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PREFACE.

THE present volume is the first of a projected series having
the double purpose of developing the elements of Practical and
Theoretical Astronomy for the special student of the subject,
and of serving as a handbook of convenient reference for
the use of the working astronomer in applying methods and
formulae. The plan of the series has been suggested by the
author’s experience as a teacher at the Johns Hopkins Uni-
versity, and as an investigator. The first has led him to the
view that the wants of the student are best subserved by a
quite elementary and condensed treatment of the subject,
without any attempt to go far into details not admitting of
immediate practical application. As an investigator he has
frequently been impressed with the amount of time consumed
in searching for the formulae and data, even of an elementary
‘kind, which should be, in each case, best adapted to the work
in hand.

The most urgent want which the work is intended to
supply is that of improved methods of deriving and reducing
the positions, and proper motions of the fixed stars. Modifica-
tions of the older methods are made necessary by the long
period, 150 years, through which positions of the stars now
have to be reduced, and by the extension of astrometrical
and statistical researches to a great and constantly increasing
number of telescopic stars. Especial attention has therefore
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been given to devising the most expeditious and rigorous
methods of trigonometric reduction of star positions, and to
the construction of tables to facilitate the work.

Other features of the work are: A condensed treatment of
the theory of errors of observation and of the method of
- least squares; an attempt to present the theory of astronomical
refraction in a concise and elementary form without detract-
ing from rigour of treatment; a new development of the
theory of precession, now rendered necessary by the long
period through which star places have to be reduced; the
basing of formulae relating to celestial coordinates on_ the
new values of the constants now used in the national
ephemerides; a concise development of the rigorous theory of
proper motions; the trigonometric reduction of polar stars
to apparent place, and the development of what the author
deems the most advantageous methods of correcting and com-
bining observed positions of stars as found in catalogues.

Although the theory of astronomical instruments is not in-
cluded within the scope of the present work, it is necessary,
in using star catalogues, to understand the methods of deriving
the results therein found from observations. The principles
of the ideal transit instrument and meridian circle, omitting
all details arising from imperfections of the instrument, are
elegant and simple, and at the same time sufficient for the
purpose in question. They are therefore briefly set forth in
the chapter on deriving mean positions of stars from meridian
observations.

A pedagogical feature of the work is the effort to give
objective reality to geometric conceptions in every branch of
the subject. The deduction of results by purely algebraic
processes is therefore always supplemented, when convenient,
by geometric construction. Whenever such a construction is
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represented on the celestial sphere, the latter is, in the absence
of any reason to the contrary, shown as seen from the
centre, so that the figure shows the sky as one actually
looks up at it. Exceptions to this are some times necessary
when planes and axes of reference have to be studied in
connection with their relation to the sphere.

A similar feature, which may appear subject to criticism,
is the subordination of logical order of presentation to
the practical requirements of the student mind. While the
method of first developing a subject in its general form
and then branching out into particulars has been fol-
lowed whenever it seemed best so to do, there are many
cases in which special forms of a theory are treated in
advance of the general form, the object being to prepare the
mind of the student for the more ready apprehension of the
general theory.

On the other hand, in order to lessen discontinuity of
treatment, the policy has been adopted of relegating to an
Appendix all the tables and many of the formulae of which
most use is made. The choice of subjects for the Appendix
is made from a purely practical point of view, the purpose
being to include those tables, formulae, and data of most
frequent application.

The “Notes and References” at the end of most of the
chapters do not aim at logical or practical completeness.
They embody such matters of interest, historical or otherwise,
and such citations of literature, as the author hopes may
be most useful to the student or the working astronomer.
The list of Star Catalogues of precision at the end of the
last chapter is, however, intended to be as complete as it
was found practicable to make it; but even here it may well
be that important catalogues have been overlooked.
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INDEX TO THE NOTATION.

=, the symbol of identity, signifying that the symbol following it is
defined by words or expression preceding it. It may cornmonly be
read “which let us call.”

D;, a derivative as to the time, expressing the rate of increase of the
quantity following it.

©, sun’s true longitude.

In the following list of symbols only those significations are given, which
are extensively used in the work. Those used only for a temporary or
special purpose are omitted. )

a,

C,

e)

5

SRESES

S~

m,

m,

7,

Roman-Italic alphabet.

semi-major axis of an ecliptic orbit; the equatorial radius of the
earth ; also, reduced R.A., defined on p. 266.

polar radius of the earth; barometric pressure; latitude of a
heavenly body.

earth’s compression.

b, ¢, d are used to denote the Besselian star-constants. Chap. XI.

probable error ; eccentricity.

ratio of apparent to geocentric distance.

intensity of gravity.

seconds of time in unit radius ; also, west hour-angle.

angle between two positions of the plane of the ecliptic, or of the
pole of the ecliptic.

the rate of general precession, annual or centennial.

the factor of tanz in the expression for the refraction; also, the
constant part of the reduction of the R.A. of a star for precession.

the annual rate of precession in Right Ascension ; m,, the centennial
rate=100m.

the annual rate of motion of the celestial pole: #,=100z, the
centennial motion.
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N, N,, supplement of the longitude of the instantaneous axis of rotation of
the moving ecliptic; also, the angle which the direction of
proper motion makes with the hour-circle of a star.

N,, supplement of the longitude of the node of the ecliptic.
P, speed of luni-solar precession on the fixed ecliptic of the date ; also,
a quantity used in star-reductions (p. 267).
P, the absolute constant of precession.
7, radius vector.

angular semidiameter of a planet ; also, angular distance.

, time expressed in years or shorter units ; also, mean time.

T, time expressed in terms of a century as the unit.

v, linear velocity, especially of a star, or of the earth in its orbit ; also,

angle of the vertical.

V, velocity of light.

w, weight of an observation or result.

z, zenith distance.

o

S

Greek alphabet.

o, Right Ascension.
B, latitude, referred to the ecliptic.
o, f3, v, angles made by a line with rectangular axes.
8, Declination ; symbol for increment or correction.
A, symbol of increment, of error, or of correction; distance of a
planet from the earth.
¢, obliquity of the ecliptic ; mean error.
¢, {, angles defining the relative positions of the mean equator and
equinox at two epochs. §§127-130.
0, angle between two positions of the mean equator.
K, constant of aberration ; also, speed of angular motion of the ecliptic.
A, ecliptic longitude ; terrestrial longitude ; also, planetary precession.
1, proper motion of a star ; also, index of refraction of air.
in Right Ascension.
in Declination.

Ha, ”» »

M55 ” ”»
7, parallax ; ratio of circumference to diameter.

p, distance from centre of earth ; radius of earth.

7, temperature above absolute zero ; also, sidereal time.
v, total luni-solar precession on an initial fixed ecliptic.
¢, astronomical latitude of a point on the earth’s surface.
¢', geocentric latitude A ,, -

Q, longitude of the moon’s node.









CHAPTER I

INTRODUCTORY.

THIS opening chapter is devoted to certain preliminary matters
which can better find a place here than elsewhere. The beginner
in astronomical work may be accustomed only to those modes
of mathematical thought and investigation which are formally
rigorous. He has now to enter a field in which, owing to the
concrete form of the subject-matter, he must frequently be satis-
fied with approximations to a rigorous result, and a consequent
abatement of the strictness of mathematical demonstration. One
must learn to work in this field without sacrificing rigor of
thought, or losing sight of the possible deviations of the results
from the ideal truth. To do this, we give examples of the most
common cases of deviation from formal precision in astronomical
practice.

1. Use of finite quantities as infinitesimals.

The omission of all powers of a small quantity above the first
is very common in the mathematical methods of astronomy. In
this case we are said to treat the quantity as an infinitesimal.
The practice rests on the following basis:

Let « be a function of «,

w= (@),

and let us assign to  an increment Az, and call Aw the corre-
sponding increment of w. The new value of « will be

Ut AU=P(LFAX). ceverenrnriiiinnnn (1)
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Developing by Taylor’s theorem, we have
du 1 dzu
Au=ro Azt 5= A2 ...
If Az is below a certain limit of magnitude, and the differential
coefficients b etc. not too great, the second and following terms
dx

of this development may be omitted. For example, let Az be
50”=0000 24 in arc. Reduced to seconds the square will be
Ax?=0"012.

In much astronomical work an error of 0"01 is quite unim-
portant ; indeed cases are frequent in which we need not consider
a correction so small as 0”1 or even an entire second. We may
extend and generalize this conclusion as follows:

If the second derivative does not exceed unity, we may use the
equation

dropping the higher terms of the series
whenever Ax<< 50" if an error of +0"01 is unimportant,
» P TR | $
& » <5007 % - el RO s 5
If the second derivative exceeds unity, the limits must be reduced
v o like proportion.

2. Use of small angles for their sines or tangents.

The general rule émbodied in (2) leads to the constant use of
small angles themselves instead of their sines or tangents, and
to putting their cosines equal to 1. We have, by well-known
developments,

sing=s—1s%4...,
tans=s+1s*+....

Hence, to terms of the third order in s, we may use the forms

sin g=s(1 —}s?%)
tan 3=8(1 +%S2)}, ................................. (3)
s=ging(1+4} sin)
s=tans(l—} ta,n2s)}' ....................... (4)

(]
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These equations presuppose that the angle is expressed in circular
measure, the radian being the unit. But, in actual computation,
the unit is nearly always the degree, minute, or second, the last
being the usual unit for small angles. The fact that s is
expressed in seconds may be indicated by two accents. When
so expressed, it may be reduced to circular measure by multipli-
cation by the angle of 1” expressed in that measure, which is
practically the same as sin1”. Thus we have

s=g"sin1".
There being 206 265” (more exactly 206 264”-806) in the radian,
we have §” =206 265" s=[5314 425] s,

the number in brackets being the logarithm of the factor. This
form of expressing multiplication by a factor whose logarithm
only is given is very common. So, putting R for the number
206 264:806, we may write instead of (4)

8”=R"sin s(1+} sin®s) g
o — Brtans(l— tante)] T (5)

If we have a series containing various powers of a small angle,
the practically easiest method of manipulating it is to reduce
one factor of each term to seconds, and retain the others in the
general form. For example, the general form

8=a 4 bs?4css...
becomes, in seconds, & =a" 4 bs"s+4¢s"s?...,

where "= R’s, a” = R’a, while s and s? are expressed in radians.
Below a certain limit we may drop the factor sin’s from the
equations (3) and (4). This limit is that below which the product

18" xsin% or %s”xtan’s

is too small to affect our result. If an error of 0”01 is unim-
portant, the upper limit for ¢” falls below that value for which

18" X sinZs=0"01,

, : 0”0
which gives sm2s— e 3
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We may also use instead of (4) or (5),

”

sin 8= .
R

Equating the square of this equation to the preceding one gives
§"*=003R?

which gives for s a value somewhat exceeding 1000”. The

general rule therefore is that, in using any angle below this

limit, the sine, tangent, and angle may be used indifferently.

The putting of 1 for the cosine of a small angle is governed
by similar considerations. The cosine of 1000” differs from 1 by
less than 1:85000. Hence if, in an expression of the form

A X coss,
an error 0000 0124 is of no importance, we may always suppose
coss=1 if s"<C1000".*

3. Unavoidable errors in computation.

We cannot determine a physical quantity with mathematical
exactness. Measures of length, weight, volume, and every other
magnitude are liable to errors, which we may reduce more and
more by laborious attention to details, but can never absolutely
eliminate. Many measures may be in error by their thousandth
part, and it is only a few fundamental quantities which we can
consider as known within their millionth part. Even were a
rigorous determination possible, its rigorous expression by any
system of numbers would not be. Our systems of expressing
quantities numerically by an infinite series, proceeding according
to the diminishing powers of a base, is the best that can be
applied in practice. In our traditional system of numeration the
base is the number 10. Could we begin anew, the number 12
might be better; but this is impracticable. In a decimal ex-
pression we reduce the maximum error by one-tenth by every
figure we add, but can only approach to the rigorous value of
a concrete physical quantity, or the logarithm of a number
which is not an integral power or root of 10. As a general

* Mention may here be made of the almost universal practice of using the word
‘‘arc” to indicate an angle expressed in degrees, minutes, or seconds.
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rule, there is no use in adding decimals beyond the practically
attainable limit of accuracy.

In a numerical computation, especially with logarithms, one
should always have some idea of the degree of accuracy attain-
able or desirable; or, to speak with more precision, of the
magnitude of the errors to which the data and results are liable.
The accuracy of a result is limited by that of the data on which
it depends, so that, in all computations, the result must be
affected by errors arising from those of the data, no matter with
what precision the computation is made. As every additional
figure used in computation adds to the labour, the first question
to be considered by the computer in entering upon a work is:
How many figures are necessary in the logarithms in order that
the unavoidable errors of the result may not be increased by the
errors of the logarithms? The logarithmic tables in ordinary use
range from three to seven decimals, and the question of the
error arising from the decimals following the last being omitted
is the first to be considered.

Let g be the true value of a quantity and +¢ the error of the
value we derive, so that ¢+ ¢ is the value we reach by computa-
tion. We have to find what value of ¢ will arise from using
logarithms from which the decimals after a certain order are
dropped. Treating ¢ as an infinitesimal, we have, for the error
of the logarithm, corresponding to the error ¢ of g,

é -
log (¢ +6)—log g =log (1 +§>=Ma, ............... (6)
M being the modulus, 0434 29....

If we use n-place logarithms, the value of the unit in the last
figure will be 10-7. In taking out a logarithm, the error need
be only a fraction of this unit; but in adding up several, it may
reach or exceed the unit. Assuming a unit error in the last
figure of log g we shall have

ué_10-»
q
_10-n

anq S 4
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Assigning to'm the successive values 3 to 7 we have the
corresponding errors of g as follows:

3-place logarithms, ¢ = +--0023¢

4- % » = 1000 23¢

&=y i »= 1000 023q s s o o )
6- g » = 1000002 3¢

-, 5 »= 1000000 23¢

Using round numbers, we may say that the use of 3-place
logarithms will give a result correct to the 400th part of its
amount, 4-place logarithms to the 4000th part, and so on. Con-
versely, if we wish a result correct only to the 100th part, 3-place
logarithms will do; to the 1000th part, 4-place; to the 1:10"
part we should use n+1 decimals in the logarithms.

4. The preceding rules give only a relation between the errors
of a logarithm and of the corresponding number. The relation
between the error of the data and of the result can be expressed
thus: Let the given data be u, v, w, ete.; the quantity to be
computed p. We may then regard p as a function of u, v, w.
If we put du, dv, dw, for the errors of these quantities, the error
in p will be

sp=2 au+flp 3v+dp P AR AT (8).

If the values of the derivatives which enter into this expression
are large numbers, the error of the result will be greater than
those of the data in like proportion.

A case of this kind occurs in determining a small angle by its
cosine, or one near 90° by its sine. The error of the angle may
then be many times greater than that of the function by which
it is determined. It is, therefore, preferable to determine an
angle by its tangent when this can be done.

In ordinary computation a common case of this kind is that in
which the result comes out-as a difference of two large and nearly
equal quantities, or as the quotient of two such differences, or of
two small quantities. In such a case more logarithms must be
used in computing the large numbers, or the small numbers
must be carried to a higher degree of precision, than would be
prescribed by the rule.
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b. Derivatives, speeds, and units.

As the theoretical study of the differential calculus does not
suffice for its practical applications, we begin with some remarks
on derivatives and the units in terms of which they are expressed.

The derivative of a quantity with respect to the time, at any
moment, represents the velocity or speed of increase of the
quantity at that moment. If the increase is constant the speed
is found by dividing the increment, whatever it may be, by the
time necessary for that increment to take place. If, however,
the speed of increase is continually varying, it is at any moment
the quotient of the infinitesimal increase of the quantity by the
infinitesimal time required for that increase. Using the notation
of the differential calculus, if we put @ for the quantity and S
for the speed we have

s=29-pg

In the present work we use the more compact symbol D, to
express the derivative, or the speed of increase of the quantity
following it. When this symbol is written before any quantity
@ the combination D,Q therefore mgmﬁes the rate of increase of
@ at any moment.

The next question concerns the units, especially of time, in
which the speed is to be expressed. The fact that the latter is
determined by an increase during an infinitesimal time sets no
limit upon the length of the unit of time that may be used.
The units employed in astronomy range all the way from one
second to 100 years. The unit of speed is defined as that speed
which, if it remained constant during the unit of time, would
produce unit increase in the quantity whose speed is designated.
In ordinary language we express these units whenever necessary,
speaking, for example, of 5 feet per second or 15 degrees per hour
or 20 seconds per century.

The relation of these units to the infinitesimals by which a
derivative is defined needs a moment’s consideration. If we say
that the speed of increase of the R.A. of a star is 300 s. per
century, this means that the R.A. would increase by that amount
in a century if the speed remained constant. To determine or
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express the derivative, that is the speed, we may take, instead of
an infinitesimal time d¢, any interval during which the speed
may practically be treated as constant. In the motions which
affect the stars the general rule is that the speed during a year
varies so little that the interval adopted may be a year. This
has led to the use of symbols in a double meaning, which may
sometimes lead to confusion if the difference in the two meanings
is not understood. For example the symbol m is used to express
the constant part of the precession in R.A. of a star during the
year. As its variation during any one year is too minute to be
considered, the annual speed of the precession in R.A. is also
indicated by the symbol m. But it should be understood that
these two interpretations are different, though the symbol, and
the number it represents, may be the same.

6. Differential relations between the parts of a spherical triangle.

In a large class of astronomical problems the given quantities
are three of the parts of a spherical triangle, and the problem is
to find one or more of the three remaining parts. As auxiliary
to this problem it may be asked what changes or errors in the
required part will be produced by given small changes, or errors
treated as infinitesimal, in the three given parts. This requires
that we find the derivatives of the required parts as to the given
parts, the latter being treated as independent variables.

There are three independent relations, and no more, between
the six parts. From these relations, expressed as equations, we
may eliminate any two of the parts, leaving one equation between
four parts, from which any one part may be determined in terms
of the other three. Let such an equation be expressed in the
form

¢(¢, 5 2ot ) =0 e R e Rt R e )
we shall then have by differentiation

¢da:+d¢dy+ ¢dz+d¢du Biee ARG (10)

From this equation the value of any one differential in terms
of the three others may be found. For example
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d¢
de  dy
dy~ " dg
dx

Since there are 15 combinations of 4 parts out of 6, we may
write as many equations of this form. But, only three of these
will be independent of each other, and these three may be formed
from one by permutation of parts. Let us take the fundamental

Ao p=cosacosb+sinasinbecos C—cosc=0;

de

we shall have P Ty sin @ cos b4 cos a sin b cos C
£ LD P01 5 e wcorpra Sl s SO e P L i v 11)
d¢ . :
> —cosasinb+sina cosbcos C
e= —BINCECOBA, .iiiieiiiiiiiiir e (12)
%:sin G B VR, 33 ot e o 13 2 e e N (13)
g—g= —sIn@SINbSINGC. oiveiiiiiiiiiieeaas (14)

The equation between the four differentials may, therefore, be
written :

sin ¢ cos Bda+sin ¢ cos Adb —sin cdc+sin a.sin b sin CdC=0. (15)

From this two others of like form may be written by changing
each letter into the one next following in alphabetical order,
4 and o following C and ec.

The forms derived from these for practical application will be
found in Appendix I.

7. Differential spherical trigonometry.

In using the differential increments of the parts of a spherical
triangle, and of angles and arcs generally on the sphere, a great
advantage is often gained by treating the subject geometrically.
The following are fundamental theorems at the base of the
method :

(i) An infinitesimal spherical triangle may be treated as a
plane triangle when infinitesimals of an order higher than the
second are neglected.
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This follows from the fact that the excess of the sum of the
angles over 180°, being proportional to the area of the triangle,
is of the second order; and that the deviations of the parts from
those of a corresponding plane triangle formed by the projection
of the spherical triangle on a tangent plane to the sphere at the
place of the triangle are of the second order.

It must be noted, however, that this theorem presupposes
the three angles to be finite quantities, and is, therefore, not
applicable when an infinitesimal angle is under consideration.
The following theorems apply to cases of the latter kind :

(1) If two great circles intersect at C, forming the infinitesi-
mal angle o, their distance apart at a distance a from C is

p=o.sina.

N

Fi1e. 1.

For, supposing AD=p to be a perpendicular to the arc CA,
we have
sin p =sin o sin a,
from which the equation follows when o and p become infini-
tesimal.

(iii) An arc CA cuts the transversal arc MN at the point A.
If this arc turns on C through the infinitesimal angle o into the
position CA’, the corresponding imcrement of the angle at A

will be
AAd=A4"—A=ocosCA.

To apply the usual formulae of spherical trigonometry to this
case we put B for the interior angle adjacent to A’, and letter
the remaining parts of the triangle 4 BC accordingly. Then

A'—A=180°—(4 + B),
gin(A4’— A)=sin (4 + B).
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From the fundamental equation
sin A cos B+4-cos A sin B cos c=cos b sin C,
we find, when ¢ and (' are infinitesimals,
sin (4 + B)=cos b sin C'=sin q cos b.
In this case the part C reduces to o, and the part b to the arc

CA. Hence, when C becomes infinitesimal we have the equation
enunciated.

NOTES AND REFERENCES.

A prime requisite to the astronomical computer is a set of the most
convenient logarithmic and other tables. The following are of this class :

Seven-place logarithms,

Brunxss, New Manual of Logarithms, Tauchnitz, Leipzig.

ZecH, Addutions- und, Subtractions- Logarithmen, Hirzel, Leipzig.

The purpose of these last named tables is to find the logarithm of the sum
or difference of two numbers given by their logarithms, without the labour
of taking out the natural numbers and adding them.

Six-place logarithms.
BREMIKER, Logarithmisch- mgonometrlsche Tafeln, Berlin, Nicolaische Ver-

lags-Buchhandlung.
Thls edition contains also addition and subtraction logarithms.

Five-place logarithms.

Gauss, Fiinfstellige vollstindige Logarithmische und Trigonometrische Tafeln,
Halle, Verlag von Eugen Strien.

Hussey, Logarithmic and Other Mathematical Tables, Ann Arbor, Mich.,
the Register Publishing Co.

Nxuwcous, Five-place Logarithmic Tables, New York, Henry Holt & Co.

BrckEr, Logarithmisch-trigonometrisches Handbuch auf 5 Decinalen,
Tauchnitz, Leipzig.

The tables of Becker, of Gauss, and of Newcomb contain addition and
subtraction logarithms, and other useful. tables. The introduction to
Newcomb’s tables contains hints on the art of astronomical computation to
facilitate the training of computers.

Four-place tables. 1
Gauss, Vierstellige Logarithmisch-trigonometrische Handtafeln.
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Three-place tables.
NEewcouB, 3- and 4-place Logarithmic and Trigonometric Tables, Appendix
to Elements of Trigonometry, New York, Henry Holt & Co. ; also separately,
Washington, Lowdermilk & Co.

Tables of special kinds.

Besides the above tables which may be described as in regular form, the
following are useful for special purposes:

GRAVELIUS, Finfstellige Logarithmisch-trigonometrische Tafeln, Berlin,
Reimer.

In these tables the degree is not divided into minutes and seconds but
into hundredths, which is more convenient when a translation into minutes
and seconds is not necessary. '

For numbers with not more than three digits, when the logarithm of the
product is not required, and when only two factors enter, a multiplication
table may be used with more convenience than logarithms. The most
extended set of tables of this sort is:

CRELLE-BREMIKER, Rechentafeln, Berlin, Reimer.

TAMBORREL, Tablas de Multiplicar, Mexico, Mariano' Nava, is a much more
compact book than Crelle’s, and may serve the same purpose.

LEecoy ET CLAUDEL, Comptes faits, Paris, gives all products of three figures
by two.

Among miscellaneous tables for astronomical uses in general :

BavuscHINGER, Tafeln zur Theoretischen Astronomie, is a well prepared and
most useful work.

Astronomical ephemerides.

In the same class with the preceding may be placed the National Astro-
nomical Ephemerides, published by the governments of the United States,
Germany, England, France, and Spain under the respective titles :

The American Ephemeris and Nautical Almanac, Bureau of Equipment,
Navy Department, Washington.

The Nautical Almanac and Astronomical Ephemeris, published by the order
of the Lords Commissioners of the Admiralty, London.

Astronomisches Jakrbuch, Berlin.

Connaissance des Temps ou des Mouvements célestes, Paris, Bureau des
Longitudes.

Almanaque Nautico, San Fernando, Spain.

These publications contain, for each year, tables of the varying quantities
relating to the celestial motions. They are referred to collectively in the
present work under the title of the Astronomical Ephemeris.



CHAPTER IIL

OF DIFFERENCES, INTERPOLATION, AND
DEVELOPMENT.

8. In astronomical tables and ephemerides the values of certain
quantities are given for special equidistant epochs or values of
an argument: say noon of every day, the beginning of every
year, or every minute of the quadrant. When the values are
required for an intermediate epoch, or value of the argument,
the process of interpolation is necessary. There are various
methods of applying this process, according to the greater or less
complexity of the law of change of the tabular quantities to be
found.

We first call to mind that, by the rate of variation of a
quantity at a given moment, we mean the derivative of the
quantity as to the time at that moment; that is to say, the
change which the quantity would undergo in a unit of time if
its rate of change remained constant. The unit may be a second,
minute, hour, day or year, or even a century. The rate may be
called the variation simply. The simplest cases of interpolation
are the two following : :

Case L The variation constant. This is so simple a case as
to need no explanation. To effect an interpolation we have only
to multiply the variation by the elapsed time and add the pro-
duct to the value given in the table. We must of course take
care that the unit of time which we use corresponds to that for
which the variation is given.
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Case II.  When the variation itself changes uniformly with
the time. We may treat this case by the infinitesimal calculus
as follows:

Call u the given quantity, and let « and b be constants; the
variation of w is, by hypothesis, of the form

%":a-i—bt.

From this we derive by integration

w=1o+at+5bt? } it e S
or w=1u,+(a+1bt)t

u, being the value at the time from which ¢ is reckoned.

The second form is commonly the most convenient one to use,
and may be correctly arrived at in this way: By hypothesis we
have :

At time t=0; variation=a.

”» t=t; ”» =a’+bt-

It will be seen that the variation which we found in formula
(1) is the half sum of these variations, that is, the value
corresponding to the middle of the interval over which we
interpolated.

As an example, let us take from the Ephemeris the
Right Ascension of the Moon at two consecutive hours of
Greenwich mean time, on 1908, June 13, which we find to
be as follows:

i it (T P g
h. m. 8. 8.

. 16 27 3543 2-4280

2 16 30 . 131 2:4347

Let it be required to interpolate to the time 1 h. 36 m. Since
the variation is constantly increasing, it is clear that if we used
the variation at 1 h. the resulting difference would be too small ;
and if we used the variation at the time to which we interpolate,
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namely, 1 h. 836 m., it would be too great. What we must do is
to take the variation at the moment which is half-way between
the epochs, namely, 1 h. 18 m. or 1'3 h. This we find by simple
interpolation to be 2:4280s.+ 00067 s. X 03 =24300s. Multiply-
ing this rate of change per minute by the 36 minutes which have
elapsed, we find the interpolated value to be

m, s. 8 h m, 8

h, , m, b 3 b 3
16 27 354341 2748=16 29 291

In many tables and ephemerides, what is given is not the
derivative, or variation per unit of time, but the difference
between two consecutive values of the quantity, which is found
by subtracting each value from the one which follows it. If
we do this with the R.A’s in the lunar ephemeris, we shall find
that the differences vary nearly uniformly from hour to hour,
and a little consideration will show that in this case they express
the hourly variation at each half hour. The variation corre-
sponding to the middle of the interval over which we interpolate
may then be found by interpolating to this moment from the
variations at the half hour preceding and following.

9. Differences of various orders.

As a general rule the quantities found in the ephemeris are
given for intervals so short that the preceding methods of inter-
polation will suffice to give an accurate value of the quantity
at any moment. But cases continually arise in astronomical
practice in which the variation itself changes widely between
two epochs. This more general case requires us to begin by
pointing out the method of testing the accuracy of numbers
by successive differences, defined as follows :

When we have several successive values of a varying quantity,
the excess of each value over that preceding is called a first
difference, or difference of the first order.

The excess of each first difference over the preceding one is
called & second difference, or difference of the second order.

Continuing this process of subtraction we have third differ-

ences, fourth differences, ete.
N.S.A, B
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distinguished by a suffix equal to half the sum of their suffixes.
Thus, like suffixes are on a horizontal line; differences of even
order all have integral suffixes; those of odd order fractional
ones.

As an example we take the moon’s longitude for Greenwich
noon and midnight of the first few days of 1895 and differ-
ence it.

1895.
Jan. Longitude. A’ A” A" Alv Av
10 3839°36"53"6 1
5° 55 50”7
15 345 32 44 3 1'55"9
5 57 46 6 384,
20 351 30 30 -9 2 34 3 +2"1
6 0209 40 -5 —270
25 357 30 51 -8 314 -8 +0 -1
6 3357 40 -6 +0 5 5(¢)
30 3 34 27 5 3 55 4 +0 -6
6 7311 41 2 -19
35 9 41 58 6 4 36 6 -13
G277, 39 9
40 15 54 6 -3 516 5 A
6 17 24 -2
45 22 11 30 -5

10. Detecting errors by differencing.

One of the most valuable applications of differencing is to the
detection of isolated errors in the values of the functions whose
differences are taken. Suppose that one of the values of w is
affected by the error e, so that the table, instead of giving the
value u, gives

u+te,

while all the other numbers are correct. We then readily
conclude that the first differences before and after this quantity
will be affected by the respective errors 4+¢ and —e. The second
differences will be affected by the errors +e, —2e, and +e.
Continuing the process we find the resulting errors of the
successive differences to be as follows:
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w of A of A” of A” of A" of A™
0 — 0 — 0 =X
—_ 0 — 0 At +e
0 — 0 —_ +e —
—_ 0 — +e —- —5e
0 - +e — —4de -—
— +e — —3e — +10e
e = —2e — 34 Ge —= Vo a2
— —e — +3e — —10e
0 — +e - —4e —
— 0 - = —e —_— +5e
0 — 0 B +e he s
— 0 0 — —e
0 —_ 0 — 0 —

We see that an error in any one original quantity will be
increased tenfold when carried out to the fifth difference, and
can in all ordinary cases be detected, provided the adjacent
quantities are correct. )

The general expression for the coefficients of ¢ in the errors of
the nth differences is the same as that of the coefficients which
enter into the binomial theorem, namely

n(n—1)(n~-2)...(n—s+1)

1-2-3-...8 ’
where s takes the successive values 1, 2, 3,...n. In applying
this test it must be remembered that all the quantities we
ordinarily obtain in astronomical computations are necessarily
affected by the errors of the omitted decimals, which errors will

shew themselves by the process of differencing.

How far it is necessary to carry the differences will depend
upon the rapidity with which they converge. If the given
numbers are mathematically exact, the differences will, if the
quantities are given for values of the argument small enough to
be used in interpolating, continually and rapidly diminish, so
that, after a certain order, commonly not greater than the fifth
or sixth, they become insensible. But the differences of the
errors arising from omitted decimals will, as just shown, go on




§11.] DETECTING ERRORS BY DIFFERENCING 21

increasing with every order, and so will ultimately form the
largest part of the column of differences. When this is the case
the columns of differences will become 1rregular the + and —
signs generally alternating.

Other points to be borne in mind are these:

a. If errors are numerous but accidental, the fact that they
exist will be shown by the differences, but it may be impossible
to determine what numbers are wrong; whereas this is easy in
the case of a single isolated error.

B. A systematic error, i.e, one which runs through all the
numbers and follows any law whatever, cannot be detected by
differencing.

11. Use of higher orders of differences in interpolation.

There are two applications of the method of interpolation by
differences.

(i) When, from several values of a variable quantity, given in
tabular form, it is desired to find some intermediate value for
one or more special values of the argument.

(ii) When it is desired to make a table in which the intervals
shall be smaller than those of the quantities originally computed.
For example, the position of a planet may be computed, in the
first place, for every fourth, fifth, or tenth day; and it may then
be required to form an ephemeris for all the omitted days by
interpolation. In the second application the same general
formulae are used as in the first; we shall therefore give a brief
summary of them.

First application. As before, we put w for the variable
quantity for which we have computed the values for a number
of equidistant epochs; we suppose the successive differences of «
formed so far as necessary, and we call

ug and u,

the two consecutive values of u between which we wish to
interpolate a new value.

It is a known theorem of algebra that the nth value of w
following w,, which is in fact wy, is given in terms of u,, and of
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the successive differences in a diagonal line descending from u,
by the equation

O N T

the coefficients being those of the binomial theorem.

The fundamental hypothesis of interpolation is that this
equation, which is rigorous only when = is a positive integer,
will also give the value of w when = is a fraction. This hypo-
thesis, though not necessarily true, and failing entirely in cases
when the law of change in w is not shown by the differences, is
quite safe in practice if we compute the values of » for intervals
so small that the orders of differences are convergent both for
these and for all shorter intervals. Let us put

Ty; T,; the two times for which the values u, and u,, between
which we interpolate a new value, are computed.

T, the time for which we wish to interpolate. Then

T-T, o

T,-1 1' =
will be the time after T,, expressed in terms of the interval of
computation as the unit. For example, if this interval were two
days, and we wished to find the value of » for a moment 8 hours
after one of the times of computation, we should put

t=8-+-48=01666....

Evidently when ¢ is an integer it will correspond to n, as
already defined, so that the equation (3) becomes

o 4+ LS DA T DD o e )

This is Newton’s formula of interpolation, and forms the basis
of all the other formulae in common use.

12. Transformations of the formula of interpolation.

In Newton’s formula each successive difference which enters
is taken half a line below the preceding one. The series is,
however, more convergent when the differences of alternate
orders are taken on the same horizontal line. The transforma-
tions to effect this will now be shown.
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In all cases in which it is worth while to interpolate, the
differences beyond the fifth will not affect the result. We shall
therefore suppose the differences of the sixth and all following
orders to vanish, which amounts to supposing those of the fifth
order constant.

We first consider the form in which the original differences on
alternate lines are used. Let us express w, in terms of the
quantities shown in the following scheme:

wy, — Ay — AY —}
, z ) oy oty Sl g )
Tieci s, — 4
‘We express the differences in (4) in terms of these as follows:
Al=A45+AY

Ay =Ay+AY
=AY +AY +A]
AT =AY +247 + AT
AY=AT+2A7+AF
Making these substitutions in (4) and putting A"=A""=0, we
find, by reducing and collecting the coefficients of the differences

in (D),
’ tt—l ” t+l tt—l "
wmg= 14+ X R A Dy

A+ DEE—1)(t—=2) .\,  E+DEFDEHE=1){E=2) ,,
+t——Tegz At 1.9.3.4.5 Aj

P {1000 ) WU (et I (% ) ) i
T “”_“":mé""(la )A°+ {.2.:3)A%+ (1.2.)§.4 )Az’

HE—1)E—4) , ,
+173.3.4.35 S

Let us next take the differences of odd orders omne line
higher, thus: , "
1 — A — A", — AT
-4 e ‘%‘}. .................. (c)

” i
uo i A 0 - OV

+(5)

We have A;l_ - A’_% FAL
n"__ A iv

A%—A_%_l‘Ag-,

A%=A_A'+AO =A___}.
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Making these substitutions in (5), we find
Ht+1),,  H(E2=1) (2 —1)(t+2)

= ty=tAL +=y oAk g Al h g e AT T
H(E2—1)(t2—4) iy ’
R e

Now let us make a third transformation by using the
differences next below those of (¢), thus:
U, )
FX A %_ == A % =— 71‘: Fu seessacessssnacane ((] )
w, — A — AV —
If, in (6), we substitute these differences for those there written,
we shall have the value of w,,,—u,, that is, putting
U=t+1,
we shall have the value of u, —u, =u,—u,—A}. Substituting in

(6) for ¢ its value ¢'~1 and the differences (), and then dropping
the accent, we find

e L HE=1) o BE=1)(E=2) o  BHE=1)(E=2)
U—th=tA oAty o3 A4t —13.38 A
LHE=D(E=2)6=3) , L
5.9.5.5 4

The formulae (5), (6), and (7) have the advantage that the
differences of each alternate order are taken from the same
horizontal line. But a yet farther transformation is necessary
to reduce the equations to the best form for practical use.

Referring to the scheme (B) it will be seen that there are no
values of A’, A, etc., with entire suffixes, and no values of A”,
A¥, ete., with fractional suffixes, but that the places where these
values might go are left blank. Now, we may imagine that
these blanks are filled by quantities given by the general equation

WS {0V Yy | s s O (8)

that is, in each blank space we may imagine written the half
sum of the A’s above and below it, and we designate these
half sums by A with half the sum of the suffixes attached. We
use this notation in what follows.
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13. Stirling’s formula of interpolation.
In this formula the following scheme is used :
Wy, AFE AT A, A EAT=e
Ay, Ay, A}, ete., being defined as just described. We derive the
formula by taking the half sum of (5) and (6), which gives

7 t2 ” tt—l "
’lbt=’ll/0+tA0+i-2A0+ :E R 3)A
; .. (9)
B(E=1) ., HE=D)(E=1),, J
s+ S Aot

which may be used equally well for either positive or negative
values of .

14, Bessel’s formula of interpolation.
The scheme of A’s used in this formuls is
WUy — — — — —
A% A% A%_ A‘; A'% L el (e)
U — — — — —

The formula is found by taking the half sum of (5) and )
which is: s

1.2.3
L HE=1)(t—-2) 18— 1)(t—2)(t—l-)
" 1.2.3.4 1.2.3.4.5 *f
which is Bessel’s formula in its usual shape.

The second member of this is less simple than that of Stirling’s
formula, where the differences of odd order have as coefficients
only odd powers of ¢, and those of even order only even powers.
But we may make it more symmetrical by filling the blank
between u, and u, in the scheme (¢) by §(u,+u;) =w}, and count-
ing ¢ (considered as the time) from the corresponding moment,
which we may do by putting

V=t—}; . t=t'+}]
First we shall have for substitution in (10)
U= u; =3 %AZ}
U= Uy tv 5
Uty = U= Ul A (11)

e iy
—uo=tA%+t(i 21)A;+t(t (i )A”'
\ , (10)

A+
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Then by substitution in (10)

’ ” t’(t’2 4) "
u§+,,—u%+tA}+ A%+ 193 Ay
» (12)

{2—p)(*— w, P(E2=)(t2— C
i 2)(3 i D+ 2 213).(4 5710A e
which is now as symmetrical as Stirling’s formula.

When one or more isolated values are to be interpolated, either
of the formulae (8), (9), or (10) may be used with nearly equal
convenience. In practice it will often be convenient to use (7),
factoring it thus:

t

+2 4. as

The most common application of interpolatlon is the second
described in § 11.  Such an interpolation is said to be to halves,
to thirds, to fifths, ete., according as the new intervals are one
half, one third, one fifth, etc., of the original ones. The most
expeditious way of executing such an interpolation is to compute
the first differences of the interpolated series, and then find the
required quantities in succession by adding these differences.

The following examples of the way of practically executing
the work are mostly from the Introduction to the author’s tables
of five-place logarithms.

’ t ” m

15. Interpolation to halves.

It is required, from the logarithms of 310, 320, 330...360 to
find those of 315, 325 ... 355.

Here the required quantities depending upon arguments half
way between the given ones; we have ¢=4},and the values of the
Besselian coeflicients, so far as wanted, are

t(t—1)_ 1

DR Sy

B(t—1)(t—}) _
S g

Bt —1)(E—=2)
24 i TG
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(@) E@)) (%) (9 (N (e) (c) (d)
1
: gt 1A +A] Ag+A] 2 5
No. Log. Diff. §A§ §_°2__ °2 L A A
340 53148 —-38
634
345 537 82 6295 —46 —37 1259
625
350 54407 - 36
616
355 550 23 611’5 —43 —34 1223
607
360 255630

We compute the column (e) by the formula
Ay +AY
2

” 1 " " il "
=Ao+§A%=A1_§ A%,

the set of suffixes 0, 1 and } being applied in succession to each
set of differences which enter into the computation.

This mode of computing the half sum of two numbers which
are nearly equal is easier than adding and dividing by 2.

In the next two columns to the left, the sixth place of decimals
is added in order that the errors may not accumulate by addition.
This precaution should always be taken when the interpolated
quantities are required to be as accurate as the given ones.

The fourth column from the right is formed by adding and
subtracting the numbers of the second and third eolumns
according to the formula (15). The additional figure is now
dropped, because no longer necessary for accuracy. The numbers
thus formed are the first differences of the series of logarithms
between the given ones, as will be seen by equation (15).

We write the first logarithm of the series, namely,

log 310 = 2491 36,

and then form the subsequent ones by continual addition of the

differences, thus: P

’ log 315 =log 310+ 695 ;

log 320 =log 3154684 ;

log 325=1log 3204673 ;
ete,, ete, ete.
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If the work is correct, the alternate logarithms will agree
with the given ones in the former table.

The continuance of the above process for a few more numbers,
say up to 450, is recommended to the student as an exercise.

16. Interpolation to thirds.

Let the value of a quantity be given for every third day, and
the value for every day be required. By putting =1 and apply-
ing Bessel’'s formula to each successive given quantity, we shall
have the value for each day following one of those given, and by
putting ¢=2 we shall have values for the second day following,
which will complete the “series. Dut the interpolation can be
executed by a much more expeditious process, which consists in
computing the middle difference of the interpolated quantities
and finding the intermediate differences by a secondary inter-
polation.

Let us put

fo» fo fo» ete., the given series of quantities;
Jos Jis for fo» fu» ete., the required interpolated series;

A’, A7, ete., the first differences, second differences, ete., of
the given series;

&, &', etc., the first differences second differences, ete., of
the interpolated series.

We may then put
, b A= A;{ (in the given series);

fi—fo=6;
Ja—/f1=28; | (in the interpolated series).
fa—fe= 62}

We shall then have &) +6,+8,=A).
The value of fi—f,=d; is given by putting #=1 in the
Besselian formula (10). Thus we find

1 Aj+AY w, 5 AF+AY 1

5G=381-5 3 +162A%+243 ~g T iams A
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Putting ¢=3, we have the value of f,—f,, that is, of &4}
Thus we find
2, _LTAGHA 1 ., 5 AF+HAY 1

SG+8=30~5— 5 ~1e2li Tz 3 Tiass Ak

Subtracting these expressions from each other, we have

v 1 ’ 1 ”nr v
Sy=3 AFE;TA%"'UQ Ay

which is easily computed in the form

&= {A% - (A’,’—~A%>}. ................. (16)

We see that the computation of dj, the middle difference of
the interpolated quantities, is much simpler than that of &;. It
will therefore facilitate the work to compute only these middle
differences, and to find the others by interpolation.

This process is again facilitated, in case the second differences
are considerable, by first computing the second differences of the
interpolated series on the same plan. The formulae for this
purpose are derived as follows:

Let us put Sy =fi—Js
The second difference of which wWe desire the value is then
6;, = 6’ 4 = 8:}.

The value of §; is given by the equation
2
8’5=A; —(6\;'*'6’@),

and the value of &; is found from that of &; by simply increasing
the indices of the differences by unity, because it belongs to the
next lower line.

We thus find

T R e Y. Wi BARANIC T
G=384~5— 3 +162A%+243 SR R 7y

LLAGEA o BRATRAY 11
5= gdtg—3 +102A%“2_4'3 o 1458 OF
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Then by subtraction,

. VG +-A’{+A;’
_3(A“ Ap 8 2 162(A“ ag)
5 ArEEgARYT AL IR e

313 2 1258 (A=A

Reducing the first of these terms, we have
Ay— Ay =4,
For the second term, Aj=A]— A;";

Az =Ai+AY;
whence Ag+ A7 =2A7+ Ay — A} =2A] + AT,
and At 2t L At ial

For the third term, A’ér'-— A; = AN

For the fourth term, dropping the terms in A" as too small
in practice, we may put

AT+2AT+AY
2
The difference of the fifth terms may also be dropped, because

they contain only sixth differences.
Making these substitutions in the value of d;, we find

=2AY.

=g 7= (0145 A7)+ g5 A+ gy AF
4 2 iv
‘AI 243A " .......(17)

=5 (8i-g7av)

By this formula we may compute every third value of ¢”, and
then interpolate the intermediate values. By means of these
values we find by addition the intermediate values of ¢, of
which every third value has been computed by formula (16).

Then, by continually adding the values of &', we find those of
the function f.
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To make the process in the example clear, the computed
differences, ete., are printed in heavier type than the interpo-
lated ones.

It is also to be remarked that the sum of the three consecutive
values of ¢”, formed of one computed value and the interpolated
values next above and below it, should be equal to the difference
between the corresponding computed first differences. For

instance,
23727 42310422793 ="7" 49”59 —6" 40”-29.

But in the first computation this condition will seldom be
exactly fulfilled, owing to the errors arising from omitted
decimals and other sources. If the given quantities are accurate,
the errors should never exceed half a unit of the last decimal in
the given quantities, or five units in the additional decimal
added on in dividing.

To correct these little imperfections after the interpolation of
the second differences, but before that of the first differences, the
sum of the last two figures in each triplet of second differences
should be formed, and if it does not agree with the difference of
the first differences, the last figures of the second difference
should each be slightly altered, to make the sum exact.

The first difference can then be formed by addition.

In the same way, the sum of three consecutive first differences
should be equal to the difference between the given quantities.
If, as is generally the case, this condition is not exactly fulfilled,
the differences should be altered accordingly. This alteration
may, however, be made mentally while adding to form the
required interpolated functions.

17. Interpolation to fourths.

This may be effected by two successive interpolations to halves.
The processes may be combined thus:

Let us put
61;‘62; O35 O4;

the four first differences of the interpolated series, so that

v .l 8146+ 83+ 6, = Ay
N.S.A. c
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Then, by (14), we have

1 A{;+Al+i A+ AY

32+51_ oA} —

128 2 ’
_ 1 As+AT 3 A+ A','
04+ 05 A%+ 3 128 2

From Bessel's formula, by putting ¢=1, %, % in succession
we find

1 An + ” 1 - 11 Alv AI‘V
6“6"6"’2# ~§ad 10 2

1 A +A w11 AV4AF
8, — 5= 16 2 A% 1024~ 2

In practice we first compute
Kat=dsi- s b

m

%(62"51)=?}EA; mA% A‘ =(2),
3@+ =1A+15A] —zser‘;—(s)

"

38, 8) =gz Ay +1hs Ay —zbis AT = (4),

and then 8, =(1)—(2),
&, =(1)+(2),

6;=(3)—(4),

8,=(3)+(4).

18. Interpolation to fifths.

Let us next investigate the formulae when every fifth quantity
is given and the intermediate ones are to be found by inter-
polation. By putting ¢{=2 in the Besselian formula, we shall
have the value of the interpolated function second following one
of the given ones, and by putting ¢=2 that third following.
The difference will be the middle interpolated first difference of
the interpolated series.

Putting ¢=2 in (10), we have

2., QBAIRE B s 208 R AT
=t tg A =g = Tty s Mty g a e g
2.8.7.8.1 .
T922.3.4.5.55°%
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" 1 v
— g (A= G AT+ o A= . )+ (B 1A+
" 1 v
+§(Ao +1A° +...)

<|Tomm e ISR L. (20)
D= A;;'+ s R s )

Diu,=Ag— AE)V+

etc. ete. )

If the interval of the argument is & units the nth derivative
thus obtained will be &” times too large, and we shall have for
the true values

d“‘ (i A;;’+lAg+ete.)

~k 30 @
d « serasasse
dz,;% kz(A ¥ +ete.)

20. Development in powers of the time.

The preceding formulae enable us to develop a quantity in
powers of the time when we have given a sufficient number of
special values of the quantity for equidistant epochs. As an
example of the method we shall take the values of a certain
quantity A, which enters into the theory of precession, and for
which we shall hereafter derive the values shown in the follow-
ing table. The table shows also the successive orders of
differences, so far as they are required.

Epoch. A A’ A AL
1850 0”000
6”114
1900 6 114 —17193
4 -921 —1
1950 11 035 —1-192 (22)
3 729 0
2000 14 ‘764 —1-192
2537, 0
2050 17 301 —1 192

1345
2100 18 ‘646 -
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In this problem: it is best to first take a date near the middle
of the series as the initial one. We shall therefore count ¢ from
1950, using 50 years as the unit. We then have

Ay =1(4"9214-3729)=4"325,
Ag = —1"192,
Ay = —0"0005.

By substituting these values in Stirling’s formula, the develop-

ment becomes
A=11"03544"325t — 075962 ...0.eovervrrnnn (23)

For further use we transfer the epoch from 1950 to 1850, and
express the time in terms of the century as the unit. Putting
t for the time thus expressed, we have

t=2(T-1),
?2=4(1%-2T+1).
Substituting these values of ¢ and t2, we find
A=0"001+13"418T—2"384T% ................ (24)

In applying this process it must be noted that, if we make the
development conform exactly to the special numerical values,
the imperfections of the decimals may result in adding fictitious
terms to the series. We must therefore drop all coefficients of
powers of ¢ from the point where the differences cease to be
regular. In the present case it is evident that the second differ-
ences may be taken as constant; we therefore stop at the term
in ¢2

After obtaining the development in this way it is advisable to
compare its results with the special values of the quantity, and
correct the coeflicients so as to secure the best representation of the
given quantities. In the present case we shall find that the six
special values of A are all represented exactly by the expression
(24) except the first. The rigorous value is 0 at the epoch 1850.
If we drop the first term from (24), all the other values will be in
error by 0"001. We can lessen this difference by a slight change
in the coefficients of 7" and 1", adding

AX=0"00107—0"000272






CHAPTER IIL

THE METHOD OF LEAST SQUARES.
Section I. Mean Values of Quantities.

21. The “method of least squares” is a subject which requires
a volume for its full treatment. But the most essential prin-
ciples involved in it, and the simplest of the processes which are
applied in much every-day astronomical work, can be set forth
in a smaller compass.

The method has its origin in the fact that when we aim at the
highest precision in astronomical measurement, we find the
results of our measures to be affected by small errors due to a
multiplicity of unavoidable causes. Some of these are in the
nature of accidents; of others the causes are known in a general
way, but cannot be obviated or determined in detail. The result
is that a perfect agreement between two observations is never
to be expected. The combination of discordant measures so as
to derive the most likely result thus becomes an important part
of the astronomer’s work.

22. Distinction of systematic and fortuitous errors.

The errors in astronomical measurement are divided into two
classes, one called systematic, the other accidental or fortuitous,
according to the nature of their causes.

Systematic errors are those arising from causes which continue
their action through a series of observations, or are in any way
governed by a determinable law. Examples of such causes are :
Changes of temperature which may cause an instrument to give
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a different result in summer and in winter, or during the day or
in the night; varying conditions of the atmosphere, resulting in
its refracting light differently on one night from what it does
on another; habits of the observer leading him to make an
error of the same general nature in a whole series of obser-
vations; imperfections in the construction of an instrument
leading to its results being always erroneous in a more or less
regular way.

A systematic error of which the amount is always the same
is called constant. This term is also applied to the mean value
of any systematic error in a series of observations. An example
of a constant error is offered by a scale of millimetres or angles
being too long or too short. It is evident that, in every such
case, all the measures made with the scale will be too small or
too large by a corresponding amount. If the scale is correct at
a certain standard temperature, and the observer uses it at
another temperature, always higher or lower than the standard
one, the general mean of the systematic errors will be those
corresponding to the mean of the actual temperatures.

The general, though not the universal, rule is that systematic
errors admit of investigation and determination, so that we may
with more or less certainty determine the proper corrections to
be applied in order to annul their effect.

Accidental or fortwitous errors are those of which the causes
are so variable and transient that the resulting errors elude
investigation. For example, if an observer seeks to bisect the
segment of a line by his eye and by estimation, there must be a
range of accidental error, at least equal to the smallest space
perceptible to the senses. The undulations of the air, which
never entirely cease, cause the image of a star, as seen in a
telescope, to be continually affected by a small and irregular
motion, or change of form. An error which cannot be estimated
in advance will therefore be made by the observer when he
attempts to bisect the image with a spider line.

The general rule, in astronomy at least, is that such accidental
errors are the result of the separate action of a multiplicity of
causes, too variable and complex to be individually determined
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or even defined. The theory of such errors and the reduction of
their injurious effect to a minimum form the basis of the subject
commonly known as the Method of Least Squares.

This method properly applies only to accidental errors. The
best results we can derive by it will still be affected by the
constant or average effect of all the systematic errors to which
the observations are liable. These we must determine as best
we can in each case, and regard the uncertainties of the deter-
mination as belonging to the class of accidental sources of error.

23. The arithmetical mean and the sum of the squares of residuals.

We begin with the simplest case, which is that of the repeated
measurement of a constant quantity, which we may call .

Let the individual results of » measurements be that this
quantity is found to have the values

A oy A ot Gy

We may express these results by saying that they lead to the

discordant equations

r=a,
r=2x,,
r=x,;
or r—x,=0
X—x,=0
7=} oB8opognoo0aneanatt Aepoddasi: (1)
r—x,=0

and the question is how, from all these equations, we are to
conclude upon the best value to adopt for a.

Let us first regard « as an indeterminate quantity, to which we
may, as an hypothesis, assign any value at pleasure. We may
form the deviations of any such value from the observed values.

Putting A R
for these deviations, we have
X=Xy =1

e PR o o7 Lt Wy (2)

X=Xy ="17p
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Now let us form the sum of the squares of these residuals,

which we call Q.
Q=ri+r2+... 472
=nx?—2(x,+x,+ ... +x,) v+ 2+ 22+ .. 2,2

This sum is a quadratic function of »; and the fundamental
principle adopted is that the most likely or best value of x to
be chosen is that which makes the sum Q of the squares of the
residual differences the least possible. To find this value we
differentiate ) as to z, and equate the derivative to zero. We
thus find dQ

%=2'nx—2(x1+m,z+m3+...+;7cn),

which, being equated to zero, gives

Hence, on the principle in question, the most likely value of the
quantity measured is the mean result of the individual measures.

24. The probable error.

Since every astronomical result is liable to error, we need
some way of expressing the amount of the liability. We may
do this by assigning a quantity e such that we suppose it a
certain definite chance whether the observation is in error by
an amount greater or less than e. It is common to regard the
chance in question as an even one; the value of e is then called
the probable error.

The judgment that a numerical value x;, assigned to z, is
affected by the probable error e, that is to say, that the true x
probably differs from x; by the quantity e, is expressed in the form

r=x,te.

This means that, out of four chances, there are two that x is
contained between the limits z;—e and x,+e¢, and two that its
true value lies without these limits. Let us lay down the value
of z graphically on an axis of abscissae and measure off' the
value of the probable error on each side, thus

.
—e 0 +e
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The point O here marks the adopted value of z, while 4+¢ and
—e are laid off on each side.
Then the four chances that the true value of  lies
To the left of —e
Between —e and O
Between O and +e

To the right of +e
are all equal.

The following problems are fundamental in the whole theory :

ProBLEM 1. The probable error of = being +e, to find the
probuble error of mx, m being a constant.

If x is contained between the limits x+e¢ and z—e, ma will be
contained between the limits ma —me and ma + me.

There is, therefore, the same chance that ma will be contained
between these limits as there is that the true  will be between
x+e and x—e.

Hence probable error of maz= L me. .c....coveeontonns (5)

It may be noted that this theorem is true of values of m
either greater or less than unity.

Definition. Independent quantities are such that a change in
the adopted value of one will not affect our judgment of the
value of .the other.

ProBrLEM ILI. The probable errors of several independent
quantities of which the given wvalues are q,, q, ... q, being
€, €y, ... €,:—t0 find the probable ervor of their sum.

Let us put

q; the true, but unknown, value of ¢;..., (i1=1,2,... n)
Q=q,+9,+...+¢, the sum as given,
Q' =q,+¢,+...+q,, the true unknown sum.

We may then write the equations

—q= te,
q_lz—q.2= _i_—.e2a
q;z_qn= -_l._-em

which will mean that, in each equation, it is an even chance
whether the second member is, in absolute magnitude, greater
or less than the value ¢, which is assigned to it.
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Take the sum of all these equations,
Q—-Q=+tetetet. . Fe,
and square it,
(@ —Qr=el+e’+...+e.
Tee e, et .. e, e,

Since the quantities e are equally likely to have positive or
negative values, the sum of the terms in the last line is as likely
to be positive as negative. The probable average value of this
sum is therefore zero, and the most probable value of the second
term of the equation’ becomes ef’+e’4...+¢.2 We therefore
obtain as the most likely value of @' —@,

E=Q—Q=/(el+e +e’+...4+e7), ocevinnnnnn. (6)
E being put for the probable error of the sum . We therefore
have the theorem :

The probable error of the sum of any number of independent
quantities is equal to the square root of the sum of the squares
of the probable errors of the individual quantities.

We note that the seeming difference between the conclusions
in the two cases of Problems I and II arises from the premise
of the second case that the quantities are independent.

ProBLEM III. T find the probable error of a linear function
of several independent quantities in terms of the probable errors
of the separate quantities.

Let the quantities with their probable errors be

Zyte, Xyte, xste;, ...,
and let the linear function be
X =ax,+bxy+cxs+ ... .
By Problem 1. we have
Probable error of ax, = + ae,,
» »” bacy = +be,,
cxy= +ces,

and then, by Problem II.,
Probable error of X = ,/(a?e?+b%ef+celf+...), uu.nns (7)
which is the required result.
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The mean we should adopt is that of the original results.
To form their sum we note that, since x; is the mean of m,
quantities, the sum of these quantities must have been m,x,.
Hence the sum of all the products mx,, myx,, ete., will be the
sum of the original results, while the number of the latter is
the sum of the m’s. Hence the required mean is

_ M My T,
r= ST )

In this expression the factors m are termed weights and the
result is called a weighted mean, or a mean by weights of the
quantities @, ...,

ORI B23) €2 m00f% | oacooc X

This conception of a weighted mean has a mechanical
analogue. If we lay off on an axis OX the values of #,, x,, etc,,
the arithmetical mean of all the measures from O to X corresponds
to the distance from O to the centre of gravity of the points
&y, &, ..., when all are assigned equal weights. If we imagine
the points to have different weights, the position of the centre
of gravity is that of the weighted mean of the quantities.

It is evident that if all the numbers m are multiplied by any
common factor, the resulting value of z will not thereby be
changed. Hence we may take for the weights any system of
numbers proportional to the respective numbers of observations
from which each separate result is derived. In other words, we
may find the weights by multiplying or dividing the numbers of
observations by any common factor or divisor. We represent
weights, in a general way, by the symbols

Wy, Wg, +vr W

26. Relation of probable errors to weights.

In (9) the weights m are the respective numbers of observa-
tions on which each « depends. But, suppose that, instead of
the number of observations being given, we have given the
probable error of each measure or series of measures. It is
evident that the final result to be derived should depend on
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these probable errors, irrespective of the number of observations
which enter into each result.

It has been shown (Prob. IV.) that the probable error of
any number of observations, each having the same individual
probable error, is inversely proportional to the square root of
the number. If ¢, be the probable error of a single observa-
tion, that of the mean of m observations will, therefore, be

Hence TUE= —Fes eeiiiiieeieieee e inaas (10)

This result is the converse of (8), and shows that the number
of observations necessary to give a result with an assigned
probable error is inversely as the square of that error.

It follows that if we have given the results

Qe b T
with the respective probable errors
bt OV

we may choose at pleasure a quantity ¢, as the probable error
of a fictitious standard observation, to which we assign the
weight 1, and then find the series of numbers

et g oy’ &’

L= e(l)z’ 2T g2
which will be the respective numbers of fictitious observations
the means of whose results will have the given probable errors.
There is no need that the numbers w shall be integers; nor is
there commonly any practical advantage in writing their values
with more than a single significant digit, or, at most, a pair of
digits when the first digit is 1.

As a concrete example, suppose the seconds of mean declination

of a star at a certain epoch, as determined at several observatories,
with their probable errors, to be

6=3rl.1; 3//.7; 2/’.9’ 3//,2’ 3//,7,
= j:0”22 ; 011,25; 01/.18; 0/[,13 ; 0,,'4‘0'
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As a convenient round number we choose ¢,=0"50 as the
probable error of a fictitious standard observation. We then
have the following computation from (11) and (9):

We
% e w;. w;d.
il 07048 5 15”5
2 0062 4 14 -8
3 0032 8 23 2
4 0 -017 15 48 0
5 0 160 2 7 4

34 108"9

Weighted mean : 108”9+ 34 =3"-20.

ProBLEM V. To find the probable error of a weighted mean.
Since the weighted mean may be regarded as that of a certain
number of standard observations, its probable error is given by
(8). The number in question being
W Wyt oo Fwp=W, o 12)

the probable error ¢ of z is
€0

e=ﬁ, ...............................

or the quotient from dividing the probable error of a fictitious
observation of weight 1 by the square root of the sum of the
weights.

The same result may be reached in an elegant way by Problem
III. A weighted mean is a linear function of the quantities
whose mean is taken, of which the coeflicients are
=22 ete.

W’
Substituting in (7) these values of «, b, etc., and putting for
&7, e, ete., their values from (11)

e§=?j—,
Wy
the probable error reduces to the expression (13).

a=%}, b

27. Modification of the principle of least squares when the weights
are different.
It is evident that, when we take a weighted mean of several

quantities, the sum of the squares of the residuals can no longer
N.S. A, D
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be a minimum, because this is the case with the unweighted
mean. To find the corresponding function which is a minimum,
let the quantities whose weighted mean is taken be, as before,
By Wy Rl Ly,
and their probable errors
&f, 183, Ve, sines,
Their respective weights will then be
_% _%
rwl—e—12 , W=-%
If we multiply the equations (1) or (2) by the respective factors

e ) .
V'w1=ei’, JEz:e—Q,etc. .................. (15)

1 2

it follows from (5) that the probable errors of the products
Jw ;s Jwamys... Nwa,

will all be equal to ¢, By applying this multiplication to

equation (2) the second members will become /w7, Vwyr,, ...,

and it is the sum of the squares of these products, that is, the

function Wyr 2wt 4 W =0, e, (16)

which should be a minimum. If we substitute for =, r,, ...

their values (2), differentiate as to «, and equate to 0, we shall

have wy (e —x) +wy(x—a,)+... =0,

which will give for « the weighted mean of x,, z,, etc.

28. Adjustment of quantities.

It sometimes happens that we know in advance some relation
which a system of measured quantities should satisfy. For
example, if at a point O on a horizontal plane, surrounded by
points 4, B, C, D, ... K, lying on the plane in various directions,
we measure the consecutive angles

AOB, BOC, COD, ... KOA,
the last angle carrying us round to the starting direction, then
we know that the sum of these angles should be 360°. If the
measures were free from error, then, on adding them together,
the sum would be exactly 360°. If the actual sum is different
from this by a quantity A, we know that A is the algebraic sum
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of all the errors of the measures. The problem then is to find
the most likely system of corrections, which, being applied to
the individual measures, will reduce their sum to 360°. In doing
this we are adjusting the measures so as to fulfil the required
conditions, for which reason the process is called adjustment.

If the measures are all of one weight, the process of adjustment
is this :—Putting Oy Oy gy .. Gy
the measured values of the successive angles, then

A=a,+ay+az+...4+a,—360°

will be the sum of the errors. The most likely adjustment will
then be to divide the errors equally among all the angles. If
we put A

8 =—

n
the concluded values of the separate angles will be
Ay =86, yg=05,.es Ap—20,

the sum of which fulfils the required condition of being 360°.

If the weights are unequal, let us put for the weights of the
7 measures | Uy Oy gy .. U '
the symbols W, WosWsssee Wr,
and let the respective corrections be

Ry s Mg, e gy
The sum of these quantities must satisfy the condition
hythg+hgt.othp==0 ceeninniianiiiin. amn
while, in accordance with the general principle, the function
Q=wh2+wWh2+ ...+ Wnhp?
must be the least possible. Hence the equation
wyl, dhy +wohodhy+ .. 4 Wohadhy =0 ... (18)
must be satisfied for all values of the dh’s which satisfy the
equation given by the differentiation of (17), namely
dhy+dhy+dhy+ ...+ dhy=0. oo .ooiiiiil. (19)

These conditions must hold true for every admissible infini-
tesimal change in the values of the 2’s. To find the values
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Section II. Determination of Probable Errors.

29, Of probable and mean errors.

The preceding theory assumes as one of the data to be given
a certain quantity called a probable error. The definitions of
this and certain associated quantities, and the methods of deter-
mining them, are now to be considered. The following is the
logical basis of the subject :

(1) In a rigorous sense, an error consists in the deviation of
an observed value from an absolutely true value. But the latter
quantity is never considered as actually known. Hence, what
we have to take as an error is the deviation of an individual
value from the best value that we are able to determine. In
certain cases the term residual or residual difference is applied
to this quantity. But, with the limitations we have expressed,
the use of the usual term “error” should cause no misconstruction.

(2) The probable error ¢, as we have defined it, is determined
by the condition that there is an equal chance of an error, in
any one case, being greater or less than e in absolute value.

But the reasoning, as it has been set forth, is equally valid for
the case when, instead of taking e for the amount of that error
which there is an even chance of committing, we take the value
of an error having a different probability from this. We may,
for example, take an error of which there are three chances
to one against committing. In this case, in the language of the
theory of probabilities, the probability of an error exceeding the
standard amount will be . The reasoning would then remain
the same throughout, the meaning of the term probable error
being alone changed.

(8) We must distinguish between a probable and an actual
error. The actual errors are numerical values of the residuals
which we actually find in the case of any system of observation.
Probable errors are errors of which there is a greater or less
probability of making. Hence actual errors may be greater or
less than probable ones, but, in the long run and the general
average, they should correspond to each other.
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(4) The term mean error may be used in various significations
which must be distinguished. In general, the mean of several
quantities is equal to the quotient of their algebraic sum by
their number. If used in this sense, the mean of all the devia-
tions of a system of quantities from their arithmetical mean
would always be zero, and the term would be without
significance.

Another signification of the term is the mean of the numerical
values of all the errors, regardless of their algebraic sign. This
is called an arithmetical mean error, or average error, but is not
much used in practice.

As commonly used, the term mean error is that quantity
whose square is the mean of the squares of the errors: that is,
it is the square root of the arithmetical mean of the squares of
all the errors.

It is easily shown that this mean is always greater than the
arithmetical mean of the errors, except in the case when all the
errors are equal. .

For, let us take

¢, the mean

v, the average }’ as just defined,

of the n errors
B:5 16g" 50 g

Let us also take the difference between each individual error
and the average, and call it ¢, so that we have

e, =vte,
ey =v1tCy,
e,=vxtec,

Now, take the sum of the squares of these equations:
Ze?=nv2+ 2?4 2vZe.
The first member is, by definition, ne? and the last term vanishes,

because Zc=0. Hence o2
E=v24 s

.The excess of ¢ over v? is a positive quantity, which vanishes
p
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only in the special case when the ¢’s are all equal (making the
<’s all zero).

Here again we must distinguish between a probable mean
error and the actual mean error in any given case. The latter
is a numerical result actually found from the residuals; the
former is defined as the mean error which would be found in
making an infinite number of observations of the same kind,
and, so far as can be determined, under the same conditions, as
those actually made.

The actual mean is found only from the special observations in
question, but, in determining a probable mean, we may take into
consideration all the data at our disposal for its determination.

30. Statistical distribution of errors in magnitude.

The method of dealing with fortuitous errors rests upon the
law of their statistical distribution in magnitude, that is to
say, the respective probabilities of making errors of different
magnitudes.

The following are the assumed general laws of distribution,
from which, however, there may be deviations in special or
extraordinary cases. To the latter the theory of the subject does
not apply. In the cases to which it does apply, the principles are :

(1) Positive and negative errors of any given magnitude are
equally probable.

It is readily seen that there are many kinds of investigation
in which this law does not hold true. For example,in weighing,
impurities in the substance weighed will always result in
making the apparent weight greater than that of the pure sub-
stance. In astronomy, however, the law is very near the truth.

(2) In any class of observations, the probability of an error
continually diminishes with its magnitude, and we can always
set o limit beyond which the probability of an error shall be
as small as we please.

It is, however, impossible to set a limit which an error may
reach, but can never exceed. We can only say that, the larger
a possible error, the more unlikely it should be to occur.

The preceding laws are commonly embodied in the following
formula:—1If we put A for a certain modulus of error, then the
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infinitesimal probability that the error shall lie between the
limits « and «+ d2 is assumed to be given by the formula:

1 2
e R SR R T i PR (22)
h <F

This formula may be graphically represented by the curve
shewn in Fig. 2, in which, if the abscissa of any point represents.
the magnitude of an error, the ordinate at that point is pro-
portional to the probability of the error. The point P marks the

probable error and M the mean error.

/—

A M P o P-M B

F16. 2.

If we have an indefinitely great number of errors distributed
in magnitude according to this law, we may represent each error
by measuring off its magnitude from the origin O to the right
or left, according as the error is positive or negative, and then
marking it by a point. Since the ordinate at each point is
proportional to the number of errors of corresponding magnitude,
it follows that if we scatter the points along the ordinate they
will be equally distributed over the area contained between the
curve and the axis of abscissas AB. The total number of errors
between any two limits will be proportional to the area contained
between the corresponding ordinates.

The probabilities that an error will exceed certain amounts are

The probable error itself - 0500
The mean error - - 0318
2 times the probable error 0177
- J— o 3 g 0043
! > = » 0007
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Thus the area PP will be 1/2 and that between the ordinates
of mean error MM will be 0-318 of the entire area of the curve.
At the points 4 and B, corresponding to errors of about four
times the probable error, the curve approaches so near the axis
that only seven errors out of one thousand should reach these
limits. :

The preceding law of error is considered the normal law, and
on it the theory of the subject is commonly based. But, although
it is a law to which the errors will commonly approximate when
the observations are carefully made, it cannot be regarded as
practically universal. Indeed, in practice, the general rule is
that large errors are more common than the normal law would
lead us to infer. For example, an error five times as great as the
probable one should, on the theory, occur only once in 1300
times, but practically, it will be found to occur much oftener.
The theory is, however, adopted because of the simplicity and
elegance of the methods based upon it.

The practical astronomer has also to recognize the occasional,
and perhaps the frequent occurrence of errors which .seem
abnormally large. Such an error may be of a magnitude so great.
that no question can arise as to its retention or rejection. A
wrong figure may have been written down, or a wrong graduation
read by the observer. But when the magnitude of the error is
such that it cannot be regarded as morally impossible, the
question of dealing with it becomes one of great difficulty, to be
settled by common sense and sound judgment rather than by
any theory. The general rule is that, if the magnitude of a
residual exceeds the value which we could reasonably suppose
a fortuitous error to have among a number of observations
no greater than that which we are combining, we must
regard it as abnormal, and reject the result affected by it.

31. Method of determining mean or probable errors.

In combining observations an important problem is that of
inferring the probable error to which any one observation should
be regarded as liable. This may be done in two ways:

(1) We may know from experience that observations of a.
certain class, made at a certain observatory, or by a certain
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observer, are affected by a probable error of a certain amount.
For example, meridian observations of declination are affected by
a probable error which may lie between +0”2 and 4-0"5. When
made on objects near the horizon, the p.e. may even exceed the
latter limit. That of good observations in R.A. commonly lies
between +0%018 and 4-0%035.

