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PREFACE.

rpHIS work, as the name implies, is intended for Colleges and

Scientific Schools. The first part is simply a review of the

principles of Algebra preceding Quadratic Equations, with just

enough examples to illustrate and enforce these principles. By this

brief treatment of the first chapters, sufficient space is allowed, with-

out making the book cumbersome, for a full discussion of Quadratic

Equations, The Binomial Theorem, Choice, Chance, Series, Deter-

minants, and The General Properties of Equations. Every effort

has been made to present in the clearest light each subject discussed,

and to give in matter and methods the best training in algebraic

analysis at present attainable. The work is designed for a full-year

course. Sections and problems marked with a star can be omitted, if

necessary ; and for a half-year course many chapters must be omitted.

The author gratefully acknowledges his obligation to Mr. G. W.

Sawin of Harvard College, who has contributed the excellent chapter

on Determinants, and been of invaluable assistance in revising every

chapter of the book.

Answers to the problems are bound separately in paper covers,

and will be furnished free to pupils when teachers apply to the pub-

lishers for them.

Any corrections or suggestions relating to the work will be thank-

fully received.

G. A. WENTWORTH.
Phillips Exeter Academy,

September, 1888.

800565
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COLLEGE ALGEBRA.

CHAPTER I.

FUNDAMENTAL IDEAS.

1. Quantity and Number. Whatever may be regarded as

being made up of parts like the whole is called a quantity.

In other words, whatever admits of division into parts

all the same in hind as the whole is a quantity.

To measure a quantity of any kind is to find how many
times it contains another known quantity of the same kind.

A known quantity which is adopted as a standard for

measuring quantities of the same kind is called a unit.

Thus, the foot, the pound, the dollar, the day, are units for meas-

uring distance, weight, money, time.

A number arises from the repetitions of the unit of meas-

ure, and shows how many times the unit is contained in

the quantity measured.

2. When a quantity is measured, the result obtained is

expressed by prefixing to the name of the unit the number

which shows how many times the unit is contained in the

quantity measured.

This result is called the measure of the quantity. The

number which shows how many times the unit is taken is

the numerical part of the measure.
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Thus, 7 feet, 8 pounds, 9 dollars, 14 days, are respectively meas-

ures of a distance, a weight, an amount of money, and an interval

of time ; the numerical parts being respectively the numbers 7, 8, 9,

and 14.

3. For convenience, numbers are represented by symbols.

In Arithmetic the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and

combinations of these symbols, are employed to represent

numbers. The series 0, 1, 2, 3, , obtained by counting,

is called the natural series of numbers.

Any figure or combination of figures represents one, and

but one, particular number.

4. Numbers in General. Numbers possess many general

properties, which are true, not only of a particular number,

but of all numbers.

For example, the sum of 12 and 8 is 20, and the differ-

ence between 12 and 8 is 4. Their sum added to their

difference is 24, which is twice the greater number. Their

difference taken from their sum is 16, which is twice the

smaller number.

We shall see later on that these are general properties

of numbers, namely

:

The sum of two numbers added to their diffefrence is twice

the greater number ; the difference of two numbers taken

from their sum is twice the smaller number. Or,

(1) (greater number + smaller number) + (greater num-

ber — smaller number) = twice greater number.

(2) (greater number -f- smaller number) — (greater num-

ber — smaller number) = twice smaller number.

But these statements may be very much shortened ; for,

as greater number and smaller number may mean any two

numbers, two letters, as a and 5, may be used to represent
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them; then 2a will represent twice the greater number,

and 2 h twice the smaller. Then these statements become :

(1) {a-\-b) + {a-h) = 2a.

(2) la + h)-{a-h) = 2h.

In studying the general properties of numbers, letters

used to represent numbers may represent any numerical

values consistent with the conditions of the problem.

5. Algebra like Arithmetic is a science which treats of

numbers. In any problem in which we are concerned with

quantities, we use not the quantities themselves, but the

numbers by which they are expressed.

In Algebra as in Arithmetic we use the Arabic numerals

to represent particular numbers. But in Algebra we also

use other symbols, generally the letters of the alphabet, to

represent numbers.

Algebra is, then, a species oi generalized Arithmetic,

and includes the ordinary Arithmetic.

6. Operations to be performed upon numbers are indicated

in Algebra, as in Arithmetic, by signs.

The chief signs of operation used in Arithmetic are the

following

:

+ (read, plus), the sign of addition.

— (read, minus), the sign of subtraction.

X (read, multiplied by), the sign of multiplication.

-^- (read, divided by), the sign of division.

7. Positive and Negative Numbers. There are quantities

which stand to each other in such opposite relations that,

when we combine them, they cancel each other entirely or

in part. Thus, six dollars gain and six dollars loss just

cancel each other ; but ten dollars gain and six dollars loss

cancel each other only in part. For the six dollars loss will

cancel six dollars of the gain and leave four dollars gain.
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An opposition of this kind exists in assets and debts, in

motion forwards and motion backwards, in motion to the

right and motion to the left, in the degrees above and the

degrees below zero on a thermometer.

From this relation of quantities a question often arises

which is not considered in Arithmetic ; namely, the sub-

tracting of a greater number from a smaller. This cannot

be done in Arithmetic, for the real nature of subtraction

consists in counting backwards, along the natural series of

numbers. If we wish to substract four from six, we start

at six in the natural series, count four units backwards, and

arrive at two, the difference sought. If we subtract six

from six, we start at six in the natural series, count six

units backwards, and arrive at zero. If we try to subtract

nine from six, we cannot do it, because, when we have

counted backwards as far as zero, the natural series of

numbers comes to an end.

8. In order to subtract a greater number from a smaller,

it is necessary to assume a new series of numbers, beginning

at zero and extending to the left of zero. The series to the

left of zero must ascend from zero by the repetitions of the

unit, precisely like the natural series to the right of zero
;

and the opposition between the right-hand series and the

left-hand series must be clearly marked. This opposition

is indicated by calling every number in the right-hand

series a positive number, and prefixing to it, when written,

the sign -f ; and by calling every number in the left-hand

series a negative number, and prefixing to it the sign —•.

The two series of numbers will be written thus

:

-4, -3, -2, -1, 0, +1. +2, +3, +4,
I I t I I I I 1 I

If, now, we wish to subtract 9 from 6, we begin at 6 in

the positive series, count nine units in the negative direction
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(to the left), and arrive at — 3 in the negative series. That

is, 6-9 = -3.

The result obtained by subtracting a greater number

from a less, when both are positive, is always a negative

numher.

If a and h represent any two numbers of the positive

series, the expression a— h will denote a positive number

when a is greater than h ; will be equal to zero when a is

equal to b ; will denote a negative number when a is less

than h.

If we wish to add 9 to — 6, we begin at — 6, in the

negative series, count nine units in the positive direction

(to the right), and arrive at + 3, in the positive series.

"We may illustrate the use of positive and negative numbers as

follows

:

-5 8 20

It—1 Q

Suppose a person starting at A walks 20 feet to the right of u4,

and then returns 12 feet, where will he be ? Answer : at C, a point

8 feet to the right of A. That is, 20 feet - 12 feet = 8 feet; or,

20 - 12 = 8.

Again, suppose he walks from A to the right 20 feet, and then

returns 25 feet, where will he now be ? Answer : at D, a point 5

feet to the left of A. That is, if we consider distance measured in

feet to the left of A as forming a negative series of numbers, begin-

ning at A, 20 — 25 =« — 5.' Hence, the phrase, 5 feet to the left of -4,

is now expressed by the negative number — 5.

9. Numbers with the sign + or — are called algebraic

numbers. They are unknown in Arithmetic, but play a

very important part in Algebra. Numbers not affected

by the signs + or — are called absolute numbers.

Every algebraic number, as +4 or —4, consists of a

sign + or — and the absolute value of the number; in

this case 4. The sign shows whether the number belongs
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to the positive or negative series of numbers ; the absolute

value shows what place the number has in the positive or

negative series.

When no sign stands before a number, the sign + is

always understood; thus, 4 means the same as +4, a

means the same as + a. But the sign — is never omitted.

Two numbers which have, one the sign + and the other

the sign — , are said to have unlike signs.

Two numbers which have the same absolute values, but

unlike signs, always cancel each other when combined;

thus, +4-4 = 0, +a— a = 0.

10. Meaning of the Signs. The use of the signs -f and —

,

to indicate addition and subtraction, must be carefully dis-

tinguished from their use to indicate in which series, the

positive or the negative, a given number belongs. In the

first sense, they are signs of operations, and are common to

both Arithmetic and Algebra. In the second sense, they

are signs of opposition, and are employed in Algebra alone.

11. Factors. "When a number consists of the product of

two or more numbers, each of these numbers is called a

factor of the product.

When these numbers are denoted by letters, the sign X
is often omitted; thus, instead of axh, we write ah

\

instead of a X 5 X c, we write ahc.

Factors expressed by letters are called literal factors

;

factors expressed by figures are called numerical factors.

12. A known factor of a product which is prefixed to

another factor to show how many times that factor is taken

is called a coefficient.

13. Powers. A product consisting of two or more equal

factors is called a power of that factor.
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The index or exponent of a power is a small figure or letter

placed at the right of a number, to show how many times

the number is taken as a factor.

Thus, a? is written instead of aaa.

a" is written instead of aaa io n factors.

The second power of a number is generally called the

square of that number ; the third power of a number, the

cube of that number.

14. Signs. The principal signs used in Algebra in addi-

tion to those of § 6 are the following

:

The signs of relation: =, >, <, which stand for is equal

to, is greater than, and is less than, respectively.

The signs of aggregation : the bar,
|

; the vinculum,
;

the parenthesis, ( ) ; the bracket, [ ] ; and the brace,
\ ]

.

Thus, each of the expressions, ^
^ x + y, {x + y), [x + y], {x + y],

signifies that x + y is to be treated as a single number.

The signs of continuation: dots, , or dashes,
,

read, and so on.

The sign of deduction : .•., read, hence, or therefore.

Remakk. AVhen a sign of operation is omitted between numerals

it is the sign of addition; when between letters, or a numeral

and a letter, it is the sign of multiplication. Thus, 423 means

400 + 20 + 3, but 2 abc means 2 X a X & X c

15. An algebraic expression is a number written with alge-

braic symbols ; an algebraic expression consists of one sym-

bol, or of several symbols connected by signs of operation.

A term is an algebraic expression the parts of which are

not separated by the sign of addition or subtraction. Thus,

3a6, bxi/, Sab -r- ^xy are terms.

A monomial or simple expression is an expression with but

one term.

A polynomial or compound expression is an expression of
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two or more terms. A binomial is a polynomial of two

terms ; a trinomial, a polynomial of three terms.

Like terms or similar terms are terms whicli have the same

letters, and the corresponding letters affected by the same

exponents. Thus, 1 o?cx^ and — ba^cx^ are like terms.

16. The degree of a term is the sum of the exponents of

its literal factors. Thus, 2>xy is of the second degree, and

bx^yz^ of the sixth degree.

A polynomial is said to be homogeneous when all its

terms are of the same degree. Thus, 1 x?— bx^y -^ xyz is

homogeneous of the third degree.

A polynomial is said to be arranged according to the

powers of some letter when the exponents of that letter

either descend or ascend in order of magnitude.

17. The value of an algebraic expression is the number

which the expression represents.

If the number represented by each symbol involved in

an expression is known, the value of the expression can be

found by putting for each symbol the number it represents

and performing the indicated operations.

The value of an expression evidently depends upon the

values given to the several symbols involved.

18. Axioms, 1. Things which are equal to the same

thing are equal to each other.

2. If equal numbers be added to equal numbers, the

sums will be equal numbers.

3. If equal numbers be subtracted from equal numbers,

the remainders will be equal numbers.

4. If equal numbers be multiplied into equal numbers,

the products will be equal numbers.

5. If equal numbers be divided by equal numbers, the

quotients will be equal numbers.
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FUNDAMENTAL OPERATIONS. — ADDITION.

19. An algebraic number which is to be added or sub-

tracted is often inclosed in a parenthesis, in order that the

signs -f and — which are used to distinguish positive and

negative numbers may not be confounded with the -f and
— signs that denote the operations of addition and subtrac-

tion. Thus, -f 4+ (— 3) expresses the sum, and +4— (—3)
expresses the difference, of the numbers -f- 4 and — 3.

20. Monomials. In order to add two algebraic numbers,

we begin at the place in the series which the first number
occupies, and count, in the direction indicated hy the sign

of the second number, as many units as there are units in

the absolute value of the second number. Thus, the sum of

-f 4 + (+ 3) is found by counting from + 4 three units in

the positive direction, and is, therefore, -f 7 ; the sum of

-f 4 -f (— 3) is found by counting from + 4 three units in

the negative direction, and is, therefore, + 1-

In like manner, the sum of — 4 + (+ 3) is — 1, and the

sum of — 4 + (- 3) is - 7.

I. Therefore, to add two numbers with like signs, find

the sum of their absolute values, and prefix the common
sign to the sum.

II. To add two numbers with unlike signs, find the dif-

ference of their absolute values, and prefix the sign of the

number absolutely greater to the difference. Thus,

(1) +a + (+5) = a + ^,; (3) -« + (+ J) = _a + 5;

(2) +a-\-(i-h) = a~h', (4) -a-\-{-h) = -a-h.
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21. It should be noticed that the order of the terms is

iminaterial. Thus, +« — £==— h -\-a. This law is called

the commutative law for addition.

22. By successive application of the above rules we
readily obtain rules for adding any number of terms.

Thus, • 4a + 5a + 3a + 2a=14a;

-3a- 15a-7a + 14a-2a = 14a- 27a = -13a;

4a-36-9a + 76 = -5a + 46.

23. Polynomials. Two or more polynomials are added

by adding their separate terms.

It is convenient to arrange the terms in columns, so that

like terms shall stand in the same column. Thus,

Exercise 1.

Add:

1. 9a2 + 3a + 45, 2a^-4a + 55, ba-2b-Qa\
2. Ix'-^xy-^-y', ^xy-2y\ ^x' ~^xy -\-l2y\

3. la'b-\-^ah^-lU\ Sa' + 2ab'-7b\
ab'-a'b~6a\ bb'-7a'-ab\ Ab' -2a' + a'b.

4. 5x* + 2x'-7, 4:x' + x-9, l-{-x-x\
x' + x'-x'-x'-7, 9x' + 9x'-12x-4:x' + 10.

5. 3m* + 2m'n + 5mV-9< 7 n' — 3 mn' - 8 m'n\
11 mn' — 4mV+ 6m\ 5 m*+ 2 m'n — 15 mn'— 7 n\

6. 2x^-{-Sx'y-4:xy, 2y^ - Sxy' -}- ia^y' ~10xy,
bxY + AxY - 9y\ 8a;V - Ix^ + 6^y - Sx'y\
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SUBTRACTION.

24. Monomials. In order to find the difference between

two algebraic numbers, we begin at the place in the series

which the minuend occupies, and count in the direction

opposite to that indicated hy the sign of the subtrahend as

many units as there are units in the absolute value of the

subtrahend.

Thus, the difference between + 4 and + 3 is found by

counting from +4 three units in the negative direction,

and is, therefore, -f 1 ; the difference between + 4 and

— 3 is found by counting from -f~ 4 three units in the posi-

tive direction, and is, therefore, + 7.

In like manner, the difference between — 4 and -f 3 is

— 7 ; the difference between — 4 and — 3 is — 1.

- . Compare these results with results obtained in addition
;

it is evident that

:

Subtracting a positive number is equivalent to adding

an equal negative number.

Subtracting a negative number is equivalent to adding

an equal positive number.

To subtract, therefore, one algebraic number from another,

change the sign of the subtrahend, and then add it to the

minuend.

Thus,

-\-a — {+b) = a-b\ - a- (-{-b) = -a~b;
-\-a-(-b)=^a + b; - a- (- b) = - a + b.

25. Polynomials. When one polynomial is to be sub-

tracted from another, place its terms under the like terms

of the other, change the signs of the subtrahend, and add.

From 4 a;' — 3 x'^y — xy^ + 23/^

take 2ar''- x^y \-hxy' -Zy"
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Change the signs of the subtrahend and add :

4^x^-~5ar^y — xy^->r2y^

-2x^+ x'y — bxy'-^-^y^

2x^-2x''y-'Qxy''-\-bf

Instead of actually changing the signs of the subtrahend

we need only conceive them to be changed.

26. Parentheses. From (§ 24), it appears that

(1) a + (+5) = a + 5. (3) a-{^h) = a-h.

(2) a + (- 6) = a - b. (4) a - (- ^») = a + h.

The same laws respecting the removal of parenthesis hold

true whether one or more terms are inclosed. Hence, when

an expression within a parenthesis is preceded by a plus

sign, the parenthesis may be removed.

When an expression within a parenthesis is preceded by

a minus sign, the parenthesis may be removed if the sign

of every term within the parenthesis is changed.

Thus, (1) a-^{h-c) = a + h-c.

(2) a-{h-c)=-a-b-{-c.

27. Observe that the terms may be combined in any

manner.

Thus, a-\-b — c — d= {a-\-b) - {c -\- d)

= (a-\-b — c) —d
— a-\-{b — c—d).

This is called the associative law for addition and sub-

traction.

28. Expressions often occur with more than one paren-

thesis. These parentheses may be removed in succession,

by removing first, the innermost parenthesis ; next, the in-

nermost of all that remain, and so on.
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Thus, a-[h-\c + {d-e-f)\]
^a-[h~\c-\-{d-e-\-f)\]
= a-[h~\c-\-d~e+f\]
= a — \h — c — d-[-e —/]
= a — h-\-c-\-d—e +/.

29. The rules for introducing parentheses follow directly

from the rules for removing them

:

1. Any number of terms of an expression may be put

within a parenthesis, and the sign + placed before the

whole.

2. Any number of terms of an expression may be put

within a parenthesis, and the sign — placed before the

whole
;
provided the sign of every term within the paren-

thesis he changed.

Exercise 2.

1. From 4a+ 55 -3c take 2a + 95 -8c.

2. From 7a;^ — ar^ + 4a;-2 take 2a:^ + 8a;^ - 9a: + 8.

3. ^vom^a" -\-2>a^h-^ah''^W

take 2a^ - 5 a'5 + 7 a^^ - 9 b\

4. From-Ja5 + 4a'-|5HJa take a' — yV^' + i«-

5. From 4a;' — ^x^ + 8a; — 7 take the sum of

8a:' + 7-8a;^ + 7a: and - 9a:' - 8a;^ + 4a; + 4.

Simplify

:

6. 2-3a;-(4-6a;)- J7-(9-2a;)5.

7. 2>a-{a-h-c)--2[a-\-c-2{h~c)\.

8. 4a-[3a- {2a-(a-5)] + 55].

9. [^a-2>{a-(h-a)\]-^[a-2\a-2{a-h)]+ b\

10. x{y + z)-\-y[x~{y -^ z)] — z[y — x{z - x)].

11. 2a;'(a;-3a)-2[2a:*-aX^'-«')]
- 3a[a;' - 2a:{a'* -^x{a-x)\ + a'].
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MULTIPLICATION.

30. Let a and b be any two members. To obtain the

product of a hy b we do to a what we do to unity to

obtain b.

Thus, to obtain 5 we take 1 five times, and to obtain the product

5 X 3 we take 3 five times.

Similarly, to obtain —5 we take 1 five times, and then change

the sign of the product ; hence, to obtain the product (— 5) x (— 3)

we take — 3 five times, giving — 15, and then change the sign, giving

+ 15.

In general,

aX b^-j-ab] (—a)xb = — ab;

aX(—b) = — ab; (— a) X (~ b) = -j- ab.

From the preceding we obtain the rule : like signs give

plus ; unlike signs give minus.

The product of more than two factors, each preceded by

the sign — , will be positive or negative, according as the

number of such factors is even or odd.

31. Monomials. The product of numerical factors is a

new number in which no trace of the original factors is

found. Thus, 4x9 = 36. But the product of literal

factors is expressed by writing them one after the other.

Thus, the product of a and b is expressed by ab ; the

product of ab and cd is expressed by abed.

The product is evidently the same in whatever order the

factors be written. This is the commutative law for multi-

plication.

32. Index Law. The product of two or more powers of

any number is that number with an exponent equal to the

sum of the exponents of the several factors.
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For,

a"* X a" — (aaa to m factors)(aaa to w factors)

= aaaaaa to (m + n) factors

Similarly for more than two factors.

This law is called the index law.

33. The product of three or mCre factors is evidently

the same in whatever way the factors be combined. Thus,

ahcde = (abc) X (de) = {ah) X (cde), etc. This is the asso-

ciative law for multiplication.

34. Polynomials by Monomials. If we have to multiply

a -\- h \>Y n, that is, to take {a~\-h) n times, we have,

(a + 5) X n = (a + S) + (a + 5) + (a + 5) n times,

= a-\-a-\- a n times -\-h-\-h-\-b n times,

= aX7i + 6X7i,

'= an-\- bn.

As it is immaterial in what order the factors are taken,

n X {a -\- h) = an -\- bn.

In like manner,

{a -\- b -\- c) X n -— an -\- bn -\- en,

or, n{a-{-b -{- c) = an -{ bn-\- en.

The above is called the distributive law for multiplication.

35. Polynomials by Polynomials. If we have a-\-h-\- c to

be multiplied hj m-\-n -{-p, we find,

(a + 5 + c){m + n -{-p)

= (a + 5-f-c)m-f(a + 5 + c)n + (a + 6 + e)p

= am + bm -^em-\- an + bn -\- en -\- ap -\- hp -\- cp.
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In multiplying polynomials, it is a convenient arrange-

ment to write the multiplier under the multiplicand, and

place like terms of the partial products in columns.

(1) Multiply 5a — 6^ by 3a -46.

5a - 6 &

3a - 4 &

\bc? -18a6
-20a5 + 24 62

15 a2 -38a6 + 2462

(2) Multiply a^ ^H c^ ~ ah — ho--ac by a + 6 + c.

Arrange according descending powers of a.

a? — ah-ac^ 62- le + c2

a + 6 + c

a? - o?h - c?c + a52_ a6c + ac^

+ a26 ai2_ a6c + 53 - &2c + 6c2

H-a^c - a5c - ac^ + i^c -Z)C2 + (?

a? — 3 a6c + &^ + c^

Observe that, with a view to bringing like terms of the partial

products in columns, the terms of the multiplicand and multiplier

are arranged in the same order.

36. Detached Coefficients. In multiplying two polyno-

mials which involve but one letter, or are homogeneous

(§ 16) and involve but two letters, we shall save much

labor if we write only the coefficients. Thus,

(1) Multiply 2:r^ + 4^7 + 7 by a;' - 3a; + 4.

Since the a* term in the first expression is missing, we supply a

zero coefficient. The work is as follows

:

2+0+ 4+ 7

1-3+ 4

2+0+ 4+ 7

_6- 0-12-21
+ 8 + + 16 + 28

2-6 + 12- 5- 5 + 28
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Writing in the powers of x, the product is

2a;5 - 6 x* + 12x' - Src^ _ 5a; + 28.

(2) Multiply a'' + 2ax'-9x' + 4a''x hj x'' — 2ax— a\

Arranging by powers of x we have

- 9a;3 + 2ax'^ + ia'^x + a^ and x^ - 2ax - a^.

The work is as follows

:

-9+ 2+4+1
1- 2-1

-9+ 2+4+1
+ 18-4-8-2

+9-2-4-1
-9 + 20 + 9-9-6-1

Hence, the product is

9a^ + 20ax* + 9a^a^ - 9a-V - 6a% - a\

37. Special Oases. The following products are of great

importance, and should be carefully remembered.

(a + hy = a'+ 2ab + h';

(a-by = a'-2ab + b';

(a + bXa -b) = a'-b';

(a-{-b + cy=a'i-b'-i-c'-{-2ab + 2ac-{-2be.

The square of any polynomial may be immediately

written down by the following rule : Add together the

squares of the several terms and twice the product of each

term into each of the terms thatfollow it.

Also :

(a =b by = a' ±Sa'b + Sab' ± J';

(a ± by = a*± 4a'b + 6a'b' ± 4ab^+ b*;

and so on.
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38. Again consider the product

(x -\- a)(x -\- h) — x^ -\- (a -T h) X -\- ah.

The coefficient of x is the algebraic sum of a and b ; the

third term is i\iQ product of a and b.

Thus, {x + Z){x + 7) = x2 + 10 re + 21

;

(a; - 3)(a; + 7) = a;2 + 4a; -21:

(a; + 3)(x-7) = x2- 4rr-21

(a;_3)(a;_7) = a;2_i0a; + 21.

Exercise 3.

Find the product of

:

1. ?>x-\-2y Q.ndi^x — by.

2. 2a;'-5 and 4:r + 3.

3. 2rr'4-4a:-3and2a;' + 3a7 — 4.

4. a;* + 2:c' + 4and:r*-2;r' + 4.

5. rr'^ + 2 0:3/ — 3 y^ and r?;^ — bxy-^-^if.

6. 9a--' + 3ri;y + 3/' — 6a; + 2y + 4 and 3:r-y + 2.

7. lla'+45^-4a5(a-45)andaX5+ 3a)-45X«+ ^)-

8. (a + 5y + (a - by and (a + 5)^ - (a - ^>y.

9. ^ — 2^ + 32 and ^— 2y + 32.

10. X^-\-2x^-4:X-l2.IidiX^-\-2a^-4:X-l.

11. 39c^^+^-^-54c^^-2^+^ + 60c^^+^^ and 30^^^-^+^^

12. 24^"*+'"-^ — 42x''"-'"+' + 25:r'"+^'"-2 and 25:r'-'"-'".

13. a^-3a^-' + 4a^-=^-6a^-3+ 5a^-''and2a'-a2-f«-

14. a'"+* - a'*+^ - ft^ + a**-^ and «"+' — a' — a + 1.

15. a^ + 3a^-'^-2a^-^ and 2a^+H a^+' - 3 a^.
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DIVISION.

39. Division is the operation by which, when a product

and one of its factors are given, the other factor is deter-

mined.

With reference to this operation the product is called the

dividend; the given factor the divisor; and the required

factor the quotient.

The operation of division is indicated by the sign ~-
; by

the colon : , or by writing the dividend over the divisor

12
with a line drawn between them. Thus, 12-^4, 12 : 4, —

,

each means that 12 is to be divided by 4.

40. Since a X b = -{- ab ; {~a)Xb = — ab;

aX {—b) = — ab; (— a) X(—b) = -\-ab;

,-, f. ab — ab
tnerelore -r- — (^', ;- = — a

;

b
'

-f^>
'

— ab . -{-ab__= + „; -zy=-«-

Consequently, the quotient {^positive when the dividend

and divisor have like signs.

The quotient is negative when the dividend and divisor

have unlike signs. »

41. Monomials. To divide one monomial by another.

Write the dividend over the divisor with a line between

theTYi ; if the expressions have common factors, re^nove the

common factors.

Thus 25a&a; ^ 5^ ^
36&ca; ^ 6£^

\Olcx 2c ' 30abc 5a
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A • (X" aaaaa ,

Again, —= — aaa = o? •

or aa

a^_ aa _ 1 _ 1

a' aaaaa aaa a^

In general, ^= ^^^ ^'Q ^ ^^^^^^^

a** aaa to n factors

= aaa to m — w factors (if m'^n)]

or = (if n > m).
aaa to w — m factors

Hence, if a power of a number be divided by a lower

power of the same number, the quotient is that power of the

number of which the exponent is the exponent of the dividend

diminished by that of the divisor ; and if any power of a

number be divided by a higher power of the same num-

ber, the quotient is expressed by 1 divided by that power of

the number of which the exponent is the exponent of the

divisor diminished by that of the dividend.

The term power has so far been restricted to positive in-

tegral powers.

The above is the index law for division.

42. Division of Polynomials by Monomials. The product

{a -{- b -\- c) X p = ap -^ bp -\- cp. § 34

Therefore, {ap '\-bp-\- cp) -^p = a-^b -{- c.

But a, b, and c are the quotients obtained by dividing

each term, ap, bp, and cp, hj p.

Therefore, to divide a polynomial by a monomial, divide

each term of the polynomial by the monomial.

This is the distributive law for division.
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43. Division of Polynomials by Polynomials.

If the divisor (one factor) is a-\-b-\-c,

and the quotient (other factor) is n-\-p-}-q,

{an -\- bn -\- en

-\- ap -\- bp -\- cp

-\-aq-\-bq-\-cq

The first term of the dividend is an, the product of a

the first term of the divisor, by n the first term of the

quotient. The first term n of the quotient is therefore

found by dividing an, the first term of the dividend, by a,

the first term of the divisor.

If the partial product formed by multiplying the entire

divisor by n be subtracted from the dividend, ap the first

term of the remainder is the product of a, the first term of

the divisor, by p, the second term of the quotient. Hence,

the second term of the quotient is obtained by dividing the

first term of the remainder by the first term of the divisor.

And so on.

Therefore, to divide one polynomial by another

:

Divide the first term of the dividend by the first term of

the divisor.

Write the result as the first term of the quotient.

Multiply all the terms of the divisor by the first term of

the quotient.

Subtract the productfrom the dividend.

If there be a remainder, consider it as a new dividend

and proceed as before.

It is of great importance to arrange both dividend and

divisor according to the ascending or descending powers of

some common letter, and to heep this order throughout the

operation.
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(1) Divide

22a%^ + 15 6* + 3 a* - 10 a?h - 22 ab^ by a'^ + 3 6^ _ 2 ab.

3 a* - 10 a^b + 22 a^S^ _ 22 ab'^ + 15 6*
|
a^-2a5 + 3 6^

3a*- 6a36+ Oa^S^ 3a2-4a& + 562

- 4a36 + 13a2&2_22a63
- 4a36+ 8a252_i2a63

5a2J2_i0a63^156*
5a262_l0a53 + 156*

The operation of division may be shortened in some cases by the

use of parentheses.

(2) K^ + (a + 6 + c) a;2 + {ab + ac + bc)x + abc
\
x + b

x^ + { +b )x^ x'^ + {a + c)x + ac

{a + c)x^ + {ab + ac + be) x

{a + c)x'^ + {ab + be) x

acx + abc

acx + abc

44. Detached Coefficients. In Division as in Multiplica-

tion, it is convenient to use only the coefficients when the

dividend and divisor are expressions involving but one

letter, or homogeneous expressions involving but two

letters. Thus, the work of Ex. 1 of the last section may
be arranged as follows

:

3-10 + 22-22 + 15 |l-2 + 3

3- 6+ 9 3-4+5
- 4 +
- 4 +

13-

8-

-22

-12

5-

5-
-10 + 15

-10 + 15

The quotient is 3 a^ _ 4 a6 + 5 b\
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45. Special Oases. There are some cases in Division

which occur so often in algebraic operations that they

should be carefully noticed and remembered.

The student may easily verify the following results

:

a — 6

(2) ^'LZL^=.a'-{-a'b + a'b' + ab' + b'.

a — b

In general, it will be found that the difference of two

like powers of any two numbers is divisible by the differ-

ence of the numbers.

n^ J- 7)3

(3) 9Ljt!L^a^-ab-^b\

(4) ^i!±i!=a'- a'b + a'b'' - ab^ + b',

a-\-b

In general, it will be found that the sum of two like odd

powers of two numbers is divisible by the sum of the

numbers.

Compare the quotients in (3) and (4) with those in (1)

and (2).

(5) "^-f-x+ y.
X— y X — y

-x'-\-x'y-\-xy'-\-y\

(6) t^-x y. (8)El^.= o^ — x^y-{-xy'' — y'.

x-\ry x-\-y

In general, it will be found that the difference of two

like even powers of two numbers is divisible by the differ-

ence and also by the sum of the numbers.

The sum of two like even powers of two numbers is not

divisible by either the sum or the difference of the numbers.

But when the exponent of each of the two like powers
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is composed of an odd and an even factor, the sum of the

given powers is divisible by the sum of the powers expressed

by the even factor.

Thus, x^ + y^ is not divisible by a: + y, or by ^ — y, but

is divisible by x^ + y^.

The quotient may be found as in examples (3) and (4).

It appears, then, that a factor of x"" — y** can always be

found ; and that a factor of x"^ -j- y'^ can be found unless n

is a power of 2.

Thus, factors of x"^ + y^, x'^ + 3/*, x^ + 3/^, etc., cannot be found.

Exercise 4.

Divide :

1. (6 a^h^c X 35 a^5V) by (21 a^h\^ X 2 a^c").

2

.

39 aV + 24 aV + 42aV + 27 aV by 6aV.

3. 35a;^ + 94a:z;' + 52a'a; + 8a^by 5a; + 2a.

4. :r^ — 5 ax^ — a^x + 14 c^ by a;^ — 3 ax — 7 c^.

5. 81a;* + 36a;y + 163/*by 9a;'-6:ry + 4y^

6. a;* + 5* - aV + 2 5V by x^ -\-h'' -\- ax.

7. a'-25'-3c'' + o5 + 2ac + 7Z'cby a-5 + 3c.

8. ^x'-^xY~^:i^-^i^-^^-\-y'

hy y^-\-2x''-2-2>xy.

9. 2a"'+^-2a^+^-a'"+" + a''*by a"-2a.

10. 625a;* — 81 y* by 5^7 — 3y.

11. ;r'" + y'" by r?;« + y".

,^ 27 a^ P . 2>a h
'^'

T25"64^^T-4
13. (a + 2by-i-(b-Scyhja + S(b~c).

14. a*" - a'^+i + 37 «'"+' - 55 «"*+* + 50 a"^^

by l-3a+10a^
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15.4 A^+i - 30 }f + 19 h^~^ + 5 A^"-^ + 9 h"'

by h^-^ - 7 h^-' + 2 A--^ - 3 h-~\

16. 6 ;r"*-**+^ + -^m-n+i _ 22 a:*"-" + 19 a;"*""-^ — 4 a;"*-'*-^

by 3 a;'-" -4^7'-" + a;'-".

46. Extension of Meaning. The introduction of negative

numbers requires an extension of the meanings of some

terms common to arithmetic and algebra. But every such

extension of meaning must be consistent with the sense

previously attached to the term and with general laws

already established.

Addition in algebra does not necessarily imply augmen-

tation^ as it does in arithmetic. Thus, 7 + (— 5) = 2. The

word sum, however, is used to denote the result.

Such a result is called the algebraic sum, when it is

necessary to distinguish it from the arithnietical sum,

which would be obtained by adding the absolute values of

the numbers.

The general definition of Addition is, the operation of

uniting two or more expressions in a single expression writ-

ten in its simplest form.

The general definition of Subtraction is, the operation of

finding from two given expressions, called minuend and

subtrahend, a third expression, called difference, which

added to the subtrahend will give the minuend.

The general definition of Multiplication is, the operation

of finding from two given expressions, called multiplicand

and multiplier, a third expression, called product, which

may be formed from the multiplicand as the multiplier is

formed from unity.

The general definition of Division is, the operation of

finding the other factor when the product of two factors and

one factor are given.
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47. Pundamental Laws. All the operations of algebra

are performed subject to the following laws:

I. The commutative law (§§ 21, 31).

11. The associative law (§§ 27, 33).

III. The distributive law (§§ 34, 42).

IV. The index law (§§ 32, 41).

The various meaning of these laws as applied to the four

fundamental operations have been explained as they oc-

curred. We shall now simply formulate them, including

Subtraction under Addition.

I. The commutative law

:

For Addition a-\-b = h -\-a.

For Multiplication ah = ha.

II. The associative law :

For Addition a-\-(b-\-c) ={a^h)-\-c.

For Multiplication ahc = a (he) = {ah) c.

III. The distributive law

:

For Multiplication n{a -\- h ^ c) = na -\- nh -\- 7t>g,

For Division
a + & + o^« j £.

n n n n

IV. The index law

:

For Multiplication a"* X a" = «'"+".

For Division — = a"*"** (if m > w)
;

a"

^ =J—(iin>m\



CHAPTER III.

FACTORS.

In multiplication we determine the product of two given

factors ; it is often important to determine the factors of a

given product.

48. The simplest case is that in which all the terms of

an expression have one common factor. Thus,

(1) x' + xy^x^x-^y).

(2) 6a^ + 4a^ + 8a = 2a(3a^ + 2a + 4).

Frequently the terms of an expression can be arrangetiL

so as to show a common factor. Thus,

(3) ac — ad— he -{- hd = {ac — ad) — (be — bd)

= a(c— d) — b (c — d)

= (a-b)(c-d).

49. The square root of a number is one of the two equal

factors of that number. Thus, the square root of 25 is 5

;

for, 25 = 5 X 5. The square root of a* is a^ ; for,

a*^a'x a\

In general, the square root of an even power of a number

is expressed by writing the number with an exponent equal

to one-half the exponent of the power.

50. Since a"Z>" X a^-^ = a^-^a^"^ = a^'a^'b^'b'' = o'"^'",

a"^'* is the square root of a^"6'^'*. But a" is the square root
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of tt'^", and Z)" of 5^". Therefore, the square root of the

product of even powers may be found by taking the square

root of each factor, and finding the product of the roots.

The square root of a positive number may be either posi-

tive or negative ; for,

or, a^ = — a X — a

;

but throughout this chapter only the positive value of the

square root will be considered.

51. From § 38 it is seen that a trinomial is often the

product of two binomials. Conversely, a trinomial may,

in certain cases, be resolved into two binomial factors.

(1) To find the factors of a;' + Ta; + 12.

The first term of each binomial factor will obviously be x.

The second terms of the two binomial factors must be two numbers

of which the proc?wd is 12, and the s,um 7.

These two numbers are 4 and 3.

.-. a;2 + 7a; + 12 = (x + 4)(a; + 3).

(2) To find the factors oi x^ — ^x — 36.

The second terms of the two binomial factors must be two num-

bers of which the product is — 36, and the sum — 9.

These two numbers are — 12 and + 3.

... a;2-9a;-36 = (ar-12)(a; + 3).

52. Consider trinomials which are perfect squares. These

are only particular forms of the trinomials of the last sec-

tion, but from their importance demand special attention.

(1) To find the factors of ^' + 18:r + 81.

The second terms of the two binomial factors must be two num-

bers of which i\iQ product is 81, and the sum 18.

These two numbers are 9 and 9.

.-. a;2 + 18a; + 81 = (a; + 9)(a; + 9) = (a; + 9)'.
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(2) To find the factors of x^ - l^x + 81.

The second terms of the two binomial factors must be two num-

bers of which the product is 81, and the sum — 18.

These two numbers are — 9 and — 9.

.-. a;2 - 18a; + 81 = (a; - 9)(a; - 9) = (a; - 9)1

53. An expression in the form of two squares, with the

negative sign between them, is the product of two factors

which may be determined as follows

:

Take the square root of the first number, and the square

root of the second number.

The sum of these roots will form the first factor

;

The difference of these roots will form the second factor.

Thus,

(1) a^-h^ = {a + b){a-b).

(2) (a - by - (c - df = {(a -b) + (c - d)]{{a -b)-{c- d)}

= {a — b + c — d}{a — b — c-{- d}.

The terms of an expression may often be arranged so as

to form two squares with the negative sign between them,

and the expression can then be resolved into factors.

(3) a^ + b''-c^-d^ + 2ab + 2cd

= a2 + 2ab + b^-c^ + 2cd-d^

= (a2 + 2ab + 62) -{c''-2cd + d^)

= (a + 6)2 _ (c - df
= {(a + 6) + (c - c? )}{(a + 6) - (c - rf)}

= {a-irh-\-c — d}{a -^b-c + d].

An expression may often be resolved into three or more

factors.

(4) Xl6_3/16 = (a;8 + y8)(a:8_y8)

= (a;8 + 2/8)(a;* + 3/*)(a;*-y*)

= (X8 + y8) (a;* + y^) {x^ + y^) (.^2 _ y2)

- (a;8 + 3/«) {3^ + 2/*) {a? + y^) {x + y){x- y).
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Any expression of the form x^ ± y'^ may be resolved into

factors by the principles of § 45 with one exception ; viz.,

when the sign is + and n is a power of 2.

64. For a trinomial to be a perfect square, the middle

term must be twice the product of the square roots of the

first and last terms.

The expression ^x'^ — 37:cy + 93/* will become a perfect

square if 2bx^y'^ be added to the middle term. We must

also subtract 25^y to keep the expression unchanged.

This gives 4a;* - 37^y 4. 9^4

= (4 a;* - 12xy + 9y*) - 25a;y

= (2a;2-32/7^-25a;y

= (2^2 - 3?/2 + ^xy){2x' -Sf-5xy)
= (2x2 + 5x^ - 32/2)(2x2 -5xy- 3y^).

55. To find the factors of 6x' + x— 12.

It is evident that the first terms of the two factors may
be 6a; and a;, or 2a; and 3 a;, since the product of either of

these pairs is Qx"^.

Likewise, the last terms of the two factors may be 12

and 1, 6 and 2, or 4 and 3 (if we disregard the signs).

From these it is necessary to select such as will produce

the middle term of the trinomial. And they are found by

trial to be 3a; and 2a;, and — 4 and + 3.

.-. 6a:' + a;-12 = (3a;-4)(2a; + 3).

56. The factors, if any exist, of a polynomial of more

than three terms can often be found by the application of

principles already explained.

Thus, it is seen that the expression

a^ — 2xy +y^ + 2xz — 2yz + z^
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consists of three squares and three double products, and from ^ 37, is

the square of a trinomial which has for terms x, y, z.

It is also seen from the double product — ^.xy, that x and y have

unlike signs ; and from the double product 2 xz, that x and z have

like signs. Hence,

x^ — 2xy -^-y"^ -\-2xz — 2yz + 2^ = (x — 3/ + zf.

57. Find the factors of

^x" -lxy — ?>y''-^x-{- 30y - 27.

The factors of the first three terms are 2>x +y and 2x — Zy.

Now — 27 must be resolved into two factors such that the sum of

the products obtained by multiplying one of these factors by 3 x and

the other by 2x shall be — 9a;.

These two factors evidently are — 9 and + 3. Therefore,

(6a^ - 7x2/ - 32/2 - 9a; + 30y - 27 = (3 x + 2/
- 9)(2a; -Zy^ 3).

This result may be verified by actual multiplication.

58. The following method is often convenient for sepa-

rating a polynomial into its factors :

Find the factors of

2x''- bxy + 2y^ + 1 xz - byz + 822.

(1) Reject the terms that contain 2.

(2) Reject the terms that contain y.

(3) Reject the terms that contain x.

Factor the expression that remains in each case.

(1) 2x'^-bxy V2y^ = {x-2y){2x-y).

(2) 2x^ + 1 xz +322 =(x + 3 2)(2a; + 2).

(3) 23/2-52/2+322=(-22/ + 32)(-3/ + 2).

Arrange these three pairs of factors in two rows of three factors

each, so that any two factors of each row may have a common term.

Thus,

x—2y, a; + 82, —2y + Zz\

2x — y, 2x + z, ~y + z.
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From the first row, select the terms common to two factors for one

trinomial factor

:

From the second row, select the terms common to two factors for

the other trinomial factor.

2aj — 2/ + 2.

Then,

2x^-bxy + 2y'^ ^Ixz-byz + ?,z^ = {x-2y + ?,z){2x -y -\- z).

When a factor obtained from the first three terms is also

a factor of the remaining terms, the expression is easily-

resolved.

Thus, x2 - 3a;y + 23/2 _ 3a; + 6^/ = (cc - 2y){x - y) -2>{x-2y)

=^{x-2y){x-y-3).

Exercise 5.

Resolve into factors

:

1. 9x'-{-6x'-{-Sx^-\-2x.

2. 2a'-3a'b~Ua'i-21ab.

3. 5x'-\-15x'i/-4:xf-12y\

4. a^ctf — b^xy"^ — c^cx^ + b'^cy^.

5. :r^ + 8a;+7. 11. :r' + :^-72.

6. x^-Vlx^m. 12. ^^-14:r-176.

7. x'^lx-V^. 13. 81a;*-196^y.

8. o(?-2x-2^.

9. 9:r2+ 30a; + 25. 15. 64a;^ + ^/.

10. 16a;2-56a; + 49. 16. {p^-y''y-y\

17. {a^-\-2b''y-a^h\

18. {2x-Zyy-{x~2yy.

19. {2x^-^x-{-iy — x\x-\-^y.
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20. X* - 2(b' - c'y + b'-2 b'c' + c\

21. lbx''-7x-2.

22. lla^-54:X + QS.

23. 21a;^ + 26a;-15.

24. 70a;2-27a;-9.

25 . x*-2 abx' -a*- a'b' - b*.

26. 5a;^ + 4:i;^-20a;-125.

27. 2a;* -5:?;' -a;' -2.

28. 6a;* — aa;'-2aV + 3A — 2a*.

29. 12a;*+10a;V-12a:y — 6a:y-4y*.

HIGHEST COMMON FACTOR.

59. A common factor of two or more expressions is an

expression which is contained in each of them without a

remainder.

Two expressions which have no common factor except 1,

are said to be prime to each other.

The highest common factor of two or more expressions is

the product of all the factors common to the expressions.

For brevity, H. 0. F. will be used for highest common

factor.

Ex. Find the H. C. F. of

8aV — 24a'a; + 16a'' and Uax"^ - 12axy -24:mj.

8aV - 24a^x + IQa^ = 8a'^{x^ -3x + 2)

^2^a\x-l){x-2)',

12ax^y - I2axy - 24 ay - 12 ay {x^-x- 2)

-2»x3ay(a; + l)(a;-2).

.-. theH.C.F. = 22a(a:-2) = 4a(a;-2).



34 ALGEBRA.

Hence, to find the H. C. F. of two or more expressions :

Resolve each expression into its lowest factors.

Selectfrom these the lowest power of each common factor,

andfind the product of these powers.

60. When it is required to find the H. C. F. of two or

more expressions which cannot readily be resolved into

their factors, the method to be employed is similar to that

of the corresponding case in arithmetic. And as that

method consists in obtaining pairs of continually decreasing

numbers which contain as a factor the H. C. F. required

;

so in algebra, pairs of expressions of continually decreasing

degrees are obtained, which contain as a factor the H. 0. F.

required.

The method depends upon two principles

:

I. Any factor of an expression is a factor also of any

multiple of that expression.

Thus, if i^ represent a factor of an expression A, so that

A = nF, then rn^A = mnF. That is, mA contains the

factor F.

II. Any commonfactor of two expressions is a factor of

the sum or difference of any multiples of the expressions.

Thus, if F represent a common factor of the expressions

A and B so that

A — mF, and B= nF;

then pA =pmF, and qB = qnF.

Hence, pA ± qB =pmF± qnF,

= {pm ± qn)F.

That is, pA ± qB contains the factor F.
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61. The general proof of this method as applied to num-

bers is as follows

:

Let a and h be two numbers, of which a is the greater.

The operation may be represented by

:

h)a{p

p2

42)154(3

126

nF)mF(p
pnF

c)h{q

qc_

28)42(1

28

cF)nF(q
qcF

d)c{r

rd

14)28(2

28

F)cF(c
cF

p, q, and r represent the several quotients,

c and d represent the remainders,

and d is supposed to be contained exactly in c.

The numbers represented are all integral.

Then c = rd,

h = qc-\- d= qrd -\- d— {qr + l)d,

a=ph-\-c = pqrd -\-pd -\- rd

= {pqr -\-p + r) d.

.'. d is a common factor of a and h.

It remains to show that d is the highest common factor

of a and h.

Let/ represent the highest common factor of a and h.

Now c= a —ph, and/ is a common factor of a and h.

.'. by (II.) /is a factor of c.

Also, d=b — qc, and/ is a common factor of h and c.

.'. by (II.) /is a factor of d.

That is, d contains the highest commonfactor of a and b.

But it has been shown that c? is a common factor of a

and b.

.'. d is the highest commonfactor of a and b.
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Note. The second operation represents the application of the

method to a particular case. The third operation is intended to rep-

resent clearly that every remainder in the course of the operation

contains as a factor the H. C. F. sought, and that this is the highest

factor common to that remainder and the preceding divisor.

62. This method is only needed to determine the com-

pound factor of the H. 0. F. Simple factors of the given

expressions should, be separated, and the highest common

factor of these factors reserved to be multiplied into the

compound factor obtained.

Modifications of this method are sometimes needed.

(1) Find the H. C. F. of

4:x' ~Sx-b and 12:r^ - 4:X - 65.

4a;2_8a;_5)12a;2- 4a! -65(3
12x^-243; -15

20a; -50

The first division ends here, for 20 x is of lower degree than 4 x^.

But if 20 a; — 50 be made the divisor, ix^ will not contain 20a; an in-

tegral number of times.

Now, it is to be remembered that the H. C. F. sought is contained

in the remainder 20 a; — 50, and that it is a compound factor. Hence

if the simple factor 10 be removed, the H. C. F. must still be con-

tained in 2 a; — 5, and therefore the process may be continued with

2 a; — 5 for a divisor.

2a; -5)4x2- 8a;-5(2a; + l

4a;'' -10a;

2a;-5
.-. the H. C. F. = 2a; - 5. 2a;-5

(2) Find the H. C. F. of

21r^--4:r^-15a;-2 and 21ar»- 32rr2- 54^;- 7.

Writing only the coefficients (§ 44), the work is as follows

:

21 - 4 - 15 - 2) 21 - 32 - 54 - 7 (1

21- 4-15-2
_ 28 - 39 - 5
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The difficulty here cannot be obviated by removing a simple factor

from the remainder, for — 28 a;^ — 39 a; — 5 has no simple factor. In

this case, the expression 21 a^ - 4 x'* — 15 a; — 2 must be multiplied by

the simple factor 4 to make its first term divisible by — 28 x^.

The introduction of such a factor can in no way affect the H. C. F.

sought ; for the H. C. F. contains only factors common to the remain-

der and the last divisor, and 4 is not a factor of the remainder.

The signs of all the terms of the remainder may be changed ; for

if an expression A is divisible by — F, it is divisible by + F.

The process then is continued by changing the signs of the remain-

der and multiplying the divisor by 4.

28 + 39 + 5)84 _ 16- 60- 8(3

84 + 117+ 15

_133- 75- 8

Multiply by — 4, - 4

532 + 300 + 32(19

532 + 741 + 95

Divide by - 63, - 63) -441 -63
7+ 1

7 + 1)28 + 39 + 5(4 + 5

28_+ 4

35 + 5

.-. thell.C.F. is7a; + l. 35 + 5

In practice the work is most conveniently arranged as follows

21- 4- 15- 2 21 -32-54-7 1

4 21 _ 4-15-2

84- 16- 60- 8 _l)_28-39-5
84 + 117+ 15 28 + 39 + 5

28+4
3 + 19

-133- 75- 8

- 4 35 + 5

35 + 5
532 + 300 + 32

532 + 741 + 95

-63)- 441 -63
7+ 1 4 + 5

.-. the H.C.F. is 7a; + 1.



38 ALGEBRA.

In the preceding work each quotient is placed opposite the corre-

sponding divisor ; but the position of the quotients is evidently a

matter of indifference.

63. From the foregoing examples it will be seen that, in

the algebraic process of finding the highest common factor,

the following steps, in the order here given, must be care-

fully observed

:

I. Simple factors of the given expressions are to be re-

moved from them, and the highest common factor of these

is to be reserved as a factor of the H. C. F. sought.

II. The resulting compound expressions are to be ar-

ranged according to the descending powers of a common
letter ; and that expression which is of the lower degree is

to be taken for the divisor; or, if both are of the same

degree, that whose first term has the smaller coefficient.

III. Each division is to be continued until the remainder

is of lower degree than the divisor.

IV. If the final remainder of any division is found to

contain a factor that is not a common factor of the given

expressions, this factor is to he removed; and the resulting

expression is to be used as the next divisor.

V. A dividend whose first term is not exactly divisible

by the first term of the divisor, is to be multiplied by such

an expression as will make it thus divisible.

The H. 0. F. of three expressions will be obtained by

finding the H. C. F. of two of them, and then of that and

the third expression.

LOWEST COMMON MULTIPLE.

64. A common multiple of two or more expressions is an

expression which is exactly divisible by each of them.

The lowest common multiple of two or more expressions
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is the product of all the factors of the expressions, each

factor being written with its highest exponent.

The lowest common multiple of two expressions which

have no common factor will be their product.

For brevity L. 0. M. will be used for lowest common

multiple.

Find the L. C. M. of 12a'c, Ubc\ S6ah\

12a'c = 22x3aV,

I4:bc'=2 Xlhc\

S6ab'= 2'xS'ab\

.-. the L. C. M. = 2' X S' X la'b'c' = 252a'b'c\

65. When the expressions cannot be readily resolved

into their factors, the expressions may be resolved by find-

ing their H. G. F.

Find the L. C. M. of

Qx' \\x^y-\-2if

6-11+0 + 2

6- 8-4

and ^x'-22xy'

9+ 0-22- 8

2

- 3+4+2
- 3+4+2

18+ 0-44-16
18-33+ 0+ 6

11)33-44-22
3- 4- 2

8/.

2-1

Hence, ^^ -Wx^y ^2y^ ^{2,x-y) {^x'' -^xy -2y%
and 9a;3 _ 22xy'^ -^f = {Zx + 42/)(3a;2 - 4a?y - 2y^.

.'. the L. C. M. = (2 aj - y)(3 x + 4 2/)(3 x^-Axy- 2y'^\

In this example we find the H. 0. F. of the given expres-

sion, and divide each of them by the H. C. F.

Instead of dividing both expressions by their H. 0. F.,

we might have divided only one expression, and have mul-

tiplied the quotient by the other expression.



40 ALGEBRA.

The object of finding the H. G. F. is to obtain some

means oifactoring the given expressions.

Exercise 6.

Find the H. 0. F. of:

1. 12a;' -17^ + 6, ^x' + ^x-S.

2. x'~a\ x^ + Zax — 4:a\ x^ ~ 5ax-\-4:a\

3. x'-6x'+lSx'— 12x+ 4:, x'-4:X^-i~Sx''-16x-\-16.

4. Sx* — x'-2x'' + 2x — S, 6a;' +13^;^ 4- 3a;' -1-20 37.

5. 96a;* + 8a;^-2ar, 32a;^- 24a;'- 8:f f 3.

6. a;* + 5a;^-7a;'-9a;-10, 2a;'- 4a;' + 4a;- 8.

7. 2a;' -16a; + 6, 5a;«+ 15a;^ + 5a; + 15.

8. 2a* + 3a'a;-9aV, 6a'a;- 3aa;'- 17aV+ 14aV.

9. 2a'-4a* + 8a'-12a' + 6a,

3a«-3a^-6a' + 9a'-3a'.

10. Sa^-lx'^ — y' + bxf, a;^ + 3 a;?/' - 3 a;' - ^,
3a^ -\- 5x'^^-{-x7/^ — 7/^.

11. 36a;'-28a;^ + 32a;* + 8a;'-16a;',

12a;^ - 14a;* - 20a;' -f- lOo;' + 4a;.

Find the L. 0. M. of:

12. a;' — 3a;-4, a;' - a; - 12, ai-' + 5a;4-4.

13. 6a;'- 13 a;
-f- 6, 6a;' -f 5a; -6, 9a;' -4.

14. 3a;*-a;'-2a;2_^2a;-8, 6a;'+ 13a;' + 3 a;+ 20.

15. 15aV+10(2V + 4aV + 6a''a;-3a^

12 X*+ 38 ao;'+ 16 a'a;' - 10 a^x.

16. 2a;* + a;'-8a;'-a; + 6, 4a;* + 12 a;' -a:' — 27a;- 18,

4a;* + 40;' -17a;' -9a; +18.
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FRACTIONS.

66. An algebraic expression is integral when it consists

of a number of terms connected by + and — signs, each

term being the product of a coefficient into powers of the

letters involved.

In an integral algebraic expression the coefficients may be frac-

tional. Thus, ic' — f aa;2 + fa is an integral algebraic expression.

67. An algebraic fraction is the quotient of two integral

expressions, and is generally written in the form -•

h

The dividend, a, is called the nnmerator; the divisor, h,

the denominator.

Tje numerator and denominator are called the terms of

the fraction.

68. Since the quotient is unchanged if the dividend and

divisor are both multiplied (or divided) by the same factor,

the value of a fraction is unchanged if the numerator and

denominator are multiplied (or divided) by the same factor.

69. To reduce a fraction to lower terms,

Divide the numerator and denominator hy any c&mmon

factor.

A fraction is expressed in its lowest terms when both

numerator and denominator are divided by their H. C. F.



42 ALGEBRA.

(1) Reduce to lowest terms

•D a KK 6 a;2 — 5 a; — 6
By I 55, —-— —

8 x'^ — 2 ic — 15

(2) Reduce to lowest terms

(2 a' -3)(3a; + 2)

15

3a; + 2

(2 a.

m a

-3)(4a; + 5) 4x + 5

3a^-14a2+16a

Since no common factor can be determined by inspection, it is

necessary to find the H. C. F. of the numerator and denominator by

the method of division.

We find the H. C. F. to be a - 2.

Now, if a^ — 7a2 + 16 a — 12 be divided by a — 2, the result is

a2 _ 5^ ^ g . and if 3 a^ — 14a2 + 16a be divided by a - 2, the re-

sult is 3 a'^ — 8 a.

a3_7^2 + 16(j_12 a2-5a + 6

3a=»-14a2 + 16a Zo?

70. Mixed Expressions. If the degree of the numerator

of a fraction equals or exceeds that of the denominator, the

fraction may be changed to the form of a mixed or integral

expression hy dividing the numerator hy the denominator.

The quotient will be the integral expression ; the remain-

der (if any) will be the numerator, and the divisor the

denominator, of the fractional expression.

To reduce a mixed expression to a fractional form.

Multiply the integral expression hy the denominator, to

the product annex the numerator, and under the result write

the denominator.

The dividing line has the force of a vinculum or paren-

thesis affecting the numerator ; therefore, if a minus sign

precede the dividing line, and this line be removed, the

sign of every term of the numerator must be changed.

-_,, a — 6 en — (a — h) cn — a-i-b
Thus, n = =
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71. Lowest Oommoii Denominator. To reduce fractions to

equivalent fractions having the lowest common denominator.

Find the L. 0. M. of the denominators.

Divide the L. 0. M. by the denominator of each fraction.

Multiply the first numerator by the first quotient, the sec-

ond numerator by the second quotient, and so on.

The products will be the numerators of the equivalent

fractions.

The L.C.M.. of the given denominator's will be the denom-

inator of each of the equivalent fractions.

Thus. l£, 2^, A
1 , 9 ax 8 a^v 10 , • i

are equal to , ^. , respectively,^
12a^ 12a' 12a'

^ ^

The multipliers 3 a, ia"^, and 2, being obtained by dividing 12 a^
the L. C. M. of the denominators, by the respective denominators of

the given fractions.

72. Addition and Subtraction of Practions. To add fractions :

JReduce the fractions to equivalent fractions having (he

lowest common denominator.

Add the numerators of the equivalent fractions.

Write the result over the lowest comm.on denominator.

To subtract one fraction from another we proceed as in

addition, except that we subtract the numerator of the sub-

trahend from that of the minuend.

(1) Simplify.
^a~^h _ 2a-b + c 13a-4£^

The L. CD. is 84.

The multipliers are 12, 28, and 7 respectively.

36 a — 48 6 = 1st numerator,

- 56 a + 28 6 - 28 c = 2d numerator,

91 a — 28 c = 3d numerator.

71 a — 20 6 — 56 c == sum of numerators.
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. 3a-45 2a-6 + c 13a-4c ^ 71a-206-56c"7 3 12 "^ 84

Since the minus sign precedes the second fraction, the signs of all

the terms of the numerator of this fraction are changed after being

multiplied by 28.

(2) Simplify J!_^-^+1 2a:y

x^ —
lf-

x-\-y '

' x^-\-y^

The L. C. D. is (a; + y){x - y^x" + y^).

The multipliers are x^ + y^, {x — y) {x^ + 2/^), {x + y){x — y),

(o^ + 2/2), {x + y)(x — y), respectively.

^2y2 + 2/* = 1st numerator,

— x* + 2a^y--2 x^y^ + 2 xy^ — y^ = 2d numerator,

x^ — 2/* = 3d numerator,

2x^2/ ~2xy^ = 4th numerator.

4 cc^y — x'^y'^ — 2/* = sum of numerators.

.-. Sum of fractions - ^^y-^Y-f ,

a* — y*

73. Since ^ = «, and ~ ^, = a,

it is evident that if the signs of both numerator and de-

nominator be changed, the value of the fraction is not

altered.

Since changing the sign before the fraction is equivalent

to changing the sign before every term of the numerator

or denominator, therefore the sign before every term of the

numerator or denominator may he changed^ provided the

sign before thefraction is changed.

Since, also, the product of + « multiplied by + ^ is ah,

and the product of — a multiplied by — J is ah, the signs

of two factors, or of any even number of factors, of the

numerator or denominator of a fraction may be changed

without altering the value of the fraction.
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By the application of these principles, fractions may
often be changed to a form more convenient for addition or

subtraction.

Ex. Simplify ^~-l—+ ^£zi^.

Change the signs before the terms of the denominator of the third

fraction, and change the sign before the fraction.

The result is,

2 3 2x-S
a;2x — 14a;'^ — 1

in which the several denominators are written in similar form.

The L. C. D. is x{2x - l)(2a; + 1).

8 a;'' — 2 = lat numerator,

— 6x'^ — 3x = 2d numerator,

-- 2 a;2 + 3 ic = 3d numerator.

2 = sum of numerators.

-2
.'. Sum of the fractions =

a;(2a;-l)(2a; + l)

74. Multiplication of Practions. Let it be required to find

the product of the two fractions y and -•

a

If we multiply the dividend a by c, we multiply the

quotient - by c ; if we multiply the divisor b by d, we divide

the quotient - by d. Hence, the product of the two frac-

tions - and - is -— • Therefore, to find the product of two
b d od

fractions,

Find the product of the numerators for the numerator of

the product, and the product of the denominators for ihe

denominates of the product. «
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75. Division of Fractions. Multiplying by the reciprocal

of a number is equivalent to dividing by the number.

Thus, multiplying by ^ is equivalent to dividing by 4.

The reciprocal of a fraction is the fraction with its terms

interchanged. Therefore, to divide by a fraction,

Interchange the terms of the fraction and multiply hy the

resulting fraction.

If the divisor be an integral expression, it may be

changed to the fractional form.

76. A complex fraction is one which has a fraction in the

numerator, or in the denominator, or in both.

To simplify a complex fraction,

Divide the numerator hy the denominator.

It is often shorter to multiply both terms of the fraction

by the L. C. D. of the fractions contained in the numerator

and denominator.

Exercise 7.

Reduce to lowest terms

:

^ 42a^ — 3Qa^:r ^ 6aV- 2a^ + 18g^- 6a'

35aa;'-25/ ' 4a* + 2aV + 12a' + 6c'''

2 2x^-\-bx'-\2x 4 x'-{-{2h''~a^)x''-\-h'

l3^-\-2bx'-l2x ' x'+2aa^-\-a'x'-b'''

^ 6:r^-9:i;*+ll:r^ + 6:<;'-10:r

4:x^ + lOa;^ + 10:^;* + 4^^ + QOx'

Simplify

:

Sx — 2y 4:y + 2x . 22y-9x
3 5 "^ 15 *

„ _2 1 2a + 3
,

1 Sa-2h
; 3a 2b 6a' '^ 2x' Qab
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8,
3 , 4a ^a"

11.

x~a (x — of {x — of

9
a-\-h . h-\-c a — c

{b~c){c-ay {c-a){a-h) (a-b){b-c)

10. . } ,+ .

1
• 1

a{a — b){a — c) b(b — c)(b~a) c(c — a)(c — b)

6.2:'' -17:^+12 27x'+l8x-24: 25x'-25x+ 6

12^:2 _ 25^+ 12"*" Ux'i-lx-U 20x^-2Sx-{-6

, ^ 2aV ^ 5 a^5^ ^ 15 5^c^ 25 a*:r

36« 4cV 4a9:c

13. f^' — y*
. ^ + y\ .f

^' + y'
. ^ + y\

V^;"'
— y"' x^-xy) ' \x -y ' xy - yV

^g :r''— 7a;+12 ^ or'' + a: - 2 ^ 2a:^ + 5a;-3
> + 5a; + 6 x''-6^+ 4: Sx'-7x-6

^g 6a^ - a - 2 ,, Sa' - lOa + 3 ,, 12a^ + 17a + 6

8a' -2a -3 12a*' + a-

6

6a' + a-2

2x±y

17. -^ ?^. 19.
(«^+A.)(«'+*')

a; + 2/ a; a-\-b a — b

1 + x l-\-x^ 64 a^- 96 g^g^H- 36 a:r

^g 1 + x^ l + x'
2^

36a'-729:r'

1+a;' 1+.'^' 48a' -27^'^

l + r' 1 + a;* 8a'-72aa; + 162a:»
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SIMPLE EQUATIONS.

77. Two different expressions which involve the same

symbols will generally have different values for assumed

values of the several symbols ; for certain values of the

symbols involved the two expressions may have the same

value.

78. An equation is a statement that two expressions have

the same value ; that is, a statement that two expressions

represent the same number.

Every equation consists of two expressions connected by

the sign of equality ; the two expressions are called the

sides or members of the equation.

An equation will in general not hold true for all values

of the symbols involved ; it will hold true for only those

values which give to the two members the same value.

Thus, the equation,

4a;2-3.'c + 5 = 3a;2 + 4a;-5,

holds true when for x we put 2, since both members then have the

value 15 ; also when for x we put 5, since both members then have

the value 90. If we give to x any other value, the two members will

be found to have different values, and the equation will not hold true.

79. An equation of condition is an equation which holds

true for only certain particular values of the symbols

involved.

An identical equation, or an identity, is an equation which

holds true for all values of the symbols involved.

The two members of an identical equation are identical

expressions.
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In identical equations it is customary to use the sign =,

called the sign of identity, instead of the sign of equality.

Thus, the two expressions {x-\-yf and x^ ^- 2xy -\-
y^ have the

same value for all values of x and y, and we accordingly write the

identity,

{x + 2/)2 = x^ + 2x3/ + y^-

This is read, {x + yY is identically equal to x^ ^^ 2xy + y^
\

or, (re + yf is identical with x"^ -\-2xy + y"^.

Wherever the term equation is used, it is to be under-

stood that an equation of condition is meant, unless the

contrary is expressly stated.

80. In any particular problem we have two kinds of

numbers to consider

:

(1) Numbers which are either given, or supposed to be

given, in the problem under consideration. Such numbers

are called known numbers ; if given, they are generally rep-

resented by figures ; if only supposed to be given, by the

first letters of the alphabet.

(2) Numbers which are not given in the problem under

consideration, but are to be found from certain given rela-

tions to the given numbers. Such numbers are called

unknown numbers, and are generally represented by the last

letters of the alphabet.

The relations between the known and unknown numbers

are generally expressed by means of equations.

To be able to determine all the unknown numbers, we

must have as many equations as there are unknown num-

bers. If there are two or more equations, we have a system

of simultaneous equations.

81. To solve an equation, or a system of simultaneous

equations, is to find the unknown numbers involved.
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82. The degree of an equation is the same as the sum, in

the term in which that sum is greatest, of the exponents of

the several unknown numbers involved in the equation.

If the equation involves but one unknown number, the

degree is the same as the exponent of the highest power of

the unknown number involved in the equation.

Equations of the first, second, third, and fourth degrees

are called, respectively, simple equations, quadratic equa-

tions, cubic equations, and biquadratic equations.

83. Literal equations are equations in which some or all

of the given numbers are represented by letters.

84. An equation which involves but one unknown num-

ber, represented for example by x, will hold true for those

values of x which give to the two members the same value

(§ 78), and for no other values of x. The values of x for

which the equation holds true are called the roots of the

equation.

Thus, the roots of the equation 4.'c2 — 3 x + 5 = 3 x^ + 4a; — 5 are 2

and 5.

To solve an equation which involves one unknown num-

ber is therefore to find its roots.

85. The various methods of solving equations are based

mainly upon the following general principle

:

If similar operations be performed upon equal numbers,

the results ivill be equal numbers.

Thus, the two members of a given equation are equal

numbers. If the two members be increased by, diminished

by, multiplied by, or divided by, equal numbers, the results

will be equal numbers. Similarly, if the two members be

raised to like powers, or if like roots of the two members

be taken, the results will be equal numbers (§ 18).
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86. Any term inay he transposed from one side of an

equation to the other, provided its sign be changed.

Suppose we have x -\- a=' b.

Now, a = a.

Subtract, x =b~a.

The a which appeared in the left member with the posi-

tive sign, now appears in the right member with the

negative sign. Similarly for any other equation.

87. The signs of all the terms on each side of an equa-

tion may be changed ; for this is in effect transposing every

term.

88. To solve an equation with one unknown number,

Transpose all the terms involving the unknown number

to the left side, and all the other terms to the right side:

combine the like terms, and divide both sides by the coefficient

of the unknown number.

To verify the result, substitute the value of the unknown

number in the original equation.

Ex. Solve (x~2)(x + ^) = (x.-\-l)(x-{-2).

Multiply out, a;2 + 2 ic - 8 - a'2 + 3 a; + 2,

or 2x-^ = 2>x + 2.

Transpose, 2a; — 3x = 2+8,
- X = 10,

a =: — 10, Ans.

89. Fractional Equations. To clear an equation of fraction,

Multiply each term by the L. C. M. of the denomjinators.

If a fraction is preceded by a minu^ sign, the sign of

every term of the numerator must be changed when the

denominator is removed (§ 73).
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« 1-^ = ^-^-

Multiply by 33, the L. C. M. of the denominators.

Then, 11a; - 3a; + 3 = 33a; - 297.

Transpose and combine, — 25 a; = — 300.

.-. a; = 12.

Since the minus sign precedes the second fraction, in removing

the denominator, the + (understood) before x, the first term of the

numerator, is changed to — ; and the — before 1, the second term of

the numerator, is changed to +.

If the denominators contain both simple and compound

expressions, it is best to remove the simple expressions

first, and then each compound expression in turn.

^ ^ 14 "^"6:^ + 2 7

Multiply both sides by 14.

Then, 8a; + 5 + ^^^^-^ = 8a; + 12.
3a;+l

Transpose and combine, —^^-^— = 7.^
3x + l

Multiply by 3 a; + 1, 49 a; - 21 = 21 a; + 7.

.-. a; = 1.

Exercise 8.

Solve

:

1. 8 (10 -a;) = 5 (^+3).

2. 2x-S(2x-S) = l~4:(x-2).

3. (x-bXx + 6) =(x-lXx~2).

4. (2x-{-S){Sx — 2') = x' + x(5x-i-S).

5. (x-SXx + b) = (x + lX2x-S)-x\
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6. (a;+ 4)(a7-2) = (a;+3)(3a;-f 4)-(2a; + l)(^--6).

7. {x - ^){2x i-b) = x{x-\-^)-^{x-\- l){x + 3).

8. {x-\-2y~r^x = {x-2y^b{l%-x).

9. {x-^Y + {x-^y = {x-2y^{x-^^f.

-rt 3a; X 26 .. 5^ — 6 3a; a; —

9

12.
3a;-

5

2 ^^^
""^ -^' +

"" ~""
zz= 7.

13.

2a; + 10 3

3(5a;-3) _6
^^

2(4a; + 3) 5 * 2a;+l ' 4a;-3

5 4 10

12-3a; 3a;--11

4 3

4a;+17 3a;--10

a; + 3
1

X —-4

.-3 2x-i=:l.

18.
4a; + 3 3a;-4 ^ 7

3a;+ 4 4a;-3 '12

19. 6^__^^2a; + l
3 a;-f2 2

20. 2^±i + 2£_5,
a+1 ^ a

rt, ax — h bx 4- c ,
21. — = abc.

c a

22
^• + «

I

x-\-h __b

3(a; + 6j 2(a; + a) 6*

a; -2a 13ft''-2a;'_g
a;-f3a a;'' -9a'

23.

24. «|^| «(^ — Q^) a;(a; + a) ^ aa; ^
a; a a; (a; + a) a (a; — a) d^ — x^
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90. Problems. In the statement of problems it is to be

remembered that the unit of the quantity sought is always

given, and it is only the number of such units that is to be

found. We have nothing to do with the quantities them-

selves; it is only numbers with which we have to deal.

Thus, X must never be put for a distance, time, weight, etc.,

but for a number of miles, days, pounds, etc.

(1) A and B had equal sums of money ; B gave A $5,

and then 3 times A's money was equal to 11 times B's

money. "What had each at first ?

Let X = numher of dollars each had.

Then a; + 5 = numher of dollars A had after receiving 1 5,

and X — 5 = number of dollars B had after giving A $5.

.-. 3(a; + 5) = ll(a;-5),

3a; + 15 = 11a; -55,

-8a; = -70,

a; = 8|.

Therefore each had |8,75.

(2) A can do a piece of work in 5 days, and B can do it

in 4 days. How long will it take A and B to do the work

together ?

Let X = the number of days it will take A and B together.

Then - = the part they can do together in one day.

Now, I = the part A can do in one day,

and ^ = the part B can do in one day,

.'. -^ + $ = the part A and B can do together in one day.

5 4 a;

4a; + 5x = 20,

9a; = 20,

a; = 2|.

Therefore they can do the work together in 2f days.
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Exercise 9.

l; The difference of two numbers is 3 ; and three times

the greater number exceeds twice the less by 18. Find the

numbers.

2. If a certain number be increased by 16, the result is

seven times the third part of the number. Find the given

number.

3. A boy was asked how many marbles he had. He
replied, " If you take away 8 from twice the number I

have, and divide the remainder by 3, the result is just one-

half the number." How many marbles had he ?

4. The sum of the denominator and twice the numerator

of a certain fraction is 26. If 3 be added to both numer-

ator and denominator, the resulting fraction is |. Find

the given fraction.

5. A courier sent away with a despatch travels uni-

formly at the rate of 12 miles per hour ; 2 hours after his

departure a second courier starts to overtake the first, trav-

elling uniformly at the rate of 13-|- miles per hour. In

how many hours will the second courier overtake the first ?

6. Solve the above problem when the respective rates

of the first and second couriers are a and h miles per hour,

and the interval between their departures is c hours.

7. A certain railroad train travels at a uniform rate. If

the rate were 6 miles per hour faster, the distance travelled

in 8 hours would exceed by 50 miles the distance travelled

in 11 hours at a rate 7 miles per hour less than the actual

rate. Find the actual rate of the train.

8. A can do a piece of work in 10 days ; A and B to-

gether can do it in 7 days. In how many days can B do

it alone ?
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9. A can do a piece of work in a days ; A and B to-

gether can do it in b days. In how many days can B do

it alone ?

10. If A can do a piece of work in 2m days, B and A

together in n days, and A and C in m + ^ days, how long

will it take them to do the work together ?

11. A boatman moves 5 miles in f of an hour, rowing

with the tide ; to return it takes him \\ hours, rowing

against a tide one-half as strong. "What is the velocity of

the stronger tide ?

12. A boatman, rowing with the tide, moves a miles in

h hours. Eeturning, it takes him c hours to accomplish the

same distance, rowing against a tide m times as strong as

the first. What is the velocity of the stronger tide?

13. If A, who is travelling, makes
-J

of a mile more per

hour, he will be on the road only |- of the time ; but if he

makes
-J-

of a mile less per hour, he will be on the road 2J
hours more. Find the distance and the rate.

14. The circumference of a fore wheel of a carriage is a

feet ; that of a hind wheel, h feet. What distance will the

carriage have passed over, when a fore wheel has made n

more revolutions than a hind wheel ?

15. A wine merchant has two kinds of wine which he

sells, one at a dollars, and the other at h dollars per gallon.

He wishes to make a mixture of / gallons, which shall cost

him on the average m dollars a gallon. How many gallons

must he take of each ?

Discuss the question (i.) when a = h\ (ii.) when a ov b

=m
;

(iii.) when a=^b^=m\ (iv.) when a > 5 and < in
;

(v.) when a > & and b'p-m.



CHAPTER VI.

SIMULTANEOUS EQUATIONS OF THE FIRST DEGREE.

91. Equations that express different relations between

the unknown numbers are called independent equations.

Thus, a; + 2/ = 10 and x — y = 2 are independent equations ; they

express different relations between x and y. But x + y = 10 and

3a; + 3y = 30 are not independent equations; one is derived imme-

diately from the other, and both express the same relation between

the unknown numbers.

92. Equations that are satisfied by the same values of

the unknown numbers are called simnltaneons equations.

93. Simultaneous equations are solved by combining

the equations so as to obtain a single equation with one

unknown number ; this process is called elimination.

There are three methods of elimination in general use

:

I. By Addition or Subtraction.

II. By Substitution.

III. By Comparison.

We shall give one example of each method.

(1) Solve: 2x-2>y= 4")
(1)

3a; + 2y = 32j (2)

Multiply (1) by 2 and (2) by 3, 4 a; - 6 y = 8 (3)

9a; + 63/- 96 (4)

Add (3) and (4), 13 a; =104
.-. a; = 8.

Substitute the value of x in (2), 24 + 2 3/ = 32.

.-. 3/ = 4.

In this solution y is eliminated by addition.
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(2) Solve: 2:r + 3y = 8| (1)

3a;+7y=7j (2)

Transpose 3 2/ in (1), 2x = 8 — 3y.

Divide by coefficient of x, x = —^—

^

(4)

Substitute the value of x in (2),

2if^.r, = 7.

24 -92/ + 142/ = 14.

52/ = -10.

.••3/-- 2.

Substitute the value of y in (4), .-. a; = 7.

In this solution y is eliminated by substitution.

(3) Solve: 2:r-9y=ll)
3:i;-4y= 7j

(1)

(2)

transpose 9y in (1) and 42/ in (2),

2a;=ll + 9y, (3)

3a; = 7+*42/. (4)

Divide (3) by 2 and (4) by 3, x~ 11±_^,
(5)

. 7 + 4^.

3
(6)

Equate the values of a;, 11 +^ I±i^.
^ '23 (7)

Reduce (7) 33 + 27y = U + 8y.

.-.
2/ = -l.

Substitute the value of?/ in (5), .-. a; = 1.

In this solution x is eliminated by comparison.

Each equation must be simplified, if necessary, before

the elimination is performed.
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(4) Solve: (.^ - l)(y + 2) = (:^; - 3)(y - 1) + 8^ (i)

2a;-l 3(y-2) _.^ C
^^^

Simplify (1), xy + 2x-y -2-= xy ~x -Sy + 3 + S.

Transpose and combine, 3 a; + 2y = 13. (3)

Simplify (2), 8 cc - 4 - 15 y + 30 = 20.

Transpose and combine, 8 a; — 15 y = — 6. (4)

Multiply (3) by 8, 24 a; + 16y = 104. (5)

Multiply (4) by 3, 24 x - 45 3/ = - 18. (6)

Subtract (6) from (5), 61 y = 122.

.-.
2/ = 2.

Substitute the value of y in (3), 3 a; + 4 = 13.

.-. a; = 3.

Fractional simultaneous equations, with denominators

which are simple expressions containing the unknown
numbers, may be solved as follows

:

(5) Solve: A-lA=7 m
3a7 5y ^ ^

Multiply (2) by 4, li_A=12.
(3)

o X oy

Add (1) and (3), ^^=19.

Divide both sides by 19, — = 1.

3aj

0, _ 1
. . x — ^.

Substitute the value of x in (1),

5y
2

Transpose, — = 2.

53/

Divide both sides by 2, — = 1.

