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PREFACE 

'^J'Y  object  in  writing  ihifi  Tract  wam  to  collect  into  a  single 
"*•  volume   those   propositions   which   are    employed    in   the 

oourBe  of  a  rigorous  proof  of  Cauchy's  theorem,  together  with 
a  brief  account  of  some  of  the  applications  of  the  theorem  to 

the  evaluation  of  definite  integrals. 

My  endeavour  has  been  to  place  the  whole  theory  on  a 

definitely  arithmetical  basis  without  appealing  to  geometrical 

intuitions.  With  that  end  in  view,  it  seemed  necessary  to 

include  an  account  of  various  propositions  of  Analysis  Situs, 

on  which  depends  the  proof  of  the  theorem  in  its  most  general 

form.  In  proving  thene  propositions,  I  have  followed  the  general 

course  of  a  memoir  by  Ames ;  my  indebtedness  to  it  and  to  the 

textbooks  on  Analysis  by  Ooursat  and  by  de  la  Vall^  Poussin 

will  be  obvious  to  those  who  are  ac(fuainted  with  those  works. 

I  must  express  my  gratitude  to  Mr  Hardy  for  his  valuable 

criticisms  and  advice ;  my  thanks  are  also  due  to  Mr  Littlewood 

and  to  Mr  H.  Townshcnd,  B.A.,  Scholar  of  Trinity  College,  for 

their  kindness  in  reading  the  proofs. 

O.  N.  W. 

Trinity  Collbgk, 

Frhmary  1914. 
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INTRODUCTION 

1.  TiiRoi'oiiouT  the  tract,  wherever  it  has  seemed  Advisable,  for 
the  ttake  uf  cleamosK  and  brevity,  to  uae  Uie  la»Kuage  of  geometry, 
I  have  not  liesitated  to  do  so ;  but  the  reader  should  convince  himself 

that  all  the  arguments  employeil  in  Chapters  I— IV  are  really  arith- 
metical arguments,  and  are  not  baneil  on  geometrical  intuitions.  Tliiia, 

DO  OM  is  made  of  the  geometrical  conception  of  an  angle  ;  when  it  is 
neoenary  to  define  an  angle  in  Chapter  I,  a  purely  analytical  definition 
is  given.  The  fundamental  theorems  of  the  arithmetical  theory  of 
liroitA  are  a^tumed. 

A  number  of  obvious  theorems  are  implicitly  left  to  the  reader ; 

eg.  that  a  circle  is  a  '  simple '  curve  (the  coordinates  of  any  point  on 
ji*  +  y  -  1  may  be  written  x  =  cos  ̂   ̂   =  sin  /,  0  ̂   <  ̂   2») ;  tliat  two 

*  simple '  curves  with  a  common  end-point,  but  with  no  other  common 

point,  together  fonu  one  '  simple '  curve  ;  and  several  others  of  a  like nature. 

It  in  t4>  \tc  noted  ttuit  aluKiKt  all  the  diffictilticH,  whieli  arixc  in  thoae 

pn>)»lcuut  of  AHotjftit  iSV/uj  which  arc  liiHcuKHed  in  Chiipter  I,  disappear  if  tho 

ctin'OH  wliich  arc  em  ployed  in  the  following  chapterH  arc  rcHtricted  to  he 

Ktraight  lines  <ir  cin-leH.  This  fiu-t  in  of  houic  pnu.-tiail  in))>ortiiiice,  Hiiiue,  in 
appliuatioiiM  of  CattchyH  Theorem,  it  is  iiMiially  iMMwihle  to  employ  only  straight 
liiKM  aiMl  circular  hjkh  uh  cout4>iirH  <»f  integration. 

2.     Notation.    If  ;  be  a  complex  number,  we  shall  invariably  writ« 

where  x  aiul  tf  are  real ;  with  this  definition  of  .r  and  y,  we  write' 

x=y?(x),    y  =  /(«). 

If  a  complex  number  be  denote<l  by  z  with  some  suffix,  it^  real  and 

imaginar>'  partii  will  be  denoted  by  x  and  y,  rw»i»ec lively,  with  the  same 
suffix ;  e.g. 

s.  =  ̂ .  +  «>• ; 

'  The  ajmboU  R  and  /  ar«  read  'real  part  of  and  '  imat^inarj  part  oC 
mpectivvly. 

w.  c.  I.  1 



2  INTRODUCTION 

further,  if  ̂   be  a  complex  number,  we  write 

Definitions.  Paint.  A  'point'  is  a  value  of  the  complex  variable, 
z'y  it  is  therefore  determined  by  a  complex  number,  z,  or  by  two 
real  numbers  (iv,  y).  It  is  represented  geometrically  by  means  of  the 
Argand  diagram. 

Variation  and  Limited  Variation^.  If  /{x)  be  a  function  of  a 
real  variable  x  defined  when  a%x%b  and  if  numbers  ̂ i,  a-j,  ...  a?„  be 
chosen  such  that  a^Xi^X2  •■•  ̂ Xn'^b,  then  the  sum 

I  /(^i)  -/(«)  I  + 1 A^.)  -/(^i)  I  + 1  A^z)  -A^.)  !  +  ..•  + 1  /(6)  -/ W I 
is  called  the  variation  off{x)for  the  set  of  values  a,  Xi,  0^2,  ■■■  Xn,  b. 
If  for  every  choice  oi  Xi,  x^,  ■•■  x„,  the  variation  is  always  less  than 
some  finite  number  A  (independent  of  w),  /(x)  is  said  to  have  limited 
variation  in  the  interval  a  to  b  ;  and  the  upper  limit  of  the  variation 
is  called  the  total  variation  in  the. interval. 

[The  notion  of  the  variation  of  f{.v)  in  an  interval  a  to  b  is  very  much 
more  fundamental  than  that  of  the  length  of  the  curve  y=/(.r)  ;  and  through- 

out the  tract  propositions  will  be  proved  by  making  use  of  the  notion  of 
variation  and  not  of  the  notion  of  length.] 

2  Jordan,  Cours  d^ Analyse,  §§  105  et  seq. 



CHAPTER   I 

ANALYSIS    SITUS 

ft  3.  Problenui  uf  AnalyM  situs  tu  be  diHciuwed. — §  4.  Definitionn. — §  fi.  Pro 
pertieB  of  oodUiiua. — §  6.  TheurentH  concenung  the  order,  of  a  point. 
— §.  7.  Main  ihoorem  ;  a  r^^lar  cl<M6d  curve  liati  an  interior  and  an 
exterior. — §  8.  MiHoellaneouM  theorems  ;  definitionM  of  ouunterolockwiite 
and  orientati«>n. 

3.  The  object  of  the  present  chapter  is  to  give  formal  analytical 

proofi)  of  various  theorems  of  which  simple  cases  seem  more  or  less 

obvious  from  geometrical  considerations.  It  is  convenient  to  summarise, 

for  purposes  of  reference,  the  general  course  of  the  theorems  which 

will  be  provetl: 

A  »impU  eurr*  m  detenuined  by  the  equations  x^x(t),if  ='y{t)  (where  t  varieH 

fntni  to  to  7^,  the  functioim  x  (t),  y  {t)  lieing  continuoiu  ;  and  the  cun^e  has 
no  double  |K>intM  Have  ({XMMibly)  itM  end  ]>otntH  ;  if  thetie  coincide,  the  cun'e  is 
said  t*>  Iw  doted.  The  order  of  a  |xiint  Q  with  respect  to  a  cIiMod  cun'e  i« 
defined  to  be  n,  where  2«rn  is  the  amount  by  which  the  angle  Ijetween  QP  aiul 

Ox  increaseH  as  P  describes  the  cun-e  onoe.  It  is  then  shewn  that  points  in 
the  plane,  not  on  the  curve,  can  lie  divided  into  two  sets  ;  points  (»f  the  firHt 
Mt  have  order  ±  1  with  re.s])ect  to  the  curve,  points  of  the  second  Hct  hiive 

order  zero  ;  the  first  set  is  ciilled  the  interior  of  the  cun-e,  and  the  second  the 
exterior.  It  is  shewn  that  fvrry  simple  curve  joining  an  interior  point  to  an 

exterior  |toint  must  meet  the  given  cun'e,  but  that  simple  cunea  can  l« 
drawn,  joining  any  two  interior  |)oints  (or  exterior  jwtints),  which  have  no 

point  in  common  with  the  given  curve.  It  i.>s  of  course,  not  obvious  that  a 

cloNod  cune  (defined  as  a  cun-c  with  coincident  end  points)  divides  the  plane 
into  two  regions  iMtssoMsing  thcMC  proiwrtios. 

It  is  then  ixMsiblc  to  distinguish  the  directit>n  in  which  P  describes  the 
cune  (vix.  ctiimterclockwiMO  or  cUxikwisc) ;  the  criterion  which  detenninc»« 
the  direction  is  the  sign  uf  the  order  of  an  interior  (loint. 

The  investigation  just  suuunarised  is  that  due  to  Ames' ;  the  analysis 
which  will  be  given  follows  Iuh  memoir  closely.    Other  pnMjfiH  that  a  closed  cun'e 

'  Amw,  AtHericoH  Journal  of  Mathtmatitt,  Vol.  xxvn.  (1905),  pp.  84S-380. 
1—2 
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possesses  an  interior  and  an  exterior  have  been  given  by  Joi-dan^,  Schoenflies^, 

Bliss*,  and  de  la  Vall^  Poiissin'.  It  has  l^een  pointed  out  that  Jordan's 
proof  is  incomplete,  as  it  assumes  that  the  theorem  is  true  for  closed 

polygons  ;  the  other  proofs  mentioned  are  of  less  fundamental  character  than 
that  of  Ames. 

4.  Definitions.  A  simple  curve  joining  two  points  Zq  and  Z  is 
defined  as  follows: 

Let"  x  =  x{t\    y  =  y{t\ 

where  x{f),  y{t)  are  continuous  one-valued  functions  of  a  real  para- 

meter t  for  all  values  of  t  such  that'  ̂ o  ̂  ̂  ̂   ̂ >  the  functions  x  (t),  y  (t) 
are  such  that  they  do  not  assume  the  same  pair  of  values  for  any  two 
different  values  of  t  in  the  range  to<t  <  T;  and 

Zo^x(to)  +  iyito),    Z  =  x{T)^iy{T). 

