Bridge, Bewick
A com endious treetise on the elements of plane trigonometry

Presented to the

library of the

UNIVERSITY OF TORONTO

THITITTY COIL 准

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

ELEMENTS

or

PLANE TRIGONOMETRY.

THIRD EDITION.

```
`, ` .
    \because:
ir
```



```
    7
```


атซaua!

MgTamokoblilt TMM. 19

```

```

$$
=4.1
$$

```


\section*{A} S. Sum Ce COMPENDIOUS TREATISE

\section*{ELEMENTS}

OF

\section*{PLANE TRIGONOMETRY:}

\section*{WITH}

THE METHOD OF CONSTRUCTING trigonometrical tables.


> LONDON:

PRINTED FOR T. CADELL, IN THE STRAND; DEIGHTONS, NICHOLSONS, AND BARRETT, CAMBRIDGE;

AND PARKER, OXFORD.

1899
quasmana

YATMMOQA
533
B85 1822

LONDON:
PRINTED BY R. WATTS, CROWN COURT, TEMPLE BAR.

\section*{CONTENTS.}

\section*{Char. I.}

\section*{INTRODUCTION.}

\section*{SECT.}
I. Definitions - . . . . . . . - 1
II. On the general relation which the sine, cosine, versed sine, tangent, secant, cotangent, and cosecant, of any arc or angle bear to each other, and to the radius of the circle - - . . . . 5
III. A few properties of arcs and angles demonstrated geometrically - - - - . - . . . . 7
IV. The sine, cosine, tangent, and secant, of \(30^{\circ}, 45^{\circ}\), and \(60^{\circ}\), exhilited arithmetically - - - - 11
V. On finding the sines of various arcs, by means of the expression for finding the sine of half an arc . . 13
VI. On the relation of the sine, tangent, secant, छ'c. of the same angle in different circles - - . . . 15
VII. On the variation of the sine, cosine, versed sine, tangent and secant, through the four quadrants of the circle - - - . - - - - - . 16

\section*{table of contents.}

\section*{Chap. II.}

On the Investigation of Trigonometrical Formule.
VIII. On the method of finding geometrically the sine and cosine of the sum and difference of any two arcs, 21
IX. On the Formule derived immediately from the foregoing Theorem - . . . . . . . . - 23
X. On the investigation of Formula for finding the sine and cosine of multiple arcs - - .-. - 27
XI. On the investigation of Formula for finding the tangent and cotangent of multiple arcs - - - 28
XII. On the investigation of Formula for expressing the powers of the sine and cosine of an arc - . . 29

\section*{Chap. III.}

On the Construction of Trigonometrical Tables.
XIII. Method of finding the sine and cosine of an arc of \(1^{\prime}, 32\)
XIV. Method of constructing a Table of sines, cosines, tangents, छ'c. for every degree and minute of the quadrant, to seven places of decimals - - 33
XV. On the investigation of Formula of verification - 38
XVI. On the construction of Tables of logarithmic sines, cosines, tangents, छัc. - - - . - . . 41

\section*{Chap. IV.}

On the Method of ascertaining the Relation between the'Sides and Angles of Plane Triangles; and on the Measurement of Heights and Distances.
XVII. On the investigation of Theorems for ascertaining the relation which obtains between the sides and angles of right-angled and oblique-angled triangles, 44

XVIII. On the application of the foregoing Theorems to
 finding the relation between the sides and angles
 of right-angled triangles
XIX. On the application of the foregoing Theorems to determining the sides and angles of obliqueangled triangles - - - - - - - . 53
XX. On the instruments used in measuring heights and distances - - - . - - - - - . 60
XXI. On the mensuration of heights and distances - - 62
XXII. On the manner of constructing a map of a given surface, and finding its area; with the method of approximating to the area of any given irregular or curve-sided figure - - . . - 70
XXIII. A few questions for practice in the rules laid down in this Chapter - - - - - - - 76

\section*{}


\(\square\)











    28
 0.






\section*{PLANE \\ TRIGONOMETRY.}

\section*{CHAP. I. \\ INTRODUCTION.}

\section*{I.}

\section*{DEFINITIONS.}
1. Plane Trigonometry is that branch of Mathematics, by which we investigate the relation which obtains between the sides and angles of plane triangles.
2. In order to make this investigation, it is necessary to obtain a proper representation for the measure of an angle.

Describe the circle \(A D B E\), and draw two diameters \(A B, D E\), at right angles to each other, which will divide the circumference into four equal parts, \(A D, D B, B E, E A\), each of which is called a quadrant. Draw any line \(C F\) from the centre to the circumference; then (Euc.6. 33.) the angles \(A C F, A C D\), are to
 each other as the arcs \(A F, A D\); so that if the magnitude of the angle \(A C F\) be represented by the arc \(A F\), the
magnitude of the angle \(A C D\) will be represented by the \(\operatorname{arc} A D\); and so of any other angles; i. e. the magnitude of an angle is measured by the arc which subtends it in a circle described with a given radius.
3. For the purpose of exhibiting arithmetically the magnitude of angles, the whole circumference of the circle is supposed to be divided into 360 equal parts, called degrees ; each degree into 60 equal parts, called minutes; each minute into 60 equal parts, called seconds; \&c. \&ce. And since arcs are the measures of angles, every angle may be said to be an angle of such number of degrees, minutes, and seconds, as the arc subtending it contains. Thus, if the are \(A F\) contains 38 degrees 14 minutes 25 seconds, the angle \(A C F\) (adopting the commion notation of \({ }^{\circ},^{\prime}, ", \& c\). for degrees, minutes, seconds, \&c.) is said to be an angle of \(38^{\circ} 14^{\prime} 25^{\prime \prime}\). The quadrants \(A D, D B, B E, E A\) evidently contain \(90^{\circ}\) each.
4. The difference between any angle \(A C F\) and a right angle or \(90^{\circ}\), is called the complement of that angle. Thus, if \(A C F\) is an angle of \(37^{\circ} 5^{\prime} 2^{\prime \prime}\), its complement \(F C D\) will be an angle of \(52^{\circ} 54^{\prime} 58^{\prime \prime}\).
5. The supplement of an angle is the difference between it and \(180^{\circ}\). Thus, if the angle \(A C F\) is \(40^{\circ} 25^{\prime} 35^{\prime \prime}\), its supplement \(F C B\) will be \(139^{\circ} 34^{\prime} 25^{\prime \prime}\).*
6. The

\footnotetext{
* Since the three angles of every triangle are equal to two right angles, or to \(180^{\circ}\), it is evident that in a right-angled triangle the two acute angles must be together equal to one right angle, or \(90^{\circ}\); the acute angles must therefore be the complements
}
6. The straight line \(A F\), drawn from one extremity of the arc to the other, is called the chord of the are \(A F\).
7. \(F G\), a line drawn from one extremity of the are \(A F\) perpendicular upon the diameter ( \(A B\) ) passing through the other extremity, ©is called the sine of the angle \(A C F\).

8. \(A G\),
the one of the other; and in an oblique-angled triangle, the third angle must be the supplement of the sum of the other two angles.

In the French division of the circle, the whole circumference is supposed to be divided into 400 equal parts, called degrees; each degree into 100 minutes; each minute into 100 seconds; \&c. \&c. so that, according to this scale, 47 degrees 15 minutes 17 seconds may be expressed by \(47^{\circ} 15^{\prime} 17^{\prime \prime}\), or by \(47^{\circ} .1517\), where the decimal 1517 is the fractional part of a degree corresponding to the 15 minutes and 17 seconds.

The degrees, minutes, \&c. of the French scale are converted into degrees, minutes, \&c. of the English scale by a very simple Arithmetical process. For since the quadrant, according to the former scale, consists of \(100^{\circ}\), and, according to the latter, of \(90^{\circ}\), the number of degrees in any given arc or angle, according to the English scale, must be \(\frac{9}{\mathbf{T}} \mathrm{th}\) of that number on the French scale. From the degrees therefore of the French scale, we must subtract \(\frac{1}{\mathrm{x}}\) th, and it will give the number of degrees upon the English scale; then multiplying the decimal part of the resulting quantity by 60 , it will give the number of minutes;
8. \(A G\), that part of the diameter which is intercepted between the extremity of the \(\operatorname{arc} A F\), and the sine \(F G\), is called the versed sine of the angle \(A C F\).
9. If a line be drawn touching the circle in \(A\), and the radius \(\boldsymbol{C} F\) be produced to meet it in \(K\), then \(A K\) is called the tangent, and \(C K\) the secant of the angle \(A C F\).
10. If
and the decimal part of the minutes by 60 , it will give the number of seconds; \&cc. \&c. as in the following examples.
\begin{tabular}{|c|c|c|}
\hline Subtract \(7^{76}{ }^{\circ} \mathrm{Fr}\). sc.
\[
\left.\frac{1}{10} \text { th }\right\} 7.6
\] & \(24^{\circ}\). 15 French
\[
2.415=\frac{1}{10} \text { th }
\] & \[
\begin{gathered}
47^{\circ} \cdot 1517 \text { French } \\
4.71517=\frac{1}{8} \frac{1}{0} \text { th }
\end{gathered}
\] \\
\hline \[
\begin{gathered}
68.4 \\
60
\end{gathered}
\] & \[
\begin{array}{r}
21.735 \\
60
\end{array}
\] & \[
\begin{array}{r}
42 \cdot 43653 \\
60
\end{array}
\] \\
\hline 24.0 & \[
\begin{array}{r}
44 \cdot 100 \\
60
\end{array}
\] & \[
\begin{array}{r}
26.19180 \\
60
\end{array}
\] \\
\hline \(\therefore 76^{\circ}\) French & 0 & 11. 50800 \\
\hline 24 Eng & \(\therefore 24^{\circ} 1^{\circ}\) French \(=\) \(21^{\circ} 44^{\prime} 6^{\prime \prime}\) English. & \[
\begin{aligned}
& 47^{\circ} 15^{\prime} 17^{\prime \prime} \text { Fr. } \\
= & 42^{\circ} 26^{\prime} 11^{\prime \prime} \text { Eng. }
\end{aligned}
\] \\
\hline
\end{tabular}

Since \(90^{\circ}\) English make \(100^{\circ}\) French; to convert English degrees, minutes, \&c. into French ones of the same value, we must reduce the former into degrees and decimals of a degree, and then add \(\frac{x}{9}\) th. For example, let it be required to reduce \(23^{\circ} 27^{\prime} 58^{\prime \prime}\) English, to French ones of the same value.
\[
\left.\begin{array}{rl}
27^{\prime}=\frac{27}{60} \text { of a degree } & =4500\} \\
58^{\prime \prime} & =\frac{38}{3000} \text {. }
\end{array}=.0161\right\}, \begin{aligned}
& \text { Hence } 23^{\circ} 27^{\prime} 58^{\prime \prime}=23.4661 . \\
& \text { Add } \frac{2}{8} \text { th }=2.6074 . \\
& \text { Then } \underline{26.0735,} \text { or } 26^{\circ} 7^{\prime} 35^{\prime \prime}, \text { are the } \\
& {[\text { number of French. }}
\end{aligned}
\]
10. If a line be drawn touching the circle in \(D\), and \(C F\) be produced to meet it in \(L\), and \(F H\) be let fall perpendicular upon the diameter ( \(D E\) ), then \(F H, D H, D L\), and \(C L\) become respectively the sine, versed sine, tangent, and secant of the angle \(F C D\), which is the complement of the angle \(A C F\), and are therefore called the cosine, co-versed sine, cotangent, and cosecant of the angle \(A C F\).
11. Since \(C G\) is equal to \(F H\), it is equal to the cosine of the arc \(A F\); hence the cosine of any arc is equal to that part of the radius of the circle which is intercepted between the centre of the circle and the extremity of the sine of that arc.

\section*{II.}

On the general relation which the sine, cosine, versed sine, tangent, secant, cotangent, and cosecant, of any arc or angle bear to each other, and to the radius of the circle.
In this investigation, the following abbreviations are used; viz.
\(\sin\). for sine.
cos. ... cosine.
\(v . \sin . \ldots\) versed sine.
tan. ... tangent.
sec. for secant.
cotan.... cotangent.
cosec.... cosecant.
diam.... diameter.

In the right-angled triangle \(C F G\), we have (Euc. 47.1.)
12.
\[
\begin{gathered}
F G=\sqrt{C F^{2}-C G^{2}}, \\
\text { i. e. sine }=\sqrt{\text { rad. }^{2}-\operatorname{cosin}^{2}} \\
\text { And, vice versa, }
\end{gathered}
\]
13.
\[
\begin{aligned}
C G & =\sqrt{C F^{2}-F G^{2}} \\
\text { i. e. cosine } & =\sqrt{\text { rad. }^{2}-\sin ^{2}}
\end{aligned}
\]
14. \(A G\)
14. \(A G=A C-C G\),
i. e. versed sine \(=\) rad. \(-\cos\).
15. By similar triangles \(A C K, G C F\),
\[
A K: A C:: F G: C G
\]
i. e. tangent : radius : : sine \(:\) cosine, or \(\tan .=\frac{\mathrm{rad} . \times \sin .}{\cos .}\)
16. By similar triangles \(A C K, D C L\),
\(A K: A C\) : \(C D: D L\),
i. e. tangent : radius \(::\) radius \(: \operatorname{cotan} .=\frac{\text { rad. }^{2}}{\tan .}\)
17. By similar triangles \(A C K, G C F\),
\[
C K: C A-C F: C G
\]
i. e. secant : radius : : radius : cosine, or sec. \(=\frac{\text { rad. }^{2}}{\cos .}\)
18. In the right-angled triangle \(C A K\), we have
\[
\begin{array}{r}
C K=\sqrt{{C A^{2}+A K^{2}}^{2}} \\
\text { i. e. secant }=\sqrt{\text { rad. }^{2}+\tan _{0}^{2}} \\
\text { And, vice versa, } \\
A K=\sqrt{C K^{2}-A C^{2},} \\
\text { i.e. tangent }=\sqrt{\text { sec. }^{2}-\text { rad. }^{2}}
\end{array}
\]
19. By similar triangles \(D C L, G C F\),
\[
C L: C D:: C F: F G,
\]
i. e. cosecant : radius :: radius : sine, or cosec. \(=\frac{\text { rad. }{ }^{2}}{\sin .}\)

\section*{III.}

A few Properties of Arcs and Angles demonstrated geometrically.

\section*{Property 1.}
20. The chord of any arc is a mean proportional between the versed sine of that arc and the diameter of the circle.
\(A F\) is the chord, and \(A H\) is the versed sine of the are \(A F\); join. \(F B\), then the angle \(A F B\) in a semicircle is a right angle; \(\therefore\) since \(F H\) is perpendicular to \(A B\), we have,
 (Eucl. 6. 8.)
\[
\begin{array}{r}
A H: A F:: A F: A B, \\
\text { i. e. v. sin. }: \text { chord }:: \text { chord }: \operatorname{diam} .
\end{array}
\]

Prop. 2.
21. The chord of an arc is double the sine of half that arc.

Draw \(C G\) at right angles to \(A F\), and produce it to \(D\); then (Eucl. 3. 3.) \(C G\) bisects the chord \(A F\); and (Eucl. 3. 30.) it also bisects the arc \(A F\). Hence,

Chord \(A F=2 F G\), and \(\operatorname{arc} A F=2 F D\), or \(F D=\frac{1}{2} A F\).
Now \(F G=\) sine of arc \(F D=\operatorname{sine}\) of \(\frac{1}{2} \operatorname{arc} A F\);
\(\therefore\) Chord \(A F(=2 F G)=\) twice sine of \(\frac{1}{2}\) arc. \(A F\).
And, vice versa;
Since \(F G=\frac{1}{2}\) chord of arc \(A F\left(=\frac{1}{2}\right.\) chord \(\left.2 F D\right)\),
we have sine of an arc \(=\frac{1}{2}\) chord of double the arc.

Prop. 3.
22. As radius: cosine of any arc :: twice the sine of that arc: the sine of double the arc.

For \(C G=\) cosine of \(\operatorname{arc} F D\),
\(A F(=2 F G)=\) twice the sine of \(\operatorname{arc} F D\), \(F H(=\) sine of \(A F)=\) sine of double the are \(F D\).

Now the right-angled triangles \(A C G, A F H\), have a common angle at \(A\), they are consequently similar; hence \(A C\) : \(C G\) :: \(A F\) : \(F H\), i. e. radius : cos. of \(\operatorname{arc} F D::\) twice the sine of \(\operatorname{arc} F D\) : sine of double the arc.

\section*{Prop. 4.}
23. Half the chord of the supplement of any arc is equal to the cosine of half that arc.

Draw \(C M\) at right angles to \(B F\); then since \(C G\) is parallel to \(B F\), and \(C M\) parallel to \(A F\), the figure \(F G C M\) is a parallelogram; \(\therefore M F=C G\); but \(M F=\left(\frac{1}{2} F B=\right)\) \(\frac{1}{2}\) chord of the supplemental are \(F B\), and \(C G=\) cosine of \(F D\), which is \(\frac{x}{2}\) the arc \(A F\);
Hence, Half the chord of the supplement of the arc \(A F\) is equal to the cosine of half the arc. AF.

\section*{Prop. 5.}
24. Tangent + secant of any arc is equal to the cotangent of half the complement of that arc. (Fig. in p. 9.)

Let \(A D\) be the quadrant of a circle, \(A F\) any arc, whose tangent is \(A K\), secant \(C K\), and complement the arc FD.