5y
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94. Literal Simultaneous Equations. The method of solv-

ing literal simultaneous equations is as follows i

Ex. Solve: ax-{-hy = m\
cx-{-dy = n }

(1)

(2)

To find the value of y

:

Multiply (1) by c.

Multiply (2) by a,

acx + bey = cm

acx + ady = an

(3)

(4)

Subtract (4) from (3), (be — ad) y = cm-- an

Divide by coefficient of - -ff
-an

-ad

To find the value of x

:

Multiply (1) by d,

Multiply (2) by h,

adx + bdy = d7n

bcx -f bdy = bn

(5)

(6)

Subtract (6) from (5), {ad —bc)x = dm --bn

Divide by coefficient of 0: = ^^--bn
1.

95. If three simultaneous equations are given, involving

three unknown numbers, one of the unknown numbers

must be eliminated between two pairs of the equations;

then a second between the resulting equations.

Likewise, if four or more equations are given, involving

four or more unknown numbers, one of the unknown
numbers must be eliminated between three or more pairs

of the equations ; then a second between pairs of the re-

sulting equations ; and so on.

Solve: 2x—Sy-{-4:Z= 4) (1)

(2)

(3)

2x -3y +Az=--= 4

Sx + 5y- 72 =^2
bx - 3/- 82 =-- 5
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Eliminate z between

Multiply (1) by 2,

(3) is

two

Dfa;

of a

pairs of these equations.

4a;-6y + 82= 8

5a;- y-82= 5

(4)

Add.

Multiply (1) by 7,

Multiply (2) by 4,

9>x-ny = 13

14a;-2l3/ + 282= 28

12a; + 203/-282= 48

(5)

Add,

Multiply (6) by 7,

(5) is

26a;- 3/ = 76

182a; -7t/ = 532

9a;-72/= 13

(6)

(7)

Subtract (5) from (7),

Substitute the value

Substitute the values

173 a; =519

.-. a; = 3.

in (6), 78 - y = 76.

.••2/ = 2.

and y in (1),

6-6+4z = 4.

.-. 2 = 1.

Exercise 10.

Solve the following sets of equations

:

1. 6a;+ 5y
10^7+ Sy

4.

46

66

2^+ 7y-52|
^x- 5?/=16j

4.r+ 9y=79|
7a;-17v = 40j

= 19 3

2a;

4y

Vly

9^7

5. a:=16 — 4y|
y = 34-4a;)

6. 5:i;--23/+ 781

33/= a:+104r

7. 2f - ^.
3 ^2

-10

y_5a; -7
4 19

8. 4 + y =
3a:

^
4

a:-8 = 4^
6
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9.

10.

x±y_
15

8

2^
+ 2.y-5

21

13.

11

12.

5+ ?^3

15_4_

_4_ _5_^86^
5a; 6y 15 I

10-

4a; 5y 20^

a;_ 3/ — 10 "

3

14. a;
2y--^
23

4

+ .y+13
8

20 4-
^^~^^ '

2

18
= 30

73-3.y
V.

15. 2:r — 33/ = 5a — 5

3a;-2y = 5a + 5

16.
a 6 c 1

h ' a ' c
^

19. 8:i; + 4y-32 = 6-

4:r-5y + 42 = 8

2a;

20. Sx-^+ z =7^

17.

18.

x-y
x-\- c

h-c y

y + h a + c j

X — a_ a — b '\

y — a a-\-b

21.

2x-%+ 4:z
2

2£_1 1

3^-7 2

5i

11

a^ + 6^

bz~x
2y~?>z

^y-2x

1

= 1
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22. -+^+-=3
X y z

X y z

23.
xy

x + y
xz

2a
X y z

x-\- z
= h

96. Problems. It is often necessary in the solution of

problems to employ two or more letters to represent the

numbers to be found. In all cases the conditions must

be sufficient to give just as many equations as there are

unknown numbers employed.

If there are more equations than unknown numbers,

some of them are superfluous or inconsistent ; if there are

less equations than unknown numbers, the problem is in-

determinate.

Ex. If A gives B f 10, B will have three times as much

money as A. If B gives A $10, A will have twice as much

money as B. How much has each ?

Let X = number of dollars A has,

and y = number of dollars B has.

Then y + 10 = number of dollars B has, and rr — 10 = number ol

dollars A has after A gives $ 10 to B.

.-.
2/ + 10 = 3(a; - 10), and a; + 10 = 2(3/ - 10).

From the solution of these equations, a; = 22 and y
Therefore A has |22 and B has $26.

26.

Exercise 11.

1, Three times the greater of two numbers exceeds twice

the less by 27 ; and the sum of twice the greater and five

times the less is 94. Find the numbers.

2. A fraction is such that if 3 be added to each of its

terms, the resulting fraction is equal to \ ; and if 3 be sub-

tracted from each of its terms, the result is equal to i.

Find the fraction.
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3. Two women buy velvet and silk. One buys 3^ yards

of velvet and 12| yards of silk ; the other buys 4 J yards

of velvet and 5 yards of silk. Each woman pays $ 63.80.

Find the price per yard of the velvet and of the silk.

4. Each of two persons owes $1200. The first said to

the second, " If you give me f of what you have, I shall

have enough to pay my debt." The second replied, " If

you give me |- of what your purse contains, I can pay my
debt." How much does each have ?

5. Two passengers have together 400 pounds of baggage.

One pays $1.20, the other $1.80, for excess above the

weight allowed. If all the baggage had belonged to one

person he would have had to pay $4.50. How much bag-

gage is allowed free ?

6. A number is formed by two digits. The sum of the

digits is 6 times their difference. The number itself ex-

ceeds 6 times the sum of its digits by 3. Find the number.

7. A number is formed by two digits of which the sum

is 8. If the digits be interchanged, 4 times the new num-

ber exceeds the original number by 2 more than 5 times the

sum of the digits. Find the original number.

8. Three brothers, A, B, C, have together bought a house

for $32,000. A could pay the whole sum if B would give

him f of what he has ; B could pay it if would give him

f of what he has ; and C could pay the whole sum if he

had J of what A has together with -^^ of what B has.

How much does each have ?

9. A and B entered into partnership with a joint capital

of $3400. A put in his money for 12 months; B put in

his money for 16 months. In closing the business, B's

share of the profits was greater than A's by -^ of the total

profit. Find the sum put in by each.
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10. A capitalist makes two investments ; the first at 3

per cent, the second at 3j per cent. His total income from

the two investments is $427. If $1400 were taken from

the second investment and added to the first, the incomes

from the two investments would be equal. Find the

amount of each investment.

11. A cask contains 12 gallons of wine and 18 gallons

of water ; a second cask contains 9 gallons of wine and 3

gallons of water. How many gallons must be taken from

each cask, so that, when mixed, there may be 14 gallons

consisting half of water and half of wine ?

12. A and B ran a race to a post and back. A return-

ing meets B 30 yards from the post and beats him by 1

minute. If on arriving at the starting place A had imme-

diately returned to meet B, he would have run ^ the dis-

tance to the post before meeting him. Find the distance

run, and the time A and B each makes.

13. A and B together can do a piece of w^ork in 15

days. After working together for 6 days, A leaves off and

B finishes the work in 30 days more. In how many days

can each do the work ?

14. A and B together can do a piece of work in 12

days. After working together 9 days, however, they call

in C to aid them, and the three finish the work in 2 days.

finds that he can do as much work in 5 days as A does

in 6 days. In how many days can each do the work?

15. A pedestrian has a certain distance to walk. After

having passed over 20 miles, he increases his speed by 1

mile per hour. If he had walked the entire journey with

this speed, he would have accomplished his walk in 40

minutes less time ; but, by keeping his first pace, he would

have arrived 20 minutes later than he did. What distance

had he to walk ?



CHAPTER VII.

INVOLUTION AND EVOLUTION.

97. The operation of raising an expression to any re-

quired power is called Involution.

Every case of involution is merely an example of multi-

plication, in which the factors are equal.

98. Index Law. If m is a positive integer, by definition

a"* = a X a X a to m factors. § 13

Consequently, if m and n are both positive integers,

(a")"* = a** X a" X a" to m factors

= (a X a to n factors)(a X a ••••• to n factors)

taken m times

= aXaX a to mn factors

The above is the index law for involution.

Also,

(pry = a-»' = (a")"*

;

(ahy ~ah X ab to n factors

= (aX a to n factors)(5 X b to 7i factors)

99. If the exponent of the required power is a composite

number, the exponent may be resolved into prime factors,

the power denoted by one of these factors found, and the

result raised to a power denoted by another factor of the

exponent. Thus, the fourth power may be obtained by

taking the second power of the second power; the sixth

by taking the second power of the third power ; and so on.
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100. From the Law of Signs in multiplication it is evi-

dent that all even powers of a number sue positive ; all odd

powers of a number have the same sign as the number itself.

Hence, no even power of ani/ number can be negative;

and the even powers of two compound expressions which

have the same terms with opposite signs are identical.

Thus, (5 - a)^ =
J
- (a - b)^ = (a- h)\

101. Binomials. By actual multiplication we obtain,

{a-\-hy = a^-\-2ah-^h'')

la-\-bJ = a^ + Sa'^S + 3a5^+ 5';

(a+ hy= a* + 4a'6+ 6a^5^ + 4a6H ¥.

In these results it will be observed that

:

I. The number of terms is greater by one than the ex-

ponent of the power to which the binomial is raised.

II. In the first term, the exponent of a is the same as

the exponent of the power to which the binomial is raised

;

and it decreases by one in each succeeding term.

III. h appears in the second term with 1 for an exponent,

and its exponent increases by 1 in each succeeding term.

IV. The coefficient of the first term is 1.

V. The coefficient of the second term is the same as the

exponent of the power to which the binomial is raised.

VI. The coefficient of each succeeding term is found

from the next preceding term by multiplying the coefficient

of that term by the exponent of a, and dividing the product

by a number greater by one than the exponent of h.

If h is negative, the terms in which the odd powers of b

occur are negative. Thus,

(a _ hy= a* - 4a^5 -\-^a'b^ - 4a5» + b\

By the above rules any power of a binomial of the form

a±b may be written at once.
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102o The same method may be employed when the terms

of a binomial have coefficients or exponents.

(1) (a - hf = a' - 3a26 + Saft* _ h\

(2) {bx^-2y^f,
= (5x2)3 _ 3(5a;2)2(2y3) + 3(5 a;2)(2 2/3)2 _ (2^3)3^

= 125 a;« - 150xy + 60a;y - 8 2/9.

In like manner, a polynomial of three or more terms

may be raised to any power by enclosing its term in paren-

theses, so as to give the expression the form of a binomial.

(3) (x3-2a:2 + 3a: + 4)2,

= {(a;3-2a;2) + (3a; + 4)}2,

= (V - 2 x^Y + 2(^3-2 a;2)(3 a; + 4) + (3 a; + 4)^,

= ^6 _ 43j5 + 4a;4 + 6a;4 _ 4a^ - IGrc^ + 9a;2 + 24a; + 16,

- jb6 - 4a^ + 10a;* - 4x3 - 7a;2 + 24a; + 16.

Exercise 12.

In the following expressions perform the indicated oper-

ations :

1. i2ay. 4. {-Wcf. 7. {-ba'b'xj.

2. (3aV)». 5. (-a^5^c)*. 8. {Qa'b'cJ.

3.
/2aW

g
{^a'h'Y g (-3aVy

V3cV/
'

{^a'hj ' (Qa'bxj'

(3a'a^y(Wxy
^j

(4:x*yy
.
«y^)^

*
(6 6V)Xa^Z>7* * (9xy)^ *

(3 3/)^'

12. (:.+ 3)^ 15. (1-4.:)^ 18. (^-yj

13. {l-2xy. 16. (l-^y 19. (l + 3a:7.

14. (3-^y. 17. (l+?|-^: 20.

g-^-J
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21. f2a'b'^-~X 23. (1 + Sx-x'y.

103. The nth root of a number is one of the n equal

factors of that number.

The operation of finding any required root of an expres-

sion is called Evolution.

Every case of evolution is merely an example of factor-

ing, in which the required factors are all equal. Thus, the

square, cube, fourth roots of an expression are found

by taking one of the two, three, four equal factors of the

expression.

The symbol which denotes that a square root is to be

extracted is >/ ; and for other roots the same symbol is

used, but with a figure written above to indicate the root

;

thus, -y/, -y/, etc., signifies the third root, fourth root, etc.

104. Index Law. If m and n are positive integers we
have (§ 98),

{cry = a»"».

CoHsequently Va™^ = a*^.

Thus, the cube root a^ is a^ ; the fourth root of 81 a^^ is 3 a' ; and

80 on.

The above is the index law for evolution.

Also, since (aby — a^'b'',

therefore, Va*^ = ab = Vc^ Vb^.

Hence, the root of a simple expression is found by divid-

ing the exponent of each factor by the index of the root, and

talcing the product of the resulting factors.
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105. It is evident from § 100 that

I. Any even root of a positive number will have the

double sign, ±.

II. There can be no even root of a negative number.

Thus, V— a;^ is neither + x nor — x, for (+ xy = + x"^,

and (— xy = + x^.

The indicated even root of a negative number is called

an impossible, or imaginary, number.

III. Any odd root of a number will have the same sign

as the number.

106. Square Boots of Compound Expressions. Since the

square of a -\- b is d^ -{- 2 ab -\- b"^, the square root of

a'' + 2ab + b'isa-{-b.

It is required to devise a method of extracting the square

root a-{-b when d^ -\~2ab -{-
b"^

is given.

Ex. The first term, a, of the root is obviously the square root of

the first term, a^, in the expression.

a' + 2ab + b'' \a + b jf the a? be subtracted from the given
^ expression, the remainder is 2ab + b^.

2a + b 2ab + b'^ Therefore the second term, b, of the root

2ab + b'^ is obtained by dividing the first term

of this remainder by 2 a, that is, by
double the part of the root already found. Also, since 2ab + b'^

= (2 a + b)b, the divisor is completed by adding to the trial-divisor the

new term of the root.

The same method will apply to longer expressions, if care

be isi^en to obtain the trial-divisor at each stage of the

process, by doubling the part of the root already found, and

to obtain the complete divisor by annexing the new term of

the root to the trial-divisor.
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Find the square root of

1 + lOo;'^ + 25 a;* + 16a;« - 24a;^ - 20a? - 4a;.

16a«-24a;5 + 25a;^-20a^ + 10a:^~4a; + l |4a;^-3a;' + 2a;-l

16 »6

8x3 -"3^- 24x5 + 25 a;*

24x5+ 9 ^^4

8x3-6x2 + 2x 16x*- 20x3 + 10x3

16x*-12x3+ 4x2

8x3-6x2 + 4x-l - 8x3+ 6x2-4x + l

- 8x3+ 6x2-4x + l

The expression is arranged according to descending powers of x.

It will be noticed that each successive trial-divisor may be obtained

by taking the preceding complete divisor with its last term doubled.

107. Arithmetical Square Koots. In the general method

of extracting the square root of a number expressed by

figures, the first step is to mark ofi" the figures in periods.

Since 1 = l\ 100 = 10^, 10,000 = 100^, and so on, it is evident that

the square root of any number between 1 and 100 lies between 1 and

10 ; the square root of any number between 100 and 10,000 lies be-

tween 10 and 100. In other words, the square root of any number

expressed by one or two figures is a number of one figure ; the square

root of any number expressed by three or four figures is a number of

two figures ; and so on.

If, therefore, a dot be placed over the units figure of a square num-

ber, and over every alternate figure, the number of dots will be equal

to the number of figures in its square root.

Find the square root of 3249.

3249 (57 In this case, a in the typical form a^ -\-2ah -{-h^

25 represents 5 tens, that is, 50, and h represents 7.

107) 749 The 25 subtracted is really 2500, that is a^, and the

749 complete divisor 2a + &is2x50 + 7 = 107.

The same method will apply to numbers of more than

two periods by considering a in the typical form to repre-

sent at each step the part of the root alreadyfound.
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108. If the square root of a number has decimal places,

the number itself will have twice as many.

Thus, if 0.21 be the square root of some number, this number will

be (0.21)2 _ 0.21 X 0.21 = 0.0441 ; and if 0.111 be the root, the number
will be (0,111)2 _ 0.111 X 0.111 = 0.012321.

Therefore, the number of decimal places in every square decimal

will be even, and the number of decimal places in the root will be

half as many as in the given number itself.

Hence, if the given square number contains a decimal, and a dot

be placed over the units' figure, and then over every alternate figure

on both sides of it, the number of dots to the left of the decimal point

will show the number of integral places in the root, and the number

of dots to the right will show the number of decimal places.

Ex. Find the square roots of 41.2164 and 965.9664.

4i.2i64(6.42 965.9664(31.08

36 9

124)521 61)65

496 61

1282)2564 6208)49664

2564 49664

It is seen from the dotting that the root of the first example will

have one integral and two decimal places, and that the root of the

second example will have two integral and two decimal places.

109. If a number contains an odd number of decimal

places, or gives a remainder when as many figures in the

root have been obtained as the given number has periods,

then its exact square root cannot be found. We may, how-

ever, approximate to the root as near as we please by

annexing ciphers and continuing the operation.

When a number contains an odd number of decimal

places, we separate the decimal part into periods by

placing a dot over the second decimal figure from the

decimal point; another over the fourth figure from the

decimal point ; and so on.
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Ex. Find the square roots of 3 and 357.357.

3.(1.732....

1

27)200

189

357.3570(18.903

1

28)257

224

343)1100

1029

869)3335

3321

3462)7100

6924

37803)147000

113409

Exercise 43.

Simplify

:

1. -VUa'b*. 3. </81 a'b'' 5. in02^a''b\

« </27 a'b' ^ '\/62bx' , -^216aV
VSla^

4.

-Vm.
6.

V32a^V«

Extract the square root of:

7. l + 4:c + 10a;^ + 12a;' + 9a;*.

8. 9-24a;-68a;^ + 112a:' + 196a;*.

9. 4:-12x + 6x^-{-26x'-29x'-10x' + 26af'.

10. SQx" - 120a''x — 12a*x + 100a* + 20a« + a\

11. 4 + 9y'-20a; + 25:r^ + 30a:y— 12y.

12. 4a:* + 92/«-12a:y + 16a;^ + 16-24y*.

I.
6

13. £!_|_y!+^4^9^4 xJl 1_

3 ^16

Extract to four places of decimals the square root of:

14. 326. 16. 3.666.

15. 1020. 17. 1.31213.
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110. Cube Koots of Oompound Expressions. Since the cube

of a + ^ is a^ + 3 a^6 + 3 ah"^ + h^, the cube root of

a' + 3a'5 + 3a52 + 5Ms a + 5.

It is required to devise a method for extracting the cube

root a-\-h when a^ + 3 a^6 + 3 a5^ + h^ is given

:

(1) Find the cube root of a' + 3a'5 + 3 alf + ^'.

3a2

+ 3a& + 62

3a2 + 3a6 + 6'^

3a26 + 3a&2 + 63

3a26 + 3a6'^ + &3

The first term a of the root is obviously the cube root of the first

teim a? of the given expression.

If a? be subtracted, the remainder is 3 a'^J + 3 ab"^ + W ; therefore,

the second term h of the root is obtained by dividing the first term

of this remainder by three times the square of a.

Also, since 3 a^h + 3 aV^ + W = (3 a'^ + 3 a6 + &^)&, the complete divisor

is obtained by adding 3 a6 + 6^ to the trial-divisor 3 a^.

The same method may be applied to longer expressions

by considering a in the typical form 2) a? -\- 2> ah -\-
h"^ to

represent at each stage of the process the part of the root

alreadyfound.

111. Arithmetical Cube Eoot. In extracting the cube root

of a number expressed by figures, the first step is to mark
it off into periods.

Since 1 = l^, 1000 = lO^, 1,000,000 = 100^, and so on, it follows

that the cube root of any number between 1 and 1000, that is, of any

number which has one, two, or three figures, is a number of one

figure; and that the cube root of any number between 1000 and

1,000,000, that is, of any number which has four, five, or six figures,

is a number of two figures ; and so on.

Hence, if a dot be placed over every third figure of a cube num-

ber, beginning with the units' figure, the number of dots will be equal

to the number of figures in its cube root.
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If the cube root of a number contains any decimal figures,

the number itself will contain three times as many.
*

Hence, if the given cube number have decimal places, and a dot

be placed over the units figure and over every third figure on both

sides of it, the number of dots to the left of the decimal point will

show the number of integral figures in the root ; and the number of

dots to the right will show the number of decimal figures in the root.

If the given number is not a perfect cube, zeros may be an-

nexed, and a value of the root may be found as near to the true value

as we please.

112. It is to be observed that if a denotes the first term

of the root, and h the second term of the root, the first com-

plete divisor is,

and the second trial-divisor is 3 (a + b)^, that is,

Sa'^ + eaS + SS^

which may be obtained from the preceding complete divisor

by adding to it its second term and twice its third term.

Ex. Extract the cube root of 5 to five places of decimals.

5.000(1.70997

1

3x102 = 300

3(10x7) = 210

72= 49 >!

559
\

4000

3913

259 J

)

)

L [

87000000

3 X 17002 = 867000(

3(1700x9)= 4590(

92= 81

871598] 78443829

45981 ^

3 x 17092 = 8762043

85561710

78858387

67033230

61334301
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After the first two figures of the root are found, the next trial divi-

sor is obtained by bringing down the sum of the 210 and 49 obtained

in completing the preceding divisor ; then adding the three lines con-

nected by the brace, and annexing two ciphers to the result.

The last two figures of the root are found by division. The rule

in such cases is, that two less than the number of figures already

obtained may be found without error by division, the divisor to be

employed being three times the square of the part of the root already

found.

Since the fourtli power is the square of the square, and

the sixth power the square of the cube, the fourth root is

the square root of the square root, and the sixth root is the

cube root of the square root. In like manner, the eighth,

ninth, twelfth roots may be found.

Exercise 14.

Extract the cube root of

:

1. 21-\mx-\-U^x^-^^a?.

2. x^-2>3(f'-^bx^-2>x-l.

4. 1 - 6 a; -f- 21 rr'^ - 44 a:' + 63 x' - 54:rH 27 x\

5. 27 + 296a;^ - 125:r« - 108^ + 9a;^ - 15:r* - 2>00x^.

6. 12a;^-i?5_54a;-59 +^ + 8a;^ + ^.
X^ X x^

7. 8a:'-36aa;^ + -'+ ^^'+ 66A-^'-63a'.
of X ^

Extract to three places of decimals the cube roots of

:

8. 517. 9. 1637. 10. 3.25. 11. 20.911.



CHAPTEK VIII.

EXPONENTS.

113. Positive Integral Exponents. If ti is a positive integer,

we have, by definition,

a"* — aX aX a to n factors.

From this definition we have obtained the following

laws, which hold true for positive integral exponents

:

I. a'" X a" =- a'"+". §32

11. >n, §41

«^- 1 if. >m.

III. (a'-y .= a««. §98

IV. J^^mn ^ ^m^ §104

V. (ahy = a^"^. §98

From law I., and the commutative and associative prin-

ciples, laws II.-V. may readily be obtained.

114. In the case of fractional and negative exponents,

we proceed as follows

:

We assume laws I. and V. to hold for such exponents,

and then proceed to investigate what meaning of fractional

and negative exponents is consistent with these laws.

It being assumed that laws I. and V. hold true, it is

easily proved that laws II., III., and IV. must hold true.
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115. Positive Practional Exponents. If w is a positive in-

teger, _ is a positive fraction.
n

"We have, by III.,

1 1

any- = an =a^= a',

but (Va)" = a. .'. an = -\/a.

Again, if m and n are both positive integers, by III.,

but (Va^f = or. :. a« = Va^.

Hence, in a fractional exponent, the numerato'r indicates

a power, and the denominator a root.

116. Negative Integral Exponents. Dividing d? successively

by a in the ordinary manner, v^e have the series

a\ a\ a, 1, I \ i-
(1)

a a^ a^

Dividing again by a by subtracting 1 from the exponent

of the dividend, we have, since II. holds true, the series

a^ a\ a\ a\ a-\ a-\ a-\ (2)

Comparing (1) and (2), we see that

n 1 1 -1- 9 i. 1 J-

a"= l, a —-1 a ^^=—, a ^ =—
a a a

117. Negative Fractional Exponents. If w is a positive in-

teger, — - is a negative fraction, and we have
n

^ ^ a

but fxy= 1 =1. :.a-i=^=L
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Again, if m and n are both positive integers, by III.

>ut (^\=^-^ = l1 . ^-^__ 1 _ 1

Hence, whether the exponent be integral or fractional,

we have alwavs a~"'= —

118. From the application of these laws, we obtain

p r pr P P P

^ 1^ 1 i „ - „*-
"s/ab = (aby == a^b»= -\/a '\/b

;

and so on.

119. Compound expressions are multiplied and divided as

follows

:

(1) Multiply x^ + rr* yi + y^ ^J ^^ — x^y^ -\- y^.

X + x^y'^ + a'y*

^2/* — x^y^ — x*y*

+ x'^y^ + x^y^ + y

+ x^y^ +y.

(2) Divide </^+-^-12 by </x-S,

xi + a;*-12[£*_-3

x^-Zx^ x^ + 4.

+ 4a;»-12

+ 4a;i-12
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Exercise 15.

1. Express with radical signs and positive exponents:

J; bi; c-J; x"*
;

(yf)-».

2. Express with fractional exponents

:

3. Express with positive exponents :

(a-J; </¥-': (Vc)-i; (:^)"

4. Express with negative exponents and without de-

nominators :

(4^)'' V5?' 3^' JW
Simplify

:

5. a^xa-^xa-^] h^xb^W'] {-^cfVe^.

6. a^Xa^X Vo* ; bV~c^ {cx)^
;

(a^ Vax)^.

,.(..,.VW;(M5)-',(j|^)^..(lg)-'.

Multiply

:

8. x^-x^-^l by ^t + 1.

9. a;'^ + ^^y^ + 2/'^^ by a^'^-^^^/^ + y'^^

10. 8af + 4af5-7 + 5aU-f + 95-7 by 2a? -^'l

Divide

:

11. x^^' + y'"'' by a;" + 2/".

12. x — y~^ by a;* — a;^y-^4-a;^y-2_y-'.

13. aT + 5 + c-^ — 3aU^c-i by a^ + ^^ + c-i.
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RADICAL EXPRESSIONS.

120. An indicated root that cannot be exactly obtained

is called a surd, or irrational number. An indicated root that

can be exactly obtained is said to have the form of a surd.

The required root shows the order of a surd ; and surds

are named quadratic, cubic, biquadratic, according as the

second, third, or fourth roots are required.

The product of a rational factor and a surd factor is

called a mixed surd ; as, 3V2, 5Va.
When there is no rational factor outside of the radical

sign, the surd is said to be entire ; as, V2, Va.

121. Since Va X Vb X Vc = Vabc, the product of two

or more surds of the same order will be a radical expression

of the same order, the number under the radical sign being

the product of the numbers under the several radical signs.

122. In like manner, Va^= Vo^X Vb = a-\fh. That is,

A factor under the radical sign whose root can he ta.Tcen,

may, by having the root taken, be removed from under the

radical sign.

Conversely, since aV^ = Va^,
A factor outside the radical sign may be raised to the cor-

responding power andplaced under it.

By Va, where a is positive, is meant, in this chapter,

the positive number which taken n times as a factor gives

a for the product.

123. A surd is in its simplest form when the expression

under the radical sign is integral and as small as possible.

Surds which, when reduced to the simplest form, have

the same surd factor, are said to be similar.
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Simplify -^108 ; "v^T^.

124. The product or quotient of two surds of the same

order may be obtained by taking the product or quotient

of the rational factors and the surd factors separately.

Thus, 2V5 X 5V7 = 10V35.

Surds of the same order may be compared by expressing

them as entire surds.

Compare |V7 and fVTO.

tV7 ==Vf'

|Vio = ^-is

^^ = J^^, and J^ =M.
\ 9 \ 45 \ 5 \ 45

As -1/—^ is greater than -v/—r-. |v^ is greater than |V7.

125. The order of a surd may be changed by changing

ih-Q power of the expression under the radical sign.

Thus, V5=a/25; V~c=-\/J\

Conversely, V25 = V5 ; -Vc^ = -{/c.

In this way, surds of different orders may be reduced to

the same order, and may then be compared, multiplied, or

divided.

(1) To compare V2 and ^3.

.*. \/3 is greater than y/2.
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(2) To multiply \/4a by V6^.

.-. v^x V6^= V^16a2 X 216«3 _ 2v^54aV. ^ws.

(3) To divide VSa by V6l.

VOb = (65)^ = (6&)« = v^(66?= \/216F.

^2l6b^ 6b

Exercise leX

Express as entire surds :

1. 3V5; 5V32; a'bWc ; Sf</^; a'</'^\

Express as mixed surds :

3. ^1602:y ;
a/SI^ ; a/M^ ; \/l372^^.

Simplify :

4. 2-\/80^^«; 7V396^; VlH i
V3|

; ^^^-

6. Show that V20, V45, \/- are similar surds.

7. Show that 2Va^, -^/SF, ^yjj are similar surds.

8. Arrange in order of magnitude 9V3, 6V7, 5VlO.



84 ALGEBRA.

9. Arrange in order of magnitude 4V4, 3V5, 5VS.

10. Multiply 3V2 by 4V6 ;
i^/i by 2\/2.

11. Divide 2V5 by 3Vl5
;
|V2l by j^J^-

12. Simplify ?:^X^^i^.
3V27 5Vl4 15V21

Arrange in order of magnitude :

13. 2^, 3V2, |-\/4. 14. 3Vl9, 5a/2, 3v'3.

Simplify

:

15. -VAp X ^/^ ; S</I^' -^ V2^.

126. In the addition or subtraction of surds, each surd

must be reduced to its simplest form
; then, if the resulting

surds be similar,

Add the rationalfactors, and to their sum annex the com-

mon surd factor.

If the resulting surds be not similar,

Connect them with their jprojper signs.

127. Operations with surds will be more easily performed

if the arithmetical numbers contained in the surds be ex-

pressed in their prime factors, and if fractional exponents

be used instead of radical signs.

(1) Simplify V27 + V48 + Vl47.

V27 = (33)5 = 3x3' = 3V3;

V48 = (2* X 3)2 = 22 X 3^ ^ 4 X 3' = iVs
;

Vl47 = (72 X 3)5 = 7 X 3^ = 7V3.

.-. V27 + V48 + Vl47 = (3 + 4 + 7)\/3 = 14\/3. Ans.
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(2) Simplify 2^320 - 3\/40.

2 ^320 = 2 (2« X 5)^ = 2 X 22 X 5* = 8 v^
;

3 v/40 = 3(2=* X 5)^ = 3 X 2 x_5^ = 6^/5.

.-. 2v/320-3v^ = 8v^5-6v^ = 2\/5. Ans.

3
128. If we wish to find the approximate value of —-^ it

V2
will save labor if we multiply both numerator and de-

nominator by a factor that will render the denominator

rational ; in this case by V2. Thus,

3 _ 3V2 _ 3V2
V2 V2 X V2 2

129. It is easy to rationalize the denominator of a frac-

tion when that denominator is a binomial involving only

quadratic surds. The factor required will consist of the

terms of the given denominator, connected by a different

sign. Thus, will have its denominator rational-

6 + 2V5
ized by multiplying both terms of the fraction by 6 — 2V5.
For,

7 - 3V5 _ (7 - 3V5) (6 - 2V5)

6 + 2V5 ~(%+ 2V5) (6 - 2V5)

J7|-32V5^9_2V5
-v-^ 16 2

130. By two operations the denominator of a fraction

may be rationalized when that denominator consists of

three quadratic surds.

Thus, if the denominator be V6 + V3 — V2, both terms

of the fraction may be multiplied by V6— •\/3+ V^. The

resulting denominator will be 6 — 5 -f 2V6 = 1 + 2^/6
;

and if both terms of the resulting fraction be multiplied

by 1 — 2V6, the denominator will become 1 — 24 or — 23.
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Exercise 17.

Simplify

:

1. V27 + 2V48 + 3V108; 7^/54 + 3-\/l6 + v/432.

2. 2V3 + 3VIi-V5l; 2J? + V60 - Vl5 - J|

3 l^ ^l^' l^M' p /2 , o IT .IT

4. 2a/40 + 3a/I08 + a/500- a/320 -2a/1372.

5. (\/8)*; (v/27)^ (a/64)^ (</I)\

6. (aA/a)-^ (a;^/^)-^ (i?V^)^ ; (a-^A^O"^-

Find the square root of:

8. 1 + 4a;-i - 2a;-f - 4a;-^ + 25a;-t - 24a;-t + 16:r-^

Simplify :

... (^>(.»,. ... (^7(=)--.

Find equivalent fractions with rational denominators for

the following, and find their approximate values :

3 7 4-V2 6
15.

16.

V7 + V5' 2V5-V6' I + V2' 5-2V6
2 . 1 . 7V5 . 7-2V3 + 3V2

V3' V5-V2' V7 + V3' 3 + 3V3-2V2



CHAPTER IX.

QUADRATIC EQUATIONS.

We now resume the subject of equations where we left

it at the end of Chapter VI. Having considered equations

of the first degree with one or more unknowns, we come

next to the consideration of quadratic equations.

131. A quadratic equation which involves but one un-

known number can contain only :

(1) Terms involving the square of the unknown number.

(2) Terms involving the first power of the unknown

number.

(3) Terms which do not involve the unknown number.

Collecting similar terms, every quadratic equation can be

made to assume the form

ax^ -\- bx -j- c = 0,

where a, h, and c are known numbers, and x the unknown

number.

If a, 5, c are given numbers, the equation is a mimerical

quadratic. If a, b, c are numbers represented wholly or in

part by letters, the equation is a literal quadratic.

Thus, a;2 — 6a; + 5 = 0isa numerical quadratic,

and ax^ + 2bx + S c — ab = is a, literal quadratic.

132. In the equation ax^ -}-bx-{-c = 0, a, b, and c are

called the coefficients of the equation. The third term c is

called the constant term.
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If the first power of x is wanting, the equation is a pure

quadratic ; in this case, & = 0.

If the first power of x is present, the equation is an

affected or complete quadratic.

133. Solution of Pure Quadratic Equations :

(1) Solve the equation bx^ — ^S — 2x^.

We have 5 a;^ - 48 = 2 a;^.

Collect the terms, 3a;2 = 48.

Divide by 3, x^ = 16.

Extract the root, a; = ± 4.

Observe that the roots are numerically equal, but one is positive

and the other negative. There are but two roots, since there are but

two square roots of any number.

It may seem as though we ought to write the sign ± before the x

as well as before the 4. If we do this, we have

+ a;= + 4, — «= — 4, +a; = — 4, — a;= + 4.

From the first and second, a; = 4; from the third and fourth,

» = — 4; these values of x are both given by x= ±4. Hence it is

unnecessary, although perfectly correct, to write the ± sign on hoth

sides of the reduced equation.

(2) Solve the equation 3a;^— 15 = 0.

We have 3a;2 = 15,

or ic^ = 5.

Extract the root, x = ±\/5,

The roots cannot be found exactly, since the square root of 5 can-

not be found exactly ; it can, however, be found as accurately as we

please ; for example, it lies between 2.23606 and 2.23607.

(3) Solve the equation ^x^ -\-lb = 0.

We have 3 x^ = — 15,

or x"^ = - 5.

Extract the root, x = ±V— 5,

There is no square root of a negative number, since any number,

positive or negative, multiplied by itself, gives a positive result.
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The square root of — 5 differs from the square root of + 5 in that

the latter can be found as accurately as we please, while the former

cannot be found at all.

134. A root which can be found exactly is called an exact

or rational root. Such roots are either whole numbers or

fractions.

A root which is indicated but can be found only approx-

imately is called a surd or irrational root. Such roots

involve the roots of imperfect powers.

Exact and surd roots are together called real roots.

A root which is indicated but cannot be found, either

exactly or approximately, is called an imaginary root. Such

roots involve the even roots of negative numbers.

Exercise 18.

Solve

:

3 6
2"- '

4:x

3 . 3

l-{-x 1 — x
8. 4. bx'-9 = 2x'-{-2A.

x^ a:'^ - 10 _ >. 50 + x''

* 5 15 25 *

g 3a;^-27 90 + 4a;^ _^
x' + S x'-{-9

7.

8.

4a;' + 5 2x'-5 _ 7x'-25
10 15 20

103:^ + 17 12a;' + 2 _ 5a;'^-4

18 liar' -8 9

9. x^ -j- bx -{- a = bx (I — bx).

10. ax'-^-h^c.
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11. x^ — ax-\-h=^ ax {x — 1).

ah —X b — ex
12

13.

14.

15.

h — ax be — X

?){x-\-a) 2x-j-a _ -.

4a; — a 2a-\-x

3a , x-}-4:a ^ 1 a''-\-2ax-
x''

x — ba x-{-3a (x— ba)(x-{-Sa)

2(a + 2b) a-2x ^ b^

a-\-2x a-i-b (a+b)(a-{-2x)

135. Solution of Affected Quadratic Equations :

Since (x =b bf is identical with x'^ ±2bx-{- b^, it is evi-

dent that the expression x"^ ±2bx lacks only the third term
6^ of being a perfect square.

This third term is the square of half the coefficient of x.

Every affected quadratic may be made to assume the form

x'^it2bx = e, by dividing the equation through by the co-

efficient of x^ (§ 131).

To solve such an equation :

The first step is to add to both members the square of

half the coeffieient of x. This is called completing the

square.

The second step is to extraet the square root of each mem-
ber of the resulting equation.

The third step is to reduee the two resulting simple

equations.

(1) Solve the equation x? — %x=^2^.

We have a;^ - 8 a; = 20.

Complete the square, x'^ — 8a; + 16 = 36.

Extract the root, a; — 4 = ± 6.

Reduce, a; = 4 + 6 = 10,

or a; = 4-6 = -2.
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The roots are 10 and — 2.

We write the ± sign on only one side of the equation, for the rea-

son given after the first example of § 133,

Verify by putting these numbers for x in the given equation:

a;=10, x = -2,
102 - 8 (10) = 20, (-2)2 -8 (-2) = 20,

100 - 80 = 20. 4 + 16 = 20.

(2) Solve the equation ^±i =i^^.

Free from fractions, (x + l)(rr + 9) = (x-l)(4a;-3).

Simplify, 3a;2-17a; = 6.

Divide by 3, a;2_.y.x = 2.

Complete the square, a;^-^v-(fM-
Extract the root. ^-f-f
Reduce, a,_.17

19_36_g
6 6 6'

_ ^ 17 19 2 1
'^" = -6-¥ = -6 = -3

The roots are 6 and

Verify by putting these numbers for x in the original equation :

x = f5.

6 + 1 ^ 24

6-1 6-

7_21
5 15

x = 1^
3*

1

3
+ 1 -1-

1

3
-1 -h«
2

3

3

13
3"

26
•

3

2

4

13
26*
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136. When the coefficient of x^ is not unity, we may pro-

ceed as in the preceding section, or we may complete the

square by another method.

Since {ax db hy is identical with aV ±i 2 ahx + ^^ it is

evident that the expression aV dz 2 ahx lacks only the third

term h^ of being a perfect square.

This third term is the square of the quotient obtained

by dividing the second term by twice the square root of the

first term.

Every afiiected quadratic may be made to assume the

form aV ± 2ahx-=c (§ 131).

To solve such an equation :

The first step is to complete the square ; to do this, we

divide the second term hy twice the square root of the first

term, square the quotient, and add the result to both mem-
bers of the equation.

The second step is to extract the square root of each mem-
ber of the resulting equation.

The third step is to reduce the two resulting simple

equations.

137. Numerical Quadratics are solved as follows :

(1) Solve the equation 1^ x^ -{- b x — ^ = 1 x^ — x -\- Ab.

16a;2 + 5a; - 3 - 7a;2 - a; + 45.

Simplify, 9a;2 + 6x = 48.

Complete the square, ^x^ -\-Qx + 1 = ^^.

Extract the root, ' 3a; + l = ±7.

Reduce, 3a; = _l + 7or— 1 — 7;

3a; = 6 or -8.

.-. a; = 2 or - 2f

.

Verify by substituting 2 for x in the equation

16a;2 + 5a;-3 = 7a;2-a;+45.

16(2)2 + 5(2) - 3 = 7(2)2- (2) + 45^

64 + 10 - 3 = 28 ~ 2 + 45,

71 = 71.
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Verify by substituting — 2f for x in the equation

16x^ + 5x-3 = 7x'^-x + 4:5.

1024 40 o 448
,
8

,
..

o = h - + 45,
9 3 9 3'

1024 - 120 - 27 = 448 + 24 + 405,

877 = 877.

(2) Solve the equation Sx^ — 4:X = S2.

Since the exact root of 3, the coefficient of x^, cannot be found, it

is necessary to multiply or divide each term of the equation by 3 to

make the coefficient of x^ a square number.

Multiply by 3, 9 a;^ - 12 a; = 96.

Complete the square, 90;^ — 12 a; + 4 = 100.

Extract the root, 3 a; — 2 = ± 10.

Eeduce, 3a; = 2 + 10 or 2 - 10;

3a! = 12or-8.

.-. a; = 4 or — 2f

.

Or, divide by 3,
^2__4a;_32

3 3

Complete the square.
2 4a; 4 32 4 100

3 9 3 9 9

Extract the root. -h^f
.... = 4L0.

= 4or-2f.

Verify by substituting 4 for X in the original equation.

48 - 16 = 32,

32 = 32.

Verify by substituting — 2f for x in the original equation,

21i + (10i) = 32,

32 = 32.
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(3) Solve the equation — 3a;^ + 5a; = — 2.

Since the even root of a negative number is impossible, it is necessary

to change the sign of each term. The resulting equation is

3a;2_5,T = 2.

Multiply by 3, 9 a;^ - 15 a? = 6.

Complete the square, 9x^

Extract the root,

Reduce,

Or, divide by 3,

Complete the square.

Extract the root,

15.+ 25^49.
4 4

2 2

3a. 2 .

3a; = 6 or --1.

.'. a; = 2 or - 1
3'

x^
5a;_2
3 3

5a; 25 49
"

3 36 36

5 7
^-6 = "6-

. ^ 5±7

= 2or- 1
"3*

If the equation 3 a;'' — 5 a; = 2 be multiplied hj four times the coeffi-

cient of x^, fractions will be avoided :

36a;2-60a; = 24.

Complete the square, 36;r2-60a; + 25 = 49.

Extract the root. 6a;-5 = ±7.

6a; = 5±7,

6a; =12 or -2.

.•.. = 2or-|.

It will be observed that the number added to complete the square

by this last method is the square of the coefficient of x in the original

equation 3 a;'' — 5 a; = 2,
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3 1
(4) Solve the equation = 2.
^

b — x 2x — b

Simplify, 4aj2 _ 23 a; = - 30.

Multiply by four times the coeflSicient of x^, and add to each side

the square of the coefficient of x,

64 a;2 - ( ) + (23)^ = 529 - 480 = 49.

Extract the root, 8 a; - 23 = ± 7.

Reduce, 8a; = 23±7;
So; = 30 or 16.

.-. a; = 3| or 2.

If a trinomial is a perfect square, its root is found by taking the

roots of the first and third terms and connecting them by the sign of

the middle term. It is not necessary, therefore, in completing the

square, to write the middle term, but its place may be indicated as

in this example,

(5) Solve the equation 72a;^ - 30ar = - 7.

Since 72 = 2' X 3^*, if the equation be multiplied by 2, the coeffi-

cient of x^ in the resulting equation, 144 x'^ — 60 a; = — 14, will be a

square number, and the term required to complete the square will be

I

^
j
=

I

_
I

= _. Hence, if the original equation be multiplied by

4x2, the coefficient of x^ in the result will be a square number, and

fractions will be avoided in the work.

Multiply the given equation by 8,

576a;2-240a; = -56.

Complete the square, 576 a;^ - () + 25 = — 3L

Extract the root, 24 a; - 5 = ± V^^

.

Reduce, 24 a; = 5 ± V^^^.
..x = M5±V:^l).

Note. In solving the following equations, care must be taken to

select the method best adapted to the example under consideration.

-, - Exercise 19.
Solve

:

1. x^-2x=lb. 3. x^-x = l2.

2. a^-Ux = -^S. 4. x'-Bx = 28,
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6. a;^- 13a; + 42 = 0. 9. 3a;^ - 19a; + 28 = 0.

6. a;^- 21a; + 108 = 0. 10. 4a;^ + 17a; - 15 = 0.

7. 2a;''' + a; = 6. 11. 6a;^-a;=12.

8. 4a;H7a; = 15. 12. 5a;'-^a^ + 4 = 0.

13. 6a;'^-7a; + 5 = 0.

14. ^!±i + (a;+l)(a; + 2) = 0.

15. (a;-57 + a;^-5 = 16(a; + 3).

3a;-19_ll + a;
16. ^ +

17.

6 ' 3 3

11 .T+1
2.r + 3 2

18 ^+ 1
,
a;^ 11

X 6 2x

-Q a;' — 4
,
2a;

,
1 — 2a7

20. a; + ^i| = 2(a;-2).
X ~ o

21. ^ - 8

22.

2a; — 6 3 — a; x

x + 2 4-a; _7
a;-l 2a; 3'

23. ^ §4-_^dlA=l-
a;-2 2a; + l

24 ^ — ^ _L ^ — 4 ^ 1

a; + 4~^2(a;-l) 2

25 ^ + 1
,

l-^_ 2

a;'-4'^a; + 2 5(a;-2)
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26 ^-5 :r-8__ 80 1

27. -i^+ ^ 1^ ^

28 3^ + 5
I

x + ^_ x-\
x-\-2> x-2, x^-^

29.
^+1

I

:r + 2_ 2a; + 13

.r — 1 a; — 2 a:+l

30. 2^ +3^ +1^ = 4.

a;-fl a; + 2 x—1

31.

32.

33.

3:^ + 2 x-1 ^ix''-x-\-l) ._Q

x-\-l l~x _ 4

9-4:^2 22: + 3 2a; -3

2^+1 2(£+l) _ 2-1

a; + 3"^a: + 2
^^'

138. Literal Quadratics are solved as follows

:

(1) Solve the equation aoi^ -\-hx-\-c — 0.

Transpose c, ax^ + hx = — c.

Multiply the equation by 4 a and add the square of 6,

4aV + ( ) + 62 = 62 - 4ac.

Extract the root, 2aa; + 6 = ± V62 - 4 ac.

Reduce, 2ax = — h± Vb^ — 4 ac.

— 6 ± V62 — 4 ac

2a

(2) Solve the equation adx — acx^ = hex — bd.

Transpose hex and change the signs,

o^x'^ + hex — acZa; = 6(^.

Express the left member in two terms,

acx^ + (6c — ad) x = hd.
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Multiply by 4ac,

4 a^cH"^ + 4:ac (be — ad) a; = 4 abed.

Complete the square,

4a2cV + ( ) + (6c - adf = bH^ + 2abcd + a^^.

Extract the root, 2aex + (6c — acZ) = ± (6c + acZ)

Reduce, 2aca;-i — (6c — a^) ± (6c + ac?)

= 2ac? or — 26c.

d b
.•. a; = - or

c a

(3) Solve the equation px^ —px-{- qx^ + qx

Express the left member in two terms,

pq
{p + q)x-' - (p - q)x =^-^.

Multiply by four times the coefficient of x"^,

4 (jp + qY rc^ — 4 (p^ — q^)x = 4:pq.

Complete the square,

4:{p + qfx' -{) + {p-qf =p^ + 2pq + f.
Extract the root, 2{p + q) x — (p — q) = ± {p + q).

Reduce, ^P -^ 9)^ = {p- 9)-{p + 9),

= 2p or —2q.

- ^ or- '

p+q p+q
Observe that the left member of the simplified equation must be

expressed in two terms, simple or compound, the first term involving

x^, the second involving x.

^ , Exercise 20.
iSolve :

x'-2ax---=Sa\ (a? + «)' _ (a? - «)'

,2
X S

2. x'' + 7a' = 8ax.

3. 4:x(x-a)-\-a':=b\
'^'

^'~a~4^^'

4. ^~~^ = 2aix+2a). ^' ^' - (^ + b)^ = -^b.

, \ \, 9. x^-'^^±^x^l = 0.
5. x^ — ax-\-b. mn
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^x{a — x) _a X a + 6_ a

?>a — 2x 4 * a — x x a— x

11. 2x^-{-^ = (a-\-b)x. ' 16. t.ZlA = ^±^.
2 x — b 2

12. (x-^mf-\-{x—my=bmx. a-\-b 2a-\-b_x

Q^2
' x — 2a a a

13. oaj2 + 5a^a; +^-0.

14. b(a-xy = {b~l)x'. ' b''^ X 2b '

19.
^^ =a + b-(a-b)x.

ax — bx

bab ~2>¥ — ax ^ 2a-\-x

2a-x 3

21. .--..^ (3^ + 2.)6 3(.^ + 5-
X

2 4

22 3a 2a _4a . .
a

x-\-a x-\-2a x x-{-Sa

22 a — b-{-x a + 5 _^2
a + 6 + a; ic4-5

24 o^ + 4Z> g — 45 _46
a;4-26 £c — 25 a

a-{- b X -\- a

26.
(^a'-m(^' + l) = 2x.

4:a' + 9b'

27. (Sa'+ b')(x'-x+l) = (a'+3b')(x'+ x + l).

^a' b' 4:0" -b'
28

x + 2 x— 2 a;(4-ar')

ft + 26 _ g'' 'W
a -2b (a — 2b)x x^'
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x+1 2 x+2
c ex ax — bx

a — c X — a ?>h{x--c)

X — a a — c [a — c){x — a)

32. x{x^h''-h)^ax{a^V)-{a^ hf (a - b).

' 2~^ X ~ 2 '

+ z = 0.m-^n \ mnj m n

35
2^5 (3a;-l)5^ ^ (2a;+l)a^

3:r+l 2a;+l 3a; + l

36
^ + 2a — 45 8b — la

,

rg — 4a _
25a; ' a^-25a; ' 2(ab-2b')

o^ 1 ^ x~bb _ x-{-19b — 2a
' a-j-2b a'-U^ (a + 2b)x~ 2bx-ax

3g a-2b 2(:r + 4a + 35) _Q
x-{-2b x-ba + Sb

39
^ + 35 35 _ a + Sb

8a'-12ab 4:a'-9b'' (2a + 35) (rr- 35)'

40
1

I

1 ^ Q^
,
2bx-\-b

2x^-\-x~\ 23?-%x^\ 2bx-b a-ax^'

4j 1 4aa;'^4-35(2-^) _o
a; 2aa:' + 2a+35

42 ^ — Q^
I
2 (a5 — g^ + 2 5^) _ 1

25 (.2; + a) a(a; + a)^ a

2ax + b 2aa;-5 _^ 95V+(4a^-65^)a;-(a^+ 5^)

aa: + 5 ax — b aV — 5^

a: + a + ^
. 3(a + c) ^o

a; — 3a + 5 a7 + 5 + c

43.

44.
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139. Solutions by a Formula. Every affected quadratic may
be reduced to the form x^ -\-px + g' = 0, in which p and q

represent numbers, positive or negative, integral or frac-

tional.

Solve : x^ -{- px -\- q = 0.

^x'^()-\-p^=p^-4:q,

2x -{-p = d= 'Vp'^ — 4:q.

By this formula, the values of x in an equation of the

form a;^ +^a; -f 5- = 0, may be written at once. Thus, take

the equation

Divide by 3, a;2-|a;+| = 0.

o

Here, p = - 1 and ^ = |

5 + l-x/25
6 2>9 3

6 6

= 1 or —
3

140. Solutions by Factoring. A quadratic which has been

reduced to its simplest form, and has all its terms written

on one side, may often have that side resolved hy inspection

into factors.

In this case the roots are seen at once without complet-

ing the square.

(1) Solve x''-\-1x-m = 0.

Since a;^ + 7a; -60 = (a; + 12) (a; -5),

the equation x'^ + 7 a; — 60 =
may be written (x + 12) (x — 5) = 0.
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It will be observed that if either of the factors a; + 12 or a; — 5 is 0,

the product of the two factors is 0, and the equation is satisfied.

Hence, a; + 12 = 0, or ic — 5 = 0.

.'. « = — 12, or a; = 5,

(2) Solve x''-\-1x = 0.

The equation a;^ + 7 a; =
becomes a;(a; + 7) = 0,

and is satisfied if a; = 0, or if a; + 7 = 0,

.'. the roots are and — 7.

It will be observed that this method is easily applied to an equa-

tion all the terms of which contain x.

(3) Solve 2x^-x^-Qx^0.
The equation 2x^ -x^-Qx =

becomes a; (2 a;^ - a; - 6) = 0,

and is satisfied if a; = 0, or if 2x'^ — x — Q> = 0.

qBy solving 2 a;^ - a; - 6 = the two roots 2 and — - are found.

q
.-. the equation has three roots, 0, 2, — -•

(4) Solve x^ + x^-4:X-4. = 0.

The equation «^ + a;^ — 4a; — 4 =
becomes x'^{x + 1) - 4(a; +' 1) = 0,

(a;2 - 4) [x + 1) = 0.

.•. the roots of the equation are — 1, 2, — 2.

(5) Solve a;' -2:^2- 11a; + 12 = 0.

By trial we find that 1 satisfies the equation, and is therefore a

root (§ 84).

Divide by a; — 1 ; the given equation may be written

(a; _ 1) (a;2 _ a; _ 12) = 0,

and is satisfied if a; — 1 = 0, or if a;'^ — a; — 12 = 0.

The roots are found to be 1, 4, — 3.

(6) Solve the equation x{x'^ — 9) — a(a'^ — 9).

If we put a for x, the equation is satisfied; therefore a is a

root (g 84).
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Transpose all the terms to the left member, and divide hj x — a.

The given equation may be written

{x - a) {x^ + aa; + a2 - 9) = 0,

and is satisfied if re — a = 0, or if o;^ + ax + a'^ — 9 = 0.

The roots are found to be

-a + V36-3a'^ -a- V36-3a^
''•

2
'

2
'

Exercise 21.

Find all the roots of

:

,1. {x-l){x~2){x'-^x-{-^) = 0.

2. {x^-2x-\-2){o(^-^x + 1) = Q,

3. a;' + 27 = 0.

4. a;* -81=0.

5. a;^-27 + 4(a;^-9) = 0.

6. a;* + 9a;2— 16(a;H9) = 0.

7. 2a;' + 3a;^-2a;-3 = 0.

8. x'-^c(^-\-M-2>2x-=0.

9. x^-x-Q = 0.

10. a^-e>x^-\-llx-^ = 0.

11. a;*-3a;^ — 8a;' + 6a; + 4=:0.

12. a;' + a;'-r4a;-24 = 0.

13. a;*-6a;' + 9a;^ + 4a;-12 = 0.

14. a;(a;-3)(a;+l) = a(a-3)(a + l).

15. a;(a;-3)(a; + l) = 20.

16. (a:-l)(a;-2)(a;-3) = 24.

17. (a; + 2) (a: -3) (a; + 4) = 240.

18. (a;+l)(a; + 5)(a;-6) = 96.
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141. Character of the Eoots. Every quadratic equation can

be made to assume the form ax^ -{-hx-\- c^=0.

Solving this equation (§ 138, Ex. 1), we obtain for its

two roots

h + V^' - 4ac —h — V^' - 4 ac

2a 2a

There are two roots, and but two roots, since there are

two, and but two, square roots of the expression b'^ — 4a<?.

As regards the character of the two roots, there are three

cases to be distinguished :

I. b^ — 4: ac positive. In this case the roots are real and

different. That the roots are different appears by writing

them as follows :

b Vb'-4:ac b Vb'-^ae
^

2a 2a 2a 2a

these expressions cannot possibly be equal since P — 4:ac

is not zero.

If i^ — 4 ac is a perfect square, the roots are exact. If

b"^ — 4:ac is not a perfect square, the roots are surds.

II. 5^ — 4 a*? = 0. In this case the two roots are real

and equal, since they both become
2a

III. b"^ — 4:ac negative. In this case the roots are imag-

inary/, since they both involve the square root of a negative

number.

If we write them in the form

Vb'-4:ac b V¥^^ac

2a 2a 2a 2a

we see that two imaginary roots of a quadratic cannot be

equal, since 5^ — 4a<7 is not zero. Also that they have the
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same real part, —— » and the imaginary parts the same
A OL

with opposite signs ; such expressions are called conjugate

imaginaries.

The above cases may also be distinguished as follows

:

I. b"^ — 4:ac> 0, roots real and different

;

II. b^ — 4:ac= 0, roots real and equal

;

III. 6^ — 4ac < 0, roots imaginary.

142. By calculating the value of i^ — 4 ac we can deter-

mine the character of the roots of a given equation without

solving the equation.

Examples :

(1) x'-5x + 6==0.

Here a = l, b = — 5, c = 6.

62-4ac = 25-24 = l.

The roots are real and different, and exact.

(2) Sx'-{-1x-l = 0.

Here a = 3, 6 = 7, c = — 1.

62-4ac = 49 + 12 = 61.

The roots are real and different, and are both surds.

(3) 42:^-12a; + 9 = 0.

Here a = 4, 6 = -12, c = 9.

62 _4ac = 144 -144 = 0.

The roots are real and equal.

(4) 2x'-,Sx-{-4: = 0.

Here a = 2, 6 = - 3, c = 4.

62_4ac = 9-32 = -23.

The roots are both imaginary.
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(5) Find the values of m for which the equation

2 wa;"^ + (5m + 2)a; + (4m + 1) =
has its two roots equal.

Here a=2m, 6 = 5m + 2, c = 4m+l.
If the roots are to be equal, we must have ¥ — 'iac-=0, or

(5m + 2)2-8m(4m + l) = 0.

2
This gives m = 2 or

For these values of m the equation becomes

4a;2 + 12a; + 9 = 0, and 4a;2 - 4a; + 1 = 0,

each of which has its roots equal.

Exercise 22.

Determine, without solving, the character of the roots of

each of the following equations :

1. .2r^-6a; + 8 = 0. 6. 16:c^-56:r + 49 = 0.

2. x'-4:X-\-2 = 0. 7. 2>x^~2x-\-l2~-=0.

3. a;2 + 6:r+13 = 0. 8. 2x'' -I9x +11 = 0.

4. ^x''-\2x-{-1 = 0. 9. 9a;' + 30a: + 25 = 0.

5. 5a;^-9a; + 6 = 0. 10. 17a;'- 12a: + 5^ = 0.

Determine the values of m for which the two roots of

each of the following equations are equal

:

11. (3m + l)a;' + (2m + 2)a; + m = 0.

12. (m-2)a;' + (m-5)a;4-2m-5 = 0.

13. 2ma;'-fa;'-6ma;-6a; + 6m + l = 0.

14. ma;' + 2a;' + 2m = 3ma;- 9a; +10.
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143. Problems involving Quadratics. Problems which in-

volve quadratic equations apparently have two solutions,

as a quadratic equation has two roots. When both roots

are positive integers, they will give two solutions.

Fractional and negative roots will in some problems give

solutions ; in other problems they will not give solutions.

No difficulty will be found in selecting the result which

belongs to the particular problem we are solving. Some-

times, by a change in the statement of the problem, we
may form a new problem which corresponds to the result

that was inapplicable to the original problem.

Imaginary roots indicate that the problem is impossible.

(1) The sum of the squares of two consecutive numbers

is 481. Find the numbers.

Let X = one number,

and a; + 1 = the other.

Then, aj" + (a; + l)^ = 481,

or 2a;2 + 2a; + 1 = 481.

The solution of which gives a; = 15 or — 16.

The positive root 15 gives for the numbers, 15 and 16.

The negative root —16 is inapplicable to the problem, as consecu-

tive numbers are understood to be integers which follow one another

in the common scale, 1, 2, 3, 4....

(2) What is the price of eggs per dozen when 2 more in

a shilling's worth lowers the price 1 penny per dozen ?

Let X = number of eggs for a shilling.

Then, - = cost of 1 egg in shillings,

12
and — = cost of 1 dozen in shillings.

But if a; + 2 = number of eggs for a shilling,

12 = cost of 1 dozen in shillings.
a; + 2

^

12 12 1
.-. = — (1 penny being -^ of a shilling).

X a? -f- ^ IZ
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The solution of which gives a; = 16 or — 18.

And, if 16 eggs cost a shilling, 1 dozen will cost || of a shilling,

or 9 pence.

Therefore the price of the eggs is 9 pence per dozen.

If the problem be changed so as to read : What is the

price of eggs per dozen when 2 less in a shilling's worth

raises the price 1 penny per dozen ? the algebraic statement

will be
12 _ 12 _ _1_

a; -2 a? 12"
.

The solution of which gives re = 18 or — 16.

Hence, the number 18, which had a negative sign and was inap-

plicable in the original problem, is here the true result.

Exercise 23.

1. The product of two consecutive numbers exceeds

their sum by 181. Find the numbers.

2. The square of the sum of two consecutive numbers ex-

ceeds the sum of their squares by 220. Find the numbers.

3. The difference of the cubes of two consecutive num-

bers is 817. Find the numbers.

4. The difference of two numbers is 5 times the less,

and the square of the less is twice the greater. Find the

numbers.

5. The numerator of a certain fraction exceeds the de-

nominator by 1. If the numerator and denominator be

interchanged, the sum of the resulting fraction and the

original fraction is 2-^. What was the original fraction ?

6. The denominator of a certain fraction exceeds twice

the numerator by 3. If S^^j be added to the fraction, the

resulting fraction is the reciprocal of the original fraction.

Find the original fraction.
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7. A farmer bought a number of geese for $24. Had
he bought 2 more geese for the same money, he would

have paid f of a dollar less for each. How many geese

did he buy, and what did he pay for each?

State the problem to which the negative solution applies.

8. A laborer worked a number of days, and received

for his labor $36. Had his wages been 20 cents more per

day, he would have received the same amount for 2 days'

less labor. What were his daily wages, and how many
days did he work ?

State the problem to which the negative solution applies.

9. For a journey of 336 miles, 4 days less would have

sufficed had I travelled 2 miles more per day. How many
days did the journey take ?

State the problem to which the negative solution applies.

10. A farmer hires a number of acres for $420. He lets

all but 4 for $420, and receives for each acre $2.50 more

than he pays for it. How many acres does he hire ?

11. A broker sells a number of railway shares for $3240.

A few days later, the price having fallen $9 per share, he

buys, for the same sum, 5 more shares than he had sold.

Find the number of shares transferred on each day, and

the price paid.

12. A man bought a number of sheep for $300. He
kept 15, and sold the remainder for $270, gaining half a

dollar on each sheep sold. How many sheep did he buy,

and what did he pay for each ?

13. The length of a rectangular lot exceeds its breadth

by 20 yards. If each dimension be increased by 20 yards,

the area of the lot will be doubled. Find the dimensions

of the lot.
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14. Twice the breadth of a rectangular lot exceeds the

length by 2 yards ; the area of the lot is 1200 square

yards. Find the length and breadth.

15. Three times the breadth of a rectangular field, of

which the area is 2 acres, exceeds twice the length by

8 rods. At $5 per rod, what will it cost to fence the

^eld?

16. Two pipes running together fill a cistern in
10-f-

hours ; the larger will fill the cistern in 6 hours less time

than the smaller. How long will it take each, running

alone, to fill the cistern ?

17. Three workmen, A, B, and C, dig a ditch. A can

dig it alone in 6 days more time, B in 30 days more time,

than the time it takes the three to dig the ditch together

;

C can dig the ditch in 3 times the time the three dig it in.

How many days does it take the three, working together,

to dig the ditch ?

18. A cistern holding 900 gallons can be filled by two

pipes running together in as many hours as the larger pipe

brings in gallons per i^inute ; the smaller pipe brings in per

minute one gallon less than the larger pipe. How long will

it take each pipe by itself to fill the cistern ?

19. A number is formed by two digits, the second being

less by 3 than one-half the square of the first. If 9 be

added to the number, the order of the digits will be re-

versed. Find the number.

20. A number is formed by two digits ; 5 times the

second digit exceeds the square of the first digit by 4. If

3 times the first digit be added to the number, the order of

the digits will be reversed. Find the number.
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21. A boat's crew row 3 miles down a river and back

again in 1 hour and 15 minutes. Their rate in still water

is 3 miles per hour faster than twice the rate of the current.

Find the rates of the crew and the rate of the current.

22. A jeweller sold a watch for $22.75, and lost on the

cost of the watch as many per cent as the watch cost dollars.

What was the cost of the watch ?

23. A farmer sold a horse for $138, and gained on the

cost
"I"

as many per cent as the horse cost dollars. Find

the cost of the horse.

24. A broker bought a number of $100 shares, when
they were a certain per cent below par, for $8500. He
afterwards sold all but 20, when they were the same per

cent above par, for $9200. How many shares did he buy,

and what did he pay for each share ?

25. A drover bought a number of sheep for $110; 4

having died, he sold the remainder for $7.33i^ a head, and

made on his investment four times as many per cent as he

paid dollars for each sheep bought. How many sheep did

he buy, and how many dollars did he make?

26. A certain train leaves A for B, distant 216 miles
;

3 hours later another train leaves A to travel over the

same route ; the second train travels 8 miles per hour faster

than the first, and arrives at B 45 minutes behind the first.

Find the time each train takes to travel over the route.

27. A coach, due at B twelve hours after it leaves A,

after travelling from A as many hours as it travels miles

per hour, breaks down ; it then proceeds at a rate 1 mile

per hour less than half its former rate, and arrives at B
three hours late. Find the distance from A to B.



CHAPTER X.

SIMULTANEOUS QUADRATIC EQUATIONS.

Quadratic equations involving two unknown numbers

require different methods for their solution, according to

the form of the equations.

144. Case I. When from one of the equations the value

of one of the unknown numbers can be found in terms of

the other, and this value substituted in the other equation.

Ex. Solve: ,_yU \ (2)

Transpose x in (2), y = x — 2.

Substitute in (1), 3 a;^ - 2 x {x-2) = 5.

The solution of which gives x =1 or — 5.

.-.y = — 1 or — 7.

Special methods often give more elegant solutions than

the general method by substitution.

I. When equatiojis have theform, x±:y= a, and xy= b

;

a;2 -t y2 — ^^ Q^.y^d rf-y ~h ; or, x±y = a, and x^ -\-y'^^= h.

(i) Solve: " + ^,^.''1 S
Square (1 ), x' + 2xy^y'' = 1600. (3)

Multiply (2) by 4, ^xy =1200. (4)

Subtract (4) from (3), x^-2xy-vy'^ = 400. (5)

Extract root of each side, x — y = ±20. (6)

Add (6) and (1), 2 a! = 60 or 20,

Subtract (6) from (1), 2y = 20 or 60.

.;. a; = 30 > or a; = 10

1

2/ = 10 J 3/ = 30/'
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(2) Solve: 1~^ = !J ,^ol

Square (1),

Subtract (2) from (3),

Subtract (4) from (2),

Extract the root,

-2xy=-2\.
x^ ^2xy +2/2 = 64.

a; + 2/
= ± 8.

(3)

(4)

(5)

By combining (5) and (1), cc = 6> ora; = -2J

(3) Solve :

x^ y 20

1,1 41

x^'^ f 400>'

(1)

(2)

Square (1),
1 + 2 1^81.
x' xy 2/2 400

(3)

Subtract (2) from (3),
2 40

xy 400
(4)

Subtract (4) from (2),
1 2 1 1

a;2 xy 3/^ 400"
•

Extract the root,^
x y 20

(5)

By combining (1) and: (5), a; = 4") or a; = 5')

II. When one equation may he simplified by dividing it

by the other.

(4) Solve: ^ + 2/ = 9lT 0)
^ ' x+ v=7 i (2)

Divide (1) by (2), «2 -xy + y'^ = 13. (3)

Square (2), x^ +. 2rc2/+y2 = 49. (4)

Subtract (3) from (4), Sxy = 36.

Divide by - 3, -xy = -12. (5)

Add (5) and (3), x'' - 2xy + y^ = l.

Extract the root, x — y = ±l.
'

(6)

By combining (6) and (2), a; = 4 > or

y = si
x == 3

= 4y =
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145. Case II. When each of the two equations is homo

geneous and of the second degree.

Solve
3/2-^:^=16

Let y = vx, and substitute vx for y in both equations.

From (1 ), 2 VV - 4 va;2 + 3 a;2 = 1 7,

. ..^ 17

2i,2_4v + 3

From (2),
^2^2 -a;2 = 16,

Equate the values of x"^,

17 16

2v^ _4v + 3 v2_i
32i-2- Giv + 48 = 17^2_i7^

15t;2- 64?; = -65.

The solution gives,
5 13

^ = -or-.

5
v = ->

3 5'

5a; 13a;y-vx^-. y = vx- ^.

Substitute in (2), Substitute in (2),

25^'
x^ = 16,

169-^ .-16.
9 25

a;2 = 9, .^=25,

a; = ± 3,
9

5a; f, a; = ±5,
2/ =Y = ^5. 3

13a; 13
•^5 3

(1)

(2)

146. Case III. When the two equations are symmetrical

with respect to x and y ; that is, when x and y are simi-

larly involved.

Thus, the expressions 2a;^ + Sx'^y^ + 2y^, 2xy — 3x — Sy + I,

a;* — Sx^y — 3 xy^ + y*, are symmetrical expressions.

In this case the general rule is to combine the equations in such a

manner as to remove the highest powers of x and y.
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(1) Solve:

X -\-y =12 j

(1)

(2)

Divide (1) by (2), a;2 rry+Z- /• (3)

To remove x^ and /, square (2),

x2 + 2a;2/ + 2/2=144. (4)

Subtract (4) from (3), 3.3/ = ^f 144,

which gives

We now have,

a;y = 32.

a;.+ 2/
= 12l

(ry = 32 »

Solving as in Case I., we find, a; = 8') or a; = 4)

(2) Solve: x' + y' = 2>Z1
\ (1)

a;+y=7 j (2)

To remove aj* and 3/*, raise (2) to the fourth power,

x^ + 4x^2/ + 6icV + 4ic?/3 + 2/* = 2401,

Subtract (1), x^ + y' = 337,

^x^y + Q x^y'^ + 4 0:3/3 = 2064.

Divide by 2, 2 x^^ + 3 x^y'^ + 2 0:3/3 = 1032. (3)

Square (2) and multiply the result by 2xy,

2 0:33/ + 4 .23/2 ^2xf = 98 xy. (4)

Subtract (4) from (3), - xy = 1032 - 98 xy,

or xV- 98x3/ = -1032.

This is a quadratic equation, with xy for the unknown number.

Solving, we find, xi/ = 12 or 86.

We now have to solve the two pairs of equations,

x + y= 7) X + y = 7 )

X3/ = 12 /
'

X3/ = 86 )

From the first, x = 4l or x = 3"»

y = 3i y = 4i

From the second, _ 7 ± V- 295 ^

y =
7t\/^^295
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The preceding cases are general methods for the solution of equa-

tions which belong to the kinds referred to ; often, however, in the

solution of these and other kinds of simultaneous equations involv-

ing quadratics, a little ingenuity will suggest some step by which the

roots may be found more easily than by the general method.

Exercise 24.

1. a; + y= 8) 13. x"-^ xy^^O')^
xy-=lb)' 2^ -32/= 1 3

2. :r + y = 6) 14. :?;'-- y' = 13
j

xy-\-21 = 0)' 307 - 2y = 9 J

^-^= H. 15. i-fl^-^
a;y = 24

)

x y IS

4. x-y = ie>\
xy=b^

X y m
xy -\- 60

xy = 18

8.

9.

16. 1-1 =1

17. x^ + 4:y + ll =
6. 2x + Sy = l} Sx +2y+ 1 =

^ 18. x + Sy + l= -\

7. y = 9 — 3a:)
v Ay-l-l (

.

^y ->

^

' :r-f 2y

a; + 2y=12) 19. ^r^ + y^^lOe)
xy -f- 3/2 = 35 j a:?/ = 45 3

a;-3y-f9 = 01 20. x' +y' =52}
^y~ y' + 4 = 0r :ry + 24= 03

10. a;'^ + y'^ = 100 ) 21. x^ — xy = 3)

X -\-y = 14: ) y^ ~{-xy= 10 )

11. x' + y^ = 11)^ 22. xy +y'= 4)

3 2a;^-v' = 17'34a7 +y =15 3 2x'-y''

2^:2 - y2 + 8 = ) 23. a;^ + 3:ry

Bx —y — 2 = 0J ^y— y^
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= 60)

= 40 j

;. X'' — 4:X^ = 4:6)

v^ — XV = 6 J

24. x^ -]- xy

7/ + X1/

25. x^-{-2xi/- y'= 28

Sx^+2xi/+2f= 12

26.

30. 8:^" — Srcy

27. a;' + 3a;y = 55)

2y2_|_ rry^lSJ

28. a;'— xyi-y'' = S7)

a;2 + 2a;y+ 8 = Oj

29. x^-}-xy + 2y' = U
2x^- xy+ 3/2=16

- 2/^ = 401

}

9:^2+ :ry + 2y'^ = 60

31. Sx'-{-3xy+ 7/

bx^ + 7xy + 4:y^

52

140 !^

34. x' + y^ = Q5}

X +y = 53

35. a^-y^==98}
X -y = 23

36. a,'^ + y^ = 2791

X -j-y = 33

37. a;^-.3/' = 218)

a;-y= 23

38.

x''-xy + 7/= 19 3

39. a;' -3/^ = 1304)

:i;' + :ry + 2/'= 163 3

40. x' + f =91}
xy(xi-y) = 8^\

32. 4a;' + 3:ry + 52/'' = 27)

7a;'' + 5a:y + 93/' = 47r

33. 5a:' + 3a;3/ + 2y'^ = 188)

x'^ — xy \- y'^= 19 3

41. x^-y^ = 9S-

42.

43.

44.
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45. x'-y'=1xy\
x-y= 2 i

57. :^'^ + y^ = ^3/ + 19)

X +y =xy- 7 3

46. 58. x-y ' ^ + y 3 [•

47.

bxy

59. a;^ + a;y,+ 2/* = 133)

.^^-a:y +y^=- 19 3

a;* + a;y+ y^ = 931 )

;r^ + ^y +y^= 49 3

60.

48. xY-l^ xy-{-m^
;ix-\-y= 61. x"^ a;y + y2=84),

a; + -\Jxy + 2/ = 6 349. xy = ^xy + \2-
^

xy = x-\-y-\-l . 62.

:r +y =21 + V^3
"

60. -^ +/= 36 1 63.

a;^ + y^ = 49-:ry 3-+^=^'
J

51. x^^f = m-xy\ ^^' 2x^+Sxy+12= Sf
,+y = xy~5\' 3.+5y+ 1=

52. :.^ + y^ = l-3.;yj 65. - + |=1
x' + f = xy+S7

)

^ ^

1 +y =-. 23

53. a;* + y*=706) - + "= 4

X +y

ah
X y

QQ. x-\-y = a ' }
54. x^-y-211) Jy=.a?-w\-

X —y = 1 j

55. x^ + y' = 3368-) ''• ^; = «^+*y|.

1 1 ^3
I

69. a;^ + 2/= + 2; + y = 18

a; y 4 '' a;y = 6
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71. a^-\-f = 2xY-lb^
X +2/ =^xy-\-\ 3

72. ay'^-\-hxy-

74.

75.

76. rc'^ + y^ = ^^3/

1

77. 2(a;'^ + 2/')-=5:py-9a5 )

ah)]^{a^V){x^y)^Z{xy-ah)

78. a;^+ y' + 2' = 49

2a; +3y -4z =

79._ xy -\- yz -\- xz = ^^ )

*

4a; = 32/ = 2z + 43

80. a;^ + y' + z^ = 84-

= 49-)

= 11

= 63

X -\-y +z
y"^ — xz

81. 2a:y + a; + y = 22

22/z+y
2a:2: +

»4-\

14 .

a;z J

a; + y = 22^

y 4- z -^ 58 [ .

a; + z-=323

\ah\

^ 3

82. a;^ + ^y + ^2 = d^

y''-\-yz + xy=2ah
z^ -\- xz -\- yz — h^
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Exercise 25.

1. If the length and breadth of a rectangle were each

increased 1 foot, the area would be 48 square feet ; if the

length and breadth were each diminished 1 foot, the area

would be 24 square feet. Find the length and breadth of

the rectangle.

2. A farmer laid out a rectangular lot containing 1200

square yards. He afterwards increased the width Ij yards

and diminished the length 3 yards, thereby increasing the

area by 60 square yards. Find the dimensions of the

original lot.

3. The diagonal of a rectangle is 89 inches ; if each side

were 3 inches less, the diagonal would be 85 inches. Find

the area of the rectangle.

4. The diagonal of a rectangle is 65 inches ; if the

rectangle were 3 inches shorter and 9 inches wider, the

diagonal would still be 65 inches. Find the area of the

rectangle.

5. The difference of two numbers is f of the greater,

and the sum of their squares is 356. Find the numbers.

6. The sum, the product, and the difference of the

squares of two numbers are all equal. Find the numbers.

Hint. Represent the numbers hj x +y and x — y.

7. The sum of two numbers is 5, and the sum of their

cubes is 335. Find the numbers.

8. The sum of two numbers is 11, and the cube of their

sum exceeds the sum of their cubes by 792. Find the

numbers.

9. A number is formed by two digits. The second digit,

is less by 8 than the square of the first digit ; if 9 times
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the first digit be added to the number, the order of the

digits will be reversed. Find the number.

10. A number is formed by three digits, the third digit

being the sum of the other two ; the product of the first

and third digits exceeds the square of the second by 5. If

396 be added to the number, the order of the digits will be

reversed. Find the number.

11. The numerator and denominator of a certain fraction

are each greater by 1 than those of a second fraction ; the

sum of the two fractions is ^. If the numerators were

interchanged, the sum of the fractions would be f . Find

the fractions.

12. There are two fractions. The numerator of the first

is the square of the denominator of the second, and the

numerator of the second is the square of the denominator

of the first ; the sum of the fractions is •^, and the sum of

their denominators 5. Find the fractions.

13. The sum of two numbers which are formed by the

same two digits is
-f|-

of their difference ; the difierence of

the squares of the numbers is 3960. Find the numbers.

14. The fore wheel of a carriage turns in a mile 132

times more than the hind wheel ; if the circumference of

each were increased 2 feet, the fore wheel would turn only

88 times more. Find the circumference of each wheel.

15. Two travellers, A and B, set out from two distant

towns, A to go from the first town to the second, and B
from the second town to the first, and both travel at uni-

form rates. When they meet, A has travelled 30 miles

farther than B. A finishes his journey 4 days, and B 9

days, after they meet. Find the distance between the

towns, and the number of miles A and B each travel per

day.
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16. Two boys run in opposite directions around a rec-

tangular field, of which the area is one acre ; they start from

one corner, and meet 13 yards from the opposite corner.

One boy runs only f as fast as the other. Find the length

and breadth of the field.

17. A man walks from the base of a mountain to the

summit, reaching the summit in 5j hours; during the last

half of the distance he walks 5 mile less per hour than

during the first half. He descends in 3 1 hours, walking 1

mile per hour faster than during the first half of the ascent.

Find the distance from the base to the summit and the rates

of walking.

18. A besieged garrison had bread for 11 days. If

there had been 400 more men, each man's daily share

would have been 2 ounces less ; if there had been 600 less

men, each man's daily share could have been increased by

2 ounces, and the bread would then have lasted 12 days.

How many pounds of bread did the garrison have, and

what was each man's daily share ?