Then  we  say  that  the  set  of  points  (x,  y),  determined  by  the  set  of 
values  of  t  for  which  ̂ o  ̂  ̂  ̂  ̂>  is  a  simple  curve  joining  the  points  s© 

and  Z.     If  Zo  =  Z,  the  simple  curve  is  said  to  be  closed^. 
To  render  the  notation  as  simple  as  possible,  if  the  parameter  of 

any  particular  point  on  the  curve  be  called  t  with  some  suffix,  the 
complex  coordinate  of  that  point  will  always  be  called  z  with  the  same 
suffix;  thus,  if 

to^tr^'^HT, 

we  write  c,<">  =  x  (^r<"0  +  iy  (^r<"0  =  ̂r*'*^  +  iyr^'*^. 

Regular  curves.  A  simple  curve  is  said  to  be  regular^,  if  it  can  be 
divided  into  a  finite  number  of  parts,  say  at  the  points  whose  para- 

meters are  ̂ i,  ̂2.  •••  t„i  where  ̂ 0  '^  ̂1  ̂  ̂2  ̂   •••  ̂   ̂m  "^  ̂j  such  that  when 

2  Jordan,  Cours  d'Analyse  (1893),  Vol.  i.  §§  96-103. 
3  Schoenflies,  Gottingen  Nachrichten,  Math.-Phys.  Kl.  (1896),  p.  79. 
*  Bliss,  American  Bulletin,  Vol.  x.  (1904),  p.  398. 

»  de  la  Vallde  Poussin,  Conm  d' Analyse  (1914),  Vol.  i.  §§  342-344. 
^  The  use  of  x,  y  in  two  senses,  as  coordinates  and  as  functional  symbols, 

simplifies  the  notation. 

'  We  can  always  choose  such  a  parameter,  t,  that  t^  <c  T;  ior  \f  this  inequality 

were  not  satisfied,  we  should  put  t  =  -t'  and  work  with  the  parameter  t'. 
8  The  word  '  closed '  except  in  the  phrase  '  closed  curve '  is  used  in  a  dififerent 

sense ;  tucloted  set  of  points  is  a  set  which  contains  all  the  limiting  points  of  the 
set ;  an  open  set  is  a  set  which  is  not  a  closed  set. 

0^  We  do  not  follow  Ames  in  assuming  that  x(t),  y{t)  possess  derivatives  with 
regard  to  t. 
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tr-t'it^ir.  the  r«U«ioii  baiween  *  awl  jr  givw  bjr  the  eqiMlioM 

*-#(lX  y-f  (0  »  eqniwilent  to  en  equation  jf-/(')  w  «fa» 

'•  4(^X  wher«>/ or  4  denotM  a  oontinuous  one-valued  function  of  ite 

argoment,  and  r  takes  in  turn  the  Taluen  1.  2, ...  w  +  1.  while  /«♦, »  7*. 
It  ia  «MV  to  nee  thai  a  chain  of  a  finite  nuin»*r  of  cunrea,  giveo  by  the 

6qtiati«nwt 

|r-/i(').        a,<*<a,^ 
*-/t(y).      &i<y<ft. 

.(A) 

(where  6,-/i(<it)«  «»-/t(Ai),  .•  »»»d  /i.  /t.  ...  are  oonUnitouii  one-valued 
function*  of  their  ar^piutentii),  forma  a  simple  cunre,  if  the  chain  haa  no 

doul>le  fiointi* ;  for  we  niay  chiMMe  a  parameter  f,  auoh  that 

x-<,      jf-/,(0.      OiKt^fh; 

If  Hoine  of  the  ineqiialitieN  in  eipuitiona  (A)  be  reversed,  it  in  poaable  to  ahew 
in  the  Hame  manner  tliat  tho  cluiin  forma  a  iiin)|>lc  curve. 

Elementary  curves.  Each  of  the  two  curves  whose  etiuatione  are 

(i)  y  =  /(-r),  {jr.^Jr^  *,)  and  (ii)  *  =  *  (jf ),  (y.  ̂  y  ̂  yi),  where  /  and  ̂  
denote  one-valued  continuous  functions  of  their  respective  arguments, 
is  calle<l  an  elementary  curve. 

Primitive  ft^od.  In  the  case  of  a  closed  simple  curve  let 
u»=  T-t»;  we  define  the  functions  x(t),y(t)  for  all  rwd  values  of  / 
by  the  relations 

where  n  is  any  integer;  m  is  calle<l  the  primitive  period  of  the  pair  of 
functions  x(t),  y{t). 

Angle*.  If  £•,  ;,  be  the  complex  coordinates  of  two  distinct  pointe 

/^,  /*!,  we  say  that  *  /'«/'i  makes  an  angle  9  with  the  axis  of  jr '  \(B 
satisfies  Itotk  the  eciuations** 

cos  tf  -  « (x,  -  X,),    sin  9-^  K  (y,  -  jr.), 

where  «  is  the  positive  number  {(x,  -  x,)*  +  (yi  -  y.)*}  '  *.  This  {lair  of 
equations  has  an  infinite  numlier  of  solutions  such  that  if  6^  9'  be  any 

)*  It  ia  suppoeed  that  the  »ine  and  eo«tn«  Mv  defined  hj  the  method  indieatod 
by  Bromwlch.  Thtotyof  In/imiU  .Sftin.  f  60.  (1) ;  it  ia  eaay  to  deduce  the  abatemepU 
made  coooeminK  tha  solution*  of  the  two  equation*  in  queation. 
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two  different  solutions,  then  {0'-6)l2ir  is  an  integer,  positive  or 
negative. 

Order  of  a  point.  Let  a  regular  closed  curve  be  defined  by  the 

equations  x  =  x{t),  y=y{t)y  (to^t%T)  and  let  w  be  the  primitive 
period  of  x  (t),  y  (t).  Let  Q  be  a  point  not  on  the  curve  and  let  P 
be  the  point  on  the  curve  whose  parameter  is  t.  Let  B  (f)  be  the 
angle  which  QP  makes  with  the  axis  of  x\  since  every  branch  of 

arc  cos  {k  (;ri  -  a-o)}  and  of  arcsin  {»c(yi-yj}  is  a  continuous  function 
of  ̂,  it  is  possible  to  choose  6{t)  so  that  6{t)  is  a  continuous  function 
of  t  reducing  to  a  definite  number  ̂ (^o)  when  t  equals  ̂ o-  The 
points  represented  by  the  parameters  t  and  t  +  w  are  the  same,  and 

hence  B{t),  d{t-^oi)  are  two  of  the  values  of  the  angle  which  QP 
makes  with  the  axis  of  x ;  therefore 

e{t  +  i^)-6{t)--  2wx, 

where  n  is  an  integer ;  n  is  called  the  order  of  Q  with  respect  to  the 
curve.  To  shew  that  n  depends  only  on  Q  and  not  on  the  particular 
point,  P,  taken  on  the  curve,  let  t  vary  continuously;  then  d{t),  $(t  +  o}) 
vary  continuously;  but  since  n  is  an  integer  n  can  only  \&ry per  saltus. 
Hence  n  is  constant". 

5.  CoNTiNUA.  A  two-dimensional  continuum  is  a  set  of  points 
such  that  (i)  if  Zo  be  the  complex  coordinate  of  any  point  of  the  set, 
a  positive  number  8  can  be  found  such  that  all  points  whose  complex 

coordinates  satisfy  the  condition  \z- Zo\<h  belong  to  the  set ;  S  is  a 
number  depending  on  Zq,  (ii)  any  two  points  of  the  set  can  be  joined 
by  a  simple  curve  such  that  all  points  of  it  belong  to  the  set. 

Example.     The  points  such  that  | « |  <  1  form  a  continuum. 

"  This  argument  really  assumes  what  is  known  as  Goursat's  lemma  (see  §  12) 
for  functions  of  a  real  variable.  It  is  proved  by  Bromwich,  Theory  of  Infinite 

Series,  p.  394,  example  18,  that  if  an  interval  has  the  property  that  round  every 

point  P  of  the  interval  we  can  mark  oflf  a  sub-interval  such  that  a  certain  inequality 

denoted  by  {Q,  P\  is  satisfied  for  every  point  Q  of  the  sub-intei-val,  then  we  can 
divide  the  whole  interval  into  a  finite  number  of  closed  parts  such  that  each  part 
contains  at  least  one  point  Pi  such  that  the  inequality  {<^,  P\}  is  satisfied  for  all 
points  Q  of  the  part  in  which  Pj  lies. 

In  the  case  under  consideration,  we  have  a  function,  (f>  (t)  =  6  {t  -^  u)  -  6(t), 

of  t,  which  is  given  continuous ;  the  inequality  is  therefore  \  <f>{t)  -  (f>  (t')  |  <  e , 
where  e  is  an  arbitrary  positive  number ;  by  the  lemma,  taking  «  <  2t,  we  can 
divide  the  range  of  values  of  t  into  a  finite  number  of  parts  in  each  of  which 

\4>(t)  -  <t>  (^i)  I  <  2ir  and  is  therefore  zero ;  ̂   (t)  is  therefore  constant  throughout 
each  part  and  is  therefore  constant  throughout  the  sub-interval. 
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XmgAitotirhuud^  Xmr.  If  •  point  {  be  coniiectod  with  •  Mi  of 
pointt  in  Mudi  a  way  that  *  Mqaenoe  (<•),  nnmirting  of  points  of  the 
•01,  OAO  be  choeen  mieh  that  {  i«  a  limiting  point  of  the  leqaenoe,  then 

the  point  C  i*  iiaid  to  have  points  of  the  let  in  its  nmgkbomrkood. 

The  itatenient  '  all  pointM  imjficitntlif  nnir  a  (mint  C  have  a  certain 

property '  means  that  a  positive  number  h  exists  such  that  all  points  t 
iatisfjriuf;  the  inequality   z-i<h  have  the  property. 

Boundarim^  Imtfrior  amd  Ertrrittr  PmnU.  Any  point  of  a  con- 
tinuum it)  railed  an  intrrior  point.  A  point  is  said  to  be  a  lutuHdaiy 

poimt  if  it  lit  not  a  {mint  of  the  continuum,  but  has  pointu  of  the 
oontinuum  in  itM  neighbourhou<l. 

A  potDt  <,,  mich  that  iibl*l«  >*  a  boiind*ry  |ioint  of  the  onntiiiutun  de- 
fined by  |«|<1. 