(2) The probable error of the individual observations of a series
may be determined by their mutual discordances, or the deviation
of each from the mean of all. A result thus reached will be
more reliable the greater the number of observations. In
developing the method of doing this we begin with a numerical
example, illustrating the combination of observations, and the
determination and treatment of residuals.

Twelve observations of the north polar distance of Aldebaran,
made at the Royal Observatory, Greenwich, during the year
1899, gave the results shown in the first column of the following
table, when reduced to the beginning of the year. The degrees
and minutes, 73° 41’, are omitted, being the same for the whole
series.

COMBINATION OF GREENWICH OBSERVATIONS OF
ALDEBARAN, 1899.

Sec. of N.P.D. res. 72,

Feb. 9 36”55 —0"49 024
Mar. 23 38 04 +1 -00 1-00
24 37 63 +0 ‘59 035

Apr. 10 38 -17 +1 13 1-28
19 36 ‘87 -0 17 0 03

May 6 36 29 —0-75 0 56
June 16 36 ‘64 —0 40 016
July 10 ~ 36 45 —0 59 035
Nov. 16 37 74 +0 70 0 -49
Dee. 11 36 ‘11 —0-93 0 -86
13 37 18 +0 14 0 -02

14 36 ‘83 —-021 E)_'O‘L
Sum, - 84”50 +0"-02 5”38

Mean, - 3704
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The units and decimals of seconds being added, give the sum
84750, and the mean 77°04. There is no use in carrying the
division beyond the second decimal, which might, indeed, have
been omitted from all the separate observations without detract-
ing from the precision of the result.

This mean being subtracted from each separate result gives
the apparent residual errors of the latter found in the third
column. In mathematical theory their algebraic sum should
be 0. As a control upon the accuracy of the mean, we form the
sum, and find it to be 4+0702. This is because the remainder
0702 has been neglected in dividing to form the mean.

We next take the square of each residual, dropping un-
necessary decimals, and find the mean value of all the squares.
But, in forming this mean, we use a divisor less by 1 than the
number of observations, for a reason now to be shewn.

In determining a probable error we must, in effect at least,
express the result as a linear function of the observed quantities.
So we express the residuals as linear functions of the observed
results. Let the latter, n in number, be

@R Bp -G a0t s

the mean is the sum of these divided by n. Subtracting this
from any z, say «;, we find the residual to be

1 1 il 1
¢1=<1_E>w1_.%m2—h—x3—...—ﬁwn. ............ (23)

We now put e for the unknown mean error of each z. Then,
by § 24, Eq. (7), the square of the probable mean error of the
linear function (28) is

N2 n—1 n—1
{(1_1_@) + }€2=__n s v 13 (24)

This quantity is an expression for the probable value of the
square of any one residual, taken at random. We have n such
squares which, when equated to the respective residuals, give us
n probable equations of the form

n—1

E=r2 N1=1,2...n).
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The sum of these n equations gives for e the probable value
2t
'
RSt

In the example before us, we have n=12. Hence

>r2 538
2__ <1 B4t
=37 =717 =049
and > e=+0"70.

This is the probable value of the mean error already defined,
which the writer deems the best to use, as the expression of the
uncertainty of a result. But it is quite common to use the so-
called probable error, or the error which there seems to be an
even chance of exceeding in the case of any one observation.
Assuming the respective probabilities of errors of different
magnitudes to follow the normal law stated in § 30, it can be
shown that the probable error is equal to the mean error multi-
plied by the factor

o=06745.

In the present case, this gives 40747 as the probable error of
a single observation.

Finally, the probable error of the result is found by dividing
the probable error of one observation by the square root of the
number of observations. Thus we may express the mean result.
of the observations given above, together with its uncertainty,
in the form
N.P.D. of Aldebaran=73° 41" 37"04+40"20(m.e.) or 0”14 (p.e.).

32. Case of unequal weights.

Let us now consider the more complex case in which the
results to be combined are of different weights. As a numerical
example, we take the following six measures of the interval of
time taken by light in passing from Fort Myer to the Washington
Monument and back, made by the author in 1882. - The intervals
are expressed in millionths of a second.

The weights are assigned according to the number of turns of
the revolving mirror from which the ray was reflected, and all
other circumstances affecting the quality of the result.
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In taking a mean by weights there is no need of multiplying
the whole of any one result by its weight. We may divide each
2 into two parts, the one an arbitrary quantity =, the same for
all, the other the difference between x and z,, say A. Then, we
take the mean of all the A’s, and add it to 2, In the com-
putation we have taken z,=24'82, and multiplied the excess A
of the result over ), by the weight.

The products, wA, are found in the fourth column, and
divided by Zw=30 to form the weighted mean. In forming
the residuals, we transfer the decimal point to follow the
thousandth of millionths place.

1882. Interval of time. Weight. wA. R wr, wr?,
July 24 24-828 4 32 + 04 + 16 1
26 24-828 3 24, + 04 + 12 0
Aug. 9 24822 2 4 —56 —112 63
10 24-825 5 25 —26 —130 34
11 24828 6 48 + 04 + 24 1
29 24-831 6 66 + 34 + 204 69
30 24-827 4 28 —06 — 24 1
Sum, - - — 30 227 — - 10 169
Mean, - 248276 — .— = — ey 282

Each residual is then multiplied by the weight, and the alge-
braic sum of the products, which should vanish, taken as a
control. The sum —10 is the remainder neglected in dividing
by 30, the sum of the weights.

We next multiply each wr by =, so as to form wr% In doing
this, there is never any use in carrying the product beyond two
significant figures in the majority of the results, so we drop the
decimals, and by adding find

Swr2=169.

From this the probable mean error is derived by the following
investigation : ;

33. To find the probable mean error when the weights are unequal.

Let W be the sum of the weights w,, w,, ... w,, and let »; be
any residual, 2;,—a. * Expressing the latter as a linear function
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The square root of this expression gives the probable mean
error for weight 1, which, divided by the square root of the sum
of the weights, will give the probable error of the result.

In the example we have

n=7; W=80; Zwr?=169.

Hence =282,
e= 153,
e+/30= 4097,

and the mean result in units of 000 000 001 of a second is
Time =24 8276 +097 (m.e.) or 4066 (p.e.).
The probable error is therefore less than the millionth part of

the thousandth of a second, so far as it can be inferred from the
discordance of the results.

Section III. Equations of Condition.

34. Elements and wvariables.

Many problems of astronomy are of the following character :
We have certain varying quantities which we may call

x, Y, 2, ete.,

of which we may determine the values at certain moments by
direct observation. These quantities are known functions of the
time ¢, and of other quantities

a, b, ¢, ete.,

called elements, which are either constant, or of which the
variations are known in advance.

x, ¥, 2, ete,, being functions of «, b, ¢, etc, we may express
their relations to the latter in the form

FPEA (0 10 (6 o 1 BB AN R A0 P00 00D @7

with as many other equations as we have variables ¥, z, ete., to
compute or observe. We then have problems of two classes:
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If a, b, and ¢ are given, we may compute = and y for as
many epochs as we please by these equations.

Suppose now that we can observe or measure the coordinates
2 and y at certain moments ¢, ¢,, etc., after the epoch. Then, if
a, b, and ¢ are known, we may, by substituting ¢, ¢,, ete., for ¢
in (28), compute « and y for the moments of observation. If the
computed values agree with the observed values, well; if not,
we have to investigate the cause of the discrepancy. This may
be either errors in our measures of the coordinates, or errors in
the values «, b, and ¢ used in the computation. Possibly a third
cause may have to be considered—error in the fundamental
hypothesis of uniform ecircular motion of P; but we do not
consider this at present.

Next take, as an extreme case, that in which the values of the
elements «, b, and ¢ are entirely unknown. Then we cannot
compute (28) at all, for want of data. What we have to do is to
reverse the process and determine «, b, and ¢ from the observed
values of # and y at the known times ¢, ¢, ete. If we call
these observed values

Ty, Y T Yy lC,

we shall have to determine the values of «, b, and ¢ from the
system of equations
acos(b+ct) =,
asin(b4ct,) =
e 21 (29)
acos(b+cty)=u,

Here the second members of the equations are the observed
values of « and y, while a, b, and ¢ are the unknowns to be
determined.

Equations of this kind are called equations of condition,
because they express the conditions which the elements «, b, and
¢ must satisfy in order that the results of computation with
them may agree with observation.

Formally, the unknowns may be considered as determinable
from a sufficient number of independent equations of the form

(29). Usually such equations do not admit of solution except
N.S.A, E
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by tentative processes. But with three observed values of
and y at very different points on the circle we may derive
approximate values of a, b, and ¢, which will form the basis for
a further investigation.

35. Method of correcting provisional elements.

In most of the problems of astronomy, we do not regard the
elements themselves as unknown quantities, but start with
approximate values, supposed to be very near the truth, and
take as unknowns the small corrections which we must add to
these assumed or provisional values in order to get the true
values. The corrections which these preliminary elements
require are introduced by development in the following way :

Taking the general form (27), let

s! D52 Gl
be the provisional values of the elements and

éu, &b, de, ...
the corrections which they require. Then the true but unknown
values of the elements will be

a=ay+éa
b=b,

I R e (30)
c=c,+d¢

We substitute these values in (27) and develop by Taylor’s
theorem
x=f(ay, by, Cp 1)
dx dx dx
+~d—%5a+%—03’)+6—zc—050+... (31)
+terms of the second and higher orders in da, 6b, ete.

From the nature of the case the provisional values are quite
arbitrary, except that they should not deviate too widely from
the truth. We are, therefore, free to choose their values so as to
simplify the computation whenever this is practicable.

In practice we nearly always have to suppose the terms of
the second and higher orders in (31) so small that they may be
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neglected. If such is not the case, it is commonly easier to
repeat the computation with better values of the provisional
elements than to consider the higher terms in question.

In the second member of (81) the first term is the value of «
computed with the assumed values of the elements. Let us put

2 comp.; the computed value.
x obs. ; the observed value.

By taking this observed value as the first member of (31),
dropping the third line of the equation and transposing, we have

da
d 2 sa +db é‘b+g— 8¢+ ...=x obs.—a comp. ....... (32)
In this equatlon all the quantities are known numerically
except da, db, and de.

Example. The following coordinates of the satellite Titania
of the planet Uranus, relative to the planet, are derived from
observations by See at Washington in 1901 :

Time. &7 Y.
(1) May 135026 —24"95 —22"05
(2) , 155007 +18 ‘61 —26:85 |. (33)
(3) , 175008 +29 46 +15 ‘03
(4) , 225014 —20 04 —26 67

Let us as a first hypothesis assume the motion in the apparent
orbit to be circular and uniform. If we compute the polar
coordinates, » (or a) and §=>b+ct, from the above values of z
and y for each of the four observations, by the usual formulae

rcosf=zx
rsinf=y
we find the average value of » to be about 33"08. Also by
dividing the differences of the 6’s by the elapsed intervals we
find that the four values of § may be closely represented by the
hypothesis that
On May 135026, 6=221° 28’}. ____________ (34)
Daily motion of §=c= 41 15
We may take our initial epoch when we please; generally it
is best to take it near the mean of all the times of observation,
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so that the sums of the positive and negative values of ¢ shall
nearly balance each other. For the first part of the computation,
however, it will best serve our purpose to take a moment near
the first observation, namely May 135, as the epoch. Our values
of ¢, t,=etc. will then be found by subtracting this date from
the others, and will be

t,=00026; ,=20007; t,=4:0008; t,=9-0014
From (34) we find
by=221° 28’ —t,c=221° 22 ..................(35)

We find the following values of » and 6 from the measures

f ad.
Owny'

(1) 3330  221°28'  83°16
(2) 32 66 304 44 82 18
(3) 33 07 27 2 206 3
(4) 3336 233 5

We know that, as a matter of fact, the apparent curve de-
scribed by the satellite is slightly elliptical. But, for the purpose
of illustration, we shall find how nearly the observations can be
represented on the hypothesis of circular and uniform motion.

We therefore adopt these values of b, and c,:

by=221° 22 } ........................ (36)
o= 41 15
and we take a,=33"08.

We now have all the data for computing  and y from (28)
or (29). The results, and the excess of each observed coordinate
over that computed, are found to be as follows:

-

Dates. b+ect. 2 comp. y comp. Az, Ay.
(1) 221°28  —24"79 —2191 -0"16 —0"14
(2) 303 54 +18 45 — 2746 +0-16 +0-61 (37)
3) 26 24 +29 63 +14:71 ~-017 +40-32(""

(4) 232 40 —2006 —26:30 +0:02 —0-37

Here Az and Ay are the excesses of the observed values of
x and y given in (33) over the computed values.
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Next we form the equations of condition for the corrections
from (31). By differentiating (28), we have

%S = COS(b + Ot), Z—Z—J = Sin(b + ct)’

g% = —asin(b+ct), d b =acos(b+ct),} ..cc..... (38)
dar 498 dy _, %y

de ™" db’ de =tab'

We now change our epoch at pleasure. In forming equations
in which ¢ enters, it is generally convenient to choose as the
initial epoch a moment near the mean of all the times of
observation. In the present case we shall have the simplest
computation by taking the moment of the third observation as
epoch. Then, dropping useless decimals, the values of ¢ are
—4, —2,0, +5.

By using these four values of ¢ in these equations and the
values of a,, by, ¢, in (36), we find four values of each coefficient,
and eight equations of the form (32), four from « and four
from y. These equations are

f= —4; —074960 +2196b — 888 =—0"16
av _ 0668 DB O i g
—9: +0558 4275 — 55 =+0°16
—9, —0830 +185 — 37 =+0-61

0: +0896 —147 0 =—p-17( 89
0: +044d  +206 0 =40-82
45; —0607  +263  +132 =002
+5; —0795 —201 —100 =—0 37

These eight equations have only three unknowns to be deter-
mined. We cannot satisfy them all with any values of the
unknowns; but whatever values we adopt, there will be out-
standing differences between the two members of the equations,
which we should make as small as possible.

These differences are what we have in § 29 called residuals.
They are functions of the unknown quantities, and we seek to
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determine the best values of the latter from the principle
developed in § 27:

The best values of the unknown quantities which can be
derived from a system of equations greater in nwmber than the
unknowns wre those which make the sum of the squares of the
residuals, multiplied by their respective weights, a minimwm.

36. Conditional and normal equations.

We have to show the simple and elegant process by which
values of the unknowns are found which reduce the function of
the residuals above defined to a minimum. For this purpose let
us consider the general case of a system of linear equations
exceeding the unknown quantities in number. We consider the
absolute terms or second members of the equations to be affected
by a greater or less probable error, a judgment which we express
by assigning to each such term a weight proportional to the
inverse square of the probable error.

Let the conditional equations, with their weights, be

ax+by+tezt...=n,; weight=w,
A+ by ez 4 ... =n,; » =W,
(40)
a3w+b3y+c3z+ - —i e =
] 1)
of which the number is supposed to exceed that of the
unknowns.

We also put +r; eyt o,
for the residuals left when n,, n,, ete., are subtracted from the
first members. Any one of the equations may then be written
in the form ri=ae+by ezt =N e (41)

This equation gives the 7’s as functions of the unknowns
z, ¥, 2, etc., and our problem is: What values of the unknowns
will make the function

Q=wr w2+ e FWeT2 eeeieiiiiiininnnnen (42)
a minimum ? The required conditions are that the derivatives
of Q as to @, ¥, and 2, etc., shall vanish. We have

dQ _dQ dr, | dQ dr,
e d71 dm+d’r'2 dw+ .................
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with similar equations in ¥, 2, ete. Also

%g =2wr;=2wlax+by+...—n,),

and, from (41), dr, | El_/)jgi_b ¢
dx-a,-, dy— i ele.

Thus (43) becomes, when we divide by 2,
wya(ax+by+ez+...)—wan,
F Wyto( gt 4+ byy + Coz 4. .) — Wytan
069000 369000000500000 580080806080 6AA0000 =0.
In the same way, using ¥ instead of x in (43),
wb(ax+by+cz+...)—wbn,
+wyby(as +byy + ozt ...) —w,byn,
Continuing the process, we shall have a similar equation for each
unknown quantity.
The equations may be expressed in a condensed form by putting
[aa]l=wa2+wa2+ ... +w,a,?
[ab]=w,a,b; +woasby+ ... +w,a,b,
[bb] =w,b24+wb2+ ... +w,b,2 cugzleomasd (44)
[an]=wan, +wasm,+ .. w, a0,
‘We shall thus have

[aa]e+[ably +[ac)z+ ... =[an]
[abJae4[bbly+[belz+ ... =[bn] (45)
lacle+ [bely+[ecle+...=[en] | 7

These are called normal equations. The first, originally
derived by differentiating 2 as to «, is called the normal equation
in x, because it is the one which determines x, and so with the
other unknown quantities.

The most convenient practical method of forming the normal
equations is to write under each conditional equation, or rather
under each set of its coeflicients, the product of the coeficients
into the weight of the equation.
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It is not necessary to multiply the b’s into the wa’s, because
the products have already been obtained by multiplying the o’s.

into the wb’s: 00
and [ab]=[ba].
If the computation is correct, we should have
[as]=[aa] +[ab] +[ac] + .. ]
[bsL_ [ab] +[bb] + [bc] +..

[sn] [(m] + [bn] + [cn] +..

In this way we find the coefficients of all the normal equations.
Then, by solving the latter, we shall have those values of the
unknown quantities which will make the sum of the squares of
the errors into their weights, or the function  a minimum.

37. Solution of the normal equations.

In the usual computations of spherical astronomy, there are
seldom more than three unknown quantities. A brief indication
of the practical method of solution in this case will, therefore,
suffice. We take the coefficients ot the first normal equation :

[aa], [ab], [ac] ...,
multiply them all by the successive quotients

La_bl [ac] [as]
[aa] [aa] " [aa]’
and write the products under the coefficients of the other

equations. The product L[ %x[aa] will be [ab] simply, and so

need not be formed, unless as a test of the accuracy of the
multiplier. 'We shall thus have pairs of equations, the first of
each pair being the normal equation in one of the quantities.
y, z; the second the product of the equation in 2 by the
appropriate factor, thus:
[ab], [bb], [be], ... [bs], [bn],
[@bl[ab] [ablac] [ab[as] [ab][an]
[wa] * [ea] *7" [aa] * ad]
Subtracting these from each other, we shall have an equation
from which  is eliminated.

i
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Then, applying the same process of eliminating x to the
remaining normal equations, we shall have a set of equations
between the unknowns y, 2, ete.

Subjecting these equations to the same process, we shall reach
a set of equations without « or y. Going on in the same way,
we at length reach an equation with only one unknown quantity,

say z of the form ot
which gives z= '—L)I

Then, by successive substitution in the equations previously
formed, we obtain the values of the other unknown quantities.
Example. We may take as an example the equations (39),
first subjecting them to a transformation. In the conditional
equations it is always convenient to have the mean value of the
coeflicients of any one unknown not vastly different from those
of the other unknowns. In (39) the coefficients of é¢ have a
mean value about 100 times as large as those of da and 30 times
those of ¢b. We may avoid this inconvenience by using as
unknown quantities
z=018a, ... 6a=10m]
y=368b, ...sb=1%y
2=106c ... 60:0'12J
The substitution of these expressions will change the first
equation into 75— 73y+882=0”16

Treating the other equations in the same way, and adding the
three coefficients of each equation to form s the scheme is this:

0wt s ke 0 (48)

No. a. b. c5 s. 7. w.
1 — 75 + 73y — 882 —90 —~0"16 1
2 —66 —-83 +99 —-50 —0 14 1
3 +56 +92 —55 +93 +0-16 155)
4 —83 +62 —-37 —58 +0 61 155
5 +90 — 49 00 +4-1 -0 -17 it
6 +4-4 +99 00 + 143 +0 32 1
i —61 +88 +132 4159 +0 02 i
8 —80 —67 —~100 — 247 —0 37 1
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We have next to form the normal equations by (44). We
multiply all the terms of the first equation by the first value of
wa=a (because w=1); then the terms of the second by the
second value of wa, ete.

Dropping the last decimal figure of the product as unnecessary
we thus find

aa. ab. ac. as. an.
562 — 548 4660 +67'5 +1-20
436 + 548 — 653 +33:0 +0-92
471 4756 —462 +76'5 +1-35
1034 —T4:7 +46°1 +74:7 - 759
81-0 —450 00 +360 —1'53
19-4 + 440 00 + 634 +1-41
372 —531 - 805 - 964 —012
624 +529 +79:0 +1943 = 4292
4503 —03 —09 + 4490 —1-44

The check against error is
[aa]+[ab]+ [ae] =[as],
a condition which we find to be satisfied. Thus the first normal
equation, or that in z, is
4502 — 03y — 092 = — 1”44,

the decimal being dropped from the coeflicient of « because it is
unnecessary. .

We next multiply the coefficients by the respective values

of wb, omitting the first, because we already have the products
ab. We thus find

[bb]=5433; [be]=-T21; [bs]=+4710; [bn]=+414"34.
We apply the check
[ab]+[0b] + [be] = [bs],
4709 =471-0.
The error of 01 is less than the probable error from omitted

decimals.
Multiplying by the coefficients we, we find

[ec]=5154; [cs]=+4426; [en]=—0"78.

which comes out
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We now substitute this value of z in the first equation (50),
and thus obtain %; then the values of y and 2z in the first
equation (49) to obtain «. The results are

z= —0"0032, Ja=-—0"03,
y=+00264, &b=-+0 0088, t. ...c..... (53)
z=+0 00232, dJec=+0-000232.,

From the ‘way in which we have formed the differential

coefficients ) Ry M

J(i; %) %) 0Py
the value of du comes out in seconds, and that of b and é¢ in
are. We reduce the values of the latter to minutes by multiply-
ing by 3438, the minutes in the unit radius, and thus obtain
8b=+430"3,
de=+ 0°8.
Applying these corrections to the adopted values of «, b,
and ¢, we have, for their definitive values from all the

observations, 0= 33705,
b=221° 523,
c= 41°15"8.

The next step is to compute the values of # and y from these
elements for the dates of the separate observations, being careful
to use the precise values of ¢, rather than the approximate ones.
Subtracting these ’s and y’s from the observed ones, we have
the definitive residuals to be used in deriving the probable
€rrors.

38. Weights of unknown quantities whose values are derived from
equations of condition.

The theory of errors as developed in the preceding section
applies only to the probable error of a directly observed quantity,
and not to that of an element derived by the solution of equations
of condition. The error of a result consequent upon an error of
observation may be smaller or greater than the latter to any
extent, the amount depending on the relation of the result to



78 THE METHOD OF LEAST SQUARES [§ 38.

the observation. For example, if AB be a line, and C a distant
object, whose distance from 4 or B is determined by measuring
the angles at 4 and B, and then computing the sides AC and
BC of the triangle; it is evident that, the farther away C is, the
greater the effect of an error in the angles upon the computed
distance. The effect of an error in B may be imagined by
supposing that, while the line AB and the direction AC remain
fixed, the side BC is allowed to turn on B as a pivot through an
angle equal to the possible error. The corresponding motion of
the point C will be the effect of this error on 4C.

The great advantage of the method of least squares arises
from the fact that it affords us a means of determining not only
the values of the quantities sought, but the effect of the probable
errors of observation upon those values. The theory upon which
this subject rests is too extended for development in the present
chapter; we must therefore confine ourselves to a statement of
method. The two steps in the case are:

(1) The determination of the weight of the unknown quantity.

(2) The determination of the mean or probable error e, corre-
sponding to weight unity.

The probable error of each quantity is then found by dividing
¢, by the square root of the weight.

There are different ways of finding the weights, of which the
one most easily remembered is the following:

Having the normal equations in the form (45), we equate
the absolute term of each equation to a literal quantity, say
A, B, C, etc. The equations thus appear in the form

[aa]z+[ab]ly +[aclz+...=[an]=A4
[ab]x+[bb]y+[l).c]z+... =[b.'n]=].3 e T (54)

N
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We then carry through a simultaneous duplicate solution, one
numerical, the other in terms of A4, B, C, etc., as literal quantities.
The final values of the unknown, will then be, not only their
numerical values, but their expressions as linear functions of
A4, B, C, ete,, in the form

x=a number=kA+4+IB+...
Y= »w =FKA+UB+...,
where £, [, etc., will be numerical coefficients.

If the numerical work is correct, the values of «, y, ete., found
by substituting the values (54) of 4, B, C'in these expressions,
should be the same as those found by the numerical solution.

In these last expressions the diagonal coefficients £k, 7/, ete., are
the reciprocals of the weights of the corresponding quantities.

To find the probable errors from the discrepancies of the
observations among themselves, we compute the residual » of
each original equation of condition by substituting in it the
values of the unknown quantities. We then form the sum

Q=wr 2+ wyr 4wy +
and divide it by n —m, n being the number of equations and m
that of the unknown quantities. The quotient is the square of
the mean error for weight unity, which, being divided by the
square root of the final weight of each quantity, gives its mean
erTor.

39. Special case of a quantity varying uniformly with the time,
Let us apply the preceding results to the following case. We
have a quantity z, of whose value we know or assume only that
it varies uniformly with the time. We express this property by
putting
¢, the time, measured from an initial epoch ;
z, the value of  at this epoch ;
¥, the increase of 2 in unit of time.

We shall then have, in general,
RS L aoalis st s BalA Bap00t0gad0gs g (55)

When we know the values of z and 4 we can determine x
at any time ¢ by means of this equation.
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as the reader can readily show for himself by substituting the
values of +. Hence the equations (62) take the simple form

Wz=[x],
s . [TT] y= [Tﬁi],
and the solution is
,[2)
VA LS, WORS AT i) (67)
L]
y= [77)

41. The probable errors of the unknown quantities may be
determined in the following way. Expressing z and y as linear
functions of ,, x,,... x,, § 24, Eq. 7 shows the mean error of z
to be given by the equation

Wi =wlel+wlel+ ... +WEe2, o oiiviiiiinin (68)
€1, €, ... €, being the respective mean errors of z,, w,,...%,.

But, putting ¢, for the probable error corresponding to weight 1,
we have

€0
W, =—
(3 e? )
whence Wik =wek
602
Thus, from (68), &= W
€
€= i 2

This last equation expresses the conclusion: The probable
error of the variable at the mean epoch is the same as if all the
observations had been made at that epoch.

We have, in the same way, from (61) and (7),

e of [Te] =wlir e +wirle’ + ... wiried
=(wr+wer + .. F W, T e,
=[r7]e’.

From (67) and (5), we see that the probable error of y is
equal to that of [rx] divided by [rr]. Hence

=1

€o

Vi)
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CzuBER, Theorie der Beobachtungsfehler, Leipzig, 1891, presents a very
elegant and attractive exposition of the entire subject from the mathe-
matical standpoint.

Papers by J. W. L. GLAISHER in the Monthly Notices R.A.S., vols. xl.
and xli., deal with the forms of the determinants which implicitly enter into
the solution, and are well worthy of study.

TuieLg, T. N., Theory of Observations, London, Charles and Edwin Layton,
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and others, and in the Astronomische Nackrichtern by numerous writers,
treating various aspects and phases of the subject.

The author of this Compendium hopes to publish a comprehensive work
on the subject about the end of 1907.









CHAPTER IV.
SPHERICAL COORDINATES.

Section I. General Theory.

42. The positions of the heavenly bodies are defined by the
values of coordinates by methods developed in analytic geometry
of three dimensions. In astronomy the system of coordinates
most used is a polar one, which, to distinguish it from that of
polar coordinates in a plane, is commonly known as spherical.
Rectangular coordinates are in frequent use in the computations
of theoretical astronomy, but enter only incidentally into those
of spherical astronomy. The fundamental elements of any
system are:

1. An origin or point of reference. The points principally
used in astronomy for this purpose are:

(@) A point of observation on the earth’s surface at which an
observer may be supposed located. Coordinates referred to this
origin are called apparent.

(b) The centre of the earth. Coordinates referred to this
origin are called geocentric.

(¢) The centre of the sun. Coordinates referred to this origin
are called heliocentric.

The position of a body is completely expressed when the
direction and length of the line from the origin to the body are
given. When the spherical system is used, the length of the line,
called the radius wvector, is one of the coordinates. The other
two are commonly angles determining the direction of the radius
vector.
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side. The complementary angle ZOP is called the polar
distance of P.

We readily see that the latitude is contained between the
limits +90° and —90°.. The polar distance, connected with the
latitude by the relation

Polar distance + latitude =90°

is always positive, and varies between the limits 0° and 180°.

43. The radius vector, longitude, and latitude of a heavenly
body being given, its position is uniquely determined by the
following geometric construction. Pass a sphere round the
origin as centre with a radius equal to the given radius vector.
Pass through the axis of Z a plane making with the plane X0Z
a dihedral angle equal to the given longitude. In this plane
measure an angle ZOP equal to the given polar distance. Then
the intersection of the line OP with the sphere will be the
position of P, which will thus be completely and uniquely
~ determined. :

From the preceding definitions it will be seen that the longitude
ranges. between 0° and 360°. We may, if we choose, use negative
longitudes, implying the measurement from OX in the negative
or clockwise direction, This is frequently convenient when the
longitude exceeds 270°. :

44. The celestial sphere.

It is shown in spherical trigonometry that we may assist our
conceptions of the lines, planes, and angles which enter into a
trihedral angle by imagining a sphere having its centre at the
vertex of the angle, and marking upon its surface the points and
circular arcs in which the edges and planes of the trihedral
angle intersect it. The parts of the trihedral angle are thus
represented by the six parts of a spherical triangle.

A similar help is invoked in astronomy by introducing the
conception of the celestial sphere, upon which we may conceive
points to be marked and circles to be drawn. This sphere has.
its visible representation in the sky, and we may conceive points
and circles upon it as marked or drawn on the sky.
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It is common to consider the celestial sphere as of infinite
radius. Then every point with which we are concerned may be
regarded as situated at its centre. All lines parallel to each
other intersect it in coincident points, and all planes parallel to
each other in coincident great circles.

We may also conceive a finite sphere of any size to be drawn
around the point of reference or origin of coordinates. There
will then be a separate sphere for each separate origin. So far
as results are concerned, it is indifferent which system is adopted
in thought; but the conception of an infinite sphere is the
simpler.

In this case, the direction of every line R in space is repre-
sented by the point Pr at which it intersects the sphere, and the
direction of every plane L by the great circle L¢ in which it cuts
the sphere.

If P is perpendicular to L, Pr is the pole of Le.

The angle between any two lines R and R’ is measured by the
circular arc between the points Pr and P’r, where they intersect -
the sphere.

The dihedral angle between two planes is equal to that at
which the corresponding great circles intersect.

Correlative with the conception of a system of planes con-
taining a line R is that of a system of great circles passing
through the point Rc of the sphere. The great circle Le having
Pr as its pole then intersects the system at right angles. The
circles which form the system are then called secondaries to Le.

Small cireles parallel to a great one are called parallels, and
may be designated either as so related to the great circle, or by
any point through which they pass.

It is shown in Fig. 6 how the coordinates which determine P
as seen in Fig. 5 are represented on the sphere. X, Y,and Z, the
axis of Y being added to the system of Fig. 5, are the points in
which the rectangular axes intersect the sphere. They form the
vertices of a triangular rectangular spherical triangle. The
great circle AYX is that in which the fundamental plane of
X Y intersects the sphere. P is the point of intersection of the
radius vector of a heavenly body with the sphere. ZPR is a
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quadrant from Z through P to R. The angle POQ, which we
have called the latitude of the body, is now represented by
the arc PR. The complementary arc ZP represents the polar
distance. The arc X R represents the angle XOR, which we have
called the longitude of the body. It may be equally represented

F1c. 6.

by the angle XZR at the vertex Z or by the dihedral angle
between the planes X0Z and ROZ.

The point Z in which the fundamental axis intersects the
sphere is called the pole.

The polar distance is, in the abstract, a more convenient co-
ordinate than the latitude, because it is always positive. Its use
thus avoids the danger of a mistake from assigning a wrong
algebraic sign, which is incident to the use of latitudes. Polar
distances have been used at the Greenwich Observatory since
1835, but in astronomical literature the latitudinal form is
generally used.

We shall frequently use the notation

A, the longitude,
3, the latitude.

A feature in which the longitudinal coordinate A differs from
the latitudinal one, 3, is in the effect of small changes in its value
upon the position of the point indicated. A change AB in 8
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always produces an equal change in the apparent position of the

body, as seen from the origin. But, owing to the measures of A

being made around the pole as an axis, the apparent displace-

ment due to a given AN is less, the nearer the direction of the

point P is to that of the pole, the general law being
Displacement = cos BAX.

45. Special fundamental planes and their associated concepts.

The planes most used in astronomy as fundamental are three
in number, namely :

\ (a) The plane of the horizon.
(B) The plane of the equator.
(v) The plane of the ecliptic.

(a) The plane of the horizon, or horizontal plane, is defined as
that which is perpendicular to the direction of gravity at any
place, or to the direction of the plumb-line. The surface of a
still liquid, say water or quicksilver, is coincident with this plane.

The great circle in which the horizontal plane cuts the
- celestial sphere is called the celestial horizon. The poles of
the horizon are the points at which the vertical line intersects
the sphere. That in the upward direction is called the zenith,
that in the lower direction the nadir.

A distinction is sometimes made between the horizontal plane
passing through the position of the observer, and the parallel
plane passing through the centre of the earth. The first is called
the apparent; the second, the rational or geocemtric horizon.
The distinction is unnecessary in the horizon on the infinite
sphere, because the two planes cut the sphere in coincident
circles.

Planes containing a vertical line are called wvertical planes,
and the corresponding circles of the sphere vertical circles. All
vertical circles pass through the zenith and nadir, and are
secondary to the celestial horizon.

A parallel to the horizon is called an almucantur.

(B) The plane of the equator is that which passes through the
earth’s centre at right angles to its axis of rotation. The circle
in which it intersects the earth’s surface is the terrestrial
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equator. The great circle in which it intersects the celestial
_ sphere is called the celestial equator.

The poles of the celestial equator are the points in which the

axis of rotation intersects the sphere. They are called the
celestial poles, and are distinguished as north and south.
" Great circles passing through the celestial poles are secondary
to the equator. That which passes through the zenith of a place
is called the celestial meridian of that place, or the meridian
simply, and the points in which it intersects the horizon are the
north and south points.

The vertical circle passing through the zenith at right angles
to the meridian is called the prime vertical. The points in
which it intersects the horizon are the east and west points.

When a heavenly body reaches the meridian of a place, it is
said to culminate. The upper culmination is that through the
semi-meridian which contains the zenith, the lower culmination
is that through the semi-meridian which contains the nadir. In
astronomical nomenclature it is common to indicate a lower
culmination by the letters S.P., an abbreviation of sub polo; the
upper one by U.C.

(y) The plane of the ecliptic is that in which the earth moves
around the sun, allowance being made for slight motions of the
earth’s centre perpendicular to it, and caused by the action of
the moon and planets.

The great cirele in which the plane of the ecliptic intersects
the celestial sphere is called the ecliptic. The apparent course
which the sun, to the observer on the earth, appears to describe
around the celestial sphere in the course of a year, is practically
coincident with the ecliptic, and is commonly used to define it.-

Being great circles, the ecliptic and celestial equator intersect
at two opposite points. These points are called the equinoxes.
That point at which the sun apparently crosses the celestial
equator, moving toward the north, is called the vernal equinox;
the opposite point at which it crosses toward the south is called
the autumnal equinox.

The angle at which the equator and ecliptic intersect is called
the obliquity of the ecliptic. 1t is equal to the dihedral angle
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between the planes of the ecliptic and equator, and to the arc of
the sphere between the poles of the ecliptic and of the equator.

The two opposite points on the ecliptic 90° from either equinox
are termed the solstices, and are the points where the sun reaches
its greatest angular distance from the equator, north or south.

Two great circles, secondaries to the equator, and at right
angles to each other, pass—the one through the celestial poles
and equinox, the other through the poles and the solstices.
These are called colures. That which contains the equinoxes is
called the equinoctial colure; and that which contains the
solstices the solstitial colure. :

The poles of the ecliptic lie on the solstitial colure, and it may
be useful to remember that the north pole of the ecliptic is in
270°, or 18 hours of R.A. In middle northern latitudes it is at a
greater or less distance north of the zenith in the early evenings of
autumn, and is situated in the constellation Draco. The nearest
conspicuous star is o Draconis of the 4th or 5th magnitude,
about 3° distant from it.

Conversely, the north celestial pole is in 90° of longitude, and
is near the star o Ursae Minoris, hence called Stella Polaris
commonly abbreviated to Polaris, or the Pole star. At present
the distance is about 1° 12. The distance is diminishing through
precession, in consequence of which the pole will continually
approach the star during the next two centuries, passing it in
the year 2102 at a distance of about half a degree.

46. Special systems of coordinates.

Four systems of spherical coordinates are used in astronomy,
each having one of the three fundamental planes just described
as its plane of reference.

First system: altitude and azimuth. This has the horizon
as its fundamental plane. The spherical coordinates which
determine the direction of a heavenly body referred to this
system are altitude and azimuth. The altitude is the vertical
coordinate, and is the angle which the line drawn to the body
makes with the plane of the horizon, or, on the sphere, it is the
arc of the vertical circle through the body P, contained between
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P and the horizon. The zenith distance is the complementary
distance from the zenith to P.

The azimuth of P is the longitudinal coordinate, and is the
arc of the horizon intercepted between the vertical circle through
it and the north or south point.

In accordance with the general system, the positive direction
in which azimuth is measured should be from the north point of
the horizon through west, south, and east. But, in practice it is
measured either from the north or the south point, and in either
direction, east or west.

Second system : right ascension and declination. Here the
axis of z is the rotation axis of the earth, and the fundamental
plane is that of the equator.

The latitudinal coordinate is the angle which the radius vector
of a heavenly body makes with the plane of the equator, and is
called the declination of the body. The complementary angle
which it makes with the axis of the earth is called the norik
polar distance of the body. When the centre of the earth is
taken as the origin, the adjective geocentric is applied to the
declination; when a point on the surface, the declination and
polar distance are called apparent.

Through the position of a body and the two poles pass a semi-
circle. The angle which this semicircle makes with the equinoctial
colure, measured from west toward east, is the longitudinal co-
ordinate, and is called the right ascemsion of the body. We use
the abbreviations:

R.A.=Right Ascension.
Dec. =Declination.
N.P.D.=North Polar Distance.

Positions on the surface of the earth are referred to the
equatorial system. The astronomical latitude of a place is defined
as the angle which the plumb-line at that place makes with the
plane of the equator. Since this line, in the upward direction,
marks the zenith, it follows that the declination of the zenith is
equal to the latitude of the place. A corollary readily seen is
that the altitude of the pole, and the zenith distance of the point
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at which the celestial equator intersects the meridian, are both
equal to the latitude of the place. The complement of the
latitude is for brevity called the colatitude. This is equal to
the zenith distance of the pole and to the altitude of the point of
intersection of the equator and meridian.

In this common system terrestrial longitude corresponds to
Right Ascension, since both are measured in the plane of the
equator or around the pole.

Declination being meastred north from the celestial equator,
and the meridian zenith distance of the equator being equal to
the latitude, it follows that the zenith distance of any object on
the meridian is equal to the latitude of the place minus the
declination.

Putting, as usual in astronomy,

¢ = Astronomical latitude,
z=Zenith distance south,
¢ = Declination,

we have the relation z2=¢—0.
In astronomical practice is used :

o, the Right Ascension ;
d, the Declination.

Third system : declination und howr angle. Here the axis of
Z is still that of rotation of the earth. But the semicircles from
pole to pole are conceived to rotate with the earth and, therefore,
to be apparently fixed. They are called hour circles. Evidently
the celestial meridian, as already defined, is the hour ecircle
through the zenith.

The angle which the hour circle through a body makes with
the meridian is called the hour angle of the body. It is con-
tinually increasing toward the west owing to the rotation of the
earth. Hence, for convenience, it is taken positively toward the
west, though this is contrary to the mathematical convention we
have described. .

The parallactic angle is the angle between the hour circle and
the vertical circle through a body.
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Fourth system : longitude and latitude. The fourth system
of axes has the ecliptic as its fundamental plane.

The latitude of a heavenly body is the angle which the line
drawn to it from the origin makes with the ecliptic. The com-
plementary angle which this line makes with that to the north
pole of the ecliptic is called the ecliptic polar distance of the
body.

Of the secondaries through the poles of the ecliptic one passes
through the vernal equinox; this is taken as the initial circle
ZX, Fig. 6. Another secondary, at right angles to this, is the
solstitial colure.

The longitude of a heavenly body is the angle which the semi-
circle through it and the pole of the ecliptic makes with the
initial circle through the vernal equinox.

47. Relations of spherical and rectangular coordinates.

To every system of spherical coordinates corresponds a
rectangular system having the same origin and the same funda-
mental plane. The relation may be seen in §43, Fig. 6. The
axis of X is that passing in the fundamental plane from the
origin to the initial point from which the longitudinal coordinate
of the spherical system is measured. The axis of Y is in the
same plane, perpendicular to X, its positive direction being
toward the point of which the longitudinal coordinate is 90°.
The axis of Z is that perpendicular to the fundamental plane, its
positive direction being on the positive side of the plane.

The rectangular systems most in use correspond to the second
and fourth of the spherical systems just described. That having
the equator as its fundamental plane is called the equatorial
system ; that having the ecliptic the ecliptical system. These
two systems have a common X-axis, directed toward the vernal
equinox. The Z-axis of the equatorial system intersects the
sphere at the celestial pole; that of the ecliptical system at
the pole of the ecliptic. The Y-axis of the equatorial system
intersects the celestial equator in 90° of R.A.; that of the
ecliptical system intersects the ecliptic in 90° of longitude.

Both of these Y-points are on the solstitial colure Zy, Fig. 7.
N.S.A. G
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The inverse expressions for the differentials of the polar in
terms of the rectangular coordinates are found by multiplying
these three equations in order by the coefficients in order of
any one of the three differentials, and adding. Thus to express
dp we multiply by g, % and ; To express d3 we multiply by
—zcosA, —zsinA, and rcos 3. For dx we have only to
multiply by —v and x, noting that

bcsin)\—ycosk:O.
We thus have

dr="de+%dy+2dz
P P P

' =cos 3 cos Adx+-cos B sin Ady +sin Bdz (%)

r2dB= —zcosA\dx—zsin Ady+rcos Bdz
or rdB= —sin 8cos A dx—sin 8 sin Ady + cos Bdz,
r2cos? BdA= —yda+xdy,
or 7cosBd\= —sindx+cosAdy.

To form the expressions for the special case of the equatorial
system we replace A and 8 by « and ¢, thus obtaining

cos 6010L=cosocd—3_/—sinoad—g6
’ " = . (da)
dé= —siné‘cosa.d—f—siHSSinoc—%+cos 6%?

We retain the cosines of B and & as factors of d\ and da in
order that the displacements represented by the products may
represent arcs of a great circle on the sphere. As already
remarked, the amount of displacement represented by a given
value of d\ and do increases indefinitely as the pole is approached.

49, Relations of the equatorial and ecliptic coordinates.

The relations of these two systems may be seen in Fig. 7.
Here Xy is the equator, X Y the ecliptic intersecting it at X, the
vernal equinox, which represents the common X-axis of the two
systems. X is also the pole of the solstitial colure which is
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and, conversely,
x=2X cos (x, X)+ Ycos(z, Y)+Z cos(, Z)
y=X cos (y, X)+ Ycos(y, Y)+Zcos(y, Z) ;- +----(6)
z=Xcos(z, X)+ Ycos(z, Y) +Zcos (2, Z)j

We have thus the formulae of transformation

X=z
Y= ycoset2sinel. coverrerrnrrnnaennnnn (7)
Z=—ysine+zcose
and, conversely,
x=X
Y=Y cose—ZBINe}, oovieesrornervarnionnens (8)

z=Ysine+Zcose

Section II. Problems and Applications of the Theory of
Spherical Coordinates.

50. Right Ascension is almost universally expressed in time—
hours, minutes, and seconds—instead of degrees, etc. The reason
of this practice is that R.A. is determined by means of the sidereal
time, on a system set forth in the next chapter.

Time and arc are mutually converted by multiplying or
dividing by 15. A table for readily effecting this multiplication
or division is found in Appendix II.

Tables of logarithms of the trigonometric functions with the
argument in time have been published, but are not in general
use. When not at hand, it is always easy to make the required
conversion of the R.A.into arc. The principal applications of
spherical astronomy into which time does not enter may be
stated in the form of the solution of problems.

51. ProBLEM I. o convert longitude and latitude into
right ascension and declination and vice versa.

The formulae of conversion are readily derived from those for
the transformation of rectangular coordinates. If in (8) we
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substitute for X, ¥, and Z the expressions of z, y, and 2z (1), and
for «, y, and z the corresponding values (2) in o and 4, » divides
out, and we have

S

cos ¢ cos v =cos 3 cos A
cos §sin w=cosecos BsinA —sinesin B - coceeeven 9
sin & =sin e cos B sin A + cos esin 3

In the same way, from (7),
cos B cos A =coso.cos § 1
cos BsinA=cosecos § Sino+sinesing o eeenen (10)
sin 8 = —sinecos § sin at+cos e sin &

These equations are those among the
parts of a spherical triangle. This triangle
¢ is that whose vertices are the two poles
and the body. The geometric relations
involved in the problem will be better seen
by deriving them from this triangle.
Let P and C* be the respective poles of
the equator and ecliptic, corresponding to z
and Z in Fig. 7, and S the direction of the
star. Let £ be the vernal equinox which,
being on each of the fundamental great
circles, is 90° from either pole.
Fie. 8. PCE is then a birectangular spherical
triangle, in which CP is the obliquity, e.
We also have
Angle ECS =), the longitude of S taken negatively.
Angle EPS=o, the R.A. of 8 3 o
Side 08=90°—p, the ecliptic N.P.D. of 8.
Side PS=90°-¢, the N.P.D. of 8.

*The relative situation of the two poles and equinox in this figure is the
obverse of that in Figure 7, so as to show it as we actually see it in looking up at
the sky. In the preceding figures the celestial sphere has been represented as if
seen from the outside, in order to show more clearly the geometric relations
involved.
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Hence, in the triangle PCS,
angle P=90°+a=8
angle C=90°—x=4
angle S= =0 l
side PC=¢ =c
side PS=90°-éd=a
side 0S =90°—8=b

We add the usual symbols for the sides and opposite angles in
order to facilitate writing the fundamental relations between
the parts, which give the equations (9) and (10).

It is useful to note that one set of relations may be derived
from the other by interchanging A with « and $ with ¢, and
changing e into —e.

The numerical solution of the equations (9) will give sind
and cosd separately, the agreement of which will serve as a
partial check on the accuracy of the computation. To adapt
the formulae to logarithmic computation, we compute the
auxiliaries m and M thus:

msin M =sin 3 }
et e ugay B e i3 T T (12)

o S ks 1Y) (11)

cos d sin oo =m cos(M +¢)

Then sin §=m sin (M +¢)
}. .................... 13)
cos 6 cos ow=cos 3 cos A

Note that in these equations

m=KES (distance of S from Equinox),
M =angle which £S makes with the Ecliptic,
M+ e=angle which ES makes with the Equator.

In the inverse solution we may compute

m sin N =gin ¢
oV oot oopoaftonmo ok 1
m cos N = cos § sin o } (14
Then sin B=m sin(N — 6)1
coS BSINA =11 COS(N —€) [, rrererrmereneranen (15)
cos B cosA =cos 6 cos o J

which we may use to compute 8 and A.



104 SPHERICAL COORDINATES [§ 51,

The computation may be made yet shorter, thus: from the
equations (12) we have
tan M="08 o, (16)
sin A

by which we compute M, m being omitted. To find a we take
the quotient of the last two equations (13), substituting for m
its value cos BsinA+cos M from the second of (12). Thus we
have

_cos(M +e)tan A =
tan au= T eos M e 17)

The quotient of the first two of (13) then gives
tan d=sinatan(M +e€). .ccooevivirininnnn. (18)

Also corresponding to (16)—(18) we have the equations

_tang

sin &

gos(N —e)tan o k. et oeinnnrian (19)
cos N

tan B=sin A tan(N —¢)

tan NV

tan A=

But this abbreviated method may fail to give an accurate
result if ot or A is very near 0° or 180° as the result may then
come out as the quotient of two small quantities.

52. Use of the Gaussian equations.

The Gaussian equations for the spherical triangle may also be
used with advantage in cases where the angle S of the triangle
CPS is required, and, in any case, are rendered attractive in use
by their elegance in form. Instead of S, its complement £ is
used: F=90°—S. They are as follows:

EcLipTicAL To EQUATORIAL COORDINATES.

sin(45° — }8)sin } (£ + o) = sin(45° + 4\ )sin(45° — L (e +3))
sin(45° — 16)cos §(E+ o) =cos(45° + IN)cos(45° — L (e—B))
c08(45° — 16)sin L (£ — o) = cos(45° + A )sin(45° — 3 (e — B))
cos(45° — 18)cos (B — o) =sin(45°+ JA)cos(45° — L (e+3))

. (20)
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EQUuATORIAL TO EcrLirricaL. COORDINATES.

sin(45°— £ B)sin (£ —\)=cos(45°+ {ou)sin(45° — 1 (e +6))
sin(45° — £ B)cos 3 (£ —A)=sin(45°+ Lo )cos(45° — (e —6))
c0s(45° — §B)sin 1 (E +\)=sin(45°+ Jo)sin(45° — (e — ) |
c08(45° — 1 B)cos 1 (L +N) =cos(45° 4 Lo )cos(45° — 3 (e +6))

As an example of the conversion, showing the most convenient
arrangement of the work, let us convert the equatorial co-
ordinates of oo Lyrae for 1900 into longitude and latitude. The
data are

(21)

. “h m. 8.
R.A. of o Lyrae, - - a= 18 33 33162
=278° 23" 1743
Deec. - - = 388 41 25°71

» ”»

Obliquity of the ecliptic, e= 23 27 826

Usual Method.

sin oL 99953291 n
cos ¢ 9:8923920
cos oL 9-1639923n
sin d=msin N 97959584
m cos NV 9-8877211n
tan NV 9-9082373n
N 141° O 30765
e 23 27 826
N—e 117 33 22-39
sin(V —e) 99477069
logm 99971663
" eos(N —e) 966522320
sin B 99448732
cos Bsin A 966238957
cos Bcos A 9:0563843n
tan A 0-6060052
cos 8 96753239
tan 8 02695493
A 283° 54’ 51”36
B 61 44 1679
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The difference between the results of two computations
AXN=0"04 and AB=0703, arises from the imperfections of the
logarithms, due to the neglect of decimals after the seventh.

As to length of computation, although there are more lines
of numbers to be written when the Gaussian equations are
used, the numbers of entries of logarithmic tables is about the
same in the two methods.

53. Check computations.

It is desirable that the accuracy of every computation be
tested. As tests of the above transformations we have

cos M cos ¢ sin au=cos (M +¢) cos B sin A
and cos IV cos Bsin A = cos (N — ¢) cos & sin o

}. ......... (22)

The following more complete test is that of Tietjen* It
consists in computing the differences, generally not large, A —a
and ¢— 3, independently from the final results, and comparing
them with those found by subtraction.

TIETIEN’S TEST EQUATIONS.

sin (A —at) =2 cos o see Sm sin e sin (M + e)
- =2cosoasec Bmsin fesin (N —Le)

}. e))

sin (68— B)=sec 1(+ B)m sin Lecos (M + }e¢) 94
=sec } (6+ B)m sin }ecos (N — }e) } e

The first equation becomes doubtful as a test for large values
of B3, because sec3 is then large. The following similar ones,
derived by applying Napier’s analogies to the parts of the
triangle’ EPS, seem to be a little shorter in computation, and
less liable to the above-mentioned drawback.

sin%(.7\-—ot.)=tan’2~ecos{;(7\+0L)ta,n§(3+3)} -
ta‘n%<6—B)=tan%53in%(7\+a)sec%(x_a) ar oo Reve d ( )

* Berliner Jahrbuch, 1879. OPPOLZER, Bahnbestimmung, 1, 13.
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or differential variations. For this purpose we require the angle
at S of the spherical triangle PC’S, which is given by either
of the equations
sin S=cosAsecdsine=coscsecSsine ......... (26)

8 being taken between the limits —90° and + 90°.

The required differential coeflicients may be found by putting
the relations between the parts of the spherical triangle KPS
into one of the forms (cf. § 6)

o, 8=f(\, B, €)

or A, B=f(a, 6, €),
and may be derived from the differential relations given in
Appendix I, on the system explained in § (6). Referring to
Fig. 8 and the conventional notation of the sides of the triangle
PES in (11), we see that these forms require the relations among
the following combinations of parts of the triangle :

For o; parts b, ¢, 4, B.

For &; parts a, b, ¢, 4.

For A ; parts a, ¢, A, B.

For B; parts a, b, ¢, B.

The relations between the differentials of the parts which

enter into these four combinations are respectively
—sin Cdb+cos a sin Bde+sin b cos CdA +sin adB =0,
~ da+cos Cdb+cos Bdc+sin ¢ sin BdA4 =0,
—sin Cda+cos bsin Adc+sin bd A +sin a cos CdB=0,
cos Cda —db+cos A dec+sin a sin CdB=0.

In these general relations we substitute the expressions for
the parts and their differentials in terms of a, A, ete., as formed
from (11). We thus find,

cos ddo.=cos S cos BdA —sin Sd B —sin J cos aude } (27)
dd=sin S cos BdA +cos Sd B+ sin cde ;
and, conversely,
cos BdX = cos S cos Sdo+sin Sdd+sin B cos Ade } (28)
df3= —sin S cos Sdo.+ cos SdS—sin A de
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a system in which SE is the axis of X to one in which SP is
that axis. In fact we have
SR=8U-SV=5Tcos S—8Tsin 8,
SR=VI+4+TU=8Tsin S+8T cos S.
Comparing with (),
cos sAa.=cos S cos AN —sin SAS,
Ad=sin S cos BAN +cos SAS,
as by the analytic method. .
If the logarithms of the results are required, so much of the
conversion as does not contain ¢ may be made thus:
h cos H =cos BAX
hsin H=AB
cos dAa=hcos(S+H)|
Ad=hsin (S+ H)
A similar form is readily constructed for the reverse problem.

56. ProBLEM II. Given the R.A. and Dec. of two bodies, to
JSind the distance between them and the position angle of the
one relative to the other.

Let S and S’ be the bodies and P the pole. The p
angle PSS’ which the great circle joining the two
bodies makes with the hour cirele through one of
them, is then called the position angle of S’ when
referred to S. It is counted from the meridian SP,
passing north through S, toward the east. The arc
S8’ joining the bodies is called their angular distance,
and is called the distance simply. In the spherical 3
triangle SS8’P the angle at P is the diffefence of the S
R.A’s, and PS and PS are the complements of the gy 10.
given declinations. We use the notation s=388’, the
distance of the bodies; p, their position angle. The fundamental
theorems of spherical trigonometry then give

................... (29)

sin s sin p =sgin P sin PS = cos ¢’ sin(o’ ~— )
sin 8 ¢os p=cos ¢ sin &' —sin & cos & cos(a’ — ) p-+e---(30)
cos s =sin ¢ sin &' +cos & cos &’ cos(a’ — o)
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We may transform the last two equations in the usual way
for logarithmic computation by computing m and M from the

equations msin M =sin §,

m cos M =cos ¢’ cos(ot' — ).

Then sin 8 sin p=cos ¢’ sin (o' — )
sinscosp=msin(M —¢F)  p ceereeeeeeenen (31)

cos §=m cos(M — )
will be three equations for computing s and p, with a partial
check on the accuracy of the computation. But the check and
the third equation will be useless if s is a small are, say less
than 5°.

In the usual applications of this problem a'—o and s are so
small that their cosines may be taken as unity. We may then
use the equations ! - )

SEip S S G R } ..................... (32)
scosp=4—d

It is generally the case that the position angle p is not
required with precision, or that, instead of defining this angle as
that at P, we may take the mean of the angles PSS" and PS'H,
which will differ little from the angle which the arec SS’ makes
with the hour circle through its middle point. In these cases
we may derive an approximate formula applicable to yet greater
values of s, as follows:

Put p’, the exterior angle PS'H.

Then
sinscos p’= —sin s cos PS’'S= —cos ¢’ sin §+sin ¢’ cos J cos (o’ — av).
Putting for brevity 4 =}(a'—a), the last member of these
equations may be written
—cos ¢’ sin §(cos? A;i— sin? A)+sin & cos 6(cos? A —sin24),
whence sin secos p’=cos?4 sin(¢’' —§)—sin? 4 sin(¢'+ ),
while in the same way the second equation (30) gives
sin 8 cos p=cos? 4 sin(d’— &) +sin%4 sin( + 6).

Taking the half sum of these equations and putting P = {(p+p’),

we have sin s cos }(p’ — p)cos P =cos? 4 sin(¢' —9). .......(33)
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We have also
sin ssin p’=cos §sin(a’ — ) ;

taking the half sum of this and the first of (30),
sin scos$ (p’—p)sin P=cos §(6"— §)cos (8" + 8)sin(o’ — ). (33a)

If s and o’—o are each less than half a degree, we may put
sins=s; sin(' —a)=a'—o and cos(p —p)=cosi(d'—3)=1,
without serious error. If s and o' — o are less than 15, the error
will generally not exceed- 001. Thus we shall have from (33)

and (33a) ssin P= (o’ —a)cos (8 +6)

S } ................ (34)
57. To find the effect of small changes in o and § upon
s and p, the last equations are commonly accurate enough, and
no distinction will be necessary between P and p so far as
the differential values are concerned. By differentiating (34),
writing p for P, and putting for brevity 6, =4(d"+ ), we find

sin pds+s cos pdp = cos ¢,(do’— do) — $(o'— o) sin §,(dd" + dé)} (35)
cos pds—ssin pdp = ddé’— dé '

Eliminating dp by multiplying the first of these equations by
sin p and the second by cosp and taking their sum, we find

ds ds . .

A —(77‘=s1npcosc31

ds o

W=cosp—%ssmptan61 T (36)

g—;: —cosp - ssin?ptan §,

Multiplying the first equation (35) by cosp and the second
by sin p and subtracting, we find

fgf,= —%%:cospcos 4

%dg= —sin p(1+4scosptand)) fe covernneennen(37)

% =gin p(1 —{scosp tan ¢,)
N.S.A. H



CHAPTER V.
THE MEASURE OF TIME AND RELATED PROBLEMS.

Section I. Solar and Sidereal Time.

58. The main purpose of a measure of time is to define with
precision the moment of a phenomenon. The methods of
* expressing a moment of time fall under two divisions: one
relating to what in ordinary language is called the “time of
day,” and depending on the earth’s rotation on its axis; the
other on the count of days, which leads us to the use of years
or centuries. In any case, the foundation of the system is the
earth’s rotation. The time of this rotation we are obliged, in
all ordinary cases, to treat as invariable, for the reason that its
change, if any, is so minute that no means are available for
determining it with precision and certainty. There are theo-
retical reasons for believing that the speed of rotation is slowly
diminishing from age to age, and observations of the moon make
it probable that there are minute changes from one century to
another. If such is the case the retardation is so minute that
the change in the length of any one day cannot amount to a
thousandth of a second Yet, by the accumulation of a change
even smaller than this through an entire century, the total
deviation may rise to a few seconds and, in the course of many
centuries, to minutes.

59. Relations of the sidereal and solar day.

In ordinary life the day is determined by the apparent
diurnal motion of the sun. The astronomical day, when used
for the measure of time, rests on the same basis. The most
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natural unit of time would be that of one rotation of the earth
on its axis. But owing to the annual motion of the earth
around the sun, and the consequent continual change of the sun’s
right ascension, the solar day and the time of the earth’s actual
rotation are not the same, the latter being nearly four minutes
less than the former. Hence, the introduction into astronomical
practice of a sidereal day. The sidereal day, properly so-called,
is the time of the earth’s rotation on its axis, and is equal to the
interval between two passages of an equatorial star without
proper motion over the meridian of a place. The restriction to
an equatorial star is necessary because, owing to the continual
change in the direction of the earth’s axis, known as precession,
the actual interval between two culminations of a star varies
with its declination.

The sidereal day proper is not used in astronomical practice.
Instead of the passage of a star over the meridian, we take the
passage of the vernal equinox. The practical sidereal day is the
interval between two transits of the equinox over the same
meridian. It is divided into 24 sidereal hours, and these into
minutes and seconds according to the civil custom. For 0 h.
sidereal time, called also sidereal noon, is taken the moment of
transit of the vernal equinox over the meridian.

Imagine that, at the moment of this transit, we set a clock
keeping perfect sidereal time at 0 h. 0 m. 0 s., and compare the
apparent motion of the sidereal sphere with the ‘clock. As the
hour angle of the vernal equinox continually increases at such a
rate that the equinox returns to the meridian in 24 sidereal
hours, it increases at the rate of 15° for every hour. It follows
that the sidereal clock, when correct, marks at every moment
the hour angle of the equinox. Moreover, since the right ascen-
sion of a star is equal to the angle between the hour circles
through the vernal equinox and through the star, it follows
that the clock, at every moment, shows the right ascension of any
star which is on the meridian at that mement. In other words,
it continually indicates the changing right ascension of the meri-
dian. At the end of 24 sidereal hours the vernal equinox once
more reaches the meridian and the clock once more marks 0 h.
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It follows from this that, if the moment of culmination of any
star of known right ascension is observed, and we set a perfect
sidereal clock at that moment so that its face shall indicate the
right ascension, the indication of the clock will remain correct
through the 24 hours and will show the R.A. of all objects
passing the meridian, expressed in units of time. This is, in
principle, the way in which right ascensions are determined.

Sidereal time is used in astronomy for the indication of the
apparent position of the celestial sphere. As a general measure
of time the mean solar day is used.

The natural day is the interval between two culminations of
the sun over the meridian. It is divided into hours, minutes,
and seconds of solar time. The time determined by starting
from the moment of a culmination, and measuring off solar
hours, is called apparent time. It is equal to the hour angle of
the sun at any moment.

Owing to the unequal motion of the sun in right ascension,
arising from the obliquity of the ecliptic and the eccentricity
of the earth’s orbit, the days and hours thus determined are
of unequal length, and a clock would have to be continually
changed in order to keep apparent time. Hence, this measure
of time is entirely out of use for astronomical purposes, and is
used in civil life only in regions where uniform time cannot
be obtained.

Both the civil and astronomical time now in almost universal
use are measured by the transits of a mean sun over the
meridian. This is a fictitious body moving uniformly along the
equator, at such a rate that it shall, in the long run, be as much
ahead of the real sun as behind it. The interval between two
consecutive transits of this body is called the mean solar day.
The corresponding time of day is called mean solar time. The
difference between mean and apparent time is the equation of
time, which is given in the Ephemeris for every day of the year.

60. Astronomical mean time.

In our common reckoning of time the day begins at midnight,
and is divided into two parts of 12 hours each. Time thus
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expressed is called civil time. But in astronomical usage the
day begins at noon, and the hours are counted from 0 h. to 24 h,,
from each noon to the next. Time thus expressed is called
astronomical mean time; or simply mean time.

On this system each day is conceived to continue till noon of
the day following, so that, for example, January 2, 9 h. 20 m.
AM,, civil time, is, in astronomical time, January 1, 21 h. 20 m.
The following precepts for changing civil to astronomical time,
and vice versa, are obvious:

If the civil time is AM., take one from the days, add 12 to the
howrs, and drop AM.

If pM. drop P.M.

In either case the result is astronomical time.

To change astronomical to civil time :

If astronomical time is less than 12 howrs write P.M. after it.

If greater, subtract 12 howrs, add 1 to the days, and write AM.

61. Time, longitude, and hour angle.

Since the hour angle of the mean sun increases by 360° in a
mean solar day, it follows that it increases by

15° in 1 hour
15" in 1 minute }of mean solar time.
15” in 1 second

For a similar reason, the hour angle of the vernal equmox
increases at the rate of

15° in 1 hour
15" in 1 minute }of sidereal time.
15” in 1 second

Moreover, as the earth rotates, mean noon passes over 15° of
longitude in 1 hour of mean time, and sidereal noon in 1 hour
of sidereal time. Thus we may say, in a general way, that
time, expressed in hours, minutes, and seconds, may be changed
into arc (%, ’, ”) by multiplying by 15. To save this multi-
plication it is common to express right ascension, hour angle, and
terrestrial longitude in time. This is equivalent to dividing the



118 MEASURE OF TIME AND RELATED PROBLEMS’ [§ 61.

circle into 24 hours instead of 360°, so that 6 hours make a
quadrant. There will then be 4 m. in every degree and 4 s. in
every minute of are.

62. Absolute and local time.

Since noon, or any other hour of the day, travels continuously
round the world, it follows that the moment when any day or
year begins or ends varies with the longitude of the place.
According to the custom now generally prevalent, noon of any
day, say January 1, begins when the sun crosses the 180th
meridian from Greenwich, and ends when the sun gets back to
that meridian. Hence local time at a common moment may
differ by any amount less than 24 hours for two places on
opposite sides of the 180th meridian. We must therefore
distinguish between

Absolute time, which is any common measure of time to be
used for all places, and

Local time, which depends on the longitude of the place

The daily affairs of life are controlled by local time, which is
also the only time that can be readily and directly determined
by astronomical observations. If we have to compare moments
noted at different places we must reduce each moment to some
common standard of time which we regard as absolute.

The usual standard of absolute time is the local time of some
prime meridian, generally that of Greenwich. But we may
equally use time defined without reference to any meridian ; for
example, time counted from the moment when the sun crossed
the vernal equinox. Such a system was proposed by Sir
John Herschel, but has never come into use, because it is less
convenient than Greenwich time.

Local time is reduced to Greenwich time by adding the
longitude of the place when West; subtracting it when East;
Greenwich time is reduced to local time by the reverse
operation.

Astronomical custom is divided as to whether East or West
longitudes shall be considered positive ; the West are positive in
the American Ephemeris. To avoid ambiguity it is better to
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use the signs & or W, except where + or — is necessary. In
this case we use the notation :

A=the West longitude of a place from Greenwich expressed

in time;
', the local time ;
t, the Greenwich time; then when ¢ is given
t=t+42,

and when ¢ is given, Pt
Moments of local time in widely separated parts of the world
may be compared by reducing each to Greenwich time.

63. Recapitulation and illustration.

The following is a recapitulation and statement of the funda-
mental definitions and propositions relating to the subject of time.

I. The mean sun is a fictitious body, increasing uniformly in
right ascension at the rate of 24 hours, or 360°, in a solar year,
and so placed that the true sun shall on the average be as much
behind it as ahead of it.

II. Mean noon at any place is the moment when the mean
sun crosses the meridian of that place.

III. Mean time at any place and at any moment is the West
hour angle of the mean sun at that place and moment, each
15° of arc counting one hour. It is zero at noon, and may be
expressed in hours, minutes, and seconds, or in fractions of a day,
from one noon to the next.

IV. Sidereal noon, or sidereal 0 h. at any place, is the moment
when the vernal equinox crosses the meridian of that place.

V. Sidereal time at any moment is the West hour-angle of
the vernal equinox, and is identical with the right ascension of
the meridian at that moment.

VI. Hence the sidereal time at which any object crosses the
meridian is its right ascension at the moment of crossing.

VIL The difference between mean and sidereal time at any
moment, being the difference between the hour angles of the
mean sun and the vernal equinox at that moment, is the right
ascension of the mean sun in the sense

Sid. Time — Mean Time =R.A. Mean Sun.
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64. Effect of nutation.

Since the equinoxial point does not move uniformly along the
equator, we introduce a fictitious point called the mean equinox,
which moves uniformly, a minute gradual increase from century
to century excepted. The difference in R.A. between the mean
and true equinoxes is called Nutation in Right Ascension, and
is given for every tenth day in the Astronomical Ephemeris.
Its greatest amount is about 18” or 1-20 s.

The R.A. of the mean sun is measured from the actual
equinox. But its motion can be uniform only when measured
from the mean equinox. Sidereal time is measured by the
transits of the actual equinox, affected by nutation. Hence its
units are not perfectly invariable. But since the irregularity
does not amount to more than a fraction of a second in a year,
it is entirely insensible from day to day. Sidereal time being
not used as a measure of time through long periods, this irregu-
larity causes no inconvenience.

65. The year and the conversion of mean into sidereal time, and
vice versa.

The solar year is the interval between two passages of the
mean sun through the mean vernal equinox. Its length is

Solar Year =36524220 days.

It is evident that since the sun and the equinox are again
together at the end of the year, the equinox has made one
apparent diurnal revolution more than the sun. Hence

3652422 solar days=366'2422 sidereal days.

The ratio of these two numbers is a factor by which intervals of
solar time may be changed to sidereal time or wice versa. The
most convenient form for using the factors in question is reached
by putting

1 1

k=g6521° ¥ =356212

Then
Sid. Time=M.S.T.x (1 +£),

M.S.T. = Sid. Time x (1 — k).
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In the American Ephemeris (Appendix) and in most collections
of astronomical tables, and in Appendix II of the present work,
tables of products of intervals of time by % and %" are given.
They are based on the equations
24 h. solar time=(24 h.+3 m. 56556 s.) sid. time,
24 h. sid. time=(24 h.—3 m. 55:910 s.) solar time.

The reduction may be made by taking the proportional parts
of these corrections for the given interval.

If tables are not at hand and the conversion is not required
to a higher degree of precision than 01 s, a sidereal interval
may be reduced to a solar-one by the following rule:

Divide the given sidereal interval by 6, taking the seconds as
reduced to decimals of a minute, and write the hours of the
quotient in the minute column, and the minutes in the seconds
column. Diminish the quotient by &; of its amount; the
remainder will be the reduction.

As an example reduce 13 h. 4 m. 17-8 s, sidereal time to solar
time :

h. m. 8.
6)13 4 178
60, | o2y 1072

+ 218

13 2 93 =interval of M.S.T.

For the reverse reduction, divide the first quotient by 70
instead of 60. As an example

h. m. s,
6)18 2 93 m. solar interval.
70) +2 1036
— 1-86

18 4 178 sidereal interval.

In each example we have added hundredths of a second to avoid
an accumulation of errors in the tenths.

The preceding conversion is only that of intervals between
two moments of the same day. To convert an actual time of
day, we must know the sidereal time of mean noon of the day
in question. This requires us to consider the general method
of measuring and expressing time through all the centuries.
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Section II. The General Measure of Time.

66. In Astronomy time is commonly treated as a continually
flowing quantity, which it really is. But in common life certain
portions, as days, months, or years, are counted as if they were
separate pieces distinguished by ordinal numbers. For example,
that year which began with the assumed moment of the birth of
Christ is called the first year, or the year 1, and in common lan-
guage, any event which happened during that year, were it only
the day after Christ, would be said to have happened in the year 1.

But, if we consider time as continually flowing, and express
the interval from Christ’s birth until any moment in years and
decimals, then for any moment during the first year the interval
- would be only a fraction of a year; for example, on April 1, it
would be 025 y.; or 0 year, 3 months. Carrying forward the
count through nineteen centuries we see that April 1, 1900, was
really only 189925 years from the beginning of our era. In
general, when time is measured continuously the integral
number of years is less by 1 than when each of its units is
taken as an ordinal number.