19. Three students. A, B, and 0, agree to work out a

set of problems in preparation for an examination ; each is

to do all the problems. A solves 9 problems per day, and

finishes the set 4 days before B ; B solves 2 more problems

per day than 0, and finishes the set 6 days before C.

Find the number of problems in the set.

20. A cistern can be filled by two pipes ; one of these

pipes can fill the cistern in 2 hours less time than the

other ; the cistern can be filled by both pipes running to-

gether in 1|- hours. Find the time in which each pipe wiU

fill the cistern.
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21. A and B have a certain manuscript to copy between

them. At A's rate of work he would copy the whole man-

uscript in 18 hours ; B copies 9 pages per hour. A finishes

his portion in as many hours as he copies pages per hour

;

B is occupied with his portion 2 hours longer than A is

with his. Find the number of pages copied by each.

22. A and B have 4800 circulars to stamp, and intend

to finish them in two days, 2400 each day. The first day

A, working alone, stamps 800, and then A and B stamp

the remaining 1600, A working altogether 3 hours. The

second .day A works 3 hours and B 1 hour, and they ac-

complish only y^^ of their task for that day. Find the

number of circulars each stamps per minute, and the num-

ber of hours B works on the first day.

23. A, in running a race with B, to a post and back,

meets him 10 yards from the post. To come in even with

A, B must increase his pace from this point
41-f- yards per

minute. If, without changing his pace, he turns back on

meeting A, he will come in 4 seconds behind A. Find the

distance to the post.

24. A boat's crew, rowing at half their usual speed, row

3 miles down stream and back again, accomplishing the

distance in 2 hours and 40 minutes. At full speed they

can go over the same course in 1 hour and 4 minutes.

Find the rate of the crew and of the current.

25. A farmer sold a number of sheep for $286. He
received for each sheep $2 more than he paid for it, and

gained thereby on the cost of the sheep ^ as many per cent

as each sheep cost dollars. Find the number of sheep.

26. A person has $1300, which he divides into two

parts and loans at diff'erent rates of interest, in such a
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manner that the two portions produce equal returns. If

the first portion had been loaned at the second rate of

interest it would have yielded annually $36; if the

second portion had been loaned at the first rate of interest

it would have yielded annually $49. Find the two rates

of interest.

27. A person has $5000, which he divides into two

portions and loans at different rates of interest in such a

manner that the return from the first portion is double the

return from the second portion. If the first portion had

been loaned at the second rate of interest it would have

yielded annually $ 245 ; if the second portion had been

loaned at the first rate of interest it would have yielded

annually $90. Find the two amounts and the two rates

of interest.

28. A number is formed by three digits ; 10 times the

middle digit exceeds the square of half the sum of the

three digits by 21 ; if 99 be added to the number, the

digits will be in reverse order ; the number is 11 times

the number formed by the first and third digit. Find the

number.

29. A number is formed by three digits
; ^

the sum of

the last two digits is the square of the first digit ; the last

digit is greater by 2 than the sum of the first and second

;

if 396 be added to the number, the digits will be in re-

verse order. Find the number.

30. A railroad train, after travelling 1 hour from A,

meets with an accident which delays it 1 hour ; it then

proceeds at a Tate 8 miles per hour less than its former

rate, and arrives at B 5 hours late. If the accident had

happened 50 miles further on, the train would have been

only 3|- hours late. Find the distance from A to B.



CHAPTER XI.

EQUATIONS SOLVED LIKE QUADRATICS.

147. Some equations not of the second degree may be

solved by completing the square.

(1) Solve: 8x'-i-6Sx'=8.

This equation is in the quadratic form !f we regard x^ as the un-

known number.

We have, 8x« + 63a;3=8.

Multiply by 32 and complete the square,

256a;«+() + (63)2=4225.

Extract the square root, 16ar^ + 63 = ± 65.

Hence, a^ = ^ or — 8.

Extracting the cube root, two values of x are ^ and — 2. To find

the remaining roots, it remains to solve completely the two equations

We have, 8a;3_i_o,

or, (2a;-l)(4ic2 + 2a; + l) = 0.

.'. either 2 a; — 1 = 0,

or, 4a;2 + 2a; + l =0.

Solving these, we find for three

values of x,

We have, a^ + 8 = 0,

or, {x + 2){x^-2x + 4:) = 0.

.-. either a; + 2 = 0,

or, a;2-2a; + 4 = 0.

Solving these, we find for three

values of x,

- 2, 1 + V^, 1 - V^.
4 4

These six values of x are the six roots of the given equation.

(2) Solve: •Vx'-S\^=4.0.

Using fractional exponents, we have x^ — 3x^= 40.

This equation is in the quadratic form if we regard x^ as the un-

known number.
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Complete the square, 4 x^ — 12 x^ + 9 = 169,

Extract the root, 2 x* - 3 = ± 13.

.-. 2a;*=16or-10,

«* = 8 or — 5,

» = 16 or — 5 Vs.

There are other values of x which we shall not at present attempt

to find.

™ , Exercise 26.
bolve :

1. a;« + 7:r« = 8. 17. ^^x^'^ ^x'"" =b.

2. a;*-5a7'^ + 4 = 0. 18. 4:r^- 3a:i= 10.

3. :.« + 4^^ = 96.
19, 2:.*- 3a;*= 9.

4. 37a;' -9 = 4^;*.

5. 16:r«=17:i;'-l.

6. 32a;^° = 33:^^-1.

7. ^« + 14^^:^ + 24 = 0.

8. 19:^^216:^;^ = a;.

1 13
9. a;«- 22a;* + 21 = 0. 24. —^+—z= -.

20. -\/^^=V?+12.

21. a; = 9V^ + 22.

22. -v^?- 4^/^ = 32.

23. 2V?-3-</^=35.

10. 3;'"*+ 3a;'"=4.

11.
3 12

12. a;«"+3a;'"= 40.

13. a;'"'+ 2aa;'^=8a^

14. a;-*-4a;-'^=12.

15. a;-^+5a;-'-36 = 0.

16. a;-«- 3a;-*- 15^1 = 0.

\fx \fx 4

25. x~^-\-x~^ = -'^
9

26. 3 0;-^+ 4a;-* = 20.

27. 2x~^— x~^=^b.

28. 4^/^+3a/F"^ = 27.

29. a/2^+-v^4^'=72.

30. V2^ + 4a;=l.
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148. Eadical Equations. Solution by clearing of radicals

:

Solve V.T + 4 + V2rr + 6 = V7a; + 14.

Square, a; + 4 + 2V{x + 4:){2 x + 6) + 2x + 6 = 7x + 14.

Transpose and combine, 2y/{x + 4)(2a; + 6) = 4a; + 4.

Divide by 2 and square, (x + 4)(2a; + 6) = {2x + 2)2.

Multiply out and reduce, x^ — 'dx = 10.

Hence, a; = 5 or — 2.

Of these two values only 5 will satisfy the equation as it stands.

Squaring both numbers of the original equation is equivalent to

transposing V7a; + 14 to the left number, and then multiplying by
the rationalizing factor,

Va; + 4 + V2x~+6 + y/7 x + 14.

The result reduces to

V{x + ^){2x + 6) - (2a; + 2) = 0.

Transposing and squaring again is equivalent to multiplying by

(Va; + 4 - y/2x + 6 + Vfx + 14) (Va; + 4 - V2a: + 6 - V7x + U).

Therefore, the equation x'^ — 3 a; — 10 = is really obtained from

{Vx + 4: + y/2x + 6 - V7a: + 14)

X (Va; + 4 + V2a; + 6 + V7a; + 14)

X (Va; + 4 - V2x~+6- y/7 x + 14)

X (Va; + 4 - V2a; + 6 + VTa; + 14) = 0.

This equation is satisfied by any value that will satisfy any one

of the four factors of its left member. The first factor is satisfied by

5, and the last factor by — 2, while no value can be found to satisfy

the second or third factor.

149. Some radical equations may be solved as follows :

Solve 7x'-^x + SV7x'-bx+l-=-8.
Add 1 to both sides,

7a;2-5a; + l + 8V7a;2-5a; + l =

Put V7c^^-5x + l = y ; the equation becomes

y^ + Sy = — 7. Whence, y = - 1 or - 7, and y^ = 1 or 49.

We now have 7a;'-5a; + l = l, or7a;2-5a: + l=49.

Solving these, we find for the values of a?,

16

\4 '

S'l ^'-7
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These values all satisfy the given equation when the radical is

taken negative ; they are in fact the four roots of the biquadratic

obtained by clearing the given equation of radicals.

150. Various other equations may be solved by methods

similar to that of the last section.

(1) Solve : x'-4cx'-\-6x'-2x~20 = 0.

Begin by attempting to extract the squara root.

x^-4:ci^ + 5x^-2x-20 \x^~2x
X'*

2x^-2x 4x3 + 5^2

4a^ + 4a;2

a;2-2a;-20.

We see from the above that the equation may be written

(a;2 - 2a;)2 + a;2 - 20; - 20 = 0.

Put a;2 — 2 a; = 2/ ; the equation becomes

2/2 + 2/
- 20 = 0.

Solving this, 2/ = — 5 or +4,

.'. a;2 — 2a; = — 5, or ^ — 2x = \.

Solving these two equations, we find for the four values of x,

l + 2\/^, 1-2V^, l + VS, l-\/5.

4.(2) Solve: -+i ^'*\-=
Add 2 to both members,

a;2 + 2
1

--^'^
1

X

Put x + - =
2/

;

X ^
the equation becomes

y2 + y
Solving this, y 2 or -3.

.-. a; -I-
_ = 2, or rr + - = — 3.
X X

Solving these two equations, we find for the four values of a,

1 1
-3 + V5 -3- V5
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Exercise 27.

1. \/x + 4:+V2x-l = 6.

2. Vl3a;-1-V2a;-1 = 5.

3. V^ + V4T^ = 3.

4. Va.•'-9 + 21 = a;^

5. Vx+l-\-Vx + ie = Vx-\-2b.

6. V2x-}-l-Vx+ 4: =
3̂

7. V^+^ + V^Ts = 5V^.

8. V^T7 + Va:-5 + V3:i:+ 9 = 0.

9. Vx + 5-\--V8-2x-\--\/9 — 4:X = 0.

10. Vr^ + V3a: + 10+ Va; + 3 = 0.

11. V2x' + Sx-{-7 = 2a^-{-Sx-6.

12. a;'-3a; + 2 = 6V:r2-3a; — 3.

13. 6a;'-3rr-2 = V2r^-a;.

14. lbx-dx'-16 = Wx'-bx-{-5.

15. 6a;2 - 21 a; + 20 = V4a;^ - 14a: + 16.

16. -VSQx" + 12a: + 33 = 41 - 8rr - 24a;'

17. 4a:*-12a:^ + 5a:' + 6a:-15 = 0.

18. ^*-10a:^ + 35a;'-50a; + 24 = 0.

19. a:*--4a:^-10a:2 + 28a:-15 = 0.

20. 18a:* + 24a:^- 7a:' -10a: -88 = 0.

21. 4a:*-12a:^ + 17a:'-12a:-12 = 0.

22. V^+Va: + 3= ^
•

Va: + 3
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23. 6 + Va;'—

1

16

Vx'-l

24. _!=+ 1
1

Vx -f 1 -Vx — 1 Va;^ — 1

25
V^ + 2- Va:-2 _a?

V^ + 2 + Va; - 2 2

26
3a; + V4a; — a;'' _o
3a;- V4a;-a;'^

2^^
V3a;^ + 4-V2^H^ ^l
V3a;^ + 4+ V2a;^+1 7*

28.
V7a;' + 4 + 2V37^=n: _^^
V7a;'^ + 4-2V3a;-l

29.
V5^-4+ V5-a; _ 2V^+l
VSa; — 4- V5 — a; 2V^—

1

30. V(a;+ af + 2ab + b' + X + a = b.

31.
^3 ^ ___!_.

V2a;— 1 — Va;-2 Va;—

1

34. Va;'+a'+3aa:+Va;'^+a'-3aa:=V2a';+2^>^

35. 4a:^ - 3(a;^ + 1) (x^ - 2) = a;^(10 - 3a;^).

36. (a;f - 2) (a;t- 4) = a;t (a;f - 1)^ - 12.

37. SVar^ + 17 + V^^+1 + 2V5ar\+ 41 = 0.
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38.
2 a; ^4: x\

36

X

40.

41.

42.

X + V2-X'

1
+

V2

1

= rp.

2a?

1 + Vl 1-vr 9

1 + -Vax — b

^ax + 6 — \Jax 1 — yo.x— h

^a — x-\- \/b — x_ -Vx + -y/b

Va ^b — x -y/x—^b^

43. V^ + '\a — Vaa; + a;^ = Va.

44. a7' + y'^ + a; + y = 481

a;y = 12 J

45. X -{- y -\- -y/X -\-

y

x — y-\- Va; — y

46. x'^-\- a:y + 2/^ =
^ + Va;y + y =

n

n
47.

3V^ + 2Vy

4V^ — 2V^
6.

^2_j_1^^2__64

16 a^

48. V^— V3/ = a;^(V^+ V3/)].

49. 4
3a:

2

54



CHAPTEK XII.

PROPERTIES OF QUADRATIC EQUATIONS.

151. Representing the roots of the quadratic equation

ax^ -\- bx -^ c — by a and jS, we have (§ 141),

— b-{--Vb''-4:ac
a = >

2a

-h--Vb'-4cac
^= 2a

Adding, a+p^^l;

multiplying, ^-l:

If we divide the equation ax^ -\-bx-\-c=^0 through by
b c

a, we have the equation x"^ -{- - x -{- - =^
\ this may be

b e
written x^ -\- px -{- q =^ where p ^= —,

a

It appears, then, that if any quadratic equation be made

to assume the form x^^px^ q=^^, the following relations

hold between the coefficients and roots of the equation :

(1) The sum of the two roots is equal to the coefficient

of X with its sign changed.

(2) The product of the two roots is equal to the constant

term.

Thus the sum of the two roots of the equation a;'' — 7a; + 8 = is

7, and the product of the roots 8.
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152.* The expressions a+ ^, a^, are examples of symmetric

functions of the roots. Any expression which involves both

roots, the two roots entering to similar powers and with

similar coefficients, is a symmetric function of the roots.

From the relations a-\- /3 = —p, ap = q, the value of

any symmetric function of the roots of a given quadratic

may be found in terms of the coefficients.

Given that a and )8 are the roots of the quadratic x'^ — 7 a; + 8 = 0,

we may find the values of symmetric functions of the roots as follows

:

(1) a? + 0^.

We have o + )8 = 7,

oj8 = 8.

Square the first, . o^ + 2a)8 + iS^ = 49.

Subtract, 2aj8 =16,

and we have

(2) 0? + j8^

a^ + &' = 33.

a3 + 3a2)8 + 3 «i82 + fi' = 343.

3 a^B + 3 aB,-' = 168.3 a)3 (o + )3) or

Subtract, o^ + jS^ = 175.

)8 a

This is

which is
175

8
*

153. Eesolntion into Factors. By § 151, if a and /3 are the

roots of the equation x"^ -\-px -\- q = 0, the equation may
be written 2 r \ o\ \ o c\

The left member is the product of a; — a and x — P, so

that the equation may be also written

(x -.a)(x-P) = 0.

It appears, then, that the factors of the quadratic expres-

sion x^ \-px + q are x — a and x — ^, where a and /8 are

the roots of the quadratic equation x^ -{px-\- q = 0.
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The factors are real and different, real and alike, or

imaginary, according as a and P are real and unequal,

real and equal, or imaginary.

If /? = a, the equation becomes (x — a){x — a) — 0, or

{x~af= 0] if, then, the two roots of a quadratic equation

be equal, the left member, when all the terms are transposed

to that member, will be a perfect square as regards x.

If the equation be in the form ax"^+ ^:r + c = 0, the left

member may be written a{x'^-{--x~\--\ or (§ 151)

a(x— a) (x ^ P).

154. If the roots of a quadratic equation be given, we can

readily form the equation.

Form the equation of which the roots are 3 and

The equation is {X

or {X

or

3)

3) {2x + 5) = 0,

a;2 _ a; - 15 = 0.

155. Quadratic expressions may be factored by the prin-

ciples of § 153.

(1) Resolve into two factors x^ — 5x -{-S.

Write the equation a;"^ — 5 a; + 3 = 0.

rru t t J ^ 1. 5 + Vis 5 - Vl3
The roots are found to be ,

2 2

The factors of a;^ — 5 a; + 3 are

5 + VfS . 5 - \/l3
X and X

2 2

(2) Resolve into factors 2>x^ — 4:X -\-b.

Write the equation Sa;^ — 4a;-f5 = 0.

m, . t A ^ x.
2+V^ni 2-\/-ll

The roots are found to be >

o o

Therefore the expression Sa:^ — 4 a; + 5 may be written (§ 153)

2 4-\/^ni\/ 2-\/^Tl\

X
——)v
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Exercise 28.

Form the equations of which the roots are

:

6. a + 35, a — Sb.

a + 2b 2a + b

3 ' 3

8. 2 + V3, 2-V3.
9. -1+V5, ~1-V5.

10.1+41-^1

il or imaginary

:

15. x''-2>x-\-4:.

16. x'-^-x-^-l.

17. 4:r2-28a; + 49.

18. 4a;^ + 12a; + 13.

Note. The remainder of this chapter may be omitted if it is

desired to abridge the course.

In examples 19-27, a and p are to be taken as the roots

of the equation a;^ — 7 :?; + 8 = 0.

Find the values of

:

1. 3,2.

2. 4,-5».

3. -6,

-

-8.

4.
2 1

3' 2

5.
1

3'

3
4'

Resolve into factors

11. 2>x'- 15a;--42.

12. ^x-"-27 a;--70.

13. 492;'^ + 49a: + 6.

14. 169 o;^^-52,2; + 4,

19. (a-^)^

20. a'/3 + a;8^

21.

22. «+^.
^ 0.

23.

24.
a' + ^

25. i+i.

26. (a^-py.

27.
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In examples 28-33 a and fi are to be taken as the roots

of the equation x^ -{- px-^ q = 0. The results are to be

found in terms oip and q.

Find the values of:

28. 1+ 1.

a ^

29. a'y8 + a)Sl

30. a^ + /3l

31. a'^ + af3\

32. a' + l3\

33 ^V'^'

34. When will the roots of the equation ax^ -\- bx -^ c =
be both positive? Both negative? One positive and one

negative ?

35. When will one root be the square of the other ?

36. When will the sum of the reciprocals of the roots

be unity ?

37. Show that the roots of the equation

x'-{-2(a + b)x + 2(a' + h') =
are imaginary if a and b are real and unequal.

38.* Show that the roots of the equation

— x""+ (x~b) (x-c)+ (x—c) (x-a)+ (x-a) (x-b)=
are real if a, b, and c are real.

39.* Show that the equations

ax"^ -\-bx-[- c — 0, a'x + c' = 0,

will have a common root if —r + -7 = —n'
a'^ c'^ a'c'

40.* Show that the equations

ax" -\- bx -{- c -= 0, a'x' -\'h'x-{-c' = 0,

will have a common root if

(a'c - ac'y = (b'c - bc'Xa'b - ab').
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156.* The Roots in Special Oases. The values of the roots

of the equation ax^ + ^a; + c = are (§ 141)

2a
'

2a
'

Multiplying both numerator and denominator of the first

expression by — 5 — V^'^ — 4 ac, and both numerator and

denominator of the second expression by — 5 -f V^^ — 4ac,

we obtain these new forms for the values of the roots

:

2g 2c -g

We proceed to consider the following special cases :

I. Suppose a to be very small compared with b and c.

In this case b'^— Aac differs but little from b^, and its square

root but little from b. The denominator of the first root in

B will be very nearly —2b, and the root itself very nearly

— j; the denominator of the second root in B will be very
b

small, and the root itself numerically very large.

The smaller a is, the larger will the second root be, and

the less will the first root differ from — -•

The first root may be found approximately by neglecting

the a^ term and solving the simple equation bx-{- c = 0.

In fact, the quadratic equation itself approximates to the

form Ox'^-]-bx-\-c = 0.

II. Suppose both a and b to be very small compared

with c. In this case the first root, which dififers but little

from — |, also becomes very large, so that both roots are

very large.

The smaller a and b are, the larger will the roots be.
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The quadratic equation in this case approximates to the

form Ox'^-{-Ox-{-c = 0.

III. Suppose c = while a and b are not zero. In this

case the first root in A becomes zero, the second root becomes
_b
a
The quadratic equation becomes

ax^ -\-bx = or x (ax -f 5) = ;

one root is 0, the other, obtained by solving the equation

axi-b = 0, is (§ 140) ; these are the values just found.

IV. Suppose b — and c = while a is not zero. In

this case both roots in A become zero.

The equation reduces to ax"^ ^ 0, of which both roots are

zero (§ 140).

V. Suppose b = while a and c are not zero. In this

case the two roots become +\/ and — \Ma Ma
The equation becomes the pure quadratic ax'^-}-c = 0.

Solving this, we obtain for x the values just found.

157.* Collecting results, we have the following :

I. a very small compared with b and c ; one root very
large.

II. a and b both very small compared with c ; both roots

very large.

III. c = 0, a and b not zero ; one root zero.

IV. b = 0, c = 0, a not zero ; both roots zero.

V. b = 0, a and c not zero ; a pure quadratic ; roots

numerically equal but opposite in sign.



PROPERTIES OF QUADRATIC EQUATIONS. 139

158.* Variable Coefficients. When the coefficients of an

equation involve an undetermined number, the character

of the roots may depend on the value given to the unknown
number.

For what values of m will the equation

2ma;' + (5m -j- 2)^ + (4m 4- 1) =
have its roots real and equal, real and unequal, imaginary?

We find 62_4^c = (5m + 2)2-8m(4m + l)

= 4 + 12m-7m2
= (2-m)(2 + 7m).

Boots equal. In this case 6^ — 4 ac is to be zero.

We must have either

2-m = 0, or 2 + 7m = 0.

2
.•. m = 2, or m =

7

Roots real and unequal. In this case S'^ — 4 ac is to be positive.

The factors 2 — m, 2 + 7w, are to be both positive or both negative.

2
If m lies between 2 and — -, both factors are positive ; both fac-

tors cannot be negative.

Roots imaginary. In this case S'^ — 4 ac is to be negative.

Of the two factors 2 — m, 2 + 7m, one is to be positive and the

other negative.

If m is algebraically greater than 2, 2 — m is negative and 2 + 7m
2

positive ; if m is algebraically less than — , 2 + 7m is negative and

2 — m positive.

159.* By a method similar to that of the last section, we
can often obtain the maximum or minimum value of a quad-

ratic expression for real values of x.

(1) Find the maximum or minimum value of 1 -J- ^ —^
for real values of x.

Let 1 + a; — x^ = m
;

then x^ — x=\ — m.
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Solving, ^^ lW5-4m,

Since X is real, we must have

5>'im or 5 = 4 m.

.'. 4m is not greater than 5,

5m is not greater than —

5 1
The maximum value oi \ -\- x — x^ is -

; for this value a; = —
4 2

(2) Find the maximum or minimum value oi x^-\-2>x-\-^

for real values of x.

Let a;2 ^ 3 a; + 4 = m
;

then a;'^ + 3 a; = ?/i — 4.

o 1 • - 3 ± V4m-7
Solving, X =

A

Since x is real, we must have

4m > 7 or 4m = 7.

.-. 4w is not less than 7,

7m is not less than —
4

7 3
The minimum value of a;^ + 3 a; + 4 is - ; for this value a; =

4 2

Note. Instead of solving for x, we might have used the condition

for real roots, viz., 6^ — 4ac greater than or equal to zero.

160.* The existence of a maximum or minimum value

may also be shown as follows

:

Take the first expression of the last article,

1 +x — x^.

This is
l~i\~^'^^^\

is positive for all real values of x ;
its least value is zero,

c

and in this case the given expression has its greatest value, -•

Similarly for any other expression.
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Exercise 29.*

For what values of m are the two roots of each of the

following equations (1) equal, (2) real and unequal, (3) im-

aginary ?

1. (3m+l)a;'^ + 2(m + l)a;-f ^ = 0.

2. (m — 2)a;' + (m-5)rp + 2m — 5 = 0.

3. 2ma;^ + a;^ — 6ma; — 6a;+ 6m + 1 = 0.

4. m2;'^ + 2:c'^ + 2m — 3ma; + 9:r-10 = 0.

5. 6ma;^4-8m:i; + 2m = 2a; — a;^ — 1.

Find the maximum or minimum value of each of the

following expressions, and determine which :

6. a;*'' -6a: +13.

7. 4a;2 — 12.T + 16.

8. Z-\-Vlx-^x\

9. a;' + 8a; + 20.

10. 4a;^-12a; + 25.

11. 25a;^-40a;-16.

12.
0^

13.
{x-\-l2){x-^)

x'

14.
4:X

1 f>
x'-x-l
x^-x+1

1 R x' + 2x-S
x'-2x-{-S

17.
1 1

2 + a; 2-x

18.
x' + Sxi-^

x' + l

1Q
(^+iy

x'-x-i-l

on 2x'-2x + 6

(x + 2y x'-2x + B

21. Divide a line 2 a inches long into two parts such

that the rectangle of these parts shall be the greatest pos-

sible.
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22. Divide a line 20 inches long into two parts such that

the hypotenuse of the right triangle of which the two parts

are the legs shall be the least possible.

23. Divide 2a into two parts such that the sum of their

square roots shall be a maximum.

24. Find the greatest rectangle that can be inscribed in

a given triangle.

25. Find the greatest rectangle that can be inscribed in

a given circle.

26. Find the rectangle of greatest perimeter that can

be inscribed in a given circle.



CHAPTER XIII.

SURDS AND IMAGINARIES.

161. Quadratic Surds. The 'product or quotient of two dis-

similar quadratic surds will be a quadratic surd.

For every quadratic surd, when simplified, will have

under the radical sign one or more factors raised only to

the first power ; and two surds which are dissimilar can-

not have all these factors alike.

162. The sum or difference of two dissim.ilar quadratic

surds cannot he a rational number, nor can it be expressed

as a single surd.

For if Va ± V6 could equal a rational number c, we

should have, by squaring, and transposing,

rfc 2 -yfab — & — a — b.

Now, as the right side of this equation is rational, the

left side would be rational ; but, by § 161, Va6 cannot be

rational. Therefore V« =b V^ cannot be rational.

In like manner, it may be shown that Va =b Vo cannot

be expressed as a single surd V^.

163. A quadratic surd cannot equal the sum of a rational

number and a surd.

For, if Va could equal c + V^, we should have, squar-

ing, and transposing,

2c^b^a-b-c\
That is, a surd equal to a rational number, which is

impossible.
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164. If a-\- V^ — x-{- Vy, then a will equal x, and b

will equal y.

For, transposing, -\fb ~ Vy = a; — a ; and if h were

not equal to y, the difference of two unequal surds would

be rational, which by § 162 is impossible.

.•. h = y and a^=x.

In like manner, if a— V^ = a:— Vy, a will equal x, and

h will equal y.

Expressions of the form «+ V^, where V^ is a surd, are

called binomial surds.

165. Square Eoot of a Binomial Surd.

Let Va + V^ = Vic + Vy.

Squaring, a + V6 = a; + 2Vxy + y.

.'. X + y = a, and 2\/a;2/ = Vb. (§ 164)

From these two equations the values of x and y may be found.

This method may be shortened by observing that, since \/b = 2Vxy,

we have

a — Vb = x — 2Vxy + y.

By taking the root, v a — Vb = Vx — Vy.

.-. (Va + \/6) (Va - V6) = (Vx + Vy) (V^ - Vy).

.-. Va^ — b = x — y.

And, as a = x + y,

the values of x and y may be found by addition and subtraction.

(1) Extract the square root of 7 -f 4VS.

Let V^ + Vy= V7 + 4\/3.

Then Vx - Vy = V7-4\/3.

Multiplying, x — y= V49 — 48,

.-.x-y-^l.

But < x + y = 7,

.'. X = 4, and y = 3.
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.-. Vx + Vy = 2+ Vs.

.-. V? + 4V3 = 2 + Vs.

A root may often be obtained by inspection. For this purpose,

write the given expression in the form a + 2 V6, and determine what

two numbers have their sum equal to a, and their product equal to h.

(2) Find by inspection the square root of 18 + 2VtY.

It is required to find two numbers whose sum is 18 and whose

product is 77 ; these are evidently 11 and 7.

Then 18 + 2V77 = 11 + 7 + 2yTTx^,
= (Vll + V7)2.

That is, VTl -f- V7 = square root of 18 + 2V77.

(3) Find by inspection the square root of 75 — 12V21.

It is necessary that the coefficient of the surd be 2 ; therefore,

75 — 12V2I must be put in the form

75-2V756.

The two numbers whose sum is 75 and whose product is 756 are

6S and 12.

Then 75-2V756 = 6S + 12 - 2y6S x 12,

= (V63- Vl2)2.

That is, V63 - Vl2 = square root of 75 - 12V2I

;

or, 3V7- 2V3 = square root of 75-12 V2I.

Exercise 30.

Extract the square roots of

:

1. 14 + 6V5. 6. 20-8V6. 11. 14-4V6.

2. 17 + 4V15. 7. 9-6V2. 12. 38-12V10.

3. IO + 2V2I. 8. 94-42V5. 13. 103-12VlT.

4. I6 + 2V55. 9. 13-2V30. 14. 57-I2VI5.

5. 9-2V14. 10. II-6V2. 15. 3i-VT0.

16. 2a + 2V^^^^. 18. 87-12V42.

17. a'-25V^^^=^'. 19. {a-\-hf-^{a-h)^ab.
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IMAGINARY EXPRESSIONS.

166. An imaginary expression is any expression which in-

volves the indicated even root of a negative number.

It will be shown hereafter that any indicated even root

of a negative number may be made to assume a form which

involves only indicated square roots of negative numbers.

In considering imaginary expressions, we accordingly need

consider only expressions which involve the indicated square

roots of negative numbers.

Imaginary expressions are also called imaginary numbers

and complex numbers.

167. Imaginary Square Eoots. If a and h are both posi-

tive, we have (§ 118)

I. Vab=--^-K/b. 11. (V^y = a.

If one of the two numbers a and h is positive and the

other negative, law 1. is assumed still to apply ; we have

accordingly

:

V^ = V5(=l) = V5 V=^

;

V— a = Va(-- 1) = VaV— 1

;

and so on.

It appears, then, that every imaginary square root can

be made to assume the form aV— 1, where a is a real

number.

168. If a and h are both negative, both laws cannot apply,

for they give different results :

I. gives
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II. gives .

(+ V=^) (+V^ = (+ V=^)^ - - a.

We therefore assume that II. holds true ; hence I. does

not hold true. This assumption gives us :

v^ X v=n: --= (v=i)' = - 1

;

V^^ X V^ = VaV^ X -^/hV^

= V^(-l)

The law V^ X V^ = (V^)^ = - 1 is very im-

portant.

Observe that the law Va V^ = Va6 holds true unless

both a and h are negative.

169. It will be useful to form the successive powers of

(V-iy=(V^)'V^ =(--l)V-^l = -V:^;
(V^)' = (V-iy (V^y = (- 1) (- 1) = + 1

;

and so on. It appears that the successive powers of V— 1

form the repeating series -\- V— 1, — 1, — V— 1, + 1, and

so on.

170. An imaginary expression will generally consist of

two parts : a real part and an imaginary part. Thus,

the roots of the quadratic equation a;'* — 6a:+13 = are

3 + V=l, 3--v^l; that is, 3 + 2V=n[, 3-2V=l;
each of these imaginary expressions consists of a real part

and an imaginary part.
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171. Every imaginary expression may be made to assume

the form a + 5V~ 1, where a and h are real numbers, and

may be integers, fractions, or surds.

If 5 = 0, the expression consists of only the real part a,

and is therefore real.

If a = 0, the expression consists of only the imaginary

part 5V— 1, and is a pure imaginary.

172. The form a+ ^V— 1 is the typical form of imaginary

expressions.

Eeduce to the typical form 6 + V— 8.

This may be written 6 + V8 V^, or 6 + 2V2V^ ; here a = 6,

and 6 = 2V2.

173. The sum of two imaginary expressions is generally

an imaginary expression.

Add a+^V=l,
and c + c?V— 1.

The sum is (« + c) + (^ + d)V^.
This is an imaginary expression unless b-\-d= 0; in

which case the expression is real.

174. The product of two imaginary expressions is generally

an imaginary expression.

Multiply a-\-h V— 1,

by c + d V^ .

ac -\- he V— 1

-f ad^— 1 — hd

The product is {ac — hd) + (he + ad)^— 1,

an imaginary expression unless hc-^-ad^^ 0.
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f

175. The quotient of two imaginary expressions is gener-

ally an imaginary expression.

Divide a + ^V— 1 by <? + ofV— 1.

m. X- J.
• « + ^V— 1

The quotient is —
c + d-y/-\

Multiply both numerator and denominator by c— c?V—1.

_ {ac + 5c?) + {he — ad)^^^l

ac-\-hd . he — ad /
—t

This is an imaginary expression in the typical form ; if

hp — ad=^ 0, the quotient is real.

Then

176. Two expressions of the form a+ ^V— 1, a --hV
are called conjugate imagmaries.

Add a + 5V-l and a - hV- 1.

The sum is 2a.

Multiply a-\-h V~ 1,

by a -h V- 1.

a' + ab^-l
- ahV^l + b'

The product is, a' + b\

From the above it appears that the sum and product of

two conjugate imaginaries are both real.

The roots of a quadratic equation, if imaginary, are con-

jugate imaginaries (§ 141).
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177. An imaginary expression cannot be equal to a real

number.

For, if possible, let a + hy/— 1 = c.

Then hyr^l = c-a,

and — 52 = (g _ (j)ji^

Since h"^ and (c — of are both positive, we have a negative num-

ber equal to a positive number, which is impossible.

178. If two imaginary expressions are equal, the real parts

are equal and the imaginary parts are equal.

For, let a + 6V£T = c + rfV^.
Then (6 - c?)V- 1 = c - a,

squaring, —{h — df = (c - of,

which is impossible unless h = d and a = c.

179. If X and y are real and x -\- 3/V— 1 = 0, then a; =
and y = 0.

For, 2/V-l = — jc,

which is true only when a; = and y = 0.

180.* If the roots of the quadratic equation ax^-\-hx-\-c=
are imaginary, the expression ax"^ -\-bx-\-c is positive for

all real values of x, if a is positive ; and negative for all

real values of x, if a is negative.

Let the two roots be 7 + SV— 1 and y — 8V— 1, where

y and S are real.

Then, by § 153, the expression ax"^ -\-bx -\- c is identical with

a{x-y- 8V=l) G'^ - y + 8V^)

;

this product reduces to a[{x — yj -\- 8^].

For all real values of x, {x — y)^ + 8^ is positive. Hence

ax^ -\-bx-\- c is positive if a is positive, and negative if a is

negative.
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Examples

:

|

(1) The roots of the equation a;^ — 6a; + 13 = are 3 + 2\/^ and
3 - 2V- 1. The expression a^ - 6 a; + 13 may be written (a; - 3)^ + 4,

which is positive for all real values of x.

(2) The roots of the equation 12 a; - 13 - 4 ar* = are ^ + ^^^-^,

~ ~— The expression 12 a; — 13 — 4 a;^ may be written

-(4a;2-12a; + 9 + 4), or _ [(2a;- 3)^ + 4],

which is negative for all real values of x.

The above expressions can never become zero ; they

accordingly have either a minimum value below which

they cannot fall, or a maximum, value above which they

cannot rise (§ 159).

Exercise 31.

1. Multiply :

3V- 8 by V- 2 ; 2V- 3 by 4V- 27 ; 3V^ by
"^ V27

2. Divide :

V7 by V^ ; V^ by V^ ; 3V^ by V2V^.
3. Reduce to the typical form :

4 + V^^^; 5 + 2V^; (3 +

Multiply :

4.4+ V^^ by 4 - V^^.

5. V3 - 2V=^ by V3 + 2V=^.

6.7 + -sf^^ by 4 + V^.
7. 5 + 2V-=^ by 3 - 5V^.
8. 2V3 - 6V^ by 4V3 - V=^.

9. Va + &V— c by V^ + aV— b.
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Dividej:

10. 26 by 3 + V- 4 ; 86 by 6 -V-7.

11. 3 + V-1 by 4 + 3V-1.

12. - 9 + 19V- 2 by 3 + V- 2.

Extract the square root of

:

13. 1 + 4V- 3. 15. -17-f-4V= 15.

14. 10 - 8V~ 6. 16. -38-15V=-28.

17.* Show that 4:r'^ — 12a; + 25 is positive for all real

values of x, and find its minimum value.

18.* Show that 6 a; — 4 — 9 a;^ is negative for all real

values of x, and find its maximum value.

19.* If w be one of the two imaginary roots of the equa-

tion 0;^= 1, show that the other is w^.

20.* Show that w**+ (w^)" ~ — 1, if w is any integer which

is not a multiple of 3.

21.* Show that

^^ + y^ + 2^ — 3 xyz

= (a; + y + 2) (a; + (oy + w'^) {x + co'y + wz).

22. Find all the fourth roots of — 1.

23.* Find all the sixth roots of + 1.

24.* Find all the eighth roots of + 1.

25.* Reduce to the typical form

(2-3V=~l)( 3 + 4V^)
(6 + 4V=^)(15-8V=l)'
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INEQUALITIES.

181. We say that a is algebraically greater than b when
a — h\% positive ; that a is algebraically less than b when
a — 5 is negative.

182. If we have two different expressions which involve

the same symbol, the values of the expressions depend on

the value given to the symbol involved (§ 17). For some

values of the symbol, the first expression may be the

greater ; for some values of the symbol, the second may
be the greater.

183. The two expressions, however, may be so related

that, whatever value be given to the symbol, one of the

expressions cannot be greater than the other.

The symbols -jC and ^ are used for "not less than" and "not
greater than " respectively.

For finding whether this relation holds between two

expressions, the following is a fundamental proposition :

If a and b are unequal, a^ + ^^ > 2a5.

For (a — hf must be positive, whatever the values of a and h.

That is, a2-2a6 + 62>0; .-. a^ + J^ > 2a6.

184. It can be easily shown that the principles applied to

the solution of equations may be applied to inequalities,

except that if each side of an equality have its sign changed,

the inequality will be reversed.

Thus, if a > &, then - a will be < -h.
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(1) If a and h are positive, show that a^-\-b^> a^b -\- alP",

We shall have a^ + 6^ > a% + aS^,

if (dividing each side by a + h),

a?~ah^h'^> ah,

if a2 + 62>2a6.

But this is true (§ 183). .-. a? + b^> a^h + ab\

(2) Show that o? ^ h" -\- c^ > ah -\- ac -\- he.

Now, a2 + 62>2a6,
a2 + c2>2ac, (^83)

Adding, 2a2 + 26^ + 2c2 > 2ah + 2ac + 26c,

.-. a^ _(- 52 _,. g2 -v^ ^5 ^ (jg _,. 5g_

Exercise 32.

Show that, the letters being unequal and positive :

1. o?-\-W>2h{a^h). 2. oJ'b-^ah^>2a^h\

3. {p?-{-h'){a' + h')>{a'-^hy.

4. a^h + aV + ah'' + 5'c + ac' + ^c' > 6 a5c.

5. The sum of any fraction and its reciprocal > 2.

6. If a;^= a^+ 5^ and y^= c^-\-d^, xyi^ac-\-hd, or ac?+^c.

7. a5+ ac+6c<(a4-&— c)'H-(a + c-5)'+(5 + c— ay.

8. Which is the greater, (a' + 5=^) {c' + ^') or (ac + hdj ?

9. Which is the greater, a^'—h^ or 4a^(a— ^) when a'>hl

10. Which is the greater, J^ + J- or Va -f V^ ?

11. Which is the ejreater, or ?^
2 a + ^

12. Which is the greater, 7-2 + ^ °^ 7 + ~



CHAPTEB XV.

RATIO, PROPORTION, AND VARIATION.

185. Ratio of Numbers. The relative magnitude of two

numbers is called their ratio, when expressed by the

indicated quotient of the first by the second. Thus the

ratio of a to 5 is -» or a ^ 5, or a : h ; the quotient is

generally written in the last form when it is intended to

express a ratio.

The first term of a ratio is called the antecedent, and the

second term the consequent. When the antecedent is equal

to the consequent, the ratio is called a ratio of equality

;

when the antecedent is greater than the consequent, the

ratio is called a ratio of greater inequality ; when less, a

ratio of less inequality.

When the antecedent and consequent are interchanged,

the resulting ratio is called the inverse of the given ratio.

Thus, the ratio 3 : 6 is the inverse of the ratio 6 : 3.

186. A ratio will not be altered if both its terms be mul-

tiplied by the same number.

For the ratio a : 6 is represented by ~> the ratio ma : mb is repre-

sented by -—
•

; and since t?^ = -. we have ma:mb = aib.
mo mb b

A ratio will be altered if dififerent multipliers of its terms

be taken ; and will be increased or diminished according

as the multiplier of the antecedent is greater than or less

than that of the consequent.
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If m'>n,

ma > na,

If m<n,

ma < na,

and
ma na

.

nh nh
'

and
m.a na

,

nh nh
'

but
na _a^
nb h

but
na _a
nb b

•••
ma a

nh ^ h'

.-.
ma. a

nh h

or ma :nh>a:h. or ma :nh<,a:b.

187. Katios are coinpounded by taking the product of the

fractions that represent them.

Thus, the ratio compounded of a : 6 and c : c? is ac : hd.

The ratio compounded oi a-.h and a : & is the duplicate ratio a?:h^\

the ratio compounded of a : 6, a : 6, and a : 6 is the triplicate ratio

a' :
6^

; and so on.

188. Katios are compared by comparing the fFactions that

represent them.

Thus, a : & > or < c : c?

according as ^ > or < -

.

d

ad ^ ^ be
843 — > or •< —

.

hd'^ bd

as acZ > or < 6c.

189. Proportion of Numbers. Four numbers, a, b, c, d, are

said to be in proportion when the ratio a : 5 is equal to the

ratio c : d.

We then write a'.b=^c\d, and read this either, the ratio

of a to 5 equals the ratio of c to d, or a is to 5 as c is to d.

A proportion is also written a\h : : c \ d.

The four numbers a, b, c, d are called proportionals ; a

and d are called the extremes, b and c the means.
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190. When four numbers are in proportion, the product

of the extremes is equal to the product of the means.

For, if a:b-= c: d,

then
a

b"

c= —

.

d

Multiplying by hd, ad-= bc.

The equation ad= be gives

he

a
h =

ad

c

so that an extreme may be found by dividing the product

of the means by the other extreme ; and a mean may be

found by dividing the product of the extremes by the other

mean. If three terms of a proportion are given, it appears

from the above that the fourth term can have one, and but

one, value.

191. If the product of two numbers is equal to the prod-

uct of two others, either two may be made the extremes

of a proportion and the other two the means.

For, if ad = be,

then, dividing by bd, ~ = ^,
bd bd

.'. a:b==c:d.

192. Transformations of a Proportion. If four numbers, a,

b, e, d, be in proportion, they will be in proportion by :

I. Inversion : b will be to a as c? is to c.

For, if - a:b = c:d,

then
a c

b^d
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and
h d

a c

b : a = d: c.

II. Composition : a-\-b will be to 6 as c + c? is to d.

For, if a:b -= c : d,

then

and

a c

b~ d

f +
-5-^-

a + b c + d

b d

a-\-b:b^c-\- d: d.

III. Division \ a — h will be to ^ as c — c? is to d.

For, if

then

and

a:b = c: d.

a e

b d

b d

a-b c-d
b d

•.a — b:b = c — d: d.

IV. Composition and Division \ a-\-h will be to a — h

as c + c? is to c — c?.

For, from II.,
a + b ^c_±d^

b d

and from III.,
a^^c-d^

b d

Dividing,
q±b c_±d

a—bc-d
.'. a + b ; a — b = c + d : c — d.
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V. Alternation : a will be to c £

For, if a:b = c:d,

then
a c

b~d

Multiplying by -,
ab _ be

be cd

or
a_b
c d

.-. a:c=b:d.

193. In a series of equal ratios, the sum of the antecedents

is to the sum of the consequents as any antecedent is to its

consequent.

r may be put for each of these ratios.

Then - = r, j=r, ^=r, f = r.
a J h

.•. a = br, c = dr, e =fr, g = hr.

.-. a + c + e + g = {b + d +f + h)r.

, a+c+e+g_ a
" b+d+f + h^'^^b
.'. a + c + e + g : b + d +f + h = a : b.

In like manner it may be shown that

ma + nc +pe + qg-.mb + nd +pf + qh'^ a:b.

194. If a, b, c, d be in continued proportion, that is, if

a\h = b\c= c:d, then will a:c= o?:b'^ and a:d—a^:b^.

For,

Hence,

Also

a b c

b c d

Ov. b a. a-X - y
b c

a _
c

b b

.'. a : C =-a': &».

a h r. a a. ax-x = T X T X
b c d b b b
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195. If a, h, c are proportionals, so that a : b — b : c, then

b is called a mean proportional between a and c, and c is

called a third proportional to a and b.

If a ::b == b : c, then b = Vac.

For, if a : & "= 6 : c,

then
a 6

b~ c

and &2 = ac.

/. b = Vac.

196. The products of the corresponding terms of two or

more proportions are in proportion.

For, if a:b = e:d,

e:f=g:h,
k : I = m : n,

.1 a c e q h m
then y ^_

a J h I n

Taking the product of the left members, and also of the right

members of these equations,

aek _ cgm

bfl dhn

.'. aek : bfl = cgm : dhn.

197. Like powers, or like roots, of the terms of a propor-

tion are in proportion.

For, if a:b = c:d,

,v a c
then T = T

o d

Raising both sides to the nth power,



RATIO AND PROPORTION. 161

Extracting the nih root,

i_ £

1 i i ^

198. If two numbers be increased or diminished by like

parts of each, the results will be in the same ratio as the

numbers themselves.

I ^ m\ m
1± - a a+—a

a \ n n
For

(-^) h±-b
n

.'. a : = a ± — a : ± — 0.
n n

199. The laws that have been established for ratios should

be remembered when ratios are expressed in fractional form.

(1) Solve :
t±^±l ^ ^^-^ + 2

By composition and division,

2a?2 2a;2

2{x + l) -2(a;-2)

and this equation is satisfied, when a; = ;

or, dividing by — , when =
;

2 X + 1 2 — a?

that is, when a? =»
J.

(2) If a : h = c : d, show that

a^ -\- ab :b^ — ab = c^-^-cdid^ — cd.

If

then
a±h^c±d^
a—b c—d



'

and
a c

~b -d
. a ^^a + b c ,^c + d.

A A - »

— 6 a — b — d c — d

that is,
a^ + ab c2 + cd

b^ -ab d^- cd

or a? + ab -.b"^ - ab = c^ + cd : d"^ - cd.

(3) li a \ h ^= c \ d, and a is the greatest term, show that

a + c? is greater than b -\- c.

Since ^ = ^, and a':> c,

b d

.'. b>d.

Also,
a-b^c_-d^

b d

and b "> d.

.'.a — b^c — d.

Adding b + d=b + d,

we have a ^d^b + c.

Exercise 33.

1. Write down the ratio compounded of 3 : 5 and 8 : 7.

Which of these ratios is increased, and which is diminished

by the composition ?

2. Compound the duplicate ratio of 4 : 15 with the trip-

licate of 5 : 2.

3. Show that a duplicate ratio is greater or less than its

simple ratio according as it is a ratio of greater inequality

or a ratio of less inequality.

4. Arrange in order of magnitude the ratios 3 : 4,

23 : 25, 10 : 11.

5. If a > 5, which is the greater ratio,

a-\-b:a-boxa''-\-b'':a^-b'"?
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Find the ratios compounded of:

6. 3 : 5, 10 : 21, 14 : 15. 7. 7:9, 102 : 105, 15 : 17.

8. a^ — x"^ : a^ -{• S ax -}- 2x^ and a -{- x : a ~ x.

9. a;'-4:2a;'^ — 5a; + 3anda;-l:a;-2.

10. Prove that a ratio of greater inequality is diminished,

and a ratio of less inequality increased, by adding the

same number to both its terms.

11. Prove that a ratio of greater inequality is increased,

and a ratio of less inequality diminished, by subtracting

the same number from both its terms.

12. Show that the ratio a:b is the duplicate of the

ratio a -\~ c : b -\- c, if e^ = ab.

13. Two numbers are in the ratio 2 : 5, and if 6 be

added to each, they are in the ratio 4 : 7. Find the num-

bers.

14. What must be added to each of the terms of the

ratio m : n, that it may become equal to the ratio p : q'?

15. If X and y be such that, when they are added to the

antecedent and consequent respectively of the ratio a : b,

its value is unaltered, show that x\y=^a\b.

Find X from the proportions

:

16. 27: 90 = 45: a:.

17. \\\-A\ = Z\'.x.
54' 7c 166 •

Find a third proportional to :

xagandA. 20. «'-*\nd«-*
c c
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Find a mean proportional between :

21. 3 and 16i. 22. i^^^'and ^^1+^.

If a : b = c : d, prove that

:

23. 2a + b:h = 2c + d:d. 24. Sa — b:a= 3c—d:c.

25. 4a + 35 :4a. — 35 = 4c + 3c^:4c-3d

26. 2a' + Sb':2a'-Sb' =2c' + 3d': 2c' - Sd\

If a : b = b : c, prove that

:

27. a'+ ab-.b' + bc-.'.a-.c. 28. a: c : : (a+bf : (b-\-c)\

29. If a : 5 = 5 : c, and a is the greatest of the three

numbers, show that a-\~ c'>2b.

30. If -—^ = ^ =
, and x, y, z be unequal, show

I m n

that I -{- m -{- n — 0.

Find X from the proportions

:

31. x + l:x—l = x-{-2:x-2.

32. a; + a : 2a; — Z> = 3a; + ^ : 4^ — a.

33. x' — 4:x + 2 : x^ — 2x — 1 = x^ — 4:x : x'' — 2x - 2.

34. 3 + 0;: 4 + 07 = 9 + 0;: 13 + a;.

35. a-{-x:b-}-x = c-\-x:d-{-x.

36. If a : 5 = c : c?, show that

a-f- c-f- a

37. When a, b, c, d are proportional and all unequal,

show that no number x can be found such that a-\-x,b-{-x,

c-\-x, d-\- x shall be proportionals.
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200. Eatio of Quantities. To measure a quantity of any-

kind is to find out how many times it contains another

known quantity of the same kind, called the unit of measure.

The number which expresses the number of times that

a quantity contains the unit of measure is called the nu-

merical measure of that quantity.

Thus, if a line contains the linear unit of measure, one yard, 5

times, the measure of the length of the line is 5 yards, and the

numerical measure of the line is 5.

201. Commensurable Quantities. If two quantities of the

same kind are so related that a unit of measure can be

found which is contained in each of the quantities an in-

tegral number of times, this unit of measure is a common
measure of the two quantities, and the two quantities are

said to be commensurable.

If two commensurable quantities be measured by the

same unit, their ratio is simply the ratio of their numerical

measures.

Thus, ^ of a foot is a common measure o#2^ feet and 3f feet, being

contained in the first 15 times and in the second 22 times.

The ratio of 2J feet to 3f feet is therefore the ratio of 15 : 22.

Evidently two quantities different in kind can have no

ratio.

202. Incommensurable Quantities. We cannot expect, how-

ever, that two quantities of the same kind chosen at random

will have a common measure.

Thus, the side and diagonal of a square have no common measure

;

for, if the side be a inches long, the diagonal will be aV2 inches

long, and no measure can be found which will be contained in each

an integral number of times.

Again, the diameter and circumference of a circle have no common

measure, and are therefore incommensurable.
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In this case, as there is no common measure of the two

quantities, we cannot find their ratio by the method of

§ 201. We therefore proceed as follows :

Suppose a and b to be two incommensurable quantities

of the same kind. Divide b into any integral number, n,

equal parts, and suppose one of these parts is contained in

a more than m times and less than w + 1 times. Then

y lies between — and
^"^

, and cannot differ from eithei
n n

of these by so much as -.

But by increasing n indefinitely, - can be made to de-
n

crease indefinitely, and to become less than any assigned

value, however small, though it cannot be made absolutely

equal to zero.

Hence, the ratio of two incommensurable quantities can-

not be expressed exactly by numbers, but it may be expressed

approximately to any desired degree of accuracy.

Thus, if h represent the*side of a sq^^are, and a the diagonal,

Now y/2 = 1.41421356 , a value greater than 1.414213, but less

than 1.414214.

If, then, a millionth part of h be taken as the unit, the value of the

ratio ? lies between 1M4213 ^^^ 1414214^ ^^^ therefore diflfers from
b 1000000 1000000

either of these fractions by less than
1000000

By carrying the decimal farther, a fraction may be found that

will differ from the true value of the ratio by less than a billionth, a

trillionth, or by less than any other assigned value whatever.

Hence the ratio -' while it cannot be expressed by numbers ex-

actly , may be expressed by numbers as accurately as we please.
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203. The ratio of two incommensurable quantities is an

incommensurable ratio ; and is a fixed value toward which

its successive approximate values constantly tend as the

error is made less and less.

204. Equal Incommensurable Eatios. As the treatment of

Proportion in Algebra depends upon the assumption that

it is possible to find fractions which will represent ratios,

and as it appears that no fraction can be found to represent

the exact value of an incommensurable ratio, it is necessary

to show that two incommensurable ratios are equal if their

approximate values remain equal when the unit of measure

is indefinitely diminished.

Let a : b and a' :
5' be two incommensurable ratios of which

the true values lie between the approximate values — and

4-1
'^

^^
, when the unit of measure is indefinitely diminished.

n 1
Then they cannot differ by so much as -•

Let d denote the difi'erence (if any) between a : b and a':b';

then d< —
n

Suppose the fixed value d is not zero ; now n can be

made as larse as we please, and - as small as we please

;

1 V' .

hence - can be made less than dii dia not zero.
n

Therefore d= 0, and there is no difference between the

ratios a : b and a' : b'. Therefore a:b = a':b'.

205. Proportion of Quantities. In order for four quanti-

ties, A, £, C, D, to be in proportion, A and B must be of

the same End, and C and B of the same kind (but C and

I) need not necessarily be of the same kind as A and B),
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and in addition the ratio of J. to ^ must be tlie same as

the ratio of C to D.

If this be true, we have the proportion

When four quantities are in proportion, their numerical

measures are four abstract numbers in proportion.

206. The laws of § 192, which apply to proportion of

abstract numbers, apply to the proportion of concrete

quantities, except that alternation will apply only when

the four quantities in proportion are all of the same kind.

Exercise 34.

1. A rectangular field contains 5270 acres, and its length

is to its breadth in the ratio of 31 : 17. Find its dimensions.

2. If five gold coins and four silver ones be worth as

much as three gold coins and twelve silver ones, find the

ratio of the value of a gold coin to that of a silver one.

3. The lengths of two rectangular fields are in the ratio

of 2:3, and the breadths in the ratio of 5:6. Find the

ratio of their areas.

4. Two workmen are paid in proportion to the work

they do. A can do in 20 days the work that it takes B
24 days to do. Compare their wages.

5. In a mile race between a bicycle and a tricycle their

rates were as 5 : 4. The tricycle had half a minute start,

but was beaten by 176 yards. Find the rate of each.

6. A railway passenger observes that a train passes him,

moving in the opposite direction, in 2 seconds; but moving

in the same direction with him, it passes him in 30 seconds.

Compare the rates of the two trains.
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7. A vessel is half full of a mixture of wine and water.

If filled up with wine, the ratio of the quantity of wine to

that of water is ten times what it would be if the vessel

were filled up with water. Find the ratio of the original

quantity of wine to that of water.

8. A quantity of milk is increased by watering in the

ratio 4:5, and then 3 gallons are sold ; the remainder is

increased in the ratio 6 : 7 by mixing it with 3 quarts of

water. How many gallons of milk were there at first ?

9. Each of two vessels, A and B, contains a mixture of

wine and water ; A in the ratio of 7:3, and B in the ratio

of 3:1. How many gallons from B must be put with 5

gallons from A to give a mixture of wine and water in the

ratio of 11 : 4 ?

10. The time which an express train takes to travel 180

miles is to that taken by an ordinary train as 9 : 14. The

ordinary train loses as much time from stopping as it would

take to travel 30 miles ; the express train loses only half as

much time as the other by stopping, and travels 15 miles

an hour faster. What are their respective rates ?

11. A and B trade with different sums. A gains $200

and B loses $50, and now A's stock is to B's as 2:i.

But if A had gained $100 and B lost $85, their stocks

would have been as 15 : 31. Find the original stock of each.

12. A line is divided into two parts in the ratio 2 : 3,

and into two parts in the ratio 3:4; the distance between

the points of section is 2. Find the length of the line.

13. A railway consists of two sections ; the annual ex-

penditure on one is increased this year 5%, and on the

other 4%, producing on the whole an increase of 4^%-
Compare the amounts expended on the two sections last

year, and also the amounts expended this year.
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VARIATION.

207. A quantity which in any particular problem has a

fixed value is called a constant quantity, or simply a con-

stant; a quantity which may change its value is called a

variable quantity, or simply a variable.

Variable numbers, like unknown numbers, are generally

represented by x, y, z, etc. ; constant numbers, like known

numbers, by a, 5, <?, etc.

208. Two variables may be so related that when a value

of one is given, the corresponding value of the other can

be found. In this case one variable is said to be b, function

of the other.

Thus, if the rate at which a man walks is known, the distance he

walks can be found when the time is given ; the distance is in this

case d^ function of the time.

209. There is an unlimited number of ways in which

two variables may be related. We shall consider in this

chapter only a few of these ways.

210. When x and y are so related that their ratio is

constant, y is said to vary as X ; this is abbreviated thus

:

y ccx. The sign ex, called the sign of variation, is read

"varies as."

Thus, the area of a triangle with a given base varies as its altitude

;

for, if the altitude be changed in any ratio, the area will be changed

in the same ratio.

In this case, if we represent the constant ratio by m,

y: X = m, or ^^= m \ .'.y = nix.
X
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Again, if y\ x' and y", x" be two sets of corresponding

values of 3/ and x, then

3/' : x' =2/" : x",

or 2/' : y" = ^'
:
^".

211. When x and v are so related that the ratio of v to -

is constant, y is said to vary inversely as a; ; this is written

1

y^x
Thus, the time required to do a certain amount of work varies in-

versely as the number of workmen employed ; for, if the number of

workmen be doubled, halved, or changed in any ratio, the time re-

quired will be halved, doubled, or changed in the inverse ratio*

In this case, y\--—m\ :.y = — , and xy = m\ that is,

the product xy is constant.

As before, V^ •-,= 2/" '

T,'

^'y' = 2;"y",

or 2/':y'^

212. If the ratio oi y : xz is constant, then y is said to

varyjointly as x and z.

In this case y -- mxz,

and y':y"==x'z':x"z".

213. If the ratio y : - is constant, then y varies directly
z

as X and inversely as z.

-r , . mx
In this case y ——

»

and y'-y"
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214. Theorems.

I. If 3/ X X, and x cc z, then 7/ cc z.

For y = mx and x = nz;

.'. y = mnz
;

.•. y varies as z.

II. If y X X, and z cc x, then (y ± z) x a;.

For y = mx and 2; = no;

;

r. y d^z — {m ±n)x\

.'. y ±z varies as x.

III. li y ccx when z is constant, and y ccz when a; is

constant, then y cc xz when x and 2; are both variable.

Let x\ y\ z\ and a;", y", 2" be two sets of corresponding

values of the variables.

Let X change from x^ to a;", z remaining constant, and let

the corresponding value of y be Y.

Then y^:Y=x^: x". (1)

Now let z change from 2' to 2"
, X remaining constant.

Then Y:y" = z': 2". .(2)

From (1) and (2),

y'Y y«Y= x<z' : x"z", §196

or y' y" =-x'z' : x"z",

or y' . x'J =-r : x"z".

.*. the ratio -^ is constaiat, and y varies as xz
XZ

In like manner it may be shown that if y vary as each

of any number of quantities x, z, u, etc., when the rest are

unchanged, then when they all change, y x xzu, etc.
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Thus, the area of a rectangle varies as the base when the altitude

is constant, and as the altitude when the base is constant, but as the

product of the base and altitude when both vary.

The volume of a rectangular solid varies as the length when the

width and thickness remain constant ; as the width when the length

and thickness remain constant ; as the thickness when the length

and width remain constant ; but as the product of length, breadth,

and thickness when all three vary,

215. Examples.

(1) If y varies inversely as x, and when y — ^ the cor-

responding value of X is 36, find the corresponding value

of X when y= 9.

Eere y -= —, or m = xy.

.'. m --= 2 X 36 = 72.

[f 9 and 72 be substituted for y and m respectively in

y-
_m
X

result is 9 == 1^, or 9a; = 72.
X

.*. x == 8. Ans.

(2) The weight of a sphere of given material varies as

its volume, and its volume varies as the cube of its diam-

eter. If a sphere 4 inches in diameter weigh 20 pounds,

find the weight of a sphere 5 inches in diameter.

Let W represent the weight,

V represent the volume,

D represent the diameter.

Then TFocFand Foci>3.

.-. TToc Z)3. I 214, 1

Put W = 'mL^;

then, since 20 and 4 are corresponding volumes of W and D,

20 = m X 64.

. -«,
20 5

:. when i> = 5, W^ ^-^ of 125 = 39xV.
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Exercise 35.

1. li y ccx^ and y = 4 when a;= 5, find y when x = 12.

2. If y X a;, and when ^ = J, y = i, find y when

3. If z vary jointly as x and y, and 3, 4, 5 be simulta-

neous values of x, y, z, find 2 when a; = y = 10.

4. If y X -, and when y = 10, a; = 2, find the value of
X

X when y = 4.

5. If 2; cc -, and when z = 6, :p = 4, and y = 3, find

y
the value of z when a; = 5 and y = 7.

6. If the square of x vary as the cube of y, and a; = 3,

when y = 4, find the equation between x and y.

7. If the square of x vary inversely as the cube of y,

and x — 2 when y = 3, find the equation between x and y.

8. If z vary as a; directly and y inversely, and if when

2; = 2, a; = 3, and y = 4, find the value of z when a; = 15

and y = ^.

9. If y oc rr + c where c is constant, and if y — 2 when

2: = 1, and if y = 5 when a; = 2, find y when a; = 3.

10. The velocity acquired by a stone falling from rest

varies as the time of falling ; and the distance fallen varies

as the square of the time. If it be found that in 3 seconds

a stone has fallen 145 feet, and acquired a velocity of 96|-

feet per second, find the velocity and distance fallen at the

end of 5 seconds.
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11. If a heavier weight draw up a lighter one by means
of a string passing over a fixed wheel, the space described

in a given time will vary directly as the difference between

the weights, and inversely as their sum. If 9 ounces draw

7 ounces through 8 feet in 2 seconds, how high will 12

ounces draw 9 ounces in the same time ?

12. The space will also vary as the square of the time.

Find the space in Example 11, if the time in the latter

case be 3 seconds.

13. Equal volumes of iron and copper are found to weigh

77 and 89 ounces respectively. Find the weight of lO-J-

feet of round copper rod when 9 inches of iron rod of the

same diameter weigh Sl^ ounces.

14. The square of the time of a planet's revolution

about the sun varies as the cube of its distance from the

sun. The distances of the Earth and Mercury from the

sun being 91 and 35 millions of miles, find in days the time

of Mercury's revolution.

15. A spherical iron shell 1 foot in diameter weighs -^^

of what it would weigh if solid. Find the thickness of

the metal, it being known that the volume of a sphere

varies as the cube of its diameter.

16. The volume of a sphere varies as the cube of its

diameter. Compare the volume of a sphere 6 inches in

diameter with the sum of the volumes of three spheres

whose diameters are 3, 4, 5 inches respectively. /

17. Two circular gold plates, each an inch thick, the

diameters of which are 6 inches and 8 inches respectively,

are melted and formed into a single circular plate 1 inch

thick. Find its diameter, having given that the area of

a circle varies as the square of its diameter.



CHAPTER XVI.

PROGRESSIONS.

216. A succession of numbers that proceed according to

some fixed law is called a series ; the successive numbers

are called the terms of the series.

A series that ends at some particular term is a finite

series; a series that continues without end is an infinite

series.

217. The number of different forms of series is unlimited

;

in this chapter we shall consider only Arithmetical Series,

Geometrical Series, and Harmonical Series.

ARITHMETICAL PROGRESSION.

218. A series is called an arithmetical series or an arith-

metical progression when each succeeding term is obtained

by adding to the preceding term a constant difference.

The general representative of such a series will be

a, a-{-d, a-\-2d, a-{-Sd......

in which a is the first term and d the common difference

;

the series will be increasing or decreasing according as d is

positive or negative.

219. The nth Term. Since each succeeding term of the

series is obtained by adding d to the preceding term, the

coefficient of d will always be one less than the number of

the term, so that the nth term is a-\-{n— 1) d.
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If the nth term be represented by I, we have

l-=a^{n-l)d. I.

220. Sum of the Series. If I denote the nth term, a the

first term, n the number of terms, d the common difference,

and s the sum of n terms, it is evident that

s^ a +(a+ c?)-j-(a+ 2c?) + + (^-cf)+ I, or

s= I J^ll-d)-^{l-2d)^ + (a+c?)+ a.

• 2s = (a+0+(a+0+(«+0 + -{-(a+l) +(a+0
— 71 (a + I).

.•.. = |(a + 0. II.

221. From the two equations,

l=a-\-(n-l)d, L

s = l(a + ll 11.

any two of the five numbers a, d, I, n, s may be found when

the other three are given.

(1) Find the sum of ten terms of the series, 2, 5, 8, 11,

Here a = 2, d=S, n = 10.

From I., 1 = 2 + 27 = 29.

Substituting in II., s =— (2 + 29) = 155. Ans.

(2) The first term of an arithmetical series is 3, the last

term 31, and the sum of the series 136. Find the series.

From I. and II., 31 = 3 + (n - 1) d, (1)

136 = ^(3 + 31). (2)

From (2), n = 8.

Substituting in (1), c? = 4.

The series is 3, 7, 11, 15, 19, 23, 27, 31.
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(3) How many terms of the series, 5, 9, 13, , must be

taken in order that their sum may be 275 ?

From I., ? = 5 + (n-l)4;
.\l = 4:n + l. (1)

From II., 275 = - (5 + I). (2)

Substituting in (2) the value of I found in (1),

275 = |(4n + 6),

or 2n2 + 3n=275.

We now have to solve this quadratic.

Complete the square,

16n2 + () + 9 = 2209.

Extract the root, 4n + 3 = ±47.

.-. n=ll, or -12^.
*

We use only the positive result.

(4) Find n when d, I, s are) given.

From I., a = l-{n- 1) d.

From II., a = 2s -In
n

2 s — In
Therefore, l-{n-l)

n
.'. In — dv? -\- dn=^2s — In,

.\dn'^-{2l-\-d)n = -2s.

This is a quadratic with n for the unknown number.

Complete the square,

4^2^2 -{) + (2l + dy = {2l + df - 8ds.

Extract the root,

2dn-{2l + d) = ± V{2l + df-8ds.

2l + d± V(2 l + df-Sds
.". n = ^^ ^ •

2d

Note. The table on the following page contains the results of

the general solution of all possible problems in arithmetical series,

in which three of the numbers a, I, d, n, s are given and two required.

The student is advised to work these out, both for the results obtained

and for the practice gained in solving literal equations in which the

unknown quantities are represented by letters other than x, y, z.
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No.

1

2

Given. Required Results.

a d n

ads
I

l = a + {n-l)d.

l = -^d±V[2ds + {a~^df]

3 a n s J
2s

1 = a.
n

4 d n 8
^_s ^{n-l)d

n 2

5 a d n s=^n[2a^{n-\)d\

G a d I
' 2 ' 2cZ

•

7 a n I s = {l^a)l

8

9

d n I s^ln[2l-{n-l)d\

dn I a = l-{n-l)d.

10 d n s a-..'
(^-1)^

11 d I s

a n 2

a = ^d± V{l + ^df-2ds.

12

13

n I s a = ^-^-l.
n

a n I aJ-.
n-1

14 a n s

da

d
2(s-an)

n (n - 1)

15 a I s d- ''--'
.

2s-l-a

16

17

18

19

20

n I s
2{nl-s)

n{n-l)

a d I

ads

a I s

d I s

n

^-'-=f^-
d-2a±^/{2a-df+^ds

" 2d

l + a

2l + d± V(2^ + c/)«-8(&
"- 2d
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222. The aritlimetical mean between two numbers is the

number which stands between them, and makes with them

an arithmetical series.

If a and h represent two numbers, and A their arithmet-

ical mean, then, by the definition of an arithmetical series,

A — a = h — A.

a + h
.'.A

223. Sometimes it is required to insert several arithmeti-

cal means between two numbers.

Ex. Insert six arithmetical means between 3 and 17.

Here the whole number of terms is eight ; 3 is the first term and

17 the eighth.

By I., 17 = 3 + 7^,

The series is 3, [5, 7, 9, 11, 13, 15,] - 17,

the terms in brackets being the means required.

224. When the sum of a number of terms in arithmet-

ical progression is given, it is convenient to represent the

terms as follows :

Three terms by ^ — y, oc, x -\- y;

four terms by a? — 3y, x — y, x-\-y, x-\-^y]

and so on.

Ex. The sum of three numbers in arithmetical progres-

sion is 36, and the square of the mean exceeds the product

of the two extremes by 49. Find the numbers.

Let x — y, X, X + y represent the numbers.

Then, adding, 3 a; = 36. .-. a = 12.

Putting for x its value, the numbers are

12 -y, 12, 12+3/.
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By the conditions of the problem we have

(12)2 ==(12 -2/) (12 + 3/) + 49.

144 = 144-3/2 + 49,

3/ = ±7.

The numbers are 5, 12, 19; or 19, 12, 5.

Exercise 36.

Find

:

1. The 10th term of 3, 8, 13

2. The 8th term of 12, 9, 6

3. The 12th term of - 4, - 9, - 14

4. The 11th term of 2|, If, 1^

5. The 14th term of U, i, - 1
^4 6

Find the sum of:

6. 8 terms of 4, 7, 10

7. 10 terms of 8, 5, 2

8. 12 terms of -3, 1, 5

9. n terms of 2, 1^, -

10. n terms of 2^, 1|, l^

11. Given a = 3, Z=: 55, 71 == 13. Find elands.

12. Given a == 3i, ^= 64, n = 82. Find d and s.

13. Given a = l, n = 20, s = 305. Find c? and <^.

14. Given I = 105, n = l^,s = 840. Find a and d,

15. Given c?:= 7, 71=12, s = 594. Find a and /.

16. Given a = 9, c^= 4, s = 624. Find n and /.

17. Given c?= 5, ^ = 77, 5 = 623. Find a and n.
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18. When a train arrives at the top of a long slope, tne

last car is detached and begins to descend, passing over 3

feet in the first second, three times 3 feet in the second

second, five times 3 feet in the third second, etc. At the

end of 2 minutes it reaches the bottom of the slope. What
was its velocity in the last second ?

19. Insert eleven arithmetical means between 1 and 12.

20. The first term of an arithmetical series is 3, and the

sum of six terms is 28. What term will be 9 ?

21. How many terms of the series — 5, — 2, + 1, +
must be taken in order that their sum may be 63 ?

22. The arithmetical mean between two numbers is 10,

and the mean between the double of the first and the

triple of the second is 27. Find the numbers.

23. The first term of an arithmetical progression is 3,

the third term is 11. Find the sum of seven terms.

24. Arithmetical means are inserted between 8 and 32,

so that the sum of the first two is to the sum of the last

two as 7 is to 25. How many means are inserted ?

25. In an arithmetical series the common difference is

2, and the square roots of the first, third, and sixth terms

form a new arithmetical series. Find the series.

26. Find three numbers in arithmetical progression of

which the sum is 21, and the sum of the first and second

f of the sum of the second and third.

27. The sum of three numbers in arithmetical progres-

sion is 33, and the sum of their squares is 461. Find the

numbers.

28. The sum of four numbers in arithmetical progres-

sion is 12, and the sum of their squares 116. What are

these numbers?
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29. How many terms of the series 1, 4, 7 must be

taken, in order that the sum of the first half may bear to

the sum of the second half the ratio 7 : 22 ?

30. The sum of the squares of the extremes of four num-

bers in arithmetical progression is 200, and the sum of the

squares of the means is 136. What are the numbers ?

31. A man wishes to have his horse shod. The black-

smith asks him $2 a shoe, or 1 cent for the first nail, 3 for

the second, 5 for the third, etc. Each shoe has 8 nails.

Ought the man to accept the second proposition ?

32. A number consists of three digits which are in

arithmetical progression ; and this number divided by the

sum of its digits is equal to 26 ; if 198 be added to the

number, the digits in the units' and hundreds' places will

be interchanged. Required the number.

33. There are placed in a straight line upon a lawn 50

eggs 3 feet distant from each other. A person is required

to pick them up one by one and carry them to a basket in

the line of the eggs and 3 feet from the first egg, while a

runner, starting from the basket, touches a goal and re-

turns. At what distance ought the goal to be placed that

both men may have the same distance to pass over ?

34. Starting from a box, there are placed upon a straight

line 40 stones, at the distances 1 foot, 3 feet, 5 feet, etc.

A man placed at the box is required to take them and

carry them back one by one. What is the total distance

that he has to accomplish ?

• 35. The sum of five numbers in arithmetical progres-

sion is 45, and the product of the first and fifth is | of

the product of the second and fourth. Find the numbers.
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GEOMETRICAL PROGRESSION.

225. A series is called a geometrical series or a geometrical

progression when each succeeding term is obtained by mul-

tiplying the preceding term by a constant multiplier.

The general representative of such a series will be

in which a is the first term and r the constant multiplier

or ratio.

The terms increase or decrease in numerical magnitude

according as r is numerically greater than or numerically

less than unity.

226. The nth Term. Since the exponent of r increases

by one for each succeeding term after the first, the ex-

ponent will always be one less than the number of the

term, so that the nth term is ar''~\

If the nth term is represented by I, we have

l=ar^-\ I.

227. Sum of the Series. If I represent the nth term, a the

first term, n the number of terms, r the common ratio, and

s the sum of n terms, then

s ^= a -\- ar -\- ar^ -\- ar"~\

Multiply by r,

rs= ar -{- ar^ -\- ar^ -\- ar""'^ -{- ar^.

Subtracting the first equation from the second,

rs — s^= ar'^ — a,

or (r — 1) s = a (r" — 1).

..«=^':^^. II.
r — 1
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Since l = ar''-^, aT^ = rl, and II. may be written

rl—a
III

228. From the two equations I. and II., or the two
equations I. and III., any two of the five numbers a, r, I,

n, s, may be found when the other three are given.

(1) The first term* of a geometrical series is 3, the last

term 192, and the sum of the series 381. Find the num-
ber of terms and the ratio.

(1)

(2)

From I. and III., 192 == 3r«-»,

From (2),

381 =

r-

192r-3
r-1

= 2.

Substituting in (1),
2"-i == 64.

.•. n == 7.

The series is 3, 6, U5, 24, 48, 96, 19

(2) Find I when r,
,
n. s are given.

From I., a =
I

rn-i

Substituting in III., s =- r-1 '

(r--l)s-
r«-i

.\l-
(r-l)r«-is

r«-l

Note. The table on page 186 contains the results of all possible

problems in geometrical series in which three of the numbers a, r, I,

n, s are given and the other two required, with the exception of

those in which n is required ; these last require the use of logarithms

with which the student is supposed to be not yet acquainted.
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No.

1

2

3

4

Given. Required. Results.

a r n

a r s

ans

r n s

I

l = ar^-\

^_a + {r-l)s

r

;(s_Z)n-i_a(s-a)"-i = 0.

5

6

7

8

a r n

arl

a n I

ml

'

3 a(r--lX
r-l

r** - r«-i

9

10

11

12

ml

r n s

rls

n I s

a r"-l

a = W-(r-l)s.

13

14

15

16

a n I

ans

als

nls

r

s
,

s — a A

a a

s-l s-l

229. The geometrical mean, between two numbers is the

number which stands between them, and makes with them

a geometrical series.
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If a and b denote two numbers, and G their geometrical

mean, then, by the definition of a geometrical series,

a G

.'.G=V'^.

230. Sometimes it is required to insert several geometri-

cal means between two numbers.

Insert three geometrical means between 3 and 48.

Here the whole number of terms is five ; 3 is the first term and 48

the fifth.

By I., 48 = 3r*,

r* = 16,

r = ±2.

The series is one of the following

.

3, [ 6, 12, 24,] 48;

3, [-6, 12, -24,] 48.

The terms in brackets are the means required.

231. Infinite Geometrical Series. When r is less than 1,

the successive terms become numerically smaller and

smaller ; by taking n large enough we can make the nth

term, ar""\ as small as we please, although we cannot

make it absolutely zero.

The sum of n terms, , may be written
;r—

1

1 —rl —

r

this sum differs from by the fraction ; by taking
1 — r 1 — r

enough terms we can make I, and consequently this dif-

ference, as small as we please ; the greater the number of

terms taken the nearer does their sum approach- .

1 — r

Hence —— is called the sum of an infinite number of
1 — r

terms of the series.
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(1) Find the sum of the infinite series

1-1+1-1+
2 4 8^

Here, a = l, r =
2

1 2
The sum of the series is or — Ans.

1+^ 3

"We find for the sum of n terms (
—

] ,or- + -

3 3 V 2/ '33
2

this sum evidently approaches - as n is increased.

{~ir

(2) Find the value of the recurring decimal .12135135.

Consider first the part that recurs; this may be written

135

135 135 J ,1 f i-u- • • 100000—

—

1 \- and the sum of this series is
,

100000 100000000
^ 1_

1000

which reduces to Adding .12, the part that does not recur, we

449
obtain for the value of the decimal -—^- Ans.

3700

n- 1
.

Exercise 37.

1. The eighth term of 3, 6, 12,

2. The twelfth term of 2, -4, 8, ....

3. The twentieth term of 1,
— -. -»

o y

4. The eighteenth term of 3, 2, 1^,

5. The nth term of 1, — IJ, 1|,

Find the sum of

:

6. Eleven terms of 4, 8, 16,

7. Nineteen terms of 9, 3, 1,
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8. Twelve terms of 5, —3, If,

9. n terms of li, -. — ,

^ 8 40

Sum to infinity

:

10. 4-2+1- 12. l-? + i--..
5^25

"• 1+1+1+ '' l+i+h+
Find the value of the recurring decimals :

14. 0.153153 16. 3.17272

15. 0.123535 17. 4.2561561.

18. Given a = 36, 1=2^, n — 5. Find r and s.

19. Given I= 128, r = 2,n='J. Find a and s.

20. Given r = 2,n=7,s = 635. Find a and I.

21. Given ^=1296, r = 6, s = 1555. Find a and w.

22. Insert three geometrical means between 14 and 224.

23. Insert five geometrical means between 2 and 1458.

24. If the first term is 2 and the ratio 3, what term will

be 162 ?

25. The fifth term of a geometrical series is 48, and the

ratio 2. Find the first and seventh terms.

26. Four numbers are in geometrical progression ; the

sum of the first and fourth is 195, and the sum of the

second and third is 60. Find the numbers.

27. The sum of four numbers in geometrical progression

is 105 ; the difference between the first and last is to the

difference between the second and third in the ratio of

7 : 2. Find the numbers.
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28. The first term of an arithmetical progression is 2,

and the first, second, and fifth terms are in geometrical

progression. Find the sum of 11 terms of the arithmetical

progression.