A  point  which  is  not  an  interior  point  or  a  boundary  point  is  called 

an  tJtierior  point 

If  (O  ̂ *  *  aeqiiciioe  of  pointJi  belonging  to  •  oi>ntiniiiun,  then,  if  this 

^HHpMtwe  hA«  a  liuiitiiig  point  (,  the  pr>int  (  im  either  on  interior  {mint  or  a 
boundaiy  }Miint ;  for,  even  if  (  \n  not  ah  interior  {mint,  it  hafl  |>ointa  of 
the  otNitiniuini  in  iu  ii«ighbi>urh<Mid,  viz.  ]M>intM  of  the  Heqiicncc,  aim!  w  there- 

fare  •  boundar}'  )>oint. 
AU  point*  ntficienUjf  n«ar  an  exterior  point  are  4JUnor  points  ;  for  let  <, 

be  «n  exterior  |>oint ;  then,  if  ho  {Kwitivc  niinitier  h  ex\»\»  Hiich  that  all  {Miint« 

Mtiafying  the  inequality  ' t  —  t^\<h  arc  exterior  (MtintM,  it  iM  (xjiutible  t4>  find  a 
Mei{iience  ((.)  such  that  (.  iH  an  interior  |ioint  or  a  Imundary  point  and 

if,— <,I<i-»;  and,  whether  f,  in  an  interior  |»oint  or  a  ttouodary  point,  it  ia 

p'^H*  to  find  an  interior  point  (,'  Kiich  tliat  ,C,'-C«i<2"';  m>  thai 
\(^'-to  <  2' "  ",  and  z,  i«  the  limiting  point  tif  the  )*oquence  f,' ;  therefore  ««  ia 
an  interior  point  or  a  iKNuidary  |»oint;  thin  iH  eontnuy  U*  hyiMitheata;  there- 

fore, correN|tonding  to  any  |iarticnilar  |»oint :«,  a  ntinilicr  h  cxiNta.  The  theorem 

IN  therefore  im)\'ed. 

A  oontinuum  ix  calletl  lui"  optrn  rnjiim,  a  continuum  with  its 
boundary  in  a  r/iMk^i  region. 

ffmnmtpl^      lift  S  be  a  set  of  point*  t  ( ■•  x  -f  ijf)  denned  bjf  the  rdations 

jr-,<*<jr„       y-/(jr)+r    (1), 

wktrefis  ome-evitud  and  eontinmotu,  r  lakea  a//  mine*  mcA  tAat  0<r<i,  and 
k  i$  constant.     TAen  tke  set  o/ points  S  forms  <i  fontinnnm. 

>*  8m  note  S  on  p.  4. 
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Let  z'  be  any  point  of  •S',  so  that 

x^<oii  <  .ri ,      /  =/(aO  +  r',      where  0  <  /  <  k. 
[CH.  I 

Choose,  e  >  0,  so  that 

2€  <r'  <X'-2f      (2). 
Since /is  continuous  we  may  choose  8  >  0,  so  that 

l/(-^0-/(-^')l<*   (2a), 
when  \x  —  oi^\<h.     It  is  convenient  to  take  8  so  small  that 

j?o  +  ̂  <.r'<  .r,-8   (3). 

Then  otq  <  .t  <  x^  since  |  x—x'  \  <  8. 

Also,  when  \x  —  x'\<.hy  ^■ 

/(:r)-e</(.r')</(.r)  +  e   (3a), 
so  that  if  y  be  any  number  such  that 

y'-€<y<y'  +  f   (4), 

then  f{^x')-\-r'-(<y<f{x')  +  r'-\-f    (4a). 
Adding  (2),  (3a)  and  (4a),  we  see  that 

f{x)<y<f{x)^-k. 
Therefore  the  pt)int  z=x  +  iy,  chosen  in  this  manner,  is  a  point  of  the  set  iS*. 

Hence,  if  S'  be  the  smallei-  of  8  and  e,  and  if 
\z-z\<b; 

the  conditions  (2a)  and  (4)  are  both  siitisfied,  and  hence  z  is  a  member  of  the 
set.     The  first  condition  for  a  continimm  is,  consequently,  Siitisfied. 

Further,  the  points  sf,  z"  (for  which  r'  ̂   r"),  Ijelonging  to  S,  can  be  joined 
by  the  simple  curve  made  up  of  the  two  curv&s  defined  by  the  relations 

(i)    .r=y,     iy'  ̂ y^y'+r"-t^), 

(")    y  =f{^)  +  '■">       {^'  <  •^'  <  •^"  or  x"  <  X  ̂   A**). 
Hence  <S  is  a  continuum. 
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0.  LntMA.  Amif  Umithg  pmmt  ̂   »/ a  ml  of  poimU  om  m  timfU  emrtt 
lim  ON  tA4  rirrM. 

Take  *ity  Mequmw  ct  ihm  mH  which  Ium  V  •*  '**  unique  HmtUiig  point; 
hH  th0  panuueteni  uf  the  pointe  of  the  eaqueiioe  be  U,  r,,  ..^  Then  the 

•equenee  (I.)  bee  at  leiuit*'  one  limit  r,  and  1^ <r  <  T.  Since  x(0.  jr (0  «i« 
oontinuoua  ftinctione.  lint  jr(0*'(vX  li<ny(0"|f(W:  <uid  (jr(r),  jf(r))  ieon 
the  cune  nince  r«<r<r:  LA^ieno  the  ourve. 

CotoUarf.  If  V^  be  e  fi&ed  point  not  on  the  curve,  the  disUnoe  of  V*  from 
pointM  mi  the  ourre  haa  e  poeittTe  lower  limit  i.  Fur  if  i  did  i>ot  exint  we 

ooaM  find  a  aequenoe  (P.)  of  |MiinU  imi  the  cune  such  that  (^Z*. •  i  <  | ̂^at 
ao  that  ̂   would  U  «  limiting  |M>int  of  the  aequeiMW  and  would  therafore  Ue 
on  theeunre. 

Thborkm  I.  I/a  point  if  o/ordir  n  with  rmptct  to  a  eiomd  m'mpU 
mure,  aU  pnutt  fufficinttljf  ntar  it  art  qfordeir  n. 

Let  Q,  be  a  point  not  on  the  curve  and  Qi  any  other  point. 

Then  the  distance  of  points  on  the  cur>'e  from  <^,  lias  a  pOHJtive  lower 
limit,  5;  so  tliat,  if  Q,Qi  ̂   A8,  the  line  (?,<^i  cannot  meet  the  curve. 

Let  t  be  the  parameter  of  any  point,  /*,  on  the  given  curve,  and  r 
the  {Mtrameter  of  a  jwint^  Q,  on  <?.Q,,  ami  6  (t,  t)  the  angle  QP  makes 

with  the  a.xi.s  of  x  ;  then  6  (/,  t)  is  a  continuous  function  of  t,  when  /  i* 
fixed;  therefore 

<>(/  +  «,  T)-tf(/.T) 

is  a  continuouft  function'*  of  r;  but  the  onier  of  a  point  (being  an 

integer)  can  only  var}*  per  Mltim ;  therefore  B{t  +  •»,  t)  —  B(t,  t)  ia  a 
oonstaot,  ao  far  tk»  variations  of  r  are  concerned  ;  therefore  the  orders 

of  Q»,  Q,  arc  the  tsame. 

Tlie  above  argument  has  obviously  proved  the  following  more 

general  Uieorem: 

TllBORKM  II.  //■  tiro  fniintu  Q,,  Qt  ran  b*  joinrd  by  a  nimfile  cmrrr 
karing  mt  pifint  in  nnnmun  irith  a  t/ivrn  cUmtd  $implr  currr,  tkf  arder$ 

'tf'  V«»  U\  •'*»'^  regard  to  the  cliteed  curve  are  the  tawte. 
The  following  theorem  ia  now  evident : 

TilEORKM  III.  //  tint  poiiita  Q„  Q^  A/ifv  different  ardent  tritk 

regard  to  a  given  rltt$fd  simple  riirre,  every  *imftie  rurre  Joining  fAem 

kaf  at  ieast  one  point  in  ctmimon  tcitk  the  giren  cto»ed  rurre. 

TlIRoRKM  IV.     Witkinan  arhitrariijf  itmall distance  o/ any pt>int,  P,, 

of  a  regular  chueti  rurre,  tkerr  are  tirtt  points  wkoite  (trder*  diffrr  hy  unity. 

The  cur>'e  consiMts  of  u  finite  number  of  {tartu,  each  of  which  («u  be 

^  Yoang,  SeU  oi  Poimu.  pp.  IH.  19.  >«  8«e  not*  II  on  p.  6. 
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[CH.  I 
represented  either  by  an  equation  of  the  form  y  =f(a;)  or  else  by  one 

of  the  form  x  ̂ J  (i/),  where  ./'  is  single-valued  and  continuous.  First, 
let  Pq  be  not  an  end  point  of  one  of  these  parts. 

Let  the  part  on  which  Po  lies  be  represented  by  an  equation  of  the 

form  y  =  /(.r);  if  the  equation  be  x=f{y),  the  proof  is  similar. 

The  lower  limit  of  the  distance  of  Po  from  any  other  part  of  the 

curve  ̂ "^  is,  say,  rj,  where  i\  >  0. 
Hence  if  0  <  r  <  rj ,  a  circle  of  radius  r,  centre  Po,  contains  no 

point  of  the  complete  curve  except  points  on  the  curve  y  =/(dr)  ;  and 
the  curve  y  =/(^)  meets  the  ordinate  of  P,,  in  no  point  except  Po. 

Let  B  be  the  point  {x«,  y^  +  r),  Pi  the  point  {x^,  y^  -  r). 
If  P  be  any  point  of  the  curve  whose  parameter  is  t  and  if  6  (t),  Oi  (t) 

be  the  angles  which  BP,  Pi  P  make  with  the  x  axis,  it  is  easily  verified 

that  if  BP  =  p,  B^P  =  p,  and  <^  =  ̂  {t)  -  6,  (t), 

{x-x^y  +  iy-y^J-i^ .     ,         2r(x-Xo) 
sin  ̂   =  -  — ^^    , 

PPi 
cos  <^- 

ppl 
If  w  be  the  period  of  the  pair  of  functions  x  (t),  y  (t)  and  if  8  be  so 

small  that  the  distances  from  Po  of  the  points  whose  parameters  are 

to ±8  are  less  than  r,  then",  if  x  (to  +  8)>x  {t„), 

4>  (to)  =  (2wi  +1)^,  i>  (t,  4-  8)  >  (2»,  +  l)7r, 

<f>(to  +  oi-8)<  (2n.i  +  ])ir,      <f>(to  +  <o)  =  (2th  +  1)t. 

