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present volume contains fifty-eight papers (numbered 101, 102,..., 158)

originally published, all but two of them, in the years 1851 to 1860:

they are here reproduced nearly but not exactly in chronological order.

The two excepted papers are 142, Numerical Tables Supplementary to

Second Memoir on Quantics. now first published (1889); and, 143, Tables
of the Covariants M to W of the Binary Quintic : from the Second,
Third, Fourth, Fifth, Eighth, Ninth and Tenth Memoirs on Quantics

(arranged in the present form, 1889) * the determination of the finite

number, 23, of the covariants of the quintic was made by Gordan in the

year 1869, and the calculation of them having been completed in my
Ninth and Tenth Memoirs, it appeared to me convenient in the present

republication to unite together the values of all the covariants : viz. those
of A to L are given in the Second Memoir 141, and the remainder
M to W in the paper 143. I have added to the Third Memoir 144, in the

notation thereof, some formulae which on account of a difference of notation

were omitted from a former paper, 35.

I remark that the present volume comprises the first six of the ten

Memoirs on Quantics, viz. these are 139, 141, 144, 155, 156 and 158.

I have, in the Notes and References, inserted a discussion of some length
in reference to the paper 121, Note on a Question in the Theory of

Probabilities : and also some remarks in reference to the theory of Dis

tance developed in the Sixth Memoir on Quantics, 158.

c. n.
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101]

101.

NOTES ON LAGRANGE S THEOREM.

[From the Cambridge and Dublin Mathematical Journal, vol. vi. (1851), pp. 3745.]

I.

IF in the ordinary form of Lagrange s theorem we write
(as + a) for x, it becomes

x = hf(a + x),

]_
\ )

It follows that the equation

must reduce itself to an identity when the two sides are expanded in powers of x;

or writing for shortness F, f instead of Fa, fa, and & for ~
,
we must have

da

(where p extends from to r). Or what comes to the same,

where s extends from to (r
-

p). The terms on the two sides which involve W
are immediately seen to be equal; the coefficients of the remaining terms &F on the
second side must vanish, or we must have

o f 1

S\f , r - (SP-gfP)(&r-Pf-P\t =0 f
[p [p S]P~

S
\r p]

r~p ^ * *
I

*

c. ii.



2 NOTES ON LAGRANGE S THEOREM. [101

(s being less than r). Or in a somewhat more convenient form, writing p, q and k

for p s, rp and r s,

(6)

where * is constant and p and q vary subject to p + q
= k, k being a given constant

different from zero (in the case where k = 0, the series reduces itself to the single

term -
).

The direct proof of this theorem will be given presently.

II.

The following symbolical form of Lagrange s theorem was given by me in the

Mathematical Journal, vol. in. [1843], pp. 283-280, [8].

Suppose fx = &amp;lt;p(b
+ ktyx), or x = a 4- h$ (b + ktyx), then

-
d_

\da)

But
d\*$M

(In fact the two general terms

ra)}
m and I

-^7

d

of which the former reduces itself to e** *l
(&amp;lt;j&amp;gt;b)

m
,
are equal on account of the equiva

lence of the symbols

Hence
fc 27 .......................................... ^

and the coefficient of hmkn is
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A similar formula evidently applies to the case of any finite number of functions

&amp;lt;, -v^,
&c. : in the case of an infinite number we have

jty (C + lx (d +...)

or the coefficient of hmknlp ... is

the last of the series in, n, p ...... being always zero; e.g. in the coefficient of hmkn
,

account must be had of the factor ( -y-
J (tyc)

n or
(-v|rc)

w
. The above form is readily

proved independently by Taylor s theorem, without the assistance of Lagrange s. If in it

we write h k, &c., a = b = &c., and &amp;lt;

=
^r
= &c. =/, we have F(a + hf(a + hf(a +...) = Fx,

where x = a + hfx. Hence, comparing the coefficient of h* with that given by Lagrange s

theorem,

r
S*-1

(SF.f) = s lm r |r-=-
W . Bnfm .&f.., ...... (10)

I
s] ([m]

m
[n\

n

where m + n + &c. = s, and as before Fa, fa, -y- have been replaced by F, f, S. By

comparing the coefficients of BmF,

where n+p+... =t, the last of the series n, p ... always vanishing. The formula (10)

deduced, as above mentioned, from Taylor s theorem, and the subsequent formula (11)

with an independent demonstration of it, not I believe materially different from that

which will presently be given, are to be found in a memoir by M. Collins (volume n.

(1833) of the Memoirs of the Academy of St Petersburg), who appears to have made

very extensive researches in the theory of developments as connected with the combina

torial analysis.

III.

To demonstrate the formula (6), consider, in the first place, the expression

where p + q
= k. Since

1

12
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this is immediately transformed into

(*
p~

lfp+g
~ l

in which last expression p + q = (p
- 1

).
Of this, after separating the factor Bf, the

general term is

S - + (p + 1} (p

equivalent to

{* (p + a + 1) (p + a

in which last expression p + q=k-a-l. By repeating the reduction j times, the

general term becomes

where the sums a + /8 . . . contain j terms, j being less than j or equal to it, and S

extends to all combinations of the quantities a, ft... taken / and / together (so that

the summation contains 2-? terms). Also p + q
= k - a.

- $ . . . (j terms)
-

j,
and the

products k(k-a-l)(k-a-!3-2)... and [a]- []?, ... Sa+1/. #
+1/ .. contain each of

them j terms. Suppose the reduction continued until k a/3...(j terms) -j = 0, then

the only values of p, q are p = 0, 7
= 0; and the general term of

s_^_ frs? /&amp;gt;W [^l
9 l 7

becomes

x S {(-y-J (a + /3 . . . +/) [s + a -f /3 . . .
+/p&quot; [s + 6&amp;gt; + a + . . . +j

-
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If = 0, the general term reduces itself to

whence finally, if
&amp;lt;f&amp;gt;p

=
,
the general term of

becomes

and it is readily shown that the sum contained in this formula vanishes, which proves
the equation in question.

IV.

The demonstration of the equation (11) is much simpler. We have

that is,

where n extends from n = 1 to w = f. Similarly

g /t-n-p

&C.

Hence, substituting successively, and putting t np q
=

r, &c.,

Ssc.
;
and the last of these corresponding to a zero value of the last of the quantities

n, p, q.,. is evidently the required equation (11).

V.

The formula (18) in my paper on Lagrange s theorem (before referred to) is incorrect.

I propose at present, after giving the proper form of the formula in question, to

develope the result of the substitution indicated at the conclusion of the paper. It

will be convenient to call to mind the general theorem, that when any number

or THE

^UNIVERSITY
OAUFORM I*



6 NOTES ON LAGRANGE S THEOREM. [101

of variables x, y, z ... are connected with as many other variables u, v, w ... by
the same number of equations (so that the variables of each set may be considered

as functions of those of the other set) the quotient of the expressions dxdy ... and

dudv ... is equal to the quotient of two determinants formed with the functions which

equated to zero express the relations between the two sets of variables
; the former

with the differential coefficients of these functions with respect to u, v ...
,
the latter

with the differential coefficients with respect to x, y Consequently the notation

(i ITCi II

v -

j
- may be considered as representing the quotient of these determinants. This

being premised, if we write

x u hd (x, y ...) 0,

y v
k&amp;lt;f&amp;gt; (x, ?/...)

=
0,

then the formula in question is

F(x v
( J

if for shortness the letters 0, $,..., F denote what the corresponding functions become

when u, v, ... are substituted for x, y, Let -. denote the value which -^-^^
,A dudv . . .

considered as a function of oc, y ... , assumes when these variables are changed into

/(, v, ... ,
we have

V- l-h8u0, -hSv0...

kou (f),
1 k&v

&amp;lt;f)

. . .

By changing the function F, we obtain

F(x, y ...)
= 8u

h
^8

M
\..ehe+k i&amp;gt;- F V

;

where, however, it must be remembered that the h, k, . . .
,
in so far as they enter into

the function V, are not affected by the symbols h$h ,
kS

k&amp;gt;
... In order that we may

consider them to be so affected, it is necessary in the function V to replace h, k, &c.

h k
by

g-
,

g
,
&c. Also, after this is done, observing that the symbols hSu0, hS v ... affect

a function #+*&amp;gt;+- F, the symbols h$u0, hS 0,... may be replaced by V, V,--., where
the is not an index, but an affix denoting that the differentiation is only to be

performed with respect to u, v ... so far as these variables respectively enter into

the function 0. Transforming the other lines of the determinant in the same manner,
and taking out from Su

h&h Bv
kSk

. . . the factor SU BV ... in order to multiply this last

factor into the determinant, we obtain

F Q ;

where

D= S-SM &quot;, -S,A... I
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in which expression 8U ,
... are to be replaced by

su + su
t + sn*...B; + ss+s,*....

The complete expansion is easily arrived at by induction, and the form is somewhat

singular. In the case of a single variable u we have Q] = &,/, in the case of two

variables, Q = Su
r
Sv

v + 8U
V
8V +W. Or writing down only the affixes, in the case of

a single variable we have F
;

in the case of two variables FF, F0,
(f&amp;gt;F ;

and in the

case of three variables FFF,
&amp;lt;$&amp;gt;FF, %FF, F%F, F8F, FF0, FF&amp;lt;f&amp;gt;, F00, F8&amp;lt;j&amp;gt;,

FX0,
&amp;lt;f&amp;gt;F&amp;lt;j&amp;gt;,

xF&amp;lt;j&amp;gt;,
&amp;lt;j&amp;gt;F0, XX.F&amp;gt; ^X^ X&F &amp;gt;

where it will be observed that 6 never occurs in the

first place, nor
&amp;lt;/&amp;gt;

in the second place, nor 0,
&amp;lt;f&amp;gt;

(in any order) in the first and second

places, &c., nor 6, $, % (in any order) in the first, second, and third places. And the

same property holds in the general case for each letter and binary, ternary, &c.

combination, and for the entire system of letters, and the system of affixes contains

every possible combination of letters not excluded by the rule just given. Thus in the

case of two letters, forming the system of affixes FF, F0, QF, 6F,
F&amp;lt;f&amp;gt;, 8(f&amp;gt;, $0, the last

four are excluded, the first three of them by containing in the first place or
&amp;lt;

in the second place, the last by containing 4&amp;gt;,
in the first and second places: and

there remains only the terms FF, F0,
&amp;lt;f)F forming the system given above. Substituting

the expanded value of Q in the expression for F (x, y...), the equation may either be

permitted to remain in the form which it thus assumes, or we may, in order to

obtain the finally reduced form, after expanding the powers of h, k ...
, connect the

symbols 8u
e

,
8M

*
. . . 8U ,

&c. with the corresponding functions 0,
&amp;lt;/&amp;gt;

... F, and then omit the

affixes
; thus, in particular, in the case of a single variable the general term of Fx is

h*

(the ordinary form of Lagrange s theorem). In the case of two letters the general
term of F (x, y} is

F
\

(see the Mecanique Celeste, [Ed. 1, 1798] t. I. p. 176). In the case of three variables,

the general term is

the sixteen terms within the
[ } being found by comparing the product BH8 V8W with

the system FFF, d&amp;gt;FF, &c., given above, and then connecting each symbol of differen

tiation with the function corresponding to the affix. Thus in the first term the

SM, &v, $w, each affect the F, in the second term the Su affects $1, and the 8 V and 8W
each affect the F, and so on for the remaining terms. The form is of course deducible

from Laplace s general theorem, and the actual development of it is given in Laplace s

Memoir in the Hist, de I Acad. 1777. I quote from a memoir by Jacobi which I take

this opportunity of referring to,
&quot; De resolutione equationum per series infinitas,&quot;

Crelle, t. vi. [1830], pp. 257 286, founded on a preceding memoir,
&quot;

Exercitatio algebraica
circa discerptioriem singularem fractionum quie plures variabiles involvunt,&quot; t. v. [1830],

pp. 344364.

Stone Buildings, April Q, 1850.



[102

102.

ON A DOUBLE INFINITE SERIES.

[From the Cambridge and Dublin Mathematical Journal, vol. vi. (1851), pp. 45 47.]

THE following completely paradoxical investigation of the properties of the function

r (which I have been in possession of for some years) may perhaps be found interesting
from its connexion with the theories of expansion and divergent series.

Let
2,.&amp;lt;/&amp;gt;r

denote the sum of the values of $r for all integer values of r from
- ac to x . Then writing

u = ^r [n-\]
r xn

-l-r
,
................................... (1)

(where n is any number whatever), we have immediately

^ = 2, [n
-

l]
r+l xn- ^ = 2r [n

-
l]

r xn -&amp;gt;~&amp;gt;- = u :

that is, -.- = u, or u- Cne*,
c

(the constant of integration being of course in general a function of n). Hence

Cnex = 2r [n-l]
r xn-l-r

: .............................. (2)

or ex is expanded in general in a doubly infinite necessarily divergent series of fractional

powers of x, (which resolves itself however in the case of n a positive or negative

integer, into the ordinary singly infinite series, the value of Cn in this case being

immediately seen to be Tn).

The equation (2) in its general form is to be considered as a definition of the

function Cn . We deduce from it

ax
[n
-

l]
r
(ax)

n~^-r = Cnea

[n
- iy (ax }

n-i-r = Cn &amp;gt;e

ax
;
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and also

2* [n + ri . . .
-

1]* {a (x + x f

. ..)}+...-!-* = cn+n .

Multiplying the first set of series, and comparing with this last,

Gn+n ...2, .,... [n
-

I] |X- If ... a^- V&quot;
- -

...

..f+
w --i-*

)
............ (3)

(where r, r denote any positive or negative integer numbers satisfying r + r +... = k + 1 p,

p being the number of terms in the series n, n
, ...). This equation constitutes a

multinomial theorem of a class analogous to that of the exponential theorem contained

in the equation (2).

In particular

Cn+n &amp;gt;

...
2ry ... [n

-
I] [n

-
l]

r ...= CnCn &amp;gt; ... [n+ n ... - i]*jo+
...-i-*

......... (4)

and if p = 2, writing also m, n for n, ri, and k 1 r for r
,

Cm+n?r [m - 1] [
-

I]*-
1- = Cm &amp;lt;7n [m + n - 1]* 2&quot;+&quot;-^, .................. (5)

or putting k = and dividing,

Now the series on the second side of this equation is easily seen to be convergent
(at least for positive values of m, n). To determine its value write

then

ft

F (m, n) = a-1

(1
-

x}
n~l dx

;

J

ri ri
F (m, n} = xm~ l

(1
-

x)
n~l dx + xn~l

(1
-

x)
m~ l dx

;

Jo Jo

and by successive integrations by parts, the first of these integrals is reducible to

nm+n-i ^ \-
m ~ ^Y \.

n ~
l]&quot;

1

&quot;^
r extending from 1 to x inclusively, and the second to

zr ^r [wi l]
r
[n I]&quot;

1 &quot;7
&quot;,

r extending from to oo
;
hence

CmCn -^ CVn = F (wi, n), ................................. (7)

c. ii. 2
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which proves the identity of Cm with the function T (m). {Substituting in two of the

preceding equations, we have

FnlV. .. + r(n + n ...)=
[n+n.__ \]kpn+n

,..^k 2r .,... [n
-

I] IX
-

1] &quot;. . .
, ...(*)

(where, as before, p denotes the number of terms in the series n, n ,... and r+r +...=k+l p),

the first side of which equation is, it is well known, reducible to a multiple definite

integral by means of a theorem of M. Dirichlet s. And

where r extends from x to + oc
,
and k is arbitrary. By giving large negative

values to this quantity, very convergent series may be obtained for the calculation of

F(m, n)}.
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103.

ON CERTAIN DEFINITE INTEGRALS.

[From the Cambridge and Dublin Mathematical Journal, vol. vi. (1851), pp. 136 140.]

SUPPOSE that for any positive or negative integral value of r, we have -^(x + ra)
Ur tyx, Ur being in general a function of x, and consider the definite integral

-/.

Wx being any other function of x. In case of either of the functions tyx, ^x becoming
infinite for any real value a of x, the principal value of the integral is to be taken,
that is, / is to be considered as the limit of

and similarly, when one of the functions becomes infinite for several of such values
of x.

We have
(r+l) a/ r (r

= ...

V J ra

or changing the variables in the different integrals so as to make the limits of each

a, 0, we have

ra

1= [2 -&amp;gt;/r (x + ra) W(x + ra)] dx,
J o

S extending to all positive or negative integer values of r, that is,

/= ^x[2Ury(x + ra)]dx, .... .......... (A)

22
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which is true, even when the quantity under the integral sign becomes infinite for

particular values of x, provided the integral be replaced by its principal value, that is,

provided it be considered as the limit of

+ f

a

}^ UrV (oo + ra)] dx,
a+ e Jo 1

I tyx[
J t

or

where a, or one of the limiting values a, 0, is the value of x, for which the quantity

under the integral sign becomes infinite, and e is ultimately evanescent.

In particular, taking for simplicity a = TT, suppose

^r (x + TT)
= +

-fyx,
or ty (x + rir)

= ()r
tyx ;

then observing the equation

^ (+)rl
2, = cot x, or = cosec x,
X + T7T

according as the upper or under sign is taken, and assuming Wx = x~^, we have finally

r -^dx (-y-i f [fdY~
l

1 ,- = ^ tyx \\-j-} cot x dx,
. or

I&amp;gt; Jo
r

\_\dxj J

[ *^xdx (-)--
1

/&quot;

. \f- =
-pr Yx

J - a*
4

1
//, J o

T
[_V

, I cosec x dx.
,dxj

the former equation corresponding to the case of
-fr (x + TT)

=
-fyx, the latter to that of

ty (x + TT)
=

tyx.

Suppose ^r/
x = tygx, g being a positive integer. Then

xdx
n--l

also if
i/r (a; + TT)

=
v/r.r,

then ^ (a? + TT)
=

fyi
x

;
but if

i/r (.-
+ TT)

= -
I|TJ-,

then &amp;lt;

^ /

=
&quot;^/^

the upper or under sign according as g is even or odd. Combining these

equations, we have

v|r (x + TT)
=

-v/r#, &amp;lt;jr

even or odd,

a; + TT)
=

-&amp;lt;/rir, ^r even,

^gxdx (-y~
l

.

_,

v|r (a; + TT)
=

o|r^, ^f odd,
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In particular
sinxdxf sinxdx- = 7T,

J -oc X

. sin a; (-/-
1

f . [/ d Y&quot;

1

1 ,

dx - - - = i-sf sin a; -r- 1 cosec a? 0,^
I&amp;gt;

J o \\fl*r J

p . rv d \
M~J

i 7 [
n

[ ( & \*~* 1 j
rin0 (T-)

cot* ds .g

1 &quot;1
/ sma;

K-J cosec^lcto, g even,

r^ r/rf\ A~i

1 , r r/^v~ J 1j
sin qx -r cosec d - or

&quot;- 1 sin # U- cosec x dx, g odd,
J o L\a*J J J o LV^/ J

I sin gx cot # c?a; = TT, g even,
J

C&quot;

sin ^a; cosec xdx ir, g odd,
J

[&quot;taxixdx . p= 0, &c.,
J o #

the number of which might be indefinitely extended.

The same principle applies to multiple integrals of any order: thus for double

integrals, if ^(x + ra, y + rb)
= Ur sty (x, y), then

f
[ ^(x, y}^(x, y)dxdy=f

a

1 ty(x, y)^Ur^(x + ra, y + sb). ... (B)
. -ooJ-oo J J

In particular, writing w,v for a, b, and assuming ^(x + rw, y + sv)
= ()r ()s ^ (x, y);

also ~^(x, y)
= (x + iy)~i

j

-,
where as usual i= \J \,

where

2 extending to all positive or negative integer values of r and s. Employing the

notation of a paper in the Cambridge Mathematical Journal, &quot;On the Inverse Elliptic

Functions,&quot; t. iv. [1845], pp. 257277, [24], we have for the different combinations

of the ambiguous sign,

. ,

9 (x + iy}
=

y(x + iy) &amp;lt;/&amp;gt;
(x~+iy)

. (x 4- iy) F(x + iy)=-=-
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_. , . x y (as
4. +, + x + i

1 v

7 &amp;lt;
+ *y

where
&amp;lt;, /, ^ are in fact the symbols of the inverse elliptic functions (Abel s notation)

corresponding very nearly to sin am, cos am, A am. It is remarkable that the last

value of % cannot be thus expressed, but only by means of the more complicated
transcendant

&amp;lt;yx, corresponding to the H (x) of M. Jacobi. The four cases correspond

obviously to

1. ty (x + rw, y -f sv)
= () +*

ty (x, y),

2.
i/r (x + rw, y + sv)

= ()r
ty (x, y},

3. ty(x + rw, y + sv)
=

( )* \fr (x, y),

4. ty (x + rw, y + sv)
=

-v/r (x, y).

The above formulae may be all of them modified, as in the case of single integrals,

by means of the obvious equation

[[_(x,j,)dxdy
JJ (x +iY

The most important particular case is

for in almost all the others, for example in

f f 4&amp;gt;(*+iy}dxdy (-)*-
1 FT., ^..[(dY-

1 1 1,
/

,

. w - = & (x + iy) N- -T7
--

x̂ dxdy,
J _*, J -*&amp;gt; (x + iyY I&amp;gt; Jo Jo \_\dxj &amp;lt;j&amp;gt;(x

+ iy)\

the second integration cannot be effected.

Suppose next ^r (x, y} is one of the functions 7 (x + iy), g (x + iy), G(x + iy),

CS (x + iy), so that

v/r (x + rw, y + sv)
= ()r(y U

riS -ty (x, y),

where

Ur
^
s
= (~)

rS &*-KCi) y-W ^-1^

(see memoir quoted). Then, retaining the same value as before of V (x, y), we have
still the formula (B), in which

x + i + rw + svi

But this summation has not yet been effected; the difficulty consists in the variable

factor e^ (m~m) in the numerator, nothing being known I believe of the decomposition
of functions into series of this form.
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On the subject of the preceding- paper may be consulted the following memoirs by
Raabe,

&quot; Ueber die Summation periodischer Reihen,&quot; Grelle, t. xv. [1836], pp. 355_364-,

and Ueber die Summation harmonisch periodischer Reihen,&quot; t. xxiu. [1842], pp. 105__

125, and t. xxv. [1843], pp. 160168. The integrals he considers, are taken between
the limits 0, oo (instead of oo

,
oo

).
His results are consequently more general than

those given above, but they might be obtained by an analogous method, instead of

the much more complicated one adopted by him : thus if &amp;lt; (x + 2-rr)
=

&amp;lt;bx,
the integral

r
30

f?

I d)x - - reduces itself to
f T

+2nr 2r7r

f
2ff

provided I dx$x=Q. The summation in this formula may be effected by means of

the function F and its differential coefficient, and we have

dx

x

which is in effect Raabe s formula (10), Crelle, t. xxv. p. 166. .

By dividing the integral on the right-hand side of the equation into two others
whose limits are 0, TT, and TT, 2?r respectively, and writing in the second of these 2?r - x
instead of x, then

{ T (
x

\ Wi x
** 1 f UJ. J(l

-2*
&amp;lt;/&amp;gt;* 7TT+*( 2*--*)^ ^7T j n ^^ ; ^ i /

^
\^v&amp;lt; / V 2?T

_, ^;

or reducing by

r ^
*

^ r&amp;gt;(^ -
27T

7T COt

we have

^
r

i

1 ~
2W

rfiZ ,

which corresponds to Raabe s formula (10 ).
If

(f&amp;gt;(-x)
=

-&amp;lt;f&amp;gt;x,so
that $x +

&amp;lt;/&amp;gt;
(2ir

-
x) = 0,

the last formula is simplified ;
but then the integral on the first side may be replaced

/ 00 _J

by i I
tj)x ,

so that this belongs to the preceding class of formulae.
J OO w
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104.

ON THE THEORY OF PERMUTANTS.

[From tKe Cambridge and Dublin Mathematical Journal, vol. vil. (1852), pp. 40 51.]

A FORM may by considered as composed of blanks which are to be filled up by

inserting in them specializing characters, and a form the blanks of which are so filled

up becomes a symbol. We may for brevity speak of the blanks of a symbol in the

sense of the blanks of the form from which such symbol is derived. Suppose the

characters are 1, 2, 3, 4, ..., the symbol may always be represented in the first

instance and without reference to the nature of the form, by V12M . . . And it will be

proper to consider the blanks as having an invariable order to which reference will

implicitly be made; thus, in speaking of the characters 2, 1, 3, 4,... instead of as

before 1, 2, 4,... the symbol will be F2134 ... instead of F^... . When the form is

given we shall have an equation such as

V^ = P^_Q,R.,. or = P12 P34 ... &c.,

according to the particular nature of the form.

Consider now the characters 1, 2, 3, 4,..., and let the primitive arrangement and

every arrangement derivable from it by means of an even number of inversions or

interchanges of two characters be considered as positive, and the arrangements derived

from the primitive arrangement by an odd number of inversions or interchanges of

two characters be considered as negative ;
a rule which may be termed &quot; the rule of

signs.&quot;
The aggregate of the symbols which correspond to every possible arrangement

of the characters, giving to each symbol the sign of the arrangement, may be termed

a &quot; Permutaiit
;

&quot;

or, in distinction from the more general functions which will presently
be considered, a simple permutant, and may be represented by enclosing the symbol
in brackets, thus (F1234 ...). And by using an expression still more elliptical than the

blanks of a symbol, we may speak of the blanks of a permutant, or the characters

of a permutant.
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As an instance of a simple permutant, we may take

(Y \V 4-F -4-V -V -V -V
\ 123J 123 &amp;gt; 231 I 312 132 213 321

&amp;gt;

and if in particular Vw = aJb.2Cz, then

(F123)
= aAc3 + a^c-i + aAc2 a-,b3c2 aj)^ a3&2Ci.

It follows at once that a simple permutant remains unaltered, to the sign prbs according

to the rule of signs, by any permutations of the characters entering into the per

mutant. For instance,

(Vm)
=

(F) =
(Fm)

- -
( F132)

= -
(F213)

= -
(F321 ).

Consequently also when two or more of the characters are identical, the permutant

vanishes, thus

F1U = 0.

The form of the symbol may be such that the symbol remains unaltered, to the sign

pres according to the rule of signs, for any permutations of the characters in certain

particular blanks. Such a system of blanks may be termed a quote. Thus, if the first

and second blanks are a quote,

123
=

213) 132
=

312) 231
==

321)

and consequently

(F123)
= 2(F123+F231 + F312);

and if the blanks constitute one single quote,

where N=1.2.3 ... n, n being the number of characters. An important case, which

will be noticed in the sequel, is that in which the whole series of blanks divide

themselves into quotes, each of them containing the same number of blanks. Thus,

if the first and second blanks, and the third and fourth blanks, form quotes respectively,

6&quot;
( 1234/

~
1234 ~T 1342 ~T 1423 &quot;T 3412 ~f~ 4213 ~J~ 22314-

It is easy now to pass to the general definition of a &quot;

Permutant.&quot; We have only
to consider the blanks as forming, not as heretofore a single set, but any number of

distinct sets, and to consider the characters in each set of blanks as permutablc
inter se and not otherwise, giving to the symbol the sign compounded of the signs

corresponding to the arrangements of the characters in the different sets of blanks.

Thus, if the first and second blanks form a set, and the third and fourth blanks form

a set,

((F1234))
- F1234

- F2134
- F1M + F22U3 .

The word set will be used throughout in the above technical sense. The particular
mode in which the blanks are divided into sets may be indicated either in words or

by some superadded notation. It is clear that the theory of permutants depends

ultimately on that of simple permutants ;
for if in a compound permutant we first

write down all the terms which can be obtained, leaving unperrnuted the characters
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of a particular set, and replace each of the terms so obtained by a simple permutant

having for its characters the characters of the previously unpermuted set, the result

is obviously the original compound permutant. Thus, in the above-mentioned case,

where the first and second blanks form a set and the third and fourth blanks form

a set,

or

in the former of which equations the first and second blanks in each of the permutants

on the second side form a set, and in the latter the third and fourth blanks in each

of the permutants on the second side form a set, the remaining blanks being simply

supernumerary and the characters in them unpermutable. It should be noted that

the term quote, as previously defined, is only applicable to a system of blanks belonging

to the same set, and it does not appear that anything would be gained by removing

this restriction.

The following rule for the expansion of a simple permutant (and which may be

at once extended to compound permutants) is obvious. Write down all the distinct

terms that can be obtained, on the supposition that the blanks group themselves in

any manner into quotes, and replace each of the terms so obtained by a compound

permutant having for a distinct set the blanks of each as&umed quote; the result is

the original simple permutant. Thus in the simple permutant (F^), supposing for

the moment that the first and second blanks form a quote, and that the third and

fourth blanks form a quote, this leads to the equation

(F1234)
= + F,,;!4)) + (( F1342)) + ((F1423)) + (( F^)) + ((F4213))

where in each of the permutants on the second side the first and second blanks form

a set, and also the third and fourth blanks.

The blanks of a simple or compound permutant may of course, without either

gain or loss of generality, be considered as having any particular arrangement in space,

for instance, in the form of a rectangle : thus F
12

is neither more nor less general than

F]234 . The idea of some such arrangement naturally presents itself as affording a means

of showing in what manner the blanks are grouped into sets. But, considering the

blanks as so arranged in a rectangular form, or in lines and columns, suppose in the

first instance that this arrangement is independent of the grouping of the blanks into

sets, or that the blanks of each set or of any of them are distributed at random in

the different lines and columns. Assume that the form is such that a symbol

a/3y...
a /3y...

is a function of symbols F
oj3y ..., F^y..., &c. Or, passing over this general case, and

the case (of intermediate generality) of the function being a symmetrical function,

assume that
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is the product of symbols F
a/3y ., F^y..., &c. Upon this assumption it becomes

important to distinguish the different ways in which the blanks of a set are distributed

in the different lines and columns. The cases to be considered are : (A). The blanks

of a single set or of single sets are situated in more than one column. (5). The

blanks of each single set are situated in the same column. (C). The blanks of each

single set form a separate column. The case (B) (which includes the case (C)) and the

case (C) merit particular consideration. In fact the case (5) is that of the functions

which I have, in my memoir on Linear Transformations in the Journal, [13-, 14]

called hyperdeterminants, and the case (C) is that of the particular class of hyper-

determinants previously treated of by me in the Cambridge Philosophical Transactions,

[12] and also particularly noticed in the memoir on Linear Transformations. The

functions of the case (B) I now propose to call
&quot;

Intermutants,&quot; and those in the case

(C)
&quot;

Commutants.&quot; Commutants include as a particular case
&quot;

Determinants,&quot; which

term will be used in its ordinary signification. The case (A) I shall not at present

discuss in its generality, but only with the further assumption that the blanks form a

single set (this, if nothing further were added, would render the arrangement of the

blanks into lines and columns valueless), and moreover that the blanks of each line

form a quote : the permutants of this class (from their connexion with the researches

of Pfaff on differential equations) I shall term &quot;

Pfaffians.&quot; And first of commutants,

which, as before remarked, include determinants.

The general expression of a commutant is

( F, ,
) ;

or ^ 1 1 . .

22 22
.

nn [
nn

)

and (stating again for this particular case the general rule for the formation of a

permutant) if, permuting the characters in the same column in every possible way,

considering these permutations as positive or negative according to the rule of signs,

one system be represented by

rn sn

the commutant is the sum of all the different terms

&quot; rs r

The different permutations may be formed as follows: first permute the characters in

all the columns except a single column, and in each of the arrangements so obtained

permute entire lines of characters. It is obvious that, considering any one of the

arrangements obtained by permutations of the characters in all the columns but one,

the permutations of entire lines and the addition of the proper sign will only reproduce

32
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the same symbol in the case of an even number of columns constantly with the

positive sign, but in the case of an odd number of columns with the positive or

negative sign, according to the rule of signs. For the inversion or interchange of two

entire lines is equivalent to as many inversions or interchanges of two characters as

there are characters in a line, that is, as there are columns, and consequently intro

duces a sign compounded of as many negative signs as there are columns. Hence

THEOREM. A commutant of an even number of columns may be calculated by

considering the characters of any one column (no matter which) as supernumerary

unpermutable characters, and multiplying the result by the number of permutations of

as many things as there are lines in the commutant.

The mark
-f-

added to a commutant of an even number of columns will be employed
to show that the numerical multiplier is to be omitted. The same mark placed over

any one of the columns of the commutant will show that the characters of that

particular column are considered as non-permutable.

A determinant is consequently represented indifferently by the notations

f\l

22 22

t

11

22

k
nn j v,

nn ) ^ nn

and a commutant of an odd number of columns vanishes identically.

By considering, however, a commutant of an odd number of columns, having the

characters of some one column non-permutable, we obtain what will in the sequel be

.spoken of as commutants of an odd number of columns. This non-permutability will be

denoted, as before, by means of the mark
-f- placed over the column in question, and

it is to be noticed that it is not, as in the case of a commutant of an even number
of columns, indifferent over which of the columns the mark in question is placed ;

and

consequently there would be no meaning in simply adding the mark
-f-

to a com
mutant of an odd number of columns.

A commutant is said to be symmetrical when the symbols Vapy...
are such as to

remain unaltered by any permutations inter se of the characters a, ft, 7 . . . A com

mutant is said to be skew when each symbol V^y
is such as to be altered in sign

only according to the rule of signs for any permutations inter se of the characters

a, /3, 7 . . .
,

this of course implies that the symbol F^y... vanishes when any two of

the characters a, ft, 7... are identical. The commutant is said to be demi-skew when

Va,ft,y...
is altered in sign only, according to the rule of signs for any permutation

inter se of non-identical characters or, /3, 7, ...

An intermutant is represented by a notation similar to that of a commutant. The
sets are to be distinguished, whenever it is possible to do so, by placing in contiguity
the symbols of the same set, and separating them by a stroke or bar from the symbols
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of the adjacent sets. If, however, the symbols of the same set cannot be placed con

tiguously, we may distinguish the symbols of a set by annexing to them some auxiliary

character by way of suffix or otherwise, these auxiliary symbols being omitted in the

final result. Thus
(I

2 2 26

3 3 5a

would show that 1, 2 of the first column and the 3, 4 of the same column, the 1, 2

and the upper 3 of the second column, and the lower 3 of the same column, the 1, 5

of the third column, and the 2, 6 of the same column, form so many distinct sets,

the intennutant containing therefore

(2.2.6.1.2.2=) 96 terms.

A commutant of an even number of columns may be considered as an intermutant

such that the characters of some one (no matter which) of its columns form each of

them by itself a distinct set, and in like manner a commutant of an odd number of

columns may be considered as an intermutant such that the characters of some one

determinate column form each of them by itself a distinct set

The distinction of symmetrical, skew and demi-skew applies obviously as well to

intermutants as to commutants. The theory of skew intermutants and skew commutants

has a connexion with that of Pfaffians.

Suppose V^...
=

Va+p+y... (which implies the symmetry of the intermutant or com

mutant) and write for shortness V = a, V^b, V, = c, &c. Then

&quot;0 0&quot;

.1 1

1111

1

= 2 (ac
-

&c.

The functions on the second side are evidently hyperdeterminants such as are

discussed in my memoir on Linear Transformations, and there is no difficulty in

forming directly from the intermutant or commutant on the first side of the equation

the symbol of derivation (in the sense of the memoir on Linear Transformations) from

which the hyperdeterminant is obtained. Thus

is 12
2

. UU,

is 12U U- 1

, r
Ll

is 12
4

. UU,

is 12 U U \
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each permutable column corresponding to a 12
(

J

) and a non-permutable column

1 1

changing UU into U-U 1
. Similarly

( ^ becomes (12 . 13 . 23)
&quot;

. UUU,
1 1

2 2

0^ becomes 12. 13.23 U-U&amp;gt;
1 U Z

,

1 1

,2 2,

r
^ becomes (12 . 13 . 14 . 23 . 24 .

34)&quot; UUUU, &c.

1 1

2 2

3 3

The analogy would be closer if in the memoir on Linear Transformations, just as

12 is used to signify ,
123 had been used to signify &o., for

then ^0 0^ would have corresponded to 123 .UUU,

1 1

2 2;

1 1

2 2;

to 123 U L
T 1 U- 2

;
and this

would not only have been an addition of some importance to the theory, but would

in some instances have facilitated the calculation of hyperdeterminants. The preceding

remarks show that the intermutant

^000
111
000

(where the first and fourth blanks in the last column are to be considered as belonging

to the same set) is in the hyperdeterminant notation (12 . 34)
2

. (14 . 23) UUUU.

1 Viz. corresponds to 12 because and 1 are the characters occupying the first and second blanks of a column.

1

If and 1 had been the characters occupying the second and third blanks in a column, the symbol would have been

23 and so on. It will be remembered, that the symbolic numbers 1, 2 ...... in the hyperdeterminant notation are

merely introduced to distinguish from each other functions which are made identical after certain differentiations

are performed.
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It will, I think, illustrate the general theory to perform the development of the

last-mentioned intermutant. We have

0^
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and, observing that the 1, 2 form a permutable system as do also the 3, 4, the

second and third terms vanish, while the first and fourth terms are equivalent to

each other
;
we may therefore write

v2/

= fx

y_

as

y

where on the first side of the equation the bar has been introduced into the second

column, in order to show that throughout the equation the 1, 2 and the 3, 4 are

to be considered as forming distinct sets.

Consider in like manner the expression

X
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permuted so that x, y, z may go with 1, 2, 3 and with 4, 5, 6 and with 7, 8, 9.

The order of the x, y, z in the second triad may be considered as arbitrary; but

once assumed, it determines the place of one of the letters in the first triad
;

for

instance, x8 and ^9 determine yl. The first triad must therefore contain x\ and zQ

or x6 and z\. Suppose the former, then the third triad must contain ^3, but the

remaining two combinations may be either #4, y5, or xo,
y4&amp;gt;. Similarly, if the first

triad contained #6, z\, there would be two forms of the third triad, or a given
form of the second triad gives four different forms. There are therefore in all

24 forms, or
t

X I
}
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POSTSCRIPT.

I wish to explain as accurately as I am able, the extent of my obligations to Mr Sylvester in

respect of the subject of the present memoir. The term permutant is due to him intermutant and

commutant are merely terms framed between us in analogy with permutant, and the names date from

the present year (1851). The theory of commutants is given in my memoir in the Cambridge Philo

sophical Transactions, [12], and is presupposed in the memoir on Linear Transformations, [13, 14]. It

will appear by the last-mentioned memoir that it was by representing the coefficients of a biquadratic
function by a = 1111, b = 1112 = 1121 = &c., c=1122 = &c., d=1222 = &c., e = 2222, and forming the

commutant
fllll&quot;)

that I was led to the function ae-4bd+ 3c2 . The function ace+ 2bcd-ad2 -b-e-c*

( 2222 J

a, b, c is mentioned in the memoir on Linear Transformations, as brought into notice by
b, c, d

c, d, e

Mr Boole. From the particular mode in which the coefficients a, b,... were represented by symbols
such as 1111, &c., I did not perceive that the last-mentioned function could be expressed in the

commutant notation. The notion of a permutant, in its most general sense, is explained by rne in

my memoir,
&quot; Sur les determinants gauches,&quot; Crelle, t. xxxvu. pp. 93 96, [69] ;

see the paragraph

(p. 94) commencing On obtient ces fonctions, &c.&quot; and which should run as follows :

&quot; On obtient

ces fonctions (dont je reprends ici la theorie) par les proprietes generates d un determinant d6fini

comme suit. En exprimant &c.
;&quot;

the sentence as printed being
&quot;

defini. Car en exprimant &c.,&quot;

which confuses the sense. [The paragraph is printed correctly 69, p. 411.] Some time in the present

year (1851) Mr Sylvester, in conversation, made to me the very important remark, that as one of a

class the above-mentioned function,

ace + 2bcd - ad2 - We -
c\

could be expressed in the commutant notation f ^ ,
viz. bv considering 00 = a, 01 = 10 = 6

i *

V 2 2;
02= 11 =20= c, 12= 21 = rf, 22= e; and the subject being thereby recalled to my notice, I found

shortly afterwards the expression for the function

a?d* + 4ac? + 4b3d - 3b*c2 - 6abcd

(which cannot be expressed as a commutant) in the form of an intermutaut, and I was thence led

to see the identity, so to say, of the theory of hyperdeterminants, as given in the memoir on
Linear Transformations, with the present theory of intermutants. It is understood between Mr Sylvester
and myself, that the publication of the present memoir is not to affect Mr Sylvester s right to

claim the origination, and to be considered as the first publisher of such part as may belong to him
of the theory here sketched out.
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105.

CORRECTION OF THE POSTSCRIPT TO THE PAPER ON
PERMUTANTS.

[From the Cambridge and Dublin Mathematical Journal, vol. vn. (1852), pp. 9798.]

MR SYLVESTER has represented to me that the paragraph relating to his com
munications conveys an erroneous idea of the nature, purport, and extent of such

communications; I have, in fact, in the paragraph in question, singled out what imme

diately suggested to me the expression of the function Gabcd + 362
c
2 - 4ac3 - 463d - a*d-

as a partial commutant or intermutant, but I agree that a fuller reference ought to

have been made to Mr Sylvester s results, and that the paragraph in question would

more properly have stood as follows:

&quot;Under these circumstances Mr Sylvester communicated to me a series of formal statements,
not only oral but in writing, to the effect that he had discovered a permutation method of obtaining
as many invariants viz. commutantive invariants by direct inspection from a function of any degree
of any number of letters as the index of the degree contains even factors ; one of these commu
tantive invariants being in fact the function ace + 2bcd - ae2 - bdz - c3

, expressible, according to Mi-

Sylvester s notation, by Q2 ^ \
; and, according to the notation of my memoir in the Camb.

00

Phil. Trans., supposing 00= a, 01 = 10 = 6, 02 = 11 = 20=
&amp;lt;?,

&c. by 11

22

Mr Sylvester and I shall, I have no doubt, be able to agree to a joint statement
of any further correction or explanation which may be required.

42
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106.

ON THE SINGULARITIES OF SURFACES.

[From the Cambridge and Dublin Mathematical Journal, vol. vn. (1852), pp. 166 171.]

IN the following paper, for symmetry of nomenclature and in order to avoid

ambiguities, I shall, with reference to plane curves and in various phrases and

compound words, use the term &quot; node
&quot;

as synonymous with double point, and the

term &quot;

spinode
&quot;

as synonymous with cusp. I shall, besides, have occasion to consider

the several singularities which I call the &quot;

flecnode,&quot; the &quot;

oscnode,&quot; the &quot;

fleflecnode,&quot;

and the
&quot; tacnode :

&quot;

the flecnode is a double point which is a point of inflexion on

one of the branches through it; the oscnode is a double point which is a point of

osculation on one of the branches through it
;
the fleflecnode is a double point which

is a point of inflexion on each of the branches through it
;
and the tacnode is a

double point where two branches touch. And it may be proper to remark here, that

a tacnode may be considered as a point resulting from the coincidence and amalga
mation of two double points (and therefore equivalent to twelve points of inflexion) ;

or, in a different point of view, [?] as a point uniting the characters of a spinode and

a flecnode. I wish to call to mind here the definition of conjugate tangent lines of

a surface, viz. that a tangent to the curve of contact of the surface with any
circumscribed developable and the corresponding generating line of the developable,
are conjugate tangents of the surface.

Suppose, now, that an absolutely arbitrary surface of any order be intersected

by a plane : the curve of intersection has not in general any singularities other than

such as occur in a perfectly arbitrary curve of the same order; but as a plane can

be made to satisfy one, two, or three conditions, the curve may be made to acquire

singularities which do not occur in such absolutely arbitrary curve.

Let a single condition only be imposed on the plane. We may suppose that

the curve of intersection has a node
;

the plane is then a tangent plane and the

node is the point of contact of course any point on the surface may be taken for
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the node. We may if we please use the term &quot;nodes of a surface,&quot; &quot;node-planes of

a surface,&quot; as synonymous with the points and tangent planes of a surface. And it

will be convenient also to use the word node-tangents to denote the tangents to the

curve of intersection at the node
;

it may be noticed here that the node-tangents
are conjugate tangents of the surface.

Next let two conditions be imposed upon the plane : there are three distinct

cases to be considered.

First, the curve of intersection may have a flecnode. The plane (which is of

course still a tangent plane at the flecnode) may be termed a flecnode-plane ;
the

flecnodes are singular points on the surface lying on a curve which may be termed

the &quot;

flecnode-curve 1
,&quot;

and the flecnode-planes give rise to a developable which may
be termed the flecnode-develope. The &quot;

flecnode-tangents
&quot;

are the tangents to the

curve of intersection at the flecnode
;

the tangent to the inflected branch may be

termed the
&quot;singular flecnode-tangent,&quot; and the tangent to the other branch the

&quot;

ordinary flecnode-tangent.&quot;

Secondly, the curve of intersection may have a spinode. The plane (which is of

course still a tangent plane at the spinode) may be termed a spinode-plane ;
the

spinodes are singular points on the surface lying on a curve which may be termed

the &quot;spinode-curve
2

.&quot; And the spinode-planes give rise to a developable which may
be termed the &quot;

spinode-develope.&quot; Also the &quot;

spinode-tangent
&quot;

is the tangent to the

curve of intersection at the spinode.

Thirdly, the curve of intersection may have two nodes, or what may be termed

a &quot;

node-couple.&quot; The plane (which is a tangent plane at each of the nodes and

therefore a double tangent plane) may be also termed a
&quot;node-couple-plane.&quot; The

node-couples are pairs of singular points on the surface lying in a curve which may
be termed the

&quot;node-couple-curve,&quot; and the node-couple-planes give rise to a deve

lopable which may be termed the &quot;

node-couple-develope.&quot; The tangents to the curve

of intersection at the two nodes of a node-couple might, if the term were required,

be termed the &quot;

node-couple-tangents.&quot; Also one of the nodes of a node-couple may
be termed a &quot;

node-with-node,&quot; and the tangents to the curve of intersection at such

point will be the &quot;

node-with-node-tangents.&quot;

1 The flecnode-curve, defined as the locus of the points through which can be drawn a line meeting the surface

in four consecutive points, was, so far as I am aware, first noticed in Mr Salmon s paper &quot;On the Triple

Tangent Planes of a Surface of the Third Order &quot;

(Journal, t. iv. [1849], pp. 252 260), where Mr Salmon,

among other things, shows that the order of the surface being n, the curve in question is the intersection of

the surface with a surface of the order lira - 24.

a The notion of a spinode, considered as the point where the indicatrix is a parabola (on which account

the spinode has been termed a parabolic point) may be found in Dupin s Deueloppements de Geometrie : the

most important step in the theory of these points is contained in Hesse s memoir &quot; Ueber die Wendepuncte
der Curven dritter Ordnung&quot; (Crelle, t. xxvm. [1848], pp. 97 107), where it is shown that the spinode-curve

is the curve of intersection of the surface supposed as before of the order n, with a certain surface of the

order 4(?i-2). See also Mr Salmon s memoir &quot;On the Condition that a Plane should touch a surface along
a Curve Line&quot; (Journal, t. in. [1848], pp. 44 4fi).
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It is hardly necessary to remark that the flecnode- curve is not the edge of

regression of the flecnode-develope, and the like remark applies m.m. to the spinode-

curve and the node-couple curve.

Finally, let three conditions be imposed upon the plane : there are six distinct

cases to be considered, in each of which we have no longer curves and developes,

but only singular points and singular tangent planes determinate in number.

First, the curve of intersection may have an oscnode. The plane (which continues

a tangent plane at the oscnode) is an &quot;

oscnode-plane.&quot; The &quot;

oscnode-tangents
&quot;

are

the tangents to the curve of intersection at the oscnode
;

the tangent to the

osculating branch is the &quot;

singular oscnode-tangent ;

&quot;

and the tangent to the other

branch the &quot;

ordinary oscnode-tangent.&quot;

Secondly, the curve of intersection may have a fleflecnode. The plane (which

continues a tangent plane at the fleflecnode) is a &quot;

fleflecnode-plane.&quot; The &quot;

fleflec-

node-tangents
&quot;

are the tangents to the curve of intersection at the fleflecnode.

Thirdly, the curve of intersection may have a tacnode. The plane (which
continues a tangent plane at the tacnode) is a &quot;

tacnode-plane.&quot; The &quot; tacnode-

tangent&quot;
is the tangent to the curve of intersection at the tacnode.

Fourthly, the curve of intersection may have a node and a flecnode, or what

may be termed a node-and-flecnode. The plane (which is a tangent plane at the

node and also at the flecnode, where it is obviously a flecnode-plane) is a &quot; node-and-

flecnode-plane.&quot; The &quot;

node-and-flecnode-tangents,&quot; if the term were required, would be

the tangents to the curve of intersection at the node and at the flecnode of the

node-and-flecnode. The node of the node-and-flecnode may be distinguished as the

node-with-flecnode, and the flecnode as the flecnode-with-node, and we have thus the

terms &quot;

node-with-flecnode-tangents,&quot;
&quot;

flecnode-with-node-tangents,&quot;
&quot;

singular flecnode-

with-node-tangent,&quot; and &quot;

ordinary flecnode-with-node-tangent.&quot;

Fifthly, the curve of intersection may have a node and also a spinode, or what

may be termed a &quot;

node-and-spinode.&quot; The plane (which is a tangent plane at the

node, and is also a tangent plane at the spinode, where it is obviously a spinode-plane)
is a &quot;

node-and-spinode-plane.&quot; The node-aud-spinode-tangents, if the term were

required, would be the tangents at the node and the tangent at the spinode of the

node-and-spinode to the curve of intersection. The node of the node-and-spinode

may be distinguished as the &quot;

node-with-spinode,&quot; and the spinode as the &quot;

spinode-

with-node,&quot; and we have thus the terms &quot;

node-with-spinode-tangent,&quot;
&quot;

spinode-with-node-

tangent.&quot;

Sixthly, the curve of intersection may have three nodes, or what may be termed

a &quot;

node-triplet.&quot; The plane (which is a triple tangent plane touching the surface at

each of the nodes) is a &quot;

node-triplet-plane.&quot; The &quot;

node-triplet-tangents,&quot; if the term

were required, would be the tangents to the curve of intersection at the nodes of

the node-triplet. Each node of the node-triplet may be distinguished as a &quot; node-



106] ON THE SINGULARITIES OF SURFACES. 31

with-node-couple,&quot; and the tangents to the curve of intersection at such nodes are
&quot;

node-with-node-couple-tangents.&quot; The terms &quot;

node-couple-with-node,&quot;
&quot;

node-couple-with-

node-tangent,&quot; might be made use of if necessary.

It should be remarked that the oscnodes lie on the flecnode-curve, as do also

the fleflecnodes; these latter points are real double points of the flecnode-curve. The
tacnodes are points of intersection and (what will appear in the sequel) points of

contact of the flecnode-curve, the spinode-curve, and the node-couple-curve. The spinode-
with-nodes are points of intersection of the spinode-curve and node-couple-curve, and
the flecnode-with-nodes are points of intersection of the flecnode-curve and node-couple-
curve

;
the node-with-node-couples are real double points (entering in triplets) of the

node-couple-curve.

Consider for a moment an arbitrary curve on the surface; the locus of the node-

tangents at the different points of this curve is in general a skew surface, which

may however, in cases to be presently considered, degenerate in different ways.

Keverting now to the flecnode-curve, it may be shown that the singular flecnode-

tangent coincides with the tangent of the flecnode-curve. For consider on a surface

two consecutive points such that the line joining them meets the surface in two

points consecutive to the first-mentioned two points. The line meets the surface in

four consecutive points, it is therefore a singular flecnode-tangent ;
each of the first-

mentioned two points must be on the flecnode-curve, or the singular flecnode-tangent
touches the flecnode-curve. The two flecnode-tangents are by a preceding observation

conjugate tangents. It follows that the skew surface, locus of the flecnode-tangents,
breaks up into two surfaces, each of which is a developable, viz. the locus of the

singular flecnode-tangents is the developable having the flecnode-curve for its edge of

regression, and the locus of the ordinary flecnode-tangents is the flecnode-develope.
Of course at the tacnode, the tacnode-tangent touches the flecnode-curve.

Passing next to the spinode-curve, the spinode-plane and the tangent-plane at a

consecutive point along the spinode-tangent are identical 1

,
or their line of intersection

is indeterminate. The spinode-tangent is therefore the conjugate tangent to any other

tangent line at the spinode, and therefore to the tangent to the spinode-curve. It-

follows that the surface locus of the spinode-tangents degenerates into a developable
surface twice repeated, viz. the spinode-develope. Consider the tacnode as two coin

cident nodes; each of these nodes, by virtue of its constituting, in conjunction with

the other, a tacnode, is on the spinode-curve ; or, in other words, the tacnode-tangent
touches the spinode-curve, and the same reasoning proves that it touches the node-

couple-curve. It has already been seen that the tacnode-tangent touches the flecnode-

curve
; consequently the tacnode is a point, not of simple intersection only, but of

contact, of the flecnode-curve, the spinode-curve, and the node-couple-curve.

In virtue of the principle of the spinode-plane being identical with the tangent

plane at a consecutive point along the spinode tangent, it appears that the tacnode-

1 It must not be inferred that the tangent plane at such consecutive JwriSlc is a&quot;,sjbttte4e-plane ; this is
, . , , ,, .x vvt-^^ L- l ^Aff^^.

obviously not the case. S or THE &amp;gt;

UNIVERSITY
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plane is a stationary plane, as well of the flecnode-develope as of the spinode-

develope, and it would at first sight appear that it must be also a stationary

tangent plane of the node-couple-develope. But this is not so
;

the node-with-node-

planes envelope, not the node-couple-develope, but the node-couple-develope twice

repeated : the tacnode-plane is in a sense a stationary plane on such duplicate

developable, but not in any manner on the single developable. The tacnode-plane is

an ordinary tangent plane of the node-couple-develope.

Consider now a spinode-with-node, which we have seen is a point of intersection

of the spinode-curve and node-couple-curve. The tangent plane at a consecutive point

along the spinode-with-node-tangent, is identical with the spinode-with-node-plane ;
the

curve of intersection of the tangent plane at such consecutive point has therefore a

node at the node-with-spinode, or the tangent plane in question is a node-couple-

plane, and the point of contact is a point on the node-couple-curve. Consequently

the spinode-with-node-tangent touches the node-couple-curve, and thence also the

spinode-with-node-plane is a stationary tangent plane of the node-couple-develope.

It should be remarked that no circumscribed developable can have a stationary

tangent plane except the tangent planes at the points where the curve of contact

meets the spinode-curve, and any one of these planes is only a stationary plane

when the curve of contact touches the spinode-tangent ;
and that the node-couple-

curve and the flecnode-curve do not intersect the spinode-curve except in the points

which have been discussed.

Recapitulating, the node-couple-curve and the spinode-curve touch at the tacnodes,

and intersect at the spinode-with-nodes : moreover, the tacnode-planes are stationary

planes of the spinode-develope, and the spinode-with-node-planes are stationary planes

of the node-couple-develope. Besides this, the two curves are touched at the tacnodes

by the flecnode-curve, and the tacnode-planes are stationary planes of the flecnode-

develope.
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107.

ON THE THEORY OF SKEW SURFACES.

[From the Cambridge and Dublin Mathematical Journal, vol. vu. (1852), pp. 171 173.]

A SURFACE of the ?i
th order is a surface which is met by an indeterminate line

in n points. It follows immediately that a surface of the wth order is met by an

indeterminate plane in a curve of the wth order.

Consider a skew surface or the surface generated by a singly infinite series of

lines, and let the surface be of the wth order. Any plane through a generating line

meets the surface in the line itself and in a curve of the (n l)
th

order. The

generating line meets this curve in (n 1) points. Of these points one, viz. that

adjacent to the intersection of the plane with the consecutive generating line, is a

unique point ;
the other (n 2) points form a system. Each of the (n 1) points

are sub modo points of contact of the plane with the surface, but the proper point
of contact is the unique point adjacent to the intersection of the plane with the

consecutive generating line. Thus every plane through a generating line is an ordinary

tangent plane, the point of contact being a point on the generating line. It is not

necessary for the present purpose, but I may stop for a moment to refer to the

known theorems that the anharmonic ratio of any four tangent planes through the

same generating line is equal to the anharmonic ratio of their points of contact, and

that the locus of the normals to the surface along a generating line is a hyperbolic

paraboloid. Returning to the (n 2) points in which, together with the point of

contact, a generating line meets the curve of intersection of the surface and a plane

through the generating line, these are fixed points independent of the particular plane,

and are the points in which the generating line is intersected by other generating
lines. There is therefore on the surface a double curve intersected in (n 2) points

by each generating line of the surface a property which, though insufficient to

determine the order of this double curve, shows that the order cannot be less than

(n 2). (Thus for n = 4, the above reasoning shows that the double-curve must be

C. II. 5
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at least of the second order: assuming for a moment that it is in any case precisely

of this order, it obviously cannot be a plane curve, and must therefore be two non-

intersecting lines. This suggests at any rate the existence of a class of skew surfaces

of the fourth order generated by a line which always passes through two fixed lines

and by some other condition not yet ascertained ;
and it would appear that surfaces

of the second order constitute a degenerate species belonging to the class in question.)

In particular cases a generating line will be intersected by the consecutive

generating line. Such a generating line touches the double curve.

Consider now a point not on the surface
;

the planes determined by this point

and the generating lines of the surface are the tangent planes through the point;

the intersections of consecutive tangent planes are the tangent lines through the

point; and the cone generated by these tangent lines or enveloped by the tangent

planes is the tangent cone corresponding to the point. This cone is of the nlh
class.

For considering a line through the point, this line meets the surface in n points,

i. e. it meets n generating lines of the surface
;
and the planes through the line and

these n generating lines, are of course tangent planes to the cone : that is, n tangent

planes can be drawn to the cone through a given line passing through the vertex.

The cone has not in general any lines of inflexion, or, what is the same thing,

stationary tangent planes. For a stationary tangent plane would imply the inter

section of two consecutive generating lines of the surface. And since the number of

generating lines intersected by a consecutive generating line, and therefore the number

of planes through two consecutive generating lines, is finite, no such plane passes

through an indeterminate point. The tangent cone will have in general a certain

number of double tangent planes ;
let this number be x. We have therefore a cone

of the class n, number of double tangent planes x, number of stationary tangent

planes 0. Hence, if m be the order of the cone, a the number of its double lines,

and ft the number of its cuspidal or stationary lines,

m = n (n 1) 2#,

/3
= 3n (n

-
2)
-

6a?,

a = %n (n
-

2) (n
2 -

9)
- 2x (n

2 - n - 6) + 2a? (x
-

1).

This is the proper tangent cone, but the cone through the double curve is sub modo

a tangent cone, and enters as a square factor into the equation of the general

tangent cone of the order n (n 1). Hence, if X be the order of the double curve,

and therefore of the cone through this curve,

in + 2X = n (n 1), and therefore X = x\

that is, the number of double tangent planes to the tangent cone is equal to the

order of the double curve. It does not appear that there is anything to determine

x
;

and if this is so, skew surfaces of the nth order may be considered as forming

different families according to the order of the double curve upon them.

To complete the theory, it should be added that a plane intersects the surface

in a curve of the wth order having x double points but no cusps.



108] 35

108.

ON CERTAIN MULTIPLE INTEGRALS CONNECTED WITH THE
THEORY OF ATTRACTIONS.

[From the Cambridge and Dublin Mathematical Journal, vol. vii. (1852), pp. 174 178.]

IT is easy to deduce from Mr Boole s formula, given in my paper
&quot; On a Multiple

Integral connected with the theory of Attractions,&quot; Journal, t. ir. [1847], pp. 219_223,

[44], the equation

[
J[(Z-a)

dgdr,...

*

where n is the number of variables of the multiple integral, and the condition of the

integration is

j a

also where

ff i
*

_i_
* ,., T

and e is the positive root of

^
,

(8-W .#
TTT T ~

-. H .

Suppose f = g . . .
=

lt and write (a
-

aj- + ...=k-, we obtain

-
a)^T&quot; t,~2]i^

=
T (^n

-
?) T (g + 1) J . (l+s)in

52
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the limiting condition for the multiple integral being

(- aif+...^,

and the function a, and limit e, being given by

e denoting, as before, the positive root. Observing that the quantity under the integral

sign on the second side vanishes for s e, there is no difficulty in deducing, by a

differentiation with respect to 8lt the formula

ds

where dS is the element of the surface ( a^f -f . . .
= Q*, and the integration is

extended over the entire surface.

A slight change of form is convenient. We have

i-2 ,,2 1

(ft 2 C2 I /(J _ ,.2\
/I \ V 1 &quot;* /V /

1 +S S

if we suppose

The formulae then become

r4*
t

d%-~ __ _ !

X ^l

J [(f -a)
a

... + ua

]i-
~
TO -

?) T (q + 1) J e

f d%_ 2-TT^^ f
&quot;

(^a
3 + %g

J [(|
_ a )

2
. . . + ^-9

~
T (in

-
q) Tq J t (1 + s

in which e is the positive root of the equation

6\ e
~ + %e u2 = 0.

I propose to transform these formulae by means of the theory of images ;
it will be con

venient to investigate some preliminary formulae. Suppose \2 = a2 + ff . . .
, V =

i
2 + /3i

2
-

;

also consider the new constants a, &,..., alt &d, ..., u, /, determined by the equations

where 8 is arbitrary. Then, putting

I* = a? + b2
...

, li
2 = a/

2 +
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it is easy to see that

(V + u&amp;gt;) (I
2 +O = S4

, (V - 0*) (tf -/?) = &&amp;gt;

S2a B2
a,

F+^~2
~ a

k*-f?~*
l&amp;gt;

** J^__
* *~ *

Proceeding to express the single integrals in terms of the new constants, we have in

the first place k2 = 84&2
,
where

or if we write

adi + 6&i ... = Wi cos co,

we have

Z
2

^
2

2Mx cos

~(^ + M2
)
2
+

(^
2 -/1

2

)
2 ^ + t*)(i

Hence also ^ = S4

j, where

whence

. 1 1 2^j cos

where ^
2 = I- + I* 21^ cos w, that is

consequently 0j
2s2 + Xs ~ v* = ^4n, where TI is given by

and it is clear that e will be the positive root of

- /I
^ g2 _ (P* + ^ ~/l

2

)
6

It may be noticed that, in the particular case of u = 0, the roots of this equation

(pt
_ f*\(l a_ /2\

are 0, and ^*- y X

7
.
v ]

^--. Consequently if p2

fi
2 and l?fi~ are of opposite signs.

4 /i

/)2 _ / 2V/ -
/*2\

we have e = 0; but if p2 -/2 and d
3

-/,
8 are of the same sign, e= v^

-rr^r
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In order to transform the double integrals, considering the new variables x, y, . . .
,

I write #2 + y
2

. . .
= r2 and

8^
*
~~^2~

&amp;gt;

&quot;

whence also, if
2 + tj- + ... = p

2

(which gives rp = &), we have

_

also it is immediately seen that

and from the latter equation it follows that the limiting condition for the first integral

is (x Oi)
2
4- . . . ^/i

2
(there is no difficulty in seeing that the sign &amp;lt; in the former

limiting condition gives rise here to the sign &amp;gt;),
and that the second integral has to be

extended over the surface (x a-tf + . . . =/i
2
- Also if dS represent the element of this

surface, we may obtain

and, combining the above formula?, we obtain

dx dy ...

r (w - q) r (q + 1) (
2 + w2

)*
n-? ; . *(i + 6-)*

the limiting condition of the multiple integral being

and

dS
I ((x- + if . . .)*+-! {(a;

-
a)

2 + (y
- _

Jw
-

q) Tq (i
2 + M8

)*
n-

(If ~/!
2
) , (1 + s)&

+9-1

where rf^Sf is the element of the surface (x a^f + (y b^ =fi&quot;,
and the integration

extends over the entire surface. In these formula?, I, llt p, II denote as follows:

u =

&amp;gt;!

2 + . . .
, p- = (a i)

2 +

(V + M2 -/VO i?

an&amp;lt;i e is the positive root of the equation II = 0.
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The only obviously integrable case is that for which in the second formula q
= 1

;

this gives

f

J

dS__ _ __
(a? + ?/

2
. . . )*

n
{

-
a)

2 + (y- 6)
2 + w2

}^&quot;

1 T (%ri) (7
2

In the case of u = 0, we have, as before, when p
2

-ff and If ff are of opposite

signs, e = 0, and therefore 1 + e = 1
;

but when p2

-ff and If -ff are of the same

sign, the value before found for e gives

Consider the image of the origin with respect to the sphere (x a^ + (y
-

b^)&quot;
. . . =ff,

the coordinates of this image are

and consequently, if p be the distance of this image from the point (a, b ...), we have

whence, by a simple reduction,

14 - l^
~Fff

or the values of the integral are

p-ft and If -ff opposite signs, / =

p
2

-ff and If-ff the same sign, I = &quot;-

where ^ is the distance from the point (a, 6...) of the image of the origin with respect
to the sphere (x a^f 4- ... ff 0.

Stone Buildings, August 6, 1850.
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109.

ON THE RATIONALISATION OF CERTAIN ALGEBRAICAL

EQUATIONS.

[From the Cambridge and Dublin Mathematical Journal, vol. vm. (1853), pp. 97 101.]

SUPPOSE
x + y = 0, a? = a, y-

= b
;

then if we multiply the first equation by 1, xy, and reduce by the two others, we have

bx + ay = 0,

from which, eliminating x, y,

1-, 1

b, a

= 0;

which is the equation between a and b
; or, considering x, y as quadratic radicals,

the rational equation between x, y. So if the original equation be multiplied by x, y,

we have
a + xy = 0,

b + xy = ;

or, eliminating 1, xy,
a, 1 1

= 0,

b, 1

which may be in like manner considered as the rational equation between x, y.

The preceding results are of course self-evident, but by applying the same process

to the equations
x + y + z = 0, a? = a,

=
c,
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we have results of some elegance. Multiply the equation first by 1, yz, zx, xy, reduce

and eliminate the quantities x, y, z, xyz, we have the rational equation

1 1 1 =0;

1 . c b

I c . a

1 b a .

and again, multiply the equation by x, y, z, xyz, reduce and eliminate the quantities
1, yz, zx, xy, the result is

1 1

=0,

ll
which is of course equivalent to the preceding one (the two determinants are in fact

identical in value), but the form is essentially different. The former of the two forms
is that given in my paper &quot;On a theorem in the Geometry of Position&quot; (Journal,
vol. ii. [1841] p. 270 [1]): it was only very recently that I perceived that a similar

process led to the latter of the two forms.

Similarly, if we have the equations

x + y + z + w = 0, x- = a,
y&quot;

=
b, z- = c, w- = d,

then multiplying by 1, yz, zx, xy, xw, yw, zw, xyzw, reducing and eliminating the

quantities in the outside row,

we have the result

.r, y, 2, w, yzw, zwx, wxy, xyz

1 1 1
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1, yz, zx, xy, xw, yiv, zw, xyzw

42

we have the result

[109

a
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or, eliminating,
a 1 . =0;

6.1
. 1 1

where it is to be remarked that the second and third forms are not essentially distinct,

since the one may be derived from the other by the interchange of lines and columns.

Applying the preceding process to the system

x + y + z = 0, a? = a, y
3 =

b, z3 = c
;

multiply first by 1, xyz, oc
2
y

2z2
, a?z, y

2
x, z2

y, x2

y, y
2
z, z2

x, reduce and eliminate the

quantities in the outside row,

x, y, z, y
2z 2

, x-yz, y
2
zx, z2xy, z2x2

, x^y-

the result is
1 1 1

b

111
a b c

= 0;

next multiply by x, y, z, y*z
2
,

z2x2
,
x2

y
2
,
x2

yz, y
2
zx, z2

xy, reduce and eliminate the

quantities in the outside row,

x2
, ?/

2
,

z2
, yz, zx, xy, xy

2z2
, yz

2x2
,
zx2

y
2

the result is
1 . .
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lastly, multiply by #2
, y

z
, z*, yz, zx, xy,

quantities in the outside row,

1 xyz, x2
y
2z2 , yz

2
,

the result is

, xy-z-, reduce and eliminate the

y
2
z, z2x, x-y

a



110] 45

110.

NOTE ON THE TRANSFORMATION OF A TRIGONOMETRICAL
EXPRESSION.

[From the Cambridge and Dublin Mathematical Journal, vol. ix. (1854), pp. 61 62.]

THE differential equation

dx dy dz
/ n .\ it ~ i .\

*&quot; /. _\ // LA
(a + a) V(c -f #) (a + y) V(c + y) (a + z) V(c + z)

integrated so as to be satisfied when the variables are simultaneously infinite, gives

by direct integration

tan . /(^-) + tan- . /(
&quot;^C

] + tan- . /(
m
^f\ =

;V Vc + ^y V \G + yJ V \o + *J

and, by Abel s theorem,

, x, (a-f a?) V(c + ^) =0.

To show a posteriori the equivalence of these two equations, I represent the deter

minant by the symbol [J&amp;gt;
and expressing it in the form

1,

I write for the moment = A / ( ) &c. : this gives5 V \G + x)
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(a
-

c)
1

r,

r,

r

or, replacing , 77, f by their values, we have identically

, x,

.
y&amp;gt;

(a-c)
2

/a c /a c /ac /ac lac /a
c\V c+

+V^+V ~c+2~V ~c+xV c+yV c+z)

and the equation

/a c /a c la c _ /a c /a

V e+* V e+y
+V c+jr Vc-hV

is of course equivalent to the trigonometrical equation

/ac ac
, \/ ,

--
V c+x c+x

/ac ac

/ac ac
\/

~

I

c a c

tan-*

which shows the equivalence of the two equations in question.
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111.

ON A THEOREM OF M. LEJEUNE-DIRICHLET S.

[From the Cambridge and Dublin Mathematical Journal, vol. ix. (1854), pp. 163 165.]

THE following formula,

Onn (3)

is given in Lejeune-Dirichlet s well-known memoir &quot;Recherches sur diverses applica
tions &c.&quot; (Crelle, t. XXL [1840] p. 8). The notation is as follows: On the left-hand

side (a, b, c), (a , b
, c ), ... are a system of properly primitive forms to the negative

determinant D (i.e. a system of positive forms); x, y are positive or negative integers

including zero, such that in the sum ^q^+^y+cy^ aa? + 2bxy + cy* is prime to 2D,
and similarly in the other sums

; q is indeterminate and the summations extend to

the values first mentioned, of x and y. On the right-hand side we have to consider
the form of D, viz. we have D = P 2 or else D = 2PS2

, where S2
is the greatest

square factor in D and where P is odd: this obviously defines P, and the values
of B, e, which are always + 1 (or, as I prefer to express it, are always ) are given
as follows, viz.

D = PS*
,
P = 1 (mod 4), 8, e = + +,

&amp;gt;
= P&

, PEES (mod 4), B, e = -+,

D = 2PS*, P = 1 (mod 4), 8, e = + -,

P = 3(mod4), 8, e = --

n, n are any positive numbers prime to 2D, fJ is Legendre s symbol as generalized

by Jacobi, viz. in general if p be a positive or negative, prime not a factor of
,
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/w\
then - = -f or according as n is or is not a quadratic residue of (or, what is

\pJ

f n \
the same thing, p being positive, (

--
j

= n^ (n
~

l)

(modp)), and for P = pp p&quot;
. . . ,

and the summation extends to all the values of n, n of the form above mentioned.

In the particular case D 1, it is necessary that the second side should be doubled.

The method of reducing the equation is indicated in the memoir. The following are

a few particular cases.

D=-I, ^q
x^y- = 42

(-)*&amp;lt;-
&amp;gt;

3 ,

or 1 + 2 4 + 2 15 + 2 36 + ... + g + -5

q
s

q
5

_q*_

1-q 10 l-qu

J) 2, Vqtf+zy*
= 22 ( )i(

i-i)+i( 2-D ow
,

or (1 + 2g
2 + 2q

8 + 2q
w

. . .) (q + q + q^ +

4-&C
T&amp;lt;

~T O6C.
1 - 5 1 - f i - g

10 i - q

an example given in the memoir.

D = -
3, Sg

a;2+32/2 = 22 (^) 2 ,

\o/

or (q
1 + q +

q&quot;
+ q + q ...)(! + 2g-

ls + 2^
8 + 2q

ws
...)

+ 2(q
3 + 5

27 + q
75 + q + . . .) (q* + q

16 + g + g . . .)

_ 7 + q
5

q
5 + q

25

q
7 + q

m
q
n 4- q

55

~
I- q

6
~
l-q30

+
I - q*

~
T^-~q

+ &quot;

I am not aware that the above theorem is quoted or referred to in any sub

sequent memoir on Elliptic Functions, or on the class of series to which it relates:

and the theorem is so distinct in its origin and form from all other theorems relating
to the same class of series, and, independently of the researches in which it originates,
so remarkable as a result, that I have thought it desirable to give a detached state

ment of it in this paper.



112] 4.9

112.

DEMONSTRATION OF A THEOREM RELATING TO THE
PRODUCTS OF SUMS OF SQUARES.

[From the Philosophical Magazine, vol. IV. (1852), pp. 515 519.]

MR KIRKMAN, in his paper
&quot; On Pluquaternions and Homoid Products of Sums of

/i
Squares&quot; (Phil. Mag. vol. XXXIIL [1848] pp. 447459 and 494509), quotes from a

note of mine the following passage: &quot;The complete test of the possibility of the pro
duct of 2n squares by 2n squares reducing itself to a sum of 2n squares is the following :

forming the complete systems of triplets for (2
n -

1) things, if eab, ecd, fac, fdb be any
four of them, we must have, paying attention to the signs alone,

(+ eab} ( ecd) = ( fac) (fdb) ;

i. e. if the first two are of the same sign, the last two must be so also, and vice versa ;

I believe that, for a system of seven, two conditions of this kind being satisfied would

imply the satisfaction of all the others: it remains to be shown that the complete system
of conditions cannot be satisfied for fifteen

things.&quot;
I propose to explain the meaning

of the theorem, and to establish the truth of it, without in any way assuming the exist

ence of imaginary units.

The identity to be established is

(w
2 + a? + 62 + ...) (w,* + a? + b;

2

...)
= w

tf + a,? + 6,,
a + ...

where the 2n quantities w, a,b,c,... and the 2n quantities w
t , a,, b

t , c,, ... are given quan
tities in terms of which the 2n quantities wtl , a

/t , &, c
/y ,

... have to be determined.

Without attaching any meaning whatever to the symbols a , 6
, c ... I write down

the expressions
w + aa + bb + cc ..., w, + a,a + b,b + c,c ...

,

c. ii. 7



50 DEMONSTRATION OF A THEOREM RELATING [112

and I multiply as if ao ,
b

, c ... really existed, taking care to multiply without making
any transposition in the order inter se of two symbols a

,
b combined in the way of mul

tiplication. This gives a quasi-product

ww
/ + (aw, + a

tw) a + (bwf
+ b

tw) b + ...

Suppose, now, that a quasi-equation, such as

&amp;lt;A,

C
o
= + ,

means that in the expression of the quasi-product

6 c
,

c a
,

a b
, c 6

,
a c ,

b
c
a

are to be replaced by
a

,
b

,
c

,
-a

,
-6

, -c
;

and that a quasi-equation, such as 6 C =
,
means that in the expression of the quasi-

product

6 c
o ,

co
a

,
a b ,

c b
a ,

a co) b a

are to be replaced by

, b , C
,

a
,

b , c .

It is in the first place clear that the quasi-equation, aj&amp;gt;
co
= +, may be written in

any one of the six forms

o
&
oCo

= + &oCo
a
o
= +

&amp;gt;

Coo&
o
= +

a cjb
= -, C b a = -, 6 a o

c
o
= -

;

and so for the quasi-equation a
o
b
oco

=
. This being premised, if we form a system of

quasi-equations, such as

where the system of triplets contains each duad once, and once only, and the arbitrary

signs are chosen at pleasure ; if, moreover, in the expression of the quasi-product we

replace a 2
, 6 2

,
... each by 1, it is clear that the quasi-product will assume the form

w
tl
+ a,,a + b,,b, + c,,c + . . .

,

w
,i&amp;gt;

a
,Y&amp;gt; ^//&amp;gt;

c
// being determinate functions of w, a, b, c,...; w

/t a,, b
t ,

c
t ..., homo

geneous of the first order in the quantities of each set
;

the value of w
/t being obviously

in every case

w
lt
= ww

t aa, bb, cc, ...,

and a
//( &, c

7/ ,... containing in every case the terms aWj + a/w, bw
f
+b

tw, cw
t -f c,w, ... but

the form of the remaining terms depending as well on the triplets entering into the
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system of quasi-equations as on the values given to the signs +
;

the quasi-equations

serving, in fact, to prescribe a rule for the formation of certain functions w
//; a,,, b,,, c,,, ...,

the properties of which functions may afterwards be investigated.

Suppose, now, that the system of quasi-equations is such that

being any two of its triplets, with a common symbol e ,
there occur also in the system

the triplets

, g a d
, g c

b c
;

and suppose that the corresponding portion of the system is

eo
a b =

e, e
o
c d = e ,

g a d =
t, g b c = i

,

where e, , i, e
, &quot;,

i each of them denote one of the signs + or
;
then ,/, gtl

will

contain respectively the terms

e(ab,- a,b} + e (cd, c,d),

i (ad, a,d) + i (bct
b

tc} ;

and ej +f,J- + g,f contains the terms

(a- + b* + c-
2 + d2

) (a; + b? + c/ + c?;
2

)
-

o?af
- Kb; - c2

c/
- d2

d&quot;-

+ 2 [ee (ab,
-
ab) (cd,

- c
td)

+ u (adt
a

td) (be, b
fc)] ;

and by taking account of the terms ew, + e,w, fwt +ffw, gw t +g(
w in e, t , f//} g,, respect

ively, we should have had besides in e,f +f,,
2 + g* the terms

(e
2 +/2 + g*) w? + (e? +f?- + g?) w&amp;gt;

+ 2(ee,+/i +gg)wtv,.

Also w
t

- contains the terms

w%
w? + a*a? + b-b? + c

2c
f

2 + d-d-

-2(ee,+/,+gg,)wiu,;

whence it is easy to see that

*&amp;gt;* + * + *&amp;gt;* + &amp;lt;&amp;gt; +...=

(w
2 + a2 + b* + c

2 + . . .) (w; + a? + b;- + c- + ...)

+ u (ad, a,d) (be, b,c)}.

72
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where the summation extends to all the quadruplets formed each by the combination
of two duads such as ab and cd, or ac and db, or ad and be, i. e. two duads, which, com
bined with the same common letter (in the instances just mentioned e, or /, or g), enter

as triplets into the system of quasi-equations so that if v = 2n - 1, the number of quad
ruplets is

and the terms under the sign S will vanish identically if only

but the relation ee = u is of the same form as the equation ee = &quot;

;
hence if all the

relations

66 =%
are satisfied, the terms under the sign S vanish, and we have

(w,,
9 + a,,

3 + ft,,

2 + c,,
s + ...)

= (w
2 + a2 + & + c2 + ...) (wf + a? + bf + cf + ...)

which is thus shown to be true, upon the suppositions

1. That the system of quasi-equations is such that

e a b
, eja

d

being any two of its triplets with a common symbol e , there occur also in the system
the triplets

./XCo, f d boi

ff &amp;lt;*&amp;gt;od
, g b cc

.

2. That for any two pairs of triplets, such as
i

e,a b , eoc d and f a c , f d b
,

the product of the signs of the triplets of the first pair is equal to the product of the

signs of the triplets of the second pair.

In the case of fifteen things a, b, c, ... the triplets may, as appears from Mr Kirk-

man s paper, be chosen so as to satisfy the first condition
;

but the second condition

involves, as Mr Kirkman has shown, a contradiction
;
and therefore the product of two

sums, each of them of sixteen squares, is not a sum of sixteen squares. It is proper to

remark, that this demonstration, although I think rendered clearer by the introduction of

the idea of the system of triplets furnishing the rule for the formation of the expres
sions w

tl , a,,, &, c,,, &c., is not in principle different from that contained in Prof. Young s

paper &quot;On an Extension of a Theorem of Euler, &c.&quot;, Irish Transactions, vol. XXL [1848

pp. 311341].
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113.

NOTE ON THE GEOMETRICAL REPRESENTATION OF THE

INTEGRAL

[From the Philosophical Magazine, vol. v. (1853), pp. 281 284.]

THE equation of a conic passing through the points of intersection of the conies

?+f+ z* = 0,

aa? + by
2 + cz* = 0,

is of the form

w (x
2 + y

2 + z2
) + ax3 + by

2 + cz2
0,

where w is an arbitrary parameter. Suppose that the conic touches a given line, we
have for the determination of w & quadratic equation, the roots of which may be

considered as parameters for determining the line in question. Let one of the values

of w be considered as equal to a constant quantity k, the line is always a tangent
to the conic

k (x
2 + y- + z2

} + a

and taking w=p for the other value of w, p is a parameter determining the parti

cular tangent, or, what is the same thing, determining the point of contact of this

tangent.

The equation of the tangent is easily seen to be r~

=
;

suppose that the tangent meets the conic a? + y
2 + z* = (which is of course the

conic corresponding to w = oo ) in the points P, P
, and let 6, oo be the parameters

of the point P, and 6 ,
oc the parameters of the point P

,
i.e. (repeating the defini-
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tion of the terms) let the tangent at P of the conic a? + y~ + z~ = be also touched

by the conic 6 (a;
2 + y

2 + z*} + axz + by* + cz2 = 0, and similarly for 6 . The coordinates

of the point P are given by the equations

x:y:z \/6 c Va + 6 : \/c a \/6 + 6 : Va 6 Vc + 6
;

and substituting these values in the equation of the line PP
,
we have

(b
-

c) Va + fc Va + p Va + + (c
-

a) V& -f A; V&+p V& + 6 + (a
-

b) Vc + k \/c +p Vc + #

= 0. ..(*),

an equation connecting the quantities p, 6. To rationalize this equation, write

V(a + k) (a + p) (a + 6}
= \ + pa,

*J(c + k) (c +p) (c + 6)
=

values which evidently satisfy the equation in question. Squaring these equations, we

have equations from which X2
, X//-, yu,

2

may be linearly determined
;

and making the

necessary reductions, we find

X2 = abc + kp6,

-
2X/i =bc + ca + ab - (pB + kp + kO},

^=a + b+ c + k+p+6;

or, eliminating X, /u,,

{be + ca + ab- (p0 + kp + k6)}
2

-4&amp;lt;(a + b + c + k+p + 6) (abc + kp0) = 0, ...... (*),

which is the rational form of the former equation marked (*). It is clear from the

symmetry of the formula, that the same equation would have been obtained by the

elimination of L, M from the equations

V (k + a) (k + b) (k + c)
= L + Mk,

V (p

and it follows from Abel s theorem (but the result may be verified by means of

Euler s fundamental integral in the theory of elliptic functions), that if

das
Tlx

V (x + a) (x + b) (x + c)

then the algebraical equations (*) are equivalent to the transcendental equation

Uk Up U6 =
;
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the arbitrary constant which should have formed the second side of the equation

having been determined by observing that the algebraical equation gives for p = 6,

k = oo
,
a system of values, which, when the signs are properly chosen, satisfy the

transcendental equation. In fact, arranging the rational algebraical equation according
to the powers of k, it becomes

k- (p
-

ey
2 - 2k [p6(p + 6) + 2(a + b + c}pO + (be + ca + ab) (p + 6} + 2abc}

+ p-d- -2(bc + ca + ab)pd
- 4abc (p + 0) + b2

c
2 + C

2a2 + a26a - 2aa6c - 262ca - 2c2a& =

which proves the property in question, and is besides a very convenient form of the

algebraical integral. The ambiguous signs in the transcendental integral are not of

course arbitrary (indeed it has just been assumed that for p 6, Up and 110 are to

be taken with opposite signs), but the discussion of the proper values to be given
to the ambiguous signs would be at all events tedious, and must be passed over for

the present.

It is proper to remark, that 0=p gives not only, as above supposed, k x .

but another value of k, which, however, corresponds to the transcendental equation

+ Ilk 2Up = ;

the value in question is obviously

, _ p
4 2 (be + ca + ab)p

2

Sabcp + b-c~ + C
2a2 + a262 2a26c 262ca 2c~ab~~~

Consider, in general, a cubic function &xs + 3ba?y + 3c#y
2 + dy

s
, or, as I now write

it in the theory of invariants, (a, b, c, d) {x, y)
3
,
the Hessian of this function is

(ac-b
2
, |(ad-bc), bd - c2

) (x, yj,

and applying this formula to the function (p + a) (p + b)(p + c), it is easy to write

the equation last preceding in the form

, \ 9 Hessian {(p + a)(p + b)(p + c)l+ c)
---

7 -^7 ^yf-7 , f a-
J

(p + a)(p+ b) (p + c)

which is a formula for the duplication of the transcendent Ux.

Reverting now to the general transcendental equation

ilk Up ue = o,

we have in like manner

uknpup=Q ,

and assuming a proper correspondence of the signs, the elimination of Tip gives
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i. e. if the points P, P upon the eonic of + y
2 + 2- = are such that their parameters

0, 6 satisfy this equation, the line PP will be constantly a tangent to the conic

kO2 + ?/
2 + z2

) + (ax* + by
2 + a?2

)
= 0.

Hence also, if the parameters k, k
,

k&quot; of the conies

k (a? + y
z + z*) + ax2 + by

2 + cz2 =
0,

k O2 + f + z1

) + ax2 + by
2 + cz2 = 0,

k&quot;O2 + y
2 + z2

) + ax2 + by
2 + cz2 = 0,

satisfy the equation

Uk + Ilk + Ilk&quot; = 0,

there are an infinity of triangles inscribed 1 in the conic x2 + y
2 + z2 = 0, and the sides

of which touch the last-mentioned three conies respectively.

Suppose 2II& = UK (an equation the algebraic form of which has already been

discussed), then

116 -110 = UK,

oo gives & = K
; or, observing that 6 = oo corresponds to a point of intersection

of the conies x2 + y
2 + z2 = 0, ax2 + by

2 + cz2 = 0, K is the parameter of the point in

which a tangent to the conic k (x
2 + y

2 + z2

) + ax2 + by
2 + cz

2 = at any one of its

intersections with the conic x* + y
2 + z2 = meets the last-mentioned conic. Moreover,

the algebraical relation between 6, 6 and K (where, as before remarked, K is a given

function of k) is given by a preceding formula, and is simpler than that between

0, 6 and k.

The preceding investigations were, it is hardly necessary to remark, suggested by
a well-known memoir of the late illustrious Jacobi, and contain, I think, the extension

which he remarks it would be interesting to make of the principles in such memoir

to a system of two conies. I propose reverting to the subject in a memoir to be

entitled &quot;Researches on the Porism of the in- and circumscribed
triangle.&quot; [This was, I

think, never written.]
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114.

ANALYTICAL RESEARCHES CONNECTED WITH STEINER S

EXTENSION OF MALFATTI S PROBLEM.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLII. for the

year 1852, pp. 253278: Received April 12, Read May 27, 1852]

THE problem, in a triangle to describe three circles each of them touching the two
others and also two sides of the triangle, has been termed after the Italian geometer
by whom it was proposed and solved, Malfatti s problem. The problem which I
refer to as Steiner s extension of Malfatti s problem is as follows: &quot;To determine
three sections of a surface of the second order, each of them touching the two others,
and also two of three given sections of the surface of the second order,&quot; a problem
proposed in Steiner s memoir,

&quot;

Einige geometrische Betrachtungen,&quot; Crelle, t. I. [1826
pp. 161184]. The geometrical construction of the problem in question is readily
deduced from that given in the memoir just mentioned for a somewhat less general
problem, viz. that in which the surface of the second order is replaced by a sphere :

it is for the sake of the analytical developments to which the problem gives rise, that
I propose to resume here the discussion of the problem. The following is an analysis of
the present memoir :

1. Contains a lemma which appears to me to constitute the foundation of the
analytical theory of the sections of a surface of the second order.

2. Contains a statement of the geometrical construction of Steiner s extension
of Malfatti s problem.

3. Is a verification, founded on a particular choice of coordinates, of the con
struction in question.

4. In this section, referring the surface of the second order to absolutely general
coordinates, and after an incidental solution of the problem to determine a section

touching three given sections, I obtain the equations for the solution of Steiner s
extension of Malfatti s problem.

C. ii.
8
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5. Contains a separate discussion of a system of equations, including as a

particular case the equations obtained in the preceding section.

6 and 7. Contain the application of the formulae for the general system to the

equations in 4, and the development and completion of the solution.

8. Is an extension of some preceding formulae to quadratic functions of any

number of variables.

1. Lemma relating to the sections of a surface of the second order.

If

aa? + by
2 + cz2 + dw2 + Zfyz + 2gzx + 2hxy + 2lxw + 2myw + Znzw =

be the equation of a surface of the second order, and

gU2 + 33,?/
2 + &amp;lt;&amp;gt;z

2 + Bw2 + 2gyz + 2&amp;lt;Szx + Zffixy + 2lUw + 2J%w + 2&ziv =

the reciprocal equation, the condition that the two sections

\ x + fiy + v z + p w = 0,

may touch, is

/ \ . syT / &quot;\
f i &quot;\ \ i Tl&quot;\ /&quot;\

-
fjb v) + xlr (vX -+ ^ X) + |^ (A/A

+ 11 (Xp + X p) + JW (/^p +
/J&amp;lt; p)

and in particular if the equation of the surface be

ax2 + by
2 + cz2 + 2fyz + 2gzx + 2hxy + pw~ = 0,

the condition of contact is

K \*

p J

p

in which last formula

Jf=gh-af, 4& = hf-bg,

K = abc - a/
2 -

bg
2 - ch2 + 2fgh.

K
~P

{
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2.

In order to state in the most simple form the geometrical construction for the

solution of Steiner s extension of Malfatti s problem, let the given sections be called

for conciseness the determinators 1

; any two of these sections lie in two different cones,

the vertices of which determine with the line of intersection of the planes of the

determinators, two planes which may be termed bisectors
;
the six bisectors pass three

and three through four straight lines
;

and it will be convenient to use the term

bisectors to denote, not the entire system, but any three bisectors passing through the

same line. Consider three sections, which may be termed tactors, each of them touching
a determinator and two bisectors, and three other sections (which may be termed

separators) each of them passing through the point of contact of a determinator and

tactor and touching the other two tactors
;
the separators will intersect in a line which

passes through the point of intersection of the determinators. The three required

sections, or as I shall term them the resultors, are determined by the conditions that

each resultor touches two determinators and two separators, the possibility of the

construction being implied as a theorem. The a posteriori verification may be obtained

as follows :

(J o
N O.

Let x = 0, y = 0, z = be the equations of the resultors, w = the equation of the

polar of the point of intersection of the resultors. Since the resultors touch two and

two, the equation of the surface is easily seen to be of the form

Zyz + 2zx + 2xy + w2 = 0. (
2

)

The determinators are sections each of them touching two resultors, but otherwise

arbitrary; their equations are

2^ +
2^-7*

+ w = 0.

The separators are sections each of them touching two resultors at their point of

contact (or what is the same thing, passing through the line of intersection of two

resultors), and all of them having a line in common. Their equations may be taken
to be

cy bz = Q, az ex = 0, bx ay = 0,

1 I use the words &quot;determinators,&quot; &c. to denote indifferently the sections or the planes of the sections;
the context is always sufficient to prevent ambiguity.

2 The reciprocal form is, it should be noted,

.T
2 + 1/

2 + z- - 2yz
- 2zx -

2xij
- 2u-2= 0.
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the values of a, b, c remaining to be determined. Now before fixing the values of

these quantities, we may find three sections each of them touching a determinator at

a foint of intersection with the section which corresponds to it of the sections

cy bz = 0, az en; = 0, bx ay 0, and touching the other two of the last-mentioned

sections
;

and when a, b, c have their proper values the sections so found are the

tactors. For, let \x + py + vz + pw be the equation of a section touching the deter

minator aw + =- U + ^-z + w = 0, and the two sections bx ay = 0, az c# = 0: and
2a * 2a

suppose
A2 = X2 + /*

2 + v2 - fyv - 2i/X - 2X//,
-

2p
2

the conditions of contact with the sections bx ay = 0, az ex = are found to be

(6 + a) A =
(b + a) X - (6 + a) /*

-
(b
-

a) v,

(c + a) A =
(c + a) X (c a) //. (c + a) v,

values, however, which suppose a correspondence in the signs of the radicals. Thence

(b + a)/i
=

(c + a)v ;
or since the ratios only of the quantities X, p, v, p are material,

H = c + a, v = b + a, and therefore

A2 = Xs - 2 (2tt + b + c) X + (b
-

c)-
-

2p
3
,
= (\-b- c}

1

,

or p
2 = - 2 (a\ + be).

Hence the equation to a section touching bx ay = 0, az ex = is

\x +(c + a) y + (b + a) z + V - 2 (aX + be) \
w =

;

and to express that this touches the determinator in question, we have

+ a (X
- b - c)

=
(a + ^\ X - a (2a + b + c) + 2 V - 2 (aX + be) ;

and selecting the upper sign,

- X - 2aa = - 2 V - 2 (aX + be) ;

a

whence

X = - 2a (aa
- V - 26c), V - 2 (aX + 6c)

= (2aa
- V -~26c) ;

or the section touching the determinator and the sections bx ay = 0, az - ex is

- 2a (aa
- V-2&C ) a; + (c + a) y + (b + a) z + (2aa

- V&quot;- 26c ) w =
;

and at the point of contact with the determinator

- = 0.
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Eliminating w between the first and second equations and between the second and

third equations,

/ 7- / 1 1 Av 2oc
(

ax + ^- y + z
)
+ cy + bz = 0,

= 0;

and from these equations (cy
-

bzf = 0, or the point of contact lies in the section

cy bz = 0. It follows that the equations of the tactors are

- 2a (a
- -

26c) x + (c + a)y + (b + a) z + (2aa
- V~26c) w = 0,

(c + 6) a? - 2/3 (&
- V - ~2ca) y + (a + 6) ^ + (26

- V -
2ca) w = 0,

(6 + c) x + (a + c) y
- 27 (cy

- V - 2a6) ^ + (2c7
- V~~2a6) w = 0,

where a, 6, c still remain to be determined.

Now the separators pass through the point of intersection of the determinators
;

the equations of these give for the point in question,

x : y : z : w = (2/8y + 1) (- + +?
: (27a + 1) ( a -/3+ 7

: (2a/3 + 1) ( a + /3- 7

: 4a2
/3

2

7
2 - 1 + a2 +

and the values of a, b, c are therefore

a : b : c = (2/37+ 1) (- a + /3 + 7 + 2a/37)

: (27a + 1) ( -/5 + 7 + 2a^7)

: (2/3 + 1) ( a + /
S- 7 + 2a/37 ),

which are to be substituted for a, b, c in the equations of the separators and tactors

respectively.

Now proceeding to find the bisectors, let \x + py + vz + pw = be the equation
of a section touching the determinators,

and suppose, as before, A 2 = A,
J + f^+v&quot; 2/j,v 2v\ 2X//,

-
2p- ;

the conditions of con

tact are

^- 2p,

- 7 + -
i/-2p,

OFTHE

UNIVERSITY
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where it is necessary, for the present purpose, to give opposite signs to the radicals.

For if the radicals had the same sign, it would follow that

hence the section \x + py + vz + pw = would pass through the point

11 22
:jr:,: a ):_:_:-_ + -;

or the section would be a tangent section of the two determinators of the same

class with the resultor x = 0, which ought not to be the case. The proper formula is

and this equation being satisfied, the section

\x + py + vz 4- pw =

passes through a point

o 1122
/* fit & /J/| &quot;/

__
i__A . y . z . w A .

-y-
. . 75

#&quot; T P 7

The bisector passes through this point and the line of intersection of the determi

nators
;

its equation is

1/1 =

or reducing and completing the system, the equations of the bisectors are

In order to verify the geometrical construction, it only remains to show that

each bisector touches two tactors. Consider the bisector and tactor

- 2a (aa
- V -

26c) + (c + a) y + (b + a) z + (2aa - V - 26c) *t&amp;gt;

=
;

and represent these for a moment by

\x + fjuy + vz + piv
= 0, \ x + p y + vz + p w = ;
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if A be the same as before, and A the like function of X
, //, v

, p ,
also if

&amp;lt;J&amp;gt;

= XX + pfjb + vv (/j,v + fji v) (v\ + v \) (X// + X /i) 2pp ,

then

A 2 = (2aa
2 - 2a V - 26c + b + c)

2
,

&amp;lt;I&amp;gt;

- aa2

(2 + -IY - 2a V^Tc (2 + -i) + c f
2 +^ ;

V W V ayS/ V /S
2
/

and the condition of contact AA =
^&amp;gt; (taking the proper sign for the radicals) be

comes

or reducing,

aa - 6/3 + c
* ~

,

=
0,

an equation which is evidently not altered by the interchange of a, a. and 6, /3. The

conditions, in order that each bisector may touch two tactors, reduce themselves to

the three equations,

which are satisfied by the values above found for the quantities a, b, c. The possi

bility and truth of the geometrical construction are thus demonstrated.

4.

Let it be in the first instance proposed to find the equation of a section touching
all or any of the sections # = 0, y = 0, z = Q of the surface of the second order,

aa? + by
2 + cz* + 2fyz + 2gzx + 2hxy + pw&quot;

= 0.

Any section whatever of this surface may be written in the form

+ (h\ + bp+fi&amp;gt;)y + (g\ +fp + cv) z + V
-;&amp;gt;

Vw = 0,

V- = aX2 + bfi
2 + cv- + 2ffjtv + 2gv\ + 2AX^ - K,
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and X, fj-,
v are indeterminate. And considering any other section represented by a

like equation,

(aV + hfjf + gv ) x + (h\ + bfi +/*/) y + (g\ +//* + cv ) z + V^ V w = 0,

where

V 2 = a\/a + fyt
2 + cv 2 + 2&amp;gt;V + 2gv \ -f 2h\ fj,

- #,

it may be shown by means of the lemma previously given, that the condition of

contact is

aXV + bfifjf + cvv +f(fiv
f + ILV) + g (i/V + z/X) + h (V + &amp;gt; ^ = vv/ -

Suppose that V, //, v satisfy the equations

V = 0,

h\ + bp +/i;
= 0,

so that the last-mentioned section becomes x =
;

and observing that the first of

the above equations may be transformed into

a\ + k/A +gv =
-,,
A,

PJ &amp;lt;&

it is easy to obtain X = VJ5, A1
=
T/J

y/ =
r/g

The condition of contact thus becomes

and taking the under sign, \ = V&, so that if in the above written equation we

establish all or any of the equations X = Vgt, //,
= V33, y = V^D, we have the equation

of a section touching all or the corresponding sections of the sections

In particular we have for a solution of the problem of tactions, the following

equation of the section touching x 0, y = 0, z= 0, viz.

- J 2 (VS -
jp) (V^e - S) (V1W- 3^)1

= 0.

Anticipating the use of a notation the value of which will subsequently appear,

or putting
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values which give

Ks = -f4 -gl -h l + 2g
2h2 + 2h 2f2 + 2f2

g
2 - *5s*ha

j

the equation of the section in question is

;J &amp;lt;

_ f!+g!+hv+ -| (5 _ g5+h,
) ,/+ -| (fa+g! _ hv+%w^? ro=0.

I proceed to investigate a transformation of the equation for the section with an

indeterminate parameter X, which touches the two sections y = 0, z = 0. We have

aV 2 =
(a\ +V + 9VJ + (/

or putting for /* and y their values Vitf, V( in the second term,

V2 = (aX + hfi + gv}- +

and introducing instead of A, an indeterminate quantity X, such that

we have

also introducing throughout X instead of X, and completing the substitution of \/23,

for p, v, the equation of the section touching y = 0, 2 = 0, becomes

(ax+hy + gz}X + y*/(& + z V|3 + w \l~^a Vl + Z2 = 0.

It may be remarked here in passing, that this is a very convenient form for the

demonstration of the theorem; &quot;If two sections of a surface of the second order touch
each other, and are also tangent sections (of the same class) to two fixed sections,
then considering the planes through the axis of the fixed sections and the poles of

the tangent sections, and also the tangent planes through this axis, the anharmonic
ratio of the four planes is independent of the position of the moveable tangent sections;&quot;

where by the axis of the fixed sections is to be understood the line joining their poles.

The sections touching 2 = 0, a? = 0, and x = 0, y = 0, are of course

+ (has + by +fz) Y + z*/@L + w V&quot;-^6pVl + Y 2 = 0,

+ y + (gx +fy + c2)Z + w V-cp \/fT^&quot;
a

&quot;= 0,

where

The conditions of contact of the sections represented by the above written equations
would be perhaps most simply obtained directly from the lemma, but it is proper to

deduce it from the formula for contact used in the present memoir. If for shortness

&amp;lt;X&amp;gt; () = aX X&quot; +W + GV v&quot;+/OV + /*V) + g (v \&quot; + v&quot;\ ) + h (\y + X X) + A
,

C. II.
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where the symbol &amp;lt;!&amp;gt;(+)
is used in order to mark the essentially different character

of the results corresponding to the different values of the ambiguous sign, then

_) =f(h\ + bp! +fv ) (g\&quot; +fn&quot; + cv&quot;),

&quot; + cv&quot;),

- f(h\ +V +fv ) (g\&quot; +fp&quot; + cv&quot;)

(Si) (g\&quot; +fp&quot; + cv&quot;)

-Tjfy)(h\ + bft +fv )

= f(h\ + bfi +fv ) (g\&quot; +fn&quot; + cv&quot;)

+ Vit (VgiOD
-

1) (srx&quot; +/// + c/ )

-
ft) (AV

that is,

What, however, is really required
1

,
is the value of

4&amp;gt;(+);
to find this, we have

-
ft),

the second line of which is

2 (Via
-

&amp;lt;ffi) (VM^ -
ft) (v&a + cK) (vais + ft) -/

- -
ft) V

1 It may be shown without difficulty that the (-) sign would imply that the sections touching 2 = 0, z = 0,

and x= 0, y-0, were sections touching x-0 at the same point. By taking the (-) sign in each equation we

should have the solution of the problem &quot;to determine three sections of a surface of the second order, the two

sections of each pair touching one of three given sections at the same point,&quot;
which is not without interest ;

the solution may be completed without any difficulty.
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where

=

and consequently

a reduction, which on account of its peculiarity, I have thought right to work out in

full.

The condition of contact is

V6c

Hence finally, the condition in order that the sections

* \/& + (hx + by +fz) F+ VU + w V -bp Vf+ F2 = 0,

+ y Vgt + (gx +fy + cz) Z + w V cp VT+ Z2 = 0,

(the former of which is a section touching z = 0, x=0, and the latter a section touching
x = 0, y = 0) may touch, is

The preceding researches show that the solution of Steiner s extension of Malfatti s

problem depends on a system of equations, such as the system mentioned at the

commencement of the following section.

Consider the system of equations

YZ +8 vTT2 TT^2 = 0,

a! + /3 (Z + X) + yZX + B Jl +Z* VTTX2 = o,

a&quot; + /3&quot; (X + Y) + y&quot;X
Y+ B&quot; \/l +X2 VF+T^=

;

these equations may, it will be seen, be solved by quadratics only, when the coefficients

satisfy the relations

ft ff ft&quot;

7 - a y - a!
y&quot;

- a

92
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It may be remarked that these equations are satisfied by

/3
= 0, ff = 0, /3&quot;

= 0, 7 = S, 7 = 8
, 7&quot;

=
S&quot;&amp;gt;

or if we write

a . a a&quot;

- = -
I, -, = - ro, ,=-n,777

the equations become by a simple reduction,

21 YZ = Z
2 -1,

which are equivalent to the equations discussed in my paper
&quot; On a system of Equations

connected with Malfatti s Problem and on another Algebraical System,&quot; Cambridge and

Dublin Mathematical Journal, t. IV. [1849] pp. 270275, [79] ;
the solution might have

been effected by the direct method, which I shall here adopt, of eliminating any one

of the variables between the two equations into which it enters, and combining the

result with the third equation.

Writing the second and third equations under the form

A + B X + C \/I+~P = 0,

the result of the elimination may be presented in the form

A A&quot; + B B&quot;
- C C&quot;

= ^/A * + B 2 -
C&quot;

2
^&quot;

2 + B&quot;*
- C 2

,

which is most easily obtained by writing Z = tan&amp;lt; and operating with the symbol

cos-1

;
but if the rationalized equations be represented by

V + 2p X + v X* = and \&quot; + ty&quot;X + v&quot;X* = 0,

the form

4 (XV - ^} (XV - / )
= (XV + XV - 2/.V7

leads easily to the result in question. The values which enter are

C = V Vr+lT2,
G&quot; = 8&quot; VITT2

;

whence, in the first place, by the equation connecting F, Z,
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It is obviously convenient that A A&quot; + B B&quot; should be symmetrical with respect to

Y and Z, and this will be the case if

that is, if p (7&quot;

-
a&quot;)

= pf

(7
- a ) ;

or assuming that the equations are symmetrically related to the system, we have the

first set of relations between the coefficients, relations which are satisfied by

a = 7+ 20/3, a = 7 + 20/8 ,
a&quot; =

7&quot;
+ 20/8&quot;,

and the values of a, a
,

a&quot; will be considered henceforth as given by these conditions.

We have

A A&quot; + B B&quot;
- C C&quot; = a a.&quot; + /3 /3&quot; + (y /3&quot; + j&quot;/3 + 20/3 /3&quot;) (Y + Z) + (/3 /3&quot; + 7 7&quot;)

YZ

The quantities A 2 + B 2 - G \ A&quot;
2 + B&quot;

2 -
C&quot;

2 are quadratic functions of Z and Y respectively,
and with proper relations between the coefficients, we may assume

(A
2 + B 2 - C 2

) (A&quot;

2 + B&quot;
2 -

C&quot;
2

)
= l

2
s2 {U

2 + k[(a + (3(Y + Z) + yYZ)2 - 82

(1 + P) (1 + Z2

)]},

in which U is a linear function of Y + Z and YZ, and k and Is are constants. The
first side must, in the first place, be symmetrical with respect to Y and Z, or

a 2 + P2 - S 2
, (a! + 7 ) p, /3

2
-f 7

/2 - S 2

must be proportional to

But since

(a + J)P, W + y&quot;)/3&quot;

are proportional to

7 2_ a
2&amp;gt; 7

&quot;2 _ a
//

2&amp;gt;

it is only necessary that

P* + ry
S - g^ /3&quot;2 + y 2 _

g&quot;2

should be proportional to

7
2 -a 2

, 7
/2 -a//2

;

or since the equations are supposed symmetrically related to the system, we must have
the second set of relations between the coefficients. Suppose

7
2 - a2

7
/2 - a 2

7
&quot;2 -

a&quot;

2

then since

7
2 - 2 = - 4 (7 + 0/8) 0/3, &c.,
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we have 82 = #2 + 7
2 - 4s (7 +

&amp;lt;f&amp;gt;j3 ) j3

V* =
/3

2 + 7
* - 4s (7 + &amp;lt;/3 ) &

and 8, 8
,

8&quot; will be supposed henceforth to satisfy these equations.

We have next

A * + B 2 -
C&quot;

2 = 4 (7 +
&amp;lt;f&amp;gt;P ) /3 (s + &amp;lt;f&amp;gt;

+ Z + sZz

)

A&quot;* + B&quot;*
-

C&quot;*
= 4

(7
&quot; +

0/3&quot;) p (s + &amp;lt; + Y + sF2

),

which may be simplified by writing

u- (b 1 +
/i&amp;lt;jf&amp;gt;o *_L j ___ -

1 + JU,

2
[I &amp;lt;/)

where /i,
z/ are to be considered as given functions of s and

&amp;lt;/&amp;gt;.

These values give

4 * + 5 2 _ C/2 = 4 (7 + 0/3 ) /S s (^ + fi)(Z + v\

A &quot;* + B&quot;*
-

C&quot;
2 = 4

(7&quot;
+

&amp;lt;/&amp;gt;/3&quot;)
/S s (F + fi) (Y + v\

Hence, putting for simplicity

V = 4 (7 + 0/3 ) (7&quot;
+

&amp;lt;&quot;) &P&quot;,

we have

and the two sides have next to be expressed in terms of Y + Z and YZ.

If for symmetry we write

then

4

and U is now to be considered a linear function of f, 77, ^.

The condition that the first side of the equation may divide into factors, gives an

equation for determining k
;

since the condition is satisfied for k = and k = x
,
the

equation will be linear, and it is easily seen that the value is k =
-^,(/j,

v)
2

. In fact

W + Q (^ +
&quot;7
+ o3 + o*

-
&quot;)

2

[(i
-

r)
2 + T]

hence

v) v
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and we may assume

subject to its being shown that

gives a constant value for A. The comparison of coefficients gives

the first and third of these give

which will be identical with the second, if

2 (!-/,)_ ft

/j, + v y a

which follows at once from the equation

Forming next the two equations

these will be equivalent to a single equation if

(/* + ^)
2 82 =

JO* + v) y - 2/3J
2 + di.

-

that is, if

Z - 4
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or finally, if

# = p* + ,f
-

45/3 (7
\

which is in fact the case.

Writing the equations for

1

in the form

1 2S 1

A (/A v) fis A

and substituting in

_ .. f / x
A -

-r
2S

we have

and consequently, multiplying by

fe = 2

we have

2 -
&amp;lt;7

2
V^l&quot;

2 + 5//2 -
&amp;lt;7

2

{(- + 2s7 + 207) f + (7
-

2/8) 77 + (- /3

or collecting the different terms which enter into the equation

A A&quot; + 5 jB&quot;
- G C&quot;

= ^/A a + B * -
C&quot;

2
V^L&quot;

2 + B&quot;*
-

C&quot;

the result is

/

/8
// + 7 &quot;/S

+ 20/3 /3&quot;) 77 +(W 4- 7 7 &quot;)

+ 20/3 )(7
&quot; + 20/9 0^/S&quot; : {(- /3 + 2s7 + 207) +(7 -

2s/3) 77 + (- ft + 2sy + 4*0/9 )} = 0,

which, combined with the first equation written under the form

determines the ratios of
, ?;, ^, that is, the values of F + Z and YZ.
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The system of equations

20 \/|t) + \/ (Y+ Z ) +/YZ - Vfo \/ITT2

+ 20 via) + vis oz +

(h + 20 VOD) + V (Z+ F) +hXY- */d&amp;gt; ViTT2 Vf+T2 = o,

where

on which depends the solution of Steiner s extension of Malfatti s problem, is at once
seen to belong to the class of equations treated of in the preceding section, and
we have

&amp;lt;f&amp;gt;

= 0, s = 0. The equations at the conclusion of the preceding section

become

+ gh+ 29 (g \/&amp;lt; + h \/i3) + 402 VIM} + {g V + h

which may also be written

jp) (i + o + (- vi + VOD + h Vi3 + 20

2
r + 33) (h + ) SC ((VI - 20/) | -/T; + V&) = 0,

(/(| + ) + V^ (^ + 20|)}
2 - 6c {(I

- O2 + ^
2

}
= 0.