Bisect \(F D\) in \(H\), join \(C H\), and produce \(C H\) and \(A K\) to meet in \(L\); then \(A L\) is the tangent of the arc \(A H\), and consequently the cotangent of the arc HD, which is half the complement of the arc \(A F\).

Now, since \(A L\) is parallel to \(C D\), the angle \(D C H\) is equal to the angle \(C L K\); but \(D C H\) is equal to \(H C K\), \(\therefore C L K\) is equal to \(H C K\), and consequently \(K L=C K\).


Now \(A K+K L=A L\);
\(\therefore \quad A K+C K=A L\), i.e.
tang. + secant \(=\) cotang. of half complement of arc \(A F\).

\section*{Prop. 6.}
25. The chord of \(60^{\circ}\) is equal to the radius of the circle.

Let \(A F\) be an arc of \(60^{\circ}\), then angle \(A C F\) of the triangle \(A C F\) is \(60^{\circ}\); and since the three angles of the triangle are equal to \(180^{\circ}\), the two remaining angles \(C A F\), \(C F A\), must be equal to \(120^{\circ}\); but \(C A=C F, \therefore\) \(\angle C A F=C F A\), and each of them are \(60^{\circ}\); hence the triangle \(C A F\) is equiangular,
 and consequently equilateral ; wherefore chord \(A F(=A C\) or \(C F)=\mathrm{rad}\).

Prop. 7.
26. The sine of \(30^{\circ}\) is equal to half the radius.

By Prop. 2. the sine of an are is half the chord of double the are; if therefore \(A F\) is \(60^{\circ}, F D\) will be \(30^{\circ}\), and its sine \(F G=\frac{1}{2} A F=\) (by Prop. 6.) \(\frac{1}{2}\) the radius.

Prop. 8.
27. The versed sine and cosine of \(60^{\circ}\) are each equal to half the radius.

For since the triangle \(A F C\) is equilateral, the sine \(F H\) bisects the base (or radius) \(A C\). Hence,
A. \(H=\) versed sine of \(60^{\circ}=\) half the radius.

CH \(=\) cosine of \(60^{\circ}=\) half the radius.
\[
\text { Prop. } 9 .
\]
28. The tangent of \(45^{\circ}\) is equal to the radius.

Let arc \(A F=45^{\circ}\), then the angle \(A C K=45^{\circ}\); and since \(\angle C A K\) \(=90^{\circ}\), the remaining angle \(A K C\) must be \(45^{\circ}\); hence \(\angle A C K=\) \(=\angle A K C, \therefore\) the tangent \(A K\) \(=A C=\) radius.

Prop. 10.
29. The secant of \(60^{\circ}\) is equal to the diameter of the circle.

Let \(\operatorname{arc} A F=60^{\circ}\), draw the tangent \(A K\), and secant \(C K\); then, by Prop. 8. \(C G=G A\); and since \(F \cdot G\) is parallel to \(A K\),
\[
C F: F K:: C G: G A
\]

But \(C G=G A, \therefore C F=F K\); hence \(C K=2 C F=2 \mathrm{rad} .=\) diam.


\section*{IV.}

The sine, cosine, tangent, and secant, of \(30^{\circ}, 45^{\circ}\), and \(60^{\circ}\), exhibited arithmetically.

Let \(A D\) be a quadrant of a circle, and \(A F, A H, A O\), ares of \(30^{\circ}, 45^{\circ}\), and \(60^{\circ}\), respectively. In tracing the value of the sine, tangent, and secant, from \(A\) to \(D\), it is evident that at \(A\), when the arc \(=0\), the sine and tangent are each equal to 0 , but that the secant is equal to radius. In proceeding from \(A\) to \(D\), these lines keep continually increasing, and in such manner, that at \(D\) the sine of \(A D\) or \(90^{\circ}\) becomes equal to the radius \(C D\); the tangent and secant of \(A D\) (being formed by the intersection of t:vo lines, one drawn touching the circle in \(A\), the other at right angles to \(A C\) in the point \(C\), and consequently parallel) become both indefinitely great. At \(A\) the cosine \(=\) \(C A=\) radius; and as the are increases the cosine decreases, so that
 when the arc becomes \(90^{\circ}\), the cosine is equal to 0 . Our object at present is, to find arithmetically the value of the sine, cosine, tangent, and secant, at the intermediate points \(F, H, O\), on supposition that the radius is equal to unity.
30. Value of Sines FG, HN, OP.
\(F G=\sin\). of \(30^{\circ}=(\) byArt.25. \() \frac{1}{2} \mathrm{rad} .=(\) if rad. \(=1) \frac{1}{\frac{1}{2}}=.5000000\).
Since \(\angle H C N=45^{\circ}, C H N\) also \(=45^{\circ}, \therefore C N=H N\);
hence, \(\mathrm{CH}^{2}=\left(C N^{2}+H N^{2}=\right) 2 H N^{2}\), or
\(H N^{2}=\frac{C H^{2}}{2} ; \therefore H N=\sin .45^{\circ}=\frac{C H}{\sqrt{2}}=\frac{1}{\sqrt{2}}=.707168,{ }^{*}\)
\(O P=\sin .60^{\circ}=\sqrt{C O^{2}-C P^{2}}=\left(\right.\) for \(C P=\frac{x}{2}\), by Art. 27.)
\(\sqrt{1-\frac{1}{4}}=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}=.8660254{ }^{+}\)
31. Value of Cosines \(C G, C N, C P\).
\(C G=\) cosine of \(30^{\circ}=\) sine of \(60^{\circ}=\frac{\sqrt{3}}{2}=.8660254\).
\(C N=\) cosine of \(45^{\circ}=H N=\frac{1}{\sqrt{2}}=.7071068\).
\(C P=\) cosine of \(60^{\circ}=\) sine of \(30^{\circ}=\frac{1}{2}=.5000000\).
32. Value of Tangents \(A K, A L, A M\).

By Art. 15. tan. \(=\frac{\mathrm{rad.} \times \sin .}{\cos .}=(\) if rad. \(=1) \frac{\sin \text {. }}{\cos .}\)
Hence \(A K=\tan .30^{\circ}=\frac{\sin .30^{\circ}}{\cos .30^{\circ}}=\frac{1}{2} \times \frac{2}{\sqrt{3}}=\frac{1}{\sqrt{3}}=.5773503\).
\[
\begin{aligned}
& A L=\tan .45^{\circ}=\frac{\sin .45^{\circ}}{\cos .45^{\circ}}=\frac{H N}{C N}=(\operatorname{as} H N=C N)=1.0000000 \\
& A M=\tan .60^{\circ}=\frac{\sin .60^{\circ}}{\cos .60^{\circ}}=\frac{\sqrt{3}}{2} \times \frac{2}{1}=\sqrt{3}=1.7320508 .!
\end{aligned}
\]
33. Value
*For \(\sqrt{2}=1.4142136 . \quad+\) For \(\sqrt{3}=1.7320508\).
33. Value of Secants CK, CL, CM.

By Art. 17. sec. \(=\frac{\mathrm{rad}^{2}}{\cos .}=(\) if rad. \(=1) \frac{1}{\operatorname{cosine}}\).
Hence \(C K=\sec .30^{\circ}=\frac{1}{\cos .30^{\circ}}=1 \times \frac{2}{\sqrt{3}}=\frac{2}{\sqrt{3}}=1.1547005\).
\(\ldots C L=\sec .45^{\circ}=\frac{1}{\cos .45^{\circ}}=1 \times \frac{\sqrt{2}}{1}=\sqrt{2}=1.4142136\).
\(\ldots . . C M=\sec .60^{\circ}=\frac{1}{\cos .60^{\circ}}=1 \times \frac{2}{1}=2=2.0000000\).

\section*{V.}
34. On finding the sines of various arcs, by means of the expression for finding the sine of half an arc.
By Art. 20, we have
Ver. sine of an arc : chord :: chord : diameter.
But the chord of any arc is equal to twice the sine of \(\frac{x}{2}\) that arc, and the diameter is equal to twice the radius. Hence, by substitution,

Ver. \(\sin\). of an arc : \(2 \times \sin\). of \(\frac{1}{2}\) arc :: \(2 \times \sin\). of \(\frac{1}{2}\) arc : \(2 \times\) radius.
\[
\begin{aligned}
& \therefore 4 \times \overline{\left.\sin . \text { of } \frac{1}{2} \operatorname{arc}\right)^{2}}=2 \times \text { ver. } \sin . \times \mathrm{rad} . \\
& \text { or } \overline{\sin . \text { of }\left.\frac{1}{2} \operatorname{arc}\right|^{2}}=\frac{\mathrm{v} \cdot \sin . \times \mathrm{rad} .}{2} \\
& \text { and } \sin . \text { of } \frac{1}{2} \operatorname{arc}=\sqrt{\frac{\mathrm{v} \cdot \sin . \times \mathrm{rad} .}{2}}
\end{aligned}
\]

If therefore the radius \(=1\), the sine of \(\frac{1}{2}\) an arc is equal to the square root of \(\frac{1}{2}\) the versed sine of that arc; and since the versed sine of an are is equal to rad.-cos. (Art. 14.), we , have sine of \(\frac{s}{2}\) arc \(=\sqrt{\frac{1-\cos }{2}}\)

\section*{14. ON Finding the sines of various arcs.}

\section*{Now}
\[
\begin{aligned}
\cos .30^{\circ}=.8660254, \therefore \sin .15^{\circ} & =\sqrt{\frac{1-.8660254}{2}}=.2588190, \\
\text { and } \cos .15^{\circ} & =\sqrt{1-\overline{\sin ]^{2}}}=.9659258 . \\
\text { Hence, sine } 7^{\circ} 30^{\prime} & =\sqrt{\frac{1-.9659258}{2}}=.1305262 \\
\operatorname{cosine} 7^{\circ} 30^{\prime} & =\& \mathrm{c} . \\
\text { sine } 3^{\circ} 45^{\prime} & =\& \mathrm{c} .
\end{aligned}
\]

And thus, by halving each preceding angle, we might find the value of the sines and cosines of a series of angles continually decreasing without limit. From the cosine of \(45^{\circ}\) we might also find the sine and cosine of another series of angles, \(22^{\circ} 30^{\prime} ; 11^{\circ} 15^{\prime} ; 8 \mathrm{c}\). \& c. decreasing in the same manner. Having the sine and cosine of an angle, its tangent, secant, \&c. may be found from the expressions in
 and cosec. \(=\frac{\mathrm{rad}^{2}}{\sin .}\)

In this manner, from the sine and cosine of \(45^{\circ}\) and \(30^{\circ}\), we might find the sine, cosine, tangent, secant, \&c. of a vast variety of angles less than \(22^{\circ} 30^{\prime}\). But the method of constructing arithmetically a complete table of sines, cosines, tangents, \&c. for every degree and minute of the quadrant, will form the subject of the Third Chapter.

\section*{VI.}

On the relation of the sine, tangent, secant, E®c. of the same angle in different circles.
35. Let \(A F B E\), afle, be two circles whose radii are \(A C, a C\); let an angle be formed at \(C\), subtending the arcs \(A F\), \(a f\); draw the sines \(F G, f g\); the tangents \(A K\), \(a k\); the secants CK, Ck; \&c. \&c.


Now it is evident that
the \(\angle A C F: 4\) right \(\angle^{\circ}:: A F:\) circumference \(A F B E\), and \(\angle a C f: 4\) right \(\angle^{s}:: a f\) : circumference \(a f b e\).

Hence \(\angle C A F=4\) right \(\angle^{*} \times \frac{F A}{A F B E}\).
\[
\angle a C f=4 \text { right } \angle^{s} \times \frac{a f}{a f l e} .
\]

But \(\angle A C F\) is the same with aCf, \(\therefore \frac{A F}{A F B E}=\frac{a f}{a f^{\prime} b e}\);
\[
\text { consequently } A F: \text { af }:: A F B E: \text { afle, }
\]
\[
:: A C \quad: a C, \text { since cir- }
\]
cumference of circles are to each other as their radii.
Hence it appears, that the measures of the same angle in different circles are to each other as the radii of those circles

\section*{16 on the relation of the sine, tangent, \&c.}
circles; and so it is with respect to the sines, tangents, secants, \&c. of that angle; for by similar \(\triangle^{3}, F C G, f C g\); \(A C K, a C k\); we have
\(F G: f g:: C F: C f\), i.e. \(F G, C G, A K, \& i c\) are to \(C G: C g:: C F: C f(f g, C g, a k, \& c\). in the ratio of \(A K: a k:: C A: C a\) ( A , radius of the circle \(A F B E\) \(C K: C k:: C A: C a)\) to that of the circle afbe.
36. To convert sines, tangents, secants, \&c. calculated to the radius \((r)\), into others belonging to a circle whose radius is \((R)\), we have only therefore to increase or diminish the former in the ratio of \(r: R\). If, for instance, it was required to convert the sines, cosines, tangents, secants, \&c. which (in the preceding section) were calculated to radius (1), into others belonging to a circle whose radius is 10000 , we have only to multiply each of those numbers by 10000 .
\begin{tabular}{c|l|l} 
Thus, \\
Radius \(=1\) & \(\mid\) Radius \(=10000\) \\
\hline Sine \(45^{\circ}=.7071068\) & Sine \(45^{\circ}=7071.068\) \\
Cosine \(30^{\circ}=.8660254\) & Cosine \(30^{\circ}=8660.254\) \\
Tang. \(60^{\circ}=1.7320508\) & Tang. \(60^{\circ}=17320.508\) \\
Secant \(30^{\circ}=1.1547005\) & Secant \(30^{\circ}=11547.005\) \\
\&c. & \&c. \\
\hline
\end{tabular}

\section*{VII.}

On the variation of the sine, cosine, versed sine, tangent, and secant, through the four quadrants of the circle.
Previous to tracing the variation of these lines round the circle, it is necessary to observe, that geometrical quantities are measured from some given point or line, and, when
expressed algebraically, are reckoned + or - , according as they lie on the same or opposite sides of that point or line.
37. Thus, in the circle \(A D B E\), if the sines of the ares in the semicircle \(A D B\) are reckoned + , the sines of the arcs in the semicircle \(B E A\) (lying on the opposite side of the diameter \(A B\) ), will be reckoned - ; and if the cosines of the arcs in the first quadrant \(A D\) be reckoned + , the cosines of ares in the second quadrant \(D B\) (lying on the opposite side of the center \(C\) ), must be reckoned -. Since
 \(\tan .=\frac{\sin .}{\cos .}\), the tangents of these ares will be positive or negative, according as the sine and cosine have the same or different signs; and since sec. \(=\frac{1}{\cos }\), the secants of those arcs will be positive or negative, according as the cosine is positive or negative. With respect to the versed sines, since they are measured from \(A\), they will be altogether positive; in the semicircle \(A D B\) they will vary from 0 to diameter ; and in the semicircle \(B E A\) they will vary from diameter to 0 .

With this explanation, the following Table, exhibiting the variation of the sine, cosine, tangent, and secant, through the four quadrants of the circle, will be readily understood.

In first quadrant \(A D\).
The Sine increases from 0 to radius, and is + .
Cosine decreases from radius to \(0, \quad\) and is + .
Tangent increases from 0 to infinity, and is + . Secant increases from radius to infinity, and is + .
\[
\text { In second quadrant } D B .
\]

The Sine decreases from radius to 0 , Cosine increases from 0 to radius, Tangent decreases from infinity to 0 , and is + . and is Secant decreases from infinity to radius, and is -.

In third quadrant \(B E\).
The Sine increases from 0 to radius,
Cosine decreases from radius to 0 , Tangent increases from 0 to infinity, Secant increases from radius to infinity, and is-. and is -. and is + . and is-.
\[
3 \quad \text { In fourth quadrant } E A \text {. }
\]

The Sine decreases from radius to \(0, \quad\) and is-.
Cosine increases from 0 to radius, and is + .
Tangent decreases from infinity to 0 , and is-.
Secant decreases from infinity to radius, and is \(\div\).

Take any arc \(A F\), and make \(D f=D F\); (See Figure) draw the chords \(F H, f h\), perpendicular to (in \(p .17\).) the diameter \(A B\); join \(C F, C f, C h, C H\), and produce them to meet the tangent at \(A\) in the points \(K, k_{\text {. Then, from }}\) the definitions of sine, cosine, tangent, and secant, it appears that
\(F G\) is the sine of the arc \(A F\) fg.................. of the arc \(A f\) gh. of the arc \(A B h\)
GH of the arc \(A B H\) )
 \(\left.\begin{array}{l}A K \text { is the tangent of the } \operatorname{arc} A F \text {, and of the arc } A B h \\ A k . . . . . . . . . . . . . \text { of the } \operatorname{arc} A f \text {, and of the } \operatorname{arc} A B H\end{array}\right\} \& A K=A k\). \(\left.\begin{array}{l}C K \text { is the secant of the arc } A F \text {, and of the } \operatorname{arc} A B h \\ C k \ldots \ldots \ldots \ldots \ldots \ldots \text { of the } \operatorname{arc} A f \text {, and of the } \operatorname{arc} A B H\end{array}\right\} \& C K=C k\).


