
I-

## 1

oreci unde de d 9 rucerco (Joert.


THE
COMPENDIOUS MEASURER.
C. and R. Baldwin, Printers,

Newe Bridge-grees, Lindeno

# THE <br> COMPENDIOUS MEASURER; 

BEING A BRIEF, YET COMPREHENSIVE,
TREATISE on MENSURATION,

## and <br> PRACTICAL GEOMETRY.

## witu

AN INTRODUCTION TO DECIMAL AND DUODECIMAS.

## ARITHMETIC.

ADAPIED TOPRACTICE, AND THE USE OE SCHOOLS. By CHARLES HUTTON, LL.D. and F.R.S. \&oc. THE SIXTH EDITION, CORRECTED AND ENEARGED;

TLLUSTRATED WITH TRE PLAN OF A NEW FIELD-BOGE ENGRAVEN ON COPPER PLATE.
LONDON:

REINTED FOR J. JOHNSON ; R: BALDWIN; G. WILXIE; AND
J. ROBINSON; J. WALKER; G. ROBINSQN; SCATCHIRD AND LETTERMAN; AND IONGMAN, HURET, REES, AND ORME.

H\&


 - $\quad 6$ 48
$\qquad$ 2influa manait Whoulexamotal:

$\qquad$

$$
71018=
$$

## PREFAC最

SOME years fince I publifhed a complete Treatifo on Menfuration, both in Theory and Practice; in which the Elements of that Science are demonfrated, and the Rules applied to the various practical purpofes of life. That work has been well received by the Public, and honoured with the high approbation of the more learned Mathematicians.

It has however been often reprefented to me, by Tutors and others, that the great fize and price of that work, as well as the very fientific manner in which it is formed, prevent it from being fo generally ufeful in fchools, and to practical meafurers, as a more compendious and familiar little book might be, which they could put into the hands of their pupils, as a work containing all the practical rules of that art, in a. form proper for them to copy from, and unmixed with fuch geometrical and algebraical demonftrations as occur in the large work.

In compliance therefore with fuch reprefentations, I have drawn up this Compendium of Menfuration, Eractical Geometry, and Arithmetic, exprefsly with

[^0]the view of accommodating it to practical matters, ancts the ufe of fchools. I have, for that end, here brought. together all the moft ufful rules and precepts; have arranged them in an orderly manner, proper for the pupil to copy; and delivered them in plain and familiar language. An cxample, worked out at full length, is fet down to each rule, together with drawings or reprefentations of the geometrical figures proper to illuftrate each problem; and then are fubjoined fome mose queftions to each rule, as examples propofed for the practice of the learners with the anfwer $f \in t$ down, by which he may know when his work is right.

The Introduction to Decimal and Duodecimal Arithmetic will be found ufeful, by going over thofe branches before entering on the Menfuration, that the learner may be very ready and expert in numeral calculations.

The Practical Geometry contains a great number of geometrical conftructions and operations; by the practice of which, the learner will acquire the free and eafy ufe of his inftruments, and fo become prepared for making the drawings that are ufeful for illuftrating the various branches of Menfuration foilowing.

The Menfuration itfelf next fucceeds, and is divided into various parts; firft, Menfuration in general, and then as applied to the feveral practical ufes in life:

The whole being arranged in fuch order as the learnermay properly take in fucceffion; or diftinguifhed into feveral branches, of which he may felect and ftudy any peculiar ones that may be more to his purpofe than the reft, when he has not either leifure or inducement to go over the whole in a regular gradation. And notwithftanding the compendious fize of the book, and the great number of practical branches here treated, it will be found that each one is much more full and complete than the firf appearance of fo fmall a form may promife to admit of. However, if further fatisfaction be defired by any one, either concerning the fcience in general, or the demonftrations of the rules, or the more curious and copious difplay of properties, he may apply to my large treatife before mentioned, where he will find every part delivered in the moft ample form.

To this edition is added the new method of furveying, now practifed by the beft furveyors, illuftrated with a map or plan, and an engraved form of the Field Book.

## CONTENTS.

## ARITHMETIC.

D ECIMAL Fractions ..... 1
Addition of Decimals ..... 4
Subtraction of Decimals ..... 5
Multiplication of Decimals ..... 5
Divifion of Decimals ..... 8
Reduction of Decimals ..... 11
Circulating Decimals ..... 16
Reduction of Repetends ..... 17
Addition of Repetends ..... 18
Subtraction of Repetends ..... 19
Multiplication of Repetends ..... 20
Divifion of Repetends ..... 21
Involution, or Raifing of Powers ..... 23
Evolution, or Extraction of Roots ..... 23
To extract the Square Root ..... 30
Ditto of Vulgar Fractions or Mixt Numbers ..... 34
To find a Mean Proportional ..... 36
To extract the Cube Root ..... 38
To find two Mean Proportionals ..... 40
To extract any Root whatever ..... 43
Ditto of Vulgar Fractions or Mixt Numbers ..... 45
Duodecimals, or Crofs Multiplication ..... 46
Table of Square Roots ..... 50
MENSURAT1ON. ..... 55
PRACTICAL GEOMETKY.
Pase
Definitions ..... 50
Problems ..... 63
To divide a Line into two equal Parts ..... 63
To divide an Angle into two equal Farts ..... 63
To divide a Right Angle into three equal Parts ..... 63
To draw one Line parallel to another ..... 64
'To raife a Perpendicular on a given Line ..... 64-
To let fall a Perpendicular on a given Line ..... 66
To divide a Line into any Number of equal Parts ..... 67
To divide a Line in a given Proportion ..... 67
To make one Angle equal to another ..... 68
Too make an Angle of any Number of Degrees ..... 68
To meafure a given Angle ..... fig
To find the Centre of a Circle ..... 69
To draw a Circle through three Points ..... 69
To draw a Tangent to a Circle ..... 70
To find a third Proportional or two Lines ..... 70
To find a fourth Proportional to three Lines ..... 71
To find a Masn Proportional between two Lines ..... 71.
To make an Equilateral Triangle ..... 71
To make a Triangle with three given Lines ..... 72
To make a Square ..... 72
To make a Rectanglo ..... 72
To make a Pentagon ..... 73
To make a Hexagon ..... 74
To make an Octagon ..... 75
To make any regular Polygon ..... 75
To inferibe a Polygon in a Circle ..... 76
To defcribe a Polygon about a Circle ..... 77
To find the centre of a Polygon ..... 78
To inferibs a Circle in a Triangle ..... 73
To defcribe a Circle about a 'Triangle ..... 79
To defcribe a Citcle within or about a Square ..... 79
To defcribe a Square or Ocaagon in or about a Circle ..... 79
To infcribe a Trigon, or a Hexagon, in a Circle ..... 80.
To, infcribe a Dodecagon in a Circle ..... 80.
Page
To defcribe a Pentagon or a Decagon in a Circle ..... 81
To divisile a Circie into 12 equal Parts ..... 81
To draw a Line equal to the Circumf. of a Circle ..... 82
To drave a Right Line equal to any Are of a Circle ..... 82
To divide a Circle into any Number of equal Parts ..... 83
To inake one Triangle fimilar to another ..... 83
To make a Figure fimilar to a given one ..... 84 ..... 84
To reduce a figure from one Scale to another ..... 84
To make a Triangle equal to a Trapezium ..... 85
To make a Triangle equal to a Circle ..... s6.
To make a Parallelogram equal to a Triangle ..... 86
To make a Square equal to a Rectangle ..... 87
To make a Square equal to the Sum of two Squares ..... 87
To make a Square equal to the Diff. of two Squares ..... S8
To make a Square equal to any Number of S puares ..... 88
To make plane Diagonal.Scales ..... 89
Geometrical Remarks ..... 91
mensuration of superficies. ..... 92
To find the Area of a Parallelogram ..... 93
To find the Area of a Triangle ..... 95
To find any Side of a Right-angled Triangle ..... 97
To find the Area of a Trapezoid ..... 99
To find the Area of a Trapezium ..... 100
To find the Area of any irregular Figure ..... 103
To find the Area of a Regular Polygon ..... 104
To find the Radius, or Chord, \&zc. of an Are ..... 106
To find the Diameter and Circumference of a Circle 106
To find the Length of any Circular Arc ..... 108
To find the Area of a Circle ..... 109
To find the Area of a Circular Sectur ..... 110
To find the Area of a Circular Segment ..... 112
To find the Area of a Circular Zone. ..... 115
To find the Area of a Circular Ring ..... 115
Zo meafure Long Lrregular Figures ..... 115
Page
MENSURATION OF BOLSDS. ..... 116
Definitions ..... 116
To find the Solidity of a Cubc ..... 121
To find the Solidity of a Parallelopipedon ..... 121
To find the Solidity of any Prifm ..... 122
To find the Convex Surface of a Cylinder ..... 123
To find the Convex Surface of a Cone ..... 124
To find the Surface of a Conical Frutiom ..... 125
To find the Solidity of any Pyramid or Corie ..... 126
To find the Solidity of the Fruft. of a Pyr. or Cone ..... 127
To find the Solidity of a Wedge ..... 130
To find the Solidity of a Prifmoid ..... 130
To find the Surface of a Sphere or Globe ..... 138
To find the Solidity of a Sphere or Globe ..... 133
To find the Solidity of a Spherical Segment. ..... 134
To find the Solidity of a Spherical Zone ..... 134
To find the Surface of a Circular Spindle ..... 135
To find the Solidity of a Circular Spindle ..... 137
To find the Solidity of the Zone of a Circ. Spindle ..... 138.
To find the Surface or Solidity of any regular Body ..... 141
To find the Surface of a Cylindrical Ring ..... 143
To find the Solidity of a Cylindrical Ring ..... 143
OF THE CARPENTERS' RULE. ..... 144
To Multiply Numbers by the Rule ..... 145.
To Divide by the Rule ..... 146
To Square any Number ..... 146
To extract the Square Root ..... 146
To find a Mean Proportional ..... 147
To: find a Third Proportional ..... 147
To find a Fourth Proportional ..... 147
TIMBER MEASURE.
To meafure Board or Plank ..... 148
To meafure Squared Timber ..... 149
To meafure Round Timber ..... 151
Page
ARTIFICERS WORK. ..... 154
Bricklayers' Work ..... 155
Mafons' Work ..... 157
Carpenters' Werk ..... 159
Slarers and 'Tilerrs' Work ..... 162
Plafterers' Work ..... 163
Painters' Work ..... 164
Glaziers' Work ..... 165
Pavers' Work ..... 167
Plumbers' Work ..... 168
VAULTED AND ARCHED RQOFS. ..... 169
To find she Surface of a Vaulted Roof ..... 169
To find the Solid Content of a Vaulted Roof ..... 170
To find the Surface of a Dome ..... 171
To find the Solid Content of $x$ Dome ..... 172
To find the Superficies of a Saloon ..... 172
To find the Solid Content of a Saloon ..... 173
To find the Concave Surface of a Groin ..... 174
To find the Solid Content of a Groin ..... 17.5
band surveying. ..... 176
Of the Surveying Chain ..... 176
Of the Plain Tatte ..... 178
Of the I heordolite ..... 181
Of the Crofs ..... 182
Of the Field-book ..... 184
THE PRACTICE OT SURVEYBNG。 ..... 186
To meafure a Line ..... 186
To meafure Angles and Bearings ..... 188
To meafure Uffets ..... 189
To meafure a Trianglar Field ..... 190
To meafure a Four-fided Fieht ..... 191
To furvey any Field by the Chain only ..... 192
To furvey a Field with the Plain Table ..... 194
Page
To furvey a Field with the Theodolite ..... 196
To furvey a Field having crooked Fences ..... 199
To furvey a Field by two Stations ..... 199
To furvey a Large Bfa: ..... 2011
The New Method of Surveying ..... 204
To furiey a County, or a Large Tract ..... 213
To furves a City or Town ..... 216
OFPLANNING, COMPUTING, AND DIVIDING. ..... 217
To lay down the Plan of any Survey ..... 217
To compute the Contents of Fields ..... 219
To transfer a Plan to another Paper ..... 220
CONIC SECTIONS AND THEIR SOLIDS. ..... 229
Definitions ..... 229
To defcribe an Ellipfe ..... 231
To find the Tianifverfe, Conj. \&c. in an Ellipfe ..... 232.
To find the Circumference of an Ellipfe ..... 236
To find the Area of an Ellipfe ..... 337
To find the Area of an Elliptic Segment ..... 237
To defcribe a Parabola ..... 235
To find a Parabolic Abfcifs or Ordinate ..... 239
To find the length of a Parabolic Curve ..... 239
To find the Area of a Parabola ..... 2.10
To find the Area of a Parabolic Fruftum ..... $2+1$
Tu conftruct or défrcibe an Hyperbola ..... $2+2$
To find the 'Traniverfe, Conj. \&cc. in an Hyperbola ..... 242
To find the length of an Hyperbolic Curve ..... 246
To find the Area of an Hyperbola ..... 248
To find the Solidity of a Spheroid ..... 250
To find the Solidity of a Spheroidal Segment ..... 251
To find the Solidity of a Spheroidal Frufum ..... 253
To find the Solidity of an Elliptic Spindle ..... 2.56
To find the Fruftum or Seg. of an Elliptic Spindle ..... 259
To find the Solidity of a Paraboloid ..... 261
To find the Solidity of a Paraboloidal frufum ..... 262
Page
To find the Solidity of a Parabolic Spindle ..... 262
To find the Fruftum of a Parabolic Spindle ..... 263
or gauging. ..... 265
Of the Gauging Rule ..... 265
The Ufe of the Gauging Rule ..... 267.
Of the Diagonal Rod ..... 269
Of Cafks as Divided into Varieties ..... 270
To find the Content of a Cafk of the Firt Form ..... 271
'To fund the Content of a Cafk of the Second Form ..... 273
To find the Content of a Cafk of the Third Form ..... 274.
To find the Content of a Caik of the Fourth Form ..... 275
To find the Content of a Caif by Four Dimenfions ..... 277
To find the Content of a Cafk by Three Dimenfions ..... 278
of ullaging. casks. ..... 280
To find the Ullage by the Sliding Rule ..... 280
To Ullage a Standing Cafk by the Pen ..... 281
To Ullage a Lying Cafk by the Pen ..... 282
of specific gravity: ..... 283
A Table of Specific Gravities ..... 283
To find the Magnitude of a Body from its Weight ..... 284
To find the Weight of a body from its Magnitude ..... 285
To find the Specific Gravity of a Body ..... 286
To find the Quantity of Ingredients in a Compound ..... 287
weight and dimensions of balls. ..... 289
To find the Weight of an Iron Ball ..... 289
To find the Weight of a Leaden Ball ..... 290
To find the Diameter of an Iron Ball ..... 291
To find the Diameter of a Leaden Ball ..... 293
To find the Weight of an Iron Shell ..... 294
To find how much Powder will fll a Shell ..... 295
To find the Powder to fill a Rectangular Box ..... 296
To find the Powder to fill a Cylinder ..... 296
Page
To find the Shell from the Weight of the Powder . . 297
To find a Cube to any Weight of Powder ..... 298
To find a Cylinder to any Weight of Powder ..... 299
of piling balls and shells. ..... 300
To find the Number of Ballis in a Triangular Pile ..... 301
To find the Number of Balls in a Square Pile ..... 301
To find the Number in 2 Rectangular Pile ..... 302
To find the Number in, an, Incomplete Pile ..... 303
of distances byithe velocity of sound ..... 305
miscellaneous Questions ..... 306
a table of circular segments ..... 316
THE USE OF THE TABLE OF SEGMENTS. ..... 321


## INTRODUCTION.

## DECIMAL FRACTIONS.

$A^{\text {Decimal is a fraction whofe denominator is an }}$ unit, or 1 , with fome number of ciphers annexed; as $\frac{1}{10}$ or $\frac{4}{105} \frac{5}{1050}$

Decimals are written down without their denominaors, the numerators being fo diftinguifhed as to fhow what the denominators are; which is done, by feparating, by a point, fo many of the right-hand figures from he reft, as there are ciphers in the denominator; the igures on the left fide of the point being integers, and hofe on the right decimals.


But when there is not a fufficient number of figurs: n the numerator, ciphers are prefixed to fupply the lefect.

So that the deneminator of a decimal is always 1 , with as many ciphers as there are figures in the decimal.

A finite decimal, is that which ends at a certain number of places. But an infinite decimal, that which no where ends, bat is underfood to be indefinitely continued.

A repeating decimal, has one figure or feveral figures continually repeated. As $20 \cdot 2+53 \mathrm{Sc}$, which is a fingle or fimple repetend. And $20.2424^{\circ} \& \mathrm{c}$, or $20.24624 \dot{6}^{\circ} \& \mathrm{c}$. which are compound reperends; and are otherwife called circulates, or circulating decimals. A point is fet over a fingle reperend, and a point over the firt and laft figures of a circulating decimal.

The firf place, next after the decimal mark, is 10 h part, the fecond is 100 th parts, the third is 10000 th parts, and fo on, decreafing towards the right hand hy 10 ths, or increafing towards the left by 10 ths, the fame as whole or integer numbers do. As in the following fiale of Notation.


Ciphers

Ciphers on the right hand of decimals do not alter their value.

\&c, are all of equal value.
But ciphers before decimal figures, and after the fepio rating point, diminif their value in a ten-fold proportion for every cipher.


And $f$ on on
So that, in any mixed or fra Atonal number, if the feparating point be moved
one, two, three, \&cc, places to the right-hand, every figure will be
$10,100,1000$, \&e, times greater than before.
But if the point he moved towards the left hand, then every figure will be diminimed in the fame manner, or the whole quantity will be divide 1 by

$$
10,100,1000, \& c_{0}
$$

## ADDITION OF DECIMALS.

SEt the numbers under each other according to the value of their places, as in whole numbers, or fo that the decimal points ftand directly below each other. Then add as in whole numbers, placing the decimal point in the fum ftraight below the other points.

| EXAMPLES. |  |  |
| :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ |
| 276 | 7530 | 312.09 |
| 39.213 | 16.201 | 3.5711 |
| 72014.9 | 3.0142 | 4195.6 |
| $417^{\circ}$ | 957.13 | 71.498 |
| 5082. | 6.72819 | 9739.215 |
| $2214^{\circ} \cdot 998$ | .03014 | 179. |
| 79993.411 | $85.13 \cdot 10353$ | 14500.9741 |

Ex. 4. What is the fum of $\cdot 014, \cdot 9816, \cdot 32, \cdot 15914$, 72913, and *0047 ?
F.x. 5. What is the fum of $27.148,918.73,14016$, 294304, $\cdot 7138$, and $221 \cdot 7$ ?

Ex. 6. Required the fum of $312.98 .4,21 \cdot 3918$, $2700 \cdot 42,3 \cdot 153,27 \cdot 2$, and $681 \cdot 06$.

## SUBTRACTION of DECIMALS.

Set the less number under the greater in the fame manner as in addition. Then fubtract as in whole numbers, and place the decimal point in the remainder ftraight below the other points.
EXAMPLES.


Ex. 4. What is the difference between 91.713 and 4.07?

Ex. 5. What is the difference betweon 2714 , and -916?

Ex. 6. What is the difference between 16.37 and $800 \cdot 135$.

## MULTIPLICATION of DECIMALS.

Sze down the factors under each other, and multiply them as in whole numbers, then from the product, towards the right hand, point off as many figures for decimals, as there are decimal places in both factors to gether.

But if there be not as many figures in the product as there ought to be decimals, prefix the proper number of eiphers to fupply the defect.

## EXAMPLES.



Ex. 4. What is the prodect of 51.6 and 21 ?
Ex. 5. What is the product of 314 and 029 ?
Ex. G. What is the product of 051 and $\cdot 0091$ ?
Note. When decimals are to be multiplied by 10 , or 100 , or $1000, \& \mathrm{c}$, that is by 1 with any number of ciphers, it is done by only moving the decimal point as many places farther to the right hand, as there are ciphers in the faid multiplier; fubjoining eiphers if there be not fo many figures.

> EXAMPLES.

1. The product of $51 \cdot 3$ and 10 is 513
2. The product of 2.714 and 100 is
3. The product of 9163 and 1000 is
4. The product of. 21.81 and 10000 is

## CONTRACTIOX。

When the product would contain feveral more decimals than are neceffary for the purpofe in hand, the work may be much contracted thus, retaining only the proper number of decimals.

Set the units figure of the multiplier ftraght under fuch decimal place of the muliplicand as you intend the laft of your product fhall be, writing the cther figures of the multiplier in an inverted order: then in multiplying, reject all the figures in the multiplicand which are on the right of the figure you are multiplying by; fetting the products down fo, that their right-hand figures fall ftraight below each other; and carrying to fuch right-hand figures from the product of the two preceding figures in the multiplicand thus, viz. 1 from 5 to 14,2 from 15 to 24,3 from 25 to $34, \& \mathrm{c}$, inclufively; and the fum of the lines will be the product to the number of decimals required, and will commonly be to the neareft unit in the laft figure.

## EXAMPIES.

1. Muliply $2 \cdot 14986$ by $92 \cdot 11055$, fo as to retain o:lly four places of decimals in the product.

| Contracted. |
| ---: |
| $27.1+930$ |
| 53014.29 |
| 24.34874 |
| 542997 |
| 108599 |
| 2715 |
| 81 |
| 14 |
| 2508.9280 |

> Common uay. $27 \cdot 14985$
> $92 \cdot 4103 j$
$13 \mid 574930$
8144958
2714.986

108599 44
542997 2
24434874
2508•9280 650510
2. Multiply 480.14936 by 2.72416 , retaining four decimals in the product.
3. Multiply $2490 \cdot 3048$ by .573286 , retaining five decimals in the product.
4. Multiply $325 \cdot 701428$ by 7218393 , retaining three decimals in the product.

## DIVISION or DECIMALS.

Divide as in whole numbers. And to know how many decimals to point off in the quotient, ohferve the following rules:

1. There muft be as many decimals in the dividend, as in both the divifor and quotient, together; therefore, point off for decimals in the quotient, as many figures, as the decimal places in the dividend exceed thote in the divifor.
2. If the figures in the quotient be not fo many 26 the rule requires, fupply the defect by prefixing ciphers.
3. If the decimal places in the divifor be more than thofe in the dividend, add ciphers as decimals to the dividend, till the number of decimals in the dividend be equal to thofe in the divifor, and the quotient will be integers till all thefe decimals are ufed. And in cafe of a remainder after all the figures of the dividend are ufed, and more figures are wanted in the quotient, annex ciphers to the remainder, to continue the divifion as far as neceffary.
4. The firt figure of the quotient will poffefs the fame place, of integers or decimals, as that figure of the dividend which ftands over the units place of the firt product.

## EXAMPLES.

1. Divide $3424 \cdot 6056$ by $43 \cdot 6$. 2. Divide 3877875 by 675 . $43 \cdot 6) 3424 \cdot 6056(78 \cdot 546 \cdot 675) 3877875000(5745000$ $\begin{array}{lc}3726 & 5028 \\ 2380 & 3037 \\ 2005 & 3375 \\ 2616 & \ldots .000\end{array}$
2. Divide
3. Divide 0081892 by •347. 5. Divide $3 \cdot 15$ by 37.5 .
4. Divide $7 \cdot 13$ by $\cdot 18$. 6. Divide $109 \cdot$ by 215 .

## CONTRACTIONS.

1. If the devifor be an integer with any number of ciphers at the end ; cut them off, and remove the decimal point in the dividend fo many places farther to the left as there were ciphers cut off, prefixing ciphers if need be; then proceed as before.

## EXAMPLES.

1. Divide 953 by 21000 . 2. Divide 41020 by 32000 .

| $21: 000)$ |  |
| :---: | :---: |
| 7 | 953 |
| 7 | $31766^{2}$ |
| $.04538 \& c$. |  |

Here, firf divide by 3, and then by 7 , becaufe 3 times 7 is 21 .
3. Divide $45 \cdot 5$ by 2170 .

$$
\begin{aligned}
&32.000) 41 \cdot 020 \\
& \text { S) } 10 \cdot 255 \\
& 1 \cdot 281875
\end{aligned}
$$

Here, firft divide by 4, and then by 8 , becaufe 4 times 8 is 32 .
4. Divide 61 by 79000 .
2. Whence, if the divifor be 1 with ciphers, the quatient will be the fame figures with the dividend, having the decimal point fo many places farther to the left as there are ciphers in the divifor.

## EXAMPLES.

$$
\begin{array}{ll}
2173 \text { by } 100=2 \cdot 173 & 419 \text { by } 10= \\
5 \cdot 16 \text { by } 1000= & 21 \text { by } 1000=
\end{array}
$$

3. When the number of figures in the divifor is great, the divifion at large will be very troublefome, but may be contracted thus:

Having by the fourth general rule, fouxd what place of decimals or integers the firt figure of the quotient B 5
will poffers; confider how many figures of the quotient will ferve the prefent purpofe; then take the fame num. ber of the left-hand figures of the divifor, and as many of the dividend figures as will contain them (lefs than 10 times); by thefe find the firft figure of the quotient; and for each following figure divide the laft remainder by the divifor, wanting one figure to the right more than hefore, but obferving what muft be carried to the firf product for fuch omitted figures, as in the contraction of Multiplication; and continue the operation till the divifor is exhaufted.

When there are not fo many figures in the divifor as are required to be in the quotient, begin the divifion with all the figures as ufual, and continue it till the number of figures in the divifor, and thofe remaining to be found in the quotient, be equal, after which ufe the contraction.

## EXAMPLES.

1. Divide 2508.92806 by 92.41035 , fo as to have four decimals in the quotient. - In this cafe the quotient will contain fix figures. Hence

$$
\begin{gathered}
92 \cdot 4103,5) 2508 \cdot 928,06(27 \cdot 1498 \\
6607211 \\
1389 \\
4608 \\
912 \\
80 \\
6 \cdots \cdots
\end{gathered}
$$

2. Divide $4109 \div 351$ by $230 \cdot 409$ fo that the quotient may contain four decimals.
3. Divide $37 \cdot 10438$ by 5713.96 that the quotient may contain five decimals.
4. Divide 913.08 by 2137.2 that the quotient may centaio three decimals.

## REDUCTION of DECIMALS.

1. To reduce a vulgar fraction to a Decimal. Divide the numerator, with as many decimal ciphers annexed, as may be neceffary, by the denominator; and the quotient will be the decimal fought.

## EXAMPLES.



$$
\begin{aligned}
& \text { 9') } 1 \cdot 000000 \\
& \text { 11) } 0.11111 . \\
& 0.0101018 \mathrm{sc}=\frac{1}{98}
\end{aligned}
$$

$$
5) 1 \cdot 0
$$

5) 0.20
6) $0 \cdot 04$

$$
0.013338 \mathrm{sc}=\frac{7}{25}
$$

Here divide by 9 and 11, Here divide by 5,5, and 3, becaufe 9 times 11 is 99 . becaufe $5 \times 5 \times 3=75$, And the decimal value of And the decimal value of $\frac{1}{39}$ is the circulate $\cdot 0 \mathrm{i}$. $\quad \frac{1}{75}$ is the repetend $\cdot 01 \dot{3}$.
other examples.

So that whenever we meet with the repetend $\dot{3}$, in any operation, we may fubftitute $\frac{1}{2}$ for it: in like manner we may take $\frac{2}{3}$ for $\cdot \dot{6}$, and $\frac{1}{6}$ for $\cdot 1 \dot{6}$, and $\frac{1}{9}$ for $i$, and $\frac{9}{9}$ or 1 for $\cdot \dot{9}$, \& $c$.

Note, When a great many figuies are required in the decinal, and the denominator of the given fraction is a prime number greater than 11, the operation will be beft performed as follows.

Suppofe, for inflance, we would find the reciprocal of the prime number 29 , or the value of the fraction $\frac{1}{29}$ in decimal numbers. Firt divide $1 \cdot 000$ by 29 , in the common way, fo far as to find two or three of the firt figures, or till the remainder becomes a fingle figure, and then affume the fupplement to complete the quotient. Thus we Thall have $\frac{1}{29}=0.03448 \frac{8}{39}$ for the complete quotient; which equation multiply hy the numerator 8, and it will give $\frac{8}{29}=0.2758 \frac{64}{29}$ or rather $\frac{8}{29}=0.27586 \frac{\circ}{29}$. Subftitute this inftead of the fraction in the firt equation, and we Shall haye $\frac{1}{29}=0.0344827586 \frac{6}{20}$. Again, multiply this equation by 6 , and it will give $\frac{6}{25}=$ $0.2065965517 \frac{7}{25}$, and then by fubflitution $\frac{1}{29}=0.034482$ $75862068965517 \frac{\pi}{2} . \quad$ Agair, multiply this equation by 75 and it becomes $\frac{7}{29}=0.24137931034482758620 \frac{1}{2} \frac{0}{9}$, and then by fubfitution $\frac{1}{2}=0.03448275862068965517$ $24137931034482758620 \frac{1}{2} \frac{0}{9}$; where every operation will at leaf double the number of figures found by the preceding operation. An'd this will be an eafy expedient for converting divifion into multiplication in all cafes. For this reciprocal of the divifor being thus found, it may be multiplied by the dividend to produce the quotient.

## .II. To reduçe a Decimal to a Vulgar Fraction.

Under the figures of the given Decimal write its proper denominator; which fraction, abbreviated as much as it can be, will be the vulgar fraction fought.

## EXAMPLES.

III. To find the Value of a decimal, in the Lower Denominations.
Multiply the given Decimal by the number of parts in the next lower denomination; from the product cut off as many decimals as are in the given number.

Multiply thefe by the parts in the next lower denomination again, cutting off the fame number of decimals as before.

And proceed in the fame manner to the loweft denomination; then the feveral integer parts cut off on the left hand will give the value of the decimal propofed.

> EXAMPLES. .


## OTHER EXAMPLES。

| Queftions. | Anfrwers: 0 |
| :---: | :---: |
| 1. - 7751 | 16s 6d /ón 3 |
| 2. - 6258 | 078 |
| 3. - 86351 | 173 |
| 4. - 0125 lb troy | 3 dwts |
| 5. - ${ }^{469.1 \mathrm{lb} \text { troy }}$ | 5 oz .12 dwts 15 gr |
| 6. - 625 cwit. | 2 gr .14 lb |
| 7. - 009943 mile | 17 yd 1 f 6 in almoft |
| 8. - 6875 yd cloth | 2 qu 3 nl |
| 9. - 3375 acr | 1 rd 14 pl |
| 10. - 2083 hhd wine | 13 gl |
| 11. - 40625 qr corn | 3 bu 1 pk |
| 12. - 42857 month | 1 wk 5 day nearly |

IV. To bring Quantities to Decimals of Higher Denominations.

## CASE 1.

If a fingle integer or decimal be proposed, reduce it to the higher denomination, by dividing as in reduction of whole numbers.

## EXAMPLES。

1. Reduce 9 d to the decimal of a pound.

2. Reduce 1 dwt to the decimal of a lb.

| 20 | 1 dwt |
| ---: | :--- |
| 12 | $0 .() 5 \mathrm{oz}$ |
| Anf. | 0.00416 lb |
|  |  |

Queftions.
3. Reduce 26 d to 1 fterl - . . 0010851 .
4. Reduce 7 drams to lb avoird - 02734375 lb
5. Reduce $2 \cdot 15 \mathrm{lb}$ to a cwt . $\cdot 019196 \mathrm{cwt}$
6. Reduce 24 j dis to a mile - $\cdot 01366^{\circ}$ mile
7. Reduce $\cdot 056$ pole to an acre - 00035 acre
8. Reduce 1.2 pint to hd wine - 00238 hd
9. Reduce 14 min to a day - - $009722^{\text {day }}$
10. Reduce $\cdot 21$ pint to a peck - 013125 peck

## CASE II.

A compound number may be reduced to a fuperior name by reducing each of its parts, and raking the fum of the decimals : the bet way so do which is thus:

Write the given numbers under each other, proceeding orderly from the leaf to the greateft name, for dividends; draw a perpendicular line on the left of there, and on the left of it write oppofite to each dividend fuch a number, for a divifor, as will reduce it to the next fuperior name; then begin with the upper divifion, and affix the quotient of each to the next dividend, as a decimal part of it, before it is divided, and the lat fum will be the anfwer.

## EXAMPLES 。

1. Reduce $3112 \mathrm{~s} 6 \frac{3}{4} \mathrm{~d}$ to 2. Reduce 5 oz 12 dwt 16 gr the denomination of 1 .

| 4 |  |
| ---: | :--- |
| 12 | 6.75 |
| 20 | 12.5625 |
| AnS. | .628125 |

to the denom, of lb .

| 24 | 16 |
| ---: | :--- |
| 20 | $12 \cdot 66$ |
| 12 | 5.633 |
| Ant. | $0.4699^{\circ}$ |

2uefions,

## 2uefions.

3. Reduce 19117 s $4 \frac{3}{4} \mathrm{~d}$ to 1
4. Reduce 15 s 6 d to 1
5. Reduce $7 \frac{1}{2} \mathrm{~d}$ to a fhil
6. Reduce 3 cwt 2 gr 14 lb to cwt
7. Reduce 17 yd 1 ft 6 in to a mile
8. Reduce 2 gr 3 nls to a yard
9. Reduce 13 ac 1 r. 14 pol to acres
10. Reduce 13 gal 1 pint to hd wine
11. Reduce 3 bufh 1 pec to a qr
12. Reduce 3 mol we 5 da to mon

Anfwers. 19.86354161
$\cdot 7751$
-625 s
$3 \cdot 625 \mathrm{cwt}$
-00994318 mil

- 6875 yd
$13 \cdot 3375$ acr
- 2.983 hd
- 40625 gr
3.42857 mon


## CIRCULATING DECIMALS.

It has already been obferved, that when an infinite decimal repeats always one figure, it is a fingle repetend; and when more than one, a compound repetend, or a circulate: alfo that a point is fet over a fingle repetend, and 2 point over the firft and laff figures of a circulate.

It may further be obferved, that when other decimal figures precede a repeeiend, in any numbers, it is called a mixed number or quantity, as $\cdot 23$, or $\cdot 104123$ : otherwife it is a pure repetend, as $\cdot \dot{3}$ and $\cdot \dot{2} 23^{\circ}$.

Sinilar repetends begin at the fame place, and confift of the fame number of figures: as $\cdot 3$ and $\cdot \dot{6}$, or $1 \cdot \dot{3} 4 i$ and $2 \cdot 156$.

Diffimilar repetends begin at different places, and confift of an unequal number of figures.

Similar and conterminous repetends begin and end at the fame place, as $2 \cdot 90^{\circ} 4$ and $\cdot 0613^{\circ}$.

## REDUCTION of REPEATING DECIMALS。

## CASE 1.

To reduce a fingle Repetend to a Vulgar Fraction.
Make the given decimal the numerator; and for a denominator take às many nines as there are recurring places in the given repetend.

If one or more of the left-hand places, in the given decimal, be ciphers, annex as many ciphers to the right-hand of the nines in the denominator.

## EXAMPLES.

1 So $\cdot \dot{3}=\frac{3}{9}=\frac{1}{3} \cdot 4$ And $2 \cdot 6 \dot{6}=2 \frac{63}{9}=2 \frac{7}{72}$. 2 And $\cdot 05^{\circ}=\frac{5}{99}=\frac{1}{15} \cdot 5$ And $\cdot 0594405^{\circ}=\frac{594405}{9999999}=\frac{17}{2} \frac{7}{8} 6^{\circ}$.


## CASE II:

To reduce a mixed Repetend to a Vulgar Fraction.
To as many nines as there are figures in the repetend, annex as many ciphers as there are finite places, for the denominator of the vulgar fraction.

Multiply the nines in the denominator by the finite part of the decimal, and to the product add the repeating part, for the numerator.

Or find the vulgar fraction as before, anfwering to the repetend, then join it to the finite part, and reduce them to a common denominator.

## EXAMPLES．

1．So $\cdot j 3=\frac{9 \times 5+3}{90}=\frac{48}{90}=\frac{8}{15}$
2．And $\cdot 58 \dot{3}=\frac{58 \times 9+3}{200}=\frac{525}{900}=\frac{7}{12}$
3．Ald $\cdot 1308=\frac{13 \times 9+8}{1}=\frac{125}{y 00}=\frac{3}{30}$
4．And $\cdot 5923=\frac{5 \times 999+025}{9090}=\frac{5990}{9290}=\frac{16}{27}$

## ADDITION of REPETENDS．

Maxe every line to begin and end at the fame place， by extending the repetends，and filling up the vacancies with the proper figures and ciphers．Then add as in common nuinbers；only increafe the fum of the right－ hand row，or laft row of the repetends，by as many units as the firft row of repetends contains nines．And the fum will circulate at the fame places as the other lincs．

## 影AMPLES。

| （1） | （2） |
| :---: | :---: |
| $39.6548=39.65480^{\circ}$ | $91 \cdot 3.57=91 \cdot 3.570^{\circ}$ |
| $81.046=81.04666^{\circ}$ | $72 \cdot 3 \dot{8}=72 \cdot 3888$ |
| $42.30^{\circ}=42.3555{ }^{\circ}$ | $7.2 i^{\circ}=7.2111^{\circ}$ |
| $9.837=9.83777^{\circ}$ | $4.2965^{\circ}=4 \cdot 2965^{\circ}$ |
| Sum 172－89480 | Sum $175 \cdot 2.235^{\circ}$ |

$$
\begin{aligned}
& \text { (3) } \\
& 9 \cdot 8 \cdot \dot{4}=9 \cdot 814 \dot{8} 148 i \quad 2 \cdot 41=2 \cdot 41 \\
& 1.5=1 \cdot 50000000 \quad 13 \times 215=130151515 i \\
& : 7 \cdot 20^{\circ}=5: 20666666^{\circ} \quad 5.5=5.8 \\
& 0.83=0.33333333^{\circ} \quad 27 \cdot 096=27.09696969 \\
& 125 \cdot 0 \dot{0}=\frac{125 \cdot 00090909}{0.913}=\frac{0.21391391}{\text { Sum 223.j0579390 }} \quad \text { Sum } 49.4360351 \dot{2}
\end{aligned}
$$

SUBTRACTION of REPETENDS.
MAKE the repetends to begin and end together, as in addition. Then fubtract as ufual; only, if the repetend of the number to be fubtracted exceed the repetend of the other number, make the laft figure of the remainder 1 lefs than it otherwife would be.

## EXAMELBS.

(1)

(3)
$29 \cdot 2 i=29 \cdot 21212 i$
$3 \cdot 56 \dot{i}=\frac{3 \cdot 56156 i}{25 \cdot 6.5055 \dot{9}}$
(2)
$89.576=89.576^{\circ}$
$12.584 . \dot{6}=12.584 .6$
Diff. 76.9913
(4)
$87 \cdot+10 i=87 \cdot 1.161 \dot{4}^{\circ}$
$3 . \dot{532}=0 . \dot{5} 323 \dot{2}$
Diff. $86.8838 i$
MUL.

## MULTIPLICATION of REPETENDS.

1. When a repetend is to be multiplied by a finite number: Multiply as in common numbers; only obferve what mult be carried from the beginning of the repetend to the end of it. And make all the lines begin and end together when they are to be added.
2. In mulislying a finite decimal by a fingle repetend; imultiply by the repetend, and divide by 9 or 9 . 0 .

In more complex cafes, reduce the repetends to vulgar fractions; then divide thefe, and reduce the quotient to a decimal, if neceffary.

EXAMPLES.


## (5)

Mult, $1 \cdot 200^{\circ}$ by 3.5

$$
\begin{aligned}
& 1 \cdot 2 \dot{0} 0^{\circ}=1 \cdot 2 \frac{6}{99}=1 \cdot 2 \frac{2}{3}=1 \frac{68}{336}=\frac{398}{3} \frac{8}{6} \\
& \text { and } 3 \cdot 5=3 \frac{5}{9}=\frac{32}{9} \text {; } \\
& \text { then } \frac{308}{3} \frac{8}{30} \times \frac{32}{-9}=\frac{12736}{2970}=4.2882154 \text {. }
\end{aligned}
$$

## DIVISIQN or REPETENDS.

1. If the dividend only be a repetend, divide as in common numbers, bringing down always the recurring figures, till the quotient become as exact as requifite.
2. And if the divifor only be a repetend, it will be beft to change it into its equivalent vulgar fraction, then multiply by its denominator, and divide by its numerator.
3. But if both divifor and dividend be repetends, change them both to vulgar fractions.

## EXAMPLES.

(1)
1.2) $2 \cdot 5253^{\circ}$

2-104
17.) $51 \cdot 491\left(3.028^{\circ}\right.$

49
151
151
(2)
8) $27 \cdot 911^{\circ}$
$3 \cdot 489027^{\circ}$
(4)
27) $193 \cdot 399 ? 6$
9) $64 \cdot 46642$
$7 \cdot 162935^{\circ}$
5. Divide
5. Divide $99^{\circ} 450.3$ by $30^{\circ} 0^{\circ}$ or $3 \frac{6}{9}=3 \frac{2}{3}=\frac{11}{3}$ 3
11) $298 \cdot 36510$

$$
27 \cdot 1241
$$

6. Divide $4 \cdot 288215^{\circ}+$ by $3 \cdot 5$ or $3 \frac{3}{9}=\frac{32}{9}$

9

| 32 | 380.5959363 |
| ---: | :--- |
| 8 | $9 \dot{6}+0_{0}^{\circ}$ |
| $1 \cdots 06$ |  |

7. Divide 4.28 श. $15 \dot{4}^{\circ}$ by $1: 2000^{\circ}$.

Here $1 \cdot 20 \dot{0}^{\circ}=1 \cdot 2 \frac{\circ}{95}=1 \cdot 2 \frac{2}{35}=\frac{29}{3} \frac{9}{3}{ }^{\circ}$



## Or rather thus:

Having found $1 \cdot 206=\frac{39}{3} \frac{8}{3}=\sqrt{3} \frac{3080}{6} \frac{7}{3} \times 5$, then 4.2882154

10
$42.882154^{\circ}$
3
128.646464

11
393) $1415 \cdot 11$ ( $3 \cdot 5$

## INVOLUTION;

## RAISING or POWERS.

A Power is a number produced by multiplying any given number continually by itfelf a certain number of times.

Any number is called the first power of itself; if it he multiplied by itfelf, the product is called the fecond power, and fometimes the Square; if this be multiplied by the first power again, the product is called the third power, and fometimes the cube; and if this be multiplied by the frt power again, the product is called the fourth power, and fo on: that is, the power is denominated from the number which exceeds the multiplications by 1.

> Thus: 3 is the frt power of $3 \times 3=9$ is the fecund power of 3. $3 \times 3 \times 3=27$ is the third power of 3. $3 \times 3 \times 3 \times 3=81$ is the fourth power of 3. $8 \times 8$.

And in this manner may be calculated the following table.

TABLE of the Firft Tiwelve Powers of Numberso


The number which exceeds the mulriplications by 1 , is called the index or exponent of 'the power: fo the index of the firt power is 1 , that of the fecond power is 2 , that of the third is 3 , and 50 on.

Powers are commonly denoted by, writing their indices above the filf power: fo the fecond power of 3 is denoted thus, $3^{2}$; the third power thus, $3^{3}$; the fourtl: power thus, $3^{4}$; and fo on: allo the 6 th power of 503 , thue, $503^{6}$.

Involution is the finding of powers; to do which, from their definition there evidently comes this rule. .-

## Rule.

Multiply the given number, or firt power, continually by itfelf, till the number of multiplication be 1 lefs than the index of the power to be found, and the laft prodact will be the power required.

Note 1. Becaufe fractions are multiplied by taking the products of their numerators and of their denominators, they will be involved by raifing each of their terms to the power required. And if a mixed number be propofed, either reduce it to an improper fraction, or reduce the vulgar fraction to a decimal, and proceed by the rule.
2. The raifing of powers may be fometimes fhortened by working according to this obfervation, viz, whatever two or more powers are multiplied together, their pros duct is the power whofe index is the fum of the indices of the factors; or if a power be multiplied by itfelf, the product will be the power whofe index is double of that which is multiplied; fo if we would find she fixth power, we might multiply the given number twice by itfelf for the third power, then the third power into itfelf would give the fixth power; or if we would find the feventh power; we might firlt find the third and fourth, and their product would be the feventh; or laftly, if we would
find
find the eighth power, we might firft find the fecond, then the fecond into itfelf would be the fourth, and this into itfelf would be the eighth.

## EXAMPLE1:

For the fquare of 45 .

| $\frac{45}{\frac{45}{225}}$ |
| :--- |
| $\frac{180}{2025}$ |

## EXAMPLE 3.

Sor the cube of 9.5

"EXAMPLE'2.
'For the fquare of 027


EXAMPLE4.

For the fourth power of 51

```
75.1
5.1
        51
        255
        26.01 = 5.1 2
                                    26.01 ditto
                                    \2601
                                    15606
                                    5202
*676.5201 = 5.14
```

BXAMPRE5.
For the fifth power of 29 . For the fixth power of 2.6 .


Ex. 7. The fquare of $\frac{2}{3}$ is $\frac{2}{3} \times \frac{2}{3}=\frac{4}{9}$
Ex. 8. The cube of $\frac{5}{9}$ is $\frac{5}{9} \times \frac{5}{4} \times \frac{5}{8}=\frac{\frac{12}{7} \frac{5}{4}}{5}$
Ex.0. The fyuare of $3 \frac{2}{5}$ or $\frac{17}{5}$ is $\frac{17}{5} \times \frac{17}{5}=\frac{288}{25}$

$$
=12 \frac{1}{3} \frac{4}{5}=11 \cdot 56
$$

## EVOLUTION;

OR

## EXTRACTION OF ROOTS.

The root of any given number, or power, is fuch a number, as being multiplied by itfelf a certain number of times, will produce the power; and it is denominated the firf, fecond, third, fourth, \&c. root, refpectively, as the number of multiplications made of it to produce the given power, is $0,1,2,3$, \&c ; that is, the name of the root is taken from the number which exceeds the multiplications by 1 , like the name of the power in involution.

The index of the root, like that of the power in involution, is 1 more than the number of the multiplications neceffary to produce the power or given number. So 2 is the index of the fecond or fquare root; and 3 the index of she 3 d or cubic root; and 4 the index of the 4 th root ; and fo on.

Roots are fometimes denoted by writing $\sqrt{ }$ before the power, with the index of the root againft it: fo the third root of 50 is $\sqrt[3]{50}$, and the fecond root of it is $\sqrt{ } 50$, the index 2 being omitted; which index is always, underfood when a root is named or written without one. But if the power be expreffed by feveral numbers with the fign + or,$- \& c$. between them, then a line is drawn from the top of the fign of the root, or radical fign, over all the parts of it; fo the third root of $47-15$, is
$\sqrt[3]{47-15}$. And fometimes roots are defigned like powers, with the reciprocal of the index of the root
above the given number. So the root of 3 is $3^{\frac{1}{2}}$, the root of 50 is $50^{\frac{1}{2}}$, and the third root of it is $50^{\frac{1}{3}}$; alfo the third root of $47-15$ is $\overline{47-15^{\frac{1}{3}}}$ or $(47-15)^{\frac{1}{3}}$. And this method of notation has juftly prevailed in the modern a'gebra; becaufe fuch roots, being confidered as fractional powers̀, need no other directions for any oferations to be made with them, but thofe for integral powers.

A nember is called a complete power of any kind, wher its root of the fame kind can be accurately extracted; but if not, the number is called an imperfert power, and its rood a furd or irrational quantity. So 4 is a complete power of the fecond kind, its root being 2; but an imperfect power of the third kind, its third ront being a furd quantity, which cannot be accurately extracted.

Evolution is the finding of the roots of numbers, either accurately, or in decimals to any propofed degree of accuracy.

The power is firt to be prepared for extraction, or evolution, by dividing it, by means of points or commas, from the place of units, to the left hand in integers, and to the right in decimal fractions, into periods, conraining each as many places of figures as are denoted by the index of the root, if the power contain a complete number of fuch periods; that is, each period to have two figures for the fquare root, three for the cube root, four for the fourth root, and fo on. And when the laftperiod in decimals is not complete, ciphers are added to complete it.