Hence observing that

20

and putting for a moment

1
+

&amp;lt;&) (VgfcE +
XL

and therefore

OF THE

UNIVERSITT

+ g) (A + V) VS = (VS + JF) x.

10
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the first equation divides by (V23 + jp), and the result is

= o.

Also, by an easy transformation, the second equation becomes

or putting

the equations become
-

2\3&amp;gt; = 0,

hence eliminating 4&amp;gt;,

/ (H) \2 (S)2
/

1
* -I . S\n I /- . S\n\ n I

-*-

or observing that

and reducing, we obtain

K2

t

+ Jr) (
v V!t^ + Ctr) (V^*J +

also @ =
2\&amp;lt;I&amp;gt; gives

^ = ^r@

Suppose

-
Jp
=

a,,
.: aa,

= Ka.

then substituting

a + a
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that is,

2
=

0,

Va + a

these may be written

where

,.,

or since f, 77, ^ are equal to 1, Y+Z, YZ respectively,

1 : Y + Z: YZ = MN -MN:NL -NL:LM -LM

Also

whence

K

OA/O A/~
YZ =

a + a

2V2 Va

and by forming the analogous expressions for Z +X and ZX, X+Y and XY, the
values of X, Y, Z may be determined. But the equations in question simplify them
selves in a remarkable manner by the notation before alluded to.

102
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Suppose

these values give

K2 = -f4 -g4 -h4 +2g2h2 + 2h2f2 +2f2

g
2 -

i/

Applying these results to the preceding formulas and forming for that purpose
the equations

, /5 / IIS- V2VTa~ J2

Va, f
2v2Va + a

vp&amp;lt;y
= 4gh, .

/ =
}

= _
^

v&SYt V^gh Va + a ^

gh^ +^ ^f= (/
2 -

gh) (f
2 -

(g
-

h)
2

)
-
2gh (g

-
h)

2
,

we have

4(/
2

-gh)(l-^,

=
{(/

2 -
gh) (f

2 -
(g
-

h)
2

)
-
2gh (g

-
h)

2

}
l - -

;

the former of which, combined with the similar equations for Z +X and X + Y, gives
for X, Y, Z the values to be presently stated, and these values will of course verify
the second equation and the corresponding equations for ZX and XY.

Recapitulating the preceding notation, if x = 0, y=Q, z = Q are the equations of the

given sectioDS, w = the equation of the polar plane of their point of intersection

with respect to the surface,

aa? + bf + cz* + Zfyz + 2gzx -f 2hxy +pw2 =

the equation of the surface, gC, 23, &amp;lt;2D, jp, (3r, |^, K as usual, and

+ + +
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then the equations of the required sections are

(ax + hy + gz)X + y V( + z V|l} + w V - ap Vl + X* = 0,

x V3JJ + y V& + (gx +fy + cz)Z+w\l -
cp Vl + Z* = 0,

where X, F, # are to be determined by the following equations,

(/+ 20 V|l ) + Va (F + ) +/YZ - Vfo Vl + F2 Vl +&quot;# = 0,

(g + 20 V33) + VlJ ( + X)+#T-VmVr+T2 Vl + X2 =
0,

(h + 20OD) + &amp;lt;(X+ F) + AZF - l + Z2 +* =

and the solution of which, putting

is given by the equations

(
f_ g+ h)

2 -2( f- g + h)J,

( f+g-h)^-2( f+g-h)/. C)

Instead of the direct but very tedious process by which these values of X, Y, Z
have been obtained, we may substitute the following d posteriori verification.

We have

^ 2
(1 + FZ) =4

(l
-
4) {(/

2 -
gh) (f

2 -
(g
-

h)
2

)
-
2gh (g

-
h)j f

\ v /

K (F + Z)
- 2f2 -

2g
2 - 2h* + 4J 2 = 4

f
1 - ^) (/

2 -
gh).

V //

Putting also

1 It is perhaps worth noticing that the value of the quantity \ previously made use of,
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we have

4g
2h2

(g-h)
2
(/

2

-gh)
J2

{K(Y+ Z) - 2f2 -
2g

2 - 2h2

Also, since

(fs
_

(g
_

h)8) + (g + h)
. - f. _ = 4gh

we have

= * l - f2 - (S
-

and the values obtained above give also

/ f\ / /
2
\ / h2

\

= 4(1- -J) (f
2 - (g- h)

2

2gh/* f 1 -
)(!

-
j\ ,

\ // \ w / X *

which shows that the relation between F and is verified by the assumed values of

these quantities, and the other two equations are of course also verified. The solution

of the problem will be rendered more complete if the equations of the required sections

and of the auxiliary sections made use of in the geometrical construction are expressed

in terms of f, g, h, J.

K
( t

First, to substitute in the equations of the required sections or resultors. Writing

the first equation in the form

= 0,

the coefficient of x will be
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or, as it is convenient to write it,

The coefficient of y is

- f4 - g
4 - h4 + 2g

2h2 + 2h2f2 + 2f2

g
2 -

or, after all reductions,

-
f h ,

and similarly the coefficient of is

- f4 - g
4 - h4 + 2g

2h2 + 2h2f2 + 2f2

g
2 -

or, after all reductions,

and the coefficient of w is

Hence, forming the equation of the resultor in question, and by means of it those

of the other resultors, the equations of the resultors are
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2gh

values which might be somewhat simplified by writing f, 77, ^, co instead of

and it may be also remarked, that the coefficients as well of these formulae as of those

which follow may be elegantly expressed in terms of the parts of a triangle having

f, g, h for its sides.

The equations of the separators are found by taking the differences two and two

of the equations of the resultors (this requires to be verified a posteriori); thus sub

tracting the third equation from the second the result contains a constant factor,

J
(f.

- (g- h) )gh
4P8% ~ J(? ~

(8
~

equivalent to

or

Rejecting the factor in question and forming the analogous two equations, the equa
tions of the separators are

f /_ f\ h-f g /_ g
-T-l* --- - -i= 1
^/ g

f
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and from the mode of formation of these equations it is obvious that the separators
have a line in common.

The equations of the determinators being x = 0, y = 0, z = 0, the equations of the

tactors are

and if ax + $y + yz + Bw = be the equation of the tactor touching

the conditions of contact are

a + -
&quot;

P

*+...?^
P

whence

-
Jf Vl) 7)

+ +

and putting for a moment

after some reductions, and observing that the ratios only of the quantities a, /3, 7 ,
B

are material, we obtain

g =
VM

c. ii.
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and it is easily seen also that the coordinates of the point of contact are

x = 0, y = v, z
/A, w =

jf-
1

h~ v

also

Hence substituting and introducing throughout the quantities f, g, h, J, also forming
the analogous equations, the equations of the tactors are

gh l - 1 - (f*
- (g-h)) Jpw = 0,

v

hf l -
h

l - t
(g

2 -
(h
- f )

2

)
V~-~pw = 0,

(f + g) J h8 -
(f
-

g)
s - -v

-
j) (l

-
f) (h=-(f-g)

!

) V^&amp;gt;.
= 0.
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It is obvious, from the equations, that each separator passes through the point of

contact of a tactor and determinator, it consequently only remains to be shown that

each separator touches two tactors. Consider the tactor which has been represented

by a.x + /3y + yz + 8w = 0, the unreduced values of the coefficients give

Represent for a moment the separator

by lx + my + nz + sw = 0. Then putting &Z2 + . . . s2 = n 2
, since

the condition of contact becomes

or, forming the value of Q 2 and substituting,

which may be verified without
difficulty, and thus the construction for the resultors

is shown to be true.

112
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8

Several of the formulae of the preceding sections of this memoir apply to any
number of variables. Consider the surface (i.e. hypersurface)

ax* + by* + cz* + 2fyz + 2gzx

and the section (i.e. hypersection)

(a\ + hfj, + gv . . .) x + (h\ + bp +fv ...)y
- p Vt = 0,

where

V 2 = a\~ + bfj? + cv* + 2//LH/ + 2gv\ + 2h\p ... - K,

the condition of contact with any other section represented by a similar equation is

a\\ + bw + cw +f(fiv + fjuv) + g (v\
f + i/\) + h (\p + X ... K = VV,

where K is the determinant formed with the coefficients a, b, c, f, g, h, ... And con

sequently, by establishing all or any of the equations X = V^l, p = V23, v=*J(&, ...

we have the condition in order that the section in question may touch all or the

corresponding sections of the sections x = 0, y = 0, z = 0, ...

Let n be the number of the variables x, y, z...
,
then ffi...

OD

also

x y z

whence also

jfn-a (V
2 + K) = A,

/Lt

x a ft

f* ft 23

or ^n-2 V 2 = - 1 \
fJL

V

\ a ft

/* ft 33 JF

^ s or
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and the equation of the section in question becomes

85

x y z ... Jn-i \/ _ p V _ IX
yu,

OD

also the condition of contact with the corresponding section is

+ 1 \ /A

i/ (ffi

= V- 1 A,

&amp;lt;&

V- 1 V

n 33

In particular the equation of the sections which touches all the sections x = 0, y = 0,

= 0,..., is

a;

vi a

i va

Again, the equations of the section touching y = 0, 2 = 0,... and the sections touching

x = 0, = 0,... are

x y z -iV-p&amp;gt;/- 1 X ^fi

x a n

JF

a; y 2

a n
A6 n ^ JF n
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and the condition of contact of these two sections is

[114

+ i

VI
V5B V... _v_ i x

x a

W&quot;

23 jp

4f OD

i va

i3

JF

It would seem from the appearance of these equations that there should be some

simpler method of obtaining the solution than the method employed in the previous

part of this memoir.
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115.

NOTE ON THE PORISM OF THE IN-AND-CIBCUMSCBIBED

POLYGON.

[From the Philosophical Magazine, vol. VI. (1853), pp. 99 102.]

THE equation of a conic passing through the points of intersection of the conies

U=0, V=Q
is of the form

wU+V=0,

where w is an arbitrary parameter. Suppose that the conic touches a given line, we

have for the determination of w a quadratic equation, the roots of which may be

considered as parameters for determining the line in question. Let one of the values

of w be considered as equal to a given constant k, the line is always a tangent to the

conic

kU+V=0;

and taking w=p for the other value of w, p is a parameter determining the particular

tangent, or, what is the same thing, the point of contact of this tangent.

Suppose the tangent meets the conic U= (which is of course the conic corre

sponding to w = oo ) in the points P, P
,
and let 6, oo be the parameters of the point

P, and &
,

oo the parameters of the point P . It follows from my &quot;Note on the

Geometrical representation of the Integral / dx + V(# + a) (x + 6) (x + c),&quot; [113] (
J

) and

from the theory of invariants, that if Q represent the &quot;Discriminant&quot; of U + V

1 I take the opportunity of correcting an obvious error in the note in question, viz. a2 + 6&quot; + c2 - 2bc - 2ca - 2ab

is throughout written instead of (what the expression should be) 62c2 + c2a2 + a?b2 - 2a26c - 2&2ca - 2c2a6. [This

correction is made, ante p. 55.]
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(I now use the term discriminant in the same sense in which determinant is sometimes

used, viz. the discriminant of a quadratic function ax- + by- + cz- + Zfyz + 2gzx + 2hxy

or (a, b, c, f, g, h) (x, y, zf, is the determinant k = abc-af
2 - bf - ch* + 2fgh), and if

then the following theorem is true, viz.

&quot;

If (6, oo
), (6

r

,
co ) are the parameters of the points P, P in which the conic

U=0 is intersected by the tangent, the parameter of which is p, of the conic

kU + F=0, then the equations

116 = Up - Uk,

ILff^Up+ Uk,

determine the parameters 6, 6 of the points in
question.&quot;

And again,

&quot;If the variable parameters 6, are connected by the equation

then the line PP will be a tangent to the conic kU+V=Q.&quot; Whence, also,

&quot;If the sides of a triangle inscribed in the conic 7=0 touch the conies

k U+ F = 0,

k U+V=0,
k&quot;U+V=Q,

then the equation
nk+ttk + ttk&quot; = Q

must hold good between the parameters k, k
,

k&quot;.&quot;

And, conversely, when this equation holds good, there are an infinite number of

triangles inscribed in the conic U = 0, and the sides of which touch the three conies
;

and similarly for a polygon of any number of sides.

The algebraical equivalent of the transcendental equation last written down is

1, k
,

= 0;

i, k
f

,

i, k&quot;,

let it be required to find what this becomes when k = k =
k&quot;
= 0, we have

= A+Bk+Ck2
+...,
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and substituting these values, the determinant divides by

J.
y

K
j

fC

1
) /C

j
/C

1, k&quot;,
k&quot;

2

the quotient being composed of the constant term C, and terms multiplied by k, k , k&quot;
;

writing, therefore, k = k =
k&quot;
=

0, we have (7=0 for the condition that there may be

inscribed in the conic 7 = an infinity of triangles circumscribed about the conic

F=0; C is of course the coefficient of 2 in VQ, i.e. in the square root of the

discriminant of 7-4- F; and since precisely the same reasoning applies to a polygon
of any number of sides,

THEOREM. The condition that there may be inscribed in the conic 7=0 an

infinity of w-gons circumscribed about the conic F = 0, is that the coefficient of |
n-J in

the development in ascending powers of of the square root of the discriminant of

%U + V vanishes. [This and the theorem p. 90 are erroneous, see post, 116].

It is perhaps worth noticing that n = 2, i. e. the case where the polygon degene
rates into two coincident chords, is a case of exception. This is easily explained.

In particular, the condition that there may be in the conic 1

an infinity of w-gons circumscribed about the conic

x* + y* + z2 =
0,

is that the coefficient of g
n~l in the development in ascending powers of of

vanishes
; or, developing each factor, the coefficient of n-1 in

-
&c.) (1 + | c -

&c.)

vanishes.

Thus, for a triangle this condition is

a2 + b2 + c
2 - 26c - 2ca - 2ab =

;

for a quadrangle it is

a3 + b3 + c
3 - be2 - 62

c - co? - c
2a - a&2 - a?b + 2abc = 0,

which may also be written

(b + c - a) (c + a - 6) (a + b - c)
=

;

and similarly for a pentagon, &c.

1 I have, in order to present this result in the simplest form, purposely used a notation different from
that of the note above referred to, the quantities ax2 + by

s + cz- and x- + y
2 + z2 being, in fact, interchanged.

c. ii. 12
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Suppose the conies reduce themselves to circles, or write

lf = tf + yt-R^ 0,

V = (x
-

a)
2 + y*

- r2 =
;

R is of course the radius of the circumscribed circle, r the radius of the inscribed

circle, and a the distance between the centres. Then

gU+V=(i; + l, | + 1,
- fR

3 - r3 + a8
, 0, -a, 0) (x, y, I)

2
,

and the discriminant is therefore

Hence,

THEOREM The condition that there may be inscribed in the circle a? + f -R =

an infinity of n-gons circumscribed about the circle (*- a)
2 + y*

- r = 0, is that the

coefficient of p-1 in the development in ascending powers of of

V(i + {r
2 + f (r

2 +# -

may vanish.

Now

or the quantity to be considered is the coefficient of n

where, of course,
^ = ^ B = r, + R2 _ ^ c = jR,

In particular,
in the case of a triangle we have, equating to zero the coefficient

or substituting the values of A, B&amp;gt; C,

(a
2 - E2 + 2Er) (a

2 -# -
2J2r)

=
;

the factor which corresponds to the proper geometrical solution of the question is

Euler s well-known relation between the radii of the circles inscribed and circumscribed

in and about a triangle, and the distance between the centre, I shall not now discu

the meaning of the other factor, or attempt to verify the formuto which have been

given by Fuss, Steiner and Richelot, for the case of a polygon of 4, 5, 6,7, , , M,

and 16 sides. See Steiner, Crelle, t. n. [1827] p. 289, Jacobi, t. m. [1828] p. 376:

Richelot, t. v. [1830] p. 250; and t. xxxvm. [1849] p. 3o3.

2 Stone Buildings, July 9, 1853.
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116.

CORRECTION OF TWO THEOREMS RELATING TO THE PORISM

OF THE IN-AND-CIRCUMSCRIBED POLYGON.

[From the Philosophical Magazine, vol. vi. (1853), pp. 376377.]

THE two theorems in my
&quot; Note on the Porism of the in-and-circumscribed Polygon

&quot;

(see August Number), [115], are erroneous, the mistake arising from my having in

advertently assumed a wrong formula for the addition of elliptic integrals. The first

of the two theorems (which, in fact, includes the other as a particular case) should be as

follows :

THEOREM. The condition that there may be inscribed in the conic U = an

infinity of rc-gons circumscribed about the conic F=0, depends upon the development

in ascending powers of of the square root of the discriminant of %U + V
;

viz. it

this square root be

=
0, &c.

;

then for n = 3, 5, 7, &c. respectively, the conditions are

C
|
=0, C, D =0,

D, E D, E, F

E, F, G

and for n=
4&amp;gt;, 6, 8, &c. respectively,, the conditions are

C, D, E

D I =0, D, E
|

= 0,

E, F
D, E, F

D, F, G

F, G, H

= 0, &c.

The examples require no correction; since for the triangle and the quadrilateral

respectively, the conditions are (as in the erroneous theorem) (7=0, D = 0.

122
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The second theorem gives the condition in the case where the conies are replaced

by the circles x- + y*
1 R- = and (x a)

2 + y
1 r2 = 0, the discriminant being in this case

-
(1 + ) {r

2 + (r
2 + R2 - a2

) + ?R2

}.

As a very simple example, suppose that the circles are concentric, or assume

a =
;
the square root of the discriminant is here

(1 + f) V

7)0

and putting for shortness = a, we may write

and the required condition therefore is

a2 -12a+16 = 0.

It is clear that, in the case in question,

^ = cos36=i(v
/

5 + l),K

that is, ^
= \/5-l, or (R + r)

2 -5r = 0,

viz. (Va + I)
2 - 5 = 0, or a + 2 Va - 4 = 0,

the rational form of which is

that is, A=l, B = a + l, C = -ia2 + |a
2
, D^a -ia2

,
E =

-^&amp;lt;* +iV a3
&amp;gt;

&c -
5

thus in the case of the pentagon,

C - 2 =-^ a4

{(a
-

4) (5a
- 8)

- 4 (a
-

2)
2

{

and we have thus a verification of the theorem for this particular case.

2 Stone Buildings, Oct. 10, 1853.
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117.

NOTE ON THE INTEGRAL ldx + J(m-x)(x + a)(x

[From the Philosophical Magazine, vol. vi. (1853), pp. 103 105.]

IF in the formulae of my
&quot; Note on the Porism of the in-and-circumscribed Polygon,&quot;

[115], it is assumed that

U = a;
2 + y

2 + z2 + (ax
2 + by

2 + cz2

)m

V= ax2 + by
2 + C22

,

and if a new parameter o&amp;gt; connected with the parameter w by the equation

wm
(0*1IV m w

be made use of instead of w, then

7/i

wU + V =- {m (x2 + y
2 + z2

) + ax2 + by
2 + cz2

} ;m co
l

and thus the equation wU+V=0, viz. the equation

w (x
2 + y

2 + z2

) + ax2 + by
2 + cz2 =

0,

is precisely of the same form as that considered in my
&quot; Note on the Geometrical

Representation of the Integral ldx + *J(x + a)(x + b) (x + c),&quot; [113.] Moreover, introducing

instead of a quantity rj,
such that

then

-
77) (a + v) (b
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Also % = oo gives rj
= m, the integral to be considered is therefore

n f_ Vmdq
J 7 V(m -

??) (a + 77) (6 + 17) (c + ;)

i.e. if in the paper last referred to the parameter oo had been throughout replaced

by the parameter m, the integral

n?7 = f

J Va -

V(a -f 17) (6 + 17) (c + ??)

would have had to be replaced by the integral II, 77.
It is, I think, worth while to

reproduce for this more general case a portion of the investigations of the paper in

question, for the sake of exhibiting the rational and integral form of the algebraical

equation corresponding to the transcendental equation !!,&+ IIj) + 11,0
= 0. Consider

the point r,, % on the conic m (#
2 + y- + z&amp;gt;)

+ ax2 + by
2 + cz1 = 0, the equation of the

tangent at this point is

(m + a)^as + (m + b)ijy + (m + c) & =
;

and if 9 be the other parameter of this line, then the line touches

6 (a? + f + z1

} + axz + bif + cz* =
;

or we have

(m + a)
2
g
3

(m + fr)
2
??

2

(m + c)
2 2

+ 6 + c

and combining this with

(m + a)
2
-f (m + 6) rf + (m + c)

2 = 0,

we have

= V 6 c Va + tfVfr+w

: V(c
-

a) V& + Vc +w Va +m

for the coordinates of the point P. Substituting these for x, y, z in the equation of

the line PP (the parameters of which are p, k), viz. in

x \/6 c \/(a + k) (a +p) + y Vc a V(6 + k) (b +p) + z \/a b Vc + k Vc +p = 0,

we have

c) j=
-

-t- (,c

Va + m ^b+m

+ (a-b)
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which is to be replaced by

=
b + m

0)

c +m
These equations give, omitting the common factor (a + m)(b + m} (c + m),

X2 = m2

(abc +pk0)

+ m{-abc(p+k + 0) + pk0 (a + b + c)}

2V = m 2

{- (be +ca + ab) + (kO + 6p +pk)}

+ m{-abc- pk0 + (be + ca + ab) (p +k+ 0) + (k0 + 0p + pk) (a + b + c)}

+ {abc (p + k + 0)- pkd (a + b + c)} ,

+ m {(be + ca + ab)
-

(k0 + 0p +pk)}

+ abc+pk0;

and substituting in 4\2
. p?

-
(2X/t)

2 = 0, we have the relation required. To verify that

the equation so obtained is in fact the algebraical equivalent of the transcendental

equation, it is only necessary to remark, that the values of X2
, p? are unaltered, and

that of X//, only changes its sign when a, b, c, m and p, k, 0,
- m are interchanged ;

arid so this change will not affect the equation obtained by substituting in the equation
4\2

. ^ (2X/i)
2 = 0. Hence precisely the same equation would be obtained by eliminating

L, M from

(k +a)(k + b) (k +c) = (L + Mk}* (m - /,),

(P + a)(p+ b) (p + c)
= (L+ Mpf (m - p),

(0 + a)(0 + b)(0+c) = (L + M0)*(0 -p)-

or, putting (L + Mk) (m - k)
= a + /3k + yfc, by eliminating a, 0, 7 from

(m - k) (k + a) (k + b) (k + c)
=

(a + /3k + 7&
2

)
2
,

(m -p)(p + a) (p + b)(p + c)
=

(a + /3p + 7^
2

)
2

,

(m -
6} (0 + a) (0 + b) (6+c) = (v + /30 + 7

2

&amp;gt;
,

=(y +/3m -f 7m 2

)
2

,

which by Abel s theorem show that p, k, are connected ,by the transcendental equation
above mentioned.

2 Stone Buildings, July 9, 1853.
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118.

ON THE HARMONIC RELATION OF TWO LINES OR TWO
POINTS.

[From the Philosophical Magazine, vol. vi. (1853), pp. 105 107.]

THE &quot;harmonic relation of a point and line with respect to a triangle&quot;
is well

known and understood l

;
but the analogous relation between two lines with respect to

a quadrilateral, or between two points with respect to a quadrangle, is not, I think,

sufficiently singled out from the mass of geometrical theorems so as to be recognized

when implicitly occurring in the course of an investigation. The relation in question,

or some particular case of it, is of frequent occurrence in the Traite des Proprietes

Projectives, [Paris, 1822], and is, in fact, there substantially demonstrated (see No. 163) ;

and an explicit statement of the theorem is given by M. Steiner, Lehrsatze 24 and 25,

Crelle, t. xm. [1835] p. 212 (a demonstration is given, t. xix. [1839] p. 227). The

theorem containing the relation in question may be thus stated.

THEOREM of the harmonic relation of two lines with respect to a quadrilateral.
&quot;

If

on each of the three diagonals of a quadrilateral there be taken two points harmonically

related with respect to the angles upon this diagonal, then if three of the points lie

in a line, the other three points will also lie in a line&quot; the two lines are said to

be harmonically related with respect to the quadrilateral.

It may be as well to exhibit this relation in a somewhat different form. The

three diagonals of the quadrilateral form a triangle, the sides of which contain the

six angles of the quadrilateral ;
and considering three only of these six angles (one

angle on each side), these three angles are points which either lie in a line, or else

1 The relation to which I refer is contained in the theorem, &quot;If on each side of a triangle there be

taken two points harmonically related with respect to the angles on this side, then if three of these points

lie in a line, the lines joining the other three points with the opposite angles of the triangle meet in a

point,&quot;
the line and point are said to be harmonically related with respect to the triangle.
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are such that the lines joining them with the opposite angles of the triangle meet in

a point. Each of these points is, with respect to the involution formed by the two

angles of the triangle, and the two points harmonically related thereto, a double point ;

and we have thus the following theorem of the harmonic relation of tAvo lines to

a triangle and line, or else to a triangle and point.

THEOREM. &quot;

If on the sides of a triangle there be taken three points, which either

lie in a line, or else are such that the lines joining them with the opposite angles
of a triangle meet in a paint; and if on each side of the triangle there be taken

two points, forming with the two angles on the same side an involution having the

first-mentioned point on the same side for a double point ;
then if three of the six

points lie in a line, the other three of the six points will also lie in a line
,

the

two lines are said to be harmonically related to the triangle and line, or (as the case

may be) to the triangle and point.

The theorems with respect to the harmonic relation of two points are of course

the reciprocals of those with respect to the harmonic relation of two lines, and do
not need to be separately stated.

The preceding theorems are useful in (among other geometrical investigations) the

porism of the in-and-circumscribed polygon.

2 Stone Buildings, July 9, 1853.
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119.

ON A THEOREM FOR THE DEVELOPMENT OF A FACTORIAL.

[From the Philosophical Magazine, vol. vi. (1853), pp. 182185.]

THE theorem to which I refer is remarkable for the extreme simplicity of its

demonstration. Let it be required to expand the factorial x - a x - b x - c ... in the

form

x a. x /3 x
&amp;gt;y...

+ Bx a. x @... + Cx a ... + D ... &c.

We have first

a = x a + ai a;

multiply the two sides of this by x - b
;
but in multiplying by this factor the term

j^T^ write the factor in the form x-0+ j3-b; and in multiplying the term a - a,

write the factor in the form x a + a b; the result is obviously

x ax b = x a. x ft + (a a + @ b) x a + a a a 6
;

multiply this by x c, this factor being in multiplying the quantity on the right-hand

side written successively under the forms x 7 + 7 c, x /3 + /3 c, a ct + ct c; the

result is

axbxc= x-a x
,

+ a a a 6 a c,
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which may be thus written,

(x a) (as b) (as c)
=

fa, ft, 7! __ K ft 1 _ fa 1
0-a)(&amp;gt;-/3)(#-7)+ , # - a a; - /3 + 7 sc-a+\

La, b, cJi La, 6, cJ 2 La, 6, cj,

Consider, for instance,

a, 6,

then, paying attention in the first instance to the Greek letters only, it is clear that

the terms on the second side contain the combinations two and two, with repetitions,

of the Greek letters a, ft, and these letters appear in each term in the alphabetical
order. Each such combination may therefore be considered as derived from the primitive
combination a, a by a change of one or both of the a s into ft ; and if we take

(instead of the mere combination a, a) the complete first term a a a b, and

simultaneously with the change of the a of either of the factors into ft make a similar

change in the Latin letter of the factor, we derive from the first term the other terms

of the expression on the right-hand side of the expression. It is proper also to

remark, that, paying attention to the Latin letters only, the different terms contain

all the combinations two and two, without repetitions, of the letters a, b, c. The same

reasoning will show that

as ax b x ex d x ax ft x y x

f
7&amp;gt;

a, 6, c,

f
%

a, b, c,

+ as-a
La, 6, c, dJ

3

La, b
, c, dJ 4

where, for instance,

t, ft &quot;I

= (a-a)(ot-6)(a-c)
a, b, c, dJ 3 +(a-a)(a-6)(y8-d)

+ (^-6)(/3-c)(^-d),.&c.

132
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It is of course easy, by the use of subscript letters and signs of summation, to

present the preceding theorem under a more condensed form
;

thus writing

where kt ,
ks_l} ...k form a decreasing series (equality of successive terms not excluded)

of numbers out of the system r, r&quot;^l, ...3, 2, 1; the theorem may be written in the

form

00 Oti X O.&amp;lt;&amp;gt;
. . . X fl _a ,

Ojpq

but I think that a more definite idea of the theorem is obtained through the notation

first made use of. It is clear that the above theorem includes the binomial theorem

for positive integers, the corresponding theorem for an ordinary factorial, and a variety

of other theorems relating to combinations.

Thus, for instance, if C
q (a1) ...ap) denote the combinations of d, ... ap , q and q

together without repetitions, and Hq (ali ...ap) denote the combinations of a,, ... ap ,

q and q together with repetitions, then making all the a s vanish,

~^~a, ...x^ap = S^(-}
q C

q (alt ...ap)a^ t

and therefore

(*-ay*=S
q

(-y&amp;gt;Cq (a, a... plures)^ = /.(-) jff
&amp;lt;**&quot;*

the ordinary binomial theorem for a positive and integral index p.

So making all the a s vanish,

XP =
iSqoHq (*! Op-9+l) X

~ ff
l
X ~

&quot;&quot;-

X ~ aP~V

If m be any integer less than p, the coefficient of xm on the right-hand side

must vanish, that is, we must have identically

= p~m
(-) &amp;lt;V9

_m (alf as ,
. . . ap-q)

H
q (alt ,,...

So also

a2 ... a = p-m
(-)C_-m ( 1 , a,, ... ap_q

Suppose
a, = 0, a2

= l ...ap =p-l\ ax
=

A;, a2
= A;-l, ... ap

= A;

then

...... op, o i ............ p- 3

and hence

the binomial theorem for factorials.



119] ON A THEOREM FOR THE DEVELOPMENT OF A FACTORIAL. 101

A preceding formula gives at once the theorem

It may be as well to remark, with reference to a demonstration frequently given

of the binomial theorem, that in whatever way the binomial theorem is demonstrated

for integer positive indices, it follows from what has preceded that it is quite as easy

to demonstrate the corresponding theorem for the factorial [m]
p

. But the theorem

being true for the factorial [m]p,
it is at once seen that the product of the series

for (l+x)
m and (1 4- x}

n
is identical with the series for (l+x)

m+n
,
and thus it becomes

unnecessary to employ for the purpose of proving this identity the so-called principle

of the permanence of equivalent forms
;

a principle which however, in the case in

question, may legitimately be employed.
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120.

NOTE ON A GENERALIZATION OF A BINOMIAL THEOREM.

[From the Philosophical Magazine, vol. vi. (1853), p. 185.]

THE formula (Grelle, t. I. [1826] p. 367) for the development of the binomial
(te + a)*,

but which is there presented in a form which does not put in evidence the law of

the coefficients, is substantially equivalent to the theorem given by me as one of the

Senate House Problems in the year 1851, and which is as follows :

&quot;If {a + /3 + 7-..}
? denote the expansion of (a + /3 + y...)p, retaining those terms

Naa@b
ry

c&d only in which b + c+d... is not greater than p l,c + d+.. is not greater
than p 2, &c., then

xn=1 (x + a)
n

+ &c.&quot;

The theorem is, I think, one of some interest.
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121.

NOTE ON A QUESTION IN THE THEORY OF PROBABILITIES.

[From the Philosophical Magazine, vol. vi. (1853), p. 259.]

THE following question was suggested to me, either by some of Prof. Boole s

memoirs on the subject of probabilities, or in conversation with him, I forget which
;

it seems to me a good instance of the class of questions to which it belongs.

Given the probability a. that a cause A will act, and the probability p that A
acting the effect will happen ;

also the probability /3 that a cause B will act, and the

probability q that B acting the effect will happen; required the total probability of

the effect.

As an instance of the precise case contemplated, take the following: say a day is

called windy if there is at least w of wind, and a day is called rainy if there is at

least r of rain, and a day is called stormy if there is at least W of wind, or if

there is at least R of rain. The day may therefore be stormy because of there being
at least W of wind, or because of there being at least R of rain, or on both accounts

;

but if there is less than W of wind and less than R of rain, the day will not be

stormy. Then a. is the probability that a day chosen at random will be windy, p the

probability that a windy day chosen at random will be stormy, ft the probability that

a day chosen at random will be rainy, q the probability that a rainy day chosen at

random will be stormy. The quantities X, /u,
introduced in the solution of the question

mean in this particular instance, X the probability that a windy day chosen at random

will be stormy by reason of the quantity of wind, or in other words, that there will

be at least W of wind
; /* the probability that a rainy day chosen at random will

be stormy by reason of the quantity of rain, or in other words, that there .will be at

least R of rain.
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The sense of the terms being clearly understood, the problem presents of course

no difficulty. Let X be the probability that the cause A acting will act efficaciously ;

H the probability that the cause B acting will act efficaciously; then

q fj, + (1 /i) aX,

which determine X, /u, ;
and the total probability p of the effect is given by

p = \a. + /it/3 X/na^S ;

suppose, for instance, a=l, then

p = X + (1 X) /^/3, q
= p + X X/i, p =

that is, p = p, for p is in this case the probability that (acting a cause which is

certain to act) the effect will happen, or what is the same thing, p is the probability

that the effect will happen.

Machynlleth, August 16, 1853.
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122.

ON THE HOMOGRAPHIC TRANSFORMATION OF A SURFACE
OF THE SECOND ORDER INTO ITSELF.

[From the Philosophical Magazine, vol. vi. (1853), pp. 326333.]

THE following theorems in plane geometry, relating to polygons of any number

(odd or even) of sides, are well known.

&quot;

If there be a polygon of (TO + 1) sides inscribed in a conic, and m of the

sides pass through given points, the (m + l)th side will envelope a conic having double

contact with the given conic.&quot; And &quot; If there be a polygon of (m + 1) sides inscribed

in a conic, and m of the sides touch conies having double contact with the given
conic, the (m + l)th side will envelope a conic having double contact with the given
conic.&quot; The second theorem of course includes the first, but I state the two separately
for the sake of comparison with what follows.

As regards the corresponding theory in geometry of three dimensions, Sir W. Hamilton
has given a theorem relating to polygons of an odd number of sides, which may be
thus stated: &quot;If there be a polygon of (2m + 1) sides inscribed in a surface of the

second order, and 2m of the sides pass through given points, the (2m + l)th side will

constantly touch two surfaces of the second order, each of them intersecting the given
surface of the second order in the same four lines 1

.&quot;

1 See Phil. Mag. vol. xxxv. [1849] p. 200. The form in which the theorem is exhibited by Sir W. Hamilton
is somewhat different; the surface containing the angles is considered as being an ellipsoid, and the two surfaces
touched by the last or (2m + l)th side of the polygon are spoken of as being an ellipsoid, and a hyperboloid of
two sheets, having respectively double contact with the given ellipsoid: the contact is, in fact, a quadruple con
tact at the same four points; real as regards two of them in the case of the ellipsoid, and as regards the other
two in the case of the hyperboloid of two sheets ; and a quadruple contact is the coincidence of four generating
lines belonging two and two to the two series of generating lines, these generating lines being of course (in the
case considered by Sir W. Hamilton) all of them imaginary.

C. II. 14
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The entire theory depends upon what may be termed the transformation of a

surface of the second order into itself, or analytically, upon the transformation of a

quadratic form of four indeterminates into itself. I use for shortness the term trans

formation simply; but this is to be understood as meaning a homographic transformation,

or in analytic language, a transformation by means of linear substitutions. It will

be convenient to remark at the outset, that if two points of a surface of the second

order have the relation contemplated in the data of Sir W. Hamilton s theorem (viz.

if the line joining the two points pass through a fixed point), the transformation is,

using the language of the Recherches Arithmetiqiies, an improper one, but that the

relation contemplated in the conclusion of the theorem (viz. that of two points of a

surface of the second order, connected by a line touching two surfaces of the second

order each of them intersecting the given surface of the second order in the same

four lines) depends upon a proper transformation; and that the circumstance that an

even number of improper transformations is required in order to make a proper trans

formation (that this circumstance, I say), is the reason why the theorem applies to

polygons in which an even number of sides pass through fixed points, that is, to

polygons of an odd number of sides.

Consider, in the first place, two points of a surface of the second order such that

the line joining them passes through a given point. Let x, y, z, w be current

coordinates 1

,
and let the equation of the surface be

(a, ...)(#, y, ^ w)
2 = 0,

and take for the coordinates of the two points on the surface x1} yl} zlt WL and

#2, 2/2, z.&amp;gt;
w2 ,

and for the coordinates of the fixed point a, /3, 7, 8. Write for shortness

(a,...) (a, 0, 7, S)
2

=P&amp;gt;

(a,...) (a, , 7, 8)(a?i, ylt z1} w1)
=

ql ,

then the coordinates #a , t/2 , z^, wz are determined by the very simple formulae

2a
x

l

27
* = *i- -ft.

28
w2 =wl

--
ql .

1
Strictly speaking, it is the ratios of these quantities, e.g. x : w, y : iff, z : IP, which are the coordinates, and

consequently, even when the point is given, the values x, y, z, w are essentially indeterminate to a factor prex.

So that in assuming that a point is given, we should write x : y : z : w= a : ft : y. 3; and that when a point is

obtained as the result of an analytical process, the conclusion is necessarily of the form just mentioned : but

when this is once understood, the language of the text may be properly employed. It may be proper to explain

here a notation made use of in the text : taking for greater simplicity the case of forms of two variables,

(J, m) (x^ y) means lx + my; (a, b, c) (x, ?/)
2 means ax2 + 2bxy + cy^; (a,b,c) (, TJ) (x, y) means ax + b (y + lyx) + crjy .

The system of coefficients may frequently be indicated by a single coefficient only : thus in the text (a, ...) (x, y, z, w)&quot;

stands for the most general quadratic function of four variables.
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In fact, these values satisfy identically the equations

2/2&amp;gt;

2/i&amp;gt;

, ft, y,

= 0,

, P, J, o
\

that is, the point (x
2&amp;gt; y2 ,

z2 ,
w2) will be a point in the line joining

and (a, /3, 7, 8). Moreover,

(a, ...)(xa , 2/2,
*2 ,

w2)
2 =

(a,

-?-
(a, ...)(a, & 7,

7,

that is,

(a, ...)(a?2 , 7/2 ,
^2 ,

w2)
8 =

(a, ...)(i, 2/i&amp;gt;
^ O2

;

so that 1} 2/l3
zlt w-i being a point on the surface, 2 , y2 ,

z2 ,
wz will be so too. The

equation just found may be considered as expressing that the linear equations are a

transformation of the quadratic form (,...)(#, y, z, w)
2 into itself. If in the system

of linear equations the coefficients on the right-hand side were arranged square-wise,
and the determinant formed by these quantities calculated, it would be found that

the value of this determinant is 1. The transformation is on this account said to

be improper. If in a system of linear equations for the transformation of the form

into itself the determinant (which is necessarily + 1 or else 1) be +1, the trans

formation is in this case said to be proper.

We have next to investigate the theory of the proper transformations of a quadratic
form of four indeterminates into itself. This might be done for the absolutely general
form by means of the theory recently established by M. Hermite, but it will be

sufficient for the present purpose to consider the system of equations for the trans

formation of the form x* + y
2 + z2 + w* into itself given by me some years since. (Crelle,

vol. xxxii. [1846] p. 119, [52] (^

I proceed to establish (by M. Hermite s method) the formulae for the particular
case in question. The thing required is to find x2 , y2 ,

za , w2 linear functions of

x
i&amp;gt;

2/i&amp;gt;

z
\&amp;gt;

w
i&amp;gt;

sllcn that

x? + y? + z? + w.? = x- + y* + zf + Wj
2

.

Write

#! + a;2 =2, y1 + y.2
=

2ij, z1 + z,= 2^, w1 + wa
=

2a&amp;gt;;

1 It is a singular instance of the way in which different theories connect themselves together, that the
formulae in question were generalizations of Euler s formulae for the rotation of a solid body, and also are
formulae which reappear in the theory of quaternions ; the general formulas cannot be established by any obvious

generalization of the theory of quaternions.
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then putting x2
= 2^x1 , &c., the proposed equation will be satisfied if only

which will obviously be the case if

aw,

z\
=

/*% \rj + + cca ,

wl
=

at; br) c + a)
,

where X, /u., v, a, b, c are arbitrary.

Write for shortness

aX + bfi + cv =
&amp;lt;,

1 + X2 + ^
2 + ^2 + u2 + 62 + c2 + &amp;lt;

2 =
A;,

then we have

fc =
(1 + X2+ 62 + c

2

) xl + (X/i -v - ab -
c&amp;lt;f&amp;gt;) yl + (v\ + p - ca +

b(j&amp;gt;)

z1 + (bv Cfj,
a

kij =(V + v
ab+c&amp;lt;f&amp;gt;) ^ + (1 + p? + c

2 + a2
) y, + (jiv

- X - 6c + a$) ^ + (c\
- av - b -

k =
(v\-n-ca-b(l&amp;gt;)a;l +(fii&amp;gt;

+ \ - be
+a(f&amp;gt;)y1 +(I +i/

2 + a2 +62
)zl+ (a/j.-b\

- c
-v&amp;lt;f&amp;gt;)wlt

kw=(bv cn+ a-\-\$)xl + (c\ av+1} +fjL^)y 1+ (a/A bv+ c+v^&amp;gt;)z1 + (l +X2

+/u,
2
-f i&amp;gt;

2

)wj;

and from these we obtain

kx2
=

(1 + X2 + 62 + c
2 -

/i
2 -

i^
2 - a2 -

&amp;lt;

2

) ^ + 2 (\/i
-

i;
- a6 - c0) ^ + 2 (v\ + /*

- ca +
b(f&amp;gt;)

zl

+ 2bv Cji a

+ 2 (c\ av b
/ui(j))

wl ,

a&amp;lt;f&amp;gt;) y^ + (1 + v2 + a- + b2 - X2 -
tf
- c2 -

&amp;lt;

2

) s,

- av + +
(j,&amp;lt;&amp;gt; yl -\- ap -v + c + v z

l

+ (1 + X2

+/A
2 + z/

2 - a2 - 62 - c
2 - 2

) w,,

values which satisfy identically 2
2 + 2/2

2 + z? + w2
2 = x? + y? + z? + w^.

Dividing the linear equations by k, and forming with the coefficients on the right-

hand side of the equation so obtained a determinant, the value of this determinant is

+ 1
;
the transformation is consequently a proper one. And conversely, what is very

important, every proper transformation may be exhibited under the preceding form 1
.

1 The nature of the reasoning by which this is to be established may be seen by considering the analogous

relation for two variables. Suppose that x
l ,yl

are linear functions of x and y such that X
1
z + y l

2=x2+ y
2

; then

if 2=x + a;1 , 2j=y + y1 , , 77 will be linear functions of x, y such that 2 + i?
2= # + ;?/, or (

-
x) + T) (TI

- j/)=0;
- must be divisible either by 77

or else by 77 -y. On the former supposition, calling the quotient v, we have

x= j:- vr
i &amp;gt;

and thence y = v + ij, leading to a transformation such as is considered in the text, and which is a proper

transformation; the latter supposition leads to an improper transformation. The given transformation, assumed

to be proper, exists and cannot be obtained from the second supposition ; it must therefore be obtainable from

the first supposition, i.e. it is a transformation which may be exhibited under a form such as is considered in

the text.



122] A SURFACE OF THE SECOND OEDEE, INTO ITSELF. 109

Next considering the equations connecting x, y, z, w with
, ij, , &&amp;gt;,

we see that

aco)
2

We are thus led to the discussion (in connexion with the question of the trans

formation into itself of the form a? + y
2 + z2 + w2

) of the new form

( x + vy fiz + aw)
2

+ (vas+ y + \z + bw)
2

+ ( ^x \y + z + cw)
2

+ (ax by cz + w)
2

;

or, as it may also be written,

(x
2 + y

2 + z2 + w2

) + (yy pz + aw)
2 + (\z vx+ bw)

2 + (JJLX \y+ cwf + (ax + by + cz)
2
.

Represent for a moment the forms in question by U, V, and consider the surfaces

U = Q, V=0. If we form from this the surface V+qU=0, and consider the dis

criminant of the function on the left-hand side, then putting for shortness

K. = X2 + fj? + v2 + a2 + b2+c2
,

this discriminant is

which shows that the surfaces intersect in four lines. Suppose the discriminant vanishes-

we have for the determination of q a quadratic equation, which may be written

let the roots of this equation be q,, q/t ;
then each of the functions qfl+V, g,,U+ V

will break up into linear factors, and we may write

(U and V are of course linear functions of R
I
S

/
and R

flS^ forms which put in

evidence the fact of the two surfaces intersecting in four lines.

The equations

a?x + a?a
= 2 yl + y2

=
2i), z

l +z&amp;lt;t
= 2 wl
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show that the point (, 77, , eo) lies in the line joining the points (xl} yly z^ wj and

(x2 , 2/2 &amp;gt; ^2, MS); and to show that this line touches the surface V = 0, it is only

necessary to form the equation of the tangent plane at the point (, 77, , &&amp;gt;)

of the

surface in question ;
this is

(x + vy pz + aw) ( + wrj /A +
&&amp;gt;)
+ . . . =

;

or what is the same thing,

(x + vy pz + aw) xl + . . .
= 0,

which is satisfied by writing (x1} ylt zlt w^) for (sc, y, z, w), that is, the tangent plane of

the surface contains the point (#j, ylt zl , w^). We see, therefore, that the line through

(#1, 3/1, Zi&amp;gt; w\) and
(#2&amp;gt; 2/2,

S a. w2) touches the surface F= at the point (, 77, , w).

Write now

/
X

/ -yu, , -z/ ,
-a , -b

, -c
:

if we derive from the coordinates ac^ yl} zlf wt , by means of these coefficients

a
,
b

,
c , V, //, v

,
new coordinates in the same way as x2 , y 2&amp;gt;

z2,
w2 were derived by

means of the coefficients a, b, c, \, fj,, v, the coordinates so obtained are #2 &amp;gt;

~~
2/2.

Z
2&amp;gt;

w2 ,

i.e. we obtain the very same point (#2,
2/2&amp;gt;

^2, ^2) by means of the coefficients (a, b, c, \, /u,, v),

and by means of the coefficients (a ,
b , c , V, //, ,

v
). Call

, 77 , ,
&/ what ^, 77, ^, &&amp;gt;

become when the second system of coefficients is substituted for the first
;

the point

f, T; , ,
&) will be a point on the surface V = 0, where

V =
&amp;lt;/&amp;gt;

2

(&amp;gt;

2 + y* + z- + w2

)

+ ( cy + bz \w)
2 + ( az + cx yuw)

2 + ( bx + ay vw)
2 + ( \x py vzf ;

and since

V + V = KO2 + f + z* + w2

),

and V0 intersects the surface #2 + y
2 + z2 + w2 = in four lines, the surface V =

will also intersect this surface in the same four lines. And it is, moreover, clear that

the line joining the points (x 1} ylt z1} wt) and (#2 , y, z.
2&amp;gt;

w2) touches the surface V
in the point ( , 77 , ^ ,

co
).

We thus arrive at the theorem, that when two points
of a surface of the second order are so connected that the coordinates of the one

point are linear functions of the coordinates of the other point, and the transformation

is a proper one, the line joining the two points touches two surfaces of the second

order, each of them intersecting the given surface of the second order in the same

four lines. Any two points so connected may be said to be corresponding points, or

simply a pair. Suppose the four lines and also a single pair is given, it is not for

the determination of the other pairs necessary to resort to the two auxiliary surfaces

of the second order
;

it is only necessary to consider each point of the surface as

determined by the two generating lines which pass through it
;
then considering first



122] A SURFACE OF THE SECOND ORDER INTO ITSELF. Ill

one point of the given pair, and the point the corresponding point to which has to

be determined, take through each of these points a generating line, and take also

two generating lines out of the given system of four lines, the four generating lines

in question being all of them of the same set, these four generating lines inter

secting either of the other two generating lines of the given system of four lines in

four points. Imagine the same thing done with the other point of the given pair

and the required point, we should have another system of four points (two of them

of course identical with two of the points of the first-mentioned system of four points) ;

these two systems must have their anharmonic ratios the same, a condition which

enables the determination of the generating line in question through the required

point: the other generating line through the required point is of course determined

in the same manner, and thus the required point (i.e. the point corresponding to any

point of the surface taken at pleasure) is determined by means of the two generating
lines through such required point.

It is of course to be understood that the points of each pair belong to two

distinct systems, and that the point belonging to the one system is not to be con

founded or interchanged with the point belonging to the other system. Consider, now,
a point of the surface, and the line joining such point with its corresponding point,

but let the corresponding point itself be altogether dropped out of view. There are

two directions in which we may pass along the surface to a consecutive point, in

such manner that the line belonging to the point in question may be intersected by
the line belonging to the consecutive point. We have thus upon the surface two

series of curves, such that a curve of each series passes through a point chosen at

pleasure on the surface. The lines belonging to the curves of the one series generate
a series of developables, the edges of regression of which lie on one of the surfaces

intersecting the surface of the second order in the four given lines; the lines belonging
to the curves of the other series generate a series of developables, the edges of

regression of which lie on the other of the surfaces intersecting the surface in the

four given lines
;

the general nature of the system may be understood by considering
the system of normals of a surface of the second order. Consider, now, the surface

of the second order as given, and also the two surfaces of the second order inter

secting it in the same four lines
;

from any point of the surface we may draw to

the auxiliary surfaces four different tangents ;
but selecting any one of these, and

considering the other point in which it intersects the surface as the point corre

sponding to the first-mentioned point, we may, as above, construct the entire system
of corresponding points, and then the line joining any two corresponding points will

be a tangent to the two auxiliary surfaces
;

the system of tangents so obtained may
be called a system of congruent tangents. Now if we take upon the surface three

points such that the first and second are corresponding points, and that the second

and third are corresponding points, then it is obvious that the third and first are

corresponding points; observe that the two auxiliary surfaces for expressing the corre

spondence between the first and second point, those for the second and third point,
and those for the third and first point, meet the surface, the two auxiliary surfaces

of each pair in the same four lines, but that these systems of four lines are different
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for the different pairs of auxiliary surfaces. The same thing of course applies to any
number of corresponding points. We have thus, finally, the theorem, if there be a

polygon of (m + 1) sides inscribed in a surface of the second order, and the first side

of the polygon constantly touches two surfaces of the second order, each of them

intersecting the surface of the second order in the same four lines (and the side

belong always to the same system of congruent tangents), and if the same property
exists with respect to the second, third, &c and mth side of the polygon, then will

the same property exist with respect to the (m + l)th side of the polygon.

We may add, that, instead of satisfying the conditions of the theorem, any two

consecutive sides of the polygon, or the sides forming any number of pairs of con

secutive sides, may pass each through a fixed point. This is of course only a

particular case of the improper transformation of a surface of a second order into

itself, a question which is not discussed in the present paper.
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123.

ON THE GEOMETEICAL REPRESENTATION OF AN ABELIAN

INTEGRAL.

[From the Philosophical Magazine, vol. vi. (1853), pp. 414 418.]

THE equation of a surface passing through the curve of intersection of the surfaces

#2 -|-
y&quot;-

4. Z &quot;-

_|_ wn- Q
;

ax1 + by
2 + cz- -t- dw&quot;- = 0,

is of the form

2 + dw2 = 0,

where 8 is an arbitrary parameter. Suppose that the surface touches a given plane,

we have for the determination of 8 a cubic equation the roots of which may be

considered as parameters defining the plane in question. Let one of the values of 8

be considered equal to a given quantity k, the plane touches the surface

k O2 + y
2 + z- + w2

) + ax2 + by- + cz&quot; + dw2 =
0,

and the other two values of 8 may be considered as parameters defining the particular

tangent plane, or what is the same thing, determining its point of contact with the

surface.

Or more clearly, thus : in order to determine the position of a point on the

surface

k (x- + y- + z2 + W*} + ax2 + by- + cz- + dw- =
;

the tangent plane at the point in question is touched by two other surfaces

p (x- + 7/
2 + zz + iv-) + ax&quot; + by

2 + cz- + dw- = 0,

q (x- + y- + z- + w2

) + ax- +
by&quot;

+ cz&quot; + dw- =
;

C. II. 15
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and, this being so, p and q are the parameters by which the point in question is

determined. We may for shortness speak of the surface

k (x
2 + if + z2 + w-} + ax2 + by- + cz2 + dw2 =

as the surface (k). It is clear that we shall then have to speak of

x2 + y
2 + z&quot; + w2 =

as the surface (oc ).

I consider now a chord of the surface (GO ) touching the two surfaces (k) and

(k ) ;
and I take 6, &amp;lt;$&amp;gt;

as the parameters of the one extremity of this chord
; (p, q)

as the parameters of the point of contact with the surface (k) ; p , q as the parameters

of the point of contact with the surface (k ) ;
and 6

, $ as the parameters of the

other extremity of the chord ;
the points in question may therefore be distinguished

as the points (oo ; 0, &amp;lt;), (k; p, q), (k ; p , q), and (x ; ,
&amp;lt;/&amp;gt;

).
The coordinates of the

point (x ; 0,
&amp;lt;/&amp;gt;)

are given by

x : y : z : w = V(a + 0) (a + &amp;lt;)
-4- *J(a b)(a c) (a

-
d)

+ 6) (b +(/&amp;gt;)
+ A& -

c) (6
-

d) (b
-

a)

: V(c + 0) (c + &amp;lt;)

-5- V(c
-

d) (c
-

a) (c
-

b)

+ &amp;lt;9)~(dT0)
-r V(d - a) (d

-
6) (d

-
c) ;

those of the point (k , p, q) by

x : y : z : lu = V(a +p) (a + q) -r V(a 6) (a c) (a c?) \/a + k

^(o +^&amp;gt;) (6 + q) + V(6
-

c) (6
-

d) (6
-

a) V& + ^

: V(c + p) (c + g) -r- V(c
-

d) (c
-

a) (c
-

6) Vc + /;

: V(d + p) (d + ?) -j- V(d - a) (d
-

6) (d - c) Vd&quot;+I- ;

and similarly for the other two points.

Consider, in the first place, the chord in question as a tangent to the two

surfaces (k) and (k ).
It is clear that the tangent plane to the surface (k) at the

point (k ; p, q) must contain the point (k ; p , q ),
and vice versa. Take for a moment

f, 77, ,
to as the coordinates of the point (& ; p, q), the equation of the tangent

plane to (k) at this point is

2 (a + *) fc- ;

or substituting for f,... their values

2 (a; V(a+^)(a + g) VaT ^ V(a - 6) (a
-

c) (a
-

rf) )
=

;
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or taking for x,,.. the coordinates of the point (k } p , q ),
we have for the conditions

that this point may lie in the tangent plane in question,

2 (*J(a&amp;gt;+p)(a + q) *J(a +p } (a + q ) V(a + k) -r- V(a + k
~) (a

-
6) (a

-
c) (a

-
d) )

=
;

or under a somewhat more convenient form we have

2
( (b

-
c) (c

-
d) (d

-
b) J(a +p)(a + q) */(a + p ) (a + tf ^ES) = 0,

for the condition in order that the point (k , p , q ) may lie in the tangent plane at

(k; p, q) to the surface (k). Similarly, we have

2
((b

-
c) (c

-
d) (d

-
b) J(a+p)(a + q) \/( + p )(a + q) ]

= 0,
V Va &amp;gt;Va + k

for the condition in order that the point (k, p, q) may lie in the tangent plane at

(k ; p , q ) to the surface (k ).
The former of these two equations is equivalent to

the system of equations

V(a +p) (a + q) (a + p ) (a + q ) J~ =
V it ~\~ rC

and the latter to the system of equations

va2
,

~\~

= \ + p a + v a?;

where in each system a is to be successively replaced by b, c, d, and where \, p, v

and X7

, /A ,
v are indeterminate. Now dividing each equation of the one system by

the corresponding equation in the other system, we see that the equation

x + k X +,/J,IK + va?~
X

is satisfied by the values a, b, c, d of a;
; and, therefore, since the equation in x is

only of the third order, that the equation in question must be identically true. We
may therefore write

X + fj,x + vx~ = (px + o}(x + k}, \ + p!x + v x- = (pas + cr)(x + k
),

and the two systems of equations become therefore equivalent to the single system,

V(a +p) (a + q) (a +p ) (a + q )
= (pa + o-) J(a^Tk)(a^k ),

)
=

(pb + a)

V(c + p) (c + q) (c + p ) (c + q )
= (pc + a) V(c + k) (c + k

),

r

)
= (pd + a)

152
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a set of equations which may be represented by the single equation

^ (x +p) (as + q) (x +p ) (x + q)
-

(px + a-)
2

(x + k)(x + V) = x(x ~ ) (x -&)(- c)O ~ dl

where x is arbitrary; or what is the same thing, writing x instead of x,

Hence, putting

dx

V(a? + a) (x + b) (x + c)(x + d) (x
-

k) (x
- k }

xdx

V(# + a) (x + b) (x + c)(x + d) (x -k)(x- k )

we see that the algebraical equations between p, q; p , q are equivalent to the

transcendental equations

Up Uq Up Uq = const.

H,p U
t q U

tp IT// = const.

The algebraical equations which connect 0, $ with p, q; p , q , may be exhibited

under several different forms; thus, for instance, considering the point (oo ; 0, &amp;lt;)

as

a point in the line joining (k ; p, q) and (k
f

; p , q ),
we must have

k

(6 + 0)

i.e. the determinants formed by selecting any three of the four columns must vanish;

the equations so obtained are equivalent (as they should be) to two independent

equations.

Or, again, by considering (oo ; 0, 0) first as a point in the tangent plane at

(k; p, g) to the surface (k), and then as a point in the tangent plane at (K \ p , q )

to the surface (& ),
we obtain

-
b) &amp;lt;/(a

+ p)(a + q) V(o+~&) V(a + 0) (a + f)
= 0,

Or, again, we may consider the line joining (oo ; 0,
&amp;lt;j&amp;gt;)

and (k; p, q) or (k
f

; p , q ),

as touching the surfaces (k) and (A/); the formulas for this purpose are readily

obtained by means of the lemma,
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&quot; The condition in order that the line joining the points (f, 77, , CD) and (f, ?/, f, a/)

may touch the surface

a^c
2 + b?/

2 + c 2 + dw- =

is

the summation extending to the binary combinations of a, b, c, d.&quot;

But none of all these formulae appear readily to conduct to the transcendental

equations connecting 0, 6 with p, q; p , q . Reasoning from analogy, it would seem

that there exist transcendental equations

+ HO U6 Up Up = const.

Ufi 11,6 n,p Iiy = const.,

or the similar equations containing q, q ,
instead of p, p ,

into which these are changed

by means of the transcendental equations between p, q, p , q . If in these equations
we write 6

,
6 instead of 6, 6, it would appear that the functions 11^, Up , I^p, Iiy

may be eliminated, and that we should obtain equations such as

Ue U6 U0 116 = const.

+ 11,0 11,0 + Ufl 11,6 = const.

to express the relations that must exist between the parameters 6, 6 and
, 6 of

the extremities of a chord of the surface

x? + if + z2 + w2 =
0,

in order that this chord may touch the two surfaces

k (x
2 + y

2 + z2 + w2

) + ax2 + by
2 + cz~ + dw2 =

0,

k O2 + f + z2 + w2

} + ax* + by
2 + cz2 + diu2 = 0.

The quantities k, k
,

it will be noticed, enter into the radical of the integrals

Tlx, II/c. This is a very striking difference between the present theory and the

analogous theory relating to conies, and leads, I think, to the inference that the theory
of the polygon inscribed in a conic, and the sides of which touch conies intersecting

the conic in the same four points, cannot be extended to surfaces in such manner as

one might be led to suppose from the extension to surfaces of the much simpler

theory of the polygon inscribed in a conic, and the sides of which touch conies having
double contact with the conic. (See my paper

&quot; On the Homographic Transformation

of a surface of the second order into itself,&quot; [122]).

The preceding investigations are obviously very incomplete; but the connexion

which they point out between the geometrical question and the Abelian integral

involving the root of a function of the sixth order, may I think be of service in

the theory of these integrals.
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ON A PROPERTY OF THE CAUSTIC BY REFRACTION OF THE
CIRCLE.

[From the Philosophical Magazine, vol. vi. (1853), pp. 427431.]

M. ST LAURENT has shown (Gergonne, vol. xvm. [1827] p. 1), that in certain cases

the caustic by refraction of a circle is identical with the caustic of reflexion of a circle

(the reflecting circle and radiant point being, of course, properly chosen), and a very

elegant demonstration of M. St Laurent s theorems is given by M. Gergonne in the

same volume, p. 48. A similar method may be employed to demonstrate the more

general theorem, that the same caustic by refraction of a circle may be considered as

arising from six different systems of a radiant point, circle, and index of refraction.

The demonstration is obtained by means of the secondary caustic, which is (as is well

known) an oval of Descartes. Such oval has three foci, any one of which may be

taken for the radiant point : whichever be selected, there can always be found two

corresponding circles and indices of refraction. The demonstration is as follows :

Let c be the radius of the refracting circle, /u,
the index of refraction

;
and taking

the centre of the circle as origin, let
, tj be the coordinates of the radiant point,

the secondary caustic is the envelope of the circle

^ ( x
- a + y

-
/S&quot;)

-
(
-

a&quot; + 77
-

)
=

0,

where a, /3 are parameters which vary subject to the condition

a 2
-f /3-

- c- =
;

the equation of the variable circle may be written
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which is of the form

the envelope is therefore

&amp;lt;7

2 = c
2

(A
2 + 2

).

Hence substituting, we have for the equation of the envelope, i.e. for the secondary

caustic,

{? O2 + f + c2

)
- (P + T + c

2

)}
2 = 4c2

{(ffx
-

which may also be written

and this may perhaps be considered as the standard form.

To show that this equation belongs to a Descartes oval, suppose for greater con

venience 77
=

0, and write

l# (x* + y
2 - c

2

)
-

|
2 + c2 =

1 / ]\2
multiplying this equation by 1 ---

,
and adding to each side c

2
1

/j,
--

)
+ (cc g)

2 + y
2

,

we have

or reducing

/

1 / C
2
\

again, multiplying the same equation by -5(15)1 and adding to each side
/*&quot;

V q~l

. /- _ C2

i^ r
we have

or reducing,

u*p\
UNIVERSITY)

OF /
CALIFORNIA,

x
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Hence, extracting the square roots of each side of the equations thus found, we

have the equation of the secondary caustic in either of the forms

/2\ 2

)

to which are to be joined

/ cX
c = c

, ^ = -,-

r rf r
(/ c/ o

&quot;1p&amp;gt;

C = ;, A4== F

c&amp;gt;

r
f c
+ * I A / \X-~;

?

Write successively,
/ / / /I \

-/ C
2

, C , C , ,

?

=
|

c =- A*
=|

&amp;gt;

r=f .

&quot;=|,
A* =^ , (7)

LC (/

y2 ^/A

? f

or, what is the same thing,

=f , c = c
, p~ff t (1)

r r r / x

*-j6-
c=

^ *&quot;;&amp;gt;&quot;

(a)

r^ iC //O\
r
= -

a
c = - , /A

= -
, (p)

fj&amp;gt;

Li yu.

?=r, -?, /*=? (7)
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or, again,

Si ^ y t

(1)
c 2

c
2
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THEOREM. The caustic by refraction of a circle when the radiant point is on the

circumference, is the caustic by reflexion for the same radiant point, and a concentric

circle the radius of which is the radius of the first circle divided by the index of

refraction.

C
2

Again, if = -c/*, the fifth system gives ? =
p,

c = c, //
= -!, or the new system

is in this case also a reflecting system. This is the other of M. St Laurent s

theorems, viz. :

THEOREM. The caustic by refraction of a circle when the distance of the radiant

point from the centre is equal to the radius of the circle multiplied by the index of

refraction, is the caustic by reflexion of the same circle for a radiant point which is

the image of the first radiant point.

Of course it is to be understood that the image of a point means a point whose

distance from the centre = square of radius -=- distance.

2 Stone Buildings, Nov. 2, 1853.
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125.

ON THE THEORY OF GROUPS, AS DEPENDING ON THE
SYMBOLIC EQUATION 6

n =l.

[From the Philosophical Magazine, vol. vn. (1854), pp. 40 47.]

LET 6 be a symbol of operation, which may, if we please, have for its operand,
not a single quantity x, but a system (x, y, ...), so that

0(x, y, ...)- y ,...),

where of, y ,
... are any functions whatever of x, y, ...

,
it is not even necessary that

x, y , ... should be the same in number with x, y, .... In particular x
, y , &c. may

represent a permutation of x, y, &c., d is in this case what is termed a substitution;
and if, instead of a set x, y, ..., the operand is a single quantity x, so that Ox=-x =fx,
6 is an ordinary functional symbol. It is not necessary (even if this could be done)
to attach any meaning to a symbol such as 0, or to the symbol 0, nor con

sequently to an equation such as =
0, or + = 0; but the symbol 1 will naturally

denote an operation which (either generally or in regard to the particular operand)
leaves the operand unaltered, and the equation = will denote that the operation

is (either generally or in regard to the particular operand) equivalent to 0, and
of course 0=1 will in like manner denote the equivalence of the operation to the

operation 1. A symbol 00 denotes the compound operation, the performance of which
is equivalent to the performance, first of the operation 0, and then of the operation
0; 00 is of course in general different from 00. But the symbols 0, 0, ... are in

general such that . 0^ = 00 . ^, &c
., so that 00^, 00%&amp;lt;u,

&c. have a definite signi
fication independent of the particular mode of compounding the symbols; this will

be the case even if the functional operations involved in the symbols 0, 0, &c.
contain parameters such as the quaternion imaginaries i, j, k; but not if these
functional operations contain parameters such as the imaginaries which enter into the

theory of octaves, &c., and for which, e.g. a . j3y is something different from a/3. 7,

162
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a supposition which is altogether excluded from the present paper. The order of the

factors of a product #&amp;lt;/&amp;gt;^

... must of course be attended to, since even in the case

of a product of two factors the order is material
;

it is very convenient to speak of

the symbols 6, $ . . . as the first or furthest, second, third, &c., and last or nearest

factor. What precedes may be almost entirely summed up in the remark, that the

distributive law has no application to the symbols 6&amp;lt;f&amp;gt;

...
;
and that these symbols are

not in general convertible, but are associative. It is easy to see that 6 = I, and

that the index law 6m .&n 6m + n
,
holds for all positive or negative integer values,

not excluding 0. It should be noticed also, that if 6 =
(f&amp;gt;,

then, whatever the symbols

a, (3 may be, a#/3 = a&amp;lt;/&amp;gt;/3,

and conversely.

A set of symbols,

all of them different, and such that the product of any two of them (no matter in

what order), or the product of any one of them into itself, belongs to the set, is

said to be a group
1
. It follows that if the entire group is multiplied by any one

of the symbols, either as further or nearer factor, the effect is simply to reproduce

the group ;
or what is the same thing, that if the symbols of the group are multi

plied together so as to form a table, thus :

Further factors

1 * ft

I

*ft

ft

fta

that as

1, , ft,

without

that the

contains

so that

binomial

well each line as each column of the square will contain all the symbols
.... It also follows that the product of any number of the symbols, with or

repetitions, and in any order whatever, is a symbol of the group. Suppose

group
1, a, & ...

n symbols, it may be shown that each of these symbols satisfies the equation

6n = 1
;

a group may be considered as representing a system of roots of this symbolic

equation. It is, moreover, easy to show that if any symbol a of the group

1 The idea of a group as applied to permutations or substitutions is due to Galois, and the introduction

of it may be considered as marking an epoch in the progress of the theory of algebraical equations.
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satisfies the equation Or = 1, where r is less that n, then that r must be a sub-

multiple of n
;

it follows that when n is a prime number, the group is of necessity
of the form

1, a, a8
,
...a&quot;-

1

, (a
n = l);

and the same may be (but is not necessarily) the case, when n is a composite
number. But whether n be prime or composite, the group, assumed to be of the

form in question, is in every respect analogous to the system of the roots of the

ordinary binomial equation xn 1 =
; thus, when n is prime, all the roots (except

the root 1) are prime roots
;
but when n is composite, there are only as many prime

roots as there are numbers less than n and prime to it, &c.

The distinction between the theory of the symbolic equation 6n = 1, and that of

the ordinary equation xn 1 = 0, presents itself in the very simplest case, n = 4. For,

consider the group

1, , ft, 7,

which are a system of roots of the symbolic equation

There is, it is clear, at least one root ft, such that ft-
= 1

;
we may therefore

represent the group thus,

1, a, 0, a/3, (/8
s

=1);

then multiplying each term by a as further factor, we have for the group 1, a2
, aft,

a2
/?, so that a2 must be equal either to or else to 1. In the former case the

group is

1, a, a\ a3
, (a

4

=l),

which is analogous to the system of roots of the ordinary equation x* I = 0. For
the sake of comparison with what follows, I remark, that, representing the last-

mentioned group by

1, &amp;lt;*, ft, 7,

we have the table

1
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If, on the other hand, a2 =l, then it is easy by similar reasoning to show that we
must have a/3 = /3a, so that the group in the case is

1, a, & a/3, (a
2 =

l, /3
2 =

1, a/3 = /3a) ;

or if we represent the group by

1, a, A 7.

we have the table

1 a /3 7

1
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Again, in the theory of matrices, if / denote the operation of inversion, and tr

that of transposition, (I do not stop to explain the terms as the example may be

passed over), we may write

a = I, ft
=

tr, 7 = / . tr = tr . /.

I proceed to the case of a group of six symbols,

1, a, & 7, 8, e,

which may be considered as representing a system of roots of the symbolic equation

0*=1.

It is in the first place to be shown that there is at least one root which is a

prime root of 63 =
1, or (to use a simpler expression) a root having the index 3. It

is clear that if there were a prime root, or root having the index 6, the square of

this root would have the index 3, it is therefore only necessary to show that it is

impossible that all the roots should have the index 2. This may be done by means
of a theorem which I shall for the present assume, viz. that if among the roots of

the symbolic equation 6n = 1, there are contained a system of roots of the symbolic

equation 6P =\ (or, in other words, if among the symbols forming a group of the order

there are contained symbols forming a group of the order p), then p is a submultiple
of n. In the particular case in question, a group of the order 4 cannot form part
of the group of the order 6. Suppose, then, that 7, 8 are two roots of 6e

l, having
each of them the index 2

;
then if 78 had also the index 2, we should have 78 = 87 ;

and 1, 7, 8, 87, which is part of the group of the order 6, would be a group of

the order 4. It is easy to see that 78 must have the index 3, and that the group
is, in fact, 1, 78, 87, 7, 8, 787, which is, in fact, one of the groups to be presently

obtained; I prefer commencing with the assumption of a root having the index 3.

Suppose that a is such a root, the group must clearly be of the form

1, a, a2

, 7, ay, a2

7, (a
3 =

l);

and multiplying the entire group by 7 as nearer factor, it becomes 7, ay, a?y, 7-,

ay
2
,

a2
7

2
;
we must therefore have 7

2 =
1, a, or a2

. But the supposition 7
2 = a2

gives

fy*
= a4 =

a, and the group is in this case 1, 7, 7
2
, &amp;lt;f, y*, ry

5

(ry=l); and the suppo
sition 7

2 = a gives also this same group. It only remains, therefore, to assume rf 1
;

then we must have either ya ay or else yet
=

a?y. The former assumption leads to

the group

1, a, a2
, 7, ay, a?y, (a

3 =
l, 7

2
=1, ya = ay),

which is, in fact, analogous to the system of roots of the ordinary equation a-
6 1=0:

and by putting ay = \ might be exhibited in the form 1, A, A2
,
A :f

,
A4

,
X5

, (\ =
1),

under which this system has previously been considered. The latter assumption leads

to the group
1, a, a.&quot;, 7, ay, a*y, (a

3 =l, 7
2 =

1, ya = a?y),

and we have thus two, and only two, essentially distinct forms of a group of six.

If we represent the first of these two forms, viz. the group

1, a, a2
, 7, ay, a?y, (a

3 =
l, 7

2 = 1, ya=ay)
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by the general symbols

we have the table
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1, , ft, 7,

1
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or, what is the same thing, the system of equations is

1 = = z/3
=

72
= gs = f2)

a =
/S

2 = 87 = eS =
76,

/3
= a2 = 67 = 78 = Se,

7 = Sa = e/3
= /38 = ae,

8 = ea =
7/3

=
ct&amp;lt;y

=
/3e,

An instance of a group of this kind is given by the permutation of three letters;

the group

1, a, & 7, 8, e

may represent a group of substitutions as follows :

abc, cab, bca, acb, cba, bac

abc abc abc abc abc abc.

Another singular instance is given by the optical theorem proved in my paper
&quot; On a property of the Caustic by refraction of a Circle, [124].&quot;

It is, I think, worth noticing, that if, instead of considering a, /3, &c. as symbols
of operation, we consider them as quantities (or, to use a more abstract term, cogi-
tables ) such as the quaternion imaginaries ;

the equations expressing the existence

of the group are, in fact, the equations defining the meaning of the product of two

complex quantities of the form

w + aoi. + 6/3 + . . .
;

thus, in the system just considered,

(w + aa + b@ + cy + dS + ee) (w + a a + b /3 + c y + d S + e e)
= W + Act + B/3 + Cy + DS + Ee,

where

W = ww + ab + a b + cc + dd + ee
,

A =waf + w a+ bb + dc + ed + ce
f

,

B =wb f + w b -\- aa + ec + cd + de ,

C =wc + lu c -I- da + eb + bd + ae ,

D = wd + w d + ea + cb + ac + be
,

E = we + we + ca + db + be + ad .

It does not appear that there is in this system anything analogous to the

modulus w2 + a?+ y* + zz
,
so important in the theory of quaternions.

I hope shortly to resume the subject of the present paper, which is closely

connected, not only with the theory of algebraical equations, but also with that of

c. ii. 17
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the composition of quadratic forms, and the irregularity in certain cases of the

determinants of these forms. But I conclude for the present with the following two

examples of groups of higher orders. The first of these is a group of eighteen, viz.

1, a, /3, 7, a/3, /3a, 07, 72, /3y, 7/9, ctfty, #ya, ya/3, a/3a, /3yj3, 737, a^y/3, #ya,

where

a =
l, /3

s = 1, 7
s =

1, (/37)
3 = 1, (7a)

3 =
l, 0/3)

3 = 1, (a#y)
a = l, (/37)

2 = 1, (7)a = l;

and the other a group of twenty-seven, viz.

1, a, a2
, 7, 7

2
, 7a, &amp;lt;*y, 7a

2
, ofy, 7

2
a, a7

2
, 7

2a2
, ay,

7, 7
2
a, a2

7, a^a, a7a
2
, ct7

2a2
,
a2
7

2
,
a2
7

2a2
, 772

, 7a
2

7
2

&amp;gt; 7
2

7, 7
2 2

7, far/of, yoiyW,

where

a? = 1, 7
3 =

1, (73)3
=

1, (7
2a)3

= i
; (7a2)3

= 1? (7
2
a2)3

= i

It is hardly necessary to remark, that each of these groups is in reality perfectly

symmetric, the omitted terms being, in virtue of the equations defining the nature

of the symbols, identical with some of the terms of the group : thus, in the group
of 18, the equations a2 = 1, /3

2 =
1, 7

2 =
1, (a/^)

2 = 1 give afty
=

y{3&, and similarly for

all the other omitted terms. It is easy to see that in the group of 18 the index

of each term is 2 or else 3, while in the group of 27 the index of each term is 3.

2 Stone Buildings, Nov. 2, 1853.
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126.

ON THE THEORY OF GROUPS, AS DEPENDING ON THE
SYMBOLIC EQUATION 6

n =l. SECOND PART.

[From the Philosophical Magazine, vol. vn. (1854), pp. 408 409.]

IMAGINE the symbols

L, M, N,...

such that (L being any symbol of the system),

L-^L, L-*M, L-^N,...

is the group

1, , ft...;

then, in the first place, M being any other symbol of the system, M~1
L, M~1M,

M~1

N,... will be the same group I, a, ft, In fact, the system L, M, N,.,. may be

written L, La., L8...; and if e.g. M = La, N=Lft then

M~1N = (Za)-
1

L/3 = a-1 L 1

L/3 = a.-1

ft,

which belongs to the group 1, a, ft,

Next it may be shown that

LL~\ ML~\ NL~\...

is a group, although not in general the same group as I, a, ft, In fact, writing
M=La, N=Lft, &c., the symbols just written down are

LL~\ LaL~\ LftL~\...

and we have e.g. LctL~l
. LftL

-1 = La.fiL~l = L^L~l

,
where 7 belongs to the group 1, a, 8.

172
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The system L, M, N, ... may be termed a group-holding system, or simply a

holder; and with reference to the two groups to which it gives rise, may be said

to hold on the nearer side the group L~1

L, L~1M, L~1

N,..., and to hold on the

further side the group LL~l

,
LM~l

,
LN~l

,
. . . Suppose that these groups are one and

the same group 1, a, @..., the system L, M, N,... is in this case termed a sym
metrical holder, and in reference to the last-mentioned group is said to hold such

group symmetrically. It is evident that the symmetrical holder L, M, N, ... may be

expressed indifferently and at pleasure in either of the two forms L, La, L/3, . . . and

L, aL, @L ;
i.e. we may say that the group is convertible with any symbol L of

the holder, and that the group operating upon, or operated upon by, a symbol L of

the holder, produces the holder. We may also say that the holder operated upon by,

or operating upon, a symbol a of the group reproduces the holder.

Suppose now that the group

1, a, 0, y, 8, e, ...

can be divided into a series of symmetrical holders of the smaller group

1, a, ,...;

the former group is said to be a multiple of the latter group, and the latter group
to be a submultiple of the former group. Thus considering the two different forms

of a group of six, and first the form

1, a, a2
, 7, ya, jet

2
, (a

3 =
l, 7

2 =
1, 07 = 70),

the group of six is a multiple of the group of three, 1, a, a2

(in fact, 1, a, a2

and 7, ya, ya? are each of them a symmetrical holder of the group 1, a, a2

); and
so in like manner the group of six is a multiple of the group of two, 1, 7 (in fact,

1, 7 and a, ay, and a, a2
7 are each a symmetrical holder of the group 1, 7). There

would not, in a case such as the one in question, be any harm in speaking of the

group of six as the product of the two groups 1, a, a2 and 1, 7, but upon the whole

it is, I think, better to dispense with the expression.

Considering, secondly, the other form of a group of six, viz.

1, a, a2
, 7, ya, 7a

2

(a
3 =1, 7

2 =
1, ay = ya

2

) ;

here the group of six is a multiple of the group of three, 1, a, a2
(in fact, as be

fore, 1, a, a2 and 7, ya, ya
2
,

are each a symmetrical holder of the group 1, a, a2
,

since, as regards 7, ya, ya
2
,
we have (7, ya, ya

2

)
= y(l, a, a2

)
=

(1, a2
, a) 7). But

the group of six is not a multiple of any group of two whatever; in fact, besides

the group 1, 7 itself, there is not any symmetrical holder of this group 1, 7; and

so, in like manner, with respect to the other groups of two, 1, ya, and 1, 7a
2

. The

group of three, 1, a, a2
,

is therefore, in the present case, the only submultiple of

the group of six.

It may be remarked, that if there be any number of symmetrical holders of the

same group, 1, a, @, ... then any one of these holders bears to the aggregate of the

holders a relation such as the submultiple of a group bears to such group ;
it is

proper to notice that the aggregate of the holders is not of necessity itself a holder.
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127.

ON THE HOMOGRAPHIC TRANSFORMATION OF A SURFACE
OF THE SECOND ORDER INTO ITSELF.

[From the Philosophical Magazine, vol. vn. (1854), pp. 208 212: continuation of 122.]

I PASS to the improper transformation. Sir W. R. Hamilton has given (in the note,

p. 723 of his Lectures on Quaternions [Dublin, 1853)] the following theorem: If there

be a polygon of 2m sides inscribed in a surface of the second order, and (2m 1) of

the sides pass through given points, then will the 2m-th side constantly touch two

cones circumscribed about the surface of the second order. The relation between the

extremities of the 2?ft-th side is that of two points connected by the general improper
transformation

;
in other words, if there be on a surface of the second order two

points such that the line joining them touches two cones circumscribed about the

surface of the second order, then the two points are as regards the transformation

in question a pair of corresponding points, or simply a pair. But the relation between

the two points of a pair may be expressed in a different and much more simple

form. For greater clearness call the surface of the second order U, and the sections

along which it is touched by the two cones, 0, &amp;lt;

;
the cones themselves may, it is

clear, be spoken of as the cones 6, $. And let the two points be P, Q. The line

PQ touches the two cones, it is therefore the line of intersection of the tangent

plane through P to the cone 0, and the tangent plane through P to the cone $.

Let one of the generating lines through P meet the section 6 in the point A, and

the other of the generating lines through P meet the section
&amp;lt;f&amp;gt;

in the point B.

The tangent planes through P to the cones 6,
(f&amp;gt; respectively are nothing else than

the tangent planes to the surface U at the points A, B respectively. We have there

fore at these points two generating lines meeting in the point P
;

the other two
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generating lines at the points A, B meet in like manner in the point Q. Thus P,

Q are opposite angles of a skew quadrangle formed by four generating lines (or, what
is the same thing, lying upon the surface of the second order), and having its other

two angles, one of them on the section 6 and the other on the section &amp;lt;

;
and if

we consider the side PA as belonging determinately to one or the other of the two

systems of generating lines, then when P is given, the corresponding point Q is, it

is clear, completely determined. What precedes may be recapitulated in the statement,
that in the improper transformation of a surface of the second order into itself, we

have, as corresponding points, the opposite angles of a skew quadrangle lying upon
the surface, and having the other two opposite angles upon given plane sections of

the surface. I may add, that attending only to the sections through the points of

intersection of 9, &amp;lt;,
if the point P be situate anywhere in one of these sections,

the point Q will be always situate in the other of these sections, i.e. the sections

correspond to each other in pairs; in particular, the sections 6,
&amp;lt;f&amp;gt;

are corresponding
sections, so also are the sections @, &amp;lt;I&amp;gt; (each of them two generating lines) made by
tangent planes of the surface. Any three pairs of sections form an involution

;
the

two sections which are the sibiconjugates of the involution are of course such, that,

if the point P be situate in either of these sections, the corresponding point Q will

be situate in the same section. It may be noticed that when the two sections 6, $
coincide, the line joining the corresponding points passes through a fixed point, viz.

the pole of the plane of the coincident sections
;

in fact the lines PQ and AB are

in every case reciprocal polars, and in the present case the line AB lies in a fixed

plane, viz. the plane of the coincident sections, the line PQ passes therefore through
the pole of this plane. This agrees with the remarks made in the first part of the

present paper.

The analytical investigation in the case where the surface of the second order

is represented under the form xy zw = Q is so simple, that it is, I think, worth

while to reproduce it here, although for several reasons I prefer exhibiting the final

result in relation to the form a;
2 + y* + ^2 + w2 = of the equation of the surface of

the second order. I consider then the surface xy zw = 0, and I take (a, ft, 7, 8),

(a!, P ,
&amp;lt;y

,
8 ) for the coordinates of the poles of the two sections 6,

&amp;lt;f&amp;gt;,

and also

(#!, 2/j,
zl} Wj), (a?2 , 2/2, ^, w2) as the coordinates of the points P, Q. We have of course

x\y\ ZiWi = 0, x2y2 zzw2
= 0. The generating lines through P are obtained by com

bining the equation ocy zw = Q of the surface with the equation xy1 + yxl zw1 wz1
= ()

of the tangent plane at P. Eliminating ac from these equations, and replacing in the
n it

result x1 by its value -
, we have the equation

(yZi
-

zy,) (ywj.
- wyj = 0.

We may if we please take yzl zyr
= 0, scyz + yoc^ zwl wz1

= as the equations of

the line PA
;

this leads to

yzi
~
zyl

=
0,

I
ywi

-
ivy,

= 0,

ocyl + yxl zwl wz^ = 0, j xy2 + yx2 zw2 wz.2 = 0,
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for the equations of the lines PA, QA respectively; and we have therefore the
coordinates of the point A, coordinates which must satisfy the equation

, fix + ay 82 yw =

of the plane 0. This gives rise to the equation

7/2 (2/i
~ &O ~ w2 (72/i

-
fizi)

= 0.

We have in like manner

yw1
- TAW = 0,

|
yz^

-
zy^

= 0, \

for the equations of the lines PB, QB respectively; and we may thence find the
coordinates of the point B, coordinates which must satisfy the equation

fix + afy
- S z -y w =U I

of the plane &amp;lt;j&amp;gt;.

This gives rise to the equation

2/2 (
a/

2/i
~ 7/wi)

-

It is easy, by means of these two equations and the equation x2y2
- z.2iu2

=
0, to form

the system

^ =
02/1

- &

or, effecting the multiplications and replacing ziiul by x^, the values of a?a , ya , z2 , w,
contain the common factor y1} which may be rejected. Also introducing on the left-

hand sides the common factor MM
, where M* = a/3-yS, M 2 =

of/3
- y 8

,
the equations

become

MM y,
=

=
13 8x, + aS y,

- BS z,
-

a/3
fwlf

values which give identically X2y2 z2w2
= x1y1 z1w1 . Moreover, by forming the value

of the determinant, it is easy to verify that the transformation is in fact an im

proper one. We have thus obtained the equations for the improper transformation of

the surface xy-zw = into itself. By writing x
l + iy1 ,

x1 -iyl for xl} ylt &c., we have
the following system of equations, in which (a, b, c, d), (a ,

b , c , d ) represent, as

before, the coordinates of the poles of the plane sections, and M* = a2 + b- + c
2 + d2

,M 2 = a 2 + b 2 + c
2 + d 2

,
viz. the system

1

1 The system is very similar in form to, but is essentially different from, that which could be obtained
from the theory of quaternions by writing

MM (w2 + ix2 +.72/2+ kza) = (d + ia +jb+ fcc) (to + ix +jy + kz) (d!+ ia +jb + kc
) ;

the last-mentioned transformation is, in fact, proper, and not improper.
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MMxz
= (aa

- bb - cc - dd ) x, + ( ab + a b + cd - c d) yl

+ ( ac + a c + db - d b) zl +( ad + a d + be - b c) wl ,

MM y,
= (ab + a b- cd + c d) x

l + (- aa + bb - cc - dd ) yl

+ ( be + b c - da + d a) zl + ( bd + b d - ac + a c) w,

MM z2
= (ac + a c - db + d b) xl + ( be + b c - ad + a d) y-,

+ (_ aa - bb + cc - dd ) zl +( cd + c d - ba + b a) w, ,

MM w, = (ad + a d- be + b c) xl + ( bd + b d- ca + c a) yl

+ ( cd + c d - ab + a b) zt + (- aa - bb - cc + dd ) w^ ,

values which of course satisfy identically x? + y2
2 + z? + w? = x? + y? + z? + wf, and which

belong to an improper transformation. We have thus obtained the improper trans

formation of the surface of the second order as
2 + y

2 + z2 + w2 = into itself.

Returning for a moment to the equations which belong to the surface xy zw = Q)

it is easy to see that we may without loss of generality write a. = /3
= a! = (3

=
;

the equations take then the very simple form

MM x2
= 7 &j ,

MM y2
= y& yi ,

MM z2
= 77^ ,

MM w2
= 88 zl}

where MM = V - 78 V - &amp;lt;y

S
;
and it thus becomes very easy to verify the geometrical

interpretation of the formulae.

It is necessary to remark, that, whenever the coordinates of the points Q are

connected with the coordinates of the points B by means of the equations which

belong to an improper transformation, the points P, Q have to each other the

geometrical relation above mentioned, viz. there exist two plane sections B, &amp;lt; such

that P, Q are the opposite angles of a skew quadrangle upon the surface, and having

the other two opposite angles in the sections 6,
&amp;lt;/&amp;gt; respectively. Hence combining

the theory with that of the proper transformation, we see that if A and B, B and

C, ..., M and N are points corresponding to each other properly or improperly, then will

N and A be points corresponding to each other, viz. properly or improperly, according

as the number of the improper pairs in the series A and B, B and C, ..., M and N
is even or odd

;
i.e. if all the sides but one of a polygon satisfy the geometrical

conditions in virtue of which their extremities are pairs of corresponding points, the

remaining side will satisfy the geometrical condition in virtue of which its extremities

will be a pair of corresponding points, the pair being proper or improper according

to the rule just explained.

I conclude with the remark, that we may by means of two plane sections of a

surface of the second order obtain a proper transformation. For, if the generating

lines through P- meet the sections 6, &amp;lt; in the points A, B respectively, and the

remaining generating lines through A, B respectively meet the sections
&amp;lt;,

6 respec

tively in B
, A, and the remaining generating lines through B

,
A respectively meet

in a point P
;
then will P, P be a pair of corresponding points in a proper trans-
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formation. In fact, the generating lines through P meeting the sections 6, &amp;lt; in the

points A, B respectively, and the remaining generating lines through A, B respectively

meeting as before in the point Q, then P and Q will correspond to each other im

properly, and in like manner P and Q will correspond to each other improperly; i.e.

P and P will correspond to each other properly. The relation between P, P may
be expressed by saying that these points are opposite angles of the skew hexagon
PAB P A B lying upon the surface, and having the opposite angles A, A in the

section 6, and the opposite angles B, B in the section &amp;lt;. It is, however, clear from

what precedes, that the points P, P lie in a section passing through the points of

intersection of 6,
&amp;lt;f&amp;gt;,

and thus the proper transformation so obtained is not the general

proper transformation.

2 Stone Buildings, January 11, 1854.

C. II. 18
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128.

DEVELOPMENTS ON THE POKISM OF THE IN-AND-CIRCUM-

SCRIBED POLYGON.

[From the Philosophical Magazine, vol. vn. (1854), pp. 339 345.]

I PROPOSE to develope some particular cases of the theorems given in my
paper,

&quot;

Correction of two Theorems relating to the Porism of the in-and-circumscribed

Polygon&quot; (Phil. Mag. vol. VI. (1853), [116]). The two theorems are as follows:

THEOREM. The condition that there may be inscribed in the conic U = au

infinity of w-gons circumscribed about the conic F=0, depends upon the development

in ascending powers of f of the square root of the discriminant of %U+V; viz. if

this square root be

then for w = 3, 5, 7, &c. respectively, the conditions are

C, D =0,

D, E
C, D, E

D, E, F

E, F, G

=
0, &c.

;

and for n = 4, 6, 8, &c. respectively, the conditions are

D, E

E, F

= 0, D, E, F i

= 0, &c.

E, F, G

F, G, H
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THEOREM. In the case where the conies are replaced by the two circles

x + y-
- R- = 0, (x

-
a)

2 + y
1 -

?-
2 = 0,

then the discriminant, the square root of which gives the series

is

(1 + ) [r
z + % (r

2 + R* - a2

) + fR2

}.

Write for a moment

A + B%+ C? + D? + E? + &c. =

then

-4-1,

2B = a + b + c,

- SC = a2 + 62 + c
2 - 26c - 2ca - 2a&,

= 5a4 + 564 + 5c4 - 4a3

(& + c)
- 4b3

(c + a)
- 4c3

(a + 6)

+ 4a26c + 462ca + 4c2a6 - 262
c
2 - 2c2a2 -

&c.

To adapt these to the case of the two circles, we have to write

and therefore

c = l,

r2

(a + 6)
= r2 +J?2 -a2

,

r2ab = R-
;

values which after some reductions give

A = l,

r2
. 2B = 2r2 + R&amp;gt;

- a2
,

- 1* . 8(7 = (E
2 - a2

)
2 - 4E2r2

,

r6
. 16J5 = (J?

2 - a2
) {(

2 - a2

)
2 - 2r2

(R- + a%
- r8

. 128^ = 5 (E
3 - a2

)
4 - 8 (

2 - a2

)
2 (R + 2r2

) r
2 + 16aV.

Hence also

12
. 1024 (CE - D2

)
=

{5 (
2 - a2

)
4 - 8

(#&amp;gt;

- a2

)
2

(#
2 + 2r2

) r
2 + 16aV} {(^

2 - a2

)
2

- 4 {(R - a2

)
3 - 2 (E

2 - a2
) (R

2 + a2

182
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which after all reductions is

(R
2 - a2

)
6

+ 16R2
(R

2 + 2a2
) (R

z - a2

)
2
r*

- 64E2 a4 r6
.

Hence the condition that there may be, inscribed in the circle x* + y*
- R2 =

and circumscribed about the circle (x
-

a)
2 + y*

- r2 = 0, an infinity of w-gons, is for

w = 3, 4, 5, i.e. in the case of a triangle, a quadrangle and a pentagon respectively,

as follows.

I. For the triangle, the relation is

which is the completely rationalized form (the simple power of a radius being of

course analytically a radical) of the well-known equation

a2 = E2 - 2Rr,

which expresses the relation between the radii R, r of the circumscribed and inscribed

circles, and the distance a between their centres.

II. For the quadrangle, the relation is

(R
2 - a2

)
2 - 2r2

(R
2 + a2

)
= 0,

which may also be written

(Steiner, Crelle, t. n. [1827] p. 289.)

III. For the pentagon, the relation is

(R
2 - a2

)
6 - 12R2

(R
2 - a2

)
4 r2 + 16E2

(R
2 + 2A 2

) (R
2 - a2

)
2 r4 - 64 2 a4 r6 = 0,

which may also be written

(R?
- a2

)
2

{(.R
2 - a2

)
2 -

4&amp;gt;R

2r2

}

2 - 4E2
r* {(R

2 - a2

)
2 - 4a2r2

}

2 = 0.

The equation may therefore be considered as the completely rationalized form of

(R
2 - a2

)
3 + 2.R (#

2 - a2

)
2 r - 4R2

(R
2 - a2

) r
2 - 8Ea2 r8 = 0.

This is, in fact, the form given by Fuss in his memoir &quot;De polygonis symme-

trice irregularibus circulo simul inscriptis et circumscriptis,&quot; Nova Ada Petrop. t. xni.

[1802] pp. 166189 (I quote from Jacobi s memoir, to be presently referred to). Fuss

puts R + a=p, R a = q, and he finds the equation

p
2

q
2 - r2

(p
2 + q

2
} _

rtq*
_
^2 (r

a + g,a)

- - V q + p
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which, he remarks, is satisfied by r = p and r= - -
,
and that consequently the

rationalized equation will divide by p + r and pq r
(p + q) ;

and he finds, after the

division,

(p+ g) r |jg (p 4- qf r2

-(p + q) (p -q)
2 r3 = 0,

which, restoring for p, q their values R + a, R a, is the very equation above found.

The form given by Steiner (Crelle, t. n. p. 289) is

r(R-d) = (R

which, putting p, q instead of R + a, R a, is

qr =p V(p -r)(q- r) + p\/(q- r} (q + p);

and Jacobi has shown in his memoir, &quot;Anwendung der elliptischen Transcendenten

u. s. w.,&quot; Crelle, t. in. [1828] p. 376, that the rationalized equation divides (like that

of Fuss) by the factor pq-(p + q) r, and becomes by that means identical with the

rational equation given by Fuss.

In the case of two concentric circles a = 0, and putting for greater simplicity

= M, we have
r2

This is, in fact, the very formula which corresponds to the general case of two

conies having double contact. For suppose that the polygon is inscribed in the conic

[7=0, and circumscribed about the conic U + P2 =
0, we have then to find the

discriminant of U + U + P2
, i.e. of (l+^tf +P2

. Let K be the discriminant of U,

and let F be what the polar reciprocal of U becomes when the variables are replaced

by the coefficients of P, or, what is the same thing, let F be the determinant

obtained by bordering K (considered as a matrix) with the coefficients of P. The
discriminant of (1+f) U+P2

is (1 + )
3 K + (1 +)2

P, i.e. it is

rr

where M =
jr ,

, or, what is the same thing, M is the discriminant of U divided

by the discriminant of U + P2
. And M having this meaning, the condition of there

being inscribed in the conic U = an infinity of n-gons circumscribed about the conic

U+ P2 =
0, is found by means of the series

A + BZ+C?+D?+E? + &c. = (i + f) Vi + M%.
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We have, therefore,

4-1,
2 = M + 2,

[128

fee.

1024 (CE- D*) = M (M*- I2M+16),

fee.

Hence for the triangle, quadrangle and pentagon, the conditions are

I. For the triangle,

II. For the quadrangle,

III. For the pentagon,

if- 4 = 0.

M-- 12^+16 = 0;

and so on.

It is worth noticing, that, in the case of two conies having a 4-point contact,

we have F=0, and consequently M=l. The discriminant is therefore (l + )
3

,
and

as this does not contain any variable parameter, the conies cannot be determined so

that there may be for a given value of n (nor, indeed, for any value whatever of

?i) an infinity of w-gons inscribed in the one conic, and circumscribed about the

other conic.

The geometrical properties of a triangle, &c. inscribed in a conic and circum

scribed about another conic, these two conies having double contact with each other,

are at once obtained from those of the system in which the two conies are replaced
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by concentric circles. Thus, in the case of a triangle, if ABC be the triangle, and

a, /3, 7 be the points of contact of the sides with the inscribed conic, then the tangents
to the circumscribed conic at A, B, C meet the opposite sides BC, CA, AB in points

lying in the chord of contact, the lines Aa., 5/3, Cy meet in the pole of contact,

and so on.

In the case of a quadrangle, if ACEG be the quadrangle, and b, d, f, h the

points of contact with the inscribed conic, then the tangents to the circumscribed

conic at the pair of opposite angles A, E and the corresponding diagonal CG, and

in like manner the tangents at the pair of opposite angles C, G and the corresponding

diagonal AE, meet in the chord of contact. Again, the pairs of opposite sides AC,

EG, and the line dh joining the points of contact of the other two sides with the

inscribed conic, and the pairs of opposite sides AG, CE, and the line bf joining the

points of contact of the other two sides with the inscribed conic, meet in the chord

of contact. The diagonals AE, CG, and the lines bf, dh through the points of

contact of pairs of opposite sides with the inscribed conic, meet in the pole of

contact, &c.

The beautiful systems of focal relations for regular polygons (in particular for

the pentagon and the hexagon), given in Sir W. R. Hamilton s Lectures on Quaternions,

[Dublin, 1853] Nos. 379 393, belong, it is clear, to polygons which are inscribed in and

circumscribed about two conies having double contact with each other. In fact, the focus

of a conic is a point such that the lines joining such point with the circular points at

infinity (i.e. the points in which a circle is intersected by the line infinity) are tangents
to the conic. In the case of two concentric circles, these are to be considered as

touching in the circular points at infinity; and consequently, when the concentric

circles are replaced by two conies having double contact, the circular points at infinity

are replaced by the points of contact of the two conies.
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Thus, in the figure (which is simply Sir W. R. Hamilton s figure 81 put into

\ \ / \ \ xx /Vk \ .-*: /^ * ^ .-* Y--w -

perspective), the system of relations

F, G(.

G, H(. .) BCDK,

H, I
(. .) CDEF,

I, K(..}DEAG,

K, F(..}EABH,

will mean, F, G(..)ABCI, that there is a conic inscribed in the quadrilateral ABCI
such that the tangents to this conic through the points F and G pass two and two

through the points of contact of the circumscribed and the inscribed conies, and

similarly for the other relations of the system. As the figure is drawn, the tangents

in question are of course (as the tangents through the foci in the case of the two

concentric circles) imaginary.

2 Stone Buildings, March 7, 1854.



129] 145

129.

ON THE PORISM OF THE IN-AND-CIRCUMSCRIBED TRIANGLE,
AND ON AN IRRATIONAL TRANSFORMATION OF TWO TER
NARY QUADRATIC FORMS EACH INTO ITSELF.

[From the Philosophical Magazine, vol. ix. (1855), pp. 513 517.]

THERE is an irrational transformation of two ternary quadratic forms each into

itself, based upon the solution of the following geometrical problem,

Given that the line

Ix + my + nz =

meets the conic

(a, b, c, / g, h~$x, y, z? =

in the point (x1} y1} z^; to find the other point of intersection.

The solution is exceedingly simple. Take (#2 , y2 , z.J for the coordinates of the
other point of intersection, we must have identically with respect to x, y, z,

(a, ...$, y, zj- . (&, . . .$7, m, w)
a - k (Ix + my + nz)

2

= (a,...$,, ylt z$x, y, z).(a, ...$#,, ya , z&x, y, z}

to a constant factor pres.

Assume successively x, y, z = &, ffi, &amp;lt;& ffi, 23, Jf ; , Jf, OD ; it follows that

. . . $7, m, n)
2

. . .

~$l, m, n)-

,
... $7, m, rif

C. II. 19
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or, what is the same thing,

x : y : 22
= y^ (bn

2 + cm- 2fmn)

: z-iX-L (cl
2 + an2

2gnl)

: %$! (am? + bn2

It is not necessary for the present purpose, but it may be as well to give the

corresponding solution of the problem :

Given that one of the tangents through the point (, 77, ) to the conic

(a, b, c, f, g, h~$x, y, zf =

is the line l& + my + n^z = ;
to find the equation to the other tangent.

Let LJK + m$ + nz = be the other tangent, then

(&amp;lt;*,...]& *, t)
2

. (,...&*, y, *)
2

-{(a... $fc r), $x, y, z)Y

n.2z)

to a constant factor pres. Assume successively y = 0, z = Q; z = 0, # =
;
x = 0, y = ;

then we have

[a (a, ... $ 77, ^)
2 -

(a

: n, I, [b (a, ... $f , r,, C)
-

(Af + br,

: I, m, [c (a, ... Jfc ^, ?)
-

(^r^ +/7 +

or, as they may be more simply written,

Returning now to the solution of the first problem, I shall for the sake of

simplicity consider the formulae obtained by taking for the equation of the conic,

ax2 + fiy* + yz*
= 0.

We see, therefore, that if this conic be intersected by the line Ix + my + nz = in

the points (xlt yl9 z^ and (#2 , 7/2 ,
za), then

a?2 : y2 : z2
= y& (ym* + an?)
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We have, in fact, identically

ly,z, (fin
2 + ym?) + mz,x, (yl

2 + an2

) + nx,y, (am
2 + fil

2

)

= (amnx, + finly, + ylmz,) (Ix, + my, + nz,) Imn (axf + fiy,
2 + yz,

2
),

ay,
2
z,

2

(fin
2 + ym2

)
2 + fiz,

2
x,

2

(yl
2 + an2

)
2 + yx,

2

y,
2
(am

2 + fil
2

)
2

=
afiy {

I
3
x,

3 m3

y,
3 n3

z,
3

+ (my, + nz,) I
2
x,

2 + (nz, + Ix,) m 2

y,
2 + (Ix, + my,) n

2

y,
2

2lmnx,y,z,} (Ix, + my, + nz,)

1 + m*yay,
2 + n4

afiz,
2
) (ax,

2
-f fiy,

2 + yz,
2

) ;

which show that if Ix, + my, + nz, = and ax-? + @y,
2 + yiZ

2 = 0, then also Ix2 + my2 + nz = Q

and
ax&amp;lt;? + /3y2

2 + 7^2
2 = : this is, of course, as it should be.

I shall now consider I, m, n as given functions of x1} y1 , zl satisfying identically the

equations

laCi +my1 -\-nz^ =0,

equations which express that lx + my + nz = is the tangent from the point (x1} ylt z^
to the conic ax2 + by

2 + cz2 = 0. And I shall take for a, (3, 7 the following values, viz.

a = ax,
2 + by,

2 + cz,
2 - a (x

2 + y
2 + zf),

/3
= ax? + by,

2 + cz,
2 - b (x,

2 + y
2 + z*),

7 = ax 2 + by,
2 + cz,

2 - c (x,
2 + y,

2 + z,-) ;

so that a-j, y,, z, continuing absolutely indeterminate, we have identically ax,
2 + @y,

2 +
&amp;lt;yz,

2 = 0.

Also taking as a function of x,, y,, z,, the value of which will be subsequently
given, I write

#2 = %A (/3n
2 + 7TO

2
),

y2
=

z,x,(yl
2 +an2

),

so that x,, y,, z, are arbitrary, and x.2) y.2 ,
z.2 are taken to be determinate functions

of x,, y,, z,. The point (x.2 , y2 , z.,) is geometrically connected with the point (x,, y,, z,)
as follows, viz. (x.2&amp;gt; y.,,

z2) is the point in which the tangent through (x,, y,, z,) to

the conic ax2 + by
2 + cz2 = meets the conic passing through the point (x,, y,, z,) and

the points of intersection of the conies ax 2 + by
2 + cz2 = and x2 + y

2 + z2 = 0. Con
sequently, in the particular case in which (x,, y,, z,) is a point on the conic
x2 + y

2 + z2 = 0, the point (x.2} y.2 ,
z2) is the point in which this conic is met by the

tangent through (x,, y,, z,) to the conic ax2 + by
2 + cz2 = 0.

It has already been seen that lx, + my, + nz, = and ax 2 + fiyf + yz^ = identically ;

consequently we have identically lx.2 + my.2 + nz, = and ax.? + fty
2 + yz2

2 = 0. The latter

equation, written under the form

(ax
2 + by,

2 + cz,
2

) (x.2
2 + y

2 + z.
2

)
-

(x,
2 + y

2 + z,
2

) (ax.? + by.? + cz?) = 0,

192
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shows that if #,, y9 , z* are such that x? + y,- + z? = x? + y? + z?, then that also

f cz? = ax? + by? + cz-?. I proceed to determine so that we may have

?2
2 = x? + y? + z?. We obtain immediately

(x
2 + y

2 + g*) = (
(H)2

V

_ (32^4 + pwy* + rfn^ -

write for a moment

axf + byS + czf^p, x? + 2/i

2 +^ =
q, so that ct=p-aq, @=p-bq, y=p-cq,

then

a-X
2 +W + 7

2^2 = ?P
2 -%P Pq +(V +W + ^ia

) ^
2 =

9 Ka^2 +^ + c^ ^~
= q{(b- c)

2

yiV + (c
-

a)
2 V^2 + (

~ &

+ 6mV + cwV -
(b + c) mWyfz? -

(c + a) tfPzfx?
-

(a + 6)

the first line of which vanishes in virtue of the equation ^1 + my1 + *l
= 0; we have

therefore

~ (^ + y? + *2
2

) + (^
2 + y* + *i

2

)

= (ZX
2 +mV + rtz?) {(6

-
c)

2

y?z? + (c- of z?x? + (a
-

6)
2

x*y*}

+ 2 (o^
8 + &2/i

2 + cz*) [a^V + ^m^!
4 + cnV-(& + c) m*n*y?zf- (c + a) nWzfx? -(a

Hence reducing the function on the right-hand side, and putting

(^ + y/ + *2
2

) -5- (^ + V* + zfi = 1.

we have

(c
2m4 - 262w2w2

) 2/!

+ (6
2w4 - 2c2m2w2

)^V + (c
2
Z
4 - 2a2^2

^
2

)^V + (a
2m4 -

{Z
4
(6
-

c)
2 + m4

(c
-

a)
2 + w4

(a
-

&)
2

6c - ca - 06) + 2?i
2
Z
2

(
- 6c + ca - aft) + 2?2m2

(
- 6c - ca

The value of might probably be expressed in a more simple form by means

of the equations Ix^. + my, + nzl
= and I

2bc + m?ca + tfab = 0, even without solving

these equations; but this I shall not at present inquire into.
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^Recapitulating, I, m, n are considered as functions of cc,, y,, z, determined (to a

common factor pres) by the equations

I&L + my, + nz, = 0,

I
2bc + m2ca + n2ab =

;

is determined as above, and then writing

a = ax? + by,
2 + cz? - a (x? + y,

2 + z 2

),

j3
= ax,

2 + by,
2 + cz,

2 - b (x? + y? + z?),

7 = ax? + by,
2 + cz,

2 - c (x? + y,
2 + z,

2

),

we have
#2
=

y\Zi (/3w
2 + 7w2

),

2/2
= Sz,x, (yl

2 + an2

),

z2
=

x,y, (am
2 + /3l

2
) ;

and these values give

,

ax? + byI + cz2
2 = ax,

2 + by? + cz?.

In connexion with the subject I may add the following transformation, viz. i

3 Va x = V3/3 (y-z} + V(3a - 2) (x
2 +f + z2

) + 2/3 (yz + zx + xy\

then reciprocally

x = - V3a (y
1 - z ) + V(3/3

-
2a) (x

2 + y
2 + z 2

) + 2a (y z
r + z x + x y ).

=x 2 + y
2 + z 2

,

13 (x
2 + y

2 + z2 -yz-zx-xy) = a (x
2 + y

2 + z 2 -
y z - z x - x y ).

Suppose 1 + p + p
2 =

0, then

+ p
2

z) (x+ p* + pz) ;

and in fact

3Va (x
f + py + p

2z )
= - V3yS (1 + 2p) (x + py + P

2

z),

3\/a(x +p2

y +pz) = ^ (1 + 2p) (a; + p
2

y + pz).

The preceding investigations have been in my possession for about eighteen months.

2 Stone Buildings, April 18, 1855.
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130.

DEUXIEME MEMOIRE SUft LES FONCTIONS DOUBLEMENT

PERIODIQUES.

[From the Journal de Mathematiques Pures et Appliquees (Liouville), torn. xix. (1854),

pp. 193208: Sequel to Memoir t. x. (1845), 25.]

JE vais essayer de developper ici les proprietes qui se rapportent aux transformations

lineaires des periodes des fonctions yx, gx, Gx, Zx, dont je me suis occupe dans le

Mdmoire sur les fonctions doublement periodiques que j ai donnd dans ce Recueil en

1845. Avant d entrer en matiere, je remarque que partant des expressions

T = v

des deux periodes, ou i=^ 1, on obtient, en dcrivant

H* = G) oj i,

T* = v - vi,

les Equations

H T* = cov + w v - i (wv
- to v),

O*T = (ov + w v + i {wv w v),

au moyen desquelles et des valeurs

_ iri (wv w v) _ TT (wv + w v )

OT mod. (wv
- w v) ftT mod. (wv - w u)

des quantites /3, B, on deduit les formules

TrT*

. (wv w v) T mod. (wv w v)
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Je ne fais attention qu aux transformations qui correspondent a des entiers impairs et

premiers, et je suppose, de plus, que la transformation soit toujours propre et reguliere ;

c est-a-dire qu en ecrivant

(2k + 1) fl,
= XO + fiT = (X, fi),

ou 2k + 1 est un entier positif, impair et premier, et ou X, /j,, v, p sont des entiers

tels, qu au signe pres, X/j pv soit egal a 2k + 1, je suppose

\p fj,v
= 2k + I,

(condition pour que la transformation soit propre), et, en outre,

\=1, ft=Q, (mod. 2)

*EO, p=l,

(condition pour que la transformation soit reguliere).