Now let the \(\operatorname{arc} A F=a\), and a semicircular are or arc of \(180^{\circ}=\pi\); then, since arc \(A F=f B=B h=A H\), we have,
\[
\begin{aligned}
& \operatorname{Arc} A f=\pi-f B=\pi-A F=\pi-a . \\
& A B h=\pi+B h=\pi+A F=\pi+a . \\
& A B H=2 \pi-A H=2 \pi-A F=2 \pi-a \text {. }
\end{aligned}
\]

Hence, \(F G=\sin . a|f g=\sin .(\pi-a)| g h=\sin .(\pi+a) \mid G H=\sin .(2 \pi-a)\)


But when these lines are expressed algelraically, \(f g=\) \(+F G, g h\) and \(G H=-F G ; C g=-C G ; A k=-A K\); and \(C k=-C K\); from which we deduce,
\(\sin \cdot(\pi-a)=\sin \cdot a^{\prime} \cos \cdot(\pi-x)=-\cos \cdot a \mid \tan \cdot(\pi-a)=-\tan \cdot a^{\prime} \sec \cdot(\pi-a)=-\sec \cdot a\) \(\sin .(\pi+a)=-\sin \cdot a \cos .(\pi+a)=-\cos \cdot a \tan .(\pi+a)=+\tan \cdot a \sec .(\pi+a)=-\sec \cdot a\) \(\sin .(2 \pi-a)=-\sin \cdot a \cos .(2 \pi-a)=+\cos \cdot a \tan \cdot\left(2 \pi-a\left(=-\tan \cdot a_{1} \sec \cdot(2 \pi-a)=+\sec . a\right.\right.\)

\section*{20} on the relation of the sine, tanaent, \&c.

Since \(\pi-a=\) the supplement of the angle \(a\), and
\(\sin .(\pi-a)=\sin . a\),
\(\cos .(\pi-a)=-\cos , a\),
\(\tan .(\pi-a)=-\tan . a\),
sec. \((\pi-a)=-\sec . a\),
it appears that the sine of the supplement of any angle is the same with the sine of that angle; and that the cosine, tangent, and secant of the supplement of any angle is the same as the cosine, tangent, and secant of that angle, but with a negative sign.

For a more general exhibition of a table of this kind, and for many very important Trigonometrical Theorems applicable to purposes purely algebraical, the Reader is referred to Professor Woodhouse's Treatise on Plane and Spherical Trigonometry.

\section*{CHAP. II.}
on
THE INVESTIGATION OF TRIGONOMETRICAL FORMULE.

Trigonometrical Formule are generated by processes purely algebraical; but it will be proper to investigate geometrically the fundamental Theorem upon which they are built.

\section*{VIII.}

On the method of finding geometrically the sine and cosine of the sum and difference of any two arcs. 38. Let \(A F, F E\), be the two given arcs, of which \(A F\) is the greater ; take \(F D=F E\), and'draw the chord \(E D\),

which will be bisected by the radius \(C F\) in the point \(L\); let fall the perpendiculars \(D H, F G, L O, E M\), upon the diameter, and draw \(D Q, L N\), parallel to it, meeting \(L O\) and \(E M\) in the points \(Q\) and \(N\). Then \(F G=\sin . A F\), \(C G=\cos . A F, E L=\sin . E F, C L=\cos . E F\).

Since the arc \(E F=\) the arc \(F D, E L\) must be equal to \(L D\); and since \(L N\) is parallel to \(D Q\), the \(\angle E L N\) is equal to the \(\angle L D Q\); hence the right-angled triangles \(E L N, L D Q\), are both equal and similar ; \(\therefore E N=L Q\), and \(N L=Q D\). In the parallelograms \(M N L O, O Q D H\), we have \(N M=L O\), and \(D H=Q O\); also \(Q D=O H\), and \(N L=M O\); hence \(Q D, O H, O M, N L\), are all equal to each other.
Now the arc \(A E=A F+F E=\) sum of the arcs,
arc \(A D=A F-F D(F E)=\) difference of the arcs.
And \(E M=\sin . A E=\) sine of the sum,
\(D H=\sin . A_{i} D=\) sine of the difference,
\(C M=\cos . A E=\operatorname{cosine}\) of the sum,
\(C H=\cos . A D=\) cosine of the difference.
Again, since \(F G\) is parallel to \(L O\), and \(L N\) parallel to \(C O\), the triangles \(C F G, C L O, E N L\), are similar;
Hence \(C F: F G:: C L: L O=\frac{F G \times C L}{C F}=\frac{\sin . A F \times \cos . E F}{\mathrm{rad}}\)
\[
C F: C G:: E L: N E=\frac{C G \times E L}{C F^{\prime}}=\frac{\cos A F \times \sin . E F}{\mathrm{rad} .}
\]
\[
C F: C G:: C L: C O=\frac{C G \times C L}{C F}=\frac{\cos . A F \times \cos . E F}{\mathrm{rad} .}
\]
\[
C F: F G:: E L: N L=\frac{F G \times E L}{C F}=\frac{\sin . A F \times \sin . E F}{\mathrm{rad} .}
\]
39. Now \(E M=M N+N E=L O+N E\) or \(\sin\). of \(\operatorname{sum}=\frac{\sin . A F \times \cos . E F+\cos . A F \times \sin . E F}{\mathrm{rad} .}\)
\[
D H \text { or } Q O=L O-L Q=L O-N E \text { or } \sin . \text { of } d i f .=\frac{\sin . A F \times \cos . E F-\cos . A F \times \sin . E F}{\mathrm{rad} .}
\]
(a) \(C M=C O-M O=C O-N E\) or cos.of sum \(=\frac{\cos . A F \times \cos \cdot E F-\sin . A F \times \sin . E F}{\mathrm{rad} .}\)
\(C H=C O+O H=C O+N E\) or cos.of \(d i f .=\frac{\cos . A F \times \cos . E F+\sin . A F \times \sin . E F}{\mathrm{rad} .}\)
(a) In Fig. 2, where \(A E\) is greater than \(90^{\circ}\), we have \(C M=M O-C O ; \therefore-C M\) \(=C O-M O\); for in this case the cosine is negative, (Art.37).
\[
\begin{aligned}
& \text { IX. } \\
& \text { On the Formula derived immediately from the } \\
& \text { foregoing Theorem. }
\end{aligned}
\]

Previous to the investigation of these Algebraic Formulæ, it will be necessary to exhibit the system of notation by which the operations are conducted.
40. Let \(a\) and \(b\) be any two arcs, of which \(a\) is the greater ; then

The sine of \(a\) is expressed by sin. \(a\) The sine of their sum is expressed bysin. \((a+b)\).
\begin{tabular}{|c|c|}
\hline & rence • . . sin. ( \(a-\downarrow\) ) \\
\hline tangent & half their sum . . \(\sin \cdot \frac{1}{2}(a+b)\) \\
\hline cotangent & - half their differen. sin. \(\frac{1}{2}(a-b)\). \\
\hline Square of sine . \(\sin ^{2}{ }^{2} a\) & The tangent of their sum . .tan. \((a+b)\). \\
\hline Cube . . . . sin. \({ }^{3} a\) & difference tan. \((a-b)\). \\
\hline Square of tangent . tan. \({ }^{2} a\) & alf their sum . . tan. \(\frac{1}{2}(a+b)\). \\
\hline Cube . . . . . tan. \({ }^{3} a\) & ence, tan. \(\frac{1}{2}(a\) \\
\hline \&c. \&c. \&c. & \\
\hline
\end{tabular}
41. Now let rad. \(=1, A F=a, E F=b\); then the general expressions for the sine and cosine of the sum and difference of any two arcs, as they stand in Art. 38, may be exhibited in the following manner;
\[
\begin{aligned}
& \sin .(a+b)=\sin . a \times \cos . b+\cos . a \times \sin . b(C) \\
& \sin .(a-b)=\sin . a \times \cos . b-\cos . a \times \sin . b(D) \\
& \cos .(a+b)=\cos . a \times \cos . b-\sin . a \times \sin . b(E) \\
& \cos .(a-l)=\cos . a \times \cos . b+\sin . a \times \sin . b(F) .
\end{aligned}
\]

The formulæ immediately deducible from these expressions may be divided into three classes.

CLASS I.

\section*{CLASS I.}

This class consists of formulæ derived from them by addition and sultraction.

> Formula 1 . 42. \(\begin{gathered}A d d(D) \text { to }(C), \text { then } \\ \sin .(a+b)+\sin .(a-b)=2 \sin . a \times \cos . b, \\ \text { or } \sin . a \times \cos . b=\frac{x}{2} \sin .(a+b)+\frac{x}{2} \sin .(a-b) .\end{gathered}\)

Formula 2.
43. Subtract (D) from (C), then \(\sin .(a+b)-\sin .(a-b)=2 \cos . a \times \sin . b\), or \(\cos . a \times \sin . b=\frac{1}{2} \sin .(a+b)-\frac{1}{2} \sin .(a-b)\).

Formula 3.
44. Add \((E)\) to \((F)\), we have \(\cos .(a+b)+\cos .(a-b)=2 \cos , a \times \cos . i\); \(\therefore \cos a \times \cos . b=\frac{\pi}{2} \cos (a+b)+\frac{x}{2} \cos (a-b)\).

\section*{Formula 4.}
45. Sultract \((E)\) from \((F)\), then \(\cos .(a-b)-\cos .(a+b)=2 \sin . a \times \sin . b\), or \(\sin , a \times \sin . b=\frac{1}{2} \cos .(a-b)-\frac{1}{2} \cos .(a+b)\).

\section*{CLASS II.}

In the second Class are placed such formulæ as may be immediately derived from those in Class I. by making \(a+b=p\), and \(a-b=q\); in which case \(a=\frac{1}{2}(p+q)\), and \(l=\frac{1}{2}(p-q)\); then, from

Formula 1. \(\sin . p+\sin . q=2 \sin , \frac{x}{2}(p+q) \cos \cdot \frac{1}{2}(p-q)\).
. . . . . 2. \(\sin . p-\sin . q=2 \cos \cdot \frac{x}{2}(p+q) \sin . \frac{1}{2}(p-q)\).
......3. \(\cos . p+\cos . q=2 \cos . \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)\).
..... 4. \(\cos . q-\cos . p=2 \sin . \frac{x}{2}(p+q) \sin . \frac{x}{2}(p-q)\). But

But it is evident that it is not necessary to consider \(p\) and \(q\) as the sum and difference of \(a\) and \(l\), any longer than whilst the substitution is aetually making. When this substitution is once made, the expressions containing \(p\) and \(q\) become true for any arcs whatever; to preserve therefore an uniformity of notation, we shall put \(a\) and \(l\) for \(p\) and \(q\) in these latter expressions, and we then have

Formula 5.
46. \(\sin . a+\sin . b=2 \sin \cdot \frac{x}{2}(a+b) \cos \frac{1}{2}(a-b)\).

Formula 6.
47. \(\sin . a-\sin . b=2 \cos \cdot \frac{\pi}{2}(a+b) \sin \cdot \frac{1}{2}(a-b)\).

\section*{Formula 7.}
48. cos. \(a+\cos . b=2 \cos \cdot \frac{1}{2}(a+b) \cos \cdot \frac{1}{2}(a-b)\).

Formula 8.
49. \(\cos . b-\cos . a=2 \sin . \frac{1}{2}(a+b) \sin \cdot \frac{1}{2}(a-b)\).

\section*{CLASS III.}

By Art. 15, if rad. \(=1, \tan .=\frac{\sin .}{\cos .}\); and by Art. 16, cotan \(=\frac{1}{\tan }=\frac{\cos .}{\sin .}\); and in this third Class are placed the formulæ which arise from dividing those of Class II. by each other in succession, and substituting tan. for \(\frac{\sin .}{\cos .}\), cotan. for \(\frac{\cos .}{\sin .}, \tan\). for \(\frac{1}{\operatorname{cotan},}\), or cotan. for \(\frac{1}{\tan .}\).

Formula 9.
50. \(\frac{\sin \cdot a+\sin \cdot b}{\sin \cdot a-\sin \cdot b}=\frac{\sin \cdot \frac{1}{2}(a+b) \cos \cdot \frac{1}{2}(a-b)}{\cos \cdot \frac{1}{2}(a+b) \sin \cdot \frac{1}{2}(a-b)}=\frac{\tan \cdot \frac{x}{2}(a+b)}{\tan \cdot \frac{1}{2}(a-b)}\).

Formula 10.
51. \(\frac{\sin \cdot a+\sin . b}{\cos a+\cos \cdot b}=\frac{\sin \cdot \frac{1}{2}(a+b) \cos \cdot \frac{1}{2}(a-b)}{\cos \cdot \frac{1}{2}(a+b) \cos \cdot \frac{1}{2}(a-b)}=\frac{\sin \cdot \frac{1}{2}(a+b)}{\cos \cdot \frac{1}{2}(a+b)}\)
\[
=\tan \cdot \frac{1}{2}(a+b) .
\]

Formula 11.
52.
\[
\begin{array}{r}
\frac{\sin \cdot \pi+\sin \cdot b}{\cos \cdot b-\cos \cdot a}=\frac{\sin \cdot \frac{1}{2}(a+b) \cos \cdot \frac{1}{2}(a-b)}{\sin \cdot \frac{1}{2}(a+b) \sin \cdot \frac{1}{2}(a-b)}=\frac{\cos \cdot \frac{1}{2}(a-b)}{\sin \cdot \frac{1}{2}(a-b)} \\
=\operatorname{cotan} \cdot \frac{1}{2}(a-b) .
\end{array}
\]

Formula 12.
53. \(\frac{\sin . a-\sin . b}{\cos a+\cos \cdot b}=\frac{\cos \cdot \frac{1}{2}(a+b) \sin \cdot \frac{1}{2}(a-b)}{\cos \cdot \frac{1}{2}(a+b) \cos \cdot \frac{1}{2}(a-b)}=\frac{\sin \cdot \frac{1}{2}(a-b)}{\cos \cdot \frac{1}{2}(a-b)}\)
\[
=\tan \cdot \frac{x}{2}(a-b) .
\]

Formula 13.
54. \(\frac{\sin . a-\sin . b}{\cos . b-\cos . \alpha}=\frac{\cos \cdot \frac{1}{2}(a+b) \sin \cdot \frac{1}{2}(a-b)}{\sin \cdot \frac{1}{2}(a+b) \sin \cdot \frac{1}{2}(a-b)}=\frac{\cos \cdot \frac{1}{2}(a+b)}{\sin \cdot \frac{1}{2}(a+b)}\)
\[
=\operatorname{cotan} \cdot \frac{1}{2}(a+b) .
\]

\section*{Formula 14.}
55. \(\frac{\cos a+\cos \cdot b}{\cos \cdot b-\cos \cdot a}=\frac{\cos \cdot \frac{x}{2}(a+b) \cos \cdot \frac{1}{2}(a-b)}{\sin \cdot \frac{1}{2}(a+b) \sin \cdot \frac{1}{2}(a-b)}=\frac{\operatorname{cotan} \cdot \frac{1}{2}(a+b)}{\tan \cdot \frac{1}{2}(a-b)}\).

To this class may be added three other formulæ, which arise from making \(b=0\) in formulæ \(10,11,12,13\), or 14 ; \(\therefore .2 s s\) in which case, \(\sin . b=0\), and \(\cos . b(=\) radius \()=1\).

\section*{Formula 15.}
56. Make \(b=0\), in formula 10, or 12 ; then,
\[
\frac{\sin \cdot a}{1+\cos \cdot a}=\tan \cdot \frac{1}{2} a=\frac{1}{\operatorname{cotang} \cdot \frac{1}{2} a}
\]

Formula 16.
57. Make \(b=0\), in formula 11, or 13; then,
\(\frac{\sin \cdot a}{1-\cos a}=\operatorname{cotan} \cdot \frac{1}{3} a=\frac{1}{\tan \cdot \frac{1}{3} a}\).

\section*{Formula 17.}
58. Make \(b=0\), in formula 14 ; then,
\[
\frac{1+\cos \cdot a}{1-\cos \cdot a}=\frac{\operatorname{cotan} \cdot \frac{1}{2} a}{\tan \cdot \frac{\pi}{2} a}=\operatorname{cotan}^{2} \frac{1}{2} a, \text { or } \frac{1}{\tan \cdot{ }^{2} \frac{1}{2} a} .
\]

Formula 18.
59. Invert the expression in formula 17 ; then
\[
\frac{1-\cos a}{1+\cos a}=\tan ^{2} \frac{1}{2} a .
\]

\section*{X.}

On the investigation of Formula for finding the sine and cosine of mulliple arcs.
60. In Formula 1st, (Art. 41.) transpose \(\sin .(a-b)\) to the other side of the equation; then,
\[
\sin .(a+b)=2 \cos . b \times \sin . a-\sin .(a-b) .
\]

For \(a\) in this equation, substitute \(b, 2 b, 3 b, 4 b, \& c\). successively; and we have, \(\sin .2 b=2 \cos . b \times \sin . b\), \(\sin .3 b=2 \cos . b \times \sin .2 b-\sin . b=4 \cos ^{2} b \times \sin . b-\sin . b\), \(\sin .4 b=2 \cos . b \times \sin .3 b-\sin .2 b=8 \cos ^{.}{ }^{3} b \times \sin . b-4 \cos . b \times \sin . b_{0}\) \(\sin .5 b=2 \cos . b \times \sin .4 b-\sin .3 b=8 c\).
\(\& c .=\& c\).
\(\sin . n b=2 \cos . b \times \sin .(n-1) b-\sin .(n-2) b=8 \mathrm{c}\).
61. In Formula 3d, (Art. 43,) transpose cos. \((a-b)\) to the other side of the equation; then,
\[
\cos (a+b)=2 \cos . b \times \cos a-\cos (a-b) .
\]

For \(a\) in this equation, substitute \(b, 2 b, 3 l, 4 b, \& e\). successively; and we have,
\(\cos .2 b=2 \cos ^{\circ} . b-1\), \({ }^{,}\)
\(\cos .3 b=2 \cos . ~ b \times \cos .2 b-\cos . b=4 \cos ^{3} b-3 \cos . b\),
\(\cos .4 b=2 \cos . b \times \cos .3 b-\cos .2 b=8 \cos { }^{4} b-8 \cos ^{2} b+1\),
\(\cos .5 b=2 \cos . b \times \cos .4 b-\cos .3 b=8 t c\).