Note. The root will contain juft as many places of figures, as there are periods or points in the given power; and they w 11 be integers or decimals, refpectively, as the periods are fu, from which they are found, or to which they correfpond; that is, there will be as many integer or decimal figures in the root, as there are periods of integers or decimals in the given number.

## TO EXTRACT THE SQUARE RDOT.

1. Having divided the given number into periods ot two figures each, find, from the table of powers in page 24, or otherwife, a fyuare number either equal to, or the next l-fs than the firt period, which fubtract from it, and place the ruot of the fquare on the right of the given number, after the manner of a quotient in divifion, for the firt figure of the root required.
2. To the remainder annex the fecond period for a dividend; and on the left thereof fet the double of the roos already found, after the manner of a divifor.
3. Find how often the divifor is contained in the dividend, wanting its latt figure on the right hand; place that, number for the sext figure in the quotient, and on the right of the divifor, as alfo below the fame.
4. Multiply the whole increafed divifor by it, placing the product below the dividend, and fubtract it from it, and to the remainder bring down the next period, for a new dividend; to which, as before, find a divifor by doubling the fizures already found in the root; and from thefe find the next figure of the root, as in the laft article; cocinuing the operation fill in the fame manner till all the periods be ufed, or as far as you pleafe.
Note. Inftead of doubling the root, to find the new diviors, you may add the latt divifor to the figure below i.

- To prove the work, multiply the root by itfelf, and to the product add the remainder, and the furs will be the given number.

Ex. 1. To extract the root of $17 \cdot 3056$.
Having divided the given number into three periods, namely 17 , and 30 , and 56 , we find that 16 is the next fquare to 17, the firt perind, which fet below, and fubtracting, 1 remains, to which bring down 30 , the next period, and it makes 1.30 for a dividend. Then 4 , the ront
$17 \cdot 30,56(4 \cdot 16$ 16

| 81 130 <br> 1 81 |
| :---: | :---: |
| 826 4956 <br> 6 4956 | of 16 , is fet on the right of the given number for the firt figure of the root, and its: double, or $S$, on the left of the dividend for the firt, figure of the divifor; which being once contained in 13, the dividend wanting its laft figure, gives 1 for the nextfigure of the ront, which 1 is accordingly fet in the root, roaking $4 \cdot 1$, and in the divifor making 81 , as alfo helow the fame. Thefe multiplied make alfo $\$ 1$, which fet helow the dividend, and futberating, we have 49 remaining, to which the laft period 56 being brought down, it makes 4956 for the new dividend. Then, for a new divifor, either double the root $4 \cdot 1$, or elfe, which is eafier, to the laft divisor add the figure 1 ftanding below it, and either way gives 82 for the firft part of the new divifor. This 82 is 6 times contained in 495, and therefore 6 is the next figure, to fet in the root, and in the divifor, as alfo below the fame; which being then multiplied by it, gives 4956, the fame as the dividend; therefore nothing. somains, and $4 \cdot 16$ is the root of $17 \cdot 3056$, as required.

For the Root of 2025.


For the root of 000729 .

$$
\begin{aligned}
& \cdot 0,07,29(\cdot 097 \text { root } \\
& \begin{array}{l}
4
\end{array} \\
& \hline 47 \mid 329 \\
& 7
\end{aligned}
$$

Note. When all the periods of the given number are brought down and ufed, and more figures are required to be found, the operation may be continued by adding as many periods of ciphers as we pleafe, namely, annexing always two ciphers at once to each dividend. And when the root is to be extracted to a greater number of places, the work may be much abbreviated thus: liaving proceeded in the extraction after the common method till you have found one more than half the required number of figures in the root, the reft may be found hy dividing the laft remainder by its correfponding divifor, annexing a cipher to every dividual, as in divifion of decimals; or rather, without annexing ciphers, hy omitting continually ${ }^{\circ}$ the right hand figure of the divifor, after the manner of the third contraction in divifion of decimals in page 10.

So the operation for the root of 2, to 12 or 13 places? may be thus.

## EXAMPLE 4.



2828426 ). $1590631\left(562373^{\circ}\right.$
176418 -
6712 1055
 8

Here having found the firft feven fgures $1 \cdot 41+213$ by the common extraction, bv adding always perinds of ci phers, the laft fix figures 562373 are found by the method of contracted divifion in decimals, without adding ciphers to the remainder, but only pointing off a figure at each time from the laft divifor.
And the fame for the two following examples.

FXAMPLE 5.
For the roat of 3 .


EXAMPLE 6 .
For the root of 5.

In like manner may be found the following Roots.
The root of 6 is 2.449490
The root of 7 is $2 \cdot 645751$.
The root of 10 is $3 \cdot 162278$
The root of 11 is 3.316625
Rules for the Square Rocts of Vulgar Fractions and Mixed Numbers.

Firt prepare all vulgar fractions, by reducing them to their leait terms, both for this and all other roots: Then,

1. Take the root of the numerator and of the denominator, for the refpective terms of the root required. And this is the beft way if the denominator be a complete power, Bat if it be not,
2. Multiply the numerator and denominator together: take the root of the product; this root being made the nu.
numerator to the denominator of the given fraction, or made the denominator to the numerator of it, will form the fractional root required.

$$
\text { That is, } \sqrt{ } \frac{a}{b}=\frac{\sqrt{ } a b}{b}=\frac{a}{\sqrt{ } a b}
$$

And this rule will ferve whether the root be finite orinfinite. Or,
3. Reduce the vulgar fraction to a decimal, and extract, its root.
4. Mixed numbers may be either reduced to improper fractions, and extracted by the firft or fecond rule: or the vulgar fraction may be reduced to a decimal, then joined to the integer, and the root of the whole extracted.

$$
\begin{aligned}
& \text { Ex. 1. } \sqrt{\frac{2}{3} \frac{3}{6}} \text { is } \frac{5}{6} \\
& \text { Ex. 2. } \sqrt{\frac{27}{147}} \text { or } \sqrt{ } \frac{2}{19} \text { is } \frac{3}{2} \\
& \text { Ex. 3. For the root of } \frac{9}{12} \\
& \text { Here } \frac{9}{J^{2}} \text { or } \frac{15}{} \frac{75}{64} \text { ( }-966025 \text { root } \\
& \begin{array}{r|r}
166 & 1100 \\
6 & 996
\end{array} \\
& \begin{array}{r|r}
1726 & 10400 \\
6 & 10356
\end{array} \\
& \begin{array}{cc}
1732) & 44(025 \\
\ldots & 9
\end{array}
\end{aligned}
$$

Ex. 4. For the root of $\frac{3}{2}$

$$
\text { c } 6
$$

Here

$$
\begin{aligned}
& \text { Hore } \mathrm{r}_{\frac{3}{2}} \text { is }=\frac{4160^{\circ}(\cdot 645+97 \text { root }}{36} \\
& \begin{array}{r|r}
124 & 566 \\
4 & 496
\end{array} \\
& \begin{array}{r|r}
1285 & 7066 \\
5 & 6425
\end{array} \\
& \text { 1290) 641 (497 } \\
& 125
\end{aligned}
$$

> TO FIND A MEAN PROPORTIONAL.

There are various ufes of the fquare root; one of which is to find a mean proportional between any two numbers, which is performed thus: Multiply the two given numbers together, then extract the fquare root out of their product, and it will be the mean proportional fought.

Ex. 1. To findra Mean Proportional between 3 and 12. Here $3 \times 12=36$.
And $\sqrt{ } 36$ is 6 , the mean proportional fought.
For 3: 6::6:12.
Ex. 2. To find a Mean between 2 and 5 .
Here $2 \times 5=10$ ( $3 \cdot 162278$ the mean required.

| 9 |  |
| :---: | :---: |
| 61 | 100 |
| 1 | 61 |
| 626 | 3900 |
| 6 | 3756 |


| 6322 | 14400 |
| ---: | ---: |
| -2 | $126+4$ |

$$
\begin{array}{c|c}
652 \pm) & 1756(278 \\
\ldots & 491
\end{array}
$$

Note. By means of the fquare root alfo we readily find the 4 th root, or the 8 th root, or the 16 th root, $\& c \mathrm{c}$. that is, the root of any power whofe index is feme power of the number 2: namely, by. extracting fo often the fquare root'as is denoted by the index of that power of 2; that is, two extractions for the 4th root, three for the sth root, and foon.
,in: Thus for the 4 th root of $97 \cdot 41$.


So that the 4 th root of $97 \cdot 4 \mathrm{i}$ is $3 \cdot 14159999$, which expreffes the circumference of a circle whofe diameter is 1 nearly.

OTHER EXAMPLES.
The 4th root of $21035^{\circ} 8$ is 12.0431407 .
The 4th root of $=2$ is 1.189207 .

## RULE 1.

1. Point the given number into periods of three places each, beginning at units; and there will be as many integral places in tho root, as there are points aver the integers in the given number.
2. Seek the greateft cabe in the left-hand period; write the root in the quotient, and the cube under the period; from which fubtract it, and to the remainder bring down the next period: Call this the refulvend, under which draw a line.
3. Under the refolvend, write the triple fquare of the root, fo that units in the latter may ftand under the place of hundreds in the former; under the triple fquare of the root, write the triple root, removed one place to the righr; and the fum of thefe two lines call a divifor; under which draw a line.
4. Seek how of ten this divifor may be had in the refolvend, its right-hand place excepted, and write the refult in the quotient.
5. Under the divifor, write the product of the triple fquare of the root by the laft quotient figure, fetting the units place of this line, undef that of tens in the divifor; under this line, write the product of the triple root by the fquare of the laft quotient figure, let this line be removed one place beyond the right of the former: and under this line, removed one place forward to the right, fet the cube of the laft quotient figure; the fum of thefe three lines call the fubtrahend, under which draw a line.
6. Subtract the fubtrahend from the refolvend; to the zemainder bring down the next period for a new refolvend; the divifor to this, muft be the triple fquare of all the quotient added to the triple thereof, and fo on as in the third article \&ft.

EXAMPLE 1.
What is the cube root of 48228544 ?


If the work of this example be well confidered, and compared with the foregoing sule, it will be eafy to coneeive how any other example of the fame kind may be wrought. And here obferve, that when the cube root is extracted to more than two places, there is a neceffity of domg fome work upon a fpare piece of paper, in order
to come at the root's triple fquare, and the product of the triple root hy the fquare of the quotient figure, \&cc.

In this example, the given number.is a cubic number, and therefore at the end of the operation there remained nothing; for 364 multiplied by 364 , and the product multiplied by 364 again, gives 48228544 , the given number.

But if the number given be not a cubic number ; then, to the laft remainder always bring down three ciphers, and work anew for a decimal fraction if needful.

> MORE EXAMPLES.

What is the cube root of
$\left.\begin{array}{r}389017 \\ 1092727 \\ 27054036008 \\ 219365327791 \\ 122615327232\end{array}\right\}$ Anfwers. $\left\{\begin{array}{r}73 \\ 103 \\ 3002 \\ 6031 \\ 4968\end{array}\right.$

Thefe examples are all performed in the fame manner as the foregoing one.

## TO FIND TWO MEAN PRORORTIONALS.

There are many ufes of the cube root: one is to find two mean proportionals between two given numbers; which is performed thus:

Divide the greater extreme by the lefs, and the cube root of the quotient multiplied by the lefs extreme, gives* the lefs mean. Multiply the faid cube root hy the lefs mean, and the product is the greater mean proportional.

Note. This is only undertood of thofe numbers that are in continued geometric proportion.

$$
\text { EXAMPLE } 1 .
$$

What are the two mean proportionals between 4 and 108 ?

108 Divided by 4 gives ${ }^{2} 7$, whofe cube root is 3 : and the lefs extreme 4, multiplied by 3, gives 12 for the lefs mean ; and 12 multiplied by the faid root 3 , gives 36 fur the greater mean.

For 4 is to 12 as 12 to 36 and as 36 to $10 e^{\text {: }}$.

> EXAMPZE II.

To find two geometrical means between $\$$ and $1 ; 28$ ?
Here 8) 1728 ( 216 , whofe cube root is 6 . Then $E$ times 8 is 48 , the lefs mean, and 6 times 48 is 288 , the greater mean.

For 8 is to 48 as $4 S$ to $28 S$ and as 288 to $172 S$.
If the rule already given for the cube root be thought too tedious, the following one will be found much more eafy and ready for ufe.

RULE II.

## FOR THE CUBE ROOT.

1. By trials take the neareft rational cube to the given eube or number, and call it the affumed cube.
2. Then fay, as the fum of the given number and double the affumed cube, is to the fum of the affumed cube and double the given number, fo is the root of the affurned cube, to the reot required, nearly. Or as the firft fum is to the difference of the given and affumed cube, fo is the affumed root, to the difference of the roots nearly.
3. Again, by ufing, in like manner, the cube of the root lait found as a new affumed cube, another root will be obtained ftill nearer. And fo on as far as we p'eafe; ufing always the cube of the laft-found root, for the affumed cube.

## EXAMELE。

To find the cube root of $21035 \cdot 8$.
Here we foon find that the root lies between 20 and 30, and then between 27 and 28. Taking therefore 27 , is cuhe is 19683 the affumed cube. Then


Again, for a fecond operation, the cuhe of this ront is $21015 \cdot 318645155823$, and the procefs by the latter method will be thus:
$21035 \cdot 318645$ \& $:$.
2
$\begin{array}{ll}42070 \cdot 637290 & 21035 \cdot 8 \\ 21035 \cdot 8 & 21035 \cdot 318645 \&<c .\end{array}$
As $63106 \cdot 437290:$ dif. $\cdot 481355:: 97 \cdot 6047$ :
the dif. $\quad 000210854$.
confeq. the root req. is $27 \cdot 604910831$

## TO EXTRACT ANY ROOT WHATEVER.

Let G be the given power or number, $n$ the index of the power, $A$ the affumed power, $r$ its root, $R$ the required soot of G . Then

As the fum of $n+1$ times $A$ and $n-1$ times 0 , is to the fum of $n+1$ times c and $n-1$ times $A$, fo is the affumed root $r$, to the required root R .

Or, as half the faid fum of $n+1$ times A and $n-1$ times G , is to the difference between the given and affumed powers, fo is the affumed root $r$, to the difference between the true and affumed roots: which difference added or fubtracted, gives the trae root near!y.

That is, $\overline{n+1}, \mathrm{~A}+\overline{n-1} . \mathrm{c}: \overline{n+1} . \mathrm{c}+\overline{n-1}$. A: : $r:$ R.

Or, $\overline{n+1} \cdot \frac{1}{2} \mathrm{~A}+\overline{n-1} \cdot \frac{1}{2} \mathrm{G}: \mathrm{A}$ © $\mathrm{c}:: r: \mathrm{B}$ © $r$.
And the operation may be repeated as often as we pleafe. hy ufing always the laft found som for the alfumed root. and iss $n$th power for the affumed power $A$.

## EXAMPLE。

To extract the fifth root of 21035.8 .
Here it appears that the 5 th root is between $7 \cdot 3$ and 7.4. Taking 7.3 , its 5 th power is $20730 \cdot 71593$. Hence then we have


## OTHER EXAMPLES.

1. What is the $3 \mathrm{~d}_{\text {, root of } 2 \text { ? }}$
2. What is the 4th root of 2 ?
3. What is the 4 th root of $97 \cdot 41$ ?
4. What is the 5 th root of 2 ?
5. What is the 6 th root of $21035 \cdot 8$ ?
6. What is the 6 th root of 2 ?
7. What is the 7 th root of $21035^{\circ} \mathrm{s}$ ?
8. What is the 7 th root of 2 ?
9. What is the 8 th root of $21035 \% 8$ ?
10. What is the sth root of 2 ?
11. What is the 9 th root of $21035 \cdot$ s?
12. What is the 9 th root of 2 ?

Anf. 1-25.9921. Anf. $1 \cdot 189207$. Anf. $3 \cdot 1+1599$. Anf. 1-1486099. Anf. $5 \cdot 25+037$. Anf. $1 \cdot 122462$. Anf. 4•145392. Anf. 1-10+089. Anf. $3 \cdot+70323$. Anf. 1•09050s. Anf. 3.022239. Anf. $1 \cdot 080059$. General

General Rules for extracting any Root out of a Vulgar Fraction or Mixed Number.

If the given fraction have a finite root of the kind required, it is beft to extract the root out of the numerator and denominator, for the terms of the rnet required.
2. But if the fraction be not a complete power; it may be thrown into a decimal, and then extracted. Or,
3. Take either of the terms of the given fraction for the correfponding term of the root; and for the other term of the root, extract the required root of the product, arifing from the multiplication of fuch a power of the firt affigned term of the root whofe index is lefs by 1 than that of the given power, by the other term of the given number.

This rule will do when the root is either finite or infinite.

$$
\text { That is, } \sqrt[n]{ } \frac{a}{b}=\frac{n /-a b^{n-1}}{b}=\frac{a}{\sqrt[\pi]{b a^{n-1}}}
$$

4. Mixed numbers may be reduced either to improper fractions or decimals, and then extracted.

## EXAMPLES.

1. What is the cube root of $\frac{8}{27}$ ? Anf.
2. What is the 4th root of $\frac{80}{405}$ ? Anf.
3. What is the cube root of $\frac{1}{2}$ ? Anf. $\quad 9937005^{\frac{3}{3}}$.


## DUODECIMALS:

## OR <br> CROSS MCLTIPLICATION.

Dvodecimals are the calculations by feet, inches, and parts, and are fo called, becaufe they decreafe by twelves, from the place of feet, towards the right-hand. Inches are fometimes called primes, and are marked thus'; the next divifion after inches are called parts, or feconds, and are marked thus"; the next are thirds, and marked thus '"'; and fo on.

This rule is otherwife called Crofs Multiplication, becaufe the factors are fometimes inultiplied crofs ways. And it is commonly ufed by workmen and artificers in computing the contents of their work; the dimenfions being taken in feet, inches, and parts; though a much better way would be by a decimal fcale of divifions.

## RULE 1.

1. Under the,multiplicand write the fame names or denominations of the multiplier; that is, feet under feet, inches under inches, parts under parts, \&c.
2. Multiply each term in the multiplicand, beginning at the loweft by the feet in the multiplier, and fet each refult under its refpective term, obferving to carry an unit for every 12, from each lower denomination to its next fuperior.
3. In the fame manner multiply every term in the multiplicand by the inches in the multiplier, and fet the refult of each term one place removed to the right of thofe in the melliplicand.
4. Proceed in like mauner with the feconds, and all the reft of the denominations, if there be any more, fetting the product of each line always one place more towards the right-hand than the line next before, and the fum of all the lines will be the whole product required.

Or the denominations of the particular produets will be as follow :

> Feet by feet, give feet. Feet by primes, give primes. Feet by fecoads, give feconds, \& c.

> Primes by primes, give feconds. Primes by feconds, give thirds. Primes by thirds, give fourths, \&c.

Seconds by feconds, give fourth. Seconds by thirds, give fifths. Seconds by fourths, give fixths, $\& c$.

Thirds by thirds, give fixths. Thirds by fourths, give fevenths. Thirds by fifths, give eighths, \&c.

## In general thus:

When feet are concerned, the product is of the fame denomination with the term multiplying the feet.
When feet are not concerned, the name of the product is expreffed by the fum of the indices of the two factors:

Ex. 1.

$$
\begin{aligned}
& \text { Ex. 1. Multiply } 1045 \text { by } 7.8 \quad 6 \\
& \begin{array}{r}
7.8
\end{array} \\
& 72611 \\
& 610.11 \quad 4 \\
& 5 \quad 2 \quad 26 \\
& \text { 79 } 11066 \text { Anfwer. }
\end{aligned}
$$

## RULE 11.

When the feet in the multiplicand are expreffed by a large number.

Multiply firf by the feet of the multiplier, as before.
Then, inftead of multiplying by the inches and part,, Src. proceed as in the Rule of Practice, by taking fuch aliquot parts of the multiplicand as correfpond with the inches and ficonds, \&cc. of the multiplier. Then the fum of them all will be the product required.

$$
\begin{aligned}
& \text { Ex. 2. Multiply } 24010 \quad 8 \text { by } 9 \text { 4. } 6 \\
& 946
\end{aligned}
$$

## RULEIII.

If the feet in both the multiplicand and multiplier be darge numbers. .

Multiply the feet only into each other : then, for the inches and feconds in the multiplier, take parts of the multi-
multiplicand; and for the inches and feconds of the muttiplicand, take aliquot parts of the feet only in the multiplier. Then the fum of all will be the whole product.

Ex. 3. Multiply $\begin{array}{llllllll}368 & 7 & 5 & \text { by } & 137 & 8 & 4\end{array}$
$137 \quad 8 \quad 4$

1104. 368.


OTHER EXAMPLES.
2ueftions.
Answers.

4. Mult.
by $\left.-\begin{array}{rrrrr}4 & 7 & \cdot & \cdot & \cdot \\ 6 & 4 & \cdot & \cdot & .\end{array}\right\} 29 \quad 0 \quad 4$
$\left.\begin{array}{lrrlll}\text { 5. Molt. } & 14 & 9 & 9 & \cdot \\ \text { by } & 4 & 6 & \cdot & \cdot\end{array}\right\} \begin{array}{lll}66 & 4 & 6\end{array}$
$\begin{array}{llllllllll}\text { 6. Mule. } & 4 & 7 & 8 & \cdot & \cdot \\ \text { by } & 9 & 6 & . & \cdot & 44 & 0 & 10\end{array}$
7. Mult. 7866 by $\left.\begin{array}{lllll}10 & 4 & 5 & \cdot & \cdot\end{array}\right\} \begin{array}{lllllll}79 & 11 & 0 & 6 & 6\end{array}$
$\left.\begin{array}{lrrrrrr}\text { 9. Mult. } & 44 & 2 & 9 & 2 & 4 \\ \text { by } & 2 & 10 & 3 & . & .\end{array}\right\} \begin{array}{llllll}126 & 2 & 10 & 8 & 10 & 11\end{array}$


## TABLE

## or

SQUARES AND CUBES, ALSO SQUARE ROOTS AND
CUBE ROOTS.

| Number. | Square. | Cube. | Square Root. | Cube <br> Root. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | S 1.0000000 | $1 \cdot 000000$ |
| 2 | 4 | 8 | $1 \cdot+142136$ | $1 \cdot 259921$ |
| 3 | 9 | 27 | 1-7.920j08 | $1 \cdot+12250$ |
| 4. | 16 | 6. | $2 \cdot 0000000$ | 1.587401 |
| . 5 | 25 | 125 | $2 \cdot 2360680$ | $1 \cdot 709976$ |
| 6 | 36 | 216 | $2 \cdot 4494.997$ | 1.817121 |
| 7 | 49 | $3+3$ | $2 \cdot 6457513$ | 1.912933 |
| 8 | 64 | 512 | 2.8284271 | 2000000 |
| 9 | 81 | 729 | $3 \cdot 1000000$ | $2 \cdot 188084$ |
| 10 | 100 | 1000 | $3 \cdot 1622777$ | $2 \cdot 15+435$ |
| 11 | 121 | 1331 | $3 \cdot 3166248$ | 2.223980 |
| 12 | 144 | 1728 | $3 \cdot+641016$ | $2 \cdot 289428$ |
| 13 | 169 | 2197 | 36055513 | $2 \cdot 351335$ |
| 14 | 196 | 2744 | $3 \cdot 74 \cdot 16574$ | $2 \cdot 410142$ |
| 15 | 225 | 3375 | $3 \cdot 8729833$ | $2 \cdot 466212$ |
| 16 | 256 | 4096 | $4 \cdot 006: 0000$ | $2 \cdot 519842$ |
| 17 | $\because 89$ | 4913 | $4 \cdot 12510.6$ | 2.571282 |
| 18 | 324 | 58332 | $4 \cdot 2496407$ | 2.620741 |
| 19 | 361 | 6859 | $4 \cdot 3588989$ | $2 \cdot 665402$ |
| 20 | 400 | S000 | $4 \cdot+721560$ | $2 \cdot 714418$ |
| 21 | 441 | $9 \div 61$ | 4.58257 .57 | $2 \cdot 758123$ |
| 22 | 484 | 10648 | $4 \cdot 6004158$ | 2.802039 |
| 23 | 529 | 12167 | $4 \cdot 7958315$ | $2 \cdot 843867$ |
| 24 | 576 | 13824 | $4 \cdot 8: 89795$ | 2881499 |
| 25 | 625 | 13625 | 5.0000000 | 2.924018 |


| Num, ber. | Square. | Cube. | Square Root. | Cube <br> Root. |
| :---: | :---: | :---: | :---: | :---: |
| 26 | 676 | 17576 | 5.0990195 | $2 \cdot 962496$ |
| 27 | 729 | 19683 | 5.1961524 | 3.000000 |
| 28 | 784 | 21952 | 5-2915026 | 3.036589 |
| 29 | 841 | 24389 | 5-3851648 | $3 \cdot 072317$ |
| 30 | 900 | 27000 | $5 \cdot 4772256$ | 5.107232 |
| 31 | 961 | 29791 | $5 \cdot 5677644$ | 3.141381 |
| 32 | 1024 | 32768 | $5 \cdot 6568542$ | $3 \cdot 17+802$ |
| 33 | 1089 | 35937 | $5 \cdot 7445626$ | 3.207534 |
| 34 | 1156 | 39304 | 5-330y519 | $3 \cdot 239612$ |
| 35 | 1225 | 42875 | 5.9160798 | 3.271066 |
| 36 | 12.96 | 45656 | $6 \cdot 0000000$ | 3.301927 |
| 37 | 1369 | 50653 | 6.0827625 | $3 \cdot 332222$ |
| 38 | 1444 | 54872 | $6 \cdot 1644140$ | 3:361975 |
| 39 | 1521 | 59319 | $6 \cdot 24+9980$ | 3:391211 |
| 40 | 1600 | 64000 | $6 \cdot 324.5553$ | $3 \cdot+199.32$ |
| 41 | 1681 | 68921 | $6 \cdot 4031242$ | $3 \cdot+48217$ |
| 42 | 1764 | 74088 | $6 \cdot 4807407$ | $3 \cdot 476027$ |
| 43 | 1849 | 79507 | 6.5574 .385 | 3.50398 |
| 44. | 1936 | 85184 | 6.63324 .96 | 3.530348 |
| 45 | 2025 | 91125 | 6.7082039 | 3.556899 |
| 46 | 2116 | 97336 | 6.7828300 | $3.5930+8$ |
| 47 | 2209 | 103823 | $6 \cdot 85565+6$ | $3 \cdot 6088 ? 6$ |
| 48 | 2304 | 111592 | 6.9282032 | $3 \cdot 63+24.1$ |
| 49 | 24.01 | 117649 | $7{ }^{\circ} 0000000$ | $3 * 65.9306$ |
| 50 | 2500 | 125000 | 7.0710678 | $3 \cdot 684031$ |
| 51 | 2601 | 132651 | 7.1414284. | 3.7084.30 |
| 52 | 2704 | 140608 | $7 \cdot 2111096$ | 3732511 |
| 53 | 2809 | $1+8877$ | $7{ }^{\circ} 2 \cdot 01099$ | 3756286 |
| 54 | 2916 | 157464 | $7 \cdot 3484692$ | $3 \cdot 779763$ |
| 55 | 3025 | 166375 | $7 \cdot 4161985$ | 3.802953 |
| 56 | 3136 | 175616 | $6 \cdot 4893148$ | $3 \cdot 825862$ |
| 57 | 3249 | 185193 | 7-549834.4 | $3 \cdot 8+3501$ |
| . 58 | 3364 | 195112 | $7 \cdot 6157731$ | 3.870877 |
| 59 | 3481 | 205379 | $7 \cdot 6811457$ | $3 \cdot 8959.96$ |
| 60 | 3600 | 216000 | $7 \cdot 74.59667$ | - $) 14067$ |


| Number. | Square. | Cube. | Square Root. | Cube <br> Root. |
| :---: | :---: | :---: | :---: | :---: |
| 61 | 3721 | 2260881 | 7-8102497 | $3 \cdot 9564.97$ |
| 62 | 3544 | 238328 | $7 \cdot 8740079$ | $3 \cdot 0578.92$ |
| (i3 | 3969 | 250047 | 7. 9372539 | $3 \cdot 979057$ |
| 64 | 4096 | 262144 | $8 \cdot 0000000$ | $4 \cdot(000000$ |
| 65 | 4225 | 274625 | 8.0622.577 | $4 \cdot 020726$ |
| $66^{\circ}$ | 4356 | 287496 | 8.1240384 | $4 \cdot 041240$ |
| 67 | 4489 | 300763 | S. 1853528 | 4.061548 |
| 68 | 4624 | 314432 | 8.2462113 | 4.081656 |
| 69 | 4.761 | 328509 | 83066239 | $4 \cdot 101566$ |
| 70 | 4900 | 343000 | $8 \cdot 3666003$ | 4.121285 |
| 71 | 5041 | 357911 | $8 \cdot 42614.98$ | $4 \cdot 140818$ |
| 72 | 5184 | 373248 | $8 \cdot 4852814$ | $4 \cdot 16016 \mathrm{~s}$ |
| 73 | 5329 | 38,9017 | $8 \cdot 5440037$ | 4-17933! |
| 74 | 5476 | 405224 | S-6023253 | $4 \cdot 198336$ |
| 75 | 5625 | 421875 | - S.6602540 | $4 \cdot 217163$ |
| 76 | 5176 | 435976 | $8 \cdot 7177979$ | $4 \cdot 235824$ |
| 77 | 5929 | 456533 | 8.7749644 | $4: 254321$ |
| 78 | 6084 | 474552 | 8.8317609 | $4 \cdot 272659$ |
| 79 | 6241 | 493039 | $8 \cdot 8881944$ | $4: 290841$ |
| 80 | 6400 | 512000 | 8.9442719 | $4 \cdot 3088{ }^{-1} 0$ |
| 81 | 6561 | 531441 | 9.0000000 | $4 \cdot 326749$ |
| 82 | 6724 | 551368 | $9 \cdot 0553851$ | $4 \cdot 344481$ |
| 8.3 | 6889 | 571787 | $9 \cdot 110+336$ | $4 \cdot 36 \div 071$ |
| 84 | 7056 | 592704 | 9.1651514 | $4 \cdot 379.519$ |
| 85 | 7225 | 614125 | 9'21.95+45 | $4 \cdot 306830$ |
| S6 | 7396 | 636056 | $9 \cdot 2736185$ | $4 \cdot 41+005$ |
| S7 | 7569 | 6.58503 | $9 \cdot 3273791$ | $4 \cdot 431047$ |
| 88 | 7744 | 681272 | 9•38?8315 | 4.447960 |
| 89 | 7921 | 704969 | $9 \cdot 4339811$ | $4 \cdot 46+745$ |
| 5 | 8100 | 72.9000 | 94868330 | $4 \cdot 481405$ |
| 91 | S281 | 753571 | 9.5393920 | $4 \cdot 497942$ |
| 92 | 8464 | 778688 | 9.5916630 | $4 \cdot 51+357$ |
| 93 | S649 | 804357 | $9 \cdot 6136508$ | $4 \cdot 530655$ |
| 94 | 8836 | 830584 | $9 \cdot 6953597$ | $4 \cdot 546836$ |
| 9.5 | 9025 | 857375 | $9 \cdot 74679+3$ | $4 \cdot 562203$ |


| Number. | Square. | Cube. | Square Root. | Cube Root. |
| :---: | :---: | :---: | :---: | :---: |
| 96 | 9216 | 884736 | 9.7979590 | $4 \cdot 578857$ |
| 97 | 9409 | 912673 | $9 \cdot 8488578$ | 4.59+701 |
| 98 | 9604 | 941192 | $9 \cdot 8994949$ | 4.610436 |
| 99 | 9801 | 970299 | $9 \cdot 949874$ F | $4 \cdot 626065$ |
| 100 | 10000 | 1000000 | 10.0000000 | 4.64.1589 |
| 101 | 10201 | 1030301 | $10 \cdot 0198756$ | $4 \cdot 657010$ |
| 102 | 10404 | 1061208 | 10.0995049 | 4.672330 |
| 103 | 10.509 | 1092727 | $10 \cdot 1488916$ | $4 \cdot 68754.8$ |
| 104 | 10816 | 1124864 | 10.1980390 | $4 \cdot 702669$ |
| 105 | 11025 | 1157625 | 10.2469508 | 4.717694 |
| 106 | 11236 | 1191016 | 10.2956301 | 5.732624 |
| 107 | 11449 | 1225043 | 10.344.0804 | $4 \cdot 74 \% 459$ |
| 108 | 11664 | 1259712 | $10 \cdot 3923018$ | $4 \cdot 762203$ |
| 109 | 11951 | 1295029 | $10 \cdot 4403065$ | $4 \cdot 776856$ |
| 110 | 12100 | 1331000 | $10 \cdot 4880885$ | $4 \cdot 791420$ |
| 111 | 12321 | 1367631 | 10.5356538 | $4 \cdot 305890$ |
| 112 | 1254. | 1404928 | . $10 \cdot 5830052$ | $4 \cdot 820 \cdot 54$ |
| 113 | 12769 | 1442897 | $10 \cdot 6301458$ | $4 \cdot 834588$ |
| 114 | 12996 | 1481544 | 10.6770783 | 4.848808 |
| 115 | 13295 | 1520875 | $10 \cdot 7238053$ | $4 \cdot 862944$ |
| 116 | 134.56 | 1560895 | 10.7703296 | 4.876999 |
| 117 | 13689 | 1601613 | $10 \cdot 8166535$ | $4 \cdot 590973$ |
| 118 | 13924 | $16 \pm 3032$ | 10.8627805 | $4 \cdot 904868$ |
| 119 | 14161 | 1685159 | $10 \cdot 9087121$ | $4.91868^{5} 5$ |
| 120 | $14400^{\prime}$ | 1728000 | $10.95+4.512$ | $4 \cdot 932424$ |
| 121 | $146+1$ | 1771561 | $11 \cdot 0000000$ | $4 \cdot 946088$ |
| 122 | 14884 | $18158+8$ | $11 \cdot 0453610$ | 4.959675 |
| 123 | 15129 | 1869867 | 11.0905365 | 4.973190 |
| 124 | 15376 | 1906624 | 11.1355287 | $4 \cdot 956631$ |
| 125 | 15625 | 1933125 | $11 \cdot 1803399$ | $5 \cdot 000000$ |
| 126 | 15876 | 2000376 | $11 \cdot 2249722$ | 5.013298 |
| 127 | 16129 | 2048383 | $11 \cdot 2694277$ | $5 \cdot 0213526$ |
| 12 S | 16384 | -2097152 | $11 \cdot 3137085$ | 5.039684. |
| 129 | 16641 | 2146689 | $11 \cdot 3578167$ | 5.052774 |
| 130 | 16900 | 2197000 | $11 \cdot 4017543$ | 5.065797 |


| Nım ber. | Square | Cube. | Square Ruot. | Cube Root. |
| :---: | :---: | :---: | :---: | :---: |
| 131 | 17161 | 2248091 | $11 \cdot 4+55231$ | 5.078753 |
| 132 | 1742\% | 2299908 | $11 \cdot 4891253$ | $5 \cdot 091643$ |
| 133 | 17689 | 2359637 | 11.5325626 | $5 \cdot 1(14-469$ |
| 134 | 17956 | 2406104 | $11 \cdot 5758369$ | $5 \cdot 117230$ |
| 135 | 15925 | 2460375 | $11 \cdot 6189500$ | 5-12.9928 |
| 136 | $18+96$ | 2515456 | $11 \cdot 6619038$ | $5 \cdot 142563$ |
| 137 | 18769 | 2571353 | $11 \cdot 7046999$ | $j \cdot 155137$ |
| 138 | 19044 | $26^{\circ} 28072$ | $11 \cdot 7473+44$ | $5 \cdot 1676 \pm 9$ |
| 139 | 19321 | 268.5619 | 11.7898201 | $518(101$ |
| 140 | 1960 | 2744000 | 11.8321596 | $5 \cdot 192+9+$ |
| 141 | 19881 | 2503221 | 11.8743421 | $5 \cdot 204828$ |
| 142 | 20164 | 2 S 13288 | 11.9163753 | $5 \cdot 217103$ |
| 143 | $204+9$ | $2.2+207$ | $11 \cdot 9582607$ | 5.229321 |
| 144 | 20736 | 2935984 | $12 \cdot 0000000$ | $5 \cdot 241482$ |
| 145 | 21025 | 5048625 | $12 \cdot 0415946$ | 5.253588 |
| 146 | 21316 | 3112136 | $12 \cdot 0830460$ | $5 \cdot 265637$ |
| 147 | 21609 | $3176523^{\circ}$ | 12•1243557 | 5:277632 |
| 148 | 21904 | 3241792 | 12•165525 | 5.289572 |
| 14.9 | 22201 | 3307949 | 12.2065556 | $5 \cdot 301459$ |
| 150 | 22500 | 3375000 | $12 \cdot 2474487$ | $5 \cdot 313293$ |
| 151 | 22801 | 84.2951 | 12.2882057 | 5.325074 |
| 152 | 2310.4 | 3511808 | 12:32SE280 | $5 \cdot 336803$ |
| 153 | 23109 | 3581577 | $12 \cdot 3693169$ | $5 \cdot 3+8481$ |
| 154 | 237.16 | 3652264 | $12.4096736^{\circ}$ | $5 \cdot 360108$ |
| 155 | 24025 | 3723875 | $12 \cdot 4798996$ | 5.371685 |
| 156 | 24.3 .36 | 37 ¢ $6+16$ | $12 \cdot 1899900$ | 5.383213 |
| 157 | 24619 | $38(99893$ | $12 \cdot 529.96+1$ | $5 \cdot 59+690$ |
| 158 | 2+964 | $39+4312$ | $12 \cdot 5698051$ | $5 \cdot 406120$ |
| 159 | 25281 | 4013619 | 126095202 | $5 \cdot 4.17501$ |
| 160 | 2.500 | 4006000 | $12 \cdot 6+91106$ | 5.428535 |
| 161 | 25921 | 4173281 | $1 ? .6855755$ | 5.440122 |
| 162 | 20924 | 4251.228 | 12•7279221 | $5 \cdot+51362$ |
| 163 | 26569 | $43307+7$ | $12 \cdot 7671453$ | $5 \cdot \pm(62556$ |
| 16.1 | 26sig ${ }^{\text {c }}$ | $4+10944$ | $12 \cdot 8062+85$ | 5.473703 |
| 165 | 27225 | 4.992125 | $12.8452326^{\circ}$ | $5 \cdot 1.5 \cdot 1806$ |


| Num. ber. | Square. | Cube. | Square Root. | Cube Root. |
| :---: | :---: | :---: | :---: | :---: |
| 166 | 27550 | 4574:96 | 12.8540987 | 5.495865 |
| 167 | 27889 | $4657+63$ | $12 \cdot 9228480$ | 5.500879 |
| 168 | 28224 | +74163: | 12.9614814 | 5.517848 |
| 169 | 28561 | 4826809 | 13.000:000 | 5.528775 |
| 170 | 28900 | 4.13000 | 13.0384048 | $5 \cdot 539658$ |
| 171 | 29241 | 5000211 | 13.076698 | 5.550499 |
| 172 | 29584 | 5088448 | 13.1148770 | 5•561298 |
| 173 | 29929 | 5177517 | $13 \cdot 1529464$ | 5.572054 |
| 174 | 30:76 | 5268024 | $13 \cdot 1909060$ | 5.582770 |
| 175 | 30625 | 5359375 | 13.2287566 | $5 \cdot 593445$ |
| 176 | 30976 | 5451776 | $13 \cdot 266+992$ | $5.60+079$ |
| 177 | 31329 | 5545233 | $13 \cdot 30+1347$ | $5 \cdot 614675$ |
| 178 | 31684 | 563975 ? | $13 \cdot 3+166+1$ | 5.625226 |
| 179 | 32041 | 5735339 | 13.3790882 | 5.63574.1 |
| 180 | 32400 | 5832000 | 13.1164079 | 5.646216 |
| 181 | 32761 | 5929741 | $13 \cdot+536240$ | ${ }^{5} \cdot 656659$ |
| 182 | 33124 | 6028568 | $13 \cdot 4907376$ | 5•667051 |
| 183. | 33489 | 6128487 | 13.5277493 | 5.677411 |
| 184 | - 33385 | 6229504 | $13 \cdot 5646600$ | $5 \cdot 687734$ |
| 18.5 | 34225 | 6331625 | 136014705 | 5698019 |
| 186 | 34596 | 6134856 | 13.6381817 | 5-7:8:67 |
| 187 | 34969 | 6539203 | 13.6747943 | $5.718+79$ |
| 188 | $35.3+4$ | 6644672 | 13.7113092 | $5 \cdot 728654$ |
| 189 | 35721 | 6751269 | 13.7477271 | 5.738794 |
| 190 | 39100 | 68.59000 | 13.78404.83 | 5748897 |
| 191 | 36481 | 6967871 | 13.8202750 | 5.758965 |
| 192 | 36864 | 7077888 | 13.8564065 | 5.768998 |
| 193 | 37429 | $718: 9057$ | $13.892+440$ | 5.778996 |
| $19+$ | 37636 | 7301384 | $13 \cdot 9283853$ | $5 \cdot 788 \div 60$ |
| 195 | 38025 | 7414875 | $13.96+2400$ | 5:798890 |
| 196 | 38.16 | 7529536 | $14 \cdot 0000000$ | 5.808786 |
| 197 | 38809 | 7645373 | $14 \cdot 0356688$ | 5:818648 |
| 198 | 39201 | 7762392 | 14.0712473 | $4 \cdot 828+76$ |
| 199 | 39001 | 7880599 | $14 \cdot 1067360$ | 5.838279 |
| 200 | 40000 | 8000000 | $14 \cdot 1421356$ | 5-848035 |

## MENSURATION.

MENSURATION is the meafuring and eftimating the magnitude and dimenfions of bodies and figures: and it is either angular, lineal, fuperficial, or folid, according to the oljects it is concerned with. It is accordingly treated in feveral parts: as 1ft, Practical Geometry, which treats of the definitions and conftruction of geometrical figures; 2d, Trigonometry, which teaches the calculation and conftruction of triangles, of three-fided figures, and, by application, of other figures depending on them: 3d, Superficial Menfuration, or the meafuring the furfaces of bodies; 4 th, Solid Menfuration, or meafuring the capacities or folid contents of bodies. Befide ihefe general heads, there are feveral other fubordinate divifions, as alfo the application of them to the practical concerns of life. Of each of which in their order: excepting Trigonometry, which is fully treated of in my large book of Menfuration, as alfo in my New Courfe of Mathematics.

## PRACTICAL GEOMETBY.

11


1. A POINT has pofition, but no parts, nor dimenfions, neither length, breadth, nor thicknefs.
> 2. A line is length, without breadth or thickneff.
2. A furface or fuperficies, is an extenfion, or a figure of two dimenfions, length and breadth; but without thicknefs.
3. A body or folid, is a figure of three dimenfions, namely, length, breadth, and thickneff.


Hence furfaces are the extremities of folids; lines the extremities of furfaces; and points the extremities of lines.
5. Lines are either right, or curved, or mixed of thefe two.
6. A right line, or ftraight line, lies all in the fame direction, between its extremities; and is the fhorteft diftance between two points.
7. A curve continually changes its direction between its extreme points.
8. Lines are either parallel, oblique, perpendicular, or tangential.
9. Parallel lines are always at the fame diftance; and never meet though ever fo far produced.
10. Oblique right lines change their diftance, and would meet, if produced, on the fide of the leaft
 diftance.
11. One line is perpendicular to another, when it inclines not more on the one fide than on the other.
12. One line is tangential, or a tangent to another, when it touches it without cutting, when both are
 produced.
13. An angle is the inclination, or opening of two lines, having different directions, and meeting in a point.
14. Angles are right or oblique, acute or obtufe.
15. A right angle, is that which is made by one line perpendicular to another. Or when the angles on each fide are equal to one another, they
 are right angles.
19. An oblique angle, is that which is made of two oblique lines; and is either lefs or greater than a right angle.
17. An acute angle is lefs than a right angle.
18. An obtufe angle is greater
 than a right angle.
19. Superficies are either plane or curved.
20. A plane, or plane fuperficies, is that with which a right line may every way, coincide. But if not, it is curved.
21. Plane figures are bounded either by right lines or curves.
22. Plane figu es that are bounded by right lines, have names according to the number of their fides, or of their angle's; for they have as many fides as angles; the leaft number being three.
23. A figure of three fides and angles, is called a tri-. angle. And it receives particular denominations from the relations of its fides and angles.
24. An equilateral triangle, is that whofe three fides are all equal.


25 An
25. An ifofceles triangle, is that which has two fides equal.
26. A fcalene triangle, is that whofe fides are all unequal.
27. A right-angled triangle, is that which has one right angle.
28. Other triangles are obliqueangled, and are either obtufe or acute.
29. An obtufe-angled triangle has one obtufe angle.

30. An acure-angled triangle has all its three angles acute.
31. A figure of four fides and angles, is cailed a quadrangle, or a quadrilateral.
32. A parallelouram is a quadrilateral which has both . its pairs of oppofite fides parallel. And it takes the following páricular names.
33. A rectangle is a parallelo. gram, having all its angles right ones
34. A fquare is an equilateral rectangle; having all its fides equal, and ${ }^{\circ}$ all its angles right ones.


D 6
35. A
35. A rhomboid is an oblique angled parallelogram.
36. A rhombus is an equilateral rh mboid; having all its fides equal; but its angles oblique.

37. A trapezium is a quadrilateral which hath not both its pairs of oppofice fides parallel.
35. A trapezoid hath only one pair of oppofite fides parallel.
39. A diagonal is a right line joining any two oppofite angles of a quadi ilateral.

40. Plane figures that have more than four fides are, in general, called polygons; and they receive other particular names aceording to the number of their fides or angles.
41. A pentagon is a polygon of five fides; a hexagon' hath fix fides; a heptagon, feven; an octagon, eight; a nonagon, nine; a decagon, ten; an undecagon, eleven; and a dodecagon hath twelve fides.
42. A regular polygon hath all its fides and all its angles equal. If they are not both equal, the polygon is irregular.
43. An equilateral triangle is alfo a regular figure of three fides, and the fquare is one of four: the former being alfo called a trigon, and the latter a tetragon.
44. A circle is a plane figure bounded by a curve line, called the circumference, which is every where equi-diffant from a certain point within, called its centre.


Note, The circumference itfelf is often called a circle. 45. The
45. The radius of a circle is a right line drawn from the centre to the circumference.
46. The diameter of a circle is a right line drawn through the centre, and terminating in the circumference on both fides.
47. An arc of a circle, is any part of the circumference.
48. A chord, is a right line joining the extremities of an arc.
49. A fegment, is any part of a circle, bounded by an arc and its chord.
50. A femicircle, is half the circle or a fegment cut off by a diameter.
51. A fector, is any part of a circle, bounded by an arc, and two radii drawn to its extremities.
52. A quadrant, or quarter of a circle, is a fector having a quarter of the circumference for its arc, and its two radii are perpendicular to each other.
53. 'The height or altitude of a figure, is a perpendicular let fall from an angle, or its vertex, to the oppofite fide, called the bafe.

54. In a right-angled triangle, the fide oppofite the right angle, is called the hypothenure; and the other two fides, the legs, or fometimes the bafe and perpendicular,

1-55. When an angle is denoted by three letters, of which one flands at. the angular point, and the other two on the two fides, that which fands at the angular point is read in the
 middle.
56. The circumference of every circle is fuppofed to be divided into 360 equal parts, called degrees; and each degree into 60 minutes, each minate into 60 feconds, and fo on. Hence a femicircle contains 1 so degrecs, and a quadrant 90 degrees.
57. The meafure of a right-lined angle, is an arc of any circle contained between the two lines which form that angle, the angular point being the centre; and it is eftimated by the number of degrees contained in that arc. Hence a right angle is an angle of 90 degrees.

The definition of folids, or bodies, will be given afterwards when we come to treat of the menfuration of folids.

