive, that is, from y" = m" to y" = ^ the sign is — , and from y" = /3 to

y" = v" the sign is +.

Hence for the integration in regard of y" we have

1+ (y" - ^) df =f + iy" - /3) dy" + j'^ - (y" - /3) df, = i (v" - ^)»+ ^ (^ - u'J ;

and the discontinuous sign + is thus got rid of. The remaining integrations are then

effected in the order x", y', y, x, x, the limits being for x" from x to x', for y from

m' to v', and for y from u to v (if the upper and lower ordinates corresponding to

the abscissa x and x' are v, u and v', u' respectively) and finally for x' from x to the

maximum abscissa, and for x from the minimum to the maximum abscissa. The final

result involves only single definite integrals between the extreme values of x, the

functions under the integral sign containing indefinite integrations from the same

arbitrary inferior limit, say a; = ; the form of the result (previous to its simplification

by taking the axes to be principal axes through the centre of gravity of the area) is

however somewhat complicated ; and it would not be easy to show a posteriori, that

the value is invariantive, that is, independent of the position of the axes: that this

is so is of course apparent from the original form of the integral.
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[Vol. IX. pp. 38, 39.J

2530. (Proposed by Professor Cayley.)—Trace the curve

1_ _1 1

/^/z \/{x + iy) »J{x — iy)
~

'

where the coordinates x, y, z are the perpendicular distances of the current point P
from the sides of an equilateral triangle, the coordinates being positive for a point

within the triangle.

Solution by the PROPOSER.

The form of the equation shows that the curve is a tricuspidal quartic, having a

real cusp at the point {x=0,y = 0), and two imaginary cusps at the points {z = (),« + iy = 0)

and {z = 0, x — iy = 0). The rationalised form of the equation is

{a? + y'^y - ^zx {a? + y-) - 4^y = 0.

x — Q gives y- (y^ — 4^^) = 0, the point G twice, and two other real points a, a on

the line BC.

y=0 gives a?{x — 4iz) = 0, the point G three times, and a real point /3 on the

Une GA.

It is easy to find that there is a double tangent z+2x = 0, viz. z +2x=0 gives

{3a? — y'y = 0, two points t, t' (each twice) on the line in question.

Laying down these points, it appears that the curve must have two real asymptotes,

and that the form is as shown in the figure.

[Vol. IX. pp. 55, 56.]

2553. (Proposed by Professor Cayley.)—Show that the surface y^z^+z^x'+a^y^-2xyz=0

meets the sphere x' + y' + z^ = l in four circles ; and explain in a general manner the
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form of the curve of intersection of the surface by any other sphere having the same

centre, and thence the form of the surface itself (being a particular case of Steiner's

surface, and which by the homographic transformations vr^x, vr^y, vr^z for x, y, z

gives yV + aV + a;^" — 2«;a;^z = 0, the general equation of Steiner's surface).

Solution by the Proposer.

Take X, X', Y, T', Z, Z' the intersections of the sphere a? + y'' + z^ = l by the

three axes respectively; then we have a? + y^ + z''=l, x + y -^z = — \, the equations of

the circle through the points X', Y', Z' ; and from these two equations we deduce

yz-irZX + xy = Q, and thence v

y'z^ + ^V + a;y + 2xyz (a; + y + «) = 0,

that is

2/V + ^V + xY - ^xyz = ;

so that the cii-cle lies on the quartic surface ; and by changing successively the signs

of each two of the three coordinates, we have three other circles lying on the sphere

and also on the quartic surface ; viz. we have in all four circles, the above-mentioned

circle through (X', Y', Z'), and three other circles through {X', F, Z), {X, Y', Z),

{X, Y, Z') respectively, making together a curve of the order 8, the complete inter-

section of the quartic surface by the sphere.

The quartic surface lies entirely in the four octants of space xyz, xy'sf, x'yz', x'y'z
;

and as to the portion of the surface which lies in the octant xyz, this meets the

sphere ar' + 3/= + 0" = 1 in portions of the three circles (Z', F, Z)(X, Y' , Z){X, Y, Z')

constituting a tricuspidal fonn lying within the octant XYZ as shown in the figui'e.

The intersection by a sphere, radius < 1, projected on the octant XYZ, is a trinodal

form, lying outside the tricuspidal one, as shown by a dotted line in the figure ; the

intersection by a sphere radius > 1, projected in the same way, is a trigonoid form

lying inside the tricuspidal one, as also shown by a dotted line in the figure ; as the

2
radius approaches to and ultimately becomes = -^ , this diminishes, and becomes

ultimately a mere point, and when the radius is greater than this value the intersection

is imaginary.

Z

Imagine on the solid sphere, radius = 1, the four tricuspidal forms lying in

alternate octants as above ; cut away down to the centre the portions lying • without
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these tricuspidal forms ; and build up on the tricuspidal forms, until the greatest

2
distance from the centre becomes = ^^ ; we have a solid figure with four prominences

\ o

situate as the summits of a tetrahedron, the bounding surface whereof is the surface

in question : it is to be added that the axes are nodal lines on the surface, viz. the

portions which lie within the solid figure are the intersections of two real sheets of

the surface, the portions which lie without the solid figure are isolated, or acnodal, lines

on the surface.

[Vol. IX. pp. 73, 74.]

2573. (Proposed by Professor Cayley.)—The envelope of a variable circle having

for its diameter the double ordinate of a rectangular cubic is a Cartesian.

[Definition. The expression "a rectangular cubic" is used to express a cubic with

three real asymptotes, having a diameter at right angles to one of the asymptotes and

at an angle of 45° to each of the other two asymptotes, viz. the equation of such a

cubic is xy- = x^ + ba^ + ex + d.]

Solution by the Proposer.

The equation of the variable circle may be taken to be

(x-ey + f=e'-2vie + a+ -^,

viz. ff being the abscissa of the rectangular cubic, the squared ordinate is taken to

be = -^(6' — imff' + ad + 2A), or, what is the same thing, the equation of the variable

circle is

a^ + y^-a-2(x-m)0--^=O.