\(\& c .=8 \cdot \mathrm{c}\).
\(\cos . n b=2 \cos . b \times \cos .(n-1) b-\cos .(n-2) b=8 \mathrm{c}\).
From which it appears, that if the sine and cosine of any arc \(l\) be given, the sines and cosines of the multiple arcs \(2 l, 3 b, 4 b, 5 b, \& c c\)., \(n l\) may be found in terms of the powers of the sine and cosine of the arc \(l\).

\section*{XI.}

On the investigation of Formulte for finding the tangent and cotangent of multiple arcs.
To do this, we must find the tangents of the sum and difference of any two ares \(a\) and \(b\).
62. Now by Art. 15 , when rad. \(=1, \tan .=\frac{\sin \text {. }}{\cos \text {. }}\), hence \(\tan .(a+b)=\frac{\sin .(a+b)}{\cos .(a+b)}=(\) by Art. 40\() \frac{\sin . a \times \cos . b+\cos . a \times \sin . b}{\cos . a \times \cos . b-\sin . a \times \sin . b}=\) (by dividing the numerator and denominator by cos. \(a \times \cos , b\) )
\[
\frac{\frac{\sin . a}{\cos \cdot a}+\frac{\sin . b}{\cos . b}}{1-\frac{\sin . a \times \sin . b}{\cos a} a \times \cos . b}=\frac{\tan . a+\tan . b}{1-\tan . a \times \tan . b}
\]
63. For the same reason, tan. \((a-b)=\frac{\sin .(a-b)}{\cos \cdot(a-b)}=\)
\[
\frac{\sin . a \times \cos . b-\cos . a \times \sin . b}{\cos . a \times \cos . b+\sin . a \times \sin . b}=\frac{\frac{\sin . a}{\cos . a}-\frac{\sin . b}{\cos . b}}{1+\frac{\sin . a \times \sin . b}{\cos . a \times \cos . b}}=\frac{\tan . a-\tan . b}{1+\tan . a \times \tan . b} .
\]
63. Now

\footnotetext{
*For cos. \((a-b)=\cos .(b-b)=\cos .0=\mathrm{rad} .=1\).
}
64. Now in Art. 61 , let \(b=a\), then \(\operatorname{tan.} 2 a=\frac{2 \tan . a}{1-\tan ^{2} a}\).

Let \(b=2 a\), and we have
tan. \(3 a=\frac{\tan . a+\tan .2 a}{1-\tan . a \times \tan .2 a}=\tan . a+\frac{2 \tan . a}{1-\tan .^{2} a}\).
\[
\frac{2 \tan \cdot{ }^{2} a}{1-\tan .^{2} a}
\]
\[
=\frac{\tan \cdot a-\tan \cdot{ }^{3} a+2 \tan \cdot a}{1-\tan \cdot{ }^{2} a-2 \tan \cdot{ }^{2} a}=\frac{3 \tan \cdot a-\tan ^{3} a}{1-3 \tan \cdot{ }^{3} a}
\]

And thus by substituting for \(b\), in Art. \(61, a, 2 a, 3 a\), \(4 a\), \&c. successively, we obtain formulæ for tan. \(2 a\), \(\tan .3 a, \tan .4 a, \tan .5 a, \& \mathrm{c} . \& \mathrm{c}\).
65. Since (when rad. \(=1\) ), cotan. \(=\frac{1}{\tan .}\), we have
\[
\begin{aligned}
\operatorname{cotan} \cdot 2 a=\frac{1}{\tan \cdot 2 a}=\frac{1-\tan \cdot{ }^{2} a}{2 \tan \cdot a} & =\frac{1}{2 \tan \cdot a}-\frac{1}{2} \tan \cdot a \\
& =\frac{1}{2} \operatorname{cotan} \cdot a-\frac{1}{2} \tan \cdot a .
\end{aligned}
\]

And,
\(\operatorname{cotan.~} 3 a=\frac{1}{\tan .3 a}=\frac{1-3 \tan .{ }^{2} a}{3 \tan \cdot a-\tan .{ }^{3} a}\).
\(\& c .=\& c\).

\section*{XII.}

On the investigation of Formulce for expressing the powers of the sine and cosine of an arc.
66. By Formula 4th, (Art 44,) we have
\[
\sin . a \times \sin . b=\frac{x}{2} \cos .\left(a-b^{\frac{1}{2}}-\right) \cos .(a+b) .
\]

Let \(b=a\), then \(\sin { }^{\circ} a=\frac{1}{2}-\frac{1}{2} \cos .2 a\), and multiplying by \(\sin . a\),
\[
\begin{aligned}
\begin{aligned}
\sin { }^{3} a & =\frac{1}{2} \sin . a-\frac{1}{2} \cos .2 a \times \sin . a, \\
& =\frac{1}{2} \sin . a-\frac{1}{4} \sin .3 a+\frac{1}{4} \sin . a, \\
& =\frac{3}{4} \sin . a-\frac{1}{4} \sin .3 a-\text { multiply by sin. } a, \text { then } \\
\sin .{ }^{4} a & =\frac{3}{4} \sin .^{2} a-\frac{1}{4} \sin .3 a \times \sin . a, \text { and substituting for } \\
& \quad\left[\sin .{ }^{2} a\right. \text { its value just found, } \\
& =\frac{3}{8}-\frac{3}{8} \cos .2 a-\frac{1}{4} \sin .3 a \times \sin . a, \\
& =\frac{3}{8}-\frac{3}{8} \cos .2 a-\frac{\pi}{8} \cos .2 a+\frac{1}{8} \cos .4 a,+ \\
& =\frac{3}{8}-\frac{1}{2} \cos .2 a+\frac{1}{8} \cos .4 a,
\end{aligned}
\end{aligned}
\] [ \(\sin .^{2} a\) its value just found,
\(\& c .=\& c\).
By proceeding in this manner, we obtain expressions for any powers of the sine, in terms of the sine and cosine of the arc or its multiples.
67. By Formula 3d, (Art. 43,) we have, \(\cos . a \times \cos . b=\frac{1}{2} \cos .(a+b)+\frac{1}{2} \cos .(a-b)\).
Let \(b=a\), then
\(\cos ^{2} a=\frac{1}{2} \cos .2 a+\frac{1}{2}\), or \(\frac{1}{2}+\frac{1}{2} \cos\). \(2 a\); mult. by \(\cos\). \(a\), then \(\cos ^{3} a=\frac{1}{2} \cos . a+\frac{1}{2} \cos .2 a \times \cos . a\),
\(=\frac{1}{2} \cos . a+\frac{1}{4} \cos .3 a+\frac{1}{4} \cos . a, \ddagger\)
\(=\frac{3}{4} \cos . a+\frac{x}{4} \cos .3 a\); multiply by cos. \(a\), then
\(\cos\).
* By Formula 2d, (Art. 42,) cos. \(a \times \sin . b=\frac{1}{\frac{1}{2} \sin . ~}(a+b)\) \(\frac{1}{3} \sin .(a-b)\); for \(a\) put \(2 a\), and for \(b\) put \(a\), then \(\cos .2 a \times \sin . a\) \(=\frac{1}{2} \sin .3 a-\frac{1}{2} \sin . a, \therefore \frac{1}{2} \cos .2 a \times \sin . a=\frac{1}{4} \sin .3 a-\frac{1}{4} \sin . a\).
\(\dagger\) By Formula 4th, (Art. 44,) \(\sin . a \times \sin . b=\frac{x}{2} \cos .(a-b)-\) \(\frac{1}{\frac{1}{2}} \cos .(a+b)\); for \(a\) put \(3 a\), and for \(b\) put \(a\), then \(\sin .3 a \times \sin . a\) \(=\frac{1}{2} \cos .2 a-\frac{1}{2} \cos .4 a, \quad \therefore \frac{1}{4} \sin .3 a \times \sin . a=\frac{2}{8} \cos .2 a-\) \(\frac{1}{8} \cos .4 a\).
\(\ddagger\) By Formula 3d, (Art. 43,) cos. \(a \times \cos . b=\frac{1}{2} \cos .(a+b)\) \(+\cos .(a-b)\); for \(a\) put \(2 a\), and for \(b\) put \(a\), then \(\cos 2 a \times\) cos. \(a=\frac{1}{2} \cos .3 a+\frac{1}{2} \cos . a, \quad \therefore \frac{1}{\frac{1}{2}} \cos .2 a \times \cos . a=\frac{b}{4} \cos .3 a+\) \(+\cos \alpha\).
\(\cos . a=\frac{3}{4} \cos ^{2} a+\frac{1}{4} \cos .3 a \times \cos . a\); and substituting for [ \(\cos ^{2} a\) its value just found,
\[
=\frac{3}{8}+\frac{3}{8} \cos .2 a+\frac{1}{4} \cos .3 a \times \cos . a,
\]
\[
=\frac{3}{8}+\frac{3}{8} \cos .2 a+\frac{x}{8} \cos .4 a+\frac{1}{8} \cos .2 a \text {, * }
\]
\[
=\frac{3}{8}+\frac{1}{2} \cos .2 a+\frac{7}{8} \cos 4 a,
\]
\&c. \(=\) \&r.
And thus we obtain expressions for any powers of the cosine, in terms of the cosine of the arc or its muitiples.

\footnotetext{
* In Formula of Note ( \(\ddagger\) ), for \(a\) put \(3 a\), and for \(b\) put \(a\), then \(\cos .3 a \times \cos . a=\frac{\frac{\pi}{2}}{2} \cos .4 a+\frac{1}{2} \cos .2 a, \therefore \frac{\frac{1}{3}}{} \cos .3 a \times \cos . a\) \(=\frac{1}{8} \cos .4 a+\frac{1}{\frac{1}{2}} \cos .2 a\).
}

\section*{CHAP. III.}

ON THE
CONSTRUCTION OF TRIGONOMETRICAL TABLES.

From the Formulæ exhibiting the value of the sine, cosine, tangent, \&c. in Sect. II. it appears, that if the sine of an are be known, the rest may be immediately found; and by means of the formulæ investigated in Sect. IX. if the sine and cosine of any arc be given, we can find the sine and cosine of any multiple of that arc. Hence then it is evident, that if the sine and cosine of one degree, minute, second, \&c. be known arithmetically, we could calculate the arithmetical value of the sine, cosine, tangent, \&c. of every degree, minute, second, \&c. of the quadrant. We shall therefore begin with shewing the method of finding the sine and cosine of an arc of \(1^{\prime}\).

\section*{XIII.}

Method of finding the sine and cosine of an arc of \(1^{\prime}\).
65. The semiperiphery of a circle whose radius is 1 , is 3.141592653 ; and since it is divided into \(180^{\circ}\), and each degree into 60 minutes, the number of minutes contained in it is \(180 \times 60\), or 10800 ; the length of an arc of \(1^{\prime}\), therefore, is \(\frac{3.141592653}{10800}\), or .000290888 .

Let \(a\) be any arc of a circle whose radius is 1 , then
\[
\begin{aligned}
& \sin . a=a-\frac{a^{3}}{2.3}+\frac{a^{5}}{2.3 .4 .5}-8 \mathrm{c} \\
& \therefore a-\sin . a=\frac{a^{3}}{2.3}-\frac{a^{5}}{2 \cdot 3 \cdot 4.5}+\& \mathrm{c}
\end{aligned}
\]

Hence \(\operatorname{arc} 1^{\prime}-\sin .1^{\prime}=\frac{.0002908881^{3}}{2.3}-\frac{.0002908881^{5}}{2.3 .4 .5}=\) .0000000000041 ; from which it appears, that the difference between an arc of \(1^{\prime}\) and its sine is so small as not to affect their respective values for the first ten places of decimals; and as Tables calculated for seven places of decimals are sufficiently exact for all common purposes, the arc and sine may in this case be considered as equal to each other; i.e. sin. \(1^{\prime}=.000290888\) to radius 1 ; and therefore \(\cos .1^{\prime}=\sqrt{1-\sin ^{2} .^{2} 1^{\prime}}=\sqrt{1-.0002908 \overline{\left.\overline{8}\right|^{2}}}=\) \(\sqrt{1-.000000084615828544}=\sqrt{.999999915284171456}\) \(=.99999996\) very nearly.

\section*{XIV.}

Method of constructing a Table of sines, cosines, tangents, छic. for every degree and minute of the quadrant, to seven places of decimals.

Since cos. \(1^{\prime}=.99999996,2 \cos .1^{\prime}\) must be equal to 1.99999992 ; call this quantity \(m\). The nearest value of .000290888 to seven places of decimals is .0002909 . Now let \(b\), in the series at the end of Art. 59, be an arc of \(1^{\prime}\); for \(\sin\).

\footnotetext{
* For the investigation of this series, the Reader is referred to Vince's Fluxions, Prop. 103.
}
\(\sin . b\), and \(2 \cos . b\), substitute .0002909 and \(m\) respectively; and we have

> 69. For the sines.
\[
\begin{aligned}
& \sin .2^{\prime}=2 \cos .1^{\prime} \times \sin .1^{\prime}=m \times .0002909=.0005818(a) . \\
& \sin .3^{\prime}=2 \cos .1^{\prime} \times \sin .2^{\prime}-\sin .1^{\prime}=m \times a-.0002909=.0008727(b) . \\
& \sin .4^{\prime}=2 \cos .1^{\prime} \times \sin .3^{\prime}-\sin .2^{\prime}=m b-a=.0011636(c) . \\
& \sin .5^{\prime}=2 \cos .1^{\prime} \times \sin .4^{\prime}-\sin .3^{\prime}=m c-b=.0014544 . \\
& \& c .=8 c . .^{\prime} \& c .
\end{aligned}
\]

\section*{70. For the cosines.}
\(\cos .2^{\prime}=2 \cos .1^{\prime} \times \cos 1^{\prime}-1=m \times .99999996-1=.9999998(d)\). \(\cos .3^{\prime}=2 \cos .1^{\prime} \times \cos .2^{\prime}-\cos .1^{\prime}=m \times d-.99999996=.9999996(e)\). \(\cos .4^{\prime}=2 \cos .1^{\prime} \times \cos .3^{\prime}-\cos .2^{\prime}=m \times e-d \quad=.9999993\).
\[
\& c .=\& c . \& c
\]

In this manner we proceed to find the sines and cosines of every degree and minute of the quadrant, as far as \(30^{\prime}\); the whole difficulty of the operation consisting only in the multiplication of each successive result by the quantity \((m)\). From \(30^{\circ}\) to \(60^{\circ}\) the sines may be found by mere subtraction. To shew the method of doing this, it is necessary to have recourse to Formula 1. where we have
\[
\sin \cdot \overline{a+b}+\sin \cdot \overline{a-b}=2 \sin . a \cos . b .
\]
\[
\begin{array}{r}
\text { Let } a=30^{\circ}, \\
\text { then } \sin . a=\frac{1}{2} ;
\end{array}\left\{\begin{array}{r}
\therefore \sin \cdot \overline{30^{\circ}+b}+\sin \cdot \overline{30^{\circ}-b}=2 \times \frac{1}{2} \times \cos . b=\cos . b \text {, } \\
\text { or } \sin . \overline{30^{\circ}+b}=\cos . b-\sin \overline{30^{\circ}-b .}
\end{array}\right.
\]

Let \(l=1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 8 \mathrm{c}\). then \(\sin .30^{\circ} 1^{\prime}=\cos .1^{\prime}-\sin .29^{\circ} 59^{\prime}\). \(\sin .30^{\circ} 2^{\prime}=\cos .2^{\prime}-\sin .29^{\circ} 58^{\prime}\). \(\sin .30^{\circ} 3^{\prime}=\cos .3^{\prime}-\sin .29^{\circ} 57^{\prime}\).
\(\& c .=\& c .-\& c\).
which being continued to \(60^{\circ}\), the cosines also will be known to \(60^{\circ}\); for
\[
\begin{aligned}
\cos .30^{\prime} 1^{\prime} & =\sin .59^{\circ} 59^{\prime} . \\
\cos .30^{\circ} 2^{\prime} & =\sin .59^{\circ} 58^{\prime} \\
\cos .30^{\circ} 3^{\prime} & =\sin .50^{\circ} 57^{\prime} \\
\& c . & =\& c .
\end{aligned}
\]

The sines and cosines from \(60^{\circ}\) to \(90^{\circ}\) are known from the sines and cosines between \(0^{\circ}\) and \(30^{\circ}\); thus,
\[
\begin{array}{c|c}
\sin 60^{\circ} 1^{\prime}=\cos 29^{\circ} 59^{\prime} & \cos 60^{\circ} 1^{\prime}=\sin .29^{\circ} 59^{\prime \prime} . \\
\sin .60^{\circ} 2^{\prime}=\cos 29^{\circ} 58^{\prime} . & \cos 60^{\circ} 2^{\prime}=\sin .29^{\circ} 58^{\prime} . \\
\sin 60^{\circ} 3^{\prime}=\cos 29^{\circ} 57^{\prime} . & \cos .60^{\circ} 3^{\prime}=\sin .29^{\circ} 57^{\prime} . \\
\& c .=\& c . & \& c .=\& c .
\end{array}
\]

\section*{71. For the versed sines.}

Having found the sines and cosines, the versed sines are found by subtracting the cosines from radius in arcs less than \(90^{\circ}\), and by adding the cosines to radius in arcs greater than \(90^{\circ}\).

