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556]

556.

ON STEINER'S SURFACE.

[From the Proceedings of the London Mathematical Society, vol. v. (1873—1874),

pp. 14—25. Read December 11, 1S73.]

I HAVE constructed a model and drawings of the symmetrical form of Steiner's

Surface, viz. that wherein the four singular tangent planes form a regular tetrahedron,

and consequently the three nodal lines (being the lines joining the mid-points of

opposite edges) a system of rectangular axes at the centre of the tetrahedron. Before

going into the analytical theory, I describe as follows the general form of the surface

:

take the tetrahedron, and inscribe in each face a circle (there will be, of course, two

circles touching at the mid-point of each edge of the tetrahedron ; each circle will

contain, on its circumference at angular distances of 120°, three mid-points, and the

lines joining these with the centre of the tetrahedron, produced beyond the centre,

meet the opposite edges, and are in fact the before-mentioned lines joining the mid-

points of opposite edges). Now truncate the tetrahedron by planes parallel to the

faces so as to reduce the altitudes each to thi-ee-fourths of the original value, and

from the centre of each new face round oif symmetrically up to the adjacent three

circles ; and within each circle scoop down to the centre of the tetrahedron, the

bounding surface of the excavation passing through the three right lines, and the

sections (by planes parallel to the face) being in the neighbourhood of the face nearly

circular, but as they approach the centre, assuming a trigonoidal form, and being close

to the centre an indefinitely small equilateral triangle. We have thus the surface,

consisting of four lobes united only by the lines through the mid-points of opposite

edges, these lines being consequently nodal lines ; the mid-points being piuch-points

of the surface, and the faces singular planes, each touching the surface along the

inscribed circle. The joining lines, produced indefinitely both ways, belong as nodal

lines to the surface; but they are, outside the tetrahedron, mere acuodal lines not

traversed by any real sheet of the surface.

C. IX. 1



2 ON steiner's surface. [556

We may imagine the tetrahedron placed in two different positions, (1) resting with

one of its faces on the horizontal plane, (2) with two opposite edges horizontal, or say

witii the horizontal plane passing through the centre of the tetrahedron and being

parallel to two opposite edges ; or, what is the same thing, the nodal lines form a

system of rectangular axes, one of them, say that of z, being vertical. And I proceed

to consider, in the two cases respectively, the horizontal sections of the surface.

In the first case, the coordinates x, y, z, w may be taken to be the perpendicular

distances of a point from the faces of the tetrahedron, w being the distance from the

base. We have*, if the altitude be h,

x + 1/ + z + lu = h;

an equation which may be used to homogenize any equation not originally homogeneous

;

thus, for the plane w = X, of altitude X, we have

or, what is the same thing.

The equation of the surface is

'W = -^{x + y + z + w),

kJx + \/i/ + h/z + "Jw = 0,

and if we herein consider w as having the last-mentioned value, the equation will

belong to the section by the plane w = X. I remark that the section of the tetra-

hedron, by this plane, is an equilateral triangle, the side of which is to an edge of

the tetrahedron as h—\ : h. For a point in the plane of the triangle, if A'^, Y, Z
are the perpendiculars on the sides, then

X+Y + Z = P,

(if for a moment P is the perpendicular from a vertex on the opposite side of the

triangle, viz. we have P = —— p, if p be the perpendicular for a face of the tetra-

hedron). And it is clear that w, y, z are proportional to A', Y, Z\ we consequently

have, for the equation of the section,

VA + VF+ ^Z^J, ^
^ (X +Y+Z)^0,Va-x'

* I take the opportunity of remarking that in a regular tetrahedron, if s be the length of an edge,

p the perpendicular from a summit on an edge (or altitude of a face), /; the perpendicular from a summit

on a face (or altitude of the tetrahedron), and q the distance between the mid-points of opposite edges, then

x/3, 3 . n'3,
' = 72''' P =

2s/2'''
'^
= V''-

The tetrahedi'on can, by means of planes through the mid-points of the edges at right angles thereto, be

divided into four hexahedral figures (8 summits, 6 faces, 12 edges, each face a quadrilateral) ; viz. in each

such figure there are, meeting in a summit of the tetrahedron, three edges, each =As; meeting in the centre

three edges, each =ih; and six other edges, each =ip.
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where the coordinates X, T, Z are the perpendicular distances from the sides of the

triangle which is the section of the tetrahedron. To simplify, I write

2(/ + l,

that is,

_ 2X - A
'^ ~

2/i - 2\
'

the equation then is

or, proceeding to rationalize, we have first

(/ (Z + F + Z ) = v r.^ + '^ZX + VXF,

and thence

q;- {X + r

+

zr - (
Yz + zx + x Y) = 2vm (vx + ^f+ v^)

;

and finally

\(f (X + F + ^y - YZ - ZX - XY\^ = 4^(2q + l)XYZ {X+Y + Z).

This is a quartic curve, having for double tangents the four lines A' = 0, F=0, Z=0,
X+Y+Z=0, the last of these being the line infinity touching the curve in two

imaginary points, since obviously the whole real curve lies within the triangle. This

is as it should be : the double tangents are the intersections of the plane w = \ by
the singular planes of the surface.

To find the points of contact, writing for instance Z=0, the equation becomes

qHX+Yy--XY=0,
that is,

X-'+(2-^^XY+ F^ = 0;

whence

^-(-'+iVi^-,')^'iq'

giving the two points of contact equi-distant from the centre ; these are imaginary if

q > i, but otherwise real, which agrees with what follows. (See the Table afterwards

referred to.)

The nodal lines of the surface are (« — ?/= 0, z — w = 0), (y —2 = 0, x — w = 0).

(z — x = 0, y — tu = 0). Considering the first of these, we have for its intersection with

the plane iu = \,

Z = F, Z=j^~ (X + Y+Z), = (2q + 1) {X +Y + Z),

and the last equation gives

Z= {2q+l)(2X + Z),

that is,

= (2q + l)X+qZ,
1—2
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so that for the point iu question we have X : Y : Z--q : -q : 25^+!; and taking

the perpendicular from the vertex on a side as unity, the values -q, -q, 2q+l will

be absolute magnitudes. We thus see that the curve must have the three nodes

(2g+l, -q, -q), {-q, 2q + l, -q), (- q, - q, 2g' + l); and it is easy to verify that this

is so.

The curve will pass through the centre X=Y=Z, if

(9q''-Sy=12{2q+l),

that is, if

3(3?— l)--4(2(y + l) = 0,

or if

(32 + l)Mf/-l) = 0.

If j=l, that is, \ = 3(/(, — X), or X. = f/i, the equation is

(Z= +Y-- + Z-+YZ + ZX + XYf - 12XYZ{X +Y+Z) = 0,

where the curve is, in fact, a pair of imaginary conies meeting in the four real points

(3, _1_ _i)_ (_l, 3, -1), (-1, -1, 3), (^, J, J). To verify this, observe that, writing

A={Y-Z){2X+ F+ Z),

B={Z -X){ X + 2Y+ Z),

C ={X-Y){ X + r + 2Z),

and therefore

A+B+G=Q,

the function in {X, Y, Z) is = | {A- + B--\- C-), and thus the equation may be written

in the equivalent forms

B"- + BC' + G' = 0, C' + GA + A' = 0, A' + AB + B' = 0,

each of which shows that the curve breaks up into two imaginary conies. The fore-

going value (/ = !, or X = |/(, belongs to the summit or highest real point of the surface.

1
2\-/i

^ 1,

In the case 3^ + 1 = 0, that is,

the equation is

{{X+Y+Z)--diYZ + ZX + X Y)Y- = 108ZYZ (X + Y + Z),

which is, in fact, the equation of a curve having the centre, or point A'^= Y=Z, for a

triple point.

To verify this, write

.Y = /3 - 7 + M,

Y = y - a + u,

Z =0. - /3 + M

;
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also

Then we have

and the equation is

that is,

or finally

2A = (/3 - 7)= + (7 - af + (« - /3)=,

n = (/3-7)(7-a)(a-/3).

X+ Y+Z=Su,

YZ + ZX + XY=Su-- A,

XYZ= u'-u/^ + n,

{9ii- - 9 (3m- - A)p - 324m (u^ - mA + n) = 0,

(- 2»r + A)- - 4m (m^ - mA + O) = 0,

A2 - 4:un = 0,

where the lowest terms in /8 — 7, 7 — a, a — /3 are of the order 3, and the theorem

is thus proved. The case in question, </ = — A or \ = lh, is where the plane passes

through the centre of the tetrahedron.

2\ — h
When q — ^ = ^—— , or X = §/i, the equation is

(X- +Y' + Z--2YZ- 2ZX - 2XYy = 12SXYZ(X +Y+Z).

Here each of the lines A' =0, Y=0, Z =0 is an osculating tangent having with the

curve a 4-pointic intersection.

2\- h
When (j = = —

=

— , or \ = yi, the equation is

(YZ+ ZX + XYf - ^XYZ{X +Y+Z) = 0,

that is,

Y'Z- + Z'X- + X'Y' - 2XYZ{X +Y+Z) = 0;

viz. each angle of the triangle is here a cusp.

When 5 = — ^, or X = 0, the curve is

{X^-+Y-' + Z"--2{YZ+ZX + XY)Y = 0,

viz. the plane is here the base of the tetrahedron, and the section is the inscribed

circle taken twice.

For tracing the curves, it is convenient to find the intersections with the lines

Y-Z = 0, Z-X = 0, X-Y=0 drawn from the centre of the triangle to the vertices;

each of these lines passes through a node, and therefore besides meets the curve in

two points. Writing, for instance, Y = X, the equation becomes

{g= (2Z + Zf - 2XZ - X"-Y - 4 (2(/ + 1) X'Z(2X +Z) = 0;

viz. this is

{qZ + {2q + 1) XY- {cfZ' + (4r/ - 'Iq -4>)XZ + {^f - 4r/ + 1) X^] = 0,
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where the first factor gives the node. Equating to zero the second factor, we have

[yZ + (25 - 1 - ?) Z[" = X^ {(2g
- 1 -

^J
- 4r/ + iq- l|

or, iinally,

= Z=i(l-ry)(l + 25);

g^ = ]- 2g + 1 +
^^
±

^^
V(l - g) (1 + 2g)[ X,

giving two real vakies for all values of q from 5 = 1 to q = — 2- (See the Table

afterwards referred to.)

We may recapitulate as follows

:

q> 1, or X > |/i : the curve is imaginary, but with three real acnodes, answering

to the acnodal parts of the nodal lines:

(y = l, or X = fA; the summit appears as a fourth acnode

:

5 < 1 > ^, or X < ^h > 'ill ; the curve consists of three acnodes and a trigonoid lying

within the triangle and having the sides of the triangle for bitangents of imaginary

contact

:

q = i, or X = |/? ; the curve consists of three acnodes and a trigonoid having the

sides of the triangle for osculating tangents

:

q<^>0, or X<|/i>^/i; the curve consists of three conjugate points and an in-

dented trigonoid having the sides of the triangle for bitangents of real contact

:

q = 0, or X = A/) : curve has the summits of the triangle for cusps

:

5 < > — V, or X< ^/(> Ih ; curve has three crunodes, or say it is a cis-centric trifoliuin:

5 = —
J,

or X = ^h ; curve has a triple point, or say it is a centric trifolium

:

g < — J > — ^, or X < |/i > ; curve has three crunodes, or say it is a trans-centric

trifolium

:

q = — ^, or X = ; curve is a two-fold circle :

5 < — ^, or X < ; the curve becomes again imaginary, consisting of three acnodes

answering to the acnodal parts of the nodal lines.

For the better delineation of the series of curves, I calculated the following Table,

wherein the first column gives a series of values of X : h; the second the corre-

sponding values of q, = -^j ^r- ; the third the positions of the point of contact, say

with the side Z=0, the value of X : Y being calculated from the foregoing formula,

2(1- V 4(7* (r
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and the fourth the apsidal distances, say for the radius vector X = Y, the value of

Z : X being calculated from the foregoing formula

The Table is:

Z^X = -2 + '-A±'J('-l)(2^').
q q- q y \q J \ qJ

\:h
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and the transformed equation is

[{r/(l + 3^)^ -26- 3^-'} F"- - QJ = 4 (2^; + 1) (1 + 3^) P {{&' + 6') F= + OFQ + R],

which is satisfied by Q' = 0, R = 0, if only

{5'^ (1 + 3^)^ -26- 3^t = 4 (2? + 1) (1 + 3^) {&' + 6%

or, if for a moment g(H-30)=n, the equation is

(n= -26- U'Y = 4 (0= + ^=) (2n + 1 + 361),

that is,

n* + n-- (- 6^-^ - 461) + n (- 8^= - cS6l-^) - 3^^ - 46*^ = 0,

that is,

(n + df (n= - 2i9n - 35= - 461) = o.

If the new axes pass through the nodes, then + 5=0; that is, q{\ + 06) + 6 = 0,

which equation gives the value of 6 for which the new axes have the position in

a

question ; substituting in the first instance for q the value o^^xT ' *^^ equation becomes

[26 (1 + 6) F' + Q'Y = 4 (1 + 5) P' [6"- (1 + 6) F= + dFQ' + R],

that is,

g: = 4(1 + 6') FR
;

or, finally, substituting for 6 its value in terms of q, the required equation is,

0'- - 4
^1'^^

P'R'

that is,

(Y'Z' + Z'X' + A"i")-' = 4 I'^-^J- X'Y'Z' {X' + F + Z').
^

6q + \

In particular, for </ = the equation is

( Y'Z' + ^'A" + X'Y'Y - -iX'Y'Z' (X' + r + Z') = 0,

which is right, since, in the case in question (the tricuspidal curve), we have

X, Y, Z=X', Y', Z'.

I remark, in passing, that, taking the equation to be

(Y'Z' + Z'X' + X'Y'y- = mX'Y'Z' (X' + Y' + Z'),

we may write herein

^' = i + i*--f 2/,

Y'^i + ^x + ^y;
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where

2Vm(m-3) . 2 (m - 3) _^
jr COS ^-;r COS 20,

2 Vm (»» - 3) . . 2 (m - 3) . „

.

' = TT sin ^ + —!^-^r ^ sin 2^,2^^
9 ' 9

which are the formulse for the description of the trinoclal quartic as a unicursal curve.

I consider now the second position ; viz. the horizontal plane now passes through

the centre of the tetrahedron, and is parallel to two opposite edges. The equations of

the nodal lines are here (y = 0, z = 0), (z = 0, .r = 0), (x = 0, y = 0) ; and if for convenience

we assume the distance of the mid-points of opposite edges to be = 2, or the half

of this =1, then the equations of the faces aiv

X= a; + jr + 2 - 1 = 0,

Y =-x-y^-z-\=y),

^ = x-y-z-\=0,

'W =-x + y - z-\=^,

and the equation of the surface is

Proceeding to rationalise, this is

A' + 1'+ 2 a/ZF= .^+ Tf + 2 VZF,

we thence have

or, since

this is

whence

or reducing.

20 + Vzy = V^Tf;

ZW -XY=^z^\xy,

z+ xy— z- = z VXF

;

{z + xy - zj = Z-- [{z - 1 )= - (,c ^yf];

Ixyz + y-z" + z-a? + x?y- = 0,

a form which puts in evidence the nodal lines. Considering z as constant, we have

the equation of the section ; this is a quartic having the node {x = 0, ?/ = 0), and two

other nodes at infinity on the two axes respectively; moreover, the curve has for

bitangents the intersections of its plane with the faces of the tetrahedron ;
or what

is the same thing, attributing to z its constant value, the equations of the bitangents are

X + y + z — I =0,

— X — y + z— 1 = 0,

X — y — z — 1=0,

— x + y — z — 1=0.

c. IX. 2



10 ON steiner's surface. [556

These lines form a rectangle which is the section of the tetrahedron ; observe that

this is inscribed in the square the corners of which are x= ±1, y = + 1 : viz. ^ = +

1

(highest section), this is the dexter diagonal (considered as an indefinitely thin rect-

angle), and as s diminishes, the longer side decreases and the shorter increases until

for 2 = (centi'al section) the rectangle becomes a square; after which, for z negative

it again becomes a rectangle in the conjugate direction, and finally, for = — 1 (lowest

section) it becomes the sinister diagonal (considered as an indefinitely thin rectangle).

But on account of the symmetry it is sufficient to consider the upper sections for which

z is positive. The sides ±(x+t/) + z—l—0 parallel to the dexter diagonal of the

square may for convenience be termed the dexter sides, and the others the sinister

sides. In what follows I write c to denote the constant value of z.

We require to know whether the bitangents have real or imaginary contacts ; and

for this purpose to find the coordinates of the points of contact.

Take first a dexter bitangent A+y + c — 1 = 0; the coordinates of any )Doint

hereof are

a: = ^(l-c + 6), y = ^{l-c-e\

where 6 is arbitrary ; and substituting in the equation of the curve, we should have

for a twofold quadric equation, giving the values of 6 for tlie two points of

contact respectively. We have

and thence

8c= 1(1 - cf + 0"] + 8c ((1 - cf - &'] + ((1 - c)— e-f = 0,

viz. this equation is

|^=-(l-c)(l+3c))-^ = 0,

a twofold quadric equation, as it should be ; and the values of 6 being = + V(l — c) (1 + 3c),

we see that these, and therefore the contacts, are real from c = 1 to c = — ^.

In exactly the same way for a sinister bitangent ± (.« — y) — c — 1 = 0, we have

a;=-J(H-c+<^), -y = i(l + c-0), and ^ = ± \/(l - 3c)(l + c),

viz. the values of
<f),

and therefore the contacts, are real from c = ^ to c = — 1.

That is,

Contacts of Contacts of

Dexter Bitangents. Sinister Bitangents.

c= 1 to ^ real, imaginary,

c= ^to— ^ real, real,

c = — ^ to — 1 imaginary, real

;

or say c = l to i the contacts are real, imaginary; but c = ^ to 0, they are real, real.

In the transition case, c = J, the sinister bitangents become o.sculating (4-pointic) tangents

touching at points on the dexter diagonal. This can be at once verified.
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Observe that when c=l, we have

{x + y)- + x-if = 0,

so that the only real point is a; = 0, y = ; viz. this is a tacnode, having the real

tangent w + y= 0. For c = (central section) the equation becomes x-y- = ; viz. the

curve is here the two nodal lines each twice.

It is now easy to trace the changes of form.

c = 1 ; curve is a tacnode, as just mentioned, tangent the dexter diagonal.

c< 1 > ^ ; curve is a figure of 8 inside the rectangle, having real contacts with

the dexter sides, but imaginary contacts with the sinister sides.

c = I ; curve is a figure of 8 having real contacts with the dexter sides, and

osculating (-i-pointic) contacts with the sinister sides.

c < ^ > ; curve is an indented figure of 8 having real contacts as well with the

sinister as the dexter sides.

c = ; curve is squeezed up into a finite cross, being the crunodal parts of the

nodal lines ; and joined on to these we have the acnodal parts, so that the whole

curve consists of the lines ./• = 0, y = each as a twofold line.

For tracing the curve, it is convenient to turn the axes thi'ough an angle of

4.5' ; viz. writing —,.j- 1 /n i^i place of x, y respectively, the equation becomes

c {y' -a?) + c- (y- + x') + I {y- - «-)- =
;

X = gives y- = or 3/- = — 4c (1 + c),*

y = gives x- = or «- = 4c (1 — c).

Moreover, we have
4 (c - c=) (y' - X-) + Schf + {if - aPf = 0,

viz.

{x- -y"-+ 2c- - 2c)- = 4c= {(c - 1)- - 2y-|,

{y- -X-+ 2c- + 2c)- = 4c-- ((c + l)--2x'],

putting in evidence the bitangents, now represented by the equations c — 1 = + y V^ and

c + 1 = ±x ^J2 respectively. And for the first of these, or c —1 = ±y V^, we have for the

points of contact a;'- = ^ (1 — c)(l -f 3c); and for the second of them, or c -i- 1 = ± x \/2,

the points of contact are y" = ^{l -t-c)(l — 3c).

I consider the circumscribed cone having its vertex at a point (0, 0, 7) on the

nodal line {x = 0, y = 0). Writing in the equation of the surface x='K{s — y),y = /j,{z — ry),

the e(iuation, throwing out the factor {2 — y)-, becomes

•2\ix2 + (X- + fx-) z' + X>- (2 - 7)- = 0,

that is,

(X,>- + \- + yU.--) Z'

+ 2 (-7\/i+l)^Xja

+ 7- . \-/x-' = :

*
1/ always imaginary when c is positive.

2—2

and similarly



12 ON steiner's surface. [556

and equating to zero the discriminant in regard to z, we have

7= (\=/i- + X- + /i=) - (- i^tx. + 1 )- = 0,

that is,

7- (X,- + /:*=) + 27\/i -1 = 0;

and substituting herein the values X = —_- and fx = -—— , we have the equation of

the cone, viz. this is

7- {it- + f) + 2jxy -(z-y)- = 0,

or, what is the same thing,

j' (of + f-l) + 27 (xy + z)-z'=0;

viz. this is a quadric cone having for its principal planes ^ — 7 = 0, x + y = 0, x — y = 0,

these last being the planes through the nodal line and the two edges of the tetrahedron.

In the particular case 7 = 10 , the cone becomes the circular cylinder af + y'- — \ =0.

The cone intersects the plane z = in the conic

7= (*- + f - 1) + 27*^ = 0,

which is a conic passing through the corners of the square {x = 0, y = ± 1), (« = ± 1, ^ = 0).

For 7 > 1, that is, for an exterior point, the conic is an ellipse having for the squares

of the reciprocals of the semi-axes 1 + - , 1 (this at once appears by writing in

£C "4" 71 OS ^ 1/

the equation —j~- , -w in place of x, y respectively). In particular, for 7 = 00 , the

curve becomes the circle xr + y-—l=0. We have thus the apparent contour of the

surface as seen from the point 2 = y on the nodal line, projected on the plane s =
of the other two nodal lines.

To find the curve of contact of the cone and surface, or say the surface-contour

from the same point, write for a moment

F= 7 («^ -f- / - 1) -f- 27 (xy + z)- Z-,

U = {xy + zy + 2' (.//^ + f-l);

then, substituting for x- + y-—l its value in terms of V from the first equation, we find

TT f Z^y ^' TrU={xy + z--j+^V,

and the equations U = 0, V=0 give therefore xy + z = 0, or say y{xy + z) — z'' = 0.

7
The cone and surface therefore touch along the quadriquadric curve

7- (x- +y'--l) + 2y (xy + z)-z' = 0,

7 {xy + z)- 2- = 0,

equations which may be replaced by

7 {x' + y''-l) + xy + z = 0,

y-{x- + y--l) + z" =0.

In the case y = x> , the equations are *•- -|- ^- — 1 = 0, xy + z = 0, viz. the curve is

the intersection of the hyperbolic paraboloid xy + z = by the cylinder x- + y-— 1=0.
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557.

ON CERTAIN CONSTRUCTIONS FOR BICIRCULAR QUARTICS.

[From the Proceedings of the London Mathematical Society, vol. v. (1873—1874),

pp. 29—31. Read March 12, 1874.]

I CALL to miiid that if F, G are any two points and F', G' their antipoints

;

then the circle on the diameter FG and that on the diameter F'G' are concentric

orthotomics, viz. they have the same centre, and the sum of the squared radii is

= 0. Moreover, if the circles B, B' are concentric orthotomics, and the circle A is

orthotomic to B, then it is a bisector of B, viz. it cuts B' at the extremities of a

diameter of R ; and B' is then said to be a bifid circle in regard to A.

Given two real circles, these have an axial orthotomic, the circle, centre on the

line of centres at its intersection with the radical axis, which cuts at right angles the

given circles ; viz. this axial orthotomic is real if the circles have no real intersection

;

but if the intersections are real, then the axial orthotomic is a pure imaginary, and

instead thereof we may consider its concentric orthotomic, viz. this is the axial bifid

of the two circles, or circle having its centre on the line of centres at the inter-

section thereof with the radical axis or common chord of the two circles, and having

this common chord for its diameter.

If one of the circles is a pure imaginary, then we have still an axial orthotomic

;

viz. the pure imaginary circle is replaced by the concentric orthotomic; and the axial

orthotomic is a bisector of the substituted circle ; and so if each of the circles is a

pure imaginary, then we have still an axial orthotomic, viz. each circle is replaced by

the concentric orthotomic, and the axial orthotomic is a bisector of the substituted

circles. And in either case the axial orthotomic of the original circles (one or each of

them pure imaginary) is real; viz. this is given either as the axial bisector of one

real circle and orthotomic of another real circle ; or as the axial bisector of two circles,

J'rom which the reality tiiereof easily appears. Or we may verify it thus: Suppose
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that the two circles are (.« — a)- + y- = /S", {x — a')- + y" = /S'-, and their axial orthotfimic

(a; — 7)i)- + 2/' = A--, then we have (?»— a)-=/3-+^-, (m — a')- = /8'- + A;'- ; subtracting, it appears

that m is real ; and then if either /3- or /3'- is negative, the equation containing this

quantity shows that Ar is positive ; viz. the circle {:r — ?»)- + y- = k- is real.

The above remarks have an obvious application to the theory of bicircular quartics

;

viz. a bicircular quartic is the envelope of a variable circle, having its centre on a

conic, and orthotomic to a circle : it may be that this circle is a pure imaginary.

We then replace it by the concentric orthotomic, and say that the curve is the

envelope of a variable circle having its centre on a conic and bisecting a circle. We
have thus a real form for cases which originally present themselves under an imaginary

form.

The Bicircular Quartic with given vertices.

First, if the vertices are real ; let the vertices taken in order be F, G, H, K.

First construction: On FG as diameter describe a circle, and on HK as diameter

a circle ; on the line terminated by the two centres (as transverse or conjugate axis)

describe a conic ©i, and describe the axial orthotomic cii'cle Sj of the two circles

(viz. the centre of Sj is on the axis of symmetry at its intersection with the radical

axis of the two circles) ; then the curve is the envelope of a variable circle having

its centre on 0, and orthotomic to S,

.

Second construction : On FH as diameter describe a circle, and on GK as diameter

a circle. On the line terminated by the two centres (as transverse or conjugate axis)

describe a conic ©., and describe the axial bifid circle S./ of the two circles (viz. the

centre of S/ is on the axis of symmetry at its intersection with the radical axis or

common chord of the two circles, and its diameter is this common chord) ; then the

curve is the envelope of a variable circle having its centre on B. and bisecting So'.

Third construction : On FK as diameter describe a circle, and on GH as diameter

a circle ; and then, as in the first construction, a conic ©a and a circle S^ ; the curve

is the envelope of a variable circle having its centre on ©3 and orthotomic to Ss.

Observe that in the three constructions the conies have always the same centre

;

and if the three conies are taken with the same foci, then the three constructions give

one and the same bicircular quartic. The first and third constructions form a pair,

and there is no reason for selecting one of them in preTerence to the other ; but the

second construction is unique ; it is on this account natural to make use of it in

discussing the series of curves with the given vertices.

In the particular case where the points F, G and H, K are situate symmetrically

on opposite sides of a centre {0F= OK, OG = OH), then in the third construction

the centres each coincide with 0, or the axis of the conic vanishes ; hence the con-

struction fails : the first and second constructions hold good, and in each of them the
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conic and circle are concentric. The curve is in this case quadrantal : having, besides

the original axis of symmetry, another axis of symmetry through 0, at right angles

thereto.

Secondly, if the vertices are two real, two imaginary, say/, f/ = a + /3t; /;, k, we

modify the first or third construction ; viz. if F', G' are the antipoints of F, G ; then

on F'G' as diameter describe a cii'cle, and on HK as diameter a circle. On the line

terminated by the two centres (as transverse or conjugate axis) describe a conic Bj,

and describe the axial bisector-orthotomic circle Si of the two circles ; viz. this is the

circle (centre on the axis of symmetry) which bisects the circle F'G', and cuts at right

angles the circle HK ; then the curve is the envelope of the variable circle having

its centre on ©, and orthotomic to 2i.

Thirdly, if the vertices are all imaginary, say f, g = a± jSi; h, k = j± Bi, we modify

the fii'st or third construction. Take F', G' the antipoints of F, G, and H', K' the

antipoints of H, K ; then on F'G' as diameter describe a circle, and on H'K' as

diameter a circle ; on the line terminated by the two centres (as transverse or conjugate

axis) describe a conic ©, and describe the axial bisector-circle 2 of the two circles

(viz. this is a circle, centre on the axis of symmetry, bisecting each of the circles) :

the curve is the envelope of a variable circle, centre on the conic © and cutting at

right angles the circle 2.
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558.

A GEOMETRICAL INTERPRETATION OF THE EQUATIONS OB-

TAINED BY EQUATING TO ZERO THE RESULTANT AND
THE DISCRIMINANTS OF TWO BINARY QUANTICS.

[From the Proceedings of the London Mathematical Society, vol. v. (1873—1874),

pp. 31—33. Read March 12, 1874]

Consider the equations

U =((/, h,...\t, If =0,

U' = (a', h',...Jt, 1)^=0;

and equating to zero the discriminants of the two functions respectively, and also the

resultant of the two functions, let the equations thus obtained be

A =(a, ?),... )-^-- = 0,

A' = (a', 6', ...)--^'-^ = 0,

R={a, b,...f (a, h, ...)^=0.

I take (a, b, ...), («,', h'

,

...) to be linear functions of the coordinates {x, y, z) ; and

t to be an indeterminate parameter. Hence U= represents a line the envelope

whereof is the curve A = 0, or, what is the same thing, the equation U=Q represents

any tangent of the curve A = ; this is a unicursal curve of the order 2X — 2 and

class X, with 3 (X — 2) cusps and ^ (\ — 2) (X — 3) nodes. .Similarly U' = represents a

line the envelope of which is the curve A' = : this is a unicursal curve of the order

2X' — 2 and class X', with 3 (X' — 2) cusps and i (X' — 2) (X' — 3) nodes ; the equation

U' — represents any tangent of this curve.

The equations Z7 = 0, tT' = considered as existing simultaneousl}' with the same

value of t, establish a (1, 1) correspondence between the tangents (or if we please,

between the points) of the two curves. The locus of the intersection of the corre-
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spending tangents is the curve R = 0, a uiiicursal curve of the order \ + X', with

i(\ + V— 1)(X + X' — 2) nodes and no cusjds; consequently of the class 2(X + X'— 1).

It is to be shown that the curve R=0 touches the curve A = in X' + 2X — 2

points, and similarly the curve A' = in 2X' + \ — 2 points.

In fact, consider any tangent T' of the curve A' ; let this meet the curve A in

a point A, and let Q be the tangent at A to the curve A ; suppose, moreover, that

T is the tangent of A corresponding to the tangent T' of A'. Then if Q and T
coincide, the corresponding tangent of T' will be Q, and the curve R will pass

through A. It is easy to see that in this case the curves R, A will touch at A.

Again, if P be a tangent from A to the curve A, then, if P and T coincide, the

corresponding tangent of T' will be P, and the curve R will pass through A ; but

in this case the point A will be a mere intersection, not a point of contact, of the

two curves.

The tangents T, Q each correspond to T', and they consequently correspond to

each other. For a given position of T we have a single position of 7", and therefore

2X — 2 positions of A, or, what is the same thing, of Q ; that is, fur a given position

of T we have 2X — 2 positions of Q. Again, to a given position of Q corresponds a

single position of A, therefore X' positions of T', therefore also X' positions of T; that

is, for a given position of Q we have X' positions of T. The correspondence between

T, Q is thus a (X', 2X — 2) correspondence, and the number of united tangents is

therefore X' + 2\-2, or the curves R, A touch in X' + 2X,— 2 points.

The tangents T, P each correspond to T', and they therefore correspond to each

other. For a given position of T we have a single position of T', and therefore 2X — 2

positions of A, and thence (2X — 2)(\— 2) positions of P; that is, for a given position

of T wc have (2X - 2) (X — 2) positions of P. Again, to a given position of P corre-

spond 2X — 4 positions of A, therefore (2X,— 4)X' positions of T' or of T; that is,

for a given position of P we have (2X — 4)X' positions of T. The correspondence

between T, P is thus a [2X'(X — 2), 2(X — 1)(X — 2)] correspondence, and the number of

united tangents is 2 (X + X' - 1)(X - 2) ; or the curves R, A meet in 2 (X + X' - 1)(\- 2)

points.

Beckoning the contacts twice, the total number of intersections of R, A is

2X' + 4X - 4 + 2 (X + X' - 1 ) (X - 2), = (X + X') (2X - 2),

as it should be.

In the particular case X = X' = 2, the curves A, A' are conies, and the curve R
is a quartic curve touching each of the conies 4 times ; this is at once verified, since

the equations here are

ac -b- = 0, a'c - b'- = 0, 4 {ac - b") (ac - b'-) - {ac + a'c - -IbbJ = 0.

C. IX.



18 [559

559.

[NOTE ON INVEESION.]

[From the Proceedings of the London Mathematical Society, vol. v. (1873—1874), p. 112.]

The inverse of the anchor ring (in the foregoing paper* called the cyclide) is in

fact the general binodal cyclide or binodal bicircular quartic; viz. assuming it to be

a cyclide (bicircular quartic), to see that it is binodal, it need onlj' be observed that

the anchor ring is binodal (has two real or imaginary conic points, viz. these are the

intersections of the circles in the several axial planes) ; and to see that it is the

general binodal cyclide, we have only to count the constants ; viz. the general cyclide

or surface

{x- + y-Jrz-)--\-(x- \-y- + z-){ax + ^y + ^z)+{a, h, c, d, f, g, A, I, m, n){x, y, z, l)- =

contains 13 constants, and therefore the binodal cyclide 13—2, =11 constants. But the

anchor ring, iri'espective of position, contains 2 constants; centre of inversion, taken in

given axial plane, has 2 constants; radius of inversion, 1 constant; in all 2 + 2 + 1, =5
constants ; or taking the inverse surface iu an arbitrary position, the number of constants

is 5+ 6, =11.

* By Mr H. M. Taylor: Inversion, with special reference to the Inversion of an Anchor Eing or Torus,

{Loud. Math. Soc. Proc, same volume, pp. 105— 112).
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560.

[ADDITION TO LORD RAYLEIGH'S PAPER "ON THE NUMERICAL
CALCULATION OF THE ROOTS OF FLUCTUATING FUNCTIONS."]

[From the Proceedings of the London Mathematical Society, vol. v. (1873—1874),

pp. 123, 124. November 22.]

Prof. Cayley, to wliom Lord Kayleigh's paper was referred, pointed out that a similar result may be

attained by a method given in a paper by Eneke, " Allgemeine Auflosung der numerischen Gleichungen,

"

Crelle, t. xxii. (1841), pp. 193—248, as follows:

Taking the equation

= 1 — fw + h.i:- — cxP + dx* — eaf +faf — g.c' + hn? — . .
.

;

if the equation whose roots are the squares of these is

0=1— a,*' + hiX- — Cid? + ...,

then

a, = a- — 26,

bi = h- - iac + M,

Ci'- = c- - Ihd + 2ae - 2/

d,' = d- - 2ce + 26/- 2ag + 2h, &c.

;

and we may in the same way derive a.,, b., Co, &c. from a,, b,, c,, &c., and .so on.

As regards the function

/.,)__i:^.fi_._i^ + ?i I

3—2
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we have as follows

:

a-' = 22 . « + 1,

6-' = 2^ ?! + 1 . )( + 2,

C-' =2". S.u + 1 ...?(+ 3,

d~' = 2" . 3 . ;; + 1 . . . « + 4,

e-' = 2i''
. 3 . 5 . « + 1 ... 91 + 5,

/-' = 2^"
. 3- . 5 . 9( + 1 ... w + C,

(/-' = 2"*
. 3^ .5 . 7 . /; + 1 . . . n + 7,

/(-' = 2-^
.
3- . .5 . 7 . « + 1 ...n + S,

«,,-' = 2^ .(7( + iy-.?i + 2,

br' = 2» . (» + 1 . » + 2)- . )! + 3 . )i + 4,

c,-' = 2'"
. 3 . (« + 1 ... » + 3)- . ?i + 4 ... n + 6,

dr' = 2">.S.(n+l ... n + 4)- .n + o ...n + S,

5n + 11

h..=

If n = 0,

2» . (n + 1)^ (» + 2)= « + 3 . « + 4
'

25n- + 2-^ln + .542 ^^
2".(» + 1 .»+ 2)^(?t + 3.H + 4)-n-f .5 ... ?i + 8

'

429m^ + 7640?!^ + •537.52?i^ + lS.5430w' + 311387?? + 202738

2'« (?? + ly (n + 2)* (n + 3 . ?? + 4)- /? + 5 . ?i + 6 . ?? + 7 . ?? + 8
'

^ ^„
101369

^p-^» = „^ =_____, ^p^ i.> suppose
;

whence

p, = 2-404825.

[The quantities p^, j^.,... are the roots of the function Jn{x) in increasing order

of magnitude, so that, as these roots are all real, it follows that for Jo(x),

a = 2.-pr", a^=^pr\ a-, = 'Epr\ a3 = 1pr"';---]
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561

ON THE GEOMETRICAL REPRESENTATION OF CAUCHY'S
THEOREMS OF ROOT-LIMITATION.

[From the Transactions of the Camhridge Philosophical Society, vol. xii. Part ii. (1877),

pp. 395—413. Read February 16, 1874.]

There is contained in Cauchy's Memoir " Calcul des Indices des Fonctions,"

Journ. de I'Ecole Polytech. t. xv. (1837) a general theorem, which, though including

a well-known theorem in regard to the imaginary roots of a numerical equation,

seems itself to have been almost lost sight of. In the general theorem (say Cauchy's

two-curve theorem) we have in a plane two curves P = 0, Q = 0, and the real inter-

sections of these two curves, or say the " roots," are divided into two sets accoi'ding as

the Jacobian

d^P.dyQ-d^Q.dyP

is positive or negative, say these are the Jacobian-positive and the Jacobian-negative

roots : and the question is to determine for the roots within a given contour or

circuit, the difference of the numbers of the roots belonging to the two sets respectively.

In the particular theorem (say Cauchy's rhizic theorem) P and Q are the real part

and the coefficient of i in the imaginary part of a function of x + iy with, in general,

imaginary coefficients (or, what is the same thing, we have P -¥ iQ =/"(« -I- iy) + i4> (x + iy),

where /, <^ are real functions of « 4- iy) : the roots of necessity are of the same set

:

and the question is to determine the number of roots within a given circuit.

In each case the required number is theoretically given by the same rule, viz.

P
considering the fraction t^ , it is the excess of the number of times that the fraction

changes from -|- to — over the number of times that it changes from — to +, as

the point (cc, y) travels round the circuit, attending only to the changes which take

place on a passage through a point for which P is = 0.



22 ON THE GEOMETRICAL REPRESENTATION OF [561

In the case where the circuit is a polygon, and most easily when it is a rect-

angle the sides of which are parallel to the two axes respectively, the excess in

question can be actually determined by means of an application of Sturm's theorem

successively to each side of the polygon, or rectangle.

In the present memoir I reproduce the whole theory, presenting it under a com-

pletely geometrical form, viz. I establish between the two sets of roots the distinction

of right- and left-handed: and (availing myself of a notion due to Prof Sylvester*)

I give a geometrical form to the theoretic rule, making it depend on the " inter-

calation " of the intersections of the two curves with the circuit : I also complete the

Sturmian process in regard to the sides of the rectangle : the memoir contains further

researches in regard to the curves in the case of the particular theorem, or say as

to the rhizic curves P = 0, Q = 0.

The General Theory. Articles Nos. 1 to 19.

1. Consider in a plane two curves P = 0, Q = (P and Q each a rational and

integral function of x, y), which to fix the ideas I call the red curve and the blue

curve respectively f: the curve P = divides the plane into two sets of regions, say

a positive set for each of which P is positive, and a negative set for each of which

P is negative : it is of course immaterial which set is positive and which negative,

since writing — P for P the two sets would be interchanged : but taking P to be

given, the two sets are distinguished as above. And we may imagine the negative

regions to be coloured red, the positive ones being left uncoloured, or say they are

white. Similarly the curve Q = divides the plane into two sets of regions, the

negative regions being coloured blue, and the positive ones being left uncoloured, or

say they are white. Taking account of the twofold division, and considering the

coincidence of red and blue as producing black, there will be four sets of regions,

which for convenience may be spoken of as sable, gules, argent, azure: viz. in the figures

we have
P_Q
— — sable, shown by cross lines,

— -I- gules, „ „ vertical lines,

+ + argent, left white,

-t- — azure, shown by horizontal lines,

sable and argent (— — anil -|- +) being thus positive colours, and gules and azure

(- + and -f —) negative colours. See figures [pp. 32, 38] towards end of Memoir.

* See his memoir, "A theory of the Syzypetic relations, &c." Phil. Trans., 1853. The Sturmian process

is by Sturm and Cauohy applied to two independent functions 0,r, fx of a variable .r ; but the notion of

an intercalation as applied to the order of succession of the roots of the equations </> (x) = 0, f{.t) = is due

to Sylvester, and it was he who showed that what the Sturmian process determined was in fact the inter-

calation of these roots : but, not being concerned with circuits, he was not led to consider the intercalation

of a circuit.

t It is assumed throughout that the two curves have no points (or at least no real points) of multiple

intersection ; i.e. they nowhere touch each other, and neither curve passes through a multiple point of the

other curve.
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2. Consider any point of intersection of the two curves. There will be about

this point four regions, sable and argent being opposite to each other, as also gules

and azure ; whence selecting an order

sable, gules, argent, azure

;

if to have the colours in this order we have to go about the point, or root, right-

handedly, the root is right-handed: but if left-handedly, then the root is left-handed:

or, what is more convenient, going always right-handedly, then, if the order of the

colours is

sable, gules, argent, azure,

the root is right-handed : but if the order is

sable, azure argent, gules,

the root is left-handed.

3. The distinction of right- and left-handed corresponds to the sign of the Jacobian

we may (reversing if necessary the original sign of one of the functions) assume that

for a right-handed root the Jacobian is positive, for a left-handed one, negative.

4. I consider a trajectory which may be either an unclosed curve not cutting

itself, or else a circuit, viz. this is a closed curve not cutting itself. A circuit is

considered as described right-handedly: an unclosed trajectory is considered as described

according to a currency always determinate pro hdc vice: viz. one extremity is selected

as the beginning and the other as the end of the trajectory: but the currency may

if necessary or convenient be reversed : thus if an unclosed trajectory forms part of a

circuit the currency is thereby determined: but the same unclosed trajectory may form

part of two opposite circuits, and as such may have to be taken with opposite

currencies. It is assumed that a trajectory does not pass through any intersection of

the P and Q curves.

5. A trajectory has its P- and Q-sequence, viz. considering in order its inter-

sections with the two curves, we write down a P for each intersection with the red

curve and a Q for each intersection with the blue curve, thus obtaining an inter-

mingled series of P's and Q's, which is the sequence in question. In the case of a

circuit, the sequence is considered as a circuit, viz. the first and last terms are con-

sidered as contiguous, and it is immaterial at what point the sequence commences.

The sequence will of course vanish if the trajectory does not meet either of the curves.

6. A P- and Q-sequence gives rise to an "intercalation," viz. if in the sequence

there occur together any even number of the same letter, these are omitted (whence

also any odd number of the same letter is reduced to the letter taken once): and if

by reason of an omission there again occur an even number of the same letter, these
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are omitted : and so on. The intercalation contains therefore only the letters P and Q
alternately : viz. in the case of an unclosed trajectory the intercalatif)n may contain an

even number of letters, beginning with the one and ending with the other letter, and

so containing the same number of each letter—or it may contain an odd number of

letters, beginning and ending with the same letter, and so containing one more of

this than of the other letter; say the intercalation is PQ or QP, or else PQP or

QPQ. The intercalation may vanish altogether; thus if the sequence were QPPQ, this

would be the case.

7. In the case of a circuit the intercalation cannot begin and end with the same

letter, for these, as contiguous letters, would be omitted ; and since any letter thereof

may be regarded as the commencement it is PQ or QP indifferently. A little con-

sideration will show that the whole number of letters must be evenly even, or, what

is the same thing, the number of each letter must be even. Thus imagine the circuit

beginning in sable, and let the intercalation begin with PQ ; viz. P we pass from

sable to azure, and Q we pass from azure to argent : in order to get back into sable

we must either return the same way (Q argent to azure, P azure to sable), but then

the sequence is PQQP, and the intercalation vanishes : here the number of letters

is 0, an evenly even number: or else we must complete the cycle of colours P argent

to gules, Q gules to sable : and the sequence and therefore also the intercalation then

is PQPQ, where the number of letters is 4, an evenly even number.

8. In the case of any trajectoi'y whatever, the half number of letters in the inter-

calation is termed the " index," viz. this is either an integer or an integer + i. But

in the case of a circuit the index is an even integer, and the half-index is therefore

an integer. The index may of course be = 0.

9. But we require a further distinction: instead of a P- and Q-sequence we

have to consider a + P- and Q-sequence. To explain this, observe that a passage

over the red curve may be from a negative to a positive colour (azure to sable or

gules to argent), this is -1- P, or from a positive to a negative colour (sable to azure

or argent to gules), this is —P. And so the passage over the blue curve may be

from a negative to a positive colour (gules to sable or azure to argent), this is + Q,

or else from a positive to a negative colour (sable to gules or argent to azure), this

is — Q. The sequence will contain the P and Q intermingled in any manner, but

the signs will always be -t- — alternately ; for -I- (P or Q), denoting the passage into

a positive colour, must always be immediately succeeded by — (P or Q), denoting the

passage into a negative colour. Whence, knowing the sequence independently of the

signs, we have only to prefix to the first letter the sign + or — as the case may

be, and the sequence is then completely determined.

10. Passing to a + intercalation, observe that in omitting any even number of

P's or Q's, the omitted signs are always -I- — + — &c. or else — H + &c., viz. the

omitted signs begin with one sign and end with the opposite sign. Hence the signs

being in the first instance alternate, they will after any omission remain alternate

:

and the letters being also alternate, the intercalation can contain only -f- P and — Q
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or else — P and + Q. Hence in the case of a circuit the intercalation is either

(+ P — Q), say this is a positive circuit, or else (- P + Q), say this is a negative circuit.

There is of course the neutral circuit (PQ)„ for which the intercalation vanishes.

11. Consider a circuit not containing within it any root; as a simple example let

the circuit lie wholly in one colour, or wholly in two adjacent colours, say sable and
guies: in the former case the sequence, and therefore also the intercalation, vanishes:

in the latter case the sequence is + Q — Q, and therefore the intercalation vanishes

:

viz. in either case the intercalation is (PQ)i,.

12. Consider next a circuit containing within it one right-handed root ; for instance

let the circuit lie wholly in the four regions adjacent to this root, cutting the two

curves each twice ; the sequence and therefore also the intercalation is +P—Q + P — Q;
viz. this is a positive circuit (+ P - Q)^, where the subscript number is the half-index,

or half of the number of P's or of Q's. Similarly if a circuit contains within it one

left-handed root, for instance if the circuit lies wholly in the four regions adjacent

to this root, cutting the two curves each twice, the sequence and therefore also the

intercalation is — P + Q—P + Q, viz. this is a negative circuit {— P + Q)i : and the

consideration of a few more particular cases leads easily to the general and fundamental

theorem :

13. A circuit is positive i+P—Q)s or negative (—P+Q)s according as it contains

within it more right-handed or more left-handed roots ; and in either case the half-index

h is equal to the excess of the number of one over that of the other set of roots. If
the circuit is neutral iPQ\, then there are within it as many left-handed as Hght-

handed roots.

14. The proof depends on a composition of circuits, but for this some preliminary

considerations are necessary.

Imagine two unclosed trajectories forming a circuit, and write down in order the

intercalation of each. The whole number of letters must be even: viz. the numbers

for the two intercalations respectively must be both even or both odd. I say that if

the terminal letter of the first intercalation and the initial letter of the second inter-

calation are different, then also the initial letter of the first intercalation and the

terminal letter of the second intercalation will be different : if the same, then the

same. In fact, the intercalations may be each PQ or each QP, or one PQ and the

other QP: or each PQP, or each QPQ, or one PQP and the other QPQ. Supposing

the letters in question are different, then the interaxlations may be termed similar

;

but if the same, then the intercalations may be termed contrary.

15. In the first case, that is when the intercalations are similar, the two together

form the intercalation of the circuit ; the sum of theii- numbers of letters (that is,

twice the sum of their indices) will be evenly even, and the half of this, or the sum of

the indices, will be the index of the circuit ; each intercalation will be (-f P — Q) or

else each will be {- P + Q); and the circuit will be (-i- P - Q) or (- P -I- Q) accordingly.

c. IX. 4
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In the second case, that is, when the intercalations are contrary, they counteract

each other in forming the intercalation of the circuit : it is the diference of the

numbers of letters, or twice the difference of the indices, which is evenly even, and

the half of this, or the difference of the indices, which is the index of the circuit

:

one intercalation is (+ P — Q), and the other is {— P + Q) : and the circuit will agree

with that which has the larger index.

In particular if the circuit consist of a single unclosed trajectory, taken forwards

and backwards; then the trajectory taken one way is (+ P - Q), taken the other way

it is (— P + Q) ; the number of terms is of course equal, and the circuit is (PQX-

16. Consider now two circuits ABCA and ACDA, having a common portion CA,

or, more accurately, the common portions AC and CA : write down in order the inter-

calations of

ABC, CA, AC, CDA:

the two mean terms destroy each other, and we can hence deduce the intercalation

of the entire circuit ABCDA.

Suppose first, that ABC and CDA are similar ; then if CA is similar to ABC
it is also similar to CDA, that is, AC is contrary to CDA : and so if CA is contrary

to ABC, then ^C is similar to CDA.

To fix the ideas suppose CA similar to ABC, but AC contrary to CDA, then

ABCA is similar to CA ; but ACDA will be similar or contrary to AC, that is, contrary

or similar to CA, that is, to ABCA, according as index of AC > or < index of CDA.

Suppose Ind. AC < Ind. CDA, then ACDA is similar to ABCA.

Now Ind. ABCDA = Ind. ABC + Ind. CDA,

Ind. ABCA = Ind. ABC + Ind. AC,

Ind. ACDA = Ind. CDA - Ind. AC,
and thence

Ind. ABCDA = Ind. ABCA + Ind. ACDA,

the whole circuit being in this case similar to each of the component ones.

But if Ind. AC >Ind. CDA, then ACDA is contrary to ABCA.

And Ind. ABCDA = Ind. ABC + Ind. CDA,

Ind. ABCA = Ind. ABC +Ind. CA,

Ind. ACDA = - Ind. CDA + Ind. ^ C,

and thence
Ind. ABCDA = Ind. ABCA - Ind. ACDA

;

and the investigation is like hereto if CA is contrary to ABC but AC similar to CDA.

17. Secondly, if ABC and CDA are contrary, then if CA is similar to ABC it is

contrary to CDA, that is, AC is similar to CDA ; and so if CA is contrary to ABC
it is similar to CDA, that is, AC is contrary to CDA.
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Suppose GA similar to ABC, and AG similar to CDA ; then ABCA is also

similar to ABC, and ACDA similar to GDA ; viz. ABC, CA and ABCA are similar

to each other, and contrary to AG, GDA, ACDA which are also similar to each other.

Also Ind. ABGDA = Ind. ABC ~ Ind. GDA,

Ind. ABCA = Ind. ABC + Ind. GA,

Ind. ACDA = Ind. GDA + Ind. AG,

and thence

Ind. ABGDA = Ind. ABCA ~ Ind. ACDA,

and the investigation is like hereto if GA is contrary to ABC and AG contrary to GDA.

18. It thus appears that in every case

Ind. ABGDA = Ind. ABCA + Ind. ACDA,

or =Ind. ABCA -Ind. ACDA,

according as the component circuits are similar or contrary, and in the latter case

the entire circuit is similar to that which has the largest index.

Moreover, any circuit whatever can be broken up into two smaller circuits, and

these again continually into smaller circuits until we arrive at the before-mentioned

elementary circuits, and the theorem as to the number of roots within a circuit is

true as regards these elementary circuits ; wherefore the theorem is true as regards

any circuit whatever.

19. In the case where a trajectory is a finite right line, y is a given linear

function of x, or the coordinates *', y can if we please be expressed as linear functions

of a parameter u, so that as the describing point passes along the line, ^l varies

between given limits, say from ii = to u=l. The functions P, Q thus become given

rational and integral functions of a single variable u (or it may be x or y), and the

question of the P- and Q-sequence and intercalation relates merely to the order of

succession of the roots of the equations P = 0, Q = 0, where P and Q denote functions

of a single variable as above. To fix the ideas, let the trajectory be a line parallel

to the axis of x ; and in this case taking x as the parameter, and supposing that

2/o is the given value of y, P and Q are the functions of x obtained by writing y„

for y in the original expressions of these functions. Of course the theory will be precisely

the same for a line parallel to the axis of y : and by combining two lines parallel

to each axis we have the case of a rectangular cii'cuit. We require, for each side of

the rectangle considered according to its proper currency, the intercalation PQ, QP, PQP
or QPQ as the case may be, and also the sign + or - of the initial letter of the

first intercalation ; for then writing down the intercalations in order, with the signs for

the several letters, + and - alternately (the first sign being + or - as the case may

be), we have or deduce the intercalation of the circuit, and thus obtain the value of

the diiference of the numbers of the included right- and left-hauded roots. We thus

see how the whole theory depends on the case where the trajectory is a right line.

4—2
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Intercalation-theory for a right line. Articles Nos. 20 to 31.

20. Considering then the case where the trajectory is a line parallel to the axis

of X, P and Q will denote given rational functions of x ; the curves P = 0, Q = being

of course each of them a set of right lines parallel to the axis of y : the regions

will be bands each of them included between two such lines ; and colouring them as

explained in the general case, the colours will be as before, sable, gules, argent, azure,

each region having in the neighbourhood of the trajectory (what we are alone con-

cerned with) the same colour that it had in the original case where P and Q were

functions of («, y). We may regard the trajectory as described according to the

currency « = — oo to .r = + oo : we have in regard to the trajectory a P- and Q-sequence

and intercalation, a, ± P- and Q-sequence, &c., as in the original case. The inter-

calation may be as before PQ, QP, PQP or QPQ, and in each of these cases it may
be positive, that is, {+ P — Q), or else negative, that is, {— P + Q).

21. The question of sign may in the present case be disposed of without difficulty.

For the initial point of the trajectory, we know the signs of P, Q, that is, the colour

of the region: suppose for example that we have P = —
, Q = +, or that the region is

gules : then if the intercalation begin with P, this means that we either first pass a

red line, or before doing so we pass an even number of blue lines : but in the last

case the colours are sable, gules, sable, gules,... always ending in gules; and the passage

over the red line is gules to argent, viz. this is + P ; and so in general the initial

P or Q of the intercalation has the sign opposite to that of the P or Q belonging to

the commencement of the trajectory.

22. For the solution of the problem we connect with P, Q a set of functions

R, S, T, &c. : the intercalation is in fact given by means of the gain or loss of

changes of sign in these functions on substituting therein the initial and final values

of the variable x. It is convenient to consider the functions as arranged in a column

P
Q
R
S

say this is the column PQRS..., and to connect therewith a signaletic bicolumn : viz.

the left-hand column is here the series of signs of these functions for the initial value

of X, and the right-hand column is the series of signs for the terminal value of x:

the bicolumn thus consisting of as many rows each of two signs, as there are functions.

But such a bicolumn may be considered apart from any series of functions, as a set

of rows each of two signs taken at pleasure.

We say that the " gain " of a bicolumn is

= — (No. of changes of sign in left-hand column) -f (No. in right-hand ditto),

the gain being of course positive or negative ; and a negative gain being regarded as

a loss. Also if a positive gain be converted into an equal negative gain or vice versa,

we may speak of the gain as reversed.
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23. A bicolumn may be divided in any manner into parts, taking always the last

row of any part as being also the first row of the next succeeding part. This being

so, the gain of the whole bicolumn is equal to the sum of the gains of its parts.

In a bicolumn of two rows, if we reverse either row (that is, write therein — for

+ and + for —), we reverse the gain : and hence dividing a bicolumn into bicolumns

each of two rows, viz. first and second rows, second and third rows, and so on, it at

once appears that if we reverse alternate rows (viz. either the first, third, fifth, &c.,

rows, or the second, fourth, sixth, &c., rows) we reverse the gain. It of course follows

that reversing all the rows, we leave the gain unaltered.

24. If to any bicolumn we prefix at the top thereof the second row reversed, we

either leave the gain unaltered or we alter it by + 1. In fact, as regards either

column, if this originally begin with a change, the process introduces no change therein
;

but if it begins with a continuation, then the process introduces a change. Hence if

the columns begin each with a change or each with a continuation, the gain is

inialtered : but if one begins with a change, and the other with a continuation, then

the gain is altered by + 1 ; viz. the left-hand column beginning with a continuation,

the gain is altered by — 1 : and the right-hand column beginning with a continuation,

the gain is altered by -t- 1.

The column PQRST... is taken to satisfy the following conditions: two consecutive

terms never vanish together (that is, for the same value of the variable): if for a

given value of the variable, any term vanishes, the preceding and succeeding terms

have then opposite signs ; the last term, say V, is of constant sign.

25. Considering P, Q as given functions without a common measure, such a column

of functions is obtained by the well-known process of seeking for the greatest common
measure, reversing at each step the sign of the remainder: viz. we thus derive a set

of functions R, S, T, ... where
P = \Q-R,

Q=^R-S,
R = i>S- T,

S = pT-U,

the degrees of the successive functions R, S, T, ... , being successively less and less,

so that the last of them, say V, is an absolute constant : or we may stop the process

as soon as we amve at a function V, the sign of which remains unaltered for all

values between the initial and final values of the variable. It may be observed that

the process may be regarded as applicable in the case where the degree of Q exceeds

that of P : viz. we then have \ = 0, R = — P, and the column begins (P, Q, — P, S,...),

the subsequent terms being, except as to sign, the same as if P, Q had been inter-

changed.

Reversing the sign of P or Q, we reverse in the bicolumn a sot of alternate

rows, and thus reverse the gain : and reversing both signs we reverse all the rows,
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and leave the gain unaltered—of course the intercalation (considered irrespectively of

sign) is in each case unaltered. It is convenient to take the signs in such manner

that for the initial value of x, the signs of P, Q shall be each positive : or, what

is the same thing, taking P, Q with their proper signs, we may in the bicolumn, by

reversing if necessary each or either set of alternate rows, make the left-hand column

to begin with the signs + +.

26. The complete rule now is—for a given trajectory form the bicolumn for

PQRS..., and if necessary, by reversing each or either set of alternate rows, make the

left-hand column to begin with -f -1- : then if there is a gain the intercalation begins

with P, if a loss with Q, the gain or loss showing the number of P's. To find the

number of Q's prefix at the top of the bicolumn the second row reversed—then the

gain or loss (equal to or differing by unity from the original value) shows the number

of Q's. It may happen that for P the gain is =0; then for Q the gain is or +1,

and the intercalation vanishes or is Q.

27. I give some simple examples.

2 4

p = ,r-i ;
- + +

(3=a;-:3|- - +

P =

P = a: - 3

Q=x-1
R= +1



561] CAUCHY S THEOREMS OF ROOT-LIMITATION. 31

Interval - 2 for P gain = 0, for Q gain =-1; Intercalation is Q;

0-4 „ „ =-l, Q first, „ „ =-1; „ „ QP

;

2-4 „ „ =4-1, P first, „ „ = 0; „ „ P.

28. Or to take a slightly more complicated example,

1 3 o + 6 7 9

P=a,-2- 8ie-|-12

Q =a^-12x-|-32

R = - x+ 5

S = +1

+ - - + +
+ + - - +

+ + + - -

+ + + + +

Q Q
12 3 4

And hence for the several intervals,

1_3 i_.5 i_7 i_9 3_5 3-7 3-9 5-7 5-9 7-9

- -
1

- +
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sable, azure, argent, gules, viz. iV^ is a left-handed root : the two points are accordingly

in the figure denoted by + M and - N respectively.

30. Now considering successively the four smaller squares of the figure, say these

are the squares N.E., S.E., S.W., N.W. : and going right-handedly round each of these

:

In the square N.E., the sequence and therefore also the intercalation is + P — Q+ P — Q,

viz. this is an intercalation (+ P — Q), showing an excess 1 of right-handed roots, and

of course consisting with the single right-handed root M.

In the square S.E., the sequence is —P + P, viz. this is an intercalation (PQ)o,

showing an equality of right- and left-handed roots, and consisting with uo root.

In the square S.W., the sequence and therefore also the intercalation is — P + Q — P + Q:

viz. this is an intercalation {— P + Q)^, showing an excess 1 of left-handed roots, and

consisting with the single left-handed root N.

And in the square N.W., the sequence is — Q + P — P+Q, viz. this is an inter-

calation {PQX, showing an equality of right- and left-handed roots, and consisting with

no root.

Again take the whole large square : the sequence is — Q+ Q: viz. the intercalation

is {PQX, showing an equality of right- and left-handed roots, and consisting with there

being one of each.

So taking the squares N.E. and N.W. conjointly, the sequence and therefore also

the intercalation is —Q + P — Q + P, viz. this is an intercalation (+ P — Q\, as for the

single square N.E.
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31. As regards the analytical determination it will be sufficient to consider a
single square, say N.E.

: going round right-handedly, the trajectories will be

(1) a- = 0, 2/ = to 3;

(2) 2/ = 3, * = to 3;

(3) « = 3, y = 3 to ; or if y' = - y, then y' = - 3 to ;

(4) 2/ = 0, x = S to 0; or if ;// = -*, then a' = - 3 to 0.

And we thus have

3

(1) P= f-*
Q= y -1
R= -1

(2) P= *-^ + .5

Q = - * + 2

R= -1

+
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The Rhizic Theory. Articles Nos. 32 to 38.

32. Consider now F{z) = {*){z, 1)" a rational and integral function of z, of the

order n with in general imaginary (complex) coefficients, or, what is the same thing,

let F(z)=/(z) + {(f)(z), where the functions /, (/> are real*. Writing herein z = (f + iy,

let P, Q be the real part and the coefficient of the imaginary part in the function

F{x + iy) : or, what is the same thing, assume

P + iQ =/(«

+

iy) + i'k (^ + iy)'

then it is clear that to any root a + {0 (real or imaginary) of the equation F (z) = 0,

there corresponds a real intersection, or root, x = a, y = 0, of the curves P = 0, Q = 0.

The functions, P, Q, as thus serving for the determination of the roots of the equation

F{z) = 0, are termed "rhizic functions," and similarly the curves P = 0, Q=0 are "rhizic

curves." The assumed equation shows at once that we have

or, what is the same thing,

And we hence see that

djP, Q)

d{x, y)
'

d,,(P + iQ)=id;,{P + iQ),

dyP=-d^Q, d^P=dyQ.

= (d^Py- + (dyPf, or [d^Qr + (dyQy-,

is positive: viz. that the roots P=0, Q = are all of them right-handed (the essential

thing is that they are same-handed ; for by reversing the signs of P and Q they

might be made left-handed : but it is convenient to take them as right-handed)

:

hence the theorem—which in the general case, where P and Q are arbitrary functions,

serves to determine the difference of the numbers of the right- and left-handed roots

—

in the particular case, where P and Q are rhizic functions, serves to determine the

number of intersections of the curves P — 0, Q = : or, what is the same thing, the

number of the (real or imaginary) roots of the equation F(z) = 0: viz. we thus deter-

mine the number of roots within a given circuit.

33. The rhizic curves P = 0, Q=0 have various properties. 1". Each curve has

n real points at infinity, or, what is the same thing, n real asymptotes : and the P
and Q points at infinity succeed each other, a P-point and then a Q-point, and .so

on, alternately.

In fact, from the equation

P + iQ = (a' + ia") {x + iyY + . . . + (^' + k"i),

writing herein a' + ia" = a (cos a + i sin a), and x +iy = p (cos B + i sin 6), we have

P + iQ = ap^ [cos {nd + a) + i sin (ne + a)]+ ... + Ic + k"i.

* It is assumed that the equation F(z) = has no equal roots: this being so, the curves P= 0, Q = 0,

will have no point of multiple intersection ; which accords with the assumption made in the general case of

two arbitrary curves.
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It thus appears that for the curve P = 0, the points at infinity are given by the

equation cos (nd + a) = ; while for the curve Q = 0, they are given by the equation
sin (nd + a) = : which proves the theorem.

Representing infinity as a closed curve or circuit, each point at infinity must be

represented by two opposite points on the cii-cuit ; so that writing down P for each

P-point and Q for each Q-point, we have 2n P's and 2n Q's succeeding each other,

a P-point and then a Q-point, and so on, alternately.

It may be assumed that taking the circuit right-handedly, the P's are + and
the Q's —

,
(this depends only on the colouring, but it corresponds with the foregoing

assumption that the roots P = 0, Q=0 are right-handed): the theorem just obtained

then really is that for the circuit infinity, the intercalation is {+P — Q)n'- and we have

herein a proof of the theorem that a numerical equation of the order n with real

or imaginary coefficients has precisely n real or iinaginary roots. But the force of this

will more distinctly appear presently.

3-i. 2". Neither of the curves P = 0, Q = can include as part of itself a closed

curve or circuit.

The foregoing relations between the differential coefficients give

d^-P + d,fP = 0, rf^^Q + d,fQ = 0,

which equations for the two curves respectively lead to the theorem in question. For

as regards the curve P = 0, take z a coordinate perpendicular to the plane of xy,

and consider the surface z = P : if the curve P = included as part of itself a closed

curve, then corresponding to some point (x, y) within the curve we should have z a

proper maximum or minimum, viz. there would be a summit or an imit; at the point

in question we should have dxP = 0, dxQ = 0; and also (as the condition of a summit

or imit) rf^-P . dy"P — {d^dyP)- = +, implying that d^P and dy-P have at this point

the same sign : but this is inconsistent with the foregoing relation dx-P + dy-P = 0.

35. 3°. The curves P = 0, Q = have not in general any double (or higher mult-

iple) points. A point which is a double (or higher multiple) point on one of these

curves is not of necessity a point on the other curve : but being a point on the other

curve it is on that curve a point of the same multiplicity. For changing if necessary

the coordinates, the point in question may be taken to be at the origin : forming the

equation

P + iQ= (a' + a"i) {x + iyj' + . . . + (/.•' -|- k"i) {x + iyf + {I' + l"i) {x + iy) + m 4- m'i = 0,

the point a; = 0, 3/
= will not be a double point on the curve P = 0, unless we have

m =0, V = 0, Z" = ; these conditions being satisfied, it will not be a point on the

curve Q = unless also m" = ; but this being so, it will be a double point on the

curve Q = : and the like for points of higher multiplicity. But a point which is a

multiple point on each curve, represents four or more coincident intersections of the

curves P=0, Q = 0, that is, four or more equal roots of the equation F{z) = 0; so

that assuming that the equation has no equal roots, the case does not arise: and we

in fact exclude it from consideration.

5—2
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To fix the ideas assume that the curves P = 0, Q=0 are each of them without

double points. As already seen, neither of them includes as part of itself a closed

curve. Hence in the figure the curve P =0 must consist of ?i branches each drawn

from a point P in the circuit (viz. the circuit infinity) to another point P in the

cii'cuit ; and in such manner that no two branches intersect each other : this implies

that the two points P of the same branch must include between them an even

number (which may of course be = 0) of points P. And the like as regards the curve

Q=0.

36. 4°. No branch of the P-curve can meet a branch of the Q-curve more than

once. In fact, drawing the two branches to meet twice, the colouring would at once

show that of the two intersections or roots, one must be right, the other left-handed

:

whence, the roots being all right-handed, the branches do not meet twice. And in exactly

the same way it appears that no P-branch can meet two Q-branches, or any Q-branch

meet two P-branches. And under these restrictions it requires only a consideration of

a few successive cases to show that the n P-branches, and the n Q-branches can only

be drawn on the condition that each P-branch shall intei-sect once and only once a

single Q-branch ; which of course implies that each Q-branch intersects once and once

only a single P-branch : and further, that there shall be precisely n intersections : viz.

the n P-branches and the n Q-branches must satisfy the conditions just stated. And

the theorem of the 9i roots is thus obtained as a consequence of the impossibility

{except under the same conditions) of drawing the n P-branches and the n Q-branches,

so as to give rise to right-handed roots only. But the case of double or higher

multiple points would need to be specially considered.

37. It is interesting for a given value of n to consider
(f>

(w), the number of

different ways in which the P-branches and the Q-branches can be drawn. We have

2n points P and 2n points Q, in all 4;i points : starting from any point P, these may

be numbei'ed in order 1, 2, 3,..., 4-n, the points P bearing odd numbers and the points

Q even numbers. We may consider the P-branch which joins 1 with some P-point

;S, and (intersecting this) the Q-branch which joins some two Q-points a and 7 : the

numbers laySy are then in order of increasing magnitude : and excluding these four

points there remain the points corresponding to numbers between 1 and a, between

o and ;8, between /3 and 7, and between 7 and 1. Now since the P-branch 10 meets

the Q-branch 07, no branch from a point between 1 and a can meet either of these

curves ; hence these points form a system by themselves, capable of being connected

together by P-branches and Q-branches: the number of them must therefore be a

multiple of 4 : and the like as to the points between a and /3, between y8 and 7, and

between 7 and 1. Taking the number of the points in the four systems to be

ix, iy, iz, and 4w respectively, we have x + y + z + w = n — l, and the first-mentioned

four points bear the numbers
1,

a = 4,« -I- 2,

/3 = 4« -t- 4?/ 4- 3,

y = 4^x + iy + 4'Z + 4;.
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For the four systems the number of ways of drawing the P- and Q-branches are

<f).v, (f)!/,
^z, <pw respectively : that is, x, y, z, tu being any partition whatever of n— 1

(order attended to), and </)(0) being = 1, we have

<l>(n) = t<j>(x)<j>(y)<}>{z)<t>(io\

which is the condition for the determination of <j)n.

Taking then 6 for the value of the generating function

l+t<}>(l) + t-4>{2) ... +<"^C«)+ ...,

it hereby appears that we have

or >\Titing this for a moment 6=u + 16\ and expanding by Lagrange's theorem, but

putting finally «= 1, we have the value of 6, that is of the generating function,

= i+Wx + [«Pif, + [i2?rT:3 +[M"-i:^,+...

that is,

<^(1) = 1, <^(2) = 4, <^(3)=22, ,^(4) = 140,...

and generally
[4n]"-i 4w.4)i-l ...3/1 + 2

</'(")=-[^. = 2737::^^ •

The results are easily verified for the successive particular cases ; thus n = 1, the

points are 1, 2, 3, 4, and the P- and Q-branches respectively are 13, 24: <^(\) = \.

Again « = 2, the points are 1, 2, 3, 4, .5, 6, 7, S: we may join 13, 24 or 13, 28 or

17, 28 or 17, 68, leaving in each case four contiguous numbers which may be joined

in a single manner: that is, (^(2) =4. Or, what is the same thing, the partitions of

1 are 0001, 0010, 0100, 1000, whence ^ (2) = 4 {(^(0)j= ^(1) = 4. Again n=3, the

partitions of 2 are 0002, &c. (4 of this form) and 1100 (6 of this form) : that is,

(/) (3) = 4 {(^ (0)}^ </) (2) + 6 {<^ (0)}- [^ (1)}-, = 4 . 4 + 6 . 1 = 22, and so on.

38. Starting from the 4?i points P and Q, and joining them in any manner

subject to the foregoing conditions, we have a diagram representing two rhizic curves

;

and colouring the regions we verify that the n roots are all of them right-handed.

We have for instance the annexed figure (h = 3).

Having drawn such a figure we may, by a continuous variation of the several

lines, in a vaiiety of ways introduce a double point in the P-curve, or in the Q-curve :

and by a continued repetition of the process introduce double points in each or either

curve: thus for instance we may from the last figure derive a new figure in which

the P-curve has a node at N. It will be observed that here it is no longer the case

that each P-branch intersects one and only one Q-branch : the P-branch 1-9 does

not meet any Q-branch, but the P-branch 7-11 meets two Q-branches. But looking

at the figure in a different manner, and considering the P-branches through N as
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being either 11-iV-l and 7-iV-9, or l-N-7 and 9-iV-ll, then in either

case each P-branch intersects one and only one Q-branch : and in this way, in a

diagram in which the two curves have each or either of tliem double points, but

neither curve passes through a double point of the other curve, the theorem may be

regarded as remaining true—we in fact consider the diagram as the limit of a diagram

wherein the curves have no double points. It will be recollected that, the equation

F{z) being without equal roots, we cannot have either curve passing through a multiple

point of the other curve. And we thus see that the various figures drawn as above

without double points are, so to speak, the types of all the different forms of a system

of rhizic curves P = 0, Q = 0.
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111 connexion with the present paper I give the following list of Memoirs :

—

Cauchy. Calcul des Indices des fonctions. Jour, de I'Ecole Polyt. t. xv. (1837),

pp. 176—229. First part seems to have been written in 183.3 : second part is

dated 20th June, 1837. Refers to a memoir presented to the Academy of Turin

the 17th Nov. 1831, wherein the principles of the "Calcul des Indices des fonctions"

are deduced from the theory of definite integrals : I have not seen this.

Sturm and Liouville. Demonstration d'un theoreme de M. Cauchy relative aux racines

imaginaires des e'quations. Liouv. t. I. (1836), pp. 278—-289.

Sturm. Autres demonstrations du meme theoreme. Liouv. t. i. (1836), pp. 290—308.

These two papers contain proofs of the particular theorem relating to the roots

of an equation F{z) = 0, but do not refer to the general theorem relating to the

intersection of the two curves P = 0, Q = : the special theorem of the existence

of the n roots of the equation F{2) = is considered.

Sylvester. A theory of the syzygetic relations of two rational integral functions, com-

prising an application to the theory of Sturm's functions and that of the gi-eatest

algebraical common measure. Phil. Trans, t. CXLIII. (18-53), pp. 407—.548.

De Morgan. A proof of the existence of a root in every algebraic equation, with an

examination and extension of Cauchy's theorem on imaginary roots, and remarks

on the proofs of the existence of roots given by Argand and Mourey. Camb.

Phil. Trans, t. x. (1858), pp. 261—270.

Contains the important remark that the two curves P = 0, Q=0 are such

that two branches, one of each curve, cannot inclose a space ; also that the two

curves always [i.e. at a simple intersection] intersect orthogonally.

Airy, G. B. Suggestion of a proof of the theorem that every algebraic equation has

a root. Camb. Phil. Trans, t. X. (1859), pp. 283—289.

Cayley, A. Sketch of a proof of the theorem that every algebraic equation has a

root. Phil. Mag. t. xviii. (1859), [248], pp. 436—439.

Walton, W. On a theorem in maxima and minima. Quart. Math. Jour. t. x. (1870),

pp. 253—262. Cayley, A. Addition thereto, [5G2], pp. 262, 263. (Relates to the

curves P = 0, Q = 0.)

Walton, W. Note on rhizic curves. Quart. Math. Jour. t. xi. (1871), pp. 91—98.

First use of the term " rhizic curves
:

" relates chiefly to the configuration of each

curve at a multiple point, and of the two at a common multiple point.

Walton, W. On the spoke-asymptotes of rhizic curves. Quart. Math. Jour, t. xi.

(1871), pp. 200—202.

Walton, W. On a property of the curvature of rhizic curves at multiple points.

Quart. Math. Jour. t. xi. (1871), pp. 274—281.

BJorling. Sur la separation des racines d'dquations alg^briques. Upsala, Nova Acta

Soc. Sci. (1870), pp. 1—35. (Contains delineations of some rhizic curves.)
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562.

[ADDITION TO MR. WALTON'S PAPER "ON A THEOREM IN

MAXIMA AND MINIMA."]

[From the Quarterly Journal of Pure and Applied Mathematics, vol. x. (1870),

pp. 262, 263.]

In what follows I write x, y, z in place of Mr Walton's u, v, to : (so that if

i = V(— 1), as usual, we have

f(.x + iy) = P + iQ):

and I attend exclusively to the case where the second differential coefficients of P, Q
do not vanish.

There are not on the surface z = P any proper maxima or minima ; but only level

points, such as at the top of a pass : say there are not any summits or imits, but

only cruxes ; and moreover at any crux, the two crucial (or level) directions intersect

at right angles. Every node of the curve Q = is subjacent to a crux of the

surface z =P: and moreover the two directions of the curve Q = at the node are

at right angles to each other; hence, considering the intersection of the surface z =P
by the cylinder Q = 0, the path Q = on the surface has a node at the crux ; or say

there are at the crux two directions of the path ; these cross at right angles, and are

consequently separated the one from the other by the crucial directions ; that is to

say, there is one path ascending, and another path descending, each way from the

crux. And the complete statement is ; that the elevation of the path is then only a

maximum or minimum when the path passes through a crux ; and that at any crux

there are two paths, one ascending, the other descending, each way from the crux.

The analytical demonstration is exceeding simple ; we have

\dy dyJ \.dx dxj'
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that is,

dp _
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563.

NOTE ON THE TRANSFORMATION OF TWO SIMULTANEOUS
EQUATIONS.

(From the Quarterly Journal of Pure and Applied Mathematics, vol. xi. (1871), pp. 266, 267.]

Writing in Mr Walton's equations (1) and (2)

a b c a /3 y

d' d' d' I' S' 8

instead of a, b, c, a, /3, 7 respectively; and putting for shortness

A=by-cl3, F = aB - da,

B = ca - ay, G =bS- d/3,

C =a/3-ba, H = ch- dy,

the equations become
a(b-c) bJG-a) c (a-b) _
F ^ G ^ H ~^'

a(/3-7)
,

/g(7-a
) ,

y{a-/3) _^
F ^ G ^ H ~^-

Multiplying by FGH and effecting some obvious transformations, the equations become

aAF+ bBG+cCH = 0]

aAF+^BG + yCH=:OJ
^^^^'

whence also

AF'+ BG'+ GH' = (19).

Now regarding (a, /3, 7, 0) as the coordinates of a point in space, the equations

(18) and (19) represent each of them a cone having for vertex the point a : ^ : y : B

= a : b : c : d, viz. (18) is a quadric cone, (19) a cubic cone ; they intersect therefore

in six lines ; and it may be shown that these are

the line a : ^ : y= a : b : c (twice) 2

^ : y : S = b : c : d 1

„ y : a : 8 = c : a : d 1

,, a : f3 : 8 = a : b : d 1

„ ^ — y:y~a:a — j3:8 = b — c:c — a:a — b:d 1

"6,

agreeing with Mr Walton's result.
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564.

ON A THEOREM IN ELIMINATION.

[From the QuaHerly Journal of Pure and Ai^pUed Mathematics, vol. xii. (1873), pp. 5, 6.]

I FIND among my papers the following example of a theorem in elimination com-

municated to me by Prof Sylvester. Writing

(^ = aa? + Sbx-y + 2cxy- + dy',

(^1 = hx- + Icxy + dy-,

(j)„= ex +dy

,

f =ha? + Sca^y + Sdxy- + ey^,

fi = car + 2dxy + ey-,

f„= dx +ey,

/s = e ,

then we have
A„ . R (/ <^) = A/. E {4>,, f,Y R (</.„ /.,n

viz. R{f, <l>)
is the resultant of the functions (/, (f)),

and similarly R{<f>i,fi), R((j)^, f.).

Moreover, A/ is the discriminant of /; and A„i? (/, (j>) is the discriminant of R (/, (j))

in regard to a. The equation thus is

A„ [(ae - ibd + Sc-f - 27 (ace - ad'' - iPe -& + 2hcdY]

= {Jfe^ 4- 4&(^3 + 4c3g _ 3c'2^2 _ Qicdef (d' - 2cde + be-y
;

or, what is the same thing, reversing the order of the letters (a, b, c, d, e), it is

A, [(ae - ^bd + 3c=)^ - 27 {ace - ad' - 6-e - c= + 26crf)]

= {a-d- + 4«c^ + Wd - U-& - Q>abcdY {¥ - 2abc + a-dy,

6—2
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viz. arranging in powers of e, the function is

e*. ft'

+ 8e- . - a'' {4<bd - Sc-) - 9 {ac - 6^-

+ Se . a {ibd - HcJ + 18 (ac - 6=) (ad"- - 2bcd + c')

+ 1 .
- (46d - 3c-)' - 27 {ad^ - 2bcd + c'f,

which last coefficient is

= - c^- (27a-=c^= + 5400= + 6Wd - 36b-c- - lOSabcd),

and the discriminant of this cubic function of e is

= (ft=d- + 4ac' + 46'rf - Sb-c- - Gabcdf {¥ - 2abc + a'df.

The occurrence of the factor

a-d- + iaxf + 4<b^d - Sb'c- - 6abcd

is accounted for as the resultant in regard to e of the invariants /, J; we, in fact,

have

(ac -b-)I-aJ= {ac - b-) (- 46c? + Sc") -a{-ad--(f+ 2bcd)

= a^d- + iac' + 4.¥d - 36V- 6abcd,

and the identity itself may be proved without any particular difficulty.
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565.

NOTE ON THE CAETESIAN.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xii. (1873),

pp. 16—19.]

The following are doubtless known theorems, but the form of statement, and the

demonstration of one of them, may be interesting.

A point P on a Cartesian has three " opposite " points on the curve, viz. if the

axial foci ai-e A, B, C, then the opposite points are P„, Pj, Pc where

Pa is intersection of line PA with circle PBG,

Pb „ „ PB „ PGA,

Pc „ „ PC „ PAB.

And, moreover, supposing in the three circles respectively, the diameters at right angles

to PA, PB, PC are oa', ^8/3', 77' respectively, then the points a, a', ^, 0, 7, 7' lie by

threes in two lines passing through P, viz. one of these, say Pa/37, ^^ ^^^ tangent,

and the other Pa'fi'y the normal, at P; and then the tangents and normals at the

opposite points are P„a and P„a', Pi,/3 and Pj/S', Pc7, and P„7' respectively.

There exists a second Cartesian with the same axial foci A, B, C, and passing

through the points P, P„, Pj, Pc (which are obviously opposite points in regard

thereto) ; the tangent at P is Pa'ySV and the normal is Pa^7 ; and the tangent and

the normal at the other points are P^a' and P„a, Pfc/S' and Pj/S, Pc7' and P<;7 respec-

tively : viz. the two curves cut at right angles at each of the four points.

Starting with the foci A, B, C and the point P, the points P„, Pj, Pc are con-

structed as above, without the employment of the Cartesian ; there are through P
with the foci A, B, C two and only two Cartesians; and if it is shown that these

pass through one of the opposite points, say Pt,, they must, it is clear, pass through



46 NOTE ON THE CARTESIAN. [565

the other two points Pa, Pc- I propose to find the two Cartesians in question. To

fix the ideas, let the points C, B, A be situate in order as sho\\n in the figure, their

distances from a fixed point being a, b, c, so that writing a, /3, y = b-c, c-a, a — b

respectively, we have a + /3 + 7 = 0, and a, 7 will represent the positive distances GB
and BA respectively, and — /8 the positive distance AG. Suppose, moreover, that the

distances PA, PB, PG regarded as positive are R, S, T respectively; and that the

distances Pi,A, P^B, P^G regarded as positive are R', S', T respectively.

Suppose that for a current point Q the distances QA, QB, QG regarded as

indifferently positive, or negative, are r, s, t respectively ; then the equation of a

bicircular quartic having the points A, B, G for axial foci is

h- + ms + lit = 0,

where I, m, n are constants; and this will be a Cartesian if only

I- m- n'^ „
- + -^ + - = 0.
a P 7

We have the same curve whatever be the signs of I, m, n, and hence making the

curve pass through P, we may, without loss of generality, write

lR + mS + nT=0,

R, 8, T denoting the positive distances PA, PB, PG as above. We have thus for

the ratios I : m : n, two equations, one simple, the other quadric

;

and there are thus

two systems of values, that is, two Cartesians with the foci A, B, G, and passing

through P.

I proceed to show that for one of these we have —lR' + mS' + nT' = 0, and for

the other IR' +inS' -nT' = 0, or, whut is the same thing, that the values of I : m : n are

I : m : n = - (ST' + S'T) : TR' + T'R : RS' - R'S,

and
I : m : n= {ST' - S'T) : - {TR + T'R) : RS' + R'S;

viz. that the equations of the two Cartesians are

= 0,r ,
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respectively ; this being so each of the Cartesians will, it is clear, pass through the

point Pft, and therefore also through P„ and Pc-

The geometrical relations of the figure give

oR- + ^>S= +r^T- = - a/37,

cxi2'2 + /3S'2 + 7?"= = - a/37,

iir + PT=-/3(.Sf + S'),

7a = SS',

r/TT' = aiJiJ',

to which might be joined

E^S + 7= {S + ,S') + R'S' = 88' {8 + 8'),

T"-S + a= {8 + 8') + T'8' = 88' (8 + 8'),

8R'T' = 8'RT,

SP'R' = 8'PR,

but these are not required for the present purpose.

As regards the first Cartesian, we have to vei'ify that

(Sr + 8'Ty- (TR'+TRf (R8' - R'S)- ^ ^
a ^ 7

~
'

The left-hand side is

8'T'- + <S'-r° + 2yaTT' ^' (8' + 8'"- + 2ycc) S^-R'"- + 8'"'R' - 2yaRR'

a
+

^
+

7
viz. this is

= .S-^ (^ + j8 + -') + 6"= (^' + yS + -) + 2a/37 + 2 (yTT' - aRR),

which is

and since the first and second terms are together = — 2 — 8-8'-, that is, = — 2a/37,
701

the whole is as it should be = 0.

In precisely the same manner we have

(,ST' - S'T)' jTE' + T'Rf (R8' + R'Sf
H 75 + — ")

« P 7

which is the condition for the second Cartesian : and the theorem in question is thus

proved.
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5QQ.

ON THE TRANSFORMATION OF THE EQUATION OF A SURFACE

TO A SET OF CHIEF AXES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xii. (1873),

pp. 34—38.]

We have at any point P of a surface a set of chief axes (PX, PY, PZ), viz.

these are, say the axis of Z in the direction of the normal, and those of X, Y in

the directions of the tangents to the two curves of curvature respectively. It may

be required to transform the equation of the surface to the axes in question; to

show how to effect this, take («, y, z) for the original (rectangular) coordinates of the

point P, X + hx, y + hy, z + Zz for the like coordinates of any other point on the

surface, so that (S«, hy, 80) are the coordinates of the point referred to the origin P;

the equation of the surface, writing down only the terms of the first and second

orders in the coordinates 8a;, hy, Sz, is

ABx + BBy + CSz+^a, h, c, f, g, h){Sx, Sy, Sz)'- + &c. = 0,

where (A, B, G) are the first derived functions and (a, 6, c, /, g, h) the second derived

functions of V for the values {x, y, z) which belong to the given point P, if f7=0

is the equation of the surface in terms of the original coordinates {x, y, z); we have

X, Y, Z linear functions of {hx, hj, Bz) ; say

8a;
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or, as this may be written,

X {Aa^ + 5/3, + Gy,) + Y{Aa. + 5^9, + Cy,) + Z{Aa + B^ + Cy)

+ iX"- (a,. ..)(«!, |3^, 7.)^

+ iY"- (a,. ..)(«., A. 7=)^

+ ZF(a, ...)(«!, /3i, 7:)(«-.. A. 7=)

+ .Y^(a, ...)(a„ A, 7i)(a, /3, 7)

+ r^ (a, ...)(«.. /9=, 7=) (a, /8, 7)

+ iZ^' (ffl, ...)(a, ^,7)' +&c.=0,

where the &c. refers to terms of the form (X, F, Zf and higher powers.

But in order that the new axes may be chief axes, we must have

Aa, + £/3i + Cy, = 0,

AcL, + B/3, + Gy„ = 0,

(a,...) (a,, A, 7i)K /3., 7:) = 0,

so that putting for shortness

Aa+B^ + Cy=V

,

the equation becomes

VZ + ^X'- (a,...)(a„ /3,, y,f + ^Y-^{a, ...){a,, /3,. y,y

+ XZ(a,...)(a„ yS„ 70(«, /3, 7)

+ YZ{a,...)(a,, 13,, 7,) (a, /3, 7)

+ ^Z"- (a, ...)(a , /3, 7)= +&C. =0.

We have

that is,

and thence

I write

A : B : = ^70-^7, : 7,a. - 7,31 : a,/3,-a.A,

= a : ^ : y ,

and also for a moment

P

- = (a, ...)(a„ /3i, 7,)-,

Pi

= fa , /( , g j (ofi, /3i, 7i),

Pi

R =
[ 9 , f , c-^Jk, a. 7.)-

C. IX.
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We find

ON THE TRANSFORMATION OF THE EQUATION OF A [566

Pa, + QA + i^Ti = («,-••) («i, ^u 7iy- - -
.
= 0,

Pi

Pi

and thence

= a : ^ : 7 ,

P, Q, R = e,A, e,B, 9,G;

we have thus the equations

say

and joining hereto

(a-^, h , g )(ai, A, 70 = M,

(
h , b-K f )(«:, A. 7i) = ^.5>

^ , / ,
c-^ («:, /3„ 7i) = ^iC'.

Pi/

(^, £, OXa,, A, 7i) = 0,

we eliminate Oj, /Sj, 71 and obtain the equation

1
a —

Pi

h , g , A

and in like manner writing

h , b--, f , B
Pi

9 , f , c--,
Pi

A , B , C ,

1

0,

P".

= (a,...)K, /S,, 7,)^

we have the same equation for p,; wherefore p^, p^ are the roots of the quadric equation

a— , h
P

fj
, ^

h , b--, f ,
B

P
^

9 . f ' ^~p' ^

- A , B , C ,

= 0.
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Moreover, p,, p., being thus determined, we have, a,, /3i, 71, 9^ proportional to the

determinants formed with the matrix

a —
1

Pi'

I,

b-
Pi

9 .
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567.

ON AN IDENTICAL EQUATION CONNECTED WITH THE THEORY
OF INVARIANTS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xii. (1873),

pp. 11.5—118.]

Write
a = g-h,

b = h-f,

equations implying a fourth equation forming with them the system

. —h-\-g — a = 0,

h . -/-6=0,

-9+f . -c =0,

a + b +c . =0,

and also

af+ bg + ch = 0.

Then, putting for shortness

P = {bg-ch)(ch-af)iaf-bg),

Q = ay-k' + b-h-f- + c-fy + a'b^c\

R = a?p (a= +f-) + by (¥ + g") + c'h' (c- + h%
we have

2P+Q-R = 0,

viz. substituting for a, b, c their values g — h, h—f, f—g, this is an identical equation.
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The direct verification is however somewhat tedious, and the equation may be

proved more easily as follows

:

In the terms «"+/-, b- + g-, c' + h" of R, substituting for a, b, c their- values, we

find

R = {f' + cf + Ir) (cC'f- + by + cVr)

-2fgh{a'f+b"-g + c"-h),

which may be written

R = -2(p-hg' + h-) (bcgh + cahf+ ahfg)

-2fghiaY+b"-g + c'k).

We have then

2P = - 2bcgh (bg - ch) - 2cahf(ch - af) - 2ab/g {af- bg),

and thence

2P-R = 2bcgh (/"- + g"- + h- -bg + ch)

+ 2cahf {/- +g- + h- -ch + af)

+ 2abfg(p+g"- + h'-af+bg)

+ 2/5r/i(a=/+6=5r+c=/i),

which is at once converted into

2P-R=2bcgh{a^+f(f+g + h)\

+ 2cahf{¥+g{f+g + h)}

+ 2abfg{c^+h(f+g + h)]

+ 2fgh{a'f+b'g+c'h);

or, what is the same thing,

2P-R = 2fgh {{be + ca + ab) {f+g + h) + a-f+ b-g + c-h\ + 2abc {agh + bhf+ cfg),

where, since

agh + bhf+ cfg = — abc,

the last term is

= — 2a-6-cl

But from the equation last written down we deduce at once

Q = 2a''b''c' - 2fgh {bcf+ cag + abh),

and we thence have

2P+Q-R= 2fgh [{be + ca +ab){/+g + h) + {a-f+ b^g + c%) - bcf- cag - abh},

which is

= 2fgh {a + b + c) {af+ bg + ch),

and consequently = 0, the theorem in question.
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Instead of a, h, c, f, g, h, I write aTF- YZ, bW-^ZX, cW ^ XY, f^ X, g ^Y, h^Z

:

we have therefore

. -hY+ gZ-aW=0,
hX . -/Z-bW = 0,

-gX+fY . -cF=0,

aX+hY+cZ . =0,
and as before

a/+ hg + ch = 0.

Moreover, omitting a common factor, the new values of P, Q, R are

P = XYZW (bg - ch) (ch - af) (af- bg),

Q = aYh'X' + ¥h'f-Y' + c'fy-Z' + a'b'c'W*,

R = a'/' (a'X' Tf- +/- Y'Z') + by (b"- F-W + g'Z'X"-) + c'h' (c'Z'W + h"-X"- Y'),

and the identical equation is, as before,

2P + Q-R = 0.

Consider the operative symbols

dz„ d:r,, d-e,, ^x..

dy,, dy^, dy^, dy^,

and write a = d^^dy^ — dydx, = 12, &c., that is

a = 23, /=14,

6 = 31, ^ = 24,

c = 12, h = 34,

and also X = xdxi + ydy^, ^'^- ^^Y

Z=Vi, F=V„, ^=V3, W=y,.

These values of a, b, c, /, g, h, X, Y, Z, W satisfy the above written equations of

connexion, and therefore the identical equation 2P + Q — R = 0. Hence taking U to

denote the quartic function U = {a, b, c, d, e){x, yf, and therefore Ui = {a, ...){Xi, y^)*, &c.,

we have
{W + Q- R)U,UM,U, = (i,

where, after the differentiations, {x^, y^),..., (x^, y^) are to be each of them replaced by

(«. y)-

Observe that P is the sum of three positive and three negative terms, but that

after the omission of the suffixes each term taken with its proper sign becomes equal

to the same quantity, and the value of P is =6 times any one term thereof Thus

omitting for the moment the factor V1V2V3V4, two of the terms are —(afybg + af{bgy,

that is,

- (14 . 23)= (24 . 31) + (14 . 23H24 . 31)=,
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and, if in the first term we interchange 3 and 4, it becomes — (13 . 24)- (23. 41), that

is, +(14. 23) (24. 31)^ viz. it becomes equal to the second term. As regards Q the

terms are all positive and become equal to each other; and the like as i-egards R:
hence we have

{12VjV„V3V,(14.23)(24.31)= + 4V,^(2.3)H34)H'12)=-6Vi=V/(43)ni4)'') U,U,U,U,=-0,

which, omitting a numerical factor 6. 2 , 12- . 2 .
24'-. 4, = 3"*

. 2^'*, is in fact the well-known

equation

n + JU-IH = 0,

where

U=(a, b, c, d, e){x, y)*,

12 = disct. (ax + by, bx + cy, ex + dy, dx + ey) (^, i/)'

= (ax + by)- (dx + eyf + &c.,

I = ae — 46d + 3c-,

J=ace- ad'' - b'^c -& + 2bcd,

viz. attending only to the coefificient of ar*, this equation is

- a^'d' + 4ac= + 46'fZ - 36=^0- - 6abcd + a (ace - ad" - b-e - c'+ 2bcd) + (ac - b'') (ae - 46ci + Sc') = 0.
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568.

I
cos 3(? dx AND I

jo jo
NOTE ON THE INTEGRALS | cos afcZa; AND ( sina^dx.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xii. (1873),

pp. 118—126.]

Mr Walton has raised, in relation to these integi-als, a question which it is very

interesting to discuss. Taking for greater convenience the limits to be — oo , + oo , and

writing

2u = I cos x-dx, 2v — I sin a^dx,
J — CO J — <X)

then we have
/oo /"oo

I COS (^ + y-) dx dy,
— 00 J —00

Too Too

8i«'y = I I sin {a? + y-) dx dy,
J — oo J — oc

and writing herein x = r cos d, y = r sin 0, and therefore dxdy = rdr d^, it would thence

appear that we have
roo r2iT Coo

4(m-— w-)=l I cos 1-^ .rdrdd =:i-Tr\ cos r-.rdr,
jo JO Jo

8mj;=I I sin r^ .7-drdd = 2-n- j sin t^.rdr,
J J Jo

or, finally

4 (m- — i;-) = tt sin oo
,

Smd = tt (1 — cos 00 );

that is, either the integi-als have theii' received values -leach =
//^\\ > ^^^ ^^^^n

sin 00 = 0, cos 00 = ; or else the integi-als, instead of having their I'eceived values, are

indeterminate.
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The error is in the assumption as to the limits of r, 6; viz. in the orioinal

expressions for i(u--v''), 8uv, we integrate over the area of an indefinitely large square
(or rectangle); and the assumption is that we are at liberty, instead of this, to
integi-ate over the area of an indefinitely large circle.

Consider in general in the plane of xy, a closed curve, surrounding the origin,

depending on a parameter k, and such that each radius vector continually increases

and becomes indefinitely large as k increases and becomes indefinitely large : the curve
in question may be referred to as the bounding curve ; and the area inside or outside

this curve as the inside or outside area. And consider further an integi-al ijzdxdy,

where ^ is a given function of a:, ij, and the integration extends over the inside area.

The function z may be such that, for a given form of the bounding curve, the integi-al,

as k becomes indefinitely large, continually approaches to a determinate limitino- value

(this of course implies that z is indefinitely small for points at an indefinitely large

distance from the origin) ; and we may then say that the integral taken over the

infinite inside area has this determinate value ; but it is by no means true that the

value is independent of the form of the bounding curve ; or even that, being determ-

inate for one form of this curve, it is determinate for another form of the curve.

I remark, however, that if z is always of the same sign (say always positive)

then the value, assumed to be determinate for a certain form of the bounding curve,

is independent of the form of this curve and remains therefore unaltered when we
pass to a different form of bounding curve. To fix the ideas, let the first form of

bounding curve be a square {x=±k, y= ± k), and the second form a circle {or + y- = k'-).

Imagine a square inside a circle which is itself inside another square ; then z being

always positive, the integral taken over the area of the circle is less than the integral

over the area of the larger square, greater than the integi-al over the area of the

smaller square. Let the sides of the two squares continually increase, then for each

square the integral has ultimately its limiting value ; that is, for the area included

between the two squares the value is ultimately = 0, and consequently for the circle

the integi-al has ultimately the same value that it has for the square. When z is

not always of the same sign the proof is inapplicable ; and although, for certain

forms of z, it may happen that the value of the integi'al is independent of the form

of the bounding curve, this is not in general the case.

We have thus a justification of the well known process for obtaining the value

of the integral 1 e'^' dx, viz. calling this u, or writing
Jo

2u =
j

e ^^ dx,
J —00

then

4((-2= e-''^+y'>dxdy= e-'^rdrde

= 27r . ^, or u = ^ ;/('").

C. IX.
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but in consequence of the alternately positive and negative values of cosa^ and sina;=,

we cannot infer that the like process is applicable to the integrals of these functions.

To show that it is in fact inapplicable, it will be sufficient to prove that the

integrals in question have determinate values ; for this being so, the double integi-als

(
I cos {w- + y-) dx dy and ij sin {x- + y-)dx dy, taken over an infinite square (or, if we

please, over a rectangle the sides of which are both infinite, the ratio having any value

whatever), will have determinate values ; whereas, by what precedes, the values taken

over an infinite circle are indeterminate. The thing may be seen in a very general

sort of way thus : consider the surface z = sin {x- + y"), and let the plane of xy be

divided into zones by the concentric circles, radii \/(7r), \/(2'7r), -/(Stt), &c. ..., then in

the several zones z is alternately positive and negative, the maximum (positive or

negative) value being + 1 ; and though the breadths of the successive zones decrease,

the areas and values of the integral remain constant for the successive zones; the

integral over the circle radius \/{mr) is thus given as a neutral series having no determ-

inate sum. But if the plane xy is divided in like manner into squares by the lines

x = ± \/(ntr), y=± •Jintr), then in each of the bands included between successive squares,

z has a succession of positive and negative values; the breadths continually diminish,

and although the areas remain constant, yet, on account of the succession of the

positive and negative values of z, there is a continual diminution in the values of

the integral for the successive bands respectively, and the value of the integral for

the whole square is given as a series which may very well be, and which I assume

is in fact, convergent. Observe that I have not above employed this mode of integration

(but by considering the single integral have in effect divided the square into indefinitely

thin slices, and considered each slice separately); it would be interesting to carry out

the analytical division of the square into bands, and show that we actually obtain a

convergent series; but I do not pursue this inquiry.

Consider the integral

V = I sin x^ dx,
Jo

and taking for a moment the superior limit to be (ft+l)7r, then the quantity under

the integral sign is positive from af = to x'^ = ir, negative from x- = tt to «- = 27r, and

so on ; we may therefore write

/,'0

where

(»l+l)ir

sin «= da; = ^0-^1 + ^2 ... + (-)"^„,

I,., = (— )'
I sin oi?dx,
J rtr

is positive. Writing herein x^ = rir + u, we have

-if
sin udu
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Jo jo

which, for r large, may be taken to be

f" sin udu 1

^0 V(r7r) '

V(»-7r)'

viz. ? being large, we have Ar differing from the above value -j—— by a quantity

of the order ^

.

It is obviously immaterial whether we integrate from a:^ = to (?i + l)7r or to

(M+l)7r+6, where e has any value less than tt ; for by so doing, we alter the value

of the integi-al by a quantity less than An+i, and which consequently vanishes when n

is indefinitely large. And similarly, it is immaterial whether we stop at an odd or

an even value of n.

We have therefore

v= i sin X- dx = Ao- Ai + A.,... + {-)" An,
Jo

or, taking n to be odd, this is

= .0.0 — Ai + A.2 ... — An,

or, say it is

= {A,-A,) + {A,-A,)...+ {An-^ - An),

viz. n here denotes an indefinitely large odd integer.

If instead of A„ — Ai + A., — A3 + Sac, the signs had been all positive, then the

term A being ultimately as -j^. , the series would have been divergent, and would

have had no definite sum : but with the actual alternate signs, the series is convergent,

and the sum has a determinate value. To show this more distinctly, observe that we

have

4 A — ( V-i 1 {" ^^^ ^''''" "*" '*^ du _ ^ C" sin udy

or, taking the integral from — tt to and from to tt, and in the first integral

writing — u in place of u, then

A,._i-Ar = ^i sin udu l— c-^7 ;—^f >

J iV('"^ - «*) V (»"7r + u))

where, r being large, expanding the term in { )
in ascending powers of u, then

Ar-i-Ar is of the order -^ : and the series (At)-Ai)+(A„ — A3)... + {An-i~A„) is

therefore convergent, and the sum as n is increased approaches a definite limit. Hence

the integral v has a definite value : and similarly, the integral u has a definite value.

8—2
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The values of u, v being shown to be determinate, I see no ground for doubting

that these are the values of the more general integrals

I e-"^- cos Of' dx, I e""^'' sin x- dx,

.'o -'0

(a real and positive) when a is supposed to continually diminish and ultimately become

= 0. We have, in fact, (a as above)

I p{-a+ln)y yn-i fly — V__^ *

where ^ = tan"' - , an angle included between the limits - W, + W- Writing herein
a °

n = ^, 6 = 1, y = x", then

fJo
g(-a+,-|j:2 ^^ =

2(a=+l)i'

where 6 = tan"^ - , an angle included between the limits - iir, + W ;
or, putting herein

a °

a = 0, we have = ^tt, and therefore

.

that is, equating the real and imaginary parts,

which are the received values of the integrals

II = cos *'- dx, V =
I

sin x- dx.
Jo JO

An important instance of the general theory presents itself in the theory of elliptic

functions, viz. the integi-al

dx dy

il(ilx + Ty)-

'

the ratio H : T being imaginary, will, if the bounding curve be symmetrical in regard

to the two axes respectively, have a determinate value dependent on the form of the

hounding curve; if for instance this is a rectangle x=±ak, y = ±bk, then the vahie

of the integral will depend on the ratio a : 6 of the infinite sides; and so if the

bounding curve be an infinite ellipse, the value of the integral will depend on the

ratio and position of the axes. See as to this my papers " On the inverse elliptic

* For brevity I take the integral under this form, but the real and imaginary parts might have been

considered separately ; and there would have been some advantage in following that course. The like remark

applies to a subsequent investigation.
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functions," C«»i6. Math. Jour., t. iv. (1845), pp. 257—277, [24]; and " Memoire sur les

fonctions doublement pdriodiqvies," Liouv. t. x. (1845), pp. 385—420, [25].

A like theory applies to series, viz. as remarked by Cauchy, although the series

Ao + Ai + A.. + ... and Bo+ Bj + 3., + &c. are respectively convergent, then arranging the

product in the form

A„B, + A„B, + A,B,+ ...

+ A,B, + AA + A,B,+ ...

+ A,B, + A,B, + A,B,+ ...

say the general term is C*„,,,i, then if we sum this double series according to an

assumed relation between the suffixes ?w, n (if, for instance, we include all those terms

for which m" + n- < k-, making k to increase continually) it by no means follows that

we approach a limit which is equal to the product of the sums of the original two

series, or even that we approach a determinate limit.

Mr Walton, agreeing with the rest of the foregoing Note, wrote that he was

unable to satisfy himself that the value of I e'^'' dx is correctly deduced from that of
Jo

I e'~""''*''^</"~'rZy. Writing n = ^, the question in fact is whether the formula

ei-a+bi)y y-i dy ^ p.r-^, [6 = tan-i - , angle between ^tt, - iTrj

,

which is true when a is an indefinitely small positive quantity, is true when a = ;

that is, taking h positive, whether we have

V(6)

Write in general

Jo

then, differentiating with respect to b, we have

du

db J

or, integrating by parts,

du _ i

db — rt + bi

,J ,.-«.... __l_.|%-ie----dy.



62 NOTE ON THE INTEGRALS I COS of dx AND I SlliX-dx. [568

where the first term is to be taken between the limits =o , ; viz. this is

dii

db

^ yig{-a+bi)y

-a + bi^
—. u.

2 (- o + Z)i)

When a is not =0, the first term vanishes at each limit, and we have

du — i

db~2{-a + hi)
^'

The doubt was in effect whether this last equation holds good for the limiting value

du

db

db

db

a = 0. When a is =0, then in the original equation for -tt the first term is indeterm-

inate, and if the equation were true, it would follow that ^ was indeterminate; the

original equation for ^ is not true, but we truly have

du _ 1

which for a moment I ^viite

u

the same result as would be obtained from the general equation, rejecting the first

term and writing a = 0.

To explain this observe that for a = 0, we have

u = I y~^ e^ dy,
Jo

rh

= I y-ie^'>ydy,
Jo

where, as before, b is taken to be positive. Writing herein by = x, we have

and assuming only that the integral I x~ie'^dx has a determinate limit as 31 becomes
-'0

indefinitely large*, then supposing that k is indefinitely large, the integral in the last-

mentioned expression for u has the value in question

f=
I

x-^ e'* du

This is in fact the theorem I e''''dx= a determinate value { = i v/('r)«^"'}, proved in the former part

^0
of the present Note.
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which is independent of b, say this is

G

and thence differentiating in regard to b, we find

du 1

clb 26 "'

the theorem in question.

But the value of ^ cannot be obtained by differentiating under the integral sign,

for this would give

du [" . , -^ ,

Tb^],'y'^y'

and this integral is certainly indeterminate.
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569.

ON THE CYCLIDE*.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xii. (1873),

pp. 148—165.]

The Cyclide, according to the original definition, is the envelope of a variable

sphere which touches three given spheres, or, more accurately, the envelope of a variable

sphere belonging to one of the four series of spheres which touch three given spheres.

In fact, the spheres which touch three given spheres form four series, the spheres of

each series having their centres on a conic; viz. if we consider the plane through the

centres of the given spheres, and in this plane the eight circles which touch the

sections of the given spheres, the centres of these circles form four pairs of points,

or joining the points of the same pair, we have four chords which are the transverse

axes of the four conies in question.

It thus appears, that one condition imposed on the variable sphere is, that its

centre shall be in a plane ; and a second condition, that the centre shall be on a

conic in this plane ; so that the original definition may be replaced first by the

following one, viz.

:

The cyclide is the envelope of a variable sphere having its centre on a given

plane, and touching two given spheres.

Starting herefrom, it follows that the locus of the centre will be a conic in the

given plane : the transverse axis of the conic being the projection on the given plane

of the line joining the centres of the given spheres ; and it, moreover, follows, that if

in the perpendicular plane through the transverse axis we construct a conic having

for vertices the foci, and for foci the vertices, of the locus-conic, then the conic so

constructed will pass through the centres of the given spheres.

• I use the term in its original sense, and not in the extended sense given to it by Darboux, and

employed by Casey in his recent memoir "On Cyclidea and Spheroquartics," Phil. Trans. 1871, pp. 582—721.

With these authors the Cyclide here spoken of is a Dupin's or tetrauodal Cyclide.
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Two conies related in the manner just mentioned are the flat-surfaces of a system

of confocal quadric surfaces; they may for convenience be termed anti-conics (fig. 1); one

of them is always an ellipse and the other a hyperbola ; and the property of them is

that, taking any two fixed jyoints on the two branches, or on the same branch of the

Fig. 1.

h}-perbola, and considering their distances from a variable point of the ellipse : in the

first case the sum, in the second case the difference, of these two distances is constant.

And similarly taking any two fixed points on the ellipse, and considering their distances

from a variable point of the hyperbola, then the difference, first distance less second

distance is a constant, + a for one branch, — a for the other branch of the hyperbola.

And we thus arrive at a third, and simplified definition of the cyclide, viz. con-

'sidering any two anti-conics, the cyclide is the envelope of a variable sphere having

its centre on the first anti-conic, and touching a given sphere whose centre is on the

second anti-conic.

And it is to be added, that the same cyclide will be the envelope of a variable

sphere having its centre on the second anti-conic and touching a given sphere whose

centre is on the first anti-conic, such given sphere being in fact any particular sphere

of the first series of variable spheres. And, moreover, the section of the surface by the

plane of either of the anti-conics is a pair of circles, the surface being thus (as will

further appear) of the fourth order.

In the series of variable spheres the intersection of any two consecutive spheres

is a circle, the centre of which is in the plane of the locus-auti-conic, and its plane

perpendicular to that of the locus-anti-conic, this variable circle having for its diameter

in the plane of the locus-anti-conic a line terminated by the two fixed cii-cles in that

plane. The cyclide is thus in two different ways the locus of a variable cii'cle ; and

investigating this mode of generation, we arrive at a fourth definition as follows:

—

Consider in a plane any two circles, and through either of the centres of symmetry

draw a secant cutting the two circles ; in the perpendicular plane through the secant,

draw circles having for their diameters the chords formed by the two pairs of anti-

parallel points on the secant (viz. each pair consists of two points, one on each circle,

such that the tangents at the two points are not parallel to each other): the locus

of the two variable circles is the cyclide.

Before going further it will be convenient to establish the definition of " skew anti-

points": viz. if we have the points K^, K. (fig. 2), mid-point R, and L^, L.,, mid-point

S, such that K^K., MS and L^L. are respectively at right angles to each other, and

c. IX. 9
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Ki^+ RS''+SLi'=0, (Sic; or, what is the same thing, the distances LJ{^ = LiK„ = LnKi = L.^K.,

are each =0, so that the points /^,, K., and ij, L. are skew anti-points. Observe that

the lines of the figure and the points R, S are taken to be real ; but the distances

BK^ = RK„ and .S'X, = SL, cannot be both real : it is assumed that one is real and

Fig. 2.

the other a pure imaginary, or else that they are both of them pure imaginaries. To

fix the ideas we may in the figure consider the plane through KJ{.,, RS as horizontal,

and that through RS, L^L« as vertical.

Reverting now to the cyclide, suj^pose that we have (in the same plane) the two

circles G, C intersecting in /ij, K„, and having S for a centre of symmetry, and let

R be the mid-point of K^, K...

The construction is:—through S draw a secant meeting the two circles in A, B
and A', B' respectively, where A, A' and B, B are parallel points, (therefore A, B'

and A', B anti-parallel points), then the cyclide is the locus of the circles in the

perpendicular plane on the diameters AB and A'B respectively.

The two circles have their radical axis passing through S, and not only so, but

the points of intersection Zj, Xo of the two circles are situate at a distance 8Li = SL^,

which is independent of the position of the secant: the points ij, i., and K^, K^

being in fact a system of skew anti-points. And, moreover, the two circles have a

centre of .symmetry at the point where the plane of the two circles meets the line K^Kn.

Consider in particular the two circles D, D' which are situate in the perpendicular

plane through SR\ these have the radical axis L^L., and a centre of symmetry R\
and if with these circles D, D' as given circles, and with R as the centre of symmetry,

we obtain in a plane through /ii/i., two circles having K^K^ for their radical axis,

and having for a centre of symmetry the intersection of their plane with L^Lr,, the

locus of these circles is the same cyclide as before ; and, in particular, if their plane

passes through RS, then the two circles are the before-mentioned circles C, C, having

S for a centre of symmetry.

It will be noticed that, starting with the same two circles G, C or D, D', we

obtain two different cyclides according as we use in the construction one or other of

the two centres of symmetry.

The cyclide is a quartic surface having the circle at infinity for a nodal line

:

viz. it is an auallagmatic or bicircular quartic surface ; and it has besides the points
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Ki, K„ ii, Zo, that is, a system of skew anti-points, for nodal points; these determine
the oyclide save as to a single parameter. In fact, starting with the four points

Xi, L., Ki, K., which give 8, and therefore the plane of the circles C, C ; the circle

C is then any one of the circles through Ki , K„ ; and then drawing from S the two
tangents to C, there is one other circle C passing through K^, K„ and touchino- these

tangents; C is thus uniquely determined, and the construction is effected as above.

Hence, with a given system of skew anti-points we have a single series of cyclides,

say a series of conodal cyclides.

If in general we consider a quartic surface having a nodal conic and four nodes
A, B, C, D, then it is to be observed that, taking the nodes in a proper order, we
have a skew quadi-ilateral ABGD, the sides whereof AB, BC, CD, DA, lie wholly on
the surface. In fact, considering the section by the plane ABC, this will be a quartic

curve having the nodes A, B, C and two other nodes, the intersections of the plane

with the nodal conic ; the section is thus made up of a pair of lines and a conic •

it follows that two of the sides of the triangle ABC, say the sides AB, BC, each

meet the nodal conic, and that the section in question is made up of the lines

AB, BC, and of a conic through the points A, G and the intersections of AB, BC
with the nodal conic. Considering next the section by the plane through ACD, here

(since -4C is not a line on the surface) the lines CD, DA each meet the nodal conic,

and the section is made up of the lines CD, DA and of a conic passing through

the points A, G and the intersections of the lines CD, DA with the nodal conic.

Thus the lines AB, BC, CD, DA each meet the nodal conic, and lie wholly on the

surface; the lines AC, BD do not meet the conic or lie wholly on the surface.

A quartic surface depends upon 34 constants; it is easy to see that, if the surface

has a given nodal conic, this implies 21 conditions, or say the postulation of a given

nodal conic is =21, whence also the postulation of a nodal conic (not a given conic)

is =13. Suppose that the surfoce has the given nodes A, B, C, D; the postulation

hereof is = 16 ; the nodal conic is then a conic meeting each of the lines AB, BC,
CD, DA, viz. if the plane of the conic is assumed at pleasure, then the conic passes

through 4 given points, and thus it still contains 1 arbitrary parameter ; that is, in

order that the nodal conic may be a given conic (satisfying the prescribed conditions)

the postulation is =4. The whole postulation is thus 16 + 13-1-4, =33, or the quartic

surface which satisfies the condition in question (viz. which has for nodes the given

points A, B, C, D, and for nodal conic a given conic meeting each of the lines

AB, BC, CD, DA) contains still 1 arbitrary parameter: which agrees with the foregoing

result in regard to the existence of a series of conodal cyclides.

It is to be added that, if a quartic surface has for a nodal line the circle at

infinity and has four nodes, then the nodes form a system of skew anti-points and

the surface is a cyclide. In fact, taking the nodes to be A, B, C, D, then each of

the lines AB, BC, CD, DA meets the circle at infinity; but if the line AB meets

the circle at infinity, then the distance AB is = 0, and similarly the distances BC,

CD, DA are each =0; that is, the nodes (A, C) and (5, D) are a system of skew
anti-points.

9—2
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Reverting to the cyclide, and taking (as before) the nodes to be K^, K, a^wd

i,, io, the line RS which joins the mid-points of /iTiiT, and LiL^ may be termed the

axis of the cyclide, and the points where it meets the cyclide, or, what is the same

thing, the circles G, C or D, D', the vertices of the cyclide, say these are the points

F, G, H, K. Supposing that the distances of these from a point on the axis are

/, g, h, k, the origin may be taken so that f+g+h + k = 0; the origin is in this case

the " centre " of the cyclide. It is to be remarked, that given the vertices there are

three series of cyclides ; viz. we may in an arbitrary plane through the axis take for

C, C the circles standing on the diameters FG and HK respectively ; and then, according

as we take one or the other centre of symmetry, we have in the plane at right angles

hereto for D, D' the circles on the diameters FH and GK, or else the circles on the

diameters FK and GH respectively ; there are thus three cases according as the two

pairs of circles are the circles on the diameters

FH, KG and FK, GH,

FK, GH „ FG, HK,

FG, HK „ FH, KG.

The equation of the cyclide expressed in terms of the parameters /, g, h, k assumes

a peculiarl}' simple form; in fact, taking the origin at the centre, so theA, f+g + h + k = 0,

the axis of x coinciding with the axis of the cyclide, and those of y, z parallel to

the lines K^K^ and L^L.^, or XiZ, and KJ.{.„ respectively: writing also

fg^hk=G,

fh + kg = H,

fk + gh = K,

then the equation of one of the cyclides is

(y- + z-f + 2a;- {y- + z-) + Gy- + Hz"- + {x-f){x- g) {x - h) {x - k) = 0,

which we may at once partially verify by observing that for z = this equation becomes

bf + («= -f) {^ - g)] if + (* - h) (x - k)-\ = 0,

and for y = it becomes

\f + (a.. -f){x - /i)] [2= + (a; - h) {x - g)-\ = 0,

viz. the equations of the circles C, G' are

f + (-^ -/) (*• -
i/)
= 0, / + (« - h) {x - k) = 0,

and those of £>, D'

z- + {x -f) {x - h) = 0, z--\-{x-k){x-g) = 0.

Starting ft-om these equations of the four circles, the points K^, K„ are given by

F= = - (P -/) (P-g) = -(P- h) (P - k).
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and the points X,, L. by

Z'=- (Q -/) (Q-h) = -(Q- k) (Q - g).

Now writing for a moment

^=f+g = -h-k,

B =f+k = - fj -h,

we have P = — i-^, Q = — ^ — , and thence PQ = \h-. Moreover

2F= + 2Z- + 2(P-Qr-

= -(P-/)(P-5r)_(P_/,)(P-A-)

-(Q-/)(Q -/0-(g-^-)(Q-i;) + 2(P-Q)^

^-{fg + hk+fh+gk)-iPQ

= S^ - 4PQ

= 0,

that is,

Y- + Z' + (P - Q)= = 0,

which equation expresses that the four points are a system of skew anti-points.

The point x = Q should be a centre of symmetry of the circles G, G' ; to verify

that this is so, transforming to the point in question as origin, the equations are

y= + [^ + Q _ i (/ f r;)Y - i (/ - gf = 0,

f + {x + Q-^ {h + k)Y -iik- hf = 0,

that is,

But B + •y= f— g, S — y = k — ?t, so that these equations are

f+^x-^^(k-h)^'=uk-hr-,

which are of the form

y- + (* - a)- = c=,

y- + {x — ma)- = m-c-,

and consequently ,« = Q is a centre of symmetry of the circles C, G' ; and in like

manner it would appear that x = P is a centre of symmetry of the circles D, D'.
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If in the last-mentioned equations of the circles C, C" we write x = D. cos 0,

y = O, sin 6, and put for shortness

p = a cos ^ — V , a =m(a cos — V
),

p' = a cos 6? + V
, a' = rii {a cos + V ),

where V = \/(c- — a- sin- 6), then the values of fl for the first circle are p, a, and those

for the second circle are p', a-'. Hence the equations of the generating circles are

z"- + {r-p) (r - o-') = 0,

z- + (r + p') (r - o- ) = 0,

where r is the abscissa in the plane of the circles, measured from the point x = Q.

Attending say to the first of these equations, to find the equation of the cyclide, we

must eliminate 6 from the equations

z- + (r — p)(r — cr') = 0, a; = »'cos0, y = r sin ;

the first equation is

z- + r- + VI (a- — c") — 7' (p + a') = 0,

and we have

p + a' = {m + 1)3 cos 6 — (m — 1) %/(c- — a- sin" 6),

and thence

{p + a') r = (m + 1) ax - (m - 1) ^/{c' («- + f) - ay),

so that we have

z- + x" +y-+ VI (a- — C-) — {m + 1 ) ow +(m — 1) \/{c" (x- + ?/-) — a-i/-\ = 0,

viz. this is the equation of the cyclide in terms of the parameters a, c, vi, the origin

being at the point x= Q, the centre of symmetry of the circles G, C".

Reverting to the former origin at the centre of the cyclide, we must write x — Q
for X ; the equation thus is

[f + Z--+ (x - Qf - {m + 1) a {x -Q) + m {o? - c=)p - {m - 1? [{c= {x - Qf + (c'^ - a=) y^]] = 0,

where

whence also

7 7 j-g

,1 28 1-27 » „ 1, . ,.,(/•- A-) (ff-/0

After all reductions, the equation assumes the before-mentioned form

if + z^Y + Ix" (f + z"-) + Gf- + Hz- -H {x -/) {x -
ff) (x - h) {x - k) = 0.

The equation may be ^v^itten

(«- + y- + ^Y + (<? + !? + K) X- + Gif + Hz- - ^ySx +fc/hk = 0,
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and if we express everything in terms of /3, y, S by the formulae

2f= j3 + y + S, 2G = yS— y^_g=,

2g= /3-7-8, 2H =-/3= + y^_S=,

2h = -/3 + y-B, 2K = - ^-3 _ y + 8=,

2k = -^-y + S, 2(G + H + K) = -/3-'-y^- S-';

then we have

- l3yBx + Jj. (/3^ + y + S^ - 2/3=7= - 2/3=S= - 2rS=) = ;

or, what is the same thing,

(«= + y"- + z^ + 1^= + 17= - 18=)= - (/S^ + 7') *•' - 7'^' - 13"-2' - l3yBx - 1/3Y = 0.

An equivalent form of equation may be obtained very simply as follows : the

surface

(«= +y- + z-y + 2Aa;^ + 2Bf + 2Cz- + 2Kx + i =

will be a cyclide if only the section by each of the planes 2/ = 0, z=Q breaks up into

a pair of circles. Now for y = the equation is

(«= + z-f + 2Ax- + 26'^= + 2Kx + Z = 0,

that is,

z" + 22= («= +G) + x' + 2Ax^ + 2Kx + Z = 0,

or

(2= + a;= + 0= = 2{G-A)x''-2Kx+C'-L,

which will be a pair of circles if only

2{G-A){G--L) = K"-;

and similarly writing 2=0, we obtain

2{B-A){B'-L) = K-.