TROBLEMS:

PROBLEMS.
PROBLEM I.
To divide a Given Line AB into Trwo $E_{\text {1ual }}$ Parts.
From the centres A and B, with any diftance greater than half $A B$. defcribe arcs cutting each other in $m$ and $n$. Draw the line mCn , and it will cut the given line into two equal parts in the middle point C .


## PROBLEM II.

To divide a Given Angle ABC into Two Equal Partso
From the centre B , with any diftance, defcribe the arc AC. From $A$ and $C$, with one and the fame radius, defcribe ares interfecting in $m$. Draw the line Bin, and it will bifect the angle as required.


PROBLEM III.
To divide a Right Angle ABC into Tbree Equal Partso
From the centre B, with any dif. tance, defcribe the arc AC. From the centre A , with the fame radius, crofs the are AC in n . And with the centre C, and the fame radius, cut the arc $A C$ in $m$. Then through
 the points $m$ and $n d r a w ~ B m$ and Bn , and they will trifect the right angle as required.

## PROBLEM IV.

## To draw a Line Parallel to a Given Line AB.

Case I. When the Parallel Line is to be at a Given Difance C .
From any two points $m$ and $n$, in the line AB , with a diftance equal to $C$, defcribe the arcs $r$ and 0:-Draw CD to touch thefe arcs, without cutting them, and it will be the parallel required.


Case 2. When the Parallel Line is' to pafs tbrough a Given Point C.
From any point $m$, in the line $A B$, with the diftance mC , defcribe the areCn.-From thecentre C with the fame radius defcribe the are mr. Takethearc Cn
 in the compaffes, and apply it from $m$ to r.-Through $C$ and $r$ draw DE, the parallel required.

Note. This problem is more eafily effected with a parallel ruler.

> PROBLEM V.

To erect a Perpendicular from a Given Point A in a Given
Line BC .
Case 1. When the Point is near the Middle of the Linc.
On each fide of the point A take any two equal diftances Am, An. From the centres m, n, with any radius greater than Am or An; defcribe two arcs cutting in r.Through $A$ and $r$ draw the line
 Ar, and it will be the perpendicular as required.

With the centre A, and any diftanc defcribe the arc $m$ n s.-From the point ${ }^{\circ} \mathrm{m}$, with the fame radius, turn the compaffes twice over on the arc, as at n and s.-Again, with the centres n and $s$, defcribe arcs interfecting in s . n Then draw Ar, and it will be the perpendicular as required.

## Another Method.

From any point $m$ as a centre, with the radius or diffance mA , defribe an arc cutting the given line in $n$ and $A$. - Through $n$ and $m$ draw a right line cutting the are in $\mathrm{r}_{0}$ Lattly, draw A r, and it will be the
 perpendicular as required.

## Another Method.

From any plane fcale of equal parts, fet off Am equal to 4 parts. -With centre A, and diftance of 3 parts, defcribe an arc-And with centre $m$, and radius of 5 parts, cross it at n.-Draw An for the
 perpendicular required.

Or any other numbers in the fame proportion, as 3,4 , 5 , will do the fame; fuch as $6,8,10, \& c$.

## PROBLEM VI.

From a Given Point A, out of a Given Line BC, to let falt a Perpendicular.

CASE 1. Whens the Point is nearly oppofite the Middle of the Lire.

With the centre A, and any dif. tance, defcribe an arc cotting $B C$ in $m$ and $n$. With the centres $m$ and $n$, and the fane, or any other radius, deferibe ares interfecting in r.- Draw ADr, for the perpendicular required.


Case 2. When the Point is nearly oppofte the End of the Line.

From A draw any line Am to meet $B C$, in any point m.-Bifect Am at $n$, and with the centre $n$, and diftance An or mn, defcribe an arc, cutting $B C$ in $D$.-Draw $A D$ the perpendicular as requiretu.


Anotber Metbod.
From B, or any print in BC, as a-certre, defribe an are through the point A.-From any other centre $m$ in $\mathrm{BO}_{0}$, deféribe anther arc through $A$, and cutting the


Note

Note. Perpendiculars may be more readily raifed and let fall, in practice, by means of a fquare, or by the common parallelogram protractor.

## PROBLEM VII.

To divide a Given Line AB into any proposed Number of . Equal Parts.

From A draw any line AC at random, and from B draw BD parallel to it. -On each of there lines, beginning at $A$ and $B$, let off as many equal parts of any length, as $A B$ is to be divided into. Join the oppofite points of dikifion by
 the lines A 5, 14, 23 , \&c. and they will divide the given line $A B$ as required.

PROBLEM VIII
To divide a Given Line AB in the fame Proportion as another Line CD is Divided.

From A draw any line AE equal to $C D$, and upon it tranffer the divisions of the line CD. -Join BE, and parallel to it draw the lines $11,22,33$, \&c. and they will divide the line $A B$
 as required.

## PROBLEM IX.

As a Given Point A, in a Given Line AB, to make an Angle Equal to a Given Angle C.
With the centre C, and any Giftance, deferibe an are mn. -With the centre A, and the fame radius, defcribe the are rs. - Take the diftance mn between the compaffes, and apply it from $r$ to s- Then a line drawn through $A$ and $s$, will make the angle $A$ equal to the
 angle $C$ as required.

## PROBLEM X .

At a Given Point A, in a Given Line AB, to make an Angle of any proposed Number of Degrees.

With the centre $A$, and radius equal to 60 degrees, taken from a scale of chords, deferibe an are, cutting $A B$ in m .-Then take between the com. paffes the proposed number of degrees from the fame fcale of chords, and apply them from $m$ to $n$. 'Through
 the point $n$ draw An, and it will make the angle $A$ of the number of degrees proposed.

Note. Angles of more than 90 degrees are ufually taken off at twice.

Or the angle may be made with the protractor or other inftrument, by laying the centre to the point $A$, and its radius along $A B$; then make a mark $n$ at the proposed number of degrees, through which draw the line An as before.

PROBLEM XI.
To menfure a Given Angle A.
(Ste the laft Figure.)
Defcribe the are ain with the chord of 60 degrees, as in the laft problem. - Take the arc mn between the compaffes, and that extert, applied to the chords, will fhew the degrees in the given angle.

Note. When the diftance mn exceeds 90 degrees, it mult be taken off at twice as before.

Or the angle may be meafured by applying the radius of a graduated arc, of any infrument, to $A B$, as in the laft problem; and then noting the degrees cut off by the. other leg An of the angle.

## PROBLEM XII.

To find the Centre of a Circle.
Draw any chord $A B$; and bifect it perpendicularly with $C D$, which will be a diameter. Bifect CD in the point O ; and that will be the centre.


## PROBLEM XIII。

To defcribe the Circumference of a Circle through Three Given Points.

From the middle point $B$ draw chords to the two other points.-Bifect thefe chords perpendicularly by lines meeting in O, which will be the centre. -Then from the centre O , at the diffance OA , or OB , or $2 C$, defcribe the circle.


Note.

Note. In the fame manner may the centte of an are of a circle be found.

PROBLEM XIV.
Through a Given Point A, to draw a Tangent to a Given Circle.

Case 1. When $\mathbb{A}$ is in the Circumference of the Circle.
From the given point $A$, draw $A O$ to the centre of thecircle. - Then through A draw BC perpendicular to AO , and it will be the tangent as required.


Case 2. When A is out of the Circumference.
From the given point $A$, draw A() to the cent:e, which bifect in the puint m.-With the centre $m$, and radius $m A$ or mO , defcribe an arc curting the givencircle in n.-Through the points $A$ and $n$, draw the
 tangent BC .

## PROBLEM XV:

To find a Tbird Proportional to Two Given Lines. $\mathrm{AB}, \mathrm{AC}$.
Place the two given Lines, $A B, A C$, making any angle at $A$, and $j$ in $B C$. - In $A 8$ take $A D$ equal to $A C$, and draw DE parallel to BC. So thall AE be the thit proportional to $A B$ and $A C$. That is, $A B: A C:: A C: A E$.


TRO.

PROBLEM: XVI.
To find a Fourth Proportional to Three Given Lines, AB, $A C, A D$.
Place two of them $A B, A C$, making any angle at $A$, and join $B C$. Place $A D$ on $A B$, and draw DE parallel to BC. So foal AE be the fourth proportional $r$ quires.


That is, $\overline{A B}: A C:: A D: A E$.

## PROBLEM XVII.

To find a Mean Proportional between Two Given Lines, $A B, B C$.
Join $A B$ and $P C$ in one ftraight line $+C$, and hifect it in the point O -With the centre $O$, and radius $O A$ or CC, de feribe a femicircie. Fred the perpendicular BD, and it will be the mean proportional required.


That is, $A B: B D:: B D: B C$.

## PROBLEM XVIII

To make an Equilateral Triangle on a Given Line AB.
From the centers 4 and B, with the diffance $1 B$, deferibe ares, interfacing in C. - Draw $A C$ and $B C$, and it is done.

Note. An ifofceles triangle may be made in the fane manner, taking for the diftance the
 given length of one of the equal fides.

## PROBLEM XIX.

To make a Triangle with Three Given Lines, $\mathrm{AB}, \mathrm{AC}, \mathrm{BC}$.
With the centre A and diffance AC, defcribe an arc. - With the centre $B$, and diftance BC, defcribe another arc, cutting the
 former in C. -Draw AC and $B C$, and $A B C$ is the triangle requires.

PROBLEM XX 。
To make 'a Square on a Given Line AB.
Draw $B C$ perpendicular and equal to AB. From A and C, with the diftance $A B$, defcribe arcs interfecting in D - Draw AD and $C D$, and it is done.


Another Way.
On the centres $A$ and $B$, with the diffance $A B$, defcribe arcs crofting at o.-Bifect Mo in n.With centre o, and radius o $n$, croft the two arcs in C and D.Then draw AD, BC, CD.


PROBLEM XXI.
Io describe a Rectangle, or a Parallelogram, of a Given Length and Breadth.
Place BC perpendicular to AB. -With centre A, and diftrance AC, describe an arc. With centre $C$, and radius $A B$, defcribe another are, cutting the former in D. -Draw AD and CD , and it is done.


Note.

Note. In the fame manner is defcribed any oblique parallelogram, only drawing BC, to make the given oblique angle with $A B$, inftead of perpendicular to it.

PROBLEM XXII.
To make a Regular Pentagon on a Given Line AB.
Make Bm perpendicular and equal to half AB.-Draw Am, and produce it till mn be equal to Bm .-With centres $A$ and $B$, and diftance Bn , defcribe arcs interfecting in 0 , which will be the centre of the circumfcribing circle.-Then with the centre 0 , and the fame radius, defcribe the circle; and about the circumference of it apply $A B$ the
 proper number of times.

## Another Metbod.

Make Bm perpendicular and equal to $A B$. -Bifect $A B$ in $n$; then with the centre $n$, and diffance nm , crofs AB produced in 0.-With the centres A and B , and diftance $A 0$, defcribe arcs interfecting in D, which will be the oppofite angle of the pentagon.-Laft-
 ly with centre D, and radius. $A B$, crofs thofe arcs again in $C$ and $E$, the other two angles of the figure.-Then draw the liaes from angle to angle, to complete the figure.

A Third Metbod nearly true.
On the centres $A$ and $R$, with the diftance $A B$, defcribe two circles inrerfecting in $m$ and $n$. With the fame radius, and the centre $m$, defcribe rAoBS , and draw mn cutting it in O.-Draw roC and SoE, which will give two angles of the pen. tagon. $L$ Lattly, with radius $A B$, and centres $C$ and $E$, defcribe arcs interfecting in $D$, which
 will be the other angle of the pentagon nearly.

PROBLEM XXIII.
To make a Hexagon on a Given Line AB.
With the diftance $A B$, and the centres $A$ and $B$, defcribe arcs interfecting in 0 .-With the fame radius, and centre o, defcribe a circle, which will circumfcribe the hexagon.Then apply the line $A B$ fix times round the circumference,
 rarking out the angular points; and connect them with right kines.

## PROBLEM XXIV.

To make an Oetagon on a Given Line AB.
Erect AF and BE perpendicular to AB.-Produce $A B$ both ways, and bifect the angles $m$ A F and ${ }_{\mathrm{n}}^{\mathrm{BE}} \mathrm{E}$ with the lines AH and $B C$, each equal to $A B$. Draw CD and HG parallel to AF or BE , and each equal to $A B$. - With the diftance $A B$, and centres $G$ and $D$, crofs $A F$ and $B E$ in $F$ and E.-Then join GF, FE,
 ED, and it is done.

## PROBLEM XXV.

## To make any Regular Polygon on a Given Line AB.

Draw Ao and Bo making the angles $A$ and $B$ eaclu equal to half the angle of the polygon.-With the centre $o$ and diftance oA, defcribe a circle. - Then apply the line $A B$ co tinually round the circumference the proper number of times, and it is done.


Note. The angle of any polygon, of which the angles OAB and oBA are each one half, is fonud thus: Divide the whole 360 degrees by the number of E 2
fides,
fides, and the quotient will be the angle at the centre 0 ; then fubtract that from 180 degrees, and the remainder will be the angle of the polygon, and is double of oAB or of oBA. And thus you will find the numbers of the following table, containing the degrees in the angle o , at the centre, and the angle of the polygon, for all the regular figures from 3 to 12 fides.

| No. of fides | Name of the Polygon | Angleo at the centre | Angle of the polyg. | Angle <br> O A B <br> or OBA |
| :---: | :---: | :---: | :---: | :---: |
| 3 | Trigon | $120^{\circ}$ | $60^{\circ}$ | $30^{\circ}$ |
| 4 | Terragon | 90 | 90 | 45 |
| 5 | Pentagon | 72 | 108 | 54 |
| 6 | Hexagon | 60 | 120 | 60 |
| 7 | Heptagon | $51 \frac{3}{7}$ | $128 \frac{4}{7}$ | $64{ }_{7}^{2}$ |
| 8 | Octagon | 45 | 135 | 67 |
| 9 | Nonagon | 40 | 140 | 70 |
| 10 | Decagon | 36 | 144 | 72 |
| 11 | Undecagon | $32{ }^{8} 5$ | $1477{ }^{\frac{3}{17}}$ | $73{ }^{7} \frac{7}{1}$ |
| 12 | Dodecagon | 30 | 150 | 75 |

## PROBLEM XXVI.

In a Given Circle to Infcribe any Regular Polygon; or to divide the Circumference into any Number of Equal Partso
(See the laft figure.)
At the centre o make an angle equal to the angle at the centre of the polygon, as contained in the third column of the above table of polygons. - Then the diftance $A B$ will be one fide of the polygon; which being carried round the circumference the proper number of times, will complete the figure. Or, the arc $A B$ will be one of the equal parts of the circumference.

## Another Method, nearly true.

Draw the diameter $A B$, which divide into as many equal parts as the figure has fides. - With the diftance $A B$, and centres $A$ and $B$, defcribe arcs croffing at $n$ : from thence draw nC through the fecond divifion on the diameter; fo thall AC be a fide of the polygon, nearly.


Anotber Method, fill nearer.
Divide the diameter AB , as before, into as many equal parts as the figure has fides. From the centre o raife the perpendicular om, which produce till mn be equal to three fourths of the radius om.- From n' draw nC through the fecond divifion of the diameter, and the line $A C$ will be the fide of the polygon fill nearer than before; or the $\operatorname{arc} A C$ one of the equal parts into which the circumference is
 to be divided.
PROBLEM XXVIT.

Problem xxvir.
About a Given Circle to Circumfcribe any Polygon.
Find the points $\mathrm{m}, \mathrm{n}, \mathrm{p}$, \&c. as in the laft problem; to which draw radii mo, no, \&c. to the centre of the circle.-Then through thefe points $m, n, \& c$. and perpendicular to thefe radii, draw the fides of the polygon.

PRO.

## PROBLEM XXVIII.

To find the Centre of a Given Polygon, or the Centre of its Infcribed or Circumfcribed Circle.

Bifect any two fides with the perpendiculars mo, no: and their interfection will be the centre. Then with the centre $o$, and the diffance om, defcribe the infcribed circle; or with the diftance to one of the angles, as $A$, defcribe the circumferibing circle.


Note. This method will alfo circumfrsibe a circie abcut any given oblique triangle.

PROBLEM XXIX.
In any Given Triangle to Infcribe a Circlio
Bifect any two of the angles with the lines Ao, Bo; and o will be the centre of, the circle. -Then with the centre 0 , and radius the nearelt diffance to any one of the fides, defcribe the
 circle.

```
PROBLEM XXX.
```

About any Given Triangle to Circuinfribe a Circle:

Bifect any two of the fides $A B, B C$, with the perpendieulars mo, no. -With the centre 0 , and diftance to any one of the angles, deforibe the circle.

PROBLEM XXXI.

In, or About, a Given Squarc, to defiribe a Circli.
Draw the two diayora's of the fquare, and their interfection o will be the centre of both the circles.-Then with that centre, and the neareft diftance to one Iide, deforibe the inner circle; and with the difance to one angle, defcribe the outer circle.


## PROBLEM XXXII.

In, or About, a Given Circle, to defcribe a Square, or an Oatagon.

Draw two diameters $-A B, C D$, perpendicular to each other.Then connect their extremities, and that will give the infcribed fquare ACBD. - Alfo through their extremities draw tangents parallel to them, and they will form the outer fquare mopo.


Note.

Note. If any quadrant, as AC, be bifected in $q$, it will give one-eighth of the circumference, or the fine of the octagon.

## PROBLEM XXXIII.

In a Given Gircle, to Infcribe a Trigon, a Hexagon, or a Dodecagon.

The radius of the circle is the fide of the hexagon. Therefore from any point $A$ in the circumference, with the diftance of the radius, defcribe the arc BOF. B Then is $A B$ the fide of the hexagon; and therefore carrying it fix times round will form the hexagon, or will divide the circumference into fix equal parts, each containing 60 degrees -
 The fecond of thefe $C$, will give $A C$ the fide of the trigon, or equilateral triangle $A C E$, and the arc AC one-third of the circumference, or 120 degrees.-Alfo the half of $A B$, or $A n$, is one-12th of the circumference, or 30 degrees, which gives the fide of the dodecagon.

Note. If tangents to the circle be drawn through all the angular points of any inferibed figure, they will form the fides of a like circumfcribing figure.

## PROBLEM XXXIV.

In a Given Circle to Inscribe a Pentagon, or a Decagon.
Draw the two diameters AP, mn perpendicular to each other, and bifect the radius on at q. -With the centre q and diftance qA , defcribe the arc Ar ; and with the centre $A$, and radius Ar, deforibe the arc rB. Then is $A B$ one-fifth of the circumference; and $A B$ carried five times over will form the pen-
 tagon. All the arc $A \mathrm{~B}$ bifeted in $s$, will give As the tenth part of the circumfer. ene, or the fide of the decagan.

Note. Tangents being drawn through the angular points, will form the circumferibing pentagon or decagon.

PROBLEM XXXV.
To divide the Circumference of a Given Circle into 12 Equal Parts, each of 30 Degrees. Or to Inscribe a Dedecagon by another Method.
Draw two diameters 17 and 410 perpendicular to each other. - Then with the radius of the circle, and the four extremities, $1,4,7,10$, as centres, defcribe arcs, through the centre of the circle; and they will cut the circumference in the points required, dividing it into 12 equal parts, at the points marked with the
 numbers in the figure.

## PROBLEM XXXVI.

To draw a Right Line equal to the Circumference of a Givers Circle.


Take III 1 equal to 3 times the diameter and $\frac{8}{7}$ part more: and it will be equal to the circumference, very nearly.

PROBLEM XXXVII.
To find a Right Line equal to any Given Arc AB of a Circle.

Through the point $A$ and the centre draw Am, making mn equal to $\frac{3}{4}$ of the radius no.-Alfo draw the indef finite tangent AP perpendicular to it. -Then through mend B draw $m B$ : fo hall $A P$ be
equal to the arc $A B$ very. draw $m B$ : fo hall $A P$ be
equal to the arc $A B$ very. nearly.

11

Otherwise.
Divide the chord $A B$ into 4 equal parts. - Set one part $A C$ on the are from $B$ to $D$.Draw CD, and the double of it will be nearly equal to the are AD.


PRO-

## PROBLEM XXXVIII.

To divide a Given Circle into any propofed Number of Paris by Equal Lines, fo that thefe Parts ßall be mutually Equal both in Area and Perimeter.

Divide the diameter AB into the propofed number of equal parts at the points a, $\mathrm{b}, \mathrm{c}, \& \mathrm{sc}$. -Then on Aa , $\mathrm{Ab}, \mathrm{Ac}, \& \mathrm{c}$. as diameters, defcribe femicircles on one fide of the diameter $A B$; and on $\mathrm{Bd}, \mathrm{Bc}, \mathrm{Bb}, \& \mathrm{c}$. defcribe femicircles on the other fide of the diameter. So fhall the correfponding joining femicircles divide the given circle
 in the manner propofed.

And in like manner we may proceed when the fpaces are to be in any given proportion.-As to the perimeters, they are always equal, whatever be the proportion of the fpaces.

> PROBLEM XXXIX.

## To make a Triangle Similar to a Given Triangle ABC.

Let ab be one fide of the required Triangle. Make the angle a equal to the angle $A$, and the angle $b$ equal to the angle $B_{\text {; }}$ then the triangle $a b c$ will be fimilar to $A B C$ as propofed.

Note. If ab be equal to AB , the triangles will alfo be equal, as well as £imilar.


PRO-

## PROBLEM XL.

To noake a Figure Similar to any other Given Figure A BCDE.
From any angle A draw diagonals to the other angles. - Take $A b$ a fide of the figure required. Then draw be parallel to BC, and cd to $C D$, and de to DE, \&c.

## Otberwife

Make the angles at $a, b$, e, refpectively equal to the angles at $A, B, E$, and the lines will interfect in the corners of the figure required.

PROBLEM XLI.

To reduce a Complex Figure from one Scale to another, alfo 10 copy fuch a Figure of the fame Size, mechanically, by means of Squares.


Divide


Divide the given figure, by crofs lines, into fquares, as fmall as may be thought neceffary, - Then divide another paper into the fame number of fquares, and either greater, equal or lefs, in the given proportion.-This done, obferve what fquares the feveral parts of the given figure are in, and draw with a pencil, fimilar parts in the correfponding fquares of the new figure. And fo proceed till the whole is copied.

## PROBLEM XLII.

To make a Triangle Equal 10 a Given Trapezium ABCD .

Draw the diagonal DB,
D alfo CE parallel to it, meeting $A B$ produced in E.-Join DE; fo thall the triangle ADE be equal to the trapezium $A B C D$.


PROBLEM XLIII.
To make a Triangle equal to the Figure ABCDEA .
Draw the diagonals DA, DB, and the lines EF, CG parallel to them, meeting the bafe $A B$, both ways produced, in F and G.-Join DF, DG; and DFG will be the triangle required equal to the given figure ABCDE .


Nots.

Note. Nearly in the fame manner may a triangle be made equal to any right-lined figure whatever.

## PROBLEM XIV.

To make a Triangle Equal to a Given Circle.
Draw any radies AO , and the tangent $A B$ perpendicular to ir. -On which take
 $A B$ equal to the circumference of the circle by Problem xxxvi.-Join BQ ; fo Shall ABO be the triangle required, equal to the given circle, nearly.
PROBLEM XIV.

To make a Rectangle, or a Parallelogram, Equal io a Given. Triangle ABC .

Bifect the bare $A B$ in $m$. Through C draw Cone parallel to $A B$. - hough $m$ and B draw mn and BO parallel to each other, and ether perpendicular to AB, or making any angle with it. And the rectanole or parallelogram moB will
 be equal to the triangle, as required.

## PROBLEM XLVI.

To make a Square Equal to a Given Rectargle ABCD.
Produce one fide, AB , till BE be equal to the other fide BC. - Bifect AE in o; on which as a centre, with radius Ao, defcribe a femicircle, and produce BC to meet it at F .-On
 BF make the fquare BFGH , and it will be equal to the rectangle $A B C D$, as required.
** Thus the circle, and all right-lined figures, have been reduced to equivalent fquares.

PROBLEM XLVII.

## To make a Square Equal to Two Given Squares P and Q .

Set two fides $A B, B C$, of the given fquares, perpendicular to each other. - Join their extremities AC ; fo fhall the fquare $R$, conftructed on $A C$, be equal to the two $P$ and $Q$ taken together.


Note. Circles or any other fimilar figures are added in the fame manner. For, if AB and BC be the diameters of two circles, AC will be the diameter of a third circle equal to both the other two. And if AB and BC be the like fides of any two fimilar figures, then $A C$ will be the like fide of another fimilar-figure equal to both the two former, and on which the third figure may be conftructed by Problem xl.

## PROBLEM XLVIII。

To make a Square Equal to the Difference between Two Gizeen Squares P, R.

## (See the laf Figure.)

On the fide AC of the greater fquare, as a diameter, defcribe a femicircle; in which apply AB the fide of the lefs fquare- -Join BC, and it will be the fide of a fquare equal to the difference between the two P and R , as required.

## PROBLEM XLIX.

To make a Square Equal to the Sum of any Number of Squares taken logether.

Draw two indefinite limes Am, $\Lambda \dot{n}$, perpendicular to each other at the point $A$. On the one of thele fet off $A B$ the fide of ore of the given fquares, and on the other $A C$ the fide of another of them. Join BC, and it
 will be the fide of a fquare equal to the two together. Then take $A D$ equal to $B C$, and $A E$ equal to the fide of the third given fquate. So fhall DE be the fide of a fquare equal to the fum of the three given fquares. - And fo on continually, always fetting more fides of the given fquares on the line An , and the fides of the fucceflive fums on the other line Am.

Note. And thus any number of any fort of figures may be added together.

PROBLEM L.

## To make Plane Diagonal Scales.



Draw any line as AB , of any convenient length. Divide it into 11 equal parts*. Complete thefe into rectangles of a convenient height, by drawing parallel and perpendicular lines. Divide the altitude into 10 equal parts, if it be for a decimal fcale for common numbers, or into 12 equal parts, if it be for feet and inches; and through thefe points of divifion draw as many parallel lines, the whole length of the fcale.-Then divide the length of the firt divifion $A C$ into 10 equal parts, both above and below ; and connect thefe points of divifion by diagonal lines, and the fcale is finifhed, after being numbered as you pleafe.

Note. Thefe diagonal fcales ferve to take off large dimenfions or numbers of three figures. If the firt large divifions be units; the fecond fet of divifions along AC, will be 10th parts; and the divifions in the altitude, along AD will be 100 th parts. If CD be tens, AC will be units, and $A D$ will be the 10th parts. If $C B$-be hundreds, AC will be tens, and AD units. If CB be thoufands, AC will be hundreds, and AD will be tens. And fo on, each fet of divifions being tenth parts of the former one.

For example, fuppofe it were required to take off 243 from the fcale. Fix one foot of the compaffes at 2 of the greatef divifions, at the bottom of the fcale, and

* Only 4 parts are here drawn, for want of room.
extend the other to 4 of the fecond divifions, along the bottom ; then, for the 3, llide up both puints of the comspaffes by a parallel motion, till they fall upon the third longitudinal line; and in that pofition extend the fecond point of the compaffes to the fourth diagonal line, and you have the extent of three figures as required.

Or, if you have any line to meafure the length of. Take it between the compaffes, and applying it to the fcale, fuppofe it fall between 3 and 4 of the large divifions: or, more nearly, that it is 3 of the large divifions, or $\varsigma$ hundreds, and between 5 and 6 of the fecond divifions, or 5 tens or 50, and a little more. Slide up the poinis of the compaffes by a parallel motion, kecping one foot always on the vettical divifion of 3 hundred, till the other point fall exactly on one of the diagonal lines, which fuppofe to be 8 , being 8 unitt, which muws that the length of the line, propofed to be meafured, is 358.

## PLANE SCALES FOR TWO PIGURES.



The above are three other forms of feales, the firt of which is a decimal fcale, for taking off common numbers confifting of two figures. The other two are duodecimal fcales, and ferve for feet and inches, \&c.

Thefe and other fcales, engraved on ivory, are fitteft for practical ufe. And the moft convenient form of a plane fcale of equal divifions, is on the very edge of the ivory made thin at the edge for laying along any line, and then marking the paper oppofite any divifion required: which is better than taking leogths off a fcale with compaffes.

REMARKS.
Note 1. That in a circle, the half chord DC, is a mean proportional between the fegments $\mathrm{AD}, \mathrm{DB}$ of the diameter $A B$ perpendicular to it. That is $A D: D C: ; D C:$ DB.

2. The chord $\Lambda \mathrm{C}$ is a mean proportional between AD and the diameter AB . And the chord BC a mean proportional betwee: DB and AB .

That ic, $A D: A C:: A C: A B$. and $B D: B C:: B C: A B$.
3. The angle ACB , in a femicircle, is always a right angle.
4. The fquare of the hypothenufe of a right-angled triangle, is equal to the fquare of both the fides.

$$
\begin{array}{r}
\text { That is, } A C^{2} \equiv A D^{2}+C D^{2}, \\
\text { and } B C^{2}=B D^{2}+D C^{2}, \\
\text { and } A B^{2}=A C^{2}+B C^{2} \text {, }
\end{array}
$$

5. Triangles that have all the three angles of the one refpectively equal to all the three of the other, are called equianguiar triangles, or fimilar triangles.
6. In fimilar triangles, the like fides, or fides oppofite the equal angles, are proportional.
7. The areas, or fpaces, of fimilar triangles, are to each other, as the fquares of their like fides.

## MENSURATION

OF

## SUPERFICIES。



THE area of any figure, is the meafure of its furface, or the fpace contained within the bounds of the furface, without any regard to thicknefs.

The area is eftimated by the number of fquares contained in the furface, the fide of thofe fquares being either an inch, or a foot, or a yard, \&cc. And hence the area is faid to be fo many fquare inches, or fquare feet, or fquare yards, \&c.

Our ordinary lineal meafures, or meafures of length, are as in the firft table here below; and the annexed table of fquare meafures is taken from it, by fquaring the feveral numbers.

|  | Lineal Meafures | Square Meafures. |
| :---: | :---: | :---: |
|  | inctes - 1 foot | 144 inches - 1 foot |
|  | 3 feet - 1 yard | 9 feet - 1 yard |
|  | feet - - 1 fathom | 36 fees - 1 fathons. |
|  | feet, or $\}\{1$ pole | $272 \frac{1}{4}$ feet or $\}\{1$ pole |
|  | yards $\}\{$ or rod | $30 \frac{1}{4}$ jards $\}$ \{ or rod |
| 40 | poles - 1 furlong | 1600 poles - 1 furlong |
|  | 8 furlongs 1 mile | 6.4 furlongs 1 mile |

## FROBLEMI.

To find the Area of a Parallelogram; wubetber it be a Square, a Rectangle, a Rhombus, or a Rhomboid.

Multiply the length by the breadth, or perpendicular height, and the product will be the area.
EXAMPLES.

1. To find the area of a fquare, whofe fide is 6 inches, or fix feet, \&c.

| 6 |
| ---: |
| $\frac{6}{6}$ |
| $\frac{36}{}$ |
| Anfwer |
| 36 |


2. To find the area of a rectangle, whofe length is 9 , and breadth 4 inches, or feet, \&cc.

3. To find the area of a rhombus, whofe length is, 6.20 chains, and perpendicular height $5 \cdot 45$

$$
5 \cdot 45
$$

$$
6 \cdot 20
$$

$$
10900
$$


$6 \cdot 20$
3270
10) 33.7900

$$
3 \cdot 379
$$

4

$$
1 \cdot 516
$$

40
20.640 Anf. 3 acres, 1 rood, 20 perches.

Note. Here the fquare chains are divided by 10 to bring them to acres, becaufe 10 fquare chains make an acre. Alfo the decimals of an acre are multiplied by 4 roods, and thefe by 40 perches, becaufe 4 roods make 1 acre, and 40 perches 1 rood.
4. To find the area of the rhomboid, whofe length is 12 feet 3 inches, and breadth 5 feet 4 inches.

| $\mathbf{f}$ | $\mathbf{i}$ |
| ---: | ---: |
| 12 | 3 |
| 5 | 4 |
| 61 | 3 |
| 4 | 1 |
| 65 | 4 |



Anfwer $65 \frac{1}{3}$ fquare feet.
5. To find the area of a fquare, whofe fide is 35.25 chains.

$$
\text { Anf. } 124 \text { ac } 1 \text { ro } 1 \text { perch. }
$$

6. 'io find the area of a parallelogram, whofe length is 12.25 chains, and breadth 8.5 chains.

Anf. 10 ac 1 ro 26 perch.
7. To find the area of a rectangular board, whofe length is 12.5 feet, and breadth 9 inches. Anf. $9_{8}^{\frac{3}{8}}$ feet.
S. To find the fquare yards of painting in a rhomboid, whofe length is 37 feet, and breadth $5 \frac{1}{4}$ feet.

Anf. $21 \frac{7}{12}$ fquare yards.

## PROBLEM II.

To. find the Area of a Triangle.

Rule 1. Multiply the bafe by the perpendicular height, and take half the product for the area.

Rule 2. When the three fides only are given: Add the three fides all together, and take half the fum; from the half fum fubtract each fide feparately; multiply the half fum and the three remainders continually together; and take the fquare root of the laft preduct for the area of the triangle.

## EXAMPLES.

1. Required the area of the triangle, whofe bate is 6.25 chains, and perpendicular height $5 \cdot 20$ chains.

| 6.25 |
| ---: |
| 5.20 |
| 12500 |
| 3125 |

20) $32 \cdot 5000$
$1 \cdot 625$
\(\begin{array}{r}4 <br>

\hline\)| $2 \cdot 500$ |
| :---: |
| 40 |
| 20.000 |\end{array}

Anf. 1 ac 2 ro 20 perches.
2. To find the number of fquare yards in the triangle whofe three fides are $13,14,15$ feet.

3. How many \{quare yards are in a right-angled triangle, whofe bafe is 40 , and perpendicular 30 feet ?

Anf. $66 \frac{2}{3}$ §quare yards.
4. To find the area of the triangle, whofe three fides are $20,30,40$ chains.

Anf. 29 ac 0 ro 7 per.
5. How many fquare yards contains the triangle, whofe bafe is 49 feet, and height $25 \frac{1}{4}$ feet?

Anf. $68 \frac{53}{\frac{3}{2}}$ or 68.7361 .
6. How many aeres, \&c. in the triangle, whofe three fides are 380, 420, 765 yards? Anf. 9 ac 0 ro 38 per.
7. To find the area of the triangle, whofe bafe is 18 feet 4 inches, and height 11 feet 10 inches. Anf. 108 feet 5 inches $8^{\prime \prime}$.
8. How many acres, \&c, contains the triangle, whofe three fides are $49 \cdot 00,50 \cdot 25,25 \cdot 69$ chains?

An. 61 ac 1 ro 39.68 per.

## PROBLEM III.

T: find one Sile of a Right-a.gled Triangle, baving the other two Sides given.

The fquare of the hypothenufe is equal to both the fquares of the two legs. Therefore,

1. To find the hypothenufe; add the fquares of the two legs together, and extract the fquare 000 of the fum.
2. To find one leg; fubtract the fquare of the other leg from the fquare of the hypothenufe, and extract the fyuare root of the difference.

> EXAMPLES.

1. Required the hypothenufe of a right angled triangle whofe bafe is 40, and perfendicular 30.

$$
\begin{array}{rc}
40 \\
\begin{array}{c}
40 \\
\hline 1600 \\
900
\end{array} & \begin{array}{c}
30 \\
30
\end{array} \\
\cline { 1 - 3 }
\end{array}
$$

2500 ( 50 the hypothenufe AC
35
00
2. What is the perpendicular of a right-angled triangle, whofe bafe AB is 56 , and the hypothenufe AC 65 ?

3. Required the length of a fcaling ladder to reach the top of a wall whofe beight is 28 feet, the breadth of the ditch before it being 45 feet.

Anf. 53 feet.
4. To find the length of a fhoar, which, ftruting 12 feet from the upright of a building, may support a jaumb 20 feet from the ground. Anf. $23 \cdot 32380$ feet.
5. A line of 320 feet will reach from the top of a precipice, flanding clofe by the fide of a brook, to the oppofite bank: required the breadth of the bronk; the height of the precipice being 103 feet. Anf. 302.9703 feet.
6. A ladder of 50 feet long being placed in a freet, reached a window 28 feet from the ground on one fide; and by turning the laddor over, without remsving the foot out of its place, it touched a moulding 36 feet high on the other fide: required the breadth of the ftreet?

Anf. 76•1233335 feet.
PROBLEM IV.
To find the Area of a Trapczoid.
Add together the two parallel fides; multiply that fum by the perpendicular diftance between them, and take half the product for the area.

## EXAMPIBS.

1. In a trapezoid the parallel lines are $A B 7 \cdot 5$, and $D C$ 12.25 , allo the perpendicular diftance AP or Cn is 15.4 chains; required the area.

2. How many fquare feet contains the plank, whofe length is 12 fuet 6 inches, the breadth at the greater end 1 fint 3 inches, and at the lefs end 11 inches? Anf, $15 \frac{13}{24}$ feet. F?
$\therefore$ Re-

3．Required the area of a trapezoid，the parallel fides being 21 feet 3 inches and is feet 6 inches，and the dif－ tance between them $\delta$ feet 5 inches．

Anf． 167 feet 3 inches $4^{\prime \prime} 6^{\prime \prime \prime}$ ．
4．In meafuring along one fide $A B$ of a quadrangular foeld，that fide and the two perpendiculars upon it from the oppofite corners，meafured as below：required the content．

$$
\begin{aligned}
& A \text { chains } \\
& A P=1.10 \\
& A Q \equiv 7.45 \\
& A B=11.10 \\
& \mathrm{DC}=3.52 \\
& \mathrm{QD}=5.95
\end{aligned}
$$ Anf． 4 ac 3 r 17.92 p．



## PROBLEM $V$ 。

To find the Area of a Trapezism．

$$
\text { case } 1 .
$$

## For any Trapezium．

Divide it into two Triangles by a diagonal ；then find the areas of thefe triangles，and add them together．

Note．If two perpendiculars be let fall on the diagonal， from the other two oppofite angles，the fum of thefe per－ pendiculars being multiplied by the diagonal，hall the product will be the area of the trapezium．

## CASE．2．

When the Trapezium can be infcribed in a Circle．
Add all the four fides together，and take half the fum； next fubtract each fide feparately from the half fum：then muliiply the four remainders continually together，and take the fquare root of the lant product for the area of the trapezium．

## EXAMPLES。

1. To find the area of the trapezium ABCD , the diagonal $A C$ being 42 , the perpendicular $B E 18$, and the perpendicu$\operatorname{iarDE} 10$.

2) 1428

714 the anfwer.
2. In the trapezium ABCD , the fide AB is $15, \mathrm{BC} 13$, $C D$ 14, $A D$ 12, and the diagonal $A C$ is 16 : required the area.

AC 16
AB 15
BC $\quad 13$
2) 44

22 16


AC 16
CD 14
AD 12
2) 42

2222 half fum 2


22
756
$\overline{3316}(91 \cdot 1021$


315


6615 ( $81 \cdot 3826$ The

3. If a trapezium can be infcribed in a circle, and have its four fides $24,26,28,30$; required its area.

4. How many fquare yards of paving are in the trapeziom, whofe diagonal is 65 fect, and the two perpendiculars let fail on it 28 and $33 \cdot 5$ fcet? Anf. $222 \frac{1}{\frac{1}{2}}$ yards.
5. What is the area of a trapezium, whofe fonth fide is $27 \cdot 00$ chains, eaft fice $35 \cdot 75$ chains, north fide $37 \cdot 55$ chains, weft fide 41.05 chains, and the diagonal from fouth-weft to north-eaft 48.35 chains?

$$
\begin{array}{r}
\text { Anf. } 123 \text { ac } 0 \text { ro } 11 \cdot 8672 \text { per. } \\
\text { 6. What }
\end{array}
$$

6. What is the area of a trapezium, whofe dingonal is $108 \frac{1}{2}$ feet, and the perpendiculars $56 \frac{1}{4}$ and $60 \frac{3}{4}$ feet?

$$
\text { Anf. } 03+7 \frac{1}{4} \text { feet. }
$$

7. What is the area of a trapezium infcribed in a circle, the four fides being $12,13,14,15$ ?

Anf. 150.9972379.
8. In the four-fided field $A B C D$, on account of obAructions in the two fides $A B, C D$, and in the perpendiculars $\mathrm{BF}, \mathrm{DE}$, the following meafures only could be taken: namely, the two fides BC 265 and AD 220 yards, the diagonal AC 378 yards, and the two diffances of the perpendiculars from the eads of the diagonal, namely AE 100, and CF 70 yards: required the area in acres, when $48+0$ fquare yards make an acre. Anf. 17 ac 2 ro 21 per.

## PROBLBM VI.

To find the Area of an Irregular Polygon.
Draw diagonals dividing the figure into trapeziums and triangles. Then find the areas of all thefe feparately, and add them togecher for the content of the whule figure.

## EXAMFLE.

To find the content of the irregular figure ABCDEFGA, in which are given the following diagonals and perpendiculars : namely,

| AC | 5.5 |
| :--- | :--- |
| FD | 5.2 |
| GC | 4.4 |
| Gm | 1.3 |
| BR | 1.8 |
| Go | 1.2 |
| Ep | 0.8 |
| Dq | 2.3 |



E 4
1f,


## PROBLEM VIJ.

To find the Area of a Regular Polygon.

## RULE 1.

Find the perimeter of the figure, or fum of its fides, and multiply it by the perpendicular falling from its centre on one of its fides, and take half the product for the area,

## RULE 2.

Square one fide of the polygon; multiply that fquare by the multiplier fet againtt its name in the following table, and the product will be the area.

| No of <br> fides. | Names. | Mulipliers. |
| :---: | :--- | ---: |
| 3 | Trigon or equ. tri. | 0.4350127 |
| 4 | Tetragon or fquare | 1.0000000 |
| 5 | Pentagon | 1.7204774 |
| 6 | Hexagon | 2.5480762 |
| 7 | Heptagon | -3.6339124 |
| 8 | Oetagon | 4.8284271 |
| 9 | Nonagon | 6.1818242 |
| 10 | Decagon | 7.694 .2085 |
| 11 | Undecagon | 9.3656399 |
| 12 | Dodecagon | 11.1961524 |

EXAMPLES.

1. Required the area of the regular pentagon, whole fide $A B$ is 25 feet, and perpendicular $C P 17 \cdot 2047.74$. By the $1 / 2$ Rule. $17 \cdot 204774$ perp. 125 perim.

$1720+774$
2) $2150 \cdot 596750$ $1075 \cdot 298375 \mathrm{anf}$.


By the 2d. Rule.
Then $1 \cdot 7204774$ 625

2. To find the area of the hexagon, whore fide is 20. And. 1039-23048.
3. To find the area of the trigon, or equilateral triangie, whore gide is 20 . Inf. 173.20508.
4. Required the area of an octagon, whole file is 20. Ans. 193! $\cdot 370 \mathrm{~S}_{4}$.
5. What is the area of a decagon, whole file is 20? Af. $3077 \cdot 68351$.

```
PROBLEM VIIT, ,
```

To find the Diameter and Circumference of a Circle, the one from the other.

## RULE 1:

As 7 is to 22, fo is the diameter to the circumference. As 22 is to 7, fo is the circumference to the diameter.

$$
\text { RULE } 2 .
$$

As 113 is to 355 , fo is the diameter to the circumf. As 355 is to 113 , fo is the circumf, to the diameter.

## rule 3.

As 1 is to $3 \cdot 1416$, fo is the diameter to the circumf. As 3.1416 is to 1 , fo is the circumf, to the diameter.

## EXAMPLES.

1. To find the circumference of a circle, whole diameter $A B$ is 10 .

$$
\begin{aligned}
& \text { By Rule } 1 \text {. } \\
& 7: 22:: 10: 31 \frac{3}{7} \\
& 10 \\
& 7 \begin{array}{l}
220 \\
31 \frac{3}{3}
\end{array} \\
& \text { or } 31 \cdot 42857 \text { ant. }
\end{aligned}
$$


dy
By Rule 2.
$113: 355:: 10: 31 \frac{47}{\frac{4}{3} 3}$
10
$1 1 3 \longdiv { 3 5 5 0 } ( 3 1 \cdot 4 1 5 9 3$
160 the anf.
470
150
670
1050
330

$$
\text { By Rule } 3 .
$$

$1: 3 \cdot 1416:: 10: 31 \cdot 416$ the circumference nearly, the true circumference being $31 \cdot 4159265358979$ \&c.

So that the 2 d rule is nearef the truth.
2. Tv find the diameter when the circumference is 50 .

$$
\text { By Rule } 1 .
$$

$$
\begin{aligned}
& 22: 7: 50: \frac{7 \times 25}{11}=\frac{175}{11}=15 \frac{10}{19}=15.90^{\circ} 90^{\circ} \text { anf. } \\
& \text { By Rule } 2 . \\
& \text { By Rule } 3 . \\
& 355: 113 \cdot: 50: 15 \frac{65}{75} \\
& 50 \\
& \begin{array}{r}
3^{6} 14 \cdot 16: 1:: 50: 15 \cdot 9156 \\
50
\end{array} \\
& 355 \overline{5650} \quad 3 \cdot 1416) \cdot \overline{50 \cdot 000}(15.9156 \\
& \text { 71 } 11130(15 \cdot 9155, \ldots \text {.. } 18484 \\
& 420 \quad 2 \$ 76 . \\
& 650 \\
& 49 \\
& 110 \\
& 1.8 \\
& 390 .
\end{aligned}
$$

3. If the diameter of the earth be 7958 miles, as it is very nearly, what is the circumference, fuppofing it to be exactly round? Anf. $25000 \cdot 8528$ miles.
4. To find the diameter of the globe of the earth, fuppoling its circumference to be 25000 miles.

Anf. $7957 \frac{3}{4}$ nearly.

PROBLEM 1 X . To find the Length of any Arc of a Circte. rule 1.
As 180 is to the number of degrees in the are, So is $3 \cdot 1416$ times the radius, to its length.
Or as 3 is to the number of degrees in the are, So is 05236 times the radius, to its length.
Ex. 1. To find the length of an arc ADB of 30 degrees, the radius being ! feet.

$$
3 \cdot 1416
$$

9
As $180: 30$ -
Or $6: 1:: 28 \cdot 2744 \quad: 4 \cdot 7124$
Cr 3: 30: : : $05236 \times 9: 4 \cdot 7124$ .90

4.7194 the anfwer.

## RULE 2.

From $s$ times the chord of half the arc fubtract the chord of the whole are, and take $\frac{7}{3}$ of the remainder for the length of the arc nearly.

Ex. 2. The chord AB of the whole arc being $4 \cdot 65874$, and the chord AD . of the half arc 2.34947 ; required: the length of the arc.

$$
2 \cdot 34.947
$$



Ex. 3. Required the length of an arc of 12 degrees $10^{\circ}$ minutes, or $12 \frac{1}{6}$ degrees, the radius being 10 feet.

Ex. 4. To find the length of an arc whofe chord is 6 , and the chord of its half is $3 \frac{1}{2}$.

Anf. $7 \frac{1}{3}$ a
Ex. 5. Required the length of the are, whofe chord is 8, and the height PD 3.

Ex. 6. Required the length of the arc, whofe chord is 6 , the radius being 9 . Anf. 6•11706.

## PROBLEM X.

## To find the Area of a Circle.

The area of a circle may be found from the diameter and circumference together, or from either of them alone, by thefe rules following.

Rule 1. Multiply, half the circumference by half the diameter. Or multipiy the whole circumference by the whole diameter, and take $\frac{1}{4}$ of the product.
Rule 2. Multiply, the fquare of the diameter by 17854.

Rule 3. Multiply the fquare of the circumference by -07958.
Rule 4. As 14 to 11 ; fo is the fquare of the diameter to the area.
Rule 5., As 88 to 7 ; fo is the fquare of the circumference to the area.

EXAMPLES.

1. To find the area of a circle whofe diameter is 10 , and circumference $31 \cdot 4159265$.



SS : 7: : $986 \cdot 960+4$
7


Ex. 2. Required the area of the circle, whofe diameter is 7 , and circumference 22.