29. The sum of three numbers in arithmetical progres-

sion is 6. If 1, 2, 5 be added to the numbers, the three

resulting numbers are in geometrical progression. Find

the numbers.

30. The sum of three numbers in arithmetical progres-

sion is 15; if 1, 4, 19 be added to the numbers, the results

are in geometrical progression. Find the numbers.

31. There are four numbers of which the sum is 84;

the first three are in geometrical progression and the last

three in arithmetical progression ; the sum of the second

and third is 18. Find the numbers.

32. There are four numbers of which the sum is 13, the

fourth being 3 times the second ; the first three are in

geometrical progression and the last three in arithmetical

progression. Find the numbers.

33. The sum of the squares of two numbers exceeds twice

their product by 576 ; the arithmetical mean of the two

numbers exceeds the geometrical by 6. Find the numbers.

34. A number consists of three digits in geometrical

progression. The sum of the digits is 13 ; and if 792 be

added to the number, the digits in the units' and hundreds'

places will be interchanged. Find the number.

35. Find an infinite geometrical series in which each

term is 5 times the sum of all the terms that follow it.

36. If a, h, c, d are four numbers in geometrical pro-

gression, show that

(a^ + b' + c') {b' -i-c'-j- d') = (ab + be -{- cd)\
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HARMONICAL PROGRESSION.

232. A series is called a harmonical series, or a hannonical

progression, when the reciprocals of its terms form an arith-

metical series.

The general representative of such a series will be

1^ 1 1
^

1

a a-\-d a -{-2d a-\-(n — l)d

Questions relating to harmonical series are best solved

by writing the reciprocals of its terms, and thus forming

an arithmetical series.

233. If a and b denote two numbers, and ff their har-

monical mean, then, by the definition of a harmonical series,

JI a b H'

. 2 ^1 l_ a-hb
' H a b ab

2abH
a-^b

234. Sometimes it is required to insert several harmoni-

cal means between two numbers.

Ex. Insert three harmonical means between 3 and 18.

Find the three arithmetical means between - and —

•

These are found to be i^, — , —
; therefore, the harmonical means

235. Since ^ = ^i^ and = Vab,

G'H='^ or 0=y/AH,
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Th^ is, the geometrical mean between two numbers is

also the geometrical mean between the arithmetical and

harmonical means of the numbers, or

Hence O lies in numerical value between A and H.

Exercise 38.

1. Insert four harmonical means between 2 and 12.

2. Find two numbers whose difference is 8 and the har-

monical mean between them If.

3. Find the seventh term of the harmonical series

3, 3f, 4

4. Continue to two terms each way the harmonical series

of which two consecutive terms are 15, 16.

5. The first two terms of a harmonical series are 5 and

6. What term will be 30?

6. The fifth and ninth terms of a harmonical series are

8 and 12. Find the first four terms.

7. The difference between the arithmetical and harmon-

ical means between two numbers is If, and one of the

numbers is four times the other. Find the numbers.

8. The arithmetical mean between two numbers exceeds

the geometrical by 13, and the geometrical exceeds the har-

monical by 12. What are the numbers?

9. The sum of three terms of a harmonical series is 39,

and the third is the product of the other two. Find the

terms.

10. When a, 5, c are in harmonical progression, show

that a: c = a — b : b — c.

11. If a and b are positive, which is the greater, A or £[?
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SIMPLE INDETERMINATE EQUATIONS.

236. If a single equation involving two unknown numbers

be given, and no other condition be imposed, the number
of solutions of the equation is unlimited ; for if one of the

unknown numbers be assumed to have any value, a corre-

sponding value of the other may be found.

Such an equation is called an indeterminate equation.

Although the number of solutions of an indeterminate

equation is unlimited, the values of the unknown numbers

are confined to a particular range ; this range may be fur-

ther limited by requiring that the unknown numbers shall

be 'positive integers.

237. Every indeterminate equation of the first degree, in

which X and y are the unknown numbers, may be made to

assume the form 7
ax ± by =^ ± c,

where a, 5, and c are positive integers and have no common
factor.

238. The method of solving an indeterminate equation

in positive integers is as follows :

(1) Solve 3^ -f- 4y = 22, in positive integers.

Transpose, 3 a; = 22 — 43/.

the quotient being written as a mixed expression.

.-. a; + 3/ - 7 = —3^-
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Since the values of x and y are to be integral, x +y — 1 will be

integral, and hence
~ -^ will be integral, though written in the form

of a fraction.

-r , 1 — V
i^et —~- = m, an integer.

Then l-y = Sm.

.'. y = 1 — 3m.

Substitute this value of y m the original equation,

3a; + 4- 12m = 22.

.*. « = 6 + 4to.

The equation y = 1 — 3m shows that m may be 0, or have any

negative integral value, but cannot have a positive integral value.

The equation a; = 6 + 4m further shows that m may be 0, but can-

not have a negative integral value greater than 1.

.•. m may be or —1,

and then a;=6| x =2 )

y = lj' y = 4)

(2) Solve 5a; — 14?/ = 11, in positive integers.

Transpose, 5 a; = 11 + 14 3/,

, = 2 + 2y + iiii^. (1)

.•..-2y-2 = l±l^.

Since x and y are to be integral, a; — 2^ — 2 will be integral, and

hence ——^ will be integral.
o

Let ——^ = m, an integer.
o

Then V
^^-1

4

2/-^ +^- (2)

_j -1

Now —-— must be integral.

Let —^ = n, an integer.

Then m =4?i + 1
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Substituting in (2), y = 5n+l.
Substituting in (1), a; = 14n + 5.

Obviously x and y will both be positive integers if n have any

positive integral value.

Hence, a; = 5, 19, 33, 47,

y = l, 6, 11, 16,

Another method of solution is the following :

*

From the given equation we have x = —— 2^.

5
Here y must be so taken that 11 -f 14 y is a multiple of 5

; take

2/
= 1, then x = 5, and we have one solution.

Now 5a;— 142/ = 11,

and 5 (5) -14(1) = 11.

Subtract, 5(a;-5)-14(y-l) = 0,

2/.-1 5

Since x—5 and y — 1 are integers, a; — 5 must be the same mul-

tiple of 14 that y — 1 is of 5.

Hence, if a; — 5 = 14m, then y — \ = 5m.

.-, «= 14m + 5, and y = 5m + l.

Therefore a; = 5, 19, 33, 47

y = l, 6, 11, 16,

It will be seen from (1) and (2) that when only positive integers

are required, the number of solutions will be limited or unlimited

according as the sign connecting a; and y is positive or negative.

(3) Find the least number that when divided by 14 and

5 will give remainders 1 and 3 respectively.

IfN represent the number, then

= a?, and = y.

14 5 -^

.-. iV= 14a; + 1, and iV= 5y + 3.

.-. 14ar + 1 = 53/ + 3.

5y = 14x-2,

53/= 15a;- 2 -a;.

Q 2 + a;

Let = m, an integer.
5

/. a; = 5m — 2.
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y ==
-J (14 a; — 2), from original equation.

.-.2/ = 14m — 6.

Ifw=l, a; = 3, and 2/ = 8,

.-. iV= 14x + 1 = 52/ + 3 = 43. Ans.

(4) Solve 5a: -f- 6y= 30, so that a; may be a multiple of y,

and both x and y positive.

Let

Then

and

X == my.

(5m + Q)y-= 30.

• y =
30

5m + 6

x =
30m
5m + 6

x =~-H,y = n-
X == ^,y = If.

Ifm = 2,

Ifm = 3,

(5) Solve 1457 + 223/ — 71, in positive integers.

a? = 5 — V H———^•
^

14

If we multiply the fraction by 7 and reduce, the result is

-4y + i
a form which shows that there can be no integral solution.

There can be no integral solution of ax ±by = ± c if a and b have

a common factor not common also to c ; for, if cZ be a factor of a and

also of h, but not of c, the equation may be written

mdx ± ndy = ± c, or nx ± ny = ± -
;

d

which is impossible, since - is a fraction, and mx ± ny is an integer,

if X and y are integers.

Exercise 39.

Solve in positive integers:

1. x + y=l2. 4. 8a; + 5y = 74.

2. 2a; + lly = 83. 5. 5a: + 3y = 105.

3. 4a7 + 9y = 53. 6. fa; + 5y = 92.
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7. ix+\y = 21. 8. 2^ + iy = 53.

Solve in least possible integers

:

9. 1x-2y^l2. 12. lla;-62/=73.

'10. 92:-5y = 21. 13. 15a;-47y = ll.

11. 7:c-4y--45. 14. 23a;-14y = 99.

15. Find two numbers which, multiplied respectively

by 7 and 17, have for the sum of their products 1135.

16. If two numbers are multiplied respectively by 8

and 17, the difference of their products is 10. What are

the numbers ?

17. If two numbers are multiplied respectively by 7 and

15, the first product is greater by 12 than the second.

Find the numbers.

18. Divide 89 in two parts, one of which is divisible by

3, and the other by 8.

19. Divide 314 in two parts, one of which is a multiple

of 11, and the other a multiple of 13.

20. What is the smallest number which, divided by 5

and by 7, gives each time 4 for a remainder ?

21. The difference of two numbers is 151. The first

divided by 8 has 5 for a remainder, and 4 must be added

to the second to make it divisible by 11. What are the

numbers ?

22. Find pairs of fractions whose denominators are 24

and 16, and whose sum is -^f

.

23. How can one pay a sum of $87, giving only bills of

$5 and $2?
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24. A man buys calves at $5 apiece, and pigs for $3
apiece. He spends in all $114. How many did he buy

of each ?

25. A person bought 40 animals, consisting of pigs,

geese, and chickens, for $40. The pigs cost $5 apiece, the

geese $ 1, and the chickens 25 cents each. Find the num-

ber he bought of each.

26. Solve 18a; — 5y= 70 so that y may be a multiple

of X, and both positive.

27. Solve Sx-\- \2y = 23 so that x and y may be posi-

tive, and their sum an integer.

28. Divide 70 into three parts which shall give integral

quotients when divided by 6, 7, 8, respectively, and the

sum of the quotients shall be 10.

29. In how many ways can $3.60 be paid with dollars

and twenty-cent pieces ?

30. In how many ways can 300 pounds be weighed

with 7 and 9 pound weights ?

31. Find the general form of the numbers that, divided

by 2, 3, 7, have for remainders 1, 2, 5, respectively.

32. Find the general form of the numbers that, divided

by 7, 8, 9, have for remainders 6, 7, 8, respectively.

33. A farmer buys oxen, sheep, and hens. The whole

number bought is 100, and the total cost £100. If the

oxen cost £5, the sheep £1, and the hens Is. each, how
many of each did he buy ?

34. A farmer sells 15 calves, 14 lambs, and 13 pigs, and

receives $200. Some days after, at the same price, he sells

7 calves, 11 lambs, and 16 pigs, for which he receives $141.

What is the price of each ?
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BINOMIAL THEOREM.

239. Binomial Theorem, Positive Integral Exponent. By suc-

cessive multiplication we obtain the following identities

:

{a-\-hf = d + 2>a'h^^ah'' +5^;

{a + by = a'-i-4:a'b + Qa'b' + ^ab' + b\

The expressions on the right may be written in a form

better adapted to show the law of their formation

:

{a + by = a' + 2ab
+f^^^

^a-^by^a^ + Sa^b + ^^ab^ +rS^''

Note, The dot between the Arabic figures means the same as the

sign X.

240. Let n represent the exponent of (a -\- b) in any one

of these identities ; then, in the expressions on the right,

we observe that the following laws hold true

:

I. The number of terms is w + 1.

II. The first term is a", and the exponent of a is one

less in each succeeding term.

The first power of b occurs in the second term, the

second power in the third term, and the exponent of h is

one greater in each succeeding term.

The sum of the exponents of a and i in any term is n.
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III. The coefficient of the first term is 1 ; of the second

term, n; of the third term, '—^~—-^\ of the fourth term,

n{n-V) {n-2) .

^'^

i.' A' o

241. Consider the coefficient of any term : the number
of factors in the numerator is the same as the number of

factors in the denominator, and the number of factors in

each is the same as the exponent of h in that term ; this

exponent is one less than the number of the term.

242. Proof of the Theorem. That the laws of § 240 hold

true when the exponent is any positive integer, is shown

as follows

:

We know that the laws hold for the fourth power;

suppose, for the moment, that they hold for the kth power.

We shall then have

(a + hf = a^ + ha^'-'b + ^(^~^)
a^-^&^

1 * A

+ ^(^-IK^- 2)^.-3^3
_f_ (1)

i .iJ
' O

Multiply both members of (1) by a + ^ ; the result is

{a + bf-^' = a*+i+ {h + 1) a^5 +i^±^ a^-^6^
X ' A

^ (^ + l)^-(/^- 1) ^^-233 _|_ (2)

In the right member of (1) for h put ^+ 1 ; this gives

^
r2^3 "^

^"^
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This last expression, simplified, is seen to be identical

with the right member of (2), and this in turn by (2) is

identical with (a -\- 5)*+\

Hence (1) holds when for h we put ^ + 1 ; that is, if

the laws of § 240 hold for the Tcth power, they must hold

for the (Jc + 1) th power.

But the laws hold for the fourth power ; therefore they

must hold for the fifth power.

Holding for the fifth power, they must hold for the sixth

power ; and so on for any positive integral power.

Therefore they must hold for the nth power, if 7i is a

positive integer ; and we have

(a + hf = a" + na^-'h + ""^""""^
a"-^6'

n(7i-l)(n-2) 353 , ^^ 1-2-3

Note. The proof of § 242 is an example of a proof by mathematical

induction.

243. This formula is known as the binomial theorem.

The expression on. the right is known as the expansion of

(a + by-, this expansion is definite series when n is a positive

integer. That the series is finite may be seen as follows

:

In writing out the successive coefficients we shall finally

arrive at a coefficient which contains the factor n — n\ the

corresponding term will vanish. The coefficients of the

succeeding terms likewise all contain the factor n — n, and

all these terms will vanish.

244. If a and b be interchanged, the identity A may be

written

(a + br = {b + ar = b- + nb--'a + '^^^f^b^-W

I

^rn-l)(n-2)^n-3^3^^ 1-2-3
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This last expansion is the expansion of A written in

reverse order. Comparing the two expansions we see

that : the coefficient of the last term is the same as the co-

efficient of the first term ; the coefficient of the last term

but one is the same as the coefficient of the first term but

one ; and so on.

In general, the coefficient of the rth term from the end

is the same as the coefficient of the rth term from the

beginning. In writing out an expansion by the binomial

theorem, after arriving at the middle term, we can shorten

the work by observing that the remaining coefficients are

those already found written in reverse order.

245. If h be negative, the terms which involve even

powers of h will be positive, and those which involve odd

powers of h negative. Hence,

(a - by ~a^- na^-'' b + !L(!L_J0 ^^-^ h"
1

' Ji

(«-l)(«-2)^,._,y^ 3
L' 2t' o

Also, putting 1 for a and x for b, in A and B,

1-2-3 ^ ^

(\-xf=l-nx^ ^^'l J^ x—-- ./,

1-2

n{n~l){n-2)^ [
.... j)

X.' 2i' o
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246. Examples;

(1) Expand (1 + 2:z:y.

In for X put 2x, and for n put 5. The result is

(1 + 2xf = 1 + 5(2a;) + ^4x2 ^^-^^^^
'

^ ' \-l 1-2-3

+ f^:3:|l6.^ + 5-4-3>2-l3,^
l-2-3'4 1-2-3-4-5

= 1 + lOo; + 40^2 + 80r» + 80 x* + 32 a^.

(2) Expand to three terms {^ -—Y-

Put a for 1. and 6 for— ; then, by B,
X 3

-^

(a-&)6 = a6-6a56 + 15a*62 +

Replacing a and 6 by their values,

^J^_ J ^20_
a;^ «^ 3

247. Any Eequired Term. From A it is evident (§ 241)

that the (r -|- 1) th term in the expansion of {a + 6)" is

n{n—V) (n — 2) to r factors ,^7^

l'2-3 r
"

The (r + 1) ^A term in the expansion of (a — by is the

same as the above if r be even, and the negative of the

above if r be odd.

Ex. Find the eighth term of U - ^T'

Here a = 4, 6 = -, n = 10, r = 7.'2
The term required is

10-9-8 7•6•5•4 /^^3/a?'V

1-2-3-4-5-6-7

which reduces to — 60 a;".

(4)'(f)
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248. The G-reatest Coefficient. Suppose that the coefficient

of the (r -j- 1) th term is the numerically greatest coefficient.

This coefficient, the preceding and following coefficients,

are the following :

r ih term, ^ ^^^\ \ rf^-^ ;

(,+ l),^term, -A
\.2^3 (T-l)r

'

(r+ 2)^Aterm,
<n~\)-----{n-r^^){n-r^Y){n-T)

^

^ ^ ^ 1-2-3 (r-l)r(r+ l)

The first coefficient may be obtained by multiplying the

second by ; the third, by multiplying the second

by -—z ' If the second coefficient is numerically the greatest,

—-<1, and—— <1;

r<72 — r+1, and r+l>n — r;

r < —^' and r > —-

—

If n is even, r = -, and r+ 1 = —^— ;
in this case there

is one middle term and its coefficient is the greatest coefficient.

If n is odd, we can only have r= . T" , or r =—-—
;

A A

in this case there are two middle terms ; their coefficients

are alike, and are the two greatest coefficients.

249. A trinomial may be expanded by the binomial

theorem as follows :

Expand {^ -^ "Ix - x^J

,

Put 2a;-aj2 =2;
then (1 + 2)3 =» 1 + 32 + 3^2 + 23

.-. (1 + 2 a; - a;2)3 = 1 + 3 (2 a; - a;^) + 3 (2 a; - x^J + (2 ir - x^f

=- 1 + 6a; + 9a;2 - 4a^ - 9a;* + 6a^ - a;8.
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^ . Exercise 40.
Expand

:

1. (l + 3:r)^ 4. {2 + xJ. 7. {?>x- 2yy.

H'^t)' "(MT '^(f--f)'

»^('-f)' « (f-^.j • (^i

10. (1+Ax-^Sx'y. 11. (a' -ax -2:vj.

Find:

12. The fourth term of /^a; + -iY-
V 2a;y

13. The eighth term of
(
2 --^J .

14. The twelfth term of (" -^)"-

15. The twentieth term of

{'"wJ-

16. The fourteenth term of f^^ ^ ) .

17. The (r + 1) ^A term of fV^ + -^^Y-

18. The (r+l)th term of ^^^-^T.

19. The (r + 3) th term of (^- -^Y'-
^ ^ V2y V3^/

20. Find the middle term of (- ^^-^ j
.



206 ALGEBRA.

21. Find the two middle terms of f—^+ \^]

22. Find the r th term from the end of f aI—
]

.

23. In the expansion of {a + by show that the sum of

the coefficients is 2".

24. In the expansion of {a -\- by show that the sum of

the even coefficients is equal to the sum of the odd co-

efficients.

^-f

25. Expand

26. If A is the sum of the odd terms, and B the sum

of the even terms, in the expansion of {a + by, show that

A' -B' = {a' - by.

250. Convergent and Divergent Series. By performing the

indicated division, we obtain from the fraction the
1 —X

infinite series 1 -}- x -\- x"^ -\- x^ -{- This series, however,

is not equal to the fraction for all values of x.

251. Suppose X numerically less than 1. In this case we
can obtain an approximate value for the sum of the series

by taking the sum of a number of terms ; the greater the

number of terms taken, the nearer will this approximate

sum approach the value of the fraction. The approximate

sum will never be exactly equal to the fraction, however

great the number of terms taken ; but by taking enough

terms, it can be made to differ from the fraction as little as

we please.
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Thus, if a; = ;5» the fraction is r = 2, and the series is

^^hhl
The sum of four terms of this series is 1^ ; the sum of five terms,

l^f ; the sum of six terms, 1|| ; and so on. The successive approxi-

mate sums approach, but never reach, the finite value 2.

When X is numerically less than 1, the series is equal

to the fraction, and we have the equation

1

l~x
= l + :r + a;' + a;' +

252. A series is said to be convergent when the sum of a

number of terms, as the number of terms is indefinitely-

increased, approaches some fixed finite value ;
this finite

value is called the sum of the series.

253. In the series 1 -\- x -\-
x^

-\-
x^

-{- suppose x nu-

merically greater than 1. In this case, the greater the

number of terms taken, the greater will their sum be ; by

taking enough terms we can make their sum as large as

we please. The fraction, on the other hand, has a definite

value. Hence, when x is numerically greater than 1, the

series is not equal to the fraction, and we c?o not have the

equation =1 + x -\- x^ + ce^ +
1 — x

Thus, if a; = 2, the fraction is —^ = - 1 ; the series is

1 — Z

1+2 + 4 + 8 +

The greater the number of terms taken, the larger will their sum be.

Evidently the fraction and the series are not equal.
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254. In the same series suppose x=l. In this case the

fraction is = -» and the series 1 + 1 + 1 + 1 +
The more terms we take, the greater will the sum of the

series be. "We do i? jt know whether or not the fraction is

equal to the series.

If X, however, is not exactly 1, but is a little less than 1,

the value of the fraction will be very great, and the

sum of the series also very great ; and the fraction will be

equal to the series.

Suppose x = — l. In this case the fraction is =-,^^
1 +12

and the series 1 — 1 + 1 — 1 + If we take an even

number of terms, their sum is ; if an odd number, their

sum is 1.

Hence, when x = — l, the fraction is not equal to the

series.

255. A series is said to be divergent when the sum of a

number of terms, as the number of terms is indefinitely

increased, either increases without end, or oscillates in

value without approaching any finite value.

No reasoning can be based on a divergent series ; hence,

in using an infinite series it is necessary to make such

restrictions as will cause the series to be convergent.

Thus we can use the infinite series 1 + x + x"^ + xi^ + when, and

only when, x lies between + 1 and — 1.

Observe that any series of the form A + Bx + Cx"^ +
is convergent when x = 0, since in this case the series

reduces to the first term.

256. Identical Series. If two seizes which are arranged

by powers of x be equal for all values of x which make both

series convergent, the corresponding coefficients are equal each

to each.
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Let the equation

a-^-hx^ ex" -f- da^ + -=:^A + Bx+Cx''-\- Bx"-}- (1)

hold true for all values of x which make both series con-

vergent.

Since this equation holds true for all values of x which

make both series convergent, it will hold true when x = 0.

Let 37 = 0; then a = A. (2)

Subtract (2) from (1) and divide both members by x; then

b + cx + dx' + = B+Cx-{-Dx^ + (3)

Let ar = ; then b = B. (4)

Subtract (4) from (3) and divide both members by x ; then

c-i-dx + = C-i-Dx +
Let x~0; then c= C.

And so on.

257. Binomial Theorem, Any Exponent, We have seen

(§ 245) that when w is a positive integer we have the

identity

/I I N» II I
n(n — l) 2 , ^(^— l)(w— 2) ,

,

(l + xf-l + nx-i- -y-^^ + -^.^.3
^^ +

We proceed to the case of fractional and negative expo-

nents.

I. Suppose n is a positive fraction, -• We may assume

that

(1 4- xy =(A + Bx + Cx' + Dx'

+

y, (1)

provided x be so taken that the series

A + Bx+Cx' + Bx'i-

is convergent (§ 252).

That this assumption is allowable may be seen as follows

:

Expand both members of (1).
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We obtain

and

1 Z 1. A o

In the first k coefficients of the second series there enter only the

first k' of the coefficients A, B, C, D, If, then, we equate the

coefficients of corresponding terms in the two series (| 256) as far as

the kth term, we shall have just k equations to find k unknown num-
bers A, B, C, D, Hence the assumption made in (1) is allowable.

Comparing the two first terms and the two second terms, we obtain

^3 = 1, .'.A = l;

qAi-^B^p, .\B = ~-

Extracting the qth root of both members of (1), we have

(1 + xf = 1 + -X+ Cx' + Da^ + (2)

where x is to be so taken that the series on the right is

convergent.

II. Suppose w is a negative number, integral or frac-

tional. Let n = — 7n, so that m is positive ; then

1
(l+:r)'^ = (l + ^)-

(1 + ^)^

From (2), whether w is integral or fractional, we may
assume

1 1

(1 -]-xY 1 + wrr + ex'' -f da? +
*

By actual division this gives an equation in the form

(l-\- x)-"^ = l-mx-{-Cx' -{- Da^ -{-
(3)
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258. It appears from (2) and (3) that whether n be inte-

gral or fractional, positive or negative, we may assume

(1 + xf = l-\-nx+Cx'-\- Dx^ +
,

provided the series on the right is convergent.

Squaring both members,

Also, since

a;' + 2Z> b^ +
-\-2nC\

(1)

we have, putting 2x-\-x^ for y,

(1 + 2a; + x^f = 1 + w(2a; + x^) + (7(2a; + x'Y

-{- D{2x -\- x'J

+ 8i)

3(? += 1 -\-2nx-\-n

+4e

Comparing corresponding coefficients in (1) and (2),

4(7+8i) = 2i)+27i(7.

n{n — 1)

(2)

\2C =n' C
1-2

3i) = (^-2)(7, ^^'/L(^-1)(^-2X
1. A o

and so on.

Hence, whether n be integral or fractional, positive or

negative, we have

{\-{-xf=l + nx-[-
n{n-l)^, _^

n{n-l){n-2)^
_^

1-2 l'2-3

provided, always, x be so taken that the series on the right

is convergent.

The series obtained will be an infinite series unless n is

a positive integer (§ 243).
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259. If X is negative,

Also, if X <C.a^

{a + xy=--a-(^l + ^^

„f^ ,
X

,
n(n—l) x"^

,
\

= '^(l + "a +-V2-^ + )

= a''+ wa"-'a; + "^"~^^
a'-'a' + ;

if x>a,

(a + ^)« = (rr + ay= x''fl +H
„ A ,

a
,
?z(n — 1) a^ , \

= a;" + nax^-'+ ^ifc^nHaV-^ +1-2 ^

260. Examples.

(1) Expand (1 + x)^.

^ 3-6 3-6-9

The above equation is only true for those values of x which make

the series convergent.

(2) Expand —

Vl—x
_1._6 _JL._5._9

1 - (- i)- + -Iry-^-^--VsV^^ +

l + lx + —x^ +
^'^'^

a^ +
^ 4-8 4-8-12

if X is so taken that the series is convergent.
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A root may often be extracted by means of an expansion.

(3) Extract the cube root of 344 to six decimal places.

344-343(l+A) = 73(l+J-3}

- 7 (1 + .000971815 - .000000944),

= 7.006796.

(4) Find the eighth term of (a; — -r—^j •

Here (§ 147)

a = ^^ b=.-^^J-, n = -i, r=7.
Wx 4 a'*

^

^-(A)'

The term is

1-2-3-4-5-6-7

1-3-5-7-9-11-13-37
or .

——

.

2 • 4 • 6 • 8 • 10 • 12 • 14 • 4^ • a"

Exercise 41.

Expand to four terms :

1. (l + x)^. 4. (l-x)-\ 7. </2-Sx.

2. (1 + x)^. 5. (l + #. 8. ^(2-0;^.

1 . 1 o 1

Find:

10. The eighth term of (1 — 2a:)i

11. The tenth term of (a — Sx)-^.

12 . The (r + 1) th term of (a + x)i
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13. The (r + 1) th term of (a' - Ax'yl

14. Find V65 to five decimal places.

15. Find V129 to six decimal places.

16. Expand (1 — 2a; + Sx'^yi to four terms.

17. Find the coefficient of x* in the expansion of /-r i o \3
'

18. By means of the expansion of (1 + x)^ show that

the limit of the series

•^ , 1 1 1-3 1-3-5

2 2-2^ 2-3-2^ 2-3-4-2*

is V2.

19. Find the first negative term in the expansion of

(1 + ^)'^'.

ll 4- X •

20. Expand
^|

in ascending powers of x to six

terms.

21. If 71 is a positive integer, show that the coefficient

of x^~'^, in the expansion of (1 — a;)~", is always twice the

coefficient of x'^~^.

22. If w and n are positive integers, show that the co-

efficient of a;*" in (1 — a;)"**~^ is the same as the coefficient

ofa;'^in (1-a;)-'"-^

23. Find the coefficient of r^*" in the expansion of

\——^ in ascending powers of x.

24. Prove that the coefficient of x'^ in the expansion of

is
,1 . N 1 • 1 • 2 • 3
(1 — 4a;)^

(1-2-3 rf



CHAPTER XIX.

LOGARITHMS.

261. Definitions. Let any positive number be selected as

a base
;

let all other numbers be regarded as powers of this

base. Then, the exponent of the power to which the base

must be raised to obtain a given number is called the loga-

rithm of that number to the given base.

Any positive number may be selected as the base ; and

to each base corresponds a system of logarithms.

Thus, since 2^=8, the logarithm of 8 in the system of which 2 is

the base is 3.

That is, the logarithm of 8 to the base 2 is 3 ; this is abbreviated

log2 8 = 3.

In general, if a"' = iV, then n= logaiV.

Observe that a" = iV and n = \oga N are two different ways of

expressing the same relation between n and N. The identity,

^logaJV—
j^^ -g gometimes useful.

The subscript which gives the base is omitted when there is no

uncertainty as to what number is being used as the base.

In this chapter by Va will be meant the positive real

value of the root; consequently, in a system with a positive

base, negative numbers cannot have real logarithms.

262. The logarithms of such numbers as are perfect

powers of the base selected are commensurable numbers

;

the logarithms of all other numbers are incommensurable

numbers.

Remark. By an incommensurable number is meant a number

which has no common measure with unity (§ 202).
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Incommensurable logarithms are expressed approxi-

mately to any desired degree of accuracy by means of deci-

mal fractions.

263. A logarithm will generally consist of two parts,

an integral part and a fractional part ; the integral part is

called the characteristic, and the fractional part the mantissa.

The calculation of logarithms to a given base will be

considered in a later chapter.

264. Incommensurable Exponents. It will now be necessary

to prove that the laws which in Chapter VIII. were found

to apply to commensurable exponents apply also to incom-

mensurable exponents.

Let a be any positive number, and let m and n be two

positive incommensurable numbers.

To prove a'^aP- = a'"+".

We can always find (§ 202) four positive integers,^, q,r, s,

such that m lies between -l and -^ "^
, and n between _

q q s

and —^—
s

p p±} f

Then a"^ lies between a^ and a *
, and a" lies between a*

and a *
.

p r p-\-l r+1

Therefore a^'a" lies between a'^a' and a ^ a ^
„

p r p r

But, M = a^ '%

p+i r+i ^ I r^i^i
and a ^ a ' ^- a^ ' ^ '.

Hence, a'^a^ lies between a^ " and a^ ^ ^ ", and conse-

p r p r I 1 p r
--{-- --I 1 1-- --f--

quently difi'ers from a"^ * by less than {a^ ' « ' — a^ ")

;

p r 1 1

that is, by less than a^ '(^a" * - !)•
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P /'"hi
Also, since m lies between - and , and n between

r r + 1 ^+- ? + r.?.i
- and ,

«"'+'* lies between a* * and a^ ' ^ '
: and

s s '

consequently differs from a^ ' by less than a' * (a' " — 1).

Therefore, the expressions «*"«** and a"'+'* have the same

approximate value a' *, and each differs from this value

p+a 1+1
by less than a^ ' (a^ ' — !)•

Now let q and s be continually increased, p and r being

p jo 4" 1
always so taken that m lies between - and , and n

r r +

1

1 1
between - and Then, - and - continually decrease

;

s s ^ ^

l+l ?+r l+l
a' * approaches 1 ; and a^ * (a' " — 1) continually de-

creases.

?+r
Therefore, the difference between a'"a'* and a' * con-

^+-
tinually decreases ; the difference between a"*+" and a* •

continually decreases; and each difference becomes as

small as we please.

But, however great q and s may be, the expressions a'"a"

and «*"+" have the same approximate value, a'

Therefore, as in § 204, we must have

q 8

a'"d"

The foregoing proof is easily extended to the case in

which m and n are one or both negative.

Having proved for incommensurable exponents that

a'^ft" =-- a*^", it is easily proved that

:

or
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265. Properties of Logarithms. Let a be the base, ifand
N any positive numbers, w and n their logarithms to the

base a
;

so that q;^ = ]\£, a** = iV",

m = loga M, n = loga N.

Then, in any system of logarithms :

(1) The logarithm of 1 is 0.

For, a'=l. .-. O-logJ.

(2) The logarithm of the base itself is 1.

For, a^ = a. /. l = logaa.

(3) The logarithm of the reciprocal of a positive num-
ber is the negative of the logarithm of the number.

For, if tt" = N, then i-= 1 = a"".N a"

(4) TAe logarithm of the product of two or miore positive

numbers is found by adding together the logarithms of the

severalfactors.

For, Mx N= a"'Xa'' = «"*+'*.

/. log«(J[fX iV^)==m + n = log„Jf+log„iV:

Similarly for the product of three or more factors.

(5) TTie logarithm of the quotient of two positive numbers

isfound by subtracting the logarithm of the divisor from the

logarithm of the dividend.

J. M a"^
For, Trz=— = a"* ".
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(6) The logarithm of a 'power of a positive number is

found hy multiplying the logarithm of the number by the

exponent of the power.

For, N^ == {ay = a'^.

.-. \og,{]Sr') = np=p\Qg,N.

(7) The logarithm of the real positive value of a root of a

positive number is found by dividing the logarithm of the

number by the index of the root.

For </N=</a^^a:^

\ogaN
r r

, r/-^jr^ n log-^

266. In a system with a positive base greater than 1 the

logarithms of all numbers greater than 1 are positive, and

the logarithms of all positive numbers less than 1 are neg-

ative.

Conversely, in a system with a positive base less than 1

the logarithms of all numbers greater than 1 are negative,

and the logarithms of all positive numbers less than 1 are

positive. '

267. Two Important Systems. Although the number of

different systems of logarithms is unlimited, there are but

two systems which are in common use. These are

:

(1) The common system, also called the Briggs, denary,

or decimal system, of which the base is 10.

(2) The natural system of which the base is the natural

base.

The natural base, generally represented by e, is the fixed value

which the sum of the series

1 1-2 1-2-3 1-2-3-4
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approaches as the number of terms is indefinitely increased ; the

value of e, carried to seven places of decimals, is 2.7182818

The common system is the system used in actual calcula-

tion ; the natural system is used in the higher mathematics.

268. Common Logarithms. By logarithm in sections

268-282 is meant the common logarithm.

Since

10"= 1, 10-'(=tV) =0.1,
10'= 10, W-'(=tU) =0.01,

10' = 100, 10-' (= „Vxr) = 0.001,

therefore

log 1 = 0. log 0.1 =-1,
log 10 = 1, log 0.01 =-2,
log 100 = 2, log 0.001 = ~ 3.

Also, it is evident that the common logarithms of all

numbers between

1 and 10 will be + a fraction,

10 and 100 will be 1 + a fraction,

100 and 1000 will be 2 + a fraction,

1 and 0.1 will be — 1 -f a fraction,

0.1 and 0.01 will be - 2 + a fraction,

0.01 and 0.001 will be - 3 + a fraction.

269. With common logarithms the mantissa is always

made positive. Hence, in the case of numbers less than 1

whose logarithms are negative, the logarithm is made to

consist of a negative characteristic and a positive mantissa.

"When a logarithm consists of a negative characteristic

and a positive mantissa, it is usual to write the minus sign

over the characteristic, or else to add 10 to the charac-

teristic and to indicate the subtraction of 10 from the

resulting logarithm.

Thus, log 0.2 = 1.3010, and this may be written 9.3010 - 10.
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270. The characteristic of the common logarithm of an

integral number, or of a mixed number, is one less than the

number of integral digits.

Thus, from I 268, log 1 = 0, log 10 = 1, log 100 = 2. Hence, the

common logarithms of all numbers from 1 to 10 (that is, of all num-

bers consisting of one integral digit) will have for characteristic

;

and the common logarithms of all numbers from 10 to 100 (that is, of

all numbers consisting of two integral digits) will have 1 for character-

istic; and so on, the characteristic increasing by one for each increase

in the number of digits, and therefore being always one less than the

number of digits.

271. The characteristic of the common logarithm of a

decimal fraction is negative, and is equal to the number of

the place occupied by the first significant figure of the

decimal.

Thus, from § 268, log 0.1 =-1, log 0.01 =-2, log 0.001 = -3.

Hence, the common logarithms of all numbers from 0.1 to 1 will

have — 1 for a characteristic (the mantissa he\ng plus) ; the common

logarithms of all numbers from 0.01 to 0.1 will have — 2 for a charac-

teristic ; the common logarithms of all numbers from 0.001 to 0.01

will have —3 for a characteristic ; and so on, the characteristic always

being negative and equal to the number of the place occupied by the

first significant figure of the decimal.

272. The mantissa of the common logarithm of any inte-

gral number, or decimal fraction, depends only upon the

digits of the number, and is unchanged so long as the

sequence of the digits remains the same.

For, changing the position of the decimal point in a number is

equivalent to multiplying or dividing the number by a power of 10.

Its common logarithm, therefore, will be increased or diminished by

the exponent of that power of 10 ; and, since this exponent is integral,

the mantissa, or decimal part of the logarithm, will be unaffected.

^^'
27196 = 10<-"<5^ 2.7196 = lO^-^^^^^

2719.6 = lO^-^^, 0.27196 = 109-««- ^
27.196 = W-*^, 0.0027196 = lO^-^^-".
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One advantage of using the number ten as the base of a

system of logarithms consists in the fact that the 'mantissa

depends only on the sequence of digits, and the characteristic

on the position of the decimal point.

273. In simplifying the logarithm of a root the equal

positive and negative numbers to be added to the logarithm

should be such that the resulting negative number, when

divided by the index of the root, gives a quotient of — 10.

Thus, log 0.002'^ = i of (7.3010 - 10).

The expression 1 of (7.3010 - 10)

may be put in the form \ of (27.3010-30), which is 9.1003-10,

since the addition of 20 to the 7, and of — 20 to the — 10, produces

no change in the value of the logarithm.

Exercise 42.

Given: log 2 = 0.3010; log 3 = 0.4771; log 5 = 0.6990;

log 7 = 0.8451.

Find the common logarithms of the following numbers

by resolving the numbers into factors, and taking the sum

of the logarithms of the factors

:

1. log 6. 5. log 25. 9. log 0.021. 13. log 2.1.

2. log 15. 6. log 30. 10. log 0.35. 14. log 16.

3. log 21. 7. log 42. 11. log 0.0035. 15. log 0.056.

4. log 14. 8. log 420. 12. log 0.004. 16. log 0.63.

Find the common logarithms of the following

:

17. 21 20. 5^ 23. 5i 26. 7'. 29. 5^.

18. 51 21. 2^. 24. 7TT 27. 5^. 30. 2"'^\

19. 1\ 22. 5^. 25. 2^. 28. S^t. 31. 5^
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Find the common logarithms of the following :

32. ?. 36. 5. 40. 5:^. 44. ^. 48.
^'^^

5 3 3 0.003 3'

33. ?. 37. '-. 41. 5^. 45. 2M. 49. '^^

7 2 2 0.02 0.02'

34. i 38. I 42. 5^. 46. i^. 50. ^'

5 3 5 0.007 0.02'

35. 5. 39. I 43. ^. 47. 9^- 51. ^'^^^

7 2 0.07 0.07 0.003'

274.^ The remainder obtained by subtracting the loga-

rithm of a number from 10 is called the cologarithm of the

number, or arithmetical complement of the logarithm of the

number.

The cologarithm is abbreviated colog, and is most

easily found by beginning with the characteristic of the

logarithm and subtracting each figure from 9 down to the

last significant figure, and subtracting that figure from 10.

Thus, log 7 = 0.8451 ; and colog 7 = 9.1549. Colog 7 is readily

found by subtracting, mentally, from 9, 8 from 9, 4 from 9, 5 from

9, 1 from 10, and writing the resulting figure at each step.

275. If 10 be subtracted from the cologarithm of a num-

ber, the result is the logarithm of the reciprocal of that

number.

For, log ^= log 1 - log N,

= - log N,

= (10 - log N) - 10,

= colog N— 10.

276. The addition of a cologarithm — 10 is equivalent to

the subtraction of a logarithm.

For, cologiV-10 = (10-logiV^-10,
= -logiV.
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277. The logarithm of a quotient may be found by oAding

together the logaritlim of the dividend and the cologarithm

of the divisor, and subtracting 10 from the result.

In finding a cologarithm when the characteristic of the logarithm

is a negative number, it must be observed that the subtraction of a

negative, number is equivalent to the addition of an equal positive

number.

Thus, log —^ = log 5 + colog 0.002 - 10,
0.002 ^ ^

= 0.6990 + 12.6990 - 10,

_ =3.3980.

Here log 0.002 = 3.3010, and in subtracting — 3 from 9 the result is

the same as adding + 3 to 9.

2
Again, log • = log 2 + colog 0.07 - 10,

0.07

= 0.3010 + 11.1549-10,

= 1.4559.

Also, log
^•^'^

8.8451 10 + 9.0970 - 10,

= 17.9421 - 20,

= 7.9421 - 10.

Here, log 23 = 3 log 2 = 3 X 0.3010 = 0.9030.

Hence, colog 23 = 10 -0.9030 = 9.0970.

278. Tables. A table of four-place common logarithms

is here given, which contains the common logarithms of

all numbers under 1000, the decimal point and character-

istic being omitted. The logarithms of single digits 1, 8,

etc., will be found at 10, 80, etc.

Tables containing logarithms of more places can be pro-

cured, but this table will serve for many practical uses, and

will enable the student to use tables of five-place, seven-

place, and ten-place logarithms, in work that requires

greater accuracy.

In working with a four-place table, the numbers corre-

sponding to the logarithms, that is, the antilogarithms, as

they are called, may be carried to four significant digits.
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279. To rind the Logarithm of a Number in this Table.

(1) Suppose it is required to find the logarithm of G5.7.

In the column headed " N " look for the first two significant

figures, and at the top of the table for the third significant

figure. In the line with 65, and in the column headed 7,

is seen 8176. To this number prefix the characteristic and

insert the decimal point. Thus,

log 65.7 - 1.8176.

(2) Suppose it is required to find the logarithm of 20347.

In the line with 20, and in the column headed 3, is seen

3075 ; also in the line with 20, and in the 4 column, is seen

3096, and the difference between these two is 21. The dif-

ference between 20300 and 20400 is 100, and the difi'erence

between 20300 and 20347 is 47. Hence, yVir o^ 21 = 10,

nearly, must be added to 3075. That is,

log 20347 = 4.3085.

(3) Suppose it is required to find the logarithm of

0.0005076. In the line with 50, and in the 7 column, is seen

7050; in the 8 column, 7059: the difference is 9. The

difference between 5070 and 5080 is 10, and the difference

between 5070 and 5076 is 6. Hence, y'V of 9 = 5 must be

added to 7050. That is,

log 0.0005076 = 6.7055 - 10.

280. To Find a Number when its Logarithm is Given.

(1) Suppose it is required to find the number of which

the logarithm is 1.9736.

Look for 9736 in the table. In the column headed " N,"

and in the line with 9736, is seen 94, and at the head of

the column in which 9736 stands is seen 1. Therefore,

write 941, and insert the decimal point as the characteristic

directs. That is, the number required is 94.1.
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N 1 2 3 4 5 6 7 8 9

10
11

12

13

14

0000
0414
0792
1139
1461

0043
0453
0828
1173
1492

0086
0492
0864
1206
1523

0128
0531
0899
1239
1553

0170
0569
0934
1271
1584

0212
0607
0969
1303
1614

0253
0645
1004
1335
1644

0294
0682
1038
1367
1673

0334
0719
1072
1399
1703

0374
0755
1106
1430
1732

15
16

17

18

19

1761
2041
2304
2553
2788

1790
2068
2330
2577
2810

1818
2095
2355
2601
2833

1847
2122
2380
2625
2856

1875
2148
2405
2648
2878

1903
2175
2430
2672
2900

1931
2201
2455
2695
2923

1959
2227
2480
2718
2945

1987
2253
2504
2742
2967

2014
2279
2529
2765
2989

20
21

22

23

24

3010
3222
3424
3617
3802

3032
3243
3444
3636
3820

3054
3263
3464
3655
3838

3075
3284
3483
3674
3856

3096
3304
3502
3692
3874

3118
3324
3522
3711
3892

3139
3345
3541
3729
3909

3160
3365
3560
3747
3927

3181
3385
3579
3766
3945

3201
3404
3598
3784
3962

25
26
27
28
29

3979
4150
4314
4472
4624

3997
4166
4330
4487
4639

4014
4183
4346
4502
4654

4031
4200
4362
4518
4669

4048
4216
4378
4533
4683

4065
4232
4393
4548
4698

4082
4249
4409
4564
4713

4099
4265
4425
4579
4728

4116
4281
4440
4594
4742

4133
4298
4456
4609
4757

30
31

32
33

34

4771
4914
5051
5185
5315

4786
4928
6065
5198
5328

4800
4942
5079
5211
5340

4814
4955
5092
5224
5353

4829
4969
5105
5237
5366

4843
4983
5119
5250
5378

4857
4997
5132
5263
5391

4871
5011
5145
5276
5403

4886
5024
5159
5289
5416

4900
5038
5172
5302
5428

35
86

37

38

39

5441
5563
5682
5798
5911

5453
5575
5694
5809
5922

5465
5587
5705
5821
5933

5478
5599
5717
5832
5944

5490
5611
5729
5843
5955

5502
5623
5740
5855
5966

5514
5635
5752
5866
5977

5527
5647
5763
5877
5988

5539
5658
5775
5888
5999

5551
5670
5786
5899
6010

40
41
42
43
44

6021
6128
6232
6335
6435

6031
6138
6243
6345
6444

6042
6149
6253
6355
6454

6053
6160
6263
6365
6464

6064
6170
6274
6375
6474

6075
6180
6284
6385
6484

6085
6191
6294
6395
6493

6096
6201
6304
6405
6503

6107
6212
6314
6415
6513

6117
6222
6325
6425
6522

45
46
47
48
49

6532
6628
6721
6812
6902

6542
6637
6730
6821
6911

6551
6646
6739
6830
6920

6561
6656
6749
6839
6928

6571
6665
6758
6848
6937

6580
6675
6767
6857
6946

6590
6684
6776
6866
6955

6599
6693
6785
6875
6964

6609
6702
6794
6884
6972

6618
6712
6803
6893
6981

50
51

52

63

64

6990
7076
7160
7243
7324

6998
7084
7168
7251
7332

7007
7093
7177
7259
7340

7016
7101
7185
7267
7348

7024
7110
7193
7275
7356

7033
7118
7202
7284
7364

7042
7126
7210
7292
7372

7050
7135
7218
7300
7380

7059
7143
7226
7308
7388

7067
7152
7235
7316
7396
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N 1 2 3 4 6 6 7 8 9

55
56

57

58

59

7404
7482
7559
7634
7709

7412
7490
7566
7642
7716

7419
7497
7574
7649
7723

7427
7505
7582
7657
7731

7435
7513
7589
7664
7738

7443
7520
7597
7672
7745

7451
7528
7604
7679
7752

7459
7536
7612
7686
7760

7466
7543
7619
7694
7767

7474
7551

7627
7701
7774

60
61

62

63

64

7782
7853
7924
7993
8062

7789
7860
7931
8000
8069

7796
7868
7938
8007
8075

7803
7875
7945
8014
8082

7810
7882
7952
8021
8089

7818
7889
7959
8028
8096

7825
7896
7966
8035
8102

7832
7903
7973
8041
8109

7839
7910
7980
8048
8116

7846
7917
7987
8055
8122

65
66
67

68
69

8129
8195
8261
8325
8388

8136
8202
8267
8331
8395

8142
8209
8274
8338
8401

8149
8215
8280
8344
8407

8156
8222
8287
8351
8414

8162
8228
8293
8357
8420

8169
8235
8299
8363
8426

8176
8241
8306
8370
8432

8182
8248
8312
8376
8439

8189
8254
8319
8382
8445

70
71
72

73

74

8451
8513
8573
8633
8692

8457
8519
8579
8639
8698

8463
8525
8585
8645
8704

8470
8531
8591
8651
8710

8476
8537
8597
8657
8716

8482
8543
8603
8663
8722

8488
8549
8609
8669
8727

8494
8555
8615
8675
8733

8500
8561
8621
8681
8739

8506
8567
8627
8686
8745

75
76

77

78
79

8751
8808
8865
8921
8976

8756
8814
8871
8927
8982

8762
8820
8876
8932
8987

8768
8825
8882
8938
8993

8774
8831
8887
8943
8998

8779
8837
8893
8949
9004

8785
8842
8899
8954
9009

8791
8848
8904
8960
9015

8797
8854
8910
8965
9020

8802
8859
8915
8971
9025

80
81

82

83

84

9031
9085
9138
9191
9243

9036
9090
9143
9196
9248

9042
9096
9149
9201
9253

9047
9101
9154
9206
9258

9053
9106
9159
9212
9263

9058
9112
9165
9217
9269

9063
9117
9170
9222
9274

9069
9122
9175
9227
9279

9074
9128
9180
9232
9284

9079
9133
9186
9238
9289

85
86

87

88

89

9294
9345
9395
9445
9494

9299
9350
9400
9450
9499

9304
9355
9405
9455
9504

9309
9360
9410
9460
9509

9315
9365
9415
9465
9513

9320
9370
9420
9469
9518

9325
9375
9425
9474
9523

9330
9380
9430
9479
9528

9335
9385
9435
9484
9533

9340
9390
9440
9489
9538

90
91

92

93

94

9542
9590
9638
9685
9731

9547
9595
9643
9689
9736

9552
9600
9647
9694
9741

9557
9605
9652
9699
9745

9562
9609
9657
9703
9750

9566
9614
9661
9708
9754

9571
9619
9666
9713
9759

9576
9624
9671
9717
9763

9581
9628
9675
9722
9768

9586
9633
9680
9727
9773

95
96

97

98

99

9777
9823
9868
9912
9956

9782
9827
9872
9917
9961

9786
9832
9877
9921
9965

9791
9836
9881
9926
9969

9795
9841
9886
9930
9974

9800
9845
9890
9934
9978

9805
9850
9894
9939
9983

9809
9854
9899
9943
9987

9814
9859
9903
9948
9991

9818
9863
9908
9952
9996
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(2) Suppose it is required to find the number of which

the logarithm is 3.7936.

Look for 7936 in the table. It cannot be found, but the

two adjacent mantissas between which it lies are seen to be

7931 and 7938 ; their difference is 7, and the difference be-

tween 7931 and 7936 is 5. Therefore, f of the difference

between the numbers corresponding to the mantissas, 7931

and 7938, must be added to the number corresponding to

the mantissa 7931.

The number corresponding to the mantissa 7938 is 6220.

The number corresponding to the mantissa 7931 is 6210.

The difference between these numbers is 10,

and 6210 + -^ of 10 = 6217.

Therefore, the number required is 6217.

(3) Suppose it is required to find the number of which

the logarithm is 7.3882 — 10.

Look for 3882 in the table. It cannot be found, but the

two adjacent mantissas between which it lies are seen to be

3874 and 3892 ; their difference is 18, and the difference

between 3874 and 3882 is 8. Therefore, j\ of the differ-

ence between the numbers corresponding to the mantissas,

3874 and 3892, must be added to the number corresponding

to the mantissa 3874.

The number corresponding to the mantissa 3892 is 2450.

The number corresponding to the mantissa 3874 is 2440.

The difference between these numbers is 10,

and 2440 + ^\ of 10 = 2444.

Therefore, the number required is 0.002444.



LOGARITHMS. 229

Exercise 43.

Find, from the table, the common logarithms of:

1. 60. 4. 3780. 7. 70633. 10. 0.0004523.

2. 101. 5. 5432. 8. 12028. 11. 0.01342.

3. 999. 6. 9081. 9. 0.00987. 12. 0.19873.

Find antilogarithms to the following common logarithms

:

13. 4.2488. 15. 4.7317. 17. 9.0410-10.

14. 3.6330. 16. 1.9730. 18. 9.8420-10.

281. Examples.

(1) Find the product of 908.4 X 0.05392 X 2.117.

log 908.4 = 2.9583

log 0.05392 = 8.7318 - 10

log 2.117 = 0.3257

2.0158 = log 103.7. Ans.

When any of the factors are negative, find their logarithms with-

out regard to the signs ; write — after the logarithm that corresponds

to a negative number. If the number of logarithms so marked be

odd, the product is negative ; if even, the product is positive.

(2) Find the product of 4.52 X (- 0.3721) X 0.912.

log 4.52 = 0.6551 +
log 0.3721 = 9.5706 - 10 -
log 0.912 = 9.9600 - 10 4-

0.1857 = log -1.534. Ans.

/ON T1- J ^-u ^- . ^ 8.3709 X 834.637
(3) Find the quotient of

^^qq^^q

log 8.3709 = 0.9227

log 834.637 = 2.9215

colog 7308.946 = 6.1362 - 10

9.9804 - 10 = log 0.9558. Ans.
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(4) Find the cube of 0.0497.

log 0.0497 = 8.6964 -

3

-10

(5)

6.0892 - 10 = log 0.0001228.

Find the fourth root of 0.00862.

log 0.00862 = 7.9355 - 10

30. - 30

Ans.

4)37.9355 - 40

.4839 - 10 - log 0.3047. Ans.

282. An exponential equation, that is, an equation in which

the exponent involves the unknown number, is easily

solved by logarithms.

Find the value of x in 8P = 10.

81* = 10.

/. log (81^) = log 10,

X log 81 = log 10,

^ _ logj^ _ LOOOO

log 81 1.9085
= 0.524. Ans.

Exercise 44.

Find by logarithms the following products :

1. 948.76x0.043875. 5. 7564 x (- 0.003764).

2. 3.4097 X 0.0087634. 6. 3.7648 X (- 0.083497).

3. 830.75x0.0003769. 7. -5.840359 x (-0.00178).

4. 8.4395x0.98274. 8. -8945.07x73.846.

9.

10.

Find by logarithms

:

70654
54013*

7.652

- 0.06875'

11.
0.07654

83.947 X 0.8395

212 x(-6.12)x(-2008)
365 X(- 531) X 2.576

"
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13. 1.1768^ 16. (H)". 19. (fft)«. 22. (8i)K

14. 1.3178^^ 17. (^y. 20. (7j\y-''. 23. (5fiff"^

15. lli 18. 906.80^. 21. 2.56371^. 24. {9^)K

510.0075433'^ X 78.343 x 8172.4^ x 0.QQ052

64285* X 154.27* x 0.001 x 586.79^

25.

26.

27.

4'

sf 7.1206 X VO.13274 x 0.057389

,(0.0327P X 53.429 X 0.77542^

32.769 X 0.000371*

VO.43468 X 17.385 X VO.0096372

Find X from the equations

:

28. 5^ = 12. 30. 7^ = 25. 32. (0.4)-'= 7.

1

29. 4^ = 40. 31. (1.3)^ = 7.2. 33. (0.9p= (4.7)-^

283. Change of System. Logarithms to any base a may

be converted into logarithms to any other base b as follows

:

Let iV"be any number, and let

n = logaN and m = logj N.

Then, JSf= a** and N= h"^.

Taking logarithms to any base whatever,

n log a = m log 6, § 265

or, log a X \ogaN= log h X logj iV,

from which logsN may be found when log a, log h, and

log„ N are given ; and conversely, log,N may be found

when loga, log J, and logs iV are given.
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284. If a = 10, h^ e, and N= 10, we have (§ 283)

logio 10 X logio 10 = logio e X loge 10.

.-. log,10 = -i-.
logio e

From tables logio e = 0.4342945.

.-. loge 10 = 2.3025851.

285. If a = 10, h = e, and iVis any number,

logio 10 X logioN= logio e X loge iV. § 283

.-. log, iV^=-i-X logio iV,

logio 6

and logio^= logio o X log^ JSF.

Hence, to convert common into natural logarithms, mul-

tiply by 2.3025851 ; and to convert natural into common

logarithms multiply by 0.4342945.

Exercise 45.

Find to four digits the natural logarithms of

:

1. 2. 3. 100. 5. 7.89. 7. 2.001.

2. 3. 4. 32.5. 6. 1.23. 8. 0.0931.

Find to four digits :

9. logjT. 11. log4 9. 13. logs 8. 15. log7l4.

10. logs 4. 12. logs?. 14. logs 5. 16. Iog5l02.

17. Find the logarithm of 4 in the system of which J is

the base.

18. Find the logarithm of -^j in the system of which 0.5

is the base.

19. Find the base of the system in which the logarithm

of 8 is |.

20. Find the base of the system in which the logarithm

off is -f.



CHAPTER XX.

INTEREST AND ANNUITIES.

286. Simple Interest.

If the principal be represented by P,

the interest on $1 for one year by r,

the amount of $1 for one year by R,

the number of years by n,

the amount of P for n years by A,

Then i? - 1 -f r.

Simple interest on P for a year = Pr,

Amount of P for a year = PP,
Simple interest on P for n years = Pnr,

Amount of P for n years = P(l + wr),

that is, A = P(l + nr).

287. When any three of the quantities A, P, n, r are

given, the fourth may be found.

Kequired the rate when $ 500 in 4 years at simple interest

amounts to $610.

r is required ; A, P, n are given.

^ = P(l + nr),

or A = P^Pnr.

.'. Pnr = A-F,

. ^^^LZjP^ 6^^0-500
^0.065.

•

Fn 2000

5J per cent. Ans.
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288. Since P will in n years amount to A, it is evident

that P at the present time may be considered equivalent in

value to A due at the end of n years ; so that P may be

regarded as \\iq present worth of a given future sum A.

Find the present worth of $600, due in 2 years, the rate

of interest being 6 per cent.

J. = P(l + nr).

.-. P= -^— = _1§22_ = 1535.71.
1 + nr 1 + 0.12

289. Compound Interest.

I. When compound interest is reckoned payable omnu-

ally.

The amount of P dollars in

1 year is P(l + o^ ^^.
2 years is PR{\ + r) or PR\
n years is PR"".

That is, A = PR'.

Hence, also, -P=—-•

II. When compound interest is payable semi-annually,

The amount of P dollars in

J year is p(l + -\

1 year is P\l +
| j ,

92 years is P[ 1 + -
J

.

That is, A = Pfl + ^Y^

III. When the interest is payable quarterly^M
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IV. When the interest is payable monthly,

V. When interest is payable q times a year,

Find the present worth of |500, due in 4 years, at 5 per

cent compound interest.

. ^ = P(l + rf.

.-. P=—^ =l^ = $411.36. Am.
(1 + r)* (1.05)*

290. Sinking Funds. If the sum set apart at the end of

each year to be put at compound interest be represented

by 8, then,

The sum at the end of the

first year = S,

second year = >iS'+ 8R,

third year =S+8R^8I^,
n th year =8+8R + 8R''\- + SR'-K

That is, the amount A = 8+8R-^ 8R' + + ^^"'•

.'. AR^--8R + 8R' + 8I^-{- + 8R^.

.-. AR-A^8R''-8
. ,_ 8(R^-1)" R — 1

'

8(R^-1)
or, A=

(1) If $10,000 be set apart annually, and put at 6 per

cent compound interest for 10 years, what will be the

amount ?

A SjE^ - 1) .
$ 10.000(1.06^0 _ 1)

r 0.06

By logarithms the amount is found to be 1 131,740 (nearly).
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(2) A county owes $60,000. What sum must be set

apart annually, as a sinking fund, to cancel the debt in 10

years, provided money is worth 6 per cent ?

o Ar $60,000x0.06 m.^f-f- / j^S= — = ^—'-— = 1 4555 (nearly).
i2«-l 1.061" -1 ^

^
^^

Note. The amount of tax required yearly is $3600 for the interest

and 1 4555 for the sinking fund ; that is, $8155.

291. Annuities. A sum of money that is payable yearly,

or in parts at fixed periods in the year, is called an annuity.

To find the aviount of an unpaid annuity when the inter-

est, time, and rate per cent are given.

The sum due at the end of the

first year = S,

second year = 8+ 8R,

third year = S -\- 8R -{- 8R\
n th year = 8 \- 8R + 8^" + + 8R''-\

That is, A= ^^\~^^
§290

An annuity of $ 1200 was unpaid for 6 years. What was

the amount due if interest be reckoned at 6 per cent ?

^ _ S{R''-\) _ $1200(1.06e-l) _ ^ gg^^
r 0.06

292. To find the present worth of an annuity when the

time it is to continue and the rate per cent are given.

Let P denote the present worth. Then the amount of

P for n years will be equal to A the amount of the

annuity for n years.

But the amount of P for n years

= P(l + r)« = Pi^, §289

and ^=^?(f^i). §291
R — 1

. p^r,^ 8{Rr~l)
:

* R-l
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P=.^x^-l
Br R-\

This equation may be written

B-l B' R-l\ B^J

As n increases, the expression

('-*)
approaches 1. Therefore if the annuity he perpetual,

B-1 r

(1) Find the present worth of an annual pension of $ 105,

for 5 years, at 4 per cent interest.

P- ^ w -?^"-l

j|105 1.0#-1 ^
1.0# 1.04-1 ^ ^ ^^

(2) Find the present worth of a perpetual scholarship

that pays $300 annually, at 6 per cent interest.

p=^=i^ = $5000.
r 0.06 *

293. To find the present worth of an annuity that begins

in a given number of years, when the time it is to continue

and the rate per cent are given.

Let p denote the number of years before the annuity

begins, and q the number of years the annuity is to

continue.

Then the present worth of the annuity to the time it

terminates is

i?'+« B-l '
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and the present worth of the annuity to the time it begins is

R^ R-l
Hence,

\B'+' R~\ 1 \R' R i}

If the annuity is to begin at the end of p years, and to

be perpetual, the formula

becomes P= _ , _——
- X -

R^+' R - 1

R\R - 1) R'

And since —-— approaches 1 (§ 292),
R^

R'(R - 1)

(1) Find the present worth of an annuity of $5000, to

begin in 6 years, and to continue 12 years, at 6 per cent

interest.

i^^+e E - 1

1.0618 ^ 0.06 *
'

(2) Find the present worth of a perpetual annuity of

$ 1000, to begin in 3 years, at 4 per cent interest.

P = ^ =
^^^'^'^ = $22,225.

Rp{B-l) 1.043x0.04
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294. To find the annuity when the present worth, the

time, and the rate per cent are given.

i^'^ - 1 Br~l

What annuity for 5 years will $4675 give when interest

is reckoned at 4 per cent ?

S=FrX -^—- = $4675 X 0.04 X
^'^^^ = $ 1050.

R^ - 1 1.04^ - 1

295. Life Insurance. In order that a certain sum may be

secured, to be payable at the death of a person, he pays

yearly a fixed premium.

If P denote the premium to be paid for n years to insure

an amount ^, to be paid immediately after the last pre-

mium, then

R-l
.^ p_ A{E-V) _ Ar

If A is to be paid a year after the last premium, then

p^ A{R-l) _
R{Br-l) B{I^-l)

Note. In the calculation of life insurances it is necessary to em-

ploy tables which show for any age the probable duration of life.

296. Bonds. If F denote the price of a bond that has n

years to run, and bears r per cent interest, S the face of

the bond, and q the current rate of interest, what interest

on his investment will a purchaser of such a bond receive ?

Let X denote the rate of interest on the investment.
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Then P(l -\- x^ is the value of the purchase money at

the end of n years.

jSr(l + qf-'' + jSr(l + qY'' + + Sr+S is the amount

of money received on the bond if the interest received from

the bond is put immediately at compound interest at q per

cent.

But Sr{l + qy-'' + jSr(l-\- qf-' + + Sr + S

••'+" U+ Fq

\ ^q
^

r
(1) What interest will a person receive on his invest-

ment if he buys at 114 a 4 per cent bond that has 26

years to run, money being worth 3i per cent?

1 :. / 3.5 + 4(1.035)^«-4y^
^^ 3.99 ;

By logarithms, 1 + x = 1.033.

That is, the purchaser will receive 3J per cent for his money.

(2) At what price must 7 per cent bonds, running 12

years, with the interest payable semi-annually, be bought,

in order that the purchaser may receive on his investment 5

per cent, interest semi-annual, which is the current rate of

interest ?

P-
<7(1 ^xf

In this case B= 100; and, as the interest is semi-annual,

g = 0.025, r = 0.035, w-24, a; = 0.025.

Hence. p^ 2.5 + 3.5(1.025^- 3.5.

0.025(1.025)24

By logarithms, P= 118.
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Exercise 46.

1. In how many years will $100 amount to $1050, at 5

per cent compound interest?

2. In how many years will $A amount to $5 (1) at

simple interest, (2) at compound interest, r and H being

used in their usual sense ?

3. Find the difference (to five places of decimals) be-

tween the amount of $ 1 in 2 years, at 6 per cent compound

interest, according as the interest is due yearly or monthly.

4. At 5 per cent, find the amount of an annuity of

fA which has been left unpaid for 4 years.

5. Find the present value of an annuity of $100 for 5

years, reckoning interest at 4 per cent.

6. A perpetual annuity of $1000 is to be purchased, to

begin at the end of 10 years. If interest is reckoned at 3 J

per cent, what should be paid for it ?

7. A debt of $1850 is discharged by two payments of

$ 1000 each, at the end of one and two years. Find the

rate of interest paid.

8. Reckoning interest at 4 per cent, what annual pre-

mium should be paid for 30 years, in order to secure $2000

to be paid at the end of that time, the premium being due

at the beginning of each year ?

9. An annual premium of $ 150 is paid to a life-insurance

company for insuring $5000. If money is worth 4 per cent,

for how many years must the premium be paid in order

that the company may sustain no loss?



242 ALGEBRA.

10. What may be paid for bonds due in 10 years, and

bearing semi-annual coupons of 4 per cent each, in order to

realize 3 per cent semi-annually, if money is worth 3 per

cent semi-annually ?

11. When money is worth 2 per cent semi-annually, if

bonds having 12 years to run, and bearing semi-annual

coupons of 3J per cent each, are bought at 114i, what per

cent is realized on the investment ?

12. If f 126 is paid for bonds due in 12 years, and yield-

ing 3^ per cent semi-annually, what per cent is realized on

the investment, provided money is worth 2 per cent semi-

annually ?

13. A person borrows $600.25, How much must he

pay annually that the whole debt may be discharged in

35 years, allowing simple interest at 4 per cent?

14. A perpetual annuity of $100 a year is sold for

$2500. At what rate is the interest reckoned?

15. A perpetual annuity of $320, to begin 10 years

hence, is to be purchased. If interest is reckoned at 3-^

per cent, what should be paid for it ?

16. A sum of $10,000 is loaned at 4 per cent. At the

end of the first year a payment of $400 is made; and at

the end of each following year a payment is made greater

by 30 per cent than the preceding payment. Find in

how many years the debt will be paid.

17. A man with a capital of $100,000 spends every

year $9000. If the current rate of interest is 5 per cent,

in how many years will he be ruined ?

18. Find the amount of $365 at compound interest for

20 years, at 5 per cent.



CHAPTER XXI.

CHOICE.

297. Fundamental Principle. If one thing can he done in

a different ways, and, when it has been done, a second thing

can he done in b different ways, then the two things can he

done together m a X b different ways.

For, corresponding to the first way of doing the first

thing, there are h different ways of doing the second thing
;

corresponding to the second W3ij of doing the first thing,

there are h different ways of doing the second thing ; and

so on for each of the a different ways of doing the first

thing. Therefore there are aX b different ways of doing

the two things together.

(1) If a box contains four capital letters. A, B, C, D,

and three small letters, x, y, z, in how many different ways

may two letters, one a capital letter and one a small letter,

be selected ?

A capital letter may be selected in four different ways, since any

one of the letters A, B, C, D, may be selected A small letter may

be selected in three different ways, since any one of the letters x, y, z,

may be selected. Any small letter may be put with any capital

letter.

Thus, with A we may put x, or 3/, or 2

;

with B we may put x, or y, or 2

;

with we may put x, or y, or z;

with D we may put x, or y, or z.

Hence the number of ways in which a selection may be made is

4 X 3, or 12. These ways are

:

Ax Bx Cx Dx

Ay By Oy Dy
Az Bz Cz Dz
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(2) On a shelf are* 7 English, 5 French, and 9 German

books. In how many ways may two books, not in the same

language, be selected ?

An English book and a French book can be selected in 7x5, or

35, ways. A French book and a German book in 5 x 9, or 45, ways.

An English book and a German book in 7 X 9, or 63, ways.

Hence, there is a choice of 35 + 45 + 63, or 143, ways. Ans.

(3) Out of the ten figures, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, how

many numbers, each consisting of two figures, can be formed?

Since has no value in the left-hand place, the left-hand place

can be filled in 9 ways.

The right-hand place can be filled in 10 ways, since repetitions of

the digits are allowed (as 22, 33, etc.).

Hence, the whole number is 9 x 10, or 90. Ans.

298. By successive application of the principle of § 297

it may be shown that,

If one thing can be done in a different ways, and then a

second thing can be done in b different ways, then a third

thing in c different ways, then a fourth thing in d different

ways, etc., the number of different ways of doing all the

things together will Je a X b X c X d, etc.

For, the first and second things can be done together in

axb different ways (§ 297), and the third thing in c differ-

ent ways; hence, by § 297, the first and second things and

the third thing can be done together m{aXb)X c different

ways. Therefore, the first three things can be done in

aX b X c different ways. And so on for any number of

things.

Ex. In how many ways can four Christmas presents be

given to four boys, one to each boy ?

The first present may be given to any one of the boys ; hence

there are 4 ways of disposing of it.
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The second present may be given to any one of the other three

boys ; hence there are 3 ways of disposing of it.

The third present may be given to either of the other two
boys ; hence there are 2 ways of disposing of it.

The fourth present must be given to the last boy ; hence there is

only 1 way of disposing of it.

There are, then, 4 X 3 x 2 x 1, or 24, ways. Arts.

299. Selections and Arrangements.

(1) In how many ways can a vowel and a consonant be

chosen out of the alphabet ?

Since there are in the alphabet 6 vowels and 20 consonants, a

vowel can be chosen in 6 ways and a consonant in 20 ways, and

both (g 297) in 6 X 20, or 120, ways.

(2) In how many ways can a two-lettered word be made,

containing one vowel and one consonant ?

The vowel can be chosen in 6 ways and the consonant in 20

ways ; and then each combination of a vowel and a consonant

can be written in 2 ways ; as ac, ca.

Hence, the whole number of ways is 6 x 20 x 2, or 240.

These two examples show the difference between a selec-

tion or combination of different things, and an arrangement

or permutation of the same things.

Thus, ac form a selection of a vowel and a consonant, and ac and

ca form two different arrangements of this selection.

From (1) it is seen that 120 different selections can be made with

a vowel and a consonant ; and from (2) it is seen that 240 diflferent

arrangements can be made with the same.

Again, a, 6, c is a selection of three letters from the alphabet.

This selection admits of 6 different arrangements, as follows

:

ahc bca cab

acb bac cba

A selection or combination of any number of things is a

group of that number of things put together without regard

to their order.
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An arrangement or permutation of any number of things is

a group of that number of things put together, regard being

paid to their order.

300. Arrangements, Things all different. The number of

different arrangements (or permutations) of n different things

taken all together is

n{n-l)(n~2){n-2>) 3x2x 1.

For, the first place can be filled in n ways, then the

second place in n — 1 ways, then the third place in n — 2

ways, and so on to the last place, which can be filled in

only 1 way.

Hence (§ 298) the whole number of arrangements is the

continued product of all these numbers,

n{n- l)(n - 2){n - 3) 3x2x1.

For the sake of brevity this product is written \n, and is

read factorial n.

Observe that 1x2 (w — 1) n =|n.

Ex. How many different arrangements of nine letters

each can be formed with the letters in Cambridge ?

There are nine letters. In making any arrangement any one of

the letters can be put in the first place. Hence, the first place can

be filled in 9 ways.

Then the second place can be filled with any one of the remain-

ing eight letters ; that is, in 8 ways.

In like manner, the third place can be filled in 7 ways, the fourth

place in 6 ways, and so on ; and, lastly, the ninth place in 1 way.

If the nine places be indicated by Roman numerals, the result

is (§ 298) as follows

:

I. II. III. IV. V. VI. VII. VIII. IX.

9x8x7x6x5x4x3 x 2x1= 362,880 ways.

Hence, there are 362,880 different arrangements possible.
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301. The number of different arrangements of n different

things taken x at a time is

n(n~ l)(n — 2) to r factors,

that is, n{n~ l){n — 2) [n — (r - 1)],

or n{n~-l){n~2) (n — r + l).

For, the first place can be filled in n ways, the second

place in n — 1 ways, the third place in n — 2 ways, and

the rth place in n — (r — 1) ways.

Let P„_ y represent the number of arrangements of n dif-

ferent things taken r at a time. Then

Pn^r = n(n — l)(n — 2) to r factors.

= n(n- l)(n — 2) (n - r -f 1).

Ex. How many different arrangements of four letters

each can be formed from the letters in Cambridge ?

There are nine letters and four places to be filled.

The first place can be filled in 9 ways. Then the second place

can be filled in 8 ways. Then the third place in 7 ways, and the

fourth place in 6 ways.

If the places be indicated by I., II., III., IV., the result is (§ 298)

I. II. III. IV.

9x8x7x 6 = 3024 ways.

Hence, there are 3024 different arrangements possible.

302. Selections, Things all different. The number of dif-

ferent selections (or combinations) of n different things taken

I at a time is

n(n-l)(n-2) (n-r + 1)

\r

To prove this, let C„, r represent the number of different

selections (or combinations) of n different things taken r at

a time.

Take one selection of r things ; from this selection \r

arrangements can be made (§ 300).
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Take a second selection ; from this selection [r arrange-

ments can be made. And so on for each of the Cn, r selec-

tions.

Hence, (7„_ ^ X |^ is the number of arrangements of n dif-

ferent things taken r at a time ; or

^n, r X [^== Jr^, r-

n -t^n, r

[r

_n{n-l){n-2) (n - r + 1)

Ex. In how many different ways can three vowels be

selected from the five vowels a, e, i, o, u.

The number of different ways in which we can arrange 3 vowels

out of 5 is (§ 301) 5 X 4 X 3, or 60.

These 60 arrangements might be obtained by first forming all the

possible selections of 3 vowels out of 5, and then arranging the 3

vowels in each selection in as many ways as possible.

Since each selection can be arranged in [3, or 6, ways (§ 300), the

number of selections is -\°- or 10. Ans.

The formula applied to this problem gives

C. 3 = ^^1X^ = 10.
' 1x2x3

303. Selections, Second Formula. Multiplying both numer-

ator and denominator of the expression for the number of

selections in the last example by 2 X 1, we have

C -^ 5x4x3x2xl _ [j
''' 1x2x3x2x1 [3|^'

In general, multiplying both numerator and denomina-

tor of the expression for C^^r in § 302 by \n — r, we have

n(n — l) (w — r+l)(n — r) 1
^"•*-

^
\r_x(n-r) 1 """

\r \n — r
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This second form is more compact than the first, and is

more easily remembered.

Note. In reducing a result expressed in the above form, it is to

be observed that \n — r cancels all the factors of the numerator from

112
1 up to and including n-r. Thus, in -^=-. LZ cancels all the fac-

tors of [12 from 1 up to and including 7 ; so that

Ijj _ 12x11 X 10x9x8
[5[7 1x2x3x4x5

= 792.

304. Theorem. The number of selections of n things taken

T at a time is the same as the number of selections of n things

taken n — i at a time.

\n \n
ror, ^n,n-r- |^_^, |^^_^^_^) \n - r \r

^''•'^

This is also evident from the fact that for every selection

of r things taken, a selection of n — r things is left.

Thus, out of 8 things, 3 things can be selected in the same number

of ways as 5 things ; namely,

JL = 8x7x6^^e
1315 \3

^

|1 1
Note. Evidently Ci, i = 1 ; also Ci, i = ~- = -

;

.-. 1 = 1, and 10 = 1.

[0

305. Examples in Selections and Arrangements. Of the

arrangements possible with the letters of the word Cam-

bridge, taken all together.

(1) How many will begin with a vowel ?

In filling the nine places of any arrangement the first place can

be filled in only 3 ways, the other places in 1 8^ ways.

Hence, the answer is (g 298)

3 X [8 = 120,960.
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(2) How many will both begin and end with a vowel ?

The first place can be filled in 3 ways, the last place in 2 ways

(one vowel having been used), and the remaining seven places in

[7 ways.

Hence, the answer is (§ 298)

3 X 2 X [7 = 30,240.

(3) How many will begin with Cam?
The answer is evidently [6 ; since our only choice lies in arrang-

ing the remaining six letters of the word.

(4) How many will have the letters cam standing

together ?

This may be resolved into arranging the group c a m and the last

six letters, regarded as seven distinct elements, and then arranging

the letters cam.
The first can be done in [7 ways, and the second in l_3_way8.

Hence both can be done in [7 xi^= 30,240 ways. Ans.

In how many ways can the letters of the word Cam-

bridge be written :

(5) Without changing the place of any vowel ?

The second, sixth, and ninth places can be filled each in only 1

way ; the other places in [6 ways.

Therefore, the whole number of ways is [6 = 720. Ans.

(6) Without changing the oi^der of the three vowels ?

The vowels in the different arrangements are to be kept in the

order a, i, e.

One of the six consonants can be placed in 4 ways : before a, be-

tween a and i, between i and e, and after e.

Then a second consonant can be placed in 5 ways, a third conso-

nant in 6 ways, a fourth consonant in 7 ways, a fifth consonant in 8

ways, and the last consonant in 9 ways. Hence the whole number

of ways is

4x5x6x7x8x9, or 60,480. Ans.
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(7) Out of 20 consonants, in how many ways can 18 be

selected ?

The 18 can be selected in the same number of ways as 2; and the

number of ways in which 2 can be selected is

^><^ = 190. Ans.
2

(8) In how many ways can the same choice be made so

as always to include the letter b ?

Taking b first, we must then select 17 out of the remaining 19

consonants. This can be done in

1^^^ = 171 ways. Ans.

(9) In how many ways can the same choice be made so

as to include b and not to include c ?

Taking b first, we have then to choose 17 out of 18, c being excluded.

This can be done in 18 ways. Ans.

(10) From 20 Republicans and 6 Democrats, in how

many ways can 5 different offices be filled, of which three

particular offices must be filled by Republicans, and the

other two offices by Democrats?

The first three offices can be assigned to 3 Repubhcans in

20x19x18 = 6840 ways;

and the other two offices can be assigned to 2 Democrats in

6 X 5 = 30 ways.

There is, then, a choice of 6840 X 30 = 205,200 different ways.

(11) Out of 20 consonants and 6 vowels, in how many

ways can we make a word consisting of 3 different conso-

nants and 2 different vowels?

Three consonants can be selected in ^^.'^^^^^^ = H^O ways.
i X ij X <J

and two vowels in ^^ = 15 ways. Hence the 5 letters can be selected

in 1140 X 15 = 17,100 ways.
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When five letters have been so selected, they can be arranged in

[5 = 120 different orders. Hence, there are 17,100 X 120 = 2,052,000

different ways of making the word.

Observe that the letters are first selected and then arranged.

(12) A society consists of 50 members, 10 of whom are

physicians. In how raany ways can a committee of 6

members be selected so as to include at least one physician ?

Six members can be selected from the whole society in

150

Six members can be selected from the whole society, so as to in-

clude no physician, by choosing them all from the 40 members who

are not physicians, and this can be done in

1 40

|50 140 .