"  If  a  poritire  number  rj  did  not  exist,  by  the  corollary  of  the  Lemma,  P, 
would  coincide  with  a  point  on  the  remainder  of  the  curve  ;  i.e.  the  complete  curve 

would  have  a  double  point,  and  would  not  be  a  simple  cun-e. 
'•  If  X  (to  -:  i)  <  X  (to),  the  inequalities  involving  0  have  to  be  reversed. 
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Bat  when  l^<f<44>M^  ain^  vaiii»h«i  oiily  wheu  ̂ -j^-iOi,  mmI 

tlMB  eM4  M  poAitive  uum  (x-x«)^"f(jf-jfj*>  r». 
HflnM  4'*'(Sii  ̂   l)v  when  l,<l«l.  •*-••;  therefore  nnoe  4(0  i*  * 

rtintinuous  fuiirtioii  of  f,  n, -  ii| «  0  or  t  !•     But  m,^$t,',  for  if  Ni  *■  «■ 
lien  4(l.4-<)>(iN, -t-l)*,  4(l,-^M-S)<(Sii,i- l)v  and  4(0  would 

tM|tt«l  (S»i  -•>  1 ) «  for  tome  value  of  I  between  /« -^  i  and  t^-^m-i. 
Therefore  «« -  *•  ̂   ±  1.  and  oomequeiitly 

{#(«.♦-)-«(/,)}-{*,  (I. +  •)-«,  (i,)}-4(i,*«)-4«;)-±i». 
that  is  to  iay  the  orders  of  tt,  Hx  differ  by  unity. 

The  theorem  is  therefore  proved,  except  fur  end  pointa  of  the  corve. 

If  /*!  be  an  end  point,  a  point  i\  of  the  curve  (not  an  end  point) 
tmMk  be  found  such  that  /',/'.  in  arhitrarily  xmall;  then  P,B  <  P*Pi 
mnee  P,B  <  r,  <  /'./',,  and  therefore  /',//  ;  2/^./',,  so  that  FtB,  and 
•iiniUrly  Ptttt,  are  arbitrarily  small ;  since  the  orders  of  B,  B\  differ 
by  unity  the  theorem  is  proved. 

Thbokbm  V.  (i)  I/tirt)  (rmtimma  C,,  C\  kaw  a  point  Q  !u  eommom, 
tkt  ttiqf  poinU^  S^  /«tmmi  hy  the  two  contimmi  i»  onf  nmtinuum  ;  and 

(ti)  iftkt  two  comtinna  C\,  C\  kan>  no  point  in  rttmmon,  Imt  (f  ail  point* 
mar  any  point,  tkf  ̂ td  points  rjxfffted,  of  thf  eUmfntary 

jf-yX'X  ('•^•r  ̂ 'i).  MoHtj  to  C,  or  to  C\,  or  to  tkf  curw^  the 

points  amf^ttUty  nnir  and  above  ̂ ^  the  curef  Mimgimj  fu  C,  and  tkom 
nfficimtfy  near  and  Mow  it  to  V„  then  the  a*/  qf  p(Hnt*  S  nnuti»ting 
ff^Ci,  Ct  and  tAr  rwrcv  (tAr  end  points  ejvrpted)  is  one  mtntiniinm. 

(i)  Let  P  be  any  point  of  S;  if  P  belong  to,  say,  (\  all  points 

xufiiciently  near  P  belong  U>  C,  and  therefore  to  S.  Hence  »S'  satisfies 

the  fintt  condition  for  a  continuum.  Again  if  P,  P'  be  uny  two  points 
<jf  8tif  P,  /*'  beloDK  both  to  C\  or  both  to  C„  they  can  be  joined  by 
a  aimple  curve  lying  wholly  in  C,  or  T,,  i.e.  wholly  in  S.  If  P  belong 

to  C|  and  P'  to  (\,  each  can  be  joined  t<)  Q  by  a  simple  curve  lying 
wholly  in  X  If  the  curve**  P(^,  P'Q  liave  no  point  in  (*ommon,  save 
(^,  PQP'  iH  a  Nimpio  curve  lying  in  *'.  If  l*Q,  P'Q  have  a  jwint  in 
common  other  tlian  Q,  let  PQ,  be  an  arc  of  PQ  such  tlutt  (^i  lie^  on 

P'<^  but  no  other  |>oint  of  PQ,  lies  on  P'(^. 
{The  |H»iiit  ̂ 1  c\i>ttM ;  fur  A  wt  «>f  pttiiiU  csdUiiiion  to  iHith  curvet*  csistM : 

let  T  \m  tlio  l«»wer  biMtiHiAr}' '*  «»f  the  |MinuueterN  *»(  the  «ct,  rt^gitnleil  ait  pttiiiU 
•m  PQ ;  hj  the  lemma  givcii  ahnro,  the  {Mttiit  Q^  with  |ianuneter  r  it  mi  both 

cQnr«R,  aiid  (MtiwtW!*  titr  iwcemAry  ci»itditi<tii.] 

"  The  temt*  'abov*'  mmI  'below'  are  convention*]:  (x,  y|  u  above  {m,  y') 
If  f  >  t'. 

>*  Tb«  lower  boondar;  etitta.     Hobaon,  Fumctiomt  o/tt  Heal  VariabU,  p.  AM. 
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Then  PQi,  QiP'  are  simple  curves  with  no  point  in  common  save  Q,. 
Hence  PQiP'  is  a  simple  curve  lying  wholly  in  S.  In  either  case,  S 
satisfies  the  second  condition  for  a  continuum.    Hence  S  is  a  continuum. 

(ii)  Let  the  curve  he  AB  ;  draw  CED  parallel  to  Ch/  through  any 
point  E  oi  AB  (the  end  points  excepted).  If  C  and  D  be  sufficiently 
near  to  AB,  C  belongs  to  C,  and  D  to  C... 

Then  all  points  sufficiently  near  any  point  of  C\  or  of  Cj  belong 

to  >S^;  and  all  points  sufficiently  near  any  point  oi  AB  (the  end  points 
excepted)  belong  to  ̂ S.  Hence  S  satisfies  the  first  condition  for  a  con- 
tinuum. 

Let  P,  P'  belong  to  S.  Then  either ^«  (a)  P,  P'  both  belong  to  C, 
or  to  Ca;  (6)  P  belongs  to  Ci,  P'  to  ̂ o ;  (c)  P  belongs  to  C,,  P'  to 
AB;  (d)  P,P'  both  belong  to  AB. 

In  cases  (a)  and  {d),  PP'  can  obviously  be  joined  by  a  simple 
curve  lying  wholly  in  S.  In  case  (6),  simple  curves  PC,  CD,  DP'  can 
be  drawn  lying  in  8,  and  a  simple  curve  can  be  drawn  joining  PP' . 
In  case  (c),  simple  curves  PC,  CE,  EP'  (the  last  being  an  arc  of  AB) 
can  be  drawn  lying  in  >S^,  and  a  simple  curve  can  be  drawn  joining 

PP'.  Hence  S  always  .satisfies  the  second  condition  for  a  continuum. 
Therefore  8  is  a  continuum. 

Theorem  VI.  Given  a  continuum  R  and  an  elementary  curve  AB, 
then  :  (a)  If  R  contain  all  points  of  the  ctwve  except  possibly  its  end 

points,  which  may  lie  on  the  boundary  of  R,  the  set,  R~,  of  points  of  R 
which  do  not  lie  on  A B  form,  at  most,  two  continua. 

(b)  If  one  or  both  end  points  lie  in  R,  R~  is  one  continuum. 
(a)  Let  the  equation  of  AB  he y=f(ar).  Through  any  point  of 

AB  (not  an  end  point)  draw  a  line  CD,  parallel  to  Oy,  bisected  at  the 

••  There  are  several  other  cases  which  are  obviously  equivalent  to  one  of  these ; 

e.g.  P  belongs  to  Co,  P"  to  AD. 
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point  on  AH,  and  lyin^;  wkolljr  in  R\  chooM  (\  I)  wo  that  the  orrlinate 
of  C  M  grMt«r  thaii  the  ordinate  of  />. 

Then  //~  mdtfiea  the  fini  cunditiun  for  a  continuum  (for  if  2»  be  n 

{loint  of  /f~  we  can  chooM  S  io  that  all  point«  aatiafying  \s-t^\  <l 
belong  to  H,  and  »ince  ;« ii  not  on  i4  if,  we  oan  ohoote  ff  nnnller  still  if 

r,  to  that  uu  iMiiut,  z,  of  ̂ 1 J9  mttafiea  |  £  -  s«  |  <  <').  Alao  R- 
the  second  cimditiou  umttm  a  poimi  P  tff  R'  trUi*  wkiek 

'  btjoitmi  tu  /)  btf  a  timpU  enrw  fyinff  tekuUy  im  R~.  For  if  there 

ia  no  such  point,  then  if  /',  P'  be  any  two  points  of  /f~,  they  can  each 
be  joined  tu  J)  by  a  simple  curve  ;  if  tliese  two  curves  do  not  interaect 

eioept  at  I),  PDP'  in  a  simple  curve  ;  if  the  two  curves  do  intersect, 
let  Q  be  the  first  point  o(  intentectiun  arrive<l  at  by  a  point  which 

daeeribes  the  curve  PIJ.  Then  PQ,  QP'  are  twu  simple  curves  with 

BO  point  in  common  except  Q,  no  that  PQP'  \»  a  simple  curve  lying 
wholly  in  R'  ;  hence  R~  satisfies  the  second  condition  for  a  con- 
tinuum. 

Otherwise,  join  P  to  Dhy  h  simple  curve  lying  wholly  in  R ;  then 

this  curve  has  at  lea«t  one  point  not  in  R~  ;  i.e.  it  haM  at  least  one 
point  in  common  with  AB. 

Let  ja  be  the  first  \mnt  on  AR  which  is  reached  by  a  point 
deaeribing  the  curve  P/)  ;  so  tliat  PK  has  no  point  on  J  if  except  E. 

Ghooae  an  arc  A'R'  of  AR,  which  contains  E  but  not  A  or  R. 