Ans. $38 \frac{1}{2}$.
Ex. 3. What is the area of a circle, whofe diameter is 1 , and circumference $3 \cdot 1416$ ?

Anf. 7854.
Ex. 4. What is the area of a circle, whofe diameter is 7 ? Anf. 38.4846 .
Ex. 5. How many fquare yards are in a circle whofe diameter is $3 \frac{1}{2}$ feet ? Anf. 1•069.
Ex. 6. How many fquare feet does a circle contain, the circumference being 10.9956 yards? Anf. 86.19266.

PROBLEM XI.
To find the Area of the Sectior of a Gircle. rule 1.
Multiply the radius, or half the diameter, by half the arc of the fector, for the area. Or, multiply the diameter by the arc of the fector, and take $\frac{2}{4}$ of the product.

Note. The arc may be found by groblem ix.

## RUEE 2.

As 360 is to the degrees in the arc of the fector, fo is the whole area of the circle, to the area of the fector.

Note. For a femicircle take one half, for a quadrant one quarter, \&c. of the whole circle.

## EXAMPLES.

1. What is the area of the fector CADB, the radius being 10 , and the chord $A B 16$ ?

$$
100=\mathrm{AC}^{2}
$$

$$
64=\mathrm{AE}^{2}
$$

$$
36(6=C E
$$

$$
10=C D
$$

$$
4=D E
$$

$$
16=\mathrm{DE}^{2}
$$



$$
\sigma_{4}=\mathrm{AE}^{2}
$$

$$
80(8 \cdot 9442719=A D
$$

71.5541752

16
3) $55 \cdot 5541752$
2) 18.5180584 arc ADB $9: 2590297=$ half arc $10=$ radius
92.590297 anfwer.'

Ex.2. Required the area of the fector, whofe are contains 18 degrees; the diameter being 3 feet.
$-7854$

Then, as $360: 18:: 7 \cdot 0686$ the area of the whole circle,
Or as $20: 1:: 7 \cdot 0686: \cdot 353+3$ the anfwer.
Ex 3. What is the area of the fector, whofe radius is 10, and arc 20? Ahf. 100.

Ex. 4. What is the area of the fector, whofe radius is. 9, and the chord of its arc 6? Anf. 27:52678.

Ex. 5 . Required the area of the fector, whofe radius is 25 , its arc containing 147 degrees 29 minutes. Anf. 804•4017.
Ex. 6. To find the area of a quadrant and a femicircle, to the radius:13. Anf. 132.7326 and 265.4652 .

## PROBLEM XII.

To find the Area of a Segment of a Circle.
RULEI.
Find the area of the fector having the fame are with the fegment, by the laft problem.

Find alfo the area of the triangle, formed by the chord of the fegment and the two radii of the fector.

Then add thefe two together for the anfwer when the fegment is greater than a femicircle; but fubtract them: for the anfwer when it is lefs than a feinicircle.

$$
E X \triangle M P L E, J Q 1
$$

Required the area of the fegraent $A C B D A$, its chord. $A B$ being 12 , and the radius $A E$ or $C E 10$.

$64 \cdot 327.4$ area of fect, or EACB $48 \cdot 0000$ area of triangle LAB
anf. 16.3274 area of fegm, ACBA.

## RULE 2.

To the chord of the whole arc add $\frac{4}{3}$ of the chord of half the arc, or add the latter chord and $\frac{1}{3}$ of it more. Multiply the fum by the verfed fine or height of the fegment, and take of the product for the area of the fegment.

Ex. Take the fame example, in which the radius is 10 , and the chord $A B 12$.

Then, as before, are found CD 2, and the chord of the half arc AC $6 \cdot 324555$

Hence $\frac{1}{3}$ is $2 \cdot 108185$
AB 12.

$C D$| 20.432740 |
| ---: |
| $-\quad 2$ |
| 40.86548 |
| 4 |

Anf. 16.346192 area nearly.
rúle 3.
Divide the height of the fegment by the diameter, and find the quotient in the column of heights or versed fines, at the end of the boek.

Take out the correfponding area in the next column on the right hand, and multiply it by the fquare of the diameter, for the anfwer.

Ex. The example being the fame as before, we have $C D$ equal to 2 , and the diameter 20.

> | Then 20) $2(\cdot 1$ |  |
| :--- | ---: |
| And to 1 anfwers | 040875 |
| Sq. of diam. | 400 |
|  | Anfwer |
|  | $16 \cdot 3500$ |

OTHER EXAMPLES.
Ex. 2. What is the area of the fegment, whofe height is 2 , and the chord 20 ? Anf, 26.878787.

Ex. 3. What is the area of the fegment, whofe height is 18, and diameter of the circle 50? Anf. 636.375.

Ex. 4. Required the area of the fegment whofe chord is 16 , the diameter being $2 \theta$.

Anf. 44.7292.
PRO.

## PROBLEM XIII.

Io find the Area of a Circular Ring, or Space included beo tween two Concentric Circles.
Take the difference between the two circles, for the ring; or multiply the fum of the diameters by their difference, and multiply the product by 7854 , for the anfwer.

## EXAMPLES.

1. The diameters of the two concentric circles being AB 10 and DG 6 , required the area of the ring contained between their circumferences AEBA, and DFGD.


Ex. 2. The diameters of two concentric circles being 20 and 10 ; required the area of the ring between their circumferences.

Anf. 235:62.
Ex. 3. What is the area of a ring, the diametors whofe bounding circles are 6 and 4 ? Anf. 15.708.

> PROBLEM XIV.

## To meafure long Irregular Figurw.

Take the breadth in feveral places, at equal diftances. Add the firft and laft two breadths together, and divide the fum by 2, for the half fum, or arithmetical mean between thofe two. Then add together this mean and all the other breadths, omitting the firt and laft, and divide their fum
by the number of parts fo added, which will give a medium breadth among the whole; then multiply it by the length, to give the true area.

If the breadths be not taken at equal diftances; thencompute all the little trapezoids feparately, and add them all together. - Or, add all the breadths together, and divide the fum by the whole number of them for the mean breadth, to multiply by the length for the whole area, which will not be far from the truth.

## EXAMPLES.

1. The breadths of an irregular figure, at five equidiftant places being $A D 8 \cdot 2, \mathrm{mp} 7 \cdot 4$, nq $9 \cdot 2$, or $10 \cdot 2$ $B C 8 \cdot 6$; and the length $A B 3 y$; required the area.

343.2 anfwer.

Ex.2. The length of an irregular figure being 84 , and the breadths at 6 equi-diftant places $17 \cdot \neq 20 \cdot 6,14 \cdot 2,16 \cdot 5$, $\dot{20} 1,24 \cdot 4$; what is the ares? Anf, 1550.6

## MENSURATION OF SOLIDS.



## DEFINITIONS.

SOLIDS, or bodies, are figures having length, breadth, and thicknefs.
2. A prifin is a folid, or body, whofe ends are any plane figures, which are parallel, equal, and fimilar; and its fides are parallelograms.

A prifm is called a triangula one, when its ends are triangles; a fquare prifm, when its ends are fquares; a pentagonal prifm, when its ends are pentagons; and fo on.
3. A cube is a fquare prifm, having fix fides, which are all fquares. It is like a die, having its fides perpendicular to one an-
 other.
4. A parallelopipedon is a folid having fix rectangular fides, every oppofite pair of which are equal and parallel.
5. A cylinder is a round prifm, having circles for its ends.
6. A pyramid is a folid having any plane figure for a bafe, and its fides are triangles whofe vertices meet in a point at the top, called the vertex of the pyramid.


The pyramid takes names according to the figure of its bafe, like the prifan; being triangular, or fquare, or hexagonal, \&c
7. A cone is a round pyramid, having a circular bafe.
8. A fphere is a folid bounded by one continued convex furface, cvery point of which is equally diftant from a point within, called the centre. The fphere may be conceived to be formed by the revolution of a femicircle about its diameter, which remains fixed.

9. The axis of a folid, is a line drawn from the middle of one end, to the middle of the oppofite end; as betiveen the oppofite ends of a prifm. Hence the axis of a pyramid, is the line from the vertex to the middle of the bafe, or the end on which it is fuppofed to ftand. And the axis of a fohere, is the fame as a diameter, or a line paffing through the centre, and terminated by the furface on both fides.
10. When the axis is perpendicular to the bafe, it is a right prifm or pyramid; otherwife, it is cbique.
11. The height or altitude of a folid, is a line drawn from its vertex or top, perpendicular to its bafe.- This is equal to the axis in a right prifm or pyramid; but in an oblique one, the leight is the ferpendicular fide of a right-angled triangle, whofe hypothenufe is the axis.
12. Allo a prifm or pyranid is regular or irregular, as its bafe is a regular or an irregular plane figure.
13. The fegment of a pyramid, fphere, or any other folid, is a part cut off the top by a plane parallel to the bafe of that figure.
14. A fruffrum or trunk, is the part that remains at the bottom, after the fegmient is cut off."
15. A zone of a fphere, is a part intercepted between two parallel plames; and is the difference between two fegments. When the ends, or plares, are equally diftant from the centre, on bioth fides, the figure is called the middle zone.
16. The fector of a fphere, is compofed of a fegment lefs than a hemifphere or half fphere, and of a cone having the fame bafe with the fegment, and its vertex in the centre of the Sphere.
17. A circular fpindle, is a folid generated by the sevolution of a fegment of a circle about its chord, which remains fixed.
18. A regular boty, is a folid contained under a certain number of equal and regular plane figures of the fame fort.
19. The faces of the folid are the plane figures under which it is contained. And the linear fides, or edges of the folid, are the fides of the plane faces.
20. There are only five resular bodies: namely, 1 ft , the tetraedon, which is a re ular pyramid, having four triangular faces: 2d, the hexaedron, or cule, which has 6 equal fquare faces; 3d, the octaedron, which has 8 triangular faces; 4th, the dodecaedron, which has 12 pentagonal faces; 5th, the icofaedron, which has 20 triangular facec.

Note. If the following figures be exanly drawn on pafteboard, and the lines cut half through, fo that the parts be turned up and their edges glued together, they will reprefent the five regular bodie?: namely, figure 1 the tetraedron, figure 2 the hexaedron, figure 3 the octaedron, figure the dodecredron, and figure 5 the ico. faedron.


Note alfo, that, in cubic meafure, 1728 inches make 1 foot

27 feet - - 1 yard
$166 \frac{3}{8}$ yards - 1 pole
64000 poles - - 1 furlong
512 furlongs 1 mile.

## PROBLEME.

To find the Solidity of a Cube.
Cube one of its fides for the content ; that is, multiply the fide by itfelf, and that product by the fide again.

## EXAMPLES。

1. If the fide $A B$, or $A C$, or $B D$, of a cube be $2 t$ inches, what is its folidity or content?


Ex. :. How many folid feet are in the cube whofe fide is 22 feet?

Ex. 3 Required how Anf. 10648. whofe fide is 18 inches many folid feet are in the cube Anf. $3 \frac{3}{8}$.

$$
\begin{gathered}
\text { PROBLEM II. } \\
\text { To fuisd the Solidity of a Parallelopipedon. }
\end{gathered}
$$

Multiply the length, breadth, and depth, or altitude, all continually tozether, for the folid content ; that is, multiply the length by the breadth, and thas product by the depth.

## EXAMPLEB.

1. Required the content of the parallelopipedon, whofe length $A B$ is 6 feet, its breadth $A C 2 \frac{1}{2}$ feet, and altitude $B D 1 \frac{3}{4}$ feet?

$$
\begin{array}{r}
1.75 \mathrm{BD} \\
6 \mathrm{AB}
\end{array}
$$

| $10 \cdot 50$ |
| :---: |
| $2: 5$ |
| 5250 |
| 2100 |



### 26.250 anfwer.

Ex. 2. Required the content of a parallelopipesion, whore length is 10.5 , breadth 4.2 , and height $s$

Ex. 3. How many cubic feet are in a block of mas whofe length is 3 feet 2 inches, breadth 2 feet 8 inches and depth $\frac{\text { feet } 6 \text { inches? }}{}$

Anf. 211 ${ }^{\frac{1}{9}}$

## PROBLEM III.

## To find the Solidity of any Prijm.

Find the area of the bafe, or end; which multiply. by the height, or length, and it will give the content.

Which rule will do, whether the prifm be triangular, or \{quare, or pentagonal, \&ec or round, as a cylinder.

> EXAMPLES.

1. What is the content of a triangular prifin, whofe length $A C$ is 12 feet, and each fide $A B$ of its equilateral bate $2 \frac{1}{2}$ feet?

Here $\frac{5}{2} \times \frac{5}{2}=\frac{25}{4}=6 \frac{1}{4}$.

Then 433013 tabulas $n^{*}$
$6 \frac{3}{4}$
2.598078
108253
2.706331 area of erid

12 length
32.475972 anfwer.

Ex. 2. Required the folidity of a triangular prifm, whofe length is 10 feet, and the three fides of its triangular end or bafe, are 5, 4, 3 feet?

Anf. 60.
Ex. 3. What is the content of a hexagonal prifm, the length being 8 feet, and each fide of its end 1 foot 6 inchés?

Anf. +6.765368.
Ex. 4. Required the content of a cylinder, whofe length is 20 feet, and circumference $5 \frac{1}{2}$ feet?

Anf. 48.1459.
Ex. 5. What is the content of a round pillar, whofe height is 16 feet, and diameter 2 feet 3 inches?

Anf. 63.6174.

## FROELEM IV.

## To find the Convex Surfate of a Cytinder.

Multiply the circumference by the height br length of the cylinder.

Note: The upright furface of any prifm is found in the fame manner, viz. by multiplying the perimeter of the end by the length. And the folidity of a cylinder is found as the prifm in the laft problem.

## EXAMPLES.

1. What is the convex furface of a cylinder, whofe length is 16 feet, and its diameter 2 feet 3 inches.

$$
\text { G } 2
$$



Ex. 2. Required the convex furface of the cylinder; whofe length is 20 feet, and its diameter 2 feet?

$$
\text { Anf. } 125 \cdot 664
$$

Ex. 3. What is the convex furface of a cylinder, whofe length is 18 feet 6 inches, and circumterence 5 feet 4 inches? PKOBLEM $V$.

Anf. $98 \frac{2}{3}$.
To find the Convex Surface of a Right Cone.

Multiply the circumference of the bafe by the flant height, or length of the fide, and take half the product for the furface.

Ex. 1. If the diameter of the bafe be $A B 5$ feet, and the fide of the cone $A C 18$, required the convex furface?

$$
\begin{aligned}
& 3 \cdot 1416 \\
& 5 \text { diameter }
\end{aligned}
$$



Ex. 2. What is the convex furface of a cone, whofe fide is 20 , and the circumference of its bafe 9 ?

$$
\text { Anf. } 90
$$

Ex. 3. Required the convex furface of a cone, whofe flant height is 50 feet, and the diameter of its bafe 8 feet 6 inches?

Anf. $667 \cdot 54$.
PROBLEM VI。
To find the Convex Surfure of the Fruftum of a Right Cone: :
Add together the perimeters of the two ends; then multiply that fum by the nant height, or fide of the fruftum, and take half the product fos the furface.

## EXAMPLES.

1. If the circumferences of the two ends be 12.5 and 10.3 and the flant height AD 14 , required the convex farface of the fruftuin $A B C D$ ?


Ex. 2. What is the convex furface of the fruftum of a cone, the flant height of the fruftum being 12.5 , and the circumferences of the two ends 6 and $8 \cdot \pm$ ? Anf. 90.

Ex. 3. Required the convex furface of the fruftura of a cone, the fide of the fruftum being 10 feet 6 inches, and the circumferences of the two ends 2 feet 3 inches, and 5 feet 4 inches?

## PROBLEM VII.

To find the Solidity of a Cone, or ary Pyramid.
Compute the area of the bafe, then multiply that area by the height, and take $\frac{1}{3}$ of the product for the content.

> EXAMPLES

1. What is the folidity of a cone, whofe height $C D$ is 12: feet, and the diameter $A B$ of the bafe $2 \frac{1}{2}$ ?
Here $2 \frac{1}{2} \times 2 \frac{1}{2}=\frac{5}{2} \times \frac{5}{2}=\frac{25}{4}=6 \frac{1}{3}$.


Ex.2. What is the folid content of a pentagonal pyramid, its height being 12 feet, and each fide of its bafe 2 feet ?

> 1.720477 tab . area
> 4 fq . fide
6.88 .1908 area bafe
$4 \frac{1}{3}$ of height
$27 \cdot 527632$


Ex. 3.

Ex. 3. What is the content of a cone, its height being $10 \frac{1}{2}$ feet, and the circumference of its bafe 9 feet?

+ Anf. 2:2056093.
Ex. 4. Required the content of a triangular pyramid, its height being 14 feet 6 inches, and the three fides of its bafe 5, 6, 7 ?

Anf. $71 \cdot 0352$. . Ex. 5. What is the content of a hexagonal pyrainid, whofe height is 6.4 , and each fide of its bafe 6 inches?

Anf. $1 \cdot 38561$.

## PROELEM VIII.

Io find the Solidity of the Frufum of a Come or any Byramid.

## RULES.

1. Add into one fum, the areas of the two ends, and the mean proportional between them, or the fquare root of their product; and take $\frac{3}{3}$ of that fum for a mean area; which multiplied by the height of the fruftum, will give the content.
2. When the ends are regular plane figures; the mean area will be found by multiplying $\frac{3}{3}$ of the correfponding tabular number belonging to the polygon, either by the fum arifing by adding together the fquare of a fide of each end and the product of the two fides, or by the quotient of the difference of their cubes divided by their difference, or by the fum arifing from the fquare of their half difference added to 3 times the fquare of their half fum.
3. And in the fruftum of a cone, the mean area is. found by multiplying $\cdot 2618$, or $\frac{1}{3}$ of $\cdot 7854$, either by the fum arifing by adding together the fquares of the two diameters and the product of the two, or by the difference of their cubes divided by their difference, or by the fquare of half their difference added to 3 times the fquare of their half fum.

Or, if the eireumferences be ufed in like manner, inftead of their diameters, the multiplier will be 02054, inflead of 2618.

## BXAMPLES。

1. What is the content of a frufum of a ense, whofe height is 20 inches, and the diameters of its two ends 25 and 20 inches?


$$
131.5840 \text { anfwer. }
$$

Ex. 2. Required the content of a pentagonal frutum, whore height is 5 feet, each fide of the bafe 1 foot 6 inches, and each fide of the lefs end 6 inches?


$$
144\left\{\begin{array}{c|c}
12 & 1341 \cdot 972060 \\
12 & 111 \cdot 331005 \\
9 \cdot 319250 \text { anfwer in cubic feet. }
\end{array}\right.
$$

Ex. 3. What is the folidity of the fruftum of a cone, the altitude being 25, the circumference at the greater end 20, and at the lefs end 10 ? Anf. $46+\cdots 20.5$.

Ex. 4. How many folid feet are in a piece of timber, whofe bafes are fquares, each fixle of the greater end being 15 inches, and each fide of the lefs end 6 inches; alfo the length, or perpendicular alitude is 24 feet? Anf. $19 \frac{1}{2}$.

Ex. 5. To find the content of the fruftum of a cone, the altitude being 18 , the greatef diameter 8 , and the leaft 4 . Anf. 527.7888.
Ex. 6. What is the folidity of a hexagonal fruftum, the height being 6 feet, the fide of the greater end 18 inches, and of the lefs 12 inches?

Anf. $24-6817: 22$
css:r

> Frorrem ix.

To the length of the edge add twice the length of the back or bafe, and referve the fum; multiply the height of the wedge by the breadth of the bafe; then multiply this product by the referved fum, and take $\frac{1}{8}$ of the laft product for the content.

## EXAMPLES.

1. What is the content in feet of a wedge, whofe alitude $A P$ is $1+$ inches, its edge AB 21 inches, and the length of its bafe DE 32 inches, and its breadth CD $4 \frac{1}{2}$ inches?

| 31 |
| :--- |
| 32 |
| 32 |

Ex. 2. Required the content of a wedge, the length and breadth of the bafe being 70 and 30 inches, the length of the edge 110 inches, and the height $34 \cdot 29016$ ? Anf. $2+804.8$
PROBLEM X.
To find the Solidity of a Prijmoid. Definition.
A prifmnid differs only from the fruftum of a pyramids. in or baving its oppofite ends fimilar planes. $\quad \boldsymbol{R} \cup \mathrm{L}$.

## RULE.

Add into one fum, the areas of the two ends and 4 times the middle fection parallel to them, and $\frac{1}{6}$ of that fum will be a mean area; which being multiplied by the height, will give the content.

Note. For the length of the middje fection, take half: the fam of the lengths of the two ends; and for its breadth, take half the fum of the breadths of the two ends.

## EXAMPLES.

1. How many cubic feet are there in a fone, whofe ends are rectangles, the length and breadth of the one being 14 and 12 inches; and the correfponding fides of. the other 6 and 4 inches; the perpendicular height being: $30 \frac{1}{2}$ feet ?



$$
\begin{aligned}
& 85 \frac{1}{3} \text { mean area in incheso. } \\
& 30 \frac{1}{2} \text { height } \\
& \hline 2560 \\
& 42 \frac{2}{3} \\
& 2602: 6 \\
& 216 \cdot 8 \\
& 18.074 \text { anfwer: } \\
& \hline
\end{aligned}
$$

Ex. 2. Required the content of a reetangular prifmoid, whofe greater end meafures 12 inches by 8 , the leffer end 8 inches by 6 , and the perpendicular height 5 feet ?

$$
\text { Anf. } 2.453 \text { feet. }
$$

Ex. 3. What is the content of a cart or waggon, whofe infide dimenfions are as follow: at the top the length and breadth $81 \frac{1}{2}$ and 55 inches, at the bottom the length and breadth 41 and $29 \frac{1}{2}$ inches, and the height $47 \frac{1}{4}$ inches? Anf. 126340.59375 cubic inches.

## PROBLEM XI.

## T'0 find the Convex Surface of a Spbere or Globe.

Multiply its circumference by its diameter.
Note. In like manner the convex furface of any zone or fegment is found, by multiplying its height by the whole circumference of the fphere.

EXAMPLES.

1. Required the convex fuperficies of a globe, whofe diameter or axis is 24 inches.

$$
3 \cdot 1416
$$

24 diam.
125664
62832



Ex. 2. What is the convex furface of a fphere, whofe dianeter is 7 , and circumference 22 iAnf. 154, Ex. 3.

Ex. 3. Required the area of the furface of the earth, its diameter, or axis, being $7957 \frac{3}{4}$ miles, and its circumference 25000 miles? Anf: 198943750 fq. miles.

Ex.4. The axis of a fphere being 42 inches, what is the convex fuperficies of the fegment, whofe height is 9 inches?

Anf. $1187 \cdot 5248$ inches.
Ex. 5. Required the convex furface of a fpherical zone, whofe breadth or height is 2 feet, and cut from a fphere of $12 \frac{1}{2}$ feet diameter?

Anf. 73.54 feet:

## PROBLEM XII. <br> To find ibe Solidity of a Sphere or Globe.

Find the cube of the axis, and multiply it by $\cdot 5236$.

> EXAMPLES.

1. What is the folidity of the fphere, whofe axis is $123^{\circ}$

|  | Orthus |
| :---: | :---: |
| 12 | -5236 |
| 12 | 12 |
| 144 | 6.2832 |
| 12 | 12 |
| 1728 | 75.3984 |
| -5236 | 12 |
| 10368 | 904.7808 |
| 5184 |  |
| 13456. |  |
| 8640 | - 15 |

Ex. 2. To find the content of the fphere, whofe axis is 2 feet 8 inches.

Anf. $9^{\circ} 9288$ feet.
4
Ex. 3.

Ex. 3. Required the folid content of the earth, fuppoling its circumference to be 25000 miles?

$$
\text { Anf. } 263858149120 \text { miles. }
$$

## Problem xilf.

To find tbe Solidity of a Spberical Segment.
To three times the fquare of the radius of its bafe, add the fquare of its height; then multiply the fum by the height, and the product again by $\cdot 5236$.

## EXAMPLES.

1. Required the content of a fpherical fegment, its height being 4 inches, and the radius of its bafe 8 ?

| 8 | 4 | .5236 |
| ---: | ---: | ---: |
| 8 | 4 | 332 |
| 64 | 16 | 10472 |
| 3 | 192 | 15708 |
| 192 | 208 | 41888 |
|  | 4 | 43566352 |
|  | anf. |  |



Ex. 2. What is the folidity of the fegment of a fphere, whofe height is 9 , and the diameter of its bafe 20 ?

Anf. 1795-4244.
Ex. 3. Required the content of the fpherical fegment, whofe height is $2 \frac{1}{4}$, and the diameter of its bafe 8.61684 ? Ans. 71:5695.

## pROBLEM Xiv.

## To find the Solidity of a Spherical Zone or Frufum.

- Add together the fquare of the radius of each end, and $\frac{3}{3}$ of the fquare of their ditance, or of the height; then multiply the fum by the faid height, and the product again by 1.5708.


## EXAMPL 8 :

1. What is the folid content of a zone, whofe greater diameter is 12 inches, the lefs 8 , and the height 10 inches?

| 6 | 4 | 10 |
| ---: | ---: | ---: |
| 6 | 4 | 10 |
| 36 | 16 | $3) 100$ |
| - | 36 | $33 \frac{1}{3}$ |
|  | $33 \frac{1}{3}$ |  |
|  | $85 \frac{3}{3}$ |  |
|  | $1 \cdot 5708$ |  |
|  |  |  |

78340

125664
5236
$134 \cdot 0416$
10

$$
1340 \cdot 416 \text { anf. }
$$

Ex. 2. Required the content of a zone, whofe greates diameter is 12 , lefs diameter 10 , and height 2 ?

Anf. 195:8264.
Ex. 3. What is the content of a middle zone, whofe leight is 8 feet, and the diameter of each end 6 ? Anf. $494^{\circ} 278 \pm$ feet.

```
PROBLEM XV.
```

To find the Surfacs of a Circular Spindle.
Multiply the length $A B$ of the fpindle by the radius $O C$ of the revolving arc. Multiply alfo the faid arc $A C B$ by the central diftance OE, or diftance between
the centre of the fpindle and centre of the revolving arc. Subtract the latter product from the firmer, and multiply double the remainder by $3 \cdot 1416$, or the fingle remainder by $6 \cdot 2832$, for the furface.

Notc. The fame rule will ferve for any fegment or zone cut off perpendicular to the chord of the revolving arc, only ufing the particular length of the part, and the part of the are. which defcribes it, inftead of the whole length and whole arc.

## BXAMPLES.

1. Required the furface of a circular fpindle, whofe length $A B$ is 40 , and its shicknefs $C D 30$ inches?

Here, by the nutes at pa. 91.
The chord $A C=\sqrt{A E^{2}+C E^{2}}=\sqrt{20^{2}+15^{2}}=25$,
and $2 \mathrm{CE}: \mathrm{AC}:: \mathrm{AC}: \mathrm{CO}=\frac{25^{2}}{30}=203$,
hence $\mathrm{OE}=\mathrm{OC}-\mathrm{CE}=20 \frac{5}{6}-15=5 \%$.
Alfo, by problemix, rule 2, mendux: of su/zer.


Then,


Ex. 2. What is the furface of a circular fpindle, whofe length is 24 , and thicknefs in the middle 18?

Anf. 1177-4485.
Se:


## To find the Solidity of a Circular Spindle.

Find the area of the revolving fegment ACBEA, which multiply by half the central diftance OE. Subtract the product from $\frac{1}{3}$ of the cube of AE , half the length of the ppindle. Then muttiply the remainder by 12.5664 , or 4 times $3 \cdot 1416$, for the 'whole content.'

## EXAMPLES:

1. Required the content of the circular fpindle, whofe length AB is 40 , and middle diameter CD 30 ?
[See the laft Figure.]


Ex. 2. What is the folidity of a circular fpindle, whofe length is 24 , and middle diameter 18 ?

## Anf. 3739.93.

## PROBLEM XVI.

To fund the Solidity of the Middle Frufum or Zone of a Circular Spindle.
From the fquare of half the length of the whole fpindle, take $\frac{1}{2}$ of the fquare of half the length of the middle fruftum, and multiply the remainder by the faid half length of the sruftum,-Multiply the central diftabee
by the revolving area, which generates the middle fruf-tum.-Subtract this latter product from the former; then the remainder multiplied by 6.2832 , or 2 times $3 \cdot 1416$, will give the content.
EXAMYLES.

1. Required the folidity of the fruftum, whofe length mn is 40 inches, alfo its greateft diameter EF is 32, and leaft diameter AD or BC 24 ?


Draw DG parallel to mn, then we
have DG $=\frac{1}{2} m n=20$,
and $\mathrm{EG}=\frac{1}{2} \mathrm{EF}-\frac{1}{2} \mathrm{AD}=4$,
chord $\mathrm{DE}^{2}=\mathrm{DG}^{2}+\mathrm{GE}^{2}=416$,
and $\mathrm{DE}^{e}+\mathrm{EG}=\frac{416}{4}=104$ the diameter of the generating circle,
or the radius $\mathrm{OE}=52$,
hence $\mathrm{OI}=52-16=36$ the central diffance,
and $\mathrm{HI}^{2}=\mathrm{OH}^{2}-\mathrm{OI}^{2}=52^{2}-36^{2}=1408$,
$\frac{8}{8} \mathrm{DG}^{8}=\frac{7}{3}$ of $400=\cdots \cdot 133 \frac{1}{3}$

DG ... | $120^{\frac{2}{3}}$ |
| :---: |

$25493 \frac{1}{3}$ If prod.

$$
\begin{aligned}
& \mathrm{GE}+2 \mathrm{OE}=\frac{4}{104}=\frac{1}{26}=1038 \\
& \text { Its tab. fegment } \\
& \text { but } 104^{2} \text { is } \quad: \quad \frac{.00994}{10816} \\
& \\
& \\
& \\
& \\
& \\
& \\
& 973444
\end{aligned}
$$

$$
\text { ares of feg. DECGD - } \overline{107 \cdot 51104}
$$

$$
\mathrm{mD} \times \mathrm{mn}=12 \times 40
$$

$21150 \cdot 3.9744$
25493•33333

| $4342 \cdot 93589$ |
| :--- |
| 23826 |
| 260576 |
| 8686 |
| 3474 |
| 130 |
| -9 |

27287.5 anfwer ${ }_{\text {a }}$

Ex. 2. What is the content of the middle fruftum of a circular fpindle, whofe length is 20 , greateft diameter 18 , and leaft diameter 8 ?

AnS. 3657-1613.

## FAOBLEM XVILI.

## To find the Superficies or Solidity of any Reguler Body.

1. Multiply the proper tabular area (taken from the following table) by the fquare of the lincar edge of the folid, for the fuperficies.
2. Multiply the tabular folidity by the cube of the linear edge, for the folid content.


EXAMPLES.

1. If the linear edge or fide of a tetraedron by 3 , required its furface and folidity?

The fquare of 3 is 9 , and the cube 27. Then, ta . furf. 1.73205 , 0.11785 tab. fol.


Ex. 2. What is the fuperficies and folidity of the bexzedron, whofe lineal fide is 2 ?

Anf. $\left\{\begin{array}{l}\text { luperficies } 24 \\ \text { folidicy } 8\end{array}\right.$
Ex. 3. Required the fuperficies and folidity of thic oc. taedron, whofe linear fide is i?

E.x. 4. What is the fuperficies and folidity of the dodeshedron, whofd linear fude is 2 ?

Anf. $\left\{\begin{array}{l}\text { fuperficies } 82 \cdot 58292 \\ \text { folidity } \\ 61 \cdot 30496\end{array}\right.$


Ex. 5. Required the fuperficies and folidity of the icoGaedron, whofe linear fide is $2 ?$

Anf. $\begin{cases}\text { fuperficies } & 34 \cdot 64100 \\ \text { folidity } & 17 \cdot 45352\end{cases}$


ERO.

## To find tbe Surface of a Cylindrical Ring.

This figure being only a cylinder bent round into a ring, its farface and folidity may be found as in the cylinder, namely, by multiplying the axis, or length of the cylinder, by the circumference of the ring, or of the fection, for the furface ; and by the area of a fection, for the folidity.
Or ufe the following rules:
For the furface. -To the thicknefs' of the ring add the inner diameter: multiply this fum ty the thicknefs, and the product again by 9.8696 , or the fquate of $3.1410^{\circ}$.

EXAMPLES。

1. Required the fuperficies of a ring, whofe thicknefs $A B$ is 2 inches, and inner diameter $B C$ is 12 inches?


Ex. 2. What is the furface of the ring whofe inner diameter is 16 , and thicknefs 4 ? Anf. 799.568:

## PROBLEM XX:

## To find sbe Solidity of a Cylindrical Ring.

To the thicknefs of the ring, add the inner diameter; then multiply that fum by the fquare of the thicknefs; and the product again by 2.4674 , or $\frac{1}{5}$ of the fquare of 3.1416, for the folidity.

## EXAMPLES.

1. Required the folidity of the ring, whofe thickrefs is Finches, and its inner diameter 12 ?


Ex. 2. What is the folidity of a cylindrical ringo whofe thicknefs is 4 , and inner diameter 16 ?

$$
\text { Anf. } 789 \cdot 568
$$

## CARPENTERS' RULE:

THIS inftrument is otherwife called the fiding rule; and it is much ufed in meafuring of timber and artificers' works, borh for taking the dimenfions, and com. puting the contents.

The inftrument confifts of two equal pieces, each a foot in length, which are connected together by a folding joint.

One fide or face of the rule, is divided into inches, and half quarters or eighths. On the fame face alfo are feveral plane feales, divided into 12 th parts by diagonal lines; which are ufed in planning dimenfions that are taken in feet and inches. I he edge of the rule is commonly divided decimally, or into tenths; namely, each foot into 10 equal parts, and each of thofe into 10 parts

2gain: fo that, by means of this laft fcale, dimenfions are taken in feet and tenths and hundredths, and then multiplied as common decimal numbers, which is the beft way.

On the one part of the other face are four lines, marked $A, B, C, D$; the two middle ones, $B$ and $C$, being on a flider, whish runs in a groove made in the ftock. The fame numbers ferve for both thefe two middle lines, the one being above the numbers, and the other below.

Thefe four lines are logarithmic ones, and the three $A, B, C$, which are all equal to one another, are double lines, as they proced twice over from 1 to 10. The other or loweft line $D$, is a fingle one, proceeding from 4 to 40 . It is alfo called the girt line, from its ufe in computing the contents of trees and timber. Upon it are alfo marked WG at $17 \cdot 15$, and AG at 18.95 , the wine and ale gage points, to make this inftrument ferve the pur. pofe of a gaging rule.

On the other part of this face there is a table of the value of a load, or 50 cubic feet of timber, at all prices, from 6 pence to 2 fhillings a-foot.

When 1 at the beginning of any line is accounted 1 , or unit, then the 1 in the middle will be 10 , and the 1 at the end 100 ; and when 1 at the beginning is accounted 10 , then the 1 in the middle is 100 , and the 1 at the end 1000 ; and fo on. All the fimaller divifions being altered proportionally.

## PROBLEM 1.

## To muliiply Numbers together.

Suppofe the two numbers 13 and 24.-Set 1 on Biten 13 on $\mathbf{A}$; then againft 24 on B fands 312 on A, which is the required product of the two given numbers 13 and 24.

Note. In any operations, when a number runs beyond the end of the line, feek it on the other sadius, or other part of the lime; that is, take the 10 th part of it, or the

100th part of it, \&c. and increafe the refult proportionally 10 fold, or 100 fold, \&c.

In like manner the product of 35 and 19 is 665. and the product of 270 and 54 is 14580 .

## PROBLEM 11.

To divide by tbe Sliding Rulco.
As fuppofe to divide 312 by 24 . - Set the divifor 24 on $B$ to the dividend 312 on $A$; then againtt 1 on $B$ ftands 13 , the quotient, on $A$.

Alfo 396 divided by 27 gives $14 \cdot 6$.
And 741 divided by 42 gives $17 * 6$.

## PROBLEM 111.

## To Square any Number.

Suppofe to fquare 23.-Set 1 on B to 23 on $A$; then againit 23 on $\mathbf{B}$, ftands 529 on $\mathbf{A}$, which is the fquare of 23.

Or, hy the other two lines, fer 1 or 100 on C to the 10 on D , then againft every number on D , ftands its §quare in the line C. So againf 23 ftands 529

> againit 20 ttands 400
> againit 30 ftands y 00 anc fo ou.

If the given number be hundreds, \&c. reckun the 1 on $D$ for 100 , or $3000, \& c$. then the correfponding. 1 on $C$ is 110000 , or 1000000, \& . So the fquare of 230 is found so be $52 y 00$.

> PRO日LIM IV.

To cirtrate tbe Square Root.
Set 1 or $100, \& c$. on $C$ to 1 or $10, \& c$. on $D$; then zgainft every number found on $\mathbb{C}$, flands its fquare root * D.

So, againt 529 ftands its root 23 againt 400 flands its root 20 againft 900 ftands its root 30
againtt 300 ftands its root 17.3
and foon.

## PROBLEM V.

To find a Mean Proportional between two Numbers.
As fuppofe between 29 and 430.-Set the one number 29 on $C$ to the fame on $D$; then againft the other number 430 on C, ftands their mean preportional 111 on D.

Alfo the mean between 29 and 320 is 96.3 .
And the mean between 71 and 274 is 139 .

## PROBLEM VI.

To find a Third Proportional to two Numbers.
Suppofe to 21 and 32.-Set the firt 21 on B to the fecond 32 on A ; then againft the fecond 32 on B , ftands 48.8 on A ; which is the third proportional fought.

Alfo the 3 d proportional to 17 and 29 is 49.4 .
And the 3 d proportional to 73 and 14 is 2.5 .

## PROBLEM VII.

To find a Fourth Proportional to three Numbers. Or, to perform the Ruleoof-Three.

Suppofe to find a fourch proportional to 12, 2S, and 114. - Set the firt term 12 on B to the 2 d term 28 on A ; then againt the third term. 114 on $B$, ttands 266 on $A$, which is the furth proportional fought.

Alfo the 4th proportional to $6,14,29$, is $67 \cdot 6$.
And the 4th proportional to $27,20,73$, is 54.0 .
n 2
TIM.

## TIMBER MEASURING.

> PROBLEM I.

Io find the Area, or Superficial Content, of a Board or Plank.
Multiply the length by the mean breadih.

- Note. When the board is tapering, add the breadths at the two ends together, and take half the fum for the mean breadth.
By the Sliding Rule.

Set 12 on $B$ to the breadth in inches on $A$; then againft the length in feet on $B$, is the content on $A$, in feet and fractional parts.

## EXAMPLES.

1. What is the vatue of a plank, at $1 \frac{1}{2} \mathrm{~d}$. per foot, whofe length is 12 feet 6 inches, and mean breadth 11 inehes ?


$$
\begin{aligned}
& \text { By the Sliding Rule. } \\
& \text { As } 12 \mathrm{~B}: 11 \mathrm{~A}:: 12 \frac{\pi}{2} \mathrm{~B}: 11 \frac{x}{2} \mathrm{~A} \text {. } \\
& \text { That is, as } 12 \text { on B is to } 11 \text { on } \mathrm{A} \text {, fo is } 12 \frac{1}{2} \text { on } \mathrm{B} \text { to } \\
& 1 \frac{1}{2} \text { on } \mathrm{A} \text {. }
\end{aligned}
$$ $11 \frac{1}{2}$ on A .

Ex. 2. Required the content of a board, whofe length is 11 feet 2 inches, and breadth 1 foot 10 inches.

Anf. $20^{\circ} 5^{\mathrm{i}} \mathrm{S}^{\prime \prime}$
Ex. 3. What is the value of a plank, which is 12 feet 9 inches long, and 1 foot 3 inches broad, at $2 \frac{1}{2} \mathrm{~d}$. a foot? Anf. 3s. $3 \frac{3}{4} \mathrm{~d}$.
Ex. 4. Required the value of 5 oaken planks at 3d. per foot, each of them being $\mathbf{1 7} \frac{1}{2}$ feet long; and their feveral breadths are as follow, namely, two of $13 \frac{\mathrm{x}}{2}$ inches in the middle, one of $14 \frac{1}{4}$ inches in the middle, and the two remaining ones, each 18 inches at the broader end, and $11 \frac{x}{4}$ at the narrower.

Anf. £1 $58 \frac{1}{4}$.

## PROBLEM II.

To find the Solid Content of Squared or Four-fided Timber.
Multiply the mean breadth by the mean thicknefs, and the product again by the length, and the laft product will give the content.

By tbe Sliding Rule. C D D C
As length : 12 or $10::$ quarter girt : content.
That is, as the length in feet on C , is to 12 on D when the quarter girt is in inches, or to 10 on D when it is in tenths of feet; fo is the quarter girt on D , to the content on C.

Note 1. If the tree taper regularly from the one end to the other, either take the mean breadth and thicknefs in the middle, or take the dimenfions at the two ends, and half their fum for the mean dimenfions.
2. If the piece do not taper regularly, but is unequally thick in fome parts and frall in others; take feveral different dimenfions, add them all together, and divide their fum by the number of them, for the mean dimenfions.
3. The quarter girt is a geometrical mean proportional between the mean breadth and thicknefs, that is the fquare root of their product. Sometimes unfkilful H. 3
meafurers ufe the arithmerical mean inflead of it, that is half their fum; but this is always attended with error, and the more fo, as the breadth and depth differ the more from each other.

## EXAMPLES.

1. The length of a piece of timber is 18 feet 6 inches, the breadths at the greater and lefs end 1 foot 6 inches and 1 font 3 inches, and the thicknefs at the greater and lefs end 1 foot 3 inches and 1 foot: required the folid content.


## By the Sliding Rule,



As ${ }_{\mathrm{C}}:{ }_{\mathrm{D}}^{\mathrm{D}}:=\frac{\mathrm{D}}{\mathrm{D}}: \mathrm{C}_{\mathrm{C}}$, quaster girt.
As $18 \frac{1}{2}: 12:: 14 \cdot 9: 28 \cdot 6$, the content.
Ex. 2. What is the content of the piece of timber, whofe length is $24 \frac{1}{2}$ feet, and the mean breadth and thicknefs each $1 \cdot()+$ feet?

Anf. $26 \frac{1}{2}$ feet.
Ex. 3. Required the content of a piece of timber, whofe length is 20.38 feet. and its ends unequal fquares, the fide of the greater being $19 \frac{1}{8}$, and the fide of the lefs 9 ? inches? Anf. 29.756 feet.
Ex. 4. Required the content of the piece of cimber, whore length is 27.36 feet; at the greater end the breadth is 1.78 , and the thicknefs 1.23 ; and at the lefs end the breadth is 1.04 , and thicknefs 0.91 ? Anf, 41.278 feet.

## PROBLEM II.

To find the Solidity of Round or unfquared Timber.

> Rule 1, or Commen Rule.

Multiply the fquare of the quarter girt, or of $\frac{1}{4}$ of the mean circamference, by the length, for the content.

> By the Sliding Rule.

As the length upon C : 12 or 10 upon D : : quarter girt, in 12 ths or $10 / \mathrm{hs}$, on $\mathrm{D}:$ content on C .

Note 1. When the tree is tapering, take the mean dimenfions as in the former problems, either by girting it in the middle, for the mean girt, or at the two ends, and take half the fum of the two. But when the tree is very irregular, divide it into feveral lengths, and find the content of each part feparately : or elfe, add all the girts together; and divide the fuin by the number of them, fo: the mean girt.
2. This rule, which is commonly ufed, gives the anfwer about $\frac{1}{4}$ lefs than the true quantity in the tree, or nearly what the quantity would be after the tree is hewed fquare in the ufual way; fo that it feems intended to make an allowance for the fquaring of the tree. When the true quantity is defired, ufe the 2d rule, given below.

## EXAMPLES.

1. A piece of round timber being 9 feet 6 inches long, and its mean quarter girt 42 inches; what is the content?


## By the Sliding Rule.

$$
\begin{array}{cccc}
\text { C D D } & \text { C } \\
\text { As } 9 \cdot 5: 10:: 35: 116 \frac{r}{3} \\
\text { Or } 9 \cdot 5: 12: & 92: 116 \frac{1}{3}
\end{array}
$$

Ex. 2. The length of a tree is 24 feet, its girt at the thicker end 14 feet, and at the fmaller end 2 feet; required the content? Anf. 96 feet. Ex. 3.

Ex. 3. What is the content of a tree, whofe mean girt is 3.15 feet, and length $1 \pm$ feet 6 inches?

Anf. s.9922 feet.
Ex. 4. Required the content of a tree, whofe length is $17 \frac{1}{4}$ feet, which girts in five different places as follows, namely, in the firf place 9.43 feet, in the fecond 7.92 , in the third $6 \cdot 15$, in the fourth $4 \cdot 74$, and in the fifth $\mid 3 \cdot 16$ ? Anf. 42.5195.

## RULEII.

Multiply the fquare of $\frac{1}{5}$ of the mean girt by double the length, and the product will be the content, very near the truth.

## By the Sliding Rule.

As the double length on $\mathrm{C}: 12$ or 10 on $\mathrm{D}:$ : $\frac{x}{5}$ of the girt, in 12 ths or 10 ths, on $\mathrm{D}:$ content on C .

## EXAMPLES.

1. What is the content of a tree, its length being 9 : feet 6 inches, and its mean girt 14 feet?

| Decimals. |  | Duodecimals. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $2 \cdot 3$ | $\frac{7}{5}$. of girt - | 2 | 9 | 7 |
| $2 \cdot 8$ |  | 2 | 9 | 7 |
| 224 |  | 5 | 7 |  |
| 56 |  | 2 | 1. | 3 |
|  |  |  | 1. | 8 |
| 7.84 |  |  |  |  |
| 19 |  |  |  |  |
|  |  | 7 | 10 | 1. |
| 70.56 |  | 19 |  |  |
| 784 |  |  |  |  |
| $148 \cdot 96$ | content | 148 | 11 | 7 |

By the Sliding Rule.
C D D C
As $19: 10:: 28: 149$
Or 19: $12:: 33_{1}^{6}$ 둥 $: 149$
Ex. 2. Required the content of a tree, which is 24 fect long, and mean girt 8 feet?

Anf. 122.88 feet.
Ex. 3. The length of a tree is $14 \frac{1}{2}$ feet, and mean girt 3.15 feet; what is the content? Anf. 11.51 feet.

Ex. 4. The length of a tree is $17 \frac{1}{4}$ feet, and its mean girt 6.28 ; what is the content? Anf. $54 \cdot 4065$ feet.

- Other curious problems relating to the cutting of timber, fo as to produce uncommon effects, may be found in my large Treatife on Menfuration.


## ARTIFICERS' WORK.

A
rtificers compute the contents of their works by feveral different meafures.

As glazing and mafonry by the foot.
Painting, plaftering, paving, \&cc. by the yard, of 9 fquare feet.

Flooring, partitioning, roofing, tiling, \&rc. by the fquare, of 100 fquare feet.

And brick-work, either by the yard of 9 fquare feet. or by the perch, or fquare rod or pole, containing $2 ; 2 \frac{1}{4}$ fquare feet, or $30 \frac{1}{4}$ fquare yards, being the fquare of the sod or pole, of $16 \frac{1}{2}$ feet or $5 \frac{1}{2}$ yards long.

As this number $272 \frac{1}{4}$ is a troublefome number to divide by, the $\frac{1}{4}$ is often omitted in practice, and the content in feet divided only by the 272 . But when the exact divifor $272 \frac{1}{4}$ is to be ufed, it will be eafier to multiply the feet by 4 , and then divide fucceffively by 9,11 , and 11. Alfo to divide fquare yards by $30 \frac{1}{4}$, firft múliply them by 4 , and then divide twice by 11 .

All works, whether fuperficial or folid, are computed by the rules proper to the figure of them, whether it be a triangle, or rectangle, a parallelopiped, or any other figure.