To avoid the inconvenience thus arising astronomers measure
the years from a zero epoch one year earlier than the birth of
Christ; that is, they place a year O before the year 1, and
measure from its beginning. Thus, a moment at the middle of
the year 1900 would be designated 19005, although only 1899-5
years would have elapsed since the Christian era.

This system leads to a difference of one year between the
astrortomical notation and that of chronologists in designating
dates B.c. The two systems are shown graphically as follows,
the horizontal line representing the course of time from left to
right, and the vertical lines marking the beginnings of the years.
Above the line are the numbers assigned to the years by the
notation of the astronomers; below it those of the eivil time of
the chronologists.

Astronomical

—ly.l 0y. ] 1y ‘ 2y. [ 3y.

Cilile | B.C. 2
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The same system is extended to the days of the year and
month. Mean noon of January 1 is called January 1:0. The
zero epoch from which this one day is measured is noon of
December 31. Hence the commencement of the astronomical
year may be said to be noon of December 31, which is often
called January 0. We may regard December 31 as belonging
to either year. Thus the moment of 6 o'clock .M., on 1899
December 31, may be called .

either 1899, December 31:25,
or 1900, January 025,
while 6 o’clock A.M. of 1900, January 1, may be called
either 1899, December 3175,
or 1900, January  0°75.

67. Units of time: the day and year.

The fundamental unit for measuring long intervals of time,
when the greatest precision is required, is the mean solar day,
as already defined. Taking any fixed date as a fundamental
epoch, we may express any moment in history by the number
of days and the fraction of a day before or after this epoch.
One system of doing this, which has the advantage of being
continuous through all history, is that of using days of the
Julian period. The latter is taken to begin 4713 years before
the Christian era, and, in our time,

1900, January 0=2415020 days of the Julian period.

As in all our records time is expressed in years, there is an
inconvenience in using days alone in computation. Hence the
year is also used as an astronomical unit of time, and that of
two kinds, the Julian and the solar.

The Julian year of 365} days is used when great precision
is required. The number of Julian years and solar days from
any date is easily found, due allowance being made for the
change from the Julian to the Gregorian Calendar, and for the
fourths of a day which enter into the result.
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68. The solar or Besselian year.

The solar year is used in computations relating to the fixed
stars. It is introduced and based on the following data: At the
fundamental epoch 1900, January 0, Greenwich mean noon, the
R.A. of the fictitious mean sun, referred to the mean equinox,
and affected by aberration was

18 h. 38 m. 45836 s.,
and its motion in a Julian year is
24 h. 0 m. 1'84542 s,

with a minute acceleration through several centuries, arising
from a slight acceleration of the precession of the equinoxes.
Putting
7, the R.A. of the mean sun at any time;
T, the time after 1900, January 0, Greenwich M. Noon,

reckoned in Julian centuries of 36 525 days; we have
7=18 h. 38 m. 45:836 s.+8 640 184:542 5. T'+0°0929 5. T2

In astronomical practice we take for the beginning of a solar
year the moment when

+=280°=18 h. 40 m,,

this falling as nearly as may be to the beginning of the
Gregorian civil year. It will be seen from the expression for =
that the beginning of the solar year 1900 occurred after the
fundamental epoch January O by the interval necessary for the
mean sun to move through the are

18 h. 40 m.—18 h. 38 m. 45836 s.= 74164 s.

This interval in decimals of a day is

74164 x 36525
86402

so that the solar year 1900 began at 1900, January 0-313 52,
Greenwich M.T., which is 1900, January 00995, Washington M.T.
This, it will be noted, is a moment of absolute time, having no
reference to any special meridian. The solar year thus defined
is sometimes called the Besselian fictitious year, after Bessel,
who first introduced it into astronomy.

=(313 52 day,
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The beginnings of preceding or subsequent years may be
found by continual addition or subtraction of 3652422 d. Thus
is formed the table for the present century found in Appendix IT.

69. We now return to the relation between solar and sidereal
time. The fundamental quantity on which this relation depends
is the sidereal time of mean noon of any date at any longitude.
This is the same as the right ascension of the mean sun at the
moment of mean noon on that longitude. As mean noon travels
continuously round the earth, it follows that the sidereal time,
or the mean right ascension in question, increases continuously
at the rate of 3 m. 56-356 s. for each mean solar day, that is
for each apparent revolution of the mean sun. We" have also
seen that the value of the quantity in question for the funda-
mental Greenwich noon on 1900, January 0, is 18 h. 38 m.
45836 s. This would be the sidereal time of mean noon for
this meridian and this date, when referred to the mean equinox.
But, in astronomical practice, as we have already remarked, the
equinox taken for reference is the true equinox of the date,
which may vary by a little more than 1 s. from the mean equinox.
It is, therefore, necessary to add the nutation in right ascension,
in order to obtain the sidereal time of noon. As the latter is
given in the ephemerides, its computation is not necessary except
for epochs for which no ephemerides are available.

Section III. Problems Involving Time.

70. Problems of the conversion of time.
In this section we use the abbreviation
S.T.M.N. = Sidereal Time of Mean Noon.

The ordinary problems of conversion of time are the first three
following : i

ProBLEM 1.  From the Greenwich S.T.M.N. to find that of the
corresponding date on any other meridion of West longitude X.

Since mean noon requires the mean time A to move over
longitude A, the G.S.T. required for the motion will be A changed-
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to sidereal time. But the local S.T. will be less than the
Greenwich S.T. by A. Hence the local S.T.M.N. will be greater
than the G.S.T.M.N. by the reduction of A\ from mean to sidereal
time, or STMN.=G.S.T.M.N.+ k.

The quantity kXA may be taken from any table for the con-
version of mean time into sidereal time. In the precept A must
be taken positively toward the West.

ProBLEM IL.  T0 convert mean time into sidereal time.

The study of the following examples will render a rule
unnecessary :

- Convert 1905, Jan. 4, 8 h. 49 m. 26:36 s. M.T. of Mt. Hamilton,
Cal. (Long.=8 h. 6 m. 35 s. W.) into sidereal time.

The S.T. of the given moment is equal to the ST.M.N. plus
the interval since M.N. (M.T.) reduced to sidereal time. The
first of these quantities is G.S.T.M.N.4ZX (Prob. 1) and the
second is M.T. (14%). We take from the ephemeris

Greenwich ST.M.N. 1905, Jan. 4 - 18 55 41'8p
Reduction to Mt. Hamilton ZA (Prob. I.) 15411993
Mt. Hamilton S.T.M.N. - - - 18 55 178
Mt. Hamilton mean time, as given =~ - 8 49 2636
Reduction to sidereal time - - - 1 2697
Mt. Hamilton Sidereal Time - - 3 45 5511

Another method of solution, which is sometimes more con- -
venient, especially when only an approximate result is wanted,
makes use of the mean time of sidereal 0 h., found on P. IIL
of each month of the Ephemeris. The subtractive reduction of
this M.T. of Sid. 0 h. to any longitude is found by reducing the
West. longitude from sidereal to mean time. Thus the above
example may be worked as follows:

B of N 8 b6 i, I8 Rusbor M Ty bl aetishie Dnseeliny 10150
G.M.T. of Sid. 0 h. (Ephemeris), Jan. 4 - 5 5 2797
Mount Hamilton M.T.S. 0 h. - 5 4 825
Given mean time, Jan. 4 - 8 49 26:36
Interval in mean time - e T |
Red. to sidereal time - 0 00 3701
Sidereal time - - - SRR -+ 3 45 5512
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If the given moment of mean time is before sidereal 0 h. of
the same days, the sidereal 0 h. of the day preceding should
be used.

ProBLEM III. To convert sidereal time into mean time.

‘Subtract from the S.T. the S.T.M.N., and we have the sidereal
interval since mean noon. Convert this into mean time, and the
result will be the corresponding mean time.

Reversing the example of Problem II. we have:

h. n. £
Given sidereal time - : 5 = 3 45 +55:05
STMN. - o 2 & = -1 SIS 5EER TS
Sidereal interval since noon - - 8 50 5333
Reduction to solar time > 5 . - 1 2697
Mean solar time - = = = - 8 49 26-36

71. Related problems.

ProBLEM IV. The right ascension of a body being given, to
find its houwr-angle at a given moment of mean time, and
vice versa.

From definitions already given it follows that the hour-angle
of a body is the difference between its right ascension and that
of the meridian. But the latter is equal to the sidereal time.
Hence, putting

h=the West hour-angle,
we have h=t—o,
h being taken positively toward the west. Hence the rule:

Convert the given mean time into sidereal time, and from the
latter subtract the R.A. The remainder s the hour-angle:
West when positive; East when negative.

In the converse problem the hour-angle is given, and the mean
time is required.

Since t=h+w,
we have the rule:

To the R.A. add the hour-angle. The swm ts the sidereal time,
which may be converted into mean time.
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Cor. To find the moment at which a heavenly body of
known R.A. crosses the meridian, we have only to take its R.A.
as sidereal time, and convert it into mean time.

ProBLEM V. To find the mean time at which the moon
culminates at « given place, on a given day, and its R.A. and
Dec. at the moment of culmination.

This problem cannot be solved so simply as that preceding
because the R.A. of the moon is continually changing, and is
therefore not a given quantity. What is given in the Kphemeris
is the moon’s R.A. for every hour of G.M.T. This R.A. never
changes by more than an hour in any one day. Hence if we
take the nearest hour of R.A. for the middle of the day and add
to it mentally the M.T.S.N. and the West longitude, so as to get
the sum to the nearest round hour, this sum will be the G.M.T.
of culmination at the local meridian within at least one or two
hours. By repeating the process, using minutes, we shall have
the G.M.T. within 5 minutes, and can thus find the nearest hour
of G.M.T. mentally.

Of course the hour selected need not be the absolutely nearest
one. Near the half hour, either the hour preceding or following,
may be taken.

For this selected hour of G.M.T. take out or compute
®,, the moon’s R.A.;
o/, the change of R.A. for 1 m. of mean time;

T, the local sidereal time.

Were the selected hour exactly that of culmination, we should

have o

But as this equation will not be satistied, we must find a number
t of minutes before or after the hour at which the equation
T=K"
is satisfied, = being the local sidereal time. Now, in one minute

of mean time 7 changes by

60 s. (1+K)='601643 s.
N.S.A i
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Hence, at ¢ minutes after the hour,
T=7,4+601643 s X1,
=0+ o t.

Equating these values, we have _

__(0y—7,) (in seconds)

i 601643 s.—o” 7
and o
*=y = (=T eas 5 — o T
The declination may then also be interpolated to the time ¢ by
the formula §=06,+15
When many culminations are to be computed the factor
ki L.
601643 5. —o.”

or its logarithm, may be tabulated for every 001 s. of o

ExampLE. To find the time of culmination of the moon on
1907, June 6, at San Francisco, A=8 h. 10 m. West.

Looking at pp. 94 and 97 of the Ephemeris, we find by using
the second method of converting the Moon’s R.A. as S.T.
into M.T.

19 h.4+2 h.4+8 h.=29 h. or 5 h. G.M.T.

Thus the first approximation is

5h. G.M.T. or 21 h. local M.T.

Now, 21 h. M.T. is 9 o’clock A.M. of the civil day next following,
and if we wish the culmination on the morning of June 6, civil
time at San Francisco, we must take as the starting point of
computation

June 5, 21 h. local M.T.=June 6, 5 h. G.M.T.

Then, our second approximation will be

h, m.
M.T.S.N,, Eph. p. 94 - - - I8 Ak
Moon’s RA., Eph. p. 97 - - - 1 47
Longitude of place - - - 8 10
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So 5 h. GM.T. is really the nearest hour. With this time as
argument, we take from the Ephemeris

o,=1h. 46 m. 4969 s. o'=+419502 s.

The local sidereal time must be accurately computed. It is
found to be ‘
To=1h. 45 m. 4881 s.

We now have all the data for the computation of ¢ and o
The preceding formulae give
t=4+10458 m.= +1 m. 275 s,
and hence the increment to be added to o, is
Ac="ot= +204 s.
The required time of culmination is therefore
1907, June 6, 8 h. 51 m. 2'75 s. A.M.
The right ascension of the moon at this time is
oo=1 h. 46 m. 51'73 s.

In some cases, another approximation will be found necessary,
if the greatest accuracy is desired. On account of the time
falling so close to an even hour, in the above problem, such
further approximation is not necessary, the result obtained being
accurate to the nearest hundredth of a second.

Cor. To find the time when the moon has a given geocentric
hour-angle % at a given place, we find the time of its culmination
over a meridian whose longitude is 2 west of the given place, or
h4+\ west Qf Greenwich.

ProBLEM VI. The R.A. and Dec. of a star being given to
Jind its altitude, azimuth, and parallactic angle at o given
time.

Let MZPN be the meridian.
MN, the horizon.
Z, the zenith.
S, the position of the star.
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formulae, if the parallactic angle and azimuth are not both
required. They become, in the present case
€08 z =5in ¢ sin §+cos ¢pcos § cos /v
sinzsin A =cosdsinh
sinzcos A =cos ¢ 8in §—sin ¢ oS F oS A p-eveeereees (2)
sin z sin ¢ =cos ¢ sin /v
sin 2 cos ¢ =sin ¢ cos 6 —cos ¢ sin § cos h

Transforming these equations in the usual way, we have the
following formulae for logarithmic computation :
To find z and A.
ksin K =cos §cosh
kcos K =sin ¢
cos 2=l sin (K 4 ) trorevrrrrerernnnnn (3)
sinzsin 4 =cos §sin b
sin zcos A =k cos (K + ¢)
Or eliminating £, we may use the formulae,

tan K =cot §cos I

sin K tan

RS )

tan Z= M_
cos A

To find 2z and q.
K sin K'=cos ¢ cos
K cos K’'=sin ¢
cos z=k sin (K’ +6) |- etz )
sinzsin g =cos ¢ sin
sin z cos g =X cos (K'+6)
Or by the briefer formulae,
tan K’=cot ¢ cos ,

¢ _sin K'tanh

M= Cos (K'+9)

tanz:&t(ﬁi@,
COoS ¢

Respecting the briefer formulae it is to be remarked that they
may sometimes fail to give as accurate a result as the data
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admit of, owing to tan z coming out as the quotient of two small
quantities. This will commonly be the case when 4 or g differs
little from 90° or 270°. On the other hand the extended
formulae are always accurate. They also afford a partial check
upon the accuracy of the computation by the accordance of sinz
with cos z, which the abbreviated formulae do not.

ProsLEM VIL. The altitude or Z.D. of a known body, and
the latitude of the place being given, to find the howr'—angle and
the local time.

The first of equations (2) gives, for the hour-angle,

. €os z—sin ¢ sin §

cosh= 5088 B0k =sec ¢ sec d sin a —tan ¢ tan é. ...(5)

The second form will be most convenient when, as in sextant
work, we have a number of altitudes of the same body. The
value of sec ¢secd and of tan ¢ tan ¢ will then be the same for
all the altitudes. After finding the product sec ¢secdsina in
natural numbers we subtract tan ¢ tan ¢ from it, and thus have
the nat. cosine of %, and can at once find & from a table of
natural sines and cosines.

We may transform the first value of cosh as in spherical
trigonometry, thus:

1—cosh 917 _COS(¢p—3E)—cosz
T+cosh i %h_cos(¢+6)+cosz'
Putting s=}(z+¢+9),
this equation may be reduced to

sin (s— ¢) sin (s — 6).

cos s ¢os (8 —2)

tan?} /=

Having found the hour-angle %, the sidereal time is given by
the equation Te=o,hh,

and the mean time is then found by conversion.

This problem is of constant application in navigation, and
tables for facilitating its computation are given in treatises on
navigation.
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ProsLEM VIIL. To find the mean time of sunrise and sunset
at a given place.

The hour-angle at which a body is on the true horizon is
called its semi-diurnal arc. It is found by putting z=90°
in (), which gives cos h= —tan ¢ tan d.

If in this formula we use the value of & as given in the
-ephemeris (the geocentric value), the result will be the geocentric
hour-angle at which the body is on the geocentric horizon.
This may differ from the geocentric hour-angle when the body
is apparently on the sensible horizon owing to the effect of
refraction and parallax. Moreover, in the case of the sun and
moon, it is the rising and setting of the upper limb and not of
the centre which is usually given in almanacs.

Now, when the upper limb of the sun is apparently on the
horizon it is really 34" below it, being elevated by refraction.
‘The centre is 16’ below the limb, or 50’ below the sensible
horizon. The parallax may be neglected unless the result is
wanted with unusual accuracy. Hence we may put

2=90° 50,
‘or cosz=—00145;
and for the hour-angle,
cos b= —(00145 sec ¢ sec §+ tan ¢ tan J).

Since the West hour-angle of the true sun is the apparent
time, this equation will give the apparent time of sunset, to
which we must apply the equation of time (given in the
-ephemeris) to obtain the mean time. :

For sunrise we subtract 2 from 12 h. for civil time or from
24 h. for astronomical time, and apply the equation of time as
before.

For ¢ we must of course take the sun’s declination not for
noon, as given in the ephemeris, but for the time of sunrise and
sunset itself. The change in declination during an hour will
generally be unimportant, so that we may need only a rough
.approximation to the time to get the declination.
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ProBrLEM IX. To find the time of rising or setting of the
moon on a given day at a given place.

When the moon is on the horizon it is depressed by parallax
by a quantity which averages about 57. By assuming the
parallax to have this constant value we shall in our latitudes
rarely be led into an error of more than 20 s. The refraction
elevates the moon by 34, and its mean semi-diameter is 151"
Hence, when the moon’s upper limb appears to coincide with the
sensible horizon the true geocentric Z.D. of its centre is about
89° 521, with a range of 4" on each side of this mean. The
formula for the geocentric hour-angle at apparent setting of the
upper limb therefore is

cos h = —tan ¢ tan § 4 00022 sec ¢ sec é.

But it will generally happen that, owing to the whole disc
of the moon not being illuminated, her entire visible portion
will disappear before the setting of her upper limb. It is
therefore best to take the setting of her centre. For this we
shall have

geoe. Z.D.=89° 37,
cos b= —tan ¢ tan 6+ 00067 sec ¢ sec 6.

If the risings and settings for a whole year are to be computed
for some one place, it will facilitate the work to make a table
giving the value of h from this formula for each degree, or each
10’ of ¢ from +29° to —29°.

The first difficulty we meet is that we cannot find the value
of § until we have an approximate time of the phenomenon.
The computation of this time, and of the final result, will be
facilitated by the “Moon Culminations” of the Ephemeris.
Here are given the local mean time of culmination over the
Meridian of Washington, the R.A. and Dec. of the moon at the
moment of culmination, and the variation of these quantities for
one hour of longitude. By this is meant the change in their
values while the moon is moving from the meridian of Washing-
ton to the meridian 1 h. West of Washington, supposing the
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motion of the moon to be uniform. For example, if on a certain
date we have
Time of Transit over the Meridian of Washington 9 h. 2
Change in 1 hour of Longitude - - - - 2

the local mean time of transit over the meridian 1 hour West of
Washington will be, approximately, 9 h. 24'9 m. And the W.M.T.
of this transit will be 10 h. 249 m.

Moreover, it must be remembered that whenever the geocentric
west hour-angle of the moon at a place L is /, then the moon is
on the meridian of a place in longitude 2 west of L. Hence,
having found £, let A be the longitude of L. Then when the
moon is setting or rising at L she is on the meridian of a place
in longitude A +% or X\ —/ respectively. Let 7' be the local M.T.
of transit over this place. Then

T,+"h
will be the local M.T. at L ; that is, the time of moon-set at L.
For moon-rise % must be taken negatively.
ExamMpLE. To find the time of moon-rise and moon-set at
San Francisco, 1892, June 1, the position being
o= —+37° 48,
A=+3 h. 14 m. West of Washington.
From the Ephemeris for 1892, p. 388, we find, for this date

h. m.
Mean time of transit over Washington 5 5801
Red. to San Francisco, 3-02 h. x 1:816 m. 548

Local M.T. of transit over San Francisco 6 349

The rising and setting we seek are those preceding and
following this transit. And the first data we require are the
declinations of the moon at the time in question.

Let us put r for the amount by which the semi-diurnal are
differs from 90° or 6 h., z.e. h=90°+~, so that cosk= —sin .
In a first rude approximation we may, in the equation

cosh= —sin = —tan ¢ tan g,
put sin r=7and tan§=4. This gives
r=tan ¢ x 6= +0776 4.
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On the date in question we have §= +13°; 7= +410°= 4+40 m.;
h=46h. 40 m. roughly. Thus, as a first rude approximation,
the moon, at the required moments, was on the meridian

6 h. 40 m. E. of S.Fr.; .. 3 h. 39 m. E. of Wash.
6 h. 40 m. W.of S.Fr.; .. 9 h. 41 m. W. of Wash.

From the sixth and seventh columns of the Ephemeris we
now find the declinations more accurately as follows:

Declination at transit over Washington +13° 36’

Change for — 365 h. of longitude - + 47

i ,, +968 h, 2 - == ORIG)
Declination at rising - = - - +14 23
_ Declination at setting - - - - +11 30

With these values of ¢ and the known value of ¢, we now
compute the accurate values of the hour angle. The compu-
tation is as follows:

Moon-rise. Moon-set.
) +14° 23’ +11° 30
tan ¢ 9:8897 9-8897
tan 8 9:4090 9:3085
log (1) 9-2987n 9-1982n
log 0-0067 7-8261 7-8261
sec ¢ 01023 0:1023
sec 00138 0-0088
log (2) 7-9422 79372
subt. log 00195 00245
cos h 9-2792n 9:1737n
h —-100° 58’ +98° 35

= —-6h. 439m. +6h 343m.

At the moments of moon-rise and moon-set, therefore, the
moon was on the meridian of the places whose longitudes
referred to Washington are respectively

h. m. h m h. m.
314-6 43°9=-3 42
3 14+6 343=+9 35

h.
5= — 3708
7= +49595.
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The further computation is then as follows:
h. m.
Mean Time of transit over Washington - 5 580
Change in — 3708 h. (- 3708 x1-816m.) -0 67
w s +9595 h. (+9595x 1-816m.) +0 174
Mean Time of transit over lst point - 5 513
» ” » 3 2nd 9o T 0 5 i

The longitudes of these two points referred to San Francisco
are the two values of & found above. We therefore have
Mean Time of moon-rise at San Franecisco:

ate m: h. m. hit m!
1892, June 1, 5 51:3 -6 43-9=May 31, 23 74
=June 1, 11 7+4 A.M.

Mean Time of moon-set at San Francisco :
S Wm h. m. R, 'm.
1892, June 1, 6 1564+ 6 34:3=June 1, 12 497
=dJune 2, 0497 AM.

As a test of the sufficiency of the approximation, we now com-
pute the moon’s declination, with the times which we have
just found as arguments. The result is:

At moon-rise, 6= +14°23"6
At moon-set, 6= +11 313

The agreement of these values with the values we started
out with, shews that a further approximation is unnecessary.

ProBLEM X1. To find the sidereal time required
for the semi-diameter of the sun or moon to pass
the meridian. ’

This problem arises when, from the observed
R.A. of the sun’s or the moon’s limb at the moment
of transit, it is required to find the R.A. of centre
.at the moment of transit of the centre.

Let P be the pole, O the centre of the moon, L
the point of its limb tangent to PL, Ac. the angle
P, §” the angular semi-diameter OL expressed in
seconds of arc. Fra. 13,
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Then, (§7, Th. ii.) owing to the smallness of the are s (16"),
S"=sin PO.Aa=cos d. A
Hence, Aa.=_8"sec §,

or when reduced to time, Aw=+;S5"secé.

By this formulae is found the difference of R.A. between the
centre and limb at any moment. But what we want is the
difference of R.A. at the respective moments of the transits,
which is different owing to the change of R.A. during the time
occupied by the passage of the semi-diameter. To find the time
we put L

o, the R.A. of centre at transit.
T, the sidereal time required for transit of semi-diameter.
o, the change of R.A. in one second of sidereal time.

(=change in 1 m. of mean time-+60-17. But we may take
60 as the divisor.)
Then; R.A. of centre at transit of limb=o.+ 7.
R.A. of limb ) 7 =o+oT+ Ao
(Because the moment is the same.)
R.A. of limb at transit=o+7.

Hence, by equating the last two expressions

Ao S” sec
=1-:(I’_15(1—-a’)' ....................... (1)

T

In the case of the planets .’ and s are so small that we may
use the formula

S sec
TSR s e (2)

except in the case of Venus near inferior conjunction.

Remark. The student should be able to shew that (1) will
give a correct result for every place by using the geocentric
values of S”, 8, and «, instead of their apparent values as seen by
the observer.




CHAPTER VI

PARALLAX AND RELATED SUBJECTS.

Section I. Figure and Dimensions of the Earth.

72. The positions of the heavenly bodies, as found from astro-
nomical tables, and given in ephemerides, are referred to the
centre of the earth; while all observations upon them are made
on its surface. Hence, in order to express the position of a body
referred to the station of an observer, we require a method of
reducing its coordinates from the centre of the earth as an origin
to any point on its surface. Such a reduction requires a
knowledge of the figure and dimensions of the earth. Strictly
speaking, what we should know in order to make the reduction
with rigour is the actual figure of the earth’s surface, including
all the inequalities of mountains and valleys, because all points
of observations are situated on the actual surface. The figure
of the latter being incapable of geometrical definition, the ideal
figure used in geodesy is that of the ocean level, and is called
the geoid. The surface of the geoid is, at any point, the level to
which the water of the ocean would flow if a canal or tunnel
were cut from the ocean to the point.

It is a theorem of mechanics that, were the earth homogeneous,
the geoid would be an oblate ellipsoid of revolution. In reality,
however, the heterogeneity of the earth’s interior and the attrac-
tion of mountains is such that the surface of the geoid is not
rigorously represented by any definable solid. An approximation
sufficiently near for most geographical and astronomical .pur-
poses is obtained by considering it to be an elliptic spheroid of
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revolution, affected by small inequalities which are to be deter-
mined by observation in each region. In researches relating to
parallax the inequalities may, in all ordinary cases, be neglected,
and the geoid considered as an ellipsoid of revolution.

Astronomical observations are sometimes made at considerable
elevations above the sea level. The Lick Observatory, in
California, is at an altitude of 4400 feet. This altitude, at the
mean distance of the moon, would subtend an angle of 0"7; it
should, therefore, be taken account of in computing the parallax
of the moon. All the other heavenly bodies are so distant that
the elevation of the observer above the sea level may be left out
of consideration.

73. Local deviations.

The earth’s centre being invisible, we have no direct way of
determining its direction from any point on the earth’s surface.
The only line of reference which we can use in the determination
of the direction of a heavenly body is the direction of gravity, or
that of the plumb line. To refer observations to the centre of
the earth, we must ascertain the figure and dimensions of the
earth from geodetic measurements on various parts of its surface,
combined with observations of the force of gravity, and infer
from these where the centre is located.

In doing this, an element of uncertainty is introduced by
deviations in the direction of the plumb line due-to the non-
homogeneity of the earth. Since the attraction varies inversely
as the square of the distance, and is exerted by every part of the
earth’s mass according to the law of gravitation, those portions
in the neighbourhood of any region exert a preponderating
- influence upon the resultant direction of gravity. Hence if the
density of the interior is greater on one side of a station than on
the opposite side, a deviation will result. In mountainous
regions deviations are observed which sometimes amount to 10%,
or 207, or even more. Even in plains far distant from mountains
such inequalities amounting to 1” more or less are the general
rule. They are termed local deviations. Since the surface of
the geoid is everywhere normal to the direction of the plumb
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line, these deviations shew that it is a spheroid with numerous
small inequalities all over its surface.

Since the astronomical observations of altitude are referred
to the direction of the plumb line, it follows that there will
be corresponding inequalities in the celestial and terrestrial
meridians of places on the earth’s surface. The plane of the
meridian does not, as a general rule, pass rigorously through
the axis of the earth. It must be defined as a plane containing
the vertical line and parallel to the axis.

This plane defines the apparent celestial meridian of a place
in the following way. Imagine that, having determined a north
and south line on the earth’s surface by the above condition,
we follow it a short distance in either direction, and then again
determine the meridian. We shall find that the latter will not
necessarily be a continuation of the first meridian, but another
line making a minute angle with it. In the same way, the
celestial meridians of the two points will be great circles inter-
secting each other at angles which we may regard as infini-
tesimal. The practical meridian found by starting from any
point, and continually travelling in the apparent north and
south direction, will be the envelope of the intersections of the
system of meridian planes with the earth’s surface, and not
rigorously the intersection of any one plane. But it is only in
refined geodetic work, such as running a meridian line, that the
deviation of this envelope from a great circle is of importance.
In discussing astronomical observations the local deviation will be
unimportant except, possibly, in certain observations of the moon.

74. Geocentric and astronomical latitude.

The inequalities just described, combined with the ellipticity
of the earth, lead us to recognize three sorts of terrestrial
latitude. One of these—the only one which admits of being
determined by direct observation—is the angle between the
plumb line and the plane of the equator. As this has to be deter-
mined by astronomical observation, it is called the astronomical
latitude.

The geocentric latitude of a point on the earth’s surface is the
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angle which the radius vector drawn from the point to the
earth’s centre makes with the plane of the equator. This
latitude is that which has to be used in computations relating
to parallax. It does not admit of direct determination, but has
to be determined by correeting the astronomical latitude for the
difference between the two latitudes as inferred from geodetic
measures generally.

A third latitude, known as geographic, is sometimes used.
It may be defined as the astronomical latitude corrected for local
deviation of the plumb line, or as the angle made with the plane
of the equator by a normal to the surface of an imaginary geoid
formed by smoothing off the inequalities of the actual geoid
so as to reduce it to an ellipsoid of revolution. As this latitude
is required only in map-making, where great precision is not
necessary, the fact that it does not admit of rigorous deter-
mination becomes of little importance.

For our present purpose the problem is to express the co-
ordinates of a point of observation when referred to the centre
of the earth as an origin, in terms of the astronomical or
geographic latitude.

75. Geocentric coordinates of a station on the earth’s surface.

Let Fig. 14 represent a section of the earth through the axis,
Y being the north pole. The earth being supposed an ellipsoid

<
N

Fic. 14.

of revolution, let P be a point on its surface, PZ the vertical
determined by gravity, normal to the surface of the geoid, OPZ
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the radius vector of P from the earth’s centre, continued
outwards.

Then Z is the apparent or astronomical zenith, Z’ the
geocentric zenith.

The angle ZPZ between the apparent and geocentric zeniths
is called the angle of the vertical.

Omitting local deviation, the geocentric zenith is on the
meridian in the direction from the apparent zenith toward the
celestial equator. ILet us now put:

¢, the angle XM P, the astronomical latitude of P.

¢’, the angle XOP, its geocentric latitude.

z, y, the rectangular coordinates, 0Q and QP, of P referred
to the principal axes O0X and OY.

p, the radius vector OP.

a, b, the major and minor semi-axes, 0X and OY.

e, the eccentricity of the meridian XY,

The quantities supposed known are the dimensions and form
of the geoid, expressed by a, b, and ¢, and the astronomical
latitude of the place, found by direct observation. The quan-
tities required for parallax are p and ¢. We adopt the usual
notation and formulae of analytic geometry. From the equation
of the normal it follows that the angle which ZP makes with
the major axis is given by the equation
?:tan ¢’=%;tan ¥ 0o BuBa0 TG00 aadoatr 1)

T

From the equation of the ellipse we have
B A e A S e e ) (2)
from which we are to determine x and ¥ in terms of ¢.
From the equation (1) we derive by multiplication by a?xcos¢,
b%x sin ¢p = %y cos ¢
or btx?sin?p — atyeos’p = 0.
From this equation and (2) we find
g o et cos?¢p
?cos? ¢+ b?sin’ ¢’
ifi btsin?¢p
" «2costp+bPsin?p
K

y?
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Introducing the eccentricity by the substitution b%=a*(1—¢?),
we have
a’cos? g+ b?sin* ¢ = «}(1 — e2sin? ).

Thus, introducing p and ¢’, we have

__acos¢
x=pcos ¢’ = mmz =
a(l—c)sing
ol s i Jl—e2s1n‘¢

T AL e (3)

To find the angle of the vertical, ¢ —¢', we use
sin (¢'— ¢)=cos ¢ sin ¢’ — sin'qs cos ¢’

Substituting for sin ¢’ and cos ¢’ thelr values derived from (3)
and noting that (3) gives

2 1—(2e?—e)sin’gp
(B
L v T I I A (4)
we find
la €®sin2¢ 1 e*sin 2¢
(5
Aniewads 2 p /T=¢sing 2~/1—()€2—94)Sm2 &

76. Dimensions and compression of the geoid.

Instead of the eccentricity of the terrestrial meridian it is
common to use its compression or ellipticity. By this is
meant the fraction by which the ratio of the semi-axes differs
from unity. Putting ¢ for this quantity, we have

b i

The numerical value of the compression is still somewhat
uncertain owing to the small extent of the earth’s surface over
which precise geodetic measures have been extended. Indeed,
from the very nature of the case, the compression must be a
somewhat indefinite quantity, there being no one spheroid which
we can exactly define as fitting the surface of the geoid better
than any other.
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The dimensions of the geoid as determined by Bessel many

years ago are

a=06 377 397 metres =6 974 532 yards,
b=6356 079 metres =6 951 218 yards;

whence c —~—————1
729915’
e=0081G96 7.

These numbers have been generally used in astronomy and
geodesy for the greater part of a century. During that interval
geodetic measures have been greatly extended. A general de-
termination made by Clarke of England from geodetic measures

18 w=06 378 249 metres,
b=6 356 515 metres;
whence ¢ M L
2935’
e=008248.

Clarke’s investigations also shew that the actual figure could
be a little better represented by an ellipsoid with three unequal
axes, the equator itself having a slight ellipticity. It is probable,
however, that this apparent ellipticity of the equator arises from
the irregularities with which the actual figure of the earth is
affected.

As yet, geodetic measures cover so small a fraction of
the earth’s surface that an accurate determination of the com-
pression cannot be derived from them. Measures of the force of
gravity, as given by the length of the seconds’ pendulum, are
therefore still most relied upon for the purpose in question. It
is, therefore, considered by the best authorities that Bessel’s
value of the compression is nearer the truth than Clarke’s.
Helmert, from a study of all the data, has recently derived
numbers which will be found in Appendix I., and which may be
regarded as the best yet reached.
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Section II. Parallax and Semi-diameter.

77. The word parallaz, in its most general sense, means the
difference between the directions of an object as seen from two
different points. If O (Fig. 15) be the object, and P and @ the
points of observation, the parallax is the difference between the
directions PO and Q0. Its magnitude is measured by the angle
P 0@ =POQ between the lines from P and @) to O.

5 /ql
P - ip
/ /r
Q

Fie. 15.

When used without any other qualifying adjective, parallax
commonly means the difference in the directions of a heavenly
body as seen from the point of reference, which may be the
centre of the earth or of the sun, and from some point of
observation on the surface of the earth.

(=)

F16. 16.

Parallax in altitude is the difference between the geocentric
and apparent altitude of a body. If in Fig. 16, P is the body,
Q the point of observation, and O the centre of the earth, the
palalla,x in altitude is the angle OPQ.

If Q is so situated that the body is in its horizon, say at B,
the parallax OBQ is called the horizontal parallax.
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If also the point @ is on the earth’s equator, so that 0@ is the
equatorial radius of the earth, the angle OBQ is called the
equatorial horizontal parallax of the body.

It will be seen that the horizontal parallax is equal to the
semi-diameter of the earth as seen from the body.

By annual parallax is meant the parallax when the point
of reference is the sun and that of observation the earth.

By parallax in any coordinate is meant the difference between
the values of that coordinate when referred to the centre of the
earth as the origin, and when referred to a point on its surface.
Thus we have parallax in R.A., in Dec,, in Latitude, in Longitude,
ete.

The horizontal parallax is connected with the radius of the
earth, 0@, and the geocentric distance, OB of the body, by a
simple relation. If we put

p; the radius of the earth at the point of observation;
r, the geocentric distance OB

7, the horizontal parallax of B,

7, the equatorial horizontal parallax,

we have = psin .
Hence sin 7, = 7’: ....................................... (1)

To express p and ~ in terms of the same unit of length, we
remark that, in case of a planet, » is expressed in terms of the
earth’s mean distance from the sun, while p is commonly
expressed in terms of the equatorial radius of the geoid. Hence,
if p and » in (1) are expressed in this way, their quotient in (1)
must be multiplied by the ratio of the two units, which is the
sine of the sun’s mean equatorial horizontal parallax=me. We
may then write instead of (1)

For the equatorial horizontal parallax of the planet, which is
given in the ephemeris, we write 1 for p and 7, for =, in (1).

In the astronomical ephemerides the equatorial horizontal
parallaxes of the principal bodies of the solar system are
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given. They are connected with the distance of the body by

the relation g = SN ) (2)

@ being the equatorial radius of the geoid, expressed in the
same unit as 7.

78. Parallax in altitude.

There being two radii vectors of the body, one from the
observer and one from the earth’s centre, and two zeniths, there
are, in all, four altitudes and zenith distances to be distinguished.
We shall term a Z.D. measured from the geocentric zenith Z’
(Fig. 14) a reduced Z.D., and one defined by the radius vector
from the earth’s centre a geocentric Z.D.

The effect of parallax is evidently to make the apparent
greater than the geocentric Z.D., the azimuth when referred to
that zenith Z’ being unchanged. When a body is on the meridian
the geocentric and apparent zenith lie on the same great circle
with it, and the parallax has the same effect on the reduced
and the apparent Z.D. But,if the body is not on the meridian,
the displacement by parallax will not take place on a vertical
circle, and both the altitude and azimuth of the body will be
changed by it. The rigorous determination of the parallax in
altitude and azimuth requires the solution of a spherical quad-
rangle of which the vertices are the two zeniths, and the
geocentric and apparent positions of the body. The cases in
which this solution is necessary are so rare that they need not be
considered here. Parallax in altitude is commonly required only
in the case of a body on the meridian.

To find the parallax in altitude on the meridian, we put

7, the equatorial horizontal parallax.

74, the parallax in altitude.

v, the angle of the vertical, taken positively in the northern

hemisphere.

z, the apparent zenith distance of the body, positive toward
the south.

2, the reduced Z.D.

Then Z=z—0.
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and of the body in rectangular coordinates, the origin being at
the centre of the earth and the axes of reference as follows:

Z, the axis of rotation of the earth, positive toward the
north.

X, the equatorial radius of the earth in the meridian of the
observer. This axis cuts the celestial equator on the
meridian.

Y, an equatorial radius cutting the earth’s surface 90° west
from the axis of X. This axis cuts the celestial sphere
in the west point of the horizon of the place. Its
positive direction is the opposite of the conventional
one, in order to correspond to the usual measure of
the hour-angle.

Then putting & for the west hour angle of the body and 7
and ¢ for its geocentric distance and declination, we have the
following expression for its rectangular coordinates :

x=1rcosdcosh
T COSTSIB AT S S S b (5)
z=7sInd ’

From the definitions of the coordinates just given the observer
lies in the plane XZ. His coordinate z is that which, in treating
the figure of the earth, we called y. Putting & , ¢ for his co-
ordinates referred to the present system of axes, we have:

f=pcos¢’
n=0 LS WD D Ry 10 (6)
{=psing

The last quantities are determined from the latitude of the
observer, as already shewn. Putting o', %/, 2’ for the coordinates
of the body relative to the observer, we then have:

¥=x—§
?/"_—?/"77;
Z=z—_

We also distinguish the distance +/, and hour-angle %’ of the
body as affected by parallax, by acecents. Then substituting in
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the last equations for the rectangular coordinates their expres-

sions in (5) and (6), we have

7 cos ¢ sinl/ =rcos §sin
7’ sin ¢’ =rsind—psin ¢’

(7

7’ ¢os &’ cos ' =1 cos § cos h— p cos ¢’}

The geocentric coordinates, r, 6, and %, being given, we could
from these equations compute 1, &, and %, the corresponding
coordinates relative to the observer. But it will be easier to
compute the parallax in R.A. (or hour-angle) and Dec., or the
values of h —/ and &’—3. The problem may have either of the
following two forms:

1. Given, the geocentric coordinates; to find the apparent ones.

2. @iven, the apparent coordinates; to find the geocentric ones.

We treat the problem in the first of these forms. There are
also two methods of solution: one when the parallaxes are so
small that their second powers may be neglected ; the other when
this is not the case. The first of these is the case for all
heavenly bodies except the moon. For the latter the solution
should be rigorous.

80. Transformed expression for the paralla.k.

We transform the first two of equations (7) as follows.
Multiplying the first by cos’, the second by sink, and adding
the products, we have the first of the following equations;
multiplying the first by sink, and the second by cosk, and
taking the difference of the products we have the second.

7’ cos ¢’ cos ('—h)=1rcos § — p cos ¢’cosh}' e
7 cos &' sin (W' —h)=pcos ¢'sinh

We shall now put

Ao=0o/—o.=h—F, the parallax in R.A.

A= ¢ —¢, the parallax in Dec.

f= :—:, the ratio of the distance of the body from the observer

to that from the earth’s centre. f is a little less than unity,
being always contained between the limits 098 and 1.
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Divide the equations (6) and (7) or (8) by #, and note that,
taking the earth’s equatorial radius as unity, we have

1
" sin 7"1‘

7, the equatorial horizontal parallax, is taken as given, and is
found in the Ephemeris.
Putting for brevity
L T mm p RS BID 71} RO ey
¢’'=¢sin 7, =psin ¢’ sin 7,
the equations (8) and (7); become

feos & sin A= —¢ sinh
fc088 €oS Ao =008 §— £ COSR 1+ errrvenrrernenes (10)
fsind’ =sind—¢’
The quotient of the first two equations gives
_ —¢&'sinh
N Ae S §—£ cosh’
If we compute
DS BRI, boand honndbooaiBacotaamans (11)
this equation becomes '
__ —psinh
tan A(x.—l_p pvvy SETUSCIEEIER TR LR (12)

which is easily computed by a table of addition and subtraction
logarithms, especially that of Zech. It may be yet easier to
use the principal table of Appendix IV., the form (12) being
identical with that for the precession of a star in R.A. when we
replace & by «, and assign a suitable value to p. For this
purpose we compute
Ps=[4138 334] p cos ¢ sin 7, sec d,

enter the table with Arg. p,cosh, and take out K.

Then Aw=Kp,sinh,

Ao.= A, —red. from tangent to arc.

In the case of the declination we may, instead of computing
the parallax, compute ¢ directly from the equations (10). The
quotient (10), cos Ax+(10), is

(sin §— {’)cos A
tan §'= TN SRR (13)
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This direct computation of ¢’ requires fewer separate quantities
than that of the parallax; but 7-figure logarithms will be
required to assure the result being correct to 0”1 whenever
6>10° As 5-place logarithms only are required for the
parallax, it will generally be easier to compute the latter.

To derive the formulae for the parallax in Dec. the simplest
formulae for computation are derived by multiplying the first
two equations (10) by sin $Ac and cos}Aa respectively, and
adding. We thus derive the second of the following equations,
the first being (10),.

N o e (14)

feosd'=cosé—o
where we write for brevity,
o=¢ cos(h—}Ao)sec b Act ceueueennnnniiin. (15)
By forming
(14), X cos 6 —(14), X sin ¢ and (14), X sin §+(14), X cos d,
and adding, we have

fsin Ad=¢sin§—¢ cos } a6)
fCOSA(S:] _g,Sins—G'COS(S * seeceserscinnrracs.

To facilitate the logarithmic computation of these equations
compute g and G from

gsin G= §’} '
oo Gy f3 T (17)
we shall then have
_ —gsin(6=)
tan As_l-—gcos(G—é‘)’ ..................... (18)

a form similar to (12).

81. Mean parallax of the moon.

The moon is so much nearer to us than any other body of the
solar system that its parallax rests upon a different basis from
that of the planets. The mean value of its parallax is called
its constant of parallax. The ratio of the actual parallax .at
any moment to this constant is determined from theory with all
the precision necessary in any case whatever. But the actual
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value of the parallax as tabulated may require to be increased
or diminished in an appreciable ratio on account of possible
error in the constant.

The constant in question has been determined by observations
from different points on the earth’s surface, especially at the
observatories of Greenwich and the Cape of Good Hope. It is
also determined by the theory of gravitation, the problem being
at what distance the moon should be placed in order that it may
revolve around the earth in its observed time of revolution,
allowance being made for the disturbing action of the sun. In
this form the problem is the original one attacked by Sir Isaac
Newton when he inquired whether the moon would be held in
her orbit at the observed distance by the gravitation of the
earth, the latter diminishing as the square of the distance. The
theoretical method now affords the most accurate measure of
determining the distance and, therefore, the parallax of the
moon. The best result of theory yet obtainable is :

Constant of equatorial parallax = 3422"63.

As it is the sine of the parallax which enters into the formulae,
while arc is most conveniently used in the expression, it is
common to use the sine of the constant instead of the constant
itself, this sine being reduced to seconds. We then have

Sine of constant of parallax =3422"47.

The actual sine is found by dividing this expression by
206 264”8, the number of seconds in the radius unit, or multi-
plying by sin 1”.

In Hansen’s tables of the moon, which have been most widely
used during the past forty years in the computations of the
ephemeris, the adopted value of the constant is:

Constant of sin 7 =3422"07.

If, therefore, the best value of the parallax is required, the value
from the ephemeris should be increased by multiplying it by
the factor 1000 118. Instead of multiplying by this factor the
mean value of the correction, +0740, may be added to all the
values of the equatorial horizontal parallax in the Ephemerides
without an error exceeding +07-03.
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82. Parallaxes of the sun and planets.

As the parallax of the nearest planet, Venus, rarely exceeds
30", quantities of the second order as to the parallax of the
sun and planets may always be dropped, thus greatly simplifying
the computation. Putting

", the equatorial horizontal parallax expressed in seconds
of are,
the equations (9) will become
&'=pcos ¢'r,"sinl”,
{'=psin ¢'7r,"sin 1",

Substituting in (12) Ac”sin 1” for tan Ao and dropping quan-
tities in p% we have, instead of (12),

Aa”= — pcos ¢’ sin hsec SRR ot hm e, (18)
for the parallax in R.A. expressed in seconds of arc.

With the same abbreviation, the computation of the parallax
in Dec. takes the form

gsin G=psin ¢'n”
GC0S G=p oS ¢'m COS R [swnmmvereessasnmnns (19)
Ad”= —gsin (G -9)

which will be the parallax in Dec. expressed in seconds of are.

I/I

83. Semi-diameters of the moon and planets.

No observations have yet shewn any deviation of the apparent
disc of the moon from the circular form, local irregularities of
the surface excepted. The figure of our satellite is, therefore,
treated as spherical. The linear radius, R, is commonly
expressed by its ratio to the equatorial radius of the earth, Rpg,
and is called .. This quantity cannot be measured directly, but
is derived from the observed angular semi-diameter of the moon,
combined with the parallax, taken as known. Since the moon’s
parallax is the earth’s semi-diameter seen from the moon, it
follows that if we put S, the moon’s angular semi-diameter at
the distance corresponding to the eonstant of parallax, we shall
have, for the ratio of the radii of the earth and moon,

Ry _sin S,

]{[; Ty sin 71'1.
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minor axis, and its position-angle with respect to the hour-circle
passing through the planet, let us put

A, D, the R.A. and Dec. of the pole H of the planet’s axis
of rotation.

«, 6, those of the planet itself, whose position on the
celestial sphere we call K.

P, the celestial pole of the earth.

In the spherical triangle PI/K will then be
Side, HE =00 F. .- e e T s (22)

Angle PHK =position-angle of minor axis relative to the
hour-circle through K.

We assume as given the pole H,in terms of its R.A. and Dec.
If given in ecliptical coordinates, these are to be converted into
equatorial ones. Then, the solution of the triangle PHK so as
to find the angle H and the side HK will give us ¢ and the
position-angle of the axes of the apparent disc.

Practically 3-figure logarithms will suffice in the solution of
the triangle.

The astronomical data usually given for determining semi-
diameters of the planets are the apparent angular semi-diameters
S, at some standard distance 7, for which the unit of distance
or the mean distance of the sun is generally taken. Whatever
the value of r,, we have, for the apparent semi-diameter

. Ty .
sins= 70 511 WA S S OB (23)

In the case of the planets, s is so small that we may always
use the semi-diameters themselves expressed in seconds of are,
instead of sins.
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The time occupied by the light in passing will then be R+ V,
and for the apparent linear displacement we have

AS:T”,R.

The angular displacement of the object, represented by SES’ is
called its aberration; and its effect upon the value of any
coordinate is called the aberration in that coordinate. To find
its amount for any coordinate let us put

X, Y, Z, the rectangular coordinates of S referred to any
system of axes having its origin in E;

«', i, 2, the components of the velocity of the earth resolved .
in the direction of these axes;
AX, AY, AZ, the coordinates of S’ relative to S, so that
the coordinates of S relative to & are
X+AX;, Y+AY; Z+AZ

To express AX, AY, AZ in terms of &, ¥, and 2, let us put
o, B, v, the angles which the parallel lines KE’ and SS" make
with the coordinate axes. We then have

'’ =vcosa, AX=8Y cosa:ﬂ
y'=veosB, AY= SS’cos,B—yAS
ZAS

Z=vecosy, AZ=8S cos Y EREEIE
Also R being the distance £S from the earth to the star,
v
AS = T]-.R.

We then have, by the preceding equations,

BRI AR, A0 L RS

N.S.A. L
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Substituting these values of A’ and ' in (4), we find, by
suitable reductions,
&' = —ansec ¢(sin A +esin ) } i L ad. £5)
y'= ansec¢(cosA+ecos )
Substituting these values in the equation (3), and putting for
brevity

_ansece
STy e (6)
we find
cos BAL=k(sin \+esin 7)sin L
+x(cosA+ecos ) cos L 1)

=xcos(A—L)+excos(w—L)
AB=k sin Bsin (A— L)+ exsin Bsin (7 — L)

Studying the last terms of these equations, it will be seen
that they are independent of the earth’s longitude, and functions
of the elements of the earth’s orbit and the coordinates of the
star. The variation of these quantities is so slow, and the
factor so minute, that, unless the star be in the immediate
neighbourhood of the pole, the terms in question may be re-
garded as constant for several centuries. They may, therefore,
be left out of consideration for the present, being included in
the values of the coordinates of the star as determined by
observation.

In the usual formulae for aberration we put

@, the true longitude of the sun, =\ —180°.

The aberration in the longitude and latitude of a fixed star
may therefore be expressed in the form

cos BAL= —xcos(© — L) } (®)
AB=_KSiDBSin(@-—L) e sssseassescanas

86. The constant of aberration and related constants.

The coefficient «, which is called the constant of aberration,
demands our special attention. From the definitions of « and n
it follows that an is the linear velocity which the earth would
have if it moved in a circular orbit of radius a. As the earth
actually moves, an sec ¢ is the half-sum of its greatest and least
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velocities, which we may term (though not with strict correct-
ness) its mean velocity. Thus from (6):

The constant of aberration is the ratio of the mean velocity of
the earth im its orbit to the velocity of light.

This mean velocity is the product of its velocity were its
orbit circular and its time of revolution unchanged, into sec ¢.

There are two ways in which we may determine the constant
of aberration:

(1) By observation of the annual change in the R.A. and
Dec. of the stars produced by aberration. By the most refined
measures yet made the constant is found to be 20”52, with an
uncertainty of 2 or 3 hundredths of a second.

(2) Supposing the dimensions of the earth’s orbit to be known,
we may compute the velocity of the earth. We have also
~determined, by actual measurement, the velocity of light. Thus
the ratio of the two velocities may be computed. Let us put

7o, the mean equatorial horizontal parallax of the sun;
p, the earth’s equatorial radius.

To compute the mean velocity of the earth in its orbit,
retaining 7o as an unknown quantity, we have the data :
p 63782 kil

T sinme  Sinwo

Taking one second as our unit of time, we have:
Sidereal year=2365d. 6 h. 9 m. 9 5.=31 558 149 s.,

ik circumf, _ 628319
“sid. year 31 558 149’

log sec ¢ =0000 061,
[7-103 83] _[2418 25]

sin e ™

am sec ¢ =

Here, the number in brackets is the logarithm of the number to
be used: and 7" means 7o expressed in seconds of arc. The
second fraction is derived from the first by multiplying its
terms by the number of seconds in radius (206 265”).

The measurement of the velocity of light gives the result

V=299 860 kilometres per second.
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[6:941 34]

72

Hence K=

........................... 9)
or, if we express k in seconds, by multiplication by 206 265,
_[225576]_ 18020
7]‘” e " '

™

We thus have, between «” and 7" the fundamental relation
A A S U eitona00A B ban Bt s e s B aor s (10)

7

We have retained =" as an unknown quantity, because it is
very difficult to determine, whereas the number 18020 is
probably correct within 3 or 4 units of its second place of
decimals.

It follows that, of the constant of aberration and the solar
parallax, we can determine the one when we know the other.
They can be determined by observation with perhaps equal
absolute accuracy, but as «” is more than twice as great as =”,
this implies that it is determined with greater relative accuracy.
The solar parallax can, therefore, be determined from x with
more accuracy than in any other one way, if we admit the
completeness of the fundamental theory of aberration.

87. Aberration in right ascension and declination.

This may be determined by referring the position of the star
and the motion of the earth to equatorial coordinates, which are
those most used in computations relating to the fixed stars. Let
us put

Z,, Yy, 2, the heliocentric coordinates of the earth referred to
the equatorial system.

a’, 4", 2", the corresponding velocities.

The transformation from the ecliptic system to the equatorial
system is found by writing in the equations (7) or (8) of §49,
',y 7, for a, y, 2,
&, y, 7, for X, ¥, Z,
which gives T =
Yy’ =1y cose—2 sin ¢,
"=y sin e+2’ cose.
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We thus find from (5), substituting © +180° for \, and taking
7 to represent the longitude of the solar perigee,

7 =281° 13’ in 1900 ;
x'= ansec¢(sin ©+esin )
Y= —ansece cos e(CoS O +€COST) e rvrerrenen (11)
2’ = —ansecesin e(cos © +¢ cos)

If we also put X, Y, Z,, the rectangular coordinates of the
star referred to the equatorial system, the equations (1) give for
its displacement

A1§1=w?=:c(sin © +esin 7),
AY, vy

R == —Kcose(cos O +ecos ),

%:zl—f= —ksin e(cos © +e cos 7).

For the reason already mentioned we may leave out of account
the constant terms ex cos 7 and ek sin 7, and write

§1=Ksin® ]
A}g: DRI I L " DRI (12)
Agl = —kSinecos ©

The effect on the R.A. and Dec. of the star, when quantities of
an order higher than the first are dropped, is found by putting
in (4a) of §48, A, X, ¥,, Z,, and R for d, z, y, 2, and .

08 A= —k COS € COS © C€OS L — K Sin ® sin o }
N Sl (13)

Ad=k cos e cos O sin § sina — sin © sin § cosa.
—k 8ine cos © cosd

The form in which these equations are used in practice will
be shown in the chapter on the reduction of places of the fixed
stars.
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Substituting in (16) the value of s from (15), we find

Au=0Dpeong coshiod) an
A8=0"319 pcos ¢'sin dsink

In using this expression, we may put p=1 and ¢'=¢.

In reducing meridian observations due correction is made for
the effect of diurnal aberration. Generally, however, it is ignored
in practical astronomy, because it affects all bodies in the same
region by the same amount: and that amount being very minute
is seldom of practical importance. It should, however, be taken
into account in all investigations involving the relative positions
of widely separated bodies.

89. Aberration when the body observed is itself in motion.

The preceding theory is based on the relations of an observer-
in motion to a ray of light which has emanated from a heavenly
body, the possible motions of that body being left out of con-
sideration. Since the course of the ray depends wholly upon
the position of the emitting body at the moment when the ray
left it, and is independent of the position of that body at any
other moment, the theory already developed is complete for the
position of the body at the moment in question. That is to say,.
when the correction for aberration is applied to the apparent
position of a body, the result will not be the position of the body
at the moment 7 of observation, but at the moment 7T—+, +
being the time required for light to come from the body to the
observer. If, therefore, the actual direction of the body is
required for the time 7' of observation, its motion during the
interval + must be determined and added.

The general theory sets no limitations upon the motion of
the body during the interval occupied by the passage of the
light to our system. A double star revolving in an orbit may
make several revolutions during this interval. In stellar as-
tronomy generally no account is taken of these possible motions
or changes. The fact that the distance of the stars, and there-
fore the time 7, is not known with precision, prevents any
accurate determination of the motion during this interval, and
at the same time renders it unimportant. All our statements.
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respecting what is going on among the stars at a stated time 7'
really refer to phenomena which occurred at a time T—, 7
being an unknown number of years, which we regard as
constant for any one star or system, and which is left out of
consideration.

When the forces which may possibly be at play among the
stars admit of more complete investigation than they now do, it
may be that the variations during the interval + will enter as
important elements into the problem. It is interesting, if not
essential, to remark that, from the best estimate that can be
made of the distance of the star 1830 Groonbridge, its actual
direction is about 3" ahead of its observed and adopted position,
in the direction of its proper motion.

90. Case of rectilinear and uniform motion.

When the motion of the observed body is rectilinear and
uniform during the time 7, it can be shown that its displacement
by aberration depends solely upon the relative motions of the
observer and the body, irrespective of the absolute motions of
either. To show this, let us put

X', Y, Z, the components of the speed of the body in the
direction of the three coordinate axes.

X, Y, Z, its coordinates at the moment I'—+ when the light
left it by which it was observed at the time 7. Its actual co-
ordinates at this time are found by adding to X, ¥, Z, the
motion during the time T, and, therefore, are

X=X0+X"r,
Y=Y+ T,
7=+ 2.

Its apparent coordinates are expressed by adding to X, Y,
and Z, the displacements given by the equations (1), in which
we have ) ) T e R O e o B A (18)

These coordinates are therefore
Xop=Xo+a'T,
Yo=Y +y'7,
Zoyp=2Zy+7'T.
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The differences between the true and apparent coordinates at
the epoch 7" now become ‘
B UL 5T (T o
Yo Y=(y'=1)r }
Lop—Z =3 —Z')r
which depend only on the differences
' — X', ete.

The last numbers of these equations express the change in
the coordinates of the body observed, relative to the moving
earth as an origin, during the period occupied by light in passing
from the body to the earth. The total displacement by aberration
is therefore, in the case supposed, equal to this change. If,
instead of rectangular coordinates, we use R.A. and Dee, the
expression for the aberration in these coordinates will be

Ab.in B.A.= —rDa } .................. (20)
Ab. in Dec.= —+D,8

To find 7, the distance R of the body must be known. If we
express B and V in terms of the semi-major axis of the earth’s
orbit as unity, we shall have from (18)

o
'T'—-V:

which may be substituted for = in the above expression.

91. Aberration of the planets.

In the astronomical ephemerides there are two systems of
dealing with aberration of the planets. One consists in giving
the apparent coordinates of the planets at the epochs of the
ephemeris, commonly mean noon, as affected by the aberration.
These apparent coordinates are found by applying the corrections
{20) to the true coordinates.

As, for theoretical purposes, it may sometimes be desirable to
have the actual position of the planet at the assigned time, and
as, in the case of newly discovered objects, the distance may be
unknown, the method is sometimes adopted of giving at the






CHAPTER VIIL
ASTRONOMICAL REFRACTION.

Section I. The Atmosphere as a Refracting Medium.

92. Astronomical refraction is the refraction of a ray of light
by the atmosphere as it is passing from a celestial object to the
eye of the observer. Its measure is the change produced by it in
the direction of the ray. The total amount of refraction depends;
not only upon the density of the various strata of air through
which the ray passes, but also on the direction of the strata of
equal density with respect to the vertical. When the atmos-
phere is in a condition of equilibrium, these strata are horizontal.
But, owing to aerial currents and other causes, this is not
universally the case. The deviation from horizontality is
specially marked in the strata which separate the air inside an
observing room, and even inside the tube of a telescope, from
the external air. The refraction due to this cause belongs to
the subject of practical and instrumental astronomy, and there-
fore will not be considered in the present chapter. For the
most part the astronomer is under the necessity of neglecting
all irregularities in the density of the air, and considering the
strata as horizontal, for the reason that it is seldom practicable
to determine the effect of such irregularities with precision.

The general theory of astronomical refraction, as it will be set
forth in the present chapter, therefore rests on the assumption
that in the air the strata of equal density, or the equiponderant
strata, are horizontal; and that the density continually di-
minishes from the earth to the outer limit of the atmosphere,
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subject to the conditions of equilibrium. What that limit may
be is not yet known; we can, however, say with confidence that
above a height of 60 kilometres the atmosphere is so rare that
its refractive power need not be investigated.

Refraction may be treated in three sections. In the present
section the law of density of the air on which its refractive
power depends will be developed. In the next section a general
conspectus of the laws and results of refraction by the atmos-
phere will be put into an elementary form. The third section
will treat the general theory of astronomical refraction proper.

93. Density of the atmosphere as a function of the height.

We put in this section

p, the density of the atmosphere at any height.

pp the density at the earth’s surface, or at the point where
the observer is situated.

* po the “standard density” under standard barometric pressure
(760 mm. at Paris) and temperature 0° C.

g, the ratio of the intensity of gravity at any point to
standard gravity. y

p, the pressure of the air per unit of surface at any altitude.

h, altitude above the surface in linear measure.

T, the temperature in degrees centigrade above absolute zero.

T, the absolute temperature of the centigrade 0°.

It should be remarked that the temperature from which 7 is
counted is not strictly the absolute zero, but the temperature at
which the volume of air would become zero, supposing it, when
placed under constant pressure, to continue its diminution of
volume with falling temperature at the same rate that it is
observed to vary through the range of temperature at which
refraction occurs. This variation of volume with temperature is
assumed to be linear, in accordance with the law of Gay Lussac.

If we measure the coeflicient of expansion by the expansion
at 0°C. produced by a change of 1°C. in the temperature, the
absolute zero as here used will be the negative reciprocal of the
coefficient. The following four values of the coefficient and of
the absolute zero are the results of numbers determined or
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adopted by different authorities. The first two, those of Regnault
and Mendelejeff, are determined by experiments in the laboratory.
The third is that adopted by Bessel in his tables of refraction.
The fourth is that adopted in the Poulkova tables of refraction.

Coef. of exp. Abs. zero.
Regnault - - - 003670 —272°'5
Mendelejeff - - - 003 684 - 271 -4
Bessel (adopted) - - 0036433 -274 5
Poulkova (adopted) - 003689 -271 1.

The mean of the experimental determinations would be
—271°9. But, as the actual amount of the refraction may be
atfected by the aqueous vapour in the atmosphere, we shall give
equal weight to the number adopted at Poulkova and to that
derived by experiment, thus taking for the temperature in

question
Temp. C. of abs. zero= —2715.

The expression for 7 in terms of temperature C. is therefore
T=temp. C.4271°5=temp. C.+ 7,

94. The following two laws of physics are accepted as the
basis of the subject.

First law: The pressure per unit of surface due to the
elasticity of the air is proportional to the product of the density
of the air into its absolute temperature.

Second law: Along any vertical line in the atmosphere the
diminution of the pressure through any height is equal to the
weight of a stratum of air of wnit base and of that height.

The first of these laws cannot be true for temperatures
approaching’ the absolute zero, and the density also varies
slightly from the law for very high temperatures. But these
deviations are unimportant in the theory of refraction. At an
altitude where there is any possibility of the temperature
approaching absolute zero the air is so rare as to be without
appreciable effect upon the refraction. On the other hand,
astronomical observations are not made at any but ordinary
temperatures, so that the deviation in the case of high tempera-
tures need not be considered.
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The second law when rigorously applied requires us to take
account of the diminution of gravity with height, which makes
the actual law of density somewhat different from what it
would be were gravity equal at all heights. But, as we shall
hereafter see, this deviation is without important influence upon
the refraction.

The first law may be expressed in the form of the equation

v being a constant depending on the elasticity of air at a given
temperature and density. The density p being the fundamental
quantity on which the refraction depends, this law may be
expressed for practical use in the form

.
e R i (2)

In developing this subject it is important to define the units
in which the various quantities are to be expressed. Since the
element of time does not enter into the theory, and the element
of mass enters only in a subsidiary role, the most convenient
units will not be those of the C.G.S. system, but the following :

The unit of length : arbitrary.

The unit of volume: the cube whose side is the unit of length.

The unit of weight: the weight of unit volume of standard
water under standard gravity. For standard gravity it will be
convenient to take gravity at Paris.

The unit of pressure: the pressure of unit weight upon unit
surface.

The result of this choice of units is that the constant y and
the pressure & may both be defined as lengths. It will be seen
that the constant y may be defined as the elastic pressure of
the air at the absolute temperature 1° when compressed to the
density of water. Assuming that the first law can be continued
to this temperature, the constant may be yet better apprehended
by considering it as a height of the column of standard water
which, under gravity at Paris, would condense air at absolute
temperature 1° to density 1.

It is also convenient to adopt a standard of temperature, to
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which all the fundamental data will be referred. The best
standard for tables of refraction is one not differing greatly from
the mean temperature at which astronomical observations are
made. A convenient standard is 10°C. or 50°F. But, in in-
vestigating the theory of the subject, it is better to take 0°C,,
because this is the standard temperature for nearly all physical
investigations and numerical constants which enter into the
theory. When, therefore, we speak of 760 mm. of mercury as
a standard pressure, we mean mercury at 0°C. to which we
suppose the observed height to be reduced by correcting it for
the temperature of the mercury.

As our units have just been defined, the weight w of any
volume v of air will be given by the equation

w=gvp.

Now, consider a prism of air of unit surface and of infinitesimal
height dk. The weight of this prism is gpdh. Hence, regarding
the prism as horizontal, the change of pressure through an
infinitesimal change in height is given by the equation

Ap=—gpdh, ccccoccooiiiviiiiiiiiii, 3)

the sign being negative because the pressure decreases as we
ascend.
If we regard p as constant through the height & of a column

of air, the pressure at the base of this column produced by its
weight will be

JOES0105 6hb0h 000005003 0B 006 AEDaIBIC0R (4)

A comparison of this equation with (1) will give us the height
of a column of air which, under standard gravity, would produce
the same pressure that is actually exerted by the entire body of
the air-at the base of the column. This height is called the
pressure-height. Let us put

hy, the pressure-height.
Substituting this value of 4 in (4) and comparing with (1), we
see that the pressure height is given by the equation

h1=3'gl'. ............................... (5)

N.S.A. M
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The three quantities p, p, and ~+ all vary with the height &
above the surface, and are to be expressed as functions of A.
Regarding them as such, the differentiation of (2) gives

dp e dp dr
EE-—’)(m—m). ......... “eeseaaeriooatenan (6)
By substituting the value of dp from (3), we now have, after
simple reductions,
(Zp_ P9 dr
e ‘;(§+%>' ........................ (7

which is the fundamental equation for the diminution of the
density of the air with its height.

95. Numerical data and results.
It will conduce to clearness if, before going farther, we
consider the numerical values of the fundamental quantities.
According to Regnault, whose results we accept for this
purpose, the density of air (water=1) at 0° C. (+=271"5=1,)
and under a barometric pressure of 760 mm. (gravity at Paris) is
po=0-001 293 2.

This value is substantially confirmed by the more recent ones
of Rayleigh and of Ledue.

Taking the metre as the unit of length, the unit of pressure,
as we have defined it, will be the weight at Paris of a cubie
metre of water pressing upon a square metre of surface. The
standard barometric pressure just cited will be

Density of quicksilver x 0°760.

Taking for this density 13'596, this product is 10333, the
standard pressure. Substituting this value of p, and the values
of T, and p, corresponding to the given conditions in the equation

(1), we have
10-333 =+ x 2715 x 0001 293 2,

which gives v =29429 metres. .......ccevueerierineenian(8)
This value of y being substituted in (2) and (7) will give p and

g—z in terms of p, g, and ~. It will, however, be convenient to
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substitute for p the height of the barometer, by which p is
determined in practice. Let us then put

b, the barometric reading—+760 mm. and corrected for tem-
perature.

We shall then have p=10333bg,

and the equations (2) and (7) may be written

p="001293 2IT°bg, ........................... 9)
ORI
a5
e ——<o 033 980g+dh> e L 10)

96. An interesting conclusion may be drawn from this last
equation. If the rate of diminution of temperature with height
is such that

dr
dh

which, g never differing much from 1, implies a diminution at
the rate of 1° in about 30 metres, p will remain constant, the
effect of continually diminishing pressure being compensated by
the diminishing temperature. 1f this constant rate of diminution
continues we shall, at the pressure-height, have =0, at which
point the atmosphere will cease. That is to say, the result will
be that the atmosphere would become an ocean of uniform
density with a definite upper surface.

= — 0033 98y,

97. General view of requirements.

The logical order of the requirements for our theory is this:

In order to determine the refraction at considerable zenith
distances it is necessary to have an expression for the density of
the air as a function of the height. This density does not admit
of direct observation; it must therefore be inferred from the law
of diminution of temperature with height. When this is known,
the law of density is derived by substituting in the equation (7)

the values of + and of 03], which will be functions of ~. The
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integration of the equation will then give the expression for the
density at any height.

The diminution of temperature with height is of such a
character that it cannot be exactly represented by any formula.
It varies with the time of day, the seasons, the temperature at
the surface of the earth, and the height itself. All we can do,
therefore, is to construct some hypothetical formula which will
give a result as near as possible to the general average. This
formula may be based partly on theoretical considerations
showing what laws of diminution are more or less probable and
on observations with the aid of kites and balloons. These
observations have been greatly extended during the past few
years, and the results enable us to formulate laws of temperature
with much greater confidence than was formerly possible.

Some theoretical considerations will help to guide us. Were
the atmosphere in a state of complete rest the general theory of
heat leads to the conclusion that it would tend to assume the
same temperature throughout. This tendency may be counter-
acted in one direction or another by the effect of possible thermal
coloration of the air, a subject about which not enough is known
to form the basis of a conclusion. A state of constant tempera-
ture has also been shown by Tait to result from the kinetic
theory of gases. This state is therefore called one of thermal
equilibrium. ;

But the atmosphere is not at rest, being subject to ascending
and descending currents. Whenever a body of air ascends, it
expands and thereby cools. When a body descends it is com-
pressed into smaller space and thereby becomes warmer. 1f the
air were constantly stirred from top to bottom, a condition
would be reached in which, when any body of it ascended, it
would, as it expanded and cooled, constantly be at the same
temperature as the surrounding air. This condition is that of
adiabatic equilibrium.

When an atmosphere in thermal equilibrium is stirred so as
to bring it nearer the state of adiabatic equilibrium, work must
be done. For whenever, in such a case, a body of air is lifted
up, it will by its expansion be colder, and therefore denser, than
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the surrounding air. It will, therefore, tend to fall again, and
work must be done in order to raise it. A body of air falling
becomes warmer, and so rarer, than the surrounding air, thus
tending to rise again. We conclude that the centre of gravity
of a column of air is higher in the case of adiabatic than in
that of thermal equilibrium. -

The law of diminution of temperature in the case of adiabatic
equilibrium is such that the diminution of temperature with
height is at the rate of about 10° C. per kilometre.