CoDatmct  two  continua  \*  and  X~  above  and  below  A'R'  respectively 

as  in  the  example  of  $  5,  each  continuum  ly'uxg  wholly  in  R.  Then 
JV*,  A'"  and  the  curve  A'R'  with  the  end  }K)ints  omitted  obviously 
form  one  continuum,  so  that  if  a  point  F  bo  taken  on  EI*  sufticiently 

near  E^  it  will  lie  on  N*  or  N~  ;  for  F  cannot  lie  on  A'R'.  Suppose 
that  F  lies  in  A'"  ;  choose  a  point  G  on  CD  lyinj?  in  A''  ;  then  FCi 
can  be  joined  by  a  simple  curve  lying  in  A'".     Now  PF,  F(i,  (il>  are 
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three  simple  curves  lying  in  iV^  and  N~  ;  and  hence  a  simple  curve 
PFGD  can  be  drawn  lying  in  iV+  or  N~  ;  i.e.  PD  has  been  joined  by 
a  simple  curve  lying  in  R~  ;  but  this  is  impossible.  Hence  F  must  lie 
in  iV*  :  and  then  it  can  be  shewn  by  similar  reasoning  that  P  can 
be  joined  to  C  by  a  simple  curve  lying  wholly  in  R~. 

Hence  the  points  of  R~  can  be  divided  into  two  sets  : 
(i)  The  points  which  cannot  be  joined  to  Z)  by  a  simple  curve 

Ijdng  wholly  in  R~  ;  these  points  can  be  joined  to  C  by  a  simple  curve 

lying  wholly  in  R~. 

(ii)  The  points  of  R~  which  can  be  joined  to  i)  by  a  simple 
curve  lying  wholly  in  R~, 

Each  of  these  sets  is  easily  seen  to  satisfy  both  the  conditions  for  a 

continuum.     Hence  the  points  of  R~  form  at  most  two  continua. 
{b)  If  B  lies  in  R,  a  line  BBi  may  be  drawn  parallel  to  Ox  lying 

wholly  in  R.  Then  by  {a)  the  points  of  R  not  on  A  BBx  form  at  most 
two  continua  ;  if  they  form  only  one  continuum,  the  theorem  is 

granted ;  for  this  continuum  with  the  points  on  BB^  {B  excepted) 

forms  one  continuum  ;  if  they  form  two  continua^",  these  two  continua 
with  the  boundary  points  BB^^  {B  excepted)  form  one  continuum  by 
Theorem  V. 

7.  The  main  Theorem.  The  points  of  the  plane  not  on  a  given 

regular  closed  curve  foi'm  two  continua  of  which  the  entire  curve  is  the 
complete  houndai-y. 

Within  an  arbitrarily  small  distance  of  any  point  of  the  curve 
there  are  two  points  of  different  orders  with  regard  to  the  curve,  by 
Theorem  IV  of  §  6.  Hence  by  Theorem  III  of  §  6,  the  points  of  the 
plane  not  on  the  curve  form  at  least  two  continua.  Divide  the  curve 
into  a  finite  number  of  elementary  curves  and  take  these  in  the  order 

in  which  they  occur  on  the  curve  as  t  increases  from  #«  to  7" ;  then  by 
the  second  part  of  Theorem  VI  of  §  6  each  of  these  elementary  curves, 
except  the  last,  does  not  divide  the  region  consisting  of  the  plane  less 
the  points  of  the  elementary  curves  already  taken ;  the  last  divides 
the  plane  into  at  most  two  continua,  by  the  first  part  of  Theorem  VI 
of  §  6.  Hence  there  are  exactly  two  continua  ;  and  the  points  of  these 
two  continua  are  of  different  orders  with  regard  to  the  curve. 

^  It  is  easily  seen  that  if  there  are  two  continua  the  points  of  one  of  them, 
which  are  sufl&ciently  near  JSfij,  are  above  BBx,  while  the  points  of  the  other,  which 
are  sufficiently  near  BB\,  are  below  BB^ . 
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Any  i>"iut  of  the  curve  \»  a  boundary  point  of  either  oontinaum, 
by  TheoreuiM  III  and  IV  of  ̂ 6  ;  and  any  point  not  on  the  curve  is  a 
point  of  one  continuum  by  Theorem  I  of  H  6,  and  \»  therefore  not 
a  boundary  |M.iint. 

8.  TiiKoREM  I.  AU  itufficifntly  dukmt  points  am  qf  order  zero 
with  riyard  to  a  ijivrn  rf(fu/ar  cloted  rurte. 

Let  P  {j;i/)  bo  any  jwint  on  the  curve,  and  Pi  (j*,,  y,)  be  any  other 
point ;  the  angle  which  PPt  makes  with  the  axis  of  x  is  given  by 

ooatf  =  «(jr-d',),     sintt  =  K(y-yi), 

where  «»{(a:-a',)' +  (y-y,)*}"*. 
If  x,»  +  Vi*  be  sufficiently  large,  either  \Xi\  or  | y,  I  must  be  so  large 

that  either  cos  6  or  sin  6  never  vanishes ;  hence  the  change  in  ̂   as  P 

goes  round  the  curve  cannot  be  numerically  so  great  as  ir  ;  but  this 

change  is  2«ir  where  n  is  an  integer  and  is  the  order  of  /*, ;  hence  n  -  0. 
That  continuum  which  cont^iins  these  sufficiently  distant  ))oiut6 

is  called  the  e^rteriar  of  the  curve ;  the  other  continuum  is  called  the 
interior. 

Since  the  order  of  any  point  of  the  interior  of  a  regular  closed 
curve  differs  from  the  order  of  any  point  of  the  exterior  by  unity,  the 
order  of  any  ytoxnt  of  the  interior  is  +  1.  If  the  order  of  any  {wint  of 

the  interior  is  +  1,  we  say  that  the  point  (-r  (t),  i/ {t))  'describes  the 
curve  in  the  counterclockwi^  direction  as  t  increases  from  f,  to  TJ 

If  the  order  be  -  1,  we  say  that  the  point  describes  the  curve  in  the 
clocktcige  direction. 

\jQtt'  =-t ;  and  let  6' {i')  be  the  angle  that  AP  makes  with  the 
axis  of  X,  A  being  a  point  of  the  interior  and  P  being  the  }x>int  whose 

parameter  is  t  or  t'. 
Then  B'  (f )  -9{t)  -  2»i»,  and,  if  we  take  e'{t')  to  varj-  continuously 

as  t  varies  continuously,  m  is  constant,  since  m  can  only  vary  per 
taltm.     Consequently 

B'{-T^m)-d'{-T)  =  -\6{t,^»)-e{t,)\. 

Tlierefore  the  order  of  the  interior  point  when  t'  is  the  parameter  is 
minus  the  order  of  the  \yo\ui  when  t  is  the  i>arameter. 

Dbpinition.  Oriented  curcett.  Orientation.  Ijet  P,  S  hfi  the  end 

points  of  a  simple  curve.  Let  one  of  them,  say  P,  be  called  ihefintt 
pt/int.     If  Q,  It  be  two  other  points  on  the  curve  (^  is  said  to  be 
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b*>fore  R\itp<tq<  t^  or  if  tp>t^i>  tR.  The  points  of  the  curve  have 

thus  been  ordered^\  Such  an  ordered  set  of  points  PS  is  called  an 
oriented  curve ;  it  diifers  from  the  oriented  curve  SP  in  which  S  is  the 
first  point. 

Two  oriented  curves  Ci,  Cj  with  a  common  arc  <r  liave  the  same 
orientation  if  the  points  of  <r  are  in  the  same  order  whether  <r  is 
regarded  as  belonging  to  Ci  or  to  C.,.  If  the  points  are  not  in  the 
same  order,  the  curves  have  opposite  orientations. 

It  is  easy  to  see  that  if  P,  Q,  R  be  three  points  on  a  regular  closed 
curve,  the  curves  PQRP,  PRQP  have  opposite  orientations. 

We  agree  to  choose  the  parameter  of  an  oriented  curve  so  that  the 

first  point  has  the  smallest  parameter.  This  can  be  done  by  taking  a 

new  parameter  t'  --t,  if  necessary. 
It  is  convenient  always  to  choose  that  orientation  of  a  closed  curve 

which  makes  the  order  of  interior  points  + 1 ;  that  is  to  say  that  an 
oriented  closed  curve  is  such  that  a  point  describes  it  counterclockwise 
as  t  increases  from  ̂ o  to  ̂o  +  ̂ ^ 

Theorem  II^.  Let  two  continua  Ri,  R^  be  the  interiors  of  two 
regular  closed  curves  Ci,  Ci  respectively.  Let  a  segment  o-i  of  Cj 
coincide  with  a  segment  o^  of  C^;  then  (i)  if  Ri,  R.^  have  no  point  in 

common  the  orientations  of  a-^,  a-^  are  opposite ;  and  (ii)  if  R^  be  wholly 
interior^  to  R^,  the  orientations  of  o-i,  a.^  are  the  same. 

(i)  If  the  orienta,tions  of  o-j  and  o-o  are  the  same,  by  Theorem  IV 
of  §  6  it  follows  that  arbitrarily  near  any  point  P^  of  o-i  and  o-j  (not  an 

end  point)  there  are  two  points  J5,  B'  such  that  the  order  of  B  with 
regard  to  either  Cj  or  C^,  exceeds  that  of  J5'  by  unity  ;  so  that  B  is  an 
interior  point  of  both  curves  which  is  impossible.  Hence  the  orienta- 

tion of  o-i  is  opposite  to  that  of  o-j. 

(ii)  If  the  orientations  of  o-j,  o-^  are  different,  we  can  find 

points  B,  B'  arbitrarily  near  any  point  P^  of  o-j  and  o-j  such  that 
(a)  the  order  of  B'  with  regard  to  Cj  exceeds  that  of  ̂   by  +  1,  {b)  the 
order  of  B  with  regard  to  C-i  exceeds  that  of  5'  by  +  1.  Consequently 
^  is  a  point  of  Ri  but  not  of  R^ ;  this  is  impossible.  Hence  the 

orientations  of  cr,,  o-,  are  the  same. 

''  Hobson,  Functioim  of  a  Real  Variable,  §  122. 

"  Ames  points  out  that  Goursat  tacitly  assumes  this  theorem. 

'^  I.e.  if  every  point  of  li^  is  a  point  of  R^. 