Hence, taking the derived equation in regard to 6, we have

x—m-^ = 0,

and thence
44

x'+y^-a=-^;

therefore

(x'^ +f-ay='-^ = 16A(x-m);

that is, the equation of the envelope is

{x' + y''- af -\QA{x- m) = 0,

which is a known form of the equation of a Cartesian.
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[Vol. IX. pp. 82, 83.]

2493. (Proposed by Professor Cayley.)—1. Given the conic U = (but observe

that the function U contains implicitly an arbitrary constant factor which is not given)

and also the conic [7+1=0, to construct the conic U+l = 0, where i is a given

constant.

2. Given the conies U=0, [7+1=0, V=0, F+1=0, and the constants 6, k, to

construct the conic dU+0-^V+2k = O.

Solution by tlie Proposer.

1. The conies U =0, [7+1 = 0, U +1 = are obviously concentric similar and

similarly situated conies, and if drawing a line in any direction from the centre, the

radius-vectors for the three conies respectively are r, r, R, then it is ea.sy to see that

we have
B? = lr''' + {\-l)i^.

There is no difficulty in constructing geometrically the radius R, and then the conic

[7 + i = is given as the concentric similar and similarly situated conic passing through

the extremity of this radius.

2. To construct the conic 6U+ 6~^V +2.k = 0. By what precedes, we may con-

struct the two conies 6U +k=0, 9~^V+k = \ the four points of intersection of these

lie on the required conic dU+ 9~^V +2k = 0, and also on the conic 6U—6''^V=0;
which last conic is consequently given as a conic passing through the four points in

question, and also through the four points of intersection of the given conies [7=0, ]''=0.

But the conic 6U—6~^V=0 being constructed, the conic 6U+d~^V=0 can also be

constructed ; viz. the tangents of these two conies and of the conies [7=0, V = 0, at

each gf the four intersections [7=0, F = 0, form a harmonic pencil ; and we have thus

the conic 6U {6~^V=0 a conic passing through four given points, and having at each

of these a given tangent. And then finally the required conic dU+d~^V+2k = is

given as a conic concentric similar and similarly situated with the conic 6U +6~^V =0,

and passing through the four given points

(9[7+/L-=0, 6-'V+k = 0.

3. Treating k as an absolute constant but ^ as a variable parameter, the envelope

of the conic 6U + 6~^V + 2k=0 is the quartic curve UV—k- = 0. This is a curve

used by Plucker (in the Theorie der algehraiscJien Cwven) for the purpose of showing

that the 28 double tangents of a quartic curve may be all of them real. In fact, if

[7=0, F=0 be ellipses intersecting in four real points; and if moreover, the implicit

constants be such that [7 is positive for points without the first ellipse, V positive

for points mthin the second ellipse, then since UV, = kf, is positive for all points of the

curve in question, the curve must be wholly situate in the four closed spaces which

lie outside the one and inside the other of the two ellipses; consisting therefore of

four detached portions. And when k is sufficiently small, then the figure of each

portion is that of a concavo-convex lens with its angles rounded off: viz. each such

portion has a real double tangent of its own. Any two portions have obviously four real

double tangents, and hence the total number of real double tangents is 4 + 6x4, =28.

I
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4. A construction has been given by Aronhold (Berl. Monatsber., July, 1864) by
which, taking any 7 given lines as double tangents of a quartic curve, the remaining

21 double tangents can be constructed, and which, when the seven given lines are real,

leads to a system of 28 real double tangents ; but wishing to construct the figure of

the 28 real double tangents, it occurred to me that the easier manner might be to

construct Plucker's curve UV— /<f = 0, as the envelope of the conic 017+ 0~^V +2k = 0,

and then to draw the tangents of this curve: the construction is, however, practically

one of considerable difficulty, and I have not yet accomplished it.

[Vol. IX. p. 87.]

2451. (Proposed by Professor Cayley.)—If A, B, C, It are the intersections of a

conic by a circle, then the antipoints of A, B, and the antipoints of C, D, lie on a

confocal conic.

N.B. If AB, A'B' intersect at right angles in a point in such wise that

OA' = OB' = i .OA =i .OB {where { = >,/(— 1) as usual}, then A', B' are the antipoints of

A, B, and conversely.

[Vol. IX. pp. 101—10.3.]

2590. (Proposed by Professor Cayley.)—It is required to verify Professor Rummer's
theorem that "if a quartic surface is such that every section by a plane through a

certain fixed point is a pair of conies, the surface is a pair of quadric surfaces (except

only in the case where it is a quartic cone having its vertex at the fixed point)."

Solution by the Proposer.

The theorem may be more generally stated as follows ; if a surface is such that

every section through a certain fixed point (is or) includes a proper conic, then the

surface (is or) includes a proper quadric surface. In order to the demonstration, I

premise the following Lemma : If a surface is such that every section through a

certain fixed line includes a conic, then the line meets each of these conies in the same

two points.

In fact, if the line meet the surface in any n points, then it is clear that each

of the conies will meet the line in some two of these n points ; and as the plane of

the section passes continuously from any one to any other position, the two points of

intersection with the conic cannot pass abruptly from being some two to being some

other two of the n points, that is, they are always the same two points.

Consider now a surface which is such that every section through a fixed point

includes a conic; and consider three lines xx', yy', zz meeting in the point 0. Let

the conies in the planes yz, zx, xy he A, B, C respectively ; then since the conies

c. vn. 75
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through the line xx all pass through the same two points, and since B, C are two

of these conies, B and C meet xx in the same two points X, X' ; similarly C and

A meet yy' in the same two points F, F'; and A, B meet zz^ in the same two

points Z, Z \ that is, we have the conies A, B, G intersecting

B, C in the two points X, X',

^> A „ „ y,¥,

A, B „ „ Z, Z'

;

hence taking on the conies A, B, G the points a, /S, 7 respectively, and drawing a

quadric surface S through the nine points X, X\ Y, F', Z, Z', a, ^, 7, this meets the

conic A in the five points F, F', Z, Z', a ; that is, it passes through the conic A,

and similarly it passes through the conic B, and through the conic G.