On trouve tout de suite

j ecris aussi

t~\ i

* O * I
il

/
=

&amp;lt;W

/
+ (O

/ I, **/
= ft) ft) 1,

et je suppose que B
/} /9y

soient des fonctions de co
/} v, telles que les fonctions B, j3,

de to, u.

Cela etant, je forme d abord 1 equation

au moyen de laquelle liquation

mod.
/ n*

se transforme en

mod.
(o&amp;gt;

v 6) v }x / / / //

De la

-^^

T,

(pn. + ^T,),
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ou enfin

et de meme

equations qui seront bientdt utiles.

Je suppose d abord que 2k + I soit egal a I unite
, transformation que 1 on peut

nommer triviale. La fonction yx est definie par 1 equation

\ 00 )

yx = e-^2
xTI -M + r[ , mod. (m, n) &amp;lt; T, T= oo

;

( (m, n))

dans (m, n) = raH + nT, les entiers m, n doivent prendre toutes les valeurs positives
ou negatives (le seul systeme m = 0, w = except^) qui satisfont a I inegalite

mod. (m, ri)&amp;lt;T,

dont le second membre T sera ensuite supposd infini. Soit y,a? la fonction corres-

pondante pour les periodes O x , T, ; on aura

+ -r- ,
mod. (m, n\&amp;lt;T,

Or

(m, n\ = mlt
+ nT

y ,

= m (\n + pT) + n (vfl + pT),

= (\m + vn)fl + (pm + pn) T,

En ecrivant, comme nous venons de le faire,

m
l
= \m -f vn,

n
t
= vm + pn,

on voit tout de suite qu a chaque systeme de valeurs entieres de m, n, correspond
un systeme, et un seul systeme, de valeurs entieres de ra,, TO,;

et que de meme a

chaque systeme de valeurs entieres de m,, n,, correspond un systeme, et un seul systeme,
de valeurs entieres de m, n; de plus, les systemes m =

0, n = et m
t
= 0, TO,

= 0,

correspondent 1 un a 1 autre. II est done permis d ecrire

*n{i +r^l=,nji+
*

t

( (m, )] ( (m, n\)

les limites comme auparavant ; car, a cause de

(m, n\ = (m/ , w/),



130] DEUXIEME MEMOIRE SUR LES FONCTIONS DOUBLEMENT PERIODIQUES. 153

la condition pour les limites, savoir :

mod. (m/ n\&amp;lt;T, T= oo
,

devient

Cela donne enfin 1 dquation

mod. (m, n) &amp;lt; T, T = cc .

et, au moyen de cette equation, on obtient une equation correspondante pour la trans
formation de Tune quelconque des fonctions yx, gas, Gas, Zx, definies par les equations

JX =

go,
=

, mod . (Wj n

, mod. (m, n)&amp;lt;T,

. u

(equations dans lesquelles rn =
et j^cris dans 1 equation entre y/af et

p = 2p + I, p = 2/j, ;
cela donne

, mod .
(m&amp;gt;

-
n} &amp;lt;

T&amp;gt;

Je prends par exemple la fonction KX
l au Heu de . Soit pour un moment

Done

c est-a-dire

de plus,

y, ( +

y, (x +

P rt,M
tgt x,

Ces substitutions etant effectu^es, les coefficients M, M, doivent e^tre dlimines en ecrivantx =
;

cela donne

--8 *

ou enfin, au moyen d une equation deja trouvee,

et de meme pour les fonctions Gx, Zx.

C. II.

20
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Done enfin, en reprdsentant par Jx Tune quelconque des fonctions yas, gx, Goo, Zx,

on aura

ou
J&amp;gt;

est ce que devient Jx au inoyen d une transformation triviale (propre et

reguliere) des periodes.

Je passe a present a la transformation pour uii nombre impair et premier (2k + 1)

quelconque; mais pour cela on a besoin de connaitre la valeur de la fonction

,
-
(m, n)

ou y = a+bi est une quantit^ reelle ou imaginaire quelconque.

Soit u ce que devient u
f

en prenant pour la condition par rapport aux limites

mod. (m, n)&amp;lt;T,
T = GO

;

on trouve sans peine

.i
tv - C

Pour trouver u
, je forme 1 dquation

&quot;(m, n)f

la limite infeVieure du produit infini double etant

mod. {(m, n) + y}&amp;gt; T,

et la limite superieure

mod. (m, n) &amp;lt; T, T= x
;

cela donne

-
(m, n)

car on peut demontrer que

s^ 2^=0, &,

Pour cela, observons que m et n dtant infinis puisque T lest, la premiere des sommes

dont il s agit peut se remplacer par Tintegrale double

&quot; dm dn
1 ii / \&amp;lt;t

&amp;gt;

(m, n)
2
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laquelle (en ecrivant m = r cos 0, n=r sin 0, ce qui donne, comme on sait, dm dn = rdr d&)
devient

/= /Y drdO

r(il cos0 + r sin 0)
2

d ou

(Iogr)d0

(ft cos 6 + r sin 0)
2

en prenant (logr) entre les limites convenables. Pour trouver ces limites, j ecris

(m, n) + y = r (H cos + T sin 6} + y ;

ce qui donne

mod. 2

{(m, n) + y}
=

{r (fl cos + T sin 6) + y} {r (fl* cos + T* sin 6) + y*},

savoir, a 1 une des limites

r2

(fl cos + T sin (9) (Q* cos + T* sin 0)

+ r \y* (O cos + T sin 0) + y (fl* cos + T* sin 0)} + T2 =
;

ou, en negligeant les puissances negatives de T,

T
r =

cos + T sin 0) (fl* cos 6 + T* sin

(Q cos 9 + T sin O* cos.0 + T* sin

et a 1 autre limite,

T
s0 + Tsin&amp;lt;9)(fl* cos &quot;0 + T* sin 0)

Or, en repr^sentant ces deux Equations par

r = R-(f), r = R,

on trouve, pour la valeur de (logr) entre les deux limites,

a cause de la valeur infinie de R Ainsi la somme cherchee est nulle; et il est tout

clair que les sommes suivantes S/~ s &c
-&amp;gt;

se r^duisent de meme a zdro.
V * /

Done enfin,

1

log u log u = x ^
(m, n)

202
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Cela fait voir que

= ~kxu = e~ u,

le coefficient k etant donne au moyen de liquation

(n, m)

ou la somme est prise, comme auparavant, entre les limites

mod. {(m, n) + y}&amp;gt; T, mod. (m, n)&amp;lt;T,
T = oo .

Mais il n est pas permis d ecrire

, _ /Y
dmdn

JJ (m, n)

En effet, cette integrale n est que le premier terme d une suite dont il faudrait, pour

obtenir un resultat exact, prendre deux termes
;

le second terme de la suite serait

une integrale prise le long d un contour, et il serait, ce me semble, tres-difficile d en

trouver la valeur. Pour trouver la valeur de k, je remarque que k sera fonction

if-

lindaire des quantitys T, y, y*, -^ , &c., qui entrent dans les valeurs de r
; done,

puisqu en derniere analyse T=x&amp;gt;, k ne peut etre que de la forme Ly + My*. Cela

etant, en substituant pour u sa valeur, je forme 1 equation

mod. {(m, n) + y}&amp;lt;T,
T = oo

,

et j ecris successivement

ce qui donne pour les valeurs correspondantes du produit infini double e~*Ba;2 . gx et

e~^
BxZ

. Gx
;

en comparant les valeurs ainsi obtenues avec les Equations qui donnent les

valeurs de y(x + ^l), yO + T), on trouve

L = 0, M= , ,

Jr

f

-
.

,

mod. (Q)v a&amp;gt;v)

ou enfin,

_ ,
t n i ,

i-i
)
J-

i

_ __
7 \ t * i-i

)
J-

i / \ . f j

y (y) ( (m, n) + y}

mod. {(m, n) + y] &amp;lt;T,
T= &amp;lt;x&amp;gt;

,

laquelle est 1 dquation qu il s agissait d etablir. II est a peine necessaire de faire la

B

remarque que pour y = 0, on doit considerer a part le facteur 1 + -
, lequel multipli^

J

par y(y) devient tout simplement x\ 1 ^quation subsiste done dans ce cas.
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En revenant au probleme des transformations lineaires, partant des Equations

je suppose d abord que les coefficients X, v ne satisfassent pas a la fois aux deux
conditions

X = 0, v = 0, mod. (2k + 1),

et je prends p, q des entiers quelconques tels, que \p + vq ne soit pas = 0, mod. (2k + 1).

Cela etant, soient

\p + vq =pt ,

MP +
P&amp;lt;1

=
?/.

(at

et, par consequent,

^
Je forme 1 dquation

(mt , n,) + s^ = (m, n\,

savoir

m
/
l+ n/T + s-v/r

=

c est-a-dire

\m + vn - sp,
= (2k + 1) m,

l ,

/Mm + vn sq/
= (2k + 1) n/ ,

ou, ce qui est la meme chose,

m sp = mt p n
/
v

,

n sq
= m

/ fji
n

f
\.

Or, mt ,
n

/}
s ^tant des entiers donnes, m, n seront aussi des entiers; de meme, m, n

etant des entiers donnas, on trouve de k a k un entier s qui donne m
/
un entier.

Mais cela dtant, n, sera aussi un entier; car autrement n
t

serait une fraction ayant

pour denominateur, lequel on voudrait, des nombres 2k +1, X, v, ce qui est impossible
& moins que

XEO, v = 0, mod.(2Jfc+l).

Mais si ces equations avaient lieu, on trouverait d abord s de maniere a avoir n
t entier,

et alors, puisqu on n a pas aussi

p =
0, p

=
0, mod. (2k + 1)

(en effet, cela est impossible a cause de liquation Xp pv = 2k + 1), on demontrerait,
comme auparavant, pour w

/( que ra, est entier. Done, enfin, m, n etant des entiers

donnas, on trouve pour m
/}

n
/}

s un systeme d entiers tel que s soit compris de k h, k,

et Ton voit sans peine qu il n y a qu un seul systeme de cette espece.
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A present, partant de liquation

y O + y) _ e-iB* (-^mod.oov -o. v)
2 *)

*
n Ji +--

K,

(et faisant attention a la particularity que presente le cas de t/
=

0), j ecris successivement

et je forme le produit des Equations ainsi trouvees. Cela donne, a cause de (w/;
n

= (m, ri),,

y (* _-
,

( (m, n)J

la condition, par rapport aux limites, etant

mod. (m, n),&amp;lt;T,
T=oo.

Or

a- = e-J^2
. a;n l +

(m, n)J

avec la meme condition, par rapport aux limites; done, enfin,

y, -*

ou, dans le numerateur, s doit avoir toutes les valeurs entieres depuis s= k jusqu a

s = + k, y compris s = 0, et dans le denominateur ces memes valeurs, hormis la valeur

II est, a present, facile de faire voir que cette propriete subsiste pour 1 une

quelconque des fonctions yx, gx, Gx, Zx; en efFet, pour la demontrer pour gx, j ecris

x+^l au lieu de x; en prenant, pour un moment, p = 2p
x
4- 1, fju

= 2p, eela donne

y,

c est-a-dire

(. f*P, J (P, f-ii or x.
\ &

Or, on deduit de 1 expression pour y,x,

n ,

y (8+ + |O)

TT g^
!-
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c est-a-dire

ou enfin, a cause de 1 equation

la valeur de est

et en representant, comme auparavant, 1 une quelconque des fonctions yx, go;, Gx, Zx
par Jx, on a 1 equation

Tj

equation dans laquelle s doit avoir, dans le numerateur, toutes les valeurs entieres

depuis s = -k jusqu a s = k, y compris s = 0, et dans le ddnominateur, ces memes valeurs,
hormis la valeur s = 0.

Je suppose que les valeurs de pt , qt
soient donnees (cela va sans dire que Ton

ne doit pas avoir a la fois ^=0, q,
= 0, mod. 2k + 1), et je remarque que Ton a, pour

determiner X, p, v, p, les conditions

PPt
~ VCL, = &amp;gt;

-
up, + Xg,

=
0,

X= 1, yu,= 0, mod. 2,

.v=0, p=l,

\p /j,v
= 2k + 1.

Et cela ^tant, on aura ensuite, en rassemblant toutes les equations qui ont rapport a
la transformation,

q,T,

/u,T,

PT .

OF THE

UNIVERSITT
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Or, quoique les valeurs de A., p, v, p ne soient pas completement determinees au

moyen de ces conditions, cependant il est clair que la valeur de la fonction J
t
x ne

depend que des valeurs de p t , q, (en effet, ces valeurs suffisent pour determiner la

quantite
r̂ =p/

fl + q/T, de laquelle depend la fonction J
t x). Les formes differentes de

J
t x, pour les systemes de valeurs de X, //., v, p, qui correspondent a des valeurs

donnees de p,, qt ,
doivent done se deliver de Tune quelconque de ces formes, au moyen

d une transformation triviale des modules l
t , T,. II est, de plus, clair que les valeurs

de
P&amp;lt;&amp;gt; #/&amp;gt; qui sont egales a des multiples de (2k + 1) pres, ne donnent qu une seule

valeur de J
t
x. Je suppose d abord que

p, = 0, mod. (2k + 1),

on peut trouver un entier 6 tel que

6p, = I, mod.(2A;+l);

en prenant alors

Oq,
=

qt , mod. (2k + I),

cela donne

e(p/^+q/
r

/) = ^ + q /
r

&amp;gt; mod.(2k+l),

savoir

0T = O + qfr, mod. (2k + 1).

Mais en donnant a s des valeurs entieres quelconques, depuis k jusqu a k, le systeme
des valeurs de sty est Equivalent au systeme des valeurs de sdty, mod. (2&+1); il est

done permis d ecrire, sans perte de generality,

V-
De meme pour

^ = 0, mod.

on demontre que Ton peut donner a q/
une valeur quelconque, sans changer pour

cela la valeur de J,x\ il convient d avoir pt impair et q/ pair. J Ecris done, pour le

premier cas, 2q x
au lieu de q,, et je suppose que, dans le deuxieme cas, les valeurs

de p,, qt
soient

p,
= Zk + I, q/

= 2.

Cela donne :

Premier cas.

q/
un entier quelconque, y compris zero, depuis k jusqu a +k.

Deuxieme cas.

*V = (2k + 1) H + 2T
;

le nombre des valeurs differentes de ^ sera done, en tout, 2k + 2.
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On obtient tout de suite, pour le premier cas, le systeme d equations

P,
= l

&amp;gt; &amp;lt;!,=
2

q/&amp;gt;

X = 1, ^ = 2q,,

v=0, p=(2k+l),

Le cas particulier le plus simple est celui de q/
=

;
cela donne

et, de la,

T, 2k + I T

et meme le cas general se reduit a celui-ci, car, au moyen d une transformation

triviale, on obtiendrait

ry = n + 2q/r, T = T,

et puis

_ l

et, de la,

T, 2& + 1 T

Les equations correspondantes pour le deuxieme cas sont:

\=2k+l, fi
= 0,

T =

ce qui donne

f
C. II. 21
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J ajoute, sans m arreter pour les demontrer, quelques formules de transformation

pour le nombre 2
; je trouve d abord

n, = in,, T,=T,

.g

Ces Equations donnent, en introduisant les fonctions elliptiques,

moyen de

yx , gx j-,
Gx

f-r, &amp;gt;=^, ^=^,
les Equations

,
Fx donnees au

dont la seconde peut encore s ecrire sous la forme

et les deux Equations combinees ensemble conduisent sans peine a la valeur des

modules c
/}

er On trouve en effet, en mettant comme a 1 ordinaire b* = c* + e
2

,

c? = 46c,

et puis

1 C (C 6) (f)

2X

1 - c (c + 6) ffic

1 c (c 6) (f&amp;gt;~x

Fx

formules qui correspondent a celles de la transformation de Lagrange. Les equations

pour yf x, Zt
x donnent encore une valeur de

&amp;lt;/&amp;gt;,#, laquelle, dgal^e a la valeur qui vient

d etre trouvee, donne

yaygaff^Q) &amp;lt;j&amp;gt;xfx

Z (x- ill) Z (x + ill)

&quot;

1 - c (o
-

6) pas



130] DEUXIEME MEMOIRE SUR LES FONCTIONS DOUBLEMENT PERIODIQUES. 163

On obtient tout de suite les formules pour la transformation analogue fl
/
= fl, T, = T.

Mais il faut de plus considerer le systeme

on aura alors

- 10 - T)

et puis, en ecrivant

on obtient

c,
2 =

(e
-

ic)
2

,

-
e;
=

(e + icf,

*
*~J*T**

f.
1 + ice dfx

fxFx

1 ice
&amp;lt;jyx

fxFx

1 + ice
&amp;lt;px Z(x + il - T) Z(x - jfl

- T)

- ce

(ill + T) ga; Gx

-in - T)
- ce &amp;lt;

T) Z(x- #l^ T) Z2

ou, au moins, ces formules seront exactes au signe de i pres ;
car il serait peut-etre

difficile de determiner quel est le signe qu on doit donner a cette quantite.

212



131.

NOUVELLES EECHERCHES SUE LES COVARIANTS.

[From the Journal fur die reine und angewandte Mathematik (Crelle), torn. XLVII. (1854),

pp. 109125.]

JE me sers de la notation

(Oo, a1} ... OO, y}
n

pour representer la fonction

a xn + ^a1 x
n~l

y + . . . + any
n

:

en supposant que les coefficients a
, a/ &c. soient donnes par 1 dquation

(OQ, !,... ) (\as + py, \ as + p!y}
n = (aQ , of, . . . an ) (, 2/)

n
,

supposee identique par rapport a x, y, soit 0(a ,
al} ...an , x, y) une fonction des co

efficients et des variables, telle que

0(0o , a/, . . . an ; x, y}
= (\p -X^

&amp;lt;j&amp;gt;
(a , a, ,

. . . an ;
\x + p,y, \ x + fi y) ;

cette fonction sera generalement un Covariant, et dans le cas particulier ou &amp;lt; est

fonction des seuls coefficients, un Invariant de la fonction donnde.

Je suppose d abord que les nouveaux coefficients soient donnes par 1 equation

(oo, O!, ... an)(x + \y, y)&quot;

= (o
/

, a/, ... )(, y)
n

;

cela donne les relations

Cifl
^

Ctfl ,

a/ = a-i + \a
,

a2
=

2

&c.
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II faut done que le covariant &amp;lt; satisfasse a 1 equation

$(a , Oi ,
...an i x, 2/)

=
&amp;lt;(a ,

a1} ... an \
as + \y,y),

laquelle peut aussi etre ecrite comme suit :

&amp;lt;(oo , a/, ...On ;
a? - Xy, y)

=
(j&amp;gt;(a ,

alt ... an ; x, y).............(X)

De meme, en faisant

(oo, cti, o) (a;, px + y)
n = (a \ a?, . . .O (a?, y)

n
,

ce qui donne
\

an a
n&amp;gt;

an_!
V = an_j + /*,

an_2

v = an_2 + 2/ian_! + an ,

&c.

le covariant
&amp;lt;f&amp;gt;

doit satisfaire aussi a 1 equation

&amp;lt;/&amp;gt;(a
\ Ox ,

... an
x

; a?,
- ^ + y) = &amp;lt;/&amp;gt;(a ,

aa ,
... an ; *, y); ......(7)

et reciproquement, toute fonction
&amp;lt;j&amp;gt; homogene par rapport aux coefficients et aussi par

rapport aux variables, qui satisfait a ces equations (X, Y), sera un covariant de la

fonction donnde.

Examinons d abord I equation (X) que je represente par &amp;lt;f&amp;gt;

=
&amp;lt;. Soit pour le

moment, a/ a1 =X 1 , a/ a2
= Xa2 , &c., alors on aura, comme a 1 ordinaire, liquation

symbolique

ou les quantites alt a2 , &c., en tant qu elles entrent dans a1} ot2 , &c., ne doivent pas
etre affectdes par les symboles 9

ai ,
9
a2 ,

&c. de la differentiation. En substituant les

valeurs de a
1 ,

a2 ,
. . .

,
et en ordonnant selon les puissances de X, cette Equation donne

ou les symboles D, Dj, &c. sont donnes par

7? 7? *__

et les quantites als a2 ,
&c.

,
en tant qu elles entrent dans les symboles D, DI, &c., ne

doivent pas etre affectees par les symboles 9
fli , 9

aa ,
&c. de la differentiation. II est

assez remarquable que liquation symbolique peut aussi etre ecrite sous la forme plus

simple
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ou les quantites al5 a2 , ..., en tant qu elles entrent dans le symbole D, sont censdes

affectees des symboles 8
ffll

,
8

2 ,
&c. de la differentiation; de maniere que dans le developpe-

ment, D 2

.&amp;lt;/&amp;gt; par exemple, signifie D .
D&amp;lt;/&amp;gt;,

et ainsi de suite. Je ne m arrete pas sur

ce point* parce que pour ce que je vais demontrer de plus important, il suffit de faire

attention a la premiere puissance de X. D ailleurs I intelligibilite des equations dont

il s agit, sera facilitde en faisant les d^veloppements et en comparant les puissances

correspondantes de X. Cela donne par exemple:

8 ,
&c.

oil les symboles D 2
, D :i &c. a gauche de ces equations denotent la double, triple, &c.

repetition de 1 op^ration D, tandis qu a cote droit des equations, les quantit^s al9 a2) ... &c.,

en tant qu elles entrent dans les symboles D, CK, &c. sont censees ne pas etre

affectees des symboles 8
fll ,

8
2 ,

&c. de la differentiation. Dans la suite, si le contraire

n est pas dit, je me servirai des expressions D 2
,
D 3

,
&c. pour ddnoter les repetitions de

1 operation, et de meme pour les combinaisons de deux ou de plusieurs symboles.

Cela etant, liquation ^ = e^ ^
&amp;lt;/&amp;gt;=&amp;lt;/&amp;gt;

donne

^= {i +MD -y**) + -^2 ( -yW+ -} h

ou (n-ydx)
2

.&amp;lt;j) (je le repete) equivaut a (D -y8z). (D -
ydx )&amp;lt;i&amp;gt;

,
et ainsi de suite. II

faut d abord que le coefficient de X s evanouisse, ce qui donne (D - ydx)
= 0; et cette

condition e&quot;tant satisfaite, les coefficients des puissances superieures s evanouissent d elles-

memes
;
c est-a-dire, 1 dquation (X) sera satisfaite en supposant que $ satisfait a 1 dquation

aux differences partielles (D ydx) &amp;lt;f&amp;gt;

= 0.

En posant t

D = n9 n_1
+ 2a -i\_2

+ naidan
,

n(n 1)
Di = anda + San-Ja ...

1i .

on fera un raisonnement analogue par rapport a 1 dquation (F); et il
jsera

ainsi demontre

que &amp;lt;/&amp;gt;

doit satisfaire aussi a liquation a differences partielles (D - #8y) &amp;lt;#&amp;gt;

=
;

done

enfin, on a le suivant

THEOR^ME. Tout covariant
&amp;lt;j)

de la fonction

(a ,
an ... an}(x, y)

n
,

satisfait aux deux equations a differences partielles

(0-^)0 = 0, (n-*8j,)4&amp;gt;
= 0, ........................ (A)

ou
D = a dai + 2a1 9aa .

U = nai d tt +(n - I
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et reciproquement toute fonction, homogene par rapport aux coefficients et par rapport
aux variables, qui satisfait a ces equations, est un covariant de la fonction donnee.

Par exemple, ^invariant
&amp;lt;/&amp;gt;

= ac - b2 de la fonction ax2 + 2bxy + cy
2

satisfait aux

Equations

(adb + 2bdc) &amp;lt;f&amp;gt;

= 0, (2bda + cdb)
&amp;lt;/&amp;gt;

= 0,

et le covariant
(j&amp;gt;

=
(ac

- b2

)x
2 + (ad

-
bc)xy + (bd-c

2

)y
2 de la fonction ax3+3bx2

y+3cxy
2

+dy 3

satisfait aux equations

(adb + 2&ac + 3cdd - ydx) &amp;lt;f&amp;gt;

= 0, (Sddc + 2cdb + bda - xdy) &amp;lt;f&amp;gt;

= 0.

II est clair qu en ne consideYant que les fonctions qui restent les memes en prenant
dans un ordre inverse les coefficients a

, a1} ... an et les variables as, y, respectivement,
les covariants seront ddfinis par 1 une ou 1 autre des equations (A), et qu il n est plus
necessaire de considerer les deux equations. Cela pose , on trouve assez facilement les

covariants par la methode des coefficients indetermines. Mais il y a a remarquer une
circonstance de la plus grande importance dans cette theorie, savoir, que Ton obtient
de cette maniere un nombre d equations plus grand qu il n en faut pour determiner
les coefficients dont il s agit. Ces equations cependant, dtant liees entre elles, se reduisent
au nombre necessaire d equations independantes.

Cherchons par exemple pour la fonction ax3 + Zbtfy + 3cxy
2 + dy

3 un invariant
&amp;lt;/&amp;gt;

de
la forme

(f&amp;gt;

= Aa2d2 + Babcd + Cac3 + Cb3d + Db2
c
2
,

contenant les quatre coefficients indetermines A, B, C, D. En substituant dans 1 equation
(adb + 2bdc + 3c8d)

&amp;lt;/&amp;gt;

=
0, on obtient

(3(7 + 25) ab2d + (3S + 60+ 2D)abc
2 + (QA + B} ac2d + (3(7 + 4D) b3c =

;

or les quatre equations donnees par cette condition, se reduisent a trois Equations
independantes, de sorte qu en faisant par exemple A=-l, les autres coefficients seront
determines, et 1 on obtient le re*sultat connu :

&amp;lt;/&amp;gt;

= - a2d2 + Qabcd - 4ac3 -
4&amp;lt;b

3d + 3b2
c*.

La circonstance mentionnde ci-dessus s oppose a rdsoudre de la maniere dont il

s agit, le probleme de trouver le nombre des invariants d un ordre donnd : probleme
qui a toujours bravd mes efforts.

Avant d entamer la solution des equations (A), je vais ddmontrer quelques proprietes
geneVales des covariants, et des invariants. Pour abreger, je me servirai du mot pesanteur,
en disant que les coefficients

,
alt &c., ont respectivement les pesanteurs 0-^n, 1-^n,

&c., que les variables x, y ont respectivement les pesanteurs ,

-
1, et que la pesanteur
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d un produit est egale a la somme des pesanteurs des facteurs. Cela
pose&quot;, je dis que

tout covariant est compose de termes dont chacun a la pesanteur zero. Pour demontrer

cela, j ecris:

(D -
ydx) (D -

xdy)
= DD -

2/8* D - xdy n+asydx dy + ydy ,

(D - xdy) (D -
ydx)

= DD -
ydx D - atoy D + xy dx dy + ocdx ;

cela donne

or, en faisant attention aux valeurs de D, D, savoir

DD = (DO) + na 8a
o
+ 2(w

-
1)^9^ ... +fi 1 c^-A,,.^

DD = (DD) + n.l. (h\ + 2(n
-

l)On_i 9
n_1
+

ou, en formant les produits (DO), (DD), les quantit^s ac , a,, ... an sont censees non

affectees par les symboles d
a&amp;lt;&amp;gt;

, \, ... 8
M
de la differentiation, on en tire

DD - DD = n a d
ao
+ (n

- 2

= _ 2 {(0
- w)a 8

ao
+ (1

- i^a^^ . . . + (n
- |w)an8aj = - 2,

en reprdsentant par 1 expression symbolique entre les crochets. De la enfin on obtient :

(D - 2/8*) (D - xdy)
- (D - ady) (D - ^) = - 2 (0 + ^8* - i^).

Or en supposant les deux parties de cette equation symbolique appliques au covariant

fa, la partie gauche de lequation s evanouit en vertu des equations (A) et 1 equation

se reduit a

ce qui est une nouvelle equation a differences partielles, a laquelle satisfait le covariant

fa II est aisd de voir que cette equation exprime le theoreme enonce ci-dessus,

savoir que tout covariant est compose de termes de la pesanteur zero.

II suit de la, en considerant un covariant

&amp;lt;j&amp;gt;

= (A ,
A l} ... A s)(oc, y)

s

qu un coefficient quelconque At aura la pesanteur %-fa ou bien que les pesanteurs

forment une progression arithmetique aux differences 1, et dont les termes extremes

sont |s, +^s.

Substituons maintenant cette valeur de
&amp;lt;f&amp;gt;

dans les Equations (A). La premiere

Equation donne d abord :

8A^ ............. (a)

Cela est un systeme qui dquivaut aux deux Equations

S A = Q () = s .e^.A s ............................ (a
7

)
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De meme, la seconde equation donne

systeme qui equivaut aux deux Equations

On voit que A satisfait aux deux equations

0, n&quot;+ 4 =0, .............................. (7)

et en supposant que cette quantitd soit connue, on trouve les autres coefficients

A 1} A 2 , ...,A S par la seule differentiation, au moyen des equations (/:?). Or cela dtant,

je dis que les equations (a) seront satisfaites d elles-memes. En effet : des equations

=8Aj, on tire D[IU =0, nnA =8HA lt et de la (DD - D

Or nous avons deja vu que CD On = 2, et Fequation (B) donne .A +^s.A =0 :

done 1 equation (DD DG)-4 =
sL^A 1 se rdduit a A =

\3A-L-. Equation du systeme

(a). De la meme maniere on obtient les autres equations de ce systeme. On peut
dire que Ton aurait pu determiner egalement le coefficient A s au moyen des Equations

0, D s
. A 8

=
0, ................................. (8)

et de la les coefficients A s_ly ... A par les equations (a).

Prenons par exemple un covariant (A 0&amp;gt;

A ly A^) (x, y) de la fonction cubique
ax3 + 3bx2

y + Sexy
2 + dy

3
. A doit satisfaire aux deux Equations

(adb + 2bdc + 3c3d)^ =
0, (3bda + 2cdb + ddc)*A = 0.

Ces Equations sont en effet satisfaites en mettant A = ac b2
. On a done les equations

2A, = (3bda + 2cdb + ddc)A , A, = (3bda + 2cdb + ddc)A 1}

pour determiner A 1} A 2 ;
ce qui donne 2A 1

= ad be, A., = bdc2
,

et on est conduit

ainsi au covariant mentionne ci-dessus, savoir a

(ac fr)x~ + (ad be) xy + (bd c
2
) y

2
.

Soit maintenant

x^d^-x^yda^ ... y
n\ = \,

on aura

nA = (DA), AD=(An)- 2/ || &amp;gt;

c. ii. 22
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ou dans (DA), (AD) les quantit^s a
, a^, ... sont censees non affectees par les symboles

d&amp;gt; 9&amp;lt;
&c. de la differentiation. Cela donne

n A A mDA - AU = y -K- .*

Or 9a;A A9a; = ^ ,
done :

da;

et de meme :

(D - xby) A = A (D - asdy).

Appliquons ces deux equations symboliques a un covariant
&amp;lt;f&amp;gt;.

Les termes a droite

s ^vanouissent a cause des equations (A), et Ton obtient les deux equations

(D -
ydx) A&amp;lt; =0, (D - ady) A0 = 0,

c est-a-dire :
A&amp;lt;j&amp;gt;

sera aussi un covariant de la fonction donnee. Par exemple de I inva-

riant

$ = - a-d? + Qabcd - 4ac3 - 4b3d + 362
c
2
,

on tire le covariant

savoir :

(- a-d + Babe - 263

- 3 ( abd - 2ac2 + b2

+ 3(

r^sultat deja connu.

Essayons maintenant a int^grer les equations (A ) ;
savoir :

(H-ydx)&amp;lt;l&amp;gt;
= 0, (D -xdy )&amp;lt;j&amp;gt;=

0.

Pour integrer la premiere, je reviens a une notation dont je me suis deja servi dans

ce memoire et
j
ecris

fto
= do,

a/ = ax + Aa ,

! + X2a
,

n_! . . . + X?la .
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En faisant \ = 1

, ce qui donne a = 0, on voit sans peine que Ton satisfera a

1 ^quation, en mettant pour &amp;lt; une fonction quelconque de quantitys a
, a/, ... an ,

x + \y, y ; le nombre de ces quantites etant n + 2. Et cela est la solution generale de

1 dquation.

Ce resultat doit etre substitute dans la seconde equation, savoir dans (D xdy)(^=Q.
Pour cela, imaginons que les quantites a

,
al} ... an , x, y soient exprimees en fonction

de a
, a/, ... an , x, y et ax ; puisque &amp;lt;f&amp;gt;

est fonction des seules quantitys a
, a/ ... an ,

a, y, 1 dquation rdsultante doit etre satisfaite, quelle que soit la valeur de a^. Or on

trouve que cette equation resultante a la forme L + Ma-^ = : done il faut qu on ait

a la fois les deux equations L=0, M=0. (Je renvoie a une note les details de la

reduction.) En derniere analyse, et en remettant dans les equations L = 0, M = les

quantites a
,

a2 , ..., an au lieu de a
,

a.2 , ..., a,/, je trouve les resultats suivants tres

simples, savoir, en ecrivant

Les Equations dont il s agit sont

et il y a a remarquer qu on obtient liquation (C) en dliminant entre les Equations

(.4) le terme 9
ai

&amp;lt;

;
et puis, en mettant 0^ = 0, on tire liquation (D) de 1 equation

(B), en y mettant de meme ax
= 0. II y a a remarquer aussi que la fonction &amp;lt; qui

satisfait aux Equations (C, D), est ce que devient un covariant quelconque &amp;lt;f&amp;gt;,

en y
mettant 0^ = 0. On obtient d abord la valeur generale en changeant a

, a2 , ...,an en

a
, re/, . . .

,
an ,

et en mettant apres pour ces quantitds leurs valeurs en termes de

a
, ttj, a.2 , ..., an . La solution du probleme des covariants serait done effectuee si Ton

pourrait integrer les equations (C, D).

Or la quantite a entre dans 1 equation (C) comme constante, et 1 on voit sans

peine que cette equation pourra etre integree en mettant a = 1
; puis, en ecrivant dans

le resultat ?
,

:!

,
...

&quot;

au lieu de 2 ,
a

:i , ... an ,
et en multipliant par une puissance

quelconque de a ,
le rdsultat ainsi obtenu, serait compose de termes de la meme

pesanteur; et en choisissant convenablement la puissance de a
,
on pourrait faire en

sorte que ces termes fussent de la pesanteur zero. Mais 1 equation (D) ne fait qu exprimer

que la fonction
&amp;lt;f&amp;gt;

est composee de termes de la pesanteur zdro
;

le resultat obtenu de

la maiiiere dont il s agit, satisfera done par lui-meme a 1 equation (D), et il est

permis de ne faire attention qu a 1 equation (C). Dans la pratique on int^grera cette

222
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Equation en ayant soin de faire en sorte que les solutions soient de la pesanteur ze&quot;ro,

ce qui peut etre effectue en multipliant par une puissance convenablement choisie de

a . Et puisqu en faisant abstraction de cette quantite a
,

1 equation ((7) contient n + 1

quantitys variables, savoir a2 ,
a3 , ...,an , x, y, la fonction &amp;lt; sera une fonction arbitraire

de n quantitys; et en supposant que cette fonction ne contienne pas les variables

x, y (cas auquel &amp;lt; serait ce que deviendrait un invariant quelconque en y mettant a = 0),

&amp;lt;f&amp;gt;

sera une fonction arbitraire de n 2 quantites.

La meme chose sera eVidemment vrai, si Ton retablit la valeur generale de ax :

done tout invariant sera une fonction d un nombre n 2 (^ invariants, que Ton pourra

prendre pour primitifs ;
et tout covariant sera une fonction de ces invariants primitifs

de la fonction donnee (laquelle est evidemment un de ses propres covariants), et d un

autre covariant que Ton peut prendre pour primitif. Cela ne prouve nullement (ce qui

est neanmoins vrai pour les invariants, a ce que je crois) que tout invariant est une

fonction rationnelle et integrate de n 2 invariants convenablement choisis, et que tout

covariant est une fonction rationnelle et integrate (ce qui en effet n est pas vrai) de

ces invariants, de la fonction donnee, et d un covariant convenablement choisi.

Le cas n 2 fait dans cette theorie une exception. On sait qu il existe dans ce

cas un invariant, savoir ac b2

qui, selon la theorie generale, ne doit pas exister, et

il n existe pas de covariant, hormis la fonction donnee elle-meme. Or cette particularity

peut etre aisement expliquee.

Le cas n = 3 rentre, comme cela doit etre, dans la theorie generale. En efFet, il

existe dans ce cas un invariant, savoir la fonction a?d? + Qabcd + 4ac3
4&amp;lt;b

3d + 362
c
2

ci-dessus trouvee, et tout covariant de la fonction peut etre exprime par cet invariant

de la fonction donnee elle-meme, et par le covariant (ac b-)(K
2 + (ad bc)xy + (bd c

2

)y
2

ci-dessus trouve. II en est ainsi par exemple pour le covariant de troisieme ordre

par rapport aux variables et aux coefficients
;

car en representant par &amp;lt;X&amp;gt; le co

variant dont il s agit, par H le covariant du second ordre, par u la fonction donnde

aa? + 3ba?y + Sexy
2 + dy

3 et par V Vinvariant, on obtient I equation identique

&amp;lt;J&amp;gt;

2 + n^2 = 4# 3
. Je fais mention de cette equation, parce que je crois qu elle n est

pas generalement connue.

Je vais donner maintenant quelques exemples des Equations (C et D). Soit d abord

n = 3, et supposons que $ ne contienne pas les variables x, y :
(f&amp;gt;

sera une fonction

de a, c, d, et les equations reviendront a

(6c
29 rf

- addc)$ = 0, (- 3ada + cdc + 3($d)0 = 0.

Les quantites ac3
, a?d?, dont chacune est de la pesanteur zero, satisfont par la a la

seconde equation, et en mettant
(f&amp;gt;

= Ad*d2 + Cac3
,
on obtient 4tA C=0, en vertu de

la premiere equation; ou en faisant A = 1, cela donne C = 4; de la on tire

^ = a2 d2 4ac3
,

et la solution generale est = F( a~d2 4ac3
),
F etant une fonction

quelconque. La formule plus generale !j&amp;gt;

= F(a, a2 d~ 4OC3
) satisferait sans doute a la
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premiere equation, mais pour que cette valeur satisfasse a la seconde equation, il faut

que la quantite a, en taut qu elle n
est^ pas

r

contenue dans - a~d2 - 4ac3
, disparaisse.

Ainsi la valeur donnee ci-dessus, savoir = F.(- a?fc - 4ac3

),
est la solution la plus

generale des deux Equations.

TJ,
. b2

, 36c 263

Jicrivons a, C-
,
d - -- + - an lieu de a, c, d, et 6 au lieu de 6, nous obtenons :

Cv \Jj (Jj

tf&amp;gt;

= F(- o?d? + 6abcd - 4acs - 4b*d + 362
c
2

) ;

ce qui est 1 expression la plus generale des invariants de la fonction ax3+3bx2
y+ 3cxy

2

+y3

,

et^
Ton voit que tous ces invariants sont fonctions d une seule quantite que nous avons

prise ci-dessus pour Yinvariant de la fonction de troisieme ordre dont il s aaitO *

Soit encore n = 4, sera une fonction de a, c, d, e qui satisfait aux equations

{2addc + (ae
- 9c2

) 8^
- I2cdde ]

= 0,

{- 2ada + ddd + 2ede}
= 0,

dont la solution generale est = F(ae + 3c2
, ace - ad* - c

3

), F etant une fonction quel-
conque. On voit par la qu il n existe que les invariants inddpendants ae-4cd + 3c*,
ace + 2bcd ad2

b~e c
3

. Ce resultat est connu depuis longtemps.

Soit enfin n = 5, sera une fonction de a, c, d, e, f qui satisfait aux equations

(2ae - 12c2

) dd + (af- IQcd) de
- Wcedf\

=
0,

= 0.

On sait qu il y en a une solution de quatrieme ordre par rapport aux quantites
a, c, d, e, /; et en prenant la fonction la plus generale dont les termes ont la pesanteur
zdro, on aura :

= Aa-f
2 + Bacdf+ Cace2 + Dad2

e + Ec3e + Fc&quot;~d
2

:

fonction qui satisfait d elle-meme a la seconde equation. En substituant cette valeur
dans la premiere equation, on trouvera que les coefficients A, B, &c. doivent satisfaire
a ces sept equations :

2(7 -

9E- 24D + 4F- 32(7 - 20B =
0, 6^-16D=0, - 24^ - 16E= 0,

qui se reduisent cependant (ce que 1 on n aurait pas facilement devine par la forme
des equations) a cinq equations independantes. En faisant done A =

l, on trouve
aisdment les autres coefficients B, C, &c. et on obtient ainsi :

= a2

/- + 4acdf+ Wace- - I2ad2
e + 48c3e - 32c2d* :

valeur qui peut etre tiree d une formule presentee dans mon memoire sur les hyper-
determinants, [16], en y faisant 6 = 0.
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J ai donne* cet exemple pour faire voir qu il serait impossible de deduire du nombre

supposd connu des coefficients indetermine*s qui correspondent a un ordre donne
,

le

nombre des invariants de ce meme ordre. II est done inutile de pousser plus loin cette

discussion.

Note 1 sur I integration des equations (A).

En ecrivant comme ci-dessus :

D = a
rt
8

rti
+ Za^cta, ... + iwn-.-$a^

D =
nciida, + (n- I)oa3ai

... + aB9
0ji_ l&amp;gt;

il s agit de trouver une quantite &amp;lt;f&amp;gt;,

fonction de a
,
a1} ... an ,

x et y qui satisfasse a

la fois aux Equations

(D-ya,)0 = 0,

(D -
xdy) &amp;lt;/&amp;gt;

= 0.

Pour integrer ces equations, j ecris, comme plus haut :

a. = a.2

et aussi x = x \y, y =
y. Cela pose, je fais remarquer d abord que -^- = a ,

~ =2a 1 &amp;gt;

WA, CtA,

et ainsi de suite. En considerant X comme fonction quelconque de a
,
a1} ... an ,

et en

supposant que &amp;lt;^&amp;gt;

soit une fonction de a
, a/, ... an ,

x
, y ,

on parvient assez facilement

a Fequation identique (D ydx)4&amp;gt;

=
(1 + DA.) (Q y d*)&amp;lt;f&amp;gt;,

ou D est ce que devient

D, en y ecrivant a , a/, ... a,/ au lieu de a
,
als ... an .

Nous pouvons done satisfaire a la premiere Equation, en determinant \ au moyen

de 1 + DA, = : equation qui serait satisfaite en ecrivant \ = ---
, ou, si Ton veut, en

a

determinant \ par a/ = 0. Done, en supposant toujours que X ait cette valeur, &amp;lt;

sera une fonction quelconque de a
,

a&amp;lt;2 ,
. an , x, y ,

c est-a-dire d un nombre n + 2

de quantites. Ce sera done la (comme on aurait pu facilement prevoir), la solution

g^nerale de la premiere equation. Or en considerant comme fonction de a , a2 , ... an
f

&amp;gt;

x
, y , ou, si Ton veut, de a/, a/, a/, . . . an ,

x
, y (ou a/ = i + Xa =

0), et en
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substituant cette valeur dans liquation (D - asdy) &amp;lt;/&amp;gt;

= 0, on voit d abord que la variation
de la quantitd X fournit au resultat le terme

d\ d\ n 2 / i \ /

et puisque na , + (n
-

1) a, j- se reduit a w -^ -(n - 1)
a
^

2

,
ou enfin a X3 - n ~ ^ 8

ce terme devient

Le terme -tfdy .&amp;lt;j&amp;gt;

se reduit a -(x + \y )(- \dx - + 8^)0, savoir a

(- afy + xys* + Xs 8* - X?/^) 0,

et en mettant pour un moment

M= na d, \.

nous obtenons

(D - xdy) . M* +
(v

- (

-^^) (D -
y^)0 + (- aft, + xya,, + x^^ -

c est-a-dire

(D - ^)&amp;lt;/&amp;gt;

- (Jf
-^)0 + XCT - -

/

Or en supposant que D est ce que devient D en y dcrivant a
, a/, ... a,/ au

lieu de a
, a^ ... an , et en posant

=
(
- ^)a 8a; + (1

-
|n) afta; + . . . (n

-
^i)a,/8a; ,

on obtient, apres avoir fait une reduction un peu penible :

X2D
(/&amp;gt;

= D

(en effet les coefficients de 8^0, da^ &c. aux deux c6tes de cette Equation deviennent
les memes apres des reductions convenables.) Done enfin on a

(D - xdv)+ - (D -
*%)&amp;gt;

-^^- (g
-
2/^)0 + 2X ( +i^ -^ ay) =

o,

ou bien, puisque cette Equation doit tre satisfaite inddpendamment de la quantite X (qui
seule contient aj, elle se ddcompose dans les deux equations

{a ([J
-
afy)

-
(n
-

1) a^D -
T/

{0
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lesquelles, en y mettant d abord a/ = 0, puis en remettant a
,
a2 , , , #, y au lieu de

a/, a/, ... , an ,
a

, y ,
et en ecrivant , 0, D, *D au lieu de

&amp;lt;j&amp;gt;,

6, D, D, donnent en

effet les Equations (0, D) dont je me suis servi dans le texte.

Note 2.

Je vais resumer dans cette note quelques formules qui feront voir la liaison qui

existe entre les invariants d une fonction de n-ieme ordre et de la fonction de (n l)ieme

ordre que Ton obtient en reduisant a zeVo le coefficient de y
n

,
et en supprimant le

facteur x.

II convient pour cela de considerer une fonction telle que

(a , a^, ... an}(x, y)n
= a,x

n + a,x
n~l

y ... +any
n

,

dans laquelle n entrent plus les coefficients numeriques du binome (1 + x)
n

.

Ecrivons

(Oo, Oj, ... n)O, y)n
= a (x- aiy}(x

-
a#) ...(*- y) ;

je tache d abord a representer les invariants au moyen des racines 21} 2 , ...,an , et

j
^tends pour le moment le terme invariant a toute fonction, symetrique ou non, des

racines qui ait la propriete caracteristique des invariants: fonctions qui jusqu ici ont

ete considerees tacitement comme rationnelles par rapport aux coefficients.

Mettons d abord

V = aa
m
^(al

-
0^(0^.

~
as)

9

(n-i
-

)
2

;

cette quantite V qui, egalee a zero, exprime I egalite de deux racines, et que je vais

desormais nommer le Discriminant de la fonction, sera une fonction rationnelle des

coefficients, et d un invariant proprement dit. Mais de plus, toute fonction telle que

(ai
_ a

o)
n
(i as)

n
, ,

dans laquelle la somme des indices des facteurs qui contiennent

a1} celle des indices des facteurs qui contiennent a.,, &c. sont egales, sera un invariant;

et en reunissant ces fonctions, pour trouver une somme en fonction symetrique des

racines, on obtiendra des invariants proprement dits. Cela soit dit en passant. Pour

le moment il suffit de prendre les invariants les plus simples, savoir ceux de la forme

(a,
-

a,) (otj
- a4)

lesquels en effet sont des rapports anharmoniques de quatre racines, prises a volonte. Soient

Qi, Q2 , Qn-a la fonction qui vient d etre ecrite et les fonctions que Ton en tire en

mettant 5 ,
a6 , ..., au lieu de 4 . Les fonctions V, Ql} Q^,...,Qn-s seront des

invariants independants, et le nombre de ces invariants est n 2. Done, tout autre
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invariant sera une fonction des quantites V, Q1} Q2 , ..., Qn~3 . Soit maintenant an = 0,

et On la racine qui devient egale a zero. Les quantites Qly Q2 , ..., Qn^ seront toujours

des rapports anharmoniques de quatre racines de 1 equation du (n l)ieme ordre. II

n y aura que la seule quantite Qn_3 qui change de forme, et elle ne sera pas un

invariant de la fonction du (n l)ieme ordre. On voit aussi d abord que le discriminant

V se reduit a a2
n_tV ,

en exprimant par V le discriminant de la fonction du (n l)ieme

ordre. (C est je crois M. Joachimsthal qui a le premier remarque cette circonstance.)

Done, en supposant an = 0, { invariant de la fonction du ?i-ieme ordre deviendra une

fonction de aV-iV , Q1} Q2 ,
... Qn_4 et d une quantite X qui n est pas un invariant de

la fonction du (n l)ieme ordre, mais qui sera toujours la meme quel que soit Tinvariant

dont il s agit. En considerant les invariants proprement dits de la fonction du (n l)ieme

ordre, on peut former avec ces invariants des quotients I1} /2 , ...,/n_4 du degre
7

zdro

par rapport aux coefficients. Nous pouvons remplacer par ces quotients les quantites

Qi. Qa&amp;gt; &amp;gt; Qn-4&amp;gt;
6t dire que I invariant de la fonction du w-ieme ordre, en mettant an =0,

deviendra une fonction des quantites a2
n_!V ,

I1 ,
/2 , ...,/n_4 et X.

Ces theoremes auront, je crois, quelque utilite pour les recherches ultdrieures : je

les laisse a cote maintenant, et veux presenter une methode assez simple pour calculer

les discriminants.

Pour cela je remarque que les equations (A), en changeant, comme nous venons

de le faire, les valeurs des coefficients, donnent pour les invariants :

(na d
ai + (n

- \)a$at
... + an_An) &amp;lt;/&amp;gt;

= 0,

(aAo + 2a2 9ai
... + nandan_)&amp;lt;j&amp;gt;

=
;

et ces equations seront satisfaites en mettant pour &amp;lt;/&amp;gt;

le discriminant V. Or, pour
an = 0, la fonction V devient a-n_^ , ou, si Ton veut, a2

n_!V ;
done V sera generale-

ment de la forme

V = - aViV + Ban + Can2
+...,

ou a^~l est la puissance la plus elevee de an . Done, en supposant que V soit connu,

et en mettant la premiere des equations ecrites ci-dessus sous la forme (F+an-1da )V=Q,
ou F=na dai + (n 1)^9^ ... + 2an_29a _ ,

on obtiendra par la seule differentiation les

coefficients B, C, &c. En effet, cette equation donne

Sa^Z* = - F(C) ;

et ainsi de suite.

En supposant par exemple n = 3, considerons la fonction du troisieme ordre

oaf + fix-y + &amp;lt;yocy-
+ 8y

3
:

le discriminant de ax2 + ftxy + yy
2 sera

4&amp;lt;ay /3
2
. Nous avons alors

V = - 7
2
(4a7 - /S

2

) +BB+ CB2
,

c. ii. 23
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et en mettant F = 3adp + 2(3dy , B, C seront donnas par

yB = F (4a7
3 - y), 2yC = -F (B),

c est-a-dire B= 18a/37 - 4/3*, &amp;lt;7
= -27a2

,
et de la:

V = - 27 a2S2 + 18 a/37S - 4a7
3 - 4/3

38

valeur qui correspond en effet a la forme ordinaire

V = - a2d2 + 6 abed - 4 ac3 - Wd + 3 62
c
2
,

n changeant d une maniere convenable les coefficients.

Londres, Stone Buildings, 23 Fevr. 1852.
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132.

REPONSE A UNE QUESTION PROPOSES PAR M. STEINER

(Aufgabe 4, Crelle t. xxxi. (1846) p. 90).

[From the Journal fur die reine und angewandte Mathematik (Crelle), torn. L. (1855),

pp. 277278.]

EN partant des deux theoremes :

I. Qu il existe au moins une surface du second ordre qui louche neuf plans donnds

quelconques ;

II. Que le lieu d intersection de trois plans rectangles qui touchent une surface

du second ordre est une sphere concentrique avec la surface, tandis que pour le para-

boloide cette sphere se reduit a un plan,

M. Steiner suppose le cas d un parallelepipede rectangle, ou meme d un cube P
et d un point quelconque D, par lequel passent trois plans rectangles. Les six plans

du parallelepipede P et les trois plans qui passent par le point D seront touches d une

surface F du second ordre (I.), et les huit angles E du parallelepipede P et le point

D doivent done se trouver tous les neuf sur la surface d une sphere, ou dans un

plan (II.). Les huit angles E sont en effet situes sur la surface d une sphere,

de&quot;terminee par eux
;

mais le point D e&quot;tant arbitraire, ce point en general ne sera

pas situe&quot; sur cette surface spherique, de maniere que les neuf points 8E et D ne

seront situes, ni dans une surface spherique, ni dans un plan ;
ce qui ne s accorde

pas avec le the&quot;oreme II. Cela etant, M. Steiner dit, qu il y a a prouver que la

contradiction n est qu apparente, et que tout cela n affaiblit pas la validitd gdnerale des

deux theoremes.

II s agit de savoir ce que devient dans le cas suppose par M. Steiner la surface

du second ordre qui touche les six plans du parallelepipede P et les trois plans qui

232
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passent par le point D. Cette surface sera en effet la conique selon laquelle I infini,

consider^ comme plan, est coupe par un cone determine, pres la position du sommet.

En effet, menons par un point quelconque de 1 espace trois plans paralleles aux plans

du parallelepipede P, et par le point D trois autres plans paralleles a ces plans. Ces

six plans seront touches (en vertu d un theoreme connu) par un cone determine du

second ordre, et on peut dire que ce cone, quelle que soit la position de son sommet,

rencontre 1 innni, consideYe comme plan, dans une seule et meme conique (cela n est

en effet autre chose que de dire que deux droites paralleles rencontrent rinfini, con-

sidere comme plan, dans un seul et meme point). Le cone dont il s agit aura la

propriete d etre touche par une infinite de systemes de trois plans rectangles. En
effet : le plan passant par le sommet, et perpendiculaire a la droite d intersection de deux

plans tangents quelconques sera un plan tangent du cone
;

les plans d un tel systeme
seront aussi des plans tangents de la conique mentionnee ci-dessus : done le sommet

du cone sera le point d intersection de trois plans rectangles de la conique ;
et ce

sommet dtant un point entierement indetermine
,

le lieu de 1 intersection des trois plans

tangents rectangles de la conique, sera de meme absolument indetermine, ou si Ton

veut, ce lieu sera 1 espace entier pres les points a une distance infinie. La contra

diction apparente dont M. Steiner parle, a par consequent son origine dans 1 indeter-

mination qui a lieu dans le cas dont il s agit. Dans tout autre cas, le point

d intersection des trois plans rectangles de la surface du second ordre est parfaitement

determine ,
et les thdoremes I. et II. sont tous deux legitimes.
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133.

SUR UN THEOREMS DE M. SCHLAFLL

[From the Journal fur die reine und angewandte Mathematik (Crelle), torn. L. (1855),

pp. 278282.]

ON lit dans ( 13) d un mdmoire tres interessant de M. Schlafli intitule&quot; &quot;Uber

die Resultante eines Systems mehrerer algebraischer Gleichungen&quot; (Mem. de I Acad. de
Vienne, t. IV. [1852]) un tres beau theoreme sur les Resultants.

Pour faire voir plus clairement en quoi consiste ce theoreme, je prends un cas

particulier. Soit

dy
3

=(a, b, c, d)(x, y)
s
,

=
( a&amp;gt; 0, 7)(^, y)\

Je fais p = x2
, q

=
xy, r= y

z
,
et je forme les opdrateurs

lesquels, operant sur U, donnent

v&Z +W + rg) , y (p% + qv +

L operateur

G =R +^+?v ,

operant sur V, donne
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Cela etant, soit = le resultant des Equations U = 0, V = 0, c est-a-dire 1 equation

que Ton obtient en eliminant x, y entre les Equations 7=0, V = 0, ou autrement dit,

soit &amp;lt; le resultant des fonctions U, V. Pour fixer les iddes j ecris la valeur de ce

resultant comme suit:

&amp;lt;f&amp;gt;

= a, 36 , 3c ,
d

a, 36, 3c, d

a, 2/3, 7

a, 2(3, 7

*, 2/3, 7

Je suppose que les operateurs 2(, S3, (S operent sur le resultant
&amp;lt;,

ce qui donne les

fonctions

Sty, 330, (0,

ou en ecrivant pour 21, 53, (5 leurs valeurs :

et en considerant ces expressions comme des fonctions de
, 77, , j en forme le

resultant
&amp;lt;l&amp;gt;,

savoir

Ce resultant &amp;lt; contiendra le carre de
&amp;lt;j&amp;gt;

comme facteur ; c est ce qui donne, dans le

cas particulier dont il s agit, le theoreme de M. Schlafli.

Generalement, en supposant que Ton ait autant de fonctions U, V, W, ... que
d indeterminees x, y, z,..., on peut supposer que p, q, ... soient des monomes xl

y
mzn,...

du meme degre \ (il n est pas necessaire d avoir la serie entiere de ces monomes),

et on peut former des operateurs 21, 2$, &c. en meme nombre que celui des monomes

p, q,
... avec les indeterminees , ij, ...

,
tels que ces operateurs 21, 33,..., op^rant sur

les fonctions U, V, W, ... (chacun sur la fonction a laquelle il appartient), donnent

t(p% + q?) ...y, t (p% + qrj . . .y , &c.; t, t
,
&c. etant des monomes de la forme xfy

gzh

Cela etant, soit
&amp;lt;f&amp;gt;

le resultant des fonctions U, V, W, ...; en operant sur ce

resultant
&amp;lt;/&amp;gt;

avec les operateurs 21, 33,... et en formant ainsi les fonctions 2(0, 330,...,

soit &amp;lt;& le resultant de ces expressions considerees comme des fonctions de
, 17, &c.

&amp;lt;l&amp;gt; contiendra une puissance de &amp;lt; comme facteur, et en supposant que p ne soit plus

petit qu aucun autre des indices /*, pf,...] TT =
*7T 77&quot;

et cr =- + + ..., 1 indice de

cette puissance sera au moins &amp;lt;r

--
. Voila le thdoreme general de M. Schlafli.
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La demonstration donnee dans le memoire cite est, on ne peut plus, simple et

elegante. Elle repose d abord sur un theoreme connu (demontre au reste 6) qui

peut eitre enonce ainsi
; savoir, en supposant que les equations U= 0, F=0, ... soient

satisfaites, on aura (pres un facteur independant de
, 77,...):

. ..Y, 230 = t (pf + qi, . ..y, &c.

Puis, elle est fondee sur le theoreme ddmontre ( 12), savoir : le resultant des
fonctions

(ou /. / sont des polynomes de degrds p, p ,
... en

77, &c., et p, q,..., t, t ,...

des constantes quelconques) sera, en supposant que ^ ne soit plus petit qu aucun autre

des indices /*, /& , ..., et en posant 77 = ^ ..., tout au plus du degre
-

par rapport
A6

aux quantites t, t , &c. Voici cette demonstration, qui suppose aussi que le resultant

&amp;lt;f&amp;gt;

soit indecomposable. Supposons que les coefficients de U, V, W, ... soient assujettis
a la seule condition d etre tels que le rdsultant

&amp;lt;/&amp;gt;

soit un infiniment petit du premier
ordre, il sera permis de supposer que tous ces coefficients des indeterminees x, y, ...

ne different des valeurs qui satisfont aux Equations U = 0, V=0, W=0, ... que par des
increments infiniment petits du premier ordre

;
le resultant

&amp;lt;f&amp;gt;

sera un infiniment petit
du premier ordre, mais toute autre fonction des coefficients, a moins qu elle ne contienne
une puissance de $ comme facteur, aura une valeur finie, et toute fonction des
coefficients infiniment petite de 1 ordre k contiendra &amp;lt;

fc comme facteur. Dans cette

supposition les Equations 210 = 0, 330 = 0, &c. deviendront :

f...)0,

ou
/&amp;gt; / .

sont des polynomes de degrds /i, //, ... dont les coefficients sont des
infiniment petits du premier ordre. En supposant toujours que ^ ne soit plus petit

qu aucun autre des indices /a, /, ... et en posant 7r = /*// ..., a- =- + ,..., \e resultant 3&amp;gt;

/i p
du systeme sera tout au plus du degre

- -

par rapport aux quantitds finies t, t
,

. Le
P

degre par rapport a tous les coefficients est o-; le degre par rapport aux coefficients

de
/&amp;gt; / &amp;gt;

sera done au moins a---
;

c
;

est-a-dire, ce rdsultant sera un infiniment
A6

7T

petit de 1 ordre &amp;lt;r--, ou enfin, &amp;lt;E&amp;gt; contiendra
&amp;lt;f&amp;gt;*-&quot;

-^ comme facteur. Or les coefficients

de U, V, W, ... (assujettis a la seule condition ci-dessus mentionnee) etant d ailleurs

arbitraires, on voit sans peine qu il est permis de faire abstraction de la condition, et

que 3&amp;gt; contiendra en general cette meme puissance $-* * comme facteur; ce qu il

s agissait de ddmontrer.
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Rien n empeche que &amp;lt;]&amp;gt; ne contienne une plus haute puissance que $*~
v : ^ comme

facteur, ou que &amp;lt;l&amp;gt; ne s eVanouisse identiquement. On peut meme assignor de plus

pres que 1 a fait M. Schlafli, des cas ou &amp;lt;& s evanouit identiquement. Soient m, m , m&quot;, . . .

13 1} 13

les degres de U, V, W, ... par rapport a cc, y, z, ...
, p = mm m&quot; ...

,
s = +-,+ --, ...,m m m

P
sera du degrd par rapport aux coefficients de U. Soient aussi p.t , p,/t ,

... les
tit

degres de celles des fonctions 210, 330, . . .
, pour lesquelles les opdrateurs 21, 33, ...

7T 7T
contiennent des differentielles par rapport aux coefficients de U, p = I . . . : pour

r4/ r^//

13

ces fonctions les coefficients serout du degre 1 par rapport aux coefficients de U
; pour

f) 1 13 \ P fl
les autres ils seront du deere&quot; .

&amp;lt; sera done du degre 1 p + (cr p),
= o- p,m \m J

r m ^ m
J) D / 7T\

par rapport aux coefficients de U, et &amp;lt;
-=- 6 &amp;lt;T

~n * sera du degr^ &quot;-a- p [a 1. c est-m m\ fji)

13 7T
a-dire du degre . p par rapport aux coefficients de U. De meme, en supposant

13 7T

que les lettres ra p ,
... aient rapport a V. &c., &amp;lt;-=-

&amp;lt;i

&amp;lt;7

~7r: x sera du degre ,. p &c.m ft

D 7T

par rapport aux coefficients de V, &c. Si 1 un quelconque des nombres . p,

-
-, . p, &c. est negatif, et a plus forte raison, si leur somme s . a- est negative,

777-
JJL JjL

&amp;lt;& doit s evanouir identiquement. En particulier, en supposant que le nombre des

fonctions 210, 330, ... (c est-a-dire le nombre des indetermines
, 77, ...) soit v, on aura

77&quot; TT
a &amp;gt; v -

,
et par cette raison &amp;lt;l&amp;gt; s evanouira identiquement si -

(cr v) est ndgatif, c est-
p, fj,

a-dire si v &amp;gt; cr. Je ne parlerai pas ici des cas examines par M. Schlafli, ou &amp;lt;I&amp;gt; con-

tient comme facteur une plus haute puissance que
&amp;lt;r

~7r :

**.
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134

EEMAEQUES SUE LA NOTATION DES FONCTIONS
ALGEBEIQUES.

[From the Journal fur die reine und angewandte Mathematik (Crelle), torn. L. (1855),

pp. 282285.]

JE me sers de la notation

pour reprdsenter ce que j appelle une mc^nce; savoir un s^me de quantites rangeesen forme de carre, mais d ailleurs tout a fait indlpendantes (je ne parle pas ici des
matrices rectangulavres). Cette notation me parait tres commode pour la theorie des
equations lineaires ; j dcris par exemple

(I, ^, ?,...)
=

( , P, 7,-..

, P, 7 ,-..

&quot;, P , 7&quot;,...

pour repr^senter le systeme des Equations

C. II.
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On obtient par la I dquation :

[134

(an, y, z, ...)
=

( , fi , 7, .-

, , 7, .-

qui reprdsente le systeme d equations qui donne x, y, z, ... en termes de f, 97, ...
,

et on se trouve ainsi conduit a la notation

, 7

, 7

/3&quot;, 7&quot;

de la matrice inverse. Les termes de cette matrice sont des fractions, ayant pour
denominates commun le determinant formd avec les termes de la matrice originale ;

les numerateurs sont les determinants mineurs formes avec les termes de cette meme
matrice en supprimant 1 une quelconque des lignes et 1 une quelconque des colonnes.

Soit encore

(an, y, z, ...)
=

( a
, b

, c
, ... )(x, y, z, ...),

a
, b

, c
, ...

a&quot;, b&quot;, c&quot;,.

on peut ecrire :

(, v, )-&amp;lt;
a

, /3 , 7 ,
...

, , /,...

a&quot;, &quot;, 7&quot;,
...

a
, 6

, c , ...

a
, 6

, c ,...

a&quot;, 6&quot;, c&quot;,
.

)(x, y, z, ...),

et Ton parvient ainsi a I idee d?une matrice composee, par ex.

a
, /? , 7 , ... a

, 6
, c

,

a
, 6

, c
,

a&quot;, b&quot;, c&quot;,

On voit d abord que la valeur de cette matrice composee est

(a, /3, 7) ...)(a, a
, a&quot;, ...), (a, 0, 7, ...)(&, 6

, 6&quot;, ...),

(a , /3 , 7 , ...)(6, 6
, b&quot;, ...),

I :
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ou (a, /3, 7, ...)(a, a
, a&quot;, ...)

= aa + /3a + ya&quot; + ... . II faut faire attention, dans la com

position des matrices, de combiner les lignes de la matrice a gauche avec les colonnes

de la matrice a droite, pour former les lignes de la matrice composee. II y aurait

bien des choses a dire sur cette theorie de matrices, laquelle doit, il me semble,

preceder la theorie de Determinants.

Une notation semblable peut etre employee dans la theorie des fonctions quad-

ratiques. En effet, on peut ddnoter par

la fonction lineo-lineaire

a
, , 7

, P, /

&quot;, 0&quot;, y

(a.

)( v,

et de la par

a, h, g,

h, b, f,

9, f, c,

la fonction quadratique

aa? + bf + cz* + 2fyz + Zgzx + 21ixy . . .

que je reprdsente aussi par

(a, b, c, ...f, g, h,
...)&amp;lt;&amp;gt;, y, z, ...)-.

Je remarque qu en general je represente une fonction rationnelle et integrale,
homogene et des degres m, m , &c., par rapport aux indeterminees x, y, &c., x

, y , &c.,
de la maniere suivante:

Une fonction rationnelle et integrale, homogene et du degre m par rapport aux deux
indeterminees x, y sera done representee par

242
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En introduisant dans cette notation les coefficients, j ecris par exemple

(a, b, c, $x, y)
3
,

pour representer la fonction

as? + 3ba?y + Sexy* + dy*,

tandis que je me sers de la notation

(a, b, c, d\x, y)
s

,

pour representer la fonction

aa? + ba?y + cxy* + dy
3
,

et de meme pour les fonctions d un degre quelconque. J ai trouve cette distinction

tres commode.

[In the foregoing Paper as here printed, except in the expression in the second line of this page,

)(
is used instead of

J&quot;(

: it appears by a remark (Crelle, t. LI, errata) that the manuscript had the inter

laced parentheses 1$ . Moreover in the manuscript ( ) was used for a Matrix, which was thus distinguished

I I

from a Determinant, but in the absence of any real ambiguity, no alteration has been made in this respect.

In the reprint of subsequent papers from Crelle, the arrowhead )( or ^ is used instead of (J) . ]
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135.

NOTE SUE LES COVABIANTS D UNE FONCTION QUADEATIQUE,

CUBIQUE, OU BIQUADBATIQUE A DEUX INDETERMINEES.

[From the Journal fur die reine und angewandte Mathematik (Crelle), torn. L. (1855),

pp. 285287.]

LA thdorie d une fonction a deux indeterminees d un degre quelconque, par exemple

( )(*, y}
m

,

depend du systeme des covariants de la fonction, lequel est censd contenir la fonction

elle-meme.

Pour une fonction quadratique le systeme de covariants est

(a, b, c)O, 7/)
2

,

ac - b\

Pour la fonction cubique, le systeme est

(a, b, c, d)(x, y)
3
,

(ac-b\ ad -be, bd-c*)(x, y)\

(- o?d + 3a6c - 2b3
,

- abd + 2ac2 - 62
c, acd - 2b2d + be2

,
ad2

- a?d2 + Qabcd - 4ac3 - 463d + 362
c
2
,

fonctions lesquelles, en supposant qu on les reprdsente par U, H, $, n satisfont iden-

tiquement a 1 ^quation
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Pour la fonction biquadratique, le systeme est

(a, b, c, d, e)(x, y)\

ae 4&amp;lt;bd + 3c2
,

2bc, ae + 2bd 3c2
,
Ibe Zed, ce d2

)(x,

ace + 2bcd ad- b-e c3,

f -a-cl +3a6c - 263
,

a2e 2abd + 9ac2 662
c,

babe + \bacd Wb2
d,

+ 10a2d - I0b2
e,

+ bade + lObd2
Ibbce,

+ ae2 + 2bde 9c2
e + 6cd-,

+ be2 3cde + &amp;lt;2d

3
,

et ces fonctions, en supposant qu on les represente par U, I, H, J, $, satisfont iden-

tiquement a 1 equation

1

J ajoute a ce systeme la fonction

7 s -27/2 = a3^ - I2a2bde- - 18a2
c
2
e
2

+ 54&amp;gt;ab
2ce2 - Qab2d2

e - I80abc2de + WSabcd3 + Slac e

- 54ac3d2 - 2764
e
2 - 6463

c^
3 + W8b3cde - 54&amp;gt;b

2
c?e

+ 36b2c-d2,

qui est le discriminant de la fonction biquadratique.

Pour donner une application de ces formules, soit propose de resoudre une Equation

quadratique, cubique ou biquadratique, ou autrement dit : de trouver un facteur lineaire

de la fonction quadratique, cubique, ou biquadratique.

II est assez singulier que pour la fonction quadratique la solution est en quelque

sorte plus compliquee que pour les deux autres. En effet, il n existe pas de solution

symetrique, a moins qu on n introduise des quantites arbitraires et superflues; savoir,

on trouve pour facteur lineaire de (a, b, c)(x, yf 1 expression

(a, 6, c)(a, )(*, y) + V - D . (# -
y),

ou (a, b, c)(a, (3)(x, y} denote aax + b (ay + fix) + cfiy.

Pour la fonction cubique, liquation &amp;lt;I&amp;gt;

2 + Q U2 = 4&amp;gt;H
3 fait voir que les deux fonc

tions &amp;lt;l&amp;gt; + ?7V Q ,
&amp;lt;& U\/ n son^ 1 une et 1 autre des cubes parfaits. L expression
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sera done une fonction lineaire de oc, y ;
et puisque cette fonction s eVanouit pour

17=0, elle ne sera autre chose que Fun des facteurs lineaires de (a, b, c, d)(x, y}
3
.

Pour la fonction biquadratique, en partant de I equation

JU*

j ecris

et je mets 1 equation sous la forme

(1, 0,
- M,

Done, en supposant que CTJ, tsra ,
-nrs soient les racines de 1 equation

(1, 0,
- M, MX*r, I)

3 = 0,

ou plus simplement de 1 dquation

ces expressions IH ^^JU, IH vr.2JU, IH ^3JU seront toutes trois des Carres de

fonctions quadratiques. L expression

(&amp;gt;2
-

OTs) &amp;lt;J(IH
- T*JU) + ( OTs

-
OTl) &amp;lt;J(IH

- 1XJU) + (OTl
- *T 8) V(/^- ^3^^)

sera done une fonction quadratique, et on voit sans peine qu elle sera le carre d une

fonction lineaire. Or cette expression s evanouit pour Z7= 0; done ce sera precisement
le carre de 1 un quelconque des facteurs lineaires de (a, b, c, d, e)(x, y)*.

L equation identique pour les covariants d une fonction biquadratique donne lieu

aussi (remarque que je dois a M. Hermite) a une transformation tres elegante de

I intdgrale elliptique Idx-r-*/ (a, b, c, d, e)(x, I)
4

.
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136.

SUR LA TRANSFORMATION D UNE FONCTION QUADRATIQUE
EN ELLE-MEME PAR DES SUBSTITUTIONS LINEAIRES.

[From the Journal fur die reine und angewandte Mathematik (Crelle), torn. L. (1855),

pp. 288299.]

IL s agit de trouver les transformations lineaires d une fonction quadratique

( )(x, y, z, ...)
2 en elle-meme, c est-a-dire de trouver pour (x, y, z, ...) des fonctions

lindaires de x, y, z, ... telles que

(0)(x, y, z,. ..)*
=

(

En representant la fonction quadratique par

y, *,

(0)0, y, 2, ...)
2 = a, h, g, ... }(x, y, z, ...)

h, b, f, ...

9, f, c,...

la solution qu a donnde M. Hermite de ce probleme peut etre rdsumde dans la seule

Equation
(x, y, z, ...)

=

a, h,g, ...
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En effet, pour demontrer que cela est une solution, on n a qu a reproduire dans
un ordre inverse le procede de M. Hermite. En introduisant les quantites auxiliaires

(, rj, ...), on peut remplacer 1 equation par les deux Equations

a, h, g, ...

h, b, /,...

9. f, c, ...

a, h, g,

h, b, /,

ff. /&amp;gt;
c,

, y, z, ...)
=

( a,

y, z, ...)
=

(

h-v, b, / + X, ...

a, h v, g + /JL,

+ v, b, /-X,

qui donnent tout de suite d abord

(OX*, y, *&amp;gt;)( 17, C, .-O^COXf. 17, &.
et puis

a? + x = 2f, y + y = 2r), z + z = 2?, &c.

On obtient par la :

-x, 217 -y, 2?-z, ...)
2

,

= 4(0 xi, 17, r, --.)
2 -4(oxr, 17, r.-x*.

c est-a-dire 1 equation

qu il s agissait de verifier.

Je remarque que la transformation est toujours propre. En effet, le determinant
de transformation est

a, h, g ...

h, &,/...

ff.f, c ...

-1
a, h v, g

^ b, f

g-fjL,f+\, c ...

a, h + v, g IJL
...

h-v, b, f+\...

1

a, h, g ...

h, b,f ...

ff.f, c ...

Or les determinants qui entrent dans les deux termes moyens, ne contiennent 1 un
ou 1 autre que les puissances paires de X, p, v, ... . Done ces deux determinants sont

egaux, et les quatre termes du produit sont rdciproques deux a deux; le determinant
de transformation est done + 1, et la transformation est propre.

Pour obtenir une transformation impropre, il faut considerer une fonction quadratique
qui contient outre les inddterminees x, y, z, ... une indeterminee 6, et puis reduire k

c. ii. 25
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zero les coefficients de tous les termes dans lesquels entre cette indeterminee 6. Les

valeurs de x, y, z, ... ne contiendront pas 6, et en representant par ^ 1 indeterminee

que Ton doit ajouter a la suite x, y, z, ...
,
la valeur de ^ sera, comme on voit sans peine,

^ =
;

le determinant de transformation pour la forme aux indeterminees x, y, 2, ... ,

sera +1, et ce determinant sera le produit du determinant de transformation pour la

forme aux indeterminees x, y, z,... multiplie par -1. Le determinant de transformation

pour la forme aux indeterminees x, y, z, ... sera done -1, c est-a-dire, la transformation

sera impropre.

Au lieu de la formule de transformation ci-dessus, on peut se servir des formules

( &amp;lt;n, )
=

( &amp;gt;

h + v, g-p,...

h v, b
, f + X, . . .

g + fj,, f X, c ,...

a, h, g,... \
)(#, y, z, ...),

h, b, f, ...

g, f, c,...

Par exemple, en supposant que la forme a transformer soit

on aura

a, v,
-

}J&amp;lt;,...

-v, b, X, ...

p,
-

X, c, . . .

-l

}(ax, by, cz, ...),

x = 2 x, y = 2?7
-

y, z = 2 z, &c.,

de maniere qu en posant
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ce qui est 1 ^quation pour la transformation propre en elle-meme, de la fonction

aa? + by
2 + cz2 + &c. On en deduira, comme dans le cas general, la formule pour la

transformation impropre. On trouvera des observations sur cette formule dans le

memoire &quot;Recherches ulterieures sur les determinants gauches&quot; [137].

Je reviens a 1 equation generale

(0)(x, y, z, ...)
2 = (0)(, y, z, ...)

2
,

et je suppose seulement que x, y, z, ... soient des fonctions lineaires de x, y, z, ... qui

satisfont a cette equation sans supposer rien davantage par rapport a la forme de

la solution. Cela etant, je forme les fonctions lineaires x sx, y sy, z sz, &c., ou ,&amp;lt;?

est une quantite quelconque, et je considere la fonction

(Q)(x-sx, y-sy, z-sz ...)
2

,

laquelle, en la developpant, devient

(l + a-XOHa, y, z ...)
-

2s( }(x, y, z ...)( ,, f...)j

( ) (
x x, y -- y, z -- *....

s *
f

yi
s

et en developpant de la meme maniere la fonction quadratique

( ) (

V

on obtient 1 equation identique

( )(x-s#, y-sy, z-sz, ...)
2 = s

2
. ( ) (

x --x, y--
\ S S

Soit n le determinant forme avec les coefficients de fonctions lineaires x s&;

y sy, z sz, &c. En supposant que le nombre des indeterminees x, y, z, &c., est n,

n sera evidemment une fonction rationnelle et integrale du degre n par rapport a s.

Soit de meme Q le determinant forme avec les coefficients de

1
x ~ ~

s

liquation qui vient d etre trouvee, donne Q 2 = s271 n 2
,

c est-a-dire Q = + sn [J. Cela

fait voir que les coefficients du premier et du dernier terme, du second et de 1 avant-

dernier terme, &c., sont egaux, aux signes pres. De plus, le coefficient de la plus
haute puissance sn est toujours + 1, et on voit sans peine qu en supposant d abord

que n soit impair, on a pour la transformation propre:

=,
et pour la transformation impropre

D=(l, -
I I \L, J.

,
... J-

, J.^ S, \.)
.

equation qui peut etre changee en celle-ci : D =
(1, P, ... P, l)(s, l)

n
- Puis, en

supposant que n soit pair, on a pour la transformation propre:

D (1, P, P, IX s
&amp;gt; i)

n

et pour la transformation impropre:

252
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le coefficient moyen etant dans ce cas egal a ze&quot;ro. Ces theoremes pour la forme du

determinant des fonctions lineaires x - ax, y-ay, z-sz, ... sont dus a M. Hermite.

II y a a remarquer que la forme ( )(x, y, 2 ...)
2 est tout & fait indeterminee

;

c est-a-dire, on suppose seulement que x, y, z, ... soient des fonctions lineaires de

x, y, z,..., telles qu il y ait une forme quadratique ( )(x, y, z, ...)&quot; pour laquelle

1 dquation ( )(x, y, z ...)
2 =( )(x, y, z ...)

2 est satisfaite.

Je regarde d un autre point de vue ce probleme de la transformation en elle-

meme, d une fonction quadratique par des substitutions lineaires. Je suppose que

x, y, z, &c. soient des fonctions lineaires donnees de x, y, z, ...
,

et je cherche une

fonction lineaire de as, y, z, &c. qui, par la substitution de x, y, z, &c. au lieu de

,/;, y, z, &c. se ,transforme en elle-meme a un facteur pres. Soit (/, m, n, ...}(x, y, z, ...),

cette fonction lineaire, il faut que (I, m, n, ...)(x, y, z, ...) soit identiquement =8. (I, m, n,...)

(x, y, z, . . .), ou, ce qui est la meme chose, que (I, m, n, . . .)(x
-

ax, y
-

ay, z - sz, . . .) soit =
;

c est-a-dire, les quantites I, m, n, ... seront determinees par autant d equations lineaires

dont les coefficients sont precisement ceux de x-sx, y-ay, z-sz, &c.
;

done s sera

determine si Ton rend egal a zero le determinant forme avec ces coefficients, et I, m, n, &c.

se trouveront donnes rationnellement en termes de s. Cela etant, je suppose que les

racines de 1 equation en s soient a, b, c, ... ,
et ces differentes racines correspondront

aux fonctions lineaires x
a&amp;gt;

x6l x c ,
... qui ont la propriete dont il s agit. Soit ( )(#, y, z, ...)

2

une fonction quadratique qui se transforme en elle-meme par la substitution de x, y, z, &c.

au lieu de x, y, z, &c. Cette fonction peut etre exprimee en fonction quadratique de

xa ,
x 6 ,

x c ,
&c.

; quantitfe qui, en substituant x, y, z, &c. au lieu de x, y, z, ... deviennent

ax rt , 6x5, cx c ,
....

Je prends les cas d une fonction binaire, ternaire, &c., et d abord le cas d une

fonction binaire.

En ecrivant d abord ( )O, ?/)
2 =

(^&amp;gt;
B, C)(xa ,

x 6)
2
,

on doit obtenir identique

ment (A, B, C) (axa ,
bx b)*

= (A, B, C)(x a&amp;gt;

x6)
2
,
c est-a-dire ^(a2

-l) = 0, 5(a6-l) = 0,

C(b
2

1)
= 0. Or la solution A=B = C = ne signifiant rien, on ne peut satisfaire a

ces equations sans supposer des relations entre les quantites a, b
;

et pour obtenir une

solution dans laquelle la fonction quadratique ne se reduit pas a un carre, il faut

supposer, ou ab - 1 = 0, ou a2 - 1 = et &2 - 1 = 0. Le premier cas est celui de la

transformation propre. II donne

Le second cas est celui de la transformation impropre. II donne

a = + 1, b = -l, (0 )O, y)
2 = I xa

2 + m x6
2

.

En passant au cas d une fonction ternaire, soit

( o )(x, y, z? = (A, B, C, F, G, H)(x a , x,, x,)
2

,

on doit avoir identiquement

(.4, B, C, F, G, #)(ax rt , K, cx c)
2 = M, B, C, F. G, #)(xa ,

.\ 6l x,)
s

,
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c est-a-dire^(a
2 -l) = 0, JB(6

2
-1) = 0, &amp;lt;7(c

2

-l)=0, F(bc-l) = 0, G(ca- 1)
= 0, H(ab- 1)

= 0, et on voit que pour obtenir une solution dans laquelle la fonction quadratique ne

se reduit pas a un carre*, ou a une fonction de deux indeterminees, il faut supposer

par exemple a2 1= 0, be I = 0. On a done dans le cas d une fonction ternaire :

a2 =
1, be = 1, (0 )(#, y, zf = lxa

2 + m xb x c .

La transformation sera propre, ou impropre, selon que a = + 1 ou a 1 .

Dans le cas d une fonction quaternaire, on obtient pour la transformation propre:

ab = cd=l, ( (&amp;gt;)(#, y, z, w)
2 =

et pour la transformation impropre:

a = + l, b = l, cd=l, ( &amp;lt;))(x, y, 2,

Dans le cas d une fonction quinaire on obtient

a?=I, &c=de=l, ( )0, y, , w,

et la transformation est propre ou impropre, selon que a = + 1 ou = 1
;

et ainsi

de suite.

Cette methode a des difficultes dans le cas ou 1 ^quation en s a des racines

egales. Je n entre pas ici dans ce sujet.

Dans les formules qu on vient de trouver, on peut considerer les coefficients

I, m, &c. comme des quantites arbitraires. Mais en supposant que la fonction quadra

tique soit donnee, ces coefficients deviennent determines. On les trouvera par la formule

suivante que je ne m arrete pas a demontrer.

Soient a, j3, 7, &c. les coefficients de la fonction lineaire xa ,
a

, ft , 7 , &c. les

coefficients de la fonction lineaire x6 ,
et ainsi de suite

; alors, dans les differentes

formules qui viennent d etre donnees, le coefficient d un terme xa
2 a droite sera

-k

et le coefficient d un terme xax6 a gauche sera

-k

ou k denote le discriminant de la fonction quadratique a gauche, et ou les coefficients

des functions quadratiques des denominateurs sont les coefficients inverses de cette meme
fonction quadratique a gauche

1
.

1 Je profite de cette occasion pour remarquer concernant ces recherches que les formules donnees dans

la note sur les fonctions du second ordre (t. xxxvni. [1848] p. 105) [71] pour les cas de trois et de quatre

indeterminees, sont exactes, mais que je m ^tais trompe dans la forme generale du theoreme. [This correction

is indicated vol. i. p. 589.]
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L application de la methode a la forme binaire (a, b, c\x, yf donne lieu aux

developpements suivants.

J ecris x=ax+/3y, y=yx + Sy, et je represente par (I, m)(x, y) une fonction

lineaire qui par cette substitution est transformed en elle-meme, au facteur s pres.

Nous aurons done

(I, m)(QLX + fty, yx + By) = s(l, m)(x, y);

1 equation pour s sera

s2 - s (S + a) + ag - fty
=

;

laquelle pent aussi etre ecrite comme suit:

(1, -a-o, aZ-faKs, 1)
2 = 0.

Soient s ,
s&quot; les racines de cette Equation. (II est a peine necessaire de rernarquer

que s , s&quot;,
et plus bas P, Q, sont ici ce que dans les formules generales j ai reprd-

sente par a, b et xa ,
x6 . De meme les Equations p = s

s&quot;, p
= s

2
, p

=
s&quot;-,

obtenues

apres, correspondent aux Equations ab = l, a2 = l, 62 =
1.) On aura

s + s&quot;
= - 8 - a, s s&quot;

= aS - 187,

et les coefficients I, in seront ddtermines rationnellement par s.

Mais on peut aussi determiner ces coefficients par liquation

I : m = loL + my : Ift + mS,

qui peut etre ecrite sous la forme

(/3, B a, &quot;y)(l, m)~
= 0,

et en eliminant entre cette Equation et liquation Ix + my = les quantites I, m, on

voit que les fonctions lindaires Ix + my sont les facteurs de la fonction quadratique

(ft, S a, y)(y,
-

a;)
2

, on, ce qui est la meme chose, de la fonction quadratique

(7, B - a,
-

/3X^&amp;gt; 2/)
2

;

je represente ces facteurs par P, Q et je remarque encore que 1 equation en s aura

des racines egales si

(B
-

a)
2 + 4/37 = 0,

et que dans ce cas, et exclusivement dans ce cas, les fonctions P, Q ne forment qu une

seule et meme fonction lineaire.

Je suppose maintenant que la fonction (a, b, c)(x, y)* se transforme en elle-meme

par la substitution ax + fty, yx + Sy au lieu de x, y, ou, ce qui est ici plus commode,

je suppose que les deux fonctions sont dgales a un facteur pres, et j ecris

(a, b, cXae + y, yx +Sy)* = p (a, b, c)(x, y) .
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En developpant cette Equation, on obtient

x*(a, b, c)(
2

-p, 2a7, 7* Y
+ 2xy (a, b, c)(a/3, aS + 7

-
p, yS ) &amp;gt;

= 0.

+ f(a, b, c)(/3
2
, 2/3S, S2

-p),

Voila trois equations lineaires pour determiner par les quantitds a, /3, 7, S, considerees

comme donnees, les coefficients (a, 6, c) de la fonction quadratique. Les coefficients de

ces equations lineaires sont
2

-p, 2*7, 7
2

,

a/3, aS + 7 - p, 78,

/3
2

, 2/3S, S2

-p.

Le systeme inverse par lequel on trouve les valeurs de a, b, c, est

7 + S2

) p + P
2

&amp;gt;

- P& (*&
~
Py) + *Pp,

a2S2 - /3y - (S
2 + a2

) p + p
2
,

- a7 (ag
-

-
2ayg (08

-

a2
(aS

-
/37)

-
(aS + /37 + a2

) p + p
2

,

et le determinant, egale a zero, donne

(aS -/3&amp;lt;y-p) {(a8
-

/37 + p)
2 -

p (a + S)
2

}
=

:

equation dont les racines sont

En comparant ces valeurs avec celles de s
, s&quot;,

on voit que les racines de 1 equation
en p sont

n Q Q&quot; r&amp;gt; e/2 n Q&quot;*

p ss
, p s

, p s ,

et nous allons voir que ces valeurs de p donnent en general les valeurs PQ, P*, ty,

pour la fonction quadratique.

Soit d abord p = aS /rty (= s
s&quot;),

et posons pour abreger S /3y p = &amp;lt;f&amp;gt;,

le systeme
inverse devient :

(S
2

-p)c-/3p . 27 , -/8S0-/8p(S-a), F4&amp;gt;
+ /3p . 2/3,

- 27 S&amp;lt;/)

-
p (S

-
a) 27, (aB + fa - p) &amp;lt;/&amp;gt;

- p(S-a)
2
,

-
2a/S0 + p(8 - a) 2/8,

- 7
2

^&amp;gt;

+ 7^ . 27,
-

7&amp;lt;
+ 7/3 (S

-
a), (a

2 -
p)

-
yp . 2/3,

et en mettant &amp;lt;

=
0, les termes de chaque ligne (en omettant un facteur) deviennent

7, (8 a), /3. On obtient ainsi dans ce cas, pour la fonction quadratique (a, b, c)(x, y)
2

la valeur

(7, S-a, -/8X, 2/)
2

&amp;gt;

qui est en effet le produit PQ des fonctions lineaires.

II y a a remarquer qu en supposant (S a)
2 + 4^7 = 0, ce qui est le cas pour lequel

p sera une racine triple, il n y aura pas de changement a faire dans ce resultat. La
fonction quadratique est, comme auparavant, le produit PQ des fonctions lineaires ;
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seulement ces deux fonctions lineaires dans le cas actuel sont identiques, de maniere

que la fonction quadratique se reduit a P2
.

Soit ensuite

p = { ( + 8) i V(a^&quot;6)

T+Wj 2

(= s 2 on s&quot;

2

);

en ecrivant p = s2 et en mettant pour abreger 8 #7 s (8 + ) + s
2 =

x&amp;gt;

inverse devient

(8- + s
2

) % + s(8
~

*)
2

(8 + a
)&amp;gt;

~ 8X -08($- s) (8 + a),

-
27* (8

-
s) (8 + a), {s

2 + s(8 + a) + aS -f 7} ^ + 2/97s (8 + a),

-
s) (8 + a),

2/3s (a
-

s) (8 4- a),

(a
2 + s

2
) x + s (a

~
)
2

(S + a
)-

Done, en ecrivant % = et en omettant le facteur s (8 + a), le systeme inverse devient

(S-s)
2

, -/3(S-s), /S
2

,

7 (S
-

s), 7,
-

(a
-

),

7
2
,

- 7 (/3
-

s), (a
-

s)
2

,

et les quantites dans chaque ligne sont dans le rapport I
2

: Im : m?, de maniere que la

fonction quadratique est dans ce cas egale a P2 ou Q~. Cela suppose que 8 + a ne soit

egal a zeVo. En faisant pour le moment p
=

1, on en tire la conclusion qu a moins

de supposer 8 + a = 0, il n existe pas de fonction quadratique binaire proprement dite

(fonction non carree) qui par la substitution impropre ax + fiy, jx + Sy pour x, y, se

transforme en elle-meme. Liquation 8 + a = donne p
= a8 ^7, qui est une racine

double de 1 equation cubique. On remarquera en passant par rapport a la signification

de 1 equation 8 + a = 0, que Ton a en general :

(a, P}(OLX + fry, yx + By) : (7, B)(ax + fiy, jx + Sy)

= (a
2 + y37)^ + /3(S + a)2/ : 7 (8 + a) x + (8

2 + #y) y,

et de la, qu en supposant 8 + a = 0, on a

(a, j3)(ax + @y, yx + Sy) : (7, &)(ctx + fiy, yac+Sy) = x, y.

Cela revient a dire qu en faisant deux fois la substitution ax + {3y, yx + Sy au lieu de

x, y, on retrouve les quantites x, y, ou que la substitution est penodique du second

ordre. II y a aussi a remarquer que dans le cas dont il s agit, savoir pour 8 + a = 0,

on a s&quot;
= s

,
et que les deux fonctions lineaires P, Q restent parfaitement determinees.

Nous venons de voir qu il n existe pas de transformation impropre d une fonction

quadratique binaire proprement dite, a moins que 8 + a ne soit pas
= 0. Mais en

supposant 8 + a = 0, on voit que les coefficients des Equations pour a, b, c deviennent

-07, -y(S-a), 7
2

,

aft a (S
-

a),
-

ay,

/3
2
, 0(8 -a), 0y,
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c est-a-dire : les coefficients de chaque equation sont dans le rapport de

/9, S - a, -y,

de maniere qu en supposant que les coefficients a, b, c satisfont a la seule Equation

(a, b, c)(/9, 8 - a,
-

y) = 0,

oil a, /3, y, 8 sont des quantites quelconques, telles que S + a. = 0, on aura

(a, b, c)(ax + Py, 1 + 8y)
2 = - (a -

/37) (a, b, c)(x, y)
2

.

Ce n est la qu un cas particulier de 1 equation identique

(a, b, c)(ax + @y, yx + By)
2 + (aB

-
/37) . (a, b, c)(x, y)

2 =

(8 + a) .

(aa + by, b(B + a), b/3 + cS) (x, y)
2 + (, a - a,

- 7)(a, b, c) . (0, B - a,
-

y)(y,
-

a?)*.

II faut remarquer qu en supposant toujours 1 equation

(a, b, c)(/3, a-a, - 7)
=

0,

la fonction quadratique (a, 6, c)(#, y)
2
,

en supposant qu elle se red-wise d un carre, est

comme auparavant P2 ou Q2
,

c est-a-dire le carre de 1 une des fonctions lineaires.

En effet : en dcrivant (a, b, c}(x, yf = (Ix + my)
2
, liquation entre I, m serait eVidem-

ment (/9, B a, y)(l, mf = 0, de maniere que I, m auraient les memes valeurs qu au-

paravant. J ajoute que tout ce qui precede par rapport a I dquation

(a, b, c)(ax + fiy, yx + Sy)
2 =

p (a, b, c)(x, y)-

fait voir qu a moins que la fonction quadratique ne soit un carre, on aura toujours

P = (a /37) ;
ce qu on savait deja des le commencement, et ce qui peut etre demontre

comme a 1 ordinaire, en dgalant les discriminants (ac 62

) (8 -
fty)

2 et (ac ft
2

) p
2 des

deux cdtes. Je fais enfin p = l, ce qui donne 1 dquation

(a, b, c)(&amp;lt;xx
+ /3y, yx + By)

2 =
(a, b, c)(x, y)

2
,

et (en faisant abstraction du cas ou la fonction quadratique est un carre) je tire de

ce qui precede les resultats connus, savoir, que 1 on a :

1. Pour la transformation propre :

a8-/37 = l,

a : 2b : c = y : S-a :
-

/3.

2. Pour la transformation impropre :

a8-/3y = -l, 8 + a = 0,

a/3 + b(S-a)-cy = 0.

Je crois que cette discussion a ete utile pour completer la theorie algebrique de la

forme binaire (a, b, c)(x, i/)
2

.

c. ii.

OF THE

UNIVERSITY
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137.

RECHERCHES ULTERIEURES SUR LES DETERMINANTS

GAUCHES.

[From the Jourml fur die reine und angewandte Mathematik (Crelle), torn. L. (1855),

pp. 299313: Continuation of the Memoir t. xxxii. (1846) and t. xxxvm. (1849);

52 and 69.]

J AI deja donne une tbrmule pour le developpement d un determinant gauche.

En prenant, pour fixer les idees, un cas particulier, soit

12345
|

12345 = 11, 12, 13, 14, 15

21, 22, 23, 24, 25

31, 32, 33, 34, 35

41, 42, 43, 44, 45

51, 52, 53, 54, 55

(oil 12 = -21, &c., tandis que les quantitys 11, 22, &c. ne s evanouissent pas). Cette

formule peut etre ecrite comine suit:

5512345
|

12345= 11
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Les expressions 12, 1234, &c. a droite sont ici des Pfaffians. On a

12 = 12,

1234 = 12 . 34 + 13 . 42 + 14 . 23

et en ecrivant encore un terme, pour mieux presenter la loi :

123456= 12.34.56 + 13.45.62 + 14.56.23 + 15.62.34 + 16.23.45

+12.35.64 + 13.46.25 + 14.52.36 + 15.63.42 + 16.24.53

4-12.36.45 + 13.42.56 + 14.53.62 + 15.64.23 + 16.25.34.

J ai trouve recemment une formuie analogue pour le developpement d un deter

minant gauche borde, tel que

a!234
|

1234 =
a/3, al, 2, a3, a4

1/8, 11, 12, 13, 14

2/8, 21, 22, 23, 24

3/3, 31, 32, 33, 34

4/3, 41, 42, 43, 44

cette formuie est :

a .
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II est a peine necessaire de remarquer que dans les Pfaffians a droite, ou entrent

des symboles tels que la, /31, &c., qui ne se trouvent pas dans le determinant dont il

s agit, il faut ecrire la = - al, /31
= -

1/3, &c. Le symbole /3a ne se trouve ni dans le

determinant, ni au cote droit. Cependant il convient de poser (3a
= - a/3 ;

car cela etant,

il serait permis de transformer les Pfaffians, en ecrivant par exemple a12=-/3a!2.

Je remarque en passant que, si avant de poser 1 equation /3a = - a, on suppose que

les deux symboles a, /3 deviennent identiques (si par exemple on ecrit a = ft
=

5), on

aurait par exemple

a/3. 12 = a/3. 12 + al . 2/3 + a2. /SI = 55. 12 + 51.25 + 52.51 = 55.12, &c.,

et on retrouverait ainsi la formule pour le developpement de 12345
|

12345.

La nouvelle formule peut etre appliquee immediatement au developpement des

determinants mineurs. En effet, en se servant de la notation des matrices, on aura
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En eftet, en developpant les deux c6t^s, on obtient :

11.22.33 + 11. (23)
2 + 22. (13)

2 + 33. (12)
2 = 11 .(22. 33 + (23)

2

)

+ 21. (21. 33 + 23.13-J-)

+ 31. (31. 22 + 32.12f).

On voit que les deux termes marques par un
-f-

se ddtruisent et que 1 equation est

identique. On doit avoir de meme,

1234 I 1234 = 11 . 234 I 234

- 12 . 234 134

- 13 . 324 I 124

- 14 . 423
|

123
,

ou, ce qui est la meme chose :

1234 I 1234 = 11 . 234 I 234

+ 21 . 234
|

134

+ 31 . 324 I 124

+ 41 . 423
|

123
;

c est-a-dire, en developpant des deux cdtes:

11.22.33.44 + 11.22.(34)
2 + 11.33.(24)

2 + 11.44.(23)
2

+ 22.33.(14)
2 + 22.44.(13)

2 + 33. 44. (12)
2 + (1234)

2 =

11 [22 . 33 . 44 + 22 (34)
2 + 33 (42)

2 + 44 (23)
2

]

+ 21 [21 . 33 . 44 + 2134 . 34* + 23 . 13 . 44f + 24 . 14 . 33f]

+ 31 [31 . 22 . 44 + 3124 . 24* + 32 . 12 . 44f + 34 . 14 . 22f]

+ 41 [41 . 22 . 33 + 4123 . 23* + 42 . 12 . 33f + 43 . 13 . 22+1.

Cette expression est en effet identique, comme on le voit en observant que les

six termes marques par un f se ddtruisent deux a deux, et que les trois termes

marques par un (*) sont ensemble equivalents a (1234)
2
.

Je remarque que le nombre des termes du deVeloppement du determinant gauche
est toujours une puissance de 2, et que de plus, ce nombre se reduit a la moitie

,

en rdduisant a zero un terme quelconque aa. Mais outre cela, le determinant prend
dans cette supposition la forme de determinant d un ordre inferieur de 1 unite. Je

considere par exemple le determinant gauche 123
|

123. En y faisant 33 = et en

accentuant, pour y mettre plus de clarte, tous les symboles, on trouve

123
|

123 = 11 . (23 )
2 + 22 . (13 )

2
.
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De la, en ecrivant

11 = 13 . 11
,

12 = 11 . 23 ,

22 = 13 . 22 ,

on obtient

= 11 . {22 . (13 )
2 + 11 . (237],

c est-a-dire _
12&quot;]T2

= 11 . 123
|

123 .

On a de meme

1234
|

1234 = 11 . 22 . (34 )
2 + 11 . 33 . (24 )

2 + 22 33 (147 + (12347

et de la, en ecrivant

11 = 14 . 11
,

12 = 11 . 24 ,
23 = 1234

,

22 = 14 . 22
,

13 = 11 .34 ,

33 = 14 . 33
,

on obtient

123
|

123 = 11 . 22 . 33 + 11 . (23)
2 + 22 . (31)

2 + 33 (12)
2

= 11 . 14 {22 . 33 . (14 )
2 + (1234 )

2 + 11 . 22 . (347 + 11 . 33 . (247},

c est-a-dire, ___ __
123

|

123 = 11 . 14 . 1234 1234 .

De meme
12345

|

12345 =11 . 22 . 33 . (45 )
2

+ 11 . 22 . 44 . (35 )
2

+ 11 . 33 . 44 . (257

+ 22 . 33 . 44 . (15 )
2

+ 11 . (2345 )
2

+ 22 . (1345 )
2

+ 33 . (1245 )
2

+ 44 . (1235 )
2

.

Or il est permis d ecrire

11 = 15 .11 ,
12 = 11 . 25

,
23 = 1235

,
1234 = 2345 . 11 . 15

,

22 = 15 . 22
,

13 = 11 . 35
,

24 = 1245
,

33 = 15 . 33 ,
14 = 11 . 45

,
34 = 1345

,

44 = 15 . 44 .

En effet, les quantites a gauche ne sont liees entre elles que par la seule equa

tion 1234 = 12.34 + 13.42 + 14.23 qui est satisfaite identiquement par les valeurs a

substituer pour les quantites qui y entrent. Cela etant, on trouve d abord :

1234
|

1234 = 11 (157 12345
I

12345 .
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Je prends encore un exemple. On a

123456
|

123456 =11 . 22 . 33 . 44 . (567

+ 11 . 22 . 33 . 55 . (467

+ 11 . 22 . 44 . 55 . (367

+ 11 . 33 . 44 . 55 . (267

+ 22 . 33 . 44 . 55 . (167

+ 11 . 22 . (34567

+ 11 . 33 . (2456 )
2

+ 11 . 44 . (2356 )
2

+ 11 . 55 . (2346 )
2

+ 22 . 33 . (1456 )
2

+ 22 . 44 . (13567

+ 22 . 55 . (13467

+ 33 . 44 . (1256 )
2

+ 33 . 55 . (1246 )
2

+ 44 . 55 . (1236 )
2

+ (1234567.

Ici, il est permis d ecrire :

11 = 16 . 11 ,
12 = 11 . 26

,
23 = 1236 ,

34 = 1346 ,
45 = 1456

,

22 = 16 . 22
,

13 = 11 . 36
,

24=1246
,

35 = 1356 ,

33 = 16 . 33 ,
14 = 11 . 46

,
25 = 1256

,

44 = 16 . 44
,

15 = 11 . 56 ,

55 = 16 . 55
,

1234 = 2346 . 11 . 16
, 2345 = 123456 . 16

,

1235 = 2356 . 11 . 16 ,

1245 = 2456 . 11 . 16
,

1345 = 3456 . 11 . 16;

car les valeurs des quantites a gauche satisfont identiquement aux equations qui out lieu

entre ces memes quantitys. Par exemple liquation 1234=12.34 + 13.42 + 14.23
devient 2346 . 16 = 26 . 1346 + 63M246 + 46 . 1236 .

Or 1 expression a droite devient, en developpant :

26 (13 . 46 + 14 . 63 + 16 . 34 )

+ 63 (12 . 46 + 14 . 62 + 16 . 24 )

+ 46 (12 . 36 + 13 . 62 + 16 . 23 ),
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et les termes qui contiennent le facteur 16
,
donnent ensemble 16 . 2346

,
les autres

termes se detruisent deux a deux. On obtient enfin, en effectuant la substitution :

12345
|

12345 = 11 . (16 )
3 123456

|

123456
;

et ainsi de suite.

Je fais les mernes substitutions dans les matrices inverses, en supprimant cependant
la derniere ligne et la derniere colonne de chaque matrice. On trouve ainsi, eri y

ajoutant les equations ci-dessus trouvees par rapport aux determinants :

13 . 123 I 123

11 . 123
|

123 =12
|
12,

1

+ 23
|

23
,

- 13
|

23

- 23 I 13 , + 13 I 13

12 I 12
-2 2 +

12 I 12

11

+ 211,

11 . 14 . 1234 I 1234 = 123 I 123,

-112

+ 1

14 . 1234
|

1234
+ 234

|
234,

- 134
|
234,

- 124
|

324
|

=

- 234
|
124, + 134

| 134,
- 214 314

- 324
|
124, - 314

|
214, + 124

|

124

123 I 123

15 . 12345 I 12345

- 23 I 23 +
123

|

123

11
- 13 I 23,

- 12 I 32

+ 23 I 13,

+ 32
|
12,

+ 13
|
13, -21

|

31

-31 I 21, +12 I 12

11 . (15 )
2

. 12345
|

12345 = 1234
|
1234,

+ 2345 I 2345 ,
-1345

|

2345
,
-1245

|

3245
, -1235

|

4235

-2345 I 1345 , +1345
|

1345
,
-2145

|

3145
,
-2135

|

4135

-3245
|

1245
,
-3145

|

2145
, +1245

|

1245
,
-3125

|

4125

-4235
|

1235 ,
-4135

|

2135
,
-4125

|

3125
, +1235

|

1235

1234 I 1234
- 234 I 234 +

1234
|

1234

11

+ 234
|

134,

+ 324
|
124,

I +423
|
123,

et ainsi de suite.

,
-134

|
234, -124(324, -123(423

+ 134(134, -214(314, -213(413
- 314

|
214, + 124

|
124,

- 312
|

423

-413(213, -412(312, +123(123
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II est bon de changer un peu la forme de ces Equations. On en deduit sans

peine :

1

13 . 123 I 123

2 . 23
|

23 - 123
|

123

11
,

- 2 . 13 I 23

- 2 . 23 I 13
, + 2.131 13 -, 123 I 123

22

12 I 12 -2.2|

+ 2.111-
12

|

12

22

14 . 1234 1 1234
2 . 234 I 234 -,

1234 I 1234

11
, -2.134 I 234 , -2.124 I 324

-2.234 I 184 , 2 . 134 I 134 -,
1234 I 1234

22
, -2.214 I 314

-2.324
|

124
, -2.314 I 214

,

123 I 123
-2 . 23 I 23-

123
|

123

11
-2 . 13

|
23, -2 . 12 I 32

+ 2. 23
|
13, + 2.13113-

123
|

123

22
,
-2 . 21 I 31

+ 2 . 32
! 12,

et ainsi de suite.

-2. 31 I 21, + 2 . 12 I 12-
123 I 123

33

Les formules que je viens de presenter, peuvent etre appliqudes aussitot a la

solution de la question suivante : &quot;Trouver xlt x2 ,
x3 , &c., fonctions lindaires de xlf

x.2 ,
x3 , &c. telles que

11 x^ + 22 x 2
2 + 33 x3

2 + &c. = 11 x* + 22 x? + 33 xj + &c.
&quot;

c est-a-dire: transformer une fonction quadratique ll^2 + 22#2
2 + 33#3

a + &c. en elle-

meme par des substitutions lineaires. II suffira d ecrire la solution pour le cas de

trois indeterminees : on satisfait identiquement a 1 dquation

11 x^ + 22 x2
2 + 33 x3

2 = 11 x? + 22 *a
s + 33 x*

en ^crivant

1

123 I 123

i 9 6&amp;gt;o 1

4&amp;gt;q

A ^
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Voila la transformation propre. On en tire la transformation impropre de lla:
1

2 + 2

en elle-meme en e&quot;crivant 33 =
; car, cela

pose&quot;,
les valeurs de x

l ,
x 2 ne contiennent

pas x3 ,
et Ton n a plus besoin de la valeur de x3 . On obtient ainsi la solution

suivante
; savoir, on satisfait identiquement a 1 dquation

11 Xj
2 + 22 x2

2 = 11 x* + 22 x,

en dcrivant

(x,, x 2)
=

123 I 123
2 . 23 I 23 -

1 OQ I 1 9Q
, -2.13| 23

- 2 . 23 I 13
,

2. 13
123 I 123

a,, 22 a;2),

ce qui est une transformation impropre. Mais en y faisant la substitution 11 =13 . 11
,

22 = 13 . 22
,
12 = 11 . 23 ,

on reduit la solution a celle-ci, savoir on satisfait identique

ment a 1 equation Ilx
1

2 + 22x 2
2 = \lx? + 22#2

2 en ecrivant

12 I 12
-2 . 2T&quot;2 +

12
|

12

11

+ 2 . 2
|

1,

-2.12

+2.111-
12

|

12

22

,
22ars),

ce qui est encore une transformation impropre, qui correspond de plus pres a la

formule pour la transformation propre ; la seule difference est que les signes des

termes de la premiere colonne de la matrice en sont changes.

En introduisant des lettres simples a, b, &c. a la place des symboles 11, 22, &c.,

je considere d abord la transformation propre

ax2 + 6y
2 = aa? + bf.

Id, en ecrivant

la formule donne

La transformation impropre

11, 12
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J ai deja fait voir de quelle maniere cette formule se rattache a la formule pour

la transformation propre ; la difference entre les formes de ces transformations dans ce

cas simple est assez frappante.

Pour obtenir la transformation propre

ax2 + 6y
2
4- cz

2 = oaf + by* + cz2
,

j ecns

11, 12, 13 = a,

21, 22, 23

31, 32, 33

v, -V*

v, b
,

X

/JL, X, c

,

Z)
_
abc + aX2

-f

a&c + ax2 -V - cv2
,

2 (i/X
-

6/i) a

2(\fji-cv)b

- aX2 + 6/i
2 -

2 (// + aX) 6

2 (i/X + bp) c 0, y,

La transformation impropre en elle-meme

ax2 + 6y
2 + cz2 =

a&c - aX2 -
6/i

2 -
cv&quot;

by
2 + cz2

peut etre tiree de la transformation propre en elle-meme de la fonction donnee ci-apres

aa;
2 + by

2 + cz
2 + dw2

;
en y e&quot;crivant d = 0, on obtient

- Zabpr

- cao-
2 + abr2 -

(f&amp;gt;

2
,

-
2cp&amp;lt;/&amp;gt;

- 2cao-r

2bp&amp;lt;f&amp;gt;

- Zabar , bcp
2 + cao 2 - abr2 -

&amp;lt;f&amp;gt;

2

Pour verifier que cette expression n est en effet autre chose que la formule pour

la transformation propre, en y changeant les signes de tous les termes, j ecris
dans^

la

formule pour la transformation propre, a = 6 = c = o&amp;gt;. On a ainsi pour la transformation

propre

equation

-
2/A&) ,

X2 + /j

2 - v2
,

+ 2X&) ,

2/iz&amp;gt;-2Xw

cu
2 - X2 + p?

-
i/
2

0.