Thus, ver. sin. \(1^{\prime}=1-\cos ^{\prime} 1^{\prime}=.00000004\). ver. \(\sin .2^{\prime}=1-\cos .2^{\prime}=.0000002\). ver. \(\sin .3^{\prime}=1-\cos .3^{\prime}=.0000004\). ver. \(\sin .4^{\prime}=1-\cos .4^{\prime}=.0000007\).
\[
\& c . \quad=\& c
\]
ver. \(\sin .90^{\circ} 1^{\prime}=1+\sin .1^{\prime}=1.000290888\). ver. \(\sin .90^{\circ} 2^{\prime}=1+\sin .2^{\prime}=1.0005818\). ver. \(\sin .90^{\circ} 3^{\prime}=1+\sin .3^{\prime}=1.0008727\).
\[
\& c=\& c
\]
72. For the tangents and cotangents.

When radius \(=1, \tan . a=\frac{\sin . a}{\cos a}\);' hence,
\[
\begin{aligned}
& \tan .1^{\prime}=\frac{\sin .1^{\prime}}{\cos 1^{\prime}}=\operatorname{cotan} .89^{\circ} 59^{\prime} \\
& \tan .2^{\prime}=\frac{\sin .2^{\prime}}{\cos .2^{\prime}}=\operatorname{cotan} .89^{\circ} 58^{\prime} . \\
& \tan .3^{\prime}=\frac{\sin \cdot 3^{\prime}}{\cos .3^{\prime}}=\operatorname{cotan} .89^{\circ} 57^{\prime} . \\
& \& c \cdot=\& c .=\& c .
\end{aligned}
\]

In this manner it will be necessary to proceed till we arrive at \(\tan .45^{\circ}\), after which the tangents (and consequently the cotangents) may be found by a more simple method. For by Art \({ }^{3}\). 61, 62.
\[
\tan \cdot \overline{a \pm b}=\frac{\tan \cdot a \pm \tan \cdot b}{1 \mp \tan \cdot a \times \tan \cdot b}
\]

Hence tan. \(\overline{45^{\circ}+6}-\tan . \overline{45^{\circ}-6}=\frac{1+\tan . b}{1-\tan . b}-\frac{1-\tan . b}{1+\tan .6}\).
\[
\begin{aligned}
& =\frac{1+\tan \cdot 1)^{2}-{\overline{1-\tan \cdot} \cdot)^{2}}_{1-\tan \cdot 6)^{2}} .}{}=\frac{4 \tan \cdot 6}{1-\tan \cdot()^{2}} .
\end{aligned}
\]

But by Art. 63. \(\tan .2 b=\frac{2 \tan . l}{1-\tan .\left.b\right|^{2}}\).
\[
\therefore 2 \tan .2 b=\frac{4 \tan . b}{1-\tan . b)^{2}} \text {. }
\]

Hence \(\tan \overline{45^{\circ}+b}-\tan . \overline{45^{\circ}-b}=2 \tan .2 l\),
\[
\text { or } \tan \cdot \overline{45^{\circ}+b}=\tan , \overline{45^{\circ}-b}+2 \tan .2 b \text {. }
\]

Let \(b=1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 8 c\). then
\[
\begin{aligned}
& \tan . 45^{\circ} 1^{\prime}=\tan .44^{\circ} 59^{\prime}+2 \tan .2^{\prime}=\operatorname{cotan} .44^{\circ} 59^{\prime} . \\
& \tan .45^{\circ} 2^{\prime}=\tan .44^{\circ} 58^{\prime}+2 \tan .4^{\prime}=\operatorname{cotan} .44^{\circ} 58^{\prime} . \\
& \tan .45^{\circ} 3^{\prime}=\tan .44^{\circ} 57^{\prime}+2 \tan .6^{\prime}=\operatorname{cotan} .44^{\circ} 57^{\prime} . \\
& \& c . \& c . \quad \& c .
\end{aligned}
\]

By this means we obtain the tangents and cotangents for every degree and minute of the quadrant.
73. For the secants and cosecants.

The secants and cosecants of the even minutes of the quadrant may be found from Art. 24, where we have,
Tan. \(a+\sec . a=\operatorname{cotan}\). of \(\frac{x}{2}\) comp. \(a\);
\(\therefore\) sec. \(a=\operatorname{cotan} . \frac{1}{2}\) comp. \(a-\tan . \alpha\).
Let \(a=2^{\prime}, 4^{\prime}, 6^{\prime}, 8^{\prime}, \& c\).
then sec. \(2^{\prime}=\operatorname{cotan} .44^{\circ} 59^{\prime}-\tan .2^{\prime}=\operatorname{cosec} .89^{\circ} 58^{\prime}\).
sec. \(4^{\prime}=\operatorname{cotan} .44^{\circ} 58^{\prime}-\tan .4^{\prime}=\operatorname{cosec} .89^{\circ} 56^{\prime}\).
sec. \(6^{\prime}=\operatorname{cotan} .44^{\circ} 57^{\prime}-\tan .6^{\prime}=\operatorname{cosec} .89^{\circ} 54^{\prime}\).
\(\& c .=\& ;\).
where the secants (and consequently the cosecants) are known from the tangents and cotangents being known.

With respect to the odd minutes of the quadrant, we must have recourse to the expression sec. \(a=\frac{1}{\cos . a}\).
\[
\text { Let } a=1^{\prime}, 3^{\prime}, 5^{\prime}, 7^{\prime}, \& c \text {. then }
\]
sec. \(1^{\prime}=\frac{1}{\cos .1^{\prime}}=\operatorname{cosec} 89^{\circ} 59^{\prime}\).
\(\sec .3^{\prime}=\frac{1}{\cos .3^{\prime}}=\operatorname{cosec} .89^{\circ} 57^{\prime}\).
\(\sec .5^{\prime}=\frac{1}{\cos .5^{\prime}}=\operatorname{cosec} .89^{\circ} 55^{\prime}\).
\(\& c .=\& c\).

By means therefore of these formulæ the secants and cosecants for the whole quadrant are known.

\section*{XV.}

On the investigation of formule of verification.
We have thus shewn the method of constructing the Trigonometrical Canon of sines, cosines, tangents, \&c. for every degree and minute of the quadrant ; the mode of arranging them in Tables must be learned from the Tables themselves, and the explanations which accompany them. We shall now shew the method of investigating certain formulæ, which, from their utility in rectifying any errors which may be made in these laborious arithmetical calculations, are called Formule of verification.

In Sect. V. we gave the method of finding the sines, cosines, tangents, \&c. of a variety of arcs from the established properties of arcs of \(45^{\circ}\) and \(30^{\circ}\); the values of the sines, cosines, \&c. deduced by this independent method, would serve as a very proper check to the computist in the process of calculation, and in that respect the formulæ from which they were derived may be considered as formulce of verification. But from the principles laid down in the preceding chapter, a vast variety of formulx of this kind might be deduced. We shall select only one, which may serve as a specimen of the rest.
74. In the isosceles triangle, described in the 10th Prop. of the Fourth Book of Euclid (see Figure in that book), since each of the angles at the base is double of the angle at the vertex, it is evident that \(5 B A D=180^{\circ}\), or \(B A D=36^{\circ}\); the base \(B D\) therefore is the chord of an
arc of \(36^{\circ}\), and consequently twice the sine of \(18^{\circ}\); \(\therefore \frac{1}{2} B D=\sin .18^{\circ}\).

Let \(B D=x\), \(A B=1 ;\)
then \(B C=A B-A C\),
Since \(A B \times B C=B D^{2}\),
we have \(1 \times \overline{1-x}=x^{2}\);
\[
\left\{\begin{aligned}
\therefore x^{2}+x & =1, \\
\text { and } x^{2}+x+\frac{x}{4} & =1+\frac{1}{4}=\frac{5}{4},
\end{aligned}\right.
\]
\[
\begin{aligned}
\text { or } x+\frac{1}{2} & =\frac{\sqrt{5}}{2} \\
\therefore x & =\frac{\sqrt{5}-1}{2}
\end{aligned}
\]
\[
\text { and } \frac{1}{2} x=\frac{\sqrt{5}-1}{4}=\sin .18^{\circ}
\]

Hence \(\operatorname{cos.~} 18^{(2)}=1-\sin .18^{0)^{2}}=1-\frac{6-2 \sqrt{5}}{16}=\frac{5+\sqrt{5}}{8}\).
By Art. 40. \(\cos . \overline{a+b}=\cos . a \times \cos . b-\sin , a \times \sin . b\).
Let \(b=a\), then \(\cos .2 a=\overline{\cos . a)^{2}}-\sin . a a^{2}\);
\[
\begin{aligned}
\therefore \cos \begin{aligned}
36^{\circ} & =\overline{\cos .18^{\circ}}-\overline{\left.\sin .18^{\circ}\right)^{2}} \\
& =\frac{5+\sqrt{5}}{8}-\frac{6-2 \sqrt{5}}{16} \\
& =\frac{10+2 \sqrt{5}-6+2 \sqrt{5}}{16} \\
& =\frac{4 \sqrt{5}+4}{16}=\frac{\sqrt{5}+1}{4}=\sin .54^{\circ}
\end{aligned} . . \begin{aligned}
\end{aligned} \\
\end{aligned}
\]

By Formula 1,
If \(a=54^{\circ}\),
\(\sin .\left(54^{\circ}+b\right)+\sin .\left(54^{\circ}-b\right)=2 \sin .54^{\circ} \times \cos . b=\frac{\sqrt{5}+1}{2} \times \cos . b(X)\).
If \(a=18^{\circ}\),
\(\sin .\left(18^{\circ}+b\right)+\sin .\left(18^{\prime}-b\right)=2 \sin .18^{\circ} \times \cos . b=\frac{\sqrt{5}-1}{2} \times \cos . b(Y)\).

Subtract \(Y\) from \(X\); then we have
\(\sin . \overline{54^{\circ}+b}+\sin . \overline{54^{\circ}-b}-\sin . \overline{18^{\circ}+b}-\sin . \overline{18^{\circ}-b}=\cos . b\), where different values may be substituted for \(b\), at the pleasure of the computist.

Let
\(b=10^{\circ}\), then \(\sin .64^{\circ}+\sin .44^{\circ}-\sin .28^{\circ}-\sin .8^{\circ}=\cos .10^{\circ}\) \(b=15^{\circ}, \ldots \sin .69^{\circ}+\sin .39^{\circ}-\sin .33^{\circ}-\sin .3^{\circ}=\cos .15^{\circ}\) \&c. \&c. \&c. \&c.

\section*{Example.}

In Sherwin's Tables (5th Edition), where the natural sines, cosines, tangents, \&c. are computed to radius 10000 , it appears that
\[
\begin{aligned}
\begin{aligned}
\sin .64^{\circ}= & 8987.940 \\
\sin .44^{\circ} & =\frac{6946.584}{15934.524}
\end{aligned} & \begin{array}{l}
\sin .28^{\circ}=4694.714 \\
\sin .8^{\circ}
\end{array}=\frac{1391.731}{6086.445} \\
& \underline{9086.445}
\end{aligned}
\]

Now, in the same Tables, the cosine of \(10^{\circ}\) is calculated at 9848.078 ; from which it appears, that there is some inaccuracy in the last figure of the numbers expressing the value either of \(\sin .64^{\circ}, \sin .44^{\circ}, \sin .28^{\circ}, \cos .10^{\circ}\), or \(\sin .8^{\circ}\).

> Again,
\(\sin .69^{\circ}=9335.804\)
\(\sin .39^{\circ}=\frac{6293.204}{15629.008}\)
5969.750
\(\underline{\underline{9659.258}}=\cos .15^{\circ}\) according to the formula.

In the same Tables, the cos. \(15^{\circ}\) stands at 9659.258 ; from which we may conclude, that \(\sin .69^{\circ}, \sin .39^{\circ}, \sin .33^{\circ}\), \(\cos .15^{\circ}\), and \(\sin .3^{\circ}\), are rightly computed.

\section*{XVI.}

On the construction of tables of logarithmic sines, cosines, tangents, Ec.
75. We have already shewn the method of calculating arithmetically a table of sines, cosines, tangents, \&c. for every degree and minute of the quadrant; which, thus expressed in parts of the radius, are called natural sines, cosines, \&c. But to facilitate the actual solution of problems in Plane and Spherical Trigonometry, it is necessary that we be furnished with the logarithms of these quantities. \({ }^{( }{ }^{2}\) ) To do this would be only to find the logarithms of the numbers as they stand in the tables, pages 34,35 ; but as those tables are calculated for radius (1), the sines and cosines are all proper fractions; their logarithrns, therefore, would all be negative. To avoid this, the common tables of logarithmic sines, cosines, \&\&. are calculated to a ratius of \(10^{10}\) or 10000000000 , in which case log. radius \(=10 \times\) \(\log .10=(\) for \(\log .10=1) 10 \times 1=10.0000000\).

Now, let \(s=\) sine of any are to radius ( 1 );
then, by Art. \(36,10^{10} \times s=\) sine of the saine are to radius \(10^{10}\).
But log. \(10^{10} \times s=10 \times \log .10+\log . s=10+\log . s\).
Hence, to find the logarithm of the sine of any arc to the radius \(10^{10}\), we have only to add 10 to the logarithm of that sine when calculated to the radius (1).

\author{
Example.
}

\footnotetext{
( \({ }^{\text {a }}\) ) For the method of calculating Logarithmic Tables, and for a full explanation of the nature and use of Logarithms, the reader is referred to the last chapter of the "Elements of Algelra."
}

Example 1. To find the logarithmic sine of \(1^{\prime}\).
By Sect. XıII. sine of \(1^{\prime}\) to radius \((1)=.0002909=\frac{2909}{10000000}=s\);
\(\therefore \log . s=\log .2909-\log .{ }^{*} 10000000=3.4637437-7=4.4637437\).
Hence, \(10+\log . s=10+4.4637437=6.4637437=\log\). sine of \(1^{\prime}\).
Ex. 2. To find the logarithmic sine of \(4^{\circ} \mathbf{1 5}^{\prime}\).
Natural sine of \(4^{\circ} 15^{\prime}=.0074108=\frac{74108}{1000000}=s ;\)
\(\therefore \log . s=\log .74108-\log .1000000=4.8698651-6 .=2.8698651\).
Hence, \(10+\log . s=10+2.8698651=8.8698651=\log . \sin .4^{\circ} 15^{\prime}\).
And in this manner the logarithmic cosines may be found.
76. Having found the logarithmic sines and cosines, the logarithmic tangents, secants, colangents, and cosecants, are found (from the expressions in Sect. II.) merely by addition and subtraction, in the following manner;
\(\begin{aligned} \text { Tan. }=\frac{\text { rad. } \times \sin .}{\cos .}, \therefore \text { log. } \tan .=\text { log. rad. }+\log \cdot \sin .-\log \cdot \cos .= & 10+\log . \sin . \\ & {[-\log \cdot \cos .}\end{aligned}\)
Sec. \(=\frac{\overline{\mathrm{rad}}^{2}}{\cos .}, \therefore \log . \sec .=2\) log.rad. \(-\log . \cos . \cdot=20-\log . \cos\).
\(\operatorname{Cotan} .=\frac{\mathrm{rad} .^{2}}{\tan .}, \therefore \log . \operatorname{cotan} .=2 \log\). rad. \(-\log . \tan . . .=20-\log . \tan\).
Cosec. \(=\frac{\overline{r a d .}^{2}}{\tan _{0}}, \therefore \log . \operatorname{cosec} .=2\) log. rad. \(-\log . \sin . \quad .=20-\log\). sin.
77. To find the logarithmic versed sines.

By Art. 20,
\[
\text { ver. } \sin _{0}=\frac{(\mathrm{chord})^{2}}{\mathrm{diam}_{0}}=\frac{\left(2 \sin . \frac{1}{2} \operatorname{arc}\right)^{2}}{2 \mathrm{rad}}=\frac{2\left(\sin . \frac{x}{2} \operatorname{arc}\right)^{2}}{\mathrm{rad}}
\]
\(\therefore\) log. ver. \(\sin .=\log .2+2 \log . \sin \frac{1}{2} \operatorname{arc}-\log . \mathrm{rad}\).

\section*{Exampli}

Example. To find log. versed sine of \(30^{\circ}\). Log. ver. \(\sin\). of \(30^{\circ}=\log .2+2 \log . \sin .15^{\circ}-\log\). rad.

Now log. \(2=.3010300\),
\(2 \log . \sin .15^{\circ}=18.8259924\)
19.1270224

Log. rad. \(=10.0000000\)
\(\therefore 9.1270224=\log\). ver. \(\sin\). of \(30^{\circ}\).
We have thus shewn the method of constructing tables of natural and logarithmic sines, cosines, versed sines, tangents, co-tangents, secants, and co-secants. But the actual calculation of these tables, or any part of them, is not the object of a tract of this kind.

\section*{CHAP. IV.}

ON THE
METHOD OF ASCERTAINING THE RELATION BETWEEN THE
SIDES AND ANGLES OF PLANE TRIANGLES;
AND ON THE
MEASUREMENT of HEIGHTS an DISTANCES.

Before we proceed to apply the principles laid down in the three preceding Chapters to ascertain the relation which obtains between the sides and angles of plane triangles, and to the actual measurement of the heights and distances of objects, it will be necessary to investigate a few general Rules or Theorems of the following nature.

\section*{XVII.}

On the investigation of Theorems for ascertaining the relation which obtains between the sides and angles of right-angled and oblique-angled triangles.
78. In the right-angled triangle \(D B F\), if the hypothenuse \(B D\) be made radius, the sides \(D F, B F\) become respectively the sine and cosine of the angle adjacent to the base,

With \(B D\) as radius, describe the circular are \(D E\), and produce the base \(B F\) to \(E\); then, by Art \(^{3} .7,11, D F\) is the sine, and \(B F\) is the cosine of the angle \(D B F\), to the radius \(B D\).

79. In the right-angled triangle \(B E G\), if the side \(B E\) be made radius, the other side \(E G\) becomes the tangent, and the hypothenuse \(B G\) becomes the secant of the angle adjacent to the base.