## BRICKLAYERS' WORK.

BRICX-work is eflimated at the rate of a brick and a half thick; fo that if a wall be more or lefs than this ftandard thicknefs, it muft be reduced to it, as follows: Multiply the fuperficial content of the wall by the number of half bricks in the thicknefs, and divide the product by 3. And to find the fuperficial content of a wall, multiply the length by the height, for the content.

Chimneys are by fome meafured as if they were folid, deducting only the vacuity from the hearth to the mantle, on account of the trouble of them.

And by others they are girt or meafored reund for their breadth, and the height of the tory is their height, taking the depth of the jumbs for their theeknefs. And in this cafe no dedaction is made for the vacuity from the floor to the mantle-tree, becaufe of the gatherisg of the breaft and wings, to make room for the hearth in the next fory.

All windows, doors, \&e. are to be deducted out of the contents of the walls in which they are placed.

## EXAMPLES.

1. How many yards and rods of ftardard brick-work are in a wall whofe length or compafs is 57 feet 3 inches, and height 24 feet 6 inches; the walls being $2 \frac{1}{2}$ bricks, or 5 half bricks thick?

| Decimals. | Duodecimals. |  |
| :---: | :---: | :---: |
| $57 \cdot 15$ | 37 | 3 |
| $24 \cdot 5$ | 24 | 6 |
| 28625 | 234 | 0 |
| 22900 | 114 |  |
| 11450 | 28 | 7 |
| $1402 \cdot 625$ | 1402 | 7 |
| 5 | 6 |  |
| 5 |  |  |



By the Sliding Rule.
B A B A
As $1: 24 \frac{1}{2}:: 57 \frac{1}{4}: 1403$.
F.x.2. Required the content of a wall 62 feet 6 inckes. long, and 14 feet S inches high, and $2 \frac{1}{2}$ bricks thick ?

Anf, 169753 yards. Lix, 3.

Ex. 3. A triangular gable is raifed $17 \frac{1}{2}$ feet high, on an end wall whofe length is 24 feet 9 inches, the thicknefs being 2 bricks; required the reduced content?

Anf. 32.08 $\frac{1}{3}$ yards.
Ex. 4. The end wal! of a houfe is 28 feet 10 inches long, and 55 feet 8 inches high to the eaves, 20 feet high is $2 \frac{1}{2}$ bricks thick, other 20 feet high is 2 bricks thick, and the remaining 15 feet 8 inches is $1 \frac{1}{2}$ brick thick, above which is a triangular gable of 1 brick thick, which sifes 42 courfes of bricks, of which every 4 courfes make a foot. What is the whole content in fandard meafure?

Anf. 253•62 yardsa

## MASONS' WORK.

Tomafonry belongs all forts of fone-work; and themeafure made ufe of is a foot, either fuperficial or folid.

Walls, columns, blocks of ftone or marble, \&c. are meafured by the cubic foot; and pavements, flabs, chim-ney-pieces, \&c. by the fuperficial or fquare foot.

Cubick or folid meafure is fed for the materials, and fquare meafure for the workmanfhip.

In the folid meafure, the true length, hreadth, and thicknefs, are taken, and multiplied continually together. In the fuperficial, there muft be taken the length and breadth of every part of the projection, which is feen: without the general upright face of the building.

## EXAMPLES.

1. Required the folid content of a wall, 53 feet 6 inches long, 12 fect 3 inches high, and 2 feet thick.


By the Sliding Rule.

| B | A | B | A |
| :--- | :---: | :---: | :---: |
| $1: 53 \frac{1}{2}:$ | $:$ | $12 \frac{1}{4}:$ | 655 |
| $1:$ | $655::$ | 2 | $: 1310$ |

Ex. 2. What is the folid content of a wall, the length being 24 feet 3 inches, height 10 feet 9 inches, and 2 feet thick? Anf. 521.375 feet.

Ex. 3. Required the value of a marble nab, at 8 s. per foot; the length being 5 feet 7 inches, and breadrh 1 foot 10 inches.

Anf. $£_{4}^{4} 10 \frac{3}{2}$.
Ex. 4. In a chimney piece, fuppofe the length of the mantle and flab , eact, If 6 in breadth of both together - - 3 2 length of each jamb - - 44 breadth of both together - - 19 Required the fuperficial content? Anf. 21 f 10 in .

# CARPENTERS 

> AND

## JUINERS' WORK.

$\mathrm{T}^{0}$O this branch belongs all the wood-work of a houfe, fuch as flooring, partitioning, roofing, \&c.
Note. Large and plain articles are ufually meafured by the fquare foot or yard, \&c. but enriched mouldings, and fome other articles, are often eftimated by running of lineal meafure, and fome things are rated by the piece.

In meafuring of joifts, multiply the depth, breadth, and length all together, for the content of one joift, multiply that by the number of the joifts, note that the lengtro of the joifts will exceed the breadth of the room by the thicknefs of the wall, and $\frac{2}{3}$ of the fame, becaufe each end is let into the wall about $\frac{2}{3}$ of its thicknefs.

Partitions are meafured from wall to wall for one dimenfion, and from floor to floer, as far as they extend, for the other; then multiply the length by the height.

In meafuring of joiners' work, the ftring is made to ply clofe to every part of the work over which it paffes.

The meafure of centering for cellars is found by making a Atring pafs over the furface of the arch for the one dimenfion, and taking the length of the cellar for the other; but in groin centering, it is ufual to allow double meafure, on account of their extraordinary trouble.

In roojing, the length of the rafters is equal to the length of a fring fretched from the ridge down the rafter,
rafter, and along the eaves-hoard, till it meets with the top of the wall. This length multiplied by the common depth and breadth of the rafters, gives the content, and that multiplied by the numbers of them, gives the content of all the rafters.

For fair.cafes, take the breadth of all the feps, by making a line ply clofe over them, from the top to the bottom, and multiply the length of this line by the length of a ftep for the whole area.- By the length of a ftep is meant the length of the front and the returns at the two ends; and by the breadth, is to be underfood the girt of its two outer furfaces, or the tread and rife.

For the baluftrade, take the whole length of the upper part of the hand-rail, and girt over its end till it meet the top of the newel poft, for one dimenfion; and twice the length of the balufter upon the landing, with the girt of the hand-rail, for the other dimenfion.

For rwainfcotting, take the compars of the room for one dimenfion; and the height from the floor to the ceiling, making the fring ply clofe into all the mouldings, for the other dimenfion.-Out of this muft be made deductions, for windows, doors, and chimneys, \&c.

Far doors, it is ufual to allow for their thicknefs, by adding it into both the dimenfions of length and breadth, and then multiply them together for the area. -If the door be pannelled on both fides, take double its meafure for the workmanfhip: but if one fide only be pannelled, take the area and its half for the workmanfhip.-For the furrounding architrave, gird it about the outermott part for one dimenfion, and meafure over it as far as it can be feen when. the door is open, for the other.

Window-fouters, bafes, \&c. are meafured in the fame manner..

In the meafuring of roofing, the holes for chimney: Thafts and Iky-lights are generally deducted.

## EXAMPLES.

1. Required the content of a floor 48 feet 6 inches long, and 24 feet 3 inches broad.

| Decimals. | Duodecimals. |  |
| :---: | :---: | :---: |
| $48 \cdot 5$ | 48 | 6 |
| $24 \frac{\pi}{4}$ | 24 | 3 |
| 1940 | 204 | 0 |
| 970 | 96 |  |
| $12 \cdot 125$ | 12 | 1 |
| $1176 \cdot 125$ | feet | 1176 |
| $11 \cdot 76125$ | fquares Anf. | 11.76 |

Ex. 2. A floor being 36 feet 3 inches long, and 16 feet 6 inches broad, how many fquares are in it?

Anf. 5 fq. $98 \frac{1}{8}$ feet.
Ex. 3. How many fquares are there in 173 feet 10 inches in length, and 10 feet 7 inches height, of partio tioning? Anf. $18 \cdot 3972$ fquares

Ex. 4. What coft the roefing of a houfe at 10 s . 6 d . a fquare; the length, within the walls, being 52 feet 8 inches, and the breadth 30 feet 6 inches; recknning the roof $\frac{3}{2}$ of the flat?

Anf. $£ 121211 \frac{3}{4}$.
Ex. j. To how much, at 6 s. per fquare yard, amounts the wainfcorting of a room; the height, tak ng in the cornice and mouldings, being 12 feet 6 inches, and the whole compafs 83 feet 8 inches; alfo the three window Thutters are each 7 feet 8 inches by 3 feet 6 inche, and the door 7 feet by 3 feet 6 inches; the door and fhit ters, being worked on both fides, are reckoned work and half work?

Anf. £ $36.122 \frac{1}{2}$.

## sLaters

## AND

## 'TILERS' $\mathbf{W} O R K$.

IN thefe articles, the content of a roof is found by mu?tiplying the length of the ridge by the girt over from caves to eaves; making allowance in this girt for the double row of nates at the bottom, or for how much one row of fates or tiles is laid over another.

When the roof is of a true pitch, that is, forming aright angle at top; then the breadth of the building with its half added, is the girt over both fides.

In angles formed in a roof, running from the ridge to the eaves, when the angle bends inward;, it is called a valley; but when outwards, it is called a hip.

Deductions are made for chimney thafis or window holes.

> EXAMPLES

1. Required the content of a flated roof, the length being 45 feet 9 inches, and the whole girt 34 feet 3 inches?


Ex. 2. To how much amounts the tiling of a houfe, at 25s. Gd. per fquare; the length being 4.5 feer 10 inches, and the breadth on the flat 27 feet 5 inches, also the eaves projecting 16 inches on each fides, and the roof of a true pitch ?

And. $£_{2}^{24} 9 \frac{2}{2}$.

## PLASTERERS' WORK.

PLASTERERS' work is of two kinds, namely, ceiling, which is plafering upon laths; and rendering which is plaftering upon walls: which are meafured feparately.

The contents are effimated either by the foot or yard, or fquare of 100 feet. Enriched mouldings, \&c. are rated by running or lineal meafure.

Deductions are to be made for chimneys, doors, windews, \&c.

## EXAMPLES.

1. How many yards contains the ceiling, which is 43 feet 3 inches long, and 25 feet 6 inches broad?


Ex.

Ex. 2. To how nuch amounts the ceiling of a room, at 10d. per yard; the length being 21 feet 8 inches, and the breadth 14 feet 10 inches? Anf. 6. $_{1} 98 \frac{3}{4} \cdot$

Ex. 3. The length of a room is 18 feet 6 inches, the breadth 12 feet 3 inches, and height 10 feet 6 inches; to how much amounts the ceiling and rendering, the former at 8 d . and the latter at 3 d . per yard; allowing for the door of 7 feet by 3 feet 8 , and a fire place of 5 feet fquare?

Anf. $5113 \quad 3$.
Ex. 4. Required the quantity of plaftering in a room, the length being 14 feet 5 inches, breadth 13 feet 2 inches, and height 9 feet 3 inches to the under fide of the cornice, which girts $S \frac{1}{2}$ inches, and projects 5 inches from the wall on the upper part next the ceiling: deducting only for a door 7 feet by 4.

Anf. $53^{\text {d }} 5^{f}=3^{1} \quad$ of rendering
18. 506 of ceiling

11

## PAINTERS' WORK.

PPainters' work is computed in fquare yards. Every part is meafured where the colour lies; and the mea. furing line is forced into all the mouldinge, and corners.

Windows are done at fo much a piece. And it is ufual to allow double meafure for carved mouldingo, \&cc.

## EXAMPLES.

1. How many yards of painting contains the room which is 65 feet 6 inches in compafs, and 12 feet 4 inches high ?


Ex. 2. The length of a room being 20 feet, its breadth 14 feet 6 inches, and height 10 feet 4 inches; how many yards of painting are in it, deducting a fire-place of 4 feet by 4 feet 4 inches, and two windows each 6 feet by 3 feet 2 inches?

Ex. 3. What eof the painting of a room, at 6 d . per yard; its length being 24 feet 6 inches, its breadth 16 feet 3 inches, and beight 12 feet 9 inches; alfo the door is 7 feet by 3 feet 6 , and the window fhutters to two windows each 7 feet 9 by three feet 6 , but the breaks of the windows themfelves are 8 feet 6 inches high, and 1 foot 3 inches deep: deducting the fire-place of 5 feet by 5 feet 6 ?

Anf. $£_{3}^{3} 310 \frac{1}{2}$.

## GLAZIERS' WORK.

Glaziers take their dimenfions either in feet, inches and parts, or feet, tenths and hundreths. And they compute their work in fquare feet.

In taking the length and breadth of a window, the crofs bars between the fquares are included. Alfo windows of round or oval forms are meafured as fquare, meafuring them to their greateft length and breadth, on account of the wafte in cutting the glafs.

## EXAMPLES.

1. How many fquare feet contains the window which is 4.25 feet long, and 2.75 feet broad ?

2. What will the glazing a triangular $\mathrm{k} y$-light come te at 10d. per foot; the bafe being 12 feet 6 inches, and the perpendicular height 6 fet 9 inches?

$$
\text { Anf. fol } 151 \frac{3}{4}
$$

3. There is a hovfe with three tier of windows, three windows in each tier, their common breadth 3 feet 11 inches;

$$
\begin{array}{cccc}
\text { now the height of the firft tier is } & 7^{f} & 10^{\text {in }} \\
\text { of the fecond } & 6 & 8 \\
\text { of the third } & 5 & 4
\end{array}
$$

Required the expence of glazing at 14 d . per foot?

$$
\text { Anf. } £ 1311 \quad 10 \frac{1}{2}
$$

4. Required the expence of glazing the windows of a houfe at 13 d . a foot; there being three ftories, and three windows in each fory:
the height of the lower tier is $7^{f} \quad 9^{\text {in }}$ of the middle of the upper 66
$53 \frac{1}{4}$
and of an oval window over the door $1 \quad 10 \frac{2}{2}$
The common breadth of all the windows being 3 feet 9 inches.

## PAVERS' WORK.

Parers' work is done by the fquare yard. And the content is found by multiplying the length by the breadth.

## EXAMPLES.

1. What coff the paving a foot-path at $3 \mathrm{~s}, 4 \mathrm{~d}$. a -yard; the length being $3 j$ feet 4 inches, and breadth 8 feet 3 inches?


Ex. 2. What cont the paving a court, at 3s. 2d. per sard; the length being 27 feet 10 inches, and the breadth $1+$ feet 9 inches?

Af. 7 \& 53. Ex.

Ex. 3. What will be the expense of paving a rectangular court yard, whore length is 63 feet, and breadth 45 feet; in which there is laid a foot path of 5 feet 3 inches broad, running the whole length with broad fores, at 3 s . a-yard; the reft being paved with pebbles at is. fd. a yard?

Ans. $40510 \frac{1}{2}$.

## PLUMBERS' WORK.

Plumbers' work is rated at fo much a pound, or elfe by the hundred weight, of 112 pounds.
Sheet lead used in roofing, guttering, \&c. is from 7 to 12 lb to the Square foot. And a pipe of an inch bore is commonly 13 or 14 lb to the yard in length.

## EXAMPLES.

1. How much weighs the lead which is 39 feet 6 inches long, and 3 feet 3 inches broad, at $8 \frac{\pi}{2} \mathrm{lb}$ to the fquare foot?


Ex. 2. What coft the covering and guttering a roof with lead, at 18 s . the cwt.; the length of the roof being 43 feet, and breadth or girt over it 32 feet; the guttering 57 feet long, and 2 feet wide; the former 9.831 lb , and. the latter $7 \cdot 373 \mathrm{lb}$ to the fquare foot ?

$$
\text { Anf. } £ 11591 \frac{1}{2}
$$

## VAULTED

AND

## ARCHED ROOFS

" $A$ RCHED roofs are either vaults, domes, faloons, or groins.
Vaulted roofs are formed by arches fpringing from the oppofite walls, and meeting in a line at the top.

Domes are made by arches fpringing from a circular or polygonal bafe, and meeting in a point at the top.

Saloons are formed by arches connecting the fide walls to a flat roof, or ceiling, in the middle.

Groins are formed by the interfection of vaults with each other.

Vaulted roofs are commonly of the three following forts:

1. Circular roofs, or thofe whofe arch is fome part of the circumference of a circle.
2. Elliptical or oval roofs, or thofe whofe arch is an oval, or fome part of the circumference of an ellipfis.
3. Gothic roofs, or thofe which are formed by two circular arcs, ftruck from different centres, and meeting in a point over the middle of the breadth, or fpan of the arch.

> PROBLEM I.
> To find the Surface of a Faulied Roof.

Multiply the length of the arch by the length of the vault, and the product will be the fuperficies.

Note. To find the length of the arch, make a line or ftring ply clofe to it, quite aciofs from fide to fide.

## EXAMPLES.

1. Required the furface of a vaulted rorf, the length of the arch being 31.2 feet, and the length of the vault 120 feet?

$$
=31 \cdot 2
$$

120
Anf. $3744^{\circ} 0$ fquare feet.
Ex. 2. How many fquare yards are in the vaulted roof, whofe arch is $42 \cdot 4$ feet, and the length of the vault 106 fect ?

Anf. 499.37 yds .
PROBLEM IT.

To find the Content of the Concarity of a Vaulted Roof.
Multiply the lergth of the vault by the area of one end, that is, by the area of a vertical tranfverle fection, for the content.

Note. When the arch is an oval, multiply the fpan by the height, and the product by $\cdot 7854$, for the area.

EXAMPLEC.

1. Required the content of the concavity of a femicircular vaulicd roof, the fpan or diameter being 30 feet, and the length of the vault 150 feet ?

$$
\begin{aligned}
& \text { - } 7854 \\
& 900 \text { the fquare of } 30 \text {. } \\
& \text { 2) } 706 \cdot 86 \\
& 353 \cdot 43 \text { area of the end } \\
& 150 \text { the length : } \\
& 1767150 \\
& 35343 \\
& 5301450 \text { the contere. }
\end{aligned}
$$

Ex. 2. What is the content of the vacuity of an oval vault, whofe fan is 30 feet, and height 12 feet; the length of the vault being 60 feet? Anf. 1694.64.
Ex. 3. Required the content of the vacuity of a Gothic vault, whofe fpan is 50 feet, the chord of each arch 50 feet, and the diftance of each arch from the middle of thefe chords 10 feet ; alfo the length of the vault 20. Anf. $35401 \%$

## PROBLEMIII.

## To find the Superficies of a Dome.

Find the area of the bafe, and double it; then fay, as the radius of the bafe, is to the height of the dome, fo is the double area of the bafe, to the fuperficies.

Note. For the fuperficies of a bemifpherical dome, take the double area of the bafe only.

## EXAMPLES.

1. To how much comes the painting of an octagonal \{pherical dome, at Sd . per yard; each fide of the bafe being 20 feet?

$$
\begin{aligned}
& 4 \cdot 82 S 427 \text { tabular area } \\
& 400 \text { fquare of ? }
\end{aligned}
$$

$1931 \cdot 370$ area of the bafe
2
> 9) $3862 \cdot 7416$ fuperficies in feet 429-1934. yards

> 8

$$
\begin{array}{l|ccc}
12 & 3433 \cdot 5172 \\
2,0 & 28,6 & 1 \frac{\pi}{2} \\
& \text { 2nifer. } & 14 & 6
\end{array} 1 \frac{1}{2} \text { aniwer. }
$$

Ex. 2. Required the fuperficies of a hexagonal fpherical dome, each fide of the bafe being 10 feet.

Ex. 3. What is the fuperficies of a dome with a circular bafe, whofe circumference is 100 feet, and height 20 feet ?

Anf. 2000 feet.

> PROBLEM IV.
> To find the Solid Content of a Dome.

Multiply the area of the bafe by the height, and take $\frac{2}{3}$ of the product.

EXAMPLES.

1. Required the folid content of an oftagonal dome, each fide of the bafe being 20 feet, and the height 21 feet? $4 \cdot 828427$

400
$1931 \cdot 3708$ area of the bafe
$14 \frac{2}{3}$ of height
77954832
19313708

## $27039 \cdot 1912$ anfwer.

Ex. 2. What is the folid content of a fpherical dome, the diameter of whofe circular bafe is 30 teet?

Anf. $7068^{\circ} 6$ feet.

> To find ithe Superficies of a Saloon.

Find its treadth by applying a Aring clofe to it acrofs the furface. Find alfo is length by meafuring along the middie of it, quite round the room.

Then mulifly thefe two together for the furface.
EXAMPLE.

The girt acrofs the face of a faloon being 5 feet, and its mean compafs 100 feet, required the area or fuperficies?

$$
100
$$

## PRGBLEM Vi. <br> To find the Solid Content of a Saloon.

Multiply the area of a tranfverfe fection by the compafs taken round the middle part. Subtract this product from the whole vacuity of the room, fuppofing the walls to go upright all the height to the flat ceiling. And the difference will be the anfwer.

EXAMPLE.
If the height $A B$ of the faloon be $3 \cdot 2$ feet, the chord ADC of its front $4 \cdot 5$, and the diftance $D E$ of its middle part from the arch be 9 inches; required the folidity, fuppofing the mean compafs to be 50 feet?



$$
\begin{aligned}
& \text { 1\% VAULTEDASU }
\end{aligned}
$$

137.900 content of the folid part:

Then this taken from the whole upright fpace, will leave the content of the vacuity contained within the room.

## PROBLEM VII.

To find the Concave Superficies of a Groin.
To the area of the bafe add $\stackrel{y}{>}$ part of itfelf, for the fupeificial content.

## EXAMPLES.

1. What is the fuperficial content of the groin arch, raifed on a fquare bafic of 1,5 feet on each fide?

$$
\begin{aligned}
& \frac{15}{15} \\
& \frac{15}{75} \\
& 7 \longdiv { 2 2 5 } \text { area of the bafe } \\
& 32 \frac{7}{7} \text { its } 7 \text { th part } \\
& 257 \div \text { anfwer. }
\end{aligned}
$$

Ex. 2. Required the fuperficies of a groin arch, raifed on a rectangular bafe, whofe dimenfions are 20 feet by 16. Anf. 365 ${ }^{5}$.

## PROBLEM VIXT.

## To find the Solid Content of a Groin Arch.

Multiply the area of the bafe by the height: from the product fubtract $\frac{1}{10}$ of itfelf; and the remainder will be the content of the vacuity.

## EXAMPLES。

1. Required the content of the vacuity within a groin arch, fpringing from the fides of a fquare bafe, each fide of which is 16 feet.
```
                        16
                16
                96
                16
                    256 area of bafe
                        8 height or radius
```

$$
2048
$$

$$
204 \frac{4}{5} Y_{10}^{x} \text { fubtract }
$$

$$
1843 \frac{1}{3} \text { anfwer. }
$$

2. What is the content of a vacuity below an oval groin, the fide of its fquare bafe being 24 feet, and its height 8 feet ?

## NOTES.

1. To find the folid content of the brick or ftone-work, which forms any arch ur vault: Multiply the area of the bafe by the height, including the work over the top of the arch; and from the product fubtract the content of the vacuity, found by the foregoing problems; then the remainder will be the content of the folid materials.
2. In groin arches, however, it is ufual to take the whole as folid, without deducting the vacuity, on account of the trouble and wafte of materials, attending the cutting and filting them to the arch.

## LAND SURVEYING.

## CHAPTER 1.

Defcription and UJe of the Infiruments.

> 1. OF THE CHAIX.
I. AND is meafured with a chain, called Gunter's chain, of 4 poles or 22 yards in length, which conlifts of 100 equal links, the length of each link being $\boldsymbol{y}^{2} \geq 0$ of a yard, or 66 of a foot, or $7 \cdot 92$ inches, that is nearly 8 inches or ${ }_{3}^{2}$ of a foot.

An acre of land is equal to 10 fquare chains, that is, 10 chains in length and 1 chain in breadth. Or it is 220 $\times 22$ or 4840 fquare yards. Or it is $40 \times 4$ or 160 fquare poles. Or it is $1000 \times 100$ or 100000 fquare links. Thefe being all the fame quantity.

Alfo, an acre is divided into 4 parts called roods, and a rood into 40 parts called perches, which are fquare poles, or the fquare of a pole of $5 \frac{1}{2}$ yards long, or the fquare of $\frac{1}{4}$ of a chain, or of 25 links, which is 625 qquare links. So that the divifions of land meafure will be thus:

$$
\begin{aligned}
625 \text { fq. links } & =1 \text { pole or perch } \\
40 \text { perches } & \equiv 1 \text { rood } \\
4 \text { roods } & =1 \text { acre. }
\end{aligned}
$$

The length of lines, meafured with a chain, are beft fet down in links as integers, e ery chain, in length heing 100 links; and not in chains and decimals. Therefore after the content is found, it will be in fquare links; then cut off 5 of the figures on the right-hand for decimals, and the reft will be acres. Thofe decimals are then multiplied by 4 for roods, and the decimals of thefe again by 40 for perches.

## EXAMPLE.

Suppofe the length of a reftangular piece of ground be 792 links, and its breadth 385 ; to find the area in acres, roods, and perches.


## 2. OE THE PLAIN TABLE.

This infrument confifts of a plane rectangular board of any convenient fize, the centre of which, when ufed, is fixed by means of forews to a three-legged fland, having a ball and focket, or joint, at the top, by means of which, when the legs are fixed on the ground, the table is inclined in any direction.

To the table belong feveral parts: viz.

1. A frame of wood, made to fit round its edges, and to be taken off, for the convenience of putting a fheet of paper on the table. The one fide of this frame is ufually divided into equal parts, for drawing lines acrofs the table, parallel or perpendicular to the fides; and the other fide of the frame is divided into 360 degrees, from a centre, which is in the middle of the table; by means of which the table is to be ufed as a theodolite, \&.c.
2. A needle and compafs ferewed into the fide of the table, or elfe in the middle of the fupport, to point out the directions; and to be a check upon the fights.
3. An index, which is a brafs two-font fcale, with cither a fmall telefcope, or open fights crected perpendicularly on the ends. Thefe fights and one edge of the index are in the fame plane, and that edge is called the fiducial edge of the index.

Before ufing this inftrument, take a fheet of paper which will cover it, and wet it to make it expand ; then fpread it flat on the table, preffing down the frame on the edges, to ftretch it and keep it fixed there; and when the paper is hecome dry, it will, by contracting again, ftretch itfelf finooth and fat from any cramps and unevennefs. On this paper is to be drawn the plan or form of the thing meafured.

In ufing this infrument, begin at any part of the ground you think the mont proper, and make a point on a convenient part of the paper or table, to reprefent that point of the ground; then fix in that point one leg of the compafies, or a fine ficel pin, and apply to it the fiducial
edge of the index, moving it round, till through the fights you perceive fome remariable object, as the corner of a field, $\mathcal{E c}$. and from the ftation point draw a line with the point of the compaffes along the fiducial edge of the index; then fet another object or corner, and draw its line; do the fame by anotber, and fo on, till as many objects are fet as may be thought neceffary. Then meafure from the fation towards as many of the objects as may be neceffary, and no more, taking the requifite offsets to corners or crooks in the hedges, \&c. and lay the meafures down on their refpective lines on the table. Jhen, at any convenient place, meafured to, fix the taple in the fame pofition, and fet the objects which appearlifrom thence, \&c. as before; and thus continue till the work is finifhed, meafuring fuch lines as are neceffary, and determining as many as you can by interfecting lines of direction drawn from different ftations.

And in thefe operations, obferve the following particulár cautions and disections: 1. Let the lines on which you make fations be directed towards objects as far difant as poffible; and when you have fet any fuch object, go round the table and look through the fights from the other end of the index, to fee if any other remarkable object lie directly oppofite: if there be not fuch an one, endeavour to find another forward object, fuch as fhall have a remarkable backward oppofite one, and make ufe of it, rather than the other; becaufe the back object will be of ufe in fixing the table in the original pofition, either when you have meafured too near to the firward object, or when it may be hid from your fight at any neceffary. station by intervening hedges, \&cc.
2. Let the faid lines, on which the ftations are taken, be purfued as far as you conveniently can; fur that will bethe means of preferving more accuracy in the work.
3. At each fation, it will be neceffary to prove the truth of it; that is, whether the table be fraight in the line towards the object, and alfo whether the diftance
be rightly meafured and laid down on the paper.--To know if the table be fet down ftraight in the line; lay the index on the table in any manner, and move the table about, till through the fights you perceive either the fore or back ohject; then, without moving the table, go round it, and look through the fights by the other end of the index, to fee if the other object can be perceived; if it be, the table is in the line; if not, it muft be flifted to one fide, according to your judgment, till through the fights hoth objects can be feen. - The aforefaid operation only informs you if the fation be ftraight in the line: but to krow if it be in the right part of the line, that is, if the diftance has been righ'ly laid down; fix the table in the original pofition, by laying the index along the ftation line, and turning the table about till the fore and back objects appear through the fights, and then alfo will the needle point at the fame degree as at firft; then lay the index over the ftation point and any other point on the paper seprefenting an object which can be feen from the ftation; and if the faid obj et appear ftraight through the fighis, the fation may be depended on as right; if not, the diflance fhould be examined and corrected till the object can be fo feen. And for this very ufeful purpofe, it is advifable to have fome high object or two, which can be feen from the greateft part of the ground, accurately laid down on the paper from the beginning of the furvey, to ferve continually as proof or jects.

When fom any fation, the fore and back objects cannot both be feen, the agreement of the needle with one of them may be depended on fur placing the table fraight on the line, and for fixing it in the original pofition.

## Of Bifting the Paper on the Plain Table.

When one paper is full, and there is occafion for more; draw a line in any manner through the fartheft point of the laft fation lise, to which the work can be convenient-

Iy laid down; then take the fheet off the table, and fix another on, drawing a line on it, in a part the moft convenient for the reft of the work; then fold or cut the old fheet by the line drawn on it, apply the edge to the line on the new fheet, and, as they lie in that pofition, continue the laft fation line on the new paper, placing on it the reft of the meafure, begioning at where the old fheet left off. And fo on from fheet to fheet.

When the work is done, and you would faften all the fheets together into one piece, or rough plan, the aforefaid lines are to be accurately joined together, as when the lines were transferred from the old fheets to the new ones.

But it is to be noted, that if the faid joining lines, on the old and new fheet, have not the fame inclination to the fide of the table, the needle will not point to the original degree when the table i, rectified; and if the needle be required to refpect fill the fame degree of the compafs, the eafieft way of drawing the lines in the fame pofition, is to draw them both parallel to the fame fides of the table, by means of the equal divifions marked on the other two fides.

## 3. of thetheodolite.

The theodolite is a brazen circular ring, divided into 360 degrees, and having an index with fights, or a telefcope, placed on the centre, about which the index is moveable ; alfo a compafs fixed to the centre, to point out courles and check the fights; the whole being fixed by the centre on a ftand of a convenient height for ufe.
In ufing this inftrument, an exact account, or field-book, of all meafures and things neceffary to be remarked in the plan, mult be kept, from which to make out the plan on returning home from the ground.

Beyin at fuch part of the ground, and meafure in fuch directions, as you judge moft convenient; taking angles or directions to objects, and meafuring fuch diftances as appear neceflary, under the fame, reffrictions as in
the ufe of the plain table. And it is fafeft to fix the theodolite in the original pofition at every ftation by means of fore and back objects, and the compafs, exactly as in ufing the plain table; regiftering the number of degrees cut off by the index when directed to each object; and at any ftation, placing the index at the fame degree as when the direction towards that flation was taken from the laft preceding one, to fix the theodolite there in the original pofition, after the fame manner as the plain table is tixed in the original pofition, by laying its index along the line of the laft direction.

The beft method of laying down the aforefaid lines of direction, is to defcribe a pretty large circle, quarter it, and lay on the circumference, the feveral numbers of degrees cut off by the index in each direction, marking the points they reach to; then draw lines from the centre to all thefe points in the circumference; lafly, parallel to the faid lines, draw other lines from fation to flation.

## 4. OE THE CRQSS.

The crofs confifts of two pair of fights fet at right angles to each other, on a ftaff having a tharp point at the bottom to flick in the ground.

The cro's is very uffeful to meafure fmall and crookel pieces of ground. The method is to meafure a bafe or chief line, ufually in the longett direction of the piece from corner to corner; and while meafuring it, finding the places where perpendiculars would fall on this line, from the feveral corners and bends in the boundary of the piece, with the crofs, by fixing it, by trials, on fuch parts of the line as that through one pair of the fights both ends. of the line may appear, and through the other pair you can perceive the correfponding bends or corners; and then meafuring the lengths of the faid perpendiculars.

> REMARKS.

Qf all the inftraments for meafuring, the plain table is
on many occafions the beft; not only becaufe it may be ufed as a theodolite or femi-circle, by turning uppermoit. that fide of the frame which has the 360 degrees on it; but becaufe it is, in its own proper ufe, by much the eafieft, fafeft, and mont accurate for the purpofe; for, by planning every part immediately on the fpot, as foon as: meafured, there is not only faved a great deal of writing in the field-book, but every thing can alfo be planned more eafily and accurately while it is in view, than it can afterwards from a field book, in which many little things may be either neglected or miftaken; and befides, the opportunities which the plain table affords of correcting the work, or proving if it he right, at every ftation, are fuch advantages as can never be balanced by any other inftrument. But though the plain table be the moft generally ufeful inftrument, it is not always fo; there being many cafes in which fometimes one inftrument is the propereft, and fometimes another; nor is that farveyor mafter of his bufinefs, who cannot in any cafe diatinguifh which is the fitteft inftrument or method, and ufe it accordingly: nay oftep no inftrument at all, but barely the chain itfelf is the beft method, particularly in regular open fiolds lying together; and even when you are ufing the plain table, it is often of advantage to meafure fuch large open parts with the chain only, and from thofe meafures lay them down on the table.

The perambulator is ufed for meafuring roads, and other great diftances on level ground, and by the fides of rivers. It has a wheel of $8 \frac{x}{4}$ feet, or half a pole in circumference, on which the machine turns; and the diftance meafured is pointed out by an index, which is moved round by clock work.

Levels, with telefcopic or other fights, are ufed to find the level between place and place, or how much one placeis higher or lower than another. And in meafuring any floping or oblique line, either afcending or defeending, a fmall pocket level is ufeful for fhowing how many links
for each chain are to be deducted, to reduce the line to the true horizontal length.

An offset faff is a very ufeful and neceffary inftrument, for meafuring she offsets and other fhort diftances. It is 10 links in length, being divided and marked at each of the 10 links.

Ten fmall arrows, or rods of iron or wood, are ufed to mark the end of every chain length, in meafuring lines. And fometimes pickets, or flaves with flags, are fet up as marks or objects of direction.

Various fales are alfo ufed, in protracting and meafuring on the plan or paper; fuch as plane fcales, line of chords, protractor, compaffes, reducing feale, paraliel and perpendicular rules, \&c. Of plane fcales, there fhould be feveral fizes, as a chain in 1 inch, a chain in $\frac{3}{4}$ of an inch, a chain in $\frac{1}{2}$ an inch, \&c. And of thefe, the bert for ufe are thofe that are laid on the very edges of the ivory fcale, to prick off diftances by, without compaffes.

## THE FIELD-BOOX.

In furveying with the plain table, a field-book is not ufed, as every thing is drawn on the table immediately when it is meafured. But in furveying with the theodolite, or any other inftrunent, fome fort of a field-book muft be ufed, to write down in it a regifter or account of all that is done and occurs relative to the furvey in hand.

This book every one contrives and rules as he thinks fitteft for himfelf. The following is a feecimen of a form very generally ufed. It is ruled into 3 columns: the middle, or principal column, is for the ftations, angles, bearingc, diftances meafured, \&c.; and thofe on the right and left are for the offsets on the right and left, which are fet againft their correfponding diftances in the middle column; as alfo for fuch remarks as may occur, and be proper to note in drawing the pian, \&c.

Here $\odot 1$ is the firff ftation, where the angle or bearing is $105^{\circ} 25^{\prime}$. On the left, at 73 links in the diftance
or principal line, is an offset of 92 ; and at 610 an offset of 24 to a crofs hedge. On the right, at o , or the beginning, an offset 25 to the corner of the field; at 248 Brown's boundary hedue commences; at 610 an offser 35 ; and at 95 t , the end of the firit line, the o denotes its terminating in the hedge. And fo on for the other ftations.

A line is drawn undrr the work, at the end of every flation line, to prevent confufion.

Form of the Field-Book.

| Offsets and Remarks on the left. | Scations, <br> Bearings, and <br> Diftances | )ffets and Remarks on the right. |
| :---: | :---: | :---: |
| crofs a hedge $2 \pm$ | $\begin{gathered} \odot 1 \\ 105^{\circ} 25^{\prime} \\ 00 \\ 73 \\ 248 \\ 610 \\ 954 \end{gathered}$ | 25 corner <br> Brown's hedge <br> 35 <br> 00 |
| houfe corner 51 |  | $\begin{aligned} & 00 \\ & 21 \\ & 29 \text { a tree } \\ & 40 \text { a tyle } \end{aligned}$ |
| a brook 30 foot-path 16 | $\begin{gathered} \odot \\ \odot \\ 60.30^{\prime} \\ 61 \\ 248 \\ -639 \\ 810 \end{gathered}$ | 35 <br> 16 a fpring |
| crofs hedge 18 | 973 | 20 a pond |

The learner will here draw a plan to this field-book. But

But fome fkilful furveyors now make ufe of a difiterent method for the field-book, namely, beginning at the bottom of the page, and writing upward; by which they fketch a neat boundary on either hand, as they pafs along: an example of which will be given further on, in the method of furveying a large eftate.

In finaller furveys and meafurements, a good way of fetting down the work, is, to draw, by the eye, on a piece of paper, a figure refembling that which is to be meafured; and fo writing the dimenfions, as they are found, againtt the correfponding parts of the figure. And this merhod may be pracifed to a confiderable extent, ceven in the larger furveys.


## CHAPTER 11.

## THE PRACTICE OF SURVEYING.

THIS part contains the feveral works proper to be done in the field, or the ways of meafuring by all the infruments, and in all fituations.

## FROBLEMI.

## To meafure a Line or Difiance.

To meafure a line on the ground with a chain: Having provided a chain, with 10 fmall arrows, or rods, to fick one into the ground, as a mark, at the end of every chain; two perfons take hold of the chain, one at each end of it, and all the 10 arrows are taken by one of them, whe is to go foremoft, and is called the leader; the other being called the follower, for diftinction fake.

A picket or ftation ftaff, being fet up in the direction of the line to be meafured, if there do not appear fome marks
marks naturally in that direction; the follower flands at the beginning of the line, holding the ring at the end of the chain in his hand, while the leader drags forward the chain by the other end of it, till it is ftretched ftraight, and laid or held level, and the leader directed, by the follower waving his hand, to the right or left, till the follower fee him exactly in a line with the mark or direction to be meafured to ; there both of them ftretching the chain ftraight, and ftooping and holding it level, the leader having the head of one of his arrows in the fame hand by which he holds the end of the chain, he there fticks one of them down with it while he holds the chain ftretched. This done, he leaves the arrow in the ground, as a mark for the follower to come to, and adrances another chain forward, being directed in his pofition by the follower, ftanding at the arrow, as hefore; as alfo by himfelf now, and at every fucceeding chain's length, by moving himfelf from fide to fide, till he brings the follower and the back mark into a line. Having then ftretched the chain, and ftuck down an arrow, as before, the follower takes up his arrow, and they advance agaim in the fame manner another chain length. And thus they proceed, till all the 10 arrows are employed, and are, in the hands of the follower; and the leader, without an arrow, is arrived at the end of the 11 th chain-length. The follower then fends or brings the 10 arrows to the leader, who puts one of them down at the end of his chain, and advances with the chain as before; and thus the arrows are changed from the one to the other at every 10 chains' length, till the whole line is finifhed; then the number of changes of the arrows fhows the number of tens, to which the follower adds the arrows he holds in his hand, and the number of links of another chain over to the mark or end of the line. So if there have been 3 changes of the arrows, and the follower hold 6 arrows, and the end of the line cut off 45 links more, the whole length of the line is fet down in links thus, $36+5$.

When the ground is floping, afcending or defcending ;
at every chain length, lay the offset ftaff, or link ftaff down in the flope of the chain, on which lay the fmall pocket level, to fhow how many links or parts the flope line is longer than the true level one; then draw the chain forward fo many links or parts, which reduces the line horizontal. Or, holding the chain level every time, will perhaps be the better way to have the true length of the line.

## PROBLEM II.

## To take Angles and Bearings.

Let B and C be two objects, or two pickets fet up perpendicular, and let it be required to take their bearings, or the angle formed between them at any ftation A.


## 1. With the Plain Table.

The table being covered with a paper, and fixed on its ftand; plant it at the fation A, and fix a fine pin, or a point of the compaffes in a proper point of the paper, to reprefent the point A: Clofe by the fide of this pin lay the fiducial edge of the index, and turn it about, ftill touching the pin till one object B can be feen through the fights: then by the fiducial edge of the index draw a line. In the very fame manner draw another line in the direction of the other object C. And it is done.

> 2. With the Theodolite, छ'c.

Direct the fixed fights along one of the lines, as $A B$, by turning the inftrument about till you fee the mark B through thefe fights; and there fcrew the inftrument faft. Then turn the moveable index about till, through its fights, you fee the other mark C. Then the degrees cut by the index, on the graduated limb or ring of the inftrument, thew the quanrity of the angle.
3. With the Magnetic Needle and Compafs.

Turn the inftrument, or compafs, fo that the north
end of the needle point to the flower-de-luce. Then direct the fights to one mark as B, and note the degrees cut by the needle. Next direct the fights to the other mark C , and note again the degrees cut by the needle. Then their fum or difference, as the cafe is, will give the quautity of the angle BAC.
4. By Meafurement with the Cbain, Eo.

Meafure one chain length, or any other length, along both directions, as to $b$ and $c$. Then meafure the diftance $b c$, and it is done. - This is eafily transferred to paper, by making a triangle A b c with thefe three lengths, and then meafuring the angle $A$ as in Practical Geometry, prob. $x$.

> PROBLEM III.

## To meafure the Offsetso

Ahiklmn being a crooked hedge, or river, \&c. From A meafure in a ftraight direction along the frde of it to B . And in meafuring along this line AB , obferve when you are directly oppofite any bends or corners of the fence, as at $\mathrm{c}, \mathrm{d}, \mathrm{e}, \& \mathrm{c}$. and thence meafure the perpendicular offfets $\mathrm{ch}, \mathrm{di}, \& \mathrm{c}$. with the offset-flaff, if they are not very large, otherwife with the chain itfelf. And the work is done. The regifer or field-book of which may be as follows:

| Offr. Ietı. | Bate line A B. |  |
| :---: | :---: | :---: |
| 0 | $\bigcirc$ A |  |
| ch 62 | 45 Ac |  |
| di $8 \pm$ | 220 Ad | h $\mathrm{l}^{\text {l }}$ |
| ek 70 | 340 A e | : |
| f1 88 | 510 A f | $\mathrm{c} \mathrm{de}^{\text {f g P }}$ |
| gm 57 | 634 Ag |  |
| Bn 91 | $17 \times 5$ A B |  |

Note. When the offiets are not very large, their places $c, d, e, \& c$. on the bafe line, can be very well determined
by the eye, efpecially when affifted by laying down the offect-faff in a crofs or perpendicular direction. But when thefe perpendiculars are very large, find their pofitions by the crofs, or by the inftrument which you happen to be ufing, in this manner: In meafuring along $A B$, when you come nearly oppofite $C$, where you judge a perpendicular will fand, plant the inftrument in the line, and gurn the index till the marks A and B can be feen through both the fights, looking both backward and forward; thenlook along the crofs fights, or the crofs line on the index; and if it point directly to the corner or bend $h$, the place of $c$ is right. Otherwife move the inftrument back ward or forward on the line A B, till the erofs line points fraight to h . This heing found, fet down the diftance mealured from A to c : then meafure the offset $\mathrm{c} h$, and fet it down oppofite the former, and on the left hand fide. - Then procedd forward in the line A B, till you arrive oppofite another corner, and determine the place of the perpendicular as before. And fo on throughout the whole length.

## PROBLEM IV.

To furvey a Triangular Field ABC.

1. By the Cbain.

AP 794
AB 1323
FC 826


Having fet up marks at the corners, which is to be done in all cafes where there are not marks naturally; meafure with the chain from A to $P$, where 2 perpendicular would fall from the angle $C$, and fet up a mark at $P$, noting down the diftance $A P$. Then complete the diftance $A B$
by meafuriug from P to B . Having fet down this meafure, return to $P$, and meafure the perpendicular PC. And thus, having the bafe and perpendicular, the area from them is eafily found. Or having the place $P$ of the perpendicular, the triangle is eafily conftructed.

Or, meafure all the three fides with the chain, and note them down. From which the content is eafily found, or the figure confructed.

> 2. By taking one or more of the Angles.

Meafure two fides $A B, A C$, and the angle $A$ between them. Or meafure one fide Al, and the two adjacent angles A and B. From either of thefe ways the figure is eafily planned; then by meafuring the perpendicular CP on the plan, and multiplying it by half $A B$, you have the content.

> PROBLEM V.

## To meafure a Four-fided Field.

1. By the Ghain.

| AE | 214 | 210 DE |
| :--- | :--- | :--- |
| AF | 362 | $: 60 \mathrm{BF}$ |
| AC | 592 |  |



Meafure along eithcr of the diagonals, as $A C$; and either of the two perpendiculars. $\mathrm{DE}, \mathrm{BF}$, as in the laft problen; or elfe the fides $A B, B C, C D, D A$. From cither of thefe ways may the figure be planned and computed, as before directed.

## Otherwife by the Cbain.

| AP | 110 | 352 | PC |
| :--- | :--- | :--- | :--- |
| AQ | $7+5$ | 595 | Q |
| AB | 1110 |  |  |



Meafure on the longett fide, the diffances $A P, A Q$. $A B$; and the perpendiculars $P C, Q D$.
2. By taking one or more of the Angles.

Meafure the diagonal AC (fee the laft fig. but one,) and the angles $\mathrm{CAB}, \mathrm{CAD}, \mathrm{ACB}, \mathrm{ACD}$.-Or meafure the four fides, and any one of the angles at BAD.

| Thus |  | Or thus |  |
| :---: | :---: | :---: | :---: |
| AC | 591 | AB | 486 |
| CAB | $37^{\circ} 20^{\prime}$ | BC | 394 |
| CAD | 4115 | CD | 410 |
| ACB | 7225 | DA | 462 |
| ACD | 54.40 | BAD | 78:35 |

problem vi.
To furvey any Field by the Cbain only.
Having fet up marks at the corners, where neceffary, of the propofed field ABCDEFG. Walk over the ground, and confi.er how it can beft be divided into triangles and trapeziums; and meafure them feparately as in the laft two problems. And in this way it will be proper to divide it into tiangles and trapeziums, by drawing diagonals from corner to corner; and fo as that all the perpendiculars may fall within the figures. Thus, the following figure is diviced , into the two trapeziums $\mathrm{ABCG}, \mathrm{G} 1 \mathrm{EF}$, and the triangle GCD. Then at the firt trapezium, beginning at $A$, meafure the diagonal $A C$,
and the two perpendiculars $\mathrm{Gm} ; \mathrm{B} \mathrm{n}$. Then the bafe GC, and the perpendicular D q. Lafly, the Diagonal D F, and the two perpendiculars $p$ E, o G. All which meafures write againft the correfponding parts of a rough figure, drawn to refemble the figure to be furveyed, or fet then down in any other form you choofe.

Thus

| A m 135 | 130 mG |
| :---: | :---: |
| A n 410 | 180 n B |
| A C 550 |  |
| C q 152 | 230 q D |
| C G 4.40 |  |
| Fo 206 | $120^{\circ} \mathrm{O}$ |
| F p 288 | 80 p E |
| FD 520 |  |



Or Thus,
Meafure all the fides $A B, B C, C D, D E, E F, F G$, $\mathrm{GA}_{\text {; }}$ and the diagonals $\mathrm{AC}, \mathrm{CG}, \mathrm{GD}, \mathrm{DF}$.