Consider how any plane whatever through intersecting the conies A, B, G in the

points L and L', M and M', N and N' respectively; the section of the quadric surface

S by the plane in question is a conic through the six points L, L', M, M', N, N'.

But the section of the surface includes a conic through these same six points, and which

is consequently the same conic; in fact, the section of the surface by the plane in

question includes a conic, and since every section through the line LL' includes a

conic through the same two points, and one of these conies is the conic A which

passes through the points L and U, the conic in question passes through the points

L and L' ; and similarly it passes through the points M and M', and through the

points N and N'. That is, for any plane whatever through 0, the section of the

surface includes the conic which is the section of the quadric surface 2, and the

surface thus includes as part of itself the quartic surface S.

The foregoing demonstration ceases, however, to be applicable if is a point on

the surface, and the conic included in the section through is always a conic passing

through the point 0. In the case where is a non-singular point of the surface

(that is, where there is at a unique tangent plane) a like demonstration applies.

Take through a section, and let this include the conic A; on -4 take any point

0' and through 00' a section including the conic B ; we have thus the conies A, B
intersecting in the points 0, 0'. Take through any plane meeting the conies A, B
in the points X, Y respectively—the section by this plane includes a conic G passing

through the points 0, X, Y; and each of the conies A, B, C touches at the same

plane, viz. the tangent plane of the surface. Hence, taking on the conic A the point a,

consecutive to 0, and any other point a' ; on the conic B the point /S, consecutive

to 0, and any other point /S' ; and on the conic G a point 7' ; we may, through the

nine points 0, a, /8, 0', a, /3', X, Y, y describe a quadric surface S ; this will touch

at the tangent plane of the surface, that is, it will touch the conic G, or (what

is the same thing) pass through a point 7 of this conic consecutive to 0. Hence the

quadric surface meets the conic A in the five points 0, 0', a, a', X, that is, it entirely

contains the conic A ; similarly it meets the conic B in five points 0, 0', B, R, F,

that is, it entirely contains the conic B; and it meets the conic G in the five points

0, 7, X, Y, 7', that is, it entirely contains this conic. And it may then be shown as
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before that the surface will include the quadric surface 2. But there still remains

for consideration the case where is a conical point on the surface, and I do not

at present see how this is to be treated.

I remark that, taking three lines xx
, yy', zz which meet in a point 0, then if

a surface be such that every section through xx' includes a conic, every section through

yy' includes a conic, and every section through zz includes a conic; and if besides

the two points, say X, X', on the conies through the line xx' are ordinary points on

the surface, then the surface will include a quadric surface. In fact, if the surface

has at each of the points X, X' an ordinary tangent plane, then the conies through

ax', and (as conies of the series) the two conies B, G all of them touch the two

tangent planes ; hence, constructing as before the quadric surface S, this also touches

the two tangent planes : and taking through wx' a plane meeting the conic A in the

points L, L', the section of the surface includes a conic which touches the section of

the quadric surface 2 at the points X, X', and besides meets it in the points L, L'

;

such conic coincides therefore with the section of the quadric surface 2; that is, every

section of the surface through the line xx includes the conic which is the section of

the quadric surface 2; and the surface thus includes as part of itself the quadric sur-

face 2.

[Vol. X., July to December, 1868, pp. 17—19.]

2609. (Proposed by Professor Cayley.)—Given three conies passing through the

same four points ; and on the first a point A, on the second a point B, and on the

third a point C It is required to find, on the first a point A', on the second a

point B', and on the third a point C, such that the intersections of the lines

A'B' and AQ, A'C and AB, lie on the first conic;

EC and BA, B'A' and BG, lie on the second conic;

G'A' and GB, G'B' and GA, lie on the third conic.

Solution by the Proposer.

Let the six intersections in question be called a, a'
; ^, ^ ; y, y, respectively

;

then BG intersects second conic in /3', third conic in y; CA intersects third conic in y',

first conic in a; AB intersects first conic in a', second conic in /3; and we have

A' the intersection of a/3', 7a',

B' the intersection of ^y, a/3',

C the intersection of 7a', ^y;

and it has to be shown that the points A', B', G' so determined lie

—

A' on the first

conic, B' on the second conic, C" on the third conic.

75—2
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I

Taking x=0, y = 0, z=0 for the equations of the sides of the triangle ABC, the

equations of the three conies may be taken to be U=0, V =0, W=Q, where the

functions U, V, W are such that identically U+V+ W = 0; and then observing that

a', (b, 2hu 0)

/3', (0. c , 2/0

7. (2^3, 0, a)

the conies pass through the points (y = 0, z = 0), (2 = 0, x = 0), (x = 0, y = 0), respectively,

we see that the equations may be taken to be

( 0, -h, c, /„ g,, h.'^x, y, zy = 0,

(a, 0, - c, /j, ffi, fu,'^x, y, zf = 0,

(- a, h, 0, / , g^, h^x, y, zf = 0,

where

fi+A+fz = 0, gi + g.2+9s = 0, fn + L + h^^O.

The coordinates of the points a, /S, y, a, /9', y' are at once found to be

a, ( c , 0, -2(7,)

/3, (-2^3, a, )

7. ( 0,-2/3, 6 )

and hence the equations of ^y, ya, a^' are

^y ;
ax + 2% - 2g^z = 0,

7a' ; - 2h^x + by+ 2/^2 = 0,

a/3'

;

25r,a; - 2/y + C2 = 0.