If the only source from which the air obtained heat, or to
which it communicated heat, were the ground on which it rests,
the tendency of ascending and descending currents would be
toward bringing about a condition of adiabatic equilibrium of
temperature throughout. But this tendency is continually
counteracted by the effect of the sun’s rays, and by radiation
from the warmer portions of the air to the cooler portions. It
is a result of the laws of radiation in space that, at each distance
from the sun, there is a certain definite temperature which a
neutral coloured body, or a body for which the reflecting and
absorbing powers were the same for all wave-lengths, would
reach. This normal temperature could be fairly well determined,
and has especially been investigated by Poynting, his conclusions
being based on the law that the emission of heat by a warm
body is proportional to the fourth power of its absolute tem-
perature.

It follows that, except so far as influenced by thermal
coloration, portions of the atmosphere which are below this
normal temperature will be warmed toward it by absorption of
the sun’s rays, while those which are at a temperature above
the normal will lose heat by their own radiation. Thus arises a
tendency toward thermal equilibrium the exact extent of which
cannot be determined by theory, but only by observation. .

98. Density at great heights,

The probable upper limit of the atmosphere may be considered
in this connection. Observations of meteors and shooting stars
seem to show that these bodies are seen at an altitude of more
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than 100, possibly 200, miles. The conclusions from this would
be that the rate of diminution of temperature must diminish,
so that the absolute zero is never reached.

Another indication of the height of the atmosphere is afforded
by twilight. This terminates when the sun is at a depression
of between 15° and 18° below the horizon. This leads to the
conclusion that the power of reflecting light ceases, owing to
the rarity of the atmosphere, at a height of about 70 kilometres.
This fact suggests that the variations of temperature of these
high regions of the air at different latitudes and seasons is
probably less than near the surface of the earth. Altogether
theory can tell us little about the actual diminution of the
temperature with height except that it is materially less than
10°C. per kilometre. We must, therefore, derive an empirical
law of diminution from observations.

The mass of material here at our disposal is very great, and,
belonging to the province of meteorology, cannot be considered
in the present work. The most valuable of this material
consists of observations made by kites or balloons carrying self-
registering thermometers to the greatest possible height. For
several years past extensive kite observations have been made
at the Blue Hill Observatory, Hyde Park, Mass.,, by Dr. A. L.
Rotch. An extended system both of kite and balloon observa-
tions is being carried out by the U.S. Weather Bureau. In
Germany and France balloons have recently been successfully
sent to a height of 12 or more kilometres. Without going into
unnecessary details, it may be said that these observations,
notwithstanding the irregularities naturally inherent in the
subject, lead to the following general conclusions:

1. The annual and diurnal changes of temperature diminish
with the height, both becoming very small at the highest attain-
able altitudes. This result points to the conclusion that the
sun’s rays have but little immediate influence on the temperature
of the higher strata of the atmosphere. Another obvious result
is that the fall of temperature must be more rapid the higher the
temperature is at the surface of the earth.

2. The diminution of the diurnal variation of temperature is
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very rapid near the earth’s surface, being reduced to one half
at an altitude of a few hundred metres. One result of this
is that during the day the diminution is very rapid at low
altitudes, but, during the night, especially the later hours of the
night, is changed to an actual increase.

3. The general average diminution near the ground, day and
night, taking the whole year round, is not far from 6°5C. per
kilometre.  Astronomical observations being mostly made at
night, the diminution for them will be less. Were the rate of
diminution near the surface of the earth important, it would be
necessary to suppose a very small rate in the lowest kilometre
of the air for the purpose of computing the astronomical refrac-
tion for night observations. But, for reasons which will be
better understood when the general theory is developed, astro-
nomical refraction is little influenced by the diminution of
temperature at low altitudes, the effect of differences of tempera-
ture reaching their maximum near the pressure-height, and
slowly diminishing for yet greater heights. We must, therefore,
for astronomical purposes, lay more stress on the temperature
at considerable heights than near the surface of the earth.
This will enable us to include an expression for all heights in
some simple formula.

99. Hypothetical laws of atmospheric density.

The various tables of refraction which have been constructed
for astronomical use rest upon different expressions for the
density of the air as a function of the altitude. It will also be
instructive to consider hypothetical laws of diminution which
are the simplest in form. Amongst the various hypotheses that
have been made, or may be made, the following are worthy
of citation :

A, the hypothesis of constant temperature at all altitudes.
This hypothesis was adopted by Newton, and is, therefore, asso-
ciated with his name. The law to which it leads is extremely
simple.

B, the hypothesis that the density diminishes uniformly with
the height. This is one of the forms which a law proposed by
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Bouguer, and adopted by Simpson and Bradley, may take. On
this hypothesis the density becomes zero, and the atmosphere
reaches its limit at twice the pressure-height, or an altitude of
about 16 kilometres. This is obviously too low; yet the hypo-
thesis gives a better approximation to the truth so far as
refraction is concerned, than that of constant temperature.

C, Bessel’'s Hypothesis. This is a modified form of the hypo-
thesis of Newton. It is not based on any assumed law of
temperature, but is an expression for the density in terms of the
altitude. As will be shown hereafter, it is not altogether ad-
missible. I

D, the hypothesis that the temperature diminishes at a uniform
rate with the height at all heights. This is in accordance with
the law of adiabatic equilibrium, and accords most nearly with
the results of the highest balloon observations, which show no
falling off in the rate of diminution at the great heights yet
attained. But it is not accordant with the kite observations,
which, in the general average, seem to show a falling off of
the rate at an altitude of a very few kilometres. It was
developed by Ivory, with whose name it may be associated.

On this hypothesis, using the most likely rate of diminution,
the absolute zero would be reached, and the atmosphere would
have a limit at a height of 50 kilometres more or less.

E, the hypothesis that the temperature diminishes by a con--
stant fraction of its absolute amount for every unit of increase
in the altitude. The three conditions which this law satisfies are
that of a rate of diminution which shall be more rapid in warm
weather than in cold, and which shall slowly diminish with
increasing height. It fulfils the additional condition that the
absolute zero shall not be reached at any finite altitude. Yet,
it cannot be applied so as to be strictly consonant with the
temperature resulting from balloon ascensions.

It may be remarked that the preceding hypotheses are not
entirely distinet, A and B being really special cases of Ivory’s
hypothesis. When, in D, the diminution of temperature is
reduced to zero, we have on this hypothesis a constant tempera-
ture, and therefore Newton’s hypothesis. If the temperature
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diminishes at such a uniform rate as to reach the absolute zero
at the pressure height, we shall have the law B. The truth
probably lies between these two very wide extremes.

100. Development of the hypotheses.

So far as refraction is concerned, we can assign a rate of
diminution on either of the last two hypotheses which shall bring
their results into close agreement at moderate heights. When
this is done it is probable that either of them will represent the
law of refraction equally well. Our choice between them or our
combination of them must, therefore, be a matter of convenience.
We shall now show the formulae for density to which these
various hypotheses lead :

A. Newton’s hypothesis of constant temperature. Disregarding
the diminution of gravity with altitude, and supposing the tem-
perature constant (7) gives

oty ali )3
Pl th YT hll
By integration, log p=C -—f,
1
C being the arbitrary constant of integration. Putting
pp, the density at the surface of the earth, or at the point of
observation,

we shall have C= log p;,

and P=P1€ M. Lol (11)

The best idea of this result will be gained by the consideration
that it shows the density to diminish in geometrical progression
as the altitude increases in arithmetical progression. A clear
general conception of the law may be gained by finding an
altitude h,, at which the density is reduced to one half. We may
take 8 kilometres as the usual value of A, the pressure-height.
We then find k, by putting, in (11), p=4p,; ~;=8.

eh§o =%
which gives hy=8 Nap. log 2 =554,
h, being expressed in kilometres. The density would, therefore,
be reduced one-half for about every 5} kilometres, or 3} miles.
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Since 2°=1024 the density is reduced to -001 of its amount
at the height of 56 kilometres, or 35 miles.

Hypothesis B. On this hypothesis the expression for the
density assumes the very simple form :

p=pl(1—§.}%>. ol hiL L e (12)

Although, as already pointed out, this hypothesis fixes the
limit of the atmosphere at too low a point, it is, so far as the
effect on refraction is concerned, markedly nearer the truth than
that of constant temperature. The actual truth lies between the
two but nearer to B than to A.

C. Bessel's Hypothesis. Bessel, disregarding any law based
on temperature, proposed a law of density of the same general
form with the exponential one of constant temperature, the
exponent being multiplied by a factor less than unity. Although,
in the most general form of its statement, it was implied that
the factor might vary with the height, in practical use the
constant factor

k=09649,
was used. With this factor the expression for the density
assumes the form
h
L™ i (13)
P1

On this law was based the tables of refraction published in the
Tabulae Regiomontanae, which have been in extensive use even
up to the present time.

There is no law of variation of temperature which will
correspond to this law of density. The fact is that, as a law, it
is not possible. Every possible law of variation must make the
pressure of the entire atmosphere equal to the pressure at the
base. In order that this result may follow, it is necessary that
the definite integral which expresses the entire weight of the
atmosphere shall give the basic pressure. This requirement is
expressed by the eondition

L pdh = pressure at base=Fh,p,.
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But, by integrating the equation (13), it is seen that the
pressure at the base of the atmosphere becomes, on Bessel’s
hypothesis.

P1=h1]%’
which is, therefore, too great by between three and four per cent.
of its entire amount.

D. Ivory’s kypothesis of uniform diminution of temperature
with altitude. Taking the hypothesis of diminution of tem-
perature at a uniform rate with the altitude, and assuming the
rate to be proportional to the temperature at the base, the
expression of the temperature in terms of the altitude and of
the temperature T, at the base will be of the form

T=7,(1-Bh),
B being a constant factor. The constant rate of diminution is
then

and the equation becomes

IO :3 _PYT Y
ol = L=y

The integration of this equation gives
log p=log o, +22Y T 109(1 - B,
s e Sy el S
log p, being the arbitrary constant, so taken that, for =0, p=p,.

If we put y—gﬁfxﬁ Bk el P TR AT (15)

this equation will give
L_q —Bhy.
P1 ¢ H

One result of this law is that the atmosphere would terminate
at the altitude for which Bh=1, If we put A&, for this altitude,
the preceding expression may be written

p1 (1—,f—‘) ............................. (16)
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Representing this quantity by —v, we have

B Eyihal el ep el 1 =7 7% e e el 21

y (21)

where V=" 2 Bt —1)—Bhe evrinenn... 22
Bym ) C

This expression is too complex for convenient use, unless the
process of integrating the differential of the refraction is made
largely numerical.

As it may be of interest to compare the density at different
heights on the two hypotheses, the following table has been
prepared. In each case there are two constants to which values
at pleasure may be assigned. One is the temperature ¢, at the
station ; the other the rate of diminution with altitude.

101. Comparison of densities of the air at different heights on
hypotheses D and Z.

In D as used, the limit of the atmosphere is taken to be
48 km., and the rate of diminution of temperature to be 7, +48,
which, for 0° C,, is nearly 55 per km. On hypothesis £ the
rate of diminution is taken to be 745 throughout. This is
6°C, very nearly, at 0° C.

Hye. D. Hye. E. E-D.

7,=261°8 | 7, =272°"6 | 7,=284°6 |r;= 246°‘5P71 =271°5{r, =296°5, 271°'5

hoo=-9T6=+11{t,=+13"1 | ,=-25°| £,=0° |{,=+25°| #,=0°

0| 1-00000 | 1-00000 100000 | 1-00000 | 1-00000 | 1-00000 0
5| 056130 | 0-57694 059310 | 0-53426 | 0-57373 | 060347 | — ‘00167

10 | 029335 | 0-31095 0-32420 | 0-25489 | 0-30343 | 0°33815 | — -00603
15 | 0-13982 | 0-15368 016870 | 011658 | 014026 | 0-17528 | - 01203
20 | 005904 | 0°06754 0-07729 | 0°04635 | 0:06508 | 0-08280 | — 00158
25 | 002102 | 002526 003021 001637 | 002657 | 0-03538 | + 00175
30 | 0°00580 | 0-00742 0°00948 | 0+00504 | 0-00896 | 0-01347 | + ‘00172
35 | 0°00105 | 0°00146 0°00200 | 000134 | 000273 | 0-00452 | +-00132
40 | 000008 | 0°00013 0°00020 | 0-00030 | 000071 |.0-00129 | + -00059
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Section II. Elementary Exposition of Atmospheric Refraction.

102. It is a general law of optics that the course followed by
a ray of light is along the same line or curve for the two
opposite directions in which the light may move. Tt follows
that the course of a ray of light from a celestial object may
equally well be studied as that of a ray passing from the observer
to the object. Since, in practical astronomy, the given quantity
is commonly the direction of the ray when it reaches the ob-
server, this reverse direction is generally the simplest to consider.
But the differential equations are the same in both cases.

The apparent zenith distance of a celestial object is that of
the ray when it reaches the observer. The true zenith distance
is the angle which the ray makes with the vertical of the
observer’s station before it enters the atmosphere. We readily
see that the curvature of the ray is always concave toward the
earth, so that the effect of refraction is always to make the
apparent less than the true zenith distance. Hence the cor-
rection to the Z.D. for refraction is always positive.

The atmospheric strata, being always perpendicular to the
direction of the vertical at the point, are separated by curved
surfaces, of which the curvature is determined by that of the
geoid. Practically they may be treated as spherical above any
one region of the earth. If the zenith distance is small, the
curvature is so slight that the refraction will then be nearly the
same as if the surfaces of the strata were planes. A close
approximation to the refraction at moderate zenith distances
may, therefore, be obtained on this hypothesis.

103. Refraction at small zenith distances.

The following theorem forms the starting point in the
subject :

Regarding the atmospheric strata as plane and parallel, the
total amount of refraction is independent of the law of diminu-
tion of the refractive power with height, and depends solely upon
the refractive power of the air at the surface of the earth.
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To show this we put:

Mos 1> Mgy o+ My, Uhe indices of refraction of any number of suc-
cessive atmospheric strata, from the outer limit of the atmos-
phere to the earth, which values start from u,=1 as their
beginning.

20, 2y, %y, -++ Z,, the angles of incidence at which the ray enters
the successive strata, which are the same as those of refraction
at which it leaves the bottom of each stratum above.

Then, by the law of refraction, we have

sinz;:8inz;, =wu, 1y
sin z,:8in2;, =p; Iy

8ing, :SINZ, ;| =M®,_ 1 My
These equations being multiplied give
sin 2, :sinz,=pu,, : po-
Including all the strata of the atmosphere, we have
2,, the true zenith distance ;
z,, the apparent zenith distance ;
po=13
4y, the index of refraction at the station.
Thus, in the case of plane strata, the relation between the true
and the apparent zenith distance is given by the equation
VPR T CIINd MOROD R 088 o figan dpa Adaott (23)
This equation expresses the direction of the ray which, strik-
ing the atmosphere at the angle z;, is refracted so as to reach
the earth at the angle z,. Being independent of all the values
of u except the last, it proves the theorem.
From this equation we may derive an approximate expression
for the refraction when quantities of the second order as to its
amount are neglected. Let us put:

R, the total refraction.
We then have 2,=z,+R,

and developing sin z, to quantities of the first order in R,
sin z,=sinz,+ R cosz,. .c.ccovvrviniinnann (24)
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Equating (23) and (24), we have
Rcosz,=(u,—1)sinz, 1
R:.—.(Mn_l)tanZnJ- .................... (

We, therefore, have the theorem :

At small zenith distances the vefraction is proportional to
the tangent of the zenith distance.

Let us form an idea of the error of this theorem for a zenith
distance of 45°. From what has already been shown as to the
density of the atmosphere, the larger portion of the refraction
takes place at altitudes below 15 kilometres. The supposed ray
reaches this height at the horizontal distance of 15 km. from the
station. The curvature of the strata within this distance is
approximately 8. The numerical value of u—1 is, as we shall
see, not far from 0:0003. The change in the refraction produced
by a change of 8" in the value of z is of the order of magnitude
8 x00003; or about 0”15. It follows that the correction
required by the law of tangents is small even at a zenith distance
as great as 45°.

The value of u—1 at ordinary temperatures, when reduced to
are, ranges between 57” and 60”. The number of degrees in the
unit radius being 57-7, it follows from the equation (25) that, in
the immediate neighbourhood of the zenith the refraction is
approximately 1” for each degree of zenith distance.

104. Let us now investigate the amount of the refraction,
supposing the atmosphere to consist of an indefinite number of
infinitely thin curved strata, each of the thickness dh.

e

B ~

25)

~

Fi6. 18.

Let P be the point at which the ray intersects the bounding
surface S between any two consecutive strata, 4 and B;

{+d¢, the angle of incidence at P;

¢, the angle of refraction after passing P.
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d¢{ is then the change of direction which the ray undergoes
from one stratum into the next, when referred to any fixed

direction. Putting u and u+du for the indices of the two
strata, we shall have

(m+du)sin({+d)=pusin
whence dé= —-dr'u' G E R v b AR (26)

When the ray reaches the lower surface of stratum B at a
point which we shall eall P, it strikes it at an angle of incidence
$+38¢,, 8¢, being the angle between the verticals at the points
P and P'. It follows that the entire change of ¢ from stratum
to stratum is d{+48¢; but the curvature of the ray being
determined by reference to a fixed direction, is expressed by d¢
alone. The preceding equation is, therefore, a differential equa-
tion for the actual amount of the refraction.

105. Relation of density to refractive index.

To express (26) in terms of known quantities, we have next to
express the index of refraction as a funection of the density of -
the air. It has been a commonly accepted law of physics that
the index of refraction of a gas is given as a function of its
density by an equation of the form

¢ being a constant depending on the wave-length of the light
and p the density of the gas* The numerical value of the
constant ¢ may be determined either from the observed refraction
of the stars, or from laboratory experiments. In practice the
astronomer is obliged to leave out of consideration the variations
in the refraction of light with its colour, and to base all his
computations on the hypothesis that there is a certain mean or
brightest region in the visible spectrum, the light of which he
alone observes. There is an unavoidable indetermination as to
the choice of a particular ray of the spectrum for this purpose,

* Recent experimental investigations make it probable that the yet simpler law
p=1+cp may be as near or nearer to the truth ; but, for astronomical purposes,
the difference between the results of the two formulae is unimportant.

N.S.A. N
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added to which the differences between the colours of the
different stars must involve differences in the refraction of their
light. It is, however, remarkable that the most careful observa-
tions made up to the present time do not show any differences
arising from this cause at moderate altitudes.

But this cause assumes another form near the horizon, where
its effect must be sensible. Here the blue and even the green
rays are nearly all absorbed by the atmosphere, leaving the
visible body to be represented by rays from the lower part of
the spectrum. The refraction must then be somewhat less than
it would be as determined by any law which assumed the index
of refraction to be the same at all altitudes.

Owing to this indetermination it is better to determine the
index of refraction, or the value of ¢, from astronomical observa-
tions than from laboratory measures. The two are, however, in
so good agreement that it is indifferent which we accept as the
numerical basis of a theory.

Added to the source of indetermination just mentioned, we

_have the fact that the best investigations of the actual refraction

suffered by the stars show a range of the thousandth part. In
fact, Bessel’s refraction tables, which have not yet gone wholly
out of use, are based on an index of refraction greater by 0-003
of its amount than that of the Poulkova tables, which were
constructed from the most refined observations. Yet the general
consensus of recent observations is toward the view that the
constant of the latter tables still requires a diminution of perhaps
its thousandth part.

In the numerical investigations of the present chapter the

adopted value of ¢ is ¢=0226 07,
a value which agrees closely with the Poulkova tables, and with
the best laboratory measures of the refractive power of light
near the ray D.

106. Form in which the refraction is expressed.

By differentiating (27), we find

udu=cdp,
ui=142cp.
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These give, by division,

The density of the air is a minute fraction ranging from 0 to
‘0012 or "0013, the usual value of p at the earth’s surface. We
put p,, the value of p at the point of observation. As p is a
small factor, ranging from the value 0 at the upper limit of the
atmosphere to p, at the station, we may, without appreciable
error, replace the divisor 1+42cp, which ranges between 1 and
1-0006, by its mean value, 14 cp,, which will give

d,u. Cdp
= e 28
n I+cp 50
Using the notation
c
Gl e A O S 29
1 + CP1’ ( )

and putting R for the amount of the refraction, (26) will give
for its differential

dR=—d{=ctan{dp. ..................... (30)
This equation is rigorous. Conceive that we integrate it through
the course of the ray from the station of the observer, where we

have {=apparent zenith distance =z,
P=p1
to the limit of the atmosphere where
p=0.
The total refraction will then be equal to the definite integral
cj?tan Gt o S B (31)

Since ¢ does not differ greatly from z at moderate zenith
distances, it follows that a first approximation to the refraction
in the region around the zenith will be derived by integrating
as if tan { had the constant value z, thus giving

R=cp,tanz,
a result which, in principle, is equivalent to that expressed by
(25). It follows that if we determine a factor m by the con-
dition that the refraction shall be given rigorously in the form
R=mep tanz)o. /it Wiy (32)
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this factor will differ little from unity at moderate zenith
distances. Its investigation being somewhat more intricate than
is appropriate to the present section, is deferred to the following
one. At present we shall show how, m being taken as known,
the refraction is practically determined.

107. Practical determination of the refraction.

The density of the air at the station, or p,, being the unknown
factor in (32), we have to begin by showing the practical method
of determining it at the moment of observation, and of bringing
it into the theory. Its value is determined primarily by Eq. (2),
§ 94, P

e

Here vy is an absolute constant ; p can, therefore, be immediately
determined when the pressure p and the temperature T are
known. These two quantities are given by the readings of the
barometer and thermometer. If the thermometer reads ¢ degrees
centigrade, the expression for + is
R 5T Y A DESR— (33)
If the scale is that of Fahrenheit, the expression is
T=271'5+ 2(¢—32).
The value of = being found, we have shown in § 95, Eq. (9),
that the value of p is given by the equation
0:851 11bg
=
where b is the ratio of the observed to the standard height of
the barometer, the former being corrected for the temperature
of the mercury in the barometer, while g is the ratio of gravity
at the place to gravity at Paris.
Let us put
B, the observed reading of the barometer ;
B,, the standard height, 760 mm;
&, the coeflicient of cubical expansion of mercury for 1°
t, the temperature of the mercury above 0°C.
In strictness we should take for x the excess of the cubical
expansion of mercury over the cubical expansion of the tube of
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the barometer. But the latter is so small that it is neglected in
practice, although there is no difficulty in the introduction of its
approximate value for the special substance of which the tube is

composed.
With these data the value of b will be given by the equation
B
b = '(ﬁK?‘)“BO. .......................... (35)

Introducing these various quantities, and putting

@G, the force of gravity at the place, in any measure whatever ;

@,, the intensity of gravity at Paris, in the same measure;
the expression for p, is given in terms of known and observed
quantities by the equation

035111 G B
PTG, (TR B,

Substituting this value of p, in (32) the refraction will be
expressed as a product of the five factors:

085111 B 1 @
e e s

The logarithms of the first four of these factors are tabulated
in different refraction tables used by the observatories. The
factor depending on gravity has heretofore been very generally
neglected, but should always be introduced if the fundamental
constant ¢ is not determined at the observatory itself. The
first term is tabulated as a function of z, the apparent zenith
distance; the others as functions of the actual reading of the
external thermometer and barometer and the attached ther-
mometer, which gives the temperature of the mercury. As to
the special scale of temperature and of barometer height to be
used as the argument of the tables, it need only be remarked
that attention should be paid to see that the particular scale for
which the tables are constructed is that to which the instruments
are graduated.

The factor m, depending as it does on the curvature of the
strata, differs little from unity in the neighbourhood of the
zenith. A little consideration will make it evident that m must
diminish as the zenith distance increases, because the angle

.................. (36)

cmtanz;

'
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between the course of the ray and the vertical at any point on
the ray constantly diminishes with increasing height owing to
the curvature of the strata. Since tanz increases without limit
as the horizon is approached, while the refraction remains finite,
the factor m must vanish at that point, and its logarithm must
become infinite. The latter cannot, therefore, be advantageously
used near the horizon.

The determination of m is necessary to the completeness of
the theory. But as its value depends upon the law of diminution
of density with increasing height, which, as has been seen in the
preceding section, is very largely hypothetical, there can be no
easily defined theory for the determination of m. As, on the
hypotheses which come nearest to the truth, the developments
necessary to determine this factor.become intricate, the discussion
of the subject is deferred to the following section.

108. Curvature of a refracted ray.
Let us now investigate the radius of curvature of the refracted
ray when near the surface of the earth. We put

r, the radius of curvature;
8, the length measured along the ray.

The radius of curvature is given by the differential equation

1_d¢
T ds’
ds being the element of length of the ray.

The algebraic sign which we assign to d{ is indifferent; we
shall therefore always regard both d{ and R as positive or
signless quantities.

The value of d{ is given by (26). Substituting for du:u its
value (28), we have

cdp
df= W tan {.
The product cp, in the denominator is so small that for our
immediate purpose it may be disregarded. Substituting for dp
its value (7), we have

2 cp(g 197 tan .
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The element of the length of the ray contained in the stratum
is ds=dhsec .

The quotient of these equations give

dé 1 1 1drN .
T 0P <h——1—|—; 7/1) ST - R St Lo (37)
g

where we introduce the reciprocal of the pressure-height for pry

This equation shows that the curvature of the ray varies
directly as sin z, and, therefore, has its maximum value when the
ray is horizontal. Let us next compute the value of the curva-
ture for this case. We shall begin by supposing the temperature
to be uniform. The equation (87) then gives for the radius of
curvature

h, _
PRk e (38)

Taking the case of air at standard density, we have, from
numbers already given,

¢p,=0-000 293,
and putting h,=8 km,,
=27 300 km.=4-3 radii of the earth.
We have already learned that, near the earth’s surface, the
rate of change of temperature with height is very variable.

Taking —6°5 C. per kilometre as a normal rate, and 10° C. as a
normal temperature, we shall have

1dr

~ =00231,
¢p=00002821, ik B89
h, =828 km.,,

=34 600 km.,= 5'44 radii of the earth.

As during the day the rate of diminution is yet greater than
65 per km., we may regard the ordinary curvature of a nearly
horizontal ray as } that of the geoid. But, owing to the cause
already mentioned, this number is subject to wide variations.
Not unfrequently the temperature-gradient along the course
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of the ray is positive. This is nearly always the case within an
observing room, and within the tube of a telescope, owing to the
tendency of the warmer air to rise to the top of a room or to
the highest part of a tube. In this case the curvature will be
greater than the normal. This particular phase of the subject
belongs to the field of practical and instrumental astronomy, and
will not be further considered at present.

The same result follows when a body of warm air passes
over the frozen surface of the Arctic seas. At a certain
temperature-gradient the curvature of the ray may become equal
to or greater than that of the ocean itself. Then there will be
no limit to the distance at which objects may be seen except that
arising from non-transparency of the air. It is easy to define
the temperature-gradient at which this effect follows. We have
only to insert for » in (37) the value of the earth’s radius, put

sinz=1, and thus determine the value of s as an unknown

dh
quantity. We then have
dr _ « 1 _ ..,
%_%’;—‘)—,—117 . Y ST (40)

where a is the radius of curvature of the geoid.

This implies a diminution of a little more than 1° C.or nearly
2° F. for each 10 metres of height.

The contrary case arises when the surface of a flat plain is
heated by the rays of the sun. If the temperature gradient
then has, near the ground, a negative value exceeding 1° in
34 metres, the ray will be concave toward the earth. For
negative gradients largely exceeding this limit the ground at a
distance may not be visible at all, a ray the line of which would
reach the ground at a small angle being bent upwards and thus
showing to the observer only the sky, while a higher ray where
the gradient is more nearly normal will pass to and show an
elevated object at a distance. In cases of this sort with a
positive and rapidly diminishing gradient, an inverted image of
distant objects may be seen. It is to this action of the tem-
perature-gradient that the varied phenomena of mirage are due.
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109. Distance and dip of the sea horizon.

By the sea horizon is meant the apparent boundary of the
surface of the ocean when viewed through a transparent
atmosphere. The plane of the observer’s horizon is necessarily
above the ocean, the latter receding farther and farther below it
at a greater and greater distance. Consequently, the sea horizon
is depressed below this plane. The angular amount of this
depression is called the dip of the horizon.

In Fig. 19 let the arc HS be a section of the ocean surface
through the centre of the earth C;

Fic. 19.

E, the position of the observer’s eye ;

S, the point in which the observer’s vertical line intersects the
surface of the ocean;

EL, a section of the horizontal plane through Z;

EK, a tangent from the eye of the observer to the ocean
surface at K.

Were there no refraction this tangent would be the course of
a ray pa&ing-between K and the observer. Since LEC and
CKE are both right angles, it follows that the angle LEK, or
the dip of the horizon, would then equal ECK. That is to say,
the dip, expressed in minutes, would be equal to the distance
of the horizon in nautical miles. But, owing to the effect of
refraction, the actual ray EH is concave to the surface of the
ocean ; consequently it is tangent to the latter at a point more
distant than K. Let H be this point. We see from the figure
that the actual dip is less than the geometric dip, and the actual
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distance of the sea horizon greater than the distance of the
geometrical horizon.

To investigate the actual distance and dip, we remark that the
height of the observer’s eye above the ocean SE is practically so
small that we may treat the ray as horizontal and disregard the
effects of the height, thus supposing the curvature of the ray
uniform. Let a point D, not shown in the figure, be the centre
of curvature of the ray HE, which lies on the line HC produced.
In the triangle CDS we therefore have

Side DC=r—a, r being the radius of the curvature of the ray.

We also put Side DS=s,
Angle HCOS=0,
so that the angle at C of the triangle DSC is 180°—C.
From a well-known theorem of geometry we have

DS2=DC?+082+2DC . CS cos C,
which gives the equations

(r438)(r—s8)=4a(r—a)sin*}C (
. (r+8)(r—s) o thaatood (B L)
= —ay ]f

It will be seen that C is the distance of the sea horizon in
arc at the earth’s centre. This, when expressed. in minutes,
corresponds to nautical miles. Let D be the distance of the
horizon expressed in this way; then, owing to the minuteness
of C, we may put D=68765in 0,
the number 6876 being twice the number of minutes in the
radian. ‘

Owing to the minuteness of the height HE of the observer’s
eye above the ocean, and of the angle C, we may treat these
quantities as infinitesimals. Putting

h, the height of the eye,

we shall then have, with all required precision,

r—s=h,
r4s=2r,
sin C= grhs



§110.] DISTANCE AND DIP OF THE SEA HORIZON 203

With these various substitutions we find that the distance D
is given in nautical miles by the equation

D=34344/ - il
a(r—a)

The value of D therefore depends upon the radius of curvature
r of the ray, which again is a function of the temperature-
gradient. We have already shown how to express = as a
function of this gradient. For all ordinary practical purposes

Wwe may suppose r==0aq.

Then, taking the metre as the unit of length, we have
a=637x10* and
12h

D=34384/ =2 5Py N S (43)

For the dip of the horizon may be taken the angle S of the
triangle OSD, which will give, with all required precision,

Dip="""sin 0= /2" =%

When r=6q this gives -
Dip in minutes = 3438\/% =1"764/h.

We conclude that the distance of the sea horizon in nautical
miles is about 4 greater than the square root of the height of
the observer’s eye in feet. From the deck of an ocean liner, on
which the eye is about 20 feet above the sea, the distance is not
far from 5 miles. The line of sight being tangent to the ocean,
its height above the ocean beyond the horizon is given by
the reversal of the formula for the distance. From this it
may be concluded that, at a distance of 10 miles, only the bridge
of another ship will be visible, and that 15 or 16 miles is about
the greatest distance at which the upper parts of the smokestack
can be seen.

Section III, General Investigation of Astronomical
Refraction.

110. In the preceding section the results of refraction have
been treated rigorously only as regards the fundamental principles
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In Fig. 20, let

O be the centre of curvature of the geoid in that plane passing
through the station with reference to which the refraction is to
be expressed ;

S, the station of observation ;

ES, the level surface of the station.

Ordinarily the station will be situated near the surface of the
geoid, so that ES may be regarded as representing this surface,
but in theory we may regard S as at any elevation above it.

Z, the zenith of the station;

ZQ, the upper surface of a thin stratum A within which we
regard the index of refraction as constant ;

PQRS, the course of a ray of light undergoing refraction at
the points @ and R on the upper and lower surfaces of the
stratum A4, and ultimately reaching S;

0@, ORW, vertical lines from the centre of curvature through
the points @ and R.

We assume that the level surfaces are all concentric and
therefore equidistant.

In order to express the refraction we begin with the con-
ception of the atmosphere as formed by an indefinite number of
successive strata, each of uniform density. Then by passing to
the limit in which the number of strata becomes infinite and the
differences of density in two consecutive strata infinitesimal,
we have the case of the continuously varying density of the
atmosphere.

Let us now study the refraction which a ray suffers in passing
from P through @ and R. For this purpose we put

i, the index of refraction for the stratum next above 4 whose
lower surface is QWZ;

«, the index for the stratum A4 itself;

¢, the angle of incidence at which the ray falls at @ upon the
upper surface of the stratum 4 ;

{’, the angle of refraction OQR at which it enters the stratum 4;

., the angle of incidence QR W at which it strikes the lower
surface of 4 ;

7, r;, the radii of curvature of the upper and lower surfaces of
the stratum 4.
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The law of refraction gives the equation
#'sin {'=psin
In the triangle ROQ we have

Angle Q=¢,
Angle R=180°-¢,
whence rsin = sin {.

Eliminating ¢’ from these equations, we have

ryu’sin & =rusin &

It follows that the product rusin{ has the same value in
every two consecutive strata, and is therefore constant for the
whole course of the ray through the atmosphere. Its value
may, therefore, be derived from its value at the base, to express
which we put

a, the radius of curvature of the geoid at the station ;
4y, the index of refraction at that point;
2, the apparent zenith distance of the body.

The value of the constant in question will thus be

ap, sinz=C.

Passing now to the actual case in which the increase of
density is a continuously varying quantity, the successive strata
become infinitely thin, and the angle { becomes that which the
ray, at each point of its course, makes with the vertical line at
that point. We therefore have the equation

N SINIG=laycasiiz et (1)

The second member of this equation being supposed to contain
only given and known quantities, the equation expresses a
relation between =, u, and ¢ at all points on the course of any
one ray.

The refraction being the total change which the direction of
the ray undergoes from the point of observation to the outer
limit of the atmosphere, it follows that the differential of the
refraction is, at each point, the infinitesimal curvature of the
ray. This is the same as that part of the change in the angle {
which arises from the change in the value of the index u from
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one point to another. We therefore have the differential of
the refraction by writing dR for d{ in equation (26), Sect. IL.,

dR= —dz“ tan/ et A5 T Lot (2)

In this equation we substitute for tan¢ its value derived
© from (1), o §_= 2O sin z
(1 — ufa? sin? 2}
The differential equation (2) of the refraction thus becomes,
dropping the negative sign as indifferent,

du sin 2z

£ . etk aine v ekl & (3)
202
L Ep O
J{ 12» 3 sin z}

This is a rigorous equation which, being integrated as to the
variable u from the outer limit of the atmosphere to the point
of observation, or the reverse, gives the total refraction.

dR=

111. Transformation of the differential equation.

In the integration the apparent zenith distance z, and the
radius of curvature a, are constants, while i and » are variables.
To reduce the expression to an integrable form, a number of
transformations are required.

Our first two transformations will consist in replacing g by its

expression in terms of the height, and expressing & in terms of
"

the density of the air. Putting, as before, % for the height,

we have
r_a+h_ h
- —1+&' .......................... (4)

It will conduce to clearness to express h in terms of the
pressure height %, as the unit of height. This we do by intro-
ducing the variable «,

w=%. ................................. 5)

We have found %, to be a function of the temperature =, at the
station defined by the equation
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The first of these forms is most conveniently applicable, except
within a few degrees of the horizon, when we are obliged to have
recourse to the second. It was shown in Section II. that for small
zenith distances the refraction is proportional to the tangent of
the zenith distance, and that, therefore, except near the horizon,
the refraction is usually expressed in the form

R =tam taniz t4 5 = e feures (16)
We now see that the factor m will be given by the equation
L dw
= B e P R R ].7
o J0J1+2useczz )

the investigation of which next demands our attention.

112, The integration.

The great problem of astronomical refraction consists in the
integration of the preceding equations. This problem offers no
serious difficulty in the case of zenith distances to 80°, except
that of deciding upon a law according to which the density of
the air diminishes with the height. It will be well to preface a
consideration of the problem by a review of its general nature,
and of the forms in which it has to be attacked in different
cases. First let us form an idea of the order of magnitude
of the quantities with which we have to deal, especially of w.

From what we have seen of the law of density of the air, it
follows that all the refraction with which we need concern our-
selves takes place below the altitude of 60 kilometres, and that
it is very small above 40 kilometres. For this altitude we
have, approximately, i tasg]

_h 8 1
"7 4 T 6360 800"

Hence we always have

Also

ve < 0°01,

while values greater than 0006 add very little to the refraction.
w ranges between the limits 0 and 1, and as o <C00003, it

follows that oaw < 0:0003.
N.S.A. 0
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These are the two largest terms of u, so that, whenever
secz <17,
we have 2usec’z < 1,
and the denominator of (17) may be developed in powers of
this quantity.

Regarding v and o« as quantities of the first order, the three
last terms of w in (11) are of the second and third orders.
Owing to the minuteness of v and o« these higher terms are of
minor importance and their consideration will, therefore, be
postponed. Dropping them from the value of w, the latter
becomes

QUL 0. o sl ol e e (18)

The difficulty of the problem arises from the fact that the two
terms of u must be expressed as a function of some one variable
before the integration can be effected. Between these terms the
relation is of a complex character. It will be profitable to appre-
hend the respective origins of the two terms of u. We recall
that « may be defined as the altitude above the earth of any
point of the refracted ray, expressed in terms of the pressure
height as the unit. The factor v arises from the rotundity of
the earth, being the reciprocal of the earth’s radius of curvature,
which would vanish were there no curvature. The product vz
may be described as due to the change of the angle between the
ray and the vertical line at each point, so far as this change arises
from the earth’s rotundity. Considered as passing in the reverse
direction from the observer outwards, the height of the ray at any
point depends both on the curvature of the earth and on that of
the ray itself. The term ccw may be described as arising from the
curvature of the ray.

Assuming the density of the air to be a given function of the
height, the quantity w,

w=1-L

21
becomes a function of x, which, being substituted in u, enables
the latter to be expressed as a function of . Then, replacing the
differential of w by that of «, the problem will become that of
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integrating with respect to « as the independent variable. This
offers no difficulty in using the form (15a), but is not practicable
when sec z is so large that the form (b) has to be used.

In Section 1. five hypotheses have been set forth as to the
relation between the density of the air and the height. These
hypotheses lead to as many expressions for the relation between
w and @ Of these hypotheses it may be said, in a general
way, that the first three lead to forms which admit of being
integrated by well-known methods; but that all three of them
deviate in a definable way from the actual facts of the case.
The remaining two, by adopting the proper factor of diminution
of density with altitude, can probably be made to represent the
facts as accurately as is necessary for the purpose of refraction.

113. Development of the refraction.

The preceding considerations suggest the separate considera-
tion of the problem in its two forms. In one of these forms we
use (15a) and develop in powers of u; in the other we have
to consider the method of dealing with the integration when the
required development in powers of w is impracticable. The
limits of the zenith distance within which the first method is
applicable will appear after the developments are effected.

The purpose of this method is the determination of m from
the equation (17). The development of the denominator in
powers of u by the binomial theorem gives

(142u seczz)_é= 1—wsec’z+Julsectz..., ...........(19)

the coeflicient of (—1)*’ being

1.3.5...(2i—1)__.
TR Tl

The first five coeflicients, taken positively, are

(1] =
2= 4
[3]: —g— ............................. (20)
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At the lower limit of integration we have =0, and at the
upper limit p=0. Hence the product px vanishes at both
limits, leaving as the integral

£ 1 ©
de=—\ pdh.
jop 4 hl-‘.op(

This integral expresses the total mass of the atmosphere
contained in a vertical column of unit base. It is, therefore,
independent of the law of density. We therefore have the
remarkable theorem :

In the development of m in powers of secz the coefficient of
sec’z s imdependent of the law of diminution of the density
of the air with its height.

It has already been pointed out that the Besselian law of
density of the air gives a total mass greater than the actual
mass as indicated by the pressure and temperature at the base.
It follows that in this theory the coefficient of secs is too large
in the same ratio. To determine the coefficient in question we
note that the total mass of the column of air is the product of
the density at its base into the pressure-height. We therefore

have _‘-:P dh=pihy.
Making these successive substitutions we have
j‘:wdw e D Ara St L P o (24)
and then Ty = =R 0L, 8 oo el st s oot M2 X, (25)

for all laws of density,

114. Passing to the determination of the higher values of
My, we see from (22) and (23) that the integrals required are all of
the general form 1 )

j x™ w'duw.
, 0
To investigate the value of this integral, we first substitute for

w and dw their expressions in terms of p, thus obtaining

7.9 A rog s g,
w=1—-1"+4 T oo g s

B o580 oo oPionoos (26)
dw= el
P1
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These being multiplied by the factors [¢] give the values of
m, ... my on the Newtonian hypothesis.

116. Development on Ivory’s hypothesis.

Here the relation between w and z is given by (16) and (17)
of §100. We recall that the height k, is that of the absolute
zero, supposing the temperature to go on diminishing at a
constant rate with increasing altitude, which it seems to do up
to the highest point to which explorations extend. We put

1
ﬁ_ _@ v—1
Then (16) becomes o <1 V) T TR — (32)
We now replace = by another variable y,
x
’ZJ = 1 —_— i—r-
Then x=v(l—y)
p=py"
dw:_vdy e ................;...(33)

w=1-y"! J
dp=(V—1)py""dy
We then have for substitution in the first member of (27),
ahptdp = V(v —1)p (1 —y)ry-D+-2dy.
For p=p, we have yé 1 and for p=0 y=0. Substituting
these expressions and these limits of integration in (27), we find

I o=y (v =) (@ = gymyer-vv-2gy (34)
, (A=y)ry y

This is a Eulerian integral which can be evaluated by suc-
cessive integration by parts so as to reduce the exponent n step
by step to 0. The development of this process belongs to the
integral calculus. We shall, therefore, only state the general
result.

For this purpose the I' functions of Euler, or the II functions
of Gauss, come into play. The only difference between these
functions is one of notation,

II(n)=T(n+1).
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By assigning to = the special values 2,3, 4, ... and substitution
in (28), with ©=0, 1, and 2, we find

1
Lw‘z dw =342,

T}
Lm’w dw=+,

Then, by substitution in (23),
(1

wrdw =312y — 1 $voe+ La?
JO

whdho = B~ B Kot~ o
Jo S (38)

. wtdw = T2yt — 216,80 4 ...

("1
uPdw=218,° —ete.
0

o

Then, from (22) we have, including the value of m, already
found,

2 ol
ml—V ‘Qa-
—18.2_ 24 12
My =" — $Fv+ 5
=135,3_1875,2 765,02 =303 re vevevennnins 39)
My="74V — 152 VT T7gr" — g% (39)
5

On comparing the values of the preceding integrals (38) with
those derived on the Newtonian hypothesis (31) it will be seen
that the coeflicients and, therefore, the values of m,, m,, ete., on
the latter hypothesis are constantly larger than those on Ivory’s,
which we regard as the most probable. This is quite in accord-
ance with the fact, it being found that on the Newtonian
hypothesis the refraction is too large as we approach the horizon,
at which point it is about one-tenth greater than the true value,

117. Construction of tables of refraction.
The preceding completes the theory of the development in
powers of secz so far as the general expressions which determine:
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the refraction are concerned. It is, however, necessary to show
how the results of these expressions are put in the special form
adopted in the tables of refraction as described in § 98.

The practical method now generally adopted of constructing
such tables is due to Bessel. The logarithms of the four principal
factors are tabulated in the following way :

Firstly, standard values of the temperature and pressure are
adopted, and for these special values a table giving the logarithm
of the refraction as a function of the apparent zenith distance
is computed. We shall take as standards:

Temperature, 50° F. (7 ,=281°5) } (40)
Pressure, 30 inches  (B,=762 mm.) J* "7

These are near the mean temperature and pressure at the
active observatories, an approximation to which is desirable in
choosing the standard temperature.

By substituting the preceding values of +and B in (36) of § 107,
we shall have a standard density p, , of the air. Putting, for the
time being, G =G, and taking an arbitrary standard temperature
t, as that of the mercury in the barometer when it has the
standard height B, =762 mm., the standard density will become

0-3511 762
PLo="3gT5 * 7»60—(1 +—R1,) .................. (41)

If, as is usual, we take 0° C. as the standard temperature for

the mercury, we shall have ¢,"=0, and the standard density will be
p1,0= 0001 250 5,
With this value of p, and ¢=0226 07 (§ 95) we find from (14),

a=000028263=58"297. ................ (42)
The expression (16) for the standard refraction thus becomes
AT T Bo0003808aBa800005 Baood (43)

where m, is the value of m for standard + and B.

The general value of m is given by (21), where we are to
substitute the values of the coefficients from (39). The latter
contain y in (10), to compute which we require the radius of
curvature a of the geoid. This ranges between

log =6'8017 at the equator
and log @ =6'8061 at the poles.



§117.] CONSTRUCTION OF TABLES OF REFRACTION 219

For the value of g, the ratio of gravity at the place to that at
Paris, we have
log g = —0:0013 at the equator

and log g= 400010 at the poles.
From y=29429 m. (§87) and 7,=281'5 we now find

At the equator, y=0001 309,

At the poles, »=0001292.

The difference between these values is practically not im-
portant, because at low altitudes, where it might be sensible, the
refraction is necessarily uncertain. The differences between the
curvature of the atmospheric strata in different latitudes need

not therefore be considered at present. We may use for all

latitudes at standard -,
v, = 0001 30.

With this value of v and the corresponding value of «,
0ty = 0-000 283,
we find the numerical values of m, (, m, ,, ete., from (39),
m,,,=0"001 16,
My, o= 0000 001 4,
ete., ete.
Then from (21), my=1-—0001 16 sec’z 4 ete.
At the zenith we have

’

M= 0998 84.*

“This expression for the refraction diverges from that usuwally derived in
that the latter is developed in powers of tanz and the value of m becomes 1 at
the zenith. The difference of form arises from the fact that the previous investi-
gators have used instead of the symbol & employed in §104 the quantity s, the
ratio of the height % to a+ 7, the actual distance from the centre of curvature.
The value of A thus appearing in the denominator complicates the theory and at the
same time makes it less rigorous, because when we neglect the higher powers of s
the factor of the refraction depending on curvature vanishes at the zenith. Asa
matter of fact, however, it does not so vanish, but converges toward the finite
quantity found above, as can readily be seen by geometric construction. The
difference is, however, little more than a matter of form and simplicity. It is
easy to substitute the tangent for the secant in the preceding developments; but
nothing would be gained by this course, except facilitating the comparison with
former theories.
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Thus, for small zenith distances, we have, under standard
conditions, R,=58"230 tan .

This factor of tan z is what is properly called the constant of
refraction. We have derived it by starting from the observed
refractive index of air for the brightest part of the spectrum.
But in practice it is derived from observations of zenith distances
of the stars. The corresponding value of the Poulkova constant is

58"246.
Reduced to gravity at the latitude of Paris this would become
587188,

a value slightly less than that just computed. Whatever the
adopted value, the table of log R for standard conditions is
readily computed.

118. The next step will be the tabulation of the logarithms
of the factors for the deviations of the actual conditions from
the standard ones. Returning once more to § 107 we see that,
at any one station, p, contains three variable factors. Defining
these factors as those by which we must multiply the standard
density in order to form the actual density, they are:

1. Factor dependent on temperature of the external air,

e e SO N
T g T o, (44)
2. Factor depending on barometer,
B__ B B
B, 762 mm.” 30 in’
according to the scale used on the barometer.
3. Factor dependent on the temperature of the mercury,

pe i

b=

The logarithms of these three factors are readily tabulated.
They are to be multiplied by factors depending on the zenith
distance and arising from taking account of the changes in the
values of v and «, and therefore in m,, m,, etc., arising from the
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deviations from the standard conditions. To derive them we

put, in (21), =M, 8eCk— My SeC* 4 ..., corriiniiiiinis 47
so that m=1-¢
and logm=—M(g—3a%+..), ccoriiiiiiiiiiniinnnn, (48)

M being the modulus of logarithms.
Putting o, for the standard value of o,
o= (v,— 3t,) sec’z=0-001 16 sec?z,
we shall have, when we drop the higher powers of o,
logm—logmy=M(ay—0), cervvrvereneemnnnn. (49)
from which we may derive logm when o is known. Since the
time of Bessel the universal practice has been to develop oy—o
in powers of log 7 and logb, retaining only the first power.
This is sufficiently accurate in practice except near the horizon,
for which case Radau has developed an improved method. To
show how Bessel’s development is effected we need only the
principal term of o. Then (49) gives for the reduction of logm
from standard to actual conditions
logm~logmy,= M(v,—v+ oo — foey)secz. ......... (50)
We now have to express v and « in terms of 7' and b.
Comparing (8) and (10) with (44) and (45) we see that, dropping
insensible terms,
v="T" ‘11/0,
A=
T and b being the factors (44) and (45). Thus we find
vo—v=r(l=T7%))
o—oty, =0 (bT—1) J°
T and b differ from 1 only by a fraction of which the average
value within the range of temperatures at which observations
are usually made, say —15° and +30°, is less than 005. To
quantities of the first order as to this difference we have
MA-T-Y=logT
M(bT—1)=log T+log b}’
and (50) takes the form
log m —log my= {(v,+ ) log T+ 4 x, log b} sec’.
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The corresponding reductions of m,, ms, ete., may be developed
by a similar process.

The use of a refraction table will be more convenient if, in
constructing it, we replace sec’z by l-+tan’z and, in the table
giving log 7 and logb as functions of the temperature and
pressure, multiply log 7" and log b by the constant factors

+vp+io, and +4a,
respectively. Then we may put, with Bessel,
A=1+4(y,+ %) tan% E
A=1+é((;t.0 t;ngg }, ..................... (53)
and tabulate A and 4 as functions of z.

We now collect the logarithms of all the factors which enter

into the complete expression for the refraction,
R=am tan z,
as follows: ‘

1. The logarithm of the refraction under standard conditions
or log agm, tan z,
where a,=58"297¢,
but is subject to correction from observations, and

my=1—m, ,sec’z+m, sectz—...,
the values of the coeflicients being taken from (39) with the
standard values of » and .

2. The logarithm of the factor 7, given in (44), and tabulated
as a function of the observed temperature. This logarithm is to
be multiplied by the factor

A=1+40001 44 tan’z+ ete.

3. Log b in (45) multiplied by the factor

A =1+40000 14 tan?z +ete.

4. Log t’, from (46), multiplied by the same factor.

It is to be remarked that the values of the factors A and 4 are
here not completely given, but only their first terms.

The preceding includes all that is necessary to the under-
standing and intelligent application of the formulae and tables
of refraction. The completion of the fundamental theory with a
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view of perfecting the fundamental base of the tables requires
an investigation of refraction near the horizon, the effect of
humidity, and an extensive discussion of observations, none
of which can be undertaken in the present work.

NOTES AND REFERENCES TO REFRACTION.

There is, perhaps, no branch of practical astronomy on which so much has
been written as on this and which is still in so unsatisfactory a state. The
difficulties connected with it are both theoretical and practical. The
theoretical difficulties, with which alone we are concerned in the present
work, arise from the uncertainty and variability of the law of diminution
of the density of the atmosphere with height, and also from the mathe-
matical difficulty of integrating the equations of the refraction for altitudes
near the horizon, after the best law of diminution has been adopted. The
list of modern writers on the subject includes many of the greatest names
in theoretical and practical astronomy, extending from the time of Laplace
to the present. Among those who have most contributed to the advance of
the subject are,—Bouguer, Bradley, Laplace, Bessel, Young, Schmidt, Ivory,
Gyldén and Radau.

Brunxs, Die Astronomische Straklenbrechung, Leipzig, 1861, gives an
excellent synopsis of writings on the subject down to the time of its
publication. Of these, the papers of Ivory, On the Astronomical Refraction,
Philosophical Transactions for 1823 and 1838, are still especially worthy
of study.

Since that time the following Memoirs are those on which tables of
refraction have been or may be based :

GYLDEN, Untersuchungen tiber die Constitution der Atmosphire und die
Strahlenbrechung in derselben, St. Petersburg, 1866-68.

There are two papers under this title published in the Memoirs of the
St. Petersburg Academy : Série vii., Tome x., No. 1, and Tome xii., No. 4.

They contain the basis of the investigations on which the Poulkova tables
of refraction were based. They are supplemented by :

Beobachtungen und Untersuchungen éiber die Astronomische Straklenbrechung
in der Nihe des Horizontes von V. Fuss; St, Petersburg Memoirs, Série vii.,
Tome xviii., No 3.

RaApavU’s Memoirs are :

Recherches sur la théorie des Réfractions Astronomiques; Anmales de
PObservatoire de Paris, Mémoires, Tome xvi., 1882.

LEssai sur les Réfractions Astronomiques; Ibid., Tome xix., 1889,

The latter work is devoted especially to the effect of aqueous vapour in
the atmosphere, and contains tables for computing the refraction.






CHAPTER IX.
PRECESSION AND NUTATION.

Section I. Laws of the Precessional Motions.

119. The Equinox, or the point of intersection of the ecliptic
and equator, may also be defined as a point 90° from the pole of
each of these circles. Hence, if we mark on the eelestial sphere

C

Fic. 21,

P, the north pole of rotation of the earth, or the celestial pole;

C, the pole of the ecliptic;

E, the equinox,
these points will be the vertices of a birectangular spherical
triangle, of which the base PC is equal to the obliquity of the
ecliptic.

Both the poles P and (' are continuously in motion. Hence
the equinox is also continuously in motion.

The motion of the ecliptic, or of the plane of the earth’s orbit,
is due to the action of the planets on the earth as a whole. It is
very slow, at present less than half a second per year; and its
direction and amount change but little from one century to the

next.
N.S.A. P
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The motion of the equator, or of the-celestial pole, is due to
the action of the sun and moon upon the equatorial protuberance
of the earth. The theory of this action is too extensive a subject
to be developed in the present work, belonging, as it does, to the
domain of theoretical astronomy. We must, therefore, limit
ourselves, at present, to a statement of the laws of the motion as
they are learned from a combination of theory and observation.
The motion is expressed as the sum of two components. One of
these components consists in the continuous motion of a point,
called the mean pole of the equator, round the pole of the
ecliptic in a périod of about 26 000 years, which period is not
an absolutely fixed quantity. The other component consists in
a motion called nutation, which carries the actual pole around
the mean pole in a somewhat irregular curve, approximating to
a circle with a radius of 9”, in a period equal to that of the
revolution of the moon’s node, or about 186 years. This curve
has a slight ellipticity, and its irregularities are due to the
varying action of the moon and the sun in the respective periods
of their revolutions.

In the present section we treat the motion of the mean
pole P. This, and the pole C of the ecliptic, determine a mean
equinox, by the condition that the latter is always 90° distant
from each.

Precession is the motion of the mean equinox, due to the
combined motion of the two mean poles which determine it.

That part of the precession which is due to the motion of the
pole of the earth is called {uni-solar, because produced by the
combined action of the sun and moon. It is commonly expressed
as a sliding of the equinox along some position of the ecliptic
considered as fixed.

That part which is due to the motion of the ecliptic is called
planetary, because due to the action of the planets.

The combined effect of the two motions is called the general
precession.

There is no formula by which the actual positions of the two
poles can be expressed rigorously for any time. But their
instantaneous motions, which appear as derivatives of the
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elements of position relative to the time, may be expressed
numerically through a period of several centuries before or after
any epoch. By the numerical integration of these expressions
the actual positions may be found.

120. Fundamental conceptions.

In our study of this subject the two correlated concepts of a
great circle and its pole, or of a plane and the axis perpendicular
to it, come into play. In consequence of this polar relation, each
quantity and motion which we consider has two geometrical
representations in space, or on the celestial sphere. In treating
the subject we shall begin in each case with that concept which
is most easily formed or developed. This is commonly the pole
of a great circle rather than the circle itself. In the case of the
equator the primary concept is that of the celestial pole, since it
is the axis of rotation of the earth which determines the equator.
We note especially in this connection that CP is an arc of
the solstitial colure, and that the equinox X is its pole. Either
of these may be taken as the determining concept for the
equinox.

The motion of the pole P at any instant may be conceived
as taking place on a great circle G joining two consecutive
positions of P. The polar plane and great circle of P then
rotate around the axis and pole of G as a rotation axis, and the
angular movement is the same as that of the pole P.

If @ remains fixed as the plane moves, the rotation axis of the
polar plane also remains fixed. But if the pole moves on a
curve other than a great circle, the rotation axis moves also,
rotating around the instantaneous position of the moving pole
as a centre.

121. Motion of the celestial pole.

C and P being the respective poles of the ecliptic and equator,
the law of motion of the pole of the equator, as derived from
mechanical theory, is:

The mean pole moves continually toward the mean equinox
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of the moment, and therefore at right angles to the colure CP,
with speed n given by an expression of the form

(O T a1 SRR UG IR 0§ (1)
P being a function of the mechanical ellipticity of the earth,
and of the elements of the orbits of the sun and moon, and e the
obliquity of the ecliptic.

P is subject to a minute change, arising from the diminution
of the eccentricity of the earth’s orbit; but the change is so
slight that, for several centuries to come, it may be regarded as
an absolute constant. The writer has called it the precessional
constant.* Taking the solar year as the unit of time, its

adopted value is
P54 0066, . - e soigseinesielsiat Bpn st an il (2)

Its rate of change is only — 07000 036 4 per century.

The centre ' of the motion thus defined is the instantaneous
position of the pole of the ecliptic at the moment. This pole is
continually in motion in the direction CC’, as shown by the
dotted line in Figure 22. Hence, at the present time, the pole of

c

Fic. 22,

the ecliptic is approaching that of the equator. It follows from
the law as defined that if the pole of the ecliptic were fixed in
position, the obliquity would be constant. But, as the pole
moves, it does not carry the pole of the earth with it, the motion
of the latter being determined by the instantaneous position
of the pole C, unaffected by its motion. Because the pole (' is

*This term has been also applied to what may be called the mechanical
ellipticity of the earth, or the ratio of excess of its polar over its equatorial
moment of inertia to the polar moment.
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at present diminishing its distance from P, the obliquity of the
ecliptic is also diminishing.

The speed n of the motion of the pole P, as we have expressed
it, is measured on a great circle. To find the angular rate of
motion round C as a centre, we must divide it by sine, which
will give the speed of luni-solar precession, We therefore have,
still taking the year as the unit of time:

Annual motion of P, actual; n=54"9066 sin ¢ cos e}. (3)

Resulting luni-solar precession; p=>54"9066 cos e 1

Neither # nor p is an absolute constant, since they both change
with ¢, the obliquity of the ecliptic.

122. Motion of the ecliptic.

Although the position of the ecliptic is to be referred to the
equator and the equinox, so that the motion of the latter enters
into the expression for that position, yet the actual motion of
the ecliptic is independent of that of the equator. We, there-
fore, begin by developing the position and motion of the ecliptic,
taking its position at some fixed epoch as a fundamental plane.
Any such position of its plane is called the fixed ecl'iptic of the
date at which it has that position.

The curve CC' along which the pole of the ecliptic is moving
in our time is not a great circle, but a curve slightly convex
toward the colure CP. To make clear the nature and effect of
this motion we add Fig. 23, showing the correlated motion of
the ecliptic itself. This represents a view of the ecliptic seen
from the direction of its north polar axis. The positions of the
poles P and C are reversed in appearance, because in Fig. 22
they are seen as from within the sphere, while in Fig. 23 they
are seen as from without.

We shall now explain the motion by each of these correlated
concepts. As the pole (' moves, the ecliptic rotates around an
axis NM (Fig. 23) in its own plane, determined by the condition
that IV is a pole of the great circle joining two consecutive
positions of the pole C. From the direction of the motion it
will be seen that the axis N, which we have taken as funda-
mental, is at each moment the descending node of the ecliptie,
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The instantaneous motion of the ecliptic is defined by the
speed of its rotation around the axis MY, which speed we call
«, and by the position of IV relative to the equinox. We put:

N, the angle between the direction of motion CC’, as seen in
Fig. 22, and some fixed position of the colure, say that of 1850,
which we call the initial colure and date. The correlated
concept is the arc E,N (Figs. 23 and 24).

N, the angle between this direction at the epoch ¢ and the
colure at . This is equivalent to saying that N, is the angle which
the tangent to the curve CC’ makes with the colure of the initial
date, while IV is the angle which it makes with the actual moving
colure. The correlated N is the arc EN (Figs. 23 and 24).

These quantities determine only the instantaneous motion,
not the actual position of the ecliptic. To express the latter
we shall hereafter put

k, the angle CC’" (Fig. 22)=ENE, (Fig. 24), which the actual
ecliptic at any epoch makes with the initial ecliptic or funda-
mental plane.

N,, the angle which the node of the actual ecliptic makes with
the initial line of the equinoxes.

In the usual method of expressing the position of the moving
with respect to a fixed ecliptie, % is the inclination, and 180°— N,
the longitude of the ascending node, referred to the initial
equinox. The value of N at present being 6° and a fraction,
the longitude of this node is 178° and a fraction.

123. Numerical computation of the motion of the ecliptic.

Proceeding to the numerical computation, the speed of the
instantaneous motion and the values of N, are found by theory
to be as follows at three epochs, of which the extremes are 250
years before and after 1850.%

Epoch. log x. K. N, kcos Ny ksin N,
1600 1-675 00 47"-316 5° 1796 47-113 4-370

1850 1-673 40 47 -141 6 30-32 46838 5341 } 4)
2100 1-671 87 46 976 7 42-82 46550 6305

* Astronomical Papers of the American Ephemeris, vol. iv.; Elements and
Constants, p. 186.
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Our next step is to derive from (4) the actual position of
the ecliptic, at any intermediate epoch. This we do by referring
the position of the pole C to rectangular coordinates, the
curvature of the sphere within so minute a region as that over
which the motion extends being insensible. Taking CP as the
axis of ¥ and 2, y as the coordinates of C, we shall have

ksin Ny=Dz
¥ N0=Dty}. .......................... (5)
Putting T for the time in centuries after 1850, the three
values of these quantities already given may be developed in
the form :
Dye= 5734140738701 —0"000 5672,
Dyy=46"838—0"1126T— 07001 0472
Then, by integration,
x= 5"3411T+40719357%—-0"-000 19T3}- ......... (6)
y=46"838T—07056372— 07000 357°
Here x and y are the coordinates of the pole C referred to
the colure of 1850 as a fixed direction. To find the polar
coordinates, we put

C’, the position of the pole at any epoch ;
k, the arc of the great circle CC’;
N, the angle PCC".
The values of k and N, at any time are then found from the
equations ksin N, =z,
kecos N,=y.
Computing the values of # and y from (6) for epochs fifty
years apart, we have the results shown in the following table :

Epoch. . Y. k. oN,.

1750 - 5”147 — 46"-894 ~ 477176 6° 1581y

1800 - 2 622 - 23 433 - 23 579 6 23-07
1850 0 -000 0 -000 0 -000 6 30-32

1900 + 2719 + 23 405 23 562 6 3755 \: ETY
1950 5 534 46 781 47 107 6 44°79

2000 8 446 70 -129 70 636 6 52-04

2050 11 -454 93 448 94 147 6 59-28

2100 14 -558 116 -738 117 -642 7 6°52
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In this table the value of NV, for the initial epoch 1850 is the
direction of the instantaneous motion at that epoch. For con-
venience in subsequent computation the value of % is regarded
as negative before 1850, thus avoiding a change of 180° in NV,.

124. Combination of the precessional motions.

We have now to combine the two motions which we have
defined, so as to obtain the general precession. We begin, as
before, with the speeds of the motions and not with their total
amount between two epochs. This speed is given by the motion
during a time so short that we may regard the motion as
infinitesimal, but may be expressed with reference to any unit
of time that we find convenient.

If we define the motion by that of the two poles, the annual
general precession is equal to the annual change in the direction
of the colure PC, as measured by the rotation around the
point C. But the effect of the combined motions on the position
of the actual equinox can best be studied by transferring our
field of view from the region of the poles to that of the equinox,
and studying the motion of the ecliptic and equator themselves
instead of the motion of their poles.

E p: ; Qo
T E
s
R M . MQQ
F1G6. 25.

Fig. 25 is.a view of the moving equinox, seen from the same
view-point as in Fig. 24, but infinitely magnified.
In Fig 25, let us have:
QR, the position of the equator;
LM, that of the ecliptic;
E, the equinox.

Two positions of each of these are marked, the one set @Q,R,;
LM, ; E,; for the origin or zero of time ; the other, QB ; LM ; K ;
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after a period of time which we regard as infinitesimal. All the
segments in the figure are, therefore, treated as infinitesimals,
and are considered to represent speeds of motion, each speed
being multiplied by dt.

We now apply what has already been said of the motion of
the poles to the figure, with the following results:

The two equators @R, and QR intersect at points 90° in
either direction from the region shown in the figure, and their
infinitesimal arcs shown in the figure are parallel.

The perpendicular distance KS of the two equators from each
other is equal to mdt; but, in accordance with what has just
been said, we may consider this distance to represent m itself,
the factor df being dropped.

The two ecliptics L,M, and LM intersect at the point N, which
cannot be marked in the figure, lying in the direction LM at a
distance from Z, (or E) represented by the angle N already
defined.

The speed p of the luni-solar precession is represented by
the arc E,E, between the intersections of the two equators with
the fixed ecliptic L,M,.

The arc FE, may be called the luni-solar precession in R.A.
Its value is p cos e or P cos?%, but it is not used by itself.

The arc EE, on the equator is the planetary precession in R.A.
We call it A. The speed of rotation of the ecliptic around the
node NV being «, we have

ET=ksin N=X'sine.

The total speed of precession in R.A. is

ES=EJF—EE,=pcos?e—N\.

The general precession is defined as the motion of the equinox
L along the moving ecliptic. It is measured by its projection
E,T, which differs from E only by an infinitesimal of the
second order. Its two parts are p=EE, and ET=»\cose
taken negatively. We call its speed {. Hence

l=p—Ncose=(P—N)C0OSe .ccvvvrrrrrrnnanns (8)

From the law of motion of the equator, P always moving at

right angles to CP, it will be seen that the instantaneous change
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of the obliquity is due wholly to the motion of the ecliptic, and
may be found by resolving the instantaneous motion of C into
two rectangular components, one in the direction CP; the other
in the direction CE. (Figs. 22, 23.)

Since, by the preceding notation,
N=angle PCC’,
k=rate of motion of C,

we shall have D= —kcos N.

125. Expressions for the instantaneous rates of motion.

As the conceptions developed in the preceding sections are
fundamental in spherical astronomy, we recapitulate them.
Dropping the factor d¢ and supposing the lines in the figure
to represent rates of motion, the perpendicular distance SE
or FE, at the equinox between the two positions of the equator
will represent ». The distance ET between the ecliptics will
represent «sinN. We then have g

speed of luni-solar precession in longitude,

D T =PI COS e T AN e )
speed of planetary precession in longitude,
—Ncose=E,T=—ksin Ncote; ...c.veueenen (10)
speed of general precession in longitude,
l=p—Ncose=(P—N\)COS€; cerreririininiines (11)
speed of luni-solar precession in R.A.,
EF=NE=pc0Se¢=PC0S%; ceverevrrreeernss (12)

speed of planetary precession in R.A.,
~N=EE =—«sin N coseCe; ...c.coeevrrnennn. (13)

speed of general precession in R.A,,
= P eosRE NI IR R T 14)
speed of change of the obliquity of the ecliptic,
1) =P SETEHI cobaotbobaolotoaso0ados (15)
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We have next to derive the data and compute the speeds of
motion for the extreme fundamental epochs. N, being the
angular distance of the instantaneous axis of rotation from the
equinox of 1850, and N that from the actual equinox it follows
that their speeds differ by the general precession in longltude,
so that we have

DN=DN,—l.
By developing the values (4) of N,, we have
N,=6°30"32428"97274+0-01172
We have just found 1=83"742.

Therefore, postponing terms in 7', we have
N=6"30"32—54"770T,
from which we derive N for other epochs.

With these expressions, and the values of x derived from (4)
by interpolation, we compute the following values of the quan-
tities required to find the obliquity of the echptlc and the
planetary precession :

Epoch. N. log . xcos N. ksin N,
1750 7° 2509 167403 46”814 6"7-094
1800 6 5771 167371 46 ‘828 5 718
1850 6 3032 1-673 40 46 837 5 341
1900 6 294 1-673 09 46 -844 4 964 L (16)
1950 5 35°5b 1-672 78 46 -849 4 -587
2000 5 817 1-672 47 46 851 4 -211
2050 4 40-78 167217 46 -851 3 835
2100 4 13-40 1-671 87 46 -848 3 459/

Differencing the preceding « cos N, the centennial variation of
the obliquity, we find that its second differences are appreciably
constant, and that its values may be developed in the form,

koS N = —Dze=46"837+4+0"017T— 0700517
By integrating and adding as a constant the obliquity for
1850, we find
€=23° 27" 31768 — 468371 — 00085724 0"-0017 I3,
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This gives the following values of the obliquity for the eight
epochs from 1750 to 2100:

Epoch. € logsine, log cose.
1750  23° 28 18”51  9:6002079 9962490 T+
1800 23 27 5510 96000943 99625121
1850 - 23 27 31 68 95999808 9962533 4
1900 23 27 826 95998671  9:9625548(
1950 23 26 44 -84 95997534 99625762 h
2000 23 26 21 41 95996396 99625976
2050 23 25 57 99 95995259  9:9626190
2100 23 25 34 56 95994121 99626405

These quantities give the data necessary for the computation
of all the precessional motions for the several epochs. Another
approximation to the values for epochs before and after 1850
may be made by using the varying values of I to derive fresh
values of N. But this revision will not appreciably change the
results which, so far as necessary for use during the present
century, will be found in Appendix III.

Section II. Relative Positions of the Equator and Equinox
at Widely Separated Epochs.

127. Our next problem is, from the instantaneous motions
Just found, to define the actual position of the equator at any
one epoch T relative to its position at some other epoch 7, We
regard 7 as a constant, and term it the initial epoch. The
other, with the quantities which depend upon it, are treated as
variable.

Let us consider the spherical quadrangle PP,C,C formed by
the positions of the two poles at the two epochs.

In order to represent all the quantities on the figure, it has
been necessary to draw it so as to express the motion over a
period of several thousand years. In consequence of this the
angle OC, P, as represented in the figure, is negative, owing to
the motion of the pole P having carried the are C,P over the
point C. The student who wishes to do so can easily draw the
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figure and apply the numbers for the period through which the
computations actually extend.

co
s
\‘\“
\Q\ ‘\
NN
.

Ch
[¢)

Po
Fie 26.
We divide the quadrangle into two triangles by the diagonal
C,P, and then have or put

e=0,D,, the obliquity of the ecliptic at the initial epoch.

e,=C,P, the obliquity of the equator of the epoch 7' to the
initial ecliptic.

0, the arc PP joining the two positions of the pole. This arc
is to be taken as that of a great circle, not the actual
path of P, which is represented by the dotted arc.

k, the arc C)C, through which the pole of the ecliptic has
moved.