## Otherwije.

Many pieces of land may be very well furveyed, by meafuring any bafe line, either within or without them, together with the perpendiculars let fall on it from every corner of them. For they are by thofe means divided into feveral triangles, and trapezoids, all whofe parallel fides are perpendicular to the bafe line; and the fum of thefe triangles and trapeziums will be equal to the figure propofed if the bafe line fall within it; if not, the fum of the parts which are without being taken from the fum of the whole which are both within and without, will leave the area of the figure propofed.

In pieces that are not very large, it will be fufficiently exact to find the points, in the bafe line, where the feveral perpendiculars will fall, by means of the Crofs, and K thence
thence meafuring to the corners for the lengths of the perpendiculars. And it will be moft convenient to draw the line fo, as that all the perpendiculars may fall within the figure.

Thus, in the following figure, beginning at $\Lambda$, and meafuring along the line $A G$, the diftances and perpendiculars, on the right and left, are as below.

| Ab | 315 | 350 bB |
| :---: | ---: | ---: |
| Ac | 440 | 70 cC |
| Ad | 585 | 320 dD |
| Ac | 610 | 50 eE |
| Af | 990 | 470 fF |
| AG | 1020 | 0 |



## PROBLEM VII.

## To.jurvey any Field with the Plain Table.

## 1. From one Station.

Plant the table at any angle, as C , from which all the other angles, or marks fet up, can be feen. Then turn the table about till the needle point to the flower-de-luce; and there ferew it faft. Mike a point for $\mathbb{C}$ on the paper on the table, and lay the edge of the index to C , turning it abcut that
 point till through the fights you fee the mark D ; and by the edge of the index draw a dry or obfcure line; then meafure the diftance CD, and lay that diftance down on the line CD. Then turn the index about the fame point C , till the mark E be feen through the fights, by which draw
draw a line, and meafure the diftance to E, laying it on the line from C to E . In like manner determine the pofitions of CA and CB, by turning the fights fucceffively to $A$ and $B$; and lay the lengths of thofe lines down. Then connect the points with the boundaries of the field, by drawing the black lines $C D, D E, F A, A B, B C$.

## 2. From a Station Within or Witbont the Field.

When all the other parts can. not be feen from one angle, choofe fome place O within; or even without, if more conve. nient: from which the other parts can be feen. Plant the table at O , then fix it with the needle north, and mark the point O on it. Apply the index fucceffively to $O$, turning it round
 with the fights to each angle A, B, C, D, E, drawing dry lines to them along the edge of the index; then meafuring the diffances $\Theta \mathrm{A}, \mathrm{OB}$, \&c. and laying them down on thofe lines. Lafly, draw the boundaries $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}, \mathrm{EA}$.

## 3. By going Round the Figure.

When the figure is a wood, or water, or when from fome other obffruction you cannot meafure lines acrofs it ; begin at any point $A$, and meafure round ir, either within or without the figure, and draw the directions of all the fides thus: Plant the table at $A$, tnrn it with the needle to the north of flower-de-luce, fix it, and mark the point A. Apply the index to A, turning it till you can fee the point $E$, there draw a line; and then the point B , and there draw a line: then meafure thefe lines, and lay them down from $A$ to $E$ and $B$. Next move the table to B, lay the index along the line AB , and turn the table about
till you can fee the mark $A$, and fcrew faft the table; in which pofition also the needle will again point to the Hower-de-luce, as it will do indeed at cery ftation when the table is in the right pofition. Here turn the index about B till through the fights you fee the mark C ; there draw a line, meafure $B C$, and lay the diffance on that line after you have fet down the table at C. Turn it then again into its proper pefition, and in like manner find the next line CD. And foon, quite round by $E$, to $A$ again. Then the proof of the work will be the joining at A: for if the work be all right, the laf direction EA on the ground, will pafs exactly through the point A on the paper; and the meafused diffance will alfo reach exactly to A. If thefe do not coincide, or nearly fo, fome error has been committed, and the work muft be examined over agan.

## PROBLEM VIII.

Tu Juivey a Field ruilb the Theodolite, $\vartheta^{\circ}{ }_{c}$.

1. From One Point or Station.

When all the angles can be feen from one point, as the angle $C$, (firf fig. to laft prob.); place the inftrument at C, and curn it about till, through the fixed fights, you fee the mark B, and there fix it. Then turn the moveable index about, till the mark A is feen through the fights, and note the degrees on the inftrument. Next turn the index fucceffively to E and D , noting the degrees cut off at each; which gives all the angles BCA, KCE, BCD. Laftly, meafure the lines $\mathrm{CB}, \mathrm{CA}, \mathrm{CE}$, CD ; and enter the meafures in a field-book, or rather againft the correfponding parts of a rough figure, drawn by guefs, to refembile the feld.

## 2. From a Point Witbin or Without.

Plant the inftrument at O , (laft firs) and turn it about till the fixed fighis point to any objict as $A$; and there Screw it faft. Then turn the moveable index round, till
the fights point fuccefively to the other points E, D, C, B , noting the degrees cut off at each of them; which gives all the angles round the point $O$. Laftly, meafure the diftances $O A, O B, O C, O D, O E$, noting them duwn as before, and the work is done.

## 3. By going Round the Field.

By meafuring round, either within or without the field, proceed thus. Having fet up marks at B, C, \& © . near the corners as ufual, plant the inftrument at any point $A$, and turn it till the fixed index be in the direction $A B$, and there forew it faf:
 then turn the moveable index to the direction AF; and the degrees cut off will be the angle A. Meafure the line $A B$, and plant the infrument at $B$, and there in the faine manner obferve the angle $A$. Then meafure BC , and obferve the angle $C$. Then meafure the diftance $C D$, and take the angle D . Then meafure DE , and take the angle E. Then meafure EF, and take the angle F. And laftly meafure the diftance FA.

To prove the work; add all the inward angles $A, B, C$, \&c. together, and when the work is right, their fum will be equal to twice as many right angles, as the figare has fides, wanting 4 right angles. But when there is an angle, as $F$, that bends inwards, and you meafure the external angle, which is lefs than 2 right angles, fubtract it from 4 right angles, or 360 degrees, to give the internal angle greater than a femicircle or 180 degrees.

## Othervife.

Inftead of obferving the internal angles, you may take the external angle, formed without the figure by producing the fides farther out. And in this cafe, when the
work is right, their fum altogether will be equal to 36 degrees. But when one of them, as $F$, runs inwards, fubtract, it from the fum of the reff, to leave 360 degrees.

## PROBLEM IX.

## To survey a Field witb Crooked Hedges.

With any of the inftruments meafure the lengths and pofitions of imaginary lines running as near the fides of the field as you can; and, in going along them, meafure the offsets in the manner before taught; and you will have the plan on the paper in ufing the plain table, drawing the crooked hedges through the ends of the offsets; but in furveying with the thendolite, or other inftrument, fet down the meafures properly in a field-book, or memorandum book, and plan them' after returning from the field, by laying down all the lines and angles.


So, in furveying the piece $A B C D E$, fet up marks $a, b$, $c_{\text {c }} d$, dividing it into as few fides as may be, commonly 4 . Then begin at any ftation $a$, and meafure the lines $a b, b c$, cd , da, and take their pofitions, or the angles $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$; and, in going along the lines, meafure all the offsets, as at $\mathrm{m}, \mathrm{n}, \mathrm{r}, \mathrm{p}$, \&c. along every flation line.

And this is done either within the field, or without, as may be moft convenient. When there are obfructions within, as wood, water, hills, \&c. then meafure without, as in the figure here below.


PROBLEM X .
To Jurvey a Field or any o:ber thing, by Two Stations.
This is performed by choofing two fations, from which all the marks and objects can te feen; then meafuring the diftance between the ftations, and at each ftation taking the angles formed by every object, from tho fation line or diftance.

The two ftations may be taken either within the bounds, or in one of the fides, or in the direction of two of the objects, or quite at a diftance and without the bounds of the objects, or part to be furveyed.

In this manner, not only grounds may be furveyed. without even entering them, but a map may be taken of the principal parts of a county, or the chief places of a town, or any part of a river or coaft furve ed, or any other inacceffible objects; by taking two fations, on two towers, or two hills, or fuch like.

K 4.
When


When the plain table is ufed; plant it at one flation $m$, draw a line mn on it, along which lay the edge of the index, and turn the tablee about till the fights point directly to the other flation; and there fcrew it faft. Then turn the fights round $m$ fucceffively to all the ohjects A, B, C, \&c. drawing a dry line by the edge of the index at each, as in $A, m \mathrm{~B}, \mathrm{mC}, \& \mathrm{c}$. Then meafure the diftance to the other fiation, there plant the table, and lay that diftance down on the fation line from m to $n$. Next lay the index by the line nm , and turn the table about till the fights point to the other fation m , and there ferew it faft. Then direct the fights fucceffively to all the objects $A, B, C, \& c$. as before, drawing lines each time, as $n A, n B, n C, \& c$. and their interfection with the former lines, will give the places of all the objects, or corners, A, B, C, \&c.

When the theodolite, or any other infrument for taking angles, is ufed; proceed in the fame way, meafuring the ftation diftance $m \mathrm{n}$, planting the infrument firft at one ftation and then at the other; then placing the fixed fights in the direction m n , and directing the moveable fights to every object, noting the degrees cut off at each time. Then, thefe oblervations being planned, the interfections of the lines will give the objects as before.

When all the objects to be furveyed cannot be feen from two ftations; then three ftations may be ufed, or four, or as many as neceffary; meafuring always the diftance from one ftation to another; placing the infrument in the faine pofition at every ftation, by means deferibed before; and from each ftation obferving or ferting every object that can be feen from it, by taking its direction or anguler pofition, till every object be derermined by the interfection of two or more lines of direction, the more the better. And thus may very extenfive furveys be taken, as of large commons, rivers, coafts, countries, hilly grounds, and fuch like.

## PROBLEM XI.

## To Jurvey a Large Effate.

If the eftate be very large, and contain a great number of fields, it cannot well be done by furveying all the fields fingly, and then putting them together; nor can it be done by taking all the angles and boundaries that inclofe it. For in thefe cafes, any fmall errors will be fo multiplied, as to render it very much diftorted.

1. Walk over the eftate two or three times, in order to get a perfect idea of it, and till you can carry the map of
tolerably in your head. And to help your memory, draw an eye draught of it on paper, or at leaft of the principal parts of it, to guide you; fetting the names within the fields in that draught.
2. Choofe two or more eminent places in the eftate, for your ftations, from which you can fee all the principal parts of it : and let thefe ftations be as fir diftant from one another as poffible, as the fewer ftations you have to command the whole, the more exact your work will be; and they will be fitter fir your purpofe, if thefe thation lines be in or near the boundaries of the ground, efpecially. if two lines or more proceed from one flation.
3. Take what angles, hetween the ftations, you think neceffary, and meafure the diftances from fation to ftation, K 5
always in a right line: thefe things muft be done, till you get as many lines and angles as are fufficient for determining all the fattion points. And in meafuring any of thefe fiation difances, mark accurately where thefe lines mect with any hedgec, ditches, roads, lanes, paths, rivulets, \&cc. and where any remarkable object is placed, by meafuring its diftance from the fation line; and where a perpendicular from it cuts that line; and always mind, in any of thefe obfervations, that you be in a right line, which you will know by taking a back fight and forefight, along the ftation line. And thus in going along any main flation line, take offsers to the ends of all hedges, and to any pond, houfe, mill, bridge, \&cc. onjitting nothing that is remarkable. And all thele things muft be noted down: for thele are the data, by which the places of fuch objects are to be determined on the plan. And be fure to fet up marks at the interfections of all hedges with the fation line, that you may know where to meafure from, when you come to furvey thefe particular fields, which mult iminediately be done, as foon as you have meafured that fation line, while they are frefh in memory. In this way all the flat tion lines are to be meafured, and the fiteation of all places adjoining to them determined, which is the firf grand point to be obtained. It will be proper to lay down the work on paper every night, when you go home, that you may fee how you go on.
4. As to the inner parts of the eftate, they muft be determined in like manner, by new fation lines: for, after the main ftations are determined, and every thing adjoining to them, then the effate muft be fubdivided into two or three parts by new ftation lines; taking inner ftations at proper phace, where you can have the beft view. Meafore thefe flation lines as you did the firf, and all their interfections with hedges, and all offsets to fuch objects as appear. Then proceed to furvey the adjoining fields, by taking the angles that the fides make with the fation live, at the interfections, and meafuring the
diflances to each corner, from the interfections. For the flation lines will he the bafes to all the future operations; the fituations of all parts being entirely dependent on them; and therefore they fiould be taken of as great length as poffible; and it is beft for them to run along fome of the hedges or boundaries of one or more fields, or to pafs through fome of their angles. All things being determined for thefe ftations, you muft take more inner ftations, and continue to divide and fubdivide till at laft you come to fingle fields; repeating the fame work for the inner ftations, as for the outer ones, till all be done; and clofe the work as often as you can, and in as few lines as pofirible. And that you may choofe frations the moft conveniently, fo as to caufe the leaft labour, let the fation lines run as far as may be along fome hedges, and through as many corners of the fields, and other remarkable points, as you can. And take notice how one field lies by another ; that you: may not mifplace them in the draught.
5. An eftate may be fo fituated, that the whole cannot be furveyed together; becaufe one part of the eftate may not be feen from another. In this cafe you may, divide it into three or four parts, and furvey thefe parts feparately, as if they were lands helonging to different perfons; and at laft join them together.
6. As it is neceffary to protract or lay down the work as you proceed in it, you muft have a fcale of a due length to do it by. To get fuch a fcale, meafure the whole length of the eftate in chains; then confider how many inches long the map is to be; and from thefe you will know how many chains you muft have in an inch; then make your fcale accordingly, or choofe one already made.
7. The trees in every hedge row may be placed in their proper fituation, which is foon done by the plain table; but may be done by the eye without an inftrument; and being thus taken by guefs in a rough draught, they will be exact enough, being only to look at; except it be fuch as are at any remarkable places, as at the ends of hedges, x 6

- at Ailes, gates, \&c. and thefe muft be meafured, or taken with the plain table. But all this need not be done till the draught is finimed. And obferve in all the hedges, what fide the gutter or ditch is on, and to whom the fences belong.

8. When you have long ftations, you ought to have a good inftrument to take angles with, and the plain table may very properly be made ufe of, to take the feveral fmall internal parts, and fuch as cannot be takenf from the main ftations: as it is a very quick and ready inftrument.

## The Nerw Metbod of Surveying.

Inftead of the firegning method, an ingenious friend (Mr. 人hraham Crocker), afier mentioning the new and improved method of keeping the field-book, by writing from botrom to tup of the pages, obferves that "In the former method of meafuring a large eftate, the accuracy of it depends on the correct eff of the inftruments ufed in taking the angles. To avoid the errors incident to fuch a multitude of angles, other methods have of late years been ufed by fome few fkilful furveyors: the moft practical, expeditious, and correct, feems to be the following:
"A, was advifed in the foregoing methor, fo in this, choofe two or more eminences, as grand ftations, and meafure a princifal bafe line from one flation to the other, noting every hedge, brook or other remarkable object as you pals by it ; meafuring alfo fuch mort perpendicular lines to fuch bends of hedges as may be near at hand. From the extremities of this bale line, or from any convenient parts of the fame, go off with other lines to fome remarkable object firuated towards the fides of the eflare, without regarding the angles they make with the bafe line or with one another; ftill rememhering to note every hedge, brook, or other object that you pafs by. Thefe lines, when laid down by interfections, will with the ! afe line form a grand triangle on the eftate; feveral of which,

If need be, being thus laid down, you may proceed to form other fmaller triangles and trapezoids, on the fides of the form r: and fo on, until you finifh with the enclofures individually.
" 'This grand triangle being completed, and laid down on the rough plan paper, the parts, exterior a; well as interior, are to be completed by fmaller triangles and trapezoid.
". When the whole plan is laid down on paper, the contents of each fiold might be calculated by the methods laid down below, at prob. 2. chap. 3.
"In countries where the lands are enclofed with high hedges, and where many lanes pafs through an eftate, a theodolite may be ufed to advantaze, in meafuring the angles of fuch lands; by which means, a kind of fkeleton of the effate may be obtained, and the lane lines ferve as the hafes of fuch triangles and trapezoids as are neceffary to fill up the interior parts."

The method of meafuring the other crofs lines, offsets, and interior parts and enclofures, appears in the plan fig. 1. pl. 23. Dictionary.

Another ingenious correfpondent (Mr. John Rodham, of Richmond, Yorkfhire), has alfo communicated the following evanple of the ne.v method of furveying, accompanied by the field-book, and its correfponding plan. His a count of the method is as follows.
"The field-book is ruled into three columns. In the middle one are fet dow $n$ the diffances on the chain line at which anv mark, off et, or other obfervation is made; and in sle right and left hand columns are entered the off ets and ubierva ions made on the right and left hand re pective'y of the ctain line.
" It is of great a ivan age, both for brevity and ferfpicuity, to begin at the hottom of the leaf and write upwards, denioting the croffing of fences, by lines drawn acrofs the iniddle column, or only part of fuch a line on the right and left oppofite the figures, to avoid confufion:

Gufion: and the corners of fields, and other remarkable turns in the fences where offsets are taken to, by lines joining in the manner the fences do, as will be heft feerr by comparing the book with the plan annexed to the fieldbook, in p. 208.
"The marks called, $a, b, c$, \&xc. are beft made in the fields, by making a frall hole with a fparie, and a chip or fmall bit of wood, with the particular letter upon it, may be put in, to preyent one mark being taken for another, on any return to it. But in general, the name of a mark is very eafily had by referring in the book to the line it was made ir. After the fmall alphabet is gone through, the capitals may be next, the print.letters afterwards, and fo on, which anfiwer the purpofe of fo many different letters; or the marks may be numbered.
" 'The letter in the left hand corner at beginning of every line, is the mark or place meafured from; and, that at the right hand corner at the end; is the mark meafured: to: But when it is not convenient to go exactly from a mark, the place meafured from, is defcribed fuch a diftance from one mark towards anotber; and where a mark is not meafured to, the exact place is afcertained by faying, turn to the right or left hand, fuch a diffance to fuch a mark; it being always underftood that thofe diftances are taken in the chain line.
"The characters ufed, are $\Gamma$ for turn to the right band, Ifor turn to the left band, and $\Lambda$ placed over an cuffet, to fhow that is not taken at right angles with the chain line, but in the line with fome ftraight fence; being chiefly ufed when croffing their directions, and it is a better way of obtaining their true places than by offsets at right angles.
"When a line is meafured whofe pofition is determined, either by former work (as in the cafe of producing a given line, or meafuring from one known place or mark to anorher) or by itfelf, (as in the third fide of a triangle) it is called a faft line, and a double line acrofs the book is drawn at the conclufion of it: but if its pofition is not determined,
termined, as in the fecond fide of a triangle, it is called a loofe line; and a fingle line is drawn acroofs the book. When a line becomes determined in pofition, and is afterwards continued, a double line half through the book is drawn.
"When a loofe line is meafured, it becomes abfolutely neceffary to meafure fome line that will determine its pofition. Thus, the firft line $a b$, being the bafe of a triangle, is always determined; but the pofition of the fecond fide $b j$, does not become determined, till the third fide $j b$ is meafured; then the triangle may be conftructed, and the pofition of both is determined.
"At the beginning of a line, to fix a loofe line to the mark or place meafured from, the fign of turning to the right or left hand muft be added (as at $j$ in the third line;) otherwife a ftranger, when laying down the work, may as eafily conftruct the triangle bjb on the wrong fide of the line $a b$, as on the right one; but this error cannot be fallen into, if the figu above named be carefully obferved.
"In choofing a line to fix a loofe one, care muft be taken that it does not make a very acute or obtufe angle; as in the triangle $p \mathrm{Br}$, by the angle at B being very obtufe, a fmall deviation from truth, even the breadth of a point, at $p$ or $r$, would make the error at B , when conftructed, very confiderable; but by confructing the triangle $p \mathrm{~B} q$, fuch a deviation is of no confequence.
". Where the words leave off are written in the fieldbook, it is to fignify that the taking of offsets is from thence difcontinued; and of courfe fomething is wanting between that and the next offset."

The field book for this method, and the plan drawn from it, are contained in the four following pages, engraven en copper-plates. After the manner of which, the pupil muft lay down a plan, to a larger fcale, from the field-book entirely; and then computing the contents of every feparate field, and adding all the contents together, the fum will amount to between 103 and 104 acres, when the work is all right.


| $n$ | $\begin{array}{r} 1310 \\ 836 \\ 684 \\ \hline \end{array}$ |  |
| :---: | :---: | :---: |
| $m$ | $\begin{array}{r} 1480 \\ 960 \\ 930 \\ 700 \\ 400 \\ \hline \end{array}$ |  |
| $k$ | $\begin{array}{r} 1430 \\ 1290 \\ 1004 \\ 980 \\ 610 \\ 280 \\ \hline \end{array}$ |  |
| $a$ | $\begin{array}{r} 1820 \\ 1464 \\ 1050 \\ 920 \\ 630 \\ 350 \\ 6 \end{array}$ | 10 $l$ <br> -22  <br> -32  <br> 60  <br> 48  <br> 14  |
|  | $\begin{array}{r} 3074 \\ 2494 \\ 2100 \\ 2072 \\ 1780 \\ 1580 \\ 1420 \\ 1170 \\ 630 \\ -380 \\ \hline \end{array}$ |  |
|  | 2674 2494 2000 1880 1840 1794 1464 1329 1240 1130 860 190 |  |
|  | 4450 <br> 3570 <br> 2620 <br> 2610 <br> 2210 <br> 2080 <br> 1640 <br> $155^{\circ}$ <br> 1510 <br> 990 <br> 806 | $h$ <br> $a$ <br> $i$ <br>  <br> $d$ <br> $d$ <br> $b$ |

Plelel lsonor.

cield Book.



## PROBLEM XII.

## To furvey a County, or Large Tract of Lando.

1. Choofe two, three; or four eminent places for tam tions; fuch as the tops of high hills or mountains, towers, or church fteeples, which may be feen from one another: and from which moft of the towns, and other places of note, niay alfo bie feen. And let them be as far diftant from another as poffible. On thefe places raise heacons, or long poles, with flags of different colsurs flying at them: fo as to be vifille from all the other ftations.
2. At all the places, which you would fet down in the map, plant long: poles with flags at them of feveral co. lours, to diftinguif the places from one another ; fixing them on the rops of church fleeples, or the tops of houfes, or in the centres of leffer towns.

But you need not have thefe marks at many places at once, as fuppofe half a fcore at a time. For when the angles have been taken, at the two frations, to all thefe place, the marks may be removed to new ones; and fo fucceffively to a: the places wanted. 'Thefe marks then being fet up at a converient number of places, and fuch as may be feen frim hoth ftations; go to one of thefe flations, and, with ail infrument to take angles, ftanding at that flation, take all the angles between the other ftation, and each of thefe marks, obferving which is blue, which is red, \&c. and which hand they lie on; and fet all down with their colours. Then go to the other ftation, and take all the angles, between the firt fation, and ra:h of the former marks, and fet them down with the others, each againft its fellow with the fame colorr. You may, if you can, alfo take the angles at fome thid fation, which may ferve to prove the work, if the three lines interfect
terfeet in that point where any mark ftands. The marks muft fand till the obfervations are finifhed at both flations; and then they mult he $t$ ken down, and fer up at frem places. 'The fame cperations muft be perforined, at both fations, for thele frem places; and the like for others. The inftrument fur taking angles mult he an exceeding good ore, made on purpofe with tel fcopic fights; and of a good length of radiu:.
3. And though it he not abfulutly neceffary to meafure any diftance, becaufe a flationary line being once laid down from any feale, all the other lines will be proportional to it ; yet it is better to meafure forme of the 1 nes, to afcertain the diftances of places in miles; ant to know how many geometrical miles there are in any lingth; and from that to make a fcale to meafure any diftance in miles. In meafating any diffance, it will not be exat enough to go along the high roads; by reafon of their turnings and wiadings, and harcly ever lying in a right line between the fatic ns, which muft caufe infinite reductions, and create endlefs troulle to make it a right line; for which reafon it can never be exact. But a better way is to meafure in a right line with a chain, between ftation and fation, over hills and dales or level fields, and all obitacles. Only in cale of water, woods, towns, rocks, Eanks, \&c. where one cannot pafs; fuch parts of the line muft be meafured by the methods of inacceffible diffances; and befider, allowing for afcents and defcents, when we meet with them. And a good compafs, that fhows the bearing of the two ftations, will always direct you to go ftraight, when you do not fee the two flations; and in the progrefs, if you can go ftraight, you may take offeets to any remarkable places, likewife note the interfection of your fationary line with all roals, rivers, \&cc.
4. And from all the fations, and in the whole progrefs, be very particular in obferving fea-coafts, river. mouths, towns, caftes, houfes, churches, windmills, watermills, trees, rocks, fauds, roads, bridges, fords, ferries,
ferries, woods, hills, mountains, rills, brooks, parks, beacons, fluices, floodgates, locks, \&c. and in general all things that are remarkable.
5. After you have done with the firft and main ftation lines, which command the whole county; you muft then take inner fations, at fome places already determined; which will divide the whole into feveral partitions; and from thefe fations you mult determine the places of as many of the remaining towns as you can. And if any remain in that part, you mulf take more flations, at fome places already determined; from which you may determine the reff. And thus we muft go through all the parts of the country, taking fation after ftation, till we have determined all we want. And in general the ftation diftances muft always pafs through fuch remarkahle points as have been determined before, by the former ftations.
6. Laftly, the pofition of the fation line meafured, or the point of the compafs it lies on, muft be determined by aftronomical obfervation. Hang up a thread and plummet in the fun, over fome part of the ffation line, and obferve when the fhadow runs along that line, and at that moment take the fun's altitude; then having his declination, and the latitude, the azinuth will be found by fpherical trigonometry. The azimuth being the angle the fation line makes with the meridian, thereforeameridian may eafily be drawn through the map. Or a meridian may be drawn through it, by hanging up two threads in a line with the pole ftar, when it is juft north, which may be known from aftronomical tables. Or thus; obferve the far Alioth, or that in the rump of the great bear, being that next the fquare, by a line and plummet when that ftar and the pole far come into a perpendicular; for at that time they are due north. Therefore two perpendicular lines being fixed at that moment, towards thefe two ftars, will give the pofition of the meridian.

## PROBLEM XIII.

## To furvey a Town or City.

This is beft performed with the plain table, where every minute part is drawn while in 'fight. It is beft alfo to have a chain of 50 feet long, divided into 50 links, each 1 foat in length, and an offset-Raff of 10 feet long.

Begin at the meeting of two or more of the principal fireets, throngh which you can have the longeft profpects, to get the longeft ftation lines. There having fixed the inftrument, draw lines of direction along thofe ftreets, ufing two men as marks, or poles fet in wooden pedeftals, or perhafs fome remarkable places in the houfes at the farther ends, as windows, doors, conner!, \&cc. Meafure thefe lines with the chain, taking offsets with the ftaff, at all corners of freets, bendings, or windings, and to all remarkable things, as churches, markets, halls, colleges, eminent houfes, \&cc. Then remove the inftrument to another ftation, along one of thefe lines, and there repeat the fame procefs as before. And fo on till the whole is. finimed.


Thus, fix the inftrument at A , and draw lines in the direction of all the freets meeting there; then meafure
$A B$, noting the ftreet on the left at $m$. At the fecond fation B , draw the direct ons of the ftreers meeting there; meafure from B to C , noting the places of the ftreets at n and o as you pafs by them. At the 3 d fation C , take the direction of all the ftreets meeting there, and meafure CD. At $D$ do the fame, and meafure DE, noting the place of the crofs frreets at p . And in this manner go through all the principal ffreets. This dune, proceed to the fraller and intermediate ftreets; and lattly to the lanes, alleys, courts, yards, and every part which it may be thought proper to reprefent in the plan.

CHAPTER III.

## OF PLANNING, COMPUTING, AND DIVIDING.

PROBLEM 1.

## To lay down the Plan of any Survey.

1F the furvey was taken with a plain table, you have a rough plan of it already on the paper which covered the table But if the furvey was with any other inftrument, a plan of it is to be drawn from the meafures that were taken in the furvey, and firft of all a rough plan on paper. To do this, you mult have a fet of proper inftruments, for laying dow $n$ both lines and angles, \&c. as feales of various fizes, the more of them; and the more accurate, the better; fcales of chords, protractors, perpendicular and parallel rulers, \&c. Liagonal fcales are beft for the lines, becaufe they extend to three figures, or chains and links, which are hundredth parts of chains. But in ufing the diagonal frale, a pair of compaffes meft be employed to take off the lengths of the principal lines very accurately.
accurately. But a fcale with a thin edge divided, is much readier for laying down the perpendicular offsets to crooked hedger, and for marking the places of thofe offsets on the ftation line; which is done at only one application of the edge of the fcale to that line, and then pricking off all at once the diftances along it. Angles are to be laid down, either with a good feale of chords, which is perhaps the moft accurate way; or with a large protractor, which is much readier when many angles are to be laid down at one point, as they are pricked off all at onse round the edge of the protractor.

Very particular directions for laying down all forts of figures cannot be neceffary in this place, to any perfon who has learned practical geometry, and the conftruction of figures, with the ufe of his inflruments. It may therefore be fufficient to obferve, that all lines and angles muft be laid down on the plan in the fame order in which they were meafured in the field, and in which they are written in the field-book; laying down firt the angles for the pofition of lines, then the lengths of the lines, with the places of the offsets, and then the lengths of the offsts themfelves, all with dry or obfcure lines; then a black line drawn through the extremities of all the offsets, will be the hedge or bounding line of the field, \&cc. After the principal bounds and lines are laid down, and made to fit or clofe properly, proceed next to the fmaller objects, till you have entered every thing that ought to appear in the plan, as houfes, brooks, trees, hills, gates, ftiles, roads, lanes, mills, bridges, woodlands, Skc. \&c.

The north fide of a map or plan is commonly placed uppermoft, and a meridian fomewhere drawn, with the compafs or flower-de-luce pointing north. Alfo, in a vacant place, a fcale of equal parts or chains muft be drawn, with the title of the map in confpicuous characters, and embellifhed with a compartment. All hills muft be madowed, to diftinguifh them in the map. Colour the hedges with different colours; reprefent hilly grounds by
broken hills and valleys; draw fingle dotted lines for footpaths, and double ones for horfe or carriage roads. Write the name of each field and remarkable place within it, and, if you choofe, its content in acres, roods, and perches.

In a very large eflate, or a county, draw vertical and horizontal lines through the map, denoting the fpaces between them by letters placed at the top, and bottom, and fides, for readily finding any field or other object, mentioned in a table.

In mapping counties, and eftates that have uneven grounds of hills and valleys, reduce all oblique lines, meafured up hill and down hill, to horizontal ftraight lines, if that was not done during the furvey, befure they were entered in the field-book, by making a proper allowance to fhorten them. For which purpofe there is commonly a fmall table engraven on fome of the inftruments for furveying. Or it may be done by holding the chain, in meafuring, quite level, and then dropping the arrow from the hand.

## PROBLEM II.

## To Coinpute the Contents of Fields.

1. Compute the contents of all the figures, whether triangles, or trapeziums, \&c. by the proper sules for the feveral figures laid down in meafuring; multiply the lengths by the breadths, both in links, and divide by 2; the quotient is acres, after you have cut off five figures on the right for decimals. Then bring thefe decimals to roods and perches, by multiplying firlt by 4, and then by 40. An example of which is before given, in the defcription of the chain.
2. In fmall and feparate pieces, it is ufual to compute their conrents from the meafures of the lines taken in furveying them, without making a correct plan of them.

Thus, in the triangle in prob. iv. rage 190, where ne had $A P=794$, and $A B=1321$


1-S22.92
40
32.91680

Or the firf example to prob. v. page 191, thus:
AE 214 210 ED
AF 362306 FB
AC $592 \left\lvert\, \frac{-}{516}\right.$ fum of perps.
592 AC


Or the 2 d example to the fame probe v. thus:

| AP | 110 | 352 | PC | QD 595 |
| :---: | :---: | :---: | :---: | :---: |
| AQ | 745 | 595 | QD | QB 365 |
| AB | 1110 |  |  |  |
| PC | 352 | PC | 352 | 2.975 |
| AP | 110 | Q | 595 | 3570 |
| 2 APC |  |  |  | 1785 |
|  | 38720 | $\begin{aligned} & \text { fum } \\ & P Q \end{aligned}$ | 947 | $\begin{aligned} & 217175=2 \mathrm{QDB} \\ & 601345=2 \mathrm{PCDQ} \\ & 38720=2 \mathrm{APC} \end{aligned}$ |
|  |  |  | 635 |  |
|  |  |  |  |  |
|  |  |  | 4735 |  |

2841

3. In pieces bounded by very crooked and winding hedges, meafured by offsets, all the parts between the offsets are moft accurately meafured feparately as fmall trapezoids. Thus, for the example to prob. III. p. 189, where

| Ac | 45 | 62 | ch |
| :--- | :--- | :--- | :--- |
| Ad | 220 | 84 | di |
| Ae | 340 | 70 | ek |
| Af | 510 | 88 | fl |
| Ag | 634 | 57 | gm |
| AB | 785 | 91 | Bn |



Ther

4. Sometimes fuch pieces as that above, are computerd by finding a mean breadth, by dividing the fum of the offsets by the number of them, accounting that for one of rhem where the boundary mests the ftation line, as at $A$; tien inultiply the rength $A B$ by that mean breadth.

Thus:

00
62 84
70
98
57
91
) 462

## $7 \$ 5$ A B

66 mean breadth


> 2.07240 For this method is always erroneous, 40 except when the effsets ftand at equal - diftances from one another. 2.89600
5. But in larger pieces, and whole eftates, confifting of many fields, it is the common practice to make a rough plan of the whole, and from it compute the contents quite independent of the meafures of the lines and angles that were taken in furveying. For then new lines are drawn in the fields in the plan, fo as to divide them into trapeziums and triangles, the bafes and perpendiculars of which are meafured on the plan by means if the fcale from which it was drawn, and fo multiplied together for the contents. In this way, the work is very expeditioufly done, and fufficiently correct; for fuch dimenfions are t:ken, as affurd the moft eafy method of calculation; and, among a number of parts, thus taken, and applied to a fcale, it is likely that fome of the parts will be taken a fmall inatter too little, and others too great; fo that they will, upon the whole, in all probability, very nearly balance one another. After all the fields, and particular parts, are thus computed fepara ely, and added all together into one fum; calculate the whole eftate independent of the fields, by dividing it into large and arbitrary triangles and trapeziums, and add thefe all together. Then if this fum be equal to the former, or nearly fo, the work is riobt; but
L. 2
if
the fums have any confiderable difference, it is wrong, and hey mutt be examined and recomputed till they nearly agree.
A fpecimen of dividing into ore triangle, or one trapezium, which will do for inoft fingle fields, may be feen in the examples to the laft problem; and a fpecimen of dividing a large tract into feveral fuch trapeziums and triangles, in prob. vi of chapter 11 of Surveying, page 193, where a piece is fo divided, and its dimenfions taken and fet down; and again at prob. vi of Menfuration of Surfaces, where the contents of the fame piece are computed.
6. But the chief fecret in computing, confifts in finding the contents of pieces bounded by curved or very irregular ines, or in reducing fuch crooked fides of fields or boundaries to fraight lines, that fhall inclofe the fame or equal area with thofe crooked fides, and fo obtain the area of the curved figure by means of the right lined one, which will commonly be a trapezium. Now this reducing the crooked fides to ftraight ones, is very eafily and accurately performed, thus: Appiy the ftraight edge of a thin clear piece of lanthorn horn to the crouked line, which is to be reduced, in fuch a manner, that the fmall parts cut off from the crooked figure by it, may be equal to thofe which are taken in: which cquality of the parts included and excluded you will prefenily be able to judge of very nicely by a little practice: then with a pencil, or point of a tracer, draw a line by the ftraight edge of the horn. Do the fame by the other fides of the field or figure. So fhall you have a ftraight fided figure cqual to the curved one; the content of which, being compuied as before directed, will be the content of the curved fizure propofed.

Or, inftead of the flraight edge of the horn, a horfehair line thread may be applied acrofs the crooked fides in the fame manner; and the eafielt way of ufing the hair is to ftring a fnall hender bow with ir, either of wire, or cane, or whale-bone, or fuchlike flender elaftic matter; for, the bow keeping it always ftretched, it can be eafily and neatly applied with one hand, while the other is at
liberty
liberty to make two marks by the fide of it, to draw the Araight line by.

## EXAMPLE.

Thus, let it be required to find the contents of the fame figwre as in prob. ix of the laft chapter, page 198, to a fcale of 4 chains to an inch.


Draw the tour dotted ftraight lines $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$, cutting off equal quantities on both fides of them, which they do as near as the eye can judge: fo is the crooked figure reduced to an equivalent right lined one of four fides ABCD. Then draw the diagonal BD, which, by applying a proper fcale to it , meafures 12.56 Alfo the perpendicular or neareft diftance, from A to this diagoual, meafures 456; and the diftance of C from it , is $4: 28$.


$$
\bar{s} \cdot 24320 \text { Content ac rep } 528
$$

And thus the content of the trapezium, and confequently of the irregular figure, to which it is equal, is eafily found to be 5 acres, 2 roods, 8 perches.

## PROBLEMII.

To transfer a Plan 10 another Paper, E'c.
After the rough plan is completed, and a fair one is wanced; this may be done, either on paper or vellum, by any of the following methods.

## FIRST METHOD.

Lay the rough plan over the clean paper, and keep them always preffed flat and clofe together, by weights laid on them. Then, with the point of a fine pin or pricker, prick through all the corners of the plan to be copied. Take them afunder, and connect the pricked points on the clean paper, with lines; and it is done.

This

This method is only to be practifed in plans of fuch figures as are fmall and tolerably regular, or bounded by right lines.

## SECOND METHOD.

Rub the back of the rough plan over with black lead powder; and lay the faid black part on the clean paper on which the plan is to be copied, and in the proper pofition. Then with the blunt point of fome hard fubftance, as brafs or fuch like, trace over the lines of the whole plan; preffing the tracer fo much as that the black lead under the lines may he transferred the clean paper; after which take off the rough plan, and trace over the leaden marks with common ink, or with Indian ink, \&c.-Or, inflead of blacking the rough plan, you may keep conftantly a blacked paper to lay between the plans.

## THIRD METHOD.

Another method of copying plans, is by means of fquares. This is performed by dividing both ends and fides of the plan which is ts be copied, into any convenient number of equal parts, and connecting the correfponding points of divifion with lines; which will divide the plan into a number of fmall fquares. Then divide the paper, on which the plan is to be copied, into the fame number of fquare, each equal to the former when the plan is to be copied of the fa ne fize, but greater or lefs than the others, in the proportion in which the plan is to be increafed or diminihed, when of a different fize. Laftly, copy into the clean fquares the parts contained in the correfponding fquares of the old plan; and you will have the copy, either of the fame fize, or greater or lefs in any proportion.

## FOURTH METHOD.

A fourth method is by the inftrument called a pentagraph, which alfo copies the plan in any fize required.

## FIFTH METHOD.

But the neateft method of any is this. Procure a copyring frase or glafs, made in this manner; namely, a large fquare of the beft window glafs, fet in a broad frame of wood, which can be raifed up to any angle, when the lower fide of it refts on a table. Sit this frame up to any angle before you, facing a ftrong light; fix the old plan and clean paper together with feveral pins quite around, to keep them together, the clean paper being laid uppermoft, and over the face of the plan to be copied. Lay them with the back of the old plan, over the glafs, namely, that part which you intend to hegin at to copy firft; and, by means of the light flining through the papers, you uill very diftinctly perceive every line of the plan through the clean paper. In this fate then trace atl the lines on the paper with a pencil. Having drawn that jart which firit covers the glafs, fide another part over the glafs, and copy it in the fame manner: then another part. And fo on, till.the whole be copied.

Then, take them afunder, and trace all the pencil-lines over with a fine pen and Indian ink, or with common ink.

And thus you may copy the fineft plan, without injuring it in the leaft.

When the lincs, sec. are copied on the clean paper or vellum, the next bufinefs is to write in fuch names, remarks, or explanations as may be judged neceffary: laying down the fcale furtaking the lengths of any parts, a flower-de-luce to point out the direction, and the proper tille, ornamented with a compartment: and illuftrating or colouring every part, in fuch maniner as fhall feem moft natural, fuch as fhading rivers or brooks with crooked lines, drawing the reprefentation of irees, buthes, hills, woods, hedges, houfes, gates, roads, \&c. in their proper places; running a fingle dotted line for a foot path, and a double one for a carriage road; and cither reprefenting the bafes or the elevation of buildings, \&c.

## CONIC SECTIONS

AND THEIR

## S O LID S.

## DEFINITIONS。

1. CONIC Sections are the plane figures formed by cutting a cone.
According to the different pofitions of the cutting plane there will arife five different figures or fections.
2. If the cutting plane pafs through the vertex, and any part of the bafe, the fection will be a triangle.
3. If the cone be cut parallel to the bafe, the fection will be a circle.
4. The fection is called an ellipfis, when the cone is cut obliquely through both fides.

L 5
5. The
5. The fection is a parabola, when the cone is cut parallel to one of its fides.
6. The fection is an hyperbola, when the cutting plane meets the oppofite cone continued above the vertex, where it will make another fection or hyperbula.
7. The vertices of any fection, are the points where the cutting plane meets the oppofite fides of the cone.
8. The tranferfe axis, is the line ketween-the two vertices. And the middle point of the tranfverfe is the centre of the conic fection.

9. The conjugate axis, is a line drawn through the centre, and perpendicular to the tranfverfe.
10. An ordinate, is a line perpendicular to the axis.
11. An abfeifs, is a part of the axis betweea the ordinate and the vertex.
12. A fpheroid, or ellipfoid, is a folid generated by the sevolution of an ellipfe about one of its axis. It is a prolate one, when the revolution is made about the tranfverfe axis; and oblate, when about the conjugate.
13. A connid is a folid formed by the revolution of a paraboln, or hyperbola, about the axis. And is accordingly called parabolic, or hy perbolic.-The parabolic conoid is alfo called a paraboloid; and the hyperbolic conoid, an hyperboloid.
14. A fpindle is formed by any of the three fections revolving about a double ordinate, like the circular fpindle.
15. A fegment of any of thefe figures, is a part cut off at the top, by a plane parallel to the bafe.
16. And a frultum is the part left next the bafe, after the fegment is cut off.

## PROBLEMI.

## To defcribe an Ellipse.

Let TR be the tranfverfe, CO the conjugate, and $c$ the centre. With the radius Tc and centre C, defcribe an are cut. ting TR in the points F , $f$; which are called the two foci of the ellipfe.


ะ. 6
Affume

- Affume any point P in the tranfverfe; then with the radii PT, PR, and centres $\mathrm{F}, f$, defcribe two arcs interfecting in $I$; which will be a point in the curve of the ellipfe.

And thus, by affuming a number of points $P$ in the tranfverfe, there will be found as many points in the curve as you pleafe. Then, with a fteady hand, draw the curve through all thefe points.

## Otherwife with a Thread.

Take a thread of the length of the tranfverfe TR, and faften its ends with two pins in the foci $F, f$. Then ftretch the thread, and it will reach to $I$ in the curve : and by moving a pencil round, within the thread, keeping it always ftetched, it will trace out the ellipfe.

## PROBLEM 11.

In an Ellipfe, to find the Tranfverfe, or Conjugate, or Ordinate, or Abfifs: having the other three given.

> CASE I.

To find the Ordinate.
As the tranfverfe
Is to the conjugate
So is the mean proportional between the two ablciffes: 'To the ordinate:

EXAMPLIS.
3. In the ellifpe $A D B C$, the tranfuerfe $A B$ is 70, the conjugate $C D$ is 50 , and the abfciffes $A P 14$, and BP 56 ; what is the ordinate PQ?

Firft $\quad 56=\mathrm{PB}$

$$
14=\mathrm{AP}
$$

$\overline{224}$
56

784 ( 28 mean
4 between 56

- and 14.
$48 \mid 384$
384


Then 70:50: $28: 20=P Q$ the ordinate.
Ex. 2. If the tranfverfe be 80 , the conjugate 60 , and an abfcifs 16 ; required the ordinate? Anf. 24.
CASE II.

## To find the Abcijs.

From the fquare of half the conjugate, take the fquare of the ordinate; and extract the fquare root of the remainder. Then fay,

As the conjugate
Is to the tranfverfe
So is that fquare root
:
: :
To half the difference of the abrciffes.
Then add this half difference to half the tranfverfe, for the greater abfcifs; and fubtract it, for the lefs abfeifs.

## EXAMPLES.

1. The tranfverfe $A B$ is 70, the conjugate $C D$ is 50 and the ordinate $P Q$ is 20 ; required the abfciffes $A P$ and PB?

Firf


Ex. 2. What are the two abfciffes to the ordinate 24 , the axes being 80 and 60? An!, 16 and 64.

## CASE IIY.

## To find the Conjugate.

As the mean proportional between the abfciffes :
Is to the ordinate
So is the traniverle
To the corjugate.
Note. In the fame manner, the tranfverfe may be found from the conjugate; ufing here the abfiffes of the conjugate, and their ordinate perpendicular to the conjugate.

EXAMPLES.

1. The tranfverfe being 180, the ordinate 16 ; and the greater abfcifs $1+4$; required the conjugate?


Ex. 2. The tranfverfe being 70, the ordinate 20, and abfifis 14; what is the conjugate?

Anf, 50.

## CASE IV.

## To find the Tranfuerfe.

From the fquare of half the conjugate, fuhtract the fquare of the ordinate; and extract the root of the remainder. Next add this root to the half conjugate, if the lefs abfcifs be given, but fubtract it when the greater abfcifs is given, referving the fum or difference.

Then fay,
As the fquare of the ordinate
Is to the rectangle of the abfcifs and conjugate : :
So is the referved fum or difference
To the traniverfe.

## EXAMPLES.

1. If the conjugate be 50 , the ordinate 20 , and the lefs abfcifs 14 ; what is the tranfverfe?

Firf


Ex. 2. The conjugate being 40, the ordinate 16, and the lefs abfcifs 36 ; required the tranfverfe? Anf, 180.

> PROBLEM III.

To find the Circumference of an Ellipfe.
Add the two axes together, and multiply the fum by 1.5708, for the circumference nearly.

## EXAMPLES.

1. Required the circumference of the ellipfe whofe two axes are 70 and 50 ?

120 fum. 1.5708
188.4960 circumf, nearly.

Ex. 2. What is the periphery of an ellipfe whofe two axes are 21 and 20 ? Anf. $69 \cdot 1152$.

PROBLEM IV. To find the Area of an Ellipse.

Multiply the tranfverfe by the conjugate; then that product multiplied by 9854 , will be the area.

Or multipiy 7854 firt by the one axe, and the product again by the other.

## EXAMPLES.

1. To find the area of the ellipfe whofe two axes are 70 and 50.
-7854

$$
\begin{array}{r}
39 \cdot 2700 \\
70
\end{array}
$$

2748.9000 anf.

Ex.2. What is the area of the ellipfe whofe two axes are 24 and 18?

Anf. 339-2928.

## PROBLEM V.

To find the Area of an Eilliptic Segment.
Divide the height of the fegment by that axis of the ellipfe of which it is a part; and find, in the table of circular fegments at the end of the book, a circular fegment having the fame verfed fine as this quotient. Them multiply continually together, this fegment, and the two axes, for the area required.

## EXAMPLES.

1. What is the area of an elliptic fegment $R A Q$, whore height $A P$ is 20; the tranfverfe $A B$ being 70 , and the conjugate CD 50 ?
$70)$ ) 20 ( $-285 \frac{5}{7}$ the tab. verb.
The correspond. fey.
is $\begin{array}{r}\cdot 185166 \\ -70 \\ \hline 12 \cdot 961620 \\ -\quad 50 \\ \hline 6+8 \cdot 081000\end{array}$
Ex. 2. What is the area of an elliptic fegment, cut off parallel to the fhorter axis, the height being 10 , and the axes 25 and 35?