Hence for the point A', which is the intersection of 7a', a/S', coordinates are

6c + 4//, 4>f,g, + 2cK 4h,/,-2bg,;

and ^' will be on the first conic if only

(0, - b, c, /, g„ h.-^bc + 4//, 4/^, + 2ch„ 4A,/ - 2bg^r = 0,

viz. this equation is

- b ( 16/^5-1= + l6/,gAc + 4A,V)

+ c( 16V/.= -U/,gAb +^gm
+ 2/( UgAAA- Sg,%b +8fH'f,c-igAbc)

+ 25r, (+ 16/(,/=/3 - 8(7,//,6 + Uj:j)c - 2g,b'c )

+ 2A,(+16(jr^/-,/3^ + 8h,/,f,c+4gJM + 2hM) = 0.

I

<
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viz. this is easily found to be

8(2gJ,^ch,){2h,f,~bg,)if,+f,+f,) = 0,

which is satisfied in virtue of /, 4-/2 4-/3 = ; that is, A' is on the first conic; and

similarly, in virtue of gi+ g2 + ffs
= 0, B' is on the second conic ; and in virtue of

hi + h., + h3= 0, C is on the third conic. But the .same thing appears at once by the

remark that the equations of the three conies are

-y(-2fhx+ by + 2f,z)+2{ 2g,x-2f.^+ cz) = 0,

— z ( 2giX — 2/22/ + cz) + x{ ax + 2hiy — 2^3^) = 0,

- x{ ax + 2h.^ — 2g3z) + y{- 2A,x + hy + 2/3^) = 0.

It may be added that, taking {x^, 3/1, z^), {x„_, 1/2, z.^), {x,, y.„ z.,), (x^, y^, Zt) as the

coordinates of the four points of intersection of the three conies, the first conic is

given by means of these four points and the fifth point (y = 0, ^ = 0) ; and similarly

for the other two conies; whence, denoting the determinants formed with any four

columns out of the matrix

«l^ yi\ •^l^ 2/1^1. ^1^1. *'iyi

a'2^ 2/2'. •2/. 3/2^2. ^^'-2, Xiyi

*3'> ys

'

^s > yi?^z >
^9i'3> •''33/3

^4

)

ytt ^i) yi^i> ^4*4) *'42/4

by 1234, 123.5, &c., we easily find the equations of the three conies, viz. these may

be written

a? , y" , z^ , yz , zx , xy

1456 ( , + 3456, - 2456, + 2356, + 2364, + 2345) = 0,

2356 (- 3456, , + 1456, + 3156, + 3164, + 3145) = 0,

3456 ( 2456, - 1456, , + 1256, + 1264, + 1245) = 0,

the exterior factors 1456, 2356, 3456 being introduced in order to bring the equations

into the above-mentioned form, wherein the sum of the quadric functions is =0.

[Vol. X. pp. 88, 89.]

2743. (Proposed by M. Jenkins, M.A.)—Show that if ;> be a prime number and

... ,1-1 / ^ . , . n (m + n)
m and n any positive integers, the highest power 01 p contained in tt-7~nT=i"^ ^^^.y

be obtained by expres.sing m + n and either m or n in the scale of p ; the number of

times that it would be necessary to borrow in subtracting the latter number from the

former being the index of the power of p required.
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Solution by Pkofessor Cayley.

1. In adding any two numbers, we carry a certain number of times; and it is

easy to see that the sum of the digits of the two components, less the sum of the

digits of the sum, is equal to nine times the number of carryings ; moreover, that the

number of carryings is equal to the number of borrowings, if either of the components

be subtracted from the sum.

2. The same thing is true in any scale of notation, only, instead of nine, we

have the radix of the scale, less unity: say the theorem is

Sim) + S{n)-S(Tn + n) = {p-l)x.

3. If 2^ be a prime number, the number of times that the factor p occurs in

n («t) is

^(?)-^©+^(?)-^-

where E(-~j denotes the integer part of — , and similarly E (—] &c. the integer part

in
of -^ , &c. ; the series is, of course, finite.

Hence the number of times that the factor p occurs in s*-,

—

c-^ r\ ^^ u (m) IT (J4)

^=^(»-f!)+^("'±-')..c.-^(^)-^(p,)-.o.-^(;;)-.-(^)-.c.

4. Hence, expressing m, n, m+n in the scale to the radix p, suppose

m = a + bp + cp- + dp\ n = a' + b'p + c'p'' + d'p^, m + n = a + /3p + yp^ + Bp^,

we have

e(-)+E (—^ + &c. = b+cp + dp- + c + dp + d = d{p-+p+l)+c{p+l) + b;

and similarly for E^j + &c., E /"L+I*j + &c. . . .

;

whence

{p-l)N= B{p'-l) + y(p'-l) + ^(p-l)

- d (p» - 1) - c (f -l)-b (p-1)

-d'{p'-l)-c'{p'-l)-b'{p-l)

= {m + n-S {m + h)j -{m-S (m)} - [n - S (n))

= S{m) + Sin)-S(m + n), =(j}-l)x,
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if X be the number of times of carrying for the sura m + w, or of borrowing for the

difference (m-\-n) — m or (m + «)-w; that is, N=x, the required theorem. I remark

that although the foregoing expression of the number iV is a very elegant and
ingenious one, yet the original form of JV^, as given at the end of (3), is the natural

and proper expression of the number of times that the factor jp occurs in the

binomial coefficient „ , ^-r, ,\ •

II {m) n (n)

[Vol. X. p. 98.]

2756. (Proposed by J. Griffiths, M.A.)—Show that an infinite number of triangles

can be described such that each has the same circumscribing, nine-point, and self-

conjugate circles as a given triangle.

Solution by Professor Cayley.

It is a known theorem that if two triads of points, say A, B, G and A', B', C,

are self-conjugate in regard to a conic S, they lie in a conic S. Take the conic S
and the points A, B, G as given; then 2 will be a conic passing through A, B, G;

and if on this conic we take any point A', and then take B' to be either of the

intersections of the conic 2 by the polar of A in regard to S, and finally construct

C" as the pole of A'B' in regard to S, then, by what precedes, G' will be on a conic

through A, B, C, A', R, that is, on the conic 2. Or given the conic S, the triangle

ABC, and the conic 2 through A, B, G, we obtain an infinity of triangles A'B'G',

self-conjugate in regard to S and inscribed in 2. That is, if S, 2 are circles, we

have an infinity of triangles self-conjugate in regard to the circle S and inscribed in

the circle 2; and inasmuch as the nine-points circle can be constructed by means of

the two circles S, 2 alone, the triangles have all of them the same nine-points circle.