N,, the angle P,C,C.

¢, the amount by which the angle C,PP, falls short of 90°.

¢, the amount. by which the angle CP,P falls short of 90°.

A, the angle C,PC, which is equal to the total planetary
precession on the equator of the epoch 7, or to the arc
of this equator intercepted between the two ecliptics,
taken negatively in the figure.*

*It should be noted that the angle A, when taken positively, as is done in the

present work for dates subsequent to the initial epoch, is subtractive from the
lunar solar precession during the next 500 years. Its value will reach a maximum
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2z, the amount by which the angle P,PC falls short of 90°,
so that we have v
z=_{—A.

Y, the angle P,C,P, the total luni-solar precession on the fixed

position of the initial ecliptic.

T, the interval after the initial epoch, in terms of 100 solar

years as the unit of time.

To find the derivatives, or instantaneous motions of these
various quantities, we have to suppose two consecutive positions
of the poles P and C, the second of which we call P’ and C,
and apply the differential formulae of the last section.

Since, by definition,

Angle P\ PC=90°~z,
while, by the fundamental law of the motion, P moves at right
angles to CP, it follows that PP’ makes the angle z with the
direction P P continued, and the angle 90°+X\ with the arc PC.
Its rate of motion being =, the space over which it moves in an
infinitesimal time is ndf. Hence
PP =ndt=rsinecos edt (§121).

We then have, as the effect of the motion on 6 and ¢,
e e Zdt} .................... (18)
de;= CoP’— CoP=msin Adt

The instantaneous motion of - is the angle subtended by PP,
or the motion ndt, as seen from C;, We therefore have, by the
theorems of differential spherical trigonometry $7),

ndt cos A=sin C,Pdy,=sin eld\b
_mcos >\
sin ¢,
Between the parts of the triangle C,PC’ we have the relation
sin P sin (
sin C,C~ sin CP’
e sin A sm(N \b)

sink sin e

Hence Dyf=

about 2150 and then diminish until about 2400, when it will become negative
through the arc C,P crossing C,C. It should also be seen that the precessional
motion N’ defined in the preceding section, is the speed of X at the initial epoch,
but is not rigorously equal to that speed at other epochs.
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Owing to the minuteness of A and k, we may take their sines
and arcs as equal, and put cosA=1. Substituting for = its
value, we have the following three equations for A, €, and -:

7\=ksin(l‘v’1—-xp)
sin e
D,e;=Psin ecos esin A 0 8655 ag0OIBIE 19)
D:\/f=PSin ecose Psin2e

sineg, -+ 2sing

The only unknown quantities in these equations are A, ¢, and
+, the values of which we are now to derive by successive
approximations.

128. Numerical approximations to the position of the pole.

At first we need only a rough value of A to be used in
finding ¢, For this purpose it will suffice to suppose - to vary
uniformly with its motion for 1850, which is Pcose, We may
therefore put, in the first equation,

Vr=5034"71=83"9T.

With the values of » computed from this expression, and the
values found in §§ 123 and 126 for k, N,, and ¢ we compute
approximate values of A as follows:

1850  ¥=0° 0“0 A= 0”00

1900 0 420 6 -11
1950 1 239 11 03
2000 2 59 14 -76
2050 2 478 17 -30
2100 3 298 18 +65

Changing the values of A to arc, and taking the 6th decimal
as a unit, we find that sin A\ may be expressed in the form :
10¢sin A=65"037"— 1154712
Substituting this expression in (19), we have
Dye, =0"1304T— 0"02327",
and by integration,
61 =6+ 070652T2 = 0"0077TS. ..ovenn.... (20)
With the values of ¢ derived from this expression, which

differ by only a small fraction of a second from e, we find from
N.S.A. Q
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The values of A may be developed in the form :
A=13"416T —27-380T% — 0"0014T5. ............ (23)
This expression represents all the above special values within
07-001.
130. Auxiliary angles.
For the angles ¢ and {, we have, from Napler s analogies,
applied to the triangle P,C,P:
) _cos 3 (e, +eo)tan J
ta‘n2(§+§0) cos %(6 —60)
sin };(el €5)cot %1)[/
tan}({— &)= sin 4 (e;+¢o)
The arc ¢, —¢, is only a small fraction of 1”. We may there-
fore neglect its powers. Putting

3

Aey=¢€,— e,

the above equations may be written

tan({+ (o) =cos(er+Ae;)tan 3 ]

Ae
a3 r s 2 8in(e,+ %Azl)tan Fev
The computation of the first of these expressions involves

no difficulty, all the quantities which enter into it having been
found. The results are as follows:

o (24)

Epoch. 1. He+5) Ay Ag A,

1750 —2518"-951 — 23107769 1155”512 T

1800 — 1259 -343 - 1155 257 y X + 9
1155 -257 946

1850 0 +000 0 000 L e 17
1155 011 e

1900 +1259 076 1155 -011 : =t 6
1154 -782 993 ,

1950 2517 -886 2309 ‘793 J % A%
1154 559 206

2000 3776 426 3464 352 Sy iy 18
11545358, o

2050 5034 698 4618 705 1154 ‘165

2100 6292 698 5772 -870

Developing these quantities in powers of 7', we find
4§, =4620"53T— 07984124 0703613, ......... (25)

The second of the equations (24) is subject to the inconvenience
of giving {—¢, as the quotient of two small quantities. This
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makes it necessary to express the numerator of the fraction in
a form to facilitate its development. By eliminating sinA from
the first two equations (19), we find
D, =Pkcosesin(N,—yr). coovevevineninnnne. (26)
In using this formula we express P in arc, and thus find
the following special values of D, with their differences:

Epoch. De,. A, A,.
1750 - 07153 60 48259 B
1800 -0 -07101

e 1160
1850 0 -000 00

5941 1160
1900 +0 059 41 4781

1159

1950 0 107 22 p

3622 1161
2000 0 -143 44

2461 1161
2050 0 ‘168 05 1300
2100 0 -181 05

These values may be represented in the form :
D,e, =07130 427 — 07023 2072
Then, by integration,
Aey=0"065 2172 —0"007 T3T%, ................ (27)
which is the numerator of the fraction.
To express the denominator we may choose either of two
methods. The simplest in form, but not the shortest numerically,
is to compute the numerical values of the nearly constant

% % from the preceding values of 3+ for 1750, 1950,

and 2100, and develop them in the form a+4b7+c¢7% The
product of this development into the above value of Ae, mul-
tiplied by cosec(ey+ Ag), (from which we may drop Ae) will
give {={

The other method is to develop the denomlnator and its
reciprocal thus:

quantity ——— -

tan 3 =y (1+ g5y,
dea ik @ 3
vy E(l —1zV)-
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We shall, in form, change the product
8¢
i
Changing the value (22) of + to are, and, for convenience,
expressing the result in units of the sixth place, we have
10%,=24419T—511T2—00157%,
+z¥?=0000 0577,
1 409524000867 —000207*
2tan T X

Ae,cot 1 into T'cot 3y X

The product of this into 2Ae, gives
Ae
tan $y»

Owing to the minuteness of the quantities in question, we

may take {—¢, as equal to its tangent, and neglect Ae, in the
denominator of (24). We thus obtain the value of {—¢, by
multiplying the last equation by

cosece,=2512; log=040002.

= 5"-34097 — 0"6320T%— 0""0004T".

This gives
¢{—§=137416T—1"38872—0"00107%. ......... (28)

The combination of this expression with (23) and (25) gives
the values of ¢, {,, and 2.

¢=2316"97T— 17286 T2+ 001713
,=2303 567+0 3027240 01873 |. ...... (29)
z={~A=2308 55T +1 0941240 018T%

131. Computation of angle between the equators. -

It only remains to develop 6. There are two ways of doing
this, the agreement from the results of which will serve as a
control of the correctness of the computation. The most ready
method is to solve the triangle C P P, which gives
sin e,sin Y

sin 6= &0
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By this formula, using the values of  already found, we
compute the following values of :

Epoch. 0. A A, Ag.
R
1850 0 00 R -

1002 44 _,, A
1900 +1002 -44 100220 o -3
L
1001 62 _g
2050 4008 -19 e
2100 5009 47

These values give the development
0=2005"11T—0"43T2—0"04173. ............ (30)

The other method of developing 6 is from the equation (18),

which gives do
ar
which will lead to a result in agreement with the above.

By interpolation of the various quantities we have tabulated,
the position of the equator and equinox at any epoch between
1750 and 2100 is found relatively to the positions for 1850 as
the initial epoch. A similar computation may be made, using
1900, or other epochs, as the initial one. The results of such
computations are tabulated in Appendix IV.

=N c082=4PSIN26C082, ....corvurrneannn. (31)

Section III. Nutation.

132. Motion of nutation.

The pole P, whose motion has just been developed, is the
mean, not the actual pole. The latter moves round the mean
pole with the motion called nutation, which arises in the following
way :

When the theoretical expressions for the motion of the pole
under the combined action of the sun and moon are derived
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from the theory of rotating bodies, it is found that this motion
may be resolved into two, one depending on the longitudes of
the sun and moon, and therefore periodic; the other independent
of these longitudes, and therefore progressive. Each term
expressive of a periodic motion, if taken separately, would bring
the pole back to its original position at the end of a revolution
of the sun or moon. In fact the largest component of this
motion goes through two periods in one such revolution.

--------

F1e. 27.

The progressive motion includes that of precession, described
in the two preceding sections. But a part of this motion is
dependent upon the longitude of the moon’s node, which makes
a revolution in 186 years. This part of the motion being
periodic, is included in the nutation, and in fact forms much the
largest term of the nutation.

To show the relation of these terms to precession, let P and
be the respective poles of the equator and ecliptic, and M that
of the moon’s orbit. Then the progressive motions produced by
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the two bodies are in the respective directions PE and PF, at
right angles to PC and PM respectively. The lunar component
PF is more than double the other. The resultant of the two is
an instantaneous motion PR, making an angle with PE, which
depends on the position of the pole M relative to P and C.

Now M revolves round C at a nearly invariable distance of
5°11’, in a period of 18'6 years. The result is that the direction
PR of the motion of P continually oscillates on one side and the
other of PE in a period equal to that of the moon’s node, and
P itself described a sinuous curve PS on the celestial sphere.
The motion on this curve is resolved into two components, the
one always at right angles to PC, being that of the mean pole,
the other a revolution round the mean pole in a period of
186 years.

The former is the luni-solar precession. The pole C being both
that of the ecliptic and the centre around which the pole of the
moon’s orbit revolves with the nodes, it follows that the pre-
cessions produced by the sun and moon are combined to produce
the total precession. When the actual pole, as it describes its
sinuous curve, is referred to the mean pole, it is found to
revolve round it in a somewhat irregular curve, not very different.
from a circle, which revolution, as already stated, is the nutation.

To show how the latter is expressed, let P, be the position of
the mean pole, and P that of the true pole at any time, while C,
as before, is the pole of the ecliptic. Draw P perpendicular
to CP, Then the angle at C is so minute, never reaching 20”,
that we may regard P,QP as a right angle, and the position of
P relative to P, may then be expressed by the rectangular
coordinates QP, and Q. But, for all the purposes of astronomy,
it is convenient to use, instead of P,Q, the angle P;C(), con-
nected with it by the relation

P,Q=P,CPsine.

The maximum value of the distance P P’ between the poles is
about 10”, a quantity so small in comparison with e that their
ratio may be treated as an infinitesimal, and the triangle P QP
regarded as plane. Under this restriction the component QP of
the nutation will be the change in the obliquity, and P,CQ the
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change in the luni-solar precession, produced by the nutation.
They are represented by Ae and Ay, thus according with the
notation of the last chapter.

The term of nutation depending on the moon’s node is more
than 12 times as large as the largest term depending on the
sun’s longitude, and more than 50 times as large as the largest
depending on the moon’s longitude. Its effects on obliquity and
precession at the epoch 1900 are:

Ae=9"21cosQ )
A\p: 17”234 Sin Q I, ...................

Q being the longitude of the moon’s node.

Owing to the secular diminution of the obliquity these terms
are effected by a minute secular variation, which need not be
considered at present.

Po

c

Fia. 28.

The coefficient 9”21 of cos Q2 in the expression for e is called
the constant of mutation. The value here assigned is the mean
result of all available observations up to 1895.%

133. Theoretical relations of precession and nutation.

In presenting the results of the theory of the relation between
the motions of precession and nutation, the figure of ithe earth
and the mass of the moon, I adopt the constant numerical
coefficients from Oppolzer’s exhaustive investigation.t We put

C, the moment of inertia of the earth around the axis of
rotation.

* Klements and Constants, pp. 130, 189, and 195. The results of a subsequent
adjustment of the mass of the moon led to the theoretical value 9”-214, which,
however, was not accepted by the Paris Conference of 1896.

t Lehrbuch zur Bahnbestimmung der Planeten und Cometen, 2nd edition, Leipzig,.
1882. See also Elements and Constants, §67, p. 131.
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A, the mean of the moments around an axis perpendicular
to that of rotation.

u, the ratio of the mass of the moon to that of the earth.

N, the constant of nutation, as above defined.

P,, that part of the luni-solar precession in a solar year of
3652422 days which is due to the action of the moon.

P/, that part of the same precession which is due to the action
of the sun.

H, K, K, numerical coefficients, functions of the elements of
the earth’s orbit round the sun, the moon’s orbit round the earth,
and, in the case of X’, of the volume of the earth and the
intensity of its gravity.:

We then have the following expressions for N, P;, and P,":

N=Hcose-~ Q—_A]

14+ C
C—-4

+

T i = (33)

P,=Kcose 'I:'M

1 c
P/=K'cose C_(}A
If we express IV, P;, and P,  in seconds of are, the logarithms
of H, K, and K’ as computed from gravitational theory are:

log H = 540289
ToGHG—15: 05 034N .l 5. SR (34)

log K’ =372508
The expression given by theory for the precessional constant

of the preceding chapter is found by a comparison with (2)
and (3). Since

P+ P =p,

we have P=<K11M+K’>

c-4

By st oA (35)

C—A4
C
mass of the moon, were known, the value of P could by means
of the preceding equation be determined by theory, as could also
that of N. But, as neither of these quantities has yet been

If , or the mechanical ellipticity of the earth, and u, the
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determined with the precision necessary for this, it is more
C—-4

[0

common to determine x and from the equations (33)

and (34) by means of the observed values of N and p.
Let us then take, as unknown quantities,

_ M
S S 5
C—-4
0oy
We then have the equations

(Ke+ K')y =54"9066,
H cos exy=9"21.

From the last equation we derive

log 2y = 5598 84—10,
Koy =37"487,
K'y=17"420,
y=0003 280 57,
x=1-+8262,
n=1 +81-62.

134. Numerical expression of the nutation.

When the theory of the motion of the pole is completely
developed, it is found that the values of Ay, and Ae are expressed
as the sum of an infinite series of terms, each consisting of a
coeflicient into the sine or cosine of some combination of the
following angles:

{1, the longitude of the moon’s node ;
L, the sun’s mean longitude ;

7', the longitude of the sun’s perigee ;
(, the moon’s mean longitude ;

¢, the moon’s mean anomaly :

D=q-L.

By referring to Appendix VIIL, it will be seen that several
of the terms there given have coefficients of the order of
magnitude 0701, or less. These are commonly ignored as
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Multiplying the above value of sin 2L by 17272, and com-
bining the smaller terms of the product with the corresponding
ones of the original expression, we find, for the sun-terms,

A= —1"272sin20,
+0 126 8in (© — '),
—0 007 sin (30 — =),
—0 022sin (© + 7).
Substituting for 7' its numerical value for 1900, which we
may take as a constant, ., _ 281°:2,

and combining the second and fourth terms into one, we find

Ay = —172725in 20,
+0 ‘147 sin (© +82°),
—0 007 sin (30 +79).

By a similar process we find, for the nutation of the obliquity,

Ae= +0"551cos 20,
40 009 cos ( © —79°),
+0 ‘004 cos (3® +79°).

NOTES AND REFERENCES TO PRECESSION AND NUTATION.

The fact of the precession of the equinoxes was originally discovered by
Hipparchus, who flourished during the second century before the Christian
era. His method was the same in principle as that adopted in our time
for determining the position of the equinoxes among the stars. It was seen
by the astronomers of ancient times, that there were two methods of
determining the length of the year: the one by the interval between the
times of the equinoxes; the other by the time of one apparent revolution
of the sun among the stars. As, owing to the invisibility of the stars when
the sun was above the horizon, it was impossible to compare the sun and
stars directly, an indirect method was adopted, using the position of the
moon as an intermediate point of reference. At the middle of a total
eclipse of the moon, the latter was known to be directly opposite the sun,
and its position among the stars could be determined. The distance of the
moon from the sun could also be measured before sunset, and from a star
after sunset.

The times of the equinoxes were those when sunset was exactly opposite
to sunrise. By comparing the results of its own observations with those of
his predecessors, it was found by Hipparchus that the position of the stars
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Spica and Regulus had changed relative to the equinoxes, and that, while:
the solar year as determined by the equinoxes was several minutes less than
365} days, the time of revolution among the stars was several minutes.
greater. His estimate of the motion was, however, materially too small,
being 1° in a hundred years instead of 1° in 70 years, which we now know
to be the case. °

In our time the precessional motion is determined in two ways : from the
observed declinations of the stars and from their observed R.As. Owing
to the continual motion of the pole toward the position of the equinox, the
stars situated in less than 90° of R.A. on either side of the equinoxes are
continually increasing in declination ; while those in the opposite quarter
of the heavens are diminishing. Hence by comparing the observed declina-
tions of the stars at epochs as distant as possible, the amount of the annual
motion of the pole, or the value of the speed %, can be determined.

The actual R.A.’s of the stars being determined by comparison with the
sun on a system which will be explained in a subsequent chapter, the actual
motion of the equinoxes along the equator, or the value of m, can also be
determined by observation. The actual amount of the motion is inferred
from a combination of the two methods, taking the means which seem most.
probable when due allowance is made for the various sources of error to-
which each is subject.

That component of the motion of the ecliptic which takes place around
the line of the equinoxes as an axis, or the value of «cosZ, can be deter-
mined by observations of the obliquity at various epochs, but the component.
at right angles to this, on which alone the motion of the equinox depends,
and which enters through the quantity A, cannot be accurately determined
by direct observation.

The motion of the ecliptic can also be determined theoretically from the
action of the planets, when the masses of the latter are known. Our
knowledge of these motions is subject to correction, and, in consequence,
the numbers expressing the motion have also been corrected from time to
time. Two independent corrections, one to the motion of the equator and
the other to that of the ecliptic, have been made from time to time. This
has been productive of more or less confusion in the combination of the two
numbers so as to obtain the definitive values of the precessional motion.

The first values of these motions which have been extensively used in
astronomy were derived by Bessel, and are found in a memoir to which
a prize was awarded by the Berlin Academy of Sciences in 1815. These
values were afterward corrected by Bessel and the results embodied in the
Tabulae Regiomontanae, long the most accurate handbook of formulae,
constants, and tables relating to the positions of the stars. The values here
found were, therefore, in very general use for a number of years.

When the Poulkova Observatory was founded (1839), one of the objects
mainly in view was the accurate determination of the positions of the
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principal fixed stars, and of the constants pertaining to their reduction.
This led to an investigation of the constant of precession by Otto Struve,
which was published by the St. Petersburg Academy of Science in 1843,
and was based upon a comparison of the observations of Bradley, 1750-1755,
with those of Bessel. The motions found by Struve were modified by
Peters, and are markedly larger than those of Bessel. They gradually
replaced the latter, their use becoming general through the last half of the
19th century.

Values were also derived by Leverrier and slightly modified by Oppolzer.
The following is a list of the motions just mentioned :

- Annual precessional motions by various authorities for the epoch 1850.

General
Precession. i3 o
Bessel - - - 5072357 4670591 2070547
Struve-Peters - - 50 *2522 46 ‘0764 20 ‘0564
Leverrier * - - 50 2357 46 0601 20 0524
Oppolzer - - - 50 2346 46 0593 20 ‘0515

Values of the precession have also been derived by Lupwie STRUVE,
Boure, DrEYER (in the journal Copernicus, vol. ii., Dublin, 1882), and
Nyrex.

Perers, C. A. F., Numerus Constans Nutationis, published by the St.
Petersburg Academy of Sciences, contains the first thorough development
of the theory of Nutation.

OrPOLZER, Lehrbuch zur Bahnbestimmung, Leipzig, 1882, contains an ex-
tended mathematical theory of precession and nutation ; his numerical values
are based on those of Leverrier.

In 1896 a conference of the directors of the National Ephemerides of
England, France, Germany, and the United States was held at Paris for
the purpose of deciding upon a uniform set of astronomical constants, and
a system of star-reductions to be adopted in the several publications.
Values of the precessional motions were also worked out for this purpose
during the following year, in a research found in Astronomical Papers of the
American Ephemerds, vol, viii. At that time the reinvestigation of the
motions and elements of the planets had just been completed, which led to a
more rigorous determination of the motion of the ecliptic. The resulting
precessional motions are those used in the present work, and mostly adopted
in the national ephemerides since 1901.

The Elements of the four inner Planets and the Fundamental Constants of
Astronomy, published by the American Nautical Almanac in 1895, also
gives values of the precessional motions. But these were superseded by
the value of 1897, which had not then been worked out.

*For the Julian, not the solar year.
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The amount of the nutation, computed from formulae substantially
identical with those just given, is found in all the national ephemerides for
intervals admitting of convenient interpolation to any date. The periods
of the terms depending on the moon’s node, and on the sun’s longitude, are
so long that an ephemeris for every tenth day will suffice so far as they
are concerned. Those depending on the moon’s longitude, if used at all,
must be given for every day. As for many astronomical purposes, it is
sufficient and sometimes even desirable to omit the small terms in the
nutation, the two classes of terms are given separately in the American
Eplemeris and in the British Nautical Almanac. In the former the
ephemeris of the larger terms is given for every ten days only ; and that in
two separate tables,—one containing the values computed from the old
constants of Struve and Peters, the other from the present adopted values.
A separate table is given of the small terms for every day. In the British
Ephemeris both classes of terms are given for every day. In the
Connaissance des Temps the complete nutation is given for every day. The
reason for tabulating the two classes of terms separately will be set forth in
the chapter on the reduction of apparent places of the fixed stars.

For convenience the following values of the term of the nutation de-
pending on the longitude of the node are given.

Ay. Ae.
BesseL, Tabulae Regiomontanae, —16"783sin 87977 cos 2
PETERS, Numerus constans, —17 -258 9 ‘224

OPPOLZER, Bahnbestimmung, —17 274 9 236









CHAPTER X.

REDUCTION OF MEAN PLACES OF THE FIXED STARS
FROM ONE EPOCH TO ANOTHER.

135. The mean place of a fixed star at any time is its
apparent position on the celestial sphere, as it would be seen
by an observer at rest on the sun. It is commonly expressed
by coordinates referred to the mean pole and equinox of the
beginning of some year.

The apparent place of such a star is its position on the sphere
as it is actually seen by an observer on the moving earth,
referred to the actual pole and equinox of the date.

The problem of the reduction of places of the fixed stars is
that of determining the apparent place at one time from the
mean place at another, or vice versa. It involves correction for
the effects of the following causes:

1. The proper motion of the star between the two epochs;
2. Precession;

3. Nutation;

4. Aberration;

5. Annual Parallax.

Of these causes 1, 4, and 5 change the actual direction in
which the star is seen, while 2 and 3 change only the axes of
coordinates, without affeeting the actual direction of the star.

The reduction involves two steps. Firstly, the mean place
of the star is reduced from one epoch to the other by applying
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the effects of precession and proper motion. Secondly, this
mean place is corrected for the effect of nutation, aberration,
and parallax.

The correction for parallax is generally neglected in ephe-
merides, owing to its minuteness, and the lack, except in a
few cases, of exact knowledge of its value.

The reduction of the mean place from one epoch to another
is so far distinct from the computation of the apparent place that
we consider them in separate chapters. In the present chapter
the theory of mean places, as affected by proper motion and
precession, will be studied.

In practice mean places are always referred to the equator
and equinox of the beginning of some solar year. Hence the
reduction for precession is always made for an integral number
of years.

Section I. The Proper Motions of the Stars.

136. Each fixed star is, with very few exceptions, so widely
separated from all others that, during our time, and perhaps
T

s
’
0

S

Fia. 29.

for ages to come, it may be supposed to move in a straight line
with uniform velocity. In cases where this is not true, owing
to the star being a member of a system, it is still true of the
centre of mass of the system. What we have therefore to
consider is the effect of the uniform rectilinear motion of a star
in space upon its apparent motion on the celestial sphere.
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Let E be the position of the earth, or more exactly that of
the sun, this being the mean position of the earth during any
one year, and therefore the actual origin to which the mean
positions and motions of the stars are referred.

Let the star be moving relatively to the sun in the direction
S8, with the uniform linear speed v, and let us put

7, the distance ES of the star, called also the radial line;

W, the angle ESS, which the direction of the motion makes
with the radial line;

p, the speed with which = is increasing, called the radial
velocity ;

, the annual parallax of the star;

w, the angular speed of its apparent motion on the celestial
sphere, as seen from the sun. We then have

vsmW aw

r dt

dr P o e e e (1)
P=FF = —veos W

"=

We now have to find the variation of x« with the time.

By differentiation of the first equation and simple reductions,
we find
D= 2-— sin W cos W.

Substituting for sin W a.nd cos W their values from (1), ‘this
equation reduces to

Instead of », the distance of the star, we use its annual
parallax, connected with @, the mean distance of the earth
from the sun, by the relation

a=7sin .

Using o as the astronomical unit of length, we should define
v in terms of this unit, using it to indicate radii of the earth’s

orbit in unit of time. Doing this and substituting sin 7 for %

we find Bt +32jp Shm, s woww et dovadoh i @)
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In this equation u is expressed in circular measure. In
astronomical practice it is common to express u in seconds of
arc per year, and the radial velocity in kilometres per second.
The value of p to be used in the last equation is found by
dividing the speed in kilometres per second by 4-75.%

If we put u” for the annual motion in seconds of are, and #”
for the parallax in seconds of arc, we shall have

uw=wn"sin1”
sin 7 =7"sin 1" RN A A D 11 (3)
Dy’ = —2u"7n"psin1”

The radial speed p can be measured only with the spectro-
scope, and is known only for a few hundred of the brighter
" stars. Among the stars whose radial speed and parallax have
both been determined, 1830 Groombridge is that which will
give much the largest value of this change. The measures of
its radial speed at the Lick Observatory give

p=—20.
For it we have also
l‘// — 7II
and, with much uncertainty,
7r” Hit 011_1 4’

and thus, for 1830 Groombridge,
Dy’ = +0700019.

This change is too small to be detected until accurate observa-
tions shall have extended through fully a century; and as it is
exceptionally large, the consideration of the change in the case
of the stars in general belongs to the astronomy of the future.
In the present state of astronomy we may, therefore, assume
that by its proper motion each star moves on a great circle
with an invariable angular speed. We put

u, this constant angular speed ;

*This factor is connected with the solar parallax by the relation

Factor=-,—[1'620.03]~—-
©’s par. in secs.

The value as given therefore corresponds to par.=8"776. For the value
8”80, still in common use, we have 4:7375 for the divisor.
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N, the angle which its direction makes with the meridian of
the star, counted from North toward East. We then have, for
the rates of change in R.A. and Dec.,

wen(4)

Proper motion in R.A.,  u,=usin N sec 6}
Proper motion in Dec., us=pucos N ik

137. Reduction for proper motion.

The mean place of a star at any epoch is not necessarily
referred to the equator and equinox of that epoch. We may
have occasion to refer it to the coordinate axes of any other
epoch. It follows that the reduction for proper
motion is quite distinet from that for precession.
We therefore begin by finding the effect of proper
motion when the axes of reference remain fixed.
We put

O 65, N, the coordinates of the star and the
direction of its proper motion at the initial epoch ; et

«, 8, N, the corresponding quantities for an epoch ¢ 3
later by the time f, referred to the same equator  F. 30.
and equinox. '

In Fig. 30 let P be the pole. During the interval ¢ the star
will have moved over an arc

S8 =put,’
so that PSS’ is a triangle in which
Angle S= N, for the initial date ;
Exterior Angle §'=JN, for the final date.

The equations between the parts of this triangle enable us to
determine «, 6, and N by the rigorous equations

cos ¢ sin (a — a,) =sin Ny sin ut,
€0s ¢ cos (L — 0,) =08 &, cos ut—sin &, cos N, sin ut,

P,

sin ¢ =sin d, cos ut+cos &, €08 Ny Sin ut,..eenennen.n... (5)
cos ¢ sin V= cos &, sin IV,
cos ¢ cos N =cos &, cos N, cos ut—sin &, sin ut......ov.un..... (6)

The use of these equations in their rigorous form can be
necessary only in the rare case, which has not yet occurred in
practice, when the proper motion is an important fraction of the
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polar distance of the star. In all ordinary cases a development
in powers of the time to > will suffice, and even this last term
will rarely be appreciable.

To effect this development we suppose SS’ infinitesimal. We
then have; from the triangle PSS,

dd=pu cos Ndt
cosdda=pusin Ndt [ e )

dN =sin ddo.=pu sin N tan 6dt
Then, by differentiating (4), substituting and reducing,

(Dip)=2ppatond (8)
(Dyps)= — .2 sin 8 cos 8 :

The derivatives are enclosed in parentheses to distinguish
them from the total variations when precession is included.
Their value should satisfy the condition that the derivative of

w2 = a2 cOs%6 + g
shall vanish, which we find to be the case by differentiating and
substituting from (8) and (4).

The preceding equations presuppose that w is expressed in
circular measure. To transform them into the usual notation
of seconds of arc, we must, in one of the factors of the second
member, replace u by usinl”. . Then

(Dipa) =2mqus sin 17 tan & } Y

(D) B i s oh g T~ T T

which holds true when u, and u; are expressed in seconds of are.
By Taylor’s theorem e and ¢ are expressed in the form

0 =0+ puat +3 (Dtﬂﬂ)tz} ..................... @)
8=380+ pst+ 3 (Ds)t® |

where the quantities in the second member are the values for

the initial epoch.

Putting A,oe=pu,t and A6=pust, these quantities will be the
principal terms of o—o, and §—¢, respectively. Comparing
with (8"), we see that the last terms of (9) may be written

$(Dyu )t = Ay A S sin 17 tan 6,
1(Dus)tt= — % A0 sin 17 sin 6, cos 6.
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It follows that we may write the reductions for proper
motion in the form

oL — 0= put(1+ A0 tan & sin 17) eeenn(10)
8 — o= pst —} A, sin &y cos &, 8in 17’

where A and A;é are the values of u,f and ust expressed in
seconds of arc. It is only when these quantities are ex-
ceptionally large that the last terms will become sensible. The
equations (10) have the advantage of -enabling us to determine,
almost at a glance, whether the terms in ¢ are sensible. If they
are, and if we require the proper motion as well as the position
for the second epoch, the reduction may be made by using the
mean value of the motion for the two epochs. We then begin
by computing (8), and then the changes in the values of u, and
us from the equations

Apa=(Dua)t) - . (11)
Aps=(Des)t)’
which, being applied to the proper motions for the initial epoch,
will give them for the final epoch, referred to the same equinox
in the two cases. We then make the reduction of the position
by the formulae
“‘%=(“a+%A“'l)t}. ..................... (12)
0— 6o =(us+FAus)t
The reduction (12) is for proper motion alone, the axes of
reference remaining fixed.

Section II. Trigonometric Reduction for Precession.

138. Rigorous formulae of reduction.

The problem before us now is: Having given the coordinates
and proper motion of a star, referred to the equator and equinox
of some initial date, to find the values of these quantities
referred to the equator and equinox of some other date, the
absolute position and rate of motion remaining unchanged.

There are two ways of solving this problem: one by a
rigorous trigonometric computation ; the other by a development
in the powers of the time. We begin with the first.
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cos & cos &’ = cos 6 cos &, cos & —sin O sin ¢,

cos d sin a’'=co0s §, sina
e It (14)
sin ¢ = sin O eos &, cos a4+ cos O sin 6,

These equations give the shortest computation so far as the
number of quantities to be used is concerned. They may be
adopted in the case of a star very near the pole. But their use
requires 7-place logarithms; and in all ordinary cases they may,
owing to the smallness of 6, be advantageously transformed into
others which will give ¢’—a and §—¢ in terms of the given
data, and will require fewer figures in the logarithms. To do
this we multiply the first by cosa and the second by sina and
subtract. Then we multiply the first by sina and the second
by cosa and add. The quotient of the two results gives us an
equation which, after dividing both terms of the fraction by
cos §, we may write

, N
tan (o —a)=ﬁ, .......................... (15)
where N =(cos &, —cos 6 cos ¢+ sin 6 tan é,)sin a,

» D =cos 6 cos?a +sin%a —sin 6 cos a tan &,
The coeflicient of sin @ in the numerator readily reduces to
sin @ tan &,+2sin’fBcosa=p, coooeeenienn.n, (16)
and the denominator reduces to
1—pcosa.

Having determined a’—a from (15), we see from the first two
equations (13) that we have the following computations for the
total change in R.A.:

a=0y+§

p=sin O(tan §,+tan {6cosa) | . ... ... .. 17)
Ay
tan (o a)_l-—pcosa

ow=a'+2z2=0y+(a¢'—a)+m
=ty =& = a1 o 17 awnit LRSS (18)
where we put m=_+z.



268 MEAN PLACES OF THE FIXED STARS [§ 138.

The reduction in declination is équal to the difference of the
sides P,S and PS8, for which Napier’s analogy, or the quotient
of two of the Gaussian equations for the spherical triangle,

gives us cos 3(¢ +a)
tan }(6—d,)= cos (@' —a)

HATEE 0 RS ek Soeta (19)

139. Geometric signification of the constants.

The geometric signification of the ares a’—a, , and 2, whose
sum make up the reduction, can be more readily seen by a
study of their relation to the equator than by the construction
we have used. Let E,Q and EQ be the two equators, inter-

S
Eo
(]
>Q
R
o ) e NS
Fic. 32.

secting at @, and £, and £ the two equinoxes. We then see,
by transferring the measures of the angles § and z from their
vertices at the poles to the equator, that

§o =90°—E,Q,
z=FE(Q—90°
Then since oy,=L R, and au=ER, we have

a—oy=§+2+ R,Q— RQ,
o —a=RyQ—RQ.

140. Approximate formulae.

The preceding rigorous formulae are necessary only in the
case of stars near the pole. In all ordinary cases the reduction
may be simplified by the following process. We write p in

the form P=py+Ap,

where po=sin O tan é, 20
i cosa}. ........................ (20)



§ 141.] APPROXIMATE FORMULAE 269
Now develop tan(a’—a) in (17) in powers of Ap.

sin « sin?10 sin 2
0

b —a)=1—pocosa (1 —p, cos a)?

+ete. .........(21)

To estimate the value of the second term we note that, in a
reduction extending over a hundred years, we have, approxi-

dtely; 10=1002" = 0005,
whence sin?30=5"0=0*33.

This is the maximum value of the numerator of the last term
of (21) for this particular case. Since p, is small, unless the
star is near the pole, the denominator will generally differ little
from unity. For a reduction through 100 years approximate
values of p, or p are

Dec.=80°; p=0057.
» =85 p=0115,

The equation (21) will, therefore, suffice in all cases when the
star is not very near the pole. Its computation may be
facilitated by dividing tan{a’—a) into three parts, using the
notation

_ posina 3
Adi=7 — Do COS @
A,a=sin? {0 sin 2a Loyt o (22)
1
A2a’ _— <(TW')“2— 1) AIG/ = FAIC(;

Then
@ —a=Aw+Aa+ Aa—Red. from arc to tangent = Aa. ...(23)

v

141. Construction of tables for the reduction.

The computation of these quantities is shortened by the tables
of Appendix IV, of which the construction is this:

We express the four parts of @ in seconds of time by dividing
them by sin 1s.=15sin1”, the reciprocal of which we call h, so

that log I = 4138 334.

When, and only when, necessary to avoid confusion, we indicate
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this form of expression by a suffix s so that p, means p
expressed in seconds of time, or p,=hkp. We then have from (22)

Por s SID @

Aty = 1—pycos o’

with similar expressions formed by multiplying A ¢ and A,x by
Lo T Ry, s, e i o] (24)

The constants and formulae for all the cases which ordinarily
occur are found in Appendix IV., which also contains tables to
facilitate the reduction. Table XII of this Appendix gives the

logarithm of i
K=, ——

1—pecosa

for usual values of p, the computation of log K being made
with pcosa in circular measure, but the argument being multi-
plied by the factor %, so as to be expressed in seconds of time.

Table XIIL gives the value of A,a, the argument 6 being
replaced by the time elapsed between the two epochs, to which
it is nearly proportional.

Table XIV. gives the factor F, by which A,a is multiplied to
find A,
# Table XV. gives the reduction from the sum A+ Aa+ A,
(which is the tangent of Aa expressed in seconds of time)
to Aa itself. It is always subtractive numerically.

142. Reduction of the declination.

Unless the motion of the pole is an important fraction of
the polar distance of the star, we may use, instead of (19), the
approximate equation

d=38,+0cos(a+LAa)sectAa. ....cooevuennn. (25)

143. Failure of the approximation near the pole.

The boundary of the region within which the use of Ap ceases
to be convenient is approximately a spherical lemniscate having
the pole as centre, and the meridian through 0 h. and 12 h. of
R.A. as its axis. Practically we may replace this curve by a
pair of circles as shown in Figure 33.
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The length of the semi-axis @ may be taken as 1° for every
10 years of the interval through which the reduction extends.
The limits are, in general, given by the equation

Polar Distance =0°10¢cos a.
The argument of Table XV. approaches the tabular limit when
Polar Distance=0"04¢sin .

The corresponding limiting curve is a lemniscate similar to that
just defined, but having its axis at right angles to that of the

other. It is shown by the two dotted circles. If, owing to the
position of the star being within the limits just defined, or to any
other reason, the rigorous formulae (17) are used, the computation
can still be facilitated by using the table for K.

144. Reduction of the proper motion.

The proper motion of the star when referred to the final
equinox will also be different from that referred to the initial
equinox, owing to the change in the direction of the hour circles.
To reduce it to the final equinox, let us again refer to the triangle
P,PS, formed by the two poles and the star. The angle N of
§136, Eq. (4) will be changed by the angle S, so that, putting
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N’, the value of N, referred to the final equinox, we shall have
N'=N+8
The angle S may be computed by the equation
Sin S=sin @sin@8ECE. vvrarrerrenrariorun (26)

The proper motions referred to the final equinox will then be
given by the equations

o’ €08 &' = p sin (N 4 8)= u sin NV cos S+ u cos N sinS
= o €08 6 €os S+ us sin S @)
g = pmcos (N +8)=ucos NcosS—usin NsinS| *~
= s COS S — i, cos ¢ sin S, J

In the preceding process of reduction we have commenced
with applying the proper motion during the interval of reduction
so as to use for «, and ¢, the position at the terminal epoch,
referred to the initial equator and equinox. But we may with
equal convenience commence with the reduction for precession.
The steps of the process will then be :

1. Having given the coordinates o, and &, of the star referred
to the initial equinox, we reduce them to the final equinox, the
absolute position on the sphere remaining unchanged.

2. We make a similar reduction of the instantaneous proper
motion, so as to reduce it to the new direction of the pole.

3. We compute the absolute motion of the star between the
two epochs by reducing the position obtained by step 1 with the
proper motion obtained by step 2.

As an example of the reduction, we take the star 1830 Groom-
bridge, of which the position and centennial proper motion for
the date 18750 are:

a=11 h. 45 m. 46:120 s.; M= +34198 s.
a=176° 26”53 ; =512"97 (a)
§= +38° 36" 55”55 ; us= — 57797

Assuming that a 5-place table of sines and cosines to time is
not at hand, we have reduced « to arc.

We call this position (a), and we propose to reduce it to
19100, an interval of 35 years.
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We begin by computing the absolute motion of the star
between the two epochs, supposing no change of the equinox of
reference. We first require the change in proper motion, which
may be computed by (8):

log pta 2:7101 logpa 2 54202
9 M5 2:7619n y» sinl” 4:6856 — 10
» 2sin1” 4:9866 — 10 » 8ind 97952 - 10
» tand  9-9024 — 10 » cosé 98928 -10
» Dpa 0:3610n »w D8 97938-10

-Duua= -279296= — 0153 S
Dys= — 07622,

Hence in 35 years, or 035 of a century,
(Apa)=—0054s.; (Aus)=—07"22,

and, for 1910,
ta=34144 s.; me=—578"19, ......... ()

which motions are still referred to the original axes.
Reducing the position to 1910 by (10) or (11), we now find

o= 176° 29" 31720 (8)
Sigt el B

This second position, which we call (B), is that of the star in
1910, when referred to the equinox of 1875,

We thus have two positions of the star—the one for 1875, the
other for 1910—both referred to the equator and equinox of 1875.
We shall now reduce both of these positions to the equator and
equinox of 1910.

We find the following constants of reduction from the general
expressions of Appendix IV., making the reversal there explained:

$,=13"26"50=13"44,
log k. sin 6 =1670 04,
m=1 m. 47-527 s.
=26’ 52”90,
0=11" 41766 =701"66.

The computation is now the following, starting in (a) with the

position in 1875, and in (B) with that for 1910:
N.S.A. S
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The two computations then are :
A. B.
logp, 271009 2:709 41
logcosd, 9-89285 9-893 18
log pa cos 8y,  2:602 94 2602 59
m, cos8, 400781 400749
pssinS -0 -14 -0-14
Mo €OS S 40067 400-35
logss w5, 260279 2:602 44
logsecd 0-10598 0-105 64
log /270877 2708 08
ra’ (Eq. 1910) 511741 510”60
= 34:094 s. 34:040s.

pscos S=ps  —5HTT97 -57819
—pecosdsinS - 010 - 010
ps'(Eq. 1910) —578-07  —578:29

The results (B) are the final ones. But results (A) are not
because they give the position and motion of the star on the
sphere at the initial epoch, referred, however, to the equinox of
1910. We therefore continue the computation (o) by finding
the change in o, 6, and u, due to the proper motion of the star
on the sphere during the interval between the epochs.

Beginning with the proper motions, we shall find the centen-
nial variations, and hence the reductions to be almost the same
as in the first computation. Thus we have for the centennial
proper motions for epoch 1875, and equinox of 1910:

Computation (a), - e = 34094 s, ug'=—578"07
Change in 35 years,- - — 0054 - 022
Motions for 1910, - - 34-040 — 578 29
Results of Computation B 34:040 —578 29

The two results should in theory be the same.
Next, to reduce position (B), the mean of the proper motions (B)
for the two epochs are found to be:
e =34%007; usy=—578"18. -
These, multiplied by 035, give for the reductions from 1875
to 1910, A= +119238s.; Ad=—3 22"36.
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These, applied to the results of computation (A), namely :
h. m, 8.
a=11 47 35810; §=38° 25 15"10,
give a=11 47 47733; =38 21 5274

(B) gave 47-733 52 “72.

Discrepancy 000 02.

Reduction of B Ursae Minoris from 1755 to 1875.

As a second example, we reduce the position of 8 Ursae
Minoris for 1755, as found in Auwers’ catalogue of Bradley
stars, from that epoch to 1875, an interval of 120 y. Omitting
proper motion, we give the computation both by the rigorous
formulae and the development in powers of Ap. The position

for 1755 is: ty=14h. 51 m. 42:56 5. =222° 5564,
So=+T5° 9 23”2,
The constants of reduction are:
$,=46"05, m=6m. 8495s,
log hsin 0 =2:20527, 6=40" 6""42.
‘Whence a=223° 41"69.

The two computations are:

Rigorous. Approximate.

tan 6 7766 logtand, 057672

cosa 9859 log & sin 6 2-205 27

tan1fcosa 7:625n log p, 2:781 99
logtand, 0576713 logcosa 9:859 16n
Diff. 2-952 Arg. 2641 15n

Subt. log (Tab. B) — 486 log K (Tab. 1)  --01361
0-576 227 logsina 9-839 367
sin6 8066937 logAg  2:60774n

p 8643164 Aga - 40526

sina 9-839 363n Aja(Tab. IL) + 0459

psina  8482527Tn FA,a(Tab. IIL) - 0028

cosa 9859 16n Red. (Tab. IV.) + 0117

pcosa 850232 Aag - 404712

1-pcosa 0°013592
tanAac 8-468 935

Aa—1° 41" 10764
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Rigorous. Approximate.
b, m s b, m. 8.
Aa= -0 6 44-709 Ag=- 0 6 44712
m +0 6 8495 m + 0 6 8495
o, 14 51 42-56 o, 14 51 42-56
(Eq. 1875) ¢ 14 51 635 o 14 51 6-34
Declination. Declination.
(0’ +a) 222° 5110 1Ag - 0° 5059
3@ ~-a) -0 5059 a+308a 222 51°10
tan 10 7-765 921 logf  3:381372
cos}(a'+a)  9-865173n cos(a+4Aa)  9:865 173n
sec(a' - a) 47 sec 3Aa 47
tan}(5-8,) 7-63114ln logAS 3246 592n
$(8-8,) —0° 14’ 42*19 Ad -1764"-38
8-, -0 29 24 -38 = —0°29 24"-38
8, 75 9 23-20 8 75 923-20
(Eq. 1875) 8 74 39 58 -82 8 74 39 58 -82

Reduction of Polaris to 2100.

As a case where the original form (14) of the equations of
reduction is most convenient, let us reduce the mean place of the
pole-star to 2100, an epoch two years before the nearest approach
of the pole to the star. The position and centennial proper
motion for 1900 are:

oo=1h. 22m. 3319 s, o= +1364s,,
d =88° 46" 26”61, ws=~+0"33.

We first make the reduction for proper motion during the
interval of 200 years.

Ao =200 X po= +27-28 8.,
A8 =200 X ps= +4-0"66.

In the equation (10) the last terms will be negligible. We
therefore have, for the position of (2100) referred to the origin
B 430 oy=1h. 23 m. 047 s,

3, =88° 46’ 27721.
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The constants are (App. IV.):
$=1° 16" 49”8,

z=1 16 53 -0,
80=1 6 47 3.
o, 20° 45 7705 cos Bcos §ycosa 8297 233 5
& 1 16498 sinfsing, 8:288 300 0
a 22 1 5685 diff. 0008 933 5
subt.log 16822900
sing 95741839 cosdcosa’  6°606 0100
cosd, 83302491 cosdsina’  7-904 4330
cosa 9967 066 4 tana’ 1298 423 0
sin @ 8288 399 4 a 87° 7' 13740
sin &, 9:999 900 6 z 1 16 530
cosf 9999 9180 o(Eq. 2100) 88 24 6 4
. =5h. 53 m. 3643 s.

sinae’ 9999 451 2
cosd 79049818
8(Eq. 2100) 89° 32’ 22"-66

It may be inferred from these results that the pole will pass
the star early in 2102 at a distance of 27’ 36"7.

Section III. Development of the Coordinates of a Star
in Powers of the Time.

145. The rigorous methods developed in the two preceding
sections are necessary when, owing to the great length of the
interval through which the reduction extends, or to the high
declination of the star, the change of its coordinates is an
appreciable fraction of its polar distance. In ordinary cases
the method of developing the coordinates of the star in a series
proceeding according to the powers of the time is generally
adopted.

Our first problem is to express the rate of change of the
coordinates in terms of the elements of position and motion of
the star and of the pole. Referring to the equations (16), and
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treating the interval of time and the motions between the two
epochs as infinitesimal, we see from § 138, Eq. (16)-(19), that .
« reduces to ou +an infinitesimal,
0 reduces to ndt,
p becomes ndt tan J,
« —a reduces to p sin o.=ndt sin o tan g,
{,+2 reduces to mdt. (See § 125, Eq. 14.)

We therefore have
o —o.=(m+n sin o tan 8)dt.
Also, since a’— ¢ becomes infinitesimal,
1(a’+ @) becomes oo +an infinitesimal,
so that &' —J8=mndtcos .
Adding the proper motions, the differential coefficients of the
coordinates as to the time become
Dov=m-+mnsin o tan 3+'U"‘Ep“+'““}, e (O R)
D8 =n cos o+ us = ps+ e
which will be the coefficients of ¢ in the development.

146. The secular variations.

To form the coefficients of the second power of the time, we
have to differentiate these last expressxons as to the time.
Taking first the precessions p. and p;, in (28), we find

Dp.=Dm+sin o tan § D+ n(Pa+ u.) cos o tan 6
+n(ps+ us)sin o sec?s } (29)
Dps=-cos o. Dt —(p,+ pe) M sin ot

The corresponding changes in u, and us; comprise two parts:
one due to the proper motion of the star, found in §137, the
other to precession. The combined effect of the two motions
‘upon the proper motion itself may be found by the equations
(8) and (27), taking S in the latter as infinitesimal. We then
have SIS =18 = 1elfSIN OUSEC Gy v vevervenensantaed (30)

cos S=1,
e COS & — o COS & = usS,
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or, since the first member of this equation is the infinitesimal
increment of u, cosd,
€08 8, — . Sin $d S = ugndi sin o sec 6.
In dé we are to include only the precession p;. Hence
€08 8 Dypto = a7 €OS L SIN § + st SIN AL SEC S o.vnvvennns (31)
Dividing by cos 6, we have the required variation.
We have, in like manner, from (27) and (30), for the infini-
tesimal inecrement of us,
ps —ps=dps= —undtsin o,
whence D) 1h =S TASTUS I G e el o e e g (32)
The variations (31) and (32) are those due to the precession
alone. Adding them to the corresponding values (8), which
give the variations due to the proper motions alone, we find for
the entire variations of the proper motions,

D= (am cos o+ 2uus)tan &
+usnsinasec®d 0 b oeeeeeiienenn.. (33)
Dips= — pm sin o — y,2 sin 8 cos §

The sum of the first equations of (29) and (33) gives the
second derivative of the R.A.:

2
%;23 = Dm+ Dm sin ovtan §
+n(po+2p)cosactand L ... (34)
+n(ps+ 2us)sin asec?d
+2uqustan &
For the declination, we find in the same way,
d%

—(It—z=Dtn €os 0L — N (Pat 2ue)sin ot — L u,28in24. ....(35)

In practical application we reduce the constants which enter
into these expressions to numbers. It will also be found con-
venient in the terms of each expression which contains D;n to
make the substitution

sin o tan § =L,
n

Jh

COS 0L ==
n
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These terms then become,

in R.A,; ——Dm+ aDm

in Deec.; %Dmr.

In astronomical literature it is common to express m and n
with reference to the year as the unit. But for the longer
intervals over which the reductions of stars must hereafter
extend, it will be more convenient to adopt the solar century as
the unit. This is especially desirable in the case of the proper
motions, because, in the great majority of cases, the annual
motions are so small as to require an inconvenient number of
0’s after the decimal in their expression. We shall therefore
compute the numerical coeflicients in terms of the century as the
unit, and, to avoid any possible confusion, write the eentennial
values of m and n as

me=100m,
Ne=100m,
thus retaining m and » as the annual values.

We take 1900 as the epoch for which the coefficients are to be

given. For this epoch we have, from Appendix IIL,

m,=4608"50 =307-234s.,
ne=2004 68 =133646,

dm, el et
g e 79 =40186,
dm, ey
el 853 = —0°057.

In the expressions of the required derivatives as above
written, the quantities are supposed to be expressed in homo-
geneous units, say seconds of arc. But in astronomical practice
all the terms relative to the R.A. are expressed in seconds of
time. We must therefore multiply or divide the coefficients by
15 in such a way that, in the second members, p, and u, shall be
expressed in time and p; and u; in arc, while the results shall
give the derivatives of o in time and those of ¢ in are.
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Thus, assuming that p, and u, are expressed in time, we first
multiply them by 15 to reduce them to are. Then, all the
terms will give the values of the first members in seconds of are.

Then, to reduce the second derivative of « to time, we divide
all its terms by 15. In the last term of each expression, which
is of two dimensions in u, we must, to produce homogeneity,
multiply the coeflicients by sin1”. In this way the reduction
to numbers gives us

((il—z—;; =0317 s.—[6°6289]p,
+[79876)(purt 2uJeos atand| (36)
+[6:8115](ps+2us)sin o sec’d
+[4°9866] uaus tan &

6‘%: —[6:6289]ps
_[91637](pa+ 2,44,,)sin o J ............ (37)
—[6-7367] u.2sin 28

In these expressions all the logarithms are to be diminished
by 10. It may be noted that the last term in these expressions
can scarcely be sensible except in the extreme case, when utan ¢
amounts to several hundred seconds of are.

If a great number of these quantities are to be computed,
the work may be facilitated by tabulating the quantities :

A =[79876]tan § ]
e 2
B=[68115]sec’s ool (38)
C,=0-317 —[6:6289]p, J
Cs= —[66289]ps= —[99310]cos

Tables for 4, B, C,, and Cs are found in Appendix ITIL

147. It is the common practice in catalogues of stars to give
the annual variations, or precessions, and the secular variations
of these quantities, that is, their rate of change per century.
These secular variations are equal to the preceding ones divided
by 100.
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When the century is taken as the unit, as in the case of the
preceding development, the expression for the first two terms of
the reduction to an epoch 7' is:

o — oco—T +%1’2 (lt2

da
T{ ETRE: ‘thz}

When annual variations and secular variations are given, the
form is: =1 ‘

o= 0Ly = (dt+2 1éosec var)

In either case the result may be obtained by multiplying the
variation for the mid-epoch by the elapsed time.

148. The third term of the reduction.

To obtain the coefficients of ¢* in the expression of the co-
ordinates, we have to differentiate the expression for the second
derivative. If the effect of proper motion is included, the
formulae thus derived are too prolix for practical use. _

It may be doubted whether, in ordinary practice, the actual
computation of this term is the best course to follow. The writer
has always found the easiest course to be to compute a second
value of the second term for the terminal epoch, using an
approximate position of the star, and then making use of the
following simple form, easily derived by taking the half sum of
the two Taylor’s series formed by interchanging the epochs,
namely 3 3
doy_t* &,
dt >R .6t2 " 6. dit’
oy, dlags e

dE —de —lap’

do, da.l:l it [ %o, @ioco]
il [dt a1 2lae " ae

In the case of an isolated star, it may be yet easier to compute
the precession for three equidistant epochs, those of reduction,

=1

and substituting
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and the mid-epoch. Calling the precessions, in the order of time,
Py P, and p,, the expression

t
az_ao=§(po+4'p1+l’2)

will then give the total reduction. This method was adopted by
Auwers in reducing the positions of the Bradley stars from 1755
to 1865.

If, for any reason, this avoidance of the third term is either
inaccurate or troublesome, we may always have recourse to the
rigorous trigonometric reduction.

As an example of the computation and reductions, let us take
the position and proper motion of 1830 Groombridge for 1875, as
given in § 144, and develop the R.A. in powers of the time to 7"
We find, from these data,the precessional motions in Appendix IIL,
and the formulae and tables for the secular variations, the
motions for 1875 and 1910, as in the following computation :

1875-0. 1910-0.
RA., aa=176°26"31"-8 176° 56" 562
Dec., 3= 38 36 55 ‘6 38 21 52 -8
sino. 8792784 8726 122
tand 9902401 9-898 498
logn, 2-126 001 2125 941
0-821186 0-750 561
n, 810 o, tan & 6625 s. 5631 s.
m, 307187 307-252
Pa 313812 312-883
Ha 34-198 34040
Do 348010 346923
coso. 9999162, 9999 384,
logps  3:301 254, 3-301412,
Pat2pe 38221 s. 38096 s.
ps —2001"03 —2001"-76
ps — 577 97 - 578 -29
DS —2579 00 — 2580 05

Ps+2ps — 3156 ‘97 - 3158 -34
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1875-0. 1910-0.
log(pe+2p,)  2:5823 25809
logeoso. 99992, 99994,
log A(Tab.)  7:8900 7-8861
log(2) 04715, 04664,
log(ps+2ps) 34993, 34995,
logsino. 87928 8-7261
log B(Tab.) 7-0258 7-0228
log(3) 9-3179, 9-2484,
logpe 1534 1-534
logus 2762 2762
tand  9:902 9898
4198 4194
logcoeff. 4987 S S
log(4) 9-185 9181
(1) +0183 +0-184
(2) -2-961 -2:927
(3) -0208 -0177
(1 -0153 - 0152
Dl - 3139 - 3072

149. Precession in longitude and latitude.

We now investigate the instantaneous rate of change in the
longitude and latitude of a star due to the precessional motion.

S

N Eo Ro -
E

-

Fie. 34.

Let NR, be the position of the ecliptic at the initial moment;
NR the position at the moment following; E, E the two
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equinoxes; SR, SR perpendiculars dropped from the position
of the star S upon the ecliptics at the two moments ;

Ao A, the longitudes

B B, the latitudes }at the two moments.
(1] > S

We then have N=ERy=NR,—NE,,
AN=FER=NR-NE,
By=8R,,
B =8SR;
and for the increment of \,
AAN=NR—NR+NE,—NE. ...cooo...... (a)
In the infinitesimal triangles SRR, and NRR, using the
notation of § 122, we have
x=angle R,NR,
l=NE,— NE=general precession,
N,=arc NE,.
A study of the relations of these triangles, putting S for the
infinitesimal angle at S, and applying Theorem ii. of §7, leads
to the equation NR=NBy= =888, cvcreeeereeriivrrrens (b)

while, noting that R and R, are right angles, Theorem iii. gives

the equation Scos B=xcos NR=kcos(A+N,),

whence S=xsecBeosA+DNg). «ovrveininininene. (¢
A comparison of (), (b), and (c) gives
AN= —rtan Becos(A+N)+L ..ooinenins (39)
From the triangle RSE,, we have
AB=SR—SR,=csin (A+Ny). «cocoennnnn. (40)

We may treat the quantities A\ and A, «,and [ as derivatives
with respect to the time, in accordance with the methods of
Chapter IX. For the epoch 1850 we have, from (4) of §123,

N,=6° 3032,
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Interpolating to 1900, the epoch now most generally used,

we have N,=6°44"81 (Eq. 1850)
Prec. for 50 years, —0 41-87
N, for 1900, 6° 294

We find from the same data,
x for 1900 =47"107.

The complete expression for the rate of change at 1900 due to
precession alone now becomes

%: —47"11 tan B eos (A + N,)+1 for 1900,
‘%f VAR AN Y 20 Ve et iz (41)

the unit of time belng the solar century.

These equations give only the rate of change for 1900, or the
coefficients of the first power of 7. To find the cofficients of the
second power of the time we must dlﬁ'erentlate the expressions
(41) as to the time.

The angle A+ N, is the distance from the instantaneous node
of the moving on the fixed ecliptic to the projection of the star
on the ecliptic. It therefore changes only in consequence of the
motion of this node and the proper motion of the star. The
former is, from (4) of §123,

dN, "

a7 = 2970,
and the centennial motion of A 41NV, is

pa+29"0 =" sin 1740008 43,

wa being the proper motion in longitude.

¥ dK' //,v
We also have = - 07068,
and, by differentiation of (40) and substitution,
d*8

=0"40 cos (A + N,) — 0707 sin (A + NV,)

=0"40 cos (A +16°2),
the effect of proper motion being neglected.

a1
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In a similar way we find, for the part of the second derivative
of A arising from the variation of A and N,,

0740 tan B cos (A +16°2).

The motion of B gives rise to a term having the coefficient
07°005. As there is rarely any occasion for using the ecliptic
coordinates of stars outside the limits of the zodiac, this term
may be dropped.

NOTES AND REFERENCES,

Two sets of tables have recently been published for the rapid computation
of the annual precessions of the stars, the secular variations and the co-
efficients of the third power of the time. They are :—

Dowxive, A. M. W., Precessional Tables adapted to Newcomb's value of the
Precessional Constant and Reduced to the Epock 1910. Edinburgh, Neill & Co.,
1899.

BECKER, Tafeln zur Berechnung der Praecession (Extract from the Annals
of the Strassburg Observatory, volume ii.). Karlsruhe, G. Broun, 1898,

Becker’s tables are based on the Struve-Peters values of the precessional
motions for the fundamental epoch 1900. In connection with the tables is
given the reduction to the new adopted values of the precessional motions.
The secular variations in the two theories differ but slightly. The third
term in the precession, that containing the factor 73, is scarcely sensible for
declinations less than 40°, unless the reduction extends over more than one-
half a century. The writer conceives that, where account has to he taken of
this term, it will be easier to compute the trigonometric reduction by the
tables of the present work than to use the third term. But if it is desired
to use this term tables of the coefficient of 7' itself with the double argument
R.A. and Dec. will be found in some of the Introductions to the star
catalogues of the Astronomische Gesellschaft, quoted in chapter xiii.

The fundamental catalogue in Astronomical Papers of the American
Ephemerts, vol. viii., gives tables for the trigonometric reduction to six
places of decimals, but they do not extend to so high a declination as those in
Appendix of the present work.



CHAPTER‘ XL

REDUCTION TO APPARENT PLACE.

Section I. Reduction to Terms of the First Order.

150. Reduction for nutation.

The theory of nutation, or of the revolution of the true
celestidl pole around the mean pole, has been developed in
Chapter IX. We have now to determine the effect of this
motion upon the R.A. and Dec. of a heavenly body. The
relation of the true to the mean pole is expressed by the two

quantities :
Av, nutation in longitude.

Ae, the nutation of the obliquity of the ecliptic.

The principal terms of the original expressions from which
Ay, and Ae are derived have been given in Chapter IX., § 134,
and are more completely tabulated in the Appendix. The funda-
mental data derived from them may be found in the annual
Ephemerides.

Since the nutation does not affect the position of the ecliptic
itself, the latitude of a heavenly body is not affected by it.
For the same reason the foot of the perpendicular from the
body to the ecliptic, and therefore the position of this foot,
remains unchanged. Hence the effect upon the longitude of a
body is only to increase it by the quantity Ay

151. Nutation in R.A. and Dec.

The effect of nutation upon the R.A. and Dec. when the star

is not very near the pole is so small that its powers may be
N.S.A. T '
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neglected. It is then at once obtained from the formulae of
§ 54 by substituting in the equations (27) for d\ and de the
values of Ay, and Ae produced by the nutation. The following
are the terms of (27) which thus come into use:

cos dAac=cos S cos BAX —sin § cos aAe 1)
Ad=sin S cos BAX +sin ocAe }

From the parts of the triangle EPS in § 51, we have

sin Scos B=cos asin e @)
cosScosﬁ:cosecosé+sinesin6sinon}' """"""""" -

Substituting (2) in (1) and putting Ay, for A\, we find, for
the nutation of the R.A. and Dec.,

Ao.=(cos e+5sin e sin o tan §) Ay —cos o tan 6Ae} (3)
Ad=cos o sin eAyr+sin aAe R

In practice the reduction for nutation is, in the case of the
fixed stars, combined with the effect of precession from the
beginning of the solar year. As already mentioned, it is
the universal astronomical practice to refer the mean places of
the fixed stars to the equinox and equator of the beginning of
some such year. Then, instead of dividing the reduction for
precession and nutation into the two parts,

Precession to date 4-nutation,
they are divided into
Precession to beginning of solar year
+ (Precession from beginning of year to date4nutation).

The two reductions in parentheses are combined into one in
the following way :

Putting + for the elapsed fraction of the solar year, the
changes in the coordinates of the star due to precession from
the beginning of the year through the time T are, neglecting
the secular variation,

Ao=(m+mnsin a tan 6)7} (4)
il el & o e v - g
where m and n have the following values (§ 125)
m=p cos G—N}, ........................... (5)
n=psine
p being the annual rate of luni-solar precession.
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The corrections (4) with the substitution of (5) are now to
be combined with (3), the nutation. Putting, for the moment,
F for the coeflicient of Ay, in the first equation (3),

o F'=cos e+ sin e sin o tan 6.
It will be seen from (4) and (5) that
m+nsinotan §=pF -\,
_m+mnsinotand N
= Do e ‘
The sum of the terms of A in (4) and the first equation of

(3) gives for the total change in R.A., due to the combined effect
of nutation and precession from the beginning of the year,

whence v

Am=(7+%9\k>(m+n sin octan 6)+}\’Ap—}b. ................ (6)
So, if we put A=—,-+ép£
A=m+nsinatandl, ccoeererirrrririnininnns )
Py AV
b

we shall have the effects of precession from the beginning of
the year and nutation in longitude combined in the simple

expression ot R 11 e 11 e (8)
For the declination the values of A in (3) and (4) may be
combined in a similar way. We have from (5),
. n
sin € cos oL=—cos &,
r

and thus the sum of the two terms in question may be written

A8=(—r+éﬁ‘k>ncoson.................; ........ 9)

So, if we put O =ITTCOS GO N TR G o N e (10)

we shall have the effects of precession from the beginning of
the year and nutation in declination combined in the simple

o 7 G 1 ARSI Shonig N s (11)
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153. Reduction for parallax.

When we take into account the effect of the annual parallax
of a star upon its R.A. and Dec., we must conceive its mean place
to be referred to the sun, and then find the reduction to the
earth. If » be the distance of the star from the sun, and X, ¥, Z
the rectangular equatorial coordinates of the sun; and if we
designate the geocentric coordinates of the star by accents, they
will be given by the equations

- &'=1"cos ¢’ coso’ =7cos §eos a4+ X
Yy =7"eos ¢’ sin’ =7 cos § sin 0.+ Y}- --------- 17
Z=rsind’=rsind+2
Owing to the- vast distance of the stars and the consequent
great value of 7, we may treat X, Y, and Z as infinitesimal
increments of «’, ¥/, and 2’ respeetively, and determine the corre-
sponding increments of o and § by the equations (4) of § 48,
putting o and ¢ for A and B, and X, ¥, Z for dz, dy, and dz
respectively. We also put o, the annual parallax of the star,
that is, the angle subtended by the earth’s mean distance from
the sun when seen from the star, which makes

rsin r=1.
We thus derive, from the equations (4a) of § 48,

cos SAo=sin 7(—X sin o+ Y cos o) ...(18)

A8 =sin 7(Z cos §—~ X sin ¢ cos o.— ¥'sin 6 sin a)}'
These expressions may be reduced to the form of the other

star corrections in the following way. Putting, as before, © for
the sun’s true longitude and R for its radius vector, we have

X=Rcos ®,
Y=Rcosesin O,
Z=Rsinesin ©.

Substituting these values in (18) and putting = for its sine,
we find A

Ad= R7r(—cos © sin ¢ cos ot —cos e sin © sin ¢ sin o

Aa= Rz (—cos O sin a4+ cos e sin O cos a)sec &
. (19
+sin esin ® cos d)
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These can be expressed by means of the same star constants
as are used in computing the aberration, after multiplying them
by the parallax. That is, if we put, as functions of the coordi-
nates of the star and of its parallax, using 7" as the parallax in
seconds of arc and 7,=7"+15= in seconds of time,

¢,=m,cosasecd=7"c
d,=m,sinosecd=="d

A . SR I (20)
¢, =" (tan e cos § —sin a sin §) = 7"¢
dy=7n"cosasind=="d
and, as factors depending on the sun’s longitude,
C,=Rcosesin O}
..................... 21
D,=—Rcos ® S

we shall have
Aoc=0y0y+Did, 22
AS = Codh 4D, d’l}' ..................... (22)

154. Combination of the reductions.

We next show how the preceding reductions may best be
combined. Omitting the reduction for parallax, which need be
taken account of only in a few exceptional cases, the reduction
of a star from its mean place at the beginning of a year to its
apparent place at any time during the year may be computed
by the formulae (8), (11), (13), and (16). Adding the correction
for proper motion from the beginning of the year to the date,
we shall have

Ao=Aa+Bb+4Cc+ Dd+ E + u,r
Ad=Ad’ +Bb'+Cc' + Dd’ + usr } '

The coefficients A, B, C, D, and £ are functions of the time
but independent of the position of the star. Hence, on any one
date, they are the same for all the stars. They are known in
astronomy as the Besselian day numbers, after the great Bessel,
who first introduced them into use. Their values for every
day of the year are found in the annual ephemeris.

On the other hand, the numbers a, o/, b, ete., being functions
of the place of the star, are regarded as constants for greater
ar less periods of time. The logarithms of these constants for

P (R
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individual stars are given in some of the catalogues, so as to
save the astronomer using the catalogue the trouble of com-
puting them. But as the position of every star varies from
year to year, it is a question how long any such constants can
be used without important error. The general rule is that,
in the case of stars near the equator, say those whose declination
is less than 45° the constants may be used for several years
unchanged. But as we approach the pole, the period during
which no change need be made becomes shorter and shorter.
Some of the catalogues give in addition to the constants for
a given epoch either their values at some other epoch or the
annual change in the last figure of the logarithm. With such
catalogues reductions can be made without danger of error.

155. Independent day numbers.

There is another form of reduction to apparent place which
is much used when sufficiently accurate values of the star
constants are not at hand. In the equations (8), (11), and (13)
let us substitute for a, o', b, and b’ their values as given in (7),
(10), and (12). The reduction for precession and nutation thus
becomes Ao=Am+(Ansina+Bcoso)tan §+ £ (24)

Ad=An cos a.— Bsin o }

In the same way, the terms of aberration as found in (14) and

(16) may be written
Aa=(Ccosa.+4 D sin a)sec & } e n(25)
A¢= Ctan ¢cos §+ (D cos oo — C'sin a)sin ¢

In the second term of (24) let us replace 4 and B by the

quantities g and @, determined by the equations

gsinG@=B | .

dpin G=A'n} 3% s ewia f e MR T e (26)
we shall then have

Ansin a4+ B cos =g sin(G+o),
Amn cos ou— Bsin oo =g cos(G+ ),
and (24) becomes
Aa=gsin(G+o)tan s+ Am+ E,
Ad=gcos (G+ ).
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Let us also transform (25) in a similar way, determining A
and H by the conditions

‘hsin H=0C
I W 27
heos H= D} (27)

Ceosa+Dsina=hsin(H+w),
Dcoso—Csina=h cos(H+ o),
and (26) becomes
Aoc=hsin (H+ o) sec s,
Ad=hcos (H+a)sin §+Ctanecos d.

We then have

Let us also put
: f=Am+E
1=Ctane

}. ........................... (28)

By these substitutions the total reductions for nutation and
aberration, adding in the proper motion, become

Aa_ =f+g sin(G-I—a.)tan 6+h Sin(H+a.)Sec 6+ MaT (29)
' A6=gcos(G+a.)+hcos(H+a)sin6+'£0053+,u57},

which may be used instead of (23). The numbers f, g, ete., known
as independent day numbers, are given in the Ephemerides.

The choice between the use of Besselian and of the inde-
pendent day numbers depends upon the special character of
the work. The general rule is that, if the problem is to compute
a number of positions of the same star, say an ephemeris for
an entire year, the Besselian numbers will be the most con-
venient. This advantage will hold true even for a single
apparent place, if the star constants «, b, etc., are already at
hand. But if these constants have to be computed, and
especially if the problem is to reduce a large number of stars
to apparent place "at the same date, the independent day
numbers will give the most rapid computation.*

*The computer using the British Nautical Almanac or the Connaissance des
Temps should have in mind that the day numbers in these two publications have
a different notation from that above used, which is the original one of Bessel.
When these numbers were introduced into England by Baily, those expressing
aberration were changed to 4 and B, and those for nutation to C' and D. This
system was also adopted in Paris. In the early years of the American Ephemeris
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Section II. Rigorous Reduction for Close Polar Stars.