Ans. 162.0210.
Ex. 3. What is the area of the elliptic fegment, cut off parallel to the longer axis, the height being 5, and the axes 25 and 35 ?

Inf. $97 \cdot 8458$.
PROBLEM VI.

## To Describe or Conflruct a Parabola.

VP being an abfcifs, and PQ its given ordinate; bifert $P Q$ in A, join AV, and draw AP perpendicular to it; then transfer PB to VF and VC in the axis produced. So hall F be who is called the fucus.

Draw feveral double ordinates SRS, \&c. perpendicular to VP. Then with the radii CR, \&c. and the centre F , defcrite arcs cutting the correfponding ordnates in the points S, $\& c$. Then draw the curve through all the points S, \& c.


IR O-

## PROBLEM VII.

## To find any Parabolic Abcifs or Ordinate.

The abfciffes are to each other as the fquares of their ordinates; that is,

As any abfcifs is to the fquare of its ordinate,
So is any other abfcifs, to the fquare of its ordinate.
Or as the fquare root of any abicifs, is to its ordinate,
So is the fquare root of another abfcifs, to its ordinate.

## EXAMPLES.

1. The abfcifs VB is 9 , and its ordinate $A B$ is 6 ; required the or. dinate DE whofe abfcifs VE is 16.

Here $\sqrt{ } 9$ is 3 , and $\sqrt{ } 16$ is 4.
Then $3: 6:: 4: 8=\mathrm{DE}$ required.
Or if the ordinate DE were giv. en $=8$, to find its abfcifs VE. Then $6^{2}=36$, and $8^{2}=64$.
 Hence $36: 64:: 9: 16=\mathrm{VE}$ required.
Ex. 2. If an abfcifs be 8 , and its ordinate 10 ; required the ordinate whofe abfcifs is 18? Anf. 15.

Ex. 3. If an abfcifs be 18, and its ordinate 18; what is the abfcifs whofe ordinate is 10 ?

## PROBLEM VIII.

## To find the Lengtb of a Parabolic Curve.

To the fquare of the ordinate, add $\frac{4}{3}$ of the fquare of the abfcifs; extract the fquare root of the fum, and double it for the length of the curve, cut off by the double ordinate, nearly.

## EXAMPLES.

1. The abfcifs $V B$ being 2, and the ordinate AB 6 ; required the length of the curve AVC ?


Ex. 2. What is the length of the parabolic curve, whofe abfcifs is 3, and ordinate 8? Anf. 17:4356.

PROBLEM IX.
To find the Area of a Parabola.
Multiply the bafe by the height, and take $\frac{2}{3}$ of the product for the area.

## EXAMPLES.

1. Required the area of the parabola $A V C A$, the $a b$ fcifs VB being 2, and the ordinate $A B 6$ ?

12
2
24
2
3) 48

16 anf.
Ex. 2. What is the area of a parabola whofe abfcifs is 10 , and ordinate 8 ?

PROBLEM X.

## To find the Area of a Parabslic Fruftum.

Cube each end of the fruftum, and fubtract the one cube from the other; then multiply that difference by double the altitude, and divide the product by tripie the difference of their fquares, for the area.

EXAMPLES.

1. Required the area of the parabolic fruftum $A C F D$, AC being 6, DH 10 , and the altitude BE 4 .


Ex. 2. What is the area of the parabolic fruftum, whole two ends are 6 and 10, and its altitude 3? Ans. $24 \frac{1}{2}$.

## PROBLEM XI.

To Confruct or Describe an Hyperbola.
Let $D$ be the cen. tire of the hyperbola, or the middle of the tranfiverfe AB; and BC perpendicular to AB , and equal to half the conjugate.
With centre D , and radius $D C$, describe an arc, meeting $A B$ produced in F and f , which are the two
 focus points of the hyperbola.

Then affuming several points $E$ in the tranfverfe produce, with the radii $\mathrm{AE}, \mathrm{BE}$, and centres $\mathrm{f}, \mathrm{F}$, defcribe arcs interfecting in the feveral points $G$; through all which points draw the hyperbolic curve.

## PROBLEM XII.

In an Hyperbola to find the Tranfwerfe, or Conjugate, or Ordinate, or Alfaijs.

CASE 1
To find the Ordinate.
As the tranfuerfe.
Is to the conjugate
So is the mean proper, between the two abfcifies :
To the ordinate.

Note. In the hyperbpla, the lefs abfcifs added to the axis, gives the greater abfcifs.

## EXAMPLES.

1. If the tranfverfe be 24, the conjugate 21, and the lefs abfcifs VB 8 ; what is the ordinate $A B$ ?

$$
24 \text { tranf. }
$$

8 lefs abf.


Then $24: 21:: 16: 14=\mathrm{AB}$ required.
Ex. 2. The tranfverfe being 60 , the conjugate 36 , and the lefs abfcifs 20, required the ordinate? Anf. 24.

$$
\begin{gathered}
\text { CASEII. } \\
\text { To find the } A b \int c i / s .
\end{gathered}
$$

To the fquare of half the conjugate, add the fquare of the ordinate ; and extract the fquare root of the fum. 'Tlien fay,

As the conjugate
Is to the tranfverfe
So is that fquare root
To half the fum of the absciffes.
Then, to this fum, add half the tranfuerfe, for the greater abfcifs; and fubtract it, for the lefs abfcifs.

## EXAMPLES:

1. The tranfverfe being 24, and the conjugate 21 ; required the two abfcifies to the ordinate $A B 14$ ?


Ex. 2. The tranfverfe being 60 , the conjugate 36 ; required the two abciffes to the ordinate 24 ? Anf. 80 and 90.

- CASE III.


## To find the Conjugate.

As the mean proportion between the abfciffes:
Is to the ordinate
So is the tranfverfe
To the conjugate.

## EXAMPLES。

1. The tranfverfe being 24 , the lefi abfcifs VB S, and its ordinate $A B 14$, what is the conjugat ?

Firlt | 24 |
| ---: |
| 8 |
|  |
| 32 |
| 8 |

Then

## UNI

 As $16: 14:: 24: 21$ Anf.

Ex. 2. What is the conjugate to the hyperbola, whofe tranfverfe is 60 , and ordinate 24 , and the lefs abfeifs 20 ? Anf. 36.

## CASE IV.

## To find the Tranfverfe.

To the fquare of half the conjugate ald the fquare of the ordina e, and extract the fquare root of the fum.

Next, to this root ald the half conjugate when the lefs abfcifs is ufed, but fubtract it when the grearer a')feifs is ufed; referving the fum or difference. Then fay',

As the fquare of the ordinate
Is to the product of the abfcifs and conjugate : :
So is the referved fum or difference
To the tianfverfe.

## EXAMPLES.

1. The lefs abfcifs VB being 8 , and its ordinate $A B$ 14; required the tranfverfe tu the conjugate 21?

$$
\mathrm{M}
$$

Firf


Ex. 2. What is the tranfverfe of the hyperbola, whofe conjugate is 36 ; the lefs abfcifs being 20 , and its ordinate 24? Anf. 60. problem xifi.
To find the Lengith of an Hyperbolic curve.

1. To 21 times the fquare of the conjugate, add 9 times the fquare of the tranfverfe; and to the fame 21 times the fquare of the conjugate, add 19 times the fquare of the tranfverfe; and multiply each fum by the abfcifs.
2. To each of thefe two products add 15 times the product of the tranfverfe and fquare of the conjugate.
3. Then as the lefs fum is to the greater, fo is the double ordinate, to the length of the curve nearly.
EXAMP:ES.
4. Reguired the length of the curve AVC to the abfcifs VB 20 and ordinate AB 24 ; the two axes being 60 and 36


Then $2358720: 3078720:: 4 \mathrm{~S}: 62 \cdot 6520$ the whole curre 48


Ex. 2.

Ex. 2. What is the length of the whole curve to the ordinate 10, the tranfverfe and conjugate axes being 80 and 60 ?

## PROBLEM XIV.

To find the Area of an Hyperbola.

1. To $\frac{5}{9}$ of the abfeifs add the tranfuerfe: multiply the fum by the abfcifs; and extract the fquare root of the product.
2. Multifly the tranfverfe by the abfcifs, and extract the roct of thar product alfo.
3. To 21 times the firit root, add 4 times the fecond root; miliply the fum by double the product of the conjugare and ahfi ifs; then divide by 75 times the tranfverfe, fur the area nearly.

## EXAMPLES.

1. Required the area of the hyperbcla AVCA, whofe abfcifs VB is 10 , the tranfverfé and conjugate being 30 and 18 ?




Ex. 2. What is the area of the hyperbola to the abfcifs 25 , the two axes being 50 and 30?

Anf. $805 \cdot 090868$.

## FROBLZM XV.

To find the Solidity of a Spheroid.
Square the revolving axis, multiply that fyuare by the fixed axis, and multiply the product by $\cdot 5236$ for the content.

> EXAMPLES.

1. Required the fclidity of the prolate fpheroid $A C B D$, whofẹ axes are AB 50 and $C D 30$ ?


Ex. 2. Wha is the content of an oblare fpheroid, whofe axes are 50 and 30 ? Anf. 39270.

Ex. 3. What is the folidity of a prolate fpheroid, whofe axes are 9 and 7 ?

Anf. 230.9076.

## PROBLEM XVI.

To find the Solidily of a Segment of a Spboroid. case f.

When the Bafe is Circular, or Parallel to the Revolving. Axis.

From triple the fixed axe, take double the height of the fegment; multiply that difference by the fquare of the heig't, and the product again by $\cdot 5236$.

Then as the fquare of the fixed axe is to the fquare of the revolving are $z_{\text {fo }}$ is the lalt produst to the content of the fegment.

## EXAMPLES.

1. Required the content of the fegment of a prolate fpheroid, the height AG being 5, the fixed axe $A B 50$, and the revolving axe CD 30 ?

| 150 |  |
| ---: | ---: |
| 10 | 5236 <br> 3500 <br> 140 <br> 25 |
| 260 <br> 7500 | $1832 \cdot 6000$ | 28

3500


Then

$$
\begin{aligned}
& \text { Then as } 25: 9:: 1832 \cdot 6: \\
& \text { Or as } 100: 36:: 1832 \cdot 6: 659 \cdot 736 \\
& 36 \\
& 109956 \\
& 54978 \\
& \text { 100) } 65973 \cdot 6 \text { ( } 659.736 \text { Anfwer. }
\end{aligned}
$$

Ex. ?. If the axes of a prolate fpheroid be 10 and 6 , required the content of the fegment whofe height is 1 , and its bafe parallel to the revolving axe ? Anf. $5 \cdot 277888$.

Ex. 3. The axes of an oblate fpheroid being 50 and 30, what is the content of the fegment, the height being 6 , and its bafe parallel to the revolving axe?

$$
\text { Auf. } 4084^{\circ} 07 .
$$

## CASE 11.

When 4be Bafe is Elliptical, or Perpendicular to the Revolving $A x \varepsilon_{0}$.

From triple the revolving axe, take double the height of the figment; multiply that difference by the fquare of the height, and the product again by $\cdot 5236$.

Then as the revolving axe, is to the fixed axe,
So is the laft product, to the content.

## EXAMPLES.

1. In the prolate Spheroid ACBD , the fixed axe AB is 50, the revolving axe CD 30: required the folidity of the fegment CEF, its height CG being 6 ?


Then as $30: 50:: 1470 \cdot 2688: \mathbf{2 4 5 0} \cdot 448$


Ex. 2. In an oblate fpheroid, whofe axes are 50 and 30, required the content of the fegment whofe height is 5 , its bafe being perpendicular to the revolving axe ?

Anf. 1099.56.
PROBLEM XVII.
To find the Content of the Middle Frufum of a Spheroid.

$$
\text { CASE } 1 .
$$

When the Ends are Circular, or Parallel to the Revolving Axe.

To double the fquare of the middle diameter, add the fquare of the diameter of one end ; multiply this fum by the length of the fruftum, and the product again by 2618 for the content.

## EXAMPLES.

1. Required the folidity of the middle fruftum EGHF of a fpheroid, the greatefl diameter CD being 30, the diameter of each end EF or GH 18, and the length AB 40.


Ex. 2. What is the folidity of the middle frufum of an oblate fpheroid, having the diameter of each circular cod 40 , the middle 50 , and the length 18 ?

Anf. 31101 -84.

## CASE II.

When the Ends are Elliptical, or Perpendicular to the Revolving Axe.
To double the product of the tranfverfe and conjugate diameters of the middle fection, add the product of the tranfverfe and conjugate of one end; multiply the fum by the length of the fruftum, and the product again by - 2618 for the content.

## EXAMPLES.

1. In the middle fruftum EFHG of an oblate fpheroid the diameters of the middle or greateft elliptic fection AB are 50 and 30, and of one end EF or GH 40 and 24; required the content, the height IK being 9 ?


Ex. 2. In the middle fruftum of an oblate fpheroid, the axes of the middle ellipfe are 50 and 30 , and thofe of each end are 30 and 18 ; sequired the content, the height being 40 ?

Anf. 37070:88.

## PROBLEM XVIIJ.

## To find the Solidity of an Elliptic Spindle.

## RULE 1.

1. Take the difference between 3 times the fquare of the middle or $g$ reateft diameter, and 4 times the fquare of the diameter at $\frac{1}{4}$ of the length, or equally diftant hetween the middle and one end; alfo take the difference berween 3 times the greareft diameter, and 4 times the faid middle diameter. Then the former difference divided by the latter, will he quadruple the central diftance, or diftance between the cencte of the fpindle and centre of the generating ellipfe.
2. Then find the axes of the ellipfe by Froblem 11 , and the area of the fegment which generated the fpindle by problem v .
3. Divide 3 times that area by the length of the fpindle; from the quotient fubrakt the greatef diameter; and multiply the remainder by 4 times the central diftance, befure found.
4. Subtract this product from the fquare of the greateft diame er; and multiply the remainder by the length of the fpindie, and again by $\cdot 5 \$ 36$, for the folidity.

> EXAMPLES.

1. Required the folidity of the elliptic fpindle ACBDA, the length $A B$ being 40 , the greateft diameter $C D$ 12, and tbe diameter EF, at $\frac{1}{4}$ of the length, $9 \cdot 495+6$ ?
2. For the Central Diftance, and Axes of the Ellipfe.

| 4EF | $37 \cdot 98184$ |
| :---: | :---: |
| $3 C D$ | 36.00000 |
| dif. | 1.98184 |
| $3 C D^{2}$ | $432 \cdot 000$ |
| $4 \mathrm{EF}^{2}$ | $360 \cdot 054$ |


$1.98184) 71.3454$ ( $36=4 \mathrm{OG}$
$59 \cdot 4582 \quad 9=\mathrm{OG}$
$\begin{array}{ll}118872 & -6=\mathrm{CG} \\ 118916 & 15 \\ & =\mathrm{OC} \\ & 30=\mathrm{CH} \text { the conj. }\end{array}$
$24=\mathrm{GH}$
$6=\mathrm{CG}$
144
its root $12=$ mean between CG \& GH. Then as $12: 20$ (or AG) $:: 30$ (or CH) $: 50=\mathrm{IK}$ the tranfverfe.
2. For the Generating Elliptic Segment.

CH 30 ) 6 CG

- 2 tab. verf.
-111823 tah. area corref. 50 IK


### 5.591150

" 30 CH
$167.73+500$ area generating feg. ACBA.
3. For the Solidity of ibe Spindle.

$$
167 \cdot 7345
$$



Ex. 2. Required the folidity of the elliptic fpindle, whofe length is 20 , the greateft diameter 6 , and the diameter at $\frac{1}{4}$ of the length 4.74773 ? Anf. 3223 ?

> RULEII.

To the fquare of the greateft diameter, add the fquare of double the diameter at $\frac{\pi}{4}$ of the !.ngth; multiply the fum by the length, and the product again by 1309 for the folidity, very nearly.

2 Note. This rule will alfo ferve for any other folid formed by the revolution of any conic fection.

## EXAMPLE.

What is the folid content of the elliptic fpindle, whofe length is $2 \theta$, the greatef diameter 6 , and the diameter at $\frac{1}{4}$ of the length $4 \cdot 74773$ ?
4.74773

2
9.49546 double the diam.
64.5949 dirto inverted.

8545914
379818
85459
4748 380 56
$90 \cdot 16375$ fq. of double diam. 36.00000 fq. of other diam.
126. 16375 fum 20 length
$2523 \cdot 27500$
9031 or 1309 inverted
2523
75
Anf. $\frac{22}{330^{\circ} 2}$ the folidity nearly.

## PROBLEM XIX.

To find the Solidity of a Fruffum or Segment of an Elliptic Spindle.
Proceed as in the laft rule, for this, or any other folid furmed
forined by the revolution of a conic fection about an axis namely.

Add together the fquares of the greateft and leaft diameters, and the rquate of double the diameter in the middle betueen the two; multuly the fum by the length, and the product again by -130 ) fir the folidity.

Nure. For all fuch folids, this rule is exaft when the body is formed from the conic fection, or a part of it, revolved about the axi of the fection. And will always he very near the truth when the figure revolves about another line.

## EXAMPLES.

1. Required the content of the middle frufum EGHF of any fpindle, the length AB being 40 , the greatef or middle diameter CD 32, the leaft or diameter at either end EF or GH 24, and the diameter IK , in the middle between EF and CD, 30.157568 ?

| $\begin{aligned} & 32 \\ & 32 \end{aligned}$ | $\begin{array}{r} 30 \cdot 157568 \\ 2 \end{array}$ |
| :---: | :---: |
| $6+$ | . $\overline{00 \cdot 315136}$ double |
| 06 | 51306 invert |
| $\overline{1024}$ | 361890 |
|  | 1809 |
| 24 | 60 |
| 24 | 30 |
| 96 | 3637.89 fq. of 2 IK |
| 48 | -1024.0) fq. of CD |
|  | 576.00 fq . of EF |
| 576 |  |
|  | $\begin{aligned} & \text { 5237.89 fum } \\ & 40 \text { length } \end{aligned}$ |
| $\overline{209515 \cdot 60}$ |  |
|  | 9031 inverted |
| 20.951 |  |
| 6255 |  |
|  | 188 |



Ex. 2.

Ex. 2. What is the content of the fegment of any Spindle, the length being 10, the greateft diameter 8 , and the middle diameter 6 ?

Anf. 272.272.
Ex.3. Required the folidity of the fruftum of an hyperbolic conoid, the height being 12, the greateft diameter 10 , the leaft diameter 6 , and the middle diameter $8 \frac{1}{2}$ ?

Anf. 667.59.
Ex. 4. What is the content of the middle fruftum of an hyperbolic fpindle, the length being 20 , the middle or greatelt diameter 16, the diameter at each end 12, and the diameter at $\frac{1}{4}$ of the length $14 \frac{1}{2}$ ? Anf. 3248.938 .

## PROELEM XX。

## To find the Solidity of a Parabolic Conoid.

Square the diameter of the bafe, multiply that by the altitude, and the product again by 3927 , for the content.

## EXAMPLES。

1. Required the folidity of the faraboloid whofe height $B D$ is 30 , and the diameter of its bafe $A C$ is 40 ?


Ex. 2.

Ex. 2. What is the content of the parabolic conoid whofe allitude is 42 , and the diameter of its bafe 24 ?

Anf. 0500-1984,
PROBLEM XXI。
To find the Solidity of the Frufum of a Paraboloid.

- Square the diameter of the two ends, add thofe two fquares together, multiply that fum by the height, and the product again by -3927, for the content.


## EXAMPLES.

1. Required the centent of the paraboloidal frufum ABCD , the diameter AB being 20, the diameter DC 40, and the height EF 22 $\frac{1}{2}$ ?
$1600 \mathrm{DC}^{2}$
$400 \mathrm{AB}^{2}$

> 2000 fum
> $22 \frac{1}{2} \mathrm{EF}$

| 45000 |
| ---: |
| -3927 |
| 19635000 |
| 15708 |
| 17671.5000 |



Ex.2. What is the content of the fruftum of a paraboloid, the greateft diameter being 30 , the leaft 24 , and the altitude $g$ ? Änf. $5216 \cdot 6266$. problem xxil.
To find the Solidity of a Parabolic Spindle.
Take the fquare of the middle or greateft diameter, multiply it by the length, and the product again by $\cdot+1888$, for the content.

1. Required the content of the parabolic fpindle $A C B D$, whofe length $A B$ is 40 , and the greateft diameter CD 16 ?

$$
16 \mathrm{CD}
$$

$$
16
$$

$$
\overline{96}
$$

16

| $256 \mathrm{CD}^{2}$ |
| :--- |
| 40 AB |
| 10240 |
| 1888 |

1675520


83776
41858
$4289 \cdot 33120$ Anfwer.
Ex. 2. What is the folidity of a parabolic fpindle whofe length is 18 , and its middle diameter 6 feet ?

Anf. $271 \cdot 4336$.

## PROBLEM XXIII.

To find the Solidity of the Middle Frußum of a Parabolic Spindle.

Add altogether, 8 times the fquare of the greateft diameter, 3 times the fquare of the leaft diameter, and: 4 times the product of the two diameters; multiply the fum by the length, and the product again by 05236 for the folicity.

## EXAMPLES。

1. Required the content of the fruftum of a parabolic fpindle EGHF, the length $A B$ being 20 , the greatef diameter CD 16, and the leaft diameter EF 12 ?

| 16 | 12 | 16 |
| :---: | :---: | :---: |
| 16 | 12 | 12 |
| - | -- |  |
| 96 | 144 | 192 |
| 16 | 3 | 4 |
| 256 | 432 | 768 |
| 8 |  |  |
| 2049 |  |  |
| 432 |  |  |
| 768 | $\times \mathrm{EF}$ |  |
| 3248 |  |  |
| 20 |  |  |

64960
.05246 See Fig. in p. 260.
389760
19188
12992
32480

## $3401 \cdot 30560$ Anfwer.

Ex. 2. What is the content of the fruftum of a parabolic fpindle, whofe length is 15 , greatelt diameter 18, and leaft diameter 10? Anf. $340+23776$.

Note. Tre folidities of the hyperboloid and hyperbolic fpindle, are to be found by rule 2 to prob, xvin. And thofe of their fruftums by prob. xix ; where fome examples of them are given.

## OF

## G A U GING.

THE bufiners of cark gauging is commonly performed by. two inftruments, namely, the gauging or flidingrule, and the gauging or diagonal rod.

## 1. of the gauging rule.

This infrument ferves to compute the contents of calks; \&c. after the dimenfions have been taken. It is a fquare rule, having various logarithmic lines on its four fides or faces; and three niding pieces, running in grooves in three of them.

On the firt face are three lines, namely, two marked A, B, fir multiplying and dividing; and the third, MD, for malt depth, becaufe it ferves to gauge malt. The middle one $B$ is on the nider, and is a kind of double line, being marked at both the edges of the flider, for applying it to both the lines A and MD. Thefe three lines are all of the fane radius, or diftance from 1 to 10 , each containing wice the length of the radius. A and B are pliced and numbered exactly alike, each beginning at 1 , which may be exther 1 , or 10 , or $100, \& \mathrm{c}$. or $\cdot 1$, or -01 , or $\cdot 001$, \&c. but whatever it is, the middle divifion, 10 , will be ten times as much, and the laft divifion

100 times as much. But 1 on the line MD is oppofite 215 , or more exactly $2150^{\circ} 4$ on the other lines, which number 2150.4 denotes the cubic inches in a malt buthel; and its divifions numbered retrograde to thofe of $A$ and $B$. On thefe two lines are alfo feveral other inarks and letters: thus, on the line A are MB, for malt bufhel, at the number $2150^{\circ} 4$; and A for ale, at 282, the cubic inches in an ale gallon; and on the line B, is W, for wine, at 231, the cubic inches in a wine gallon; alfo si, for fquare inferibed, at $\cdot 707$, the fide of a fquare infcribed in a circle whofe diameter is $1 ; s e$, for fquare equal at 086 , the fide of a fquare which is equal to the fame circle ; and $c$, for circumference, at $3 \cdot 1416$, the circumference of the fane circle.

On the fecond face, or that oppofite the firf, are a flider and four lines, marked D, C, D, E, at one end, and root, fquare, root, cube, at the other; the lines C and $D$ containing refpectively the fquares and cubes of the oppofite numbers on the lines $\mathrm{D}, \mathrm{D}$; the radius of D being double to that of $A, B, C$, and triple to that of E ; fo that whatever the firft 1 on D denotes, the firft on $\mathbf{C}$ is the fquare of it, and the firft on E the cube of it; fo if $D$ begin with 1, C and $E$ will begin with 1; but if D begin with 10, C will begin with 100 , and $E$ with 1000; and, fo on. On the line C are marked or at 00796 , for the area of the circle whofe circumference is 1 ; and - d at 97854 , for the area of the circle whofe diameter is 1. Alfo on the line D, are WG, for wine gauge, at $17 \cdot 15$; and AG for ale gauge, at 18.95 ; and MR, for malt round, at 52.32 ; thefe three being the gauge points for round and circular meafure, and are found by dividing the fquare roots of 231,282 , and 2150.4 by the fquare root of 7854 : alfo MS, for malt fquare, are marked at 4.6 .37 , the malt gauge point for fquare meafure, being the fquare root of $2150^{\circ} 4$.

On the third face are three lines, one on a Øider marked N ; and two on the flock, marked S S and SL, for fegment ftanding al d. fegment lying, which ferve for wlliging flanding and lying caiks.

And on the fourth, or oppofite face, are a fcale of inches, and three other fcales, marked fpheroid, or 1 it variety, 2 d variety, 3 d variety; the fale for the 4th, or conic variety, being on the inflide of the flider in the third face. The ufe of thefe lines is to find the mean diameters' of cafks.

Befides all thofe lines, there are two others on the infides of the two firt hiders, being continued from the one flider to the other. The one of thefe is a fale of inches, from $12 \frac{1}{2}$ to 86 , and the other is a faie of ale gallons, between the correfponding numbers 435 and 3.61 ; which form a tabie to fow, in ale gallons, the contents of all cylinders whofe diameters are from $12 \frac{1}{2}$ to 36 inches, their common altitude being 1 inch.

## The Ufe of the Gauging Rule.

## PROBLEM 1 .

## To Multiply two Numbers, as 12 and 25.

Set 1 on B, to either of the given numbers, as 12 , on A; then againft 25 on B , ftands 300 on A ; which is the product.

PROBLEM 11.
To Divide one Number by anotber, as 300 by 25.
Set 1 on $B$, to 25 on $A$; then againft 300 on $A$, fands 12 on B , for the quotieat.
PROBLEM III.

To fird a Fourtb Proportional, as to 8, 2:, and 96.
Set $S$ on $B$, to $2 t$ on $A$; thea againt 96 on $B$, is 288 on $A$, the sih proportional to $8,2.2,96$, required.

## PROBLEM IV.

To Extract the Square Root, as of 225.
The firft 1 on C ftanding oppofite the one on $D$, on the fock; then againt 225 on C , ftands its fquare root 15 on $D$.

## PROBLEM V.

To Exiract the Cubs Root, as of 3375.
The line D on the flide being fet ftraight with E ; then oppofite 3375 on E , ftands its cube root 15 on D.

## PROBLEM VI.

To find a Mean Proportional, as between 4 and 9.
Set 4 on $C$, to the fame 4 on $D$; then againft 9 on $C$, fands the mean propostional 6 on $D$.

## PROBLEM VII.

To find Numbers in Duplicate Proportion.
As to find a Number which Ball be to 120 ; as the Square of 3 to the Square of 2.

Set 2 on D , to 120 on C ; then againft 3 on D , ftands 270 on $C$, for the anfwer.

## PROBLEM VIII.

To find Numbers in Subduplicate Proportion.
As to find a Namber which Shall be 102 as the Root of 270 to the Root of 120.

Set 2 on $D$, to 120 on $C$; then-againft 270 on $C$, ftands 3 on D , for the anfwer.

## PROBLEM 1 X .

To fond Numbers in Triplicate Proportion.
As, to find a Number rubich Ball be to 100, as the Cube of 36 is to the Cube of 40.

Set 40 on D, to 100 on E; then againft 36 on D, ffands 72.9 on E , for the anfwer.

## PROBLEM X.

To find Numbers in Subtrificicate Proportion.
As, to find a Number which 乃all be to 40 , as the Cube Root of 72.9 is to the Cube Root of 100.

Set 40 on D, to 100 on E ; then againft 72.9 on $\mathrm{E}_{\text {a }}$ ftands 36 on D, for the anfwer.

## PROBLEM XI.

To Compute Malt Bu,Bels by the Line MD.
As, to find the Malt Bujbels in the Couch, Floor, or Ciferr, whofe Length is 230, Breadib. $55^{\circ}$ 2, and Depth 5.4 Inches.

Set 230 on B, to 5.4 on MD; then againft 58.2 on A ftands 33.6 buthels on $B$, for the anfwer.

Note. The ufes of the other marks on the rule, will appear in the examples farther on.

## of the gavging or diagonal rod.

The diagonal rod is a fquare rule, having four faces; being commonly 4 feet long, and folding together by
joints. This infrument is ufed both for gauging or meafuring (afk, and computing their contenss, and that from one uinertion on!y, namely the diagonal of the cafk, or the leng h from the middle of the bung hale to the mecting, the head of the cafk with the flave sppufite to the bong; being the longeft line that can be drawn within the calk frum the midille of the bung. And, accortingly, on one face of the rule is a fcale of inches for meafuring this diego al ; to which are placed the ateas, in ale gallons, of circles to the correfponding diameters, in like manner as the lines on the under fides of the three flides in the fliding rule.

On the oppofie face, are two fcales of ale and wine galluns, expreffing the contents of cafks having the correfponding diagona!s. And thefe are the lines which chiefly form the difference between this infrument and the niainy rule; fur all their other lines are the fame, and are to be ufed in the fame manner.

## EXAMPLE.

The rod being applied within the cafk at the bung-hole, the diagonal was found to be 34.4 inches; required the content in gallons:

Now to 31.4 inches correfpond, on the rod, $90 \frac{3}{4}$ ale gall. ns, or 111 wine gallons, the content required.

Note. The contents exhibited by the rod, anfwer to the moft common form of cank, and fall in between the 2 d and 3 d varieries following.

## - of casks as divided into varieties.

It is ufual to divide cafks into four cafes or varieties, which are judged of from the greater or lefs apparent curvature of their fides; naunclv,

1. The mild'e fruftum of a (pheroid,
2. The inddle fruftum of a parabolic fpindle,
3. The two equal frutums of a paraboloid,
4. The two equal frutiuns of a cone.

And if the content of any of thefe be computed in inches, by their proper rules, and this be divided by 282, or 231 , or $2150 \%$, the quotient will be the content in ale gallons, or wine gallons, or malt buhhels, refpertively. Becaufe

| 282 | cubic inches make 1 ale gallon |
| :--- | :--- |
| 231 | $\ldots \ldots \ldots \ldots \ldots .1$ wine gallon |
| $2150 \cdot 4$ | $\ldots \ldots \ldots \ldots \ldots .1$ malt bufhel. |

And the particular rule will be for each as in the following problems:

## PROBLEM XII.

To find the Content of a Cafle of the Firf Form.
To the fquare of the head diameter, add double the fquare of the bung diameter; and multiply the fum by the length of the cafk. Then let the product
be maltiplied by $\cdot 0009 \frac{1}{4}$, or divided by 1077 , for ale and multiplied by $\cdot 0011 \frac{1}{3}$, or divided by 882 , for wine gallons.
EXAMPLES.

1. Required the content of a fpheroidal cafk, whofe length is 40 , and bung and head diameters 32 and 24 inahes.


## By the Gainging Rule.

Haviitg fet 40 on C , to the ale gauge 32.82 on D , againlt
24 on D, ftands 21.3 on C 32 on D, ftands 38.0 on C the fame $35^{\circ} 0$
fum 97.3 ale gallons.
And having fet 40 on C , to the wine gauge $29^{\circ} 7$ on D , againft
24 on D , ftands 26.1 on C 32 on D, ftands 46.5 on C the fame 46.5

## fum $119^{\circ} 1$ wine gallons.

Ex. 2. Required the content of the fpheroidal cafk, whofe length is 20 , and diameters 12 and 16 inches. Anfwer $\left\{\begin{array}{l}12 \cdot 136 \text { ale gallons, } \\ 14.869 \text { wine gallons. PRO- }\end{array}\right.$

## RROBLEM XIII.

## To find the Content of a Cafk of the Second Form.

To the fquare of the head diameter, add double the fquare of the bung diameter, and from the fum take $\frac{2}{5}$ or $T_{T} \delta$ of the fquare of the difference of the diameters; then multiply the remainder by the length, and the producs again by $\cdot 0009 \frac{1}{4}$ for ale gallons, or by $\cdot 0011 \frac{1}{5}$ for wine gallons.

## EXAMPLES.

1. Tke length being 40 , and diameters 24 and 32 , required the content.


32
24


By the Gauging Rule.
Having fet 40 on C , to $32 \cdot 82$ on D , again? 8 on D , fands 2.4 on C ; the $\frac{4}{50}$ of which is $0 \cdot 96$. This taken from the $5.7 \cdot 3$ in the laft form, leaves $96 \cdot 3$ ale gallons.

$$
\text { N } 3
$$

And having fet 40 on $C, 1029 \cdot 7$ on D, againt 8 on D, ftands $2 \cdot 9$ on C : the $\frac{4}{90}$ of which is $\mathrm{r} \cdot 16$. This taken from the 119.1 in the laft forn, leaves 117.9 wine gallons.

Ex. 2. Required the content when the length is 20 , and the diameters 12 and 16 .

$$
\text { Anfw }\left\{\begin{array}{l}
12 \cdot 018 \text { ale gallons, } \\
14.72 \pm \text { wine gallons. }
\end{array}\right.
$$

## PROBLEM XIV.

## Tio find the Content of a Cofk of the Third Form.

To the fyuare of the bung diameter, add the fquare of the head diameter; multiply the fum by the length, and the produet again by *014 for ale gallons, or by -0017 for wine gallons.

## EXAMPLES.

1. Required the content of a calk of the third forme when the length is 40 , and the diameters 24 and 32 .


By the Gwuging Rule.
Set 40 on C, to $:(6.8$ on 1$)$, then againft

- 44 (n D), flands $3:()$ on C 32 on D, flands $5 i^{\prime} 3$ on C

$$
\text { fuin } \delta \hookrightarrow \cdot 3 \text { ale gallons. }
$$

And having fet 40 on C . to $24 \cdots 5$ on D ; then againgt 2t on D a anc.er! on C 32 on D, that du (ay) 8 on C
fum icix:y wine gallons.

Ex. 2. Required the content when the lengih is 20 , and the diameters 12 and 10 .

$$
\text { Anfwer }\left\{\begin{array}{l}
11 \text { in ale gallons. } \\
19 \text { G } \text { wine gailons. }
\end{array}\right.
$$

PROBLEM XV.

To find the Content of a Cinge of the Fouth Form.
Add the fquare of the difference of the diameters, to 3 times the fquare of their fum; then multiply the fuin by the length, and the product again by $\cdot 00023 \frac{3}{5}$ for ale gale lons, or by "()C028 $\frac{1}{3}$ for wine gallons.

## EXAMPLES.

1. Required the content, when the length is 40 , and the diameters 24 and 32 inches.



## By the Sliding Rule.

Set 40 on C , to $65 \cdot \mathrm{~J} 4$ on D ; then againt
) 8 on D, ftands 0.6 on C $\varepsilon 6$ on D , ftands $29 \cdot 1$ on C $29 \cdot 1$ $29 \cdot 1$
fum 87.9 ale gallons.

And fet 40 on C , to 59.11 on D ; then againft 8 on J), fands 0.7 56 on D, ftands $35 \cdot 6$ $35 \cdot 6$ $35 \cdot 6$
fum 107.5 wine g a.

Ex. 2. What is the content of a conical cafk, the length being 20, and the burg and head diameters 16 and 12 inches?

$$
\text { An }{ }^{\digamma} \text { wer }\left\{\begin{array}{l}
10.985 \text { ale gallons, } \\
13 \cdot 416 \text { wine gallons. }
\end{array}\right.
$$

## PROBLEM XVI.

## To find the Content of a Cafk by Faur Dimenfion:.

Add together, the fquares of the bung and head diameters, and the fquare of double the diameter taken in the middle between the bung and head; then multiply the fum by the length of the cafk, and the product again by - $0004 \frac{2}{3}$ for ale gallions, or by $\cdot 0005 \frac{2}{3}$ for wine gallons.

## EXAMPLES.

1. Required the content of any cafk whofe length is 40 , the bung diameter being 32 , the head diameter $2 t$, and the middle diameter between the bung and head $28 \frac{3}{4}$ inches.

| $57 \cdot 5$ | 24 | 32 |
| :---: | :---: | :---: |
| $57 \cdot 5$ | 24 | 32 |
| 2875 | 96 | 64 |
| 4.025 | 48 | 96 |
| 2875 | - |  |
| ¢306.25 | 576 | 1024 |
| 1024 |  |  |
| 576 |  |  |
| $4906 \cdot 25$ |  |  |
| 40 |  |  |



## By the Sliding Rule.

Set 40 on $C$, to 46.4 on $D$; then againft

$$
24 \text { on D, flands } 10 \cdot 5
$$

32 on D, ftands $19 \cdot 0$
$57 \frac{1}{2}$ on D , ftands 62.0
fum 91.5 ale gallons.
Set 40 on $C$, to 42.0 on $D$; then againft
24 on D, ftands 13.0
32 on D, flands 23.2
$57 \frac{1}{2}$ on D , flands $75^{\circ} 0$
fum 111.2 wine gallons.
Ex. 2. What is the content of a cafk, whofe length is 20, the bung diameter being 16, the head diameter 12, and the diameter in the middle between them $14 \frac{3}{8}$ ?

$$
\text { Anfwer }\left\{\begin{array}{l}
11.4479 \text { ale gallons, } \\
13.9010 \text { wine gallons. }
\end{array}\right.
$$

## PROBLEM XVII.

To find the Content of any Cafk from Tbree Dimenfons only.
Add into one fum, 39 times the fquare of the bung diameter, 25 times the fquare of the read diameter, and 26 times the product of the two diameters: then multiply the fum by the length, and the product again by $\frac{.00031}{9}$ for wine gallons, or by $\frac{.00034}{11}$ or $\cdot 00003_{\frac{1}{5} \frac{1}{T}}$ for ale gallons.

> EXAMPLES.

1. Required the content of a cafk, whofe length is 40 , and the bung and head diameters 32 and 24 ?


Ex.2. What is the content of a ctik, whofe length is 20 , and the bung and head diameters 16 and 12 ?

$$
\text { Anfwer }\left\{\begin{array}{l}
11 \cdot 4833 \text { ale gallons, } \\
14.0352 \text { wine gallons, }
\end{array}\right.
$$

Note. This is the moit exact rule of any, for three dimenfions only; and agrees nearly with the diagonal rod.

## OF THE ULLAGE OF CASKS.

The ullage of a calk, is what it contains when only partly filled. And it is confidered in two positions, namely, as franding on its end with the axis perpendicular to the horizon, or as lying on its fife with the axis parallel to the horizon.

## PROBLEM XVIII

## To find the Ullage by the Sliding Rule.

By one of the preceding problems fard the whole colsent of the call. Then feet the length on N, to 100 on SS, for a fegment flanding, or fut the hung diameter on N , to ICu en SL, for a feginent lying; then againft the wet inches on N , is a number on SS or $S \mathrm{~L}$, to be referved.

Next, Set 100 on $B$, to the referred number on $A$; then against the whole content on $B$, will be found the ullage on $A$.

## EXAMPLES

1. Required the ullage answering to 10 wet inches of a landing cafe, the whole content of which is 92 gallons; and length 40 inches.

Hiving feet 40 on N , to 100 on SS; then againt 10 on N , is 23 on SS , the referved numb.

Then ret 100 on B to 23 on A; and against 92 on $B$, is $21 \cdot 2$ on $A$, the ullage required.

Ex. 2. What is the ullage of a flanding caffs whore whole length is 20 inches, and content $1 i \frac{3}{2}$ gallons; the wet inches being 5 ?

Af, 265 ga lo ns.

Ex. 3. The content of a cak heing 92 gallons, and the bung diameter 32 , required the ullage of the fegment lying: when the wet inches are 8 ? Anf. $16 \cdot \star$ gallons.

## PROBLEM XIX.

## To Ullage a Standing cafk by the Peno.

Add all together, the fquare of the diameter at the furface of the liquor, the fyuare of the diameter of the neareft end, and the fquare of double the diameter taken in the middle between the other two; then multiply the fum by the length bétween the furface and ne:reft end. and the product again by $\cdot\left(004 \frac{2}{3}\right.$ for ale gallons, or by -0005 $\frac{2}{3}$ for wine gallons, in the lefs part of the calk, whether empty or filled.

## EXAMPLE.

The three diameters being 24,27 , and 29 inches, roquired the ullage for 10 wet inches.

| 24 | 29 | 54 |  |
| :---: | :---: | :---: | :---: |
| 24 | 29 | 54 | 2916 |
| - |  | - | 841 |
| 96 | 261 | 216 | 576 |
| 48 | 58 | 270 |  |
| - | - | - - | 4333 |
| 570 | 841 | 2916 | 10 |
|  |  | 43330 | 43330 |
|  |  | - $000-\frac{2}{3}$ | -0005 $\frac{2}{3}$ |
|  |  | 173320 | 216650 |
|  |  | 28885 | 238:5 |
|  | Ale | $20 \cdot 2205$ gallons | 24.5535 |
|  |  | -- |  |

## PROBLEM XX. <br> To Ullage a Lying Cajk by the Per.

Divide the wet inches by the bung diameter; find the quotient in the column of verfed fines, in the table of circular fegments at the end of the book, taking out its correfponding fegment. Then multiply this fegment by the whole content of the calk, and the product again by $1 \frac{1}{4}$ for the ullage required, nearly.

## EXAMPLE.

Suppofing the hung diameter 32, and content 92 ale gallons; to find the ullage for 8 wet inches.
32) $8(\cdot 25$, whofe tab. feg. is $\cdot 153546$

92

| {fe0b7cae8-be84-4ee7-84e7-5bf9a4d1253a}307092 <br> 1381914}$\frac{1}{4} \cdot 126232$ |
| :--- |
| $\frac{15}{3 \cdot 531558}$ |
| 1657790 Anfwes. |

## 0 E

## SPECIFIC GRAVITY.

THE fpecific gravities of bodies, are their relative weights, contained unfer the fame given magnitude, as a cubic foot, or a cubic inch, \&c.

The fpecific gravities of feveral forts of matter are expreffed by the numbers annexed to their names in the following table:

## A Table of the Specific Gravities of Bodies.

| Fine gold | $196+0$ | Brick | 2000 |
| :--- | ---: | :--- | ---: |
| Standard gold | 18888 | Light earth | 1984 |
| Quick-filver | 13600 | Solid gun-powder | 1745 |
| Lead | 11325 | Sand | 1520 |
| Fine filver | 11091 | Pitch | 1150 |
| Standard filver | 10535 | Box-wond | 1030 |
| Copper | 9000 | Sea-water | 1030 |
| Gun metal | 8784 | Common water | 1000 |
| Caft brafs | 8000 | Oak | 925 |
| Steel | 7850 | Gun-powder, Thaken | 922 |
| Iron | $76+5$ | Afh | 755 |
| Caft iron | 7425 | Maple | 800 |
| Tin | 7320 | Elm | 600 |
| Marble | 2700 | Fir | 550 |
| Common ftone | 2520 | Cork | 240 |
| Loom | 2160 | Air | $1 \frac{\pi}{4}$ |

Note. The feveral forts of wood are fuppofed to be dry. Alfo as a cubic foot of water weighs juft 1000 ounces avoirdupeis, the numbers in this table exprefs, not. only the feecific gravities of the feveral bodies, but alfo the weight of a cubic foot of each, in avoirdupois ounces; and hence, by proportion, the weight of any other quantity, or the quantity of any other weight, may be known, as in the following problems.

PRO=

## PROBLEMI.

To find the Magnitude of any Body from its Weight.
As the tabular fpecific gravity of the body,
Is to its weight in avoirdupois ounces,
So is one cubic fot, or 1728 cubic inches,
'To its content in feet; or inches, refpectively.

## EXAMPLES.

1. Required the content of an irregular block of common fone which weighs 1 cwt . or 112 lb .

$$
112 \mathrm{lb} .
$$

$$
16
$$



Ex. 2.

Ex. 2. How many cubic inches of gun-powder are there in 1tb. weight ? Anf. 30 cubic inches nearly.

Ex. 3. How many cubic feet are there in a ton weight of dry oak ?

Anf. $38 \frac{1}{1} \frac{13}{6} \frac{8}{5}$ cubic feet.

## PROBLEA II.

To find the Weight of a Body from its Magnilude.
As one cubic foot, or 1728 cubic inches,
Is to the content of the body,
So is its tabular fpecific gravity,
To the weight of the body.

## EXAMPLES.

1. Required the weight of a block of marble, whofe length is 63 feet, and breadth and thicknefs each 12 feet; being the dimenfions of one of the flones in the walls of Balbeck.


Ex. 2. What is the weight of 1 pint, ale meafure, of gun powder?

Anf. 19 oz, nearly.
Ex. 3. What is the weight of a block of dry oak, which mealures 10 feet long, 3 fee broad, and $2 \frac{1}{2}$ feet deep? Aiff. $4335_{1}^{13}{ }^{3} \mathrm{lb}$.

## PROBLEM III.

> To find tbe Specifce Gravity of a Bod'y.

CaSE I. When the boily is heavier than water, weigh it both in water and out of water, and take the difference, which will be the weight loit in water. Then fay,

As the weight loft in water,
Is to the whole weight,
So is the fpecific gravity of water,
'Io the fpecific gravity of the body.

## EXAMPLE.

A piece of ftone weighed 10 lb . but in water only $6 \frac{3}{4} \mathrm{lb}$. required its feecific gravity ?

$$
10^{\circ}
$$

$6 \frac{3}{4}$
$\overline{3 \frac{1}{4}}: 10:: 1000$ :
or $13: 40:: 1000: 3077$ anfwer.
40
13) $40000(3077$

39

| 100 |
| ---: |
| 91 |
| 90 |

CASE 2. When the lody is lighter than water, fo that it will not quite fink; affix to it a piece of another body heavier
heavier than water, fo that the mafs compounded of the two may fink ingether. Weigh the heavier body, and the compound inafs, feparately, both in water and out of it; then flud how much each lofes in "ater by fubtracting its weight in water tom its weight in air; and fuberact the lefs of thefe rem. iaters from the greater. Then fay,

> As this laft remainder, Is so the weight of the light body in air, So is the fp:cific gravis of water, To the fpecific graviig of the body.

EXAMPLE.

Suppofe a piece of elm weighs 15 lb in air, and that \& piece of conper, wheh weights 181 b in air, and 161 b in warer, is affixel to it, and that the compound weighs 8 lb in water; required the fpecific gravity of the elm?


Then As $25: 15:: 1000: 600$ anf.

## PROBLEMIV.

## To find the Quantities of Tiw Iagredients in a Given Compound.

Take the three differences of every pair of the three fpecific gravities, namely, the fecific gravities of the compound and each ingredient; and multiply the difference of every two fpecific gravities by the third Then, as
the greateft product is to the whole weight of the cormpound, fo is each of the other prodicts, to the two weights of the ingredients.

## BXAMPLE.

A compofition of 112 lb being made of tin and enjper, whofe fpecific gravity is found to be 8784 ; required the quantity of each ingredient, the fpecific gravity of tin being 7320, and of copper 9000 ?


14757120 ) 1475712000 ( 100
Anfwcr, there is 100 lb of copper, $\{$ in the compofition.
and confequently 12lb of tin

## Or T\&\&

## WEIGHT AND DIMENSIONS

## OF

## BALLS and SHELLS.

THE weight and dimenfions of balls and fhells might be found from the problems laft given, concerning fpecific gravity. But they may be found fill eafier by means of the experimented weight of a ball of a given fize, from the known proportion of fimilar figures, namely, as the cubes of their diameters.