[Vol. X. p. 108.]

2737. (Proposed by Professor Cayley.)—Find in solido the locus of a point P,

such that from it two given points A, G, and two given points B, D, subtend equal

angles.
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[Vol. XI., January to June, 1869, pp. 33—38.]

2718. (Proposed by Professor Cayley.)—Find in piano the locus of a point P,

such that from it two given points A, C, and two given points B, D, subtend equal

angles.

2757. (Proposed by Professor Cayley.)—If

«.» + 2/o' = l, and «. y . 1 = L;

aa' + yi'=l, «o. yo, 1

s
«i, yi, 1

r that each of the equations

a^{x-x,y + h'{y-y,r a'{x-x,r-\rll'{y-yCf

(xxo + yy^-iy {xx^+yyy-\f

a^x-x,y + lf{y-y,r aHx-x,y + ¥{y-y,y
(xy„ - x.yY -{x- x^y - (y - y„)= (a;y, - x^yy -(x- a;,)' - (y - yO'

represents the right line Z = and a cubic curve.

(1)

(2)

I

1819. (Proposed by C. Taylor, M.A.)—From two fixed points on a given conic

pairs of tangents are drawn to a variable confocal conic, and with the fixed points

as foci a conic is described passing through any one of the four points of intersection.

Show that its tangent or normal at that point passes through a fixed point.

Solution of the above Problems by Professor Cayley.

1. It is easy to see that drawing through the points A, G a circle, and through

B, £> a circle, such that the radii of the two circles are proportional to the lengths

AC, BD, then that the required locus is that of the intersections of the two variable

circles.

Take AC =21, MO perpendicular to it at its middle point M, and =p; a, b the

coordinates of M, and \ the inclination of p to the axis of x ; then

coordinates of are a + p cos \, b + p sin \,

coordinates of .4, are a + ? sin \, b + I cos X,

and hence the equation of a circle, centre and passing through A, C, is

(x — a —p cos \y + (y-b —p sin \)- — l^->rp-;

or, what is the same thing,

{x - ay + (y-by -l^=2p [{x - a)cos\ + (y - 6) sin \].
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If 2m, q, c, d, fi refer in like manner to the points B, D, then the equation of a

circle, centre say Q, and passing through B, D, is

{x — cf + {y— d)- — m- = Iq [{x — c) cos /x + (i/ — d) sin /t]

;

and the condition as to the radii is P + jy' in^ + q- = 1- : m-, that is, p^ : q" = l" : m?,

or p : q = ± I : m. And we thus have for the equation of the required locus

(x-ay + (y-by -l^ _ I {x - c)' + (y- df - m?

{x — a) cos X + (y—b)sinX ~ m (x — c) cos /i + (y — d) sin /u.

'

viz. the locus is composed of two cubics, which are at once seen to be circular cubics.

One of these will however belong (at least for some positions of the four points) to

the case of the subtended angles being equal, the other to that of the subtended

angles being supplementary; and we may say that the required locus is a circular

cubic.

2. If two of the points coincide, suppose G, D at T; then, taking T as the

origin, we may write

a = I sin X, b — — I cos X,

c = — m sin
fj,,

d = m cos /x.,

and the equation becomes

a^ + y^ + 21 (x sinX -

y

cos X) _ I af + y' + 2m (x sin fi-y cos /j,)

xcosX + y sin X ~ m x cos fi + y sin fi

viz. this is

(ai' + f)[m{x cos fL + y sin fj.) + l(xcoaX+ y sin X)] -2lm {(xsinX-y cos X){x cos /j. + y sin /i)

± (x sin fi — y cos
fj,)

(x cosX + y sin X)} = 0.

Taking the lower signs, the term in
{ }

is (x' + y^)sin{X-fi), and the equation is

(a? + y^) [m {x cos /a + y sin n) + l{xcoaX + y sin X) - 2lm sin (\ - fj,)\
= 0,

viz. this is x' + y^ = 0, and a line which is readily seen to be the line AB; and in

fact from any point whatever of this line the points A, T and the points B, T

subtend supplementary angles.

C. VU. '^^
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Taking the upper signs, the equation is

(a? + y") [m(xcosfi + y sin id.) — l(xcos\ + y sin \)]

- 2lm {(a^ - y") sin (X + /it) - xy cos (X + fi)} = 0,

which is the locus for equal angles, a circular cubic as in the case of the four distinct

points.

3. The question is connected with Question 1819, which is given above. In fact,

taking A, B for the fixed points on the given conic, and P for the intersection of

any two of the tangents, if in the conic (foci A, B) which passes through P, the

tangent or normal at P passes through a fixed point T, then it is clear that at P
the points A, T and B, T subtend equal angles, and consequently the locus of P
should be a circular cubic as above. The theorem will therefore be proved if it be

shown that the locus of P considered as the intersection of tangents from .4, J5 to

the variable confocal conic is in fact the foregoing circular cubic. I remark that the

fixed point T is in fact the intersection of the tangents AT, BT to the given conic

at the points A, B respectively.

4. Consider the points A, B, (which we may in the first instance take to be

arbitrary points, but we shall afterwards suppose them to be situate on the conic

— -1-^ = 1,) and from each of them draw a pair of tangents to the confocal conic

——L + i2 i,
= l- Take (xo, y^) for the coordinates of A, and (a^, y^ for those of B;

then the equation of the pair of tangents from A is

\a? + h^}f'+l JW + h^b-' + h 1 W+h^b' + h J '

or, what is the same thing,

(xi/„ - w^yf _ (a; -x,Y _ {y - y^f ^
{a'+h){¥ + h) a- + h b' + h

that is

(xy, - x,yy- (¥ + h){x- x^f - (a= + h){y- y,y = 0,

or as this may also be written

(xyo - xoyf -b-(x- x^Y - a- (y - y,)- = h [{x - x,y + {y- yof] ;

and similarly for the tangents from B we have

(xy, - x,yy -b^x- x,f - a- (y - y,f = h [{x - x,)- + {y- y,)-]

;

in which equations the points (a;o, y^, {xi, y,) are in fact any two points whatever.