156. In the preceding method of reduction, the changes pro-
duced by precession during the fraction of the year, by nutation
and by aberration, have all been treated as infinitesimals. It has
therefore been assumed to be indifferent whether the mean or
the apparent place of the star is used in the formulae, and
quantities of higher dimensions than the first in the three
changes have been dropped as unimportant. This deviation
from rigour will lead to no appreciable error when the amount of
the reduction is not an important fraction of the star’s distance
from the pole. But, however small the changes may be in
themselves, there is always a certain distance from the pole
within which a more rigorous process is necessary. The choice
among the various methods of reduction that may be adopted in
this case depends largely on the nature of the problem in hand
and the degree of precision required. .

The more precise methods which may be adopted are of two
classes. In one a formally rigorous reduction is carried through
by trigonometric methods. In the other class the reductions are
developed to quantities of the second order with respect to their
values. It must be noted in this connection that any method of
development in powers of the reduction will fail in the immediate
region of the pole, though it may be applicable to all the
standard stars now in use.

In order to appreciate the degree of precision required, the
fact must be borne in mind that, on account of the convergence
of the meridians, as explained in § 44, the actual error in the
position of a star arising from a given error of its R.A. diminishes
without limit as the pole is approached. It follows that-if we
have in the R.A. an expression of the form

Aa=Eksecd or Aoe=Fktan,

the English system was adopted. But in the Berliner Astronomisches Jahrbuch,
and in the American Ephemeris after the first few years, the original notation has
been used throughout, as defined in the present chapter. It may also be said
that in catalogues in which polar distance is used instead of declination, especially
in the British Association catalogue, the accented star constants for the declination
have their sign changed in order to give the reduction of the polar distance.
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then although, as the pole is approached, Ao increases without
limit, the amount of correction to the actual position of the star
will be measured by k only. Since it is impossible in practical
measurement to gain greatly in accuracy by being near the pole,
it follows that the importance of the term ksecd must depend
on the value of k alone.

This does not apply to a correction A¢ in declination. If this
contains a factor sec ¢ or tan 6, it will increase proportionally to
that function. Moreover when a term of the R.A. contains sec’s
or tan2§, the effect of the term on the position of the star
increases indefinitely as the pole is approached.

157. Trigonometric reduction for nutation.

Let P be the mean pole, P’ the actual pole as affected by
nutation, and S the position of the star. It isindifferent whether

e, ¢
[ An R E
Ae
= E
~—
P el
P
S
F1c. 35.

we take for P the mean pole of the date or that at the beginning
of the year. It will be generally more convenient to take the
pole for the beginning of the year. Then, as heretofore, the
luni-solar precession to date will be combined with the term Ay-
of the nutation.
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Let CP and C'P’ be small arcs of the colures through P and P’
and PE and P'E’ arcs of the circles passing through the mean
and apparent equinoxes respectively. We shall then have

Angle CPE=Angle C'P'E'=90°,
RE = Ae.
In Fig. 35 the day-numbers g and G are geometrically repre-

sented, as are also the mean and reduced coordinates of the star,
as follows:

— @G =RPP,
— @ =E'PL, P'L being the continuation of PP’
g=PP.

oy= KPS, the mean R.A.
o/, the R.A. affected by precession to date and nutation
=EPS.
8,=90°— PS, the mean declination.
¢’=90°—P’S, the declination affected by precession to
date and nutation.

From Theorem (ii.) of differential spherical astronomy,we have,
assuming that P is the pole for the beginning of the year, and
using the day numbers 4 and B,

PR=(pr+Ayr)sine=Apsine=An.

In determining g and G from p+ Ay and Ae, we may treat the
triangle RPP’ as infinitesimal, because the effect of the resulting
errors will be only an error of the second order in the position
of the pole P, which is independent of the position of the star,
and therefore does not increase when the latter is near the pole.

The angle G and the side PP'=g may therefore be found
from the equations 3 %

g sin f= — Ae=
O A e An}. ............... (29)

From Theorem (iii.), § 7, we have
C'PL=CPP +Apcose=CPP +f,

the term £ in f being dropped because unimportant in this case.
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Subducting equal right angles, we shall have left
G=G-—f.
In the triangle SPP’ we have
Angle P=o,,+ @,
Exterior Angle SP’'L=o+G".
The relations between the five parts of this triangle which have
been defined give the equations
sin(90° —¢")sin(o’ + &) =sin(90° — §,)sin (g + @),
sin(90° — ¢")cos(a’ + G') =cos g sin(90° — &) cos (o, + G)
’ —sin g cos(90° —4,),
€0s(90°—¢") =sin g sin(90° — &y)cos(ocy + G)
+-cos g cos(90° — §,).
Putting, for brevity, a=o,+G,

a =+,
the relations become
€08 d'8in 8 =C08 Gy SN A, .euveuruiiniviiirniiniiiienians (30)
, - oy :
cos cos a,— cos g cos o cosa—sing sin Koy .(30a)
sin ¢’ =sin g cos §, cos a+-cos g sin ¢,

These equations become identical in form with (14), §138,
when we write g for 0, G for { and & for —z; and may
therefore be solved in the same way. But g is so minute, its
maximum value being about 30”, that we may drop its powers,
when not multiplied by a factor which becomes infinite at the
pole, and put sing=g, cosg=1. With this change, the formulae
for solving the preceding equations for o' and ¢ are as follows.
We accent the symbol p to avoid confusing it with the precession
and put A, for the increment due to nutation and precession :

a=0,+G.
p’=gtan,

Sanaad= S0 e R (31)
* 1—p'cosa

d,0=Aa+Adpeose
A,8=gcos(a+}A,a)sec iAa
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By expressing g and p’ in seconds of are, computing
gs=9"+15,
Py =gstan g, :
we may use the Tables of Appendix IV. in the solution.
It is also to be noted that in the case of a star only a few
minutes, say 5" or less, from the pole, the rigorous equation may
be necessary in the computation of é.

158. Trigonometric reduction for aberration.

The reduction for aberration may also be expressed in the
trigonometric form. We have found (§87) that the changes in
the equatorial rectangular coordinates X, Y}, Z, of a star pro-
duced by aberration are :

AX,=Rksin © =—RD
AY,=—Rgecos © cose=RC siipa s bt r e (SE)
AZ;=-—Rkcos O sine=RCtane
R being the distance of the star and €' and D the day numbers.
Expressing the spherical coordinates in terms of the rectangular
ones, putting R’ for the apparent distance, and
R
=3
we find that the apparent R.A. and Dec. o and ¢ may be derived
from o’ and ¢’ by solving the equations
Jfeosdcosa=cos ¢ coso’—D
fcos dsin o= cos §’ sin oz.’—{-C}-
fsind=sin '+ Ctane

These equations may be solved like those for parallax. By

cross-multiplication of the first two by sin o’ and cos o, we find
feosdsin Agou=Ccos o'+ Dsino’ =7 sin (H+ )
Jfeos é cos Ay =cos &'+ C'sin o’ — D cos o’ }, .-.(34)
=cosé’ —heos (H+a)
where we put, for the aberration in R.A.,
Ago=o=—0c..

Forming the quotient of these equations : \

S oce o et TL N (35)
1—hecos(H+a')secd

tan Agoe=
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For the declinations we add the products of the equations (34)
by sin § Ayow and cos § A,o respectively, thus obtaining

Sfeosdcos $ Agoe=c0s ¢ cos § Ay ~<h cos (H + o'+ 3 Aaa)}. (36)

feosd=cos &' —h cos (H+o'+§ Agoe) sec } Agx

Then, by cross-multiplication of this equation and (33), by

sin é and cos §, and putting

we have B ERET

Jfsin Agd=Ctan ecos &'+ L sin ¢ cos (H+ o+ § Azor) sec § Aqa,
Jeos Agd=1+Ctan esin &’ =k cos & cos (H 4o’ 43 Agee) sec 3 Agt.

If we compute j and J from

jsind=Ctane

JeosJ=hecos(H+o'+}A0)see 3 Azo
the quotient of these equations will give
_Jsin(J+4)
1—jcos(J+d)

The equations (31), (35), and (38) give the reduction for

nutation and aberration respectively. It is to be noted that in
(31) the o« and ¢ with which we start are the mean coordinates,
while, in (35) and (38), they are the coordinates affected by
nutation. We may, without any drawback, reverse the order
of the two corrections, computing the aberration with the mean
place of the star, and then the nutation with the place as
affected by aberration. As a check upon the accuracy of the

work it may be well to make the computation in both these
orders.

}, B Aol . o

RN T o A RO (38)

Section III. Practical Methods of Reduction.

159.  Although the preceding exposition of the methods of
reduction is complete so far as the theory of the work is
concerned, it it necessary to minimize the labour of applying
the theory by making the best use of the data in the ephemeris,
and omitting all processes which are not necessary to the special
problem in hand. The astronomical ephemerides give not only
the day numbers for each day in the year, but ephemerides of
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the apparent places of several hundred fundamental stars, which
will, in all ordinary cases, relieve the astronomer from the
necessity of making any eomputations relating to the apparent
places of these particular stars. But when an unusual degree
of theoretical precision is required in the results, there are
certain points which require attention even in using the
ephemeris for this purpose. There is, in Jfact, when labour-
saving devices are applied, a practical difficulty arising from
the periods and values of the terms of nutation. These terms
are, in § 134, divided into three classes according to the length
of their period. In the case of the larger terms, the period is
that of the moon’s node, 18:6 y., or its half. Next in the order,
both of length of period and of magnitude, are the annual or
semi-annual terms. ,

Neither of these classes of terms offers any difficulty growing
out of the length of period. The difficulty arises in dealing
with the small terms of the third class, the length of whose
periods is about a month or some fraction of a month. The
largest of these is within the limit of error of all but the most
refined observations, but not far enough within to be always
neglected as unimportant. The method of dealing with them
will be seen by a survey of the practical conditions and data
of the problem. ‘

160. Treatment of the small terms of nutation.

The astronomical ephemeris gives the apparent positions of
the principal fixed stars to 001 s. in R.A. and 0”1 in Dec. for
every tenth day of the year. In the case of the close polar
stars the positions are given for every day.

In the ten-day ephemeris it would be useless to include the
terms of short period, because an interpolation of such terms to
intermediate dates could not be made with accuracy. We
readily see that, where the period of the term is 14 days, the
term might be negative at two consecutive ten-day epochs, and
pass through its maximum positive value during the interval.
It follows that when the astronomer makes use of the ten-day
ephemeris he must ignore these short-period terms altogether,
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or spend much labour in applying them. Moreover, when, as is
the custom, they are included in the positions of the polar stars,
but omitted from those of other stars, there is a non-homogeneity
in the results which may be productive of confusion.

We begin a more special study of the conditions by noting
that the terms of nutation in R.A., which are larger than those
in Dec., may be divided into two classes: those which vary with
the declination, having tand as a factor, and those which, at
any moment, are independent of the declination, and therefore
the same for all declinations.

If no coordinates but equatorial ones were ever used in
astronomy, the latter terms, whatever their magnitude, could be
dropped out as unnecessary. We should then be referring all
R.A’s, not to the apparent equinox of the date, but to a quasi
mean equinox affected by all the other inequalities, as an origin.
The reason why this equinox is not adopted as the origin of
R.A. is that the motions of the planets are in the first place
necessarily referred to the ecliptic as the fundamental plane;
and, in order to obtain a correct reduction to the equator, the
actual equinox at each day, with all its inequalities, must be
made use of. It is quite possible that if, following this practice
so far as the original computations were concerned, the system
were universally adopted of dropping constant terms of nutation
from the R.A. of all heavenly bodies, using them only in the
original computations where longitudes entered, it would be a
simplification of our present system, which would carry with it
no serious drawbacks.

No such scheme is, at present, practicable in its entirety. But
at a conference held in Paris in 1896, at which the Directors
of the principal astronomical ephemerides devised a uniform
system of dealing with star-reductions, it was agreed to drop
from the R.A. of all stars those minute constant terms of short
period which are common to all the stars. A step is thus taken
toward the simplification which has been suggested in the
origin of Right Ascension.

Although we thus get rid of those parts of those nutation terms
of short period which are common to all the stars, we do not
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thereby avoid the terms which vary with the declination. The
celestial pole does actually go through two revolutions per
month in a very small curve 0"17 in diameter, approximating
to a circle; and our instruments, being carried upon the moving
earth, are affected by this motion, which must therefore be
taken account of in the most refined reductions. A small
correction depending on the tangent of the declination is there-
fore included in the ephemerides of the polar stars. This gives
rise to a non-homogeneity between the star positions given for
every ten days and those given for every day.

The terms in question are so minute that the practical
astronomer has, in all ordinary cases, no oceasion to trouble
himself with them. He can use the numbers of the ephemeris
with entire confidence that he will be led into no appreciable
error by the lack of homogeneity. If engaged in any special
research in which so small a correction is important, the
ephemeris supplies all data necessary for his purpose.

161. Development of the reduction to terms of the second order.

Although the computation of the reduction by the preceding
rigorous formulae will probably be found simpler than the use
of a development in series, when only a single reduction is
wanted, there are some purposes in which a development of the
reduction is required. Unless the star to be reduced is within
5’ of either pole, a development to terms of the second order will
be sufficient. When we drop terms of the third and higher
orders in the development, a number of simplifications may be
made in the process by dropping out all terms which, in the
final result, will rise only to the third order. The following are
some of the cases in which this or other simplifications may be
made :

1. Since the tangent of a small arc differs from the are itself
only by a quantity of the third order, it follows that, in
developing to terms of the second order, we may substitute the
reduction itself for its tangent.

2. For the same reason the cosine and secant of a quantity of

the order of magnitude of the reduction may be supposed equal
N.S.A. v
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to unity, and therefore dropped as a factor when multiplied by
the reduction itself.

3. In forming the several increments of the reductions of the
first order, in order to obtain the terms of the second order, it
will be sufficient to carry these terms to the first order only.

4. So far as the terms of the second order are a function of
the coordinates of the star, it is indifferent whether we use the
mean or apparent values of these coordinates in the expressions
for such terms.

5. For the reason already mentioned, the only terms of the
second order which need to be included in the R.A. are those
which contain terms of two dimensions in secd or tand. In
the case of the declination all terms may be dropped which do
not contain either tan ¢ or sec ¢ as a factor.

In forming the required increments of the second order it will
be our object to first express them in terms of ¢, G, k, ete., and
then replace these quantities by their expressions in terms of the
Besselian day numbers 4, B, C, D, by means of the equations
(26), (27), and (28).

Following the same order as in the preceding rigorous reduction,
we shall begin by forming the terms of the second order due to
precession to date and nutation alone, which terms we shall
designate by the symbols

Ao, A26.

The terms of the second order due to aberration will then be
found by assigning the inecrements A o, A ¢ of the first order to
the expressions for the reduction for aberration, and also the
increments consisting of the terms of the first order in the
aberration itself. The aberration-terms of the second order
will then be the changes in the aberration due to these increments
of the first order. The combined increments of the second order
thus arising will be designated as

Aﬁ,aa’r A:,aé‘; Aza-, Aﬁ&

162. Precession and nutation.
Beginning with the terms arising from precession to date and
nutation combined, we write the necessary portions of the



§ 163.] TERMS OF THE SECOND ORDER 307

rigorous reduction as given in (31) in the following form, where
we have substituted for a its value o, + G :
_ p'sin(G+oy)
A= 1—p cos(G+oy)

A S=gcos(G+a,+3A,00)

Neglecting 7’ cos(G+a,) in the denominator of the fraction,
the expression for A a will reduce to the reduction already found
for terms of the first order. When terms of the second order
only in p’ are included, we may write

(1= cos(G+ )" =14 cos(G+otp).

Thus the terms of the second order in the reduction of the
right ascension become

Alo=p"2sin(G + o) cos(G+o)
=(Bcoso+An sin o) (An cos o.— Bsin a)ta,ngé}- -..(41)
=4 {ABn cos 200+ (A4%*n?— B?)sin 20} tan%3

For the corresponding terms in the declination we have

Aid=—Lgsin(G+o)A,o
= —}g?tan § sin?(G+ ).
By easy reductions this becomes
Ald={—1}9"+}(4d*n?— B*cos 20.— 4 A Bn sin 20} tan é. (42)

163. Aberration.

Passing now to the aberration: in order to obtain its complete
effect we have to substitute for o and ¢ in (35) and (38) the
values o+ A, and §,+ A, 8. We also have to include the terms
of the second order resulting immediately from the development
of the denominator. The latter are, for the R.A.:

Alae=12sin (H+ o) cos (H + o) secs
={0D cos 2.+ }(D?— 0%) sin 20} sec?s.
Here, as before, we use the symbols oo and § without farther
specification, because the terms are of the second order.
For the substitution of A, and A,§ we require the ex-
pressions (35) and (38) to the first order only, using

Agou=hsin (H+ o+ A, o0) see (§y+ A,6).
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Then
Al joo=hcos(H+a)A,asecd+hsin (H+o)A,dsecdtand. (43)
We assign to A e and A4 their values (40), taken only to
terms of the first order, namely
A oo=gsin(G+ o) tan 6 =(An sin e+ Beosa) tan 6,
A, 6=gcos(G+o)=Ancoso— Bsin o
These increments being substituted in (43), the latter reduces to
A2 ja=ghsin (G+ H + 20) tan  sec J.
The factor of tan ¢ sec d being
ghsin (G+ H ) cos 20+ gh cos (G+ H ) sin 2,
we find that
ghsin(G+ H)=ACn+ BD,
ghcos(G+H)=A4Dn— BC.
We now obtain
A2 a={(ACn+ BD)cos 20.+4 (A4 Dn— BC)sin 2c.} tan ¢ sec ¢. (44)
Proceeding in the same way with the declination, we find
that the terms of the second order in (38) are found by writing
the latter in the form

Agd=jsin(J+6){1+jcos(J+3)},
and are, when aberration only is considered,
A23=728In (J+6)cos (J+3). cvevrirneniuannnn (45)
Comparing with (37), we see that neither factor of this
product is increased in approaching the pole; A%$ may, therefore,

be dropped, leaving only the nutational increment of (38) to be
considered. We reduce the principal term of (38) thus:

Agd=jsin(J+¢) 46)
=jsindcosd’+jeosJsing’ [ T

Beginning with the aberrational increment of this expression,
we see from (37) that sinJ does not contain « or 6. For the
increment of cosJ we have

Ag(jeosJ )= —Lhsin (H+a) Ao
From (35), the principal value of A« is
Agoe=hsin (H+ o) sec é.
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We have from (27),
hsin (H+ o) = Ccos o.+ Dsin o

By these successive substitutions the inerement of (46) becomes
A= — {}(C*+ D*)+1(C*— D?)cos 20.+ § CD sin 2} tan 8. (47)
We next assign to cosJ its nutational increment through
putting in (37)

ol =0+ A

We thus have
A,(jeosJ)= —hsin(H+o)A,o
= —(Ccosa+Dsina) A .

By substitution of A,o, the increment of (46) reduces to

A?,0=—3%4{ADn+ BC—(ADn—BC)cos 20
+(ACn+ BD)sin 20} sindtan 8. (48)

To complete the expression for A,d, the nutation increment
has to be applied to ¢" in (46). But this increment does not
increase toward the pole, and may therefore be dropped.

164. It is important to know how near the pole these terms
become important. For this purpose we remark that the values
of An, B, C, and D are commonly less than 207, or ‘0001. The
coeflicients of the terms of the second order are therefore nearly
always less than 07-002.

Near the pole, and at a distance of p° from it, the values of

]

tan ¢ and secd do not differ greatly from ‘j; We therefore

have the following approximations to values which the terms of
the second order will never greatly exceed :

pPP=12°;  A*=0"01

o8 , 002
no 4 b Sl (49)
s , 004
.2 , 006
SONE , 012

We conclude that when only the ordinary limit of precision,
+0™1, is aimed at, the trigonometric reduction need be used only
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within 2° of the pole, but that, if the limit is to be $0701,
either it or the development to terms of the second order
should be used within 12° of the pole.

Section. IV. Construction of Tables of the Apparent
Places of Stars.

165. The term fundamental is applied to a limited number of
the best determined stars, the known positions of which are used
as auxiliaries to determine the positions of all other heavenly
bodies. There is no definable limit to the number of stars that
may be used for this purpose. About the beginning of the
19th century Maskeleyne chose thirty-six of the brightest stars,
nearly all of the first or second magnitude, scattered over that
portion of the sky which could be seen at Greenwich, made
frequent observations upon them, and thus determined their
positions with all the accuracy of which his instruments per-
mitted. These were used to determine the positions of other
stars by methods the principles of which will be shown in the
next chapter. Since his time the increasing requirements of
astronomy have led to a continual increase in the number of
stars regarded as fundamental.

In the preparation of each of the national astronomical
ephemerides, a selection of stars to be regarded as fundamental
has been made, and their apparent places given on the plan set
forth in the preceding section. Quite independently of these
lists, other lists, generally more numerous, have been prepared
from time to time by astronomers for special purposes. The
most complete list of this kind is found in the Astronomical
Papers of the American Ephemeris, vol. viii., pp. 91-122. It
comprises all the stars whose places are given in any of the
astronomical ephemerides, with the addition of such other stars
that the whole shall form a list scattered over the entire sky
with as near an approach to uniformity as possible. The number
of stars in this list is 1597. This number is more than double
that thus far given in any one ephemeris. But it is not unlikely
that at no distant date arrangements may be made between
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these publications which shall admit of the apparent places of
the entire list of selected stars being regularly given.

When apparent places of such stars as these are required, not
merely for a single year, but for a number of consecutive years,
their computation can be facilitated by the use of suitable tables,
by a method devised by Bessel and found in his Tabulae Regio-
montanae. The method of constructing such tables will here be
set forth in such a way that its application need not involve any
difficulty to one acquainted with the subject.

166. The fundamental idea of the method is that the day
numbers, omitting the minute terms of short period, are functions
of the longitude of the moon’s node and of the sun’s longitude.
They may, therefore, be divided into two parts depending on
these two arguments.

The star numbers varying slowly from year to year, it follows
that their products into the day numbers, the sum of which
products is the reduction to apparent place, may be arranged, in
the case of each star, into two tables, one depending on the node
and the other on the sun’s longitude, or the time of year. To
show the process more in detail, we put

T,, the time corresponding to the beginning of any solar year;

o, 6;, the mean coordinates of the star for the beginning of

that year;

T, the fraction of the year after the beginning at which the

apparent position is required.

Let us now see how the reduction from the mean place for 7
to the apparent place for 7;++ may be tabulated. By the
developments in Chapter X., §§ 145, 146, the change due to pre-
cession and proper motion from the beginning of any solar year
until the date — may be expressed in the form

A1a=rD¢a+%r‘zD?0°}. ..................... (50)
A =7 DS+ 12Dl

The speed of variation Do is computed numerically by the
formulae of § 145. The term Djo. will never be required except
when the star is near the pole. Whether it is used or not, the
values of the two factors change from year to year only with
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great slowness. We may, therefore, compute their values
numerically - for some fundamental epoch, say 1900, and also
their secular variations. The latter, at least in the case of Dio
and D}$, may most easily be found by repeating the computation
for a second epoch, say 1925 or 1950. In this way we shall’
derive, for each star, a general expression of the form

Do=o'+"T
with similar expressions for Do, D,6, and D?6. We then make
a table of Ao and A6 from (50) for intervals of ten sidereal
days, or, if the star is near the pole, for every such day. If a
ten-day interval is used, the increment of + from one date to the
next will be 10

Starting the table from the beginning of the year, the suc-
cessive values of + and Ao will be

+=0; AT; DN T
/AN (G50 oA DR 5 1 2N e B S g oG i (51)
sec. var.=0; o”Ar; 20"Ar....

The products }+2Dia may be included in A o in the exceptional
case when they are sensible. Thus, from a single table com-
prising an argument and two columns may be interpolated the
value of Ao for 1900 and its secular variation for any date r.
By multiplying the secular variation by the fraction of a
century elapsed since the fundamental epoch, and adding the
product to Ao for 1900, the complete value of Ao for the year
required will be obtained.

Of course the tabular value of A;é may be formed in the same
way.

Nutation. Passing to the nutation, we use the equations (3)
of § 151. "'The four coeflicients

cos e¢+sin esin o tan ¢

coso.tan g, (52)
cOS O Sin ¢,

sin o,
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are nearly constant for any one star, being, in fact, in the case
of the second and fourth of these coeflicients, identical with
b and —¥’, while the first and third are nearly equal to « and «/,
multiplied by constant factors.

The values of Ay, and Ae by which these four coeflicients are
to be multiplied are found in § 134, where their terms are divided
into three classes, which are to be tabulated separately as follows:

Terms depending on the node. Calling T, the time of be-
ginning of the year, we compute the value of (2, the longitude
of the moon’s node, for the five dates : :

T,; T,4100 sid. days; 7,4 200 sid. days, etc,,

or T.; T,+0273; T,+0546; T,+0819; 7T,+1092,
which carries the computation past the end of the year. With
these values of () the terms of Ay, and Ae depending on (2 are
computed and multiplied by the four corresponding numbers (52).
This computation may readily be made for every year for
which tables are to be used. We thus obtain so much of the
reduction to apparent place as depends on the longitude of the
node, which we may designate by the symbols AQ, and AQs.

On Bessel’s plan, the values of a, and §, are added to these
terms in the printed table, for which we then have five values
for each year. From these the values for any intermediate date
may be interpolated.

Annual terms. In these the nutation terms, which belong to
the second class, are combined with the aberration, both being
functions of the sun’s true longitude. Since 7=0 when the
sun’s mean longitude is 280° it is easy to tabulate the values
of © for 7=0, 7=A7, T=2AT, ete,
through the year. These values of © are then used in com-
puting the corresponding values of Ay, and Ae, and also of C
and D from (15). By multiplying each by the proper coefficients,
which are functions of the position of the star, so much of the
reduction to apparent place as depends on the sun’s longitude
is thus tabulated as a function of 7. To the quantities thus
tabulated are then added the values of Ajow and A$ for the
corresponding values of = from (51).
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The secular variation of this part of the reduction may be
computed and applied on the same principle with that of the
precession.

From the four tables thus formed, two for each coordinate,
we may form the apparent R.A. and Dec. of the star for any
time T in any year. We now have to show how the dates of
the year are related to the meridian of the place for which an
ephemeris of the star may be required.

167. Since the apparent places of fundamental stars are
required almost entirely in connection with observations across
the meridian of some observatory, the ephemerides give these
places, not for mean noon, but for the moment of passage over
the meridian of the principal observatory for which the ephe-
merides are constructed. Since the interval between two
transits is a sidereal day, the tables are constructed for units of
an integral number of sidereal days, and not for mean time. It
follows that, for any one observatory and any one year, the
factor of interpolation, omitting the entire days, will be the
same for any star through the whole course of any one year.
This factor depends on the relation of the beginning of the year
to the meridian of the observatory in question.

The moment 7' at which the solar year begins, being that at
which the sun’s mean R.A. is 18 h. 40 m., is a certain moment
of absolute time, of which the expression in the local time of
any place will depend on the longitude of that place. There
will be one meridian, and no more, at which the sidereal time
of T will be 18 h. 40 m. This meridian is that which the mean
sun crosses at the moment. It follows that this moment is
mean noon on this meridian. Let us call the latter the standard
meridion for the year. Let us put

k, the east longitude of the standard meridian from Greenwich.

It follows that the Greenwich mean time of the beginning of
the solar year is —%& or 24 h.—k This time may be computed
from year to year by tables of the sun’s mean longitude. In
Appendix III. of the present work will be found a table of the
times for the twentieth century. Changing the signs of these
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times, or subtracting them from one day, and converting the
result into hours and minutes if required, we shall have the
values of k. Next, let us put

A, the west longitude from Greenwich of the meridian =M
for which the ephemeris is required.

A+% will then be the distance west from the standard meri-
dian to the meridian M in question. It follows that on this
meridian we shall have at the moment of beginning of the
solar year

Local mean time =24 h.— (A k).
Sidereal time =18 h. 40 m.— (A +k).

If .we express A and k in fractions of a day, the first transit
of the vernal equinox over the meridian M in the course of any
one year will occur at a sidereal interval 5 h. 20 m.+X+Fk after
the beginning of the year.

Also, the first transit of a star of R.A.=o over this meridian
after the beginning of the year will follow the beginning by
the sidereal interval

5 h. 20 m.+o+X+%k—(24 h. when necessafy).

This then will be the factor of interpolation for the first
transit. The factor for any subsequent transit will be that
corresponding to an integral number of days after this moment.

NOTES AND REFERENCES.

The large scale on which reductions from mean to apparent positions of
stars, or the reverse, have to be made, has led to a number of methods and
tables auxiliary to the regular ones of the ephemeris which alone have been
treated in the present chapter.

Stong, E. J., Tables for facilitating the computations of star constants
(Appendix to Cape Observations 1874), gives extended tables for the easy
and rapid computation of the star constants, a, b, ¢, and d.

The Struve-Peters values of the astronomical constants were not intro-
-duced into the ephemerides until about 1850. In order to facilitate their
use before that time the Poulkova Observatory computed and published
tables of the day-numbers under the title Tabulae Quantitatum Besselianaruin
for the period 1750-1894. The later publications of the series differ from
those given in the ephemerides by including the smaller terms of the
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nutation. The numbers are therefore given for every day. Before 1840
they are given only for every tenth day.

Avwers, Tafeln zur Reduction von Fiastern-Beobachtungen fiir 1726-1750
(Zweites Supplementheft zur Vierteljahrsschrift der astronomischen Gesell-
schaft, Jahrgang IV.), Engelmann, Leipzig, 1869, gives the day numbers
for ten-day intervals with modern values of the constants, thus forming,
with the Poulkova series, a complete series from 1726,

A modification of the independent day numbers, and of the method of
using them, has been devised by Mr. W. H. Finlay, assistant at the Cape
Observatory, which is believed to offer marked advantages over the usual
ones, still tabulated in the ephemeris. The system is explained in Monthly
Notices of the Royal Astronomical Society, vol. 1., p. 497, (June 1890). Tables
of the star constants used in this method have been published by the Cape
Observatory, and the modified day numbers for use in connection with them
have been published by the same institution since 1897.

Although the logarithms of the day numbers are given to four decimals in
the ephemeris, three are practically sufficient in the reduction of meridian
observed positions to mean place, unless near the pole. Tables of 3-place
logarithms are found at the end of the present volume.

Several graphical systems for the reduction have been devised. One of
these is by Mr. Finlay and is found, with the chart for its application, in
Monthly Notices, R.A4.S., vol. lv., p. 15, (November 1894). Another by
Erasmus D. Preston is found in Bulletin of the Philosophical Society of
Washington, vol. iii,, p. 182. This was independently distributed by the
Society. It contains a diagram for finding the reduction graphically
without the labour of computation.

The fact that a ten day ephemeris of a star for an entire year can be
computed from tables of the form described in the present chapter in about
an hour renders the use of such tables desirable in the computations of
annual ephemerides extending through a number of years. Besides those of
the 7Tabulae Regiomontanae which are based on the older values of the
constants, tables for the fundamental stars by Leverrier are found in Annals
de. PObservatoire de Paris; Mémoires, vol. ii. Tables for a larger number of
stars, slightly different in some details, are found in Star Tables of the
American Ephemeris, Nautical Almanac Office, Washington.

In the office of the British Nautical Almanac the reductions are under-
stood to be computed for each separate day by the use of a ““Star correction
Facilitator,” an ingenious instrument devised by Mr. T. C. Hudson, and
described in the Monthly Notices, R.A.S., liv., p. 90, (December, 1893).



CHAPTER XII.

METHOD OF DETERMINING THE POSITIONS OF STARS
BY MERIDIAN OBSERVATIONS.

168. In this branch of practical astronomy everything relating
to the management of the instrument, and the investigation of
its performance, belongs to the subject of practical and instru-
mental astronomy, to be treated in another work. In the
present work we shall develop the general principles which enter
into the determination of positions of the fixed stars from
observations.

Such determinations are divided into two classes, fundamental
and differential.

Fundamental work consists in the determination of positions
of fixed stars, the results of which are independent of any
previous determinations,

Differential work is that in which positions previously deter-
mined are assumed as known, and new positions are fixed
relatively to these assumed ones.

Even in fundamental work it is nearly always advisable, at
least in the case of right ascensions, to assume certain positions
of the stars in advance, with the view of subsequently correcting
them from observations in such a way as to obtain results
independent of any preceding work. Results of this kind are to
be regarded as fundamental, leaving as differential only results
in which preceding determinations are regarded as not subject to
correction.
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169. The ideal transit instrument.

The development of the subject requires a conception of the
instruments used in determinations of position in the heavens, in
a state of ideal perfection. The actual instruments used by
the astronomer require a great number of small corrections for
their errors and deviations. The object and result of these
corrections is to reduce the results derived by the use of the
instrument to what they would have been were the latter
ideally perfect.

The instruments necessary for the determination of R.A.s
are the transit instrument and the sidereal clock, with their
subsidiary appliances. That required for the declinations is
a vertical circle. The transit instrument and the circle are
commonly combined into a single instrument known as the
transit circle or meridian circle; but, owing to their separate
functions, they can be considered separately.

The ideal transit instrument is a telescope moving only on a
fixed horizontal east and west axis at right angles to its line of
sight, so that the latter describes the plane of the meridian. In
the focus of its object glass a spider line is set at right angles
both to the axis and the line of sight. The latter passes through
the centre of the object glass and of the spider line. In the ideal
instrument as described, the line of sight being always in the
plane of the meridian, marks out the meridian on the celestial
sphere. Observations with the actual instrument require a
number of corrections for deviation from the ideal form. Every-
thing relating to these corrections belongs to the subject of
practical and instrumental astronomy, which is not treated in
the present volume. What is essential for our present purpose
is only the conception of the ideal instrument.

The ideal clock runs with perfect uniformity, so that the
correction necessary to reduce the indication of its face to
sidereal time is a quantity which varies uniformly with the
time. This uniform variation, in the course of one day, is called
the rate of the clock. The ideal rate can be determined by the
difference between the clock times of transit of a star over the
meridian on two consecutive days.
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We have now to show how, with the ideal instrument as
described, the right ascensions and declinations of stars are
ideally determined.

Section I. Method of Determining Right Ascensions.

170. It will be most instructive to begin with the ideal case in
which the right ascensions of all the stars are supposed to be
unknown quantities, whose values are to be found by observa-
tion. Since the right ascensions are measured from the
equinoxes, and since the latter is an imaginary point defined as
that at which the sun apparently crosses the celestial equator,
right ascensions must be determined by comparing the stars
with the sun. We therefore observe the clock times of transit
of the sun over the meridian with our ideal instrument day after
day, through an entire year. We also observe the sun’s declina-
tion at the same transits on a system which will be described in
the next section.

We also observe the clock times of transit of a selected list of
stars, preferably near the equator, through the seasons during
which such observations can be made upon the star.

Assuming the obliquity of the ecliptic to be known, the
longitude and R.A. of the sun on every day of observation
can be computed from its observed declination by trigono-
metric formulae not necessary to be given here. It may be
remarked that near the solstices, where the longitude and R.A.
are near 90° or 270° these coordinates cannot be determined
accurately from the declination. But this is a practical detail
which need not interfere with our ideal proceeding. Our results
will depend upon observations of the sun’s declination, made
not too near the solstices. A small error in the adopted value
of the obliquity will also be nearly or entirely eliminated, because
it will have opposed effects at different seasons. Moreover, the
obliquity itself may be determined from the observations of
declination.

Let us put for the observations of any one day:

T, the clock time of transit of the sun;



320 OBSERVED POSITIONS OF STARS [§ 170.

1,,T,, T, ..., the clock times of transits of any number of
stars on the same day ;
Lo, the right ascension of the sun, computed from the observed
declination.
Since the sidereal time of transit of the sun is identical with
its right ascension at the moment of transit, it follows that, if
the sidereal clock is set exactly right, we should have

T =00

If, as practically is always the case, this equation is not
exactly satisfied, the difference is the correction of the clock,
which we call AC:

AC=OL9—TQ.

From repeated observations of the sun day after day, we have
a series of values of AC. If the clock were correct and the
observations without error, AC would vary by the same uniform
quantity every day, and its general expression would be of the

s AC=AC,+t,

7 being a constant expressing the daily rate of the clock.
Practically, we have to suppose 7 a constant so long as no
serious error will thus arise.

With the value of » and AC, the value of AC can be deter-
mined at the moment of transit of every star. The apparent
R.A. of the stars observed will then be given by the equations

o =T,+A0,

................

On this system we may determine the R.A. of any number of
stars as often as we please. Although, in the present state of
astronomy, it is never necessary to adopt this ideal system, it is
still true that the latter embodies the fundamental principles
on which alone the absolute R.A’s from the equinox can be
determined. However complex the process may be, the R.A.s
of each star must ultimately depend upon a comparison with the
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sun, direct or indirect; and the R.A. of the sun must be regarded
as a function of its observed declination. But, practically, this
dependence of the stars upon the sun is brought about, not
directly, but only indirectly, through correcting long series of
observations so as to bring the results of observation into
accordance.

171. Practical method of determining right ascensions.

It was pointed out in the preceding chapter that there is no
immediate necessity for referring the R.A’s of the stars to the
actual equinox, and that, except for the necessity of comparing
the R.A’s and longitude, any other origin would serve the
purpose as well as the equinox. But there is no visible
point or system of points in the sky which can be used
to define such an origin. The equinox, or as near an
approximation to it as can practically be made, is therefore
in permanent use.

A concession from rigour is, however, made by regarding as
known quantities the R.A’s of a system of fundamental stars
extending round the circle of R.A., at not too great a distance
from the equator, and using them to define the equinox.

The system now universally adopted is as follows :

Let us put:

@y, Oy, ..., the adopted R.A’s of the fundamental stars

observed in the course of any one day or evening.

These R.A’s may, in all ordinary cases, be taken from one
of the ephemerides. The positions of the stars so used are
practically more exact than any single observation that can be
made upon them. A

T,T,T,...T,, the clock times of transit of these stars.

Then, as in the case of the sun, a correction of the clock will
be derived for each observation by subtracting 7 from o The
several values of the corresponding sidereal times, commonly
taken to the tenth of an hour only, may be arranged in a table
in the form shown in the following example, for which the
numbers are derived from the Greenwich observations for 1901,

January 4.
N.S.A. X
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Royal Observatory, Greenwich, 1901, Jan. 4.

| |
. o.

Seconds Seconds | ACqbs. ACsom. I agbs. Aa.
of Transit. of R.A. |

Star Clock
Observed. Time.

I 8. 8. s, 8. 5. 8.
a Aquila 198 59-80 5677 | -303 | -303 | 5677 | 000
o Aquarii | 220 4495 4198 2:97 | 305 | 4190 | -0-08.
¢ Pegasi 22:0 2703 24-09 294 | 305 | 2398 |-011
¢ Pegasi 226 34-75 3166 309 | 305 | 3170 |+004
u Pegasi 228 1676 1369 307 | 305 | 1371 |+002
« Piscium | 234 54-86 51-87 2:99 | 306 | 5180 | —-0°07
¢ Pisciom | 236 5502 51-97 305 | 306 | 5196 | —001

v Pegasi 0-1 12-05 8-99 306 3:06 899 0-00
B Arietis 18 1472 1164 308 307 | 1165 | +0-01
a Arietis 2:0 40°12 3704 308 308 | 3704 0°:00-
¢ Arietis 275! 6-42 325 317 3-08 334 | +009
a Ceti 30 10-96 7-88 308 308 788 000
& Arietis 31 309 59-89 320 3-08 001 | +0°12
¢ Eridani 35 20-71 1763 -308 | -309 | 1762 | ~001

Mean 03 - 306 0000

The column following the name of the star gives the clock
time of transit over the meridian to the nearest tenth of an
hour. This is practically the same as the hour and tenth of
the star’s R.A.

Column T gives the seconds and fractions of a second of clock
time of transit as derived from the observation.

Column o gives the seconds of .computed R.A. of the star as
determined from the ephemeris, applying such small corrections
as were deemed necessary. f

The differences of these two numbers is the clock correction
as derived from each separate star.

The mean of all the times in the second column is then taken
and the means of all the observed clock corrections. It is
assumed that the mean correetion, — 306 s., is the true cotrection
of the clock at the mean of the clock times, or 0-3 h. sid. time.

By a comparison of the observations on the preceding and
following days it was found that the daily rate of the clock
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was —018 s.; with this correction and rate the concluded
clock correction is found for each observation of the series by

the equation AC=AC,—018ts.

The values of the clock correction thus computed are found in
the column following those observed. By applying them to the
several clock times of transits, the R.A. of each star as derived
from the observation is found, and its seconds glven in the
column ot gys..

The column Ao gives the correction to the adopted R.A. of
each star as inferred from these observations. The concluded
clock corrections are also applied to the times of transit of all
the other stars, planets, and other bodies which may have been
observed, and thus their apparent R.As are derived. :

At present, however, we are concerned only with the observa-
tions of the fundamental stars, and especially with the nature
of the corrections derived in the preceding way. The main
point is that the R.As derived from the observations are not
completely independent determinations, because that of each-
star is derived from the assumed R.A.s of all the stars observed,
itself included. It is evident that, on this system, the mean
value of all the corrections Ao will vanish, or the mean of all
the R.A.s of a group of stars observed on any one day will come
out the same as the mean of the adopted R.A’s, some being
increased and others diminished, so as to bring the whole in
agreement among themselves. Hence, if the entire group is
affected by any common error Acw, the results of the observations
will all be affected by this same error. In summing up the
results for a year or a series of years, all the R.A.’s derived from
observation, whether on the fundamental or other stars, will
therefore be affected by a series of small errors

NG ENOE NS S
which will be the mean errors of all the adopted R.A.’s of the
individual groups of stars used in forming the clock correction
during the entire period.
Entrance of systematic errors. In the case of any individual
star the final error will be the mean of the errors of all the
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stars with which it was compared, these errors being weighted
on a system to be explained presently. If all the errors in the
adopted R.A’s of the individual stars could be regarded as
independent and accidental ones, each as likely to be positive as
negative, the final results would be free from systematic error.
But, as a matter of fact, the adopted R.A.’s may be affected by
systematic errors of two kinds: one constant, the other varying
with the R.A. It is evident that any systematic error in the
observations of the sun may result in the adopted R.As of
the stars being measured from a point slightly different from
the actual equinox. Such a displacement of the equinox will
result in all the R.A’s being in error by a quantity equal to
that displacement. As already pointed out, this constant error
is not of serious import unless in exceptional cases where ecliptic
longitudes have to be used.

172. Elimination of systematic errors.

It is, however, of the first importance to eliminate systematic
errors varying with the R.A. A study of the conditions of
observation show how errors of this class may be perpetuated.
Let S be any individual star and S, any fundamental star which
has been used in deriving the clock error from which S is
determined. Let N be the number of stars used on any one
evening in determining these clock corrections, and let A, be the
error in the adopted R.A. of S,. The R.A. of § resulting from
the observation will in consequence of this error A, be affected

by the error Ao=A,+N.

Taking for S, all the fundamental stars which have been used
in determining S, we see that the latter will be affected by a
certain mean error of all the fundamental R.A’s used in de-
termining the clock correction for S, these means being weighted
in proportion to the number of times that each star S, was used
for the clock correction. Now if, in the case of the star S, the
stars S, were equally scattered all around the circle of R.A., the
result for S would be affected only by'the constant error common
to all. But, as a matter of fact, observations are not ordinarily
extended through more than a few hours of any one night, and,
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occasionally, a longer period during the day. The result will be
that the error of S will not be the mean error of all the
fundamental stars, but mainly of those which culminated within
a short interval, say 2, 8, or 4 hours, of S. It follows that, if
the values of Ao are systematically different in different hours
of the circle of R.A., this error will be perpetuated with only a
greater or less diminution. As the adopted R.As are corrected
from observations from time to time, the tendency will be to
smooth off the systematic errors in question so that they shall
approximate to the form

Aoc=a cos R.A.+bsin R.A.

That is to say, there will be a periodic error in the R.A.’s of
all the stars which can be eliminated only by comparing the
clock errors derived from stars as far apart as possible in R.A.
This periodic error will be considered in a subsequent section.
At present we pass to the constant error of the equinox, which
we call £, the equinoxial error.

173. Reference to the sun—the equinoxial error.

We recall that the determination of this error must rest
fundamentally upon observations of the sun. Ideally we have
considered the R.A. of the sun as determined for each day.
Practically, however, such a determination need not be made.
The practical method consists in determining the error of the
sun’s tabular R.A. as found for every day of the year in the
ephemeris, by systematic observations of the transit of the sun
over the meridian, through considerable periods of time. What
we then have to deal with is not the R.A’s and Decs. of the sun
as derived directly from observations, but small corrections to
the values of these quantities as tabulated in the Ephemeris.

The steps of the process are as follows :

1. The R.A. and Dec. of the sun are observed on as many days
as possible through the whole of one or more years, and the
R.A’s are reduced as if the sun were a star; that is, the clock
correction used is that derived from the adopted R.A.s of funda-
mental stars. All the observed R.A.s of the sun will, therefore,
be affected by the same equinoxial error as those of the stars.
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2. Each R.A. and Dec. of the sun derived from the observations
is compared with the positions of the sun given in the Ephe-
meris, and the difference taken. Leaving out accidental errors
of observation, the residual differences between the observed and
tabular positions are conceived to be due to three causes :

1. The equinoxial error.

2. A constant error in measuring all the declinations of the
sun, which may arise from various causes.

- 3. The error of the obliquity of the ecliptic adopted in the
ephemerides.

To show how these errors are determined, let us put:

A, &, 6, the longitude, R.A., and Dec. of the sun at any moment;

& the obliquity of the ecliptic;

E, the equinoxial correction.

The declinations of the sun as given in the ephemeris are
derived from the values of its longitude computed from tables of
the sun’s motion. From these longitudes the declinations are
computed by formulae equivalent to

sin §=sin esin A.
We have also the relations

€08 \ = CO0S O ¢OS ¢,
€O0S e sin \ = sin & ¢0s §.

From these equations we form equations of condition by the
method set forth in the chapter on Least Squares. By differen-
tiating the first equation and substituting the others we find

dé =cos asin e dA 4+ sin o de.

If we put

AM, the correction to the longitude on any one day;

Ae, the correction to the obliquity of the ecliptic, which may

be regarded as constant through the entire period ;

A,, a possible constant error in measuring all the declinations

with the instrument ;

Ad, the excess of the observed over the tabular declination;
then each observation of declination will give the equation of

condition : cos o sin ¢ AN +sin o Ae+ Ay = Ad.
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If the tabular elements of the earth’s orbit around the sun are
correct, AX is constant throughout the entire period of observation.
In all probability the errors of the elements are so small that we
may regard their possible effect upon the result as quite in-
significant. Assuming AX as a constant, we have to solve the
above equations of condition by the method of least squares.

It is not, however, necessary to treat the corrections in-
-dividually. The values of the coefficients sin o and cos o vary
so slowly and regularly that we may use their mean values
for each month as constant throughout the month. We then
have twelve equations, one derived from the observations of each
month. We may assign to these equations weights proportional
to the number of observations. But, unless the latter are very
unequally divided through the year (a circumstance which will
greatly impair their value, and perhaps render them scarcely
worth using), we shall get as good a result by assigning equal
weights to the observations of each month as if we assigned
‘weights dependent upon the number of observations. In faet,
the errors which we have to fear are not the purely accidental
errors, but possible constant errors continuing through a month,
but varying from one month to another. Their possibility will
lead us to diminish the weight assigned to a large number of
observations in a single month, so as to make it approximate to
the weights assigned to other months. As a general rule, the
mean of the dates of observations in each month will not, in
the general average, be greatly different from the middle of the
month. We may, therefore, conceive the twelve monthly values
of a to form a series scattered at equal intervals of 30° each
around the circle. Thus we shall have twelve conditional

equations :
cos o, sin € AN +8in oy Ae+ A= Ad;,

COS 0L, sin e AN 4-sin o, Ae+ A, = Ad,,
oS 0y Sin € AN +sin a;Ae+ Ay = Ads,

cos oc..m sin e AA+sin btm Ae+ .AO' = A‘é‘m.
Proceeding now to the method of solution by least squares, the
normal equation in AX may be found by multiplying each equation
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by the coeflicient coso.. It is true that the actual value of the
coefficient of AX is cos o sin ¢, and if we multiply by this coefficient
all our products will contain the common factor sin%. But it
will be more convenient to regard sineAX as the unknown
quantity, which we may call . The general form of the equations-
will then be cos @+ sin oy Ae+ A= A6,
where 1=1,2, 3, ... 12.

The normal equation in # derived by the method of § 36 will
now be

Scosoe.x+ZsinoLcoso . Ae+ 2 cos o, Ay= cos ow AS.

When the values of o are scattered equally around the circle,
we have by known trigonometric theorems,

> cos?o=6,
Ysinocoso=0,
2cosa=0.

Thus our normal equation in @ reduces to the very simple form
6x =2 cos oL A,
and the correction AX is given in the form
x _Zcoso. Ad

“sine 240
Having thus found A\, we have next to determine its effect
upon the R.A’s. In the case of the sun, this coordinate, as

tabulated in the ephemeris, is derived from the equation

AN

tan oL =cos e tan A.
We have, by differentiation,
see2o. doL = cos e sec?A dA —sin e tan A de.
We have also COS (L COS § =COS ],
whence do.= cos e sec?d A\ —cos a tan & de.
The mean value of cos esec?s in the course of the year may be

regarded as 1, and that of cosatand as 0. We may therefore
put, as the mean result of the entire series of observations of the

sun, Aa_e = A)\,
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which we regard as the definitive correction to the tabular R.A.
of the sun.

We have also found a series of apparent corrections to the
sun’s tabular R.A. by the reduction of the observations in R.A.
Let us put, for any day,

o. comp., the tabular R.A. of the sun;

o obs., the R.A. derived from the observed times of transit, by

applying the method of § 171, using the adopted R.A. of
the fundamental stars.

Then, we put A’oLg =0t obs. — o comp.

All these observed R.A.’s require the common correction X.
Hence the actual correction to the tabular R.A. of the sun is

Aog=E+ Ao,

Equating this to the actual value of Ao, found from the
observed declinations, we have

E+A,(X-0=Aa.o= AA ;
. E=A\— Ao,

in which we may use for A'a, its mean value for the entire series
of observations.

It may seem that the number of quantities which we have
had to change or drop in order to reduce our result to this
simple form is so great that the errors thus arising may be
important. But this will be the case only when the observations
are very unequally scattered throughout the year. If there are
an equal number of observations in every month, the normal
equation will be found to reduce to this form; that is to say, the
corrections Ae and Ad will be eliminated of themselves. If the
observations are scattered very unevenly through the year,
especially if comparatively few are made in some months, the
equations of condition must be solved by assigning weights to-
the mean result for each month. The normal equation will then
no longer reduce to the above simple form, and must be solved
in the regular way.

The determination of the correction as here set forth com-
prises two steps, one the determination of the correction to the-
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sun’s absolute R.A. from the observations of its declination, the
other that of the differences between the R.A.s of the stars
and of the sun. These two determinations may be considered
as quite independent of each other. The equinox can be deter-
mined from observations of the declination alone made at some
observatories and of R.A’s alone at other observatories. Now
that the change in the error of the sun’s longitude in the course
of a year is so small as to be completely masked in the errors of
the observations, this method of independent determination of
the two quantities is the better one to adopt.

Another consideration bearing on the case is that the personal
equation of the observers in observations of the sun’s limb is
probably different from that for observations of the stars, and that
this difference is far from being the same with different observers.

174. The general policy in the construction of the national
Ephemerides has recently been, and still is, not to change the
adopted equinox until a long series of observations at different
observatories shall show a well-marked and undoubted correction
to be necessary. The equinoxes now in use, that is to say, the
mean R.As of the fundamental stars, were determined in 1876
from all the best observations then available. The general mean
result of recent observations seems to indicate a positive correc-
tion to the R.A. of all the stars; but, from the very nature of the
case the results are somewhat discordant, and the amount: of the
correction is still doubtful. Its reality is yet more questionable
in the light of the recently recognized “magnitude-equation”
now known to affect the R.A’s of all the stars observed up to
the present time. The existence of this equation renders it
probable that the general R.A’s of the stars determined in past
times may have been too small to an extent to more than
neutralize the possible positive correction to the R.As of all
the stars, which we have mentioned as indicated by recent
observations.

175. The Greenwich method.

The only observatory which, at the present time, makes it a
point to determine the equinoxes every year from its own
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observations is that of Greenwich. Here a method devised by
Airy is used, which, though involving the general principles just
set forth, deviates in detail.

The division of the equinoxial correction into two parts, the
one applicable to the sun’s tabular R.A., the other to the differ-
ences between the R.A.s of the sun and stars, is not recognized.
The method consists in taking the apparent corrections to the
sun’s R.A. and Dec. obtained in the usual way, and converting
them into errors of the tabular longitude and latitude. The
combined effect of the two errors Aa,, and A'ay, is to produce in
the errors of latitude an annual period of the form

AB=E cosec ecos O.
The error Ae of the obliquity produces in AB a term of the
form AB=Aesin 0,

while there may be a constant error in all the measures of
-declination made with the instrument in the course of the year.

The mean of all the observed errors of the latitude during
each month, gives an equation of the form

a+bcos ©+csin ©=Ag,

and the solution of all the equations thus formed gives @, b, and ¢.
Then, E=bcosece, Ae=c. The result thus reached is doubtless
the same as if the method of the present chapter were applied.
But the method does not separate the two parts of which the
-correction F is composed.

Section II. The Determination of Declinations.

176. The ideal meridian circle.

The development of the principles on which declinations of
stars are determined requires a statement of the fundamental
idea of a meridian circle. The essential parts of this instrument
.are a finely graduated circle rigidly attached to a telescope (see
Fig. 36). The latter is, in principle, the transit instrument already
-described, and therefore has but one motion, that in the plane of
the meridian on a fixed horizontal east and west axis. The
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plane of the circle is parallel to the tube of the telescope, and in
the plane of the meridian. At the eye end, in the focus, is a.
horizontal spider line, at right angles to the vertical line over
which transits are observed. The result of these rigid con-
nections is, that when the instrument is turned on its axis the
angular motion of the line of sight is equal to the angle
through which the circle has turned. We have to show how
this angle is measured.

Fic. 36.

The circumference of the ecircle is divided into 360 parts
of one degree each by fine lines or graduations, and each of
these is subdivided into equal parts, generally 2’ or 5 each.  The
graduations are numbered from 0° to 360°, and are visible
through at least one pair of microscopes at opposite ends of a.
diameter. These microscopes are firmly fixed to the supporting
pier, and therefore do not revolve with the instrument. For our
present purpose, we need consider only a single microscope.
This is supplied with a micrometer, by means of which the
position of any graduation in the field of view of the microscope
may be accurately measured.

The result of this combination is that the varying position
of the circle becomes a continuous quantity, that is, motions
ever so small may be measured. Suppose, to fix the ideas, that
the graduation 28° 16’ is exactly in a certain part of the field of
the microscope, which we take as the zero point. Then we say
that the circle-reading is 28° 16" 07°0. Then, give the circle a
small motion forward. If we find that the micrometer, when
set on the graduation 28° 16, now reads 7”5, we say that. the
circle-reading is 28° 16" 7”°5, and we know that the circle has
been moved through an angle of 77°5.
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It follows that, corresponding to each position of the circle,
and therefore to each direction of the line of sight of the telescope,
there is a certain circle-reading. A fundamental principle of the
method is, that a single reading tells us nothing of the absolute
direction of the line of sight; but that the difference between
two readings is equal to the arc through which the circle and
telescope have turned between the readings.

In an instrument of perfect stability the circle reading should
always remain the same for the same direction of the telescope.
The direction might be the zenith, the nadir, the equator, or the
pole. But, as a matter of fact, the reading for any fixed point
changes by minute amounts not only from day to day, but even
through different hours of the day. The determination of these
changes forms one of the most troublesome problems with which
the observer has to deal. We shall begin by ignoring them, and
showing how positions of the stars are determined, supposing the -
instrument stable.

177. Principles of measurement.

Supposing our instrument ideally perfect, which, in practice,
it never is, we have to show how fundamental declinations are
measured with it. In doing this it will be convenient to replace
the declination by the polar distance, from which we can, at any
time, pass to declination by the simple process of subtraction
from 90°. The polar distance of a star being defined as its
angular distance from the North Pole, its determination would
be extremely simple if only the pole were a visible point in the
heavens. We should set the instrument on the pole and de-
termine the circle reading =C,. We then should point the
instrument at a star as it passes the meridian, and call the circle
reading O, The difference, C,— U,, corrected for refraction, is
the polar distance of the star as given by the instrument, and
90°—(C,— C,) is its declination.

The pole, not being a visible point in the heavens, has to be
otherwise defined. Its true position, being the line of the in-
stantaneous axis of rotation of the earth, is midway between the
points at which a star near the pole crosses the meridian at an



334 THE POSITIONS OF STARS (§ 177.

upper and lower culmination. It follows that if we put C, for
the circle reading when a circumpolar star crosses the meridian
above the pole, and C, for the reading when it passes below the
pole twelve hours later, we shall have

0p= 3(C,+0),

always supposing the zero-point constant during the twelve
hours.

With this value of C, the polar distance and declination of
any star will be given by the preceding equations. No funda-
mental determinations of declinations can be made except in
this way.

If the instrument were perfectly stable, that is to say, if the
circle reading, when the telescope is set on the pole, were the
same for a whole year, the essential principles of the method as
thus set forth would be complete. But, as a matter of fact, the
reading C, may change from day to day, or even from hour to
hour. This renders it necessary to have some fixed point of
reference, the absolute position of which is arbitrary, but which
can be determined at any time. Let IV be the circle reading for
such a point, which we call the zero-point, and which we suppose
to be determined as often as necessary. Then making the
observations above described, we have only to substitute C— N
for C; in other words, we may subtract the reading N for the
moment of observation from all the observed circle readings on
the stars, and use the difference instead of C.

More specifically, let us suppose that, at three different times,
we observe

A circumpolar star at upper transit;

The same star at lower transit;

Any other star, S.

As before, let the three circle readings for these stars be

¢,, C, and C,.

Also let the circle readings for the zero-point at the three

times be
N, N,, and N,
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We then put ¢,=0,—N,,
,l aa GI_NQ;
C,=0C,— N,

and we shall have
Polar Distance of Star=(",—1(C",+ C").

Through this process results will be the same as if the
stability of the instrument were perfect.

For the zero-point in question the nadir is now almost
universally used. It is determined by pointing the telescope
vertically downward at the surface of a basin of quicksilver,
and applying certain devices by which the verticality of the
line of sight may be ascertained. The details of the method
belong to the subject of instrumental astronomy, and cannot
be entered upon here. For our present purpose, the nadir is
simply a fixed direction for which the circle reading may be
determined at any time.

In the preceding outline we have left out of consideration
the various corrections due to precession, nutation, refraction,
instrumental errors, and other causes, in order to facilitate the
reader’s grasp of the essential process. The latter results in
independent determinations of the absolute declinations of the
stars, substantially the same as if the pole were a visible point.
at which the instrument could be pointed at any time. This
is the ideal result at which work with an instrument should aim.

178. Differential determinations of declination.

We now pass to differential determinations. In these the
polar point and the fixed N-point are determined from the
declinations of fundamental stars, assumed to be known in
advance. Let us put

6, the known or assumed declination of such a star;

C,, the circle reading when the instrument is set on this star ;

C,» the circle reading when the instrument is pointed at the

equator ;

C,, the reading for the pole.

Since the arc from the star to the equator is equal to the
declination of the star, it follows that, having made the observa-
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tion of O, we infer that, if the instrument were pointed at the
celestial equator, the circle reading would be

Ceq > Cs i 6;
and for the pole, 0,=0C,+8-90°.

If C"s is the reading for any other star, and we put ¢’ for its
declination, we shall have

§ Lt

In practice a number of standard stars are observed in the
course of an evening, from each of which a value of O, is
derived. The mean of these values is the value of C,, with
which the declinations of all the other stars are determined by
the above formula.

179. Systematic errors of the method.

It will be seen that this method is analogous to that applied
in the case of R.A’s. There is, however, an important difference
in the nature of the systematic errors to which the method is
liable in the two cases. The stars in any one region of the
heavens, or in any hour of R.A., culminate in the course of a
year at every hour of the day in succession. Consequently,
systematic errors arising from diurnal changes of temperature
and all other causes which go through their period in the course
of a day are in great part eliminated from observations extending
through an entire year. In other words, so far as unavoidable
systematic errors of observations are concerned, all the stars are,
so to speak, on the same footing.

But this is not the case with the declinations. Since any star
always culminates at nearly the same altitude, any systematic
error depending upon the zenith distance will repeat itself
indefinitely. It is found from experience that the declinations
of stars given by different instruments show very appreciable
systematic differences. In good instruments the difference rarely,
if ever, amounts to a second of arc, but may be an important
fraction of a second. In the imperfect instrument of former
times it may have been greater than a second.



§179.] SYSTEMATIC ERRORS OF DECLINATIONS 337

The result is that, if we compare the equatorial or polar point
of the instrument derived from a group of stars in one declina-
tion, it may be systematically different from that derived from a
group in a very different declination. If both groups are com-
bined, the result will be a heterogeneity in the declinations
finally derived, which may seriously detract from their useful-
ness. Although the practical methods of dealing with this
case are not strictly germane to the present work, it is
necessary to show their general character, in order to be able
to deal in the most intelligent way with the results actually
found in published catalogues of stars prepared from the work
of different observatories. The principal reason for using the
differential instead of the absolute method in declinations is the
avoidance of the labour of repeated determinations of the nadir
point with an instrument which is probably not stable through
any one day. By determining the equatorial or polar point from
fundamental stars, this labour is avoided and more observations
can be made. Such systematic errors as may affect the result
need be no greater than those of the fundamental stars them-
selves. With a fairly stable instrument it is possible to arrange
observations so that the determination of the nadir point will
not be really necessary even if fundamental results are aimed
at. There are two methods of doing this.

The first method is to adopt as fundamental stars only stars
quite near the pole, say within 10° or 12° of that point. The
systematic errors in the declinations of stars are smaller the
nearer they are to the pole; and within the distance above
mentioned they may be regarded as unimportant for ordinary
purposes. Moreover, their effect will be almost entirely elimi-
nated if the stars are observed both above and below the pole, as
they pass the meridian at the upper and lower culmination. In
this way the polar reading of the instrument may be determined
from each night’s work, and determinations of declination,
practically absolute, may be made at all declinations.

The same result will be reached if the adopted declinations
are made to agree with those determined by the instrument

itself either by the above method or by the absolute method.
N.S.A. Y ,
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It is, therefore, not necessary to follow the method rigorously
year after year. If, by adopting it, corrections are found for
a limited number of fundamental stars, and the corrected values
of the latter are then used for the equatorial or polar point,
it will not be necessary to continue the observations of the
polar stars.

The second method consists in using as fundamental stars only
those included in some one zone of declination, 5° or 10° in
breadth. The systematic differences within such a zone may
probably be regarded as evanescent. If the stars to be deter-
mined also lie within the same zone, we shall have a set of
declinations affected only by the common error of the funda-
mental declinations in the zone, which error we conceive to be
capable of ulterior determination and call /.

If, following this method, stars scattered at widely different
declinations in the sky are observed, all the resulting declina-
tions observed above the pole will be in error by %, and those
below the pole by —h. There will therefore be a systematic
difference of 21 between the declinations of the same star when
observed above and below the pole, which will show the value
of .. This being determined, all the declinations can be cor-
rected by this amount, and thus reduced to the values which
the instrument itself would have given had it been used as
a fundamental one.

When neither of these methods is applied, and when stars of
different declinations have been used without any discussion of
the systematic discordances between the results derived from
them, the results cannot be regarded as fundamental. Nor can
their accuracy be estimated except by a comparison with other
authorities.



CHAPTER XIIL

METHODS OF DERIVING THE POSITIONS AND PROPER
MOTIONS OF THE STARS FROM PUBLISHED RESULTS
OF OBSERVATION.

Section I, Historical Review.

180. The Greenwich Observations.

The material at the command of the astronomer for the
determination of positions of the stars consists mainly in
catalogues of such positions at various epochs, as derived from
observations of right ascension and declination made at
observatories during the past two centuries. Owing to the
diversity in the construction of the instruments of observation,
in the method of using them, and in the adopted systems of
deriving and publishing their results, the material in question
is so heterogeneous that few features are common to all the
catalogues. The method of utilizing it therefore requires a
special study of each individual catalogue, as well as a com-
prehensive idea of the nature of the observations on which all
the results depend. The mastery of the subject will be facilitated
by beginning with a brief outline of the labours which modern
astronomers have undertaken for the purpose in question.

Notwithstanding the imperfections of his instruments, the
catalogue of stars constructed by Flamsteed, first Astronomer
Royal, during the few years preceding his death, which occurred
in 1719, was a great improvement on any preceding work of the
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kind, forming in a certain sense the basis of Bradley’s work half
a century later, as well as determining its direction. The most
familiar remnant of Flamsteed’s work is the system of numbers
attached to his catalogue of stars, which are still used to
designate such of the stars catalogued by him as are not desig-
nated by a letter on Bayer’s system. But observations of the
accuracy necessary to fixing the proper motions of the stars
began with Bradley, Astronomer Royal of England, in the middle
of the eighteenth century. Previous to his time, 1750 to 1756,
the instruments and methods of determination were so imperfect
that it is now possible, from the data which have since acecumu-
lated, to compute positions of the stars at any previous epoch
with a higher degree of accuracy than the astronomers of the
time were able to observe them. Notwithstanding the excellence
of Bradley’s observations, his instrument for measuring declina-
tions was of the older kind.

It was not till half a century after his time that the advantages
of using a complete circle, graduated through its entire circum-
ference, for the purpose of measuring declinations was fully
understood by astronomers. Down to nearly the beginning of
the nineteenth century the mural quadrant was the principal
instrument for this purpose. As implied by its name, this
instrument consisted of a quadrant, the actual arc of which was,
however, somewhat more than 90°, attached to the face of a wall
in the plane of the meridian. The telescope moved on a centre
coincident with that of the graduated arc. It is readily seen
that, how great soever might be the care and skill employed in
the construction, the readings of the arc were subject to errors
arising from the unavoidable non-coincidence of the centre of
motion of the telescope with the geometric centre of the quadrant
—to errors of graduation—and to changes in the position of
the instrument from time to time, due to slow motions of the
supporting wall. Moreover, observations during any one period
could be made only on one side of the zenith. It was therefore
necessary, when observations were to be made on the other side,
to take the quadrant down and remount it.

The telescope of the quadrant being supposed to move in the
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plane of the meridian, sometimes served the purpose of a transit
instrument for the observation of right ascensions. The quadrant
with its telescope thus served in a rude way the purpose of the
modern meridian circle. The use of a separate transit instru-
ment made its way very slowly, not being introduced at the
Paris observatory until the beginning of the nineteenth century.
Bradley’s observations in right ascensions were made with this
instrument, a circumstance to which their superiority is largely
due.

Bradley’s instruments, improved though they were, continued
to be used at Greenwich until 1812-16, when the mural quadrant
was replaced by a mural circle. The work with this instrument
by Pond, Astronomer Royal 1812-1835, was far superior to any
that had preceded it. He added a second mural circle, and made
observations with the two conjointly, so as to obtain the
supposed benefits of a combination. His observations with
these circles have in recent times been partly reduced by
S. C. Chandler, who found them to be of a degree of excellence,
especially as regards their freedom from systematic errors, that
has rarely been exceeded since his time. It is therefore to be
regretted that, with the exception of a few fundamental stars
discussed by Chandler, no results of Pond’s work on the stars are
yet available except those computed by himself, and therefore
derived by the imperfect methods then in use.

Pond’s successor in the office of Astronomer Royal was George
Biddle Airy, who held that position from 1836 to 1881, a period
of forty-five years. Airy’s abilities as a planner and ad-
ministrator of work were of the highest order. His system was
based on the idea that one directing head could work out all the
formulae and prepare all the instructions required to keep a
large body of observers and computers employed in making and
reducing astronomical observations. A few able lieutenants,
who would see that all the details were properly carried out,
were an adjunct of his system. Acting on these ideas, he
reduced the work of the observatory to a system more com-
prehensive in its details than anyone had ever before attempted
in the eonduct of astronomical operations. The main object he
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had in view was the determining of positions of the heavenly
bodies. He adopted the system of collecting the results of the
observations of the stars from time to time in catalogues, each
embracing several years’ work, generally between six and ten.
The transit instrument and mural cirele, both excellent of their
kind, were continued in use until 1850, when the great transit
circle, devised in all its details by Airy, was installed, and still
remains the principal meridian instrument of the observatory.

This instrument has proved one of the most useful in all star
determinations except those special ones demanding the highest
degree of delicacy. Its construction is an interesting reflection
of Airy’s methods. He thought out what he might well suppose
to be all possible sources of systematic and accidental error,
devised means of avoiding or eliminating them, established a
complete system of supervision, and then assumed that the
results of his system could be regarded as absolute determina-
tions, which needed little further investigation so far as possible
corrections to their results were concerned. Acting on this
system, his transit circle was not reversible, a quality necessary
only when it is assumed that an instrument may give different
results if the pivots are turned end for end in their bearings.
The circle is not adjustable on the axis, because the errors of
graduation were determined once for all, and were not supposed
subject to any further correction. No allowance was made for
possible systematic errors in determining the line of collimation
of the telescope. In a word, the idea that the instrument might
well be subject to errors arising from obscure or unknown causes,
and that it was desirable to vary in every possible way the
methods of using it in order to test the existence of such errors,
was not so prominent in his mind as it was in that of the school
of Bessel.

One result of this is that the results with this instrument
require corrections for systematic errors of various kinds. But
another fortunate result is that the determination of these
corrections is always possible, and when observations are made
on a system so nearly uniform through long periods of time, the
task of determining and applying such corrections is much easier
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than when the plan of work is frequently changed. With all its
shortcomings, the Airy transit circle has proved to be the most
serviceable meridian instrument ever constructed. The result
is that the Greenwich observations during the past half century
afford the broadest basis we now possess for the determination of
those stars of which accurate positions are most required.

181. The German school.

Contemporaneous with the accession of Pond to the Director-
ship of the Greenwich Observatory was the foundation by
Friedrich Wilhelm Bessel of the German school of practical
“astronomy. The fundamental idea of this school in the trial of
its instrument reverses the maxim of English criminal law.
The instrument is indicted as it were for every possible fault,
and is not exonerated till it has proved itself correct in every
point. The methods of determining the possible errors of an
instrument were developed by Bessel with an ingenuity and
precision of geometric method never before applied to such
problems. Not only this, but even when every source of error
admitting of determination and correction has been allowed for,
the instrumental arrangement must admit of being varied from
time to time in order that, if any undiscovered errors still exist,
they may be detected by the discrepancies between different
methods of observation. '

Bessel's fundamental instrument, after a few years’ work
with an old circle and transit, was a meridian circle con-
structed by Reichenbach. Although this instrument approached
the modern form, its construction was far from perfect, and,
so far as precision of individual results is concerned, it
is not likely that the work of Bessel with it was really
superior to that of Pond. The far greater place which it has
filled in the progress of practical astronomy is due more to the
excellence of Bessel’s system of reduction and discussion than to
the precision of the instruments and observations themselves.
He also, as compared with the Astronomers Royal at Greenwich,
laboured under the disadvantage of commanding only the slender
means of an ill-endowed observatory, itself only an adjunct to a
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university, as compared with the resources of an institution
conducted under the auspices of a great government.