272
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et en ecrivant dans la formule pour la transformation impropre, a = b=c = l,

\
} fj&amp;gt;) V) a) au lieu de p, a-, r, &amp;lt;,

on obtient pour la transformation impropre

1 equation

= 0, et

+ A 2 + \J? + v2

-
2/ift)

j ecris

2fX + 2/i(o , Zpv 2Xw

Pour obtenir la transformation propre

ax2 -
by

2 + cz2 + dw2 = ax2 + by
2 + cz2

- 2 + X2 -
ft

2 - vz

a,11, 12, 13, 14

21, 22, 23, 24

31, 32, 33, 34

41, 42, 43, 44

cela donne d abord, en mettant pour abre*ger,

(f)
= \p + fJi(T + VT,

la valeur du determinant

-T, d

1234
|

1234 = abed + bcp
z + caa2 + abr2 + ad\2 +

(ce que je represente par k).

J ajoute aussi la valeur de la matrice inverse

11, 12, 13, 14

21, 22, 23, 24

31, 32, 33, 34

+ cdv2 + f-

41, 42, 43, 44
savoir :

bed

cdv +
r&amp;lt;j&amp;gt;

+ d\fj, cp&amp;lt;r,
acd + br* + cp* + dp

2
,

bdp &amp;lt;r&amp;lt;f&amp;gt;

+ d\v bpr ,
ad\ + p(p + dpv aar,

bcp +
X&amp;lt;/&amp;gt;

+ cv&amp;lt;r bpr, ac&amp;lt;r + pfy cvp + a\r,

bd/j, + o~(p + d\v bpr , bcp \&amp;lt;f&amp;gt;

+ cva

ad\
p&amp;lt;p

+ d/jiv a&amp;lt;rr, ac&amp;lt;r
/j,&amp;lt;f) cvp +

abd + acr2 + bp
2 + dv2

,
abr v(p + b/uip aXcr

abr +
v&amp;lt;f&amp;gt;

+ bpp a\a, abc + aX2 + bjj? -f cv2
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On a pour la transformation, 1 equation (x, y, z, w) =

213

abed bcp- + cao-2 + a6r2

-
bdjj?

- cdv2 -
&amp;lt;f&amp;gt;

2 26 ( cdv cpcr) ,

o/7 ,
,

7. \ abed + bcp
2 cacr2 + abr-

2a (cdv + r&amp;lt;f&amp;gt;

+ d\f*- cpa) , + bd/_ cdv*_p
2a ( bdp, o-&amp;lt;/&amp;gt;

+ d\v bpr), 26 (ad\ + p&amp;lt;f&amp;gt;

+ dpv acrr) ,

2a (bcp + \&amp;lt;f&amp;gt;

+ ever bpr) , 26 (accr + /i&amp;lt; cvp + a\r) ,

2c (bdfji + crcj) + d\v bpr) ,
2d ( bcp \&amp;lt;j&amp;gt;

+ ever

2c ( ad\
pcj) + dfj,v acrr) , Zd (accr yu,&amp;lt; cvp +

&amp;gt;cd + bcp
2 + caa2 - abr2 - ad\2

2d /_ abr _
V(f)+b

bdfjJ
2 + cdv2

cf&amp;gt;

2
,

2c (abr + v$ 4- h,,.n - n\^ abcd ~ bcP
- cao * - abr &quot; + adx*

y&amp;gt;
z, w).

Je suppose que Ton ait a = b = c = d = (o, et
j ecris ty

= -
,

c est-a-dire

ylf = 1. &quot;_ ou \p + /JLCT + vr + tyo)
= 0. En faisant cette substitution, on trouve

0)

d abord k = o)
2
R, ou

R = \2 + u 2 + v2 + -dr
2 + p

2 + cr
2 + r2 + w 2

,

et puis pour la transformation propre

x2 + y
2 + z2 + w2 = a;

2 + y
2 + zz + w2

,

1 equation (x, y, z, w) =

R
-
p

2 + cr
2 + r 2 + or + X2 -

p?
- v2 -

-&amp;gt;/r

2
,

-
2&amp;lt;wy + 2rijr + 2\p - 2pcr,

p
2

cr
2 + r2 + a&amp;gt;

2 \2 + fM
2 v2

-^r

2
,

2uX 2p-^r + 2fjiv 2&amp;lt;7T,

2&&amp;gt;c7 2in|r 2vp + 2\r,

-
2/3(7,

-2/3T,

+ 2i/o- - 2/AT,

y - 2/3T ,

- 2wX +
2/3&amp;gt;|r

+ 2yu,y
- 2o-r ,

- 2wo- + 2/A^r
-
2vp + 2Xr

p
2 + o-

2 - r2 + to
2 - X2 -

ft
2 + v2 -

-|r
2

,

-
2&amp;lt;wr + 2i/^r + 2/ip

- 2Xo-

2o)T 2vr + 2iJ 2\cr ,

2
cr

2 T2

(a, y, 2, w).

On peut changer la forme de cette expression, en y ecrivant
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cela donne
a2 + /S

2 + 7
2 + 8Z - a 2 -

/3
2 - 7 - S 2 = 0,

R =
(a

2 + /3
2 + 7

2 + S2 + a 2 + /3
2 + 7

/2 + S 2

),

de maniere qu en ecrivant

M =

M =

on obtient

[137

et la formule pour la transformation devient

+88 ,,
r

V (MM )

-oa

_
/3/3

/+ 7y + gg&amp;lt;
?

-
y/3

- 80.
,

-
ay

-

-
y/3 + Sa (xy y, z, w).

aa + /SyS
- 77 + 88

, a/3
-

/3a + 78 + 87

a/3
-

/3a
- 78 -

87 ,

- aa -
,3/3

- 77 + 88

On voit done que meme sans supposer 1 equation M = M
,

cette formule donne la

transformation propre

x2 + y
2 + z2 + w2 = a? + y

2 + z* + w&quot;.

Cette solution est a peu pres de la meme forme que la solution impropre donnee

par Euler dans son memoire &quot; Problema algebraicum ob affectiones prorsus singulares
memorabile

&quot;

Nov. Comm. Petrop., t. xv. 1770, p. 75, et Comm. Arith. collectae, [4to.

Petrop. 1849], t. I. p. 427. Je remarque aussi que cette meme solution peut etre

deduite de la theorie des Quaternions. En effet, i, j, k etant des quantites imaginaires
telles que t

2 =
j
2 = k2 =

1, jk = kj
=

i, ki ik =j, ij
=

ji
= k, on obtient, en effectuant

la multiplication :

x, y, z, w ayant les memes valeurs que dans la derniere formule de transformation.

En changeant les signes des termes de la quatrieme colonne, on en tire pour la

transformation impropre

x2 + y
2 + z2 + w2 = a? + f + z2 + w\
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la formule suivante plus symetrique :

(x, y, z, w) =
- aa + ,3/3 + 77 + 88

,

-
a/3

-
/3a

- 78 + 87 ,

-
a/3

-
/3a + 78

-
87 ,

aa -
/3/3 + 77 + 88

,

-
ay

-
/38

- 70 + 8/3 ,
a8 -

/37
-

y/8
- 8a

,

- a8 + @y - 7/3
- Sa ,

- a7
-

/38 + 70
-

8/3 ,

-
ay + j3B

- ya -
8/3 ,

- a8 -
j3y + 7/8

- Sa (a, y, z, w).

aS /3y 7/3 + Sa , ay J3& ya 8/3

aa + j3/3
- yy + 88

,

-
a/3 + /3a

-
78

-
87

Ces formules pour la transformation, tant propre qu impropre, de la fonction

a? + y
2 + z2 + w~ en elle-meme, sont utiles dans la theorie des polygones inscrits dans

une surface du second ordre.
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138.

RECHERCHES SUR LES MATRICES DONT LES TERMES SONT

DES FONCTIONS LINEAIRES D UNE SEULE INDETERMINEE.

[From the Journal fur die reine und angewandte Mathematik (Crelle), torn. L

(1855), pp. 313317.]

JE pose la matrice
A

,
B

,
C

,
...

A ,
B

,
C ,...

A&quot;, B&quot;, C&quot;,
.

dont les termes (?i
2 en nombre) sont des functions lineaires d une quantite s, et je

considers le determinant forms avec cette matrice, et les determinants mineurs formes

en supprimant un nombre quelconque des lignes et un nombre egal de colonnes de

la matrice. En supprimant une seule ligne et une seule colonne, on obtient les

premiers mineurs; en supprimant deux lignes et deux colonnes, on obtient les seconds

mineurs; et ainsi de suite. Cela etant, je suppose que la quantite s a ete trouvee

en egalant a zero le determinant forme avec la matrice donnee
;

ce determinant sera

une fonction de s du n-ieme degre qui generalement ne contiendra pas de facteurs

multiples. On voit done qu un facteur simple du determinant ne peut pas entrer comme

facteur dans les premiers mineurs (c est-a-dire dans tons les premiers mineurs) ;
mais

en supposant que le determinant ait des facteurs multiples, un facteur multiple du

determinant peut entrer comme facteur (simple ou multiple) dans les premiers mineurs,

ou dans les mineurs d un ordre plus eleve. II importe de trouver le degre selon lequel

un facteur multiple du determinant peut entrer comme facteur des premiers mineurs,

ou des mineurs d un ordre quelconque donne.

Cela se fait tres facilement au moyen d une propri^te g^ndrale des determinants;

si les mineurs du (r + l)ieme ordre contiennent le facteur (s a)
a

(c est-a-dire, si tous
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les mineurs de cet ordre contiennent le facteur (s a)
a

,
mais non pas tous les facteurs

(s a)
a+l

) ;
et si de meme les mineurs du r-ieme ordre contiennent le facteur (s a)

1*
,

alors les mineurs du (r l)ieme ordre contiendront au moins le facteur (s a)
2P~a

.

Autrement dit : les mineurs du (r l)ieme ordre contiendront le facteur (s a)
Y ou

7 &amp;gt; 2/3 a, ou, ce qui est la meme chose, a. 2/3 + 7 &amp;lt;

;
c est-a-dire : en. formant

la suite des indices des puissances selon lesquelles le facteur (s a) entre dans les

mineurs premiers, seconds, &c. (il va sans dire que cette suite sera une suite decroissante),

les differences secondes seront positives [c est-a-dire non negatives]. Je represente par

a, ft, 7,... la suite dont il s agit ; je suppose, pour fixer les idees, que 8 soit le

dernier terme qui ne s eVanouisse pas, et j ecris

a, /3, 7, 8, 0, 0, ...

a -/3, ft-% 7-8, 8, 0,...

a -2
;3 + 7, /3-2y + 8, 7

-
28, 8, 0,...;

ici, quel que soit le nombre des termes, tous les nombres de la troisieme ligne seront

positifs, et en representant ces nombres par /, / , /&quot;, &c., on obtient :

ft
=

7=

II y a ici a considerer que le nombre a, indice de la puissance selon laquelle le

facteur (s a) entre dans le determinant, est donne
;

il sera done permis de prendre

pour /, / , /&quot;,
. . . des valeurs entieres et positives quelconques (zeVo y compris) qui

satisfont a la premiere equation ;
les autres Equations donnent alors les valeurs de

ft, 7, 8, &c. On forme de cette maniere une table des particularity que peut presenter
mi facteur multiple (s a)

a du determinant
;

cette table est composee des symboles
a, ft, 7, ..., et les nombres a, ft, ... de chaque symbole font voir le degre selon lequel
le facteur (s a) entre dans les determinants, dans les mineurs premiers, seconds, &c.

Or il est tres facile de former, au moyen des tables pour a=l, a = 2, ... a = k, la table

pour a = k+l. On a par exemple pour a=l, a = 2, a = 3, a = 4 les tables suivantes:

Pour a = 1, 1.

Pour a = 2, 2, 21.

Pour a = 3, 3, 31, 321.

Pour a = 4, 4, 41, 42, 421, 4321.

De la on tire la table pour a = 5, savoir :

Pour a = 5, 5, 51, 52, 521, 531, 5321, 54321.

Eu effet, le premier terme est 5, et on obtient les autres termes en mettant le nombix-

5 devant les symboles des tables pour a = l, a =2, a = 3, a = 4, en ayant seulement soin

C. ir. 28

OF THE

UNIVERSITY)\
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de supprimer les symboles 53, 54, 541, 542, 5421 pour lesquels le premier terme de
la suite des differences secondes est negatif. On trouve de meme pour a ==

6, la table

suivante, savoir :

Pour a = 6, 6, 61, 62, 621, 63, 631, 6321, 642, 6421, 64321, 654321;

et ainsi de suite. Les nombres des symboles pour a=l, 2, 3, 4, 5, 6, 7, 8, &c. sont

1, 2, 3, 5, 7, 11, 15, 22, [30, 42, 56], &c.
;
ce sont les coefficients des puissances a;

1
,
xz

,
a?

Scc. dans le developpement de

(1-a)-
1

(l-tf
2

)-
1 (l-o8

)-
1

(1-ar*)- (1-tf
5

)-
1

... &c.

fbnctions qui se presentent, comme on sait, dans la theorie de la partition des nombres.

Maintenant, au lieu de considerer un seul facteur du determinant, je considere tons

les facteurs : par exemple pour n = 4, le determinant peut avoir un facteur double (s
-

a)
2

,

et un autre facteur double (s
-

&)
2

;
il peut de plus arriver que le facteur (s

-
a) soit facteur

simple des premiers mineurs, mais que le facteur (s
-

6) n entre pas dans les premiers
mineurs. Le symbole qui correspond au facteur (s a) sera 21, et le symbole qui

correspond au facteur (s b) sera 2. En combinant ces deux symboles, on aura le

symbole compose
21

, qui denote que le determinant a deux facteurs doubles de

la classe dont il s agit. Je forme de ces symboles composes des tables pour n = 1,

n = 2, n = S, n = 4, &c. On a :

Pour n = 1 :

Pour n =

Pour n =

1
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Pour donner encore un exemple du sens de ces symbol es, le symbole
321

1
denote

que le determinant a un facteur (s a) qui entre comme facteur triple dans le deter

minant, comme facteur double dans les premiers mineurs, et comme facteur simple dans

les seconds mineurs
;

1 autre facteur du determinant est un facteur simple (s b). Les

nombres des symboles pour n 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, &c. sont 1, 3, 6,

14, 27, 58, 111, 223, 424, 817, 1527, &c.
;

ces nombres sont les coefficients de x\ a;
2
, a?,

&c. dans le developpement de

(1
-
x)~

l

(1
- a2

)-
2

(1 -xs

)~
3

(l -a4
)&quot;

5

(1
-

of}-
7

(1
- ^6

)-
n
(1
- aO~

15

(l
-

&amp;lt;^)~

22
C 1
-

a*)&quot;

80
- &c -

ou les indices 1, 2, 3, 5, 7, 11, &c. forment la suite qui se presente dans la theorie

de la partition des nombres, dont j ai parld plus haut. II est tres facile de demontrer

qu il en est ainsi.

Les resultats que je viens de presenter sont en partie dus a M. Sylvester (voyez

son memoire &quot; An enumeration of the contacts of lines and surfaces of the second

order,&quot; Philosophical Magazine, [vol. I. (1851), pp. 18 20]). En effet, M. Sylvester

commence par etendre a des fonctions d un nombre quelconque d indeterminees 1 idee

geometrique des contacts des courbes et des surfaces. En considerant les deux equa
tions quadratiques U=0, V= 0, il forme le discriminant de la fonction quadratique
U + sV, et il cherche dans quel degre chaque facteur de ce discriminant peut entrer

comme facteur dans les mineurs premiers, seconds, &c. Le discriminant de M. Sylvester

est un determinant symetrique ;
mais cela ne change rien a la question, et je n ai

fait que reproduire Fanalyse de M. Sylvester, en donnant cependant ralgorithme pour
la formation des symboles, et de plus la loi pour le nombre des symboles. M. Sylvester

donne pour n=2, 3, 4, 5, 6, des nombres qui, en ajoutant a chacun le nombre 2,

pour embrasser deux cas extremes qui ne sont pas comptes, seraient 3, 6, 14, 26, 58.

11 se trouve dans le nombre 26 une erreur de calcul
;

ce nombre devrait etre 27, et

en suppleant le premier terme 1, on a la suite trouvee plus haut, savoir 1, 3, 6, 14,

27, 58, &c.
;

il y a de meme une erreur de calcul dans les nombres donnes par M.

Sylvester pour n = 7 et n = 8.

Mais tout cela s applique a line autre theorie geometrique, savoir a la theorie des

rigures homographes. Pour fixer les id^es, je ne considere que les figures dans le plan.

En supposant que x, y, z soient les coordonnees d un point, et en prenant pour (x, y, z)

des fonctions lindaires de (x, y, z} on aura (x, y, z) comme coordonnees d un point

homographs au point (x, y, z}. En cherchant les points qui sont homographes chacun

a soi-meme, on est conduit aux equations x s# = 0, y sy Q, z sz = 0. Les

quantites a gauche x sx, Jsy, z sz sont des fonctions lineaires de x, y, z, ayant

pour coefficients des fonctions lineaires de s. On a ainsi une matrice dont les termes

sont des fonctions lineaires de s
;

la theorie entiere se rattache aux proprietes de

cette matrice. Pour le cas general de Vhomographie ordinaire, on a le symbole

282
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, pour Vhomologie, le symbole les autres symboles se

rapportent a des cas moins generaux, et le symbole 321
|

au cas de 1 identite

complete des deux figures; y compris ce cas-limite de l identit&amp;lt; complete, il existe

pour le plan 6 especes d homographie ; pour Vespace ordinaire il existe 14 especes
d homographie. Je reviendrai a cette thdorie a une autre occasion.

Londres, le 24 Mai 1854.
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139.

AN INTRODUCTORY MEMOIR UPON QUANTICS.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLIV. for the

year 1854, pp. 244258. Received April 20, Read May 4, 1854.]

1. THE term Quantics is used to denote the entire subject of rational and integral

functions, and of the equations and loci to which these give rise
;

the word &quot;

quantic
&quot;

is an adjective, meaning of such a degree, but may be used substantively, the noun
understood being (unless the contrary appear by the context) function; so used the

word admits of the plural &quot;quantics.&quot;

The quantities or symbols to which the expression &quot;degree&quot; refers, or (what is the

same thing) in regard to which a function is considered as a quantic, will be spoken
of as &quot;facients.&quot; A quantic may always be considered as being, in regard to its

facients, homogeneous, since to render it so, it is only necessary to introduce as a

facient unity, or some symbol which is to be ultimately replaced by unity ;
and in the

cases in which the facients are considered as forming two or more distinct sets, the

quantic may, in like manner, be considered as homogeneous in regard to each set

separately.

2. The expression
&quot; an

equation,&quot; used without explanation, is to be understood as

meaning the equation obtained by putting any quantic equal to zero. I make no

absolute distinction between the words &quot;

degree
&quot;

and &quot; order
&quot;

as applied to an equation
or system of equations, but I shall in general speak of the order rather than the

degree. The equations of a system may be independent, or there may exist relations

of connexion between the different equations of the system ;
the subject of a system

of equations so connected together is one of extreme complexity and difficulty. It will

be sufficient to notice here, that in any system whatever of equations, assuming only
that the equations are not more than sufficient to determine the ratios of the facients,

and joining to the system so many linear equations between the facients as will render

the ratios of the facients determinate, the order of the system is the same thing as

the order of the equation which determines any one of these ratios; it is clear that

for a single equation the order so determined is nothing else than the order of the

equation.
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3. An equation or system of equations represents, or is represented by a locus.

This assumes that the facients depend upon quantities x, y, ... the coordinates of a

point in space ;
the entire series of points, the coordinates of which satisfy the equation

or system of equations, constitutes the locus. To avoid complexity, it is proper to take

the facients themselves as coordinates, or at all events to consider these facients as

linear functions of the coordinates
;

this being the case, the order of the locus will be

the order of the equation, or system of equations.

4. I have spoken of the coordinates of a point in space. I consider that there is

an ideal space of any number of dimensions, but of course, in the ordinary acceptation

of the word, space is of three dimensions
; however, the plane (the space of ordinary

plane geometry) is a space of two dimensions, and we may consider the line as a space

of one dimension. I do not, it should be observed, say that the only idea which can

be formed of a space of two dimensions is the plane, or the only idea which can be

formed of space of one dimension is the line
;

this is not the case. To avoid complexity,

I will take the case of plane geometry rather than geometry of three dimensions
;

it

will be unnecessary to speak of space, or of the number of its dimensions, or of the

plane, since we are only concerned with space of two dimensions, viz. the plane ;
I say,

therefore, simply that x, y, z are the coordinates of a point (strictly speaking, it is the

ratios of these quantities which are the coordinates, and the quantities x, y, z themselves

are indeterminates, i.e. they are only determinate to a common factor pres, so that in

assuming that the coordinates of a point are a, /3, 7, we mean only that x : y : z = a. : /3 : 7,

and we never as a result obtain x, y, z= a, @, 7, but only x : y : z = &amp;lt;x : (3 : 7; but

this being once understood, there is no objection to speaking of x, y, z as coordinates).

Now the notions of coordinates and of a point are merely relative
;
we may, if we

please, consider x : y : z as the parameters of a curve containing two variable para
meters

;
such curve becomes of course determinate when we assume x : y : z = a : /3 : 7,

and this very curve is nothing else than the point whose coordinates are a, /3, 7, or

as we may for shortness call it, the point (a, /3, 7). And if the coordinates (x, y, z) are

connected by an equation, then giving to these coordinates the entire system of values

which satisfy the equation, the locus of the points corresponding to these values is the

locus representing or represented by the equation ;
this of course fixes the notion of a

curve of any order, and in particular the notion of a line as the curve of the first

order.

The theory includes, as a very particular case, the ordinary theory of reciprocity in

plane geometry ;
we have only to say that the word &quot;

point
&quot;

shall mean &quot;

line,&quot; and the

word &quot;

line
&quot;

shall mean &quot;

point,&quot;
and that expressions properly or primarily applicable

to a point and a line respectively shall be construed to apply to a line and a point

respectively, and any theorem (assumed of course to be a purely descriptive one) relating

to points and lines will become a corresponding theorem relating to lines and points ;

and similarly with regard to curves of a higher order, when the ideas of reciprocity

applicable to these curves are properly developed.

5. A quantic of the degrees m, mf... in the sets (x,y...), (x , y ...) &c. will for the

most part be represented by a notation such as

m m

(J, y...\x , y .,. )...),
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where the mark *
may be considered as indicative of the absolute generality of the

quantic ; any such quantic may of course be considered as the sum of a series of

terms xMy& ... x a
y P

..., &c. of the proper degrees in the different sets respectively, each

term multiplied by a coefficient
;

these coefficients may be mere numerical multiples

of single letters or elements such as a, b, c,..., or else functions (in general rational

and integral functions) of such elements
;

this explains the meaning of the expression
&quot; the elements of a quantic

&quot;

: in the case where the coefficients are mere numerical

multiples of the elements, we may in general speak indifferently of the elements, or

of the coefficients. I have said that the coefficients may be numerical multiples of

single letters or elements such as a, b, c, . . .
; by the appropriate numerical coefficient

of a term xayP...x
a
y
P

..., I mean the coefficient of this term in the expansion of

m m
(x + y...) (x + y .. .)...);

and I represent by the notation

m m

(a, 6,...$c, y,...\x , y ,... )...),

a quantic in which each term is multiplied as well by its appropriate numerical coeffi

cient as by the literal coefficient or element which belongs to it in the set (a, b,,..) of

literal coefficients or elements. On the other hand, I represent by the notation

m m

(a, b,..Qx, y,...$/, y ,... )...),

a quantic in which each term is multiplied only by the literal coefficient or element

which belongs to it in the set (a, b,...) of literal coefficients or elements. And a like

distinction applies to the case where the coefficients are functions of the elements

(a, b,...}.

6. I consider now the quantic

(*$# & $* , 2/v )...)&amp;gt;

and selecting any two facients of the same set, e.g. the facients x, y, I remark that

there is always an operation upon the elements, tantamount as regards the quantic
to the operation xdy ;

viz. if we differentiate with respect to each element, multiply

by proper functions of the elements and add, we obtain the same result as by differ

entiating with dy and multiplying by x. The simplest example will show this as

well as a formal proof ;
for instance, as regards 3a#2 + bxy + 5cy

2
(the numerical

coefficients are taken haphazard), we have ^bda + lOcd(, tantamount to xby \ as regards

a(xay)(x py}, we have a
(a. + /3) da + ofda + (3*dp tantamount to xdy ,

and so in any
other case. I represent by {xdy}

the operation upon the elements tantamount to xdy ,

and I write down the series of operations

{Xdy} -Xdy, ... [X dy]
~

ilfttf,
. . .

where x, y are considered as being successively replaced by every permutation of two

different facients of the set (x, y ,...); x
, y as successively replaced by every permutation

of two different facients of the set (x, y ,...), and so on; this I call an entire system, and
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I say that it is made up of partial systems corresponding to the different facient sets

respectively; it is clear from the definition that the quantic is reduced to zero by

each of the operations of the entire system. Now, besides the quantic itself, there

are a variety of other functions which are reduced to zero by each of the operations

of the entire system; any such function is said to be a covariant of the quantic, and

in the particular case in which it contains only the elements, an invariant. (It would

be allowable to define as a covariant quoad any set or sets, a function which is reduced

to zero by each of the operations of the corresponding partial system or systems, but

this is a point upon which it is not at present necessary to dwell.)

7. The definition of a covariant may however be generalized in two directions:

we may instead of a single quantic consider two or more quantics ;
the operations

{xdy}, although represented by means of the same symbols x, y have, as regards the

different quantics, different meanings, and we may form the sum 2 {xdy },
where the

summation refers to the different quantics : we have only to consider in place of the

system before spoken of, the system

x dy ,
... &c. &c.,

and we obtain the definition of a covariant of two or more quantics.

Again, we may consider in connexion with each set of facients any number of

new sets, the facients in any one of these new sets corresponding each to each with

those of the original set
;
and we may admit these new sets into the covariant. This

gives rise to a sum S{xdv}, where the summation refers to the entire series of cor

responding sets. We have in place of the system spoken of in the original definition,

to consider the system

[ocdy]
S (xdy), . . . [x dy] S (x dy &amp;gt;),

. . . &c. &c.,

or if we are dealing with two or more quantics, then the system

2 {xdy} -8 (xdy),
...

;
S {x dy} -8(x dy), ... &c. &c.,

and we obtain the generalized definition of a covariant.

8. A covariant has been defined simply as a function reduced to zero by each of

the operations of the entire system. But in dealing with given quantics, we may
without loss of generality consider the covariant as a function of the like form with

the quantic, i.e. as being a rational and integral function homogeneous in regard to

the different sets separately, and as being also a rational and integral function of the

elements. In particular in the case where the coefficients are mere numerical multi

ples of the elements, the covariant is to be considered as a rational and integral

function homogeneous in regard to the different sets separately, and also homogeneous
in regard to the coefficients or elements. And the term &quot; covariant

&quot;

includes, as already

remarked,
&quot;

invariant.&quot;

It is proper to remark, that if the same quantic be represented by means of different

sets of elements, then the symbols {xdy }
which correspond to these different forms
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of the same quantic are mere transformations of each other, i.e. they become in virtue

of the relations between the different sets of elements identical.

9. What precedes is a return to and generalization of the method employed in the

first part of the memoir published in the Camb. Math. Jour., t. iv. [1845], and Camb.

and Dubl. Math. Jour., t. I. [1846], under the title
&quot; On Linear Transformations,&quot; [13

and 14], and Crelle, t. xxx. [1846], under the title &quot;Mdmoire sur les Hyperdetermi-

nants,&quot; [*16], and which I shall refer to as my original memoir. I there consider in

fact the invariants of a quantic

linear in regard to n sets each of them of m facients, and I represent the coefficients

of a term xryszt ... by rst . . .
;

there is no difficulty in seeing that a, /3 being any two

different numbers out of the series 1, 2, ...m, the operation {^9^} is identical with the

operation

22... (art...
~-

\ dftst...

where the summations refer to s, t, ... which pass respectively from 1 to m, both inclu

sive; and the condition that a function, assumed to be an invariant, i.e. to contain

only the coefficients, may be reduced to zero by the operation [x$x^ x$Xa ,
is of

course simply the condition that such function may be reduced to zero by the opera
tion {x$Xa\ ;

the condition in question is therefore the same thing as the equation

of my original memoir.

10. But the definition in the present memoir includes also the method made use

of in the second part of my original memoir. This method is substantially as follows :

consider for simplicity a quantic U =

(*$, y, ...)
m

containing only the single set (x, y ...), and let Ult ?72 ... be what the quantic becomes
when the set (x,y ...) is successively replaced by the sets (xlt 2/1} ...), (x2 , y.2 ,...), ... the

number of these new sets being equal to or greater than the number of facients in

the set. Suppose that A, B, C,... are any of the determinants

then forming the derivative

where p, q, r ... are any positive integers, the function so obtained is a covariant in

volving the sets fa, yi,...) (x *&amp;gt; 2/2,-..) &c.; and if after the differentiations we replace
C. ii. 29
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these sets by the original set (ac, y, ...), we have a covariant involving only the original

set (as, y,...) and of course the coefficients of the quantic. It is in fact easy to show

that any such derivative is a covariant according to the definition given in this

Memoir. But to do this some preliminary explanations are necessary.

11. I consider any two operations P
t Q, involving each or either of them differen

tiations in respect of variables contained in the other of them. It is required to

investigate the effect of the operation P . Q, where the operation Q is to be in the

first place performed upon some operand ft, and the operation P is then to be per

formed on the operand Qft. Suppose that P involves the differentiations 9a ,
db ,... in

respect of variables a, b, ... contained in Q and ft, we must as usual in the operation

P replace da , 9&, by da + d a ,
db + d

b&amp;gt;

... where the unaccentuated symbols operate

only upon ft, and the accentuated symbols operate only upon Q. Suppose that P is

expanded in ascending powers of the symbols d a ,
d b , ..., viz. in the form P + Px -f P2 + &c.,

we have first to find the values of PjQ, P2 Q, &c., by actually performing upon Q as

operand the differentiations d a ,
d b .... The symbols PQ, P^, P,Q, &c. will then contain

only the differentiations 8
,

db ,
... which operate upon ft, and the meaning of the ex

pression being once understood, we may write

In particular if P be a linear function of da ,
db , ..., we have to replace P by P + P,,

where Pl is the same function of d a ,
d b ,

... that P is of da , db , ..., and it is therefore

clear that we have in this case

where on the right-hand side in the term PQ the differentiations da , db ,
... are con

sidered as not in anywise affecting the symbol Q, while in the term P(Q) these

differentiations, or what is the same thing, the operation P, is considered to be per

formed upon Q as operand.

Again, if Q be a linear function of a, b, c, ..., then P2Q = 0, P3Q = 0, &c., and

therefore P.Q = PQ + PiQ; and I shall in this case also (and consequently whenever

P2Q = 0, P3Q = 0, &c.) write

where on the right-hand side in the term PQ the differentiations 3a , d
b&amp;gt;

... are con

sidered as not in anywise affecting the symbol Q, while the term P(Q) is in each case

what has been in the first instance represented by PjQ.

We have in like manner, if Q be a linear function of da , 9&, 9C ,
&amp;gt;

or if P ^e

a linear function of a, b, c, ...,

and from the two equations (since obviously PQ = QP) we derive

P.Q-Q.P = P(Q)-Q(P),

which is the form in which the equations are most frequently useful.
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12. I return to the expression

and I suppose that after the differentiations the sets (xly ylt ...}, (x2 , yz , ...), &c. are

replaced by the original set (x, y, ...). To show that the result is a covariant, we must

prove that it is reduced to zero by an operation IB =

It is easy to see that the change of the sets (x1} ylf ...), (x.2 , y.,, ...), &c. into the original

set (x, y, ...) may be deferred until after the operation IB, provided that xdy is replaced

by XidVl + %$ya
+ --, or if we please by Sxdy ]

we must therefore write IB = {xdy}
Sxdy .

Now in the equation ~

where, as before, A (IB) denotes the result of the operation A performed upon &quot;53 as

operand, and similarly IB (A) the result of the operation IB performed upon A as

operand, we see first that A (IB) is a determinant two of the lines of which are

identical, it is therefore equal to zero; and next, since IB does not involve any
differentiations affecting A, that IB (A) is also equal to zero. Hence A . IB IB . A =
or A and IB are convertible. But in like manner IB is convertible with B, C, &c.,

and consequently 33 is convertible with A^BiCr
.... Now IBt/if/s ... =

;
hence

or ApBqCr
. . . t/j t/a is a covariant, the proposition which was to be proved.

13. I pass to a theorem which leads to another method of finding the covariants

of a quantic. For this purpose I consider the quaritic

(*$?, 2/---3K /))
the coefficients of which are mere numerical multiples of the elements (a, b, c, ...); and

in connexion with this quantic I consider the linear functions ^x + rjy..., % x + ij y ...
,

which treating (, 77,...), (f, 77 ,...), &c. as coefficients, may be represented in the form

we may from the quantic (which for convenience I call U) form an operative quantic
m m

(*$ 17,...jr. v,...)...)

(I call this quantic @), the coefficients of which are mere numerical multiples of

9&amp;gt; 9&&amp;gt;
9C , ..., and which is such that

i.e. a product of powers of the linear functions. And it is to be remarked that as

regards the quantic and its covariants or other derivatives, the symbols da , 9&, 9C , ...

are to be considered as elements with respect to which we may differentiate, &c.

292
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The quantic gives rise to the symbols {3,,},
&c. analogous to the symbols {aidy},

&c.

formed from the quantic U. Suppose now that 4&amp;gt; is any quantic containing as well

the coefficients as all or any of the sets of 0. Then {xdy} being a linear function of

a, b, c, ... the variables to which the differentiations in 3&amp;gt; relate, we have

again, {ifa} being a linear function of the differentiations with respect to the variables

9a , 3&, 3C ,
in ^ we nave

these equations serve to show the meaning of the notations ({a y })
and {rjds } (4&amp;gt;),

and

there exists between these symbols the singular equation

14. The general demonstration of this equation presents no real difficulty, but to

avoid the necessity of fixing upon a notation to distinguish the coefficients of the

different terms and for the sake of simplicity, I shall merely exhibit by an example

the principle of such general demonstration. Consider the quantic

U = ax3 + Zbx*y + 3cf + dy
3

,

this gives
= f8 + Va + ?

2
9c -I- r)dd ;

or if, for greater clearness, 9a , db ,
3C ,

dd are represented by a, ft, y, 8, then

and we have {ax)y}
= 363a + 2c96 + d3c ,

and

Now considering 4&amp;gt; as a function of 8, 86) 9C ,
9d , or, what is the same thing, of

a, ft, 7, 8, we may write

and if in the expression of 3&amp;gt; we write a + 8a , ft + db, y + dc, B+dd for a, ft, 7, 8 (where

only the symbols 3a ,
96 ,

3C ,
3d are to be considered as affecting a, 6, c, rf as contained

in the operand 36a + 2cy3 + dy), and reject the first term (or term independent of

3, 3fc, 9C , 8d in the expansion) we have the required value of
4&amp;gt;((*^)}.

This value is

performing the differentiations 9a , 9^, 9C , 3d, the value is

(3o9^ + 2j3dy + yds) 3&amp;gt;,

i.e. we have
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15. Suppose now that &amp;lt;& is a covariant of
,
then the operation &amp;lt;& performed

upon any covariant of U gives rise to a covariant of the system

( 17, ...#, y, ...), (f, V, ...$X, y , ).
&c.

To prove this it is to be in the first instance noticed, that as regards (, 77, ...$#, y, ...), &c.

we have {acdy }
=

778^, &c. Hence considering {xdy },
&c. as referring to the quantic U,

the operation {#8^} a?9y will be equivalent to {#8,,} + 778$ #8
?y ,

and therefore every

covariant of the system must be reduced to zero by each of the operations

19 = {xdy} + yds
-

xdy.

This being the case, we have

19 .
&amp;lt; =

3B3&amp;gt; + 19
(3&amp;gt;),

$ . 19 = 4&amp;gt;19 + 3&amp;gt; (19),

equations which it is obvious may be replaced by

and consequently (in virtue of the theorem) by

19 .
&amp;lt; =

19&amp;lt;I&amp;gt; +^ (&amp;lt;J&amp;gt;),

(&.B
and we have therefore

or, since O is a covariant of @, we have HJ . &amp;lt;fr
=

&amp;lt;E&amp;gt; . 15. And since every covariant

of the system is reduced to zero by the operation 19, and therefore by the operation
3&amp;gt; . ID, such covariant will also be reduced to zero by the operation 19 .

&amp;lt;I&amp;gt;,

or what is

the same thing, the covariant operated on by &amp;lt;I&amp;gt;,

is reduced to zero by the operation
19 and is therefore a covariant, i.e. &amp;lt;E&amp;gt; operating upon a covariant gives a covariant.

1G. In the case of a quantic such as U =

we may instead of the new sets (, 77), ( , 77 )... employ the sets (y,-x\ (*/ ,-# )&amp;gt;

&c.

The operative quantic is in this case defined by the equation U=0, and if 3&amp;gt;

be, as before, any covariant of 0, then &amp;lt;E&amp;gt; operating upon a covariant of U Avill give
a covariant of U. The proof is nearly the same as in the preceding case

;
Ave have

instead of the equation 3&amp;gt;({xdy})= {778^} (&amp;lt;)
the analogous equation

where on the left-hand side {xdy }
refers to U, but on the right-hand side

{#9,,} refers

to
, and instead of 19 = {ax)y }

+ 778^
-

ax)y we have simply 19 = [xd t/ ]
- xdv .
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17. I pass next to the quantic

($, y)
m

,

which I shall in general consider under the form

(a, b,...b\ a%x, y)
m

,

but sometimes under the form

(a, b,...b\ a\x, y)
m

,

the former notation denoting, it will be remembered,

axm +
-y

bxm~l

y ... +
-y Vary&quot;*-

1 + ay
m

,

and the latter notation

axm + bxm~l
...

But in particular cases the coefficients will be represented all of them by unaccen-

tuated letters, thus (a, b, c, d$x, y)
3 will be used to denote ax3 + 3ba?y + Sexy

2 + dy
3

,

and (a, b, c, d~$x, y)
3 will be used to denote ax3 + bx2

y + cxy
z + dy

3
,
and so in all

similar cases.

Applying the general methods to the quantic

(a, b,...b\ a%x, ?/r,

we see that {ydx}
= adb + 269C ... +m6v

3a-,

{xdy}
= mbdd 4- (m Ic3& ... + adb ;

in fact, with these meanings of the symbols the quantic is reduced to zero by each

of the operations {ydx} ydx, {xdy}
xdy ;

hence according to the definition any function

which is reduced to zero by each of the last-mentioned operations is a covariant of

the quantic. But in accordance with a preceding remark, the covariant may be con

sidered as a rational and integral function, separately homogeneous in regard to the

facients (x, y} and the coefficients (a, b, ...b\ a). If instead of the single set (x, y}

the covariant contains the sets (x^ y^, (xa , y2), Ac., then it must be reduced to zero

by each of the operations [ydx]
-
Sydx , {xdy\-Sxdy (where Sydx = yfi^ + y2dX2 + ...), but

I shall principally attend to the case in which the covariant contains only the set

0*. y)-

Suppose, for shortness, that the quantic is represented by U, and let U1} U2 ,...

be what U becomes when the set (x, y) is successively replaced by the sets (x1} y^,

(#21 2/2)
&c - Suppose moreover that 12 = 3^3^ 3^9^, &c., then the function

T^IS^^... UJJJJ*...,

in which, after the differentiations, the new sets (xl , y^, (#2 , y2),
... may be replaced

by the original set (x, y), will be a covariant of the quantic U. And if the number
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of differentiations be such as to make the facients disappear, i.e. if the sum of all

the indices p, q, ... of the terms 12, &c. which contain the symbolic number 1, the

sum of all the indices p, r, ... of the terms which contain the symbolic number 2,

and so on, be severally equal to the degree of the quantic, we have an invariant.

The operative quantic & becomes in the case under consideration

the signs being alternately positive and negative ;
in fact it is easy to verify that this

expression gives identically C/&quot;=0, and any covariant of operating on a covariant

of U gives rise to a covariant of U.

18. But the quantic

(a, b,...b\ a^oc, y)
m

,

considered as decomposable into linear factors, i.e. as expressible in the form

a
(&amp;gt;- ay) O -/%)...,

gives rise to a fresh series of results. We have in this case

{yd*}
= 8.+ d . ..

[xby]
= -

(a + ...) ada + a2
3* 4- 13% + ...

;

in fact with these meanings of the symbols the quantic is reduced to zero by each

of the operations {ax)y }
ocdy , {ydx } ydx ,

and we have consequently the definition of

the covariant of a quantic considered as expressed in the form a (cc ay) (x fty) ____

And it will be remembered that these and the former values of the symbols [xdy\ and

[ydx]
are

&amp;gt;

when the same quantic is considered as represented under the two forms

(a, b,...b\ a
v

$#, y)
m and a (x a?/) (x /%)..., identical.

19. Consider now the expression

where the sum of the indices j, p,... of all the simple factors which contain a, the

sum of the indices k, p,... of all the simple factors which contain /3, &c. are respec

tively equal to the index 6 of the coefficient a. The index 6 and the indices p, &c.

may be considered as arbitrary, nevertheless within such limits as will give positive
values (0 inclusive) for the indices j, k, ____

The expression in question is reduced to zero by each of the operations

[xby] xdy , {ydx} ydx ;
and this is of course also the case with the expressions

obtained by interchanging in any manner the roots a, /9, 7, . . .
,
and therefore with

the expression

a* t(x- ayy (x
-

fiy)
k

. . . (a
-

)P. . .
,

where 2 denotes a summation with respect to all the different permutations of the

roots a, #.....
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The function so obtained (which is of course a rational function of (a, b, ... b\ a
v

))

will be a covariant, and if we suppose p = md 2Sp, where Sp denotes the sum of all

the indices p of the different terms (a
-

)P, &c., then the covariant will be of the

order
yu, (i.e. of the degree //.

in the facients x, y), and of the degree 6 in the co

efficients.

20. In connexion with this covariant

a&quot; 2 (x
-

ay)P (x
-

/%)*... (-)*...,

of the order
/JL

and of the degree 6 in the coefficients, of the quantic U=

a(x-a.y)(x-!3y}... )

consider the covariant

S(r^...)F1
F2 ...Fw

of a quantic V=
(*$a?, y)*,

in which, after the differentiations, the sets (x^, y^, (#2 , y2 ,~),
... are replaced by the

original set (x, y}. The last-mentioned covariant will be of the order m
((f&amp;gt; 6) 4-

p&amp;gt;,

and will be of the degree m in the coefficients; and in particular if
&amp;lt;/&amp;gt;

= 6, i.e. if V

be a quantic of the order 0, then the covariant will be of the order /j,
and of the

degree m in the coefficients. Hence to a covariant of the degree 6 in the coefficients,

of a quantic of the order m, there corresponds a covariant of the degree m in the

coefficients, of a quantic of the order 0; the two covariants in question being each

of them of the same order p. And it is proper to notice, that if we had commenced

with the covariant of the quantic F, a reverse process would have led to the

covariant of the quantic U. We may, therefore, say that the covariants of a given

order and of the degree 6 in the coefficients, of a quantic of the order m, correspond

each to each with the covariants of the same order and of the degree m in the

coefficients, of a quantic of the order 6; and in particular the invariants of the degree

6 of a quantic of the order m, correspond each to each with the invariants of the

degree m of a quantic of the order 6. This is the law of reciprocity demonstrated

by M. Hermite, by a method which (I am inclined to think) is substantially identical

with that here made use of, although presented in a very different form: the dis

covery of the law, considered as a law relating to the number of invariants, is due

to Mr Sylvester. The precise meaning of the law, in the last-mentioned point of

view, requires some explanation. Suppose that we know all the really independent

invariants of a quantic of the order m, the law gives the number of invariants of

the degree m of a quantic of the order 6 (it is convenient to assume 6 &amp;gt; ra), viz. of

the invariants of the degree in question, which are linearly independent, or asyzygetic,

i.e. such that there do not exist any merely numerical multiples of these invariants

having the sum zero; but the invariants in question may and in general will be

connected inter se and with the other invariants of the quantic to which they belong

by non-linear equations : and in particular the system of invariants of the degree m
will comprise all the invariants of that degree (if any) which are rational and integral
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functions of the invariants of lower degrees. The like observations apply to the system

of covariants of a given order and of the degree m in the coefficients, of a quantic

of the order 0.

21. The number of the really independent covariants of a quantic (*$#, y}
m is

precisely equal to the order in of the quantic, i.e. any covariant is a function

(generally an irrational function only expressible as the root of an equation) of any
m independent covariants, and in like manner the number of really independent in

variants is m 2
;
we may, if we please, take m 2 really independent invariants as

part of the system of the m independent covariants
;
the quantic itself may be taken

as one of the other two covariants, and any other covariant as the other of the two

covariants
;
we may therefore say that every covariant is a function (generally an

irrational function only expressible as the root of an equation) of m 2 invariants, of

the quantic itself and of a given covariant.

22. Consider any covariant of the quantic

(a, b,...b\ &amp;lt;f$x, y)
m

,

and let this be of the order /*, and of the degree 6 in the coefficients. It is very

easily shown that md ^ is necessarily even. In particular in the case of an invariant

(i.
e. when p = 0) mB is necessarily even l

: so that a quantic of an odd order admits

only of invariants of an even degree. But there is an important distinction between

the cases of mB p evenly even and oddly even. In the former case the covariant

remains unaltered by the substitution of (y, x}, (a, b\ ... b, a) for (x, y), (a, b, ... b\ a
v

) ;

in the latter case the effect of the substitution is to change the sign of the covariant.

The covariant may in the former case be called a symmetric covariant, and in the

latter case a skew covariant. It may be noticed in passing, that the simplest skew
invariant is M. Hermite s invariant of the degree 18 of a quantic of the order 5.

23. There is another very simple condition which is satisfied by every covariant

of the quantic

(a, b,...b\ a^x, y)
m

,

viz. if we consider the facients (x, y} as being respectively of the weights J, , and
the coefficients (a, b, ... b\ a) as being respectively of the weights ra, ^m+l,
...^m l, \m,, then the weight of each term of the covariant will be zero. This is

the most elegant statement of the law, but to avoid negative quantities, the state

ment may be modified as follows: if the facients (x, y) are considered as being of

the weights 1, respectively, and the coefficients (a, 6...6\ a) as being of the weights
0, 1, ...,m 1, m respectively, then the weight of each term of the covariant will be

| (mB + p).

1 I may remark that it was only M. Hermite s important discovery of an invariant of the degree 18 of
a quantic of the order 5, which removed an erroneous impression which I had been under from the com
mencement of the subject, that m& was of necessity evenly even.

c. ii. 30
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24. The preceding laws as to the form of a covariant have been stated here by

way of anticipation, principally for the sake of the remark, that they so far define the

form of a covariant as to render it in very many cases practicable with a moderate

amount of labour to complete the investigations by means of the operation {xdy}
xdy

and {ydx }

~
ydx- In fact, f r finding the covariants of a given order, and of a given

degree in the coefficients, we may form the most general function of the proper order

and degree in the coefficients, satisfying the prescribed conditions as to symmetry and

weight : such function, if reduced to zero by one of the operations in question, will,

on account of the symmetry, be reduced to zero by the other of the operations in

question; it is therefore only necessary to effect upon it, e.g. the operation {xdy}
xdy ,

and to determine if possible the indeterminate coefficients in such manner as to

render the result identically zero : of course when this cannot be done there is not

any covariant of the form in question. It is moreover proper to remark, as regards

invariants, that if an invariant be expanded in a series of ascending powers of the

first coefficient a, and the first term of the expansion is known, all the remaining
terms can be at once deduced by mere differentiations. There is one very important
case in which the value of such first term (i.e. the value of the invariant when a is

put equal to 0) can be deduced from the corresponding invariant of a quantic of the

next inferior order; the case in question is that of the discriminant (or function

which equated to zero expresses the equality of a pair of roots) ;
for by Joachimsthal s

theorem, if in the discriminant of the quantic (a, b, ... 6\ a\x, y)
m we write a = 0, the

result contains fe
2 as a factor, and divested of this factor is precisely the discriminant

of the quantic of the order in 1 obtained from the given quantic by writing a =
and throwing out the factor x : this is in practice a very convenient method for the

calculation of the discriminants of quantics of successive orders. It is also to be

noticed as regards covariants, that when the first or last coefficient of any covariant

(i.e. the coefficient of the highest power of either of the facients) is known, all the

other coefficients can be deduced by mere differentiations.

POSTSCRIPT added October 7th, 1854. I have, since the preceding memoir was

written, found with respect to the covariants of a quantic (* $X y)
m

,
that a function

of any order and degree in the coefficients satisfying the necessary condition as to

weight, and such that it is reduced to zero by one of the operations {xdy}
xdy ,

{ydx} ydx&amp;gt;
will of necessity be reduced to zero by the other of the two operations,

i. e. it will be a covariant
;
and I have been thereby led to the discovery of the law

for the number of asyzygetic covariants of a given order and degree in the coefficients;

from this law I deduce as a corollary, the law of reciprocity of MM. Sylvester and
Hermite. I hope to return to the subject in a subsequent memoir.
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140.

RESEARCHES ON THE PARTITION OF NUMBERS.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLV for the

year 1855, pp. 127140. Received April 14, Read May 24, 1855.]

I PROPOSE to discuss the following problem :

&quot; To find in how many ways a

number q can be made up of the elements a, b, c, ... each element being repeatable
an indefinite number of times.&quot; The required number of partitions is represented by
the notation

P(a, b, c, ...)q,

and we have, as is well known,

P (a, b, c, ...)&amp;lt;7
= coefficient afl in 7-,

where the expansion is to be effected in ascending powers of as.

It may be as well to remark that each element is to be considered as a separate
and distinct element, notwithstanding any equalities which may exist between the

numbers a, b, c, . . .
; thus, although a = b, yet a + a + a + &c. and a + a + b + &c. are to

be considered as two different partitions of the number q, and so in all similar cases.

The solution of the problem is thus seen to depend upon the theory, to which I

now proceed, of the expansion of algebraical fractions.

Consider an algebraical fraction ~
,

/*

where the denominator is the product of any number of factors (the same or different)
of the form 1 xm . Suppose in general that [1 xm

] denotes the irreducible factor of

1 xm
, i. e. the factor which, equated to zero, gives the prime roots of the equation

l-a? = 0. We have
i - xm = n [i

- xm
],

302
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where m denotes any divisor whatever of m (unity and the number m itself not

excluded). Hence, if a represent a divisor of one or more of the indices m, and k

be the number of the indices of which a is a divisor, we have

Now considering apart from the others one of the multiple factors [1
- xa]

k
,
we

may write fx = \\ a?~\
kf/

x.

Suppose that the fraction
*j*

is decomposed into simpler fractions, in the form

fx
=I(x}

, ^ \ T. . Uw / *&quot;\ S, I* II 1 t
&quot;* 1

+ &C.,

where /(a?) denotes the integral part, and the &c. refers to the fractional terms

depending upon the other multiple factors such as [!-]* The functions 6x are

to be considered as functions with indeterminate coefficients, the degree of each such

function being inferior by unity to that of the corresponding denominator; and it is

proper to remark that the number of the indeterminate coefficients in all the functions

6x together is equal to the degree of the denominator fx.

The term (xdx}
k~l

rf^i may be reduced to the form

P ff&
. + &c

[r-&quot;^?

+
[i-^?-^

the functions gx being of the same degree as 0x, and the coefficients of these functions

being linearly connected with those of the function Ox. The first of the foregoing

terms is the only term on the right-hand side which contains the denominator [!-*] ;

hence, multiplying by this denominator and then writing [1
-

a?]
= 0, we find

d&amp;gt;x

flT

fa
9

which is true when x is any root whatever of the equation [1-&amp;lt;|=0.
Now by

means of the equation [1-^]=0,
j

may be expressed in the form of a rational and

integral function Gx, the degree of which is less by unity than that of [1 -&amp;lt;|.
We

have therefore Qx = gx, an equation which is satisfied by each root of \\-a?\-0,

and which is therefore an identical equation ; gx is thus determined, and the coefficients

of 6x being linear functions of those of gx, the function 0x may be considers

determined. And this being so, the function

^-/yaVk-i
6x

Jx
(adx) [1-^]
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will be a fraction the denominator of which does not contain any power of [1 #&quot;]

higher than [1 a^1

]*&quot;

1

;
and therefore O^x can be found in the same way as Ox, and

similarly 62 x, and so on. And the fractional parts being determined, the integral part

may be found by subtracting from
-^-

the sum of the fractional parts, so that the fraction
jx

v- can by a direct process be decomposed in the above-mentioned form.
Jx

Particular terms in the decomposition of certain fractions may be obtained with

great facility. Thus m being a prime number, assume

1 Ox

(l-a^Xl-a;
8

)... (l-xm)~
C +

[T^tf~]

then observing that (1 xm) (l x)[l xm
],
we have for [1 xm

]
= 0,

Ox = - -

(
-. .

Now u being any quantity whatever and x being a root of [1 xm]
=

0, we have

identically

[1
- um

]
= (u-x) (u

- x2

) ...(- xm~l

) ;

and therefore putting w = l, we have m = (l x}(l as
2
) ... (1 xm~l

),
and therefore

0x=-,m
whence

o 1 1= &C. -i 7T-

Again, m being as before a prime number, assume

!_ _r 0as
rt\ /I *\ ~~ ^^V-1 * I

^
r -m

we have in this case for [1 xm]
= 0,

Ox-
(l-x)*(l-x

2

)...(].-a;
m- 1

)

which is immediately reduced to Ox = ^ . Nowml -x

n _ um-] ri _ 7 .m-| _ fl _ rm1
L-&quot;- J L t* J |_J-

**
J /i ) o\ i /I i m 3\ i /I i_ \ in 3 i tn 2

U X U X

or putting u = 1,

1 x
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and substituting this in the value of Ox, we find

x
= &C. H pj

r-= .

The preceding decomposition of the fraction ^ gives very readily the expansion ot

Jx

the fraction in ascending powers of x. For, consider a fraction such as

0x

[T a?
a
]

where the degree of the numerator is in general less by unity than that of the

denominator
;
we have

i - of- = [i
-

a,*] n [i
- a*

],

where a denotes any divisor of a (including unity, but not including the number a

itself). The fraction may therefore be written under the form

0x11 [1
- of1

]

1-x*

where the degree of the numerator is in general less by unity than that of the

denominator, i.e. is equal to a I. Suppose that b is any divisor of a (including

unity, but not including the number a itself), then 1 - xb
is a divisor of II [1

- of1

],
and

therefore of the numerator of the fraction. Hence representing this numerator by

and putting a = be, we have (corresponding to the case 6 = 1)

and generally for the divisor 6,

A
(t + A b ... + A (c

_l)b
= 0,

.-&quot;-1
+ &quot;&+!

+ -&quot;-I

A b_l + A*^ ... + A&-I = 0.

Suppose now that a
q
denotes a circulating element to the period a, i.e. write

a
q =l, q

= Q (mod. a),

a
q
= in every other case

;

a function such as

A d
q + Aidqi . . . + A a_i(lq a+i

will be a circulating function, or circulator to the period a, and may be represented

by the notation

(A ,
A 1} ...4o-0 circlor aq

.
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In the case however where the coefficients A satisfy, for each divisor 6 of the number

a, the above-mentioned equations, the circulating function is what I call a prime

circulator, and I represent it by the notation

(A,, 4 a ,
...4 a-i) Pcr a&amp;gt;9

By means of this notation we have at once

6x
coefficient afl in n -,

= (A ,
Al ...Aa^ per a

q ,

[I or]

and thence also

Ox
coefficient afl in (xdx)

r ~ ~-. = q
r
(A ,

A 1 ...A a_l) per a
q

.

[I ar\

cnir

Hence assuming that in the fraction -^- the degree of the numerator is less than that
jx

of the denominator (so that there is not any integral part), we have

fJv/Vt

coefficient xi in -- = 2l q
r
(A ,

A l} ...A a_^) per a
q ;

jx

or, if we wish to put in evidence the non-circulating part arising from the divisor a = 1,

coefficient afl in ^ = Aqk~l + Bq
k~2

... + Lq + M
/*

+ S q
r
(A , A,... Aa.,) per a

q ;

where k denotes the number of the factors 1 xm in the denominator fx, a is any
divisor (unity excluded) of one or more of the indices ra; and for each value of a

r extends from r = to r = k 1, where k denotes the number of indices m of which

a is a divisor. The particular results previously obtained show, that m being a

prime number,

coefficient afl in
(1
_^ _^ ... (1

_^}

= &*- + ^( *-*. *.*) P&amp;lt;* ^&amp;gt;

and

coefficient afl in - = &c. + (m-l,- I, -I, . .

.) per m Q .

(I x) (1 x2

) ... (1 xm) m2 ^

Suppose, as before, that the degree of $x is less than that of fx, and let the

analytical expression above obtained for the coefficient of afl in the expansion in

fD/y*

ascending powers of x of the fraction
-^-

be represented by Fq, it is very remarkable
/

Qj/&amp;gt;*

that if we expand
~ in descending powers of x, then the coefficient of xi in this
jx

new expansion (q is here of course negative, since the expansion contains only

negative powers of x) is precisely equal to Fq; this is in fact at onee seen to be
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(f\nr*

the case with respect to each of the partial fractions into which -- has been de-
Jx

composed, and it is consequently the case with respect to the fraction itself 1
. This

gives rise to a result of some importance. Suppose that
&amp;lt;f&amp;gt;x

and fx are respectively

of the degrees N and D; it is clear from the form of fx that we have /(-) = ( }

Dx~D
fx;

\xj

and I suppose that
&amp;lt;$&amp;gt;.v

is also such that
&amp;lt;/&amp;gt;(-)= (+)V&quot;

V
$#; then writing D N=h,

\x/

and supposing that ^- is expanded in descending powers of x, so that the coefficient

Jx

of afl in the expansion is Fq, it is in the first place clear that the expansion will

commence with the term x~h
t
and we must therefore have

Fq =

for all values of q from q
= 1 to q

=
(h 1).

Consider next the coefficient of a term x~h~v, where q is or positive ;
the

coefficient in question, the value of which is F(h q), is obviously equal to the

/

coefficient of #*+ in the expansion in ascending powers of x of ,-7- , i- e. to

(Y(-T coefficient o^+? in --
,

Jx

or what is the same thing, to

(Y(-)
D

coefficient xi in ?
;

Jx

and we have therefore, q being zero or positive,

F(-h-q) = -(r(-Yf
1

q-

In particular, when
&amp;lt;/&amp;gt;#=!, Fq = Q

for all values of q from q
= -l to q = -(D-l); and q being or positive,

The preceding investigations show the general form of the function P (a, b, c, . . . ) q,

viz. that

P(a, b, c,...)q
= Aq

k-1 + Bq
k-2

... + Lq + M+2qr
(A , A^.^A^) per l

g&amp;gt;

a formula in which k denotes the number of the elements a, b, c, ... &c., and I is

any divisor (unity excluded) of one or more of these elements
;

the summation in the

case of each such divisor extends from r = to r = k 1, where k is the number of

the elements a, b, c,... &c. of which I is a divisor
;

and the investigations indicate

1 The property is a fundamental one in the general theory of developments.
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how the values of the coefficients A of the prime circulators are to be obtained. It

has been moreover in effect shown, that if D = a + b + c + ...
, then, writing for shortness

P (q) instead of P (a, b, c, . . . ) q, we have

for all values of q from q
= l to q=(Dl), and that q being or positive,

these last theorems are however uninterpretable in the theory of partitions, and they

apply only to the analytical expression for P(q).

I have calculated the following particular results :

, 2)q =
5J2&amp;lt;/

+ 3

+ (1, -1) per 2,1

+ 9(1, -1) per 2
g

8(2, -I, -1) per 3
9
j

P(l, 2, 3, 4)
=~

J2
5

3 + 30 5
2 + 135^ + 175

(l, -1) per 2
q

+ 32 (1, 0,
-

1) per 3
q

+ 36 (1, 0,
-

1, 0) per 4
9 1

P(l, 2, 3, 4, 5) q =^^ J30
?

4 + 900 g
3 + 9300 g

2 + 38250 ? + 50651

+ (1350^ + 10125) (1, -1) per 2
q

+ 3200 (2,
-

1,
-

1) per 3,;

+ 5100 (1, 1, -1, -1) per 4
9

+ 3456 (4,
-

1,
-

1,
-

1,
-

1) per o q

+ (1, -1) per 2
q
\

P& 3)g =^
+ 3 (1,

-
1) per 2

q

+ 4(1, -1, 0) per 3 -

C. II.
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+ (18g + 81)(l, -1) per 2,

+ 32 (2,
-

1,
-

1) per 3,

+ 36 (1, -1, -1,1) per *g

P(2, 3, 4, 5

+ (45 q + 315) (1, -1) per 2
9

+ 160 (1, -1, 0) per 39

+ 180 (1, 0,
-

1, 0) per 4
9

+ 288 (1, -1,0,0,0) per 5t
|

P(2, 3, 4, 5, 6)9 =^ n jl02
4 + 400 2

3 + 5550 g
2 + 31000 g + 56877

+ (450 5
2 + 9000 q + 39075) (1, -1) per 2,y

+ 3200 q (I, -1, 0) per 3,
y

+ 1600 (21,
- 19,

-
2) per 3,

+ 10800 (1, 0,
-

1, 0) per 4,

+ 6912 (4,
-

1,
-

1,
-

1,
-

1) per O
Q

+ 4800 (1, -1, -2, -
I, 1, 2) per 6,,

j

P(l, 2, 3, 5)0 =-^
J40

3 + 660
3 + 3240 + 451

+ 45 (1,
-

1) per 2,y

+ 80 (1,
-

1, 0) per 3
ry

+ 144(1, 0, 0, 0, -1) per
5,j

P(l, 2, 2, 3, 4) q
= gg 6 g

4 + 144 g
3 + 1194 2

2 + 3960^ + 4267

, -1) per 2

+ 256 (2,
-

1,
-

1) per 3,

+ 432 (1, 0, -1, 0) per
4,|

&quot;+1 (1, -1) Fr 2
i

+ 2 (1, 0,
-

1, 0) per 4,

+ 8(1, 0, 0, 0, -1, 0, 0, 0) per 8g
|
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+ 7 (1,
-

1) per 2g

+ 14 (I,
-

1,
-

1, 1) per 4,

+ 16 (3, 2, 1, 0,
-

1,
-

2,
-

3) per 7,

+ 56 (0, -1, -1, 0, 0, 1, 1, 0) per Bq \,

which are, I think, worth preserving.

Received April 14, Read May 3 and 10, 1855.

I proceed to discuss the following problem :

&quot; To find in how many ways a

number q can be made up as a sum of ra terms with the elements 0, 1, 2, ...A;,

each element being repeatable an indefinite number of times.&quot; The required number

of partitions is represented by

P(0, 1, 2,...fc)3,

and the number of partitions of q less the number of partitions of q 1 is repre

sented by
P (0, 1, 2, ...k)

m
q.

We have, as is well known,

P(0, 1, 2,... k}
m
q = coefficient afls?&quot; in --^--r-j-

-r
,

(1 z) (1 xz) ... (1 ar*)

where the expansion is to be effected in ascending powers of z. Now

l-a (l-#)

the general term being

(l-a*+
1

)(l-a*+ )...(l-s+ )

(l-a?)(l-a?)... (l-xm)

or, what is the same thing,

(l-)(F- 2

)... (!-*)
arid consequently

/&quot;I _ ^.m+i\ /

P(0, 1, 2, ... tr , = coefficient in
U

to transform this expression I make use of the equation

,,
, ar(l-a!*)

(l + ^)(l + ^)...(l + ^) = l +-L-^
312



244 RESEARCHES ON THE PARTITION OF NUMBERS.

where the general term is

a* a -**) a - aM... a -**-*&quot;) ^
(1-0) (l-O ... (l-O

and the series is a finite one, the last term being that corresponding to s = k, viz.

. Writing xm for ,?, and substituting the resulting value of

in the formula for P (0, 1, 2,...k)
m

q, we have

{
(-)P coefficient ^ in

(

where the summation extends from s = to s = k
;

but if for any value of s between

these limits sm + ^s(s+l) becomes greater than q, then it is clear that the summation

need only be extended from s to the last preceding value of s, or what is the

same thing, from s = to the greatest value of s for which q sm ^s(s + 1) is

positive or zero.

It is obvious, that if q &amp;gt; km, then

P(0, 1, 2. ..fc)g = 0;

and moreover, that if 6
*%&amp;gt; \km, then

P(0, 1, 2, ...k)
m 6 = P(Q, 1, 2,-...k)

m .km-0,

so that we may always suppose q }&amp;gt; \km. I write therefore q
=

\ (km a) where a is

zero or a positive integer not greater than km, and is even or odd according as km
is even or odd. Substituting this value of q and making a slight change in the

form of the result, we have

P(0, 1, 2...k)
m
$(km-a) =

r i*~*&amp;gt;
m in ___

where the summation extends from s = to the greatest value of s for which

(i& s}m |a ^s(s + 1) is positive or zero. But we may, if we please, consider the

summation as extending, when k is even, from s = to s %k 1, and when k is odd,

from s = to s = \ (k 1) ;
the terms corresponding to values of s greater than the

greatest value for which (^k s) m |a s(s+ 1) is positive or zero being of course

equal to zero. It may be noticed, that the fraction will be a proper one if

a.
&amp;lt; (k s) (k s + 1 ) ;

or substituting for s its greatest value, the fraction will be a

proper one for all values of s, if, when k is even, a &amp;lt; %k (k + 2), and when k is odd,

We have in a similar manner,

1 x
P (0, 1, 2... k)

m a = coefficient aflz
m in /n

~ --
^7:
--r 71

--FT
(1 z)(l xz) . . . (1 *jy
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which leads to

P (0, 1, 2... k}
m %(km- a) =

where the summation extends, as in the former case, from s = to the greatest value

of s, for which (%k s)m ^a ^s(s + 1) is positive or zero, or, if we please, when k is

even, from s = to s ^k 1, and when s is odd, from s = to s = ^(k I). The

condition, in order that the fraction may be a proper one for all values of s, is,

when k is even, a + 1 &amp;lt; \k (k + 2), and when k is odd, a + 1 &amp;lt; ^ (k + 1) (& + 3).

To transform the preceding expressions, I write when k is odd x2 instead of x,

and I put for shortness 6 instead of ^k s or 2 (^k s), and 7 instead of Ja + s(s + l)

or a + s (s + 1) ;
we have to consider an expression of the form

oft

coefficient xem in =r-
,Fx

where Fx is the product of factors of the form 1 a?. Suppose that a is the least

common multiple of a and 6, then (1 xa )
-=-

(1 x*} is an integral function of x,

equal ^x suppose, and 1-^(1 #a) = %x
-=-

(1 xa
). Making this change in all the

factors of Fx which require it (i.e. in all the factors except those in which a is a

multiple of 6), the general term becomes

coefficient x61&quot;1 in
,

(jrX

where Gx is a product of factors of the form 1 xa
,
in which a is a multiple of 6,

i.e. Gx is a rational and integral function of x9
. But in the numerator x^Hx we may

reject, as not contributing to the formation of the coefficient of x m
,

all the terms in

which the indices are not multiples of
;

the numerator is thus reduced to a rational

and integral function of xe
,
and the general term is therefore of the form

coefficient xem in , .{ ,

K(x
e
)

or what is the same thing, of the form

\x
coefficient xm in

,

KX

where KX is the product of factors of the form 1 x&quot;

1

,
and \x is a rational and integral

function of x. The particular value of the fraction depends on the value of .9 : and

uniting the different terms, we have an expression

which is equivalent to

coefficient xm in Sg (}s
.

KX

&amp;gt;i

coefficient xm in -^- ,

fa
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where fx is a product of factors of the form 1 - a?, and
&amp;lt;f&amp;gt;x

is a rational and integral

function of as. And it is clear that the fraction will be a proper one when each

of the fractions in the original expression is a proper fraction, i.e. in the case of

P(0, 1, 2...fc)
m
!(&ra-a), when for k even, a&amp;lt;k(k+2), and for k odd, ct&amp;lt;%(k+l)(k+3) ;

and in the case of P (0, 1, 2 . . . k)
m
%(km - a), when for k even, a+l &amp;lt;{k(k + 2), and

for k odd, a+ 1 &amp;lt; (k + l)(k + 3).

We see, therefore, that

P(0, 1, 2...k)
m
$(km-a),

and
P (0, 1, 2...k)

m
b(km-OL),

are each of them of the form

(f)/

coefficient xm in ^- ,

fx

where /# is the product of factors of the form I -a/1
,
and up to certain limiting values

A\f

of a the fraction is a proper fraction. When the fraction -- is known, we may there-

/*

fore obtain by the method employed in the former part of this Memoir, analytical

expressions (involving prime circulators) for the functions P and P .

As an example, take

P(0, 1, 2, 3)
m
fm,

which is equal to

1
coefficient o?m in

coefficient ac
m in

-)(!-*)

1

The multiplier for the first fraction is

(1
-

a?) (1
- a4

)

which is equal to

1 + a? + 2

Hence, rejecting in the numerator the terms the indices of which are not divisible

by 3, the first term becomes

coefficient a- in

or what is the same thing, the first term is

coefficient^ in -
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and, the second term being

x2

coefficient xm in ^ ^^. x ,

(1 x2

y(l x4)

~\ I -y^

we have P(0. 1. 2. 3 )
m
fra = coefficient xm in ^ -

^ -,
;

(1 x2

)
2

(l x4
)

and similarly it may be shown, that

/v&amp;gt; I /&amp;gt;i3

P(0, 1, 2, 3)
m
4(3m - 1)

= coefficient #m in

As another example, take

P (0, 1, 2, 3, 4, 5)fm,
which is equal to

i

coefficient x5m in
(1 -**)(!- a?) (1

_

/v2

coefficient a?m in

+ coefficient xm in

(1
- x2

) (1 -*)(!- ) (1
-

a?)

Xs

(1
-

a?) (1
- a4

) (1
-

The multiplier for the first fraction is

which is a function of a? of the order 36, the coefficients of which are

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 4, 4, 6, 4, 6, 5, 7, 5, 7, 5, 7, 5, 6, 4, 6, 4, 4, 3, 4, 2, 3, 1, 2, 1, 1, 0, 1,

and the first part becomes therefore

coefficient *&quot; in
1+^ +^ + 5^ + 7^ + 4^ + 3^

(1
- a;

2

) (1
-

of) (1
-O (1

- a8
)

The multiplier for the second fraction is

(1 -*)(! -&amp;lt;)(!
-a8

)

which is a function of #2 of the order 14, the coefficients of which are

1, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 2, 1, 1
;

and the second term becomes

. . . 2#2 + 2^ + 3a^ + a?- coefficient xm in

OF THE

UNIVERSITY
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and the third term is

^16

coefficient xm in -
-^ ^ -

.

Now the fractions may be reduced to a common denominator

(1
-

of) (1
-O (1

-O (1
-

a?)

C

by multiplying the terms of the second fraction by _----
2 (= 1 + #2 + #*), and the terms

1 a?
of the third fraction by = -

(= 1 + a4
) ; performing the operations and adding, the

_L
*~~ Ou

numerator and denominator of the resulting fraction will each of them contain the

factor 1 a-
2

;
and casting this out, we find

P(0, 1, 2, 3, 4, 5) fm = coefficient ^ in
(1
_ ^)(1

_
a;6)(1

_^
I have calculated by this method several other particular cases, which are given

in my &quot;Second Memoir upon Quantics&quot;, [141], the present researches were in fact

made for the sake of their application to that theory.

Received April 20, Read May 3 and 10, 1855.

Since the preceding portions of the present Memoir were written, Mr Sylvester

has communicated to me a remarkable theorem which has led me to the following

additional investigations
I

.

Let ^ be a rational fraction, and let (x x^
k be a factor of the denominator fx,

fx
then if

denote the portion which is made up of the simple fractions having powers of x x^

for their denominators, we have by a known theorem

TT&amp;gt;
= coefficient - in - -

-^T^- r-

fss] Xl
x - xl

- z / (*! + z)

Now by a theorem of Jacobi s and Cauchy s,

coefficient - in Fz = coefficient - in F(-dri) -fy
t

;

z t

whence, writing x
l + z x^1

,
we have

= coefficient ,

t

1 Mr Sylvester s researches are published in the Quarterly Mathematical Journal, July 1855, [vol. i. pp.

141152], and he has there given the general formula as well for the circulating as the non-circulating part

of the expression for the number of partitions. Added 23rd February, 1856. A. C.
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Now putting for a moment x = xle
e

, we have

and 80 = 0$,,., whence

Oi a& XL -X 1
x xl

- x 1 . 2
v x)

X-L-X

the general term of which is

V1
-1

1
:

(xdx}
s~l

Hence representing the general term of

by xxit~s&amp;gt;

so that

Xi = coefficient - in ^-1 ^^ ^ I
j

we find, writing down only the general term,

h . .

where the value of ^ depends upon that of s, and where s extends from * = 1 to 8 = h.

Suppose now that the denominator is made up of factors (the same or different)of the form 1 - xm. And let a be any divisor of one or more of the indices m
and let k be the number of the indices of which a is a divisor. The denominator
contains the divisor

[!-&amp;lt;]* and consequently if p be any root of the equation
[1-&amp;lt;]

=
0, the denominator contains the factor (p

-
x}

k
. Hence writing p for x, and

taking the sum with respect to all the roots of the equation [1
- xa

]
=

0, we find

xp = coefficient - in IT1

t

and as before s extends from s = 1 to s = k. We have thus the actual value of the
function Ox made use of in the memoir.

A preceding formula gives

&amp;lt;&amp;gt; e~~
\
= coefficient - in --

. V) -

fa) i t 1 - x& f(e-
f

)

which is a very simple expression for the
non-circulating part of the fraction ^

fa
This is, in fact, Mr Sylvester s theorem above referred to

c. n.
32
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141.

A SECOND MEMOIR UPON QUANTICS.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVI. for the

year, 1856, pp. 101126. Received April 14, Read May 24, 1855.]

THE present memoir is intended as a continuation of my Introductory Memoir

upon Quantics, t. CXLIV. (1854), p. 245, and must be read in connexion with it
;

the

paragraphs of the two Memoirs are numbered continuously. The special subject of

the present memoir is the theorem referred to in the Postscript to the Introductory

Memoir, and the various developments arising thereout in relation to the number and

form of the covariants of a binary quantic.

25. I have already spoken of asyzygetic covariants and invariants, and I shall have

occasion to speak of irreducible covariants and invariants. Considering in general a

function u determined like a covariant or invariant by means of a system of partial

differential equations, it will be convenient to explain what is meant by an asyzygetic

integral and by an irreducible integral. Attending for greater simplicity only to a

single set (a, b, c, ...), which in the case of the covariants or invariants of a single

function will be as before the coefficients or elements of the function, it is assumed

that the system admits of integrals of the form u = P, u = Q, &c., or as we may

express it, of integrals P, Q, &c., where P, Q, &c. are rational and integral homogeneous
functions of the set (a, b, c, ...), and moreover that the system is such that P, Q, &c.

being integrals, &amp;lt; (P, Q, ...) is also an integral. Then considering only the integrals

which are rational and integral homogeneous functions of the set (a, b, c, ...}, integrals

P, Q, R, ... not connected by any linear equation or syzygy (such as \P +
f*&amp;gt;Q

+ vR ... 0), (
]

)

are said to be asyzygetic; but in speaking of the asyzygetic integrals of a particular

degree, it is implied that the integrals are a system such that every other integral of

1 It is hardly necessary to remark, that the multipliers X, /x, v, ...
,
and generally any coefficients or

quantities not expressly stated to contain the set (a, b, c, .,.), are considered as independent of the set, or

to use a convenient word, are considered as &quot;

trivials.&quot;
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the same degree can be expressed as a linear function (such as \P + /j,Q+ vJR...} of

these integrals; and any integral P not expressible as a rational and integral homo

geneous function of integrals of inferior degrees is said to be an irreducible integral.

26. Suppose now that A 1} A.2 ,
A 3 , &c. denote the number of asyzygetic integrals

of the degrees 1, 2, 3, &c. respectively, and let a
x ,

a2 . &amp;lt;x3 ,
&c. be determined by the

equations

^ 3
=

i (
a

i + !) (i + 2) + a

A* = & ^ (i + 1) Oi + 2 ) (i + 3) + $ ! (at! + 1) 2 + a^ + 2 ( 8 + 1) + 4 , &c.,

or what is the same thing, suppose that

&c. = 1 - tf
1

1 ~ a^* 1 ~ a3
&quot;&quot;

-

a little consideration will show that ar represents the number of irreducible integrals

of the degree r less the number of linear relations or syzygies between the composite
or non-irreducible integrals of the same degree. In fact the asyzygetic integrals of

the degree 1 are necessarily irreducible, i.e. A 1
= alf Represent for a moment the

irreducible integrals of the degree 1 by X, X
, &c., then the composite integrals

X 2
, XX , &c., the number of which is ^i (!+!), must be included among the asyzygetic

integrals of the degree 2
;
and if the composite integrals in question were asyzygetic,

there would remain J. 2 i ai(i + 1) for the number of irreducible integrals of the

degree 2
;
but if there exist syzygies between the composite integrals in question, the

number to be subtracted from A* will be |i(ai + l) less the number of these syzygies,
and we shall have A 2 \ ^(^ + 1), i.e. cr2 equal to the number of the irreducible

integrals of the degree 2 less the number of syzygies between the composite integrals
of the same degree. Again, suppose that a2 is negative =

/?2 ,
we may for simplicity

suppose that there are no irreducible integrals of the degree 2, but that the com

posite integrals of this degree, X2
,
XX

, &c., are connected by /32 syzygies, such as

\X2 + pXX + &c. = 0, Xj-X&quot;

2 + frXX + &c. = 0. The asyzygetic integrals of the degree 4

include X\ X3X
, &c., the number of which is

^^(&quot;i + 1) (
a

i + 2) (^ + 3) ;
but these

composite integrals are not asyzygetic, they are connected by syzygies which are

augmentatives of the /32 syzygies of the second degree, viz. by syzygies such as

=0, &c. (X

. . .) XX = 0, &c.,

the number of which is ii(ai + l)^2 . And these syzygies are themselves not asyzygetic,

they are connected by secondary syzygies such as

(XX2 + pXX . . .)XX + &c.

0, &c. &c.,

322
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the number of which is i/32 (/92 -l). The real number of syzygies between the com

posite integrals X4
,
X3X

,
&c. (i.e. of the syzygies arising out of the & syzygies

between X\ XX
, &c.), is therefore \ a, (a, + !)&-&(&- 1), and the number of

integrals of the degree 4. arising out of the integrals and syzygies of the degrees

1 and 2 respectively, is therefore

or writing
-

2 instead of /32 ,
the number in question is

ai (i + !)(! + 2)^ + 3) + \a^ + 1) ,, + aa ( 2 + 1).

The integrals of the degrees 1 and 3 give rise to && integrals of the degree 4
;
and if

all the composite integrals obtained as above were asyzygetic, we should have

At -^ a1 (a1 + l)(a 1 + 2)( 1 + 3) -^(^ + 1)*2
-1

*,(*,+ 1)
-

W*&amp;gt;

i.e. 4 as the number of irreducible integrals of the degree 4; but if there exist any

further syzygies between the composite integrals, then ot4 will be the number of the

irreducible integrals of the degree 4 less the number of such further syzygies, and the

like reasoning is in all cases applicable.

27. It may be remarked, that for any given partial differential equation, or system

of such equations, there will be always a finite number v such that given v independent

integrals every other integral is a function (in general an irrational function only

expressible as the root of an equation) of the v independent integrals ;
and if to these

integrals we join a single other integral not a rational function of the v integrals, it is

easy to see that every other integral will be a rational function of the v + 1 integrals ;

but every such other integral will not in general be a rational and integral function of

the v + 1 integrals ;
and [incorrect] there is not in general any finite number whatever

of integrals, such that every other integral is a rational and integral function of these

integrals, i.e. the number of irreducible integrals is in general infinite
;
and it would seem

that this is in fact the case in the theory of covariants.

28. In the case of the covariants, or the invariants of a binary quantic, A n is given

(this will appear in the sequel) as the coefficient of xn in the development, in ascending

(nT*

powers of x, of a rational fraction ^ ,
where fx is of the form

jx

and the degree of
&amp;lt;j&amp;gt;x

is less than that of fx. We have therefore

&amp;lt;t&amp;gt;x

.
=^ ,

Jx

and consequently
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Now every rational factor of a binomial 1 xm is the irreducible factor of 1 xm
,

where m is equal to or a submultiple of m. Hence in order that the series a1} oc2 ,
a3 ,

...

may terminate,
&amp;lt;f&amp;gt;x

must be made up of factors each of which is the irreducible factor

of a binomial 1 xm
,
or if

&amp;lt;fxv

be itself irreducible, then x must be the irreducible

factor of a binomial 1 xm. Conversely, if
(fix

be not of the form in question, the

series a
1 ,

a2 ,
a3 ,

&c. will go on ad infinitum, and it is easy to see that there is no point
in the series such that the terms beyond that point are all of them negative, i.e. there

will be irreducible covariants or invariants of indefinitely high degrees; and the number
of covariants or invariants will be infinite. The number of invariants is first infinite in

the case of a quantic of the seventh order, or septimic ;
the number of covariants is first

infinite in the case of a quantic of the fifth order, or quintic. [As is now well known,
these conclusions are incorrect, the number of irreducible covariants or invariants is

in every case finite.]

29. Resuming the theory of binary quantics, I consider the quantic

(a, b,...b\ a^x, y}.
Here writing

{ydx }

= adb + 2bdc ... +mVda &amp;lt;, =X,

{xdy}
= mbda + (m 1 ) c96 . . .+ ady, = Y,

any function which is reduced to zero by each of the operations X-ydx , Y-aedy is a

covariant of the quantic. But a covariant will always be considered as a rational

and integral function separately homogeneous in regard to the facients (x, y} and to

the coefficients (a, b,...b\ a). And the words order and degree will be taken to refer

to the facients and to the coefficients respectively.

I commence by proving the theorem enunciated, No. 23. It follows at once from
the definition, that the covariant is reduced to zero by the operation

X ybx . Y xdy Y xdy . X
y&quot;dx ,

which is equivalent to

X.Y-Y.X+ydy -xdx .

Now

Y.X=YX+Y(X\
where XY and YX are equivalent operations, and

X(Y)= lmada + 2(m-I)bdb ...+ r

Y (X) = mlbdb . . .+ 2O -
1 ) Vd^ + 1 )&amp;gt;iada

&amp;gt;

,

whence
X ( 7)

- Y (X) = mada + (m - 2) bdb . . .
-

(m - 2) 6
V

36 - mada
~

,
= k suppose,

and the covariant is therefore reduced to zero by the operation

k + yby xdx .

Now as regards a term aab^...b^ a a
. x l

yi, we have

k = ma +O -
2) /3. . .,

- (m - 2) $ - ma



254 A SECOND MEMOIR UPON QUANTICS. [141

and we see at once that for each term of the covariant we must have

ma + (m - 2) /3. . .- (ra
-

2) /3
V - met +j - i = 0,

i.e. if (x, y) are considered as being of the weights ^, respectively, and (a, b,...b\ a)
as being of the weights ira, \m + 1, ... \in 1, \m respectively, then the weight
of each term of the covariant is zero.

But if (x, y) are considered as being of the weights 1, respectively, and (a, 6,...6
V

, a)
as being of the weights 0, l,...m 1, m respectively, then writing the equation under

the form

m(a. + j3. . .+
(3&quot;
+

a&quot;) +j + i - 2 (# +. . .+ m - Iff + mav

+ = 0,

and supposing that the covariant is of the order p and of the degree 0, each term of

the covariant will be of the weight ^ (m6 + yu.).

I shall in the sequel consider the weight as reckoned in the last-mentioned manner.

It is convenient to remark, that as regards any function of the coefficients of the degree
and of the weight q, we have

30. Consider now a covariant

(A, B,...B\ A^x, yy

of the order p, and of the degree 6
;

the covariant is reduced to zero by each of the

operations X yd x&amp;gt;
Yxdy ,

and we are thus led to the systems of equations

and
YA = B,

YB = 2(7,

YA = 0.

Conversely if these equations are satisfied the function will be a covariant.

I assume that A is a function of the degree and of the weight \ (m6 //,), satisfying

the condition

XA=0;
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and I represent by YA, Y2
A, Y3

A, &c. the results obtained by successive operations

with F upon the function A. The function YSA will be of the degree 9 and of the

weight ^(md /J&amp;gt;)
+ s. And it is clear that in the series of terms YA, Y*A, Y3

A, &c.,

we must at last come to a term which is equal to zero. In fact, since m is the

greatest weight of any coefficient, the weight of Ys
is at most equal to md, and therefore

if \ (m6 p) + s &amp;gt; mO, or s &amp;gt; ^(mB + /A), we must have FM=0.

Now writing for greater simplicity XY instead of X. Y, and so in similar cases, we

have, as regards YS
A,

Hence

and consequently

Similarly

and therefore

And again,

and therefore

or generally

Hence putting s =

(XY- YX) YA = (n-2) YA,

XY2A = YXYA + (p
-

2) YA

(XY- YX)Y*A = O- 4) Y*A,

XY3A = YXY2A + (/*
-

4) Y*A

= 3 (/*
-

2) Y*A,

//,
+ 2, &c., we have

equations which show that

XY&quot;
+*A = -O + 2) 1

XY^A = -
(/A + 3) 2 .

&c.,

=
;

for unless this be so, i.e. if Y*+1A =
0, then from the second equation Ar

therefore F^+lA^O, from the third equation XY^3 ^0, and therefore

on ad infinitum, i.e. we must have F^+1A 0.

0, and

4=0, and so
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31. The suppositions which have been made as to the function A, give therefore

the equations

XA =0,

XYA = tA,

= 0;

and if we now assume

B=YA, C =

the system becomes

XA = B\

so that the entire system of equations which express that (A, B...B\ A^z, yf is

a covariant is satisfied
;

hence

THEOREM. Given a quantic (a, b, ...6\ a^x, y)
m

;
if A be a function of the

coefficients of the degree 6 and of the weight \ (md //,) satisfying the condition

XA =
0, and if B, C, ... B\ A** are determined by the equations

B= YA, C = ^YB,. .A = -YB\
V*

then will

(A, B....&, A\x, yY

be a covariant.

In particular, a function A of the degree 6 and of the weight \mO, satisfying the

condition XA =
0, will (also satisfy the equation YA = and will) be an invariant.

32. I take now for A the most general function of the coefficients, of the degree 6

and of the weight \ (mQ yu,) ;
then XA is a function of the degree and of the weight

\(mQ //) 1, and the arbitrary coefficients in the function A are to be determined

so that XA = 0. The number of arbitrary coefficients is equal to the number of

terms in A, and the number of the equations to be satisfied is equal to the number of

terms in XA
;

hence the number of the arbitrary coefficients which remains indeter

minate is equal to the number of terms in A less the number of terms in XA
;
and

since the covariant is completely determined when the leading coefficient is known,



141] A SECOND MEMOIR UPON QUANTICS. 257

the difference in question is equal to the number of the asyzygetic covariants, i.e. the

number of the asyzygetic covariants of the order p, and the degree 6 is equal to the

number of terms of the degree and weight \(m6 //,),
less the number of terms of

the degree 6 and weight \(mQ fi) 1.

33. I shall now give some instances of the calculation of covariants by the method

just explained. It is very convenient for this purpose to commence by forming the

literal parts by Arbogast s Method of Derivations : we thus form tables such as the

following :

a



258 A SECOND MEMOIR UPON QUANTICS. [141

a3
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i.e. B+3A =0, 3(7+25 = 0; or putting A = 1, we have B = -3, C = 2, and the leading
coefficient is

a2d

- 3abc

+ 2b3
.

The coefficient of a?y is found by operating upon this with (3bda + 2cdb + ddc), this

gives

+ 6
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I have worked out the example in detail as a specimen of the most convenient method

for the actual calculation of more complicated covariants 1
.

35. The number of terms of the degree 6 and of the weight q is obviously

equal to the number of ways in which q can be made up as a sum of 9 terms

with the elements (0, 1, 2, ...w), a number which is equal to the coefficient of aflz
9 in

the development of

1

and the number of the asyzygetic covariants of any particular degree for the quantic

(*$, y}
m can therefore be determined by means of this development. In the case of

a cubic, for example, the function to be developed is

which is equal to

1 + z (1 + as + x2 + a?} + z2

(1 + as + 2x? + 2x3 + 2^ + *2a? + of) + &c.,

where the coefficients are given by the following table
;
on account of the symmetry,

the series of coefficients for each power of z is continued only to the middle term or

middle of the series.

(0)



141] A SECOND MEMOIR UPON QUANTICS. 261



262 A SECOND MEMOIR UPON QUANTICS. [141

order 14, this is U*H
;
one of the order 12, this is U3

$&amp;gt;

;
one of the order 10, this is

U2H*
;
one of the order 8, this is UH&amp;lt;&

;
two of the order 6 (i. e. the three covariants

H3
,

&amp;lt;I&amp;gt;

2 and Vt/2 are not asyzygetic, but are connected by a single linear equation or

syzygy), and one of the order 2, this is VH. We are thus led to the irreducible

covariants U, H, &amp;lt;&,
V connected by a linear equation or syzygy between H3

,
&amp;lt;I&amp;gt;

2 and

VU2
, and this is in fact the complete system of irreducible covariants; V is therefore

the only invariant.

36. The asyzygetic covariants are of the form UvH^r
,

or else of the form

;
and since U, H, V are of the degrees 1, 2, 4 respectively, and &amp;lt;& is of the

degree 3, the number of asyzygetic covariants of the degree m of the first form is

equal to the coefficient of xm in 1 -4- (1 x) (1 a?) (1 of), and the number of the

asyzygetic covariants of the degree m of the second form is equal to the coefficient

of xm in a? -r- (1 x) (1 of) (1 x4
).

Hence the total number of asyzygetic covariants is

equal to the coefficient of xm in (1 + x3

) -f- (1
-

x) (1
- x2

) (1
- x4

),
or what is the same

thing, in

(1 -at) (1 -O (1
- x3

) (1
-

at)

and conversely, if this expression for the number of the asyzygetic covariants of the

degree m were established independently, it would follow that the irreducible invariants

were four in number, and of the degrees 1, 2, 3, 4 respectively, but connected by
an equation of the degree 6. As regards the invariants, every invariant is of the

form V^, i.e. the number of asyzygetic invariants of the degree m is equal to the

coefficient of xm in -
,
and conversely, from this expression it would follow that

JL
~~ Ou

there was a single irreducible invariant of the degree 4.

37. In the case of a quartic, the function to be developed is:

1

(1 -z)(l- xz) (1
-

a?z) (1
-

a?z) (1
-

x*z)

and the coefficients are given by the table.
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and subtracting from each coefficient the coefficient immediately preceding it, we have

the table :
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40. I represent the number of ways in which q can be made up as a sum of

m terms with the elements 0, 1, 2, ... m, each element being repeatable an indefinite

number of times by the notation

P(O, i, 2, ... my q ,

and I write for shortness

P (0, 1, 2, ...m)gr = P(0, 1, 2 ... m)
e
q
- P (0, 1, 2 ... m)

e
(q
-

1).

Then for a quantic of the order m, the number of asyzygetic covariants of the degree
d and of the order

yu,
is

P (0, 1, 2...m)(m0-/i).

In particular, the number of asyzygetic invariants of the degree 6 is

P (0, 1, 2...?7i

To find the total number of the asyzygetic covariants of the degree 6, suppose
first that m9 is even

; then, giving to
jj,

the successive values 0, 2, 4, ... m6, the

required number is

+ P ($m0 - 1)
- P ($m0 - 2)

+ P(2) -P(l)

i. e. when w# is even, the number of the asyzygetic covariants of the degree 6 is

P(0, 1, 2...m

and similarly, when m0 is odd, the number of the asyzygetic covariants of the degree
d is

P(0, 1, 2, ...m)
e
i(md-l).

But the two formulae may be united into a single formula; for when m0 is odd ra#
is a fraction, and therefore P (%m6) vanishes, and so when md is even |(m# - 1) is a

fraction, and P^(mO - 1) vanishes; we have thus the theorem, that for a quantic of
the order m :

The number of the asyzygetic covariants of the degree is

P(0, 1, 2...ra)m0 + P(0, 1, 2, ... mf I(m0 - 1).

41. The functions P (\mO\ &c. may, by the method explained in my &quot;Researches

on the Partition of Numbers,&quot; [140], be determined as the coefficients of x in certain
functions of x

;
I have calculated the following particular cases :

_
Putting, for shortness,

P (0, 1, 2,... m)H??i# = coefficient a:
6 in (fu,

c. ii. 34
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1
then $2 = , ,

1 asr

then

(1 -a*)(!_) (1-

06 =
^

7 __*

-~x*f (1
-

of) (1
-

? - a:
10 + 5a?12

(1
-

#*) (1
- a;

6

) (1
_

a*) (1
- ^) (1

- x12

)

_ (1 -x)(l +# - tf
3 - #4 + ic

6 + 7 + x9 + a9 + a10 - a;
13 + a;

15 + x18
)

(1
- #2

)
2

(1
- ic

3
)
2
(1
- x4) (1

- #5

) (1
- a;

7
)

P(0, 1, 2, ... m)
e
^rnd = coefficient of #e in

1

1+x*

(1
- a;

2

)
2

(1
- ar

4

)

^4= /T ^7T

+ xz + Gtf
4 + 9^ + 12^ + 9^ + 6a;

12 + x&quot; + x
-

X*) (1
-

P (0, 1, 2, ... m)
e
^(mO 1)

= coefficient of x in

a;

^3=(--
. x + 4&amp;gt;x* + Sx5 + IQx7 - Wx9 + 8x1

(1
- a;

2

)
2

(1
- a4

) (1
- a;

6

) (1
-

a?)

Arid from what has preceded, it appears that for a quantic of the order m, the

number of asyzygetic covariants of the degree 6 is for m even, coefficient x6 in tym,

and for m odd, coefficient x in (i/rw + T/rm); and that the number of asyzygetic

invariants of the degree 6 is coefficient xe in fan. Attending first to the invariants:

42. For a quadric, the number of asyzygetic invariants of the degree 6 is

1
coefficient x6 in

1-x*

which leads to the conclusion that there is a single irreducible invariant of the

degree 2.
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43. For a cubic, the number of asyzygetic invariants of the degree 6 is

coefficient x9 in ,

i.e. there is a single irreducible invariant of the degree 4.

44. For a quartic, the number of asyzygetic invariants of the degree 6 is

coefficient a? in -. r

(1
-

a?) (1
-

a?)

i.e. there are two irreducible invariants of the degrees 2 and 3 respectively.

45. For a quintic, the number of asyzygetic invariants of the degree 6 is

coefficient x9 in
1 - x6 + x12

(1
- x4

) (1
-

of) (1
-

The numerator is the irreducible factor of 1 - x36
, i.e. it is equal to (1

- x36
) (1

-
a*)

4- (1
- x18

) (1
- #12

) ;
and substituting this value, the number becomes

1 &quot;(

coefficient xe in
~

(1
- &) (1

-
a*) (1

-O (1
-

aj)

i.e. there are in all four irreducible invariants, which are of the degrees 4, 8, 12 and
18 respectively; but these are connected by an equation of the degree 36, i.e. the

square of the invariant of the degree 18 is a rational and integral function of the
other three invariants; a result, the discovery of which is due to M. Hermite.

46.. For a sextic, the number of asyzygetic invariants of the degree is

coefficient * in
(1
~

*&amp;gt; &amp;lt;*
+ * ~ * &quot;** &quot;*&quot; + a?? +

*&quot;&amp;gt;

the second factor of the numerator is the irreducible factor 1 - x30
,

i. e. it is equal
to (l-^Xl-^Xl-^Xl-^)-^-^)^-^)^.^ (!_,,). and substituting
value, the number becomes

coefficient x30 in
1-

(1
- x) (1

-
at*) (1

-
a*) (1

_

i.e. there are in all five irreducible invariants, which are of the degrees 2, 4, 6, 10
and 15 respectively; but these are connected by an equation of the degree 30, i.e.

the square of the invariant of the degree 15 is a rational and integral function of
the other four invariants.

47. For a scptimic, the number of asyzygetic invariants of the degree is

coefficient x in
&quot; ~*+ *+ ^ + 6*16 + 2^8 +^ - a? + 2^ - a* + a*

(1
-

ar) (1
- x) (1 -Xs

) (I- a-) (l
_

3.1*)-

342
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the numerator is equal to

(1
-

of) (1
- a8

)&quot;

2

(1
- xw) (1

- a12

)-
5

(1
- a14

)&quot;

4
. . .

,

where the series of factors does not terminate
;
hence [incorrect, see p. 253] the number

of irreducible invariants is infinite; substituting the preceding value, the number of

asyzygetic invariants of the degree 6 is

coefficient x9 in (1
- x4

)
1

(1
- x8

)~
3

(1
- xl2

)~ (1
- a14

)&quot;

4
. . .

The first four indices give the number of irreducible invariants of the corresponding

degrees, i.e. there are 1, 3, 6 and 4 irreducible invariants of the degrees 4, 8, 12 and

14 respectively, but there is no reason to believe that the same thing holds with

respect to the indices of the subsequent terms. To verify this it is to be remarked,

that there are 1, 4, 10 and 4 asyzygetic invariants of the degrees in question respect

ively; there is therefore one irreducible invariant of the degree 4; calling this X 4 ,

there is only one composite invariant of the degree 8, viz. X?\ there are therefore

three irreducible invariants of this degree, say X8 ,
X8 ,

X8 &quot;. The composite invariants

of the degree 12 are four in number, viz. X4
S

,
XiX8 ,

XtX8 ,
X4X8 &quot;,

and these cannot be

connected by any syzygy, for if they were so, X?, Xs ,
X8 ,

X8

&quot;

would be connected by a

syzygy, or there would be less than 3 irreducible invariants of the degree 8. Hence

there are precisely 6 irreducible invariants of the degree 12. And since the irreducible

invariants of the degrees 4, 8 and 12 do not give rise to any composite invariant of

the degree 14, there are precisely 4 irreducible invariants of the degree 14.

48. For an octavic, the number of the asyzygetic invariants of the degree 6 is

_ .
e

. (1
-

x) (1 +x- a? - & + of + x7 + of + a* + xw - x12 - x13 + xlr&amp;gt; + x16

)

(1
_ ^)

2

(i
_^ (i

_ ^) (1 -*)(!- a*)

arid the second factor of the numerator is

(1
-
x)-

1

(1
- x2

) (1
- x3

)-
1

(1
- a;

6

)-
1

(1
-

O&quot;

1

(1
- x9

)-
1

(1
- xw)~

l

(1
- x16

) (1
-

x&quot;) (1
- x18

). . .
,

where the series of factors does not terminate, hence [incorrect] the number of irreducible

invariants is infinite. Substituting the preceding value, the number of the asyzygetic
invariants of the degree 6 is

eff^in(l-*^-(l-4^-(l-^)-Hl-^-i(l-4^(l-4^

There is certainly one, and only one irreducible invariant for each of the degrees

2, 3, 4, 5 and 6 respectively; but the formula does not show the number of the irre

ducible invariants of the degrees 7, &c.
;

in fact, representing the irreducible inva

riants of the degrees 2, 3, 4, 5 and 6 by X2 ,
X3 ,

X4 ,
X5 ,

X6 ,
these give rise to 3 com

posite invariants of the degree 7, viz. X2X2X3 ,
X2X5 ,

XSX, which may or may not be

connected by a syzygy; if they are not connected by a syzygy, there will be a single

irreducible invariant of the degree 7
;

but if they are connected by a syzygy, then-

will be two irreducible invariants of the degree 7
;

it is useless at present to pursue
the discussion further.



141] A SECOND MEMOIR UPON QUANTICS. 269

Considering next the covariants,

49. For a quadric, the number of asyzygetic covariants of the degree 6 is

coefficient xe in .^ . .- -r
,

(1 x) (1 a?)

i. e. there are two irreducible covariants of the degrees 1 and 2 respectively ;
these

are of course the quadric itself and the invariant.

50. For a cubic, the number of the asyzygetic covariants of the degree 6 is

coefficient^ in ^gy^.
The first factor of the numerator is the irreducible factor of

l-^, = (l-O-(l-#),

and the second factor of the numerator is the irreducible factor of

1 _^ =
(1
-

of) + (1
_

a?) ;

substituting these values, the number is

1 -x5

coefficient x in
(1
-

x) (I
-

x?) (1
-

a?) (1

i.e. there are 4 irreducible covariants of the degrees 1, 2, 3, 4 respectively; but these

are connected by an equation of the degree 6
;
the covariant of the degree 1 is the

cubic itself U, the other covariants are the covariants already spoken of and repre
sented by the letters H, &amp;lt;3&amp;gt; and V respectively (H is of the degree 2 and the order 3,

&amp;lt; of the degree 3 and the order 3, and V is of the degree 4 and the order 0,

i.e. it is an invariant).

51. For a quartic, the number of the asyzygetic covariants of the degree 6 is

1 T* I . n^
coefficient x in T -: r

,

(1 x)
2

(1 x2

) (1 x3

)

the numerator of which is the irreducible factor of 1 x6
,

i.e. it is equal to

(1 x6

) (1 x) H- (1 a?) (1 x3
). Making this substitution, the number is

coefficient x8 in
(I
-

x) (I
- x2

? (1
-

x*)
2

i.e. there are five irreducible covariants, one of the degree 1, two of the degree 2,

and two of the degree 3, but these are connected by an equation of the degree 6.

The irreducible covariant of the degree 1 is of course the quartic itself U, the other

irreducible covariants are those already spoken of and represented by /, H, J, 4&amp;gt;

respectively (/ is of the degree 2 and the order 0, and J is of the degree 3 and

the order 0, i.e. / and J are invariants, H is of the degree 2 and the order 4, &amp;lt;I&amp;gt;

is of the degree 3 and the order 6).
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52. For a quintic, the number of irreducible covariants of the degree 6 is

e
. I + as + x* + ko? +W + &C8 + 9#6 + 10a?r + 12a8 + 10^g9+9a;

10

ooeft afm-
(1
- x^ (1

-O (1
-

a?) (1
-

the numerator of which is

(1 + a-) (i
_ a- + 2*2 + a* + 2a?* + S*6 + + 5a7 + of + 3^ + 2

the first factor is (1 #)~
2

(1 #2

)
2

,
the second factor is

which does not terminate
;

hence [incorrect] the number of irreducible covariants is

infinite. Substituting the preceding values, the expression for the number of the

asyzygetic covariants of the degree is

coeff^in (1 -&amp;gt;r)-i (l-o;V(l -^)~3
(1 ~^)~^

which agrees with a previous result: the numbers of irreducible covariants for the

degrees 1, 2, 3, 4 are 1, 2, 3 and 3 respectively, and for the degree 5, the number

of irreducible covariants is three, but there is one syzygy between the composite

covariants of the degree in question ;
the difference 3 1 = 2 is the index taken with

its sign reversed of the factor (1 af)~
z

.

53. I consider a system of the asyzygetic covariants of any particular degree and

order of a given quantic, the system may of course be replaced by a system the terms

of which are any linear functions of those of the original system, and it is necessary

to inquire what covariants ought to be selected as most proper to represent the

system of asyzygetic covariants; the following considerations seem to me to furnish

a convenient rule of selection. Let the literal parts of the terms which enter into

the coefficients of the highest power of x or leading coefficients be represented by

Ma , Mp, My ,... these quantities being arranged in the natural or alphabetical order;

the first in order of these quantities M, which enters into the leading coefficient of a

particular covariant, may for shortness be called the leading term of such covariant,

and a covariant the leading term of which is posterior in order to the leading term

of another covariant, may be said to have a lower leading term.

It is clear, that by properly determining the multipliers of the linear functions we

may form a covariant the leading term of which is lower than the leading term of

any other covariant (the definition implies that there is but one such covariant); call

this . We may in like manner form a covariant such that its leading term is lower

than the leading term of every other covariant except j ;
or rather we may form a

system of such covariants, since if &amp;lt; be a covariant having the property in question,

&amp;lt;$&amp;gt;,
+ &! will have the same property, but k may be determined so that the covariant

shall not contain the leading term of ,, i.e. we may form a covariant 2 such that

its leading term is lower than the leading term of every other covariant excepting

1} and that the leading term of j does not enter into 2 ;
and there is but one such

covariant, @ a . Again, we may form a covariant 3 such that its leading term is lower

than the leading term of every other covariant excepting j
and 2 ,

and that the
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leading terms of S 1 and 2 do not either of them enter into 3 ;
and there is but

one such covariant, 3 . And so on, until we arrive at a covariant the leading term

of which is higher than the leading terms of the other covariants, and which does

not contain the leading terms of the other covariants. We have thus a series of

covariants 1} ,, s&amp;gt;

&c. containing the proper number of terms, and which covariants

may be taken to represent the asyzygetic covariants of the degree and order in question.

In order to render the covariants definite as well numerically as in regard to

sign, we may suppose that the covariant is in its least terms (i.e. we may reject

numerical factors common to all the terms), and we may make the leading term

positive. The leading term with the proper numerical coefficient (if different from

unity) and with the proper power of x (or the order of the function) annexed, will,

when the covariants of a quantic are tabulated, be sufficient to indicate, without any

ambiguity whatever, the particular covariant referred to. I subjoin a table of the

covariants of a quadric, a cubic and a quartic, and of the covariants of the degrees

1, 2, 3, 4 and 5 respectively of a quintic. and also two other invariants of a quintic.

[Except for the quantic itself, the algebraical sum of the numerical coefficients

in any column is =0, viz. the sum of the coefficients with the sign + is equal to

that of the coefficients with the sign ,
and I have as a numerical verification

inserted at the foot of each column this sum with the sign +].

Covariant Tables (Nos. 1 to 26).

No. 1. No. 2.

a+ 1
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then identically,
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No. 8.

No. 10.

ace + 1

ad2 -I
Ve - 1

6ca&quot; + 2

3

No. 7.

a+ 1
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[The Tables Nos. 13 to 24 which follow, and also Nos. 25 and 26 which are given
in 143 relate to the binary quintic. I have inserted in the headings the capital letters

A, B, . . . L and also Q and Q by which I refer to these covariants of the quintic. A is
the quintic itself, C is the Hessian, G is the quartinvariant, J a linear covariant : Q is
the simplest octinvariant, and Q is the discriminant. As noticed in the original memoir
we have AI + BF-CE = 0; and Q = G2

-128Q, only the coefficient 128 was by mistake
given as 1152.]

A. No. 13.

(
a + I
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G. No. 19.

A SECOND MEMOIR UPON QUANTICS.

H. No. 20.

abef- 10

acdlf+ 4

ace2 + 16

ad2
e - 12

b*df+ 16

6V + 9

6c
2/ - 12

bcde - 76

bd3 + 48

c
s
e 4 48

c
2
cr- - 32

a2

a/ + 1
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JL No. 23.

a27/ 2
...
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142.

NUMERICAL TABLES SUPPLEMENTARY TO SECOND MEMOIR
ON QUANTICS.

[Now first published (1889).]

IN the present paper I arrange in a more compendious form and continue to

a much greater extent the tables (first of each pair) given Nos. 35 39 of my
Second Memoir on Qualities, 141, pp. 260264, which relate to the cubic, the quartic

and the quintic functions; and I give the like tables for the sextic, the septimic and

the octavic functions respectively. The .cubic table exhibits the coefficients of the several

xz terms of the function 1 -~
(1
- z . 1 - xz . 1 - x2z . 1 - a?z), or, what is the same thing,

it gives the number of partitions of a given number into a given number of parts,

the parts being 0, 1, 2, 3, (repetitions admissible) : or again, regarding the letters

a, b, c, d, as having the weights 0, 1, 2, 3 respectively, it shows the number of literal

terms of a given degree and given weight. And similarly for the quartic, quintic, sextic,

septimic and octavic tables respectively, the parts of course being 0, 1, ... up to 4, 5,

G, 7 or 8, and the letters being a, b, ... up to e, f, g, h or i. The extent of the

tables is as follows :

cubic table extends to deg-weight 18 27

quartic
18 36

quintic
18 45

sextic 1545
septimic ,,

12 42

octavic 10 40

viz. for the quintic, the sextic and the octavic functions these are the deg-weights

of the highest invariants respectively. I designate the Tables as the ad-, ae-, of-, ag-,

ah- and cw-tables respectively.

It is to be noticed that in the several tables the lower part of each column is

for shortness omitted
;

the column has to be completed by taking into it the series
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of bottom terms of each of the preceding columns : thus in the of- or quintic table

the complete column for degree 3 would be

D 3

W 8-7

-0
-1
_ 2

-3
-4

-5 2

-6 1

-7 1

where the concluding terms 2, 1, 1 are the bottom terms of the three preceding
columns respectively. And the meaning is that for degree 3, and weight 8, or 7, the

number of terms is = 6
;

for weight 7 1, =6, the number of terms is =G; and

similarly for weights 5, 4, 3, 2, 1, the numbers are 5, 4, 3, 2, 1, 1
;
the numbers are

those of the terms

W. 01234 5678
o OT O &amp;gt; 7

aj aro a c a?d

ab2 abc
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ae-TABLE.

1) 012345 6
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a^-TABLE.

I) 1 2 3 4 5



280 NUMERICAL TABLES SUPPLEMENTARY TO SECOND MEMOIR ON QUANTICS. [142

aA-TABLE.

D 1 2 3 9 10 11 12

4-3 7 11-10 14 18-17 21
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STABLE.

W

012345



282 [143

143.

TABLES OF THE COVARIANTS M TO W OF THE BINARY QUIN-
TIC : FROM THE SECOND, THIRD, FIFTH, EIGHTH, NINTH
AND TENTH MEMOIRS ON QUANTICS.

[Arranged in the present form, 1889.]

THE binary quintic has in all (including the quintic itself and the invariants)

23 covariants, which I have represented by the capital letters, A, B, C, . . . W (alternative

forms of two of these are denoted by Q and S
).

The covariants A, . . . L, and also

Q, Q were given in my Second Memoir on Quantics, and except Q and Q are

reproduced in the present reprint thereof, 141
;

in all these I gave not only the

literal terms actually presenting themselves, but also the terms with zero coefficients
;

in the other covariants however, or in most of them, the terms with zero coefficients

were omitted. It is very desirable to have in every case the complete series of literal

terms, and in the covariants as here printed they are accordingly inserted : the number
of terms is in each case known beforehand by the foregoing q/*-table, 142, and any
omission is thus precluded ; by means of this q/-table we have the numbers of terms

as shown in the following list.

I have throughout (as was done in the Ninth and Tenth Memoirs) expressed the

literal terms in a slightly different form from that employed in the Second Memoir:

this is done in order to show at a glance in each column the set of terms which

contain a given power of a, and in each such set the terms which contain a given

power of b.