## PROBLEM 1.

To find the Weight of an Iron Ball, from its Diameter.

An iron ball of 4 inches diameter weighs glb, and the weights being as the cubes of the diameters, it will be, as 64 (which is the cube of 4 ) is to 9 , fo is the cube of the diameter of any orher hall, to its weight. Or take $88^{\circ}$ of the cube of the diameter, for the weight. Or take $\frac{7}{8}$ of the cube of the diameter, and $\frac{1}{8}$ of that again, and add the two together, for the weight.

## IXAMPLES。

1. The diameter of an iron fhot being $6 \cdot 7$, required its weight?


Ex. 2. What is the weight of an iron ball whofe diameter is 5.54 inches? Anf. 241b.

## PROBLEMII.

To find the Weight of a Leaden Ball.
A leaden ball of $4 \frac{1}{4}$ inches diamerer weighs 17 lb ; therefore as the cuhe of $4 \frac{1}{4}$ is to 17 , or nearly as $?$ to 2 , fo is the cule of the diameter of a leaden ball, to its weight.

Or take $\frac{2}{9}$ of the cube of the diameter, for the weight, nearly.

```
EXAMPLES.
```

1. Required the weight of a leaden ball of $6 \cdot 6$ inches diameter?


Ex. 2. What is the weight of a leaden ball of 5.24 inches diameter?

Auf. 321b nearly.
PROBLEM IIY。

To find the Diameter of an Iron Ball from its Weight.
Multiply the weight by $7 \frac{1}{3}$ then take the cube root of the product for the diameter.
E AMPLES.

1. Required the diameter of a 42 lb iron ball ?


The cube root of this is alroof 7. Suppofe 7, whofe cube is 343 . Then, by the $2 d$ rule for the cube root at page 41, proceed thus:


Ex. 2. What is the diameter of a 24lh iron ball ?
Anf. 5.54 inches. PRO-

## PROBLEM IV。

2'0 find the Diameter of a Leaden Ball from its Weight.
Multiply the Weight by 9 , and divide the product by 2; then take the cube root of the quotient for the diameter.

```
EXAMPLES.
```

1. Required the diameter of a $6+\mathrm{lb}$ leaden ball ? 64

$$
\text { 2) } 576
$$

288
the cube root of which is almoft 7 , whofe cube is 343.


Ex. ${ }_{\sim}^{\text {. What }}$ is the diameter of an 81 l leaden bail ?

## PROBLBM V.

To find the Weight of an Iron Sbell.
Take of the difference of the cubes of the exterral and internal diameter, for the weight of the fhell.

That is, from the cube of tlie external diamever take the cube of the internal diameter, multiply the remainder by 9 , and divide the product by 64 .

## EXAMPLES.

1. The outfide diameter of an iron thell being $12 \cdot 8$, and the infide diameter 9.1 inches; required its weight?

$$
\begin{aligned}
& \begin{array}{l}
9 \cdot 1 \\
9 \cdot 1 \\
91
\end{array}-\begin{array}{l}
12 \cdot 8 \\
12.8 \\
\hline 1024
\end{array} \\
& 819 \\
& 8281 \\
& \text { 163.84 } \\
& 9 \cdot 1 \\
& 12.8 \\
& 131072 \\
& 74529 \\
& 196608 \\
& 753.571 \\
& \text { 2097•152 } \\
& 753 \cdot 571 \\
& 1343 \cdot 581 \\
& 9
\end{aligned}
$$

Ex. 2. What is the weight of an iron fhell, whofe exterual and internal diameters are $9 \cdot 8$ and 7 inches?

$$
\text { Anf. } 84^{\frac{1}{4}} \mathrm{lb} \text {. }
$$

FROBLEM VI。

To find bow much Porwder will fill a Sbell.
Take the cube of the internal diameter, in inches, ana divide it by $57 \cdot 3$, for the lbs. of powder.

## EXAMPLES.

1. How much powder will fill the fhell whofe internad diameter is $9 \cdot 1$ inches?


Ex. 2. How much powder will fill the fhell whofe inAnf. 6ib.

## PROBLEM VII。

To find bow much Porvder will fill a Rectangular Box.
Find the content of the box in inches, by multiplying the length, breadth, and depth all together. Then divide by 30 , for the pounds of powder.

## EXAMPLES.

1. Required the quantity of powder that will fill a box; the length being 15 inches, and the breadth 12, and the depth 10 inches?
30) | $\frac{15}{12}$180 <br> 10 <br> Anf. 60 lb. |
| :--- |

Ex. 2. How much powder will fill a cubical box, whofe fide is 12 inches?

Anf. $57 \frac{3}{5} \mathrm{lb}$.

## PROBLEM VIIL。

To find bow much Powder will fill a Cylinder.
Multiply the fquare of the diameter by the length; then divide by $38 \%$, for the pounds of powder.

## EXAMPLES.

1. How much powder will the cylinder hold, whofe diameter is 10 inches, and length 20 inches?


Ex. 2. How much powder can be contained in the cylinder, whofe diameter is 4 inches, and length 12 inches Anf. $55_{5}^{5} \frac{5}{1 b}$.

## PROBLEM IX.

To find the Size of a Shell to contain a Given Weight of Powder.

Multiply the pounds of powder by $57 \cdot 3$; then take the cube root of the product, for the diameter in inches.

## EXAMPLES.

1. What is the diameter of a fhell that will hold $13 \frac{1}{6} \mathrm{lb}$. of powder?

$$
\begin{array}{r}
57 \cdot 3 \\
13 \frac{\mathrm{r}}{6} \\
\hline 1719 \\
573 \\
955 \\
\hline 754 \cdot 45 \\
03
\end{array}
$$

The cube root of this is nearly 9 , whofe cube is 729 .


Ex. 2. Wrat is the diameter of a Mell, to contain 61b. of powder? Anf. 7 inches.

## FROELEM X,

To find the Size of a Cubical Box, to contain a Given Weight of Powder.

Multiply the weight in pounds by 30, then the cube yoot of the product will be the fide of the box in inches.

## EXAMPLES.

1. Required the fize of a cubical box, to hold 501 b of gun-powder?

The cabe root of 1500 is 11 nearly, whole cube is 1331.
Then 1331

4162) 47641 ( $11 \cdot 44$ inches.

- 4.5782

1859
1665
194

Ex. 2. Required the fize of a cubical box, to hold 400 lb . of gun-powder?

## PROBLEM XI。

To find what Length of a Cylinder will be filled by a Given Weight of Gun-powder.

Multiply the weight in pounds by $35 \cdot 2$; then divide the product by the fquare of the diameter in inches, for the length.

## EXAMPLES。

1. What length of a 36 pounder gun, of $6 \frac{2}{2}$ inehes diameter, will be filled with 12 lb . of powder?

$$
\begin{aligned}
& \text { Anf. } 10.314 \text { inches. } \\
& \text { - }
\end{aligned}
$$

Ex. 2: What length of a cylinder of 8 inches diameter may be filled with 201 b of powder? . Anf. $11 \frac{13}{5} 3^{\circ}$.
or тнz

## PILING

## 01

## BALLS AND SHELLS.

RON talls and fhells are commonly piled, by horizontal courfes, either in a pyramidical or in a wedge-like form; the bafe being either an equilateral triangle, or a fquare, or a rectangle. In the triangle and fquare, the pile finifhes in a fingle ball; but in the rectangle it finithes in a fingle row of balls, like an edge.

In triangular and fquare piles, the number of horizontal sows, or courfes, is always equal to the number of balls in one fide of the bottom row. And in rectangular piles,
the number of rows is equal to the number of balls in the breadth of the bottom row. Alfo the number in the top row, or edge, is one or more than the difference between the length and breadth of the bottom row.

## PROBLEM 1.

## To find the Number of Balls in a Triangular Pile.

Multiply continually together, the number in one fide of the bottom row, that number increafed by 1 , and the fame number increafed by 2 ; then. take $\frac{1}{6}$ of the laft product for the anfwer.

## EXAMPLES.

1. Required the number of balls in a triangular pile, each fide of the bafe containing 30 balls?

$$
\begin{array}{r}
\begin{array}{r}
32 \\
31 \\
\hline
\end{array} \\
\begin{array}{r}
32 \\
96
\end{array} \\
\hline \begin{array}{r}
992 \\
30
\end{array} \\
\begin{array}{c}
64 \\
\text { Anf. } \\
\hline 29760 \\
4.960
\end{array}
\end{array}
$$

Ex. 2. How many balls are in the triangular pile, each fide of the bafe containing 20?

## PROBLEM 17.

To find the Number of Balls in a Square Pilc.
Multiply continually together, the number in one fide of the bottom courfe, that number increafed by 1 , and a. 5

- double the fame number increafed by 1 ; then take $\frac{1}{6}$ of the laft product for the anfiver.

EXAMPLES.

1. How many balls are in a fquare pile of 30 rows?

$$
\begin{aligned}
& 61 \\
& 31 \\
& 61 \\
& 183 \\
& 1891 \\
& 30 \\
& \text { 6) } . \overline{6730} \\
& \text { Anf. } 9+55
\end{aligned}
$$

Ex. 2. How many balls are there in a fquare pile of 20 sews?

Anf. 2870.

## PROBLEM 111.

To find the Number of Balls in a Reciangular Pile.
From 3 times the number in the length of the bafe row, fubtract one lefs than the breadth of the fame, multiply the remainder by the fait breadth, and the product by 1 more than the fame; and divide by 6 for the anfwer.

## EXAMPLES.

1. Required the number of balls in a rectangular pile, the length and breadth of the bafe row being 46 and 15 ;



Ex. 2. How many fhot are in a rectangular complete pile, the length of the bottom courfe being 59, and its breadth 20 ?

Anf. 11060.

## PROBLEM IV.

## To find the Number of Balls in an Incomplete Pile.

From the number in the whole pile, confidered as come plete, fubtract the number in the upper pile which is wanting at the top, both computed by the rule for their proper form; and the remainder will be the number in the fruftum, or incomplete pile.

## EXAMPLES.

1. To find the number of thot in the incomplete trian-

$$
\circ 6
$$

gular pile, one fide of the bottom courle being 40, and the top courfe 20.

| $\begin{aligned} & 19 \\ & 20 \end{aligned}$ | $\begin{aligned} & 40 \\ & 41 \end{aligned}$ |
| :---: | :---: |
| 350 | 1640 |
| 21 | 42 |
| 380 | 3280 |
| 760 | 6560 |
| 7980 | 68850 |
|  | 7980 |
|  | 609000 |
|  | 10150 |

Ex. 2. How many fhot are in the incomplete triangular pile, the fide of the bafe being 24, and of the top 8 ?

Anf. 2516.
Ex. 3. How many balls are in the incomplete fquare pile, the fide of the bafe being 24, and of the top 8 ?

Anf. 4760.
Ex. 4. How many fhot are in the incomplete rectangular pile of 12 courfes, the length and breadth of the bafe being 40 and 20?

Anf. 6146.

## DISTANCES

## BY THE

## VELOCITY of SOUND.

BY various experiments it has been found that found flies through the air, uniformly at the rate of about 1142 feet in one fecond of time, or a mile in $4 \frac{2}{3}$ feconds. And therefore by proportion any difance may be found correfponding to any given time; namely, multiply the given time in feconds, by 1142, for the correfponding diftance in feet; of take $\frac{3}{14}$ of the given time, for the diftance in miles.

Note. The time for the paflage of found, in the interval between feeing the flath of a gun, or lightning, and hearing the report, may be obferved by a watch or a fmall pendulum. Or, it may be obferved by the beats of the pulfe in the wrift, counting on an average, about 70 to a minute in perfons in moderate health, or $5 \frac{1}{2}$ pulfations to, a. mile, and more or lefs according to circumftances.

> EXAMPLES。.

1. After obferving a flaft of lightning, it was 12 feconds before I heard the thunder; required the diftance of the cloud from whence it came?


Ex. 2. How long, after firing the Tower guns, may the report be heard at Shooter's Hill, fuppofing the dif. tance to be 3 miles in a ftraight line?

$$
14
$$

8
3) 112

Anf. $37{ }_{3}^{2}$ feconds.

Ex. 3. After obferving the firing of a large cannon at a diftance, it was 7 feconds before I heard the report; what was its diffance? Anf. $1 \frac{1}{2}$ mile.
Ex.4. Perceiving a man at a diftance hewing down a tree with an axe, I remarked that 6 of my pulfations paffed between feeing him ftrike and hearing the report of the hlow; what was the diffance between us, allowing 70 pulfes to a minute? Anf. 1 mile and 198 yards

Ex. 5. How far off was the cloud, from which thunder iffued, whofe report was 5 pulfations after the flah of lightning; counting 75 to a minute? Anf. 1523 yards.

## MISCELLANEOUS QUESTIONS.

Qu. 1. W HAT difference is there between a floor 23 feet long hy 20 broad, and two others each of half the dimenfions; and what do all three come to $2 t 4.5 \mathrm{~s}$. per 100 fquare feet?

Anf. dif. 280 fq. feet. Amount 18 guineasa 2. An
2. An elm plank is 14 feet 3 inches long, and I would have jutt a fquare yard fit off it; at what diffance from the edge muft the line.be fruck ? Anf. $7 \frac{99}{177}$ inches.
3. A ceiling contains 114 yards 6 feet of plaftering, and the room 28 feet broad; what is the length of it? Anf. $36 \frac{6}{7}$ feet.
4. A common joift is 7 inches deep, and $2 \frac{1}{2}$ thick; but I. want a fcantling juft as big again, that fhall be 3 inches thick; what will the other dimenfion be?

Anf. $11 \frac{2}{3}$ inches.
5. A wooden trough coft me 3s. 2d. painting within, at 6 . per yard; the length of it was 102 inches, and the depth 21 inches; what was the width?

Anf. $27 \frac{1}{4}$ inches.
6. If my court-yard be 47 feet 9 inches fquare, and I have laid a foot-path with Purbeck fone, of 4 feet wide, along one fide of it ; what will paving the reft with flints come to, at 6 d . per fquare yard? Anf. $f_{5}^{5} 160 \frac{1}{2}$.
7. A ladder, 40 feet long, may be fo planted, that it fhall reach a window 33 feet from the ground on one fide of the freet; and, by only turning it over, without moving the foot out of its place, it will do the fame by a window 21 feet high on the other fide; what is the breadth of the freet?

Anf. 56 feet $7 \frac{3}{4}$ inches.
8. The paving of a triangular court, at 18 d . per foot, came to 1001 .; the longeft of the three fides fras 88 feet; required the fum of the other two equal fides.

Anf, 106 - 85 feet.
9. There are two columns in the ruins of Perfepolis left flanding upright : the one is 64 feet above the plain, and the other 50 : in a ftraight line between thefe, ftands an ancient fmall fatue, the head of which is 97 feet from the fummit of the higher, and 56 feet from the top of the lower column, the bafe of which meafures juft 76 feet to the centre of the figure's bafe. Required the diftance between the tops of the two columns?

Anf. 157 feet nearly:
10. The perambulator, or furveying wheel, is fo contrived, as to turn juft twice in the length of a pole, or $16_{2}^{2}$ feet; required the diameter? Anf. $2 \cdot 626$ feet.
11. In turning a one-horfe chaife within a ring of a certain diameter, it was obferved that the outer-wheel made two turns while the inner made but one: the wheels were both 4 feet high; and, fuppofing them fixed at the ftatutable diftance of 5 feet afunder on the axle-tree, what: was the circumference of the track defcribed by the outer wheel? Anf. 63 feet nearly.
12. What is the fide of that equilateral triangle whofe area coft as much paving at 8 d . a-foot, as, the pallifading the three fides did, at a guinea a yard? Anf. 72.746 fect.
13. In the trapezium $A B C D$ are given, $A B=13$, $B C=31 \frac{1}{5}, C D=24$, and $D A=18$, alfo $B$ a right. angle; required the area?

Anf. 410.122.
14. A redf, which is 24 feet 8 inches by 14 feet 6 . inches, is to be covered with lead at 8 lb . to the fquare foot: what will it come to at 18 s. per cwt?

$$
\text { Anf. } C_{2}^{22} 1910 \frac{1}{4} \text {. }
$$

15. Having a reCtangular marble fab, 58 inches by 27, I would have a fquare foot cut off parallel to the fhorter edge; I would then have the like quantity divided from the remainder, parallel to the longer fide ; and this alternately sepeated, till there fhall not be the quantity of a foot left t . what will be the dimenfions of the remaining piece?

Anf, 20.7 inches by 6.086 .
16. Given two fides of an obtufe-angled triangle, which are 20 and 40 poles; required the third fide, that the triangle may contain juft an acre of land?

Anf. 58.876 or 23.099.
17. The end wall of a houfe is 24 feet 6 inches in breadth, and 40 feet to the eaves; $\frac{1}{3}$ of which is two. bricks thick, $\frac{1}{3}$ more is $1 \frac{1}{2}$ brick thick, and the reft 1 brick thick. Now the triangular gable rifes 38 courfes
of bricks, 4 of which ufually make a foot in depth, and this is but $4 \frac{1}{2}$ inches, or half a brick thick: what will this piece of work come to at 51.10 s. per ftatute rod ?

Anf. $\mathrm{L}_{2}^{2} 0117 \frac{1}{2}$.
18. If from a right-angle triangle, whofe bafe is 12 , and perpendicular 16 feet, a line be drawn parallel to the perpendicular, cutting off a triangle whole area is 24 fquare feet; required the fides of this triangle ?

Anf. 6, 8, and 10.
19. The ellipfe in Grofvenor-fquare meafures 840 links acrofs the longeft way, and 612 the fhorteft, within the rails: now the walls being 14 inches thick; what ground de they inclofe, and what do they fand upon?

$$
\text { Anf. }\left\{\begin{array}{l}
\text { inclofe } 4 \text { ac } 0 \text { r } 6 \mathrm{p} \\
\text { ftand on } 1760 \frac{1}{2} \mathrm{fq} .
\end{array}\right.
$$

20. If a round pillar, 7 inches over, has 4 feet of ftone in it ; of what diameter is the column, of equal length, that contains 10 times as much? Anf. $22 \cdot 136$ inches.
21. A circular fifh-pond is to be made in a garden, that Shall take up juft half an acre; what muft be the length of the cord that ftrikes the circle ? Anfwer $27 \frac{3}{4}$ yards.
22. When a roof is of a true pitch, the rafters are $\frac{3}{4}$ of the breadth of the building: now fuppofing the eavesboards to project 10 inches on one fide, what will the new ripping a houfe coft, that meafures 32 feet 9 inches long, by 22 feet 9 inches broad on the flat, at 15 s . per fquare?

Anf. $£ 8159 \frac{1}{2}$.
23. A cable which is 3 feet long, and 9 inches in compals, weighs 22lb: what will a fathom of that cable weigh, which meafures a foot about ? Anf. $78 \frac{1}{2} 1 \mathrm{~b}$.
24. My plumber has put 281 l per fquare foot into a ciftern it inches, and twice the thicknefs of the lead long, 26 inches broad, and 46 deep; he has alfo put three ftays acrofs it within, 16 inches deep, of the fame ftrength, and reckons 22s. per cwt, for work and materials. I, being a mafon, have paved him a workthop, 22 feet 10 inches broad, with Purbeck fone, at 7 d . per
foot; and upon the balance I find there is 3s. Gd. due to him. What was the length of the workfhop?

Anf. 32 f. $0 \frac{3}{4}$ inches.

- 25. The difance of the centres of two circles, whofe diameters are each 50 , being given equal to 30 ; what is the area of the fpace inclofed by their circumferences?

Anf. 559-119.
26. If 20 feet of iron railing weigh half a ton, when the bars are an inch and a quarter fquare, what will 50 feet come to, at $3 \frac{1}{2} \mathrm{~d}$. per 1 b . the bars being put $\frac{7}{8}$ of an inch fquare? Anf. $\mathrm{C}, 20^{0} 02$. 27. The area of an equilateral triangle, whofe bafe falls on the diameter, and its vertex in the middle of the arc of a femicircle, is equal to.100: what is the dianeter of the femicircle?

Anf. 26.32148.
28. It is required to find the thicknefs of the lead in a pipe, of an inch and quarter bore, which weighs $14 . \mathrm{b}$ per yard in length; the cubic foot of lead weighing $11 \cdot 325$ ounces.

Anf. 20737 inches.
29. Suppofing the expence of paving a femicircular plot, at 2 s .4 d . per foot, come to 101. what is the diame. ter of it ?

Anf, 14.7737.
30. What is the length of a cord, which cuts off $\frac{r}{3}$ of the area, from a circle whofe diameter is 289?

$$
\text { Anf. } 278^{\circ} 6716
$$

31. My plumber has fet me up a ciftern, and his hopbook being burnt, he has no means of bringing in the charge, and I do not choofe to take it down, to have it weighed; but my meafure he filds it contains 64 T $^{3}$ §quare feet, and that it is precifely $\frac{1}{8}$ of an inch in thicknefs. Lead was then wrought at 211 . per fother of $19 \frac{1}{2} \mathrm{cwt}$. It is required from thefe items to make out the bill, allowing $6 \frac{5}{9} \mathrm{oz}$. for the weight of a cubic inch of lead ?

Anf. £ 4112.
3?. What will the diameter of a globe be, when the folidity and fuperficial content are expreffed by the fame number ?

Anf. 6.
33. A fack that would hold 3 bufhels of corn, is $22 \frac{1}{2}$ inches broad when empty; what will that fack contain which, being of the fame length, has twice its breadth or circumference?

Anf, 12 bufhels.
31. A carpenter is to put an oaken curb to a round well at 8 d. per foor fquares the breatth of the curb is to be $7 \frac{1}{4}$ inches, and the diameter within $3 \frac{1}{2}$ feet : what will be the expence?

Anf. 5 s . $2 \frac{1}{4} \mathrm{~d}$.
35. A gentleman has a garden 100 feet long, and so feet broad; now a gravel walk is to be made of an equal width all round it : what muft the breadth of the walk be, to take up juft half the ground? Anf. 25.968 feet.
36. A may-pole whofe top, being broken off by a blaft of wind, fruck the ground at 15 feet diftance from the foct of the pole; what was the height of the whole maypole, fuppoling the length of the broken piece to be 39 feet?

Anf. 75 feet.
37. Seven men bought a grinding fone, of 60 inches diameter, each paying $\frac{\frac{x}{7}}{7}$ part of the expence; what part of the diameter muft each grind down for his thare?

Anf. the 1 ft $4 \cdot 4508,2 \mathrm{~d} 4 \cdot 8400,3 \mathrm{~d} 5 \cdot 3535$, 4th $6 \cdot 0765,5$ th $7 \cdot 2079$, 6th $9 \cdot 3935$, 7 th $22 \cdot 6778$.
38. A maluter has a kiln, which is 16 feet 6 inches fquare : but he wants to pull it down, and build a new one, that may dry three times as much at once as the old one; what muft be the length of its fide?

Anf. 28 feet 7 inches.
39. How many 3 inch cubes may be cut out of a 12 inch cube? Anf. 64.
40. How long mult be the tether of a horfe, that will allow him to graze, quite around, juft an acre of ground? Anf. $39 \frac{1}{4}$ yards.
41. What will the painting of a conical fire come to at 8 d . per yard; fuppofing the height to be 118 feet, and the circumference of the bafe 64 feet ?

$$
\text { Anf. } £ 1108 \frac{3}{4}
$$

12. The diameter of a fandard com buthel is $18 \frac{1}{2}$ incher,
inches, and its depth 8 inches; what muft be the diameter of that bufhel be, whofe depth is $7 \frac{1}{2}$ inches?

Anf. 19.1067.
43. Suppofe the ball on the top of St. Paul's church is 6 feet in diameter; what did the gilding of it coft, at $3 \frac{1}{2} \mathrm{~d}$. per fquare inch?

Anf. $£ 237101$.
44. What will a fruflum of a marble cone come to, at 12s. per folid foot: the diameter of the greater end being 4 feet, that of the lefs end $1 \frac{1}{2}$, and the length of the flant fide 8 feet?

Anf. £30 $110 \frac{1_{4}}{}$.
45. To divide a cone into three equal parts by fections parallel to the bafe, and to find the altitudes of the three parts, the height of the whele cone being 20 inches?

Anf. the upper part $13 \cdot 867$, the middle part $3 \cdot 604$, the lower part 2.528 .
46. A gentleman has a bowling-green 300 feet long, and 200 feet broad, which ke would raife 1 foot higher, by means of the earth to be dug out of a ditch that goes round it ; to what depth muft the ditch be dug, fuppofing its breadth to be every where 8 feet? Anf. $7 \frac{23}{8} \frac{3}{6}$ feet.
47. How high above the earth muft a perfon be raifed. that he may fee $\frac{x}{3}$ of its furface?

Anf, to the height of the earth's diameter.
48. A cobic foot of brafs is to be drawn into a wire of $\frac{8}{40}$ of an inch in dianeter; what will the length of the wire be, allowing no lofs in the metal?

Anf. 97784.797 yards, or 55 m les 984.797 yards.
49. Of what diameter muft the bore of a cannon be, which is caft for a ball of 24 lb weight, fo that the diameter of the b ire may be $\frac{1}{1}$ of an inch more than that of the ball, and fuppofing a glb ball to meafure 4 inches in diameter?

Anf, 5.757 inches.
50. Suppofing the diameter of an iron 9lb ball to be 4 inches, as it is very nearly; it is required to find thediameters of the feveral balls weighing 1,2,3,4,6,9, $12,18,24,36$, and 42 lb , and the caliber of their guns; allowing
allowing $\xi^{3} \delta$ of the caliber, or $\frac{x}{\pi} \delta$ of the ball's dianneter for windage.

Anfwer.

| Wt <br> ball | Diameter <br> ball | Caliber <br> gun |
| ---: | :---: | :---: |
| 1 | $1 \cdot 9230$ | $1 \cdot 9622$ |
| 2 | 2.4228 | $2 \cdot 4723$ |
| 3 | $2 \cdot 7734$ | $2 \cdot 8301$ |
| 4 | 3.0526 | 3.1149 |
| 6 | 3.4943 | 3.5656 |
| 9 | 4.0000 | 4.0816 |
| 12 | $4 \cdot 4026$ | 4.4924 |
| 18 | $5 \cdot 0397$ | $5 \cdot 1425$ |
| 24 | $5 \cdot 5469$ | 5.6601 |
| 36 | $6 \cdot 3496$ | $6 \cdot 4792$ |
| 42 | 6.6844 | $6 \cdot 8208$ |

51. Suppofing the windage of all mortars be allowed to be $\frac{\mathrm{r}}{60}$ of the caliber, and the diameter of the hollow part of the fhell to be $\frac{7}{7}$ of the caliber of the mortar; it is required to determine the diameter and weight of the thell, and the quantity or weight of powder requifite to fill it, for each of the feveral forts of mortars, namely, the $13,10,8,5 \circ 8$, and $4 \cdot 6$ inch mortar?

Anfwer.

| Calıb. <br> mort. | Diameter <br> fhell | Wt. Thell <br> empty | Wt. of <br> powder | Wr. TheH <br> filled |
| :---: | :---: | ---: | ---: | ---: |
| 4.6 | 4.523 | 8.320 | 0.583 | 8.903 |
| 5.8 | 5.703 | 16.677 | 1.168 | 17.845 |
| 8 | 7.567 | 43.764 | 3.065 | 46.829 |
| 10 | 9.833 | 85.476 | 5.986 | 91.462 |
| 13 | 12.783 | 187.791 | 13.151 | 200.942 |

52. How many fhot are in a complete fquare pile, each fide of the bafe containing 29?
53. How many fhot are in a complete oblong pile, the length of the bafe containing 49, and the breadth 19?
54. How many fhot are in a triangular pile, each fide of the bafe being 50 ?

Anf. 22100.
55. How many fhot are in an unfinifhed triangular pile, the fide of the bottom being 50 , and top 20 ?

Anf. 20770.
56. How many fhot are in an unfinifhed oblong pile, having the corner row 12, and the fides of the top 40 and 10? Anf. 8606.
57. If a heavy fphere, whofe diameter is 4 inches, be let fall into a conical glafs, full of water, whofe diameter is 5 , and altitude 6 inches; it is required to determine how much water will run over?

Anf. 26.272 cuhic inches, or near $\frac{35}{4}$ parts of a pint.
58. The dimenfions of the fphere and cone being the fame as in the laft queftion, and the cone only $\frac{1}{5}$ full of water; teguired what part of the axis of the fphere is immerfed in the water! Anf. 546 parts of an inch.
59. The cone being fill the fame, and $\frac{1}{5}$ full of water; required the diameter of a fphere that may be juft all covered by the water?

Anf. 2.44.5996.
60. If I fee the flafh of a cannon, fired by a fhip in diftrefs at fea, and hear the report 33 feconds after, how far is the off?

Anf. $7 \frac{1}{1} \frac{1}{4}$ miles.
61. Being one day ordered to obferve how far a battery of cannon was from me, I counted by my watch 17 feconds between the time of feeing the flafh, and hearing the report; how far was the battery from me?

Anf. $3 \frac{1}{2}$ miles.
62. An irregular piece of lead ore weighs in air 12 ounces, but in water only 7; and another fragment weighs in air $14 \frac{1}{2}$ ounces, but in water only 9 ; reguired their comparative denfities? Anf, as 145 to 132.
63. Suppofing the cubic inch of common glafs weigh 1.36 ounces troy, the fame of falt water $\cdot 54 \cdot 27$, and of
hrandy $\cdot 48926$; then a feaman having a gallon of that liquor in a glafs bottle, which weighs $3 \frac{1}{2} \mathrm{lb}$. troy out of water, and to conceal it from the officers of the cuftoms, throws it overboard. It is required to determine, if it will fink, how much force will juft buoy it up?

Anf. $12 \cdot 8968$ ounces.
64. Supppofe by meafurement it be found that a fhip of war, with its ordnance, rigging and appointments, draws fo much water as to difplace 50000 cubic feet of water; required the wcight of the veffel?

Anf. $1395 \frac{1}{15}$ tons.

## A <br> TABLE

## OF THE

## Areas of the Segments of a Cirele,

Whofe diameter is Unity, and fuppofed to be divided into 1000 equal parts.

| Height | Area Seg | Height | Area Seg. | Height |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | -0,0012 | 27 | -005867 | -053 |  |
| . 002 | -000119 | -028 | -006194 | -054 | -016457 |
| .003 | -000219 | -029 | -006527 | -055 | -016911 |
| -004 | -000337 | - 30 | -00ti865 | -056 | -017369 |
| -005 | -000470 | -031 | -007209 | -057 | -017831 |
| . 006 | - 000618 | -032 | -007558 | -058 | -018296 |
| -007 | 000779 | -033 | -007913 | .059 | . 018766 |
| -008 | -000951 | -034 | -008273 | . 060 | . 019239 |
| -009 | -001135 | -035 | - 008698 | . 061 | -019716 |
| - 010 | -001329 | -036 | -00900s | -062 | - 220196 |
| -011 | .001533 | -037 | -009383 | -063 | -020680 |
| -012 | -001746 | -038 | -009763 | -064 | . 021168 |
| -013 | -001968 | -039 | -010148 | -06\% | -021659 |
| -014 | -002199 | -040 | -010537 | -066 | -022154 |
| -015 | -002438 | -041 | -010931 | -067 | -022652 |
| -016 | .002685 | -012 | -011330 | -068 | -023154 |
| -017 | -002910 | -043 | -011734 | -069 | -023659 |
| -018 | -003202 | -044 | -012142 | -070 | -024168 |
| -019 | . 003471 | $\cdot 045$ | -012554 | -071 | -024680 |
| -020 | -003748 | -046 | -012971 | -072 | -025195 |
| -021 | -004(1)31 | -047 | - 013392 | -073 | -025714 |
| -022 | -004322 | -048 | . 013818 | -074 | -026236 |
| -023 | -004618 | -049 | -014247 | -075 | -020761 |
| -024 | -004921 | -050 | -014681 | -076 | -027289 |
| -()25 | -005230 | -051 | -015119 | -077 | 027821 |
| $\cdot$ | $\cdot 005546$ | 052 | -015561 | 078 | -028356 |

AREAS OFTIE SEGMEN'S OFACIRCLE. 317

| Height | Area Seg. | Height | Area Seg. | Height | Area beg. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdot 079$ | -028894 | -114 | - 049528 | -149 | . 073161 |
| -080 | - 0229435 | -115 | -050165 | -150 | . 073874 |
| -081 | -029979 | -116 | -05080 4 | -151 | -074589 |
| -082 | -030.526 | -117 | -051446 | - 152 | -075306 |
| -083 | . 031076 | -14 | -05?0!0 | -153 | -076026 |
| -084 | . 031629 | -119 | - 052736 | -154 | -076747 |
| -085 | -032186 | -120 | -053385 | -155 | -077469 |
| -086 | -032745 | -121 | -054036 | -156 | . 078191 |
| -087 | -03.3307 | -122 | -05.1689 | $\cdot 157$ | -078921 |
| -088 | -033872 | -123 | -0553+5 | -158 | -079649 |
| -089 | - ()34441 | -124 | -0560.03 | -159 | -080380 |
| -090 | . 035011 | - 125 | -056663 | - 160 | . 081112 |
| -091 | -0355S5 | -126 | -057326 | -161 | -081846 |
| -092 | -036162 | -127 | -0.57991 | -162 | -082592 |
| -093 | . 036741 | -128 | -0.55658 | -163 | -083320 |
| -094 | -037323 | -129 | -0593:27 | -164 | -()84059 |
| -095 | . 037909 | -130 | -159999 | -165 | . 084501 |
| -096 | -0384.96 | -131 | -060672 | - 166 | -085514 |
| -097 | -039087 | $\cdot 132$ | -051348 | -167 | -086289 |
| -098 | -039680 | -133 | -062026 | -168 | -087036 |
| -099 | -040276 | -134 | . 062707 | -169 | -087785 |
| -100 | -040875 | -135 | -0633839 | -170 | -088535 |
| -101 | - 041476 | -136 | -06407-1 | -171 | -099287 |
| -102 | -042080 | -137 | -064760 | -172 | -09004 1 |
| - 103 | 042687 | -138 | -065449 | -173 | -090797 |
| -104 | -043296 | -139 | -066140 | -17. | -0915.54 |
| - 105 | -043903 | -140 | -066833 | -175 | -092313 |
| - 106 | -044522 | -14.1 | -697528 | -176 | -0y3074 |
| -107 | -045139 | -142 | -068225 | -177 | -093836 |
| -108 | -045759 | -14.3 | -068924. | -178 | -094601 |
| -109 | -046381 | -144 | -069022 | -179 | -095326 |
| -110 | -047005 | -145 | -070328 | -150 | -096134 |
| - 111 | -047632 | - 146 | -071033 | -181 | -096003 |
| -112 | - $0+5262$ | -147 | -071741 | -182 | -097ヶ74 |
| $\cdot 113$ | - $04888.9+$ | -148 | -0724.50 | .183 | - $0.98+47$ |


| Hergat | Area Sry. | Hergnt | Area seg. | Height | Area S-g. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -1 S4 | -099:21 | $\cdots 19$ | -127285 | -251 | . 157010 |
| - 185 | -0999) | +2:0 | -128113 | -255 | -157890 |
| - 186 | -100774. | -221 | -1289+2 | - 256 | -158762 |
| - 187 | -101553 | -222 | -129773 | - 257 | -159636 |
| -188 | -102334 | -223 | -130605 | -258 | -180510 |
| $\cdot 189$ | - 103116 | -224 | -131438 | -25!) | . 161386 |
| -190 | - 10:3900 | 225 | -132272 | $\because 60$ | -162263 |
| - 191 | - 101685 | -226 | -133108 | $\cdot 261$ | -163140 |
| -192 | - $105+72$ | -227 | -133945 | - 262 | -164019 |
| -193 | -106261 | -2:8 | -13478t | -263 | -164899 |
| -194 | -107051 | -229 | -13.5624 | -264 | -165780 |
| -195 | -107842 | -230 | -136465 | -265 | -166663 |
| -196 | . 108636 | -231 | -137307 | -266 | -167346 |
| . 197 | - $109+36$ | -2.32 | -138150 | -267 | - 168430 |
| - 198 | - 110226 | -233 | -138995 | -268 | - 169315 |
| -199 | -111024 | -234 | -1398+1 | $\because 69$ | -170202 |
| -200 | -111823 | -23.5 | -140688 | -270 | -171089 |
| -201 | - 112624 | -236 | -141537 | -271 | -171978 |
| -202 | - 113426 | -2.37 | -142387 | -272 | - 172867 |
| -203 | - 1112230 | -238 | - 143238 | - 273 | -173758 |
| -204 | -115035 | -23!) | -144091 | -274 | -174649 |
| -205 | -1158+2 | -240 | - 144.944 | $\cdot 275$ | - 175542 |
| -206 | - 116650 | $\cdots+1$ | -14.5799 | . 276 | -176+35 |
| -207 | - 117460 | -242 | - 146655 | -277 | -177330 |
| -208 | -115271 | -243 | -147512 | -275 | -178225 |
| -209 | -110083 | $\cdot 2+4$ | -148371 | -279 | -179122 |
| -210 | - 119897 | -245 | - 149230 | - 280 | -180019 |
| -211 | -120712 | -246 | -150091 | -281 | -180918 |
| -212 | -121529 | -24 | -150953 | - 292 | -181817 |
| - 213 | -122347 | -248 | -151816 | -283 | -182718 |
| - 21 + | -123167 | -249 | -152680 | -284 | - 183619 |
| -215 | -123988 | -250 | -1535 46 | - 285 | -184521 |
| -216 | -124810 | -251 | - $154+12$ | -256 | -185425 |
| . 217 | - 125634 | -252 | $\therefore 155280$ | -287 | -186329 |
| 1:219 | -126.459 | $\bigcirc$ | - 1561449 | -288 | -187234 |


| Height | Area Seg. | Height | Area Seg. | ht |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -289 | - 188140 | -324 | -220404 | - 359 | -253590 |
| -290 | - 189047 | -325 | - 221340 | - 360 | -254550 |
| -291 | - 189955 | -326 | -222277 | -361 | -255510 |
| -292 | -190864 | - 327 | 223215 | -362 | -256471 |
| - 293 | -191775 | -328 | -224154 | - 363 | - 257433 |
| -294 | -192684 | -329. | -225093 | -364 | -258395 |
| - 295 | -193596 | -330 | -226033 | -365 | -259357 |
| - 296 | -194509 | -331 | -226974 | -366 | - 260320 |
| -297 | -195422 | -332 | - 227915 | -367 | -261284 |
| -298 | -196337 | -333 | -228858 | -368 | -262248 |
| -299 | - 197252 | -334 | -229801 | -369 | -263213 |
| - 300 | -198168 | -335 | -230745 | -370 | -264.178 |
| -301 | -199085 | -336 | -231689 | $\cdot 371$ | -265144 |
| -302 | -200003 | - 337 | -232634 | -372 | -266111 |
| -303 | -200922 | - 338 | -233580 | -373 | -267078 |
| -304 | -201841 | -334 | -234586 | - 374 | - 268045 |
| - 305 | -202761 | -340 | -235473 | -375 | -269013 |
| - 306 | -203683 | - $3+1$ | -236+21 | -376 | -269982 |
| -307 | - 204605 | -342 | -237369 | -377 | -270951 |
| - 308 | -205527 | -343 | -238318 | -378 | -?71920 |
| -309 | -206451 | - 344 | -239268 | -379 | -272890 |
| - 310 | -207376 | -345 | -210218 | -380 | -273861 |
| $\cdot 311$ | -208301 | -346 | -241169 | $\cdot 381$ | -274832 |
| $\cdot 312$ | -209227 | $\cdot 347$ | -2+2121 | -38? | -275803 |
| $\cdot 313$ | -210154 | -348 | -243074 | -383 | -276775 |
| -314 | -211082 | -349 | -244026 | -384 | -277748 |
| -315 | -212011 | - 350 | -244980 | -385 | -278721 |
| -316 | -212940 | -351 | -245934 | -386 | -279694 |
| - 317 | -213871 | -352 | -246889 | -387 | -280668 |
| $\cdot 318$ | -214802 | -353. | -247845 | -338 | '28164? |
| $\cdot 319$ | -215733 | -354 | -248801 | -389 | -282617 |
| -320 | - 216666 | - 355 | -249757 | -390 | -2835.92 |
| $\cdot 321$ | -217599 | - 356 | -250715 | . 391 | -284568 |
| -322 | -218533 | -357 | -251673 | -392 | -28.5544 |
| . 323 | -21.9468 | . 358 | -252631 | 393 | .286521 |

390 AREAB OF THE SEGMENTS OF A CIRCLE.

| Heiohi | Alea Srg. | Height | Area Seg. | Height | Area Seg. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -394 | -287498 | $\cdot 430$ | - 322928 | -466 | - 358725 |
| -395 | -288476 | $\cdot 431$ | - 323918 | -467 | -359725 |
| -395 | -289452 | -432 | -324.909 | -468 | -360721 |
| - 397 | -290431 | - +33 | -325900 | -469 | . 361719 |
| -398 | -291411 | -434 | - 326892 | -470 | -3627 17 |
| -399 | -292309 | -435 | - 327882 | -471 | - 363715 |
| -400 | - 293369 | - 436 | - 328874 | - 472 | -364713 |
| - 401 | -294349 | -437 | - 329866 | -473 | -365712 |
| -402 | :295330 | - 438 | - 330858 | -474 | - 366710 |
| -403 | -296311 | -439 | - 331850 | $\bullet 475$ | -367709 |
| - 404 | -297292 | -440 | - 332843 | $\cdot 476$ | - 368708 |
| - 405 | - 298273 | -441 | - 333836 | -477 | -369707 |
| - 406 | - 299255 | -442 | - 334819 | -478 | - 370706 |
| - 407 | -300238 | -443 | - 335822 | $\cdot 479$ | - 371705 |
| - 408 | - 301220 | $\cdot 444$ | - 336816 | -480 | -372704 |
| -409 | - 302203 | -445 | - 337810 | -481 | - 373703 |
| - 410 | -303187 | -446 | - 338804 | -482 | - 374702 |
| -411 | - $30+171$ | $\cdot+47$ | - 339798 | $\cdot 483$ | - 375702 |
| $\because 412$ | -305155 | $\cdot 448$ | - 340793 | -484 | - 376702 |
| -413 | -306140 | - +4.9 | - 34.1787 | -485 | - 377701 |
| $\cdot 414$ | - 307125 | - +50 | $\cdot 342782$ | -486 | - 378701 |
| -415 | -308110 | $\cdot+51$ | -343777 | -487 | - 379700 |
| - 416 | -309095 | $\bullet 452$ | - 344772 | -488 | - 380700 |
| $\cdot 417$ | -310081 | $\cdot+53$ | - 34.5768 | -489 | - 381699 |
| $\cdot 418$ | -31.1068 | - +54 | -346764 | -490 | - 382699 |
| - 419 | -312054 | - 455 | -347759 | -491- | - 383699 |
| -420 | $\cdot 313041$ | $\bullet 456$ | - $3+5755$ | -492 | - 384699 |
| . 421 | $\cdot 311029$ | $\bullet \pm 57$ | -349752 | -493, | - 385699 |
| - 422 | -315016 | $\cdot 458$ | - 350748 | -494 | -386699 |
| $: 423$ | $\cdot 316004$ | - 459 | -351745 | -495 | - 387699 |
| -424 | -316992 | - 460 | - 352742 | -496 | - 388699 |
| 425 | $\cdot 317981$ | $\cdot 461$ | - 353739 | -497 | - 385699 |
| -426 | -318970 | - 462 | - 354736 | -498 | -390699 |
| - 427 | - 319959 | -463 | - 355732 | -499 | -391699 |
| -428 | -320948 | -464 | - 356730 | 5:00 | -392699 |
| $\cdots$ | . 321938 | - 46.5 | $\cdot 357727$ |  |  |

## THE USE OF THE TABLE.

IN the foregoing table, each number in the column of area feg. is the area of the circular. fegment whofe height, or the verfe fine of its half arc, is the number immediately on the left of it, in the column of beights; the diameter of the circle being 1 , and its whole area :785398.

The ufe of this table is to find, by it, the area of the fegment of any other circle, whatever be the diameter. And this is done by firt dividing the height of any propofed fegment by its own diameter, and the quotient is a decimal to be fought in the column of heights, and againft it is the tabular area to be taken out, which is fimilar to the propofed fegment. Then this tabular area, being multiplied by the fquare of the given diameter, will be the area of the fegment required; becaufe fimilar areas are to each other as the fquares of their diameters.

## EXAMPLE.

So if it be required to find the area of a fegment of a circle, whofe height is $3 \frac{1}{4}$, the diameter being 50 .

Here 50 ) 3.25 (.065 quo. or tabular height, and the tab. feg. is 021659 which multiply by

2500 the fquare of the diam.
ives $54 \cdot 147500$ the area required.

But in dividing the given height by the diameter, if the quotient do not terminate in three places of decimals without a fractional remainder, then the area for that fractional part ought to be proportioned for, thus: Having found the tabular area anfwering to the firft three decimals of the quotient, take the difference between it and the next following tabular area, which difference multiply by the fractional remaining part of the quotient, and the product will be the correfponding proportional part, to be added to the firft tabular area.

So if the height of a propofed fegment were $3 \frac{1}{3}$, to the diameter 50 .

gives the area 55.965000 fought.

FINIS:

[Co. and R. Eildwin, Printers, Hkw Bridge-ßrets Lomion ] ]

The following Works, by the fame Author, may be had of the Publifhers of this Book.
I.

## A MATHEMATICAL AND PHILOSOPHICAL DICTIONARY;

Containing an Explanation of the Terms, and an Ac. count of the feveral Subjects, comprised under the heads Mathematics, Aftronomy, and Philofophy, both Natural and Experimental; with an Hiftorical Account of the Rife, Prozrefs, and prefent State of thefe Sciences: alfo Memoirs of the Lives and Writings of the moft eminent Authors, both Ancient and Modern, who by their Difcoveries or limprovements have contributed to the Advancement of them. In Two Volumes tito. With many, Cuts and Copper-plates. Price 31. 14s, in boards.
II.

## MATHEMATICAL TABLES;

Containing the Common, Hyperbolic, and Logittic Logarithms. Alfo Sines, Tangents, Secants, and verfed Sines both Natural and Logarithmic. Together with feveral other Tables ufeful in Mathematical Calculations. To which is prefixed, a Large and Original Hiftory of the Difcoveries and Writings relating to thofe Subjects; with the complete Defcription and Ufe of the Tables. In One Volume Royal 8vo. The Fourth Edition. Price, 19s. in boards.

## III.

A.

## TREATISE ON MENSURATION, BOTH IN THEORY AND PRACTICE.

The Third Edition, with many Additions. Price 18 s. in boards.

## IV. <br> A COURSE OF MATHEMATICS;

For the USe of Academies as well as Private Tuition. In Two Volumes 8 vo. The Fifth Edition. Price 11. is. bound.

> V.

A COMPLETE TREATISE
ON PRACTICAL ARITHMETIC AND BOOK-KEEPING,
Both by fingle and double Entry, adapted to the Ute of Schools. The Twelfth Edition. Price is. 6d. bound.

## VI. <br> A KEY TO HUTTON ARITHMETIC;

Containing the Solutions, at full Length, of all the Queftions propofed in that Work; being very ufeful for all Preceptors, and others who make Ufe of his Arithmetic. The Second Edition. Price Ss. Gd. bound.

## VII. <br> THE PRINCIPLES OF BRIDGES;

Containing the Mathematical Demonftrations of the Properties of the Arches, the Thicknefs of the Piers, the Force of the Water againft them, \&c. Together withPractical ObServations and Directions drawn from the whole. The Second Edition, with Corrections and Ac h ditions. Prise bs. sewed.

## GENERAL LIBRARY

## UNIVERSITY OF CALIFORNIA-BERKELEY

 TURN TO DESK FROM WHICH BORROWEI is book is due on the last date stamped below, or on th date to which renewed.Renewed books are subject to immediate recall.

| İクooghips |  |
| :---: | :---: |
|  | 19544 |
|  | 41984 |


[^0]:    A 3.
    the