With \(B E\) as radius, describe circular arc \(E D\) cutting the hypothenuse \(B G\) in the point \(D\); then \(E G\) touches the are \(E D\), and, by Art. 9, \(E G\) becomes the tangent and \(B G\) becomes the secant of the angle \(G B E\), to the radius \(B E\).
80. In any plane triangle, the sides are to each other as the sines of the angles opposite to them.


Fig. 1.


Fig. 2.

In the oblique-angled triangle \(A B C\), let fall the perpendicular \(C D\) upon the base, or upon the base produced; then, by Art. 78,
The side \(B C\) : the side \(C D\) :: radius : sine of the angle \(C B D\), and side \(C D\) : the side \(C A:\) : sine of angle \(C A D\) : radius;
\(\therefore\) ex æquo,
The side \(B C\) : the side \(C A\) : : the sine of \(\angle C A D\) : the sine of \(\angle C B D\), \(:: \sin . \angle\) oppos. to \(B C: \sin . \angle\) oppos, to \(C A\).

In the figure where the perpendicular \(C D\) falls upon the base \(B A\) produced, the angle \(C A B\) is the supplement of the angle \(C A D\); but by Art. 67 , the sine of the supplement of any angle is the same with the sine of the angle itself; in this case therefore the sine of \(C A B\) might be substituted for the sine of \(C A D\), and the proposition becomes general for any plane triangle.
81. In any plane triangle \(A B C\), the sum of the sides \(B C, C A\) : their difference :: the tangent of half the sum of the angles \(C B A, B A C\) at the base : the tangent of half their difference.


Let \(B C\) be the longer side, and let the angle \(C A B=b\), \(B A C=a\).

Now by Art: \(80, B C: C A::\) sin. \(a: \sin , b\);
\(\therefore B C+C A: B C-C A:: \sin . a+\sin , b: \sin . a-\sin . b\).
\[
\text { Hence } \frac{B C+C A}{B C-C A}=\frac{\sin . a+\sin . b}{\sin . a-\sin . b}
\]
\(\begin{aligned} & \quad \text { But by } \\ & \text { Formula } 49,\end{aligned} \frac{\sin . a+\sin . b}{\sin . a-\sin \cdot b}=\frac{\tan \cdot \frac{1}{2}(a+b)}{\tan \cdot \frac{7}{2}(a-b)} ;\)
\[
\therefore \frac{B C+C A}{B C-C A}=\frac{\tan \cdot \frac{1}{2}(a+b)}{\tan \cdot \frac{1}{2}(a-b)} ;
\]
or \(B C+C A: B C-C A:: \tan , \frac{x}{2}(a+b): \tan \cdot \frac{1}{2}(a-b)\).*
82. Referring to the Figures in Art. 80, we have

In Fig. 1, by Euc. B. II. Prop. 13, \(B C^{2}=A B^{2}+A C^{2}-2 A B \times A D\),
\[
\therefore A D=\frac{A B^{2}+A C^{2}-B C^{2}}{2 A B}
\]

In Fig. 2, by Euc. B. II. Prop. 12, \(B C^{2}=A B^{2}+A C^{2}+2 A B \times A D\),
\[
\therefore-A D=\frac{A B^{2}+B C^{2}-B C^{2}}{2 A B}
\]

\section*{* This proposition may be demonstrated geometrically, thus;}

Let \(A B C\) be any triangle whose shorter side is \(A C\); with centre \(C\), and radius \(C A\), describe the circle \(A D E\), and produce \(B C\) to \(E\); join \(E A, A D\), and draw \(D F\) at right angles to \(A D\).


Now \(B E=B C+C E=B C+C A=\) the sum of the sides, and \(B D=B C-C D=B C-C A=\) the difference of the sides; the exterior angle \(A C E=B A C+C B A=a+b\), and this is the angle at the centre; hence the angle \(A D C\) (which is the angle at the circumference) \(=\frac{1}{2} A C E=\frac{1}{2}(a+b)\); but the angle \(C A D\) is equal to the angle \(A D C, \therefore C A D=\frac{1}{2}(a+b)\), and the angle \(B A D=B A C-C A D=a-\frac{1}{2}(a+b)=\frac{1}{2}(a-b)\).
Let \(D A\) be made radius, then, by Art. 79, since the angle \(D A E\) in a semicircle is a right angle, \(A E\) is the tangent of the angle \(A D C\), or \(A E=\tan \cdot \frac{3}{2}(a+b)\); and \(D F\) is the tangent of \(B A D\) to the same radius, or \(D F \tan \cdot \frac{1}{2}(a-b)\). Again, since \(A E, D F\) are each perpendicular to \(D A\), they are parallel, and consequently by sim, triangles we have,
\[
\begin{array}{c:c}
B E & : B D:: A E: \quad: \quad D F \\
\text { or } B C+C A: B C-C A:: \tan . \frac{1}{2}(a+b): \tan . \frac{1}{2}(a-b) .
\end{array}
\]

In each of these Figures; if \(A C\) be made radius, we have \(A C: A D:: \mathrm{rad} . \cos\). of the angle \(C A D, \therefore \cos . C A D\) \(=\frac{\mathrm{rad} . \times A D}{A C}\), and \(-\cos . C A D=\frac{-\mathrm{rad} . \times A D}{A C}\).

Let the three angles at the points \(A, B, C\) be called \(A, B, C\) respectively; and the three sides \((B C, C A, B A)\) opposite to them be called \(a, b, c\) respectively; then \(A D=\frac{l^{2}+c^{2}-a^{2}}{2 c}\) in the first Figure, and \(-A D=\) \(\frac{b^{2}+c^{2}-a^{2}}{2 c}\) in the second Figure. Substitute these values for \(A D\) and \(-A D\) in the foregoing expressions, then we have

In Fig. 1. cos. \(C A D=\left(\frac{\mathrm{rad} . \times A D}{A C}=\right) \frac{\mathrm{rad} .\left(b^{2}+c^{2}-a^{2}\right)}{2 b c}\). In Fig. 2. \(-\cos . C A D=\left(\frac{-\mathrm{rad} .}{A C} \frac{A D}{2}=\right) \frac{\mathrm{rad} \cdot\left(b^{2}+\dot{c}^{2}-a^{2}\right)}{2 b c}\).

Now in Fig. 2, the angle C \(A D\) is the supplement of the angle \(C A B, \therefore\) (by Art. 67.) - \(\cos . C A D\) is the cosine of the angle \(C A B\) (or \(A\) ). Hence, in general,
\[
\cos . A=\frac{\mathrm{rad} .\left(b^{2}+c^{2}-a^{2}\right)}{2 b c}
\]

This expression may be transformed into another more convenient for logarithmic calculation, by the following process;

By Art. 14, ver. sin. \(A=\) rad. \(-\cos . A\),
\[
\begin{aligned}
=\mathrm{rad} .-\frac{\mathrm{rad} .\left(b^{2}+c^{3}-a^{2}\right)}{2 b c} & , \\
& =\frac{1}{2} \mathrm{rad}
\end{aligned}
\]
\[
=\frac{\mathrm{rad} \cdot\left(2 b \cdot c-b^{2}-c^{2}+a^{2}\right)}{2 b c} .
\]

By Art. 34. \(\sin .{ }^{2} \frac{1}{2} A=\frac{1}{2}\) rad. \(\times\) ver. \(\sin . ~ A\),
\[
\begin{aligned}
& =\frac{\operatorname{rad} .^{2}\left(a b . c-b^{2}-c^{2}+a^{2}\right)}{4 b c} \\
& =\frac{\operatorname{rad.}^{2}\left(a^{2}-(b-c)^{2}\right)}{4 b c}, \\
& =\frac{\operatorname{rad}^{2}(a+b-c)(a-b+c)}{4 b c}
\end{aligned}
\]

Hence \(\sin . \frac{x}{2} A=\sqrt{\frac{\text { rad. }^{2}(a+b-c)(a-b+c)}{4 b c}}\),
and \(\log \cdot \sin \cdot \frac{1}{2} A=\frac{1}{2}\left(\log \cdot \mathrm{rad} .^{2}+\log \cdot(a+b-c)+\log \cdot(a-b+c)\right.\) \(-\log .4-\log . b-\log . c)\).

\section*{XVIII.}

On the application of the foregoing Theorems to finding the relation between the sides and angles of right-angled triangles.
83. Given the hypothenuse \(B C\), and side \(A C\); to find side \(A B\), and \(\angle^{8}\) \(B, C\).

By Eucl. 47.1. \(B C^{2}=A B^{2}+A C^{2}\);
\[
\therefore A B^{2}=B C^{2}-A C^{2},
\] and \(A B=\sqrt{B C^{2}-A C^{2}}\).


By Art. 78. \(B C: A C::\) rad. \(: \sin . B=\frac{\mathrm{rad} . \times A C}{B C}\).
\[
\text { Lastly, } \angle C=90^{\circ}-\angle B .
\]

\section*{Example.}

Let \(B C=56\), Then \(A B=\sqrt{56^{2} \cdot-36^{2}}=\sqrt{1840}=42.89\). \(A C=36\). \(\} \sin . \angle B=\frac{\mathrm{rad} . \times A C}{B C}=\frac{\mathrm{rad} . \times 36}{56}\);
\(\therefore \log . \sin . \angle B=\log . \mathrm{rad} .+\log .36-\log .56\).
Now log. rad. \(=10.0000000\)
\[
\begin{aligned}
\log .36 & =\frac{1.5563025}{11.5563025} \\
\log .56 & =\frac{1.7481880}{\prime} \\
\text { log. sin. } \angle B & =\xlongequal{9.80811455} ; ~
\end{aligned} \angle B=40^{\circ} 1^{\prime} .
\]
84. Given side \(A B, ?\) to find the hypothenuse \(B C\), and and side \(A C, \quad \angle^{3} B, C\).
By Euclid, 47. 1. \(B C=\sqrt{A B^{2}+A C^{2}}\).
By Art. 79. \(A B: A C:: \mathrm{rad} .: \tan . \angle B=\frac{\mathrm{rad} . \times A C}{A B}\).
\[
\text { And } \angle C=90^{\circ}-\angle B .
\]

Example.
Let \(\left.\begin{array}{rl}A B & =36, \\ A G & =40 .\end{array}\right\}\) Then \(B C=\sqrt{36^{2}+40^{2}}=53.81\),
\[
\tan . \angle B=\frac{\mathrm{rad} . \times 40}{36} \text {; }
\]
\(\therefore\) log.tan. \(\angle B=\log\). rad. \(+\log .40-\log .36\).
Now

Now log. rad. \(=10.0000000\)
\[
\begin{aligned}
\log .40 & =\frac{1.6020600}{11.6020600} \\
\log .36 & =\frac{1.5563025}{} \\
\log \cdot \tan . \angle B & =10.0457575
\end{aligned} ; \therefore \angle B=48^{\circ} 1^{\prime} .
\]
\[
\text { And } \angle C=90^{\circ}-\angle B=41^{\circ} 59^{\prime} \text {. }
\]
85. Given the hypothenuse \(B C\), and \(\angle B\); to find \(\angle C\), and sides \(A C\), \(A B\).

Now \(\angle C=90^{\circ}-\angle B\).


By Art. 78. BC: \(A C::\) rad. \(: \sin . \angle B ; \therefore A C=\frac{B C \times \sin . \angle B}{\mathrm{rad}}\).
And by Eucl. 47.1. \(A B=\sqrt{B C^{2}-A C^{2}}\).

\section*{Example.}
\[
\begin{aligned}
& \left.\begin{array}{rl}
\text { Let } B C=100, \\
\angle B & =49^{\circ} .
\end{array}\right\} \text { Then } \angle C=90^{\circ}-\angle B=90^{\circ}-49^{\circ}=41^{\circ} \text {. } \\
& A C=\frac{100 \times \sin .49^{\circ}}{\mathrm{rad} .} ; \\
& \therefore \log . A C=\log \cdot 100+\log \cdot \sin .49^{\circ}-\log . \mathrm{rad} \text {. }
\end{aligned}
\]

Now log. \(100=2.0000000\)
\[
\begin{aligned}
\log . \sin .49^{\circ} & =\frac{9.8777799}{11.8777799} \\
\log \cdot \mathrm{rad} & =\frac{10.0000000}{1.8777799} ; \therefore A C=75.47 \\
\log . A C & =\underline{=} \\
A B & =\sqrt{100^{2}-75.47^{2}}=65.607 \%^{*}
\end{aligned}
\]
86. Given side \(A B\),\(\} to find the \angle C\), side \(A C\), and and \(\angle B\), hypothenuse \(B C\). Now \(\angle C=90^{\circ}-\angle B\).
By Art. 79. \(A B: A C:: \sin C: \sin , B ; \therefore A C=\frac{A B \times \sin . B}{\sin . C}\).
And \(B C=\sqrt{A B^{2}+A C^{2}}\).

\section*{Example.}

Let \(\left.\begin{array}{rl}A B & =70, \\ \angle B & =50^{\circ} .\end{array}\right\}\) Then \(\angle C=90^{\circ}-50^{\circ}=40^{\circ}\),
\[
A C=\frac{70 \times \sin .50^{\circ}}{\sin .40^{\circ}}
\]
\(\therefore \log . A C=\log .70+\log . \sin .50^{\circ}-\log . \sin .40^{\circ}\). Now
* The value of \(A B\) might also be found by Logarithms in the following manner:
\[
A B \doteq \sqrt{B C^{2}-A C^{2}}=\sqrt{(B C+A C)(B C-A C)} ;
\]
\(\therefore \log \cdot A B=\frac{1}{2} \log .(B C+A C)+\frac{1}{2} \log .(B C-A C)=\frac{1}{2} \log .175 .47+\frac{1}{2} \log .24 .53\).
\[
\begin{aligned}
\text { Now } \frac{1}{2} \log \cdot 175.47 & =1.1221014 \\
\frac{1}{2} \log \cdot 24.53 & =.694848 \pi \\
\therefore \log . A B & =1.8169501, \text { or } A B=65.607
\end{aligned}
\]
\[
\begin{aligned}
\text { Now log. } 70 & =1.8450980 \\
\log \cdot \sin .50^{\circ} & =\frac{9.8842540}{11.7293520} \\
\log . \sin .40^{\circ} & =\frac{9.8080675}{1.9212845} ; \therefore A C=83.42 .
\end{aligned}
\]
\[
\text { And } B C=\sqrt{70^{2}+83.42^{2}}=108.90
\]

\section*{XIX.}

On the application of the foregoing Theorems to determining the sides and angles of obliqueangled triangles.
87. Given the two angles \(B, A\), and the side \(\boldsymbol{B C}\) opposite to one of them; to find the \(\angle C\), and the other sides \(A B\), \(A C\).


Now \(\angle C=180^{\circ}-(\angle A+\angle B)\).
By Art. 80. \(B C: A C:: \sin . \angle A: \sin . \angle B ; \therefore A C=\frac{B C \times \sin . \angle B}{\sin . \angle A}\).
And \(B C: A B:: \sin , \angle A\) : \(\sin , \angle C ; \therefore A B=\frac{B C \times \sin . \angle C}{\sin . \angle A}\).

\section*{Example.}

Let \(B C=62\),
\(\left.\begin{array}{r}\angle B=35^{\circ}, \\ \angle A=60^{\circ} .\end{array}\right\}\) The \(\angle C=180^{\circ}-(\angle A+\angle B)=180^{\circ}-\left(60^{\circ}+35^{\circ}\right)\)
\(A C=\frac{62 \times \sin .35^{\circ}}{\sin .60^{\circ}} ; \therefore \log . A C=\log .62+\log . \sin .35^{\circ}\)
\(-\log . \sin .60^{\circ}=1.6134524\), and \(A C=41.06\).
\(A B=\frac{62 \times \sin .85^{\circ}}{\sin .60^{\circ}} ; \therefore \log . A B=\log .62+\log . \sin .85^{\circ}\)
\(-\log . \sin .60^{\circ}=1.8532053\), and \(A B=71.31\).
88. Given the two sides \(B C, A C\), and \(\angle B\) opposite to \(A C\); to find the angles \(A, C\), and the other side \(A B\).


ByArt. 80. \(B C: A C:: \sin . \angle A: \sin . \angle B ; \therefore \sin . \angle A=\frac{B C \times \sin . \angle B}{A C}\).
\[
\angle C=180^{\circ}-(\angle A+\angle B)
\]

And \(A C: A B:: \sin . \angle B: \sin , \angle C ; \therefore A B=\frac{A C \times \sin . \angle C}{\sin . \angle B}\).

\section*{Example.}
\[
\begin{aligned}
& \text { Let } B C=50, \\
& \left.\begin{array}{l}
A C=40, \\
\angle B=32^{\circ} .
\end{array}\right\}=\log \cdot 50+\log \cdot \sin .32^{\circ}-\log \cdot 40=9.8211197 ; \\
& \therefore \quad \angle A=41^{\circ} 28^{\prime} . \\
& \angle C=180^{\circ}-\left(41^{\circ} 28^{\prime}+32^{\circ}\right)=106^{\circ} 32^{\prime} .