The numerical verifications are also given not only for the entire column but for

each set of terms containing the same power of a; viz. in most cases, but not always,
the positive and negative coefficients of a set have equal sums, which are shown by
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a number with the sign + prefixed. The verification is in some cases given in regard

to the subsets involving the same powers of a and b, here also the sums of the

positive and negative coefficients are not in every case equal. The cases of inequality

will be referred to at the end of this paper.

The whole series of covariants is as follows :

lent.

2
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M. No. 83.

a3
bef*
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N. No. 84.

a? Vdf*
- 1
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0. No. 90.

[143

^3 Tfipfd
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P. No. 91.

4 1^0 -/*3u/or ...
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Q. No. 25. Q . No. 26. Q. No. 25. Q . No. 26.

[143

a4
ft/ 4
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R. No. 92.

a4

6e/
3
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Coef. x3

S. No. 93 bis
;
S . No. 93. (*J^, y)*.

Coef. x3 S S Coef.
.r&quot;i/

S S Coef.

a4

b^/
4
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Coef. xy
2 S

S. No. 93 Us\ S . No. 93.

Coef. xy
2 S S Coef. y* S S Coef.

a4

bd/
4
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T. No. 94.

x coefficient. x coefficient.

a5

bcf
5
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T. No. 94.

y coefficient. y coefficient.

a5

bdf
s
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U. No. 29.

a6 6/ G
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V. No. 95. (*5#, y}\

x coefficient.

a6
bcf

6
... a3

b*df
5 2
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V. No. 95 (continued).

x coefficient.

a1 6W/ + 1840
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V. No. 95 (continued).

y coefficient.

a6

6rf/
6



298 TABLES OF THE COVARIANTS M TO W OF THE BINARY QUINTIC. [143

V. No. 95 (concluded).

y coefficient.

a1 6Vd2/ 3



143] TABLES OF THE COVARIANTS M TO W OF THE BINARY QUINTIC. 299

W, 29 A.

a? bf9
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W, 29 A (continued).

a4
b
3d3

e
7f - 2080
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W, 29 A (continued).

a? &Vrf9
e
2/ - 8820
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W, 29 A (continued).

a- feVoP 1620
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W, 29 A (concluded).

a 6V
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For the lower covariants the numerical verifications are given for the entire

coefficient, but for the higher ones where the number of terms in a coefficient is con

siderable they are given separately for the different powers of a
;

and it is also

interesting to consider them for the separate combinations of a and b. I recall that the

positive and negative numerical coefficients are summed separately, so that (+ a number)
means that the sum of the positive numerical coefficients is equal to the sum of the

negative numerical coefficients and thus that the whole sum is = 0.

It is to be observed that for the lower covariants the sums of the numerical

coefficients do not vanish for the separate powers of a: thus in the invariant 0, 141,

the sums of the numerical coefficients for the terms in a2
,
a1

,
a are =

1, 2, 1

respectively.

As regards the invariants Q and Q ;
for the first of these, Q, the sums of the

numerical coefficients for the terms in a4
,
a3

,
a2

,
a1

, a are each of them = 0, but this

is not the case as regards Q ;
in fact Q is = G 2 + a multiple of Q ;

hence the sums
for Q are the same as those for G2

,
viz. they are = 1, 4, +6, 4, +1 respectively.

Like results present themselves in other cases, and they might probably be accounted

for in a similar manner
;
we have a series of sums not each 0, but which are equal

to a set of binomial coefficients taken with the signs + and alternately and thus

the sum of these sums is =0.

For R, S and S
,

I have given the sums for the different powers of a
;

and
in regard to S I give here the following paragraphs from the Tenth Memoir on

Quantics :

I remark that I calculated the first two coefficients S , S1} and deduced the other

two, $2 from Si, and S3 from S , by reversing the order of the letters (or which is

the same thing, interchanging a and /, b and e, c and d) and reversing also the signs
of the numerical coefficients. This process for S2 , S3 is to a very great extent a veri

fication of the values of S
, ^. For, as presently mentioned, the terms of $ form

subdivisions such that in each subdivision the sum of the numerical coefficients is

=
: in passing by the reversal process to the value of S3 ,

the terms are distributed

into an entirely new set of subdivisions, and then in each of these subdivisions the

sum of the numerical coefficients is found to be =
;
and the like as regards Si and S3 .

If in the expressions for S , S1} S2 ,
Ss we first write d = e=f=l, thus in effect

combining the numerical coefficients for the terms which contain the same powers in

a, b, c, we find

S = a3

(- 2c3 + 6c2 - 6c + 2)

+ a2

(6
2

(6c
2 - 12c - 6) + I (- 15c

3 + 33c2 - 21c + 3)

+ 6 (42c
4 - 147c3 + 195c2 - 117c + 27)}

+ a (6
4

. + b 3

(30c
2 - 36c + 6) + 6 2

(- 117c3 + 249c2 - 183c + 51)

+ 6 (9c
5 + 148c4 - 378c3 + 330c2 -

99c) + b (- 63c6 + 165c5 - 147c4 + 45c3

)}
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+ a. {b
6

. 2 + b5

(- 15c + 3) + 64

(75c
2 - 69c + 24) + 63

(- 9c4 - 167c3 + 225c2 - 87c - 2)

+ 62

(72c
5 + 48c4 - 186c3 + 96c2

) + b (- 126c6 + 201c5 - 87C4
)

+ 6(27c
8 -45c7 + 20c6

)}

which for c = 1 becomes

= 266 - 1265 + 3064 - 4063 + 3062 -126 + 2, that is 2 (6
-

I)
6
,

and for 6 = 1, becomes =0.

83
= as

(Oc
2 + Oc + 0)

+ a2

{ (Oc + 0) + b (3c
3 - 9c2 + 9c - 3) + 6 (24c

4 - 99C3 + 153c2 - 105c -1- 27)}

+ a |6
4

. + b3

(- 6c2 + 1 2c - 6) + b 2

(- 24c3 + 90c2 - 108c + 42)

+ b (33c
4 - 90c3 + 54c2 + 30c - 27) + 6 (- 27c6 + 78c5 - 66c4 + 6c3 + 9c2

)}

+ a {b
5

(3c
-

3) + 64
(- 15c + 15) + 63

(6c
3 - 12c2 + 36c - 30)

+ b2

(9c
5 - 42c4 + 84c3 - 108c2 + 57c) + b (9c

6 - 54c5 + 96c4 - olc3
)

+ 6 (9c
7 - 9c6

)}

which for c = 1 becomes = 0.

As; = a3

(Oc + o)

+ a2

{6
2

. + b (Oc
2 + Oc + 0) + 6 (18c

4 - 72c3 + 108c2 - 72c + 18)}

+ a |6
3

(Oc + 0) + 62
(- 33c3 + 99c2 - 99c + 33) + b (57c

4 - 162c3 + 144c2 - 30c - 9)

+ 6 (- 60c5 + 207c4 - 261c3 + 1 41c2 -
27c)}

+ a {b
5

. + 64

(15c
2 - 30c 4- 15) + bs

(- 54c3 + 102c2 - 42c - 6)

+ 62

(123c
4 - 297c3 + 243c2 - 87c + 18) + b (- 27c6 + 102c4 - 96c3 + 21c2

)

+ 6 (27c
7 - 60c6 + 51c 5 - 12c4

)}

which for c = 1 becomes = 0.

St
= a3

.t

+ a2

{b (Oc + 0) + 6 (Oc
3 + Oc2 + Oc + 0)

+ a [b
s

. + 62

(Oc
2 + Oc + 0) + b (- 9c4 + 36c3 - 54c2 + 36c - 9)

+ 6 (36c
5 - 171c4 + 324c3 - 306c2 + 144c - 27)}

+ a (6
4

(Oc + 0) + 63

(7c
3 - 21c2 + 21c - 7) + 62

(- 39c4 + 135c3 - 171c2 + 93c - 18)

+ b (G6c
5 - 243c4 + 333c3 - 201c2 + 45c)

+ 6 (- 27c7 + lOlc6 - 141c5
4- 87c4 - 20c3

)}

which for c = 1 becomes = 0.

It follows that for c = d = e=f=l, the value of the covariant 8 is = 2 (b
-

l)
6
.-r,

which might be easily verified.

c. ii. 39
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For T, U, V and W, I look at the sums for the different combinations of a and b.

Thus for T we have

x coefficient. y coefficient.

rt
4 6 26 a4 6 12

26 12
3 62 14 3 62 2

b1 141 b1 112

6 281 b 281

436 395
2 64

1 a2
6s 42

63 106 62 546
6J 186 6 1 696
b1 1173 6 366

6 2272
3738 1650

tfb5 16 al b5 5

64 359 64 179
63 1411 6s 821

62 3103 6
2 2097

b
1 3030 6

1 2147
6 1197 6 1262

9116 6511
ab7 2

b6 92 - 78 ab6 28
65 307 - 349 b5 342
64 1073 - 1003 64 1790
b3 2040 2110 63 3496
62 1930 - 1880 6

2 3445
b1 1207 - 1221 b1 2064
6 231 239 6 463

6880 11628

20196 20196

Observe here that in the ^-coefficient for the terms in a the successive sum;

are -2, +14, -42, +70, -70, +42, -14 + 2, which are the coefficients of -2(0 -I)7
.
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For U we have

a4 b 36
36

b2 24
b1 198
6 242

464
2

63 208
ft
2 286

b 1 866
6 1246

2608
65 64
6 4 328
b3 1258
62 2586
b 1 2186
6 856

7278
67 4

66 70
b5 448
64 1488
b3 2140
6
2 1678

61 884
6 166

6878

17264

392
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For V we have

a5 6

x coefficient.

36

a4 62
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Finally for W we have

309

2972759
a7 b
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144.

A THIRD MEMOIR UPON QUANTICS.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVI. for the

year 1856, pp. 627647. Received March 13, Read April 10, 1856.]

MY object in the present memoir is chiefly to collect together and put upon
record various results useful in the theories of the particular quantics to which they
relate. The tables at the commencement relate to binary quantics, and are a direct

sequel to the tables in my Second Memoir upon Qualities, vol. CXLVI. (1856), [141].

The definitions and explanations in the next part of the present memoir are given
here for the sake of convenience, the further development of the subjects to which

they relate being reserved for another occasion. The remainder of the memoir consists

of tables and explanations relating to ternary quadrics and cubics.

Covariant and other Tables, Nos. 27 to 50 (Nos. 1 to 50 binary quantics)
1
.

Nos. 27 to 29 are a continuation of the tables relating to the quintic

(a, b, c, d, e, /$, y}
5
.

No. 27 gives the values of the different determinants of the matrix

( a, 46, 6c, 4&amp;lt;d,
e )

a, 46, 6c, 4&amp;gt;d,
e

b, 4c, Qd, 4,e, f

b, 4c, Qd, 4,e, f
determinants which are represented by 1234, 1235, &c., where the numbers refer to

1 The Tables 49 and 50 were inserted October 6, 1856. A. C.
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the different columns of the matrix. No. 28 gives the values of certain linear

functions of these determinants, viz.

L= 1256+ 2345-2.1346,

= 3.1256- 1346,

SM=- 1345 + 2.1246,

8M = - 2346 + 2 . 1356,

8N=- 1245+3.1236,

8N =- 2356+3.1456,

SOP = L - 3L = 5. 1346 - 3 . 2345,

16P = - 5L - L=-ie. 1256 - 3 . 1346 - 2356.

At the end of the two tables there are given certain relations which exist between

the terms of Tables 14, 16, 25, 26, 27 and 28.

No. 27.

1234.
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No. 28.

[144

N.
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We have also the following relations between L, L
, &c. and a, b, c, d, e, f, viz.

aP -bM + cN = 0,

aM + bP -2cM+3dN = 0,

aN + 2bM -cL . + SeN =
0,

SbN .
- dL + 2eM+fN=0,

3cN -2dM + eP +fM=0,

dN - eM +fP = 0.

The quartinvariant No. 19 [G] is equal to

-AC + B2
,

i.e. it is in fact equal to 4 into the discriminant of the quintic No. 14, [A].

The octinvariant No. 25 [Q] is expressible in terms of the coefficients of Nos. 14
and 16, viz. A, B, C, as before, and a, /3, 7, 8 the coefficients of No. 16, [D], i.e.

a = 3 (ace
- ad2 - b2

e + 2bcd - c3),

/3
=

acf
- ade - b~f + bd2 + bee - c

2
d,

7 = adf-ae
2 -

bcf + bde + c
2
e -cd2

,

8 = 3 (bdf- be2 + 2cde - c
2/ - d3

),

then No. 25 is equal to

A, B, C

, ft, 7

P, % S

The value of the discriminant No. 26, [Q ],
is

(No. 19)
2 -128 No. 25. [that is Q = G 2

-128Q.]

We have also an expression for the discriminant in terms of L, L
, &c., viz. three

times the discriminant No. 26 is equal to

[or say 3Q =] LL + WMM -

a remarkable formula, the discovery of which is due to Mr Salmon.

It may be noticed, that in the particular case in which the quintic has two square
factors, if we write

(a, b, c, d, e, /&, y)
5 = 5 {(p, q, r^x, y)

2

}

2
. (\, ^x

, y\
c. ii. 40
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then

a = 5\p
2

,
b =

4&amp;gt;pq\

/=5r&amp;gt;, e=r*\ +

and these values give

P = K (Qq*
-

pr),

M = K . lOpq,

N = K.op\

where the value of K is

8 (pp?
-

2q/ji\ + rX2

)
2

(pr
-

q
2

)*.

[144

P* = K (Wq*
-
Upr),

M = K.10qr,

N = K.5r*,

The table No. 29 is the invariant of the twelfth degree of the quintic, given in

its simplest form, i.e. in a form not containing any power higher than the fourth of

the leading coefficient a : this invariant was first calculated by M. Faa de Bruno.

No. 29. [See U. No. 29, p. 294.]

The tables Nos. 30 to 35 relate to a sextic. No. 30 is the sextic itself;

No. 31 the quadrinvariant ;
Nos. 32 and 33 the quadricovariants (the latter of them

the Hessian) ;
No. 34 is the quartinvariant or catalecticant

;
and No. 35 is the

sextinvariant in its best form, i.e. a form not containing any power higher than the

second of the leading coefficient a.

No. 30.

( a + 1 b
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No. 34.

A THIRD MEMOIR UPON QUANTICS.

No. 35.

315

aceg + 1

ac/
2 - 1

ad2

g 1

adef + 2

oe3 1

Peg -1
62/2 +1

+ 2

-2
W2/ - 2

6de2 +2
CV i

c
2
d/ + 2

cV +1
-3
+ 1

12

a?dY + 1

a?defg 6

V/2 - 3

abcdg
2 6

abcefg +18
6c/

3 -12

oftdeV-18
&e3/ + 6

+ 4

ac2
e/

2 + 30

acd2
eg + 54

63

e/gr

-42
+ 12

-20
+ 24
- 8

+ 4

-12

6
2
ce

2
^ +30

b
2
cef

2 24

Wd?eg -12
b
2d2f 2 24

ffde
2/ + 60

6
2
e
4 - 27

+ 6

-42

bc2
df

2 + 60

6c2e2y 30

fcccfy +24
6ccZ

2

e/
- 84

bcde3 +66
6^4/ + 24

bd?e2 24

c% + 12

c
4/ 2 - 27

+ 66

c
2d3f -24

c^fip j9

cd*e + 36

565

The sextinvariant may be thus represented by means of a determinant of the

sixth order and of the quadrinvariant and quartinvariant.

5 x No. 35 = a, 2b, 3c, 4cZ, e

b, 2c, 3d, 4e, /

c, 2d, 3e, 4/, 5r

a, 46, 3c, 2d, e

6, 4c, 3d, 2e, /

c, 4d, 3e, 2/, 5r

+ 4 (ag
- Qbf+ I5ce - 10d2

) a, 6, c, d

b, c, d, e

c, d, e, f

d, e, f, g

The tables Nos. 36 and 37 relate to a septimic. No. 36 is the septimic itself;

No. 37 the quartinvariant.

No. 36.

a + 1
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No. 37.

[144

2A2
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No. 44.

317

aei + 1

afh - 4

ag
2

4- 3

bdi - 4

beh + 12

tfff
- 8

c
2
i 4- 3

cdh - 8

ceg
- 22

cf
2 + 24

cfy + 24

def
- 36

e
3

4- 15

acgi 1
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is equal to

A THIRD MEMOIR UPON QUANTICS.

18X3/ - 2592XB
.

[144

Nos. 46 to 48 relate to the nonic. No. 46 is the nonic itself; Nos. 47 and 48

are the two quartinvariants, each of them in its best form, viz. No. 48 does not

contain a2
,
and No. 47 does not contain aci2

,
the leading term of No. 48. The

nonic is the lowest quantic with two quartinvariants.

No. 46.

a + 1
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No. 49 A.

60 189 450 810 1140 1270
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the quantic or quantics to which it belongs, and with indeterminate coefficients

(, rj,... ).
The invariants of a quantic or quantics, and of an adjoint linear form, may

be considered as quantics having (, 77,...) for facients, and of which the coefficients

are of course functions of the coefficients of the given quantic or quantics. An invariant

of the class in question is termed a contravariant of the quantic or quantics. The
idea of a contravariant is due to Mr Sylvester.

In the theory of binary quantics, it is hardly necessary to consider the contra-

variants
;

for any contravariant is at once turned into an invariant by writing (y, x}
for (f 77).

57. If we imagine, as before, a system of quantics of the form

(*#, y, ...) &quot;,

where the number of quantics is equal to the number of the facients in each quantic,
the function of the coefficients, which, equated to zero, expresses the result of the

elimination of the facients from the equations obtained by putting each of the quantics

equal to zero, is said to be the Resultant of the system of quantics. The resultant

is an invariant of the system of quantics.

And in the particular case in which the quantics are the differential coefficients,

or derived functions of a single quantic with respect to the several facients, the

resultant in question is termed the Discriminant of the single quantic; the discriminant

is of course an invariant of the single quantic.

58. Imagine two quantics, and form the equations which express that the differen

tial coefficients, or derived functions of the one quantic with respect to the several

facients, are proportional to those of the other quantic. Join to these the equations
obtained by equating each of the quantics to zero; we have a system of equations,
one of which is contained in the others, and from which therefore the facients may
be eliminated. The function which, equated to zero, expresses the result of the

elimination is an invariant which (from its geometrical signification) might be termed
the Tactinvariant of the two quantics, but I do not at present propose to consider

this invariant except in the particular case where the system consists of a given
quantic and of an adjoint linear form. In this case the tactinvariant is a contravariant

of the given quantic, viz. the contravariant termed the Reciprocant.

59. Consider now a quantic

(*$, y,...)
m

,

and let the facients x, y,... be replaced by \x+pX, Xy + ^F, ... the resulting function

may, it is clear, be considered as a quantic with the facients
(A,, yu.) and of the form
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The coefficients of this quantic are termed Emanants, viz., excluding the first coefficient,

which is the quantic itself (but which might be termed the 0-th emanant), the

other coefficients are the first, second, and last or ultimate emanants. The ultimate

emanant is, it is clear, nothing else than the quantic itself, with (X, Y, ...) instead of

(x, y, ...) for facients : the penultimate emanant is, in like manner, obtained from the

first emanant by interchanging (x, y,-..) with (X, Y, ...), and similarly for the other

emanants. The facients (X, Y, ...) may be termed the facients of emanation, or simply
the new facients. The theory of emanation might be presented in a more general
form by employing two or more sets of emanating facients; we might, for example,
write \x+fjuX + vX , \y + /j,Y+ vY ,

... for x, y,-.., but it is not necessary to dwell

upon this at present.

The invariants, in respect to the new facients, of any emanant or emanants of a

quantic (i.e. the invariants of the emanant or emanants, considered as a function or

functions of the new facients), are, it is easy to see, covariants of the original quantic,

and it is in many cases convenient to define a covariant in this manner
;

thus the

Hessian is the discriminant of the second or quadric emanant of the quantic.

60. If we consider a quantic

(a, b,...\x, y,...)
m

,

and an adjoint linear form, the operative quantic

a, 36,..$ 9,..r

(which is, so to speak, a contravariant operator) is termed the Evector. The proper
ties of the evector have been considered in the introductory memoir, and it has been

in effect shown that the evector operating upon an invariant, or more generally upon
a contravariant, gives rise to a contravariant. Any such contravariant, or rather such

contravariant considered as so generated, is termed an Evectant. In the case of a

binary quantic,

(a, 6 ,...$*, y)~
the covariant operator

(da, ^, &!/, ~x)
m

may, if not with perfect accuracy, yet without risk of ambiguity, be termed the Evector,

and a covariant obtained by operating with it upon an invariant or covariant, or

rather such covariant considered as so generated, may in like manner be termed an

Evectant.

61. Imagine two or more quantics of the same order,

(a, b, ...$ar, y)
m

,

(a, &...$*, y)
m

,

we may have covariants such that for the coefficients of each pair of quantics the

covariant is reduced to zero by the operators

c. ii. 41
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Such covariants are called Combinants, and they possess the property of being inva-

riantive, quoad the system, i. e. the covariant remains unaltered to a factor pres, when

each quantic is replaced by a linear function of all the quantics. This extremely

important theory is due to Mr Sylvester.

Proceeding now to the theory of ternary quadrics and cubics,

First for a ternary quadric, we have the following tables:

Covariant and other Tables, Nos. 51 to 56 (a ternary quadric).

No. 51.

The quadric is represented by

(a, b, c, f, g, h$x, y, z}\

which means

ax* + by* + cz- + 2fyz + &quot;2gzx
+ 2hxy.

No. 52.

The first derived functions (omitting the factor 2) are

(a, h, g$x, y, z),

(h, b, f*$ac, y, z),

(g, f, c$a;, y, z}.

No. 53.

The operators which reduce a covariant to zero are

( h, b, 2/]&, fy,
dc)-zdv ,

(2g, f, c$3a ,
dh ,

d
ff)-xdz ,

( a, 2h,

( 9&amp;gt;

2/
( a, h,

(2h, b,

No. 54.

The evector is

(3a. 36 , 3C , 3/, dy ,



144]

The discriminant is

which is equal to
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No. 55.

a, , g

h, b, f

ff&amp;gt; /&amp;gt;

c

abc - a/
2 -

bg*
- chz + 2fgh.

No. 56.

323

The reciprocaut is

a, h, g

, h, b, f

9&amp;gt; f, c

which is equal to

(bc-f\ ca-g\ ab-h*, gh-af, hf-bg, fg -

The discriminant is, it will be noticed, the same function as the Hessian. The reci-

procant is the evectant of the discriminant. The covariants are the quadric itself and
the discriminant

;
the reciprocant is the only contravariant.

Next, for a ternary cubic, we have the following Tables :

Covariant and other Tables, Nos. 57 to 70 (a ternary cubic).

No. 57.

The cubic is U =

(a, b, c, /, g, h, i, j, k, f$x, y, zj,

which means

ax3 + by
s + cz5 + Sfy z + 3gz*x + Shafy + Siyz* + SjzaP + 3fcry + Gl&ye.

No. 58.

The first derived functions (omitting the factor 3) are

(a, k, g, I, j, h^as, y, z)\

(h, b, i, /, I, k\x, y, *),

(j, /, c, i, g, I Jan, y, z}\

412
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The second derived functions (omitting the factor 6) are

(a &amp;gt; h, j $#, y, z),

(k, b, f~$x, y, z\

(9, i
, c Jtx, y, z),

(I, f, i ~$x, y, z),

(h, I
$&amp;gt;, y, z).

No. 59.

The operators which reduce a covariant to zero are

(j, 3/, c, 2i, ff, 2Z$3A ,
3

ft , 3, 3/, 3i,

( a, k, 3g, 21, 2j , h$dj , fy, 3C ,
3t-, 3^,

(Sh, b, i, f, 21, 2k~$da ,
d

k&amp;gt;
dg, 3/ f 3,-,

( ^ 6, 3i, 2/ 2Z, 3,-,
3/; 3C ,

3t-, 3,,

a, ) db ,

The evector is

(3a ,

No. 60.

,, 3C , 3/, dg , dh, di,

No. 61.

,
dk ,

The Hessian is

(a, h,

(h, k,

(j, l
&amp;gt;

which is equal to

y, z), (h, k, l~$a&amp;gt;, y, z), (j, I, g~$x, y, z)

y, z), (k, b, /$, y, z\ (l&amp;gt; f, i~$.
x

&amp;gt;

V&amp;gt;

z}

y, z), (I, f, ijtx, y, z), (g, i, c$x, y, z)

ogk 1
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No. 62.
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The quartinvariant is 8=

abcl 1
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or else
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%dx U, %dy U, dz U
r dx

2 HU, dx dyHU, 8a

r, dydxHU, 8/ HU, 8,

T, d,dxHU, dz dyHU, dz
2 HU

or else, what I believe is more simple, a function
/&quot;,

which is a linear function of

the last-mentioned two functions.

The relations between U, ,?7, ,,U are

U=T. 72 -24S. U.HU,

U=T. U2 -WS. U.HU.

I have not worked out the developed expressions.

No. 65.

The cubicontravariant is PU=

hd -1
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No. 66.

The quintic contravariant is QU =

ab2
c
z + 1
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No. 67.

The reciprocant is FU=

*
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f*f.
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=
(1, 0, 125, 4T%a, fi)

3PU
+ (0, 1, 0, -455, PYQU.

= (0, 605, 3077

, 0,
- 120T5, - 24T2

\ 7 J f &amp;gt;

+ (1, 0, 0, 10T, 24052
,

=

(5, T, 2452

, 4T5, T3 -485S 5, /3)
4

.

T(aU+ Q&HU} =(T, 9653
, 60T5, 20772

,
240T52

,

E(aC7+ 6ySlTf7)
=

[(1, 0,
- 245, - 8T, - 4852

5*, /3)
4

F(aU+6j3HlT)= (1,0, -245, - 8T7

,
-4852

^a, /3)
4

+ (0, 24, 0, 0, -48T%a, /3)
4

(Pf7)
:

+ (0, 0, 24, 0, 965 3a, /3&amp;gt;

+ (0, 0, 0, 8, O^a, /3)
4

.(Qf/)
2

.

We have, in like manner, for the covariants and contravariants of the cubic

6&amp;lt;*PU+/3QU, the following Table:

No. 69.

(-2T, 485s
,

+ (85, T,
- 852

,

- TS%,

(325
2
, 12T5, T* + 3253

,

12T5, ^-

54
,

+3200T53
,

+ 30^5,

+ (- 242^ +4608 53
,

+ 1920T52
,

+ 480T2
5,

+ 30T3 + 1920T53
,

+ 120T252 + 7680 55
,

GT38 + 7682
754

Q U.

a, @YHU.
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S(QaPU+/3QU)= f + IT2 +192 8*, 1

331

+ 18T*S + 384 S\

+ IT3 + 64T 3
,

+ 5T282- 64 8s

j

T(6aPU+j3QU)= (- 8TS + 4608W,

+ 1920T2^2 + 73728 S5
,

+ 3GOTS8 + 38400T&4
,

+ 20T4 + 8960T2^3
,

2 + 7Q80TS5
,

IQT*S +

IT5 -
+ 24576 S7

,

6 a,

8T, - 96&2
,

-
24,TS, -T*-

,
32I7

,-384 S2 ,- 9QT 8
,

+ ( ,
512 N3

,
192TS-

, 24&amp;lt;T~S
,

+
(1344&amp;gt;Sf

2
, 352TS ,

24T2 - 1152/ST3
,

- 288T 2
,

+ ( 48 1
7

, , 288T&amp;gt;Sf
, 24^ + 1536^,

\a,

64 8* $a,

1442^

The tables for the ternary cubic become much more simple if we suppose that

the cubic is expressed in Hesse s canonical form
;

we have then the following
table :

No. 70.

U a? + y* + z3 + Qlxyz.

8 =-l + l\

T - 1 - 20/3 - 8/6
.

R = _
(l + 8/3

)
3

.

HU = I2 (A
3 + y

3 + z3)
-

(1 + 2Z3

) xyz.

= (I + 8l3)
2

(y
3zs + z*a? + tfy

3
)

+ (- 91s

) (x
3 + f + z3

)-

+ (- 21-51*- 2017

) (x
3 + y* + 23

) xyz

4 (1 + 8Z3

)
S

(fz
3

+ (- 1 - 4* - 4Z8

) (x
3 + f + z3

^
100^ + 112Z7

) (a? + y
3 + z*) xyz



332 A THIRD MEMOIR UPON QUANTICS.

f = - 2 (1 + 8Z3

)
2

(y
3z3 + zsx3 + x3

y
3
)

+ (l- 1013

) (x
3 + y

3 + zj

+ (61
- 1801* + 96Z7

) (a? + y
3 + z3

) xyz

+ (6Z
2 - 624Z5 - 192Z 8

) x^z2
.

PU = - I (f
3 + rf + f) + (- 1 +

Q U =
(1
- 1013

) (I
3 + r,

3 + 3

)
- 6l2

(5

= 4 (1 + 8l3

) (r)
3
^
3 + ^p + V)

[144

- 24Z (1 4- 2?3) fVf2
,

to which it is proper to join the following transformed expressions for U, ,?/,

vz.

U.HU

= 4 (1

+ (-121*

- 2 (1 + 8Z3

)
2

)U.HU

+ (61 )U.HU
+ (61* }(HU}\

The last preceding table affords a complete solution of the problem to reduce a

ternary cubic to its canonical form.

[I add to the present Memoir, in the notation hereof (a, b, c, f, g, h, i, j, k, l~$x, y, z)
%

for the ternary cubic, some formulse originally contained in the paper &quot;On Homo

geneous Functions of the third order with three variables,&quot; (1846), but which on account

of the difference of notation were omitted from the reprint, 35, of that paper.

Representing the determinant

ax + hy + jz, hcc + Jcy+ bz, jx + ly + gz, %

hx + ky + bz, kx + by +fz, Ix +fy + iz, TJ

jx +ly + gz, Ix +fy + iz, gx + iy +cz, %
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by (A, B, C, F, G, ff$x, y, z?

the values of A, B, C, F, G, H (equations (10) of 35) are

333

Moreover writing

B c F H

gk
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then the values of a, b, c, f, g, h (equations (13) of 35) are

a b c f g

[144

e

j

4

r

#

C

e

&

iC

%
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Also if the discriminant be written

335

a
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145.

A MEMOIE UPON CAUSTICS.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVII. for the

year 1857, pp. 273312. Received May 1, Read May 8, 1856.]

THE following memoir contains little or nothing that can be considered new in

principle ;
the object of it is to collect together the principal results relating to caustics

in piano, the reflecting or refracting curve being a right line or a circle, and to

discuss, with more care than appears to have been hitherto bestowed upon the subject,

some of the more remarkable cases. The memoir contains in particular researches

relating to the caustic by refraction of a circle for parallel rays, the caustic by
reflexion of a circle for rays proceeding from a point, and the caustic by refraction

of a circle for rays proceeding from a point ;
the result in the last case is not

worked out, but it is shown how the equation in rectangular coordinates is to be

obtained by equating to zero the discriminant of a rational and integral function of

the sixth degree. The memoir treats also of the secondary caustic, or orthogonal

trajectory of the reflected or refracted rays, in the general case of a reflecting or

refracting circle and rays proceeding from a point ;
the curve in question, or rather

a secondary caustic, is, as is well known, the Oval of Descartes or Cartesian : the

equation is discussed by a method which gives rise to some forms of the curve which

appear to have escaped the notice of geometers. By considering the caustic as the

evolute of the secondary caustic, it is shown that the caustic, in the general case of

a reflecting or refracting circle and rays proceeding from a point, is a curve of the

sixth class only. The concluding part of the memoir treats of the curve which, when
the incident rays are parallel, must be taken for the secondary caustic in the place
of the Cartesian, which, for the particular case in question, passes off to infinity. In

the course of the memoir, I reproduce a theorem first given, I believe, by me in the

Philosophical Magazine, viz. that there are six different systems of a radiant point
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and refracting circle which give rise to identically the same caustic, [see post, xxvin],
The memoir is divided into sections, each of which is to a considerable extent in

telligible by itself, and the subject of each section is for the most part explained

by the introductory paragraph or paragraphs.

I.

Consider a ray of light reflected or refracted at a curve, and suppose that
, 77

are the coordinates of a point Q on the incident ray, a, @ the coordinates of the

point G of incidence upon the reflecting or refracting curve, a, b the coordinates of

a point N upon the normal at the point of incidence, x, y the coordinates of a

point q on the reflected or refracted ray.

Write for shortness,

(a
-

a) (f
-

a) + (6
-

) fo
-
0) = D QGN,

then V QGN is equal to twice the area of the triangle QGN, and if
, rj instead of

being the coordinates of a point Q on the incident ray were current coordinates, the

equation V QGN = would be the equation of the line through the points G and N,
i.e. of the normal at the point of incidence

;
and in like manner the equation

C\QGN = Q would be the equation of the line through G perpendicular to the line

through the points G and N, i.e. of the tangent at the point of incidence.

We have

$ (|_)+ (*-
and therefore identically,

Suppose for a moment that
&amp;lt;/&amp;gt;

is the angle of incidence and &amp;lt; the angle of reflexion

or refraction
;

and let /M be the index of refraction (in the case of reflexion p = 1),

then writing

-)= V qGN,

(a-a)(x -a) + (b-/3)(y

and

JG* = (x- of + (y- /3)
2

,

we have

. VQGN . VqGNa V~ l
n&amp;lt;?&amp;gt;

**~
and substituting these values in the equation

sin2

(f) p? sin2

$ = 0,

c. II. 43



338 A MEMOIR UPON CAUSTICS. [145

we obtain

qG VQGX -fpQ

an equation which is rational of the second order in as, y, the coordinates of a point

q on the refracted ray; this equation must therefore contain, as a factor, the equation

of the refracted ray; the other factor gives the equation of a line equally inclined

to, but on the opposite side of the normal
;

this line (which of course has no physical

existence) may be termed the false refracted ray. The caustic is geometrically the

envelope of the pair of rays, and for finding the equation of the caustic it is

obviously convenient to take the equation of the two rays conjointly in the form

under which such equation has just been found, without attempting to break the

equation up into its linear factors.

It is however interesting to see how the resolution of the equation may be

effected
;

for this purpose multiply the equation by NG2
,
then reducing by means of

a previous formula, the equation becomes

which is equivalent to

*-l)V QGN) -\3qGN

and the factors are

VqGN\/^^QGN
2

+ (fM
2

-l)V~QGN&quot; + \3qGN .V QGN = 0;

it is in fact easy to see that these equations represent lines passing through the

point G and inclined to GN at angles +
&amp;lt;/&amp;gt;

,
where

&amp;lt;f&amp;gt;

is given by the equations

sin &amp;lt;

=
fj,

sin &amp;lt;

,

VQGN
tan&amp;lt; =nw

and there is no difficulty in distinguishing in any particular case between the refracted

ray and the false refracted ray.

In the case of reflexion
/u,
=

1, and the equations become

VqGN. DQGN + UqGN. VQGN=0;
the equation

VqGN. \3QGN-\3qGN . VQGN=0
is obviously that of the incident ray, which is what the false refracted ray becomes

in the case of reflexion
;
and the equation

V qGN . DQGN + HqGN . V QGN =

is that of the reflected ray.
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II.

But instead of investigating the nature of the caustic itself, we may begin by
finding the secondary caustic or orthogonal trajectory of the refracted rays, i.e. a curve

having the caustic for its evolute; suppose that the incident rays are all of them
normal to a certain curve, and let Q be a point upon this curve, and considering
the ray through the point Q, let G be the point of incidence upon the refracting
curve

;
then if the point G be made the centre of a circle the radius of which is

pr
l

. GQ, the envelope of the circles will be the secondary caustic. It should be
noticed that, if the incident rays proceed from a point, the most simple course is to

take such point for the point Q. The remark, however, does not apply to the case

where the incident rays are parallel ;
the point Q must here be considered as the

point in which the incident ray is intersected by some line at right angles to the

rays, and there is not in general any one line which can be selected in preference
to another. But if the refracting curve be a circle, then the line perpendicular to

the incident rays may be taken to be a diameter of the circle. To translate the

construction into analysis, let
, 77 be the coordinates of the point Q, and a, the

coordinates of the point G, then
77, a, /? are in effect functions of a single

arbitrary parameter ;
and if we write

Gf -fp-fpp+ dp-Dp,
then the equation

l*Gq*
-

GQ&amp;gt;
= 0,

where as, y are to be considered as current coordinates, and which involves of course
the arbitrary parameter, is the equation of the circle, and the envelope is obtained
in the usual manner. This is the well-known theory of Gergonne and Quetelet.

III.

There is however a simpler construction of the secondary caustic in the case of
the reflexion of rays proceeding from a point. Suppose, as before, that Q is the
radiant point, and let G be the point of incidence. On the tangent at G to the

reflecting curve, let fall a perpendicular from Q, and produce it to an equal distance
on the other side of the tangent; then if q be the extremity of the line so produced,
it is clear that q is a point on the reflected ray Gq, and it is easy to see that

the^
locus of q is the secondary caustic. Produce now QG to a point Q such that

GQ = QG, it is clear that the locus of Q will be a curve similar to and similarly
situated with and twice the magnitude of the reflecting curve, and that the two
curves have the point Q for a centre of similitude. And the tangent at Q passes
through the point q, i.e. q is the foot of the perpendicular let fall from Q upon
the tangent at Q ;

we have therefore the theorem due to Dandelin, viz.

432
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If rays proceeding from a point Q are reflected at a curve, then the secondary

caustic is the locus of the feet of the perpendiculars let fall from the point Q upon

the tangents of a curve similar to and similarly situated with and twice the magni

tude of the reflecting curve, and such that the two curves have the point Q for a

centre of similitude.

IV.

If rays proceeding from a point Q are reflected at a line, the reflected rays will

proceed from a point q situate on the perpendicular let fall from Q, and at an equal

distance on the other side of the reflecting line. The point q may be spoken of as

the image of Q ;
it is clear that if Q be considered as a variable point, then the

locus of the image q will be a curve equal and similar but oppositely situated to

the curve, the locus of Q, and which may be spoken of as the image of such curve.

Hence it at once follows, that if the incidental rays are tangent, or normal, or indeed

in any other manner related to a curve, then the reflected rays will be tangent, or

normal, or related in a corresponding manner to a curve the image of the first-

mentioned curve. The theory of the combined reflexions and refractions of a pencil

of rays transmitted through a plate or prism, is, by the property in question, rendered

very simple. Suppose, for instance, that a pencil of rays is refracted at the first

surface of a plate or prism, and after undergoing any number of internal reflexions,

finally emerges after a second refraction at the first or second surface; in order to

find the caustic enveloped by the rays after the second refraction, it is only necessary

to form the successive images of the first caustic corresponding to the different reflexions,

and finally to determine the caustic for refraction in the case where the incident

rays are the tangents of the caustic which is the last of the series of images; the

problem is not in effect different from that of finding the caustic for refraction in

the case where the incident rays are the tangents to the caustic after the first re

fraction, but the line at which the second refraction takes place is arbitrarily situate

with respect to the caustic. Thus e.g. suppose the incident rays proceed from a

point, the caustic after the first refraction is, it will be shown in the sequel, the

evolute of a conic; for the complete theory of the combined reflexions and refractions

of the pencil by a plate or prism, it is only necessary to find the caustic by refraction,

where the incident rays are the normals of a conic, and the refracting line is arbitrarily

situate with respect to the conic.

V.

Suppose that rays proceeding from a point Q are refracted at a line; and take

the refracting line for the axis of y, the axis of x passing through the radiant point

Q, and take the distance QA for unity. Suppose that the index of refraction /* is

put equal to T. Then if
&amp;lt;/&amp;gt;

be the angle of incidence and &amp;lt; the angle of refraction,
fC
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X

we have sin
(ft
= k sin

(ft,
and the equation y

- x tan $ = tan 9 of the refracted ray

becomes, putting for
9&quot;

its value,

k sin 6 . A
y ;

x tan
&amp;lt;p

= 0.

Differentiating with respect to the variable parameter and combining the two equations,

we obtain, after a simple reduction,

(1 -A;2 sin2

&amp;lt;ft)

f

fvSC
~~

. y

cos3

9

k 3 sin3 6

cos3

(f&amp;gt;

where k = Vl k2
;
hence eliminating,

which is the equation of the caustic. When the refraction takes place into a denser

medium k is less than 1, and A/
2

is positive, the caustic is therefore the evolute of

a hyperbola (see fig. 1); but when the refraction takes place in a rarer medium k

is greater than 1, and k&quot;&amp;gt; is negative, the caustic is therefore the evolute of an

ellipse (see fig. 2). These results appear to have been first obtained by Gergonne.

The conic (hyperbola or ellipse) is the secondary caustic, and as such may be obtained

as follows.

VI.

The equation of the variable circle is

a;
2 + (y

- tan 0)
2 - k2 sec2

&amp;lt;f&amp;gt;

=
;

or reducing, the equation is

a? + y*
_

2y tan
&amp;lt;/&amp;gt;

+ k * tan2

&amp;lt;f&amp;gt;

- k2 =
:

whence, considering tan
&amp;lt;j&amp;gt;

as the variable parameter, the equation of the envelope is

that is,

W -
k*if

- k*k * = 0,
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is the equation of the secondary caustic, or conic having the caustic for its evolute.

The radiant point, it is clear, is a focus of the conic.

VII.

Let the equation of the refracted ray be represented by

Xx + Yy + Z = 0,

we have

v tr tr
~ k Sin (frX : Y : Z= =. : 1 :

- tan 6,
VI - k2 sin2 6

from which we obtain

X* F 2 Z*

for the tangential equation of the caustic; or if we represent the equation of the

refracted ray by

Xx + Yy - k = 0,

then we have

F2

for the tangential equation of the caustic.

Fig. 1.
Fig. 2.
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VIII.

If a ray be reflected at a circle
;
we may take a, b as the coordinates of the

centre of the circle, and supposing as before that
, 77 are the coordinates of a point

Q in the incident ray, a, ft the coordinates of the point G of incidence, and x, y
the coordinates of a point q in the reflected ray, the equation of the reflected ray,

treating x, y as current coordinates, is

Write for shortness,

and similarly for NQ ^ G &c.
;
the equation of the reflected ray is

&amp;lt;&quot;9,
G-*- Q, G ~^~ -Lq, G-N Q, G

= &quot;

Suppose that the reflected ray meets the circle again in G and undergoes a

second reflexion, and let as
, y be the coordinates of a point q in the ray thus twice

reflected. We see first (G being a point in the first reflected ray) that

&quot;&amp;lt;&, G-LQ, G + *f, G-&quot; Q, G
= 0-

Again, considering G as a point in the ray by the reflexion of which the second

reflected ray arises, the equation of the second reflected ray is

^G^G,G + 7V,G ^G,G = 0;

and from the form of the expressions N
q&amp;lt; G&amp;lt;

T
q&amp;lt;
G it is clear that

AT&quot; , AT , T -4-T7
-&quot;

G, G
- 1V G . G -1

G, G T J- o , G 5

the equation for the second reflected ray may therefore be written under the form

^G^G-2V,G^G ,G
= 0;

or reducing by a previous equation, we obtain finally for the equation of the second

reflected ray,

^G ^G+TV.G^G^O;
and in like manner the equation for the third reflected ray is

AVx ^Q,G + 2V,G ^Q,G = 0,

and so on, the equation for the last reflected ray containing, it will be observed, the
coordinates of the radiant point and of the first and last points of incidence (the
coordinates of the last point of incidence can of course only be calculated from those
of the radiant point and the first point of incidence, through the coordinates of the
intermediate points of incidence), but not containing explicitly the coordinates of any
of the intermediate points of incidence. The form is somewhat remarkable, but the
result is really the same with that obtained by simple geometrical considerations, as
follows.
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IX.

Consider a ray reflected any number of times at a circle; and let G G, be the

ray incident at G, and GG the last reflected ray, the point at which the reflexion

takes place or last point of incidence being G. Take the centre of the circle for

the origin, and any two lines Ox, Oy through the centre and at right angles to each

other for axes, and let Ox meet the circle in the point A. Write

z G G,0 = ;

then the radius of the circle being taken as the centre of the circle, the equation

of the reflected ray is

y sin = tan -fy(x cos 0) ;

and if there have been n reflexions, then

= + n (IT
-

2c/&amp;gt;)

= + nir -
2n&amp;lt;f&amp;gt;,

and therefore the equation of the reflected ray is

y cos (^r
-

2w&amp;lt;)

- x sin (^rc
-

2n&amp;lt;/&amp;gt;)
+ (-)

w sin (^r
-

)
= 0.

X.

If a pencil of parallel rays is reflected any number of times at a circle, then

taking AO for the direction of the incident rays, we may write =
&amp;lt;/&amp;gt;, &quot;^

=
7r, and

the equation of a reflected ray is

x sin
2w&amp;lt;/&amp;gt;

+ y cos 2?i&amp;lt;
=

( )
?l sin

&amp;lt;/&amp;gt;
;
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differentiating with respect to the variable parameter, we find

x cos 2n(f) y sin 2?i&amp;lt;
=

( )
n cos

&amp;lt;f&amp;gt;

;

and these equations give

X=
4 I

n + C S ?l~~ ?l &quot; cos w

y = LZ I _
(2n + 1) sin (2w -!)&amp;lt;/&amp;gt;

+ (2n
-

1) sin (2n + 1) $1 ,

which may be taken for the equation of the caustic
;

the caustic is therefore an

epicycloid : this is a well-known result.

XI.

If rays proceeding from a point upon the circumference are reflected any number of

times at a circle, then taking the point A for the radiant point, we have a = 0,

A/TO
= TT

&amp;lt;,
and the equation of a reflected ray is

# sin (2n + 1)
&amp;lt;j&amp;gt;

+ y cos (2n + !)&amp;lt;/&amp;gt;

=
(-)&quot;

sin
&amp;lt;/&amp;gt;

;

differentiating with respect to the variable parameter, we find

x cos (2n + 1)
-
y sin (2w + 1) = (-) _- - sin

&amp;lt;/&amp;gt;
;

Ws ~\~ J.

and these equations give

( )
n

( )=
x, i 1 ( + 1) cos

2&amp;lt;/&amp;gt;

- ?i cos (2n + 2) (f&amp;gt;L

Z /i + 1
(^ j

(_) ( )

y = Q ,;-, 1 -(+ 1) sin 2w0 + TO cos (2w + 2) 6k
ZTZ + J-

(^ J

which may be taken as the equation of the caustic
; the caustic is therefore in this

case also an epicycloid : this is a well-known result.

XII.

Consider a pencil of parallel rays refracted at a circle; take the radius of the

circle as unity, and let the incident rays be parallel to the axis of as, then if 0, &amp;lt;/&amp;gt;

be the angles of incidence and refraction, and p or be the index of refraction, so
K

that sin = k sin
&amp;lt;/&amp;gt;,

the coordinates of the point of incidence are cos
&amp;lt;/&amp;gt;,

sin 0, and
the equation of the refracted ray is

y sin
&amp;lt;f&amp;gt;

= tan
(&amp;lt; &amp;lt;f&amp;gt; ) (a; cos $),

i.e.

cos
(&amp;lt;/&amp;gt;

&amp;lt; ) (y sin 0) = sin
(&amp;lt;/&amp;gt; (//) (x cos $),

C. ii. 44
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or

y cos
(&amp;lt;/&amp;gt; &amp;lt;/&amp;gt;

) # sin
(&amp;lt;/&amp;gt; &amp;lt;/&amp;gt;

)
= sin

&amp;lt;/&amp;gt;

,

which may also be written

(?/ cos (f&amp;gt;

- x sin
&amp;lt;/&amp;gt;)

cos
&amp;lt;j&amp;gt;

+ (y sin &amp;lt; + # cos
&amp;lt;/&amp;gt;

1) sin
&amp;lt;/&amp;gt;

= 0.

Writing k sin 0, Vl - W sin2

&amp;lt;/&amp;gt;

instead of sin
&amp;lt;/&amp;gt;

,
cos $ ,

and putting for shortness

y cos
(f&amp;gt;

x sin
&amp;lt;f&amp;gt;

= Y,

&amp;gt;/

sin
(j&amp;gt;

+ x cos
(j)
= X,

(f&amp;gt;_ _
T&quot;TI

Vl - A;
2 sin2

&amp;lt;/&amp;gt;

the equation of the refracted ray becomes

and differentiating with respect to the variable parameter &amp;lt;/&amp;gt;, observing that

dY
_

dX _ y
d$~ d$~
d&amp;lt;& _ k cos &amp;lt;

cot
&amp;lt;f&amp;gt;

,

d&amp;lt;&amp;gt;

~
- &quot;* ~l-k* sin8

&amp;lt;&amp;gt;

we have

and the combination of the two equations gives

_ 0(1- A-
2 sin2

&amp;lt;P cot
&amp;lt;^

1

_ &amp;lt;I&amp;gt; cot - k2 sin2

and we have therefore

&2 sin 3
&amp;lt;= -
cot ( 1

&2 sin 3
&amp;lt;4 &amp;lt;

&amp;lt;J&amp;gt; cot (f&amp;gt;

-
1) 7 ,

. . ,

y = Y cos &amp;lt;f&amp;gt; + X sm d&amp;gt;
= - - = A,

2 sin3

&amp;lt;^&amp;gt;,

( .-7 - k2 sin3

9 )

- k2 sin2

9 cos 9
x = X cos &amp;lt;f&amp;gt; F sin &amp;lt;4

=
&amp;lt;P cot 9

i.e.

&amp;lt;I&amp;gt; (1 k2 sin4
&amp;lt;f&amp;gt;)

A;
2 sin 3 $ cos 9

&amp;lt;P cos 9 sin 9
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or multiplying the numerator and denominator by (1 A;
2 sin2

(/&amp;gt;) (&amp;lt;t&amp;gt;

cos
&amp;lt;/&amp;gt;

+ sin $), the

numerator becomes

(1 A:
2 sin2

&amp;lt;/&amp;gt;) {&amp;lt;I&amp;gt;

2 cos $(1 k2 sin4

&amp;lt;/&amp;gt;)

k2 sin4 $ cos
&amp;lt;/&amp;gt;

+ &amp;lt;I&amp;gt;

(sin (f) (1 A;
2 sin 2

0) A;
2 sin3

&amp;lt;f&amp;gt;

cos
0)}

= A:
2 sin2

&amp;lt;f&amp;gt;

cos $ {(1 A;
2 sin4

&amp;lt;/&amp;gt;)

sin2
&amp;lt; (1 A;

2 sin2

$)}

+ A; sin2
&amp;lt;
Vl - A;

2 sin2
&amp;lt; (1

- A;
2 sin2

&amp;lt;)

= A;
2 sin2

&amp;lt; cos3
&amp;lt;f&amp;gt;

+ k sin 2

&amp;lt;f&amp;gt;
(1
- A;

2 sin2
&amp;lt;/&amp;gt;)*,

and the denominator becomes

A;
2 sin2

&amp;lt; cos2

$ (1 A-
2 sin 2

&amp;lt;/&amp;gt;)

sin2
&amp;lt;

= A;
2 sin2

0,

if A/
2 = 1 - P.

Hence we have for the coordinates of the point of the caustic,

JA/

2# = - A;
2 cos3

&amp;lt;f&amp;gt;

- k (
1 - k2 sin2

&amp;lt;)

8
,

| y = k2 sin 3

&amp;lt;f&amp;gt;
;

and eliminating &amp;lt;f&amp;gt;,

we obtain for the equation of the caustic,

k 2x = A;
2

{1 k~ J

y
&

}

* k (1 k^y*\
%

;

or writing
- instead of k, we find
r^

(1 fj
2

) x (1 n,*
s

yT&amp;gt;)%
+ yu, (1 fjT%y%)%

for the equation of the caustic by refraction of the circle, for parallel rays. The

equation was first obtained by St Laurent.

XIII.

The discussion of the preceding equation presents considerable interest. In the

first place to obtain the rational form write

a =(1-/^K /8
= (1-/*V)*, 7 = /*(!- /*-)*:

this gives

a4 - 2a2

(/3
2 + 7-) + (/S

2 - 7
2

)
2 = 0,

and we have

and consequently

^ - y =
(i _^) (l

_
3/,V + (1 +/i

2

)2/
2

}.

442
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Hence dividing out by the factor (1 /A
2

)
2
,
the equation becomes

(1
- ^)2

ar* - 2
(1
+ /*

2 - 6/*V -I- 3/*$ (1 + yu
2

) r -
(1 + ^} f) 2a? +

(1
- 3/*V + (1 + tf

or reducing and arranging,

(1
-

/it

2

)
2 a* - 2 (1 + /*

2

) x* + 2 (1 + /*
4
) #y + 1 -t- 2 (1 + /*

a

) y* + (1 + /u,

2

)
2

y
4

which is of the form

A + 3p*By* - 6^Cy* = ;

and the rationalized equation is

A 3 + 27/i
45y -

216/i
2Cy + o^ABCf = 0,

where the values of A, B, C may be written

A =
(x* + f) {(1

-^ x* + (1 + /,
2

)
2

f] -2(1+ /*) (a?
-

7/
2

) + 1,

the caustic is therefore a curve of the 12th order.

To find where the axis of x meets the curve, we have

where

i.e.

fy=o,
i i

I X = + ,
X =

., ,

^ 1
/-I !+/-&amp;lt;

or there are in all four points, each of them a point of triple intersection.

To find where the line x&amp;gt; meets the curve, we have

where

A =
(a? + y

2
) {(I

-
fj?)- x

2 + (1 + /i
2

)
2

2/

2

},

i.e.

oo,

_ . _ i + p* .
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or the curve meets the line oo in four points, each of them a point of triple

intersection : two of these points are the circular points at oo .

To find where the circle x2 + y
2 = 1 meets the curve, this gives x* 1

7/
2

,
and

thence

= p? + 2,

and the equation becomes

[p? (p?
-

4) + 4 (1 + 2/*
2

) y
2

}

3 + 27/i
4

(4
-

?/
2

)
3

2/

2 -216 (p? + 2)
3

y
4

(p? + 2) if (4
-

7/
2

) [p? (p?
-

4) + 4 (1 + 2^
2

) f] = 0,

which is only of the eighth order; it follows that each of the circular points at oo

(which have been already shown to be points upon the curve) are quadruple points

of intersection of the curve and circle. The equation of the eighth order reduces

itself to

the values of x corresponding to the roots y = p, are obtained without difficulty,

and those corresponding to the other roots are at once found by means of the

identical equation

O2 -
4)

3 + 27/i
4 + (1

-
p?} O2 + 8)

2 =
;

we thus obtain for the coordinates of the points of intersection of the curve with

the circle #2 + ?/
2 = l, the values

00
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and we have for the coordinates of the points of intersection,

= +
f-

J= + IV,

each of the points of the first system being a quadruple point of intersection, each

of the points of the second system a triple point of intersection, and each of the

points of the third system a single point of intersection.

The points of intersection with the axes of x, and the points of triple inter

section with the circles #2 + ?/
2 = l and x2 + y

z =
,

are all of them cuspidal points;

the two circular points at oo are, I think, triple points, and the other two points of

intersection with the line oo
, cuspidal points, but I have not verified this : assuming

that it is so, there will be a reduction 54 accounted for in the class of the curve,

but the curve is, in fact, as will be shown in the sequel, of the class 6
;

there is

consequently a reduction 72 to be accounted for by other singularities of the curve.

XIV.

It is obvious from the preceding formulae that the caustic stands to the circle,

radius -, in a relation similar to that in which it stands to the circle, radius 1, i.e.

P
to the refracting circle. In fact, the very same caustic would have been obtained if

the circle radius had been taken for the refracting circle, the index of refraction
P

being instead of ft. This may be shown very simply by means of the irrational
P

form of the equation as follows.

The equation of the caustic by refraction of the circle, radius 1, index of refraction

fi, is as we have seen

hence the equation of the caustic by refraction of the circle radius c ,
index of

refraction //, is
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or, what is the same thing,

which becomes identical with the equation of the first-mentioned caustic if uf = c = .

P

Hence taking c instead of 1 as the radius of the first circle, we find,

THEOREM. The caustic by refraction for parallel rays of a circle, radius c, index

of refraction
//,,

is the same curve as the caustic by refraction for parallel rays of a

c 1
concentric circle, radius -

,
index of refraction -

.

A* A*

XY.

We may consequently in tracing the caustic confine our attention to the case in

f\

which the index of refraction is greater than unity. The circle, radius -, will in this
r&quot;

case be within the refracting circle, and it is easy to see that if from the extremity
of the diameter of the refracting circle perpendicular to the direction of the incident

rays, tangents are drawn to the circle, radius -
,
the points of contact are the points

of triple intersection of the caustic with the last-mentioned circle, and these points
of intersection being, as already observed, cusps, the tangents in question are the

tangents to the caustic at these cusps. The points of intersection with the axis of

x are also cusps of the caustic, the tangents at these cusps coinciding with the axis

of x: two of the last-mentioned cusps, viz. those whose distances from the centre are

+ r ,
lie within the circle, radius -

,
the other two of the same four cusps, viz.

I
fj,

those whose distances from the centre are f ---
,

lie without the circle, radius
/A 1

-
;

the last-mentioned two cusps lie without the refracting circle, when /* &amp;lt; 2, upon

this circle, when
/u,
=

2, and within it and therefore between the two circles, when

//,
&amp;gt; 2. The caustic is therefore of the forms in the annexed figures 3, 4, 5, in each

Fig. 3. Fig. 4. Fig. 5.
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of which the outer circle is the refracting circle, and p is &amp;gt; 1, but the three figures

correspond respectively to the cases p &amp;lt; 2, p = 2 and /* &amp;gt; 2. The same three figures

will represent the different forms of the caustic when the inner circle is the refracting

circle and p is &amp;lt; 1, the three figures then respectively corresponding to the cases

fj,
&amp;gt; \, p = i and fi &amp;lt; J.

XVI.

To find the tangential equation, I retain k instead of its value -; the equation

of the refracted ray then is

x (k cos
(f&amp;gt;

- Vi^Fsm8

&quot;

0) + y (k sin
&amp;lt;/&amp;gt;

+ cot &amp;lt; Vl - &2 sin2
$) k = 0,

and representing this by
Xx + Yy - k = 0,

we have

X = k cos
(f&amp;gt;

Vl k- sin2

&amp;lt;/&amp;gt;,

F = k sin
&amp;lt;f&amp;gt;

+ cot &amp;lt; Vl - k2 sin2
&amp;lt;,

equations which give

X cos
^&amp;gt;

+ Y sin &amp;lt;

= A1

,

sm2

and consequently

S&amp;lt;#&amp;gt;=

and we have

F2 -l + F- A; Z2 + F 2 = 0,

which gives

X2 + F2

or, dividing out by the factor VZ2 + F2
,
the equation becomes

\/Z2+F 2

(Z
2-l-&2

)
= - 2&F,

from which

(Z
2 + F2

) (X
2 - 1 - fc

2

)
2 - 4&2F2 =

;

or reducing and arranging, we obtain

for the tangential equation of the caustic by refraction of a circle for parallel rays.

The caustic is therefore of the class 6.
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XVII.

Suppose next that rays proceeding from a point are reflected at a circle.

A very elegant solution of the problem is given by Lagrange in the Mem. de

Turin ; the investigation, as given by Mr P. Smith in a note in the Cambridge and

Dublin Mathematical Journal, t. ii. [1847] p. 237, is as follows :

Let B be the radiant point, RBP an incident ray, and PS a reflected ray; CA
a fixed radius; ACP =

a, ACB =
e, reciprocal of CB = c, reciprocal of CP a. The

equations of the incident and reflected ray, where u = -
, may be written

u = A sin 6 + B cos 6
;

incident ray,

u = A sin (2a -6) + B cos (2a
-

6) ;
reflected ray,

the conditions for determining A and B being

a = A sin a + B cos a,

c = A sin e + B cos e,

whence

. _ a cos e c cos OL c sin a a sin e
&quot; / \ )

-D = = / \&quot;sm (a e) sin (a e)

Substituting these values, the equation of the reflected ray becomes

a sin (2a 6 e)
= u sin (a

-
e) + c sin (a 6\

from which and its differential with respect to the arbitrary parameter a, the equation
of the caustic, or envelope of the reflected rays, will be found by eliminating a.

In this, a being the only quantity treated as variable in the differentiation, let

2a - 6 - =
2&amp;lt;f&amp;gt;,

therefore

-$ + i(+e),
c. n. 45
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and the equation becomes

a sin 2&amp;lt;
= u sin

{&amp;lt;

+ \(6 - e)} + c sin
[&amp;lt;j&amp;gt;-%(B- e)}.

Make

Q + c) cos | (f?
-

e)

2a

n Q -
c) sin \ (6

-
e)

^ =
2a

1 1

also

x =-
, , y =

cos &amp;lt;&amp;gt;
sm

then the equation becomes

with the condition

ar*+f=I.

Hence

P = \ar*, Q = \y~
3

;

multiplying by x and y, and adding, we find A, = I
;

therefore

ar* = P**, y~*
=

&amp;lt;$.

Hence

P1 + Q* = 1
;

or restoring the values of P and Q,

{(u + c) cos $(6- e)}* + {(M
-

c) sin \ (9
-

e)}^
= 1,

the equation of the caustic.

XVIII.

But the equation of the caustic for rays proceeding from a point and reflected

at a circle may be obtained by a different method, as follows:

Take the centre of the circle for origin; let c be the radius of the circle, a, b

the coordinates of the radiant point, a, /3 the coordinates of the point of incidence,

x, y the coordinates of a point in the reflected ray. Then we have from the equation

of the circle a2 + /3
2 =c2

,
and the equation of the reflected ray is by the general

formula,

(67
-

a/8) (aac + Py- c
2
) + (ya.

-
xft) (aa + 6/3

- c2)
=

;
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or arranging the terms in a different order,

(bos -f ay) (of
-

/3
2

) + 2 (by
-
ax) aj3

- c
2

(6 + y) a. + c
2

(a + as) & = ;

and writing herein a = c cos 0, @ = c sin 0, the equation becomes

(6# + ay) cos 20 + (by ax) sin 20 (b + y) c cos 6 + (a + as) c sin 6 = 0,

where 6 is a variable parameter.

Now in general to find the envelope of

A cos 20 + B sin 20 + (7 cos + D sin + E = 0,

we may put e
l6 =

z, which gives the equation

(A - Bi) tf + (C - Di) z3 + 2Ez2 + (C+ Di) z + (A + Bi) = 0,

and equate the discriminant to zero : this gives

(47)
3 - 27 (- 8J)

2 = 0,

where

47 = 4 (A
2 + B2

)
- (C

2 + D2

) + E2
,

-8J = A(C2 - D2

) + WCD -
(8 (A* + B2

) + (C
2 + D2

)} ^E + &E*,

and consequently

{4 (A
2 + B2

)- (C
2 + D2

) + fE2

}

s

- 27 {A (C
2 - D2

) + 2BCD -($(A 2 + B2

) + (C
2 + D2

)) E + &E*}* = ;

and substituting for A, B, C, D, E their values, we find

(4 (a
2 + b2

) O2 + y
2

)
- c

2

((x + a)
2 + (y + b)

2

) }

3 - 27 (bx
-
ay)

2
(x

2 + y*- a2 - b2
)
2 = 0,

for the equation of the caustic in the case of rays proceeding from a point and
reflected at a circle : the equation was first obtained by St Laurent.

It will be convenient to consider the axis of x as passing through the radiant point ;

this gives 6 = 0; and if we assume also c = 1, the equation of the caustic becomes

{(4a
2 -

1) (a? + y
2

)
- 2ax - a2

}

3 - 27ay (x
2 + y

2 - a 2

)
2 = 0.

XIX.

Reverting to the equation of the reflected ray, and putting, as before, c=l, 6 = 0,

this becomes

, a cos 20 cos

sin
*

differentiating with respect to 0, we have

.
- a cos (1 + 2 sin2

0) + 1

452
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and from these equations

1 - 3a cos 20 + 2a2

2a2 sin3 6
y ~

1 - 3a cos 20 + 2a?

which give the coordinates of a point of the caustic in terms of the angle which

determines the position of the point of incidence. The values in question satisfy, as

they should do, the equation

{(4a
2 -

1) O2 + f) - 2ax - a2

}

3 - 27a2

y
2

(x
2 + f - a2

)
2 =

;

we have, in fact,

4a3 (cos0-a)3

7-2 _j_ 7/2 _ ,,2 __:_:___
(1
- 3a cos 20 + 2a2

)
2

12a4 (cos0-a)2

1
) (x

- + r) _ go* _ a- =

from which it is easy to derive the equation in question.

XX.

If we represent the equation of the reflected ray by

Xx+Yy + a = 0,

then we have

v a cos 26 cos

~shT0

and thence

(X - 1 )
2 - 4a2 = - 4a2 sin2

6,

Z2 + Y2 = l

. (1
- 2a cos 6 + a2

),
sin2 ^

X + a- = 1 2a cos + a2
,

and consequently

(X
2 + Y-) {(X

-
I)

2 - 4a3

}
+ 4a2.Y + 4a4 = 0,

or, what is the same thing,

(X(X-l)- 2 2

}

2 + F 2

{(X
-

I)
2 - 4a2

}
= 0,

which may be considered as the tangential equation of the caustic by reflexion of a

circle
;

or if we consider X, Y as the coordinates of a point, then the equation may
be considered as that of the polar of the caustic. The polar is therefore a curve of the

fourth order, having two double points defined by the equations X (X 1) 2a2 =
0, F=0,
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and a third double point at infinity on the axis of F, i.e. three double points in all
;

the number of cusps is therefore 0, and there are consequently 4 double tangents and

6 inflections, and the curve is of the class 6. And as T is given as an explicit

function of X, there is of course no difficulty in tracing the curve. We thus see

that the caustic by reflexion of a circle is a curve of the order 6, and has 4 double

points and 6 cusps (the circular points at infinity are each of them a cusp, so that

the number of cusps at a finite distance is 4) : this coincides with the conclusions

which will be presently obtained by considering the equation of the caustic.

XXI.

The equation of the caustic by reflexion of a circle is

{(4a
2 -

1) O2 + y
2

)
- 2aas - a2

}

3 - 27ay (x- + y
2 - a2

)
2 = 0.

Suppose first that y = 0, we have

{(4a
2 -

1) x
1 - 2ax - a2

}

3 = 0,

. e. x = -^ = -
2a + 1 2a - 1

or the curve meets the axis of x in two points, each of which is a triple point of

intersection.

Write next x2 + y
2 = a2

, this gives

{(4a
2 -

1) a
2 - 2ax - a2

]

3 = 0,

and consequently

x = - a (1
- 2a2

),

y= 2a2 Vl -a2
,

or the curve meets the circle x2 +y
n~- a2 = in two points, each of which is a triple

point of intersection.

To find the nature of the infinite branches, we may write, retaining only the terms
of the degrees six and five,

(4a
2 - 1 )

3

(a?
2 + if)

3 - 6 (4a
2 - 1 )

2 a (x
2 + y

2

)
2 x - 27 o?f (x

2 + y
2

)
2 =

;

and rejecting the factor (ic
2 + 7/

2

)
2
,
this gives

(4a
2 -

I)
3 x2 + {(4a

2 -
I)

3 - 27a2

} y
2 - 6 (4a

2 -
I)

2 ax =
;

or reducing,

(4a
2 -

I)
3 x2 -

(1
- a2

) (8a
2 + I)

2

y*-Q (4a
2 -

I)
2 ax =

;

and it follows that there are two asymptotes, the equations of which are

_(4a
2 -l)

f

j
3a

Vl - a2
(8a

2 + 1)1 4a2 - 1
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Represent for a moment the equation of one of the asymptotes by y = A (x
-

a),

then the perpendicular from the origin or centre of the reflecting circle is Aa. 4- \/l + A 2
,

and

Aa= _

+ A* =

Vl 4- A* =

Vl-a2 (l+8a
2

)

I
2)(l+8a

2
)
2 + (4a

2 -l)3

^ 27a2

(1
- a2

) (1 + 8a2
)
2

~
(1
- a2

) (1 + 8a2

)
2

3\/3a

Vl-a2
(l

and the perpendicular is
-j= \/4a2

1, which is less than a if only a2
&amp;lt; 1, i.e. in every

V3

case in which the asymptote is real.

The tangents parallel and perpendicular to the axis of x are most readily obtained

from the equation of the reflected ray, viz.

a cos 16 cos 6
.

sin 6

the coefficient of x (if the equation is first multiplied by sin 0) vanishes if sin 0=0,

1 4ci
2 _ 1

which gives the axis of x, or if cos 0=^~, which gives y = g
- -

,
for the tangents

parallel to the axis of x.

The coefficient of y vanishes if a cos 20 - cos 6 =
;

this gives

/i -L ~r v on/ T^X
/&amp;gt; -*/&amp;lt; i /o_ i f \

cos = ~
-, sm0= -

(-la
2 1 + V8a-+ 1),

and the tangents perpendicular to the axis of x are thus given by

-2a
x =

1 + V8a2 + 1

these tangents are in fact double tangents of the caustic. In order that the point of

contact may be real, it is necessary that sin 0, cos should be real
;

this will be the

case for both values of the ambiguous sign if a &amp;gt; or = 1, but only for the upper

value if a &amp;lt; 1.

It has just been shown that for the tangents parallel to the axis of x, we have

2a

\/4a2 -l
the values of ?/ being real for a &amp;gt; | : it may be noticed that the value y = ^-
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is greater, equal, or less than or to y = 2a2 Vl a*, according as a &amp;gt;
= or &amp;lt; -=.

;
this

depends on the identity (4a
2 -

1)
- 16a6

(l
- a2

)
= (2a

2 -
I)

3
(2a

2 + 1).

To find the points of intersection with the reflecting circle, a? + y
2 1 = 0, we have

(3a
2 - 1 - 2ax)

3 - 27a2

(1
- 2

) (1
- a2

)
2 =

;

or, reducing,

8a3^ + (- 27a4
-f 18a 2 -

15) aV + (54a
4 - 36a2 + 6) ax + (- 27a4 + 18a2 + 1) = 0,

i.e. a^-l 2 8atf

The factor (ax I)
2

equated to zero shows that the caustic touches the circle in

the points x = -
, y= + \/l ---

. i. e. in the points in which the circle is met by the
a V a2

polar of the radiant point, and which are real or imaginary according as a &amp;gt; or &amp;lt; 1.

The other factor gives

_ 27a4 - 18a2 - 1

8a

Putting this value equal to + 1, the resulting equation is (a + 1) (27a
2 + 9a + l) =0, and

it follows that x will be in absolute magnitude greater or less than 1, i.e. the points
in question will be imaginary or real, according as a&amp;gt;l or a&amp;lt; 1.

It is easy to see that the curve passes through the circular points at infinity,

and that these points are cusps on the curve
;
the two points of intersection with the

axis of x are cusps (the axis of x being the tangent), and the two points of inter

section with the circle x2 + y
2 a2 = are also cusps, the tangent at each of the cusps

coinciding with the tangent of the circle
;
there are consequently in all 6 cusps.

XXII.

To investigate the position of the double points we may proceed as follows: write

for shortness P = (4a
2 -

1) (x
2 + f} - 2ax - a2

, Q = ay8, S= x +f - a2
;
the equation of the

caustic is

P3

hence, at a double point,

f OF THE ^^\
^dP ^dQ (UNIVERSITY)f -

7 ioU -r =
; ^ OF y

ay dy

one of which equations may be replaced by

dP dQ_dP dQ_ Q
dx dy dy dx
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Now

^ = 2{(4a
2 -l)*-a}, ^ = 2 (4a

2 -
1) y,

2 = a (a? + 3&amp;lt;/

2 - a 2
)
= a (flf + 2y) ;

substituting these values in the last preceding equation, we find

(4a
2

1) a; a _~~
or, reducing,

(4a
2 -

and using this to simplify the equation

&quot;

we have

and therefore

P2

Qr -~

Multiplying by P and writing for P3 its value 27a2
t/
2 2

,
we have

Px = 3af,

and thence

whence

and substituting in the equation

a /, 2v
2
\

x = -.
- - 1 + -f- ,

4a2 - 1 V 8 /

we find

a
(

2x\
00 =

d,~2 i i r J

or, rationalising,

-{(4a
2 -l)#-a} 2 =0,
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or, what is the same thing,

(4o#
-

1) (as
- a (a + i Vl -a2

)
2

) (x
- a (a

- i Vl -a? )
2

)
= 0.

The factor 4a#-l equated to zero gives x= from which y may be found, but the

resulting point is not a double point; the other factors give each of them double

points, and if we write

x = a (a + i Vl - a2

)
2

,

we find

2a2
z (a + i Vl-a2

)*ni _\_/

(3a-t Vf^a*)*
values which, in fact, belong to one of the four double points. It is easy to see that
the points in question are always imaginary.

It may be noticed, by way of verification, that the preceding values of x, y give

1 0/74 _
(4a

2 -
1) &amp;lt;&amp;gt;

2 + f) - 2ax - a? = ^~ (1
- 4a2 -

4&amp;gt;ai Vl - a?
),_

(3a + i Vl - a2
),

_ -

4 ft
4

2a (3
-

and if the quantities within ( ) on the right-hand side are represented by A, B, C, then

A
^ = -

(a + i Vl - a2

),

B
whence we have identically,

n
= -

(a 4- i Vl - a2

)
3

,

by means of which it appears that the values of x, y satisfy, as they should do, the
equation of the caustic

;
and by forming the expressions for (4a

2 - V)x-a and #2 + 3
&amp;lt;y

2 - a2
,

it might be shown, d posteriori, that the point in question was a double point.

XXIII.
The equation

{(4tt
2 -

1) (
2 + f) - 2ax - a2

}

3 - 27ay (x
z + f - a 2

)-
=

becomes when a = 1
(i. e. when the radiant point is in the circumference),

{3^ + 0-1) (3*- + 1)}3
_ 27f (y

2 + x2 -
I)

2 =
;

it is easy to see that this divides by (^-l)
3

;
and throwing out this factor, we have

for the caustic the equation of the fourth order,

27y
4 + 18if (3

2 -
1) + O -

1) (3,* + I)
3 = ().

c. n. AC46
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XXIV.

The equation

{(4a
2 -

1) O2 + f}
- 2ax - a2

}

3 - 27a

becomes when a = oo
(i.

e. in the case of parallel rays),

which may also be written

- a2

)
2 =

-
I)

2 + (8?/
2 + I)

2

(?/
2 -

1)
= 0.

XXV.

It is now easy to trace the curve. Beginning with the case a = oo
,
the curve lies

wholly within the reflecting circle, which it touches at two points ;
the line joining

the points of contact, being in fact the axis of y, divides the curve into two equal

portions ;
the curve has in the present, as in every other case (except one limiting

case), two cusps on the axis of x (see fig. 6). Next, if a be positive and &amp;gt; 1, the

general form of the curve is the same as before, only the line joining the points of

contact with the reflecting circle divides the curve into unequal portions, that in the

Fig;. 7. a&amp;gt;l.

neighbourhood of the radiant point being the smaller of the two portions (see fig. 7).

When a = 1, the two points of contact with the reflecting circle unite together at the

radiant point ;
the curve throws off, as it were, the two coincident lines x = 1, and the

order is reduced from 6 to 4. The curve has the form
fig. 8, with only a single cusp

on the axis of x. If a be further diminished, a &amp;lt; 1 &amp;gt; -=.
, the curve takes the form

V2
shown by fig. 9, with two infinite branches, one of them having simply a cusp on

the axis of x, the other having a cusp on the axis of x, and a pair of cusps at its

intersection with the circle through the radiant point ;
there are two asymptotes equally

inclined to the axis of x. In the case a = -7= ,
the form of the curve is nearly the

v2
same as before, only the cusps upon the circle through the radiant point lie on the

axis of y (see fig. 10). The case a &amp;lt; -^ &amp;gt; is shown, fig. 11. For a = fa the two
V _
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asymptotes coincide with the axis of x\ one of the branches of the curve has wholly

disappeared, and the form of the other is modified by the coincidence of the asymptotes

.Fig. 8. a= 1.

Fig. 10. J^

VT
Fi. 12.

with the axis of as; it has in fact acquired a cusp at infinity on the axis of as (see

fig. 12). When a &amp;lt; ^, the curve consists of a single finite branch, with two cusps on

the axis of x, and two cusps at the points of intersection with the circle through
the radiant point ;

one of the last-mentioned cusps will be outside the reflecting circle

as long as a &amp;gt; ^ ; fig. 13 represents the case a =
,

for which this cusp is upon the

reflecting circle. For a &amp;lt; ,
the curve lies wholly within the reflecting circle, one of

the cusps upon the axis of x being always within, and the other always without the

circle through the radiant point, and as a approaches the curve becomes smaller

and smaller, and ultimately disappears in a point. The case a negative is obviously

included in the preceding one.

Several of the preceding results relating to the caustic by reflexion of a circle

were obtained, and the curve is traced in a memoir by the Rev. Hamnet Holditch,

Quarterly Mathematical Journal, t. I. [1857, pp. 93 111].

462
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XXVI.

Suppose next that rays proceeding from a point are refracted at a circle. Take

the centre of the circle as origin, let the radius be c, and take
, 77 as the coordi

nates of the radiant point, a, /3 the coordinates of the point of incidence, x, y the

coordinates of a point in the refracted ray : then the general equation

=

becomes, taking the centre of the circle as the point N on the normal, or writing

a=b, 6 = 0,

-
{(x

-
a)

2 + (y-m (/8f
-

*7)
2 + /* {(

-
a)

2 + (77
-

/3)
2

} (fa
-
ay? = ;

or putting
2 + yS

2 = c
2
,
and expanding,

+ a2

/3 {- 4 (77*
-

ifxy?) + 2 (77^
-

+ a/3
2

{- 4 (fry
- ^77) + 2 (ffc

-

-a2

{(a
2 + 7/

2 + c
2

) 7?
2 -fj

+ 2a/3 {(x
2 + y

2 + c
2

) ^77
- ^ + c

2

) #

= 0,

which may be represented by
Aa? + B

Now a2 + /3
2 = c

2
,
and we may write

The equation thus becomes

Fa? = 0.

or expanding,

1\ 3

D ./
,

IV / 1\ ( 1W
-j

-m(.2 + -]
(2 I G ( 2 + .-) Is
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in which z may be considered as the variable parameter ; hence the equation of the

caustic may be obtained by equating to zero the discriminant of the above function

of z; but the discriminant of a sextic function has not yet been calculated. The

equation would be of the order 20, and it appears from the result previously obtained

for parallel rays, that the equation must be of the order 12 at the least
;

it is, I think,

probable that there is not any reduction of order in the general case. It is however

practicable, as will presently be seen, to obtain the tangential equation of the caustic

by refraction, and the curve is thus shown to be only of the class 6.

XXVII.

Suppose that rays proceeding from a point are refracted at a circle, and let it be

required to find the equation of the secondary caustic: take the centre of the circle as

origin, let c be the radius, , 77 the coordinates of the radiant point, a, /3 the coordinates
of a point upon the circle, /JL

the index of refraction; the secondary caustic will be
the envelope of the circle,

p? {(x
-

) +(y- 0y}
-

{(f
- a

) + (r,
-

)}
=

0,

where a, /3 are variable parameters connected by the equation of + /3
2

c
2 =

;
the

equation of the circle may be written in the form

But in general the envelope of Aa. + 5/3 + = 0, where a, /3 are connected by the

equation a2 + /3
3 - c

2 = 0, is c*(A* + 2

)- C2 = 0, and hence in the present case the equation
of the envelope is

{l* (a? + y* + c
2

)
- (f + r)* + c

2

)}
2 = 4c2

{(p?x
-

)
2

which may also be written

2 - c
2

)
- (f + ^ -

c*)}*
=

4c&amp;gt;

2

{(as
-

)
2

If the axis of x be taken through the radiant point, then 77 =0, and writing also

| = a, the equation becomes

2 - c
2

)
- a2 + c

2

}

2 = 4cX {(x
- of + y*} ;

or taking the square root of each side,

{/i
2O2 + y

2 - c
2

)
- a2 + c

2

}
=

2c/* V(a?
- of + y* ;

whence multiplying by 1 - and adding on each side c
2

(p - -Y +(ae
-

a)* + y
2
, we have

or

which shows that the secondary caustic is the Oval of Descartes, or as it will be con
venient to call it, the Cartesian.
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It is proper to remark, that the Cartesian consists in general of two ovals, one

of which is the orthogonal trajectory of the refracted rays, the other the orthogonal

trajectory of the false refracted rays. In the case of reflexion, the secondary caustic

is a Cartesian having a double point ;
this may be either a conjugate point, or a real

double point arising from the union and intersection of the two ovals
;

the same

secondary caustic may arise also from refraction, as will be presently shown.

XXVIII.

Reverting to the original form of the equation of the secondary caustic, multiplying
1 / c

2
\ o? f d*\ 2 c2

by
l

1
&quot;^)

and adding on each side -if 1 --
2
+

-&amp;gt; {(#
-

)
2 + 2/

2

},
the equation

r* \ ** / l& \ CL / CL

becomes

or extracting the square root,

Combining this with the former result, we see that the equation may be expressed

indifferently in any one of the four forms,

It follows, that if we write successively

a a, c = c , /jf
=

fj, (1)

/ c , c , ca= -
, c -

,
u, = -

a Li a

, a
, c .1

a =
, c =

,
u. = -

i ,
a

, a
a =a

, c -
. u, = -

(ry)
Li C

n
~

&amp;gt;

C f
jL /S\a =

, c =c
,

u, = (o)a a

n - a a a
/ \

&quot;&quot;

Q ; C ==
. U, == ( 6 )

UL jji Qu,
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or what is the same thing,

a = a . c = c , fj,
=

A* (1)

a
a ~~r2 &amp;gt;

^ ~/ &amp;gt; f* ~i~i
fJ,

2

A4 C
JJ,

a c I , .

a=
7&quot;

=
S&amp;gt;

^ =
? (/3)

,
a a . .

a=a, c=-,, ^= ? (7)

^ 2 /c
/ c u&amp;gt; / p&amp;gt;\a =

, , c=c, A^ r ( o )a a v

c =
, AI

=
/A a

or what is again the same thing,

a =
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XXIX.

The preceding formulae, which were first given by me in the Philosophical Magazine,
December 1853, [124] include as particular cases a preceding theorem with respect
to the caustic by refraction of parallel rays, and also two theorems of St Laurent,

Gergonne, t. xvm., [1827, pp. 1 19] viz. if we suppose first that a=c, i.e. that the

radiant point is in the circumference of the refracting circle, then the system (a) shows
x

that the same caustic would be obtained by writing c,
-

,
1 (or what is the same

f*

thing 1) in the place of c, c, //.,
and we have

THEOREM. The caustic by refraction for a circle when the radiant point is in the

circumference is also the caustic by reflexion for the same radiant point, and for a

reflecting circle concentric with the refracting circle, but having its radius equal to the

quotient of the radius of the refracting circle by the index of refraction.

Next, if we write a = c/u., then the refracted rays all of them pass through a point
which is a double point of the secondary caustic, the entire curve being in this case

the orthogonal trajectory, not of the refracted rays, but of the false refracted rays; the

formula (S) shows that the same caustic is obtained by writing
-

, c, 1 (or what is
a

the same thing
-

1) in the place of a, c, p
(

= -
)

,
and we have

\ o/

THEOREM. The caustic by refraction for a circle when the distance of the radiant

point from the centre is to the radius of the circle in the ratio of the index of

refraction to unity, is also the caustic by reflexion for the same circle considered as

a reflecting circle, and for a radiant point the image of the former radiant point.

XXX.

The curve is most easily traced by means of the preceding construction
;
thus if

we take the radiant point outside the refracting circle, and consider ^ as varying from

a small to a large value (positive or negative values of /A give the same curve), we
see that when

//,
is small the curve consists of two ovals, one of them within and

the other without the refracting circle (see fig. 14). As /n increases the exterior oval

continually increases, but undergoes modifications in its form
;
the interior oval in the

first instance diminishes until we arrive at a curve, in which the interior oval is reduced

to a conjugate point (see fig. 15); then as p continues to increase the interior oval

reappears (see fig. 16), and at last connects itself with the exterior oval, so as to

form a curve with a double point (see fig. 17); and as
yu,

increases still further the
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curve again breaks up into an exterior and an interior oval (see fig. 18) ;
and thence

forward as
fju goes on increasing consists always of two ovals

;
the shape of the exterior

oval is best perceived from the figures. An examination of the figures will also show

how the same curves may originate from a different refracting circle and radiant point.

Fig. 14. Fig. 17

C. II. 47
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XXXI.

The theorem,
&quot;

If a variable circle have its centre upon a circle S, and its radius

proportional to the tangential distance of the centre from a circle C, the envelope is

a Cartesian,&quot;

is at once deducible from the theorem

&quot;

If a variable circle have its centre upon a circle S and its radius proportional

to the distance of the centre from a point C
,
the locus is a Cartesian,&quot;

which last theorem was in effect given in discussing the theory of the secondary

caustic. In fact, the locus of a point P such that its tangential distances from the

circles C, C are in a constant ratio, is a circle 8. Conversely, if there be a circle C,

and the locus of P be a circle S, then the circle C may be found such that the

tangential distances of P from the two circles are in a constant ratio, and the circle

C may be taken to be a point, i.e. if there be a circle C and the locus of P be

a circle S, then a point C may be found such that the tangential distance of P
from the circle C is in a constant ratio to the distance from the point C .

Hence treating P as the centre of the variable circle, it is clear that the variable

circle is determined in the two cases b} equivalent constructions, and the envelope is

therefore the same in both cases.

XXXII.

The equation of the secondary caustic developed and reduced is

^ 0* + fj - fy* (a
2 + O2 + 1) c

2

) O2 + f) + 8c&amp;gt;

2a* + a4 - 2a2c2 O2 + 1) + &amp;lt;&amp;gt;

2 - 1 )
2
c
4 = 0,

or, what is the same thing,

{^ O2 + f)
-

(a
2 +

&amp;lt;&amp;gt;

2 + 1) c
2

)}

2 + 8c&amp;gt;

2
cu; - 4c2

(c&amp;gt;

2 +O2 + 1) a
2

)

= 0,

which ma also be written

which is of the form

(a? + y
* _ a)2 + 16A (x

- m) =

and the values of the coefficients are

A
C
~a=

A*
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The equation just obtained should, I think, be taken as the standard form of the

equation of the Cartesian, and the form of the equation shows that the Cartesian may
be defined as the locus of a point, such that the fourth power of its tangential

distance from a given circle is in a constant ratio to its distance from a given line.

XXXIII.

The Cartesian is a curve of the fourth order, symmetrical about a certain line

which it intersects in four arbitrary points, and these points determine the curve.

Taking the line in question (which may be called the axis) as the axis of x, and a

line at right angles to it as the axis of y, let a, b, c, d be the values of x corre

sponding to the points of intersection with the axis, then the equation of the curve is

y* + f [2#
2 -

(a + b + c + d) x - -| (a
2 + b2 + c

2 + d? - 2ab - 2ac - 2ad - 2bc - 2bd - 2cd)]

+ (x a) (x b)(x c) (x d) 0.

It is easy to see that the form of the equation is not altered by writing x + 6 for x,

and a + 6, b+ 0, c + 0, d+0 for a, b, c, d, we may therefore without loss of generality

put a+ b + c + d = Q, and the equation of the curve then becomes

2/

4 +
y&quot; (2#

2 + ab + ac + ad + be + bd + cd) + (x-a)(x- b) (x -c)

where

a+b+c+d=0;
the curve is in this case said to be referred to the centre as origin.

The last-mentioned equation may be written

(x
2 + y

2

)
2 + (ab + ac+ad + bc + bd + cd) (a? + y

2

)
-

(abc + abd + acd + bed) x + abed = 0,

or

(abc + abd + acd + bed) x

a2b2 + a2
c
2 + a2d2 + b 2

c- + b2d2 + c
2d2

+ 2a26c + 2a2bd + 2a2cd
= 0,

h 2c 2a6 + 2czad + 2c2bd + 2d2ab + 2c?
2ac + 2d2bc

h Zabcd

or observing that

a2bc + a2bd + a2cd + b2ac + b2ad + b2cd

+ c
2ab + c

2ad + c
2bd + d2ab + d2ac + d2bc

= abc(a+b + c) + abd (a + b + d) + acd (a + c + d) + bed (b + c + d)

4&amp;gt;abcd,

472
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the equation becomes

\x
2 + 7/

2 + (ab + ac + ad + be + bd + cd)}
2

(abc + abd + acd + bed) x

-
I (a?b

2 + a2
c
2 + tfd? + b2

c
2 + b2d2 + c

2d2 - Qabcd) = 0,

which is of the form

(x
2 + y*

-
a)

2 + IQA (as
- m) = 0,

and, as already remarked, signifies that the fourth power of the tangential distance of

a point in the curve from a given circle, is proportional to the distance of the same

point from a given line. The circle in question (which may be called the dirigent

circle) has for its equation

x- + y
2 + | (ab + ac + ad + be + bd + cd) = ;

the line in question, which may be called the directrix, has for its equation

a262 + a2
c
2 + a2d2 + 62

c
2 + b2d2 + c

2d2 - Qabcd
f I M

4 (abc + abd + acd + bed)

the multiplier of the distance from the directrix is

abc + abd + acd + bed.

It may be remarked that a, b, c, d being real, the dirigent circle is real
;
the equation

may, in fact, be written

Xs + y
z =

% [(a + b)
2 + (a + c)

2 + (a + d)
2 + (b + c)

2 + (6 + d)
2 + (c + d)

2
].

XXXIV.

Considering the equation of the Cartesian under the form

(x
2 + y~- a)

2 + 16.1 (x-m} = 0,

the centre of the dirigent circle x2 + y
2

a. = must be considered as a real point,

but a may be positive or negative, i.e. the radius may be either a real or a pure

imaginary distance : the coefficients A, m must be real, the directrix is therefore a real

line. The equation shows that for all points of the curve x m is always negative
or always positive, according as A is positive or negative, i.e. that the curve lies

wholly on one side of the directrix, viz. on the same side with the centre of the

dirigent circle if A is positive, but on the contrary side if A is negative. In the

former case the curve may be said to be an inside curve, in the latter an outside

curve. If m 0, or the directrix passes through the centre of the dirigent circle,

then the distinction between an inside curve and an outside curve no longer exists.

It is clear that the curve touches the directrix in the points of intersection of this

line and the dirigent circle, and that the points in question are the only points of

intersection of the curve with the directrix or the dirigent circle
;

hence if the

directrix and dirigent circle do not intersect, the curve does not meet either the

directrix or the dirigent circle.
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XXXV.

To discuss the equation

O2
-f y

2 -
a)

2 + 16A (x-m} = 0,

I write first # = 0, which gives

#4 2a 2 + 16Ax + a2 IQAm =

for the points of intersection with the axis of x. If this equation has equal roots,

there will be a double point on the axis of x, and it is important to find the
condition that this may be the case. The equation may be written in the form

(3, 0, -a, 12A, .3a
2 -48^mtf, 1)

4 = 0,

the condition for a part of equal roots is then at once seen to be

-
(a

2 - I2Am)3 + (a
3 - ISAma + 54A 2

)
2 =

;

or reducing and throwing out the factor A 2
,
this is

27^1 2 + 2m (8m
2 -

9a) A - of (ra
2 -

a)
- 0.

This equation will give two equal values for A if

ra2

(8m?
-

9a)
2 + 27a2

(m
2 -

a) = 0,

an equation which reduces itself to

(4m2 -
3a)

3 = 0.

Hence, if 4m2 - 3a be negative, i.e. if a &amp;gt; -^ , the values of A will be imaginary,

but if 4w2 -3a be positive, or a
&amp;lt; -^ ,

the values of A will be real. If
,

then there will be two equal values of A, which in fact corresponds to a cusp upon
the axis of x. Whenever the curve is real there will be at least two real points on

4*77? ^

the axis of x\ and when a&amp;lt; -, but not otherwise, then for properly selected values

of A there will be four real points on the axis of x.

Differentiating the equation of the curve, we have

((a-a + y*
- a

) x + 4&amp;gt;A)
dx + (x* + y~

-
a) ydy = ;

and if in this equation we put dx = 0, we find y = 0, or #2 + y
2

a. = 0, i. e. that the

points on the axis of x, and the points of intersection with the circle x- + y- a = 0,

are the only points at which the curve is perpendicular to the axis of x. To find

the points at which the curve is parallel to the axis of x, we must write dx = 0, this

gives

(x- + if
-

a) x + 4A = 0,
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and thence

and

A + a? (ac
- m) = :

/i&amp;lt;777^

this equation will have three real roots if A
&amp;lt; -~=-, and only a single real root if

A &amp;gt;

-y=- ;
for A =

-^- ,
the equation in question will have a pair of equal roots. It

is easy to see that there is always a single real root of the equation which gives

rise to a real value of y, i. e. to a real point upon the curve
; but, when the equation

has three real roots, two of the roots may or may not give rise to real points upon
the curve.

XXXVI.

It is now easy to trace the curve. First, when m = 0, or the directrix passes

through the centre of the dirigent circle, the curve is here an oval bent in so as

to have double contact with the directrix, and lying on the one or the other side of

the directrix according to the sign of A. See fig. a.

Fig. a. b.

Fig. c. Fis. d.
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Next, when the directrix does not pass through the centre of the dirigent circle,

it will be convenient to suppose always that m is positive, and to consider A as

passing first from to oo and then from to GO
,

i. e. to consider first the

A^/YY)^

different inside curves, and then the different outside curves. Suppose a. &amp;gt;

--
,
the

inside curve is at first an oval, as in fig. b, where (attending to one side only of

the axis) it will be noticed that there are three tangents parallel to the axis, viz.

4m3

one for the convexity of the oval, and two for the concavity. For A =
-^=-

the two

tangents for the concavity come together, and give rise to a stationary tangent (i.e. a

4^7? ^

tangent at an inflection) parallel to the axis, and for A &amp;gt;

_y
the two tangents for

the concavity disappear. The outside curve is an oval (of course on the opposite side

of, and) bent in so as to have double contact with the directrix.

AJ fvy\
2

Next, if a ^-, the inside curve is at first an oval, as in fig. c, and there are,
o

as before, three tangents parallel to the axis : for A = -
,
the tangents for the con-

t

cavity of the oval come to coincide with the axis, and are tangents at a cusp, and

4tfn^
for A &amp;gt; ,_- the cusp disappears, and there are riot for the concavity of the oval any

I

tangents parallel to the axis. The outside curve is an oval as before, but smaller and

more compressed.

4/Tl
2

Next, a &amp;lt; -^- &amp;gt; ra2
,
then the inside curve is at first an oval, as in

fig. d, and
o

there are, as before, three tangents parallel to the axis
;
when A attains a certain

4&amp;lt;m

s

value which is less than
-^_- ,

the curve acquires a double point ;
and as A further

Ll i

increases, the curve breaks up into two separate ovals, and there are then only two

tangents parallel to the axis, viz. one for the exterior oval and one for the interior

oval. As A continues to increase, the interior oval decreases
;

and when A attains

a certain value which is less than -~=-, the interior oval reduces itself to a conjugate
2i i

point, and it afterwards disappears altogether. The outside curve is an oval as before,

but smaller and more compressed.

Next, if the directrix touch the dirigent circle, i.e. if a = ra2
. Then the inside

curve is at first composed of an exterior oval which touches the dirigent circle, and

of an interior oval which lies wholly within the dirigent circle. As A increases the

interior oval decreases, reduces itself to a conjugate point, and then disappears. The

outside curve is an oval which always touches the dirigent circle, at first very small

(it may be considered as commencing from a conjugate point corresponding to A =
0),

but increasing as A increases negatively.
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Next, when the directrix does not meet the dirigent circle, i.e. if a &amp;lt; m2
. The

inside curve consists at first of two ovals, an exterior oval lying without the dirigent

circle, and an interior oval lying within the dirigent circle. As A increases the

interior oval decreases, reduces itself to a conjugate point and disappears. The outside

curve is at first imaginary, but when A attains a sufficiently large negative value, it

makes its appearance as a conjugate point, and afterwards becomes an oval which

gradually increases.

Next, when the dirigent circle reduces itself to a point, i. e. if a = 0. The inside

curve makes its appearance as a conjugate point (corresponding to A =
0), and as A

increases it becomes an oval and continually increases. The outside curve comports

itself as in the last preceding case.

Finally, when the dirigent circle becomes imaginary, or has for its radius a pure

imaginary distance, i.e. if a is negative. The inside curve is at first imaginary, but

when A attains a certain value it makes its appearance as a conjugate point, and

as A increases becomes an oval and continually increases. The outside curve, as in

the preceding two cases, comports itself in a similar manner.

The discussion, in the present section, of the different forms of the curve is not

a very full one, and a large number of figures would be necessary in order to show

completely the transition from one form to another. The forms delineated in the four

figures were selected as. forms corresponding to imaginary values of the parameters by
means of which the equation of the curve is usually represented, e.g. the equations in

Section XXVIII.

XXXVII.

It has been shown that for rays proceeding from a point and refracted at a

circle, the secondary caustic is the Cartesian; the caustic itself is therefore the evolute

of the Cartesian
;

this affords a means of finding the tangential equation of the

caustic. In fact, the equation of the Cartesian is

(a
2 + ?/

2 -
a)

2 + IQA (as
-

in)
=

;

and if we take for the equation of the normal

(where f, 77 are current coordinates), then

X : Y : Z = - y (x* + y&quot;

-
a)

: x
(a?

2 + ?/
2

a) + 4A

: 4,Ay,
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equations which give

Z*Yx = Y(mZ*-AX*\

-Z*Yy = Zs + X(mZ2

-AX*),

Z*Y* (a? + y*
-

a)
= 4AZ3XY2

,

whence eliminating, we have

[Z* +X (mZ* - AX*}}* + F2

(mZ* - AX*}* - Z*Y* (aZ + 4A X) = 0,

where if, as before, c denotes the radius of the refracting circle, a the distance of the

radiant point from the centre, and //, the index of refraction, we have

!)*,

The above equation is the condition in order that the line Xx + Yy + Z = Q may be
a normal to the secondary caustic (x* + tf- a)

2 + 16A (x- m} = 0, or it is the tangential

equation of the caustic, which is therefore a curve of the class 6 only. The equation

may be written in the more convenient form

Z + 2Z SX (mZ* - AX*} + (X* + Y*} (mZ*
-
AX*}* - &Y* (aZ + 4&amp;gt;AX)

= 0.

XXXVIII

To compare the last result with that previously obtained for the caustic by
reflexion, I write /*

= -l, and putting also c = l and Z = a (for the equation of the

reflected ray was assumed to bo Xx + Yy + a = 0), we have

a = a2 + 2, A=$a, m =
(1 + 2a2

),
ZiCt

and the equation becomes, after a slight reduction,

4a4 + 4a2JT (2a
2 + 1 - X*} + (X* + F2

) (2a
2 + 1 - X*}*

- 4a*Y* (a
2 + 2 + 2X) = 0,

which may be written

(2a
2 + X (2a

2 + 1 - X2

))
2 + F2

(- 4a2 + 1 - 8a*X - 2 (2a
2 + 1) X- + X4

)
=

;

this divides out by the factor (X + l)
3

,
and the equation then becomes,

(X*
- X - 2a2

)
2 + F2

((X - I)
2 - 4a2

)
= 0,

which agrees with the result before obtained.

c. ii. 48
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XXXIX.

Again, to compare the general equation with that previously obtained for parallel

rays refracted at a circle, we must write /*
= T, c=l, a = oc

,
Z = k (for the equation

of the refracted ray was taken to be Xx + Yy + k = 0) ;
we have then

a = 1 + k&quot;

2 + k-a2

,
A = p2a2

,
m = x- (l + (1 + k-) a

2

) ,

and, after the substitution, a = oo . The equation becomes in the first instance

-
A;

3F2

(1 + k3 + kW + 2k2aX) = :

and then putting a = x&amp;gt;

, or, what is the same thing, attending only to the terms

which involve a2
,
and throwing out the constant factor k4

,
we obtain

(X2 + F2

) (X2 - 1 - k-y
- 4 2F2 = 0,

or

which agrees with the former result.

XL.

It was remarked that the ordinary construction for the secondary caustic could

not be applied to the case of parallel rays (the entire curve would in fact pass off

to an infinite distance), and that the simplest course was to measure the distance

GQ from a line through the centre of the refracting circle perpendicular to the

direction of the rays. To find the equation of the resulting curve, take the centre of

the circle as the origin and the direction of the incident rays for the axis of x\ let

the radius of the circle be taken equal to unity, and let p, denote, as before, the

index of refraction. Then if a, fi are the coordinates of the point of incidence of a

ray, we have 2 + /y
2 =l, and considering a, /3 as variable parameters connected by this*

equation, the required curve is the envelope of the circle,

**{(- )P+ (y-0P}-*-a
Write now a = cos 6, /3 = sin 0, then multiplying the equation by

-
2, and writing

1 + cos 20 instead of 2 cos2
0, the equation becomes

1 + cos 20 - 2/z
2

(x
2 + y-

- 2x cos -
2# sin + 1 )

= 0,

which is of the form

A cos 20 + B sin 20 + C cos + D sin + E=0,
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and the values of the coefficients are

379

C =

D =

Substituting these values in the equation

;

12 (A- + #&amp;gt;)

- 3 (C
3 + D 2

) + 4 2

]

3

-
(274 (6*

- D2

) + 545CD -
(72 (A* + B2

) + 9 (G
2 + 2

))
E + 8E3

}*
= 0,

the equation of the envelope is found to be

16 ((1 yU,

2 + yli

4
) (yU,

2 + yU,

4

) (tK
z +

4 6/X
2

CyU.
4 + 4yLt

6

-
3yu-

4 + 6/i
6

) (a? + y^)

+ 4yu,
6
(a;

2 + i/
2
)
3

which is readily seen to be only of the 8th order. But to simplify the result, write

first (#
2 + 2/

2
-l) + l, and 2#2 - 1 -(x

z + y*- 1) in the place of #2 + y
2 and x2 -yz

respec

tively, the equation becomes

-
/*

2

) (x
n- + y

2 -
1) + ^ (a

f
2 (1

-

Write for a moment 1 p? = q, fj? (a* + y* I)
=

p, the equation becomes

4 (g
2 -

gp + ^2)3
_
(2^

_ 3^ _
3^2 + %pS

_
27/^V)

2 =
;

or developing,

4 (g
2 -

grp + p
2

)
3 -

(2g
3 - 3fp - 3^2 + 2/j

3
)
2

+ 54 (2
3 -

3g
2

p
-

3&amp;lt;7p

2 + 2p
3

) ^
4aC - 729^ = 0,

and reducing and dividing out by 27, this gives

qY (p -q)* + 2(p + q) (2p -q)(p- 2q)^ - 27/iV = 0,

482
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whence replacing q, p by their values, the required equation is

(1
-^ (X* + 7/

2 -
I)

2

(p? (Of + f) ~ 1
)

2

+ 2
(p? (a;

2 4- if)
-

2yti
2 +

1) (2^
2
(a? + f)

-
/*

2 -
1) (p? (& + f)

~ 2 +
V?)
^ - 2V^ = 0,

which is the equation of an orthogonal trajectory of the refracted rays.

In the case of reflexion, p = -l, and the equation becomes

Comparing this with the equation of the caustic, it is easy to see,

THEOREM. In the case of parallel rays and a reflecting circle, there is a secondary

caustic which is a curve similar to and double the magnitude of the caustic, the

position of the two curves differing by a right angle.

XLI.

The entire system of the orthogonal trajectories of the refracted rays might in

like manner be determined by finding the envelope of the circle (where, as before,

a, /3 are variable parameters connected by the equation a2 + /3
2 = 1

),

p? {(x
-

a)
2 + (y- /3)

2

}

-
(a + m)

2 = 0.

(The result, as far as I have worked it out, is as follows, viz.

(3-12 [i
2 + I

2mfjfx + ^ O2 + 7/
2

)] + [1
-

2/i
2 + 2i2 -

2/^
2 O2 + 7/

2

)]
2

)
3

-
([1

-
2/i

2 + 2m2 -
2/i

2 O2 + ?/
2

)] [9 + 18m? + 3mp?x + 18/i
4

(a;
8 + /)]

- 54 [m* + 2mfj?x + ^ (x
z -

t/
2

)]
-

[1
-

2/i
2 + 2m2 -

2yu
2
(x- 4-

2/

2

)]
3

)
2 = 0,

which, it is easy to see, is an equation of the order 8 only. Added Sept. 12. A. C.j
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146.

A MEMOIR ON CURVES OF THE THIRD ORDER.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVII. for the

year 1857, pp. 415 446. Received October 30, Read December 11, 1856.]

A CURVE of the third order, or cubic curve, is the locus represented by an

equation such as U =( *$x&amp;gt; 2/&amp;gt;

2)
3 =

;
and it appears by my

&quot; Third Memoir on

Quantics,&quot; [144], that it is proper to consider, in connexion with the curve of the third

order 7=0, and its Hessian HU=Q (which is also a curve of the third order), two

curves of the third class, viz. the curves represented by the equations PU=0 and QU=0.
These equations, I say, represent curves of the third class; in fact, PU and QU are

coiitravariants of U, and therefore, when the variables x, y, z of U are considered as

point coordinates, the variables
97, of PU and QU must be considered as line

coordinates, and the curves will be curves of the third class. I propose (in analogy
with the form of the word Hessian) to call the two curves in question the Pippiari
and Quippian respectively. [The curve P7=0 is now usually called the Cayleyan.]
A geometrical definition of the Pippian was readily found

;
the curve is in fact Steiner s

curve R mentioned in the memoir &quot;Allgemeine Eigenschafteii der algebraischen Curven,&quot;

Crelle, t. XLVII. [1854] pp. 1 6, in the particular case of a basis-curve of the third

order; and I also found that the Pippian might be considered as occurring implicitly
in my &quot;Memoire sur les courbes du troisieme ordre,&quot; Liouville, t. IX. [1844] pp.
285 293 [26] and &quot;Nouvelles remarques sur les courbes du troisieme ordre,&quot; Liouville,

t. x. [1845] pp. 102 109 [27]. As regards the Quippian, I have not succeeded in

obtaining a satisfactory geometrical definition
;
but the search after it led to a variety

of theorems, relating chiefly to the first-mentioned curve, and the results of the investi

gation are contained in the present memoir. Some of these results are due to Mr
Salmon, with whom I was in correspondence on the subject, The character of the

results makes it difficult to develope them in a systematic order; but the results

are given in such connexion one with another as I have been able to present them
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in. Considering the object of the memoir to be the establishment of a distinct

geometrical theory of the Pippian, the leading results will be found summed up in

the nine different definitions or modes of generation of the Pippian, given in the con

cluding number. In the course of the memoir I give some further developments

relating to the theory in the memoirs in Liouville above referred to, showing its

relation to the Pippian, and the analogy with theorems of Hesse in relation to the

Hessian.

Article No. 1. Definitions, &c.

1. It may be convenient to premise as follows: Considering, in connexion with

a curve of the third order or cubic, a point, we have :

(a) The first or conic polar of the point.

(b) The second or line polar of the point.

The meaning of these terms is well known, and they require no explanation.

Next, considering, in connexion with the cubic, a line

(c) The first or conic polars of each point of the line meet in four points,
which are the four poles of the line.

(d) The second or line polars of each point of the line envelope a conic, which
is the lineo-polar envelope of the line.

And reciprocally considering, in connexion with a curve of the third class, a line,

we have :

(e) The first or conic pole of the line.

(/) The second or point-pole of the line.

And considering, in connexion with the curve of the third class, a point

(g) The first or conic poles of each line through the point touch four lines,

which are the four polars of the point.

(h) The second or point poles of each line through the point generate a conic

which is the point-pole locus of the point.

But I shall not have occasion in the present memoir to speak of these reciprocal

figures, except indeed the first or conic pole of the line.

The term conjugate poles of a cubic is used to denote two points, such that the
first or conic polar of either of them, with respect to the cubic, is a pair of lines

passing through the other of them. Reciprocally, the term conjugate polars of a curve
of the third class denotes two lines, such that the first or conic pole of either of

them, with respect to the curve of the third class, is a pair of points lying in the
other of them.
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The expression, a syzygetic cubic, used in reference to two cubics, denotes a curve

of the third order passing through the points of intersection of the two cubics; but

in the present memoir the expression is in general used in reference to a single cubic,

to denote a curve of the third order passing through the points of intersection of

the cubic and its Hessian. As regards curves of the third class, I use in the memoir

the full expression, a curve of the third class syzygetically connected with two given
curves of the third class.

It is a well-known theorem, that if at the points of intersection of a given line

with a given cubic tangents are drawn to the cubic, these tangents again meet the

cubic in three points which lie in a line
;

such line is in the present memoir

termed the satellite line of the given line, and the point of intersection of the two

lines is termed the satellite point of the given line
;

the given line in reference to

its satellite line or point is termed the primary line.

In particular, if the primary line be a tangent of the cubic, the satellite line

coincides with the primary line, and the satellite point is the point of simple inter

section of the primary line and the cubic.

Article No. 2. Group of Theorems relating to the Conjugate Poles of a Cubic.

2. The theorems which I have first to mention relate to or originate out of the

theory of the conjugate poles of a cubic, and may be conveniently connected together

and explained by means of the accompanying figure.

The point E is a point of the Hessian
;

this being so, its first or conic polar,

with respect to the cubic, will be a pair of lines passing through a point F of the

Hessian
;

and not only so, but the first or conic polar of the point F, with respect

to the cubic will be a pair of lines passing through E. The pair of lines through

x^
(UNIVERSITY)
\^ OF :/
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F are represented in the figure by FBA, FDC, and the pair of lines through E are

represented by EGA, EDC, and the lines of the one pair meet the lines of the other

pair in the points A, B, C, D. The point 0, which is the intersection of the lines

AD, BC, is a point of the Hessian, and joining EO, FO, these lines are tangents to

the Hessian at the points E, F, that is, the points E, F are corresponding points of

the Hessian, in the sense that the tangents to the Hessian at these points meet in

a point of the Hessian. The two points E, F are, according to a preceding definition,

conjugate poles of the cubic.

The line EF meets the Hessian in a third point G, and the points G, are

conjugate poles of the cubic. The first or conic polar of G, with respect to the cubic,
is the pair of lines AOD, BOG meeting in 0. The first or conic polar of 0, with

respect to the cubic, is the pair of lines GEF and Gf efe meeting in G. The four

poles of the line EO, with respect to the cubic, are the points of intersection of the
first or conic polars of the two points E and 0, that is, the four poles in question
are the points F, F, e, e . Similarly, the four poles of the line FO, with respect to

the cubic, are the points E, E, f, f.

The line EF, that is, any line joining two conjugate poles of the cubic, is a tangent
to the Pippian, and the point of contact T is the harmonic with respect to the points
E, F (which are points on the Hessian) of G, the third point of intersection with
the Hessian. Conversely, any tangent of the Pippian meets the Hessian in three

points, two of which are conjugate poles of the cubic, and the point of contact is the

harmonic, with respect to these two points, of the third point of intersection with
the Hessian.