5. Eliminating h, we have as the locus of the intersection of the tangents

{xy,- x,yy -b'jx- x,y - a' (y - y.)" ^ (xy, - x^yf -b'(x- x,y - a- (y - y.)'

(x-x,y + {y-y,y
"

(x-x,f+(y-y,y

I
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which is apparently a quartic curve ; but it is obvious a pr-iori that the locus includes

as part of itself the line AB which joins the two given points. In fact, there is in

the series of confocal conies one conic which touches the line in question, and since

for this conic one of the tangents from A and also one of the tangents from B is

the line AB, we see that every point of the line AB belongs to the required locus.

The locus is thus made up of the line in question and of the cubic curve.

6. To effect the reduction it will be convenient to write ax, by in the place of

as, y, (axo, by^, ax^, by^ in place of «„, y„, x^, yi,) and thus consider the equation under

the form

g' (x - Xpf + b-{y- y,)- ^ a-{oo-Xi)' + b^{y -yif .

{xy„ - x,yY - (« - x,y -(y- yof (a^i - a^y)^ -{x- x,y -(y- y^f
'

it is to be shown that this equation represents the line L = 0, and a cubic curve.

Writing for a moment a;o = «+?o, yo = y + Vo, and Xi = x+^i, yi = y + Vi. the equation

becomes
a%' + 6V _ g-gi- + b'v,'

{xvo - y^oT - ?o' - v' (a^i - y^iY - ^i" - vi'

'

and hence, multiplying out, the equation is at once seen to contain the factor

foiji
— ^iVa (which is in fact the determinant just mentioned), and when divested of

this factor the equation is

a' [{x' - 1) i^„vi + fi'/o) - 2xy^,^,] = 6^ [(f
- 1) (^oVi + ^iVo) - ^xyVoVil

Writing herein for ^o, Vo, f . Vi their values, and consequently

^0^1 = X^-x(Xa + Xi) + XoXi,

n^-ni = f--y(y« + Vi) + ^oyi,

foiJi + ?i'7o = ixy-x (y, +yi)-y (xo + x^) + x.y^ + x^o,

and arranging the terms, the equation is found to be

(aV + l^y') [- X (y, +y,)-y (^i + Xo)] + (aV + by) (x,y, + x,y,) -2xy[a'{l+ x^,) -b'{l+ y.y^)]

+ {a" - 6=) [x (y, + ,v„) + y («i + «o) - {xoyi + xiyo)] = 0,

which is the required cubic curve.

7. Restoring the original coordinates, or writing ^ , | , ^' , &c. in place of x, y, x„ &c.,

we have

(a^ + y^y [_ X (y, + y<,) + y (*'i + «o)] + (x' - y') {x,y, + x,y,) - 2xy {a' - 6- + x,x, - y,y,)

+ (a= - 6-) \x {y, +yo) + y {x, + a-„) - {w^y^ + x^^)] = 0,

which is a circular cubic the locus of the intersections of the tangents from the

arbitrary points (x,, y„), {x„ y,) to the series of confc

origin of the coordinates is at the centre of the conies.

S^ 7/"

arbitrary points {x„ y„), {x„ yj to the series of confocal conies ^^qr^ + 6M^
" -^

'

^^"^

76—2
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8. Supposing that the points (a;,, y^, (xi, y,) are on the conic -j+ri = l. and tba*

jc ' w

'

ah' Vi'
we have consequently -7 +^ = 1. ~j + t5"==1> t^*® equations of the tangents at these

points respectively are
s°
+^ = l> ~r + ^2' = 1 ! ^°d hence, writing for shortness

a. = yo — y\, /S = a;j — aJo. 'i='x^yi — X\y«, we find a;=— , y = as the coordinates of
7 7

the point of intersection T, of the two tangents ; and in order to transform to this

point as origin, we must in place of x, y write x , y respectively. Or what

is more convenient, we may in the equation at the end of (6), in which it is to be
ft /^

now assumed that Xo^+yo^ = l, x^'+yi'^l, write x—
, y for x, y, and then restore

7 7
X It or a. Q 'v

the original coordinates by writing -, ^, — , &c., for x, y, x^, &c., and r, -, "^ for

a, yS, 7, these quantities throughout signifying <i = yo — yi, = Xi — Xo, 1 = x^y^ — x^y^.

I however obtained the equation referred to the point T as origin by a different

process, as follows

:

9. Starting from th^ equation at the commencement of (5), I found that the

its («„, y„),

into the form

points {x„, y„), (xi, yi) being on the conic -^ + ^ = 1, the equation could be transformed
Cb

^.yyo_-iy f^3,yyi lY
a'

"^
65 '-j [a'+ J,

>)

{x-x,f + iy-y,y {x-x,y + (y-y,y'

an equation which (not, as the original one, for all values of (a;„, yo), (^. yd, but) for

X^ V

'

X^ V ^

values of {x^, yo), {oh, y^) such that -7 + 77=1, -7 + 77 = 1. breaks up into the line AB
and a cubic curve.

10. To simplify the transformation, write as before ax, by, ax,,, &c., for x, y, x„, &c.

We have thus to consider the equation

g' {x - XqY+bHy- y,y ^ a' (a; - x,y + b'(y- y,y

(xxo + yyo - 1y (xx, + yy^-\y

where x^ + y^-=\, x^ + yi^ = \, and which equation, I say, breaks up into the line L = 0,

and into a cubic.