Hence, -^==
,

' is the number of ways of selecting
[6 [44 [6 |_34

^ ^

the committee so as to include at least one physician.

306. Greatest number of Selections. To find for what value

of r the number of selections of n things, taken r at a time,

is the greatest.

The formula

C -: ^^^ ~ •'•)^^ ~ ^) (r^ — r + 1)

Ix2x3x T

may be written

The numerators of the factors on the right side of this

equation begin with n, and form a descending series with

the common difference 1 ; and the denominators begin with

1, and form an ascending series with the common difference

1. Therefore, from some point in the series, these factors
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become less than 1. Hence, the maximum product is

reached when that product includes all the factors greater

than 1.

I. When n is an odd number, the numerator and the

denominator of each factor will be alternately both odd and

both even ; so that the factor greater than 1, but nearest

to 1, will be the factor whose numerator exceeds the denom-

inator by 2. Hence, in this case, r must have such a value

that

, T I O 72—1
n — r-\-l = r-\-2, or r = —-—

II. When n is an even number, the numerator of the first

factor will be even and the denominator odd ; the numer-

ator of the second factor will be odd and the denominator

even ; and so on, alternately ; so that the factor greater

than 1, but nearest to 1, will be the factor whose numerator

exceeds the denominator by 1. Hence, in this case, r must

have such a value that

n-~r^\=r-\-\, or ^=o*

(1) What value of r will give the greatest number of

selections out of 7 things ?

Here n is odd, and r =—— = —— = 3.

Z "Z

. 7x6x5^3^ ^^3^
1x2x3

A XX. 7x 6x5x4 _ OK
^^'•^^'^^^^

^ = 1X2X3X4
-'''

When the number of things is odd, there will be two equal num-

bers of selections ; namely, when the number of things taken together

v&jud under o^nd just over one-half ofthe whole number of things.
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(2) What value of r will give the greatest number of

selections out of 8 things?

Here n is even, and r
2 2

8x7x6x5
1x2x3x4

= 70. Ans.

So that, when the number of things is even, the number of selec-

tions will be greatest when one-half of the whole are taken together.

307. Division into G-roups. The number of different ways

in which p -\- q things all different can be divided into two

groups of p things and q things, respectively, is the same

as the number of ways in which p things can be selected

from p -\- q tnmes, or-—;—

.

For, to each selection of p things taken corresponds a

selection of q things left, and each selection therefore effects

the division into the required groups.

(1) In how many ways can 18 men be divided into 2

groups of 6 and 12 each ?

|6I_12

(2) A boat's crew consists of 6 men, of whom 2 can row

only on the stroke side of the boat, and 1 can row only

.

on the bow side. In how many ways can the crew be

arranged?

There are left 3 men who can row on either side ; 1 of these must

row on the stroke side, and 2 on the bow side.

The number of ways in which these three can be divided is

-=— = 3 ways.

|2|i



CHOICE. 255

When the stroke side is completed, the 3 men can be arranged
in [3 ways ; likewise, the 3 men of the bow side can be arranged
in |_3 ways. Hence the arrangement can be made in

3x[3x|3_==]08 ways.

308. The number of different ways in which p-j- q-\-r

things all different can be divided into three groups of p
\p ~\- q -\- r

things, q things, and r things, respectively, is —

For, p-\- q-{-r things may be divided into two groups

ofp things and 2' + r things in
'^"^^"^^

ways ; then, the

group of q-\-r things may be divided into two groups of

q things and r things in - ways ; hence the division

into three groups may be effected in

\v-\-q^r \q-\-r \'p-\-q-^r

, .
X

, ,

or '

, , ,

ways.
\± k + ^ \i\l \r\i\l

And so on for any number of groups.

Ex. In how many ways can a company of 100 soldiers

be divided into three squads of 50, 30, and 20, respectively ?

1 100
'^^^^"^^^^^^^0[30^^'y^-

309. When the number of things is the same in two or

more groups, and there is no distinction to be made between

these groups, the number of ways given by the preceding

section is too large.

Ex. Divide the letters a, b, c, d, into two groups of two

letters each.

The number of ways given by § 307 is -^ = 6 ; these ways are :



IV. he ad.

V. hd ac.

VI. cd ah.
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I. ah cd.

II. ac hd.

III. ad he.

Since there is no distinction between the groups, IV. is the same

as III., V. the same as II., and VI. the same as I. Hence, the cor-

. 1 [i
rect answer is - X or 3.

2 (2|2

If, however, a distinction is to be made between the two groups

in any one division, the answer is 6.

In the case of three similar groups the result given by

§ 308 is to be divided by [3, the number of ways in which

three groups can be arranged among themselves ; in the

case of four groups by [4 ; and so on for any number of

groups.

(1) In how many ways can 18 men be divided into 2

groups of 9 each ?

118
According to | 307, the answer would be •—j

—

The two groups, considered as groups, have no distinction

;

therefore, permuting them gives no new arrangement, and the true

118
result is obtained by dividing the preceding by [2, and is —j

—

—
[2 [9 [9

If any condition be added that will make the two groups different,

if, for example, one group wear red badges and the other blue, then

118
the answer will be -=p-

[9[9

(2) In how many ways can a pack of 52 cards be di-

vided equally among four players, A, B, C, Dl
Here the assignment of a particular group to a different player

makes the division different, and there is therefore a distinction

between the groups ; the answer is

[52

(13 [13 1^ [13*
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(3) In how many ways can 52 cards be divided "into 4

piles of 13 each ?

Here there is no distinction between the groups, and the an-

swer is

[52

[4J13[13[13Q3*

Exercise 47.

1. How many numbers of five figures each can be

formed with the digits 1, 2, 3, 4, 5, no digit being repeated?

2. How many even numbers of four figures each can

be formed with the digits 1, 2, 3, 4, 5, 6, no digit being

repeated ?

3. How many odd numbers between 1000 and 5000

can be formed with the figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 0,

no figure being repeated? How many of these numbers

will be divisible by 5 ?

4. How many three-lettered words can be made from

the alphabet, no letter being repeated in the same word ?

5. In how many ways can 4 persons, A, B, (7, D, sit at

a round table ?

6. In how many ways can 6 persons form a ring?

7. How many words can be made with 9 letters, 3 let-

ters remaining inseparable and keeping the same order?

8. What will be the answer to the preceding problem if

the 3 inseparable letters can be arranged in any order?

9. A captain, having under his command 60 men, wishes

to form a guard of 8 men. In how many different ways

can the guard be formed?
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10. A detachment of 30 men mus^: furnish each night a

guard of 4 men. For how many nights can a different

guard be formed, and how many times will each soldier

serve ?

11. Out of 12 Democrats and 16 Kepublicans, how many
different committees can be formed, each committee con-

sisting of 3 Democrats and 4 Republicans ?

12. Out of 26 Republicans and 14 Democrats, how many
different committees can be formed, each committee consist-

ing of 10 Republicans and 8 Democrats ?

13. There are m different things of one kind and n dif-

ferent things of another kind ; how many different sets can

be made, each set containing r things of the first kind and

s of the second ?

14. With 12 consonants and 6 vowels, how many differ-

ent words can be formed consisting of 3 different consonants

and 2 different vowels, any arrangement of letters being

considered a word ?

15. With 10 consonants and 6 vowels, how many words

can be formed, each word containing 5 consonants and 4

vowels ?

16. How many words can be formed with 20 consonants

and 6 vowels, each word containing 3 consonants and 2

vowels, the vowels occupying the second and fourth places ?

17. An assembly of stockholders, composed of 40 mer-

chants, 20 lawyers, and 10 physicians, wishes to elect a

commission of 4 merchants, 1 physician, and 2 lawyers.

In how many ways can the commission be formed ?

18. Of 8 men forming a boat's crew, one is selected as

stroke. How many arrangements of the rest are possible ?

When the 4 men who row on each side are decided on, how

many arrangements are still possible ?
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19. A boat's crew consists of 8 men. Either A or B
must row stroke. Either B or C must row bow. D can

pull only on the starboard side. In how many ways can

the crew be seated?

Note. Stroke and bow are on opposite sides of the boat.

20. A boat's crew consists of 8 men. Of these, 3 can

row only on the port side, and 2 only on the starboard

side. In how many ways can the crew be seated ?

21. Of a base ball nine, either A or B must pitch;

either B or must catch ; D, E, and F play in the field.

In how many ways can the nine be arranged ?

22. How many signals may be made with 8 flags of dif-

ferent colors, which can be hoisted either singly, or any

number at a time one above another?

23. Of 30 things, how many must be taken together, in

order that having that number for selection, there may be

the greatest possible variety of choice ?

24. The number of combinations of w + 2 objects, taken

4 at a time, is to the number of combinations of n objects,

taken 2 at a time, as 11 is to 1. Find n.

25. The number of combinations of n things, taken r

together, is 3 times the number taken r — 1 together, and

half the number taken r + 1 together. Find n and r.

26. At a game of cards, 3 being dealt to each person,

any one can have 425 times as many hands as there are

cards in the pack. How many cards are there in the pack ?

27. It is proposed to divide 15 objects into lots, each

lot containing 3 objects. In how many ways can the lots

be made?
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In the preceding sections we have considered only prob-

lems in which the things were all different. We proceed

to problems in which some of the things are alike.

310.* Arrangements, Repetitions allowed. Suppose we have

n letters, which are all different, and that repetitions are

allowed.

Then, in making any arrangement, the first place can

be filled in n ways.

When the first place has been filled, the second place

can be filled in n ways, since repetitions are allowed. Hence
the first two places can be filled in nXn, or ri^, ways (§ 297).

Similarly, the first three places can be filled in n X n X n,

or n\ ways (§ 298).

In general, r places can be filled in rf ways ; or, the

number of arrangements of n different things taken r at

a time, when repetitions are allowed, is n^

(1) How many three-lettered words can be made from

the alphabet, when repetitions are allowed ?

Here the first place can be filled in 26 ways ; the second place in

26 ways ; and the third place in 26 ways. The number of words is,

therefore, 263 = 17,576. Ans.

(2) In the common system of notation, how many num-
bers can be formed, each number consisting of not more than

5 figures ?

Each of the possible numbers may be regarded as consisting of

5 figures, by prefixing zeros to the numbers consisting of less than 5

figures. Thus, 247 may be written 00247.

Hence, every possible arrangement of 5 figures out of the 10

figures, except 00000, will give one of the required numbers ; and

the answer is 10* - 1 = 99,999 ; that is, all the numbers between

and 100,000.
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311.* Arrangements, Things alike, All together. Consider

the number of arrangements of the letters a, a, b, b, b, c, d.

Suppose the a's to be different and the &'s to be different, and dis-

tinguish between them by ai, 02, hi, h-i, hz.

The seven letters can now be arranged in [7 ways (^ 300).

Now suppose the two a's to become alike, and the three J's to be-

come alike. Then, where we before had [2 arrangements of the a's

among themselves, we now have but one arrangement, aa; and

where we before had [3 arrangements of the &'s among themselves,

we now have but one arrangement, hhh.
*

Hence, the number of arrangements is -==— = 420.

In general the number of arrangements of n things, of

which p are alike, q others are alike, and r others are

alike, ,is

\n^

\2\l\L

(1) In how many ways can the letters of the word Col-

lege be arranged?

If the two Ts were different and the two e's were different, the

number of ways would be |_7. Instead of two arrangements of the

two Z's, we have but one arrangement, II ; and instead of two ar-

rangements of the two e's, we have but one arrangement, ee. Hence,

17

the number of ways is -—— = 1260. Ans.

(2) In how many ways can the letters of the word Mis-

sissippi be arranged ?

Ill*— = 34,560. Ans.
[4[4[2

(3) In how many different orders can a row of 4 white

balls and 3 black balls be arranged ?

17-1^ = 35. Am.
liii



262 ALGEBRA.

312.* Selections, Kepetitions allowed. We shall illustrate

by two examples the method of solving problems which

come under this head.

(1) In how many ways can a selection of 3 letters be

made from the letters a, h, c, c?, e, if repetitions are allowed?

The selections will be of three classes :

(a) All three letters alike.

.(&) Two letters alike.

(c) The three letters all different.

(a) There will be 5 selections, since any one of the five letters

may be taken three times.

(6) Any one of the five letters may be taken twice, and with these

may be put any one of the other four letters. Hence, the number

of selections is 5 X 4, or 20.

(c) The number of selections ^ 302) is ^ ^ ^ ^ ^
, or 10. Hence,.

1x2x3
the total number of selections is 5 + 20 + 10 = 35. Ans.

(2) How many different throws can be made with 4 dice ?

The throws may be divided into five classes

:

(a) All four dice alike.

ih) Three dice alike.

(c) Two dice alike, and the other two alike.

(c?) Two dice alike, and the other two different.

(e) The four dice different.

(a) There are six throws.

(6) Any of the six numbers may be taken three times, and with

these may be put any other of the five remaining numbers. Hence,

the number of throws is 6 X 5, or 30.

(c) Any two of the six pairs of doublets may be selected. Hence,

the number of throws is , or 15.
1X2

{d) Any pair of doublets may be put with any selection of two

different numbers from the remaining five. Hence, the number of

throws is 6 X^^ = 60.

1X2
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(e) The number of throws is
^X5x4x3 _ ^^^^ 1x2x3x4

The answer is, then, 6 + 30 + 15 + 60 + 15 = 126.

313.* Selections and Arrangements, Things alike. We shall

illustrate by an example the method of solving problems

which come under this head.

How many selections of four letters each can be made
from the letters in Proportion? How many arrangements

of four letters each ?

There are 10 letters as follows

:

p r t i n

p r

Selections :

The selections may be divided into four classes

:

(a) Three letters alike.

(&) Two letters alike, two others alike.

(c) Two letters alike, other two different.

(d) Four letters different.

(a) "With the three o's we may put any one of the five other letters,

giving 5 selections.

(6) We may choose any two out of the three pairs, o, o; p,p; r, r.

= 3 selections.
1X2

(c) With any one of the three pairs we can put any two of the

five remaining letters in the first line.

3 X = 30 selections.
1x2

/j\ 6x5x4x3 Tr- 1 ,
{a) ^ \,^ = 15 selections.

1x2x3x4
Hence, the total number of selections is

5 + 3 + 30 + 15 = 53.

Arrangements

:

14
(a) Each selection can be arranged in — = 4 ways.

\1

5 x 4 = 20 arrangements.
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14
(b) Each selection can be arranged in = 6 ways.

3 X 6 = 18 arrangements.

14
(c) Each selection can be arranged in — = 12 ways.

30 X 12 = 360 arrangements.

(d) Each selection can be arranged in [4 = 24 ways.

15 X 24 = 360 arrangements.

Hence, the total number of arrangements is

20 + 18 + 360 + 360 = 758.

314.* Total Number of Selections.

I. The luhole nmnher of ways in which a selection {of

some, or all) can be wadefrom n different things is 2"— 1.

For each thing can be either taken or left ; that is, can be

disposed of in two ways.

There are n things ; hence (§ 298) they can all be dis-

posed of in 2*" ways. But among these ways is included

the case in which all are rejected ; and this case is inad-

missible.

Hence, the number of ways of making a selection is

(1) In a shop window 20 different articles are exposed

for sale. What choice has a purchaser ?

220-1 = 1,048,575. Ans.

(2) How many different amounts can be weighed with

1 lb., 2 lb., 4 lb., 8 lb., and 16 lb. weights ?

25 - 1 = 31. Ans.

(Let the student write out the 31 weights.)

II. The whole number of ways in which a selection can

be 'madefrom p -f- q + r things, of ivhich p are alike, q_

are alike, r are alike, etc., is (p + l)(q + l)(r + 1) ••• 1.



CHOICE. 265

For the set of p things may be disposed of in ^ -j- 1

ways, since none of them may be taken, or 1, 2, 3,
,

or j9, may be taken.

In like manner, the q things may be disposed oim q-\-l

ways ; the r things in r + 1 ways ; and so on.

Hence (§ 298) all the things may be disposed of in

(i'+lX^ + lX^ + l) ways.

But the case in which all the things are rejected is in-

admissible ; hence, the whole number of ways is

(^ + l)(? + l)(r+l) -1.

Ex. In how many ways can 2 boys divide between them

10 oranges all alike, 15 apples all alike, and 20 peaches

all alike ?

Here, the case in which the first boy takes none, and the case in

which the second boy takes none, must be rejected.

Therefore, the answer is one less than the result, according to II.

11x16x21-2 = 3694. Ans.

Exercise 48.*

1. How many three-lettered words can be made from

the 6 vowels when repetitions are allowed ?

2. A railway signal has 3 arms, and each arm may take

4 different positions, including the position of rest. How
many signals in all can be made ?

3. In how many different orders can a row of 7 white

balls, 2 red balls, and 3 black balls be arranged ?

4. In how many ways can the letters of the word Math-

ematics, taken all together, be arranged?

5. How many different signals can be made with 10

flags, of which 3 are white, 2 red, and the rest blue, always

hoisted all together and one above another ?
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6. How many signals can be made with 7 flags, of which

2 are red, 1 white, 3 blue, and 1 yellow, always displayed

all together and one above another?

7. In how many ways can 5 letters be selected from a,

h, c, d, e,/, if each letter may be taken once, twice, up to

five times, in making the selection ?

8. In how many ways can 6 rugs be selected at a shop

where 2 kinds of rugs are sold ?

9. How many dominos are there in a set numbered

from double blank to double ten ?

10. In how many ways can 3 letters be selected from

n diflferent letters, when repetitions are allowed ?

11. Five flags of diflferent colors can be hoisted either

singly, or any number at a time, one above another. How
many diflferent signals can be made with them ?

12. If there are m kinds of things, and 1 thing of the

first kind, 2 of the second, 3 of the third, and so on, in how
many ways can a selection be made ?

13. How many selections of 6 letters each can be made
from the letters in Democracy ? How many arrangements

of 6 letters each ?

14. If of j9 + 2' -f r things, p are alike, and q are alike,

and the rest diflferent, show that the total number of selec-

tions is {p + V){q + 1) 2'- ^ 1.

15. Show that the total number of arrangements of 2w
letters, of which some are a's and the rest 6's, is greatest

when the number of a's is equal to the number of 5's.

16. If in a given number the prime factor a occurs m
times, the prime factor h, n times, the prime factor c, p
times, and these are all the factors, find the number of dif-

ferent divisors of the given number.



CHAPTER XXII.

CHANCE.

315. Definitions. If an event can happen in a ways and

fail in h ways, and all these a-\-h ways are equally likely

to occur ; if, also, one, and only one, of these a + 5 ways

can occur, and one must occur; then, the chance of the

event happening is -, and the chance of the event /ai7-

. . hmg IS

a + h

Thus, let the event be the throwing of an even number with a

single die.

The event can happen in 3 ways, by the die turning up a two, a

four, or a six ; and fail in 3 ways, by the die turning up a one, a

three, or a five ; and all these 6 ways are equally likely to occur.

Moreover, one, and only one, of these 6 ways can occur, and

one uMst occur (for it is assumed that the die is to be thrown).

Consequently, by the definition, the chance of throwing an even

3 1
number is , or - ; and the chance of throwing a number not

3 1
even, that is odd, is , or -.

3 + 3 2

The above may be regarded as giving a definition of the

term chance as that term is used in mathematical works.

Instead of chance, probability is often used.

316. Odds. In the case of the event in § 315 the odds

are said to be a to 5 in favor of the event, if a is greater

than b \ and 5 to a against the event, if b is greater

than a.

li a = b, the odds are said to be even on the event.
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Thus the odds are 5 to 1 against throwing a six in one throw with

a single die, since there are 5 unfavorable ways and 1 favorable way,

and all these 6 ways are equally likely to occur.

317. Enles. From the definitions it is evident that

:

The chance of an event happening is expressed by the

fraction of which the numerator is the number of favorable

ways, and the denominator the whole number of ways favor-

able and unfavorable.

For example, take the throwing of a six with a single die. The

number of favorable ways is 1 ; the whole number of ways is 6.

Hence, the chance of throwing a six is \.

The chance of an event not happening is expressed by the

fraction of which the numerator is the nurnber of unfavora-

ble ways, and the denominator the whole number of ways

favorable and unfavorable.

For example, take the throwing of a six with a single die. The

number of unfavorable ways is 5 ; the whole number of ways is 6.

Hence, the chance of not throwing a six is |.

318. Certainty. If the event is certain to happen, there

are no ways of failing, and ^ == 0. The chance of the event

happening is then = 1. Hence certainty is expressed

by 1.

It is to be observed that the fraction which expresses a

chance (or probability) is less than 1, unless the event

is certain to happen, in which case the chance of the event

happening is 1.

319. Since -^+_L^ = 1,

we have

a + b

b

a-\-b a-{-b

Hence, if p is the chance of an event happening, 1 —p
IS the chance of the event failing.
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320. Examples. Simple Event.

(1) What is the chance of throwing double sixes in one

throw with two dice?

Each die may fall in 6 ways, and all these ways are equally

likely to occur. Hence, the two dice may fall in 6xQ, or 36, ways

(§ 297), and these 36 ways are all equally likely to occur. More-

over, only one of the 36 ways can occur, and one must occur.

There is only one way which will give double sixes. Hence the

chance of throwing double sixes is -j^.

Remaek. It may seem as though the number of ways in which

the dice can fall ought to be 21, the number of different throws that

can be made with two dice. These throws, however, are not all

equally likely to occur.

To obtain ways that are equally likely to occur we must go back

to the case of a single die. One die can fall in 6 ways, and from the

construction of the die it is evident that these 6 ways are all

equally likely to occur.

Also the second die can fall in 6 ways, all equally likely to occur.

Hence, the two dice can fall in 36 ways, all equally likely to occur

Q 297).

In this case the throw, first die five second die six, is con-

sidered a different throw from first die six second die five. Con-

sequently, the chance of throwing a five and a six is /^, or y\, while

the chance of throwing double sixes is only -^^. This verifies the

statement already made, that the 21 different throws are not all

equally likely to occur.

(2) What is the chance of throwing one, and only one,

five in one throw with two dice ?

The whole number of ways, all equally likely to occur, in which

the dice can fall is 36. In 5 of these 36 ways the first die will be a

five, and the second die not a five; in 5 of these 36 ways the second

die will be a five, and the first not a five. Hence, in 10 of these ways

one die, and only one die, will be a five ; and the required chance is

ii or t\-

The odds are 13 to 5 against the event.
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(3) In the same problem, what is the chance of throwing

at least one five ?

Here we have to include also the way in which both dice fall

fives, and the required chance is ^\.

The odds are 25 to 11 against the event.

(4) What is the chance of throwing a total of 5 in one

throw with two dice ?

The whole number of ways, all equally likely to occur, in which

the dice can fall is 36. Of these ways 4 give a total of 5 ; viz., 1 and

4, 2 and 3, 3 and 2, 4 and 1. Hence, the required chance is /g, or \.

The odds are 8 to 1 against the event.

(5) From an urn containing 5 black and 4 white balls,

3 balls are to be drawn at random. Find the chance that

2 balls will be black and 1 white.

There are 9 balls in the urn. The whole number of ways in which

3 balls can be selected from 9 is •

, or 84.
1x2x3

From the 5 black balls 2 can be selected in
, or 10, ways

;

i X .^

from the 4 white balls 1 can be selected in 4 ways ; hence, 2 black

balls and 1 white ball can be selected in 10 X 4, or 40, ways.

The required chance is ff = \^.

The odds are 11 to 10 against the event.

(6) From a bag containing 10 balls, 4 are drawn and

replaced ; then 6 are drawn. Find the chance that the 4

first drawn are among the 6 last drawn.

The second drawing could be made altogether in

110

j|^
= 210 ways.

But the drawing can be made so as to include the 4 first drawn in

ill
= 15 ways,

since the only choice consists in selecting 2 balls from the 6 not pre-

viously drawn. Hence, the required chance is ^-^-^ = -^^.
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(7) If 4 coppers are tossed, what is the chance that ex-

actly 2 will turn up heads ?

Since each coin may fall in 2 ways, the 4 coins may fall in 2* = 16

ways (§ 298). The 2 coins to turn up heads can be selected from the

4x3
4 coins in = 6 ways. Hence, the required chance is j\ = |.

1 X ^

The odds are 5 to 3 against the event.

(8) In one throw with two dice which sum is more likely

to be thrown, 9 or 12 ?

Out of the 36 possible ways of falling, four give the sum 9 (namely,

6 + 3, 3 + 6, 5 + 4, 4 + 5), and only one way gives 12 (namely, 6 + 6).

Hence, the chance of throwing 9 is four times that of throwing 12.

Note. It will be observed in the above examples that we some-

times use arrangements and sometimes use selections. In some prob-

lems the former, in some problems the latter, will give the ways

which are all equally likely to occur.

In some problems we can use either selections or arrangements.

Exercise 49.

1. The chance of an event happening is ^. What are

the odds in favor of the event ?

2. If the odds are 10 to 1 against an event, what is the

chance of its happening ?

3. The odds against an event are 3 to 1. What is the

chance of the event happening ?

4. The chance of an event happening is f. Find the

odds against the event.

5. In one throw with a pair of dice what number is

most likely to be thrown ? Find the odds against throwing

that number.

6. Find the chance of throwing doublets in one throw

with a pair of dice.
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7. If 4 cards are drawn from a pack of 52 cards, what

is the chance that there will be one of each suit ?

8. If 4 cards are drawn from a pack of 52 cards, what

is the chance that they will all be hearts ?

9. If 10 persons stand in a line, what is the chance that

2 assigned persons will stand together ?

10. If 10 persons form a ring, what is the chance that

2 assigned persons will stand together ?

11. Three balls are to be drawn from an urn containing

5 black, 3 red, and 2 white balls. What is the chance of

drawing 1 red and 2 black balls ?

12. In a bag are 5 white and 4 black balls. If 4 balls

are drawn out, what is the chance that they will be all of

the same color?

13. If 2 tickets are drawn from a package of 20 tickets

marked 1, 2, 3, , what is the chance that both will be

marked with odd numbers ?

14. A bag contains 3 white, 4 black, and 5 red balls

;

3 balls are drawn. Find the odds against the 3 being of

three different colors.

15. Show that the odds are 35 to 1 against throwing 16

in a single throw with 3 dice.

16. There are 10 tickets numbered 1, 2, 9, 0. Three

tickets are drawn at random. Find the chance of drawing

a total of 22.

17. Find the probability of throwing 15 in one throw

with 3 dice.

18. With 3 dice, what are the relative chances of throw-

ing a doublet and a triplet ?

19. If 3 cards are drawn from a pack of 52 cards, what

is the chance that they will be king, queen, and knave?
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321. Dependent and Independent Events. Thus far we
have considered only single events. We proceed to cases

in which there are two or more events.

Two or more events are dependent or independent, accord-

ing as the happening (or failing) of one event does or does

not aifect the happening (or failing) of the other events.

Thus, throwing a six and throwing a five in any particular throw

with one die are dependent events, since the happening of one

excludes the happening of the other.

But, with two dice, throwing a six with one die and throwing a

five with the other are independent events, since the happening of

one has no effect upon the happening of the other.

322. Events Mutually Exclusive. When several depend-

ent events are so related that one, and only one, of the

events can happen, the events are said to be mutually

exclusive.

Thus, let a single die be thrown, and regard its falling one up,

two up, three up, etc., as six different events. Then, these six events

are evidently mutually exclusive.

323. If there are several events of which one, and only one,

can happen, the chance that one will happen is the sum of

the respective chances of happening.

To prove this, let a, a', a", be the number of ways

favorable to the first, second, third, events, respectively,

and w the number of ways unfavorable to all the events,

these a + a' + a" + + ^ ways being all equally likely

to occur, and such that one tnust occur.

Represent by n the sum a + a' + a" + -\-rri.

Of the n ways which may occur, a, a\ a", ways are

favorable to the first, second, third, events, respectively.

Hence, the respective chances of happening are
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Of the n ways which may occur,'a + a' -f <^" + ways

are favorable to the happening of some one of the events.

Hence, the chance that some one of the events will happen

a + <^' + <^" + <^ <^' ct^'

IS , or - H 1 [-

n n n n
If, then, JO, ^', _p", be the respective chances of hap-

pening of the first, second, third, , of several mutually

exclusive events, the chance that some one of the events

will happen isp +_p' +p" +
Thus, let the throwing of a two, a four, and a six, with a single

die, be three events. These three events are evidently mutually

exclusive.

There are 6 ways, all equally likely to occur, in which the die

can fall ; of these 6 ways one must occur and only one can occur.

The chance of throwing a two is -^ ; of throwing a four, \ ; of

throwing a six, \ ; since there is but one favorable way in each case.

The chance of throwing an even number is |, since 3 out of

the 6 ways are favorable ways.

But I = i + i + i; hence | is the sum of the respective chances

of throwing a two, a four, a six. Cf. § 315, Ex.

324. Compound Events. If there are two or more events,

the happening of them together, or in succession, may be

regarded as a compound event.

Thus, the throwing of double sixes with a pair of dice may be

regarded as a compound event compounded of the throwing of a six

with the first die and the throwing of a six with the second die.

325. Concurring Independent Events. The chance that two

or more independent events will happen together is the

product of the respective chances of happening.

To prove this, let a and a' be the number of ways favor-

able to, and h and V the number of ways unfavorable to,

the first and second events respectively; the a-\-h ways

being all equally likely to occur, and such that one must
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occur, and only one can occur ; and the o) + ^' ways being

all equally likely to occur, and such that one must occur,

and only one can occur.

Then, the respective chances of happening are _ and

— — ; and the respective chances of failing are and
a' + 5' ^ ^ a + b

V——— . Kepresent the former byp and p'
; then the latter

ct ~\~ o

will be 1 —p and 1 — p^-

Consider the compound event. There are (§ 297) {a + h)

(a' + b') ways, all equally likely to occur, of which one

must occur, and only one can occur.

The number of ways in which both events can happen

is aa' ; hence, the chance that both events will happen is

aa' a ^^ a'
,

(a + bXa' + b') a + b a' + b'

Similarly, the chance that both events will fail is

bb'
a-pXl-p');

1 happen a

P(i-P'):

1 fail and

(,a + b)(a' + b')

the chance that the first will happen and the second fail is

ab'

(a + bXa' + b')

the chance that the first will fail and the second happen is

ba'

(a + bXa' + b')

Similarly for three or more events.

326. Successive Dependent Events. By a slight change in

the meaning of the symbols of § 325, we can find the chance

of the happening together of two or more dependent

events.
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For, suppose that, after the first eve7it has happened, the

second event can follow in a' ways and not follow in 6'

aOj
ways. Then the two events can happen in -—

—

--

ways ; and so on as in § 325.

Hence, if p is the chance that the first event will hap-

pen, andj9' the chance that after the first event has hap-

pened the second will follow, p]p' is the chance of both

happening
;

(1 —p) (1 — ^'), the chance of both failing

;

and so on.

Similarly for three or more events.

327. Examples. (1) What is the chance of throwing,

double sixes in one throw with two dice ?

Regard this as a compound event. The chance that the first die

will turn up a six is \\ the chance that the second die will turn up a

six is \ ; the chance that both dice will turn up sixes is | X |, or -^^.

The events are here independent. In Ex. 1, § 320, the throwing of

double sixes is regarded as a simple event.

(2) What is the chance of throwing one, and only one,

five, in a single throw with two dice ?

The chance that the first die will be a five, and the second not a

five, is-g-Xf =y6; the chance that the first die will not be a five,

and the second die a five, is f X -^ = g^. These two events are de-

pendent and mutually exclusive, and the chance that one or the other

of them will happen is {I 323) ^\ + ^\ = j\. Of. Ex. 2, § 320.

(3) What is the chance of throwing a total of 5 in one

throw with two dice ?

There are 4 ways of throwing 5 : 1 and 4, 2 and 3, 3 and 2,

4 and 1. The chance of each of these ways happening is ^^. The

events are mutually exclusive ; hence, the chance of some one hap-

pening is (§ 323) ^V + ^V + iV + j\ = i- Cf. Ex. 4, § 320.
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(4) A bag contains 3 balls, 2 of which are white ; an-

other bag contains 6 balls, 5 of which are white. If a

person is to draw one ball from each bag, what is the

chance that both balls drawn will be white ?

The chance that the ball drawn from the first bag will be white

is f ; the chance that the ball drawn from the second bag will be

white is |. The events are independent; hence, the chance that

both balls will be white is f X f = f (^ 325).

(5) In the last example, if all the balls are in one bag,

and 2 balls are to be drawn, what is the chance that both

balls will be white ?

The chance that the first ball will be white is | ; the chance that,

after 1 white ball has been drawn, the second will be white, is f

;

the chance of drawing 2 white balls is (^ 326) | X f = jV

(6) The chance that A can solve this problem is | ; the

chance that B can solve it is y^. If both try, what is

the chance (1) that both solve it
; (2) that A solves it, and

B fails; (3) that A fails, and B solves it
; (4) that both fail?

A's chance of success is |, A's chance of failure is ^.

B's chance of success is y\, B's chance of failure is ^^.

Therefore, the chance of (1) is f X -^^ = ^f

;

the chance of (2) is | x xV = it

;

the chance of (3) is ^ X x\ = -r?

;

the chance of (4) is |- X yV = sV-

The sum of these four chances is ^f 4- \^ + -j^ + /^ = 1, as it ought

to be, since one of the four results is certain to happen.

(7) In Ex. (6) what is the chance that the problem will

be solved ?

The chance that hoth fail is ^^. Hence, the chance that both do

not fail, or that the problem will be solved, is 1 — ^-^ = f| (§ 319).

(8) From an urn containing 5 black and 4 white balls,

3 balls are to be drawn at random. Find the chance that

of the 3 balls 2 will be black and 1 white.
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There are 9 balls in the urn. Suppose the balls to be drawn 1

at a time. The white ball may be either the first, second, or third

ball drawn. In other words, one white ball and two black balls may
13

be drawn in -—=- = 3 ways (| 307).

IlLf

The chance of the order, white black black, is | X f X f = |f

.

The chance of the order, black white black, is f x f X f = -^f

.

The chance of the order, black black white, is | X f X y == ^f

.

Hence, the required chance is if + it + if = M (^ 323).

The method of Ex. 5, § 320, is, however, recommended for prob-

lems of this nature.

(9) When 6 coins are tossed, what is the chance that one,

and onfy one, will fall with the head up ?

The chance that the first alone falls with the head up is (| 325)

J X i X J X J X 2 X J = -gV ; ^he chance that the second alone falls

with the head up is ^\ ; and so on for each of the 6 coins.

Hence, the chance that some one coin, and only one coin, falls

with the head up is ^ + ^^ + ^\ + ^\ + ^\ + -^^ = -^^ = j\.

(10) When 6 coins are tossed, what is the chance that at

least one will fall with the head up ?

The chance that all will fall heads down is ^X^X ^X ^X ^X^
= ^^. Hence, the chance that this will not happen is 1 — ^^ = ||.

(11) A purse contains 9 silver dollars and 1 gold eagle,

and another contains 10 silver dollars. If 9 coins are

taken out of the first purse and put into the second, and

then 9 coins are taken out of the second and put into the

first purse, which purse now is the more likely to contain

the gold coin ?

The gold eagle will not be in the second purse unless it (1) was

among the 9 coins taken out of the first and put into the second

purse
; (2) and not among the 9 coins taken out of the second and put

into the first purse. The chance of (1) is -^-q, and when (1) has hap-

pened, the chance of (2) is yf . Hence, the chance of both happening

is ^^ X xt = T^7-
Therefore, the chance that the eagle is in the second
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purse is -^g, and the chance that it is in the first purse is 1 — j^^ = \^.

Since ^f is greater than ^^, the gold coin is more likely to be in the

first purse than in the second.

Note. The expectation from an uncertain event is the product of

the chance that the event will happen by the amount to be realized in

case the event happens.

(12) In a bag are 2 red and 3 white balls. A is to draw

a ball, then B, and so on alternately ; and whichever draws

a white ball first is to receive $ 10. Find their expectations.

A's chance of drawing a white ball at the first trial is |. B's

chance of having a trial is equal to A's chance of drawing a red

ball = |. In case A drew a red ball, there would be 1 red and 3 white

balls left in the bag, and B's chance of drawing a white ball would

be f. Hence, B's chance of having the trial and drawing a white

ball is f X f = j^(y ; and B's chance of drawing a red ball is | x {=tu-
A's chance of having a second trial is equal to B's chance of draw-

ing a red ball = ^^. In case B drew a red ball, there would be 3

white balls left, and A's chance of drawing a white ball would be

certaimy, or 1.

A's chance, therefore, is f + ^^ = -^j^ ; and B's chance is y^^.

A's expectation, then, is $7, and B's $3.

328. Repeated Trials. Given the chance of an event

happening in one trial, to find the chance of its happening

exactly once, twice, r times in n trials.

Jjetp be the chance of the event happening, and q the

chance of the event failing, in one trial ; so that q=l —p.
In n trials the event may happen exactly n times, n—1

times, n—2 times, down to no times. The respective

chances of happening are as follows :

n times. The required chance by § 325 is p"*.

n—1 times. The one failure may occur in any one of

the n trials ; that is, in n ways. The chance of any particu-

lar way occurring is p''~'^q
; the required chance is there-

fore wp"~^ q.
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n — 2 times. The two failures may occur in any two of

n (n-V)
the n trials ; that is, in ^ —^ ways. The chance of

any particular way occurring is
p'^~'^ q-

; the required chance

is therefore ^ —^
p^~'^

(f.

r times. The n — r failures may occur in any n — r oi

\n
the n trials ; that is, in ways. The chance of any

\n — r [r

particular way occurring is p"" q"'~''
; the required chance is

therefore —^-—-p'cf *.

I

n -— r
I

r

\n
Similarly, the chance of exactly r failures is—-^= p""'' q^.

\r_ \n — r

The coefficients for r successes and r failures are the same

by § 304.

If, then, (p + qf be expanded by the binomial theorem,

it is evident that the successive terms are the chances that

the event will happen exactly n times, n~\ times, down

to no times.

The chances that the event will happen at least r times

\n
in n trials is evidently p"" + np^~'^q + —~— p'q^^''.

\n — r \t_

Note. Since p + g- = 1, we have, whatever the value of ?i,

1 =pn + np'^-'^q + + np^-'^ + g^

a somewhat remarkable equation inasmuch as there exists but one

relation betwen p and q, viz., p + q = 1.

329. Examples.

(1) What is the chance of throwing a six exactly 3 times

in 5 trials with a single die ? At least 3 times ?

There are to be two failures. The two failures may occur in any

2 of the 5 trials ; that is, in , or 10, ways. In any particular
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way there will be 3 sixes and 2 failures, and the chance of this

way occurring is (|^)^(|)^ ; the chance of throwing exactly 3 sixes is

therefore

^Q/iy/SN 250^ 125

\Q) Uy 65 3888'

The chance of throwing at least 3 sixes is found by adding

together the respective chances of throwing 5 sixes, 4 sixes, 3 sixes

;

and is {\f + 5(^)*(t) + 10^)3(1)2 = ^^.

(2) A's skill at a game, which cannot be drawn, is to B's

skill as 3 to 4. If they play 3 games, what is the chance

that A will win more games than B ?

Their respective chances of winning a particular game are f and f

,

For A to win more games than B, he must win all 3 games or 2

games. The chance that A wins all 3 games is (f
)^ = ^^-^. The chance

that A wins any particular set of 2 games out of the 3 games, and

that B wins the third game, is (f)2 x (|). As there are 3 ways of

selecting a set of 2 games out of 3, the chance that A wins 2 games,

and B the third game, is 3 x {^Y X f = -jff . Hence, the chance that

A wins more than B is f^-^ + \l\ = |ff

.

(3) In the last example, find B's chance of winning more

games than A.

B's chance of winning all 3 games is {ff = /j*j. The chance that

B wins 2 games, and A the third game, is 3 x {jY X f = j|f . Hence,

B's chance of winning more games than A is -^^j + i|| = ||f.

Notice that A's chance added to B's chance, ||f + |f |, is 1. Why
should this be so?

(4) A and B throw with a single die alternately, A
throwing first ; and the one who throws an ace first is to

receive a prize of $ 110. What are their respective expecta-

tions ?

The chance of winning the prize at the first throw is ^ ; of win-

ning at the second throw | X ^ ; of winning at the third throw

(fF X 1^ ; of winning at the fourth throw (f
)' X ^ ; and so on.

Hence, A's chance is ^ + {^f^ + (f)*^ +
, and B's chance is

(f)i + (l)'i + (t)^i + Evidently B's chance is I of A's chance.
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Since A's chance + B's chance = 1, A's chance must be j\ and

B's y\. A's expectation is j\ of $110, or $66 ; and B's ^j of 1 110,

or 1 55.

This problem may also be solved as follows : A's chance, by § 131,

is ^6^ and B's j^. Then A's expectation is $66, and B's $55.

Exercise 50.

1. One of two events must happen. If the chance of

one is f that of the other, find the odds on the first.

2. There are three events, A, B, C, of which one must

happen, and only one can happen. The odds are 3 to 8 on

A, and 2 to 5 on B. Find the odds on 0.

3. In one bag are 9 balls and in another 6
;
and in

each bag the balls are marked 1, 2, 3, etc. What is the

chance that on drawing one ball from each bag the two

balls will have the same number?

4. What is the chance of throwing at least one ace in 2

throws with one die ?

5. Find the probability of throwing a number greater

than 9 in a single throw with a pair of dice.

6. The chance that A can solve a certain problem is
-J,

and the chance that B can solve it is f . What is the

chance that the problem will be solved if both try ?

7. A, B, C have equal claims for a prize. A says to B,

" You and draw lots, and the winner shall draw lots with

me for the prize." Is this fair?

8. A bag contains 5 tickets numbered 1, 2, 3, 4, 5.

Three tickets are drawn at random, the tickets not being

replaced after drawing. Find the chance of drawing a

total of 10.
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9. A bag contains 10 tickets, 5 marked 1, 2, 3, 4, 5, and

5 blank. Three tickets are drawn at random, each being

replaced before the next is drawn. Find the probability

of drawing a total of 10.

10. Find the probability of drawing in the previous

example a total of 10 when the tickets are not replaced.

11. A bag contains four $10 gold-pieces, and six silver

dollars. A person is entitled to draw 2 coins at random.

Find the value of his expectation.

12. Six $5 pieces, four $3 pieces, and five coins which

are either all gold dollars or all silver dimes are thrown

together into a bag. Assuming that the unknown coins are

equally likely to be dimes or dollars, what is a fair price

to pay for the privilege of drawing at random a single

coin?

13. A bag contains six $5 pieces, and four other coins

which have all the same value. The expectation of draw-

ing at random 2 coins is worth $8.40. Find the value of

each of the unknown coins.

14. Find the probability of throwing at least one ace in

4 throws with a single die.

, 15. A copper is tossed 3 times. Find the chance that

it will fall heads once and tails twice.

16. "What is the chance of throwing double sixes at least

once in 3 throws with a pair of dice ?

17. Two bags contain each 4 black and 3 white balls.

A ball is drawn at random from the first bag, and if it be

white, it is put into the second bag, and a ball drawn at

random from that bag. Find the odds against drawing

two white balls.
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18. A and B play at chess, and A wins on an average 2

games oat of 3. Find the chance of A's winning exactly

4 games out of the first 6, drawn games being disregarded.

19. At tennis A on an average beats B 2 games out of 3.

If they play one set, find the chance that A will win by the

score of 6 to 2.

20. A and B, two players of equal skill, are playing

tennis. A wants 2 games to complete the set, and B wants

3 games. Find the chance that A will win the set.

21. If n coins are tossed up, what is the chance that one,

and only one, will turn up head ?

22. A bag contains n balls. A person takes out one

ball, and then replaces it. He does this n times. What is the

chance that he has had in his hand every ball in the bag ?

23. If on an average 9 ships out of 10 return safe to

port, what is the chance that out of 5 ships expected at

least 3 will safely return ?

24. At tennis A beats B on an average 2 games out of

3 ;
if the score is 4 games to 3 in B's favor, find the chance

of A's winning 6 games before B does.

25. A bets B $10 to $1 that he will throw heads at

least once in 3 trials. What is B's expectation? What
would have been a fair bet ?

26. A draws 5 times (replacing) from a bag containing

3 white and 7 black balls, drawing each time one ball

;

every time he draws a white ball he is to receive f 1, and

every time he draws a black ball he is to pay 50 cents.

What is his expectation ?

27. From a bag containing 2 eagles, 3 dollars, and 3

quarter-dollars, A is to draw 1 coin and then B 3 coins
;

and A, B, and C are to divide equally the value of the re-

mainder. What are their expectations ?
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330 * Existence of Causes. In the problems thus far con-

sidered we have been concerned only with future events

;

we now proceed to a different class of problems, problems

of which the following is the general type.

An event has happened. There are several possible

causes, of which one must have existed, and only one can

have existed. From the several possible causes a particular

cause is selected ; required the chance that this was the

true cause.

Before proceeding to the general problem we shall con-

sider some examples.

(1) Ten has been thrown with 2 dice. Kequired the

chance that the throw was double fives.

Ten can be thrown in 3 ways : 6, 4 ; 4, 6 ; 5, 5. One of these

three ways must have occurred, and only one can have occurred.

Before the event the chances that these respective ways would

occur were all equal.

We shall assume that after the event the chances that these respec-

tive ways have occurred are all equal.

Then, precisely as in | 315, the chance that the throw was double

fives is ^ ; and the chance that the throw was a six and a four is

(2) Fifteen has been thrown with 3 dice. Required the

chance that the throw was 3 fives.

Fifteen can be thrown in 10 ways

:

6 54 546 456 663 366
645 564 465 636 555

One of these 10 ways must have occurred, and only one can have

occurred.

Before the event the chances that these respective ways would

occur were all equal.

We shall assume that after the event the chances that the respective

ways have occurred are all equal.

Then, precisely as in § 315, the chance that the throw was 3 fives

i8 ^. Ans.
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(3) A box contains 4 white balls and 2 black balls.

Two balls are drawn at random and put into a second box.

From the second box 1 ball is then drawn and found to

be white. Eequired the chance that the two balls in the

second box are both white.

Before the event there were three cases which might exist. These

cases, with the respective chances of existence, were as follows

:

The second box might contain :

(a) 2 white balls, of which the chance was f

.

(6) 1 white and 1 black ball, of which the chance was -^-^.

(c) 2 black balls, of which the chance was -^^.

Since 1 white ball has been drawn, (c) is impossible ; we have,

therefore, only (a) and (&) to consider.

Supposing (a) to exist, the chance of drawing a white ball from

the second box was 1 ; supposing (6) to exist, the chance of drawing

a white ball from the second box was J.

Hence, the chance before the event that {h) exists, and we draw a

white ball, that is, the chance that we draw a white ball from two

white balls, was f X 1 = f ; the chance before the event that (6) exists,

and we draw a white ball, that is, the chance that we draw a white

ball from a white and a black ball, was
-f-^ X |- =

x*^--

Represent by Q^ the chance after the event that {a) existed, and by

Q2 the chance after the event that (6) existed.

We shall assume that Q-^ and Q^ are proportional to the chance

before the event that a white ball would be drawn from (a), and the

chance before the event that a white ball would be drawn from (6).

This assumption corresponds to the assumption in Examples (1)

and (2), in which the cases were equally likely to occur. We assume,

then, that

D . r) - 2 . 4 or ^1 — ^2

"
f A I + tV*

But Qi + Q2 = 1' since either (a) or (6) must exist ; also f + j? = f-
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"I A f
.-. Qi = |, and Q, = l

The chance that both balls are white is |. Ans.

331.* In general, let Pi, P2, -fs, , be the chance before

the event that the first, second, third, , cause exists; and

Pi,P2,P3, , the chance before the event that, when the

first, second, third,
, cause exists, the event will follow.

Let Qi, Q2, Qa, , be the chance aftet- the event that the

first, second, third, , cause existed.

Then F^pi is the chance before the event that the event

will happen from the first cause ; P2P2, the chance before

the^ event that the event will happen from the second

cause ; and so on.

We shall assume that Qi, Q2, Q3, , are respectively

proportional to Fipi, F2P2, Psi^s, ;

that is, _Q^^Qi_^Q^^
PiPi PiP'i PzPz

Therefore, by § 93,

Q, __ Q. _ Qz _ Qi+Q.-\-Qz-\-

Pi^i P2P2 PzPz P1P1 + P2P2 + P3PZ+

But Qi-\- Q2-{- Qi-\- = 1, since some one of the causes

must exist. Hence,

^^_Ql.^_Q^^ I
,

PlPl P2P2 P3P3 PlPl~{-P2P2 + P3P3+ '

from which Qi, Q2, Q3, , may be readily found.

Exercise 51.*

1. An even number greater than 6 has been thrown

with 2 dice. What is the chance that doublets were

thrown ?
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"2. A number divisible by 3 has been thrown with 2

dice. What is the chance that the number was odd ?

3. Fourteen has been thrown with 3 dice. Find the

chance that one and only one of the dice turned up a

six.

4. An even number greater than 10 has been thrown

with 3 dice. Find the chance that the number was 14.

5. From a bag containing 6 white and 2 black balls a

person draws 3 balls at random and places them in a

second bag. A second person then draws from the second

bag 2 balls and finds them to be both white. Find the

chance that the third ball in the second bag is white.

6. A bag contains 4 balls, each of which is equally

likely to be white or black. A person is to receive $12
if all four are white. Find the value of his expectation.

Suppose he draws 2 balls and finds them to be both

white. What is now the value of his expectation ?

7. A and B obtain the same answer to a certain problem.

It is found that A obtains a correct answer 11 times out

of 12, and B 9 times out of 10. If it is 100 to 1 against

their making the same mistake, find the chance that the

answer they both obtain is correct.

8. From a pack of 52 cards one has been lost ; from the

imperfect pack 2 cards are drawn and found to be both

spades. Eequired the chance that the missing card is

a spade.

9. A speaks truth 9 times out of 10, and B 11 times out

of 12. There is a certain event which must either happen

or fail, and is of itself twice as likely to happen as to fail.

A says that the event happened, and B that it failed.

Find the odds for the event happening.



CHAPTER XXIII.

CONTINUED FRACTIONS.

332 A fraction in the form

h +^
/+ etc.

is called a continued fraction, though the term is commonly

restricted to a continued fraction that has 1 for each of its

numerators, as

1

r + etc.

We shall consider in this chapter some of the elemen-

tary properties of such fractions.

333. Any proper fraction in its lowest terms may he con-

verted into a terminated continuedfraction.

Let - be such a fraction ; then, if p be the quotient and
a

c the remainder oi a-^h,

b_l^ 1

a a ,

6'

'

-b p+i
if q be the quotient and d the remainder of 5 H- c,

1 _ 1 _ 1

, c ,1 ,1
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Hence,

p+
r + etc.

The successive steps of the process are the same as the

steps for finding the H. C. F. of a and h ; and since a and

h are prime to each other, a remainder, 1, will at length

be reached, and the fraction terminates.

Observe that jo, q, r, , are all positive integers.

334. Oonvergents. The fractions formed by taking one,

two, three, , of the quotients^, q, r, , are

1

P

1 1

9 qr+l
which simplified are

1^

P Pq+^ {pq-\-l)T-\-p

and are called the first, second, and third convergents,

respectively.

335, The successive convergents are alternately greater

than and less than the true value of the given fraction.

Let X be the true value of

_1
1

P
1

^"^r + etc;

then, since ^, q, r, , are positive integers,

1p<p +
^ + l+eio.
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- >
; that is, ->x.

^ "^
r + etc.

Again, ?<^ + -. + etc.

^^r + etc.

1 < 1

P + - pi-

^ ^ r + etc.

;

that is, < X ; and so on.

P + ::

336. If — , — , — 0,7-6 any three consecutive convergents,
Vl v., Vg

and if nii, nia, ma be the quotients that produced them, then

Us^msU^-fUi

V3 niaVa + Vi

For, if the first three quotients are p, q, r, the first three

convergents are (§ 334),

I g , r±l_ (1)
p pq + l {pq+iy+p

From (§ 334) it is seen that the second convergent is

formed from the first by writing in it ^ + - for ^ ; and the

third from the second by writing ^^ + - for q. In this way,

any convergent may be formed from the preceding con-

vergent.
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Therefore, — will be formed from — by writing m, +—
for m2.

In (1) it is seen that the third convergent has its numer-

ator = r X (second numerator) + (first numerator) ; and its

denominator = r X (second denominator) -f- (first denomi-

nator).

Assume that this law holds true for the third of the

three consecutive convergents

^^ ^, !i^ so that, !fg^ ^^^i + ^'o
. (2)

^0 Vi V2 ' Vi m./Vi -f Vo

Then, since — is formed from — by using m, H for m.^,
V3 V2 -^

^ ^3

Us_ V mj _ m^ (m^Ui -j- Uq) -f Ui

Substitute u^ and Va for their values maWi + Uq and

^2'i^i + Vo; then

Uz _ nizUi -\- Ui

Therefore the law still holds true ; and as it has been

shown to be true for the third convergent, the law is gen-

eral. (Note on p. 201.)

337. The difference between two consecutive convergents,

^and^is±.
Vi V2 V1V2

The difference between the first two convergents is

1 g _ 1

p pg + l p{pq + l)
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Let the sign '^ mean the difference between, and assume

the proposition true for — and —
;

then
Wo^Wi^Wo?v;-WiVo_J^
Vo Vi VqVi VqVi

But

i^2 ^ Wi _ U2V1 ^ U1V2 _ {m^Ui + Uq) v^ ^ Ux (mjVi + Vp)

V2 Vi V1V2 ViV-i

(substituting for W2 and V2 their values, mjWi + Wo and

^2^1 + 1^0).

Eeducing,
U2 Ui UqVi ^ UiVq'^ ;

V2 Vi ViV.2

=— (by assumption).
V1V2

Hence, if the proposition be true for one pair of consecu-

tive convergents, it will be true for the next pair ; but it

has been shown to be true for the j?rs^ pair, therefore it is

true for ever^/ pair. (Note on p. 201.)

Since by § 335 the true value of x lies between two con-

secutive convergents, — and — , the convergent — will
Vi V2 Vi

differ from a; by a number less than _̂ ~ _^ ; that is, by a

number less than — ; so that the error in taking — for x

is less than — , and therefore less than — , as V2 > Vi since

V2 = W2V1 + Vo.

Any convergent, — , is in its lowest terms ; for, if Wi and

Vi had any common factor, it would also be a factor of

U1V2 '^ Wa^i ; that is, a factor of 1.
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338. The successive convergents approach more and more

nearly to the true value of the continuedfraction.

Let — , — , — be consecutive convergents.
Vq Vi V2

Now — differs from x, the true value of the fraction,

only because ma is used instead of m^ ~{
•' W3 + etc.

Let this complete quotient, which is always greater than

unity, be represented by M.

Then, since ^'= "'''^' + "°
, ^ = :Mfl±^«.

t'2 m.iVi + Vo Mvi 4- Vq

Ui _ Mu^ + Up Ml _ UqVi ^ UiVq __ 1

Vi Mvi + Vq Vx Vi{Mvy^VQ) v^{Mvi-^Vq)

And

Uq __ Wo -M^i 4- Mq __ M{UqVx'^UxVq) __ M
Vo Vo Mvi + Vo Vo{Mvi-{-Vq) Vo(Mvi-{-Vo)

Now 1 < M and Vi > Vq, and for both these reasons

Ul ^Uq

Vi Vo

That is, — is nearer to x than — is.

Vi Vo

339. Any convergent — is nearer the true value x than

any other fraction with smaller denominator.

Let - be a fraction in which b < Vi.

If - is one of the convergents, a^ ~ - > —~ x. § 338
h Vi

If - is not one of the convergents, and is nearer to x
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than — is, then, since x lies between — and — (§ 335),

5- must be nearer to — than — is ; that is,

^ _2 ^ _i ^ _? , or -—j-^ <—

;

V.2 Vi V2 V20 yiVg

and since b < Vi, this would require that v^a ~ Uzb < 1

;

but ViCt'^Uib cannot be less than 1, for a, b, U2, v^ are all

integers. Hence, — is nearer to x than - is.

Vy_

340. Find the continued fraction equal to
-f-J-,

and also

the successive convergents.

Following the process of finding the H. C. F. of 31 and 75, the

successive quotients are found to be 2, 2, 2, 1, 1, 2. Hence the con-

tinued fraction is

2 +
2 + -1-

2 +

'^
To find the successive convergents

:

Write the successive quotients in line, ^ under the first quotient,

\ under the second quotient, and then (^ 336) multiply each terra by

the quotient above it, and add the term to the left to obtain the

corresponding term to the right. Thus,

Quotients = 2, 2, 2, 1, 1, 2.

Convergents = f , ^ f , ^^, ^7, ^f , f^.

It is convenient to begin to reckon with f , but the next conver-

gent, in this case \, is called i]iQ first convergent.

Note. Continued fractions are often written in a more compact

form. Thus, the above fraction may be written111111
2 + 2-h2 + l + 1+2
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341. A quadratic surd may be expressed in the form of

a non-terminating continued fraction.

To express V3 in the form of a continued fraction.

Suppose

then

\/3 = i+;

1=V3
X

- (as 1 is the :

c

-1.

.-. X =
1 V3 + 1

V3-1 2

Suppose
Vs + i

2 -K" 1 is the great

then
1— =

y

Vs + 1

2

^ V3 -

1

2

••• y =
2 Vs + i

V3-1 1

Suppose
V3 + 1

1
=..!(. 2 is the great

then
1— =

z

. z =

V3 + 1

1

1

- 2 = V3 - 1.

\/3 4-l'

V3 + 1n
V3-1

This is the same as x above ; hence, the quotients 1, 2, will be

continually repeated.

.-. V3 = l+-1-
^ 2 + etc.

of which will be continually repeated, and the whole expres-

sion may be written,

The convergents will be 1, 2, |, |, if, ff, |i, etc.
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342. A continued fraction in which the denominators

recur is called a periodic continued fraction.

The value of a periodic continued fraction can be ex-

pressed as the root of a quadratic equation.

Find the surd value of r- 4_ o'

Let X be the value

;

then X = = -

—

-
;

2 + x

.'. a;2 + 2a;=2,

a; = -l + V3.

"We take the + sign since x is evidently positive.

343. An exponential equation can be solved by con-

tinued fractions.

Solve by continued fractions 10* = 2.

Suppose a: = o + |;

then 10i^ = 2.

or 10 = 2!'.

.-. y =. 3 + i (as 10 lies between 2^ and 2*).

Then 10 =-2 * = 23x2';

or 2^ =Y = f.

and 2 -(f)'.

... 2 _ 3 + 1 fas 2 lies between (
-

)
and /

Then 2 = (f)'^« = (f)»X(f)«;

or (f)»-m
and

1
f-(lM)«.



298 ALGEBRA.

The greatest integer in u will be found to be

1
Hence, a; = +

3 +
1

9 + etc.

The successive convergents will be ^, -^q, ||-, etc.

The last gives a^ = ff = 0.3010, nearly.

Observe that by the above process we have calculated the common
logarithm of 2. By § 337 the error, when 0.3010 is taken for the

common logarithm of 2, is considerably less than ; that is con-

siderably less than 0.00011 ; so that 0.3010 is certainly correct to

three places of decimals, and probably correct to four places.

Logarithms are, however, much more easily calculated by the

use of series, as will be shown in a following chapter.

Exercise 52.

1. Find the values of:

111. 111. 11111
4 + 3 + 2' 2 + 3 + 7' 1 + 2+1 + 4 + 5'

2 . Find continued fractions for f|^ ;
J^

;
J^

; -^
;

V5 ; Vll ; 4V6 ; and find the fourth convergent to each.

3. Find continued fractions for ^Vt ; «i ; fMI ; "^V- )

and find the third convergent to each.

4. Find continued fractions for V21; V22; V33; V66.

5. Obtain convergents, with only two figures in the de-

nominator, that approach nearest to the values of : V7
;

VIO; Vl5; VTZ; Vl8; V20; 3 - V5 ; 2 + VIT.

6. Find the proper fraction which, if converted into a

continued fraction, will have quotients 1, 7, 5, 2.

7. Find the next convergent when the two preceding

convergents are ^j and If, and the next quotient is 5.



CONTINUED FRACTIONS. 299

8.' If the pound troy is the weight of 22.8157 cubic inches

of water, and the pound avoirdupois of 27.7274 cubic inches

of water, find a fraction with denominator less than 100

which shall differ from their ratio by less than 0.0001.

9. The ratio of the diagonal to a side 6f a square being

V2, find a fraction with denominator less than 100 which

shall differ from their ratio by less than 0.0001.

10. The ratio of the circumference of a circle to its diam-

eter being approximately the ratio of 3.14159265 : 1, find

the first three convergents to this ratio, and determine to

how many decimal places each may be depended upon as

agreeing with the true value.

11. In two scales of which the zero-points coincide the

distances between consecutive divisions of the one are to

the corresponding distances of the other as 1 : 1.06577.

Find what division-points most nearly coincide.

12. Find the surd values of

:

, i i. 3 i i. i 1 i. , i i i.

^^4 + 2' "^1 + 6' 3 + 1 + 6' ^2 + 3+ 4

13. Prove that

(" + J + a)(i + a)~f'

14. Show that the ratio of the diagonal of a cube to its

edge may be nearly expressed by 97 : 56. Find the greatest

possible value of the error made in taking this ratio for the

true ratio.

15. Find a series of fractions converging to the ratio of

5 hours 48 minutes 51 seconds to 24 hours.

16. Find a series of fractions converging to the ratio of

a cubic yard to a cubic meter, if a cubic yard is -^i^j^

of a cubic meter.



CHAPTER XXIV.

SCALES OF NOTATION.

344. Definitions. Let any positive integer be selected as

a radix or base ; then any number may be expressed as a

polynomial of which the terms are multiples of powers of

the radix.

Any positive integer may be selected as the radix ; and

to each radix corresponds a scale of notation.

In writing the polynomials they are arranged by descend-

ing powers of the radix, and the powers of the radix are

omitted, the place of each digit indicating of what power

of the radix it is the coefficient.

Thus, in the scale of ten, 2356 stands for

2x103 + 3x102 + 5x10 + 6;

in the scale of seven for

2x7=^ + 3x72 + 5x7 + 6;

in the scale of r for

2r3 + 3r2 + 5r + 6.

345. Computation. Computations are made with numbers

in any scale, by observing that one unit of any order is

equal to the radix-number of units of the next lower order

;

and that the radix-number of units of any order is equal

to one unit of the next higher order.

(1) Add 56,432 and 15,646 (scale of seven).

56432 "^^^ process differs from that in the decimal scale

15646 ^^^y ^^ ^^^^ when a sum greater than seven is reached,

we divide by seven (not ten), set down the remainder,
lOolll ^^^ carry the quotient to the next column.



SCALES OF NOTATION. 301

(2) Subtract 34,561 from 61,235 (scale of eight).

61235
34561 ^® ^^^ ^ight, instead of ten as in the common

24454 '*'^^^'

(3) Multiply 5732 by 428 (scale of nine).

5732
428

51477 We divide each time by nine, set down the remain-

12564 der, and carry the quotient.

24238

2612127

(4) Divide 2,612,127 by 5732 (scale of nine).

5732)2612127(428

24238

17732

12564

51477

51477

346. Integers in Any Scale. If i be any 'positive integer

^

any positive integer N may he expressed in theform

JSr= c?r" + 5r"-^ + +pr'' -j-qr + s,

in which the coefficients a, b, c, , are positive integers, each

less than r.

For, divide iVby r**, the highest power of r contained in

iV, and let the quotient be a with the remainder JVi.

Then, JSf= ar"" + JS^,.

In like manner, JV; = ^r""^ + iV; ; JV, = cr^-' + JV^

;

and so on.

By continuing this process, a remainder s will at length

be reached which is less than r. So that,

]^= ar"" + &r**-^ + -{-pr"^ -\r qr-{-s.
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Some of the coefficients s, q,p, may vanish, and each

will be less than r ; that is, their values may range from

zero to r— 1. Hence, including zero, r digits will be

required to express numbers in the scale of r.

To express any positive integer N in the scale of r.

It is required to express N in the form

and to show how the digits a, h, may be found.

If N= ar"" + br""-' + -\-pr' + qr + s,

N s
then —= ar~-' + hr'^-'' + -\-pr + g' + -

That is, the remainder on dividing iV by r is s, the last

digit.

Let iVi = ar""-^ + W-'' + -^pr + q ;

N a
then — = ar"-' + W'^ + -\-p + ^^

That is, the remainder is q, the last but one of the digits.

Hence, to express an integral number in a proposed scale,

Divide the number by the radix, then tKe quotient by the

radix, and so on; the successive remainders will be the

successive digits beginning with the units' place.

(1) Express 42,897 (scale of ten) in the scale of six.

6)42897

6)7149 . ... 3

6)1191 3

6)198 3

6)33

5 3

Am. 530,333.
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(2) Change 87,214 from the scale of eight to the scale of

nine.

The radix is 8 ; and hence the two digits on the

9)37214 left, 37, do not mean thirty-seven, but 3x8 + 7,

9)3363 ... 1 or thirty-one, which contains 9 three times, with

9]305. ... 6 the remainder 4.

9)25 8 The next partial dividend is 4 X 8 + 2 = 34,

2. ... 3 which contains 9 three times, with the remainder

Ans. 23,861. 7. and so on.

(3) In what scale is 140 (scale of ten) expressed by 352 ?

Let r be the radix ; then, in the scale of ten,

140 = 3r2 + 5r + 2 or 3r2 + 5r=138.

Solving, we find r = 6.

The other value of r is fractional, and therefore inadmissible, since

the radix is always a positive integer.

347, Eadix-Practions. As in the decimal scale decimal

fractions are used, so in any scale radix-fractions are used.

Thus, in the decimal scale, 0.2341 stands for

10 102 IQS 10*
•

and in the scale of r it stands for

M m2 A«0 A««

(1) Express fff (scale of ten) by a radix-fraction in the

scale of eight.

Assume
245^a 6 £ d

256 8 82 8' 8*

Multiply by 8. 7fi = a + | + ^ + | +

.-. a = 7. and 21^6 £ rf

32 8 8=» 8»
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Multiply by 8, 5^ = & + ^ + ^ +
8 8^

.•.* = 6,and 1 = 1 + 1 +

Multiply by 8, 2 = c + f +8

.-. c = 2, and = d, etc.

The answer is 0.752.

(2) Change 35.14 from the scale of eight to the scale of

six.

3
6

We take the integral and fractional parts

separately.

16)18(1
16

2
Integral part: 6)35

4 5.

6

16)12(0

Fractional part :

14 12 3

8 82 64 16

6

16)72(4
64

8

This is reduced to a radix-fraction in the scale 6

16)48(3
48

of six as follows :

45.1043. Arts,

Exercise 53.

1. Add together 435, 624, 737 (scale of eight).

2. From 32,413 subtract 15,542 (scale of six).

3. Multiply 6431 by 35 (scale of seven).

4. Multiply 4685 by 3483 (scale of nine).

5. Divide 102,432 by 36 (scale of seven).

6. Find H. 0. F. of 2541 and 3102 (scale of seven).

7. Extract the square root of 33,224 (scale of six).
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8. Extract the square root of 300,114 (scale of five).

9. Change 624 from the scale of ten to the scale of five.

10. Change 3516 from the scale of seven to the scale of

ten.

11. Change 3721 from the scale of eight to the scale

of six.

12. Change 4535 from the scale of seven to the scale

of nine.

13. Change 32.15 from the scale of six to the scale of

nine.

14. Express y^-S^ (scale of ten) by a radix-fraction in the

scale of four.

16. Express ^^% (scale of ten) by a radix-fraction in the

scale of six.

16. Multiply 31.24 by 0.31 (scale of five).

17. In what scale is this true ? 21 X 36 = 746.

18. In what scale is the square of 23 expressed by 540 ?

19. In what scale are 212, 1101, 1220 in arithmetical

progression ?

20. Show that 1,234,321 is a perfect square in any scale

(radix greater than four).

21. Which of the weights 1, 2, 4, 8, pounds must be

selected to weigh 345 pounds, only one weight of each kind

being used ?

22. If two numbers are formed by the same digits in

different orders, prove that the difference of the numbers

is divisible by r — 1.



CHAPTER XXV.

J THEORY OF NUMBERS.

348. Definitions. In the present chapter, by number will

be meant positive integer. The terms prime, composite, will

be used in the ordinary arithmetical sense.

A multiple of a is a number which contains the factor a,

and may be written ma.

An even number, since it contains the factor 2, may be

written 2m; an odd number may be written 2m + 1,

2m-l, 2m + 3, 2m-3, etc.

A number a is said to divide another number h when
h .

- is an integer.
a

349. Eesolution into Prime Factors. A number can be

resolved into primefactors in only one way.

Let iV be the number; suppose N=ahc , where

a,b,c, are prime numbers; suppose also iV— a^y
where a, j8, y, are prime numbers.

Then, abc =o.Py

Hence, a must divide the product abc ; but a, b, c,

are all prime numbers ; hence a must be equal to some one

of them, a suppose.

Dividing by a, bc'---;=py ,

and so on. Hence, the factors in ajSy are equal to those

in abc , and the theorem is proved.

350. Divisibility of a Product. 1. If a number a divides a

vroduct bo, and is prime to b| it must divide c.
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For, since a divides he, every prime factor of a must be

found in he ; but since a is prime to h, no factor of a will

be found in h; hence 'all the prime factors of a are found

in c ; that is, a divides c.

From this theorem it follows that

:

II. If a prime number a divides a product bcde...., it

mtost divide somefactor of that product ; and conversely.

III. If a prime numher divides b**, it must divide b.

IV. If a is prime to b and c, it is prime to be.

Y. If B, is prime to b, every power of a is prime to every

power ofh.

351. Theorem. ^ -
, a fraction in its lowest terms, is equal

b

to anotherfraction —, then c and d ao'c equitnultiples of a

and\i,

If-= -, then —- = c. Since h will not divide a, it
o d h

must divide d ; hence c? is a multiple of h.

Let d= mh, m being an integer ; since 7= -, and
b d

d= mh, - =—- ; therefore c = ma.
mo

Hence, c and d are equimultiples of a and h.

From the above theorem, it follows that in the decimal

scale of notation a common fraction in its lowest terms will

produce a non-terminating decimal if its denominator con-

tains any prime factor except 2 and 5.

For a terminating decimal is equivalent to a fraction with

a denominator 10". Therefore, a fraction - in its lowest

terms cannot be equal to such a fraction, unless 10" is a

multiple of h. But 10", that is, 2" X 5", contains no factors
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besides 2 and 5, and hence cannot he a multiple of b, if 6.

contains any factors except these.

352. Square Numbers. If a square number is resolved into

its prime factors, the exponent of each factor will be even.

For, if JSr = aP XM Xc"- ,

]V'=a''^Xb'^Xc''

Conversely : A number which has the exponents of all

its prime factors even will be a perfect square ; therefore,

to change any number to a perfect square,

Eesolve the number into its prime factors, select the fac-

tors which have odd exponents, and multiply the given

number by the product of these factors.

Thus, to find the least number by which 250 must be multiplied to

make it a perfect square.

250 = 2x5^, in which 2 and 5 are the factors which have odd

exponents.

Hence the multiplier required is 2 x 5 = 10.

353. Divisibility of Numbers.

I. J7* ^'^0 numbers N and N', when divided by a, have

the same rem^ainder, their difference is divisible by a.

For, if iVwhen divided by a have a quotient q and a

remainder r, then

N —- qa-{-r.

And if iV' when divided by a have a quotient q^ and a

remainder r, then
iV^'z= q^a + r.

Therefore, N-W={q- q^) a.

II. If the difference of two numbers N and W is divisible

by a, then N and W when divided by a will have the same
remainder.
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For, if N-N^ = {q-q')a,

then

Therefore, q =— ~q'.

• That is, N-aq =]V'-aq'.

III. If two numbers N and N', when divided hy a given

number a, have remainders r and r', then NN' and rr' when

divided by a will have the same remainder.

For, if N = qa-\-r,

and N'=q'a-\-r\

then NW= qq^a^-\- qar'-\- q'ar-{-rr*

' — (qq'a -f qr'-\- q'r) a+ rr\

Therefore, by II., NN' and rr' when divided by a will

have the same remainder.

As a particular case, 37 and 47 when divided by 7 have remainders

2 and 5 respectively.

Now 37 X 47 = 1739 and 2x5 = 10.

The remainder, when each of these two numbers is divided by 7,

is 3.

Note. From II. it follows that, in the scale often

.

(1) A number is divisible by 2, 4, 8, if the numbers denoted

by its last digit, last two digits, last three digits are divisible

respectively by 2, 4, 8,

(2) A number is divisible by 5, 25, 125 if the numbers denoted

by its last digit, last two digits, last three digits, are divisible

respectively by 5, 25, 125,

(3) If from a number the sum of its digits is subtracted, the

remainder will be divisible by 9.
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For, if from a number expressed in the form

a + 10b + Wc + 10'd+

a + b + e+ d + is subtracted,

the remainder will be (10 -1)6 + (10^ - 1) c + (10^ -l)d +

and 10 - 1, 102 _ 1, 10^ - 1, will be a series of 9's.

Th,erefore, the remainder is divisible by 9.

(4j Hence, a number N may be expressed in the form

9 n + s (if s denotes the sum of its digits)

;

and iV will be divisible by 3 if s is divisible by 3 ; and also by 9 if s

is divisible by 9.

(5) A number will be divisible by 11 if the difference between

the sum of its digits in the even places and the sum of its digits in

the odd places is or a multiple of 11.

For, a number N expressed by digits (beginning from the right)

a, b, c, d may be put in the form of

i\^= a + 10 6 + 102c + 103 (^ +

... ]:^^a+b-c + d- = {10 + l)b + {W-l)c + {l(fi + i)d +

But 10 + 1 is a factor of 10 + 1, 10^ - 1, 10^ + 1,

Therefore, iV- a + b — c + d — is divisible by 10 + 1 = 11.

Hence, the number N may be expressed in the form

11 n + (a + c + ) -{b + d + ),

and will be a multiple of 11 if (a + c + ) — {b + d + ) is or a

multiple of 11.

354. Theorem. The joroduct of r consecutive integers is

divisible hy |r.

Kepresent by P„^ ^ the product of Ic consecutive integers

beginning with n.

Then, P„, , = n(n + 1) ••-'(^ + ^ - 1)

;

Pn+i. .+1 = (^ + 1)(^ + 2) (71 + lc){n + ^ + 1)

= w(7i+l)(w + 2) {n^k)

+ (^ + l)(n+ l)(n + 2) (n+ ^).

•'• -fn+l, *+l ^^ ^n, A+1 "h ("^ H~ 1) -fn+l,&-
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Assume, for the moment, that the product of any k con-

secutive integers is divisible by \k.

Then, P„+i. ^, = P^,^, + {Jc-\-V)M\h-

or, P„+i, ^, = P„, ,+1 + M\h±\ ;

where M is an integer.

From this it is seen that if P„_ j+i is divisible by [^-f-

1

,

-^n+i,t+i is also divisible by |^+1 ; but Pi,t+i is divisible

by 1^+1 since Pi,ic+x = \k-\- 1 . .'. Pz.^+i is divisible by

1^+1 ;
•*• -fs.t+i is divisible by

|
^-f 1 ; and so on.

Hence, the product of any ^ + 1 consecutive integers is

divisible by
|

^+ 1 , if it is known that the product of any h

consecutive integers is divisible by \]c. But the product of

any 2 consecutive integers is divisible by |_2 ; therefore, the

product of any 3 consecutive integers is divisible by [3

;

therefore, the product of any 4 consecutive integers is

divisible by [£ ; and so on. Therefore, the product of any

r consecutive integers is divisible by |r.

355. Examples. (1) Show that every square number is

of one of the forms 5w, 5n— 1, bn-\-\.

Every number is of one of the forms

;

5m — 2, 5w — 1, 5m, 5m + 1, 5m + 2.

(5m ± 2)2 = 25m2 ± 20m + 4 = 5(5m2 ± 4m + 1) - 1

;

I
(5m±l)2 = 25m2dzl0m + l = 5(5m2±2m) + l;

(5m)2 = 25m2 =5(5m2).

.*. every square number is of one of the three forms ;

5n, 5n — 1, 5n + l.

Hence, in the scale of ten, every square number must end in

0, 1, 4, 5, 6, or 9.

(2) Show that ?2^ — n is divisible by 30 if n is even.

n* — n = n(7i - l)(n + l)(n2 + 1)

= 7i(n-l)(n + l)(n2-4 + 5)

= n(n - l)(n + l)[(n - 2)(n + 2) + 5].
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n{n- l){n + 1) is divisible by |_3 (^ 354).

One of the five consecutive numbers

n — 2,n — l,n,n+l,n + 2, ^

is divisible by 5, and n^ — n is therefore divisible by 5.

Hence n^ — n is divisible by 5 [3, that is by 30.

Exercise 54.*

Find the least number by which each of the following

numbers must be multiplied in order that the product may
be a square number.

I. 2625. 2. 3675. 3. 4374. 4. 74088.

5. If m and n are positive integers, both odd or both

even, show that m^ — m? is divisible by 4.

6. Show that n^ — n\B always even.

7. Show that w^ — n is divisible by 6 if n is even ; and

by 24 if n is odd.

8. Show that rv' — n is divisible by 240 if n is odd.

9. Show that n} — n is divisible by 42 if n is even ; and

by 168 if n is odd.

10. Show that n(n-\- l)(n -\- 5) is divisible by 6.

II. Show that every cube number is of one of the forms,

9n, 971-1, 9n+l.

12. Show that every cube number is of one of the forms,

In, 771—1, 771+1.

13. Show that every number which is both a square and

a cube is of the form 77i or 77i + 1.

14. Show that in the scale of ten every perfect fourth

power ends in one of the figures 0, 1, 5, 6.



CHAPTER XXVI.

VARIABLES AND LIMITS.

356. Constants and Variables. A number that, under the

conditions of the problem into which it enters, may be made

to assume any one of an unlimited number of values is

called a variable.

A number that, under the conditions of the problem into

which it enters, has a fixed value is called a constant.

Variables are generally represented by x, y, 2, etc. ; con-

stants, by the Arabic numerals, and by a, h, c, etc.

357. Punctions. Two variables may be so related that a

change in the value of one produces a change in the value

of the other. In this case one variable is said to be a

function of the other.

Thus, if a man walks on a straight road at a uniform rate of a

miles per hour, the number of miles he walks and the number of hours

he walks are both variables, and the first is a function of the second.

If y be the number of miles he has walked at the end of x hours, y
and X are connected by the relation y = ax, and y is a function of x.

Also X = -
; hence, x is also a function of v-

When one of two variables is a function of the other, the

relation between them is generally expressed by an equa-

tion. If a value of one variable is assumed, the corre-

sponding value of the other variable can be found from the

given equation of relation between the two variables.

The variable of which the value is assumed is called the

independent variable ; the variable of which the value is
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found from the given relation of the two variables is called

the dependent variable.

In the last example we may assume values of x, and find the cor-

responding values of y from the relation y = ax\ or assume values of

y
y, and find the corresponding values of x from the relation x= -. In

the first case x is the independent variable, and y the dependent ; in

the second case y is the independent variable, and x the dependent.

358. Limits. As a variable changes its value, it may-

approach some constant; if the variable can be made to

approach the constant as near as we please, but cannot be

made absolutely equal to the constant, the variable is said

to approach the constant as a limit, and the constant is

called the limit of the variable.