The line GO in the figure is of course also a tangent of the Pippian, and more
over the lines FBA, FDC (that is, the pair of lines which are the first or conic polar
of E} and the lines EGA, EDB (that is, the pair of lines which are the first or

conic polar of F} are also tangents to the Pippian. The point E represents any
point of the Hessian, and the three tangents through E to the Pippian are the line EFG
and the lines EGA, EDB; the line EFG is the line joining E with the conjugate
pole F, and the lines EGA, EDB are the first or conic polar of this conjugate poleF with respect to the cubic. The figure shows that the line EO (the tangent to

the Hessian at the point E) and the before-mentioned three lines (the tangents
through E to the Pippian), are harmonically related, viz. the line EO the tangent of
the Hessian, and the line EF one of the tangents to the Pippian, are harmonics
with respect to the other two tangents to the Pippian. It is obvious that the

tangents to the Pippian through the point F are in like manner the line GFJE, and
the pair of lines FBA, FBC, and that these lines are harmonically related to FO the

tangent at F of the Hessian. And similarly, the tangents to the Pippian through
the point are the line GO and the lines AOD, BOG, and the tangents to the

Pippian through the point G are the line GO and the lines GFE and Gf efe . Thus
all

^

the lines of the figure are tangents to the Pippian except the lines EO, FO,
which are tangents to the Hessian. It may be added, that the lineo-polar envelope
of the line EF with respect to the cubic is the pair of lines OE, OF.
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It will be presently seen that the analytical theory leads to the consideration of

a line IJ (not represented in the figure): the line in question is the polar of E
(or F) with respect to the conic which is the first or conic polar of F (or E} with

respect to any syzygetic cubic. The line IJ is a tangent of the Pippian, and more
over the lines EF and IJ are conjugate polars of a curve of the third class

syzygetically connected with the Pippian and Quippiaii, and which is moreover such

that its Hessian is the Pippian.

Article Nos. 3 to 19. Analytical investigations, comprising the proof of the

theorems, Article No. 2.

3. The analytical theory possesses considerable interest. Take as the equation of

the cubic,

U Xs + y
z + 3 + Qlxyz = ;

then the equation of the Hessian is

HU= I
2

(sc
s + y

3 + zz

)
-

(1 + 2F) xyz = ;

and the equation of the Pippian in line coordinates (that is, the equation which

expresses that %x + yy + %z = Q is a tangent of the curve) is

PU= -l(? + &amp;lt;n*+?-) + (- 1 + 4P) 7? = 0.

The equation of the Quippian in line coordinates is

QU=(l- 1013

) (f + if+ ?) - 6/2

(5 + 4&amp;gt;l

3

) &=0;
and the values of the two invariants of the cubic form are

S=-l+l*,

T = 1 - 2013 - 81s
,

values which give identically,

T* - 64 3 =
(1 + 813)

S
;

the last-mentioned function being in fact the discriminant.

4. Suppose now that (X, Y, Z) are the coordinates of the point E, and

(X ,
Y

,
Z ) the coordinates of the point F; then the equations which express that

these points are conjugate poles of the cubic, are

l(YZ + YZ) = 0,

YY +l(ZX +Z X) =
Q,

ZZ + l(XY + X Y)=0;

and by eliminating from these equations, first (X , Y, Z
),

and then (X, Y, Z), we find

F (X 3 + Y3 + Z 3

)
-

(1 + 2l3

) XYZ =
0,

I
2

(X 3 + Y 3 + Z s

)
-

(1 + W) X YZ = 0,

which shows that the points E, F are each of them points of the Hessian.

c, ii. 49
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5. I may notice, in passing, that the preceding equations give rise to a somewhat

singular unsymmetrical quadratic transformation of a cubic form. In fact, the second

and third equations give X : Y : Z =YZ-12X2
: 1

2XY-IZ2
: 1

2ZX - IY2
. And sub

stituting these values for X
,
Y

,
Z in the form

I
2

(X
3 + Y2 + Z *)

-
(1 + 2F)X YZ

,

the result must contain as a factor

I
2

(X
3+Y3 + Z 3

)
-

(1 + 21s

) XYZ ;

the other factor is easily found to be

- I
3

(I

3 (Xs +Y3 + Z3

) + 31XYZ).

Several of the formula given in the sequel conduct in like manner to unsymmetrical

transformations of a cubic form.

6. I remark also, that the last-mentioned system of equations gives, symmetrically,

X 2
: Y 2

: Z 2
: YZ : ZX : X Y

= YZ-12X2
: ZX-12Y2

: XY-12Z2
: PYZ-IX2

: 1
2ZX-IY2

: 1
2XY-IZ2

;

and it is, I think, worth showing how, by means of these relations, we pass from

the equation between X
, Y, Z to that between X, Y, Z. In fact, representing, for

shortness, the foregoing relations by

X 2
: Y2

: Z 2
: YZ : ZX : X Y = A : B : C : F : G : H,

we may write

X = AF=GH, Y = BG = HF, Z = CH = FG, ABC = FGH
\

and thence

X 3 = AF . G2H 2
,
Y3 = BG . &F2

,
Z 3 = CH . F2G2

,
X YZ = F2G2H 2

;

hence

But we have

I
2

(AGH + BHF+ CFG] = -(2l* + l
s

) (X3+Y3 + Z 3

) XYZ + (I* + 2F) (Y3Z3 + Z3X3 +X3Y3
),

-
(1 + 2Z3

) FGH =
(1

5 + 2?) (.Y
3 + Y3 + Z 3

) XYZ+ (I* + 2Z7

) (Y3Z3 + Z3X3 +X3Y3

)

+ 1
3

(1
- I

3

) (1 + 2l3

) X2Y2Z*
;

and thence

I
2 (AGH +BHF+ CFG) - (1 + W) FGH

= -l3 (l- I
3

) {& (X
s+Y3 + Zs

) XYZ - (1 + 2Z3

) X2Y2Z2

} ;

and finally,

X2)(lZX- Y2)(IXY - Z2)XYZ
x

{I
2 (Xs +Y3 + Z3

~)

-
(1 + 2F) XYZ}.
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We have also, identically,

ABC-FGH =
\(-l + l*)XYZ {P (X

3 + F3 + Zs

)
-

(1 + 2?3

) XYZ],
v

which agrees with the relation ABC FGH =0.

7. Before going further, it will be convenient to investigate certain relations

which exist between the quantities (X, Y, Z), (X ,
Y

,
Z

), connected as before by
the equations

XX + l(YZ + Y Z) = 0,

YY + I (ZX + Z X} = 0,

ZZ + l(XY + X Y) = 0,

and the quantities

f = YZ - Y Z, a. = XX = -}(YZ + YZ),
L

= ZX - Z X, = FF = - (ZX + Z X),

=XY-X Y, y=ZZ =-

We have identically,

2XX (YZ - YZ) + (XY + X Y) (ZX - ZX) + (ZX + Z X) (XY -X Y) = ;

or expressing in terms of
, 77, , a, /3, y the quantities which enter into this

equation, and forming the analogous equations, we have

ryr)- /3f=0, (A)

We have also

X2YZ -X 2YZ = {-(XY +X Y)(ZX - Z X) + (ZX + Z X) (XY - X Y)}.

and thence in like manner,

X TZ - X *YZ = 1 (777
- M), (B)

Z*X Y - X *YZ =
2.1

Again, we have

(
YZ - Y Zy- = ( YZ + Y Z)*

- 4YYZZ
,

(ZX - Z X) (XY -X Y) = - (ZX + Z X) (XY +X Y) + 2XX ( YZ + YZ) ;

492
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?
-

p&quot;-

*? = i/3-4yo,

9 1

7*-*

and conversely

i

l

i

-*

-

8. It is obvious that

| + 7;y + z =

is the equation of the line EF joining the two conjugate poles, and it may be

shown that

OLX + fty + yz =

is the equation of the line IJ, which is the polar of E with respect to a conic

which is the first or conic polar of F with respect to any syzygetic cubic. In fact,

the equation of a syzygetic cubic will be a? + y
3 + z3 + 6\xyz = 0, where X is arbitrary,

and the equation of the line in question is

(Xdx + Ydy + Zdz) (X&quot;dx + Y&quot;dy + Z dz) (x
s + f + z* + Q\x.yz]

=
;

or developing,

XXx+YY y

+ \{YZ + Y
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and the function on the left-hand side is

fl-y) (&amp;lt;ue
+ @y + fz),

\ /

which proves the theorem.

9. The equations (A) by the elimination of (, 77, ), give

-
Z(a

3 + /3
3 + 7

3

) + (- 1 + 4Z3

) a/37
= 0,

which shows that the line // is a tangent of the Pippian : the proof of the theorem

is given in this place because the relation just obtained between a, {3, 7 is required

for the proof of some of the other theorems.

10. To find the coordinates of the point G in which the line EF joining two

conjugate poles again meets the Hessian.

We may take for the coordinates of G,

uX + vX ,
uY + v Y, uZ + vZ

;

and, substituting in the equation of the Hessian, the terms containing us
,
vs

disappear,

and the ratio u : v is determined by a simple equation. It thus appears that we

may write

u = -3l*(XX
* + YY2 + ZZ 2

~) +(1 + 2F) (YZX + ZX Y + X YZ\
v = W (X*X + PY + Z*Z }

-
(1 + 2Z3

) (YZX + ZXY + XYZ } ;

hence introducing, as before, the quantities , 77, , a, /3, 7, we find

uX + vX = 3l2

(777
-

f) + (1 + 21s

) (X*YZ
r -

X&quot;*YZ}

but from the first of the equations (B),

and therefore the preceding value of uX + vX becomes

which is equal to

Hence throwing out the constant factor, we find, for the coordinates of the point G,

the values

11. To find the coordinates of the point 0.

Consider as the point of intersection of the tangents to the Hessian at the

points E, F, then the coordinates of are proportional to the terms of

- 1 -t-
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Hence the ^-coordinate is proportional to

(3
2F2 - 1 + WZX) (WZ * -1 + 213X Y) - (WZ* - 1 + 213XY) 3PF2 -

which is equal to

1 + 2f) FF (ZF - Z F) + 3J2

(1 + 2Z8

) (Z - Z X)

or introducing, as before, the quantities , 77, a, /3, 7, to

But by the first of the equations (A) /3 + 777
= 2/a, and the preceding value thus

becomes (
1 7Z3 + 8 6

) a^. Hence throwing out the constant factor the coordinates of

the point are found to be

12. The points (r, are conjugate poles of the cubic.

Take a, b, c for the coordinates of G, and a
, b

,
c for the coordinates of 0, we have

a, b, c =
&amp;lt;Yn /3, c 7^, /3% ay,

. a
,
b

,
c =

a.% , (3i) , &amp;lt;y.

These values give aa + I (be + Vc)

= ^ (a7 + ^2
) + r;

2

(- te/8) + ? (lay)

or substituting for 77, r?

2
, ^

2
, f their values in terms of a, /S, 7, this is

2

lay)

which is identically equal to zero. Hence, completing the system, we find

aa! + I (be + b c)
= 0,

bb + I (ca
f + c a) = 0,

cc + I (ab + a b)
= 0,

equations which show that (as well as G) is a point of the Hessian, and that the

points G, are corresponding poles of the cubic.
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13. The line EF joining a pair of conjugate poles of the cubic is a tangent of

the Pippian
1

.

In fact, the equations (A), by the elimination of a, /3, 7, give

-l(? + ^ + 3

) + (
- 1 + 4/3

) fr?= 0,

which proves the theorem.

14. To find the equation of the pair of lines through F, and to show that these

lines are tangents of the Pippian.

The equation of the pair of lines considered as the first or conic polar of the

conjugate pole E, is

X (x
2 + %*) + Y(y2 + 2lzas) + Z (z

2 + 2losy)
= 0.

Let one of the lines be

\x + /j,y + vz = 0,

then the other is

X
x+

Y
i

Z
Z==Q .

A,
yLt V

and we find

2lX/j,v Yv2

Zfj? = 0,

- Xv2 + 2lYv\ - Z\2 =
0,

-
XfM

2 - FA 2 + 2lZfjiv
= 0,

any two of which determine the ratios X, //,,
v.

The elimination of X, Y, Z gives

= 0,

which is equivalent to

\fjiv {

- 1 (\
3 + fi? + v3

) + (
- 1 + 4Z3

) Xfja,}
=

;

or, omitting a factor, to

-
l(\

3 + p? + v3

) + (
- 1 + 4Z3

) \fjiV = 0,

which shows that the line in question is a tangent of the Pippian.

15. To find the equation of the pair of lines through 0.

The equation of the pair of lines through E is in like manner

X
&amp;lt;&amp;gt;

2 + Zlyz) + Y (y
2 + Zlzx) + Z (z* + Zlxy} = ;

1 Steiner s curve R
, in the particular case of a cubic basis-curve, is according to definition the envelope

of the line EF, that is, the curve JR in the particular case in question is the Pippian.
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and combining this with the foregoing equation,

X
(&amp;gt;

2 + Zlyz) + Y(y
2 + Zlzx) + Z(z

2 + 2lxy)
=

of the pair of lines through F, viz. multiplying the two equations by

X2X + Y2Y + Z 2Z
,

- (XX 2 + YY 2 + ZZ 2

),

and adding, then if as before

a : b : c = yrj /3 : a 7! : /3f a??,

we find as the equation of a conic passing through the points A, B, C, D, the equation

a O2 + 2lyz) + b(f + ZLzx) + c
&amp;lt;&amp;gt;

2 + 2%) = 0.

But putting, as before,

a : V c = a% : 77 : 7

then a
,

b
,

c are the coordinates of the point 0, and the equations

aa + 1 (be + b c)
= 0,

W + l(ca +c a)
=

Q,

cc + I (ab
f

+ a b)
= 0,

show that the conic in question is in fact the pair of lines through the point 0.

16. To find the coordinates of the point F, which is the harmonic of G with

respect to the points E, F.

The coordinates of the point in question are

uX - vX
,
uY-vY

,
uZ- vZ

,

where u, v have the values given in No. 10, viz.

. u=- 3l2 (XX 2 + FF/2 + ZZ -i) + (1 + 2Z3

) (Y ZX + ZX Y + X Y Z),

v = 3Z2

(X
2X +Y2Y + Z2Z )

-
(1 + 2F) (YZX +ZXY + XYZ }

these values give

uX -vX = - 3l2

[2X
2X 2 + (XY + X Y) YY + (XZ

e + X Z) ZZ }

+ (1 + W) {(XY + X Y) (XZ
f + X Z) + XX (YZ +Y Z};

and therefore

uX - vX = - 3/2

J2a
2 -

f /3y\ + (I + 2l3

) &0y-l a
I

*
J (

l I

and consequently, omitting the constant factor, the coordinates of F may be taken to be

-
lot

2 + j3y,
-

1/3
2 + 7, -

fy
2 + a/3.
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17. The line through two consecutive positions of the point F is the line EF.

The coordinates of the point T are

la&quot; + 7, Ift
2 + ya, ly

2 + a/3 ;

and it has been shown that the quantities a, /3, 7 satisfy the equation

- 1 (a
3 +& + T

3
) + (- 1 + Us

) a/37 = 0.

Hence, considering a, jB, 7 as variable parameters connected by this equation, the

equation of the line through two consecutive positions of the point F is

- 3Za2 + (- 1 + 4Z3

) #y,
-

3Z/3
2 + (- 1 + 4?) ya,

- 3/7
2 + (- 1 + 4/3

) a/3 I =
;

7 , -2//3

/3

and representing this equation by

Lx + My + Nz = 0,

we find

L = (4^7 - a2

) (- 3/a2 + (- 1 + &amp;lt;

+ (a/3+ 2fy
2

) (- 3//3- + (- 1 + 4F) 7a)

+ (7 + 2Z/3
2

) (- 3/7- + (- 1 + 4/3) a) ;

or, multiplying out and collecting,

L = 3k4 + (- 1 - 8F) a2
/37 + (- 51 + 8/4

) (a/3
3 + a7

8

) + (- 16/ 2 + 16/3
) /3V :

but the equation

-
I (a

3 + /3
s + 7

3
) + (- 1 + 4Z3

) a/37 -

gives

and we have

L = (- 4 + 4?)
2
/37 + (- 8Z + 8?) (a/3

3 + a7
3

) + (- 16/2 + 16?) /3-y&quot;-

= (- 4 + 4 3

) (ay + 2ZyS
a

) (a/S + 2y2

) ;

or, in virtue of the equations (D),

L = (4i + 4 3
) l

a& . Pfy = (- 4 + 4/3
) Z

4 2n - (- 4 + 4/ :

Hence, omitting the common factor, we find L : M : N= % :
77

: and the equation
+ Nz = becomes

fa? + riy + & = 0,

C. ii. 50
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which is the equation of the line EF, that is, the line through two consecutive positions

of T is the line EF; or what is the same thing, the line EF touches the Pippian

in the point F which is the harmonic of G with respect to the points E, F.

18. The lineo-polar envelope of the line EF, with respect to the cubic, is the

pair of lines OE, OF.

The equation of the pair of lines OE, OF, considered as the tangents to the

Hessian at the points E, F, is

x {(WX
2 - r+W3Y Z ) x + (3Z

2 Y f* - 1+^13ZX ) y + (WZ&quot;&amp;gt;

- l+WX Y ) z]

Here on the left-hand side the coefficient of #2 is

WX 2X f* - 3Z2
(1 + 21s

) (X*Y Z + X *YZ) + (1 + 21s

)
2 YY ZZ

,

which is equal to

9Z4a2 - 3J2

(1 + 21s
) (l

2

/3y + a2

)

that is

(-l + l*){3loe+2([+

and the coefficient of yz is

9Z4

( F2^ 2 + Y/2Z2
)
- 3^ 2

(1 + 21s

) (YY (XY + X Y) + ZZ (XZ
f + X Z))

which is equal to

9^
f
1 a2 -

2/37)
- 3^2

(1 + 2) f
- ?

0y] + (1 + W? f
-

7 ) ,

\* / \ f / \ i /

that is

Hence completing the system and throwing out the constant factor, the equation of

the pair of lines is

(3k
2 + 2(1 + 21s

) /37 , 3Z/3
2 + 2(1+ 21s

) ya, Sly* + 2(1 + 21s
) *&

But the equation of the line EF is ? +^ + ? = 0, and the equation of its liueo-polar

envelope is

fc v _
t j / &amp;gt; b v

,
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or expanding,

(yz-lW, zx-frf, xy-l?#, l*yz -Itf, Vzx-ly\ Vxy
-

te%%, 77, & =
;

or arranging in powers of x, y, z,

and if in this equation we replace
2

,
&c. by their values in terms of a, @, 7, as

given by the equations (D), we obtain the equation given as that of the pair of lines

OE, OF.

19. It remains to prove the theorem with respect to the connexion of the lines

EF, IJ.

The equations (A) show that the two lines

+&= 0,

= 0,

(where , 77, and a, /3, 7 have the values before attributed to them) are conjugate

polars with respect to the curve of the third class,

in which equation , 77, denote current line coordinates. The curve in question is of

the form APU + BQU 0. We have, in fact, identically,

It is clear that the curve in question must have the curve PU=0 for its Hessian;

and in fact, in the formula of my Third Memoir, [144]

2
, ISTS ,

+ ( 88, T
,
-8S2

,
-T8 $a, /3)

S
QU,

the coefficient of QU is

and therefore, putting a = \T, j3
= 4$, we find

Article No. 20. Theorem relating to the curve of the third class, mentioned in the

preceding Article.

20. The consideration of the curve 3T.PU 4$. QU= 0, gives rise to another

geometrical theorem. Suppose that the line (, 77, ),
that is, the line whose equation

is %x + tjy + & 0&amp;gt;
is with respect to this curve of the third class one of the four

polars of a point (X, Y, Z) of the Hessian, and that it is required to find the envelope

of the line %x + rjy+z = 0.

502
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We have

X : Y : Z = l?-rt: kf-& : I? ~ fr,

and X, Y, Z are to be eliminated from these equations, and the equation

of the Hessian. We have

1
3

(%
3

+r)
3 +

-wjc
+ 91

X7Z =

4

-

and thence

HU=

and equating the right-hand side to zero, we have the equation in line coordinates of

the curve in question, which is therefore a curve of the sixth class in quadratic

syzygy with the Pippian and Quippian.

Article No. 21. Geometrical definition of the Quippian.

21. I have not succeeded in obtaining any good geometrical definition of the

Quippian, and the following is only given for want of something better.

The curve

aU + G/3HU)}-P(GHU){T(*U+(J0HU).P(aU+60HU)}=(),

which is derived in what may be taken to be a known manner from the cubic, is in

general a curve of the sixth class. But if the syzygetic cubic a.U + G/3HU = be

properly selected, viz. if this curve be such that its Hessian breaks up into three

lines, then both the Pippian of the cubic aU+6/3HU=Q, and the Pippian of its

Hessian will break up into the same three points, which will be a portion of the

curve of the sixth class, and discarding these three points the curve will sink down

to one of the third class, and will in fact be the Quippian of the cubic.

To show this we may take

aU + 6/3HU = a? + y
3 + z3

,
= Q
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as the equation of the syzygetic cubic satisfying the prescribed condition, for this value

in fact gives

a system of three lines. We find, moreover,

P (aU + U/3HU) = P O3 + f
and

P [QH(aU + 6/3HU)}=P(-

the latter equation being obtained by first neglecting all but the highest power of I in

the expression of PU, and then writing l = \: we have also T(aU+ Q0HU) = 1.

Substituting the above values, the curve of the sixth class is

or throwing out the factor gr)%, we have the curve of the third class,

Now the general expression in my Third Memoir, viz.

P(aU + Q0HU) =
(a

3 + 128010* + 4!T/S
S

) PU + (tf/3 -4S/3*) QU,

putting a = 0, =
1, gives

or what is the same thing,

and the curve of the third class is therefore the Quippian QU = 0. It may be remarked,

that for a cubic U = the Hessian of which breaks up into three lines, the above

investigation shows that we have PU= t;w, P(QHU) = 4^f. and T=l, and conse

quently that 4iT.PU+P(QHlT) ought to vanish identically; this in fact happens in

virtue of the factor S on the right-hand side, the invariant 8 of a cubic of the form

in question being equal to zero
;

the appearance of the factor S on the right-hand
side is thus accounted for d priori.

Article No. 22. Theorem relating to a line which meets three given conies in six points in

involution.

22. The envelope of a line which meets three given conies, the first or conic,

polars of any three points with respect to the cubic, in six points in involution, is

the Pippian.

It is readily seen that if the theorem is true with respect to the three conies,

^=0
dz

OF THE

f UNIVERSITY
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it is true with respect to any three conies whatever of the form

N dU dU dU
X-j- + tt-T- + y-T- = O

f

dx dy dz

that is, with respect to any three conies, each of them the first or conic polar of

some point (X, //., v) with respect to the cubic. Considering then these three conies,

take %x + rjy + ^z = as the equation of the line, and let (X, Y, Z) be the coordinates

of a point of intersection with the first conic, we have

X*+21YZ =0;

and combining with these a linear equation

in which (a, /3, 7) are arbitrary quantities, we have

X : Y : Z=m-j3S: a?-tf : ^-
and hence

-
017)

= 0,

an equation in (a, /3, 7) which is in fact the equation in line coordinates of the two

points of intersection with the first conic. Developing and forming the analogous

equations, we find

which are respectively the equations in line coordinates of the three pairs of intersections.

Now combining these equations with the equation 7 = 0, we have the equations
of the pairs of lines joining the points of intersection with the point (# = 0, y=0), and

if the six points are in involution, the six lines must also be in involution, or the

condition for the involution of the six points is

= 0,

that is,

or, reducing and throwing out the factor 3
,
we find

- l(? + &amp;gt;n

8 + ?) + (-1 +

which shows that the line in question is a tangent of the Pippian.
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It is to be remarked that any three conies whatever may be considered as the

first or conic polars of three properly selected points with respect to a properly selected

cubic curve. The theorem applies therefore to any three conies whatever, but in this

case the cubic curve is not given, and the Pippian therefore stands merely for a curve

of the third class, and the theorem is as follows, viz. the envelope of a line which

meets any three conies in six points in involution, is a curve of the third class.

Article No. 23. Completion of the theory in Liouville, and comparison with analogous
theorems of HESSE.

In order to convert the foregoing theorem into its reciprocal, we must replace the

cubic U = by a curve of the third class, that is we must consider the coordinates

which enter into the equation as line coordinates
;

and it of course follows that the

coordinates which enter into the equation PU = must be considered as point

coordinates, that is we must consider the Pippian as a curve of the third order : we
have thus the theorem

;
The locus of a point such that the tangents drawn from it

to three given conies (the first or conic poles of any three lines with respect to a

curve of the third class) form a pencil in involution, is the Pippian considered as a

curve of the third order. This in fact completes the fundamental theorem in my
memoirs in Liouville above referred to, and establishes the analogy with Hesse s results

in relation to the Hessian
;

to show this I set out the two series of theorems as

follows :

Hesse, in his memoirs On Curves of the Third Order and Curves of the Third

Class, Crelle, tt. xxvm. xxxvi. and xxxvm. [1844, 1848, 1849], has shown as follows :

(a) The locus of a point such that its polars with respect to the three conies

X=0, Y0, ZQ (or more generally its polars with respect to all the conies of the

series \X +pY + vZ = 0) meet in a point, is a curve of the third order V = 0.

(/8) Conversely, given a curve of the third order V=0, there exists a series of

conies such that the polars with respect to all the conies of any point whatever of

the curve V=0, meet in a point.

(7) The equation of any one of the conies in question is

, dU dU dU
X -5 1- At -3 \-V-j~ =0,
ax ay dz

that is, the conic is the first or conic polar of a point (X, /u., i&amp;gt;)

with respect to a

certain curve of the third order U=Q; and this curve is determined by the condition

that its Hessian is the given curve V=0, that is, we have VHU.

(8) The equation VHU is solved by assuming U = aV+bHV, for we have then

H (aV + bHV) = AV + BHV, where A, B are given cubic functions of
, 6, and thence

V =HU =AV+ BHV, or A = 1,B=Q; the latter equation gives what is alone important,
the ratio a : b

;
and it thus appears that there are three distinct series of conies,
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each of them having the above-mentioned relation to the given curve of the third

order F=0.

In the memoirs in Liouville above referred to, I have in effect shown that

(a ) The locus of a point such that the tangents from it to three conies, repre

sented in line coordinates by the equations X = 0, 7=0, Z=0 (or more generally with

respect to any three conies of the series \X + pY+ vZ = 0) form a pencil in involution,

is a curve of the third order V= 0.

(# ) Conversely, given a curve of the third order F=0, there exists a series of

conies such that the tangents from any point whatever of the curve to any three of

the conies, form a pencil in involution.

Now, considering the coordinates which enter into the equation of the Pippian as

point coordinates, and consequently the Pippian as a curve of the third order, I am

able to add as follows :

(7 ) The equation in line coordinates of any one of the conies in question is

, dU dU dU
A,

-jT, + fj, -j- + V -JT,
= 0,

d dtj d

that is, the conic is the first or conic polar of a line (X, p, v) with respect to a

certain curve of the third class U =
;
and this curve is determined by the condition

that its Pippian is the given curve of the third order V =
0, that is, we have

V=PU.

(& ) The equation V = PU is solved by assuming U=aPV+bQV, for we have

then P(aPV+ bQV) = AV+ BHV, where A and B are given cubic functions of a, b
;

and thence V=PU = A V+ BHV, or A=l, B = 0; the latter equation gives what is

alone important, the ratio a : b
;

and it thus appears that there are three distinct

curves of the third class ?7=0, and therefore (what indeed is shown in the Memoirs

in Liouville) three distinct series of conies having the above-mentioned relation to the

given curve of the third order V= 0.

It is hardly necessary to remark that the preceding theorems, although precisely

analogous to those of Hesse, are entirely distinct theorems, that is the two series are

not connected together by any relation of reciprocity.

Article Nos. 24 to 28. Various investigations and theorems.

24. Reverting to the theorem (No. 18), that the lineo-polar envelope of the line

EF is the pair of lines OE, OF; the line EF is any tangent of the Pippian, hence

the theorem includes the following one:
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The lineo-polar envelope with respect to the cubic, of any tangent of the Pippian,
is a pair of lines.

And conversely,

The Pippian is the envelope of a line such that the lineo-polar envelope of the
line with respect to the cubic is a pair of lines.

It is I think worth while to give an independent proof. It has been shown that
the equation of the lineo-polar envelope with respect to the cubic, of the line

r)y+z = (where , ij, are arbitrary quantities), is

v
,

y&amp;gt;

and representing this equation by

i (a, b, c, f, g, h~$x, y, zf = 0,

we find

ca - g*
=

77 (81*!-*
-

rf

ab -h* =

_ af= pi* (p + r)3 + 3) + ^ (1 + 2 j3)

-bg = ij (W (f + rf + 3

) + 4^ (1 + 21s

)

and after all reductions,

abc - af
2 - bf - ch2 + 2fgh

or the condition in order that the conic may break up into a pair of lines is PU=0.

25. The following formulae are given in connexion with the foregoing investigation,
but I have not particularly considered their geometrical signification. The lineo-polar
envelope of an arbitrary line l-a; + i}y + &= 0, with respect to the cubic

has been represented by

(a, 6, c, /, g, fifa, y, zf = ;

and if in like manner we represent the lineo-polar envelope of the same line, with

respect to a syzygetic cubic

by

(a , V, c ,f,g
f

, hjx, y, ^- = 0,

C. ii.
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then we have

a! (be -f*) + b (ca
- f) + c (ub

-
h*) + 2/ (gh

-
af) + 2g (hf- bg) + 2h (fg

-
eft)

(^ + 2l*)(^ + ^+^)*

+ (21 + U - 32W + 8P) (f + 77 + ) fitf

+ (-24:11
* + 48W2 - 721*1 + 24/3 + .O fW,

which may be verified by writing I = I, in which case the right-hand side becomes as

it should do, 3(PU)*. If

then the formula becomes

+ 2l3

it should do, 3(PU)*. If I = --
,
that is, if the syzygetic cubic be the Hessian.

a (fe -/&amp;lt;)
+ &c. =

1

f

(1 + &quot; +W
&amp;gt;

+
&quot;
+^

I + 121* (
- 1 + 2Q13 + 56l) (f + rf +

(
+ 121 (2 + 57? + 1681* + 16

which is equal to

26. The equation

(be + b c - 2/7, . . . gh + g h - af -af,.. .$ 77, )
. U

is the equation in line coordinates of a conic, the envelope of the line which cuts

harmonically the conies

(a, b, c, / g, h ~$x, y, z? = 0,

(a ,
b

, c , f, g ,
h \x, y, zf = ;

and it a, b, &c., a
,

&c. have the values before given to them, then the coefficients

of the equation are

be + b c -2ff ={_+ 4W (I + I ) (^ + ?) + (1611
- 21* - 21 *

ca + c a -2gg =^1-^ +W (I + I ) (? + f) + (Wll
f - 21* - 21 *

ah + a b- 2hh = f {

- f + 4,11 (I + I ) (f + r,*) + (IQll
- 21* - 21 *)

gh + g h-af - af= % {(I* + I *) (f + r)
3 +

&amp;lt;*)

+ (21 + 21 + 81*1 *) fr$ + (1
+ Ul (I + I

)) r,-^-,

+ hf- bg -bg= n {(I* + I *) (f
3 + ^3 + 3) + (2J + 21 + 81H *) fr$ + (1

+ 4*11 (I + I
)) ??.

ff +f9 ~ ch -c h = S {(I* + I *) (f + ^ + H + (21 + 21 + 81*1 *) frQ +
(1
+ 4W (I + 0) frr

and we thence obtain

(be + b c - 2/7, ..,gh + g h - af - af, . . $ 77, )
2 =

T2 + 16/0

+24^/2

)

4- (4 +16(^ + ^/2

)) (V
3? + ?? + W), =
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as the condition which expresses that a line &C + 9jy + & = Q cuts harmonically its

lineo-polar envelopes with respect to the cubic and with respect to a syzygetic cubic.

27. To find the locus of a point such that its second or line polar with respect
to the cubic may be a tangent of the Pippian. Let the coordinates of the point be

(x, y, z}\ then if f + iyy+ *s=0 be the equation of the polar, we have

: 77 : f = x- + 2lyz : y- + 2lzx : z2 + Zla-y,

and the line in question being a tangent to the Pippian,

- I (f + ?f + s
) + (

- 1 + 4?)&= 0.

But the preceding values give

:! + rf + ? = (x
3 + y* + z^J + 61 (x

3 + f + 2*) xyz + 36l*a?fz* + (
- 2 + 8?

and we have therefore

I (x* + y
3 + z3

)
2 + (10Z

2 - 16Z3

) (x
s

+&amp;gt;/*
+ z*) xyz + (1 + 40? - 32^6

) tffz* = ;

or introducing U, HU in place of x3 + y* + z3
, xyz, the equation becomes

-8. U* + (Hlf)* = Q,

which is the equation of the locus in question.

28. The locus of a point such that its second or line polar with respect to the

cubic is a tangent of the Quippian, is found in like manner by substituting the last-

mentioned values of
, tj, in the equation

(1- Wl3

) (p + 7f + &quot;)

- 6/2

(5 + 4

We find as the equation of the locus,

(1
-

10?) (a? + y
3 + z3

)* +61(1- 30? - 16?) (a* + y
3 + z3

) xyz + 6? (1
- 104? - 32?) x-fz-

-2(1 + 8?)
2

(yV + z*x* + a3
}/

3

)
= 0,

where the function on the left-hand side is the octicovariant
tl
U of my Third

Memoir, the covariant having been in fact defined so as to satisfy the condition in

question. And I have given in the memoir the following expression for
tt U, viz.

+ (6 }U.HU
+ (6? }(HU}&amp;gt;

2(1+ S?)
2

(y
3z3 + z3x3 + o?y

3
).

1
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Article Nos. 29 to 31. Formula for the intersection of a cubic curve and a line.

29. If the line %x + rjy + & = meet the cubic

x* + y
3z + Qlxyz

=

in the points

to, yi, *i), O2 , y,, *2), (#3 , #,, *s),

then we have

It will be convenient to represent the equation of the cubic by the abbreviated
notation (1, 1, 1, t$xt y, *)

3 = 0; we have the two equations

(1, 1, 1, V$x, y, z)
3 =0,

& + W + & =
;

and if to these we join a linear equation with arbitrary coefficients,

OLX + /3y + yz = 0,

then the second and third equations give

* : y : 2 = /3-ryr) : y% - a : 7/7 -/3f;

and substituting these values in the first equation, we obtain the resultant of the
system. But this resultant will also be obtained by substituting, in the third equationa system of simultaneous roots of the first and second equations, and equating to
zero the product of the functions so obtained 1

. We must have therefore

(1, 1, 1,

and equating the coefficients of a
, &, y, we obtain the above-mentioned relations.

30. If a tangent to the cubic

Xs + y
3 + z3 + ftlxyz

=
at a point (,;,, y,, 2l ) of the cubic meet the cubic in the point &amp;lt;&amp;gt;

3 , y,, *,), then

^3 : y, : z, = Xl (y*
-

^3)
.

yi (Z
* _

^3)
.

gi ^, _ y^
For if the equation of the tangent is f + ny + fr = Q, then

xi*3 yiyz Z?z3
=

r)
s -&amp;gt;

:
* - p . p _ ^

and
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These values give

r)
3 -? = (y?

-
zf) (y? + z* + Gla^ya

- 8Zv)
=

(y,
s - z 3

) x - (1 + 81s

) x*,

since (xl , y , z^ is a point of the cubic
;
and forming in like manner the values of

^ %
3 and |

3
r)

3
,
we obtain the theorem.

31. The preceding values of (x3 , y3 ,
z3) ought to satisfy

(X
2 + llyfr) x3 + (y* + 2lzlXl) 2/3 + (z* + 2^) z3

= 0,

tf s
2 + y* + z* + 6^s^8

=
;

in fact the first equation is satisfied identically, and for the second equation we
obtain

^ + y? + z? = x* (y*
- z 3

)
3 + y* (z

3 - x^ + z* (x* - y*?
= - x* (yf

-
z*}

-
y* (z*

- x 3

)
- z* (V - y)

= (^ + fr
3 + ^i

3

) (y?
- z 3

) (z
3 -

x,*) (^ - yfi,

X3y3z3
=

x,y,z, (y
3 - z 3

} (z
3 - x 3

) (x
3 -

y
3
},

and consequently

^ + y-/ + z 3 + 6lx3y3z3
=

(x,
3 + y,

3 + z,
3 + Qlx,ylZl } (y

3 -
z*) (z

3 -
x*) (x

3 -
y*} = 0,

which verifies the theorem. It is proper to add (the remark was made to me by
Professor Sylvester) that the foregoing values

x3 : y3 : z3 = x,(y
3 -z 3

) : y,(z*
-

x*) : z^xf-y 3

)

satisfy identically the relation

Article Nos. 32 to 34. Formulae for the Satellite line and point.

32. The line %x + riy+z = meets the cubic

x3 + y
3 + z3 + Qlxyz =

in three points, and the tangents to the cubic at these points meet the cubic in

three points lying in a line, which has been called the Satellite line of the given line.

To find the equation of the satellite line; suppose that (#1} ylt ^), (#.,, y,, z2),

(xs , 7/3, -2-3)
are the coordinates of the point in which the given line meets the cubic;

then we have, as before,

(1, 1, 1, //?- 777, 7|-a ar)
-
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The equation of the three tangents is

II = [(#i
2 + 2fo/1 ,s 1 ) x + (yi

z + 2z1#1 ) y + (z? + Sftr^) z] ~\ = 0,

I

x [(x/ + 2ly3z3) x + (i/3
2 + 2lz3x3) y + (zs

2 + 2lx3y3) z] j

and if we put

(F is the reciprocant FU of my Third Memoir), then we have identically

F.U- U = (

and the equation of the satellite line is % x _|_ ^ y + gz = 0. In fact the geometrical

theory shows that we must have

and it is then clear that N is a mere number. To determine its value in the most

simple manner, write I = 0, y 0, x=%, z = %, we have then F . UNH=Q, where

F= 6 + r)
6 + f

6 -
2T;

3 3 - 2^f - 2fy, U= f
3 -

p.

The value of IT is IT = F . U, and we thus obtain N=l. For, substituting the above

values,

H = (tfS-zffi (xtt-ztf} (xtt-ztf)

+ &*(xi*%ef +&c.)

and we have

+ &c. = -

and thence

and consequently

n =
(77

3 - 3

)
2
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Now considering the equation

F. U-n=(& + w+&)2

(?x + r
i y + z),

in order to find
, ?/,

&quot;

it will be sufficient to find the coefficients of x3
, y

3
,
z3 in

the function on the left-hand side of the equation. The coefficient of a? in II is

+ &c.)

&c.)

and it is easy to see that representing the function

(1, 1, 1, Z$0C- 777, 7f -

(a, b, c, f, g, h, i, j, k, l$a, /8, 7) ,

the symmetrical functions can be expressed in terms of the quantities a, b, &c., and

that the preceding value of the coefficient of a? in II is

+ 21 (9hj
-

6al)

+ 40 s

(6gk
-

3fj
- Shi + 312

)

+ 813
be;

and substituting for a, &c. their values, this becomes

+ 21 {- 9

+ 4P - 6

and reducing, we obtain for the coefficient of x3 in II the following expression,

-181
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Now the coefficient of a? in F . U is simply F, which is equal to

and subtracting, the coefficient of a? in F . U U is

I
8 - 2|V -

- 48Z4
|V?&amp;gt;

which is equal to

(1 + 8F) I
8

(|
4 -

The expression last written down is therefore the value of |
8

| ,
or dividing by I

2 we
have | ,

and then the values of rj , f are of course known, and we obtain the

identical equation

F. U-tt =

|) y

and the second factor equated to zero is the equation of the satellite line of

%x + riy + %s = 0.

33. The point of intersection of the line |a? + qy + %s = with the satellite line

! # + vj y + %z = is the satellite point of the former line
;
and the coordinates of the

satellite point are at once found to be

x : y : * = (?-?) (17?+

34. If the primary line |fc-f # + r=0 is a tangent to the cubic, then
(ar,, ylt z

being the coordinates of the point of contact, we have
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these values give as before

*T{&quot;--(i+*ty**&amp;lt;* -Oi
and they give also

ft+Kp-Cl + )**
and consequently we obtain

x : y : z = x, (yi
* - ^) : y, (z,

3 -
Xl

s

) : z, (x*
-

y*),

that is, the satellite point of a tangent of the cubic is the point in which this

tangent again meets the cubic.

Article Nos. 35 and 36. Theorems relating to the satellite point.

35. If the line ^ + t}y + ^z = be a tangent of the Pippian, then the locus of
the satellite point is the Hessian.

Take (x, y, z} as the coordinates of the satellite point, then we have

x : y : z =
(r,

s -

where the parameters 77, are connected by the equation

We have

and it is easy to see that the function on the right-hand side must divide by rf
hence xs + f + z* will also divide by rf

-
f
3
,
and consequently by (rf

- 3

) (
3 - 3

) (fWe have

+ p J

and

^ + (^
3 ~

r
3

)
=

(*?
6 - 2^f

C. II. 52
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Adding these values and completing the reduction, we find

(0* + y* + J) + (tf
_

3) (?

and we have also

and thence

{
J. (of + y

3 + z3

) + Bxyz]
- (^ - ^

3

-A
+ (12M + 4B) (p + T;

3 +

+
((4i

9 + 8Z3

) A + WB) (rf? + ?? + fr?
3

).

The coefficient of 7/
3

^
3 + ^

3
|
3 + |i;

3 on the right-hand side will vanish if (1 + 2 3

) A+l*B =
0,

or, what is the same thing, if A I
2

,
B =

(1 + 2Z3

) ;
and substituting these values, we

obtain

or, what is the same thing,

I
2

(x
3 + f + z*)-(l + 2Z3

) xyz = -(r)
3 -

Hence the left-hand side vanishes in virtue of the relation between 77, f, or we have

Z
2

(# -(- ^ -f ^3

)
-

(1 + 2^3
) a;^ = 0,

which proves the theorem.

36. Suppose that (X, Y, Z) are the coordinates of a point of the Hessian, and

let (P, Q, R) be the coordinates of the point in which the tangent to the Hessian

at the point (X, Y, Z) again meets the Hessian, or, what is the same thing, the
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satellite point in regard to the Hessian of the tangent at (X, Y, Z}. And consider

the conic

X (a? + Zlyz) + Y(f + Zlzoc) + Z (a? + Zlxy),

which is the first or conic polar of the point (X, Y, Z} in respect of the cubic. The

polar (in respect to this conic) of the point (P, Q, R) will be

= 0,

+PY);

or putting for (P, Q, R) their values,

% = (Y
3 -Z3

)(X*-IYZ),

r]
= (Z

3 -X 3

)(Y*-IZX),

= (X
3-Y3

)(Z*-IXY);

and if from these equations and the equation of the Hessian we eliminate (X, Y, Z),

we shall obtain the equation in line coordinates of the curve which is the envelope

of the line %x + ijy + %z = 0. We find, in fact,

3 + ^ + 3 =
(F3 _ Z^ {ft

_ X*) (X
3 - Y3

)

I
s

(X
s +Y3 + Z3

)-

(1
- 4l3

) (Y
3Z3 + ZSX3 + X3Y3

),

=(Y3 - Z3

) (Z
3 - Xs

) (X3 - Y3
)

x + (1
_ l*

(- I (Y
3Z3 + Z3X3 + X3Y3

)

and thence recollecting that

HU= P (X
3 +Y3 + Z3

)
-

(1 + 2l3

) XYZ,

we find

and the equation of the envelope is

-UPW+H + C-

which is therefore the Pippian. We have thus the theorem:

522
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The envelope of the polar of the satellite point in respect to the Hessian of the

tangent at any point of the Hessian, such polar being in respect of the conic which
is the first or conic polar of the point of the Hessian in respect of the cubic, is the

Pippian,

Article Nos. 37 to 40. Investigations and theorems relating to the first or conic polar

of a point of the cubic.

37. The investigations next following depend on the identical equations

x{-XYZO3 + f + 2*) + (X s + P + Z3

) xyz]

{X O2 + 2lyz) + Y(f + Zlzx) + Z(z
2 + 2%)}

x {X (P - Z) fry -/3z)+Y (& - Xs

) (* - yx) + Z (X - F) (0x - ay)}

{x (X
s + 21YZ) + y (F

2 + 21ZX) + z(Z*+ 21XY)}

which is easily verified.

I represent the equation in question by

KT = WL + P

then considering (x, y, z) as current coordinates, and (X, Y, Z) and (a, 0, 7) as the
coordinates of two given points 2 and fl, we shall have U=Q the equation of the

cubic, TF=0 the equation of the first or conic polar of 2 with respect to the cubic,
P = the equation of the second or line polar of 5 with respect to the cubic. The
equation T = is that of a syzygetic cubic passing through the point 2 : the
coordinates of the satellite point in respect to this syzygetic cubic of its tangent at
2 are

X(Ya -&) : Y(Z*-X) : Z(X- P);

and calling the point in question 2 , then L = is the equation of a line through
the points 2 ,

H. The equation @ = is that of a conic, viz. the first or conic polar
of 2 with respect to a certain syzygetic cubic

- 2 (a YZ + /3ZX

depending on the points 2, H, or, what is the same thing, the conic @ = is a

properly selected conic passing through the points of intersection of the first or conic

polars of 2 with respect to any two syzygetic cubics; and lastly, K is a constant
coefficient. The equation expresses that the points of intersection of

(W=0, P =
0), (W = Q, =

0), (L = 0, P =
0), (L = 0, =

0),

lie in the syzygetic cubic T = 0.
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The left-hand side of the equation may be written

- XYZ [a (X* + 2lYZ)+/3( F 2 + 21ZX) + y(Z* + 21X Y)} (a? + $* + & + lxyz)

+ xyz {a (X* + 21YZ) + /3 (F 2 + 21ZX) + y (Z
2 + MX Y)} (X

s + P + Z* + QIX YZ) ;

and it may be remarked also that we have

- 3XYZ
{OL (X* + 21YZ) + /3 ( F 2 + 21ZX) + y(Z* + 21XY)}

equal identically to

[X(Y* - Z*)(yY- (3Z) + Y(Z* - X*) (aZ - yX) + Z(XS - F 3
) (/3X

-
F)|

- (aYZ + PZX + yXY) (Xs + F 3 + Z* + QIXYZ).

Hence if we assume

X*+ Y3 + Z3 + 61XYZ=V,
the equation will take the form

KU= WL + P&,

where the constant coefficient K may be expressed under the two different forms

K = - XYZ (a (*
2 + 21YZ) + /3 ( F2 + 21ZX) + y(& + 21X F)}

and W, L, P, have the same values as before. In the present case the point 2
is a point of the cubic : the equation W =

represents the first or conic polar of
the point in question, and the equation P = its second or line polar, which is also

the tangent of the cubic. The line L = is a line joining the point fl with the
satellite point of the tangent at 2, or dropping altogether the consideration of the

point O, is an arbitrary line through the satellite point: the first or conic polar of

2 meets the cubic twice in the point 2, and therefore also meets it in four other

points ;
the conic @ = is a conic passing through these four points, and com

pletely determined when the particular position of the line through the satellite

point is given. And, as before remarked, = is a conic passing through the points
of intersection of the first or conic polars of 2 with respect to any two syzygetic
cubics. We have thus the theorem :

The first or conic polar of a point of the cubic touches the cubic at this point,
and besides meets it in four other points; the four points in question are the points
in which the first or conic polar of the given point in respect of the cubic is

intersected by the first or conic polar of the same point in respect to any syzygetic
cubic whatever.

38. The analytical result may be thus stated : putting

K = zYZ + {3ZX

ttfc^s,OFTHF r
\

(UNIVERSITY)
v &amp;lt;
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or, if we please, considering K, X as arbitrary parameters, then the four points lie in

the conic

, 2*7, 2ttZ, -\X, -XF, -\Z~$x, y, z)
2 = 0,

or, what is the same thing, they are the points of intersection of the two conies

Xx2 + Yy
2 + Zz2 =

0,

Xyz + Yzx + Zxy = 0.

39. Considering the four points as the angles of a quadrangle, it may be shown

that the three centres of the quadrangle lie on the cubic. To effect this, assume

that the conic

(2*X, 2/cF, 2KZ, -\X, -XF, -\Z~$x, y, z)
2 =

represents a pair of lines
;

these lines will intersect in a point, which is one of the

three centres in question. And taking as, y, z as the coordinates of this point, we

have

x2
: y

2
: z2

: yz : zx : xy = 4/e
2 YZ - X2X2

: 4&amp;gt;K

2 ZX- X2F2

: 4 2 XT- \2Z2

: \2 YZ + 2/cX.Y2

and we may, if we please, use these equations to find the relation between K, X.

Thus in the identical equation x2
. y

2

(acy)
2 =

0, substituting for (c
2
, xy, y

2 their values,

and throwing out the factor Z, we find
(4&amp;gt;tc

3 -\s

) XYZ - K\2

(XS + Y s + Z3
)
= Q, and

thence, in virtue of the equation X3+ Y3 + Z3 + QIXYZ = 0, we obtain

But the preceding system gives conversely,

X2
: Y2

: Z2
: YZ : ZX : XY =

: \2

yz + 2/eXa?

Hence from the identical relation X2
. Y2 -(XY)2 = 0, substituting for X2

, XY, F2

their values, and throwing out the factor z, we find (4
3 - X3

) #y,z
- /cX2 (V + y

s 4 zs
)
= 0,

and thence, in virtue of the equation 4/c
3 - X3 = - 6//cX2

,
we obtain

x3 + y
5 + z3 + Glxyz = 0,
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which shows that the point in question lies on the cubic. We have thus the

theorem :

The first or conic polar of a point of the cubic touches the cubic at the point,

and meets it besides in four points, which are the angles of a quadrangle the

centres of which lie on the cubic. In other words, the quadrangle is an inscribed

quadrangle.

40. To find the equations of the three axes of the quadrangle, that is of the

lines through two centres.

We have

(4,/c
2 YZ - X2Z 2

) x + ( X2ZF + 2/cX 2

) y + ( \*ZX + 2/eXF2

) z = 0,

( KXY + 2tc\Z 2

) x + (K?ZX - X2F 2

) y + ( \*YZ + 2XZ2

) z = 0,

( \*ZX + 2*XF2

) a&amp;gt; + ( \*YZ + 2/cXX2

) y + (4/c
2XF - X2 2

) z=0;

or arranging these equations in the proper form and eliminating
2
, K\, X2

,
we find

;

YZx
,
Z2

y + Y*z
,
X (- Xx + Yy + Zz) j

=
;

ZXy, X*z + Z*x
,

Y ( Xx - Yy + Zz)

1 XYz, Y*x + X*y, Z( Xx+Yy + Zz)

or, multiplying out,

XYZ{(Z3 - Y3
)x? + (X3 -Z3

)y
3 + (Y3-X3

)z
3

}

+ tfyZY* (- 2Za + F3 + Z*) + za?YZ* (2X
3 - Y* - Z)

+ y-zXZ- (- 2F3 + Z* +Z3

) + xfZX* (2F3 - Z -X3

)

- 2Z* +X3 + F3
) + yz*XY*- (2Z

3 - X3 - Y3

)
= 0.

We may simplify this result by means of the equation X3 + Y3 + Z3 + QIXYZ= 0, so as

to make the left-hand side divide out by XYZ: we thus obtain

(Z
3 - Y3

) a? + (X 3 - Z3

) y* + (Y3 - Xs

) z
3

+ (- 3Z2F - 61 Y*Z) x*y + (- 3F2^ - MZ*X) y*z + (- 3Z*X - 6LY2

F) #x

+ ( 3XY* + 6lX*Z)xf + ( 3F^2 +6^F2Z)^2 + ( 3^

or in a different form,

&amp;lt;y

- z3

) X3 + (z
3 -

a?) F 3 + O3 -
y

3
) Z3

+ (- 3&amp;lt;y

-
Ql&x) Z2F+ (- 3y*z

-
Qlafy) Y*Z + (- 3^ -

+ ( %xf + 6lyz*) XY* + ( 3y& + Glztf) YZ* + ( 3zo? + Qlxf} ZX&amp;gt; = 0,

as the equation of the three axes of the quadrangle.
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Article No. 41. Recapitulation of geometrical definitions of the Pippian.

In conclusion, I will recapitulate the different modes of generation or geometrical

definitions of the Pippian, obtained in the course of the present memoir. The curve

in question is:

1. The envelope of the line joining a pair of conjugate poles of the cubic (see

Nos. 2 and 13).

2. The envelope of each line of the pair forming the first or conic polar with

respect to the cubic of a conjugate pole of the cubic (see Nos. 2 and 14).

3. The envelope of a line which is the polar of a conjugate pole of the cubic,

with respect to the conic which is the first or conic polar of the other conjugate pole

in respect to any syzygetic cubic (see Nos. 2 and 9).

4. The locus of the harmonic with respect to a pair of conjugate poles of the

cubic of the third point of intersection with the Hessian of the line joining the two

conjugate poles (see Nos. 2 and 17).

5. The envelope of a line such that its lineo-polar envelope with respect to the

cubic breaks up into a pair of lines (see No. 24).

6. The envelope of a line which meets three conies, the first or conic polars of

any three points in respect to the cubic, in six points in involution (see No. 22).

7. The envelope of the second or line polar with respect to the cubic, of a point
the locus of which is a certain curve of the sixth order in quadratic syzygy with

the cubic and Hessian, viz. the curve S . U- + (HU)2 =
(see No. 27).

8. The envelope of a line having for its satellite point a point of the Hessian

(see No. 35).

9. The envelope of the polar of the satellite point with respect to the Hessian

of the tangent at a point of the Hessian, with respect to the first or conic polar of

the point of the Hessian in respect to the cubic (see No. 36).
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147.

A MEMOIR ON THE SYMMETRIC FUNCTIONS OF THE ROOTS
OF AN EQUATION.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVII. for
the year 1857, pp. 489 499. Received December 18, 1856, Read January 8, 1857.]

THERE are contained in a work, which is not, I think, so generally known as it

deserves to be, the &quot;

Algebra
&quot;

of Meyer Hirsch [the work referred to is entitled

Sammlung von Beispielen Formeln und Aufgaben aus der Buchstabenrechnung und

Algebra, 8vo. Berlin, 1804 (8 ed. 1853), English translation by Ross, 8vo. London.

1827] some very useful tables of the symmetric functions up to the tenth degree
of the roots of an equation of any order. It seems desirable to join to these a set of

tables, giving reciprocally the expressions of the powers and products of the coefficients

in terms of the symmetric functions of the roots. The present memoir contains the

two sets of tables, viz. the new tables distinguished by the letter (a), and the tables

of Meyer Hirsch distinguished by the letter (6) ;
the memoir contains also some

remarks as to the mode of calculation of the new tables, and also as to a peculiar

symmetry of the numbers in the tables of each set, a symmetry which, so far as I

am aware, has not hitherto been observed, and the existence of which appears to

constitute an important theorem in the subject. The theorem in question might, I

think, be deduced from a very elegant formula of M. Borchardt (referred to in the

sequel), which gives the generating function of any symmetric function of the roots,

and contains potentially a method for the calculation of the Tables (6), but which,

from the example I have given, would not appear to be a very convenient one for

actual calculation.

Suppose in general

(1, b, C...51, ar)

x
=(l-aaO(l- #)(!- 70)...,

so that

- b = 2, + c = 2/S, -d =
Sa/37, &c.,

and if in general

c. ii. 53
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where as usual the summation extends only to the distinct terms, so that e.g.

contains only half as many terms as (pq), and so in all similar cases, then we have

-& = (!), +c = (l), -d = (V), &c.;

and the two problems which arise are, first to express any combination 6^c9 ... in terms

of the symmetric functions (l
xmy

...}, and secondly, or conversely, to express any

symmetric function (l
xmy ...) in terms of the combinations bpcq ....

It will conduce materially to brevity if P25 ... be termed the partition belonging

to the combination bPcq ...
;

and in like manner if l
xmy ... be termed the partition

belonging to the symmetric function (l
xmy

..,), and if the sum of the component
numbers of the partition is termed the weight.

Consider now a line of combinations corresponding to a given weight, e.g. the

weight 4, this will be

e bd c
2

b-c i4

(line)

4 13 22 1 22 I
4

,

where I have written under each combination the partition which belongs to it, and

in like manner a column of symmetric functions of the same weight, viz.

(4) (column)

(31)

(2
2

)

(21 )

(I
4

),

where, as the partitions are obtained by simply omitting the ( ),
I have not separately

written down the partitions.

It is at once obvious that the different combinations of the line will be made up
of numerical multiples of the symmetric functions of the column

;
and conversely, that

the symmetric functions of the column will be made up of numerical multiples of the

combinations of the line
;

but this requires a further examination. There are certain

restrictions as to the symmetric functions which enter into the expression of the com

bination, and conversely, as to the combinations which enter into the expression of the

symmetric function. The nature of the first restriction is most clearly seen by the

following Table:

Number of

Parts.
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Thus, for instance, the combination bd (the partition whereof is 13) contains multiples
of the two symmetric functions (I

4
), (21

2

) only. The number of parts in the partition

13 is 2, and the greatest part is 3. And in the partitions (I
4
), (21

2

) the greatest part
is 2, and the number of parts is not less than 3. The reason is obvious : each term of

the developed expression of bd must contain at least as many roots as are contained

in each term of d, that is 3 roots, and since the coefficients are linear functions in

respect to each root, the combination bd cannot contain a power higher than 2 of any
root. The reasoning is immediately applied to any other case, and we obtain

First Restriction. A combination bpcq ... contains only those symmetric functions

(l
xmy

...), for which the greatest part does not exceed the number of parts in the

partition 1^2^...
,
and the number of parts is not less than the greatest part in the

same partition.

Consider a partition such as 1 2
2, then replacing each number by a line of units

thus,

1

1

11,

and summing the columns, we obtain a new partition 31, which may be called the

conjugate
1 of I 2

2. It is easy to see that the expression for the combination 62
c (for

which the partition is 1 2

2) contains with the coefficient unity, the symmetric function

(31), the partition whereof is the conjugate of 1 2
2. In fact 62

c = ( Sa)
2

(a/3), which

obviously contains the term + la3
/3, and therefore the symmetric function with its

coefficient +1(31); and the reasoning is general, or

THEOREM. A combination bqcq ... contains the symmetric function (partition conjugate
to 1^2*...) with the coefficient unity, and sign + or according as the weight is even

or odd.

Imagine the partitions arranged as in the preceding column, viz. first the partition

into one part, then the partitions into two parts, then the partitions into three parts,

and so on
;
the partitions into the same number of parts being arranged according to

the magnitude of the greatest part (the greatest magnitude first), and in case of

equality according to the magnitudes of the next greatest part, and so on (for other

examples, see the outside column of any one of the Tables). The order being thus

completely defined, we may speak of a partition as being prior or posterior to another.

We are now able to state a second restriction as follows.

Second Restriction. The combination bpcq ... contains only those symmetric functions

which are of the form (partition not prior to the conjugate of 1^2?...).

The terms excluded by the two restrictions are many of them the same, and it

might at first sight appear as if the two restrictions were identical
;

but this is not

1 The notion of Conjugate Partitions is, I believe, due to Professor Sylvester or Mr Ferrers. [It was due to

Mr now Dr Ferrers.]

532



420 A MEMOIR ON THE SYMMETRIC FUNCTIONS [147

so : for instance, for the combination bd2
,
see Table VII (a), the term (41

3

) is excluded

by the first restriction, but not by the second
;

and on the other hand, the term

(3
2

1), which is not excluded by the first restriction, is excluded by the second restriction,

as containing a partition 321 prior in order to 32 2
,
which is the partition conjugate

to 132
, the partition of bd2

. It is easy to see why bd2 does not contain the symmetric
function (3

2

1); in fact, a term of (3
2

1) is (a
3
/3

3
7), which is obviously not a term of

bd3 =
( Sa) (2a/?7)

2
;
but I have not investigated the general proof.

I proceed to explain the construction of the Tables (a). The outside column

contains the symmetric functions arranged in the order before explained; the outside or

top line contains the combinations of the same weight arranged as follows, viz. the

partitions taken in order from right to left are respectively conjugate to the partitions

in the outside column, taken in order from top to bottom
;

in other words, each square

of the sinister diagonal corresponds to two partitions which are conjugate to each other.

It is to be noticed that the combinations taken in order, from left to right, are not

in the order in which they would be obtained by Arbogast s Method of Derivations

from an operand ax,
a being ultimately replaced by unity. The squares above the

sinister diagonal are empty (i.e. the coefficients are zero), the greater part of them in

virtue of both restrictions, and the remainder in virtue of the second restriction; the

empty squares below the sinister diagonal are empty in virtue of the second restriction;

but the property was not assumed in the calculation.

The greater part of the numbers in the Tables (a) were calculated, those of each

table from the numbers in the next preceding table by the following method,

depending on the derivation of the expression for bv+1cq ... from the expression for lPcq ...

Suppose, for example, the column cd of Table V(a) is known, and we wish to calculate

the column bed of Table VI (a). The process is as follows :

Given

we obtain

22
1 , 21 3

1 3
!
10

321
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the partition 2P gives the new coefficients 3, 6, 12 of the partitions 31 3
,

22
1

2
,

21 4
,

and the coefficient 10 of the partition I 5

gives the new coefficients 10, 60 of the

partitions 21 4 and I 6
,
and finally, the last line is obtained by addition. The process

in fact amounts to the multiplication separately of each term of cd =

1 (2
2

1) + 3 (21
3

) + 10 (P)

by b = (1). It would perhaps have been proper to employ an analogous rule for the

calculation of the combinations cqdr
. . . not containing b, but instead of doing so I

availed myself of the existing Tables (b). But the comparison of the last line of each

Table (a) (which as corresponding to a combination bp was always calculated in

dependently of the Tables (b)\ with such last line as calculated from the corresponding
Table (6), seems to afford a complete verification of both the Tables

;
and my process

has in fact enabled me to detect several numerical errors in the Tables (b), as given
in the English translation of the work above referred to. It is not desirable, as

regards facility of calculation and independently of the want of verification, to calculate

either set of Tables wholly from the other; the rules for the independent calculation

of the Tables (6) are fully and clearly explained in the work referred to, and I have

nothing to add upon this subject.

The relation of symmetry, alluded to in the introductory paragraph of the present

memoir, exists in each Table of either set, and is as follows : viz. the number in the

Table corresponding to any two partitions in the outside column and the outside line

respectively, is equal to the number corresponding to the same two partitions in the

outside line and the outside column respectively. Or, calling the two partitions P, Q,

and writing for shortness, combination (P) for the combination represented by the

partition P, and for greater clearness, symmetric function (P) (instead
of merely (P))

to denote the symmetric function represented by the partition P, we have the following

two theorems, viz.

THEOREM. The coefficient in combination (P) of symmetric function (Q) is equal

to the coefficient in combination (Q) of symmetric function (P) ;

and conversely,

THEOREM. The coefficient in symmetric function (P) of combination (Q) is equal

to the coefficient in symmetric function (Q) of combination (P).

M. Borchardt s formula, before referred to, is given in the Monatsbericht of the

Berlin Academy (March 5, 1885)
l

,
and may be thus stated

;
viz. considering the case of

n roots, write

(1, b, c,... k*$l, XJ
1 =

(
l ~ ax) C1

~ #) (!
~ KX) =fx &amp;gt;

then

_ _ _ _ _ _

1 OLX 1 @y
&quot;

1 KU k I\.(x,y,...u) dx dij

&quot;

du fxfy. . .fu

1 And in Crelle, t. liii. p. 195. Note added 4th Dec. 1857, A. C.
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where II (x, y,...u) denotes the product of the differences of the quantities a, y,...ii,

and on the left-hand side the summation extends to all the different permutations of

OL, /3, ... K, or what is the same thing, of as, y, ... u.

Suppose for a moment that there are only two roots, so that

(1, 6, C$1, aO =
(l -*)(! -*;),

then the left-hand side is

+_ _
(1
-

or) (
1 - y) (1

-
ay) ( 1

-
fix)

which is equal to

2 + (a + /3) (as + y)+ (a
2 + /3

2

) (a? + 7/
2

) + 2a/3xy + (a
3 + /3

3

) (x
s + y

s
) + (a

2
/? + a/3

2

) (afy + #/) + &c&amp;gt;&amp;gt;

and the riht-hand side is

__ __
c x-y dx dy fxfij

which is equal to

1 fafy
[f

xfy -fyfa + (x
- y)f xfy

cx-y\ (fxY (fy)*

and therefore to

_
c fafy (

or substituting for fx, fy their values,

x-y
becomes equal to

2c - b- - be (x + y)- 2c*xy,

and fxf y is equal to

62 + 2bc (x + y)

The right-hand side is therefore equal to

_
(l+bas + ex2

) (1

and comparing with the value of the left-hand side, we see that this expression may
be considered as the generating function of the symmetric functions of (a, /9), viz. the
expression in question is developable in a series of the symmetric functions of (x, y),
the coefficients being of course functions of b and c, and these coefficients are (to
given numerical factors pres) the symmetric functions of the roots (a, /3).
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And in general it is easy to see that the left-hand side of M. Borchardt s

formula is equal to

[0] + [1] (1) (1) + [2] (2) (2) + [P] (P) (!) + &c.,

where (1), (2), (I
2

),
&c. are the symmetric functions of the roots (a, /3, ... K

), (1) , (2) ,

(I
2

) , &c. are the corresponding symmetric functions of (x, y,...u), and [0], [1], [2], [I
2

],

&c. are mere numerical coefficients; viz. [0] is equal to 1.2.3..., and [1], [2], [I
2

], &c.
are such that the product of one of these factors into the number of terms in the

corresponding symmetric function (1), (2), (I
2
), &c. may be equal to 1.2.3...W. The

right-hand side of M. Borchardt s formula is therefore, as in the particular case, the

generating function of the symmetric functions of the roots (a, /3, ... K
), and if a

convenient expression of such right-hand side could be obtained, we might by means
of it express all the symmetric functions of the roots in terms of the coefficients.

Tables relating to the Symmetric Functions of the Roots of an Equation.

The outside line of letters contains the combinations (powers and products) of the
coefficients, the coefficients being all with the positive sign, and the coefficient of the

highest power being unity; thus in the case of a cubic equation the equation is

x3 + bx2 + ex + d = (x
-

a) (x
-

/3) (x
-

7) = 0.

The outside line of numbers is obtained from that of letters merely by writing 1, 2, 3...
for b, c, d..., and may be considered simply as a different notation for the combinations.
The outside column contains the different symmetric functions in the notation above
explained, viz. (1) denotes Sa, (2) denotes 2a2

, (p) denotes 2a/3, and so on. The Tables
(a) are to be read according to the columns; thus Table II (a) means b2 = 1 (2)+ 2 (I)

2
,

c = (P). The Tables (6) are to be read according to the lines; thus Table 11(6)
means (2)

= - 2c + Ibs
, (1

s

)
= + l c .

I (a).

(1)
- 1

1(6).

(1)
- 1

II (a).

II

(2)

(I
2

)
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IV (a). IV
(&amp;gt;).

(5)

(41)

(32)

(31&quot;)

(2
2
1)

(21
n

)

(I
5

)

II
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VII (a).

(7)

(61)

(52)

(43)

(421)

(3
2

1)

(3T-)

(41 )

(32P)

(2n)

(3P)

(2
2

P)

(I
7

)

7

h
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VIII (a). Runs on infrk.

[147

II
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(8)

(71)

(62)

(53)

(4
2

)

(6P)

(521)

(431)

(42
2

)

(3
2

2)

(51
8

)

(42P)

(3
2

P)

(32*1)

(2
4

)

(41*)

(32P)

(2
3

P)

(3P)

(2
2
1
4

)

(2 1
6
)

(P)

8

i
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IX (a). Runs on to p. 430.

(9)

(81)

(72)

(63)

(54)

(71 )

(621)

(531)

(41)

(52
2

)

(432)

(3
3
)

(61)

(52P)

(43P)

(42
2

1)

(3
2

21)

(32*)

(51
4
)

(421
3

)

(3
2

P)

(32
2

P)

(2
4
1)

(4P)

(32P)

(2
3

P)

(3P)

(2
2

P)

(21 )

(P)

9

i
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II
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(9)

(81)

(72)

(63)

(54)

(7P)

(621)

(531)

(41)

(52
2

)

(432)

(S^)

(6P)

(52P)

(431
2

)

(42
2

1)

(3
2

21)

(323)

(5P)

(421
s

)

(3
2

P)

(32
2

P)

(2
4

1)

(4P)

(32 1
4

)

(2
3

P)

(3P)

(2
2

P)

(2P-)

(P)

1
423
Vcd
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IX (6). Runs on to p. 432.
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X (a). Runs on to p. 436.

(10)

(91)

(82)

(73)

(64)

(5
2

)

(81&quot;)

(721)

(631)

(541)

(62
2

)

(532)

(4*2)

(43
2

)

(71 )

(621
2

)

(53P)

(4
2
1
2
)

(521)

(4321)

(31)

(42
s

)

(3
22 2

)

(61
4

)

(52P)

(43P)

(42
2

P)

(3
2

2P)

(321)

(2
5

)

(5P)

(42P)

(3
2

P)

(32
2

P)

(2
4

P)

(4P)

(32P)

(2
3

P)

(3P)

(2
2

P)

(21-)

(I
10

)

10

*
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(10)

(91)

(82)

(73)

(64)

(5
2

)

(8P)

(721)

(631)

(541)

(62
2

)

(532)

(4-2)

(43
2

)

(7P)

(62P)

(53P)

(4
2

P)

(52
2

1)

(4321)

(3
3

1)

(42
3

)

(3
22 2

)

(61
4

)

(52P)

(43 P)

(42
2

P)

(3
2

2P)

(32
3

1)

(2)

(5P)

(421*)

(3
2
1
4

)

(32
2

P)

(2
4
P)

(4P)

(32P)

(2
3

P)

(3F)

(2
2

P)

(2P)

(I
10

)

145
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II
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X (6).
Runs on to p. 439.
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148.

MEMOIR ON THE RESULTANT OF A SYSTEM OF TWO
EQUATIONS.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVII. for the

year 1857, pp. 703 715. Received December 18, 1856, Read January 8, 1857.]

THE Resultant of two equations such as

(a, b, ...\x, 2/)
m = 0,

(p,q,...Jx, y)=0,

is, it is well known, a function homogeneous in regard to the coefficients of each

equation separately, viz. of the degree n in regard to the coefficients (a, b, ...) of

the first equation, and of the degree m in regard to the coefficients (p, q, ...) of

the second equation; and it is natural to develope the resultant in the form
kAP + k A P + &c., where A, A

, &c. are the combinations (powers and products) of

the degree n in the coefficients (a, b, ...), P, P
, &c. are the combinations of the

degree m in the coefficients (p, q, ...), and k, k
,
&c. are mere numerical coefficients.

The object of the present memoir is to show how this may be conveniently effected,

either by the method of symmetric functions, or from the known expression of the
Resultant in the form of a determinant, and to exhibit the developed expressions for

the resultant of two equations, the degrees of which do not exceed 4. With respect
to the first method, the formula in its best form, or nearly so, is given in the

Algebra of Meyer Hirsch, [for proper title see p. 417], and the application of it is very
easy when the necessary tables are calculated: as to this, see my &quot;Memoir on the

Symmetric Functions of the Roots of an Equation &quot;(O-
But when the expression for the

Resultant of two equations is to be calculated without the assistance of such tables,
it is I think by far the most simple process to develope the determinant according
to the second of the two methods.

1

Philosophical Transactions, 1857, pp. 489497, [147].
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Consider first the method of symmetric functions, and to fix the ideas, let the
two equations be

(a, b, c, d\x, y)
3 = 0,

(p, q, r Jar, y)
2 = 0.

Then writing

(a, b, c, dJl, zj a (1 OLZ) (1
-

fiz) (1 7^),

so that

b _
a

+ - = a/3 + a7 + /37 = (I
2

),

the Resultant is

(P, q, r\a, 1)2 . (p, q, r\$, I)
2

. (p, q, r$7, 1)&amp;gt;,

which is equal to

r3 + qr* (a + /3 + 7) +^&amp;gt;r

2

(a
2 + 2 + 7

2

) +Mr (a
2
/3 + a^2 +^7 + /37

2 + 7a + 7^) + &c .
;

or adopting the notation for symmetric functions used in the memoir above referred
to, this is

{
r3

1
+^ (1)

C+pr* (2)

(P)

(2
2

)

(21
2
)

(2
2
1)

(2
3

) ,

the law of which is best seen by dividing by r3 and then writing

?-m. f-Pi
and similarly,

5fi
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the expression would then become

1 + [1] (1) + [2] (2) + [I
2

] (I
2

) + [21] (21) + [I
3

] (I
3

) + [2
2

] (2
2
) + [21

2

] (21
2

) + [2
2

1] (2
2

1) + [2
3

] (2 ),

where the terms within the [ ] and ( ) are simply all the partitions of the numbers

1, 2, 3, 4, 5, 6, the greatest part being 2, and the greatest number of parts being 3.

And in like manner in the general case we have all the partitions of the numbers

1, 2, 3, ...mn, the greatest part being n, and the greatest number of parts being m.

The symmetric functions (1), (2), (I
2

), &c. are given in the Tables (6) of the

Memoir on Symmetric Functions, but it is necessary to remark that in the Tables

the first coefficient a is put equal to unity, and consequently that there is a power
of the coefficient a to be restored as a factor: this is at once effected by the con

dition of homogeneity. And it is not by any means necessary to write down (as for

clearness of explanation has been done) the preceding expression for the Resultant
;

any portion of it may be taken out directly from one of the Tables (b). For instance,

the bracketed portion
+ pqr (21),

+ q
3

(I
3

),

which corresponds to the partitions of the number 3, is to be taken out of the

Table III (b). as follows : a portion of this Table (consisting as it happens of consecutive

lines and columns, but this is not in general the case) is

= d be

-i ;

-i

if in this we omit the sign
=

,
and in the outside line write for homogeneity ad

instead of d, and in the outside column, first substituting q, p for 1, 2, then write

for homogeneity pqr instead of pq, we have

ad be

pqr j +3 - 1

viz. pqr x (+ Sad Ibc) + q
3

( lad), for the value of the portion in question; this is

equivalent to

ad + 3

1

-1
,
or as it may be more conveniently written,

in which form it constitutes a part of the expression given in the sequel for the

Resultant of the two functions in question ;
and similarly the remainder of the expres

sion is at once derived from the Tables (b) I. to VI.
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As a specimen of a mode of verification, it may be remarked that the Resultant

qua invariant ought, when operated upon by the sum of the two operations,

and qdr ,

to give a result zero. The results of the two operations are originally obtained in the

forms in the first and second columns, and the first column, and the second column,

with all the signs reversed, are respectively equal to the third column, and conse

quently the sum of the first and second columns vanishes, as it ought to do.

V

V *Wr
X

Next to explain the second method, viz. the calculation of the resultant from the

expression in the form of a determinant.

Taking the same example as before, the resultant is

a, b, c, d

a, b, c, d,

P, q, r

p, q, r

p, q, r

562
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which may be developed in the form

where 12, 13, &c. are the terms of

and 123, &c. are the terms of

+ 12 . 345
}

-13 . 245}
+ 14 . 235)
+ 23 . 145]

-15 .

234J
-24 . 135)

+ 25 . 134

+ 34 . 125

-35 . 124}
+ 45 . 123}

a, b, c, d )

a, b, c, d

P&amp;gt; q&amp;gt;

P, q, r

P,

viz. 12 is the determinant formed with the first and second columns of the upper
matrix, 123 is the determinant formed with the first, second and third columns of

the lower matrix, and in like manner for the analogous symbols. These determinants

must be first calculated, and the remainder of the calculation may then be arranged
as follows :
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where it is to be observed that the figures in the squares of the third column are

obtained from those in the corresponding squares of the first and second columns by
the ordinary rule for the multiplication of determinants, taking care to multiply the

dexter lines
(i.

e. lines in the direction \) of the first square by the sinister lines

(i.e. lines in the direction /) of the second square in order to obtain the sinister lines

of the third square. Thus, for instance, the figures in the square

are obtained as follows, viz. the first sinister line (+3, 1) by

(-1, +l)(-2, +1)= 2 + 1 = + 3,

(-1, +!)(+!, 0) = -1+0 = -1,

and the second sinister line (-1, 0) by

(0, -l)(-2, +1) = 0-1=-1,

(0, -1)(+ 1, 0)
= + 0= 0.

I have calculated the determinants required for the calculation, by the preceding

process, of the Resultant of two quartic equations, and have indeed used them for

the verification of the expression as found by the method of symmetric functions
;

as

the determinants in question are useful for other purposes, I think the values are

worth preserving.

and

Table of the Determinants of the Matrices,

( a, b, c, d, e )

a, b, c, d, e

a, b, c, d, e

a, 6, c, d, e,

( p, q, r, s, t
)

p, q, r, s, t

p, q, r, s, t

p, q, r, s, t



446 MEMOIR ON THE RESULTANT OF A SYSTEM OF TWO EQUATIONS. [148

arranged in the form adapted for the calculation of the Resultant of the two quartic

equations (a, b, c, d, ex, y)
4 =

0, and (p, q, r, s, fx, y)*
= 0, viz.
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The Tables of the Resultants of two equations which I have calculated are as

follows :

a ii. 57
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Table (2, 2).

Resultant of

(a, b, c\x, ?/)
2

,

(p, q, r\x, y)\

Table (3, 2).

Resultant of

(a, b, c d\x, y)\

(p, q, r \x, y)
2

.

Table (4, 2).

Resultant of

(a, b, c, d, e$x, y)\

(p, q, r\x, y)
2

.
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Table (3, 3).

Resultant of

(a, b, c, cT$x, y)
3
,

(p, q, r, t\aet y}
3

.

Table (4, 3).

Resultant of

(a, b, c, d, e\x, y)

(P, q, r, s^x, y)\

572
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Table (4, 4).

Resultant of

(a, b, c, d, e%v, y)*,

(p, q, r, s, t\x, y}*.
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149.

ON THE SYMMETEIC FUNCTIONS OF THE ROOTS OF CERTAIN

SYSTEMS OF TWO EQUATIONS.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVII. for the

year 1857, pp. 717 726. Received December 18, 1856, Read January 8, 1857.]

SUPPOSE in general that
&amp;lt;/&amp;gt;

= 0, ty
=

0, &c. denote a system of (n 1) equations

between the n variables (#, y, z, ...), where the functions
&amp;lt;, ty, &c. are quantics (i.e.

rational and integral homogeneous functions) of the variables. Any values (xly y1} z1} ...)

satisfying the equations, are said to constitute a set of roots of the system ;
the roots

of the same set are, it is clear, only determinate to a common factor pres, i.e. only
the ratios inter se and not the absolute magnitudes of the roots of a set are deter

minate. The number of sets, or the degree of the system, is equal to the product
of the degrees of the component equations. Imagine a function of the roots which

remains unaltered when any two sets (xlt y1} zl , ...) and (x2 , y2} z2 , ...) are interchanged

(that is, when a^ and x2 , y and y2 ,
&c. are simultaneously interchanged), and which is

besides homogeneous of the same degree as regards each entire set of roots, although
not of necessity homogeneous as regards the different roots of the same set

; thus,

for example, if the sets are (xlt y^, (ac2 , y2), then the functions x^, x-i.y2 + x^y-i, y^y*

are each of them of the form in question ;
but the first and third of these functions,

although homogeneous of the first degree in regard to each entire set, are not homo

geneous as regards the two variables of each set. A function of the above-mentioned

form may, for shortness, be termed a symmetric function of the roots
;

such function

(disregarding an arbitrary factor depending on the common factors which enter implicitly
into the different sets of roots) will be a rational and integral function of the coefficients

of the equations, i.e. any symmetric function of the roots may be considered as a

rational and integral function of the coefficients. The general process for the investi

gation of such expression for a symmetric function of the roots is indicated in Pro

fessor Schlafli s Memoir, &quot;Ueber die Resultante eines Systemes mehrerer algebraischer
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Gleichungen,&quot; Vienna, Transactions, t. iv. (1852). The process is as follows : Suppose
that we know the resultant of a system of equations, one or more of them being
linear

;
then if &amp;lt;

= be the linear equation or one of the linear equations of the

system, the resultant will be of the form
&amp;lt;/&amp;gt;!&amp;lt;/&amp;gt;

2 . ..
, where

&amp;lt;f&amp;gt;
1} &amp;lt; 2 , &c. are what the

function
&amp;lt;/&amp;gt;

becomes upon substituting therein the different sets fa, y1} zl ...), (#2 , y2) z2 ...)

of the remaining (n
-

1) equations ty
=

0, % = 0, &c.
; comparing such expression with

the given value of the resultant, we have expressed in terms of the coefficients of the

functions
i/r, ^, &c., certain symmetric functions which may be called the fundamental

symmetric functions of the roots of the system i/r
= 0, % = 0, &c.

;
these are in fact

the symmetric functions of the first degree in respect to each set of roots. By the
aid of these fundamental symmetric functions, the other symmetric functions of the
roots of the system ty

= 0, % = 0, &c. may be expressed in terms of the coefficients,
and then combining with these equations a non-linear equation &amp;lt;E&amp;gt;

=
0, the resultant

of the system 4&amp;gt;
=

0, ^=0, ^=0, &c. will be what the function 3v 2 ... becomes, upon
substituting therein for the different symmetric functions of the roots of the system
Vr =

&amp;gt; X = &amp;gt;

&c - the expressions for these functions in terms of the coefficients. We
thus pass from the resultant of a system &amp;lt;

=
0, ^ =

0, % = 0, &c., to that of a system
4&amp;gt;
=

0, i/r
=

0, % = 0, &c., in which the linear function
&amp;lt;/&amp;gt;

is replaced by the non-linear

function &amp;lt;&amp;gt;. By what has preceded, the symmetric functions of the roots of a system
of (n

-
1) equations depend on the resultant of the system obtained by combining the

(nl) equations with an arbitrary linear equation; and moreover, the resultant of any
system of n equations depends ultimately upon the resultant of a system of the same
number of equations, all except one being linear; but in this case the linear equations
determine the ratios of the variables or (disregarding a common factor) the values of

the variables, and by substituting these values in the remaining equation we have the
resultant of the system. The process leads, therefore, to the expressions for the

symmetric functions of the roots of any system of (n-1) equations, and also to the

expression for the resultant of any system of n equations. Professor Schlafli discusses
in the general case the problem of showing how the expressions for the fundamental

symmetric functions lead to those of the other symmetric functions, but it is not

necessary to speak further of this portion of his investigations. The object of the

present Memoir is to apply the process to two particular cases, viz. I propose to

obtain thereby the expressions for the simplest symmetric functions (after the funda
mental ones) of the following systems of two ternary equations; that is, first, a linear

equation and a quadric equation ;
and secondly, a linear equation and a cubic

equation.

First, consider the two equations

(a, b, c, f, g, h~$x, y, zf = 0,

(a, & 7$a;, y, z)
= 0,

and join to these the arbitrary linear equation

( V, &&amp;gt; y&amp;gt; ^ = 0,
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then the two linear equations give

x : y : z = ftyn : 7! a :
&&amp;gt;]

-
fit; ,

and substituting in the quadratic equation, we have for the resultant of the three

equations,

(a, b, c,f, g, K$fl$-vi&amp;gt; rf - * ^ -W =
&amp;lt;&amp;gt;&amp;gt;

which may be represented by

(a, b, c, f, g, h$ rj, )
2 = 0,

where the coefficients are given by means of the Table.

a b c f g k

viz. a = 6y
2 + c/3

2 -
2//37, Sz;c.

But if the roots of the given system are

2/2

then the resultant of the three equations will be

Oi, 2/i, &amp;lt; ^ ?) (*, 2/2, ^

and comparing the two expressions, we have

a =
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symmetric functions of the form in question, and the solution of the linear equations
gives

a3 = xfxf,

b2 ,,, 2,1 2
i/i 2/2 &amp;gt;

c2 =
z,V ,

be = y&ysZa ,

ca =

ab =

4f2 -2bc=

4g
2 -2ca =

4h 2 - 2ab =

2af = x-^y^x^ +

2bg = y^a;^ +
2ch = z^y^ +

4gh - 2af = aVfya

4hf - 2bg = y*z

4fg
- 2ch = zfr

2cg = z

2ah = aj

2cf = z?

2ag = x

Proceeding next to the powers and products of the third order a3
, a2

b, &c., the
total number of linear relations between the symmetric functions of the third degree
in respect to each set of roots exceeds by unity the number of the symmetric functions
of the form in question; in fact the expressions for abc, af2

, bg
2
,
ch2

, fgh, contain,
not five, but only four symmetric functions of the roots; for we have

abc =

4af- =

4bg
2 =

4ch2 = (z&fzyf + z&?z$?) +

8fgh =

+ (z&fz&f +
C. II. 5g
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and consequently the quantities a, b, c, f, g, h, are not independent, but are connected

by the equation
abc - af2 -

bg
2 - ch2 + 2fgh

= 0,

an equation, which is in fact verified by the foregoing values of a, &c. in terms of

the coefficients of the given system.

The expressions for the symmetric functions of the third degree considered as

functions of a, b, c, f, g, h, are consequently not absolutely determinate, but they may
be modified by the addition of the term A, (abc af2

bg
2 ch 2

-f- 2fgh), where X is an

indeterminate numerical coefficient.

The simplest expressions are those obtained by disregarding the preceding equation

for fgh, and the entire system then becomes :

a =

b3 =

c? =
.

b2c =

c2a =

a2b =

be2 =

Ccl ^

ab2 =

abc =

2a2f =

2b2

g =

2c2h =

2a2

g =

2b2h =

2c2f =

2a2h =

2b2f =

2c2

g =

2bcf =

2cag =

2abh= asfyiaw* +

2bcg = y

2cah = z

2abf = x^x.y^ +
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2bch=

2caf =

2abg=

4af2 2abc = x{y?z?x?, +

4bg
2 - 2abc = y^xfyz +

4ch2 2abc = z^y^z^ +

4bf2 - 2b2c =

4cg
2 - 2c2a =

4ah2 - 2a2b = stfx$* +

4cf2 - 2bc2 = zfyfz* +

4ag
2 2ca2 = xfzfx^ +

4bh2 - 2ab2 =
,
3x2

2
2 +

4agh 2a2f =

4bhf - 2b2

g =

4cfg 2c2h =

4bgh
- 2abf =

4chf 2bcg =

4afg 2cah =

4cgh
- 2acf =

4ahf 2bag =

4bfg
- 2cbh = ^2/i

2
^2

2

2/2 +

4chf - 2bcg = zfxyf + z

8g
2h - 4afg

- 2cah = xfy^z? + x

8h2f - 4bgh
- 2abf = yfz&f + y

8fg
2 -

4chg
- 2acf =

8gh
2 4afh 2bag =

8hf2 -
4bgf

- 2cbh =

8f3 - 6bcf =
2/i

JV + 2/2V
Sg

3 -
6cag = sfa* + zfaf

8h3 - 6abh =

Secondly, consider the system of equations

(a, b, c, f, g, h, i, j, h, T$x, y, zf = 0,

(a, 0, y$v, y, z)
= 0,

582
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where the cubic function written at full length is

ax3 + by
3 + cz3 + 3fy*z

Joining to the system the linear equation

Skxy* + Qlxyz.

the linear equations give

x : y : z = (3% 777 : 7^ a :
cut) ftg,

and the resultant is

(a, b, c,f, g, h, i,j, k, $-717, 7f-. *v-

which may be represented by

(a, b, c, f, g, h, i, j, k, 1J 77, )
3 = 0,

where the coefficients a, b, &c. are given by means of the Table :

a b c f g hi j k

b =
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8f-

3g-
3h =

O I
Z-^ikwi&quot;^ ~i~ Z^OC^CC-^ ~\

3k = a + x-

But there is in the present case a relation independent of the quantities a, &c., viz.

we have (a, /3, 7^1; ylf Zl ]
,
=

0, (a, ft, 7^2 , ya ,
^2)

= 0, (a, 0, 7^3 , y9 ,
z3) = Q t and

thence eliminating the coefficients (a, ft, 7), we find

V =
o^y^z, + a%/aZi + Xsy^ - ady&a

- x^

By forming the powers and products of the second degree a2
, ab, &c., we obtain 55

equations between the symmetric functions of the second degree in each set of roots.

But we have V2 = = a symmetric function of the roots, and thus the entire number
of linear relations is 56, and this is in fact the number of the symmetric functions
of the second degree in each set. I use for shortness the sign 8 to denote the sum
of the distinct terms obtained by permuting the different sets of roots, so that the

equations for the fundamental symmetric functions are

C ^=

3f =

3h =

3i =

3j
=

3k = 8 arrays,

61 =

then the complete system of expressions for the symmetric functions of the second
order is as follows, viz.

a- =
X-L

b2 =
y,

P2 _ szi

be = y!

ca =
Q M ^~ nr* 1 1 T* 1 1 TV i /

^UNIVERSITY
OF
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3af = S x^x^y^Xy,

3ch = S Z^

3cg =

3ah =

3cf =

3ag = 8 Z

3bh =

3ai =

3bj
=

3ck = 8 z

3bi = S yi

3cj
= S z

3ak =

3ci =Sy1z1z.*z;

OC*1 - A3 Z]CC]pC% wg

Gal =8x
6bl = f y

6cl = S z

9f2 - 6bi = fif
2/

9g
2

-6cj =Sz

9h2 - 6ak = fif a

9i2 -6cf
=Syi&amp;gt;z2

2
z,?,

9j
2 -

Gag = S zfxfxf,

9k2 - 6bh = S xfyfyf,

9fg
- 3ck =

9gh 3ai =

9hf 3bj
=
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9jk
- 3af = S x

9ki - 3bg = 8 y

9ij
- 3ch = 8 z?

9f i - 3bc = S y

9gj 3ca = 8 zfz

9hk- 3ab = 8

3 ( fj + gk + hi - 1
2

)
= 8x^

3 (2fj
-
gk

- hi + I
2

)
=

3 (2gk
- hi -

fj + I
2

)
= 8 y^

3(2hi -fj -gk + !
2

)

3(6fl -3ki-bg)

3(6gl -3ij-ch) = 8 y&zfrf,

3(6hl -3jk-af) = Sz&xfyf,

3 (Gil -3fg-ck) = SzMy?z,

3(6jl -3gh-ai) = Sxiy,z*x*,

3(6kl -3hf-bj) =Sylzlx*y3\

6 (- fj
-
gk

- hi + 412

)
= 8 atfyfzf.

As an instance of the application of the formulae, let it be required to eliminate

the variables from the three equations,

(a, b, c, / g, h, i, j, k, t$x, y, z)
s = 0,

(a , V, c ,f,g ,
h $0, y, ^ = 0,

(a, ft, 7 $a?, y, z) -0.

This may be done in two different ways; first, representing the roots of the linear

equation and the quadric equation by (x1} yl} z^, (x2 , y2 ,
z2), the resultant will be

which is equal to

tt
2
X?X? + &C.,

where the symmetric functions xfx*, &c. are given by the formulae a 3 = x^x, &c.,

in which, since the coefficients of the quadratic equation are (a , 6
, c , / , g , h

),

I have written a instead of a. Next, if the roots of the linear equation and the cubic

equation are represented by (o^, yl} z^, (ac2 , y2 ,
z2), ((C3 , y3 ,

z3), then the resultant

will be

(a , ...$!, ylt z^.(a ,...\x2 , ya_, z.^(a , ...~$a;8&amp;gt; y,, zs)
2
,
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which is equal to

a 3
x?oc?x + &c.,

the symmetric . functions xfxfxg, &c. being given by the formulae a2 = x-fxfxf, &c. The

expression for the Resultant is in each case of the right degree, viz. of the degrees

6, 3, 2, in the coefficients of the linear, the quadric, and the cubic equations respec

tively: the two expressions, therefore, can only differ by a numerical factor, which

might be determined without difficulty. The third expression for the resultant, viz.

(a &amp;gt; ft, 7$&amp;gt;a, ylt *j).(a, ft, 7$a?a , ys , *a).&quot;(, ft, 7$&amp;gt;e&amp;gt; 2/e, O,

(where (x1} yly ^), ... (x6 , y6 ,
zs} are the roots of the cubic and quadratic equations)

compared with the foregoing value, leads to expressions for the fundamental symmetric
functions of the cubic and quadratic equations, and thence to expressions for the other

symmetric functions of these two equations ;
but it would be difficult to obtain the

actually developed values even of the fundamental symmetric functions. I hope to

return to the subject, and consider in a general point of view the question of the

formation of the expressions for the other symmetric functions by means of the ex

pressions for the fundamental symmetric functions.
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150.

A MEMOIR ON THE CONDITIONS FOR THE EXISTENCE OF
GIVEN SYSTEMS OF EQUALITIES AMONG THE ROOTS OF
AN EQUATION.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVII. for
the year 1857, pp. 727 731. Received December 18, 1856, Read January 8, 1857.]

IT is well known that there is a symmetric function of the roots of an equation,

viz. the product of the squares of the differences of the roots, which vanishes when any
two roots are put equal to each other, and that consequently such function expressed in

terms of the coefficients and equated to zero, gives the condition for the existence of a

pair of equal roots. And it was remarked long ago by Professor Sylvester, in some of

his earlier papers in the Philosophical Magazine, that the like method could be applied
to finding the conditions for the existence of other systems of equalities among the roots,

viz. that it was possible to form symmetric functions, each of them a sum of terms

containing the product of a certain number of the differences of the roots, and such that

the entire function might vanish for the particular system of equalities in question ;

and that such functions expressed in terms of the coefficients and equated to zero would

give the required conditions. The object of the present memoir is to extend this theory
and render it exhaustive, by showing how to form a series of types of all the different

functions which vanish for one or more systems of equalities among the roots
;
and in

particular to obtain by the method distinctive conditions for all the different systems of

equalities between the roots of a quartic or a quintic equation, viz. for each system con

ditions which are satisfied for the particular system, and are riot satisfied for any other

systems, except, of course, the more special systems included in the particular system.
The question of finding the conditions for any particular system of equalities is essen

tially an indeterminate one, for given any set of functions which vanish, a function

syzygetically connected with these will also vanish
;
the discussion of the nature of the

c. ii. 59
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syzygetic relations between the different functions which vanish for any particular

system of equalities, and of the order of the system composed of the several conditions

for the particular system of equalities, does not enter into the plan of the present

memoir. I have referred here to the indeterminateness of the question for the sake of

the remark that I have availed myself thereof, to express by means of invariants or

covariants the different systems of conditions obtained in the sequel of the memoir; the

expressions of the different invariants and covariants referred to are given in my Second

Memoir upon Quantics, Philosophical Transactions, vol. CXLVI. (1856), [141].

1. Suppose, to fix the ideas, that the equation is one of the fifth order, and call

the roots a, /3, 7, 8, e. Write 12 = 20 (a- /3)
z

,
12.13 = 20(a-) z

(a- 7) &quot;,
12.34 =

20 (a {3)
l

(y 8)
n

, &c., where is an arbitrary function and I, m, &c. are positive integers.

It is hardly necessary to remark that similar types, such as 12, 13, 45, &c., or as 12.13

and 23.25, &c., denote identically the same sums. Two types, such as 12.13 and

14.15.23.24.25.34.35.45, may be said to be complementary to each other. A par
ticular product (a /3) (7 8) does .or does not enter as a term (or factor of a term)
in one of the above-mentioned sums, according as the type 12.34 of the product, or

some similar type, does or does not form part of the type of the sum
;
for instance, the

product (a /3) (7 8) is a term (or factor of a term) of each of the sums 12.34,

13.45.24, &c., but not of the sums 12.13.14.15, &c.

2. If, now, we establish any equalities between the roots, e. g. a = /3, 7 = 8, the

effect will be to reduce certain of the sums to zero, and it is easy to find in what
cases this happens. The sum will vanish if each term contains one or both of the factors

a /3, 78, i. e. if there is no term the complementary of which contains the product

(a /3) (7 8), or what is the same thing, whenever the complementary type does not con

tain as part of it, a type such as 12.34. Thus for the sum 14.15.24.25.34.35.45,
the complementary type is 12.13.23, which does not contain any type such as 12.34,
i.e. the sum 14.15.24.25.34.35.45 vanishes for a = @, 7 = 8. It is of course clear

that it also vanishes for a = /3
=

e, 7 = 8 or a = J3
= 7 = 8, &c., which are included in

a. /3, 7 = 8. But the like reasoning shows, and it is important to notice, that the

sum in question does not vanish for a = /3
= 7 : and of course it does not vanish for

a = /3. Hence the vanishing of the sum 14.15.24.25.34.35.45 is characteristic of the

system a = /3, 7=8. A system of roots a, /3, 7, 8, e may be denoted by 11111; but
if a = @, then the system may be denoted by 2111, or if a = /3, 7 = 8, by 221, and
so on. We may then say that the sum 14.15.24.25.34.35.45 does not vanish for

2111, vanishes for 221, does not vanish for 311, vanishes for 32, 41, 5.

3. For the purpose of obtaining the entire system of results it is only necessary to

form Tables, such as the annexed Tables, the meaning of which is sufficiently explained
by what precedes: the mark (x) set against a type denotes that the sum represented
by the complementary type vanishes, the mark (o) that the complementary type does
not vanish, for the system of roots denoted by the symbol at the top or bottom of the

column; the complementary type is given in the same horizontal line with the original

type. It will be noticed that the right-hand columns do not extend to the foot of the
Table

;
the reason of this of course is, to avoid a repetition of the same type. Some of
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the types at the foot of the Tables are complementary to themselves, but I have, not

withstanding this, given the complementary type in the form under which it naturally

presents itself.

4. The Tables are:

Table for the equal Roots of a Quartic.

211
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this of course gives as the function to be equated to zero, the discriminant of the

quartic.

6. In order that there may be two pairs of equal roots, or that the system may
be of the form 22, the simplest type to be considered is

14.24.34;
this gives the function

2 (a
-

S)(/3
-

S) (7
-

8) (*
- ay)\x

-

which being a covariant of the degree 3 in the coefficients and the degree 6 in the

variables, can only be the cubicovariant of the quartic.

7. In order that the quartic may have three equal roots, or that the system of

roots may be of the form 31, we may consider the type

13.14.23.24,

and we obtain thence the two functions

which being respectively invariants of the degrees 2 and 3, are of course the quadrin-

variant and the cubinvariant of the quartic. If we had considered the apparently more

simple type
12.34,

this gives the function

2(7-/3)
3 (7-S)

2
,

which is the quadrivariant, but the cubinvariant is not included under the type in

question.

8. Finally, if the roots are all equal, or the system of roots is of the form 4, then

the simplest type is

12;

and this gives the function

S(a - )
2

(x
-
7y)

2

(x
-

Sy)
2
,

a covariant of the degree 2 in the coefficients and the degree 4 in the variables
;

this is

of course the Hessian of the quartic.

Considering next the case of the quintic :

9. In order that a quintic may have a pair of equal roots, or what is the same

thing, that the system of roots may be of the form 2111, the type to be considered is

12.13.14.15.23.24.25.34.35.45;

this of course gives as the function to be equated to zero, the discriminant of the

quintic.



150] SYSTEMS OF EQUALITIES AMONG THE ROOTS OF EQUATION. 469

10. In order that the quintic may have two pairs of equal roots, or that the

system of roots may be 221, the simplest type to be considered is

14.15.24.25.34.35.45;

a type which gives the function

This is a covariant of the degree 5 in the coefficients and of the degree 9 in the variables
;

but it appears from the memoir above referred to, that there is not any irreducible

covariant of the form in question ;
such covariant must be a sum of the products

(No. 13) (No. 20), (No. 13)(No. 14)
a
, (No. 15)(No. 16) (the numbers refer to the Cova

riant Tables given in the memoir), each multiplied by a merely numerical coefficient.

These numerical coefficients may be determined by the consideration that there being
two pairs of equal roots, we may by a linear transformation make these roots 0, 0, GO

,
oo

,

or what is the same thing, we may write a = b e=f=0, the covariant must then

vanish identically. The coefficients are thus found to be 1, 4, 50, and we have for a

covariant vanishing in the case of two pairs of equal roots,

1 (No. 13)(No. 20)

- 4 (No. 13) (No. 14)
2

+ 50 (No. 15)(No. 16)

[or in the new notation AH- 4&amp;gt;AB* + 50CD].

In fact, writing a = b = e =f= 0, and rejecting, where it occurs, a factor x-y*, the several

covariants become functions of ex, dy ;
and putting, for shortness, x, y instead of ex, dy,

the equation to be verified is

6?/
4

)

- 4. I0(x + y)(3x
2 + 2xy + 3y

2

)*

+ 50
(&amp;lt;ox*

+ 8xy + Qy-Xx
3 + x*y + xy* + y

3

)
=

;

and dividing out by (x + y) and reducing, the equation is at once seen to be identically

true.

11. In order that the quintic may have three equal roots, or that the system
of roots may be of the form 311, the simplest type to be considered is

12.13.23.45;

this gives the function

2 (a
-

/3)
2

09 - 7)
2

(7
~

a)
2
(B
-

e)
4

,

which being an invariant, and being of the fourth degree in the coefficients, must be

the quartinvariant of the quintic [that is No. 19, =
G]. The same type gives also the

function

2 (a
-

/3)
2

(ft
-
7)

2

(7
-

*)
2

(
~ O2

(*
~ %)2

(*
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which is a covariant of the degree 4 in the coefficients and the degree 4 in the

variables
;
and it must vanish when a = b = c = 0, this can only be the covariant

3 (No. 20)
- 2 (No. 14)

2
, [= 3H - 2#2

],

which it is clear vanishes as required.

12. In order that the quintic may have three equal roots and two equal roots,

or that the system of roots may be of the form 32, the simplest type to be con

sidered is

12.13.14.15,

which gives the function

2 (a
-
0) (

-
7) ( -)(- e) (x

-
/fy)

3

(x
- 72/)

3

(x
-

Sy)
5

(x
-

ey)*,

a covariant of the degree 4 in the coefficients, and the degree 12 in the variables;

and it must vanish when a = b = c = 0, e=f=0; this can only be the covariant

3 (No. 13)
2

(No. 14) -25 (No. 15)
2
, [= 3A-B - 25&amp;lt;7

2

],

which it is clear vanishes as required.

13. In order that the quintic may have four equal roots, or that the system
may be of the form 41, the simplest type to be considered is

12.34,

which gives the function

2(a -/3)
2

(7 -S)
2

(*- e2/)
2
,

a covariant of the degree 2 in the coefficients, and of the same degree in the variables;
this can only be the covariant (No. 14), [= B].

14. Finally, in order that all the roots may be equal, or that the system of
roots may be of the form 5, the type to be considered is

12;
and this gives the function

2 (a
-

/3)
2

(x
- 7y)

2

(x
-

Sy)
2

(x
-

ey)
2
,

a covariant of the degree 2 in the coefficients, and the degree 6 in the variables,
and this can only be the Hessian (No. 15), [= C].

It will be observed that all the preceding conditions are distinctive; for instance,
the covariant which vanishes when the system of roots is of the form 311 does not
vanish when the system is of the form 221, or of any other form not included in
the form 311,
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151.

TABLES OF THE STUEMIAN FUNCTIONS FOK EQUATIONS OF

THE SECOND, THIKD, FOURTH, AND FIFTH DEGREES.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVII. for
the year 1857, pp. 733 736. Received December 18, 1856, Read January 8, 1857.]

THE general expressions for the Sturmian functions in the form of determinants

are at once deducible from the researches of Professor Sylvester in his early papers
on the subject in the Philosophical Magazine, and in giving these expressions in the

Memoir Nouvelles Recherches sur les Fonctions de M. Sturm, Liouville, t. xui. p. 269

(1848), [65], I was wrong in claiming for them any novelty. The expressions in the

last-mentioned memoir admit of a modification by which their form is rendered some
what more elegant ;

I propose on the present occasion merely to give this modified

form of the general expression, and to give the developed expressions of the functions

in question for equations of the degrees two, three, four, and five.

Consider in general the equation

U = (a, b, ... j, k^x, 1)

and write

P=(a, b, ... j%x, I)&quot;- ,

Q=(b, ... j, K$x, I)
- 1

,

then supposing as usual that the first coefficient a is positive, and taking for shortness

71 &quot; T 71 ~~ 1 Tb &quot; 2
%, ?i2 ,

&c. to represent the binomial coefficients -

,

-

, &c. corresponding
J- J- . *j

to the index (n 1), the Sturmian functions, each with its proper sign, are as

follows, viz.



472 TABLES OF THE STURMIAN FUNCTIONS FOR [151

U, P, P, Q

a
,

b

xP, P,

a
,

.
,

11 ,6, a ,

Q

b,

2^J ^l^j ll-yCl, ??jC

a?P&amp;gt; xP, P, x*Q, xQ, Q ,
&c.

a, . ,
. , b,

11$ , a, .
, Hi c, b,

ii 2c , n$, a, n.2d, ntf, i

n3d, n.2c, 11$, n 3e, n.d, n
t

n .e
, n-d, n.2c, n4/, n 3e, n 2i

j

where the terms containing the powers of x, which exceed the degrees of the several

functions respectively, vanish identically (as is in fact obvious from the form of the

expressions), but these terms may of course be omitted ab initio.

The following are the results which I have obtained; it is well known that the

last or constant function is in each case equal to the discriminant, and as the

expressions for the discriminant of equations of the fourth and fifth degrees are given,

Tables No. 12 and No. 26 [Q ,
see 143] in my Second Memoir upon Quantics^

1

),
I

have thought it sufficient to refer to these values without repeating them at length.

Table for the degree 2.

The Sturmian functions for the quadric (a, b, c^x, I)
3 are

a+1 b + 2 c + 1 7x, 1
)-,

(&amp;gt;+l
b

ac 1

b- + 1

Table for the degree 3.

The Sturmian functions for the cubic (a, b, c, d$cc, I)
3 are

a + 1
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a + 1
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152.

A MEMOIR ON THE THEORY OF MATRICES.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVIII. for
the year, 1858, pp. 17 37. Received December 10, 1857, Read January 14, 1858.]

THE term matrix might be used in a more general sense, but in the present-

memoir I consider only square and rectangular matrices, and the term matrix used

without qualification is to be understood as meaning a square matrix
;

in this restricted

sense, a set of quantities arranged in the form of a square, e.g.

( a
,

b , c

a , b , c

a&quot;, b&quot;,
c&quot;

)

is said to be a matrix. The notion of such a matrix arises naturally from an

abbreviated notation for a set of linear equations, viz. the equations

X = ax + by + cz ,

Z = a&quot;x+V y + c&quot;z,

may be more simply represented by

(X, Y, Z) = ( a
,

b
, c $#, y, z),

a
,

b
,

c

a&quot;, 6&quot;, c

and the consideration of such a system of equations leads to most of the fundamental

notions in the theory of matrices. It will be seen that matrices (attending only to

those of the same order) comport themselves as single quantities; they may be added,

602
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multiplied or compounded together, &c. : the law of the addition of matrices is pre

cisely similar to that for the addition of ordinary algebraical quantities ;
as regards

their multiplication (or composition), there is the peculiarity that matrices are not in

general convertible
;

it is nevertheless possible to form the powers (positive or negative,

integral or fractional) of a matrix, and thence to arrive at the notion of a rational

and integral function, or generally of any algebraical function, of a matrix. I obtain

the remarkable theorem that any matrix whatever satisfies an algebraical equation of

its own order, the coefficient of the highest power being unity, and those of the

other powers functions of the terms of the matrix, the last coefficient being in fact

the determinant; the rule for the formation of this equation may be stated in the

following condensed form, which will be intelligible after a perusal of the memoir,
viz. the determinant, formed out of the matrix diminished by the matrix considered

as a single quantity involving the matrix unity, will be equal to zero. The theorem
shows that every rational and integral function (or indeed every rational function) of

a matrix may be considered as a rational and integral function, the degree of which
is at most equal to that of the matrix, less unity; it even shows that in a sense,
the same is true with respect to any algebraical function whatever of a matrix. One
of the applications of the theorem is the rinding of the general expression of the
matrices which are convertible with a given matrix. The theory of rectangular
matrices appears much less important than that of square matrices, and I have not
entered into it further than by showing how some of the notions applicable to these

may be extended to rectangular matrices.

1. For conciseness, the matrices written down at full length will in general be
of the order 3, but it is to be understood that the definitions, reasonings, and con
clusions apply to matrices of any degree whatever. And when two or more matrices
are spoken of in connexion with each other, it is always implied (unless the contrary
is expressed) that the matrices are of the same order.

2. The notation

( a
, b

, c Jt, y, z)

a
, b

, c

x&quot;, b&quot;,
c&quot;

\

represents the set of linear functions

((a, b, cfa, y, z\ (a , b
, c fa, y, z\ (a&quot;, b&quot;, c&quot;fa, y, z)},

so that calling these (X, F, Z), we have

(X, Y, Z) = ( a
,

b
,

c fa, y, z)

a
,

b
, c

a&quot;, b&quot;, c&quot;

and, as remarked above, this formula leads to most of the fundamental notions in the

theory.
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3. The quantities {X, Y, Z) will be identically zero, if all the terms of the matrix

are zero, and we may say that

(0, 0, )

is the matrix zero.

0, 0,

0, 0,

Again, (X, Y, Z} will be identically equal to (x, y, z), if the matrix is

(1, 0, )

0, 1,

0, 0, 1

and this is said to be the matrix unity. We may of course, when for distinctness it

is required, say, the matrix zero, or (as the case may be) the matrix unity of such an

order. The matrix zero may for the most part be represented simply by 0, and the

matrix unity by 1.

4. The equations

(X, Y, Z) = (
a

,
b

,
c

a, b, c

a&quot;, b&quot;,
c&quot;

*, y, z\ X ,
Y ,

Z )
=

( a
, 7 $,*, y, z)

give

Y+Y, =
( a +a , b + ft , c+7 $#. y, z}

and this leads to

( a + a
,

b + c+7
a + a.

,
b + ft , c + j

a&quot; + a&quot;, b&quot;+/3&quot;, c&quot;+y

a + a
,

b 4
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7. It is clear that we have L +M = M+ L, that is, the operation of addition is

commutative, and moreover that (L + J\f) + N= L + (M + N) = L + M + N, that is, the

operation of addition is also associative.

8. The equation

written under the forms

gives

X, Y, Z) = ( a
,

b
,

c



152]

give

A MEMOIR OX THE THEORY OF MATRICES. 479

a
,



480 A MEMOIR ON THE THEORY OF MATRICES. [152

o

distinguish them as the first or furthest, second, third, &c., and last or nearest

component matrices : any two consecutive factors may be compounded together and

replaced by a single matrix, and so on until all the matrices are compounded together,

the result being independent of the particular mode in which the composition is

effected; that is, we have L. MN=LM, N= LMN, LM.NP = L . MN . P, &c., or the

operation of multiplication, although, as already remarked, not commutative, is associative.