182. The Poulkova Observatory.

Bessel’s ablest contemporary, imbued with a like spirit, and
working much on the same system, was Friedrich Wilhelm
Struve, then Director of the Observatory of Dorpat. It became
his good fortune to secure the support of a powerful:government
in putting into practice the methods of the German school. About
1835 he secured from the Emperor Nicolas of Russia full
authority to erect and equip an astronomical observatory of the
first class, which should be a credit to the empire to which it be-
longed. The new establishment was erected on a slight eminence
near the village of Poulkova, 18 kilometres south of the gate of
St. Petersburg. Struve’s special purpose was to introduce a new
era into astronomical determinations by combining, on a large
scale, the qualities of the most refined instruments that art could
make with the skill of the most capable observers. It was found
that when the latter intelligently devoted the most painstaking
attention to the avoidance of every source of error, a degree of
excellence in their work was reached which was not possible
with mere routine observers.

In one important point he replaced the system of Bessel by an
older one. For the determination of the positions of the funda-
mental stars, which was one of his first objects, he did not depend
upon the meridian circle, by which observations in both co-
ordinates are made simultaneously, but constructed the transit
instrument and vertical circle as two separate instruments.
The vertical circle was especially designed to measure zenith dis-
tances, not only at the moment of passing the meridian, but within
a short distance of it on each side. In the hands of C. A. F. Peters
one observation with this instrument was worth as much as
twenty, thirty, or even forty made by routine observers with the
meridian circle.

The results of the fundamental determinations of star places
at Poulkova have been published at intervals of twenty years,
the epochs of the catalogues having been 1845, 1865, and 1885.
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Latterly the number of stars to which attention is devoted at
Poulkova has been largely increased, one of the works being a
redetermination of the positions of the stars observed by Bradley,
more than three thousand in number.

The two great observatories of Greenwich and Poulkova,
through their rich resources, the excellence of their instruments,
and the permanence of their policy, have taken the leading place
in supplying material for the fundamental data of astronomy.
The other national observatories, as well as several university
observatories, have however made, from time to time, valuable
contributions toward the same end. Among these will be found
the national observatories at Berlin, Paris, and Washington, and
the observatories of the universities of Strassburg, Abo, Dorpat,
Cambridge, Edinburgh, Glasgow, and Oxford, as well as those of
the leading American Universities.

There are other observatories whose energies have been directed
rather to the numerous telescopic stars than to the brighter
fundamental stars. Here the Paris Observatory is worthy of
especial mention, as well as several university establishments,
some of whose publications are cited in the notes at the end of
the present chapter.

183. Observatories of the southern hemisphere.

We have thus far glanced only at the observatories of the
northern hemisphere. One result of this hemisphere having been
the first seat of civilization is that the material available for star
determinations in the southern celestial hemisphere is much more
scanty than for the mnorthern. The observatories of Kurope,
being generally between 45° and 60° of latitude, have not been
able to advantageously extend their observations to more than
30° of south declination. Poulkova, in latitude 60°, is most.
unfavourably situated in this respect. The parallel of 30° south
is on its horizon, so that the sun at the winter solstice culmin-
ates at an altitude of less than 7°. The general rule is that,
near the horizon, vapours in the atmosphere detract from the
accuracy of observations. The probable error of any astro-
nomical observation continually increases from the region around
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the zenith toward the horizon,—the increase being very slow
down to an altitude of, say, 30°,—but being more and more
rapid from that point to the horizon itself. The general rule is
that very little weight can be assigned to observations of position
at altitudes less than 10°. The Poulkova observations may be
regarded as somewhat exceptional in this respect, since the
unusual clearness of its atmosphere permits observations to be
advantageously extended nearer to the horizon than is possible
in less favoured regions.*

Before the foundation of the Cape Observatory the observa-
tions on the southern stars were made almost entirely by indi-
viduals at establishments more or less temporary. The first
enterprise of this kind was that of Lacaille, who was sent by the
French authorities to the Cape of Good Hope on an expedition
for astronomical purposes in 1750. During the two following
years he made observations on the positions of nearly ten
thousand stars with a very primitive telescope, used to make
observations on zones of stars with the instrument in a fixed
position for each zone. As Lacaille had no declination micro-
meter, it was not possible to determine zenith distances in the
usual way by a horizontal thread, and the ingenious device
of a rhomboid was adopted. This consisted of four strips of
metal placed diagonally in the field, so that the times of entrance
of the stars into the rhomboid and of their exit from it could both
be observed and recorded. The mean of the two times was that
of the transit across, the middle vertical line forming one diagonal
of the rhomboid, while the difference of the times showed the
distance of a star above or below the horizontal diagonal.

Naturally, the degree of precision reached by this method was
-quite low, but the work has served a very useful purpose during
the century and a half which has elapsed since its completion.
About the middle of the last century a reduction of Lacaille’s
observations was made by Baily under the auspices of the

*The author was once informed by Otto Struve, then Director at Poulkova,
that during the Crimean War he could see through the great telescope the men
on the decks of the British fleet, lying off Kronstadt, at a distance of some
25 miles.
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British Association for the Advancement of Science, which pub-
lished the results in a catalogue.

The next attack on the southern hemisphere in the same
direction was made in 1822-26, under the auspices of General
Brisbane, Governor of New Scuth Wales, by Rumker. Some
years later the observations were reduced and a catalogue of
the results published by William Richardson, whose name the
work commonly bears. This catalogue includes 7835 stars.

Shortly afterward Lieut. Johnson, at St. Helena, made a com-
paratively good series of determinations on 600 of the brighter stars.

The observatory of the Cape of Good Hope was established in
1830. Since that time it has been the chief centre of activity in
the direction now under consideration. Its instrumental means
and the methods of applying them have continually been
improved, until, under the direction of Sir David Gill, who took
charge of it in 1880, its work stands second in excellence to that
of no observatory in the world.

184. Miscellaneous observations.

The work at Greenwich and Poulkova is, so far as positions of
the fundamental stars are concerned, pre-eminent for its syste-
matic character and for the long period through which it has
extended. But many important though more temporary works
have been carried out for the same purpose. First in the order
of time must be mentioned that of Piazzi at Palerio, who, before
and after the beginning of the nineteenth century, made a long
series of observations on the fundamental stars, employing the
transit instrument and the complete circle. His declinations of
the fundamental stars were almost or quite the first made with
the latter instrument. The observations were not, however,
confined to the fundamental stars, but included nearly ten
thousand stars of all the brighter magnitudes. Unfortunately
-only the imperfect reductions of Piazzi himself have as yet been
.available for the use of the astronomer; but a reduction with
modern data and by modern methods is now being executed
under the auspices of the Carnegie Institution by Dr. Herman S,
Davis.
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The works of the same class by Struve at Dorpat, before his
removal to Poulkova, Argelander at Abo, Airy and his successors
at - Cambridge, various observers at Washington, as well as
numerous lesser works of various observers will be cited here-
after.

185. Observations of miscellaneous stars.

The observations thus far reviewed are mainly those leading
to determinations of the positions of fundamental stars. As
already remarked, the distinction between stars which are
fundamental and those which are not is somewhat vague. Yet,
a fairly definite line may be drawn between observations leading
to independent and accurate determinations of a limited number
of stars, and those in which precision is sacrificed in order to
extend the work to a larger number of minute stars. Obser-
vations of the former class have been mainly of the kind which
in the preceding chapter were defined as fundamental, those of the
latter class as differential. It may also be remarked that the
determinations of the first class have been mostly confined to a
few thousand of the brighter stars, including the most of those
to the sixth magnitude, and occasionally a few of the seventh or
eighth.

During the time of Bradley, and of his immediate successors,
no attempt was made to determine the positions of the innumer-
able faint telescopic stars which stud the heavens, nor even to-
catalogue them. The first serious work in this direction was.
that of Lalande at Paris, who, near the close of the eighteenth
century, and therefore contemporaneously with Piazzi, undertook
the work of cataloguing all the stars visible in his instrument.
with a completeness which has scarcely been exceeded even up-
to the present day. His Histoire Céleste, which is in use even
now in determining the proper motions of the fainter stars, is a
long enduring monument to his industry. His energies were so-
entirely absorbed in the work of observation that he made no
serious attempt at their complete systematic reduction. This
much needed work was carried out by Francis Baily of England
in 1840, and published in a thick volume containing the reduced
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positions of the stars observed by Lalande. But the data and
methods of reduction then available were both imperfect, and
the need of a complete rereduction has not yet been supplied.
The best approach to it is found in a set of tables by von Asten,
by which the astronomer may rapidly reduce any of Lalande’s
observations with data, which, although better than those used
by Baily, do not fully satisfy modern requiremnents.

When the object is to determine the positions of the greatest
possible number of stars, the observations have to be made by
zones of declination, of greater or less breadth, according to the
requirements of the case. The advantage of the zone system is
that the observer does not have to move his telescope through
wide arcs of declination between one observation and the next,
but keeps it in nearly the same position during a period of
several hours, perhaps through a whole night’'s work. The
breadth of the zone depends upon the number of stars which
it is desired to include. Sometimes the system has been to keep
the telescope in a fixed position through the entire course of an
evening, observing as many as possible of the stars which pass
over the threads in the focus. As the field of view cannot
advantageously take in more than a fraction of a degree, this
system is a very slow one if it is intended to cover the entire
sky. The more usual proceeding has, therefore, been to include
a zone a few degrees wide, generally less than 5°, in each night’s
work.

Lalande’s observations were made on this system. Twenty
years later zone observations covering a considerable portion
of the northern sky were commenced by Bessel at Konigsberg
and Argelander at Abo. The results of these two works have
been collected by Weisse and Oeltzen in well-known catalogues.

In 1846 a series of zone observations, intended to ultimately
cover as much as possible of the sky, was commenced at the
Naval Observatory at Washington. But the work was left
unfinished after two or three years. The observations have
been published, but not in complete form. Some of them
labour under the disadvantage of having been made by inex-
perienced observers who made many errors in writing down
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the numbers of their records, while others are of the best
class.

About 1850 Bond, at the Harvard Observatory, observed a
few zones near the equator, which are quite unique in astronomy.
They were made with the great equatorial, which was clamped
in a fixed position for each strip observed, and the R.As and
Decs. of the stars determined as they passed through the field.
The results, which are found in the early volumes of the Harvard
Annals, extend to fainter stars than have since been catalogued
or even listed. They will, however, be included in the Inter-
national Chart of the heavens now being made by photography
at a large number of observatories in both hemispheres. Prob-
ably all those actually observed by Bond will be in the
equatorial zone, which is being photographed at the Observatory
of Algiers. ‘

When Le Verrier took charge of the Paris Observatory in
1853, one of the projects which he instituted was that of the
redetermination of all of Lalande’s stars. This work was
completed, and the results have been published during the
past ten years in a catalogue filling four large quarto volumes.
This immense work includes, not only the fainter stars observed -
by Lalande, but nearly all the stars of the brighter classes. But
the method of reduction adopted by Le Verrier, and pursued
since his time at Paris, is far from the best. Not only is all
the work purely differential, both in R.A. and Dec., but sufficient
attention has not been paid to the sources of systematic error to
which such work is liable, especially in the adopted positions
of the standard stars. The result is that, at the best, it is
scarcely possible to apply any systematic corrections which
will not leave accidental errors outstanding larger than should
be found in results of the highest class. This does not greatly
diminish the value of the work for the faint Lalande stars, but
does for the brighter stars.

In 1865 the Astronomische Gesellschaft, an international
association, having its headquarters in Germany, formed the
design of a complete redetermination of the positions of all
the stars in the northern celestial hemisphere, those within
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10° of the pole excepted, down to the ninth magnitude, with
as near an approach as possible to the modern standard of
precision. With a single gap, the results of this work have
all been published in the several catalogues issued by the
society.

When the observations for this work were approaching com-
pletion, the project of extending it to 23° south declination
was undertaken, and catalogues down to this point are now in
process of preparation and publication.

Durchmusterungen. The star-lists, familiarly known as
“ Durchmusterungen,” belong to a different class from the
preceding, not being intended to record the accurate position
of a star, but only its approximate position with sufficient
precision to enable the star to be certainly identified. The first
comprehensive work of this sort was carried on at Bonn by
Argelander and Schonfeld, and extended from the North Pole
to —1° of south declination.

Schonfeld afterwards extended the work to —23°. From this
parallel to the south pole a Durchmusterung is being carried on
in the Argentine Republic, at the Cordova Observatory, by Thome,
who has published three volumes of it, extending to —53° of
declination.

The Cape Photographic Durchmusterung by Gill and Kapteyn,
is based on photographs of the sky taken at the observatory of
the Cape of Good Hope, and covers the sky from —18° to the
South Pole. This is the best arranged and digested work of its
class that has yet appeared. The number of stars included in
it is not however so great as in the Cordova work, and the
magnitudes assigned to the stars are subject to revision.

Section II, Reduction of Catalogue Positions of Stars to a
Homogeneous System.
186. Systematic differences between catalogues.

The leading observatories at which meridian observations are
made collect the results from time to time in the form of
catalogues of the positions of stars. Generally such a catalogue
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is given in connection with the observations of each year. After
a number of years the annual results thus derived may be com-
bined in a single catalogue, in which the mean positions of the
stars are reduced to some common equinox of reference. Posi-
tions of the brighter and more important stars are generally
contained in quite a number of these catalogues, and when the
definitive position of a star is to be worked out, the best result is
reached by combining the data of all the catalogues in which
it occurs.

When we compare the mean position of a star for any one
epoch, as found in different catalogues, we are to expeet dif-
ferences arising from the accidental and unavoidable errors of
observation, which it is desirable to eliminate by combining as
many authorities as possible. If we represent by d,, &, &5 ... the
differences between the coordinates of the same stars in one
catalogue 4, and in another catalogue B, the mean of these
differences should, if they were wholly in the nature of indepen-
dent and fortuitous errors, converge toward zero as their number
increases, But, as a matter of fact, this is seldom found to be
the case. To fix the ideas, let us suppose a comparison to be
made between all the declinations in a zone 5° wide. We shall
nearly always find that the mean value of the differences, as
the number of comparisons is increased, converges toward some
well-marked positive or negative value, and not towards zero, as
it should if the errors of each authority were purely accidental.
in comparing even the best catalogues this value may be several
tenths of a second. This shows that, in addition to the accidental
errors necessarily affecting all astronomical determinations, there
must be some source of systematic error affecting the positions
in one catalogue differently from those in another. The possible
sources of such errors are many. They may be classified as
follows:

1. Differences in the methods and data of reduction. Examples
of this class are differences in the adopted value of the constants
of nutation and aberration ; differences in the adopted positions
of the fundamental stars used for clock errors; differences in the
constant of refraction; the employment of an erroneous latitude
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or non-correspondence of the adopted latitude with that given
by the nadir point of the instrument. All differences of this
class admit of being reconciled by applying to the positions
given in the catalogues the corrections necessary to reduce the
results to what they would have been had the same data and
methods of reduction been used in each. The extent to which
it is advisable to apply these corrections must depend on the
labour involved and value of the results to be reached.

2. Causes of systematic error which we know may have
affected the observations, but of which we have no way of
estimating the magnitude. One example of this arises where
the errors of graduation of a circle have not been investigated at
all, or have not been well determined. In such cases all the
declinations may be in error by amounts varying with the zenith
distance ; but it will be impossible to determine the amount
except by comparison with other authorities. Another example
is the possible difference between day and night observations,
arising from the different conditions under which they are made.
We may take it for granted that the diurnal changes of tempera-
ture of an instrument and its surroundings may vary the adjust-
ments in a way not admitting of determination, yet following a
general law which may be expressed in a formula of which
the numerical elements can be inferred from a comparison of
authorities. The personal equation of an observer may also be’
different for stars observed by day and by night. In this
case it will be possible to formulate some sort of a law which
the errors should follow; but the determination of the exact
amount of the error will not be possible except by a comparison
of results.

3. Errors arising from unknown causes which elude both
imvestigation and exact statement. We find by comparing the
independent results of the work of different observatories that
differences show themselves which we may attribute to a
number of causes, temporary or variable, the results of which do
not admit of being reduced to any well-defined law. The causes
of the errors thus indicated may be temporary,—varying from

one night to another—or they may affect the work of an
N.SA.
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observer or an instrument through months or years. They can
be determined in each case only by an intercomparison of inde-
pendent authorities.

Until recent times little or no account was taken of these
systematic differences among catalogues of stars. When the
position and proper motion of a star were to be determined from
a combination of observations or of catalogue positions, the
deviations of the several catalogues from the general mean were
regarded as purely accidental errors. The practice of correcting
catalogues for systematic differences among them is largely due
to the example and researches of Auwers, which date from 1865.
In explaining the system of correction we must premise that the
processes are largely tentative, and that, from the very nature of
the case, the exact values of the corrections must remain more or
less in doubt.

187. Systematic corrections to catalogue positions.

The general idea on which systematic corrections of the kind
in question are to be derived is that, in each individual catalogue,
whole groups of stars may be affected by common sources of
error peculiar to the group. For example, there are many causes
which may affect all stars of the same declination with one and
the same constant error. Other causes may affect all the stars of
one Right Ascension in the same way, but stars of different
Right Ascensions in different ways. Apart from errors in the
elements of reduction, refraction, nutation, aberration, etc., these
errors can be brought out only by a comparison of separate and
independent authorities imfer se. The idea is then to apply to
positions given by each separate authority such corrections for
the several groups of stars as shall bring the whole into general
harmony. In doing this different weights will be assigned to
different authorities according to the supposed freedom of the
results from sources of systematic error. When the positions of
each authority are thus corrected the discrepancies still outstand-
ing should follow the law of purely fortuitous errors.

It should be remarked that the relative weights assigned to
the different authorities for the purpose of this combination may
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be very different from those to which the positions of individual
stars are entitled after the corrections have been made. For
example, so far as freedom from systematic errors of Class B is
concerned, the positions of stars obtained at Greenwich and at
Poulkova may be entitled to equal weight. But the probable
deviation of one observation of declination at Greenwich is more
than double that of one observed at Poulkova. In consequence
the weight to be assigned to a single observation at Poulkova is
more than four times that assigned at Greenwich.

When a system of corrections is constructed for a number of
standard catalogues, the harmonious set of positions to which
all the catalogues are reduced is known as a fundamental
system. Such a system may be considered as embodied in a
more or less complete set of corrections of the kind described, or
in a standard catalogue of stars constructed from all available
observations after systematic corrections have been applied to
the individual authorities.

The purpose being to find, not corrections to individual stars,
but the mean corrections to whole groups of stars, two methods
may be adopted. One method consists in comparing the positions
of standard stars in each separate catalogue with some one stand-
ard catalogue. It is not necessary, in the first place, that this
standard of comparison should be a definitive one, because the
correction of the standard itself will always be in view. Let us
suppose, to fix the ideas, that the adopted standard positions of
the fundamental stars in a certain zone of declination, 5° or 10°
in breadth, are compared with those found for the same epoch
from all the other available catalogues. Let the mean deviations
of the standard thus found be:

From the standard itself zero
» Catalogue 4 4,

Then, by applying the several corrections ¢,, d, etc, to the
coordinates in the several catalogues, they will all be brought
into harmony with the standard.
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But the standard itself may need correction, because the
proper standard is the general mean of all. To find this mean
let the weights assigned to the several catalogues be

W, Wy, Wy, ..,

w, being the weight of the provisional standard itself. Then, the
weighted mean

A=w()6+wl§1+w2(§2+...
Wo+ 2w, +we+-...

will be the deviation of the standard from the mean of all the
authorities, itself included. Since this last mean is the final
standard, it follows that A will be the deviation of S from
this final standard, and — A the correction to reduce the standard
to the general mean. The corrections then necessary to reduce
the several catalogues to the mean standard are:

>

Standard catalogue ;  corr. = —A.
4; , =464-A
B ) ) ¥ == 62 —-A

................................................

the weighted mean of which is zero, as it should be.

The preceding method, if applied without modification, is
subject to the drawback that it is not easy to find any one
catalogue sufficiently complete and comprehensive to serve as
the sole basis of comparison with all other catalogues at
all epochs. The method may, therefore, be modified, as necessary,
by comparing pairs of catalogues A and B for the same epoch.
If 6, and &, be the unknown corrections of the two catalogues
for any zone or region, and A, , their mean difference within
this zone or region we shall have

0, —dy= Ay,

We may then reduce all the comparisons of either of the two
catalogues with the standard =8 to the mean of the other, and
thus gain for each the benefit of the comparisons of S with the
other. For example, assume the case that we have 6 stars
common to A and S, and 4 common to B and S; but a much
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greater number common to 4 and B. From the comparison of
4 and B we find a value of A ,=A4—B. Let us also put
¢, the mean of the 6 differences S—A4 ;
€, the mean of the 4 differences S— B.
We shall then have, for §;=8—4, two independent values,
namely
1. That from direct comparison : &, =e¢;.
2. That through B: S,=e+4 o
The concluded values of §, and J, are then the weighted
mean of these two values, giving

5 _6€1+4‘(€2+A1.2)
=t L2

10
In a similar way we have for &, the two values ¢, and ¢, — A, ,,
gwving 6(e;— A, ,5) +de,
oAl O w0

188. Form of the systematic corrections.

We have now to consider the general form of the systematic
corrections ordinarily applied. It is common to regard them
as two in number for each coordinate, one being a function
of the Right Ascension alone; the other of the Declination
alone. The designations of the corrections are as follows :

Aa,, correction to the R.A. depending on the R.A.;

Ao, correction to the R.A. depending on the Declination ;
Ad,, correction to the Declination depending on the R.A.;
Agds, correction to the Declination depending on the Dec.

The necessity for the correction A, has arisen through the
wide adoption of an erroneous system of Right Ascensions dating
from the time of Pond, which were transplanted by Le Verrier
in his fundamental catalogue used in reducing the Paris obser-
vations, and used by Airy in the early Greenwich work. By
successive revisions of the fundamental Right Ascensions this
error may be gradually reduced, the rapidity of the reduction
depending on the number of hours through which observations
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extend during each night. What remains of the error is in
this way smoothed off to the general form

Ao, =a cos R.A.+b sin R.A.

In all good catalogues it should be assumed as of this form, if it
exists at all. As a matter of fact, however, it has been nearly
or quite smoothed out in the recent Greenwich catalogues, and
in most other modern catalogues, except those based on the
Paris Right Ascensions.

It may be remarked that Auwers does not assume the cor-
rection to be’of this form, but determines it from hour to hour,
smoothing off the results so that they shall be represented by a
regular curve.

The error which Ac; is intended to eliminate has arisen
mainly from the pivots of the transit instrument not being
perfect cylinders, whereby the line of collimation slightly
deviates to one side or the other of the meridian of the
instrument. An erroneous determination of the error of col-
limation will also produce an error of this sort. Near the
pole other causes, due to personal equation, come into play.
The personal equation of the observer is very likely to be
different for a slow moving star -than for the rapidly moving
equatorial stars. Moreover, close circumpolar stars can be better
observed by eye and ear than by the chronograph. But when
the latter is used for the quick moving stars, while those near
the pole are observed by eye and ear, there is likely to be a
change in the personal equation from one cldss to the other.

The Right Ascensions of the catalogue may, as already shown,
also require a constant equinoctial correction. This may be
combined either with A, or Aws The former is the more
common method, since the correction is in this way very easy
to determine. Auwers, however, adds it to the values of Ao,
which on the score of exactness is the preferable system.

189. Method of finding the corrections.

The practical method of forming the tables for Acs and Ad; is
to begin the comparison by zones of declination. A zone of
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declination of suitable breadth, generally 5° or 10° is taken,
and for all the stars within it common to the two catalogues
the differences between the fundamental catalogue and that to
be corrected are formed for each coordinate, and the mean taken.
This mean will be the preliminary value of Ao or Ad; for the
middle declination of the zone. This process being extended
to all the zones in the catalogue, we shall have values of the
correction for each zone.

These corrections are then to be arranged in a column and
smoothed off, so as to form the ordinates of a regularly varying
curve, and interpolated to every round 5° or 10° of declination,
as the case may be, with the declination as an argument.

To form the corrections depending on the R.A., the catalogue
places should first be corrected for the terms depending on the
Dec.,, and the corrected places compared with those of the
standard catalogue. The mean of the residual differences is then
taken for every 1% 2% or 3% of R.A., smoothed off, and arranged
in a table with the R.A. as the argument.

In the formation of Ac, it is advisable to give most weight to
stars within 30° of the equator, and little or no weight to stars
north of 50°, or perhaps 60°. The exact method of proceed-
ing must depend on the peculiarities of the catalogue to
be reduced, especially on the methods of observation and
reduction,

190. Distinction of systematic from fortuitous differences,

An important question in preparing such tables is how far the
differences which we find should be regarded as accidental rather
than systematic and should, therefore, be ignored as arising from
fortuitous errors. By the theory of these errors, when the mean
of a number of them is taken, the probable value of this mean
will diminish as the square root of the number whose mean is
taken. We may therefore say, in a general way, that if the
mean systematic correction thus derived does not exceed the
probable mean of the fortuitous deviations, we should disregard
it. The same may be true even should the mean value be
greater than that set by the limit. That is to say, if we put
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¢, the general mean value of the differences whose mean
is taken ;
N, the number of these differences;

Then, if the final mean is less than fﬁ there is no reason to

regard the differences as systematic. And even should it exceed
this limit, the reality of the difference may be in doubt. In any
case we should see whether the differences remain of the same
sign through several zones of declination. If they do, the reason
for considering them real is strengthened, if not it is weakened.
In view of the probable amount of the accidental deviations, the
rule should be, when in doubt as to the amount of a correction,
to assign it the smallest probable value.

From this point of view it seems quite likely that many of the
systematic corrections found in existing tables should be re-
garded either as unreal or as being too large. It may also well
be that they vary too rapidly from one zone of Declination, or
hour of Right Ascension to another.

Practically, it will seldom be necessary to construct new tables
or corrections for any of the fundamental catalogues, because
such tables have already been constructed by Auwers, Boss and
the present writer, and can be used to such an extent, or com-
bined in such a way as the computer deems best. Every new
catalogue that appears will, however, need examination with a
view of constructing tables for the purpose in question, and it is
in this case that the preceding methods and principles have to be
applied.

191. Existing fundamental systems.

A “fundamental system” of star-positions may be defined in
either of two ways. Oune is by a sufficiently extensive catalogue
of fundamental stars, in which the position and proper motion
of each individual star has been worked out with the greatest
possible precision. It is then assumed that the errors of such
a catalogue, both accidental and systematical, are as small as
possible, and that the latter vary very slowly from one region of
the sky to another.
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A fundamental system may also be defined by tables of cor-
rections of the form just explained for the best existing star
catalogues. For by applying these corrections to catalogue
positions of the stars, positions and proper motions of each
individual star are obtained which will be in harmony with the
fundamental system on which the corrections are based.

The following are the fundamental systems which have been
most used.

1. The system constructed by Auwers for use in reducing the
observations of zones of stars made under the auspices of the
Astronomaische Gesellschaft. 1t is, therefore, commonly known
as the “A.G. System.” The star positions which form it are
found in No. xiv. of the Publicationen der Astronomischen
Qesellschaft, and an extension into the southern hemisphere in
Publication xvii. of the same series.

In this catalogue the modern positions, generally for a mean
epoch about 1865, were derived from a careful discussion and
combination of all the best modern determinations. The proper
motions, which are an essential part of any fundamental system,
were found by a comparison of the observations of Bradley
(mean epoch about 1755) with a preliminary (not with the
definitive) catalogue of modern positions, and were not further
altered.

The result of this is that, if the fundamental places are reduced
back to 1755, they will not rigorously agree with Auwers-
Bradley, but will deviate by an amount equal to the correction
applied to reduce the modern provisional place to the definitive
place.

It is now well established that the Bradley positions are
affected by considerable systematic errors. The consequence of
this is that, through the proper motions, the A.G. system is, for
our epoch, affected by systematic errors of the opposite algebraic
sign, increasing uniformly with the time.

2. At nearly the same time as the A.G. system appeared
the systemn of Professor Lewis Boss. This included only the
declinations. . The proper motions were derived by the rigorous
process of a least square solution of all the results of observations.



362 CATALOGUES OF THE STARS (§191.

This system was adopted in the American Ephemeris from 1883
to 1899, and was employed in the researches made in the office
of that work up to 1897.

The declinations were so thoroughly worked up by Boss that
the continued use of the A.G. system of declinations until 1900
is to be regarded as unfortunate.

3. The third system is that of Newcomb, found in the
Astronomacal Papers of the American Ephemeris, vol. viii.
In forming the fundamental declinations the processes show the
following main features.

(a) The systematic corrections to the Boss system were found
in advance of determining places of the individual stars.

. (b) In the case of each instrument used in forming these
systematic corrections, the error of its declinations of stars near
the equator was determined by the general principle that the
planets move around the sun in great circles. In consequence,
the declinations of the planets are, in the general mean, to be
regarded as absolutely correct. Accordingly, if the declinations
of any planet, through an entire revolution, are found, by instru-
mental measurement or by comparison with the declinations of
a fundamental catalogue, to be in error by the constant quantity
¢, we conclude that this error is not real, but is due to an error in
the instrument or the catalogue and correct its results accordingly.

(¢) When circumpolar stars are observed both above and below
the pole, the systematic error must be zero at the pole.

(d) The polar correction being 0, and the equatorial correction
¢ it is assumed, in the case of each good instrument or catalogue,
that the error varies uniformly between these limits.

(¢) South of the equator the error, in the absence of any means
of determining it, was assumed to be nearly constant.

The positions of this system have been used in all the national
Ephemerides except that of Germany from 1901 to the present time.
They were introduced into the American Ephemeris from 1900.

4. The new system of the Berliner Jahrbuch, by Awwers.
During the years 1895-1903 Auwers was engaged in a thorough
reconstruction of the A.G. system, resulting in a new funda-
mental catalogue. The catalogue itself has not yet appeared,
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but the corrections to the A.G. positions and proper motions of
the stars, which will suffice for constructing it, are found in the
Astronomischen Nachrichten, vol, 164, The work of Auwers
not being published in all its details, a deseription of his methods
cannot yet be given.

5. The new Boss system. At the same time that Auwers was
carrying on his work, Boss was also constructing a new funda-
mental catalogue. The resulting places of the stars of the
southern hemisphere appeared in 1898, and will be found in
the Astronomical Journal, vol. xix. The positions of the
northern stars were completely worked out in 1903, and the
results will be found in vol. xxiii. of the same publication.

The question of the systematic differences between the last
three-named systems is of interest. Practically, they may be
regarded as identical so far as the Right Ascensions are con-
cerned. This identity arises from the fact that all three
catalogues were based on the same adopted position of the
equinox, and that the systematic errors of observation in Right
Ascension, which we may suppose to arise from the diurnal
changes of temperature, are largely eliminated in the course
of a year’s work with a good instrument. There will naturally
be small differences of the form Aa, but these prove not to
be great except near the pole, where determinations are
necessarily a little indefinite, owing to uncertainty as to the
personal equation of observers.

In the case of the declinations, the differences, though small,
are well marked. Near the pole all three authorities agree,
as they should, because all systematic errors of good determina-
tions are small. But, from 20° polar distance to the equator,
Auwers places the stars a little farther south than Newcomb,
and Boss farther south than Auwers. Near the equator, where
the difference is a maximum, the mean corrections to the
declinations of Newcomb, as found by the two authorities, are =

Auwers, Corr,= —0"18.
Boss, Corr.= — 0728,
Whence Boss— Auwers= —0"15.
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These differences will increase very slowly owing to corre-
sponding differences in the proper motions. From such re-
examination as the author has been able to give to the subject,
the presumption seems to be that his system does really require
a correction in the direction indicated by Boss and Auwers,
and the probability is that the truth lies somewhere between
these two authorities. The difference of 0”15 between them is
too small to be of serious import for the present.

In connection with all three catalogues are given tables of
systematic corrections of the form already described for the
positions of all the principal catalogues of stars.

Section. III. Methods of Combining Star Catalogues.

192. Use of star-catalogues.

We have shown in Chapters XV. and XVI. how, when the
mean position of a star at some epoch is given, and its proper
motion, its apparent position at any time may be found. We
have now to show how these fundamental elements are derived
by combining the data given in various star catalogues.

The term catalogue of precision is applied to those catalogues
of which the purpose is to give precise positions of the stars. The
designation is used in contradistinction to the lists which are
intended only to enable the stars to be identified, or in which
precision is sacrificed to number.

An independent catalogue is one in which the positions are
derived solely from a limited number of observations made
at some one observatory. There are also catalogues which give
positions of stars based on a combination of the work of various
observatories, with a view of deriving as accurate results as
possible, but at present we are not concerned with these.

+ The results and data usually given in a catalogue are as
follows :

1. The R.A. and Dec. of each star, as derived from all the
observations, and referred to the mean equator and equinox
of some convenient epoch.
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2. The mean date of all the observations on the star.

3. The number of observations on which the place depends.

4. The precessions in R.A. and Dec. for the epoch of reference.

5. The secular variation of the precessions. In most inde-
pendent catalogues, this refers to the precession alone, not to the
annual variation.

6. The proper motion of each star, when obtainable.

It should be added that, in independent catalogues, the proper
motions are added merely for the convenience of the astronomer
using the work, and cannot in rigour be considered as belonging
to it, because they cannot be based on the same observations
as the positions of the catalogue itself.

In recent catalogues the beginning of the solar year is adopted
as the epoch of reference. But, in former years, the distinction
of the civil from the solar year was little attended to, and the
equinox is frequently called that of January 1, although, quite
likely, the beginning of the solar year was actually used.

The relation of the epoch of reference to the mean date of the
observations must be understood. If, in constructing the cata-
logue, the observed positions were reduced to the epoch of
reference by precession, aberration, and nutation alone, without
applying a correction for proper motion, the given position will
be that for the mean date, though the equator and equinox will
be those of the common chosen epoch. This is theoretically the
best course. In many catalogues, however, the proper motion for
the interval between the date and the epoch, as well as the
precession, is applied in the reduction, with a view of giving
the actual position of the star at the same epoch as that of
the equinox of reference. The user of the catalogue should
always know which system is adopted, and use the results
accordingly.

The problem of deriving the position of a star for any date
from a modern catalogue of precision requires only the appli-
cation of formulae and methods already developed in the
chapters on the reduction of positions of the fixed stars. The
principal question left open will be whether to reduce the mean
place from the epoch of the catalogue to the required epoch
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by means of the precession, proper motion, and secular variation
found in the catalogue, or by the trigonometric method. The
choice will depend on the length of the interval and the declina-
tion of the star. As a rough and ready rule, it may be said that,
if the product of the interval in years by the secant of the
declination exceeds 40, the trigonometric method should be
adopted ; but, if less than 40, the development in powers of ¢
may be used, if it is found more convenient. But this would
prescribe the trigonometric method of reducing stars within
1° 30" of the pole, even through a single year, where it would
not be necessary. The limiting value of the product (7'—71")sec ¢
may, therefore, be carried up to 50, or even 100 or more, near
the pole.

In ordinary astronomical practice, the position of a star found
in this way from any standard catalogue, or in any of the
modern independent catalogues, will be precise enough for
general use. The problem we have to consider is that of
deriving the position and proper motion of a star with the
highest attainable precision from a combination of all the in-
dependent catalogues in which it is found.

193. Preliminary reductions.

Having found the star in any catalogue, certain preliminary
steps will be required to reduce the data to the required form.
These are:

1. Possible reduction for proper motion. As already men-
tioned, each catalogue has two epochs: one the mean epoch of
all the observations, the other the epoch of the equinox of
reference. It should be understood that the latter epoch really
has nothing to do with time, because it merely defines the
particular system of coordinates to which the position is re-
ferred. Time enters only as the simplest method of defining
the direction of the fundamental axes of reference; the
problems growing out of this direction are purely geometric.

When a uniformly varying quantity is observed at several
dates, and the mean of all the results taken, this mean is the
most probable value for the mean date of all the observations,
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irrespective of the rate of variation. It follows that the ideally
proper position to give in a catalogue is the mean of the
observed positions referred to such equinox of reference as may
have been selected.

When the observed position is reduced from the mean date
of the observing to the date of the equinox of reference, by
applying the adopted motion during the interval, the position
is no longer, rigorously speaking, an observed one, but one in
which observation and the reduction for proper motion are
combined. It follows that, if the computer desires to follow
a rigorous system, he should, in all catalogues where the re-
duction in question is made, free the given place of the star
from this correction. Although this modification is seldom of
practical importance in the work, the habit of adopting rigorous
methods in astronomy cannot be too highly recommended. If
the reduction is not made, the given position will be regarded
as if observed at the epoch of the equinox of reference.

2. Systematic corrections. The next step is to apply such
systematic corrections to the coordinates of the star as may be
required to reduce them to a homogeneous system. The method
of deriving these corrections has already been set forth; but
the computer will rarely have to do this, as the three sets of
existing tables of corrections are sufficiently accurate for all
practical purposes. In making a choice of or a combination
among the authorities, it might be a good practical rule to
prefer the correction of the smallest absolute amount, because,
as already pointed out, the probability is that such a correction
will be too large. When so large that it cannot be doubted,
it indicates some source of systematic errors in the catalogue
which should diminish the weight assigned, and therefore the
effect of the correction upon the final result. If the catalogue is
one for which no table of corrections is found, one may easily be
constructed by the methods of the last chapter.

3. Assignment of weights. The next step will be to assign
a weight to the catalogue position thus corrected. Were all
observations completely independent determinations, and equally
good, the weights in each case would be proportional to their
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number. But each instrument has peculiarities of its own, in
virtue of which the determinations of any one star with it
may be affected by a constant error, which will be less the
better the instrument. Although this constant error may, if
considerable, be diminished by the systematic corrections, it
will never be reduced to zero. We are, therefore, to consider
that the probable error e of a position taken from any catalogue
is determined by the equation

2 612

2

e“=¢ +__’
2 n

¢, being the probable amount of the constant error, and ¢, that
of the varying accidental error. The weights are then taken
so as to be inversely proportional to ¢% the general form being

L., ne

T nelte”
where ¢ is the probable error chosen to correspond to the unit
of weight, and n the number of observations.

There are, of course, great diversities in the precision of the
observations on which various catalogues depend. This must
be taken account of in assigning the weights.

Careful investigations of the data on which the various cata-
logues have been constructed with a view of expressing the
weight as a function of the number of the observations have
been made in connection with the three fundamental catalogues
already described. It will hardly be worth while in the case of
any existing catalogue for a computer to reinvestigate this
subject for himself. He can either adopt one of the latest tables,
or combine any two or all three according to his judgment.

The result of the three processes will be, in the case of any
one catalogue, that:

At a certain epoch ¢ (that of the mean of all the observations),
the right Ascension or Declination of the star, referred to the
mean equator and equinox of an epoch 7, had a certain value «
or ¢, and that this value is entitled to a certain weight w.

The star being found in as many good catalogues as it is
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thought worth while to use, the results for the different places
of the stars will then be that:

At the epochs U o el i cicol (7

For the equinoxes of /RS R R AT 1A @
.......... @

The R.A. or Dec. was O O G A O

With the respective weights w,, w,, w,, ... w,

194. The two methods of combination.

The problem now is, from these data to derive the most likely
mean position at some chosen epoch 7, and the proper motion.
There are two ways of doing this, of which the first is simplest
in principle, but not always the easiest in practice :

1. Each of the positions o, o, ... may be separately reduced
to the mean equinox of the chosen epoch T'j by precession alone,
using the trigonometric method when advisable. We shall then
have a series of values of a which, were the position of the star
-on the sphere invariable, and the catalogue places perfect, should
all be identical. Differences among these numbers arise from
errors of the catalogue places, and from the proper motion of
the star. The best position and proper motion can then be
determined by the method of §§ 39-41.

2. With an approximate position o, for any date and an
assumed proper motion u, the position of the star may be com-
puted for the several epochs T, T, etc, and compared with the
positions given in or derived from the catalogue. The excess
of each catalogue position over the computed position gives a
correction to the latter for the mean date of the catalogue; and
from the combination of all these corrections the most likely cor-
rections to oy and p, may be derived by a least-square solution.

It will be seen that the fundamental difference between the
two methods is that, in using the first, we reduce each observed
place to the initial epoch, while in using the second we reduce an
- assumed place for the initial or some other epoch to the date
of each observed place.

This second method is preferable in the -case of those funda-

mental and other stars for which positions for various dates
N.S.A, 24
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derived from a single value each of o, and u, are available.
Otherwise method 1 is preferable.

195. Development of first method.

The epoch T of the equator and equinox to which the positions
are to be reduced must first be decided on. If a general cata-
logue for astronomical researches based on past as well as present
observations is in view, the most convenient epoch will probably
be 1875, as this was in extensive use during the last quarter of
the nineteenth century, and is that to which the catalogues of the
Astronomische Gesellschaft are reduced. But, if the positions
are required only for current use, it will be better to choose
1900, or even some later epoch, according to the requirements.

All the positions are then to be reduced from their several
equinoxes T, T, ete, to the selected equinox 7}, by precession
alone. For all the remoter epochs this is to be done trigo-
nometrically. But when the interval of reduction is short, and
the star not near the pole, it may be found most convenient to
use the annual precessions for the two epochs, or that for the
middle epoch, or that for any date not too remote from the
epoch, combined with the secular variation. When the latter
is used the proper motion should, in rigour, be omitted in
computing it; but commonly the effect of including it will be
so slight that its retention or omission will be unimportant.

It can very seldom be worth while to compute the secular
variations for this express purpose. With the aid of the tables
given in Appendix IV. the trigonometric reduction is so easy
that it may involve less labour to use it, even for an interval as
short as ten years, than it will to compute and apply the annual
precessions and secular variations.

When, as is always the case in modern catalogues, the pre-
cessions for the date of the catalogue are given, these may be
used, care being taken to first reduce them to one and the same
standard value of the precessional constant.* Using precessions,
some one of the following formulae may be applied. Put

* Tables for reducing Struve’s precession to those adopted in the present work
are found in Appendix V.
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p;, the annual precession for the date T of the catalogue to be
reduced ;

Py, that for the fundamental epoch T;

s, the secular variation.

Aa;, the reduction of the catalogue position to the adopted
fundamental equinox.

Then, A =3(pe+p ) To—T))
or  Acy=(To—T)pi+4(Ty— To)*s=[pi+ §s(Lo— T)] [T, — T3}

In such a case as this, what is wanted is the position referred
to the equinox T, as observed at the epoch T, without the
application of proper motion for the interval. Hence, if the
preceding formulae are used, the precession p, for the date T,
should not be computed with the actual place of the star at that
epoch, but with the place as it would be found without applying
the proper motion from 7} to 7,. But it is only in the case of
exceptionally large proper motions that attention to this point is
necessary. The criterion is whether the change in the position
of the star produced by the proper motion during the interval is
large enough to materially affect the precession p,.

It must also be noted that the formulae cease to be applicable
when the star is so near the pole that the angle S for the interval
Ty—T; cannot be treated as infinitesimal. The trigonometric
method should be used in all these exceptional cases.

196. Formation and solution of the equations.

Having the results of the reductions as arranged in the scheme
(a), § 193, the problem is to find the position and proper motion
which will best satisfy the observations. We may in 2all but the
extremest cases regard the proper motion as constant when
referred to the pole of 7. Even in the exceptional extreme cases,
we may proceed on the supposition of uniform proper motion if
only we regard the result as the value of a uniformly variable
proper motion at the mean epoch of all the observations. Thus
we may represent each reduced R.A. (or Dec.) as giving an
equation of condition of the form '

o+ ut = reduced o



372 CATALOGUES OF THE STARS [§ 196.

Here we apply the method developed in § 39 in the following way :
We shall designate the reduced R.A.s or Decs. by o, o, ... oy,

it being noted that these symbols now have not the same

meaning as in (@), being all reduced to one equinox.

The solution may be effected by arranging the several results
in columns in tabular form, as follows:

Column 1: the abbreviated designation of the several star
catalogues, in the order of time.

Column 2: the several values of f;, the mean date of the
observing for each catalogue. It will not be necessary to write
the century in full, and, in fact, it may be most convenient to
write down instead of a year the interval in years before or after
1850. Then, in the case of Bradley’s catalogue, the earliest of all,
we should have ¢= —095, and for all dates before 1850 ¢ would be
negative. In this column it will ordinarily be most convenient
to use the century as the unit, which is done by simply putting a
decimal point before the tens of years.

Column 3: the reduced values of the R.A. o; (or Declination)
for the common fundamental epoch 7. In all ordinary cases
it is only necessary to write down the seconds of the coordinate,
the hours or degrees and ininutes being commonly the same
for all catalogues.

Column 4, the assigned weights. Practically a single signifi-
cant figure will be enough to use for this purpose, or two for the
numbers between 10 and 15. That is to say, a weight of 54
may be called 50, one of 56, 60, etc. While it is true that the
numerical result may be slightly different, the difference will
never be more than a small fraction of the uncertainty. In fact
the weight is always under any circumstances a most uncertain
datum with which to deal.

These four columns contain our data complete. The next step
is to multiply the columns 2 and 3, ¢ and a, by the weights,
writing the products in columns 5 and 6. We also form the
product wt? in each line, which we may do by multiplying wt by
t, and which goes into column 7, and wto, which goes into
column 8. As a check w may be multiplied mentally by the
square of 7.
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The sum of each column from 4 to 8 will then be formed,
giving the values of W, [t], [«], or [a], [¢f] and [éx], or [toc].

The value of z from (63) of §39 will be the concluded seconds
of the coordinate for the epoch T}, and y will be the proper
motion for the mean of all the epochs, referred to the pole of T},
In the exceptional case of large proper motions of stars near the
pole, it will be necessary to make a reduction for the changing
values of the proper motions even when referred to the same
equator and equinox. The theory of this has already been set
forth.

197. Use of the central date.

While the preceding method embodies all the operations really
necessary for the result, there will be a certain advantage both
in symmetry of method and probable freedom from error by
adopting the modification developed in §40. The writer believes
that the additional ease and symmetry thus secured will com-
pensate for the slightly increased labour.

By this method we do not form wi? column 7, but, after com-
pleting column 6, find the mean date of all the observing, or
value of ¢, by the equation

(=l
0 W %

This mean date may be called the central date. It has the
property already pointed out, that the most likely value of a for
that date is

°°°=[WV?]
independently of the proper motion; and also at this epoch the
weight of the position derived from all the observing is a maxi-
mum, and diminishes symmetrically with the time before and
after this epoch.

Having found the central epoch, we use it as that from
which ¢ is counted, following the method of § 40. The columns
following (6) will then contain the successive quantities

tz—[iﬁf] =T, w-r?; wT.
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Yet more perspicuity will be secured if, instead of writing
wre in column 8, we subtract the weighted mean o, of all the
w’s from each separate o, calling the residual =, and form wrr.
This will make it easy to see the relation between the residuals
and proper motions, and in case of any serious divergence or
error will bring it out. No other solution of an equation will
then be necessary. We shall have for the proper motion

[r7]

sl

Since o is the definitive coordinate for the central epoch, the
value for the epoch 7, will be

0+ u(T,— Cent. ep.).
The proper motion x will be that for the central date.
The following form of computation is that above suggested.

The Catalogues named in the first column are only taken as
examples, and have no preference over others.

1 2 (8| a5 6ilafs]| o |w|n
CATALOGUE. M:’an Ef‘; VY:' wt | wa ;’;‘i g’lf‘; wr | wi? | wrr
|

Brad., 1755, =9 la | w why | we T | jwyT W 7 wy, Ty 7y
Piazzi, 1800, —50 | ay | wy |woty | woag| Ty |1y |WeTy Wy 75 Wy Ty Ty
Argel., 1830, ~20(a; | wy [wytg |wyag| Ts |7y |wgTs [wg T3 | Wy Ty Ty
Pond, 1830, 20 ag | wy |wyt, | wea,| M | re W |20, 4 Wy Ty Ty
Grh., 1840, =10 a5 | ws |wgty [ wsas| 75 | 75 |wsTs (W 2 Wy Ty Ty
Pulk., 1845, ~05| ag | wg |wets | wgag| T | 7 | We T |Ws 3 Wg Tg T'g
Grh., 1872, +22(a;, | w, ] wty |way| T |7 Wy wy |l w T,y
Pulk., 1885, +°35| ag | wg |wgtg | wgag .rs rg | wg Ty | Wy s Wg Tg g
Grh., 1890, +°40 | ag | wy |wgly | wyay| Ty | Ty | Wy Ty |Wy Ty | Wy Ty Ty
Mt. Ham., 1900, +°50 | ayy | wyy |wigtyy | @igtef Tro | 710 | WioTa0 wlOT?O WyT10"10

Sums, — |- W | [w] | [wa] | — | — 0 [77] [rr]
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The rigorous application of the above method will be impracti-
cable when a catalogue gives only one coordinate, or when the
mean date of observation is materially different for the two coordi-
nates, because in each of these cases we have, strictly speaking, no
rigorous determination of a position of the star for a definite
epoch, which is necessary for the reduction to T, Hence the
latter cannot be made except, in the first case, by using an
approximate computed value of the missing coordinate, and, in
the second case, by reducing the two observed coordinates to the
same epoch with an assumed proper motion. In all ordinary cases
either of these courses may be taken without leading to error.
In exceptional cases it is preferable to adopt-the second method.

198. Method of correcting provisional data.

‘The first step in the application of this method is the prepara-
tion of an ephemeris of the mean R.A. and Dec. of the star for
the several catalogue dates T, T, etc. In the case of the
standard stars, such an ephemeris may easily be formed from
.data given in general catalogues of standard stars. Among
ithose which may be used for this purpose are the catalogue of
1098 standard clock and zodiacal stars found in Astronomical
Papers of the American Ephemeris, vol. i, the general cata-
logue of standard stars in vol. ix. of the same papers, and the
.standard catalogues in Publications of the Astronomischen Gesell-
-schafft, Nos. xiv. and xvii.

If, from any of these catalogues, we compute positions of a
:star for the epochs of observation, each excess of an observed over
a computed position will give a correction to the latter for the
-date in question.

In making the comparison, attention must, of course, be paid
to the proper motion of the star between the mean date of all
the observations used in forming the catalogue place and the
date of the equinox to which the place is referred. If no proper
motion is applied in the catalogue, it will be necessary to apply
the provisional value u, If that actually applied is materially
different from the provisional value, the necessary correction
sshould be made.
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In any case, the date for which the correction holds good is
not that to which the catalogue has been reduced, but the mean
date of the observations.

The results of the comparisons will be that at the epochs

S P
the provisional place of the star seemed to require the corrections
By Bgy <O
¢ being, in each case, the excess of the R.A. (or Dec.) of the
catalogue over the provisional one.

In nearly all cases it may be assumed that this correction
should increase uniformly with the time. We may, therefore,
proceed as in method 1, the result being, instead of a mean
position and a proper motion, corrections to the assumed mean
position and proper motion.

If we compute and apply this correction for any or all the
dates for which provisional places have been computed, the
result will be the corrected places for the same dates.

199. Special method for close polar stars.

The preceding method presupposes that the angle S at the
star is small. When such is not the case, a more rigorous
proceeding is necessary, which we shall now briefly indicate.

The elements of position to be corrected are:

O IO s s LR gereio s lerte TS R s G (7
the provisional R.A., Dec., and proper motion of the star at a
certain date 7,. A coordinate o or ¢ at any other date T is
a function of these four quantities, so that we may write

o =f1(%y, So; fas #6)} (8)
B il ) A S
If, following the general method found in § 34, 35, we apply
symbolic corrections Ao, Ad,, etc, to the elements (7), the
effect of these corrections upon the place o. will be given by

da do.
AgL= Aa0+d6A8 +d ~—Ap +d ——Aps

2, Gy cenn(9)
NG +daA3+ A +d

As=go
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The rigorous method is to compute these differential co-
efficients for each of the catalogue dates, and put their
numerical values in the right-hand member of (9), while in the
left-hand member we put for Ao and A§ the excess of the
catalogue or observed over the provisional coordinate. Thus
we shall have a conditional equation between the four unknown
quantities Act,, Ad,, Ama., and Aus;, and by solving all these
equations we derive the values of the corrections to the
fundamental elements.
When the angle S is small, we shall have very nearly

do._do _ |

doy, dé,

d s TR AR e (10)
o ¢

d#a=d—,u3=7'i—T0' 3

while the value of the other coeflicients will be so small that the
terms multiplied by them may be dropped. We should then
reproduce the equation, the solution of which is given in the
scheme of § 197. When this approximate method -is not suffi-
ciently exact, we must seek for the accurate values of the
differential coefficients. These we can find from the equations
of the form (8), which give the values of o and § in terms of
o, and &, through the system of equations

8y=04+ pat+ &
31=60+,u5t

€os ¢ sin a=cos §, sin a,

-

1) (11)

cos ¢ cos a=cos  cos 6, cos a,—sin Osin §;
sin § =sin 6 cos 6, cos a,+ cos O sin §,
o=a+t+z
We see from these equations that
do_do do_da
do,” day dé, dé,
8 2 T R A e (12)
dé, ds; do, da,
The quantities which enter into the equation (11) are all
parts of the spherical triangle SP P formed by the star and the
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two mean poles. The preceding derivations are expressed in
terms of these parts as follows:

do. _ cosd,

do,  cosé st

rc{(_x__sinS

Gl ST AT))
d—6~— cos &, sin S

doy it 0

E:coss .

The values of o and & in (8) are found by trigonometric
reduction by the method of Chapter X. The value of Ao and
A¢ in (9) are the corrections to this reduced place given by
observations. The equations (9) are then solved by the method
of least squares for the four unknown quantities which they
contain, resulting in corrections to the adopted provisional
positions and proper motions,

This method will become more and more necessary as more
stars near the pole have to be investigated, and as the period
over which observations extend is lengthened. An application
of it to the four north polar stars most used will be found
in volume viii. of the Astronomical Papers of the American
Ephemeris.

NOTES AND REFERENCES.

TaE mass of astronomical literature relating to positions of the fixed stars
is so great that it is not possible, in the present connection, to do more than
cite the principal independent catalogues of stars, and offer some suggestions
as to the literature of the subject. From what has already been said of the
history of the subject it will be seen that the determination of positions of
the fixed stars by meridian observations has formed a large fraction of the
work of the leading observatories since 1750. The instruments, the system
of observation, and the methods of reduction and combination have been so
frequently imperfect that the question what results are worth using often
becomes one of much difficulty, the decision of which must be left to the
investigator himself. To this diversity of material must be added lack of
continuity in observations dand in systematic forms and methods of publication.
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Since the middle of the last century, following the example of Greenwich,
it has been quite usual for observatories making regular meridian observa-
tions to publish in each annual volume the mean positions, for the beginning
of the year, of all the stars observed on the meridian during the year. At
intervals of a few years these annual positions have been generally, but
not always, combined into a single catalogue, reduced to some convenient
equinox near the mean of the times of observation. But there are still
several series of observations, some of which are probably as good as any
made during their time, which, although published, have never been com-
pletely reduced. The question whether it would be profitable to utilize such
observations is one that frequently arises, but has to be postponed for want
of the means necessary to effect the reduction.

Besides the independent volumes issued by observatories, the volumes of
the Astronomische Nachrichten, the number of which will, before many years,
pass the 200 mark, contain a vast amount of material of every kind relating
to the subject, which should be accessible to the investigator who wishes to
have all the aids which may possibly be useful in his work. Discussions
relating to the positions of stars are also found in the Astroromical Journal,
which has now reached its 25th volume.

Of material contained in these and other serials it will be necessary to cite
only that most uniformly essential, namely, the systematic corrections to
various catalogues, and the weights to be assigned to the given positions as
a function of the number of observations on which each result depends.

Boss’s system of corrections is found in dstronomical Journal, vol. xxiii.,
pp- 191-211.

Auwers’ system of reductions is found in Astronomische Abhandlungen als
Erganzungshefte zu den Astronomischen Nachrichten; Nr.'T, Tafeln zur Reduc-
tion von Sterncatalogen auf das System des Fundamentalcatalogs des Berliner
Jahrbuchs.

Newcomb’s system of corrections is found in Astronomical Papers of the
American Ephemers, vol. viii., chapter iv.

The differences between the reductions given by these different authors
arise not only from the differences of the fundamental systems, but from
differences in the principles on which the corrections were derived. The
principal difference in principle is that in forming his system Newcomb
required more evidence that a systematic difference was necessary than did
either Auwers or Boss.

Auwers’ tables of weights are found in the 4st. Nach., vol. 151, S. 225-274,
under the title : Gewichstafeln fiir Sterncataloge.

The assignment of weights is of necessity largely a matter of judgment,
based on what is known of the methods of making the observations and
constructing the catalogue. Marked diversity in the different systems is
therefore to be expected.
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LIST OF INDEPENDENT STAR CATALOGUES.

Tuk following is a list of the principal independent catalogues of precision
which may be available in investigating positions and proper motions of
stars. The term “catalogue of precision ” is used in a somewhat broad sense,
including all catalogues which were intended to be more than simple lists of
stars. Many are no doubt admitted which, on ecritical examination, will be
found below others that have been excluded.

From the list are also omitted observations of stars in zones, and catalogues
constructed from them. The most important of these are the zones observed
by Bessel and by Argelander, well-known catalogues from which have been
published by Weisse and by Oeltzen. Annual catalogues are also excluded,
whether they have been combined or not.

Another class excluded is that in which the glven positions are not
independent, but are derived by a combination of other observations than
those made especially for the catalogue in question.

In tabulating and comparing the results derived from different catalogues
it is necessary to have the briefest distinctive designation of each. This is
commonly either the abbreviated name of the observatory, or the name of
the author, followed by the date of the catalogue. For the latter is chosen
sometimes the equinox of reference and sometimes the mean date of the
observations, commonly the former. In the list which follows it is the name
of the observatory or place of observation which is generally given. Boss
introduced the system of abbreviating the name of the observatory to its
first and last letters which is convenient in writing but not always suffi-
ciently explicit. Auwers uses sometimes the name of the observatory and
sometimes that of the author of the catalogue.

CATALOGUES MADE AT NORTHERN OBSERVATORIES.

THE first complete reduction and discussion of Bradley’s observations was
made by Bessel and published in 1818 under the title :

Fundamenta Astronomiae pro anno MDCOCLYV deducto ex observationibus
vire incomparabilis JAMES BRADLEY. In Specula Astronomica Grenovicens:
per Annos 1750-1762 Institutis. Auctore FRIDERICO WILHELMO BESSEL.
Regiomonti, 1818.

This work is now superseded by that of Auwers of which the designation
and title are :

Auwers-BrADLEY, 1755.— Neuwe Reduction der Bradley’schen Beobachtungen,
aus den Jahren 1750-1762, von ARTHUR AUWERS. 3 volumes, St. Petersburg,
1882-1903.

The catalogue is found in the third volume. The first volume contains a
valuable discussion and comparison of the observations, which will serve as
an excellent model to the astronomical student desiring to perfect himself in
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methods of discussion. The R.A’s of Auwers leave no question open which
it would be profitable to discuss. But such is not the case with the declina-
tions, his work on which has been examined by the present author as well
as by Boss.* '

AUwERS-MAYER, 1755,— T'obias Mayer's Sternverzeichniss nach den Beobacht-
ungen auf der Gitlinger Sternwarte in den Jakren 1756-1760:  Neu Bearbeitet
von ARTHUR AUWERS. Leipzig, 1894.

This work is based on observations by Tobias Mayer, made shortly after
the epoch of Bradley, with whose work it favourably compares. The
number of stars is, however, rather small.

Piazzr, 1880.— Praecipuarum Stellarum inerrantium Positiones mediae ex
observationibus, 1792-1813. Folio, Panormi, 1814.

This catalogue when constructed was vastly superior to any that preceded
it, and is still of value in determining proper motions. But it is now far
behind modern requirements. It is being reconstructed by Dr. Herman S.
Davis, under the auspices of the Carnegie Institution. Until this work is
completed and published it is scarcely worth while to make use of the
catalogue except for stars not observed by Bradley.

G-rOOMBRIDGE, 1810.—A4 Catalogue of Circumpolar Stars, deduced, from obser-
vations of Stephen Groombridge, £sq. Reduced to January 1,1810. Edited
by Grorer BIDDELL AIRrY, Esq., A.M., dstronomer Royal. London, 1838.

The observations on which this catalogue is based were made by an
enthusiastic amateur at Blackheath, and are valuable from their early date,
and the number of circumpolar stars included. The above cited publication
by Airy has been the only one hitherto available, but a re-reduction has
recently been completed at the Greenwich Observatory, and the catalogue
based upon it is entitled—

New Reduction of Groombridge’s Circumpolar Catalogue. By Frang W.
DysoN and WiLLiaM G. THACKERAY wunder the direction of SIR WILLIAM
H. M. CurisTie. London Admiralty, 1905.

The principal defect in Groombridge’s observations is that very few
observations were made below the pole, and in consequence the error of his
instrument in azimuth cannot be fixed with all desirable certainty.

Poxp-Auwers, 1815.— Mittlere Oerte von 570 Sternen . . . aus den unter
Direction von Pond, 1811-1819, angestellen Beobachtungen. Von A. AUWERS.
Berlin Akademie, 1902. ;

KoN16SBERG, 1820.—Neue Reduction der Kinigsberger Declinationen 1820,
von W. DSLLEN. Found in Recueil de Mémoires présentds & U Académie des
Sciences par les Astronomes de Poulkova, vol. i., St. Petersburg, 1853.

This reduction includes only about 60 fundamental stars, to the determina-
tion of which Bessel devoted special attention.

* Astronomical Papers of the American Ephemeris, viii., p. 194; Ast. Jour.,
vol. xxiii.
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DorpAT, 1830.—Struve’s Fundamental Catalogue for this epoch is found
in his Stellarum Fizarum Positiones Mediae Epocka 1830. Auctore F. G. W.
StruvE. Petropoli, 1852.

ARGELANDER, 1830.—DLX Stellarum Fizarum Positiones Mediae Ineunte
Anno 1830. Helsingforsiae, 1835.

This catalogue of 560 stars, almost all of the brighter class, including
especially the fundamental stars, is based on Argelander’s observations at
Abo before his removal to Bonn.

Poxp, 1830.—A4 Catalogue of 1,112 Stars, reduced from observations made at
the Royal Observatory at Greenwich, from the years 1815 to 1833. London, 1833.

The observations on which this catalogue is based are probably good when
measured by the standard of the period. Their combination in the catalogue
is, however, not carried out in the best way, and the re-reduction and recom-
bination of the whole is to be desired. This is partly done by Auwers in
the work Pond, 1815, above cited. The result of Chandler’s discussion
of the standard declinations is found in Ast¢. Jour., xiv. A correction to the
catalogue declinations on account of the refractions is tabulated by Auwers in
Ast. Nack., vol. 134, col. 52.

CAMBRIDGE, 1830.—-The First Cambridge Catalogue of 726 Stars, deduced
from the Observations made at the Cambridge Observatory, from 1828 to 1835 ;
reduced to January 1, 1830, by GEoreE BIDDELL AIrY, Esq., Astronomer
Royal, etc.

This work is extracted from Memoirs of the Royal Astromomical Society,
vol. xi., pages 21 to 45, London, 1840.

The probable errors of this catalogue are larger than would have been
anticipated in a work by Airy. It seems probable that a defective system
of reduction and combination has detracted from the precision of the
results. If so, a re-reduction of the original observations is desirable.

Ko6NIGSBERG, 1835.—Beobachtungen von Zodiacalsternen am Reichenbach-
schen Meridiankreise, in Astronomische Beobacktungen auf der Kiniglicken
Universitiits-Sternwarte zu Konigsberg, von Dr. EDuArD LuTHER. Band xxxvii,
Zweiter Theil. Konigsberg, 1886.

RUMKER, 1836.— Mittlere Oerter von 12000 Fix-Sternen, von CARL RUMKER.
Hamburg, 1852.

EpinpureH, 1840.—This catalogue is based on observations between 1836
and 1845.

Armaca (RoBINsoN), 1840.—Places of 5,345 Stars observed from 1828 to
1854, by Rev. T. R. RopinsoN. Dublin, 1859.

GiLLIss, 1840.— Astronomical Observations made at the Nawval Observatory
Washington, by Ligvr. J. M. GiLuiss, U.S.N. Washington, 1846.

This work contains a catalogue of 1,248 stars, mostly zodiacal and
equatorial, observed in connection with moon-culminations between 1838
and 1842. Only the R.A/s are independent, the Decs. being taken from
the B.A. catalogue.
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OxrorD, 1845, 1860, and 1890.— The Radcliffe Catalogues of Stars.

The old meridian instrument at the Radcliffe Observatory, Oxford, with
which these observations were made, was of inferior construction, and, in
consequence, its results require systematic corrections, varying rapidly with
the position. The introductions to the annual volumes of the Radcliffe
observations, recent papers in the Monthly Notices, R.A.S., and comparisons
in Ast. Papers of the American Ephemeris, viii., 166-167, should be consulted.

CARrRINGTON, 1855.—Catalogue of 3,735 Circumpolar Stars observed at the
Red Hill Observatory, 1854-56, by RicHARD C. CARRINGTON.

The stars of this catalogue are all situated within 9° of the pole. The
instrument was probably not of the best; but the catalogue may be re-
garded as one of precision and, for the region which it covers, the most
complete made up to that time.

GREENWICH, 1855 to 1890.—Since 1836, when Airy took charge of the-
Greenwich Observatory, catalogues based on the observations through
periods ranging from six to ten years have appeared as follows :

Epoch of Reference. Years.
1840 - Years of observation, - 1836-1841.
1845 - . - - 1842-1847.
1850 - % ob - 1848-1853.
1860 - . i - 1854-1860.
1864 - & 3 - 1861-1867.
1872 - " - - 1868-1876.
1880 - . 5 - 1877-1886.
1890 - s ,, - 1887-1896.

" Pounxova, 1845 to 1892.—The Poulkova standard catalogues have ap-
peared in various volumes of the series—Observations de Pulkowa, publides
par OrT0 STRUVE, Directeur, etc., and Publications de UObservatoire Central
Nicolas—and also independently. In some cases a revised edition of the
catalogue, which should be used instead of the original, has been issued.
The standard catalogues, in some of which the R.A.s and Decs. are given
in separate publications, are found in the following volumes :

For the Epoch 1845 in volumes i. and iv.

- » 1865 3 xii.
N o 1885 in série ii., vol, i.
5 5 1892 o ) R A b %y

A corrected list of the standard declinations for 1845 is published as a.
supplement to volume iv.

Poulkova catalogues, embracing a larger number of stars, are cited in their
chronological order.

PouLrova, 1855.— Positions moyennes de 3542 ¢toiles determinédes a Paide du
Cercle Méridien de Poulkova dans les anndes 1840-1869.  Observations de-
Poulkova, Vol. VIII.
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In this catalogue an error was made by the computers in applying the
-correction for errors of graduation of the meridian circle. It happens,
however, that, as the corrections in question vary slowly and regularly from
one declination to another, and as all declinatious of the stars were reduced
to the standard of the vertical circle, the final effect of the error upon the
positions as given in the catalogue is unimportant. The subject is, however,
discussed very fully in a paper by Backlund, found in the St Petersburg
Memoirs, series vii., volume xxxvi., St. Petersburg, 1888.

Paris, 1845, 1860, and 1875.—-Catalogue de U'Observatoire de Paris. Etoiles
-observées aux instruments meridiens. 4 volumes, 4to, 1887-1902.

This catalogue is valuable for the great number of faint stars of which it
_gives modern positions.

YARNALL, 1860.—Catalogue of Stars observed at the U.S. Naval Observatory
during the years 1845-1877.

Three editions of this catalogue have appeared, the last being thoroughly
revised by Professor Edgar Frisby, U.8&.N. The work labours under the
disadvantage of including two distinet series of observations; the one
beginning in 1845 and coming nearly to a stand-still during the years
1850-1860 ; the other beginning in the year 1861. The condition of the
instruments and the method of using them changed so much during this
time that the catalogue as a whole may be considered as a combination of
two, the results of which require different systematic corrections.

HARrvVARD, 1865.—Annals of Harvard College Observatory, vol. iv.

This catalogue contains R.A.’s of 506 stars, without declinations.

LeipEr, 1870.—Declinations of 202 Fundamental Stars, dnnalen der
Sternwarte tn Leiden, Band ii., p. 125, and Ast. Nach., 1xxx., S. 94.

Grasaow, 1870.—Catalogue of 6415 Stars deduced from observations made at
the Glasgow University Observatory. By RoBERT GRANT. Glasgow, University
Press, 1883.

HARVARD, 1875.— Catalogue of 1213 Stars, observed during the years 1870-
1879 with the Meridian Circle of Harvard College Observatory, by WILLIAM A.
Roarrs ; Harvard Annals, volume xv., part i.

W asHINGTON, 1875.—The Second Washington Catalogue of Stars from ob-
-servations with the transit circle at the U.S. Naval Observatory from 1866 to
1891, by ProrEssor J. R. EastMany, U.S.N.*

PouLkova, 1875.—Catalog von 5634 Sternen fiir die Epoche 1875 aus den
Beobachtungen am Pulkowaer Meridiankreise withrend der Jahre 1874-1880, von
H. RouBERG, Supplement [/1. aux Observations de Poulkova, St. Pétersbomrg,
1891.

BerLIN, 1875.—4bleitung der Rectascensionen der Sterne des Fundamental-

* It should be noted that the systematic corrections found in the first page of
Ast. Papers of the Am. Eph., Vol. VIIL, to the declinations'of this catalogue
.are not applicable to the printed declinations, but only to an unpublished original.
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Cataloges der Astronomischen Gesellschaft aus den von H. Romberg in den
Jakren 1869-1873, angestellten Beobachtungen won Dr. A. MARCUSE.
Beobachtungs- Ergebnisse der Koniglichen Sternwarte zv. Berlin. Heft No. 4.
Berlin, 1888.

IBiD.—Resultate von Beobachtungen von 521 Bradley'schen Sternen, am
grossen. Berliner Meridiankreise, von DR, E. BECKER. Berlin Observations,
1881.

ArMacH, 1875, —Second Armagh Catalogue of 3300 Stars for the epoch 1875,
by T. R. RoBixsoN and J. L. E. DREYER.

ASTRONONMISCHE GESELLSCHAFT, 1875.—Katalog der Astronomischen Gesell-
schajft, Erste Abtheilung, +80° bis —2°. 1In fifteen Parts, of which Part II.
(70° to 75°) has not been published. Leipzig, 1890-1902.

IBiD. ; Zweite Abtheilung :—Pt. 11, —6° bis —10°. Leipzig, 1904-, is
the only section which has yet appeared.

Oxrorp, 1890.—Catalogue of 6,424 Stars for the Epock 1890, formed from
observations made at the Radcliffe Observatory, Oxford, during the years
1880 ¢0 1893, by E. J. STONE.