\end{aligned}
\]
\[
A B=\frac{40 \times \sin .106^{\circ} 32^{\prime}}{\sin .32^{\circ}}=\binom{\text { for sin. of an } \angle=\sin . \text { of supplement } ;}{\therefore \sin .106^{\circ} 32^{\prime}=\sin .73^{\circ} 28^{\prime} .}
\]
\[
\frac{40 \times \sin .73^{\circ} 28^{\prime}}{\sin .32^{\circ}} ; \therefore \log . A B=\log .40+\log \cdot \sin .73^{\circ} 28^{\prime}
\]
\[
-\log \cdot \sin .32^{\circ}=1.8595123 \text {; hence } A B=72.36 .^{*}
\]
89. Given
* In finding the sine of the \(\angle A\) in this case, an ambiguity arises; for as the sine of the supplement of any angle is the same with the sine of the angle, the angle thus found may be either \(A\) or \(180^{\circ}-A\). But there will be no ambiguity, except in the case when \(\angle B\) is acute, and \(B C\) greater than the side opposite to the \(\angle B\). For if the \(\angle B\) be obtuse, then it is evident \(\angle A\) must be acute. If \(\angle B\) be acute, and \(B C\) less than the side opposite to the \(\angle B\), then take \(C l=C B\), and draw any other

line \(C X\) cutting \(B t\) produced in \(X\), then no line equal to \(C X\) can be drawn between \(B\) and \(l\), and \(B C X\) will be the only triangle which can answer the conditions required; but if \(B C\)
89. Given the two sides \(B C, C A\), and the included angle \(C\), to find \(\angle^{s} B, A\), and side \(A B\).

\(\angle{ }^{\circ}(A+B)=180^{\circ}-\angle C ; \therefore \angle A+\angle B\), and conquently \(\frac{1}{2}(\angle A+\angle B)\), is known.

By Art. 81. \(B C+C A: B C-C A:: \tan \frac{1}{2}(\angle A+\angle B):\) \(\tan . \frac{1}{2}(\angle A-\angle B)\);
Hence \(\tan _{0} \frac{1}{2}(\angle A-\angle B)=\frac{(B C-C A) \times \tan . \frac{1}{2}(\angle A+\angle B)}{B C+C A}\);
\(\therefore \frac{1}{2}(\angle A-\angle B)\) is known.
By Art. \(0_{0}^{\prime} B C: B A:: \sin . \angle A: \sin . \angle C ; \therefore A B=\frac{B C \times \sin . \angle C}{\sin . \angle A}\).
Example.
be greater than the side opposite to the \(\angle B\), then a circular arc \(A a\) may be described, cutting \(B b\) in \(A, a\); so that there will be two triangles, \(B C A, B C a\), in which two sides, and an \(\angle\) opposite to one of them, shall be given quantities.
For instance, let \(B C=50, \gamma\) Then the triangle \(B C A\) will be the \(C A\) or \(C a=40\), triangle determined by assuming \(\angle B=32^{n}\). the \(\angle A=41^{\circ} 28^{\prime}\); but 9.8211197
(see Example) is also the log. sin. of its supplement \(138^{\circ} 32^{\prime}\). Hence,
\(\angle B a C\) (which is the supplement of \(C a A\) or \(C A a)=138^{\circ} 32^{\prime}\); and \(\angle B C a=180^{\circ}-\left(138^{\circ} 32^{\prime}+32^{\circ}\right)=9^{\circ} 28^{\prime}\); in which case \(B a=\frac{40 \times \sin .9^{\circ} 28^{\prime}}{\sin .32^{\circ}} ; \quad \therefore \log . B a=\log .40+\log\). sin. \(9^{\circ} 28^{\prime}-\) \(\log . \sin .32^{\circ}=1.0939470\), or \(B a=12.415 ; \therefore\) the triangles \(B C A, B C a\), will each of them answer the conditions required.

\section*{Example I.}

Let \(B C=60\), \(\jmath^{\text {Then }} B C+C A=110\), and \(B C-C A=10\).
\[
A C=50,\} \text { And } A+B=180^{\circ}-\angle C=180-80^{\circ}=100^{\circ} \text {; }
\] \(\angle C=80^{\circ} . \therefore \frac{1}{2}(\angle A+\angle B)=50^{\circ}\).

Hence tan. \(\frac{1}{2}(\angle A-\angle B)=\left(\frac{(B C-C A) \times \tan \cdot \frac{1}{2}(\angle A+\angle B)}{B C+C A}\right)\)
\(\frac{10 \times \tan .50^{\circ}}{110} ; \therefore \log \cdot \tan \cdot \frac{1}{2}(\angle A-\angle B)=\log \cdot 10+\log \cdot \tan .50^{\circ}\)
\(-\log .110=9.0347938\), or \(\frac{1}{2}(\angle A-\angle B)=6^{\circ} 11^{\prime}\).
But \(\angle A=\frac{1}{2}(A+B)+\frac{1}{2}(A-B)=50^{\circ}+6^{\circ} 11^{\prime}=56^{\circ} 11^{\prime}\);
\[
\text { and } \angle B=\frac{1}{2}(A+B)-\frac{1}{2}(A-B)=50^{\circ}-6^{\circ} 11^{\prime}=43^{\circ} 49^{\prime} \text {. }
\]

Lastly, \(B A=\frac{B C \times \sin . \angle C}{\sin . \angle A}=\frac{60 \times \sin .80^{\circ}}{\sin .56^{\circ} 11^{\prime} .}\);
\(\therefore \log . B A=\log .60+\log . \sin .80^{\circ}-\log \cdot \sin .56^{\circ} 11^{\prime}\)
\(=1.8519945\), or \(B A=71.12\).
90. Given
90. Given the three sides, \(A \cdot B, B C, C A\), to find the three angles opposite to them.


For the purpose of applying the expressions in Art. 82, call the three sides \(B C, C A, A B, a, b, c\), and the three angles opposite to them, \(A, B, C\), respectively. Then to determine the angle \(A\), we have (from the first expression in Art. 82.)
\[
\cos . A=\frac{\operatorname{rad} .\left(b^{2}+c^{2}-a^{2}\right)}{2 b c} ;
\]
and for the logarithmic expression
\(\log \cdot \sin \cdot \frac{x}{2} A=\frac{1}{2}\left(\log \cdot \mathrm{rad} .{ }^{2}+\log \cdot(a+b-c)+\log \cdot(a-b+c)\right.\)
\(-\log .4-\log . b-\log . c)\),
where the former or latter of these expressions must be used according as the numbers representing the sides are small or large numbers.

\section*{Example 1.}
\[
\left.\begin{array}{l}
\text { Let } \left.\begin{array}{rl}
B C=34, \\
C A & =25, \\
A B=40,
\end{array}\right\} \text { then } \cos . A
\end{array}=\frac{\mathrm{rad} .\left(b^{2}+c^{2}-a^{2}\right)}{2 b c}=\frac{\mathrm{rad} .\left(40^{2}+25^{2}-34^{2}\right)}{2 \times 40 \times 25}\right) \begin{aligned}
&=\frac{\mathrm{rad} . \times 1069}{2000} ; \\
& \therefore \log \cdot \cos . A=\log \cdot \mathrm{rad} \cdot+\log \cdot 1069-\log \cdot 2000 \\
&=9: 7279477, \\
& \text { and } A=57^{\circ} 42^{\prime} .
\end{aligned}
\]

By Art. \(80, \sin . B=\frac{25 \times \sin .57^{\circ} 42^{\prime}}{34}\),
\(\therefore \log . \sin . B=\log .25+\log . \sin .57^{\circ} 42^{\prime}-\log .34\)
\[
=9.7934524,
\]
\[
\text { and } B=38^{\circ} 25^{\prime} \text {. }
\]

Lastly \(C=180^{\circ}-(A+B)=180^{\circ}-\left(57^{\circ} 42^{\prime}+38^{\circ} 25^{\prime}\right)=83^{\circ} 53^{\prime}\).

\section*{Example II.}

For the purpose of applying the logarithmic expression,
Let \(a=379.25\) Then log. \(\mathrm{rad}^{2}=2\) log. rad. \(=20\).

Subtract \((Y)\) from \((X)\), and \} then 2) \(\overline{19.4552448}\)
halve the remainder-
\[
9.7276224=\log \cdot \sin \cdot \frac{1}{2} A
\]

Hence \(\frac{x}{2} A=32^{\circ} 17^{\prime}\), and \(A=64^{\circ} 34^{\prime}\).
The angles \(B\) and \(C\) must be found as before.
\[
\begin{aligned}
& b=234.15\} \log .(a+b-c)=\log .198 .01=2.2966871 \\
& c=415.39 \text { log. }(a-b+c)=\log .560 .49=2.7485679 \\
& 25.0452550(X) \text {. } \\
& \log .4=0.60206 \\
& \log . b=\log .231 .15=2.3694942 \\
& \log . c=\log .415 .39=2.6184560 \\
& 5.5900102(Y) .
\end{aligned}
\]

\section*{XX.}

On the Instruments used in measuring Heights and

\section*{Distances.}

For the mensuration of heights and distances, two instruments (one for measuring angles in a vertical, and another for measuring them in a horizontal direction) are required, of which the following is a description.
91. DFE is a graduated quadrant of a circle, \(C\) its center, \(A\) any object, \(C B\) a line parallel to the horizon, and \(C W\) a plumb-line hanging freely from \(C\), and consequently perpendicular to \(C B\). If the quadrant is moved round \(C\), till the object \(A\) is visible through
 the two sights \(a, b\), then the \(\operatorname{arc} E F\) will measure the angular distance of the object above the horizon. For the angles \(B C W\) and \(A C E\) being right angles, take away the common angle \(B C E\), and the remaining angle \(E C F\) is equal to the remaining angle \(A C B ; E F\) therefore (being the measure of the \(\angle E C F\) ) gives the number of degrees, minutes, \&c. of the angle \(A C B\). Some such instrument as this must be used for measuring angles in a vertical direction.
92. \(D C F\)
92. DCF is a Theodolite, or some gradualed circular instrument, with two indices moveable round the center \(C ; A\) and \(B\) are two objects upon the horizon; when this instrument is so adjusted, that \(A\) is visible through the sights \(a, b\), and \(B\) through the sights \(c, d\), then the \(\operatorname{arc} E D\) will measure the angular distance ( \(A C B\) ) between these two objects.

XXI. On

\section*{XXI.}

On Mensuration of Heights and Distances.
93. If the object \((A E)\) be accessible, as in Fig. 1, let the observer recede from it along \(E D\), till the angle \(A C B\) becomes equal to \(45^{\circ}\); then, since the angle \(B A C\) will in this case be also \(45^{\circ}, A B\) will be equal to \(B C\) or \(E D\); measure \(E D\), and to it add \(B E\), the height from which the observation was made, and it will give \(A B+B E(A E)\) the height of the object.

But if it be not convenient to recede along the line \(E D\) till the \(\angle A C B\) becomes \(45^{\circ}\), let him measure some given distance \(E D\), and take with the quadrant the angle \(A C B\); then in the right-angled triangle \(A C B\) there is given the side \(B C\), and the angle \(A C B\), from which the side \(A B\) may be found, by Art. 84.

\section*{Example.}

Let \(B C\) or \(E D=50\) yards \(\}\) Then \(B C: A B::\) rad. \(: \tan . \angle A C B\),
\[
\begin{gathered}
\left.\angle A C B=47^{\circ} . \quad\right\} \quad \text { or } 50: A B:: R: \tan .47^{\circ} ; \\
\therefore A B=\frac{50 \times \tan .47^{\circ}}{\text { rad. }},
\end{gathered}
\]
and log. \(A B=\log .50+\log \cdot \tan .47^{\circ}-\log \cdot \mathrm{rad} .=1.7293141\).
Hence \(A B=53.62\) yards; to which if \(C D\) or \(B E\) be added, it will give \(A E\), the height of the object.
94. If the object be inaccessible, as \(G F\) in Fig. 2.; at some given point \(H\), observe the angle \(G L I\); measure

some given distance \(H K\), and then observe the angle GMI. In this case, since the exterior angle \(G L I\) is equal to \(G M L+M G L\), the angle \(M G L(=G L I-\) \(G M L\) ) will be known. In the triangle \(G M L\), therefore, we have the side \(M L\) and two angles; from which \(G L\) may be determined by Art. 87. Having \(G L\) and the angle \(G L I\), the side \(G I\) is determined as in Art. 85.

\section*{Example.}


Now \(L M: G L:: \sin . \angle M G L: \sin . \angle G M L\), or \(100: G L:: \sin .11^{\circ}: \sin .36^{\circ} ; \therefore G L=\frac{100 \times \sin .36^{\circ}}{\sin .11^{\circ}}\).

Hence log. \(G L=\log .100+\log . \sin .36^{\circ}-\log . \sin .11^{\circ}\)
\[
=2.4886199 ;
\]
\(\therefore G L=308.04\) yards.
Again, \(G L\) : \(G I\) : : rad. : sin. \(\angle G L I\), or \(G L: G I:: \mathrm{rad}: \sin .47^{\circ} ; \therefore G I=\frac{G L \times \sin .47^{\circ}}{\mathrm{rad} .}\).

Hencelog. \(G I=\log . G L+\log \cdot \sin .47^{\circ}-\log . \mathrm{rad} .=2.3527474\); \(\therefore G I=225.29\) yards.

To GI add the height from which the angles were taken, and it will give GF, the height of the object.
95. By the following process, a general expression may be investigated for \(G I\), which will apply to all cases of this kind.

\section*{\(G I: G L:: \sin . L: \operatorname{rad}\).}
\(G L: M L:: \sin . M: \sin . M G L(\sin .(L-M)) ;\)
\(\therefore G I: M L:: \sin . L \times \sin . M:\) rad. \(\times \sin .(L-M)\),
nd \(G I=\frac{M L \times \sin . L \times \sin . M}{\mathrm{rad} . \times \sin .(L-M)}=\frac{M L \times \sin . L \times \sin . M}{\mathrm{rad}^{3}} \times \frac{\mathrm{rad.} .^{2}}{\sin .(L-M)}\)
\[
=\frac{M L \times \sin . L \times \sin . M \times \operatorname{cosec} .(L-M)}{\mathrm{rad}^{3}}, \text { for } \frac{\mathrm{rad}^{3}}{\sin .(L-M)}=\operatorname{cosec} .(L-M) \text { byArt. } 1!
\]

Ience \(\log \cdot G I=\log . M L+\log . \sin . L+\log . \sin . M+\log \cdot \operatorname{cosec} .(L-M)-3 \log\). rad.

Thus, in the foregoing Example,
\(\log . M L=\log .100=2.0000000\)
\(\log \cdot \sin . L=\log \cdot \sin .47^{\circ}=9.8641275\)
\(\log \cdot \sin . M=\log \cdot \sin .36^{\circ}=9.7692187\)
\(\log \cdot \operatorname{cosec}(L \triangle M)=\log \cdot \operatorname{cosec} .11^{\circ}=10.7194012\)
\[
\overline{32.3527474}
\]
\(\begin{aligned} 3 \text { log. rad. } & =30.0000000 \\ \log . G I & =\frac{2.3527474,}{} \text { and } G I=225.29 \text { yards, }\end{aligned}\) [as before.
96. To find the distance of the inaccessible object \(T\), (Figure 4.) from the given point \(S\). Measure some given distance \(S R\), and at \(R\) place some small object distinetly visible from \(S\); and observe the angles \(T S R, T R S\). In the triangle \(T S R\), we shall then have given \(S R\) and the angles \(T S R, T R S\); the side \(S T\) may therefore be determined by Art. 57.
K Example.

\section*{Example.}
\(\left.\begin{array}{rl}\text { Let } S R & =150 \text { yards, } \\ \angle T S R & =91^{\circ}, \\ \angle T R S & =64^{\circ} ;\end{array}\right\}\) then \(\angle S T R=180^{\circ}-\left(91^{\circ}+64^{\circ}\right)=25^{\circ}\).
Now \(S T: S R:: \sin . \angle T R S: \sin . \angle S T R\),
or \(S T: 150:: \sin .64^{\circ}: \sin .25^{\circ} ; \therefore S T=\frac{150 \times \sin .64^{\circ}}{\sin .25^{\circ}}\).

Hence log. \(S T=\log .150+\log . \sin .64^{\circ}-\log . \sin .25^{\circ}=\) 2.5948032 , and \(S T=393.37\) yards.
97. To find the distance between two objects, \(X, Y\), inaccessible to each other, but accessible by the Observer in the directions \(V X, V Y\), (Figure 5.) ; at the given point \(V\), observe the angle \(X V Y\), and then measure the line \(V Y\). If \(X\) is distinctly visible from \(Y\), then the angle \(X Y V\) may be measured, and the case becomes the same as the last, for determining the distance \(X Y\). But if \(X\) be not visible from \(Y\), then both \(V X\) and \(V Y\) must be measured; and having the angle \(X V Y, X Y\) may be found as in Art. 89.

\section*{Example.}

Let \(V X=302\) yards, \(\begin{aligned} & \\ & V Y=314\end{aligned}\) then sum of \(\angle^{\prime}(X+Y)=180^{\circ}-57^{\circ} 22^{\prime}\)
\[
\left.\begin{array}{l}
V Y=314 \ldots \\
\angle V=57^{\circ} 22^{\prime} ;
\end{array}\right\}=122^{\circ} 38^{\prime} .
\]

\section*{Now}
\(V Y+V X: V Y-V X:: \tan \cdot \frac{1}{2} \cdot(X+Y): \tan \cdot \frac{1}{2} \cdot(X-Y)\),
or \(616: 12:: \tan .61^{\circ} 19^{\prime}: \tan \cdot \frac{x}{2} \cdot(X-Y)=\frac{12 \times \tan .61^{\circ} 19}{616}\);
\(\therefore \log . \tan \cdot \frac{1}{2}(X-Y)=\log .12+\log \cdot \tan .61^{\circ} 19^{\prime}-\log .616\)
\[
=8.5515290
\]

Hence \(\frac{1}{2}\). \((X-Y)=2^{\circ} 2^{\prime}\); consequently \(X=63^{\circ} 21^{\prime}\), and \(Y=59^{\circ} 17^{\prime}\).