These equations give

L ={B + Cf - (BG+CA + AB),

K"- = -2(B-A)(G-A)(B + C),

so that L, K having these values the surface is a cyclide; there are two cyclides

corresponding to the two different values of K, which agrees with a former result.

Reverting to the equation in terms of /3, 7, h this may be written

^' - r + Vf(27^'' + /S8)= - 4 (/3= - 7=) 2/=} + V{(2/3a- + 78)= + 4 (/3= - 7=) 2=) = 0.

[Compare herewith Kummer's form

b- = \/{(ax — ek)- + b-y"} + i^{(ex — ak)- — 6=2=), where b- = a" — e=.]
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In fact, representing this for a moment by

we have
(13'- - rr + © - * = - 2O - r) V(©),

or, substituting and dividing by /3- - 7-, we have

^^ _ ^= + g-^ _ 4 (x' + f-+ 2=) + 2 V 1(27*- + l3By - 4 (/3-^ - r ) if} = 0,

or, similarly

/3= _ ^^ _ 8= + 4 (*- + ^f + z') + 2 VK2/3.« + 7^)' + ^ (/3' - 7=) ^1 = 0-

either of which leads at once to the rational form.

The irrational equation

/3^ - 7'^ + Vl(27.« + my - 4 (/9' - f) f] + V{(2/3.« + ySf + 4 (/5— r) z"-] =

is of the form

p + VC'y) + V(sO = 0,

which belongs to a quartic surface having the nodal conic j:i = 0, qr—st = (in the

present case the circle at infinity), and also the four nodes ((/ = 0, ?' = 0, p" — st = 0)

and (s = 0, t = 0, pr -qr = 0), viz. these are

7 7
and

*- = -if. 2/ = ±i^VKf-m(/3^-S^)}> ^ = 0,

and we hence again verify that the nodes form a system of skew anti-points, viz. the

condition for this is

that is,

^' (/3= - 7=) + /3' (7^ - ^') - r il3' - ^"-) = 0,

which is satisfied identically.

The cyclide has on the nodal conic or circle at infinity four pinch-points, viz

these are the intersections of the circle at infinity with the planes /3-y- + y-z- = 0.

If ^ = 0, the equation becomes

^y+^/{-'c"- + f-) + 'J{iB"--z"-) = 0,

viz. the cyclide has in this case become a torus ; there are here two nodes on the

axis (x = 0, y= 0), and two other nodes on the circle at infinity, viz. these are the

circular points at infinity of the sections perpendicular to the axes, and the pinch-

points coincide in pairs with the last-mentioned two nodes ; viz. each of the circular

points at infinity = node + two pinch-points.
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The Parabolic Cyclide.

One of the circles C, C and one of the circles D, U may become each of them

a line ; the cyclide is in this case a cubic surface. The easier way would be to treat

the case independently, but it is interesting to deduce it from the general case. For

this purpose, starting from the equation

{y- + z'-)- + 2a-2 {f- + Z-) + Gy- + Hz- + {x -f) (x - g) {x - h) (x - k) = 0,

where f + g+h + k- = 0, G =fg \-hk, H =fh+gh, I write x — a for x, and assume a +/,
a + g, a + h, a + k, equal to /', g', h', k' respectively; whence 4!a=f'+g'+h' + k'; and

the equation is

(f + s-y- +2{x- af iy' + z') + (/'</' + h'k' - 2a^) f- + (f'h' + g'k' - 2a=) z'

+ (x -/') (*• - 9') (*• - h') (x - k') = 0,

or, what is the same thing,

(/ + zj + (2a;= - iax) {f- + z"-) + {f'g' + Wkl) f + {f'h' + g'k') z'

+ (a,' -/') {x - g') (x - h') {x - k') = 0.

-Now assuming k' = cc , we have ia = k' = cc , or writing 4a instead of k', and attending

only to the terms which contain a, we have

X if + z') - h'f - g'z"- + {x -f) {x - g') (x -h') = 0,

or, what is the same thing,

(x -/) (*• - 9') (^ -h') + (x- h') f + {x -g')z"- = 0,

where by altering the origin we may make /' = 0.

It is somewhat more convenient to take the axis of z (instead of that of x) as

the axis of the cyclide ; making this change, and writing also 0, /3, y in place of the

original constants, I take the equation to be

z{z-l3)(z-y)+(z-ry)y^ + {z-/3)af==0,

viz. this is a cubic surface having upon it the right lines {z = 7, a; = 0), (2 = /8, y = 0);

the section by a plane through either of these lines is the line itself and a circle

;

and in particular the circle in the plane x = is z(z — ^) + y'' = 0, and that in the

plane y = is z(z — y) + x- = 0. And it is easy to see how the surfece i.s generated:

if, to fix the ideas, we take /3 positive, 7 negative, the lines and circles are as shown

in fig. 3 ; and if we draw through Cy a plane cutting the circle CO and the line

Bx in P, Q respectively, then the section is a circle on the diameter PQ ; and

similarly for the sections by the planes through Bx. It is easy to see that the whole

surface is included between the planes ^ = /3, 2 = 7; considering the sections parallel to

these planes (that is, to the plane of xy) z = ^, the section is the two-fold line y = ;

z=a.uy smaller positive value, it is a hyperbola having the axis of y for its transverse

axis ; z=0, it is the pair of real lines yy- + ^x^ = ; z negative and less in absolute

C. IX. 10
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magnitude than — 7, it is a hyperbola having the axis of x for its transverse axis

;

and finally z = <y, it is the two-fold line x = Q. It is easy to see the forms of the

cubic curves which are the sections by any planes x = const, or y = const.

Fig. 3.

The before-mentioned circles are curves of curvature of the surface ; to verify this

d posteriori, write

U= s{z-^){z-y) + (z-y)if + (z-l3)x^=0

for the equation of the surface ; and put for shortness P = Sz"— 2z (/3 +7)+ ^y, P + xr + y^ = L,

so that d^U=P + a? + y-, =L. The differential equation for the curves of curvature is

2xiz-l3) ,
2ij(z-y)

,
P + x^ + f =0,

xdz -I- (2 — /3) dx, ydz + (z — y) dij, hP'dz + xdx + ydy

dx
, dy

,
dz

or, say this is

n = dx- . %xy {z-y)- dy" . 2xy (2 - /3) + dz- . 2xy (y - j3)

+ dzdy .x[-2(z-^) {2z - /3) + Z]

-^dxdz.yl 2{z — y){2z — y) — L]

+ dxdy . [(7 - /3) P + {2z -j3-y){f- x-)-\ = 0.

But in virtue of the equation U = 0, we have identically

{2(z-^)xdx + 2iz-y)ydy + Ldz\x\-'^ydx + '^xdy+ .

''^^yj^\ dz\
{ z-jd z-y •' (2-/3) (2 -7) )

= (7 - /S) |2 - . _^w^—J X \xydz- - y{z

-

7) dzdx-x{z - B) dzdy+ {: - /S) (2 - 7) dxdy].
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Hence in virtue of the equations U = 0, dU=0 the equation = becomes

xydz- —y(2 — y) dzdx — x {z — ^) dzdy + {z — ^) {z — <y) dx dy = 0,

that is,

[xdz — (z — y) dx} [ydz — (^ — /3) dy] = 0,

whence either x — G{z — y) = or y — C (z — ^) = 0; viz. the section of the surface by

a plane of either series (which section is a circle) is a curve of curvature of the surface.

The equation of the cyclide can be elegantly expressed in terms of the ellipsoidal

coordinates (X, fi, v) of a point {x, y, z) ; viz. writing for shortness a = 6- — c", = c^ — a\

7 = a- — h-, the coordinates (X, /x, v) are such that

- ^yx- = (a- + X) (a- + fj.)
(a- + v),

- yay^ = (6= + X) (6- + fi) (b- + v),

- a^z- = {c- + X) (c= + /J.) (c= + v),

(see Roberts, Comptes Rendus, t. Liii. (Dec, 1861), p. 1119), whence

x- + y- + z-=a- + b- + c- + X + fi + v,

(b- + C-) X- + (c- + a-) y- + (a- + b") z" = b-c- + c-a" + a-b" - fxv — v\ — X/i.

-The equation of the cyclide then is

V(«' + X) + V(a' + m) + \l{a- + v) = V(S).

In fact, starting from this equation and rationalising, we have

(3a= + X + /i + i'-S)==4 [V{(«- + /i) (a- + v)} + V((a' + v) (a- + X)} + >J{(a- + X) {a- + fj,)]]-

= 4 [Sa* + 2a- {\ + fj. + v) + fiv + v\ + Xfi + 2 V{(a^ + X) (a- + fj,)
(«= + v)} V(S)],

which, substituting for

\ + fi + V, fMv + v\ + Xfji and */{{a- + X) (a- -|- /i) (a- + v)]

their values, is

(x' + y- + z' + y-i3-By = 'i{(y-^)afi-^y"- + yz"--^y-2x^(-j3yB)},

or, writing — ^7^ \0'-, \B'- in place of /3, 7, 8 respectively, this is

(af + y"- + Z-' + iy- +i^-- iB"-y- = (r + /3-) X- + ^-z- + y-y- + i/3V + ^y^^,

which agrees with a foregoing form of the equation.

The generating spheres of the cyclide cut at right angles each of a series of

spheres; viz. each of these spheres passes through one and the same circle in the

plane of, and having double contact with, the conic which contains the centres of the

generating spheres; the centres of the orthotomic spheres being consequently in a line

meeting an axis, and at right angles to the plane of the conic in question. Or, what

is the same thing, starting with a conic, and a sphere having double contact therewith,

the cyclide is the envelope of a variable sphere having its centre on the conic and

cutting at right angles the fixed sphere.*

* I am indebted for this mode of generation of a Cyclide to the researches of Mr Casey.

10—2
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It may be remarked, that if we endeavour to generalize a former generation of

the cyclide, and consider the envelope of a variable sphere having its centre on a conic,

and touching a fixed sphere, this is in general a surface of an order exceeding 4

;

it becomes a surface of the fourth order, viz. a cyclide, only in the case where the

fixed sphere has its centre on the anti-conic. But if we consider the envelope of a

variable sphere having its centre on a conic and cutting at right angles a fixed

sphere, this is always a quartic surface having the circle at infinity for a double line

;

the surface has moreover two nodes, viz. these are the anti-points of the circle which

is the intersection of the sphere by the plane of the conic. If the sphere touches

the conic, then there is at the point of contact a third node ; and similarly, if it has

double contact with the conic, then there is at each point of contact a node ; viz. in

this case the surface has four nodes, and it is in fact a cyclide.

There is no difficulty in the analytical proof: consider the envelope of a variable

sphere having its centre on the conic Z^Q, -^H =1; and which cuts at right

angles the sphere (* — If + {y — nif + {z — nf = k".

Take the equation of the variable sphere to be

(x-Xr + {y-Yy + z"- = c%

then the orthotomic condition is

{X -l)- + (Y- my + M= = c' + k\

or, substituting this value of c'-, the equation of the variable sphere is

{x - Xy + {y-Y)"- + z"- = - k- + {X-lf + {Y- my + n\

all which spheres pass through the points

x — l, y = m, z = ±»J{n' — k-)\

that is,

«^ + 2/' + 2= -f k- -1-- nv' - n- - 2 (* -l)X-2{y- m) F= 0,

X- Y-
and considering Y, Y as variable parameters connected by the equation — „ H =1,

the equation of the envelope is

(x^ + y- + z- + k- -1-- m- - n-y + 4/3 {x - ly - 4a (y - m)- = 0,

viz. this is a bicircular quartic, having the two nodes x = l, y = ni, z = ± f/{n- — k^) ; these

are the anti-points of the circle {x - ly + (y — m.y =B — n", which is the intersection of

the sphere {x—iy+(y — niy + {z — n)-=k- by the plane of the conic.

The constants might be particularised so that the equation should represent a

cyclide ; but I treat the question in a somewhat different manner, by showing that

the generating spheres of a cyclide cut at right angles each of a series of fixed

spheres. Write a, /3, y = b- — c^ c" — a-, a" — b- ; then if

-13'^ a '7 a '

the points {X, Y, 0) and (Xj, 0, Z^) will be situate on a pair of anti-conics.
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Consider the fixed sphere

then if this is touched by the variable sphere

(^-Z)= + (y-F)= + s= = r,

the last-mentioned sphere will be a generating sphere of the cyclide. The condition

of contact is

(Z-X,r-+F= + ^r = (c + c,K

that is,

Z=\
, _ ixi

7
(c + c,r = X"- - 2XZ, + Xr +a{\^j^ + a{^-\

P 7

if for a moment

that is, c = — Ci + n, and the equation of the variable sphere is

{x-Xr + {y-Yr+z'-^{c,-D.f,

where X, Y are variable parameters connected by

X"- F^ ,

3-^+^ = 1-

Suppose that the variable sphere is orthotomic to

(«-z,)^ + y^ + (^-^,)==c,^

the condition for this is

{X - x.y + Y' + Z? = c= + c,-,

or combining with the identical equation

(X - X,r + F= + Z;' = (c + c,r,

we have

- 2Z (X, - X,) + z.;- - X{- + z.? - z^- = c;- - c,= - 2c, (- c, + n)

= 0.- + Ci--2c,n,

or, substituting for Z^, fl their values, this is

- 2Z (X, - XO + X,= - X:- + Z^ - a (^'' - l) = c,= + cr - 2c. {x^(-
^)

+ X. ^(- ^)|

,
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viz. this will be identically true if

X,= + Z,- - c? = - ^ X{- + 2c,Xi V(- -) - « + Cf

,

or, as this last equation may be written

Zi - c^ = Z^- - c- -f 2C.Y,
1^ (- 5J

+V V ^,

The equation of the orthotomic sphere is thus found to be

or, what is the same thing,

or, as this may be written

'^ (- 1 + ? - + ^^ - '^^^ - 1"^ - '"^^ - ?
^" - '^^V(- 7)

- '''^'^' \/(" ?) ^
''^ = °'

viz. this is

where Z„ is arbitrary. We have thus a series of orthotomic spheres ; viz. taking any

one of these, the envelope of a variable sphere having its centre on the conic

_?^4.^_1 = 0, and cutting at right angles the orthotomic sphere, is a cyclide. The
/8 a

centre of the orthotomic sphere is a point at pleasure on the line

and the sphere passes through the circle ^ = 0,

|..-A-.-cV(-|)[%,=.^,-.,;.-2a-.y(-^V(-|)}=»'

viz. this is a cii'cle having double contact with the conic — -^ + ^ = 1 ; or, what is

the same thing, the orthotomic sphere is a sphere having its centre on the line in

question, and having double contact ^s'ith the conic —-, + — = 1.
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570.

ON THE SUPERLINES OF A QUADRIC SURFACE IN FIVE-

DIMENSIONAL SPACE.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xii. (1873),

pp. 176—180.]

In ordinary or three-dimensional space a quadric surface has upon it two singly

infinite systems of lines, such that each line of the one system intersects each line

of the other system, but that two lines of the same system do not intersect.

In five-dimensional space* a quadric surface has upon it two triply infinite systems

of superlines, such that each superline of either system intersects each superline of

the same system ; a superline of the one sy.stem does not in general intersect a

superline of the opposite system, but it may do so, and then it intersects it not in

a mere point, but in a line.

The theory will be established by an independent analysis, but it is, in fact, a

consequence of the correspondence which exists between the lines of ordinary space

and the points of a quadric surface in five-dimensional space. Thus the correspondence is

In ordinary space. In five-dimensional space.

Line. Point on quadric surface.

Lines meeting a given line. Points which lie in tangent plane at

given point.

Pail- of intersecting lines. Two points such that each lies in the

tangent plane at the other, or say, pair of

harmonic points.

Lines meeting each of two given lines. Points lying in the sub-plane common

to the tangent planes at two given points.

* In explanation of the nomenclature, observe that in 5 dimensional geometry we have: space, surface,

subsurface, supercurve, curve, and point-system, according as we have between the six coordinates 0, 1, 2, 3, 4,

or 5 equations : and so when the equations are linear, we have : space, plane, subplane, superhne, line, and

point. Thus in the text a quadric surface is the locus determined by a single quadric equation between the

coordinates ; and the superline and line are the loci determined by three linear equations and four linear

equations respectively.
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But in ordinary space if the two given lines intersect, then the system of lines

meeting these, breaks up into two systems, viz. that of the lines which pass through

the point of intersection, and that of the lines which lie in the common plane of

the two given lines. It follows that in the five-dimensional space the intersection of

the quadric surface by the subplane common to the tangent planes at two harmonic

points must break up into a pair of superlines, viz. that we have on the quadric

two systems of superlines ; a superline of the one kind answering in ordinaiy space

to the lines which pass through a given point, and a superline of the other kind

answering to the lines which lie in a given plane. (Observe that, as regards the

five-dimensional geometry, this is no distinction of nature between the two kinds of

superlines, they are simply correlative to each other, like the two systems of generating

lines of a quadric in ordinary space.)

Moreover, considering two superlines of the first kind, then answering thereto in

ordinary space we have the lines through one given point, and the lines through

another given point ; and these systems have a common line, that joining the two

given points ; whence the two superlines have a common point. And, similarly, two

superlines of the second kind have a common point. But taking two superlines of

opposite kinds, then in ordinary space we have the lines through a given point, and

the lines in a given plane : and the two systems have not in general any common
line ; that is, the two superlines have no common point. If, however, the given point

lies in the given plane, then there is not one common line, but a singly infinite

series of common lines, viz. all the lines in the given plane and through the given

point; and corresponding hereto we have as the intersection of the two superlines, not

a mere point, but a line.

Passing now to the independent theory, I consider, for comparison, first the case

of the lines on a quadric surface in ordinary space ; the equation of the sui-face may
be taken to be

U' + v"^ — x- — y- = 0,

(u, V, X, y ordinary quadriplanar coordinates) and the equations of a line on the

surface are

u = ax + /By,

V = a'x -H /S'y,

where a, /3, a', /3' are coefficients of a rectangular transformation, viz. we have a' -1-/3^=1,

a'--f-/3'-= 1, aa' -H /3^' = ; and therefore (a/3' - a'/3)- = 1, consequently a^S' - a'/3 = + 1 ; and

the lines will be of one or the other kind, according as the sign is -|- or — . It is

rather more convenient to assume always a^' — a',S = -|- 1, and write the equations

u = ax -1- /3y,

V = k (a'x + yS'y),

k denoting + 1, and the lines being of the one kind or of the other kind, according

as the sign is -H or —

.
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Thus considering any two lines, the equations may be written

u = cue + ^y , u = — {ax + by ),

V = a'x + /S'y, V = — k {ax + h'y),

where the lines will be of the same kind or of different kinds, according as k is

= +1 or = — 1. Observe that k is introduced into one equation only; if it had been

introduced into both, there would be no change of kind. If the lines intersect we have

(a + a)x + {0 + b)y = 0,

(a' + ka') X + {ff + kb') y = 0,

viz. the condition of intersection is

a + a, 13 -h b =0,

a + ka', /3' + kb'

that is,

a/3' - a'/3 + k {ctb' - a'b) + «/3' - «'/3 + k {ab' - a'b) = 0,

or, what is the same thing,

l + a^'-a'0 + k{\+ab' -a:b) = Q.

But we have, say

a = cos 6, /3 = sin 6, a = cos <^, b = sin 0,

a' = — sin 6, j3' = cos 0, a = — sin
<f),

b' = cos (ji,

and thence

rt/3' — a'/3 = cos (0 — (/)) = ab' — a'b,

and the equation is

(1-f /L-){1+ cos (^ -(/>)) =0,

viz. this is satisfied if k= — l, i.e. if the lines are of opposite kinds, but not if ^• = + 1.

And it is important to remark that there is no exception corresponding to the other

factor, viz. if k = + l, and 1 -f cos (0 — ^) = 0, for we then have ^— ^ = 7r, eos
(f>
= — cos 6,

sin 4' — ~ sin 0, and consequently the two sets of equations for u, v become identical

;

that is, for lines of the same kind a line meets itself only.

Passing to the five-dimensional space, the equation of the quadric surface may be

taken to be

u--\-v- + W' — X- — y" — z- = 0,

and for a superline on the surface we have

II =ax + ^y +y2 ,

V = a'x + ffy + r/'z

,

2U = a"x + /3"i/ + y"z,

where (a, /3, 7), &c., are the coefficients of a rectangular transformation ; the determinant

formed with these coefficients is = + 1, and the superline is of the one kind or the

C. IX.
"

11



82 ON THE SUPERLINES OF A QUADRIC SURFACE [570

other, according as the sign is + or — . It is more convenient to take the determ-

inant to be always +, and to write the equations in the form

u. = k (ax + /3y + yz ),

V =k (a'x + j3'y + y'z ),

lu = k {ax + I3"y + y"z),

where k= ±\, and the superliue is of the one or the other kind, according as the

sign is + or —

.

Now considering two superlines, we may write

u =(xx + /3i/ +yz , u = - k (ax + hy + cz ),

V = a'x + /3'y + y'z , v = — k (a'x + h'y + c'z ),

w = a'x + ^"y + y"z, w = - k (a"x + b"y + c"z).

If the superlines intersect, then

(a + ka ) X + (/3 +kb ) y + {y +kc)z = (i,

(a' + ka ) X + (yS' + kh' ) y + (y -\- kc') z = 0,

(a + ka") X + (^" + kh") y + (7" + kc") z = 0,

viz. the determinant formed with these coefficients must be =0. The condition is at

once reduced to

1+ A:^ + (i + k-) (aa + b/3-^cy + a'a + b'/S' + c'y + «"a" + 6"/3" + d'y") = 0,

viz. it is satisfied when A; = — 1, that is, when the superlines are of the same kind;

but not in general when A; = +l.

If ^' = + 1 the condition will be satisfied if

1 + aa + 6/3 + C7 + a a + b'ff + 07' + a"a" + 6"/3" + d'y" = 0,

and it is to be shown that then the three equations reduce themselves not to two

equations, but to a single equation.

It is allowable to take the second set of equations to be simply m = — kx, v = — ky,

w = — kz; for this comes to replacing the analytically rectangular system ax + by + cz,

a'x + b'y + c'z, a"x + b"y + c"z by x, y, z. Writing also k = + l, the theorem to be proved

is that the equations

(a+l)x + ^y +72 = 0,

a'x +(I3' + l)y + y'z =0,

a"x + 0"y + y"z = 0,

reduce themselves to a single equation, provided only 1 + a + 5' + 7" =
; or, what is

the same thing, we have to prove that the expressions /3" — y\ 7 — a", a' — /S each

vanish, provided only 1 + a + ^' + 7" = 0. This is a known theorem depending on the
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theory of the resultant axis, viz. the rotation round the resultant axis is then ISO
,

and we have OX=OX', OY=OY', OZ=OZ', and thence we have evidently YZ'=Y'Z,

ZX' = Z'X, XY' = X'Y.

But to prove it analytically, writing P, Q, R for /3" — 7', 7 — a", a' — /3 respectively,

and il for 1 + a + /3' + 7", observe that we have identically

(/S" + 7 )a = Qi?,

(7 + a' ) n = EP,

(a' +^")0. = PQ,

{/3" + y')P = (y + a")Q = {a' + 0)R,

(a -l)n = - 7Q + /3ii; ,

a'n =- y'Q 4(1+/3')P,

a"fl =-(l+7")Q+ /8"P

/3n = - (1 + a ) ii + 7P

{0'-l)n = - a'R + y'P

I3"n =- a"R +(1+7")P

70 =- ^P +(l+c( )Q

7'n = - (1 + ^') P + a'Q

(7"-l)n=- 0"P + a"Q

whence fl being = 0, we have also P = 0, Q = 0, R = 0. The final conclusion is that

the two superlines of opposite kinds, when they intersect, intersect in a line.

11— 2
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571.

A DEMONSTRATION OF DUPIN'S THEOREM.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XII. (1873),

pp. 18.5—191.]

The theorem is that three families of surfaces intersecting everywhere at right

angles intersect along their curves of curvature. The following demonstration puts in

evidence the geometrical ground of the theorem.

I remark that it was suggested to me by the perusal of a most interesting paper

by M. Levy, " Memoire sur les coordonnees curvilignes orthogonales et en particulier sur

celles qui comprennent une famille quelconque de surfaces de second degr^," {Jour, de

I'Ecole Polyt., Cah. 43 (1870), pp. 1.57—200). It was known that a family of surfaces

p=f(x, y, z) where the function is arbitrary, does not in general form part of an

orthogonal system, but that p considered as a function of («, y, z) must satisfy a

partial differential equation of the third order. M. Levy obtains a theorem which, in

fact, enables the determination of this partial differential equation ; he does not himself

obtain it, although he finds what the equation becomes on writing therein
-J-

= 0,

-^ = 0: but I have, in a recent communication to the French Academy, found this
dy

equation.

Proceeding to the consideration of Dupin's theorem, on a surface of the first family

take a point A and through it two elements of length on the surface, AB, AC, at

right angles to each other; draw at A, B, C the normals meeting the consecutive

surface in A', B', C and join A'B', A'C. It is to be shown that the condition in

order that B'A'C may be a right angle is the same as the condition for the inter-

section of the normals AA' and BB' (or of the normals AA' and CC); for this being

so, since by hypothesis B'A'C is a right angle, it follows that AA', BB' intersect;
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that is, that AB is an element of one of the curves of curvature through the point

A of the surface. And, similarly, that A A', CC intersect; that is, that AC is an

element of the other of the curves of curvature through the point A on the surface.

Take x, y, z for the coordinates of the point A\ a, /8, 7 for the cosine inclinations

of AA' ; a,, /3i, 71 for those of AB\ and Oo, /So, 70 for those of AG. Write also

I =adx + ^dy + y d^,

S, = a^d^ + ^,dy + y,d„

S., = a„dx + ^dy + y.d^;

then it will be shown that the condition for the intersection of the normals AA' , BE' is

a„SiO + /3,8,/3 + 708,7 = 0,

the condition for the intersection of the normals AA', CC is

a^h.a. + /3i8o/3 + 71807 = 0,

and that these are equivalent to each other, and to the condition for the angle B'A'C
being a right angle.

Taking I, l^, L for the lengths AA', AB, AG, the coordinates of A', B, G measured

from the point A are

(la, l^, ly), (iifl,, Zi^i, i,7i), (La„, L^., ^70) respectively.

The equations of the normal at A may be wi-itten

Z = X + da,

Z=2 + dy,

where X, Y, Z are current coordinates, and ^ is a variable parameter. Hence for the

normal at B, passing from the coordinates a-, y, z to a; + l^tx^
, y + 13\ . ^ + ^7i >

the

equations are

Z =z + l,y,+lA(ey),
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and if the two normals intersect in the point {X, Y, Z), then

«! + a^,e + eh,a = 0,

7, +781^ + ^8,7 =0,

viz. eliminating 6 and h^O the condition is

a, , a, 8,a

7i . 7 . ^i7

= 0;

or, smce

this is

We have

a-,, /S,, 70 = /37i - A7' 7^1 - 7i«. f^A - ai/3,

a,8,a + M/3 + 7,8,7 = 0.

Similarly the condition for the intersection of the normals AA', CC is

aM + 13A^ + 71^27 = 0.

a.,8,a + /3.:8,/3 + 7,817 = ai8„a + (3^0 + 7.S27
;

in fact, this equation is

(a.,8, - aA) a + i^A - A^.) /3 + (7-281 - 7iS.) 7 = 0,

which I proceed to verify.

In the first term the symbol a.^ — a,8„ is

a., {did^ + ^idy + y,d,) - a, {a.d^ + ^.dy + 7.^),

viz. this is

(a,,/3i - a,/3,) rf„ + (7ia„ - 7,01) 4

;

or, what is the same thing, it is

^d^-ydy,

and the equation to be verified is

{^d, - r^dy) a + (74 - oid,) 13 + (ady - l3d^) 7 = 0,

VIZ. writing
X Y Z

""' ^' '^ = 5' R' R'

[571

where if p =f{ic, y, z) is the equation of the surface A'', F, Z are the derived functions

df df df^ and R = >J(X^+Y- + R-), the function on the left-hand consists of two
dx ' dy' dz'

parts ; the first is

i [{^d, - ydy) X + (74 - o.d,) Y + {ady - /S4) Z\,
R
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that is,

~ [a {dyZ- (LY) + /3 {d,X - d^Z) + ^{d,Y- dyX)},

which vanishes; and the second is

- -^ {a (/34 - r^dy) + /3 {Yh - adz) + 7 i°^(iy - l^d^)] -R>

which also vanishes ; that is, we have identically

a.8,a + I3-A/3 + yAy = ^i^-A + /^i^-./S + 71807,

and the vanishing of the one function implies the vanishing of the other.

Proceeding now to the condition that the angle B'A'C shall be a right angle,

the coordinates of B' are what those of A' become on substituting therein x + lfl^,

y + ?i/3i , z + /j7i in place of x, y, z ; that is, these coordinates are

a; + ?a + l^a-^ + l-^l-^ (la), &c.,

or, what is the same thing, measuring them from A' as origin, the coordinates of B' are

Zi (aj + IB^a + a 8^1),

k (/81 + 18S + ^U),

h (71 + i^ij + 7S1O'

and similarly those of C measured from the same origin A' are

L (a„ + IB.J2 + a BJ),

I, (/So + IL0 + ^Bd),

L (70 + ZS,7 + 7 Si)-

Hence the condition for the right angle is

(«! + lS,a + aSJ. ) (a.2 + ^S.a + aSi

)

+ (/?, + ZSi/3 + 0B,l) (0, + IBS + /3Bd)

+ (7. + ^8i7 + 7^,^ ) (y, + lB./y + 78J ) = 0.

Here the terms independent of I, BJ, B..I vanish ; and writing down only the terms

which are of the first order in these quantities, the condition is

Oj (IB.a + aBd) + a., (IB^a + aB^l)

+ A (ZS,/3 + /38J) + y8, (IB,$ + 0Bd)

+ 7i (^^27 + yBd) + 7., (IBiy + yB^l) = 0,

where the terms in Bd, Bd vanish ; the remaining terms divide by I, and throwing

out this factor, the condition is

(aAa+ ^A^ + 71S.7) + («A«- + /3.8i/S + 7=8.7) = 0,
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viz. by what precedes, this may be written under either of the forms

OiSoft + /3,Sj3 + 7i8,7 = 0,

a„S,a + ^„8,^ + 7,8,7 = 0,

and the theorem is thus proved.

It may be remarked that if we had simply the first surface, and two other surfaces,

or say a second and a third surfiice, cutting the first surface and each other at right

angles, that is, cutting each other in AA' the element of the normal at A, and cutting

the first surface in the elements AB, AC at right angles to each other, then the

tangent plane of the second surface will be the plane A'AB, not in general passing

through B' \ and the tangent plane of the third surface will be the plane A'AC, not

in general passing through C. The condition, that the elements A'B' and A'C on the

surface consecutive to the first surface are at right angles, makes CC and BB' each

intersect AA' \ and we then have, the tangent plane of the second surface is the plane

through the elements AA', BB', the tangent plane of the second surface is the plane

through the elements A A', CC.

As already remarked, a family of surfaces p =f{x, y, z) where the function is

arbitrary cannot form part of an orthogonal system. In fact, if the surfaces do belong

to an orthogonal system, we have AA' , BB' in the same plane, and consequently AB
and A'B' intersect; and, similarly, AC and A'C intersect; that is, if from a point A
on a given surface of the family we pass along the normal to the point A' on the

consecutive surface; and if the lines AB, AC are the tangents to the curves of

curvature at A, and A'B', A'C the tangents to the curves of curvature at A', then

AB intersects A'B', or, what is the same thing, AC intersects A'C; and, conversely,

when this condition is satisfied in general (that is, for every surface of the family and

the surface consecutive thereto), then the family forms part of an orthogonal system;

this is, in fact, the fundamental theorem of M. Levy's memoir. The analytical form

of the condition, viewed in this manner, is

aM + /3:8A + 7.S7, = 0, or aMi + ^M. + 71^7. = ;

or, as it is convenient to write it,

auU, + /3.,8/3. + 7J7, - (olM; + ffMz + yM-^ = ;

and it was by means of it that I obtained the partial differential equation of the

third order above referred to. The condition written in the form

XMi + y-2^ 1^1 + Z.IZ, = 0, or X,8X, + ^i^ F, + Z,SZ, = 0,

presents itself in the proof of Dupin's Theorem by R. L. Ellis, (given in Gregory's

Examples, Cambridge, 1841), but the geometrical signification of it is not explained.

Closely connected with Dupin's, we have the following theorem : if two surfaces

intersect at right angles along a curve which is a curve of curvature of one of them,

it is a curve of curvature of the other of them. I remark hereon as follows

:
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Let the intersection be a curve of curvature on the first surface ; the successive

normals intersect, giving rise to a developable, and the intersection of the two surfaces,

say /, is an involute of the edge of regression of this developable, say of the curve C.

The successive normals of the second surface are the linos at the different points of

/ at right angles to the planes of the developable, that is, to the osculating planes

of C; or, what is the same thing, they are lines parallel to the binormals of G (the

line at any point of a curve, at right angles to the osculating plane, is termed the
" binomial "). But if the intersection / is a curve of curvature on the second surface,

then the successive lines intersect ; that is, starting from the curve G, the theorem in

eifect is that at each point of the involute drawing a line parallel to the binomial

of the corresponding point of the curve, the successive lines intersect, giving rise to a

developable. To prove this, let the arc s be measured from any fixed point of the

curve, and the coordinates x, y, z be considered as functions of s\ and let «', x", x"'

ctoc d~oc (a?(c

denote -^ > rrr. , t-j , and the like as regards y and z. Measuring off on the tangent

at the point (*•, y, z) a length I — s, the locus of the extremity is the involute

;

that is, for the point {x, y, z) on the curve, the coordinates of the corresponding point on

the involute are x + (l-s)x', y + {l-s)y', z + (l-s)z'. Moreover, the cosine inclinations

of the binomial are as y'z" — y"z', z'x" - z"x', x'y" — x"y'. Hence taking X, Y, Z as

cun-ent coordinates, the equations of the line parallel to the binormal may be written

.Y = x-\-{l-s)x' + e {y'z" - y"z'\

Y = y + {l-s)y' + (z'x" - z"x'),

Z =2 + {l-s)z' + 6 (x'y" - x"y'),

and the condition of intersection is therefore

«". 2/V'-2/V, (y'z"-y"z')' =0.

y", z'x" — z"x'
,

{z'x" — z"x')'

z" , x'y" - x'rj
,

(x'y" - x'y')'

Form a minor out of the first and second columns, e.g.

y" (x'y" - x"y') - z" (z'x" - z"x'},

this is,

x' (x"- + y"- + z"-) - x" (x'x" + y'y" + z'z").

or the last term being =0, and the factor x"'- + y"" + z"- being common, the minors

are as x' : y : z'. Moreover (y'z" — y"z')' = y'z"' — y"'z', &c., hence the determinant is

x' (y'z'" - y'"z') + y' (z'x'" - z'"x') + z' (x'y'" - x'"y'),

viz. this is = 0, or the theorem is proved.

C. IX. 12
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572.

THEOREM IN REGARD TO THE HESSIAN OF A QUATERNARY
FUNCTION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xii. (1873),

pp. 193—197.]

I WISH to put on record the following expression for the Hessian of P* + \P'*',

where P, P' are quaternary functions of {x, y, z, w) of the degrees I, I' respectively,

and \ is a constant ; the demonstration is tedious enough, but presents no particular

difficulty.

I write (.4, B, C, D) for the first derived functions of P ; and (ft, b, c, d,f, g, h, I, m, n)

for the second derived functions ; and similarly for P'. The Hessian of P is thus

a,
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and from it we derive the expression {abc'D'-), viz.

ahc'D'- = {a\ + b'hi, + . . .) ahcD-.

The final result is expressed in terms of the several functions abed, abed', abc'd', ab'c'd',

a'b'c'd', abcD'-, a'b'c'B", abc'D'-, a'b'cD-, viz. we have

i^ (P" + \P'* ) = k* (k-l) i
]_ ^ +^) P^-* . abed

''^'-'^^k-l-'l--j)
''''''-' -^

+ \-,

P'"'-' . abed'

[+(k'-l)P'^'-'.ahcD'-j
\^

^

'/f~iV^' V ('' - 1) + I'
i>^- - 1 )] P""' P''' abed

+ X=

r j.2j^', p±-, p'-2k'-2 ahc'd'

+ tk'' (/.' - 1 ) P^-^ P''"'-' abc'D'"-

+ k^k'-(k - I) p-^-^ p--k'-^ a'b'cD"-

^^,_^^.^abcD-.P

I' (I' -I) r n-, D'

+ k^'k'- {k-1) {k' - 1) P'"-' P'-*'-^ - -
(/' _"i)=

"^'<''^'
•

^'

W
+

(l-\){l'-\)

I''

abc'd' . PP'

I (^-IV
abed' . P'-

+ \^

P''-'. a'b'c'd ] ]

U'-l r-lJ [+{k-l)P^-"-.a'b'c'D"-

I

- '^r-'-vi^ [^ (^ - 1) + 1"'
C^-'

- 1)] P* P'^*'-^
.
a'b'c'd'

[
{l-i-)-

J

that is

+ X^ . //^ (A-' - 1) (^^ + jr[ J P'^'-^ . o'6'c'rf'.

In verification, I remark that, \ = 0, the formula becomes

i^ (P") = t (k - 1) (^.^ J
+ ^4^) P"~' ' ahcd,

k'ikl-l)

l-\
P^*--" . abed.

12 2
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Hence, writing P' = P, which implies ^•' = k and I' = /, we ought to have

^ {(1 + X) P*J = (1 + \V •

^^^^^^~^^ P^-' . abed.

But writing in the formula P' = P. it is to be observed that abed' = iabcd, abed' = Qabcd,

ab'c'd' = iabed, a'b'c'd' = abed : moreover that abeD'- and a'b'c'D^ are each = abeD-, but

that abe'D'^ and a'b'cD^ are each = SabcD", and (as is easily shown to be the case)

abeD" = .

—

j P . abed.

Thus the whole coefficient of X becomes

P^--* . abed,

where the numerical factor is

or, finally, it is

4^-'(H-l)

The coefficient of X- is

= Ar'-6-

i-l

•2l-(k-iy
P^-' . abed

{i-ir

or, substituting for ubcD- its value = ^—^ P . abed, the expression is equal to P^' *abed

into a numerical coefficient, which is

viz. this is

r
21' {k-lf 16(k-l)l 2 (

k-iyi-

'lY'^K I-

1

(k - 1) I

^'^6
~(^i-lf'--^[ \-i' + (;-!)=

6k' 1 +

= 6
k'ikl-l)

l-l

and the coefficients of X^, and X* are equal to those of X and X" respectively. Hence

the formula gives, as it should do,

JQ {(1 + \)P^} = (I + xy'^-^^^^ P*'-' . abed.
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Attending only to the form of the result, and representing the numerical factors by

^4, B, &c., we may write

^ (P* + XP'* ) = A P'^-' abed

+ X . B ^P'^-^F'^'-'ahcd'
"I

-'ahcD'-^1+ {k' - 1) P'*-^ P''

+ P"'-'P''ahcd

+ \=. D P"-^-"- P''^--"- abc'd'

+ E P"'-- P"*-^ ubc'D'"-

+ E' P'^-' P"-*'-= ab'cD"-

j^p P-*-3p'=i--3(AP + A'P')

+ \\ C P''P''^'-*a'b'c'd'

+ B' jP'^-'F'^-'a'b'cd
]

1+ (/,• - 1) P*-- P''^'-' a'b'c'D'j

+ \'. A' P'-^'-' a'b'c'd',

where, for shortness, certain terms in X- have been represented by AP + A'P'.

Suppose k = k' = 2; then attending onl}' to the terms of the lowest order in P, P'

-conjointly, we have
JQ (P- + XP'-) = X 5 . P^ abcD'"

+ X= . PP' (AP 4- A'P')

+ \'B' . P'' . a'b'c'B"-.

If the function operated upon with S^ had been UP^+ U'P''^, the lowest terms in

P, P' would have been of the like form ; and it thus appears that for a surface of

the form VP^ + TJ'P'- = 0, the nodal curve P = 0, P' = is a triple curve on the Hessian

surface.

If k = 2, ^' = 3, then attending only to the terms of the lowest order in P, P'

conjointly, we have

^ (P= + XP'O = ^ . P^ a6cc?

+ X.25.P^P' .abcD'-;

and the like result would be obtained if the function operated upon with ^ had been

UP' + U'P'\ It thus appears that for a surface of the form UP*" + U'P"' = 0, the

cuspidal curve P = 0, P' = is a 4-tuple curve on the Hessian surface, the form in .

the vicinity of this line, or direction of the tangent plane, being given by

P'{A.P. abed + 2B\.P'. abcD'') = 0,

viz. there is a triple sheet P^ = 0, coinciding with the direction of the surface in the

vicinity of the cuspidal line ; and a single sheet

A. P. abed + 2BX . P' . abcD'"- = 0.

At the points for which the osculating plane of the curve P = 0, P' = coincides with

the tangent plane of P = (or, what is the same thing, with that of the surface), we

have abcD'^ = 0, and the triple and single sheets then coincide in direction.
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573.

NOTE ON THE (2, 2) CORRESPONDENCE OF TWO VARIABLES.

[From the QuaHerly Journal of Pure and Applied Mathematics, vol. xii. (1873),

pp. 197, 198.]

In connection with my paper " On the porism of the in-and-circumscribed polygon

and the (2, 2) correspondence of points on a conic," Quar. Math. Jour., t. XI. (1871),

pp. 83—91, [489], I remark that if (6, (p) have a symmetrical (2, 2) correspondence, and

also (<j}, x) the same symmetrical (2, 2) correspondence, then {6, x) will have a (not in

general the same) symmetrical (2, 2) correspondence. In fact, to a given value 6 there

correspond, say the values ^i, <p.^ of <j>; then to <^i correspond the values 0, X^ oi X
(viz. one of the two values is = 6), and to

<f>..
the values 0, x-,

of x (^i^- ^^^ o^ ^^^

values is here again = 6) ; that is, to the given value 6 there correspond the two

values x^' X--^
of %; and similarly to any value of x there correspond two values of d;

viz. to Xi the value 6 and say 6^ ; to
x-^

the value d and say 6.. ; that is, the

correspondence of ^, ;^ is a (2, 2) correspondence and is symmetrical.

Analytically, if we have

(a, b, c, / g, /($^0, +4>, 1)^ = 0,

and

then writing

(a, b, c, f, (J, h]i4)x, 4> + x, 1)' = 0,

{a,...'^<pti, (p + u, l)- = 0,

the roots hereof are u = 6, u = x',
i-e- we have

(a,. ..$</,«, 4>+u, ir=(a,...\4>, 1, Qy{u-e){u-x);
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or, what is the same thing, we have

I : -^0 + y) : ex = {(',...\4>, 1, 0)= : 2(«, ...$<^, 1, Op, <^, 1) : {a,...\0, </,, ly

= (i(f>- + 2h(t) + b : 2{hcf>"- + b+J)<p+f) : b(j>- +
2f<j) + c,

giving
<f>' : <f)

: 1 proportional to linear functions of 1, + X' ^X' ^"^^ therefore a quadric

relation (*^dx, ^ + X' 1)" = ^, with coefficients which are not in general (a, b, c, /, g, //).

Suppose, however, that the coefficients have these values, or that the correspondence is

{a, b, c,f,g, hfdx' e + x,ir- = 0,

we must have

(fl, b, c, / g, h^a<}>- + 2h(f> + b, - 2 (h<f>- + b'+g <j} +/), bcj>' + 2f<p + cV = 0,

that is,

(«c + ¥+ 2bg - 4-fh) {a, b, c, f, g, h'^(f)\ - 2(f>, 1 )- = 0,

or, we have

ac + b- + 2bg - 4/7; = 0,

as the condition in order that the symmetrical (2, 2) correspondence between and x
may be the same correspondence as that between 6 and <p, or between

<f>
and x-
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574.

ON WRONSKI'S THEOREM.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. Xli. (1873),

pp. 221—228.]

The theorem, considered by the author as an answer to the question "En quoi

consistent les Mathdmatiques ? N'y aurait-il pas moyen d'embrasser par un seul probleme,

tous les problemes de ces sciences et de resoudre generalement ce probleme universel?"

is given without demonstration in his Refutation de la Theorie de Fonctions Analytiques

de Lagrange, Paris, 1812, p. 30, and reproduced (with, I think, a demonstration) in the

Philosophie de la Technie, Paris, 1815 ; and it is also stated and demonstrated in the

Supplement a la Reforme de la Philosophie, Paris, 1847, p. CIX et seq.; the theorem,

but without a demonstration, is given in Montferrier's Encydopedie Mathematique (Paris,

no date), t. III. p. 398.

The theorem gives the development of a function Fx of the root of an equation

=fx + .Ti/i-X- + x„f„x + &c.,

but it is not really more general than that for the particular case Q =fx +Xif^x; or

say when the equation is = j>x + Xfx* Considering then this equation

4)X + Xfx = 0,

let a be a root of the equation j>x = ; the theorem is

Fx = F

I i'
1

(//^')'
1
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\'

1.2.3
<f>''

<f>", (<i>r, (IfFT
i>"', {^T, iffFT

1.1.2

+ &C.,

where F, f, F', &c. denote Fa, fa, F'a, &c. and the accents denote differentiation in

regard to a ; the integral sign / is written instead of /„ ; this is introduced for

symmetry only, and obviously disappears; in fact, we may equally well write

Fx = F

^ x^j^ f

,

r-F
1

1

1.2^'^
0", (f-FJ I

1

1 . 2 . 3 f

+ &C.

1.1.2

I stop for a moment to remark that Laplace's theorem is really equivalent to

Lagrange's ; viz. in the first mentioned theorem we have x = <f)(a + Xfx), that is

<^-i
a; = a + \f4> . (/>"' *•, and then Fx = F<j) .

0~' x, viz. by Lagrange's theorem

Fx = F<^ + \ F4>' f4> +^W • {f4>n' + &c-

where on the right hand F^ and /0 are each regarded as one symbol, the argument

being always a and the accents denoting differentiation in regard to a, thus F4>' is

da . Fj>a = F'<^a . <f)'a, &c.,

viz. this is Laplace's theorem.

Suppose in Wronski's theorem <j>x = x — a ; that is, let the equation be

X — a + \(f>x = 0,

then each determinant reduces itself to a single term : thus the determinant of the

third order is

(x-a)'
, {{x-an , f'F'

(x-a)", {{x-arr, ipn'
{x-a)'", {{x-ayy, ipF')"

where in the first and second columns the accents denote differentiation in regard to

x, which variable is afterwards put = a ; the determinant is thus

1, * ,
*

0, 1 . 2, *

0. , (pF)"

C. IX. 13
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viz. it is

ON WEONSKI S THEOREM. [574

= 1.1.2 {pF')",

and so in other cases ; the formula is thus

Fx^F- \fF + ^^ipF')' - j-|^ ipF'T + &c.,

agreeing with Lagrange's theorem.

Suppose in general ^x = {x — a) yjrx, or let the equation be

{x — a) <^x + \fx = 0,

that is,

^Y'X

we have then by Lagrange's theorem

1^ ^ 1
. 2 r VV'

Consider for example the term ]-f"('y)
f

; this is

= \f'x

1.2.3 l^'(i)T +
^^-

, {x-afifxyy
(<j>xy

the accents denoting differentiation in regard to x, and x being ultimately put = a
;

or, what is the same thing, it is

[dej
F' (a + 6)

[Ha +W
the accents now denoting differentiation in regard to 6, and this being ultimately put

= 0. This is

,13

in^,».«-j/^
<^'a+l72f'a+-"

This may be written {F'f^^^\ , where

4=f + -i^f' + i^V+...,

it being understood that as regards F'f^, which is expressed as a function of a only

{6 having been therein put = 0), the exterior accents denote differentiations in respect

to a, whereas in regard to A, = <p' + \d4>" + kc, they denote differentiation in regard

to 6, which is afterwards put =0. And the theorem thus is
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This must be equivalent to Wronski's theorem; it is in a very different, and, I think,

a preferable form ; but the results obtained from the comparison are very interesting,

and I proceed to make this comparison.

Taking the foregoing coefficient [F'p -j-\ this should be equal to Wronski's term
A'

1 J_ I
f , m ,

pF'
1.1.2 <A'M^.,

(^r. iPF')'

I

</.'", (</,=)'", {pF'T

or, what is the same thing, the determinant should be

= 1 . 1 .
2</,'« [PF' (1)" + 2 if^F')'

(I3)'
+ ipFT ],} ,

that is, the values of

should be

respectively. Or, what is the same thing, if

I 6 d"- V 1 12

then the last mentioned functions should be

1.1.2fM„, 1.1.2(/)'«24i, 1.1.2f«vl.,.

We have

A
^

A 3 (/)'
A _ 4'" 3<^""

or the identities are

- Q<f>"<ji'' = 0'" (4>-)' - 4,'
(<t>-y",

= 4>"'
. 24>4>' - 4>' i24><t>" + 6<p'<f>"),

+ 64>"'-<f>'
- 24>"'4>'- =

<f>" (4>T - </>'" (<kT> = 4>" i^H'" + 6^'^") - 0'"
(2(^<A" + 2<^'-),

which is right. And in like manner to verify the coefficient of \*, we should have

to compare the first four terms of the expansion of

13—2
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with the determinants formed out of the matrix

»/ tft I in ifl/r

(<^^)', {4>r> (<f>T, m"
{<j>^}\ {<f>r, m", m"

The series of equalities may be presented as follows, writing as above A to denote the

function
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and expanding the left hand as far as 6^, this is

= 1 =1
- 4>{i0 + }r0'- + ^d') -26- p-'-hd'

+ 10( 16"-+ id') + -

-20( i^O -^^3

1 -2^ + V-^'-

which agrees.

Reverting to the above equations, and expanding the several terms {(p-)' = 2^(/>',

((p-)" =
2(f>(f>" + 2(f)''-,

&c., then, since in each case the left-hand side contains <^', </>", <j)"',

&c. but not </), it is clear that on the right-hand side the terms involving ^ must

disappear of themselves ; and assuming that this is so, the equality takes the more

simple form obtained by writing in the foregoing expressions
(f)
= 0, viz. we thus have

(<^-y = 0, (</>-)" = 2^'", &c. In order to simplify the formulae, I replace the series (/>', ^<f>".

i<t>"',
^4^"'\ &c. by 6, c, d, e, &c., and I thus find that they assume the following

simple form, viz. writing

@:=b + cd + d0' + ed' + &c.,

then we have
1 1

~ 6"
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where Bi = 6, 5, = b-, i?3 = 6^ ; we wish to show that

/3B, + yC\ + 8A + eE, = 0,

yB, + BC, + eD, = 0,

BB, + eC, = 0,

for this being the case, neglecting the terms in 6*, 6\ &c., and writing

1
/30' + hy6-^ + iBe + e[l-^^^}=O,

then eliminating ^, y, B, e, we have

&' ¥'. i^. i-

60-

1 = 0,

B„ C„ A, K
B,, C,, A

in which equation the term which contains

14
and the equation thus is

^s
~ "~

/To
multiplied by the determinant without the term in

question (that is, with ^ for its corner term).

To prove the subsidiaiy theorems, multiply the expression of ^^ by ^^ , and

differentiate in regard to 6, we have

{e@Y
- ^'^ ^+^= + ^3+04 + 05-

Multiplying by
e@ = B,e + 0,6' + D,e' + E,e\

1 4 (^oy
we see that B,^ + G^y -\- D^B + E^e is the coefficient of ^ in /W^f ' ^^^ similarly

1 . 4 (d&)' 1 . 4 (^0)'
B.y + C.B + E«€ is the coefficient of 75 in ,^0,^3 ^^^ B^B + 636 that of 75 in

{e@y 6 (d@y

Now, m being any positive integer,
^^|

expanded in ascending powei's of 6 contains

negative and positive powers of 0, but of course no logarithmic term ; hence differ-

(@^)' 1
entiating in regard to 9, 7^ra\m+i contains no term in 3;* and the expressions in

question are thus each = ; which completes the demonstration.

The foregoing formulae giving the expansion of =— up to ^"~' in terms of the

coefficients in the expansions of 0, 0^, ... 0"~' are I think interesting.

* This is a well-known method made use of by Jacobi and Murphy.
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575.

ON A SPECIAL QUARTIC TRANSFORMATION OF AN ELLIPTIC
FUNCTION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xii. (1873),

pp. 266—269.]

It is remarked by Jacobi that a transformation of the order n'n" may lead to a

modular equation

A'_n' IT
A ~ n" K '

and in particular when n' = n", or the order is square, then the equation may be

A' K'
-r- = -w ; viz. that instead of a transformation we may have a multiplication. A quartic

transformation of the kind in question may be obtained as follows : writing

X={a, b, c, d, e'^x, 1)* = a{x — a){x — ^){x — y){a; - S),

H the Hessian, <t> the cubi-covariant, / and J the two invariants, then there is a

well known quartic transformation

_2Hz- ^ ,

leading to

dz _ 2 V(— 2) dx

V(^) V(^)

where Z=z^ — Iz + 2J. In fact we have

that is,

Z = ^3 (4fl-^ - IH--X + JX% =
^^1

4>=,
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so that, by Jacobi's general principle, it at once appeai-s that we have a transformation

of the form in question.

Now we may establish a linear transformation

y-8 '

such that to the roots Zi, z.^, z^ of the equation z^ — Iz + '2,J=0 correspond the values

a, /3, y oi y ; and this being so, we have between y, z the relation

dz ^ V(-2)(^y

where Y=a. (y-a)(y — 0)(y — y){y — 8), =(«, b, c, d, e\y. If; that is, we have

liy^q _ 2H
y-S 'X'

such that

dy _ 2dai

V(F)~VW'

which is a quartic transformation giving a duplication of the integral. The foundation

of the theorem is that we can determine p, q in such wise that the functions

pa^+q p0 + q jJy + q

a-S ' /3-S ' 7-8

shall be the roots z^, z., z^ of the equation z^ — Iz + 2J=0. For writing

^ = (/3-7)(a -8),

-B = (7-«)(/3-S),

C=(a-/3)(7-S),
and observing the equations

I = ^^{A-^ + B^ + G% =-~{BC+CA + AB),

(since A+B + G = 0) and

the equation in z is

^J=-^iJ^-<^)((^-^)(^-Bl

[^-i,a{B-C)][z-^a{C-A)][z-:^a{A-B)],

and the equations for the determination of p, q thus are

pa +q = la {a -8){B- C), = ^a (a - 8) {2 (aS + 0y) _ (a + 8) (^ + 7)},

p/3 + q = i«, (/3 - 8) (C - A), = la. (/S - 8) {2 (^8 + 7a) - (/3 + 8) (7 + a)),

I)y +q = la (7 - 8) (^ - 5), = la (7 - 8) {2 (78 + a/3) - (7 + 8) (« + /3)1,
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giving

p = i,t j- -iS'+'^Bla + lS + y)- l3y-ya- a/3},

q = Xa{S"-(a + j3 + y)-2S (0j + ya + a/3) + -ia/Sy],

or, as these may also be written

p = ^a[(0-S){y-B) + (y-B)(a-B)+{<z-S)(fi- 8)j,

q = ia{<x(fi-S){y-S)+l3{y-B)(a-S) + y(a-B){l3-S)};

and observe also

pS + q=Ui(a-8){l3-B){y-B).

Taking X in the standard form = (I - x") (1 — k-x"), and writing

7 = -l, 8 = 1, «=+J, /3 = -p
we have

^py + q^ -i f
2^-• (1 + k") (1 + A;V) + (1 - lOA;^ + 1) x']

y-\ {-x'){\-k"o(?)

T 2 1

D 1 2 1

z,= i(l+6A- + Z,-=),

2-, = HI - 6^' + k-),

Z = z=-^(l + Uk- + k') ^ + ^g (1 + ^') (1 - 34^^ + k*)

= (S- 5i) (z - z.) (^ - z,),

p = ^(l-ot), q = ^{o-k'), p + q = l-k"--

giving as they should do

k k

Write for shortness

-U^fc'{l + t){l +X*) + (1 - I0k' + t)ai'] = Q,

so that

jJ,!/ + g _ Q
y-1 -X'

c. IX. 14
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then

QUARTIC TRANSFOEMATION OF AN ELLIPTIC FUNCTION. [575 i

The last of these is

that is,

Q _p±q ^y-J:
x~''-k-\- ?/-l

'

X-''- 2 -y-l'

1 - ifc"- y + l ^ JJl- A;;01«l_

2 y-l {\-x-){l-k-.v')'

y + \_ (Ij^VL—

from which the foregoing equation

dy _ 2dx

may be at once verified.
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57Q.

ADDITION TO MR WALTON'S PAPER "ON THE RAY-PLANES
IN BIAXAL CRYSTALS."

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xii. (1873),

pp. 273—275.]

Instead of Mr Walton's a-, b-, c" write a, b, c, and assume a, /3, y = b — c, c — a,

a — b; B, e, ^=b + c, c + a, a + b. Also instead of his a^, y", z'^ write x, y, z. Then
instead of the octic cone we have the quartic cone, or say the quartic curve

a^^-rf sec- . xyz {x + y + z)

= a-yz {{be — «-) x + a {^y — 'fz)]-

+ ^zx [(crt -b-)y+b{yz — ax)]-

+ 'fxy {(ab - C-) z^c {ax - ^y)\-,

viz. we may herein consider x, y, z as trilinear coordinates, the ratios x : y : z being

positive for a point within the fundamental triangle.

The curve passes through the angles of the triangle, and it touches the sides in

the points {x = 0, jiy — 'yz = 0), {y =0, yz — ax = 0), {z = 0, a.v — ^y = 0) respectively.

Moreover, the tangents at the angles of the triangle lie each of them outside the

triangle. Hence, supposing a, b, c each positive, and a >b> c, we have a and 7 each

positive, /3 negative, and the form of the curve is as shown in the figure, or else the

like form with the oval lying outside the triangle. And it is hence clear that, if the

side AC{y = 0) instead of touching the curve meets it in a node, this is a conjugate

point arising from the evanescence of the oval ; and in this case no part of the curve

lies within the triangle. Now considering any point x : y : z =1 : m : 71, we obtain a

tetrad of points x : y : z= ± a^/{1) : ± ^(wi) : ± \/(«) on the octic cone or curve ; and in

order that the point on the octic curve may be real, we must have I, m, n all of the

14—2
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same sign
; that is, the point on the quartic curve must lie within the triangle.

Hence, when in the quartic curve the oval becomes a conjugate point, the octic curve
has no real branch, but it consists wholly of conjugate points; viz. it consists of the
points A, B, C as conjugate points; two imaginary conjugate points answering to the

point a of the figure, two other imaginary conjugate points answering to the point 7;

and two conjugate points answering to the point y8, these last being not ordinary

conjugate points, but conjugate tacnodal points, or points of contact of two imagiuary

branches of the curve.

The case in question, /3 a conjugate point on the quartic curve, answers to

Mr Walton's critical value of sec- 6, viz. in the present notation sec" 6 = . To
ay

show this I consider the intei-section of the curve by the line yz — au' = ; and I

write for convenience 72 = oue = <ya.u, that is, x = yu, z = au. Substituting these values,

the equation divides by yu, or omitting this factor it is

oVjS^ sec= . « {2/ + (a + 7) u]

= a^ \yu {be — it" — ((a) + a^y}'-

+ /3-a7 . uy {ca — b-)-

+ rf [au (ab -C- + cy) - c^y}-,

or observing that we have a + 7 = — /3, be —a- — wx = f/3, ab — c- + cy = — 8/3, this becomes

a'y sec- Bit (y — ^u)

= 0= (y^u + ay)-

+ 07 [ca —b'-y- uy

+ y' (aBu + cy)-.

viz. this is

V? (aYf= + ays- -)- aY sec= 6 . /3j

+ uy ['2.a?ay^ + 2y<ca8 + ay {ca - b-f - aV sec^ 0}

+ y^a^a^+ cy) = 0.
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The requii'ed condition is that the coefficient of «- shall vanish ; viz. we then have

— 0/87 sec- = a^- + yB-

= (b-c)(a + by + (a-b){b + cr-

= {a - c) {36= + b{a + c)- ac}

= -/3(46- + a7),

that is,

ay sec'= = 46= + a^,

agreeing with Mr Walton's value. Giving sec= d this value, and throwing out the

factor u, the equation becomes

u {2a^ay^+ 2y^caS + ay {ca - b-f - aY (46= + ay)]

+ y {a^d^ + c-7=) = ;

or, what is the same thing,

ayii \1a (a + 6) (6 - c)- + 2c (c + b) (6 - a)- + {ca - b-f -{b-c) {a - 6) 46- - (6 - c)-' (6 - af]

+ y {aV + c-rf) = 0,

'say

ayKu + (a'-a^ + c-y') y = 0,

viz. this equation determines the remaining intersection of the curve by the line

yz — aa;=0; the point in question lies outside the triangle, that is, u : y should be

negative ; or a, y, a-a? + c-y^ being each positive, we should have K positive ; we in fact

find

K = 46^ + 6- (a- + c- — 6ac) + 4a=c=

= 4 (6- - acf + 6- (« + c)-,

which is as it should be.
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577.

NOTE IN ILLUSTRATION OF CERTAIN GENERAL THEOREMS
OBTAINED BY DR LIPSCHITZ.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xii. (187.3),

pp. 346—349.]

The paper by Dr Lipschitz, which follows the present Note [in the Quarterly

Journal, I.e.], is supplemental to Memoirs by him in Crelle, vols. Lxx., Lxxii., and Lxxiv.

;

and he makes \ise of certain theorems obtained by him in these memoirs ; these theorems

may be illustrated by the consideration of a particular example.

Imagine a particle not acted on by any forces, moving in a given surface ; and

let its position on the surface at the time t be determined by means of the general

coordinates x, y. We have then the vis-viva function T, a given function of x, y, x', y'
;

and the equations of motion are

ddT_ dT ^ ^^T _dT^^
dt dx' dx ' dt dy dy '

which equations serve to determine x, y in terms of t, and of four arbitrary constants

;

these are taken to be the initial values (or values corresponding to the time t = <„)

of X, y, x', y'
; say the values are a, /3, a', /3'.

We have the theorem that x, y are functions of a, /8, a! (t — to), yS' {t — *„).

Suppose for example that x, y, z denote ordinary rectangular coordinates, and that

the particle moves on the sphei-e .r- + y= + ^- = c- ; to fix the ideas, suppose that the

coordinates z are measured vertically upwards, and that the particle is on the upper

hemisphere ; that is, take ^ = + sj{c- — x^ — y-), we have

T=\{x--+y'"- + z'%

where z' denotes its value in terms of x, y, x, y ;
viz. we have xai + yy' + zz' = 0, or

, _ xa: + yy' _ xx' + yy'^-
~z

' -~V(c— ^-2/=)'
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the proper value of T is thus

1 f ., ,„ (xx' + yy')-]

2
(

^ C--X-- y-\

but it is convenient to retain z, z' , taking these to signify throughout their foregoing

values in terms of x, y, x
, y

.

The constants of integration are, as before, a, /3, a', /3' ; but we use also 7, 7'

considered as signifying given functions of these constants, viz. we have

7 = ^{c- — a— p-) and 7 = — "^"^

(in fact, a= + yS- + 7- = c- and aa' + /3/3' + 77' = ; 7, 7' being thus the initial values

of z, z').

Now, writing

c
'

the requu'ed values of x, y and the corresponding value of z are

ci'
* = acos<7 + ^^^,,_^^^^^,^^sina,

c/3'

v(« +P- + 7-)

2=7 COS a + ,, ,„
—^^ y- sin <r.

To verify that these are functions of a, /3, a {t — t„), ^'(t-t^), write a'(<-<„) = w,

^ (t-t„) = v; and take also 7'(^-f„) = w; we have au + ^v + yiu = 0, viz. tv, =--(a>i+^v),

is a function of a, /3, «, v ; and then

and

^/(^l^ + V- + vfl)
o" = .

u .x= a cos cr -]— sin <r,

y — p cos <7 + - sm cr.

2=7 cos <r + - sin cr

;

(T

SO that a;, y (and also z) are each of them a function of a, /3, u, v, that is a, /3, a' (< — to),

y3' (< — to), which is the theorem in question.

The original variables are x, y; the quantities «'(< — <„), ^'{t — to), or u, v are

Dr Lipschitz' " Normal-Variables," and the theorem is that the original variables are

functions of their initial values, and of the normal-variables.



112 NOTE IN ILLUSTRATION OF CERTAIN GENERAL THEOREMS. [577

The vis-viva function T may be expressed in terms of the normal-variables and

their derived functions; viz. it is easy to verify that we have

„ , / 1 sin- <t\ , , , , „

- VcV- c-(T* 1
'

, sin- o- , „ „ „,— i {U- + V-+W -),

c

where w denotes (aa + l3v) and consequently w' denotes {au' + ^v'); introducing
7 7

herein differentials instead of derived functions, or writing

(h (da) = i- (

—

——
I
(udw + vdv + ivdwY

, sin° <7 , , , , „ , ,,

+ f— 2
(ait- + dv + dw-),

where w, dtv denote — (au + /Sw), (adu + 0dv) respectively ; then (du) is the
7 7

function thus denoted by Dr Lipschitz : and writing herein t — t(, = 0, and thence m = 0,

t) = 0, w = 0, <r = 0, the resulting value of ^ (du) is

/o {du), = \ (dii? + dv- + dv)'^),

where /» {du) is the function thus denoted by him ; the corresponding value of /„ (w) is

= ^ («.' -\-v'^-'r w"). We have thus an illustration of his theorem that the function ^ (du)

is such that we have identically

,/. (du) - {d V{/„ {n)\y =^r [/„ (du) - {d V(/„ u)Y-],

where m is a function of u, v independent of the differentials du, dv; the value in

the present example is in fact m" — c" sin" <r ; or the identity is

<j, (du) - [d V(/o u)Y =
f^^^^)

[/o {du) - {d V(/o«)n,

in verification whereof observe that we have

dfo (u) udu + vdv + ivdw
d \/(/oW) =

2 Vl/o«) V(m- + » + 1V-)

= — (udu + vdv + wdwY.
C(7

The value of the left-hand side is thus

--—,- {udu -f vdv + ivdw)- + i -- (du^ + dv' + dw'),
c-cr* ' ^ a"

viz. this is

c" sin- <7

/.2^2 ^ {du'^ + dv- + dw') — -^—J (udu
-\- vdv + wdw)' >

;

or, finally, it is

which is right.



578] 113

578.

A MEMOIR ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS.

[From the Philosophical Transactions of the Royal Society of London, vol. CLXiv. (for the

year 1874), pp. 397—456. Received November 14, 1873,—Read January 8, 1874.]

The theory of Transformation in Elliptic Functions was established by Jacobi in

the Fundamenta Nova (1829); and he has there developed, transcendentally, with aa

approach to completeness, the general case, n an odd number, but algebraically only the

cases n = 3 and n= o ; viz. in the general case the formulae are expressed in terms of

the elliptic functions of the nth part of the complete integi-als, but in the cases n = S

and n = .5 they are expressed rationally in terras of u and v (the fourth roots of the

original and the transformed moduli respectively), these quantities being connected by

an equation of the order 4 or 6, the modular equation. The extension of this alge-

braical theory to any value whatever of n is a problem of great interest and difficult}^:

such theory should admit of being treated in a purely algebraical manner ; but the

difficulties are so great that it was found necessary to discuss it by means of the

formulae of the transcendental theory, in particular by means of the expressions

involving Jacobi's q ( the exponential of ^ J
, or say by means of the ^-transcendents.

Several important contributions to the theory have since been made :—Sohnke, " Equa-

tiones modulares pro transformatione functionum ellipticarum," Grelle, t. xvi. (1836),

pp. 97—130, (where the modular equations are found for the cases »i = 3, 5, 7, 11, 13,

17, and 19); Joubert, " Sur divers equations analogues aux equations modulaires dans

la theorie des fonctions elliptiques," Goniptes Rendus, t. XLVii. (1858), pp. 337—345,

(relating among other things to the multiplier equation for the determination of

Jacobi's M) ; and Konigsbergei-, " Algebraische Untersuchungen aus der Theorie der

elliptischen Functionen," Crelle, t. Lxxii. (1870), pp. 176—27 5 ;_ together with other

papers by Joubert and by Hermite in later volumes of the Comptes Rendus, which need

not be more particularly referred to. In the present Memoir I carry on the theory,

algebraically, as far as I am able ; and I have, it appears to me, put the purely

c. IX. 15
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algebraical question in a clearer light than has hitherto been done ; but I still find

it necessary to resort to the transcendental theory. I remark that the case n = 7

(next succeeding those of the Fundamenta Nova), on account of the peculiarly simple

form of the modular equation {\ — ifi){\—v^) = (\—uvf, presents but little difficulty;

and I give the complete formulae for this case, obtaining them as well algebraically as

transcendentally ; I also to a considerable extent discuss algebraically the case of the

next succeeding prime value n = \\. For the .sake of completeness I reproduce Sohnke's

modular equations, exhibiting them for gi-eater clearness in a square form, and adding

to them those for the non-prime cases n = 9 and ?i = 15 ; also a valuable table given

by him for the powers of f{q) ; and I give other tabular results which are of assistance

in the theory.

The General Problem. Ai-ticle Nos. 1 to 6.

1. Taking n a given odd number, I write

l-y^l-x/P-QxV
1+y l+x\P+QxJ'

where P, Q are rational and integral functions oi x', P ± Qx being each of them of

the order ^(n — 1), or, what is the same thing, {l±x){P±Qxy being each of them

of the order n ; that is,

n = 4^j-|-l, n = -ip + S,

Order of P in x^ is p , p,

„ Q „ p - 1

;

p;

whence in the first case the number of coefficients in P and Q is (p + l)+p, =^(n + l),

and in the second case the number is (jj + 1) + (jj+ 1), =^{n + l), as before. Taking

. P = a + 7a- + ex* + ...

,

Q=^ + Bx"- + ^x'+ ...,

the formula is

l—y_l—xfa — ^x + yx- —
-;)"

1 + 2/ 1 +x\a+ ^x+ yafi +

the number of coefficients being as just explained. Starting herefrom I reproduce in

a somewhat altered form the investigation in the Fundamenta Nova, as follows.

2. If the coefficients are such that the equation remains true when we therein

change simultaneously x into -r- and y into q— , then the variables x, y will satisfy
tCX \1J

the differential equation

Mdy _ dx

^l-y-.l-xy- Vl -x\ 1 -kv'
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ilf a constant, the value of which, as will appear, is given by ^^=1+ -] ; and theM a J

problem of transformation is thus to find the coefificients so that the equation may
remain true on the above simultaneous change of the values of a:, y.

In fact, observing that the original equation and therefore the new equation are

each satisfied on changing therein simultaneously x, y into —x, —y, it follows that the
equation may be written in the four forms

1- y = {l- x)A"-{^), 1+ y = {l+ x)B^{^),

\-\y={l- kx) G' (-), 1 + X^ = (1 + kx) D^ (-),

the common denominator being, say E, where A, B, G, D, E are all of them rational

and integral functions of x; and this being so, the differential equation will be

satisfied.

8. To develop the condition, observe that the assumed equation gives

X (P-^ + 2PQ + Q'x') x^

-where 91, 33 are functions each of them of the degree ^(« — 1) in x-. (Hence, if

with Jacobi -p. denotes the value (y^x%^n, we have "/j?
= (l+-^) , =1 + — , as

mentioned.)

Suppose in general that U being any integi-al function (1, x-y, we have

1 V

viz. let U* be what U becomes when x is changed into j^ and the whole multiplied

by (L^'afy.

Let y* be the value of y obtained by writing j^ hr x; then, observing that in

the expression for y the degree of the numerator exceeds by unity that of the

denominator, we have

1 ^
kx 33*

'

whence

^_1 2(9P
^^ ~

/c 3333*
'

and the functions 91, 33 may be such that this shall be a constant value, = -

;

this will be the case if

X^3333*
k ~ 9191*

'

which being so, the required condition is satisfied.

15—2

y i.^ m* '
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4. I shall ultimately, instead of k, X introduce Jacobi's w, v (u = Vlc, v = \/\) ; but

it is for the present convenient to retain k, and instead of X to introduce the

quantity il connected with it by the equation \ = kOr ; or say the value of fl is

= v- -i- «-. The modular equation in its standard form is an equation between u, v,

which, as will appear, gives rise to an equation of the same order between «", v- ; and

writing herein d^ = flu^, the resulting equation contains only integer powers of 'u\ that

is, of k, and we have an fii-form of the modular equation, or say an HA'-modular

equation, of the same order in il as the standard form is in v ; these flA-forms for

n = S, 5, 7, 11 will be given presently.

5. Suppose then, D, being a constant, that we have identically

this implies

(In fact, if

then

21 = - SB*

35 =
^

21*

?1 =a+cx- + ... + qx''-^ + sx"-\

33 =b + dx- + ... + rx-"-' + te"-i

,

31* = .s + qt-x' + ... + ck^-^ a;"-^ + ak"-''x"-\

35* = i + rk-x- + . . . + dk^'-'x''-' + hk'"-^x^-\

and the assumed equation gives

_ 1__ k^ k»-' _ ^"-^ ,

that is,

» -
-/:il,i=^

«' « - liJ^» q, ...,r-
^^,„_^,

c, f -
^.. ,„_j,

a ;

and therefore 35 = yttt—- 21*.)

3535* X . ...
From these equations ,

y,»
= ^', that is, = j , as it should be ; so that fl signifying

as above, the required condition will be satisfied if only 21 = ,.^^^_j^
35*

; or substituting

for 21, S their values, if only

(P"- + 2PQx' + Q\v^)* = rtki"'-'' {P' + 2PQ + Q'x%

where each side is a function of a;- of the order ^(h — 1), or the number of terms is

^(» + l), the several coefficients being obviously homogeneous quadric functions of the

i(H+l) coefficients of P, Q. We have thus J(n+1) equations, each of the form

U = nV, where U, V are given quadric functions of the coefficients of P, Q, say of

the ^(»i+l) coefficients a, /3, 7, S, &c., and where O is indeterminate.
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6. We may from the h {ii + 1) equations eliminate the J (n — 1) ratios a : /S : 7 : ...
,

thus obtaining an equation in n (involving of course the parameter k) which is the

ni--modular equation above referred to ; and then fl denoting any root of this equation,

the ^()i + l) equations give a single value for the set of ratios a : /3 : 7 : 8 : ... , so

that the ratio of the functions P, Q is determined, and consequently the value of y
as given by the equation

1 + y {l+a;){P+Qa;)-' °^ ^ P= + 2PQx' + Q'a:'
*

The entire problem thus depends on the solution of the system of ^(n+1) equations,

{P' + 2PQx' + Q-x')* = nX'i"'-'i (P= + 2PQ + Q'x"-). *

The flk-Modular Equation, n = S, 5, 7, 11. Article No. 7.

7. For convenience of reference, and to fix the ideas, I give these results, calculated,

as above explained, from the standard or itu-forms.
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71 = 7 :n»
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Equation-systems for the cases n = S, 5, 7, 9, 11. Art. Nos. S to 10.

v
8. II = 3, cubic transformation. k = u\ fJ = -, (here and in the other cases).

u- '

P = a, Q = /S- The condition here is

h"s?a? + ( 2a;8 + /3=) = D.h [(a- + 2a/3) + ^'x%

and the system of equations thus is

har = ^/3^

2a^ + /3-=nA;(tf + 2a^),

and similarly in the other cases ; for these it will be enough to write down the

equation-systems.

11 = 5, quintic transformation.

^•=a= = D.'f,

2a7 + 2a/3 + /3= = n (2a7 + 2/37 + /?-'),

7= + 2/37 = ^^' («' + ^01/3).

n = 7, septic transformation.

P = a + 7«=, Q = ^ + Bx'.

A-=a= = nB\

k (207 + 2a^ + /3-) = 0(7-+ 278 + 2/3S),

7= + 2/37 + 2a8 + 2/38 = Hk (£07 + 2^7 + 2aS + /S"-),

B-
+

-ZyS = nk> (a- + 2a^).

n = 9, enneadic transformation.

P = a + 7a;"- + 6.*'', Q = /3 + hx".

toC- = D.e\

k? (207 + 2o/3 + /3-') = n (276 + 2eS + 8-),

206 + r + 2aa + 27^ + 2/38 = n (2ae + 7- + 27S + 26/3 + 2/38),

276 + 27S + 2e/3 + 8= = ni- (207 + 2o8 + 27/8 + /S^),

e= + 286 = ni-^(«--+2a/3).

n = 11, endecadic transformation.

P = a + 7*" + 6*-', Q = /3 + 8.-;- + ft-'.

k^ (207 + 2a/3 + /S--^) = n (e-^ + 2ef+ 28?),

/L- (2oe + r + 2a8 + 27^ + 2/38) = H (276 + 27?+ 2e8 + 2/38 + P),

2ye + 2a§-+ 278 + 26/3 + 2/3?+ B- = ^^• (2a6 + 7-^ + 2o? + 27S + 2e/3 + 2/38),

6^ + 27?+ 268 + 28?= n.k' (2a7 + 2o8 + 27/3 + /S=).

26?+?- = n/.'=(a' + 2a/3).

And so on.



120 A MEMOIR ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. [578

9. It will be noticed that if the coefficients of P + Qx taken in order are

a, 0, . . ., p, a-,

then in every case the first and last equations are

fj.m-i> a- = fio-^

2p<7 + &- = nA:*"'-« (a- + 2a/3).

Putting in the first of these ^• = u*, H = —
, the equation becomes

u-"a:- = v'-cr",

where each side is a perfect square ; and in extracting the square root we may without

loss of generality take the roots positive, and write »"a = vcr.

This speciality, although it renders it proper to emplo}- ultimately ti, v in place of

k, n, produces really no depression of order (viz. the HA'-form of the modular equation

is found to be of the same order in fl that the standard or i/v-form is in v), and

is in another point of view a disadvantage, as destroying the uniformity of the several

equations: in the discussion of order I consequently letain fl, k: Ultimately these are

to be replaced by u, v; the change in the equation-systems is so easily made that

it is not necessary here to write them down in the new form in », v.

10. The case a = has to be considered in the discussion of order, but we have

thus only solutions which are to be rejected ; in the proper solutions a is not = 0,

and it may therefore for convenience be taken to be =1. We have then o-=M"-^t).

The last equation becomes therefore

^(2p + "!) = ^«=- (1+2/3);
V \ V J n-

or recollecting that /3 is connected with the multiplier 31 by the relation ^ = 1 + 2/3,

that is,

2/3 = 4-1,

and substituting for 1 + 2/3 its value, the equation becomes

that is, the first and the last coefficients are 1, — , and the second and the penultimate

coefficients are each expressed in terms of v, M. The cases n = 3, ;; = 5 are so far

peculiar, that the only coefficients are a, /3, or a, /3, 7 ; in the next case n = 7, the

only coefficients are a, /3, 7, 8, and we have in this case all the coefficients expressed

as above.
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The D,k-form—Order of the Si/stems. Art. Nos. 11 to 22.

11. Ill the general case, n an odd number, we have D. and ^{n+l) coefficients

connected by a system of ^(n +1) equations of the form

If' V'
•

where U, V,.., U', V',... are given quadric functions of the coefficients. Omitting the

(12=), there remains a system of i(«— 1) equations of the form y^ = y=, = .
.

, or say

( U, V, W,.. ) = 0,

\U', V, W',..
I

which determine the ratios a : : y : ... of the coefficients; and to each set of ratios

there corresponds a single value of CI. The order of the system, or number of sets of

ratios, is =i(« + 1) .

25i"-ii, =()i + 1) .
2^*"-''; and this is consequently the number of

values of fl, or the order of the equation for the determination of il ; viz. but for reduction,

the order in O of the HAr-modular equation would be = (?i + 1) .
2^'"""^'. In the case

n = 3, this is = 4, which is right, but for any larger value of n the order is far too

high
; in fact, assuming (as the case is) that the order is equal to the order in v of

the uv-iorm, the order should for a prime value of ?! be =ji + l, and for a composite
value not containing any square factor be = the sum of the divisors of ?!. I do not
attempt a general investigation, but confine myself to showing in what manner the
reductions arise.

12. I will first consider the cubic transformation; tjere, writing for convenience

-a = 6, the equations give

kO" 1

and
h&- = n.

The equation in 6 gives (A-^*- 1)- - 4^-(/,-6^- - 1)-= 0, and we have thence

k (H- - 1 )- - 4fl {kD. -\f =0,
that is,

kD.' - 4i-n^ + Qkn- - 4fl + k = 0,

the modular equation
; and then k-d'^ -1+2^ {k-6'- - 1) = 0, that is, fi- - 1 -^ 20(kH - 1 ) = 0,

2a
= -^ , say we have a = H- — 1 , /3 =

1-y _l-a;(D,'-l+2(kn-l)xY

or 2^ = -^ _ which is =
-^ , say we have a = n--l, /3 = 2(l-i-n); consequently

1+1/ i + x\n'-i-2(kn-i)x

X = fl-k, and -jj^=
-" = —-—= —-—M a- fi- -

1

which completes the theory.

C. IX.



122 A MEMOIR ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. [578

13. Reproducing for this case the general theory, it appears a prion that Cl is

determined by a qiiartic equation ; in fact, from the original equations eliminating fl,

we have an equation

U , V

U', V
0,

where U, U', V, V are quartic functions of a, ^ ; that is, the ratio a : /3 has four

values, and to each of these there corresponds a single value of il ; viz. fi is deter-

mined by a quartic equation.

14. Considei-ing next the case n = 5, the quintic transformation ; the elimination of

n gives the equations

U'~ V'~W"

where U, U', &c. are all quadric functions of a, /3, 7. We have thence 4.4 — 2.2, =12
sets of values of a : /3 : 7 ; viz. considering a, /3, 7 as coordinates in piano, the curves

UV — U'V = 0, UW — U'W = are quartic curves intersecting in 16 points; but among

these are included the four points U = 0, U' = Q (in fact, the point a = 0, 7=0 four

times), which ai-e not points of the curve VW —V'W =
; there remain therefore

16 — 4, =12 intersections, agreeing with the general value (h + 1) .
2-'"~^'. Hence fl

is in the first instance determined by an equation of the order 12; but the proper

Drder being = 6, there must be a factor of the order 6 to be rejected. To explain

this and to determine the factor, observe that the equations in question are

]<?a.-{2a'y + 2/37 + /9') - 7' (2a7 + 2a/3 + /3'-) = 0,

l<*a? (0 + 2/3) - 7^ (7 + 2^) = ;

at the point a = 0, 7 = 0, the first of these has a double point, the second a triple

point ; or there are at the point in question 6 intersections ; but 4 of these are the

points which give the foregoing reduction 16—4 = 12; we have thus the point a = 0,

7 = 0, counting twice among the twelve points. Writing in the two equations /3 = 0,

the equations become k-a?<y — arf=Q, Ar'a'' — 7'' = 0, viz. these will be satisfied if k-a-—'f=0,

that is, the curves pass through each of the two points (/3 = 0, 7 = + ka.), and these

values satisfy (as in fact they should) the third equation

k" (207 + 2o/3 + ^-) (o + 2y3) - 7 (7 + 2/3) (207 + 2/3 + /3-) = 0.

It is moreover easily shown that the three curves have at each of the points in question

a common tangent; viz. taking A, B, G as current coordinates, the tangent at the

point (o, /3, 7) of the second curve has for its equation

A (2a^ + 3a2/3) k'+B {ha? - 7^) - 6' (27'^ + Zrl3) = ;

and for /3 = 0, y=±ka, this becomes 2kA + B (k+ 1)+ 2C = 0, viz. this is the line from

the point (/3 = 0, 7 = + ka) to the point (1, — 2, 1). And similarly for the other two

curves we find the same equation for the tangent.
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Hence among the 12 points are included the point (7 = 0, a=0) twice, and the

points (/3 = 0, 7=+A'a) each twice: we have thus a reduction =6.

15. Writing in the equations 7 = 0, a = 0, the first and third are satisfied

identically, and the second becomes /3- = fi/S'-, that is, the equations give fl = 1 ; writing

/3 = 0, they become

k-a- = ^7", 07 = flay, 7- = Clk-a-,

viz. putting herein 7- = k-a-, the equations again give Xl = 1 ; hence the factor of the

order 6 is (fi — 1/, and the equation of the twelfth order for the determination of H is

(n-iY{{n, iY\=o,

where (n, 1)''=0 is the ni-modular equation above written down.

16. Reverting to the equation

1-y ^ (1 -x)(P- Qxf
1+2/ (l+x)(P + Qa-Y'

it is to be observed that for a = 0, 7 = 0, that is, P = 0, this becomes simply y = x,

which is the transformation of the order 1 ; the corresponding value of the modulus

X. is X = k, and the equation X = ^=^• then gives n- = l, which is replaced by — 1 = 0.

If in the same equation we write /3 = 0, that is, Q = 0, then (without any use of

the equation 7- = A:-a-) we have y = x, the transformation of the order 1; but although

this is so, the fundamental equation

{P-' + IPQx'' + QV-)* = nk' {P' + 2PQ + Q'x"-),

which, putting therein Q = 0, becomes (P-)* = ilk-P^, that is, (k-afa + 7)- = D.k- (a. + yx'^Y,

is not satisfied by the single relation fl — 1 = 0, but necessitates the further relation

7= = ky'a^

The thing to be observed is that the extraneous factor (O— 1)", equated to zero,

gives for fl the value fl = 1 con-esponding to the transformation y = xo{ the order 1.

17. Considering next n = 7, the septic transformation ; we have here between a, /3, 7, S

a fourfold relation of the form

{U , V, W, Z ) = 0,

I

U', V, W, Z'
I

where, as before, U, U', &c. are quadric functions, and the number of solutions is here

8.2-, = 32 ; to each of these corresponds a single value of fl, or D, is in the first

instance determined by an equation of the order 32. But the order of the modular

equation is = 8 ; or representing this by {(fl, l)'j=0, the equation must be

(n, iricn, i)»}=o,

viz. there must be a special factor of the order 24.

16—2
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18. One way of satisfying the equations is to write therein a=0, 8 = 0; the

equations thus become

r + 2/37 = ^^•( 2/37 + ^=);

or putting /3, 7= a', j3',

^'' + 2a ^' = nk {2a ^' + a'%

which (with a', /3' instead of o, /3) are the very equations which belong to the cubic

transformation ; hence a factor is {(Q,, ly}.

Observe that for the values in question a = 0, 6 = 0, P = /3'«% Q = a',

(P ± Qxf = x'' (a' + ^'xf, = X"- {P' ± Q'x)\ if P = a', Q' = /B',

and therefore

l-y_l-x fP'- Q'xy

1 + y l+x\P'+Q'x.

which is the formula for a cubic transformation.

19. The equations may also be satisfied by writing therein 7 = A,a, 8 = A/3 ; in fact,

substituting these values, they become

^•^a- = nk=0-,

2k'a- + k (2a/3 + ^-) = nt (a- + 2a/3) + 2nA;/3-,

k'a'' + 2k {^- + 2a/3) = 2nk^ {-j? + 2a/3) + m-/3-,

4^ (/8- + 2a^) = ^^= (
a-' + 2a/3)

;

the first and last of these are

ka- = n^-,

/3"- + 2a^ = n^(a=+2a/3),

which being satisfied the second and third equations are satisfied identically ; and these

are the formulje for a cubic transformation ; that is, we again have the factor {(Q,, 1)*).

Observe that for the values in question 7 = ka, B = kj3, we have P = a (1 + kx^),

Q = /3 (1 + kx'') ; so that, writing P' = a, Q' = /3, we have for y the value

1+y {l+x)(P' + Q'xf'

which is the formula for a cubic transformation.

20. It is important to notice that we cannot by writing a = or S = reduce the

transformation to a quintic one ; in fact, the equation Pa- = OS- shows that if either

of these equations is satisfied the other is also satisfied ; and we have then the

foregoing case a = 0, 8 = 0, giving not a quintic but a cubic transformation.

And for the same reason we cannot by writing a = 0, /3=0, 7 = or ^3 = 0, 7=0,
8 = reduce the transformation to the order 1. There is thus no factor H - 1.



578] A MEMOIR ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. 125

21. As regards the non-existence of the factor H — 1, I further verify this by

writing in the equations 12 = 1 ; they thus become

kV = B\

k (2ay + 2a/3 + /3^) = 7= + 27S + 2/3S,

7- + 2/37 + 2aS + 2/3S = k (2a7 + 2/37 + 2aS + fi-),

B- + 2y8 = L^{a:' + 2a/3),

which it is to be shown cannot be satisfied in general, but only for certain values of k.

Reducing the last equation, this is 7S = k''a^, which, combined with the first, gives

a7 = /3S; and if for convenience we assume a = 1, and write also d=±^k (that is, A; = ^-),

then the values of a, yS, 7, h are a = 1, ^ = yd~% 7 = 7, B = 6'; which values, substituted

in the second and the third equations, give two equations in 7, 6; and from these,

eliminating 7, we obtain an equation for the determination of 6, that is, of k. In fact,

the second equation gives

&' (27 + 27^-^ + 7=^-") = 7= + 276*^ + 27

;

or, dividing by 7 and reducing,

7 (1 - ^^) = 261^ (e^^ - 1) (6'= - ^ + 1),

that is,

7(l + ^) = -26lM^--^ + l),

or, as this may also be written,

(y + e'){i + e') = -eHe-if,
that is.

Moreover the third eqiiation gives

y- + 2y-e-^ + 26' + 27 = e- (27 + 27=^' + 26" + y-e-'),

that is,

r^^{e* -26^ -^26 -\)-2{y + 6') e'{0- -l) = Q
;

or dividing by ^—1, it is

r {6 -If = 26^ {y + 6');

whence also

Also

wherefore

or

that is,

or finally

„ - 261'

Jte'ie--e+\f = y'{6'+\y,

2{e--e + l)- = -6{e' + l) or 2{6'-e + \f+6{6'-'rl) = 0,

2^ -3^^+ 6^-- 3^ + 2 = 0,

(2^-0 + l)(^--^ + 2) = O.
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We have thus {26- + If = 6-, that is, 4^^+ 3^^ + 1=0 or 4^- + 3A,- + 1 = 0, or else

(6- +2)- =6% that is, 6^ + S6- + i=0 or ^-+3^- + 4 = 0; viz. the equation in k is

(4A;= + 3/,' + 1 ) {k- + Sk + 4) = 0,

these being in fact the values of k given by the modular equation on putting therein

fi = l.

The equation of the order 32 thus contains the factor {{il, ly] at least twice, and

it does not contain either the factor fl — 1, or the factor {{SI, If} belonging to the

quintic transformation ; it may be conjectured that the factor {(fl, 1)*} presents itself

six times, and that the form is

{{n, iYY{n, i)« = 0;

but I am not able to verify this, and I do not pursue the discussion further.

22. The foregoing considerations show the grounds of the difficulty of the purely

algebraical solution of the problem ; the required results, for instance the modular

equation, are obtained not in the simple form, but accompanied with special factors of

high order. The transcendental theoiy affords the means of obtaining the results in

the proper form without special factors ; and I proceed to develop the theory, repro-

ducing the known results as to the modular and multiplier equations, and extending

it to the determination of the transformation-coefiicients a, /3, ....

The Modular Equation. Art. Nos. 23 to 28.

_>rA"

23. Writing, as usual, q = e ^
, we have u, a given function of q, viz.

« = V2.*i+5!^+i^ii^-^-
^ l+q.l+q\l + q\.

= V25^ (1 - 5 + 2q- - 3f/ + iq' -Qq' + 9q' - 12q' + ...)

= \2q»f{q) suppose
;

and this being so, the several values of v and of the other quantities in question are

all given in terms of q.

The case chiefly considered is that of n an odd prime ; and unless the contrary

is stated it is assumed that this is so. We have then n + 1 transformations corre-

sponding to the same number n + 1 of values of v ; these may be distinguished as

I'o, ^1, ^2)---,^)i) viz. writing a to denote an imaginary ?ith root of unity, we have

v, = {-) s \l2q»f{q% v,='/2 {aq''ff{aq"), n, = V2 (a=g»)y (a-^«), &c..

Vn= V25«»/(?'')-

«2_1

(Observe (-) ^ =+ for n=8p ± 1, - for n=8p ± 3.)
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The occurrence of the fractional exponent ^ is, as will appear, a circumstance of

great importance ; and it will be convenient to introduce the term " octicity," viz. an

/
expression of the form q^F(q) (/= 0, or a positive integer not exceeding 7, F (q) a

rational function of q\ ma}' be said to be of the octicity /.

24. The modular equation is of course

(v - D„) (v-v,)....(v- v„) = ;

say this is

?)"+' - Av"- + 5y"-' - . . . = 0,

so that A =1v,i, i? = 2y„Wi, &c. In the development of these expressions, the terms

having a fractional exponent, with denominator n, would disappear of themselves, as in-

volving symmetrically the several nth roots of unity : and each coefficient would be of the

a

form q^F(q), F a rational and integral function of q. It is moreover easy to see that,

for the several coefficients A, B, C, , g will denote the positive residue (mod. 8) of

n, 2«, 3«, ... respectively.

Hence assuming, as the fact is, that these coefficients are severally rational aud

integral functions of q, it follows that the form is

Oi<i' + &((»+« + c«»+" + ....,

g having the foregoing values for the several coefficients respectively. And it being

known that the modular equation is as regards u of the order =n+l, there is a

known limit to the number of terms in the several coefficients respectively. We have

thus for each coefficient an identity of the form

A=auf+bu^+^+

where A and u being each of them given in terms of q, the values of the numerical

coefficients a, b, . . can be determined ; and we thus arrive at the modular equation.

25. It is in effect in this manner that the modular equations are calculated in

Sohnke's Memoir-. Various relations of symmetry in regard to (u, v) and other known

properties of the modular equation are made use of in order to reduce the number of

the unknown coefficients to a minimum ; and (what in practice is obviously an important

simplification) instead of the coefficients Ivo, tv^Vu &c., it is the sums of powers Sy„, ^Vo",

&c., which are compared with their expressions in terms of u, in order to the deter-

mination of the unknown numerical coefficients a, b,... The process is a laborious one

(although less so than perhaps might beforehand have been imagined), involving very

high numbers; it requires the development up to high powers of q, of the high powers

of the before-mentioned function f(q); and Sohnke gives a valuable Table, which I

reproduce here ; adding to it the three columns which relate to
<f>q.
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26. I give from Sohnke the series of modular equations, adding those for the

composite cases n = 9 and n = 15, as to which see the remarks which follow the Table.

Vl> V^ V^ V 1

n = 3.
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Various remarks arise on the Tables. Attending first to the cases n a prime

number ; the only terms of the order n+1 in v or u are i;"+' + m"+\ viz. n = .3 or

5 (mod. 8) the sign is — , but n = l or 7 (mod. 8) the sign is + . And there is in

every case a pair of terms «";«" and vu, having coefficients equal in absolute magnitude,

but of opposite signs, or of the same sign, in the two cases respectively.

Each Table is symmetrical in regard to its two diagonals respectively, so that

every non-diagonal coefficient occurs (with or without reversal of sign) 4 times; viz.

in the case n=l or 7 (mod. 8) this is a perfect symmetry, without reversal of sign

;

but in the case n=S or 5 (mod. 8) it is, as regards the lines parallel to either diagonal,

and in regard to the other diagonal, alternately a perfect symmetry without reversal

of sign and a skew symmetry with reversal. Thus in the case n = 19, the lines parallel

to the dexter diagonal are -1 (symmetrical), +114, -114 (skew), 0, -2584, -6859,

— 2584, (symmetrical), and so on. The same relation of symmetry is seen in the

composite cases n=9 and n = 15, both belonging to n=l or 7, mod. 8.

If, as before, n is prime, then putting in the modular equation m = 1, the equation

in the case w s 1 or 7 (mod. 8) becomes {v — 1)"+' = 0, but in the case ?i = 3 or 5

(mod. 8) it becomes {v + I)"- (v — I) = 0.

27. In the case n a composite number not containing any square factor, then

dividing n in every possible way into two factors n = ah (including the divisions n . 1

and 1 . n), and denoting by /8 an imaginary 6th root of unity, a value of v is

so that the whole number of roots (or order of the modular equation) is = r, if v be

the sum of the divisors of n. Thus ?i=15, the values are

1 , 3 ,
5,15 roots

;

and the order of the modular equation is = 24. The modular equation might thus be

obtained as for a prime number ; but it is easier to decompose n into its prime

factors, and consider the transformation as compounded of ti-ansformations of these

prime orders. Thus m = 15, the transformation is compounded of a cubic and a quintic

one. If the v of the cubic transformation be denoted by 6, then we have

6)4 + 2ehi' - 20U - u' = ;

and to each of the four values of 6 corresponds the six values of v belonging to the

quintic transformation given by

^,6 + 4^5515 ^ 5,^4^2 _ 5^':^4 _ 4,y0 -0<^ = 0.

The equation in v is thus

{v' + iv^e,' + .. - e,')(f + . .- ei){v<' + . .- e^) («« + ..- ^/) = o,
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where 0^, 6.,, 6^, dt are the roots of the equation in 6, viz. we have

e* + Whi' - 2du -H* = {e-e,){6- e.^ ( e - &,) {e - e,)
;

and it was in this way that the equation for the case rt = 1.5 was calculated. Observe

that writing u=l, we have {6 + If {6 - l) = 0, or say 6, = 0., = e., = -l, 0, = + l. The
equation in v thus becomes [(y -!)=(«;+ 1))^(« + 1)' (w - 1) = 0, that is, (y - l)"*(y + 1)« = 0.

28. The case where n has a square factor is a little different ; thus ?* = 9, the

values are

1 , 3 , 9 , roots

;

but here a being an imaginary cube root of unity, the second term denotes the three

values,

s/2(ff(q), ^2{qayff{^q), V2 (,i,Vy)V(a,-^?),

the first of which is =u, and is to be rejected; there remain 1 + 2+9, =12 roots, or

the equation is of the order 12.

Considering the equation as compounded of two cubic transformations, if the value

of V for the first of these be 0, then we have

0* + 20^11? - 20)1 - u* = ;

and to the four values of d correspond severally the four values of v given by the

equation

V* + 2v^&> - 2y^ - ^^ = 0.

One of these values is however v = — u, since the t)0-equation is satisfied on writing

therein v = — u\ hence, writing

0' + 20he - 201C-U* = {0- e,) {0 - 0,) {0 - 0,) {0 - 0,),

we have an equation

{V' + 2v%' -2ve,- 0,') {v'-¥..- 0./) (v' + ..- 0./) (v'+..- 0^') = 0,

which contains the factor (v + itY and, divested hereof, gives the required modular

equation of the order 12 ; it was in fact obtained in this manner.

Observe that writing w = 1, we have (^+ 1)' (^— 1) = 0, or say 0^ = 0., = 0.^ = — I, ^j= l

;

the modular equation then becomes

{(v-iy(v + i)}=iv + iy(v-ii)^(v + iy = o,

that is,

(v - ly (v + If = 0.

C. IX.
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The Midtiplier Equation. Art. No. 29.

29. The theory is in many respects analogous to that of the modular equation.

To each value of v there corresponds a single value of M ; hence M, or what is the

same thing p., is determined by an equation of the same order as v, viz. ?i being

prime, the order is = n + 1. The last term of the equation is constant, and the other

coefficients are rational and integral functions of ?;^ of a degree not exceeding ^(n — 1);

and not only so, but they are, n = l (mod. 4), rational and integral functions of (('(!—«'),

and 11 = 3 (mod. 4), alternately of this form and of the same form multiplied by the

factor (1 - 2m8).

The values are in fact given as transcendental functions of q; viz. denoting by

Mo, Ml, M«, ..., Mn the values corresponding to v^, v^, v.,...,Vn respectively, and writing

( 1+5) (1 +f ) (l+gQ.. .(1-50(1-5^) H-t)...
9W (1 _ ^) (1 _ ^3) (1 _ ^5) .,_ (1 + ^=) (1 + 2^) (1 + q') ...

then we have

= 1 + 2^ + 25^ 2q^+2q'^ + ...,

(-)¥<^55)

Ml = —^, • . (a an imaginary ?!th root of unity)

^{aqn)

1 •

<f>"-(qn)

M„=

Hence, the form of the equation being knowai, the values of the numerical coefficients

may be calculated; and it was in this way that Joubert obtained the following results.

I have in some cases changed the sign of Joubert's multiplier, so that in every case

the value cori-esponding to (( = shall be M=l.

The equations are

:

« = 3, -rji M = 0, this is
M*

'^ M' ill- 'Jijf^
')-''

+ —.-6 M = l, it is

8(1-2.0 (i+lJ(i-') = ^-

-3 = 0.



578] A MEMOIR ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS, 139

n = 5, —

-

« = or 1, this is

+ A. + 35

+^ + •55

1
.
- 26 + 256(i« (!-«»)

+ 5 = 0.
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+ ^. . + 3168(1-2m»)

+ jj,
- 4620 - 3

.
11^ 256«H1 - «')

+ ^, {+ 4752 + 11 . 4096«« (I - m«)} (1 - 2m«)

+ ^^ . - 3465 -3.7.11. .512«» (1 - m«)

+ 2.
. {+ 1760 + 11 . 83 . 2048m» (1 - ii^)] (1 - 2w»)

+ 1.
.
_ 594 _ 9 . 11 . 37 . 256«» (1 - m«) -3.11. 131072 {«« (1 - u')}-

1

-11=0.

+ 4(120 + 15 . 4096it« (1 - «') - 524288 {»«(1 - h'))'-} (1 - 2m«)

r^e ihdtiplier as a rational function of u, v. Art. Nos. 30 to 36.

30. The multiplier M, as having a single value corresponding to each value of v,

is necessarily a rational function of n, v ; and such an expression of M can, as remarked

by Konigsberger, be deduced from the multiplier equation by means of Jacobi's

theorem,
1 \il-X') dk_

n k (1 - ¥) d\ '

viz. substituting for k, X their values m", v", and observing that if the modular equation

fit/

be F(u, v) = so that the value of ~ is = - F' (v) ^ F' {u), this is

„, 1 (1 -if)vF'v
M- = •

n {\- »«) uF'u
'

and then in the multiplier equation separating the terms which contain the odd and

even powers, and writing it in the form $ (ilf-) + ilf^ (J/-) = 0, this equation, substituting

therein for M" its value, gives the value of M rationally.

The rational expression of M in terms of u, v is of course indeterminate, since

its form may be modified in any manner by means of the equation F{u, v) = 0\ and in

the expression obtained as above, the orders of the numerator and the denominator are

far too high. A different form may be obtained as follows : for gi'eater convenience I

seek for the value not of M but of ^.
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31. Denoting, as above, by J/„, i)/,, ... , M„ the values which correspond to v„, v^, ... ,v„

respectively, and writing "^ l? = Tjf
+ /i/- + • • • + ji/ > '^^' ^^'^ have S j^, ^W ^^'' ^^^ °^

them expressible as determinate functions of u ; and we have moreover the theorem

that each of these is a rational and integral function of n : we have thus the series

of equations
1 V v*^

^jr"^' ^jr^' ' ^M^^'

where A, B,...,H are rational and integral functions of v. These give linearly the

different values of y>; in fact, we have

(V„ - t'l) . . . (?'„ - Vn) jj
= H - GSVi + FSViV., - ... ± AViV., . . . Vn ,

where iSfy,, SviV.2, &c. denote the combinations formed with the roots v^, v., ... ,Vn (these can

be expressed in terms of the single root v„) ; and we have also (v„ —v^)... {v„ — Vn) = F' {v„)

:

the resulting equation is consequently F'v^ -rf = R {u, v^), R a determinate rational and

integral function of {it, y„) ; but as the same formula exists for each root of the modular

equation, we may herein write M, v in place of Mu, Vo] and the formula thus is

F'V . J-r= R («, V),

viz. we thus obtain the required value of -p as a rational ti'action, the denominator

being the determinate function F'v, and the numerator being, as is easy to see, a

determinate function of the order n as regards v.

32. The method is applicable when M is only known by its expression in terms

of q ; but if we know for M an expression in terms of v, u, then the method trans-

forms this into a standard form as above. By way of illustration I will consider the

case n = 3, where the modular equation is

V* + 2v^u' - 2vu - u* = 0,

1 2w'
and where a known expression of ilf is if7r=lH . Here writing S_i, /So (=4), S, &c.

to denote the sum of the powers — 1, 0, 1, &c. of the roots of the equation, we have

S-^ = So+2w'S-i, =
, as appears from the values presently given,

S^=S, + 2u'S„ ,
=6«»,

S^=S, + 2u'S, ,
=0 ,

S^=S, + 2u'S, , =6u;
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and observing that i^o being ultimately replaced by v, we have

Svi = Svo — V, SvoVj = SvuVi — vSv„ + v^, v^v^v^ = Sv„ViV2 — vSv^Vi + v^Svo — v',

that is,

Svi = — 2u' — V, SviV.2 = 2a'v + v-, ViV^v^ = 2u — iu^v- — v^,

we have

F'v.^= {S, + 2h'S.;}

viz. this is

+ {2u,' + v)(S,+ 2u'S,)

+ {2u'v + V"-) (S, + 2«'^„)

+ (- 2m + 2uV- + 1>^) iS„ + 2u'S_,),

But we have

2{2v^ + 3i^u'-it)jj= v'{S, + 2it'S_,)

+ V' {S, + 4(t%'„ + 4m«;S'_i)

+ (S, + 4-u'S, + iu'S, - 2uSo - 4i(^>Sf_0.

and the equation thus is

(2«3 + Sv-ti^ - u) y- = 3 (v'u' + 2u'v + 1) M

;

1 2it'
to verify which observe that, substituting herein for -^ its value 1 H , the equation

becomes

that is,

as it should do.

M

(2v^ + SvV - u) (« + 2u') - Svti (w-?t- + 2ii'v + 1) = ;

2v* + 4:vht:' - 4wi/. - 2m* = 0,

33. Any expression whatever of M in terms of u, v is in fact one of a system

of four expressions; viz. we may simultaneously change

into V, (-) « u, (-) ^ 7iM
;

that is, signs are

or
u'M'

n=l

1- + +

+ + +

or -, (-) 8 i, (-) 2 ±nM:
i + + +

n = Z

+

+ + +

n = b 71=1 (mod. 8)

+ ' + + -

+ + + + + +

+ +-+ + +
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1 2u'
Thus n = 3, starting from -w = 1 + , we have

and of course if from any two of these we eliminate M, we have either an identity

or the modular equation ; thus we have the modular equation under the six different

foiins

:

(1, 2) (v + 2ii')(u-2v'')+Suv =0,

(1, 3) v'(v + 2ii'}-h(u' + 2v) =0,

(1,4) (v + 2u'){v^-2ii) + Su* =0,

(2, 3) (u-2v'){u'+2v) + Sv' =0,

(2, 4) v{v^-2u)-u^{u-2v') =0,

(3, 4) (((< + 2v) {v' - 2u) + 3mV = 0.

34. Next n = 5. Here, starting from ni> = -7^ , . the changes give* M v{l—uv^) ° ^

1 _ v — u^ - M — ^ + ^ if _ ifi{v-u^) "%»/_"'(" + ^0

M~ vil-iiv")' ^ ~
?( (1 + uh) ' n*M ~ 1(^(1- uv') ' V* ^v'il + ti'v)'

viz. the third and the fourth forms agi-ee with the first and the second forms respect-

ively; that is, there are only two independent forms, and the elimination of M from

these gives

5uv{l — uv') (1 + n^v) — {v — u^) {u + v^) = 0,

which is a form of the modular equation.

35. In the case n = 7

post, No. 43), the forms are

«-T,i » ^ ^- e 1 —7u(l—uv)(l—uv + uV) , ,. .

3o. In the case 11 = 7, starting irom -^, = ^ ^^- (as to this see° M u — v'
^

1 — 7m(1 — Ml)) (1 — mw + mV)
u — v'M- ^^^ ^1)>

Y jj- ^ - 7^ (1 - it^) (1 - uv + lihr)
^^^

V* _ — lv*{\ — uv) ( 1 — uv + u-v^)

v*M~ M* (m - v') ^
''

M* ^ ,j _ -1u* {\ — UV){\ — uv+ Vh)-) .

V' v'iv-u')
^''

so that here again the third and the fourth forms are identical with the second and the

third forms respectively ; there are thus only two forms, and the elimination of AI gives

(u - v'') (u - li') + 1uv{\- uvf{l - uv + u-v-y = 0,

which is a form of the modular equation.
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36. If in the foregoing equation

F'v.j^=R{:u, v),

we make the change u, v, -p. into v, ± u, ± nM, it becomes

± F'lt .nM = R {v, ± u)
;

combining these equations, we have

,., F'lc R{v, +u)
Fv R{ii, v)

or, substituting herein the foregoing value

„„__! ( 1
- v^) vF'v

n(l-u^)ioF'it'

this becomes
_ v(l—v^) _R(v, ±u) + for ?i = 3 or o (mod. 8),

it(l-M«)~ Rin, y) _ for „, = i or 7 (mod. .S),

which must agree with the modular equation. Thus in the last-mentioned case ?i = 3,

we have

Jl_

if"
^F'v.i-^=3{v-u' + 2uh> + l)u,

or, say

and therefore

the equation is

+

R(u, v)= (v"-u-+2n^v + l)u,

R{v, -(f) = {v-u--2uv''+l)v;

y (1 - v^) _ (ifu- - 2uv' + l)v

M (1 - w«) {vho'' + 2u'v 4- 1 ) M
'

which is right ; because Jacobi, p. 82, [Ges. Werke, t. i., p. 137], for the modular equation,

gives

1 - u? = (1 - u-v"-) (v-u- + 2u^v + 1), 1 - w" = (1 - !(-y-) {v-u? - 2thv'' + 1).

Observe that the general equation

_ v{\- !)«) _ R (v, ± u)

u{l — u") R (u, v)

no longer contains the functions F'v, F'u, which enter into Jacobi's expression of 31".

Theorem in connexion with the multiplication of Elliptic Functions. Art. Nos. 37 to 40.

37. The theory of multiplication gives an important theorem in regard to trans-

formation. Starting with the Jithic transformation

1 - 2/ _ 1 - .2;

f
a-^x + ryx^- ... \- _ l-x (P - QxV

1+2/
~ l+X \OL + ^X + -JX-+...l ' ~l+x \P + Qx) '
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we may form a like transformation,

i-z ^ Lui /a'

-

^'y + y'f--y ^ l^y (
P' - Q'yY

l+z l+yW + ^'y + y'f-+...J' l+y\P' + Q'y)'

such that the combination of the two gives a multiplication, viz. for the relation

between y, z, deriving w from v as v from u, we have iv = u; and instead of M we

have 31', = + -, f ; that is, we have~ nil

dx _ Mdy

and thence

\/\ —x-.\— u^ofi Vl — 2/" . 1 — v^y-

dy M'dz

Vl - </- . 1 — i^y- Vl — 2-
. 1 — ^(.^z-

'

1
,

- +-dz
dx n

'J\—a?.\— u^af Vl —2M — u'z-

'

n-l

or, writing x = sn6, we have z=±snn6; ± is here (— )
'•'

, viz. it is - for n = 3 or

7 (mod. 8), and + for n = l or 5 (mod. 8).

Now in part effecting the substitution, we have

l-z^l-x/P-QxV i P' - Q'yV
\+z \+x \P+Qx) • \P' + Q'yj

'

where y denotes its value in terms of x.

And fi'om the theory of elliptic functions, replacing sn n0, sn 6 bj- then- values

+ z, X, we have an equation

l-x {A- Bx + Car\-z_l-x fA-Bx + Cx''- ...y-

1+ z~ l+x\A+Bx+Cx-->r ...)
'

where A — Bx + Cx- — ... , A + Bx + Gx" + ... are given functions each of the order

^{n" — \); viz. the coefficients are given functions of k, or, what is the same thing, of u*.

Comparing the two results, we see that in the ?!thic transformation the sought-for

function, a + /Sa,' + 7*- + ... of the order ^ (« — 1), is a factor of a given function

A+Bx+Ca?-^ ... of the order i (rr- 1).

38. Considering the modular equation as known, then by what precedes we have

8 tt"
that is, the given function A +Bx + Cx^ + ... has a factor \ + - x -\- ... -\ «*<"-", of

which one (the last) coefficient — is known, and we are hence able theoretically to

c. IX. 19
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determine all the other coefficieuts rationally in terms of u, v ; that is, the modular

equation being known, we can theoretically complete the solution of the transformation

problem. I do not, however, see the way to obtaining a convenient solution in this

manner.

39. The formula in question for /(, = 3 is

1 + sn W _ l-sn g /I + 2 sn g - 2k' sn^ - k' sn^ e\-

1 - sn S0~ 1 + sn U - 2 sn ^ + 2k- m' 6 - ^"- sn^ 61
'

which, putting therein x = sn6, z = — sn SO, and replacing k by u^, may be written

1 + ^ (--) = (1 + x) (1 - 2x + 2i<W - u^i-')- (-f-),

where the signs (-f-) indicate denominators which are obtained from the numerators by

changing the signs of z, x respectively.

The theorem in regard to n = 3 thus is, 1 -\— *• is a factor of 1 — 2x + 2uV — u^x*
;

V

... . V
VIZ. WTitmg in the last-mentioned function x = ^ , we ought to have

= 1+2^-2---,,
that is,

u'+2uv-2uV-v' = 0,

which is in fact the modular equation.

40. And so for n = o, if x = su6, ^ = sn5^; and for « = 7, if * = sn ^, z= — sn70;

the formulae are:

—

n = 7,

1+2 = {1+X){ 1

(^) - 4 x

- 4 a^

+ 4(2 + 7«0 a^

- 14li' OB*

- 28m« (3 + 2i(«) a!=

+ 28it8 (4+ «s) of

. + 4m« (16+ oImS + 8i(«) x'

- m8 (144 + 30.5 it8+ 16u'^) x^

- Su^ ( 4+ 2.5 «8+ 16M"=)a;^

4- 8it8 ( 8 + 57it« + 46!*"') x'"

+ 56w^« ( 2 + itS) a;ii

- 4m" ( 56 + 161m« + 56it") «"'
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ELLIPTIC FUNCTIONS.
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42. The quintic transformation, n = -5.

Here there are the three coefficients a, /3, 7, or /3, 7 are the last but one and

last coefficients p, a- ; we have

«=1,
2^=^^"(l/-3^

^^4-
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which may also be written

(v — iiJ) {u — v'') + luv (1 — uvf (1 — uv + u-v-y = 0,

as can be at once verified ; but it also follows from Cauchy's identity

(x + yy — x' — tf= Ixy {x + y) {x^ + xy + y-y.

1 {l-v«)vF'v

We then have

M' = -
n {l-u^)uF'u'

Moreover

liF'u = - ifi (!-?;»)+ uv (1 - my

(1 - uvy

and similarly

whence

l-v?

n, (1 — UvY , ,,Fv=^ i- V (it - v').

1 - iu (v - le)

(I

—

uvy + uv (1 — uvy

u (y — «')

;

M- V u — v'

Writing this under the form

1 _ — *luv {v — u'') {u — v'') _ 'i9u" (1 — itvy (1 — uv + u'v^y

W^^~~v" {u - v'y ' ~ {u - v'y
'

I find, as will appear, that the root must be taken with the sign — , and that we

1 7 u (1 — uv) (1 — uv + uh)-)
, , ,, V (1 - uv) (1 — uv + ^i-v")

thus have -^r = ^^ ^^—

;

. whence also 31=^ .

21 u — v' v — w

44. Recurring now to the nmdamental equations for the septic transformation, the

coefficients are a, /3, 7, S, and we have

27=«V(1-|a=l,

so that the coefBcients are all given in terms of v, M, The unused equations are

«n2a7+2a;8 + /3=) = ?;= (7^ + 278 + 2^S),

«-= (7= + 2^7 + 2aS + 2;Sg) = v- (2a7 + 2^7 + 2aS + ^%

which, substituting therein for a, /3, 7, h the foregoing values, give two equations;

from these, eliminating M, we should obtain the modular equation, and then M in

terms of u, v.
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Substituting in the first instance for a, B their values, the equations are

M« (2/3 + 27 + /SO = v^' It + 2 '-^ (yS + 7)}

The first of these is

7= + 2/37 + (2 + 2/3) J
= M=t)= 127 + 2^87+2 ^ + /34 .

4(1-ot)(2/3 + 27)+4^=-4-„7==0,

viz. this is

. /- s/'l -. "'y' W'\ /l iV ,/l «Y /^

or observing that in this equation the coefficient of -^ is

(1 — ^l-v-) [2 — 2uv + 2mV — 1 — u-v"},

= (1 — 21-V-) (1 — rivy\ = (1 — vvf (1 + uv),

the equation becomes

(1 - ««)
_j^,

+ -|. (1 - H^;)= (1 + uv) + 1 - M« - 4 (1 - uv) fl + 1"') = 0.

45. This should be satisfied identically by the foregoing value of jz.; viz. it should

be satisfied on writing therein

1 lu V — iC

1 _ 7m (1 — uv) (1 — uv + U-V-)
_

Tl~ u - v'
'

that is, we should have

- 7 - (« - M') (1 - i)^ - 14;(. (1 - uvy (1 + ii?v')

+ (m - v) \l - M« - 4 (1 - uv) (l + '^'jl = 0,

where observe that the — sign of the second term is the sign of the foregoing value

M'
of -Tj; so that the identity being verified, it follows that the correct sign has been

attributed to the value of -jj..

46. Multiplying by v, the equation is

- 7 (1 - M« - 1 -^ro) (1 - v'') - 14?ra (1 - uvy (1 + ifiv'')

+ {1 _ i,8 _ 1 _ uv\ {-8(1- vv) + 1 - ««) + 4 (1 - uv) (v - u') (m - v') = 0,
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viz. this is

- 7 (1 - u') (1 -v«) + 7(l- uv) (1 - v') - Uuv (1 - uvy (1 + uV)

+ {l-u')(l-v^)-8(l-uv){l-v'')+ 8 {I -uvy

-1(1- »y) (!-«')+ 'i (I -iiv)(v-ii'){u-v'')=0.

In the second cohxmn the coefficient of 1 — uv is 2 — u^ — v'*, viz. this is

= (1 - ««) (1 -«;»)+ 1 - («")'. 01' it is = (1 - Mi')" + 1 - (uvf.

Reducing also the other two columns by means of the modular equation, the equation

thus becomes

- 6 (1 - uvf - (1 - uv) {(1 - uvf + 1 - {uvf} - 14My (1 - uvy (1 + uhi^)

+ 8 (1-uvy

- 2Suv (1 - uvy (1 - uv + u-v-y = 0.

This is in fact an identity ; to show it, writing for convenience 6 in place of uv,

and observing that the terms

= (i-eyis-ii + e+d' + e'+e' + d' + e' + e^)}

are

= (1 - ey (7 + 6^ + 56I- + 461' + 8(9^ + 2^= + 6%

the whole equation divides by (1—^)'; or throwing out this factor, it is

- 6 (1 - ^)= - (1 - ^)« + 7 + 6^ + .561- + 46)3 + S0' + 26' + 6'^

- ud (1 - 61) (1 + 6') - 2861 (1 - 61 + e-y = 0.

The first line is = Ud (3 - 50 + Q&' - Sd' + 0') ; whence, throwing out the factor

146?, the equation is

3 _ .5^+ 6^=- 3^' + 6'^-(l - 6')(1 + 610 - 2 (1 - ^ + ^)^
that is,

(1 - ^ + ^0 (3 - 2^ + ^=) - ( 1 - 6?-) ( 1 - ^ + 61=) - 2 ( 1 - ^ + 0=y = ;

or thro%ving out the factor 1 —6 + 0-, the equation is

(3 -261 + ^=) -(1-61=)- 2(1 -61+ 61=) = 0,

which is an identity.

The other equation is

7= + 2;87 + (2 + 2/3) ^' = w=y= (27 + 2^7 + 2 ^' + ^') ;

that is,

7- 4- 2l3y - a-v-/3- + 2 (1 + /3) f- - yu=vA - 2u'>v = 0,

which might also be verified, but I have not done this.
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47. The conclusion is

1 _ — 7m (1 — uv) (1 — iiv + u"v-)

where

M
and of course

1 —
2/ _ 1 — a; /I — jSx + yx" — BiiP\-

but the resulting form may admit of simplification.

48. The endecadic transformation, «=11.

I have not completed the solution, but the results, so far as I have obtained

them, are interesting. The coefficients are a, /3, 7, 8, e, f ; and we have, as in general,

The unused equations then are

?(» (207 + 2a/3 + /S"-) = v- {e- + 2ef+ 28f ),

it« (72 + 2ae + 2ag + 2/3y + 2/38) = v- {2ye + 27?-+ 2S6 + 2/3?+ S-),

M-= (276 + 2a5'+ 27S + 2^6 + 2/3? + 8-) = v- (7- + 2ae + 2a? + 278 + 2^6 + 2/3S),

M-'» (e- + 27?+ 2Be + 28?) = v- (2a7 + 2a8 + 2l3y + /S")

;

but I attend only to the first and the last, which, it will be observed, contain 7, 8

linearly. If in the first instance we substitute only for a, ? their values, the equations

become

M'=^(2+/S)-Jj6(e + 2'Q +M>=.27 -vi<.\2S = 0,

«-'V --„;S= +l--'^!(l + /3)1.27 + j---' + H-'4.28 = 0;
u- [uv u"

)
[liv u-

)

say, for a moment, these are

4 + P . 27 + Q . 28 = 0,

B+R. 2^ + 8.28 = 0,

giving
1 : 27 : 2S = PS-QR : QB - SA : RA-PB.

Here
,,u

PS-QR= -+e- ii^'^v" + 11? - ii7v' (1+13)

= ^ 1^ + fic'v^ ^ - '^f.\ - 2miV + 2u« - 2uV - U^v' -^ - ti'v')]-

,
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1

Mwhere the terms containing -n- disappear of themselves, viz. this is

= hi 2M"''y= + 2((5 - u'v-
- \v

%C= - * — (i)-* + 2?;'ii' - 2yM - m^)
;

V

observe that the term in ( ), equated to zero, gives the modular equation for the

case 11 = 3. It thus appears that 7 and S are given as fractions, having in their

denominator this function u^ + luv — 2«'y' — v^.

49. To complete the calculation, we have

-W(2+/3)-'^:e(e + 2^-^')Ul-^„+4l;

viz. multiplying by 8, and substituting for 2y3, 26 their values, this is

or, what is the same thing,

-{(»-)a-^)-'(»-3(l-^3l(''—'-»)
viz. the left-hand side is

= 2 |- t)^ (1 - uV) -^„ + 2«^ (1 - ti')^ + uP - V'

or, say we have -{QB — 8A) = Il, where

+ p, . M^ (« _ 2if) (1 - z;0

+ Yf
• 4itV + t)-* (1 - 3m») - 4itV + 2m''

+ .-2w''+6«'(t^(l -m') + !<'(- 3 + 5«0;

c. IX. 20
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wherefore the value of 27 is = ^U ^ (v* + 2vhi^ - 2vu — if^). Similarly, writing

n'= ^^-vHi-^^)

+ -T^ . iu'v" + ^* (3 - iiP) + 4(ro - 2u'v^M
+ v^ (- 5 + ^iiP) + &VU (1 - II?) + 2i0^,

we find

7/

28 = 1 - n' H- (i;-" + 2vhi' - 2vu - u")
;

in verification whereof observe that this being so, the first equation gives the identity

50. The result is that, writing for the moment v^ + 2v^iv' — 2vu — u* = A, the values

of the coefiicients are

a, /3 , 7 ,
S , 6 , ? ,

. 1/1 ,\ ,
n , ?t^ n' , ,

,/i itn h"
= ! Hii/-^)' *A' *7 A' ^''^iM-^)' -V'

and

1 — 2/ _ 1 — « /I — /3a; + jai^ — Ba^ + eaf— ^afiV
_

1+^2/ ~ 1 +« Vr+^« + 7SM^"5«M^eSM^/ '

the modular equation is known, and to complete the solution we require only an

expression for M in terms of u, v.