CHAPTER  II 

OOMPLKX     INTEGRATION 

I  9l  The  intogml  at  m  fiuiotion  of  •  real  varUKic ;  cxtotMitiii  to  oomplex 
TMiahlon  ;  rB«tricti<Hi  of  the  |Mth  of  iiit«Kratioii.— 1(  la  Definition  of  m 

ooQiplex  integmL— H  II.  Kxiittenoe  theorcuut.— §  li.  Qoiumt'*  leniiiM. 
— g  IS.    VariouM  Miuplo  tbeoramik 

9.  The  integral'  of  a  continuouR  fiinctiou,  /(x),  of  a  real 
%>anable  x,  U  defined  by  means  of  the  limit  of  a  tturo  in  the  following 
manner : 

Divide  &ii  intenr*!  a  to  6  (a  <  6)  into  2*  eqiuU  porta  and  let  y,  be  the  rth 
|iart.     Let  i/,,  Jk^  be  the  upper  and  lower  limitti  o(/{x)  in  y,.;  let 

«  _  5;/    *-"       *^-  iiL  *"" 
r-I  "  r-l  »" 

Then  (8J  ia  a  noD-iuoreaaing  aequenoe  and  (O  itt  a  uon-deereaaing  aequence, 
and  £•>«■:  oonaeqtiently  <$«,  «.  have  finite  liniitn  aj*  n  -*«o  ;  and  if /(x)  is 
oontintwMM  it  oan  )«  proved  that  thonc  two  liniitM  arc  the  Hawe ;  the  common 
vahw  of  thenc  two  UmiOt  in  oallod  the  integral  of  /(x)  taken  between  the 
end'traluea  or  limit*  a  and  6,  and  in  written 

f. 
Further,  it  oan  W  iihewn  that  if  <  ia  arl>itrar>',  a  numher  i  can  be  found  mioh 
that  if  the  inter\-al  a  to  6  lie  divided  int^i  anjf  Hul>-iiiti>r\-nlit  i;,,  7,,  ...  ly,  each 
IcM  than  A,  and  if  x,  be  any  \)oiut  in  the  rth  intcnal,  then 

If. /(x)cir-  X  ih./(x,)    <#, 
When  we  ntuily  the  theory  of  funetion>i  of  complex  variahleH,  we 

naturally  enquire  whether  it  is  not  |»u.H»iible  tu  ̂ 'eneraliae  thiti  definition  ; 
for  the  interval  a  to  /'  may  be  regardetl  a8  a  segment  of  a  particular 

curve  in  tlie  Argand  diagram,  namely  the  real  axis. 

*  Biomwieh't  Tluor^  of  ti^miU  Strit$  (190H),  f|  157  163.  abould  be  consulted  ; 
the  analjaU  given  above  b  qocMHl  from  |  IAS. 

w.  c.  I.  2 
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This  suggests  that  we  should  define  the  integral  of  a  continuous  ̂  
function,  /(«),  of  the  complex  variable  z,  taken  along  a  curvilinear 

path  AB'va.  the  Argand  diagram  by  the  natural  extension  of  the  above 
definition,  namely  that  the  integral  oi  f{z),  taken  between  the  limits 
«o  and  Z,  is  the  number  S  (if  that  number  exist)  such  that  it  is  possible 
to  make 

IV
  

I 

/S*-    2    {Zr+i-Zr)f{Zr) r=0  I 

less  than  an  arbitrary  positive  number  e  by  taking  v  points  c, ,  Cg, . .  •  s,- 
in  order  on  the  cmwQ  A  B{zy+^  being  interpreted  as  meaning  Z)  in  any 
way  such  that 

I  Zr+i  ■-Zr\  <  8  for  r  =  0,  1,  2,  ...  v, 

8  being  a  number  depending  on  c  (so  that  v  also  depends  on  e),  and 
the  point  Zr  being  any  point  on  the  curve  between  Zr  and  c,.+i . 

[Note  that  we  do  not  say 
V 

S=\\m     2     (c,.+l-^r)/(2-r'). v~^<*i  r=0 

because  the  summation  on  the  right  is  a  function  of  2»'  +  1  independent 
variables  Zi,  z.^,  •••  Zy,  Zo,  z-^,  ...  zj,  and  so  S  is  not  an  ordinary  limit  of 
a  function  of  one  variable.] 

It  is,  however,  necessary  to  define  exactly  what  is  meant  by  the 

phrase  'points  in  order  on  the  curve  AB.' 
To  ensure  that  the  limit,  by  which  we  shall  define  an  integral,  may 

exist,  we  shall  restrict  the  curve  on  which  the  points  Zi,  z^,  ...  lie,  to 

be  an  '  oriented  simple  curve.'  And  a  further  restriction  is  convenient, 
namely  that  the  curve  should  have  limited  variations* ;  that  is  to  say 
that  the  functions  x{t),  y{t)  should  have  limited  variations  in  the 
interval  ̂ o  to  T. 

[It  can  be  proved  '  that  a  necessary  and  suflBcient  condition  that  a  simple 
curve  should  have  a  finite  length  is  that  it  should  have  limited  variations,  but 
this  proposition  will  not  be  required  ;  the  lemma  below  will  be  sufficient  for 
the  purposes  of  this  work.] 

A  function  f{z)  of  a  complex  variable  z  is  said  to  be  '  continuous 
on  a  simple  curve'  if /(*)  is  a  continuous  function  of  t. 

2  Young,  Sets  of  Points,  §§  140-141.  Jordan,  Cours  dWnalyse,  t.  i.  p.  90.  It 
will  be  obvious  that  the  definition  may  be  extended  to  cover  the  case  when  the  path 
of  integration  consists  of  a  finite  number  of  simple  curves  with  limited  variations. 

='  Young,  Sets  of  Points,  §  167. 
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We  oui  now  prove  the  foUoviiig  iaportMit  laouM : 

liKMMA.     !m  t,,  tu  *%t  ••'  '•♦I  ̂   <Mf  «7iMiM»  q^ poimit  in  mdtr 
m 

tma  mmpU>  ntrtt,     T%m  1  \(t,^x'' B^\  it  km  thorn  or  9qwil  Ut  tht  mtm 
r-« 

^l4tf  toto/  variatiimt  </  j*  (/)  him/  jf  (1)  m  I  Ponm/inm  t^  to  I.,,- 

Since  the  luoiltiltu  of  a  Rum  doM  not  exceed  the  mini  of  the 

Bodali,  it  follows  that 

1     |(V|-«r)|-     5     l|(«r*,-»r)^»(jfrO-^)ll 

<    5    [iK..-*r)l  +  |U(^*.-fr)}|) 

Bot  /r«.i><ri  since  the  points  £,,  ;,,  s,,  ...  are  in  order;  and 
conMiiuentljr  the  fintt  of  the«e  Mummations  is  lesM  than  or  equal  to 
the  total  rariation  of  x{t\  and  the  second  summation  is  less  than  or 

equal  to  the  total  variation  of  jf(t) ;  that  is  to  say,  1\  (Zr^i-z,)\  is 
leee  than  or  etiual  to  the  sum  of  the  total  variations  of  r  {t)  and  jr  (/). 

10.  We  are  now  in  a  poeition  to  give  a  formal  definition  of  a 
complex  integral  and  to  discuss  its  properties.  The  notation  which 
hai  been  introduced  in  ̂   3,  4  and  5  will  be  employed  throughout 

DbfURTIOH.  Lft  AB  b«  a  fimplt'  curve  trt/A  limited  varialiomt 
4kmnt  in  the  Argand  diatjram.  l^ei  /{z)  be  a  function  if  the  complex 
tariable  z  which  it  eomtinucmt  on  the  curve  AB.  Let  z^  bt  tht 

eoordinatt  qf  A,  and  Z  tke  cimiplex  niordinate  of  B.  Let  a 
<^  ptintt  am  A  B  be  clkttim,  and  urkett  n  tf  tkemt  point*  have 

been  taken^  let  the  points  taken  in  order  be  catted  Zx*^\  z^'\  ...  s»<*>  {to 

that  ifm^n,  z,**'  it  ome  q/' the  points  z,<-',  c,'"»,  ...  i"*—..!);  thetequence 
qf'  points  may  be  cJ^oten  according  to  antf  definite  late  wkaterer*,  pro- 

vided ontjf  tttat  tite  points  are  att  different  and  tluU,  gitrn  anif  positive 
mmnher  h,  we  ran  find  an  integer  n,  sucA  tkat  wken  n  >  ii«, 

where  r  »  0,  I.  2.  ...  n  aim/  /.«■>  =  r„  ̂ ..••'  -  T. 

*  If  (•■0.  Tml,  the  ftimpkHt  Uw  is  given  by  Uking  l|(*i.  IJ*K  ...l.<^  to  b* 
lbs  fliM  n  of  Um  nombera  i :  |.  | :  )•  !•  !•  I;  -.-  «bcn  Umm  n  number*  •!« 
inmyipil  la  ooUr  of  magnitod*. 
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Then   the  complex  integral  I    /{z)dz  is  denned  as  meaning  the 

Jollowing  limit: 

jy{z)dz  =  lim  [(5rx'"> -2o'"V (W"')  +  (W*> -«i<"Oy (^i'"0 

+  (2;,W-W"')/(^."*>)  + •- +(^-^»<">)/(«n<">)] 

=  lim     2  [(:^r.,<")-2:.<">)y(«r'"')]. 

[It  is  pennissible  to  speak  of  the  limit  of 

2    [(2r  +  ,<")-^r<'")/(^rW)] r  =  0 

because  these  expressions  form  a  sequence  (depending  on  n),  each  member  of 
the  sequence  being  determinate  when  the  form  of  /  and  the  law,  by  which 

the  points  «,.<")  are  chosen,  are  given.] 

The  integral  is  said  to  be  taken  along  the  path  AB,  and  the  path 

AB  is  usually  called  the  contour  of  integration  ;  and  if  the  path  AB 

be  called  C,  we  sometimes  write  /    J  (z)dz  in  the  form  /       J  (z)  dz  or 
Ja  jub) 

/{z)dz. 
/< 

11.  It  is  next  necessary  to  prove  (Theorem  I)  that  the  limit,  by 
which  an  integral  is  defined,  exists. 

When  we  have  proved  Theorem  I  we  shall  prove  (Theorem  II)  that 

if  a  positive  number  t  be  taken  arbitrarily,  it  is  possible  to  find  a 

number  Sj  such  that,  when  any  v  numbers  ti,  t^,  ■■•  t^  are  taken  so  that 

to^ti^ti^  ...  ̂ tv'^ ty+i  =  T and  #p+i -  ̂ p $ 8j (j»  =  0,  1,  ...  v),  and  when 
Tp  is  such  that  tp%Tp%  tp^,,  then 

\l^/(z)dz-    2    (Zp,r-Zp)/{Zp)     <€. I  J A  p  =  0 

Theorem  I.     Let  /S;  (z)  =  2  [(;2,^i<")  -  ̂ r'"0/(^r<'")] ;  then  lim  S^  (z) 
eansts. 