Let X represent the sum ofn terms of the infinite series

1 + i + i + i + ;

ien {I 227), . a)"--1_
1

=
2^-1 = 2-
2n-l

1

2n-l

Suppose n to increase ; then, —— decreases, and x approaches 2.

Since we can take as many terms of the series as we please, n can

be made as large as we please ; therefore, ——• can be made as small

as we please, and x can be made to approach 2 as near as we please.

We cannot, however, make x absolutely equal to 2.

If we take any assigned value, as i-^-q-q, we can make the dif-

ference between 2 and x less than this assigned value ; for we

have only to take n so large that is less than rxr^oiF ! ^^^ ^^> ^1^^^

2»»-i is greater than 10,000 : this will be accomplished by taking n

as large as 15. Similarly, by taking n large enough, we can make

the difference between 2 and x less than any assigned value.

Since 2 — x can be made as small as we please, it follows that the

sum of n terms of the series 1 + ^ + ^ + 1 + , as n is constantly

increased, approaches 2 as a limit.
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359. Test for a Limit. In order to prove that a variable

approaches a constant as a limit, it is necessary and suffi-

cient to prove that the difference between the variable and

the constant can be made as near to zero as we 'please^ but

cannot be made absolutely equal to zero.

A variable may approach a constant without approaching it as a

limit. Thus, in the last example x approaches 3, but not as a limit

;

for 3 — ic cannot be made as near to as we please, since it cannot

be made less than 1.

360. Infinites. As a variable changes its value, it may
constantly increase in numerical value; if the variable

can become numerically greater than any assigned value,

however great this assigned value may be, the variable is

said to increase without limit, or to increase indefinitely.

When a variable is conceived to have a value greater

than any assigned value, however great this assigned value

may be, the variable is said to become infinite; such a

variable is called an infinite number, or simply an infinite.

361. Infinitesimals, As a variable changes its value, it

may constantly decrease in numerical value ; if the vari-

able can become numerically less than any assigned value,

however small this assigned value may be, the variable is

said to decrease without limit, or to decrease indefinitely.

In this case the variable approaches as a limit.

When a variable which approaches as a limit is con-

ceived to have a value less than any assigned value, how-

ever small this assigned value may be, the variable is said

to become infinitesimal; such a variable is called an infini-

tesimal number, or simply an infinitesimal.

362. Infinites and infinitesimals are variables, not con-

stants. There is no idea of fixed value implied in either

an infinite or an infinitesimal.
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An infinitesimal is not 0. An infinitesimal is a variable

arising from the division of a quantity into a constantly

increasing number of parts ; is a constant arising from

taking tbe difference of two equal quantities.

A number which cannot become infinite is said to be

finite.

363. Eolations between Infinites and Infinitesimals.

I. If X is infinitesimal, and a is finite and not 0, then ax

is infinitesimal. For, ax can be made as small as we please

since x can be made as small as we please.

II. If X is infinite, and a is finite and not 0, then aX is

infinite. For aX can be made as large as we please since

X can be made as large as we please.

III. If X is infinitesimal, and a is finite and not 0, then

is infinite. For - can be made as large as we please
a

X " X
since x can be made as small as we please.

IV. 7)^ X is infinite, and a is finite and not 0, then — is

infinitesimal. For — can be made as small as we please

since X can be made as large as we please.

In the above theorems a may be a constant or a variable
;

the only restriction on the value of a is that it shall not

become either infinite or zero.

364. It appears from § 157 that one root of the quadratic

equation ax"^ -\~ bx -\- c = is infinite when a is infinites-

imal ; and that both roots are infinite when a and b are

both infinitesimal.
,

365. Abbreviated Notation. An infinite is often repre-

sented by 00. In § 363, III. and IV. are sometimes written :

- = 00, —= 0.
' 00 •
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The expression - cannot be interpreted literally, since we cannot

divide by ; neither can — = be interpreted literally, since we

can find no number such that the quotient obtained by dividing a

by that number is zero.

- = 00 is simply an abbreviated way of writing : if -= X, and x

approaches as a limit, X increases without limit. — = is simply

an abbreviated way of writing : if — = x, and X increases without
Ji.

limit, X approaches as a limit.

366. Approach to a Limit. "When a variable approaches a

limit, it may approach its limit in one of three ways :

(1) The variable may be always less than its limit.

(2) The variable may be always greater than its limit.

(3) The variable may be sometimes less and sometimes

greater than its limit.

If X represent the sum of n terms of the series 1 + i + ^ + | + ,

X is always less than its limit 2.

If X represent the sum of n terms of the series ^ — ^ — \ — j — ,

X is always greater than its limit 2.

If X represent the sum of n terms of the series 3 — f + | — 1 + ,

we have (§ 227)

x = 3^itd£ = 2-2(-H».

As n is indefinitely increased, x evidently approaches 2 as a limit.

If n is even, x is less than 2 ; if n is odd, x is greater than 2.

Hence, if n be increased by taking each time one more term, x will

be alternately less than and greater than 2. If, for example,

n- 2, 3, 4, 5, 6, 7,

x=ii 2i, H, 2tV. im. m-

In whatever way a variable approaches its limit, the test

of § 359 always applies.
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367. Equal Variables. If two variables are equal and
are so related that a change in the one produces such a

change in the other that they continue equal, and each ap-

proaches a limit, then their limits are equal.

Let X and y be the variables, a and b their respective

limits. To prove a — b. We have (§ 359)

a — x-\- x\ b = y-\-y\

where x^ and ?/' are variables which approach as a limit.

Then, since the equation x = y always holds, we have,

by subtraction, a~b = x^ — y\

x^ — y' can be made less than any assigned value since

x^ and 2/' can each be made less than any assigned value.

Since x^ — y' is always equal to the constant a — b,

x^ — y must be a constant. But the only constant which

is less than any assigned value is 0. Therefore a;' — y' = 0,

and hence a — 6 = 0. :. a^b.

368. Limit of a Sum. The limit of the algebraic sum

of any finite number of variables is the algebraic sum of their

respective limits.

Let x,y, z, , be variables
;

a, b, c, , their respective limits.

Then a — x, b—y, c — z, , are variables which can

each be made less than any assigned value (§ 359).

Then {a — x) -\- {b — y) -\- {c — z) -{ can be made less

than any assigned value.

For, let V be the numerically greatest of the variables a — x, b ~y,

c — z, , and n the number of variables.

Then, {a - x) + {b-y) + {c-z) + <v + v + v to n terms

< nv;

but nv can be made less than any assigned value since n is finite

and V can be made less than any assigned value (g 363, I.).

Therefore, {a -x) + (b — y) + {c — z) , which is less than nv, can

be made less than any assigned value.
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.-. (a-f 6 + C+ ) — {x + y-\-z+ ) can be made

less than any assigned value.

.-. a+b-{-c-\- is the limit of (x+ i/-{-z+ ). § 359

369. Limit of a Product. The limit of the product of

two or more variables is the product of their respective limits.

Let X and y be variables, a and h their respective limits.

To prove that ah is the limit of xy.

Put x — a — x\ y = h — y^\ then x^ and 3/' are varia-

bles which can be made less than any assigned value (§ 359).

Now, xy = {a — x'){b — y')

= ab — ay* — bx' + xY-
.'. ab — xy = ay' + bx' — x'y'.

Since every term on the right contains x' or y\ the whole

right member can be made less than any assigned value

(§ 363, I.). Hence, ab — xy can be made less than any

assigned value.

.-. aJ is the limit of xy (§ 359).

Similarly for three or more variables.

370. Limit of a Quotient. The limit of the qux)tient of

two variables is the quotient of their limits.

Let X and y be variables, a and b their respective limits.

Put a — x = x\ and b — y = y'\ then x' and y' are

variables with limit (§ 359).

We have x — a — x\ y — b — y\ and - — -

y b-y'

^°^
b y~b J-y'-JCi-yy

The numerator of the last expression approaches as a

limit, and the denominator approaches b^ ; hence, the ex-

pression approaches as a limit (§ 363, I.).

.-. ^ — ^ approaches as a limit. .*. 7 is the limit of —
b y ^^ b y
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371. Vanishing Practions. When one or more variables

are involved in both numerator and denominator of a frac-

tion, it may happen that for certain values of the variables

both numerator and denominator of the fraction vanish.

The fraction then assumes the form -, which is a form

without meaning ; as even the interpretation of § 365 fails,

since the numerator is 0. If, however, there is but one

variable involved, we may obtain a value as follows

:

Let X be the variable, and a the value of x for which the

fraction assumes the form -. Give to x a value a little

greater than a, as a -f 2; ; the fraction will now have a defi-

nite value. Find the limit of this last value as z is indefi-

nitely decreased. This limit is called the limiting value of

the fraction.

/v2 /-y2

(1) Find the limiting value of as x approaches a.
X — a

When X has the value a, the fraction assumes the form —

Put x = a + z; the fraction becomes

{a\zf-a'^ ^ 2az-hz^

{a + z) — a z

Since z is not 0, we can divide by z and obtain 2a + 2.

As z is indefinitely decreased, this approaches 2a as a limit.

Hence 2 a is the answer required.

(2) Find the limiting value of ^^ ~ ^^
.. when x

3^:^ + 207—1
becomes infinite.

2-i + i
We have

2^-4.x-\-b ^ x^_£
3x3 + 2a;2-l 3 ^ 2 _ j_

X a^

As X increases indefinitely, - approaches (^ 363, IV.), and the

2
fraction approaches -• Ana,
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Exercise 55.

Find the limiting values of

:

1. ^ ^ ,
—4

:— when x becomes infinitesimal.

2. ^^ ^^^—^^—^ when rp becomes infinite.
a;* + 35

3. ^ ' -^ when a; becomes infinitesimal.

a;H4

4. ^^
^~'",^ when a; approaches 3.

when a; approaches — 3.

+
x^-9

a^-\-^x-\-l^

6.
j^(^' + 4a: + 3) ^j^g^ ^ approaches - 1.

a;3 + 3a;^ + 5a7 + 3
^^

7. -'- when x approaches 1.

x^-{-2x'-2x-l ^^

8.
^"^

when x approaches 1.

2x-^x-\-l

x—\
9. —=1 r:^^ when X approaches 1.

Va;^ - 1 + Va; - 1

10. —=:— -^=^=: when x approaches 2.

Va: + 2 — V3a; —

2

^^ V£-a^^jWa
^j^gj^ ^ approaches a.

12. If a; approaches a as a limit, and w is a positive

integer, show that the limit of a;" is a".

13. If X approaches a as a limit, and a is not 0, show

that the limit of re" is a", where w is a negative integer.
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SERIES.

372. Oonvergency of Series. For an infinite series to be

convergent (§ 252) it is necessary and sufficient that the

sum of all the terms after the nth, as n is indefinitely in-

creased, should approach as a limit.

Although each of the terms after the nth may approach as a

limit, their sum may not approach as a limit.

Thus, take the harmonical series,

J
1 1 1 1^ J_^ _J_

' • 2' 3' 4 n n + l' n + 2

Each term after the nth approaches as n increases.

The sum of n terms after the nth term is

1
• 1 +^ + +

1

n + 1 n + 2 n + 3 2n

which is >— +— + ton terms; therefore >nx-—\ thatis, >-•
2n 2n 2n 2

Now, the first term is 1, the second term is J, the sum of the next

two terms is greater than ^, the sum of the succeeding four terms is

greater than J ; and so on. So that, by increasing n indefinitely, the

sum will become greater than any finite multiple of ^.

Therefore, the series is divergent.

Ex. To determine whether the following series is con-

vergent (§ 267).

1+1+1+1+ 1,1,1,
1 '

[2
'

[3 \

n-l \n \n-\-l

The nth term is . The sum of the remaining terms is

1+_JL_+__1_+ _ Wi 1
1 ,

1

In |n + l |n + 2 " \n\ n + 1 (n + l)(n + 2)
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This is<-/'l+i + - + ] ; therefore
[n V n r? j

[nl,_l) [n\n— 1/ (n — 1) |?». — 1

n

But as w increases indefinitely, this last approaches as a limit.

Hence, the series is convergent.

373. Test for Oonvergenoy of a Series. If the terms of an

infinite series are all positive, and the limit of the nth term

is 0, then if the limit of the ratio of the (n + 1) th term to

the nth term, as n is indefinitely increased, is less than 1,

the series is convergent.

Let Ui, Ui, U3, Un, w„4.,, Un+2 be ail infinite series.

Let r represent the limit of the ratio —^^ as n increases

indefinitely, and suppose r to be positive and less than 1.

Let Jc be some fixed number between r and 1, and take

k so near 1 that ^ ^^, , shall each be < k

Then, ""-+'<
Jc,

Un+l
""^^Kh

.'. Un+i < hun, Un+2 < ^Wn+i, Un+3 < JcUn+2,

.-. U„^i<kUnj Wft+2<^'Wn, W„+3<Fw„,

k

But, by hypothesis, w„ approaches as a limit as n is

indefinitely increased. Hence, the series is convergent.

Similarly, when r is negative, and between and — 1.
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Thus, in the series

1 +U1 + 1 + .-^+1 +
1 II 11 |

n-l In

-?^ = -, and this approaches as a limit as n is indefinitely in-

creased ; moreover, the nth term, —
, approaches as a limit.

\n-l ^^

Hence, the series is convergent.

If r > 1, there must be in the series some term from

which the succeeding term is greater than the next preced-

ing term ; so that the remaining terms will form an in-

creasing series, and therefore the series is not convergent.

If r= ± 1, this value gives no information as to whether

the series is convergent or not ; and in such cases other

tests must be applied.

If r < 1, but approaches 1, or — 1, as a limit, then no

fixed value k can be found which will always lie between

r and zfc 1, and other tests of convergency must be applied.

Thus, in the infinite series

i+i-+^+ +1+ 1
im 2'» S** n"" (n + 1)«*

r, the ratio of the {n + l)th term to the nth term, is

n + lj \ n + lj
'

which approaches 1 as a limit as n increases.

Suppose m positive and greater than 1 ; then the first term of the

2
series is 1. The sum of the next two terms is less than — . The sum

2™

of the next four terms is less than — . The sum of the next eight

Q

terms is less than — ; and so on. Hence, the sum of the series is less
3m

than 1+A + 1+A + , or <1 + J_ + J_ + J_ +
,2m 4m 8*" 2"'~^ 4m-l 8"*~^

which is evidently convergent when m is positive and greater than 1.
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If m is positive and equal to 1, the given series becomes

l+i + i + J + ,

which is the harmonical series shown in § 372 to be divergent.

If m is negative, or less than 1, each term of the series is then

greater than the corresponding term in the harmonical series, and

hence the series is divergent.

374. Special Case. If the terms of an infinite series are

alternately positive and negative; if, also, the terms contin-

ually decrease, and the limit of the nth term is zero, then

the series is convergent.

Consider the infinite series,

Ui — U2~\- Uz — W4 + ^ Wn ± w„+i =F w^2 ±

The sum of the terms after the nth term is

which may be written

Since the terms are continually diminishing, each of the

groups in either form of expression is positive, and there-

fore the absolute value of the required sum is seen, from

the first form of expression, to be less than u^.^^ ; and from

the second form of expression, to be greater than w„+i— Wn+2-

But both Un^x and u^^^ approach zero as n increases indefi-

nitely ; therefore the sum of the series after the nth term

approaches zero, and the series is convergent.

In finding the sum of an infinite decreasing series of which the

terms are alternately positive and negative, if we stop at any term,

the error will be less than the next succeeding term.

The series 1— +— - + ± - t ± is convergent.
2 3 4 n n+

1
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For, we may write the series

l-^ + a-i) + (i-i) + .or l-(|-i)-(i-^)- ,

which shows that its sum is greater than ^, and less than 1.

Observe that the present test applies to series in which

—^^ approaches 1, or —1, as a limit; to these series the

test of § 373 will not apply.

375. Oonvergency of the Binomial Series. In the expan-

sion of (1 + ^Yi the ratio of the (r + l)th term to the rth

term is (§ 247)

n — r -\-l /w + l
• X, or

If X is positive, and r greater than n-\-l, — — 1 is

negative ; hence the terms in which r is greater than n + 1

are alternately positive and negative.

If X is negative, the terms in which r is greater than

n-\-l are all positive. In either case we have

Ur \ r j

as r is indefinitely increased, this approaches the limit — x.

Hence (§ 373), the series is convergent if x is numerically

less than 1.

If n is fractional or negative, the expansion of (a + 6)" must be

in the form a^il-^ -Y if a > & ; and in the form 6« (\ +^ if

& > a (^ 259).

376. Examples.

(1) For what values of x is the infinite series

X }-' rb — =F convergent?2^3 n ^
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Here, r = -* =
(
—-rr ) a; = (

1 —r-
j x.

As n is indefinitely increased, r approaches a; as a limit. Hence,

the series is convergent when x is numerically less than 1 ; and

divergent when x is numerically greater than 1.

When x = l, the series is convergent by ^ 374.

When x = — l, the series becomes

-M-l ^b-)'
the harmonical series already shown to be divergent (^ 372).

(2) For what values of x is the infinite series

X , of , x^
J

1- — — convergent?1x22x33x4 w(w-fl)

Wn-fl
Here,

Un

As n is indefinitely increased, r approaches a; as a limit.

If a; is numerically less than 1, the series is convergent.

If a; is numerically greater than 1, the series is divergent.

If a; = 1, every term of the series

1 +^ + J_ +
1X2 2x3 3x4

is less than the corresponding term of the series

^^¥h
This last series is a special case of the series

-l+^+l^Im 2'* 3'»

and is therefore convergent (^ 373).

Hence, -^ + --^ + -—- + is convergent.
1X2 2x3 3x4

If a; = — 1, the series becomes

~r>r2"^2l<3~3xl

and is convergent by § 374.
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Exercise 56.

Determine whether the following infinite series are con-

vergent or divergent

:

1 l+l-j-l-J-l-l- 4 2,345
2 3' 4^ * 12~*~2' 3' 4'

l!_i_--f-- ' . -, , 1 ,

2=^
.

3=^

[2 [3 [4'
2. 1+^ +—+ —+ 5. 1 + —+ —+ — -!-

^12^13^14^ ^12-t-32-i-42-t-

92 03 ^4 1 I*" 9»» ^»*

^[2 [3 [4 x«^2'" 3"* 4"*

SERIES OF DIFFERENCES.

377. Definitions. If, in any series, we subtract from each

term the preceding term, we obtain a first series of differ-

ences ; in like manner from this last series we may obtain a

second series of differences ; and so on. In an arithmetical

series the second difierences all vanish.

There are series, allied to arithmetical series, in which

not the first, but the second, or third, etc., differences vanish.

Thus take the series

1 5 12 24 43 71 110

1st differences, 4 7 12 19 28 39

2d differences, 3 5 7 9 11

3d differences, 2 2 2 2

4th differences,

In general, if ai, a^, a^, be such a series, we have

«! a-i a^ ^4 a^ a^ a-i

1st differences, hi h^ h^ b^ h^ h^

2d differences, Ci c^ C3 C4 c^

3d differences, d^ d^ d^ d^

4th differences, ex e^ e^

and finally arrive at difierences which all vanish.
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378. Any Eequired Term. For simplicity let us take a

series in which the fifth series of differences vanishes. Any
other case can be treated in a manner precisely similar.

From the manner in which the successive series are formed

we shall have :

a2 = ai-}-bi 03 = a2-\-b2 = ai-\-2bi-\- Ci

^2=^1+^1 53 = ^2 +<?2 = ^1 + 2^1 4-c/l

C.2 =Ci -\-di C3 = C2 + c?2 = ^1 + 2 c?i + ^1

c?2 = c?i + ^1 c4 = C?2 + ^2 = c?i+ 2^1

62 = ei 63 = 62 = ex

«4 = «3 + ^3 = «i + 3 5i + 3 <?! -{-di

^4 = ^3 + ^3 = ^1 + 3ci + 3c?i + ^1

^4 = ^3 + C?3 = Ci + 3 c?i + 3 61

c?4 = c?3 + 63 = c?i + 3 ^1

as = a* + ^4 = «! + 46i + 6^1 + 4c?i + gj

^5 = ^4 + ^4 =^+4ci + 6c?i + 4ei

^5 = ^4 + c^4 = <?i + 4 c?i + 6^1

^6 = ^5 + ^5 = «! + S^i + 10^1 + lOc^i + 5^1

^7 = «6 + ^6 = «! + 6 61 + 15 Ci + 20 di + 15 61

and so on.

The student will observe that the coefficients in the ex-

pression for a^ are those of the expansion of (x + 3/)*, and

similarly for a^ and a^ ; hence, in general, if we represent

«!, hi, Ci, etc., by a, 5, c, etc., we shall have, putting for the

{n + 1) th term a^+i, the formula

, 7 , 71(71— 1) ,
71(71 — 1)(7Z — 2) 7

,
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Ex. Find the nth, term of 1, 5, 12, 24, 43, 71, 110,

Here (§ 377) a = 1, 6 = 4, c = 3, d=2, e = 0; and n = 10.

.-. Oil - a + 106 + 45 c + 120 d

= 1 + 40 + 135 + 240 = 416. Ans.

379. Sum of the Series. Form a new series of which the

first term is 0, and the first series of differences «!, ftg. <^3i

This series will be the following

:

0, ai, tti + Oa, ai + aa + tta, «i + «!2 + «3 + «4,

The (n + l)th term of this series will be the sum of n

terms of the series aj, aj, «3

Find the sum of 11 terms of the series 1, 5, 12, 24, 43, 71,

The new series is 1 6 18 42 85 156

First differences, 1 5 12 24 43 71

Second differences, 4 7 12 19 28

Third differences, 3 5 7 9

Fourth differences, 2 2 2

Here a = 0, 6 = 1, c = 4, d = S, e = 2; and n = 11.

/. s = a + 116 + 55c + 165(^ + 330e

= 11 + 220 + 495 + 660

- 1386.

If s is the sum of n terms of the series ai, az, a-s,

1X2 ^ 1x2x3 ^
Ex. Find the sum of the squares of the first n natural

numbers, l^ 2!\ S\ 4^ n\

Given series, 1 4 9 16 25 n^

First differences, 3 5 7 9

Second differences, 2 2 2

Third differences,

Therefore, a = 1, 6-3, c = 2, d=0.

These values substituted in the general formula give

8=.n +
^^^^-^) x3 + ^(^-^)^^-^) x2
1X2 1X2X3

M^-^T-M^^^-'^^^)}
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--{6 + 9n-9 + 2n2-6n + 4}
6

= ^{2n2 + 3n + 1} = !iI^±iK2n±i).
6 6

380. Piles of Spherical Shot. I. When the pile is in the

form of a triangular pyramid, the summit consists of a

single shot resting on three below; and these three rest

on a course of six ; and these six on a course of ten, and

so on, so that the courses will form the series,

1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, ,1 + 2 + + n.

Given series, 1 3 6 10 15

First differences, 2 3 4 5

Second differences, 111
Third differences,

Here, a = 1, 6 = 2, c= 1, c? = 0.

These values substituted in the general formula give

2 2x3

^ n(yt + l)(n + 2)

1x2x3
in which n is the number of balls in the side of the bottom course, or

the number of courses.

II. When the pile is in the form of a pyramid with a

square base, the summit consists of one shot, the next course

consists of four balls, the next of nine, and so on. The

number of shot, therefore, is the sum of the series,

p, 2^ 3^ 4^ uk

Which, by g 379, is

n(n + l) (2n + l)

1x2x3
'

in which n is the number of balls in the side of the bottom course, or

the number of courses.
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III. When the pile has a base which is rectangular, but

not square, the pile will terminate with a single row. Sup-

pose jp the number of shot in this row ; then the second

course will consist of 2(^ + 1) shot; the third course of

3(^-f 2); and the nth course of n(^'p-\-n—V). Hence

the series will be

'p, 2jo + 2, 8j9 + 6, w(^ + ^-l).

Given series, p 2p + 2 3p + 6 4jp + 12

First differences,
J3 + 2 p + 4 p+6

Second differences, 2 2

Third differences,

Here, a=p, 6=p + 2, c=2, c? = 0.

These values substituted in the general formula give

,
nin — X),

, c\ ,
n(n — l)(n — 2)^^ns^np+ ^

^
^ {p + 2)i- \^l^^^

' X 2.

= ^{6p + 3(n - \){p + 2) + 2(n - l){n - 2)}
6

= - (6p + 3np - 3p + 6n - 6 + 2n2 - 611 + 4)

= -(3np + 3_p + 2n2-2)
6

= - (n + l)(3p + 2n-2).
6

If w'' denote the number in the longest row, then n^ =p + n — 1,

and therefore p ^n^ ~n -\-\\ and the formula may be written

s = !^(n + l)(3n^-n + l).

6

in which n denotes the number in the width, and n^ in the length,

of the bottom course.

When the pile is incomplete, compute the number in the

pile as if complete, then the number in that part of the pile

which is lacking, and take the difference of the results.
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Exercise 57.

1. Find the fiftieth term of 1, 3, 8, 20, 43,

2. Find the sum of the series 4, 12, 29, 55, to 20

terms.

3. Find the twelfth term of 4, 11, 28, 55, 92,

4. Find the sum of the series 43, 27, 14, 4, -3,

to 12 terms.

5. Find the seventh term of 1, 1.235, 1.471, 1.708,

6. Find the sum of the series 70, 66, 62.3, 58.9, to

15 terms.

7. Find the eleventh term of 343, 337, 326, 310,

8. Find the sum of the series 7 X 13, 6 X 11, 5 X 9,

to 9 terms.

9. Find the sum of n terms of the series 3x8, 6 X 11,

9x14, 12x17,

10. Find the sum of n terms of the series 1, 6, 15, 28,

45,

11. Show that the sum of the cubes of the first n natural

numbers is the square of the sum of the numbers.

12. Determine the number of shot in the side of the base

of a triangular pile which contains 286 shot.

13. The number of shot in the upper course of a square

pile is 169, and in the lowest course 1089. How many-

shot are there in the pile ?

14. Find the number of shot in a rectangular pile having

17 shot in one side of the base and 42 in the other.

15. Find the number of shot in the five lower courses of

a triangular pile which has 15 in one side of the base.

16. The number of shot in a triangular pile is to the

number in a square pile, of the same number of courses, as

22 : 41. Find the number of shot irt each pile.
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17. Find the number of shot required to complete a

rectangular pile having 15 and 6 shot, respectively, in the

sides of its upper course.

18. How many shot must there be in the lowest course

of a triangular pile that 10 courses of the pile, beginning at

the base, may contain 37,020 shot?

19. Find the number of shot in a complete rectangular

pile of 15 courses which has 20 shot in the longest side of

its base.

20. Find the number of shot in the bottom row of a

square pile which contains 2600 more shot than a trian-

gular pile of the same number of courses.

21. Find the number of shot in a complete square pile

in which the number of shot in the base and the number

in the fifth course above differ by 225.

22. Find the number of shot in a rectangular pile which

has 600 in the lowest course and 11 in the top row.

INTERPOLATION.

381. As the expansion of (a-\-by by the binomial theo-

rem has the same form for fractional as for integral values

of n, the formula

,
1 . n(n — 1) ,

n(n — V)(n — 2) 7 ,

1x2 1x2x3
may be extended to cases in which w is a fraction, and be

employed to insert or interpolate terms in a series between

given terms.

(1) The cube roots of 27, 28, 29, 30, are 3, 3.03659.

3.07232, 3.10723. Find the cube root of 27.9.

3 3.03659 3.07232 3.10723

First dififerences, 0.03659 0.03573 0.03491

Second diflferences, -0.00086 -0.00082

Third dififerences, 0.00004
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These values substituted in the general formula give

3 + ^ (0.03659)
9 / 1 Y 0-Q0Q86 \

, _9_/_J_Y_ 1IY2:
10 V ioy\, 2 I 10 V 10 Jv 'loA

3 + 0.032931 + 0.0000387 + 0.00000066

3.03297. Ans.

00004\

6 )

(2) Given, log 127

log 129

First differences,

Second differences,

2.1038, log 128 = 2.1072,

2.1106. Find log 127.37.

2.1038 2.1072 2.1106

0.0034 0.0034

The second differences vanish, and the required logarithm will be

2.1038 + x'oV of 0.0034

= 2.1038 + 0.001358

= 2.1052. Ans.

For the Nautical Almanac the Right Ascension and Declination

of the Moon are required for every hour of the year. To calculate

these directly from the lunar tables would involve an enormous

amount of labor. Accordingly the Right Ascension and Declination

are calculated from the lunar tables for each noon and midnight of

Greenwich time, and those for the other hours are then calculated by

interpolation. In this calculation, the following table is useful

:

n
n{n-l)

1X2
n(n-l)in~2)

1X2X3
n

n{n-l)

1X2
n(n-l){n-2)

1x2x3

tV - 0.0382 + 0.0244 /^ -0.1215 + 0.0574

A -0.0694 + 0.0424 A -0.1111 + 0.0494

A - 0.0937 + 0.0547 T% - 0.0937 + 0.0391

A -0.1111 + 0.0617 H -0.0694 + 0.0270

A -0.1215 + 0.0641 H - 0.0382 + 0.0138

T% - 0.1250 + 0.0625
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Exercise 58.

Given the declination of the Moon at the following times.

Find the declination at each hour in the afternoon of Dec. 1.

1890. Dec. 1. Noon, N. 22 46 53

Midnight, 21 28 49

Dec. 2. Noon, 19 57 25

Midnight, 18 13 57

Dec. 3. Noon, 16 19 44

Midnight, 14 15 59

The following table contains the answers.

HOUE. DECLINATION. HOUE. DECLINATION.

I.

o / //

22 40 55 VII.
o / //

22 3 3

II. 22 34 51 VIII. 21 56 23

III. 22 28 41 IX. 21 49 39

IV. 22 22 26 X. 21 42 48

V. 22 16 3 XL 21 35 51

VI. 22 9 36 XII. 21 28 49

• The following table is more useful in general work than the table

given on the preceding page. More extended tables will be found in

collections of tables.

n
n(n-l)

1X2
n(n-l)(n-2)

1X2X3
n

n(n-l)

1x2
n(n-l)(n-2)

1X2X3

0,1

0.2

0.3

0.4

0.5

- 0.0450

-0.0800

-0.1050

-0.1200

-0.1250

+ 0.0285

+ 0.0480

+ 0.0595

+ 0.0640

+ 0.0625

0.6

0.7

0.8

0.9

- 0.1200

- 0.1050

- 0.0800

- 0.0450

+ 0.0560

+ 0.0455

+ 0.0320

+ 0.0165



COMPOUND SERIES. 337

COMPOUND SERIES.

382. It is evident from the form of certain series that

they are the sum or the difference of two other series.

(1) Find the sum of the series

1 1 1
^

1

1x2' 2x3' 3x4 ' n(n-^l)

Each term of this series may evidently be expressed in two parts

:

1111 1 1

12 2 3 n n + l'

BO that the sum will be

in which the second part of each term, except the last, is cancelled

by the first part of the next succeeding term.

Hence, the sum is 1
n + l

As n increases without limit, this sum approaches 1 as a limit.

(2) Find the sum of the series111 1

3x5 4x6 5x7 n(n + 2)

Each term may be written,

2^3 5j 2V4 6/ 2\n n + 2J

Q 1/1^1^1^1^ ^111 11 IN
Sum=-^- + - + -+-+ + --^"6- ---^Tl"^

= 1(1 +1—

i

1-V
2V3 4 n+l n + 2/

TT .1 -7 1 1
Hence, the sum is

24 2(n + l) 2(n + 2)

As n increases without limit, this sum approaches ^j as a limit.
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Exercise 59.

Write down the general term, and sum to n terms, and

to an infinite number of terms, the following series

:

1x4^2x5^3x6^ 1x3^2x4^3x5^

3. ^-+ _±- + -^_+1x5^5x9^9x13^

4 _!__!_ _A_ J- _§ +
' 2x7 ' 7X 12 ' 12 X 17^

5
1

,

1
I

1
I

5x11 8x14 11x17

6. ^- +_i_+^l-+
3x8^6x12^9x16^

The series of which the general term is :

7
1

8
371 + 1

n(w + l)(n + 2)
* (n + l)(n + 2)(n + 3)

MISCELLANEOUS PROPERTIES OF SERIES.

383. Partial Fractions. To resolve a fraction into ^arfoaZ

fractions is to express it as the sum of a number of frac-

tions of which the respective denominators are the factors

of the denominator of the given fraction. This process is

the reverse of the process of adding fractions which have

different denominators.

Resolution into partial fractions may be easily accom-

plished by the use of undetermined coefficients and the

theorem of § 256.

In decomposing a given fraction into its simplest partial

fractions, it is important to determine what form the

assumed fractions must have.
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Since the given fraction is the sum of the required par-

tial fractions, each assumed denominator must be a factor

of the given denominator ; moreover, all the factors of the

given denominator must be taken as denominators of the

assumed fractions.

Since the required partial fractions are to be in their

simplest form incapable of further decomposition, the nu-

merator of each required fraction must be assumed with

reference to this condition.

Thus, if the denominator is x^ or {x ± a)", the assumed fraction

must be of the form — or ; for, if it had the form
^ —

x^ {x ± a)" x**

or
^ — , it could be decomposed into two fractions, and the partial

fractions would not be in the simplest form possible.

When all the monomial factors, and all the binomial

factors, of the form x±:a, have been removed from the

denominator of the given expression, there may remain

quadratic factors which cannot be further resolved ; and

the numerators corresponding to these quadratic factors

may each contain the first power of x, so that the assumed
Ax + £

fractions must have either the form — -, or the
x'^ ±ax -\- o

form —
.,

'

•
'

2>x ~1
(1) Resolve — into partial fractions.

(x —• AjiX — o

)

The denominators will be a; — 2 and a; — 3.

Assume
3x-7 ^.A_ + ^,;

(x - 2){x -3)x-2 a;-3

then Zx-1=:A{x-^) \- B{x-2).

. /. ^ + ^ = 3 and 3^ + 25= 7; g 256

whence, A = \ and 5 = 2.

Therefore, ^ ^l'~^ ^^
=-^ + -^'

{x-2){x-Z) x-2 x-Z
This identity may be verified by actual multiplication.
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3
(2) Resolve — into partial fractions.

^ -f- 1

Since x^ + 1 — {x + l){x^ — x + 1), the denominators will be x -f 1

and x^ — X + 1.

A 3 _ A
,
Bx+

Assume — = h
x^-j-l x + 1 x"^ — X + 1'

then 3 = A{x^-x + l) + {Bx + C){x + 1)

= {A + B)x^ + {B + C-A)x + {A + C);

whence, 3 = A + C, B+C-A = 0, A + B = 0;^25Q

and ^ = 1, S = -l, C=2.

3 _ 1 x-2
Therefore,

a;^ + l x + 1 x"^ — X + 1

(3) Resolve —
^ into partial fractions.

The denominators may be x, x"^, x + 1, {x + If.

Assume 4.3-..-3.-2^i j^^ _^,
x^x + iy X a;2 x + 1 {x + lf

.-. 4a;3 - »2 - 3 a; - 2 = .4a;(a; + 1)^ + B{x + If + Cx^x + 1) + Dx^

= {A + C)^ + {2A + B + C+D)x' + {A+2B)x + B
v{\ielice, ^ + (7=4, ^256

2A + B + C+D = -1,

A + 2B = -3,

or, A = l, B = -2, 0=3, D = -^.

Therefore, i^i^^!^^^^^l-l+ ' ^

x\x + lf X x'^ x + 1 {x + iy

Exercise 60.

Resolve into partial fractions :

7a: +1 - bx—l
(x + 4:)(x-b) {2x-lXx-5) x'-l

„ x"^ — X
2.

6 . .-2
(x + SXx+ 'i) ;r'-3a;-10 x(x''-4)
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^x" -4
x\x + 5)

Jx'-x
(X-

2x'

10.

11.

9.
"•" ••:'" • 12.

7x

6x'-bx + l

13a7 + 46

12a:2-lla;-15*

2a:^-lla: + 5

:r^-l :r^

384. Expansion in Series. A series which is obtained from

a given expression is called the expansion of that expression

(§ 243). The given expression is called the generating func-

tion of the series.

Thus (^ 250), the expression is the generating function of
1 — X

the infinite series l+x + x^ + a^ +

When the expression is a finite series, the generating

function is equal to the expansion for all values of the

symbols involved.

Thus, (l±l^Y =\ + e
+ i2x + &^.

\ X J or X

When the expansion is an infinite series, the generating

function is equal to the expansion for only such values of

the symbols involved as make the expansion a convergent

series.

Thus, is equal to the series l+x + x^-\-oi^ + when, and
1 — a;

only when, x is numerically less than 1 (§ 251).

385. The expansion of a given expression may be found

:

By division,

By the binomial theorem.

By the method of undetermined coefficients.

By other methods, which involve a knowledge of the

Differential Calculus.
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(1) Expand -——
- in ascending powers of x.

Divide a? by 1 + x"^, then

l+x"

provided x is so taken that the series is convergent. By § 373 x

must be numerically less than 1.

(2) Expand
:^
in descending powers of x.

Divide a; by a;^ + 1, then

X 1_1^1_
1 + x'^ X X^ 0^

provided x is so taken that the series is convergent. By ^ 373 x

must be numerically greater than 1.

In the two preceding examples we have found an expansion of

—-— for all values of x except ± 1.

(3) Expand ^
in ascending powers of x by the

X -J- X

binomial theorem.

1 = (1 + a;2)-i = 1 - a;2 + a*
l+x""

X — x^ + x^ —
1+x^

provided x is so taken that the series is convergent.

(4) Expand -

—

— in ascending powers of x.

Assume 2 + 3x _ ^ + ^3. + cfc2 ^ jr>^

1 + X + x^

then, by clearing of fractions,

2 + 3x = A + Bx + Cx^ + Da^ +

+ Ax + Bx^ + Ca? +

+ Ax^ + j5x3 ^
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By §256, A^2, B + A = S, C+B + A = 0, I) + C+B = 0;

whence ^=1, C= — 3, D = 2, and so on.

... A±A^^2 + x-3x'' + 2r^ + x*-33^ +
1+x + x'^

The series is of course equal to the fraction for only such values

of X as make the series convergent.

Remaek. In employing the method of Undetermined Coefficients,

the form of the given expression must determine what powers of the

variable x must be assumed. It is necessary and sufficient that the

assumed equation, when simplified, shall have in the right member

all the powers of x that are found in the left member.

If any powers of x occur in the right member that are not in the

left member, the coefficients of these powers in the right member will

vanish, so that in this case the method still applies ; but if any

powers of x occur in the left member that are not in the right mem-

ber, then the coefficients of these powers of x must be put equal to

in equating the coefficients of like powers of x ; and this leads to

absurd results. Thus, if it were assumed in problem (4) that

^•^^'' = Ax -f J5x2 + Cj^ + ,

1 + a? + x'^

there would be in the simplified equation no term on the right cor-

responding to 2 on the leftr so that, in equating the coefficients of

like powers of x, 2, which is 2x^, would have to be put equal to Ox"

;

that is, 2 = 0, an absurdity.

(5) Expand (a — xy in a series of ascending powers of x.

Assume {a- xf = A-{- Bx + Cx^ + D:^ +

Square, a-x= A^\2ABx^{2AC^W)x'^{2AD^2BQ)x^-\-

Therefore, by \ 256,

A^ = a, 2AB = -\, 2^(7+52 = 0, 2^2) + 25(7= 0, etc.,

and ^ = a*, 5=---, G=-\. ^ = --^i
2a2 8a^ 16a^

Hence, (a-x)^ = a* - -^ --^ - -^- Cf. g 258

2a* 8 a* 16 a^
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(6) Expand

powers of x.

Assume

1 + x

(l + :r)(l + ^^)
in a series of ascending

1 + x _ A Bx + C
(1 + x){l + a;2) 1 + a; 1 + x^

.: 1 + x = {A + B)x'' + (5 + C)x + (^ + C).

:.A^B = 0, B + C=l, A + 0=7.

Whence, A = 3, B = -3, C-4.

7 + x _ 3 4-3x
" {l+x){l+x^)~l +x 1 +x^'

-^ = 3 (-^\ - 3(1 - a? + a;2 -x3 + a;*- )
1+a; Vl+^y

== 3 - 3a; + 3x' -^x^ + Sx^- ,

But

and izil^=(4-3»)
l + a;2

Adding the two series,

7 + x

4-3a;-4a;2 + 3a;3 + 4a;*

= 7-6x-x'' + 7x*
(1 + a;)(l + a;2)

386. Reversion of a Series. Given

y = ax -\- bx"^ -\- cx^ + dx^ + ,

where the series is convergent, to find x in terms of y.

Assume x = Ay + By"^ + Cy^ + Dy^ +

In this series for y put ax + hx^ + cx^ + dx^ +
result is

x^-\-

the

x = aAx -\- hA x'+cA 3?-\-dA

-\-a'B + 2abB + h'B

-{-a'C + 2acB
+ 3a^^C

-\-a'D
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Comparing coefficients (§ 256),

aA = l] bA + a'B = 0; cA + 2abJB -\- a'C =0;

dA + h'B + 2acB + 3a^5(7+ a'D = 0.

a 6? a*

(1) Given y^=^x^x^-\-o?-\- ; find x in terms of y.

Here, a = l, 6 = 1, c = l, d=\
A = \, B = -l, C=l, D = -l,

Hence, x^y ^y^ + y^ —y* +

/y»* /v»" /y»^

(2) Reverty = a;--+---+

Here, a = l, & = — J, c = J, d = — ^,...

y2 y3 y4:

Hence, ^ = 2/ + ^ + % + g +

Exercise 61.

Expand to four terms in ascending powers of x :

1 4 1-^ 7 x(x-l)
l-2a; '

l + ^ + :i;^
* (a:+l)(a:'+l)

1.

2. _A_. 5.
^-^^

. 8. ^1Z1^±1.
2-3a; l-}-x-x' x'(x'-l)

^ 1+x ^ ix-Qx" ^ 2r'-l
2 + 3a; l-2a; + 3a;^ a:(r'+l)
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Expand to four terms in descending powers of x:

10. -A_. 12. -Izi2^. 14. 3^-2
2 + x 1 + 3:^-07'' x(x-iy

11 ^ — ^
12,

x^ — x-i-l ^^
x'-x-{-l

3-[-x x(x-2) (x-lXx'+l)

Revert

:

16. y = x--2x'' + Sc(^-4:x' + '

^ f\ 7

17. y =^--+---+

/v»* /v»** /y»^

18. , = . +^+^ +^ +

387. The following series have been already studied

:

(1) Arithmetical series (§§ 218-224).

(2) Geometrical series (§§ 225-231).

(3) Harmonical series (§§ 232-235).

(4) Expansions obtained by the binomial theorem

(§§ 239-260).

(5) Series of Differences (§§ 377-380).

We shall now consider series obtained by division, or by

the method of undetermined coefficients (§ 385).

\ A- X
388. Kecurring Series. From the expression ^

we obtain by actual division, or by the method of unde-

termined coefficients, the infinite series

1 + 3a; + 7^' + 17:f' + 41 a;* + ^x^ +

In this series any required term after the second is found

by multiplying the term before the required term by 2x,

the term before that by x"^, and adding the products.
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Thus, take the fifth term :

In general, if w„ represent the nth term,

W„ = 2 XUn-i + x^u,^_2.

A series in which a relation of this character exists is

called a recurring series. Recurring series are of the first,

second, third, order, according as each term is dependent

upon one, two, three, preceding terms.

A recurring series of the first order is evidently an ordi-

nary geometrical series.

In an arithmetical, or geometrical, series any required

term can be found when the term immediately preceding

is given. In a series of differences, or a recurring series,

several preceding terms must be given if any required term

is to be found.

The relation which exists between the successive terms

is called the identical relation of the series ; the coefficients

of this relation, when all the terms are transposed to the

left member, is called the scale of relation of the series.

Thus, in the series

1 + 3a; + 7a;2 + 17a;3 + 41.x* + 99^5 +

the identical relation is

Un = 2 XUn-l + x'^Un-2 ;

and the scale of relation is

l-2a;-x2.

389. If the identical relation of the series is given, any

required term can be found when a sufficient number of

preceding terms are given.

Conversely, the identical relation can be found when a

sufficient number of terms are given.
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(1) Find the identical relation of the recurring series

1 + 4a; + Ux' + 49 r' + 171 x* + 597^^ + 2084:i:« + •-

Try first, a relation of the second order.

Putting n = 3, and, then, w = 4,

14 = 4/) + q,

49 = 14:p +4:q;

whence, P = h q = ^-

This gives a relation which does not hold true for the fifth and

following terms.

Try next a relation of the third order.

Assume Un =pxun-i + qx^Un-2 + ra;^Wn-8-

Putting n = 4, then n = 5, then n = 6.

49= lip + 4:q+ r,

171- 49p + 14^+ 4r,

597 = 171|) + 49g + 14r;

whence, p = 3, q = 2, r -= — 1.

This gives the relation

Un=S XUn- 1 + 2 x'^Un-2 — X^Un-3

which is found to hold true for the seventh term.

The scale of relation is 1 — 3x — 2x'^ + x^.

(2) Find the eighth term of the above series.

Here, Wg = 3 xu.j + 2x^Uq — x^u^

= Sx (2084 x^) + 2x\d97a^)-x*(l1l x*)

= 1-21bx\ Am. .

390. Sum of an Infinite Series. By the sum of an infinite

convergent numerical series is meant the limit which the

sum of n terms of the series approaches as n is indefinitely

increased; a divergent numerical series has no true sum.

By the sum of an infinite series of which the successive

terms involve one or more variables is meant the generating

function of the series (§ 384) ; that is, the expression of

which the series is the expansion.
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The generating function is a true sum when, and only

when, the series is convergent.

The process of finding the generating function is called

summation of the series.

391. Sum of a Eecurring Series. The sum of a recurring

series can be found by a method analogous to that by which

the sum of a geometrical series is found (§ 227).

Take, for example, a recurring series of the second order

in which the identical relation is

Uu=puu-i-^quu-2,

or Uj, —puu-x — quj,_^ = 0.

Let s represent the sum of the series ; then

s = w, + W2 + W3+ w^.i + w„,

—pS = —pUi —pU2 — —pUn-2 —pUn-l—pUn,

- qs= — qUi — — qUn-3 — qu^-i — qu^-i — qu^.

Now, by the identical relation,

u^—pu^— qui = 0, Ui—pu^—qu2= 0, Un—pUn-i—qUn-i.= 0.

Therefore, adding the above series,

„ ^ -^1 + (^2 —pui) pu„ i- q(un + u^.i)

l-p-q l-p-q

Observe that the denominator is the scale of relation.

If the series is infinite and convergent, u^ and w„_i each

approaches as a limit, and s approaches as a limit the

fraction
^i + K-J^^O.
l-p-q

If the series is infinite, whether convergent or not, this

fraction is the generatingfunction of the series.
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For a recurring series of the third order of which the

identical relation is

Ui-\-(u2—pu^ + (ws — pu2 — qui)
we find s = :,1—p—q—r

l—p~q—r
Similarly for any recurring series.

(1) Find the generating function of the infinite recurring

series

l + 4:x+lSx'-{-^Sa^ + 14:2x' +
By § 389 the identical relation is found to be

Ufe= 3 XUjc-l + X^U}c-2.

Hence, s = 1 + 4 oj + 13 a;^ + 43 a;^ + 142 a;* + .....

-3a;s= -3a;-12a;2-39a;3-129a;*-

- a^8= - a;2- 4x3- i3a;4_

Adding, {1 — 3x — x^)s = l + x,

1 +x
1-3 X — X-

(2) Find the generating function and the general term

of the infinite recurring series

1 _ 7a; _ a;2
_ 43^ ._ 49^4 _ 397^5 _

Here Uk= xuk-i + 6 x'^Uk-2.

s = l_7a;_ x2-43a;3_49.x*-

_ X8=- — x + 1x'^+ a;3 + 43a;* +

_6aj2s= -6a;2 + 42a;3+ 6x^ +

l-8rp __
l-8a;

^ l-a;-6a;2 (1 + 2a;)(l - 3x)'
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By g 383 we find

l-8a; ^ 2 1

(l + 2a;)(l-3a;) 1 + 2a; l-3a;"

By the binomial theorem or by actual division,

—-— = 1 - 2a; + 22a;2 - 2^a^ + + 2^(- lYx^ + ,

1 +2a;

—-— = 1 +3x + 3'^x^ + S^a^ + Z^x^ +
1-Sx

Hence the general term of the given series is

[2r+l(_l)r_3rja;r.

(3) Find the identical relation in the series

P + 2^ + 3^ + 4^ + 5^^+6^4-7^-}-

The identical relation is found from the equations

16= 9p + iq+ r,

25 = 16j9+ dq + ir,

SG = 25p + 16q + 9r, .

to be Uk= 3 ujc-i — 3 u^^i + ujcs.

Exercise 62.

Find the identical relation and generating function of:

1. l + 2x+7x'' + 2Ss^+76x*+

2. S + 2x + Sx'-i-7x'-{-18x*-i-

Find the generating function of

:

3. 2-\-Sx + 5x' + 9x' + 11x*-{-SSx^-{-

4. 7 - 6^7 + 9x' + 27a:'+ 54a;*+ 189:r' +
5. l-{-bx-{-9x'+13x'+nx*-}-21c(^-\-

6. l + a:-7a;' + 33^*- 130a;^ + 499^'+

7. S-{-6x+14:x' + S63^-{-9Sx* + 2763^-\-

Find the sum of n terms of

:

8. 2 + 5 + 10 + 17 + 26 + 37 + 50 +
9. P + 2' + 3H4H5' +
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EXPONENTIAL AND LOGARITHMIC SERIES.

392. Exponential Series. By the binomial theorem

\ nj n 1x2 'nr

. nx {nx — l)(yi:y — 2) v. J- .

"^
1x2x3 n^"^

= l+x
f i\ ( ly 2\

l;^ ^
+ (1)

This equation is true for all real values of x, since the

binomial theorem may readily be extended to the case of

incommensurable exponents by the method of § 264 ; it is,

however, only true for values of n numerically greater than

1, since - must be numerically less than 1 (§ 375).
n

As (1) is true for all values of x, it is true when x=^l.

[(-9">(-yBut

Hence, from (1) and (2)

•• (2)

§264

1 +1+^+ ^ "A n)
+

= l + ^-f

x{x~^^ ^(^^-_g(^_?)

[2 li
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This last equation is true for all values of n numerically-

greater than 1. Take the limits of the two members as n

increases without limit. Then (§ 367)

{'^'"tt J
and this is true for all values of x. It is easily seen by

§ 373 that the second series is convergent for all values oi X]

the first series was proved convergent in § 372.

The sum of the infinite series in parenthesis is called the

natural base (§ 267), and is generally represented by e
;

hence, by (3),

^=1+^+1+1+ ^

To calculate the value of e we proceed as follows

:

1.000000

• 2

3

4

5

6

7

8

9

1.000000

0.500000

0.166667

0.041667

0.008333

0.001388

0.000198

0.000025

ding,

ten places.

e =

£ =

0.000003

-. 2.71828.

= 2.7182818284.

393. In A put ex in place of x ; then

Put €f = a\ then c = \og^a, and e'* = a'.

.-. a-=l + ^log,a +^iM+^^i^'+ B
L£ l£

The series in B is known as the exponential series ; B re-

duces to A when we put e for a.
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394. Logarithmic Series. In A put e* = 1 + y ; then

a7= loge(l+y), and by A,

x^ , x^ , x^

2'="+ll+[l+g+
Revert the series (§ 386), and we obtain

^^y^yl+t^t^
^ y 2^3 4

'

But a; = loge(l+y).

.-. log,(l+y) = y-5 +^-{ +

Similarly from B,

The series in D is known as the logarithmic series ; D re-

duces to when we put e for a.

In and D y must be between — 1 and + 1, or be equal

to+ 1, in order to have the series convergent (§ 376, Ex. 1).

395. Modulus. Comparing and D we obtain

log„(H-y)=-l-log,(l + y);

or, putting iV for 1 + y,

iog«i\^=-J-iogeiv:
log«a

Hence, to change logarithms from the base e to the base

a, multiply by =logae; and conversely (§283).
loge^

The number by which natural logarithms must be multi-

plied to obtain logarithms to the base a is called the modu-

lus of the system of logarithms of which a is the base.

Thus, the modulus of the common system is logjo<? (§ 285).
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396. Oalculation of Logarithms. Since the series in and

D are not convergent when x is numerically greater than 1,

they are not adapted to the calculation of logarithms in

general. We obtain a convenient series as follows

:

The equation

log.(l + y)=2,-J +J-J+ (1)

holds true for all values of y numerically less than 1

;

therefore, if it holds true for any particular value of y, it

will hold true when we put — y for y; this gives

Iog.(l-y) = -y-J-f-^- (2)

Subtracting (2) from (1), since

log,(i + y) - log.(l -y) = log.(J^),

we

Put y =-i-; then l±l= '-±l^
^ 22 + 1 1-y z

'

and logef^-^j = logeCz + 1) - \og,z

/ 1

\22+l
1

3(2^ + 1)' 5(2z+l)'
+

This series is convergent for all positive values of z.

Logarithms to any base a can be calculated by the corre-

sponding series obtained from D ; viz.

:

loga(z + l) — log«z

\ogea\2z-i- 1 B(2z + iy ' 5(2z+l)'
4-
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(1) Calculate to six places of decimals logg 2, loge 3, log, 10,

logioe.

In E put z = 1 ; then 2z + l = 3, \ogeZ = 0,

andd loge 2 = 2,2,2,2,
3^3x33'5x35'7x37"^

""*

The work may be arranged as follows

:

3 2.0000000

9 0.6666667 h- 1 = 0.6666667

9 0.0740741-^ 3 = 0.0246914

9 0.0082305 -f- 5 = 0.0016461

9 0.0009145- 7 = 0.0001306

9 0.0001016- 9 = 0.0000113

9 0.0000113 -^ 11 = 0.0000010

0.0000013 H- 13 = 0.0000001

loge2 = 0.693147

'°S'^ = 1''«'^ + F3X5= + 5X5^^
= 1.0986123.

loge 9 = loge(32) = 21oge 3 = 2.1972246.

•°«'^° = l°«'^^^3xl93 + 5x'l9^^-
•~

= 2.1972246 + 0.1053606

= 2.302585.

loe,„e = —^ = 0.434294.
loge 10

Hence, the modulus of the common system is 0.434294.

To ten places of decimals :

loge 10 = 2.3025850928,

logio^ =0.4342944819.

For calculating common logarithms we use the series in F.

logio(z+l) — logioz

^0.8685889638/^
\2z-j-l ' 3(20+1/ 5(22 + l)«
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(2) Calculate to five places of decimals logioll.

Put 2= 10; then 22 + 1 = 21, logz = l.

logll = l +0.868588/'^ +—^ + —^— + "^

^
\,21 3x213^5x215^ J

21

441

0.868588

0.041361 ^ 1 = 0.041361

94 -5- 3 = 31

0.041392

1

logioll = 1.04139

In calculating logarithms, the accuracy of the work may be tested

every time we come to a composite number by adding together the

logarithms of the several factors (^ 365). In fact the logarithms of

composite numbers may be found by addition, and then only the

logarithms of prime numbers need be found by the series.

397. Limit of
(
1 +- )• By the binomial theorem,

\ nj n \X2 n^

1

n{n~\){n-2) ^ ^ ,

^ 1x2x3 n'~^

"„2
I V vv «/= i+^+-^x^+^

—

\i
—-^+

This equation is true for all values of n greater than x

(§ 375). Take the limit as n increases without limit, x

remaining finite ; then

^li"'' 7i+ir 5 392
n infinite

n infinite
\^ nJ
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Exercise 63.

1. Show that the infinite series

_i L_ j__i L_-L
1X2 2x2^ 3X2=^ 4x2*"^

is convergent, and find its sum.

2. Find the limit which >/! -{-nx approaches as n ap-

proaches as a limit.

3. Provethat l = 2(i +| +
i +

)
4. Calculate to four places, loge4, log^S, loge6, loge?.

5. Find to four places the moduli of the systems of which

the bases are : 2, 3, 4, 5, 6, 7.

6. Show that

1
/8\_ 5 7 9

^^\ej Ix2x3"^3x4x55x6x 7

7. Show that

log.a-log.5 =—-+
-^_-J

+-^—j +

8. Show that, if x is positive,

93 03 A3

9. Show that l +^+ | + l=:5..

[^ 12 [^

10. Show that 6^^^ = X+ YV^^ where

/y«2 /y,4 ^6 -,,3 ^y^ , rt^T

11. Expand ^^^^ in ascending powers of a;.

12. Expand :== in ascending powers of a;.



we obtain

CHAPTER XXVIII.

DETERMINANTS.

Origin. Solving the two simultaneous equations

0-2^ + b-ii/ = ^2,

Similarly, from the three simultaneous equations

a^x+ b,y + c^z = di,

a<iX + b.{y -j- c^z = d.2,

a%x + b%y + c^z = d^,

we obtain

^ ^ d-Jp^Cz — d^-ip^ + c?2&3gi — c?2^ig3 + c^3^i^2 — d^2C\

a^b-lOz — CCib^Ci + a2^3<?l — «2^1^3 + «3^1<?2 — «3^2^1

with similar expressions for 3/ and 2.

The numerators and denominators of these fractions are

examples of expressions which often occur in algebraic

w^ork, and for which it is therefore convenient to have a

special name ; such expressions are called determinants.

399. Definitions. Determinants are usually written in a

compact form, called the squareform.

Thus, a^bj — a^b, is written
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and Cli^2^3 — <^1^3^3 + ^2^3*^1 " ^2^1^3 + <^3^1^2 — ^3^2^1

is written

"l ^2 %
This square form is sometimes written in a still more abbreviated

form. Thus, the last two determinants are written
|
a^ Jj

I

^^^

I

fl] &2 <^3 1- This last notation should, however, always suggest the

square form ; in any problem it will generally be advisable to write

out this abbreviated form in the complete square form.

The individual symbols ai, a.j,, b^, h^, , are called ele-

ments.

A horizontal line of elements is called a row ; a vertical

line a column.

The two lines ai, h^, c^ and ag, h^, c^ are called diagonals
;

the first the principal diagonal, the second the Secondary

diagonal.

The order of a determinant is the number of elements in

a row or column.

Thus, the last two determinants are of the second and third orders,

respectively.

The expression of which the square form is an abbrevia-

tion is called the expanded form, or simply the expansion, of

the determinant.

The several terms of the expansion are called terms of

the determinant.

Thus the expansion of a^&j — ^2^1*
^1 <^2

\ \
Kemark. By some writers constituent is used where we use ele

ment, and element where we use term.

400. General Definition, In general, a determinant of the

nth order is an expression involving tI? elements arranged

in n rows of n elements each ; the expansion, that is, the

expression for which the square form is an abbreviation,

being found as follows :
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Form all the possible products of n elements each that

can be formed by taking one, and only one, element from

each row, and one, and only one, element from each col-

umn
;
prefix to each of the products thus formed either -f-

or — (which sign is to be determined by a rule to be given

in the following sections), and take the sum of all these

products.

Nearly all the properties of determinants can be obtained directly

from this definition and the rule of signs (§ 403 or | 404). This will

be the method followed in the present chapter. It is therefore of the

utmost importance that the student should thoroughly understand

the present and the four following sections.

401. Inversions of Order, In any particular determinant

the letters and subscripts in the principal diagonal are said

to be in the natural order. If the letters, or subscripts, are

taken in any other order, there will be one or more inver-

sions of order.

Thus, if 1, 2, 3, 4, 5 be the natural order, in the order 2, 3, 5, 1, 4,

there will be four inversions : 2 before 1, 3 before 1, 5 before 1, 5 be-

fore 4.

Similarly, if a, 5, c, d be the natural order, in the order h, d, a, c,

there will be three inversions : b before a, d before a, d before c.

402. In any series of integers (or letters) let two adjacent

integers (or letters) be interchanged ; then, the number of

inversions is either increased or diminished by one.

For example, in the series 6 2 [5 1] 4 3 7, interchange 5 and 1.

We now have 6 2 [1 5] 4 3 7.

The inversions of 5 and 1 with the integers before the group are

the same in both series.

The inversions of 5 and 1 with the integers after the group are the

same in both series.

In the first series 5 1 is an inversion ; in the second series 1 5 is not.

Hence, the interchanging of 5 and 1 diminishes the number of in-

versions by one.

Similarly, for any case.
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403. Signs of the Terms. The principal diagonal term

always has a + sign.

To find the sign of any other term : Add together the

number of inversions among the letters, and the number of

inversions among the subscripts. If the total number is

even^ the sign of the term is -f ; if odd, —

.

Thus, in the determinant \a^h^c^d^\ consider the term c^a^d^^.

There are m cadb three inversions ; in 2 3 4 1 three inversions ; the

total is six, an even number, and the sign of the term is +.

404. In practice the sign of a term is easily found by

one of the following special rules :

Rule I. Write the elements of the term in the natural

order of letters ; if the number of inversions among the sub-

scripts is even, the sign of the term is -}- ; if odd, —

.

Rule II. W7ite the elements in the natural order of sub-

scripts ; if the number of inversions among the letters is even,

the sign of the term is + / if odd, —

.

Thus, in the determinant
| a^ h^ c^ d^

\
consider the term c^a^dj)^.

Writing the elements in the order of letters, we have a^b^c^d^.

There are two inversions, viz. : 3 before 1, and 3 before 2 ; and the

sign of the term is +. Or, write the elements in the order of subscripts,

h^c^a^d^. There are two inversions, viz. : h before a, and c before a
;

and the sign of the term is +.

That these special rules give the same sign as the general rule

of § 403 may be seen as follows

:

Consider the term c^a^d^h^. Its sign is determined by the total

number of inversions in the two series ^ ^
. Bring a, to the first

2341 ^ '

position ; this interchanges in the two series c and a, 2 and 3. In each

series the number of inversions is increased or diminished by one

(^ 402), and the total is therefore increased or diminished by an even

number.

Interchange b^ and d^, then interchange J^ and e^ ; this brings b^ to

the second place, and the letters into the natural order. As before,

the total number of inversions is changed by an even number.
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The term is now written a^b^c^d^, and the number of inversions

differs by an even number from that found by the general rule of

§ 403. Hence, the sign given by Rule I. agrees with the sign given

by the general rule.

405. If all the elements in any row (or column) are zero,

the determinant is zero. For every term contains one of

the zeros from this row (or column) (§ 400), and therefore

every term of the determinant is zero.

A determinant is unchanged if the rows are changed to

columns and the columns to rows. For the rules (§§ 400,

403) are unchanged if " row " is changed to "column," and

"column" to "row."

Thus,

h

406. A determinant of the thi7'd order may be conve-

niently expanded as follows :

Three elements connected by a full line form a positive

term ; three elements connected by a dotted line form a

negative term. The expansion obtained from the diagram is

ctJ>2(^3+ di^zCi + asbiCi — aib^Ci — aihiC^ — a^iCx,

which agrees with § 398.

There is,no simple rule for expanding determinants of

orders higher than the third.
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Exercise 64.

Prove the following relations by expanding :

1.

2.

a^ ^
^2

a

h

i cti =
a, ai

'

ai a^ a. 0,3 a^ ^1 bi c, ai

h h. h = (-3 Ci Ci = — h <?3 «3

Ci C'l Cz h h ^1 h. C, ^2

Find the values of

:

II 2 3

3. 2 4 4

3 4 5

4.

3 2 4

7 6 1

5 3 8

5.

4 5

1 2

6 -4

6. Count the inversions in the series

:

5413 2. 751436 2. d a c e h.

4152 3. 654213 7. c e b d a.

7. In the determinant
|
ai ^2 ^s c?4 ^5 1

find the signs of

the following terms

:

a^^c^d^e^. a^^c^d^^e^. e^c^a^^d^.

a^rfi^d^e^. b^c^a^e^d^. c^a^^e^d^.

8. Write, with their proper signs, all the terms of the de-

terminant
I

«! b^ Cg C?4 |.

9. Write, with their proper signs, all the terms of the

determinant
| ax bi c^ d^ ^5 1 which contain both ax and b^

;

all the terms which contain both b^ and e^.

Expand the determinants

10.

a b

b a
. 11.

U a a b

b b a

a

b

a a b b
. 12.

b b a a

a b c

c a b

K c a

a b c 1
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407. Number of Terms. Consider a determinant of the

nth order.

In forming a term we can take from the first row any

one of n elements ; from the second row any one of n — 1

elements ; and so on. From the last row we can take only

the one remaining element.

Hence, the full number of terms is n(n— 1) 1, or \n.

«1 a. as a*

^1 h h h.
, A' =

Ci c. Cs Ck

d. cl, d. d.

ai a. a. a*

i. h b. b.

Ci Ca Cl c.

rfi d. d. d.

408. Interchange of Columns (or Eows). If two adjacent

columns of a determinant A are interchanged, the determi-

nant thus obtained is — A.

For example, consider the determinants

A =

The individual elements in any row or column of A' are

the same as those of some row or column of A, the only

difference being in the arrangement of elements. Since

every term of each determinant contains one, and only

one, element from each row and column, every term of A'

must, disregarding the sign, be a term of A.

Now the sign of any particular term of A' is found from

a series (§ 404, Rule I.) in which 3 2 is the natural order.

The sign of the term of A which contains the same elements

is found from a series in which 3 2 is regarded as an inver-

sion. Consequently every term which in A' has a -f sign

has in A a — sign, and vice versa (§ 402).

Therefore A' = — A.

Similarly if any two adjacent columns or rows of any

determinant are interchanged.
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409. In any determinant ^, if a particular column is

carried over m columns, the determinant obtained is (— 1)"'A.

For, successively interchangs the column in question

with the adjacent column until it occupies the desired posi-

tion. There will be m interchanges made, and since there

will be m changes of sign (§ 408), the new determinant

will be (- 1)'»A.

Similarly for a particular row.

410. In any determinant A ?/ any two columns are inter-

changed, the determinant thus obtained is — A.

Let there be m columns between the columns in question.

.Bring the second column before the first. The second

column will be carried over m + 1 columns, and the deter-

minant obtained is (- l)'"+iA (§ 409).

Bring the first column to the original position of the

second. The first column will be carried over m columns,

and the determinant obtained is (—!)'"(— 1)"*+^ A, or

(_l)2-+iA.

Since 2m + 1 is always an odd number, this is — A.

Similarly for two rows.

Thus.

411. Useful Properties. If two colu7nns of a determinant

are identical, the determinant vanishes.

For, let A represent the determinant.

Interchanging the two identical columns ought to change

A into — A. But since the two columns are identical, the

determinant is unchanged.

.-. A = -A, 2A = 0, A = 0.

Similarly, if two rows are identical.

«1 «2 «3 «3 a-2 «i «3 «2 «i

h h, ^3 ~ — ^3 b. K — C3 C2 Ci

Cl Cj Cs ^3 Cj Cl h b. bi
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412. If all the elements in any column he multiplied by

any nuTnber m, the determinant will be multiplied by m.

For, every term contains one, and only one, element from

the column in question. Hence every term, and conse-

quently the whole determinant, is multiplied by ?n.

Similarly for a row.

Thus.

Again,

mh.

be

^3

^3 = m
C3

a^

h''
_ 1

c2

~ abc

^1

abc

bca

cab

—— bca h

ag ma-^

^3 = «2

C3 «3

a3 1

63 = 1

(? 1

62

413. If each of the elements in a column is the sum of

two numbers, the determinant may be expressed as the

sum of two determinants.

fli + a ^2 ^3 <^i «2 <^3 a «2 %
Thus, b, + /3 b, b, = h, b, b, + (3 b, ^b,

^1 + y <?2 ^3 <?i O2 C3 y Ci C3

For, consider any term, as (ai -\- a) b^c^. This may be

written aib^Cs ~\- abiC^. Hence, every term of the first de-

terminant is the sum of a term of the second determinant

and a term of the third determinant. Consequently the

first determinant is the sum of the other two determinants.

Similarly for any other case.

414. If the elements in any column (or row) are multi-

plied by any number m, and added to, or subtracted from,

the corresponding elements in any other column (or row),

the determinant is unchanged.

Thus,

«! =b ma^ a-i a^

bi d= mbi 62 ^3

Ci ± W^a C2 Ci

«1 a, Os

^ b. h ±:

Ci C2 C3

ma^ a. a.

mh^ h ^3

mc^ Ci ^3
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The last determinant may be written

, and therefore vanishes (§ 411).m
«2

Hence, we have only the first determinant on the right-

hand side.

Similarly for any other case.

This process may be applied simultaneously to two or

more columns (or rows) ; but in this case care must be

taken not to make two columns (or rows) identical (§ 411).

This last property is of great use in reducing determi-

nants to simpler forms.

415. Examples.

(1)

h^c a 1

c-\-a h 1

a-\-h c 1

b -\- c -j-a

c + a^b
a-{-b -]- c

= {a + b + c)

Begin by adding the second column to the first.

a 1

b 1

c 1

1 a 1

1 b 1

1 c 1

(2)

14 15 11

21 22 16 =
J

23 29 17 (

. 2

3 4 11

6 6 16

6 12 17

= 2

3 2

5 3

6 6-
2

L

L

= 0.

3 2 11

5 3 16

6 6 17

2(19) = 38.

Begin by subtracting the third column from the first and second

columns. Then take out the factor 2 (§ 312), subtract 3 times the

first column from the third, and multiply out the result by § 406.
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416. Pactoring of Determinants. If a determinant van-

ishes when for any element a we put another element b, then

a — b ^s afactor of the determ,inant.

For the expansion contains only positive integral powers

of the several elements, and we can write

^ = A, + A,a + A^d' + A,a' + , (1)

where Aq, Ai, A^, A3, , are expressions which do not

involve a, and will, consequently, remain unchanged when

we put b for a.

Putting b for a, since A becomes by hypothesis, we obtain

= ^0 + ^1^ + A,b' + A^b' +
(2)

Subtracting (2) from (1), we obtain

A = A,(a-b) + A,(a' - b') -f A^ia' - b')

Since every one of the expressions a— b, 0^ — 5^ a' — 6^,

, contains a, — S as a factor, a — 5 is a factor of A.

The theorem also holds true when a and b are not

elements, provided a and b enter into the expansion in

positive integral powers only.

By the principle just proved, and the principle of § 411,

we can resolve many determinants into factors without

expanding them.

a^ a 1

5^ b 1

c"- c 1

(1) Resolve into factors

The determinant vanishes when a = &, when a = c,- and when

Z> = c. Hence, a — 6, 6 — c, and c — a are factors. A is of the third

degree in a, 6, c, and these are easily seen to be all the factors. It

remains to determine the sign before the product.

In A as given c^h is + ; in the product (a — 6)(6 — c){c — a) the

term (j?h is — . Hence,

A = - (a - 6)(6 - c){c - a).
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(2) Resolve into factors

d^ a h -{-0

h'' b c + a

c^ c a-\-b

As in the last example a — h, b — c, c — a are found to be factors.

There is one other factor of the first degree.

To the third column add the second ; the result may be written

a" a 1

(a + b + c)

or, by Ex. 1,

62 6 1

c2 c 1

{a + b + c){a - b){b — c){e -a).

Show that

:

a b

a c

b c

3.

Exercise 65.

2abc. 2.

a'

1 b' b' b'

1 c' c' c'

1 d' d' d'

b -\-c a

b e-{- a

a

b

a + b

= 4:abc.

bed a d^ o?

cda b b' b'

dab c c^ c^

abc d d^ d^

4.

1 1 1

1 c' b'

1 c^ a^
—

1 b' a'

Find the value of

20 15 25

17 12 22

19 20 16

a b c

a c b

b c a

c b a

6.

3 23 13

7 53 30 7.

9 70 39

Resolve into simplest factors

8.

a a"

b ¥
a a"

b b'

be

ca

ab

10.

22 29 27

25 23 30

28 26 24

a' be 1

b^ ca 1

c^ ab 1
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11.

a h c

h c a . 12.

a b

1 a a? a'

1

1

h

c

h'

c'
. 13.

1 d 6? d>

a b c d
h a d c

c' d a b

d e b a

14. If all the elements on one side of a diagonal term

are zeros, show that the expansion reduces to this term.

Show that

:

15.

16.

o? — be a 1

b-'-ca b 1

c^ ~ ab c 1

= 0.

a + 25 a + 46 a + 6^»

a + 3S a + bb a-{-7b

a + 4:b a-\-6b a + 8b

17.

b^ + c^ ba ca

ab & + c^ cb

ac be a^ + b'^

= 4:a'b'c\

18.

(a-hbf
(b + ef

(e + af

2abe(a-^b + cy

19.

1+^ 2 3 4

1 2-{-x 3 4

1 2 3 + ^ 4

1 2 3 4 + a;

= x' + lOx'.

20.

a^ -f 1 ba ea da

ab b' + l eb db

ae be c^ +

1

de

ad bd cd d^-{-l

-i-d'+l.
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417. Minors. If one row and one column of a determi-

nant be erased, a new determinant of order one lower than

the given determinant is obtained. This determinant is

called a first minor of the given determinant.

Similarly, by erasing two rows and two columns we ob-

tain a second minor ; and so on.

Thus, in the determinant {a^ b^ c^\, erasing the

second row and third column, we obtain the first / 7^

a \

^ '
2 This minor is said to correspond to q Cg

^2
I

the element 63, and is generally represented by Aj ; so that, in this

case, Ai =\ ^

%

ai

br h ^3 b.

Ci c, C3 Ci

di di ds d.

In general, to every element corresponds a first minor

obtained by erasing the row and column in which the given

element stands.

418. Theorem. If all the elements of the first row after

the first element are zeros, the determinant reduces to a^^a^.

Consider the determinant

Ci

d.

Every term of A contains one, and only one, element

from the first row ; and all the terms that do not contain

(Xi contain one of the zeros, and therefore vanish. The terms

that contain a^ contain no other element from the first row

or column, and, consequently, contain one, and only one,

element from each row and column of the determinant

^2 ^^3 ^4

^2 <^3 ^4

C?2 C?3 0?4

Hence, disregarding the sign, each term of A consists of

«! multiplied into a term of A^^.

or A,
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Take any particular term of A, as ai h^, Cg d^ ; the sign is

fixed (§ 404, Rule I.) by the number of inversions in the

series 14 3 2; the sign of the term i^ c^ d^ of A^^ is fixed

by the number of inversions in the series 4 3 2. Adding

<2i makes no new inversions among either the letters or the

subscripts. Consequently the sign of the term in A is the

same as the sign of the term in aiA^^.

Since this is true of every term of A, we have

A = a^Ha,-

Similarly for any determinant of like form.

419. Terms containing an Element. From § 418 it appears

that the sum of the terms which contain ax may be written

ttiAfl^. For, no one of the terms which contain ai can con-

tain any one of the elements aj, <^3> «4, » *ri<i these terms

are therefore unchanged if for ag. «3, «*» in the given

determinant we put zeros.

If we carry the second column over the first, the deter-

minant is changed to — A. By § 418 the sum of the terms

of — A which contain a^ is a2Aa2. and the sum of the corre-

sponding terms of A is therefore — a-Aa^-

In general, for the element of the pth. row and ^'th col-

umn, we shall have to carry the pth. row over p — \ rows,

and the qih. column over q~\ columns in order to bring

the element in question to the first row and first column.

The new determinant is A if ^ + g' — 2 is even, and is — A
if^ -\- q — 2 is odd (§ 409). Consequently, the sum of the

terms of A which contain the element of the joth row and

qih. column is the product ot that element by its minor

;

the sign being + if jt? + g' is even, and — if^ -f §' is odd.

Thus, in

Here p =

«1 «2 % a.

\ h h h the sum o
Cl

d.

^2 Cz

^ d.
Cj is CjAc

3,^ = 3. and p + q IS even.

the sum of the terms which contain
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420. Oo-factors. Since every term contains one element

from each row and column, if we add together the sum of

the terms containing ai, the sum of the .terms containing «2,

and so on, we shall obtain the whole expansion of the given

determinant.

Thus, in the determinant |ai b.^ c-s d^\,

A = aAa^ ~ Cl2^a^ + ds^a^ — aAa^-

The expressions A«^, — A^^, Aag, — A^^ are called the

co-factors of the several elements aj, a^^, 0,3, <^4, and are gen-

erally represented by Ai, A2, A^, A^.

Hence, in the case of \ai hi c-i di\, we may write

A = a^Ai + ^2^2 -i-aaAs + a^A^,

= b,B, + b,B,+i;S, + b,B„

= a,A,+ b,B, + c,Cy+d,Du

and so on. Similarly for any determinant.

421. Theorem. If the elements m any row are multiplied

by the co-factors of the corresponding elements in another

row, the sum of the products vanishes.

Thus, in the determinant |ai b.^ c^ d^\,

b,B, + b,B,-\-b,B,-\-b,B,=

No one of the co-factors B^, B^, B3, B^, contains any of

the elements bi, b^, b^, b^. These co-factors will, conse-

quently, be unaffected if in the above identity we change

^1) ^2. ^3) ^i to «!, a2, «3) CLi- This gives,

a. (h as a.

^1 h h h
Cl C2 C3 «4

d. d. d. d.

a^Bi + a^Bz + «3^3 + cCi^i =

Similarly for any other case.

a. a^ «3 a.

«! ^2 az a.

Ci C2 Cz c.

dr d. ds d.

= 0.
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422. Evaluation of Determinants. By using § 412, § 414,

and § 420 we can readily obtain the value of any numer-

ical determinant.

Ex. Evaluate

From the first row subtract 3 times the second, from the third

twice the second, from the fourth 4 times the second. The result is

-8
1 3

-5
-9

2 -2
2 1

1 1

6 -1

which, by g 420, reduces to

8 — 2 -2
5 -1 1 or

9 -6 -1
70 (I 406).

Write the determinant , and let Ai, A^, Bi,

423. Simultaneous Equations. Consider the simultaneous

equations

a^x + 622/ + C2Z = ^2,

a^x + 633/ + CsZ = ^3.

«! bi Ci

CJ/2 "2 ^2

as ^3 Cs

£2, etc., be the co-factors in this determinant.

Multiply the first equation by Ai, the second by ^2, the

third by A3, and add. The result is

(aiAi + a^Ai + ^3^3) a; = kA^ + JciA^ + k^A^,

since (§ 421), b,A, + hA, + b^A^ = 0,

and CiAi + c^Ai + ^^3^3 = 0.
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Hence (§ 420), we see that

ai bi Ci h h. Cx

\h^^Cz\
^2 h ^2 x^= h, h. c. , or a; =
as h <?3 h h Cz

\a^h^Cz\

In a similar manner,

y^-
_\ctxhh\.

I«i^2 c^y
2 =\ax'b^h\

Similarly for any set of simultaneous equations of the

first degree.

424. Elimination. To eliminate x, y, and z from the four

equations

a^x + h^y + CiZ + <ii = 0,

a^x + h.{y + c^^z + c/g = 0,

a^x + ^3?/ + CzZ + 6/3 = 0,

«4^ + b^y + C42; + (^4 = 0,

we substitute in the fourth equation the values of x, y, z

found from the first three ; viz. (§ 423) :

^1^2^31 .

|«i ^2 ^sT

The result is

d^ h, c.

a. ^2 h ^2

dz hz Cz

-

y=- \cix ^2 ^3]

|«i ^2 ^sl

s. ^2 ^2 ^2

«3 C^3 ^3
I

+ d.