51. We may herein illustrate the following theorem, viz. we may simultaneously

1 1 1 v^ 1
change u, v, -^ , a : ^ : y : S : e : ^, into - , - , - -^ , ? : e : S : 7 : /3 : a.

Thus making the change in the equation

we have

r

which is right.

' =KS i- 0' *^"* ^'' ^t (¥-3 =KS F- 4

7 n
So in the equation - = iir < if for a moment (II), (A) are what H, A become, the
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^. . S _ (H) ^, ^ . 1 n' (n) ,^, 1 (A) ^, . ^ , . , (A) 1
equation is ^

= B(^' that is, - ^ =
^^y

or (n) = - — H ; but obviously ^ =-^4'

and the equation thus is (11) = — -^,11', or say ii}"-v* (II) = — W ; that is,

which is right.

v' \ 4 I /1 _ 3\ _ _4 2

2%e general theory by q-transcendents. Art. Nos. 52 to 71.

52. I recur to the formula

\-y _\-x /a — /3a; + yaf + .. ± o-m^'"-"y
f+'y ~ T+x \aL + (3x + yx" + .. + ani^"-^>)

'

and seek to express the ratios a : /3 : ... : cr in terms of q. Writing with Jacobi

mK + m'iK'
(0= ,

n
we have in general

+ /3a; + 7a;"- + ...+o-«i'»-''=afl+ -^^ (l + —^y..fl+ _^—— ) ,"^
' V snc 2(a/ V snc4a)/ \ sue (n — 1) &)/

(snc = sin CO am ; viz. snc 2w =sn (if— 2(i)), &c.)

;

and the values of a, /S, ..., which correspond to the moduli v^, Vi,...v,i, or say the

values (a„, ^,,...,0,), (a,, /3„ ...,6,), ...,{«,„ /3„,...,^„), are obtained by giving to eo the

values

^2^ 2K + iK' 4:K + i-g' iZ;;

n ' n ' 71 '
'"' n '

viz. the cases a,,, &)» correspond to Jacobi's first and second real transformations, and

the others to the imaginary transformations.

1 remark that co = co„ gives for snc 2g(o an expression which is rational as regards

1

q, but a) = o)„ gives an expression involving q", the real Hth root of q; the other values

1 1

CO,, &)o, ... give the like expressions, involving aq", a-q", ... (a an imaginary nth root

of unity), the imaginary ?ith roots of q.

20—2



156 A MEMOIR ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. [578

53. I consider first the expression

1 _ 1 _ dn 2ga)a

snc 2ga)a ' sn{K — 2ga)o) ' en 2^0)0

"

Here, wi-iting 2ga)a =—^ (^ for Jacobi's x, as a; is being used in a different sense),
TT

that is.

2irt

(and thence e''^=/ » = ««', e^^'f = a?'-\ if a = e "
, an imaginary nth root of unity), we have

(Jacobi, p. 86, [Ges. Werke, t. i., p. 14.S])

1 , 2K^ 2KP= dn ^ -=- en ^

snc 2^0), TT

where

that is.

_C 2e'^ (1 + qe^) . . (1 + ge-^'Q .

.

~ 5 • 1 + e^'^ (1 + q'e^^) . . (1 + q-e-''^) .

.

'

B 1(1+?).. I -^
^^^'

1 ^ 2ag (l + «^gg)..(l+a"-'gg)..

snc 25ra)o 1 + a-n '•' ^^'
' (1 + «=»§=) . . (1 + a"-=^ g-) .

.

'

where, for shortness, I write (1 + ge'-'f) • to denote the infinite product

(1 + qe-'^) (1 + q'e-'^) (1 + q'e^^) ...,

and similarly (l+q-e^^)... to denote the infinite product (I + q-e"^^) (1 + q*e-''^) (I + q^e"^^) . . .

,

and the like for the terms in e~-'^ : the notation, accompanied by its explanation, is

quite intelligible, and it would be difficult to make one which would be at the same
time complete and not cumbrous. Then attributing to g the values 1, 2, ...,^(m-l),

and forming the symmetric functions of these expressions, we have the values of -
, - , &c.,

or a being put =1, say the values of /9, y,...,a.

54. I stop to notice a verification afforded by the value of /So. Putting u = 0,

that is, q = 0, we have
1 2a3

snc 2gQ)o
~

1 + a^^

'

and thence

„ „ f
a or a? a^<«-ii

1 + a- 1 + a* 1 + a8 1 + a"-'

1 . 1 .
^^

we have 2^o = nz ~ 1 ! ^^'^ putting as above m = 0, the value of ^ is = (— ) ^ n

;

whence
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a theorem relating to the imaginary «th roots of unity, n an odd prime. In particular,

« = 3, —4 = 4
j \, at once verified by a- + a + 1 = ;

n — b, 4 = 4 1
, + q 1, verified by a= — 1 = 0,

(1+ a' ! + «')

viz. the theorem is also true for the real root a = 1 ; in fact, the terra in
j j

is

ja(l+a^) + aHl+a')|^(l+a=)(l+ar'), that is, (a + 1 + a-+ ar')-^ (1 + a- + a^ + a), =1;

,1=7, -8 = 4-^,——;+:^,—, + :p-— 1,
(1 + a^ 1 + a^ 1 + o*j

which may be verified by means of a" + a' + a"" + a^ + a= + a + 1 = ; and so on.

.5-5. I further remark that we have

J_ = /_-)i(i.-i) j ^'^ ^'"o • ^"^ *"« • •
sn (?i - 1) «„

ifo (snc 2&)o. snc 4a)„. .snc(n — l)a)oJ
'

But Jacobi (p. 86, [^.c.]),

sn zowo = sn ?
,

TT

_ J.Z e''^ - 1 (1 - g-e-'?) . (1 - g-e--'^) .

.

where (p. 89, [I.e., p. 146])

that is,

„ _ - , a^'' - 1 (l-a-gg-)..(l -a"--gf)..
sn Z^ro, -/ - g . ^-.^^ (l-a^'!/g)..(l-a-=^g)..

"

Hence
sn 2ff&)o _ a'g-l 1-tfgg^. 1 + g-gg .. 1 - a.'"-"-!' q"-

. . 1 + a"-°g y .

.

snc 2r7w„
" i(a'»+l) \+~^~(fT. l^^^qT. 1 + a"-^ q- . . 1 - a"--" g .

.

'

and giving to g the values 1, 2, ...,^(« — 1), and multiplying the several expressions,

we have the value of -^ , viz. this is

where R{q) denotes the product of the several factors which contain q.

n-\

56. The {i-) of the denominator gives a factor i""S = (-) "
. which destroys the

7t-l

factor (—) -
. We have then a factor

n ("- : , which is = (-)i("-i) n.
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In fact, M = 3, this is

W + 1/

viz. the numerator is a-2a= + l, =-3a^ and the denominator is (-a)', =a-.

So re = 5, the formula is

I . T = o> that IS, ——7Vo = 5
Va= + 1 a" + ly ' (a' + 1)'=

or
a' - 4a- + 6o^ - 4a + 1

= 5,
a' + Saf+l

viz. this is .5 (1 + a^ + 2a*) - (1 - 4q! - 4a- -I- a' + Qoc') = 0, which is right ; and so in other

cases.

We thus have

which, on putting therein u=0, that is, q = 0, gives, as it should do, w = (-)-'""" n.

57. As regards the expression of R(q), observe that, giving to g its different

values, the factors l-a-'^q- and l-d^--''q- are all the factors other than 1-q- of 1— g™,

and so as to the other pairs of factors; viz. we have

-^W Vl_^2 .. 1 + g .. l+2».. 1-5"../ '

viz. this is

_ n-q^.. 1 + q".

.

\- ^ /l-g°.. l+g-.V
~

ll +q^'-.. l-q'K.) ' \1 +q-.. 1-q. .)
'

that is,

Mo ^
-* "<^M?)'

agreeing with a former result.

58. We have of course the identity 2/3o = 7?/
~ 1 5 that is,

*^
1 + a^i// W) •

(1 + „., (^•^) . . (1 + a"-=^ f/) . .
^ ^

<t>Hq)

{g=l, 2, ..|-(w-l)), which, putting therein ^' = 0, is an identity before referred to; a

form perhaps more convenient is obtained by dividing each side by f^ (q).

59. I notice further that we have

v„ = ii" {snc 2(Mo snc 4a)„ . . . snc (n — 1) &)»} ;

the term in
{ }

is

2a3 -^ ^^'{l + ao q)..(l + a"-^" q) ..'

where we have JI = (— )i(«^-i). For example, ?z = 3, the term is = — 1;
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n = 5, it is

(l + a2)(l + a*) l+a= + a* + a

a . a-
= -1:

n = 7, it is

(1 + a^) (1 + a') (1 + tt°) _ 1 + a 4- g- + g^ + a-* + g^ + 2a'' _
a . a- . 0^

' g" '

and so on. The term in question thus is

that is,

This has to be multiplied by u", = i^^)'^ q^
f'^

{q)y and we thus obtain

n

agreeing with a former result.

We have in what precedes a complete g'-transcendental solution for the trans-

formatio prima ; viz. the original modulus k' (= vP) being given as a function of q,

then, as well the new modulus Xo'(=^o') a-id the multiplier M^, as also the several

functions which enter into the expression

1 — 3/_ 1 — a;

l + y~ 1 + X

1-
snc Zco,

... 1
snc (ft — 1) Wo

1 + .. 1 +
snc (n

E
]- 1) woAsnc 2&)o

are all of them expressed as functions of q.

60. I consider in like manner the expression

1 1 _ ^11 ^9^n
snc 2(fa>n sn (K— 2gain) ' en 2go)n

'

2KP
Here, writing 2ga)n = (f instead of Jacobi's x as before), that is,

IT

and thence

we have

^ 2K '^n ~ nK '

1 , 2^f 2K^
^ = an —2 ^ en—

^

snc ZgcOn TT TT

=f'iq).
2g» (1+g ").. (1+g ")..

1 +(?" {l+q »)••(!+? ")••
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where the notations are as follows:

(l + g^"^«).. is the infinite product (1+5 ")(l+q "){l+q "}.
and

(1 + q "). . is the infinite product (1 + q ")(1 + <Z ") (1 + 9 " ) •

;

. . 2rt

and the like as to the expressions with exponents containing - -

.

And then attributing to g the values 1, 2,..,^{n-l), and forming the symmetric

functions of these expressions, we have the values of -
, | . • • . ^ ; or a being put = 1,

say the values of /3, 7, . . . , o-.

It is easy to see, and I do not stop to prove that, if instead of &> = w,, we have
1

(o=a)i, Wo,..., or &)„_!, we simply multiply g" by an imaginary 7zth root of unity; that is,

1

we replace the real ?ith root 5" by an imaginary ?ith root of q.

In the case u = 0, that is, 7 = 0, we have
^

=0, and thence ^ = 0; and the

like for the values «,, w.,..., o)„_i : the equation 2/3 = -^-1 gives consequently for -^, n

values each =1, agi-eeing with the multiplier equation.

61. We have for J/„ the formula

— =C-Vi»-i' [
sn2&),tsn4&)„... sn(K- 1)0),! |-

l/„ ^
''

(sac 2u)n snc 4a)„ ... snc (n — 1) a)„j

and, as before,

2+2? „_2p

sn2g(0n=f -(q). ^
^^1^^ ^32^

2iq" {1-q »).. (1-g ").

hence
2g ^^2j ^^20

sn 2ga,n 9" - 1 (1-g ").. (1+g » )•• (1-g ")•• (1 + g ")••

sno2om 2fir 2g 2ff „_2g 2g

and we thence derive the value of ^ ; viz. observing that we have in the denominator

(is)J («-"), =(—)l("-i) which destroys this factor in the expression of ^j^ , this is

i ?£ 2+?? 1+^ 2-^ 1-^-^

± = n |

l-g" (1-g '')--(l+g ")••(!-? ").-(l+g ")•
!

M„ 1 ?? 2+'^ 1+?? 2-^ 1-^
il+g»(l+g '')..(l-(? »)..(! + (/ ")--(l-g ")•
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Now, giving to g its values, it is easy to see that we have

n{l-q"){l-q »)..{l-q »
) . . = ii-li^

,

i_ ^ i 5 1

where (1-q").. denotes (1 - q>^)(l - qn)(i - qny ^ viz. it is the same function of q" that

(1 —q^).. is of 5 ; also

1

1+^ 1--"- n +o"^
n(i+5'^')..(i + g

")-- = ^(rT) •

t 1^ 3 5
J

where (H-^")-- denotes (l+g») (1 +9'»)(1 +g'").. , viz. it is the same functiou of 9''

that (l+q).. is of 5 ; and the like as to the denominator factors: we thus have

_1 - J(
i-g")-- (1 + g")-- a + q"-)-. (i-q)..

I

'

i/„-i ^ ~r
viz. this is

or, we have

1(1 -g=).. (l+q ).. (!+?»).. (1-<^«).J

= 1(1 -g^)-- (l+i!k-| ^ |
(l-90..(l+g).

[{l+q-)..{l-q-).i \{l+q^)..{l-q).

agreeing with a former result.

We have

that is,

^^"=i.-^'

2 1
^ + ^ + 1

] = tir) _ 1
|snc2(ii)„ snc 4ft)„ snc(w— 1) wj ^-(9) '

a result which, substituting on the left-hand side the foregoing values of the several

functions, must be identically true.

62. We have also

Vn = m" [snc 2(0n sue 4a),j . . . snc {n — 1) <»„},

where the term in
{ }

is

2q« {l+q »)..(l+q «)..

or, obsei-ving that the sum of the exponents - is - (1 + 2.. + i(?i — 1)} = ^r— , this is'^ n n'-
^

' 8n

W2)"-^q 8« (1+5=)..(1 + 5")..

c. IX. 21
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1

or, the last factor being f{q") ^f{q), the expression is

n

or, multiplying by iO\ = {^2)'"- q^f" {q), we have

_ i- L

agreeing with a former result.

We have in what precedes the complete ^-transcendental solution for the trans-

formatio secunda; viz. the original modulus k{=u*) being given as a function of q,

then, as well the new modulus X,, (= Vn'') and the multiplier il/,,, as also the several

functions which enter into the formula
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lud.
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64. As already mentioned, the foregoing expressions of the coefficients in terras

of q may be applied to the determination of the coefficients as rational functions

of u, V.

Representing by 6 any one of the coefficients a, /3, 7, . . . , cr, consider the sum

„vfd

/ a positive integer, and the summation extending as before to the n+1 values of

V, and corresponding values of - . This is a rational function of u, and it is also

integi-al. As to this observe that the function, if not integral, must become infinite

either for u = (this would mean that the expression contained a term or terms

Air') or for some finite value of 11. But the function can only become infinite by

1
reason of some term or terms of St/ - becoming infinite ; viz. some term

a ° '
" snc 2ga)

must become infinite ; or attending to the equation

V = m" [sne 2(1} snc 4(i) ... snc (n — 1) &)[,

it can only happen if w = 0, or if v = co ; and from the modular equation it appears

that if ?) = 00 , then also u = 00 : the expression in question can therefore only become

By
infinite if m = 0, or if u = 00 . Now m = gives the ratios —

, -,..., each of them a° a a

determinate function of n, that is finite ; and gives also v = 0, so that the expression

does not become infinite for u = 0; hence it does not become infinite either for « =
or for any finite value of u ; wherefore it is integral. The like reasoning applies to

n

the sum Sv~-f - ; viz. this is a rational function of u ; and it is quasi-integral, viz.

there are no terms having a denominator other than a power of u, the highest

denominator being it"-'^; viz. the expression contains negative and positive integer

powers of m, the lowest power (highest negative power) being -^.

65. It is to be observed, further, that writing the expression in the form

v/^' + S'vf-,
Ho «

(where S' refers to the values Vi, v„,...,Vn of the modulus), and considering the several

quantities as expressed in terras of q, then in the sum S' every term involving a

h

fractional power 5" acquires by the summation the coefficient (1 + a + a- + ... + «"""'), and

therefore disappears; there remains only the radicality q* occurring in the expressions

of the v's ; and if nf= fx (mod. 8), fj-=0, or a positive integer less than 8, then the

form of the expression is q^ into a rational function of q. Hence this, being a

rational and integral function of u, must be of the form

A'W^ + £11"+^ + C((/'+>'' + &c.
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66. We have thus in general

and in like manner

a
8vf- = Aui" + Bui'*^ + &c.

;

a

a

Sv-f-=A'u-"f +B'u-''f+^ +&C.
a

We may in these expressions find a limit to the number of terms, by means of the

before-mentioned theorem that we may simultaneously interchange u, v; a, ^, ...
, p, a-

11
into -, -; a, p,... , ^, a. Starting from the expression of Sv^ - , let

(f>
be the corre-

sponding coefScient to 6 ; viz. in the series a, ^,. .
, 0,.

. , ^,.. , p, a, let <^ be as removed

from o" as is from a; then the equation becomes

Sv'-f ? = Au-i' + Bu-i"-^ + &c.,
a

where - = - - = — -
; the equation thus is

o- a <7 h" a '

Sv'--f^ = Au''->' +5«"-''-8 -f-&c.

;

and by what precedes the series on the right-hand side can contain no negative power

higher than ^^<-_i, ; that is, the series of coefficients A, B, C, ... goes on to a certain

point only, the subsequent coefficients all of them vanishing.

a

In like manner from the equation for Sv~-f we have
a

a

where the indices must be positive ; viz. the series of coefficients A', B', . . goes on

to a certain point only, the subsequent coefficients all of them vanishing.

67. The like theory applies to the expression -p. We have, putting as before

nf= fi (mod. 8),

Sv-f -jr = Aiir- + Eui^+^+...,M

Sv--f
j^
= A'u-''^ + £'«-"/+« + . .

.

and we find a limit to the number of terms by the consideration that we may simul-

taneously change it, v, -^r into -, -, -7,>; the equations thus become

Sv'-f i> = ^ u'-"- + Bir*->^ + ...M



166 A MEMOIR ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. [578

(where, if /"= or < 4, there must be on the right-hand side no negative power of u:

but ify'>4, then the highest negative power must be -jfi^], and

where on the right-hand side there must be no negative power of u.

M
it is the same thing whether we seek in this manner for the values of /3, p or for

M

if

68. It is to be remarked that /3, p being always given linearly in terms of

s

that of ^; but the latter course is practically more convenient. Thus in the cases

n = 5, n = 7 we require only the value of

In the case ?i = ll, where the coeiScients are a, /3, y, S, e, f, it has been seen that

7, S are given as cubic functions of j^: seeking for them directly, their values would

(if the process be practicable) be obtained in a better form, viz. instead of the

denominator (F'vf there would be only the denominator F' (v).

69. I consider for -p- the cases m = 3 and 5

:

„ = .3, /=0, 1, 2, 3, then ai = 0, 3, 6, 1;

and we write down the equations

S^^A'u^ „ S^=A'u,

viz. if we had in the first instance assumed S -j^=A + Bii? + .
.

, this would have given

if
S -jrf= Au* + Bu~* + .., whence B and the succeeding coefficients all vanish; and so in

other cases. We have here only the coefficients A, A'; and these can be obtained

without the aid of the ^'-formulae by the consideration that for u=l the corresjoonding

values of v, j^ are

V =1, -1, -1, -1,

i=3.
-1,-1,-1,
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whence A=0, A' =6; or we have the equations

giving as before

^jr^' ^ir^< ^5=^' sf^=6u,

giving Sj^
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where Svo, &c. are the coefficients of the equation

viz.

are

— 4w', + 5 it-, , — 5 m* , 4ii

;

or the equation is

F'v.~= 20«(1-M»)

- \0u* (- 4it= - v)

— 10«-
(

— 5u-V — 'ilU^V" — V")

- 10 ( 4:11 + 5u^v — 5v^u- — ivhi^ — v%

or, say

where

^F'v -jHj. = 5 {z)5 + 4vh(,^ + 6dV + W-ii' + vu' - 2u (1 - u%

\F'v =^ v'- + lOv'ic- + lOvhi- - 5vu* - 2m.

Hence also, reducing by the modular equation,

^vF'v -p = 5u {v*u + 4:vV + CwV + 2?; (1 + «') + m'),

the one of which forms is as convenient as the other.

71. Making the change m, v, ,, into v, —u, —5M, we have

- ^F'u . 5M= 5 {- m' + 'iifu'' - 6d%^ + 4wV - vhi - 2y (1 - v^)]

;

and comparing with the equation

{l-v^)vF'v
° ~ {\-u^)uF'u'

we obtain
v{l- v^) _ — 2v {I- v") - vhi + Wu' - 6t)-M^ + 4vhi* — vF

M (1 - M^)
~ - 2h (1 - II?) + it*y + ^uV- + 6m^^ + 4M^y* + v^

'

Writing for a moment M = u* + Qu-v" + M^ iV = m= + v", this is

^, (1 _ ^8) ^ _ 2t, (1 _ ^ ) _uM + 4?)''«=iV

~ M (1 - M«) " - 2m (1 - iiP) + 1)71/ + 4!V-u'N

'

that is,

-4niv(l- V?) (1 - -y') - {zf= (1 - «') - v" (1 - z)^) M + 4ij^m^ [m= (1 - 1;') + ?;M1 - «')} iV' = 0.

But we have

vr {I - V?) - V- (I -ifi) = (u- -v-)[l- m' - uV - mV - M-y" - 1)'}

,

M« (1 - y') + ?)= (1 - u^) = (u- + v") {1 - u-v" (m* - mV + Z)*)}.
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Hence, replacing 31, N by their values, this is

-4»y(l -?(«) (!-?•')

— (u- - V-) (1 — u^ — uV — 11*1^ — u"vf^ — V*) {u* + Qu-v- + V*)

+ 4M*y^ {u- + V-)- {1 — u-v^ (u* — u-v- + v*)} = ;

viz. writing 2i- — v- = A, uv = B, this is

- 45 (1 - ^^ - 44^^^ - 2B* + £«}

_ A {I -A'- 5A'E' - W\ {A- + SB"-)

+ 45^ (A" + 4£'-) jl - A'B"- - B*} = 0,

that is,

45 [(1 -A*- 4'A-B' - 2B* + B')-B' (A' + 4£-) (1 - A"-B' - B')}

A (\-A*--dA"-B'-SB*){A- + 8B') = 0;

VIZ.

- 4i? (l-A'-oA"-B'-SB'){l-B')
- A {l-A'-oA'B'-SB*)(A"- + 8B'-) = 0;

or throwing out the factor —{I - A*- 5A-B- — 85*), this is

A {A"- + 8B') + 45 (1 - B') = 0,

the modular equation, which is right.

The four forms of the modular equation, and the curves represented thereby.

Art. Nos. 72 to 79.

72. The modular equation for any value of n has the property that it may be

represented as an equation of the same order (= n + 1, when n is prime) between

u, v. or between ^t^ v-: or between ^t^ 'tf: or between it?, v^. As to this, remark that

in general an equation (m, v, 1 )™ = of the order m gives rise to an equation

{u°, v^, 1)™ = of the order 2m between u~, v- ; viz. the required equation is

(u, V, !)'«(«, -V, !)"'(- M, V, !)"'(-«, -V, 1)™ = 0,

where the left-hand side is a rational function of u", v" of the form {u-, v", 1)^"; or

again starting from a given equation (u, v, «;)'" = 0, and transforming by the equations

X : y : 2 = u- : v^ : w\ the curve in («, y, z) is of the order 2m; in fact, the inter-

sections of the curve by the arbitrary line ax + hy + cz = Q are given by the equations

(m, V, wf- = 0, au- + bv' + cw- = 0, and the number of them is thus = 2m. Moreover, by

the general theory of rational transformation, the new curve of the order 2m has the

same deficiency as the original curve of the order m. The transformed curve in

X, y, z, = 11-, V-, w- may in particular cases reduce itself to a curve of the order m
twice repeated; but it is important to observe that here, taking the single curve of

the order m as the transformed curve, this has no longer the same deficiency as the

original curve ; and in particular the curves represented by the modular equation m
its four several forms, writing therein successively u, v ; u", v- ; u^, v* ;

u", v
,
= x, y,

are not curves of the same deficiency.

73. The question may be looked at as follows: the quantities which enter

rationally into the elliptic-function formulas are ^•^ \- = u\ v^; if a modular equation

(m, vy = led to the transformed equation (^^^ v'f^O, then to a given value of u^

c. IX. 22
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would correspond 8 values of u, therefore Sv values of v, giving the same number,

8^, values of v^\ that is, the values of tf corresponding to a given value of u^ would

group themselves in eights corresponding to the 8 values of u. There is, in fact, no

such grouping ; the equations are {u, v)" = 0, (it*, tf)" = ; to a given value of ifi

correspond 8 values of u, and therefoi-e Sv values of v, but these give in eights the

same value of if, so that the number of values of w' is = v.

74. I consider the case jj = 3 : here, writing x, y for u, v, we have here the sextic

curve

I. 2/< - a,-* + 2xy (xy- - 1) = ;

and it is easy to see that the remaining forms wherein x, y denote u", v-\ u*, v*\ and

ifi, v^ respectively, are derived herefrom as follows ; viz.

II. {y- — x-)-—i!xy{xy — l)-=0, that is,

y* + Qx-y- + x^ — 4«y {x-y- + 1) = ;

III. (y-+(jxy + x'^y-l&xy(xy + l)- = 0, that is,

y* + &aP^y- + x^ — 4fxy (ix-y- — Sx- — Sy- + 4) = ;

IV. (y + 6xy + x-y - IQxy (ixy -3x- 3y + 4y = 0, that is,

y' - 762«-j/= + x>- ixy {64a;y - 96x-y - 96xy"- + SSx' + SSy" - 96x - 96y + 64) = 0,

where it may be noticed that the process is not again repeatable so as to obtain a

sextic equation between x, y standing for m'", ^'* respectively.

The curve I. has a dp (fleflecnode) at the origin, viz. the branches are given by

y^ — 2x = 0, — x' — 2y = 0; and it has 2 cusps at infinity, on the axes x = 0, y =
respectively ; viz. the infinite branches are given hy y + 2«' = 0, — x + 2y^ = respect-

ively. These same singularities present themselves in the other curves.

The curve II. has the four dps (x- — y- = 0, xy — 1= 0), that is,

{x = y=l), (a; = 2/ = -l), (x = i, y = -i), {x = -i, y = i).

Corresponding hereto we have in the curve III. the 2 dps (a; = y=l, x = y= — l), and

in the curve IV. the dp {x = y=\).

The curve III. has besides the 4 dps y'^ + 6xy + x- = 0, xy + 1=0, that is,

(1 + \/2, 1 - \/2), (1 - V2, 1 + \/2), (_ 1 - \/2, - 1 + V2), (- 1 + V2, - 1 - V2)

;

and corresponding hereto in the curve IV. we have the 2 dps

(3 + 2 \/2, 3-2 \/2), (3 - 2 V2, 3+2 V2).

The curve IV. has besides the 4 dps {y'^ + &xy + x- = 0, 4a;y — 3« — By + 4 = 0), or

say (2a; - f) (2?/ - f) + i = 0, 2 (a; + '{)- + 2 (y + 1)= - -^p = 0. Hence the 4 curves have respect-

ively the dps and deficiency following:

—

dps. dps. Def.

2, 1 = 3, 7,

2, 1, 4 = 7, 3,

2, 1, 2, 4 = 9, 1,

2, 1, 1, 2, 4 = 10, 0;

viz. the curve IV. representing the equation between m' and if is a unicursal sextic.
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It may be noticed that, except the fleflecnode at the origin and the cusps at

infinity, the dps in question are all acnodes (conjugate points).

75. The foregoing equations may be exhibited in the square diagrams :

—

I. II.

y' >/ y- y ^
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76. Considering in like manner the modular equation for the quintic trans-

formation, we derive the four forms as follows :

—

I. cfif + ba?y^ {x- -y-) + ^xy{\- x*y') = ;

II. [a^ — y^+r)xy{x — y)]- — \&xy{\ — x^y'^)- = Q, that is,

«" + 15a^2/^ + \ox^y* + y''- 2xy (8 - 5a^ + lOary- - oy* + Hx'y') = ;

III. {a:?+15af'y+loxy--\-y'y-—'ixy{8 — 5x^+10xy — oy- + Sx'y-y = 0, that is,

oc^ + GBBx'y^ + 6o5x-y* + 2/" - 64()a;=j/- - Q4iOx:*y*

+ xy (- 256 + 320a;= + S20y' - 70«^ - 660a,-=2/^ - 70y* + S20x'y"- + 320a;y - 2o6a;^y') = ;

IV. (afi + 6o5x-y + 65oxy" + y^ — 64:0xy — 640a;y)^

- xy (- 256 + 320a; + 320y - 70a;= - 660a;^ - 70?/- + 320a.'=y + 320a;y- - 256x'y''y = :

or, expanding the two terms in the last equation separately, this is

0.xy
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77. The square diagrams are :

—

II.
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where the subscript line, showing in each case what the equation becomes on ^vliting

therein « = 1, serves as a verification of the numerical values.

78. The curve I. has at the origin a dp in the nature of a fleflecnode, viz.

the two branches are given by a? + 4^/ = 0, — ?/=* + 4a.- = respectively ; and there are

two singular points at infinity on the two axes respectively, viz. the infinite branches

are given by — y — 4a,'' = 0, x — 4^/' = respectively. Writing the first of these in the

form — yz^ — 4.x-'' = 0, we see that the point at infinity on the axis « = (i.e. the point

= 0, a; = 0) is =6 dps ; and similarly writing for the other branch xz^ — ^y^ = 0, the

point at infinity on the axis 3/ = (i.e. the point s = 0, y = 0) is =6 dps*.

Moreover, as remarked to me by Professor H. J. S. Smith, the curve has 8 other

dps; viz. wi'iting w to denote an eighth root of —1, (<u* + l=0), then a dp is x = a),

y = &)l To verify this, observe that these values give

6*'= =
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Arranging the results in a tabular form and adding the values of the deficiency,

we have
dps. dps. Def.

I. 1 + 12 + 8 =21, =15,

II. 1+12 + 4 + 12 29, 7,

III. 1 + 12 + 2+6 + 12 33, 3,

IV. 1 + 12 + 1+3+6 + 12 35, 1,

so that the curve IV. is a curve of deficiency 1, or bicursal curve. It appears by

Jacobi's investigation for the quintic transformation {Fwn<^. Nov. pp. 26—28, [Ges. Werhe,

t. I., pp. 77—79]) that we can in fact express x, y, that is, ifi, rf, rationally in terms

of the parameters o, /3 connected by the equation

a^ = 2/S(l + a + ^),

which is that of a general cubic (deficiency = 1); in fact, we have

2 — a _ w-*
/D _ "°

a^^ ~u*' ^ ~ "y '

.that is,

'*'(=-')=^=C'-"2|)' ^'^-y^-^iti^

where a, ^ satisfy the relation just referred to. The actual verification of the equation

IV. by means of these values would be a work of some labour.

79. In the general case p an odd prime, then in I. we have at the origin one dp

(in the nature of a fleflecnode) aod at infinity two singular points each =\{p — l){p — 2) dps.

I infer, from a result obtained by Professor Smith, that there are besides {'p — \){p — 'S)

dps ; but I have not investigated the nature of these. And the Table of dps and

deficiency then is

I. l+(^-l)(p-2)+ (;;_l)(p-3)

II. \+{p-\){p-2) + \{p-l){p-^) + l^{f-\)

III. \+(p-\){p-2) + ^{p-l){p-Z) + \{f-\)+\{p'-^)
IV. i+(j,-l)(p-2) + i(^-l)(^-3) + i(p=-l) + i(/^^-l) + i(P=-l)

viz. his values of the deficiencies being as in the last column, the total number of

dps must be as in the last but one column.

dps.

2p' -Ip + Q,
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579.

ADDRESS DELIVEEED BY [PROFESSOR CAYLEY AS] THE
PRESIDENT [OF THE ROYAL ASTRONOMICAL SOCIETY]

ON PRESENTING THE GOLD MEDAL OF THE SOCIETY TO

PROFESSOR SIMON NEWCOMB.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxxiv. (1873—1874),

pp. 224—233.]

The Council have awarded the medal to Professor Simon Newcomb for his

Researches on the Orbits of Neptune and Uranus, and for his other contributions to

mathematical astronomy. And upon me, as President, the duty has devolved of explaining

to you the grounds of their decision.

I think it right to remark that it appears to me that, in the award of their

highest honour, the Council of a Society are not bound to institute a comparison

between heterogeneous branches of a science, or classes of research—to weigh, for

instance, mathematical against observational astronomy or astronomical physics ; or, in

the several branches respectively, the happy idea which originates a theory against the

patience and the skilled labour which develope and carry it out; and still less to decide

between the merits of different workers in the science. It is enough that the different

branches of a science coming before them in different years, the medal should in

every case be bestowed as a recognition of high merit in some important branch of

the science.

Before speaking of the Tables, I will notice some of Professor Newcomb's other

works.

Memou' " On the secular Variations and mutual Relations of the Orbits of the

Asteroids," Mem. American Academy, vol. V. (1860), pp. 124—1.52. The object is to

examine those circumstances of the forms, positions, variations, and general relations of

the asteroid orbits which may serve as a test, complete or imperfect, of any hypothesis

respecting the cause from which they originated, or the reason why they are in a
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group by themselves. Every a posteriori test is founded on the supposition, that the

hypothesis necessarily or probably implies that certain conditions must be satisfied by

the asteroids or their orbits, viz. in the one case the conditions are those which follow

necessarily and immediately from the hypothesis itself, in the other case those which

are deducible from it by the principle of random distribution. The two principal

hypotheses are that of Olbers, where the asteroids are supposed to be the fragments

of a shattered single planet: and the hypothesis that they were formed by the breaking

up of a ring of nebulous matter. On the first hypothesis the orbits of all the

asteroids once intersected in a common point ; the second affords no conclusion equally

susceptible of an a posterio7-i test.

But for a rigorous or probable test of either hypothesis, what is needed is rigorous

expressions in terms of the time for the eccentricity, inclination, and longitudes of

perihelion and node of each of the asteroids considered, or, what is the same thing,

the computation of the secular variations of the quantities h, I, p, q, which replace

these elements. The investigation is applied to those asteroids the elements of which

were determined with sufficient accuracy, and the eccentricities and inclinations of

which were sufficiently small (limit taken is 11'). And the backbone of the memoir
is the investigation of the h, I, p, q, for twenty-five asteroids included between the

.numbers (1) and (40). In this calculation, as was clearly necessary, the action of the

asteroids on the larger planets and on each other was neglected ; the expressions for

the h, I, p, q, of the larger planets are regarded as given—they are, in fact, taken

from Le Verrier (as calculated by him before the discovery of Neptime, but afterwards

partially extended to that planet). The effect is that the differential coefficients -^ , &c.

are given each of them as a sum of sines or cosines of arguments varying with the

time ; and thus, although the calculation is sufficiently laborious, the process is not one

of the extreme labour and difficulty which it is in the case of the larger planets.

The resulting table of the /;, I, p, q, of the twenty-five asteroids has, of course, a

value quite independent of the theoretical part of the memoir. Of this it is sufficient

to say here that the conclusion is on the whole against Olbers's hypothesis. The
subject is resumed, and more fully examined in a paper in the Astronomische Nachrichten,

t. LVIII.

"Investigation of the Distance of the Sun and of the Elements which depend

upon it, from the Observations of Mars made during the Opposition of 1862, and

from other Sources," Washington Obseiuations for 18Go, Appendix II., pp. 1—29. The

chief part of this valuable Memoir is occupied with a determination of the solar

parallax by the discussion of the observations of Mars made in 1862 on the plan of

Winnecke : three partial discussions had previously appeared, but these having been by

comparisons of pairs of observations, one in each hemisphere, many observations in one

hemisphere were lost by want of a corresponding observation in the other hemisphere

;

and out of a total of nearly 300 observations, only 12.5 were utilised. The idea is,

the perturbations of the Earth and Mars being perfectly known for the period under

consideration, evei-y observation of the planet would lead rigorously to an equation of

condition between its parallax, the six elements of its orbit, and the six elements of

c. IX. 23
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the Earth's orbit—thus 13 or more observations, when compared with any theory,

should suffice to correct the errors of that theory. But the observations extending

only over a short interval, say one month, the coefficients would be so minute as to

give no trustworthy value of the corrections ; the equations only suffice to determine

a few functions of the elements which, being determined, the equations will be satisfied

by widely differing values of the elements, if only these values are such as to give

to the functions their right values. And by fixing a priori the entire number of

functions in question, and using them in place of the elements of the Earth and

Mars, the equations will be practically as rigorous as if all the 13 unknown quantities

had been introduced. By such considerations as these, each observation is made to

give a relation between only 3 unknown quantities, the correction of the Sun's parallax

being one of them.

The principle appears to be one of extended application, in regard to the proper

mode of dealing with the constantly recurring problem of the determination of a set

of corrections from a large number of linear equations ; and it is used by the author

in regard to the equations which present themselves in his theories of Neptune and

Uranus.

Returning to the Mars observations, these were made at six Northern and three

Southern Observatories, the total number being 1 54 Northern, and 143 Southern, together

297 observations. There was the difficulty of reducing to a concordant system the

observations at the different Observatories, since (the whole number of comparison stars

not being observed on each night) the adopted mean position of each of them was

not unimportant. But this being carefully discussed and allowed for, the observations,

extending from August 21 to November 3, 1862, are divided into five groups, and

from these is deduced a correction to the provisional value 8"'9 of the parallax. The

author then reproduces or discusses other determinations, from micrometric observations

of Mars, the parallactic inequality of the Moon, the lunar equation of the Earth, the

transit of 1769, and Foucault's experiment on Light—the last result, as not a strictly

astronomical one, and with no means of assigning its probable error, is left out of

consideration—and the combination of the remaining ones gives the author's concluded

value of the parallax ; from which other astronomical constants are deduced.

" On the Right Ascensions of the Equatoreal Fundamental Stars and the Correct-

ions necessary to reduce the Right Ascensions of different Catalogues to a mean

homogeneous System," Washington Observations for 1870, Appendix III., pp. 1—73.

This important Memoir is referred to in the Council Report for 1873. The object

is to do for the right ascensions of the equatoreal and zodiacal Stars what had been

done by Auwers for the declinations, namely, to furnish the data necessary to reduce

the principal original catalogues of stars to a homogeneous system by freeing them of

their systematic differences. The results are contained in two tables of corrections (as

depending on the R.A. and N.P.D. respectively) to the several catalogues ; and in a

table of concluded mean right ascensions for the beginning of each fifth Besselian year.
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1750 t<i 1900, of 32 fundamental Stars, and of periodic terms in the right ascensions

of Sirius and Pi'ocyov.

The evil of systematic differences between the observations of different Observatories

of course presents itself in every case where such observations have to be combined

:

for instance, in the just-mentioned determination of the solar parallax by the observ-

ations of Mars ; and in the making of a set of planetary tables : and all that tends

to remove or diminish it is most important to the progress of Astronomy. I cannot

help thinking that there shoul<l be some confederation of Observatories, or Central

calculating Board, for publishing the lunar and planetary observations, &c., reduced to

a concordant system. It seems hard upon the maker of a set of planetary tables that

he should not at least have, ready to hand for comparison with his theory, a single

and entire series of the observations of the planet.

" Theorie des Perturbations de la Lune, qui sont dues a Taction des Planetes,"

Liouville, t. xvi. (1871), pp. 1— 4.5. This is a very important theoretical Memoir on the

disturbed motion of three bodies : a problem which, so far as I am aware, has not

hitherto been considered at all. I have elsewhere remarked that the so-called " Problem

of Three Bodies," as usually treated is not really this pi-oblem at all, but a different

and more simple one—that of disturbed elliptic motion. Thus, in the planetary theory,

'each planet is considered as moving in an ellipse, and as disturbed by the action of

forces represented by means of a disturbing function peculiar to the planet in question.

An ai^proach is made to the problem of three bodies when, as in memoirs by Hamilton

and Jacobi, the (say) two planets are replaced by two fictitious bodies, and instead of

a disturbing function peculiar to each planet, the motion of the system is made to

depend on a single disturbing function. And there are memoirs by Jacobi, Bertrand,

and Bour, which do relate to the proper problem of three bodies, viz. to their undisturbed

motion. But in the present Memoir, Professor Newcomb starts from this problem as

if it were actually solved, viz. he takes the coordinates of the three bodies (Sun, Earth,

and Moon) as given in terms of the time and of 18 constants of integration *'. And
then considering the system as acted upon by the attraction of a planet, represented

by means of a disturbing function, he applies to the system of the three bodies the

method of the variation of the elements. The six elements which determine the motion

of the centre of gravity of the system are left out of consideration ; there remain to

be considered 12 elements only; six of these are 6„, 7r„, 6^, e^', Tr/, d^ (initial mean
longitudes and longitudes of pericentre and node): but the other six k^, k„, &c., are

functions the invention of which is a leading step in the theory, and it is in fact by

means of them that the investigation is brought to a successful conclusion : the

expressions of the last-mentioned six functions can, it is stated, be formed with facility

by means of the developments (obtainable from the lunar theory) of the rectangular

* Of course the expressions actually used must be approximations : the centre of gi'avity of the Earth

and Moon is regarded as moving round the Sun in an ellipse affected by a secular motion of perihelion

(ultimately neglected) ; and the coordinates of the Moon in regard to the Earth are considered to be given

by Delaunay's Lunar Theory. The centre of gravity of the whole system (in the undisturbed motion) moves

uniformly in a right line, viz. the coordinates are a + a't, h + h't, e + c't; and we have thus the whole number

6 + G + 6, =18, of arbitrary constants.

23—2 '
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coordinates «, y, z, as periodic functions of the time. With these twelve elements, the

expressions for the variations assume the canonical form

dk^ _ dR dfo dR .

dt de„ ' dt dk,

'

The concluding part of the Memoir contains approximate calculations which seems

to show that the whole process is a very practicable one : but the author remarks that

it is only doing justice to Delaunay to say that, starting from his (Delaunay's) final

differential equations, and regarding the planet as adding new terms to the disturbing

function, thei-e would be obtained equations of the same degree of rigour as those of

his own Memoir.

Everything in the Lunar Theory is laborious, and it is impossible to form an

opinion as to the comparative facility of methods ; but in-espectively of the possible

applications of the method, the Memoir is, from the boldness of the conception and

beauty of the results, a very remarkable one, and constitutes an important addition to

Theoretical Dynamics *.

I come now to the planets Neptune and Uranus : it is well-known how, historically,

the two are connected. The increasing and systematic inaccuracies of Bouvard's Tables

of Uranus were found to be such as could be accounted for by the existence of an

exterior disturbing planet ; and it was thus that the planet Neptune was discovered by

Adams and Le Verrier before it was seen in the telescope, in September 1846. It was

afterwards ascertained that the planet had been seen twice by Lalande, in May 179.3.

The theory of Neptune was investigated by Peirce and Walker: viz. Walker, by means

of the observations of 179.5, and those of 1846—47, and using Peirce's formulae for the

perturbations produced by Jupiter, Saturn, and Uranus, determined successfully two sets

of elliptic elements of the planet. The values first obtained showed that it was

necessary to revise the perturbation-theory, which Peirce accordingly did, and with the

new perturbations and revised normal places, the second set of elements (Walker's

Elliptic Elements II.) was computed. With these elements and perturbations there was

obtained for the planet from the time of its discovery a continuous ephemeris, published

in the Smithsonian Contributions, Goidd's Astr-ononiical Journal, and since 1852 in the

Amer'ican Epltemeris and the Nautical Almanac. The theory was next considered by

Kowalski in a work published at Kasan in the year 1855. The long period inequalities

are dealt with by him in a manner different from that adopted by Peirce, so that

the two theories are not directly comparable, but Professor Newcomb, by a comparison

of the ephemerides with observation, arrives at the conclusion that the theory of

Kowalski (although derived from observations up to 1853, when the planet had moved

through an arc of 10°) was on the whole no nearer the truth than that of Walker;

* Since the above was written. Professor Newcomb has commnuicated to me some very interesting details

as to the extent to which he has carried liis computations, and in particular he mentions tliat, consideriug

the action of each planet from Mercury to Satuni, he has (in regard to the terms the coefficients of which

might become large by integration) estimated the probable limiting value of more than fifty such terms of

period from a few years to several thousands without finding any which could become sensible, except the

term leading to Hansen's first inequality produced by Venus.
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he observed, however, that this failure is accounted for by an accidental mistake in

the computation of the perturbations of the radius vector by Jupiter.

Professor Newcomb's theory of Neptune is published in the Smithsonian Contributions

under the title " An Investigation of the Orbit of Neptune, with General Tables of its

Motion," (accepted for publication, May 1865). The errors of the published ephemerides

were increasing rapidly ; in 1863 Walker's was in error by 33", and Kowalski's by
22" ; both might be in error by 5' before the end of the century. The time was come

when (the planet having moved through nearly 40") the orbit could be determined

with some degree of accuracy. The general objects of the work are stated to be

:

(1) To determine the elements of the orbit of Neptune with as much exactness

as a series of observations extending through an arc of 40° would admit of

(2) To inquire whether the mass of Uranus can be concluded from the motion

of Neptune.

(3) To inquire whether these motions indicate the action of an extra-Neptunian

planet, or throw any light on the question of the existence of such planet.

(4) To construct general tables and formulae, by which the theoretical place of

Neptune may be found at any time, and more particularly between the years 1600 and

.2000.

The formation of the tables of a planet may, I think, be considered as the

culminating achievement of Astronomy : the need and possibility of the improvement

and approximate perfection of the tables advance simultaneously with the progress of

practical astronomy, and the accumulation of accurate observations ; and the difficulty

and labour increase with the degree of perfection aimed at. The leading steps of the

process are in each case the same, and it is well-known what these are ; but it will

be convenient to speak of them in order, with reference to the present tables : they

are first to decide on the form of the formulae, whether the perturbations shall be

applied to the elements or the coordinates—or partly to the elements and partly to

the coordinates ; and as to other collateral matters. These are questions to be decided

in each case, in part by reference to the numerical values (in particular, the ratios

and approach to commensurability of the mean motions), in part by the degree of

accuracy aimed at, or which is attainable—the tables may be intended to hold good

for a few centuries, or for a much longer period. The general theory as regards these

several forms ought, I think, to be developed to such an extent, that it should be

possible to select, according to the circumstances, between two or three ready-made

theories ; and that the substitution therein of the adopted numerical values should be

a mere mechanical operation ; but in the planetary theory in its present state, this is

very far from being the case, and there is always a large amount of delicate theoretical

investigation to be gone through in the selection of the form and development of the

algebraical formulae which serve as the basis of the tables. In Prof Newcomb's theory

the perturbations are applied to the elements ; in particular, it was determined that

the long inequality arising from the near approach of the mean motion of Uranus to

twice that of Neptune (period about 4,300 years), should be developed as a perturbation,

not of the coordinates, but of the elements. And it was best, (as for a theory designed
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to remain of the highest degree of exactness for only a few centuries) to take not

the mean vahies of the elements, but their values at a particular epoch during the

period for which the theory is intended to be used. The adopted provisional elements

of Neptune, and the elements of the disturbing planets, are accordingly not mean

values, but values affected by secular and long inequalities, representing the actual

values at the present time. Secondly, the form being decided on and the formulae

obtained, the numerical values of the adopted provisional elements of the planet, and

of the elements of the disturbing planets and their masses, have to be substituted, so

as to obtain the actual formulae serving for the calculation of a provisional ephemeris;

and such ephemeris, first of heliocentric, and then of geocentric positions, has to be

computed for the period over which the observations extend. Thirdly, the ephemeris,

computed as above, has to be compared with the observed positions ; viz. in the present

case these are, Lalande's two observations of 179-5, and the modern observations at the

Observatories of Greenwich, Cambridge, Paris, Washington, Hamburg, and Albany,

extending over different periods from 1846 to 1864: these are discussed in reference

to their systematic differences, and they are then corrected accordingly, so as to reduce

the several series of observations to a concordant system. In this way is formed a

series of 71 observed longitudes and latitudes (1795, and 1846 to 1864); the eomimrison

of these with the computed values shows the errors of the provisional ephemeris.

Fourthly, the errors of the provisional elements have to be corrected by means of the

last-mentioned series of errors : as regards the longitudes, the comparison gives a series

of equations between Se, hn, hh, hh, and /x (correction to the assumed mass of Uranus).

The discussion of the equations shows that no reliable value of /x can be obtained

from them ; it indeed appears that, if Uranus had been unknown, its existence could

scarcely have been detected from all the observations hitherto made of Neptune (far

less is there any indication to be as yet obtained as to the existence of a trans-

Neptunian planet): hence, finally,
fj.

is taken =0, and the equations used for the

determination of the remaining corrections. As regards the latitudes, the comparison

gives a series of equations serving for the determination of the values of Bp and Sq.

And applying the corrections to the provisional elements, the author obtains his con-

cluded elements ; viz. as already mentioned, these are the values, as affected by the

long inequality, belonging to the ejDOch 1850. Fifthly, the tables are computed from

the concluded elements, and the perturbations of the provisional theory.

After the elements of Neptune were ascertained, the question of its action on

Uranus was considered by Peirce in a paper in the Proc. American Acad., vol. I.

(1848), pp. 334—337. This contains the results of a complete computation of the

general perturbations of Uranus by Neptune in longitude and radius vector, but without

any details of the investigation, or statement of the methods employed: it is accompanied

by a comparison of the calculated and observed longitudes of Uranus (with three

different masses of Neptune) for years at intervals from 1690 to 1845, and for one of

these masses the residuals are so small that it appears that, using these perturbations

by Neptune and Le Vei-rier's perturbations by Jupiter and Saturn, there existed a theory

of Uranus from which quite accurate tables might have been constructed. But this

was never done. The ephemeris of Uranus in the American Ephemeris was intended
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to be founded on the theory, but the proper definitive elements do not seem to have

been adopted : and in the Natitical Almanac for the years up to 1876, Bouvard's Tables

of Uranus were still employed ; for the year 1S77 the ephemeris is derived from

heliocentric places communicated by Prof. Newcomb.

An extended investigation of the subject was made by Safford, but only a brief

general description of his results is published. Monthly Notices, R.A.S., vol. xxii. (1862).

The effect of Neptune was here computed by mechanical quadratures ; and corrections

were obtained for the mass of Neptune and elements of Uranus.

Professor Newcomb's Tables of Uranus have only recently appeared. They are

published in the Smithsonian Contributions under the title "An Investigation of the

Orbit of Uranus, with General Tables of its Motion," (accepted for publication Februar}',

1873), forming a volume of about 300 pages. The work was undertaken as far back

as 18.59, but the labour devoted to it at first amounted to little more than tentative

efforts to obtain numerical data of sufficient accuracy to serve as a basis of the theory,

and to decide on a satisfactory way of computing the general perturbations. First, the

elements of Neptune had to be corrected, and this led to the foregoing investigation

of that planet : it then appeared that the received elements of Uranus also differed

too widely from the truth to serve as the basis of the work, and they were provisionally

corrected by a series of heliocentric longitudes, derived from observations extending from

1781 to 1861. Finally, it was found that the adopted method of computing the

perturbations, that of the " variation of the elements," was practically inapplicable to

the computation of the more difficult terms, viz. those of the second order in regard

to the disturbing force. While entertaining a high opinion of Hansen's method as at

once general, practicable, and fully developed, the author conceived that it was on the

whole preferable to express the perturbations directly in terms of the time, owing to

the ease with which the results of different investigations could be comjjared, and

corrections to the theory introduced ; and under these circumstances he worked out the

method described in the first chapter of his treatise, not closely examining how much

it contained that was essentially new. With these improved elements and methods the

work was recommenced in 1868 ; the investigation has occupied him during the sub-

sequent five years : and, though aided by computers, every part of the work has been

done under his immediate direction, and as nearly as possible in the same way as if

he had done it himself: a result in some cases obtained only by an amount of labour

approximating to that saved by the employment of the computer.

The leading steps of the investigation correspond to those for Neptune : there is,

Jii:st, the theoretical investigation already referred to ; secondly, the formation of the

provisional theory with assumed elements ; thirdly, the comparison with observation

;

and here the observations are the accidental ones previous to the discovery of Uranus

as a planet by Herschel in 1781, and the subsequent systematic ones of twelve

Observatoiies, extending over intervals during periods from 1781 to 1872; all which

have to be freed from systematic differences, and reduced to a concordant system as

before: the operation is facilitated by the existence, since 1830, of ephemerides com-

puted from Bouvard's Tables serving as an intermediate term for the comparison of
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the observations with the provisional theory. Fourthly, the correction of the elements

of the provisional theory, viz. the equations for the comparison of the longitudes give

he, Sn, hit, hk, and a correction to the assumed mass of Neptune, which mass is thus

brought out = 1^0- ^.nd the equations for the comparison of latitudes give hp, hq
;

there is thus obtained a corrected set of elements (Newcomb's Elements IV.), being

for the year 1850, the elements as affected with the long inequality; these are the

elements upon which the Tables are founded. But it is theoretically interesting to

have the absolute mean values of the elements, and the author accordingly obtains

these (his Elements V.) together with the corrections corresponding to a varied mass

of Neptime, (that is, the terms in ^ corresponding to a mass
jq^qq] ;

he remarks

that, admitting the mass of Neptune to be uncertain by about one-tiftieth of its value,

the mean longitude of the perihelion of Uranus is from this cause uncertain by more

than two minutes, the mean longitude of the planet by nearly a minute, and the

mean motion by nearly two seconds in a century. Fifthly, the formation of the tables,

based on the Elements IV. ; the tables calculated with these elements are intended

to hold good for the period between the years 1000 and 2200; but by aid of the

Elements V. they may be made applicable for a more extended period.

In what precedes I have endeavoured to give you an account of Professor Newcomb's

writings: they exhibit all of them a combination, on the one hand, of mathematical

skill and power, and on the other hand of good hard work—devoted to the furtherance

of Astronomical Science. The Memoir on the Lunar Theory contains the successful

development of a highly original idea, and cannot but be regarded as a great step in

advance in the method of the variation of the elements and in theoretical dynamics

generally ; the two sets of planetary tables are works of immense labour, embodying

results only attainable by the exercise of such labour under the guidance of profound

mathematical skill—and which are needs in the present state of Astronomy. I trust

that imperfectly as my task is accomplished, I shall have satisfied you that we have

done well in the award of our medal.

The President then, delivering the medal to the Foreign Secretary, addressed him in

til e following terms:

Mr Huggins—I request that you will have the goodness to transmit to Professor

Newcomb this medal, as an expression of the opinion of the Society of the excellence

and importance of what he has accomplished ; and to assure him at the same time

of our best wishes for his health and happiness, and for the long and successful

continuation of his career as a worker in our science.
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580.

ON THE NUMBER OF DISTINCT TERMS IN A SYMMETRICAL OR
PARTIALLY SYMMETRICAL DETERMINANT.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxxiv. (1873—1874),

pp. .303—307, and p. 335.]

The determination of a set of unknown quantities by the method of least squares

is effected by means of formula depending on symmetrical or partially symmetrical

determinants ; and it is interesting to have an expression for the number of distinct

terms in such a determinant.

The terms of a determinant are represented as duads, and the determinant itself

as a bicolumn ; viz. we write, for instance,

ua \ to represent the determinants

hh

PP

aa, ah, up', aq'

ha, hh

,

hp'

,

bq

pa, ph, pp, pq

qa, qh, qp ,
qq'

This being so if the duads are such that in general rs = sr; then the determinant

is wholly or partially symmetrical ; viz. the determinant just written down, for which

the bicolumn contains such symbols as pj)' and qq', (each letter p, q,... being distinct

aa \

from every letter p', q, . . .) is partially symmetrical, but a determinant .such as hh

cc

is wholly symmetrical. A determinant for which the bicolumn has m rows aa, hh, &c.,

and ?i rows pp', qq', &c. is called a determinant {m, n); and the number of distinct

terms in the developed expression of the determinant is taken to be (f)(in, n); the

problem is to find the number of distinct terms <\) {m, n).

c. IX. 24
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Consider a determinaut (m, n) where n is not = ; for instance, the determinant

above written down, -which is (2, 2); this contains terms multiplied by qa, qb, qp, qq

bb

respectively : where, disregarding signs, the whole factor multiplied by qa is - ap'

[pq'

which is a determinant (1, 2), and similarly the whole factor multiplied by qb is a

determinant (1, 2). But the whole factor multiplied by qp' is the determinant

aa

pq
which is a determinant (2, 1), and the whole factor multiplied by qq is also a determ-

inant (2, 1).

Hence, observing that qa, qb, qp', qq' are distinct terms occurring only in the last

line of the determinant, the number of distinct terms is equal to the sum of the

numbers of distinct terms in the several component parts, or we have

0(2, 2) = 2</.(l, 2) + 2</.(2, 1);

and so in general

:

cj)(m, n) = mcf) {711 — 1, n) + n(f> (m, ft— 1).

Consider next a completely symmetrical determinant (in, 0); for instance (4, 0), the

determinant

. aa \,=\ aa, ah, ac, ad

\ bb \ ! ba, bb, be, bd

cc
\

ca, cb, cc, cd

dd I da, db, dc, dd

We have first the terms containing dd ; the whole factor is j bb k which is a

I cc

determinant (3, 0) ; secondly, the terms containing ad . da, or the like combinations,

r «a 1
bd . db or cd.dc: the whole factor multiplied by ad . da is -

J-,
which is a determ-

[bb}

inant (2, 0); thirdly, the terms containing ad . db + bd . da, =2ad.bd; or the like

combinations Had . cd or 2bd.cd: the whole factor multiplying the term 2ad.bd is

CC 1

L which is a determinant (1, 1). Hence observing that ad, bd, cd, =da, db, dc,

ba }

and dd are terms occurring only in the last line and column of the original determinant,

it is clear that the number of distinct terms in the original determinant is equal to

the sum of the numbers of distinct terms in the component parts, or that we have

(^(4, 0)=(/)(3, 0) + 3(^(2, 0) + 3(f)(l, 1); and so in general:

(f>
(m, 0) = 4> (m -I, 0) + m,p (m - 2, 0) +^ ^ (m - 3, 1 ).
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The two equations of differences, together with the initial values ^(0, 0) = 1,

0(1, O) = 0((), 1) = 1, 0(2, O) = 0(l, 1) = 0(1, 2) = 2, enable the calculation of the

successive values of (/> (m, n) : viz. arranging these in the order

(0, 0),

0(1, 0), 0(0, 1),

0(2, 0), 0(1, 1), 0(0, 2),

0(3, 0), &c., &c.,

we calculate simultaneously the lines (??i, 0), (m, 1); and thence successively the

remaining lines 0(»i, 2), (m, 3), &c. : the values up to vi + n = 6 being in fact

1,

1, 1,

2, 2, 2,

0, 6, 6, 6,

17, 23, 24, 24, 24,

73, 109, 118, 120, 120, 120,

388, 618, 690, 714, 720, 72(5, 720:

where the process for the first two lines is

5= 2 + 2. 1+ . 1, 6 = 2. 2+2,
17= .5 + 3. 2 + 3. 2, 23 = 3. 6+5,

73 = 17 + 4. 5 + 6. 6, 109 = 4. 23 + 17,

388 = 73 + 5.17+ .23, 618 = 5 . 109 f 23,

the larger figures being those of the two lines, and the smaller ones numerical

multipliers. And then for the third line, fourth line, &c., we have

0=1. 2 + 2. 2, 120 = 2. 24 + 3. 24,

24 = 2. 6 + 2. 6, 714 = 3.120 + 4.118,

118 = 3. 24 + 2. 23,

690 = 4.118 + 2.109,

and sn on.

This is, in fact, the easiest way of obtaining the actual numerical values ; but we

may obtain an analytical formula. Considering the two equations

(iH, l) = m(f) (in - 1 , 1 ) + (m, 0),

(m, 0) = (m - 1, 0) + »i0 {m - 2, 0) + ^^ (m - 3, 1)

;

24—2
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and using the first of these to eliminate the term (j)(m — S, 1) and resulting terms

(p {m — 4, 1), &c. which present themselves in the second equation, this, after a succession

of reductions, becomes

<f>(m, 0)= <j}(ni-l, 0)

+ (?H-l)^(m-2, 0)

m . 7;i — 1
,

, , „ ^s+
7, \<P (m - 3, 0)

+ (m-3)^(»i-4, 0)

+ {m-S)...S.2(f,{l, 0)

+ (M-:3)...3.2.1 1 .

or, observing that the last term («i — 3) ... 3 . 2 . 1 is, in fact, = («i - 3) ... 3 . 2 . 1(^(0, 0),

this may be written

:

2<^ (m, 0) - (m - 1, 0) - (m -l)(p (m-2, 0) = (j) (m - 1, 0)

+ (m -l)(j) (m - 2, 0)

+ (m-l)(m-2) 4>im-S, 0)

+ (m-l)..3.2.1<|>( 0, 0).

And hence assuming

« = 0(O, 0) + j</,(l, 0) + j^<^(2, Q)+ ...+,^-^-—^^(m, 0)+...,

we find at once

that is,

2 -; U — XU =
,

ax 1 — X

_ du , /_ 1
2 — = (ia; l+.r+ —

tt V 1 — «/

or integrating and determining the constant so that u shall become = 1 for x = 0, we
have

Vl —X

wherefore we have

(f)
(m, 0) = 1 . 2 ... »i coefft. x'"' in

Vl -«'
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Developing as far as x^, the iiumerioal process is

1 k i

1 i

_i_
48 3S4

1

3J

1 17 r:3

_ 1 _
4 U 8

1

^^4

1
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was obtained as the solution of the cliiTerential equation

Writing this in the form

2(l-*-)J = «(2-n

we at once obtain for »„ the equation of differences,

?/„ = n !(„_! - ^ (« - 1 )
(?i - 2 ) i(„_3

;

and it thus appears that the values of ii„ (number of distinct terms in a symmetrical

determination of the order ?() can be calculated the one from the other by the process

n = \,
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581.

ON A THEOEEM IN ELLIPTIC MOTION.

[From the Monthli/ Notices of the Royal Astronomical Society, vol. xxxv. (1874—187o),

pp. 3.37—339.]

Let a body move through apocentre between two opposite points of its orbit, say

from the point P, eccentric anomaly ii, to the point P', eccentric anomaly «', where

u, u' ai'e each positive, « < tt, u > tt. Taking the origin at the focus, and the axis

of X in the direction through apocentre, then

—

Coordinates of P are x = a{— cos u + e), y = a Vl — e- sin u,

„ P' „ X = a (— cos u + e), y = a"J\ — e- sin u
;

whence, expressing that the points P, P' are in a line with the focus,

sin u (— cos u + e) — sin u {— cos »' + e) = 0,

that is,

sin {u — ii) = e (sin u — sin u),

which is negative, viz. u' — u is > tt.
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The time of passage from P to P' is

nt = {u' — e sin u') — (ti — e sin u),

= u' — H — e (sin u' — sin u),

= u' — u — sin (u — It),

which, i(' — u being gi-eater than tt and — sin («' — u) positive, is greater than tt ; viz.

the time of passage is greater than one-half the periodic time. Of course, if P and P'

are at pericentre and apocentre, the time of passage is equal one-half the periodic time.

The time of passage from P' to P through the pericentre is

nt = 27r — (m' — «) + sin {u' — u),

which is

= 2v — {ii' — u) — sin {277 — (w' — u)},

where 27r — {u' — u), =a suppose, is an angle < tt. Writing, then

nt = a — sin a,

and comparing with the known expression for the time in the case of a body falling

directly towards the centre of force, we see that the time of passage from P' to P
through the pericentre, is equal to the time of falling directly towards the same centre

of force from rest at the distance 2a to the distance a (1 + cos a), where, as above

a = 27r — (u' — w)> "' — " being the difference of the eccentric anomalies at the two

TT

opposite points P, P'. If a = tt, the times of passage are each = - , that is, one-half

the periodic time.

The foregoing equation sin («' — u) = e (sin u - sin u) gives obviously

cos ^ (u' — u) = e cos ^ («.' -f u)
;

that is,

1 -t- tan i II tan ^ »' = e (1 — tan \ u tan ^u'),

or,

1 / 1 —

e

— tan i u tan *u =
:

^ I +e

(in the figure tan^« is positive, tan^w' negative); and we thence obtain further

sin ^ (((' — u) = cos ^ u' cos ^ u (tan i u' — tan ^ u),

sin ^ («' + u) = cos ^ u' cos ^ u (tan \ u + tan ^ u),

2e
cos I (»' — v) = cos

"I
it' cos ^ u .

'—

cos ^ {u + u) = cos i u' cos ^ u . Y

e

2_
+ e'
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and thence also

cos U + COS u' = 2 cos J (u' + u) COS ^ (u' — It),

= COS- i 1i COS- i U. . jz, r; .^ " (1 -J- e)=

But we have

1 -1- COS {u — u) = 2 COS= i- (if' — U) = cos'- i- «' cos"- i M . 7z ,

- \ 2 - (1 + e)2

'

or, comparing with the last equation,

1 + cos (m' — ii) = e (cos U' + cos «'),

or, what is the same thing,

1 — cos (u' — u) = (1 — e cos m') -f (1 — e cos it)

;

and in like manner,

1 + cos («' + t(,) = 2 cos- 1 {u' -f It) = cos= h u' . cos- ^ u -Tj -,

;

or, comparing with the same equation,

1 + cos (it' -f zt) = - (cos u + cos ft')

:

which are formulae corresponding with the original equation

sin (m' — u) = e (sin u' — sin w).

c. IX. 25
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582.

NOTE ON THE THEORY OF PRECESSION AND NUTATION.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxxv. (1874—1875),

pp. 340—343.]

We have in the dynamical theory of Precession and Nutation (see Bessel's Funda-

menta (1818), p. 126),

cf^ + (B-A)qr^LS(.'c'y-xy')dm'{^,-^),

A^^+(C-B) rp = LS (y'z - yz') dm' (^ -
^) ,

£g + (^ - C)pq = LS (z'x - zx') dm' (1 -
^3) ,

where L is the mass of the Sun or Moon, x, y, z the coordinates of its centre referred

to the centre of the Earth as origin,

r = yx- + y" + ^^

the distance of its centre, and

A = V(a; - x'f + {y- y'f + (2^ - z'f,

the distance of its centre from an element dm', coordinates («', y', z') of the Earth's

mass, the sum or integral S being extended to the whole mass of the Earth—I have

written dm', r for Bessel's dm, Vi— , we have

A= = r^ - 2 {xx + yy' + zz') + x'" + y'- + z'-
;

and thence

A3
-

r^
=

r5
^'^''' + yy' + ^^'^

~^r'
'^*' "^ ^' + ^^ ^'"'^ + ^/'^ + ^'')

" ^ (^*' + Vy + ^^')1 + ^tc
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The principal term is the first one,

3
-{xx' ^yy'-^zz');

but Bessel takes account also of the second term,

-%-7 ((*' + y' + ^") (*'' + y" + ^'') - 5 (**' + yy + z^)%

viz. considering the Earth as a solid of revolution (as to density as well as exterior

form), he obtains in regard to it the following terms of sin w -— and -rr respectively

;

or 1

1^ ^ . 2 (C - ^) /iT (5 sin^ S - 1) cos S sin a,

or 1

-IT. 7f .2(C'-^)Z(5sin=S-l)cos8cosa,
4?'* Cn

where
1{C-A)K==8{2,ii- ofi') 27rp R'dR dfi.

K being in fact a numerical quantity, relating to the Earth only, and the value of

which is by pendulum observations ultimatel}' found to be =0'13603.

Writing, for shortness,

{ar + y- + z") {x'- + y'- + z'-) - 5 {xx' + yy' + zz'f = Ct,

then the foregoing terms of sin m -^ and -j- depend, as regards their form, on the

theorem that for any solid of revolution (about the axis of z) we have

S {x'y — xy) Cldm', S (y'z — yz') D.dm', S (z'x — zx) D.dni'

= 0.

^y(x" + f- + z- - 5z"-) S [3 {x"- + y'"- + z'"-) - 5z'-'] z'dm,

- hx (x- + if-\-z-- bz-) S [3 (x- + y'- + z'-) - 5/=] z'dm',

respectively : viz. writing x'^ + y'- + z'- = R-, and z' = Rfi, also x- -\- y^ + z- = r- and

x = r cos S cos a, y = r cos 8 sin a, z = r sin 8, the values would be

0,

^ r' cos 8 sin a (1 — 5 sin^ g) S (3 - 5/^-) jxRHm',

— \r^ cos 8 sin a (1 — 5 sin= 8) (S (3 — 5/i-) nR^dm,

which are of the form in question.

The verification is easy: the solid being one of revolution about the axis of z,

any integral such as Sx'z'-dm' or Sx'y'z'dm' which contains an odd power of x' or of

y' is =0 ; while such integrals as Sx'-z'dm', Sy'-z'dm are equal to each other, or, what

is the same thing, each =^S (a/- + y'-) z'dm. That we have S {x'y - xy') ildm' = is

25—2
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at once seen to be true ; considering the next integi-al S {y'z - yz) fldm', the terms of

(y'z — zy') n which lead to non-evanescent integrals are

- yz' . (x- + y- + Z-) {.v- + y'- + z'%

- 5y'z . 'i.yzy'z,

+ hyz' . {x-x'- + Tj-y'- + z-z'-)
;

giving in the integral the several terms

- y {x- -\-y--\- Z-) S {x'- + y'- + z"") z'dni,

- lOyz'- . \ S{x'' + y"- + z- - z'-) z'dm,

+ by {x- + y- + z--z-).\8 {x'- + y'- + z'- - z'-) z'dm',

+ yz- Sz'^ dm',

viz. collecting, the value is

(- 1 + f =) I («= + f- + z"-) yS (a.-'- + y'"- + z'"-) z'dm',

(_ I =) _ I {afl + y"- + z"-) ytz'Hm,

(- i _ 5 =) - J^ yz'^S {x- + y'- + z"^ z'dm',

(+1 + 5 + 5=) + ^ yz'Sz'^dm'
;

which is

= hj («' + y' + 2- - 5z-) S [3 («'= + y'- + z'-) - 5z''] z'dm'

;

and similarly the last term is

= -ix {af + y' + Z-'-- bz-) S [3 (x'- + y'= + z'"-) - 5z'-] z'dm',

which completes the proof.
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583.

ON SPHEROIDAL TRIGONOMETRY.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxxvii. (1876—1877),

p. 92.]

The fundamental formulffi of Spheroidal Trigonometry are those which belong to

a right-angled triangle P/S*S'„, where P is the pole, PS, PS^ arcs of meridian, and

SSo a geodesic line cutting the meridian PS at a given angle, and the meridian

PSo at right angles. We consider a spherical triangle PSS^,

Sides PS, PS„, SS, = y, y„, s.

Angles So, S, P =90°, 6, I,

where 7 is the reduced colatitude of the point S on the spheroid (and thence also

7o the reduced colatitude of S„) and the azimuth of the geodesic SS„, or angle at

which this cuts the meridian SP ; and then if S be the length of the geodesic SS^
measured as a circular arc, radius = Earth's equatoreal radius, and L be the angle

SPS^, S, L differ fi-om the corresponding spherical quantities .9, I by terms involving

the excentricity of the spheroid, viz. calling this e and writing

k =
e cos 70

V 1 — e^ sin^ 7,

'

then (see Hansen's " Geodatische Untersuchungen," Ahh. der K. Sachs. Gesell., t. viii.

(18G5) pp. 1.5 and 2.3, but using the foregoing notation) we have, to terms of the

sixth order in e,

T^^p
= {1+ ik"-+ ^ t+ /^^«) s

+ ^7^^"" sin6s;
and

L =l-^e-smy,{{l-^k'+ie'- -g^t+ le')s

-(iV*'+ ^5^) sin 2s

+ T^^k* sin 4s},

which are the formula in question.
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584.

ADDITION TO PROF. K. S. BALL'S PAPER, "NOTE ON A TRANS-

FORMATION OF LAGRANGE'S EQUATIONS OF MOTION IN

GENERALISED COORDINATES, WHICH IS CONVENIENT IN

PHYSICAL ASTRONOMY."

[From the Monthly Notices of the Royal Astronomical Society, vol. xxxvii. (1876—1877),

pp. 269—271.]

The formulje may be established in a somewhat different way, as follows:

—

Consider the masses il/j, iL, ....

Let Xi, Yi, Zi be the coordinates (in reference to a fixed origin and axes) of

the c.G. of ilfi

;

*i, 2/i, •^i the coordinates (in reference to a parallel set of axes through the C.G.

of Ml) of an element m^ of the mass il/i, and similarly for the masses M^, ...; the

coordinates (Xi, Fj, Z^, (X^, Y^, Z„), ... all belonging to the same origin and axes;

dX
And let X-^, &c. denote the derived functions --rr , &c.

We have
!r= S ^m, [(X + i-0= + ( F, + y,y + (Z, + z,y]

+ S^. [(X, + x^ + (F + 2/,)-^ + (Z, + 4)T

or since SmiXi = 0, &c., and therefore also SmiX\ = 0, &c., this is

T= iif, (Zr + Fr + ^r) + S^m,(x,' + yi' + i{')

+ \M, (A7 + Yi + Z,') + 8 \m, (i-,= + yi + i,=)
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Write i(, V, %u for the coordinates of the c.G. of the whole system : then

M,X, + MJ[, + ...={M, + M,...) u,

199

and thence

M,Y, + 3LY,+

M,Z, + JSLZ, +

M,X, + M^„_ +

MX + MX.+
mX + mX +

and thence

T-^{M,+]\L + ...) (ii= + j)^ + /<;=)

= {M, + ]\'L...)v,

= {M, + M,...)io;

= {M, + M,...)u,

= {M, + M,...)v,

= {M^ + M.^...)w;

= M, + M,...
{^'^^^ ^^^^ - ^^^ + ( ^' - ^^^' + ^^' - ^=>^!

+ /S ^m., (i'2- + 2/2' + 22')

or, representing the function on the right-hand side by T', this is

T=^{M, + M,+ ...)( it, + v, + ^«2) + T'...,=T, + T.

Suppose the positions are determined by means of the Qn coordinates ((g)) ; the

equations of motion are each of them of the form

d dT„_dZ d dT' _dr^_clV
dt ' dq dq dt ' dq dq dq

'

But these admit of further reduction; the part in To depends upon three terms,

such as

d / . du\ . dil _dudu . I'd die du.\

dt\ dqj dq' dt dq \dt dq dq)'

But we have u a fimction of ((5')), and thence

du _du d dii dil _ d du du

dq dq ' dt dq dq ' dt dq dq' ~ '

or the term is simply

The equation thus becomes

du du

dt dq'

(M 4- M \ (— ^ ,d,v dv dw dw\ d dT' dr^_dv
dq dq

'
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Suppose now that T' , V are functions of 6n — 3 out of the 6h coordinates ((q)),

and of the differential coefiGcients q of the same 6n — 3 coordinates, but are independent

of the remaining three coordinates and of their differential coefficients ; then, first, if

q denotes any one of the three coordinates, the equation becomes

or, better,

dii du dv dv dw dw _
dt dq dt dq dt dq '

dtl du dv dv dw dw
dt dq dt dq dt dq

and the three equations of this form give

dt~ ' di~^' W""'

viz. these are the equations for the conservation of the motion of the centre of

gravity.

And this being so, then, if q now denotes any one of the Qn — 3 coordinates,

each of the remaining equations assumes the form

d dr_dT^^_dV
dt ' dq dq dq

'

viz. we have thus 6n — 3 equations for the relative motion of the bodies of the system.
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585.

A NEW THEOREM ON THE EQUILIBRIUM OF FOUR FORCES
ACTING ON A SOLID BODY.

[From the Philosophical Magazine, vol. xxxi. (1866), pp. 78, 79 ; Camh. Phil. Soc. Proc.

vol. I. (1866), p. 23.5.]

Defining the " moment of two lines " as the product of the shortest distance of

the two lines into the sine of their inclination, then, if four forces acting along the

lines 1, 2, 3, 4 respectively are in equilibrium, the lines must, as is known (Mobius),

be four generating lines of an hyperboloid ; and if 12 denote the moment of the lines

1 and 2, and similarly 13 the moment of the lines 1 and 3, &c., the forces are as

\/23 . 34 . 42 : V34.41.13 : V41 . 12 . 24 : Vli . 23 . 31.

Calling the four forces Pi, P^, P^, P^, it follows as a corollary that we have

PJ\ . 12 = 12 . 34 \/l3.42 . Vl4.23 = P,P, . 34
;

viz. the product of any two of the forces into the moment of the lines along which

they act is equal to the product of the other two forces into the moment of the lines

along which they act,—which is equivalent to Chasles's theorem, that, representing a

force by a finite line of proportional magnitude, then in whatever way a system of

forces is resolved into two forces, the volume of the tetrahedron formed by joining the

extremities of the two rejaresentative lines is constant.

c. IX. 26
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586.

ON THE MATHEMATICAL THEORY OF ISOMERS.

[From the Philosophical Magazine, vol. XLVii. (1874), pp. 444—446.]

I CONSIDER a " diagram," viz. a set of points H, 0, N, C, &c. (any number of

each), connected by links into a single assemblage under the condition that through

each H there passes not more than one link, through each not more than two

links, through each N not more than three link.s, through each C not more than four

links. Of course through every point there passes at least one link, or the points

would not be connected into a single assemblage.

In such a diagram each point having its full number of links is saturate, or

nilvalent: in particular, each point H is saturate. A point not having its full number

of links is univalent, bivalent, or trivalent, according as it wants one, two, or three

of its full number of links. If every point is saturate the diagram is saturate, or

nilvalent ; or, say, it is a " plerogram " ; but if the diagram is susceptible of n more

links, then it is w-valent ; viz. the valency of the diagram is the sum of the valencies

of the component points.

Since each H is connected by a single link (and therefore to a point 0, C, &c.

as the case may be, but not to another point H), we may without breaking up the

diagram remove all the points H with the links belonging to them, and thus obtain

a diagram without any points H : such a diagram may be termed a " kenogram "
: the

valency is obviously that of the original diagram plus the number of removed JTs.

If from a kenogram, we remove every point 0, C, &c. connected with the rest of

the diagram by a single link only (each with the link belonging to it), and so on

indefinitely as long as the process is practicable, we arrive at last at a diagram in

which every point 0, C, &c. is connected with the rest of the diagram by two links

at least : this may be called a " mere kenogram."
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Each or any point of a mere kenogram may be made the origin of a " rami-

fication "
; viz. we ha\e here links branching out from the original point, and then

again fi-om the derived points, and so on any number of times, and never again

uniting. We can thus from the mere kenogram obtain (in an infinite variety of ways)

a diagram. The diagram completely determines the mere kenogi-am ; and consequently

two diagrams cannot be identical unless they have the same mere kenogram. Observe

that the mere kenogi-am may evanesce altogether ; viz. this will be the case if the

diagram or kenogram is a simple ramification.

A ramification of n points C is {2ii + 2)-valent : in fact, this is so in the most

simple case « = 1 ; and admitting it to be true for any value of ;;, it is at once seen

to be true for the next succeeding value. But no kenogram of points C is so much

as (2/1 + 2)-valent ; for instance, 3 points C linked into a triangle, instead of being

8-valent are only 6-valent. We have therefore plerograms of n points C and 2n + 2

points H, say plerograms CH-'^+-\ and in any such plerogram the kenogram is of

necessity a ramification of n points C ; viz. the different cases of such ramifications are *

n = 1.

*

= '-)

(Oi) («)

n = 3. n = 4.

(«)

11 = o. n, = 6.

(«) (3) (y)

(a) (/3) (7) (5)

where the mathematical question of the determination of such forms belongs to the

class of questions considered in my paper " On the Theory of the Analytical Forms

called Trees," Phil. Mag. vol. xill. (1857), [203], and vol. xviii. (1859), [247], and in

some papers on Partitions in the same Journal.

* The distinction in the diagrams of asterisks and dots is to be in the first instance disregarded ; it is

made in reference to what follows, the explanation as to the allotrious points.

26—2
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The different forms of univalent diagrams ^''T?-""*"^ are obtained from the same

ramifications by adding to each of them all but one of the 2h + 2 points H \ that is,

by adding to each point C except one its full number of points H, and to the

excepted point one less than the full number of points H. The excepted point G
must therefore be univalent at least ; viz. it cannot be a saturate point, which presents

itself for example in the diagrams n = 5 (7) and n = 6(8). And in order to count the

number of distinct forms (for the diagrams C"i?="+'), we must in each of the above

ramifications consider what is the number of distinct classes into which the points

group themselves, or, say, the number of " allotrious " points. For instance, in the

ramification n = S there are two classes only ; viz. a point is either terminal or medial

:

or, say, the number of allotrious points is = 2 : this is shown in the diagrams by

means of the asterisks ; so that in each case the points which may be considered

allotrious are represented by asterisks, and the number of asterisks is equal to the

number of allotrious points.

Thus, number of univalent diagrams C^S-^+i

n = l, 1

n = 2, 1

n = 3, 2

»=4, (a)2; (0)2; together 4

« = 5, (a) 3; (/3)4; (7)!; „ 8

», = 6, (a) 3; (0)5; (y)2; (S) 3
; „ 13

where it will be observed that, n = .5 (7), and « = 6 (B), the numbers of allotrious points

are 2 and 4 respectively ; but since in each of these cases one point is saturate, they

give only the numbers 1 and 3 respectively. It might be mathematically possible to

obtain a general solution ; but there would be little use in this ; and for even the

next succeeding case, No. of bivalent diagrams C^H™; the extreme complexity of the

question would, it is probable, prevent the attainment of a general solution.

Passing to the chemical signification of the formulas, and instead of the radicals

Qnjj2n+i considering the corresponding alcohols C'^H"'''*'^.OH, then, 71 = 1, 2, 3, 4, the

numbers of known alcohols are 1, 1, 2, 4, agreeing with the foregoing theoretic number

(see Schorlemmer's Carbon Compounds, 1874) ; but n = 4, the number of known alcohols

is = 2, instead of the foregoing theoretic number 8. It is, of course, no objection to

the theory that the number of theoretic forms should exceed the number of known

compounds ; the missing ones may be simply unknown ; or they may be only capable

of existing under conceivable, but unattained, physical conditions (for instance, of

temperature) ; and if defect from the theoretic number of compounds can be thus

accounted for, the theory holds good without modification. But it is also possible that

the diagrams, in order that they may represent chemical compounds, may be subject

to some as yet undetermined conditions ; viz. in this case the theory would stand good

as far as it goes, but would require modification.
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587.

A SMITH'S PRIZE DISSERTATION.

[From the Messenger of Mathematics, vol. iii. (1874), pp. 1—4.]

Write a dissertation

:

On the general equation of virtual velocities.

Discuss the principles of Lagrange's proof of it and employ it [the general equation']

to demonstrate the Parallelogram of Forces.

Imagine a system of particles connected with each other in any manner and

subject to any geometrical conditions, for instance, two particles may be such that their

distance is invariable, a particle may be restricted to move on a given surface, &c.

And let each particle be acted upon by a force [this includes the case of several

forces acting on the same particle, since we have only to imagine coincident particles

each acted upon by a single force]. Imagine that the system has given to it any

indefinitely small displacement consistent with the mutual connexions and geometrical

conditions ; and suppose that for any particular particle the force acting on it is P,

and the displacement in the direction of the force (that is, the actual displacement

multiplied into the cosine of the angle included between its direction and that of

the force P) is =Sp. Then Zp is called the virtual velocity of the particle, and the

principle of virtual velocities asserts that the sum of the products P^p, taken for all

the particles of the system, and for any displacement consistent as above, is = ; say

that we have

l.Php = 0.

This is also the general equation of virtual velocities : as to the mode of using

it, observe that the displacements hp are not arbitrary quantities, but are in virtue of

the mutual connexions and other geometrical conditions connected together by certain

linear relations ; or, what is the same thing, they are linear functions of certain inde-

pendent arbitrary quantities hu. Substituting for hp their expressions in terms of hu
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we have SPS^j = S USu, where the several expressions U are each of them a linear

function of the forces P, and where on the right hand S refers to the several

quantities Bu ; and the resulting equation is Sf/Sw. = 0; viz. since the quantities Bu are

independent, the equation divides itself into a set of equations Ui = 0, U.^O,... which

are the equations of equilibrium of the system.

Lagrange imagines the forces produced by means of a weight W at the extremity

of a string passing over a set of pulleys, as shown in the figure, viz. assuming the

forces commensurable and equal to mW, nW, &c., we must have m strings at A,

n strings at B, and so on. Suppose any indefinitely small displacement given to the

system ; each string at A is shortened by Bj), or the m strings at A by m.Bp ; and the

like for the other particles at B, &c. ; hence, if mSj) + nBq+ ..., = r=. (PSji + QBq + . . .),

be positive, the weight W will descend through the space

l^(PBp + QBq +...).

Now, in order that the system may be in equilibrium, W must be in its lowest

position ; or, what is the same thing, if there is any displacement allowing W to

descend, W will descend, causing such displacement, and the original position is not a

position of equilibrium. That is, if the system be in equilibrium, the sum tPBp cannot

be positive.

But it cannot be negative ; since, if for any particular values of Bp the sum SPSp

is negative, then reversing the directions of the several displacements, that is, giving

to the several displacements Sp the same values with opposite signs, then the sum

SPSjj will be positive ; and we assume that it is possible thus to reverse the directions

of the several displacements. Hence, if the system be in a position of equilibrium,

we cannot have 'EPBp either positive or negative ; that is, we obtain as the condition

of equilibrium SPSp = 0.

The above is Lagrange's reasoning, and it seems completely unobjectionable. As

regards the reversal of the directions of the displacements, observe that we consider
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such conditions as a condition that the particle shall be always in a given plane, but

exclude the condition that the particle shall lie on a given plane, i.e. that it shall

be at liberty to move in one direction (but not in the opposite direction) off from

the plane. But the pulley-proof is equally applicable to a case of this kind. Thus,

imagine a particle resting on a horizontal plane, and let z be measured vertically

downwards, x and y horizontally. Suppose the particle acted on by the forces X, Y, Z,

and replacing these by a weight W as above, the condition of equilibrium is, that

XZx + Yhj + Zhz

shall not be positive. We may have Sa; and hy, each positive or negative ; whence
the conditions X = Q and F=0. But hz is negative; hence the required condition is

satisfied if only Z is positive ; that is, if the vertical force acts downwards. Clearly

this is right, for if it acted upwards it would lift the particle from the plane. The
case considered by Lagrange is where the particle is always in the plane ; here Ss = 0,

and there is no condition as to the force Z.

The only omission in Lagrange's proof is, that he does not expressly consider the

case of unstable equilibrium, where the weight W is at a position, not of minimum,
but of maximum altitude. In such a case, however, the sum IPZp is still = 0, taking

a;ccount (as the proof does) of the displacements considered as infinitesimals of the first

order ; although taking account of higher powers, the sum 'SPBp would have a positive

value. An explanation as to this point might properly have been added to make the

proof "refutation-tight," but the proof is not really in defect.

P.S. Lagrange excludes tacitly, not expressly, the case where the direction of a

displacement is not reversible ; he observes that the various displacements Bj), when

not arbitrary, are connected only by linear equations ; and " par consequent les valeurs

de toutes ces quantites seront toujours telles qu'elles pourront changer de signe a la

fois." The point was brought out more fully by Ostrogradsky, but I think there is

no ground for the view that it was not brought out with sufficient clearness by Lagrange

himself

Parallelogram of forces.

Let P, Q, R be the forces, a, /3, 7 their inclinations to any line ; then taking Bs

the displacement in the direction of this line, the displacements in the directions of

the forces are Bs cos a, Bs cos /3, Bs cos 7, and the equation 'EPBp = assumes the form

(P cos a + Q cos /3 + R cos 7) Bs = 0,

that is, we have

P cos a + Q cos ^ + R cos 7 = 0,

viz. this equation holds whatever be the fixed line to which the forces are referred.

It is easy to see that, supposing it to hold in regard to any two lines, it will hold

generally, and that the relation in question is thus equivalent to two independent con-

ditions; and forming these we may obtain from them the theorem of the parallelogram

of forces.
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But to obtain this more directly, take A, B, C for the angles between the forces

Q and R, R and P, P and Q respectively, then A+B + C=2Tr, and thence

a = a,

/3 = a + C,

7 -a + C + A=a+27r-B,

whence writing a = ^tt, or taking the line of displacement at right angles to the

force P, we have

and the equation becomes OP — Q sin + ii sin i? = 0, that is, Q : P = sin 5 : sin C ; and

similarly R : P — smC : smA, that is,

P : Q : P = sin^ : sinP : sin C,

equations which in fact express that each force is equal and opposite to the diagonal

of the parallelogram formed by the other two forces.
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588.

PROBLEM.

[From the Messenger of Mathematics, vol. III. (1874), pp. 50—.52.]

It is required to place two given tetrahedra in perspective ; or, what is the same

thing, the tetrahedra being ABCD, A'B'O'D' respectively, to place these so that the

lines AA', BE, CC, DD' may meet in a point 0.

The following considerations present themselves in regard to the solution of this

problem. Take the tetrahedron ABGD to be given in position, and the point at

pleasure; then drawing the lines OA, OB, OG, OD, we may in a determinate number

of ways (viz. in 16 different ways) place the tetrahedron A'B'G'D' in such manner

that the summits A', B', G' shall be in the lines OA, OB, OG respectively. But the

summit D' will then not be in general in the line OD; and in order that it may
be so, a two-fold condition must be satisfied by the point ; viz. the locus of this

point must be a certain curve in space.

Or again, we may look at the question thus : we have to place a point in

relation to the tetrahedron ABGD, and a point 0' in relation to the tetrahedron

A'B'G'D', in such manner that the edges of the first tetrahedron subtend at the

same angles that the edges of the second tetrahedron subtend at 0'; for this being

done, then considering 0' as rigidly connected with A'B'G'D', we may move the figure

0'A'B'G'D' so that 0' shall coincide with 0, and the lines O'A', O'B', O'C', O'D' with

OA, OB, OG, OD respectively. Take a, b, c, / g, h, for the sides of the tetrahedron

ABGD (BC, GA, AB, AD, BD, GD = a, h, c, f, g, h respectively), and take also x, y, z, w
for the distances OA, OB, OG, OD respectively ; and let a, h' , c', f, g', h', x', y , z', w
have the like significations in regard to the tetrahedron A'B'G'D' and the point 0', and

write

y- + z--a- z-+x--b- x- + y^-c- x' + w'^-f^ y-+ w"-g- z^ + w^- h^

27

2yz •
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respectively; and the like as regards the accented letters. Then A, B, C, F, G, H
are the cosines of the angles which the edges of the tetrahedron ABGD subtend

at ; they are consequently the cosines of the six sides of the spherical quadrangle

obtained by the projection of ABGD on a sphere centre ; and they are therefore not

independent, but are connected by a single equation ; substituting for A, B, G, F, G, H
their values, we have a relation between a, b, c, /', g, h, x, y, z, w ; viz. this is the

relation which connects the ten distances of the five points in space 0, A, B, G, D
(and which relation was originally obtained by Carnot in this very manner). There is

of course the like relation between the accented letters.

The conditions as to the two tetrahedra are

A=A', B = B\ G=G\ F=F\ G=G', H = H',

which, attending to the relations just referred to and therefore regarding w as a given

function of x, y, z, and iv as a given function of x, y', z' , are equivalent to five

equations (or rather to a five-fold relation); the elimination of x, y , z' from the five-

fold relation gives therefore a two-fold relation between x, y, z, that is, between the

distances OA, OB, OG; or the locus of is as before a curve in space.

The conditions may be wi-itten

:

y'- + z- - 2Ay'z' = a'-, x- + w- - 2Fx'iu' =/'-,

z'- + x- - 2Bz'x' = ^)'^ ij- + w'' - 2Gy'w' = g'%

x'"- + y'^ - 2Gx'y' = c'^ z'' + w'' - 2Hzw' = h'-
;

whence eliminating x, y', z', w', and in the result regarding A, B, G, F, G, H as given

functions of x, y, z, xu, we have between x, y, z, and xu a three-fold relation determining

w as a function of x, y, z, and establishing besides a two-fold relation between x, y, z.

As a particular case : One of the tetrahedra may degenerate into a plane quadrangle,

and we have then the problem : a given plane quadrangle ABGD being assumed to

be the perspective representation of a given tetrahedron A'B'G'D', it is required to

determine the positions in space of this tetrahedron and of the point of sight 0.

A generalisation of the original problem is as follows ; determine the two-fold

relation which must subsist between the 4x6, =24 coordinates of four lines, in order

that it may be possible to place in the tetrad of lines a given tetrahedron ; that is,

to place in the four lines respectively the four summits of the given tetrahedron. It

may be remarked that considering three of the four lines as given, say these lines are

the loci of the summits A, B, G respectively, we can in 16 different ways place in these

lines respectively the three summits, and for each of these there are two positions of

the summit D ; there are consequently 32 positions of D ; and the two-fold relation,

considered as a relation between the six coordinates of the remaining line, must in

effect express that this line passes through some one of the 32 points.
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589.

ON RESIDUATION IN REGARD TO A CUBIC CURVE.

[From the Messenger of Mathematics, vol. III. (1874), pp. 62—65.]

The following investigation of Prof Sylvester's theory of Residuation may be

compared with that given in Salmon's Higher Plane Curves, 2nd Edition (1873), pp.

133—137 :

If the intersections of a cubic curve Us with any other curve Vn are divided in

any manner into two systems of points, then each of these systems is said to be the

residue of the other ; and, in like manner, if starting with a given system of points

on a cubic curve we draw through them a curve of any order F,,, then the remaining

intersections of this curve with the cubic constitute a residue of the original sj'stem of

points.

If the number of points in the original system is = Sp, then the number of

points in the residual system is = 3^ ; and if we again take the residue, and so on

indefinitely, the number of points in each residue will be = (Mod. 3) ; viz. we can

never in this way arrive at a single point. But if the number of points in the original

system be 3p ± 1, then that in the residual system will be 3q+l; and we may in

an infinity of different ways arrive at a residue consisting of a single point; or say

at a " residual point," viz. after an odd number of steps if the original number of

points is =37) — 1, but after an even number of steps if the original number of points

is =3^j»+l. But starting from a given system of points on a given cubic curve, the

residual point, however it is arrived at, will be one and the same point ; this is

Prof Sylvester's theorem of the residuation of a cubic curve. For instance, starting

with two given points on the cubic curve, the line joining these meets the curve in

a third point, which is the residual point ; any other process leading to a residual

point must lead to the same point. Thus if through the 2 points we draw a conic,

meeting the cubic besides in 4 points; through these a conic meeting the cubic besides

27—2
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in 2 points ; and through this a line meeting the cubic besides in 1 point ; this

will be the before-mentioned residual point.

The general proof is such as in the following example :

Take on the cubic U^ a system of 3/t — 2 points, say the points a : through these

a curve Fj, besides meeting the cubic in 3k — Sic + 2 points : and through these a

curve Pk-K+i , besides meeting the cubic in a point G. And again through the 3k — 2

points a a curve W^, besides meeting the cubic in 3^'' — 3/c + 2 points /8' : and through

these a curve Qk'-K+i, besides meeting the cubic in a single point; this will be the

point G.

The proof consists in showing that we have a curve ^ifc+if_x_2 such that

For this observe that

Qk-<+\ meets W^- in 3// — 3/c + 2 points /3' and besides in k'- — k' (/c + 2) + 3« - 2 points e'

;

Pk-K+i nieets Vk in S/j — 3a: + 2 points /3 and besides in /i,-'- — ^•(«; + 2) + 3/c— 2 points e;

Pk-K+i, Qk~K+i meet in (k — k + I) {k' — k + 1} points G

;

Vk, Wk' meet in Sk — 2 points a and kk' —Sk + 2 points a;

Qk'-^+i Vk and Pk-K+i Wk' meet in

kk' -k(K-l)-k'{K-l)+ {K-iy points C

Sk' -3k + 2 „ 13'

k'-' -k'(K + 2) + SK-2 „ e'

Sk -3k + 2 „ /3

k- -^•(K + 2) +3k-2 „ e

kk' -3k + 2 „ a

3« - 2 „ a

ik + k'y-{2/c-2){k + k') + iK-iy

= {k+ k' — K + ly- points.

Evei'y {k + ^•' — k + l)thic through

h {k + ^•' - K + 1) {k + k' -K + i)-l

of these points passes through ail.

Now Ak+k-K-i may be drawn to pass through

i (^• + ^' - K - 2) (k +k'- K + 1)

of the points a.
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Hence -4i+i'_^_o JJs is a (A; + //—«•+ l)thic through

^ (k + k' - K - 2)(k + k' - K + I)

= ^(k + k')- - i (2« + 1 ) (/. + k') + h (k' + K-2) points a

3k - 2 „ a

Sk -3« + 2 „

W -3« + 2 „ /S'

^ {k + kj + (-K + ^) (k + k') + ^K- - f«: + 1

= \ \{k + k'Y + {k + k'){-2K + 5) + {k - \) {k + ^) - 2]

= h{k + k'-K+\)(k + k' -K + \)-\

of the points in question ; and therefore through all. Whence

Also U3 meets Qf_,+i Fj in 3 (A; + A;' — «: + 1) of the {k + k' — K+lf points, viz. these

are

3« — 2 points a,

3A' - 3« + 2 „ /3,

3^•'-3« + 2 „ /3',

1 „ G,

and ^fc+fc'_,_., meets Qi-_,+i F^ in (^• + i' - « - 2) (i + k' - k + 1),

that is, in

(A- + A'')' + (^ + ^0 (- 2a; - 1) + «= + «:- 2

of the

(A- + k' — ic + 1)- points,

viz. these are

A-A'' + ( A' + A-') (- K + \) + K.-- 2k points C

k'^ -k'{K-\-2) +3«-2 „ e

k^ -k (k + 2) +Sk-2 „ 6

kk' -3/C + 2 „ a

(k + k'y- + {k + k') (- 2k - 1) + K' + K-2 points.

Hence U^ passes through 1 of the points C, that is, through an intersection of Qw-k+i

and Pk-K+\, that is, Qf_,+i and Pt_,+i intersect U3 in a common point G; which was

the theorem to be proved.

In the particular case 3/ic — 2=10, A;=^•' = 4, the theorem is, given on a cubic

10 points, if through these we draw a quartic meeting the cubic besides in 2 points;
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and through these a line meeting the cubic besides in a point 0; then this is a

fixed jDoint, independent of the particular quartic. And the proof is as follows : we have

U a cubic through 10 points a

;

V a quartic through the 10 points, and besides meeting the cubic in 2 points /3;

W a quartic through the 10 points, and besides meeting the cubic iu 2 points /3'

;

P the line joining the two points /3, and besides meeting V in two points e;

Q the line joining the two points /3', and besides meeting W in two points e';

P, Q meet in the point 6';

U, V meet in the 10 points a, and besides in 6 points a
;

A a conic through 5 of the points a.

Then quintics QV, PW meet in the 10 points a, 2 points /3, 2 points e, 2 points /3',

2 points e', 6 points a and 1 point G. Every quintic through 19 of these passes

through the 25. But we have AU, a. quintic through 5 points a, and the 10 points a,

2 points /3 and 2 points /3'; hence AU passes through all the remaining points, or we

have

AU=QV+PW,

P passes through /3 ,
/S , e , e , C,

Q

r
w
A
u

or, what is the same th

yS', /3', e' , e' ,
C,

e , e
,

/3 , /3 , 6 points a, 10 points a,

e', e
,

jB', /Q', 6 points a, 10 points a,

e , e
,

e' , e' , 6 points a,

/3, /S, /3', /9', a,

ng.

4, P intersect in e , e
,

A, Q „ e , e'

,

A, V „ e , e , 6 points a,

A, W „ e', e', 6 points a,

U, P „ yS, /S, (7,

U. Q „ yS', ^', C,

U, V „ /3, /3 , 10 points a,

U, W „ /3', 13', 10 points a.

In particular U, P, Q intersect in the point C ; that is, C as given by the inter-

section of U by the line P; and as given by the intersection of U by the line Q;

is one and the same point.
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590.

ADDITION TO PROF. HALL'S PAPER "ON THE MOTION OF A
PARTICLE TOWARD AN ATTRACTING CENTRE AT WHICH
THE FORCE IS INFINITE."

[From the Messenger of Mathematics, vol. iii. (1874), pp. 149— 152.]

I DO not in the passage referred to* e.^pressly profess to interpret Newton's idea.

After referring to his investigation I say, " The method has the advantage of exjilaining

the paradoxical result which presents itself in the case force x (dist.)~-, and in some

other cases where the force becomes infinite. According to theory the velocity becomes

infinite at the centre, but the direction of the motion is there abruptly reversed, so

that the body in its motion does not pass through the centre, but on arriving there

forthwith returns towards its original position ; of course such a motion cannot occur

in nature, where neither a force nor a velocit}' is actually infinite
;

" viz. while assuming

that the analysis gives a motion as just described, or in Prof Hall's figure, a recipro-

cating motion between A and C, I expressly state that the motion is not one that

can occur in nature; in fact, my view is that the question (which, to render it precise,

I state as follows: "What happens iu nature when the moving point arrives at 0")

presupposes what is inconceivable. But I consider that the analysis gives a motion

as above, viz. that it gives x, t each as a one-valued function of a parameter (j), such

that this parameter ^ increasing continuously, we have for the moving point a con-

tinuous series of positions corresponding to the motion in question, gives in fact the

equations x = u (1 — cos <^) and —^ = (^ — sin (/>.

In explanation and justification of the assumption, it is interesting to show how

the solution just referred to can be obtained from the equation of motion -^ = ;

,

without (in the process) the extraction of the square root of the two sides of an

[* By Professor Hall in his paper (p. 144, I.e.) quoted in the title. The passage is an extract from the

British .\ssociation Report (1862) On the progress of the soUitivn of certain special problems of dynamics,

p. 186; [298], Coll. Math. Papers, vol. iv. p. 515.]
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equation. Taking no as the independent variable and writing for a moment -j- = H

,

= t , the equation is
da?

and if we herein assume a; = a(l— cos^) and transform to ^ as the independent

variable, it becomes

o- sin- ((^ [
1 d-t cos </) dt

I dt Y [a sin
<f)

rf0- a sin=
<f) d<f)] a- {1 — cos

<f>y

'

or, what is the same thing,

'^^ "^
d4> l#J " '°' '^ [dp = ^ (l-cos,^)= [d^)

'

a differential equation of the first order for the determination of -r, as a function

of (^. Since a is a constant of integration of the original equation, a particular

integral only is required, but it is as well to obtain the general integral. For this

purpose assume

dt a* ,, ,.

a*
then, omitting from each side of the equation the factor -7^. , the equation becomes

sin A \z sin 6 + -y- (1 — cos <^)^ — cos <^ . ^ (1 - cos 6) = (1 — cos d>) z^,

I «9 )

viz. the left-hand side being (1 — cos ^) 1 ^ + -7^ sin (^j, the whole equation contains the

factor (1 — cos (^), and omitting this, the equation becomes

or, what is the same thing,

dz _ dxj)

z^ — z sin
(f)

'

The integral of this is

Z--1
log—:r- = 2 log k+2 log tan

^<f> ;

or, what is the same thing,

;— = /iT tenQ."
^<f),

where k is the constant of integration.

[In explanation of this constant k, observe that the equation gives

1
z =

V(l - k- tan-^(/))'
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aud that we thence have

that is,

or, since

dt _ a- 1 — cos
<l>

dt _ \/(fi) sm<f) 1 _ ^^ ^^^ i</>

dx a- 1 — cos<^ \/(l - A;- tan= i-(^)' ^/ifi) 'J(l —k-t&n-^()))'

tan-i<f) = n ,

dt _ a- \/(x)

this is

or, what is the same thing,

dx iJifJ') V(2a — X — k-x)
'

dt _\/ \1+ k-J s/(x)

dx ^ifi) lu a y

viz. we in effect have zr— ,., as a constant of integration in place of the original

constant a.]

Recurring to the general solution

z-

^'
k- tan- ^cj),

we may take ^ = 1, as a particular solution answering to the value A.- = of the

constant ; and we then have

dt a- ,, ,,

viz. reckoning t from the epoch for which i^ is = 0, we thus have

a*

which, combined with the assumed equation

x = a{l — cos </)),

gives the foregoing solution.

I quite admit that, considering (with Prof. Hall) the attracted particle as split

into two equal particles placed at equal distances above and below the centre C, the

motion when the distances become infinitesimal is a motion not as above, but back-

wards and forwards along the entire line AB; but it remains to be seen whether at

the limit this can be brought out as an analytical solution of the differential equation

T^=-4. Possibly this may be done, aud I remark as an objection, not to the fore-

going as an admissible solution of the problem but to its generality as the only

solution, that, in writing x = a (1 - cos
<f>)

and assuming that 4> is real, I in effect

assume that x is always positive. But the burthen of the proof is with Prof. Hall,

to show that there is an analytical solution in which x acquires negative values.

C. IX. 28
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591.

A SMITH'S PRIZE PAPER AND DISSERTATION; SOLUTIONS
AND REMARKS.

[From the Messenger of Mathematics, vol. in. (1S74), pp. 165—183, vol. iv. (1875),

pp. 6-8.]

1. Find the triangular numbers which are also square.

The " mise en equation " is immediate ; we have to find n, m such that

^n (n + 1 ) = m-
;

or, what is the same thing,

(2n + l)--8m- = l.

Observing that this is satisfied by n = m = l, that is, 2ft + l=S, 2?;i = 2, we have the

general solution given by

2n + l + 2m s/{2) = {.3 + 2 V(2)!^,

where p is any positive integer; viz. 2« + 1, 2m being rational, this implies

2» + 1 - 2m V(2) = {3 - 2 V(2))^

and thence the equation in question. The successive powers

3 + 2 V(2), 17 + 12V(2), 99 + 70 V(2), &c.,

give the solutions

91, m= 1, 1 , 8, 6 , 48, 35 , &c.

;

viz. the square triangular numbers are

P, =il-2; 6"-, = I 8-9; 3-5=, = i 49'50, &c.



591] A smith's prize paper and dissertation. 219

2. Shotu liow to express any symmetrical function of the roots of an equation in

terms of the coefficients. What objection is there to the method which emjiloys the sums

of the potuers of the roots ?

The ordinary method is that referred to, employing the sums of the powers of

the roots ; hut it is a very bad one. In fact, writing

x" - i««-i + ex"-- - &c., = (x - a) (x - /S) (x - 7) . . . = 0,

leading to

S, = b-- 2c,

S, = ¥-Sbc + M,

then if the method were employed throughout, we should have for instance to find

Sa0y, that is, d, from the formula

GSa^y = S,' = ¥
- SS,S, - 36 (b- - 2c)

+ 2 S, + 2 (6» - 36c + 3c^)

= Qd, which is right,

but the process introduces terms 6' and be each of a higher order than d (reckoning

the order of each coefficient as unity), with numerical coefficients which destroy each

othei'. And, so again, Sa'0 would be calculated from the formula

Sa-I3= S,S,= h(b"--2c)

- S, - (b' - 36c + Sd)

= be — 3d, which is right,

but there is here also a term ¥ of a higher order, with numerical coefficients which

destroy each other. And the order in which the several expressions are derived the

one from the other is a non-natural one ; S^ is required for the determination of

(SV/3, whereas (as will be seen) it is properly /S'a"/3 which leads to the value of S3.

The true method is as follows : we have

Sa = b, Sal3 = c, Su0y = d, &c.,

and we thence derive the sets of equations

b =
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viz. we thus have 1 equation to give Sa
; 2 equations to give Sa.^ and »§a- ; 3 equations

to give Soi/3y, Sa.-/3, SaP ; and so on. And taking for instance the third set of equations,

the first equation gives Sa/3y, the second then gives Sa-^, and the third then gives

Sa^, viz. we have
Sa^y = (J,

Sa-l3 =hc-M,

So? =b'-S(bc-M)-6d,

= Jf-Sbc + M.

Of cour.se the process for the formation of the .successive sets of equations would

require further explanation and development.

3. Given a point P in the interior of an ellipsoid, shoiu that it is possible to

determine an exterior point Q such that for every chord RS through P, the relation

QR : QS = PR : PS may hold good-

There is no difficulty in tlie analj-tical solution and in showing thereby that the

point Q is determined as the intersection of the polar plane of P by the perpend-

icular let fall from P on this plane. But a simple and elegant geometrical solution

was given in the Examination. Constructing Q as above, let the chord RS meet the

polar plane of P in Z; then the polar plane of Z passes through P, that is, the

line ZP is harmonically divided in R, S, or we have

ZR : ZS = PR : PS.

Again ZQP being a right angle, the sphere on ZP as diameter will pass through Q ; and

R, S being points on the diameter, and Z, Q points on the surface, ZR : ZS = QR : QS
;

whence the required relation QR : QS = PR : PS.

4. Find the number of regions into which infinite space is divided by n planes.

The number ^ (?i^ + 5n + 6) is a known result, but not a generally known one, and

I intended the question as a problem ; I do not think it is a difficult one.

Consider the analogous problem for lines in a plane : the first line divides the

plane into 2 regions.

The second line is by the first divided into 2 parts, and therefore adds 2 regions.

The third line is by the other two divided into 3 parts, and therefore adds

3 regions ; and so on.

That is, the number of regions for

1 line is = 2 =2 regions,

2 lines =2 + 2 =4

3 lines =2 + 2 + 3 =7

n lines =2 + 2 + 3 + ...+)!=i («'- + ?; + 2) „



591] SOLUTIONS AND REMARKS. 221

In exactly the same way for the problem in space

:

The first plane divides space into 2 regions.

The second plane is by the first plane divided into 2 regions, and therefore adds

2 regions.

The third plane is by the other two planes divided into 4 regions, and therefore

adds 4 regions.

The fourth plane is by the other three planes divided into 7 regions, and there-

fore adds 7 regions : and so on.

That is the number of regions for

1 plane is = 2 =2 regions

2 planes = 2 + 2 = 4 ,,

3 planes =2 + 2 + 4 =8„
4 planes =2 + 2 + 4 + 7 =15

11 planes =2 + 2+4 + 7+ ... +^ (n- - » + 2) = J (?i^ + 5ft + 6),

where, for effecting the summation, observe that the series is

= 2 + jl + 1 + 1 ... (« - 1) terms}

+ {I + 8 + 6... + i»i(«-l)}>

= 2 + {n - 1) + 1 (n +l)n (n - 1), = as above.

5. In the theory of Elliptic Functions, explain and connect together the notations

F(d), am M (sinam ?t, cosani m, Aam «), illustrating them by reference to the circular

functions*.

What is asked for is an explanation of the fundamental notations of Elliptic

Functions. To a student acquainted with the subject, the only difficulty is to say

enough to bring the meaning fully out, and not to say more than enough.

Defining F{x) by the equation

(viz. the integral is taken from up to the indefinite value x), then the fundamental

property of elliptic functions (derived from consideration of the diiferential equation

dx di ^ „.

vi(i -^){i- ^^^=)}
"^

Vi(i - f) (1 - %-0}
'

consists herein, that the functional relation

F{x) + F(y) = F{z)

* It would have been better iu the question to have written F {x) instead of F(e).
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is equivalent to an algebraic equation between the arguments x, y, z. F{x) as defined

by the foregoing equation is properly an inverse function ; this at once appears from

a particular case, viz. writing /i' = 0, F(x) — %vcr'^x, and the theory of the function F {x)

in the general case corresponds to what the theory of circular functions would be, if

writing F(x) to denote sin~^a;, we were to work with the equation

F{c.i)^F{y) = F{z)

as equivalent to the algebraical equations (one a transformation of the other)

^ = « \/(l - /) + y V(l - «?),

VCl - Z-) = V(l - •«') VCl - y") - xy.

But in the actual theory of circular functions, we introduce the direct symbols sin,

cos; writing F{x) — B, that is, a; = sin ^, V(l — a^") = cos^, and similarly F{y) =
(f>,

that is,

?/ = sin (/) and V(l — y") = cos
<f),

then the equation

F(:v) + F(y) = F{2)

becomes F(z) = 6 + cj), that is, z = siQ{0 +
(f)),

\/(l —z") = cos(d +
<f)),

and the other two

equations become
sin {0 + <^) = sin cos 4> + sin cf) cos 0,

cos {0 + (p) = cos cos
(f)
— sin sin (j),

viz. these are the addition-equations for the functions siu and cos.

In passing from the original notation F(x) to the notation am u, we make the

like step of passing from an inverse to a set of direct functions ; first modifying the

meaning of F, so as to denote by F(0) what was originally i^(sin^), we have as the

new definition

P(fl^-[
'^^ -[ ^^

^^ Jo^{l-k^sm-^0) J 0^(0)'

(if as usual A0 denotes ^(1 — /^" sin= ^)), and this being so, the relation F (0) + F ((f>)
= F (/j,)

is equivalent to a relation between the sine, cosine, and A of 0,
(f), fi. Writing then.

F(0)=u, and considering this equation as determining as a function of u, = amu,

we have sin ^ = sin . am !(, cos = cos . am m, and A^=A.amtt, and similarly F((J3)=v,

<f>=a.mv, &c., then the equation F (0) + F {(j)) = F (fx) becomes F(fi) = u + v, that is,

/J, = am (u + v) ; and the algebraic relation in its various forms gives the values of

sin . am (m + «), cos . am (« + t;), A . am (;( + ?)) in terms of the like functions of u, v

respectively, viz. it is the addition-theorem for the function am.

Observe that am u is considered as a certain function of u, sin . am it is its sine,

cos . am u its cosine, and
A . am u = \/(l — ^''' sin- . am u),

a function analogous to a cosine. But making only a slight change in the point of

view, we have sinam u, a certain function of u, and

cosam M j= >J(l — sinam- u)}, Aam u (= \/(l — k' sinam'' «)},
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two allied fuuctious, viz. sinam u is analogous to a sine, and the other two functions

to cosines ; the algebraical equations give the sinam, cosam, and Aam of u +v in

terms of the like functions of u and u respectively, viz. they constitute the addition-

theorem for these functions.

6. Find the differential equation satisfied by a hypergeometric ser-ies, and express

by means of such series the coefficients of the expansion of {I — '2a cos -\-
a")~^ according

to multiple cosines of 6.

I understand the expression " hypergeometric series " in the restricted sense in

which it signifies the series

p, a , , a-/3 a(a + l),8(/S+l) , „

F{a, 0, 7, x) = l + --^x+
1 o r l-<\ ^ + &c.

1.7 1.27(7+1)

I find it was understood in the more general sense of a. series

u = «o + ttjX + a.x- + . . . + a„,«" + . .
.

,

where the coefficient a^+i is given in terms of the preceding one a^ by an equation

of the form a„+i = 0(?i) • «». In this latter sense, but supposing for greater simplicity,

that <^(?i) is a rational and integral function of n, the solution is as follows: we operate

Qn the series with the symbol (^[x^y, viz. a;^- is regarded as a single symbol of

ojDeration ; x -^ .x'^ = nx'^, (a't-J «"=«-«", &c. ; thus x -^ is, as regards x^\ = n, and

therefore ^ (a;-i-) = (?;). We thence have

(i>
ix ^\ H = <i> {Q) a^ + ^{l)a^x + (^{2) a.^- ... + (^ (n) a„«« + . .

.

= «! + a^ + UsX- ... + «,,+! «" + . . .

,

and consequently

x(f) ix-^]%i = u — ao,

which is the required differential equation. This is equivalent to the process given

d . . . d
in Boole, only he writes x = e^, in order to reduce x -5- to a mere differentiation TnJ '

dx dd

I regard this introduction of a new variable 6 as most unfortunate; the effect is

entirely to conceal the real nature of the operation ; the notion oi x -j- as a single

symbol of operation is quite as simple as that of -^ ; and by means of it we retain

the original variable.

The process is substantially the same when <^ (n) is a rational fraction, but I give

the investigation directly for the hypergeometric series in the restricted sense, viz.

writing u for the series F (a, /3, 7, x), we find

'Kl; + ")(^c^.+^)"=^-i('^^+^-0^*'
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or, what is the same thing,

dx '

/ \ dx J dx V" dx

as at once appears by writing the general term successively under the two forms

,4 + a)(xi+0)-i(xi+y-l][u = O,

and

a. a + l...a + n -1.0.^+1. ..0 + 11-1
,^

1.2... ft y.y+x...'y + n — 1

a.a + l ...a + n../3.^ + l .../S + ft „,,

1.2 . . . ft + 1 . 7 . 7 + 1 . . . 7 + ft

'

The differential equation may also be written

d d
(«'''-*);o + {(1 + « + ^)«'-7}t; + «/3

dx'

Take next the function

(1 - 2a cos 6 + a-)-'\

= {l-a(.+ l) + af"

= j(l -aa;) (l -a-jl- , if a; + - = 2 cos ^,

dx
21=0.

.. n a n . ft + 1 a'

"•"T x'^ 1.2 «2 + ---= {\ + ^ax+
^ ^

aW + .

,„ fn\- „ fn.n + l\^
,

n M n n.n. + l „ w . ») + 1 m . ft + 1 . n + 2 ,

+ ^^•1+1^:2- ^^-+-172
1.2.3 ^

+

1.2

&c.

a ix +-) (= 2a cos ^)

a^(a;= + -j(=2a2cos2^),

&c.

n.n-\- \
where the second term contains the factor - a, the thii-d the factor —-p^— a?, and

so on. Throwing these out, the remaining factors are each of them a hypergeometric

series, viz. representing the whole expression by

we have

and generally

A„ + 2A, cos d + 2A, cos 26 + &c.,

Ao = F(n, n, 1, a-),

A, = ~aF{n, n+1, 2, a?),

. n.n + \...n + r—\ _^, , „,A, = z-^r a'F{n, n + r, r + 1, a=).
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l_

7. The function e ^''-"^i- has been suggested as an exception to the theorem that if

a function and all its differential coefficients vanish for a given value of the variable,

then the function is identically = ; discuss the question as regards the precise meaning

of the theorem, and validity of the exception.

The suggestion was made by Sir W. R. Hamilton ; the following remarks arise

in regard to it

:

1

The function e (»-'')^ is a function which in a certain sense satisfies the condition

that for a given value (= a) of the variable, the function and all its differential

1

coeflScients vanish ; viz. each differential coefficient is of the form Xe (*-«)", where X
is a finite series of negative powers of x — a; if then x= a ±r, where r is real and

positive, and if r continually diminishes to zero, then (x — aY, remaining always real

and positive, continually diminishes to zero, that is, — —; remaining always real and

1

negative continually increases to — oo , and e t-^— «)" remaining always real and positive

continually diminishes to zero. And, moreover, (X containing only a finite series of

negative powers of x—a) the expression Xe (^-"''^ will in like manner, remaining always

real, continually approximate to zero. But assume x = a + r (cos 6 + i sin 0), r real and

positive, real ; then (x — a)- = ?'^ (cos 20 + i sin 20), and if cos 20 be positive, then the

real part of (x — a)-, being always positive, continually diminishes to zero, and the like

conclusions follow. If however cos 20 be negative, then the real part of (x — a)- is

negative, and the real part of —
^

r;, is positive, and as r diminishes continually

1

approximates to + oo ; so far from e
('-<^^'' continually approximating to zero, it is in

general an imaginary quantity continually approximating to infinity ; and the like is

the case with its successive differential coefficients ; the conclusion is, it is not true
1

sinipliciter that the function e (^-«)^, or any one of its successive differential coefficients,

vanishes for the value a of the variable.

Generally, if a real or imaginary quantity a + /3i is represented by the point whose

rectangular coordinates are a, /3 ; say if the value a of the variable x is represented

by the point P, and any other value a + h + hi, by the point Q (h, k being therefore

the coordinates of Q measured from the origin P), then a function F {x) which as Q
(no matter in what direction) approaches and ultimately coincides with P, tends to

become and becomes ultimately = 0, may be said to vanish sinipliciter for the value a

of the variable ; but if this is only the case when Q approaches P in a certain

direction or within certain limits of direction, the function not becoming zero when

Q approaches in a different direction, then the function may be said to vanish suh

modo for the value a of the variable.

Taking the theorem to mean " If for a given value a of the variable, a function

and its differential coefficients vanish sub modo, the function is identically = 0," the

c. IX. 29
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instance of the function e*-"""'" shows that the theorem is certainly not true; but

taking the theorem to mean "If for a given vahie a of the variable, the function

and its differential coefficients vanish simpliciter, then the function is identically = "

;

the instance does not apply to it, and the truth of the theorem remains an open

question.

The above view is consistent with a theorem obtained by Cauchy and others,

defining within what limits of h the expansion by Taylor's theorem of the function

F {a + h) is applicable, viz. a and h being in general imaginary as above, if the

function (or ? the function and its successive differential coefficients) is (or are) finite

and continuous so long as the distance PQ does not exceed a certain real and positive

value p, then the expansion is applicable for any point Q, whose distance PQ does not

exceed this value p : but it ceases to be applicable for a point Q, the distance of

_ 1

which is equal to or exceeds p. In the case of a function such as e ("-"l^, dis-

continuity arises at the point P, that is, for the value p = 0, and according to the

theorem in question, the expansion is not applicable for any value of p however small.

I wish to remark on a view which appears to me to be founded on a radical

1

misconception of the notion of convergence. Writing F{x) = e (•«-»)', consider the series

F{a) + F' (a) \ + F" (a)~ + S^c....

Then admitting that the exponential e ^^-"f becomes =0 for x = a, the successive

functions F{a), F' (a), F"(a),... are each =0 as containing this exponential: but inas-

much as the successive differentiations introduce negative powers of cc — a, each successive

function is regarded as an infinitesimal of a lower order than those which precede it;

say F(a) being =0'', the successive terms are multiples 0^ 0^~^ 0''"*, 0''"", «fec. respect-

ively ; where however /j, is infinite, so that the several exponents fi, /jl — S, /i — 6, &c.,

however far the series is continued, remain all of them positive. This being so, it is

said that the series F (a) + F' (a) ,r + Slc, as being really of the form O'' + 0**-^ + 0'^-«-t- ...

is divergent, and for this reason fails to give a correct value of F{a + h). I appre-

hend that the notion of divergence is a strictly numerical one; a series of numbers

(j-f-6-|-c-|-fi + ... is divergent when the successive sums a, a+h, a + b + c, a + b + c + d,

&c., are numbers not continually tending to a determinate limit. In the actual case

the series is O-I-0-I-0-I-O + ..., viz. each term is by hypothesis an absolute zero ; the

successive sums 0, + 0, + + 0,... are each =0, and we cannot, by the process of

numerical summation, make the sum of the series to be anything else than 0. If it

could, there would be an end of all numerical equality between infinite series; for

taking any convergent series a + b + c + d+..., if means 0, this is the same thing

as the series, also a convergent one,

(a + 0) + (6 + 0) + (c + 0) + &c..
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and their difference + + + . . . must be = 0. I regard the view as a mere failure

to reconcile the equation

F(a + h) = Fa + ^F' (a) + &c.,

with the supposed fact in regard to the function e (•»—»>'.