To  prove  the  existence  of  the  limit,  we  shall  prove  that,  given 

an  arbitrary  positive  number  e,  we  can  choose  an  integer  n  such  that» 
when  m>  n, 

\S„{z)-S^(z)\<€. 

This  establishes'  the  existence  of  lim  S^  (z). 
tt-»OC 

«  Bromwich,  Theory  of  Infinite  Seriet,  §§  3,  75,  151. 
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L«t  L  tw  the  turn  of  the  total  raruitiorui  of  » (#)  mm!  jr  (I)  for  the 
iatenrd  <•  to  T  of  r. 

In  virtue  uf  tJie  routiituity  of /(£)  tfta  foootioo  of  I,  eocreqwodiiig 
to  an  arbitrmry  po«itive  number  «.  we  can  find  a  poeittve  nanbar  h  gaeh 

that,  if  s  be  any  particular  point  on  Ali,  and  if  £'  be  on  AH,  Umd* 
l/(«V/(«)l  t;|./i   (6) 

whaoerer  i  r'  -  f '  <  S ;  it  t«  obviooji  that,  in  general,  S  it  a  function  of  #. 
Let  Of  ammmt  for  the  prenent'  that,  when  «  is  taken  arbitrarily,  a 

number  K  (independent  of  f,  but  depending  on  <)  exista,  such  tlwt.  for 
<ii/  valuee  of  t  under  consideration, 

that  is  to  say,  we  assume  that/(s)  is  a  umiformiif  amtinmrns*  function 
of  I. 

Now  choose  m  so  Urge  that 

0  <<,.,'•» -/,<*»<«w. 

forr-0^1,  2,  ...n;  this  is  possible  by  reason  of  the  h>'pothesis  made 
eoDoarning  the  law  by  which  the  numbers  /r'"'  were  chosen. 

Let  m  be  any  iut4*Ker  hucIi  that  m>  n  ;  and  let  those  of  the  points 

s,**'  which  lie  between  «,'•♦  and  «,♦"•  l»e  called  C|. «,  *^,, ...  x«,*i.«,  where 

x^,^  =  z^*'\  s«,»i.»*=-i'"* ;  •"*^»  generally,  let  those  of  the  points  r,'"' 

which  lie  between  Cr'"*  »nd  Zr*/"'  be  called  r,. ,,  :%  r,  •••  -■,..i.r,  where 

•1.  r  "^  *r     »    ••,..1.  r  —  ♦r*!      • 

Tlieu  *-.  -  1  [(c,.."'  -  s,"»)./(5r'"»)] 

since  the  |)oint<  :^  ,  are  the  ftauie  sji  the  points  £,*"'> 

AIm.  S,  -  2  f  *2  {(s..,. .  -  c^ ,)./(.%  r)sl. 
r-oLa-l  J 

mitlmt      (N.-.S.)|  =  |   1  r  2  (-...., -.Vr)|/(s,"')-/(--.r)}l| 

<    J   "s  |(r..,r-r..,){/W»)-/(-^r)}  . 
*  Tb«  rwuon  (or   cbooaiitK   ̂ ^   iuulUpli«r    |   will   be  Mrn  when   we  come  to 

TtMorvcn  II. 

'  A  (oniuU  proof  U  given  in  f  13. 

*  Th*  eontinuily  U  mdd  to  b*  uniform  bpc«uae.  a«  r'  •»  f ,  f(:')  tend*  to  the  limit 
/(:)  uattoniily  with  roepect  to  the  v«ri«bU  I. 
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But  ̂ r+i*"' ^t,^T>  tr^*\  80  that  0  ̂  /,. r - tj^^^ ^ Sfl,  and  consequently 

r  =  0  »=1  r  =  0 

and  consequently 

r=0  »=1 

in 

r=0 

since  2   \  {ZrJ"^^  -  Zr^""^)  \  ̂  L, 

by  the  Lemma  of  §  9.  That  is  to  say  that,  given  an  arbitrary  positive 

number  c,  we  have  found  n  such  that  when  m>n,  \Sn-Sm\<f;  and 
consequently  we  have  proved  that  lim  Sn  exists ;   the  value  of  this 

limit  is  written 

/. 

'/{z)dz. 

We  can  now  prove  the  following  general  theorem  : 

Theorem  II.  Given  any  positive  number  c,  it  is  possible  to  find 
a  positive  number  8^  such  that,  when  any  v  numbers  ti,  t^,  ...  tv  are 

taken  so  that  0  ̂   tp^.■^  -tp%^,  (p  =  0,  1,  •••  v,  and  t^+i  =  T),  while  Tp  is 
such  that  tp  $  Tp  %  tp+i,  th^n 

L ̂f{z)dz-   2   {zp,^-Zp)f{Zp) 
Zp,  Zp  being  the  points  whose  parameters  are  tp,  Tp  respectively. 

Choose  So  and  n  to  depend  on  €  in  the  same  way  as  in  the  proof  of 

Theorem  I ;  we  shall  prove  that  it  is  permissible  to  take  8j  =  So- 

For,  assuming  that  0  ̂   ̂;,+,  -tp^^  8„,  we  can  find  an  integer  r 
corresponding  to  each  of  the  numbers  tp,  (p=¥v+l),  such  that 

^r**' ^  ̂p  <  ̂r+i^"' ;  let  the  numbers  tp  which  satisfy  this  inequality  for 
any  particular  value  of  r  be  called  in  order  t^^r,  t^^r,  ■•■  ttf^,  r- 

Then  we  may  write 

2   [(^,.,-Cp)/(Zp)]=  2  [(c,.,.-cW)/(Zo..)  +  (c^r-c,.)/(Z,.) p=0  r=0 

^iz,,r-Z^r)/{Z^r)+...+{ZrJ''^-Zy^,r)/{Z,.,r)]. 
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The  fullowiitK  ODUvetitioiM  have  to  be  adopted  in  interpivtiiig  tlia 

nnmation  od  the  nKht-hand  side : 

(i)  l^r  <  7Vr  ̂  'i.r ;  whero  U,r  mean*  that  number  of  the  set 
U,  ̂ if-^  which  immediately  preoadee  li.r' 

(ii)  txr, r  ̂  Tx^.  r  <  <jr^«i.  r  i  whew  <jr,«i.r  meaD«  that  number  of  the 

set  lit'ii  ••  'r»i  which  immediately  follows  rjr^,  r. 

(iii)  If,  for  any  value  of  r,  there  is  no  number  t,  such  that 

t/^  ̂ tf<  fr*/"\  the  term  of  the  summation  corresponding  to  that 
value  of  r  is  (s,,,<">  -  «,"»)  /{Z^ ,),  where  Ur^T^r^t,,r  and  <^  r,  «i.  r 
are  respectively  the  largest  and  smallest  numbers  of  the  set  <«,  l|, ...  tp^i 
which  satisfy  the  inequalities 

With  thexe  conventions,  if  i$w  has  the  same  meaning  as  in 

Theorem  I,  we  may  write 

=   J^U-..r-5r'-»){/(^..r)-/(«r'-»)}  +  (*^r-:r,..){/(^,..)-/(z.<-')} 

if  for  any  value  of  r,  there  is  no  number  tp  such  that  O*^  %t,<  #r*i**'» 
the  term  of  the  summation  corres|X)nding  to  that  value  of  r  is 

(r...W-*.«-0{/(^^r)-/(^«-»)}. 

Now  if  «  « 0, 1, ...  Nrt  we  have 

and  T^r>t^ur-i,>0'^-i.i 

hence  I  7^  r  -  <r<"M  <  2fi.. 

Tberefoie,  if  <'-i(r^r-(-^<"0.  we  have 

so  that,  since  the  modulus  of  a  sum  does  not  exceed  the  sum  of  the 
moduli, 

I /(Z. ,)    Atr»)  1 1;  I /{Z^r)^Az')  I  +  [  /(*)-/(«.«) 

by  equation  (5)  of  Theorem  I. 
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It  follows  that 

^  2  [|(5..,-;?,W)l.icZ-' r=0 

+  |(^r-;tl.r)|.i^X-^+...+|(W"-^.V,.r)l.|«i^-'] 

r=0 

Now,  by  the  Lemma  of  §  9,  the  general  term  of  this  last  summation 
is  less  than  or  equal  to  the  sum  of  the  variations  of  .r  (t)  and  y  (t)  in 

the  interval  #,.<")  to  ̂ ,+i*"',  since  the  points 

are  in  order;  and,  hence,  since  the  numbers  ̂ o^"*,  ̂i*"',  ...  #„+i*">  are  in 
order,  the  whole  summation  is  less  than  or  equal  to  the  sum  of  the 

variations  of  x  {t)  and  y  (t)  in  the  interval  ̂ o*"*  to  #„+i<"' ;  that  is  to  say 

2    (Zp+i  -  Zp)  /  (Zp)  -  Sn 

p  =  0 

But,  by  Theorem  I,  with  the  choice  of  w  which  has  been  made 

I  ̂m  -  'S^n  I  ̂  if, 

when  m>  n.     Hence,  since  c  is  independent  of  m, 

I(  lim^„.)-^„i^|c. 

1.6. 
Jzt dz-Sn 

^K 

Therefore 

f f{z)dz-  5   {Zp,r-Zp)f{Z,) 
p=0 

^1  /V(^)^^-'S^« 
1    /^o 

+  i.S;-2  {zp^,-z,)f{Z,)\ 

1>  =  0 ^h- 

That  is  to  say  that,  corresponding  to  an  arbitrary  positive  number 
€,  we  have  been  able  to  find  a  positive  number  Sj  (namely,  the  number 
denoted  by  So  in  Theorem  I),  such  that  if 

0  ̂  tp^,  -  tp  %  8,,  {p  =  0,  1,  2,  ...  v,  and  ̂ ,^,  =  T\ 

then /    f{z)dz-  2  {z,.,,-z,)nZp) 
Jzt  p=i) 
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PrOQi  tiiiH  ironpntl  tilivinMii,  wn  cau  di'^uee  the  following  |MiHinulAr 
tfaeorent 

Theorem  III.     Tkt'  valu»  qf  I  /(<)  dz  dom  not  depend  on  the 

jfMtrticular  Uttr  by  wkirk  the  point*  Xr*"'  ar$  ckottn,  provided  that  the  law 
eeUi^iee  ike  muditione  t^  %  10. 