15. We thus arrive at the notion of a positive and integer power L* of a

matrix L, and it is to be observed that the different powers of the same matrix are con

vertible. It is clear also that p and q being positive integers, we have Lp
. LI = LP+V,

which is the theorem of indices for positive integer powers of a matrix.

16. The last-mentioned equation, LP . L^ = D&amp;gt;

+&amp;lt;

i, assumed to be true for all values

whatever of the indices p and q, leads to the notion of the powers of a matrix for any
form whatever of the index. In particular, L? . L = L? or L =

1, that is, the Oth power
of a matrix is the matrix unity. And then putting p = l, q

= l, or p = 1, q=l, we
have L . L~l = L~l

. L = 1
;

that is, L~l

,
or as it may be termed the inverse or reciprocal

matrix, is a matrix which, compounded either as first or second component matrix

with the original matrix, gives the matrix unity.

17. We may arrive at the notion of the inverse or reciprocal matrix, directly

from the equation

(X, Y, Z} = ( a
,

b
,

c
Jar, y, z\

of
,

b
,

c

a&quot;, b&quot;,
c&quot;

s equation gives
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which are equivalent to each other, and either of them is by itself sufficient for the

complete determination of the inverse or reciprocal matrix. It is well known that if

V denote the determinant, that is, if

V = a
, b

, c

a
, b

, c

a&quot;, b&quot;, c&quot;

then the terms of the inverse or reciprocal matrix are given by the equations

A =
V

1, ,

0, b
, c

0, b&quot;, c&quot;

B = , 1,

a
, 0, c

a&quot;, 0, c&quot;

, &c.

or what is the same thing, the inverse or reciprocal matrix is given by the equation

( . b , c )- H 8V, 8-V, 8-V )

a
, b

, c

a&quot;, b&quot;,
c&quot;

,
8C&amp;lt;V,

where of course the differentiations must in every case be performed as if the terms
a, b, &c. were all of them independent arbitrary quantities.

18. The formula shows, what is indeed clear a priori, that the notion of the
inverse or reciprocal matrix fails altogether when the determinant vanishes: the matrix
is in this case said to be indeterminate, and it must be understood that in the
absence of express mention, the particular case in question is frequently excluded from
consideration. It may be added that the matrix zero is indeterminate; and that the

product of two matrices may be zero, without either of the factors being zero, if only
the matrices are one or both of them indeterminate.

19. The notion of the inverse or reciprocal matrix once established, the other

negative integer powers of the original matrix are positive integer powers of the
inverse or reciprocal matrix, and the theory of such negative integer powers may be
taken to be known. The theory of the fractional powers of a matrix will be further
discussed in the sequel.

20. The positive integer power Lm of the matrix L may of course be multiplied
by any matrix of the same degree: such multiplier, however, is not in general con
vertible with L; and to preserve as far as possible the analogy with ordinary
algebraical functions, we may restrict the attention to the case where the multiplier
is a single quantity, and such convertibility consequently exists. We have in this

manner a matrix cLm, and by the addition of any number of such terms we obtain
a rational and integral function of the matrix L.

C. II.

-^CAUFORNI*:
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21. The general theorem before referred to will be best understood by a com-,

plete development of a particular
case. Imagine a matrix

M=( a, b ),

c, d
and form the determinant

a-M, b

c ,
d - M

the developed expression of this determinant is

M2 -(a + d) M1 + (ad
-

be) M ;

the values of M2
, M\ M are

( a? + bc , b(a + d) ), (a, b ), (1, ),

c(a + d), d2 + be c, d 0, 1

and substituting these values the determinant becomes equal to the matrix zero, viz.

we have

a M, b

,
d-M

=
( a? + be

,
b (a + d) )

-
(a + d) ( a, b ) + (ad

-
be) ( I, )

c (a + d), d2 + be c, d

=
( (a

2 + be)
-

(a + d) a + (ad
-

be), b(a + d)-(a + d)b

0, 1

)
=

( 0, );

c (a + d) (a + d) c
,
d? + be - (a + d) d + ad - be 0,

that is

a M, b

c
,
d-M

where the matrix of the determinant is

= 0,

(a, b }-M( 1, ),

c, d 0, 1

that is, it is the original matrix, diminished by the same matrix considered as a single

quantity involving the matrix unity. And this is the general theorem, viz. the deter

minant, having for its matrix a given matrix less the same matrix considered as a

single quantity involving the matrix unity, is equal to zero.

22. The following symbolical representation of the theorem is, I think, worth

noticing: let the matrix M, considered as a single quantity, be represented by J/, then

writing 1 to denote the matrix unity, M . 1 will represent the matrix M, considered

as a single quantity involving the matrix unity. Upon the like principles of notation,

1 .M will represent, or may be considered as representing, simply the matrix M, and
the theorem is

Det. (1. M-&.1) = 0.
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23. I have verified the theorem, in the next simplest case of a matrix of the

order 3, viz. if M be such a matrix, suppose

M=( a, b, c ),

I

d, e, f

g, h, i
i

then the derived determinant vanishes, or we have

a M, b
,

c

d
, e-M, f

g &amp;gt;

h
,
i-M

or expanding

M3 -
(a + e + i)M2 + (ei + ia + ae -fh -eg- bd)M -

(aei + bfg + cdh - afh - bdi - ceg)
=

;

but I have not thought it necessary to undertake the labour of a formal proof of

the theorem in the general case of a matrix of any degree.

24 If we attend only to the general form of the result, we see that any matrix

whatever satisfies an algebraical equation of its own order, which is in many cases the

material part of the theorem.

25. It follows at once that every rational and integral function, or indeed every
rational function of a matrix, can be expressed as a rational and integral function of

an order at most equal to that of the matrix, less unity. But it is important to

consider how far or in what sense the like theorem is true with respect to irrational

functions of a matrix. If we had only the equation satisfied by the matrix itself,

such extension could not be made
;

but we have besides the equation of the same
order satisfied by the irrational function of the matrix, and by means of these two

equations, and the equation by which the irrational function of the matrix is deter

mined, we may express the irrational function as a rational and integral function of

the matrix, of an order equal at most to that of the matrix, less unity; such expression
will however involve the coefficients of the equation satisfied by the irrational function,
which are functions (in number equal to the order of the matrix) of the terms,
assumed to be unknown, of the irrational function itself. The transformation is never

theless an important one, as reducing the number of unknown quantities from n&quot; (if n
be the order of the matrix) down to n. To complete the solution, it is necessary to

compare the value obtained as above, with the assumed value of the irrational function,
which will lead to equations for the determination of the n unknown quantities.

26. As an illustration, consider the given matrix

a, b

c, d

612
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and let it be required to find the matrix L = \fM. In this case M satisfies the equation

M* - (a + d)M + ad - be =
;

and in like manner if

then L satisfies the equation

L =
( a, ft

7, 8

and from these two equations, and the rationalized equation L2 = M, it should be possible

to express L in the form of a linear function of M: in fact, putting in the last

equation for L? its value (= M), we find at once

which is the required expression, involving as it should do the coefficients a + 8, ct8 fty

of the equation in L. There is no difficulty in completing the solution
;

write for

shortness a + 8 = X, aS fty
= Y, then we have

L = ( a, ft )
=

( a+ F ^ ),

7, 8 ^ X

c_
d + Y

X X

and consequently forming the values of a. + 8 and a8 fty,

r_a+d+2Y
~F~~*

v _(a+Y)(d+Y)-bc
~V~2

~&quot;

and putting also a + d = P, ad-bc=Q, we find without difficulty

and the values of a, ft, 7, 8 are consequently known. The sign of ^Q is the same in

both formulae, and there are consequently in all four solutions, that is, the radical

has four values.

27. To illustrate this further, suppose that instead of M we have the matrix ,

M* = ( a, b )
2 =

( tf + bc
, b(a+d)\

c, d
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so that L2 = M*, we find

P = (a + d)
2 - 2 (ad

-
be),

Q = (ad-bc)
2

,

and thence VQ = + (ad be). Taking the positive sign, we have

Y = ad be,

and these values give simply

But taking the negative sign,

X=(a

L=( a, b )
= + M..

c, d

Y = ad + be,

X = V(a - d

and retaining X to denote this radical, we find

2bc b(a + d) ),

XX
c(a + d) dz ad + 2bc

X X
which may also be written

_ a + d ( a, b ) 2 (ad- be) (1, ),_ .

X
c, d X

0, 1

or, what is the same thing,

T = M

485

and it is easy to verify d posteriori that this value in fact gives L2 = M2
. It may

be remarked that if

Mz =
( 1, )

2 =
1,

0, 1

the last-mentioned formula fails, for we have X =
;

it will be seen presently that
the equation D = I admits of other solutions besides L = 1. The example shows how
the values of the fractional powers of a matrix are to be investigated.

28. There is an apparent difficulty connected with the equation satisfied by a

matrix, which it is proper to explain. Suppose, as before,

M =
( a, b ),

c, d
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so that M satisfies the equation

[152

a - M
,

b

,
d-M

=
0,

or

and let X
f , X/t

be the single quantities, roots of the equation

a-X, b

c
, d-X

=

or

The equation satisfied by the matrix may be written

in which X,, X/t
are to be considered as respectively involving the matrix unity, and it

would at first sight seem that we ought to have one of the simple factors equal to

zero; this is obviously not the case, for such equation would signify that the perfectly
indeterminate matrix M was equal to a single quantity, considered as involving the

matrix unity. The explanation is that each of the simple factors is an indeterminate

matrix, in fact M X, stands for the matrix

, d-X,
and the determinant of this matrix is equal to zero. The product of the two factors

is thus equal to zero without either of the factors being equal to zero.

29. A matrix satisfies, we have seen, an equation of its own order, involving the

coefficients of the matrix; assume that the matrix is to be determined to satisfy some
other equation, the coefficients of which are given single quantities. It would at first

sight appear that we might eliminate the matrix between the two equations, and thus
obtain an equation which would be the only condition to be satisfied by the terms
of the matrix

;
this is obviously wrong, for more conditions must be requisite, and we

see that if we were then to proceed to complete the solution by finding the value of

the matrix common to the two equations, we should find the matrix equal in every case

to a single quantity considered as involving the matrix unity, which it is clear ought
not to be the case. The explanation is similar to that of the difficulty before adverted

to; the equations may contain one, and only one, common factor, and may be both of
them satisfied, and yet the common factor may not vanish. The necessary condition
seems to be, that the one equation should be a factor of the other

;
in the case where

the assumed equation is of an order equal or superior to the matrix, then if this

equation contain as a factor the equation which is always satisfied by the matrix, the
assumed equation will be satisfied identically, and the condition is sufficient as well
as necessary: in the other case, where the assumed equation is of an order inferior

to that of the matrix, the condition is necessary, but it is not sufficient.
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30. The equation satisfied by the matrix may be of the form Mn = 1
;

the

matrix is in this case said to be periodic of the nih order. The preceding conside

rations apply to the theory of periodic matrices
; thus&amp;gt; for instance, suppose it is

required to find a matrix of the order 2, which is periodic of the second order. Writing

we have

and the assumed equation is

M=( a, b
),

c, d

J/2 -
(a + d)M + ad - be = 0,

M 2 - 1 = 0.

These equations will be identical if

a + d = 0, ad be = I,

that is, these conditions being satisfied, the equation M2 - 1 = required to be satisfied,

will be identical with the equation which is always satisfied, and will therefore itself

be satisfied. And in like manner the matrix M of the order 2 will satisfy the
condition If3 - 1 = 0, or will be periodic of the third order, if only M 3 -l contains as

a factor

and so on.

31. But suppose it is required to find a matrix of the order 3,

M=( a, b, c)

d, e, f
9&amp;gt;

h, i

which shall be periodic of the second order. Writing for shortness

a-M, b
,

c

d
, e-M, f

9 ,
h

,
i-M

the matrix here satisfies

= - (M3 - AM2 + BM-O},

and, as before, the assumed equation is M2 1=0. Here, if we have 1+5 = 0,

the left-hand side will contain the factor (M2
1), and the equation will take the form

(M 2 -
1) (M + C) = 0, and we should have then if 2 - 1=0, provided M+C were not an

indeterminate matrix. But M+C denotes the matrix

( a + C, b
, c )

d
, e + C, f

9 ,
h

,
i + C
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the determinant of which is C* + AC2 + BC+ C, which is equal to zero in virtue of

the equations 1+5 = 0, A + C = 0, and we cannot, therefore, from the equation

(M*-l)(M+C) = 0, deduce the equation M* - 1 = 0. This is as it should be, for the

two conditions are not sufficient, in fact the equation

M* =( a? + bd + eg, ab + be + ch, ac + bf+ ci
)
= 1

da + ed +fg, db + e* +fh, dc + ef+fi

ga +hd + ig, gb + he + ih, gc + hf+ $

gives nine equations, which are however satisfied by the following values, involving in

reality four arbitrary coefficients; viz. the value of the matrix is

( -( + 7)

-
(7 + a) ft

-
(7 + a)

a+/3 /3+7

7
QC + /3 a + /3 + 7

so that there are in all five relations (and not only two) between the coefficients of

the matrix.

32. Instead of the equation Mn 1=0, which belongs to a periodic matrix, it is

in many cases more convenient, and it is much the same thing to consider an

equation Mn k = 0, where k is a single quantity. The matrix may in this case be

said to be periodic to a factor pres.

33. Two matrices L, M are convertible when LM = ML. If the matrix M is given,

this equality affords a set of linear equations between the coefficients of L equal in

number to these coefficients, but these equations cannot be all independent, for it is

clear that if L be any rational and integral function of M (the coefficients being single

quantities), then L will be convertible with M
;

or what is apparently (but only appa

rently) more general, if L be any algebraical function whatever of M (the coefficients

being always single quantities), then L will be convertible with M. But whatever the

form of the function is, it may be reduced to a rational and integral function of an

order equal to that of M, less unity, and we have thus the general expression for

the matrices convertible with a given matrix, viz. any such matrix is a rational and

integral function (the coefficients being single quantities) of the given matrix, the

order being that of the given matrix, less unity. In particular, the general form of

the matrix L convertible with a given matrix M of the order 2, is L = a.M + /3, or

what is the same thing, the matrices

( a, b ), ( a ,
b )

c, d c ,
d

will be convertible if a d : b : c =ad : b : c.
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34. Two matrices L, M are skew convertible when LM = ML
;

this is a relation

much less important than ordinary convertibility, for it is to be noticed that we cannot

in general find a matrix L skew convertible with a given matrix M. In fact, con

sidering M as given, the equality affords a set of linear equations between the coeffi

cients of L equal in number to these coefficients; and in this case the equations are

independent, and we may eliminate all the coefficients of L, and we thus arrive at a

relation which must be satisfied by the coefficients of the given matrix M. Thus,

suppose the matrices

( a, 6 ), ( a
,

V
)

c, d c
f

, d

are skew convertible, we have

(a, b )( a
,

b )
=

( aa + bc , ab + bd ),

c, d c ,
d ca + dc

, cb + dd

(a , b )( a, b )
= (aa + 6 c, a b+b d),

c, d c a + d c, c b + d dc
,

d

and the conditions of skew convertibility are

2aa + be + b c = 0,

b (a + d)+b(a +d )
=

0,

c (a +d) +c(a + d )
= 0,

2dd + bc + b c =0.

Eliminating a
, b , c ,

d
,
the relation between a, b, c, d .is

2a, c
,

b
, .

b
,

a + d, . b

c
, . a + d, c

c b 2d

= 0,

which is

(a + d)
2

(ad
-

be) = 0.

Excluding from consideration the case ad-bc = 0, which would imply that the matrix
was indeterminate, we have a + d = 0. The resulting system of conditions then is

a + d = 0, a! + d = 0, act + be + b c + dd = 0,

the first two of which imply that the matrices are respectively periodic of the second
order to a factor pres.

35. It may be noticed that if the compound matrices LM and ML are similar,

they are either equal or else opposite ;
that is, the matrices L, M are either convertible

or skew convertible.

c. ii. 62
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36. Two matrices such as

( a, b ), ( a, c ),

[152

c, d b, d

are said to be formed one from the other by transposition, and this may be denoted

by the symbol tr.
;

thus we may write

(a, c )
= tr. ( a, b ).

6, d c, d

The effect of two successive transpositions is of course to reproduce the original matrix.

37. It is easy to see that if M be any matrix, then

(tr. MY = tr. (M\
and in particular,

(tr. M)-
1 = tr. (

J/-1

).

38. If L, M be any two matrices,

tr. (LM) = tr. M. tr. L,

and similarly for three or more matrices, L, M, N, &c.,

tr. (LMN) = tr. N. tr. M. tr. L, &c.

40. A matrix such as

( a, h, g )

h, b, f

9&amp;gt; f&amp;gt;

c

which is not altered by transposition, is said to be symmetrical.

41. A matrix such as

( 0, *, -M )

-v, 0, X

/A,
-

X,

which by transposition is changed into its opposite, is said to be skew symmetrical.

42. It is easy to see that any matrix whatever may be expressed as the sum of

a symmetrical matrix, and a skew symmetrical matrix
;

thus the form

( a
,

h + v, g /ji )

h-v, b
, f + \

g + p, f X, c

which may obviously represent any matrix whatever of the order 3, is the sum of the

two matrices last before mentioned.
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43. The following formulae, although little more than examples of the composition

of transposed matrices, may be noticed, viz.

( a, b

c, d

c )
=

( ar + b2
, ac + bd )

d, b ac + bd, c- + d2

which shows that a matrix compounded with the transposed matrix gives rise to a

symmetrical matrix. It does not however follow, nor is it the fact, that the matrix and

transposed matrix are convertible. And also

(a, c $ a, b $ a, c )
=

( a3 + bed + a (b
2 + c

2

), c
3 + abd + c (a

2 + d2
) )

b, d c, d b, d 63 + acd + b (a
2 + d2

), d3 + abc+d (b
2 + c

3
)

which is a remarkably symmetrical form. It is needless to proceed further, since it

is clear that

(a, c. $ a, b $ a, c $ a, b )=(( a, c $ a, 6
))

2
.

b, d c, d
\

b, d \\ c, d b, d c, d

44. In all that precedes, the matrix of the order 2 has frequently been con

sidered, but chiefly by way of illustration of the general theory ;
but it is worth while to

develope more particularly the theory of such matrix. I call to mind the fundamental

properties which have been obtained, viz. it was shown that the matrix

satisfies the equation

and that the two matrices

will be convertible if

b ),

d

M 2 -
(a + d)M + ad -bc=0,

( a, b ), ( a
,

b ),

c, d c ,
d

a -d : b : c = a - d : b : c,

and that they will be skew convertible if

a + d = 0, a +d = 0, act + be + b c + dd = 0,

the first two of these equations being the conditions in order that the two matrices

may be respectively periodic of the second order to a factor pres.

45. It may be noticed in passing, that if L, M are skew convertible matrices of

the order 2, and if these matrices are also such that L2 = - 1, M- = -
1, then putting

N=LM=ML, we obtain

L2 =-l, M =-\, N 2 = -l,

= -NM, M=NL = -NL, N=LM=-ML,

which is a system of relations precisely similar to that in the theory of quaternions.

622
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46. The integer powers of the matrix

M=( a, b ),

c, d

are obtained with great facility from the quadratic equation ;
thus we have, attending

first to the positive powers,

M* = (a + d) M - (ad - be),

M3 =
[(a + d)

2 -
(ad

-
be)] M-(a + d) (ad

-
be),

c,

whence also the conditions in order that the matrix may be to a factor pres periodic of

the orders 2, 3, &c. are

a + d =
0,

(a + d)-
- (ad - be) = 0,

&c.
;

and for the negative powers we have

(ad be) M~ l = M + (a + d),

which is equivalent to the ordinary form

(ad
-

be) M~l =
( d, -b );

c, a

and the other negative powers of M can then be obtained by successive multiplications
with M~l

.

47. The expression for the ?zth power is however most readily obtained by means
of a particular algorithm for matrices of the order 2.

Let h, b, c, J, q be any quantities, and write for shortness R = h- 46c
; suppose

also that h
,
b

, c ,
J

, q are any other quantities, such nevertheless that h : b : c = h : b : c,

and write in like manner R = h 2 46V. Then observing that .

,
L

,
-4= are

respectively equal to -= . ==
, the matrix

\/R \/R **/R

T , h \ 26JJ Cotqr- ,
-=

contains only the quantities J, q, which are not the same in both systems; and we
may therefore represent this matrix by (J&quot;, q), and the corresponding matrix with
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h
,
b

,
c ,

J , q by (J , g ).
The two matrices are at once seen to be convertible (the

assumed relations h : b : c h : b : c correspond in fact to the conditions,

a d : b : c = a d : b : c,

of convertibility for the ordinary form), and the compound matrix is found to be

/sin (q + g ) ,\
-. . ; JJ , q + q ;

\sm q sin q
J
/

and in like manner the several convertible matrices (J, q), (J , q ), (J&quot;, q&quot;)
&c. give

the compound matrix

+ g +
g&quot;...)

\
-.

7
;

77 J J J . ..
, q -+- q -\- q ....m q sin q . . .

I J
f /sin g sin g

48. The convertible matrices may be given in the first instance in the ordinary
form, or we may take these matrices to be

( a, b ), ( a
, b

), ( a&quot;,
b&quot; ), &c.

c, d c
,
d

c&quot;,
d&quot;

where of course d a : b : c = d a : b : c = d&quot; a&quot; : b&quot; : c&quot;
= &c. Here writing

h = d a, and consequently R = (d a)
2

4bc, and assuming also J | ^/E and

cot g
= -.

,
and in like manner for the accented letters, the several matrices are

vR
respectively

, q ), &quot;, .q&quot;\ &c.,

and the compound matrix is

SB) (i SP) ... q +
&amp;lt;/

+
q&quot;

+....sm g sm g sing ...

49. When the several matrices are each of them equal to

(a, b .),

c, d

we have of course q
= q = q&quot;

...
,
R = R = J2&quot; . . .

,
and we find

c,

)&quot; = /sinng ^ X

Vsm&quot;g
v V

or substituting for the right-hand side, the matrix represented by this notation, and

putting for greater simplicity

smn
g

or =
sinn g
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we find

(a, 6 )
n =

i c, d
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Lc

where it will be remembered that

R = (d a)
2 46c and cot q =

the last of which equations may be replaced by

d + a

cos q + V 1 sin q
= d + a + -

- be

The formula in fact extends to negative or fractional values of the index n, and when

n is a fraction, we must, as usual, in order to exhibit the formula in its proper

generality, write q + 2imr instead of q. In the particular case n = \, it would be easy

to show the identity of the value of the square root of the matrix with that before

obtained by a different process.

50. The matrix will be to a factor pres, periodic of the ?;th order if only sin nq
=

0,

that is, if q = -
(ra must be prime to n, for if it were not, the order of periodicity

n

would be not n itself, but a submultiple of n) ;
but cos q .----- ,

and the condition
2 Nad be

is therefore

(d + a)
2 - 4 (ad

-
be) cos2 ~ = 0,

or as this may also be written,

& + a* - 2ad cos + 46c cos2 = 0,
n n

a result which agrees with those before obtained for the particular values 2 and 3

of the index of periodicity.

51. I may remark that the last preceding investigations are intimately connected

ax -} b
with the investigations of Babbage and others in relation to the function

&amp;lt;/&amp;gt;#

= -, .

I conclude with some remarks upon rectangular matrices.

52. A matrix such as

( a
,

b
,

c )

a
, b , c

where the number of columns exceeds the number of lines, is said to be a broad

matrix
;
a matrix such as

( a, b )

a
,

b

a&quot;,
b&quot;

where the number of lines exceeds the number of columns, is said to be a deep matrix.
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53. The matrix zero subsists in the present theory, but not the matrix unity.

Matrices may be added or subtracted when the number of the lines and the number

of the columns of the one matrix are respectively equal to the number of the lines

and the number of the columns of the other matrix, and under the like condition

any number of matrices may be added together. Two matrices may be equal or

opposite, the one to the other. A matrix may be multiplied by a single quantity,

giving rise to a matrix of the same form
;

two matrices so related are similar to

each other.

54. The notion of composition applies to rectangular matrices, but it is necessary

that the number of lines in the second or nearer component matrix should be equal

to the number of columns in the first or further component matrix
;

the compound
matrix will then have as many lines as the first or further component matrix, and

as many columns as the second or nearer component matrix.

55. As examples of the composition of rectangular matrices, we have

(
a, 6, c $ a

, V, c, d
)
=

( (a, b, c$a &amp;gt;

e
,
i \ (a, b, c$6 , / , /) (a, b, cc , g ,

k \ (a, b, c$df, h I ) ),

d,e,f e ,f, g ,
h (d, e,f$a ,

e ,
*

), (d, e,f$b , f, /) (d, e,f%c , g ,
k

), (d, e,f$d t
h I )

and

{ a,d J[
a

,
b

, c
,
d ) \ =

( (a, dQa ,
e

), (a, d$b , / ), (a, tfc
&amp;gt; g }, (&amp;gt; d^d ,

h } \

(b, e~a ,
e

), (6, e^b , / ), (6, e][c , # ), (6, e^ , //)

(c, f$a, e
), (c, /$& , /), (c, /$c , ^r X (c, f$d ,

h )

M e fK
&amp;gt; J &amp;gt;

56. In the particular case where the lines and columns of the one component
matrix are respectively equal in number to the columns and lines of the other com

ponent matrix, the compound matrix is square, thus we have

a, 6, c

d, e, f

a , d =
(a, b,

b
,

e (d, e,

and

(
a

,
d

b
,

e

a, b, c
)
=

( (a ,
d

d, e, f (b ,

a
,

b
,

c ), (a, 6, c\d ,
e

, f }
)

a
,
b

,
c ), (d, e, f$d , e , f)

d), (a ,
d W, e\ (a , djc, /) ).

7\ / 7 / / &quot;V 7 \ / 7 / / &quot;V /* \

d), (b ,
e ^b, e), (b } e $c, /)

d), (c , / P, e), (c , / $c, /)

The two matrices in the case last considered admit of composition in the two different

orders of arrangement, but as the resulting square matrices are not of the same order,

the notion of the convertibility of two matrices does not apply even to the case in

question.

57. Since a rectangular matrix cannot be compounded with itself, the notions of

the inverse or reciprocal matrix and of the powers of the matrix and the whole resulting

theory of the functions of a matrix, do not apply to rectangular matrices.



496 A MEMOIR ON THE THEORY OF MATRICES. [152

58. The notion of transposition and the symbol tr. apply to rectangular matrices,

the effect of a transposition being to convert a broad matrix into a deep one and

reciprocally. It may be noticed that the symbol tr. may be used for the purpose of

expressing the law of composition of square or rectangular matrices. Thus treating

(a, b, c) as a rectangular matrix, or representing it by (a, b, c), we have
I I

tr. ( a
,
b

,
c )

=
( a ),

and thence

( a, b, c ) tr. ( a
,
b

,
c )=(, b,

so that the symbol

b

c

a )
=

(a, b, c$V, b , c ),

b

(a, b, c$V, b
,

c )

would upon principle be replaced by

( a, b, c ) tr. (a ,
b

, c ):III I

it is however more convenient to retain the symbol

(a, b, c$a , b
, c

).

Hence introducing the symbol tr. only on the left-hand sides, we have

( a, b, c
)

tr.
(

a, b
, c

)
=

( (a, b, ca , b
, c), (a, b, c$.cf, e , / ) ),

d p f ^ &quot; ff *&amp;gt; *&quot;

,
b

, c
), (d, e,f^d ,

e ,f)
dt e,f d

,
e

, f (d, e,

or to take an example involving square matrices,

(
a, b

)
tr.

(
a

,
b

)
=

( (a, b^

d, e d
, e (d,

b ), (a,

b
), (d,

,
e ) ) ;

&amp;gt;,

e )

it thus appears that in the composition of matrices (square or rectangular), when the
second or nearer component matrix is expressed as a matrix preceded by the symbol
tr., any line of the compound matrix is obtained by compounding the corresponding
line of the first or further component matrix successively with the several lines of the
matrix which preceded by tr. gives the second or nearer component matrix. It is clear
that the terms symmetrical and skew symmetrical do not apply to rectangular
matrices.
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153.

A MEMOIR ON THE AUTOMORPHIC LINEAR TRANSFORMATION
OF A BIPARTITE QUADRIC FUNCTION.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVIII. for the

year 1858, pp. 3946. Received December 10, 1857, Read January 14, 1858.]

THE question of the automorphic linear transformation of the function of + y
2 + z-,

that is the transformation by linear substitutions, of this function into a function
xf + y? + z? of tne same form, is in effect solved by some formulas of Euler s for the
transformation of coordinates, and it was by these formulas that I was led to the
solution in the case of the sum of n squares, given in my paper &quot;Sur quelques pro-
prietes des determinants gauches ^

1

)-
A solution grounded upon an a priori investiga

tion and for the case of any quadric function of n variables, was first obtained by
M. Hermite in the memoir &quot;

Remarques sur une Memoire de M. Cayley relatif aux
determinants

gauches&quot;(
2

). This solution is in my Memoir &quot;Sur la transformation d une
function quadratique en elle-meme par des substitutions

lineaires&quot;(
s

)&amp;gt; presented under a
somewhat different form involving the notation of matrices. I have since found that
there is a like transformation of a bipartite quadric function, that is a lineo-linear

function of two distinct sets, each of the same number of variables, and the develop
ment of the transformation is the subject of the present memoir.

1. For convenience, the number of variables is in the analytical formuke taken
to be 3, but it will be at once obvious that the formulas apply to any number of
variables whatever. Consider the bipartite quadric

( a
, b

, c ~6o;, y, z^x, y, z),J**~ U ^. J /

a
, b

, c

a&quot;, b&quot;,
c&quot;

1
Crelle, t. xxxn. (1846) pp. 119123, [52].

3
Cambridge and Dublin Mathematical Journal, t. ix. (1854) pp. 63 67.

3
Crelle, t. L. (1855) pp. 288299, [136].

C. II.
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which stands for

(ax +by + cz ) x

+ (a x + b y + c z ) y

+ (a&quot;x
+

b&quot;y
+ c&quot;z) z,

and in which (x, y, 2) are said to be the nearer variables, and (x, y, z) the further

variables of the bipartite.

2. It is clear that we have

(
a

,
b

,
c \x, y, 2$x, y, z)

=
( a, a

,
a&quot;

a
,

b ,
c b, b

,
b&quot;

, y, z)

a&quot;, b&quot;,
c&quot; c, c

,
c

and the new form on the right-hand side of the equation may also be written

(tr. ( a
,

b
,

c ) $x, y, z$&amp;gt;, y, z),

a ,
b

, c

a&quot;, b&quot;,
c&quot;

that is, the two sets of variables may be interchanged, provided that the matrix is

transposed.

3. Each set of variables may be linearly transformed : suppose that the substitu

tions are

(x, y, z)
=

( I
,
m

,
n ^x/t y,, z)

I
,
m

,
n

I&quot;, m&quot;,
n&quot;

and

(x, y, z)
=

( 1 , Y
,

1&quot; $x,, y,, z,).

m, m
,
m

n, n
,

n&quot;

Then first substituting for (x, y, z} their values in terms of (xt, y/} zj), the bipartite

becomes

( ( a
,

b
, c tf I

,
m

,
n ) $&amp;gt;/t ylt z$x, y, z);

a
, b

, c

a&quot;, 6&quot;,
c&quot;

, m, n

I&quot;, m&quot;,
n&quot;

represent for a moment this expression by

( A ,
B

,
C

A
,
B

,
C

A&quot;, B&quot;,
C&quot;

$&amp;gt; ft Y V 71
/&amp;gt;

2/xx &amp;gt;

j&amp;gt; */
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then substituting for (x, y, z) their values in terms of (x7 , y,, z,), it is easy to see

that the expression becomes

I
7

,
m

,
n

I&quot;, m&quot;,
n&quot;

A
,
B

,
C

A&quot;, B&quot;, C&quot;

and re-establishing the value of the auxiliary matrix, we obtain, as the final result of

the substitutions,

( a , b , c

a , b
,

c

a&quot;, b&quot;,
c&quot;

y, , y, z)
=

( ( 1
,
m

,
n a

,
b

, c $ I
,
m

,
n ) $&amp;gt; y/ , ^ftx,, y,, z),

Y, m ,
n
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or as it may be written,

. V, ?$B, H, Z) -(!$*, y, *$E, H, Z)
.=0;

i_E, H, Z) (n$, 77, ]x , y
or again,

t.
~&amp;gt;f? u 7\

iH-x, H-y, Z-z)
H

or what is the same thing,

:_r n n f ^ H 7\ ^^
t*/j iy Vj ^ -&amp;lt;& y *^j *

) / I

.=0,
(tr. H][H x, H y, Z z]f, 77,

and it is easy to see that the equation will be satisfied by writing

a
f 77 -y, _* =

(tr. nB-x, H-y, Z-z) = -(tr.T$S, H, Z),

where T is any arbitrary matrix. In fact we have then

( n$ -*, 77 -y, C -^H, H, Z)= ( T$, 77 , r$3, H, Z),

(tr.n$H-x, H-y, Z-z$f , 77, )
= -

(tr. T$H, H, Z$f , 77, )

= -( T$f, 77, r$H, H, Z),

and the sum of the two terms consequently vanishes.

6. The equation

(n$-a, 9-* ?-) = (T$f, 77, r)

gives

77,
=

, y.

and we then have

(n + r$f, 77,
=

In fact the two equations give

(2fl$fc 77, f)
=

or what is the same thing,

which is the equation assumed as the definition of (f, 77, ); and conversely, this

equation, combined with either of the two equations, gives the other of them.

7. We have consequently

(x, y, *)
= (n- (n-T)$, ,,, f),

(f, 77, ^ = ((0 +^-0^, y/&amp;gt; O,
and thence

(a?, y, ^)
= (a-^a
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8. But in like manner the equation

(tr.n$E-x, H-y, Z - z)
= -

(tr. T$B, H, Z)

gives

(tr. fTTT$E, H, Z) = (tr. n$x, y, z),

and we then obtain _
(tr.rTTT$E, H, Z) = (tr.n$X/ , y/ , z,).

9. In fact these equations give

(tr.2fl$E, H, Z) = (tr.

or

2(E, H, Z) = (x + x
y , y + y,,

and conversely, this equation, combined with either of the two equations, gives the other

of them. We have then

(x, y, z) = ((tr.n)-
l

(tr.n + TJE, H, Z),

(E, H, Z) = ((tr.fl-T)-
1
tr. n$x jf y,, z,),

and thence

(x, y, z)
=

((tr. O)-
1

(tr. nTT)(tr. fl-T)- tr.
n$x,&amp;gt; y,, z,).

10. Hence, recapitulating, we have the following theorem for the automorphic linear

transformation of the bipartite

(tifo, y, *x, y, z),

viz. T being an arbitrary matrix, if

(*, y, *)
=

(n-&amp;gt;(n

(x, y, z) = ((tr.n)- (tr. n + T)(tr..n-T)rtr. n$xyl y,,

then

y, z~$x y y, z)
= (O][^, y/ , ^x/} y/ , z),

which is the theorem in question.

11. I have thought it worth while to preserve the foregoing investigation, but

the most simple demonstration is the verification a posteriori by the actual substitution

of the transformed values of (x, y, z), (x, y, z). To effect this, recollecting that in general

tr. (A
1

)
=

(tr. ^L)&quot;

1 and tr. ABCD = tr. D. tr. C. tr. B. tr. A, the transposed matrix of

substitution for the further variables is

and compounding this with the matrix Ii of the bipartite, and the matrix

H-1

(fl
-

T)(fl + T)-
1 n
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of substitution for the nearer variables, the theorem will be verified if the result is

equal to the matrix ft of the bipartite ;
that is, we ought to have

ft (ft
-

T)-&amp;gt;(ft + TOft- ftft-^n
-

T)(ft + T)-
1 ft = ft,

or what is the same thing,

ft (ft
- TO-Kft + T) ft-&amp;gt;(ft

- T)(n + ry-^n = n ;

this is successively reducible to

(n + rift-Kft
- T) = (n - TOft-^ft + T),

ft-^ft + T) ft-&amp;gt;(ft

- T) = n-*(n - T)ft-&amp;gt;(ft + T),

(i + n-*T)(i - ft- T) = (i
- n-i

T)(i + ft- T),

which is a mere identity, and the theorem is thus shown to be true.

12. It is to be observed that, in the general theorem, the transformations or matrices

of substitution for the two sets of variables respectively are not identical, but it may

be required that this shall be so. Consider first the case where the matrix ft is

symmetrical, the necessary condition is that the matrix T shall be skew symmetrical;

in fact we have then

tr. H = H, tr. T = - T,

and the transformations become

(x, y, z)
=

(ft-&amp;gt;(ft

-
T)(ft + TO- ft^x,, y/ , z,),

which are identical. We may in this case suppose that the two sets of variables

become equal, and we have then the theorem for the automorphic linear transformation

of the ordinary quadric
?, y, zf,

viz. T being a skew symmetrical matrix, if

(x, y, *)
= (n-

then

(!$&amp;gt;, y, zf =

13. Next, if the matrix n be skew symmetrical, the condition is that the matrix

T shall be symmetrical ;
we have in this case tr. fl = - O, tr. T = T, and the four factors

in the matrix of substitution for (x, y, z) are respectively
-

H&quot;
1
,

-
(ft -T),

-
(ft + T)-

1

and -ft, and such matrix of substitution becomes therefore, as before, identical with

that for (x, y, z}\ we have therefore the following theorem for the automorphic linear

transformation of a skew symmetrical bipartite

y, $x, y, z),
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when the transformations for the two sets of variables are identical, viz. T being any

symmetrical matrix, if

then

(fl$&amp;gt;, y, z$x, y, z)=(tt$x,, y/ , z^x,, y,, Z/).

14. Lastly, in the general case where the matrix ft is anything whatever, the

condition is

O^T = -
(tr. O)-

1
tr. T

for assuming this equation, then first

n-^n - T) = (tr. fir^tr. n + T),

and in like manner

Or*(O + T) = (tr. Q)-*(tr. Q -
T).

But we have

1 = (tr. O)-*(tr. Q-T) (tr. O - T)-
1
tr. ft,

and therefore, secondly,

(fl + T)-
1 O =

(tr. fl^T)-1
tr. O

;

and thence

n-^n - T)(0 + T)-
1 !! = (tr. fl)-

1

(tr. O + T) (tr. (I - T)~Hr. H,

or the two transformations are identical.

15. To further develope this result, let H&quot;
1 be expressed as the sum of a

symmetrical matrix Q and a skew symmetrical matrix Qt ,
and let T be expressed in

like manner as the sum of a symmetrical matrix T and a skew symmetrical matrix

T,. We have then

n-1 =Q + Q,,

(tr.n)-&amp;gt;=tr. (n- )-Qo-Q,,

T =T + T,,

tr. T =T -T
/f

and the condition, fl&quot;
1 T =

(tr. H)&quot;

1
tr. T, becomes

that is,

and we have
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or as we may write it,

and thence

[153

T
O
= - (Kn-

1 + tr. n- D^Hfl-
1 - tr. n- yr,,

T = - Q{n- + tr. n-1

})-
1^-1 - tr. n- jyr, + T,,

where T, is an arbitrary skew symmetrical matrix.

16. This includes the before-mentioned special cases
; first, if fl is symmetrical,

then we have simply T = T
/ ,

an arbitrary skew symmetrical matrix, which is right.

Next, if fl is skew symmetrical, then T = 0~in~1T
/
+ T/t

which can only be finite

for T, = 0, that is, we have T = - O^fl^O, and (the first part of T being always

symmetrical) this represents an arbitrary symmetrical matrix. The mode in which this

happens will be best seen by an example. Suppose

n-i = ( A
, H+v}, tr. H-1 =( A

, H-v),

H-v, B v, B

and write

then we have

0, 0),

-o, o

H, B

vd

AB-H

( vB6

0,

-v,

0, 6)

-e, o\

0, 6)

-e, o

(-B, H)
H, -A

0, 0)

-0,

AB-H 2

- VH6

AB-H* +

AB-H&quot;- AB-H-

o, e ).

-0.0

When H is skew symmetrical, A, B, H vanish; but since their ratios remain arbitrary,

we may write rcA, icB, xH for A, B, H, and assume ultimately K = 0. Writing K&

in the place of 0, and then putting K = 0, the matrix becomes

vB0
AB- H*
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17. Hence, finally, we have the following Theorem- for the automorphic linear

transformation of the bipartite quadric,

(n$&amp;gt;, y, /x, y, z),

when the two transformations are identical, viz. if T, be a skew symmetrical matrix,
and if

T = - (ijn-
1 + tr. n- ixiin-

1 - tr. o-1

})^ + T,

then if

(x, y, *) = (fl-Kn

(X , y, z)
= (n-(n

we have

3/, x, y, z =

and in particular,

If H is a symmetrical matrix, then T is an arbitrary skew symmetrical matrix
;

If H is a skew symmetrical matrix, then T is an arbitrary symmetrical matrix.

C. II. 64
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154.

SUPPLEMENTARY RESEARCHES ON THE PARTITION OF

NUMBERS.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVIII. for
the year 1858, pp. 47 52. Received March 19, Read June 18, 1857.]

THE general formula given at the conclusion of my memoir,
&quot; Researches on the

Partition of Numbers
&quot;(

x

)&amp;gt;

is somewhat different from the corresponding formula of

Professor Sylvester
2
,
and leads more directly to the actual expression for the number of

partitions, in the form made use of in my memoir
;

to complete my former researches,

I propose to explain the mode of obtaining from the formula the expression for the

number of partitions.

(T)QC

The formula referred to is as follows, viz. if
-^-

be a rational fraction, the denomi

nator of which is made up of factors (the same or different) of the form 1 cc
m

,
and

if a is a divisor of one or more of the indices m, and k is the number of indices of

which it is a divisor, then

where

vo-coeff - inXP ~

f(pe~
t

)
&amp;gt;

1
Philosophical Transactions, torn. CXLVI. (1856) p. 127, [140].

2 Professor Sylvester s researches are published in the Quarterly Mathematical Journal, torn. i. [1857,

pp. 141152]; there are some numerical errors in his value of P (1, 2, 3, 4, 5, 6) q.
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in which formula [1 #&quot;]
denotes the irreducible factor of 1 a?, that is, the factor

which equated to zero gives the prime roots, and p is a root of the equation

[1 a?]
=

;
the summation of course extends to all the roots of the equation. The

index * extends from s = 1 to s = k; and we have then the portion of the fraction

depending on the denominator [1 a^]. In the partition of numbers, we have
&amp;lt;/&amp;gt;#

= 1,

and the formula becomes therefore

1 , ~ , , XP_ i (r?) V-i .Si
i v-i , -, \ \ ^(Jx) *J

= ...+:

p x

6x
-

1)
v &quot;

1 -
&amp;lt;|

where

XP = coeff. - in V~ l

t

We may write

where ra has a given series of values the same or different. The indices not divisible

by a may be represented by m, the other indices by ap, we have then

fx = H (1
- xn) H (1

-

where the number of indices ap is equal to k. Hence

/(per*)
= n (1

-
p
n
er**) II (1

-

or since p is a root of [1 #a] = 0, and therefore p
a = 1, we have

= n (i
-
P
ne~nt) n (i

-

and it may be remarked that if n = v (mod. a), where v &amp;lt; a, then instead of p
n we

may write
p&quot;,

a change which may be made at once, or at the end of the process of

development.

We have consequently to find

= COeff. in *-
U(l _

p
n
e
-n

)U(l _ e
-a

pt}

The development of a factor n _nt
is at once deduced from that of

1 _ ce-v
an(^ ^s

a series of positive powers of t. The development of a factor
1 _^^ is deduced from

that of-1, and contains a term involving -. Hence we have
\ e~t t

n (i
- p-v- ) n (i

- .r*)
&quot;^ f +

A- (k~a *

and thence

%P = P^-- 642
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The actual development, when k is small (for instance k = 1 or k = 2), is most readily

obtained by developing each factor separately and taking the product. To do this we

have

1 1 c c + c
2

i^PT^-jrig^ci-oy 11
(i-c)

4

where by a general theorem for the expansion of any function of e
f

,
the coefficient

of tf is

= LJ .1 _ Q/

_(-)// 1 c c/

(where as usual A(V = 1 - O/ A20/ = 2/ - 2 . 1/ + O/ &c.) and

1 _ 1 1 J_ _ J_ 1

r^~I +
2
+

12 720
+
30240

&quot;

where, except the constant term, the series contains odd powers only and the coef-

( )/
+1 Bf 111

ficient of tff~l
is

f
J

;
B1} B2 ,

B3 ... denoting the series -, , j^....of
Bernoulli s

numbers.

But when k is larger, it is convenient to obtain the development of the fraction

from that of the logarithm, the logarithm of the fraction being equal to the sum of

the logarithms of the simple factors, and these being found by means of the formulae

1

1 _ i
3 c c ^ _ c + c

2
$ c + 4C2 + c3

&_

The fraction is thus expressed in the form

n (i
-

P
n
) n (op) t

k

and by developing the exponential we obtain, as before, the series commencing with

Resuming now the formula

XP = pA_,,

which gives %p as a function of p, we have

= s XP .

[1
- xa

] p-x&amp;gt;
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but this equation gives

XP =

and we have

[1
- xa] = (x p)(x p

a
) ...(as p

a
a),

if 1, 2 , ... aa are the integers less than a and prime to it (a is of course the degree

of [1
- of1]). Hence

V/i = f/nXP
V&quot;

1 n
and therefore

0p =

or putting for %p its value

where a is the degree of [1 a?] and aj denotes in succession the integers (exclusive

of unity) less than a and prime to it. The function on the right hand, by means of

the equation [1 p
a
]
= 0, may be reduced to an integral function of p of the degree

a 1, and then by simply changing p into x we have the required function Qx. The
6x

fraction ==--~ can then by multiplication of the terms by the proper factor be
[I x \

reduced to a fraction with the denominator 1
x&quot;,

and the coefficients of the numerator

of this fraction are the coefficients of the corresponding prime circulator ( ) per a
q

.

Thus, let it be required to find the terms depending on the denominator [1 a?] in

(1 -as) (I-O (1
- x3

) (1
- ar

4

) (1
- x5

) (1
-

these are

px px
where

1 .

*
*

and

1

,
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where it is easy to see that

__!f_L_ V _V V
- P 4 18U- 1- 2 1- 4 1- 5

and we have

But [1
-

p
3
]
= 1 + p + p-

= 0. Hence p
3 = 1, and therefore

Hence

whence

and the partial fraction is

1 2

which is

1 2 -x-a?
&quot;162 l-o3

and gives rise to the prime circulator
T^O (2, 1&amp;gt; l)pcr 39 .

The reduction 6^ is somewhat less simple; we have

1 ./i xf 1 1 / P 2P
2

-P2

_
P ( 18 1 - p 18 1 -

972
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hence finally

and the partial fraction is

1 42 + 23a
rx~~i OOOy, z *

.

324 *
1 + x + a?

which is

324
~

1 - a?

and gives rise to the prime circulator ^-j q (42, 19, 23) per 3
9

.

The part depending on the denominator 1 x is

IT _ &quot;&quot; .. t I O V*HfmJ -I
&quot; inn A&quot;x I 1x 1.2 1 # 1.2.3.4.0

where
1

11 1= ^_6
- + ^_5 -...+^l_1

-

We have here

and thence the fraction is

, 21 /_?1 2
5

4

720?
6

which is equal to

21 441 . 3087 . 64827 .. 1361367

91 8281

84
+
1152

*

455 .

11 71 77 1 245 1 43981 1 199577 1
~
720 t

s
+
480 t

5
+
1080 *

+U52 ff

+
103680 V

+
345600

+ &quot;

and consequently the partial fractions are

1 17 1 77 1 ,245 ,
1

86400
VH^ 1- T

11620 v&quot;**y 1-^^6480^ &amp;gt; l-x 2304 v &quot; \-x

43981 ,
1 199577 1

r
103680 v ;

1 - x 345600 1 - x

from which the non-circulating part is at once obtained.
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The complete expression for the number of partitions is P (1, 2, 3, 4, 5, 6) q
=

- i
(12g

5 + 63(V + 1230?
3 + 110250g

2 + 439810? + 598731)lUouoUU

(2, -1, -1) per 3
5

(42,
- 19, -

23) per 3
9

... (1, 1, -1, -1) per 4
9

(2, 1, 0,
-

1,
-

2) per 5,
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155.

A FOURTH MEMOIR UPON QUANTICS.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVIII. for
the year 1858, pp. 415427. Received February 11, Read March 18, 1858.]

THE object of the present memoir is the further development of the theory of binary
quantics ;

it should therefore have preceded so much of my third memoir, t. 147 (1857),
p. 627, [144], as relates to ternary quadrics and cubics. The paragraphs are numbered

continuously with those of the former memoirs. The&quot; first three paragraphs, Nos. 62 to 64,
relate to quantics of the general form (*^oc, y,...)

m
,
and they are intended to complete

the series of definitions and explanations given in Nos. 54 to (jl of my third memoir;
Nos. 68 to 71, although introduced in reference to binary quantics, relate or may be
considered as relating to quantics of the like general form. But with these exceptions
the memoir relates to binary quantics of any order whatever : viz. Nos. 65 to 80 relate

to the covariants and invariants of the degrees 2, 3 and 4; Nos. 81 and 82 (which are

introduced somewhat parenthetically) contain the explanation of a process for the
calculation of the invariant called the Discriminant; Nos. 83 to 85 contain the definitions

of the Catalecticant, the Lambdaic and the Canonisant, which are functions occurring in

Professor Sylvester s theory of the reduction of a binary quantic to its canonical form
;

and Nos. 86 to 91 contain the definitions of certain covariants or other derivatives

connected with Bezout s abbreviated method of elimination, due for the most part to

Professor Sylvester, and which are called Bezoutiants, Cobezoutiants, &c. I have not in

the present memoir in any wise considered the theories to which the catalecticant, &c.
and the last-mentioned other covariants and derivatives relate; the design is to point
out and precisely define the different covariants or other derivatives which have hitherto

presented themselves in theories relating to binary quantics, and so to complete, as far

as may be, the explanation of the terminology of this part of the subject.

62. If we consider a quantic

(a, &,...$#, y, ...)
m

c. ii. 65
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and an adjoint linear form, the operative quantic

(a, &,...

or more generally the operative quantic obtained by replacing in any covariant of the

given quantic the facients (as, y, ...) by the symbols of differentiation (9f . 9,,...) (which

operative quantic is, so to speak, a contravariant operator), may be termed the Pro-

vector ; and the Provector operating upon any contravariant gives rise to a contra-

variant, which may of course be an invariant. Any such contravariant, or rather such

contravariant considered as so generated, may be termed a Provectant ; and in like

manner the operative quantic obtained by replacing in any contravariant of the given

quantic the facients (,77, ...) by the symbols of differentiation (dx ,
9y ,...) (which operative

quantic is a covariant operator), is termed the Contraprovector ; and the contraprovector

operating upon any covariant gives rise to a covariant, which may of course be an

invariant. Any such covariant, or rather such covariant considered as so generated,

may be termed a Contraprovectant.

In the case of a binary quantic,

(a, b, ...#, y)
m

,

the two theorems coalesce together, and we may say that the operative quantic

or more generally the operative quantic obtained by replacing in any covariant of the

given quantic the facients (x, y) by the symbols of differentiation (dy,dx) (which is

in this case a covariant operator), may be termed the Provector. And the Provector

operating on any covariant gives a covariant (which as before may be an invariant),

and which considered as so generated may be termed the Provectant.

63. But there is another allied theory. If in the quantic itself or in any covariant

we replace the facients (x, y,...) by the first derived functions (9$P, 9,P, ...) of any con

travariant P of the quantic, we have a new function which will be a contravariant of

the quantic. In particular, if in the quantic itself we replace the facients (x, y, ...) by
the first derived functions (9fP, 9,,P, ...) of the Reciprocant, then the result will contain

as a factor the Reciprocant, and the other factor will be also a contravariant. And

similarly, if in any contravariant we replace the facients (, 17,...) by the first derived

functions (dx W, dy W,...) of any covariant W (which may be the quantic itself) of the

quantic U, we have a new function which will be a covariant of the quantic. And in

particular if in the Reciprocant we replace the facients (f, 77, ...) by the first derived

functions (dx U, dy ll, ...) of the quantic, the result will contain U as a factor, and the

other factor will be also a covariant. In the case of a binary quantic (a, b, ...}[#, y)
m

the two theorems coalesce and we have the following theorem, viz. if in the quantic

U or in any covariant the facients (x, y) are replaced by the first derived functions

(dy W, dxW) of a covariant W, the result will be a covariant
;
and if in the quantic
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U the facients (as, y) are replaced by the first derived functions (dy U, dx U) of the

quantic, the result will contain U as a factor, and the other factor will be also a

covariant.

Without defining more precisely, we may say that the function obtained by replacing
as above the facients of a covariant or contravariant by the first derived functions of a

contravariant or covariant is a Transmutant of the first-mentioned covariant or contra-

variant.

64. Imagine any two quantics of the same order, for instance, the two quantics

U=(a , 6,...$a?, ?/...)
m

,

V = (a, &
,...$&amp;gt;, y ...)&amp;gt;,

then any quantic such as \U + pV may be termed an Intermediate of the two quantics;
and a covariant of \U + /j,V, if in such covariant we treat X, p as facients, will be a

quantic of the form

(A, B, ... B\ A\y\, /*)

where the coefficients (A, B, ... B\ A&quot;)
will be covariants of the quantics U, V, viz. A

will be a covariant of the quantic U alone
;

A&quot; will be the same covariant of the quantic
V alone, and the other coefficients (which in reference to A, A may be termed the

Connectives} will be covariants of the two quantics; and any coefficient may be obtained
from the one which precedes it by operating on such preceding coefficient with the
combinantive operator

a da + b db + . . .
,

or from the one which succeeds it by operating on such succeeding coefficient with the
combinantive operator

ada + bdb
&amp;gt; + ...,

the result being divided by a numerical coefficient which is greater by unity than
the index of ^ or (as the case may be) X in the term corresponding to the coefficient

operated upon. It may be added, that any invariant in regard to the facients (X, /*)

of the quantic

(A, B, ... B\ A^\, fi

is not only a covariant, but it is also a combinant of the two quantics U, V.

As an example, suppose the quantics U, V are the quadrics

(a, b, c$&amp;gt;, y)
2 and (a , b

, c
$&amp;gt;, y)

2
,

then the quadrinvariant of

XU+ pV is (\a + Ata )(Xc + /*c )
-

(\b + pbj,
which is equal to

(ac-b
2
, ac -2bb + ca , a c -b -^X, ^)

2
,

and ac - 266 + ca is the connective of the two discriminants ac - b2 and a c - 6 2
.

652



516 A FOURTH MEMOIR UPON QUANTICS. [155

65. The law of reciprocity for the number of the invariants of a binary quantic
1

,

leads at once to the theorems in regard to the number of the quadrinvariants, cubin-

variants and quartinvariants of a binary quantic of a given degree, first obtained by
the method in the second part of my original memoir 2

. Thus a quadric has only a

single invariant, which is of the degree 2; hence, by the law of reciprocity, the number

of quadrinvariants of a quantic of the order m is equal to the number of ways in which

m can be made up with the part 2, which is of course unity or zero, according as

m is even or odd. And we conclude that

The quadrinvariant exists only for quantics of an even order, and for each such

quantic there is one, and only one, quadrinvariant.

66. Again, a cubic has only one invariant, which is of the degree 4, and the

number of cubinvariants of a quantic of the degree m is equal to the number of

ways in which m can be made up with the part 4. Hence

A cubinvariant only exists for quantics of an evenly even order, and for each

such quantic there is one, and only one, cubinvariant.

67. But a quartic has two invariants, which are of the degrees 2 and 3 respectively,

and the number of quartinvariants of a quantic of the degree m is equal to the number
of ways in which m can be made up with the parts 2 and 3. When m is even,

there is of course a quartinvariant which is the square of the quadrinvariant, and which,

if we attend only to the irreducible quartinvariants, must be excluded from consideration.

The preceding number must therefore, when m is even, be diminished by unity. The
result is easily found to be

Quartinvariants exist for a quantic of any order, even or odd, whatever, the quadric
and the quartic alone excepted ;

and according as the order of the quantic is

6g, Qg + I, 6g + 2, fy + 3, 6^ + 4, 6g + 5,

the number of quartinvariants is

9 &amp;gt; 9 &amp;gt; 9 &amp;gt; $ + l
&amp;gt; 9 &amp;gt; 9+ l -

In particular, for the orders

2, 3, 4, 5; 6, 7, 8, 9, 10, 11; 12, &c.,

the numbers are

0, 1, 0, 1; 1, 1, 1, 2, 1, 2; 2, &c.

Thus the ninthic is the lowest quantic which has more than one quartinvariant.

68. But the whole theory of the invariants or covariants of the degrees 2, 3, 4 is

most easily treated by the method above alluded to, contained in the second part of my
original memoir; and indeed the method appears to be the appropriate one for the

1

Introductory Memoir, [139], No. 20. 2 Ibid. Nos. 1017.
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treatment of the theory of the invariants or covariants of any given degree whatever,

although the application of it becomes difficult when the degree exceeds 4. I remark,

in regard to this method, that it leads naturally, and in the first instance, to a special

class of the covariants of a system of quantics, viz. these covariants are linear functions

of the derived functions of any quantic of the system. (It is hardly necessary to remark

that the derived functions referred to are the derived functions of any order of the

quantic with regard to the facients.) Such covariants may be termed tantipartite

covariants
;
but when there are only two quantics, I use in general the term lineo-linear.

The tantipartite covariants, while the system remains general, are a special class of

covariants, but by particularizing the system we obtain all the covariants of the par
ticularized system. The ordinary case is when all the quantics of the system reduce

themselves to one and the same quantic, and the method then gives all the covariants

of such single quantic. And while the order of the quantic remains indefinite, the

method gives covariants (not invariants); but by particularizing the order of the quantic

in such manner that the derived functions become simply the coefficients of the quantic,

the covariants become invariants : the like applies of course to a system of two or more

quantics.

69. To take the simplest example, in seeking for the covariants of a single quantic

U, we in fact have to consider two quantics U, V. An expression such as 12 UV is a

lineo-linear covariant of the two quantics ;
its developed expression is

which is the Jacobian. In the particular case of two linear functions (a, bx, y) and

(a ,
b Qx, y), the lineo-linear covariant becomes the lineo-linear invariant ab ab, which

is the Jacobian of the two linear functions.

In the example we cannot descend from the two quantics U, V to the single .quantic

U (for putting V = U the covariant vanishes) ;
but this is merely accidental, as appears

by considering a different lineo-linear covariant 12
2

/F, the developed expression of

which is

dx*U . dy*V- Z

In the particular case of two quadrics (a, b, c$x, ?/)
2
, (a ,

b , c ^x, yf, the lineo-linear

covariant becomes the lineo-linear invariant

ac - 2W + ca .

If we have V = U, then the lineo-linear covariant gives the quadricovariant .

of the single quantic U (such quadricovariant is in fact the Hessian) ;
and if in the last-

mentioned formula we put for U the quadric (a, b, c$, x, yf, or what is the same thing,

if in the expression of the lineo-linear invariant ac 2bb + ca ,
we put the two quadrics

equal to each other, we have the quadrinvariant

ac-62

of the single quadric.
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70. The lineo-linear invariant ab afb of two linear functions may be considered as

giving the lineo-linear covariant dxU . dyV dyU . dxV of the two quantics U and V,

and in like manner the lineo-linear invariant ac 2bb + caf may be considered as giving
the lineo-linear covariant dx

zU . dy
2V 2dy$y U . d^dyV+dy

zU . dx
2V of the quantics U, V.

And generally, any invariant whatever of a quantic or quantics of a given order or orders

leads to a covariant of a quantic or quantics of any higher order or orders : viz. the

coefficients of the original quantic or quantics are to be replaced by the derived functions

of the quantic or quantics of a higher order or orders.

71. The same thing may be seen by means of the theory of Emanants. In fact,

consider any emanants whatever of a quantic or quantics ; then, attending only to the

facients of emanation, the emanants will constitute a system of quantics the coefficients

of which are derived functions of the given quantic or quantics ;
the invariants of the

system of emanants will be functions of the derived functions of the given quantic or

quantics, and they will be covariants of such quantic or quantics ;
and we thus pass

from the invariants of a quantic or quantics to the covariants of a quantic or quantics
of a higher order or orders.

72. It may be observed also, that in the case where a tantipartite invariant, when
the several quantics are put equal to each other, does not become equal to zero, we may
pass back from the invariant of the single quantic to the tantipartite invariant of the

system; thus the lineo-linear invariant ac 2bb + ca of two quadrics leads to the quadrin-
variaiit ac b2 of a single quantic ;

and conversely, from the quadriiivariant ac 62 of a

single quadric, we obtain by an obvious process of derivation the expression ac 2bb + ca

of the lineo-linear invariant of two quadrics This is in fact included in the more general

theory explained, No. 64.

73. Reverting now to binary quantics, two quantics of the same order, even or odd,

have a lineo-linear invariant. Thus the two quadrics

(a, b, c$ac, y)\ (a, b
,

c
$&amp;gt;, y}-

have (it has been seen) the lineo-linear invariant

ac - 2bb + ca
;

and in like manner the two cubics

(a, b, c, d~$x, y}
3
, (a ,

b
, c

,
d \x, y)*

have the lineo-linear invariant

ad - 36c + 3c& - da
,

which examples are sufficient to show the law.

74. The lineo-linear invariant of two quantics of the same odd order is a combinant,
but this is not the case with the lineo-linear invariant of two quantics of the same even
order. Thus the last-mentioned invariant is reduced to zero by each of the operations

ada + bdb &amp;gt;
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and
a da + b db + c dc + d dd ;

but the invariant

ac -2bb +ca

is by the operations

ada1 + bdv + cdc

and
a da + b db + c dc

reduced respectively to

2(ac-b-)
and

2(a c -6 2
).

75. For two qualities of the same odd order, when the quantics are put equal to

each other, the lineo-linear invariant vanishes
;
but for two quantics of the same even

order, when these are put equal to each other, we obtain the quadrinvariant of the single

quantic. Thus the quadrinvariant of the quadric (a, b, c$x, y)
2

is

ac - b2

;

and in like manner the quadrinvariant of the quartic (a, b, c, d, e\x, y)* is

ae - 4&amp;gt;bd + 3c2
.

76. When the two quantics are the first derived functions of the same quantic

of any odd order, the lineo-linear invariant does not vanish, but it is not an invariant

of the single quantic. Thus the lineo-linear invariant of

(a, 6, c$x, y)
2

and

(b, c, dfa, y)*

is

(ad 26c + cb = ) ad be,

which is not an invariant of the cubic

(a, b, c, dQoa, y)
3
.

But for two quantics which are the first derived functions of the same quantic of

any even order, the lineo-linear invariant is the quadrinvariant of the single quantic.

Thus the lineo-linear invariant of

(a, b, c, d~$x, y)
3

and

(b, c, d, e$x, y)
3

is

(ae
- 3bd + 3c2 - db =) ae - 4bd + 3c2

,

which is the quadrinvariant of the quartic

(a, b, c, d, e^x, y)\
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77. I do not stop to consider the theory of the lineo-linear covariants of two

quantics, but I derive the quadricovariants of a single quantic directly from the

quadrinvariant. Imagine a quantic of any order even or odd. Its successive even

emanants will be in regard to the facients of emanation quantics of an even order,

and they will each of them have a quadrinvariant, which will be a quadricovariant of

the given quantic. The emanants in question, beginning with the second emanant, are

(in regard to the facients of the given quantic assumed to be of the order m) of the

orders m 2, m 4*,... down to 1 or 0, according as m is odd or even, or writing

successively 2p+ l and 2p in the place of m, and taking the emanants in a reverse order,

the emanants for a quantic of any odd order 2p+l are of the orders 1, 3, 5...2/&amp;gt; 1,

and for a quantic of any even order 2p, they are of the orders 0, 2, 4 ... 2p 2. The

quadricovariants of a quantic of an odd order 2p + 1, are consequently of the orders

2, 6, 10... 4p 2, and the quadricovariants of a quantic of an even order 2p, are of

the orders 0, 4, 8 . . .
4&amp;gt;p

4. We might in each case carry the series one step further,

and consider a quadricovariant of the order 4p + 2, or (as the case may be) 4&amp;gt;p,

which

arises from the Oth emanant of the given quantic ; such quadricovariant is, however,

only the square of the given quantic.

78. In the case of a quantic of an evenly even order (but in no other case) we
have a quadricovariant of the same order with the quantic itself. We may in this

case form the lineo-linear invariant of the quantic and the quadricovariant of the same
order : such lineo-linear invariant is an invariant of the given quantic, and it is of

the degree 3 in the coefficients, that is, it is a cubinvariant. This agrees with the

before-mentioned theorem for the number of cubinvariants.

79. In the case of the quartic (a, b, c, d, e$x, y)\ the cubinvariant is, by the

preceding mode of generation, obtained in the form

e (ac
-

b-)
- 4d (ad

-
be) + 6c (ae

- 4bd + 3c2

)
-

46| (be -cd) + a (ce
-

d*~),

which is in fact equal to

3 (ace
- ad- - b-e + 2bcd - c

3

) ;

and omitting the numerical factor 3, we have the cubinvariant of the quartic.

80. In the case of a quantic of any order even or odd, the quadrinvariants of the

quadricovariants are quartinvariants of the quantic. But these quartinvariants are not
all of them independent, and there is no obvious method grounded on the preceding
mode of generation for obtaining the number of the independent (asyzygetic) quartin
variants, and thence the number of the irreducible quartinvariants of a quantic of a

given order.

81. I take the opportunity of giving some additional developments in relation to
the discriminant of a quantic

(a, b,...b\ a
v

$&amp;gt;, y)
m

.

To render the signification perfectly definite, it should be remarked that the discriminant
contains the term am^d m

-\ and that the coefficient of this term may be taken to be
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+ 1. It was noticed in the Introductory Memoir, that, by Joachimsthal s theorem, the

discriminant, on putting a 0, becomes divisible by 62
, and that throwing out this

factor it is to a numerical factor pres the discriminant of the quantic of the order

(ra 1) obtained by putting a = and throwing out the factor x
;

and it was also

remarked, that this theorem, combined with the general property of invariants, afforded

a convenient method for the calculation of the discriminant of a quantic when that

of the order immediately preceding is known. Thus let it be proposed to find the

discriminant of the cubic

(a, b, c, d^x, 2/)
3

.

Imagine the discriminant expanded in powers of the leading coefficient a in the form

Ao? + Ba + C,

then this function qua invariant must be reduced to zero by the operation 3bda + 2cdb + dde ;

or putting for shortness V = 2c36 + d9c ,
the operation is V + 3bda ,

and we have

~\

Y
= 0,

+ a GbA + 36J
and consequently

But C is equal to b- into the discriminant of (36, 3c, d\x, y}-, that is, its value is

b*(I2bd 9o2

),
or throwing out the factor 3, we may write

C=Wd-WV,
this gives

B = -
^ (- 6b*cd + 2462cd - 1 26c3

),

or reducing
K = - Qlcd + 4c3

;

and thence

A = -i (- 66d2 + 12c2
cZ - 1 2ca

d),

or reducing

A=d\
which verifies the equation VA = 0, and the discriminant is, as we know,

a2d2 - Gabcd + 4ac3 + 4ib*d - 362
c
2

.

82. If we consider the quantic (a. 6, ...a^x, l)
m as expressed in terms of the

roots in the form a (x
-

ay) (a?
-

#)..., then the discriminant (=aTO-1 aXm
-1 + &c. as

above) is to a factor pres equal to the product of the squares of the differences of

the roots, and the factor may be determined as follows: viz. denoting by &quot;(, j3, ...)

the product of the squares of the differences of the roots, we may write

a2 &quot;-2

(a, /?, . . . )
=N (a&quot;

1 1 a 1&quot;- 1 + frc.),

c. ii. G6
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where N is a number
;
and then considering the equation x n 1=0, we have to

determine N the equation

But in general

(, 0...) = (-)*
&amp;lt;
^ 1

(a

and if

x = (x a) (x 0) . . .
,

then

(a-flXa-y)...^ *, & c
.,

or

(, 0, ...)
=

(-)*
mlw-ll

here

^ = # - 1
,

j- = mxm-\
and therefore

(f&amp;gt; x&amp;lt;j&amp;gt;
/3. . .

= mm
(2^7. . .)

m~ 1

,

but

(-)
m
a07... = -l,

or

07...=(-)
Hl- 1

l,

and

(/&amp;gt; a&amp;lt;/&amp;gt;
0. . .

=
(-)&quot;&quot;-

1 2
4
m = (-)

m~ 1
wi&quot;

1

;

whence

f(, 0...) = (-)&quot;

l
-1+

i&quot;
lfwl- 11

MI&quot;* = (-)
1 &quot;- 1

^V,

or

7y
__ /_\i)nii i) vnin-

and consequently
a&quot;

1-2

(, 0, . . .)
= (_)i

w-n
//t

(a&quot;

1
- 1 a &quot;- 1 + &c.),

or what is the same thing, the value of the discriminant D (= awi-1 a m
~1

-f &c.) is

It would have been allowable to define the discriminant so as that the leading term

should be
(\km(m i) ftin

1 a m- 1

iu which case the discriminant would have constantly the same sign as the product
of the squared differences; but I have upon the whole thought it better to make
the leading term of the discriminant always positive.

83. A quantic of an even order 2p has an invariant of peculiar simplicity, viz.

the determinant the terms of which are the coefficients of the pth differential

coefficients, or derived functions of the quantic with respect to the facients
;

such

invariant may also be considered as a tantipartite invariant of the
/&amp;gt;th

emanants.

Thus the sextic

(a, b, c, d, e, / &amp;lt;j^x, y}
6
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has for one of its invariants, the determinant

a, b. c, d

- b, c, d, e

c
, d, e

, fJ

rf e, f , g

The invariant in question is termed by Professor Sylvester the Catalecticant.

84. Professor Sylvester also remarked, that we may from the catalecticant form
a function containing an indeterminate quantity X, such that the coefficients of the
different powers of X are invariants of the quantic ;

thus for the sextic, the function
in question is

a b c d -\

c

d - I

e f

e

f

9

where the la A- of formation is manifest; the terms in the sinister diagonal are

modified by annexing to their numerical submultiples of X with the signs + and

alternately, and in which the multipliers are the reciprocals of the binomial coefficients.

The function so obtained is termed the Lambdaic.

85. If we consider a quantic of an odd order, and form the catalecticant of the

penultimate emanant, we have the covariant termed the Canonisant, Thus in the case

of the quintic

(a, b, c, d, e, f fa, y)\

the canonisant is

which is equivalent to

ax + by,
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86. There is another family of covariants which remains to be noticed. Consider

any two quantics of the same order,

(a, &,...$#, y)
m

,

(a, & ,...$#, y) ,

and join to these a quautic of the next inferior order,

where the coefficients (u, v, ...) are considered as indeterminate, and which may be

spoken of as the adjoint quantic.

Take the odd lineo-linear covariants (viz. those which arise from the odd emanants)
of the two quantics; the term arising from the (2t + l)th emanants is of the form

where (A, B,...) are lineo-linear functions of the coefficients of the two quantics.

Take also the quadricovariants of the adjoint quantic ;
the term arising from the

(2i ??i)th emanant is of the form

(U, V, ...$&amp;gt;, y)3&amp;lt;
&quot;-i-s\

where (U, V, ...) are quadric functions of the indeterminate coefficients
(it, v,...). We

may then form the quadriuvariant of the two quantics of the order 2 (m 1 2t) :

this will be an invariant of the two quantics and the adjoint quantic, lineo-linear in

the coefficients of the two quantics and of the degree 2 in regard to the coefficients

(u, ? ,,..) of the adjoint quantic; or treating the last-mentioned coefficients as facients,

the result is a lineo-linear ra-ary quadric of the form

(.a, 23,. ..$, v,...y,

viz. in this expression the coefficients }K, i3, ... are lineo linear functions of the co

efficients of the two quantics. And giving to i the different admissible values, viz.

from r = to i = ^m l or (in lj 1, according as ni is even or odd, the number
of the functions obtained by the preceding process is ^m or \ (m 1), according as

m is even or odd. The functions in question, the theory of which is altogether due

to Professor Sylvester, are termed by him Cobezoutiants ; we may therefore say that

a cobezoutiant is an invariant of two quantics of the same order m, and of an adjoint

quantic of the next preceding order m 1, viz. treating the coefficients of the adjoint

quantic as the facients of the cobezoutiant, the cobezoutiant is an m-ary quadric, the

coefficients of which are lineo-linear functions of the coefficients of the two quantics,
and the number of the cobezoutiants is ^m or ^ (m 1 ), according as m is even or

odd.

87. If the two quantics are the differential coefficients, or first derived functions

(with respect to the facients) of a single quantic

(a, &,...$*, y)
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then we have what are termed the Cobezoutoids of the single quantic, viz. the cobe-

zoutoid is an invariant of the single quantic of the order m, and of an adjoint quantic

of the order (m 2) ;
and treating the coefficients of the adjoint quantic as facients,

the cobezoutoid is an (m l)ary quadric, the coefficients of which are quadric functions

of the coefficients of the given quantic. The number of the cobezoutoids is ^ (m 1
)

or ^ (m 2), according as m is odd or even.

88. Consider any two quantics of the same order,

(a, ...$#, y)
m

, ( ,...$&amp;gt;, y)
m

,

and introducing the new facients (X, Y), form the quotient of determinants,

(4 ...{*, y)
m

, (,... x
, y

which is obviously an integral function of the order (m 1) in each set of facients

separately, and lineo-linear in the coefficients of the two quantics ;
for instance, if the

two quantics are

7/)
3

,(a ,
b

,
c

,
d

(a, b
, c

,
(f

the quotient in question may be written

y)*,

( 3 (ab
1 - a b), 3 (u-c

r - a c) ,
ad - a d

3 (ac
- a c}, ad - a d + 9 (be

- b c), 3 (M - b d)

ad - a d , 3 (bd
- b d) . ,

3 (cd
- c d)

(X, Yf.

The function so obtained may be termed the Bezoutic Emanant of the two quantics.

89. The notion of such function was in fact suggested to me by Bezout s abbre

viated process of elimination, viz. the two quantics of the order m being put equal to

zero, the process leads to (m -
1) equations each of the order (m 1): these equations

are nothing else than the equations obtained by equating to zero the coefficients of

the different terms of the series (X, Y)
m~l in the Bezoutic emanant, and the result

of the elimination is consequently obtained by equating to zero the determinant

formed with the matrix which enters into the expression of the Bezoutic emanant,

In other words, this determinant is; the Resultant of the two quantics. Thus the resultant

of the last-mentioned two cubics is the determinant

3 (& - a
/,), 3(ac -a c) ., ad - a d

3(ac -a c), ad - a d + 9 (be
- Vc\ 3 (ba

- b d}

ad - a d
, ZJbd - b d

. ,
3 (cd

- c d])

OFTHE

TTNIVERSITT
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90. If the two quantics are the differential coefficients or first derived functions

(with respect to the facients) of a single quantic of the order m, then we have in

like manner the Bezoutoidal Emanant of the single quantic; this is a function of the

order (m - 2) in each set of facients, and the coefficients whereof are quadric functions

of the coefficients of the single quantic. Thus the Bezoutoidal ernanant of the quartic

(a, b, c, d, e$x, y)
4

18

( 3(ac-68

), 3 (ad -be) ,
ae-bd

3 (ad
-

be), ae + 8bd - 9c2
,

3 (be
-

cd)

ae -bd, 3 (be
-

cd) ,
3 (ce

- d- )

and of course the determinant formed with the matrix which enters into the expression

of the Bezoutoidal Emanant, is the discriminant of the single quantic.

01. Professor Sylvester forms with the matrix of the Bezoutic emanant and a set

of m facients (u, v, ...) an w-ary quadric function, which he terms the Bezoutiant.

Thus the Bezoutiant of the before-mentioned two cubics is

( 3 (aV
- a b), 3 (ac

- a c) ,
ad - ad 7f

, v, u&amp;lt;)*
:

3 (ac
- a c), ad - ad + 9 (be

- b c), 3 (bd
- b d)

ad - ad
,

3bd - b d
,

3 (cd
- cd)

and in like manner with the Bezoutoidal emanant of the single quantic of the order m
and a set of (m 1) new facients (u, v,...), an (m l)ary quadric function, which he

terms the Bezoutoid. Thus the Bezoutoid of the before-mentioned quartic is

( 3 (ac
- b2

), 3 (ad
-

be} ,
ae-bd

3 (ad
-

be), ae + 8bd - 9c2
,

3 (be
-

cd)

ae -bd, 3 (be
-

cd) ,
3 (ce

- d1

)

v, w)-.

To him also is due the important theorem, that the Bezoutiant is an invariant of

the two quantics of the order m and of the adjoint quantic (u, v, ...$y,
-

x)
m~l

, being in

fact a linear function with mere numerical coefficients of the invariants called Cobe-

zoutiants, and in like manner that the Bezoutoid is an invariant of the single quantic
of the order in and of the adjoint quantic (u, v,...Qy, x)

m~2
, being a linear function

with mere numerical coefficients of the invariants called Cobezoutoids.

The modes of generation of a covariant are infinite in number, and it is to be

anticipated that, as new theories arise, there will be frequent occasion to consider new

processes of derivation, and to single out and to define and give names to new co-

variants. But I have now, I think, established the greater part by far of the definitions

which are for the present necessary.
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156.

A FIFTH MEMOIR UPON QUANTICS.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLVIII. for
the year 1858, pp. 429460. Received February 11, Read March 18, 1858.]

THE present memoir was originally intended to contain a development of the

theories of the covariants of certain binary quantics, viz. the quadric, the cubic, and

the quartic ;
but as regards the theories of the cubic and the quart ic, it was found

necessary to consider the case of two or more quadrics, and I have therefore com

prised such systems of two or more quadrics, and the resulting theories of the

harmonic relation and of involution, in the subject of the memoir; and although the

theory of homography or of the anharmonic relation belongs rather to the subject of

bipartite binary quadrics, yet from its connexion with the theories just referred to, it

is also considered- in the memoir. The paragraphs are numbered continuously with

those of my former memoirs on the subject : Nos. 92 to 95 relate to a single quadric ;

Nos. 96 to 114 to two or more quadrics, aad the theories above referred to; Nos.

115 to 127 to the cubic, and Nos. 128 to 145 to the quartic. The several quantics
are considered as expressed not only in terms of the coefficients, but also in terms of

the roots, and I consider the question of the determination of their linear factors,

a question, in effect, identical with that of the solution of a quadric, cubic, or

biquadratic equation. The expression for the linear factor of a quadric is deduced

from a well-known formula; those for the linear factors of a cubic and a quartic
were first given in my

&quot; Note sur les Covariants d une fonction quadratique, cubique
ou biquadratique a deux mdetermine

es,&quot; Crelle, vol. L. (1855), pp. 285 287, [135]. It is

remarkable that they are in one point of view more simple than the expression for

the linear factor of a quadric.

92. In the case of a quadric the expressions considered are

(a, b, c$x, y)\ (1)

ac-l* (2)
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where (1) is the quadric, and (2) is the discriminant, which is also the quadrinvariant,

catalecticant, and Hessian.

And where it is convenient to do so, I write

(1) =U&amp;gt;

(2) =D.

93. We have

(3C , -3b, ^a, y)*H=U,

which expresses that the evectant of the discriminant is equal to the quadric ;

(a, b, C$8,, -3*)
2 tf = 4D,

which expresses that the provectant of the quadric is equal to the discriminant ;

(a, b, c$bx + cy, -ax- by)-
= D U,

which expresses that a transmutant of the quadric is equal to the product of the

quadric and the discriminant.

94. When the quadric is expressed in terms of the roots, we have

a-i U = (x- ay) (x
-

fry),

a-2D=-Ka -/3)
2

;

and in the case of a pair of equal roots,

a-i U=(x- ay)*,

D =0.

95. The problem of the solution of a quadratic equation is that of finding a

linear factor of the quadric. To obtain such linear factor in a symmetrical form, it

is necessary to introduce arbitrary quantities which do not really enter into the solution,

and the form obtained is thus in some sort more complicated than in the like

problem for a cubic or a quartic. The solution depends on the linear transformation

of the quadric, viz. if we write

(a, b, c$\x + py, vx + pyy = (a ,
b

,
c fo, yf,

so that

a =
(a, b, c$X, v)-,

b =
(a, b, c$\, vlfai, p),

c =
(a, b, c$fj,, p)

2
,

then
a c - b

~
2 =

(ac
-

b&quot;) (\p
-

fiv)
z
,

an equation which in a different notation is

(a, b, c\x, y)\(a, b, c^X, F)
2

-{(a, b, cfa, y^X, Y)\*
= D (Yx - Xy?,
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in which form it is a theorem relating to the quadric and its first and second
emanants. The equation shows that

(a, b, c$&amp;gt;, yZ, Y) + V^U ( Yx - Xy),

where (X, Y) are treated as supernumerary arbitrary constants, is a linear factor of

(a, b, c$x, y)
2
,
and this is the required solution.

96. In the case of two quadrics, the expressions considered are

(a, b, c~$x, y}\ (!)

(a ,
b

, c ^x, y)
2
, (2)

a c - 62

(5)

(6)

(ab
- a b, ac - a c

, be - b c \x,

(\a , \c +pc \x, y)-, (8)

(ac
- 62

, ac - 2W + ca
, ac - b -

*$\, /*)-, (9)

(1) and (2) are the quadrics, (3) and (5) are the discriminants, and (4) is the lineo-
linear invariant, or connective of the discriminants; (6) is the resultant of the two
quadrics, (7) is the Jacobian, (8) is an intermediate, and (9) is the discriminant of the
intermediate. And where it is convenient to do so, I write

(1)
= V,

(2)
= U

,

(3) = D,

(4) - Q,

(5) - Q
,

(6)
= R,

(8) = W,

(9) = 0.

C. II. /-rr
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97. The Jacobian (7) may also be written in the form

y\
-

yx, x*

a ,
b

,
c

a
, b ,

c

The Resultant (6) may be written in the form

a
, 26

,
c

a , 26
, c,

a
, 2b

,
c

a
,

26
, c ,

and also, taken negatively, in the form

4 (aV
- a b) (bo

-
Vc)

-
(ac

r - a c)
2
,

which is the discriminant of the Jacobian
;
and in the form

4 (ac
- 62

) (a c
f - b 2

)
-

(ac
f - 266 + ca )

2
,

which is the discriminant of the Intermediate.

98. We have the following relations :

(a, 6, c$b (v + c y,
- a x - Vyf = -

(a c - b 2

) (a, b, c $#, y)-

+ (ac -266 + ca ) (a ,
6 , c #, y}-,

(a!, b
,
c Qbx + cy, ax 6y)

2 = + (ac 266 + ca ) (a ,
6

,
c ]#, y}-

-(ac-62

) (a, b , c
$&amp;gt;, y)-,

and moreover

(ac
- &, ac - 266 + ca , a c - b^U ,

- UJ
= -

{(ab
- a b, ac - a c, be - Vc\x, y)

3

}

2
,

an equation, the interpretation of which will be considered in the sequel.

99. The most important relations which may exist between the two quadrics are :

First, when the connective vanishes, or

ac - 266 + ca = 0,

in which case the two quadrics are said to be harmonically related : the nature of

this relation will be further considered.
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Secondly, when R = 0, the two quadrics have in this case a common root, which

is given by any of the equations,

f = da R : db R : de R

= be b c : caf c a : ab a b.

The last set of values express that the Jacobian is a perfect square, and that

the two roots are each equal to the common root of the two quadrics.

The preceding values of the ratios x2
: 2xy : y- are consistent with each other in.

virtue of the assumed relation R = 0, hence in general the functions

4daR . dcR -
(dbR)*, daR . dvR - dbR . da &amp;gt;R,

&c.

all of them contain the Resultant .R as a factor.

It is easy to see that the Jacobian is harmonically related to each of the quadrics ;

in fact we have identically

a (be
- b c) + b (caf

- c a) + c (ab
- a b)

= 0,

a (be
- b c) + b (ca

f - c a) + c (ab
- a b)

= 0,

which contain the theorem in question.

100. When the quadrics are expressed in terms of the roots, we have

a&quot;
1 U = (x a. y) (x ft y),

a -HT = (x-a y)(x-jS y\

4 a~2 D = -
(a
-

ft)
2
,

2 (aa )&quot;

1 Q = 2a/3 + 2a /3
-

(a + /3) (a! + ft ),

4a -2 D = -(a -ftJ,

(aa )~
2 R =

(a
- a ) (a

-
ft ) (j3

- a ) (
-

/3 ),

(aa )-
lH =

f, lyx ,

1,

101. The comparison of the last-mentioned value of R with the expression in

terms of the roots obtained from the equation

-E = 4D D -Q2
,

gives the identical equation

(
_ py (

_
/3 )

2 -
{2a/3 + 2a /3

-
(a + ft) ( + /3

X

)}
2 = - 4 (a

- a ) (a
-

ft ) (ft
- a ) (ft

-
ft ),

which may be easily verified.

672
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102. We have identically

2a/3 + 2a /3 -( + ) (a + /3 )

= 2 (a
-

)( -/3 )-(a -/3)(2a - -
)

= 2(13
-

)(/3 -/3 )-(/3 -) (2/3
- -

)

= 2 (
- a

) (
-

yS )
-
(#

- a ) (2/3
- a -

and the equation Q = ac 266 + ca = may consequently be written in the several

forms

_2_ =_J_
,

1

2 _1_ 1

o L /j y &amp;gt; /o

1 1
I y^/

so that the roots (a, /3), (a , /3 ) are harmonically related to each other, and hence the

notion of the harmonic relation of the two quadrics.

103. In the case where the two quadrics have a common root a = a
,

a-1 U =(x-a.y)(x-p y),

a -i U =(x- ay) (x
-

/3 y),

4 a&quot;
2 D - -

(a
-

/3)
2

,

=0,

104. In the case of three quadrics, of the expressions which are or might be

considered, it will be sufficient to mention

(a ,
b , c $0j, y)

2
,

(a, b
,

c ^x, y}\

(a&quot;, b&quot;, c&quot;$a, y)
2
,

a , b
, c

a
,
b

, c

a&quot;, b&quot;, c

(1)

(2)

(3)

(4)



156] A FIFTH MEMOIR UPON QUANTICS. 533

where (1), (2), (3) are the quadrics themselves, and (4) is an invariant, linear in the

coefficients of each quadric. And where it is convenient to do so, I write

(1)
= V,

(2)
= IT,

(3)
=

U&quot;,

(4)
= n.

105. The equation fl = is, it is clear, the condition to be satisfied by the

coefficients of the three quadrics, in order that there may be a syzygetic relation

A,U + pU + v U&quot;
= 0, or what is the same thing, in order that each quadric may be

an intermediate of the other two quadrics ;
or again, in order that the three quadrics

may be in Involution. Expressed in terms of the roots, the relation is

1, a +/3 , a/3

1, a +/3 , tiff

1, a&quot; +
/3&quot;, a&quot;/3

= 0;

and when this equation is satisfied, the three pairs, or as it is usually expressed, the

six quantities a, ft ;
a

, ft ; a&quot;, ft&quot;,
are said to be in involution, or to form an

involution. And the two perfectly arbitrary pairs a, ft\ a
, ft considered as belonging

to such a system, may be spoken of as an involution. If the two terms of a pair

are equal, e.g. if a&quot;
=

ft&quot;
=

6, then the relation is

1,

1,

20

a /3

= 0;

and such a system is sometimes spoken of as an involution of five terms. Con

sidering the pairs (a, ft), (a , ft ) as given, there are of course two values of 6 which

satisfy the preceding equation ;
and calling these

/
and Q

tl ,
then 6

t
and 6

/t
are said

to be the sibiconjugates of the involution a, /3; a.
, ft . It is easy to see that 9

t ,
6

t/

are the roots of the equation H = 0, where H is the Jacobian of the two quadrics

U and U whose roots are (a, ft), (a. , ft ).
In fact, the quadric whose roots are 6

t , Q
lt

is

y
2

, *Lyx ,
x2

1, a+/3, a/3

1, a? + p, a!ft

which has been shown to be the Jacobian in question. But this may be made clearer

as follows : If we imagine that A, /j,
are determined in such manner that the inter

mediate \U + pU may be a perfect square, then we shall have \U+ jj,U
=

a&quot; (x 6y)~,

where 9 denotes one or other of the sibiconjugates /}
B

ti
of the involution. But the

condition in order that \U + p.U may be a square is

(ac b&quot;,
ac 2bb + ca, a c b ~^\, /j)

2
;
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and observing that the equation X :
/j,
= U : U implies \U+ /J.U = Q = a&quot; (x 0y)

2
,

it

is obvious that the function

(ac-l\ ac -Zbb + ca
,
a c -b f

*\U ,
- U}

2

must be to a factor pres equal to (x 6
tyf (x Q

tlyf. But we have identically

(ac
- b2

, ac - 2bb + ca ,
a c - V*\U ,

- U)
2 = -

{(aV
- a b, ac - a c, be -

Vc$x, y)
2

}

2
,

and we thus see that (x Q
ty), (x Q

/ty} are the factors of the Jacobian.

106. It has been already remarked that the Jacobian is harmonically related to

each of the quadrics U, U
;

hence we see that the sibiconjugates O
t ,

Q
tl

of the

involution a, ft, a
, $ are a pair harmonically related to the pair a, ft, and also

harmonically related to the pair a
, ft ,

and this properly might be taken as the

definition for the sibiconjugates /; /7
of an involution of four terms. And moreover,

a, ft; a
, ft being given, and 0,, 6

tl being determined as the sibiconjugates of the

involution, if
a&quot;, ft&quot;

be a pair harmonically related to 0,, 0,,, then the three pairs
a, /3 ;

a
, ft ; a.&quot;, ft&quot;

will form an involution
;

or what is the same thing, any three

pairs a, ft; a
, ft ; a&quot;, ft&quot;,

each of them harmonically related to a pair 0,, //}
will be

an involution, and 0, ,
6

lt
will be the sibiconjugates of the involution.

107. In particular, if a, ft be harmonically related to
f ,

6
ti , then it is easy to

see that #,, &
t may be considered as harmonically related to 0,, /f , and in like manner

#//&amp;gt; ^// wil1 be harmonically related to 6,, 0,, ;
that is, the pairs 8,, 8, , &, & and

a, ft will form an involution. This comes to saying that the equation

1,

1,

20,

20,

=

1, a + ft, aft

is equivalent to the harmonic relation of the pairs a, ft; 0,, /x ;
and in fact the deter

minant is

which proves the theorem in question.

108. Before proceeding further, it is proper to consider the equation

1, a, a.
,

aaf =0,

1, A P, ftft

i,
7&amp;gt; y&amp;gt; 77

1, 8, 8
, 88

which expresses that the sets (a, ft, 7, 8) and
( , ft , 7 ,

8 ) are homographic; for

although the homographic equation may be considered as belonging to the theory of
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the bipartite quadric (x ay) (x a y), yet the theory of involution cannot be completely

discussed except in connexion with that of homography. If we write

-8),

C =
(

-
ft } (7

- 8 ),

then we have
J. +5 +(7 = 0,

^ + 5 +C&quot;
= 0,

and thence

EG - B C = CA - CA = AB - A B

and either of these expressions is in fact equal to the last-mentioned determinant, as

may be easily verified. Hence, when the determinant vanishes, we have

A : B : C = A : B : C .

Any one of the three ratios A : B : C, for instance the ratio B : C,

(7 -a) 08 -8)

is said to be the anharmonic ratio of the set (a, {3, 7, 8), and consequently the two

sets (a, /3, 7, 8) and (a , ft , 7 , 8 ) will be homographically related when the anharmonic

ratios (that is, the corresponding anharmonic ratios) of the two sets are equal,

If any one of the anharmonic ratios be equal to unity, then the four terms of

the set taken in a proper manner in pairs, will be harmonics
;

thus the equation

= 1 gives

-7-S)
which is reducible to

which expresses that the pairs a, 8 and ft, 7 are harmonics.

109. Now returning to the theory of involution (and for greater convenience

taking a, a &c. instead of a, ft &c. to represent the terms of the same pair), the

pairs or, a
; ft, ft ; 7, 7 ; 8, 8

;
&c. will be in involution if each of the determinants

formed with any three lines of the matrix

1, a + of
,

aa
,

1, ft + ft , ftft ,

1
, 7 + 7 i 77 &amp;gt;

1, 8 +8 ,
88

,

&c.
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vanishes: but this being so, the determinant

1, a, of, act

1, ft, ft , ftft

1, 7 7 , 77

1, 8, 8
,

88

which is equal to

a
, 1, a. + a!

,
oca!

y, i, 7 +y&amp;gt; 77

a, i, 8 +8 , 88
x

will vanish, or the two sets (a, ft, 7, 8) and (a
7

, ft , 7 ,
S ) will be homographic ;

that

is, if any number of pairs are in involution, then, considering four pairs and selecting
in any manner a term out of each pair, these four terms and the other terms of

the same four pairs form respectively two sets, and the two sets so obtained will be

homographic.

110. In particular, if we have only three pairs a, a
; ft, ft ; y, 7 ,

then the sets

a
&amp;gt; ft, 7&amp;gt;

&amp;lt;* and of, ft , 7 ,
a will be homographic; in fact, the condition of homography is

1, a, a
,

aa =0,

1, A ft , ft

which may be written

.
7&amp;gt; 7. 77

1, a
, a, act

a, 1, a + a
,

aa

ft, 1, ft + ft , ftft

V, 1, 7 +7 77

a
, 1, a +a ,

aa

= 0,

or what is the same thing,

1, a + a
,

aa

1, /3 + /3 , ftft

1, 7+7 &amp;gt; 77

a -a, 0,

so that the first-mentioned relation is equivalent to

= 0,

(a -a) 1, a +a ,
aa

j

= 0,

1, ft + ft , ft

1, 7+7 77
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and the two sets give rise to an involution. The condition of homography as expressed
by the equality of the anharmonic ratios may be written

a - 7 - a. . 7 -

or multiplying out,

a - 7 . of - /3

~
a - 7 . a - f?

(a -)(- ft ) (/ - 7 ) (a
- 7 )

-
(a!

-
ft) (a

-
ft ) (a

- 7) (a
- 7 )

== 0,

which is a form for the equation of involution of the three pairs. But this and the
other transformations of the equation of involution is best obtained by a different

method, as will be presently seen.

111. Imagine now any number of pairs a, a
; 0, ft ; 7, 7 ; 8, 8

;
&c. in involution,

and let x, y, z, w be the fourth harmonics of the same quantity X with respect to
the pairs a, a

; ft, ft ; 7) 7 and B, 8 respectively; then the anharmonic ratios of the
set

(as, y, z, w) will be independent of X, or what is the same thing, if x
, y ,

z
,
w

are the fourth harmonics of any other quantity X with respect to the same four pairs,
the sets (x, y, z, w) and (x, y , z, w ) will be homographic, or we shall have

1, x
,

x
,

xx 0.

1, y, y , vu
i/ i/ * t/ u

1, z, z
,

zz

1, w, w
,
ww

It will be sufficient to show this in the case where X is anything whatever, but X
has a determinate value, say X = oo

;
and since if all the terms a, a

, &c. are
diminished by the same quantity X the relations of involution and homography will
not be affected, we may without loss of generality assume X = 0, but in this case

x= -
-,

x = A (a + a ),a + a 2 ^

and the equation to be proved is

1,

1,

i,

i,

which is obviously a consequence of the equations which express the involution of the

four pairs.

(A II.

aoC
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A set homographic with x, y, z w, which are the fourth harmonics of any quantity
whatever X with respect to the pairs in involution, a, of

; ft, ft ; 7, 7 ; B, B
,

is said to

be homographic with the four pairs, and we have thus the notion of a set of single

quantities homographic with a set of pairs in involution. This very important theory
is due to M. Chasles.

112. Let r; s; t be the anharmonic ratios of a set a, ft, 7, B, and let r/, .v, ;
t

/

be the anharmonic ratios (corresponding or not corresponding) of a set a
/} ft/t 7,, B

t
. And

suppose that r
;
s

;
t

; rf ; sf t
;

r&quot;
;

s&quot;
;

t&quot; \ r&quot;
; s,&quot; ; t,&quot; ; r&quot;; s

&quot;

;
&amp;lt;&quot;

; r/&quot; ; s/&quot; ; */&quot;,

are the analogous quantities for three other pairs of sets
;
then an equation such as

1,

or as it is more conveniently written,

ss, ,
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If, for example, u = a, v = ft, then we have

T(a-ft) = -(a-OL )(ci -ft )(ft-ci&quot;)(ft-ft&quot;) + (ft-a )(ft-ft )(a-a&quot;)(a-ft&quot;);

and again, if u = a, v = a
, w =

a&quot;,
then we have

T = -
(a
-

/3&quot;) (a
-

ft) (a&quot;

-
ft ) + (a- ft ) (a

-
ft&quot;) (a!

-
ft).

Putting T = 0, the two equations give respectively

and

( -&quot;X -X&quot; -#) =
(

which are both of them well-known forms.

114. A corresponding transformation applies to the equation

1, a, a
,

10? =0,

I, S, 8 ,- B

which expresses the homography of two pairs. In fact, calling the determinant

representing by V the similar determinant

ss
,

s
,

s
,

1

tf
,

- t ,

- t
,

1

zm
,

u
, u, 1

and

which, equated to zero, would express the homography of the sets (s, t, u, v) and

(s, t
, u, v ),

we have

=
(s
-

a) &amp;lt;Y

- a
), (s

-
/9) (V

-
/3

)&amp;gt; (*
-

7) (
- 7 ). (

~
) (

~

(*
-

a) (f
- a

), (&amp;lt;

-
) (

-
/S ), (t

-
7) (^

- 7 ), (&amp;lt;

-
S) (

- 8 )

, (M- a) (u -af), (u
-

ft) (u
f -

&), (u
-

7) (u
-
7 ), (M

-
5) (w

- S )

I (
-

a) (V - a
), (y

-
/3) (y

-
/S ), (v

-
7) (

-
7 ), (

~ S) (^
~

)

which gives various forms of the equation of homography. In particular, if s = a, s =
/3 ,

t = /3, t = a
,
u = 7, w = S

,
v = 8, v = 7, then

-7)(
/

-7
/

), (ft -8) (a -8 )

682
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and the right-hand side breaks up into factors, which are equal to each other (whence

also V = W), and the equation M* = takes the form

which is, in fact, one of the equations which express the equality of the anharmonic

ratios of (a, /3, 7, 8) and , 7 ,
B

).

115. In the case of a cubic, the expressions considered are

(a, b, c, d$x, y)
3
,

(ac i2
,
ad be, bd c*\x, yf,

- o?d + 3abc -

- abd + 2ac2 - b-c

+ acd - 2b*d + 6c2

+ ad2 - Sbcd + 2c3

a?d? - Qabod + 4ac3 + 4&amp;gt;b

3d -

(as, y)
3
,

(1)

(2)

(3)

\,

where (1) is the cubic, (2) is the quadricovariant or Hessian, (3) is the cubicovariant,

and (4) is the quartinvariant or discriminant.

And where it is convenient to do so, I write

(1)
= U,

(2)
= #,

(3)
= *,

(4) = D,

so that we have

116. The Hessian may be written under the form

(ax + by) (ex + dy) (bx + cy)
2

,

(which, indeed, is the form under which qua Hessian it is originally given), and under

the form

y
2
, -yx, x*

a
,

b , c

b ,
c

,
d

The cubicovariant may be written under the form

[2 (ac -b*)x+ (ad
-

be) y] (bx
2 + 2cxy 4- df)

-
{ (ad -bc)x + 2 (bd

- c
2

) y} (ax
2 + 2bxy + cy

2

),
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that is, as the Jacobian of the cubic and Hessian
;
and under the form

541

that is, as the evectant of the discriminant.

The discriminant, taken negatively, may be written under the form

+ 4 (ac
- b2

) (bd
- c

2

)
-

(ad
-

be)
2

,

that is, as the discriminant of the Hessian.

117. We have

(a, b, c, d~$ba? + 2cxy + dy
2

,

- ax2 -
Zbxy

-
cy

2

)
3 =

which expresses that a transmutant of the cubic is the product of the cubic arid the

cubicovariant. The equation

expresses that the second evectant of the discriminant is the square of the cubic.

The equation

d2
,

- Zed ,

- 3bd + 6c2
,

- 36c + 2ad
\

= 27 D&quot;

-Serf
,

-3c3 + I2bd, -Bad-Qbc ,

- Sac + Qb2

-36d + 6c2
, -3ad-6bc

,

- 362 + 12ac, - Sab

-3bc-12ad, - Sac + 6b2
, Sab , a2

expresses that the determinant formed with the second differential coefficients of the

discriminant gives the square of the discriminant.

The covariants of the intermediate a?7+/3$ are as follows, viz.

118. For the Hessian, we have

H(aU + {33&amp;gt;)= (1, 0, -D%a,./3)lff

= (a-/8-n)jET;
for the cubicovariant,

3&amp;gt;(aU+j3&amp;lt;&)= (0, CD, 0, -D 2

Ja, /3^U

+ (1, 0, -D, Oja, yS)
3

&amp;lt;I)

=
(a

2 -/
and for the discriminant,

Q(aU+j33&amp;gt;)= (1, 0, -2D, 0, D 2

%a, ^)
4

ct&amp;gt;

=
(a

2
-/3

2 D)2 D,

where on the left-hand sides I have, for greater distinctness, written H, &c. to denote

the functional operation of taking the Hessian, &c. of the operand
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In particular, if a. 0, /3
=

1,

= - D . H,

= - D 2
. U,

= D 3
.

119. Solution of a cubic equation.

The question is to find a linear factor of the cubic

(a, b, c, dfa, y)
3

,

and this can be at once effected by means of the relation

between the covariants. The equation in fact shows that each of the expressions

is a perfect cube, and consequently that the cube root of each of these expressions

is a linear function of (x, y). The expression

is consequently a linear function of x, y, and it vanishes when U = 0, that is, the

expression is a linear factor of the cubic.

It may be noticed here that the cubic being (a; ay) (x @y) (x yy), then we

may write

-
7) (x

-
zy),

where w is an imaginary cube root of unity : this will appear from the expressions

which will be presently given for the covariants in terms of the roots.

120. Canonical form of the cubic.

The expressions (&amp;lt;!&amp;gt;+ Z7VD), \(& #VD) are perfect cubes: and if we write

then we have

U = x3 + y
3

,

(x
3 -

y
3

),

and thence also
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121. When the cubic is expressed in terms of the roots, we have

or1U = (x xy) (x /3?/) (x yy} ;

and then putting for shortness

A (ft 7 ) (x ay ), B (y a ) (x fiy), C =
(a /3) (x yy ),

so that

we have

ar*H = -
T
L
(A- + B2 + (7

2

)
= (BC + CA + A B),

a~*3&amp;gt; = -
fa (B -C)(C- A) (A -

B),

a~4D = -
fa (0 -

y)
2

(y
-

a)
2

(a
-

/3)
2

.

122. The co variants H, ^&amp;gt; are most simply expressed as above, but it may be

proper to add the equations

a~2H =
y^g S (/3 7)

2

(x ay)
2

6a/37 /37
2

7a
2

a/3
2

=
-g {(a + co/3 + a&amp;gt;

2

7) x + (/37 + co7a + &&amp;gt;

2

a/3) y\ {(a

(where &&amp;gt; is an imaginary cube root of unity),

a~3
&amp;lt;&
=

fa 2 (a /3) (a 7)
2

(x
-

f

2 (a
3 + /3

3 + 7
3

)
- 3 (/37

2

- 2 (a
2

/67 + 2

7a + 7
2

a/3)
-

~ ^

2 (a/3
?

, + 2 (/3
3

7

/S) y]

+ 7
2a + 2

/3) + 1 2a/37 ,

4 (/3
2

7
2 + 7

2a2 + a 2
/3

2

)
-

(/37
3 + 7a

3 + a^
3 + /3

:J

y + 7
3a + a3

^),

a^
- 3 (a/3

2

7
3 + /97

2a3 + 7a
2
/3

3 + a

123. It may be observed that we have tt~
6D U* = -

^V A^B-C-, which, with the
above values of #, 4&amp;gt; in terms of ^4, B, C and the equation A + B + C = 0, verifies

the equation 4&amp;gt;

2 - D C7- + 4^ =
0, which connects the covariants. In fact, we ,haw

identically,

(7)
2

(
JBCt + 6Vl+^ JB)

2
-+

- 4 (EC + CA + AB}* - 27AWC*,

by means of which the verification can be at once effected.

+ .C} (BC + CA+ A B) ABC

OF THE

VERSITY
5
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124. If, as before, w is an imaginary cube root of unity, then we may write

27a~3
&amp;lt;I&amp;gt;

= - (B-C)(C-A)(A -
B),

and these values give

27a-3

(&amp;lt;

+ V ^D = Ka + w2 + vv ) x + (#7 + w27a + &&amp;gt; a/3

27 a&quot;

3 i
(&amp;lt;I&amp;gt;

- Z7 VO =
{(a + /3 + &&amp;gt;

2

7)

and we thence obtain

+ 0VD) - f^^t/VQ) - - la (at
-

a&amp;gt;

2

) (/3
-

7) (x
-

ay),

which agrees with a former result.

125. The preceding formulas show without difficulty, that each factor of the cubi-

covariant is the harmonic of a factor of the cubic with respect to the other two factors

of the cubic
;
and moreover, that the factors of the cubic and the cubicovariant form

together an involution having for sibiconjugates the factors of the Hessian. In fact, the

harmonic of x ay with respect to (x /3y) (x yy) is (2a /3 y)x + (2/37 yd aft) y,

which is a factor of the cubicovariant
;

the product of the pair of harmonic factors is

(2a
-

(3
-

7) x* + 2 (/3y
- a2

) xy + (- 2a/3y + of/3 + a2

7) y-

and multiplying this by /3 7, and taking the sum of the analogous expressions, this

sum vanishes, or the three pairs form an involution. That the Hessian gives the sibi

conjugates of the involution is most readily shown as follows: the last-mentioned

quadric may be written

(-( + + 7 ) + 3a) x- + 2 (a/3 + a7 + 7 - a (a + + 7)) xy + (- 3a/37 + a (aft + a

which is equal to

a a \ a a

or, throwing out the factor Sor1
,
to

(b + aa, 2c -
2ba, d + vix, y)-,

which is harmonically related to the Hessian

(ac-lr, ad -be, bd - c^x, y)-;

and in like mariner the other two pairs of factors will be also harmonically related to

the Hessian.
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126. In the case of a pair of equal roots, we have

arlU= (x
-

ay)
2

(x
- 7y) ,

a~&amp;gt;H=
- i

(a
-
7)

2

(a
-

ay)
2
,

a-*3&amp;gt; = -
Jfr (a

- if (x
-

ay)
3

,

D = 0.

And in the case of all the roots equal, we have

a 1

U=(as ay)
3
,

#=o, &amp;lt;s&amp;gt;
= o, n=o.

127. In the solution of a biquadratic equation we have to consider the cubic

equation
3 - M(v -1) = 0. The cubic here is (1, 0,

- M
, M\v, I)

3
,

or what is the
same thing,

(1, 0, -M, M$*, I)
3

;

the Hessian is

the cubicovariant is

and the discriminant is

M(-l, pf, -fflf, , I)
3

;

(3)

(4)

128. In the case of a quartic, the expressions considered are

(a, b, c, d, eQx, y)
4
,

ae 4tbd + 3c2
,

(ac-b
2
,
2 (ad -be), ae + 2bd-3c2

, 2(be-cd), ce-d?\x,

ace + 2bcd - ad2 - bze - c
3
,

( - a?d + 3 abc - 2 b3
,

r

o?e - 2abd+ 9 ac2 - 6 b2
c,

5abe + l5 acd- Wfrd,

- + 10 ad2 - 10 b*e, fa y), (5)

+ 5 ade+ 10 6rf
2 15 bee,

+ ae2 + 2 bde - 9 c
2
e + 6 cd2

,

+ be- - 3 cde + 2 d3

where (1) is the quartic, (2) is the quadrinvariant, (3) is the quadricovariant or Hessian,
(4) is the cubinvariant, and (5) is the cubicovariant.

C. II. 69
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And where it is convenient to do so, I write

(i)
-

ir,

(2)
= /

,

(3)
= H,

(4)
- J,

(5)
= *.

The preceding covariants are connected by the equation

JU* - IU*H +4&amp;gt;H
3 = -

4&amp;gt;

2
.

The discriminant is not an irreducible invariant, its value is

D = / 3 - 27/2 = a e
8 + &c.,

for which see Table No. 12, [p. 272].

129. It is for some purposes convenient to arrange the expanded expression of the

discriminant in powers of the middle coefficient c. We thus have

n = ase
s - 12 a?bde2 - 27 a?d* - 6 abWe - 27 b*e

2 - 64

+ c ( 54 a*d*e + 54 a&2
e
2 + 108 abd3 + 108 bz

de)

+ &amp;lt;? (- 18 aV - 180 abde + 36 62^2
)

+ c3 (- 54 ad2 - 54 b*e)

+ c
4
(81 ae).

130. Solution of a biquadratic equation.

We have to find a linear factor of the quartic

(a, b, c, d, e$x, y)\

The equation JU 3 - IU 2H + 4# 3 = -
&amp;lt;I&amp;gt;

2
, putting for shortness

73*-

may bo written

(1, 0, -M, M\IH, JUy = -I&amp;gt;&amp;lt;&.

Hence, if TJ, w,, w3 are the roots of

(1, 0, -M, M\*r, 1)
3 = 0,

the expressions IHvr^JU, IH-vr2JU, IH-v?3JU are each of them squares; write

(ms
-

w,) (IH - vtiJU) = X 3
,

(VT3
-

BTj) (IH - VJU) = Y2
,

(Wl - BT 2) (IH ~ HT 3JU) = ^ 2
,
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so that, identically,
X2 + Y2 + Z2 =

;

and consequently X + iY, X lY are each of them squares. The expression

will be a square if only
a2

+/3
2 +

as may be seen by writing it under the form

and in particular, writing v-5r2 tjr3 , Vwg vrlt VCTV tn^ for a, /3, 7, the expression

is a square ;
and since the product of the different values is a multiple of U* (this

is most readily perceived by observing that the expression vanishes for U =
0), the

expression is the square of a linear factor of the quartic.