8. Find the value of the definite integrals

I e~*' dx, I sin x- dx, I cos x"^ dx,

the limits being in each case oo , — co . Examine tuhether the last two integrals can be

found by a process such as Laplace's {depending on a double integral) for the first

integral.

Laplace's process for the integral je~^'dx is as follows: write u= ie~^ dx, then also

u— le~y' dy, and thence

M^ =
I

|e-<^'+^'' dxdy,

which, considering x, y as rectangular coordinates and substituting for them the polar

coordinates r, 6, becomes

u^= jje-^'rdrdd;

and then considering the double integral as extending over the infinite plane, and

taking the limits to be r- = to r = x , ^ = to ^ = 27r, we obtain

u- = (- ^e-^'-); 27r, = i . 27r, = tt,

that is,

u=je-^'dx = .\/{Tr).

There is an assumption the validity of which requires examination. We have u the

limit of the integi'al I e-^'dx, as a approaches to oo ; and this being so, we have

u" the limit of

r
f°

e-^'^'+'J'^ dxdy,
J —a J —

a

viz. II? is the integi-al of g-'^'+i''' taken over a square, the side of which is 2a, a being

ultimately infinite. But making the transformation to polar coordinates, and integrating

as above, we in fact take the integral over a circle radius =^, 13 being ultimately

infinite. And we assume that the two values are equal; or, generally, that taking

the integral over an area bounded by a curve which is such that the distance of

every point from the origin is ultimately infinite, the value of the integral is inde-

pendent of the form of the curve.

29—2
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This is really the case under the following conditions: 1°. For a curve of a given

form, the integi-al tends to a fixed limit, as the size is continually increased. 2°. The

quantity under the integral sign is always of the same sign (say always positive);

(the last condition is sufficient, but not necessary). For, to fix the ideas, let the curves

be as before the square and the cii-cle : take a square ; surrounding this, a cii-cle
;
and

surrounding the circle, a square. Imagine the two squares and the circle continually to

increase in magnitude; the integi-al over the smaller square and that over the larger

square, each tend to the same fixed limit; consequently the integral over the area

enclosed between the two squares tends to the limit zero ; and a fortiori the integral

over the area enclosed between the circle and either of the two squares tends to the

limit zero; that is, the integral over the square, and that over the circle, tend to the

same limit. In the case under consideration, the function e-'=='+!''' is always positive;

and the integral | |e-'*'+^'' dxdy, taken over the circle, tends (as in effect sho\vn above)

to the limit tt: hence the process is a legitimate one.

But endeavour to apply it to the other two integrals; write

M = Isin x'dx ' V = Ices a?dx

= jsin y-dy, =
j
cos y'^dy,

then

/ Isin (a? + y") dxdy = 2uv, j
Icos (a^ + y-) dxdy = v-- u%

where the double integrals on the left-hand side really denote integrals taken over a

square and are not equal to the like integrals taken over a circle. This appears

a posteriori if we only assume that the integrals u, v have determinate values; for

taking the integrals over a circle they would be

//
^^""r^-rdrde,
cos

SlU
and would involve the indeterminate functions oo ; that is, if it were allowable to

take the integrals over a circle, we should have 2uv and v- — u- indeterminate instead

of determinate.

A process of finding them is as follows: in the equation le~*'c?« = ^(71"), sub-

stituting in the first instance .«\/(fO for '^^ « real and positive, we have

V(7r)

/e-"^' dx = V(a)

'

and if it be assumed that this equation extends to the case where a = a + ^i, the
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real part a real and positive*; or, what is the same thing, a = p{cos -\-ism 0), p real

and positive, between the limits and hir, then we have

L-picose+isine, X-' ^^ ^ V^tt}
^^^^ ^^ _ ^ ^.^ ^^^^

or, separating the real and imaginary parts and taking p = 1, we have

L-«'cose cos {x' sin 6) dx = s/{-rT) cos ^6,

L-a!=cose sin (^.2 sin 6) dx = ^J{^T) sin i^.

Admitting these formulre to be true in general, there is still considerable difSculty in

seeing that they hold good in the limiting case 6 = ^tt. But assuming that they do,

the formulae then become

Jcos^c^a;=;^-g^\ ^^ina?dx=^,

which are the values of the integrals in question.

9. Considering in «. solid body a system of two, three, four, five, or six lines, deter-

mine in each case the relations betweeii the lines in order that it may be possible to

find along them forces to hold the body in equilibrium.

If there are two lines, the condition obviously is that these must be one and the

same line.

If three lines, then these must lie in a plane, and meet in a point.

The conditions in the other cases ought to be in the text-books ; they in fact

are not, and I assumed that they would not be known, and considered the question

as a problem ; it is, in regard to the cases of four and five lines, a very easy problem

when the solution is seen.

In the case of four lines; imagine in the solid body an axis meeting any three

of the lines, and let this axis be fixed ; the condition of equilibrium about this axis

is that the fourth line shall meet the axis. The required condition therefore is that

every line meeting three of the four lines shall meet the fourth line; or, what is the

same thing, the four lines must be generators (of the same kind) of a skew hyperboloid.

In the case of five lines, taking any four of them, we have two lines (tractors)

each meeting the four lines ; and taking either of the two lines as an axis, then for

equilibrium the fifth line must also meet this axis; the required relations therefore

are that the fifth line shall meet each of the two lines which meet the other four

lines; or, what is the same thing, that there shall be two lines each meeting the

five given lines.

* The equation is clearly not true unless this is so: for a being negative, then in virtue of the factor

e-<^, the exponential, instead of decreasing will increase, and ultimately become infinite as x increases to ±co
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The case of six lines is one the answer to which could not have been discovered

in an examination ; the relations in fact are that the six lines shall form an involution

;

viz. this is a system such that taking five of the lines as given, then if the sixth

line is taken to pass through a given point it may be any line whatever in a

determinate plane through this point ; or, what is the same thing, if the sixth line

is taken to be in a given plane, it may be any line whatever through a determinate

point in this plane. But in a particular case, the answer is easy ; suppose five of

the six given lines to be met by a single line, then the sixth line may be any line

whatever meeting this single line.

10. If X, Y, Z, ... are the roots of the equation

(1, p, Q,...)ic, ir=o,

show that the differential equation obtained by the elimination of c is ^X'Y'Z' = 0, where

^ denotes the product of the squared differences of the roots X, Y, Z, ..., and X', Y', Z', ...

are the derived functions of these roots; and connect this result with the theory of

singular solutions.

We have identically

(1, P, Q...)(c, ir=(c-X)(c-Y)(c-Z)...;

the original equation and its derived equation

(0, P', Q',...)ic, 1)" =

(the latter of them of degree n — 1) may therefore be wi-itten

(c-X)(c-Y)(c-Z)...=0,

X'(c-Y){c-Z)... + Y'(c~X)(c-Z)...+&,G. = 0.

To eliminate c, we have in the nilfactum of the second equation to substitute succes-

sively the values c = X, c= Y, &c., multiply the several functions together and equate

the result to zero ; the factors are evidently

X'(X-Y)(X-Z)..., Y'{Y-X)(Y-Z)..., &c.,

where each difference occurs twice, e.g. X—Y under the two forms X—Y and Y—X
respectively; the result thus is

X'Y'Z' ... (X - Yy- {X - Zf{Y-Zy... = ;

that is,

^. X'Y'Z' ...=0.

Thus in particular in the ease of a quadric equation

(1, P, Q}{c, ly, =(c-X)(c-F), =0,

the differential equation is

iX-YfX'Y' = 0;

I
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viz. since X+ Y = — F, and XY=Q, this is

(P=-4Q)Z'F' = 0,

and writing also

Z = - i {P+ V(P= - 4Q)), Y=-h{P- V(P= - 4Q)},
we find

P=-4Q

the differential equation thus is

The application to the theory of singular solutions is that, in the case where the

function (1, P, Q...)(c, 1)" breaks up into rational factors c — X, c—Y,..., the factor

i^={X—Yy{X — Zf ... divides out and should be rejected from the differential equation,

which in its true form is X'Y'Z' ...—0\ viz. this is what we obtain immediately,

considering the given integral equation as meaning the system of curves c — X = 0,

c— F=0, ..., and there is not really any singular solution; whereas in the case where

the factors are not rational, the factor in question, when the product X'Y'Z' ... is

expressed in terms of the coefficients P, Q, . .
.

, and their derived coefficients does not

divide out from the equation ; and in this case, equated to zero, it gives a proper

singular solution of the equation.

11. In the theory of elliptic motion, v denothig the mean anomaly and e the eccen-

1 +e ,

tridty, if m' be an angle such that tan ^v = z. tan |m', find in terms of e, m' the
J. ^ 6

mean anomaly m.

Taking as usual u for the eccentric anomaly, to commence the solution write down

tan|i) = ^(^^jtan;

1 + e, 1 ,= -= tan im

,

1-e ^

that is.

i|zi

tan i?( = a/(j-^^ tan ^',

and ti being given hereby as a function of m', we have by substitution in the equation

m = u— e sin u, to find ?k as a function of m'.

A creditable approximate solution would be m — m'+O.e, viz. this would be to

show that neglecting terms in e", &c., we have ??i = m'. In fact, taking e small, we have

tan ^u = (1 + e) tan ^7n',

and thence if u =m' + x, we have

tan ^7n' + ^x sec" ^m' = (1 + e) tan ^m',
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that is,

a; = 2e cos- |m' tan ^m' = e sin m' ; u = m' + e sin m,

and
m = in' + e sin ni

— esin(?/i' 4- ...)

= m + . e.

The complete solution would be obtained by expanding u in terms of e, m from the

equation tan -ku= ./ i I tan \m (which is of the form tan \u = n tan |m', giving for

u a knowTi series = m' + multiple sines of m), and then observing that the same

equation leads to

\/(l — e") sin m'
sm w = —

^

J- ,1—e cos m
we have

e V(l — e^) sin m'm = series —
1—e cos m

where the second term has also to be expanded in a series of multijjle sines of m'
;

which can be done without difficulty.

12. If (m, v) are given fiuictions of the coordinates (x, y), neither of them a

maximum or a minimum at a given point ; and if through we draw Ox' in the

direction in which v is constant and u increases, and Ovf in the direction in which u is

constant and v increases ; then the rotation {through an angle not greater than ir), from
Ox' to Oy' is in the same direction with that from Ox to Oy, or in the contrary

,. ,. ,. du dv du dv .

direction, according as ^—y—^ TT '''^ positive or negative.

The theorem has not, so far as I am aware, been noticed, and it seems to be

one of some importance ; there is no difficulty in it, but the answer requires some

care in writing out; of course where the whole question is one of sign and direction,

the omission to state that a subsidiary quantity is positive may render an answer

worthless.

It depends on the follo%ving lemma : Consider the triangle OX' Y', such that Ox,

Oy being any rectangular axes through the origin 0, the coordinates of X' are h, k,

and those of Y' are hi, k^: then considering the area as positive, the double area is

= ± (hfci — hji), viz. the sign is + or — according as the rotation from OX' to Y'

(through an angle less than tt) is in the same direction with that from Ox to Oy,

or in the contrary direction ; or, what is the same thing, hh^ — hjc is in the first case

positive and in the second case negative.

To show this, suppose for a moment that the lines OX', OY' are each of them

in the quadrant xOy, say in the first quadrant, the inclination of OY' to Ox exceeding

k k
that of OX' to Ox\ then h, k, /ij, k^ ai-e all positive, and f->T, that is, hki — hjc is +,
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and the rotation from OX' to OY' is in the same direction as that from Ox to Oy;
or the lemma holds good. Now OX' remaining fixed, let OY' revolve in the direction

k
Ox to Oy; so long as OY' remains in the first quadrant, ,- continues to increase,

"1

and we have always jr>T> and h!ci-Ihk — + ; when OY' comes into the second quadrant

(/(, k being always positive), ^i is negative and k^ positive, consequently hki — hjc is

the sum of two positive terms, and therefore = + ; as OY' continues to revolve and

k k
passes into the third quadrant, we have Aj , ^, each negative, but r <j , and therefore

hki — h^k still = + ; when, however, Y' comes into the position opposite to OX', then

k k
T=T, and hki-hjc is =0; and when OY', continuing in the third quadrant, has

k k
passed the position in question, we have -r>r, and therefore hk^ — hjc^ — , but now

the angle X'OY' measured in the original direction has become >7r, and the rotation

OX' to OY' through an angle less than ir will be in the opposite direction, that is,

in the direction opposite to that fi-om Ox to Oy; and, similarly, when OY' passes

into the fourth quadrant, and until, passing into the first quadrant, it approaches the

position OX', the sign of hk-^ — hjc will be — , and the rotation will be in the direction

contrary to that from Ox to Oy. The lemma is thus true for any position of OX'
in the first quadrant; and the like reasoning would show that it is true for any
position of OX' in the second, the third, or the fourth quadrant; hence the lemma
is true generally.

This being so, taking a new origin, let the coordinates of be x, y; and drawing

through the axes Ox, Oy' as directed, let X' be the point belonging to the values

M + 8((, V of (m, v), and Y' the point belonging to the values u, v + hv of {u, v) ; taking

Bu positive, X' will be on Ox in the direction to x', and similarly taking Sv

positive, Y' will be on Oy' in the direction to y'. Taking as before (h, k) for the

coordinates of X', and (hi, k^) for the coordinates of Y', these coordinates being measured

from the point as origin, we have

5, dii, , du ,
oil = -T- fi + -y- K,

ax dy

dv , dv= J- ft + -j- A:,

dx dy

, -i- r i. r ^" dv du dv
, -., dv :. ri dv »

whence, writing lor a moment J = -r- j 5- t- , we have Jh = + -j~ Su, Jk = - ^- Su.
dx dy dy dx dy dx

And in like manner
„ du , du,

,

= J- h^ + J- ki,
dx dy

5. dv , dv ,

dx dy
whence

r; du » r, du ^
Jill =—J- ov, Jk, = -^ bv :

dy dx

c. IX. 80
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and hence

that is.

/i^i — hjc = -^ huhv.

and S«(, Sy being as above each of them positive, J has the same sign as hhi — hjk-

But the rotation from OX' to OY' is in the same direction as that from Ox to Oy,

or in the contrary direction, according as hki — /tjA; is + or — , that is, according as

r du dv du dv . i
• i • ^i ^.i.

• j.-

<J> = -T- -1 i- T- > IS + or - ; which is the theorem in question.

13. Write a dissertation on:

The theory and constructions of Perspective.

In Perspective we represent an object in space by means of its central projection

upon a plane : viz. any point P* of the object is represented by P', the intersection

with the plane of projection of the line A-Pi from the centre of projection (or say

the eye) Di to the jDoint Pj ; and considering any line or curve in the object, this is

represented by the line or curve which is the locus of the points P', the projections

of the corresponding points Pj of the line or the curve in the object.

The fundamental construction in jDerspective is derived from the following con-

siderations : viz. considering through Pj (fig. 1) a line meeting the plane of projection

in Q, and drawing parallel thereto through D-^ a line to meet the plane of projection

in M and joining the points M, Q, then the lines B^M, MQ, QPi are in a plane;

that is, the plane through D^ and the line P^Q meets the plane of projection in MQ;

Fig. 1.

and consequently the projection P' of any point Pj in the line P^Q lies in the line

QM; and not only so, but considering only the points Pj, of this Hue which lie

behind the plane of projection {D^ being considered as in front of it), the projections

of all these points lie on the terminated line MQ; viz. Q is the projection of the

point Q, and M the projection of the point at infinity on the line QP^ ; or, if we

please, the finite line QM is the projection of the line QPiOO

.

* The subscript unity is used to denote a point not in the plane of projection, considered as a point

out of this plane ; a point in the plane of projection, used in the constructions of perspective as a con-

ventional representation of a point Pj, will be denoted by the same letter P without the subscript unity.

And the Uke as regards Dj and D.

I
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If we consider a set of lines parallel to P^Q, these all give rise to the same

point M, and thus their projections iTQ all pass through this point 31, which is said

to be the " vanishing point " of the system of parallel lines. Again, if we consider

any two or more lines through P^, to each of these there corresjjond different points

M and Q, and, therefore, a different line MQ, but these all intersect in a common point

P' which is the projection of Pj. If the lines are all in one and the same plane

through Pi, then the locus of the points Q is a line, the intersection of this plane

with the plane of projection, say the " trace " line ; and the locus of the points M
is a parallel line, the intersection of the parallel plane through D^ with the plane of

projection ; say this is the " vanishing line " for the plane in question.

A construction in perspective presupposes a conventional representation on the

plane of jDrojection (or say on the paper) as well of the position of the eye as of the

object to be projected. If for simplicity we suppose the object to be a figure in one

plane, then this plane intersects the paper in a trace line, and we may imagine the

plane made to rotate about the trace line until it comes to coincide with the paper,

and we have thus the plane object conventionally represented on the paper. Similarly

considering the parallel plane through the eye Di, and regarding D^ as a point of

this plane, the plane meets the paper in the vanishing line, and we may imagine the

plane made to rotate (in the direction opposite to that of the first rotation) until it

comes to coincide with the paper, bringing the point D^ to coincide with a point D
of the paper. We have thus the " point of distance " D, being a conventional repre-

sentation on the paper of the position of the eye D^ ; but which point D has, observe,

a different position for different directions of the plane of the object.

To fix the ideas, suppose the plane of projection to be vertical, and the plane of

the object to be a horizontal plane situate below the eye. The trace line will be

represented by a horizontal line HH' (fig. 2), and the object by a figure in the plane

K
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eye will be represented by a point B above KK', in suchwise that, bending the upper

part of the paper round KK' forwards through a right angle, the point D would come

to coincide with the position B^ of the eye. This being so, taking any line PQ in

the representation of the object, we draw through B the parallel line BM, and then

joining the points M and Q, we have MQ as the perspective representation of the

line QP<x> , which represents a line QPiOO of the object. And drawing through P any

number of lines, each of these gives a point Q and a point M, but the lines MQ
all meet in a common point P', which is the pei'spective representation of the point

P ; which point P' may, it is clear, be obtained as the intersection with any one line

MQ of the line BP drawn to join P with the point of distance B. The plane of

the object has for convenience been taken to be horizontal ; but its position may be

any whatever, and in particular the construction is equally applicable in the case where

the plane is vertical.

In the case of an object not in one plane, any point Qi of the object may be

determined by means of its projection by a vertical line upon a given horizontal plane,

say this is P^, and of its altitude QiPi above this plane. We in fact determine the

object by means of its groundplan, and of the altitudes of the several points thereof

It is easy, from the foregoing principles, to see that, drawing through P the vertical

line PQ equal to the altitude, and joining the points Q, B, then the vertical line

through P' meets this line QB in a point Q', which will be the perspective repre-

sentation of Qi. We have thus a construction applicable to any solid figure whatever.
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592.

ON THE MEECATOR'S-PROJECTION OF A SKEW HYPERBOLOID
OF REVOLUTION.

[From the Messenger of Mathematics, vol. iv. (1875), pp. 17—20.]

In a note " On the Mercator's-projection of a surface of revolution " read before the

British Association, [555, (5)], I remarked that the surface might be, by its meridians

and parallels, divided into infinitesimal squares ; and that these would be on the map
represented by two systems of parallel lines at right angles to each other, dividing the

map into infinitesimal squares ; and that, by taking the squares not infinitesimal but

small, for instance, by considering the meridians at intervals of 10° or 5°, we might

approximately construct a Mercator's-projection of the surface. But it is worth while,

for the skew hyperboloid of revolution, to develop analytically the ordinary accurate

solution.

Taking the equation of the surface to be

af + y^ z^ _-,

{or, if as usual a^ + c" = a^e", then x" + y-— {e-—l) z- = a-}, and writing x = 7- cos 0, y = r sin 6,

the meridians corresponding to the several longitudes 6 are in the map represented

by the parallel lines X = ad, and the parallels corresponding to the several values of

z are in the map represented by a set of parallel lines Z=f{z), the form of the

function being so determined that the infinitesimal rectangles on the map are similar

to those on the surface. The required relation is readily found to be

3 2-+ C-

where the integral is taken from the value z = 0.
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The substitution which first presents itself is to write herein z= ,, „ .

—
-„, tanct;

or, what is the same thing,

2 = a ( e— ) tan 4>,

where observe that a(e ) is the distance between a focus and its corresponding

directrix. The equation of the surface is satisfied by writing therein >J{a? +y-) = a sec yjr,

z = c tan i/r, and y(r as thus defined is the " parametric latitude " ; hence the foregoing

angle (^ is a deduced latitude connected with the parametric latitude -i|r by the equation

tan <h = r- tan yjr, — —7r-„——
- tan •v/r.

The resulting formula in terms of </> is

„_ r c- V(a° + C-) dj>

J cos
(f)

(c- + a- cos- (j))

'

or, if we write herein f= tan ^<^, the formula becomes

viz. the function under the integral sign is rational. The expression is, however, com-

plicated, and a more simple formula is obtained by using instead of <p the parametric

latitude yp^; viz. we have z = ct&ii-\(r, and thence

^^fV(a-sin-^ + c-)

J cos i/r
^

or, putting herein

. , c u

and therefore

„ , a^ — (a' + c") u^
cos' -^ = 77-, :rr- ,^ a-(l —ir)

and

2 • > I , " c'
, , ,

c du
a' sin- Jr+c- = -z: „ , cos -dr d-dr = 5 ,r l-u^' ^ ^ a (1 - M=)*

the formula becomes

« _ „ r du

or, what is the same thing,

= ^(^-l)J„ (l-,,)(l-,V) -

du

viz. we thus have

^=i«{log^;-elogL_£|,

the logarithms being hyperbolic.
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As already mentioned, u. is connected with the parametric latitude yjr by the

equation

that is,

sin i|r = n/{^ — 1) tan ^;, if « = sin p,

or conversely

sin -ilr

u =
\/(e- — 1 + sin- ^)

'

so that the point passing to infinity along the branch of the hyperbola, or yjr passing

from to 90°, u passes from to -
; and for u = - the value of Z becomes, as it

should do, infinite. The value of z in terms of u is

z = -jT- Y^ , or conversely ii = -

V(l-e'w')' ^ V(cV + e^-l)'

and we have, moreover,

12^ 1 . , /VPN sini|r
u = .j—^ , = - sin 9, = (as beiore)

e 1 + ?-' e ^' ^ W(e--H-sin=A|^)•

It will be recollected that, in the Mercator's-projection of the sphere, the longitude and

latitude being 6,
<f),

the values of X, Z are

X = a6, ^= logtan
(
J + I^J

,

the logarithm being hyperbolic.

In the case of the rectangular hyperbola a=c, =1 suppose,

whence

e=V(2), 2 = tani/r, u= • 2^\ ' =^^t^P> if sin yfr = tan p

;

tan (45°-!;)) ^ tan (22°30' - ij>)
^ - *'' •

' tan (45° + ip)
~ ^ ^^^^ ^

' ^an (22°30' + ^p)

'

the first term being of course

= h.l tan (45° — ^p), or —h.l tan (45° + ^p).

Transforming to ordinary logarithms, this is

Z =
;/(2yi^e

[- V(2) log tan (45° + y) + [log tan (22°30' + y) - log tan (22°30' - y)}],

say this is

Z = ^r^, (-^+-6),
V(2)loge'
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where

^ = V(2)logtan(45° + ip),

B = log tan (22°30' + Ip) - log tan (22''30' - \p).

Taking ->|r as the argument, I tabulate z, = tan -«|r, and ^.V(2)loge, =—A+B, as shown
in the annexed table : the last column of which gives, therefore, the positions of the

several parallels of 5°, 10°,..., 85°; the interval of 5° between two meridians is, on the

same scale,

V(2) log e • J = (1-4142136) (-4342945) (-0872665), = -05360

;

viz. this is nearly equal to the arc of meridian 0° to 5°, and the table shows that

the arcs 0°—5°, 5°—10°, &c. continually increase as in a Mercator's-projection of the

sphere, but more rapidly ; there is, however, nothing in this comparison, since the

determination of latitude on the hyperboloid by the equation z = tan i/r is altogether

arbitrary.

•A
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593.

A SHEEPSHANKS' PKOBLEM (1866).

[From the Messenger of Mathematics, vol. iv. (187o), pp. 34—36.]

Apply the formulce of elliptic motion to determine the motion of a body let fall

from the top of a toiuer at the equator.

The earth is regarded as rotating with the angular velocity « round a fixed axis,

so that the body is in fact projected from the apocentre with an angular velocity = <»

;

and we write a for the equatorial radius, /3 for the height of the tower; then g
denoting the force of gravity, and fi, h, n, a, e, 6, as iu the theory of elliptic motion,

we have

fj,
= n-a'' = go?,

h = (a + /3)- a> = na- \/(l — e"),

a + j3 =a(l + e);

whence
{a + 0yco' = ga'ail-e-),

(a + ^) = a (1 + e ),

ga' g \ a

where — = ratio of centrifugal force to gravity.

— 1

so that 1 — e is small

;

aq-e') _ {a+0)(l-e)
1 — e cos 0' 1 — e cos 6

whence

,
, (g + ;8) (1 - e)

1 - e cos ^ = ^^ '—^
.

r

C. IX. 31
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Suppose
r = a,

l_ecos^ = (l-e)('l+^) = l-e + ^(l-e),

which is nearly
= l-e,

that is, is small, and therefore approximately

l_e + ie^= = l-e + ^(l-e),

or

a e

we then have

r-de = hdt, or rf«=^=(„
+ ^).„^i_,cos^)=^^

&)= (1 — e cos 0)'

^'-'^' -,de
a>{l -e + ^eO-y

1
d^

that is,

Integrating, we have

ccdt = il-^^e']d0.

-S)=-.
where wt = earth's rotation in time t, =<j) suppose ; therefore

hence, if 6 be as above, the angle described in falling to the surface,

eff' _2/3
l-e~ a

'

^(i-if)=*

.-,=,?. = 5? /fM>-
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Writing herein

this is

VIZ.

whence

or say

1-e , a(B=

~r~ '
= 1 - e' = ^re g

^ 3

where a(0 — cf}) is the distance at which the body falls from the foot of the tower.

Substituting for . /(— j its value, =jj, we have

^^--ryif). -"-Vlf

31—2
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594.

ON A DIFFERENTIAL EQUATION IN THE THEORY OF ELLIPTIC

FUNCTIONS.

[From the Messenger of Mathematics, vol. iv. (1875), pp. 69, 70.]

The following equation presented itself to me in connexion with the cubic trans-

formation :

Q=-Q(l- +
J.)-3

= :3(l-i-=)§.

Writing as usual k = u*, I was aware that a solution was

Q = -„ + '2.xtv,

u-

where u, v are connected by the modular equation

u* — v*+2uv(\— u-v") = ;

but it was no easy matter to verify that the differential equation was satisfied. After

a different solution, it occurred to me to obtain the relation between {Q, u) ; or, what

is the same thing, (Q, k), viz. eliminating v, we find

Q*_6Q^-4(„^+1)q-3 = 0,

or say

i(Q^-6Q=-3) = 4(^I-+J,

whence also
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that is,

and

and thence

(Q + iYjQ-S) _ (k-iv .

(0-iy(Q + 3) \k + i)
'

viz. the value of Q thus determined must satisfy the differential equation. This is

easily verified, for, in virtue of the assumed integral, we have

Q._3-J(Q^-6Q=-3) = 3(l-^-)^;

that is,

or finally

Q^-10Q-^+9 = -12(l-i-0^,

(Q-l)(Q-9) = -12(l-i-=)^.

an equation which is at once obtained by differentiating logarithmically the former

result, and we have thus the vei'ification of the solution. This is, however, a particular

integral only ; and it appears doubtful whether there exists a general integi-al of an

algebraical form.
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595.

ON A SENATE-HOUSE PROBLEM.

[From the Messenger of Mathematics, vol. iv. (187.5), |Dp. 75—78.]

The following was given [5 Jan., 1874,] as a problem of elementaiy algebra:

" Solve the equations

u (2a — x) = x (2a — y) = y (2a — z)=z (2a — !() = h",

and prove that unless h- = 2a', x = y = z= u, but that if h" = 2a-, the equations are not

independent."

This is really a very remarkable theorem in regard to the intersections of a

certain set of four quadric surfaces in four-dimensional siia,ce ; viz. slightly altering the

notation, we may write the equations in the fonn

X {26 -y) = me- ...{12),

y{2e- 2)== me-'... {23),

z{2e-w)==me-...{M),

w{26- A') = w6l=...(41),

where, regarding {x, y, z, w, 6) as coordinates in four-dimensional space, each equation

rejjresents a quadric surface. I remark that in such a space we have the notions, point-

system, curve, subsurface, surface, according as the number of equations is 4, 3, 2, or 1.

Four quadric surfaces intersect in general in 16 points. But for the system in

question {vi being arbitrary), the common intersection consists of two lines and the two

points

x = y = 2=w = 6{l +V(1 — '»)) j

and in the case where vi = 2, then the intersection consists of two lines and a certain

unicursal quartic curve.
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To obtain these results, I consider the four points

51 = 0, x=0, y =0, z =0, ... 123,

^ = 0, y =0, 2=0, IV = 0, ... 234,

^ = 0, 2=0, w = 0, a; = 0, ...341,

^ = 0, 2U = 0, .r=0, ?/ = 0, ...412:

the two points

and the six lines

x = y = z = w = 0[l ±\/(1-to)!, ... PQ:

= 0, x=0, y =0, ... 12,

^ = 0, y = 0, 2=0, ...23,

6 = 0, 2=0, w = 0, ....34,

6 = 0, w=0, x=0, ... 41,

6 = 0, «=0, 2 =0, ... 13,

= 0, y = 0, w = 0, ... 24,

being the edges of a tetrahedron, the vertices of which are the four points, viz. the

point 123 is the intersection of the lines 12, 13, 23, and so for the other points.

The surfaces contain the several lines, viz.

the surface 12 contains (12)^ 13, 14, 23, 24,

23 „ (23)=, 12, 24, 13, 34,

34 „ (34)^ 13, 23, 14, 24,

41 „ (41)=, 24, 34, 12, 13,

where (12)= denotes that 12 is a double line on the surface, and so in other cases.

And it thus appears that the surfaces pass all four of them through the lines 13, 24,

so that these lines are a part of the common intersection. To obtain the residual

intersection, observe that the equations give

6"- m6^-
x = z6 — m — =

. = •26-

w 20 - 2/

'

VI — =
,

y 2e-w'
whence

(2d-y)(2d-''^) = m6"-,

{26-w)(26-'^] = me"-,
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or omitting from each equation the factor 6, the equations become

(2^- y)(2iu-7n6) = metv,

{20 - iv){2y- me) =mey,

that is,

(4 - 2m) 6w - 2md"- - 2yw + md (y + w) = 0,

(4 - 2wi) 6y - 2m&- - 2yiu + mO (y + w) = 0.

Whence, m not being = 2, we have y = tu, and then

tv- - 201V + mff" = 0,

or, what is the same thing,

20 — iu= ,

w

giving x = y — z = iv = 0[\±'^{\—m)], viz. the surfaces each pass through the points

P, Q. As regards the omitted factor 0, it is to be observed that, writing in the

equations of the four surfaces ^ = 0, the equations become xy = 0, yz = 0, 2W = 0, wx = 0,

satisfied by a; = 0,2=0, or by y = 0, iu = 0, we have thus {0 = 0, x = 0, z = 0) and

{0=0, y = 0, tv= 0), viz. the before-mentioned lines 13 and 24.

In the case m = 2, we have between y, w the single equation

yxu -0{y + iv) + 26- = 0,

giving

_ 0{w-20)
y" iu-0 '

and thence

20 {w - 0)x=—^ '-

,

w

-2(9"
z = -

w-0'

w
or, writing for convenience ol = -^ , then the equations are

111



595] OX A SENATE-HOUSE PROBLEM. 249

or, what is the same thing,

x= 2(a-l)=(a-2) (l-^)

y « - («-2)^(i-^)

: z :-2a(a-l) ... (l - ^J
:w : a=(a-l)(a-2)

: e : a(a-l)(a-2) (l " j) .

and f 1 - -
00

where, for the sake of homogeneity, I have introduced the factors ( 1 - —

-

viz. we have x, y, z, w, proportional to quartic functions of the arbitrary parameter

a, or the curve is a unicursal quartic. Writing in the equations a=0, 1, 2, x successively,

we see that this quartic curve passes through the four points 123, 234', 341, 412 (inter-

secting at these points the lines 13 and 24 respectively); and writing also a=l +t we

see that the curve passes through the points P, Q, the coordinates of which now are

x = y = z = w — (l ±i)6.

It should admit of being proved by general considerations that, in 4-dimensional

geometry when 4 quadric surfaces partially intersect in two lines, the residual inter-

section consists of 2 points ; and that, when they intersect in the two lines and in a

unicursal quartic met twice by each of the lines, there is no residual intersection—but

this theory has not yet been developed.

c. IX. 32
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596.

NOTE ON A THEOREM OF JACOBI'S FOR THE TRANSFORM-
ATION OF A DOUBLE INTEGRAL.

[From the Messenger of Mathematics, vol. iv. (1875), pp. 92—94.]

Jacobi, in the Memoir " De Transformatione Integralis Duplicis..." &c., Crelle, t. viii.

(1832) pp. 253—279 and 321—357, [Ges. Werke, t. iii., pp. 91—158], after establishing

a theorem which includes the addition-theorem of elliptic functions, viz. this last is " the

differential equation

dr} (W

V(G'2 cos^ 7, + G"' sin^ v-G')'^ V(<?" cos= + G"- sin^ B-G^)'

has for its complete integral

G+ G' cos t; cos ^ -I- G" sin 77 sin ^ = 0,"

(observe, as to the integral being complete, that the differential equation contains only

the constant G' — G'- -r- {G^ — G"-), whereas the integral equation contains the two con-

stants G' -^ G and G" -h G], obtains a corresponding theorem for double integrals

;

viz.

this, in the corresponding special case, is as follows: If the variables ((/>, yjr) and

{rj, 6) are connected by the two equations

a =0,

+ a cos j> . cos rj

\- a." sin (^ cos -v/^ . sin r) cos 6

+ a!" sin (/> sin -v^ . sin 7? sin 6

and if putting for shortness

«" /3"' - a"'/3" =/,

a"'/3' -a' ^"' =
(J,

a! /3" -a"/3' =/(,

/3 =0,

' + /3' cos (^ . cos 77

-t- /3" sin (^ cos 1^ . sin 7; cos 6

\
+ /3"' sin (/) sin T|r . sin 77 sin 6

a0' — a' /9 = a,

a/3" -a" I3 = b,

tt/3"'-a"'0 =c.

(whence «/+ bg + ch = 0)

;
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R- = f° (sin ^ cos -^y- (sin (/> sin t/t/-

+ g" (sin ^ cos i/c)- (cos <^)-

+ /i- (cos ^)- (sin ^ cos -\|r)-'

— a- (cos (^)-

— 6- (sin </) cos i/f)-

— c- (sin (/) sin i|r)-,

)S- = y- (sin T) cos ^)- (sin i) sin 0)"

+ gf- (sin 1] sin ^)- (cos i) f

+ A- (cos 7;)" (sin r] cos ^)°

— a- (cos 7?)^

— \? (sin t; cos ^)-

— c- (sin 7? sin Qf,

then we have

sin rf(^ fZi/r sin 17 di) dd

R " S

And it may be added that the integral equations are, so to speak, a complete

integral of the differential relation; viz. in virtue of the identity af+bg+ch = 0, the

differential relation contains really only four constants ; the integral relations contain

the six constants a : a' : a" : a'" and /3 : /3' : /3" : 0", or we have tivo constants

introduced by the integration.

The best form of statement is, in the first theorem, to write x,y for cosr],sm7),(w-+y-=l),

^, Tj for cos^, sin^, (?" + 7?'=l), and similarly in the second theorem to introduce the

variables x, y, z connected by x- -¥ y- -\-
z" = \, and ^, 77, f connected by f- + 7;- + f-=l;

then in the first theorem dt), d9 represent elements of circular arc, and in the second

theorem sin ^ d(f) dyjr and sin t] drj dd represent elements of spherical surface, and the

theorems are

:

I. If (x, y) are coordinates of a point on the circle x--\-y- = \, and (^, 7;) coordinates

of a point on the circle ^ + 7;- = !, and if ds, da- are the corresponding circular elements,

then

ds da

V(a«" + hy- — c) \/(«^^ + ^T — c)

'

has for its complete integral

ax^ + i^/j; — c = 0.

32—2
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11. If (x, y, z) are coordinates of a point on the sphere x-+y" + z'^=\, and

(?, '?, D coordinates of a point on the sphere ^- + ij- + ?^ = 1 ; and if ds, da- are the

corresponding spherical elements, and

^y' - /3'7 =/, a 8' - a' S = a,

y'x'—y'a=g, /3S' — /3'S = 6,

a/3' — a'/3= /i, yB'—y'8=c,

(whence af+ hg + ch = 0)

;

and for shortness

S- =f-ifz- + g-z-x- + h-x-y- — a"-xr — h-y- — &z".

then the differential relation

ds da

s/(S) V(S)'

has for its complete integral the system

(xx^ + ^y'r] + yz^+ B =0,

a'x^ + ^'yv + I'^K + S' = 0,

where by complete integral is meant a system of two equations containing two arbitrary

constants.

\



597] 253

597.

ON A DIFFERENTIAL EQUATION IN THE THEORY OF ELLIPTIC

FUNCTIONS.

[From the Messenger of Mathematics, vol. iv. (187.5), pp. 110— 113.]

The differential equation

Q-Q(^.+ ^.)-3 = 3(l-^=)f,

considered ante, p. 69, [59-t, this volume, p. 244], belongs to a class of equations trans-

formable into linear equations of the second order, and consequently is such that,

knowing a particular solution, we can obtain the general solution.

In fact, assuming

the equation becomes

viz. omitting the terms in -, (tt) which destroy each other, and dividing by 3(l-k-),

this is

or finally

kj z dk 1 — A:- z dk z dk"

o /. i.^d'^ \ — ok- dz 1
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But knowing a particular value of Q we have

a particular value of z, and thence in the ordinary manner the general value of z,

giving the general value of Q.

The solution given in my former paper may be exhibited in a more simple form

by introducing, instead of k, the variable a connected with it by the equation

yfc=
= ?i-i- —^-^

. We have in fact, Fundamenta Nova, p. 25, [Jacobi's Ges. Werke, t. i.,

1 -I- 2a

p. 76],
2 + a

"° = "'
^i s~ ' = ^''.

1+22

viz. these expressions of w, v in terms of the parameter a, are equivalent to, and

replace, the modular equation u* — v* + 2uv {\ — v-v-) = 0. We thence obtain

_ aH2 + aV if (2 + «)-

{l + 2a)* ' w» a=(l + 2ay^'

that is,

and the particular solution, Q=—^+2uv, becomes

Q =A ^(1 + 2a . 2 + a), = , 7^5 + 2 (a + -]\ .

Introducing into the differential equation a in place of k, this is found to be

- +a- + 2f- +aQ^-Q^7^''^"7^-3 = (l-a-),/]5 + 2(. + l)ljg

But from this form it at once appears that it is convenient in place of a to introduce

the new variable /3, = a + -
; the equation thus becomes

satisfied by Q = \/(o + 2/3) ; or, what is the same thing, writing o + 2/3 = 7-, that is,

/3 = — f + 7-, the equation becomes

4Q= + '^
(3 + 67-' - y ) - 12 = - (7= - 1) (r - 9)^ ,

satisfied by Q = 7.
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Writing here

we have for z the equation

satisfied by

[In fact, this value gives

5 = (r-9)i(7=-l)-i,

^^ = (- 1 27^ + 577= + 36) (7^' - 9
)

" i (r - 1
)
" *

which verify the equation as they should do.]

Representing for a moment the differential equation by A -f^, + B ^+ Cz = 0, and
07= 07

putting ^1=
(

„- -, ) , then assuming z = Zi lydy, we find

that is,

VIZ,

or

whence, integrating

that is,

1 du 2 dz, B „^
-I— — H— =0

y d'y Zi d'y A

1 dy
^

-Idz,
^

.sy-147^ + 3 ^^
y dy z, dy (y- - 1) (7-= - 9)

1 du 2 dz, „ 1 15 ^
-

7 + - -7- + 3 + -^—7 + -,—^ = ;

y ay z^ dy 7= - 1 7^-9

T + 1 'Y + 3
log ijz;- + 37 - i log !-—- - I log i-—s = 0,

'y — 1 y — o

1 /7+l\4/7+3\
.--='K:-^)'C4-|)'

= e-'v ^7rLlL7±i\V'y+ M* fl±3\i+ lU/7+l\i/7+;
+ 3; W-iy (,7-;7 — 3.7 + 3/ V7 — 1/ V7 ~ 3

^ (7 + l)(7 + 3)%_,,

(7-3?
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Hence, the general value of z is

. = ^(v!^9Ur (7 + l)(7 + 3)^
^_3^

Vr-1/ U. (7-3)"

the constants of integi'ation being K and <^„, or, what is the same thing,

the corresponding value of Q being

Q = i(r-i)(7-9)l|,

which contains the single arbitrary constant j^ ; when this vanishes, we have the fore-

going particular solution Q = y.

I recall that the expression of 7 is

7 = V(-5 + 2A =^|5 + 2(a+i)|, = J-^ V{(2 + a) (1 + 2a)),

where a is connected with k by the relation .

aM2+a)
'''-

l+2a •
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598.

NOTE ON A PROCESS OF INTEGRATION.

[From the Messenger of Mathematics, vol. iv. (1875), pp. 149, 150.]

I HAD occasion to consider the integral

IJJo [r^ + e^}i'+i'

where e is small in regard to R and q is negative. The integral is finite when e = 0,

and it might be imagined that it could be expanded in positive powers of e ; and,

assuming it to be thus expansible, that the process would simply be to expand under

the integral sign in ascending powers of e, and integrate each term separately, so that

the series would be in integer powers of e-.

Take two particular cases. First, let

the integral is

r >J{r- + e-) dr = / dr (r- + ^ e-r" - i e^?-- + . .
.

)

Jo ^0

= JiJ' + ^e=i2+coe'+...,

viz. the integral is not thus obtainable : the series is right as far as it goes, but the

true expansion contains a term in e' ; and the failure of the series to give the true

expansion is indicated by the appearance of infinite coefficients. In fact, the indefinite

integral is 3(j'- + e^)*; taking this between the limits, it is

i (iJ= + ef - ^e^ =^R' + ke"-R + ... -he\

Again, let s=l, q = — 2; the integi-al is

I
(r- + e-f-dr=l (r- -|-fe=r+ |eV->+ ...)

Jo Jo

= iR' + ^e'R'' + x>e*+...,

c. IX. 33
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viz. the integral is not thus obtainable : the series is right as far as it goes, but the

true expansion contains a term as e* log e, and the failure is indicated by the infinite

coefficients. In fact, the indefinite integral is

iir^ + §e¥) v'(''= + e=) + fe^ log {r + V(»'= + e"-)},

which between the limits is

HR^ + p"'R) ^{R^ + e=) + le^ log
^ +

^^f
+

^°'^

,

= lR'+^e"-R-+ ... -feMoge.

In the general case, the term causing the failure is Ke~^'i when q is fractional, and

Ke~''i\oge when q is integral. As a step towards determining the entire expansion, I

notice that, writing x = ——^ or r — ex-~^ {\ —x)^, the vahxe of the integral is

= i e--'' \
afl-^ (1 - .r)^*~' dx.

J X
where

E=

4

4
4
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599.

A SMITH'S PRIZE DISSERTATION.

[From the Messenger of Mathematics, vol. iv. (1875), pp. 157— 160.]

WsiTE a dissertation on Bervoulli's Numbers and their use in Analysis.

The

the form

The function —^
—- +^t is an even function of t, as appears by expressing it in

. e' + l _
gi' + e-^'

and its value for t = being obviously =1, we may write

or, what is the same thing,

g(_l 2" '"^1.2 -1.2.3.4 '

"^ ^ ' "1.2... 2w

where the several coefficients £,, ^2, B^, &c., are, as is at once seen, rational fractions,

and, as it may be shown, are all of them positive. These numerical coefficients

Bi, B^, Bs, &c., are called Bernoulli's numbers.

There is no difficulty in calculating directly the first few terms; viz. we have

+ t'il + ^t + ^t"- + ...)

-tHi + it + ...}

VIZ.

33—2



260 A smith's prize dissertation. [599

which is therefore

and consequently

and so a few inore terms might have been found.

But a more convenient method is to express the numbers in terms of the

differences of 0'" by means of a general formula for the expansion of a function of e*,

viz. this is

0(e') = «^(l+A)e'-»,
where

g<.o = 0" + ^
0' + j^ 0= +

J-
|-^ 0' + &c.,

and the </> (1 + A) is to be applied to the terms 0», 0', 0-, 0^ &c. We have thus

t _ log(e')

e' - 1 e* - 1

_loga+A)

A r +1^ ^1.2" +*^°--" + 1.2...2/i-l" +1.2... 2n" +

-

"We have, as may be at once verified,

A ' A " - 5'

and by what precedes, since the coefficient of every higher odd power of t vanishes,

logO + A) _
A " -",

and then, by comparing the even powers of t,

that is,

(-)"-> A, = (1 - i A + 1 A= . . . +2^ A»] 0»,

the series for ^ being stopped at this point since A™+'0-" = 0, &c. For instance,

in the case n = l, we have

5, = (1 -iA + iA=)0== 0^

+ 1 (2- - 2 . 1= + 0=)

= — ^+|, = ^ as above.
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The formula shows, not only that B^ is a rational fraction but that its denominator
is at most = least common multiple of the numbers 2, 3, ...,2/i + l; the actual

denominator of the fraction in its least terras is, however, much less than this, there

being as to its value a theorem known as Staudt's theorem. It does not obviously show
that the Numbers are positive, or afford any indication of the rate of increase of the

successive terms of the series.

These last requirements are satisfied by an expression for B^ as the sum of an

infinite numerical series, which expression is obtained by means of the function cot^,

as follows :

We have

or, writing herein t = 2i6 {i = ^/(— 1) as usual), this is

92/32 94/94

Ooote = l-B.^^-B.^--S.o.

But we have

logsin^ = log6l + log(l- - +log(l - --J + ...,

and thence, by differentiation,

9^2

^ cot = 1 —, ^r-v + + ..1

-,
261= (1 1 „

1-^2 p + 2^+&e.

Hence

that is.

261* fl 1 „

-^j{p + 2^ + ^<^-

-&c.

"1.2. ..2)1 .n-2« ]
pn -f- 22«

"^

_ 2(1.2..2n) /l 1

}

showing first, that B^ is positive, and next, that it rapidly increases with n, viz. n being

large, we have

_ 2(1.2...2n)
~ (27r)™ '

or, instead of 1.2...2?i writing its approximate value V(27r) .
(2?i)™+ie-=", this is

5„ = 4V(n.)(|^J.
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The result may of course be considered from the opposite point of view, as giving a

determination of the sum ^„^^+ —+ Sic. ... in terms of Bernoulli's Numbers, assumed

to be known, viz. we thus have

For instance, n = l,

J^ 1_ (27rr B12n-i-2»»"^--- 2(1.2...2?0

P 2= 2.1. 2'^' 6
'

and this is one and a good instance of the use of Bernoulli's Numbers in Analysis.

Another and very important one is in the summation of a series, or say in the

determination of Xu^, = !fo + 'Mi + ... + «.c_i ; viz. starting from

and writing herein t = dx, and therefore

11 1 „
e' - 1 e°.c _ 1 ' A '

and applying each side to a function u^ of x, we have

lu^=C + jdx u^ - ^a., +Y^ d^u^ - j-
^ g ^

d/ita; + . . .
,

or taking the two sides each between the integer limits a, x,

Ua + «a+i • . + «x-i = dxu, - h {u^ - tf,„) + -^ (d^tlj' - ^^-^^ (d^'U^f +...,
J a l.i al.^.o.* a

where if u^ is a rational and integral function the series on the right-hand side is

finite. If for instance Ux = x, the equation is

a + (a + l) ... + (x-l) = ^(x--a-)-i(x-a),
viz.

{1 + 2 ...+(«- 1)1 - jl +2 ... + (a - l)}=^{x--n)-i{a"' - a),

which is right.

Applying the formula to the function log x, we deduce theorems as to the F-function

;

I

and it is also interesting to apply it to -

.

"

The above is given as a specimen of what might be expected in an examination

:

I remark as faults the omission to make it clear that B^ is a rational fraction ; and

the giving the series-formula as a formula for the convenient calculation of B„. The
omission to give the first-mentioned straightforward process of development strikes me
as curious.

I
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600.

THEOREM ON THE nth ROOTS OF UNITY.

[From the Messenger of Matheinatics, vol. iv. (1875), p. 171.]

If n be an odd prime, and a an imaginary nth root of unity, then

fa a? a^ aic-D 1

\ ) « i
|l+a- 1+a^ l+a^ ^l + a»-i]'

for instance,

n = 3, -4 = 4 ,-°^,

,

1 + a=

'

verified at once by means of the equation 1 + a + a= = :

n = 5, 4=4 ( IT——„ + ^r-^, I

,

Vl + a' 1 + aV

where the term in ( ) is

a(l + a'') + a''(l + a"-)

(l + a=)(l + aO '

that is,

a + 1 + a" + a^

1 + a= + a^ + a

and so in other cases.

, =1:
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601.

NOTE ON THE CASSINIAN.

[From the Messenger of Mathematics, vol. iv. (1875), pp. 187, 188.]

A Symmetrical bicircular quartic has in general on the axis two nodofoci and four

ordinary foci ; viz. joining a nodofocus with either of the circular points at infinity,

the joining line is a tangent to the curve at the circular point (and, this being a

node of the curve, the tangent has there a three-pointic intersection) : and joining an

ordinary focus with either of the circular points at infinity, the joining line is at some

other point a tangent to the curve, viz. an ordinary tangent of two-pointic intersection.

In the case of the Cassinian, each circular point at infinity is a fleflecnode (node with

an inflexion on each branch) ; of the four ordinary foci on the axis, one coincides with

one nodofocus, another with the other nodofocus, and there remain only two ordinary

foci on the axis ; the so-called foci of the Cassinian are in fact the nodofoci, viz. each

of these points is by what precedes a nodofocus plus an ordinary focus, and the line

from either of these points to a circular point at infinity, qua tangent at a fleflecnode,

has there a four-pointic intersection with the curve.

The analytical proof is very easy ; writing the equation under the homogeneous form

[(*• - az)- + y-] {{x + azf + y-\ - c^z" = 0,

then the so-called foci are the points (x = az, y = 0), {x = — az, y = 0); at either of

these, say the first of them, the line drawn to one of the circular points at infinity

is x = az + iy, and substituting this value in the equation of the curve we obtain

2« = 0, viz. the line is a tangent of four-pointic intersection ; this implies that there

is an inflexion at the point of contact on the branch touched by the line x = az + iy
;

and there is similarly an inflexion at the point of contact on the branch touched by

the line x = —az + iy; viz. the circular point x = iy, ^ = is a fleflecnode; and similarly

the circular point x=—iy, z = 0, is also a fleflecnode.
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To verify that there are on the axis only two ordinary foci, we write in the

equation x = a2 + iy, and determine a by the condition that the resulting equation for

y (which equation, by reason that the circular point z=0, x — iy, is a node, will be

a quadric equation only) shall have two equal roots ; the equation is in fact

{(a - afz- + 2 (a - a) iyz} {(a + af 2= - 2 (a + a) iyz] - c-z^ = 0,

viz. throwing out the factor z-, this is

(a= - a-) {(a - a) 2 + 2iy] [{a + a) z + 2iy} - c^z- = 0,

or, what is the same thing, it is

(a= - a}) {{az + 2iy)- — a-z-] — &z- = 0,

viz. it is

i2iy + azy--(ci"' + ^^z"' = 0.

The condition in order that this may have equal roots is

a-+— „ = 0, that is, a- = a- —
a- — a- w2 '

hence a. has only the two values ± a/ ia" ^j , viz. there are only two ordinary foci.

c. IX. 34
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602.

ON THE POTENTIALS OF POLYGONS AND POLYHEDRA.

[From the Proceedings of the London Mathematical Society, vol. vi. (1874—1875),

pp. 20—.34. Read December 10, 1874.]

The problem of the attraction of polyhedra is treated of by Mehler, Grelle, t. Lxvi.

pp. 375—381 (1866) ; but the results here obtained are exhibited under forms, which

are very different from his and which give rise to further developments of the theory.

General Formulw for the Potentials of a Cone and a Shell.

1. The law of attraction is taken to be according to the inverse square of the

distance ; and I commence with the general case of a cone standing upon any portion

of a surface 2 as its base, and attracting a point at its vertex, the cone being con-

sidered as a mass of density unity.

2. Considering, in the first instance, an element of mass, the position of which

is determined by its distance r from the vertex (or origin) and by two angular

coordinates defining the position of the radius vector r, then the element is = r- dr day

(where da> is the element of solid angle, or surface of the unit-sphere), and the corre-

sponding element of potential is - r^ dr da, = r dr dco ; whence

V^jrdrda,.

which, integrating from r = to ;• = its value at the surface, is

= ^ I
?-° day,

where r now denotes the radius vector at a point of the surface, being, therefore, a

given function of the two angular coordinates : and the remaining (double) integration



602] OK THE POTENTIALS OF POLYGONS AND POLYHEDRA. 267

is to be extended to all values of the angular coordinates belonging to a position of

r within the conical surface which is the other boundary of the attracting mass, or

say over the spherical aperture of the cone.

3. If the value of the radius vector at the surface is taken to be mr (m a

constant), then we have obviously

V= ^vi- 1
?•- dco

;

and hence also, writing m + dvi instead of m, we obtain, for the potential of the

portion of the shell lying between the similar and similarly situated surfaces 2 and 2',

belonging to the parametei's m and in + dm respectively, the value

V=m dm I r- dco
;

this is =2 — into the potential of the cone ; and we thus see that it is the same

problem to determine the potential of the cone, and that of the subtended portion of

the indefinitely thin shell included between the two surfaces.

4. The same result may be arrived at as follows : the element of solid angle d(o

determines on the surface an element of surface d'S,, and if dp be the corresponding

normal thickness of the shell, then the element of mass is = dv dS, and the element

of potential is =— dv d^ {mr being, as before, the radius vector at the surface).

Take a the complement of the inclination of the radius vector to the tangent plane

—

that is, a the inclination of the radius vector to the normal, or, what is the .same

thing, to the perpendicular from the origin on the tangent plane (whence, also, if mp
be the length of this perpendicular, then p=rcosa). The shell-thickness in the direction

of the radius vector is = r dm, or we have dv = r dm cos a. ; the element of potential

is therefore =— cosarfS. But dco being the spherical aperture of the cone subtending

the element rfS, the perpendicular section at the distance mr is = mh--dco ; we have

therefore d'E = m^r- dco ; and hence the element of potential is = m dm . r- dco, or
cos a ^

the potential of the subtended portion of the shell is as before, = m dm
j

7-^ dco.

5. It may be added that, integrating between the values ??i, n (m > n), we obtain

^ (m- — n^) I
?•'- dco for the potential of the shell-portion included between the surfaces

mr, nr; and if n = 0, then, as before, the potential of the cone is = ^m- I i--dco.

34—2
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Cone on a plane base, and plane figure,

6. Suppose that the surface S is a plane ; the surface S is, of course, a parallel

plane. Taking here vjp for the perpendicular distance of the plane 2 from the origin,

then, if 8 be the infinitesimal distance of the two planes from each other, we have

B=pdvi, that is, dm = - ; the jjotential of the cone is, as before, =-|m-lr^c?a), and

that of the plane figure, thickness S, is = -
j
r'^do).

7. Taking, for greater convenience, ni=l, we have

Potential of cone =^j r-- di

Do. of plane figure = - \ r" do),

pj

where p is now the perpendicular distance of the plane from the vertex ; or if, as

regards the plane figure, the infinitesimal thickness B is taken as unity, then

Potential of plane figure =-
j
r" deo.

In each case r is the value of the radius vector corresponding to a point of the plane

figure which is the base of the cone, and the integration extends over the spherical

aperture of the cone.

8. If the position of the radius vector is determined by the usual angular

coordinates, its inclination to the axis of z, and
<f>

its azimuth from the plane of

zx—viz. if we have

X = r sin 6 cos (p,

y — r sin 6 sin ^,

z =r cos 6
;

then, as is well-known, dco = sin d9 d^, and the integral jr^dco is =
j

r"- sin 6 d0 d<p.

Taking the inclination of p to the axes to be a, /3, 7 respectively, the equation

of the plane which is the base of the cone is

X cos (x + y cos ^ + z cos y = p',

viz. we have

r [(cos a cos (^ + cos ^ sin <^) sin ^ + cos 7 cos 0]=p;

that is,

P
r —

(cos a cos (^ + cos /3 sin <^) sin + cos 7 cos 6
'
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and the integral I r- dco is therefore

sin e cW dcj,

^'InJ I

(cos a cos[(cos a cos <p + cos /3 sin <(>) siu $ + cos 7 cos 6Y
'

and, in particular, if p coincide with the axis of z, so that the equation of the plane

is z^p, then the integral is

„ /"sin 6 dd d(f)
-.p-

cos-9

9. The integration in regard to 6 can be at once performed ; viz. in the latter

case we have I ^ x" = ^6*^ ^ >
^'^'^ ^^ the former case, writing, as we may do,

(cos a cos
(f)
+ cos /3 sin (p) sin 6 + cos 7 cos 6 = M cos (6 — N),

then

sin 6 de J_ ! s\n(d- N + N) de

[(cos a cos (^ + cos (8 sin <^) sin 6^ + cos 7 cos ^J- M-j cos-{d — N)k
„ sm(d-N)de . „f dd

cos iV —Ti TF^ + Sm iV^ -^ jT^
J cos= {$ - N) J cos {d - N)

=
^^ [cos iV^sec (61 - iV) + sin iVlog tan {^tt + H^ - -iV)|].

Case of a Polyhedron or a Polygon.

10. Consider now the pyramid, vertex the origin 0, standing on a polygonal base.

Letting fall from the vertex a perpendicular OM on the base of the pyramid, and

drawing planes through OM and the several vertices of the polygon, we thus divide

the pyramid into triangular pyramids ; viz. AB being any side of the polygon, a com-

ponent pyramid (or tetrahedron) will be OMAB, vertex and base MAB, where MO
is a perpendicular at M to the triangular base MAB. And drawing through MO a

plane at right angles to AB, meeting it in D (viz. MD is the perpendicular from M
on the base AB of the triangle), we divide the triangular pyramid into two pyramids

OMAD, OMBD, each having for its base a right-angled triangle ;
viz. the vertex is 0,

the base is the triangle ADM (or, as the case may be, BDM) right-angled at D, and

OM is a perpendicular at the vertex M to the plane of the triangle. It is to be

observed that, in .speaking of the original pyramid as thus divided, we mean that the

pyramid is the sum of the component pyramids taken each with the proper sign, + or —

,

as the case may be.

11. In the case of a polyhedron, this is in the like sense divisible into pyi-amids

having for the common vertex the origin or point 0, and standing on the several

faces respectively ; hence the polyhedron is ultimately divisible into triangular pyi-amids

such as OADM, where ABM is a triangle right-angled at B, and where OM is a

perpendicular at M to the plane of the triangle. Hence the potential of the polyhedron
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in regard to the point depends upon that of the pyramid OADM ]
and (what is the

same thing) the potential of any plane polygon in regard to the point depends upon

that of the right-angled triangle ABII, situate as above in regard to the point 0. I

take 031 = h, MD =/, DA = g ; viz. supposing, as we may do, that the plane of the

triangle is parallel to that of xy, the point M on the axis of z, and the side MD
parallel to the axis of x, then / g, h will be the coordinates of the point A.

Formulce for component triangular Pyramid, and Triangle.

12. Writing, as above, x = r sin 6 cos ^, y = r sin 6 sin ^, z = r cos 6, and observing that

h is the perpendicular distance originally called p, we have, for the potential of the

pyramid,

T7- , f „ 7 .7. fsin OdGdd)V= I r- dw = ^h- :ra^
-J J cos^ d

= ^h- jd(t) {sec 6),

where,
<f>

being regarded as a given angle, the integral expi'ession sec 6 must be taken

from 6 = to the value of corresponding to a point in the side AD. For any

f
such point we have f= r sin 6 cos <j), h = r cos 6, that is, -j

= tan cos ^, or the required

value of ^ is = tan~' 5—^^—r , and consequently that of sec is
11 cos ^

V 1 + J' 1

h- cos-
<f>

' It cos (j)

or, as this may also be written,

Vy- + /( cos- (p,

= -Jf-2 + p 4-f- tan- (j)

hence

V= yi Wf + h"- +f- tan- (^ - h) d(f>.
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13. The first term of the integral, writing therein for a moment tan ip = x, is

'^Iw-
dec ,„ f dx

+ h

=/log (fx + vV^ + h- +/V) + h tan-' ,. , ^ .

Hence, replacing x by its value, we have

V=\h \h tan-'
A tan (^^ ^ .^^^ _^ V/^ + /r +/nan^ <^) - /i(^[

.

I V/'2 + A= +/nan- (^
'

to be taken from (^ = to the value of </) corresponding to the point A
;

viz. we

have here /= r sin cos 4>, g = r sin ^ sin (/>, /( = ?• cos 6, and thence tan ^ = t- or /tan 4>=g',

whence, writing for shortness, s = V/^ + ^r^ + /i^ (viz. s denotes the distance 04), we have

V = M j/i tan-' '^ +/log /+^, - h tan-' fl

;

or, observing that

s + g^(s + gy
s-g

y/f- + h-

'

this is

F = lA |/i tan-' ^^ + i/iog ^±5' _ h tan-' §1

,

for the potential of the pyramid OMDA in regard to the point ; by omitting the

factor \h, we have

V=h tan-'^ + i/log—^ - /i tan-'^

for the potential of the triangle MDA. The expression tan-' denotes, here and else-

where, an arc included be

as the tangent is + or —

.

where, an arc included between the limits — ^ , + a- it. is therefore + or — according

Formulce for rectangular Pyramid, and Rectangle.

14. Completing the rectangle MDAE, the potential of the triangle yiil/£' is

obtained by interchanging the letters g and /; viz. we have

F= A tan-'^ +y log—^- h tan-i
gs ^^ °s-f g

for the potential of the triangle MEA.
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The sum of the two gives the potential of the rectangle MDAE; viz. for this

rectangle, we have

F=/.ftan-ff' + tan-^-^) + |/log*-±-^ + i7log*-+/.

But we have

tan-$ + tan-^^+tan-^ = ^;
fs gs hs 2

for the function on the left hand is

s- s^ s'^

viz. the denominator being 1 — -^ ^^ , =0, the tangent of the arc is oo , and the

component arcs being each positive and less than -^ , the arc in question can only be

= ^ . We have consequently

F=-/aan-| + l/log^-±| + i^log^^

for the potential of the rectangle MDAE. And, multiplying this by \h, we have

F=-|A=tan-g + iVlogJ^ + i5r/,log'^

for the potential of the rectangular pyramid, vertex and base MDAE.

Formula for the Cuboid.

15. Completing the rectangular parallelopiped, or, say for shortness, the "cuboid,"

the sides whereof are {f, g, h) ; this breaks up into three pyramids, standing on the

rectangles fg, gh, and hf respectively; and the potentials for the last two pyi-amids

are at once obtained from the last-mentioned expression of V by mere cyclical inter-

changes of the letters. Adding the three expressions, we obtain

F= yh log^+W log*^ + ifg log '-^ - A/= tan-'$ - *a== tan"' '-^^ -^ tan"'-^
^•^ ^ s-f ^ -^ ° s-g "•'^ ^ s-h ^-^ Js '•^ gs ^ Its

for the potential of the cuboid.

Group of Results, for Point, Line, Rectangle, and Cuboid.

16. It is convenient to prefix two results, that for the potential of the point A
(mass taken to be unity), and that for the potential of the line AE (density taken to
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be unity, or mass of an element of length dx, taken to be = dx). We have, the

attracted point being always at 0,

Potential of point A = -

,

(s = V/- + g- + h", as before),
s

Potential of line AE = i log
s-r

Potential of rectangle MDAE = \g log *^+ hf log^^ - ^ tan"'-^

,

Potential of cuboid = \gh log
jZTf'^

P/log j:^ + hfg log ^-^

- i/^ tan-'^ -
Ig"- tan-'

^- 1^^ tan-'-^ ,

To OS lis

which functions may be called A (f, g, h), B {f, g, h), G (f, g, h), and D(f, g, h)

respectively. It is to be observed that /, g, h are taken to be each of them positive,

and that s denotes in every case the positive value of '<//" + g'+ h^ ; for a symmetrically

situated body, corresponding to negative values of each or any of these quantities, the

potential has in each case its original value, without change of sign. But B is an odd

function as regards /, C an odd function as regards f or g, D an odd function as regards

/, g, OT h] for example, C{-f,g, ±h) and G (f, —g, ±h) are each =-G(f, g, h), and

therefore of course G (—/, — g, ±h) = C (f, g, h).

Extension to case where the attracted point has an arbitrary position.

17. The attracted point has thus far been considered as in a definite position in

regard to the attracting mass ; but it is easy to pass to the general case of any

relative position whatever. Thus, for a line AB, if M be the foot of the perpendicular

let fall from the point 0, and if, to fix the ideas, the order of succession of the three

points is A, B, M, then, with respect to the point 0,

line AB = line.4il/- line BM.

A B M

Taking the y- and ^-coordinates to be h, c, the a;-coordinates for the points A, B, M to be

Xa, a-,, a respectively, and in the figure a>Xi, x-^> x„, then a — x^, a — Xi are each of

them positive, a — Xo being the greater, the potential of the line AM is =B(a — Xo, b, c),

that of BM is =B{a— x^, b, c), and the potential of the whole line is

= B(a — Xo, b, c) — B{a — x^, b, c);

viz. this formula is proved for the case where M is situate as in the figure. But
supposing that A and B retain their relative position (viz. x^ > x^), then the formula

holds good for any other position of M ; thus, if M be between the points A, B—
viz. if the order is A, M, B—then

line AB = \me AM + line BM,

c. IX. 35
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and potential is

= B (a — x„, h, c)+B (Xi — a, b, c),

where the second term is = — B{a — Xi, b, c) ; and so, if the order is M, A, B, then

line AB = line BM - line AM,

and the potential is B («i —a, b, c)- B («•„ — a, b, c), which is

= — B(a — Xi, b, c)+ B{a — a;a, b, c).

18. Similarly for a rectangle ABCD, if M, the foot of the perpendicular from the

point 0, has the position shown in the figure, then

rectangle AD = rectangle MC
— rectangle MA
— rectangle MD
+ rectangle MB,

M

B

C D

where is a point on the perpendicular at the common vertex M of the four rectangles

;

and the resulting expression for the rectangle AD will apply to any position of the

point M.

19. And in like manner for a cuboid ; taking the point in any determinate

position, the cuboid may be decomposed into eight cuboids (each with the sign + or —

as the case may be) having the point for a common vertex ; and the resulting

expression for the potential will apply to any position whatever of the point M.

20. The results may be collected and exhibited as follows :—the coordinates of

the attracted point are a, b, c; and it is assumed that «i>a;o, yi>y<„ z^> Zo, (viz. for

X the order is + oo , x-^, Xo, — oo , and so for y and z respectively).

Potential of point {x, y, z) is = A{a — x , b — y , c — z);

Potential of line {xi, y, z), («„, y, z) is = B {a — x^, b — y , c — z)

— B (a — Xj, b — y , c — z);

Potential of rectangle {xj, y^, z), (a;„, yi, z) is = C (a — x^, b — y„, c—z)

(«i. 2/o, z), (a-„, y^, z) -G{a-x^, b - y„ c-z)

-C(a-Xt, b-y„, c-z)

+ C(a-x„ b-yu c-z);
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Potential of cuboid {x^, y^, z^), {cc^, y,, Zi) is = D(a — x„, b — y„, c — 2„)

{<^u Vo, Zi), {xo, yo, 2i) -D{a-x,, b-yo, c - z„)

(a^i. yi, Zo), («o, y.. ^o) -D{a-x„ b-y„ c-z„)

(xu 2/0, Zo), («o. 2/0, •2o) +D(a-Xj, b-y^, c-^„)

- D{a- a-o, b-y„, c- z^)

+ D{a-Xi, b-yo, c-z,)

+ D(a-Xo, b-y„ c-^,)

- D(a-x,, b-yi, c-z,).

21. These are connected together as follows, viz. :

—

Potential of line = I dx Potential of point,

Potential of rectangle = I dy Potential of line,

Potential of cuboid = I dz Potential of rectangle,

equations which are in fact of the form

-S {OS, y, z)=jdxA (x, y, z),

(^ («^. y, ^)=jdyB (x, y, z),

D (x, y, z)=jdzC {x, y, z).

Dij^erential propeiiies of the functions A, B, C, D.

22. These relations, with other allied ones, may be verified as follows. Writing

r = "^oi? + y^+ Z-, the fundamental forms are

log -; , and tan~' — .

r — X

We have dxV = - , &c., and thence
r

X -, X

,,»• + « r r 11 2
dx log =—,

,
= - + -

,
= -

;

° r — X r + X r — X r r r

dy\og

y y
r +x_r r _y ( ^ 1\_~ ^V
r — x r + x r — x' r \r + x r — xj ' r{r^ — a?)'

&c. &c. &c.

d~ tan-' ^ =
yzhv) -— yz r^ + x"

rx r'^x- + y'z" r r-X' + yz-

35—2
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or, since

r^ + a;= = (r^ — y-) + (r- - z^ and i^x- + yV = (r- — y-) (r^ — s'),

this is

= _^ 1 1 Y
.2 _ „2 + ^ _ ^2j !

rx . z — yz .
-^

„ „

, w2 '' r xz r — %r

" rx rV + y^z- r rx- + y-z^

which, the denominator being, as before, (?" — y-) (r"^ — z^), is

_xz 1

r r'^ — z-

'

It is now easy to form the following results:

—

2:3. First,

u = A{x, y, z) = - (symmetrical),

dxu^-"^, &c.,

70 3«= 1 , , ^xy .

^^«= ^-;:3' ^^- <iJyU-=~, &c.,

and thence

{d^- + d/ + rf/) u = 0.

24. Secondly,

tt = £ («, y, z) = \ log (symmetrical as to y, z)
;

r — x

then

d^U = - (= ^ (^, y, 4) . (^s/M = ^(^/^^.) .
&C-.

<^/w = - ^ , 4f^s,i( = -
^^3

, dyd,u =
^3^^^_^,^

+ ^(^2_^-)2 .
«c..

—

»

2a;v^ a;v^ n

» ?• (r^ — «-) r (r- — «-)- r" (r- — ar)

and thence

2x 2x X
, 1 7 „ 7 o^ iS 5S« za;

^ ^ "
'

»•* r (r^ — a;-) r (?- — a-)

25. Thirdly,

M = C'(a;, y, ^) = ^2/ log ^^-^ + i« log '^^^ - ^; tan-i^ (symmetrical as to x, y)
7* ~~ CO i "" y *'

dj,M = 41og^(=5(a;, y, «)):
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in verification whereof, observe that the remaining terms are

_ xy- X xz^ 7^ — y"-

~ r .r^ — a? r r {j^ — a?) {r'^ — y")

'

X I iP' , z" \

r — x-Jr \ r- — X-

X

r (r' — a?)

fhich is =0;

{-y--Vi^-a?- z^),

_ xyz xyz xyz r — x^Arr^—y^ _^ xy
'

r{r- — a?) r {f-
— y^) r (r^ — af) (r- — y') zr

''

= -tan-^,
zr

r{r--y-)'

.„ XI r-- a? + '>''- y" ^ xy / 1 _1_\
"''^

r (r^ - «2) (r^ - 2/2)

'

r \r^ - x'' r'' - yV
'

and thence
(d^^ + dy" + dz") u = 0.

26. Fourthly,

u=D{x, y, z)= lyzlog ^^—^ + ^zx\og^ + ^xylog
^^^

-\a? tan-i -— \y'^ tan"' ^z"^ tan"^— (symmetrical),
OCT* yv zv

d,u =\y\og^;~^ + ^x\og^_^-zi&n-'^ = G{x, y, z),

diu = — tan-' -^

;

zr

and thence

(dx" + dJ + d,^)u=- tan-' — — tan"' tan"' —" ' xr yr zr

yz zx xy xyz

xr yr zr r^= -tan-' :

^2 ^2 ^

viz. the denominator being = 0, the arc is ± -^ , or v^q have

the value being — ^ \{ x, y, z are all three of them, or only one, positive ; but + ^

if they are all three of them, or only one, negative.
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Application to the Potentials of the Point, the Line, the Rectangle, and the Guhoid.

27. Take now V to denote in succession the foregoing expressions of the potential

of a point, a line, a rectangle, or a cuboid, at the point (a, h, c). In the first three

cases respectively, each of the component terms is reduced to zero by the operator

da + di" + d^ ; and we have, therefore,

{da- + db' + d,-) F=0,

which is as it should be. But in the case of the cuboid, each of the eight com-

IT
ponent terms is by the operator reduced to + „ , and we have therefore

{da' + d,^ + d:-)V=^[±(+

S denoting the sum of eight terms, the + denoting + or — , according to the sign

of the terra in the formula (viz. in four cases this is + , and in four cases it is — ),

and the + ^ denoting the value ^ with its proper sign depending on the signs of the

quantities {a—x^, b — yo, c — z^), &c., as explained in the preceding Number.

Suppose for a moment a>Xi, b>yi, c>Zi, or the attracted point in one of the

regions exterior to the cuboid ; then + ^ will in each case be = — - , and the sign

+, being + for four of the terms and — for the four remaining terms, the sum is =0.

And similarly, in all cases where the attracted point is exterior to the cuboid, the

sum of the eight terms is =0. But when the attracted point is interioz-, that is,

when a>X(i<oci, h>y^<yi, c>Zo<Zi, then it is found that, for the four terms which

TT . TT
have the sign + , the value of + -^ is = — — ; and for the four terms which have the

sign — , its value is = + ^ ; whence, in the sum, each term is = — -^ , or the value is

= — 47r. Hence, in the case of the cuboid, we have

(da= + dti" + dc-) F= or - 47r,

according as the attracted point is external or internal.

Verification in regard to the Rectangle.

28. I start from the formula

F= C{a-x^, b-y„ c)

-Cia-Xi, b-yo, c)

-G(a-x„ b-y,, c)

+ C{a-Xi, b-yu c),



602] ON THE POTENTIALS OF POLYGONS AND POLYHEDRA. 279

where, as before, x^xe^, yi>yo- V is here a function of (a, b, c), satisfying the partial

differential equation

and (as is easily verified) vanishing when any one of the variables a, b, c becomes

infinite ; it does not become infinite for any finite values of a or b, or any positive

value of c. Hence, by a theorem of Green's *, there exists on the plane s = a dis-

tribution of matter giving rise to the potential F; and not only so, but the density

at any point {x, y) of the plane is given by the formula

where W is what V becomes on writing therein x, y in place of a, b, and c = is

regarded as an indefinitely small positive quantity.

We have

djC {x, y, c) = — tan-' — , where r = 'Jx- + y" + c^

And hence

djf= - tan-
(^-^o)(y-yo) __

c^{x-x,f + {y-y>r+d'

+ tan- i—-.)iy-Jhl

+ tan"

— tan'

c V(a; - X,)- + (y - y^f + c'

{x - X,) (y - yO

c^{x-Xo)- + (y-yiy + c^

{x-x,)(y-y,)

c^ix-Xif + iy-y.Y + d'

Putting c = 0, as above, each arc is =~ or - ~
, according as the fraction under

the tan""' is positive or negative—that is, according as the numerator is positive or

negative. Suppose for a moment x>Xi, y>yi, viz. the point (x, y) is here in a

region exterior to the rectangle {x^, y^), {x-^, y„), (a;„, y^, {x^, y^)'- the value of dcW is

= — ^ + --1--— -, =0; and similarly, for every other position of the point {x, y)

* The theorem in question is a particular case of Green's, iirp=-- ,— ("Essay on the Application

of Mathematical Analysis to the Theories of Electricity and Magnetism" (1828), see p. 31 of the Collected

Works) ; viz. the surface is here a plane, and Y= V. And it is also a particular case of the formula

p'= ,^ii^-?^^'_ _ p' ("Memoir on the Determination of the Exterior and Interior Attraction of Ellipsoids

27ri»r4(?i-s + l)

of Variable Densities" (1835), see p. 199 of the Collected Works); viz. s is taken =2; and Green's extra-

spatial coordinate u then becomes the coordinate z of ordinary tri-dimensional space.
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exterior to the rectangle, the value is = 0. But for a point interior to the rectangle,

we have x<Xi>x„, y<yi>y^, and in this case the value is

-2^-2) + 1-2) -2- =-2'^'

Hence

p, = -
-^ {dc'W),^a, is =0 or 1,

according as the point is exterior or interior to the rectangle, viz. the distribution

producing the potential in question is a uniform distribution (density unity) over the

rectangle, which is as it should be.

Potential of a Cuboidal Surface.

29. The preceding formulae lead to the expression of the potential of a cuboidal

surface (viz. the surface composed of the six faces of a cuboid, each of them being

considered as a plate of the same uniform density) upon a point a, h, c. Writing, for

convenience,

E (/, g,h) = U9 + h) log^+ i {h +/) log '-±^ + l(f+g) log (i±|)

-/tan->$ - ff tan-i ^- h tan->-^
,•' p ^ gs hs

where each term is supposed to have (compounded with its expressed sign) a sign +,

as follows: viz. in any fg term (^/log -, 2 9^'^S
—

''^•> or hta,n-^j^j
,

this sign +

is + if / and g are both positive or both negative, but is — if / and g are the

one of them positive and the other negative ; and the like as to the gh terms and

the hf terms respectively. And this being so, the expression for the potential (applying

as well to an interior as to an exterior point) is

F = E(a-Xo, b-yo, c-Zo)

+ E(a-Xi, b-y„, c- z,)

+ E{a-x„, b-yi, c-^„)

+ E(a-x\, b-y^, c-z,)

+ E(a-x^, b-y„, c-z,)

+ E(a-Xi, b-y„ c-2i)

-\rE{a-x^, b-yi, c-Zj)

+ E(a-Xi, b-y^, c-z^).

It is, in fact, easy to verify that the final result, intei-preted as above, represents

the sum of the six positive values, which are the values of the potential for the six

faces of the cuboid respectively.
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603.

ON THE POTENTIAL OF THE ELLIPSE AND THE CIRCLE.

[From the Proceedings of the London Mathematical Society, vol. VI. (1874—1875),

pp. 38—58. Read January 14, 1875.]

The Potential of the Ellipse.

1. I CONSIDER the potential of an ellipse (or say an elliptic plate of uniform

density); viz. this is

V
J \/(a - xY

dxdy

V(a - xf + {h- y)- + c-

'

the limits being given by the equation j2'^'~^-

Writing herein x = infcos u,y = mg sm u,viQ have dxdy=fg mdmdu; and consequently

-IT J- t '>n dm du
* —19 \ I

J V (a — m/cos «)-+ (6 — mg sin u)- + c-

where the integ;rations are to be taken from ni, = to m = 1, and fi'om u= to u = ^tt.

2. It is to be remarked that, by first performing the integration in regard to m,

we may reduce the potential to the form | du . F, where F is an algebraic function of

cos It, sinw; and that the result so obtained, although in the general case too complex

to be manageable, is a useful one in the case f=g, where the ellipse becomes a

circle. The case of the circle will be treated of separately, but in the general case

it will be sufficient to show that the integral is of the form in question.

c. IX. 36
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3. To accomplish this, writing

A=a- + b- + c^

B = a/cos u + bg sin u,

C =f- cos- u + g- sin^ u,

then the integral in regard to m is

in dm
{

'

S^fA:^'.^A-2Bm + Gm-'
which is

= i V^ - 2Bm + Cm" +^^ log iCm -B + '^G'JA- 2Bm + Cm4 .

Taken between the limits and 1, this is

l//^i—o^-7v /^^ B
,

{G-B + ^G^A-2B + G\

and we have therefore

V =fg du -^ (V^ - 25 + - V^l) +fg du ^^^ f . „ [,
log T,

J ^ J {J- cos- u + g^ sm- uy

B
where, for greater clearness, the value of the coefficient —^ of the logarithmic term

has been written at full length.

4. But this coefficient admits of algebraic integration, viz. we have

, r, a/"cosM + 6ffsin« aa sin it — 6/"cos m
fg du—- "^

i = —^ -^ T

;

J {/- cos- V, + g^ sin- ^l,)- (f^ cos- u + g- sin^ u)^

hence, integrating the second term by parts, we have

V=fgjdu ^
{'^A-2B + G- VZ}

aq sin u — bf cos u , „
+ ,—£— i . „ ,. log T

(/ - cos- u + g- sin- «/ "

-/du
ag sin ii, — bf cos u T'

(/'' cos- u + g" sin^ u)- ' T '

T' .

where the second term, taken between the limits u = 0, m = 2-n; is = ; and ^ being

an algebraic function of sin u, cos u, the potential is expressed in the form in question.

5. But we may, by means of a transformation upon u (that made use of in

Gauss' Memoir* on the attraction of an elliptic ring), transform the expression so as

* [Ges. Werke, t. in., pp. 333—355; in particular, I.e., p. 338].
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to obtain the integral in regard to in under a much more simple form. We, in fact,

assume

a + a' cos r + a" sin T
cos u =

sin 11

7 + 7 cos r + 7"sin T'

^ + /3'cosr+/3"sinr

7+7' cos r+ 7" sin T'

where the nine coefficients are such that identically

(a + a'cosy+a"sinr)= + (/3 + ^'cosr+(S"sinr)=-(7 + 7'cosr+7"sinr)= = cos-r+sin^r-l,

(this of course renders the two equations consistent) ; and also that

(a - mfcos u)" + ih- mg sin iif + c^ = ; -,
™ „ . „,., {G + G' cos= T+ G" sin= T).

^ •'
' "^

(7 + 7 cos 2 + 7 sm 2 )-

This last condition gives, for the determination of the coefficients G, G' , G", the identity

ie-G)ie + G') (0 + G") = - (^ + myO (0 + my) 1^-^, +^^ + f
- 1} ;

or, what is the same thing, G, — G', — G" are the roots of the equation

+ 7i r-„ + 7^ - 1 = 0.
+ m^f- +mY

This equation has one positive root, which may be taken to be G, and two negative

roots, which will then be — G', — G" ; viz. G, G', G" are thus all positive ; and G
denotes the positive root of the last-mentioned equation.

6. We have

rfT
" ~ (G + G' cos T + G" sin TJ '

and thence

dT
V=f9J'>ndmj.

(G + G'cos'T+G"siBrT)i'

the integral in regard to T being taken from to 27r; or, what is the same thing,

we may multiply by 4 and take the integral only from to „ ; viz. we thus have

dTV=
4.fr,f^^ dmj-J ^^ ^ ^, ^^^^ y ^ ^„ ^^^ y^^

,

where the integial in regard to T can be at once reduced to the standard form of

an elliptic function, or it might be calculated by Gauss' method of the arithmetico-

geometrical mean.

7. But, for the present purpose, a further reduction is required. Writing

t = G+(G + G')cot'T,

36—2
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we have

t-G =^(G + G'r''^

t+G' =((? + (?')

sin=2"

1

whence

moreover

Hence

t + G" = (G + G' cos= T+ G" sin= T)J^:rrn-
sin- 1

^t-G.t+G'.t + G"=(G + G'){G + (?'cos^r+ G"sm= T)^ ^^;
sin^ T

cos T
dt = -2{G + G')^^dT.

sm' T

dt - 2dT

^t-G.t+G'.t + G" \G+G' cos^ T+ (?" sm= ^li

'

TT
and, observing that to the limits 0, ^ of T correspond the limits qo , (? of t, we

thence obtain

dtV=2fgjmdmj
'cr-^t-G.t+G'.t+G"'

or, what is the same thing,

dtV= 2fg \ indm
j

^t(t + n^^f)it +n,g^{l--^'^_^^,-|)'
i-f'' t + vi-g''

where G denotes, as before, the positive root of the equation

„2 IP c= , -

,
+ TT-. — + 7T - 1 = 0-

e + m-'f- e+my e

8. Writing for t, m-t, and for G, m-G, the formula becomes

dtV = 2fg I m dm I

^t.t+p.t + g-(m--j^,--^
'+/' t + g"- t

where G now denotes the positive root of the equation
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Thus (t is a function of m; but it is to be remarked that the integration in respect

to m can be performed through the integral sign / dt in precisely the same way as

if G were constant, and that we, in fact, have

V=2fg
' r dt /m^-— ^' c° ^ 1 1

where the function of ?u is to be taken between the limits and 1. The reason is that,

differentiating this last integral in respect to m, the term depending on the variation

of the limit G is

V'
a° b- _c^ 1 dG

"'' G+p G + g^ G^G.G+r--G +fdm'

which is =0 in vii-tue of the equation which defines G ; hence the whole result is

the term arising from the variation of m in so far as it appears explicitly.

9. Proceeding next to take the function of m between the two limits : for vi =
we have G= oc , and the integral vanishes ; for m = 1 we have G the positive root

of the equation

a^ b' c- , ^

or, using to denote the positive root of this equation, the value is G=d; we thus

finally obtain

P c- 1

7=2/,/;..^!-^
(fl V t+f- t + g" t »/t.t+f-.t + g^

as the expression for the potential of the ellipse semiaxes (/, g) on the point (rf, b, c).

Case luher-e the Attracted Point is on the Focal Hyperbola.

10. The result becomes very simple when the attracted point is in the focal

hyperbola of the ellipse, viz. when we have b = and y« ^-
— '^. = 1. The function

a- c-

t+p t + g"- t
IS here

c-

p-9' f- P + t t

( a" &
"I

= (« + 5'"-)
(1 + -,

c-\ 1 c-

9V t +p ft

T+r)V f)
t-

t(t+P)V f
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c-f-
Hence also 6 = -=^ ; introducing this value, the function in question becomes

and we have

V=2fa dt
^It + fA-e
\/t.t+f- 'Jt.t+f-.t+f

t.t+p'

which, writing t = x- + 6, becomes

' = ¥9 1
J

^¥9r(
r- Jo V

af+6.a- + e+/
e +/= e

f"-Jo W + d+p x^ + e,

=% fVd^TT^ tan-' --^— - ^je tan-1 f^ ,

= 27r^.(V^+7"^-V^);

c-f-
or, substituting for 6 its value -~

, this is

V = 2iT {'/¥+J- - c),

which is, in fact, the potential of the circle ;r- + y- = g" on the axial point (0, 0, c)

;

and, observing that the value is independent of f, we have at once the theorem that,

considering / as variable, and taking the attracted point at the constant altitude c in

the focal hyperbola -;;, ^—:,
= !> the potential is the same, whatever is the value

of the semi-axis major / of the ellipse.

11. A point in the focal hyjoerbola determines, with the ellipse, a right circular

cone having for its axis the tangent to the hyperbola; viz. the tangent in question

is equally inclined to the two lines joining the point with the foci of the hyperbola,

or with the extremities of the major axis of the ellipse. Taking 6 for the inclination of

the tangent to either of these lines, viz. Q is the semi-aperture of the cone, and 7
for the inclination of the tangent to the axis of z, then it is easy to show that

i~:-. : cos 7

Vcos- 7 — sin^ fj

and we thence have

Wcos'' n/ — sin^ Q '
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viz. the ellipse is here considered as the section of a right cone of semi-aperture 6,

the perpendicular distance from the vertex being = c, and the inclination of this

distance to the axis of the cone being = j ; and this being so, the potential is then

expressed by the last preceding equation. It will be observed that, when <y = — — 6, the

section becomes a parabola, and the potential is infinite ; for any larger value of 7,

the section is a hyperbola, and the formula ceases to be applicable.

12. I originally obtained the result by thus considering the ellipse as the section

of a right cone. Consider for a moment, in the case of any cone whatever, the plate

included between the plane, perpendicular distance from the vertex =c, and the con-

secutive parallel plane, distance =c + dc. Let cZS denote an element of the first plane,

r its distance from the vertex, and r + dr the distance produced to meet the second

plane ; also let dw denote the subtended solid angle. We have d'%dc = r^ dr da, or,

dc dr 1 11
since — = —

, we obtain dS = - »" dm, or - rZS = - f- dto ; wherefore the potential of the
c r c re

plane section is V = -\r-dw, where r denotes the value at a point of the plane

section, and the integration extends over the spherical aperture of the cone.

13. Let the position of r be determined by means of its inclination 6 to the

axis of the cone, and the azimuth ^ of the plane through r and the axis of the cone

;

viz. taking the axis of the cone for the axis of z, suppose, as usual, a; = r sin ^ cos (/>,

2/
= r sin sin 0, z = r cos 6. We have then, as usual, dw = sin 6 d9d(f>; and if the

equation of the plane be a; cos a + 3/ cos ^ + zcosy = c, then the value of r is obtained

from the equation

r {(cos a cos <j) + cos /3 sin (p) sin + cos 7 cos 6] = c;

so that we have for the potential

y _ 1" sin 6 d6 dcj)

{(cos a cos ^ -I- cos /3 sin 4>) sin 6 + cos 7 cos ^j^

'

where the integi-ation is extended over the whole spherical aperture of the cone ; viz.

in the case of a right cone of semi-aperture 6, the limits are from ^ = to 0=6 and

fi'om = to
<f>
= 2-n:

14. Write

(cos a COS -(- cos /3 sin <p) sin + cos 7 cos 6 = M cos (0 — N),

where M, N are given functions of <^ ; then we have

j M'-J cos^ (0 - N)
and the ^-integral is

[sin (e-N)cosN+ cos {0-JSD sin N]d0
P cos-(^-iV^)

= cos iVsec (0-N)+ sin iVlog tan {iTr + ^i6- N)},
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which between the limits is

= cos N {sec {6-N)- sec iV) + sin N {log tan [| tt + ^{e-N)\- log tan {\-k - \N)],

6 now denoting the semi-aperture of the right cone. And we have

F = c/^,t|cosi^(^-^^)-,-^) + -i^[logtan{i. + i(^-iV01-log

We may without loss of generality write cos /3 = 0, and therefore cos a = sin y, where j
now is the inclination of the perpendicular on the plane to the axis of the cone. We
thus have

cos 7 cos ^ + sin 7 cos (f)s'm =M cos {d — N),

that is,

cos 7 =M cos N,

sin 7 cos (^ = ilf sin N
;

tan N = tan 7 cos (/> or N = tan~' (tan 7 cos (^),

ilf2 = cos- 7 + sin" 7 cos- ^ = 1 — sin" 7 sin- ^,

cos iV _ 1

cos {N —6)~ cos ^ + sin ^ tan 7 cos ^
'

15. We have, therefore,

y_J d4> /
_

1 j\

J 1 — sin" 7 sin" Vcos -f sin tan 7 cos <^ /

+ c fT^^^^—^^u {log tan [Itt +16-^^ tan- (tan 7 cos <^)]
J (1 — sni-7sui"0)i ' o Li

- -

— log tan Wv — i tan— (tan 7 cos c^)]).

But
d^ cos ^ sin <^

whence

and

h(1 — sin- 7 sin" ^)* (1 — sin" 7 sin" <\>)'

hence the second line is

c sin 7 -^ ^'.!
, .u (log t'^" [i'^ +2^-2 tan"' (tan 7 cos <^)]

' (1 — sm- 7 sm" 0)4 ^ o Lt
^ -

— log tan [\ir — J tan~' (tan 7 cos <^)])

- c sin 7|d0
(
i_sinT^tin"./,)i rf^

^'^^ **"" ^^'^ + 4^ " i t^n- (tan 7 cos </.)]

— log tan [^TT - ^ tan— (tan 7 cos 0)]).

But, restoring for a moment iV in place of tan"' (tan 7 cos ^), we have

f^
1 . /I _L ifl AA ^^ 1 sin 7 cos 7 sin 1

^^Iogtan(i7r + i0-i\r) =-^ cos (iV - ^)
-

1 - sin" 7 sin" <^ cos(i^-^)'

d diV 1 _sin 7COS7sin0 1

d4
^°^ ^^'^ ^ *'' ~^^ ~~

d<i> ^fN ~ 1 -sin" 7 sin" <^ cos i\r

•
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And then, in place of ^^rf—^ „, writing
'^

cos (iV — 0) cos iV

cos 7 Vl - sin= 7 sin=^ Vcos ^ + sin 6^ tan 7 cos <^ J
'

the expression in question becomes

c sin 7 p, -^T - n. sk !•"? tan [^TT + i ^ - i tan"^ (tan 7 cos </>)]

(1 — sin^7sm^9)* '
o l* ^ ^

— log tan [Jtt — ^ tan~' (tan 7 cos </))])

J ^ 1 — sin^ 7 sin^ <p \cos 6/ + sin p tan 7 cos <p Isin^ 7 sin^ </> \cos ^ + sin 6 tan 7 cos ^
And we have

^^ csm7Sin0
^^^ [!.„. 4. 1 ^ _ i tan- (tan 7 cos (A)]

(1 — sin- 7 sin- 0)*
I o >•* ^ "

— log tan \\tt-\ tan-' (tan 7 cos rf))]j + c I d(j) I 7,-—^—7- -j
o '-* - V / T J) j T

^j,Qg ^ + sin p tan 7 cos </>

16. The integral is here

[ 7 ,
(cos 7 (cos cos 7 — sin sin 7 cos <^)

j ( cos- cos- 7 — sin- ^ sin^ 7 cos- (p

d<i>

1 .

= cos- 7 COS t* —Ta > a <, m
J cos^ a COS- 7 — sin- a sm- 7 CDS'" 9

[
cos fd<f> r

./ COS- cos^ 7 — sin- 6 sin- 7 cos= A J
- cos 7 sin 7 sm P —^-^ '„;, „

—,
' ' J cos- cos^ 7 — sm- sin- 7 cos- <^

cos 7 , COS COS 7 tan rf)

tan~'
Vcos^ 7 — sin- Vcos^ 7 — sin^

COS 7 , , sin sin 7 sin <i ,

-^-: tan"'
.

— 9,
Vcos^ 7 — sin- Vcos- 7 — sin"

as may be immediately verified.

Hence

V= /"'^'^ '^ ^^" ^
{log tan [-^TT + i ^ - i tan-' (tan 7 cos <^)]

V 1 — sin^ 7 sin- <^

— log tan [\-rr - h tan""' (tan 7 cos </>)]}

c cos 7 , , cos cos 7 tan (^

+ -^==4= tan-> , ^^^
Vcos^ — sin- 7 V cos- — sin- 7

c cos fy
, sin sin 7 sin 6

' tan-' -^—

^

V cos^ ^ — sin^ 7 V cos- — sin- 7

— c<^,

which is to be taken between the limits and 2-n-; or, what is the same thing, the

integral may be taken between the limits 0, tt, and multiplied by 2. But as (/> passes

c. IX. 37
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from to TT, the arc of the form tan"' (^ tan(/>) passes through the values 0, -, --^, 0,

TT 77*

but the other arc of the form tan"' (i? sin </>) through the values 0, g-, 0; the first

arc gives therefore a term tt, the second arc a term 0, and the final result is

V^2c^(, '''\ -l),
\v cos- 7 — sin'' '

which is right.

The Potential of the Circle.

17. In the case of the circle we have g=/; the terms containing a", b- unite

throughout into a single term containing a- + b", and there is obviously no loss of

generality in assuming 6 = 0, and so reducing this to a" ;
viz. we take the axis of x

to pass through the projection of the attracted point, the coordinates of this point

being therefore (a, 0, c). We in fact consider the potential

; iLvdij

over the circle x^+ if —f" ; or, writing x = mf cos
(f>, y = mfsin (p, we have dxdy = f'-nidmd^,

and therefore

m dm d<l>

' + c^+ tn'f- — 2r?ia/'cos ^

the integral being taken from hi = to in = 1 , and <^ = to <j) = 2-n:

Writing in the general formula g =f and 6 = 0, we have

I a? c?

where denotes the positive root of the equation

or, observing that
e+f"- e

'

^ t+p t~°'\e+f' t+pj^^xe t

-(t-^)\^e+f')it+p)^et]

t.t+p
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we have also

F=2/^f
i^[t.-d.t + %']dt

e

Je t(t+f')^/t+/-

18. The present particular case gives rise to some interesting investigations. We
may, in the first place, complete the process of first integrating directly in regard to m.

Writing

„_ . [[{nif— a cos
<f>)
+ a cos (p] dm d<f>

~
J [{mf— a cos (py- + a- sin= jt + c-\^

'

the integral in regard to m is

= -. [y/imf— a cos </>)- + a" sin- </> + c" + a cos ^ log [mf— a cos </> 4 ^{mf— a cos <^)=+ a= sin" 4>-\-c^\\

to be taken fi-om m = to m = \; and we thus obtain

V=\d^ { V«" + c- +/ - 2fl/cos
<f)
- VrtM- c'

+ a cos [log (/- a cos + Vre- + c- +/- — 2afcos
<f))

— log (— a cos ^ + '^ar + c-)]\.

Writing for shortness '>/a- + c''
+/'' — 2afcos cf)

= A, the second line of this is

a sin (j) [log (/— a cos cj) + A) — log (- « cos (p + Va= + c'-*)]

— d<f> a- sin- <
-' ;t^=^

\
,

(A (/— a cos ^ -I- A) -a cos </>+ va- + c-'

and we thus have

V= a sin ^ {log (/— o cos + A) — log (- « cos (j) + \^a- + c-)]

' ( A (/-a cos <^ + A) -acos + v«= + c=J

19. We have

/-f-

A

_ (/+ A)(/-acos0- A)
A (/- a cos (^ + A) ~ A ((/- a cos c/))'^ - A=} '

the numerator of which is /= - A- - a cos (/> (/+ A),

=/- + A- + a cos
(f) (

/'— a cos — A) - 2a/ cos cp + a-cos-(f),

= — c- — a^ sin=
(f>
+ a cos

<f)
(/— a cos </> - A ),

and the denominator is = - A (c- + a" sin"
(f)).

The second line of V is thus

=
I
dd) \a - \/a''+^-

^"^^"'^
^

g^ sin' cos (/)
/- g cos </> - A g - sin- (Va° + c- + a cos ^)

j

i 1 A A c' + rt^sin=0 c^ + g'sin-(/) I'

37—2



292 ON THE POTENTIAL OF THE ELLIPSE AND THE CIRCLE. [603

which is easily reduced to

(c- +/^ — afcos (j) &a cos 4> (f~ o. cos <^) c^ Va" + d'

jd<f> A (c^ + a- sin- <^) A c- + a" sin'' </>

„ , . , . , Vtt^ + c^ tan d)
, , ,

the last term oi which is = — ctan ^ -; and we thus have

V = asm (j) [log (/— a cos + A) - log ( — a cos ^ + Va= + c-)j — c tan~' ^

r , |c- +/= — q/cos <j) d^a cos <^ (
/'— a cos 0))

+ j
d.(^

j

~
(c^ + aW<^)A J

between the limits 0> 27r ; or, finally,

Jo ( A (c' + rt-sin=(^) A
J

in partial veriiication whereof observe that for a = we have A = V c- +f', and the

value becomes

which, writing therein g in place of/, agrees with a foregoing result.

20. The process applied to finding the Potential of the Ellipse is really applicable

step by step to the Circle ; but if we begin by assuming g = /', it presents itself

under a different and simplified form. Starting from

V^r- imdm
I'

^'^

J J V a- + C-+ m^p — 2ma/cos

for convenience we assume
P- + Q- = a? + c- ^- m-f\

PQ = maf,

thereby converting the radical into VP- + Q^— 2PQ cos (/>. Writing also

n = a' + c^ + m\f* + 2a^c' + 27u-c"-f- - 2m-a?f\ = (P- - Q^)-,

and hence assuming P- — Q- = VO, and combining with the foregoing equation

P-' + Q'^ = u- + c" + nv'p,

we have

P"- = i (a^ + c^ +my + VO),

Q^ = i(a.^ + c-^ + my=-ViT).

21. This being so, the transformation-equations to the new variable T are

, PCOST+Q
, rr PcOScb-Q

cos <b = -j^
—

y=, ,^ , whence cos 1 = ^^

—

j^. r

,

^ P + Q cos jT
' P -Qcos(j)

\/n sin T . „ \/fi sin 6
P + Qcos2" P-Qcos</>'
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and also

Vn = (P+Qcosr)(P-Qcos0), =P--Q%
We find moreover

and

whence

p+QcosT' P-Qcos(^'

d4> _ '^'^
.

and hence

Vpa + Q2 - 2PQ cos (^ VP^-Q=cos=y'

•^ J J\/p=-Q=cos=r

where the limits of T are from to 27r, or, what is the same thing, we may multiply

by 4, and take them to be 0, ^tt.

22. Assuming next
< = P= - m-f- + (P- - Q=) cof^ r,

•we have

«-P-^ + my^ = (P=-Q-^)g||.

« +«r/==(P=-Q=cos=r)^^,

and thence

V« - P= + m^^ < - Q- + my^ < + ?«=/= = (P- - QO^^ VP^-Q^cos^T';

also

and consequently

c^* = -2(P^-Q=)|^c^r;

dt - 2dT

\/t- F"- + m'f\ t-Q^ + m-p. t + m'f VP- - Q" cos= T

"

7^=0 gives t = cc , and T=^7r gives t^P' — m^f-, —G suppose; and we thus have

V=2r-lmdmr , ^
J J GWt- P-+ m'f-. t - Q- + m-f-. t + m-f-

23. We have

{t-P"- + m-p) (« - Q= + m-f-) = t^ + {m-f - a- - c") t - wi=cy '-,

or, putting niH in the place of t, this is

= m- \m-t- + {m-f — a- — c")t- c"/-},
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or, what is the same thing,

whence, comj^leting the substitution, we have

V= If"- I m dm r —,
^ -,^^-

where the inferior limit 0, = -- G, = —„P- — /- is, in fact, the positive root of the
m- 111' •'

equation

24. We may hence integrate in regard to m, through the sign dt, in the same

way as if 6 were constant ; viz. we have

dt
V=2/^ /V"^'^-OT=--

where the function of m is to be taken between the limits 0, 1 : for m = 0, we have

6=<xi, and the function vanishes; hence, writing ?/; = 1, we obtain

'=^f'\.\/'-i
c- dt

t+f"- t ^t{t+p)'

where 6 now denotes the positive root of

e+p e
"

2.5. But it is interesting to reverse the transformation, so as to bring the radical

back into its original form. For this purpose, taking now

PQ = af,

fl = a* + c* -rp + 2a-c- + 2(ff- - 2a^f",

t = P- -/= 4- (P= - Q') cof^ T,

n cos^ TdT

and consequently

where

and writing

we first obtain

._ , r- n cos' Ti
~-' U (P' - Q- cos' T - p sin- 'J(P= - Q' cos-^ T-p sin= T) {P" - Q' cos'' Tf

'
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and then, writing

F — Q cos (j)

. ^ -v/n sin d)
sin r =

jj
—^ ^ ,F— Q cos <p

we bring in the variable <}>. But it is important to remark that this is not the

quantity which was, at the beginning of the investigation, represented by this letter,

and that it is not easy to see the connexion between the two quantities
(f>.

We find

y^ ^.,
j--" (P-Q cos <t>y (P cos

<l>
- QY d4>

"•
Jo (^+ c- +/'- cos-

(f)
- 2a/cos cf)) (a- + c" +f- — 20/"cos ^)

26. To reduce this, write as before

A = Va" + c- +/- — 2«/cos ^,

and also

<1) = «-
-I- c'- — 2a/' cos <^ +/- cos" ^,

so that the denominator in the integral is = <I>Al

We have

(7^ - Q cos <^)= (P cos <f>-Q)- = (A= - Q'- sin= </>) (A^ - P= sin=
<f)),

= A'- (a- + c= +/•-) A= sin= ^ + arf- sin* <^,

= A= j
A= — (c- +/=) sin^ ^j - a- sin= (^ (A= -f" sin= </>),

= A- (A= - (c- +/0 sin-
(f)}
- a" sin= cj) . <i>,

and hence

_ /•/"-[A'-(c'+/^)sin"-.^]rf</, _ r sin^./.rf0

* ~J $A "--^
J A^ '

the limits being always 0, 27r. But we have identically

d sin ^ _ cos
(f>

nf sin- ^
d<^ A ~ ~A A^ '

and thence

f sin" (I>d4>_ 1 /sin<^\ 1 Ccos^ dcf)

J A5 JTfK K^)~qfJ A '

where the term (
-~

j
is to be taken between the limits, but for the present I retaui

it as it stands. Moreover, A- = <l>+/'-sin=<i), and consequently

A= — (c- +/') sin= (^ = <& - c- sin= <^,

and we thus obtain the result

where the denominators under the integral signs are

A, = Va» + c" +/= - 2a/ cos (^, and cI>A, = (a- + c- - 2«/cos (p + /- c<)s= <^) A.
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27. We may, by a transformation such as that for the change of parameter in an

elliptic integral of the third kind, make the denominators to be A and (c- + a- sin'^ (p) A ;

DA

vaz. for this purpose we assume A = tan"^ -r- , where B and A are functions of <j>

such that we have identically ^=+ £=A= = (c'- + a= sin= (/>) (a- + c= - 2rt/cos +/- cos= <^)

;

the values of B, A are found to be ccos<^ and sin </> (a- +c- - a/cos </>). whence,

dividing each of these for greater convenience by sin ij>, we have

, / c cot 6 A \

\a- + c- — of cos (p
,'

so that, wi-iting now B, ^ = c cot (/> and a- + c- - a/cos <{> respectively, the value is

where

A = tan-(^

and, as before, ^ =a= + c-- 2a/ cos (/>+/= cos= (^, and also 11 = c- + a'- sin- <^. We have

dA (AB'-A'B)^^ + ^AB(^')' (^,^dA ^ \

.

and then

AB' - A'B =J^ (- a- - c» + a/" cos' <^),
sin- (p

^AB (A=)' = ^filL^^ (a^ + c= - «/cos </,) a/sin 4>,
^ ' sm- <p

and the numerator thus is

^4-r f(- a"- - c- -f a/cos' <^) (a" + c= -f /- - 2«/cos ^)

+ a/ cos ^ (1 - cos= <^) (a= -f c= - a/cos ^))

,

which is in fact

sin-<^

or, what is the same thing,

-^. I- (c= -I- a= sin= A>) (a= -1- c- -I-/- - 2a/cos <^)

sin" ^
+ (a/cos (^ - a= cos= </>) (a^ + c^ - 2a/cos (^ -f/^ cos'- </>)!,

- IIA- -I- (a/ cos ^-a- cos= </>) *! ;

= .

^
\- nrf) - n/- sin^ (^ -f (a/cos ^ - a- cos' <^) $),

sin-

and the denominator, by what precedes, is

= J^ . n4>A.
siii'9
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We thus have

1 dA 1 f- sin-
<f> af cos

<f)
— a- cos-

^

c d(f^~^~ OA "^ Ha '

whence, by integration,

1 _ / ccot(/)A N_ fd4> f {afcos (f>
— a- cos- <p)d^ ^., f sin' ^ d(f)

c U- + c— a/cos ^;
~ ~

j A •"
J HA -^'j "^A~ '

which is the required formula of transformation.

28. Multiplying by c", and subtracting from the value of V, we find

\a-+ c^ — a/cos </)/ • V A /

f(c- -'rf- — a/cos (t>)d<f) „ fcos<f>(f— acos(j))d(f>

^J
''

A '^'"'J (c=+a^sin^0)A '

which is to be taken between the limits and 2'7r ; viz. we thus have

" ,' A J (c- + a- sin- </>) A '

agreeing with a former result.

29. But this former result, previous to the final step of taking the integrals

between the limits, was

V='la sin 4> log {
f-^'^-''i>t± \ - c tan- (^Jt±l}?^

V-acos^ + Vcr+c=' V c

f(c- -{-
f- — af cos

<f)) d<f) „ f cos <ji ( f— a cos
(f)) d<i>

^j ^ A "^"".1
(c= + a=sin^0)A '

viz. the integrals are the same, but the integi-ated terms are altogether different

;

the explanation of course is that the <^'s are different in the two formulae, which there-

fore do not correspond element by element but only in their ultimate value between

the limits.

30. In order to discuss numerically the Potential of the Circle,

^/^t-6.t-i-''-f]dt

'='f±—t

this must be reduced to elliptic functions. Writing t = 6-\-x-, we have

JO (of +6) (x- + a^f
'

(of + 6) (X' + a^y

c. IX. 38
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if for shortness

The constants a, /3, Q may be considered as replacing the original constants a, c, /;

viz. from the last two equations and the equation

tt- c- ,

6 +/= e

we deduce

showing that «% /S'-, Q are in order of decreasing magnitude ; viz. a= — /3-, ^-—6, a- —

6

are all positive. The formula may be written

a?{x''-\-er-)dx

{x- + 6) {a? + a=) /«•= + a? . x- + 0^

'

which, in virtue of the identity

(a^ - 6) X' («= + ^"-) = (a= - e) (x- + 6) (x' + a=) - a? {a? - 13') (x' + 6) -0(0'- 6) {x"- + a=),

becomes

J (*= + 0) (a? + a=) V.«--= + «=..«= + ,

\V= (a=-^)f
(Za;

Va;'' + a^ a;' + ^2

- a- (a- - /3-)
' ri

-e{0'-e)\

(.«2 + a=) Va'^ + a-.x- + /3-

da;

-'o (ar' + ^)^/a^= + a^aM^'

31. Writing here a; = acotM, and therefore rf« = — a cosec-M c?i(, to the values

jt = 00 , correspond m = 0, ^tr, and we have

1 ir [-' f^«
\ - a ^ - /on "

(13'- -e) sin'

u

tV= U--0-(ar- 0-)sm-u- —
, a >

J y/ar cos^ u + ^ sin^ «< I
« cos^ u + d sin- ?t

/*" du
\

, . 0(0'-0) , „ ^,„ . „ a'0(^-0) 1
]=

, a- - + , ^
'^ - (or - ;8-) sm^ it \ /j -;; j

—

,
., „ ^ >

.' \/a''cos=iM + /82sm=M I
oi--0 a--0 a- cos- u + sm- u]

Writing k' = l -, we have

Va" cos^ u + ;8- sin- u = a Vl — A;^ sin^ u,

and thence
/3"--0

du
I ,-, 7, • o ^

^""^ 2= 1
1 F = f""

^" x\a(l-k' sin= »)

1 1 1—1 : sin^ u
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Q
viz. writing )i = — 1 + —

,
^so that n is negative and in absolute magnitude < 1), and

moreover ^ = a.-k'" and d = l^n + \)a-, this is

i F = I

" '* — X 1(1 - i-= sin"- u)<x + ~ (n + 1) a
n + l.n + k" 1

a
1 + n sin" u

viz. this is

= « \E,k + k"-
'-^ F,k - 'i + l^!i + iL= n. (n, k)

(
11 n

.

32. This may be further reduced by substituting for the complete function

111 (?i, k), its value ; viz. writing

n=(-l+~] = -l + k'- sin- X,

that is, sin- X = ^ ; then, writing the value first in the form

a \E,k - {n + 1) F,k - " + ^ -^^ + ^ |-n^ („, k) - F,k]

and observing that

n + l.n + ¥.
, p.. A;''' sin" X cos''

\

^ [n, («, k) - F,k] = ^_^,^-^,^ [n, (», A-) - ^,A^]

= ^^^^^k-rr + (F,k-E,k)F{k',X)-F,k.E{k',X)\,
V 1 — A- - sm" X I 1

we have

1F= a \E,k - k'-^ sin= X F,k -
^"^'^^'^"^^

[^^ + (^p^j, _ eJc) F {k\ X) -FJc.E (k\ X)][ ,

t vl — AT"sin"X J

where

or, what is the same thing,

k = j.y ^ , sin"X=7r-, = r,

'^ $'

8 being, it will be recollected, the positive root of

33. Thus when in particular a = 0, we have = c", and thence

a = Vc" +/", A; = 0, ^-'=1, sinX =

38—2
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i F= -^TT Vc- +/= {1 - sin= X - sin X (1 - sin X)),

= i TT \/c=T7= ( 1 - «in X), = 1 TT ( \/c= +7" - c).

F = 277(Vc=+/=-c),

which is right.

34. If c = 0, a being >/, then = a- —f", k = ~, X = ^7r, a=a; so that, retaining

f
k as standing for its vahie - , we have° a

{V=a(E,k-k'-'F,k), or V=ia{E,k -k'' F,k),

which may easily be verified.

If c = 0, a being < f, then, recurring to the original equation for the determination

of 0, viz. (6 +/-) ( "^^ + ^^ - l] =0, which for c = becomes 0(9 +f-)(0 -a' +f-) = 0,

we have (as the positive root of this equation) ^ = 0; whence a=f; also, observing

that 1— -3 = :?;, k = -,, and sin''X =
('J J

'I c^ • \—— f where -^ is finite
j

, =0, and retaining k

to denote its value =•>, we obtain lV=fEik, or V= ^^fEJc.

If a =/, then in each of the formulae ^- = 1 ; and since in the first formula

4
k'^FJc, k nearly =1, is =^'"log7;/. vanishing for ^ = 1 or ^'=0, we have F=4/^il, =4/

Section of Equipotential

surfaces of a Circle.

F i F 2

It would be interesting to consider the value of the potential at different points

of the ellipse -^—a+a — ^ (^ constant, a, c current coordinates). For this purpose
J + u V

writing a = V/^ + cos q, c = Vising, we should have a =
\/f'- + (a constant), and

, _ / cos q i> _^^ +/^ sin^ q

^/r-+0

sin X =
V6I

V(9 +/-

!

cos X =

V/^ +

fsinq

\f0 +/ sin- q

and then V through A;, k', X, is a given function of q.
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35. Suppose, to fix the ideas, /= 1, and consider the points (0, c) and (a, 0), which

have equal potentials. First, if a >f (that is, a>\), then writing k = -, the relation is

and we have

277 (Vl + c^ - c) =
I
{E,k - k'-F,k) ;

i^,30°=l-68.575, ^1 30° =1-46746, - = 127324.
TT

Secondly, if a <f (that is, a < 1), then writing k = a, the relation is

27r(Vf+c=-c) = 4^,A,-.

(1) In particular a = |, = sin 30°, this is

(2) a = l, then

TT

(3) a =2, yt = ^, = sin 30°,

Vl + c^-c = -^i30° = -93421.
TT

Vl+c^-c = - = -63662.

//Tj:^ -c = -{E, (30°) - fi^i (30°)j = -25866.
TT

But if Vl + c^ — c = m, then c = li- ( m
|

; whence

a
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604.

DETERMINATION OF THE ATTRACTION OF AN ELLIPSOIDAL

SHELL ON AN EXTERIOR POINT.

[From the Proceedings of the London Mathematical Society, vol. vi. (1874—1875),

pp" ,58—67. Read January 14, 1875.]

The shell in question is the indefinitely thin shell included between two con-

centric, similar, and similarly situated ellipsoidal surfaces, the density being uniform

and the attraction varying as the inverse square of the distance.

It was shown by Poisson that the attraction was in the direction of the axis of

the circumscribed cone, and expressible in finite terms ; the theorem as to the

direction of the attraction was afterwards demonstrated geometrically by Steiner, Crelle,

t. XII. (18.34), his method being to divide the shell into elements by means of conical

surfaces having their vertices at an interior jioint Q ; and the investigation was about

two years ago completed by Prof Adams, so as to obtain from it the finite expression

for the attraction of the shell. The process was explained in a lecture at which I was

present: I did not particularly attend to the details of it; and I now reproduce the

solution in my own form, stating, in the first place, the geometrical theorems on which

it depends.

Statement of the Geometrical Theorems.

1. We consider (see figure, p. 305) an ellipsoid, and two corresponding points, an

external point P, and an internal point Q ; as will appear, the correspondence is not

a reciprocal one. The points are such that each of them is, in regard to the ellipsoid,

in the polar plane of the other ; moreover PQ is the perpendicular at P to the polar

plane of Q ; that is, Q being regarded as given, then P is determined as the foot of

the perpendicular let fall from Q upon its polar plane ; to a given position of Q
there corresponds thus a single position of P. It follows that PQ is the normal at
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P to the confocal ellipsoid through this point ; that is, given the position of P, then

Q is the intersection of the polar plane of P by the normal at P to the confocal

ellipsoid. Analytically, to a given position of P, there correspond three positions of Q,

viz. these are the intersections of the polar plane of P by the normals at P to the

three confocal surfaces through this point, and the correspondence of the points P, Q
is a (1, 3) correspondence ; but the other two positions of Q are external to the

ellipsoid, and we are not concerned with them ; we determine Q as above by means

of the normal to the confocal ellipsoid.

2. If through the point Q we draw at pleasure a chord R'QR", and join the

extremities B', R" with P, then the line PQ bisects the angle R'PR"; whence also

PR' : QR' = PR" : QR", or writing QR', QR" = r, r" and PR', PR"^p', p", then %=^,.

Putting each of these equal ratios = p , where H is a length depending on the

position of Q but independent of the direction of the chord R'QR", then R will be

a length depending on the direction of the chord, and if along the chord (say in

the sense Q to R') we measure off from Q a length QT, = R, thence the locus of

the extremity T of this line will be an ellipsoid, centre Q, similarly situate to the

•given ellipsoid, say this is the "auxiliary ellipsoid."

Consider now the given ellipsoid and a concentric and similarly situated similar

ellipsoid, exterior to and indefinitely near it. To fix the ideas, let the serai-axes

of the given ellipsoid be mf, mg, mli, and those of the consecutive ellipsoid be

{m + dm)f, (m + dm) g, (in + dm) h. Producing the chord R'R" to meet the consecutive

ellipsoid in S', S", then the radial thicknesses R'S', R"S" of the included shell will

be equal to each other, or say each = Adm, where A is a quantity dependent as

well on the position of the point Q as on the direction of the chord R'R" through

this point.

3. Let 2(j) denote the angle R'PR", or, what is the same thing, let
<f)

denote

either of the equal angles R'PQ, R"PQ; then, R, A being as above, it is found that

viR
cos = —7— .^ A

Determination of the Attraction of the Shell.

4. We may now solve the attraction-problem. We consider the indefinitely thin

shell (density unity) included between the given ellipsoid and the consecutive ellipsoid,

and attracting the exterior point P. We determine the corresponding interior point

Q, and then dividing the shell into elements by means of indefinitely thin cones

having their vertices at Q, we consider in conjunction the elements determined by

any two opposite cones, say the two opposite cones, having for their axis the chord

R'QR" and a spherical aperture = do). The shell-element at R' is

r'^'do) . R'S' = r'-Adw dm
;
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its attraction on P is therefore

-^Adco dm, = T=r„ A dm da>,
p

- IP

and the attractions in the directions QR' and PQ are this qnantity multiplied by
sin

(f)
and cos

(f>
respectively.

R'
5. But the shell-element at R" exerts upon P the same attraction ^„ A dm da,

and the attractions in the directions QR" and PQ are this quantity multiplied by
sin

(f>
and cos ^ respectively : hence the attractions in the directions QR', QR" exactly

counterbalance each other, and there remain only the two equal attractions in the

direction PQ; viz. this, for either of the elements in question, say for the element

at R', is

= Q., A cos
(f)
dm dm,

or, substituting for cos ^ its value, = —r- , this is

m dm „= -^R^d^.

Hence the whole attraction of the shell is in the direction PQ, its value being

m dm / /

over the whole solid angle at Q; and recollecting that R denotes the radius vector

in the auxiliary ellipsoid, we have the volume of this ellipsoid

= III r" dr da^lji R' da,

that is,
1

1 R^ da> = thrice the volume of the auxiliary ellipsoid, = ^ttFGH, if F, G, H
are the semiaxes of the auxiliary ellipsoid. That is.

Attraction of shell = ^^ 4<TrFGH.

The problem is now solved ; but it remains to prove the geometrical theorems, and

to determine the values of the quantities fl, F, G, H, which enter into the

expression for the attraction ; and we may also dedtice the formula for the attractions

of a solid ellipsoid.

Proof of the Geometrical Theorems.

6. I take

a?- 11^ z-

for the equation of the ellipsoid ; a, b, c for the coordinates of P
; f, ;;, f for those

of Q ; a, j3, y for the cosine-inclinations of the radius QR' to the axes. Hence, in
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the equation of tlie ellipsoid, substituting for a\ y, z the values | + ra, t) + ?-/3, f + j-ry,

and writing for shortness

a= /3^ 7=

/- 5-- h-

C=^ + - + j.,
— 'm-, (C being therefore negative),

we have »•', — r" as the roots of the equation

Ar- + 2Br + G = 0:

viz.

2B__ „ C___
, „

A~ "^ ^
' A~ '' '

and thence

, -B-V^&-AQ „ B+'JB"--AC
, „ 2'JR--AG

r = -^ ,r =
^ ,r+r :

-^ .

7. Suppose for a moment that the semidiameter parallel to R'R" is =mv; we

have evidently v-= ^ . And then, if in the central section through R'R' the conjugate

semidiameter is mu, the equation of the section referred to these conjugate axes

will be —r^, + „.,= !, or say, y- = m-v- , ar', where y is the coordinate parallel to

R'R", so that, taking the coordinate to belong to the point R', we have

, , , „, ^B"--AG
y = ^{r +r)= ^ .

For the exterior surface of the shell, m is to be changed into m + dm ; hence, y and m
alone varying, we have

ydy= mv" dm, = m dm -j ,

M

that is.

dy = 7n dm
^B'-AG

0. IX. 39
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viz. this is the vakie of the radial thickness R'S' of the shell ; or, since the same

process applies to the point R", we have

R'S'=R"S" = mdm
^R-AG

m
or, calling this, as above, A dm, the value of A is = - __ -^

.

\ B' — AG

8. The points P and Q are connected by the condition that, for every direction

whatever of the chord RR", we have

PE : PR"^QR' : QR",

or, what is the same thing, that the line QP bisects the angle R'PR". Taking

PR' = p, PR" = p", the condition is p' : r = p" : r" ; and taking («, h, c) as the

coordinates of the point P, we have

p'-^ = (^ + r'a - a)- + (i; + r'/S -&)= + (?+ r'7 - cf

= a' + 27'U + r'\

if, for shortness,

^= = (? - af + {v-br- + {^- c)\ (= QP\

and similarly
p"'^ = a'-2r"U+r"\

The required condition therefore is

r r Y - y.

viz. this is

so that, omitting a factor, it becomes

that is,

aK -.j— +2f7 = 0, or U=
Y^,

which must be satisfied independently of the values of a, ^, y.

9. Writing, for greater convenience, -^ = —9, the equation is U = — 6B, viz.

substituting for U, B their values, this gives ^ - a + -^ = 0, &c., or say,

»=f(i+|),
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and the assumed relation -, = — ^ is

viz. substituting for a, b, c the foregoing values, and omitting a factor 0, this is

or, writing for shortness

the equation is

e = -il"-G.