. («! ^2 dz\

!«! ^2 ^sl

^3

^1 dx

h C?2

^^3 ^3

«! hx Ci

0^2 ^2 ^2 =
^3 ^3 Cz

or — a4|^i <?2 c?3|+ ^4! CLx Cidi\-- c^\a^ h^ c?3|+ c?4|ai h Cz\= 0,
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which, by § 420, may be written,

«1 hi Ci dl

(h h C2 d.

as h C-i d.

a. h C4. d.

= 0.

Observe that this determinant is the determinant formed

by the sixteen coefficients. Of course «!, a^, etc., may be

expressions of any kind.

Similarly for any other set of simultaneous equations.

(1) Eliminate y and z from the equations

2a;'' + 3y+ z =
3ar+l+ y + 22=0,

4a;^-3y + 4z = 0.

2a;2 3 1

The result is 3a; + l 1 2

4^2 -3 4
=a

which reduces to 8x2-9a;-3 = 0.

(2) Eliminate x from the two equations

4^-2 + 3a:y + 5 = 0,

22/^ + 3^ +4 = 0.

Multiply the second equation by ar ; we now have

4x2+ ^yy, ^ 5 _o
3x2 + (23/2 + 4)x =oC.

3a; +(2y2 + 4) = oJ

Represent a;' by w ; eliminating u and x, we have

4 3y 5

3 23/' + 4 =0.

3 2/ + 4
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(3) Eliminate x from the two equations

ax^ + 5a; + c = and a^x + 6' = 0.

We have ax^ + hx-^ c = 0,

a^x"^ + c^x = 0,

a^x + c' == 0.

Eliminating x"^ and x, we obtain

a b

0.

which reduces to
g _c_

This must be the condition that there exists a value of x which

satisfies both equations, since it is assumed that such is the case when

we apply the process of elimination.

We have obtained, therefore, the condition that the two given

equations have a common root. Cf. Ex. 39, p. 136.

Exercise 66.

1. In the determinant \ai h^ c^ c?^! write the co-factors

of (23, ^2, hi, Ci, <?4, c/g, ^3.

2. Express as a single determinant

e f 9

f h h

9 ^ I

+
h

c

d

^ 9

f ^

9 I

+
^ 9
c k

d I

f
h +
h

b f e

c h f
d Tc g

•

3. Write all the terms of the following determinant

which contain a :

a h c h

a b c b

c b c .

b c

h c h
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Expand :

a I b a

h a a h

a a h h
. 5.

a h h

d d d
a a a

. 6.
h h h

c c c

1 a a a

1 h a a

1 a h a

1 a a h

Find the value of:

3 2 2 2

7.
2 3 2 2

2 2 3 2

2 2 2 3

. 8.

Solve the equations :

3^'-4y + 2z= 1

10. 22r + 3y-32 = -l
^x— by-\-'^z = 7

3 2 1 4

15 29 2 14
. 9.

16 19 3 17

33 39 8 38

2 13 4

7 4 5 9

3 3 6 2

17 7 5

4:x-7y+ z = 16

11. Sx-{- y-2z = 10

5:r — 6y-30-=lO

12.

13.

4a;+7y + 3z-3'w;= 6

2x— y — 42 + 31^=13
Sx + 27/~1z-4:W= 2

I

5x-Sy+ z + 5t6; = 13J

3x + 2y + 42- w = lS

bx-{- y~ z-}-2w= 9

2a; + 3y— 7z + 3ty = 14

4:X~4:y-\-Sz—bw^ 4

14. Eliminate y from the equations

^' + 2a;y + 3a; + 4y+l = 0)

4rr + 3y+l = 0j
'

tions15. Eliminate m from the equati

^''x-2mx' + l = 0)

m-i-x^ — Smx = f

'

m'
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16. Eliminate x from the equations

w
17. Eliminate x from the equations

ax^ + hx-\- c = ")

18. Eliminate x from the equations

a3? + 5rp + c = )

3?-\-qx-\-r — ^)'

19. Are the following equations consistent?

2a;' + a; + l = 0/*

20. Are the following equations consistent ?

3a;'^ + 4:ry + 4a;+l = 0-

a; — 3y-7 =
2a;— y-4 =

21. If 0) is one of the imaginary cube roots of 1, show

that

:

1

= -4.

1 ft) ft)' 1

(0 cu' 1 1

0)" 1 1 ft)

1 1 ft) ft)'

3V-3.

22. Show that in any determinant there are two terms

which have all but two elements alike ; and that these two

terms have different signs.

23. Show that the sign of a determinant of order

4m + 2or4m + 3 is unchanged if the order of both

columns and rows is reversed.
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425. Product of Two Determinants. Consider the deter-

minant

a^a^ + bi$2 + Ci72

ajCa + 61^3 + Ci73

ttjOj + 62^2 + <^272

«2«3 + ^2^3 + ^273

agOj + &332 + C372

^Sttj + Z)3^3 + C373

By § 413 this determinant may be expressed as the sum

of 27 determinants, of which the following are types

:

«!«! «2ai ttatti %«l a^a^ 63^1 «1«1 ?'2^X C371

a,a. «2«2 «3«2 a^<h a2«2 63^2 fllOj 62^2 C37«

o-xH «2«3 «3«3 a,a. «2«3 Ms «1«3 ^'2^3 C373

Ciyi a^i

Cry, a,a^

ciy, «2a3

This may be written

yi «! A
Cittih 72 ^2 /?2 , or

ys a3 A

There will be 3 determinants of the first type, 18 of the

second type, and 6 of the third type. Those of the first

and second types are easily seen to all vanish (§§ 411, 412).

There remain the six determinants of the third type.

Consider any one of these six determinants as

Cia^h^

It is evident that the number of interchanges required

to bring the columns into the order a ^ y is the same as

the number of inversions among the letters a, ft y ; and

also the same as the number of inversions among the letters

a, h, c. Hence the sign will be + if that number is even,

and — if the number is odd. The sign before Ciajb^ is there-

fore the sign of this term in the determinant
| (h 5, c^

\

(§ 404, Eule II.).

ttl A yi

a2 A y2

as A ys
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Since the preceding is true for each one of the six deter-

minants of the third type, the given determinant is the

product of the expansion of
| «! h^ c^

\
by the determinant

I
«! A 73 1, and is one of the forms in which the product

«! 5l Ci tti A 7i

a^ h C-i X tta A 72

«3 h C-A tta A 73

may be written.

The above proof is perfectly general, and may be ex-

tended to the product of any two determinants.

(1) Write as a determinant
a h

c d
X

a h

c d

The result is

ac + bd c^+ d^

(2) Write as a determinant the product

a b c X 7/ z

cab X z X y
b c a y z X

X Y Z
Z X Y , where

Y Z ^
The result is

X= aa; + 6?/ + cz, Y= ex + ay + 6z, Z='bx ^ ey -k- az.

426. The notation

ai (22 «3 a.

b. b. h b.

Cx Ci Cs 04

is used to denote that the four determinants obtained by

omitting one of the four columns all vanish.
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Exercise 67.

a b a b

c c X c c

b a b a

1. Show that

2. Express as a single determinant

= -4:a'b'c'.

c b c b

c a X c a

b a b a

3. Express as a single determinant110
0-1 10-11111-1

and thence resolve the first determinant into its simplest

factors.

4. Express as a single determinant

a a a a

a b

b

b b
X

a c c

a b c d

a-[-bi —c-\- di

c -\- di a — bi
X

a + /3i -y + Si

y-\-Bi a — pi

where i = V— 1 ; and thence prove Euler's theorem, viz.

:

theproduct of two sums offour squares can itself be expressed

as the sum offour squares.

Ai A-i A3

B, B, B, =
Ci C2 C/3

ax a^ Oz

h b. h
Cl C2 Cz

5. Show that

Note. The student who wishes to pursue the study of determi-

nants further is referred to the treatises of Muir, published by Mac-

millan, and Hanus, published by Ginn & Co.



CHAPTER XXIX.

GENERAL PROPERTIES OF EQUATIONS.

We now resume the subject of equations where we left

it at the end of Chapter XII. Before proceeding further,

however, the student should carefully review §§ 77 to 85.

427. Definitions. A function of a variable x has already-

been defined (§ 357) to be any expression which changes

value when x changes value. Any expression which in-

volves X is, in general, a function of x. If x is involved

only in powers and roots, the expression is an algebraic

function of x.

Thus, ^, Vx^ + X, — , a% log X, are functions of x, the first

three being algebraic functions of x.

428. An algebraic function of x is rational as regards x,

if X is involved only in powers ; tjiat is, not in roots. It is

rational and integral as regards x, if x is involved only in

positive integral powers ; that is, in numerators and not in

denominators.

Thus - a;-3
^ ^ Sx^ + 4:

a;2'
' 4a; + 3' x^ -b a"' 5x^ + 3x + 2'

are rational, but not integral functions of x, while

4 a;2 + 3 a; + 7, aa^ + ba^ + ex + d,

are rational integral functions of x.

429. Qnantics. A function which is rational and integral

with regard to all the variables involved is called a qnantic,

We shall consider in this chapter only functions of one

variable, and by quantic will be meant a rational integral
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function of one variable, unless it is expressly stated that

several variables are involved.

Note. The term quantic is generally applied only to homogeneous

expressions like ac^ + hxy + cy^. This expression is obtained from

ax^ + 6x + c by putting - for x, and multiplying through by y^.

2/

The theory of the two expressions is precisely the same, and we
shall therefore extend the term quantic to include expressions like

ax"^ + 6a; + c, a:fi + hx^ -\- ex + d, etc.

The degree of a quantic involving only one variable x is

the same as the exponent of the highest power of x involved

in the quantic (§ 82).

A quantic of the first degree is called a linear function

;

quantics of higher degrees are called quadratics, cubics,

quartics, quintics, etc.

430. Greneral Porm. Any quantic of the nth degree in

which X is the variable may be written in the form

aox"" + «i^"~^ + aiX""'^+ Cin-iX + ««,

where ao, ai, , «„ are coefiicients which do not involve x.

Some of these coefficients may be zero, and in that case the

corresponding terms will be wanting.

The coefficients may be real, imaginary, surd, or rational

expressions. We shall, in general, consider only quantics

which have real and rational coefficients. The student will

readily see what properties of such quantics are possessed

by quantics with surd or imaginary coefficients.

431. Abbreviations. For brevity a quantic involving x is

often represented by /(:r), F(x), <i)(x), or some similar

notation.

The value of the quantic f(x), when we put a for x, is

represented by /(a).

Thus, if f{x) =2x^~x^ + Sx + 4,

we have /(2) = 2 {2f - 2^ + 3 (2) + 4 = 16 - 4 + 6 + 4 = 22.
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432. Equations. Every rational integral equation (§ 428)

involving but one variable x can, by transposing all the

terms to the first member, be made to assume the form

/(x) = 0, where /(^) is a quantic involving the one vari-

able X. The theory of this quantic and that of the cor-

responding equation are closely related, and we shall

develop the two together.

The roots of the equation f{x) = are those values of x

which cause the quantic f{x) to vanish. These roots are

also called the roots of the quantic.

The degree of the equation f(x) = is the same as that

of the quantic /(a;).

433. Divisibility of Qnantics. Theorem I. If la. is a root

of the equation f(x) = 0, the quantic f(x) is divisible hy

x-h.
For example, consider the quantic

f{pc) = ax^ -j- bx"^ -\- cx-\- d.

Now, since A is a root of the equation /(a;) = 0, we have

= aA' + bh^ + ch + d.

Subtracting,

fix) = a (x' ~h') + b (x' ~h')-\-c{x- h).

Each of the expressions x— h, x^ — A^ x^ — A^ is divis-

ible by a: — A, and consequently fix) is divisible by a; — A.

Similarly for any other quantic. Cf. § 416.

434. Theorem II. Conversely, if a quantic f (x) is divisible

by x — h, then h is a root of the equation f (x) = 0.

For, if 4>(x) be the quotient obtained by dividing /(^)

by a; — A, we have

f{x) = {x-h)4>{x\

and the equation f(x) — may be written

{x -A)<^(a;) = 0,

of which A is evidently a root (§ 84).
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435. Synthetic Division. Let the quantic

3x' - Ax* + x^~ 12:r^ + 3a; + 6

be divided hj x — 2.

The work is as follows

:

3a^-4a;* + a;3_ 12x2 + 3a; + 6

Sc^-ex*

+ 2x^ + ^
+ 2x^ ~^a^

+ 5x3 _.12x'»

+ 5x3- 10x2

. 2x2 + 3x
• 2x2 + 4x

- x + 6

- x + 2

3a;* + 2x3 + 5x2-2x-l

The work may be abridged by omitting the powers of x, and writ-

ing only the coefficients.

We now have

3-4 + 1-12 + 3 + 61 1-2
3-6 3+2+5-2-1
+ 2 + 1

+ 2-4
+ 5-12
+ 5-10

- 2 + 3

- 2 + 4

-1 + 6

-1 + 2

But the operation may be still further abridged. As the first terra

of the divisor is unity, the first term of each remainder is the next

term of the quotient, and we need not write the quotient. Second,

we need not bring down the several terms of the dividend Third,

we need not write the first terms of the partial products.
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The work is now as follows :

3_4 + l_12 + 3 + 6|l

+ 2

-4
+ 5

-10
2

+ 4

-1
+2
+ 4

Omitting the first term of the divisor, which is now useless, chang-

ing — 2 to + 2, and adding, instead of subtracting, we have, raising

the terms and bringing down the first coefiicient,

3-4 + 1-12 + 3 + 6 |_2

•+6 + 4 + 10 -4-2

3+2+5- 2-1+4

The last term below the line gives us the remainder, the preceding

terms the coefficients of the quotient. In this particular problem the

quotient is 3a;* + 2a;^ + 5a;2 — 2a;— 1, and the remainder is 4.

This method is called the method of Synthetic Division.

For the application of this method to the division of any

quantic by x~h we have the following rule

:

Write the coefficients a, b, c, etc., in a horizontal line.

Bring down the first coefficient a.

Multiply a hy h, and add the product to b.

Multiply the sum so obtained by h, and add the product

to c.

Continuing this process, the last sum will be the remainder,

and the preceding sums the coeffiicients of the quotient.

Remark. If there are any powers of x missing, their places are to

be supplied by zero coefficients.
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Ex. Divide 2x' — Qx"" -{- 6x-2 by x~S.

2 + 0- 6+ 5- 2U ^

+ 6 + 18 + 36 + 123

2 + 6 + 12 + 41 + 121

The quotient is 2a^ + 6a;2 + 12 a; + 41, and the remainder 121,

436. Value of a Quantic. By the principles of division it

is evident that the operation of dividing a given quantic

f(x) hj X — h can be carried on until the remainder does

not involve x. Kepresent the quotient by ^(a;), and the

remainder by H. Then, we have

/(x)=(x-h)<}>(x)-\-Ii.

Putting h for x,

/(A)=0 + i?.

Hence, the value which a quantic f (x) assumes when we

put hfor X is equal to the last remainder obtained in the

operation of dividing f (x) by x — h.

This remainder, and, consequently, the value of the

quantic, may be easily calculated by the method of syn-

thetic division.

The truth of the above theorem may also be shown by

another method, which has the advantage of showing the

form of the quotient and remainder.

Take, for example, the quantic

ax*" -f bx^ + co(^ -{- dx-\-e.

Divide the quantic by x — h. The work is as follows

:

a b c d e \ h

ah Bh Ch Dh
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where B~—ah -\-h,

C=Bh -{-€-= ah^ -{-hh-^c,

D=Ch-^d=ah^-^bh?-\- eh + d,

B = Dh-\- e = ah' -{-hh^ -{- cK" + dh-\-e.

The remainder M is evidently the value which the quan-

tic assumes when we put h for x.

The quotient is

ax^ + {ah + h)x'' + {ah^ ^hh-\- c)x-]- (ah^'+ hh^-^-ch^ d).

Similarly for any quantic.

Exercise 68.

Find the quotient and remainder obtained by dividing

each of the following quantics by the divisor opposite it.

1. x'-?>x'' — x^-^2x-~l x — 2.

2. x'-?>x'' + 2x-l x — 2>,

3. 2x'-\-2>x^-^x'-lx-l0 x~2.

4. 3a;' + 2a:' — 6:17 + 50 x + ^.

^, ax^-{-2>hx^^?>cx-\-d x -\- h.

Are the following numbers roots of the equations oppo-

site them (§ 434) ?

6. (3) x'']-x'-^x-\-2 = 0.

7. (-7) a;* + 7;r^ + 21a;+147 = 0.

8. (0.3) a;* - 2.3 a:' + 3.6a;^ + 4.9a; +1.2 = 0.

Find the value of the following expressions when for x

we put the number in parentheses :

9. 3a;' + 2a;'- 6a: +1 (-3).

10. 2a;* + 6a:' — 9a7-5 (6).

11. a:5 + 7a:'-2a:'-49 (-4).

12. a;* + 6a:' -7a;'- 3a; +1 (-0.2).
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437. Number of Eoots. We shall assume that every

rational integral equation has at least one root. The proof

of this truth is beyond the scope of the present chapter.*

Let/(^) = be a rational integral equation of the wth

degree. This equation has, by assumption, at least one

root. Let aj be a root.

Then, by § 433, J(x) ~{x- a^Mx),

wherefI
(x) is a quantic of degree n—1.

The equation /i (a:) = must, by assumption, have a

root. Let og be a root.

Then, by § 433, f, (x) = (:r -^ a,) /, (x),

where /a (a;) is a quantic of degree n — 2.

Continuing this process, we see that at each step the de-

gree of the quotient is diminished by one. Hence, we can

find n factors a? — ai, x— Oi x — a„. The last quotient

will not involve x, and is readily seen to be ao, the coeffi-

cient of a;" mf(x).

Now, f(x) = (x- ai)/i (x)

= (x — ai)(x — a2)f2X

= ao(x — ai)(x — a2) (x — On),

so that the equation f(x) = may be written

aQ(x — ai)(a; — a^) (x — a„) = 0,

which evidently holds true if x has any one of the n val-

ues tti, Oa a„.

It follows, then, that if every rational integral equation

has one root, an equation of the nth degree has n roots.

* See Burnside and Panton, Theory of Equations, 2d ed., Art. 195

;

Briot et Bouquet, Fonctiona Elliptiqite, Art. 23.
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438. Linear Factors. The factors x — ai, x — a^ x—On
are linear functions of x (§ 429).

When f{x) is written in the form

ao{x — ai)(a; — a,) {x — a^),

it is said to be resolved into its linear factors.

From § 437 it follows that a quantic can be resolved into

linear factors in only one way.

To resolve a quantic /(:r) into linear factors is evidently

equivalent to solving the equation f{x) = 0.

439. Multiple Eoots. The n roots of an equation of the

nth. degree are not necessarily all different.

Thus, the equation ^^ — 7:^;^ + 15^ — 9 = may be

written (x — 1)(^ — 3)(a; — 3) = 0, and- the roots are seen

to be 1, 3, 3.

The root 3, and the corresponding factor a;— 3, occurs

twice ; hence, 3 is said to be a double root. When a root

occurs three times, it is called a triple root; four times, a

quadruple root; and so on.

Any root which occurs more than once is a multiple root.

440. Eoots Griven. When all the roots of an equation are

given, the equation can at once be written.

Ex. Write the equation of which the roots are 1, 2, 4, — 5.

The equation is {x — 1) (a; - 2) (x - 4) (a; + 5) == 0,

or a;*-2a;3-21a;2 + 62a;-40 = 0.

441. Solutions by Trial. When all the roots of an equa-

tion but two can be found by trial, the equation can be

readily solved by the process of § 437. The work can be

much abbreviated by employing the method of synthetic

division (§ 435). Of. § 140.
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Ex. Solve the equation

Try + 1 and — 1. Substituting these values for x, we obtain

1 - 3 ~ 6 + 14 + 12 = 0,

1 + 3-6-14 + 12 = 0,

which are both false, so that neither + 1 nor — 1 is a root.

Try 2. Dividing by a; - 2,

1 _3 _6 +14 +12L2
+ 2 -2 -16 -4

1 _1 _8 - 2 + 8

we see that 2 is not a root.

Try 3. Dividing by a; - 3,

1 _3 -6 +14 +12|_3
+ 3 +0 -18 -12

1+0-6-4
we see that 3 is a root. The quotient is a^ — 6x — 4:.

In this quotient try 3 again. Dividing by x — Z,

1 +0 -6 -4L3
+3 +9 +9

1 +3 +3 +5

we see that 3 is not again a root.

Try - 2. Dividing by a; + 2,

1+0-6 -4 |
-2

-2 +4 +4

1-2-2
we see that — 2 is a root. The quotient is a:* — 2 a; — 2.

Hence the given equation may be written

(a;- 3)(a; + 2)(a:»- 2a;- 2) = 0.

Therefore one of the three factors must vanish.

If a;-3 = 0, a; = 3; if a; + 2 = 0, a;=_- 2; if a;*- 2a; - 2-0,

solving this quadratic, we find a; =» 1 + V3 or a; =. 1 - VS. Hence

the four roots of the given equation are

3, -2, 1 + V3, 1-V5.
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Exercise 69.

Solve the equations :

1. x'- 7:r^+ 16a; -12 = 0.

2. x'+ 9x''+ 2a; -48 = 0.

3. x^— ^x^~ 8:r+ 8 = 0.

4. x^~ 5a;^— 2a; + 24 = 0.

5. a;'+ 2^2+ 4a;+ 3 = 0.

6. a^— 6a;' + 6a; + 99 = 0.

7. 6a;' - 29a;' + 14a; + 24 = 0.

8. 2a;^+ 3a;'— 13a; — 12 = 0.

9. x' — 15a;' — lOo; + 24 = 0.

10. a;*+ 6a;'- 5a;'- 45a;- 36 = 0.

11. x'+ 4a;' — 29 a;' -106 a; +130 = 0.

12. x'— 5a;'— 2a;' + 12a;+ 8 = 0.

13. 6a;*- 5a;'- 30a;' + 20a; + 24 = 0.

14. 4a;* + 8a;' -23a;'- 7a; + 78 = 0.

Form the equations which have the following roots

:

15. 2, 6, -7. 19. 5, 3+V^, 3-V=I
16. 2, 4, -3. 20. 2, ^, 2, -f
17. 2, 0, -2. 21. 2, 3, -2, -3, -6.

18. 2, 1,-2,-1. 22. 1,
I, -I, -|.

23. 3 + V2, 3-V2, 2 + V3, 2- V3.

24. 0.2, 0.125, -0.4.

25. 0.3, -0.2, --^,-1

26. 2 + V^, 2- V^, 1 + 2^^=1, 1_2V=^.
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442. Eolations between the Boots and the Ooeffioients. The
quadratic equation of which the roots are a and yS is (§ 153)

or, multiplying out,

The cubic equation of which the roots are a, )8, y is

(x-a){x-p)(x-y) = 0,

or x'~(a + l3-}-y)x' + (al3 + ayi-Py)x-aPy = 0.

The biquadratic equation of which the roots are a, /S, y,

Sis

(^ - a)(x - PXx - y)(x - 8) = 0,

or

x'-~(a-}-P + y + B)x'+(api-ay + aS + py + p8-{-yS)x'

- (a^y + a^8 + ayS + fiyS) x + ajSyS = 0.

And so on.

Take any equation in which the highest power of x has

the coefficient unity. From, the above we have the follow-

ing relations between the roots and the coefficients :

The coefficient of the second term, with its sign changed,

is equal to the sum of the roots.

The coefficient of the third term is equal to the sum of

all the products that can be formed by taking the roots

two at a time.

The coefficient of the fourth term, with its sign changed,

is equal to the sum of all the products that can be formed

by taking the roots three at a time.

The coefficient of the fifth term is equal to the sum of

all the products that can be formed by taking the roots

four at a time ; and so on.

If the number of roots is even, the last term is equal to

the product of all the roots. If the number of roots is
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odd, the last term, with its sign changed, is equal to the

product of all the roots.

Observe that the sign of the coefficient is changed when

an odd number of roots are taken to form a product ; that

the sign is unchanged when an even number of roots are

taken to form a product.

443. By dividing the equation through by the coefficient

of the highest power of x, any rational integral equation

whatever can be reduced to a form in which the coefficient

of the highest power of x is unity.

"We shall write an equation reduced to this form, called

the "^/orm," as follows :

Let a, p, y, etc., be the roots of this equation. Represent

by Sa the sum of the roots, by %aP the sum of all the

products that can be formed by taking the roots two at

a time ; and so on.

From § 442 we now have

2a =—pi, pi = — Sa,

^a^y = —^3, Pz = — ^o.Py,

a^yS = (- 1)%. pr, = (- Ifa^yh

Ex. Let a, jS, 7 be the roots of the equation

Then,
' 2o=a+)3 + 7= 7,

So)8 = /37 + 70 + a)3 = — 9,

0J87 = — 4.

The relations between the roots and the coefficients of

an equation do not assist us to solve the equation. In

every case we are brought at last to the original equation.



GENERAL PROPERTIES OF EQUATIONS. 397

Thus, in the equation

we have a + i3 + 7 =- 7,

iSy + 7a + oj8 = - 9,

afiy = - 4.

Eliminating ^ and 7, we have to solve the equation

a3-7a2-9a + 4 = 0;

that is, we have to solve the given equation.

444. Symmetric Punctions of the Eoots. The expressions

2 a, 2a^, Sa^y, , are examples of symmetric functions of

the roots (§ 152). Any expression which involves all the

roots, the roots all entering to similar powers and with

similar coefficients, is a symmetric function of the roots.

From the relations %a= —pr, ^ap= -\-p2, 2ay8y=—^3,

, the value of any symmetric function of the roots of a

given equation may be found in terms of the coefficients.

If a, p, y are the roots of the equation

we may calculate the values of symmetric functions of the

roots as follows

:

We have o + /3 + 7 = 4, (1)

/37 + 7a + a)8 = 6, (2)

aj87 = 5. (3)

(1) 2o2 = a2 + i82 + 72.

Square (1), a"" + fi^ + 7^ + 2)87 + 2ya + 2a$ = 16

But, by (2), 2)87 + 27a + 2a)8==12

.-. a" + )8'» + 7' - *

(2) Sa'/S= a'fi + a?y + ff'y + &^a + y^a + y'$.

Multiply (1) by (2), Sa^iS + Za$y = 24

But, by (3),
3a$y^l5

.'. 5a2)3 - 9
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(3) :Za'= a' + fi' + y\

Multiply o2 + j82 + 72 ^y a + fi+y;

the result is a^ + fi^ + y^ + Sa^jS = 16

But Sa'^iS- 9

.'. a^ + &' + -/ =-7

And so on. Cf. § 152.

445. By the aid of tlie preceding sections we can find

the condition that a given relation should exist among the

roots of an equation.

Find the condition that the roots of the equation

x^ -\- ^^x"^ -{- qx-\-r--=

shall be in geometrical progression.

.

Let )8 be the mean root. Then,

+ ^ + 7 = -J),

i87 + 7a + 0)8 - J,

a)87=--r.

and j82 = 7a.

From (2) and (4),

i87 + a;8 + j82 = q.

or, by (1), -pfi = q.

.-.--I-

Substituting in (3), ( ~ I ) = ~ ^'

(1)

(2)

(3)

(4)

or (f=p^r, the required condition.

446. Imaginary Eoots. If an imaginary number is a root

of an equation with real coefficients, the conjugate imagi-

nary (§ 176) is also a root.
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Let a + P^', where i = V— 1, be a root of the equation

tto^" + a^a;"-'

+

an = 0,

the coefficients being real.

Put a + pi for X in the left member of this equation, and

expand the powers of a + Pi by the binomial theorem. All

the terms which do not contain i, and all the terms which

contain even powers of ^, will be real ; all the terms which

contain odd powers of i will be imaginary. Eepresenting

the real part of the result by P, and the imaginary part

of the result by Qi, we have (§ 432), since a + pi is a root,

and therefore P=: and Q = (§ 179).

Now put a — /3i for x in the given equation. The result

may be obtained from the former result by changing i to

— i. The even powers of i will be unchanged while the

odd powers will have their signs changed. The real part

will therefore be unchanged, and the imaginary part

changed only in sign. The result is

P- Qi,

which vanishes, since by the preceding P= and Q = 0.

Therefore a — pi is a root of the given equation (§ 432).

This theorem is generally stated as follows : Imaginary

roots enter equations in pairs.

The above proof will be more readily understood if applied to an

equation of the third or fourth degree.

Corresponding to a pair of imaginary roots, we shall have

the factors x — a — ^i, x — a-{- fii.

The product of these,

is positive, provided x is real. Hence, corresponding to a

pair of imaginary roots, we have a factor of the second de-

gree, which for real values oix does not change sign (§ 180).
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Exercise 70.

1. Form the equations of which the roots are :

2,4,-3; 3,-2,-4.

If a, y8, y are the roots of x^ — bx^ + 4a; — 3 = 0, find

the value of:

2. %a\ 5. :Sa^/?y. 8. Sa*.

3. %a^p. 6. %o?p\ 9. :Sa«^y.

4. ^a\ 7. :^a% 10. :Sa-^^V.

If a, p, y are the roots of x^ -\-]px^ \- qx-\-r=-^, find in

terms of the coefiicients the values of

:

11. 2a^ 16. (i8 + y)(y + a)(a+ /J).

12. %o^^, 17. fe+:)^+^.
a /? y

^^' ^"'''

18.
y8^ + /

,
Z + g^

,

a^ + /8^

14. :§a^^^ ^y y"- "^

15. 2g% '•^* o , ^ ^ To"

In the equation a;^ +^^7^ -f g-o; + r = 0, find the condi-

tion that

:

20. One root is the negative of one of the other two
roots.

21. One root is double another.

22. The three roots are in arithmetical progression.

23. The three roots are in harmonical progression.
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GRAPHICAL REPRESENTATION OF FUNCTIONS.

The investigation of the changes in the value oif{x) cor-

responding to changes in the value of x is much facilitated

by using the system of graphical representation explained

in the following sections.

E AA

F'

447. Oo-ordinates. Let JT'JT and Y' Y be two perpen-

dicular straight lines drawn in a plane, intersecting at 0.

The lines X'X and Y'Y
are called axes of reference

;

^

the point O is called the

origin.

Distances measured from
,

along JT'X, as OA, OC,
^~

OE, and OG, are called

abscissas j distances meas-

ured from X^X parallel

to TY, as AB, CD, EF,
and OS, are called ordinates.

Abscissas are considered positive if measured to the

right; negative, if measured to the left. Ordinates are

considered positive if measured upwards ; negative, if meas-

ured downwards.

Thus, OA, 00, CD, and EF Q,re positive ; OE. 00, AB, and GE
are negative.

An abscissa is generally represented by x, an ordinate

is generally represented by y.

The abscissa and ordinate of any point are called the

co-ordinates of that point. Thus the co-ordinates of £ are

OA and A£,
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The co-ordinates of a point are written thus : (x, y).

Thus, (7, 4) is the point of which the abscissa is 7 and the ordi-

nate 4.

The axis JT'JT is called the axis of abscissas, or the axis

of X ; the axis F' Y, the axis of ordinates, or the axis of y.

448. It is evident that if a point B is given, its co-ordi-

nates referred to given axes may be found by drawing the

ordinate and measuring the distances OA and AB.
Conversely, if the co-ordinates of a point are given, the

point may be readily constructed.

Thus, to construct the point (7, —4), a convenient length is taken as

a unit of length. A distance of 7 units is laid off on OX to the right

from Oto A. At J. a perpendicular to X^X is drawn downwards, of

length 4 units, to B. Then B is the required point.

Ex. Construct the points (3, 2); (5, 4); (6, -3);

(-4,-3); (-4,2); (-3,-5); (4,-3).

449. Graph of a Punction. Let/(:^) be any function of x,

where ^ is a variable. Put y =f{oc) ; then y is a new

variable connected with x by the relation y—f{pc). If

f{x) is a rational integral function of x, it is evident that

to every value of x corresponds one, and only one, value

ofy.

If different values of x be laid off as abscissas, and the

corresponding values of f{x) as ordinates, the points thus

obtained will all lie on a line ; this line will generally be

a curved line, or, as it is briefly called, a curve. This curve

is called the graph of the function /(a;) ; it is also called the

locus of the equation y =/(^).

We proceed to construct the graphs of several functions.

Eemaek. In constructing, or plotting, as it is called, the graph of

a function, the student will find it convenient to use the paper called

plotting, or co-ordinate, paper. This is ruled in small squares, and

therefore saves much labor.
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(1) Construct the graph of 3 — 2a;.

Put y =» 3 — 2x. The following table is readily computed

:

If a; = ^l, y= 5.

2. 2/= 7.

li x = l, y=- 1.

'« x = 2, y = -l.

" x = S, y = -3.

"
a; = 4, y = -5.

"
a; = 5, 3/ = - 7.

a; = —

a; = -3, y= 9.

a; = — 4, y = 11.

a; = _ 5, y = 13.

Constructing the above points, it appears that the graph of the

function 3 — 2 x is the straight line MN.

X'

M
\

"4—1-

\--

:\

;: \

\

\
N

In general, where the equation y=f{x) contains only the first

powers of x and y, the locus will be a straight line.
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(2) Plot the graph of J^ - 4.

Putting y = ^a^~4:, we readily compute the following table

Y

X'

/

't
I--

1

/ J.

Y'

4- I

/

X

a;= 0, 2/ = -4.

x = ± 1, 2/ = - 3.5

x = ±2, 3/ = -2.

a; =±3, 2/ = + 0.5

x = ±A, 2/= + 4.

a; = ± 5, 7/ = + 8.5

a; = ±6, 2/ = + 14.

Plotting these points, we obtain

3 curve here given.

(3) Plot the graph of

x^ ~ x^ -{ X — b.

Putting 2/
= a^ — a;'^ + a? — 5, we

compute the following table

:

.1 X 18 y IS

0.5, - 4.625.

1.0, - 4.000.

1.5, - 2.375.

2.0, + 1.000.

2.5, + 6.875.

0.0, -5.000.

0.5, -5.875.

1.5, - 12.125.

Interpolation (§ 381) shows that

if 2/ = 0, x = 1.88+ . Does the re-

sult agree with the figure ?

450. Consider any rational integral function of x, for

example oc^ -{-x — ^^.

Put y = x'^ + x~ -^^.
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Assuming values of x^ we compute the corresponding

values of y, and construct the graph. Now, any value of

X which makes y — satisfies the equation x^ -\-x —^ = 0,

and is a root of that equation ; hence, any abscissa whose

corresponding ordinate is zero represents a root of this equa-

tion. The roots may be found, y
approximately, by measuring

the abscissas of the points where

the graph meets XX\ for at

these points y= 0.
xr

From the given equation the fol-

lowing table may be formed

:

a; is 2/ is If a; is y is

0, -15.75. - 1, - 15.75.

1, -13.75. -2, -13.75.

2, - 9.75. -3. - 9.75.

3, - 3.75. -4, - 3.75.

4, + 4.25. -5, + 4.25.

The table shows that one root is

between 3 and 4 (since y changes

from — to +, and therefore passes

through zero); and, for a like rea-

son, the other is between — 4 and

-5.

^X

Y'

451. An equation of any de-

gree may be thus plotted, and T V^
the graph will be found to cross

the axis X'X as many times as

there are real roots in the equa- x^-\-

tion.

When an equation has no

real roots, the graph does not meet XX.
In the equation x^ — 6 x + 13 = 0, both of whose roots are imagi-

nary, the graph, at its nearest approach, is 4 units distant from X^X.

\ I

Y'
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X'-

If an equation has a dou-

ble root, its graph touches

JT'X, but does not intersect

it.

The equation a;2 + 4a; + 4 =
has the roots — 2 and — 2, and

the graph is as shown in the

figure.

Exercise 71.

Construct the graphs of the following functions

:

1. x^-\-Zx-Vd. 4. x^-^x-^\^.

2. x^ — 1x^-\-\. 5. :?;*-5^' + 4.

3. :r* — 20:^2+ 64. 6. x"" -\x^ -^ x-\.

DEBIVATIVES.

452. Definition. Ijet :r be a variable, and J{pc) any func-

tion of a;.

Suppose X to have a particular value a ; the correspond-

ing value of /(;r) is /(a) (§ 431).

Now suppose X to increase to a-\-h\ the corresponding

value oif{x) is/(a + h).

The increase in the value oi f{x), called the increment of

f{x), isf(a + h) —f(a) ; the increase in the value of x is h.

Dividing the increment of f(x) by the increment of x,

we obtain

f(a + h)-f(a)
h

In the same manner for any particular value of x ; that

is, for any value of x.
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Hence, in general, we shall obtain the expression

h

where x may have any value ; that is, is variable.

The limit which this expression approaches, as h ap-

proaches zero as a limit, is called the derivative of the

function /(:i') with respect to x. The derivative of a func-

tion of X is, in general, a new function of x.

The above may be written :

Derivative with respect to x oif{x)

_Umit pincrement of /(a;)!

A = [_ increment of x

y{x-\-h)~f{x)
-

h

Note. A = is read " as h approaches zero."

limit
j J

The particular value of the derivative corresponding to

x = a h
limit

A:

it r/(a + A)-/(a)-
|

An increment may be either positive or negative.

In general, the derivative with respect to u of -y, where

V is a function of u, is the limit, as the increment of u ap-

proaches 0, of

increment of v

increment of u

The derivative with respect to x of f{x) is represented

by DJ(x) ; that of/(y) with respect to y by I)yf{y) ;
that

of V with respect to u by D^v ; and so on.

The derivative of f(x) with respect to x is also repre-

sented hj /(x). Thus Dj(x)=f'(x)', i),/(y)=/'(y);

and so on.
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453. Eule for finding a Derivative. In the given function

change x to x + h.

From the new value of the function subtract the old, and

divide the remainder by h.

Take the limit of the quotient as h. approaches zero as a

limit.

The derivative of a constant is 0, since the increment of

a constant will always be 0.

(1) Find Z),(aa;).

The function is ax.

Change x to x + h, a{x + h).

From the new value subtract the old, ah.

Divide by h, a.

Take the limit as h approaches as a limit f

.-. Dx{ax) = a.

If a = 1, DxX = l.

(2) Find D,{x^-\-^x+l).

The function is cc^ + 4 a; + 1.

Change a; to a; + A, {x + Kf + 4(a; + h) + l,

or a;3 + 3 hx^ -V ^K^x + ¥ + 4:X + ^h + 1.

From the new value subtract the old,

3 Aa;2 + 3 K'x + h^ + 4:k

Divide by A, Sx"^ + 3hx + h"^ + 4.

Take the limit as h approaches as a limit

;

.-. i)x(a^ + 4a; + l) = 3a;2 + 4.

454, Derivative of x". The function is x"". Changing x

to X-]- h, we obtain (x -\- hy. Now, whatever the value of

n, (x + hy can be expanded by the binomial theorem, and

we obtain

(x + hy = x^ + nx^'-'h + ^'('^~'^)
x^-'h:' +

I-?.

From this new value of the function subtract a;", the

old value, and divide by h.
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We now have

= nx^~^
;

the sum of the terms after the first approaches as a limit

by § 375.

Hence, to find the derivative with respect to x of any

power of X, multiply hy the exponent^ and diminish the

exponent of x hy one.

Thus, X>x (a;*) = 4 ar» ; D^ {x'^) = - 3 a'*

;

Exercise 72.

Find the derivatives with respect to a; of

:

1. x\ 5. x\ 9. x^-\-2x'.

2. r-. '-> 10. (x + a)\

3.1.
X

7. x-\ " ^s
4. x-\ 8. x' + x. 12. (x+iy\

455. Derivative of a Sum. Let f(x) and <^(a;) be two

functions of x ; their sum f(x) + <f)
(x) is also a function

of a;.

Now,

_ limit rf(^i-h)-f(x)~] limit r<^(a:+A)-<^(a:)n

A = oL h J^ = oL A J
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Similarly for the sum of any number of functions.

The above may be formulated,

i>x(/+ <^ + ) = A/+ i>x<^ +
Here /is an abbreviation iov f{x), <l>

for <^(a:), etc.

By means of the above and §§ 453, 454, we can find the

derivative with respect to x of any rational integral func-

tion of X.

Ex. Find D^(2x' + 4:x' -Sx + S).

D42a^ + 4a;2-8a; + 3) = D^{2x^) + D^i^x") - D^{^x) + Z)a,(3)

= 2D^x^ + 4i)^a;2 -^D^x + D^3

= 2(3a;2) + 4(2a;)-8(l) +

= 6x^ + Sx-S.

456. Derivative of a Product. Let f(x) and <^(^) be two

functions of x ; their product f{x) <fi (x) is a new function

of a?.

Now,

D, [f{x) <f>
(x)] = ^'"^'^ r/(a; + h)<f>(x-{-h) -f(x) cf> (x)l

limit

'f(x -\-h)<f>(x + h) -f(x i-h)<l> (x)

+f(xi-h)ct>(x)-f(x) <!> (x)

^ limit fy^^
_^

^N <^(a7+/0-<^(:r)"|

since ^^^^^ [f(x + A)] =/(a;).
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The above may be formulated

Similarly for three or more functions. Thus,

457. Derivative of (x — a)*".

A {x - af = 1^^^^ nx-a + hr-{x-ay-\

A=OL h J

^ limit [
{x -af-\-n{x- af-'h + -{x- af\

A = o|_ h J

limit r , N., 1 . 1= A=o[^(^-«) + ]

= n{x-ay-\

Ex. Z),(a;-3)* = 4(x-3)«.

Exercise 73.

Write the derivatives with respect to a; of

:

1. a;' + 4. 4. x^-Zx^-]-x^.

2. a;^ + 3a;^-l. 5. 4a:* + 6a;' + 2.

3. x^-\-x' + 2. 6. 6a;^-7a;'4-7a:.

7. 3a;5 + 4a;* + a;'-a:'-6a; + 5.

8. 4ar'-2a;*-a;' + 6a;' — 7.

9. {x-2){x^Z). 12. (a;-47(a;-2)(a: + l).

10. (2:-l)(ar-2)(a:-3). 13. {x-a)\x-p)\

11. (a;-3)X:^+ 4). 14. {x-a){x-P){x-y).

15. (a;-2)(a;-3)(a; + 5)(a; + 4).

16. (a;^ + 2)(a;'-4a; + 8).
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458. Successive Derivatives. The derivative of a function

of X is itself a function of x, and has itself a derivative

with respect to x.

The derivative of the derivative is called the second de-

rivative ; the derivative of the second derivative, the third

derivative ; and so on.

By derivative is meant the first derivative, unless the

contrary is expressly stated.

The second derivative with respect to x of f(x) is repre-

sented by D^f{x), or by /" {x) ; the third derivative by

D^f{x), or by /'"(a;) ; and so on.

Evidently, f\x) = D:^f{x) = D,D,f{x)
;

f\x) = D:f{x) = D.DJf(x) =AAAA

;

and so on.

459. Values of the Derivatives. The value which f(x)

assumes when for x we put a is represented by /(a).

Similarly, the value which f'(x) assumes when for x we

put a is represented by f'(a) ; the value of f"(x) by /"(a)

;

and so on.

Thus, if f{x) =a^-2a;2 + a; + 4,

we obtain f^{x) = 3 x^ _ 4 a; + 1,

f^{x) =6x-4,

/i^(«), /""(x), etc., all vanish.

Putting 2 for x we obtain

/(2) = 6; /(2) = 5; //(2) = 8; /^/(2) = 6.

Similarly for any function.

460. Sign of the Derivative. In the function f{x) let x

increase by the successive addition of very small incre-

ments. As X increases, the value of /(x) will change,

sometimes increasing, sometimes decreasing.
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Suppose X to have reached a fixed value a ; the corre-

sponding values oif{x) and/'(ar) will be /(a) and /'(a).

Let X increase by an increment h from aio a-{- h.

By § 452, /'(a) = limit
[
/(« + A)-/m

If f{x) is increasing as a; passes through the value a,

f{a + A) >f{a) and /'(a) is positive.

li f{x) is decreasing as a; passes through the value a,

/(a + h) <f(a) and /'(a) is negative.

Conversely, if/'(a) is positive, /(a+ ^) —f{p) is positive,

and /(rr) is increasing as x passes through the value a.

If /'(a) is negative, f{a-\-h)—f{a) is negative, and

f(x) is decreasing as x passes through the value a.

Hence, for a particular value of x, if f\x) is positive,

f{x) is increasing ; and if/'(^) is negative, f{x') is decreas-

ing. And conversely.

Observe that we are speaking of increasing and decreas-

ing algebraically.

Ex. Take the function

Here f{x) = Zx'-Qx-Q.

We find /(I) =2, /(I) = -9.

•*• /(^) i^ decreasing as a; passes tlirough the value 1 ; for example,

/(I) = 2, /(l.l) = 1.101, and 1.101 < 2.

Again, /(3) = -8. /(3)= + 3.

.*. f{x) is increasing as x passes through the value 3 ; for example,

/(3) = - 8, /(3.1) = - 7.639, and - 7.639 > - 8.
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Exercise 74.

Write the successive derivatives with respect to a: of

:

1. x^-4:X^ + 2. 3. 2x^-{-2x^-4:X+l.

2. x'-^4:x^~bx. 4. Sx' + ^x^-x^ + x.

5. ax^ + Shx^ + Scx + d.

6. ax'+ 4:bx^ + 6cx' + 4:dx-\-e.

7. (x-a)\x-l3).

8. (x — a)(x — PXx — y).

9. (a; - a)^:^ - ;8)^

Find whether the following functions are increasing or

decreasing as x increases through the value set opposite

each of them

:

10. x^-x^-^1 2. 12. 2x'-[-3x''-6x 1.

11. x'-x'+ Qx—l 4. 13. 4:x'— Sx''-{-4:X-6 -3.

461. Derivative in Terms of the Eoots. Take the cubic

f(x) = a(x — a)(x - P)(x — y),

since I),(x-a) = l, D,(x-P) = l, I),(x-y) = l,

(§ 457) we have, by § 456,

fXx) = a(x-l3)(x-y) + a(x-aXx— y)-{'a(x—a)(x-l3)

x—a x—p X—y
Similarly, for any quantic,

f.(,. ^ zw_+ /(^

+

/M^^ym.
'' ^ '

a; — tti x — Oi x — On ^x — a
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462. Multiple Boots. In the quantic f{x) let a be a triple

root. Then we can write (§ 439),

where the degree of <^(^) is less by 3 than that oif(x).

By § 456, f\x) = (x- af <f>'
(x) + S(x- af <t>x

= (x- ay [{x— a)<f>'x + 3 <^a:].

Hence, if f(x) has a triple root a, the factor (x ~ a)'

occurs in the H.C. F. off(x) and /'(a:).

Similarly for a multiple root of any order.

To find the multiple roots oif(x).

Find the H.O.F. oi f{x) and f\x), and resolve it into

factors. Each root will occur once more in f{x) than the

corresponding factor occurs in the H. 0. F.

Ex. Find the multiple roots of

Here f{x) = o,-^ - x* — ^or* + ar^ + 8 x + 4.

/(x) = 5x* - 4aj3 - 15x2 + 2a; + 8.

Find the H.C. F. of/(x) and/(a;) as follows

:

5_4_15+ 2 + 8

5 + 0-15-10

-4+ + 12 + 8

-4+ + 12 + 8

5-5-
5-4-

-25 +
-15 +

5 +
2 +

40 +
8

20

20

100

8

-1-
-5-
-5-f

-10+ 3+ 32 +
-50 + 15 + 160 +
4 + 15 _ 2 -

54)--54 + + 162 + 108

1 + + 3 + 2

1-1

-5 + 4

Hence, x» - 3aj - 2 is the H. C. F.

We find, by trial, that — 1 is a root of the equation

aJ-3x-2 = 0.

The other roots are found to be — 1 and 2 (§ 441).

Hence, a;»-3a;-2= (a; + Vf{x - 2).
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Therefore, — 1 is a triple root, and 2 is a double root, of the given

equation. As the given equation is of the fifth degree, these are all

the roots, and the equation may be written

(a; + l)3(a:-2)2 = 0.

Having found the multiple roots of an equation, we may-

divide by the corresponding factors, and find the remaining

roots, if any, from the reduced equation.

Exercise 75.

The following equations have multiple roots. Find all

the roots of each equation :

1. x^ — Sx' + lSx- 6 = 0.

2. a;' — 7a;' + 16a:- 12 = 0.

3. x* — 6x^- 8x- 3 = 0.

4. x' - 1 a^ + dx'-^ 27X — 54:^0.

5. x' + Qa^+ a;'^- 2407 +16 = 0.

6. a;^ - 11a;* + 19^ +115a;^- 200.1; -500 = 0.

7. Resolve into linear factors

x^-5a^ + 6x'-\-9x'-Ux'-4:X-{-8.

8. Show that an equation of the form x'^ = a" can have

no multiple root.

9. Show that the condition that the equation

x'' + Bqxi-r =
shall have a double root is 4 g'" + r*= 0.

10. Show that the condition that the equation

a^ + Spx^ + r=
shall have a double root is r (4^^ + r) = 0.
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463. Expansion of f(x-f h). Consider a quantic of the

fourth degree, viz.

:

f(x) = ax*' -\-h3^-\- cx^ -\-dx-\-e.

Put x-\-hm place of x, then

fix -\- h) = a{x -\- hy ^h{x -^ hj + c{x -{- Kf

+ d{x + A) + e.

Expanding the powers of a; -f A, and arranging the terms

by descending powers of x, the above identity becomes

f{x -\-h)~a x' + Aah a^+ ^ah? x' + ^ah'

+ h + 35A + Sbh'

+ c + 2ch

+ d

x-\-ah*'

-i-bh'

+ ch'

+ dh

+ e

But f(h) = ah'+ hK'-\- ch?-\-dh-\-e,

f\h) = 4:ah' + Sbh'-}-2ch +d
f\K) =12aA^ + 65A +2c

f"Xh)=24:ah +Qb

/X^)=24a,

rw =0,

and we have

f(x+ h)^f{h)+xf\h) + ,?£^ +^-^ + r."^.

If we had arranged the expansion of f{x + A) by powers

of A, we should have found

f{x+ h) =f{x) + hfix) + h-CM+A'-^ + h'^.

Similarly for any quantic
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464. Calculation of the Coefficients. The coefficients in the

expansion of fix + K) may be conveniently calculated as

follows :

Take f{x) = ax^ -f- hx^ -\- cx^ + dx + e.

Put fix + A) = Ax" + Bx"" + Or' -\-Dx-^E,

where A, B, C, D, E are to be found.

In the last identity put ^ — A for x.

Then, since f{x — h-\-h) =f(x'), we obtain

f(x) = Aix-hy + B(x-- hf + C(x - Kf

+ B(x-h) + E.

From the last identity we derive the following rule for

finding the coefficients of the powers of x in the expansion

off{x+h).
Divide fi^x) by x— h; the remainder will be E, that

is /(A) ;
and the quotient

Aiix-ky + B(x- Kf + Cix -h)-\-D.

Divide this quotient by {x— h); the remainder will be

Z), that is /'(A) ; and the quotient

Aix~Kf-\-B{x-h)+a

Continuing the division the last quotient will be A or a.

The above division is best arranged as follows (§ 436)

:

\_ha h c d €

ah b'h c'h d'h

a V c' d' E
ah b"h c"h

a

ah

c"

b"'h

n

a iw

ah

B
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and we Lave

fix + A) = ax'' + Bx'^ + Cx"^ -\-Dx-\-E.

The above method is easily extended to equations of any

degree.

Exercise 76.

In the following quantics put for x the expression oppo-

site, and reduce.

1. x'-2>x'-\-^x -^ x-\-2.

2. x'-2x^-^^x -3 a: + 4.

3. ^x'-23(^^2x''- x — ^ a; + 3.

4. 2x'-^x^-\-^x^-1x-^ x-2.

5. 2a:*-2:r' + 4a;'^-5a;-4 x-^.

TRANSFORMATION OF EQUATIONS.

465. The solution of an equation, and the investigation

of its properties, is often facilitated by a change in the form

of the equation. Such a change of form is called a trans-

formation of the equation.

466. Roots with Signs changed. The roots of the equation

f(_x) = are those of the equation f(x) = 0, each with

its sign changed.

For, let a be any root of equation f{x) = 0.

Then, we must have /(a) = 0.

In the quantic /(— x) put — a for a; ; that is, a for — x.

The result is /(a).

But we have just seen that /(a) vanishes, since a is a

root of the equation fix) = 0. Hence, /(- x) vanishes

when we put - a for x, and (§ 432) -a is therefore a root

of the equation /(- x) = 0.
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Similarly, the negative of each of the roots of f{x) =
is a root of /(— x) = 0; and, since the two equations are

evidently of the same degree, these are all the roots of the

equation /(— x) = 0.

To obtain the /(— x) we change the sign of all the odd

powers of x in the quantic/(^).

Thus, the roots of the equation

aj* _ 2 a:3 - 13 a;2 + 14 a; + 24 =

are 2, 4, — 1, — 3 ; and those of the equation

a;* + 2x3 - 13 a;2 - 14a; + 24 =

are - 2, - 4, + 1, + 3.

467. Boots multiplied by a G-iven Number. Consider the

equation

ax' + bx' + cx'' + dx-\-e = 0. (1)

Put y = mx, then ^ = — ; and the equation becomes

UMiM^M^y-'- (2)

The left-member of (2) differs from the left-member of (1)

y
only in that — is put in place of x.

Let a be any root of (1) ; the left-member of (1) vanishes

when we put a for x, and we obtain

aa'+ ba^ + ca^ + da-i-e= 0.

In the left-member of (2) put ma for y ; we obtain

aa* -f ha^ -{- ca^ -\- da -\- e,

which, as we have just seen, vanishes. Hence, if a is a root

of (1), ma is a root of (2). Since the above is true for each

of the roots of (1), and the two equations are evidently of

the same degree, the roots thus obtained are all the roots

of (2).



TRANSFORMATION OF EQUATIONS. 421

Similarly, for an equation of any degree.

Equation (2) may be written in the form

ay* + mbi^ -\- m^cy^ + Tn^dy -\- m^e = 0.

The above form, if written with x in place of y, gives

the following rule :

Multiply the second term hy m ; the third term by m^ ;

and so on. Zero coefficients are to be supplied for missing

powers of x.

Ex. "Write the equation of which the roots are the doubles of the

roots of the equation
3a;* - 2x3 + 4a;2 - 6a? - 5 = 0.

Here ?n = 2, and the result is

3a;* - 2(2)a;3 + 4(2)2a;2 - 6(2)3a; - 5(2*) = 0.

or 3a;*-4aj3 + 16a;2-48a:-80 = 0.

468. Eemoval of Practional Coefficients. If any of the co-

efficients of an equation in the form

x^ +p,x^-' +i?2^""' + Pn =
are fractions, we can remove fractions as follows

:

Multiply the roots by m ; then take m so that all of the

coefficients will be integers.

Ex. Reduce to an equation, in the p form, with integral coefficients

2x3_ia;2 + 5a; + i = 0.

Dividing by 2, a^ -^^x^ + ^\x + 1 = 0.

Multiplying the roots by m (^ 467),

The least value of m that will render the coefficients all integral

is seen to be 6. Putting 6 for m, we obtain

ar'-a;2 + 15a; + 27 = 0,

the equation required.

Any multiple of 6 might have been used instead of 6, but the

smaller the number the easier the work.
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469. Eeciprocal Eoots. Consider the equation

ax^ + hx^ ^cx^-\-dx-\-e^O. (1)

Put 2/ = -
; then :r = -

; and the equation becomes

The left-member of (2) differs from the left-member of

(1) only in that - is put in place of x.

Let a be any root of (1) ; then we must have

aa* + i>o^ -\- Co? -{- da-{- e = 0.

In the left-member of (2) put a for - ; that is, - for y ;

y a

we obtain

aa* + ^a^ + Col^ -\-da-\- e,

which, as we have just seen, vanishes.

Hence, - is a root of (2). Since the above is true for
a

each of the roots of (1), and the two equations are evidently

of the same degree, the reciprocals of the roots of (1) are

all the roots of (2).

Similarly for an equation of any degree.

Equation (2) may be written

« + ^y + cy' + dy^ + ey* = 0,

or, writing x in place of y,

ex^ -\- dx^ -{- cx^ -\- hx -\- a = Qi

)

so that the coefficients are those of the given equation in

reversed order.

Ex. Write the equation of which the roots are the reciprocals of

the roots of
2rc* - Sx^ + 4a;2 _ 5a; - 7 = 0.

The result is 2 -Zo^ + Ax^ -bx^ -1 x^ = 0,

or 7a;* + 5a;3-4a;2 + 3x-2 = 0.
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470. Eeciprocal Equations. The coefficients of an equation

may be such that reversing their order does not change the

equation. In this case the reciprocal of a root is another

root of the equation. That is, one-half the roots are recip-

rocals of the other half.

An equation in which the above is true is called a recip-

rocal equation.

Thus, the roots of the equation

6x5 - 29a;* + 27x3 + 27.r2 _ 29a; + 6 =

are — 1, 2, 3, |, |. Here, — 1 is the reciprocal of itself; ^ of 2 ; | of 3.

471. Eoots diminished by a Given Number. Consider the

equation

ax' + ha^ -{-cx^ + dx + e^Q. (1)

To obtain the equation which has for its roots the roots

of the above equation each diminished by h, we proceed

as follows :

Put y = x — h] then x^=y -\~h\ and the equation be-

comes

a{y + hy + h{y + Kf + c{y-{-hy^-d(:y-\-h) + e^O. (2)

The left-member of (2) differs from the left-member of

(1) only in that y -j- A is put in place of x.

Let a be any root of (1) ; then we must have

aa* + 5a' + ca' -f c?a -f e = 0.

In the left-member of (2) put a for y + A ; that is,

a — h for y ; we obtain

aa* -{- ha? -\- Co? -\- da -\- e
]

which, as we have just seen, vanishes.

Hence, a — A is a root of (2). Since the above is true for

each of the roots of (1), and the two equations are evidently

of the same degree, the roots thus found are all the roots

of equation (2).

Similarly for an equation of any degree.
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Putting X in place of y in equation (2), that equation

may be written f(x + A) = 0, equation (1) being /(a;) = 0.

Equation (2) may be also written (§ 463) in the form

ax' + Bx' + Cx' + I)x + E= 0,

where E=f{hl D^f'(h), C=^-^, B^-^-^.
\± \±

The coefficients are most easily calculated by the method

explained in § 464.

To increase the roots by a given number h, we diminish

the roots by — h.

Ex. Obtain the equation which has for its roots the roots of the

equation
2a;* - 3a;3 - 4x2 + 2a; + 9 = 0,

each diminished by 2.

The work (§ 464) is as follows :

2 - 3

+ 4

~ 4

+ 2

+ 2 +9
- 4 -4

2 + 1

+ 4

- 2

+ 10

- 2 +5
+ 16

2 + 5

+ 4

+ 8

+ 18

+ 14

2 + 9

+ 4

a is

13 x'

+ 26

' + 26a;2

2 +13

The required equatioi

2a;4 + + 14aj + 5 = 0.

472. Transformation in General. In the general problem

of transformation we have given an equation in x, as

f(x) = 0, and we have to form a new equation in y where

y is a given function of ^, such as <^(^).

When from the equation y= <l>{x) we can find an expres-

sion for X, the transformation can be readily accomplished
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by substituting this expression for x in the given equation,

and reducing the result.

(1) Given the equation

x^ — 2,x-\-\ = 0,

to find the equation in y where y = ?>x~2.

We find X = ^ ^
. Substituting this expression for x in the given

equation, that becomes

which reduces to

y3^ 62/2 -152/ -19 = 0.

(2) Given the equation

of which a, ^, y are the roots. Find the equation of which

the roots are

^ + y-a, y + a-^, a + ^ - y.

We have y^^^r-^-a.

= o + i3 + 7-2a
= 2-2«. H42

2-2/

But, since o is a root of the given equation,

a3-2a2 + 3a-5 = 0.

Putting =^^ for o, and reducing, we obtain

3/J_2y« + 8y + 24-0,

the equation required.
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Exercise 77.

Multiply the roots of each of the following equations by

the number placed opposite the equation.

1. x^-Sx'' + 2x-4. = -1.

2. x' + Sx^-2x~l = —2.

3. 2x'-Sx^-{- x'-e>x-4: = -3.

4. 2x'-Sx' + Qx-8 = -2.

5. ^x'-4:x^-2x+1 = -2.

Transform to equations with integral coefficients in the

p form the equations

6. 12a:^- 4:X^+6x + l =0.

S. 10^*+ bx'~4:x^-{-25x-S0 = 0.

9. 6x'+ Sx' + 4:x'-2a^ -{-6x-18 = 0.

Write the equations which have for their roots the recip-

rocals of the roots of the following equations

:

10. Sx'-2a^-}-bx'-6x+7 = 0.

11. 2x^-4:x^-5x''-7x-8 = 0.

12. x^- x^ + 2x''-{-4:X-l = 0.

Diminish the roots of each of the following equations by

the number opposite the equation :

13. a;'-lla;' + 31a;-12 = 1.

14. x'-6c(^ + 4:X^ + lSx-b = 2.

15. x' + 10x' + 13x-24: = -2.
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16. a;* + a;' -16a;'' -4a; + 48-0 4.

17. a;* + a;2-3a; + 4 = 0.3.

18. a;*-3a;'~a;'' + 4a;-5=0 -0.4.

19. Form the equation which has for its roots the squares

of the roots of the equation

a;^-2a:^ + 3a;-5-=0.

20. Form the equation which has for its roots the squares

of the differences of the roots of

^3_4^2_^2a;-3 = 0.

21. Given the equation

a;'-2a;' + 4a;-4--=.0;

find the equation in y where y = ^x^ — Z.

SITUATION OF THE ROOTS.

473. Pinite Value of a Quantic. Any positive integral

power of X is finite as long as x is finite.

The product of a positive integral power of a; by a finite

number will be finite when x is finite.

A quantic consists of the sum of a definite number of

such products, and will, consequently, have a finite value

as long as x is finite.

The derivatives of a quantic are new quantics, and will,

consequently, have finite values as long as a; is finite.

474. Sign of a Quantic. When x is taken numerically

large enough, the sign of a quantic is the same as the sign

of its first term.

Write the quantic

affif 4- aix^-'^ + aiX"^"^ + a„
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in the form aoX-(l+^+ -^^-{- -^„\

By taking x large enough, each of the terms in paren-

theses after the first can be made as small as we please.

If a^ is numerically the greatest of the coefficients

«!, ttj, ^n. the sum of the terms in parenthesis after the

first will be numerically less than

that is (§ 231), less than ^\ £ .

The value of this expression can be made less than 1, or

indeed less than am/ assigned value, by taking x large

enough.

Hence, even in the most unfavorable case, that in which

all the terms in parenthesis after the first are negative, the

sum of these terms can still be made less than 1 ; the sum

of all the terms in parenthesis will then be positive. The

sign of the quantic will be the same as the sign of aoX^,

its first term.

475. When x is taken num>erically small enough, the

sign of a quantic is the same as the sign of its last term.

Write the quantic in the form

fa^yC a^x . an-\X , i

y

The proof follows the method of the last section.

476. Continuity of a Kational Integral Function. A func-

tion of x, f{x), is continuous when an infinitesimal (§ 361)

change in x always produces an infinitesimal change in

/(a;), whatever the value of x.
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We proceed to show that if f{x) is a rational integral

function of x, it is a continuous function.

Give to X any particular finite value a ; the correspond-

ing value oif{x) is /(a).

Increase a; to a-\- h\ the corresponding value of /{x) is

f{a -j- li), and the increment in the value off(x) is

or (§ 463),

f(a+h)-f{al

{na)+^na) + |->(a)).

The derivatives /'(a), /"(a), /"(«) all have finite

values (§ 473) ; and it is easily seen from § 475 that when

h is very small the expression in parenthesis is numerically

less than 2f\d). Since 2hf\a) approaches as a limit

(§ 363, I.) when h approaches as a limit, the increment

oi f(x), which is less than 2hf\a), will approach as a

limit when h approaches as a limit.

Since the above is true for any particular finite value of

X, we see that an infinitesimal change in x always produces

an infinitesimal change mf(x).

It follows that as J(x) gradually changes from f(a) to

f(b), it must pass through all intermediate values.

The derivatives of a rational integral function of a: are them-

selves rational integral functions of

X, and are therefore continuous.

The changes in the value of a quantic

f{x) are well illustrated by the graph of

the function. Since f{x) is continuous,

we can never have a graph in which

there are breaks in the curve, as in the

curve here given. In this curve there

are breaks, or discontinuities, at a — — 2,/

and a; =- -h 2.
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477. Tteorem on Change of Sign, Let two real numbers

a and b be putfor x in f (x). If the resulting values of f (x)

have contrary signs, an odd number of roots of the equa-

tion f (x) = lie between a and b.

As X changes from a to b, passing through all interme-

diate values, f(x) will change from f(a) to f{b), passing

through all intermediate values. Now, in changing from

f(a) to f(b), f(x) changes sign.

Hence, /(^) must pass through the value "zero. That is,

there is some value oi x between a and b which causes /(:r)

to vanish ; that is, some root of the equation f(x) = lies

between a and b.

But f(x) may pass through zero more than once. To

change sign, f(x) must pass through zero an odd number of

times ; and an odd number of roots must lie between a

and b.

Applied to the graph of the equation, since to a root cor-

responds a point in which the graph meets the axis of x

(§ 450), the above simply means that to pass from a point

below the axis of a: to a point above that axis, we must cross

the axis an odd number of times.

Thus, in a^ -2x'' + 3x -7 ^0.

If we put 2 for x, the value of the left-membei' is — 1 ; if we put

3 for X, the value is +11. Hence, certainly one root, and possibly

three roots, of the equation lie between 2 and 3.

478. An equation of odd degree has at least one real root

For, if the first coefficient is not positive, change signs so

as to make it positive. If the last term is negative, make
X positive and very large ; the sign of the left-member is

-f (§ 474). Put a; = ; the sign of the left-member is —

.

Hence, there is at least one real positive root.

Similarly, if the last term is positive, there is at least

one real negative root.
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479. Descartes' Eule of Signs. An equation in which all

the powers of x from x^ to x^ are present is said to be com-

plete ; if any powers of x are missing, the equation is said

to be incomplete. An incomplete equation can be made

complete by writing the missing powers of x with zero

coefficients.

A permanence of sign occurs when + follows +, or —
follows — ; a variation of sign when — follows +, or -f fol-

lows —

.

Thus, in the complete equation

ic6-3a5 + 2a;* + a^-2a;2-a;-3,

writing only the signs

+ - + + ---,
we see that there are three variations of sign and three permanences.

For positive roots, Descartes' rule is as follows

:

The number ofpositive roots of the equation f (x) = can-

not exceed the number of variations of sign in the quantic

f(x).

To prove this it is only necessary to prove that for every

positive root introduced into an equation there is one varia-

tion of sign added.

Suppose the signs of a quantic to be

+ - + + + --+,
and introduce a new positive root. We multiply by a; — A,

or, writing only the signs, by -| . The result is

+ - + + + -- +
-f -

+ - + + + -- +
- + --- + + -
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The ambiguous signs =fc, =F indicate that there is doubt

whether the term is positive or negative. Examining the

product we see that to permanences in the multiplicand

correspond ambiguities in the product. Hence, we cannot

have a greater number of permanences in the product than

in the multiplicand, and may have a less number. But

there is one more term in the product than in the multipli-

cand. Hence we have at least one more variation in the

product than in the multiplicand.

For each positive root introduced we have at least one

more variation of sign. Hence the number of positive roots

cannot exceed the number of variations of sign.

Negative Boots. Change :?; to — :?;. The negative roots

of the given equation will be positive roots of this latter

equation (§ 466), and the preceding rule may then be applied.

480. From Descartes' rule we obtain the following

:

If the signs of the terms of an equation are all positive,

the equation has no positive root.

If the signs of the terms of a complete equation are alter-

nately positive and negative, the equation has no negative

root.

If the roots of a complete equation are all real, the number
of positive roots is the same as the number of variations of

sign, and the number of negative roots is the same as the

number of permanences of sign.

481. Existence of Imaginary Eoots. In an incomplete

equation Descartes' rule sometimes enables us to detect the

presence of imaginary roots.

Thus, the equation a;^ + 5a; + 7 =

may be written o(?±Ox^-\-bx + *1^0.

We are at liberty to assume that the second term is positive, or

that it is negative.
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Taking it positive, we have the signs

+ + + +;

there is no variation, and the equation has no positive root.

Taking it negative, we have the signs

+ - + +;

there is but one permanence, and therefore not more than one

negative root.

As there are three roots, and as imaginary roots enter in pairs,

the given equation has one real negative root and two imaginary-

roots.

Exercise 78.

All the roots of the equations given below are real;

determine their signs.

1. .T* + 4.x^ - 43^-2 - 5Sx + 240 = 0.

2. x^ - 22ic2 + 155 cc - 350 = 0.

3. X* + 4.x^ - 3ox^ - 78£t; + 360 = 0.

4. a;«-12£c2-43.T-30 = 0.

5. x^ -3x^-5x^ + 15ic2 + 4.T - 12 = 0.

6. x^- 12a;2 + 47.r-60 =0.

7. x^ - 2x^ - 13a;2 + 38cc - 24 = 0.

8. x^-x'^- 187 cc^ - 359ic2 + ^^q^ + 3(50 ^ q^

9. ic«-10x'«+ 19ic*+ 1100^8- 5360^2+ 800a;- 384 = 0.

10. If an equation involves only even powers of x, and

the signs are all positive, the equation has no real root.

11. If an equation involves only odd powers of x, and

the signs are all positive, the equation has the root 0, and

no other real root.
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12. Show that the equation

has at least two imaginary roots.

13. Show that the equation

x'+l5x'+1x~n =
has two imaginary roots, and determine the signs of the

real roots.

14. Show that the equation x^ -\- qx-\-r = has one

negative and two imaginary roots when q and r are both

positive ; and determine the character of the roots when q

is negative and r positive.

15. Show that the equation :r" — 1 = has but two real

roots, + 1 and — 1, when n is even ; and but one real root,

+ 1, when n is odd.

16. Show that the equation x"" -}-l = has no real root

when n is even ; and but one real root, — 1, when n is odd.

482. Limits of the Eoots. In solving numerical equations

it is often desirable to obtain numbers between which the

roots lie. Such numbers are called limits of the roots.

A superior limit of the positive roots of an equation is a

number greater than any positive root. An inferior limit

to the positive roots of an equation is a positive number less

than any positive root.

General methods for finding limits to the roots are given

in most text-books ; but in practice close limits are more

easily found as follows :

(1) x'~6x' + 4:0x' - 8a; + 23 = 0.

Writing this a^{x-5) + 8x{5x-l) + 23 =0.

we see that the left-member is positive for all values of x as great as

5 ; consequently, it cannot become for any value as great as 5, and

there is no root as great as 5.
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(2) x' + Sx^ + x'-Sx'-blx+lS^O.
Writing this x^{a^ - 8) + 3x{x^ -17) + a^ + 1S = 0,

we see that the left-member is positive for all values of x as great as

3 ; consequently there is no positive root as great as 3.

Sometimes we can find close limits by distributing the

highest positive powers of x among the negative terms.

(3) x* + sf' — 2x^ — 4:X — 24: = 0.

Multiplying by 2, 2 ic* + 2 a;^ - 4 a;^ - 8 a; - 48 = 0.

Writing this x'^ {x'~i) + 2x {x^ - 4) + x* - 48 = 0,

we see that there is no positive root as great as 3.

An inferior limit to the positive roots is found by putting

a;= - (§ 469), and finding a superior limit to the positive

roots of the transformed equation.

Limits to the negative roots of the equation f(x) =
are found by finding limits to the positive roots of the equa-

tion /(- a:) = (§ 466).

Exercise 79.

Find superior limits to the positive roots of the following

equations

:

1. a;'-2a;'-f4a: + 3 = 0.

2. 2x'-x'' — x + l = 0.

3. 3a:* + 5a;^-12a;^ + 10a:-18--=0.

4. 4:X* — Sx'-x''+7x+5 = 0.

5. x'-x' — 2x-'~4:X-24:=0.

6. 4:r'-Sx* + 223r' + 90x'--60x+l = 0.



CHAPTER XXX.

NUMERICAL EQUATIONS.

483. A real root of a numerical equation is either com-

mensurable or incommensurable.

Commensurable roots are either integers or fractions.

Repeating decimals can be expressed as fractions (§ 231),

and roots in that form are consequently commensurable.

Incommensurable roots cannot be found exactly, but

may be calculated to any desired degree of accuracy by the

method of approximation explained in this chapter.

COMMENSURABLE ROOTS.

484. Integral Eoots. The process of finding integral roots

given in § 441 is long and tedious when there are many
numbers to be tried. The number of divisors to be tried

is diminished by the following theorem

:

Eve)y integral root of an equation with integral coefficients

is a divisor of the last term.

We shall prove this for an equation of the fourth degree,

but the proof is perfectly general.

Let h be an integral root of the equation

ax^ + hx^ -\- ex'' -}- dx -{- e = 0,

where the coefficients a, h, c, d, e are all integers.

Since A is a root,

ah' + bh' + ch' + dh + e = 0, (§ 432)

or, e= — dh — cl^ — bh^ — ah'.
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Dividing by A,

^- = -d~ch-hh''-ah\
h

Since tlie rigTit-member is an integer, the left-member

must be an integer. That is, e is divisible by A.

Similarly, for any equation with integral coefficients.

Hence, in applying the method of § 441, we need try

only divisors of the last term. The necessary labor may
be still further reduced by the method of the following

section.

485. Newton's Method of Divisors. In the equation above

- is an integer. Put - = D, transpose d, and divide by h.
h h

Then,

h

Since the right-member is an integer, D -\- d must be

divisible by h.

Put —'^— = C, transpose — c, and divide by A. Then,

h

As before, C-\- c must be divisible by Ti.

B, transp

B±h_
Put 7"^ = B, transpose — h, and divide by h. Then,

h

a.
h

As before, B-\-h must be divisible by h. Transposing

— a, we have
B-\-b

h

provided A is a root.

a = 0,
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The preceding gives the following rule

:

Divide the last term hy]i\ if the quotient is an integer^ to

it add the preceding coefficient, and again divide by h; if

this quotient is an integer, to it add the preceding coefficient;

and so on.

If A is a root, the quotients will all be integral, and the

last sum will be zero. A failure in either respect implies

that h is not a root.

From the above we also obtain

Z>= _ (ah' + bh' + cA + d),

C = - (ah' + bh + c),

B = ~(ah-\- b),

so that the successive quotients, with their signs changed,

are (§ 436), in reversed order, the coefficients of the quo-

tient obtained by dividing the left-member hy x — h.

The above evidently applies to an equation of any de-

gree.

Ex. Find the integral roots of

3a;* - 23a;3 + ^2x' + 32a; - 96 = 0.

By substitution neither + 1 nor — 1 is a root.

The other divisors of — 96 are ± 2, ± 3, ± 4, ± 6, etc.

Try +2: -96 +32 +42 -23 + 3 |_2

-48 - 8 +17 -3

16+34-6
Hence + 2 is a root. The coefficients of the depressed equation in

reversed order are _.g _g ^,_ _o

Try + 2 again : _48-8+17-3(_2
-24 -16

-32+1
Since 2 is not a divisor of + 1, + 2 is not again a root.
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Try - 2 : -48-8+17-3
|
-2

+ 24-8
+ 16+9

and — 2 is not a root.

Try + 3 : - 48 - 8 + 17 -^ 3 [_3

-16 - 8 +3

-24+9
Hence + 3 is a root. The depressed equation is

3a;2-8x-16 = 0,

of which the roots are 4 and — f . Therefore the roots of the given

equation are 2, 3, 4, — |.

The advantage of this method over that of § 441 is that if the

number tried is not a root, this fact is detected as soon as we come to

a fractional quotient ; whereas, in § 441, we have to complete the

division before we decide whether the number tried is a root or not.

486. Fractional Boots. A rational fraction cannot be a

root of an equation with integral coefficients in the p form.

If possible let -, where h and k are integers, and - is in
rC rC

its lowest terms, be a root. Then,

Multiplying by ^"~^ and transposing,

^=- p.h'^-' -p^h^'-'k - -pjr^\

Now the right-member is an integer
;
the left-member is

a fraction in its lowest terms, since A" and k have no common

divisor as h and k have no common divisor (§ 350, V.). But

a fraction in its lowest terms cannot be equal to an integer.

Hence -, or any other rational fraction, cannot be a root.
k



440 ALGEBRA.

The real roots of an equation with integral coefficients in

the 'p form are, therefore, integral or incommensurable.

In case an equation has fractional roots, we can find them

as follows :

Transform the equation into an equation with integral

coefficients by multiplying the roots by some number m
(§ 468). Find the integral roots of the transformed equa-

tion, and divide each by m.

Ex. Solve the equation

36a;''-55a:2-35a;-6 = 0.

Write this

Multiplying the roots by 6, we obtain

a;*_55a;2-210a;-216 = 0,

of which the roots are found to be — 2, — 3, — 4, 9.

Hence, the roots of the given equation are

~~ f » ~~\i ~ f > f ;
*^^' ~ ¥» ~ Y» ~" f » f •

Exercise 80.

Find the commensurable roots, and if possible all the

roots, of each of the following equations

:

1. a:* — 4.r' — 8^ + 32 = 0.

2. a;^-6a;'' + 10a;-8 = 0.

3. x'^2x'-nx^-^x-\-V2. = ^.

4. a;^ 3a;' -30a: + 36 = 0.

. 5. a;^ - 12a;^ + 32a:' + 27a; -18 = 0.

6. a;^ - 9a:^ + 17a:' + 27a; -60 = 0.

7. a;^-5a:* + 3a;^ + 17a:'-28a:+12 = 0.

8. a;*-10a;H35a:'-50a; + 24--^0.
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9. o:^ - 8a:* + liar" + 29a;^- 36a; -45 = 0.

10. a^-x'--6x'-{-9x' + x-4: = 0.

11. 2a;* — Sar" — 20a7'' + 27a;+18 = 0.

12. 2a;* -9a:'-27a;'+ 134a; -120 = 0.

13. a;« + 3a;^ — 2a;*-15a:' — 15a;^ + 8a;+ 20 = 0.

14. 18a;^ + 3a;^-7a;-2 = 0.

15. 24ar'-34a;'-5a;+3 = 0.

16. 273;^— 18a;'-3a;+ 2 = 0.

17. 18a;*+ 9ar'+10a;^-8a;+l = 0.

18. 36a;*H-48ar'-23a;'-17a; + 6 = 0.

INCOMMENSURABLE ROOTS.

487. Location of the Boots. In order to calculate the

value of an incommensurable root we must first find a

rough approximation to the value of the root ; for example,

two integers between which it lies. This can generally be

accomplished by successive applications of the principle of

§ 477. In some equations the methods of § 479-482 may

be useful.

(1) Consider the equation

We find {i 436), /(0)=+ 5

/(!) = + 3

/(2) = - 5

/(3) = -13

/(4) = -15

/(5) = - 5

/(6) = + 23

/(-I) = -6.

All numbers above 6 give + ; all below — 1, give —

.

From the above (^ 477) the three roots are all real ; one between

1 and 2 ; one between 5 and 6 ; one between and — 1.
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(2) The equation

has, by Descartes's rule (§ 479), not more than two positive roots

and not more than two negative roots.

We find (^ 436), /(O) = + 2
; /(5) = + 132

;

/(1) = - 4; /(-1) = - 12:

/(2) = -30; /(-2) = - 22;

/(3) = -52; /(-3) = + 20;

/(4) = -22; /(-4) = + 186.