Write for shortness a = y„ — yi, ^ = Xi — x„, y^Xoyi—Xiy^, so that the equation of

the last-mentioned line is ouc + 0y + y=O. Then it may be verified that, in vii-tue of

the relations between {xo, yo), (x^, y,), we have identically

. a?o + ^1

J

07

(x - Xo) (xx, + yy,-l)-{x-x,) {xx, +yyo-l) = ^x^- cuxy -yy- 0;

(x - Xo) (xx, + yy,-l) + (x-Xi) (xx„ + yy^-l) = {ttx + ^y + y) -- ' (7a! + a),
flpy
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and, similarly,

(y - yo) (^1 + yy, - 1) + (y - y,) (a^, + yy, _ 1) = («^. + ^y + ^)
y« + yi

(^^ ^)_
py

iy - yo) {XX, + yy, - 1) _ (y _ yj (a:x, + yy^-i) ^ ^a;y - af +yx + a.

11. The equation in question may be written a'P + b^Q=0, where

P = (« - x,y (xx, + yy, - ly -{x- x,)' {xx, + yy, - If,

Q =iy- yoY (XX, + yy, - ly - (y _ y^y (xx, + yy, - 1)2,

values which are given by means of the formulae just obtained ; there is- a common
factor ax + ^y + y which is to be thrown out; and we have also, as is at once

verified, ^ '= \ \ so that these equal factors may be thrown out. We thus

obtain the cubic equation

a?{'iX + a){^x?-aayy-rfy-^)+ l^{rfy + ^)(^0!cy-ay- + yx + a)=O.

This is simplified by wi-iting x-- ior x, y-- for y. It thus becomes

a*x [{yx - a.) {0x - ay) - rfy] + b'y [{yy - 0) (0x - ay) +rfa;]=0;

or, what is the same thing,

a^'x [yx (/3a; - ay) - a^x + (a' - y) y] +% [yy (0x - ay) - (/3= -y')x+ afy] = ;

that is

y (aV + by) i^x - ay) + a' [- a0a^ + (a- -y')xy] + }f [- (/3- -'f)ayy+ a^f] = 0.

12. Restoring ?, ^«, | for x, x„ x„ and |, 1°, | for y, y„, y,; writing

OL 3 y
consequently r. -. zr in pl^e of a, /3, y, if a, /3, y are still used to denote a = y„-yi,

= Xi — Xo, y = x„yi — Xiyo, the equation becomes

y{x'+ y') [6=/Sa; - a'ay] + a" [- b-a^a^ + {a?a? - rf) xy] + 6= [- (b^^ -rf)xy + a^a^y'^] = 0,

a; ' 11^ x,^ 11
-

where now, as originally, -^ + Ti=l. — + |f = 1; viz. this is the equation, referred to

the point T as origin, of the locus ' of the point P considered as the intersection

of tangents from A, B to the variable confocal conic; and it is consequently the

equation which would be obtained as indicated in (8). The locus is thus a circular

cubic ; the equation is identical in form with that obtained (2) for the locus of the

point at which A, T and B, T subtend equal angles, and the complete identification

of the two equations may be effected without difficulty.

13. I may remark that M. Chasles has given {Gomptes Rendus, torn. 58, Febniary,

1864) the theorem that the locus of the intersections of the tangents dra%vn from a

fixed conic to the conies of a system {/i, v) is a curve of the order Zv. The confocal
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conies, qud conies touching four fixed lines, are a system (0, 1); hence, taking for the

fixed conic the two points A, B, we have, as a very particular case, the foregoing

theorem, that the locus of the intersections of the tangents drawn from two fixed

points to a variable confocal conic is a cubic curve.

[Vol. XI. p. 49.]

Note on Questim 2740. By Professor Cayley.

The envelope of the curve

Acos20 + Bsm2e+Ccos0 + Dsme + E = O,

(where A, B, G, D, E are any functions of the coordinates, and ^ is a variable

parameter,) is obtained in the particular case E=0 (Salmon's Higher Plane Gwves,

p. 116), and the same process is applicable in the general case where E is not =0.

From the great variety of the problems which depend upon the determination of such

an envelope, the result is an important one, and ought to he familiarly knotvn to

students of analytical geometry. We have only to write z = cos 6-\-i sin 6, the trigo-

nometrical functions are then given as rational functions of z, and the equation is

converted into a quartic equation in z ; the result is tlierefore obtained by equating

to zero the discriminant of a quartic function. The equation, in fact, becomes

2V zv 2i\ z\l 2\ zj 2i'

that is

A{z'+l)-Bi{z*-l)+G(z' + z)-Di{z^-z) + 2Ez'' = 0;

or, multiplying by 12 to avoid fractions, this is

(a, b, c, d, e^z, 1)* = 0,

where

a = 12{A-Bi), b=3(G-Di), c = ^E,

e=\2{A+Bi), d = ^{G + Di);

and substituting in

(ae - 46d + 3c-y - 27 {ace -ad-- h-e + 2hcd - <f)- = 0,

the equation divides by 1728, and the final result is

{12 (il» + £=')- 3 (C^ + i>) + 4^^^}'

- {27^ (C^ - Z>') + b4:BGD - [72 (4= + 5=) + 9 (C* + i)*)] i? + SE'Y = 0.

It is to be noticed, that in developing the equation according to the powers of E,

the terms in £*, E* each disappear, so that the highest power is E'; the degree in

the coordinates, or order of the curve, is on this account sometimes lower than it

would otherwise have been.
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[Vol. XII., July to December, 1869, p. 69.]

2920. (Proposed by Professor Cayley.)—Imagine a tetrahedron BECC in which

the opposite sides BE, GC are at right angles to each other and to the line joining

their middle points 3[, N; and in which moreover ON" + NM' + ME = 0, (or, what is

the same thing, the sides CB, CE, C'B, G'E are each = ; the tetrahedron is of

course imaginary ; viz. the lines CC, BE and points M, N may be real ; but the

distances MB = ME and NC = NC may be one real and the other imaginary, or

both imaginary, but they cannot be both real) the points B, E and G, G' are said to be
" skew antipoints." Then it is required to prove that

1. A given system of skew antipoints may be taken to be the nodes (conical

points) of a tetranodal cubic surface, passing through the circle at infinity, and which

is in fact a Parabolic Cyclide.