We thus see that, (^, t?, f) being given, 6, and therefore also (a, h, c), are uniquely

determined. It may be added that, writing G = — -^ , we have 6- = n-a", or say flo- = 0.

10. We have, moreover,

and

= — + ?)t- + C = m-
;

whence
a= 6° c° _ 2

or, regarding (a, b, c) as given, ^ is determined as a function of (a, b, c) by this cubic

equation ; and 6 being (in accordance with the foregoing equation 6 = — H-G) assumed

to be positive, we have 6 the positive root of this equation, and m-{0+f'^), m-{6+g^),

m-{6 + h-) as the squared semiaxes of the confocal ellipsoid through the point P. And

6 being known, f, 17, ^ are, by the foregoing equations a = Ml +7^), &c., determined

in tei-ms of ^, 7;, ^; that is, starting from the given external point P, we have the

internal point Q. And it appears that PQ is the normal at P to the confocal ellipsoid,

or, what is the same thing, the axis of the circumscribed cone, vertex P.

11. The foregoing equation

|] {6 +r-) + 1 (^

+

f)

+

/7
(^ + /^') = "^''

considering a, b, c, and therefore 6, as given, shows further that the point Q is situate

on an ellipsoid which is the inverse of the confocal ellipsoid ^

—

^„ + ^-7—„ + -^—r; = m-
p +/ - o -tQ' u + n.

xP y^ z"
in regard to the given ellipsoid p, + ~;+ T-„

= ')n-.

39—2
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12. Expressing Q. in terms of a, b, c, we have

1 cv' 6^ c-

whence

or, since

this is

6"

We have 0-2=02' = ^'^'' ^"^^

r r -

- ^'
if ^ - ^ 4G'

This last equation may also be written

or, what is the same thing,

if for shortness

J__J__0

1 _ 1 _C

a

viz. substituting herein for C its value — ^„ , these equations give

where fl stands for its expression in terms of a, b, c.
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13. The expression for „., shows that R is the radius vector, cosine-inclinations

a, j3, y, in an ellipsoid semi-axes F, G, H, which may be regarded as having its centre

at Q ; viz. this is the " auxiliary ellipsoid." And this being so, we have

r r R

It appears Irom these equations that, drawing from Q parallel to PR" a line

QM, = n, and from its extremity M parallel to PQ a line to meet QR' in T, the

locus of T is the auxiliary ellipsoid.

14. By what precedes, the angles R'PQ, R"PQ are equal to each other, say each

is =</>; the triangle R'PR" gives

that is,

viz. this is

cos 2^ = '^

q ,,, ,

4<pp

~ U= iiv 4rV"

_ M^-AG) -A

= R'{R--AC);

or say

cos<^ = i?V£^-^6';

a remarkable equation which may also be written

cos <i = ~ . i (r' + r"),
V-

if, as before, v is the semi-diameter parallel to R'R".

In virtue of the equation A = , which defines A, the equation becomes
^ 'JB'-AG

^

mR

and we thus complete the demonstration of the several geometrical theorems upon

which the investigation was founded.
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Analytical Expressions for the Attraction of the Shell, and for the Resolved Attractions.

15. The attraction of the shell was shown to be

or, since the mass of the shell, the density being unity, is

-i^fgh . Zm-dm = 4m- dm -rrfgh,
o

we have

1 ^GH
Attraction -;- Mass =—z^„ -^-r-

;

mil- fgh

which, by what precedes, is

n
m'^if"- + e)ig"- + 0){h' + 0)

where

1 a? b" c'

n= - (p + ey ^ (g^ + ey ^ {h' + ey

'

6 being the positive root of

a- b- c- _ „

f' + d^g"' + e^h' + d~"'''-

16. It is to be observed that the cosine-inclinations of the line PQ to the axes are

afl 6n oil

f^:\re' f^re' w+~e'

respectively; so that, considering, for instance, the attraction parallel to the axis of x,

we have

aDJ^
Resolved Attraction -=- Mass =

m if"- + 6) ^(p + 0) if + 0) (A= + 0)

a;2 y"- ip.

Resolved Attractions of the Ellipsoid ^ + ^ + r^ = 1-

17. We may find the attraction of the solid ellipsoid

ay' y^ z- ^—\-'^ A— = 1.

For this purpose, dividing it into shells, semi-axes mf mg, mh, and (m + d)n)f {m + dm) g,

{m+dm)h respectively, we have for the shell in question

Resolved Attraction -r- Mass =
m if"- + 0) 4if' + 0) if- -f- 0) (/i= + 0)
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4t7r
and the mass of the shell is -^fgh.^m-dm, where the first factor is the mass of

o

the ellipsoid ; whence

a . Smfl^ dm
Resolved Attraction -r- Mass of Ellipsoid = —-

6 being here a function of m, and m extending from to 1. But taking 6 as the

variable in place of m, the equation

a" IP c"
,

gives

— -=r;,dd = 2m dm ; that is, SmD,- dm = — ^0.

Moreover m = gives 6=od , and m = 1 gives = its value as defined by the equation

g^ b- c" _

so that, reversing the sign, the limits are <x> , 0; or, finally, writing under the integral

sign (j> in place of 0, the formula is

Resolved Attraction -^ Mass of Ellipsoid = |a I
^

,

^ Je (/= + <^) V(/= + </>) if + (/.) (/r + <^)

which is a known formula.
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605.

NOTE ON A POINT IN THE THEORY OF ATTRACTION.

[From the Proceedings of the London Mathematical Society, vol. VI. (1874—1875),

pp. 79—81. Read February 11, 1875.]

Consider a mass of matter distributed in any mamier on a surface, and attracting

points P, Q not on the surface. Consider a point Q accessible from P, viz. such that

we can pass continuously from P to Q without passing through the surface. (It is

hardly necessary to remark that, if for example the matter is distributed over a

hemisphere or segment of a closed surface, then by the surface we mean the hemisphere

or segment, not the whole closed surface.) The potential and its differential coefficients

ad infinitum, in regard to the coordinates of the attracted point, all vary continuously

as we pass fi-om P to Q ; and it follows that the potential is one and the same

analytical function of (a, b, c), the coordinates of the attracted point, for the whole

series of points accessible from the original point P ; in particular, if the surface be

an unclosed surface, for mstance a hemisphere or segment of a sphere, then every

point Q whatever not on the surface is accessible from P ; and the theorem is that

the potential is one and the same analytical function of (a, h, c), the coordinates of

the attracted point, for any position whatever of this point (not being a point on

the surface). But this seems to give rise to a difficulty. Consider the matter as

uniformly distributed over a closed surface, and divide the closed surface into two

segments : the potential of the whole shell is the sum of the potentials of the two

segments ; and the potential of the first segment being always one and the same

function of (a, b, c), whatever may be the position of the attracted point, and

similarly the potential of the second segment being always one and the same function

of (a, b, c), whatever may be the position of the attracted point ; then the potential

of the whole shell is one and the same function of (a, b, c), whatever may be the

position of the attracted point. This we know is not the case for a uniform spherical
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shell ; for the potential is a different function for external and interior points, viz.

. . . M
for internal points it is a constant, = il/ -r- radius ; for external points it is = ,

- — ,^ ^
\/a= + 6» + c=

if a, b, c are the coordinates measured from the centre of the sphere.

The difficulty is rather apparent than real. Reverting to the case of an unclosed

surface or segment, and considering the continuous curve from P to Q, let this be

completed by a curve from Q to P through the segment; viz. we thus have P, Q
points on a closed curve or circuit meeting the segment in a single point. To fix

the ideas, the circuit may be taken to be a plane curve, and the position of a point

on the cii'cuit may be determined by means of its distance s from a fixed point on

the circuit. Considering this circuit as drawn on a cylinder, we may at each point

of the circuit measure off, say upwards, along the generating line of the cylinder, a

length or ordinate z, proportional to the potential of the point on the circuit, the

extremities of these distances forming a curve on the cylinder, say the potential curve.

We may draw a figure representing this curve only ; the points P, Q being marked

<r^^

as if they were points on the curve (viz. at the upper instead of the lower extremities

of the corresponding ordinates z) : the generating lines of the cylinder, and the plane

section which is the circuit, not being shown in the figure. The potential curve is

then, as shown in the figure, a continuous curve, viz. we pass from P to Q in the

direction of the arrow, or along that part of the circuit which does not meet the

segment, a curve without any abrupt change in the value of the ordinate z or of

any of its differential coefficients, ^ , -r~„, &c. ; but there is, corresponding to the

point where the circuit meets the surface, an abrupt change in the dii-ection of the

dz
potential curve or value of the differential coefficient ~r , viz. the point on the curve

is really a node, the two branches crossing at an angle, as shown by the dotted

lines, but without any potentials corresponding to these dotted lines.

In the case of two segments forming a closed surface, or say two segments forming

a complete spherical shell ; then, if the points P, Q are one of them internal, the other

external, the circuit, assuming it to meet the first segment in one point only, will meet

the second segment in at least one point ; the potential curves corresponding to the two

segments respectively will have each of them, at the point corresponding to the intersec-

tion of the circuit with the segment, a node ; and it hence appears how, in the potential

curve corresponding to the whole shell (for which curve the ordinate z is the sum
of the ordinates belonging to the two segments respectively), there will be a dis-

continuity of form corresponding to the passage from an exterior to an interior point.

C. IX. 40
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This is best shown by the annexed figure, which represents a uniform spherical shell

made up of two segments, one of which is taken to be a small segment or disc

having the point A for its centre, the other the large segment B, which is the

remainder of the shell; the circuit is taken to be the right line ..PAQB.. through

Q A P

the centre of the sphere (viz. we may imagine the two extremities meeting at infinity,

or we may, outside the sphere, bend the line so as to unite the two extremities,

thus forming a closed curve). The curve (a) represents the potential curve for the

segment A, the curve (b) that for the segment B, these two curves having, as shown

by the dotted lines, nodes corresponding to the points A, B respectively (but these

dotted portions not indicating any potentials) ; and then, drawing at each point the

ordinate which is the sum of those for the curves (a), Q>) respectively, we have the

discontinuous curve (c), composed of a horizontal portion and two hyperbolic branches,

which is the potential curve for the whole spherical shell.

Practically the figure is constructed by drawing the curves (c), (a), and from

them deducing the curve (6). As regards the curve (a) it may be noticed that,

treating the segment (a) as a plane disc, the curve (a) is made up of portions of

two hyperbolas ; viz. it breaks up into two curves, instead of being, as assumed in

the discussion, a single curve ; this is a mere accident, not affecting the theory

;

and, in fact, taking the segment to be what it really is, the segment of a sphere

the potential curve does not thus break up.
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606.

ON THE EXPEESSION OF THE COORDINATES OF A POINT OF
A QUARTIC CURVE AS FUNCTIONS OF A PARAMETER.

[From the Proceedings of the London Mathematical Society, vol. vi. (1874—1875),

pp. 81—83. Read February 11, 1875.]

The present short Note is merely the development of a process of Prof. Sylvester's.

It will be recollected that the general quartic curve has the deficiency 3 (or it is

4-cursal) ; the question is therefore that of the determination of the subrational *

functions of a parameter which have to be considei'ed in the theory of curves of the

deficiency 3.

Taking the origin at a point of the curve, the equation is

{x, yY + {x, yf + {x, yf+{x, y) = 0;

and wi-iting herein y = Xx, the equation, after throwing out the factor x, becomes

(1, \y «= + (!, X)=a;-+(1, X)=a; + (1, \) = 0;
or, say

aar* + 36a,- + Zcx + d = 0,

where we write for shortness

a, b, c, d = {\, \)^ 1(1. ^y. HI. MS (1, X);

viz. a, b, c, d stand for functions of \ of the degrees 4, 3, 2, and 1 respectively.

The equation may be written

(ax + bf-S (b- - ac) (ax + b) + d'd - 'iabc + 26' =
;

* The expression "subrational"' includes irrational, but it is more extensive; if 1', X Me rational

functions, the same or different, of y, x respectively and Y ia determined as a function of x by an equation

of the form l' = .\', then !/ is a subrational function of .r. The notion is due to Prof. Sylvester.

40—2
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viz. writing for a moment ax+b — 2 V6- — «c . «, this is

, , ., a''d-3abc+2b'
iu" — -iu H = 0.

2 (b- - ac) 'Jb^ - ac

Hence, assuming

a-d - Sabc + 2¥— cos d) = -.—=—^^

,

2ib--ac)vb--ac

then we have 4;*' — 3m — cos
<f>
= 0; consequently u has the three values cos ^<^, cos ^^ (<^ + 27r),

cos ^ (0 — 27r), and we may regard cosjc^ as representing any one of these values.

We have thus ax + b = 2v b- — ac cos
^<f>,

and y^Xx, giving x and y as functions

of X and
(f),

that is, of X. But for their expression in this manner we introduce the

irrationality 'Jb- — ac, which is of the form \/(l, Xf, and the trisection or derivation

of cos^(f> from a given value of cos^; viz. we have, as above, — cos ^, a function of

X of the form

(1, x)''-(i, \)W(T7xf.

The equation for (/> may be expressed in the equivalent forms

. , a V- (a'd^ + 4ac' + 46'c^ - 6abcd - Sb-c-)
sm = ^ —= ^

,

(b- — ac) v6^ — ac

a -J-ja-d^ + 4ac^ + 46^rf - Gabcd - 36¥)
^''^ "^

~
aH- Sabc + 2b'

'

and inasmuch as we have

^^^^-^^^_aM-^ah^
{b- — ac) cos ip

we may, instead of

ax + b = 2v6- — ac cos ^^,
write

,_ (g'rf - Sabc + 2¥) cos ^<}>ax +0 — Tfz r
-

;

(o- — ac) cos 9
or, what is the same thing,

_ - ja^d - Sabc + 2b')

~ (6= -ac) (4 cos4<^- 3)"

The formulae may be simplified by introducing /i, a function of X, determined by

the equation

c/j? - 2b/j. + a = 0;

viz. this equation is

HI, x)v^-§(i, x)> + (i, xy = o,

so that (X, yu.) may be regarded as coordinates of a point on a nodal quartic curve,

or a quartic curve of the next inferior deficiency 2. And we then have

(CyK.- b) = 'Jb'^- ac.
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and consequently

, a?d - 3a6c + 26'
-cos,^ =-2^—^-^j- ;

viz. cos ^ is given as a rational function of the coordinates (X, fi) ; there is, as before,

the trisection; and we then have

a* + 6 = 2 (c/i — h) cos ^</>, y = Xx,

giving X and y as functions of \, fi, (p; that is, ultimately, as functions of \. I have

not succeeded in obtaining in a good geometrical form the relation between the point

(x, y) on the given quartic and the point (X, /t) on the nodal quartic.

Reverting to the expression of tan </>, it may be remarked that a = gives the

values of X which correspond to the four points at infinity on the given quartic

curve ; a'd- + 4ac' + 46'(Z — Qabcd — ^bV = 0, the values corresponding to the ten tangents

from the origin ; and a-d — 2abc + 21" = 0, the values corresponding to the nine lines

through the origin, which are each such that the origin is the centre of gravity of

the other three points on the line.

I take the opportunity of mentioning a mechanical construction of the Cartesian.

The equation r' = — A cos 6 —N represents a lima^on (which is derivable mechanically

from the circle r' = — A cos 6), and if we effect the transformation r' = r-\— , the new
r

curve is ?•+ — + .4 cos^+ iV"=0; that is, r= + r(^ cos0 + iV) + 5 = 0, which is, in fact,

the equation of a Cartesian. The assumed transformation r' = r -{— can be effected

immediately by a Peaucellier cell.
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607.

A MEMOIR ON PREPOTENTIALS.

[From the Philosophical Transactions of the Royal Society of London, vol. CLXV. Part ii.

(1875), pp. 675—774. Received April 8,—Read June 10, 1875.]

The present Memoir relates to multiple integrals expressed in terms of the (s+1)
ultimately disappearing variables {x, .

.
, z, w), and the same number of parameters

(a, .
. , c, e) ; they are of the form

/
pdvT

{{a -xf-\-..-ir{c-zf + {e- w)2}i»+«

'

where p and rftn- depend only on the variables {x, .., z, w). Such an integral, in regai-d

to the index \s + q, is said to be " prepotential," and in the particular case q = —^
to be "potential."

I use throughout the language of hyper-tridimensional geometry : (x, .
.

, z, w) and

(a, . . , c, e) are regarded as coordinates of points in (s + l)-dimensional space, the former

of them determining the position of an element p rfro- of attracting matter, the latter

being the attracted point ; viz. we have a mass of matter = I p dis distributed in such

manner that, dTs being the element of (s + 1)- or lower-dimensional volume at the point

{x, . . , z, w), the corresponding density is p, a given function of {x, . .
, z, iv), and that the

element of mass pdts exerts on the attracted jjoint (a, . ., c, e) a force inversely proportional

to the (s-F2f/+l)th power of the distance [{a- x)" + .
. -y{c — z)- + {e — wy]^. The integra-

tion is extended so as to include the whole attracting mass 1 p d-sr ; and the integral

is then said to represent the Prepotential of the mass in regard to the point (a, .., c, e).

In the pai-ticular case s=2, q = —^, the force is as the inverse square of the distance,

and the integral represents the Potential in the ordinary sense of the word.

The element of volume d^ is usually either the element of solid (spatial or (s -I- 1)-

dimensional) volume dx . . dzdw, or else the element of superficial (s-dimensional)

volume dS. In particular, when the surface (s-dimensional locus) is the (s-dimensional)
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plane w=0, the superficial element dS is =dx...dz. The cases of a less-than-s-dimen-

sional volume are in the present memoir considered only incidentally. It is scarcely

necessary to remark that the notion of density is dependent on the dimensionality of

the element of volume d-^: in passing from a spatial distribution, pdx...dzdw, to a

superficial distribution, p dS, we alter the signification of p. In fact, if, in order to

connect the two, we imagine the spatial distribution as made over an indefinitely thin

layer or stratum bounded by the surface, so that at any element dS of the surface

the normal thickness is dv, where dp is a function of the coordinates (x, .
.

, z, lu) of the

element dS, the spatial element is = dv dS, and the element of mass pdx. ..dzdw is

= pdvdS; and then changing the signification of p, so as to denote by it the product

p dv, the expression for the element of mass becomes p dS, which is the formula in

the case of the superficial distribution.

The space or surface over which the distribution extends may be spoken of as the

material space or surface ; so that the density p is not = for any finite portion of the

material space or surface ; and if the distribution be such that the density becomes =
for any point or locus of the material space or surface, then such point or locus,

considered as an infinitesimal portion of space or surface, may be excluded from and

regarded as not belonging to the material space or surface. It is allowable, and

frequently convenient, to regard p as a discontinuous function, having its proper value

within the material space or surface, and having its value = beyond these limits

;

and this being so, the integrations may be regarded as extending as far as we please

beyond the material space or surface (but so always as to include the whole of the

material space or surface)—for instance, in the case of a spatial distribution, over the

whole (s + l)-dimensional space; and in the case of a superficial distribution, over

the whole of the s-dimensional surface of which the material surface is a part.

In all cases of surface-iutegi'als it is, unless the contrary is expi-essly stated,

assumed that the attracted point does not lie on the material surface ; to make it

do so is, in fact, a particular supposition. As to solid integrals, the cases where the

attracted point is not, and is, in the material space may be regarded as cases of

coordinate generality ; or we may regard the latter one as the general case,

deducing the former one from it by supposing the density at the attracted point to

become = 0.

The present memoir has chiefly reference to three principal cases, which I call

A, C, D, and a special case, B, included both under A and C : viz. these are :

—

A. The prepotential-plane case
; q general, but the surface is here the plane

w = 0, so that the integral is

pdx ...dz

I {{a-xy- + ... + (c - zy + e=i*''+«

B. The potential-plane case
; q = — 2, and the surface the plane w = 0, so that

the integral is

pdx ... dz/ pdx ...dz

J {(a-xy + ... + (^ zf + e"}*"-
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C. The potential-surface case
; q = — ^ the surface arbitrary, so that the integral is

r pdS

j {(a - xf + ... + (c -^)= + (e - w)2)i»-4
•

D. The potential-solid case
; q = — ^, and the integral is

pdx ...dz dw

j Ua-oc)-{{a - x)- + ... + (c - z)- + (e - w)-]i»-i

"

It is, in fact, only the prepotential-plane case which is connected with the partial

differential equation

rfa- dc^ de- e deJ

considered in Green's memoir* "On the Atti-actions of Ellipsoids" (1835), and called

here "the prepotential equation." For this equation is satisfied by the function

and therefore also by
1

[{a- xf + ... + (c- zY + e'l^'+i'

and consequently by the integral

\dx ...dz
f

pdx...dz

]{{a-xf + ...+{c-zy + e']i'+'' ^ ''

that is, by the prepotential-plane integi-al; but the equation is not satisfied by the value

1

{{a-xf+...+{c- zf -^ (e - ?y)2}is+9 '

nor, therefore, by the prepotential-solid, or general supei-ficial, integi-al.

But if 9 = — ^, then, instead of the prepotential equation, we have " the potential

equation
"

f
d- Ci- d^\ y_ „ .

\da- '" dc- de'/
'

and this is satisfied by

{a-+ ... + c-+e'}i'-i'

and therefore also by
1

[ia-xy+ ... + {c- zY + (e- wy}i"i

'

Hence it is satisfied by

r pdx ... dzdw ,j..

}\(a-xf+...+(c- zy 4- (e - luY]^'-^
^ ''{{a-xf+...+{c- zY 4- (e - w)''}^'-*

' [Green's Mathematical Papers, pp. 185—222.]
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the potential-solid integral, provided that the point {a, .
.

, c, e) does not lie within the

inaterial space : I would rather say that the integi-al does not satisfy the equation,

but of this more hereafter; and it is satisfied by

pdS

h (a -«)-+ ... + {c - z)- + {e - u'f}i'-^ ^ ^'
IV

the potential-surface integral. The potential-plane integral (B), as a particular case of

(C), of course also satisfies the equation.

Each of the four cases give rise to what may be called a distribution-theorem

;

viz. given V a function of (a, .
.

, c, e) satisfying certain prescribed conditions, but

otherwise arbitrar}-, then the form of the theorem is that there exists and that we

can find an expression for p, the density or distribution of matter over the space or

surface to which the theorem relates, such that the corresponding integral V has its

given value : viz. in A and B there exists such a distribution over the plane w = 0,

in C such a distribution over a given surface, and in D such a distribution in

space. The establishment, and exhibition in connexion with each other, of these four

distribution-theorems is the principal object of the present memoir ; but the memoir

contains other investigations which have presented themselves to me in treating the

question. It is to be noticed that the theorem A belongs to Green, being in fact

the fundamental theorem of his memoir of 183.5, already referred to. Theorem C, in

the particular case of tridimensional space, belongs also to him, being given in his

" Essay on the Application of Mathematical Analysis to the theories of Electricity and

Magnetism" (Nottingham, 1828*), being partially rediscovered by Gauss** in the year

1840; and theorem D, in the same case of tridimensional space, to Lejeune-Diiiohlet:

see his memoir " Sur un moyen general de verifier I'expression du potentiel relatif a

une masse quelconque homogene ou heterogene," Crelle, t. xxxil. pp. 80—84 (1840). I

refer more particularly to these and other researches by Gauss, Jacobi, and others in

an Annex to the present memoir.

On the Prepotential Surface-integral. Art. Nos. 1 to 18.

1. In what immediately follows we require

. . / dx ... dz

"J {x-+ ... + z- + e-^'+i

'

limiting condition x- + ... + z- = R-, the prepotential of a uniform (s-coordinal) circular

diskf, radius R, in regard to a point (0, .
.

, 0, e) on the axis; and in particular the

* [Also Crelte, t. xxxix., pp. 73—89, t. xliv., pp. 356—374, t. xlvii., pp. 161—221 ; Green's Mathematical

Papers, pp. 1—11.5.]

** [" Allgemeine Lehrsiitze in Beziehuug auf die im verkehrten Verhiiltnisse des Quadrats der Entfernung

wirkenden Anziehungs- und Abstossungskrafte," Ges. Werke, t. v., pp. 195—242.]

+ It is to be throughout borne in mind that x, .. , z denotes a set of s coordinates, x, .
. , z, w a set of

» + l coordinates; the adjective coordinal refers to the number of coordinates which enter into the equation;

th\\s,3^+...+z'' + ru''=f' is an (s + l)-coorilinal .sphere (observe that the surface of such a sphere is s-dimensional)

;

x^+ ... + z^=f', according as we tacitly associate with it the condition tt' = 0, or lo arbitrary, is an s-coordinal

circle, or cylinder, the surface of such circle or cylinder being s-dimensional, but the circumference of the

circle (s- l)-dimensional; or if we attend only to the s-dimensioual space constituted by the plane w = 0, the

locus may be considered as an »-coordinal sphere, its surface being (s- l)-dimensional.

c. IX. 41
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value is required in the case where the distance e (taken to be always positive) is

indefinitely small in regard to the radius R.

Writing x = r^, .., z = 1% where the s new variables ^, . . , f are such that |" + . .. + f- = 1,

the integral becomes

where dS is the element of surface of the s-dimensional unit-sphere f-+ ... + ^- = 1 ; the

integral I dS denotes the entire surface of this sphere, which (see Annex I.) is = p,' .

The other factor,

Jo (r^ + e^)J»+«

'

is the ^--integral of Annex II.

2. We now consider the prepotential-surface integral

pdS
V=

{(a-xf + ... + {c-2y + ie-wy]i'+i'

As already mentioned, it is only a particular case of this, the prepotential-plane integral,

which is specially discussed; but at present I consider the general case, for the purpose

of establishing a theorem in relation thereto. The surface (s-dimensional surface) S is

any given surface whatever.

Let the attracted point P be situate indefinitely near to the surface, on the

normal thereto at a point N, say the normal distance NP is = «* ; and let this point

N be taken at the centre of an indefinitely small circular (s-dimensional) disk or

seo-ment (of the surface), the radius of which R, although indefinitely small, is in-

definitely large in comparison with the normal distance «. I proceed to determine

the prepotential of the disk ; for this purpose, transforming to new axes, the origin

bein"' at N and the axes of x, .. , z in the taugent-plane at N, then the coordinates

of the attracted point P will be (0, .
.

, 0, «), and the expression for the prepotential

of the disk will be

V — [
pdx ... dz

J {c^+ ...+Z^ + >i'-}i'+9'

where the limits are given by .v' + ... + z- < R".

Suppose for a moment that the density at the point iV is = p', then the density

throughout the disk may be taken = p', and the integral becomes

„ _ , f dx ...dz

''J [X'+ ...+z'+>l-']i'+9'

where instead of p' I write p ; viz. p now denotes the density at the point N.

Making this change, then (by what precedes) the value is

2(r|y fR ?«-' dr

* M is positive ; in afterwards writing 8=0, we mean by the limit of an indefinitely small positive

quantity.
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q = Positive. Art. Nos. 3 to 7.

3. I consider first the case where q is positive. The value is here

^{T\y 1
f

T\sTq p afl-'dx1 ( ri.9r<? p
^ r (is) 2«=» \T {\s + q) ./ (1 + a;)^M

'

or, since ^ is indefinitely small, the a;-integral may be neglected, and the value is

sn Pviy + qV

Observe that this value is independent of R, and that the expression is thus the

same as if (instead of the disk) we had taken the whole of the infinite tangent-plane,

the density at every point thereof being = p. It is proper to remark that the neglected

terms are of the orders

i{(i)'* (r'-4^
(Tiy Vq

so that the complete value multiplied by s-t is equal to the constant p ^.^ —^ + terms

of the orders I pi , (-p) > ^^•

4. Let us now consider the prepotential of the remaining portion of the surface

;

every part thereof is at a distance from P exceeding, in fact far exceeding, R ; so

that imagining the whole mass i p dS to be collected at the distance R, the pre-

potential of the remaining portion of the surface is less than

,dS

R^+"-q
'

viz. we have thus, in the case where the mass IpdS is finite, a superior limit to the

prepotential of the remaining portion of the surface. This will be indefinitely small

in comparison with the prepotential of the disk, provided only »-* is indefinitely small

compared 'with R"*-'', that is, « indefinitely small in comparison with R ^'. The proof

assumes that the mass 1 p dS is finite ; but considering the very rough manner in which

jpdS
the limit p^^ was obtained, it can scarcely be doubted that, if not universally, at

least for very general laws of distribution, even when I p dS is infinite, the same thing

is true ; viz. that by taking « sufficiently small in regard to R, we can make the

41—2
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prepotential of the remaining portion of the surface vanish in comparison with that

of the disk. But without entering into the question I assume that the prepotential

of the remaining portion does thus vanish ; the prepotential of the whole surface in

regard to the indefinitely near point P is thus equal to the prepotential of the disk

;

viz. its value is

snPn^s+q)'

which, observe, is infinite for a point P on the surface.

5. Considering the prepotential V at an arbitrary point (a, .., c, e) as a given

function of (a, .
.

, c, e) the coordinates of this point, and taking («, .
.

, z, w) for the

coordinates of the point N, which is, in fact, an arbitrary point on the surface, then the

value of V at the point P indefinitely near to N will be = TT, if W denote the same

function of (x, ..,z,'w) that V is of (a, .
.

, c, e). The result just obtained is therefore

or, what is the same thing,

r{ hs + q)

As to this, remark that V is not an arbitrary function of (a, .
.

, c, e) : non constat

that there is any distribution of matter, and still less that there is any distribution

of matter on the surface, which will produce at the point («, .
.

, c, e), that is, at every

point whatever, a prepotential the value of which shall be a function assumed at

pleasure of the coordinates («., .
.

, c, e). But suppose that V, the given function of

(a, .
.

, c, e), is such that there does exist a corresponding distribution of matter on the

surface, (viz. that V satisfies the conditions, whatever they are, required in order that

this may be the case), then the foregoing formula determines the distribution, viz. it

gives the expression of p, that is, the density at any point of the surface.

6. The theorem may be presented in a somewhat different form ; regarding the

prepotential as a function of the normal distance », its derived function iu regard

to « is

that is,

= _J_ 2jrirr(g + i).

^^+iP T{\s + q) '

and we thus have

dw_ 1 2{nyr(q + i)

or, what is the same thing,

T(is + q) f„^+,dW'
P 2(T|yr((^+l) T" rfW«=o
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dW
where, however, W being given as a function of {x, .. , z, w), the notation requires

as

explanation. Taking cos a, . . , cos 7 to be the inclinations of the normal at N, u\ the

direction NP in which the distance « is measured, to the positive parts of the axes

•of {x, .., z), VIZ, these cosines denote the values of

dS dS
dx ' "' dz

'

each taken with the same sign + or — , and divided by the square root of the sum
of the squares of the last-mentioned quantities, then the meaning is

dW dW dW
-^— = -T— cos a + . . . H—7— cos 7.
a« dx dz '

7. The surface S may be the plane w = 0, viz. we have then the prepotential-

plane integral

F=f pdx...dz

j {{a-x)-+... +(c-z)- + ^]i-'-i ^ ^'

where e (like «) is positive. In afterwards writing e = 0, we mean by the limit of

'an indefinitely small positive quantity.

The foregoing distribution-formulas then become

P-TTpTq^'^''^'^' ^^^'

and

which will be used in the sequel.

It will be remembered that in the preceding investigation it has been assumed

that q is positive, the limiting case q = being excluded-j-.

«

7 = - i Art. Nos. S to 13.

8. I pass to the case q = — ^, viz. we here have the potential-surface integral

J {{a-xy+ ... + {c-zy + {e-wr-}i'-i ^ '''

it will be seen that the results present themselves under a remarkably different form.

The potential of the disk is, as before,

2 {T^y r )"-' dr

t This is, as regards q, the case throughout ; a hmiting value, if not expressly stated to be included, is

always excluded.
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where p here denotes the density at the point iV; and the vahie of the r-integral

Observe that this is indefinitely small, and remains so for a point P on the surface

:

the potential of the remaining portion of the surface (for a point P near to or on

the surface) is finite, that is, neither indefinitely large nor indefinitely small, and it

varies continuously as the attracted point passes through the disk (or aperture in the

material surface now under consideration); hence the potential of the whole surface

is finite for an attracted point P on the surface, and it varies continuously as P
passes through the surface.

It will be noticed that, there is in this case a term in V independent of «

;

and it is on this account necessary, instead of the potential, to consider its derived

function in regard to s ; viz. neglecting the indefinitely small terms which contain

powers of p, I write

dv 2{ny+^
ds r(is-^)'

The corresponding term arising from the potential of the other portion of the

surface, viz. the derived function of the potential in regai'd to », is not indefinitely

small : and calling it Q, the formula for the whole surface becomes

dV_f^ 2(ri)«+'

d. ^ T(^s-\)''-

9. I consider positions of the point P on the two opposite sides of the point N,

say at the normal distances «', «", these being positive distances measured in opposite

directions from the point N. Tlie function F, which represents the potential of the

surface in regard to the point P, is or may be a different function of the coordinates

{a,..,c, e) of the point P, according as the point is situate on the one side or the

other of the surface (as to this more presently). I represent it in the one case by

V, and in the other case by V" ; and in further explanation state that «' is measured

into the space to which F' refers, «" into that to which V" refers ; and I say that

the formulas belonging to the two positions of the point P are

djr__ 2(ri)»«
ds'

-^ r(|s-f)^'

dw" 2(r^)»+'

where, instead of F', F", I have written W, W" , to denote that the coordinates, as

well of P' as of P", are taken to be the values («,.., z, w) which belong to the

point N. The symbols denote

dW dW , dW
-j-r =—i^ COS a + . . . H T— cos 7 ,

ds dx dz

dW" dW" „ dW"
-^j-iT = —1— COS a 4- . . . + —J - cos 7 ,

da dx dz
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where (cos a', .
.

, cos 7') and (cos a", .
. , cos 7") are the cosine-inclinations of the normal

distances »', «" to the positive parts of the axes of {x, .., z); since these distances are

measured in opposite directions, we have cos a" = — cos a', .
.

, cos 7" = — cos 7'. If we
imagine a curve through N cutting the surface at right angles, or, what is the same
thing, an element of the curve coinciding in direction with the normal element P'NP",
and if s denote the distance of N from a fixed point of the curve, and for the point

P' if s become s + 8's, while for the point P" it becomes s — S"s, or, what is the same

thing, if s increase in the direction of NP" and decrease in that of NP", then if any
function @ of the coordinates («,.., z, w) of N be regarded as a function of s, we
have

ds ds ' ds ds"'

10. In particular, let denote the potential of the remaining portion of the

surface, that is, of the whole surface exclusive of the disk ; the curve last spoken of

is a curve which does not pass through the material surface, viz. the portion to which

@ has reference : and there is no discontinuity in the value of © as we pass along

this curve through the point N. We have Q' = value of t^ , at the point P', and

' /7(hJ

Q" = value of -^„ at the point P" ; and the two points P', P" coming to coincide

together at the point N, we have then

We have in like manner

above may be written

Q'
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Reverting to the original form of the two equations, and attending to the relation

Q'+Q" = 0, we obtain

"ds' ^ ds" ~ r(^s-\)P'

or, what is the same thing.

TQs-}) fdW dW"\

11. I recall the signification of the symbols:

—

-V, V" are the potentials, it may

be different functions of the coordinates (a, .
.

, c, e) of the attracted point, for positions

of this point on the two sides of the surface (as to this more presently) : and W, W"
are what V, V" respectively become when the coordinates (a, . . , c, e) are replaced by

{x, .., z, w), the coordinates of a point N on the surface. The explanation of the

dW dW"
symbols —pr , ,, is given a little above; p denotes the density at the point (a-, ..,.?, w).

12. The like remarks arise as with regard to the former distribution theorem (A)

;

the functions V, V" cannot be assumed at pleasure ; non constat that there is any

distribution iu space, and still less any distribution on the surface, which would give

such values to the potential of a point (o, .
.

, c, e) on the two sides of the surface

respectively ; but assuming that the functions V, V" are such that they do arise from

a distribution on the surface, or say that they satisfy all the conditions, whatever they

are, required in order that this may be so, then the formula determines the distri-

bution, viz. it gives the value of p, the density at a point («,.., z, w) of the surface.

13. In the case where the surface is the plane w = 0, viz. in the case of the

potential-plane integral,

pdx ... dzV ^f pdx...dz

j {{a-xf + ...+{c-zf+e-']i'-i ^ ''

(e assumed to be positive) ; then, since the conformation is symmetrical on the two sides

of the plane, V and V" are the same functions of (a, .
.

, c, e), say they are each = V
;

W, W" are each of them the same function, say they are each = W, of {x, .. , z, e)

that V is of (a, . ., c, e) ; the distribution-formula becomes

_ r(^s- ^)/dW\ g
2(ri)'« \de A=„ ^

''

:(ri)'

viz. this is also what one of the prepotential-plane formula becomes on writing therein

q— 2-

5 = 0, or Negative. Art. Nos. 14 to 18.

14. Consider the case q = 0. The prepotential of the disk is

p^f(\ogE + N-\og....);
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to get rid of the constant term we must consider the derived function in regard to »,

viz. this is

2 (viy 1

and we have thus for the whole surface

where Q, which relates to the remaining portion of the surface, is finite ; we have thence,

writing, as before, W in place of V,

dW__ 2(riY

or say

15. Consider the case q negative, but —q<^. The prepotential of the disk is here

-P^^S-p2q + ^'-''Tits + q)
+

to get rid of the first term we must consider the derived function in regard to «,

viz. this is

P' ViU + q) '

whence, for the potential of the whole surface,

where Q, the part relating to the remaining portion of the surface, is finite. Multiplying

by ii-i+'^ (where the index 2q + 1 is positive), the term in Q disappears ; and writing,

as before, W in place of V, this is

ds ^ r^s + q
or, say

P 2{nyr(q + i){ d«;«=o'

viz. we thus see that the formula (A*) originally obtained for the case q positive

extends to the case q = 0, and q = — but - q <^; but, as already seen, it does not

extend to the limiting case q= —
i-

16. If q be negative and between — i and —1, we have in like manner a formula

dV _ 2jT^yr_iq + i)

d.-'^ P r(is + g)

c. IX. 42



330 A MEMOIR ON PREPOTEXTIALS. [607

but here, 2^' + 1 being negative, the term s-i+^ Q does not disappear : the formula has

to be treated in the same way as for q = — i, and we arrive at

U.r^ + ^"n.r'^El _ _ 4iri)!.r (g + 1) ^

.

viz. the formula is of the same form as for the potential case q = — ^. Observe that

the formula does not hold good in the limiting case q = — 1.

17. We have, in fact, for q = — I, the potential of the disk

whence

since, in the complete differential coefficient « + 28 log «, the term « vanishes in com-

parison with 2a log a. Then, proceeding as before, we find

dW 1 dW" _ -8{ny
a' log a' t^a'

"^ a" log a" ds" T (is - 1) ^ '

but I have not particularly examined this formula.

18. If q be negative and > — 1 (that is, —q>l), then the prepotential for the

disk is

and it would seem that, in order to obtain a result, it would be necessary to proceed

to a derived function higher than the first ; but I have not examined the case.

Continuity of the Prepotential-siirface Integral. Art. Nos. 19 to 25.

19. I again consider the prepotential-surface integral

p dS
/{{a- xf + ... -t- (c - 2)- + (e - w)=)4*-5

in regard to a point (a, .
. , c, e) not on the surface

; q is either positive or negative,

as afterwards mentioned.

The integral or prepotential and all its derived functions, first, second, &c. ad

infinitum, in regard to each or all or any of the coordinates (a, .
.

, c, e), are all finite.

This is certainly the case when the mass \ pdS is finite, and possibly in other cases

also ; but to fix the ideas we may assume that the mass is finite. And the pre-

potential and its derived functions vary continuously with the position of the attracted
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point (a, . . ,c, e), so long as this point in its course does not traverse the material

surface. For greater clearness we may consider the point as moving along a continuous

curve (one-dimensional locus), which curve, or the part of it under consideration, does

not meet the surface ; and the meaning is that the prepotential and each of its

derived functions vary continuously as the point (a, .., c, e) passes continuously along

the curve.

20. Consider a " region," that is, a portion of space any point of which can be,

by a continuous curve not meeting the material surface, connected with any other

point of the region. It is a legitimate inference, from what just precedes, that the

prepotential is, for any point {a, .
. , c, e) whatever within the region, one and the same

function of the coordinates {a,..,c, e), viz. the theorem, rightly understood, is true;

but the theorem gives rise to a difficulty, and needs explanation.

Consider, for instance, a closed surface made up of two segments, the attracting

matter being distributed in any manner over the whole surface (as a particular case

s + 1 = 3, a uniform spherical shell made up of two hemispheres) ; then, as regards

the first segment (now taken as the material surface), there is no division into regions,

but the whole of the (s + l)-dimensional space is one region ; wherefore the prepotential

of the first segment is one and the same function of the coordinates (a, .
.

, c, e) of the

attracted point for any position whatever of this point. But in like manner the

prepotential of the second segment is one and the same function of the coordinates

(o, .
. , c, e) for any position whatever of the attracted point. And the prepotential of

the whole surface, being the sum of the prepotentials of the two segments, is

consequently one and the same function of the coordinates (a, .
.

, c, e) of the attracted

point for any position whatever of this point ; viz. it is the same function for a

point in the region inside the closed surface and for a point in the outside i-egion.

That this is not in general the case we know from the particular case, s + 1 = 3, of

a uniform spherical shell referred to above.

21. Consider in general an unclosed surface or segment, with matter distributed

over it in any manner; and imagine a closed curve or circuit cutting the segment

once ; and let the attracted point (a, .
.

, c, e) move continuously along the circuit. We
may consider the circuit as corresponding to (in ordinary tridimensional space) a plane

curve of equal periphery, the corresponding points on the circuit and the plane curve

being points at equal distances s along the curves from fixed points on the two

curves respectively; and then treating the plane curve as the base of a cylinder, we
may represent the potential as a length or ordinate, V = y, measured upwards from

the point on the plane curve along the generating line of the cylinder, in such wise

that the upper extremity of the length or ordinate y traces out on the cylinder a

curve, say the prepotential curve, which represents the march of the prepotential.

The attracted point may, for greater convenience, be represented as a point on the

prepotential curve, viz. by the upper instead of the lower extremity of the length or

ordinate y; and the ordinate, or height of this point above the base of the cylinder,

then represents the value of the prepotential. The before-mentioned continuity-theorem

is that the prepotential curve, corresponding to any portion (of the circuit) which

42—2
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does not meet the material surface, is a continuous curve : viz. that there is no abrupt
change of vahie either in the ordinate y (= V) of the prepotential curve, or in the

first or any other of the derived functions ~, -7^, &c. We have thus (in each of
as as- ^

the
.
two figures) a continuous curve as we pass (in the direction of the arrow) from

N

a point P' on one side of the segment to a point P" on the other side of the

segment ; but this continuity does not exist in regard to the remaining part, from

P" to P', of the prepotential curve corresponding to the portion (of the circuit)

which traverses the material surface.

22. I consider first the case q = — ^ (see the left-hand figure) : the prepotential

is here a potential. At the point N, which corresponds to the passage through the

material surface, then, as was seen, the ordinate y (= the Potential V) remains finite

and continuous ; but there is an abrupt change in the value of -%- , that is, in the

direction of the curve : the point N is really a node with two branches crossing at

this point, as shown in the figure ; but the dotted continuations have only an analytical

existence, and do not represent values of the potential. And by means of this branch-

to-branch discontinuity at the point JV, we escape from the foregoing conclusion as to

the continuity of the potential on the passage of the attracted point through a closed

surface.

23. To show how this is, I will for greater clearness examine the case (s-|-l) = 3,

in ordinary tridimensional space, of the uniform spherical shell attracting according to

the inverse square of the distance; instead of dividing the shell into hemispheres, I

divide it by a plane into any two segments (see the figure, wherein A, B represent

the centres of the two segments respectively, and where for graphical convenience the

segment A is taken to be small).

We may consider the attracted point as moving along the axis xx', viz. the two

extremities may be regarded as meeting at infinity, or we may outside the sphere

bend the line round, so as to pi-oduce a closed circuit. We are only concerned with

what happens at the intersections with the spherical surface. The ordinates represent

the potentials, viz. the curves are a, b, c for the segments A, B, and the whole

spherical surface respectively. Practically, we construct the curves c, a, and deduce the

curve h by taking for its ordinate the difference of the other two ordinates. The
curve c is, as we know, a discontinuous curve, composed of a horizontal line and two

hyperbolic branches ; the curve a can be laid down approximately by treating the

segment J. as a plane circular disk ; it is of the form shown in the figure, having

a node at the point corresponding to A. (In the case where the segment A is
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actually a plane disk, the curve is made up of portions of branches of two hyperbolas

;

but taking the segment A as being what it is, the segment of a spherical surface,

the curve is a single curve, having a node as mentioned above.) And from the

curves c and a, deducing the curve b, we see that this is a curve without any
discontinuity corresponding to the passage of the attracted point through A (but with

an abrupt change of direction or node corresponding to the passage through £). And
conversely, using the curves a, h to determine the curve c, we see how, on the passage

of the attracted point at A into the interior of the sphere, in consequence of the

branch-to-branch discontinuity of the curve a, the curve c, obtained by combination

of the two curves, undergoes a change of law, passing abraptly from a h}'perbolic to

a rectilinear form, and how similarly on the passage of the attracted point at B from

the interior to the exterior of the sphere, in consequence of the branch-to-branch

discontinuity of the curve b, the curve c again undergoes a change of law, abruptly

reverting to the hyperbolic form.

24. In the case q positive, the prepotential curve is as shown by the right-hand

figure on p. 332, viz. the ordinate is here infinite at the point N corresponding to

the passage through the surface ; the value of the derived function changes between

-I- infinity and — infinity ; and there is thus a discontinuity of value in the derived

function. It would seem that, when q is fractional, this occasions a change of law

on passage through the surface : but that there is no change of law when q is

integral.

In illustration, consider the closed surface as made up of an infinitesimal circular

disk, as before, and of a residual portion ; the potential of the disk at an indefinitely

neai- point is found as before, and the prepotential of the whole surface is

«^?^r(is + f/)^
"
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where Fj, the prepotential of the remainmg portion of the surface, is a function which

varies (and its derived functions vary) continuously as the attracted point traverses

the disk. To fix the ideas, we ma}^ take the origin at the centre of the disk, and

the axis of e as coinciding with the normal, so that «, which is always positive, is

= + e ; the expression for the prepotential at a point (a, . . , c, e) on the normal through

the centre of the disk is

viz. when q is fi-aetional there is the discontinuity of law, inasmuch as the term

changes from to z
—-r-' but when q is integral this discontinuity disappears. The

like considerations, using of course the proper formula for the attraction of the disk,

would apply to the case 5 = or negative.

25. Or again, we might use the formulfe which belong to the case of a unifomi

(s + l)-coordinal spherical shell (see Annex No. III.), viz. we decompose the surface

as follows,

surface = disk + residue of surface

;

and then, considering a spherical shell touching the surface at the point in question

(so that the disk is, in fact, an element common to the surface and the spherical

shell), and being of a uniform density equal to that of the disk, we have

disk = spherical shell — residue of spherical shell

;

and consequently

surface = spherical shell — residue of spherical shell + residue of surface
;

and then, considering the attracted point as passing through the disk, it does not

pass through either of the two residues, and there is not any discontinuity, as regards

the prepotentials of these residues respectively; there is consequently, as regards the

prepotential of the surface, the same discontinuity that there is as regards the

prepotential of the spherical shell. But I do not further consider the question from

this point of view.

The Potential Solid Integral. Art. No. 26.

26. We have further to consider the prepotential (and in particular the potential)

of a material space ; to fix the ideas, consider for the moment the case of a

distribution over the space included within a closed surface, the exterior density being

zero, and the interior density being, supposed for the moment, constant ; we consider

the discontinuity which takes place as the attracting point passes from the exterior

space through the bounding surface into the interior material space. We may imagine

the interior space divided into indefinitely thin shells by a series of closed surfaces

similar, if we please, to the bounding surface ; and we may conceive the matter

included between any two consecutive surfaces as concentrated on the exterior of the
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two surfaces, so as to give rise to a series of consecutive material surfaces; the

quantity of such matter is infinitesimal, and the density of each of the material surfaces

is therefore also infinitesimal. As the attracted point comes from the external space

to pass through the first of the material surfaces—suppose, to fix the ideas, it moves
continuously along a curve the arc of which measured from a fixed point is = s—there

is in the value of V (or, as the case may be, in the values of its derived functions

dV
-T- , &c.) the discontinuity due to the passage through the material surface ; and the

like as the attracted point passes through the different material surfaces respectively.

Take the case of a potential, Q" = — i ; then, if the surface-density were finite, there

would be no finite change in the value of V, but there would be a finite change
dV

in the value of -^; as it is, the changes are to be multiplied by the infinitesimal

density, say p, of the material surface ; there is consequently no finite change in the

value of the first derived function ; but there is, or may be, a finite change in the

d-V
value of 3 ,,

and the higher derived functions. But there is in V an infinitesimal

change corresponding to the passage through the successive material surfaces respectively;

that is, as the attracted point enters into the material space, there is a change in

the law of V considered as a function of the coordinates (a, .. , c, e) of the attracted

point; but by what precedes this change of law takes place without any abrupt

change of value either of V or of its first derived function; which derived function

may be considered as representing the derived function in regard to any one of the

coordinates a, ..,c, e. The suppositions, that the density outside the bounding surface

was zero and inside it constant, were made for simplicity only, and were not essential

;

it is enough if the density, changing abruptly at the bounding surface, varies con-

tinuously in the material space within the bounding surface*. The conclusion is that

V, V" being the values at points within and without the bounding surface, V and
V" are in general different functions of the coordinates (a, .

. , c, e) of the attracted

point; but that at the surface we have not only V = V", but that the first derived

functions are also equal, viz. that we have

da da '"'
dc dc ' de ~ de

'

27. In the general case of a Potential, we have

Tr_f pdx ...dzdw

~J {(a-x)-+ ... + (c - ^)2 + (e - w)"-)i«-*

'

If p does not vanish at the attracted point («,,., c, e), but has there a value p'

different from zero, we may consider the attracting (s + l)-dimensional mass as made

It is, indeed, enough if the density varies continuously within the bounding surface in the neighbourhood
of the point of passage through the surface; but the condition may without loss of generality be stated as
in the text, it being understood that for each abrupt change of density within the bounding surface we must
consider the attracted point as passing through a new bounding surface, and have regard to the resulting
discontinuity.
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up of an indefinitely small sphere, radius e and density p , which includes within it

the attracted point, and of a remaining portion external to the attracted point.

Writing V to denote -7—,+ ... + -r^, + y^, , then, as regards the potential of the sphere,

we have VF= - p \ ^
r\P' (^'^^ Annex III. No. 67), and as regards the remaining

portion V F = ; hence, as regards the whole attracting mass, V Y has the first-

mentioned value, that is, we have

diC-"dc-del V{\s-\Y'

where p is the same function of the coordinates (a, . . , c, e) that p is of {x, . . ,2, w)

;

viz. the potential of an attracting mass distributed not on a surface, but over a

portion of space, does not satisfy the potential equation

d" ,^<'^"\v — r\

da- '" dc- de-J

but it satisfies the foregoing equation, which on\y agrees with the potential equation

in regard to a point (a, . . , c, e) outside the material space, and for which, therefore,

p' is =0.

The equation may be written

or, considering V as a given function of (a, .
.

, e, e), in general a discontinuous

function but subject to certain conditions as afterwards mentioned, and taking W the

same function of {x, .. ,z, w) that V is of (a, . . , c, e), then we have

r (is -h) ( d- d- d- \ ™ ._.

viz. this equation determines /a as a function, in general a discontinuous function, of

(x,.., 2, lu) such that the corresponding integral

pdx ...dz dwY ^ f pdx.

J l(a-a;)=-l-...-|-0c - 2)- + {e - wfl^-'+'J

may be the given function of the coordinates (a, .
.

, c, e). The equation is, in fact,

the distribution-theorem D.

28. It is to be observed that the given function of {a, . . , c, e) must satisfy

certain conditions as to value at infinity and continuity, but it is not (as in the

distribution-theorems A, B, and C it is) required to satisfy a partial differential

equation ; the function, except as regards the conditions as to value at infinity and

continuity, is absolutely arbitrary.
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The potential (assuming that the matter which gives rise to it lies wholly within

a finite closed surface) must vanish for points at an infinite distance : or, more

accurately, it must for indefinitely large values of a-+ ... -\- c- + e" be of the form,

Constant -r (a- + ... + c- + e-)^''~*. It may be a discontinvious function; for instance,

outside a given closed surface it may be one function, and inside the same surface a

different function of the coordinates (a, . . , c, e) ;
viz. this may happen in consequence

of an abrupt change of the density of the attracting matter on the one and the

other side of the given closed surface, but not in any other manner; and, happening

in this manner, then V and V" being the values for points within and without the

surface respectively, it has been seen to be necessary that, at the surface, not only

T- ,r„ , ,
dV' dV" dV dV" dV dV" „ u- . . .u J-.-V =V , but also , =,—,.., , = —,— , —5— = -^ . bubiect to these conditions as
da da dc dc de de ''

to value at infinity and continuity, V may be any function whatever of the coordinates

{a, .
. , c, e) ; and then taking W, the same function of («,.., z, w), the foregoing

equation determines p, viz. determines it to be =0 for those parts of space which

do not belong to the material space, and to have its proper value as a function of

{x, . . ,z, w) for the remaining or material space.

The Prepotential-Plane Theorem A. Art. Nos. 29 to 30.

29. We have seen that, if there exists on the plane w = Q a distribution of

matter producing at the point (a, .
.

, c, e) a given prepotential V—viz. V is to be

regarded as a given function of (a, .
.

, c, e)— , then the distribution or density p is

given by a determinate formula ; but it was remarked that the prepotential V cannot

be a function assumed at pleasure : it must be a function satisfying certain conditions.

One of these is the condition of continuity ; the function V and all its derived

functions must vary continuously as we pass, without traversing the material plane,

from any given point to any other given point. But it is sufficient to attend to

points on one side of the plane, say the upperside, or that for which e is positive

;

and since any such point is accessible from any other such point by a path which

does not meet the plane, it is sufficient to say that the function V must vary

continuously for a passage by such path from any such point to any such point

;

the function V must therefore be one and the same function (and that a continuous

one in value) for all values of the coordinates (a, .
.

, c) and positive values of the

coordinate e.

If, moreover, we assume that the distribution which corresponds to the given

potential F is a distribution of a finite mass \ pdx ... dz over a finite portion of the

plane w = 0, viz. over a portion or area such that the distance of a point within the

area from a fixed point, or say from the origin (a, .
.

, c) = (0, .
.

, 0), is always finite
;

this being so, we have the further condition that the prepotential V must, for in-

definitely large values of all oi- any of the coordinates {a, .
.

, c, e), reduce itself to the

form

p da: ...dz]^ (a- + . . . + c" + e-)*-+'.

c. rx. 43
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The assumptions upon which this last condition is obtained are perhaps unnecessary,

instead of the condition in the foregoing form we, in fact, use only the condition that

the prepotential vanishes for a point at infinity, that is, when all or any one or more

of the coordinates (a, .
.

, c, e) are or is infinite.

Again, as we have seen, the prepotential V must satisfy the prepotential equation

\da- dc- de- e dej

These conditions satisfied, to the given prepotential V there corresponds, on the

plane w = 0, a distribution given by the foregoing formula ; it will be a distribution

over a finite portion of the plane, as already mentioned.

30. The proof depends upon properties of the prepotential equation

or, what is the same thing,

say, for shortness, D F" = 0.

Consider, in general, the integral

r , , , ^ {(dW\- (dWy (dW\-\

taken over a closed surface 8 lying altogether on the positive side of the plane e = 0,

the function W being in the first instance arbitrary.

Writing the integral under the form

r, ^ , (^..dW dW ,_rfTf dW ^ „„^^dW dW

we reduce the several terms by an integration by parts as follows:

—

dW
The term in , is = dy ..
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Write dS to denote an element of surface at the point (x, .
.

, z, e). Then taking
a, .

. , 7, S to denote the inclinations of the interior normal at that point to the positive

axes of coordinates, we have

dy ... dsde = — dS cos a,

dx de = — dS cos 7,

dx dz = — dS cos S

;

and the first terms are together

= - I e-«+' Tf (-rr cos «+... + -T— cos7+-^ cos Sjc?,S',

W here denoting the value at the surface, and the integration being extended over

the whole of the closed surface : this may also be written

where » denotes an element of the internal normal.

The second terms are together

We have consequently

= - 1 e-^<?+' W^^ dS-ldx...dz de e"-''+' WD W.

31. The second term vanishes if W satisfies the prepotential equation OW=0;
and this being so, if also W=0 for all points of the closed surface S, then the first

term also vanishes, and we therefore have

dx...dzde.e"-^-^[(^J+... + [-^)+[-^)^ = 0,

whei-e the integration extends over the whole" space included within the closed surface
;

whence, W being a real function,

^=0 — = — =0
dx '

"
' dz ' de

for all points within the closed surface ; consequently, since W vanishes at the surface,

W=0 for all points within the closed surface.

32. Considering W as satisfying the equation DW=0, we may imagine the closed

surface to become larger and larger, and ultimately infinite, at the same time flattening

43—2
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itself out into coincidence with the plane e = 0, so that it comes to include the whole

space above the plane e = : say the surface breaks up into the surface positive infinity

and the infinite plane e = 0.

The integral e='+' W , - dS separates itself into two parts, the first relating to

the surface positive infinity, and vanishing if W =Q at infinity (that is, if all or

any of the coordinates x, .. , z, e are infinite) ; the second, relating to the plane e = 0,

r / dW\
is W(e"*+^-i- ]dx...dz, W here denoting its value at the plane, that is, wheu e = 0,

and the integral being extended over the whole plane. The theorem thus becomes

/^..........{(f)V....(f)V(^J)>-/.r(.."f)*.....

Hence also, if TT = at all points of the plane e = 0, the right-hand side vanishes,

and we have

\d....dzde.e'^-^\[-^) +... + (^-) +(^J} = 0-

dW dW dW
Consequently ,

= 0, .
.

, -j— = 0, —j— = 0, for all points whatever of positive space ; and
CtX Q/Z Q/6

therefore also W =0 for all points whatever of positive space.

S3. Take next U, W, each of them a function of (x, . ., z, e), and consider the

integral

r, 7 , .^^fdUdW dU dW dU dW\
dx ... dz de

.

e=«+' i-j- -j-++ j j- + Tj- "j-
'

./ \dx dx dz dz de de J

taken over the space within a closed surface S; treating this in a similar manner, we

find it to be

= _ fe^s+i w~dS- jdx... dzde.e"!^' WUU,

where the integration extends over the whole of the closed surface S ; and by parity

of reasoning it is also

= _ f e=!+i U^^dS-ldx...dzde. e=''+' UH W,

with the same limits of integration; that is, we have

|"e=9+i W^dS+jdx... dzde.e"'i+' WO U= f e^«+' U^^dS + jdx... dzde.e"-<'+' UDW,

which, if U and W each satisfy the prepotential equation, becomes

J da J an

And if we now take the closed surface S to be the surface positive infinity, together

with the plane e = 0, then, provided only U and V vanish at infinity, for each integral
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the portion belonging to the surface positive infinity vanishes, and there remains only

the portion belonging to the plane e = ; we have therefore

/"e=!?+i W^dx...dz^je"-i+' U^^-dx...dz,

where the functions U, W have each of them the value belonging to the plane e = :

viz. in U, W considered as given functions of (a;, .
.

, z, e) we regard e as a positive

quantity ultimately put =
; and where the integrations extend each of them over the

whole infinite plane.

34. Assume
1

Z7 =
\{a -.«)=+...+ (c - z)- + e-]J''+«

'

an expression which, regarded as a function of {x, .
.

, z, e), satisfies the prepotential

equation in regard to these variables, and which vanishes at infinity when all or any

of these coordinates («,.., z, e) are infinite.

We have

dU _ -2(|s + 5)e

de {{a -xf+...+{c- zf + e^ji^+^+i

'

and we have consequently

r -2(^6- + q) e"i+' =[( -g+i^E) dx...dz

j [{a - o^f +... + (c-z)- + e=
ji^'+s+i

"'"'••^^ ][^ del \{a -xf+...+{c- zf + e=}5»+2

'

where it will be recollected that e is ultimately = ; to mark this, we may for W
write Tr„

.

Attend to the left-hand side ; take Vf, the same function of a, . . ,c, e = 0, that Wa
is oi X,.

. , z, e = ; then, first writing the expression in the form

V {
-2 (h s + q)e">-''dx...,

"J {(a- x)'' + ... +{c- zf + e'

write X = a + e^, . . , z = c + e^, the expression becomes

where the integral is to be taken from — oo to + oo for each of the new variables

Writing | =>«,.., 5'= ''7, where a= + ... +7- = 1, we have d^ ... d^=r^~^ dr dS : also

^-+ ... + 1^- = }-, and tiie integral is

r'-'drdS [ ,„ T r'-'dr

dz

_ f r'-'drdS _ r ,„ r r^-'dr
~

j (1 + /•^)i«+'?+i
'

~j"'
Jo (1 + r=)*''-^«+'

'
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where I dS denotes the surface of the s-coordinal unit sphere a- + ... + 7- = 1, and the

r-integral is to be taken from r=0 to ? = 00 ; the vakies of the two factors thus are

f rfS' - ^iTi)' «nd f
^"'^^ _ ^nsT{q + 1)

j"^^' r (is)
'

^''"^
.1(1 + r^)J»+«+' - r (is + g + 1)

•

Hence the expression in question is

and we have

,.,^^dW\ da;...dz ^
-2(ri)-r(g + l)

de /„ [(a - xy + ... + (c - 2)= + 6-^1^"+'' r (U + q)
"'

or, what is the same thing,

2inyViq+ l)[' delr- "^'

"
J [{a-xy-i-...+(c-sr- + e']i'+''

•

35. Take now V a function of (a, .
.

, c, e) satisfying the prepotential equation in

regard to these variables, always finite, and vanishing at infinity ; and let W be the

same function of («,.., 2, e), W therefore satisfying the prepotential equation in regard

to the last-mentioned variables. Considei' the function

ras + q) I „^,dW\ ,

\(a-xf^-...-¥{c-zf + &]^'""i

where the integral is taken over the infinite plane e = ; then this function ( F — the

integral) satisfies the prepotential equation (for each term separately satisfies it), is

always finite, and it vanishes at infinity. It also, as has just been seen, vanishes for

any point whatever of the plane e = 0. Consequently it vanishes for all points whatever

of positive space. Or, what is the same thing, if we write

V=[ pdx...dz .

j [{a-xf+... + {c-zf + e'Y-'+'i
"-

''

where p is a function of {x, .
.

, z), and the integral is taken over the whole infinite

plane, then if F is a function of («, .
.

, c, e) satisfying the above conditions, there

exists a corresponding value of p ; viz. taking W the same function of (*', .., z, e)

which F is of (a, .
.

, c, e), the value of p is

_ _ r(^s + q) f d W\
p- 2{rirr{q + i)[' de)„

^'^^'

dW
where e is to be put = in the function e=''+' -1— . This is the prepotential-plane

theorem ; viz. taking for the prepotential in regard to a given point (a, .
. , c, e) a

function of (a, .
.

, c, e) satisfying the prescribed conditions, but otherwise arbitrary,

there exists on the plane e = a distribution p given by the last-mentioned formula.

I
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36. It is assumed in the proof that 2q + I is positive or zero ; viz. q is positive,

or if negative then —
</ > i ; the limiting case q= — ^ is inchided.

It is to be remarked that, by what precedes, if q be positive (but excluding the

case q = 0), the density p is given by the equivalent more simple formula

Tj^s + q)

(nyrq

The foregoing proof is substantially that given in Green's memoir on the Attraction

of Ellipsoids ; it will be observed that the proof only imposes upon V the condition

of vanishing at infinity, without obliging it to assume for large values of (a, .
. , c, e)

the form

M
\a-+... + d' + e''}i'+9'

The Potential-surface Theorem C. Art. Nos. 37 to 42.

d- d' d-

dx'^
'
"

'^ dz"^ de^
37. In the case g = -|, writing here "^ = 71+ ••• + j 3+ j-j >

'^vs have, precisely

as in the general case,

[w^J^^dS + jdx...dzde WVU=j u'^dS + jdx...dzde US? W

;

and if the functions U, W satisfy the equations V t/" = 0, V W = 0, then (subject to the

exception presently referred to) the second terms on the two sides respectively each of

them vanish.

But, instead of taking the surface to be the surface positive infinity together with

the plane e = 0, we now leave it an arbitrary closed surface, and for greater symmetry

of notation write w in place of e ; and we suppose that the functions U and W, or one

of them, may become infinite at points within the closed surface ; then, on this last

account, the second terms do not in every case vanish.

38. Suppose, for instance, that t/" at a point indefinitely near the point (a, .
. , c, e)

within the surface becomes

{{x-ay+...+{z- cf + (w- e)2}i»-i

'

then if V be the value of W at the point («,.., c, e), we have

\dx...dzdwWVU= v{ dx...dzdw VU;

and since S7U=0, except at the point in question, the integral may be taken over any

portion of space surrounding this point, for instance, over the space included within the
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sphere, radius R, having the point (a, .
.

, c, e) for its centre ; or taking the origin at

this point, we have to find
j
dx . . . dz dw '^ U, where

U=-.
\x-+ ... +z'+w-\i^-i'

and the integration extends over the space within the sphere w- + . . . + 2" + w" = R-.

39. This may be accomplished most easily by means of a particular case of the

last-mentioned theorem; viz. writing W=l, we have

fdU
jiJ^^dS + jdx ... dzdiv V 17 = 0,

or the required value is = — I -, dS over the surface of the last-mentioned sphere.
da

We have, if for a moment r- = x- + ... + z- + tu",

dU _ fx d z d w d\„ _ _dU \ix d^
. ? ^ . !^ ^\ .1 _ dU

da \r dx '" r dz r diuj ' ~ dr \\r da: '" r dz r dw) ]' dr
'

that is, ,— = , = ,, at the surface ; and hence

where / dS is the whole surface of the sphere x- + ... + z--\- w- = R", viz. it is = R^,

multiplied by the surface of the unit-sphere x- + ... + z- +tu' =1. This spherical surface,

say I dS, is

fdU 4(1^)"'^'
and we have thus j , dS = „^ -—r-^, and consequently

jdx... dz diuVU--
4 (r^)'|S+1

40. Treating in like manner the case, where Tf at a point indefinitely near the

point (a, .
.

, c, e) within the surface becomes

1
~

\{x - af + ... -I- (2 - c)- -I- (w - e)-j*«-i

'

and writing T to denote the same function of (a, . . , c, e) that TJ is of {x, . . ,z, w), we

have, instead of the foregoing, the more general theorem

jw'^dS+ldx ... dzdw TfV U- t^^-'^'^\ V
J da J r is-A)

|S+1

=
I
u"^ds+\dx...dzdw uvw- J;)^^' ., y,

J ds J I (is- 1)
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where, in the two solid integrals, we exehide from consideration the space in the imme-
diate neighbourhood of the two critical points (o,..,c, e) and (a, ..,c, e) respectively.

Suppose that W is always finite within the surface, and that U is finite except at

the point {a,..,c, e): and moreover that U, W are such that VC/"=0, VW"=0; then

the equation becomes

J du T^s — ^ J da

In particular, this equation holds good if U is

1

[{a-x)-+ ... + {e- wYY-^-^-

'

41. Imagine now on the surface S a distribution pdS producing at a point

{a',..,c', e) within the surface a potential V, and at a point (a", ..,c", e") without

the surface a potential V" ; where, by what precedes, V" is in general not the same
function of (a", .

.
, c", e") that V is of {a, .

. , c', e).

It is further assumed that at a point (a, . . , c, e) on the surface we have V = V"

:

that V, or any of its derived functions, are not infinite for any point {a, .
.

, c', e)

within the surface

:

that V", or any of its derived functions, are not infinite for any point {a", .
.

, c", e")

without the surface

:

and that V" — for any point at infinity.

Consider V as a given function of (a, .
.

, c, e) ; and take W the same function

of {x,. . ,z,w). Then if, as before,

1

we have

{{a-a;y+...+ (c-zf + (e - w)=}4»-i

'

d' d" d- \ rr

hrdW' _r du 4(rir-
j^ da'

"^^-j ^ d.'"^^ r(is-i)*^-

Similarly, considering V" as a given function of (a, . . , c, e), take W" the same

function of {x, .
.

, z, e). Then, by considering the space outside the surface S, or say

between this surface and infinity, and observing that U does not become infinite for

any point in this space, we have

/ 17' '

ds" '

adding these two equations, we have

j ^ U«' d." }^^-\\^ d.'^^ da"!
"'^

r(is - i)
"^ •

c. IX. 44
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But in this equation the functions W and W" each of them belong to a point

(w, .
.

, z, w) on the surface, and we have at the surface W = W", = W suppose ; the

term on the right-hand side thus is W (-r-,+~j-Y,] dS, which vanishes in virtue of

dU dU ^ , ,, ,. ,, "

-f-7 + -T-,,
-

; and the equation thus becomes
da an

[rrfdW dW'\ JriTiY^

that is, the point (a, . . , c, e) being interior, we have

^ /•- r (Is -^) ,dw ^'\ ds

J 4 (ri>+i V rf«' rf«" / {(a -«)= + ... + (C - 2r)2 + (e - M;)=)i»-4
•

In exactly the same way, if (o, . . , c, e) be an exterior point, then we have

jrdW ,., [ ^JT,dU,^,

adding, and omitting the terms which vanish,

^
(dW dW"\ 4 (Fir-

that is,

j 4 (r^)*+i V da ^ da" ) {{a -xf + ...+{c- zj + (e - loj]^'-'^
'

42. Comparing the two results with

Y^ [
pd^

j [(a - A-y + • • + (c - 2)- + (e - w)=l^''-*

'

we see that, V and F" satisfying the foregoing conditions, there exists a distribution p

on the surface, producing the potentials V and F" at an interior point and an

exterior point respectively ; the value of p in fact being

T{\s-\)ldW' dW"\

where W, W" are respectively the same functions of (x, . . , z, w) that V, V" are of

(a, .
. , c, e).

r/ie Potential- solid Theorem D. Art. No. 43.

43. We have as before (No. 40),

{ W^dS+ fdx ... dz dw T-fV U- ^/^^^'"'' V
J da J r(^s-i)

^( U^dS+i'dx ... dz dio UVW- ^^^^^ T,
J da J I iis — i)
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where, assuming first that W is not infinite for any point {x,..,2, w) whatever, we have

no term in T; and taking next U = --. — — —
, .. . as before, we"

{{a — a-)- + . . . + (c - 2 )- + (e - w)-ji«-4

have VC^ = 0; the equation thus becomes

f w'^dS - j U '^dS-^jPK-, V= (da; ... dzdw UV W,
J da J du r(4s — I) J

where W may be a discontinuous function of the coordinates (x, .. ,z, w), provided only

there is no abrupt change in the value either of W or of any of its first derived

dW dW dW . .

functions —j~y->'^ > j~ > ^iz. it may be an}* function which can represent the

potential of a solid mass on an attracted point (x, ..,z, w); the resulting value of

V W is of course discontinuous. Taking, then, for the closed surface S the boundary

of infinite space, U and W each vanish at this boundary, and the equation becomes

- J:^}^'*\s V= i
dx ... dzdtu Uy W;

r(is-i) J

viz. substituting for U its value, and comparing with

fr _ [ p dx ... dz dw

J {{a-xf+ ... +{c- z)- + {e- w)-\i''-i

'

where the integral in the first instance extends to the whole of infinite space, but

the limits may be ultimately restricted by p being = 0, we see that the value of p is

P
(riy+' \dx"-

^"-^
dz"' dw') '

W being the same function of («,.., z, w) that V is of (a, .
.

, c, e) : which is the

theorem D.

Examples of the foregoing Theorems. Art. Nos. 44 to 50.

44. It will be remarked, as regards all the theorems, that we do not start with

known limits ; we start with V a function of (a, .
.

, c, e), the coordinates of the

attracted point, satisfying certain prescribed conditions, and we thence find p, a function

of the coordinates (a-, .
.

, z) or (x, .
. , z, w), as the case may be, which function is

found to be = for values of (x, .
.

, z) or {x, .
.

, z, w) lying beyond certain limits, and

to have a determinate non-evanescent value for values of {x,.. , z) or (a;, .
.

, z, w) lying

within these limits ; and we thus, as a result, obtain these limits for the limits of

the multiple integral V.

45. Thus in theorem A, in the example where the limiting equation is ultimately

found to be x--ir ... +z- =/", we start with V a certain function of a- + ... +C'

(= /c^ suppose) and e", viz. F is a function of these quantities through 6, which

denotes the positive root of the equation

f"-^e ' d

44—2
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the value in fact being V= t~'>~'^ (t +/-)~^'' dt, and the resulting value of p is found

to be =0 for values of {tc,..,z) for which x" + ... +z- >/''. Hence V denotes an

integral

/ pdx ... dz

j {{a -xy+...+{c- zf + e=}i''+s

'

the limiting equation being x- + ...+ z^ =f- : say this is the s-coordinal sphere.

And similarly, in the examples where the limiting equation is ultimately found to

be -r + ... + r=l. we start with V a certain function of a,..,c, e through 6 (or

directly and through 6), where 6 denotes the positive root of the equation

a° c- e= _
/M^ "^

'*" A' + ^ e~ '

and the resulting value of p is found to be = for values of {x,. ., z) for which

X- z- _

Hence V denotes an integral

pdx ... dzr pdx ... dz

} {(a - xy + ... + {c - zy + e^\
is+q>

z-
the limiting equation being ^„+ ... + j-„ = 1 : say this is the s-coordinal ellipsoid. It is

clear that this includes the before-mentioned case of the s-coordinal sphere ; but, on

account of the more simple form of the ^-equation, it is worth while to work out

directly an example for the sphere.

46. Three examples are worked out in Annex IV. ; the results are as follows :

—

First, Q defined for the sphere as above
; 5' -I- 1 positive

;

F =

over the sphere *''-+...-!- if =/,

1 '—
) dx ...dz

. [(a - «)- -I- . . . 4- (c - ^ )-
-I- e='|**+«

This is included in the next-mentioned example for the ellipsoid.

Secondly, Q defined for the ellipsoid as above
; 5 -h 1 positive

;

F =
\-j-:-'^dx...dz

{(a - «)= -I- . . . + (c - s)- -f e=li^+«
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over the ellipsoid 7: + • • • + r-o = 1,

This result is included in the next-mentioned example ; but the proof for the

general value of m is not directly applicable to the value m = for the case in

question.

Thirdly, d defined for the ellipsoid as above
; 5 + 1 positive ; m = or positive,

and apparently in other caseSj

V-.

over the ellipsoid as above,

_ (r^)'T (1 + g + m)

/ (-2 ,2\g+m

{(a -«)=+...+ (c - zj- + e^|i*+9

V(ks^q)V{^/•••'^io'(^-/^--;^-?r^-^-'K^+/^)-^^-^''=)l-^^'-

And we have in Annex V. a fourth example ; here Q and the ellipsoid are as

above : the result involves the Greenian functions.

47. We may in the foregoing results write e = 0; the results,—writing therein

s + 1 for s, and in the new forms taking («, . . , c, e) and («,.., z, w) for the two

sets of coordinates respectively, also writing f/ — | for q— , would give integrals of the

form
pdx ...dz dtv

/:{(a-xy+ ... + {c- zf + (e - M;)2ji«+9

for the (s+ l)-coordinal sphere and ellipsoid ar+ ...+ z--\-iu-—f' and 1^0+ ••• + t-2 + 15~ ^
/- h K

say these are prepotential-solid integi-als ; and then, writing 5 = — |, we should obtain

potential-solid integrals, such as are also given by the theorem D. The change can

be made if necessary ; but it is more convenient to retain the results in their

original forms, as relating to the s-coordinal sphere and ellipsoid.

There are two cases, according as the attracted point (a, . . , c) is external or

internal.

For the sphere:—For an external point «->/-; writing e=0, the equation

has a positive root, viz. this is 6 = k- — f- ; and 6 will have, or it may be replaced

by, this value ir — f^: for an internal point Kr<f-; as e approaches zero, the positive

root of the original equation gi'adually diminishes and becomes ultimately = 0, viz. in

the foiTQulse 6 is to be replaced by this value 0.

For the ellipsoid:—For an external point j:^ + ... + y^>\\ writing e = 0, the equation

2j
-^-

-t- . . . -(- a
—

ji
= 1 has a positive root, and 6 will denote this positive root : for an
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a-
intemal point 7;; +... + .-< 1 ; as e appi'oaches zero the positive root of the original

equation gradually diminishes and becomes ultimately = 0, viz. in the formulae 6 is

to be replaced by this value 0.

The resulting formulae for the sphere x- + ... + z' = f- may be compared with

formulae for the spherical shell, Annex VI., and each set with formulae obtained by

direct integration in Annex III.

We may in any of the formulae write </ = — i, and so obtain examples of theorem B.

48. As regards theorem C, we might in like manner obtain examples of potentials

relating to the surfaces of the (s + 1 )-eoordinal sphere x- + ... +z^+ 10''= /'-, and

ellipsoid >i+ ••• +71+ 77, = 1, or say to spherical and ellipsoidal shells; but I have

confined myself to the sphere. We have to assume values V aud V" belonging to

the cases of an internal and an external point respectively, and thence to obtain a

value p, or distribution over the spherical surface, which shall produce these potentials

respectively. The result (see Annex VI.) is

/(

dS
{{a-xy+... + {c-zy + {e-wy}i'-i

over the surface of the (s + l)-coordinal sphere x^ + ... + z- + tv- =f^,

=
n^s + l) ;^

exterior point k >f,

and

2 (rAy+' /"* 1

where K' = a' + ... + c" + e". Observe that for the interior point the potential is a mere

constant multiple of f.

The same Annex VI. contains the case of the s-coordinal cylinder x" + ... + z- =f^,
which is peculiar in that the cylinder is not a finite closed surface ; but the theorem

C is found to extend to it.

49. As regards theorem D, we might in like manner obtain potentials relating

to the (s + l)-coordinal sphere x- + ... + z^ + lu- =/- and ellipsoid 7^+ ••• + p + 77„
= 1

;

but I confine myself to the case of the sphere (see Annex VII.). We here assume

values V and V" belonging to an internal and an external point respectively, and

thence obtain a value p, or distribution over the whole (s + l)-dimensional space,

which density is found to be =0 for points outside the sphere. The result obtained is

t;- I
dx ...dzdw._ f dx ...di

~]{ia-xy+...+{c- zf + {e- w)"]i'-i
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over the (s + l)-coordinal sphere x- + ... + z" + iu- = f'-,

for an exterior point k > f,

where /t^ = a- + ... + c- + e-.

{(^s + ^)f'- — (hs — ^) K-] for an interior point k < /]

50. The remaining Annexes VIII. and IX. have no immediate reference to the

theorems A, B, C, D, which are the principal objects of the memoii-. The subjects to

which they relate will be seen from the headings and introductory paragraphs.

Annex I. Surface and Volume of Sphere 0;^+ ... + z- + w- =f-. Art. Nos. .51 and .52.

51. We require in (,s + 1 )-dimensional space, I dx ... dzdw, the volume of the

sphere x- + ... +z- + -w- = f-, and
j
dS, the surface of the same sphere.

Writing x = fw^,. . ,z=f '\/^, w=f^a>, we have

dx ... dz diu = ^^j
/'+' ^~-'

. . .
^^- <o~i d^ ... d^ da,

with the limiting condition ^+... + ^+10 = 1; but in order to take account as well

of the negative as the positive values of x,. . , z, w, we must multiply by 2*+'. The

value is therefore

= /•'+' [?"-••• ?~- «"- d^--- dK do,

extended to all positive values of |, ..,?, to, such that ^+ ... + f+ to < 1 ; and we obtain

this by a known theorem, viz.

(TAy+i
Volume of (.s + l)-dimensional sphere =f'^^ r /i —sS'

Writing x =f^, .. ,z=f^, w =/&>, we obtain dS =f''d'E, where d2 is the element of

surface of the unit-sphere ^-+ ... + f- + ftj-= 1 ; we have element of volume d^.-.d^dco

= r-^drd^, where r is to be taken from to 1, and thence

fd^ ... d^dw =
f
'

/-' dr fd^=-^ f dS,
'

(I
.' s + IJ

that is,

jdl = is+l)jd^...d^d.,^-2a.s + ^)-^i^^^ = ^^^y,

consequently |rf>S' = surface of (s+ l)-dimen.sional sphere =/" p ,
,
^

,

.
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52. Writing s — 1 for s, we have

Volume of (s — l)-climensioiial sphere = /"^ p / ,
^

. i \
1 {t^S + 1)

Surface of

which forms are sometimes convenient.

do =/•.-. ^im'

Writing in the first forms s + 1 = 3, or in the second forms s = 3, we find in

ordinary space

Volume of sphere =/=^^ =f\ ,
,- = -^ -

" d' 4 . ^ . 'Vtt "

and

2 {T^f 27r*
Surface of sphere =/'-—^i?^ =/" —7=, = 47r/-,

as they should be.

Annex II. The Integral f

^

,
.!'",

'

.L+a ^rt. Nos. 53 to 63.

53. The integral in question (which occurs anti, No. 2) may also be considered

as arising from a prepotential integral in tridimensional space ; the prepotential of an

element of mass dm is taken to be = y^:^ , where d is the distance of the element

from the attracted point P. Hence if the element of mass be an element of the plane

2 = 0, coordinates (x, y), p being the density, and if the attracted point be situate in

the axis of ^ at a distance e from the origin, the prepotential is

r p dx dy

J (of + y' + e')i'+i

'

For convenience, it is assumed throughout that e is positive.

Suppose that the attracting body is a circular disk, radius R, having the origin

for its centre (viz. that bounded by the curve 0? + ^-= R-) ; then writing a; = /• cos 0,

y = r sin 6, we have

p. _ r pr dr dd

j (r= + e^)i*+«

'

which, if p is a function of r only, is

_ 9^ {__prdr
~ J(r^ + e-0^+'

and in particular, if p = r^~-, then the value is

= 2./
'-^dr

(r- + e=)i»+?

'
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the integral in regard to »• being taken from ?• = to r = R. It is assumed that s — 1

is not negative, viz. it is positive or (it may be) zero. I consider the integral

/,

R ,J!-I
flj.

(r^ + e=)i»+«
'

which I call the ?'-integral, more particularly in the case where e is small in com-

parison with R. It is to be observed that e not being = 0, and R being finite, the

integral contains no infinite element, and is therefore finite, whether q is positive,

negative, or zero.

54. Writing ?• = e Vy, the integral is

,JS- 1
fjy

= he--''

ij2
the limits being —^^ and

(1 +v)^'+i'

In the case where q is positive, this is

viz. the first term of this is

^^ r(is + q)'

and the second term is a term expansible in a series containing the powers 2q, 2q + 2,

e- ... 1
&c. of the small quantity p^ , as appears by effecting therein the substitution v = -;

viz. the value of the entire integral is by this means found to be

V\s . Vq (^- afl-^dx

\V{\s + q) Jo il + x)i'+i)

55. In the case where g' is =0, or negative, the formula fails by reason that the

element .
— .,gv„ of the integrals I , ( becomes infinite for indefinitely large values

{I + vp ^ J J i^

of V. Recurring to the original form I —
jai:^, . i* is to be observed that the

integral has a finite value when e = ; and it might therefore at first sight be

imagined that the factor (r- + e=)-J*-9 might be expanded in ascending powers of e=, and

the value of the integral consequently obtained as a series of positive powers of e^.

But the series thus obtained is of the form e^ I r""-'"'*"' dr, where 2q being positive,
Jo

the exponent —2q — 2k — l is for a sufficiently small value of k at first positive, or if

negative less than - 1, and the value of the integral is finite ; but as k increases the

exponent becomes negative, and equal or greater than — 1, and the value of the

c. IX. 45
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integral is then infinite. The inference is that the series commences in the form

A + Be-->r Ce^...: but that we come at last when q is fractional to a term of the form

Ke~-'', and when q is ~0 or is integral, to a term of the form Ke~'^ log e ; the process

giving the coefficients A, B, C,.
.

, so long as the ex])onent of the corresponding term

e°, e^, e*, . . is less than — 2q (in particular q = 0, there is a term k log e, and the

expansion-process does not give any term of the result), and the failure of the series after

this point being indicated by the values of the subsequent coefficients coming out = oo

.

56. In illustration, we may consider any of the cases in which the integral can

be obtained in finite terms. For instance,

.9=2, (? = -f,

Integral is \r{r"- + e-f dr, =^(r2 + e^)^, from to R,

= ^{B?+e^f-^^e?;

viz. expanding in ascending powers of e, this is

= ii?= + ii2e— ...-le^

or we have here a term in e^. And so,

s = \,q=-2,

Integral is \(^'' + e-fdr, =(^/-= + |e2) r Vr= + e-+ |eMog(r + Vr= + e^), from to R,

= {IR' + |eO R '^R' + e'+ |e* log
^ ^^

;

viz. expanding in ascending powers of e, this is

= IR' + fJ?V + . . . + §e^ log ^*,

or we have here a term in e^ log- e.

•57. Returning to the form

re' y^-ldv

1 —X 1
and writing herein v = , or, wliat is the same thingf, x=- , and for shortness* X ' ^' 1+v

e-

= ^e-^i
j

x9-' (1 - x)i'-' dx,

where observe that q — \ is or negative, but X being a positive quantity less than

1, the function afl~^ {\ — x)^'~^ is finite for the whole extent of the integration.

* Term is fe^log — , =fe^ ( log — + log 2 I, which, — being large, is reduced to fe^log —

.
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.'xS. If 5 = 0, this is

^ i A- X

where observe that, in virtue of the change made from - {\ — x)^~'^ to - (1 — (1 — ^)^*~^i

(a function which becomes infinite, to one which does not become infinite, for a.' = 0),

it has become allowable in place of | to write
\
—

\

J X J J

When e is small, the integi-al which is the third term of the foregoing expression

is obviously a quantity of the order e=: the first term is ^(log—•" log V 1 +
T?^) > which,,

neglecting terms in e", is = | log —
,
and hence the approximate value of the ?'-integral

=iog^-.rrf.i^L(L^-)t',
e "J, X

or, what is the same thing, it is

= log--ij/y li^ ,

where the integral in this expression is a mere numerical constant, which, when ^s—

1

is a positive integer, has the value

neglecting this in comparison with the logarithmic term, the approximate value is

= log — .

° e

59. I consider also the case q = — ^', the integral is hei-e

^e
I

ar^ (I - x)i'-^ dx

= |e f a;-3 (1 - fl - (1 - a.-)*'"'!) dx
J X

= e (Z-i - 1) + ie f
«-* {1 - (1 - *')i»-') dx

;

45—2
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and the first term of this being ='Je- + R' — e, this is consequently

= ViJ= + e" + ie[ x-^-{l-{l- xf"-'] da--e(l+^ j
w'i |1 - (1 - x)i'-'] dx) .

As regards the second term of this, we have

- 2x-^ {1 - (1 - !e)i'-'} + 2 (^s - 1) I x'i (1 - x)i'-^ dx = /"*•-=
11 - (1 - x)i'-'} dx

;

or, taking each term between the limits 1, 0,

-2 + 2^8-1)^^^^^^^ = jyi[l-{l-x)i^-^}dx;

viz. this integral has the value

-2 +
2ri.ri

r(i5-i)'

and the value of the j--integra] I —
?U8=i ^^ consequently

= Vi?^ + e^ + i e
f
V? {1 - (1 - x)i^-'} dx - e f^f^^

,

which is of the form

R^' R'---\ r(|s-p'
iiU+ terms m -=-, -rr. , •f — e -r^ji

'

say the approximate value is

R-e ^^**^

r(is-l)'

where the first term R is the term dr, given by the expansion in ascending powers
.'0

of e-; the second term is the term in e-=». And observe that the term is the value of

ie
I

a;-5(l -x)i'-'dx,
Jo

calculated by means of the ordinary formula for a Eulerian integral (which formula,

on account of the negative exponent — |, is not really applicable, the value of the

integral being = oo ) on the assumption that the F of a negative q is interpreted in

accordance with the equation F (fy + 1) = (/Fr/ ; viz. the value thus calculated is

on the assumption r| = — 4r(-^); and this agrees with the foregoing value.

60. It is now easy to see in general how the foregoing transformed value

e~^ \ ofl '(1 — a;)S* ^ dx, where q is negative and fractional, gives at once the value of
1
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= —,

a positive quantity less than 1 1 ; the function to be integrated never becomes infinite.

Imagine for a moment an integral / of- dx, where a is positive or negative. We may

conventionally write this =1 x°- dx — \ a." dx, understanding the first symbol to
J Q Jo

mean

H+a X^*"- .
1'+" — 0'+*

,— , and the second to mean ^j ; they of course properly mean —r andl+« l+a" 11^ 1+a
^Yi+« — 0'+'

; but the terms in 0'+", whether zero or infinite, destroy each other,

the original form I x^dx, in fact, showing that no such terms can appear in the

result.

In accordance with the convention, we write

I

«''-' (1 - x)i'~^ dx =
I

a;'-" (1 - xf^-'' dx - \ x''-' (1 - xf-'-' dx ;

J X Jo Jo

ahd it follows that the term in e~-'> is

|g-2?
I

^9-1 (1 -xf'-'dx,
Jo

this last expression (wherein q, it will be remembered, is a negative fraction) being

understood according to the convention ; and so understanding it, the value of the

term is

' r{^s+qy

where the F of the negative q is to be interpreted in accordance with the equation

r(q+l) = qrq; viz. we have Tq = 'r(q + l),= . . T{q + 2), &c., so as to make

the argument of the F positive. Observe that under this convention we have

rqTil-q)='^^^: or the term is ie-'i.LJ^ il^ ^,

61. An example in which |s — 1 is integral will make the process clearer, and
will serve instead of a general proof. Suppose q = — j, ^s — 1 = 4, the expression

x~^ {l~xy dx =1 {x'^ - 4a;"' + 6a.'^ - 4a;"'''^ + x''^) dx
Jo Jo

is used, in accordance with the convention, to denote the value

- 7 . 2401 - 7"

-'V ^ ii + Tii-5 + Tr;. - ' ^ 5T 5 + -nf^. - .513 27 ' 0.13.27'
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But we have

r^sFq _ ror(-|)_ 24r(-f) _ -7^

ri^s+q) r(5-|) Y--'^-¥-f-=f r(-|) 5.13.27'

agreeing with the former value.

62. The case of a negative integer is more simple. To find the logarithmic term of

we have only to expand the factor (1 — ,r)^"~' so as to obtain the term involving «"».

We have thus the term

^ e- /;
-- (-)' i^f .—^f^T+T,,

*"' ^-^^

ri (( 1

= i(_We-29 tJ^l los- —
•'^ ^ r(l-q)r(U + q)^X'

where logy: = log(lH

—

-), = 2 log—H 2 log a/ 1 + „., ; so that, neglecting the terms in

e- R
^=r , &c., this is =21og — , and the term in question is

B]' e
^

^ ^ V{\-q)T{\s+qy°^ e-

The general conclusion is that q being negative, the /--integral

Jo (r- + e')i'+"

has for its value a series proceeding in powers of e", which series up to a certain point

is equal to the series obtained b}' expanding in ascending powers of e" and inte-

grating each term separately ; viz. the series to the point in question is

^_is + q E-^^-"- ^s + q.l,s + q+ l R""-^

-2q 1 -2g-2 "^ 1.2 -2q-'i> ^""

continued so long as the exponent of e is less than — 2q ; together with a term Ke~-i

when q is fractional, and Ke~-'i log — when q is integral ; viz. q fractional, this term is

^ T{Xs + qy
*' smq-KT{\s + q)r(l-qy

and q integi'al, it is

= (_)9 e--t ^ loff ~
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63. It has been tacdtly assumed that ^s + q is positive ; but the formulae hold

good if ^s + q is =0 or negative. Suppose ^s + (jr is or a negative integer, then

r (^s + q)= oo , and the special term involving e~-'' or e~-' log e vanishes ; in fact, in

this case the r-integral is

fR

where (?•- + e'-)"'^*"*"'' has for its value a finite series, and the integral is therefore equal

to a finite series ^1 + Be" + Ce* + &c. If ^s + q be fractional, then the F of the negative

quantity ^s + q must be understood as above, or, what is the same thing, we may,

instead of F (As + q), write

iny
sm(hs + q)7rr(l-q-^s)'

thus, q being integral, the exceptional term is

- / -.9 ,-., ns^^n{is + q)7r.ril-q-is) R
-^

> {nfV{l-q) '""^e-

For instance, s=l, r/ = — 2, the term is

,risinj-|^21lw^-
^^ (Fi)=.r3 ^"^e'

7?

or, since rf = f.|r^, and FS = 2, the term is H-f^log— , agreeing with a preceding

result.

Annex III. Prepotentials of Uniform Spherical Shell and Solid Sphere.

Art. Nos. 64 to 92.

64. The prepotentials in question depend ultimately upon two integrals, which

also arise, as will presently appear, from prepotential problems in two-dimensional space,

and which are for convenience termed the ring-integral and the disk-integral respect-

ively. The analytical investigation in regard to these, depending as it does on a

transformation of a function allied with the hypergeometric series, is I think interesting.

6-5. Consider first the prepotential of a uniform (.$• 4- 1 )-diraensional spherical shell.

This is

dS

J l(a-Af + ... -f (c - zf + {e - zvYli'+i

'

the equation of the surface being of + ... + z- -\- w- =f- ; and there are the two cases

of an internal point, a- -I- ... -|- c- + e-' </-, and an external point, d- + ... +c"+ e->f-.

The value is a function of a- + ... + c- + d', say this is = «-. Taking the axes so

that the coordinates of the attracted point are (0, .., 0, «•), the integral is

dS
\af+... + z- + {K- ;«)=j

*"+'/'
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where the equation of the surface is still «- + ... + z- + iv- = /'-. Writing x =f^, . . ,z =JX,

w=fw, where ^ + ... ¥ ^- + or =\, we have dS =•' ^^^—-, or the integral is

=/•/.
d^...di;

(/- - 2/</(B + K-)i'+1
'

Assume f= px, . . ,
^=pz, where x- + ... + z- = 1 ; then p- +&)-=!. Moreover, d^ ... d^.

= jf' dp dl., where d% is the element of surface of the s-dimensional unit-sphere

— codo)
x-+...+z- = l; or for p, substituting its value V 1 — (u'-', we have dp= -. ; and

Vl — by

thence d^ ... d^— — {^ — ur^^"'^ (udmd'i,. The integral as regards p is from p = — 1 to

+ 1 , or as regards w from 1 to — 1 ; whence reversing the sign, the integral will be

from o) = — 1 to + 1 ; and the required integral is thus

^ /' (1 - ,^-^ dw dl ^fsf^sT i'^-<->"-)^'~'da>

where I rfS is the surface of the s-dimensional unit-sphere (see Annex I.), = —Wr^ ;

J I ^s

and for greater convenience transforming the second factor by writing therein a> = cos 0,

the required integral is = „ '^ . multiplied by

sin'-' dd
2/-'

fJo (p-2Kfcose+K-)i'+9'

which last expression—including the factor 2/"', but without the factor - ^ —i'' ^^^
1 ^s

ring-integi-al discussed in the present Annex. It may be remarked that the value can

be at once obtained in the particular case s = 2, which belongs to tridimensional space

:

viz. we then have

sin de
=27r/=r

{p - 2ic/cos 6 + «=)«+>

which agi-ees with a result given, Mecanique Celeste, Book xii. Chap. II.

66. Consider next the prepotential of the uniform solid (.•> -f- 1 )-dimensional sphere,

dx ... dzdw
\\{a-x{{a - xf + ...Jf.{c-zy + {e- wfl^'+i

'

the equation of the surface being of + ... + z^-^ 'uf=/-; there are the two cases of au

internal point k < f, and an external point k >f (a- + ... + c- -h e- = k" as before).



607] A MEMOIR ON PREPOTENTIALS. 361

Transforming so that the coordinates of the attracted point are 0, .
.

, 0, k, the

integral is

dx ... dzdw
-'{

ar + ... +z' + (k- iuy\^'+9

'

where the equation is still x- + ... + z- + w^=f-. Writing here x=r^,..,z = r^, where

f= + ... + ^- = l, we have dx ...dz = i'^~^ drd^, where d^ is an element of surface of the

s-dimensional unit-sphere ^ + . . . + f- = 1 ; the integral is therefore

?•*"' dr dX dw
r" + (« - w)2ji«+9

'"' dr dw

where, as regards r and w, the integration extends over the circle r- + iv'^ =f'- The

value of the first factor (see Annex I.) is = 1,^^ ; writing y and x in place of

2 (PJ-V
r and lu respectively, the integral is = „ '•^

multiplied by
1 ^s

h
3/*"' dx dy

{{x - kY + y'\^'+'i

I 2(riV\
over the circle x^ + y"- =/^ ; viz. this last expression ( without the factor

j
is the

disk-integral discussed in the present Annex.

G7. We find, for the value in regard to an internal point K<f,

r=. inr 1 /•°°

\t~'^l) Jo

which, in the particular case ^ = — ^, is

viz. the integral in t is here

or we have

F=

It may be added that, in regard to an external point k >/] the value is

c. IX. 46
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which, in the same case q = — i, is

= pVi
'' ,J

-'-^' and (t +r- - «=) (t +/=)-*-? dt,

where the i-integral is

=
f

(«+/=)-i-^-.= («+/ri'-^M<. =^-^^. = .,_. ,,+r.

and the value of V is therefore

S—

1

rcis + i) «•

Kecurring to the case of the internal point; then, writing ^ = j^ + ••• + 7~. + j ...

and observing that V (k^) = 4 (i.s + ^), we have

r(i«-i)'

(in particular, for ordinary space s + 1 = 3, or the value is —j^— , = — 47r, which is

vtt

right).

68. The integrals referred to as the ring-integral and the disk-integral arise also

from the following integrals in two-dimensional space, viz. these are

f y"-' dS f y"-' dx dy

J {(x - k)- + y'-]i'+1 ' J {(x- k)- + y-\y+1

'

in the first of which dS denotes an element of arc of the circle x'- + y'-=f'', the

integration being extended over the whole circumference, and in the second the

integration extends over the circle x- + y- =f- ;
?/*"' is written for shortness instead of

(y°)*"~", viz. this is considered as always positive, whether y is positive or negative

;

it is moreover assumed that s — 1 is zero or positive.

Writing in the first integral x=fcosd, y=fsmO, the value is

(sin ey-' de

viz. this represents the prepotential of the circumference of the circle, density varying

as (sin dy~\ in regard to a point x= k, y = in the plane of the circle ; and similarly

the second integral represents the prepotential of the circular disk, density of the

element at the point {x, y) = ?/»-', in regard to the same point a; = «, 3/ = ; it being

in each case assumed that the prepotential of an element of mass pd-sr at a point

at distance d is = ^ -^ .

d'+'i
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69. In the case of the circumference, it is assumed that the attracted point is

not oa the circumference, k not = /; and the function under the integral sign, and

therefore the integral itself, is in every case finite. In the case of the circle, if k

be an interior point, then if 2q — \ be =0 or positive, the element at the attracted

point becomes infinite ; but to avoid this we consider, not the potential of the whole

circle, but the potential of the circle less an indefinitely small circle radius e having

the attracted point for its centre ; which being so, the element under the integral

sign, and consequently the integral itself, remains finite.

It is to be remarked that the two integrals are connected with each other; viz.

the circle of the second integral being divided into rings by means of a system of

circles concentric with the bounding circle x^ + y' =/'-, then the piepotential of each

ring or annulus is determined by an integral such as the first integral ; or, analytically,

writing in the second integral x = r cos 6, y = r sin 6, and therefore dx dy = r dr dd, the

second integral is

_ r /• (sin ey-^ dd

~r^ J {r' + K-- 2Kr cos 6)^'+^

'

viz. the integi-al in regard to is here the same function of r, k that the first

integral is of _/j k; and the integration in regard to r is of course to be taken

from r — O to r = f. But the 0-integi-al is not, in its original form, such a function

of r as to render possible the integration in regard to r; and I, in fact, obtain the

second integral by a different and in some respects a better process.

70. Consider first the ring-integral which, writing therein as above x=fcos0,

y=f sin 6, and multiplying by 2 in order that the integral, instead of being taken

from to 27r, may be taken from to tt, becomes

2f'j
(sin 0Y-' dd

Write cos^^ = V«; then sin i = Vl - x, sin 6 = 2x^ (1 - x)i ; d0 = -x-!i{l- x)-i dx
;

cos = — 1 + 2x; = gives x = 1, Q = Tr gives a; = 0, and the integral is

2''-V« r^ x^'-H\-xf-'-'^dx

(/+ «)»+=-? Jo (1 - uxW^ '

4/e/"
if for shortness m= . '^.„, so that obviously u< 1.

The integral in x is here an integral belonging to the general form

n (a, ^, 7, u) =
I

a;"-' (1 - xf-^ (1 - ux)-i dx,
J

viz. we have
28-1 ^S

Ring-integral = —.-^'-^^„,^ n (^s, is, ^s + q, u).

46—2
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71. The general function 11 {a, ^, y, u) is

n (a, 13, y, u) = ^^-^'y^Fia, 7, a + ^, u),

or, what is the same thing,

Fia, 0, r „) = p-jl^^^n(«, 7-«, ^, n),

and consequently transformable by means of various theorems for the transformation

of the hypergeometric series, in particular, by the theorems

Fia, 0, 7, u) = F(l3, a, 7, 11),

F{a, A 7, i,) = {l-u)y--~^F{y-a, 7 - A 7. «) I

(1
\/l _ iiy . . 4 Vi)

, I , or, what is the same thing, u = j=-
, then

i + Vi_„/ » (1 + Vv)-

F{a, /3, 2/3, /0 = (l + v'i')=''i^(a, a-/S + i, t;).

In verification, observe that if u=l then also v = l, and that with these values,

calculating each side by means of the formulae

the resulting equation, F (a, 13, 20. l) = 2-''F(a, a - /3 + ^, /3 + i, 1), becomes

r2^_rOS- a) ^ ._,„^
r(^+i)r(2/3-2a)

r(2/3-a)r/3 " r(2/3-a)r(;8-^>( + ^)'

that is,

T 2^ _ ^ ^,„ r (2/3 - 2a)

r,8rGS + |) " r(/3-a)r(/3-a + |)'

P 9-5 pi
which is true, in virtue of the relation „ ",—^, = 2-'^'\

ijc I (x + ^)

72. The foregoing formulae, and in particular the formula which I have written

F(a, /3, 2/3, u) = (l +'Jvf'' F{a, a-/3 + i, + ^, v), are taken from Rummer's Memoir,

"Ueber die hypergeometrische Reihe," Crelle, t. XV. (1836), viz. the formula in question

is, under a slightly different form, his formula (41), p. 76; the formula (43), p. 77,

is intended to be equivalent thereto; but there is an error of transcription, 2a— 2/3 + 1,

in place of /3 + |, which makes the formula (43) erroneous.

It may be remarked as to the formula generally that, although very probably

n (a, /3, 7, u) may denote a proper function of u, whatever be the values of the indices

(o, /S, 7), and the various transformation-theorems hold good accordingly (the F-function

of a negative argument being interpreted in the usual manner by means of the

equation Ta; = - T (1 + i/), = — r(2 + ^r) &c.), yet that the function U (a, /3, 7, a),
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used as denoting the definite integral 1 x'-^ (1 — xf'^ {I — ux)-y dec, has no meaning

except in the case where a and j3 are each of them positive.

In what follows we obtain for the ring-integral and the disk-integral various

expressions in terms of Il-functions, which are afterwards transformed into i-integrals

with a superior limit oo and inferior limit 0, or «-—/'; but for values of the

variable index, q lying beyond certain limits, the indices a and /8, or one of them,

of the Il-function will become negative, viz. the integral represented by the IT-function,

or, what is the same thing, the ^-integral, will cease to have a determinate value,

and at the same time, or usually so, the argument or arguments of one or more of

the T-functions will become negative. It is quite possible that in such cases the

results are not without meaning, and that an interpretation for them might be found

;

but they have not any obvious interpretation, and we must in the fu-st instance

consider them as inapplicable.

7o. We requii-e further properties of the Il-functions. Starting with the foregoing

equation

Fi«, /3, 2^, u)=(l+'/^y--F{a, a-0 + h, /3 + ^, v),

each side may be expressed in a fourfold form :

—

F{a, A 2/3, u)

= F(0, a, 2/3, u)

(1+Vy>i^(a, a-/3 + i /3 + i, v)

= (1 + /(>)-" F (a - /3 + ^, 2, /S + ^, v)

= {I - uf-'^ F (2^ - a, 13, 20, u)
,
= (I + ^/vf- (1- v)'^--' F(0 -a + h, 2/3-a, /3 + i v)

= (l-uy-'F{a, 2/3-a, 2/3, u) = (l + 'Jv}"' (1 - v}"^-'' F {2/3 - a, /3-a+L /3 + ^, v).

where, instead of (1 + Vr)-" (I - y)-^--", it is proper to write (1 + Vw)=3 (1- v'y)^^-^''

;

and then to each form applying the transformation

we have

Fi., /3, y, u)^^^J^l—^U(a, 7-a, /3, .),

r28'^ n (c(, 2,S - a, /3, u)Far {2/3 -a)

r2/9

r0r/3
n (/3, /S, a, a)

r 2/3
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= (1 + Vt-F (1 - V^)=^-^' p,J'^ti!r. n (;8 - a + A, a, 2;S - a, ?;)

= (1 + v; y^^ (1 - V^)=^-^- r(2/3-'l)%-^ + i)

n (2^ - «.
« - ^ + i ^ - « + i -)•

I select the second of the first four forms ; equating it successively to each of the

second four forms, and attending to the relation r\o = ^'"'^ ^"2. '^^'^ ^^'^

n (13, /3, «, «) = (1 + V^r 2--^3

raV(S-l + ^)
U{a, ^-a+-^,a-/3 + l V)

= (1 + V^-)=- 2-=.
r(a-/34)r(2^-a)

n (« - ^ + i 2/3 - .. «, .)

= (1 + V.f^ (1 - Vii)^- ^'"'
r(/3-l+\)r«

n (^ - a + i «, 2^ - a, ^)

YS Ti
= ( 1 + V.)-^^ (1 - V;)^^- 2'-^

r(2^-a)r(a-;3 + i)
n (2/3 - a, « - /3 + ^ ^ - a + ^ v).

Putting herein /3=^s, 3=^5 + 5, the formulae become

n (^S, is, is + q, M) = (1 + Vi'r='^ 2- j^^^^^L_.^ U(^s + q,^-qJ, + q,v) (I.>

= (i + V^)«+=9 2'-'
r (i /J'r(|s - (^)

" ^^ + g' ^^ - g- 2 ^ + g- ^) (II-)

= (1 + V^)U1 - V^r'2-^j,^^--^^JL_n(l-5, is + ry, is-^,.) (III.)

= (1 + V^). (1 _ V«)-. 2'- j^^^ilL--^ Uiis-q,^ + q,^-q,v) (IV.),

where observe that on the right-hand side the Il-functions in I. and IV. only differ

by the sign of q, and so also the Il-functions in II. and III. only differ by the sign

of q. We hence have

n (is, is, is - q, u) = (1 + 'Jvy--i 2>-
. r(-i,5^)r*(i^^)

n{^s-q, i + q, h-q, v);
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and comparing with (IV.),

n(|s, ^s, ^s + q, „)=(|^^y'n(^S, is, \s-q, u).

367

74. The foregoing formula,

Ring-integral = F»n(is, is, ^s+?, »),

4/if/"

where it = ^ .
'

, gives, as well in the case of an exterior as an interior point, a

convergent series for the integral ; but this series proceeds according to the powers

We may obtain more convenient formulae applying to the cases of anof .i^

internal and an external point respectively.

75. For an internal point k < f\ Vl — u =•'
, and therefore v = ~^.

n (is, ^s,y+ q, «)= (^) 2'-
r^^^/^)r|,_^-^ n (^s + ?, 4 - g, 4 + q, ^)

//+^Y+'^o._. run n^ +0 ^s-a ^s + a
'^

li'f )\ f
91-s r'^^ ^?

V{i-q)V{\s+ q)fe) "(^ 9. h^ + '/. ¥« - ?. ^.̂)

I / M / J r(is-5)r(i + ^)^H-''' ^" ^^" ^'fJ-

where the Il-functioas on the right-hand side are respectively

= /'2?+l
=/ (/— «^^ri

a;9-i(i -xf'-i-^dx

I

^fs+-2fl
I

^ Jo if - *'«)^'-»

- ./
y/- — K-)-' Jo

the i-forms being obtained by means of the transformation *' =
. ,.o _ -; ; viz. this

gives

whence the results just written down.

t+r-^' (t+p-K^y
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We hence have

Ring-integral =
^j^ [-^^ n^sl^l^-q) [ *'"'"'

^' +/^ " '^^>-*"^
(^ +fr''~^ ^^

r(i-?)r(As + <7).)

/

As a verification write k = 0, the four integrals are

-Imi+i) r ^'"'"'
^^ -^-^^ - ^•^)"^^-'

(^
^-^^^'^-^ '^^^

hence from each of them

Jo (t+rf'+i' J v{\s + \)
''

Jo (<+/¥«+*' ' rihs + h)

r p-'i-'dt ^ r(i-g)r(is +^)
Jo (<+.n^«+i' ' r(is + iy

Ring-integral = >j^ '

which is, in fact, the value obtained from

Ring-integral = ^-^?j^-^^n(i., i., ^s+q, ^^^^
on putting therein k = ; viz. the value is

76. For an external point k > f, Vl —u= — ., and therefore v = —.
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where the Il-functions on the right hand are respectively

"
Jo («-^-y-r)«+i

_ ^,_„
/•i a;-'?-^(l - a-O^'+g-' fc

_„^^,
fi a;i»-g+'(l-a:)''-Ma;

"""
Jo (^^-z^^r^+i

We have then

Ring-integi-al = -^ ri.rj
t-i^+<j (t +/' - K')i'+'i-^ (t +/')-'''- dt

(.^-/Tri^ + q)Ti^s-q)J,^,r' i^+f'-^r' (t+fT^-^dt

= ^' Ti^-^^.-,q) l.^,r-'(^^f'-^-^-'(^-^f^r^'+1 dt

-
(«= _/=)=* f (is - 5) r (1 + 5) i«'-j

r^sri
H»-''(f +/- - «^)^'-'?-l

(« +/-)'!-i (i<.

Observe that in II. and III. the integrals, except as to the limits, are the same
as in the corresponding formulae for the interior point.

If in the ^-integrals we put t + K- —f" in place of t, and ultimately- suppose k
indefinitely large in comparison with /, they severally become

/:„..=-/=,-. .. ,..,-..-.../; j^'ii^,..,-. coi^ip),

f (f + «- -/=)-«-* t-'l-i (t + K-)-i-'+'J dt=l
J II Jo

I
(t + K^ -f^)-i-

J II

and they all four give

t'--"-' dt ^ rii-q)r{y + q)

it + K^)i'+i r(is + i)

" Us—o—i

Ring-integral
«»+=« r (is +i)'

which agrees with the value

2«-i ft I \.icf \ 9S-1 A

when ^ is indefinitely large.

C. IX. 47
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77. We come now to the disk-integral,

j {{X - K

y^~^ dx dy

over the circle x^ + y'^=f^. Writing x = k + p cos ^, y = p sin <j), we have dxdy = pdpd<p,

and the integral therefore is

[ r sin'-'
(f>
dp d<p

]J p'i

where the integration in regard to p is performed at once ; viz. the integral is

or multiplying by 2, in order that the integration may be taken only over the semi-

circle, y — positive, this is

= -j f
(p'--'') sin«-' d) d^,

2 - </i

the term (p'"-') being taken between the proper limits.

78. Consider first an interior point k <f. As already mentioned, we exclude an

indefinitely small circle radius e, and the limits for p are from p = e to p = its value at

the circumference; viz. if here x=fcos6, y=f sin 6, then we have /cos = /c + p cos (^,

/sin 6 = psin<j), and consequently

p- = K-+p - 2k/cos 6,

sm0=-sin^, = ,

•'

,

p '^K'+p-iK/cosd

and the integral therefore is

= rr7y
([.-+/^-2./cos^p-^^-'

- ''''" ''''"' V ^"^^

As regards the second term, this is = — ,
|
sin*~'

<f>
d^, from

<f)
= to ^ = tt ; or,

77"

what is the same thing, we may multiply by 2 and take the integral from
(f>
= to

(f>
= -^ .

I
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Writing then sm(f)=^.T, and consequently sin*~' ^ c^^ = ^a,j''"'(l — a;)^ d«, the term is

= — — -——^-—. the value of the disk-integral is

But we have

and thence

that is,

_ /«-' r sin'-' ed<i> e'-'" r^s r^

. , /"sin 6 , /"cos 6 — K
sin <p

=*^
, cos =•'

,

9 P

. .
/sin e

, , , , f(f-K cos 0) de
tail ^ = T'^—a . sec- 4, d4> = --/t ^ V~ J^ JCOSO—K (/ COS0— K)-

f(f- K cos (9) de _ fif-KCOse)dd

or, what is the same thing,

i ((/•' - «') + (/^ 4- «— 2^/"cos g)} .

/= + K- - 2«/cos ^
'

the expression for the disk-integral is therefore

_ ^/'-' r-^ sin«-' 0{{f-- «') -K/^ -I- /t- - 2«/"cos 6)] dO e^ F^s T^

79. Writing as before cosi^=Va' sin i^ = Vl -|-a-, &c., and u=-,—%rr„ , this is

2S-2 ^S-1 (/ f2 _ ^2\ > gl-2g pig pi

As a verification, observe that, if k = 0, each of the IT-functions becomes

= I ^.i«-i (1 _ a,)^«-i ria;, = ^l*Ii?
;

Jo Is

hence the whole hrst term is = ;
-^

. ^_, ^ - , viz. this is =•'; =r--^ ^ , and
i-q Ts ' ^-qT{^s + ^)'

the complete value is

= ? ?_ f / 1-29 _ £1-2-?

i-qr(U+i)'-' ''

vanishing, as it should do, if /= e.

SO. In the case of an exterior point k >/, the process is somewhat different ; but

the result is of a like form. We have

Disk-integi-al =j-— I (pi'-"i - p'-"'') sin^-^ 4> d<f>,

47—2
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/

where p^ refers to the point M' and p to the point M. Attending first to the integi-al

p^--i sin^-^ (j) d(}>, and writing as before /cos ^ = k + p cos c^, /sin = p sin <^, this is

_ , _^ rsin'-' e {{/' - k') + (/'+ k' - 2/,/cos 6)} cie

~^J
J {f' + K'- 2fK COS d)^'+'J

'

the inferior and the superior limits being here the values of 6 which correspond to the

points N, A respectively, say 6 + a, and = 0; hence, reversing the sign and inter-

changing the two limits, the value of - I
p^-'-^ sin'-' 6 d(j) is the above integral taken

from to a. But similarly the value of +
|

p/--'? sin*'-' d^ is the same integral taken

from a to tt. For the two terms together, the value is the same integral from to tt
;

viz. we thus find

.^. , . ,4 /»-!
f^ sin«-' {- («" - /-) +(/= + «:=- 2a:/' cos 0)\ d0

Disk-integral = |tr^ |^ (y. + „. _ ^/^ cos 0)i«+^ '

4;^/'

or, writing as before cosi0 = Va;, &c., and u = -,—rWo, this is
» («-H/)-

2«—2 /"«—

1

a
K^-r-

-,)(/+/r'^-n ~(^'-"^^^' ^*' **+^' '^^"*-"^*'' ^'' i'^+'z-i)}-

81. As a verification, suppose that k is indefinitely large : we must recur to the

last preceding formula; the value is thus

f
(I -9)

««+-'?-'

sin«-i ^ (
- cos + =^)

-^ COS0

viz. this is

= (1-/1.+^.-. J/"^'"'
^ |- cos ^ + [1 - (. + 2g) cos^ 0-\

{} d^,

where the integral of the first term vanishes ; the value is thus

fs-Vx fw
- ^,/.^., j/n-'0[l-(s+2q)cos^0] d0,
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where we may multiply by 2 and take the integral from to -. Writing then

sin^=Va,-, the value is

fs+i n
= (i-4) «'^+-^» i„

''^'"^
(1 - (« + 2?) (1 - *•)! (1 - x)-i dx,

where the integral is

^_h(s+2q)) TJ^sn h-<l

and hence the value is

viz. this is = I if~^ dx dy, over the circle ar + 2/- =/-, as is easily verified.

82. Reverting to the interior point k </,

Disk-integral

=
(1 -^C^y^-- {/t".

" ^^'' !- i- + ^. '0 + n (1, ^., 1. + , - 1, .)} - ^gi^^ ;

then reducing the expression in
{ } by the transformations for H (^s, |s, is + q, u)

and the like transformations for n(is, ^5, is + q—l, u), the term in
[ ) may be ex-

pressed in the four forms :

—

l-^)n(ls + g. ^-q, ^ + q, ^) + -'^^ ^n(i. + y-l, f-y, -^+q,^

9,-, r^s ri (/+^r^
multiplied by

T{^ + q)r{i.s-q) /»+•-"'-

l-pn(i+.y, 1.-5, i«+ry,p +-J^ u(-i + q,ls-q+l,is + q-l,^}l

21-s _ Eiili ^
(f+ icy-' if- icy-"'

multiplied by
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83. The first and the fourth of these are susceptible of a reduction which does not

appear to be apphcable to the second and the third. Consider in general the function

(1 - 1)) n (a, /3, 1-/3, v) +"^ n (a - 1, /3 + 1, - /3, v);

the second II -function is here

I a;"~- (1 — a; . 1 — vxY dx
;

JO

viz. this is

= *:!li (1 _ a. . 1 - vxf -^ f ' a;-' ^{\-x.\-Vxfdx,

or, since the first term vanishes between the limits, this is

= -A [' a;«-' . ( 1 - a: . 1 - vx^-' {I + v - 2vx) dx,
a — 1 J (I

= -^1(1+?;) n(a, /3, 1-A v)-2v[ x^ (1 - x . 1 - vxf-' dx).
a— 1 Jo

Hence the two E-functions together are

= (l_j,+ l + t,)
I

a;"-' (1 - a; . 1 - y.«)^-' dx - 2 I vx . x'-' (1 - a; . 1 - vxf-' dx,

Jo •'

= 2 [ a;'-' (1 - xy-' (1 - vxf dx,
Jo

that is,

(l-^)n(«, A 1-/3, j;) + °^n(a-l, /3+1, - /8, ^) = 2n(a, /3, -/3, t)).

We have therefore

and from the same equation, written in the form

n(a-l, ^+1, -/3, v) + ^^il-v)U(oi, /3, l-iS, «) = 2^f ^0(0, ^, -^ v).

we obtain

1
= ^^^^^n(,^s-5 + i, -i + 5. i-g,

J-:).

84. Hence the terms in [ ] in the first and the fourth expressions in No. 82 are

=
r(i. + 5)r(i-g)- /-=«- -n^i^ + g, . g. i + g.^.j,

2;^^(_^ + gMl^i (./+ ^r; (/- «)-« n (|. - g + 1, - i + g, i - g. a

.
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respectively ; the corresponding values of the disk-integral are

which we may again verify by writing therein k = 0, viz. the Il-functions thus become

and consequently the integral is

^-qTi^S + ^y

85. But the forms nevertheless belong to a system of four. In the formulae

n (a, /3, 7, V)

rar/3 ^,

= (1 - vf-y n (/3, a, a + /3 - 7, v)

writing a=^A' + (/, y3 = ^ — </, 7 = — i + 5, we deduce

11(^5 + 5', ^-5, -i+q, v)

= (1-^)1-='? n(i-<?, Js + g, is-(/+l, «)

° <' - •)'-"
r (ti- ,Vi')V(-7+ ,

)"<*'-' -^ ' -*+"• *-». ">^

and the last-mentioned values of the disk-integral may thus be written in the four

forms

:

TjsT^
r{^-q)T{^S + q)

> ^^y^^-r-i, 2 1. 2 .7.^-,
/'-29 Uly + q, ^-q, -h+q, j-A - term in e,

-ThsTh /I-.? u{-i^ + q,y-q + l,y + q,^,)T(h + q)Ti^s-q+l) > "V "'^'"^^ .^., .."..,
_^

» J
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and since the last of these is in fact the second of the original forms, it is clear

that, if instead of the first we had taken the second of the original forms, we should

have obtained again the same system of four forms.

S6. Writing as before * = ; ^ -, &c., the forms are

r(f-gfrlW?) ^^"' ~ '^^'^'' ^y^^''' ^* ^-^
"

"
''')"^''^'"

(* +/=)^-* dt - term in e,

r^sS^j^l^h+i) jy^ (t^f^-^r^-^it^rr^^^ dt- „ .

87. The third of these possesses a remarkable property. Write mf instead of f,

and at the same time change t into TnH : the integral becomes

risTi
r{^-q)r{^s + q)

^-/*+'
I

t-'J-i [m-{t +/') - K'-]-i+i (t + fyi'+i-' dt - term in e
;

and hence, writing m/=f+B/ or ?;i = l + -^, and therefore wi- = l+2 ^, the value is

Hence the term in Sf is

=
'
^- ^^ -^ *^ ./

• r(t-?)r'ii-.g/"'.D""^ ^^ +-^^ - '^^^-^^^^^ +./0-*-'^^.

= 8/ into expression p^^.^^r^/^^^
/^'

j^^
r*-^ « +/-^ - K^y-i {t +/=)-i«+?d<,

where the factor which multiplies hf is, as it should be, the ring-integi-al ; it in fact

agrees with one of the expressions previously obtained for this integral.

88. Similarly for an exterior point k >/; starting in like manner from, Disk-

integral

=
(^

_

^\/+fy^-'9-^
[

-

^" <^*' **' ^* + ^' ^«) + n(i., ks, y + q-l, »)},

and reducing in like manner, the term in
{ } may be expressed in the four forms

I

-{^-Q^{is + q, ^-q, i + q,-g)+i^^u{^S + q-l, l-q, -^ + q,ty

g-«
,, '^ .V, ^ i „ multiplied by

r{hs + q)r{^-q) K'+"-o--
^ ^
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multiplied by

91—8 n^n —^-
I I

—
I multiplied by

^'"^

ra.-g)r(i4-,) (V-) (^) -it^pi-dby

-u{is-q, i+q, i-<;,^;) + (i-^;)^i^ n(|s-5+i, -1+^, 1-5,/;

89. For the reduction of the first and the fourth of these, we have to consider

-(l-^)n(a, /3, 1-/3, v) + °~^U(cL-l, /3+1, - /3, v);

vjz. this is

(-l+v+l+v)j «"-' (1 - a; . 1 - vxy-' dx - 2 f vx .
««-! (1 - a; . 1 - vxf-' dx,

Jo .'o

= 2v I x'-' (1 - a;) (1 - a; . 1 - vxy-' dx,
J a

= 2vU{a, /3+1, -yS + 1, t;);

that is,

-(l-i))n(a, 0, 1-yS, 2;) + °^-n(a-l, /9 + 1, -/3, v) = 2vU(a, B + 1, -0 + 1, v).