131. To complete the solution: tn-1; CT2 ,
OT 3 are the roots of the cubic equation

(1, 0, -^M, MTfa, 1)3 = 0;

and hence, putting for shortness,

, 0, -$M,

, 0, -$M,

we have (eo being an imaginary cube root of unity)

i
(to
-

o&amp;gt;

2

) (r2
- &3 ) (IH- ^JU) = P - Q ;

and if

P 3 = \M {-

1 (w
-

ft)
3

) (ar a
- OT 3)

= P - Q .

Hence, multiplying and observing that
(&&amp;gt;

&&amp;gt;

2

)
2 =

3, we find

and consequently

(tr,
-

w,) ^JH-^JU =
(ft)

-
ft)

2

) N/-(P-Q)(P -Q ).

We have, in like manner,

i(- 2)K-^3)(/^-^,^^)= P- Q,

(ft)
-

ft)
2
) (rs

-
w,) (JIT -vrJU) = a)P- a)-Q,

-i (ft)
-

ft)
2
) (OT!

- J2) (7T - ars 7tT) = &)
2P -

ft) Q,

692
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and i(-&quot; )fo -&amp;lt;*)= Po- Qo,

^ (ft)
-

ft)
2

) (tJ,
-

OT,)
= 60 P - 0)

2Q ,

^ (ft)
- CO

2

) (-STi
-

OT,)
= G)

2P - O) Q ,

and therefore

-Tx~JU=
(a&amp;gt;

-
o&amp;gt;

2

)
V -

=
(tO
~

ft)
2

)
V- (ft)P

-
ft)

2

Q)(ft)P
-

ft)
2

Q),

=
(ft)

-
ft&amp;gt;

2

)
\7 -

(ft)
2

P-ft,Q)7ft7
2P -ft,Q ) ;

and hence disregarding the common factor &amp;lt;w &amp;lt;y

2
,
the square of the linear factor of

the quartic is

a)
2Q ) + V -

which is the required solution.

It may be proper to add that

-r1= P + Qo,

-S73
= ft)

2P + CD Q .

132. The solution gives at once the canonical form of the quartic ;
in fact, writing

X + lY= 2 V(tSTa
-

&amp;lt;Sr3) (T3
-

BTi) V7 X 2
,

Z - tF= 2 V(ra -fir8)(t!rs--Br1) V7y2
,

where X, Y have their former significations, we find, by a simple reduction,

IH - ^JU = (rs
-

oTj) J&quot; (x
2 + y

2

)
2
,

=- (w2
-

r
s) J (x

2 -
y

2
)
2

,

- fer:g )K-jgL) j 4xv
CTJ -BTo

and thence putting

T!
- OT 2 (&)

2P -
we have

which is the form required.

133. The Hessian may be written under the form

(9, -9d, 3C , -3ft, 3a5a?,

that is, as the evectant of the cubinvariant.
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The cubicovariant may be obtained by writing the quartic under the form

(ax + by, lx + cy, cx + dy, dx + ey~$x, y)
3

,

and then, treating the linear functions as coefficients, or considering this as a cubic,
the cubicovariant of the cubic gives the cubicovariant of the quartic.

If we represent the cubicovariant by

3&amp;gt;
=

(a, b, c, d, e, T, g$&amp;gt;, yY,
then we have identically,

ag
- 9ce + 8d2 =

;

and moreover forming the quadrinavariant of the sextic, we find

ag-6bf+15ce-10d2 = D,

where D is the discriminant of the quartic. From these two equations we find

which is an expression given by Mr Salmon: it is the more remarkable as the left-

hand side is the quadrinvariant of (b, c, d, e, ffcc, y}\ which is not a covariant of the

quartic. It may be noticed also that we have

af-3be

bg-3cf+2de = 0.

134. The covariants of the intermediate

of the quartic and Hessian are as follows, viz.

The quadrinvariant is

7 (aU + 6/377) = (/, 18J, 3/ 2 $, /3)
2

;

the cubinvariant is

J (a 7 + 6/37T) = (J, 7 2
, QIJ, -

the Hessian is

8 (a U + G/3H) - (1, 0,
- 37 $a, {3}*H

+ (0, 7,

and the cubicovariant is

0(af7 + 6/377)= (1, 0, -97, -

to which may be added the discriminant, which is

=
(l, 0, -187, 108J, 81 7 2

, 97277, -
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135. The expression for the lambdaic is

a
,

b
,
c-2X = /4-X/-4X3

.

b
, c + X, d

c 2X, d
,

e

If the determinant is represented by A, that is if

A = - 4X3 + X7 + /,

then if X 1? X,, X3 are the roots of the equation A=0, and if the values of 9aA, &c.

obtained by writing \ in the place of X are represented by 9aAi, &c., then if x, y

satisfy the equation

(a, b, c, d, e\x, y)*
=

0,

we have identically (X, Y being arbitrary),

(a, b, c, d, , y)

Xy-Yx

(de, -dd ,
dc ,

-db , daj^Y

-(de ,
-dd ,

dc ,
-db ,

daJX^Y

a theorem due to Aronhold. I have quoted this theorem in its original form as an

application of the lambdaic, but I remark that

if U
,
H are what U, H become, substituting for (x, y) the new facients (X, Y). More

over, we have

&quot;T

;

for substituting this value in the equation A = 0, we obtain the before-mentioned equa
tion CT 3

M(vr 1) = 0. We have, therefore,

/O d O t5 O ^C~ ~V ~\T\A A
^ TTf TTr

I I

and the equation becomes

I

(a, b, c, d, e^X, Y^x, y)x
-T*

x ; y

Xy Yx
,

-
^

-
i^rrr,
-? ?rr i^rrr,

-r~TT- JOTJ LT+ \/IH - /w 2U + v IH - J-sr3 IT
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Moreover, if (x ay) be a factor of the quartic, then replacing in the formula y by the

value ctx, (x, y) will disappear altogether; and then changing (X, Y) into (x, y) where

x, y are now arbitrary, we have

(a, b, c, d, e\x, yn^l) --

x-ay

which is a form connected with the results in Nos. 130 and 131.

136. We have

y\
-

4&amp;gt;xy

3
,
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137. It may be remarked that the equation GIH 9JU will be satisfied

identically if

62 d2

c
&amp;lt;p

c (p

where $ is arbitrary; the quartic is in this case the square of

/
b d

( I 1 vc
(p, ~7=TX.a? y)

vc (p vc
&amp;lt;p

If with the conditions in question we combine the equation 7 = (which in this case

implies also J=0), we obtain
&amp;lt;p

= 0, and consequently

a _ b _ c _ d

b c d e

or the quartic will be a complete fourth power.

It is easy to express in terms of the coefficients a
, b\ c , d ,

e of 677 the different

determinants

a, b, c, d
\\,

I

b, c, d, e

we have in fact

ae bd = ^ ( c + -j-- VaV + 46 cT 3c 2

) ,

v V3 /

3 (bd
- c

2

)
= i c - --= VaY-

Vo

ac b* = % a,

ad bc = ^ b
,

be cd=^ c,

I ce - d* = I e,

whence all the above-mentioned determinants will vanish, or the quartic will be a

perfect fourth power if only the Hessian vanishes identically.

138. Considering the quartic as expressed in terms of the roots, we have

a
~1U =(x ay) (x /3y) (x yy) (x ST/) ;

and if we write for shortness

A=(j3-y)(a- 8),

which are connected by
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then we have

and for the discriminant we have

a~6D =^ (a
-

/3)
2

(a
- 7)

2

(a
-

553

-
7)

2

(
-

S)
2

(7
-

and it is easy by means of a preceding formula to verify the equation Q = /3 27JX

139. The formulse show a very remarkable analogy between the covariants of a
cubic and the invariants of a quartic. In fact

For the cubic. For the quartic.

G = (a-

and then we have corresponding to each other:

For the cubic.

The Hessian,

The cubicovariant,

The cubic into the square root of the discriminant.

140. For the two covariants, we have

and

if for shortness,

Sa (/3 + 7 )

, 8/3 (7 + a)

141. We have

or putting for shortness

we have

For the quartic.

The quadrinvariant,

The cubinvariant,

The discriminant.

C. II.
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and it is then easy to deduce

Wl = A(5-0),
OT2
=

A(&amp;lt;7 -A),

v?3 =A(A-B);
in fact, these values give

CTj + ZZT2 + ^3 =
0,

571 CT 2 + &quot;CTi
SJ s + 15T2ar3

= M,

Sf-
l Sf^Srs

= M,

and they are consequently the roots of the equation w3 M (or 1)
= 0.

142. The leading coefficient of IH^^JU is then equal to a4 into the following

expression, viz.

^(A 2 + & + C2

) a~* (ac
- b2

)
- ^(A* + & + &)(B-C),

which is equal to

Jig, (A
2 +& + (7

2

) {48a~
2

(ac -b*)-4,(B- C)},

and the term in
{ }

is

8 (a/3 + ay + aS + /37 + /38 + 78)
- 3 (a + /3 + 7 + S)

2 - 4 (7
-

2) (/3
-

8) + 4 (a
-

) (7
-

3),

which is equal to

But IH 53-jt/tT is a square, and it is easy to complete the expression, and we have

-^(A 2 + B2 +C2

){(S + a-/3- r -Soi + 7, Sa (/9 + 7)
-

7(8 + )][*, y)
2

}

2

- 3^ (^
2+ B2 + C2

) {(8+^ - 7 - a,
- 8/3+ 7a, 3/3 (7 + a)

-
72 (8+/8)$a;, y)

2

}

2
,

We have, moveover,
n72 &quot; s

:=

CT 3 tAT!
= 3A5,

OTj CT2 ^
and thence

A 2 _P_ 7?2 i

x (8 + a - /3
-

7,
- Sa + /37, Sa (/8 + 7)

-
fiy (8 + a)5, yf ;

and taking the sum of the analogous expressions, we find

+ B2 +

which agrees with a former result.
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143. The equation 7=0 gives

A : B : C=l : a&amp;gt; :

2
,

where CD is an imaginary cube root of unity; the factors of the quartic may be said

in this case to be Symmetric Harmonics.

The equation J=0 gives one of the three equations,

A=B, B = C, G = A-

in this case a pair of factors of the quartic are harmonics with respect to the other

pair of factors. If we have simultaneously /=0, J=0, then

A=B = C = 0,

and in this case three of the factors of the quartic are equal.

144. If any two of the linear factors of the quartic are considered as forming,
with the other two linear factors, an involution, the sibiconjugates of the involution

make up a quadratic factor of the cubicovariant
;

and considering the three pairs of

sibiconjugates, or what is the same thing, the six linear factors of the cubicovariant,

the factors of a pair are the sibiconjugates of the involution formed by the other two

pairs of factors.

In fact, the sibiconjugates of the involution formed by the equations

(x
-

ay) (x
-

Sy) = 0, (x- /3y) (x -yy) =

are found by means of the Jacobian of these two functions, viz. of the quadrics

(2, -a -a, 28a$&amp;gt;, y)\

(2, -0-7, 2 7$*, y)
2
,

which is

(8 + a- -7, -ga + /3y, 8a ( + 7)
- 7 (8 + )$&amp;gt;, y)\

viz. a quadratic factor of the cubicovariant; and forming the other two factors, there is

no difficulty in seeing that any one of these is the Jacobian of the other two.

145. In the case of a pair of equal roots, we have

a-1 U= (x- a.yj (x
-
jy) (x

-
8y),

or*/- TV (
- 7) (-)&amp;gt;,

a&amp;gt;-*J=-Tb(*-vY(*-*Y,

D = 0,

ar*H = - & {2 (a
- 7)

2

(x
- %)2 + 2 (a

-
S)

2

(x
- 7y)

2 + (7
-

S)
2
(x
-

ay)
2

} (x
-

ay)*,

a-3 = ^ (7
-

8)
2

(2a
- 7 - 8, 78

- a2
, 7a

2 + Sa2 -
fya&^x, 7/)

2

(x
-

ay)\

702
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In the case of two pairs of equal roots, we have

D = 0,

a~lH=- TV (a
- 7)

2 -
ay)

2

(x
- 7y)

2
,

&amp;lt;$&amp;gt;= 0;

these values give also

146. In the case of three equal roots, we have

a&quot;
1 U=(x ay)

3

(x Sy),

7=0, J=0, Q =
0,

ar*H= -&(*- S)
2

{2 (x
- %)2 + (x

-
ay)

2

} (x

a-3
3&amp;gt;
=

&(-)&quot; (a -y)8
;

and in the case of four equal roots, we have

a&quot;
1 U=(x ay)

1

,

1=0, J=Q, D = 0,

The preceding formulae, for the case of equal roots, agree with the results obtained

in my memoir on the conditions for the existence of given systems of equalities

between the roots of an equation.

Addition, 7th October, 1858.

Covariant and other Tables (binary quadrics Nos. 25 bis, 29 A, 49 A, and 50 bis).

Mr Salmon has pointed out to me, that in the Table No. 25 of the simplest
octinvariant of a binary quintic

1

,
the coefficients 210, 17, + 18 and + 38 are

erroneous, and has communicated to me the corrected values, which I have since

verified: the terms, with the corrected values of the coefficients, are [shown in the Table]

No. 25 bis.

[The terms with the erroneous coefficients were abtfcPef, ac5/2
,

64d2/2
, b&amp;lt;?d?e

;
the

correct values -220, -27, +22, and +74 of the coefficients are given in the Table

Q, No. 25, p. 288.]

1 Second Memoir, Philosophical Transactions, t. CXLVI. (1856) p. 125.
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Mr Salmon has also performed the laborious calculation of Hermites 18-thic

invariant of a binary quintic, and has kindly permitted me to publish the result, which

is given in the following Table :

No. 29 A.

[This is the Table W No. 29 A given pp. 299303, the form being slightly

altered as appears p. 282.]

Mr Salmon has also remarked to me, that in the Table No. 50 of the cubin-

variant of a binary dodecadic 1
,
the coefficients are altogether erroneous. There was, in

fact, a fundamental error in the original calculation
;

instead of repeating it, I have,

with a view to the deduction therefrom of the cubinvariant (see Fourth Memoir,

No. 78), first calculated the dodecadic quadricovariant, the value of which is given in

the following Table:

No. 49 A

[For this Table see p. 319.]

It is now very easy to obtain the cubinvariant, which is

No. 50 bis.

[This is the Table No. 50, p. 319, the original No. 50 with coefficients which

were altogether erroneous having been omitted.]

1 Third Memoir, Philosophical Transactions, t. CXLVI. (1856) p. 635.
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157.

ON THE TANGENTIAL OF A CUBIC.

[From the Philosophical Transactions of the Royal Society of London, vol. XLVIII. for the

year 1858, pp. 461463. Received February 11, Read March 18, 1858.]

IN my
&quot; Memoir on Curves of the Third Order

&quot;

(*), I had occasion to consider a

derivative which may be termed the &quot;

tangential
&quot;

of a cubic, viz. the tangent at

the point (x, y, z) of the cubic curve (* \x, y, zf = meets the curve in a point

(&amp;gt; V&amp;gt; )&amp;gt;

which is the tangential of the first-mentioned point ;
and I showed that when

the cubic is represented in the canonical form a? + y
3 + z3 + Qlxyz = 0, the coordinates of

the tangential may be taken to be x (y
3 zs

):y (z
3 x3

):z (a? y
3

).
The method given for

obtaining the tangential may be applied to the general form (a, b, c,f, g, h, i,j, k, Ifyx, y, z}
3

:

it seems desirable, in reference to the theory of cubic forms, to give the expression of

the tangential for the general form 2
;
and this is what I propose to do, merely indicating

the steps of the calculation, which was performed for me by Mr Greedy.

The cubic form is

(a, b, c, f, g, h, i, j, k, l$x, y, zf,
which means

ax3 + by
3 + cz3 + Bfy^z + 3gz-x + 3hx-y + Siyz

2 + Sjzx
2 + 3hxy

z + Qlxyz ;

and the expression for f is obtained from the equation

tf =
(b, f, i, c$(j, / c, i, g, V$x, y, z)\ -(h, b, i, / I, k~$x, y, z)

2

)
3

-(a, b, c, f, g, h, i, j, k, l~$x, y, z)
3

(&amp;lt;

1
Philosophical Transactions, vol. CXLVII. (1857), [146].

2 At the time when the present paper was written, I was not aware of Mr Salmon s theorem (Higher
Plane Curves, p. 156), that the tangential of a point of the cubic is the intersection of the tangent of the
cubic with the first or line polar of the point with respect to the Hessian ; a theorem, which at the same
time that it affords the easiest mode of calculation, renders the actual calculation of the coordinates of the

tangential less important. Added 7th October, 1858. A. C.
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where the second line is in fact equal to zero, on account of the first factor, which

vanishes. And (, 3U denote respectively quadric and cubic functions of (y, 2), which

are to be determined so as to make the right-hand side divisible by a?; the resulting
value of may be modified by the adjunction of the evanescent term

(&as+hy+jz)(a, b, c, f, g, h, i, j, k, Ifa, y, z}\

where a, h, j are arbitrary coefficients
;
but as it is not obvious how these coefficients

should be determined in order to present the result in the most simple form, I have

given the result in the form in which it was obtained without the adjunction of any
such term.

Write for shortness,
= (k,l
=

(b,f, i

, *),

, zf,

so that

C =(k, I, g $
D =

(b,f, i, c^

(h, b, i, f,l, k fa, y,

&amp;gt; /. c, i, g, I fa, y,

(a, b, c, f, g, h, i, j, k, Ifa, y,

=
(h, P, Q fa, I)

2
,

=
(j, R, S fa, I)

2
,

=
(a, B, C, Dfa, I)

3
.

=(OD, B fa, 1),

and then for greater convenience writing (li, 2P, Q\x, I)
2
,
&c. for (h, P, Qfa, I)

2
, &c.,

and omitting the (x, I)
2
, &c. and the arrow-heads, or representing the functions simply

by (h, 2P, Q), &c., we have

x^= b(j, 2R, S )
3

-
3/( j, 2R, S )

2
. (h , 2P, Q)

+ 3t(j, 2.B, 8 ) .(h, 2P, Q)
2

- c .(h,2P, QY
-

(a, W, 3(7, D) . (GD, B ),

which can be developed in terms of the quantities which enter into it. The con

ditions, in order that the coefficients of x, of may vanish, are thus seen to be

+ 4SPQ) - c (6PQ
2
),DOT - SOT = 6 (6RS*)

-
3/(2S

2P + 4RSQ) + 3i

and from these we obtain

bck -3
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We - 1
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158.

A SIXTH MEMOIR UPON QUANTICS.

[From the Philosophical Transactions of the Royal Society of London, vol. CXLIX. for
the year 1859, pp. 6190. Keceived November 18, 1858, Read January 6, 1859.]

I PROPOSE in the present memoir to consider the geometrical theory: I have
alluded to this part of the subject in the articles Nos. 3 and 4 of the Introductory
Memoir, [139]. The present memoir relates to the geometry of one dimension and the
geometry of two dimensions, corresponding respectively to the analytical theories of

binary and ternary quantics. But the theory of binary quantics is considered for its
own sake; the geometry of one dimension is so immediate an interpretation of the
theory of binary quantics, that for its own sake there is no necessity to consider it at
all; it is considered with a view to the geometry of two dimensions. A chief object
of the present memoir is the establishment, upon purely descriptive principles, of the
notion of distance. I had intended in this introductory paragraph to give an outline
of the theory, but I find that in order to be intelligible it would be necessary for
me to repeat a great part of the contents of the memoir in relation to this subject,
and I therefore abstain from entering upon it. The paragraphs of the memoir are
numbered consecutively with those of my former Memoirs on Quantics.

147. It will be seen that in the present memoir, the geometry of one dimension
is treated of as a geometry of points in a line, and the geometry of two dimensions
as a geometry of points and lines in a plane. It is, however, to be throughout
borne in mind, that, in accordance with the remarks No. 4 of the Introductory
Memoir, the terms employed are not (unless this is done expressly or by the context)
restricted to their ordinary significations. In using the geometry of one dimension
in reference to geometry of two dimensions considered as a geometry of points and
lines in a plane, it is necessary to consider, 1, that the word point may mean
point and the word line mean line; 2, that the word point may mean line and the

C. II. _i
s^f OF THE

^UNIVERSITY
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word line mean point. It is, I say, necessary to do this, for in such geometry of

two dimensions we have systems of points in a line and of lines through a point,

and each of these systems is in fact a system belonging to, and which can by such

extended signification of the terms be included in, the geometry of one dimension.

And precisely because we can by such extension comprise the correlative theorems

under a common enunciation, it is not in the geometry of one dimension necessary

to enunciate them separately ;
it may be and very frequently is necessary and proper

in the geometry of two dimensions, where we are concerned with systems of each

kind, to enunciate such correlative theorems separately. It may, by way of further

illustration, be remarked, that in using the geometry of one dimension in reference

to geometry of three dimensions considered as a geometry of points, lines, and planes
in space, it would be necessary to consider, 1, that the words point and line may
mean respectively point and line; 2, that the word line may mean point in a plane

1

,

and the word point mean line, viz. the expression points in a line mean lines through
a point and in a plane ; 3rd, that the word line may mean line and the word point
mean plane, viz. the expression points in a line mean planes through a line. And
so in using the geometry of two dimensions in reference to geometry of three dimen
sions considered as a geometry of points, lines, and planes in space, it would be

necessary to consider, 1, that the words point, line, and plane may mean respectively

point, line, and plane; 2, that the words point, line, and plane may mean respectively

plane, line, and point. But I am not in the present memoir- concerned with geometry
of three dimensions. The thing to be attended to is, that in virtue of the extension

of the signification of the terms, in treating the geometry of one dimension as a

geometry of points in a line, and the geometry of two dimensions as a geometry of

points and lines in a plane, we do in reality treat these geometries respectively in

an absolutely general manner. In particular and I notice the case because I shall

have occasion again to refer to it we do in the geometry of two dimensions include

spherical geometry; the words plane, point, and line, meaning for this purpose, spherical

surface, arc (of a great circle) and point (that is, pair of opposite points) of the

spherical surface. And in like manner the geometry of one dimension includes the
cases of points on an arc, and of arcs through a point.

148. I repeat also a remark which is in effect made in the same No. 4; the
coordinates x, y of the geometry of one dimension, and the coordinates as, y, z and

, y, % of the geometry of two dimensions are only determinate to a common factor

pres (that is, it is the ratios only of the coordinates, and not their absolute magni
tudes, which are determinate) ;

hence in saying that the coordinates x, y are equal
to a, b, or in writing x, y = a, b, we mean only that x : y = a : b, and we never as

a result obtain a?,. y=a, b, but only x : y = a : b. And the like with respect to the
coordinates x, y, z and f, 77, (In the geometry of two dimensions, x, y = a, b, is

for this reason considered and spoken of as a single equation.) But when this is

once understood, there is no objection to treating the coordinates as if they were

completely determinate.

1 It would be more accurate to say that the word line may mean point-in-and-with-a plane, viz. the
locus in quo of lines through the point and in the plane. Added, June 16, 1859. A. C.
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On Geometry of One Dimension, Nos. 149 to 168.

149. In geometry of one dimension we have the line as a space or locus in

quo, which is considered as made up of points. The several points of the line are

determined by the coordinates (x, y), viz. attributing to these any specific values, or

writing x, y = a, b, we have a particular point of the line. And we may say also

that the line is the locus in quo of the coordinates (x, y).

150. A linear equation,

(*$&amp;gt;, 2/)
1 = 0,

is obviously equivalent to an equation of the before-mentioned form x, y = a, b, and

represents therefore a point. An equation such as

breaks up into m linear equations, and represents therefore a system of m points, or

point-system of the order m. The component points of the system, or the linear

factors, or the values thereby given for the coordinates, are termed roots. When
m = 1 we have of course a single point, when m = 2 we have a quadric or point-

pair, when m 3 a cubic or point-triplet, and so on. The point-system is the only

figure or locus occurring in the geometry of one dimension. The quantic (*$jx, y)
m

,

when it is convenient to do so, may be represented by a single letter U, and we
then have 7 = for the equation of the point-system.

151. The equation

(*$&amp;gt;, y)
m =

may have two or more of its roots equal to each other, or generally there may exist

any systems of equalities between the roots of the equation, or what is the same

thing, the system may comprise two or more coincident points, or any systems of

coincident points. In particular, when the discriminant vanishes the equation will have

a pair of equal roots, or the system will comprise a pair of coincident points ;
in

the case of the quadric (a, b, c^x, y)
2 = 0, the condition is ac 62 = 0, or as it may

be written, a, b b, c
;

in the case of the cubic

(a, b, c, dQx, y
3

)
= 0,

the condition is

a2d2 - Qabcd + 4ac3 + 4frW - 362
c
2 = 0.

The preceding is the only special case for a quadric : for a cubic we have besides

the special case where the three roots are equal, or the cubic reduces itself to three

coincident points ;
the conditions for this are

ac 62 =
0, ad bc = 0, bd c2 = 0,

equivalent to the two conditions

a : b = b : c = c : d.

712
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For equations of a higher order the analytical question is considered, and as regards

the quartic and the quintic respectively completely solved, in my &quot;Memoir on the

Conditions for the Existence of given Systems of Equalities between the Roots of an

Equation
&quot;

(*).

152. Any covariant of the equation

equated to zero, gives rise to a point-system connected in a definite manner with

the original point-system. And as regards the invariants, the evanescence of any

invariant implies a certain relation between the points of the system ;
the identical

evanescence of any covariant implies relations between the points of the system, such

that the derived point-system obtained by equating the covariant to zero is absolutely

indeterminate. The like remarks apply to the covariants or invariants of two or more

equations, and the point-systems represented thereby.

153. In particular, for the two point-pairs represented by the quadric equations

(a, b, c\x, 2/)
2 = 0,

(a , V, c ^x, 2/)
2 = 0,

if the lineo-linear invariant vanishes, that is, if

ac - 2W + ca =
0,

we have the harmonic relation, the two point-pairs are said to be harmonically
related to each other, or the two points of the one pair are said to be harmonics

with respect to the two points of the other pair. The analytical theory is fully

developed in the &quot; Fifth Memoir upon Quantics
&quot;

(
2

).
The chief results, stated under a

geometrical form, are as follows:

1. If either of the pairs and one point of the other pair are given, the re

maining point of such other pair can be found.

2. A point-pair can be found harmonically related to any two given point-pairs.

154. The last of the two theorems gives rise to the theory of involution. The
two given point-pairs, viewed in relation to the harmonic pair, are said to be an
involution of four points; and the points of the harmonic pair are said to be the

(double or) sibiconjugate points of the involution. A system of three or more pairs,

such that the third and every subsequent pair are each of them harmonically related

to the sibiconjugate points of the first and second pairs, is said to be a system in

involution. In particular, for three pairs we have what is termed an involution of

six points; and it is clear that when two pairs and a point of the third pair are .

given, the remaining point of the third pair can be determined. And in like manner

1
Philosophical Transactions, vol. CXLVII. (1857), pp. 727 731, [150].

2
Philosophical Transactions, vol. CXLVIII. (1858), pp. 429 462, [156],
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for a greater number of pairs, when two pairs and a point of each of the other

pairs are given, the remaining point of each of the other pairs can be determined.

Two points of the same pair are said to be conjugate to each other; or if we
consider two pairs as given, then the points of the third or any subsequent pair are

said to be conjugate to each other in respect to the given pairs. This explains the

expression sibiconjugate points; in fact, the two pairs being given, either sibiconjugate

point is, as the name imports, conjugate to itself. In other words, any two pairs
and one of the sibiconjugate points considered as a pair of coincident points, form a

system in involution, or involution of five points.

155. The three point-pairs, U=0, U = 0, U&quot; = 0, will be in involution when the

quadrics U, V, U&quot; are connected by the- linear relation or syzygy \U + \ U + X&quot; U&quot; = 0.

This property, or the relation

a
, b , c =

a
,

b
, c

a&quot;, b&quot;,
c&quot;

to which it gives rise, might have been very properly adopted as the definition of

the relation of involution, but I have on the whole preferred to deduce the theory
of involution from the harmonic relation. The notion, however, of the linear relation

or syzygy of three or more point-systems gives rise to a much more general theory
of involution, but this is a subject that I do not now enter upon ;

it may, however,
be noticed, that if U=0, U = Q be any two point-systems of the same order, then

we may find a point-system U&quot; = of the same order, in involution with the given

point-systems (that is, satisfying the condition XU+ X U + X&quot; U&quot; = 0), and such that

the point-system U&quot; = comprises a pair of coincident points ;
this is obviously an

extension of the notion of the sibiconjugate points of an ordinary involution.

156. It was remarked in the Fifth Memoir, that the theories of the anharmonic

ratio and of homography belong analytically to the subject of bipartite (lineo-linear)

binary quantics ;
this may be further illustrated geometrically as follows : We may

imagine two distinct spaces of one dimension, or lines, one of them the locus in quo
of the coordinates (x, y), and the other the locus in quo of the coordinates (x, y),

which are absolutely independent of, and are not in anywise related to, the co

ordinates of the first-mentioned system. There is no difficulty in the conception of

this
;

for we may in a plane or in space of three dimensions imagine any two lines,

and study the relations of analogy between the points of the one line inter se, and

the points of the other line inter se, without in anywise adverting to the space of

two or three dimensions which happens to be the common locus in quo of the two

lines. It is proper to remark, that in speaking of the spaces of one dimension, which

are the loci in quibus of the coordinates (x, y} and (x, y) respectively, as being each

of them a line, we imply a restriction which is altogether unnecessary ;
the words

line and point may, in regard to the two figures respectively, be used in different

significations ;
for instance, one of the spaces may be a line and the points in it

points ;
while the other of the spaces may be a point and the points in it lines, or

it may be a line and the points in it planes.
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157. A lineo-linear equation

(x
-

ay} (x
-

ay)
=

denotes then the two points (x, y = a, 1) and (x, y = a, 1) existing irrespectively of

each other in distinct spaces, and only by the equation itself brought into an ideal

connexion
;
and any invariantive relation between the coefficients of any such bipartite

function denotes geometrically a relation between a point-system in the space which

is the locus in quo of the coordinates (x, y\ and a point-system in the space which

is the locus in quo of the coordinates (x, y); for instance, the equation

1, a, a, act =

1, b, 13, b/3

1, c, 7, cy

1, d, B, dS

is the relation of homography between the four points (a, 1), (6, 1), (c, 1), (d, 1)
in the first line, and the four points (a, 1), (/3, 1), (y, 1), (8, 1) in the second line.

The analytical theory is discussed in the Fifth Memoir; and, in particular, it is

there shown, that writing

A=(d-a)(b-c\ & =
(8

B=(d-b)(c-d), 33 = (S

C = (d-c)(a-b), &amp;lt;

=
(B
-

7) (a
-

/9),

then the condition may be expressed under any one of the forms

A : B : C =& : 3$ :
&amp;lt;,,

equations which denote the equality of the anharmonic ratios of the two point-systems.

158. The number of points in each system may be four, or any greater number;
the homographic relation is then conveniently expressed under the form

= 0.1
,
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159. What precedes is not to be understood as precluding the existence of a

relation between the spaces which are the loci in quibus of the coordinates (x, y}
and (x, y) respectively : not only may these be spaces of the same kind, but they

may be one and the same space or line
;

and the points of the two systems may
then be points of the same kind

;
and further, the coordinates (x, y) and (x, y)

may belong to the same system of coordinates, that is, the equations (x, y = a, 1)

and (x, y = a, 1) may denote one and the same point.,

160. If the two point-systems are systems of the same kind, and are in one

and the same line, then there are in general two points of the first system which

coincide each of them with the corresponding point of the second system ;
such two

points may be said to be the sibiconjugate points of the homography. In particular,

the two sibiconjugate points of the homography may coincide together.

161. A system in involution affords an example of two homographic systems in

the same line
;

in fact, taking arbitrarily a point out of each pair, the points so

obtained form a system which &quot;is homographic with the system formed with the other

points of the several pairs ;
and in this case the sibiconjugate points of the involution

are also the sibiconjugate points of the homography. Thus if A and A
,
B and _B

,

C and C
,
D and D are pairs of the system in involution, then (A, B, C, D)

and (A ,
B

,
C

,
D ) will be homographic point-systems ; and, as a particular case,

(A, B, G, C ) and (A
1

,
B

,
C

, C) will be homographic point-systems. It is proper

to notice that if F is a sibiconjugate point of the involution, then (A, B, F, F)
and (A ,

B
, F, F) are not (what at first sight . they appear to be) homographic

point-systems.

162. Imagine an involution of points; take on the line which is the locus in

quo of the point-system a point 0, and consider the point-system formed by the

harmonics of in respect to the several pairs of the involution
;
and in like manner

take on the line any other point ,
arid consider the point-system formed by the

harmonics of in respect to the several pairs of the involution
;

these two point-

systems are homographically related to each other. See Fifth Memoir, No. 111.

163. Two involutions may be homographically related to each other; in fact,

take on the line which is the locus in quo of the first involution a point 0, and

consider the point-system formed by the harmonics of in relation to the several

pairs of the involution
;

take in like manner on the line which is the locus in quo
of the second involution a point Q, and consider the point-system formed by the

harmonics of Q with respect to the several pairs of the involution
;

then if the two

point-systems are homographically related, the two involutions are said to be them

selves homographically related : the last preceding article shows that the nature of

the relation does not in anywise depend on the choice of the points and Q.

And it is not necessary that, as regards the two involutions respectively, the words

line and point should have the same significations. See Fifth Memoir, No. 111.

164. Four or more tetrads of points in a line may be homographically related

to the same number of tetrads in another line. This is the case when the an-
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harmonic ratios of the tetrads of the first system are homographically related to the

anharmonic ratios of the tetrads of the second system. And it is not material which
of the three anharmonic ratios of a tetrad of either system is selected, provided that

the same selection is made for each of the other tetrads of the same system. The
order of the points of a tetrad must be attended to, but there are in all four

admissible permutations of the points of a tetrad, viz. if A, B, C, D are the points
of a tetrad, then (A, B, C, D), (B, A, D, C), (C, D, A, B), (D, C, B, A) may be
considered as one and the same tetrad. Any three tetrads whatever in the second

system may correspond to any three tetrads of the first system; and then given a

fourth tetrad of the first system, and three out of the four points of the corre

sponding tetrad of the second system, the remaining point of the tetrad may be
determined. The words line and point need not, as regards the two systems of

tetrads respectively, be understood in the same significations. See Fifth Memoir
No. 112.

165. The foregoing theory of the harmonic relation shows that if we have a

point-pair

(a, b, cx, yf = 0,

the equation of any other point-pair whatever can be expressed, and that in two
different ways, in the form

(a, b, c^x, y)
2 + (lx + myf = ;

the points (lz + my = Q) corresponding to the two admissible values of the linear
function being in fact the harmonics of the point-pair in respect to the given point-
pair (a, b, c$X 2/)

2 = 0, or what is the same thing, the sibiconjugate points of the
involution formed by the two point-pairs (see Fifth Memoir, No. 105). The point-pair
represented by the equation in question does not in itself stand in any peculiar
relation to the

^

given point-pair (a, b, c^x, y)*=0; but when thus represented it is

said to be inscribed in the given point-pair, and the point lx + my = is said to be
the axis of inscription. And the harmonic of this point with respect to the given
point-pair (that is, the other sibiconjugate point of the involution of the two point-
pairs) is said to be the centre of inscription

1
.

166. We may, if we please, (x y y ) and 6 being constants, exhibit the equation
of the inscribed point-pair in the form

where we have for the axis of inscription and centre of inscription respectively, the

equations

xy
- x y = 0,

(a, b, c$tf, y~$x , y )
= Q;

1 The words inscribed, inscription, are used not in opposition to, but as identical with, the words cir

cumscribed, circumscription ; and in like manner (post, Nos. 203 et seq.) as regards conies.
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or in the equivalent form,

(a, I, c$x, 2/)
2

(a, b, c$x , y J cos2 9 - {(a, b, c^x, y$x , y )}
2 = 0,

where we have for the axis of inscription and the centre of inscription respectively,
the equations

(a, b, c$x, y~$x , 2/ )
= 0,

xy x y = 0.

167. The equivalence of the two forms depends on the identical equation

(a, b, c^x, yj (a, b, c$V, yj - {(a, b, c$x, y\x , y )}*
= (ac

- b2

) (xy
- x y}-,

which is in fact the equation mentioned, Fifth Memoir, No. 95. If, for shortness,
we write

(a, b, c$x, yj = 00,

(a, b, c^x, y$x , 2/ )=01 = 10,

&c.,

then the equation may be represented in the form

00, 01

10, 11

=
(ac

- b2

) x, y

x, y

168. There is a like equation for the three sets (x, y), (x, y \ (x&quot;, y&quot;) ;
the

right-hand side here vanishes, for there are not columns enough to form therewith

a determinant, and the equation is

00, 01, 02

10, 11, 12

20, 21, 22

= 0,

an equation which may also be written in the form

01 12 02
cos l

i
. - + cos&quot;

1
. = cos&quot;

1
, ....

,

VOO Vll Vll V22 VOO V22

as it is easy to verify by reducing this equation to an algebraical form. The various

formulae have been given in relation to the establishment of the notion of distance

in the geometry of one dimension, but it will be convenient to defer the consideration

of this theory so as to discuss it in connexion with geometry of two dimensions.

On Geometry of Two Dimensions, Nos. 169 to 208.

169. In geometry of two dimensions we have the plane as a space or locus in

quo, which is considered under two distinct aspects, viz. as made up of points, and
as made up of lines. The several points of the plane are determined by means of

c. ii. 72
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the point-coordinates (#, T/, z\ viz. attributing to these any specific values, or writing

x, y, z= a, b, c, we have a particular point of the plane ;
and in like manner the

several lines of the plane are determined by the line-coordinates (, 77, ), viz. attri

buting to these any specific values, or writing , 77,
=

a., /3, 7, we have a particular

line of the plane. And we may say that the plane is the locus in quo of the point-

coordinates (x, y, z), and of the line-coordinates (, i), ). It is not necessary to

consider separately the analytical theories of point-coordinates and of line-coordinates
;

for the theory of the former in relation to points and lines respectively is identical

with the theory of the latter in relation to lines and points respectively ;
but it is

necessary to show how either system of coordinates, say the system of point-coordinates,

is applicable to both points and lines, or in fact all loci whatever, and to explain

the mutual relation of the two systems of coordinates.

170. Considering then point-coordinates, the equations

x, y, z = a, b, c,

determine, as already mentioned, a point.

A linear equation

(*$&amp;gt; y&amp;gt; *)
: = o

determines a line, viz. the line which is the locus of all the points, the coordinates

of which satisfy this equation. And in like manner an equation

(*$&amp;gt;, y, z)
m = Q

determines a curve of the rath order, viz. the curve which is the locus of all the

points, the coordinates of which satisfy this equation. In particular, an equation of

the second degree

($*, y, *)
2 =

determines a conic.

171. If the quantic breaks up into rational factors, then the equation of the

curve is satisfied by equating to zero any one of these factors, or the curve breaks

up into curves of a lower order, and the order of the entire curve is equal to the

sum of the orders of the component curves. In particular, a curve of any order may
break up into a system of lines, the number of lines being of course equal to the

order of the curve, and any two or more of these lines may coincide with each other.

A curve not thus breaking up into curves of a lower order is said to be a proper
curve.

172. Returning to the linear equation and expressing the coefficients, the equa
tion is

(fc * $*, y. *)
= o,

or, what is the same thing,

x + tiy + & =
;

and we say as a definition, that the coordinates (line-coordinates) of this line are
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173. But the same equation, considering (x, y, z) as constant coefficients, and

(&amp;gt;
7

1&amp;gt; ?) as line-coordinates, is the equation of a point, viz. the point which is the

locus (envelope) of all those points the coordinates of which satisfy the equation in

question ;
and such point is precisely the point, the coordinates (point-coordinates) of

which are (x, y, z). In fact, if (, 77, ) are considered as variable parameters con
nected by the equation %x + riy+&= 0, then taking (X, Y, Z) as current point-

coordinates, the equation %X + riY+Z= Q is satisfied by writing (x, y, z} for (X, Y, Z}-
or the several lines the coordinates whereof are (, 77, f), all pass through the point
O, y, z\

174. Hence recapitulating, the equation

(&amp;gt; v, (T$&amp;gt;, y&amp;gt; *)
= o,

or

^x + viy + ^z = 0,

considering (as, y, z) as current point-coordinates, and (, 77, ) as constant coefficients,

is the equation of a line the coordinates (line-coordinates) of which are (, 77, ) ;
and

the same equation, considering (, 77, f) as current line-coordinates, and
(a?, y, 2) as

constant coefficients, is the equation of a point the coordinates (point-coordinates) of

which are (x, y, z}.

175. The expression, the point (a, b, c), means the point whose point-coordinates
are (a, b, c) ;

and in like manner the expression, the line (a, /3, 7), means the line

whose line-coordinates are (a, /3, 7). The last-mentioned expression may, without any
impropriety or risk of ambiguity, be employed when we are dealing with point-

coordinates; but it is of course always allowable, and it is frequently better, to sub

stitute for the definition the thing signified, and say the line having for its equation
ax + fty + yz = 0, or more briefly, the line ctx + fiy + -yz

= 0. It will be proper to do
this in the following articles, Nos. 176 to 184, which contain some formulae in point-
coordinates relating to the theory of the point and the line.

176. The condition that the point (a, b, c) may lie in the line

ax + @y + yz = 0,

is of course

aa + @b + 7c = 0.

177. The equation of the line passing through the points (a, b, c), (a ,
b

,
c

},
is

x, y, z

a, b
,

c

a
, b , c

= 0;

and if in this equation (a , b
, c ) are considered as indeterminate, we have the

equation of a line subjected to the single condition of passing through the point

(a, b, c). The equation contains apparently two arbitrary parameters, but these in

fact reduce themselves to a single one.

722
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178. The coordinates of the point of intersection of the lines

ax + j3y + yz =0,

a ao + j3 y + yz = 0,

are given by the equations

x, y, z = fty fi y, ya y a, a/3 a /3 ;

and if in these equations we consider of, (3 , y as indeterminate, we have the coordinates

of a point subjected to the single condition of lying in the line ox + @y + yz = ;
the

result, as in the last case, contains in appearance two arbitrary parameters, but these

really reduce themselves to a single one.

179. The condition in order that the points (a, b, c), (a , b
, c ), (a&quot;, b&quot;, c&quot;)

may lie in a line is

a
,

b
,

c

a
,

b
,

c

a&quot;, b&quot;,
c&quot;

which may also be expressed by the equations

n
&quot;

k&quot; r
&quot; _

u&amp;gt;

,
u

, o

=
0,

where X, p are arbitrary multipliers; these equations give therefore the coordinates

of an indeterminate point in the line joining the points (a, b, c) and (a , b
, c ).

180. The condition that the lines

ax + {3y +yz 0,

a x + ft y + y z = 0,

of as +
(3&quot;y

+ y&quot;z
=

may meet in a point is

a
, /3 , 7 ;

= 0,

, /y, y
a&quot;, P&quot;, j&quot;

a relation which may also be expressed by the equations

a
, p , y = la-j- ma , Z/3 -f- w/3 , ly + my ,

where I, m are arbitrary multipliers; and substituting these values in the equation
a&quot;x +

fi&quot;y
+

y&quot;
z = 0, we have for the equation of a line subjected to the single condition

rsection of the lines ax + /3y

yz) + m (a x + fi y + y z)
= 0,

of passing through the point of intersection of the lines ax + @y + yz = 0, a x+/3 y+yz= 0,

the equation



158] A SIXTH MEMOIR UPON QUANTICS. 573

which is, in fact, at once obtained by the consideration that the values of (x, y, z)

which satisfy simultaneously the equations ax + fty + &amp;lt;yz

= and a x + ft y -f y z = 0, satisfy

also the equation in question.

181. The equation of the line passing through the point of intersection of the

lines ax + fty + yz and a x + ft y + y z = 0, and also through the point (a, b, c), is

obviously

ax + {3y + yz, a x + ft y + y z
j

=
0,

aa + fib + yc, a. a + ft b + y c

which, or the equivalent form

ax + fty + yz _ a x + ft y + y z

aa + ftb + yc a a + /3 b + y c

is usually the most convenient one
;

but it is to be observed that the equation can

also be written in the forms

x y &amp;gt;

z

a
,

b
, c

fty ft y, ya y a, aft a ft

=
0,

and

bz cy, ex az, ay bx = 0,

or in the form

(fty
-

7/3 ) (bz
-

cy) + (ja
- ja) (ex

-
az) + (aft

-
fta) (ay

-
bx)

= 0,

which might also be represented by

x, y, z

a, b, c

= 0.

182. To find the coordinates of the point of intersection of the line joining the

points (a, b, c), (a, b
, c), with the line ax + fty + &amp;lt;yz 0, we have

where X, p are given by

x, y, z =

X (aa aa

fie

= 0.

The preceding are elementary formula? of almost constant occurrence
;

it may be

proper to add to them the formulae which follow.

183. To find the equation of the line passing through the point of intersection

of the lines

72
=

0,
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and the point of intersection of the lines

8 + Ay+73* = o, 4+ Ay +7*3 = 0.

Write for shortness u^ = a^x + $$ + 7^, &c. ;
then we have identically

= 0,

[158

and the two equations

A, A, A, A
7i&amp;gt; 72. 7s, 74

= 0,

A, A, /3s, A
7i. 72 , 7s, 74 7l

A, A, A
72, 73, 74

are consequently equivalent to each other, and each of them represents the required

line. It is easy to deduce the form

74

A, A.

72, 7a,

P4

74

7i, 72, ,

1, a2, S, fl4

A, A, A &
, , 7s, 74

= 0.

184. The condition in order that the points of intersection of the lines Wj = 0,

M2
= 0, of the lines u3

=
0, w4

= 0, and of the lines u5
= 0, u6

= (where, as before, w
t

denotes a^x + (3$ + y^z, &c.) may lie in the same line, is

= 0,

A, A, A, A, . , .

7i&amp;gt; 72, 7s, 74, ,

A A, A A
74 , 75 , 76

which is of course really symmetrical with respect to the six sets. The last formula

was given by me, Cambridge Mathematical Journal, t. iv. (1845), p. 18, [9].

185. Instead of the term point of a curve, it will be convenient to use the

term ineunt of the curve.

The line through two consecutive ineunts of the curve is the tangent at the

ineunt. The point of intersection of two consecutive tangents is the ineunt on the

tangent.
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The equation of a curve in point-coordinates, or as it may be termed the point-

equation of the curve, is the relation which exists between the point-coordinates of

any ineunt of the curve.

The equation of a curve in line-coordinates, or line-equation of the curve, is the

relation which exists between the line-coordinates of any tangent of the curve.

186. It has been mentioned, that the order of a curve is the degree of its

point-equation : in like manner the class of a curve is the degree of its line-equation ;

and in the same way that a curve, as represented by a point-equation, may break

up into curves having the order of the entire curve for the sum of their orders, so

a curve as represented by a line-equation may break up into curves having the class

of the entire curve for the sum of their classes. And, in particular, a curve may
break up into a system of points, the number of points being equal to the class of

the curve, and two or more of these points may coincide together.

187. A line is a curve of the order one and class zero; a point is a curve of

the order zero and class one. A proper conic is a curve of the order two and class

two; but when the conic breaks up into a pair of lines, the class sinks to zero;

and when the conic breaks up into a pair of points, the order sinks to zero. It is

to be noticed that a point, or system of points, cannot be represented by an equation

in point-coordinates, nor a line or system of lines by an equation in line-coordinates.

We may say, in general, that a curve is both a point-curve and a line-curve, but a

point or system of points is a line-curve only, and a line or system of lines is a

point-curve only.

188. The points of intersection (common ineunts) of two curves are the points

the coordinates of which satisfy simultaneously the point-equations of the two curves.

Hence the number of common ineunts is equal to the product of the orders of the

two curves
; and, in particular if one of the curves be a line, the number of points

of intersection (common ineunts) is equal to the order of the curve. In like manner

the common tangents of the two curves are the lines the coordinates of which satisfy

simultaneously the line-equations of the two curves. Hence the number of common

tangents is equal to the product of the classes of the two curves
; and, in particular,

if one of the curves be a point, the number of common tangents (tangents to the

curve through the point) is equal to the class of the curve. Since the tangent is

the line through two consecutive ineunts, it besides meets the curve, assumed to be

of the order m, in (in 2) points ;
and in like manner we may from any ineunt of

a curve of the class n draw (n 2) tangents to the curve.

189. The point-equation of a line passing through the points (af, y ,
z ) and

(x&quot;, y \ z&quot;) is, as already noticed,

= 0.
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Suppose that (x, y, z) are the coordinates of a point (ineunt) of the curve U
the coordinates of the consecutive ineunt will be (x + dx, y+dy, 2 + dz), and the

line joining these two points will be the tangent to the curve at the point (x, y, z}.

Take (X, Y, Z) as current point-coordinates, the equation of the tangent is

F = 0,

x
, y ,

z

x + dx, y + dy, z + dz

or, what is the same thing,

X (ydz zdy) + Y (zdx xdz) + Z (xdy ydx) = 0.

But since U is a homogeneous function of (x, y, z), we have

xdxU + ydyU + zdzU = mU =
;

and since (x + dx, y + dy, z + dz) is a point of the curve,- we have

dxdxU+ dydyU+ dzdzU = ;

and from these two equations

ydz zdy : zdx xdz : xdy ydx = dxU : dyU : dz U,

and the equation of the tangent consequently is

190. Take (, 77, ) as the line-coordinates of the tangent, then the equation of

the tangent is

1^ + 7,7+^=0;

and comparing the two forms, we have

: dyU :

and if from these equations and the equation U=0 (the point-equation of the curve)
we eliminate (x, y, z), we obtain an equation between (, 77, ), which is the line-

equation of the curve. We may, if we please, present the system under the form

U =0,

or, what is more simple, under the form

%x + t]y + %z = 0,

and from either system eliminate x, y, z and \.
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191. If the point-equation of a conic be

(n n /&quot;* i n ntinr ti 7 i~ O* w
&amp;gt; PI /&amp;gt; i/&amp;gt;

WXW&amp;gt;

7&amp;gt; / u
&amp;gt;

then its line-equation is

= 0,

a, h, g

&amp;lt;n
h, b, f

9^ f&amp;gt;

G

23 = ca g- ,

(, =ab h2
,

JF =9h - af,

(& =hf-bg,

and, to complete the system,

K = abc - of
2 -

bg
2 - ch- + 2fgh,

then the line-equation of the conic is

(&, 23, &amp;lt;2D, Jp, ^, !, ^ D2 =

192. The quantities ^[, &c. satisfy the relations

577

and moreover

193. A system of points in a line is said to be a range, and a system of

lines through a point is said to be a pencil. The theories of ranges and pencils,

considered irrespectively of each other, are in fact a single theory, constituting the

geometry of one dimension. It has been seen how in geometry of one dimension a

range of points and a pencil of lines, although considered (as they must be considered)

as existing in distinct spaces, may nevertheless stand in certain relations to each other.

In geometry of two dimensions, the range and pencil may of course coexist in one

and the same plane as their common locus in quo ;
and such coexistence occurs in

fact very frequently: thus if we have a line and a point, and if lines are drawn

c. ii. 73
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joining the point with the several points of the line, these lines constitute a pencil,

and the points of the line constitute a range, and such pencil and range are homo-

graphically related.

194. The theory of homography in geometry of two dimensions may be made to

depend upon the corresponding theory in geometry of one dimension, or what is the

same thing, upon the homography of ranges or pencils. For consider two figures existing
in distinct planes or spaces of two dimensions, any four points (not in a line) in the

second figure may correspond to any four points (not in a line) in the first figure ;
and

when this is so, we may, by the process about to be explained, given any other point
of the first figure, construct the corresponding point of the second figure ;

and the

two figures are then, by definition, homographically related. Suppose that the points
A

,
B

,
C

,
D of the second figure correspond respectively to the points A, JB, C, D of

the first figure, and let E be any other point of the first figure ; suppose that E is the

corresponding point of the second figure; the pencils AB, AC, AD, AE and A B
,
A C

,

A D
,
A E should be homographic to each other, that is, E must lie on a given line

through A
\
and in like manner the pencils BA, BC, BD, BE and BA

,
B C

,
BD

,
B E

should be homographic to each other, that is, Ef must lie on a given line through B .

And then, as a theorem, CA, CB, CD, CE and CA
,
CB

,
CD

,
CE

,
or DA, DB, DC, DE

and D A
,
D B

,
DC

,
DE will be homographic pencils, that is, the construction will be

a determinate one whichever two of the four points are selected for the points A and B.
The foregoing construction leads to an analytical relation, which I think constitutes
a better foundation of the theory. Consider the first plane as the locus in quo of the
coordinates (x, y, z), and the second plane as the locus in quo of the coordinates (X, Y, Z),
these two coordinate systems being absolutely independent of each other. Consider any
point of the first plane and a corresponding point of the second plane such that its

coordinates (X, Y, Z} are given linear functions of the coordinates (x, y, z) of the point
in the first plane. Any figure whatever in the first plane gives rise to a corresponding
figure in the second plane, and the two figures are said to be homographic to each
other. To a point of the first figure there corresponds in the second figure a point,
to a line a line, to a range of points or pencil of lines, a homographic range of points
or pencil of lines; the line or point which is the locus in quo of the range or pencil
in the one figure corresponding with the line or point which is the locus in quo of
the range or pencil in the other figure. And generally, to any curve of any order
and class in the first figure, and to its ineunts and tangents, there correspond in the
second figure a curve of the same order and class, and the ineunts and tangents of
such curve.

L9o. It is to be remarked, that it is not by any means necessary that the word
plane, or the words point and line, or consequently the words order and class, should
have the same significations as regards the two figures respectively. The theory of

homography, as above explained, in fact comprises what is commonly termed the theoryof homography and also the theory of reciprocity.

196. Let the word plane have the ordinary signification as regards the two figures
respectively; and Suppose, first, that the words point and line, and therefore order
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and class, have also the ordinary significations as regards the two figures respectively :

we have here the ordinary theory of homography, in which, to any range of points

or pencil of lines in the first figure, there corresponds a homographic range of points

or pencil of lines in the second figure, and to a curve of any order and class in the

first figure there corresponds a curve of the same order and class in the second figure.

197. We may, as a specialization giving rise to further developments, assume that

the two figures exist in one and the same plane. There is here in general a triangle,

each of whose angles or sides, considered as a point or line in the first figure, corre

sponds to itself, considered as a point or line in the second figure : such triangle may
be called the sibiconjugate triangle. Any one point of the plane, considered as belonging

to the first figure, may correspond to any other point of the plane, considered as

belonging to the second figure, and the second figure can be completely constructed

by means of the sibiconjugate triangle and such pair of corresponding points. In

certain special cases the sibiconjugate triangle becomes wholly or in part indeterminate ;

thus if the two figures are identical, each point of the plane, considered as belonging

to the first figure, coincides with itself, considered as belonging to the second figure.

But I reserve the further discussion of the theory of homography for another occasion.

198. Suppose, secondly, that in the foregoing general theory, as regards the first

figure, the words point and line, and therefore order and class, signify point and line,

order and class; while as regards the second figure, the words point and line signify

line and point respectively, and therefore the words order and class, class and order

respectively. We have in the present case the ordinary theory of reciprocity, viz. using

all the words in the same significations as regards the two figures respectively ;
to a

point in the first figure there corresponds in the second figure a line
;

to a line,

a point ;
to a range of points or pencil of lines, a pencil of lines or range of points ;

to a curve of any order and class, and its ineunts and tangents, a curve of the same

class and order, and the tangents and ineunts of such curve.

199. As a specialization giving rise to further developments, we may assume that

the two figures exist in one and the same plane. In this case, the points which,

considered indifferently as belonging to the first or the second figure, lie upon the

corresponding lines in the second or first figure, generate a conic which may be termed

the pole-conic; and the lines which, considered indifferently as belonging to the first or

the second figure, pass through the corresponding points in the second or first figure,

envelope a conic which may be termed the polar-conic, and these two conies have

double contact with another. The further consideration of this subject is reserved for

another occasion ;
but I remark that in the particular case where the two conies

coincide, we have the ordinary theory of poles and polars in regard to a conic;

a theory, which, in a different point of view, may be considered as arising out of

the harmonic relation, and which must here be noticed.

200. Consider a conic and a point ; any line through the point meets the conic

in two points (ineunts of the conic), and the harmonic in relation to these two points

of the given point has for its locus a line which is the polar of the given point.

732
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The polar passes through the points of contact of the conic with the tangents through
the given point.

In like manner considering the conic and a line
;
from any point of the line we

may draw two tangents to the conic, and the harmonic of the given line with respect
to the two tangents envelopes a point which is the pole of the given line. The pole
is the point of intersection of the tangents of the conic at the points of intersection

with the given line.

The polars of the several points of a line envelope a point which is the pole of
the line; and the poles of the several lines through a point generate a line which
is the polar of the point ;

and this proposition shows how the theory of poles and

polars gives rise to a theory of reciprocity.

201. If the point-equation of a conic be

.(a, b, c,f, g, K$x, y, z)
2
=0,

the point-equation of the polar with respect to this conic of the point (x, y ,
z ) is

(a, b, c, f, g, h^x, y, z\x , y , z }
= 0.

But it has been seen that the line-equation of the same conic is

and the line-equation of the pole with respect to this conic of the line ( , 77 , )

(that is, the line whose point-equation is gas + q y + gz = 0) is

, * , 0=0,
in other words, the point-coordinates of the pole are

ar+^ + ffir, p^r+av+jr. r+dF/+r .

202. If U=0, F=0 be the point-equations of any two curves of the same order,
then \ //, being arbitrary coefficients,

is the equation of a curve of the same order passing through the points of inter
section (common ineunts) of the two curves; such curve is said to be in involution
with the given curves. The discussion of the general theory of involution is reserved
tor another occasion.

203. In particular, if 7=0 be the equation of a conic, and P=0 0=0 the
equations of two lines, then

U + \PQ =
is the equation of a conic passing through the points of intersection of the conic with
the two lines

; and if the two lines coincide, then
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is the equation of a conic having double contact with the conic U=0 at its points

of intersection with the line P = 0. Such conic is said to be inscribed in the conic

U =
;

the line P = is the axis of inscription ;
this line has the same pole with

respect to each of the two conies, and the pole is termed the centre of inscription:

the relation of the two conies is completely expressed by saying that the four common

ineunts coincide in pairs upon the axis of inscription, and that the four common

tangents coincide in pairs through the centre of inscription ;
it is consequently a

similar relation in regard to ineunts and tangents respectively; and it is to be inferred

a, priori, that if T = be the line-equation of the conic U 0, and II = the line-

equation of the centre of inscription, then the line-equation of the inscribed cone is

T + fiU* = 0.

204. To verify this, I remark that if the equation of the axis of inscription be

%x + rjy + %z = 0,

then (ante, No. 201) we have for the line-equation of the centre of inscription

n =(&,...$ 17, mr

&amp;gt; j. n=o.

The line-equation of the inscribed conic is in the first instance obtained in the form

but we have identically,

and the equation thus becomes

which is of the form in question.

205. Take (x, y ,
z ) as the point-coordinates of the centre of inscription, the

equation of the axis of inscription is

(a, b, c, /, g, h&x, y, z\x, y, z )
= 0;

and we may, if we please, exhibit the equation of the inscribed conic in the form

(a,...$&amp;gt;, y, z)^(a,...~^x, y , /)
2 cos2

&amp;lt;9- {(a, ...$/c, y, z~$x t y , /)}
a = 0,

where 6 is a constant. This equation may also be written

(a, ...$&amp;gt;!, y, zf (a, . . .$V, y, zj sin2 - (&, . . .\yz
-
y z, zx - z x, xy - x yf = 0,

the two forms being equivalent in virtue of the identity,

(a,...]& y, z^(a,..^x, y , zj-{(a,.,.~^x, y ,
z \x, y, z)}&quot;-

-
y z, zx - z x, xy

- x y)\

OF THE

UNIVERSITY
CALIFORNIA-
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206. The fine-coordinates ( , ?/, &quot;)

of the axis of inscription are

ax + hy + gz, hoc + by +fz, gx +fy + cz,

and we thence deduce the relation

(&...$ , V, O2 =
A&amp;gt;,...$&amp;lt; y , zj.

In order that the form

(a, ...$&amp;gt;, y, *)
2

(a, ...$V, y , /)
s cos2 0- {(a, ...$&amp;gt; , y ,

s gar, y, ^)]
2 =

may agree with the originally assumed form

(a, . .

.$&amp;gt;, y, *)
2 + X ( + 7/y + ^)s,

or what is the same thing,

(a, ...$&amp;gt;, y, *)
2 + \{(a,...$a?, y, *$&amp;gt; , y , /)}

2 = 0, .

we must have

(a, ...$V, y , /)
2 cos2

which may also be written

,_ -K
(a,...ir, v, n2 cos2

or what is the same thing,

and we thence, by a preceding formula, obtain the line-equation of the inscribed

conic, viz.

207. The point-equation being

(,...$&amp;gt;, y, z)
2

(a, ...$&amp;gt; , y , /)
2 cos2

6&amp;gt;

-
{(a, ...$#, y, ^ , y , /))

2 = 0,

or

(a, ...$ar, y, ^)
2

(, ...$y, y , /)
2 sin2

-(&, ...$y/ -y ^ zaf-z x, xy -x y}-
=

Q,

equivalent in virtue of

(af ...$ar, y, ^(0,...$^, y , /&amp;gt;-{(,...$, y, z\x\ y , /)}
2

= (^, . . .$y/ - y z, zx - z x, xy - x yj ;

then the corresponding forms of the line-equation are

and

(,.$?, 17,
2

(a,...]ir&amp;gt; r, , ty&amp;lt;x&amp;gt;**0

equivalent to each other in virtue of the before mentioned identity
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208. Write for shortness

583

(a,...$&amp;lt;c, y, zj

(a, ...$&amp;gt;, y, s$

&c.,

= 00,

= 01 = 10,

then we have identically,

00,
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P
,

F&quot; are a circle having P&quot; for its centre
;
and so on : and again in the opposite

direction, a point Pv

such that P
,
Pv

are a circle having P for its centre; a point

Pxx
such that P, Pvv

are a circle having Pv

for its centre, and so on. We have a

series of points... P
v

\ P\ P, P
, P&quot;, ... at equal intervals of distance: and if we take

the points P, P indefinitely near to each other, then the entire line will be divided

into a series of equal infinitesimal elements; the number of these elements included

between any two points measures the distance of the two points. It is clear that,

according to the definition, if P, P
,

P&quot; be any three points taken in order, then

Dist. (P, P ) + Dist. (P , P&quot;)
= Dist. (P, P&quot;),

which agrees with the ordinary notion of distance.

211. To show how the foregoing definition leads to an analytical expression for

the distance of two points in terms of their coordinates, take

(a, b, c$x, 2/)
2 =

for the equation of the Absolute. The equation of a circle having the point (x, y }

for its centre is

(a, b, c^x, y)- (a, b, c$x } y }- cos
2 6 -

{(a, b, c$x, y\x , y )}
2 =

;

and consequently if (x, y), (x&quot;, y&quot;}
are the two points of the circle, then

(a, b, c\x, y^x , y } _ (a, b, c&x , y ^x&quot;, y&quot;)

V(a, 6, c$x, y)
2

V(a, b, c\x , yj V(a, b, c$V, yj V(a, 6,
c$&amp;gt;&quot;, y J

an equation which expresses that the points (x&quot;, y&quot;}
and

(a?, y} are equidistant from
the point (x , y }.

It is clear that the distance of the points (x, y} and (x , y } must
be a function of

(a, b, c~$x, y~$x , y )

V(a, b, c$x, yf \l
(a, b, c$y, yj

and the form of the function is determined from the before-mentioned property, viz.

if P, P
,

P&quot; be any three points taken in order, then

Dist. (P, P ) + Dist. (P , P&quot;)
= Dist. (P, P&quot;).

This leads to the conclusion that the distance of the points (x, y), (x
r

, y } is equal to
a multiple of the arc having for its cosine the last-mentioned expression (see ante,
No. 168) ; and we may in general assume that the distance is equal to the arc in

question, viz. that the distance is

COS&quot;
(a, b, c$x, y~$x , y )

V(a, 6, c\x, 2/)
2

V(a, b,

or, what is the same thing,

sin-*

V(a, 6,
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It follows that the two forms

(a, b, c$x, y)
2

(a, b, c$V, yj cos2 9 - {(a, b, c$&amp;gt;, y$V, 2/ )}
2 =

0,

(a, b, c$x, y)
2

(a, b, c$&amp;gt; , y )
2 sin2 0-(ac- b2

) (xy
- x y} = 0,

of the equation of a circle, each of them express that the distances of the two points

from the centre are respectively equal to the arc 6
; or, if we please, that is the

radius of the circle.

212. When = 0, we have

xy x y = 0,

an equation which expresses that (x, y) and (x , y J are one and the same point. When
= ITT, we have

(a, b, c$x, y~$x , y }
= 0,

an equation which expresses that the points (x, y) and (x , y } are harmonics with

respect to the Absolute. The distance between any two points harmonics with respect

to the Absolute is consequently a quadrant, and such points may be said to be

quadrantal to each other. The quadrant is the unit of distance.

213. The foregoing is the general case, but it is necessary to consider the particular

case where the Absolute is a pair of coincident points. The harmonic of any point

whatever in respect to the Absolute is here a point coincident with the Absolute itself:

the definition of a circle is consequently simplified; viz. any point-pair whatever may
be considered as a circle having for its centre the harmonic of the Absolute with

respect to the point-pair ;
we may, as before, divide the line into a series of equal

infinitesimal elements, and the number of elements included between any two points

measures the distance between the two points. As regards the analytical expression, in

the case in question ac 62
vanishes, or the distance is given as the arc to an

evanescent sine. Reducing the arc to its sine and omitting the evanescent factor, we

have a finite expression for the distance. Suppose that the equation of the Absolute is

or what is the same thing, let the Absolute (treated as a single point) be the point

(p, q), then we find for the distance of the points (x, y) and (x , y } the expression

xy x y

(qx-py}(qx
f

-py }&amp;gt;

or, introducing an arbitrary multiplier,

(qoi-pP)(xy -x y)

(qx
-
py) (qx

f -py Y
which is equal to

fix ay ftx ay

qx py qx py
C. II. 74
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It is hardly necessary to remark, that in the present case the notion of the quadrantal
relation of two points has altogether disappeared, and that the unit of distance

is arbitrary.

214. Passing now to geometry of two dimensions, we have here to consider a

certain conic, which I call the Absolute. Any line whatever determines with the

Absolute (cuts it in) two points which are the Absolute in regard to such line con

sidered as a space of one dimension, or locus in quo of a range of points, and in

like manner any point whatever determines with the Absolute (has for tangents of

the Absolute through the point) two lines which are the Absolute in regard to such

point considered as a space of one dimension, or locus in quo of a pencil of lines.

The foregoing theory for geometry of one dimension establishes the notion of distance

as regards each of these ranges and pencils considered apart by itself; in order to

bring the different ranges and pencils into relation with each other, it is necessary to

assume that the quadrant which is the unit of distance for these several systems

respectively, is one and the same distance for each system (of course, when, as in the

analytical theory, we actually represent the quadrant by the ordinary symbol \TT, the

above assumption is tacitly made
;

but substituting the thing signified for the

definition, and looking at the quadrant merely as the distance between two points,
or as the ease may be, lines, harmonically related to the point-pair, or as the case

may be, line-pair, constituting the Absolute, the assumption is at once seen to be an

assumption, and it needs to be made explicitly). But the assumption being made, the

foregoing theory of distance in geometry of one dimension enables the comparison not

only of the distances of points upon different lines, or of lines through different points,
but of the distances of points on a line and of lines through a point. The pole of

any line in relation to the Absolute may be termed simply the pole, and in like

manner the polar of any line in relation to the Absolute may be termed simply the

polar, and we have the theorem that the distance of two points or lines is equal to

the distance of their polars or poles, or what is the same thing, that the distance

of two poles and the distance of the two corresponding polars are equal. And we

may, as a definition, establish the notion of the distance of a point from a line, viz.

it is the complement of the distance of the polar of the point from the line, or

what is the same thing, the complement of the distance of the point from the pole
of the line. The distance of a pole and polar is therefore the complement of zero,

that is, it is the quadrant.

215. It has, by means of the preceding assumption as to the quadrant, been

possible to establish the notion of distance, without the assistance of the circle, but
this figure must now be considered. A conic inscribed in the Absolute is termed a

circle
;

the centre of inscription (or point of intersection of the common tangents) and
the axis of inscription (or line of junction of the common ineunts) are the centre and
axis of the circle. All the points of a circle are equidistant from the centre; all

the tangents are equidistant from the axis, and this distance is the complement of

the former distance.
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216. These properties of the circle lead immediately to the analytical expressions
for the distances of points or lines in terms of the coordinates. In fact, take

(a, b, c, f, g, h^x, y, zf =

for the point-equation of the Absolute
;

its line-equation will be

The point-equation of the circle having the point (x
1

, y ,
z ) for its centre, is

(a, ...$#, y, z)*(a, ...$&amp;gt; , y , zj cos2 -
{(a, ...$&amp;gt;, y, z$x , y, /)}-

= 0,

or

(a, ...$&amp;gt;, y, z}-(a, ...$&amp;gt; , y , zj sin2
(9 - (&, ...\yz -y

f

z, zx - z x, xy
- x yf = 0,

from which (by the same reasoning as for the case of geometry of one dimension) it

follows that the distance of the points (x, y, z), (x, y ,
z ) is

cos (a, . . .fcg, y, ^$^, ^ /)
v (a, ...][#, ?/, )

2

V(a, . . . $V, y t /)*

or what is the same thing,

sjn-i V(&, . .
&amp;gt;$y/ y^ ,

^ -
/a?, ayy

7 - ofay

and it appears from the cosine formula (see ante, No. 208), that if P, P
,

P&quot; be
points on the same line, then we have, as we ought to have,

Dist. (P, P ) + Dist. (P , P&quot;)
= Dist. (P, P&quot;).

217. In like manner, the line-equation of the same circle, the line-coordinates of
the axis being ( , 77 ,

&quot;),
is

or

from which it follows that the distance of the lines (, 77, ) and (f , 77 , s

COS&quot;

t...$f,^

or what is the same thing

1

^v*

.Jp*

742
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218. And we may from the first formula of either set, deduce for the distance

of the point (x, y, z) and the line ( , 17 , ),
the expression

.

_,
sin&quot;

as may be easily seen by writing &% + ff^ + CEr^ ,
f r x

&amp;gt; y &amp;gt;

z
&amp;gt;

or ax + hy + gz,... for

, 77, ,
and putting sin&quot;

1 for cos&quot;
1

.

219. It may be noticed that there are certain lines, viz. the tangents of the

Absolute, in regard to which, considered as a space of one dimension, the Absolute is

a pair of coincident points ;
and in like manner certain points, viz. the ineunts of

the Absolute, in regard to which, considered as a space of one dimension, the Absolute

is a pair of coincident lines.

220. We may, in particular, suppose that the Absolute, instead of being a proper

conic, is a pair of points. The line through the two points may be called the Absolute-

line
;

such line is to be considered as a pair of coincident lines. Any point what

ever determines with the Absolute, two lines, viz. the lines joining the point with

the two points of the Absolute
;

this line-pair is the Absolute for the point con

sidered as a space of one dimension or locus in quo of a pencil of lines, and the

theory of the distances of lines through a point is therefore precisely the same as in

the generak case. But any line whatever determines with the Absolute (meets the

Absolute lin\ in) a pair of coincident points, which pair of coincident points is the

Absolute in regard to such line considered as a space of one dimension or locus in

quo of a range of points, and the theory of the distance of points on a line is

therefore the theory before explained for this special case. But we cannot, in the

same way as before, compare the distances of points upon different lines, since we have

not in the present case the quadrant as a unit of distance. The comparison must
be made by means of the circle, viz. in the present case any conic passing through
the two points of the Absolute is termed a circle, and the point of intersection of

the tangents to the circle at the two points of the Absolute (or what is the same

thing, the pole of the Absolute line in respect to the circle) is the centre of the

circle. The Absolute line itself may, if it is necessary to do so, be considered as the

axis of the circle. It is assumed that the points of the circle are all of them

equidistant from the centre, and by this assumption we are enabled to compare
distances upon different lines. In fact we may, by a construction precisely similar to

that of Euclid, Book I. Prop. II., from a given point A draw a finite line equal to

a given finite line BC, and thence also upon a given line through A, determine the

finite line AD equal to the given finite line BC. Since the unit of distance for

points on a line is arbitrary, we cannot of course compare the distances of points
with the distances of lines. The distance of a point from a line does, however, admit
of comparison with the distance of two points; we have only to assume as a definition

that the distance of a point from a line is the distance of the point from the point
of intersection of the line with the quadrantal line through the point.
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221. As regards the analytical theory, suppose that the point-coordinates of the

two points of the Absolute are (p, q, r), (j , q ,
r

),
then the line-equation of the

Absolute is

2 (pf 4 qrj + r) (p + q^ + r) =
;

so that we have & = 2pp , &amp;lt;J3
= 2gg ,

&amp;lt;

= 2rr
, $ = qrQ + rq , 4$x =rp + pr , |^ =pqa + qp ,

and thence K
;
but

K (a, b, c, f, g, &$&amp;gt;, y, zj =

where obviously

x
, y ,

z

p , q, r

as
, y, z

p , q, r

PO, qo, r
.o

=

is the equation of the Absolute line.

222. The expression for the distance of the two points (x, y, z), (x, y ,
z ) is

given as the arc to an evanescent sine; but reducing the arc to its sine, and omitting

the evanescent factor, the resulting expression is

-r- x
, y ,

z x
, y ,

z

p , q ,
r p

and the expression for the distance of the two lines (f, 77, ), ( , 77 , ) is

cos 1 =
V 2 (p + qr) + r) (po^ + qoTj +

or, what is the same thing,

(rp -pr

2
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223. If in the above formula we put (p, q, r)
=

(l, i, 0), (p 0&amp;gt; q ,
? )

=
(1, i, 0),

where as usual i = V 1, then the line-equation of the Absolute is
2 + 7/

2 = 0, or what

is the same thing, the Absolute consists of the two points in which the line z =

intersects the line-pair x2 + y-
=

;
the last-mentioned line-pair, as passing through the

Absolute, is by definition a circle
;

it is in fact the circle radius zero, or an evanescent

circle. If we put also the coordinate z equal to unity, then the preceding assumption
as to the coordinates of the points of the Absolute must be understood to mean only

x : y : 1 = 1 : i : 0, or 1 : i :
;
that is, we must have x and y infinite, and, as

before, x~ + y
1 = 0, or in other words, the Absolute will consist of the points of inter

section of the line infinity by the evanescent circle a? + y
2 = 0. With the values in

question,

224. The expression for the distance of the points (x, y) and (x , y ) is

that for the distance of the lines (, rj, ) and ( , rj , ) is

COS&quot;

= sin
2 + rf*

which may also be written

& &
= tan-1 ^ - tan-1 V,

rj rj

and the expression for the distance of the point (x, y) from the line ( , ?/, ) is

%x + rfy + %
Vp+V2

which are obviously the formulae of ordinary plane geometry, (x, y} being ordinary

rectangular coordinates.

225. The general formulas suffer no essential modification, but they are greatly

simplified in form by taking for the point-equation of the Absolute

$? + y
2 + z1 =

0,

or, what is the same, for the line-equation

In fact, we then have for the expression of the distance of the points (x, y, z}, (x, y z ),

xx + yy + zz
cos&quot;

1 - yy
;

v x2 + yt + 22 V x z + y
2 + /2
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for that of the lines ( 77, f ), (f, T/, f),

COS&quot;
1 -7=

2 + 7/2+p
and for that of the point (x, y, z) and the line ( , ?/, ),

sin&quot;

226. Suppose (x, y, z) are ordinary rectangular coordinates in space, satisfying the
condition

the point having (as, y, z} for its coordinates will be a point on the surface of the

sphere, and (the last-mentioned equation always subsisting) the equation fx + rjy + & =
will be a great circle of the sphere; and since we are only concerned with the ratios

of V, we may also assume 2 + 7?
2 + 2 = l. We may of course retain in the formula

the expressions x2 + y
2 + z2 and 2 + 77

2 + 2
, without substituting for these the values

unity, and it is in fact convenient thus to preserve all the formulas : n their original
forms. We have thus a system of spherical geometry; and it appears that the
Absolute in such system is the (spherical) conic, which is the intersection of the

sphere with the concentric cone or evanescent sphere a;
2 + y- + z2

0. The circumstance
that the Absolute is a proper conic, and not a mere point-pair, is the real ground
of the distinction between spherical geometry and ordinary plane geometry, and the
cause of the complete duality of the theorems of spherical geometry.

227. I have, in all that has preceded, given the analytical theory of distance

along with the geometrical theory, as well for the purpose of illustration, as because
it is important to have the analytical expression of a distance in terms of the

coordinates; but I consider the geometrical theory as perfectly complete in itself: the

general result is as follows, viz. assuming in the plane (or space of geometry of two

dimensions) a conic termed the Absolute, we may by means of this conic, by descriptive
constructions, divide any line or range of points whatever, and any point or pencil of

lines whatever, into an infinite series of infinitesimal elements, which are (as a definition

of distance) assumed to be equal; the number of elements between two points of the

range or two lines of the pencil, measures the distance between the two points or

lines; and by means of the quadrant, as a distance which exists as well with respect
to lines as points, we are enabled to compare the distance of two lines with that of

two points; and the distance of a point and a line may be represented indifferently
as the distance of two points, or as the distance of two lines.

228. In ordinary spherical geometry, the general theory undergoes no modification

whatever; the Absolute is an actual conic, the intersection of the sphere with the

concentric evanescent sphere.
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229. In ordinary plane geometry, the Absolute degenerates into a pair of points,

viz. the points of intersection of the line infinity with any evanescent circle, or what

is the same thing, the Absolute is the two circular points at infinity. The general

theory is consequently modified, viz. there is not, as regards points, a distance such as

the quadrant, and the distance of two lines cannot be in any way compared with the

distance of two points ;
the distance of a point from a line can be only represented

as a distance of two points.

230. I remark in conclusion, that, in my own point of view, the more systematic

course in the present introductory memoir on the geometrical part of the subject of

quantics, would have been to ignore altogether the notions of distance and metrical

geometry; for the theory in effect is, that the metrical properties of a figure are not

the properties of the figure considered per se apart from everything else, but its

properties when considered in connexion with another figure, viz. the conic termed the

Absolute. The original figure might comprise a conic
;

for instance, we might consider

the properties of the figure formed by two or more conies, and we are then in the region

of pure descriptive geometry: we pass out of it into metrical geometry by fixing

upon a conic of the figure as a standard of reference and calling it the Absolute.

Metrical geometry is thus a part of descriptive geometry, and descriptive geometry is

all geometry, and reciprocally; and if this be admitted, there is no ground for the

consideration, in an introductory memoir, of the special subject of metrical geometry;

but as the notions of distance and of metrical geometry could not, without explanation,

be thus ignored, it was necessary to refer to them in order to show that they are

thus included in descriptive geometry.
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NOTES AND EEFEEENCES.

101. No. V. of this paper gives a correction of a formula (18) in the paper 8,

On Lagrange s Theorem.

102. I refer to this paper in my
&quot; Note on Riemann s paper Versuch einer

allgemeinen Auffassung der Integration und Differentiation, Werke, pp. 331_344.&quot;

Math. Ann. t. xvi. (1880), pp. 8182, for the sake of pointing out the connexion
which it has with this paper of Eiemann s (contained, as the Editors remark, in a

MS. of his student time dated 14 Jan. 1847, and probably never intended for

publication) : the idea is in fact the same, Eiemann considered a function of x + h

expanded in a doubly infinite, necessarily divergent, series of integer or fractional powers
of h, according to an assigned law: and he thence deduces a theory of fractional

differentiation.

114. This Memoir on Steiner s extension of Malfatti s problem is referred to by
Clebsch in the paper

&quot;

Anwendung der elliptischen Functionen auf ein Problem der

Geometrie des Raumes,&quot; Crelle, t. LIII. (1857), pp. 292 308: it is there shown that my
fundamental equations, p. 67, are the algebraical integrals of a system of equations

^ - n &amp;lt;k

JL
&amp;lt;** n dac

&quot;&quot;

VF&quot;~

the integrals of which become comparable when the quartic functions under the square
roots differ only by constant factors; and expressing that this is so, he obtains the

relations which I assumed to exist between the coefficients a, /3, 7, S, &c., under which

the equations admit of solution by quadratics only. And he is thereby led to reduce

the problem, not to the foregoing system of fundamental equations, but to other

equations connecting themselves with the usual form of the Addition-theorem; and
with a view thereto to develope a new solution of the Problem.

115, 116. The theory is further developed in my Memoir &quot;On the Porism of the

in-and-circumscribed Polygon,&quot; Phil. Trans, t. CLL, for 1861.

c. ii. 75
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119. I attach some value to the process here explained: the most simple

application is that referred to at the end of the paper, for the factorial binomial

theorem; to multiply m + n by m + n l, we multiply the m by (ml) + n, and the

n by m + (n l), thus obtaining the result in the form m (m - 1) + 2mn + n(n 1), and

so in other cases.

121. The papers and works relating to the Question are

1. Boole. Proposed Question in the Theory of Probabilities, Camb. and Dubl.

Math, Jour. t. vi. (1851), p. 286.

2. Cayley. 121, Note on a Question in the Theory of Probabilities, Phil. Mag.
t. vi. (1853), p. 259.

3. Boole. Solution of a Question in the Theory of Probabilities, Phil. Mag.
t. vii. (1854), pp. 2932.

4. Boole. An Investigation of the Laws of Thought, on which are founded the

Mathematical Theories of Logic and Probabilities, 8vo. London and Cambridge, 1854

(see in particular pp. 321 326).

5. Wilbraham. On the Theory of Chances developed in Prof. Boole s Laws of

Thought, Phil. Mag. t. vn. (1854), pp. 465476.

6. Dedekind. Bemerkungen zu einer Aufgabe der Wahrscheinlichkeitsrechnung,
Crelle, t. L. (1855), pp. 268271

;

viz. Boole proposed the question in 1, I gave my solution in 2, Boole objected to it

in 3, and gave without explanation or demonstration his solution, referring to his then

forthcoming work 4, which contains (pp. 321326) his investigation. Wilbraham in 5

defended my solution, and criticised Boole s : and finally Dedekind in 6 (which does

not refer to 4 or 5) completed my solution, by determining the sign of a radical,

and establishing between the data, as conditions of a possible experience, the relations

p ftq and q ap neither of them negative.

I remark that although Boole in 1, 3, and 4 speaks throughout of
&quot;causes,&quot;

yet it would seem that he rather means &quot;concomitant events&quot;: I think that in his

point of view the more accurate enunciation of the question would be The probabilities
of two events A and B are a and ft respectively; the probability that if the event
A present itself the event E will accompany it is p, and the probability that if the
event B present itself the event E will accompany it is q; moreover it is assumed
that the event E cannot appear in the absence of both the events A and B:
required the probability of the event E.

He makes no assumption as to the independence inter se of A, and B: and
moreover, in thus regarding A and B as events instead of causes, there is no room
for regarding E as a consequence of one or the other of A and B, or of both of them.

In my solution I regard A and B as causes: I assume that they are independent
causes; and further that either or both of them may act efficiently so as to
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produce the event E, but that the event E cannot happen unless at least one of

them act efficiently, viz. it cannot happen in consequence of the conjoint separately
inefficient action of the two causes. On these assumptions it appears to me that my
solution, as completed by Dedekind, is correct. This would not preclude the correct

ness of Boole s solution, if according to what precedes we consider it as the solution

of a different question : but I am unable to understand it.

I resume my own solution, completing it according to Dedekind. I write with him
u instead of p for the required probability of the event E; the equations of the

text thus are

and we thence deduce

u ftq
=

(1 ft) Xa, u ap = (l a) /j,ft;

and then eliminating \, p, we find

u ~ u ~ a u

or as this equation may be written

uz

-u(l-aft + ap + ftq) + (1
-

ft) ap + (1
-

a) ftq + aftpq
=

;

say we have

u = 1
(1
-

a/9 + ap + ftq
-

p),

where

p
2 =

(1
-

aft + ap + ftq)
2 - 4* (1

-
ft) ap

- 4 (1
-

a) /3q
-

4&amp;gt;aftpq,

=
(1
- 2a + a/3 + ap

-
(3qf + 4a (1

-
a) (1

-
/3) (1

-
p),

=
(1
-

2/3 + aft
-

ap + $qf + 4/3(1- ) (1
-

a) (1
-

q),

=
(1
-

aj3 + ap
-

/fy)
2 - 4a (1

-
/3)(p

-
J3q),

=
(1
-

a/3
-
ap + fiq?

-
4/3 (1

- a) (q
-

ap),

and hence also

_ |(1
-

a/9 + ap
- @q - p)

^
(1
-

a)

Here p, q, a, ft, as probabilities, are none of them negative or greater than 1
; p is

the probability that, A acting, E will happen; and ftq is the probability that B will

act and E happen. But if A act, then even if B does not act, E may happen, or

B may act and E happen, that is p is greater than or at least equal to ftq, say p ftq
is not negative. And similarly q ap is not negative. We thus have as conditions

of a possible experience, p ftq and q ap neither of them negative.

752
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The formulae show that p
2

is real
;
and then further, taking for p its positive

value, it at once appears that we have u, \, /j,
no one of them negative or greater

than 1, viz. the values are such as these quantities, as probabilities, ought each of

them to have: and we have thus a real solution.

Boole in 1 after remarking that the quadratic equation in u may be written

in the form

(1 ap u) (1 fig u) _ ,g,
I u

= I-p, &c.)

says that this is certainly erroneous
;

for in the particular case p = l, q
= it gives

u = l or u = a(l /3),
whereas the value should be u = a. But observe that p=l, q

=
0,

give q ap, a, a negative value, so that the solution does not apply. If we further

examine the meaning, J. is a cause such that if it act then (p = 1) the event is

sure to happen; and B is a cause (?) such that if it act then (q
= 0) the event is

sure not to happen; this is self-contradictory unless we make the new assumption

that the causes A and B cannot both act. It is remarkable that even in this case

my solution gives the plausible result u = a(l yS), viz. the probability of the event is

the product of the probabilities of A acting, and B not acting.

In further illustration, and at the same time to examine Boole s solution, I

write as follows :

Wilbraham. Boole. Cayley.

ABE
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we thus have

f+F+^+v+f+f+^i ,

+r++r =
&amp;gt;

six equations for the determination of the eight quantities , , ?;, ?/, f, ,
cr

,
and tt.

For the determination of w, it is therefore necessary to find or assume two more

equations: in my solution this is in effect done by giving to
, , rj, 77 , , ,

a- the

values in the fourth column, values which satisfy the six equations, and establish the

two additional relations

_it) i i
&amp;gt;

77 cr
77 + 77 cr

or, as these may be written,

A BE _ A B E A
LB_AB ^

A BE
~
A/BrEf ~AB

~
A B f

these then are assumptions implicitly made in my solution
; they amount to this, that the

events A, B are treated as independent, first in the case where E does not happen ;

secondly in the case where it is not observed whether E does or does not happen.

Boole in his solution introduces what he calls logical probabilities (but what these

mean, I cannot make out) : viz. these are Prob. A = x, or say simply A = x
;

and

similarly, B =
y, AE =

s, BE=t; then in- the case ABE we have A, B, AE, BE, and

the logical probability is taken to be xyst; and we obtain in like manner the other

terms of the third column. And then taking , , 77, 77 , , ,
cr to be proportional

to the terms of the third column, say V% = xyst, &c. and substituting in the six

equations, we have six equations for the determination of x, y, s, t, V, u, and we thus

arrive at the value of the required probability u.

But the assumed values of
, ,

&c. give further

_ I _T i,
ABE_A BE ABE _ A B E

~^~ a&quot; q -J
5 1rBE~ A BE A BE

~
A B E&quot;

which are assumptions made in Boole s solution. Wilbraham remarks that the second

of these assumed equations, though perfectly arbitrary, is perhaps not unreasonable :

it asserts that in those cases where E does not happen, the relation of independence

exists between A and B, that is, provided E does not happen, A is as likely to

happen whether B happens or does not happen. But that the first of these equations

appears to him not only arbitrary, but eminently anomalous : no one (he thinks) can

contend that it is either deduced from the data of the problem, or that the mind

by the operation of any law of thought recognises it as a necessary or even a reasonable

assumption.
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To complete Boole s solution : the equations easily give

s too y _ st xy s t _ v
u ap u /3q I u

and

s t x s t y stxy _ _

1 ap u 1 /3q u ap + fiq u

and multiplying together the first three values, and also the second three values, we
have in each case the same numerator ss 2

tt
2 xx yy, and we thus obtain the equation

(u
-

ap) (u
-

/3q) (1
-

u}
-

(1
-
ap

-
u) (1

-
ftp

-
u) (ap + @q - u) = 0,

which, the term in u2

disappearing, is a quadric equation ;
it is in fact

u* (- 1 + ap + /3q ) + u {l+a(p-p ) + (3(q-q )- tfpp
-

/3
2

qq + a/3 (- 1 + 2p q )}

+ {-ap-/3q + cC-pp + @2

qq + a/3 (1 -p q) - (ap + $q) afip q }
=

;

or, what is more simple, if we write with Boole ap = a, /3q
=

b, 1 - ap =af, 1 - /3q
= b ,

ap + /3y
= c, then the equation is (u

-
a) (u -b)(l-u)- (a

-
u} (b

-
u) (c

-
u) = 0, that is

(1
- a - b ) u

2 -
{ab

- a b ^-(I- a - b ) c
}
u + (ab- a b c )

=
0,

giving
ab - a b + (1

- a - b ) c + Q

where

Q2 =
{ab

- a b + (1
- a - b ) c

}

2 - 4 (1
- a - b ) (ab

- a b c
).

We have as conditions which must be satisfied by the data, that each of the

quantities a
, b

, c is greater than each of the quantities a, b
;

or say, each of the

quantities 1 - ap ,
1 - fiq } ap + j3q greater than each of the quantities ap, /3q : Q2

is

then real, and taking Q positive, we have u equal to or greater than each of the three

quantities and greater than each of the two quantities. The difficulties which I find

in regard to this solution have been already referred to.

139. See volume I. Notes and References 13, 14, 15, 16 and 100. I have in the
last of these noticed that the terms covariant and invariant were due to Sylvester:
and I have referred to papers by Boole, Eisenstein, Hesse, Schlafli and Sylvester.
Anterior to the present memoir 139 we have other papers by Boole and Sylvester,
one by Hermite (with other papers not directly affecting the theory), a paper by
Salmon, and a very important memoir by Aronhold : it will be convenient to give a
list as follows :

Boole.

1. Researches on the theory of analytical transformations with a special application
to the reduction of the general equation of the second order, Camb. Math. Jour. t. n
1841, pp. 6473.
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2. Exposition of a general theory of linear transformations, Part I. Camb. Math.

Jour. t. in. 1843, pp. 120.

Exposition of a general theory of linear transformations, Part n. Camb. Math. Jour.

t. m. 1843, pp. 106119.

3. Notes on linear transformations, Camb. and Dubl. Math. Jour. t. iv. 1845, pp.

166171.

4. On the theory of linear transformations, Camb. and Dubl. Math. Jour. t. VI.

1851, pp. 87106.

5. On the reduction of the general equation of the nth degree, Camb. and Dubl.

Math. Jour. t. vi. 1851, pp. 106113.

6. Letter to the Editor (reply to Prof. Sylvester), Camb. and Dubl. Math. Jour.

t. vi. pp. 284, 285.

Sylvester.

1. On the intersections, contacts and other relations of two conies expressed by
indeterminate coordinates, Camb. and Dubl. Math. Jour. t. V. 1850, pp. 262 282.

2. On a new class of theorems in elimination between quadratic functions, Phil.

Mag. t. xxxvii, 1850, pp. 213218.

3. On certain general properties of homogeneous functions, Camb. and Dubl.

Math. Jour. t. vi. 1851, pp. 117.

4. On the intersections of two conies, Camb. and Dubl. Math. Jour. t. vi. 1851,

pp. 1820.

5. Reply to Prof. Boole s Observations contained in the November Number of the

Journal, Camb. and Dubl. Math. Jour. t. vi. 1851, pp. 171 174.

6. Sketch of a memoir on Elimination, Transformation and Canonical forms, Camb.

and Dubl. Math. Jour. t. vi. 1851, pp. 186200.

7. On the general theory of Associated Algebraical forms, Camb. and Dubl. Math.

Jour. t. vi. 1851, pp. 1820.

8. On Canonical forms, 8vo. London, Bell, 1851.

9. On a remarkable discovery in the theory of Canonical forms and of hyper-

determinants, Phil. Mag. t. n. 1851, pp. 391 410.

10. On the Principles of the Calculus of Forms. Part I. Generation of Forms.

Sect 1. On Simple Concomitance. 2. On Complex Concomitance. 3. On Commutants.

Notes in Appendix (1), (2), (3), (4), (5), (6), (7), (8), Camb. and Dubl. Math. Jour. t. vi.

1852, pp. 5297.

11. On the Principles of the Calculus of Forms. Sect. 4. Reciprocity, also

Properties and Analogies of Certain Invariants &c. 5. Applications and Extension of

the theory of the Plexus. 6. On the partial differential equations to Concomitants,

Orthogonal and Plagional Invariants, &c. Notes in Appendix (9), (10), (11). Postscript,

Camb. and Dubl. Math, Jour. t. vi. 1852, pp. 179217.
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12. Note on the Calculus of Forms, Camb. and Dull Math. Jour. t. vm. 1853

pp. 6264.

13. On the Calculus of Forms otherwise the theory of Invariants. Sect. 7. On
Combinants, Camb. and Dull. Math. Jour. t. vm. 1853, pp. 256 269.

14. On the Calculus of Forms otherwise the theory of Invariants. Sect. 7. Con
tinued. 8. On the reduction of a sextic function of two variables to its canonical

form, Camb. and Dubl. Math. Jour. t. ix. 1854, pp. 85, 103.

Salmon. Exercises in the Hyperdeterminant Calculus, Camb. and Dubl. Math. Jour.

t. ix. 1854, pp. 1933.

Hermite. Sur la theorie des fonctions homogenes a deux indeterminees, Camb.
and Dubl. Math. Jour. t. ix. 1854, pp. 172 217.

Aronhold. Zur Theorie der homogenen Functionen von drei Variabeln, Crelle

t. xxxix. 1850, pp. 140159.

In the present Memoir 139, dropping altogether the consideration of linear trans

formations, I start from the notion of certain operations upon the constants and
facients of a quantic, viz. if to fix the ideas we consider the case of a binary
quantic (a, b, ... b

, d~$x, y)
m

,
then there is an operation {ydx},

= adb + 2bdc ... +mb da
which performed upon the quantic is tantamount to the operation ydx : and similarly
an operation {xdv},

= mbda + (m- l)cdb ... + a&quot;dv which performed upon the quantic is

tantamount to the operation xdy . Or, what is the same thing, there are two opera
tions {ydx}

-
ydx ,

and {xdy}
xdy each of which performed upon the quantic reduces

it to zero: to use an expression subsequently introduced, say each of these is an
annihilator of the quantic. The assumed definition is that any function of the
coefficients and variables which is reduced to zero by each of these operators, is a
Covariant: and in particular if the function contain the coefficients only (in which
case obviously the operators may be reduced to {ydx}

and {xdy} respectively) the
function is an Invariant.

I believe I actually arrived at the notion by the simple remark, say that adb + 2bdc

operating upon ac - b&quot; reduced it to zero, and that the same operation performed
upon aa? + 2bxy + cf reduced it to 2axy + 2by* which is = ydx [ax

2 + 2bxy + cy
2

}.
But

the earliest published mention of the notion is in the year 1852 in Note 7 of

Sylvester s paper on the Principles of the Calculus of Forms (Sylvester 10). Here,
connecting it with the theory of linear transformations, he writes &quot;There is one

principle of paramount importance which has not been touched upon in the preceding
pages,... The principle now in question consists in introducing the idea of continuous
or infinitesimal variation into the theory. To fix the ideas suppose C to be a
function of the coefficients of $(x, y, z) such that it remains unaltered when x, y, z
become respectively fx, gy, hz, where fgh = 1. Next suppose that C does not alter
when x becomes x + ey + ez, where e, e are indefinitely small

;
it is easily and

obviously demonstrable that if this be true for e, e indefinitely small, it must be
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true
^

for all values of e, e. Again suppose that C alters neither when x receives such
infinitesimal increment, y and z remaining constant, nor when y and z separately
receive corresponding increments z, oc and x, y in the respective cases remaining
constant. ...C will remain constant for any concurrent linear transformations of x, y, z
when the modulus is unity. This all-important principle... also instantaneously gives
the necessary and sufficient conditions to which an invariant of any given order of

any homogeneous function whatever is subject, and thereby reduces the problem of

discovering invariants to a definite form.&quot; And in section 6 of the same paper
(Sylvester 11) referring to the Note, he writes &quot;This method may also be extended
to concomitants generally. M. Aronhold as I collect from private information was the
first to think of the application of this method to the subject: but it was Mr Cayley
who communicated to me the equations which define the invariants of functions of
two variables. The method by which I obtain these equations and prove their

sufficiency is my own, but I believe has been adopted by Mr Cayley in a Memoir
about to be published in Grelles Journal [? 100]. I have also recently been informed
of a paper about to appear in Liouvilles Journal from the pen of M. Eisenstein, where
it appears that the same idea and mode of treatment have been made use of.

Mr Cayley s communication to me was made in the early part of December last

[1851] and my method (the result of a remark made long before) of obtaining these
and the more general equations and of demonstrating their sufficiency imparted a few
weeks subsequently I believe between January and February of the present year
[1852],&quot; and then applying the principle to the binary quadric, he proceeds to consider

the theory of the operator a + 26^ + 3c^ + ..., and the other operator with the

coefficients in the reverse order, as applied to an invariant
&amp;lt; of the quantic. The

theory of these operators was thus familiar to Sylvester in 1852, but it was in
nowise made the foundation of the structure.

I notice as contained in the paper Boole (4), what is probably the first state
ment of the

&quot;provectant&quot; process of forming an invariant; for example, from the

quartic function (a, b, c, d, e\x, y)
4 he derives

lg(a, b, c, d, J9,,-3.)*.(a&amp;gt; b, c, d, e^x, yY = ae - 4bd + 3c2
,
the quadrinvariant ;

and similarly from the Hessian (ac-6
2

,
2 (ad -be), ae + 2bd-3c&quot;, 2 (be

-
cd), ce - df$x, y)

4

is derived the cubinvariant ace - ad2 -fre + 2bcd - 3c2
. Mention is also made of the

function A (J3S
- 7

2

) + B (#y - aS) + C (ay
-

/3
2

), (A, B, C given quadric functions, a, /9, 7, 8

given cubic functions of (a, b, c, d, e, /)), which is the octinvariant Q of the binary
quintic.

The papers of Sylvester contain a great number of important results which will

some of them be referred to in connexion with the later Memoirs on Quantics.

Hermite s discovery of the invariant of the degree 18 of the quintic, and the

demonstration of his law of reciprocity are both given in the Memoir by him which
is above referred to.

a ii. 76
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147. Upon looking at any one of the Tables, for instance VIII (a), it will be

noticed (1) that the partition symbols in the outside top line and left-hand column re

spectively are differently arranged, (2) that the numbers of each pair of equal numbers

(see the Memoir) are not symmetrically situate, and (3) that the table is what may be

called a half-square; viz. the squares above (or, in the case of a (6) table, those below)

the sinister diagonal are all vacant
;

the squares in the sinister diagonal itself are all

occupied by units (+ 1 or 1 as the case may be). It is possible (and that in many

ways) to give the same arrangement to the partition-symbols in the outside line

and column respectively, and at the same time to retain the half-square form of the

table : or (what is far more important) we may with Faa di Bruno, give the same

arrangement to the partition-symbols, and at the same time make the table sym

metrical, viz. cause the two numbers of each pair of equal numbers to be sym

metrically situate in regard to the dexter diagonal of the square but we cannot at

the same time retain accurately the half-square form of the table. The general

principle is that in the outside column (or line) the partition-symbols which are

conjugate to each other have symmetrical positions, while the self-conjugate symbols

are collected at the middle of the column (or line) ;
there is then in regard to these

self-conjugate symbols a sort of dislocation of the sinister diagonal, the units which

belong to them being transferred to the dexter diagonal, and in the sinister diagonal

replaced by zeros, for instance at the crossing of the two diagonals we may have

instead of A Table thus arranged may be called Symmetric.

Again as remarked by Fiedler, the two corresponding tables (a) and (6) may be

united into a single table; the sinister diagonal is the same for each of them, and

if we then insert into the (6) table below the sinister diagonal the numbers of the

(a) table, we have a table which is to be read according to the lines for the numbers

above and in the sinister diagonal ;
and according to the columns for the numbers

in and below the same diagonal. This may be called a United table: it may be

unsymmetric, or be rearranged so as to be made symmetric.

The tables have been rearranged as above, and extended to the order 14: I give
the following references.

Fiedler. Elemente der Neueren Geometrie &c. (1862), pp. 73 et seq. (II. to X,

(a) and (6) united, unsymmetric).

Faa di Bruno. Sur les Fonctions Symetriques, Comptes Rendus, t. 76 (1873), pp.
163 168 (II to VIII, (6), symmetric, there is some error in VIII, inasmuch as it

is presented without the dislocation of the sinister diagonal).

Theorie des Fonctions Binaires, 8vo. Turin &c. 1876. II to XI (6) sym
metric.

Durfee. Tables of the Symmetric Functions of the Twelffchic, Amer. Math. Jour.

t. v. (1882), pp. 4560. XII (a) and (&) unsymmetric.

Rehorovsky. Tafeln der symmetrischen Functionen der Wurzeln und der Coeffi-

cienten-Combinationen vom Gewichte eilf und zwolf. Wien, Denks. t. 26 (1883), pp.
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5360. XI (a) and (b\ XII (a) and (b): unsymmetric, united. Is referred to in the
next mentioned paper.

Durfee. The Tabulation of Symmetric Functions, Amer. Math. Jour. t. v. (1882),
pp. 348, 349. XII (a) and (6); symmetric, united.

MacMahon. Symmetric Functions of the 13 ie

, Amer. Math. Jour. t. VI (1884)
pp. 289300. XIII (6); symmetric.

Cayley. Symmetric Functions of the roots for the degree 10 for the Form
ex2

1 + bx +
j &amp;lt;j

+ . . .
=

(1
-

cue) (1
- #) (1

-
yas) ... Amer. Math. Jour. t. VII. (1885), pp. 47

56. II to X (6), unsymmetric. The calculation of the tables for this new form

(MacMahon s) of the coefficients afforded a complete verification of the (6) tables,

showing that there was not a single error in these tables as published in the

Philosophical Transactions.

Durfee. Symmetric Functions of the 14ic
, Amer. Math. Jour. t. ix. (1887),

pp. 278 292. XIV (b) symmetric, the arrangement is different from and seemingly
better than that in the tables XII (b) and XIII (b).

MacMahon. Properties of a Complete Table of Symmetric Functions, Amer.
Math. Jour. t. x. (1888), pp. 4246.

Memoir on a New Theory of Symmetric Functions, Amer. Math.
Jour. t. XL (1889), pp. 136. (a) and (b) Tables for the weights 1 to 6 and their

several partitions. To explain this, observe that the general idea is to ignore the

coefficients altogether, regarding them as merely particular symmetric functions of the
roots: thus the (6) table for the weight 4 (partition I 4

) is in fact the table IV (6)

giving the symmetric functions (4), (31), (2
2

), (21
2
), (I

4
) in terms of (I

4

), (I
3
) (1),

(I
2

)
2
, (I

2

) (I)
2
, (I)

4
, that is in terms of the combinations e, bd, c

2
, b*c, of the

coefficients, but that the other tables weight 4 to a different partition, give the values

of symmetric functions (combinations of the foregoing) which are expressible in terms
of other symmetric functions of the roots: for instance weight 4 (partition 21 2

) gives

(4), (31), (2
2

), and (2P) in terms of (21
2

), (21) (1), (2) (I
2

) and (2) (I)
2

. A leading
idea in this valuable memoir is that of the &quot;

Separations
&quot;

of a Partition.

150. The theory is developed in an incomplete form. If to fix the ideas we
consider a quintic equation (a, b, c, d, e, /$#, I)

5 =
0, then a single equality a =

between the roots implies a onefold relation between the coefficients (a, b, c, d, e, /) :

this is completely and precisely expressed by means of a single equation (V = 0,

where V is the discriminant, = a4/4 + &c.). Similarly a system of two equalities
a = /3

=
7&amp;gt;

or a =
@&amp;gt; 7 = 5 as the case may be, implies a twofold relation between

the coefficients (a, b, c, d, e, f) and the question arises, to determine the order of
this twofold relation, and to find how it can be completely and precisely expressed,
whether by two equations A =0, JB = Q, or if need be by a larger number of equations
A = 0, B =

0, (7=0, &c. between the coefficients
;

this is not done in the memoir,

762
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but what is done is only to find two or more equations satisfied in virtue of the

system of the two equalities between the roots. And similarly in the case of a

system of more than two equalities. See my paper 77, where this notion of the order

of a system of equations was established.

152. The next later memoir on the theory of Matrices, so far as I am aware

is that by Laguerre, &quot;Sur le Cacul des Systemes Lineaires,&quot; Jour. EC. Polyt. t. xxv.

(1867), pp. 215 264. A &quot;systeme
lineaire

&quot;

is what I called a matrix, and the mode

of treatment is throughout very similar to that of my memoir; in particular we

have in it my theorem of the equation satisfied by a matrix of any order. The

memoir contains a theorem relating to the integral functions of two matrices A, B
of the same order, viz. this is expressible in the form m+pA+qB + rAB. For

later developments see the papers by Sylvester in the American Mathematical

Journal.

158. The notion of the &quot;Absolute&quot; was I believe first introduced in the present
memoir. In reference to the theory of distance founded upon it and here developed,
I refer to the papers

Klein, Ueber die sogenannte Nicht-Euklidische Geometrie, Math. Ann. t. IV. (1871),

pp. 573625.

Cayley, On the Non-Euclidian Geometry, Math. Ann. t. v. (1872), pp. 630 634.

Klein, Ueber die sogenannte Nicht-Euklidische Geometrie, Math. Ann. t. VI. (1873),

pp. 112145.

In his first paper Klein substitutes, for my cos&quot;
1

expression for the distance

between two points, a logarithmic one; viz. in linear geometry if the two fixed points
are A, B then the assumed definition for the distance of any two points P, Q is

dist. (P) = c log
-:

this is a great improvement, for we at once see that the fundamental relation,
dist. (PQ) + dist. (QIC) = dist. (PR), is satisfied: in fact we have

and thence

dist. (PQ) + dist. (QR) = c log ,
= dist. PR.

^

But in my Sixth Memoir, the question arises, what is meant by &quot;coordinates&quot;:

if in linear geometry (as, y) are the coordinates of a point P, does this mean that
x : y is the ratio of the distances in the ordinary sense of the word of the pointP from two fixed points A, B: and if so, does the notion of distance in the new
sense ultimately depend on that of distance in the ordinary sense? And similarly
in Klein s definition, do AP, BQ, AQ, BP denote distances in the ordinary sense
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of the word, and if so does the notion of distance in the new sense ultimately

depend on that of distance in the ordinary sense ?

As to my memoir, the point of view was that I regarded &quot;coordinates&quot; not

as distances or ratios of distances, but as an assumed fundamental notion, not

requiring or admitting of explanation. It recently occurred to me that they might
be regarded as mere numerical values, attached arbitrarily to the point, in such wise

that for any given point the ratio x : y has a determinate numerical value, and that

to any given numerical value of x : y there corresponds a single point. And I

was led to interpret Klein s formulae in like manner; viz. considering A, B, P, Q
as points arbitrarily connected with determinate numerical values a, b, p, q, then the

logarithm of the formula would be that of (a- p)(b q) + (a q)(b p). But Prof.

Klein called my attention to a reference (p. 132 of his second paper) to the theory

developed in Staudt s Geometrie der Lage, 1847 (more fully in the Beitrage zur

Geometrie der Lage, Zweites Heft, 1857). The logarithm of the formula is

log (A, B, P, Q), and, according to Staudt s theory (A, B, P, Q), the anharmonic ratio

of any four points, has independently of any notion of distance the fundamental proper

ties of a numerical magnitude, viz. any two such ratios have a sum and also a product,

such sum and product being each of them a like ratio of four points determinable by

purely descriptive constructions. The proof is easiest for the product: say the ratios

are (A, B, P, Q) and (A ,
B

,
P

, Q ): then considering these as given points we

can construct R, such that (A ,
B

, F, Q )
= (A, B, Q, R): the two ratios are thus

(A, B, P, Q) and (A, B, Q, R), and we say that their product is (A, B, P, R)

{observe as to this that introducing the notion of distance, the two factors are

AP.BQ , AQ.BR AP.BR ..,. ,. p , . . .

. .r and . r ^ and thus their product -= . p pp ,
which is (A, B, P, R), which

is the foundation of the definition}. Next for the sum, we construct Q, such that

(A ,
B

, P, Q )
= (A, B, P, Q,); the sum then is (A, B, P, Q) + (A, B, P, Q,) ;

and if

we then construct S such that (A, A), (Q, Q,), (B, S) are an involution, we say that

(A, B, P, Q) + (A, B, P, Q,)
= (A, B, P, S). {Observe as to this that again introducing

... . AP.BQ , AP.BQ, AP.BS
the notion of distance the last mentioned equation is -. Pp + -j^~ ^73 = , up &amp;gt;

-nr\
T&amp;gt;Q

TDa

is -J*. + -^.
= -_ which expresses that S is determined as above

;
in fact the equation

AQ
2

-|
-- L = -- is readily seen to be equivalent to

a q a q, a s

1, b + s
,
bs

1, 2a
,
a2

=
0}.

It must however be admitted that, in applying this theory of Staudt s to the theory

of distance, there is at least the appearance of arguing in a circle, since the con

struction for the product of the two ratios, is in effect the assumption of the relation;

dist, PQ + dist, QR = dist. PR.
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I may refer also to the Memoir, Sir R S. Ball
&quot; On the theory of the Content,&quot;

Trans. R. Irish Acad. vol. xxix. (1889), pp. 123 182, where the same difficulty is

discussed. The opening sentences are &quot;In that theory [Non-Euclidian Geometry] it

seems as if we try to replace our ordinary notion of distance between two points by
the logarithm of a certain anharmonic ratio. But this ratio itself involves the notion

of distance measured in the ordinary way. How then can we supersede the old

notion of distance by the Non-Euclidian notion, inasmuch as the very definition of

the latter involves the former ?
&quot;

An extensive list of papers is given, Halsted, Bibliography of Hyper-Space and of

Non-Euclidean Geometry, Amer. Math. Jour. t. I. (1878), pp. 261 276 and 384385,
also t. ii. (1879), pp. 6570.
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