Hence there are two positive roots, one between and 1, and one

between 4 and 5 ; and two negative roots, one between and — 1,

and one between — 2 and — 3.

Let us find more closely a value for the root between and 1.

We find /(0.5) = + 2.06+. Since /(I) = - 4, the root lies between 0.5

and 1.

Try 0.8 : we find /(0.8) = - 0.9+. Hence the root lies between 0.5

and 0.8.

We find /(0.7) = + 0.4+. Hence the root lies between 0.7 and 0.8.

In' a similar manner we find the root between and — 1 to lie

between - 0.2 and - 0.3.

The first significant figures of the roots are accordingly 0.7, 4,

-0.2, -2.

Exercise 81.

Determine the first significant figure of each real root of

the following equations :

1. x^-x''-2x-}-l = 0. 5. x'-Qx'-Sx-i-5=^0.

2. x'-bx-S = 0. 6. :r^ + 9:r^ + 24a: +17 = 0.

3. x'-6x' + 7 = 0. 7. ^^-15^^ + 63:^-50 = 0.

4. x'+ 2x''-S0x-JrS9 = 0. 8. x'-8x'-{-Ux''-\- 4:X-8 = 0.

488k Horner's Method, Positive Roots. Suppose the first

figure of the root to have been found. Any number of

remaining figures may be calculated by the method of

approximation known as Horner's Method.
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We proceed to illustrate the process by an example.

Take the equation

x'-6x'-{-Sx + b = 0. (1)

By § 487, Ex. 1, one root of this equation lies between 1

and 2. We proceed to calculate that root.

Diminish the roots by 1 (§ 471)

:

1 -6 +3 +5 [1

•I- 1 - 5 - 2

- 5 - 2 +3
±i zA
-4 -6
+ 1

-3
The transformed equation is, therefore,

y3_33^2_6y + 3-0. (2)

The roots of equation (2) are each less by 1 than the

roots of equation (1). Equation (1) has a root between 1

and 2 ; equation (2) has, therefore, a root between and 1.

Since this root is less than 1, y' and y^ are both less than y.

Neglecting these terms, we have

-6y + 3==0, or ?/ -= 0.5.

At this stage of the process the figure thus obtained will

not in general be the correct one. If, however, we neglect

only the 3/^ term, we obtain

-3y-^-6y + 3=:0,

^^ + 2^-1 = 0,

of which one root is V2 — 1 = 0.4 +.

We can also find the second figure of the root as follows

:

Take the first value 0.5.

With this assumed value of y, computing the value of y' — 3y',

and substituting, we obtain 63/ = 2.375; whence y = 0.4, approxi-

mately.
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We now diminish the roots of (2) by 0.4 :

1 - 3 - 6 +3
I
0.4

+ 0.4 -1.04 - 2.816

— 2.6 -7.04 +0.184

+ 0.4 -0.88

— 2.2 -7.92

+ 0.4

-1.8

The second transformed equation is

2^- 1.82^ - 7.922 + 0.184 = 0. (^3)

The roots of (3) are less by 0.4 than those of (2), and less

by 1.4 than those of (1). Equation (2) has a root between

0.4 and 0.5 ; equation (3) has, therefore, a root between

and 0.1.

Since this root is much less than 1, we shall probably

obtain a correct value for the next figure of the root by

neglecting the z^ and z^ terms in equation (3).

This gives ~ 7.92 z + 0.184 =-
; whence 2 = 0.02+.

Diminish the roots of (3) by 0.02 :

-1.8 -7.92 + 0.184
i

0.02

+ 0.02 - 0.0356 -0.159112

-1.78 - 7.9556 + 0.024888

+ 0.02 - 0.0352

-1.76 — 7.9908

+ 0.02

-1.74

The third transformed equation is

u^ ~ 1.74: u" - 7.99082^ + 0.024888 = 0. (4)

The roots of (4) are less by 0.02 than those of (3), and

less by 1.42 than those of (1).

Neglecting the u^ and u^ terms, we obtain w = 0.0031 +,
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SO that to four places of decimals tlie root of (1) is 1.4231.

The process may evidently be continued until the root is

calculated to any desired degree of accuracy.

489. We shall now make some observations on the pre-

ceding work.

First : If we diminish the roots by a number less than

the required root, as we do not pass through the root, the

sign of the last term remains unchanged throughout the

work. The last coefficient but one will always have a sign

opposite to that of the last term.

If, in (3), the signs of the last two terms were alike, the value of z

would be — 0.02+. This would show that the value assumed for z

was too great, and we should diminish the value of z and make the

last transformation again. In beginning an example, one is very

likely to assume too large a value for the next figure of the root ; in

solving (2), for instance, the first solution gave y = 0,5, and had that

value been tried, it would have proved to be too great.

Remaek. The first transformation may, however, change the sign

of the last term. Thus, if there had been a root between and 1 in

equation (1), diminishing the roots by 1 would have changed the

sign of the last term.

Second : In finding the second figure of the root we

make use of the last three terms of the first transformed

equation instead of the last two terms. Or, we may use

the alternative method. One of these methods will gener-

ally give the correct figure. In any case we can find the

correct figure by another trial.

Any figure after the second is generally found correctly

from the last two terms ; for, in this case, the root is small

and its square and cube so much smaller than the root

itself that the terms in which they appear have but slight

influence upon the result.

490. It is not necessary to write out the successive trans-

formed equations. When the coefficients of any transformed



446 ALGEBRA.

equation have been computed, the next figure of the root

may be found by dividing the last coefficient by the pre-

ceding coefficient, and changing the sign of the quotient.

Thus, in equation (4), the next figure of the root is obtained by

dividing 0.024888 by 7.9908.

On this account the last coefficient but one of each trans-

formed equation is called a trial divisor.

Sometimes the last coefiicient but one in one of the transformed

equations is zero. To find the next figure of the root in this case

follow the method given for finding the second figure of the root.

Th«i work may now be collected and arranged as follows

:

1 -6 +3
+ 1 -5

+ 5
1
1.423+

-2
-5
+ 1

-2
-4

+ 3

-2.816

-4
+ 1

-6
-1.04

+ 0.184

- 0.159112

-3
+ 0.4

-7.04

-0.88
+ 0.024888

-2.6

+ 0.4

-2.2

+ 0.4

-7.92

-0.0356

- 7.9556

-0.0352

-1.8

+ 0.02

-1.78

+ 0.02

-1.76

+ 0.02

— 7.9908

-1.74
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The broken lines mark the cpnclusion of each transformation.

The numbers in heavy type are the coefficients of the successive

transformed equations, the first coefficient of each equation being the

same as the first coefficient of the given equation. In this example

the first coefficient is 1.

When we have obtained the root to three places of decimals we
fian generally obtain two or three more figures of the root by simple

division.

491. In practice it is convenient to avoid the use of the

decimal points. We can do this as follows : multiply the

roots of the first transformed equation by 10, the roots of

the second transformed equation by 100, and so on. In

the last example the first transformed equation will now be

f - mf -~ 600y + 3000 = 0,

and this equation will have a root between 4 and 5. The

second transformed equation will now be

z' - 1802^ - 79,2002 + 184,000 = 0,

and this equation will have a root between 2 and 3. And
so on.

Comparing these equations with the equations in § 488,

we see that we can avoid the use of the decimal point by

adopting the following rule :

When the coefficients of a transformed equation have

been obtained, add one cipher to the second coefficient, two

ciphers to the third coefficient, and so on. The coefficients

and the next figure of the root are now integers. The

work proceeds as in § 490.

If the root of the given equation lay between and 1, we should

begin by multiplying the roots of the given equation by 10.
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The complete work of the last example, for six figures of

the root, will now be as follows :

-6
+ 1

-5
+ 1

-4
+ 1

-30
+ 4

-26
+ 4

-22
+ 4

-180

+ 2

-178

+ 2

-176

+ 2

-1740

+ 3

- 1737

+ 3

- 1734

+ 3

- 17310

+ 1

- 17309

+ 1

- 17308

+ 1_

- 17307

+ 3

-5

-2
-4

-600
-104

-704

- 79200
- 356

- 79556

- 352

- 7990800

5211

-7996011
5202

- 800121300

17309

-800138609
17308

- 800155917

+ 5 1
1.42311+

+ 3000

-2816

184000

159112

+ 24888000
- 23988033

+ 899967000
- 800138609

+ 99828391
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We can find five more figures of the root by simple

division. If we divide 99,828,391 by 800,155.917, we
obtain 0.124761, so that the required root to ten places of

decimals is 1.4231124761.

The reason is seen by examining the last transformed equation.

Write this

8.00155917^ = 0.000099828391 - 1.7307 w^ + w\

As w is about 0.00001, w"^ is about 0.0000000001, and w^ is still

smaller. Hence the error in neglecting the w^ and w^ terms is in 8w
about 0.00000000017, and in w about 0.00000000002. The result

obtained by division will therefore be true to ten places of decimals.

492. Negative Eoots. To avoid the- inconvenience of

working with negative numbers, when we wish to calculate

a negative root, we change the signs of the roots (§ 466),

and calculate the corresponding positive roots of the trans-

formed equation.

Thus one root of the equation

a^-6a;2 + 3a; + 5=.0

lies between and — 1 (§ 487). By Horner's Method we find the

corresponding root of

ic3 + 6a;2 + 3a;-5 =
to be 0.6696+. Hence, the required root of the given equation is

- 0.6696+.

Exercise 82.

Compute for each of the following equations the root of

which the first figure is the number in parenthesis opposite

the equation. Carry out the work to three places of deci-

mals :

1. x^ + 2>x- 5 = (1).

2. a:'-6a:-12-:0 (3).

3. a;» + a;' + a7-100 = (4).

4. ar» + 10a;^ + 62r- 120 = (2).

5. a;'+92;2 + 24a: +17 = (-4).

6. a;*-12r'+12a:-3 = (-1).

7. a;*-8a;^ + 14^ + 4a;-8 = (-0.).
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493. Oontraction of Horner's Method. In § 491 the student

will see that if we seek only the first six figures of the root,

the last six figures of the fourth coefficient of the last trans-

formed equation may be rejected without affecting the

result. Those figures of the second and third coefficients

which enter into the fourth coefficient only in the rejected

figures may also be rejected. Moreover, we may reject all

the figures which stand in vertical lines over the figures

already rejected.

The work may now be conducted as follows :

1-6 - +3 +5
I

1.42311+

-5 -2+ 1

-5
+ 1

174

2

800

80

3000

2816

-4
+ 1

-600

-104
+ 184000

- 159112

-30
+ 4

-704
- 88

-f- 24888

- 23991

-26
+ 4

- 79200

- 356

-h897
-800

-22
+ 4

- 79556

- 352

+ 97

- 80

-180

+ 2

-178

- 79908

-7991
- 6

+ 2

-176

- 7997

- 6

+ 2 -8003
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The double lines in the first column indicate that beyond
this stage of the work the first column disappears alto-

gether.

In the present example we find three figures of the root

before we begin to contract. We then contract the work
as follows :

Instead of adding ciphers to the coefficients of the trans-

formed equation, we leave the last term as it is ; from the

last coefficient but one we strike off the last figure ; from

the last coefficient but two we strike off the last two figures

;

and so on. In each case we take for the remainder the

nearest integer. Thus, in the first column of the preceding

example we strike off from 174 the last two figures, and

take for the remainder 2 instead of 1.

The contracted process soon reduces to simple division.

Thus, in the last example, the last two figures of the root

were found by simply dividing 897 by 800.

To insure accuracy in the last figure, the last divisor

must consist of at least two figures. Consider the trial

divisor at any stage of the work. If we begin to contract,

we strike off one figure from the trial divisor before finding

the next figure of the root. Since the last divisor is to

consist of two figures, the contracted process will give us

two less figures than there are figures in the trial divisor.

Thus, in § 491, if we begin to contract at the third trial divisor,

— 79,908, we can obtain three more figures of the root ; if we begin

to contract at the fourth trial divisor, — 8,001,213, we can obtain five

more figures of the root ; and so on.

The student should carefully compare the contracted

process on page 450 with the uncontracted on page 448.

494. When the root sought is a large number, we cannot

find the successive figures of its integral portion by dividing

the absolute term by the preceding coefficient, because
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the neglect of the higher powers, which are in this case

large numbers, leads to serious error.

Let it be required to find one root of

a;4 _ 3 a;2_^ 11 a, _ 4 842,624,131=0. (1)

By trial, we find that a root lies between 200 and 300. Dimin-

ishing the roots of (1) by 200, we have

2/* + 8002/3 + 239,9973/2 + 31,998,8112/ - 3,242,741,931 = 0. (2)

If y = 60, f{y) = - 273,064,071.

If 2/ = 70, f{y) = + 471,570,139.

The signs oif{y) show that a root lies between 60 and 70. Dimin-

ishing the roots of (2) by 60, we obtain

2* + 1040 z^ + 405,597 z" + 70,302,451 z - 273,064,071 = 0. (3)

The root of this equation is found by trial to lie between 3 and 4.

Diminishing the roots by 3, we may find the remaining figures of the

root by the usual process.

495. Any root of a number can be extracted by Horner's

Method

Ex. Find the fourth root of 473.

Here x^ = 473,

or a;* + 0a;3 + 0a;2^0a;-473 = 0.

Calculating the root, x = 4.66353+.

If the number be a perfect power, the root will be obtained ex-

actly.

496.* Boots nearly Equal, In the preceding examples

the changes of sign in the value of f{x) enable us to deter-

mine the situation of the roots. In rare cases two roots

may be so nearly equal that they both lie between consecu-

tive integers. In this case the existence of the roots will

not be indicated by a change of sign in f(x), and we must

resort to other means to detect their presence.
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Ex. Consider the equation

3^-515x2 + 1155 a; -649 = 0. (1)

By Descartes' rule this equation has no negative root. It has

therefore certainly one, and perhaps three, positive roots.

We find /(~l) = -2320;

/(O) =- 649;

/(I) =- 8;

/(2) =- 391;

/(3) =-1792.

The approach of f{x) towards indicates

either that there are two roots near 1, or

that the function approaches without

reaching it ; the graph in the latter case being as here given.

Let us proceed on the supposition that two roots near 1 do exist.

Diminish the roots by 1. The transformed equation

3/3„512.y2 + 1282/ -8 = 0, (2)

by Descartes' rule, still has either one or three positive roots, so that

we have not passed the roots.

If we had diminished the roots by 2, we should have obtained

y3_509y2_g93y_ 391=0,

which has but one positive root ; so that we have passed both roots.

To find the second figure of the root, neglect the first term of

equation (2). Since the roots are nearly equal, the expression

5122/2 -l28y +

8

must be nearly a perfect square. Comparing this with a{y — of, or

128 J 2x8 . ,
and are approximate

2 X 512 128
^^ay"^ — 2 aay + aa?, we see that

values for the roots ; these both give |, or 0.12.

Diminish the roots by 0.1 ; the work is as before. Continue until

the two quotients obtained as above give difi'erent numbers for the

next figure of the root. In the present example this occurs when we

come to the third decimal figure ; the transformed equation is

V? - 51,164 u2 + 51,632w - 11,072 - 0.
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and the two quotients are 0.5 + and 0.3 +. To separate the roots,

try 0.4 ; the left-member of the last equation is found to be +.

Since gives — and 1 gives — , there is one root between and 0.4,

and one between 0.4 and 1.

To calculate the first root, we try 0.3 ; as this gives a — sign we
diminish the roots by 0.3, and proceed as in ^ 493.

515

1

514

1

513

1

5120

1

611631

5116

51

+ 1155

- 514

+ 641

- 513

+ 12800
- 5119

+ 7681

-5118

-649
1
1.1230907

+ 641

-8000
+ 7681

- 319000

+ 307928

- 11072000

+ 10885167

-5119
1

+ 256300
- 102336

- 186833

+ 184284

- 5118

1

+ 153964

-102332
-1549
+ 1400

- 51170

2

+ 5163200
- 1534911

- 149

- 51168

2

+ 3628389
- 1534902

- 51166

2

+ 2093487

+ 209349

- 511640

3

+ 20935

- 459

+ 20476

- 459
- 511637

3

- 511634

3

+ 20017

2002

200
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To calculate the second root, we return to the equation

V? - 51,164^2 + 51,632 w - 11,072 = 0.

We have /(0.4) = +, /(I) = - ; we find /(0.6) -= +,/(0.7) = +0.383.

Since /(0.7) is so small, /(0.8) is undoubtedly negative.

Diminish the roots by 7 and proceed as follows :

- 511640

7

+ 5163200

-3581431
-11072000 11.1270002

+ 11072383

-511633

7

+ 1581769

-3581382
+ 383

-511626
7

- 1999613

-200

-511619

Since the sum of the roots (| 442) is 515, we can find the third root

by subtracting from 515 the sum of the two roots already found.

1st root, 1.1230907

2d root, 1.1270002

515 - 2.2500909 = 512.7499091, 3d root.

497. From the preceding sections we obtain the following

general directions for solving a numerical equation

:

I. Find and remove commensurable roots by §§ 484-486,

if there are any such roots in the equation.

II. Determine the situation and thence the first figure

of each of the incommensurable roots as in § 487.

III. Calculate the incommensurable roots by Horner's

Method.

Exercise 83.

Calculate to six places of decimals the positive roots of

the following equations

:

1. x^-^x-\=^0.

2. a;'-f-2a7'-4a;-43 = 0.
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3. ^x'-{-Sx' + 8x-S2=0.
4. 2:^^-2607^+131^-202 = 0.

V 5. .x'-12x-\-1 = 0.

6. x'-5x' + 2x'~l3x + 5b= 0.

Calculate, to six places of decimals where incommensura-

ble, the real roots of the following equations

:

7. x' = S5,^99. 10. :^^ = 147,008,443.

8. a;' -- 242,970,624. 11. a;' + 2:r + 20 = 0.

9. :r* = 707,281. 12. a;^-10a;2 + 807+ 120 = 0.

Each of the following equations has two roots nearly-

equal. Calculate them to six places of decimals:

13.* x'-Sx^-4:X + lS = 0.

14.* 2o;* + 807^-35 07^-407+117 = 0.

15.* 07^+ llo7^- 10207+181 = 0.

STURM'S THEOREM.

498. The problem of determining the number and situa-

tion of the real roots of an equation is completely solved

by Sturm's Theorem. In theory Sturm's method is per-

fect ;
in practice its application is long and tedious. For

this reason, the situation of the roots is in general more

easily determined by the methods already given.

Before passing on to Sturm's Theorem itself we shall

prove two preliminary theorems.

499. Situation of the Eoots of f(x) = 0. Between any two

distinct real roots of the equation f (x) = there lies at least

one real root of the equation f(x) = 0.

Let a and /3 be two real roots of /(07) = 0, ^ being

greater than a. Then /(a) = and /(^) = 0. As 07 in-
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creases continuously from a to ^, f{x) changes from to

again ; and must first increase and then decrease, or

first decrease and then increase. Hence, there must be

some point at which f\x) changes from + to — , or vice

versa. Therefore, for some value of x between a and )8,

f(x) must be zero. Hence, at least one root of f\x) =
must lie between a and y8.

In the graph the curve will

be horizontal where f\x) = 0.

In the figure here given, A, B,

Q D correspond to roots of

f{x) = 0. Between A and B
there is one root of f\x) = ;

between B and C, three roots
;

and between Cand D, one root.

It is evident that if more than one root of f'(x) lies

between a and (3, the number of roots must be an odd

number.

500. Signs of f (x) and f'(x). Let a be any real root of an

equation, f (x) = 0, which has no equal roots.

Let X change continuouslyfrom a — h, a value a little less

than a, /o a + h, a value a little greater than a. Then f (x)

and f(x) will have unlike signs immediately before x passes

through the root, and like signs immediately after x passes

through the root.

For /(a -h) = - hf\a) + |/"(a) -
,

and fXoi-h)= f\a)- hf"(a) + ; (§463)

since /(a) = 0, as a is a root oif{x) = 0.

When h is very small, the sign of each series on the

right will be the sign of its first term (§ 475) ;
and /(a— h)

and /'(a — A) will evidently have opposite signs.

Similarly, /(a -f h) and /'(a + h) will have like signs.

The above is also evident from the graph off{x).
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501. Sturm's Punctions. The process of finding the

H. C. F. of f{x) and f\x) has been employed (§ 462) in

obtaining the multiple roots of the equation f(x) = 0. We
use the same process in Sturm's Method.

Let /(^) = be an equation which has no multiple

roots ; let the operation of finding the H. 0. F. of f(x) and

/'(x) be carried on until the remainder does not involve x,

the sigii of each re^nainder obtained being changed before it is

used as a divisor.

If there is a H. C. F,, the equation has multiple roots. Remove
them and proceed with the reduced equation.

Represent by fix), f(x), /n(^) the several remain-

ders with their signs changed. These expressions with /'(a;)

are called Sturm's Punctions.

Now, if D represent the dividend, d the divisor, q the

quotient, and R the remainder,

D=qd-^R.

Consequently, / {x) = qj\x) —fix),

fKx) = q,f(x)~f(x),

f{x) = qj^{x) ~f(x),

fn-2(^) = qn-Jn-l{x) —fn(x) ',

where qi, q^, q^-i represent the several quotients, or

the quotients multiplied by positive integers.

From the above identities we have the following

:

I. Two consecutive functions cannot vanish for the same
value of X.

For example, suppose /j (;r) and/3(a;) to vanish for a par-

ticular value of X. Give to x this value in all the identi-

ties. By the third identity, f(x) will vanish; by the
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fourth, /s (a;) will vanish; finally, /„(-^) will vanish, which

is contrary to the hypothesis that f(x) = has no multiple

roots.

II. When we give to rr a value which causes any one

function to vanish, the adjacent functions have opposite

signs.

Thus, if/aC^) = 0, from the third identity /2(a;) = —/4(a:).

502. Sturm's Theorem. We are now in a position to enun-

ciate Sturm's Theorem

:

If in the series offunctions

f(x), f'(x), f,(x) f„(x)

we give to x any particular value a, and determine the num-

ber of variations of sign; then give to x any greater value b,

and determine the number of variations of sign ; the number

of variations lost is the number of real roots of the equation

f (x) = between a and h.

For, let X increase continuously from a to b.

First : Take the case in which x passes through a root of

any of the functions /'(a;),/a (a;) f„-i(x), for example /^(a;).

The adjacent functions in this case have opposite signs.

fi(x) itself changes sign, but this has no effect on the num-

ber of variations ; for if just before x passes through the

root the signs are + H ,
just after x passes through the

root they will be -|
, and the number of variations is

in each case one.

Hence, there is no change in the number of variations of

sign when x passes through a root of any of the functions

Second : Take the case in which x passes through a root

oif(x) = 0. Since /(:r) and /'(a:) have unlike signs just

before x passes through the root, and like signs just after

(§ 500), there is one variation lost for each root off(x) = 0.



460 ALGEBRA.

Hence, the number of real roots between a and h is the

number of variations of sign lost as x passes from a to h.

To determine the total number of real roots, we take x

first very large and negative, and then very large and pos-

itive. The sign of each function is then the sign of its first

term (§ 474).

The student may not understand how it is that/(a;) and/^(a') always

have unlike signs just before x passes through a root.

Let o and j8 be two consecutive roots of f{x) = ; let A be very

small. Suppose that at a f{x) changes from + to — ; then /'(a) is —

(§ 460).

When x = a — h, f{x) = +, f{x) is —

;

a; = a, f{x) = 0, f\x) is —

.

As X changes from a to )8, f\x) passes through an odd number of

roots (§ 499), and consequently changes sign. Hence, when x = — h,

f{x) is —
, f{x) is + ; and/^(a;) and /(a;) again have unlike signs.

503. Examples. (1) Determine the number and signs of

the real roots of the equation

x' — 4:x^-\-^x'' — l2x-{-l=0.

Here f{x)^^x^ -I2x'' + I2x-12.

Let us take ior f{x), however, the simpler expression

a;3-3a;2 + 3a;-3.

We proceed as if to find the H. C. F., changing the sign of each

remainder before using it as a divisor.

1- 3+ 3-
3- 9+ 9-
3+ 1

-10+9
-30 + 27

-30-10

37- 9

111- 27

111 + 37

-64
+ 64

l_4+6-12 + l

l_3+3_ 3

1 + 3

1 + 3

9 + 1

3 + 3

- 6-2
3 + 1

1-1

10 + 37
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The coefficients of the several functions are in heavy type. In

the ordinary process of finding the highest common factor we can

change signs at pleasure. In finding Sturm's functions we cannot

do this as the sign is all important. We can, however, take out any

positive factor.

We now have /(x) = a;* — 4a::3 + Gx^ _ 12a; + 1,

/^(x) = ar^-3a;2 + 3a; - 3,

/2(a;) = 3a; + 1,

f,{x) = + 64.

When fix) fix) f,{x) Mx)
a; == — 1000 + — — .+ 2 variations.

a;=0 + — + + 2 variations.

x= + 1000 + + + + variations.

Hence, the equation has two real positive roots ; it must therefore

have two imaginary roots.

The real roots will be found by g 487 to lie one between and 1,

and one between 3 and 4.

(2) Investigate the reality of the roots of the equation

We find fix) =oi^ + SHx+G,

f\x) = 3ix' + H),

fj,x) = -2Hx-G,
f,ix) = -iG^ + AH^).

If G^'^ + 4 H^ is positive, we have

A^) /i(^) /2(^) Ai^)
a; = — oo — + ± — 2 variations.

a;== + oo + + T — 1 variation.

Since H may be either + or — , the sign of/j (a;) is ambiguous.

Hence, when O^ + 4: H'^ is positive, tliere is but one real root

If G^ + 4 H^ is negative, H must be negative, and we have

x= — Qo — + _ +3 variations.

a; = + oo + + + +0 variation.

Hence, when O"^ + 4 H^ is negative, there are three real roots.
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Exercise 84.

Determine by Sturm's Theorem the number and situation

of the real roots of the following equations :

1. a;' — 4:^2 -11a; + 43 = 0.

2. x'-6x''-{-1x-S = 0.

3. x' — Ax'-\-x' + 6x + 2 = 0.

4. x*-^x'-\-10x'-6x-21 = 0.

5. x* — x'-x'' + 6 = 0.

6. x' — 2x^-Sx'' + 10x-4: = 0.

7. x' + 2x' + Sa^-\-Sx^—l = 0.

8. a^ + x^-2x'' + Sx-2 = 0,



CHAPTEK XXXI.

GENERAL SOLUTION OF EQUATIONS.

504. Numerical and Algebraic Solutions. By the methods

of the preceding chapter we can find to any desired degree

of accuracy the real roots of a numerical equation of any

degree. The methods are theoretically complete, and the

solution of a numerical equation becomes simply a question

of the labor required for the necessary computations.

In the case of a literal equation we have an entirely dif-

ferent problem to solve. To solve a literal equation, we

have to find in terms of the coefiicients expressions which

will, when substituted for the unknown in the given equa-

tion, reduce that equation to an identity. Thus, the roots

of the general quadratic have been found ; they are given

by
^— Jrfc V^'"* — 4 ac

2a

In the case of a particular quadratic with numerical co-

efficients the roots can be found by putting for a, h, c in the

above expression their particular values, and performing the

indicated operations.

Similar solutions have been obtained for the general equa-

tions of the third and fourth degrees, and for certain special

forms of equations of higher degrees.

The solution of the general equation of the fifth degree

involves expressions called elliptic functions, and is conse-

quently beyond the scope of the present treatise.
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In many cases, however, the numerical values of the

roots of a particular equation are not easily obtained from

the general solution, and for numerical equations the gen-

eral solutions are in such cases of little value.

A general solution differs from the solutions obtained in

the last chapter in that a general solution represents not

one particular root but all the roots indiscriminately.

We shall first consider equations of two special forms,

reciprocal and binomial equations.

505. Eeciprocal Equations. Keciprocal equations (§ 470),

called also recurring equations, are of four forms :

(1) Degree even ; corresponding coefficients equal with

like signs.

(2) Degree even ; corresponding coefficients numerically

equal but with unlike signs.

(3) Degree odd ; corresponding coefficients equal with

like signs.

(4) Degree odd ; corresponding coefficients numerically

equal but with unlike signs.

The following are examples of the four forms

:

(1) 2a;*-3a:3+4tc2-3a; + 2 = 0;

(2) 3a^-a^ + 2a;*-2a;2 + a;-3 = 0;

(3) a^ + 3a;*-2a^-2a;2 + 3a; + l=0;

(4) 2:f^ + bx^-\-s?-x''-bx-2 = 0.

Every equation of the second form will evidently want the mid-

dle term.

Every reciprocal equation of the second, third, or fourth

form can be depressed to an equation of the first form.
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Second Form : Consider the equation

ax^ -j- ^^^ + ^^* — cx^ — bx — a — O.

Writing this

a{x^-l) + hx{x'~-l) + cx''{x^ - 1) = 0,

we see that the equation is divisible by x^ — \; conse-

quently 1 and — 1 are both roots. The depressed equation

is evidently of the first form.

Similarly for any equation of the second form.

Third Form : Consider the equation

ax^ + bx^ -\- co(^-\-cx'^-\-hx-\-a=^0,

"Writing this

aix' + 1) + bx{x^ + 1) + cx\x + 1) = 0,

we see that the equation is divisible by :r+l ; consequently

— 1 is a root. The depressed equation is evidently of the

first form.

Similarly for any equation of the third form.

Fourth Form : Consider the equation

ao(^+ bx*' -\- C3^ — cx^ — bx — a = 0.

Writing this

a{a^ - 1) + bx{x' - 1) + cx\x - 1) = 0,

we see that the equation is divisible by a;— 1; consequently

+ 1 is a root. The depressed equation is evidently of the

first lorm.

Similarly for any equation of the fourth form.

By the preceding, to solve any reciprocal equation, it is

only necessary to solve one of the first form.
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506. Any reciprocal equation of the first form can be

depressed to an equation of half the degree. We proceed

to illustrate by examples :

(1) Solve the equation

yA _ Y^x" + 29ri;« - 12:i; + 1 = 0.

Divide by x^ a;^ + 1 - 12 /'a? + -V 29 = 0.

x^ \ xj

Put 1.
X '

then 22 _2_ 120 + 29 = 0,

or 22 _ 122 + 36 = 9,

whence z = 9 or 3.
*

Solving the equations

a^ + i = 9, «' + ^ = 3.

we find X = , and x ==

2 2

The first two roots will be found to be reciprocals each of the other
;

also the second two roots.

(2) Solve the equation

This is of the fourth form ; dividing by re — 1 we find the depressed

equation to be
a;*-2a;3 + 3a;2-2a; + l = 0.

This may be written

x^ \ X j

a;2 + 2 + -:!^-2fa; + -l + l-0,

or 22-22 + 1 = 0,

whence 2=1.

Solving the equation a; + - = 1, we find

X = t

2

these expressions being double roots.
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Exercise 85.

Solve the equations

:

1. x*-\-7x'-1x-l = 0.

2. x'-i-2x'-^x' + 2x+1^0.
3. x'-Sx^ + 5x' — bx^ + Sx—l = 0.

4. x' — 5x' + 6x' — 5x+l = 0.

5. 2x* — 5x'-i-6x''-bx + 2 = 0.

6. x^~4:x' + x^-i-x^ — 4.x+l = 0.

7. a:*— 10^-' + 26:r^ — 1007+1 = 0.

8. x^ + mx^ + mx + 1 = 0.

9. x^ + x' — x'-x' + x-\-l = 0.

10. Sx'-2x' + 6x'-5x' + 2x-S = 0.

507. Binomial Equations. An equation of the form

a;" rb a =

is called a binomial equation.

We shall first consider the two equations

.^r**— 1 = 0, a;'»+l = 0.

If n is even, the equation a;" + 1 = 0, by Descartes' Rule

(§ 479), has no real roots ; the equation ^i;" — 1 = has

two real roots, +1 and —1, the remaining n — 2 roots

being imaginary.

If n is odd, the equation a;" + 1 = has one real root,

— 1 ; the equation a;" — 1 = has one real root, + 1 ; the

remaining n—1 roots being in each case imaginary.
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608. Now consider the equation ^" =fc a = 0, where a is

positive. Represent by Va the real positive nth root of

a. Then, if a is any root of a;" ± 1 = 0, aVa will be a

root of ^r"* ± a = 0.

For (a Vay = a"a = =F 1 X a = ^ <2.

Since a is any root of a;" it 1 = 0, the n roots of ^'^i a=
are found by multiplying each of the n roots of :r" ± 1 =
by Va.
The roots of a binomial equation are all different. For

x"" ±a and its derivative nx^~'^, can have no common factor

involving x (§ 462).

509. If a is a root of the equation .t"— 1 = 0, a*, where h

is any integer, is also a root.

For, if a is a root, a**=: 1.

But(a^)'*=(a»7-=(1)''-=1.

Therefore a* is a root of :r"= 1, or of re"— 1 = 0.

Similarly for a root of x^-{- 1 = 0, provided h is an odd

integer.

510. The Cube Eoots of Unity. The equation x^= \, or

a;'— 1 = 0, may be written

(.'.-l)(a;^ + ^+l) = 0,

of which we find the three roots to be

:

1. -i+iV^, -i-i-V^-
If either of the imaginary roots be represented by w, the

other is found by actual multiplication to be <u^. This

agrees with the last section.

Also, o)'' + (0 + 1 = 0.

In a similar manner we find the roots of or* =— 1 to be

-1, i-iV=^, i+iV=^,
or — 1, — (0, — <j}^.
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511. Examples.

(1) Find the six sixth roots of 1.

We have to solve a-^ — 1 = 0,

or (x3-l)(a^ + l) = 0.

Hence the roots are ± 1 , ± «, ± w"^.

(2) Find the five fifth roots of 1.

We have to solve a^ — 1 = 0.

One root is 1 ; dividing by a — 1,

«* + ic^ + ^2 + a; + 1 = 0.

Putting 2 = re + -, we obtain (^ 506),

whence

22 + z - 1 = ;

-1± V5

Solving the two quadratics a; + - =
, we obtain for the

remaining four roots,

- 1 + V5 J: VlO + 2V5V^ -l-VBj: VlO-2V5\/^
4

'

4

Exercise 86.

Solve the binomial equations :

1. a;«+l = 0. 3. o;^ — 1 = 0.

2. a^-l = 0. 4. 0:^-243 = 0.

5. Find the quintic on which the solution of the equa-

tion a:" = 1 depends.

e. Show that a^ ± if =. {x ±y) {x ±z wy) {x =b w'y).

7. Show that a^ -\- y* -\- z^ — yz— zx— xy

= (a;+wy+ <^'2!) {x+ w'y+ <"2!).

8. If a is an imaginary root of ar^— 1= 0, show that

(l-a)(l-a')(l-a')(l-a<) = 5.
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512. The General Cubic. We shall write the general

equation of the third degree in the form

ax^-\-Ux'-{-?>cx-\-d = Q. (1

)

Before attempting to solve this equation we shall trans-

form it into an equation in which the second term is

wanting.

Put z=^ax-\-h\ :. x =^ . Substituting this ex-
a

pression for x, and reducing, we obtain

z^ + 3(«c - h") z + {a^d- Zabc + 2^>^) = 0,
'

or, putting ^= ac — l>\ G = a^d— 3 ahc + 2 W,

2^ + 3^2+6^ = 0. (2)

In the transformed equation put

2; = w* + v^.

We obtain

(t^^ + v*)^ + 3 ^(2^* + t;^) + G^ = 0,

which reduces to

% + v + 3(wM + ^)(2^^ + v*)+G^ = 0. (3)

Since we have assumed but one relation between u and

V, we are at liberty to assume one more relation. Let us

assume

u^v^ = -H. (4)

Equation (3) now reduces to

u^v^-0. (5)

And (4) may be written

uv = -B:\ (6)

Eliminating v, we obtain the quadratic

u'^-Gu^IP, (7)

called the reducing quadratic of the cubic.
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Solving this quadratic, we find

P

(8)

""

2

^ u 2

Since ax-\-h=z = u^ -\-v^, the three values of z are

where u^ is any one of the three cube roots of u.

Since there is the sign db before the radical, we have

apparently six values of z. From (4) it is seen, however,

that there are really but three different values of z.

The above solution is known as Cardans.

Ex. Solve, by Cardan's method,

2r»- 6^2 + 12a;- 11=0.

Here a = 2, b = -2. Putting 2 = 2a; — 2, we obtain

23 + 122-12 = 0.

.*. 5"= 4, = — 12, and the reducing quadratic is

^2- 12m = 64.

Solving, w = 6±10= 16 or - 4;

.; v = = - 4 or + 16.
u

Henoe the values of 2 are

2v^-v^; .2«v^2-«2v/i; 2 <o^ y/li - a, \^

;

and the values of x are

1+^^ 1
; l + «^_^; l+„2^2-^^ V^ \^
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513. Discassion of the Solution. The above solution, while

complete as an algebraic solution, is of little value in solv-

ing numerical equations.

In the case of a cubic there are three cases to consider.

I. All three roots real and unequal. In this case,

G^ + ^H^ is negative (§ 503, Ex. 2), and its square root is

imaginary. If we put K'^ — — {G'^-\- 4.11^), we shall have

a. + b =
^

2
J
+( 2

J

'

Since there is no general algebraic rule for extracting

the cube root of an imaginary expression, the case of three

real and unequal roots is known as the irreducible case.

II. If, however, two of the roots are equal, G'^-{-4lIP=
(§ 503, Ex. 2), and we shall have

G\h

-*H=f)H=fl
III. If two roots are imaginary, 6^'^+ 4^^ is positive

(§ 503, Ex. 2), its square root is real, and we shall have

ax+ b = f~^^ VG + ^H'M ,
f-G-^G+ 4 £r'\h

)'.(:
2 J

'

\ 2 ;

The value of the expression G^ -{- 4:JI^ determines the

nature of the roots. On this account G^ -{- 4: IP is called

the discriminant of the cubic.

We conclude from the above that the general solution

gives us the roots of a numerical cubic in a form in which

their values can be readily computed only in the second

and third cases.

In either of these cases, however, the real roots are more

easily found by Horner's method.

In the first case the roots may be calculated by a method

involving Trigonometry. Cf. Chapter XXXII.
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Exercise 87.

Find the three roots of

:

1. r' + 6a;' = 36.

2. 3a:'-6a;'-2 = 0.

3. a^-Sx^ — 6x-4: = 0.

4. 9a;' — 54a;' + 90a; -50 = 0.

5. / + 3mz'=-m'(m+l)\

6. In the case of the cubic, putting

show that

:

^ 21

G

a'

'

LM= a' -\- ft' + y'-/3y-ya-ap

^ 9^
a'

'

L'-M' = - SV^^iP - y)(y - a)(a - )3).

7. From Ex. 6, and the relation

(L' - My = (L' + My - 4 L'M\

show that

a\p - y)\y - a)\a - /S)'= - 27((?' + 4 H'),

and thence deduce the conditions of § 518,
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514. The G-eneral Biquadratic. We shall write the general

equation of the fourth degree in the form

ax' + 4:bx'' -i- Gcx' -i- 4:dx + e-=0. (1)

Put z = ax-}-b ;
.'. x = . Substituting this expres-

sion for X, and reducing, we obtain

z' + 6(ac-b')z' + Ha'd-dabc + 2b')z

+ (a'e-4:a'bd-j-6ab'c-Sb') = 0. (2)

The fourth term may be written

a' (ae-4:bd-]-S c') -S(ac- b^)\

Putting, as in the case of the cubic,

H=ac-b\ G = a^d-^abc-\-2b\

and also I = ae — 4ibd-{-S(f,

we may write (2) in the form

z' + 6IIz' + ^Gz + a'I-SB''==0, (3)

in which the 2;^ term is wanting.

To solve this equation, put

z = Vu + Vv + Vw.

Squaring, z"^= u -{- v -\- w+ 2 {-\/uv + vW4- ^vw).

Transposing, and squaring again,

z'-2{u-\-v^w)z^-\-{u+ v+ wy
=^4:(uV-{-UW-\-Vw)-\-%Z^U-\/v\/w.

If this equation is identical with (3),

u-\-v + w = ~ZII,

4

Vw Vv -s/w = — - -,
Q
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and, consequently (§ 442), u, v, and w are the roots of the

cubic

f-{-Sm' + fsJI'-'^y-^-=0. (4)

This is known as Eulers cubic.

This equation may be written

Or, putting t + 11= a^B, and clearing of fractions,

^a'e^-IaO + J^O, (5)

where J=-^{a'HI-G'-^H^)

= o.ce + 2 hcd— ad^ — eh^ — c^.

Equation (5) is called the reducing cubic of the biquad-

ratic.

If ^1, $2, O3, are the roots of this cubic, since t = c^B — H,

the four roots of equation (1) are given by

ax-\-b = -Va'B, - JI+ -Vd'B, - JI+ Va% - If. (6)

Since each radical may be either + or — , there are appar-

ently eight values of x obtained from the following com-

binations of signs

:

+ + + + + - +-+ - + +--- --+ --f- +--
G

But VwVvVtt; = — — . Consequently the number of

admissible combinations is reduced to four.

The above solution is known as Uuler's.

In determinant form

H:
a b c

a b
. J= b c d

b c
c d e
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515. Discussion of tlie Solution. Represent by a, y8, y, 8

the roots of the given biquadratic.

Then, by equation (6), we have

aa -\~b — -\- Vw — Vv — -Vw,

ay -\-h=^ — Vw — -\/v + V^y,

a8 + ^ == + Vw + V-y + V^^
;

(7)

from which, if ^i, 6^, 0^ are the roots of the reducing cubic,

we obtain

io

v=a%-JI=^(y + a-(3
lb

a%~ir=f^(a + l3-y

By,

iy.

(8)

There are six cases to be considered.

I. Thefour roots of the biquadratic all real and unequal.

In this case by equations (8) u, v, iv, are all real. Con-

sequently, 6i, 02, $3, are all real, and the cubics (4) and (5)

fall under the irreducible case. (§ 513, 1.)

II. Hoots all imaginary and unequal.

By § 446 the roots must be of the forms

h -f hi, h — Jci, I -j- mi, I— mi,

and from equations (8)

u = -^(k- m)\ v = -^{h-\- m)^ w = ^{h- l)\
4 4 4

So that the roots of Euler's cubic are all real, two being

negative and one positive, and the cubics (4) and (5) again

fall under the irreducible case. (§ 513, I.)
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III. Two roots real and two imaginary.

In each cubic two roots are imaginary and one is real.

IV. Two roots equal, the other two unequal.

Each of the cubics has a pair of equal roots. .

V. Two pairs of equal roots.

Two roots of Euler's cubic vanish, the third being —SJI.
TT TT ^ TT

The roots of the reducing cubic are — , —-.

a^ ct o?

VI. Three roots equal.

The roots of Euler's cubic are — H, — H, — H\ those

of the reducing cubic all vanish.

VII. Allfour roots equal.

All the roots of both cubics vanish and 11= 0.

516. Discriminant. Comparing the reducing cubic with

we find the discriminant of the reducing cubic to be

^ :{r-21J% §513.
16a«'

The expression P — 21 J"^
is called the discriminant of the

biquadratic.

From the last section we obtain the following

:

I. Discriminant of the reducing cubic negative ; that is,

P — 21 J"^ positive. The roots of the biquadratic are either

all real or all imaginary.

II. Discriminant of the reducing cubic vanishes; that

is, P — 21P = 0. The roots of the biquadratic fall under

one of the following cases :

(a) Two roots equal, the other two unequal.
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(b) Two pairs of equal roots. In this case 6^ = 0, and

(c) Three roots equal. In this case /— and J= 0.

(c?) Four roots equal. In this case I— 0, J= 0, H^ 0.

III. Discriminant of the reducing cubic positive; that

is, I^ — 27J^ negative.

Two of the roots of the biquadratic are real and two are

imaginary.

517. When the left-member of a biquadratic is the prod-

uct of two quadratic factors with rational coefficients, the

equation can be readily solved as follows :

Ex. Solve the equation

a;* - 12x3 _j. 12x2 + 176a; - 96 = 0.

Here a = 1, b = — 3
;
put 2 = ar — 3, and we obtain

2* _ 42^2 + 322 + 297 = 0.

Comparing this with

(22 +pz + q) (22 -pz + q^) = 0,

32
we find q^ + q—p^ = — 4:2, q^ — q = —, qq^ = 297.

Eliminating q and q^, p is given by

p6 _ 84p* + 576J32
_ 1024 = 0,

of which two roots are found to be ± 2.

Take p = 2, then ^'' = — 11, q = — 27, and the equation in 2 is

(22 + 22-27)(22-22-ll) = 0.

From this 2 = - 1 ± 2V7, or 1 ± 2\/3.

Since re = 2 + 3, we find the four values of x to be

2 + 2\/7; 2-2\/7; 4 + 2V3; 4-2V3.

In a similar manner we can solve any biquadratic when the cubic

in p^ has a commensurable root.
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Exercise 88.

Find the four roots of:

1. 3C

2. X'

3. x;

4. oc

6. X'

- 12^;^ + bOx^ - 84a; + 49= 0.

~llx^-20x-Q = 0.

- 8a;^ + 20-0^ - 1.6:r - 21 = 0.

- lla;^ + 46a;^ - 117:r + 45 = 0.

-1x^-mx^ + 22lx- 169 = 0.

6. Show that the biquadratic can be solved by quad-

ratics if G^Q.

7. Show that the two biquadratic equations

ax'^ -\- ^ cx^ ± ^dx -^ e = 0,

have the same reducing cubic.

8. Solve the biquadratic for the two particular cases

in which /= and J— 0.

9. Show that if -^Tis positive, the biquadratic has either

two or four imaginary roots.

10. Find the reducing cubic of

x' -^ax'-\-^x-\/a? + ¥-\-c^-?, abc + {\2bc -2>a^) = 0.

11. Prove that J" vanishes for the biquadratic

^a{x — 2ay = 2a{x-^ay.

12. Let a, p, y, 8 be the distances of four points A, B,

C, D, on a straight line from a fixed point on that line.

Prove that when the line is harmonically divided at ^, B,

C, D the roots of Euler's cubic are in arithmetical progres-

sion.

The student who wishes to pursue the subject of this chapter

farther is referred to Burnside and Panton's Theory of Equations,

published by Longmans, London.



CHAPTER XXXII.

COMPLEX NUMBERS.

518. Eepresentation of Eeal Numbers. Let XX^ be a

straight line of unlimited length. Let be a fixed point

on that line.

With any convenient unit of length measure off along

the line from to the right and left a series of equal

distances.

X'

—

J I I rf r? ? f^f i^-? I I I X

Each of the points of division thus obtained will repre-

sent an integer (§ 8). If the points to the right represent

positive integers, those to the left will represent negative

integers.

The point will represent 0.

To represent a rational fraction -, where a and h are

integers, h being positive and a either positive or negative,

we divide the unit into h equal parts, and then measure

off a of these parts. The point obtained will lie between

two of the points which represent integers.

We cannot find exactly the point which represents a

given incommensurable number. We can, however, always

find two fractions between which the given incommensurable

number lies ; and the point which represents the incommen-

surable number will lie between the points which represent

the two fractions.

Since the difference between the fractions can be made



COMPLEX NUMBERS. 481

as small as we please, the distance between the two points

representing the fractions can be made as small as we

please, and the position of the point which represents the

given incommensurable number can therefore be deter-

mined to any desired degree of accuracy.

It appears, then, that all real numbers may be represented

by points in the line XX\
Conversely, every point in the line XX^ will represent

some real number which may be integral, fractional, or

incommensurable, and either positive or negative.

Instead of the representative points A, B, etc., we shall

generally use the representative lines OA and OB.

519. Eemarks on Imaginaries. Imaginary expressions are

not numbers in the ordinary arithmetical sense. We per-

form upon them, however, the operations which we perform

upon numbers, subject to the four fundamental laws which

govern all algebraical operations (§ 47), viz. : the commu-

tative, associative, distributive, and index laws. In finding

the product of two imaginaries, however, the operation

must be performed in a particular way (§ 168).

We shall in this chapter often extend the term number

to include imaginary expressions.

When we are considering imaginary expressions without

attempting to give them any arithmetical interpretation,

there is nothing " imaginary " about the so-called imagina-

ries. The collection of symbols 3 + 4V^ is, as far as

symbols go, as " real " as the collection of symbols 34-4V2.

It is only when we wish to obtain a result arithmetically

interpretable, and arrive at an imaginary expression, that

the latter can be called in a strict sense " imaginary."

On this account the term complex number is preferable

to im^aginary number.
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520. Pure Imaginaries. A pure imaginary cannot be rep-

resented by a point on the line JTX' (§ 518), since all

points on that line represent real numbers. We must there-

fore seek elsewhere for its representative point.

Represent V~ 1 by i. Assuming the commutative and

associative laws, we have (§ 169)

:

ix a = ai;

i X i X a = i"^ X a = (— 1) a = — a;

ixixiXa — i^Xa = (—i)a = — ai]

ixixixiXa = i^Xa = (+l)a = -i-a;

i X i X i X i X i X a == i^ X a = i X a = ai

)

and so on.

From the above we see that the effect of multiplying by

i twice is to change a to — a; twice more is to change

— a back to + a. That is, two multiplications hy i reverse

the sign of the multiplicand.

Hence, two multiplications by i turn the representative

line through 180°
; four multiplications by i through 360°

;

and so on.

We may, therefore, consistently assume that one multipli-

cation by i turns the representative line through 90° ; three

multiplications by i through 270° ; and so on.

If, then, we draw through a line YY^ perpendicular to

XX^, all pure imaginaries will be represented by points

on this line, just as all real numbers are represented by

points on XX'.

521. The lines XX* and FF' are called axes, XX' the

axis of reals, and YY' the axis of pure imaginaries. is

called the origin.

It is customary to regard rotation opposite to that of the

hands of a clock as positive. With this convention the
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point M, or the line OM, in the figure will represent + 5i

or H-5V— 1; the point iV, or the line ON, — 6z or

- 6V=n[.
The only point which is on both axes is 0. This agrees

X^

M

I I I I I I

N

F'

with the fact that is the only number which may be con-

sidered either real or imaginary.

Again, a and ai are measured on different lines. This

agrees with the fact that a and ai are different in hind.

522. Vectors. A directed straight line of definite length

is called a vector. Thus, the lines used to represent real

numbers, and those used to represent pure imaginaries, are

all vectors.

Vectors need not, however, be parallel to either of the

axes ; they may have any direction.

The line AB, considered as a vector beginning at A and

ending at B, is generally written AB.
Tv/o parallel vectors which have the same length, and

extend in the same direction, are said to be equal vectors.
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523. Vector Addition.

D
To add a vector CD to a vector AB
we place on B, keeping CD
parallel to its original position,

and draw AD.

Then, AD = AB + BD
= AB+GD.

The addition here meant by

the sign + is not addition of

numbers, but addition of vectors, generally called geometric

addition. It is evidently identical with the composition

of forces.

From the dotted lines in the figure, and the known prop-

erties of a parallelogram, it is easily seen that

AD^GD-\-AB.

:. AB+GD=GDi- AB.

Consequently, vector addition is commutative (§ 21). It

is easily seen that it is also associative (§ 27).

524. Complex Numbers. A complex number in general

consists of a real part and an imaginary part, and may be

written (§ 172) in the typical form x + yi, where :^ and y
are both real.

If we understand the sign -f to indicate geometric addi-

tion, we shall obtain the vector which represents x -{- yi as

follows

:

Lay off X on the axis of reals from to M. From M
draw the vector MP to represent yi. Then the vector OP
is the geometric sum of the vectors OM and MP, and

represents the complex number x + yi.
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Instead of the vector OF we sometimes use the point P
to represent the complex

number.

Thus, in the figure, the

vectors OF, OQ, OF, OS,

or the points F, Q, F, S,

respectively, represent the^
complex numbers 6 + 4 ^,

-6+ 5«, -5-3z, 3-5^.

In the complex number
x-j-yi, a: and yi are repre-

sented by vectors. Now vector addition is commutative.

Consequently, x-{-yi = yi -f x.

This is also evident from the preceding figure.

The expression x-\-yi is the general expression for all

numbers. This expression includes zero when x=0 and

y = ; includes all real numbers when y = ; all pure

imaginaries when a; = ; all complex numbers when x and

y both differ from 0.

525. Addition of Complex Numbers. Let x+ yi and x'-{-y'i

be two complex numbers. Their sum, x -\- yi -\-
x^

-\- yH,

may by the commutative law be written a: + a;' + (3/ + 2/')^-

LetOZ and OS be the

representative vectors of

X 4" yi and x^ + yH.

Take 2^= UB;
then, OC=OA + OB.

Draw the other lines

in the figure.

Then,

0H= OF-h FH
= OF^OE=^x^x\
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and HQ= FA + KC= FA^EB = y-\- y\

,'. OC=x-\-x^ + {y-\- y^ = {x -\- yi) + (a;' + yH).

But OC=OA + aB.

Consequently, the geometric sum of the vectors of two com-

plex numbers is the vector of their sum.

Since vector addition is commutative, it follows that the

addition of complex numbers is commutative.

The sum of two complex numbers is the geometric sum
of the sum of the real and the sum of the imaginary parts

of the two numbers.

The preceding may be made clearer by a particular example.

Find the sum of 2 + 3 1 and — 4 + i

2 + 3i - OM and - 4 + i = OM^.
Y

M

If now we proceed from M,
the extremity of OM, in the

direction of OM^ as far as

the absolute value of 0M\
we reach the point M^^.

Hence, OM^^ = - 2 + 4i,

the sum of the two given

complex numbers.

The same result is reached

if we first find the value of

2 + (- 4) = - 2. That is, if

we count from two real units to A^^, and add to this sum 3 i + i = 4 i

;

that is, count four imaginary units from A^^ on the perpendicular

A'^M^^.

A X

526. Modulus and Amplitude. Any complex number,

x-\-yi, can be written in the form

Wa;2 + 2/' s/x' + y'' J

The expressions and ^ may be taken
-y/^2 _j_

yi
-yjx^ -f y
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as the sine and cosine of some angle <^, since they satisfy

the equation

cos'^i^ + sin^<^ = l.

If we put r = V:r^ + 2/', the complex numj|er may be

written

r (cos <t>-\-i sin </>).

Since r = V^M-y^, the sign of r is indeterminate. We
shall, however, take r sAwSijs positive.

The positive number r is called the modulus, the angle </>

the amplitude, of the complex number x+ yi.

Let OF be the representative vector of a;+ yi Since r

is the positive value of Vx"^ + 2/^ it is evident that r is the

length of OP. Since K

X X OM
COB<f>

V^M^' r OP

and

. , V y MP
V^TifP r OP

it follows that
<f>

is the angle MOP.
The above is easily seen to hold true when x and y are

one or both negative.

The modulus of a real number is its absolute value ; the

amplitude is if the number is positive, 180* if the num-

ber is negative.

The modulus of a pure imaginary ai is a ; the amplitude

is 90° if a is positive, 270° if a is negative.

527. Since the sum of the lengths of two sides of a

triangle is greater than the length of the third side, it

follows from §§ 523, 525 that the modulus of-the sum of

two cowiplex nuTnbers is less than the sum, of the moduli.
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In one case, however, that in which the representative

vectors are collinear, the modulus of the sum is equal to

the sum of the moduli.

528. Multiplication by Eeal Numbers. Let x -\- yi be any-

complex number. If the representative vector be multi-

plied by any real number a, it is easily seen from a figure

that the product is ax -f- ayi.

Therefore, a(x -f yi) — ao;+ ayi.

It follows that the multiplication of a complex number

by a real number is distributive.

Y Ex. To multiply - 2 +i by 3 : Take

OA=— 2 on OX^, and erect at A the per-

pendicular AM= 1. Then OM^ - 2 + i

;

and, by taking OM three times, the

result is OM^ = — 6 + 3 i, the product of

(-2 + t)by3.

X' A' ' ' A O

629. Multiplication by Pure Imaginaries. We have seen

(§ 520) that multiplying a real number, or a pure imaginary,

by i turns that number through 90°. Let us consider the

effect of multiplying a complex number by i.

By the commutative, associative, and distributive laws,

i X r (cos <^ + «sin <^) = r(i cos <^ — sin <^)

= r(— sin <;^ + i cos <^)

= r [cos (90° + <^) -I-
^ sin(90°+ <^)].

Here, also, the effect of multiplying by i is to increase

<^ to <^ + 90° ; that is, to turn the representative vector

in the positive direction through an angle of 90°.

The effect of multiplying by a pure imaginary ai will

be to turn the complex number through a positive angle

of 90°, and also to multiply the modulus by a.
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530. Multiplication by a Complex Number. We come now

to the general problem of the multiplication of one complex

number by another. This includes all other cases as par-

ticular cases.

Let r (cos <^+ z sin <^) and r'(cos<^' + *sin<^') be two

complex numbers. By actual multiplication their product

is

rr'[cos
<f>

cos
<f>'
— sin <^ sin <^'+ *(sin <^ cos <^' + cos <^ sin (/>')].

By Trigonometry, this may be written

rr'[cos(<^ + <f>') + i sin (<^ -f- <^')].

Therefore, the modulus of the product of two complex

numbers is the product of their moduli ; and the amplitude

of the product is the sum. of the amplitudes.

Consequently, the effect of multiplying one complex

number by another is to multiply the modulus of the first hy

the modulus of the second ; and to turn the representative

vector of the first through the amplitude of the second.

631. Division by a Complex Number. The quotient

r(cos<^4-^sin ^)
r'(cos<^'4-^sin <^')

becomes, multiplying numerator and denominator by

cos ^' — i sin </>',

^,[cos (<^ - <^') + * sin (<^ -</»')].

Consequently, the modulus of the quotient is obtained by

dividing the modulus of the dividend by that of the divi-

sor ; and the amplitude of the quotient by subtracting the

amplitude of the divisor from that of the dividend.
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532. Powers of a Complex Number. From § 530 we obtain

for the case in which w is a positive integer,

[r (cos + ^ sin <^)]" = r" [cos (^ + ^ -f to w terms)

+ i sin (<^ + <^ + to n terms)]

= r" (cos n<l) -f- i sin n<l>).

533. Boots of a Complex Number. From § 632, putting <^

for n(f>, and r for r"', we obtain

+ ^ sm —
n

r (cos <^ + ?i sin <^) ;

or

[Vr ( cos -
\ n

[r (cos <^ + ^ sin <^)]» = Vr (
cos ^ + i sin^ )>

\ n nj

where by Vr is meant the real positive value of the root.

The last expression gives apparently but one value for

the 92th root of a complex number. But we must remem-

ber that there are an unlimited number of angles which

have a given sine and cosine. Thus the angles

<^, <^ + 360°, (^ + 720°, (^4-^(360°),

all have the same sine and cosine. We have, therefore,

the following n\h roots of r (cos <;^ -j- i sin <f) :

Vr(^cos- + 2sin-J; (1)

/ ^ + 360°
. ^ + 360°\

Vr (^cos + 1 sm
j ; (2)

'

-/ <^ + (^-l)360°
, . . <^ + (n-l)360°>

^V^^^cos + zsm j] {n)

( (^ + ^(360°)
,

. . <^ + 7z360°>^

Vrfcos
^

f-^sin 1; (^ + 1);
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In this series the (n -f l)th expression is the same as

the ^rs^; the (n-\-2)th the same as the second; and so on.

Consequently, there are but n different nth roots, those

numbered (1) to (n).

From this and the preceding section we can obtain an

expression for

[r(cos<^ + isin<^)]'*,

where — is a rational fraction.
n

Ex. The 12 twelfth roots of 1 are:

cos0° + i8in0° = l; (1)

cos 30° + i sin 30° - ^^^^-^
; (2)

A

COS 60° + i sin 60° = ^+^^
; (3)

cos90° + isin90° = i; (4)

cos 330° + % sin 330° = ^"^ (12)

634. Complex Exponents. The meaning of a complex

exponent is determined by subjecting it to the same opera-

tions as a real exponent.

It follows that such an expression as a*+^*, where a is a

real number and x-^yi a complex exponent, may be sim-

plified by resolving it into two factors, one of which is a

real number, and the other an imaginary power of e (§ 392).

From the ordinary rules for exponents,

Put a» = e"

;

then, u = log, a" = y log, a.
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Since ^^l + ^+||+|+g (§392)

therefore, e''' = 1 + ui + '^+^ + -—+—- -{-

[2 |3 [4 |5_

By the Differential Calculus it is proved that when u is

the circular measure of an angle,

co.«=l-- + - + -+ sm« = «-- +j^-

each series being an infinite series.

Consequently, e"** = cos u + i sin u,

and e^+"' = ^ (cos u-\-i sin u).

Also, a^^^^ = a" (cos u-\-i sin w)

= a*[cos(2/log,a) + ^sin(3/logea)].

535. Trigonometric Solution of Cubic Equations. In the

irreducible case (§ 513, 1.) the numerical values of the roots

of a cubic equation may be found by the Trigonometric

tables. We have (§ 513, III.),

a. + 5^-(^ 2
) +( 2

)
'

In the case to be considered G"^ -}- 4: H^ is negative

(§ 513, L).

Put _^=iJcos^, y^^^^^^iRAni,.
A A

Then, i?^ = (-//)^ R = (,-Hf,
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And, by § 533,

ax -{-b = (— Hy [cos <^ + *' sin <^)* + (cos <^ — t sin <^)^].

The cube roots in the right member must be so taken

that their product is 1, since in § 512 u^v^ = — IT.

The three values of ax-{-h are

:

2(-^/cos|;

2(-^)*cosC| + 120°')

2(-^f cos/'|4-240°\

<f>
IS given by tan cf>

= ^>——

^

^•

Ex. Take the equation s:' — 63 + 2 = 0.

Here 0=^2, H^-2, G^ + 4H^ = -~28.

tan0 = :^=V7. 1= 23°5/54/^\/28

2

log 7 = 0.84510. I
+ 120° = 143° 5^ 54^^

log tan (() = 0.42255.

? + 240° = 263° 5^ 64^^.

<^ = 69° 17M2^^. 3 +
^^''

And the three values of z are found by logarithms to be

2.6016, -2.2618, -0.3399.

Check: 2.6016

- 2.2618

-0.3399
•

0.

Horner's method is, however, to be preferred to the

method of the present section.
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Exercise 89.

Express in the typical form :

1. (a + biy-\-{a-bi)\

2. M:i,+ 1-^
1 + 2^ l-2^

2 + 36z 7-26z
* 6 + 8z 3-4^'

4. Show that [(V3 + 1)+ (V3 -!)(]»= 16+ 16 ^.

5. If -wx -\-yi — a-\- hi, show that

6. F.nd the modulus of|f^|±M.
7. Find the three cube roots of \-\-i,

8. Find the five fifth roots of 1.

9. Find the four fourth roots of 3 -|- 4z.

10. Solve the equation z'— 122 + 3 = 0.

11. Solve the equation 2a;' + 3 a;'- 3a7- 1 = 0.

Note. The student who wishes to pursue the subject of this

chapter further is referred to Burnside and Panton's Theory of Equa-

tions, and to Salmon's Higher Algebra,

&
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Wentworth'8 Trigonofnetnes,

niHE aim has been to furnish Just so much of Trigonometry as

is actually taught in our best schools and colleges. The prin-

ciples have been imfolded with the utmost brevity consistent with

simplicity and clearness, and interesting problems have been

selected with a view to awaken a real love for the study. Much
time and labor have been spent in devising the simplest proofs for

the propositions, and in exhibiting the best methods of arranging

the logarithmic work. Answers are included.

Plane and Solid Geometry, and Plane Trigonometry^

12mo. Half morocco. 490 pages. Mailing Price, $1.55; Introdactlon,

$1.40; Allowance for old book, 40 cents.

Plane Trigonometry,

12ino. Paper. 80 pages. Mailing Price, 35 cents; Introduction, 30 cents.

Plane Trigonometry Formulas,

Two charts (30 x 40 inches each) for hanging on the walls of the class-

room. Introduction Price, $1.00 per set.

Plane Trigonometry and Logarithms,

8vo. Cloth. 160 pages. Mailing price, 85 cents ; introduction, 80 cents.

Plane and Spherical Trigonometry,

12mo. Half morocco, iv + 151 pages. Mailing Price, 80 cents; foi

introduction, 75 cents ; allowance, 20 cents.

Plane and Spherical Trigonometry, with Tables,

8vo. Half morocco, vi + 259 pages. Mailing Price, $1.25; for intro<

duction, $1.12. Allowance for old book, 35 cents.

Wentworth's Plane and Spherical Trigonometry

and Surveying, with Tables.

8vo. Half morocco. 307 pages. Mailing Price, $1.40; Introduction,

$1.25 ; Allowance for old book, 40 cents.

Surveying,

8vo. 80 pages. Paper. Mailing Price, 35 cents; for Introduction, 89
cents.

Wentworth's Plane and Spherical Trigonometry,

Surveying, and Navigation,

12mo. Half morocco. 359 pages. Mailing Price, $1.26; Introductioi^

91.12; Allowance for old book, 35 cents.
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rpHE object of the work on Surveying and Navigation is to pre-

sent these subjects in a clear and intelligible way, according

to the best methods in actual use ; and also to present them in so

small a compass, that students in general may find the time to

acquire a competent knowledge of these very interesting and

important studies. Answers are included.

A. H. Pierce, Instructor in Mathe-
matics, Amherst College : I consider

Wentworth's Trigonometry a perfect

book for the class-room. All unnec-

essary matter is omitted, and the ar-

rangement of the work is such as to

help a student to a clear outline of

the whole subject, . . . and the plen-

tiful supply of exercises and practical

problems relieves the teacher of the

necessity of constantly consulting

other text-books.

Wentworth & HiU's Fiue-Place Logarithmic and

Trigonometric Tables.

By G. A. Wentworth, A.M., and G. A. Hill, A.M.

Seven Tables (for Trigonometry and Surveying): Cloth. 8vo. 79 pagea
Mailing Price, 65 cents; Introduction, 50 cents.

Complete (for Trigonometry, Surveying, and Navigation) : Half mo-
rocco. 8vo. 158 pages. Mailing Price, $1.10; Introduction, $1.00.

rpHESE Tables have been prepared mainly from Gauss's Tables,

and are designed for the use of schools and colleges. They

are preceded by an introduction, in which the nature and use of

logarithms are explained, and all necessary instruction given for

using the tables. They are printed in large type with very open

spacing. Compactness, simple arrangement, and figures large

enough not to strain the eyes, are among the points in their favor.

Wentworth & Hiirs Exercises in Arithmetlo.

I. Exercise Manual. 12mo. Boards: vi + 282 pages. Mailing Price,

55 cents; for introduction, 50 cents. II. Examination Manual. 12mo.
Boards. 148 pages. Mailing Price, 40 cents ; Introduction Price, 35 cents.

Both in one volume, 80 cents. Answers to both parts together, 10 cents.

rpHE first part (Exercise Manual) contains 3869 examples and

problems for daily practice, classified and arranged in the

common order; and the second part (Examination Manual) con-

tains 300 examination-papers, progressive in character.
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The Method of Least Squares.

With Numerical Examples of its Application. By George C. Com-
STOCK, Professor of Astronomy in the University of Wisconsin, and
Director of the Washburn Observatory. 8vo. Cloth, viii + 68 pages.
Mailing price, $1.05 ; for introduction, $1.00.

rPHIS work contains a presentation of the methods of treating

observed numerical data which are in use among astronomers,

physicists, and engineers. It has been written for the student,

and presupposes only such mathematical attainments as are usually

possessed by those who have completed the first two years of the

curriculum of any of our better schools of science or engineering.

Peirce's Elements of Logarithms.
With an explanation of the author's Three and Four Place Tables. By
Professor James Mills Peibce, of Harvard University. 12mo. Cloth.
80 pages. Mailing price, 55 cents ; for introduction, 50 cents.

nPHE design of the atithor has been to give to students a more

complete and accurate knowledge of the nature and use of

Logarithms than they can acquire from the cursory study com-

monly bestowed on this subject.

Mathematical Tables Chiefly to Four Figures.

With full explanations. By Professor James Mills Peibce, of Harvard
University. 12mo. Cloth. Mailing price, 45 cents ; introduction, 40 cents.

Elements of the Differential Calculus.

With numerous Examples and Applications. Designed for Use as a Col-
lege Text-Book. By AV. E. Byerly, Professot of Mathematics, Harvard
University. 8vo. 273 pages. Mailing price, $2.15 ; introduction, $2.00

;

allowance, 40 cents.

rriHE peculiarities of this treatise are the rigorous use of the

Doctrine of Limits, as a foundation of the subject, and as

preliminary to the adoption of the more direct and practically con-

venient infinitesimal notation and nomenclature ; the early intro-

duction of a few simple formulas and methods for integrating ; a

rather elaborate treatment of the use of infinitesimals in pure

geometry ; and the attempt to excite and keep up the interest of

the student by bringing in throughout the whole book, and not

merely at the end, numerous applications to practical problems in

geometry and mechanics.
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Elements of the Integral Calculus.

Second Edition, revised and enlarged. By W. E. Byerly, Professor of
Mathematics in Harvard University. 8vo. xvi + 383 pages. Mailing
price, $2.15 ; for introduction, $2.00 ; allowance for old book, 40 cents.

rpHIS work contains, in addition to the subjects usually treated

in a text-book on the Integral Calculus, an introduction to

Elliptic Integrals and Elliptic Functions ; the Elements of the

Theory of Functions ; a Key to the Solution of Differential Equa-

tions ; and a Table of Integrals.

The subject of Definite Integrals is much more fully treated

than in the earlier edition, and in addition to the new matter,

mentioned above, a chapter has been inserted on Line, Surface,

and Space Integrals. The Key has been enlarged and improved,

and the Table of Integrals, formerly published separately, has

been much enlarged, and is now bound with the Calculus.

John E. Clark, Prof, of Mathe-
matics., Sheffield Scientific School of
Yale University : The additions to

the present edition seem to me most
judicious and to greatly enhance its

value for the purposes of university

instruction, for which in several im-

portant respects it seems to me better

adapted than any other American
text-book on the subject.

W. C. Esty, Prof, of Mathematics,
Amherst College, Amherst, Mass.

:

Its value is greatly increased by the

additions. It is a fine introduction

to the topics on which it treats. It

may well take its place beside the

treatises of Todhunter and William-

son, as one of the best of hand-
books for students and teachers of

the higher mathematics.

"Wm. J. Vaughn, Prof, of Mathe-
matics, Vandertilt University : It is

pleasing to see the author avoiding,

and in some cases leaving out of

sight, the old ruts long since worn
smooth by our teaching fathers.

A Short Table of Integrals.

Revised and Enlarged Edition. To accompany Byerhfs Integral Cal-
culus. By B. O. Peirce, Professor of Mathematics, Harvard University.
32 pages. Mailing price, 15 cents. Bound also with the Calculus.

Byerly's Syllabi.

By W. E. Byerly, Professor of Mathematics in Harvard University.
Each, 8 or 12 pages, 10 cents. The series includes,— Plane Trigonometry,
Plane Analytical Geometry, Plane Analytic Geometry {Advanced
Course), Analytical Geometry of Three Dimensions, Modern Methods
in Analytic Geometry, the Theory of Equations.
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Directional Calculus.

By E. W. Hyde, Professor of Mathematics in the University of Cincin-
nati. 8vo. Cloth. y.ii + 247 pages, with blank leaves for notes. Price
by mail, $2.15; for introduction, !^2.00.

rPHIS v7ork follows, in the main, the methods of Grassmann's

Aiisdehnungslehre, but deals only with space of two and three

dimensions. The first two chapters which give the theory and

fundamental ideas and processes of his method, will enable students

to master the remaining chapters, containing applications to Plane

and Solid Geometry and Mechanics ; or to read Grassmann's original

works. A very elementary knowledge of Trigonometry, the Differ-

ential Calculus and Determinants, will be sufficient as a preparation

for reading this book.

Daniel Carhart, Prof, of Mathe-

matics, Western University of Penn-
sylvania: I am pleased to note the

success which has attended Professor

Hyde's efforts to bring into more
popular form a branch of mathemat-
ics which is at once so abbreviated in

form and so comprehensive in results.

Elements of the Differential and Integral Calculus.

With Examples and Applications. By J. M. Taylor, Professor of

Mathematics in Madison University. 8vo. Cloth. 249 pages. Mailing
price, $1.95; for introduction, $1.80; allowance for old book, 40 cents.

rpHE aim of this treatise is to present simply and concisely the

fundamental problems of the Calculus, their solution, and more

common applications.

Many theorems are proved both by the method of rates and that

of limits, and thus each is made to throw light upon the other.

The chapter on differentiation is followed by one on direct integra-

tion and its more important applications. Throughout the work

there are numerous practical problems in Geometry and Mechanics,

which serve to exhibit the power and use of the science, and to

excite and keep alive the interest of the student. In February, 1891,

Taylor's Calculus was found to be in use in about sixty colleges.

The Nation, New York : In the

first place, it is evidently a most

carefully written book We are

acquainted with no text-book of the

Calculus which compresses so much
matter into so few pages, and at the

same time leaves the impression that

all that is necessary has been said.

In the second place, the number of

carefully selected examples, both of

those worked out in full in illustra-

tion of the text, and of those left for

the student to work out for himself,

is extraordinary.
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Elementary Co-ordinate Geometry.

By W. B. Smith, Professor of Math., Missouri State University. 8vo.

Cloth. 312 pages. Mailing Price, $2.15; for introduction, $2.00.

VITHILE in the study of Analytic Geometry either gain ol

'* knowledge or culture of mind may be sought, the latter

object alone can justify placing it in a college curriculum. Yet the

subject may be so pursued as to be of no great educational value.

Mere calculation, or the solution of problems by algebraic processes,

is a very inferior discipline of reason. Even geometry is not the

best discipline. In all thinking, the real difficulty lies in forming

clear notions of things. In doing this all the higher faculties are

brought into play. It is this formation of concepts, therefore, that

is the essential part of mental training. And it is in line with this

idea that the present treatise has been composed. Professors of

mathematics speak of it as the most exhaustive work on the sub-

ject yet issued in America ; and in colleges where an easier text-

book is required for the regular course, this will be found of great

value for post-graduate study.

Wm. G. Peck, Prof, of Mathe-

matics and Astronomy, Columbia
College : I have read Dr. Smith's Co-

ordinate Geometry from begintiing

to end with unflagging interest. Its

well compacted pages contain an im-

mirably arranged. It is an excellent

book, and the author is entitled to

the thanks of every lover of mathe-
matical science for this valuable con-

tribution to its literature. I shall

recommend its adoption as a text-

mense amount of matter, most ad- i book in our graduate course.

Elements of the Theory of the Newtonian Poten-

tial Function.

By B. O. Peirce, Professor of Mathematics and Physics, in Harvard
University. 8vo. Cloth. 154 pages. Mailing price, $1.60; for intro-

duction, $1.50.

npmS book was written for the use of Electrical Engineers and

students of Mathematical Physics because there was in English

no mathematical treatment of the Theory of the Newtonian Poten-

tial Function in sufficiently simple form. It gives as briefly as is

consistent with clearness so much of that theory as is needed be-

fore the study of standard works on Physics can be taken up with

advantage. In the second edition a brief treatment of Electro-

kinematics and a large number of problems have been added.
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Analytic Geometry.
By A. S. Hardy, Ph.D., Professor of Mathematics in Dartmouth College,
and author of Elements of Quaternions. 8vo. Cloth, xiv + 239 pages.
Mailing Price, $1.60 j for "introduction, $1.50.

rpmS work is designed for the student, not for the teacher.

Particular attention has been given to those fundamental con-

ceptions and processes which, in the author's experience, have been

found to be sources of difficulty to the student in acquiring a grasp

of the subject as a method of research. The limits of the work are

fixed by the time usually devoted to Analytic Geometry in our

college courses by those who are not to make a special study in

mathematics. It is hoped that it will prove to be a text-booh which

the teacher will wish to use in his class-room, rather than a hook oj

reference to be placed on his study shelf.

Oren Boot, Professor of Mathemat-
ics, Hamilton College: It meets quite

fully my notion of a text for our

classes. I have hesitated somewhat
about introducing a generalized dis-

cussion of the conic in required work.

I have, however, read Mr. Hardy's
discussion carefully twice; and it

seems to me that a student who can
get the subject at all can get that.

It is my present purpose to use the

work next year.

John E. Clark, Professor of Mathe-
matics, Sheffield Scientific School of
Yale College : I need not hesitate to

say, after even a cursory examina-
tion, that it seems to me a very at-

tractive book, as I anticipated it

would be. It has evidently been pre-

pared with real insight alike into the
nature of the subject and the difficul-

ties of beginners, and a very thought-
ful regard to both; and I think its

aims and characteristic features will

meet with high approval. While
leading the student to the usual use-

ful results, the author happily takes

especial pains to acquaint him with

the character and spirit of analytical

methods, and, so far as practicable, to

help him acquire skill in using them.

John R. French, Dean of College

of Liberal Arts, Syracuse Univer-

sity : It is a very excellent work,

and well adapted to use in the reci-

tation room.

Elements of Quaternions.

By A. S. Hardy, Ph.D., Professor of Mathematics, Dartmouth College.

Second edition, revised. Crown 8vo. Cloth, viii + 234 pages. Mailing
Price, $2.15; Introduction, $2.00.

nPHE chief aim has been to meet the wants of beginners in the

class-room, and it is believed that this work will be found

superior in fitness for beginners in practical compass, in explana-

tions and applications, and in adaptation to the methods of instruc-

tion common in this country.
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Elements of the Calculus.

By A. S. Hardy, Professor of Mathematics in Dartmouth College. 8vo.
Cloth, xi + 239 pages. By mail, f 1.60; for introduction, $1.50.

rFHIS text-book is based upon the method of rates. The object

of the Differential Calculus is the measurement and comparison

of rates of change when the change is not uniform. Whether a

quantity is or is not changing uniformly, however, its rate at any-

instant is determined essentially in the same manner, viz. : by let-

ting it change at the rate it had at the instant in question and
observing what this change is. It is this change which the Cal-

culus enables us to determine, however complicated the law of

variation may be. From the author's experience in presenting the

Calculus to beginners, the method of rates gives the student a mcr
intelligent, that is, a less mechanical, grasp of the problems witl.i

its scope than any other. No comparison has been made between

this method and those of limits and of infinitesimals. This larger

view of the Calculus is for special or advanced students, for which

this work is not intended ; the space and time which would be

required by such general comparison being devoted to the applica-

tions of the method adopted.

Part I., Differential Calculus, occupies 166 pages. Part II., Inte-

gral Calculus, 73 pages.

George B. Merriman, Prof, of
Mathematics and Astronomy, Rut-
gers College: I am glad to observe

that Professor Hardy has adopted

the method of rates in his new Calcu-

lus, a logical and intelligent method,

which avoids certain difficulties in-

volved in the usual methods.

J. B. Colt, Prof, of Mathematics,
Boston University : It pleases me
very much. The treatment of the

first principles of Calculus by the

method of rates is eminently clear.

Its use next year is quite probable.

Ellen Hayes, Prof, of Mathemat-
ics, Wellesley College : I have found

it a pleasure to examine the book.
It must commend itself in many
respects to teachers of Calculus.

W. K. McDaniel, Prof, of Mathe-
matics, Westei'n Maryland College:

Hardy's Calculus and Analytic Ge-
ometry are certainly far better books

for the college class-room than any

others I know of. The feature of

both books is the directness with

which the author gets right at the

very fact that he intends to convey

to the student, and the force of his

presentation of the fact is greatly

augmented by the excellent arrange-

ment of type and other features of

the mechanical make-up.
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