I repeat, for comparison, the foregoing equation

+ (1 - t>) n (a, 0, 1-0, v) +^ n{a-l, /3+1, -0,v) = 2U (a, 0, -/3,v);

by adding and subtracting these we obtain two new formulae ; for reduction of the

fourth formula, the equation may be written

-n(a-l,/3+l, -13, v) + (l-v)^U(a, 0, 1-/3, v) = -2^z;n(a, 0+1-/3 + 1, v).

90. But it is sufficient to consider the first formula ; the term in
[ ] is

and the corresponding value of the disk-integral is

risrj f
r (|s + g) r (I

- 5) «*+=«
nUs + g, f-g, i + ?,

/^

C. IX. 48
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which we may again verify by taking therein k indefinitely large ; viz. the value is

pig pi^ /S+l

then = T=r7T \i -n^, as above. It is the first of a system of four forms, the others
1 (-^s + f)

«*+-''

of which are

•S fi -5r' n ff-^, is+<?, is- 5 + 1, -5).

=
p,...^y^i(,.,,) £S(i-gy"'^"(^^-^+i-^+^.t-^.$)-

And hence, writing as before a; = —•^-
, &c., the four values are

=
P (, .^ .[F^^g, , +1)

/-' (-- -/-)'--
/!,.

^--^ it^r-^-^ (^+/^)-^- c^^,

-
P(..-^y^l-(,^,)^ C/-^- (.4-/=-.=^- (.-1-/0- c^^,

where we may in the integrals write t + k- —/- in jDlace of t, making the limits oo
, ;

but the actual form is preferable.

91. In the third form, for / write m/, at the same time changing t into mt\

the new value of the disk-integral is

nsn?^ ^ ^

Writing here mf=f+Bf, that is, m = 1 + y , m- = 1 + —,
- , and observing that, if

— q + i be positive, the factor {m-{t+f-)— K-}~'!'*'i vanishes for the value t= --—/^ at

the lower limit, we see that on this supposition, — q + ^ positive, the value is

viz. the term in S/" is = hf multiplied by the expression



607] A MEMOIR ON PREPOTENTIALS. 379

that is, imiltiplied by

which is in fact = Bf multiplied by the value of the ring-integral.

92. Comparing for the cases of an interior point k <f and an exterior point

K >f, the four expressions for the disk-integral, it will be noticed that only the third

expressions correspond precisely to each other ; viz. these ai'e : interior point, k <f; the

value is

^|L.^...jl-,-.(,+^._.)-n.(,,/,-..,-.,,_f:^i ŝris

where, if ^— q be positive (which is, in fact, a necessary condition in order to the

applicability of the formula), the term in e vanishes, and may therefore be omitted

:

and exterior point, k >f; the value is

differing only from the preceding one in the inferior limit k" —f- in place of of

the integi-al. We have ^ — q positive, and also hs-\- q positive ; viz. q may have any
value diminishing from ^ to — \s, the extreme values not admissible.

Annex IV. Examples of Theorem A. Art. Nos. 93 to 112.

93. It is remarked in the text that, in the examples which relate to the 5-coordinal

sphere and ellipsoid respectively, we have a quantity 6, a function of the coordinates

(a, .
. , c, e) of the attracted point ; viz. in the case of the sphere, writing a-+ ... + c- = k-,

we have
K^ e- _

in the case of the ellipsoid, we have

a- c- e- _
p + e^-'-^ii' + e^ e

the equations having in each case a positive root which is called 6. The properties

of the equation are the same in each case ; but for the sphere, the equation being
a quadric one, can be solved. The equation in fact is

6^-e{e^ + K'-p)-e^p = 0,

and the positive root is therefore

e = ^[fF + K- -/- + V(e= + K- -f^y + 4ey^}.

Suppose e to diminish gradually and become =
; for an exterior point, « >/, the

value of the radical is =«-—/-, and we have 6 = K-—f'-; for an interior point, « </,
48—2
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P + K-
the value of the radical, supposing e only indefinitely small, is =/- — a- +

-ji
; ^'' ^.nd

we have ^=^6-11+'^;^ -J, = rp^—;. or, what is the same thing, S = (l~7'2); ^i^-

the positive root of the equation continually diminishes with e, and becomes ultimately

= 0.

If K. or e be indefinitely large, then the radical may be taken = e" + k-, and we

have 6 indefinitely large, = e- + k-.

94. The result is similar for the general equation

a- c- ^^ _ T .

\+ + 7.0
, a + 5 ~ -^ J

the left-hand side is = for ^ = oo , and (as 6 decreases) continually increases, becoming

infinite for 6 = 0; there is consequently a single positive value of for which the

value is = 1 ; viz. the equation has a single positive root, and is taken to denote

this root.

In the last-mentioned equation, let e gradually diminish and become = ; then

for an exterior point, viz. if

^+... + ;^,>l, the equation ^-^-^... +^^=1

has (as is at once seen) a single positive root, and 6 becomes equal to the positive

root of this equation; but for an interior point, or ^ -f ..• -f rr, < 1, the equation just

written down has no positive root, and becomes = 0, that is, the positive root of

the original equation continually diminishes with e, and for e = becomes ultimately

e" /, a- &
= 0; its value for e small is, in fact, given by ^=(1 — ^ — ... — t^J. Also a,..,c, e

(or any of them) indefinitely large, 6 is indefinitely large, = a" -\- ... -f c" -I-
e'-.

95. We have an interesting geometrical illustration in the case s + 1 = 2 ; d \b

here determined by the equation

a- b- ^" _ -I

viz. 6 is the squared ^-semiaxis of the ellipsoid, confocal with the conic ^+3=1.
which passes through the point (a, h, e). Taking e = 0, the point in question, if

^-f-^>l, is a point in the plane of :cy, outside the ellipse, and we have through

the point a proper confocal ellipsoid, whose squared 2-semiaxis does not vanish ; but

if
-pi
+ — <\, then the point is within the ellipse, and the only confocal ellipsoid

through the point is the indefinitely thin ellipsoid, squared semiaxes (/-, g-, 0), which

in fact coincides with the ellipse.
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96. The positive root 6 of the equation

has certain properties which connect themselves with the function

(S), = 0-7-1
[(6) +/2) ...{6 + h-)\-^.

We have, the accents denoting differentiations in i-egard to 6,

r,dd 2a „ dO 1 2a
'^ x: -:a-7^.= 0. or x; = -T'

where

and we have the like formulae for .
. , ^- , -^

.

ac ae

We deduce

a de c dd e d0 2 { a^ „ -
, «

d+pda^" e+h'^dc dde J' {{6 +f'f^
'"

' {6 + hrf^ d

and to this we may join, t; being arbitrary

a dO c d9 e dd 2 ( a-

,i„
"*

• • • "^ d I „ 1 7.2 ,7^
"^ d _i_ „ ,7^ T'\a i -ei a A ^ ^ fi"^ ••'

6 + 7)+/- da d + r, +h- dc + V de J'\0 +f- .e + rj +/'

c^ e-

e + hK0 + 7, + h-'^ 0.0 +

Again, defining Vj^ and D^ as immediately appears, we have

and passing to the second differential coefficients, we have

d-d 2 8a= ia-J"

da' J'{6+P) J''{0+fJ j''(e+py'
where

\{0+f'y (0 + hy^0\

and the like formulae for .
.

, -^^ , ^ . Joining to these 3. _ = -^j.,^ , we obtain
de

ae =f— + ,

d'd ^d'0 ^2q+l d0
' \(Za^ "" dc- de- e de

J'\0 +
+ I

1 l+(2y+l)

-^=(-io-^'(n
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where the last two terms destroy each other; observing that we have

the result is

2 / 2©'\ _ 4©'
°^ = 7'r©"y' -"/'©•

97. First example. «- = «-+ ... + c", and 9 the positive root of ^^^-^ + ^ = 1-

F is assumed = «-«-' (« +/-)"-' f^<. where 5 + 1 is positive.

I do not work the example out; it corresponds step by step with, and is hardly

more simple than, the next example, which relates to the ellipsoid. The result is

p = 0, if x-+...+z->f',

p (r^yr(g + i)-^ v p J ' ^ ^ •/
>

hence the integral

1 ':^ j dx ...dz

.[{a-xy-+...+ {c-zf + e-]i'+'2

'

taken over the sphere x-+ ... + z- =/",

_ iriyv(q+i) r

98. Second example. 6 the positive root of ^=rT^+ ••• +^rT^ + ^= ^
' 5+1

positive.

Consider here the function

V= Ct-^-' {(« +/=) ...(« + Jr)}-'- dt ;

this satisfies the prepotential equation. We have in fact

da da ' da- da- \daj
'

with the like expressions for . .
. , -r-j , -r-^ ; also

2q + ldV^_^2q + lde
e de e de'

Hence
nF=-0D0-0'VA
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or, substituting for D^ and V ^d their values, this is

(4(H) \

Moreover V does not become infinite for any values of (a, .
.

, c, e), e not =
;

and it vanishes for points at co
. And not only so, but for indefinitely large values

of any of the coordinates (a, .
. , c, e) it reduces itself to a numerical multiple of

(a'' + . . . + c^ + e-)'^-^*i
; in fact, in this case 6 is indefinitely large, = a- + . . . + c- + e\

Consequently throughout the integral, t is indefinitely large, and we may therefore write

v= ft-"-' . t-i' dt, = --r^ («-^'-«);, =—^ e-i'-",
-'« 2^ + 9 i'S + 5'

that is,

V= -—-- (a' + . . . + c- + e-)-i'-i.

The conditions of the theorem are thus satisfied, and we have for p either of

the formulae

P myvq^' ''>" p 2{riyr(q + i)[^ de),'

in the former of them q must be positive ; in the latter it is sufiScient if ^ + 1 be

positive.

99. We have W the same function of {x, . . ,z, e) that V is of (a, .
.

, c, e) ; viz.

writing X for the positive root of

a;- z- e^

f"- + \ '" h- + \ \
the value of W is

=£r^-M(«+/^)...(< + /r)}-M<.

Considering the formula which involves e-"W,—fii'st, if -77,+ ... +y„>1, then, when

e is = the value of X is not = ; the integral W is therefore finite (not indefinitely

large), and we have e-' W=0, consequently p = 0.

But if "-;:,+ ... + 7T,< 1, then, when e is indefinitely small X is also indefinitely

g2 /1.2 ^2

small; viz. we then have - = 1 — -r, — ... — j-„ ; the value of W is
X y - h-

w=if... hr ft-o-'dt, =(f...hrl\-",
J \ q

and hence

_ v(i.s + q) 1 (ey _ r (^ + 5)__- . , /j _ ^= _ _ !:y
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100. Again, using the formula which involves (e=5+i -t— j; we have here "t— = — ®t-.

(16
or substituting for and t- their values and multiplpng by e-5+', we find

dV
e=(?+i '11- = 2e=«+= 6-^ J'-' ©,

de

= 2e=«+= 6-1--
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102. We may in this result write e — 0. There are two cases, according as the

attracted point is exterior or interior: if it is exterior, ^+...+ r„>l, will denote

the positive root of the equation ^,

—

>,+ •••+,-.— ^=1; if it be interior, -2^ + ... + ^, < 1,

J ' + tf It- + a / 11-

6 will be =
; and we thus have

[{a-xy+... + {c-zy]^'+i

^(£i)'r(g + l)
^ f t-''-' [(t+f-)...(t + }i')]-idt, for exterior point .„

,

= ^^Kr^'^t^^ (/ • • • /') f "i"'-' {(t +/") •••(< + /''-)]-* dt, for interior point ^ + . .
. + J, < 1

;

1 (2*+ ^) -'o /' II-

but as regards the value for an interior point it is to be observed that, unless q be

negative (between and — 1, since 1 + g is positive by hypothesis), the two sides of

the equation will be each of them infinite.

103. Third example. We assume here

V=[ dtI"'T,
J e

^^^~
f' + t^'" h- + t^ t'

as before, 6 is the po.sitive root of the equation

/•-I "^- _ ''' -^- -0
^-^-f^ + - h^ + e 6'

-"'

and i« + g' is positive in order that the integral may be finite ; also m is positive.

104. In order to show that V satisfies the prepotential equation nK=0, I shall,

in the fii-st place, consider the more general expression,

V=r dt I"'T,

where 77 is a constant positive quantity which will be ultimately put =0. The

functions previously called J and B will be written J,, and 0„, and J, © will now

denote

a- c- e-

where
a^ c" e-

J. =l-
0+v-^.f'' '" + 7} + lr 6 + 7)

©, =(d + 77)-«- {(d + r, +p) . .. (^ + 7, + /r)l-* ;

c. IX. 49
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whence also, subtracting from J the evanescent function Jo. we have

[607

/ =

say this is

J=vP\

=+---+^ +
+ h-.6 + r)+h- 6

and we have thence, by former equations and in the present notation,

d0
+ ...+

cW _e_ de_2^

0+jj +y2 da^ '"
' 6 + V + !''- dc 0+t) de J„

i
Vo'

Jo'®o
'

In virtue of the equation which determines 6, we have

J 9+71 '+/
dV
da J 8+,

da

and thence

^=r dt jm/'"- --4. + m (m - 1) /"-= ,-4^.„„

© d0

+ v +/V c?«

dd
6-

. )©-,
+/V da

d^e

-Mi^-<£)'

- J'»@
da'^'

Avith like expressions for
d'V d'V ,-

dc"-' dF-
^''°

2g + l dF_ r" ,,
-4g-2 2g + l

and hence

, - f
^

(i< 7;i/'«-> "1 " T - "^-^^ J'«@ : ,

e de J e+n t e de

+ m(m- 1) /"'--. 4
(«+/=)^

+ ... + +
e'l

+ 4wi J'"-' ©
rf^

+ ... +

(t + /('-)= <=

rf^ e d0\

^ + V +/' da '" 6 + 7) + h- dc + t] deJ

-l^'^-'^Mli'^-^
i'dey d0Y /d0V

dc We

T-,r,r^(d-0 d-0 d"-0 2o+l d0

\da- dc" de" e de

I
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105. Writing /', T' for the first derived coefficients of /, T in regard to t, we have

The integral is therefore

f rff |2»« /'"-' ^,,, ?"+ ?7i {m - 1 )
/"'-2

. 4/t|-
,

=
I

c?i! (4/w /"'-I 2" + 4j» {m - 1) /'"- /T',
J e+r,

viz. /'""' T vanishing for ? = oo
, this is

= - 4«i J'»-' 0.

Hence, writing {J™ B)' instead of -j^ (J'" @), we have

av=- 4?« ./'»-i

+ 4»iJ"->0r -'' '^+
I

^ f^^
,

e d^\

- j™en6i;
viz. this is

nF=-4w J"'-»@

p
+ 8«i J"'-' (") . ^

''0

or, writing «i J'"-' J'€) + J"'fi' instead of (./'"©)', this is

° ^ = - j; (^' - 2P + J^) - *;:@^ (B'0„ - 00„').

We have here

,,_.,„ /= '
f

1
?

1 ) „( 1 2_^

{{0 +f'f {0 + 7? + /•=)= ^ • • • ^ (0 + /(=)= (^ + t; + A=)= e'{e + r,r\

= 7]^ Q, suppose.

Also 0'0o — 00„' contains the factor rj, is = ijM suppose.

49—2
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106. Substituting for J, J' - 2P + J, and ©'©„-©©„' their values vP, vQ, and

rjM, the whole result contains the factor 77"'+^ viz. we have

4^m+i pm-i / FM\
°''-^^~[<^*i)

If here, except in the term 7;"'+', we write 7; = 0, we have

P = a-

v, + --- + :;7., + Si' —''0)

l/=0„©;' -©„'=;

the formula becomes

D F = - 47,-+' /„'"'-= |Ko"'<^o + ^«' (©»" - ®^^)] ;

or (instead of Jo. ©o) using now J, in their original significations

J=l-
this is

0+f-
• + h' 6

'^' -
^l

, and = d-"-' {{6 +p) ...{6 + A;))-^

,

D F = - 47?™+^ /''»-= kj'"© + J' (©" - y)
or, what is the same thing,

= _ 4,,»+V'--@ 1^J'" + J'
(I)] ;

viz. the expression in j j
is

^+ ••• + +
e-

(0+/O- ••"^(^ + A=f^^'J

1 1 2(7 + 2

(^+/2)2-^---"^((9 + /,2y2-r
ff,

We thus see that, 77 being infinitesimal, D F is infinitesimal of the order 7;'"+'
; and

hence, 7j being = 0, we have
nF=0;

viz. the prepotential equation is satisfied by the value

F= f dtI"'T,
J e

where m + 1 is positive.

107. We have consequently a value of p corresponding to the foregoing value

of F; and this value is

27r4»r(5 + l)V deJe=o'P = -
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where, writing \ for the positive root of

we have

W

x+f \ + h"- X '

we thence obtain

f=.C^'-'r('-f|r--.^-f)""'-f<-/')-(-'=)i-'
^2 p2\ III -J-\

-d- "
\+/^ \ + h- \J

(V ^ / •••V"-
' '-/J ^g:

or, multiplying by e-*+' and substituting for t- its value

2e

X
a? z"-

we have

-f=/>-^'(-,^.--rl^..-r «-/>• <-'')!-

X9+2

^-xW^---xVh^-x) !(^+/=)-(X + A^)K

where the second term, although containing the evanescent factor

^ 2- e-V"

~x+/-~'"~x+T=~x; '

is for the present retained.

108. I attend to the second term.

1°. Suppose ^+...+p>l; then, as e diminishes and becomes = 0, \ does not

become zero, but it becomes the positive root of the equation

X+f- X + li' '

hence the term, containing as well the evanescent factor e-'"'"^ as the other evanescent

lactor 1 - ~„ — ... ,
, IS = 0.
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2°. Suppose ^, + ...+y^<l; tben, as e diminishes to zero, \ tends to become = 0,

but - is finite and = 1 — j^;— •• — 77, whence — is indefinitely large; and since

-, ?-t;+--- + 7 TTvo becomes =^., + ...+7-, which is finite, the denominator may

be reduced to -
, and the term therefore is

A."

e-\9 /_, x^ z- e

which, the other factor being finite, vanishes in virtue of the evanescent factor

a? z^ e'Y'
~ X +/- ~ "'~X + h'~x) '

Hence the second term always vanishes, and we have (e being =0)

«-w=/>-^'('-<^7^--r:*-f)"K-/='-(-"-»i--

109. Considering first the case ^ + ... + ,— >!: then, as e diminishes to zero, \

does not become = ; the integral contains no infinite element, and it consequently

vanishes in virtue of the factor 6-*+'-.

But if -;j+ ... + tt;< 1, then, introducing instead of t the new variable f, = t . that

g2 _ g2 (^ t

is, i = ^ . dt =—g~ , and writing for shortness

= [ rf^ 2m {-R - ?)"-' ^^ {(/-^ +
I)

. . . (/r +

1

the term becomes

where, as regards the limits, corresponding to i = 00 we have ^ = 0, and corresponding

to < = X, we have f the positive root of R — ^=0. But e is indefinitely small; except

for indefinitely small values of ^, we have

.«"- z"- ,(/.„. e"-\

^Y-+-]^E = 1 -^, - ... -
J^,

, and |(./^ + |j
... [ir- +

1 ) j
=(/... /O-

;

-i
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and if f be indefinitely small, then, whether we take the accurate or the reduced

expressions, the elements are finite, and the corresponding portion of the integral is

indefinitely small. We may consequently reduce as above; viz. writing now

J- h-

the formula is

dW

or wr

de J ji

= -2m(f... /O- f^^^ ^« (R

-

?)'"-•

;

J

iting ^=Ru, the integral becomes =Ri+'"j du .
ui (1 - w)™~'. which is

Jo

r(i + g)r(m)
~ r(l+q + 77i)

'

that is, we have

^ de
~ -^J-"' Y(l + q+m) '

and consequently

_ T{^s + '!)_ ^.f , ._, r(l+g)r(l + m)
^^^,„

^ 2(riyr{i+q)"^-'-- ' r(i + q+m) '

that is,

p i/--'M (r|)«r(i + ^ + m)^ '

viz, /3 has this value for values of {x,..,z) such that ^, + ...+7-<l, but is =0 if
/' '''

a? z" ,

110. Multiplying by a constant factor so as to reduce p to the value ii«+'", the

final result is that the integral

V
i[(a-a,f +...+(c-^)=+...+e--p+9'

the limits being given by the equation

x" z- ,

is equal to

royra + q +m) r ^ _ .^ _ _ ''v
V"

v^ + /-n (< . m~^
V{\s^q)V{\^m)^J-''^],-^ K t+p ••

t + h^j
Ai+.t )-(.t+H}\

.

where 6 is the positive root of

1
^^' _ -^-"^ -'1=0

e+f- e + h- e
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In particular, if e = 0, or

V =

there are two cases

:

exterior, :;^+...+^>l, is positive root ot 1 — tt; — ... — ,., = 0,
/2 A- /- /r

interior, -;:;+... + ,„< 1, ^ vanishes, viz. the limits in the integral are 20
, ;

q must be negative, I + q positive as before, in order that the ^integral may not be

infinite in regard to the element t = 0.

It is assumed in the proof that m and 1 + (/ are each of them positive ; but,

as appears by the second example, the theorem is true for the extreme value m = :

it does not, however, appear that the proof can be extended to include the extreme

value 5 = — 1. The formula seems, however, to hold good for values of vi, q beyond

the foregoing limits ; and it would seem that the only necessary conditions are ^s + q,

1 + m, and \ + q+ m, each of them positive. The theorem is, in fact, a particular case

of the following one, proved Annex X. No. 162, viz.

F =
<i>(l-j^,-...-~^dx...dz

[{a -xf+...+{c-zY + e^}^«+?

'

Or Z
taken over the ellipsoid k, + • • + r;; = 1, is equal to

where a- denotes -;;r h.. • + ,-:;—i + ^
• assuming </>« = (1 — «)'^+"', we have

<f>[a- + (l-a-)x}={l- a)l+"' (1 - ^0'+"'.

and the theorem is thus proved.

111. Particular cases: ??i = ;

/

1 — -r-, — . . .
— r, da: ... az

f- h)11 ^iL- = (ry r(i + g) . ^ _ /^
, P

^^ ^-,,-, u^ ^y.-, _j^^ ^^y^
[(a - ^)^ + . . . + (c - ^)= + e^]^'+« r (i s + (/

)

Cor. In a somewhat similar manner it may be shown that

/:

\-j,-...-"^'^dx...dz
(riyr(i + ^) , Mfrfi «/lr^-: .(« + /•.) a+/,=)w
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Multiplying the first by a and subtracting it from the second, we have

or, writing q+ I for (/, this is

and we have similar formulas with .
. ,

(c — z), e, instead of (a — x), in the numerator.

112. If ?/i=l, we have

^ .c' z'\i+'
J

,

{{a -xY+ ...+{c- zf + e-ji«+«

which, differentiated in respect to a, gives the (a — a;)-formula ; hence conversely,

assuming the a — x, .. , c— z, e-formulse, we obtain by integration the last preceding

formula to a constant jyres, viz. we thereby obtain the multiple integral =G'+ right-

hand function, where G is independent of (a, .
. , c, e) ; by taking these all infinite, and

observing that then 6 = .c , the two integrals each vanish, and we obtain C = 0.

In particular, when s = 3, 5 = — 1, then

which, putting therein e = 0, gives the potential of an ellipsoid for the cases of an

exterior point and an interior point respectively.

Annex V. Green's Integration of the Prepotential Equation

f^^,+ ... + * +|1 + 2£±1 ^) V=0. Art. Nos. 11:3 to 128.
\aa- do- de- e dej

113. In the pre.sent Annex, I in part reproduce Green's process for the integration

of this equation by means of a series of functions, which are analogous to Laplace's

Functions and may be termed " Greenians " (see his Memoir on the Attraction of

Ellipsoids, referred to above, p. 320) ; each such function gives rise to a Prepotential

Integral.

Green shows, by a complicated and difficult piece of general reasoning, that there

exist solutions of the form V =%<!> (see post, No. 116), where i^ is a function of the

c. IX. 50
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A' new variables a, jS, .
. , 7 without 6, such that V ^ = k4>, k being a function of d only

;

these functions of the variables a, /8, .
. , 7 are in fact the Greenian Functions in

question. The function of the order is <^ = 1 ; those of the order 1 are (^ = a,

4> = 0, . . , (f>
= y; those of the order 2 are (p = oi/S, &c., and s functions each of the form

i(4a- + £/3=+... + CV-j+i>.

The existence of the functions just referred to other than the s functions involving

the squares of the variables is obvious enough; the difficulty first arises in regard to

these s functions ; and the actual development of them appears to me important by

reason of the light which is thereby thrown upon the general theory. This I accom-

plish in the present Annex ; and I determine by Green's process the corresponding

prepotential integrals. I do not go into the question of the Greenian Functions of

orders superior to the second.

114. I write for greater clearness (a, b,..,c, e) instead of {a, .
.

, c, e) to denote the

series of (s+1) variables; viz. («., h,.., c) will denote a series of s variables; corre-

sponding to these we have the semiaxes (/, g, .
. , h), and the new variables (a, /8, .

. , 7)

;

these last, with the before-mentioned function 0, are the s + 1 new variables of the

problem ; and, for convenience, there is introduced also a quantity e ; viz. we have

a = V/- + 6 a,

c = -Jh- + e 7,

e = Vg e,

where 1 = a- -H /3- -I- . . . -f-
7" + e^.

That is, we have 6 a function of a, b, .
.

, c, e, determined b}^

a^ 6= c- ^" _ 1

pre *"

f+^
"•" "^ W+ e'^e~ '

and then a, /8, . .
, 7 are given as functions of the same quantities a, b,.

.
, c, e by the

equations

also e, considered as a function of the same quantities, is

_ /l _ "'
_

^'
_ _ g'

~V r' + d g'+e
•••

h"- + e-

115. Introducing instead of a, b,..,c, e the new variables a, ^,..,j, 6, the trans-

formed differential equation is

,nd-V ^dV ( „ „ /' h- \ „„ ^
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where for shortness

29 d'V
,

,
— &c.f + e.g^+e dad/3

+ 7FX7, -29-2-^bx^+...+-y•2 + 5) I
-v " \g- + /(.= + dj\ da

,dV
rf/3^f^o{-'^-'-'{Ao^-+w\r0)\^:

Also

^j^eh^-^-<J^e-g^e--Vd~-

116. To integrate the equation for V, we assume

where is a function of only, and <j) a function of a, /3, .
. , 7 (without 6), such that

V = /c(/>,

K being a function of 6 only. Assuming that this is possible, the remaining equation

to be satisfied is obviously

ions of the form



396 A MEMOIR ON PREPOTENTIALS. [607

and it can be shown next that there is a solution of the form

<l,
=^{AcL' + BI3' + ... + Gr) + D.

117. In fact, assuming that this satisfies V0 — /c(^ = 0, we must have identically

A { , Q- ^, ft-- . ,]

/. + (- «^ - 9^:^ ^^ - - - am:^
'y'

+

^ { c, -,

9"' '*'

+ ^^{-^--^-1+7^^ +/^ + -}

so that, from the term in o-, we have

or, what is the same thing,

with the like equations from /3-, .
. ,

7- ; and from the constant term we have

118. Multiplying this last by /-, and adding it to the first, we obtain

viz. putting for shortness 0. = 6 { >2^t^ + ^TT^ + • • • + jl'T^h) •
^^^^ ^^

A{2q + 2 + n + iK (/- + ^)! + /c/= D = ;

and similarly

B{2q+2 + n + ^>c(g"- + 6)} + Kg' D = 0,

C {2q+2 + n + lK (h' + d)} + kIi- D = 0.
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To these we join the foregoing equation

f-+6 g- + e h^ + e

Eliminating A, B,..,C, D, we have an equation which determines «: as a function of 6;

and the equations then determine the ratios of A, B,..,G, D, so that these quantities

will be given as determinate multiples of an arbitrary quantity M. The equation

for K is in fact

+ 1=0:

{p + e)[iq + 2+n + hK {p + 6)] {f + ^) [29 + 2 + n + i« {g"- + 6)]

/r

and the values of -4 , B, . . ,C, D are then

Mf^ Mf m= _M
2q+2 + n + ^K(p + 0)' 2q + 2 + il + ^Kig' + e)'--' 2q+2 + n + ^K(h' + e)' J'

values which seem to be dependent on 6: if they were so, it would be fatal to

the success of the process ; but they are really independent of 0.

119. That they are independent of 6 depends on the theorems; that we have

_ (2g + 2 + n) Kq

" 2q+2-^Ko0'

where «„ is a quantity independent of determined by the equation

1 _ 1 1

2g + 2 + !«„/•- 2^ + 2 + ^K,g"- ^•^2q+2 + ^kJ)-
'

(/Co is in fact the value of k on writing ^ = 0) : and that, omitting the arbitrary

multiplier, the values of A, B, .. ,C, D then are

f g' h' _1
2q+2 + \K,f-' 2q+2+\K,g-''- • '2q + 2 + ^Kji" «/

or, what is the same thing, the value of (/> is

2/'"' hg-^ Wr 1

2q + 2 + \kJ^ 2^ + 2 + 4 «„5r2
"^

• • + z,/ + 2 + 1 -^0 A^
~

/7„

•

120. To explain the ground of the assumption

_ (2g + 2 + n)A:o

* 2q+2-\K,d'
observe that, assuming

2g+2 + n+^«(/- + 6') ^ 29+2 + n + i«(ff' + g)

2j + 2 + iV= 2(/ + 2+i/c„(7=
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then multiplpng out and reducing, we obtain

viz. the equation divides out by the factor rf-p, thereby becoming

K, (2g + i + H) - (2^ + 2) a + i A^«„6I = 0,

that is, it gives for k the foregoing value: hence clearly, k having this value, we

obtain by symmetry

2g + 2 + n + i/c (/= + ^), 2g + 2 + n + i« (f/= + 0), .
.

, 25 + 2 + O + 1 « (/r^ + ^),

proportional to

25 + 2 + !«„/-, 2fy + 2 +^K„(j-, .
.

,

'2q + 2 + ^K,h-

;

viz. the ratios, not only of ^ : 5, but of ^ : 5 : ... : (7 will be independent of 0.

121. To complete the transformation, starting with the foregoing value of k, we

have

2q + 2 + n + iK (/^ + 6) = (2g + 2 + n) |^"!;^2 - u//
'^"-

'

so that we have

A[2q+2 + i/<„/-} + K.f'D = 0,

B [2q + 2+ ^K,g"} + K,g"-D = 0,

C [2q + 2 + h^Kji'} + >cJiW = 0,

and

A B C {2q + 2 + D.)K,D _

P + e^ g"- + e^--^ if- + e 2q + 2-^K,e

Substituting for A, B,.., C their values, this last becomes

2q + 2 + ^K„d \2q + 2 + ^K„f- f-+e] 2gr + 2-^«„^ [2q + 2 + ^Kji' h? + i

viz. this is

or, substituting for fl its value, and dividing out by 2q + 2, we have

2g + 2 +i«o/' 2g + 2 + i«o^^ 2g + 2 + i«„A^

the equation for the determination of k^.
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122. The equation for «„ is of the order s; there are consequent!}' s functions of

the form in question, and each of the terms a", /3-, .
. ,

7- can be expressed as a linear

function of these. It thus appears that any quadric function of a, l3, .. , 7 can be

expressed as a sum of Greenian functions ; viz. the form is

A

+ Ba+ &c.

+ Ca/3 + &c.

\2q + 2 + i kJ-' ^ 2? + 2 + i «.,y
"^

• • ^ 2^ + 2 + i«;/i^ kJ

+ -D"( „ „ „ )

(s lines),

viz. the terms multiplied by D', D", &c. respectively are those answering to the roots

Kq, Kd", . . of the equation in «„.

The general conclusion is that any rational and integral function of a, /3,.., 7 can

be expressed as a sum of Greenian functions.

123. We have next to integrate the equation

Suppose « = 0, a particular solution is = 1. Next, suppose

1 / -> o ^ ^ ^ .• , 1 .• • V/M^
K = 7,„ ,, — 2(7 — 2 ;

J,
— ... — T-

—

r, ; a particular solution is
•'

:

in fact, omitting the constant denominator, or writing © = v^"'^ + 6, and therefore

d@ _ 1 cP@ 1

dd'l^/f^e' d&'~
4,(f'- + e)V

the equation to be verified is

e 1 \ „ ^

(p+0)i V/M-^^l
'-'^^^p + 0^f+0^-^h^+0,

^ I
V/H^"^ I

""^ " f + '" h'+O+ , I- 2o - 2 -—^ - ... - ,—^1 = 0, which is right.
' + 0{

— '2.0

Again, suppose «= j.-,
—

n—;;

—

ti + &c. (value belonging to rf) = a/3, .see No. 116); a
J -+ a .g-^ a

particular solution is -r„'^

—

^
j-„ : in fact, omitting the constant factor, or writing
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and therefore

d^e _ , f
'Jg^Ve 2 \//' + e

the equation to be verified is

V
ff-
+ 61 2 V/M^

(/' + ^)* ^p + 6^f + e {(f+ef-

or putting for shortness fl = :t-
— . + —

;; + . . . + jz— „ , this is
^ ° f- + 6 [/- + 6 h-+

which is true. And, generally, the particular solution is deduced from the value

of (^ by writing therein

V/- + e s/^Td Vh- +

'^f'- +f+ — +h'' 'Jp+g^+ ... + h''"' 'Jf' + g-+ ...+h?

in place of a, /3, .
. , 7 respectively : say the value thus obtained is ® = H, where H is

what
<l>

becomes by the above substitution.

124. Represent for a moment the equation in by

and assume that this is satisfied by (d = H I z dd. Then we have

+ 2P{^fJzde+ Hz

+ kH \ z d6 = 0,
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and therefore

TT

viz. multipljing by j^, this is

or

1 (^ ,T7-, s 1 T1

viz. substituting for P its value, this is

Hence, integrating,

1 d

H'-z dd

'

H-z =
, , G an arbitrary constant,
^/p + e.g-' + e ...h? + e

^

and

© = OZT -—

—

. „ „ ^^ , y arbitrary,

where the constants of integration are C, X ; or, what is the same thing, taking T
the same function of t that H is of (viz. T is what </> becomes on writing therein

in place of a, /3, .. ,y respectively), then

JeT-^p + t.fi- + t ...h- + t

where x i^^^y be taken = x : wt^ thus have

f f-Q-^ rif

V=@4> = -CH<j>^ ^ *^

Je T-'Jf- + t.g-+t ...h- + t'

Recollecting that

so that for ^ = oo we have a= + 6- + . . . + c= + e= = ^, the assumption % = oo comes to

making V vanish for infinite values of (o, b,..,c, e).

125. We have to find the value of p corresponding to the foregoing value of V;
viz. W being the value of V, on writing therein (*, y,. . ,z) in place of {a, b,.., c),

then (theorem A)

P
2(ri)»r(? + i)r deJo

c. IX. 51
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Take X the same function of (x, y,..,z, e) that is of (a, b,. . ,c, e): viz. take \

the positive root of

and let (^, •>?,.., ?", t) correspond to (a, /S, . . , 7, e), viz.

V/^+x' V^= + X'" VA^ + x' V /=4-X 5^2 + X 7i= + X'

so that W is the same function of (f, >?,.., X) that V is of (a, ^, .
. , 0) : say this is

Tf=-CA,|.f -

then we have for p the vakie

where e is to be put = 0.

126. Suppose e is =0; then, if §-3+ -„+•• + rr, > 1> '^ i« "ot =0 but is the

o cc" y- z- , /, x' y" z- . ^
positive root of -^—-r + / . + ••• + ,„ , , =1: 'r. =a/ 1 - /-ttt ST^ ~••~7.,^ '

is = 0:^ / +X g-+\ Iv' + X V / +X g +X h-+X

and we have p = 0, viz. p is = for all points outside the ellipsoid ^, + j + • • + n = !

But if ^„ + ^+ ••• + ;-,< 1, then, on writiug e=0, we have X = 0, t- = -
,

./- 9- li- ^

'^""27ri»r(g + l) X^+-^- ^[/-'^ d^ ^g"-^ dv h'^ d^ f^xA=o

27ri» r(fy + 1)
•

\/"^ (i? %''' dv " h? ^ rf? rfX A=a'

where the term in ( ) is

= - OA„,|r„ (' + ^^ '

A^'fg...h

= -W- ^° 1

Hsnc©
AJg...h-Xi*^-

f 2-K^^V(q + iyXf9...h\x)

-T{^s + q) 2Cyfr, / 0^ y^ _ ^^\9

27r4«r(fy+l)-A„/5^.../A /^ f '" W '
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where yfro, Ao are what yfr, A become on writing therein \ = 0. It will be remembered

that A is what H becomes on changing therein into \ ; hence A„ is what H
becomes on writing therein = 0.

Moreover yjr is what
(f)

becomes on changing therein a, /3, .
. , 7 into ^, 77, .

. , f

:

iC 1/ Z
writing X = 0, we have ^=f, '?=!••> §"=7-; hence i/to is what

<f>
becomes on changing

J 9 '^

therein a, /3, ..,7 into ^, -,..,j. And it is proper in tf) to restore the original variables

by writing
, , ,.., ,

in place of a, 8,.., y.
^ ^ '/f^re' ^g^+e' Wh^-^-e ^ -a^. .t

127. Recapitulating,

r_ f pdx ...dz

~j [{a-xy+...+{c- zf + e-Ji'+s

'

where, since for the value of V about to be mentioned p vanishes for points outside

the ellipsoid, the integral is to be taken over the ellipsoid

x^ z"" ,

and then, transferring a constant factor, if

«-«-' dt{V\yT{q+l) r^- ras + q)
Mf-h).H<f>j^

the corresponding value of p is

where Aq is what H becomes on writing therein ^ = 0, and yjri, is what i/r becomes
on writing

f:--,T iQ place of a, .
. , 7.

128. Thus, putting for shortness D. = t-i-'^ {{t +/)... (t + h-)}-i, we have in the three

several cases 6 = 1, <i = —=—— , (b= ,
=

—

,
respectively,

HA ^ ^ ^'V V (ri)-r(i +q) , ^ r

51—2
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For the case last considered

V+g ^h^ + e 1

^ ^ i/'^ (/^ + ^) + . . . + 2 ^'-' (^' + ^> --, r same function with t for ^,

-!-«- ^2- 1

"^o "
2g + 2 + !«„/=

"^ •• "^
2g + 2 + i«„/i^ ~/^'

1/^ j/i.^ _1
" ~ 2^ + 2 + ^/co/^

"^ "^
2g + 2 + 1 «o/t- ««'

where «o is the root of the equation

^ ^+-- + . . .\ . ,,., + 1 = 0.
2(/ + 2 + ^Ko/^ 2g + 2 + i«„/i-

Annex VI. Examples of Theorem C. Art. Nos. 129 to 132.

129. Fii'st example: relating to the (s + 1 )-coordinal sphere x-+ ... + z-+ w'^=f"-.

Assume
M MV = zTT- . f^" = #^ .

(a constant)
;

these values each satisfy the potential equation.

V is not infinite for any point outside the surface, and for indefinitely large

distances it is of the proper form.

V" is not infinite for any point inside the surface ; and at the surface V = F".

The conditions of the theorem are therefore satisfied. Writing

Y

we have

where

")((«-
jj,ii

a;)^ + . . . + (c - 2)^ + (e - w)=|^«-^

'

^~
4(riX+' \ds'

"^
ds" J'

M ^„ M , dW" ^
T^=

(^+...+,. + ,,.)i.-t - ^ =/-; hence ^, =0,

dW _(x d_
^_ A. "^ A.] M

{s-l)j{x'+...+z' + tv^)M
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which at the surface is

-{s-l)M
r

Hence

P " 4(rirV^ ' " 27r|rV^
'' ^^^^' ^ '"^ constant).

130. Writing for convenience M= ^ ^^ ^x ^f i^f '^ constant which may be put

= 1), also a-+ ... + c- + e- = K-, we have p = hf, and consequently

^fdS
\\{a-xr[{a - xf + . . . + (c - 2)- + (e - lufY-'-i

=—Wtt—'^rv ^-r-, lor exterior ponit « > /,
r(^s+i) ««-! ^ -'

=
r 4s +

"!)'' /«-!
interior point k<J.

By making a, ..,c, e all indefinitely large, we find

viz. the expression on the right-hand side is here the mass of the shell thickness S/!

Taking s = 3, we have the ordinary formulas for the Potential of a uniform spherical

shell.

131. Suppose s = 3, but let the surface be the infinite cylinder x- +>/-=/-. Take

here

F' = il/logVflM^=, F" = il/log/,

d'V d-V
iseach satisfying the potential equation ^—^ + -^, =

; but V, instead of vanishing, i

infinite at infinity, and the conditions of the theorem are not satisfied; the Potential

of the cylinder is in fact infinite. But the failure is a mere consequence of the special

value of s, viz. this is such that s — 2, instead of being positive, is = 0. Reverting

to the general case of (s + l)-dimensional space, let the surface be the infinite cylinder

x^+ ... + 2- =f- ; and assume

^ =
(a^+... + c-)^.-.

» ^ =fs=. (^ constant).

These satisfy the potential equation ; viz. as regards V, we have

(i^,4-...+^ + ^,) F' = 0, that is, (f^+...+^)v' = 0.
\da- dc- de-J \du- dc-J
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V is not infinite at any point outside the cylinder; and it vanishes at infinity,

except indeed when only the coordinate e is infinite, and its form at infinity is not

= ilf -=-(a^+...+c- + eOi<«-i'.

V" is not infinite for any point within the cylinder; and at the surface we have

V'=r".

We have

r (ig - 1)
f
dW dW

where

= J^ -.j , =

—

^-^—p-— at the surface; —rr, =0,

and therefore

P = *'

4^(V^)'+!y«-?
=

(^i^- P is constant);

4, (
piy+i fs-\ ^f

or, what is the same thing, writing M = -

q^rii- 1 \ '
whence p = hf, and writing also

a^ + ... +c- = K-, we have

/
hfdS

[{a -x)-+ ... +(c- zf + (e - w)-)**-*

132. This is right ; but we can without difficulty bring it to coincide with the

result obtained for the (s + l)-dimensional sphere with only s — 1 in place of s ; we may

in fact, by a single integi-ation, pass from the cylinder or + ...+z- =/- to the s-dimen-

sional sphere or circle x- + ... +z-=f^, which is the base of this cylinder. Writing first

dS = rfS dw, where d2 refers to the s variables (x, . ., z) and the sphere x" + ... + z" =/'
;

or using now dS in this sense, then in place of the original dS we have dS dw : and

the limits of w being x ,
— » , then in place of e — w we may write simply w. This

being so, and putting for shortness (a — x)-+... + {c—z)- = A-, the integral is

and we have without difficulty

dw _ 1 r^T^(s-2)

I. {A"- + w-)^"-" A'-^ r| (s - 1)



607] A MEMOIR ON PREPOTENTIALS. 407

To prove it, write w = A tan 6, then the integral is in the first place converted into

-T^zi] cos^'^ddd, which, putting cos0=Va.' and therefore sin 6 = \/l —x, becomes

= -^53, f
a;^' (1 - A-)^"~"~' dx,

which has the value in question.

Hence, replacing A by its value, we have

r^s - 1) J {(a-xy + ... + (c- 2)^ji'*-=> (s

-

2) ri(5 - 1) ((«= + . . . + cOi'«-=>
"' /«-4

'

that is,

j {(a -xy+... + (c- ^)=}i'»-=i ~ (s - 2) r|(s - 2) |(a'' + ... + c'')^(«-=)
"''

f^\

^ 27r^f^/
1

1 1

viz. this is the formula for the sphere with s — 1 instead of s.

Annex VII. Example of Theorem D. Art. Nos. 133 and 134.

133. The example relates to the (s + l)-dimensional sphere x^+ ... + z- + 'W'=f'^.

Instead of at once assuming for V a form satisfying the proper conditions as to

continuity, we assume a form with indeterminate coefficients, and make it satisfy the

conditions in question. Write

M
(a- + ... +c^+ e-p ^ "^

= A{a-+... + c-+e')+B for a-+ ... +c- + e-</-.

In order that the two values may be equal at the surface, we must have

dV
in order that the derived functions 3-, &c. may be equal, we must have

-{s-l)aM „. -

p+.
= 2^a. &c.,

viz. these are all satisfied if only — /e+i
— ~ ^-^"

We have thus the values of A and B ; or the exterior potential being as above

^ M
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the value of the interior potential must be

The corresponding values of W are of course

(,.4....+,. + ,,.)^.^
and j^, |(is + i) - (i. - i) ^.3 j ,

and we thence find

/3 = 0, if ,•/;= + ... + 2= + w->/=,

if «2 + ... +z- + w-<f-.

Assuming for il/ the value p\.^
. ox

/""^'. the last value becomes p = 1 ; uniting for

shortness a- + ... +c- + e- = «'-, we have

dx ... d2 c?w
/ {{a-x)-+...+{c-z)--\-{e-wJ,2US+J

over (s + l)-dimensional sphere a;° + . . . + 2- + ly" =/'-,

—>

—

^ -'—
, for an exterior point /c >/,

r(is + |)«*->

{(is+ 2)/'-(2«~ 2) '^"]' for an interior point ic<f.
r(is + |)

134. The case of the ellipsoid %.,++ p.= '^ for s + 1-dimensional space may be
J- II-

worked out by the theorem ; this is, in fact, what is done in tridimensional space

by Lejeune-Dii'ichlet in his Memoir of 1846 above referred to (p. 321).

Annex VIII. Prepotentials of the Homaloids. Art. Nos. 135 to 137.

135. We have in tridimensional space the series of figures— the plane, the line,

the point; and there is in like manner in (s + l)-dimensional space a corresponding

series of (s + 1) terms; the (.s + l)-eoordinal plane—the line, the point: say these

are the homaloids or homaloidal figures. And, taking the density as uniform, or,

what is the same thing, = 1, we may consider the prepotentials of these several

figures in regard to an attracted point, which, for gi-eater simplicity, is taken not to

be on the figure.

136. The integral may be written

„ _ 1" diu ... dt

j [{a-xy + ... + {c-zy + {d - wf + ... + (e - tf + M^}i«+9

'

which still relates to a (s+ l)-dimensional space: the (s+1) coordinates of the

attracted point are (a, . . , c, d,..,e, u), instead of being (a, .. ,c, e) ; viz. we have the
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s' coordinates (a, ..,c), the s-s' coordinates {d,..,e), and the (s + l)th coordinate u:

and the integration is extended over the (s — s')-dimensional figure w = — x> to

+ cc ,.
.

, t = — cc to +00. And it is also assumed that q is positive.

It is at once clear that we may reduce the integral to

„ _ C dw ... dt

"J {{a - xf -\- ... + {c-zf+ It' + W-+ ... + <=}*«+«

'

say for shortness

f dw ... dt

J (A- + tv-+ ...+t-)i'+i'

where A", = {a — x)'- + ... + {c — 2)'- + u", is a constant as regards the integration, and

where the limits in regard to each of the s — s' variables are — 00
, + 30

.

We may for these variables write 7-^,...,r^, where ^-+ ... + ^- = 1 ; and we then

have w" + •• + i" = ?'", dw ...dt = ?-^~^~^ dr dS, where dS is the element of surface of

the (s — s')-coordinal unit-sphere f-+... + f-= 1. We thus obtain

•where the integral in regard to )• is taken from to go , and the integi-al IdS

over the surface of the unit-sphere ; hence by Annex I. the value of this last factor

^® = ri /
" —

K- The integral represented by the first factor will be finite, provided

only ^s + 5f be positive ; which is the case for any value whatever of s', if only q
be positive.

The first factor is an integral such as is considered in Annex II. ; to find its

value we have only to write i-^Awa:, and we thus find it to be

_ 1 r x^'-i'-^ dx . ^ ^_ ^r^{s-s')r(^s' + q)
- {A')i''+'J * Jo (1 + a;)i»+« '

^^^' ~
A''+"-'i ' V{U-\-q)

and we thus have
1 (FirTcis'+g)v=

(rir«'r(is' + 5)

r (^s -Vq) {((s - a;)^ + . . . + (c - zf + w^jis +«

•

137. As a verification, observe that the prepotential equation 0^=0, that is,

fd^ d- d}_ dr_ d^ 2q+l d\y_
\da- '" dc^ dd- " de" dii- u duj

'

for a function V, which contains only the s' + 1 variables (a, . . , c, u), becomes

/ d- d- d- 2q + l d\ ^^ .

T-„+ .-f;TT,-f >- -f
^

-j-] V=0,
\da- dc- du- v duJ

which is satisfied by V, a constant multiple of {{a — x)- + ... +{c — zf + u-}^~^'~''.

C. IX. 52
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Annex IX. The Gauss-Jacobi Theory of Epispheric Integrals. Art. No. 138.

138. The formula obtained (Annex IV. No. 110) is proved only for positive values

of m ; but writing therein q = 0, m = — ^, it becomes

dx ... dz

l-^,-...-|?J(a-a;)^+... + (c-^)= + e^li«

a formula which is obtainable as a particular case of the more general formula

r dS

J {(«5«, ..,2,

2wr^,. 1

wy]i' r(is)J-A \/-'Disct.{{*^X,..,Z,W,T)' + t{X' + ... + Z'+W'+T'}\'

(notation to be presently explained), being a result obtained by Jacobi by a process

which is in fact the extension to any number of variables of that used by Gauss*

in his Memoir " Determinatio attractionis quam exerceret planeta, &c." (1818).

I proceed to develop this theory.

139. Jacobi's process has reference to a class of s-tuple integrals (including some

of those here previously considered) which may be termed "epispheric": viz. considering

the (s + 1) variables (a;,..,z, w) connected by the equation *•-+... +^--1- w- = 1, or say

they are the coordinates of a point on a (s+l)-tuple unit-sphere, then the form is

I

UdS, where dS is the element of the surface of the unit-sphere, and U is any function

dS
of the s + \ coordinates; the integral is taken to be of the form , 7—^^ -,.„,.,

j [{*\X,..,Z, W, l)=Ji«'

and we then obtain the general result above refeiTed to.

Before going further it is convenient to remark that, taking as independent variables

the s coordinates x,,.,z, we have (/*S'= '^—
, where w stands for + Vl —«=—... -2=:

dw
we must in obtaining the integral take account of the two values of w, and finally

extend the integi-al to the values of x,.. , z which satisfy x- + ...+ z'^ <\.

If, as is ultimately done, in place of x,..,z we write -,,.., ^ respectively, then

the value of dS is = ^ j
'—— , where lu now stands for +a/i— 7-— ...— ^;

f...h w ~ V /= /(^'

we must, in finding the value of the integral, take account of the two values of w,

and finally extend the integral to the values oi x,..,z which satisfy -7- H- ... -1-^ < 1.
/= h-

* [Ges. Werlic, t. iii, pp. 331—355.]
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140. The determination of the integral depends upon formulae for the transforma-

tion of the spherical element dS, and of the quadric function (x, y, .., z, w, 1)-.

First, as regards the spherical element dS ; let the s + 1 variables x, y,.., z, w
which satisfy x^ + i/-+ ... + z-+w- = 1 be regarded as functions of the s independent
variables 0, ^, .

.
, -v/r ; then we have

dS = X,
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let d'% represent the spherical element belonging to the coordinates ^, rj, .
. , ^, w.

Considering these as functions of the foregoing s independent variables 6, 0, .
.

, \|r,

we have

dt = ?>



607] A MEMOIR ON PREPOTENTIALS. 413

and observing that

(*^x, y,..,z, w, ir=^^i*^X, Y,..,Z, W, TY,

the integral becomes

{{*\x, Y,..,z, w, iy}i^'

where A', F, .
.

, Z, W, T denote given linear functions (with constant coefficients) of the

5 + 1 variables ^, rj,.., f, w, or, what is the same thing, given linear functions of the

5 + 2 quantities ^, »/,.., f, to, 1, such that identically

A'=+ Y-'+...+Z^+ Tf^-r = f + V^ + ... + ?= + a,= -l.

We have then f- + ??-+ ... + ^- + (u-- 1 = 0, and c?S as the corresponding spherical element.

144. We may have A"", F, .
.

, Z, W, T such linear functions of ^, tj, .. , ^, w, 1 that

not only

X'+ ¥"-+... + Z- + F^ - r^ = f + 7?= + ... + ?= + 0)=- 1

as above, but also

{*^X, ¥,.., Z, W, Tf = ^f + 57;= + ... + Cr + Em'-L;

this being so, the integi'al becomes

dt

/.

where the s+2 coefficients A, B,.., C, E, L are given by means of the identity

- {6 + A) {6 + B) ... (6 + G) {0 + E) {0 + L)

= Disct. {(*^X, ¥,.., Z, W, Tf + e{X'+Y-+... + Z-+W'- T')}
;

viz. equating the discriminant to zero, we have an equation in 6, the roots whereof

are -A, -B,.., - C, - E, -L.

The integral is

j{(A-L)^-^-[{A-L)^-' + {B-L)v'+... + iC-L)C'+iE-L)o>f-''

which is of the form
/• dl

where I provisionally assume that a, 6, .
. , c, e are all positive.

14.5. To transform this, in i^lace of the s + 1 variables ^, rj, .. , f,
(u connected by

|" + 7?= + ... + f- + <<)'-= 1, we introduce the s+1 variables x, y,.., z, w, such that

f Va 7j V6 t\fc 0) Vrf

P -^ P P P
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where

p- = fff - + bri'-+ ... +ci;- + eco-,

and consequently

X- + y- + . . . + z- + tv- = 1.

Hence, writing dS to denote the spherical element corresponding to the point («, y, . . , z, w),

we have, by a former formula,

dS = ^T, —^^^

—

^rra—j 7
T ddd(b ...d-Jf

_ {ah ...ce)i ,„
.

or, what is the same thing,

{ap + br+...+ c^- + ew-^jii'+'i («6 . . . cef

Hence, integi-ating each side, and observing that I dS, taken over the whole spherical

surface x- -\-y- + ... + z- + iu'^=\, is = 2(r^)«+' h- F (^s+ i), we have

! dl 2(r^)''+' 1

] \a^ + h7f+...+c^- + ea)-|i(»+i) - r (is + J) {ab . . . cef

'

146. For a, b,.., c, e write herein a + 6, b + 0,.., c + 6, e+6 respectively, and

multiply each side by 6'i~'^, where q is any positive integer or fractional number

less than ^s : integrate from 6 = to 6 = x . On the left-hand side, attending to the

relation ^ +»;"+... + f- + &)"= 1, the iutegi-al in regard to 6 is

io Ip'-

di-'de

where p'-, =a^- + brj- + ... + c^ + eoo-, is independent of as before; the value of the

definite integral is

^ r{^{s+l)-q}r{q) 1

r^ (s + 1)
p»+i-=«

'

which, replacing p by its value and multiplying by d'2, and prefixing the integral sign,

gives the left-hand side; hence, forming the equation and dividing by a numerical

factor, we have

r dl 2(TIY+'- r

In particular, if 9' = — ^ , then

dt
{af- -I- ...-)- cf= -t- ew-̂ »

= ^-Tu \y* *^^
t(^ +«)•••(< + <') (i + «)}"^

;



607] A MEMOIR ON PREPOTENTIALS. 415

or, if for a,.
.

, c, e we restore the values A — L, .
.

, C — L, E — L, then

= -kT- dt\{t + A)...{t^C){t + E)(t + L)]-i-
2* J -L

viz. we thus have

where (< + ^) ...(<+ C) (< + JE')(^ + Z) is in fact a given rational and integral function

of t ; viz. it is

= - Disct. ((* \X, .., Z, W, Tf + 1 (X= + ...+Z-'+W-'- T%
147. Consider, in particular, the integral

dS

I {(a-

here

{a -fxf + . . . + (c - hzf + (e - kivf + If-'
'

{*\X,..,Z, W, T)- + t{X''+...+Z-+W--T'')

= (aT -fXy +... + (cT-hZ)-' + {eT- kWf + PT' + t{X' + ... + Z'^ +W' - T"-)

= {f' + t)X"-+...+ Qi" + t)Z'' + {k' + 1) W' + (a^+...+c"- + e^ + l'-t) T'

- 2afXT -...-2chZT- 2ekWT
;

viz. the discriminant taken negatively is

t+f\... , -af

...,t+h-, — ch

-af,...- ch, - (a- + ... + c- + e- + l-)+t

which is

: (t+f-) ... (t + h'){t+k') (t-a- - ...-c'-e--l-
c^h- e-B

t^r- t + h- t +

= {tit+f^)...{t + lr)it + t)]{l-
l-

t+f- t + k' t+k'- tj

= (t + A)...{t+C){t + E)(t + L);

and consequently — A, .. , —C, — E, — L are the roots of the equation

a'' c-1- -,-„-- = 0.
t +f '" t+h- t + k- t

148. The roots are all real ; moreover there is one and only one positive root.

Hence, taking —L to be the positive root, we have A,.., C, E, —L all positive, and

therefore a foi'tiori A—L,.., C' — L, E—L all positive: which agrees with a foregoing
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provisional assumption. Or, writing for gi-eater convenience 6 to denote the positive

quantity — Z, that is, taking 6 to be the positive root of the equation

a- <? e- _l'
_(^

we have

dS
r)- + (e - kw}- + l"f-'

1

r dS

j {(a -fxf+... + (c- hzf + (e - kw)" + l-\^'

Ths je ^t (t +p) ...{t + h'){t + k"-) (l -^ d" _ e^ _f
t +f"-~

"'~
T+¥ ~ t + k" ~ 1

or, what is the same thing, we have

dx ... dz

^J:f...h]±w{{a-xy+...+(c-zf + ie + kwf + Z^j*'

where on the left-hand side w now denotes a/ 1 - ^^
~ • • ~

/"a >
^"^^ ^^^ limiting equation

149. Suppose Z = : then, if

. or z- ,
IS -r„+...+T;,= l.

/- h

the equation

a- c- . e- ,

7^+- + a= + a;^>1'

Oj^P
•

e + h' e + k'-

has a positive root differing from zero, which may be represented by the same letter 6
;

but if

a^ c- e- T

j. + .-. +
/7.
+ zr.<l'

then the positive root of the original equation becomes = ; viz. as I gradually

diminishes to zero, the positive root 6 also diminishes and becomes ultimately zero.

Hence, writing Z = 0, we have

j [{a -Jxf + ... + (c - hzf + (e - kwf]^'

'

or, what is the same thing,

d:r ... dz

f...hj± w{(a-xy+ ... +(c-2)- + (e + kwf\^''

-^7>'('-<f7.--,-TP-,-|F.)"'l'«V'....<-'.=.«.«l-'.
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now denoting either the positive root of the equation

or else 0, according as

a- c- e-

a- e-
In the case y:, + ... + r.,<l, the inferior limit being then 0, this is, in fact, Jacobi's

theorem {Crelle, t. xii. p. 69, 1834) ; but Jacobi does not consider the general case

where I is not = 0, nor does he give explicitly the formula in the other case

1 = 0, ^.+ ...+TV, + -,r,>l.

150. Suppose k — O, e being in the first instance not =0: then the former alter-

native holds good ; and observing, in regard to the form which contains ± w in the

denominator, that we can now take account of the two values by simply multiplying

Jby 2, we have

f dS ^ _2^ r dx...dz

j {(a -fxy + . . . + (c - hzy + e'-;*" ' / . . . h J w [{a - x)- + ... -\-{c - z)- + e=j4«

'

(w on the right-hand side denoting A/l — V^- •• -r^ , and the limiting equation being

7m + . . . + TT, = 1 ), each

where 6 is here the positive root of the equation 1 — ^ ..,— ...- ^—n, — s = 0, which

is the formula referred to at the beginning of the present Annex. We may in the

formula write e = 0, thus obtaining the theorem under two different forms for the cases

a^ c'-

T^ -I- . . . -h T^ > 1 and < 1 respectively.

Annex X. Methods of Lejeune-Dirichlet and Boole. Art. Nos. 1.51 to 162.

1.51. The notion, that the density p is a discontinuous function vanishing for

points outside the attracting mass, has been made use of in a different manner by

Lejeune-Dirichlet (1839) and Boole (1857): viz. supposing that p has a given value

/{x, .., z) within a given closed surface S and is = outside the surface, these geometers

in the expression of a potential or prepotential integral replace p by a definite integral

which possesses the discontinuity in question, viz. it is =f(x,..,z) for points inside

c. IX. 53
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the surface and =0 for points outside the surface; and then in the potential or

prepotential integral they extend the integration over the whole of infinite space, thus

getting rid of the equation of the surface as a limiting equation for the multiple

integral.

152. Lejeune-Dirichlet's paper " Sur une nouvelle methode pour la determination

des int^grales multiples" is published in Comptes Rendns, t. viii. pp. 1.5.5—160 (1839),

and Liouville, t. IV. pp. 164—168 (same year). The process is applied to the form

1 d r da) dy dz
~ ^^^ da J [{a - xf + (b- yf + (c - zy]i^P-^^

taken over the ellipsoid ^ + ^, + ^ = 1 ; hut it would be equally applicable to the
a- ji' 7"

triple integral itself, or say to the s-tuple integral

dx ...dzf dx ... di

J {{a-xy+... +({{a-xf+...+(c-zy}i''+'!'

or, indeed, to

r dx ...dz

J \(a-xy+... + (c- zf + e=)*»+»

dx ...dz

x' z"

taken over the ellipsoid '^,+ ... + p= I ; but it may be as well to attend to the first

form, as more resembling that considered by the author.

153. Since -
|

^ cos \^ d<f> is =1 or 0, according as X is <1 or > 1, it

ir Jo 9
follows that the integral is equal to the real part of the following expression,

2 [" ^^ sin * ijif^^-^^ dx...dz

TT.'o
'^'^ .r {(a_^)^+...+(c-^)fm'

where the integrations in regard to x,..,z are now to be extended from — oo to + oo

for each variable. A further transformation is necessary : since

1 1 r""— = —- g-'" (Z\i- . ilr'-' e"^*, o- positive, and r positive and < 1,
o-*" Tr J

writing herein {a — xf+.-.+ic-zf for o-, and ^s + (/ for r, we have

1 1

{(a-xy+...+ic-zy\i'+'> TiU+q)

and the value is thus

Jo

2
-(4«+9)Yf"dd>?i5J' rf;^..^4m-i |'e'(z^^-+^^)*e-'>'.<«-^'=+-+«'-^'=lda;... dz.

Jo <f> JojrVas+q)
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where the integral in regard to the variables {a; .., z) is

= g.-j-«.^+...+c-^, I da' 1^ ^-' K.. dze f ^' ';

and here the a'-integral is

and the like for the other integrals up to the ^-integral. The resulting value is thus

^T{^S^rq) Jo <^ ^.'o "^ "^

'</{d>+f-f)...{(li + h-f)

which, putting therein i/^ = -
, d^jr = —

^^ dt, is

=^ , {f...h) e-i'" dt = e \r+r-+h'+t/ sill ^ .
A5-1 dA.

lo-i. But we have to consider only the real part of this expression ; viz. writing

CI' C"
shortness cr = -^^— +--- + n^ ., we require the real part of

f- + t h- + t
^ ^

•CO

J (I

Writing here for sin cf) its exponential value ^. (e'* — e"'*), and using the formula

1 1

and the like one

1 1 /"
— = j=r e-S""' d<f> .

(f>''-^
e'"* {a positive),

1 1 r
= e'*^ d<i>. (j)''-^ e"'* (o- negative),

(in which formulae q must be positive and less than 1), we see that the real part in

question is = 0, or is

Fq sin (q + 1) w _ """ 1

2 (1 - 0-)3 ' ~ 2r(l-^) (1 - (7)1
'

according as cr > 1 or o- < 1.

155. If the point is interior, >„+... + p,<l, and consequently also (t<\, and

the value, writing {T^Y instead of tt, is

53—2



420 A MEMOIR ON PREPOTENTIALS. [607

But if the point be exterior, -i^, + ... + ,-> 1, and hence, writing 6 for the positive

root of the equation, o-=l; viz. is the positive root of the equation ^—a'^---'^fi—2 = 1>j'+p h-+a

then t = 0, cr is greater than 1, and continues so as t increases, until, for t = 0, a-

becomes =1, and for larger values of t we have o- < 1 ; and the expression thus is

(nr ,^ ,. r ^. .-„-. ,v. , ^.. ., ,;,n,-./i_. «' _ _ c^

^(/.../oj^ dt.t-'i-' [(t+r-)...(t+h"-)}-i(iT(y + q)Ta-qy-' "Je
,v^^.//...v^ n

^ y. ^ ^ ]^. ^ ^

-<i

viz. the two expressions, in the cases of an interior point and an exterior point

respectively, give the value of the integral

/i

dx ...dz

\(a-xy+... + {c - zfY-'+i'

This is, in fact, the formula of Annex IV. No. 110, writing therein e = and m = — q.

156. Boole's researches are contained in two memoirs dated 1846, " On the

Analysis of Discontinuous Functions," Trans. Royal Irish Academy, vol. xxi. (1848),

pp. 124—139, and "On a certain Multiple Definite Integral," do. pp. 140—150 (the

particular theorem about to be referred to is stated in the postscript of this memoir),

and in the memoir " On the Comparison of Transcendents, with certain applications

to the theory of Definite Integrals," Phil. Trans, vol. cxLvii. (18.57), pp. 745—803,

the theorem being the third example, p. 794. The method is similar to, and was in

fact suggested by, that of Lejeune-Dirichlet ; the auxiliary theorem made use of in

the memoir of 1857 for the representation of the discontinuity being

m
p

(x) 1 ff f
-. = —„ .1 I

j
dadv ds cos {{a — x—ts)v + ^itt] y's'~'/(a),

which is a deduction from Fourier's theorem.

Changing the notation (and in particular writing s and 2^ + q for his n and i),

the method is here applied to the determination of the s- tuple integral

= jdx... dz
{(a -»)=+... + (c - zY + e=}i»+9

'

of .
z-

where ^ is an arbitrary function, taken over the ellipsoid 7^+ ••• + p ~ l-

157. The process is as follows: we have

(a-a;)^+...+(c-2)= + e'^J«+9 ^ r(is + 9) Jo-'o Jo

cos
a? z- \ ]u-j„- ...- j^^-T [{a-xf+ ...+{c- zf + d^Uv + ^i^s^ q) 7r| ^m

;
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viz. the right-hand side is here equal to the left-hand side or is = 0, according as

:c^ z-
'2;;; + . .

.
-I- To < 1 01' > 1- F is consequently obtained by multiplying the right-hand side

by dx ... dz and integrating from — ao to -I- » for each variable.

Hence, changing the order of the integration,

F= ^} r fV f du dv dr v'^'-^i ri'-^''-' (bit . n.

il=
j
dx ... dz cos (u - e'r — 'y:,- ... — j-„+T [{a — a)- + . . . + (c — z)-} jv + h (^s + (/) 7r> .

Now

if

158. Substituting, and integrating with respect to ^, .., f between the limits — ao

,

+ X , we have

(f...h)-7rh' [( .,
aV cV \ , ]

{(1 +/V) ... (1 -I- Av)j^ v^' (V 1 +/=T 1 + Avy 2 -^

J

'

or, what is the same thing, writing - in place of t, this is

that is, writing

ft^ c- e-

J- + t n- + t t

we have

TT^^' {f...h) nr r t-i-^ V^ cos {(« - .r) »> + jgTr) .j.tt
.

or, writing tt'*"' = - (F^)', this is

=^^y ""/'''
r«^< •

<-«"'
{(< +/') •••(« + 'i')}"^ - f7 f^» dv V" cos {(« -a)v + \qiT] 4>u.

1 (is + 5') .'0 TT JoJ

159. Boole writes

-
I I (Z«« dv v'' cos {(it — 0-) y + hq-rr] <}>ti = I — ^j <f>

(a)
;

viz. starting from Fourier's theorem,

— I I dw di) cos {u — a)v .<^u = ^ (o-),

Try J
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where 4> (a-) is regarded as vanishing except when a- is between the limits 0, 1,

and the limits of u are taken to be 1, accordingly, then, according to an admissible

theory of general dififerentiation, we have the result in question. He has in the

formula - instead of my t ; and he proceeds, " Here a increases continually with s.

As s varies from to x , cr also varies from to oc . To any positive limits of a

will correspond positive limits of s ; and these, as will hereafter appear—this refers to

his note B— , will in certain cases replace the limits and oo in the expression for V."

160. It seems better to deal with the result in the following manner, as in part

shown p. 803 of Boole's memoir. Writing the integral in the form

F=(^2^!i/:--4^
I' I

dudt.t-''-'{{t+f')...{t + }r)]-i,l){u)j dv. VJ cos {(u- a) v + hqir},
TT 1 (-^S + 5) ill Jo •'0

effect the integration in regard to v ; viz. according as « is gi-eater or less than cr,

then
r(^ + l)sin(fy+l)7r

Jo
dv . v'' cos [(« — (t) V + 2 (/ttJ

(if-o-r'+'

TT

and consequently, writing for a- its value.

T {- q) {u - <7)''^^

or 0,

or 0:

T{-q)Y(\s + ci)

dti dt ]r«-' [{t+f) ... (i + Ir)\-i

cj-la'

'P + t'

c- e-

' hF+t~J (/)«! , or 0, as above.

161. To further explain this, consider t as an ^--coordinate and u as a y-coordinate

;

then, tracing the curve

^>T^+' +
h^ + a; x'

for positive values of * this is a mere hyperbolic branch, as shown in the figure,

viz. X = 0, 2/ = 00 ; and as x continually increases to x
, y continually decreases to zero.

The limits are originally taken to be from ?f = to m=1 and t=0 to i = oo , viz.

over the infinite strip bounded by the lines tO, 01, 11
; but within these limits the
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function under the integral sign is to be replaced by zero whenever the values «, t

a- & &
are such that ii is less than ..;

—

7+---+t^^—:+t. viz. when the values belong to a
/ - + < h- + t t

^

point in the shaded portion of the strip ; the integral is therefore to be extended
only over the unshaded portion of the strip ; viz. the value is

'--
ri-t^Kt.^j "" "''-'- «'-^''-"-"->'-'("-/^--4i-?rv..

the double integral being taken over the unshaded portion of the strip; or, what is the

same thing, the integral in regard to )( is to be taken from (( =-7^- h...+ , +-* ^
f- + t h- + t t

(say from u = a) to u = 1, and then the integral in regard to t is to be taken from

t = 6 to t=cc, where, as before, 6 is the positive root of the equation £r = l, that

^ a- c- e-

'>''^^f^e + - + }r + e + 'e
= ^-

162. Write u = a- + (\ — a) x, and therefore u — (t — (l — a-) x, 1 — (/ = (1 — cr) (1 — *•)

and du = (I — cr) dx ; then the limits (1, 0) of x corz'espond to the limits (1, a) of 11,

and the formula becomes

^=
r^qy/({s+-q)[ ^^i''" K« +/')• • •(< + n-^il-TY'^-' ly^ .

cc-1-^ <i>\a + {\-<T) x],

where o- is retained in place of its value -xz
—

- +... + ,,—, + -. This is, in fact, a
f-+t li-+t t

form (deduced from Boole's result in the memoir of 1846) given by me, Cambridge

and Dublin Mathematical Journal, vol. 11. (1847), p. 219, [44].

If in particular </«t = (1 - ?<)»+"', then (j> [a + (I - a) x} = (1 - 0-)''+'^ (l - x)i+"\ and
thence

/;
«-«-' {^a +{l-a-)x}dx = {l- o-)"' / x-l-i (1 - «)'/+'" dx,

Jo

r(- q)r(l+ q + m)^^
,y„

.

and then, restoring for a its value, we have

as the value of the integral •

c- _e
'

h- + t
~

t

/.

l-J.---fe.J dx...dz

{{a -xy+...+{c- zf + e-ji'+s

Z^ . . .

-... + yr = l. This is, in
h-

No. 110 in its general form; but the proof assumes that q is positive.

taken over the ellipsoid -r+... + yr = l. This is, in fact, the theorem of Annex IV.
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608.

[EXTRACT FROM A] REPORT ON MATHEMATICAL TABLES.

[From the Report of the British Association for the Advancement of Science, (1873),

pp. 3, 4.]

It was necessary as a preliminary to form a classification of mathematical (numerical)

tables ; and the following classification was drawn up b}- Prof. Caylej' and adopted b}'

the Committee.

A. Auxiliary for non-logarithmic computations.

1. Multiplication.

2. Quarter-squares.

3. Squares, cubes, and higher powers, and reciprocals.

B. Logarithmic and circular.

4. Logarithms (Briggian) and antilogarithms (do.) ; addition and subtraction

logarithms, &c.

5. Circular functions (sines, cosines, &c.), natural, and lengths of circular arcs.

6. Circular functions (sines, cosines, &c.), logarithmic.

C. Exponential.

7. Hyperbolic logarithms.

8. Do. antilogarithms (e^) and h . 1 tan (45 + ^ (^), and hyperbolic sines, cosines,

&e., natural and logarithmic.

D. Algebraic constants.

9. Accurate integer or fractional values. Bernoulli's Numbers, A"0"', &c.

Binomial coefficients.

10. Decimal values auxiliary to the calculation of series.
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E. 11. Transcendental constants, e, it, 7, &c., and their powers and functions.

F. Arithmological.

12. Divisors and prime numbers. Prime roots. The Canon arithmeticus, &c.

13. The Pellian equation.

14. Partitions.

15. Quadratic forms a- + h-, &c., and partition of numbers into squares, cubes,

and biquadrates.

16. Binary, ternary, &c. quadratic, and higher forms.

17. Complex theories.

G. Transcendental functions.

18. Elliptic.

19. Gamma.

20. Sine-integral, cosine-integral, and exponential-integral.

21. Bessel's and allied functions.

22. Planetary coefficients for given —,

.

23. Logarithmic transcendental.

24. Miscellaneous.

Several of these classes need some little explanation. Thus D 9 and 10 are

intended to include the same class of constants, the only difference being that in 9

accurate values are given, while in 10 they are only approximate ; thus, for example,

the accurate Bernoulli's numbers as vulgar fractions, and the decimal values of the

same to (say) ten places are placed in different classes, as the former are of theoretical

interest, while the latter are only of use in calculation. It is not necessary to enter

into further detail with respect to the classification, as in point of fact it is only very

partially followed in the Report.

C. IX. 54
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609.

ON THE ANALYTICAL FORMS CALLED FACTIONS.

[From the Report of the British Association for the Advancenwnt of Science, (1875), p. 10.]

A FACTION is a product of differences such that each letter occurs the same

number of times; thus we have a quadrifaction where each letter occurs twice, a

cubifaction where each letter occurs three times, and so on. A broken faction is one

which is a product of factions having no common letter; thus

{a -h)- {c - d){d- e)(e- c)

is a broken quadrifaction, the product of the quadrifactions

(a — 6)- and (c — d){d — e) (e — c).

We have, in regard to quadrifactions, the theorem that every quadrifaction is a sum

of broken quadrifactions such that each component quadrifaction contains two or else

three letters. Thus we have the identity

2{a-b)ib- c) (c -d){d- a) = (6 - c)- . {a - df - (c - a)" . (b - df + (a- bf . (c - d)-,

which verifies the theorem in the case of a quadrifaction of four letters ; but the

verification even in the next following case of a quadrifaction of five letters is a

matter of some difficulty.

The theory is connected with that of the invariants of a system of binary quantics.
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610.

ON THE ANALYTICAL FORMS CALLED TEEES, WITH APPLI-

CATION TO THE THEORY OF CHEMICAL COMBINATIONS.

[From the Report of the British Association for the Advancement of Science, (1875),

pp. 257—305.]

I HAVE in two papers " On the Analytical forms called Trees," Phil. Mag. vol.

xiii. (1857), pp. 172—176, [203], and ditto, vol. xx. (1859), pp. 374—378, [247], con-

sidered this theory ; and in a paper " On the Mathematical Theory of Isomers," ditto,

vol. XLVII. (1874), p. 444, [586], pointed out its connexion with modern chemical theory.

In particular, as regards the paraffins CnHaj+o, we have n atoms of carbon connected

by ?i — 1 bands, under the restriction that fi-om each carbon-atom there proceed at

most 4 bands (or, in the language of the papers first referred to, we have n knots

connected by n — \ branches), in the form of a tree ; for instance, n = 5, such forms

(and the only such forms) are

2o

2

2

3

3

.3»-

And if, under the foregoing restriction of only 4 bands from a carbon-atom, we

connect with each carbon-atom the greatest possible number of hydrogen-atoms, as

shown in the diagrams by the affixed numerals, we see that the number of hydrogen-

atoms is 12 (=2.5-f2); and we have thus the representations of three different

paraffins, CjHjo. It should be observed that the tree-symbol of the paraffin is

54—2
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completely determined by means of the tree formed with the carbon-atoms, or say of

the carbon-tree, and that the question of the determination of the theoretic number

of the paraffins C^Hai+o is consequently that of the determination of the number of

the carbon-trees of n knots, viz. the number of trees with n knots, subject to the

condition that the number of branches from each knot is at most = 4.

In the paper of 1857, which contains no application to chemical theory, the

number of branches from a knot was unlimited ; and, moreover, the trees were

considered as issuing each from one knot taken as a root, so that, n — 5, the trees

regarded as distinct (instead of being as above only 3) were in all 9, viz. these were

w'n
\y 1

which, regarded as issuing from the bottom knots, are in fact distinct; while, taking

them as issuing each from a properly selected knot, they resolve themselves into the

above-mentioned 3 forms. The problem considered was in fact that of the "general

root-trees with n knots"

—

general, inasmuch as the number of branches from a knot

was without limit; root-trees, inasmuch as the enumeration was made on the principle

last referred to. It was found that for

knots 1,
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To count the trees on the principle first referred to, we requii-e the notions of

"centre" and " bicentre," due, I believe, to Sylvester; and to establish these we
require the notions of " main branch " and " altitude " : viz. in a tree, selecting any

knot at pleasure as a root, the branches which issue from the root, each with all

the branches that belong to it, are the main branches, and the distance of the furthest

knot, measured by the number of intermediate branches, is the altitude of the main

A B

branch. Thus in the left-hand figure, taking A as the root, there are 3 main branches

of the altitudes 3, 3, 1 respectively: in the right-hand figure, taking A as the root,

there ai-e 4 main branches of the altitudes 2, 2, 1, 3 respectively; and we have

then the theorem that in every tree there is either one and only one centre, or else

one and only one bicentre ; viz. we have (as in the left-hand figure) a centre A
which is such that there issue from it two or more main branches of altitudes equal

to each other and superior to those of the other main branches (if any) ; or else

(as in the right-hand figure) a bicentre AB, viz. two contiguou.s knots, such that

issuing from A (but not counting AB), and issuing from B (but not counting BA),

we have two or more main branches, one at least from A and one at least from B,

of altitudes equal to each other and superior to those of the other main branches in

question (if any). The theorem, once understood, is proved without difficulty: we
consider two terminal knots, the distance of which, measured by the number of

intermediate branches, is greater than or equal to that of any other two terminal

knots; if, as in the left-hand figure, the distance is even, then the central knot A
is the centre of the tree ; if, as in the right-hand figure, the distance is odd, then

the two central knots AB form the bicentre of the tree.

In the former case, observe that if G, H are the two terminal knots, the distance

of which is = 2\, then the distance of each from A is = X, and there cannot be

giving the values

(t,m= 1, 1, 3, 13, 75, 541, 4683, 47293, ...

for

»(= 1, 2, 3, 4, 5, 6, 7, 8, ...

But if from each non-terminal knot there ascend two and only two branches, then in this case 0m= coefficient

1 --JI- ix
of I™-' in - ^— "

, viz. we have the very simple form

1. 3.5...2m-3„,,
,^'^ 1.2.3...m ^"'"'

giving

(^;n= 1, 1, 2, 5, 14, 42, ...

for

m= 1, 2, 3, 4, 5, 7, ...
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any other terminal knot /, the distance of which from A is greater than X (for, if

there were, then the distance of / from G or else from H would be greater than

2\); there cannot be any two terminal knots I, J, the distance of which is greater

than 2\ ; and if there are any two knots 7, J, the distance of which is = 2\, then

these belong to different main branches, the distance of each of them from A being

= X; whence, starting with /, J (instead of G, H), we obtain the same point A as

centre. Similarly, in the latter case, there is a single bicentre AB.

Hence, since in any tree there is a unique centre or bicentre, the question of

finding the number of distinct trees with n knots is in fact that of finding the

number of centre- and bicentre-trees with n knots ; or say it is the problem of the

" general centre- and bicentre-trees with n knots
:

" general, inasmuch as the number

of branches from a knot is as yet taken to be without limit ; or since (as will

appear) the number of the bicentre-trees can be obtained without difficulty when the

problem of the root-trees is solved, the problem is that of the " general centre-trees

with n knots." It will appear that the solution depends upon and is very readily

derived from that of the foregoing problem of general root-trees, so that this last has

to be considered, not only for its own sake, but with a view to that of the centre-

trees. And in each of the two problems we doubly divide the whole system of trees

according to the number of the main branches, issuing from the root or centre as

the case may be, and according to the altitude of the longest main branch or

branches, or say the altitude of the tree ; so that the problem really is, for a given

number of knots, a given number of main branches, and a given altitude, to find the

number of root-trees, or (as the case may be) centre-trees.

We next introduce the restriction that the number of branches from any knot

is equal to a given number at most ; viz. according as this number is =2, 3 or 4,

we have, say oxygen-trees, boron-trees*, and carbon-trees respectively; and these are,

as before, root-trees or centre- or bicentre-trees, as the case may be. The case where

the number is 2 presents no difficulty: in fact, if the number of knots be =n, then

the number of root-trees is either -J (?i -|- 1) or ^n ; viz. ?i = 3 and n = 4, the root-

trees are

Iv :

o

and the number of centre- or bicentre-trees is always = 1 : viz. n odd, there is one

centre-tree ; and n even, one bicentre-tree ; it is only considered as a particular case

of the general theorem. The case where the number is = 3 is analytically interesting

:

although there may not exist, for any 3-valent element, a series of hydi-ogen compounds

* I should have said nitrogen-trees ; but it appears to me that nitrogen is of necessity S-valent, as

shown by the compound, Ammonium-Chloride, =NH4C1. Of course, the word boron is used simply to stand

for a 3-valent element.
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B„H„+o corresponding to the paraffins. The ease, where the number is =4 or say

the carbon-trees, is that which presents the chief chemical interest, as giving the

paraffins Gniiin+-3! ^'id I call to mind here that the theory of the carbon-root trees

is established as an analytical result for its own sake and as the foundation for the

other case, but that it is the number of the carbon centre- and bicentre-trees which

is the number of the paraffins.

The theory extends to the case where the number of branches from a knot is

at most = 5, or = any larger number ; but I have not developed the formula.

I pass now to the analytical theory : considering first the case of general root-

trees, we endeavour to find for a giveu altitude N the number of trees of a given

number of knots n and main branches a, or say the generating function

where the coefficient D. gives the number of the trees in question. And we assume that

the problem is solved for the cases of the several inferior altitudes 0, 1, 2, 3, ..,iV— 1.

This being so, observe that a tree of altitude N can be built up as shown in

the figure, which I call the edification diagram, by combining one or more trees of

altitude iV^ — 1 with a single tree of altitude not exceeding N —1; viz. in the figure,

N=3, we have the two trees a, b, each of altitude 2, combined, as shown by the

V I

dotted lines, with the tree c of altitude 1 : the whole number of knots in the

resulting tree is the sum of the number of knots on the three trees a, b, c: the

number of main branches is equal to the number of the trees a, b, plus the number

of main branches of the tree c. It is to be observed that the tree c may reduce

itself to the tree (•) of one knot and of altitude zero; but each of the trees a, b,

as being of the altitude N— 1, must contain at least N knots.

Taking N = 2 or any larger number, it is hence easy to see that the required

generating function Sfli^.r" is

= (1 - tx^)-' (1 - tcc^+^)-'' (1 - te^+2)-?, ___
|-ji...=oj

(fii-gt factor),

X + (t) X- -t- {t, t-) a? + {t, t-, t^)x'+ ... (second factor).

As regards the first factor, the exponents taken with reversed sign, that is, as

positive, are I = no. of trees, altitude iV— 1, of N knots; ^i
= ditto, same altitude, of

(iV-i-1) knots; L= ditto, same altitude, of iV+2 knots, and so on; and where the
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symbol [i'-°°] denotes that, in the function or product of factors which precedes it,

the terms to be taken account of are those in t\ t", t^, ... ; viz. it denotes that the

term in f, or constant term (= 1 in fact), is to be rejected.

In the second factor, the expressions x, {t) x-, (t, t-) a?, ... represent, for given

exponents of t, x, denoting the number of main branches and the number of knots

respectively, the number of trees of altitude not exceeding N —\: thus x, =\ tfx^

represents the number of such trees, 1 knot, main branch, = 1 ; and so, if the

value of (t, t", ^, f) a? be {at + /3<= + 7*^ + 8f) af, then for trees of an altitude not

exceeding N —\, and of 5 knots, a represents the number of trees of 1 main branch,

yS that of trees of 2 main branches, 7 that of trees of 3 main branches, 8 that of

trees of 4 main branches. It is clear that the number of trees satisfying the given

conditions and of an altitude not exceeding iV— 1 is at once obtained by addition

of the numbers of the trees satisfying the given conditions, and of the altitudes

0, 1, 2, ..,iV— 1; all which numbers are taken to be known.

It is to be remarked that the first factor,

(1 - ta^)-^ (1 - <«^+')-'' (1 - <a>^+^)-'^ ... [«>•••"],

shows by its development the number of combinations of trees a, b,. . of the altitude

N— 1 ; one such tree at least must be taken, and the symbol [<^-"] gives effect to

this condition : the second factor x + (t) x" + (t, t-)i(^+ ... shows the number of the

trees c of altitude not exceeding N — 1. And this being so, there is no difficulty in

seeing how the product of the two factors is the generating function for the trees of

altitude N.

In the case N=0, the generating function, or GF, is =«; viz. altitude 0, there

is only the tree (•), 1 knot, main branch.

When N=l, the GF is = (1 - te)-' [«'•••"] .r, =tx- + t-a-< + t>x'...,

viz. altitude 1, there is 1 tree tx'^, 2 knots, 1 main branch ; 1 tree faf, 3 knots, 2 main

branches ; and so on.

Hence iV = 2, we obtain

GF = {1- tx^)-' (1 - tx")-' (1 - tx*)-' . . . [i'~"] . {x + tx" + <V + t'x* +...);

viz. as regards the second factor, altitude not exceeding 1, that is, =0 or 1, there

is altitude 0, 1 tree x, and altitude 1, 1 tree tor, 1 tree t-a?, and so on. And we

hence derive the GF's for the higher values iV=3, 4, &c. : the details of the process

will be afterwards more fully explained.

So far, we have considered root-trees; but referring to the last diagram, it is at

once seen that the assumed root will be a centre, provided only that (instead of, it

may be, only a single tree a of the altitude N—V), we take always two or more trees

of the altitude N —\ to form the new tree of the altitude N. And we give effect
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to this condition by simply writing in place of [^i-"] the new symbol [<-<»], which

denotes that only the terms t", t^, t*, ... are to be taken account of; viz. that the

terms in t" and f are to be rejected. The component trees of the altitude iV"—

1

are, it is to be observed, as before, root-trees; hence the second factor of the generating

function is unaltered : the theorem is that for the centre-trees of altitude N we have

the same generating function as for the root-trees, writing only [f^- ="] in place of

[<^-'°]. Or, what is the same thing, supposing that the first factor, unaffected by either

symbol, is

= l+x^{at + ^t-+ ...) + x^+' (at + /3't' + . ..) -t- . .
.

,

then, affecting it with [<'="], the value for the root-trees is

= x'"^ (at + ^t-+ ...) + .tA'+' (at + 13't' +...)-!-...,

and, affecting it with [<'-••»], the value for the centre-trees is

= x^(^f +...)+ a,-^'+i (li't- -I- . . .) -f- . .

.

It thus appears how the fundamental problem is that of the root-trees, its solution

giving at once that of the ceuti'e-trees ; whereas we cannot conversely solve the problem

of the root-trees by means of that of the centre-trees.

As regards the bicentre-trees, it is to be remarked that, starting from a centre-tree

of altitude N +\ with two main branches, then by simply striking out the centre, so

as to convert into a single branch the two branches which issue from it, we obtain

a bicentre-tree of altitude N. Observe that the altitude of a bicentre-tree is measured

by that of the longest main branch from A or B, not reckoning AB or BA as a

main branch. Hence the number of bicenti-e-trees, altitude N, is = number of centre-

trees of two main branches, altitude N+\.

This is, in fact, the convenient formula, provided only the number of centre-trees

of two main branches has been calculated up to the altitude N +1. But we can find

independently the number of bicentre-trees of a given altitude N : the bicentre-tree

is, in fact, formed by taking the two connected points A, B each as the root of a

root-tree altitude N (the number of knots of the bicentre-tree being thus, it is clear,

equal to the sum of the numbers of knots of the two root-trees respectively) ; and

it is thus an easy problem of combinations to iind the number of bicentre-trees of

a given altitude iV. Write

as the generating function of the root-trees of altitude K ; viz. for such trees, 1 = no.

of trees with N +1 knots, /3 = no. with N+2 knots, and so on ; then the generating

function of the bicentre-trees of the same altitude N is

= a;=^+=(l +/3,x + y,x"-+B,x' +...),

C. IX. 55
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where

7, = 7+i/3(/3+l),

8^ = S + ^7,

e, = e + /3a + ^7 (7 + 1),

?, = r + /3e + 78,

and so on; or, what is the same thing, calling the first generating function <f)X, then

the second generating function is = ^ {(<^*)^ + ^ (*')}•

It will be noticed that the bicentre-trees are not, as were the centre-trees, divided

according to the number of their main branches; they might be thus divided according

to the sum of the number of the main branches issuing from the two points of the

bicentre respectively; a more complete division would be according to the number of

main branches issuing from the two points respectively; thus we might consider the

bicentre-trees (2, 3), with 2 main branches from one point, and 3 main branches from

the other point of the bicentre ; but the whole theory of the bicentre-trees is com-

paratively easy, and I do not go into it further.

We have yet to consider the case of the limited trees where the number of

branches from a knot is equal to a given number at most: to fix the ideas, say the

carbon-trees, where this number is =4. The distinction as to root-trees and centre-

and bicentre-trees is as before ; and the like theory applies to the two cases respectively.

Considering first the case of the root-trees, and referring to the former figure for

obtaining the trees of altitude N from those of inferior altitudes, then the trees

a, b, ... of altitude N —1 must be each of them a carbon-tree of not more than

(4 — 1 =) 3 main branches : this restriction is necessary, inasmuch as, if for any such

tree the number of main branches was = 4, then there would be from the root of

such tree 4 branches plus the new branch shown by the dotted line, in all 5 branches;

and similarly, inasmuch as there is at least one component tree a contributing one

main branch, the number of main branches of the tree c must be (4 — 1 =) 3 at most

:

the mode of introducing these conditions will appear in the explanation of the actual

formation of the generating functions (see explanation preceding Tables III., IV., &c.).

The number of main branches is = 4 at most, and the genei-ating functions have only

to be taken up to the terras in P ; the first factor is consequently in each case affected

with a symbol [<'•-'], denoting that the only terms to be taken account of are tho.se

in t, t-, t^, t*; hence as there is a fector t at least, and the whole is required only

up to t*, the second factor is in each case required only up to t^.

As regards the centre-trees, the generating functions have here the same expressions

as for the root-trees, except that, instead of the symbol [i'-^], we have the symbol

[t'"'*], denoting that in the first factor the only terms to be taken account of are

those in t^, t^, t* ; hence as there is a factor t^ at least, and the whole is required

only up to t*, the second factor is in each case required up to t- ; and we then com-

plete the theory by obtaining the bicentre-trees. The like remarks apply of course to
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the boron-trees, number of branches = 3 at most, and to the oxygen-trees, number = 2

at most ; but, as already remarked, this last case is so simple, that the general method

is applied to it only for the sake of seeing what the general method becomes in such

an extreme case.

We thus form the Tables, which I proceed to explain.

Table I. of general root-trees is in fact a Table of triple entrj% viz. it gives for

any given numbei' of knots from 1 to 13 the number of root-trees corresponding to

any given number of main branches and to any given altitude. In each compartment,

that is, for any given number of knots, the totals of the columns give the number

of the trees for each given altitude, and the totals of the lines give the number of

the trees for each given number of main branches : the corner grand totals of these

totals respectively show for each given number of knots the whole number of root-

trees :

—

viz. knots ... 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

numbers are ... 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486,

as already mentioned : these numbers were calculated by an independent method.

Table II. of general centre- and bicentre-trees consists of a centre part and a

bicentre part : the centre part is arranged precisely in the same manner as the root-

table. As to the bicentre part, where it will be observed there is no division for

number of main branches, the calculation of the several columns is effected by the

before-mentioned formula,

<j,x^^{{(j)wy + 4>{x-)];

thus column 2, we have by Table I. (totals of column 2)

(f)x =ci^ + 2*-^ + 4<x' + 6a''^ -I- 10a;' -I- 14a'8 + 21a;' -f 29a;"' + ...,

and thence

<f>,x = af + Ix' + la? -I-
14*'' -h 32a;"' -|- 58a;" -f llOa;'- 4- 187a;" -(-...

As already mentioned, each column of Table I. is calculated by means of a generating

function given as a product of two factors, each of which is obtained from the

columns which precede the column in question ; and Table II., the centre part of it,

is calculated by means of the same generating functions slightly modified : these

generating functions serving for the calculation of the two Tables are given in the

table entitled " Subsidiary Table for the calculation of the GFii of Tables I. and II.,"

which immediately follows these two Tables, and will be further explained.

55—2
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Table I.—General Root-trees.

[610
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Table I. (continued).

Index

X,

or

number
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knots.
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Table II.—General Centre- and Bicentre-Trees.

i
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Table II. (continued).
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Subsidiary Table for GF's of Tables I. and II.

[610
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Subsidiary Table for GF's of Tables I. and II. {continued).

I
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Subsidiary Table for GFs of Tables I. and II. (continued).

X



Subsidiary Table for OF's of Tables I. and II. (continued).

1
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I proceed to explain the Subsidiary Table, first in its application to Table I.

The Subsidiary Table is divided into sections, giving the GF's of the successive

columns of Table I., each section being given by means of the preceding columns

of Table I. ; for instance, that for column 3 by means of columns 0, 1, 2 of Table I.

As regards column 0, the Table shows that the GF is =a.'.

As regards column 1, it shows that the GF has a first factor,

(1 - tw)-\ = (1 ) + te + t-w" + tV+ ...,

which is operated on by the symbol [«'•"], viz. the constant term (1) is to be rejected;

and that it has a second factor, =x: the product of these, viz. {tx + t^af^ + fa;^ + ...) x x, is

the required GF, the coefficients of which are accordingly given in column 1 of

Table I.

As regards column 2, it shows that the GF has a first factor,

(1 - te=)-' (1 - te^)-' ( 1 - to")-' . .
.

,

where the indices —1, —1, — l,-. are the sums of the numbers in column 1, Table I.,

{with their signs changed) : which first factor is

1 +taf + tx'+ / t \ar'+ ...,

V + P)

and it is as before to be operated on with [<'"], viz. the constant term is to be

rejected; and further, that there is a second factor =« + te^ + <V+ ..., the coefficients

of which are obtained by summation of the numbers in the seveial lines of columns

0, 1 of Table I. We have thence column 2 of Table I.

As regards column 3, it shows that the GF has a first factor,

(1 - tx')-' (1 - ta^)-^ (1 - tofi)-' ...,

where the indices —1, —2, —4,.. are the sums of the numbers in column 2 of

Table I., (with their signs changed) : which first factor is

= \+ta? + 2tx* + Uaf" + f 6< \ a,* + ...
,

and it is as before to be operated on with [*'-"], viz. the constant term is to be

rejected ; and that there is a second factor

the coefficients of which are obtained by summation of the numbers in the several

lines of columns 0, 1, 2 of Table I.: we have thence column 3 of Table I.

And similarly, by means of columns 0, 1, 2, 3 of Table I., we form the GF of

column 4; that is, we obtain column 4 of Table I., and so on indefinitely.
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To apply the Subsidiary Table to the calculation of the GF's of Table II., the

only difference is that the first factors are to be taken without the terms in i'

:

thus for Table II. column 3, the first factor of the GF
= t-af + 2fV + 7t-x' + /lU-\ of + &c.,

the second factor being as for Table I.

= x+ tx- +
f

t \ .f^ + &c.

The remaining Tables are Tables III. and IV., oxygen root-trees and centre- and

bicentre-trees, followed by a Subsidiary Table for the calculation of the GF's

:

Tables V. and VI., boron root-trees and centre- and bicentre-trees, followed by a

Subsidiary Table ; and Tables VII. and VIII., carbon root-trees and centre- and

bicentre-trees, followed by a Subsidiary Table. The explanations given as to Tables I.,

II. and the Subsidiary Table apply mutatis mutandis to these ; and but little further

explanation is required : that given in regard to the Subsidiary Table of Tables III.

and IV. shows how this limiting case comes under the general method. As to the

Subsidiary of Tables V. and VI., it is to be observed that each * line of the Table

is calculated from a column of Table V., rejecting the numbers which belong to t'
;

thus Table V., column 4, the numbers are

1 3 5
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Table III.—Oxygen Eoot-Ti-ees.

Index
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Table IV.—Oxygen Centre- and Bicentre-Trees.

Index

X,

or

number

of

knots.
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Subsidiary Table for GF's of Tables III. and IV.
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and so on indefinitely; viz. observing that the first factors, as shown by the Table,

are (1 - te)~' [*''], (1 - iar^)-' [«'•-], &c., the Table in fact shows that as regards Table III.

the GF'h are for

column : .r,

„ 1 : ix + tV . X,

2 : ti(~ + t-.c' . X + W-,

3 : tx" + «-*•" .x + t (*•- + x'),

4 : tx:" + t-afi .x-\-t (,?;- + a? -\- x^\

„ 5 : taf' + tV> .x + t (x- + x' + x^ + a-')

;

viz. developing as far as f-, that the successive GF's are

column : ,r,

„ 1 : tx^ + t-.i",

2 : tr' + f- {x^ + of),

3: tx" + t- {x^ + x' ^ x'),

4: tx^ + t' {x^ + x' + a? + a?),

„ 5 : te" + t- {x' + a^ + a-' + a,-'« + x")
;

&c., agreeing with Table III.

And .so also it shows that, as regards Table IV. (centre part), the GF's of the

successive columns are for

column : x,

my A. * V L^ K^j

2 • t-j^ .T

viz. that the successive GF's are x, t-x", tV, t'-x', t-x^, t'-x", . .
, agreeing in fact with

Table IV.

c. IX. 57



Table V.—Boron Root-trees.



610] ON THE ANALYTICAL FORMS CALLED TREES. 451

Table VI.—Boron Centre- and Bicentre-Trees,

Index
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Subsidiary Table for GF's of Tables V. and VI.

[610

a
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Subsidiary Table for GF's of Tables V. and VI. (continued).

1
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Table VII.—Carbon Root-trees.

Index
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Table VII. {continued).

Index
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Table VIII.—Carbon Centre- and Bicentre-Trees.

Index

a-,

or

number

of

knots.
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Subsidiary Table for GF's of Tables VII. and VIII.

457
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Subsidiary Table for GFs of Tables VII. and VIII. (continued).

H-

1
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I annex the following two Tables of (centre- and bicentre-) trees as far as I have

completed them.

Table A.

Valency
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columns of A. The signification is obvious ; for instance, if the number of knots is

= 9, then Table A, if the valency, or the maximum number of branches from a knot,

is = 2, 3, 4, 5, 6, 7, 8 or any greater number, •

No. of trees = 1, 18, 35, 42, 45, 46, 47

:

viz. with 9 knots the tree can have at most 8 branches from a knot, so that the

number of trees having at most 8 branches from a knot is = 47, the whole number

of trees with 9 knots ; and so the number of knots being as before = 9, Table B
shows that the number of 47 is made up of the numbers

1, 17, 17, 7, 3, 1, 1;

viz. 1 is the No. of trees, at most 2 branches from a knot,J. lo uiic XI \j. yji ui »- vc<

17
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611.

REPORT OF THE COMMITTEE ON MATHEMATICAL TABLES:

CONSISTING OF PROFESSOR CAYLEY, F.R.S., PROFESSOR STOKES, F.R.S.,

PROFESSOR SIR W. THOMSON, F.R.S., PROFESSOR H. J. S. SMITH, F.R.S.,

AND J. W. L. GLAISHER, F.R.S.

[From the Report of the British Association for the Advancement of Science (1875),

pp. 305—336.]

The present Report (say Report 1875) is in continuation of that by Mr Glaisher,

published in the volume for 1873, and here cited as Report 1873.

Report 1873 extends to all those tables which are at p. 3 (I.e.) included under the

headings :

—

A, auxiliary for non-logarithmic calculation, 1, 2, 3

;

B, logarithmic and circular, 4, 5, 6

;

C, exponential, 7, 8 (but only partially to C. 8), other than those tables of C
referred to as "h . 1 tan(45° + J<^) "; and also partially (see Art. 24, pp. 81— 83) to

the tables included under the heading "E. 11, transcendental constants e, it, y, &c.,

and their powers and functions."

A future Report will comprise the tables, or further tables, included under the

headings :

—

C. 8. Hyperbolic antilogarithms (e*) and h . 1 tan (45° + |- 4>), and hyperbolic sines,

cosines, &c.

D. Algebraic constants.

9. Accurate integer or fractional values. Bernoulli's Numbers, A"0"', &c.

Binomial coefficients.

10. Decimal values auxiliary to the calculation of series.

E. 11. Transcendental constants e, tt, y, &c., and their powers and functions.
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The present Report (1875) comprises the tables iuchided under the headings:

—

F. Arithraological.

12. Divisors and prime numbers. Prime roots. The Canon arithmeticus, &c.

13. The Pellian equation.

14. Partitions.

15. Quadratic forms a- + b-, &c., and partitions of numbers into squares, cubes,

and biquadrates.

16. Binary, ternary, &c., quadratic and higher forms.

17. Complex theories

:

which divisions are herein referred to, for instance, as [F. 12. Divisors, &c.].

Report 1873 consists of six sections (§) divided into articles, which are separately

numbered (see contents, p. 174); the present Report 1875 forms a single section

(§ 7), divided in like manner into articles, which are separately numbered ; but

besides this the paragraphs are numbered, and that continuously, through the present

Report 1875, so that any paragraph may be cited as Report 1875, No. — , as the

case may be.

[F. 12. Divisors, &c.] Divisors and Prime Numhers. Art. I.

1. As to divisors and prime numbers see Report 1873, Art. 8 (Tables of

Divisors—factor tables—and Tables of Primes), pp. 34—40. The tables there referred

to, such as Chernac, Burckhardt, Dase, Dase and Rosenberg, are chiefly tables running

up to very high numbers (the last of them the ninth million) : wherein, to save

space, multiples of 2, 3, 5 are frequently omitted, and in some of them only the

least divisor is given. It would be for many purposes convenient to have a .small

table, going up say to 10,000, showing in every case all the prime factors of the

number. Such a table might be arranged, 500 numbers in a page, in some such

form as the following:

—

Factor Table 1 to ."lOO

2.3.5.13
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prime : also, that this is given incidentally, for prime numbers p up to 1000, in Jaeobi's

Canon Arithmeticus, post, No. 20, and up to 15,000 in Reuschle's Tables, V. (a, b, c)

post, No. 22.

2. It may be proper to remark here that any table of a binarj' form is really

a factor-table in the comple.K theory connected with such binary form. Thus in

a table of the form a- + b", a number of this form has a factor a + bi (i = V— 1 as

usual); and the table, in fact, shows the complex factor a+bi of the number in

question : a well arranged table would give all the prime complex factors a + bi of the

number. But as t(5 this more hereafter ; at present, we are concerned with the real

theory only, not with any complex theory.

3. Comiected with a factor-table, we have (i) a Table of the number of less relative

primes ; viz. such a table would show, for every number, the number of inferior integers

having no common factor with the number itself. The formula is a well-known one:

for a number A^ = a'b^cy ..., (a, b, ... the distinct prime factors of N), the number of

less relative primes is

s7(iV), =a»->6^-' ...(a-l)(6-l) ...,

or, what is the same thing, =n(i
j
(l - t) ••• A small table (N = l to 100),

occupying half a page, is given by

Euler, Op. Arith. Coll. t. II. p. 128; viz. this is 7rl=0, 7r2 = l, ..., ttIOO = 40.

4. But it would be interesting to have such a table of the same extent with

the proposed factor-table. The table might be of like form ; for instance.

Number of less relative Primes Table 1 to 500

012345 6789
29 112
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5. Again, connected with a factor-table, we have (ii) a Table of the Sum of the

divisors of a Number. The formula is also a well-known one ; for a number
N — a'b^ ..., (a, b,... the distinct prime factors of iV), the required sum

I-
N is =(l+a+ ... + a'){l+b+ ...+¥).

or, what is the same thing,

i_l tP-t 1

a-i 6-1 ••'

where, observe, that the number itself is reckoned as a divisor.

6. Such a table was required by Euler in his researches on Amicable Numbers
(see post, No. 10), and he accordingly gives one of a considerable extent, viz.

Euler, Op. Arith. Coll. t. L pp. 104—109.

It is to be remarked that, inasmuch as I iV is obviously = I a" 6^ ... , the function

need only be tabulated for the different integer powers a" of each prime number a.

The range of Euler's table is as follows :

—

a =
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7. The fomi of the above table is adapted to its particidar purpose (the theory

of amicable numbers) ; but Euler gives also,

Buler, Op. Arith. Coll. t. I. p. 147—in the paper " Observatio de Summis

Divisorum," (1752), pp. 146—154,—a short table of about half a page, A^ = I to 100,

of the form 1 = 1. I 2 = 3, .
.

, I 100 = 217. The paper contains interesting analytical

researches on the subject of I N which connect themselves with the theory of the

Partition of Numbers.

8. It would be interesting to carry the last-mentioned table to the same extent

as the proposed factor-table ; and to add to it an inverse table, as suggested in regard

to the number of less relative primes table.

9. Pe)-/ect A^umbers.—A perfect number is a number which is equal to the sum

of its divisors, the number itself not being reckoned as a divisor ; e.g.

6=1-1-2 + 3, and 2« = 1 -I- 2 + 4 + 7 -1- 14.

Such numbers are indicated by a table of the sums of divisors 16 = 12, 128=56,

these two being, as appears by the table. Art. 7, the only perfect numbers less

than 100.

10. Amicable Numbers.—These are pairs of numbers such that each is equal to

the sum of the divisors of the other, not reckoning the other number as a divisor

;

that is, each has the same sum of divisors, the number being here reckoned as a

divisor ; say 1 A=B, 1 B = A; or, what is the same thing, \ A = \ B{= A + B). Thus

for the numbers 220, 284,

f 220 = (1 + 2 -f- 4) (1 + 5) (H- 11) - 220, = 284,

I 284 = (1 -t- 2 -1- 4) (1 + 71) - 284, = 220

;

or, what is the same thing,

f 220 = (1 -I- 2 + 4) (1 + 5) (1 + 11) = .504 = (1 -f 2 -t- 4) (1 + 71) = f 284.

11. A catalogue of 61 pairs of numbers is given by

Euler, Op. Arith. Coll. t. I. pp. 144—145 ; it occupies about one page. The paper,

" De Numeris Amicabilibus," pp. 102—145, contains an elaborate investigation of

the theory, by means whereof all but two of the pairs of numbers are obtained.

The first pair is the above-mentioned one, 2^.5.11 and 2-. 71 (=220 and 284); and

the fifty-ninth pair is the high numbers

3\ 7-. 13. 19. 53. 6959 and 3=. 7-. 18 . 19 . 179 . 2087.

C. IX. 59
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The last two pairs are referred to as "fortnae diversa? a precedentibus
;

" viz. these are

2M9.41 j2=.41 .4.67

2= . 199 [2" . 19 . 233.

12. A Table of the Frequency of Primes is given by

Gauss, Tafel der Frequenz der Primzahlen, Werke, t. II. pp. 436—443; viz. this

extends to 3,000,000.

The first part, extending to 1,000,000, = 1000 thou.sand, shows how many primes

there are in each thousand : a specimen is

1, 168:

2, 13.5;

3, 127

4, 120:

5, 119:

&c.;

viz. in the first thousand there are 168 primes, in the second thousand 13.5 primes,

and so on.

For the second and third millions the frequency is given for each ten thousand

:

a specimen is

1,000,000 to 1,100,000.

1

4

21

54

114

171

217

164

126

71

39

12

6
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viz. in the interval 1,OU(J,000 to 1,010,000, 100 hundreds, there is 1 hundred containing

1 prime, there are 2 hundreds each containing 4 primes, 11 hundreds each containing

5 primes, .
.

, 1 hundred containing 13 primes, so that, as

1 X
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He shows, p. 414, that the number of integers, which are less than n and are not

divisible by any of the numbers 0, X, /u., ... , is approximately

= nil-l){l- ^(-D-
and taking 0, \, fi.... the successive primes 3, 5, 7,... he gives the values of the

fimction in question, or, say, the function

2 4 6 10 M-1
3'5'7lT"~^'

o) a prime, for the several prime values w = 3 to 1229 in the Table IX. (one page)

at the end of the work.

14. A table of frequency is given by

Glaisher, J. W. L., British Association Report for 1872, p. 20. This gives for the

second and the ninth millions, respectively divided into intervals of -50,000, the actual

number of primes in each interval, as compared with the theoretic value lia;' — lia;

;

and also deduced therefrom, by the formula log i (a-' + x), a table of the average

interval between two consecutive primes ; this average interval increases very slowly

:

at the beginning and the end of the second million the values are 13*76 and 14'.58

{theoretic values 13'84 and 14"50); at the beginning and the end of the ninth million

1602 and 15-95 (theoretic values 15-90 and 16-01).

15. Coming under the head of Divisor Tables, some tables by Reuschle and

€rauss may be here referred to. These are :

—

Reuschle, Mathematische Abhandlung, zahlentheoretische Tahellen samnit einer

dieselben treffenden Correspmidenz mit der verewigten G. G. J. Jacobi, 4°, pp. 1—61*

{1856). The tables belonging to the present subject are

A. Tafeln zur Zerlegung von o" — 1 (pp. 18—22).

I. Table of the prime factoi-s of 10"— 1, viz.

(a. pp. 18—19.) Complete decomposition of 10"-1, h= 1 to 42: and 10" + 1, «-l to 21.

Some values of n are omitted.

A specimen is

10'^ - 1 = 3-
. 53 . 79 . 26.5371653,

10>' + 1 = 11 . 189. 1058313049.

(b. p. 19.) List of the specific prime factors / of 10" - 1, or the prime factors

of the residue after separation of the analytical factors, for those values of n for which

the complete decomposition is unknown, and omitting those values for which no factor

is known, m = 25 to 243.

* Titlepage missing in my copy; but I find from Prof. Rummer's notice of the work, Grelle, t. mi.

(1857), p. 379, that it appeared as a Programm of tlie Stuttgart Gymnasium, Michaelmas, 1856, and was

separately printed by Liesching and Co., Stuttgart.
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A specimen is

469

n

25 21401.

The meaning seems to be, residue of 10==— 1 is 1 + 10'' + 10'° + 10'^ + 10™, and

this contains the prime factor 21401 ; but it is not clear why this is the " specific

prime factor."

II. Prime factors of n" — 1 for different vahies of a and n.

(a. p. 20) gives for 41 values of a (2, 3, &c. at intervals to 100) and for the

following values of /; the decompositions of the residues or specific factors of a" — 1

;

viz. these are

n = 1 , rt — 1 :

„ 2, « + 1 :

„ 3, a- + a + l:

„ 6, (i- — a + 1

:

„ 4, a- + 1

:

5, «* 4- a* + tt- + a + 1

:

„ 10, a* — w' + a-—a + \:

„ 8, a*+l:

„ 12, a'-a'+l.

A specimen is

a
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16. Gauss, Tafel zur Cyclotechnie, We7-ke, t. II. pp. 478—495, shows, for 2452

numbers of the several forms a-+l, (r + 4, a- +9,..., a- + Hl, the values of a such that

the number in question is a product of prime factors no one of which exceeds 200,

and exhibits all the odd prime factors of each such number. The table is in nine

parts, zerlegbare d- + l, zerlegbare a- + 4, &c., with to each part a subsidiary table, as

presently mentioned. Thus a specimen is

zerlegbare a- + 9.

1
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[F. 12. Divisors, etc.] continued. Prime Roots. The Canon Antltmeticits, Quadratic

residues. Art. II.

17. Prime Roots.—Let ^ be a prime number; then there exist CT(p— 1) inferior

integers g, such that all the numbers 1 , 2, ...
, p ~l are, to the modulus p,

si, (/, g-, ..., g''~'(g''~^ is of course =1).

This being so, g is said to be a prime root of p ; and moreover the several numbers

g", where a is any number whatever le.ss than and prime to jo — 1, constitute the series

of the is{p — \) prime roots of p. It may be added that, if be an integer number
less than p—\, and having with it a greatest common measure =k, so that

p-i

(g^) * = g''
''

, = 1, (since j is an integer, and 9^~' = 1
I

,

then g^ has the indicatrix ^—y— : the prime roots are those numbers which have the

indicatrix ^J — 1.

The like theory exists as to any number N of the form p™ or 2p'". There are

here t!7(iV), =iV(l
j

or ^N'I ), in the two cases respectively, numbers less

than iV and prime to it ; and we have then nr (m {N')\ numbers g such that, to the

modulus iV, all these numbers are =1, g, g'^ ... g'"'^^^^ (^ot(ao jg Qf course =1). This

being so, g may be regarded as a prime root of N (=p"' or 2^'", as the case may
be) ; and moreover the several numbers (/", where a is any number whatever less

than and prime to rs (N), constitute the series of the CT(sr(iV}) prime roots of N.

Thus iV^=3- = 9, c7(iV)=6; we have

1 Ol -72 03 94 .75
I, ^ , w , -.

, M
, w ,

= 1, 2, 4, «, 7, 5, mod. 9;

or the prime roots of 9 are 2' and 2'', = 2 and .5.

So also iV=2.3-=18, =r(iV) = 6; we have

1, .5', .5'-, .5^, h*, y,

= 1, .5, 7, 17, 1.3, 11, mod. 18;

and .5' and 5', =h and 11 are the prime roots of 18.

18. A small table of prime roots, /;=.'} to .37, is given by

Euler, Op. Arith. Coll. t. i. pp. .52.5—526. The Memoir is entitled "Demonstra-
tiones circa residua e divisione potestatum per numeros primes resultantia," pp. 516

—

.537 (1772).
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19. A table, p and p"\ 3 to 97, is given by

Gauss, " Disquisitiones Arithmeticas," 1801, {Werke, t. I. p. 468). This give.s iu

each case a prime root, and it shows the exponents in regard thereto of the several

prime numbers less than p or p'". Thus a specimen is

2 3 5 7 11 13 17 19 23 29 &c.

27
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where the first table gives the values of the powers of the prime root 10 (that 10

is the root appears by its index being given as =1) to the modulus 19, viz.

10^=10, 10- =5, 10"sl2, «Src. ; and the second table gives the index of the power to

which the same prime root must be raised in order that it may be, to the modulus

19, congi'uent with a given number: thus 10'^ si, 10''= 2, 10° = 3, &c. The units of

the index or number, as the case may be, are contained in the top line of the table,

and the tens or hundreds and tens in the left-hand column.

21. There is given by

Jacobi, Crelle, t. xxx. (1846), pp. 181, 182, a table of ni for the argument «i,

such that

l+g"' =
(f'>' (mod. p), p = 7 to 103, and ni = to 102.

A specimen is

to 103p
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(2 being accordingly the least prime root),

G-^sl, ^""- = 1, 7=''=1.

The number w of the last column is the least primitive root. It is, of course, not

always (as in the present case) one of the numbers 10, 5, 2, 6, 3, 7 to which the table

relates: the first exception is p = 191, w = 19 : the highest value of w is w = 21, corre-

sponding to p = 409.

b. The like table for the roots 10 and 2 for all prime numbers from 1000 to

5000, together with as convenient as possible a prime root (and in some cases two

prime roots) for each such number (pp. 47— 53).

A specimen is :

—

10 2

p p — 1 en en w

1289 2^7.23 92 14 161 8 6, 11

viz. here, mod. 1289, 10"- = 1, 2"" = 1 ; and two prime roots are 6, 11. We have thus

by the present tables a prime root for every prime number not exceeding 5000.

c. The like table for the root 10 for all prime numbers between 5000 and

1.5000, (no column for w, nor any prime root given), pp. 53—61.

A specimen is

p /> — 1 en
9859 2. 3. 31..53 3286 3:

viz., mod. 9859, we have lO'™" b 1. But in a large number of cases we have ;i = l,

and therefore 10 a prime root. For example,

9887 2.4983 9886 1.

23. For a composite number n, if iV = •nr (/;.) be the number of integers less than

11 and prime to it, then if x be any number less than n and prime to it, we have

a;^ = 1 (mod. n). But we have in this case no analogue of a prime root—there is

no number *, such that its several powers a;\ a;-,..., cc^~'^ (mod. w) are all different

from unity ; or, what is the same thing, there is for each value of x some submultiple

of N, say iV, such that x^' = 1 (mod. n). And these several numbers N' have a least

common multiple /, which is not = N, but is a submultiple of N \ and this being

so, then for all the several values of x, I is said to be the maximum indicator. For

instance, ?i=12, N=Ts{n); the numbers less than 12 and prime to it are 1, 5, 7, 11.

We have, (mod. 12), 1^ = 1, ^=1, V=\, 1P=1, or the values of N' are 1, 2, 2, 2

;

their least common multiple is 2, and we have accordingly 1 = 2: viz. a;- si (mod. 12)

has the ct(12) roots 1, 5, 7, 11. So »i = 24, ny(n) = 8; the maximum indicator / is in

this ease also = 2.

i
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A table of the maximum indicator n = 1 to 1000 is given by

Cauchy, Exer. d'Analyse d-c, t. n. (1841), jip. 36—40, contained in the "M^moire
sur la r^sohition des Equations iudeterminees du premier degrt^ eu nombres entiers,"

pp. 1—40.

24. It thus appears that for a composite number ?;, the ct(w) numbers less than n

and prime to it cannot be expressed as = (mod. ?i) to the power of a single root

:

but for the expression of them it is necessary to emploj' two or more roots. A small

table, n = 1 to .50, is given by

Cayley, Specimen Table M = a'}/ (mod. N) for any prime or composite modulus

;

Quart. Math. Juurn. vol. IX. (1868), pp. 95, 96, and folding sheet, [397].

A specimen is

Nos.
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1, +2, +3, &c. ; the — 1 is printed correctly on p. 499 of the French translation Recherches

Arithmetiques, Paris, 1807 and on p. 469 of vol. i. of Werke, (GiJttingen, 1870).

A specimen is

19

-

1
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The required mantissa?, denoted in the table by

(0), (1). (2), (3), (4),

are those of

10 10.2
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Even here, for some of the vahies of «, the vahies of x, y are extremely large

;

thus a = 61, x = 226,153,980, %j = 1,766,399,049.

And probably tables of a like extent may be found elsewhere ; in particular, a

table of the solution of y- = ax- + 1 (— when the value of a is such that there is

a solution of y- = ax-—l, and + for other values of a), = 2 to 135, is given by

Legendre, Theorie des Nomhres, 2nd ed. 1808, in the Table X. (one page) at the

end of the work. For the before-mentioned number 61, the equation is ^= = 61a;=— 1,

and the values are a; = 3805, 3/ = 29718; much smaller than Euler's values for the

equation y-=Q\ ai- +\.

28. The most extensive table, however, is given by

Degen, Canon Pellianus, sive Tabula simplicissimam equationis celebratissimce

:

y- = aa? -\-\, solutionem, pro singulis nuvien dati valoribus ah 1 usque ad 1000 in

numeris rationalibus, iisdemque integris exhibens. Auctore Carolo Ferdinando Degen.

Hafn (Copenhagen) apud Gerhardum Bonnarum, 1817. 8vo. pp. iv to xxiv and 1

to 112.

The first table (pp. 3—106) is entitled as " Tabula I. Solutionem Equationis

y- — ax- — 1=0 exhibens." It, in fact, also gives the expression of v « as a continued

fraction ; thus a specimen is

209
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where the second Hue 1, 13, 5,... shows the numerical factors of the third column.

The value of this second line as a result is not very obvious.

The third line gives x, and the fourth line y.

29. The second table, pp. 109—112, is entitled "Tabula II. Solutionem aBquationis

y". — ax- +1=0, quotiescunque valor ipsius a talem admiserat, exhibens " ; viz. it is

remarked that this is only possible (but see infrd,) for those values of a which in

Table I. correspond to a period of an even number of terms, as shown by two

equal numbers in brackets ; thus a = l.S, the period of \/l3 given in Table I. is

(1, 1, 1, 1) as shown by the top line .3, 1 (1, 1), and accordingly 13 is one of

the numbers in Table II. ; and we have there 13 o

18.

4574.225
Or take another specimen, 241

, ^ viz. the first line gives the value of^
71011068;

^

X, and the second line the value of y (least values), for which y- — aa:- = — \.

It is to be noticed that re = 2 and a = 5, for which we have obviously the

solutions (a;=l, y = 1) and (a; = 1, y — '2) respectively, are exceptional numbers not

satisfying the test above referred to ; and (apparently for this reason) the values in

question, 2 and 5, are omitted from the table.

30. Cayley, "Table des plus petites solutions impaires de I'e'quation x-—Dy-=±^,
D=b (mod. 8)." Crelle, t. Liii. (1857), page 371 (one page), [231].

As regards the theory of quadratic forms, it is important to know whether for

a given value of D {= 5, mod. 8) there does or does not exist a solution, in odd

numbers, of the equation a?" — Dy- — 4. As remarked in the paper, " Note sur I'^quation

,<;- - Dy- = ± 4, i)s5 (mod. 8)," pp. 369—371, [231], this can be determined for values

of B of the form in question up to Z) = 997 by means of Degen's Table ; and the

solutions, when they exist, of the equation x- — Dy" = 4, as also of the equation

^ — Dy- = — 4, can be obtained up to the same value of D. Observe that when the

equation x^ — By" = — 4 is possible, the equation x- — By- = 4 is also possible, and that

its least solution is obtained very readily from that of the other equation ; it is therefore

sufficient to tabulate the solution of x- — Dy- = + 4, the sign being — when the

corresponding equation is possible, and being in other cases +. Hence the form of

the Table : viz. as a specimen we have

D
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that is, if D = 757 or 781, there is no sokition of either x'-Dy- = + ^ or =-4; if

Z» = 765, there is a sokition a; = 83, i/ = 3 of a-= - %- = + 4, but none of x--Df=-4;
if D = 773, there is a solution a; = 139, y = 5 of x--I)y"-=-4; and therefore also a

solution of sc- — Dy- = + 4 ; and so in other cases.

[F. 14. Partitions.] Art. IV.