Again,
\(X Y: Y V:: \quad \sin . V \quad: \sin . X\),
or \(X Y: 314:: \sin .57^{\circ} 22^{\prime}: \sin .63^{\circ} 21^{\prime} ; \therefore X Y=\frac{314 \times \sin .57^{\circ} 22^{\prime}}{\sin .63^{\circ} 21^{\prime}}\);
\(\therefore \log X Y=\log .314+\log . \sin .57^{\circ} 22^{\prime}-\log . \sin .63^{\circ} 21^{\prime}\) \(=2.4708909\);
and \(X Y=295.72\) yards.
98. To find the distance \(P Q\) between two objects, \(P\) and Q, which are both inaccessille to the Observer (Fig. 3.) ; measure a given distance \(O N\); from \(O\) observe the angles \(P O Q, Q O N\), and from \(N\) observe the angles \(O N P\), \(P N Q\); then in the triangle \(P O N\) will be given the side \(O N\) and the two angles PON, PNO, from which PO may be determined; and in the triangle \(Q O N\) will be given the side \(O N\), and the two angles \(Q O N, O N Q\), from which \(O Q\) may be found. Having \(P O, O Q\), and the angle \(P O Q\), \(P Q\) may be determined as in the last case.

\section*{Example.}

\section*{Example.}


\section*{Now,}
\[
Q O: O N:: \sin . \angle Q N O: \sin . \angle O Q N
\]
\[
\text { or } Q O: 100:: \sin .91^{\circ} \text { or } 89^{\circ}: \sin .41^{\circ} ;
\]
\[
\therefore Q O=\frac{100 \times \sin .89^{\circ}}{\sin .41^{\circ}}
\]

Hence, log. \(20=\log \cdot 100+\log \cdot \sin .89^{\circ}-\log \cdot \sin .41^{\circ}=2.1829909\), and \(Q O=152.4\) vards.

> Again,
> \(P O: O N:: \sin . \angle P N O: \sin . \angle O P N\),
> or \(P O: 100:: \quad \sin .42^{\circ} \quad: \sin .33^{\circ} ; \therefore P O=\frac{100 \times \sin .42}{\sin .33^{\circ}}\)

Hence, log. \(P O=\log .100+\log \cdot \sin .42^{\circ}-\log \cdot \sin .33^{\circ}=2.0894021\), and \(P O=122.8\) yards.

Hence, in the triangle \(P O Q\), there are given
\[
\begin{gathered}
P O=122.8, \\
O Q=152.4, \\
\angle P O Q=57^{\circ},
\end{gathered} \text { to find } P Q .
\]

Now \(Q O+O P: Q O-O P:=\tan \cdot \frac{1}{2}(O P Q+O Q P): \tan \cdot \frac{1}{2}(O P Q-O Q P)\),
\[
\text { or } 275.2: \quad 29.6:: \quad \tan .61^{\circ} 30^{\prime} \quad: \tan . \frac{1}{2}(O P Q-O Q P) \text {. }
\]

Hence \(\tan \cdot \frac{1}{2}(O P Q-O Q P)=\frac{29.6 \times \tan .61^{\circ} 30^{\prime}}{275.2}\);
\(\therefore \log \cdot \tan \cdot \frac{7}{2}(O P Q-O Q P)=\log .29 .6+\log \cdot \tan .61^{\circ} 30^{\prime}-\log .275 .2\)
\[
=9.2968789,
\]
and \(\frac{1}{2}(O P Q-O Q P)=11^{\circ} 12^{\prime}\).
Hence \(\angle O P Q=72^{\circ} 42^{\circ}\), and \(\angle O Q P=50^{\circ} 18^{\prime}\).
\[
\begin{gathered}
\text { Lastly, } \\
Q O: P Q:: \sin . O P Q: \sin . P O Q, \\
\text { or } Q O: P Q:: \sin .72^{\circ} 42^{\prime}: \sin .57^{\circ} \\
\therefore P Q=\frac{Q O \times \sin .57^{\circ}}{\sin .72^{\circ} 42^{\prime}} .
\end{gathered}
\]

Hence log. \(P Q=\log . Q O+\log . \sin .57^{\circ}-\log . \sin .72^{\circ} 42^{\prime}=2.1260877\), and \(P Q=133.87\) yards.

\section*{XXII.}

On the manner of constructing a Map of a given surface, and finding its area; with the method of approximating to the area of any given irregular or curve-sided figure.
99. To construct a map.-Measure some given distance \(A B\); and having selected two objects \(C, D\), distinctly visible from \(A, B\), observe the angles \(C B D, C A D\), as in Art. 98, and find the length of \(C D, B C, A D\), by the process made use of in that article. In this manner, the distance and posilion of the four points \(A, B, C, D\), are determined. In the same mauner, by selecting two other objects \(E, F\), distinctly visible from \(C, D\), the distance and position of four other points \(C, D, E, F\), may he found. We might thus proceed, by the mensuration of angles only, to determine the distance and position of any number of points in a given surface, and to delineate upon paper (by means of a scale) their relative position and distance as represented in the

100. By
100. By a very easy process we might also determine the length of the part eFda cut off, from a line given in position and passing through any point \(F\), by perpendiculars \(E e, D d, A a\), let fall upon it from the point \(E, D, A\). For the lengths of the lines \(A D, D F, F E\), being found as in Art. 99, and the magnitude of the angles \(A D G\) ( \(D G\) being drawn parallel to \(d a\) ), \(D F d, E F e\) being known from the given position of the line EFda, we have
\(A D: D G\) or \(d a::\) rad. \(: \cos . A D G, \therefore d a=\frac{A D \times \cos . A D G}{\mathrm{rad} .}\)
\(D F: F d \quad:: \mathrm{rad} .: \cos . D F d, \therefore F d=\frac{D F \times \cos . D F d}{\mathrm{rad} .}\)
\(E F: F e \quad:: \mathrm{rad}: \cos . E F e, \therefore E F=\frac{E F \times \cos . F F e}{\mathrm{rad} .}\)
from which the length of \(a d+d F+F e\) (or \(a d F e\) ) is known. If the line passing through \(F\) be drawn due north and south, then the length \(a d F e\), thus determined, is the length of that portion of the meridian which lies between the parallels of latitude passing through the points \(A, E\); and it is upon this principle that the process for measuring the arc of a meridian passing through a given tract of country is conducted.
101. The area of the figure \(A B C E F D\) is evidently the sum of the areas of all the triangles of which it is composed; we must therefore shew the mode of finding the area of a triangle.

Let \(A B C\) be any triangle, and let fall the perpendicular \(C D\) upon the base \(A B\); then, since (Eucl. B. 1, Prop. 41.)

the area of a triangle is equal to half the area of a parallelogram of the same base and altitude, the area of the triangle \(A B C\) is equal to \(\frac{1}{2} A B \times C D\). Now \(B C\) : \(C D::\) rad. \(: \sin . \angle B, \therefore C D=\frac{B C \times \sin \angle B}{\text { rad. }}\), and area of triangle \(A B C\left(=\frac{1}{2} A B \times C D\right)=\frac{\frac{1}{2} A B \times B C \times \sin . \angle B}{\operatorname{rad} .}=\) \(\frac{A B \times B C \times \sin . \angle B}{2 \mathrm{rad} .}\); hence log. area \(A B C=\log . A B+\) \(\log . B C+\log . \sin . \angle B-\) (log. \(2+\log\). rad.) ; for instance, in the triangle \(A B C\) of the figure \(A B C E F D\), if \(A B=\) 100 yards, \(B C=90\) yards, and \(\angle B=80^{\circ}\), then
\[
\begin{array}{ll}
\log . A B=\log \cdot 100 & =2.0000000 \\
\log . B C=\log \cdot 90 & =1.9542425 \\
\log \cdot \sin . \angle B=\log \cdot \sin .80^{\circ}= & =9.9933515 \\
&
\end{array}
\]
\(* \log .2+\log . \mathrm{rad} .=10.3010300\)
\[
\text { log. area } A B C=3.6465640 \text {, and area } A B C=
\]
[4431.6 square yards.
* Since \(\log .2+\log\). rad. is in all cases a given quantity, " log. area \(=\log\). base \(+\log\). side \(+\log\). sin. of \(\angle\) adjacent to "that side -10.3010300 " is a general expression for finding the area of any triangle.

And in this manner the areas of the other triangles may be determined; for area of \(A C D=\frac{A C \times C D \times \sin . A C D}{2 \mathrm{rad} .}\), of \(D C E=\frac{D C \times C E \times \sin . D C E}{2 \mathrm{rad} .}\), and of \(D E F=\) \(\underline{D E \times E F \times \sin . D E F}\). 2 rad.
But the area of a triangle, the length of whose sides is given, may be determined in terms of those sides, without any trigonometrical calculation whatever. Thus in Fig. page 72,
Let \(A B=a\) Then Euc. B.II. p.13. \(\quad C A^{2}=A B^{2}+B C^{2}-2 A B \times B D\) \(\left.\begin{array}{l}B C=b \\ C A=c\end{array}\right\}\)
\[
\therefore B D=\frac{A B^{2}+B C^{2}-C A^{2}}{2 A B}=\frac{a^{2}+b^{2}-c^{2}}{2 a}
\]
\[
\text { but } C D^{2}=B C^{2}-B D^{2}
\]
\[
\begin{aligned}
& =b^{2}-\frac{\left(a^{2}+b^{2}-c^{2}\right)^{2}}{4 a^{2}} \\
& =\frac{4 a^{2} b^{2}-\left(a^{2}+b^{2}-c^{2}\right)^{2}}{4 a^{2}} \\
& =\frac{\frac{2 a b+\left(a^{2}+b^{2}-c^{2}\right)}{4 a^{2}}}{4 a b-\left(a^{2}+b^{2}-c^{2}\right)} \\
& =\frac{\left(\overline{\left(a^{2}+2 a b+b^{2}\right)-c^{2}} \times \overline{c^{2}-\left(a^{2}-2 a b+b^{2}\right)}\right.}{4 a^{2}} \\
& =\frac{\left(\frac{(a+b)^{2}-c^{2}}{} \times c^{2}-(a-b)^{2}\right.}{4 a^{2}} \\
& =\frac{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}{4 a^{2}} \\
\therefore C D & =\frac{\sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}}{2 a}
\end{aligned}
\]
and \(\frac{1}{2} A B \times C D=\frac{1}{2} a \times C D\)
\[
=\frac{1}{4} \sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}
\]

Now let the sum of the sides \(=2 \mathrm{~s}\)
then \(a+b+c=2 s\)
\[
\begin{aligned}
& a+b-c=2 s-2 c=2(s-c) \\
& a+c-b=2 s-2 b=2(s-b) \\
& b+c-a=2 s-2 a=2(s-a)
\end{aligned}
\]
\(\therefore(a+b+c)(a+b-c)(a+c-b)(b+c-a)=16 s(s-c)(s-b)(s-a)\)
and \(\frac{1}{4} \sqrt{(a+b-c)(a+b-c)(a+c-b)(b+c-a)}=\sqrt{s(s-c)(s-b)(s-a)}\), which is a general expression for the area of any triangle in terms of its sides.
102. By what has been shewn in the last Article, it appears that the area of any rectilinear Figure may be found by resolving it into its constituent triangles, and then finding the areas of those triangles separately. We are now to explain the method of approximating to the area of an irregular or curved-sided figure (a field for instance), such as is represented in the annexed plate.


After having selected certain points \(A, B, C, D, E\) in the perimeter of the Figure, and having made a Map of it and measured the rectilinear figure \(A B C D E\) by the method
method prescribed in Articles 99, 101, a near approximation may be made to the areas of the several curvilinear parts by means of the following process. Take, for instance, the part cut off by the chord \(A B\). Divide \(A B\) into such a, number of equal parts, \(A 0, o p, p q, q r, r B\), that when the perpendiculars \(o s, p t, q v, r x\), are drawn from it to the perimeter, the parts \(A s, s t, t v, v: x, x B\) may be considered as right lines, without any great deviation from the truth; draw sy parallel to \(o p\); and let \(A o ; 口 p, \& c\). each \(=m\); then

The triangle \(A o s=\frac{1}{2} m \times o s\); the figure sopt \(=s o p y+\) \(\Delta s y t=m \times p y+\frac{1}{2} m \times y t=m\left(p y+\frac{1}{2} y t\right) ;\) now \(o s+p t=\) \(2 p y+y t, \therefore \frac{1}{2}(o s+p t)=p y+\frac{1}{2} y t\); hence the figure sopt \(=m \times \frac{1}{2}(o s+p t)=\frac{1}{2} m \times o s+\frac{1}{2} m \times p t\). For the same reason, \(t p q v=\frac{1}{2} m \times p t+\frac{1}{2} m \times q v ;\) \&c. \&cc. Hence, \(\Delta A o s=\frac{1}{2} m \times o s\)
\[
\begin{aligned}
\text { sopt } & =\frac{x}{2} m \times o s+\frac{1}{2} m \times p t & \\
t p q v & = & \frac{1}{2} m \times p t+\frac{1}{2} m \times q v \\
v q r x & = & \frac{1}{2} m \times q v+\frac{1}{2} m \times r x \\
& & \frac{1}{2} m \times r x
\end{aligned}
\]
\(\therefore\) area \(A t x B r p A=m \times o s+m \times p t+m \times q v+m \times r s\) \(=(o s+p t+q v+r x) m\); i.e. the area of this curvilinear part is nearly approximated to by multiplying the sum of the perpendiculars \(s o, p t, q v, r x\), by the length of one of the aliquot parts into which \(A B\) is divided. In the same manner we might proceed to measure the curvilinear parts cut off by the chords \(B C, C D, D E, E A\), and thus approximate very nearly to the area of the whole Figure.

\section*{XXIII.}

A few Questions for practice in the Rules laid down in this Chapter.
103. There is a certain perpendicular rock, from which you can recede only 16 feet, on account of the sea; the angular distance of its highest point, taken at the water's edge by a person 5 feet high, is \(80^{\circ}\). Quжere, the height of the rock ?

\section*{Answer, 95.74 feet.}
104. A person 6 feet high, standing by the side of a river, observed that the top of a tower placed on the opposite side, subtended an angle of \(59^{\circ}\) with a line drawn from his eye parallel to the horizon; receding backwards for 50 feet, he then found that it subtended an angle of only \(49^{\circ}\). Quetre, the height of the tower, and the breadth of the river?

Answer, Height of tower \(=192.27\) feet.
Breadth of river \(=111.92 \ldots\)
105. A person walking along a straight terrace \(A B\), 400 feet long, observed, at the end \(A\), the angular distance of an horizontal object \(C\), to be \(75^{\circ}\) from the terrace; at the end \(B\), the object, viewed in the same manner, formed an angle of \(60^{\circ}\) only with the terrace. What was the distance of the onject \(C\) from each end of the terrace?
\[
\text { Answ. } \begin{aligned}
A C & =489.89 \text { feet. } \\
B C & =546.41 \ldots
\end{aligned}
\]
106. Two objects, \(A\) and \(B\), are visible and accessible from the station \(C\), but are invisible and inaccessible from each other ; the distance \(A C\) is 1800 yards, \(B C 1500\) yards, and the \(\angle A C B\) is \(45^{\circ}\). What is the distance of \(A\) from \(B\) ?
\[
\text { Answ. } A B=1292.91 \text { yards. }
\]
107. Three objects, \(A, B, C\), are so situated, that \(A B\) \(=16\) yards, \(B C=14\) yards, and \(A C=10\) yards. What is the position of these objects, with respect to each other?

Answ. \(\angle A=60^{\circ}\).
\(\angle B=38^{\circ} 12^{\prime}\).
\(\angle C=81^{\circ} 48^{\prime}\).
108. To find the distance between the two objects \(A\) and \(B\), on supposition that

109. There
109. There are two objects \(A, B\), so situated, that they are accessible no nearer than \(C\), and that in the direction \(D C\), almost perpendicular to the line which joins them.


The \(\angle A C B=46^{\circ}\), \(A C D=150^{\circ}\), \(B C D=164^{\circ}\), \(A D C=20^{\circ}\),

Required the distance \(A B\).
\(C D B=10^{\circ}\), \(C D=100\) yards.

Answ. \(A B=144.67\) yards.

By the same Author, PRINTED FOR T. CADELL, STRAND, LONDON.
I. A TREATISE on the CONSTRUCTION, PROPERties, and ANALOGIES of the THREE CONIC SECTIONS. Second Edition, price 5 s. in boards
II. A TREATISE on MECHÀNICS: intended as an Introduction to the Study of Natural Philosophy. One large Volume, 8 vo . price 1l. 1s. in boards.
III. A TREATISE on the ELEMENTS of ALGEBRA. Fifth Edition, 8vo. price 7s. in boards
IV. A COMPENDIOUS TREATISE on the THEORY and SOLUTION iof CUBIC and BIQUADRATIC EQUATIONS, and of EQUATIONS of the HIGHER ORDERS. Price 6 s. boards.


\[
\begin{aligned}
& \left(y^{2}-2 x-4,4+2+n 3+3+2\right. \\
& \lambda \rightarrow \lambda-1
\end{aligned}
\]

Set A. B he the sides and C the visludece tide out t from thai be punning form of to the
\[
-\frac{1}{2} \log 4+\log a+\log b+2 \log \sin \frac{1}{2} c-2 \log (a-b)
\]
\(C\) win le formed.
\[
\begin{aligned}
& \operatorname{ly} e=\log a \cdot b+\log \theta-10=\log (a \\
& 10-\log \cos \theta .
\end{aligned}
\]
(

QA Bridge, Bewick
533
B85
1822
A compendious treatise
on the elements of plane trigonometry

P\&A 3 ci

\section*{PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET}

UNIVERSITY OF TORONTO LIBRARY```