2. The equation of the surface may be expressed in the form

X {x + ^) (« + 7) + (a; + ;8) 2/2 + (« + 7) z" = 0.

3. The section through either of the lines (y = 0, a; + 7 = 0) and (2 = 0, a; + /3 = 0)

is made up of this line and a circle ; the two systems of circles being the curves of

curvature of the surface; it is required to verify this d, posteriori; viz. by means of

the equation of the surface to transform the differential equation of the curves of

curvature in such manner that the; transformed equation shall have the integi-als

y=C(a;+7),* 2 = 0' (a; + /3).

In the following

Proposer's name, and

was given. A line —

1791 Cayley

1857
•1730

1834

1876 Ball

Cayley

1890

1554 „

1931

1990 Sylvester

1949 Cayley

Contents, the Problems are referred to each by its No. and the

the Subject is briefly indicated. An asterisk shows that no solution

— shows that there is no No.
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Conic defined by five Conditions

Ternary Cubic Form ....
Relation between roots of Cubic Equation

Points on Cubic Curve

Conic defined by five Conditions .

Roots of Quartic Equation .

Conic defined by five Conditions

Conic through three Points and with double Contact

Ellipse and Circles of maximum and minimum Curvature

Nodal Cubic
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Cuspidal Cubic

546

ib.

548

ib.

549

550

551

552

554

555

ib.

556

561



608 PROBLEMS AND SOLUTIONS. [485

1872 Cayley Intersection of two Surfaces

1969 Sylvester Spherical Problem

Cayley Foci and Antifoci

1970 )) Conies of double Contact

2110 » Locus of Foci ....
2250 ji Foci of Conic ....
1991 >9 Plane determined by Point and three

1993 Cotterill Envelope depending on two Circles

2270 Cayley Bicircular Quartic
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•2371
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.

2573
11
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2609
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NOTES AND KEFEKENCES.

445, 451, 454. We have the two papers by K. Rohn, "Die Flachen vierter Ordnung
hinsichtlich ihrer Knotenpunkte und ihrer Gestalten," Preisschr. der F. J. Gesell. zu

Leipzig (Leipzig, 1886, pp. 1—58), and same title Math. Ann. t. XXIX. (1887), pp. 81—97.
I have not been able to exannine the conclusions arrived at in these papers with as

much care as would have been desirable.

I call to mind that for a A;-nodal quartic surface the tangent cone from any node

is a sextic cone with (Ar— 1) nodal lines, breaking up it may be into cones of lower

orders—see table p. 265 : and that we distinguish the quartic surfaces according to

the forms of the sextic cones corresponding to the k nodes respectively. It will be

recollected that (6) denotes a sextic cone, (6i) a sextic cone with one nodal line,

(5i , 1) a sextic cone breaking up into a quintic cone with one nodal line and a plane

;

and so in other cases.

There is a sort of break in the theory: in fact when the number of nodes is

not greater than 7 these may be ^any given points whatever, and taking the 7 points

at pleasure we have surfaces with 8 nodes, and 9 nodes, but not with any greater

number of nodes, viz. for a surface with 10 or more nodes, it is not permissible to

take 7 of these as points at pleasure, so that the theory of the surfaces with 10

or more nodes is so to speak separated off from that of the surfaces with a smaller

number of nodes. For the case of 10 nodes we have the symmetroid 10(3, 3) and

other forms, for 11 nodes Rohn finds 3 or ?4 forms; for 12 nodes he has four forms,

viz. my 3 forms and a fourth form 12(j; for 13 nodes he has two forms, 13j agreeing

with my 13., and 13^ which replaces my non-existent form 1.3^ ; for 14 nodes, 15 nodes

and 16 nodes he has in each case a single form, agreeing with my results. Without

endeavouring to complete the theory, I write down a table as follows

:

No. of

Nodes
Form of Cones

16 16(1, 1, 1, 1, 1, 1)

15 15(2, 1, 1, 1, 1)

14 8(3„ 1, 1, l) + 6(2, 2, 1, 1)

13 13,= 13. 3(4,, 1, 1) + 1(3, 1, 1, l)+9(3i, 2, 1)

»> 13„ 1(2, 2, 2)+ 12(4,, 1, 1)

12 12,= 12. 12(4,, 2)

>j 12a = 12^ 2(5e, l) + 6(3., 3,) + 4 (3, 2, 1)

C . VII.

Bemarks

13a replaces my non-exi.stent

13^, =13(2, 2, 2)

77
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No. of

Nodes

12

11

10

9

8

7

6

6

4

3

2

1

NOTES AND REFERENCES.

Table continued.

12„ = 12^

n« = iu

11.

lid

Form of Cones

12(4,, 1, 1)

,2 (4,, 1, l) + 8(5„ l) + 2(4„ 2)

l(6,o) + 10(3„ 3,)

8(6,o)+ 3(4„ 2)

6(5., l) + 5(6,„)

1

10(3, 3)

5(6,)

4(63)

3(6,)

2(6,)

1(6)

Remarks

12„ = 12y is a peculiarly simple

and elegant form ; the equa-

tion is A* — xyzw = 0, where
il is a quadric function of

the coordinates.

The quartic surface is here the

symmetroid.

The sufiBxes a, b, c, d refer to Rohn's forms, the suffixes o, /3, 7 to my forms. The

form lid is given in the first but not in the second of Rohn's two memoirs, and I am
not sure as to the intended character of the sextic cones. I have not attempted to

fill up the third column of the table for the Nos. of nodes 9, 8, 7, 6, as there may
be particular cases which I have not considered. For the Nos. 5, 4, 3, 2, 1, the cone

is a sextic cone with at most 4 nodal lines, and consequently in each case a proper

sextic cone not breaking up into cones of inferior orders.

END OF VOL. VII.
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