31. The problem of Partitions is closely connected with that of Derivatious.

Thus if it be asked in how many ways can the number /; be expressed as a sum

of three parts, the parts being 0, 1, 2, 3, and each part being repeatable an indefinite

number of times, it is clear that n is at most = 9, and that for the values of

m, =0, 1, .
. , 9 shown by the top line of the annexed table, the number of partitions

has the values shown by the bottom line thereof:

—

a'
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Number of partitions of ?! = coefficient of *" in
(1 -x){l- ar") (1 - X') ... (1 -a™)

'

and we can, by actual development, obtain for any given values of vi, n the number

of partitions.

These have been tabulated «i=l, 2, ...,20, and »i=oo (viz. there is in this case

no limit as to the largest part), and n = 1 to 59, by

Euler, Op. Arith. Coll. t. i. pp. 97—101, given in the paper " De Partitione

Numerorum," pp. 73—101, (17.50); the heading is "Tabula indicans quot variis modis

numerus n e numeris 1, 2, 3, 4, .
. , m, per additionem exhibi potest, sen exhibens

valores formulae ?!'""." The successive lines are, in fact, the coefficients of the several

powers x", x^, . . , of in the expansions of the functions11 1

1 — a;' \ —X .\—x-'
' '

' \— X.1—X-...1— of'

34. The generating function for any given value of m is, it is clear, =- —

multiplied by that for the next preceding value of in, and it thus appears how each line

of the table is calculated from that which precedes it. The auxiliary numbers are

printed ; thus a specimen is

Valores numeri n.

in
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Table I. (16 pages) is, in fact, Euler's table, showing in how many ways the

number n can be made up with the parts 1, 2, 3,.., m; but the extent is greater,

viz. n is from 1 to 103, and m from 1 to 102. The auxiliary numbers given in

Euler's table are omitted, as also certain numbers which occur in each successive

line ; thus a specimen is

4 5 6 7 83 10 &c.

<?»,„
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36. As regards Tables II. and III., the analytical explanations have been given

in the first instance ; but it is easy to see that the tables give numbers of partitions.

Thus, in Table II., the .second line gives the coefficients in the development of

1 .

{l-xyil-af){l-co')...''

viz. these are 1, 2, 4, 7 12, 19, 30,..., being the number of ways in which the

numbers 0, 1, 2, 3, 4, &c. respectively can be made up with the parts 1, 1', 2, 3,

4, &c. ; thus
Partitions. No. =

1 1 2

1'
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[F. 15. Quadratic forms a' + b-, dx., and Partitions of Numbers into squares, cubes,

and biqiuidrates.] Ai't. V.

37. The forms here referred to present themselves in the various complex

theories. Thus N=a- + b-, =(a + bi){a — bi); this means that, in the theory of the

complex numbers a + bi {a and b integers), iV is not a prime but a composite

number. It is well known that an ordinary prime number = 3, mod. 4, is not

expressible as a sum a- + 6", being, in fact, a prime in the complex theory as well

as in the ordinary one : but that an ordinary prime number = 1, mod. 4, is (in one

way only) = a- + 6^ ; so that it is in the complex theory a composite number. A
number whose prime factors are each of them = 1, mod. 4, or which contains, if at

all, an even number of times any prime factor = 3, mod. 4, can be expressed in a

variety of ways in the form a- + b- ; but these are all easily deducible from the

expressions in the form in question of its several factors = 1, mod. 4, so that the

required table is a table of the form p = a- + b-, p an ordinary prime number = 1,

mod. 4 : a and b are one of them odd, the other even ; and to render the decom-

position definite a is taken to be odd.

^ = a- + h- ; viz. decomposition of the primes of the form ^n + 1 into the sum
of two squares: a table extending from p = o to 11981 (calculated by Zornow) is given by

Jacobi, Crelle, t. xxx. (1846), pp. 174—176.

This is carried by Reuschle, as presently mentioned, up to jo = 24917. Reuschle

notices that 2713 = 3- +52= is omitted, also 6997 = 39^ + 74=, and that 8609 should be

= 47= + 80=.

38. Similarly, primes of the form &n + 1 are expressible in the form p = a- + 36=.

Observe that, « being an imaginary cube root of unity, this is connected witii

p' = (a + bco) (a + 6a)=), = a= — ab + b^, viz. we have 4p' = (2a — b)- + 36= ; or the form

tt= + 36= is connected with the theory of the complex numbers composed of the cube

roots of unity.

p = a- + 36= ; viz. decomposition of the primes of the form 6?i + 1 into the form

a= + 36=: a table extending from ^ = 7 to 12007 (calculated also by Zornow) is given by

Jacobi, Crelle, t. xxx. (1846), at supra, pp. 177—179.

This is carried by Reuschle up to jj = 13369, and for certain higher numbers up to

49999, as presently mentioned. Reuschle observes that 6427 = 80= + 3.3= is by accident

omitted, and that 6481 should be = 41= + 3 . 40=.

39. Again, primes of the form 8?i + 1 are expressible in the form p = a- + 26=

(or say = c= + 2d-), the theory being connected with that of the complex numbers

composed with the 8th roots of unity (fourth root of — 1, = /=-)

p = c' + 2d" ; viz. decomposition of primes of the form 8?i + 1 into the form c^ + 2d'

:
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a table extending from j3 = 16 to 5943 (extracted from a MS. table calculated by

Struve) is given by

Jacobi, Crelle, t. xxx. (1846), ut supra, p. 180.

This is carried by Reuschle up to ^j= 12377, and for certain higher numbers up

to 24S89, as presently mentioned.

40. Reuschle's tables of the forms in question are contained in the work:

—

Reuschle, Mathematische Abhandlnng, &c. (see ante No. 15), under the heading

" B. Tafeln zur Zerlegung der Primzahlen in Quadrate" (pp. 22—41). They are as

follows :

—

Table III. for the primes 6n + 1.

The first part gives 2) = A-+':W- and ip = L-+27M-, from p = 7 to 5743. The table

gives A, B, L, M; those numbers which have 10 for a cubic residue are distinguished

by an asterisk. A specimen is

p A B L M
37* 5 2 11 T'

viz. 37 = 5= +3.2=, 148= 11-+ 27 .1-; the asterisk shows that *2= + 10 (mod. 37) is

possible : in fact 34' = 10 (mod. 37).

The second part gives p = .^1- + .35- only, from p = 5749 to 136G9. The table gives

A, B; and the asterisk implies the same property as before.

The third part gives p = A--\-'iB-, but only for those values of p which have 10

for a cubic residue, viz. for which a? = \0 (mod. p) is possible, from p — 13689 to

49999. The table gives A, B; the asterisk, as being unnecessary, is not inserted.

Table IV. for the primes 4/i + 1 in the form A- + Br, and for those which are

also 8;i + l in the form C' + ID-.

The first part gives p = ^=+5-, =C- + W\ from ^=5 to 12377. The table gives

A, B, C, D; those numbers which have 10 for a biquadratic residue, viz. for which

ar* = 10 (mod. p) is possible, are distinguished by an asterisk ; those which have also 10

for an octic residue, viz. for which a;* = 10 (mod. p) is possible, by a double asterisk.

A specimen is

p A B G D

229
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The third part gives p = C- + 2D\ from ;j = 12641 to 24889 for all those values of

p which have 10 for a biquadratic residue. The table gives C, D ; those values of p
which have 10 as an octic residue are distinguished by an asterisk.

41. A table by Zornow, Crelle, t. xiv. (1835), pp. 279, 280 (belonging to the

Memoir " De Compositioue numerorum e Cubis integris positivis," pp. 276—280), shows

for the numbers 1 to 3000 the least number of cubes into which each of these numbers

can be decomposed. Waring gave, without demonstration, the theorem that every

number can be expressed as the sum of at most 9 cubes. The present table

seems to show that 23 is the only number for which the number of cubes is

= 9 (= 2.2' + 7 . P); that there are only fourteen numbers for which the number of

cubes is = 8, the largest of these being 454 ; and hence that every number greater

than 454 can be expressed as a sum of at most 7 cubes; and further, that every

number greater than 2183 can be expressed as a sum of at most 6 cubes. A small

subsidiary table (p. 276) shows that the number of numbers requiring 6 cubes gradually

diminishes—e.g. between 12^ and 13' there are seventy-five such numbers, but between

13' and 14' only sixty-four such numbers ; and the author conjectures " that for

numbers beyond a certain limit every number can be expressed as a sum of at most

5 cubes."

42. For the decomposition of a number into biquadrates we have

Bretschneider, " Tafeln fiir die Zerlegung der Zahlen bis 4100 in Biquadrate,"

Crelle, t. xlvi. (1853), pp. 3—23.

Table I. gives the decompositions, thus :

—

N v, 2^ 3*, 4,\ 5^

696 6 12 2

3 2 5 1

3 8

viz. 696 = 6 . 1^ -f 1 .
2^

-I- 2 .
3^ -h 2 . 4^ &c.

And Table II. enumerates the numbers which are sums of at least 2, 3, 4, .
.

,

19 biquadrates. There is at the end a summary showing for the first 4100 numbers

how many numbers there are of these several forms respectively : 28 numbers are each

of them a sum of 2 biquadrates, 75 a sum of 3,..., 7 a sum of 19 biquadrates.

The seven numbers, each of them a sum of 19 biquadrates, are 79, 159, 239, 319, 399,

479, 559.

[F. 16. Binary, Ternary, &c. quadratic and higher /onus.] Art. VI.

43. Euler worked with the quadratic forms ax- ± cy" {p and q integers), particularly

in regard to the forms of the divisors of such numbers. It will be sufficient to refer

to his memoir :

—
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Euler, " Theoremata circa divisores mimerorum in hac forma pa- ± qh- contentorum,"

(Op. Arith. Coll. pp. 35—61, 1744), containing fifty-nine theorems, exhibiting in a

quasi-tabular form the linear forms of the divisors of such numbers. As a specimen :

—

"Theorema 13. Numerorum in hac forma o- 4- 766^ contentorum divisores primi

omnes sunt vel 2, vel 7, vel in una sex formularum

28m +1, 28»t-fll,

28»74 -I- 9, 28??i. + 15,

28m + 25, 28/71 -l- 23,

seu in una harum triuni

14m -I- 1,

14?/t -t- 9,

14m -h 11,

sunt contenti"; viz. the forms are the three 14/(i -I- 1, 14m -t- 9, 14m -I- 11.

But Euler did not consider, or if at all very slightly, the trinomial forms

aod^ + bicy + ctf, nor attempt the theory of the reduction of such forms. This was first

done by Lagrange in the memoir

Lagrange, Mem. de Berlin, 1773. And the theory is reproduced by

Legendre, Theorie des Nombres, Paris, 1st ed. 1798; 2nd ed. 1808, § 8, "Ke'duction

de la formule Ly- + Myz + Nz- a I'expression la jdIus simple," (2nd ed. pp. 61—67).

44. But the classification of quadratic forms, as established by Legendre, is

defective as not taking account of the distinction between proper and improper

equivalence ; and the ulterior theory as to orders and genera, and the composition

of forms (although in the meantime e.stablished by Gauss), are not therein taken

into account; for this reason the Legendre's Tables L to VIIL relating to quadratic

forms, given after p. 480 (thiity-two pages not numbered), are of comparatively little

value, and it is not necessary to refer to them in detail.

The complete theory was established by

Gauss, Disquisitiones A7-ithmetic(e, 1801.

It is convenient to refer also to the following memoir

:

Lejeune Dirichlet, " Recherches sur diverses applications de I'Analyse a la theorie

des Nombres," Crelle, t. xix. (1839), p. 338, [Ges. Werke, t. i. p. 427], as giving a

succinct statement of the principle of classification, and in particular a table of the

characters of the genera of the properly primitive order, according to the four forms

D=PS-, P=l or 3 (mod. 4), and D=2PS-, P=l or 3 (mod. 4), of the determinant.

45. Tables of quadratic forms arranged on the Gaussian principle are given by

Cayley, Crelle, t. lx. (1862), pp. 357—372, [335] ; viz. the tables are-

Table I. des formes quadratiques binaires ayant pour de'terminants les nombres
negatifs depuis D = - 1 jusqua D = - 100. (Pp. 360—363 : [Coll. Math. Papers, t. v.

pp. 144—147].)
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A specimen is

D
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This relates almost entirel}' to negative determinants, only three quarters of

p. 475 and p. 476 to positive ones ; for negative determinants, it gives the number

of genera and classes, as also the index of irregularity for the determinants of the

hundreds 1 to 30, 43, 51, 61, 62, 63, 91 to 100, 117 to 120; then, in a different

arrangement, for the thousands 1, 3 and 10, for the first 800 numbers of the forms

— (15n + 7) and —(15/*+ 13); also for some very large numbers, and for positive

detenninants of the hundreds 1, 2, 3, 0, 10, and for some others.

A specimen is

Centas I.

G II. (.58) ... (280)

1. .5, 6, 8,

9, 10, 12,

13, 15, 16,

18, 22, 25,

28, 37, 58,

2. 14, 17, 20,

Summa 233 477

IiTeg. Impr. 74
;

viz. this shows, as regards the negative determinants 1 to 100, that the determinants

belonging to G II. 1, viz. those which have two genera each of one class, are 5, 6,

8, 9, &c., in all fifteen determinants; those belonging to G II. 2, viz. those which

have two genera each of two classes, are 14, 17, 20, &c. ; and so on. The head

numbers (58)... (280) show the number of determinants, each having two genera, and

the number of classes ; thus,

G II. 1 X 15 = 15

2 X 17 = 34

3 X 17 = 51

4 X 6 = 24

5 X 2 = 10

6x1= 6

58 140

X 2

= 280;

and the bottom numbers show the total number of genera and of classes, thus

G I. 17 X 1 = 17 61

II. 58 X 2 = 116 280

IV. 25 X 4 = 100 136

100 233 477

;

C. IX. 62
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viz. seventeen determinants, each of one genus, and together of sixty-one classes;

fifty-eight determinants, each of two genera, and together of 280 classes: and twenty-

five determinants, each of four genera, and together 186 classes, give in all 233

genera and 477 classes. These are exclusive of 74 classes belonging to the improperly

primitive order ; and the number of irregular determinants (in the first hundred) is = 0.

The irregular determinants are indicated thus:

243(*3*),

307(*3*), 339(*3*),

459(*),

.576(*2*), .580(*2*),

67.5(*3*),

7.5.5(*3*),

891(*3*), 820(*2*), 900(*2*), 884(*2*), 974(*3*),

*3* 243, 307, 339, 459?, 675, 755, 891,

*2* 576, 589, 820, 884, 900, 974,

which is a notation not easily understood.

As regards the positive determinants, a specimen is

Centas I.

Excedunt determinantis

quadrati 10.

G I.
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A specimen is

D Heduced forins, with cliaracters Classes

44
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which is reviewed by Gauss in the Gott. Gelehrte Anzeigen, 1831, July 9 (see Gauss,
Werke, t. n. pp. 188—193). The author gives (pp. 220—243) tables "of the classes

of positive ternary forms represented by means of the corresponding reduced forms"
for the determinants 1 to 100. A specimen is

Det. 6 ('' '' 'W '' '• ^1
\Q, 0,-1)' \- 1, - 1, or

Zugeordnete /S, 8, 3\ / 7, 7, 4
Formen VO, 0, 8/' '14, 4, 2

where it is to be observed that Seeber admits odd coefficients for the terms in

yz, zx, xy ; viz. his symbol { ' '

j denotes

Oil? + hy- + cz- + fyz + gzx + hxy,
and his determinant is

4«i)c - af- - bg" — cli- +fgh.
Also his adjoint form is

/ 46c -/^ 4ca - g\ iab - k- \
. , ^ .

[2gh-iaf, 2hf-ibg, 2/g - ich)
'
=("^^0 -f^) x"- +... + i2gh - ^af) yz + ...

In the notation of the Disquisitiones Antlinieticw, followed by Eisenstein and

others, the symbol (
' ' ) denotes

ax" + by- + cz- + 2fyz + 2gzx + 2hxy
;

the determinant is

= - {abc - af - bg- - ch- + 2fgh),

a positive form having thus always a negative determinant. And the adjoint form is

(bc-f,ca-q-,ah-li'\ ,, .^ ^^ ,

-\gK-af, hf-hg,fg-ch)'
= - d^o -f)-^- ... -2(gh -af)yz - ...

Hence Seeber's determinant is = - 4 multiplied by that of Gauss, and his tables really

extend between the values — 1 and — 25 of the Gaussian determinant.

50. Tables of gi-eater extent, and in the better form just referred to, are given by

Eisenstein, Crelle, t, xll (1851), pp. 169—190; viz. these are

I. " Tabelle der eigentlich pnmitiven positiven ternaren Formen fiir alle negativen

Determinanten von — 1 bis — 100," (pp. 169—185).

A specimen is

D
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II. " Tabelle der uneigentlich primitiven positiven ternaren Fornien fiir alle

negative!! Determinanteu von — 2 bis - 100," (pp. 18(J— 189).

A specimen is

D
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The theory of complex numbers of the last-mentioned form a + /9i', or sa}' of the

numbers formed with the fourth root of unity, had jDi-eviously been studied by Gauss;

and the theory of the numbers formed with the cube roots of unity (a + 0o), <u'- + to + 1 = 0,

a and /3 integers) was studied by Eisenstein ; but the general theory of the numbers

involving the ni\\ roots of unity {n an odd prime) was first studied by Kummer. It

v^ill be sufficient to refer to his memoir,

Kummer, "Zur Theorie der complexen Zahleii," Berl. Monatsb., March, 1845; and

Crelle, t. XXXV. (1847), pp. 319—326; also " Ueber die Zerlegung der aus Wurzeln der

Einheit gebildeten complexen Zahlen in ihre Primfactoren," same volume, pp. 327—367,

where the astonishing theory of "Ideal Complex Numbers" is established.

52. It may be recalled that, p being an odd prime, and p denoting a root of

the equation p^'' + p^'~'- + ... + p+1 =0, then the numbers in question are those of

the form a + bp+ ... + kp'^~'-, where (a, b,..,k) are integers; or (what is in one point

of view more, and in another less, general ) if rj, rj^,.. , t)i,_j are " periods " composed with

the powers of p (e any factor of p — 1), then the form considered is ari + br}i + ...+/t»;e_i.

For any value of p or e there is a corresponding complex tlieory. A number (real or

complex) is in the complex theory prime or composite, according as it does not, or does,

break up into factors of the form under consideration. For p a prime number under 23,

if in the complex theory iV^ is a prime, then any power of N (to fix the ideas say N^}

has no other factors than N or N-; but if ^j = 23 (and similarly for higher values of/)),

then N may be such that, for instance, N" has complex factors other than iV or N- (for

^ = 23, iV = 47 is the first value of iV, viz. 47' has factors other than 47 and 47=)

;

say N' has a complex pi'ime factor A, or we have \^A as an ideal complex factor

of N. Observe that by hypothesis iV is not a perfect cube, viz. there is no complex

number whose cube is = A. In the foregoing general statement, made by way of

illustration only, all reference to the complex factors of unity is piu"po.sely omitted, and

the statement must be understood as being subject to correction on this account.

What precedes is by way of introduction to the account of Reuschle's Tables

{Berliner Munatsberichte, 1859—60), which give in the different complex theories p = 5,

7, 11, 1.3, 17, 19, 23, 29 the complex factors of the decomposable real primes up to in

some cases 1000.

It should be remarked that the form of a prime factor is to a certain extent

indeterminate, as the factor can without injury be modified by affecting it with a

complex factor of unity ; but in the tables the choice of the representative form is

made according to definite rules, which are fully explained, and which need not be

here referred to.
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53. The following synopsis is convenient:

—
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allowed to remain, but some explanations which were given have been struck out, and

were instead given in reference to the larger work, which is

Reuschle, Tafeln completer Primzahlen, luelche mis Wurzeln der Einlieit gehildet

sind. Berlin, 4" (1875), pp. iii—vi and 1—671.

This work (the mass of calculation is perfectly wonderful) relates to the roots of

unity, the degi-ee being any prime or composite number, as presently mentioned, having

all the values up to and a few exceeding 100; viz. the work is in five divisions,

relating to the cases

:

I. (pp. 1

—

171), degree any odd prime of the first 100, viz. 3, 5, 7, 11, 13, 17,

19, 23, 29, 31, 37, 41, 43, 47, .53, .59, 61, 67, 71, 73, 79, 83, 89, 97;

II. (pp. 173— 192), degree the power of an odd prime 9, 25, 27, 49, 81;

III. (pp. 193—440), degree a product of two or more odd primes or theii' powers,

viz. 15, 21, 33, 35, 39, 45, 51, 55, 57, 63. 65, 69, 75, 77, 85, 87, 91, 93, 95, 99, 105;

IV. (pp. 441—466), degree an even power of 2, viz. 4, 8, 16, 32, 64, 128;

V. (pp. 467—671), degree divisible by 4, viz. 12, 20, 24, 28, 36, 40, 44, 48, 52,

56, 60, 68, 72, 76, 80, 84, 88, 92, 96, 100, 120

;

the only excluded degrees being those which are the double of an odd prime, these,

in fact, coming under the case where the degree is the odd prime itself

It would be somewhat long to explain the specialities which belong to degrees

of the forms II., III., IV., V. ; and what follows refers only to Division I., degree an

odd prime.

For instance, if \ = 7, X — 1 = 2 . 3 ; the factors of 6 being 6, 3, 2, 1, there are

accordingly four divisions, viz.

I. a a prime seventh root, that is, a root of a" + a^ + a' + a" + a + 1 = ;

I77o-=2

+ %, i?,- = 2 + i7a, &c.

'7o'»72 = '?i + ';:. &c.

;

III. ri^ = a+ a^ + a', tjj = a^ + a= + a**, or 7} a root of t;- + t; + 2 = ;

IV. Real numbers.

I. ^ = 7m + 1. First, it gives for the several prime numbers of this form 29,

43, . . , 967 the congruence roots, mod. p ; for instance.

p
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This means that, if a = —o (mod. 2!)), then a- = 2.5, s — 4, a^ s 20, = — 9, &c., values

which satisfy the congruence a.'^+ ev' + a* + a-' + a" + a+\ =0 (mod. 29).

Secondly, it gives, under the simple and the primary forms, the prime factors /"(a)

of these same numbers 29, 43, .
.

, 967 ; for instance,

p /(a) simple. /(<") primary.

29 a + «- - a^ 2 f 3a - a'-' + 5a^ - 2a^ + 4a=

43 a- + 2a« 2a - 2a= + 4a-' - a= - oa*.

The definition of a primary form is a form for which /'(a)/ (a~0 =/(!)" mod. X,

and /{a)=f{l) mod. (1— a)-. The simple forms are also chosen so as to satisfy this

last condition ; thus /(a) = a + a- — a», then /(I) —/(a) = 1 — a — a= + a= = (1 — a)- (1 + a), s
mod. (1 — a)-.

II. p = 7vi — I. First, it gives for the several prime numbers of this form 13^

41,.., 937 the congruence roots, mod. p; for instance,

P V« Vi V-2

13 - 3 - 6 - 5

41 -4 +14 -11;

and secondly, it gives, under the simple and the primary forms, the prime factors /{rj) of

these same numbers 13, 41,.., 937; fur instance,

P fin) simple. /{j)) primary.

13 %+2;/, 3 + 77;,

41 4 + 7],,
- 11 + Itj, - 7-r].,.

Thus I'.i ={r]„ + 27].,} {7)1 + 27]^) {ri. + 2r]i), as is easily verified; the product of first and

second factors is = 4+ Sijo + Siyi + 077„, and then multiplying by the third factor, the

re.sult is 42 + 29 (v, + %), = 13.

III. p=7m+ 2 or 7m + 4^. First, it gives for the several prime numbers of this

form 2, 11,.., 991 the congi'uence roots, mod. jj: for instance,

p Vo Vi

2 -1

11 4 -.7;

and secondly, it gives the primary prime factors /(»;) of these same numbers; for instance,

P fiv)
2 Tl

11 1-29?,.

C. IX. 63
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IV.
J)
= 7m + S or 7m + 5. The prime numbers of these forms, viz. 3, 5, 17,

19,.., 997, are primes in the complex theory, and are therefore simply enumerated.

The arrangement is the same for the higher prime numbers X = 23, &c., for which

ideal factors make their appearance ; but it presents itself under a more complicated

form. Thus X = 23, X- 1=2. 11, and the factors of 22 are 22, 11, 2, 1. There are

thus four sections.

I. a a prime root, (3r a- + a-' + . . . + a- + ot + 1 = :

II. 7;„ = a + a-', ...,?;,„ = a" + a^", or rj a root of >;" + 7;'" - l())7''+...+ 15?;- - Gj; - 1 = ;

III. Tji, = a + a'-, r]j = a~' + or-, or rj a root of ?;-+»;+ 6 = ;

IV. Real numbers.

1. ^ = 23»i + l. First, it gives for the prime numbers of this form 47, 139,.., 967

congruence roots, mod. p, and also congruence roots, mod. p^ *
; these last in the form

a + bp + cp-, where a is given in the former table ; thus first table :

—

p a a- a^ . .

.

a--

i7 (J - 11 - 19... + ,S;

and second table

—

p a a- 1^ ... a'"

47 +p--2p- +\Sp-i:ip- + U)p-Hp-... +22p + 22p\

The meaning is that, p = 47, the roots of the congruence

a- + a-'" + . . . + a- + a + 1 = (mod. 47^)

are

a = 6 + /) — 2/J-, a- = — 1 1 + 13p — 2'ip-, &c.

Secondly, it then gives /(a), the actual ideal prime factor of these same primes

47, 139, . . , 967 : viz. the whole of this portion of the table X = 23, I. (2) is,

having actual prime factors,

P .f(o')

599 a +a'«-a'"

691 a^ + a-' + cC--

829 a- + « + a^«

:

having ideal factors, their third powers actual,

p /'(a)

47 a^ + a'- + a" + -x'" + a"' - a-'" + a--

139 1 - a^ - a" + a" + a" + a'^ -f- a" + «'" + a'" + a^' + «-'

277 a= - a^ - a" + a" - a'" - a'^ - a'" + a-' + a--

461 a - a^ + a^ - a' + a'-" - 2a''

967 a- - a^ - a° + a" + a'' - 2a'« + a" + «'».

I repeat the explanation that, for the number 47, this means /(a)/' (a-) .../(a-) = 47^.

* Where, as presently appearing, .3 is the index of idealit.y or power to which tlie ideal factors have to

be raised in order to become actual.
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And the like further complication presents itself in the part III. of the same

table, X = 23 (not, as it happens, in part II., nor of course in the concluding part IV.,

which is a mere enumeration of real primes). Thus III. (1), we have congruences^

(mod. ;/),

p = % 7? = -2, ^j = 3, 7?„ = +12, &c.;

and having actual prime factors,

V f(v)

.59 -, - 2r),

101 1 - 47;,

;

and having ideal prime factors, their third powers actual,

P .Piv)

2 1-7;,

3 1-2,,,;

as regards these last the signification being

2^ = (1 - 7;„)(1 - 7;,), 7;,,+ 7;, = — !, 7/1,7;, = 6 (as is at once verified),

3' = (l-27;„)(l-27;,);

but tlie simple numbers 2, 3 are neither of them of the form (a + hr]„) (a + brjj).
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612.

NOTE SUR UNE FORMULE D'INTEGRATION INDE'FINIE.

[From the Comptes Retidus de I'Academie des Sciences de Pai-is, torn. Lxxviii. (Janvier—
Jain, 1874), pp. 1624—1629.J

En etudiant les Memoii-es de M. Serret {Journal de Liouville, t. x., 1845) par

rapport a la representation geom^trique des fonctions elliptiques, avec les remarques

de M. Liouville sur ce sujet, je suis parvenu a uue formule d'integi'ation indefinie

qui me parait assez remarquable, savoir: en prenant d entier positif quelconque, je

dis que I'int^grale

[
(a; + j))"'+"~' jx + q)' dx

J x^+'(x+p + q)"+'

a une valeur algebrique

(x + pY>+n-e+i (a;+p + qY" «-'" {A + Bx + Co? + . . . + Kx»-^),

poui-vu qu'une seule condition soit satisfaite par les quantites m, n, p, q. Cette

condition s'dcrit sous la forme symbolique

([m]p' + [n]q'y^O,

en denotant aiusi I'dquation

[mYp^^ +
Y
[mf-' [«]• p'"-' q-+ ... + [«]* q-^ = 0,

ou, comme a I'ordinaire, [m]' signifie m(m— I) ... {ni — d + 1).

Je rappelle que les formules de M. Serret ne contiennent que des exposants entiers,

et celles de M. Liouville qu'un seul exposant quelconque : la nouvelle formule contient deux

exposants quelconques, m, n. Je I'emarque aussi I'analogie de la condition ([»i]j9-+[h.] q-y=0
avec celle-ci

1 / rl \"'

(m etant un entier positif), qui figure dans les Memoires cites.



612] NOTE SUR UNE FORMULE d'iNTEGRATION INDEFINIE,

Pour d^montrer la foimule, j'ecris

H = ,'-'" (A + Bx +Cai-+ ....+ K.v'-'l

et aussi pour abreger

A' = (« +^)'" +«-»+' (x+p + q)->',

ce <jui donne

501

X
(x+p)(x+p + <2)

L'equation a verifier est done

= (.'• +;j )"'+»-» (x +P + q)-"~\

X (x + qY dx
Xa = I

^ V^ + 'V eta;

.'
*•"•+' (x + p) {x +P + V)'

ou, en differentiant et divisant par A',

X'

X " " a;"»+i (x +p) (x-\-p + q)'

ou enfin

[( m + n-e+l) (.I.' +P + q) - n {x + p)] n + (./• + ;)) (x + p + q) u' = ^*^f

du
oil u denote ^ . II ne s'agit done que d'exprimer que cette equation ait une integrale

,/ = .r-'» (A + Bx + Gx- + . . . + Kx^'').

En supposant que eela soit ainsi, et en effectuant la substitution, les termes en
^-)H+e ^Q detruisent, et Ton obtient une equation qui contient des termes en *•"'"-',

«~"', ..., a;~"'+*~S savoir (^+1) termes. On a ainsi, entre les 6 coefficients A, B, C, ...,

K un systeme de (^ + 1) equations lineaires, ce qui implique une condition entre les

constantes m, n, p, q ; mais, cette condition satisfaite, les equations se reduisent a d

equations independantes, et les coefficients seront ainsi determines.

Par e.xemple, soit ^ = 2 ; l'equation difierentielle est

[m - 1 p + m + V - I q + m - I x] II + [p- + pq + x(2p + q) + x''] it = «-'"-'
(<j + x)-,

laquelle doit etre satisfaite par n = Ax~"' + Bx^"'+\ Cela donne

(m — 1 p + m + n — 1 q) A, (tn—lp + m + n —\q)B

{m-\)A
-m{p-+pq) A, (m- l)(p-+2Mj)B.

-mC2p + q)A

— •>,
-'-7

-(m-l)(2p + q)B,

— /iiA

-1

(m-l)B

-{III- \)B
0,
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et aiiisi dc .suite. Les notations {[m] p — [»] (jY , (["0 i"~ ["]'/)'. ••• O'lt des significations

semblables a celles de ([»'*] jJ" +[«] '/)'» (["*] i^' + ["] */')' aupai-avant expliquees. On a,

par exeniple,

([m]p - [„] ,jY = [niff - 2 [m]^ [«]' p<j + [»]' f.

Considerons, pai- exemple, le deuxieme determinant: ceei contient trois tei'mes en

1, 1q, if respectivement ; le premier terme est

1 . ( in. - 1 ) (
/>- + pq) . Ill (p- + pq),

c'est-a-diie

[wpy/-( /J +'/)-•,

le deuxieme terme est

2(/ . - m (p- + pq) [{III, -Dp- luj],

c'est-ii-dire

- 2 [m]' p (p + q) q ( [m - I] p - [n] qY ;

le troisifeme terme est

if [(m -\p- liq) (III + I p ~ n — ^ q) — (ill. - 1 ) (p- +pq)],

c'est-ii-dire

q- [{ill- — )ii)p- — '2miipq + (n- — ii) q-] = if ([m] p — [n] q)-.

Et tie nieme le troisieme determinant est compose de quatre termes en 1, 3ry, '>i(f, q^

respectivement, lesquels sont les quatre termes de la premiere expression transformee

;

et ainsi pour le (juatrifeme determinant, etc. Au moyen de ces premit;res transformees,

on obtient sans peine les expressions finales ([»*-] yJ' + ["] '/')'> (['"] /^' + ["] 7')".

En ecrivant 2 — ^ip + q) au lien de *•, et puis ^{p + q) = a, ^{p — q) — «', la formule

devient

[{z - ay {z + «)'"+"-» de

J (z - aT+~(z + oiY'+' '

et la valeur alg^brique

= (z + (iY"^"-»~' (z - at)-'" (z + a)-" (A' + H'z+ ... + K'z^-'),

pourvu qu'on ait entre les quantites in. n, ii. oi la relation

{[m]('x + ar+[u]{ct-aY]' = 0.

En ecrivant = in, on a la formule de MM. Serret et Liouville, laquelle, en y

ecrivant ^—r

—

~ = ^ et -^-7— =?— 1> peut s'ecrire .sous la forme !['«]? + ["] (?~ 1)1* = 0-

Je reiiiarquc (jiie r^quation en t ue donne pas toujours pour ^ des valeurs reelles,

positives et plus grandes que I'unite : par exemple, pour 6=1, on a 5"= — , valeur

qui ne peut pas satisfaire a ces conditions. Je n'ai pas cherche dans quel cas ces

conditions (qui out rapport a I'application des foi-niules a la representation des fonctions

elliptiques) sub.sistent.
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613.

ON THE GROUP OF POINTS Gl ON A SEXTIC CURVE WITH
FIVE DOUBLE POINTS.

[From the Mathematische Annalen, vol. vill. (187.5), pp. 359—362.]

The present note relates to a special group of points considered incidentally by

MM. Brill and Nother in their paper " Ueber die algebraischen Functionen und ihre

Auwendung in der Geometrie," Math. Annalen, t. vii. pp. 268—310 (1874).

I recall some of the fundamental notions. We have a basis-curve which to fix

the ideas may be taken to be of the order n, =p-\-\, with ^p{p — 2)A^s, and

therefore of the "Geschlecht" or deficiency p; any curve of the order ?i — 3, =p —

2

passing through the Ip (p — 3) dps is said to be an adjoint curve. We may have, on

the basis-curve, a special group Gq of Q points {Q :^ 2p — 2) ; viz. this is the case

when the Q points are such that every adjoint curve through Q — q of them—that

is, every curve of the order p — 2 through ^p {p — 3) dps and the Q—q points—passes

through the remaining q points of the group : the number q may be termed the

" speciality " of the gi-oup : if (/ = 0, the group is an ordinary one.

It may be observed that a special group Gq is chiefly noteworthy in the case

where Q — q is so small that the adjoint curve is not completely determined : thus

if ffl = 5, viz. if the basis-curve be a sextic vtdth 5 dps, then we may have a special

wroup Ge', but there is nothing remarkable in this ; the 6 points are intersections

with the sextic of an arbitrary cubic through the 5 dps—the cubic of course intersects

the sextic in the 5 dps counting as 10 points, and in 8 other points—and such cubic

is completely determined by means of the 5 dps and any 4 of the 6 points. But

contrariwise, there is something remarkable in the group G/ about to be considered:

viz. we have here on the sextic 4 points, such that every cubic through the 5 dps

and through 3 of the 4 points (through 8 points in all) passes through the remaining

one of the 4 points.

The whole number of intersections of the basis-curve with an adjoint, exclusive

of the dps counting as p (p — 3) points, is of course = 2p — 2 : hence an adjoint

through the Q points of a group Gq meets the basis-curve besides in R, =2p—2— Q,
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points ; we have then the " Riemanu-Roch " theorem that these R points form a

special gi-oup Gr, where

Q + R=2p-'2.
as just mentioned, and

Q-R = 2q-2r-

viz. dividing in an\' manner the 2p — 2 intersections of the basis-curve by an adjoint

into groups of Q and R points respectively, these will be special groups, or at least

one of them will lie a special group, Gq, Gr, such that their specialities q, r are

connected by the foregoing relation Q — R = 2q — 2r.

The Authors give {I.e., p. 293) a Table showing for a given basis-curve, or given

value of p, and for a given value of r, the least value of R and the corresponding

values of q, Q : this table is conveniently expressed in the following form.

The least value of

and then
r+1

-1,

Q=P + r+l
r-2.

where -j denotes the integer equal to or next less than the fraction.

It is, I think, worth while to present the table in the more developed form

:

It
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I recur to the case p='r> and the group Gj', which is the subject of the present

note : viz. we have here a sextic curve with 5 dps, and on it a gi-oup of 4 points

G^, such that every cubic through the 5 dps and through 3 points of the group,

8 points in all, passes through the remaining 1 point.

MM. Brill and Nother show (by consideration of a rational transformation of the

whole figure) that, given 2 points of the group, it is possible, and possible in .5

diiferent ways, to determine the remaining 2 points of the group.

I remark that the 5 dps and the 4 points of the group form "an ennead" or

system of the nine intersections of two cubic curves: and that the question is, given

the 5 dps and 2 points on the sextic, to show how to determine on the sextic a

pair of points forming with the 7 points an ennead : and to show that the number

of solutions is = 5.

We have the following " Geiser-Cotterill " theorem:

If seven of the points of an ennead ai-e fixed, and the eighth point describes a

curve of the order n passing o^, a.,,.., «, times through the seven points respectively,

then will the ninth point describe a curve of the order v passing a,, Oo,.., a, times

through the seven points respectively : where

V = Sw - 3S(i,

a, = 3» — «, — So,

and conversely

a- = 3?i — a- — Sa,

n =8i/-32a,

a, = 3i' — a, — Sa,

fi7 = '?>v — a- — —a.

<Geiser, Crelle-Borchardt, t. Lxvii. (1867), pp. 78—90; the complete form, as just

stated, and which was obtained by Mr Cotterill, has not I believe been published)

:

and also Geiser's theorem " the locus of the coincident eighth and ninth points is a

sextic passing twice through each of the seven points."'

The sextic and the curve n intersect in 6?! points, among which are included the

seven points counting as 2Sa points : the number of the remaining points is

= 6w— 22a. Similarly, the sextic and the curve v intersect in 6v points, among which

are included the seven points counting as 22a points : the number of the remaining

points is 6v — 22a (= 6« — 22a). The points in question are, it is clear, common

intersections of the sextic, and the curves n, v: viz. of the intersections of the

curves n, v, a number 6;* - 22«, = 6;' - 22a, = 3« + Sv - 2a - 2a lie on the sextic.

The curves «, v intersect in nv points, among which are included the seven

points counting 2fta times : the number of the remaining intersections is therefore



613] SEXTIC CURVE WITH FIVE DOUBLE POINTS. 507

nv — -aa, but among these are included the 'in +3i'—'Za — 1'x points on the sextic;

omitting these, there remain up -
'A (n + v)——aa + 'Ea + 1a points, or, what is the same

thing, (» -:3)(j'- 3)- S (a- l)(a- 1) — 2 points: it is clear that these must form pairs

such that, the eighth point being either point of a pair, the ninth point will be the

remaining point of the pair : the number of pairs is of course

i [(« - 3) (k - 3) - S (a _ 1) (a - 1) - 2],

and we have thus the solution of the question, given the seven points to determine

the number of pairs of points on the curve 7i (or on the curve i;) such that each pair

may form with the seven points an ennead.

In particular, if n — 6; a^, a«, a-^, a^, a^, a«, a^ = 2, 2, 2, 2, 2, 1, 1 respectively, viz.

if the curve be a sextic having 5 of the points for dps, and the remaining two for

simple points, then we find i' = 12; a^, a„, «„, a^, Kg, a^, 07=4, 4, 4, 4, 4, 5, 5

respectively, and the number of pairs is

= i[3.9-5(2-l)(4-l)-2], =1(27-15-2), =5,

viz. starting with the 5 dps and any 2 points of the group G,^ we can, in 5 different

ways, determine the remaining 2 points of the group.

In reference to the number 3^-3 of parameters in the curves belonging to a

given value of p, it may be remarked as follows. Such a curve is rationally trans-

formable into a curve of the order p + 1 with ^p (p — 3) dps, and therefore containing

i (p+ l){jj + i), —22^('P~'^)' = 4y:» + 2 parameters. Employing an arbitrary homographic

transformation to establish any assumed relations between the parameters, the number
is diminished to 4^+2 — 8, = 4jj — 6 ; and again employing a rational transformation

by means of adjoint curves of the order p — 2 drawn through the dps and ^ — 3

points of the curve—thereby transforming the curve into one of the same order

^ + 1 and deficiency p—then, assuming that the p — S parameters (or constants on

which depend the positions of the p — S points) can be disposed of so as to establish

p — Z relations between the parameters and so further diminish the number by p — 3,

the required number of parameters will finally be ip — 6 —{p — S) = Sp — 3.

Cambridge, 2&h October, 1874.

64—2



508 [614

614.

ON A PROBLEM OF PROJECTION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiii. (1S75),

pp. 19—29.]

I MEASURE off on three rectangular axes the distances fiX = llF=fl^, =d\ and

then, in a plane through H drawing in arbitrary directions the three lines ^A, D,B, ilG,

= a, b, c respectively, I assume that A, B, C (fig. 1) are the parallel projections of

X, Y, Z respectively; viz. taking ilO as the direction of the projecting lines, then

riA, D,B, ilG being given in position and magnitude, we have to find 6, and the

position of the line flO.

Fig. 1.

This is in fact a case of a more general problem solved by Prof. Pohlke in 1853,

(see the paper by Schwarz, " Elementarer Beweis des Pohlke'schen Fundamentalsatzes der

Axonometrie," Crelle, t. Lxiii. (1864), pp. .309—314), viz. the three lines flX, ilY, D.Z

may be any three axes given in magnitude and direction, and their parallel projection
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is to be similar to the three lines flA, i'iB, ilC. Schwarz obtains a very elegant

construction, which I will first reproduce. We may imagine through fl a plane

cutting at right angles the projecting lines, say in the points X', Y', Z' ; we have

then in piano a triad of lines flX', flY', ilZ' which are an orthogonal projection of

nX, ilY, nZ; and are also an orthogonal pi-ojection of a plane triad similar to

QA, Q.B, ilC; qua such last-mentioned projection, the triangles D,Y'Z', ilZ'X', flX'Y',

must be proportional to the triangles flBC, QCA, nAB; that is, we have to find

an orthogonal projection of D,X, flY, Q.Z, such that the triangles D,Y'Z', VlZ'X'.

D.X'Y', Avhich are the projections of D,YZ, flZX, HXY respectively, shall be in given

ratios. Thei-e is no difficulty in the solution of this problem ; refen-ing everything to

a sphere centre fi, let the normals to the planes QYZ, ilZX, nXY, meet the sphere

in the points X", F", Z" respectively, and the projecting line through fi meet the

sphere in the point 0, then the projection of flYZ is to QYZ as cos OX" : 1; and

the like as to the projections of flZX and ilXY\ that is, in the given spherical

triangle X"Y"Z", we have to find a point 0, such that the cosines of the distances

OX", OY", OZ" are in given ratios: we have at once, through X", Y", Z" respectively,

three arcs meeting in the requii-ed point 0.

The projecting lines being thus obtained, say these are the three parallel lines

X', Y', Z', we have next to draw through D, a plane meeting these in the points

A', B', C such that the triangle A'B'C is similar to the given triangle ABC; for

this being so, the triangles D,B'G', ilC'A\ flA'B' being the projections of, and therefore

proportional to QY'Z', nZ'X', nX'Y', that is, proportional to nBG, nCA, nAB, will,

it is clear, be similar to these triangles respectively; that is, we have the triad

nA', D.B', nC, a projection of V.X, ilY, QZ, and similar to the triad HA, QB, ilC,

which is what was required.

It remains only to show how the given three parallel lines X', Y', Z', not in

the same plane, can be cut by a plane in a triangle similar to a given triangle ABC.

Fig. 2.

Imagine the three lines at right angles to the plane of the paper, meeting the

plane of the paper in the given points X, Y, Z (fig. 2) respectively. On the base
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YZ describe a triangle A"YZ similar to the given triangle ABC; and through A", X
with centre on the line YZ, describe a circle meeting this line in the points D
and E. Then in the plane, through YZ at right angles to the plane of the paper,

we may draw a line meeting the lines Y, Z in the points B", G" respectively, such

that joining XB", XG" we obtain a triangle XB"G" similar to A"YZ, that is, to

the given triangle jLBG.

Taking K the centre of the circle, suppose that its radius is = I, and that we
have KY=^, KZ=-i; also YX = a, ZX = t\ YA"=a", ZA" = t". If for a moment
x, y denote the coordinates of A', then

0-- = (:r - 0)- + f, = f-' + /3-- 20X,

T- = (x — jY + I/-, = I- + y" — 27.»,

and thence
yr - /3r = y (I- + /3"-) - /3 {I' + r),

that is,

ya^-l3T- = {y-/3){l'-/3y);

viz. this is the equation of the circle in terms of the vectors a, r ; we have therefore

in like manner
7<7"— ;St"= = (7-/3)(/— ^87).

We may determine 6 so as to satisfy the two equations

a-"- = a- cos= + (l + l3)- sin- 6,

t"- = T- cos- + (I + y)'- sin-
;

in fact, these equations give

70-"^ - /3t"- = (70-- - 0T-) cos= 0+[y (l- + /S'-) - /3 (/- -t- 7=)) sin= 0,

which, the left-hand side and the coefficients of cos- 0, and sin- on the right-hand

side being each = (7 — /S) (l- — /3y), is, in fact, an identitj-.

But in the figure, if 0, determined as above, denote the angle at D, then

(XB"r = ZF-' + YB"' = &' + (/ + ^f tan-^ 0,

(ZG'y = XZ' + ZC"-' = T-' + {l+ yr tan^ 0,

that is,

XB" = 0-" sec 0, ZC" = t" sec 0,

or, since B"G" = YZ sec [= {y— l3) i^cc 0\, the triangle XB"G" is, as mentioned, similar

to the triangle A"YZ.

I was not acquainted with the foregoing construction when my paper was

written ; but the analytical investigation of the particular case is nevertheless

interesting, and I proceed to consider it.

Taking (fig. 1) H as the centre of a sphere and projecting on this sphere, we
have A, B, G given points on a great circle ; and we have to find the point 0, such



614] ON A PROBLEM OF PROJECTION. 511

that there may be a trirectangular triangle XYZ, the vertices of which lie in OA,

OB, OC respectively, and for which

sin OX _ a sin OF _ 6 sinOZ_c
smOA " e

' siTTo7?

~

' siiToo

~

e
•

I take the arcs BC, CA, AB = a, /3, 7 respectively, a + /3+7=27r; and the required

arcs OA, OB, OC are taken to be f, ?;, f respectively; these are connected by the

relation

sin a cos f + sin j3 cos t] + sin 7 cos f = 0,

to obtain which, observe that from the triangles OAB. OAC, we have

. cos 7] — cos f cos 7 cos ^— cos f cos B
cos A = = - -V -^ -^-j. ,

sm f sm 7 sm f sin fi

that is,

sin /8 (cos >? — cos ^ cos 7) + sin 7 (cos ^ — cos f cos /8) = 0,

which, with sin a = — sin (/3 + 7), gives the required relation. We have

sin OX =
-n sin ^, sin 01^=^ sin 77, sin 0^ = ^ sin ^

;

[7 C7 p

and then from the triangles OBC, OCA, OAB. and the quadrantal triangles OYZ,

OZX, OXY, we have

^(l-^;sin^^)^/(l-|-;sin^?
n/^/-» cos a — cos J7 COS t \ \ v /V\i' ' o

COS BOC= -. r^—-* = - -5--^^ =
5^^

, &c.
sm 77 sm c be . . ^

2^ sm 7; sm f

that is,

be (cos a — COS tj cos f) = — V(^' — b" sin" r)) >^(6- — (f sin- f),

c« (cos /3 — COS ^ COS ^) = — \/(6- — c- sin- f) V(^ — «' sin- ^),

ab (cos 7 — cos ^ COS 77) = — \/(^" — «" ^^in" |^) VC^' — b'' sin- 77),

which, when rationalized, are quadric equations in cos ^, cos rj, cos f.
The first

equation, in fact, gives

b-c- (cos a — cos rj cos f
)'- = {0- — b- + b- cos- 77) (^ — c- -f 0- cos- f),

that is,

(^-— b-)(6- — c'-) — 6-c- cos- a +(6^- — fr-)c'-cos- ^'-1- (^' — c-)b- cof^-rj + 2b-c- cos 000377 cos ^=0,

or, what is the same thing,

6-c- cos- a \ c- ,v, 6'
..

26V ^ „

^-b'^z:w:jzT^)+^^.''''''^+b^:^^'''''''-W^'W^)''''''''''"'''''"^^

Completing the system, we have

/ c-a- cos^/3 \ a- „^ c- „^ 2cV o >- *• n

/

,

a=6- cos= 7 \ b"
,

a-
, ^ 2a-6- ^

"l^-a'^ -^^6--^J
+ 6-^3^^^°^-^ + a^^^^"^-^- (a-'-g-)(6---g"-)

"°^'y"°^^"°^'^ = Q'



512 ON A PROBLEM OF PROJECTION. [614

and, as above,

sin a. cos f + siu /3 cos »? + sin 7 cos f= 0.

It seems difficult from these equations to eliminate ^, rj, f, so as to obtain an equation

in 6 ; but I employ some geometi-ical considerations.

Taking TI as the pole of the circle ABC, and drawing TIX, ITF, WZ to meet

the circle in p, q, r respectively, then, if a", /8", 7" are the cosine-inclinations of

to X, Y, Z respectively, we have

sin Xf, sin Yq, sin Zr = a", ^", 7".

From the right parallel triangles BYq and CZr, we have

sin Yq = sin BY sin B,

sin Zr = sin CZ sin C,

and, thence,

or, since

and thence

Yq ain BY sinOC.

we obtain

sin Zr sin CZ ' sin OB '

5 1'=0B-0 Y, CZ =0C- OZ,

sin BY= ~ {\/(^- - h- sin- »;) - 6 cos ->;],

sin QZ = ^"^ (\/(^' - c- sin- - c cos ^|,

/3" \/(^' - fr' sin= 7;) - 6 cos »;

7" V(^ — c= sin- f ) — c cos %'

We have thence

^"
VC^"-^

- c' sin- - 7" VC^' - ^- sin- »?) = /3"c cos ? - 7"6 cos 7;,

or, squaring and reducing

^"2 (0= _ c=) + 7"- (^'^ - 6-) -H 2/3"7" {- v'(^' - c- sin- ^ VC^' - fr' sin- 7?) + 6c cos 77 cos f J
= 0.

that is,

^"2 (^. _ pc) ^. ^"2 (5)-2 _ t=) + 2/3"7" . 6c cos a =
;

and, similarly,
7"- (^2 - ft-) -f c('" (e- - C-) + Sy'a" . crt cos /3 = 0,

a"^ (0= - fr^) + /3"= (61= - «r) -I- 2a"/3" . 06 cos 7 = 0,

or, what is the same thing,

^"2
, 7"= 26c cos a

-"=
a"-- 2cacos/3 „ „ „

! _ 0= ^ a= - ^= c- -ff^.a-- &'

a"' /3"= ^a6cos7__ „„„_
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writiug

a", 8", y" =X V(a- - ^'), iWib- - (?-), Z V(c= - 0'-),

and
be cos a ca cos /3 a6 cos y

V(6— ^.c--^)' V(c=-^.a— (9=)' ,/(a--&'.b--d"-)^-'' ^' '

the equations are

r'= + ^'-^ - 2/F'^' = 0,

^'= + Z'^ - -IgZ'X' = 0.

Z'^+ r=-2/*Z'F' = 0.

Writing the last two under the form

X" - 2(jZ'X' + Z'^ = 0,

X'- - 2/, Y'X' + y- = 0,

and eliminating X', we have

- 4 (1 - ^=) (1 - /i=) F-Z'-' + (
F'-^ + Z'^ - 2r7/i }"2')-' = 0,

which, in virtue of the first equation, is

- 4 (1 - ^0 (1 - }ir) Y'-'Z'- + 4 {gh -/)- Y'-'Z'-' = 0,

that is,

(l-5r=)(l-/,^)-(^/,-/)^ = 0;

or, what is the same thing,

I remark that we may write

^A-/=V(i-r)V(i-/*-^),

/'/-i' = V(i-/*OV(i-.n

/r/-/i = V(l-/^)V(l-n

the signs on the right-hand side being either all +, or else one + and two — , so that

the product is +. In fact, multiplying the assumed equations, we have

/y/r -fgh ip ^c/-+ Ir) + cfli? + Irp +fY -fg^^ = 1 -/= - 0' -}r + (ft' + Ir.n +fY -fW,
that is,

1 -n-f - h' +fgh (1 +/-^ +f+ Jr) - yylr = 0,

or,

(1 -f^ -f - h^+2fgh){\ -fgh) = 0,

which is right ; but with a different combination of signs the result would not have

been obtained.

Substituting for /, g, li their values, we have

(«- - e-) {b- - ^-) (c'^ - ^-) - bx' (a- - 0"-) cos- o - c-a' {b- - 6-) cos= /3

— u-b- (c- — 6^) cos' 7 + 2a-b'-c- cos a cos /3 cos 7 = 0,

C. IX. 65
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where the term independent of 6 is

ctrb-c' ( 1 — cos- a — cos^ yS — cos- 7 + 2 cos a cos /3 cos 7),

which is =0 in virtue of a + /3 + 7 = 27r. We have, therefore, for 6- the quadric

equation

b-c- sin- a + era- sin- /3 + a-b'' sin- 7 - (a- -f fr- -I- c-) (9- -f 0' = 0,

giving for & the two real positive values

e- = \{cv'+b- + c-±'J{D,)\,

fl2
_

(fj2 + 53 + c=)2 _ 4 (52p2 gjj^2 a ^ g2fj2 sJ,^2 ^ ^ ^^2^2 gjjj2 ^^

= a* + b* + c^+ 2b-c- cos 2a + 2c-a- cos 2/S + 2a-fr- cos 27

= (a^ + b- cos 27 + c- cos 2/3)- + (b- sin 27 - c- sin 2^)-.

I'here

1 write now

and also

a cos ^ 6 cos rj c cos ? _ -.r v y

sin a, ^ s\np, sin 7 = ^1, B, (J.

a
'

b

The equations for cos ^, cos r], cos f become

F2 + 2r= - 2fYZ - (1 -/=) = 0,

Z'- + X"- - 2gZX -{l-f) = 0,

X^+ Y' - 2hXY- (1 - /r) = 0,

and

AX + BY+CZ=0,

in virtue of the relation between /, g, h. The first three equations are satisfied by a

two-fold relation between X, Y, Z ; viz. treating these as coordinates, the equations

represent three quadric cylinders having a common conic.

To prove this, I write

1-/'' '^-f' I-/*'' fff''-/' ¥-IJ'f9-li'^-'^' b, c, f g, h.

We have, as usual,

be — f% ca — g^ ab — h\ gh— af, hf- bg, fg— ch, each =0:

the equations

aX + hY + gZ = 0, hZ + br+f^= 0, gZ + fF -j- c^ = 0,

represent each of them one and the same plane, wliich I say is that of the conic in

question.
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The three given equations are

Y- + Z- - 2fYZ - a = 0,

Z- + X- - 2gZX - b = 0,

Z=+ Y"--2liXY-c=0,

say these are ^7=0, 7=0, Tf=0; it is to be shown that cF-blf, &W-cU, hU-aV,
each contain the linear factor in question. We have

cF - bF = (c - b) Z= - b F^ + c^^ - 2cgZX + 2hhXY
;

or, what is the same thing,

a (cF - b Tf ) = a (c - b) Z- - h=P + g'Z' - 2gg'ZX + 2hh.'XY.

Assuming this

we have

that is.

= (aA' + hF + gZ) (XX - hF+ gZ),

aX= a (c — b),

g( a^-X) = -25fg^

h (- a + X) = 2/th-,

X = c— b, a + X = — 2gg, — a + X = 2/ih :

but X = c — b, = — h-+g% and the other two equations are a + c— b -t- 2^g = 0, a+b— c+ 2/ih=0,

which are identically true.

The values of X, Y, Z are thus determined as the coordinates of the intersection

of the conic with the plane AX + BY+CZ=0; or, what is the same thing, of the line

AX+BY+CZ=:0,

aX +hY + gZ = 0,

with any one of the three cylinders.

We may, however, complete the analytical solution in a different manner as follows

:

Assuming as above V(bc) = f, v'(ca) = g, \/(ab) = h, and thence b V(c) — g Vlb) = 0,

we obtain from the second and the third equations

F = hX + VCc) V( 1 - X% Z = gX _ V(b) v'( 1 - X%

(the signs are one + the other — , in order that this may consist with the equation

a,X+hY+gZ = 0). Substituting in AX + BY+ CZ = 0, we have

{A+Bh + Cg) X + \B V(c) - C V(b)j V(l - X-) = 0,

that is,

(A + Bh + Cgf X' - (B'c + 6'=b - 2BC() (1 - Z-) = 0,

65—2
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or say

(A +Bh + CgyX-'+{B'{l-h^)+C^l-f)-2BC(gh-f)] (Z^-1) = 0,

that is,

{A- + R- + 0= + 2BCf+ WA(j 4 2ABh) X' = \B' + (J' + -IBCf- {Bh + Cgf],

or writing

A-+B' + C" + 2BCf+ 2CArj + 2ABh = A,

say we have

AZ- = B' + C^ + 2BCf - {Bh + Ggf,

^Y- = G- + A"- + 2CA<j-{Cf +Ah)\

b.Z- =-A-+ W- + 2ABh -{Ag + Bff.

Now attending to the vahies of ^-l, B, C, /, g, h, we have

BCf, CAg, ABh = sin /3 sin 7 cos a, sin 7 sin a cos /3, sin a sin /8 cos 7,

and thence

A = sin- a [l - -;,j +sin- /3 f 1 -p,j + sin-7 (l - -)

+ 2 (sin /3 sin 7 cos a + sin 7 sin a cos /3 + sin a sin cos 7) ;

in virtue of a + /3 + 7 = 27r, the last term is

= 2 (cos a cos /3 cos 7 — 1 ),

whence

,,, sin'-a sin- /3 sin-7\ ^, . . ,,,

,

A = - ^' --— H nr H r^ , say this is = - O-A.
\ a- b- c- J

Moreover Bh + Co = .^-^—^x , whence the vakie of AZ- is

v('*' — "-)

= sin-/8 (1 ~ p) + sin' 7 [l •) + ^ sin /3 sin 7 cos a — (1 A sin- a.

Here the constant term is

= sin- /8 + sin- 7 + 2 sin /3 sin 7 cos a,

that is,

= 1 — (1 — sin- /3) (1 — sin- 7) + sin- /3 sin-7+2 sin /3 sin 7 cos a

= 1 — cos- /3 cos- 7 — cos- a + (cos a + sin /3 sin 7)-

= 1 — cos- a, = sin- a,

or the whole is

sin-a(l-^-^^-^J-^-(^;^4---j,
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which is

so that we have

Similarly,

^., / sin- a sin- B sin- 7

\d- - a- 0- c- /

\ a- o'—d- c-

. „, / sin- a sin- sin- V

where

and hence also

The equation in A' is

sin- a sin- 13 sin^ 7
'^ — S

'

lS
1

i— •

a- 0' c-

. , ^ a- cos- ^\ _ — 0' sin- a

a-'-e-J a-(aP-&')'

that is,

»/"..}. /lo, ,1..
''Ill' <*

A(a-sin-|^-^-) = - 0- -;;—

,

or

a- sin
„ J. /v, /', sin' aN

and the like for rj,
f. Writing tor greater convenience —7-

,
—jr;— , —ir^ = p, 1, r,

• oc, 0' p + qsm- f = ^ -

then
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contact at the extremities of a diameter with the ellipse which is the apparent con-

tour of the sphere. Moreover, if the arc of great circle XY is a quadrant, then the

radius through X and the tangent at Y are parallel to each other, whence, if f2 be

the projection of the centre, and AB the projection of the arc XY, then in the pro-

jection the line ^A and the tangent at B are parallel to each other. It is now easy

to derive a construction : with centre Q,, and conjugate semi-axes (05, 12(7), (fiC, ViA),

{D.A, flB) respectively, describe three ellipses; and find a concentric ellipse having

double contact with each of these (there are in fact two such ellipses, one touching

the three ellipses internally, and giving an imaginary solution ; the other touching

them externally, which is the ellipse intended). Drawing then through the ellipse a

right cylinder (there are two such cylinders, but only one of them is real), and

inscribing in it a sphere, and projecting on to the surface of the sphere by lines

parallel to the axis of the cylinder, the three ellipses are projected into three great

circles cutting at right angles, or, say, the elliptic arcs BC, CA, AB are projected into

the trirectangular triangle XYZ.
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615.

ON THE CONIC TORUS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiii. (1875),

pp. 127—129.]

The equation p + \J{qr) + ^/{st) = 0, where p, q, r, s, t are linear functions of the

coordinates (.e, y, z, w), and as such are connected by a linear relation, belongs to a

qnartic surface having a nodal conic {p = 0, qr — st= 0) ; and four nodes (conical points),

viz. these are the intersections of the line 7 = 0, ?• = with the quadric surface

p- — qr — st = 0, and of the line r = 0, s = with the same surface. The quartic surface

has also four tropes (planes which touch the surface along a conic) ; viz. these are

the planes q = 0, r = 0, .s = 0, < = 0, the conic of contact or tropal conic in each plane

being the intersection of the plane with the before-mentioned quadric surface

p- — qr — st = 0. The planes q = 0, r = 0, and also the conies in these planes pass

through two of the nodes, say A, G; and the planes .s- = 0, t = 0, and also the conies

in these planes pass through the remaining two nodes, say B, D; so that the relations

of the surface are as is shown in fig. 1. It is to be added that AB, BO, CD, DA
(but not AC or BD) are lines on the surface.

The planes 7 = 0, r = 0, which contain the tropal conies through A, C, are in

general distinct from the planes ABC, ADC which contain the line-pairs BA, BC and

DA, DC respectively : and so also the planes s = 0, t = 0, which contain the tropal

conies through B, D, are in general distinct from the planes ABD, CBD which contain

the line-pairs AB, AD and CB, CD respectively.

If, however, the identical linear relation contain only ;>, s, t, then the planes q = 0,

r = will be the planes ABC, ADC respectively : and the tropal conies in these planes

will consequently be the line-pairs BA, BG, and DA, DC respectively. But the planes

5 = 0, t = will continue to be distinct from the planes ABD, CBD : and the tropal

conies in the planes s = 0, t = will remain proper conies.
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A surface of the last-mentioned form is

mz + s/ixy) + sji^w- — z-) = 0,

viz. this has the nodal conic s=0, «?/ — w" = 0, the nodes [x = 0, y == 0, (m- + l)z'—iv- = 0},

and (z = 0, w = 0, x = 0), (^ = 0, w = 0, y = 0), and the tropes a- = 0, y = 0, z + w = 0,

z — w = 0; but the phxnes z + tv = and ^ — w = are ordinary tropal planes each

touching the surface in a proper conic ; the planes a; = 0, y=0 special planes each

touching along a line-pair.

Fig. 1.

The equation in question, writing therein w = 1 and x + iy, x — iy in place of {x, y)
respectively, is

[\/{x' + y") + mzY =1- Z-,

which is derived from

(.'f + mz)- =1 — z",

by the change of x into V(*'' + y") and the surface is consequently the torus generated

by the rotation of the conic (*• + mz)- = \ — z- about its diameter. Or, what is the

same thing, the surface

mz + ^J{xy) + tj{'w- — Z-) = 0,

regarding therein (x, y) as circular coordinates and w as being = 1, is a torus. The
rational equation is U=0, where we have

U = {{m- + 1) z- — w- + xy\- — ^ni-z-xy

= [xy -\-(\— m-) z- — lu-Y + ^m-z- {z- - w=)

= xY + {m- + 1 )- z' + w' + {2- 2m^) z^xy - (2 4- 2m-) zhu- - 2xyw-.

I find that the Hessian H of this function U contains the factor xy -H (1 — vi-) z" — ^«^

viz. that we have

H = {xy + (1 - m:') z- - w"-\ H'

,
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where

H' — aPy^ (1 — m-)

+ x-y" {(3 + Sm- + m^) ^^ + (- 3 + m-) w^}

+ xy {(3 + llm^ + 9m* + m«) ^ + (- 6 - 12??;.= + 6m<) ^V + (3 + «i=) w;*)

+ (1 + m-) {(1 - ?«=) 2= - XV"} {(1 + ??i=) z- lU't.

giving without much difficulty

H'= 2" (l + vvJil -m-)

-\-2z^[{l + 4«i- + m*) xy-{\- m*) w^] (1 + ni-)

+ 2= (a;?/ — w") [(1 + 12m= — rni*) a-'y — (1 — 7/i'') w'']

+ [( 1 - m^) xy-{\+ ni') w^] U
;

say this is

where

= z-H" + [(1 - wt=) xy - (1 + JH-) w=] U,

H"= z'(l +m-y (1-m-)

+ 22=(1 + m=) [(1 + 4Hi- + ?)i*) iry - (1 - m*) w"]

+ (a-?/ — tu") [(1 + 12??i- — iiv^) xy — (1 — ?«,*) w=],

or, what is the same thing,

H" = x-y"- (1 + 1 2m" - m")

+ 2xy [(1 + ^m" + m*) (1 + m") z- + (- 1 + Qm") w"]

+ {l-m')[{l-^ni')z--id'\-.

It consequently appears that the complete spinode curve or intersection of the

quartic surface and its Hessian, being of order 4x8,= 32, breaks up into

U= 0, xy-\-{l- 11V') z- - w^ = 0,

conic z = 0, xy — w" = twice, order 4

conic 2 + w = 0, xy — m-w- = 0, „ 2

conic z — 10 = 0, xy — m-tv" = 0, „ 2

U=0, z-H" = 0,

U=0, z- = 0, conic z = 0, xy—w" = four times, „ 8

pi-oper spinode curve U = 0, H" = 0, „ IG

32;

viz. the intersection is made up of the conic z = 0, xy ~w- = six times, the conies

z±'W = 0, xy — viHv- = each twice, and the proper spinode curve of the order 16.

C. IX. 66

that is,

and

that is,
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616.

A GEOMETRICAL ILLUSTRATION OF THE CUBIC TRANSFORMA-
TION IN ELLIPTIC FUNCTIONS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. Xlit. (1875),'

pp. 211—216.]

Consider the cubic curve

ay' + y^ + z^-{- Uxyz = 0.

If through one of the inflexions z = 0, x-\-y=0, we draw an arbitrary line

z=u{x+ y), we have at the other intei"sections of this line with the curve

10 {u- {x + y)- + Gla-y] + or — ivy + y- = ;

that is,

(((^ + 1) (.?.- + y-) + 2xy (ir + Uu - i) = ;

and from this equation it appears that the ratio a; : y is given as a function involving

the square root of

which, rejecting a factor 3, is

= (2u^ + Slu + ^)(lu-^).

It may be noticed that lu — ^ = gives the value of u, which in the equation z=u{a; + y)

belongs to the tangent at the inflexion ; and 2u" + ^lu + ^ = gives the values which

belong to the three tangents from the inflexion.

It thus appears that the coordinates x, y, z of any point of the curve can be

expressed as proportional to functions of u involving the radical

and the theory of the curve is connected with that of a quasi-elliptic integral

depending on this radical.
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Taking w an imaginary cube root of unity, write

(cx + <i)-y — 2lz = x,

arx + coy — 2l2 = y',

X + y — ih = z ;

then we have

x'y'z' = X' + y'- 8^'^= + Glxys = x' + ?/' + £' + Glxys - (1 + 8/=) s-:

Also

- 6h = x' + y' + s\ z' =
2Y^,

(x' + y' + z')\

whence

216Z' 216i*
(a,' + y' + zj - j--j-g^3 aj^V = J—g^„

(«= + y + ^= + Uxyz)
;

so that, putting

™"'~H-8i»'

or, what is the same thing,

the equation of the curve is

(«' + 2/' + /)' + 2167HVy/ = ;

and if we write

»'
: 2/' : / = X" : F" : Z\

then the original curve is transformed into

(Z- + r= + ZO' + 216hi'Z»F'Z' = 0,

a curve of the ninth order breaking up into three cubic curves, one of which is

and for the other two we write herein ?H(b and mw- respectively in place of m.

Attending only to the first curve, we have

x^ + y-' + z' + ^Ixyz = 0,

X-'+y' + Z' + 6mXYZ = 0,

as con-esponding curves, the corresponding points being connected by the relation

WW + (o'y - 2lz : w'x + oyy - 2lz : x + y- 2l2 = Z» : F« : Z\

or, for convenience, we may write

&).( + (ji-y — 2lz = X"; giving 3x — co-X^ + wF" + Z-',

(o-^a; + toy- 2lz = V', 3y = coX-' + a-V-' + Z\

.r + y- 2lz = Z\ - (Jlz = A'-' + Y' + ZK

66—2
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This is a (1, 3) con-espoudence ; viz. to a given point on the curve (m), there

corresponds one point on {I); but to a given point on (l), three points on (m).

As to the first case, this is obvious. As to the second case, if the point (x, y, s) is

given, then the corresponding point {X, Y, Z) on the other curve will lie on one of

the three lines

Y^ {wx + uihj - 2lz) - X^ (co-x + mj- 2lz) = ;

each of these intersects the curve («i) in three points: but of the points in the

same line it is only one which is a corresponding point of (x, y, z), and the number

of the con-esponding points is consequently the same as the number of lines, viz. it

is =3.

We infer that the above equations lead to a cubic transformation (jf the quasi-

elliptic integral

Idu - VK^M - i) (2m' + 3;« +1)},

into one of the like form

dv -r s/[{mv - \) (2v^ + 'imv + i)}
;/<

and this is now to be verified.

We have, as before, the line z—w {x + y) meeting the curve (I) in the points

{v? + \){x-+ y-) + 2xy {ti? + Slu- h) = 0;

and if similarly through an inflexion of the curve (»«) we take the line Z = u {X + Y),

this meets the curve in the points

(if + 1) {X' + F-) + 2XY(^ + 3mv - *) = 0.

Then if {x, y, z), (X, Y, Z) are taken to be the corresponding points as above, we

can obtain d as a function of u. We, in fact, have

_ - llz _ X'^-Y' + Z-' _ X'+Y' + V'- (X + Yf
- 2'« -

.^ + y
- _ Z= - F= + 2Z' - (Z» + FO + 2iP {X + Yf

X'-XY+Y"- + rHX+Yr
~ -X"-^XY- Y-' + 2v' (Z + Y)'

'

_ {v^ + \){X"-^-Y-') + {2xP-\)XY _

~ (2r - 1) (X-+ FO + (4jr + 1) ZF'

(tr' + 1) {X- + P) + 2XY{if + 3wiw - i) = 0,

A-+F- : XY = -2v--iimv + \ -.if+l,

or, since we have

that is,

the equation becomes
— 6?«i; (r + 1)— iiu =

{2if - 1) (- 2v> - 6mv + 1) + (41^* + 1) (v' + 1)

— Qmv(if + 1)

— Sv {i7nif — Sv- — 2m) '
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or say,

— Ill = m (r + 1) (-=-), where the denominator = 4-7nv' — Sv- — 2m.

This may also be written
— {Ill — ^) = Sv- {viv — ^) -r .

Proceeding to calculate 2ir+3i« + ^, omitting the denominator {iiiuf
—

'^v- — 2my,

this is

- -— («5 + 1)= - 3m {v'+l) {'imv' - Sv- - 2m)- + ^ (imv' - 3v^ - 2my ;

or, observing that

, -I'm
1 + 81^'

that is,

the numerator is

= 2(1 + 8»i0 {iP + iy- 3m (ir + 1) (imif - 3v- - 2m)- + ^ (4?/ir - 3v- - 2mf,

which is found to be identically

= (2y= + 3mv + i) (?/= + 6mv - 2)=

;

viz. we have

2iv' + 3lii + i = (2tf + 3mv + h) (r + Qmv - 2)= ^ (4»w' - 3v- - 2in)\

and hence

{III - \) (2i(" + 3lu + 1) = - 3 {mv - ^) {2if + 3mv + J) (jj^ + dmv - 2)- «- -r {imv' - .3«- - 2»iy.

Moreover, we find

Idu = 3mdv . v {v" + 6mv — 2) ^ {imif — Sv- — 2??i)-,

and we thence have

Idu mdv
^{{lu -i){2ii'+3lii-^^J} ~ ^^~ ' '^{{mv-i){2v' + 3mv-hi)}

'

viz. this differential equation corresponds to the integral equation

— lu = m {w + 1) H- (4;Kr — 3v- — 2in),

where HPmJ- + P-{- vr — 0, which corresponds to the modular equation.

It may be remarked that, if v is the same function uf «', I, m that u is of

v, III, I; viz. if

- mv = I («'• + 1) ^ {ilu'' - Sii'^- - 2m'),

then

mdv
// q\ ~ ^'^^'

'J{{mv - 1) {2^P + 3rm + f)}
~ ^^~ "^^ VW^iKSM^+S^t^^Ti)}

'

and consequently

dii — 3du'

'^{{la - i) {2ir + 3lu + h)] ^/{{lll' - A) {2u'' + 3lu' + i)}

'

which accords wth the general theory of the cubic transformation.
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We may inquire into the relation between the absohite invariants of the two

curves. Taking the absolute invariant to be

64,S'» '

where S and ?' bear the usual significations, we have for the one curve

^_^ (1+8^0^

and for the other curve

n' =

and, as above, Sl'm^ + 1' + m^ = 0: writing herein

/"_ 1 3- Jl

the relation between a', /3' is simply a' + ;8' = 1 ; and the values of 12, il' are found

to be
64«-(l -a'y 64/3^(1 -;3'y

.

'' ~
(1 + 8aJ ' " (i + 8^J '

viz. the required relation is given by the elimination of a', /3' from these three

equations. Or, what is the same thing, writing a! = i + 6, and therefore ^' = h — 6, we

have

(5 + 8dy fl = 4 (1 + 2(9) (1 - 261)=,

(5 - 8ey n' = 4 (1 + 2ey (i - 26),

and the elimination of 6 from these equations gives the required relation between

n and D.'.

It of course follows that, if we have a cubic transformation

dx Gdx

Vl(a, b, c, d, e'^x, 1)]* " VRa', b', c', d', e'^^a;', 1)]^

'

then the absolute invariants fl, n' of the two quartic functions are connected by

the above relation. I have obtained this result, by reducing the radicals to the

standard foi-ms

V(l -x".l- h?x% V(l - «''
• 1 - 1^'x'-),

from the known modular equation as represented by the equations

,, .
aM2+«) ,, a(2 + «>\

^ ~ l+2a ' (1 + 2a)='

viz. the values of the absolute invariants

/_ 27J^ _ 27Jj'
\~^ P ' I''

are

W8L^{l-k^y 108V (1-^^)^
~ {t + uk"- + iy' (V + 14\- + 1

)'

'

but the method of effecting this is by no means obvious.
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617.

ON THE SCALENE TRANSFORMATION OF A PLANE CURVE.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiii. (1875),

pp. 321—328.]

The transformation by reciprocal radius vectors can be effected mechanically by

Sylvester's Peaucellicr-cell. But, employing a more general cell (considered incidentally

by him) which may be called the scalene-cell, we have the scalene transformation in

question*; viz. if, in two curves, r, r are radius vectors belonging to the same angle

(or say opposite angles) 6, then the relation between r, r is

rr (r + r) + (»t'- — 1-) r + (ni- — n-) r' = ;

or, as this may also be written,

„ / , l- — vi-\

The transformation is, it will be seen, an interesting one for its own sake, independently

<jf the remarkably simple mechanical construction, viz. the scalene cell is simply a

system of 3 pairs of equal rods PA, QA; PB, QB; PC, QC (fig. 1, p. 528), jointed

together at and capable of rotating about the points P, Q, A, B, C; the three lengths

PA, PB, PC (say these are = I, m, n) are all of them unequal : in the case of any

two of them equal, we have Peaucellier or isosceles cell. The effect of the arrangement

is that the points A, B, G are retained in a right line, the distances BA, =r\ and

BC, = r, being connected by the above-mentioned equation ; so that taking B as a fixed

point, if the point A describe any given curve, tlie point C will describe the corre-

sponding or transformed curve.

In the case where the given curve is a right line or a circle, we may through

B draw at right angles to the curve the axis cc'Bx: viz. in the case of the circle,

I- — m-\ , , .

1 r -I- m- — )?- = 0.

* The tiansl'ormatiou itself, and doubtless many of the results obtained by means of it, are familiar to

Prof. Sylvester ; and I abandon all claim to priority.
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the axis x'Bx passes through its centre ; and we measure the angle d from this line,

viz. we write Z xBG = Z x'BA = 6.

Suppose, first, that the locus of A is a right line, or a circle passing thi'ough B.

c
Its equation is r' = „ or =ccos^: and we accordingly have for the transformed curve

' cos a

P - m"\
r- +

or else

r- + L

cos 6 c cos d

I" — m

r + m" — ?i- = 0,

c cos f a]i' + '«- — «" = ;

c cos 0J

viz. multiplying in each case by r cos 6, and then writing » cos 6 = x, r- = x- + y\ the

equations become

X (x- + y) + c {x- + y) a-

and

X (x- + 1/^) + ex"

c

I- — VI-

+ (m- — n-) X = 0,

(x- + y-) + (wi" — M-) X = ;

viz. in each case the curve is a circular cubic passing through the origin B and

having an asymptote parallel to the axis of y. The curve is nodal, if m = n, viz. in

this case the origin is a node: or if c = \/(^' — m') + V( '«" — «")•

Suppose next that the locus of j4 is a circle, centre at a distance = 7 along Bx'

and radius =//: we have
r'- - 2yr' cos 6 + 7- - h- = 0,

viz. if

7- — h- = — (I- — m-),

or, what is the same thing,

/(- + m- = 7- + I'-,

then we have

r -,— = 27 cos a,
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and the transfbrmed curve is

r" + '^yr cos + m- — k- = 0,

or, as this ma}- be written,

r- + 2rp' cos + y- -f- = 0,

where 7- —f- = ni- - «'-, that is, f- + tiv = 7= + "-'
; viz. this is a concentric circle radius /.

The theorem may be presented as follows. Consider two concentric circles, centre

and radii h, f respectively; take an arbitrary point B, distance OB = y; and taking m
arbitrary, determine I, n by the equations

l- = in- + Ii- — 7-, n- = ni' +/'- — y-
;

then drawing through B an arbitrary line to meet the circles in A, C respectively;

also describing a circle, centre B and radius = m ; and through drawing a line

perj^endicular to ABC to meet the last-mentioned circle in two points P, Q : for these

points, the distances from the points A, B, C are = I, m, n respectively.

To verify this, take as the origin, OB for the axis of x, the inclination of

ABC to this axis, BA =r', BC = r; the coordinates of C, B, A are

7 + )• cos 0, r sin 0,

7 , ,

7 + ?' cos 0, — r sin 0,

whence, taking (oc, y) for the coordinates of P (or Q), the equations to be verified are

{x — y — r cos 0)- + {y — r sin 0)- = n",

(x - y)- + y- = m',

{x-y + r cos 0)- + {y + r' sin 0)- = P.

By means of the second equation, the other two become

— 2 (*• — 7) r cos — 2yr sin -\- r' = n- — m',

2 (a; — 7) r' cos + 2yr' sin + r'- = I- — m-
;

or, substituting for n- — «i-, t- — vi- the values /- — 7- and A" — 7-, the equations are

— 2xr cos — 2yr sin + i'^ + 2yr cos + y'- —f- = 0,

2xr' cos + 2yr' sin + r'- — 27r' cos ^ + 7- — h- = 0,

viz. in virtue of the equations of the two cii-cles, these reduce themselves each of

them to

X cos -{-y sin = 0,

which equation, together with the second equation

{x-yf+y- = m-,

determine {x, y) as above.

c. IX. 67
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Reverting to the case where the locus of A is the circle

)'- - 2yr' cos e + r- h- = 0,

this gives

r' = 7 cos 8 + \l(li- — y" sin- 9),

1 7 cos 6 — \l(1i- — y- sin- 0)

/• 7— h-

so that for the transformed curve we have

,•= + r [l - f-y.) 7 cos ^ + r
(
1 + ., -^ j

s/{lr — 7" sin- 6) + m- — it? = 0.

l^ _ ^2
Putting for shortness .,_,„ = \, and for r, r cos 6, r sin 6, writing V(*'" + y% *'- 2/ respect-

ively, this is

a? + y- + {\ -\)ya; + {\ + X) ^\h'{x' + if) - y-f\ + m' - n- = 0,

or, what is the same thing,

{x- + f + (l-X) yx + //r - n-}"- = (1 -f X)- {h' (x" + f) - yhf\,

a bieircular quartic. In the case X = — 1 , it reduces itself to the circle

*'" + y'' + ^y^ + »i' — n- =

twice, which is the case considered above; and in the case X=l, or I- + h- = ni" + y-,

the equation is

(a? + y- + m" - n'f = 4 [h? {a? + /) - ry%

so that the curve is symmetrical in regard to each axis. In the case 7 = 0, the locus

is a pair of concentric circles, centre B.

The equation

[x" + 2/= + (1 - X) yx -f Wi^ - )r]= = (1 + X)'- \h- {x- + y') - yy},

which contains the four constants X, 7, h and m- — n", may be written in the form

{x- -t- y- -t- Ax + B)- = ax- + ey'-,

(where the constants A, B, a, e are also arbitrary). This is, in fact, the equation of

the general symmetrical bieircular quartic, referred to a properly-selected point on the

axis as origin, viz. the origin is the centre of any one of the three involutions formed

by the vertices (or points on the axis); .say it is any one of the three involution-

centres of the curve.

To show this, assume

(x — a) (x — /3) (« — 7) (* — S) = X* — px' + qaf — rx + s :
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then, taking B arbitrary, the equation of tiie symmetrical bicircular quartic having for

vertices the points .%•= «, x= ^, x = y, a; = S, is

{X- + if - ^px + Bf = (25 + \p- - q) X- + (r-pB) x +(-s + B-);

in fact, this is the form of the general equation, and writing therein y = 0, it becomes

of -pxr' + qar — rx + s = 0, that is, {x - a) {x — y8) (x - j) (x - 8) = 0. Hence, writing for

convenience

A = -\p,

a = -IB + ip- - q,

b = r-pB,

c =- s +B-,

the equation is

(«- + y- + Ax + Bf = ax- + hx + c.

This may be written

{x' ^if + Ax+B+ ey = {a + 2d) a:- + Wy- + {h + •2eA)x + c + 2BB + e\

viz. assuming ^ = ~ s j in order on the right-hand side to destroy the term in ,r, the

equation is

'\^' + 7f +Ax + B-^j ='ya- jj x' -^f- + ^j,
(6-' - iABb + iA^c),

which is of the form

(x- + y- + Ax + By = ax- -\-ey- +f;

and if/=0, that is, if 6= — 4^156 + 4J.-c = 0, then it is of the requii-ed form

(*- + y- 4- Ax + By = ax- + ey-.

We have

b- -4:ABb + 44=c = (r-pBy + 2pB (r -pB) +p"- {-s + R-)

= r'^ — p^s,

or the required condition is r- — p-s = 0. But we have

p-s - r- = (aS - /S7) (/3S — 72) (7S — a^),

as is easily verified by writing

p = S+p„, q = B2)„ + qo, r = Bq„ + n, s = Sr„,

where po, qo, r^ stand for

a + /3 + 7, /37 + 7a -f a/3, a/37,

67—2
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respectively. The required condition thus is

(a8 - ^7) (^S - 7C() (7S - a/3) = 0,

viz. the origin (that is, the fixed point B of the cell) must be at one of the three

involution-centres.

Comparing the equation

\a? + / + (1 - \) 7a.' + m- - n'\- = ( 1 + X)- [h" (.t- + f) - 7-^-)

witli the equation

[a? + y- + Ax + B]- = ax- + eij",

we have

yl=(l-X)7,

B = m- — n-,

a =(1 +\)-h^

e =(l+\)- {h- - r),

and thence fe-e = (l +X)-7"-. Consequently ' .„ =
(f^:^) >

which gives \: and then

h^= -;, 1^ = — , m- — n- = B; viz. we thus have the values of X, h, 7 and
(1 + \)- (1 + X)-

m- — n- for the description of a given curve {a^ + y- + Ax + B)- = ax~ + ey". In order that

the description may be possible, a and a- e must be each of them positive.

f^or the Cartesian a is = e, whence 1 + X = 0, and the equation becomes

{x^ + y- + 27a; + m- — n")- = 0,

which is a twice repeated circle ; hence the Cartesian cannot be constructed by means

of a cell as above.

To obtain a construction of the Cartesian, it may be remarked that, if a symmetrical

bicircular quartic be inverted in regard to an axial focus, viz. if the focus be taken

as the centre of inversion, we obtain a Cartesian. The axial foci of the curve

(x- + y- + Ax + Bf = ax- + ey-

are points on the axis, the abscissa x = 6 being determined by the equation

e(ff'-\^A0 + B)--a {&' - Bf - aeff' = 0.

The equation referred to a focus as origin is therefore

{of + f + {A + 26)x + B+ e-\- = cu- + ey'' + 2afe + &'

;

then inverting, viz. for x, y writing -^
, ^ (k arbitrary), we have, as may be verified

the equation of a Cartesian.
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The inversion can be performed mechanically by an ordinary Peaucellier-cell ; the

complete apparatus for the construction of a Cartesian is therefore as in fig. 2, viz.

we have a cell BAG as before, B a fixed point, locus of A n circle (for convenience

of drawing, the arrangement has been made BAG instead of ABG), and we connect

with G a Peaucellier-cell CA'B', arms n, n, m', the fixed point B' being on the axis,

which is the line joining B with the centre of the circle described by A. This being

so, then A describing a circle, G will describe a symmetrical bicircular quartic, and

A' will describe the inverse of this, being in general a like curve ; but if the position

of B' be properly determined, viz. if B' be at a focus of the first-mentioned quartic,

Fig. 2.

then A' will describe a Cartesian. A further investigation would be necessary in order

to determine how to adapt the apparatus to the description of a given Cartesian.

A more convenient mechanical description of a Cartesian is, however, that given

in the paper which follows the present one [618].

The equation

{*•= 4- y- -f (1 - \) yx + m- - n-]- = (1 -f X)- {h- {x- + if) - rf]

may also be written

{a? + y-+{l -\)ya:-^{i + X)- (/r - 7-) -I- m- - n'}-

= (1 + Xy^ {7=.r= - (1 - \) (h' - y') yx -h HI + ^f V^' - tY - (»i' - "'') {!>' - r)},

viz. the equation is now brought into the form

{x- + y- + Ax + By- = ax- + bx + c.

Expi-essing the coefficients A, B, a, b, c in terms of \, 7, h, m- — li', it appears by
what precedes, that we should have identically b-— iABb + 'iA-c=0, viz. this is the

equation which expresses that the origin is an involution-centre.

If, instead of the original cell, we consider a new cell obtained by substituting

for the arms PB, BQ, the arms pb, bq, jointed on to the points p, q on the arms
CP, CQ respectively, and instead of B, making b the fixed point ; then wiiting Cp = kn,

pb = km, so that the })arameters of the cell are I, in, 11, k, and taking Gh = s, hA = s'.
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s k — 1
we have s = ki; s + s' = r+ r', that is, '" = r ,

''' =
, s + s'. Substituting in the equation

between »•, »•', written for greater convenience in the form

(r + ?•') (r?-' + m^ - l'') + (l- - n-) r' = 0,

the relation between s, s' is found to be

(s + s') r "
~- 5"' + ^ + m- - lA + (l- - «=) ( -^ s + s'j = 0.

On account of the term in s', this equation in its general form does not, it would

appear, give rise to transformations of much elegance. If, however, I = »i, then the relation

becomes

{k-l)s- + kss' + /,•- (7)1= - 1-) = ;

and in pai'ticular, if k = 2, then

s^ + 2ss' = i{l- - m-), or say (s + s'f — s'- = 4 (f- — m-),

viz. taking A instead of b as the fixed point, the relation between the radii AC, Ah
is p' — p'- = 4! (l- — ni-) ; the cell is in this case Sylvester's "quadratic-binomial extractor."
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618.

ON THE MECHANICAL DESCRIPTION OF A CARTESIAN.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. Xlii. (187.5),

pp. 328-330.]

Suppose that in two different curves the radius vectors r, r, which belong to

the same angle 6, are connected by the equation

r'^+Ulr +N + ~}jr + B=Q;

then, taking one of the curves to be the circle

P
Mr + ~, = A cos 6,

r
the other curve is

r'-+{A cos d + N)r + B = 0,

viz. this is a Cartesian. It perhaps would not be difiScult to contrive a mechanical

arrangement to connect the radius vectors in accordance with the foregoing equation

;

but the required result may be obtained equally well by means of a particular case

of the relation in question ; viz. taking this to be

r- + (- r' + iV) r + B=0,

then, taking the one curve to be the circle r' = — A cos 0, the other curve is the

Cartesian,

r= + (21 COS0 + B)r + B= 0, that is, r- + (.4 cos d + N)r+B = 0.

The relation between the radius vectors may in this case be written

r' = iV + r + -
,

which can be constructed mechanically by a simple addition to the Peaucellicr-cell,

viz. if we joint on to C (fig. 1, p. -536) a rod CDA, having a slot, working on a pin

at A, so that the rod is tliereby kept always in the line BAC, then, making B the
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fixed point and taking BA =r, we have AC = ;— , whence BC = r + -- , or D

being a point at the distance CD, = a, from the point C, and denoting BD by ?•', we have

r' = r -\— h a, whicli is an equation of the required form ; whence, if the point D

describe a circle passing through B, then the point A will describe a Cartesian.

Fig. 1. .

The equation of the Cartesian is r- + (A cos 6 + N) r + B = 0, viz. this is

.T-+ y- + Ax + B= — N'i/{x- + y-), or writing N-=a, it is

(x- + y- + Ax + B)- = ax- + ay",

which is the form considered in the preceding paper. It may be further observed in

regard to it that, starting from the focal equation r = ls + 'iu, where r, s are the

distances of a point (x, y) of the Cartesian from any two of its three foci, this

equation gives r- — I'-s- + in- = 2mr, or writing r- = x- + y-, s- = (x — of + y-, the function

on the left-hand is of the form {\ — 1-) (x- + y- -\- Ax + B), whence, assuming 1^72 = Vl").

the equation becomes as above

(«•- -\-
y"^ + Ax -\- Bf = a («^ + y-).

Taking the distance r = »J{af + y") to be measured from a given focus, it is easy to

see that, no matter which of the other two foci we associate with it, we obtain the

same equation {x- + y- -i- Ax + B}- = a {x- + y-) ; viz. starting with any one focus, we

connect with it a determinate circle x- + y- + Ax + B = 0, and a determinate coefficient a,

such that taking this focus as the origin, the equation of the curve is

(x^ + 2/' + ^*' -h B)- = a (x^ + 2/^)

;

but there are for the given curve three such forms of equation, according as the origin

is taken at one or other of the three foci.

(Addition, Feb. 187.5.) It is obviously the same thing, but I find that it is

mechanically more convenient to derive the Cartesian from the Lima9on ?-'=—iV— .Acos^,

by the transformation ?•'=? + --: I have on this principle constructed an apparatus

whereby the Cartesian is described on a rotating board by a pencil moving in a

fixed line.
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619.

ON AN ALGEBEAICAL OPERATION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiii. (1875),

pp. 869—375.]

I CONSIDER

VLFia, x),

an operation D. performed vipon F {a, or) a rational function of {a, x); viz. F being

first expanded or regarded as expanded in ascending powers of a, the coefficients of

the several powers are then to be expanded or regarded as expanded in ascending

powers of x, and the operation consists in the rejection of all negative powers of x.

In the cases intended to be considered, F contains only positive powers of a : but

this restriction is not necessary to the theory.

The investigation has reference to the functions A (x) of my " Ninth Memoir on

Quantics," Phil. Trans., t. CLXI. (1871), pp. 17—50, [4G2] ; for instance, we there have

as regards the covariants of a quadric

^(.)_U(1)= ^i^^lL
,,

ar \*7 1 — aoc- . 1 — « . 1 — iuv~-

and consequently, in the present notation,

1 — ax' . 1 — a . 1 — ax~

by a process of development and summation, the valu(^ of this expression was found
to be

1

1 - cw^ . 1 - a-

'

c. IX. 68
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aud in the other more complicated cases the value of A («) was found only by trial

and verification. What I purpose now to show is that the operation fl can be

performed without any development in an infinite series ; or say that it depends on

finite algebraical operations only.

It is clear that if F {a, x\ considered to be developed as above contains only

positive powers of x, then
^F{a, .i:) = F(a, x);

•ind if it contains only negative powers of x, then D.F (a, x) = 0.

Consider now O ^^—
, where <j> (x) is a function containing only positive powers of

X ; we have

±i^ ^ </) (jg) - (a)
_|_
^(a)

X— a X — a X — a'

and thence

* — a X — a X — a

^ <t)
{x) - 4> (a)

x — a

since —"
is a rational and integral function of a, which when developed

contains only positive powers of x, and when developed contains only negative
iff ^ Ct

powers of X.

Consider next fi,
^

, where (h(x) is a rational and integral function of .c

;

x^ — a ^ °

writing this =/(*'") + xr/ (.?;-), we have

X- — a X- — a xr — a

oc^ — a X- — a

As regards the last term, notice that

^iegiff) ^ ^ x{g{x^)-g(a)]
_^ ^^

xg {a)

X- — a x^ — a a? — a'

in which —-—— is a rational and integral function of (a, .*,•), and therefore
x''-a * V

' "

when developed contains only positive powers of x, while „ when developed

contains only negative powere of x.

We thus have

<l>{x) _f(x') + xg (^) -f(a)- a-y (a)

«- — ti

^ (^) -/(«) - -'V (ft)

a? —

a
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Similarly, if ^{x)=f{a-') + wg{x") + u~Ii{ie'), then

^ <j> {x) ^ ^ (x) -f(a) - xg {a) - x-h (a)
,

a? — a a? — a '

and so on.

Consider now the above-mentioned function

A{x), =n
1 — ax- . 1 — a . 1 — ax~-

Writing

we have

1 — ax- . 1 — a . 1 — ax~- 1 — ««- 1 — a 1 — aa;""-

'

-X*

\1 — a . 1 — ax--Ja=x-'' 1 — ^~

1 — x~-

that is,

^1 — ax' . 1 — ax~-J„,^, ' l—x"'

u _ ( 1 — *~'
N _ 1 — i^"' _ — 1

~ U - «.'•'
. 1 - (iJa^x^ ' ~1-X*.1-X^' ~ X-(l- X>)

'

1-a-- -a'* 1 11 11
1 — «a- . 1 — a . 1 — ax~- 1 — .r^ 1 — a.r- 1 — «'' 1 — a 1 — a;* x" — ff

'

and thence

1 — a.r- . 1 — rt . 1 — ax"- 1 — ,/* 1 — ax- 1 — .r^ . 1 — « 1 — .r* a" — a
'

Here, as regards the last term,

4>{x')-f{a) _ 1 / -1 1 \ X* -a- _ X- + a

x- — a x- — a\l—x* 1 — «-/ X- — a.l —x:*.l — a- l—x*.l — a''

and we have

„ 1 — x^- — X'* 1 X- + a
fi —

1
1

1 — ax- . 1 — a . 1 — ax~'- 1 — **
. 1 — ax^ I —x'-.l —a 1—x^.l—a^'

The second term is =q -^ -: combining this with the third term, the two
1 — a-* . 1 — a=

i. 4.1, 1 + ''^'
together are = , —

,

.

^ 1 - a-* . 1 - «-

68—2
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Hence the value is

[619

which is

1 — «• Vl — tt*'

1

1 — cu>f . 1 — tt^
'

x^ 1 + aj-\

being, in fact, the expression for this function when decomposed into partial fraction

of the denominators 1 — aa? and 1 —a- respectively. Hence finally

A(x) = n,
1-x-

1 — aa^ . 1 — a . 1 — aw- 1 — oar' . 1 — a^

'

as it should be.

For the cubic function, we have

A (a) = n
1 - X--

1 — cuv' .1 —ax .1 — ax~^ . 1 — ux~'

'

the function operated upon, when decomposed into partial fractions, is

X'o
1 X*^ 1^

1 — a.^ . 1 — a;" 1 — ax^ 1 — afi .1 —x* 1 — ax

X 1
+ +

— X

Hence we require

The first of these is

a

1 — X- . 1 — x"* X — a 1 — x-* . 1 — afi a^ — a

1 „ — X

l—x-.l—x''x—

a

1 —x^.l —x'^ x' — a

which is

_ 1 \ X a
]

x — a\l—aP.l—x* 1 — (6- . 1 — a^j
'

l-xKl-x'.l-aKl-a*
+ X (a + a^ — (t')

+ x^ («' - a')

+ j~' {a - a}')

— x'a-

- x^a

As regards the second, the function operated on may be expressed in the form

— a? — x — x^ 1

1 -*•'-. 1 - of x^-a'
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whence f{a), g (a), h (a), and therefore / {a) + xg (a) + .';-/; («), respectively, are = - a',

— 1, —a, —w^ — x — aaf, each divided by I — a-. I — a'; or the term is

1
; +

a" + .'-• + ax-

which is

*•= — rt 1 1 — ar* . 1 - «" 1 — rt'^ . 1 - fr

1

l-x*.l-xf.l-a-.l-a'

+ .'/-
.
- 1

+ x' .
— a

+ .'/.(«' -1)

+ x^ .

+ x" . u-

+ X' . d'

+ x\l

+ x" . a

To combine the two terms, we multiply the numerator and denominator of the

first by l+./' + ar*, thereby reducing its denominator to 1 — «*, 1 — a.". 1 — a- . 1 — a^ the

denominator of the second term ; then the sum of the numerators is found to be

= 1 - a-

+ X (a- — a/)

+ x^{a — cf')

+ xr' (a — a^)

+ A* (a- - ((*)

+ x^{l -«-),

viz. this is =(1— a'-) / 1

-\

+ (a + d") x^

+ {a + ir) A-'

+ a-af

+ «».

Hence we have

_ 1-X-'
^

1 — (ucf . 1 — (w; . 1 — a«~' . 1 — ax~^

1 — ar* . 1 — «" 1 — ani'

-x* 1

1— a^.l— ar* 1 —ax

l+x^+ (x' + x'°) a + (of + x") g- + (ar* + .> •') g' 1

which is, in fact, the expression for

l-ar*.! -x"

1-CUC + a^x
""

1 — ax^ .1 — ax A —a'

1-a*

^ decomposed into partial
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fractions with the denominators 1-aaf, 1 - ax, 1 - «^ respectively. This is most easily

seen by completing the decomposition, viz. we have

4 }1 + .«« + (.?-• + .T') a + {x- + a.'') a- + (.r + .r=) a'\

= (1 + aff (1 + a;"-){\ + a) (1 + (CO 4- (1 - *=)=(! + *') (1 - ") (^ + "') + 2(1- a'") (1 - a*) (1 - (^),

and thence the expression i.s

+

1 — ic* . 1 — a* 1 — aaf

-x' 1

1 —X- .l—a;*l —aw

•* 1 -a-M - a,-" 1 - H * 1 - a^. 1 + a;= 1 + « - 1+x-l+a^

1 — aa; + a-x"

1 _ a.T^ . 1 - «a- .1-0'

as above. Hence finally

1 — x'~"

A (X) = n T ^-:j -. —r—. Z
^ ' 1 — ax^ . 1 — ax .1 —ax '

. 1 — ax
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620.

COERECTION OF TWO NUMERICAL ERRORS IN SOHNKE'S

PAPER RESPECTING MODULAR EQUATIONS.

[From the Journal filr die reine itnd ungewandte Matheinutik (Crelle), t. LXXXI. (1876),

p. 229.]

In Sohnke's paper " Aeijuationes modulares pro transformatione functionum ellipti-

carum," Crelle, t. xvi. (1837), there is, on p. 113, an obvious error in the expression

of m", viz. the term 5" is given with the same numerical coefficient as it had in «'*:

this remark was made to me by Mr W. Barrett Davis, who finds that the term of

't" should be

+ 13569463 q'\

In the expression of lO" {I.e., p. 115), I had remarked that, in the coefficient of
(f^, a

tigure must have dropped out. Mr Davis has verified this, and finds that the figure

omitted is a 1 in the unit's place, and thus that the correct value* is

+ 80177033781 fy'«.

Cambridge, 26 Uctuber, 1875.

* [The former of these uumbers should replace the number 15003859 in the Table, p. 128 of this volume

;

the latter has been introduced in the Table, p. 129.]
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621.

ON THE NUMBER OF THE UNIVALENT RADICALS aH,,+,.

[From the Fhilosophical Magazine, series 5, vol. ill. (1877), pp. 84, 35.]

I HAVE just remarked that the determination is contained in my paper " On the

Analytical Forms called Trees, &c.," British Association Report, 1875, [610] ; in fact, in

the form C„Ho„+,, there is one carbon atom distinguished from the others by its being

combined with (instead of 4, only) 3 other atoms ; viz. these are 3 carbon atoms, 2

carbon atoms and 1 hydrogen atom, or else 1 carbon atom and 2 hydrogen atoms

(CH;, , methyl, is an exception; but here the number is =1). The number of carbon

atoms thus combined with the first-mentioned atom is the number of main branches,

which is thus =3, 2, or 1; hence we have, number of radicals C„Ho„+i is =

No. of carbon root-trees C„ with one main branch,

-I- No. of „ „ with two main branches,

-t- No. of „ „ with three main branches

;

and the three terms for the values n = 1 to 13 are given in Table VII. (pp. 454, 455

.of this volume) of the jmper refeiTed to.

Thus, if /( = 5, an extract from the Table (p. 454 of this volume), is

Index .!•, or

number of

knots
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and the number of the radicals C5H1, (isomeric auiyls) is 4 + 3 + 1 = 8 : or, what is the

same thing, it is 9 — 1, the corner-total less the number immediately above it. The

tree-forms cori'esponding to the numbers 1, 2, 1 ; 2, 1 ; 1 in the body of the Table

are the trees 2 to 9 in the figure, p. 428 of this volume.

The numbers of the radicals C„H2„_,.j, as obtained from the Table in the manner

just explained, are :

—

n=

1
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622.

ON A SYSTEM OF EQUATIONS CONNECTED WITH MALFATTI'S

PROBLEM.

[From the Proceedings of the London Mathematical Society, vol. vii. (1875—1876),

pp. 38—42. Read December 9, 1875.]

I CONSIDER the equations

X, = hy- + cz^ - Ifyz - a (be -/-), = 0,

Y, = cz- + ax- — 2gzx — b (ca — g-), = 0,

Z , = aa;- + by- — 2hxy — c {ab — /r), = 0,

where the constants (a, b, c, f, g, h) are such that

K, = abc - af- - bg- - ch- + y'gh, = 0.

Hence, writing as usual {A, B, C, F, G, H) to denote the inverse coefficients

{be —/^ ca - g\ ab - h", gh - af, hf- bg, fg - ch),

we have {A, B, C, F, G, H^x, y, zf-iYve square of a linear function, = (a« + /3y + 72)'-

.svippose ; that is,

{A, B, C, F, G, H) = (ci\ ^-, r, 0y, ya, a/3).

It is to be shown that the three quadric surfaces A' = 0, F = 0, Z = intersect in a

conic © lying in the plane aax + b^y + cyz = 0, and in two points I, J ; or more

completely, that

the surfaces F, Z meet in the conic B and a conic P,

» Z, X ,, „ „ V,

» ^ : ^ Jl 53 js -"J
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where the conies P, Q, R each pass through the two points /, J, and meet the conic

in two points, viz.,

the conies P, meet in two points P,, P.,,

„ Q, „ „ Qu Q.,

R- „ „ Ru R,-

For this purpose, writing

y = Aa-Ff, =Bh- Gg, = Gc - ffh, = abc -fgh,

il = ^(X + Y+ Z). = aw- + bi/- + cz- —fyz — gzx — lixy — V

,

6 = aax + bfy + cyz,

^ Aa Ff Ff

Gq Bb Gg

^ Hh Hh Gc

then we have identically

aAn- s/x = e^,

bBn- VY = 67,,

cGD,-VZ =e^.

In fact, the first of these equations, written at lull length, is

aA {aci? + by- + csi- —fyz — gzos — hxy — V ) — V (by- + cz- — %fyz — aA

)

, „ ,
(Aa Ff Ff \= (mx + b^y + cyz) (— x-\--^y + ^ z\,

where on the left-hand side the constant term is = 0. Comparing, first, the coefficients

of x^, y-, z^, on the two sides respectively, these are Aa", (Aa—V)b, (jla— V)c, and

Aa". Ffb, Ffc, which are equal. Comparing the coefficients of yz, zx, xy, the equations

which remain to be verified are

-M-2V)/=P/-(c^ + 6|

- aAg = P«/- + Aac ^

>r, as these may be written,

-aAh =Faf^-\-Aab^;

- {aA - 2V ) yS7 = P(c7^ + 6/3=),

- Ag'ya = Ffd- + Acy",

- Aha^ =FfcL" + Abfi^;

69—2
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and, substituting for a-, ^'-, 7-, /3y, ya, a^ their values, these may be verified without

difficulty.

It thus appears that the equations of the three i]uadric surfaces may be written

in the form
aAil-e^ = 0, hBn-eri = Q, cCn-6'f=0;

and we thus obtain the conies B, P, Q, R as the intersections of the sui'face =
by the four planes

' Bb Cc ' Gc Aa~ ' Aa Bb '

respectively. There is no difficulty in verifying that the conies intersect as mentioned

above, and that the coordinates of their points of intersection are

p,P^:(sJbc, ^, -^V f-Vfc, - "i, -^

„ „ / ch I
— af\ I ch I

— af
Q, Q, :

{
Vca, -:L ,

- ^= , -"^ca, --4
\vca vca' \ vca vca

Wab' \/ab' /' V V«6' y/ab'
''

I, J
: if, 9, I'), (-/ -U, -h)-

In a paper " On a system of Equations connected with Malfatti's Equation and on another

Algebraical Systein," Camb. and Dublin Math. Journal, vol. IV. (1849), pp. 270—27,5, [79],

I considered a system of equations which, writing therein 6=\, and changing the signs

of (/, g, h), are the equations here considered, X — 0, F = 0, Z=0: only the constants

(a, b, c, f, f), h) are not connected by the equation K=0, but are perfectly arbitrary.

The three quadric surfaces intersect therefore in 8 points, the coordinates of which

are obtained in the paper just referred to, viz. making the above changes of notation,

the values are

a;^ = ^ {abc +fgh -/WBC + g sICA + h "^AE),

If = ^ (abc + fgh +f'JBC - g ^GA + h \IAB),

s- = 1 (abc +/gh +f\IW + g 'JCA - h '^AB),

i/z = i (gh + af + v56'),

2x = ^ {hf +bg +VC/1),

^i/ = h ifg + ch + \/AB)
;

where the radicals are such that ^/BC .\/GA .'JAB = ABC, so that the system («-, y'^, z"-,

yz, zx, xy) has four values only, and consequently (*•, y, z) has eight values.
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It is very remarkable that, introducing the foregoing relation K = 0, there is not

in the solution any indication that the intersection has become a conic and two points,

but the solution gives eight determinate points, viz. the before-mentioned points

P. 1\, Q, Q„ R, R„ and /, ./.

To develope the solution, remark that, in virtue of the relation in question, we have

VSC'= ± F, ^GA = ± G, '^AB = ± H,

where the signs must be such that the product is = FGH (viz. they must be all

positive, or else one positive and the other two negative); for, taking the product to

be + FGH, the equations give

= ABC-FGH,
that is,

= A(BG-F-)-F(GH-AF), =K{Aa-Ff), = KV

,

which is true in virtue of the relation K =0. Taking the signs all positive, we have

for !/^, y-, Z-, yz, zx, xy, the values /'-, <j'-, li?, r/h, hf, fg, viz. we have thus the jjoints

(/. o> /'). (-/ -V, -/O,

which are the jioints /, ./. Taking the signs one positive and the other two negative,

say 'JBC=F, \CA = — G, "JAB = — H, we find for .«-, y'-, z'-, yz, zx, xy the values

he, -T- , —
,
gh, hg, ch, viz. we have thus the points

l^bc, --, -^V f-vic, - ^i, - h.),
V ' \Ihc

' "Jhcl ' V ' Vic ' Vic/
'

which are the points P, P, ; and the other two combinations of sign give of course

the points Q, Q, and R, R^ respectively.

If the coefficients (a, b, c, f, g, li), instead of the foregoing relation K=0, satisfy

the relation

abc - (if- - bg^' - ch- - 2fgh = 0, say K' = 0,

the quadric surfaces intersect in 8 points, the coordinates of which are given by the

general formulae: but the expressions assume a very simple form. Writing for shortness

F'=gh + af, G' = hf+bg, H'=fg + ch,

then, in virtue of the assumed relation,

V50 = + F', VCI = + G', s/aB = + H,

where the signs are such that the product of the three terms is positive, viz. they

must be all positive, or else one positive and the other two negative. For, assuming

it to be so, we have

= ABG-F'G'H',



550 ON A SYSTEM OF EQUATIONS CONNECTED WITH MALFATTl's PROBLEM. [622

that is,

= ^ {BC - F'-') - F' {G'H' - AF'),

= K' {Aa + F'f\ = K' (abc +fgh) ;

which is right, in virtue of the relation K' = 0. Taking the signs all positive, we find for

{(€-, y", Z-, yz, zx, xy) the vakies (A, B, C, F', G', H'), giving two points of intersection

fV^, fl, ^] and i-^A, - ^-, -pj.
\ V^ V^/ V \fA ^Al

Taking the signs one positive and the other two negative, say

V50 = F\ y/CA = - G', \'AB = - H',

we find for {x-, y-, z", yz, zx, xy) tiie values

(0, f , f , F, 0, „).

viz. we have thus two intersections

and the other combinations of signs give the remaining two pairs of intersections

and

But the most convenient statement of the result is that the values of (aar, by", cz", yz, zx, xy),

for the four pairs of points respectively, are

{aA, bB, cC, F', G', H'),

( , cC, bB, F', 0, ),

(cC , , aA, , G', ),

Q)B, aA, , 0, 0, E');

there is no difficulty in substituting these values in the original equations, and in

verifying that the equations are in each case satisfied.
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623.

ON THREE-BAR MOTION.

[From the Proceedings of the London Mathematical Society, vol. vii. (187.5—1876),

pp. 136—166. Read March 10, 1876.]

The discovery by Mr Roberts of the triple generation of a Three-Bar Curve,

throws a new light on the whole theory, and is a copious source of further develop-

ments*. The present paper gives in its most simple form the theorem of the triple

generation ; it also establishes the relation between the nodes and foci ; and it con-

tains other reseai'ches. I have made on the subject a further investigation, which I

give in a separate paper, " On the Bicursal Sextic," [624] ; but the two papers are

intimately related and should be read in connection.

The Three-Bar Curve is derived from the motion of a system of three bars of

given lengths pivoted to each other, and to two fixed points, so as to form the three

sides of a quadrilateral, the fourth side of which is the line joining the two fixed

points ; the curve is described by a point rigidly connected with the middle bar ; or,

what is more convenient, we take the middle bar to be a triangle pivoted at the

extremities of the base to the other two bars (say, the radial bars), and having its

vei'tex for the describing point.

Including the constants of position and magnitude, the Three-Bar Curve thus

depends on nine parameters ; viz. these are the coordinates of the two fixed points,

the lengths of the connecting bars, and the three sides of the triangle. It is known

that the curve is a tricircular trinodal sextic, and the equation of such a curve contains

27—6 — 6 — 3, =12 constants. Imposing on the curve the condition that the three

nodes lie upon a given curve, the number of constants is reduced to 12—3, =9: and

it is in this way that the Three-Bar Curve is distinguished from the general tricircular

* See his paper "On Three-Bar Motion in Plane Space," I.e., vol. vii., pp. 15—23, which contains more

than I bad supposed of the results here arrived at. There is no question as to Mr Roberts' priority in all his

results.
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triuodal sextic ; viz. in the Three-Bar Curve the two fixed points are foci, and they

determine a third focus *
; and the condition is that the nodes are situate on the circle

through the 3 foci.

The nodes are two of them arbitrary points on the circle ; and the third of them

is a point such that, measuring the distances along the circle from any fixed point

of the circumference, the sum of the distances of the nodes is equal to the sum of

the distances of the foci. Considering the two fixed points as given, the curve

depends upon five parameters, viz. the lengths of the connecting bars and the sides of

the triangle. Taking the form of the triangle as given, there are then only three

parameters, say the lengths of the connectuig bars and the base of the triangle; in

this case the third focus is determined, and therefore the circle through the three

foci ; we may then take two of the nodes as given points on this circle, and thereby

establish two relations between the three parameters, in fact, we thereby determine

the differences of the squares of the lengths in question : but the third node is then

an absolutely determined point on the circle, and we cannot make use of it for com-

pleting the determination of the parameters ; viz. one parameter remains arbitrary. Or,

what is the same thing, given the three foci and also the three nodes, consistently

with the foregoing conditions, viz. the nodes lie in the centre through the three foci,

the sum of the distances of the nodes being equal to the sum of the distances of

the foci : we have a singly infinite series of three-bar curves.

In reference to the notation proper for the theorem of the triple generation, I

shall, when only a single node of generation is attended to, take the curve to be

generated as shown in the annexed Figure 1 ; viz. is the generating point, OC^B^

the triangle, C, B the fixed points, CC'i and BB^ the radial bars. The sides of the

Fig. 1.

triangle are a,, 6,, c, ; its angles are 0, = A, B,, - B, C,, = C : the bars OC, and BB^

are =«» and a.^ respectively, and the distance CB is = a. The sides o,, bi, Ci may be

put =A-i(sin^, sinB, sin G), and the lines a^, a.^, a3={kj, L, A3) sin ^4, viz. the original

data Oi, 61, Ci, «i, a.., a,, may be replaced by the angles A, B, C (A+B + C = Tr) and

the lines k^, k.., kj. And it is convenient to mention at once that the third focus

A is then a point such that ABC is a triangle similar and congruent to OBfi^.

* A focus is a point, given as the intersection of a tangent to the curve from one circular point at infinity

with a tangent from the other circular point at infinity ; if the circular points are simple or multiple points on

the curve, then the tangent or tangents at a circular point should be excluded from the tangents from the

point ; and the intersection of two such tangents at the two circular points respectively is not an ordinary

focus ; but, as the points in question are the only kind of foci occurring in the present paper, I have in the

text called them foci.
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It may be remarked that, producing CC^ and BB^ to meet in a point a, this is

the centre of instantaneous rotation of the triangle, and therefore aO is the normal to

the curve at 0.

I proceed to show that the three nodes F, G, H are in the circle cii'cumscribed

about ABC, and that their positions are such that (the distances being measured along

the circle as before) we have the property, Sum of the distances of F, G, H is equal

to the Sum of the distances oi A, B, C.

Supposing to be at a node F, we have then the two equal triangles FB-fi^,

FB/Ci, such that Ci, (7/ are equidistant from G, and B^, B^ equidistant from B. Hence

the angles BiFBj, C^FC^' are equal ; consequently the halves of these angles CFC^' and

Fig. 2.

BFB^ are equal ; whence the angle GFB is equal to the angle G^FB^, that is, to the

angle A, or F lies on a cii-cle through B, G such that the segment upon BG contains

the angle A, that is, upon the circle through A, B, G. To complete the investigation

of the nodes, suppose GF = t, BF = a- : then the condition Z GFGi = Z BFB^' gives

6,= + T^ - a.-' c,= + <7» - ch"

26iT 2Ci<7 '

that is,

c,a- (b,' + t'- a^") - b,T (cr +a'- O3-) = ;

and the condition iihat F is on the circle gives

a" + T= - 2«rT cos A = a'.

These equations give six values of (a; r) corresponding in pairs to each other; viz. if

(<7,, Ti) is a solution, then (— o-j, — t,) is also a solution; and to each pair of solutions

corresponds a single point on the circle, viz. we have thus the three nodes F, G, H.

Writing the foregoing equation in the form

{Ci (6r - a.^) a-b, {c,' - a,-) t} (a' + t^ - 2ot cos ^) + a^ (c,<7t= - b.a^r) = 0,

and putting the left-hand side =M {or - Pit) {a - p„t) (a - p^t) ; then, if a, /3, 7 denote

cos A +ismA, cos .B -I- i sin B, cos C+i sin C respectively, putting first a = ar and next

<r = - , and dividing one of these results by the other, we find

Ci - 61a _ g - jPi- a-p^.a-pi
da-fci"" 1—piOi.l-pia.l -pau'

C. IX. 70
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The left-hand side is here

_ sin (7 — a sin B _ sin G—sinB (cos A +ism A)
~

a sin C— sin B sin G (cos A +i sinA) — sin B

sin A (cos B — i sin B) _ y
~ — sin^ (cos C — i sin G) /3

'

or the equation is

a — Pj .a—p^. a — ps _ y
l—pia.l—p.,a.l—p3a /8

'

Also, writing / for the angle FGB, we have a- = •
/ a 4. f\

''"' ^^^- ^^^ values of

sin f sin q sin h „. ^, „ ,

«i, p., ps are ^

—

, / ^, , . , .

^—r, ^

—

. .
, ,, . We thence nnd

i'^' i-' f^
sin {A +f) ' sin (^1 + g) sin (^ + h)

a —pi _ sin (A +f) (cos J. + 1 sin A) — sin/_ cos (A +f) + i sin {A +/)
1 — a^Ji sin (A +f ) — (cos A + z sin ^ ) sin/ cos/— i sin/

= cos (4 + 2/') + i sin (^ + 2/) ;

with the like values for the other two values. Hence, writing also

-| = -cos(C-£)-isin(C-5) = cos(7r + C'-£)-l-zsin(7r + C'-£),

the equation becomes

cos (34 + 2/+ 2(7 + 2/i) + i sin (34 + 2/+ 2*7 + 2/i) = cos (tt + C- 5) + i sin (tt + C - £),

that is,

34 + 2/+ 2(7 + 2A = TT + - S,

or, what is the same thing,

2/+ 2(7 + 2h = TT + 0-5- 34.

Reckoning the angles round the centre from a point on the circumference, if

4', B\ C, F', G', H' are the angles belonging to the points 4, B, C, F, G, H
respectively, then

A' = \ + 2C, F' = \+2f,

B' = \, G' = \ + 2g,

C' = X + 2C + 2B, H' = \ + 2h;

and therefore

A' + B' + G' = 3\ + 4^C + 2B, F' + G' + H' = 3\ + 2f+2ff -^ 2Ii, =3X + -7r + G-B-SA ;
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that is, A' + B' + C - F' - G' - H' = -Tr +3 {A +B+C); or, omitting an angle 27r, this

\a A' + B' + C' = F' + G' + H', the equation which determines the relation between the

three nodes on the circle ABC.

Reverting to the equation c^a- {bi' + t° — a.2-) — 6:T (Cj- + a"— a^-) = 0, which belongs to

a node: if we consider the form of the triangle as given, and write bi, c, = kiSmB,

ki sin C, this becomes

<r sin C (6i° — a^") — t sin 5 (cr — as") + o"t (t sin C— ct sin B) = 0;

viz. considering the node as given, then the values of cr, t are given, and the equation

establishes a relation between the values of bi" — aj' and Ci^ — a,'*. If a second node

be given, we have a second relation between these same quantities, and the two

equations give the values of the two quantities, viz. the values of ki'sin'B — kn-sin'^ A,

k ^ k^ k? k '

k^sm-C— k-i-sin- A, or, what is the same thing, the value of -.——-. ^.-f-vi, ^-^—^r^.^' sinM sin=5' sm^^ sin''^

It thus appears that, if Z,, L, 4 are any values of k^, k.,, k^ belonging to a given system

of three nodes, the general values of ^'i, k^, ks belonging to the same system of three

nodes are

^i'' = ?i^ + w sin- A , k^ = l? + u sin- B, k^- = l^- + u sin^ C,

where u is an arbitrary constant.

It may be added that there will be a node at B, if the equation is satisfied by
. . k L

T — 0,a- = a, for the condition is 6,- — a„- = : that is, if .
'

. = .
'„

; similarly, thei'e will
sm A BiuB '

k k
be a node at C, if c,= — a.= = 0, that is, if --^ = .—^s ; and a node at A, if

sm 4 sm .B

k k
-T-^= ."^. If two of these equations are satisfied, the third equation is alsosm C sinB ^ *

k k k
satisfied, viz. we then have ^—^. = .—^ = "^

; and the three nodes coincide with thesmA smB sinG

three foci respectively.

If, in Figure 2 (p. 553), the points Cj, 0/ coincide on the line OF, and therefore

also the points B^ , B^' coincide on the line BF, then, instead of a node at F, we have

a cusp. We have in this case a triangle the sides of which are a^+b^, 013 + Ci, a, and

the included angle between the first two sides is =A: we have, therefore, the relation

a" — {a-i + bif + (a.j + c,)^ - 2 (a.^ + b^) (a^ + Cj) cos .4.

Substituting herein for a, 03, 6], &c., the values ^-sin.^, i-osin.^, k^sinB, &c., the

equation is

k^ sinM = {kiSmB + k3 sin Ay + {ki sin G+kssin Af
— 2 {ki sin B + k. sin A) {kj sin C + k^ sin -4) cos A.

* Considering, in the equation, a,, and a^ as the distances of a variable point P from the points C and B
respectively, the equation represents a circle having its centre ou the line CB. Similarly, when a second

node is given, the corresponding equation represents another circle, having its centre on the line CI>, and

the intersections of the two circles determine a„ and a^, the lengths of the radial bars, iu order that the

curve may have the given nodes.

70—2
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Expanding the right-hand side and reducing by means of A + B + G='n; the whole

becomes divisible by sin' 4, and we have

k- = ^'i^ -t- ^V + ^.'3- - 2kiks cos A + 2kski cos B + 2k^L cos G
;

viz. considering A, B, C, k\, k^, k, as given, this equation determines k so that the

curve may have a cusp. The equation is one of the system of four equations

k- = ki' + k.^ + h^ - 2Lk3 cos A + 2k3ki cos B + 2kiki cos G,

^»2 = ki" + k„" + h" + 2Lk, cos A - 2^3^:1 cos B + 2kik.. cos G,

yfc2 = ki' + k.r + AV" 4- 2k„ks cos A + 2k3ki cos B — 2kik2 cos G,

A;2 = ki' + k„- + A's"
— 2k2k3 cos A — 2k3ki cos B — 2kiki cos C,

which belong to the different arrangements GG,F or GFC^, BB^F or BFB^, of the three

points on the lines BF and GF ; if A; has any of these four values, the curve will

have a cusp. If two of the equations subsist together, we have a curve with two

cusps. Taking k, L, kj, and also cos J., cos 5, cos C, as positive, viz. assuming that the

triangle is acute-angled, the fourth equation cannot subsist with any one of the others:

but two of the others may subsist together, for instance, the first and second will do so,

A; A;

if A'aA-jCos^ =A-3A:, cosJ5, that is, if —^-= —^, and then k^ = k^^ + k^' + k^- + 2kik.i cos C

:

cosA cosiJ

the curve has then two cusps. Similarly, the three equations may subsist together, viz.

we must then have

^' - *^ - *' k' = k,' + k,'' + k.J' + 2hhcosA:
cosA cos B cos G '

writing herein ki, k^, A,3 = \cosil, XcosB, XcosG, we find

A;' = \- (cos'' A + cos- B + cos= G + 2 cos A cos BcosG) = X';

viz. if ki,k..,k, are respectively =kcosA, kcosB, kcosG, the curve has then three cusps.