BerL1iN, 1890.— Ergebnisse der 1886-1891 am grossen Meridiankreise der
Berliner Sternwarte angestellen Beobachtungen der Jakrbuchsterne, von F.
KUsTNER.  Astronomische Nachrichten, vol. exlii., S. 113-134.

Mapisow, 1890.— Publications of the Washburn Observatory of the University
of Wisconsin, vol. viii. Meridian Circle Observations, 1887-1892. Madison,
Wis., 1893.

Grascow, 1890.—Second Glasgow Catalogue of 2156 Stars from observations
made during the years 1886-1892. By RoBERT GRANT. Glasgow, University
Press, 1892.

MuxicH, 1892.— Untersuchungen tiber die astronomische Refraction mit einer
Bestimmung der Polhoke von Miinchen und threr Schwankungen von November
1891 bis October 1893 und einem Katalog der absoluten Declinationen von 116
Pundamental-Sternen, von Dr. JULIUS BAUSCHINGER. Miinchen, 1896.

PouvLrova, 1895.—Catalog von 781 Zodiacalsternen fiir Aequinoctium und
. Epoch 1895.0, von M. DitscHENKO und J. SEGBoTH. St. Pétersbourg, 1903,

MouNt HAMILTON, 1895.—Observations upon selected Stars of the Astrono-
mische Gesellschaft Catalogue made with the meridian circle of the Lick
Observatory by Mr. R. H. TuckER, during the years 1894-95. .Ast. Jour.
vol. xvii., No. 408. Publications of the Lick Observatory, vol. iv., 302.

BerLIN (BATTERMANN), 1895.— Beobachtungs-Ergebnisse der kiniglichen
Sternwarte zv. Berlin. Heft 8. Berlin, 1899.

BerLIN (BATTERMANN), 1900, /bid. Heft 10.

Mouxst HawminroN, 1900.—Results of Observations of Circumpolar Stars,
Zodiacal Stars, and Southern Stars of Piazzi.  Publications of Lick Observatory,
vol. vi.

Auwers applies large systematic corrections to the declinations of the

southern stars in this catalogue, which are probably necessary on account of
N.S.A.



386 CATALOGUES OF THE STARS

the usual tables of refraction not being correct for an altitude of 1300 metres
above sea level. .

Cixcinyari, 1890, 1895, and 1900.— Publications of the Cincinnati Obser-
vatory, Nos. 13, 14, and 15, by JERMAIN G. Porrkr, Director. These cata-
logues give observed positions of 2000, 2030, and 4280 stars respectively.

CATALOGUES FROM TROPICAL AND SOUTHERN
OBSERVATORIES.

LacaArLLE, 1750.—A Catalogue of 9766 Stars in the Southern Hemisphere
Jrom the observations of the Abbé de Lacaille made at the Cape of Good Hope,
in the years 1751-1752. By Fraxcis BaiLy, Esq. London, 1847.

The origin of this catalogue is mentioned in the preceding chapter.
From its very nature it cannot be regarded as a catalogue of precision, but
it is cited because its positions may be useful in the case of stars not found
in other catalogues.

Paramarra, 1825.—Catalogue of 7385 Stars, chiefly in the southern hem:-
sphere, from the observations made in 1822-26 at the Observatory at Paramatta,
New South Wales, founded by Sir THomMAs MAcDoUGALL BRISBANE; the
Catalogue by Mr. WiLLiaM RicearpsoN. ILoudon, 1835.

The observations on which this catalogue was based were made with the
transit instrument and mural circle ; a few of them by Sir Thomas Brisbane
himself, but mostly by Mr. Charles Riimker, later of Hamburg, and Mr.
Dunlop. The work is of importance as being the first catalogue of precision
embracing stars too far south to be visible in Europe. So far as the writer
is aware, the precision of the results has never been tested by modern
methods.

Favrvows, 1830.—4 Catalogue of 425 Stars observed during the years 1829-31
at the Cape Observatory, reduced and published by G. B. Airy. Memoirs of the
Royal Astronomical Society, vol. xix.

S1. HELENA (JoHNSON), 1830.—A4 Cutalogue of 606 Principal Fized Stars
i the Southern Hemisphere, deduced from observations at the Observatory, St.
Helena, from November, 1829, to April, 1833, by MaxveL J. JoB¥sox.
London, 1835.

Care (HEexDERsoN), 1833.—7Ttos. Henderson on the Declinations of the
Principal Fized Stars, deduced from observations made at the Observatory,
Cape of Good Hope, in the years 1832 and 1833. Memoirs of the Royal
Astronomical Society, vol. x.

Mapras (TaYLoRr), 1835.—Taylor's General Catalogue of Stars from observa-
tions made ot the Madras Observatory during the years 1831-1842. Revised and
edited by A. M. W. DowniNg, Esq. Edinburgh, 1901.

This catalogue, based on the work of an industrious observer, is of decided
value, but suffers from the imperfection of the instruments with which the
observations were made. The R.A.’s especially are affected by a systematic
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error varying with the declination of the star, which probably arose from an
error in the collimation of the transit.

SanTiaco, 1850.—A4 Catalogue of 1963 Stars ...... together with o Catalogue
of 290 Double Stars, the whole from observations made at Santiago, Chilz, dur-
ing the years 1850-51-52, by the U.S. Naval Astronomical Expedition to the
Southern Hemisphere, Ligvr. James M. Giuiss, LLD., Superintendent.
Washington Observations for 1868, Appendix I., Washington, 1870.

Sawtiaco, 1855.—Catalogo de Ascenciones Rectas ¢ Distancias Polares
medias ...... deducidas de las observaciones en los afos 1853, 1854, ¢ 1855.
Santiago de Chile, 1859.

SANTIAGO, 1860.— Ascenciones Rectas ¢ Distancias Polares de las estrellas
observadas en los aiios de 1856 d 1860 con el Circulo Meridiano. Observatorio
Nacional, Santiago de Chile, 1875.

MELBOURNE, 1870.—Flirst Melbourne General Catalogue of 1,227 Stars for
the Epoch 1870, deduced from observations extending from 1863 to 1870, made
at the Melbourne Observatory. Melbourne, 1874.

CorpoBA, 1875.—The Argentine General Catalogue. Resultados del Qbser-
vatorio Nacional Argentino, vol. xiv., Cordoba, 1886.

MADRrAs, 1875.—Results of Observations of the Fized Stars made with the
Madras Meridian Circle, vol. ix. General Catalogue. Madras, 1899.

CaPE, 1840-1900.—Catalogues constructed from the observations at the
Cape have appeared for the epochs :

1840 - From observations -  1834-40.
FT) NS 3 - 1849-52.

Also, Cape Catalogue of 1159 Stars, Royal Observatory, Cape of Good Hope,
1856 to 1861, reduced to the epoch 1860 by E. J. StoNE, 1873.

Catalogue of 1905 Stars for the Equinox 1865, from observations made at the
Royal Observatory, Cape of Good Hope, 1861 to 1870, by Str THOMAS MACLEAR.
Reduced by Davip GiLL, 8vo, London, 1899.

Catalogue of 12,441 Stars for the Epock 1880, from observations made at the
Royal Observatory, Cape of Good Hope, 1871-1879, by E. J. StoNEe. 4to,
London, 1881.

Catalogue of 1713 Stars for the Equinox 1885, from observations made at
the Royal Observatory, Cape of Good Hope, 1879-1885. Davip GIiLn. 4to,
London, 1894.

Catalogue of 3007 Stars for the Equinox 1890, from observations made at
the Royal Observatory, Cape of Good Hope, 1885-1895. DAvip GILL. 4to,
London, 1898.






APPENDIX OF FORMULAE AND TABLES

suificiently explaimed in comnection with them. The followine
given with all desirable fulness:

Appendix L, Table Is. gives the day of the Juban period
corresponding t0 the nitial day of each cemtury. the reckoming
being according to the Julian calendar wp fo 1599, and the
Gregorian from 1600 on.

Table Iz gives the reduction to the begimming of each year,
and Ic to the zero date of cach month i the year The Julism
day for any date is therefore found by addimg to the suom of
the numbers from the thre: tables the exvess of the day of the
month above the next preceding date found = Table Ic, bemg
year is or is not bassextile.

In the case of the dates BC, the ceniwry caly = takem a=
negative, and Table I must then be entered with the centmry
next larger numerically than the miven cemimry. I mwst also
be noted that, in this case, the astromomical reckoming of the
years to which the table carresponds i= numeencslly less by 1
than the usual reckoning of the chromologasts. (See 68)

As an example of this case, let the day of the Julism period
be desired corresponding to the chromological dste mC 30§,
Janeary 18 The astronomics]l year is —305 snd the date
—400+95, Jan 18 The computsiion of the Juban date &= ==
follows:

Table Ia . century.- - - 1574%8
- Im, year, - - - 3489
» Ic Jam 1048 - 18
Jalian day required, - 1609874
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The fact that the years 1600, 2000, and 2400 are bissextile,
while the numbers IA. are arranged for centuries which begin
with a common year, makes it necessary to diminish the day for
these years by 1, using —1 instead of 0 for the year. |

Tables II. and ITI. will be readily understood by a study of
Chap V., §61 and 65.

Table IV.—Each column of hundredths of a day in this table
is followed by a column containing the equivalent in hours,
minutes, and seconds. The column next following is one
hundredth of this, and therefore gives the equivalent for the
third and fourth decimals of the day. The third column fol-
lowing gives the equivalent for the fifth and sixth decimals.
As an example the reduction of 0-720 853 to h., m., and s. is

17h.16 m. 48 5.+ 1 m. 912 5.4 458 s.=17 h. 18 m. 170 s.
For the reverse reduction, we find in the second column of either
part of the table the h., m,, and s. next smaller than the given
ones, and write down the corresponding two figures of the
argument. Then we take mentally the excess of the given
h., m., and s. above that of the table, enter the third column for
the next two decimals, and so on.

Table V. gives in the second column of each part the time of
beginning of each solar year during the twentieth century.
During the first 72 years of the century the moment of
beginning is always after Greenwich mean noon of the zero
date of the year, that is December 31 of the year preceding.
Beginning with the year 1973, the solar bissextile years begin
before January 0 as thus defined, and the date is therefore
negative in the table. These data being especially useful in
tables and ephemerides of apparent places of stars, the other
arguments necessary for computing these places are given in
Tables V., VL, and VIL for sidereal days reckoned from the
beginning of the solar year.

As to the form of these tables, it should be noted that the
“tabular year,” frequently used in astronomical tables, begins on
January 0 of common years as here, but on January 1 of leap
years. During the months of January and February the days
of this tabular year are less by 1 than of the civil year. But, in
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the present tables, this tabular year is not used; hence for dates
after March 1 the day of the year will be 1 greater in leap years
than in common years.

APPENDIX IIL

Centennial values of the precessional motions.—These motions
are computed as shown in Chapter IX., Section 1. The pre-
cessions given in most catalogues of stars are annual, and the
secular variation of each is its change for 100 years, and is
therefore 1} the value of Dlo or D26. It may be computed
with the same coefficients, using the annual instead of the
centennial motions, except as to the small terms factored by
tapts a0d g, A

If the secular variation of the precession alone is required,
e and us should be added to p, and p;instead of 2u, and 2us;
and if the effect of proper motions is to be entirely omitted,
as in reducing the geometric place unchanged, . and us should
be taken as zero.

APPENDIX IV.

The development of the methods set forth in this appendix is
fully given in Chapter X., Section II., where examples of the
use of the tables will be found.

APPENDIX V.

In most star-catalogues between 1850 and 1900 the pre-
cessions are those of Struve-Peters. They may be reduced to
the new values by applying —38 to the number from the first
column of Table XVI. to obtain Ap,, and multiplying the number
from the second column of XVI. by nat. tan § from X VIIL, which
will give Aps;. If the precessions are annual, the units of the
correction will then be 000001 and 070001, respectively; if
centennial, 0001 and 0701,
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APPENDIX VL

These tables are used for the rapid conversion of ecliptic into
equatorial coordinates and wice versa, where a greater accuracy
than to a coarse fraction of a minute is not required.

Table XX. is arranged for the rapid conversion of small correc-
tions in one set of coordinates to corrections in the other. As
this conversion is rarely necessary, except in the case of the
moon and planets, it is given only between the limits —5° and
+5° of latitude.

APPENDIX VII.

The condensed table of refraction here given is only approxi-
mate. Refractions correct to 0”1 may, however, be found
from it when the zenith distance is not too great, and the
deviation of the temperature and pressure from the adopted
standard not too wide. )

APPENDIX IX.

Three-place tables of logarithms and trigonometric functions:
are given, because they are not usually at hand, and should be
used in all cases when sufficiently accurate. It is often easier
to form a product of three figures by three with numbers than
by logarithms especially if a table of products is used. The
natural values of the trigonometric are therefore often con-
venient to use instead of their logarithms. But the latter are
preferable in forming a product of more than two factors.
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CONSTANTS AND FORMULAE IN FREQUENT USE.

A.—Constants with their Logarithms.

Numbers.
Ratio of circumference to diameter == 3141 592 65

2w =6283 185 31

w2 =9'869 604 40
Jm=1772 453 85

Degrees in circumference - - 360
Minutes £ - - 21 600
Seconds . - - 1296 000
Degrees in radian - - - -b72957795
Minutes g - - - 343774677
Seconds - - - - 206 264”-806
Seconds of time in radian - 13750987
Length of are of one degree - - 0017 453 29

= E ,, inute - - 0-000 290 89

3 * , second - - 0:000 004 848

o 5 ,, second of time 0000 072 722
Hours in one day - - - - 24
Minutes o - - - - 1440
Seconds 5 - - - - 86 400
Days in Julian Year - - - 36525
Hours 5 - - - 8766
Minutes 0 - - - 525960
Seconds % - 31 557 600
Days in Solar Year - - - 365-2422
Hours . - - - 8 765813
Minutes 23 - - - 52594877
Seconds 5 - - 31 556 9260

The following values of the constants for reduction

Logarithms.
0497 1499

0798 179 9
0994 299 7
0248 574 9

2:556 302 5
4-334 453 8
6112 605 0

1-758 122 6
3:536 273 9
53144251
41383339

8:241 8774 -10
6463 726 1 - 10
4685574910
5861 666 1 - 10

1-380 211 2
3158 362 b
4-936 513 7

2562 590 2
3-942 801 5
5720 952 7
7-499 104 0
2562 580 9
3942 792 2
5720 943 4
7°499 094 7

of places of the

fixed stars were most in use between 1830 and 1900, but are now being

superseded by the values adopted in the present work.
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The values of the variable quantities are given for 1850, from which
epoch T is reckoned in centuries.

Annual general precession, Bessel - - 5072357 +-0244 T
) ’ ,,  Peters-Struve 50 2524 + 0227 T
»»  motion of pole, Bessel - - 20 ‘0547 --0097 T
i o ,, Peters-Struve - 20 -0564 — 0086 T
Constant of nutation, Bessel - - - ST
£ " Peters-Struve - 9-223
Constant of aberration, Bessel = = 205255
e - Struve - - 20 -445
3 S Nyrén - - 20 -492
: x Newcomb - - 20 50
,, 3 Chandler - - 2053

Dimensions of the geoid according to the leading authorities.
: R S
Helmert’s b here given is his latest result. yr.. @ p.dis.

a, metres. b, metres. Metres. Compression.
Helmert 6 378 000 6 356 612 6370 843 1+298-20
Clarke 6378 249 6 356 515 6 370 997 1+29346
Bessel 6 377 397 6356 079 6 370 282 1+299-15

B.—Formulae for the Solution of Spherical Triangles.
a, b ¢ the sides.
4, B, C the opposite angles.
CASE IL.—Given two sides @, b and the included angle C.
sin ¢ sin A = sin a sin C,
sin ¢cos 4 = cos @ sin b — sin a cos b cos C,
cos ¢=cos @ cos b +sin a sin b cos C.
If we compute % and K from
k sin K =sin a cos C,
k cos K=cos a,
then sin¢cos A =k sin (b — K),
cosc="rkcos (b— K).
The Gaussian equations for this case, not advantageous unless 4, B,
and ¢ are all required, are
sin }¢ sin (4 — B) =cos }C sin §(a - b), :
sin }ceos (4 — B) =sin {Csin §(a +b),
cos }¢ sin (A4 + B) = cos C cos §(a - b),
cos §¢ cos §(A4 + B) =sin §Ccos }(a +b).
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Casg IL.—Given two angles and the intermediate side 4, B, c.
sin C'sin @ =sin 4 sin ¢,
sin C cos a=cos 4 sin B +sin 4 cos B cos ¢,
cos C'= —cos 4 cos B +sin A sin B cos ¢.

If we compute » and H from

hsin H=cos 4,
hcos H=sin A4 cos ¢,
then sin Ceosa="hcos (B - H),

cos C=hsin (B- H).
The Gaussian equations for this case are formed by writing those of

Case L. in the order 2, 4, 1, 3, interchanging the two members of each
equation.

CasE III.—Given the three sides.
s=%@a+b+c),
sin (s—a) sin (s - b)sin (s — c)

me2=
SlIl S
tan 34 = sﬁ,(—?:a—)
tan {B = o (ZL 5y
tan }C = ﬁ?——@

Casg I'V.—Given the three angles.
S=3(4+B+0C),
2 ~cos S
~cos (8 —4)cos (S— B)cos (S-C)
tan $a = M cos (S — 4),
tan §b =M cos (S - B),
tan §¢ =M cos (S - C).
CAsE V.—Given two sides and the angle opposite one of them,
a, b, 4.

sin B=" mf.ﬁl L] (two values of B),
sina
cos (a — b)
tan £C el +b)cot (4 + B),
tan o= "> denle b T a+0b).

cos (A — B)
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CAse VI.—Given two angles and the side opposite one of them,
A, B, a.

: sin e sin B
sin b= 2. (two values of b),
_cos ¥(4 + B)
tan 1c= cos A =E) tan 3(a + b),
1000830 .
tan 2C’—QOS ) cot (A4 + B).

In right spherical triangles the fundamental equations take the
following forms :
¢ the hypothenuse.
sin ¢ sin A =sin a,
sin ¢ cos A = cos a sin b,
COS €= COS & €08 b,
sin b =sin Bsin ¢,
sina eos b =cos Bsinc,
tan a = cos Btan ¢,
tan @ =tan 4 sin b.

C.—Differentials of the Parts of a Spherical Triangle.

The partial derivatives of any part of a spherical triangle with
respect to the three other parts on which it depends are found from
that one of the following equations which contains the differentials of
the four variable parts. (Comp. § 6.)

— sin Cda + cos b sin Adc 4+ sin bd A + cos C'sin adB =0,
—sin Adb + cos ¢sin Bda + sin ¢dB + cos A4 sin bdC =0,
— sin Bdc + cos a sin Cdb + sin adC + cos B sin cd4 =0.

—sin bsin Cda + d.A + cos cd B + cos 6dC =0,
—sin ¢sin Adb+ dB + cos adC + cos cdA =0,
—sin a sin Bdc+ dC + cos bd A + cos ad B =0.

—da + cos Cdb + cos Bdc+sin ¢ sin BdA =0,
~db+cos Adc+ cos Cda +sin ¢ sin CdB =0,
—dc + cos Bda + cos Adb +sin b sin 4dC=0.
The remaining forms may be written by leaving any one pair of

letters, say ¢ and A4, unaltered and interchanging the other two, say
B with C and b with ¢
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To find the Day of the Julian Period corresponding to any Day of the Julian
Calendar to 1600, or of the Gregorian Calendar after 1600.

TaBLE 1a. TaBLE IB. TaBLE Ic.

FOR CENTURY. FOR YEAR IN CENTURY. FOR THE DaAY.
—1900 1 027 083 00 (Oor-1] 50 18 262 Co§ﬂ}110n {v‘eap
—1800 | 1063608 01 365 | 51 | 18627 || .| Yo | Yo
—1700 | 1100133 02 730 | 52 | 18992 § VA% 01 O &

— 1600 1136 658 03 1095 53 19 358 20 20 20
— 1500 1173183 04 1460 | 54 19723 30 30 30

—1400 | 1209708 05 1826 | 55 | 20088 | .| o 31
—~1300 | 1246233 06 2191 | 56 | 20453 || €™ 10 | =51 a
—1200 | 1282758 07 2556 | 57 | 20819 % | 5l
—-1100 | 1319283 08 | 2921 | 58 | 21184

—1000 | 1355808 09 3287 | 59 | 21549 || Mar. 0| 59 60

) 10 69 70
- 900 1392 333 10 3 652 60 21914 20 79 80

- 800 1428 858 11 4017 61 | 22280 30 39 90
- 700 1 465 383 12 4382 62 | 22645
- 600 1 501 908 13 4748 63 23010 || Apr. 0 90 91
- 500 1538433 14 5113 64 | 23375 10 | 100 101

—400 | 1574958 || 15 | 5478 | 65 | 23741 20| 10 | 111
~300 | 1611483 | 16 | 5843 | 66 | 24106 | May 0| 120 | 121

- 200 1648 008 Ly 6209 67 | 24471 10 { 130 131
—-100 1684 533 18 6574 68 | 24836 20 | 140 141
0 1721 058 19 6 939 69 | 25202 30| 150 151
+100 1757 583 20 7304 | 70 | 25567 || June 0| 151 152
200 1794108 21 7670 | 11 | 25932 10 | 161 162
300 1830633 22 8035 | 712 | 26297 20| 171 172

200 | 1867158 | 23 | 8400 | 73 | 26663
500 | 1903683 | 2a | 8765 | 7a | 27028 | ¥ 0| 181 ) 182

600 | 1940208 | 25 | 9131 | 75 | 27393 20| 201 | 202

700 | 1976733 | 26 | 9496 | 16 | 27758 30| 211 | 212

800 | 2013258 | 27 | 9861 | m | 28124

900 | 2049783 | 28 | 10226 [ 78 | 28480 | Aus- 0| 212 | 213
1000 | 2086308 | 20 | 10502 | 70 | 28854 el o

1100 | 2122833 | 30 | 10957 | so | 29219 30| 242 | 243
1200 | 2159358 | 31 | 11322 | s1 | 20585
1300 | 2195883 | 32 | 11687 | sz | 20950 || SePt- 0| 243 | 244
1200 | 2232408 | 33 | 12053 | 83 | 30315 R
1500 | 2268933 | 3¢ | 12418 | s& | 30680

oct. o| 273 | 2m

1600 | 2305448 | 35 | 12783 | ss | 31046

1700 | 2341972 | 36 | 13148 | 86 | 31411 S
1800 | 2378496 | 37 | 13514 | 87 | 31776 -l
1900 | 2415020 | 38 | 13879 | 88 | 32141
2000 | 2451545 | 39 | 14244 | 89 | 32507 | Nov. o | 304 | 305

10 | 314 315
2100 | 2488069 40 14609 | 90 | 32872 20 | 324 325

2200 2 524 593 41 14 975 91 | 33237
2300 | 2561117 42 15340 § 92 | 33602 || Dec. 0| 334 335
2400 | 2597 642 43 15705 93 33 968 10 [ 344 345
4 16070 | 94 | 34333 20 | 354 355

a5 | 16436 | 95 | 34698 30| 364 [ 365
a6 | 16801 | 9 | 35063
a7 | 17166 | 97 | 35429
48 | 17531 | 98 | 35794
49" | 17897 | 99 | 36159
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TABLE IIa.
To Convert Mean into Sidereal Time.
4 4 > Correction
Mean Correction. Mean 'orrection. ¥ orrection. ;
Time. -4 Time. ] 2 + %i;e:.;): 8 + fon lglégglntgg.and
h. m.|m. 8. h. m. :m. 8. h. m.|m. 8. m. 8. 8.
0 o[0 000] 8 o1 1885}16 o!(2 3770 | O 10| 003
10 1:64 10 2050 10 3935 20 | 005
20 3-29 20 2214 20| 4099 bl -
30 493 30 ‘ 2378 30 4263 5 | 014
40 657 40 9542 40 4428 |
50 8-21 50 2707 50 4592 || 1 5 g;ig
1 o|0 98| 9 o1 2871 |17 o|2 4756 20 | 022
10 11-50 10 30°35 10 4920 | 30 | 09
20 1314 20 3199 20 5085 40 | 027
30 1478 30 3364 30 5249 || 50 | 030
40 1643 40 3528 40 5413 | 2 o | 033
50 18:07 50 3692 50 5577 10 036
2 0(0 1971 |10 o1 3856 |18 o |2 5742 o R
10 2136 10 4021 10 59-06 20 | 044
20 2300 20 4185 203 070 50 | 047
30 2464 30 4349 30 2:34 .
20| 2698 0| 4514 40 Fouq MR e
3 0[/0 2957 |11 o1 4842 |19 o|3 727 30 | 057
10 3121 10 5006 10 892 40 | 060
20 3286 20 5171 20 1056 50 | 063
30 3450 30 5335 30 1220 |4 o | 066
40 3614 40 5499 40 1384 10 | 068
50 3778 50 5664 50 1549 gg ngi
i
4 0/0 394312 o1 5328 |2 o3 17113 20 | 077
10 41-07 10 59-92 10 1877 5 | 079
20 4271 20 |2 156 20 2042 || 5 o | o082
30 44°35 30 321 30 2206 10 085
40 4600 40 4-85 40 2370 20 | 088
50 4764 50 6-49 50 2534 30 | 090
5 0|0 4928 |13 ol2 s13|21 o|3 2909 | &0 093
10 5092 10 | 978 10 2863
20 52°57 20 | 1142 20 3027 || 6 0| 099
30| 5421 30 | 1306 30| 3191 b
40 5585 40 1470 40 3356 o
6 00 5914 |14 o2 1799 |22 o3 3684 50 | 112
1001 078 10 1963 10 38-48 7 0 115
20 2:42 20 21-28 20 40°13 10 118
30 407 30 2292 30 4177 2 | 121
40 571 40 2456 40 4341 30 | 123
50 735 50 2620 50 4506 g {53
7 ol1 900|15 o|2 278523 o!3 4670 %
10 1064 10 2949 10 LTl R
20 1228 20 3113 20 4908 20 | 187
30 1392 30 32:77 30 5163 % -3940
40 1557 40 3442 40 5327 40 | 142
50 17-21 50 3606 50 5491 50 | 145
9 o | 148
10 | 150
20 | 153
30 | 156
40 159
50 | 162
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TABLE IIs.
To Convert Sidereal into Mean Time.
" ] . f Correction
S 1 | Correction. i ‘'orrcetion. | Sidereal { Correction. o
St | Ooaen. § Sl [0 Time, 5 for Minutes and
B, m [ fm 8. ke ‘m. "B 8. Iy, m. | m. 8. m, 8. 8.
0 o(0 000|] 8 o1 1864 |16 o |2 3727 (0 10| 003
10 164 10 2028 10 38:91 20 ( 005
20 328 20 21-91 20 40°55 Zg 8_‘1’81
30 492 30 2355 30 4219 % | 014
40 655 40 25:19 40 4383
50 819 50 2683 50 4546 || 1 0 ) 016
10 | 019
1 o{0 983} 9 o|1 2847 |17 o0 |2 4710 20 | 022
10 11-47 10 30°10 10 4874 30 025
20 1311 20 31~74 20 50°38 40 | 027
30 1474 30 3338 30 52:02 50 | 030
40 1638 40 3502 40 5366 | 9 o | 033
50 18:02 50 3666 50 5529 10 | 035
2 0|0 1966 |10 o|1 3830 |18 o2 5603 -
10 21-30 10 3993 10 5857 o | ou
20 9294 20 4157 20 (3 021 50 | 047
30 2457 30 4321 30 185 e
40 92621 40 4485 40 o I -
50 2785 50 46-49 50 512 20 | 035
3 00 2949 |11 o1 481219 o |3 676 30 | 057
10 3113 10 49-76 10 840 40 | 060
20 3276 20 5140 20 10-04 50 | 063
30 3440 30 5304 30 1168 | ¢4 o | 066
20 3604 40 5468 40 13-32 10 | 068
50 37-68 50 5632 50 14-95 gg 8:;1
4 0/0 393212 o1 5796 |20 o|3 1659 40 | 076
10 4096 10 5959 10 1823 50 | 079
20 4260 202 1923 20 1987 | 5 o | o082
40 4587 40 451 | * 40 23-14 20 | 087
50 47-51 50 615 50 2478 30 | 090
5 0[0 491513 o|2 778 |21 o3 2642 2| 088
10 5079 10 9:42 10 2806
20 52:42 20 1106 20 2970 || 6 0 | 098
30 5406 30 1270 30 3134 10 %gl
40 5570 40 1434 40 3297 0
50 57-34 50 1598 50 3461 01 s
6 0|0 5898114 o2 1761 |22 o3 3625 50 | 112
101 062 10 19:25 10 3789 |l v ol 115
20 2:25 20 20°89 20 3953 10 | 117
30 3-89 30 2953 30 4116 20 | 120
40 553 40 24°17 40 4280 30 | 123
50 717 50 2580 50 4444 ‘;3 %_'gg
7 0|1 881115 o2 2744 |23 03 4608 || ’
10 10-44 10 29-08 10 4772 8 %g}l
20 12:08 20 3072 20 49-36 20 | 137
30 13 i 1 30 32°36 30 5100 30 1:39
40 1536 40 3400 40 5263 20 | 142
50 1700 50 3564 50 5427 50 | 145
3 0| 147
10 | 150
20 | 153
30 | 136
40 | 138
50 | 161
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TABLE IIIL

Time into Arc and vice

versa.

or

16

020
24
28
32
36

0 40
44
48
52
56

10

12
16

120
24
28

36

140
44
48
52
56

20

12
16

28
32
36

48
52

3 0

ok of

WO U PpWOHO

36

3 40
44
48
52
56

4 ©

12
16

4 20
24
28
36

4 40

48
52

5 0

12
16

520
24

32
36

5 40
44
48
52
56

6 0

45
46
47
48
49

50
51
52
53

55
56
57
58
59

60
61
62
63
64

65
66
67
68
69

70
7
72
73
74

7%
76
77

79

80
81
82
83
84

85
86
87
88
89

90

7 20

7 40

920
91
92
93
94

95
96
97
98
99

100
101
102
103
104

105
106
107
108
109

110
111
112
113
114

115
116
117
118
119

120
121
122
123
124

125
126
127
128
129

130
131
132
133
134

135

h.
9

12
16
9 20
24
28
32

9 40

11 40

56

ok of

°

135
136
137
138
139

140
141
142
143
144

145
146
147
148
149

150
151
152
153
154

155
156
157
158
159

160
161
162
163
164

165
166
167
168
169

170
171
172
173
174

175
176
177
178
179

12 0 l 180
|

36
13 40
44
48
56
14 0
4
12
16
14 20
24
32
36
14 40
44
48

52
56

15 0

180
181
182
183
184

185
186
187
188
189

190
191
192
193
194

195
196
197
198
199

200
201
202
203
204

205
206
207
208
209

210
211
212
213
214

215
216
217
218
219

220
221
222
223
224

225

225
226
227
228
229

230
231
232
233
234

235
236
237
238
239

240
241
242
243
244

245
246
247
248
249

250
251
252
253
254

255
256
257
258
259

260
261
262
263
264

265
266
267
268
269

270




APPENDIX IIL 401

TABLE III.—Concluded.
Time into Arc and vice versa.

1LY 2 it Rk ¥ m. s. 2 Srmetis % 8. Z 8. ]
18 0270|121 0|35 (0 0| 0jJ2 0|30 0000| 01}2000]| 30
42M 4 | 316 1 1 4| 31 || 0:066 1| 2066 | 31
8 | 272 8 | 317 8 2| 8|32]| 0133 2 | 2133 | 32
12 | 273 12 | 318 12 3 12 | 33 || 0200 312200 |33
16 | 274 16 | 319 16 4 16 | 34 | 0-266 4 | 2266 | 34
18 20 | 275 | 21 20 | 320 || 0 20 5]220 |35 | 0333 5| 2333 | 35
24 | 276 24 | 321 24 6 24 | 36 || 0:400 6 | 2400 | 36
28 | 277 28 | 322 28 7 28 | 37 || 0-466 7 | 2:466 | 37
32 | 278 32 | 323 32 8 32 | 38 || 0:533 8 | 2533 | 38
36 | 279 3 324 36 9 36 | 39 || 0600 9 | 2:600 | 39
18 40 | 280 | 21 40 | 325 || 0 40 | 10 | 240 | 40 || 0°666 | 10 | 2666 | 40
44 | 281 44 | 326 44 |11 44 | 41 (| 0-733 | 11 | 2:733 | 41
48 | 282 48 | 327 48 | 12 48 | 42 || 0'800 | 12 | 2°800 | 42
52 | 283 52 | 328 52 | 13 52 | 43 || 0'866 | 13 | 2'866 | 43
56 | 284 56 | 329 56 | 14 56 | 44 || 00933 | 14 | 2'933 | 44
19 0[285]22 0330 |1 0|156|3 O} 45 | 1-000 | 15 | 3-000 | 45
4 | 286 4 | 331 4|16 4|46 || 1066 | 16 | 3066 | 46
8 | 287 8 | 332 8|17 S |47 | 1133 | 17 | 3°133 | 47
12 | 288 12 | 333 12 | 18 12 | 48 || 1200 | 18 | 3200 | 48
16 | 289 16 | 334 16 | 19 16 | 49 || 1266 | 19 | 3266 | 49
1920 | 290 | 22 20 | 335 || 120|200 |3 20|50 | 1-333 | 20 | 3-333 | 50
24 | 291 24 | 336 24 | 21 24 | 51 {| 1400 | 21| 3400 | 51
28 | 292 28 | 337 28 | 22 28 | 52 || 1466 | 22 | 3466 | 52
32 | 293 32 | 338 32 (728 32| 53 || 15633 | 23 | 3533 | 53
36 | 294 36 | 339 36 | 24 36 | 54 || 1°600 | 24 | 3600 | 54
1940 | 295 | 22 40 | 340 || 1 40 | 25 } 340 | 55 | 1666 | 25 | 3°666 | 55
44 | 296 44 | 341 44 | 26 44 | 56 || 1'733 | 26 | 3733 | 56
48 | 297 48 | 342 48 | 27 48 | 57 {| 1'800 | 27 | 3800 | 57
52 | 298 52 | 343 52 | 28 52 | 58 || 1866 | 28 | 3866 | 58
56 | 299 56 | 344 56 | 29 56 | 59 || 1933 | 29 | 3:933 | 59
20 0300 |23 0|{3456 |2 0 |30])4 O 60| 2:000| 30 | 4000 | 60
4 | 301 4 | 346
8 | 302 8 | 347 |7 Pl C L a e MW e A al
12 | 303 12 | 348
16 | 304 16 | 349
20 20 | 305 | 23 20 | 350
24 | 306 24 | 361
28 | 307 28 | 352
32 | 308 32 | 853
36 | 309 36 | 354
20 40 | 310 | 23 40 | 355
44 | 311 44 | 356
48 | 312 48 | 357
52 | 313 52 | 358
56 | 314 56 | 359

21 0315|124 0! 360

N.S.A. 3¢
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TABLE IV.
To change Decimals of a Day to Hours, Minutes, and Seconds, and
vice versa.
d. h. m. s m., s, 8. d. h. m. s. m. s. 8.
001 | 014 24 | O 864 | 009 | 051 | 12 14 24 | 7 2064 | 441
002 | 02848 | 01728 | 017 | 052 | 12 28 48 | 7 2928 | 4-49
003 | 04312 | 02502 | 02 | 053 | 12 43 12 | 7 3792 | 458
004 | 05736 | 03456 | 035 | 054 | 12 57 36 | 7 46:56 | 467
005 112 0 0 4320 043 0-55 13 12 0 7 5520 475
006 | 12626 | 051-84 | o052 | 056 | 13 26 24 | S 384 | 48e
007 | 14048 | 1 048 | 060 | 057 | 13 40 48 8 1248 | 492
008 | 16512 | 1 912 | 069 | 058 | 13 65 12 | 8 2112 | 501
009 | 2 93 | 117776 | 078 | 059 | 14 9 36 | 82076 | 510
010 2 24 0 1 26-40 086 060 14 24 0 8 3840 518
011 | 238 24 | 13504 | 095 | 061 | 14 38 24 | 8 4704 | 527
012 | 25248 | 14368 | 1004 | 062 | 14 52 48 | 8 5568 | 536
013 | 3 712 | 15232 | 112 | 063 | 15 712 | 9 432 | 5aa
014 | 3213 | 2 096 | 121 | 064 | 15 21 36 | 9 1296 | 553
015 | 33 0| 2 960 | 130 | 065 | 15 36 0 | 92160 | 562
0°16 3 60 24 2 1824 138 0°66 15 50 24 9 3024 570
0-17 4 4 48 2 2688 147 067 16 4 48 9 3888 579
018 | 419 12 | 23552 | 156 | 068 | 16 19 12 | 9 4752 | 588
019 | 43336 | 24416 | 164 | 069 | 16 33 36 | 9 56°16 | 596
0-20 4 48 0 2 52:80 173 0°70 16 48 0 10 4-80 6°05
021 | 5 22¢ | 3 144 | 181 | 071 | 17 2 2¢ | 10 1344 | 613
022 5 16 48 3 10-08 190 072 17 16 48 10 2208 6-22
0923 | 53112 | 31872 | 199 | 073 | 17 31 12 | 10 30-72 | 631
024 5 45 36 3 27°36 207 074 17 45 36 10 39-36 6°39
025 6 0 0 3 3600 216 075 18 0 0 10 4800 648
02 | 614 24 | 34464 | 225 | 076 | 18 14 24 | 10 5664 | 657
027 | 628 48 | 35328 | 233 | 077 | 18 28 48 | 11 528 | 665
028 6 43 12 4 192 242 0-78 18 43 12 11 1392 | 674
029 6 57 36 4 10°56 2°51 079 18 57 36 11 22-56 6°83
030 | 712 o | 41920 | 259 | 080 | 19 13 0 | 113120 | 691
031 | 7 26 24 4 2784 2°68 0-81 19 26 24 | 11 3984 700
032 7 40 48 4 3648 2°76 0-82 19 40 48 11 4848 708
083 | 75512 | 44512 | 285 | 083 | 19 55 12 | 1l 57°12 | 717
034 | 8 936 | 45376 | 294 | 084 | 20 936 | 12 576 | 726
0:35 8 24 0 5 240 3-02 085 20 24 0 | 12 1440 734
036 | 83824 5 1104 | 311 | 086 | 20 38 24 | 12 23:04 | 743
0-37 8 52 48 | 5 1968 3:20 | 087 | 20 52 48 | 12 31°68 752
038 | 9 7 12 5 28-32 328 0-88 21 7 12 ‘ 12 40°32 7°60
039 9 21 36 5 3696 337 0-89 21 21 36 12 4896 769
040 | 93 0| 54560 | 346 | 090 | 21 36 0 | 12 5760 | 778
041 | 950 2¢ | 55424 | 354 | 091 | 21 50 24 | 13 624 | 786
042 |10 448 | 6 288 | 363 | 002 | 22 4 48 | 13 1488 | 795
043 | 10 19 12 6 11:52 3-72 0-93 22 19 12 13 2352 804
044 | 10 33 36 | 62016 | 380 | 094 | 22 33 36 @ 13 3216 | 812
045 |10 48 ©0 | 6 2%:80 | 889 | 095 | 22 48 0 | 13 4080 | 821
0-46 ' 11 2 24 6 3744 3-97 096 23 2 24 13 4944 829
047 |11 16 48 | 6 46:08 | 406 | 097 | 23 16 48 13 5808 | 838
048 | 11 31 12 6 54°72 4°15 0-98 23 31 12 14 672 8°47
049 |11 45 36 | 7 336 | 423 | 099 | 23 45 36 14 1536 | 866
050 (12 0 © 7 1200 4-32 1-00 24 0 O 14 24°00 864
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TABLE V.

Qreenwich Mean Time of the Beginning of the Adopted Solar Year from
1900 {0 2000.—Mean Longitude of the Moow’s Node and Perigee.—
Moon’s Mean Longitude.

Begin- | Long. Long s Begin- Long. Long. (s
Year. | Ming of Qs s Mean Ny ning of (s QCs Mean
Solar Node. |Perigee.| Longi- 7 Solar Node. |Perigee.| Longi-
Year. Q I tude. Year. Q o tude.

Jan. o o o Jan. o o o
1900 | 0:313 | 259°16 | 3344 | 2746 || 1950 0423 12-11 | 2088 | 634
01 0556 | 23982 150 | 471 51 0666 | 352-77 | 2495 | 196°0
02 [ 0-798 | 22048 | 557 | 179°7 {| 19528 | 0°908 | 333-43 | 2902 | 328°5
03 1-040 | 20114 | 964 | 3123 53 0°150 | 314-09 | 3309 | 101'1
19048 | 1-282 | 18180 | 1371 84-9 54 0:392 | 29475 | 116 | 2337
05 | 0-52¢ | 16246 | 1778 | 2175 55 0:634 | 27541 | 523 63
06 | 0767 | 143-12 | 2185 | 3500 || 19568 | 0-877 | 256-07 | 930 | 1388
07 1:009 | 123-78 | 259-2 | 1226 57 0-119 | 23673 | 1337 | 2714
19088 | 1+251 | 10444 | 299°9 | 2552 58 0:361 | 217-38 | 1744 | 440
09 | 0493 | 8509 | 3406 | 278 59 0:603 | 19804 | 2150 | 1766
10 | 0735 | 6575 | 21'3 | 160°3 || 19608 | 0°'845 | 17870 | 2557 | 309°1

11 | 0978 | 46-41 | 61'9 | 2929 61 0-088 | 159°36 | 2964 | 817
19128 | 1220 | 2707 655 62 0-330 | 140°02 | 3371 | 2143
13 | 0-462 773 198°1 63 0572 | 120°68 | 17°8 | 3469
14 | 0°704 | 348-39 | 184°0 | 3306 || 19648 | 0'814 | 10134 | 585 | 1194
15 | 0'946 | 329-05 | 2247 | 103-2 65 0056 | 8200 | 992 | 2520
19162 | 1-189 | 30971 | 2654 | 2358 66 0299 | 6266 | 1399 | 246
17 | 0431 | 290°37 | 306°1 84 67 0-541 | 4332 | 1806 | 157-2
18 | 0673 | 271-03 | 346°S | 1409 || 19688 | 0-783 | 2397 | 221-3 | 289-8
19 | 0915 | 25168 | 275 | 2735 | 69 0025 463 | 2619 | 623
19208 | 1157 | 23234 | 682 | 46°1 70 0:267 | 34529 | 3026 | 1949
21 | 0400 | 213:00 | 108-8 | 1787 7l 0510 | 325°95 | 3433 | 3275
22 | 0°642 | 193:66 | 149-5 | 3112 || 1972B | 0°752 | 30661 | 24-0 | 1001
23 10884 | 174-32 | 1902 | 838 73 |-0006 | 287-27 | 6477 | 2326
19248 | 1126 | 154°98 | 230-9 | 2164 74 0236 | 267-93 | 1054 52
25 | 0368 | 135'64 | 2716 | 3490 75 0:478 | 24859 | 146°1 | 137-8
26 | 0611 | 11630 | 312:3 | 1216 | 19768 | 0-720 | 22925 | 186'8 | 2704
27 0833 | 96°96 | 3530 | 254°1 77 |-0037 | 20991 | 2275 | 42°9
1928s | 14095 | 7762 | 337 | 267 78 0205 | 190°36 | 2682 | 1755
29 | 0337 | 5827 | 7441593 79 0°+447 | 171-22 | 3088 | 308-1
30 | 0579 | 3893 | 115°0 | 2919 | 1980B | 0-689 | 15188 | 3495 | 807
31 | 0822 | 1959 | 1557 | 644 81 [_0069 | 13254 | 302 | 2132
19328 | 1-064 025 | 1964 | 1970 82 0174 [ 11320 | 709 | 345°8
33 | 0306 | 34091 | 2371 | 3296 83 0416 | 9336 | 1116 | 118+4
34 | 0548 | 32157 | 277-8 | 1022 || 19848 | 0658 | 7452 | 152-3 | 2510
35 | 0°790 | 30223 | 3185 | 2347 85 (-0'100 | 5518 | 1930 | 235
19368 | 1-033 | 28289 | 3592 73 86 0142 | 3584 | 233'7 | 156°1
37 | 0275 | 263°55 | 399 | 139-9 87 0385 | 16°50 | 2744 | 2887
38 | 0°517 | 244:21 | 80'6 | 272'5 | 19888 | 0627 | 357°15 | 315°0 | 61°3
39 [ 0759 | 22486 | 1213 | 450 89 (-0°131 | 337'81 | 355°7 | 1939
19408 | 1-001 | 20552 | 1619 | 1776 90 0-111 | 318-47 | 36'4 | 3264
41 | 0244 | 186°18 | 202'6 | 3102 91 0353 | 299°13 | 771 | 990
42 | 0-486 | 16684 | 243-3 | 828 | 19928 | 0596 | 279-79 | 117-8 | 2316
43 | 0728 | 14750 | 2840 | 215°3 93 |-0-162 | 260°45 | 1585 42
19448 | 0-970 | 128°16 | 3247 | 3479 94 0°080 | 241°11 | 199-2 | 1367
45 | 0212 | 108 82 54 | 120°5 95 0322 | 22177 | 2399 | 2693
46 | 0455 | 89:48 | 46°1 | 2531 || 1996B | 0°564 | 20243 | 2806 | 419
47 | 0697 | 7014 [ 868 | 257 97 |-0193 | 183-09 | 321-3 | 1745
488 | 0939 | 50-80 | 1275 | 158-2 98 | "0°049 | 16374 1-9 | 3070
49 | 0181 | 31+45 | 168-2 | 290-8 99 0291 | 14440 | 426 | 796
1950 | 0-423 | 12-11 | 2088 | 634 || 20008 | 0533 | 125°06 | 83-3 | 2122

el
)
& D
w S
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TABLE VI
Motions of Moon’s Node, Perigee, and Mean Longitude.

| Motion of
S]i;i:;;al Solar Date.
‘ o u q
o o o

v Jan., 00 -0000 | + 0-00 + 000
10 10-0 0528 | 1-11 13140
20 19:9 1-056 229 262-81
30 299 1584 | 3-33 34-21
40 Feb. 89 2:112 444 165°62
50 189 2640 555 29702
60 288 3169 667 6843
70 Mar. 10-8* 3697 778 199-83
80 20-8* 4225 §-89 331-24
90 30-8* 4753 10-00 102-64
100 Apr. 97* 5281 11-11 234:04
110 10 5809 . 12-22 545
120 29-7* 6337 1333 136-85
130 May 96* 6865 1444 26826
140 19-6* 7:393 1555 3966
150 29-6* 7-921 16°66 17107
160 June 86* 8-450 17-78 302-47
170 18:5* 8978 18-89 7388
180 28-5* 9-506 20 00 205°28
190 July 8:5* 10-034 21°11 336-68
200 18:5* 10-562 20599 108-09
210 28-4* 11090 23-33 23949
220 Aug. T74* 11618 24-44 10-90
230 17-4* 12°146 2555 142:30
240 P73 12674 2666 27371
250 Sept. 6:3* 13202 2777 45°11
260 16-3* 13-730 28-89 176-52
270 26-3* 14259 30-00 30792
280 Oct. ' 6-2* 14-787 3111 7933
290 16-2* 15-315 32-22 210-73
300 26-2* 15843 33-33 342°13
310 Nov. 5-2* 16-371 34-44 11354
320 15°1% 16899 35°55 244-94
330 25°1* 17-427 3666 16-35
340 Dec. 5°1* 17-955 3777 14775
350 15-0* 18483 38-88 27916
360 25-0* 19-011 4000 50°56
370 35-0* — 19540 +41°11 +18197

* In Bissextile years, the dates after March 1 are to be diminished one day.
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TABLE VII.
Motion of Moon’s Mean Longitude for Tenths of a Day.
Days Motion of Days Motion of
(Sidereal). q (Sidereal). q
o o
00 0-00 50 65°70
01 131 51 67°02
02 2-63 52 6833
03 394 53 .69°64
04 526 54 70-96
05 6°57 55 7227
06 7-88 56 7359
07 9-20 57 7490
08 10-51 58 76-21
09 11-83 59 7763
10 13:14 60 78-84
11 1445 6°1 80°16
12 1577 6-2 81-47
13 17-08 63 8279
14 18-40 64 84:10
15 19-71 65 85-41
16 2102 66 86-73
17 2234 67 8804
18 2365 68 89-36
1-9 2497 69 9067
2:0 2628 70 9198
2:1 2760 7/l 93:30
22 28-91 72 9461
2:3 3022 73 9593
24 3154 74 9724
25 3285 75 9855
26 3417 76 99-87
27 3548 77 101-18
28 36-79 78 10250
29 38°11 79 103-81
30 3942 80 105-12
31 4074 81 106-44
32 4205 82 10775
33 43-36 83 109-07
34 44°68 84 110-38
35 4599 85 111-69
36 4731 86 113-01
37 4862 87 11432
38 49-93 88 11564
39 5125 8-9 116-95
40 52566 9:0 118-26
41 53-88 9-1 119-58
4-2 5519 9:2 120-89
43 56-50 93 122-21
44 5782 94 123-52
45 5913 95 124-83
46 6045 96 12615
47 61-76 97 12746
48 63-07 98 123-78
49 6439 99 130°09
50 65°70 100 13104
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TABLE VIIL
Centennial rates of the precessional motions from 1750 to 2000.

Motion in R.A. Polar Motion.
Date. -
me ne log ne e, log ne
s, s. &
1750 306955 133-731 2-126 232 200596 3-302 323
1775 307-:001 133-717 2-126 186 200575 3302277
1800 307-048 133-703 2-126 140 200554 3:302 231
1825 307°:094 133689 2-126 094 2005-32 3-302 185
1850 307141 133674 2°126 048 2005-11 3:302 139
1875 307°187 133660 2126 001 2004-90 3:302 092
1900 307234 133646 2-125 955 2004°68 3:302 046
1925 307280 133632 2:125 909 2004-47 3:302 000
1950 307-327 133617 2:125 863 200426 | 3301 954
1975 307373 133603 2:125 817 200404 | 3-301 908
2000 307420 133:589 - ! 2-125 771 200383 l 3301 862
= Luni-solar General | Precession from Motion of Ecliptic.
Precession. Precession. in R.A., X' l in Long., A’ cos e
» : f
1750 5036”34 502230 157-30 14"-03
1775 5036 47 5022 -86 14 -83 13 -60
1800 5036 -59 5023 41 14 -36 13 ‘17
1825 5036 71 | 5023-97 | 1389 ( 12 74
1850 5036 84 5024 53 13 42 1 12 -31
1875 5036 ‘96 5025 -08 12 ‘95 | 11 -88
1900 5037 08 5025 64 12 48 11 45
1925 5037 21 5026 19 12 -00 11 -02
1950 5037 33 5026 75 11 -53 10 -58
1975 5037 45 5027 31 11 -06 i 10 ‘15
2000 5037 -58 5027 -86 10 *59 ‘ 9 72
|

Formulae for the annual precessions.

In R.A,,
In Dee.,

where

D;,s: 08'-

P.=m+mnsin o tan g,

Ps =1 COS L,

m =m,+100; n=mn.+ 100.
Formulae for the centennial precessions.
(Same as for the annual precessions, using m. for m and =, for n.)
Centennial variations of the centennial variations of a and 3.

Dio= Co+ A(Pac+ 21a) cOS O
+ B(psc + 2ps) sin ot
+[4°9866 — 10]pap2s tan 6,

9:1637 - 10
—[6-7367 — 10] pa sin 26,

(Pac+ 2pa) sin oL

where u, is the centennial proper motion of o in seconds of time,
ps that-of 8 in seconds of are, and 4, B, C, and C; are to be taken

from the following tables.

(Compare §146.)
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TABLES FOR COMPUTING THE SECULAR VARIATIONS OF
THE CENTENNIAL PROPER MOTIONS OF THE STARS.

TABLE IX.

Dec. |Log. A.|Log. B.| Dec. |Log. A.{Log. B.| Dec. |Log. A.|Log.B.
05 On Wi 5T 681151 7 0| 7-0767 I 6:8180 | 14 O | 7-3844 | 68377
10 | 54513 8115 10 0871 l ‘8183 10 3897 *8383

20 | 57524 | 8115 20| -0972 -8186 20 | 3950 | 8390

30 | 59285 8115 30 -1070 -8190 30 4003 ‘8396

40 | 6:0534 8116 40 1167 -8193 40 4054 *8403

50 1503 ‘8116 50 1261 -8196 50 *4106 -8409

1 062295 | 68116 | 8 0| 71354 6'8200 |15 O | 74157 | 68416
10 2965 ‘8117 10 ‘1445 8204 10 4207 ‘8423

20 *3545 ‘8117 20 1534 *8207 20 4257 *8429
30| +4057 | -8118 30| 1621 | -8211 30 | -4306 | 8437

40 4514 ‘8119 40 1707 8215 40 *4355 ‘8444

50 4929 ‘8119 50 1791 8219 50 ‘4403 ‘8451

2 065307 | 68120] 9 0O} 71873 | 68223 | 16 O | 7-4451 | 68458
10 *5655 ‘8121 10 1954 ‘8227 10 *4498 *8465

20 *5977 ‘8122 20 2034 8231 20 *4545 ‘8473

30 6277 8123 30 2112 ‘8235 30 *4592 *8480

40 6558 8124 40 -2189 8239 40 *4638 *8488

50 6821 ‘8126 50 *2265 ‘8244 50 *4684 -8495

3 067070 | 68127 110 O 72339 | 68248 117 0 | 74729 | 6'8503
10 7305 -8128 10 2412 8252 10 4774 ‘8511

20 7528 8130 20) 2485 8257 20 4819 ‘8519

30 7741 -8131 30 2556 ‘8262 30 4863 8527

40 7943 ‘8133 40 +2626 *8266 40 4907 ‘8535

50 8137 ‘8134 50 2695 +8271 50 *4951 8543

4 068322 6813611 O 72763 | 6:8276 | 18 0 | 7:4994 | 68551
10 8500 ‘8138 10 2829 ‘8281 10 *5037 8559

20 ‘8671 -8140 20 *2896 8286 20 *5079 *8567

30 | 88361 8142 30| -2961 | -8291 30| 5121 | -8576

40 ‘8994 ‘8144 40 3025 *8206 40 *5163 ‘8584

50 ‘9148 ‘8146 50 *3088 8302 50 *5205 ‘8593

5 0| 69296 | 68148 112 O 73151 | 68307 | 19 O | 7-5246 | 68602
10 ‘9439 ‘8150 10 3212 ‘8312 10 5287 .| 8610

20 9577 8153 20 *3273 8318 20 | ‘5327 ‘8619

30 9712 8155 30 *3334 *8323 30 5367 8628

40 0842 ‘8158 40 *3393 *8329 40 5407 8637

50 | 6-9969 ‘8160 50 *3452 8335 50 5447 8646

6 0| 70092 | 68163 |13 O 7:3510 | 68341 | 20 O | 75487 | 68655
10 0212 ‘8165 10 *3567 ‘8346 10 5526 | 8665

20 -0329 *8168 20 *3624 8352 20 5565 ‘8674

30 ‘0443 ‘8171 30 *3680 *8358 30 5603 *8683

40 ‘0554 ‘8174 40 3735 ‘8364 40 5642 ‘8693

50 | -0662 | -8177 50 | -3790 | -8371 50 | 3680 | ‘8703

7T 0] 70767 | 68180114 O | 7-3844 | 68377 | 21 O | 7-5718 | 6-8712
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TABLE IX.—Continued.

Dec. |Log. A.|Log. B.| Dec. [Log. A.|Log.B.| Dec. |[Log. A.|Log.B.
21 O 75718 | 68712129 O 77314 | 69279 | 37 O | 7-8647 | 7-0068
10 | -56765 | -8722 10 | 7343 ‘9293 10 |. 8673 *0087

20| 5793 | -8732 20 | 7373 *9307 20 | -8700 | -0106

30| 5830 | 8741 30| 7402 *9321 30 | 8726 ‘0126

40 | 5867 *8751 40 | 7432 | 9335 40 | 8752 ‘0145

50 | 5904 | -8762 50 | 7461 ‘9350 50 | 8778 ‘0165

22 0| 75940 | 68772130 O | 77490 | 6:9364 | 38 O | 7-8804 | 7:0184
10 | 5976 | -8782 10 | 7520 | -9379 10 | -8830 0204

20 ‘6012 | 8792 20 | ‘7549 | 9394 20 8856 | 0224

30 | 6048 | -8803 30 | 7577 *9409 30 ‘8882 | 0244

40 | ‘6084 | -8813 40 | 7606 ‘9424 40 ‘8908 0264

50 [ -6119 '8824 50 | 7635 ‘9439 50 | 8934 | 0285

23 0| 76155 68834 |31 0| 7°7664 | 69454 | 39 O | 7-8960 | 7-0305
10| +6190 | -8845 10 | 7692 9469 10 | -8986 | -0325

20 | 6224 | -8856 20 | 7721 "9484 20 | 9011 0346

30 [ 6259 | -8867 30 [ 7749 ‘9500 30 | 9037 0367

40 | 6293 ‘8878 40 | 7778 9515 40 | -9063 ‘0388

50 | 6328 | -8889 50 | 7806 *9531 50 | 9088 | -0409
24 0| 76362 | 68900 |32 0| 77834 | 69547 | 40 O | 7-9114 | 7-0430
10| -6396 | -8912 101 7862 | 9562 10 | -9140 | -0451
20 | -6429 | -8923 20 | -7890 | -9578 20 | -9165 0473

30 | 6463 | 8935 30 | 7918 ‘9594 30 | 9191 0494

40 | 6496 | 8946 40 | 7946 ‘9611 40 ‘9217 0516

50 | 6530 | ‘8958 50 | 7973 | -9627 50 9242 | 0538
25 0| 76563 | 6:8969 |33 O | 7'8001 | 69643 | 41 O | 79268 | 7-0559
10 | -6596 | -8981 10 | -8029 *9660 10 | -9293 | -0581

20 | -6628 ‘8093 20 | 8056 | 9676 20} -9319 0604

30 | 6661 9005 30 | 8084 9693 30| 9344 | -0626

40 | 6693 | 9017 40 | 8111 9710 40 | 9370 | -0648

50 6726 | 9030 50 | 8139 | -9727 50 | <9395 | 0671

26 0| 76758 | 69042 | 34 O | 7'8166 | 6:9744 | 42 0 | 7°9420 | 7-0694
10 6790 | 9054 10 | 8193 9761 10 | ‘9446 | 0716

20 ( -6822 | -9067 20 | 8220 | -9778 20 | 9471 0739

30 | 6853 | -9079 50 ‘8247 ‘9795 30 | 9497 | -0762

40 | 6885 | -9092 40 | 8274 | -9813 40 | 9522 | -0786

50 | 6916 ‘9105 50 | 8301 ‘9830 50 | 9547 | -0809

27 0] 76948 | 69117 | 35 O | 78328 | 6-9848 | 43 O | 79573 | 7-0832
10 [ 6979 | -9130 10 | -8355 ‘9865 10 1 9598 | -0856

20| 7010 | -9143 20 | 8382 | 0883 20 | 9623 | -0880

30 | -7041 ‘9156 30 | -8409 | -9901 30 | 9648 | 0904

40 | 7072 | -9170 40 | 8435 *9919 40 | 9674 | °0928

50 | 7102 | -9183 50 | ‘8462 | 9938 50 | -9699 | 0952

28 0| 7-7133 | 69196 | 36 0 | 7'8489 | 6'9956 | 44 O | 7-9724 | 7°0976
10 7163 | 9210 10 | 85156 | 9974 10 [ -9750 | -1001

20 [ 7193 | 9223 20 | 8542 | 6°9993 20| 9775 | 1025

30 | 7224 | -9237 30 | 8568 | 7-0011 30 9800 | *1050

40 | 7254 | -9251 40 | -8594 | -0030 40 | 9825 | -1075

50 | 7284 | 9265 50 *8621 ‘0049 50 | 9851 1100
29 0 77314 692719137 O | 78647 | 70068 | 45 O | 79876 | 7-1125




APPENDIX III. 409
TABLE IX.—Continued.

Dec. |Log. A. | Log. B.| Dec. ‘ Log. A. | Log. B.| Dec. |Log. A.| Log. B.
45 0| 79876 | 71125153 O | 81105} 7-2526 | 61 O | 82438 | 74404
10 9901 ‘1151 10 1131 *2559 10 2468 | +4449

20 9927 1176 20 | 1158 2593 20 2498 | 4495

30 9952 1202 30 | -1184 2627 30 2528 4542

40 | 7-9977 1228 40 l *1210 2661 40 2559 4588

50 | 8-0002 1253 50 1237 2696 50 2589 ‘4635

46 0| 80028 | 7-1280 | 54 O | 81263 | 72731 | 62 O | 82619 | 7-4683
10 ‘0053 -1306 10 1290 2766 10 *2650 4731

20 0078 1332 20 1317 2801 20 2680 4779

30 0104 *1359 30| 1343 2836 30 2711 4827

40 | 0129 | -1385 40 | 1370 | -2871 40 | 2742 | 4876

50 ‘0154 1412 50 1397 2907 50 2773 4925

47 0 80179 | 7'1439 |55 O | 81424 | 72943 | 63 0 | 8-2804 ‘ 74974
10 0205 -1467 10 1451 2979 10 2836 *5024

20 ‘0230 1494 20 *1478 3016 20 2867 | 5074

30 0255 1521 30 1505 +3052 30 2899 | ‘5124

40 0281 1549 40 1532 3089 40 2930 j 5175

50 ‘0306 1577 50 1559 -3126 50 2962 | 5227

48 0| 80332 | 7'1605 | 56 O | 8°1586 | 7-3164 | 64 O | 82994 7'5278
10 ‘0357 *1633 10 1613 *3201 10 3026 5330

20 0382 1661 20 1641 *3239 20 3059 5383

30 0408 -1689 30 -1668 3277 30 3091 5435

40 ‘0433 ‘1718 40 *1696 +3316 40 3124 ‘ 5488

50 0459 ‘1747 50 1723 *3354 50 3156 5542

49 0| 80484 | 71776 | 57 O | 81751 | 7-3393 | 65 O | 8-3189 | 7-5596
10 *0510 +1805 10 1779 *3432 10 3222 5650

20 0535 +1835 20 1806 3471 20 +3256 *5705

30 0561 1864 30 1834 3511 30 3289 | 5760

40 ‘0587 1894 40 1862 *3550 40 3323 | 5816

50 | 0612 | -1923 50 | -1890 | 3591 50 | 3356 | 5872

50 O | 80638 | 71954 | 58 O | 81918 | 7-3631 | 66 O | 8:3390 @ 75929
10 ‘0664 +1984 10 *1946 *3671 10 -3424 5986

20 *0689 2014 20 1974 3712 20 3459 6043

30 0715 2045 30 2003 *3753 30 +3493 ‘6101

40 0741 2076 40 2031 3795 40 3528 | 6159

50 ‘0766 2106 50 2060 -3836 50 3562 6218

51 O | 80792 | 72138 |59 O | 82088 7:3878 { 67 O | 83597 | 7-6277
10 ‘0818 *2169 10 2117 +3920 10 *3633 6337

20 ‘0844 2200 20 2146 3963 20 *3668 ‘6397

30 ‘0870 2232 30 2175 4006 30 3704 6458

40 ‘0896 2264 40 2203 4049 40 *3740 6519

50 | 0922 | 2296 50 | 2232 -4092 50 | 3776 | 65681

52 0| 80048 | 72328 | 60 O | 8:2262 | 74136 | 68 O | 83812 | 7-6643
10 ‘0974 2361 10 2291 *4180 10 3848 6706

20 +1000 2393 20 2320 | 4224 20 *3885 6770

30 | -1026 | 2426 30 | 2350 | 4268 30| -3922 | 6833

40 | 1052 | 2459 40 | 2379 | 4313 40 | 3959 | 6898

50 1079 2492 50 2409 4358 50 *3997 6963

53 O 81105 | 72526 | 61 O | 82438 | 74404 | 69 O | 84034 | 7-7028




410 APPENDIX III
TABLE IX.—Concluded.

Dec. |Log. A.|Log. B.| Dec. |Log. A.|Log.B.| Dec. |Log. A.|Log. B.
69 0| 84034 | 7-7028 | 76 O | 8:5908 | 8:0441 | 83 O | 88985 | 86397
10 | 4072 | 7094 10 | -5962 | -0543 10 | -9090 | 6605
20 | 4110 | -7161 20 | 6017 | 0647 20| ‘9198 | -6819
30 | -4149 | -7228 30| -6072 [ 0751 30 | -9309 | -7038
40 | 4187 | -7296 40 | -6128 | 0857 40 | 9423 | -7263
50 | 4226 | -7365 50 | 6185 | -0965 50 | 9540 | 7493
70 0| 84265 | 77434 |77 0| 86242 | 81073 } 84 O | 8:9660 | 87730
10 | 4305 | 7504 10 | 6300 | -1183 10 | 9783 | ‘7974
20 | 4345 | 7574 20 | 6359 | ‘1295 20 [ 89910 | -8225
30 | 4385 | -7645 30| -6418 | -1408 30 | 90040 | -8484
40 | 4425 | 7717 40 | 6479 | 1523 40 | 0175 | -8750
50 | 4465 | 7789 50 | 6540 | -1639 50 | -0313 | 9025
T1 O 84506 | 77862 |78 O | 86601 | 81757 | 85 O | 90456 | 8-9309
10 | 4547 | 7936 10 | 6664 | -1877 10 [ -0604 | -9603
20 ¢ -4589 | ‘8010 20| -6727 | 1999 20 [ -0758 | 8-9907
30 | 4631 *8085 30 | -6791 2122 30| -0916 | 9-0222
40 | -4673 | ‘8161 40 | -6856 | 2247 40 | -1081 | 0549
50 | -4715 | -8238 50 [ 6923 | -2374 50 | -1252 | 0889
72 0| 84758 | 78315 |79 0| 86989 | S$:2503 | 86 O | 9:1430 | 9-1243
10 | -4801 ‘8394 10 | -7057 | 2634 10 | 1615 | -1612

20 | 4845 | 8472 20 ! -7126 | -2767 20 | -1809 | 1998

30 | -4889 | -8552 30| 7196 | -2902 30| -2011 | -2401
40 | -4933 8633 40 | -7267 | -3040 40 | 2224 | -2825

50 | -4978 8714 50 | -7340 | -3180 50 | 2447 | 32T

73 0| 85023 | 7-8796 | 80 O | 87413 | 83322 | 87 0 | 92682 | 9-3739
10 | 5068 | ‘8879 10 | 7487 | -3466 10 | 2931 | -4235

20 | -5114 ‘ ‘8963 20 | 7563 | -3613 20 | 3194 | -4761

30 | -5160 | ‘9048 30 | -7640 | 3763 30 | 3475 | 5321
40 | 5207 | 9134 40 [ 7718 | -3915 40 | 3775 | -5920

50 | 5254 ’ 9221 50 [ 7798 | -4070 50 [ -4097 |. -6564

74 0| 85301 79308 | 81 O | 87879 | 8-4228 1 88 0 | 94445 | 97259
10 | 5349 | -9397 10 | -7961 ‘4389 10 | 4823 | 8014

20 | -5397 | 9486 20 | -8045 | 4554 20 | 5238 | 8842

30 | -5446 | -9577 30 | -8131 4721 30 5695 | 9:9757

40 | 5495 | 9669 40 | -8218 | -4892 40 6207 | 0-0779

50 | 3545 | ‘9761 50 | -8307 | -5066 50 6787 | ‘1939

75 0| 85595 l 79855 | 82 O | 88398 | 8:5244 | 89 0 | 97457 | 0-3278
10 | 5646 | 9950 10 [ 8491 | 5426 10 | 8249 | 4861

20 | -5698 @ 8°0046 20 | -8585 | 5611 20 | 99218 | 6799

30 [ 5749 | -0143 30| -8682 | -5801 30 | 0:0467 | 09298

40 [ -5802 ‘ ‘0241 40 | 8780 | -5995 40 | -2228 | 12820

50 | 5855 | *0341 50 | 8881 6194 50 | 0-5239 | 1-8840

76 0| 85908 80441 |83 0| 88985 | 86397 | 90 0 |..coevoiniifieennnns




APPENDIX III 411

TABLE X.
Ann. Prec. Ann. Pree. Ann, Prec.
mRA, Co W G - in Dee. Ce.
8. N 8. 8. R [ & @
-20 +0°402 +30 +0° ‘190 -20 +0-85
-19 -398 31 ‘185 -19 81
-18 -394 32 ‘181 -18 77
-17 +0°389 33 +0°177 =0y +073
-16 -385 34 ‘173 -16 68
-15 -381 35 -168 -15 64
] +0°-377 36 +0-164 -14 +0-60
= N -372 37 -160 -13 -56
12 -368 3-8 -156 -12 -51
-1 +0-364 39 +0°151 -1 +0°47
-10 -360 40 ‘147 -10 43
-09 -355 41 ‘143 S -39
-08 +0-351 42 +0°139 = £ +0°34
—-07 -347 43 ‘134 =] 30
-06 -343 44 -130 =56 26
-0'5 +0°338 45 +0°126 -5 +0-22
~04 334 46 122 = 217
-03 -330 47 7 %3 13
-02 +0°326 48 +0°113 — ) +0-09
-01 -321 49 109 = 04
00 -317 50 ‘105 0 00
+0°1 +0-313 51 +0°100 + 1 -004
0-2 -309 52 -096 2 -09
03 -304 53 -092 3 ‘13
04 +0°300 54 +0-088 4 -017
05 296 55 -083 5 9292
06 292 56 -079 6 26
07 +0287 57 +0°075 7 -030
08 283 58 071 8 34
09 279 59 -066 9 -39
10 +0275 60 +0-062 10 -043
11 270 61 058 11 47
12 266 62 054 12 51
e +0°262 63 +0-049 13 —056
14 -258 64 045 14 60
15 253 65 041 15 64
16 +0°249 66 +0-037 16 -068
17 245 67 -032 17 73
18 241 68 -028 18 7
19 +0236 69 +0024 19 -081
2:0 932 70 -020 +20 085
21 -298 71 -015
22 +0224 72 +0-011
23 219 73 007
24 215 74 +0-003
2:5 +0-211 75 ~-0:002
26 -207 76 - 006
27 202 77 - 010
28 +0°198 7'8 -0-014
2-9 ‘194 79 —~ +019
+30 +0°190 +80 -0:023




APPENDIX IV.

CONSTANTS AND TABLES FOR THE TRIGONOMETRIC
REDUCTION OF MEAN PLACES OF THE STARS.

I.—General Expressions for the Constants of Reduction.

The counstants {, # and 6, of which the general expressions follow,
fix the position of the mean equator and equinox at an epoch 7,+ 7
relative to their positions at an initial epoch 7. T is the interval
between the two epochs, expressed in terms of 100 solar years, or
36524-22 days, as the unit of time.

The geometric meaning of these constants may be gathered from
the chapter on Precession, §§ 127-131, in which they are developed.
The expressions for initial epochs intermediate between those given
can be found by interpolation.

In using the numbers {, 2, and ¢ to reduce mean places of stars,
the latter are supposed to be given for the initial epoch, and the
problem is to reduce them to the epoch 1))+ 7, which may be earlier

or later. For cases when the initial epoch is earlier than 1850, the
general expressions may be extended by carrying the -coef