It will be recollected that, if

ki : A-2 : k^ = sin .4 : sin B : sin C,

the nodes coincide with the foci ; the two sets of conditions subsist together, if

A =B=G = 60°; ki=k^=ks = ^k, viz. we have then a curve with three cusps coinciding

with the three foci respectively.

Before going further, I will establish the theorem for the triple generation of

the curve.

The theorem which gives the triple generation may be stated as follows. See

Figures 4, 5, 6*.

Imagine a triangle ABG and a point 0, through which point are drawn lines

parallel to the sides dividing the triangle into three triangles OB^Gi, OG^A.^, OAsB,,

* Figure 6 (substantially the same as Fig. 5) belongs to the same curve as Figures 1 and 2, and it

exhibits the triple generation of this curve : the generating point being taken at a node (the same node

as in Figure 2), and the two positions OB^G^ and OB^'C^ of one of the triangles being shown in the figure.
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similar inter se and to the original triangle, and into thi-ee parallelograms OA^AA^,

OB3BB1, OGiCC„. Then, considering the three triangles as pivoted together at the

point 0, and replacing the exterior sides of the parallelograms by pairs of bars

AiAAs, B,BB^, CiCC, pivoted together at A, B, C, and to the triangles at ^o, A^, B^, B,,

Ci, C2, the figure thus consisting of the three triangles and the six bars; let the

Fig. 4. Fig. 5. Fig. 6.

three triangles be turned at pleasure about the point 0, so as to displace in any

manner the points A, B, C: we have the theorem that the triangle ABG will remain

always similar to the original triangle ABC, that is, to each of the three triangles

OBiCi, OC^An, OA3B3: and further, that, starting from any given positions of the

three triangles, we may so move them as not to alter the triangle ABC in magnitude

:

whence, conversely, fixing the three points A, B, C, the point will be moveable in

a curve.

Assuming this, it is clear that the locus of the point is simultaneously the

locus given by

The triangle OB^Ci , connected by bars B^B and C^G to fixed points B, C,

II OCiAj, „ C^C „ A^A „ C, A,

OAA, „ A,A „ B,B „ A, B;

or, that we have a triple generation of the same three-bar curve. It may be

remarked that the intersection of the lines BB^ and CC^ is the axis of the instantaneous

rotation of the triangle OBfii, so that, joining this intersection with the point 0,

we have the normal at to the locus; and similarly for the other two triangles.

It of course follows that the intersections of BB^ and GC^, of GC^ and AA„, and of

AAi and BB^, lie on a line through 0, viz. this line is the normal at 0.

The result depends on the following theorem : viz. starting with the similar

triangles OBfii, AfiC.^, AiB,0, say, the angles of these are A, B, G, so that the

sides are

A;i(sin.4, sin 5, sin (7), k^isinA, sinB, sin C), k2{ain A, sin 5, sin (7);

then it follows that the sides of the triangle ABC are

A; (sin .4, sin 5, sinC),

the value of k being given by the equation

fc= = ki" + h" + k^- + Ikjcs cos {X- A) + ^kjc^ cos (Y-B)-\- ^kjc.^ cos {Z- G),
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where X, Y, Z denote the angles AJOA.^, BfiB^, CfiC„ respectively: whence, since

A + B + C=-7r, we have also X + Y + Z=7r. If therefore the angles X, Y, Z vary

in any manner subject to this last relation and to the equation A;" = const., the triangle

ABG will be constant in magnitude.

There is no difficulty in proving the theorem. Writing OC = t, and OB = o-, also

zCOCi = -<]r, and zBOB^ =
<f),

we have

„ „, „ sin-Jr sin^ , b,+a.,cosZ
T- = b,' + tto- + zbia., cos Z, =- = , cos yfr

= =
,

On T T

and then

„ „ ,, sin 6 sin Y , Cj + «3 cos Y
f- = c,- -I- tts'' + 2cia3 cos y, -= , cosrf)=

;

a-=r- + a- — 2to- cos (A +ylr+ (p)

= T- + ff- — 2to- cos a cos
(f)

cos yjr + 2Tcr cos A sin sin i|r

-f 2x0- sin ^ sin ilr cos
<f)
+ 2to- siu A cos i/r sin <^

= bi' + Cj- + a./ + «3- + 26,a2 cos Z+ Ic^a^ cos Y
— 2 cos ^ (6i + ttj cos Z) (ci + Oj cos Y)

+ 2 cos A . aM,s sin F sin Z

+ 2 sin .4 sin Z . a, (c, + fls cos F)

+ 2 sin J. sin F. a^ (bi + a, cos Z)

= &i° + Cj- — 26jCi cos ^ + a./ + aj-

+ 2a2a3 [— cos J. (— sin Y sin Z+ cos F cos Z)

+ sin ^ (sin Fcos Z + cos Fsin Z)]

+ 2a3 [(ci - bi cos j4) cos F + ij sin A sin F]

+ 2a2 [(6i — Ci cos ^) cos ^ + Ci sin A sin Z].

We have here 6i= + Ci^— 26jCi cos J. = ai' : the second line is = - 2«.„a3Cos(J. + F+Z)
which, by virtue of F+^=7r — X, is =2aM3COs{X — A): and in the third and fourth

lines

Cj — ^1 cos A = cii cos B, bi sin A = a^ sin B,

bi — C] cos A = Ui cos C, Ci sin ^ = a, sin C
;

whence these lines are 2a3ai cos (F — 5), 2aia. cos {Z — G): the equation therefore is

a^ = ctj= + a.? + tta" + SaoOs cos (Z - ^ ) + 2a3«i cos {Y-B) + 2a^a., cos (^ - C),

which, putting therein for a^, cu, a^ the values iisin^, ^.sin^, A^jsin^, and assuming

as above

]i? = k,"^ + h? + A;3= + 2kA cos (Z - ^ ) + 2kA cos (F - £) + 2Z;/-, cos (^ - G),

becomes a==A;-sin=4, or say a = ksmA; and similarly b = ksinB, c = ksin.G, that is,

(o, 6, c) = ^^(sin^, sinj5, sin C), the required theorem.
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Before proceeding to find the equation of the curve, I insert, by way of lemma,

the following investigation :

—

Three triads (A, B, (7), {F, G, H), (I, J, K) of points in a line, or of lines

through a point, may be in cubic involution ; viz. representing A, B, &c. by the

equations x — ay = 0, x — hy = 0, &c., then this is the case when the cubic functions

{x - ay) {x - by) {x - cy), {x -fy) {x - gy) {x - hy), (x - iy) (x -jy) {x - ky),

are connected by a linear equation. Regai-ding /, J, K as given, the condition

establishes between {A, B, G) and {F, G, H) two relations: viz. these are

(i _ a) (i - b) (i - c) : (j - a)
(j - b) (j - c) : {k - a) {k -b)(k- c)

= (^ -/) {i - g) (i -h) :{ j -/) (j - g) (j - h) : (k -f) {k - g) {k - h).

But, if K be regarded as indeterminate, then the condition establishes only the

single relation

(i - a) (i - b) (i - c) : {j - a) (j - b) (j - c)

= (i -/) (i - 9) {i - h) : (j -f) (j - g) {j - h),

which relation, if i = 0, j = cc , takes the form abc =fgh. When K is thus indeter-

minate, we may say that the triads {A, B, G), (F, G, H) are in cubic involution

with the duad /, J.

If .4, B, &c. are points on a conic, then, considering the pencils obtained by

joining these points with a point © on the conic, if the cubic involution exists for

any particular position of 0, it will exist for every position whatever of ; hence,

considering triads of points on a conic, we may have a cubic involution between

three triads, or between two triads and a duad, as above.

Taking x=0, y = for the equations of the tangents at the points /, J respectively,

and z = for the equation of the line joining these two points, the equation of the

conic may be taken to be xy — z'^ = 0, and consequently the coordinates of any point

A on the conic may be taken to be x : y : z = (x : - : \. It is then readily shown

that a, /9, 7,/, g, h referring to the points A, B, C, F, G, H respectively, the condition

for the cubic involution of (^4, B, C), {F, G, H) with the duad (/, J) is a^y=/gh.

And we thence at once prove the theorem, that there exists a cubic curve

J^IglcFGH, '/iz. a cubic curve passing through J, and having there the tangent JA,
having at / a node with the tangents IB, 10 to the two branches respectively, and

passing through the points F, G, H ; viz. that the triads (A, B, C), (F, G, H) being in

cubic involution with (/, J) as above, there exists a cubic curve satisfying these

2 + 5+3, =10 conditions. In fact, the equation of the cubic curve is

JJsIcFOH ; (y - 1) (* - /3^) («= - 7^)
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where observe that second term is an integral function ~z^(—Mx + Nz), if, for shortness,

M=a + + y-f-g-h,
N = ^y + ya + ai3-gh- hf-fg.

In fact, the equations of the lines JA, IB, IC are y = 0, x — ^z = 0, x — yz = 0,

respectively, and we at once see that these lines are tangents at the points I, J

respectively; moreover, at the point F, we have x, y, z=f, -., 1. Substituting these

values, the equation becomes

(j--^)(/-/3)(/-7) + ^.(/-«)(/-/3)(/-7) = 0,

viz. the equation is satisfied identically, or the curve passes through F; and similarly

the curve passes through G and H.

In precisely the same manner there exists a cubic curve I^JjiJ^FGH; viz. this is

I^JbJcFGH (* -az)(y-
1) (y

-
^)

-?{('-3(^-i)(^i)-(-/)(.'-i)(^-j)}-.
where the second term is an integral function, az" (— M'y + N'z) ; if, for shortness,

„,_! 1 1 1 1 1_1
~^7 7a a/3 gh hf fg~ a^y '

in virtue of the relation a^y =fgh; so that the second term is in fact =-^{—Cx+Bz).
py

Writing for shortness J.^, I^ to denote these two cubics respectively, we have

four other like cubics, Jb{= JbIcIaFGH), Ib{=^ IbJcJa^GH), Jc{=JcIaIbFGH), and

!(.{= If.J^JgFGH); the equations being

Ja; (
2/ - -

j
(^ - /S^) (a; - 72) + - {-Mx+Nz) = 0,

Jb\ (y--^{x-yz){x-az)Jr^-^ {-Mx+Nz) = 0,

Jc\ (y--]{x-az)(x-0z)+- {-Mx + Nz) = 0,
\ 7/ 7

Ia; ix-az){y-l){y-^) + f^(-Ny + Mz) = 0,

/,; ix-^z){y-^){y-'^ + ^J-Ny + Mz) = 0,

la; (^-yz){y-'^{y-^)+^{-^'y + Mz) = 0.
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We require the differences of the products Ia^a, ^h^h^ IcJc- We find

IbJb = (* -oiz){x- ^z) {x - 7^) [^1
- -

j
^2/
- -

j (^y
- -j +— (- Mx + Nz) (- Ny + Mz)

+ ;^
(- ^;!/ + Mz) (y - |)

{x - 7^) (a; - az)

+ '^^^-Mx + Nz){x-^z)(y-'^{y-'^-
7/

let n denote the sum of the two expressions in the first line. Similarly, we have

IcJc = ^+^^{-My + Nz)[y--Yx-az){x-^z)

+ -^{-Mx^Nz)ix-^z){y-'^j{y-'-^).

We have thence

7^/^. - IcJe = z-^

{^
{x - az) (- Ny^Mz)-(y-^-^ (- Mx + Nz)

X {-^(.-|l(-7^)-i(y-^)(-^:

the factors in
[ ) ai-e respectively

\1
=

(J
-
^) i.^y - ^") and (^M - ^] (xy - z%

so that we have

IbJb - IcJc = [-^-^~j{^-M]z^ {xy - z%

The constant factor

l\/N
V/3 7.

is

1-M-"

\a^ 7/ Vva /3/

if Pi, P2, P3 denote respectively the functions

N M N M N M
/S7 a ' 7a /3 ' a/3 7

'

Attending to the equation 0^87 =/gh, it appears that we have

D 1/ r> r IV /I 1 1 1 1 1\

with like values for P„ and P,.

C. IX. 71
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We have thus

I^J„- I,J, =-(P,- P,) z^ h-y - z--r.

and similarly

icJc -IaJa=-(P.- p.) ^' K^y - z%
IaJa - IbJb =-{P.- P^ ^'

i-'^!/
- z'y.

Any function IaJa + ^^' (^y ~ ^'f' where X is arbitrary, can of course be expressed

in the form I,iJ ^ + (6 ¥ Pi) z^ {ssy - z")', where 6 is arbitrary, and therefore in the

three equivalent forms

lAJA+{G + Pi)z'{xy-zJ,

J^Jj,+(e + P,)zHwy-z%

I,J,,+(e + P,)z'{xy-zJ.

We have ^ = 0, the line IJ : and wy-z'' = 0, the conic IJABGFGH. The equation

I iJ i-\-'Kz-{xy — z-)-=0 may thus be written in the more complete form

/ , J^J^.FGH . J_, IJ,.FGH + X, {IJf (IJABCFGHf = 0,

and we hence see that it is the equation of a sextic curve, having a triple point

at I, the tangents there being IA, IB, IC; having a triple point at J, the tangents

there being JA, JB, JO; and having a node (double point) at each of the points

F, G, H. There are thus in all (6 + 3) + (6 +3) + 3 + 3 + 3, =27 conditions, and these

would in general be sufficient to determine the sextic. The data are, however,

related in a special manner; viz. regarding the points /, J, F, G, H as arbitrary,

the lines IA. IB, IG, JA, JB, JG are not arbitrary, but satisfy the conditions that

A, B are arbitrary points, and G a determinate point, on the conic IJABG. And

the foregoing result shows that, this being so, there exists a sextic satisfying the

foregoing conditions, but containing in its equation an arbitrary constant X or 0, and

that the equation may be presented under the three forms

IaJbJvPGH . J, IJ,.FGH + {6 + A) (IJf {IJABGFGHf = 0, &c.,

corresponding to the partitions A, BG; B. GA; G, AB of the three points A, B, G.

In the case where /, J are the circular points at infinity, the conic IJABGFGH
is a circle passing through the six points A, B, G, F, G, H; and the condition

of the cubic involution of the triads (A, B, G) and {F, G, H) with the points (/, J)

is easily seen to be equivalent to the following relation, viz. the sum of the

distances (measured along the circle from any fixed point of the circumference) of

the three points A, B, G is equal to the sum of the distances of the three points

F, G, H.

The sextic is a tricircular sextic having the three points A, B, G for foci, and

having three nodes F, G, H, on the cii'cle ABG, two of them being arbitrary points,

and the third of them a determinate point on this circle. And it appears that there

exists a sextic satisfying the foregoing conditions, and containing in its equation an

arbitrary parameter.
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I proceed to find the equation of the curve.

Consider the curve (see Fig. 1, p. 552) as generated by the point 0, the vertex of

the triangle OC\Bi, connected by the bars 0^0 and -fi,fi with the fixed points C and B
respectively; and suppose, as before, CB = a, C\C = a„, B^B = a^, BiCi = ai, OGi=bi,

OBi — Ci ; and draw as in the figure the parallelograms GiCG.X) and B^BBjO
; then

may be considered as the intersection of a circle, centre C. and radius CJJ, with a

circle, centre B. and radius B,0. Take zC£'B = e, ^B,BC =
(f>:

the lines CC.,, BB,
are parallel to 06',, OB^ respectively, and consequently + (f)= tt — A, a relation between

the two variable angles 6, </>.

Taking the origin at C and the axis of a; along the line GB, that of y being

at right angles to it : the coordinates of G. are (6i cos 0, bi sin 9), and those of B^

are (« - c, cos </>, c, sin 0) ; the equations of the circles thus are

(« — bi cos 0)- +(y — bi sin 0)'- = a,",

{x — a + Ci cos (pf + (y — Ci sin <^)- = a^-
;

whence

+ ibiX cos + 'Zb^y sin = of' + y'+ b^- — a.^,

— 2ci (.r — «) cos <p + 2ciy sin ^ = (.v' — of + y" + Ci" — as",

which equations, writing therein for its value = tt — yl — <^ and eliminating the

single parameter 0, give the equation of the curve.

We in fact have

— 2b^x cos {A + (^) + 2bjy sin (A +(p)= w" + y" + bi- - a./,

— 2ci (x — a) cos
<f)

+ 2c,y sin </) = {x — a)- + y- -\- ci^
— a-^^

;

or say these are

P cos (^ + Q sin <^ = i?,

P' cos ^ + Q' sin (^ = P',

where

P = — 26,*' cos 4 + 2biy sin A, P' = — 2ci (« — a),

Q = 2biX sin A + 2biy con A, Q' = 2c,y,

R= ic- + y- + bi" — a.-, R' = {x- a)- + y- + c,- - a/.

The equations give therefore

cos<f> : sin0 : -1 = QR'-Q'R : RF - R'P : PQ' - P'Q,

whence

iQR' - QfPy + {RP' - R'Py- = {PQ' - P'Qf ;

and it hence follows that the nodes are the comnKjn intersections of the three curves

QR' - Q'R = 0, RP' - R'P = 0, PQ' - P'Q = 0.

71—2
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We have, retaining R and R' to denote their values,

QR' -Q'R = -2 [(Rc^ - R\ cosA)y- R'b, sin A . x],

RP' - R'P = - 2 [(iJci - R% cos A){x-a) + R% sin A {y - a cot A)],

PQ' -P'Q = -^ b,c, [x {x-a) + y{y-a cot A)].

Observing that ii = 0, i?' = are circles ; the equation QR' — Q'R = is a circular

cubic through the point x = 0, y = ; the equation RP' — -R'P = 0, a circular cubic

through the point x=a, y=acotA; and the equation PQ'—P'Q = 0, a circle through

these two points (and also the points x= 0, y = a cot A; x = a, y = 0). Hence the

first and third curves intersect in the point {x = 0, y = 0), in the cii-cular points at

infinity, and in three other points which are the nodes ; viz. the curve has three nodes,

say these are F, G, H. The second and third curves intersect in the point {x = U,

y = acoi A), in the circular points at infinity, and in the three nodes. As regards the

first and second curves, it is readily shown that these touch at the circular points at

infinity ; viz. they intersect in these points each twice, in the two finite intersections of

the circles i? = 0, R' = 0, and in the three nodes.

The three nodes F, G, H thus lie in the circle

X {x — a) + y (y — u cot A) = 0,

which passes through the points (« = 0, y = 0) and (x = a, y = 0), that is, the points

G and B. Assuming h= .
—

j^-, the circle also passes through the point a; = 6 cos C,

y=bsm C, that is, the point A of the figure. Thus the three nodes F, G, H lie in

the circle circumscribed about the triangle ABC.

Writing, for greater convenience,

R = XT +y- - e-, R' = 0? + y- - 2ax -p,

the nodes F, G, H lie on the two curves

Ci3/ {a? + y- - e-) — h^ sm A{x + y cot A){a?-\- y- — 2a-x —f^) = 0,

X- + y-= a(x + y cot A ).

The first of these is

[c^y — bj sin A (x + y cot A)] (x- + y')

+ [bi sin A (x + y cot A)/- — CiC-y]

+ 2a6, sin A (x + y cot A) x = 0.

We may combine these equations so as to obtain the equation of the triad of

lines CF, CG, CH ; viz. multiplying the second and the third terms of the first equation

(af^ 4- w^y X" + V"
by -TT J—, and —, —^—jv (each = 1 in virtue of the second equation), the

•^ a^{x + ycotAf a(x + ycotA) ^ "

equation becomes divisible by x- + y- : and, throwing this out, the equation is

Cty — 6, sin A {x + y cot A )

+ [6, sin Aix+y cot A)f^ - c.e^y]
^.^^^/^^,^y

+ 2biX sin .4 = 0,
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where the first and the thinl terms together are =(Ci — 6, cos 4) y + 6,a; sin4, viz. this

is = Oi sin B (x + y cot B). Hence, writing also in the second term tt, sin i? for 6, sin J.,

the equation is

{x + y cot A)' {x + y cot 5) + - 1(« + y cot A)f- - ~^^ y\ («' + y') = ;

or say this is

{x sin J + ?/ cos A )- {x sin B + y cos B)

sin >d sin -B (, • , a-. ,-, c,e'- ] , , ., .
+ -, |(.'' -^i" A+ycos A)/ '-j^y\ («^ + y-)=0;

viz. there is a term in x' + y'\ and another term

{x sin A + y cos -4)^ {x sin B + // cos B).

Suppose for a moment that tlie angles FBC, GBC, HBO are called F, G, B ; then

the function on the left hand must be

=M (x sin F— y cos F) (x sin G — y cos G) (x sin H —y cos H).

Writing in the identity x = iy, we have

(cos A -iri sin A Y (cos B-^-i sin B} = — M (cos F — i sin i'') (cos G — i sin G') (cos IT — i sin H)
;

and similarly, writing x = — iy, we have the like equation with — i instead of + i
;

whence, dividing the two e(juations and taking the logarithms,

4^ + 25 = 2/H7r -F-G-H,

which leads as before to the relation A' + B' + C" = F' + G' + H'.

In completion of the investigation, observe that M is determinately +1 or — 1

:

and that

sin J. sin£ {, . .. ,.., c, „ )
; <{x sm A + y cos A)/'— j- e'y\

is the linear factor of

M (x sin F— y cos F) (.» sin G — y cos G) (x sin H — y cos ZT)

— (xsin A +y cos .4
)'-

(*• sin B + y cos if),

which remains after throwing out the factor uf + y". Calling this linear factor px + qy,

we have

«^P ro • 1 orq ,,, . Ci „

sin A smB -^ sin .4 sin ij
-^

6,

or, as this last equation may be written,

d'q ,„ . sin G
,

sin .4 sin £ "^ sinB

Hence, writing a = k sin A , we have

/- = -r-^_ , e-=~. „ ( p cos A — q sin A)

:

•' sin B sin C" -^ '
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substituting for f- and e- their values, we have

- A-,- sin- C + k-i sin- A = ^K. -f k^ sm^ A,
sin zj

- h- sin^ 5 -f k.? am- A = -.—„ (peosA — q sin A ),sm

or, what is the same thing.

iVi~ A/'j- A/- , • 1 ^ • n\

sin-^ sin^C sin=^sm5sin=C'^''

k" sin F sin G sin i/

sin ^ sin C . sin J. sin B sin (7

'

fCj' fCa" n.'~ . •
>l V

^^r—A + -ITr^ = , ,
= fT-- 7, ( P COS ^ — O Sm .A)

sm= ^ sm'- B sm- ^ sin- BsmC^^ ^ '

_ k- sin {A - F) sin {A - g) sin (il - H)
sin y1 sin B . sin .4 sin B sin (7

which are the relations connecting k^, k.,, k~, when the foci and nudes are given.

It is to be remarked that if, for instance, F=0 and G = A, then A:i : k., : k^

= sin .4 : sin B : sin C ; the nodes in this case coincide with the foci. A simple example

is when A =B~C; the three triangles are here equal equilateral triangles. The general

equations show that, if l^, L, l^ are values of k^, k.,, k^ belonging to a given set of

nodes and foci, then the values ki^ = l^- + u sin'^ .4, k<? = li + u sin- B, kf = k" + u sin- C (where

i( is arbitrary) will belong to the same set of nodes and foci.

I write the equation of the curve in the form

{{QR - Q'R) + i {RP' - R'P)] {QR - Q'R - i (RF' - RP)\ - {PQ' - P'Qf = 0,

where

(QR - QR) -f i (RP' - RP) = (Re, - R% cos A)i (x-a- iy) - R% sin A [x -i(y - a cot A)}.

Calling I, J the circular points (x, x-\-iy=^Q) and (oo , x — iy = 0), this is a nodal

circular cubic having / for an ordinaiy point, but ./ for a node. Moreover, one of the

tangents at J is the line x — iy — 0, that is, the line JB ; in fact, writing as before

R = x- + y'- — e-, R = x- +y- — 2ax —/-,

then, when x — iy = 0, we have R = — e-, R =— 2ax —f", and the equation becomes

{- ce- + 6i cos A (2ax +/)] (— ia) + b, sin A (2ax +/-) (ia cot ^) = ;

viz. the term in x here disappears, or the three inter.sections ai'e at infinity. The

other tangent at J is the line x — a — iy = 0, that is, the line JC; in fact, when
x — a — iy = 0, that is, y = — i (x — a), we have R = 2ax — a^ — e", R = — a- —/'-, and the

equation becomes

{ci (2ax -a"- e") + b, cos A (a- +/-)} .0 + bi sin A (a- +/-) . a (1 + i cot ^) = 0,



623] ox THREE-BAR MOTION. 567

viz. the three intersections are here at infinity. The tangent at / is the line

x — b cos C +i(i/ — bsmC) = 0, that is, the line IA ; in fact, writing this in the form

y = ix — ib (cos <' -\-i sin U) = ix — iby,

(if for a moment cos + i sin = 7, and similarly cos.d + isin^ = a, cos5 + isin B= /3)

;

then, y having this value, we find

R = 2bxt/ — 6-7- — e'-, R' = 2 (by — a)x — b-y- —f",

= - ^ *• - H- -f- ;

and the equation becomes

C, {2byx - b"-y' - e=) \

2c ... ., .Af i(2x-a-by)
6i cos .4 f— ^ « - b-y- — e-

— 61 sin^ |— -a^~ b-y- — e-\ {2x+ ia cot A — by) =0.

The coefficient of af is here

or, since biC = bc^, this is

in vii'tue of the relation A + B + C =^ tt, giving a^y = — 1 : hence there is only one

finite intersection, or the line lA is a tangent.

The cubic in question

QR'-Q'R + i(RP'-R'P) =

is thus a nodal circular cubic which it is convenient to represent in the form

(I_,J„J,.FGH) = 0;

viz. this is a cubic, through / with the tangent IA, having J as a node with the

tangents JB, JC, and through the points F, G, H. Observe that, if F, 0, H were

arbitrary, this would be 2 + 5 + 3, = 10 conditions. The before-mentioned relation is, in

fact, the condition in order to the existence of the cubic.

Similarly the cubic

QR' - Q'R - i (RP' - R'P) =

is the cubic

{JJiJ.FGH) = 0.

The circle PQ'-P'Q = is the conic through /, J, A, B, C, F, G, H \ or it may
in like manner be written {IJABCFGH) = ; and we may wiite (/J) = 0, as the

equation of the line infinity. The functions denoted as above contain implicitly
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constant multipliers which give, in the equation of the three-bar curve, one arbitrary

parameter—and the equation thus is

(I^JsJcFGH) {JJshFGH) - e (IJT- {IJABGFGHf = 0,

a form which puts in evidence that /, J are triple points having the tangents

IA, IB, IC, and JA, JB, JO respectively (whence also A, B, G are foci), and that

F, G, H are nodes; viz. the result is as follows:

—

Taking A, B, C, F, G, H points in a circle, such that, Sum of the distances

(being the angular distances from a fixed point in the circumference) of A, B, C is equal

to the sum of the distances of F, G, H : then there exist the cubics {I^J„JcFGH) = 0,

{J^IjiI(FGH) = 0, and the sextic is as above.

Writing for shortness

{I_J„J,FGH) = /., , (JJJcFGH) = J,

,

then the above form is clearly one of three equivalent forms

U = IJ^ - e,D.\

= isJn - o,n\

This implies an identical linear relation between the functions I^Ja, IrJb, IgJo', whence

also TJ and H" are each of them a linear function of any two of these quantities.

I originally obtained the equation of the curve in a form which, though far less

valuable than the preceding one, is nevertheless worth preserving; viz. the equation

{QR' - Q'Rf + {RP' - R'Py- = {PQ' - P'Qf

may be written

{R- - P' - Q') {R'-' - P'' - Q'-') - (RR' - PP' - QQJ = 0,

which equation, substituting therein for P, Q, R, P', Q', R' their values, gives the form

in question.

Proceeding to the reduction, we have

iJ2 _ p= _ Q2 ^ (a;= + y^ + b,' - a;-)' " 4^:= («" + y')

= (*•' + y'f - 2 (ti= -I- a,=) (of + f-) + (6r - a^y

{x- +f-bi + a.J (x' + y--bi-a„_);

R'"--P"--Q'-=(x-a +y-^+c--a,J-Wi«:-a +f)

= {x-a+ y-f - 2 (c= -I- a^^) {x-a { y^) + (Cj= - a,")'

= {x- a +y^-Ci + a., ){x- a +y° - Ci-a, ).
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But the reductiou ui' RB' — PP' — QQ' is somewhat longei-. We have

RR - PF' - QQ' = Uv' + If + b;' - a^ (,r -a + if + c,' - a,-)

- 46iCi {x X — U + if) cos A — 46iC, ay sin A :

and here

26iCi cos A = bi- + Ci" — «i-, 2x {x — a) + 2f = *'- + f + (x — (()' + f — a'-,

also biCisinA = a^pi, if p, be the perpendicular distance of from the base .BiC^i-

Hence the second line is

• (^i' + Cj- — Uj-) (x- + f + X — a + f — a") — 'iua^p^y,

and the whole is

: (x- + y-){x-a -^f)

+ {x' + f) (ff,- - 6,'' - «/)

+ (x - a + If) («i- - c;- - o,-)

+ (6,- - «./) (cf - a/) + 0= (6i= + c,- - a,') - iaa^p^y
;

whence, finally, we have

RR' - PP' - QQ' = (.*- + y' + «,- - «,= - c") (x -a +f + «,- - a,- - i,-)

+ (a- + (t,- — «o- — a.f) (bj' + C]- — «!-) — 4ffa]/),?/.

Hence the equation of the curve is

{x- + y- — 6i + a„") (,/•- + y- — b,- a„ ) {x - a" + y- - Ci + rtj ) (a,- — a" + y-' — Ci - fts")

- {(*•- + </= + «,'- «/ - cr) (* - a +y- + «r - a^- - 6,-)

+ («.- + Of - a.^ - 0,3'-) (^1- + cf - «i-) - 4aaipiy)= = 0,

where pi is given in terms of the constants a,, b^, d by the equation

2«iPi = '\/26i-Ci- + ici-tti'- + 2ai-6i'' — cti'' — b^* — c^*.

There are in the equation two terms, {x- + y'^)-, {x — a + y-)\ which destroy each other,

and the remaining terms are of the order 6 at most. Hence the curve is a sextic

;

and it is, moreover, readily seen that the curve is tricircular. Assuming this, it

appears at once that the lines ,*• + iy = 0, x — iy = are tangents to the curve at the

two circular points at infinity. In fact, assuming either of these equations, we have

X- + 2/^=0, and the equation becomes

(6r - «./) (- 2ax + a- — Ci + ct, ) (— 2ax + a- — c, — «3

)

— {(oi'- - a-? — ci-) (— '2ax + a- + a^- - a,: — b,-)

+ (a- + «,- — «,- — «,,-)(&,- + c,- - a/) — 4,aaiPiy]'^ = 0,

a quadric equation. Hence there are on each of the two lines only two finite inter-

sections, or the number of intersections at infinity is = 4 ; viz. the line is a tangent

c. IX. 72
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to one of the branches at the triple point. Similarly, the lines x-a + ii/=0,

x-a-iy = are tangents. Thus the points C and B are foci. It might with some-

what more difficulty be shown from the equation that the point « = 6 cos C, y = b sin

fwhere as before 6 = *f"^„ \ viz. the point A of the ligure, is a focus; but I have
V_

'

sin B I

not verified this directly. It clearly follows, if we generate the curve by means cjf the

triangle OA.JJ., and the fixed points G, A. Hence A, B, C are a triad of foci, and

the theorem as to the nodes is that these lie on the circle drawn through the three

foci A, B, a

I prove in a somewhat different manner, for the sake of the further theory which

arises, the theorem of the triple generation ; for this purpose, constructing the foregoing

Figure 2 (p. 55.3) by means of the three triangles OBfi^, OG.,A.,, OAsB.,, but without

assuming anything as to the form or position of the triangle ABC, I draw through

a line Ow, the position of which is in the first instance arbitrary, say its inclination

to 00. is =1/; and drawing Oy at right angles to Ox, I proceed, in regard to these

axes, to find the coordinates of the points C, B. We have, for C,

j: = a., cos v + bi cos (v+ Z), ij = a. sin v + h, sin (v -\- Z);

for B,

X =c,cos(v + A+ Z) + ((3 cos {v + A + Z + V),

ij =Ci sin (v + A +Z) + a, sin (v+ A + Z+Y);

or, writing for V+Z the value -tt—X, so that

v + A+Z+Y=Tr + v + A-X,

the coordinates of B are

X = Ci cos (v + A + Z) — rta cos (v + A - X),

y = c, sin (v + A + Z) — a^ sin (v + A — X).

Taking the two values of y equal to each other, the equation to determine v is

a. sin v + bi sin (v + Z)- Ci sin (v + A+Z) + a3 sin (v + A - X) = 0.

We make the line Ox parallel to BG. so that, writing

x^cucosv +biCos{v + Z),

a: — a = Ci cos (v + A + Z) — O3 cos {v + A— X),

we have

(I = n., cos V + bi cos(v + Z) — c, cos (v+ A +Z) + a-, cos (u -f .4 - X),

which determines the distance BG, = a. And moreover, writing

y = a,, sin V + bi sin (v + Z),

= c, sin (u -I- ^4-1- ^)-rr,sin (v + A- X),
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we have y as the perpendicular distance of from BC, and x and (a — «•) as the

two parts into which BC is divided by the foot of this perpendicular. In the reduction

of the formula; we assume that the three triangles are similar; viz. we write

= ki(smA, sinB, sin (J), L(sinA, sin 5, sin C), A:3(sinJ., sin ii, sinC);

and we use when required the relation A + B + 0= tt.

The equation for v becomes

A', sin {V - (J + Z) + k., sin v + A-,, sin (u + ^ - Z) = 0,

which may be written

L sin 11 —M cos v = 0,

where

L =k, + A-, cos (Z-C) + k, cos (X -A),

M = - A-, sin {Z-G)Jr h sin (X-A);
hence, putting

k- = kr + A-,- + A-,-- + 2A-JI:, cos (X - ^ ) + 2A',A.-, cos {Y-B} + -Ik.k., cos (Z - C),

we have L- + M- = k-, that is, VZ- + M- = A', and therefore

A' sin v = M, k cos v — L,

which gives the value of v ; and then, after all reductions,

kx = k{- sin B cos C + k.;- sin A + k/ . + k.l:. sin A cos (A' — A )

+ kski [- sin B cos ( Y + A)]

+ k,L [sin (B- A)cos{Z+A) + 2 sin A sin B sin (Z + A)],

k (a — x) = k{- -sin (
' C( is B + Av . + Ay' sin A + k..k. sin A cos {X — A)

+ A-,A-, [sill ( r - 4 ) cos (
1" + ^ ) + 2 sin ^ sin C si n (r + 4 )]

+ A',A-,[-siiiC'cos(.Zr+^)],

and

ky = A-f sin B sin C + k.k., sin A sin (A' - A)+ k-.k^ sin i? sin ( F+ jl ) + A-jA'., sin Cs\n{Z + A ).

The first and second equations give A'a = A'- sin .d, that is, a = A- sin .4 ; and, similarly,

b = k sin B, c = k sin C ; viz. we have

(a, b, c) = A(sin.4, ain B, sin T/),

or the triangle ABC is .similar to the other three triangles, its magnitude being given

by the foregoing equation for A'=. These are the properties which give the triple

generation.

72—2
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Changing the notation of the coordinates, and writing (*•, y, z) for the perpend-

icular distances from on the sides of the triangle ABC, we have, as above,

kx = A.-,- sin B sin G + kl\ sin A sin (.Y - ^ ) + kj,\ sin B sin (Y + A) + k,k., sin G sin (Z + A ),

and therefore

ky = h? sin B sin G + kJc, sin A sin (
A' + i?) + kj.\ sin £ sin ( F - ,6) + ^'iL sin G sin (Z + B),

kz = kr sin sin ^ + kM, sin 4 sin (.Y + G) + k,k^ sin 5 sin ( F -I- G ) + /.;,/co sin G sin (^ - C),

values which give, as they should do,

X sin A +ysm B + zsin G = kr sin A sin 5 sin G.

Taking (*, y, z) as simply proportional (instead of equal) to the perpendicular

distances, then (x, y, z) will be a system of trilinear coordinates in which the equation

of the line infinity is

a,' sin A + y sin B + zsinG = 0;

and considering (x, y. z) as proportional to the foregoing values, and in these X, F, Z
as connected by the equation X + Y + Z =-7r and by the equation which determines k'-,

the coordinates (x, y, z) are given as proportional to functions of a single parameter,

so that the equations in effect determine the curve which is the locus of 0.

But to determine the order, &c., the trigonometrical functions must be expressed

algebraically ; and this is done most readily by introducing instead of X, F, Z the

functions

cos X + i sin X, cos F + i sin F, cos Z + i sin Z, = f , 77, f

;

and we may at the same time, in place oi A, B, C, introduce the functions

cos A + isinA, cos B + i sin B, cos G+i sin G, = a, /S, 7.

The relation X+Y + Z=ir gives ^';if=— 1; and similarly A + B + G = 17 gives

ai3y = — 1.

We have

cos(Z-^) = i('| + ^V ism(X-A)=},(^-'^\ &c.;

the equation k- = A',- -f- &c. becomes

or, as this may be written,

( - k^ + k^ + k./ + k/) + Lk, fI
-CLvi)+ kA

(I
- /3?f) + /.-, k,(^- 7^,;) = 0.

Also the value of x is proportional to

..(,-a(,-l).,,(,-J)(f-|).«,(.-J)(,,-A)...,(,-i)(..-.^
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or, what is the same thing, to

,.(,-^)(,.i),y,(,_>)(|..,,v«-,(.-|)(.,.?VM.(.-'i(<4'),

with the like expressions as to the values of // and z. Introihicing tbi' homogeneity

fc „ f .

a quantity a), viz. writing -
,

- , - in place of ^, 77, ^, we have the parameters
ft) ft) ft)

(^, •);, f, ft)) connected by the homogeneous equations

^,f + w- = 0.

, _ ^.= + A;. + ki + ^,-') ft)^ + k, k, (^^^
- 37;^) + tA C^

- /3?f) + k, A',

(I'
- 7^,;) = 0,

and the ratio.s of the coordinates are

.:y: . = ^-.^ (/3 -1) (-y
- 1) ft,= + L^, (« - 1) (^ + «.?)

.^.A,(/3-l)('';+/3r?).w.(,-^)(^fft)+|)

^/(«-^)(^-^)- + A'A(«-J)(7^co+^

+ /., A, (/3
-
J)

(v^ft) + ^) + kL [y - ^) (^
+ y^v

Suppose, for shortness, these are x : y : z — P : Q : R. Observe that the form of

the equations is f»;f+ft)' = 0, fl = 0, and x : y : z — P : Q : R, where fl and P, Q, R
are each of them a quadric function of the form (&>-, co^, ar}, ft>^, i/f, ^^, ^rj), the terms

in p, 7;-, f- being wanting.

Treating (f, »;, f, (o) as the coordinates of a point in space, the equation ^7;f+a)' =
is a cubic surface having a binode at each of the points (^ = 0, ft) = 0), {r) = 0, &) = 0),

(f=0, ft) = 0), and the second equation is that of a quadric surface passing through

these three points : hence the two equations together represent a sextic in space, or

say a skew .sextic, having a node at each of the.se three points. The equations

x : y : z = P : Q : R establish a (1, 1) correspondence between the locus of and

this skew sextic. To find the degree of the locus we intersect it by the arbitrary line

ax + by + cz = 0; viz. we intersect the skew sextic by the quadric surface aP +bQ + cR = 0.

This is a surface passing through the three nodes of the skew sextic, and it there-

fore be.sides intersects the skew sextic in 12 — 2.3, =G points. Hence the locus is

(as it should be) a sextic.
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I consider the point ?; = 0, f = 0, w = 0, or say the point (1, 0, 0, 0), of the

skew sextic. This is a node, and for the consecutive point on one branch we have

7) : ^ : (0= me : le- : ne, where e is infinitesimal. The equation of the cubic surface

gives Im + ir = 0, and the equation of the quadric surface gives kls

.

l>:i^'f/v = 0,

that is, k^a) = ayk\r}, which, in fact, determines the ratio I : m : but it will be

convenient to retain the eijuation in this form. For the corresponding vahies of

(a:, y, z) we have

x:y .z= ^.(«-3 «+^^.(7-^)^

7/'/3

: k; (a -
^
j 7&> + /,-, [^

-
- j 77;,

which, writing foi- k.w its value = aykitj, become

..y:z= [a-l«) 'y+('y-
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give the circular points at infinity; viz. writing

cos A +i sin A, cosB + i sin B, cos C + i sin C=a, j3, 7,

the coordinates for the two points respectively are

X : y : z = — 1 : 7 ' a '"^"^ x : 1/ : z = —l : : /3= -1 :
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singly-infinite series of in- and circumscribed triangles, so that, drawing from a point

A of the circle tangents to the parabola again meeting the circle in the points B
and C respectively, BC will be a tangent to the parabola ; or, what is the same

thing, starting with the triangle ABC inscribed in the circle, we can, with the

arbitrary point A' on the circle as focus, describe a parabola touching the three sides

of the triangle ABC: viz. the parabola described to touch two of the sides of the

triangle will touch the third side.

Taking, then, a circle radius ^k, and upon it the three points A, B, C determined

by the angles 2a, 2/3, 27 respectively (viz. the coordinates of A are w, y = ^kcof^2a,

|A;sin2a, &c.), and a point K determined by the angle 2k (suppose for a moment

the origin is at K), the equation of a parabola having K for its focus will be

X- + y- = (a; cos 26 + y sin 26 — pf,

or, what is the same thing,

{x sin 26 -y cos 26f + 2p {x cos 26 ^-y sin 26) - //- = 0,

where 6, j) are in the first instance arbitrary ; and the condition in order tiiat

^a- + r]i/-\- ?=0 may be a tangent is easily found to be

P (f + t) + 2f cos 26 + 2r, sin 26 = 0.

It is to be .shown that j), 6 can be determined so that the parabola shall touch

each of the lines BG, CA, AB.

Taking the origin at the centre, the equation of BC is

a; cos (/3 -f 7) -I- 2/ sin (/3 + 7) — A k cos (/3 — 7) = 0,

as is at once verified by showing that this equation is satisfied by the values

X, y = \kco&2l3, J A; sin 2/3, and =^A;cos27, J i- sin 27.

Hence, transforming to the point K as origin, the equation is

[.r +\k cos 2a:] cos (/8 4- 7) -|- [y + \k sin 2k] sin (/3 -I- 7) - P' cos (/3 - 7) = ;

viz. this is

X cos (/3 + 7) + y sin (/3 -I- 7) - hk [cos (/3 - 7) - cos (^ -I- 7 - 2/c)] = ;

or, finally, it is

*• cos (/3 -I- 7) -h ^ sin (yS -I- 7) - k siu (/c - /3) sin (/c - 7) = 0.

Hence the condition of contact with the line BC is

p = 2k sin {k - /3) sin (k - 7) cos (26-13-y);

and, similarly, the condition of contact with the line CA is

j) = 2k sin {k — 7) siu (k — a.) cos (26 — 7 — a)

:
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viz. these conditions determine the unknown quantities p, 6. It is at once seen that

we have
2^-/3-7 = ^7r-(«:-a), that is, 261 = i7r - /c + a + /S + 7;

and then

p = 2^- sin {k — a) sin (« — /S) sin (/c — 7)

;

from symmetry, we see that the parabola touches also the side AB.

Suppose, next, F, G are points on the circle determined by the angles 2f, 2g;

retaining p and to denote their values,

^) = 2/,-sin (k - a)sin (/c - /3)sin («r — 7), and 29= ^tt — k +a+ j3 + y,

the condition, in order that FG may be a tangent, is

p = 2k sin (k -/) sin (« - g) cos (2(9 -J-g);

viz. determining // by the equation

a + /3 + 7=/+r/ + /i,

this is

p = 2A'sin («• —/) sin {k — g) sin (k — It),

or, what is the same thing,

sin (K— a) sin (/c - /3) sin (a: — 7) = sin {k —f) sin («• — g) sin (« — /t)
;

viz. this equation, considering therein h as standing for 01 + ^ + y—f— g, is the

I'elation which must subsist between f and g, in order that the line FG may be a

tangent to the parabola. And then, h being determined as above, and the point H
on the circle being determined by the angle 2h, it is clear that the lines GH, HF
will also be tangents to the parabola ; viz. FGH will be an in- and circumscribed

triangle, provided only /', g, h satisfy the above-mentioned two equations. The latter

of these, if / </, h satisfy only the relation a + ^ + y = f-\-g-\-h, serves to determine

K ; and then, 6 and k denoting as above, the equation of the parabola is

X- + y- = {x cos 26 + y sin 29 — pf ;

and it thus appears that the condition in question, <^ + ^ + y =/+ g + It, is equivalent

to, the condition that the triangles ABC, FGH shall be circumscribed to the same

parabola.

It is to be remarked that the distances KA, KB, &c. are equal to ksm(K — a),

k sin {k — /3), &c. ; hence the condition

sin {k — a) sin (k — B) sin (« — 7) = sin (k —f) sin (k — g) sin (/c — A)

becomes
KA.KB. KG = KF.KG . KH;

viz. the focus if is a point on the circle such that the product of its (linear)

distances from the foci A, B, C is equal to the product of its (linear) distances

from the nodes F, G, //.

c. IX. 73
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It is to be remarked that the foregoing equation in k determines a single position

of the point K ; viz. it determines tan k, and therefore .sin 2«- and cos Ik, linearly.

The equation is, in fact, a cubic equation in tan k, satisfied identically by tan K=i

and tan *: = - i, and therefore reducible to a linear equation.

Write for a moment tan k = a, and

(tan K - tan o) (tan k - tan ^) (tan « — tan 7) = oj^—pw- + r/o) - r,

(tan K - tan/) (tan k - tan g) (tan k - tan /() = &>•' - pw- + qw - r
;

also

M = cos/cos g cos h -=- cos a cos /3 cos 7.

Then we have
0)' — pw- +qco— r = M (o)'' — ^/o)" + q'co - /'),

where
p = r + Mir'-2}), q=l + M{q'-l).

Substituting these values, the equation becomes

o)' — ?•&)- + 03 —7- = M {q3^— r'oo" + o) — r),

viz. dividing by ta- + 1, this is co - r = 31 {(o- r'); or substituting for r, r', M their

values,

(cos a cos jS cos 7 - cos/cos g cos h) tan k = (sin a sin /8 sin 7 - sin/sin g sin h),

which is the value of tan/t, and then

. - 2 tan /c , 1 — tan- k
Sm ZK = :; ;

—- , COS '1k = ;,
: -—

.

1 + tan- K I + tan- k

It may be further noticed that, if the parabola intersect the circle in a point L,

and the tangent at L to the parabola again meet the cii-cle in M, then, if 21, 2m

are the angles for the points L, M, we have I, m, m for values of / g, It, whence

I, m are determined by the equations

I + 2m = a + /3 + 7, sin (« — /) sin= (k - m) = sin (k - 0) sin (k - /B) sin (k - 7)

;

but as the circle intersects the parabola not only in two real points, but in two

other imaginary points, there is no simple formula for the determination of I and m.

To determine the linkage when the nodes are given, suppose that, in the generation

by 0, the vei-tex of the triangle OBfi^, we have at the node F: then, if t, a

are the distances of C, B from the node in question, we have, as in the memoir,

(hi- + T- — a.?) CiO- = (cf + ff- — «.'-) ijT,
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that is,

(?),- — a.P) Cj<T — {Ci- — a,-) biT + ctt (CiT — bia) = 0,

01-, what is the same thing,

(6,- — a„-) CO- — (ci'- — «/) br + o-t {ct — 6cr) = 0.

Suppose, as in the figure, that F is between B and A ; then, if AF = p, we
have CT = ba + ap, and the equation becomes

(6,- — «/) ca — (c,- — a.,-) 6t + apar = 0.

Similarly, if, as in the figure, G is on the other side of A, that is, between A
and (', and if p', a, r' be the distances AG, BG, CG, then ba' = ct' + ap', that is,

ct' — ba' = — ap', and the corresponding equation is

We hence find

But we have

that is,

also,

and

(br - aJ) ca' - (cr - a.f) bV - apa'T = 0.

(if — a.?) c (a-T — (j't) + utt' {pa + p'a) = 0,

{ci- — tts-) b (ctt' — o-'t) + aaa (pr + p'r') = 0.

BG . CF=BF.CG + BC . FG,

ct't = ctt' + a . FG, or ctt' — <t't = — a . FG
;

po- + p'o-' = AF.BF+AG. BG, = FG . GH, = FG . t",

pT+pV = AF. CF + AG. CG, = FG . BH, =FG.a",

as may be shown without difficulty, p", a", t" being the distances AH, BH, GH.
Hence the equations become

c (6i- — tto") — tt't" = 0,

b (Ci" — a^) — aa'a" = 0,

showing that, the foci being as in the figure, 6,- — a," and Cj" — as^ are each of them
positive; viz. that, in the generation by the triangle OC^Bi, the radial bars a.,, a^ are

shorter than the sides 6,, Ci respectively. Substituting for 6,, &c. the values k^siuB, &c.;

also, instead of k^, k.,, k^, introducing the quantities \, \.,, X3, where

i'l, k.,, ^3 = \, sin.4, X.jsin^, X.;sinC,

these equations become

c (A-i" — X.?) sin- A sin- B = tt't",

b (X,- — X3-) sin- A sin- = era'
a'

;

or, as these may be written, putting for shortness il/= sin ^ sin 5sin 6',

M'^kF (Xi^ - X?) = c tt't",

M'^k' (Xr - X3=) = b aa'a".

73—2
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All the quantities have so far been regarded as positive, and the formulse are

applicable to the particular figure ; but, to present them in a form applicable to any

order of the nodes and foci, we have only to write the equations in the forms

M'- (\,"- - V) = k- sill (a - /3) sin (/- 7) sin (g - 7) sin (^ - 7),

M- (X,- - X..r) = k"- sin (a - 7) sin (/- ^) sin (g - /3) sin (li - /3)

;

and these may be replaced by the system

M' ( \.,- - X3-) = k'^ sin {/3 - 7) sin (/- a) sin {g - a) sin (li - a),

M- (X,- - x;-) = k- sin (7 - a) sin (/- /3) sin (g - /3) sin (h - /3),

i¥- (X,- - X?) = k- sin (a - /3) sin (/' - 7) sin (g - 7) sin {h - 7),

since the first of these equations is implied in the other two ; and then, reverting

to the original form, we may write

M%^ (XJ - X.;-) = BG.FA.GA.HA,

M^k- (X,- - X,=) ^GA.FB.GB. HE,

M"-t (Xr - X./) = AB.FC . GG . HG,

it being understood that the distances BG, FA, &c., which enter into these equations,

are not all positive, but that they stand for isin{/3 — 7), A; sin (/—a), &c., and that

their signs are to be taken accordingly. Or, again, these may be written

BG (c,- - b./) = FA.GA. HA,

GA (ctf - c,:) =FB.GB . HB,

AB{W-u.?) = FG .GG .HG,

where the signs are as just mentioned. We may say that +(c.- — 63") is the modulus

for the focus A ; and the formula then shows that this modulus, taken positively, is

equal to the product of the distances FA, GA, HA of A from the three nodes

respectively, divided by BG, the distance of the other two foci from each other.
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624.

ON THE BICURSAL SEXTIC.

[From tlie Proceedings uf the London Mathernatical Society, vol. vii. (1875—1876),

pp. 166—172. Read March 10, 1876.]

In the paper " Oti the mechanical description of certain sextic curves," Proceedings of

the London Mathematical Society, vol. iv. (1872), pp. 105—111, [504], I obtained the bicursal

-sextic as a rational transformation of a biuodal quartic. The theory was in effect as

follovifs: taking fi, P, Q, R, each of them a function of \, /j, of the form (*][1, A,)-(l, /x)-,

and considering (\, n) as connected by the equation n=0, (viz. \, /x being coordinates,

this represents a binodal quartic), then, if we assume x : y : z = P : Q : R, the locus

of the point {x, y, z) is a curve rationally connected with the binodal quartic, viz.

the points of the two curves have with each other a (1, 1) correspondence ; whence

the locus in question, say the curve Z7=0, is bicursal. The degree is obtained as the

number of the intersections of the curve by an arbitrary line, or, what is the same

thing, the number of the variable intersections of the corresponding Xytt-curves

n = 0, aP + /3Q + 7i2=0,

viz. each of these being a quartic curve having the same two nodes, the nodes each

count as 4 intersections, and the number of the remaining intersections is 4 . 4 — 2 . 4, = 8,

and thus the curve J7=0 is in general of the order 8. But if the curves fi = 0,

i-' = 0, Q = 0, R = have (besides the nodes) k common intersections, then these are

also fixed intersections of the two curves D = 0, aP + /3Q + yR = 0, and the number of

variable intersections is reduced to 8 — ^' ; we have thus 8 — k as the order of the

curve U=0. In particular, if /: = 2, then the curve is a bicur.sal sextic.

The theory assumes a different and more simple form if, in the several functions

f2, P, Q, R, we suppose that the terms in \-, fi- are wanting. The curves n = 0,

J' = 0, Q = 0, R = are here cubics having two common points; the curve U=0, qua
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rational transformation of the cubic D, = 0, is still a bicursal curve; but its order is

given as the number of the variable intersections of the cnbics

11 = 0, aP + 0Q+yR=O,

viz. this is =3.3-2, =7. But if the curves fl = 0, P = 0, Q = 0, R = have (besides

the before-mentioned two common points) k other common points, thea the number of

the variable intersections is = 7 — ^ : and this is therefore the order of the curve

11=0. In particular, if k = l, then the curve is a bicursal sextic. And, in the present

paper, I consider the binodal sextic as thus obtained, viz. as given by the equations

D, = 0, X : y : z = P : Q : R, where il = 0, P = 0, Q = 0, R = are cubics, having (in all)

three common points.

The bicursal sextic has in general 9 nodes ; but 3 of these may unite together

into a triple point: this will be the case if, in the series of curves aP + 0Q +'yR = 0,

there are any two curves which have 3 common intersections with the curve = 0.

(Observe that we throughout disregard the 3 common points of the curves 12 = 0,

P — 0, Q = 0, R=0, and attend only to the 6 variable points of intersection of the curves

= and aP + /8Q + 7-R = 0,— the meaning is, that there are two curves of the series

such that, attending only to the 6 variable intersections of each of them with the

curve fi = 0, there are three common intersections.) For, supposing the two curves to

be aP + I3Q + yR = and a'P + /S'Q + y'R = 0, then any curve whatever

aP + 0Q + yR+d(oL'P + l3'Q + y'R) = O

has the same three intersections with the curve = 0, say these are the points

Ai, A^, As, the coordinates of which are independent of 6. Hence the line

(ax + 0y + yz) + e {OLX + /S'y + y'z) =

intersects the curve U=0 in six points, three of which, as corresponding to the points

^1, A„, A-i, are independent of 6, viz. they are the same three points for any line

whatever of the series; and this means that the curve U = has at the point

{ax + 01/ + yz = 0, a'x + 0't/ + y'z = 0)

a triple point ; and that to this triple point correspond the three points A^, A„, A3.

We may, in the series of lines ax + I3y + yz+ 6 {a'x+ 0'y + y'z) = 0, rationally determine

6 so that one of the three variable points of intersection shall con-espond to A^, A.^,

or A-^; viz. 6 must be such that the curve aP + /3Q + 7P + ^ (a'P + ,8'Q + 7'P) = shall

touch the curve O = at one of the points A^, A., A^. The three lines thus determined

are the three tangents to the curve at the triple point : and the three branches may
be considered as corresponding to the three points A^, A,_, A^, respectively.

There is no loss of generality in assuming that the triple point is the point

{x=0, ^ = 0); the condition then simply is that the curves P = 0, R = shall have

three common intersections with the curve 0=0; and the tangents at the triple point

are x+ 6z = 0, 6 being so determined that one of the three variable points of inter-

section shall correspond to one of the three points A-^, A„, A-^: in particular, if this

is the case for the line « = 0, then this line will be one of the tangents at the

triple point.
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The bicursal sextic may have a second triple point, viz. three other nodes may
unite together into a triple point. The theory is precisely the same : we must have

two other curves aP + ^Q + yR = 0, a'F + /3'Q + y'R = 0, having with the curve fl =
three common intersections Bi, B.., Bj-. there is then a second triple point

(aa; + fit/ + yz = 0, ax + ^'i/ + y'z= 0);

and, to find the tangents at this point, we must determine so that one of the

variable points of intersection of the line

ax + ^y + yz+0 (a'w + fi'y + y'z ) =

with the sextic shall correspond with B^, B.>, or B^; viz. must be such that the curve

aP + ^Q + yR+0 {a'P + fi'Q + y'R) = shall touch the curve fl = at one of the points

B^, B.2, B3. In particular, if, as before, the curves P = 0, i? = have three common
intersections with the curve fl = 0, and if, moreover, the curves Q = 0, R = have

three common intersections with the curve fl = 0, then the bicursal sextic will have

the two triple points (x = 0, z = 0) and {i/=0, 2 = 0); and it may further happen that

the line x = is a tangent at the first triple point, and the line y =0 a, tangent at

the second triple point. The sextic may in like manner have a third triple point, but

this is a special case which I do not at present consider.

I write for greater convenience in place of X, fi, .so as to make fl, P, Q, R

each of them a homogeneous cubic function of (X, /i, v) ; and I give to these functions,

not the most general values belonging to a bicursal sextic with two triple points, but

the values in the form obtained for them, as appearing further on, in the pr(jblem of

three-bar motion ; viz. the equations ^ = 0, x : y : z = P : Q : R are respectively taken

to be

V {hv\ +f\') + fji {fjv- + ev\ + fjX') + /i- {fv + hX) = 0,

X : y : z = Xfj, {aX + bp.) : v-{c\+dfj-) : Xfiv.

The four curves fl = 0, P = 0, Q=0, i? = have thus the three common intersections

(^ = 0, v=0), (v = 0, X = ()), (X = 0, fi = 0),

represented in the figure by the points A, B, C ; the curve drawn in the figure is the

curve fl = 0, and the points F, G, H are the third points of intersection of the cubic

with the lines BG, GA, AB respectively.

The equation P + 0R = Q is here X/j, {aX + bfj, + 0v) = 0, which intersects fl = in

the points G, A, G, G, B, F, and the three intersections by the line aX + hiJi + 0v = Q\
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viz. excluding the fixed points A, B, C, the six intersections are C, F, G, and the three

intersections by the line. Hence, of the six intersections, we have C, F, G independent

of 0, or we have {cc = 0, z = 0) a triple point, say /, corresponding to the three points

C, F, G, viz. these are the points

(X, fi, i/) = (0, 0, 1), (0, g, -/), (h, 0, -./•), (0, F, G).

The equation Q+6E = is v {c\v + dfxv + OX/x) = ; viz. the line v = meets fl =

in the three points A, B, H, and the conic cKv + diJbv + dXfi = meets fl = in the

points A, B, C, and three other points: hence, rejecting the points A, B, C, the six

points of intersection are the points A, B, H, and the three variable points of inter-

section by the conic ; or we have {y = 0, z =0) a triple point, say /, corresponding to

the three points A, B, H, viz. these are the points

(\, ti, v) = {l, 0, 0), (0, 1, 0). (/^ -g, 0), {A,B, H).

To find the tangents at the triple point I, these are x -^ dz = 0, where 6 is to be

successively determined by the conditions that the line aX + bfi,+ 6v = shall pass

through the points C, F, G* ; viz. we thius have

^ = 0, x = 0, the tangent corresponding to the point C, (0, 0, 1),

e = + ^l, fx + hgz^O, „ „ „ „ FiO,g,-f),

6 = + '-^, fa + ahz^O, „ „ „ „ G,{h,0,-f).

And similarly, at the triple point J, the tangents are y + dz = 0, where 6 is to be

successively determined by the conditions that the conic cvX + dvfj. + BX/j, = shall pass

through the point H, and shall touch the cubic at the points A, B; viz. we thus have

6 = 0, y = 0, the tangent corresponding to the point B, {h, - g, 0),

e = ^, fy + cgz = 0, „ „ „ „ ^,(1,0,0),

^ = ^, fy+dhz=0, „ „ „ „ B, (0, 1, 0).

The two last values of d are obtained by the consideration that the equations of

the tangents to fi = at the points A, B respectively, are gfi,+/v = 0, h\+fv = 0,

where X,,
fj,,

v are current coordinates of a point on the tangent: it may be added

that the equation of the tangent at the point C is h\ + gfx. = 0.

* Observe the somewhat altered form of the condition : S is to be determined so that the cubic

X/x(aX + 6/i + e>') = shall touch the cubic = at one of the points G, F, G : but, as the first-mentioned

cubic breaks up, and the component curve a\ + b/x + ev = does not pass through any one of these points,

this can only mean that 8 shall be so determined as that the line shall pass through one of these points,

viz. that there shall be at the point, not a proper contact, but a double intersection, arising from a node

of the cubic \/i(a\ + bfi. + ev) = 0. And the like case happens for the other triple point; viz. there the cubic

p{ci'\ + dvij. + e\/j.) = is to touch the cubic = at one of the points A, B, H ; the component conic

ci'\ + di'ii + e\fi= passes thi-ough the points A and B but not through H ; hence the conditions for are,

that the conic shall touch the cubic at A or B, or that it shall pass through H.



624] ON THE BICURSAL SEXTIC. 585

The three-bar curve may be represented by means of a system of equations of

the last-mentioned form, viz. x : y : z= \/j.{a\ + bfi) : v-{cX+dfj,) : Xfiv, where \, fi, v are

connected as above ; or, taking A', Y as ordinary rectangular coordinates, x, y, and z

are here the circular coordinates ~ = X -\- iY, • =X — iY, and z=\; and the parameters

- , - denote like functions cos 6 + i sin 6, cos (b { i sin A of angles which are the

inclinations of two bars to a fixed line. Using, for convenience, Figure 2 of my paper

on Three-bar Motion, (p. 553 of this volume), the curve is considered as the locus of

the vertex of the triangle OC\Bi, connected by the bars (7,C and B^B with the fixed

pohits £ and C respectively ; and we have 00^ = lu, OC\=bi, OBi=Ci, C,5i = ai, BiB = u^.

Also, to avoid confusion with the foregoing notation of the present paper, instead of call-

ing it a, I take BC= a^: the angle OC^B^ is =C], and cos Oj -|- 1 sin Cj is taken =7.

Hence, taking the origin at C, the axis of X coinciding with GB and that of Y
being at right angles to it : taking also 6, (/>, -v/r for the inclinations of CCy, G^Bi, and
B^B to CB, we have

cu cos 6 + «i cos
(f)
— a = — a.j cos yjr,

a« sin 6 + a^ sin ^ = ^a sin i^
;

viz. writing cos -h » sin = X, cos c^ -I- 1 sin <^ = yit, these give

a..\ + (hfi — a„ = — «3 (cos ylr — i sin i|r),

CTo - + a, o„ = — Oj (cos yjf + i sin -v/r),

that is,

(«A -I- Oi/u. - a) icu r + «! «„) - rts' = ;

viz.

(«„•- -H a,- -(- a.? - a-f) + a^cu Vjr+-]- "oSs (^ + >r)
~ ""'^i (^ + ") = ^•

for the relation between the parameters \, fi. And then

X = cu cos d + bi cos ((^ -I- C'l),

F = tto sin + bi sin (^ -|- C\)
;

viz. if a,', y = X + i Y, X — i Y, then

fx
= a-.X + b.^jif/,

,

y=a,T-+b.,—

,

X jifi

which equations determine the coordinates {x, y) in terms of the parameters X, fi con-

nected by the foregoing relation.

C. IX. 74
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Writing for homogeneity — , - in place of \. /i, and -, - in place of *•, y, the

•equations become

(«,,- + tti" + a.r — a-/) Xfiv + (/, (to (X- + fj,'-)
V — a„a..^ {v- + \-) — a„a{K

( |U.- + v'-) = 0,

and

X : y : z = (cuX + Ly^ fi) Xfi : l—X+a.fih'- : Xfiv.

Comparing with the foregoing equations

e XfjLv +f(X- + /M-)v + g (v- + X-) fi + A (yu,- + v-)X= 0,

and

X : y : z = (aX+hfi)Xfi : {cX + dfj,)v- : Xfiv,

the equations agree together, and we ha\e

je = a,f + fii" + aJ — a..-,

/= + ai«o,

(/ = - a„a.,,

h=-a„ai,

-\ II = a.,,

h = 6i7i.

h

,d= a.,.

c =

The tangents at the triple points thus are

cc=0,

aiX — u„bi'yiZ— 0,

X — a^z = 0,

^ = 0,

a,y 2 = 0,
7i

y-a„z = Q;

viz. restoring the rectangular coordinates, and for 7 substituting the value cos (7+ 1 sin C,

for rto writing a, and taking b= '
, we have

X + iY=0, X-iY=0,

X + iY=h (cos C+i sinC), X - iF= 6 (cos C-i sin (7),

A' + /Y = (/„

,

A"" — (' F = (^,

;

viz. the first two intersect in the point (0, 0), the second two in the point {bcosC,

bsinC), the third two in the point (a, 0): the first and third of these are the points

B and C, the second of them is the point A of the figure ; viz. the formulas give

the point A, forming, with B and (7, a triad of foci.
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625.

ON THE CONDITION FOR THE EXISTENCE OF A SURFACE
CUTTING AT RIGHT ANGLES A GIVEN SET OF LINES.

[From the Froceeditujs of the Londun Mutheriiatical Society, vol. viii. (1876—1877),

pp. 53—57. Read December 14, 1876.]

In a congniency or doubly infinite system of right lines, the direction-cosines

a, 13, 7 of the line through any given point (x, y, z), are expressible as functions

of X, y, z\ and it was .shown by Sir W. R. Hamilton in a very elegant manner
that, in order to the existence of a surface (or, what is the same thing, a set of

parallel surfaces) cutting the lines at right angles, adx -|- ^dy + 'ydz must be an exact

differential: when this is so, writing V = \ {adx
-\- I3dy + ^dz), we have V = c, the

equation of the system of parallel surfaces each cutting the given lines at right angles.

The proof is as follows :—If the surface exists, its differential equation is

adx + ^dy + ydz = 0, and this equation must therefore be integrable by a factor.

Now the functions a, /3, 7 are such that a- -)-/8- + 7-= 1, and they besides satisfy a

system of partial differential equations which Hamilton deduces from the geometrical

notion of a congi'uency ; viz. passing from the point (x, y, z) to the consecutive

point on the line, that is, to the point whose coordinates are a; + pa, y + p^, z + py

(p infinitesimal), the line belonging to this point is the original line; and conse-

quently a, /3, 7, considered as functions of x, y, z, must lemain unaltered when these

variables are changed into x + pa, y + p/3, z + py, respectively. We thus obtain the

equations

rfa d-x da _
dx dy dz '

dl3 ^d/3 dl3 ^ay+yS r + 7 J =0,
dx dy dz

ax dy dz

74—2
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Combining herewith the equations obtained by differentiation of at- + 0- + y- = ^, viz.

da ^dS dy

da ,^d8 dy

da -d8 dy ,^

and subtracting the corresponding equations, we obtain three equations which may be

written

. Q _ ^/5 dy dy da da d^
dz dy ' dx dz ' dy dx

'

ka, k-0, ky,

or, what is the same thing,

djS dy dy da da dff

dz dy ' die dz ' dy dx

and, multiplying by a, /3, 7, and adding,

\dz dy) \dx dz) \dy dx

We thus see that, if the function on the right-hand vanish, then k = 0, and conse-

quently also

d^ dy dy da da d(3

dz dy' dx dz' dy dx
each =

;

viz. if the equation adx + /3dy + ydz = be integrable, then adx + 0dy + ydz is an

exact differential ; which is the theorem in question.

But it is interesting to obtain the tirst mentioned set of differential equations

from the analytical equations of a congruency, viz. these are x = mz -\- p, y = nz+q,

where 711, n, p, q are functions of two arbitrary parameters, or, what is the same

thing, p, q are given functions of in, n ; and therefore, from the three equations,

m, n are given functions of x, y, z. And it is also interesting to express in terms

of these quantities wi, \i, considered as functions of x, y, z, the condition for the

existence of the set of surfaces.

We have

m n
«, 13, y ="^, ^ , ^ , where R=^l + m- + n-

and thence without difficulty

d ^ d d\ 1

dx dy dz}

Id a A d\n ^

\''Tx^^dy^^dz)^=R^

. , dm dm dm
^^+"-^^'"dx+"d^ + d^

dn dn diim J- + ft J- + Jdx dy d.

d ,, d d'

dx dz R'

) + (l + m-) (

) - (
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so that the re(]nire(I e(]uations in a, (3, 7 will be satisfied if only

dm dm dm
in-j- +H-r- +-7 =0,

ax dy dz

dn dii dnm— +«-=- +-5- =0,
ay dz' dx

and it is to be shown that these equations hold good.

Writing for shortness dp = Adm + Bdn, dq = Cdiii + Ddn, the equations of the line

give

, dm , dm „ dn
l=z~j~ + A -J- + B -j^,

dx dx dx

„ dm
. , dm ,, dn

dy dy dy

dm
, dm ,, dn— m = z J- + A + B -j~

,

dz dz dz

. dn
, ,, dm

, r. dn= z ;j- +C - + D -J- ,dx dx dx

1 _ *'" r<
^^"' n '^'^

'"
dy dy dy

'

dn dm
. r> dn-n=z -,- + G -,- + i> -T- ;

or, writing

X, /x, (' =

so that identically

dz dz '

""
dz

dm dn dm dn dm dn dm dn dm dn dm dn
dy dz dz dy ' dz dx dx dz ' dx dy dy dx

'

^ dm w,.„ w.,.dm dm
dy dz

^ dn dn dn „

Xj-+/u.-j- +v J- =0,
dx dy dz

then in each set, multiplying by \, /x, v and adding, so as to eliminate A, B, G, D,

we tind

\ — mv = 0, fM— Hv — 0.

Substituting these values of X, yu, in the last preceding equations, v divides out, and

we have the two equations in question.

The foregoing equations give further

. „ „ ,, 1 dn 1 dm
A, B, G, D = -z +

1 dn
3 +

V dy' V dy ' v dx'

Taking for a, j3, 7 the before-mentioned values, we find

da d/3 _ 1 /dm dn\ m f dm dn\ n /

dy ~ die
~ R\djj~ Tx) ~W V" dj

* " dj/l ~W [

(dm dn

1 dm
V dx

'

dm
dy '

" dyj R^ \ dx

d)i\

dx)

1 f,, ,, dm ,, ,„ dn

fff + «>
dy - (1 + '"">

d^ + ""'
U.'

~
dy)\ '

and similai'ly, but using the equations

dm dm dm „ dn dn dn .m -^ + n-j- + -,— = 0, m -y- + vt j + -7- = 0,
dx dy dz dx dy dz
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to eliminate the coefficients , ,
-^ which in the first instance present themselves,

dz dz

find

(Z/3 ^7 w I,. „.dm dn (dm dn\

Tz-TrR'r^'"'^dy-^'+"'-Ki.-''""[-dj^'-d-i,h'

dy da _ n

dx dz R'
]

whence, multiplying by 7, a, /3, and adding,

"[Tz-iii^^Kd.- dzrndy—dx)

1

1 + m- + n-

. dm ,, .,,dn (dm dn\]

or we have

X
dm

, , „, dn
,

fdm dn\ ^
^

dtj dx \dx dyJ

as the condition for the existence of the set of surfaces.

It is clear that the condition is satisfied when the lines are the normals of a

given surface : seeking the surfaces which cut the lines at right angles, we obtain

the parallel surfaces; and we are led to the theorem that any parallel surfiice is

the locus of the extremity of a line of constant length measured off from each point

of the surface along the normal—or, what is equivalent thereto, the parallel surface

is the envelope of a sphere of constant radius having its centre on the surface. I

will verify the theorem for the case of the ellipsoid. Taking A", Y, Z as the

X- F^ Z"
coordinates of a point on the ellipsoid -1^ +-77+^ = 1, and a; y, z as current

ordinates, the equations of the normal are

co-

h-

-y (.r - Z) = y {y -Y) = ^(z-Z), (= X suppose).

We have therefore

and thence

X, Y, Z =
a-x h-y c'z

a-x-
.+

a" + \' h- +\' c" +X'

, + ;

c-z- = 1,
{a-+ X)- {b- + \)- (c"-+\)-

aii equation which determines X as a function of x, y, z.

The direction-cosines a, /3, 7 of the normal are proportional to
X Y Z

,- ,
-

, that
6- c-
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is to '''
. ,~— , — , ii'"*! the conation a'-' + /8- + 7- = 1 then determines theii'

a- + \' h- + \ c?-ir\

absolute magnitudes: the equation adx + ^dij + ydz = dV thus is

xdx ydy z dz

a" + \ h- + \ (? + \ , ,,= a V,

'J.
^_ _L __2/!__ + .

(a= + \)-- (6- + \)"- (c- + \)'=

viz. the left-hand side, considering therein X as a given function of V, is an exact

differential. We verify this by finding the value of V, viz. writing down the two

equations

tt? f z- V- ^

(((- + A.)--' (b^ + xy (c- + xy X-

x" y- z' V'
,J- .^— + =1

a- + X h- +\ c- + X X

these are equivalent in vii-tue of the equation that determines \; and it is to be

.shown that, regarding V as given by either of them, say by the second equation, we

have for dV its foregoing value. In fact, differentiating the second equation, the

term in dX disappears by virtue of the first equation, and the result is

aidx ydy zdz ^'^^_(,
a- + X h" + X c- + X X

in which substituting for . its value from the first equation, we have for dV the
A.

value in question. Regarding V as a given constant, the two equations give, by

elimination of X, an equation <^ {x, y, z, V) = 0, which is, in fact, the surface parallel

to the ellipsoid and at a constant normal distance = V from it.
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626.

ON THE GENERAL DIFFERENTIAL EQUATION -%+jy^^'

WHERE A', }' ARE THE SAME QUARTIC FUNCTIONS OF

X, y RESPECTIVELY.

[From the Proceedings of the London Mathematical Society, vol. viii. (1876—1877),

pp. 184—199. Eead February 8, 1877.]

Write <ti = a+h6-\-c6- + d&' -^^ eO*, the general quartic function of 6; and let it be

required to integi-ate by Abel's theorem the differential equation

We have

a particular integral of

x", X, 1

,

\IX = 0,

y-, y, 1, x/F

z'-, z

,

1

,

\i'

Z

w", w, 1, \IW

dx dy dz dw _

and consequently the above equation, taking therein z, lu as constants, is the general

integi-al of

viz. the two constants z, iv must enter in such wise that the equation contains only

a single constant; whence also, attributing to w any special value, we have the general

integral with z as the arbitrary constant.
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Take w= x; the equation becomes

a;^ X, 1, i\/X = 0,

2/% 2/, 1, VF
^^ ^, 1, V-^

1 , 0, 0, Ve

a relation between cc, y, z which may be otherwise expressed by means of the identity

e{e"-+^e + 'yr-{ee' + de' + ce"-4-h0-va) = {2^e-d){d-x){e-y){e-z),

or, what is the same thing,

e (27 + /3-) - c = - (2/3e - rf) (a; + y + z),

e 2/3y -6= (20e - d) (yz + zx + wy),

e 7- a = — (2/3e — rf) a;y^.

where /3, 7 are indeterminate coefficients which are to be eliminated.

Write

then we have

giving

^x + 'Y + P = 0, ^y + y + Q = 0;

: J : 1=Q-P : Py - Qx : x - y.

Substituting these values in the first of the preceding three equations, we have

that is.

^
2(P,-Q.)(.-,) + (Q-Py _^_|2(Q-P)^._

2{Qy-Px)(Q-Pr2{Q-P)

or, reducing by

x-y + ;t +{x-yY x-y

xxjX -ysfi

z\ =c + d{x+y + z)\

Qy — Px = y^ — af + '-

Ve

this is

Q-P = 2,-.-+ --^^, =y--x-+iy-x)-,r{ M^'^-^-,

(2(x^/X-y^/Y) „ iW- „. sM ^, , „ il/

= c + d(x + y+z) + e(x + yf.

"We have Euler's solution in the far more simple form

M"-=G \-d{x + y)-\-e{x + y)\

C. IX. 75
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where C is the arbitrary constant. It is to be observed that, in the particular case

where e = 0, the first equation becomes

M- = c + d {x + (/ + 2) ;

and the two results for this case agree on putting G = c + dz.

But it is required to identify the two solutions in the general case where e is

not =0. I remark that I have, in my Treatise on Elliptic Functions, Chap, xiv., further

developed the theory of Euler's solution, and have shown that, regarding as variable,

and writing
p = ad' + b"-e - 2bcd + C [- 4ae + bd+(C- cf],

then the given equation between the variables *•, y, C corresponds to the differential

equation
doo dy '^^ _(\

a result which will be useful for effecting the identification. The Abelian solution

may be written

^('^'^^-^'{^^-af-f + ^-2(a; + y)^\-c-d(a: + y) = z{d + -2e(x + y)-2M^e};

and substituting for M its value, and multiplying by {x-y)\ the equation becomes

2^e{x-y){x^JX - y ^/Y) - eiK? + y^{x- yf + {^X - >jYf

-2{x'-f-)WX-^/Y)s/e-cix-yf-d(x+y)(x-yf

= zix- y) [d {x-y) + 2e {x? -y"-)-2 yX - ^/Y) ^/e}.

On the left-hand side, the rational part is

X+Y+c(-ay' + 2xy-y-) + d(-.v' + x-y + xy- - t/^) + e (- ar* + 2*-=y - 2x-y"- + 2xy'' - y%

which, substituting therein for X, Y their values, becomes

= 2a + h(x + y) + c . 2xy + d xy {x + y)-\-e. 2xy (a^ - xy + y-)
;

and the irrational part is at once found to be

= 2^/e{x-y){x^/Y-y VZ) - 2 VZF.

The equation thus is

f2a + b(x + y) + c . 2xy + dxy {x + y) + e . 2xy {x- — xy + ^'-)|

1 +2^/e{x-y){x^/Y-y ^fX) - 2 VXT
z =

(*• - y) {d {x-y) + 2e (x^ -y^)-2 {^X - V F) ^le]

which equation is thus a form of the general integi-al of -T^>+y^=0, and also a

particular integi-al of 7t? + "/t7+ T7= 0-
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Multiplying the numerator and the denominator by

d {x - 2/) 4 2e {x- - 2/=) + 2 {s/X - V 1') >Je,

the denominator becomes

= {X - yf [(rf + 2e {X + y)j= - 4e
(
^^"^^

Jj ,

which, introducing herein the C of Euler's equation, is

= (a; - ?/)« (rf- - 4eC).

We have therefore

z (x - yf (d- - 4e(7) = j2a + 6 (,r + ?/) + c . 2a-!/ + d xy {x + y) + e. 2xy {a? -xy \- y-)

+ 2^/e{x-y){x^lY-y^X)-1^IXY} x {d{x-y) + 2e(x'-f-) + 2^eWX-^/Y)}.

Using (5 to denote the same value as before, the function on the right-hand is, in

fact,

= {x - yy {2be -cd + dC + 2^e VS}

;

^nd, this being so, the required relation between 2, G is

z (rf- - 4eC) ={2be-cd + dC+2^/e Vej.

To prove this, we have first, from the equation

{^^^^J=G + dU + y) + eix + yy-,

to express 6 as a function of x, y. This equation, regarding therein C as a variable,

gives

and we have therefore

dx dy dC

dC
viz. i^X , will be a symmetrical function of x, y. Putting, as before

^j_ 'JX-^Y
x-y '

we have

C= M--d(x + y)-e{x + yy,

and thence

dC ^,jdM
o / , ^

We have

dM^ 1 X' yz-vF
dx~ x-y 2^X {x-yy '

75—2
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^^^^

and hence

V(S {x -yr = - VX {x - yf
J21/

'^-d--2e (.c + ^)|

= -(x-y)X' wx - V F) + 2 (z + 1' - 2 vno ^X

+ {d+-2e iiT+y) (x - yY ^/X

= [(.^• - y) X' + 2X + -2Y+(d+2ex + y) {x - yf\ ^X

+ [(.x--,y)X'-4Z]VF.

We obtain at once the coefficient of VF, and with little more difficulty that of

VZ ; and the result is

v'6 {x -]!)' = - [4a + 36a- + 2cx' + dx" + y {b + 2cx + M>;- + 4ear')] V Y

+ [4a + Sby + 2cy- + dy'' + .« (6 + 2cy + 3dy- + 4e.v0] V-X".

We have also

G{x- yf = (s/X - VYf -d(x + 7j)(x-yy--e (x + yf (x - yf

= X+Y-d{a?- x-y - .xy"- + y')-e (x* - 2x-y- + y')-2 VAT
= 2a + b (.r + y) + c (x- + y-) + d xy {x + y) + 2e x-y- - 2 VZ7,

or, say

C{x - yf = 2a (x -y)-\-b{x-- y-) +c{x^-afy + xy- - y') + d xy {x- - y-)

+ 2e off (x -y)-2(x- y) ^XY.

We can hence form the expression of

{x - yf I2be -cd-^dC+2^e V6),

viz. this is

= (26e - cd) {x - yf + 2ad {x -y)+bd (ar - y-) + cd (xfi - x-y + xy- - y*) + d- xy (x- - y^)

+ 2dexy (x-y) -2d (x - y) 'JXY

+ 2 Ve {[- (4a + 36a; + 2cx' + dx"") -y{b + 2cx-^ 3ck= + 4ear')] ^/ Y

+ [(4a + Zby + 2cy- + df) + x{b-\- 2cy + My- + ief)] y/X],

and this should be

= {2a + b(x + y}-\-c. 2xy + d xy {x + rj) + e. 2xy (a--^ - xy + y"-)

+ 2 Ve (« - y) (* VF- y VZ) - 2 VZF) x [(i (a; - y) + 2e («^ - y^) + 2 Ve (V^ - VF)1.

The function on the right-hand is, in fact,

= {2a + b{x + y) + c. 2xy + d xy (« + y) + e . 2xy (x- - xy + y-) - 2 VZ F)

X [d {x -y)+2e {x^ - f)\ + 4e (* - y) (VZ - V 1') (.*• VF- y VZ)

+ 2 Ve {-JX - V F) {2a + 6 (.« + y) + c . 2«y + rf a;;/ (a; + y) + e . 2xy («= - .«y + y-) - 2 VzT}

+ 2 Ve (^ - y) (.' VF - y VZ) {rf (a,- - y) + 2e (a;= - y=)l.
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viz. this is

= {2a+b(x + y) + c. 2xy + dxy{x + y) + e. 2xy {a? - xy + y-)]

X [d (x-y) + 2e {x' - /-)} + 4e (*• - y) (-xY- yX)

- 2 VIT (d (a; - ^) + 2e (a,-'^ - y-)\ +^e{x- y) {x + y) VZF

+ 2>Je i >JX [2a + h{x + y) + c. 2xy + cZ Avy (*• + y) + e . 2«y (ar^ - a;y + y-)\

+ 27- (a; - y) y [ci (a; - y) + 2e {a? - yO]}

- \/Y [2a + h {x + y)-\-c . 2xy + d xy {x + y) + e . 2xy (x" — xy + y") I

+ 2X- (x -y)x[d {x -y) + 2e{x'- y-)]]

which is, iu fact, equal to the expression on the left-hand side.

To complete the theory, we require to express \/Z as a function of *•, y. It

would be impracticable to effect this by direct substitution of the foregoing value

it 1' fill fi 9*

of z ; but, observing that the value in question is a solution of -p^ + -~- H = 0,
V-A. \/Y kJZ

or, what is the same thing, that
~/x'^ l7 ir-~^' lY'^ 17 l'~'^'

^^^ ^'^'^ *^"°'" ^i^^^^"

of these equations, considering therein ^ as a given function of x, y, calculate s/Z.

Writing for shortness

^ J-2>^ey{x-y)^/X + 2^/ex{x-y)^Y-2'^TY
^

R-2'^e{ac-y)'^X+2^Je{x-y)sJY
where

R=(x-yr\d + 2e{x+y)],

J=2a + b (x + y) + 2c xy + d xy {x + y) + 2e xy {x- — xy + y-) ;

iV
or, if for a moment z = j:, then

da; D- \ dx dx } tjX

'

that is,

D^V dx--dx)'~D^'''^'^''''^'

or, wi-iting for shortness X', R , J to denote the derived functions -,— , -,—
, j-

,

dY
( Y' is afterwards written to denote -j- , but as the final fonnulffi contain only

A''', =-j—, and F', =-j-, this does not occasion any defect of symmetry), we Hud

o = X\R' y/X - 2 v/e Z - ^/e (x - y) X' + 2 Ve VX Y}

-D [J' sJX-2 ^/eyX - ^Je{x-y) yX' + 2 ^e{2x - y) -JXT-X'^Y] ;
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and substituting herein for N, D their values, and arranging the terms, we find

n = sle 21 + 33 V-Y + 6 Vr+ Ve 3) ^^ Y,

where

^=-J\2X + (o:.-y)X'}

-2{x-y)yR'X

-4XF

+ Ry[1X^{x-y)X']

+ 2{x-y) Xr
+ 2{x-y)X'Y,

(S = -4:ey (x - y) X
-2e(x- y) X [2X + (.r - y) X']

- 2R'X

+ RX'

+ 2e{x-y)y [2X + (x-y) X'}

+ 4e (« - y) (2x - y) X,

58 JR
+ 2e{x-y)y[2X + (.r-y)X'}

+ 4ea; (.c — y) Y

-RJ'

-2e{x-y)y[2X^{x-y)X'\

-4e(a'-2/)(2a.--2/) Y,

2) = 2.7

+ 2 {x - y) xR'

+ 2\2X + {x-y)X']

-2(2x-y)R

-2{x-y)X'

-2(x-y)J',

where the terms have been written down as they immediately present themselves ; but,

collecting and arranging, we have

?l = 2X{-J+Ry-2Y) + ix-y) [2XJ' + 2X'Y- X'J - 2yR'X + yRX'] ,

35= JR'-J'R-'ie(x-yyY,

6 = - 2XR' + X'R + 4e {x - yfX -2e{x- yY X',

2) = 2J+ 4X - 2i?a; + 2 (x - y) (xR' -R- ./').

To reduce these expressions, writing

M = d + 2e{x + y),

A = c + d(x + y) + e (x- + y-),

we have R = (x - yf M, and therefore R = 2 {x - y) M + 2e (x - //)- ; also

J=X+ Y-{x-y)-A;
also, from the original form,

J' = b + 2cy + d (2xy + y-) + e {6x"y - ^xy- + 2y').

The final values are

31 = -X^- QXY- Y"- + {x- yY {A'^ +{-b + dxy)M+ xyM%

33= {x-y)M\^Y-^{x-y)Y'\ +2e{x-yfY',

6 = - {x - y)M (4Z - {x - y) X'} -2e{x- yf X',

2)= 4(Z+F) + 4e(a;-2/)^

which, once obtained, may be verified without difficulty.

i
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Verification of 21.—The equation is

-X--6XY- Y' +{x-ijy[A' + {-b + dxy) M + xyM-}

= 2X(-J + Ri/-2 Y) + (*• - ij) {2XJ' + 2X'Y- X'J - 2yKX + yRX'\
;

or, putting for shortness

A- + (- 6 + dxy) M + xyM- = V

,

this is

(a;-yy^= Z-' + eZF+F-

+ 2X [- X - 3F+ {X - yf A + {x - yf yM \

+ {x - y) [2XJ' + 2X'Y-X'J- 2yRX + yRX'],

= -X-+ Y' +2{x- yf X\ + 2{x- yf yXM
+ (*• - y) \2X.J' + 2X'Y-X'.T- 2yR'X+ yRX']

;

we have -Z-+ F-'= -(X - F)(Z + F), where X-Y divides by x-y, ={x-y)^
suppose; hence, throwing out the factor x — y, the equation becomes

{X -yf'7=-il (X + i') + 2 {X -y)XK + 2{x-y) yXM
+ 2XJ' + 2X'Y- X' [X +Y-{x- yf A)

-2yX[2{x-y)M+2 {x - yf e] + {x - yf yMX',

= -n {X + F) + 2XJ' - X' (X - F)

+ 2{x-y)XA-2{x-y) yXM

+ (* - yf X'A -4.{x- yf eyX + (*• - yf yMX'.

We have 2XJ' = J' {X + F) + J' {X - F), and hence the first line is

= (-n + ./')(Z + F)+./'(X- F);

— fl + J', as will be shown, divides by x — y, or say it is = {x — y) <&, and, as before,

X— Y is ={x — y)il\ hence, throwing out the factor x — y, the equation becomes

{X - yf V = * (Z + F) + n (J' - X') + 2ZA - 2yXM + {x-y) [X'K - ieyX + yMX'}.

We have

n=b + c{x + y) + d (X' + xy + y-) + e (j-'^ + A'-y + xy- + y'),

and thence

— n + ./' = c (— X + y) + d{— X- + xy) + e (— .<? + hx-y — oxy- + if) ;

or, dividing this by {x — y), we Hnd

ft> = - c — rf« — e (a- — 4f^ + y"),

or, as this may be written,

* = - A + f/y + 4e.fy.
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We find, moreover,

./' -X'=2c{-x + y) + d (- 2,x- + 2xy + y-) + e (- 4a;'' + ijx-y - 4*y + '2.y^),

which divides by {x - y), the quotient being

- 2c - cZ (3a; + ^) - e (4a;- - 2xy + 2?/-),

viz. this is

= - 2A - {x - y) (d + 2ex).

Hence the equation now is

(x - 2/)= V = (A' + F) [- A + dy + ^exy\ + 2A'A - 2yXM

+ (*• -y)n{-2K-(x- y) (d + 2ex)}

+ {x-y) [
X'A-ieyX+yMX' }.

The first line is

(Z + F) {-A+yM + 2 {x - y) ye} + 2XA - 2yXM,

which is

= (A - yM) (X -Y) + 2 {x - y) ey {X + F);

hence, throwing out the factor x — y, the equation becomes

(.^ -y)V ={A-yM)VL + 2ey (X + F) - 2An + A"A - 4:eyX + yMX' -{x-y)D. (d + 2ex)

= (A + yM) {-n + X') - 2ey {X -Y)-(x-y)^{d + 2ex).

We have

— n + A"' = c (a; — y) + (Z (2a,'= — xy — y-) + e (8x^ — x-y — xy- — y'),

which is ={x — y)(A + xM): also {X — Y) = {x — y) fl, as before; whence, throwing out

the factor *' — y, the equation is

V = (A + xM) (A + yM) - 2eyn -(d + 2ex) n,

that is,

V = (A + a;il/) (A + yM) - Mil
;

viz. substituting for V its value, reducing, and throwing out the factor 71/, the

equation becomes

-b + dxy = (x-i- y) A-il,

which is right.

Verification of 33.—The equation is

J [2 {x -y)M + 2e {x - yf} - J' (x - yfM - 4e (x - y)- Y

= 4 (a; - y) MY + {x - yf MY' + 2e {x - yf Y',

which, throwing out the factor x — y, is

0=2M{-J+2Y) + {x-y)M (J' + F') + 2e{x-y){-J+2 Y) + 2e {x -yf Y'.
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Heie-J+2F, = — (X — F) + (a — y)- A, is divisible by {x — y): hence, throwing out the

factor X — y, the equation is

= ilf {- 26 - 2c {X + ?/) - 2d {x- + a'j/ + y") - 2e (ar' + a-'y + a;?/= + y»)}

¥M{J'+ Y') + 2M (x -y)A+2e{-J+2Y) + 2e (x - y) ¥'.

In the first and second terms, the factor which multiplies M is

c (- 2x +2y) + d{- 2a,'= + 2y-) + e (- 2x^ -\- '^y - 6xy- + ^f),

which is divisible by x—y; also — J + 2Y, = - (A' — F) + (« — y)- A, is divisible by {x — y):

hence, throwing this factor out, the equation is

Q = M\-2c + d{-2x-2y) + e{- 2a;- + 2xy - 43/^)} + 2Jlf

A

+ 2e\-b - c (x + y) - d {x- + xy + y-) - e{a^ + a?y -\- xy- + 'f)]

+ 2e{x-y)K + 2eY'.

Here in the first line the coefficient of M is = e {2xy — 2y-) : hence, throwing out the

constant factor 2e, the equation is

= -b-c{x + y)-d (a- + xy -\-y-)-e (x' + afy + wy^ + f) + 1" + {x - y)yM + (x - y) A.

The first five terms are

= c{—x+y) + d{—!c^-xy + 2y-) \- e{— x^ — a?y — xy- + 3y*),

which is divisible by x—y; throwing out this factor, the equation is

= - c - rf (a- + 2y) - e (a- + 2a;y + S^/^) + A + yM,

which is right.

Verification of (S.—We have

- 2Z j2 (a; - y) M + 2e {x - yf] + (x - y)- X'M + 4e (x-yfX- 2e (a- - yf X'

= -(x-y)M\^X-{x-y)X'\-2e{x-yfX',

which is, in tact, an identit}-.

Verification of 2).—The equation may be written

4Z + 4F+4e0c-2/y

= 2Z + 2F-2(a;-y)=A

+ 4Z-2a-(a;-y)=ilf

+ 2{x-y)[2{x-y)xM+ 2ex {x - yf - M {x - yf - J'\,

viz. this is

= 2Z - 21'- 4e (a; - 2/)* - 2 {x-yf A + 2x{x-yfM
+ 4ea; (a; - yf - 2M {x -yf -2{x- y) J'.

c. IX. 76
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The first term 2 {X — Y) is divisible by 2 (x - y) ; throwing this factor out, the

equation becomes

= b + cix+y) + dix'' + xij + /) + e (a.-^ 4 .c'y + xf + y-') - J'

- 2e (x - yY -(x-y)K + x{x-y)M + 2ex (x - yY - M(x - yf.

Substituting for ./' its value, the first line becomes

c{x- y)-^d (a- - xy) + e(xr'- 5x^y + 5xy- - y%

which is divisible by (x—y)-. hence, throwing out this factor, the equation is

= c + rfa- + e { A- - 4a;j/ + y-) - A +xM - 2e (x - yf + lex (,r - y) -M (x - y),

where the sum of all the terms but the last is = d {x — y) ^- e {1x- — 2xy) : hence, again

throwing out the factor x-y, the equation becomes

= fZ + -lex - 2e {x - y) ^- -lex - M,

which is right.

ftX (lAJ

Recapitulating, we have for the general integral of TTf"^7y~^' *''^ ^^^ ^

. , . . „ dx dy dz ^
particular integral ot -jy + jy+ .„ = U,

_ J-2^/e{x-y)ysJX+-2 Ve {x -y)x'^Y-'2. '^YY
^~ ix-yrM-2sJe(x-y)^JX+2^Je{x-y).sJY '

the corresponding value of \/Z being

Ve [- X= - 6XY - F- + (*• - yY {A"- + (- 6 + dxy) M + a;yilf -|]

+ [14F + {x - y) F') M+2e{x- yY F'] {x - y) ^X

- [{4X - (x ~ y) X'] M +2e(x- yY X'] (x-y)^Y

,y_ + [
i(X+Y) + ie{x-yr] VZF

v-^ [(a;-yyM-2y/e{x-y)^X + 2^eix-y)>^YY-

^vhel^e, as before,

M = d+2e (X + y),

A = c + d(x+ y) + e(x- + y-),

J = 2« + b (./ + y)+ 2cxy + dxy (x + y) + exy (x" - xy + y-)

:

also A' is the general quartic function a. + bx + car + rfa;^ + ex*, and F, Z are the same

functions of y, z respectively.

lu connexion with what precedes, I give some investigations relating to the more

simple form ©=a + c^= + e^^ or, as it will be convenient to write it, = 1— W" 4-^*.
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We have
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dx citj

is a particular solution of the differential equation ,y+ /ir=0. Moreover, taking the

first equation in the before mentioned form

— 2 =
x' — y'

x>JY-y^JX'

and writing therein z=<x>, we see that the second equation

X, \/X =

is, in fact, a particular case of the first equation, so that we only require to verify

the first equation ; or, what is the same thing, to verify that

— z =
OCT — y-

is the general integral of

X \JY — y >^/X

dx dy

Vx'^Ty'

To verify this, we have to show that dz = nl -py + -rp-j , viz. that sJX ^- = 11,

dz
a symmetrical function of {x, y); for then >JY^ =il, and we have the relation in

question.

We have

{x^Y-y ^Xf V^J,
= V^Y \{x^ - f) (V F - ^^^) -2x{x^Y-y VX)|

= v/X |(..-= -y^- 2a?) ^Y- ^^-^=^^' + ^V V^j

= -{*= + f) VZF+ 2xyX - i (^— f) yX'.

Writing here Z = 1 - k- + *\ then X' = — 2Za' + 4a?', and we have the last two terms

= ^xy (1 - Za- + of) + {x^ - y-) xy (l - 2x')

= xy !2 - 2lx-+ 2x* + {x?-y')(l- 2xP)}

= xy{2-l{x-+ y^) + 2«^y-j

.

Hence the equation is

(x^JY-y ^f'Xf ^X £-- (.->? + f) \IX Y+ xy [2-l{x'+ y') + 2xhj%

or we have

H: {x^Y-y^Xy-\-{x' + y^ VXF + xy (2 -l{x- + y^ + 2x''y%
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which is symmetrical iu {x, ij), as it should be. And observe, further, that since

dx du (L ^

the equation is a particulai- solution of -^-^ + ~iv- + / ^ = 0, we must have fl = — JZ

:

\/Ji V ' v ^
viz. we have

<JZ(x^Y- ij sjXf = - (*•= + -f) VZr + a;y {2 - ; (*~ + y-) + 2^y=).

Proceeding to the next case, where we have between w, y, z, w a relation which

may be written

then here a, b, c, d can be determined so that

{c6- + dY (1 + /36^^ + 7(9^) - (06"^ + hO)- = &y {6- - x') (0= - f) {0^ - z^) {6- - w-),

viz. we have d- = c-y afy'z^w', or say d = c*/'yxyzw. And, supposing the ratios of a, b, c, d
•determined by the three equations which contain (.t-, y, z) respectively, we have

a : b : c : d={x, or ^X, >JX) : - («', x" s/X, ^X) : (or', x, ^JX) : - (x'', x, x' ^X),

or in particular

d, _ - (x', X, a? ^X) _ -xyzjaP, 1, .r yX)
c (^, X, V-Y) ' ~ (^•=, X, sJX)

'

whence we have

^^_ (^, 1, xs/X)

{a?, X, ^X)

as a new form of the integral equation ; viz. written at full length, this is

— w = X'^ 1, X yX

Z\ 1, Z ^JZ

CI?, X, sjX
;

r. y, vr
2?, z, ^z

and taking lu = and = 00 respectively, we thus see how

x\ 1, x^X =0,

z\ 1, ir V^

-are each of them a particular integral of

a?,
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this will be a general integral if only

, r^ f dx dii dz \

viz. if we have

— JX -^ r^—'—T=^ = fi, a symmetrical function of (*, y, z).

ax {a?, X, >JX)

The expression is

or, writing for shortness

a =x {y- — Z-), a = yz (y- — z"),

^ = y (z- — X-), h = zx {z- — .t"),

y=z(x-- y% c = xy (or - f),

we have

and the formula is

{X-, I, X VA') = a VA' + /3 V 1' + 7 \/Z,

(.t\ .r, ^/X) = a. ^IX + b \/Y + c ^Z ;

(*•=, X, ^lxy^

= (a VA: + ^ Vi'+ 7 ^Z) {{y'z - yz') \X' + (- %c?z + z') VAF + (3a;--y - f) 4XZ\

-{a^X^b^Y^c slZ)\{xf-^){X^\X'x)-'lxy^XY-^^xz^XZ\

= («VA + /3VF+7V-^)(2.+il/VZF+ i\^VZ^)

- (a VA' + 6 VF + c \/Z) (P + Q VA Y+ R 'JXZ), suppose,

s/X +VF -^^/Z +^TYZ
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The coefficient oi'^XYZ is here

which is

+ z (11? — y-) (— 'iafz + z^)

— zx{z-— ur) (2:rz)

- xy («-= - y-) (- 2*2/)

= f{z'-x'){^x--y-)

+ z-{jr-y-){-9a? + z'')

— 2a?z:-{z- -J?)

= Qx'^y'-z- — y'-z* — y*z- — z'-x* — z^x'' — x*y- — x^y*.

The coefficient of ^/Y is

= [x {y- - 2-) (- -ix-z + z') + y^; (y-' - z') 2xy] X
^y{z"-- x^) ^X' {y'z - yz^) - zx (z"- - x^ (f - z-) {X + ^X'x)

= - 2xz («= - 7/=) (y^-z"-)X-z {a? - f-) {f - z') (z' - x^) I-

X'

= - {x' - f) (f - z"-) z{2xX + ^ (z' - ,^) X'}

,

where the term in ( }
is

= 2a,' (1 - Ix- + ar") + (z- -x-)(- Ix + 2x'\

= x[2-l{z-+a?) + 2z-x'],

or the whole coefficient is

= -{x:'- f) (f - Z-) zx {2-/{z-' + X') + -Iz'x?].

We obtain in like manner the coefficient of \/'Z, and with a little more trouble that

of V-^; ^'iid the final result is

n {x^ X, s/Xf = - (2^ - ,?) {a^ - y-) yz{2-l (y- + z") + 2y^2=j ^/X

- (a-' -
<J-) (!/' - 2-) zx{2-l (z- +x')+ 2z'ar] VY

- if - ^0 (^' - *-) a;y\2-l (x- + y-) + 2xhj^ >^Z

+ {^x'^y-'z' - y-z" - y'z' - z-x^ - z'afi - x'y* - x*y^) ^1XYZ.

And inasmuch as the equation is a solution of

dx dy dz ^^ _ r,

^'^Ty'^ sTz^Tw' '

it follows that Q. = — >JW, viz. that \/W is by the foregoing equation expressed as a

function of .*•, y, z.

The equation {a?, x, x^sjX, •JX) = Q, that is,

a?, X, X- \/X , \/X

z\ z, z- ^Z , sjZ

W', W, tu'y'W, >/W

= 0,



608

gives

clx dii
ON THE GENERAL DIFFERENTIAL EQUATION "Pv' + "T^ = ^ [626

w-
{a?, 1, xs/X)
(a?, X, \/X)

'

where the numerator and the denominator are determinants formed with the variables

X, y, z.

1
Writing - for w, it follows that the equation

a?, X, x'^JX,
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627.

GEOMETRICAL ILLUSTRATION OF A THEOREM RELATING TO

AN IRRATIONAL FUNCTION OF AN IMAGINARY VARIABLE.

[From the Proceedings of the London Mathematical Society, vol. viii. (1^76—1^77),

pp. 212—214 Read May 11, 1876.]

If we have v, a ftinction of «, determined by an equation f{u, v) = 0, then to

any given imaginary value a' + iy of u there belong two or more values, iu general

imaginary, x + iy' of v : and for the complete understanding of the relation between

the two imaginary variables, we require to know the series of values x' + iy' which

correspond to a given series of values x + iy, of v, u respectively. We must for this

purpose take x, y as the coordinates of a point P in a plane IT, and x', y' as the

coordinates of a corresponding point P' in another plane 11'. The series of values

X + iy of M is then represented by means of a curve in the first plane, and the series

of values x' + iy of v by means of a corresponding curve in the second plane. The
correspondence between the two points P and P' is of course established by the two

equations into which the given equation f{x + iy, x + iy') = breaks up, on the

assumption that x, y, x
, y are all of them real. If we assume that the coefficients

in the equation are real, then the two equations are

j\x + iy, x' + iy) +/(*• - iy, x' - iy) = 0,

f{x + iy, x + iy') -f{x - iy, x - iy) = ;

viz. if in these equations we regard either set of coordinates, say {x, y), as constants,

then the other set («', y') are the coordinates of any real point of intersection of the

curves re])resented by these equations respectively.

I consider the particular case where the equation between u, v is u- \- v- = a- : we

have here {x + iy)" + (x + iy')- = a- : so that, to a given point P in the first plane, there

c. IX. 77
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correspond iu general two points P,', P„' in the second plane : but to each of the

points A and B, coordinates (a, 0) and {—a, 0), there corresponds only a single point

in the second plane.

We have here a particular case of a well-known theorem : viz. if fi-om a given

point P we pass by a closed curve, not containing within it either of the points A
or B, back to the initial point P, we pass in the other plane from P,' by a closed

curve back to Pj' ; and similarly from P/ by a closed curve back to P^ : but if the

closed curve described by P contain within it A or B, then, in the other plane, we

pass continuously from P/ to PJ ; and also continuously from P.! to P/.

The relations between («, y), (*•', y') are

«'' - y'- = «' - («= - y"),

x'y = - xy.

whence also

(a:''- + y'-'Y = a' - 2n^ (of - f) + {x" + ff.

And if the point (a;, y) describe a curve x" + y- =
(f)

(of — y-), then will the point («', y')

describe a curve x'^ + y'- = yfr (x'^ — y'% obtained by the elimination of x- — y" from the

two equations

x- - y'- = a-- (.B^ - /),

{x'^ + 2/'-y- = a' - 2a? {of - f-) + j> («- - 2/')

;

.'iz. this is

{x-^ + y'-'f =-a' + 2a;^ {x'"- - y") + </> {or - (x' - y'%

In particular, if the one curve be (*-+?/=)-= a +/3(.«^ -y-) ; then the other curve is

{x- + 7j'^)- = - o-" + 2a- (x^ - y'-) + a + /3 {a- - (x'' - y'^)],

{x'' + y'J = u' + ^'ix''-y'%

a' = - a' + ^a- + a, /3'= 2a-= - /3.

that is,

where

Writing for greater simplicity a=l, then a' = - 1 + a + /3, /3'=2-y8; in particular, if

« = 0, then a' = - 1+ /3, /3' = 2 - /3.

Supposing successively /3<1, /3=1, and /3 > 1, then in each case P describes a

closed curve or half figure-of-eight, as shown iu the annexed P-figure ; but in the

first case the point A is inside the curve, in the second case on it, and in the third

case outside it, as shown by the letters A, A, A of the figure; and, corresponding

to the three cases respectively, we have the three P'-figures, the curve in the first of

them consisting of two ovals, in the second of them being a figure of eight, and in

the third a twice-indented or pinched oval: the small figures 1, 2, 3, 4 in the P-figure,

and 1, 2, 3, 4 and 1', 2', 3', 4' in the P'-figures serve to show the corresponding
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positions of the points F and P,', P./ respectively ; and the courses are further indi-

cated by the arrows. And we thus see how the two separate closed curves described

P-Figure. P'-Fig. 1.

P'-Fig. 2. P'-Fig. 3.

by Pi and P/, as in figure 1, change into the single closed curve described one half

of it by Pi' and the other half of it by P„' as in figure 3.

77-
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628.

ON THE CIRCULAR RELATION OF MOBIUS.

[From the Proceedings uf the London Mathematical Society, vol. vm. (1876—1877),

pp. 220—225. Read April 12, 1877.]

In representing a given imaginary or complex quantity u, =x + iy, by means of

the point whose coordinates are x, y, we assume in the first instance that x, y are

real,—but in the results this restriction may be abandoned—for instance, if the imaginary

quantities u, n', c are connected by the equation u- + ii'' = c-; then, writing u = x + iy,

u = x' + iy', c = a + hi, we have x'^ — y''+ x" — y'- = ff- — h-, xy + x'y = ah, equations con-

necting the points TJ, V, C which serve to represent the quantities ii, u', c, and which

(regarding (7 as a fixed point) establish a correspondence between the two variable

points U, U' : any given value u, =x + iy, is represented by the point U, and corre-

sponding hereto we have (in the present case) two points U', viz. these are the real

intersections of the curves x'- — y'- = or — b- — {cd^ — y"), x'y' = ah — xy, and then the

coordinates x, y' of either of these give the value x' + iy' of «'.

But, the two curves once arrived at, we may for other purposes be concerned

with their intersections as well imaginary as real; or, still more generally, all the

quantities entering into the two equations may be regarded as imaginary.

Theoretically we seem to require two imaginary roots of unity, incommensurable

and convertible, viz. taking these to be i, I, then i- = — 1, /- = — 1, il = li, but without

any relation between i, I: thus, in what precedes, writing / instead of i, viz.

a, a', c =x+ Iy, x + Iy, a + hi, here each of the quantities x, y, x, y, a, b can be

ab initio an imaginary quantity of the form X + fii. But, conforming to the ordinary

practice, I use i only, writing for instance u = x + iy, without any express statement

that X, y are real ; on the understanding that any equation containing such quantities,

and therefore ultimately of the form P + iQ — 0, denotes the two equations P = 0, Q =0
(or, what is the same thing, that we have not only the original equation, but, in

addition to it, the like equation with each such quantity x + iy replaced by the con-
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jugate i|uantity x — ii/): and the further understanding that, in the pair of equations,

each of the quantities x, y, &c. entering therein may itself be considered as an

imaginary quantity of the form X+fii.

The foregoing explanation is required, for otherwise it would appear as if the

oircular relation of Mobius* about to be explained was of necessity a relation between

real points: I hold that this is not the case. But in all that follows I do, in fact,

consider primarily the case <if real points ; and indeed the occasion does not arise for

any explicit consideration of the case of imaginary points.

The circular relation is as follows. If in the first instance we have four points

U, A, B, C on a line, and m, a, h, c their distances from any fixed point on that

line ; and again, U', A', B\ C four other points on a line (the same or a different

line), and ii', a', h', c' their distances from any fixed point on that line ; then the same

equation between u, a, b, c, a, a, b', c' which expresses the homographic relation

between the two ranges of points U, A, B, G ami U', A', B', C, expresses, when

differently interpreted, the circular relation between the four points U, A, B, in a

plane, and the four other points U', A', B', C in the same or a different plane

—

viz. for the new interpretation, u is used as denoting x + ii/, the linear function of

the coordinates ,c, y of the point U, and the like as regards the remaining quantities

'a, b, c, u', a, b', c.

As in the homographic theory (but of course without the condition of being in

a line), we have A, A' \ B, B' ; G, C given pairs of corresponding points: the equation

now represents two equations ; and these, when either of the points U, U' is given,

determine the corresponding point U' or V.

The homographic relation may be written in the forms

= 0,1,
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whence also, if

then

ON THE CIRCULAR RELATION OF MOBIUS. [628

A = 1,
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inclination of the line OA regarded as drawn from J. to to the line Ax, such

angle being measured in the sense Ax to Ay
; where Ax, Ay are the lines drawn

from A in the senses x positive and y positive respectively : and so in other cases.

The equation is therefore equivalent to the two equations

qA__FC' CA
0£~C'A'AB'

and

^OAx- ^OBx= zB'C'x- aC'A'x+ zCAx- zABx.

The former of these expresses that is in a certain circle which, having its centre

on the line AB, cuts AB and AB produced in the one or the other sense ; the latter

that it is in the segment described on a determinate side of AB and containing

a given angle : hence 0, as the intersection of the segment with the first-mentioned

circle, is a uniquely determined point. Similarly 0' is a uniquely determined point.

It is not obvious how to construct A, from its original value as given above (but,

ft) being known, we can without difficulty construct it from the value

— A . CO — a = h — c . c — a' . a! — b'),

nor consequently A from its expression in terms of A : but, &> and &>' being known, we
can construct A from the expression w — a . to' — a' = A ; supposing it thus constructed,

= ke'^ suppose, then if, with centre and squared radius k, we invert the first figure,

thereby obtaining the points A^, B,, C-,, U, such that

OA . OA, = OB . OB, =^OC.OC, = OU.OU, = k,

(the points A^, B„ G,, U, being on the lines OA, OB, OG, OU respectively,) then the

equations

w — a . (o — a' = u) — h . a —h' = <o — c . 0} — c' = m — a . (c — II = fe''

give

m-a.w'-a'=OA. 0A,&\

that is,

OA . 0'A'= OA . OA,, or, simply, O'A' = OA,,

and

/:AOx + zAO'x'=d,

or, what is the same thing,

ZA,Ox+ zA'Ox' = e,

and so for the other letters, viz. we have

O'A', O'B', O'G', 0'U' = OA„ 0B„ 0G„ OU,,

respectively ; and further

Z 's A,Ox, B,Ox, G,Ox, U,Ox = 6- A'O'x', 6 - B'O'x, - G'O'x', - U'O'x',
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respectively: viz. the sj'stem of points 0, A^, 5,, C,, Ui is equal to the system

0', A', B', C, V, that is, the distances of corresponding points and magnitudes of

corresponding angles are severally equal—but the angles AiOx and A'O'x', &c. are in

opposite senses, as appears by the just mentioned equations Afia: = 6 — A'O'x, &c.

:

that is, the two figures are symmetrically equal : but the one of them is not, except

by a turning over of its plane, imposable upon the other.

The conclusion is, the two figures A, B, C, U and A\ B', C, U' are each of

them equal by symmetry, but not superimposably, to a figure which is the inverse

of the other of them ; viz. there exists in the first figure a point 0, and in the

second figure a point 0', such that, inverting say the first figure, with centre and

a squared radius of determinate magnitude, we obtain the points A^, By, Cj, Ui,

forming with a figure equal by symmetry, but not superimposably, to the second

figure A', B', C, U', 0'. Hence also to any line in the first figure corresponds in the

second figure a circle through 0', and to any line in the second figure there corre-

sponds in the first figure a circle through ; or, more generally, to any circle in either

figure there corresponds a circle in the other figure.

There is a particular case of jjeculiar interest, viz. wi-iting for greater convenience

d, d' as corresponding values in place of u, »', the system a, b, c, d corresponds

homographically to itself in three different ways ; that is, we may have

(«', b', c', d')=(b, a, d, c), (c, d, a, b) or {d, c, b, a).

To fix the ideas, attending to the first case, we have thus the range of points

(A, B, C, D) corresponding homographically to (B, A, D, C), viz. here &>'=&>, and

(o — a.oy — b = (o— c.a— d, that is, the corresponding points U, U' belong to the in-

volution where A and B and also C and D are corresponding points. The like theory

applies to the circular transformation: viz. the points {A, B, G, D) may correspond to

{B, A, D, C), viz. there exists a point (or say 0,) and squared radius k^, such that,

inverting the figure and marking the invei'se points oi A, B, G, D as B^, Ay, D^, Gi

respectively, the new figure 0,, A^, 5,, C'l, A is equal by symmetry, but not super-

imposably, to the original figure OABGD. The equation a>, — a.tui — 6 = &>] — c. a)i — fZ

gives the geometrical definition of the point Oj, viz. this is a point such that

OyA . OiB = Ofi . OiD and fuither that AB and GD subtend at Oj equal angles : we

ab —cd..,. , ,
• ,

have &),= -,— ,
,
givmg for Wy — «, &>, — o, coi — c, coj - a convenient expressions

a-\-o — c — d

the first of which is to, — a = ,— j . We hence obtain a convenient construction
c+d—a—b

for 0, viz. taking M for the middle point of AB and N for the middle point of

GD, and drawing from A in the sense M to N a line AP, = 2MN, then this equation

may be written w^ - a = ^~
'_

'~
(p the function x + iy which belongs to the

„ ,
^. GA.DA ,

point P) ; thence OyA = —^-j and

/L 0,Ax = Z GAx + Z DAx - Z. PAx,

conditions which determine uniquely the position of Oj.
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We may have (A, B, C, D) corresponding to (C, D, A, B) and {D, C, B, A) the
inversions for these depending on the points 0, and 0, respectively: I annex a figure
showing the three inversions of the same four points A, B, C, D.

/\
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629.

ON THE LINEAR TRANSFORMATION OF THE INTEGRAL
/.

du

[From the Proceedings of the London Mathematical Society, vol. viii. (1876—1877),

pp. 226—229. Read April 12, 1877.]

The quartic function U is taken to be = e . ii — a . u — b . u — c . ii — d, where a, b, c, d

are imaginary values represented in the usual manner by means of the points A, B, G, D

;

viz. if a = a„ + 01^1, then A is the point whose rectangular coordinates are a,,. "^1 1 and

the like as regai'ds B, C, D. And I consider chiefly the definite integi-als such as

jjj where the path is taken to be the right line from A to B. There is here

nothing to fix the sign of the radical ; but if at any particular point of the path we

assign to it at pleasure one of its two values, then (the radical varjang continuously)

this determines the value at every other point of the path ; and the integral defined

as above is completely determinate except as to its sign, which might be fixed as

above, but which is better left indeterminate. The integral, thus determinate except

as to its sign, is denoted by {AB).

I wish to establish the theorem that, if the points A, B, C, D taken in this

order form a convex quadrilateral, then

{AB) = ±{GD), {AD) = ±{BC), but not (AC)=±{BB);

whereas, if the four points form a triangle and interior point, then the three equations

all hold good. I regard the theorem as the precise statement of Bouquet and Briot's

theorem, A-B+C-D = 0, or say (OA)-(OB) + (OC)-(OD)=0, where the four terms

are the rectilinear integrals taken from a point to the four pomts A, B, C, D
respectively. The two cases may be called, for shortness, the convex and the reentrant

cases respectively.

I
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To prove in the case of a convex quadrilateral that (AG) is not = + (BD), it is

sufficient to consider the integral I , where A, B, G, D are the points (1, 0),
J V It* — 1

(0, 1), (—1, 0), and (0, —1) respectively, and where, writing v = iu, it at once appears

that we have

that is,

{AG)=±i(BD), not {AG) = ±{BD).

But I consider the general question of the linear transformation. If a', b\ c', d'

correspond homographically to a, b, c, d, then to represent these values a' , b', c', d' we
have the points A', B', G', D', connected with A, B, G, D according to the circular

relation of Mobius ; and then, making u', a, b', c', d' correspond homographically to

u, a, b, c, d. and representing in like manner the variables u, «' by the points U, V"
respectively, we have the circular relation between the two systems U, A, B, G, D
and U', A', B', C", D'.

Before going further I remark that the distinction of the convex and reenti'ant

cases is not an invariable one ; the figures are transformable the one into the other.

Thus, taking C on the line BB (that is, between B and D, not on the line produced),

there is not this relation between B', G', D', and the figure A'B'G'D' is convex or

reentrant as the case may be. Giving to G an infinitesimal displacement to the one

side or the other of the line BD, we have in the one case a convex figure, in the

other case a reentrant figure ABGD; but the corresponding displacement of G' being

infinitesimal, the figure A'B'G'D' remains for either displacement, convex or reentrant,

as it originally was ; that is, we have a convex figure ABGD and a reentrant figure

ABGD, each corresponding to the figure A'B'G'D' (which is convex, or else reentrant,

as the case may be).

Writing for convenience

a, b, c, f, g, h =b — c, c — a, a —b, a —d, b — d, c —d

,

a', b', c', f, g', h' = 6' — c', c' — a', a' — b', a'—d', b' — d', c' — d',

so that identically

af+bg + ch = 0, a'f' + b'g'+c'h' = 0,

then the homographic relation between (a, b, c, d), (a', b', c', d') may be wi-itten in the

forms

af : bg : ch = a'f ' : b'g' : c'h',

or, what is the same thing, there exists a quantity N such that

aT ^ bV ^ 52^' ^ j^,
af bg ch

78—2
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The relation between u, ii' may be written in the forms

u' — a' _ „u— a u' — b' _ „u — b u —c' _„!(, — c

u' — d' u — d' u — d' u — d' u' — d' u — d^

and then, writing for u, u' their con-esponding values, we find

bli _ eg n-^ = — p-^S_'^J
bh'~eg" ^ cf ah" ag' bf"

giving

PPN' = r-QR, g^QN' = g'RP, h"-RN"- = h"PQ, \/TQR = ^^^, N^

Differentiating any one of the equations in («, «'), for instance the first of them,

we find

fdu' tPdii

(ii' - dj {u - df
'

then, forming the equation

'Je .u' — a' . u' — h' . u — c' . iif — d'_ "JPQR 'Je.u — a.u — b.u — c.n — d

(¥^dy -
(M - dy '

and attending to the relation f-PiV^ = f'-QR, we obtain

Ndu' _ du

-Vu'~7u'

which is the differential relation between u, u'.

We have in connection with A, B, C, D the point 0, and in connection with

A', B', C, D' the point 0'. As U describes the right line AB, U' describes the

arc not containing 0' of the circle A'B'O' ; for observe that 0' corresponds in the second

figure to the point at infinity on the line AB, viz. as U passes from A to B, not

passing through the point at infinity, U' must pass from A' to B', not passing through

the point 0', that is, it must describe, not the arc A'O'B', but the remaining arc

2ir — A'O'B', say this is the arc A'B'. The integral in regard to ii is thus not the

rectilinear integral (A'B'), but the integral along the just-mentioned cii-cular arc, say

this is denoted by (A'B') ; and we thus have

{AB) = ±NiA^').

But we have (A'B') = or not = (A'B'), according as the chord A'B' and the arc

A'B' do not include between them either of the points C", D', or include between

them one or both of these points ; and in the same cases respectively

{AB) = or not = ± N{A'B').

Of course we may in any way interchange the letters, and write under the like

circumstances

{AG) = or not =±N{A'G'), &c.

I
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Suppose now that ABCD is a convex quadrilateral, and consider first in regard

to {AB), and next in regard to {AG), the three transformations A'B'C'D' = BADG,
= GDAB, and =DGBA, respectively. We have here a figure as in the paper "On
the circular relation of Mobius," [62S], p. 617 of this volume, the points 0,, 0., O-,

belonging to the three cases respectively. It will be observed in the figure, and it is

easy to see generally, that the points 0, and O3 are interior, the point 0-. exterior.

We have iV= 1, and therefore

{AB) = or not = ± {AB), = or not = + {CD), = or not = + {GD),

according as

(1) the chord AB and the arc AB of ABO^ do not or do inclo.se G and D or

either of them
;

(2) the chord GD and the arc GD of GDO-, do not or do inclose A and B or

either of them

;

(3) the chord GD and the arc GD of GDO^^ do not or do inclose A and B or

either of them.

The first test gives merely the identity {AB) = + {AB) ; the other two each of them

give {AB) = ±{GD), as is seen from the positions of the points 0,, 0.,, O3.

Next, apply the test to AC; we have

{AG) = or not = ± {BD), = or not = + {AC), = or not = + {BD),

according as

(1) the chord AC and the arc AG of AGOi do not or do inclose B and D or

either of them
;

(2) the chord BD and the arc BD of BDO. do not or do inclose A and G or

either of them

;

(3) the chord BD and the arc BD of BDOs do not or do inclose A and C or

either of them.

In the second case, neither A nor G is inclosed, but we have merely the identity

(AC^— ±{AG); in the first case, B is inclo.sed and, in the third case, G is inclosed;

and the tests each give {AC) not = + {BD).

I have not taken the trouble of drawing the figure for a reentrant quadrilateral

ABCD; the mere symmetry is here enough to show that, having one, we have all

three, of the relations in question

{AD)=± {BC), {BD)= ± {GA), {CD) = ± {AB).

END OF VOL. IX.
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