Let  poinU  chosen  aooording  to  any  other  Uw  tliau  that  alreaiiy  con> 

eidered  be  called  ̂ w,  (^.q.  1,  ...  k  ;  t^,  ̂ ,  ̂ ^,w  «  Z) ;  then  if  t  be 
the  parameter  of  the  point  C,  ̂o  can  find  a  number  y,  "uch  that  when 

►  >!'*,  0^T,./'*-''|.**^^^ ;  hence  we  may  take  the  numbers  t^  of 
Theorem  II  to  be  the  numbers  r,!"*  respectively,  uiui  we  will  take 
Z,=^(ff^;  therefore,  by  the  result  of  Tlieorem  II, 

aiui,  corre8iK>ndinK  to  any  positive  number  «,  we  can  always  find  the 

number  k,  such  tliat  this  inequality  in  satisfied  when  !'>»*,. 

Therefore  lim    2  [(C.*/-»- ^-^/(CpW)] !>-»«  pmO 

exists*  and  is  equal  to  /   /  {z)  dz,  which  lias  been  proved  to  be  the 
value  of 

lim  5  (r,..«-»-s;-')/(VO; 

and  this  is  the  result  which  liad  to  be  proved,  namely  to  shew  that  the rZ 

value  of  I   /(z)  dz  does  nt»t  tle|)end  on  the  particular  law  by  which  we 

choose  the  |)oints  Zr^'K 

12.  It  was  assumed  in  the  course  of  proving  Theorem  I  of  §  1 1 
that  if  a  function  of  a  real  variable  was  continuous  at  all  {K)ints  of  a 
finite  closed  interval,  then  the  function  was  uniformly  oontinnons  in 
the  interval. 

A  formal  proof  of  tlii»«  a.'v>iiuii»tinn  is  now  necessary";  l>ut  u  is 
expedient  first  to  prove  the  following  Lemma.  The  lemma  is  proved 
for  a  two-<limensional  region,  as  that  fonu  of  it  will  be  required  later. 

•  Bromvieh.  Tktory  of  In^nltt  Serin,  |  I. 

**  It  mu  pointed  oat  bj  Heine.  VrrUe'a  JomrmU,  vol.  Lxxi  (1870).  p.  801  and 
vol.  ucxnr  (1879),  p.  186,  ttwt  it  is  not  obvloos  that  continuity  impliM  uniform 
(>nntif)ftitv 
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Godrsat's  Lemma".  Given  (i)  a  function  of  position  of  two  point*  P\  P, 

which  will  he  written  {P',  P],  and  (ii)  an  arbitrary  positive  number  t;  let  a  finite 
tioo-dimensional  closed  region^^  It  have  the  property  that  for  each  point  P  of  R 
voe  can  choose  a  positive  number  d  {depending  on  the  position  of  P),  such  that 

\[P\  P)\^*  whenever  the  distance  PP'  is  less  than  or  equal  to  i,  and  the 
point  P'  belongs  to  the  region. 

Then  the  region,  R,  can  he  divided  into  a  finite  number  of  closed  sets  of 

points  such  that  each  set  contains  at  least  one  point  P^  such  that  the  cotidition 

I  {/*',  /*,}  I  <  f  is  satisfied  for  all  points  P'  of  the  set  under  consideration. 

If  a  set  of  points  is  such  that  for  any  particular  positive  nmnber  <,  a  point 

P,  can  l>e  found  such  that 

\{P\P^}\<^ 

for  all  p(jints  P'  of  the  set,  we  shall  say  that  the  set  satisfies  condition  (A). 
A  set  of  points  which  satisfies  condition  (A)  will  be  called  a  suitable  set. 

Let  R~  he  the  continuum  formed  l)y  the  interior  of  R ;  take  any  {xjint 

of  R~  and  draw  a  square,  with  this  point  as  centre,  whose  sides  are  jmrallel 
to  the  axes,  the  lengths  of  the  sides  of  the  square  being  2Z,  where  Z  is  so 

large  that  no  ix)int  of  R  lies  outside  the  square. 

If  every  j)oint  of  R  satisfies  condition  (A),  what  is  required  is  proved. 

If  not,  divide  the  square  into  four  equal  squares  by  two  lines  through  its 

centre,  one  parallel  to  each  axis.  Let  the  sets  of  }.x)ints  of  R  which  lie  either 

inside  these  scjuai-es  or  on  their  boundaries  be  called  oi,  oj,  03,  04  respectively 
of  whidh  oj,  a.^  are  above  03,  04  and  ai,  03  are  on  the  left  of  02,  04. 

If  these  sets,  aj,  02,  03,  a^,  each  satisfy  condition  (A),  what  is  required  is 

proved.  If  any  one  of  the  sets,  say  a, ,  does  not  satisfy  condition  (A),  divide 

the  square '3  of  which  oj  forms  part  into  four  equal  squares  by  lines  parallel  to 

the  axes  ;  let  the  sets  of  points  of  R  which  lie  inside  these  squai-es  or  on  their 
b<;)undaries  be  called  /Sj,  ̂ 2»  ̂ 3  ("*  the  figure  one  of  the  .squares  into  which 
ai  is  divided  contains  no  jx>int  of  R). 

If  condition  (A)  is  satisfied  by  each  of  the  sets,  we  have  divided  oj  into 

sets  for  which  condition  (A)  is  satisfied  ;  if  the  conditit)n  (A)  is  not  sati.sfied 

by  any  one  of  the  .sets,  say  ̂ 3,  we  draw  lines  dividing  the  square  (of  side  iZ), 

of  which  ̂ 3  fonus  j«irt,  into  four  etpial  squares  of  side  ̂ L. 

This  i)rocess  of  .sulxlividing  scpiai-es  will  either  terminate  or  it  will  not ; 
if  it  docH  terminate,  R  has  been  divided  into  a  finite  number  of  closed  sets  of 

IK)ints  each  satisfying  condition  (A),  and  the  lemma  is  proved. 

Suppose  that  the  process  dt)e8  not  terminate. 

A  closed  set  of  jKunts  R'  for  which  the  process  does  terminate  will  Ije  said 
to  siitisfy  condition  (B). 

Then  the  set  R  does  not  satisfy  condition  (B) ;  therefore  at  least  one  of  the 

"  This  form  of  the  statement  of  Goursat's  Lemma  is  due  to  Dr  Baker. 
"  Consisting  of  a  continuum  and  its  boundary. 

'-''  A  square  which  does  satisfy  condition  (A)  is  not  to  be  divided ;  for  some  of 
^be  subdivisions  might  not  satisfy  condition  (A). 
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daw  not 

Tlw  |wo0Mi  of  dividit^  tiir  «(tMrr,  ill  wtiicti  ftUs  Ml  Iki^  Mo  imr  oqoal 
farta  gIvM  Ai  muat  fc«ir  «!•  uf  putuu,  «if  wUeb  •!  UMt  oim  «i  dotw  not 
Mtuify  r-^k*""  (BX  T«ke  the  ftnA  of  tlMNn  whieb  daw  nol,  and  oaotiiuM 
thtii  tiiimuM  of  dhi«i«i  (u»d  wekeiian,  Tlw  rMttk  «f  Um  pfoowa  b  to  gh* 
•n  aiiMMling  MK|ti(itioe  nf  aqoMwi  mMyia§  Um  ftJlowiitg  ooodMow : 

irtb*  wqwnw  be  calM  v  <i«  «ft.  -^  thM** 

I 

»l 

/I 

/ 

!^ 

N, 

/ ^ ti 
-* 

CiC 
) 

A 

<-. 

^ 
y - - 

'^  *», 

\ 

/ 
^ 

> 

e» 

■^ 

' 1 
V A 

J 
f "~" 

— ^ 

(i)     Th0«tdeaf  «.  iMuf  lenKth  2-"iL. 
(U)    No  point  of  «• .  I  Ihm  odtitidc  «.. 
(iii)    Two  MideH  of  «, , ,  lie  along  two  sidcM  of  «.. 

(ir)    i^  outitAtna  at  lea«t  oiw  [loiiit  of  R. 

(t)     The  Mi  of  pointji  of  H  which  arc  iiutiilc  ur  on  «,  do  not  mHitij 
oondttion  (A). 

Let  the  wMirdinatcM  of  tlio  oonteiw  of  «,  be  called 

where  x,<'>  <  x,«»,      jr,<'»  <  y,». 

Then  (Xa<*i)  t«  a  non-decTBaidiig  iie({i>etK«  and  (x.A)  is  «  nun-increaaing 

■equenoe  ;  and  x,«-r,<'>— S""/, ;  thcwfore  tlw  m^ihmicoh  (x,n»),  (x,«)  hare 
a  ooiuiuon  limit  (  wuch  that  x.(»<{<x.(^:  lumilaHy  tlie  Mequencoi  (jr.('*X 
(jr^W)  have  a  cvfiuiHiii  limit  ly  MtK>h  tlutt  jrai''<i|  (y.*^- 

Oanaeqtiently  ({,  i))  lim  iiutiJe  or  on  tite  UHiiKlaricM  of  all  tlie  Nquarm  of  the 

wnuancw  (v)  '•  furtlier,  ((,  ̂ )  licw  imudc  or  on  the  UiiUKlarA-  of  the  region  R  ; 

**  W«  take  the  Jint  poMihU  aqiuue  of  aaoh  group  of  four  ao  as  to  gvt  a  d^miu 
MqoMwe  of  ■quana. 

>•  Cp.  Branwiah,  Tkmtr^  of  Im/mitt  Stru;  |  lAO. 
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for  since  «„  contains  at  least  one  point  of  R,  the  distance  of  (f,  i;)  from  at 

least  one  jxjint  of /f  is  less  than  or  equal  to  the  diagonal  of  »„,  i.e.  2~"X  ̂ 2- 
Hence,  corresponding  to  each  square,  «„,  there  is  a  point  P^  such  that 

where  IT  is  the  point  whose  coordinates  are  (^,  i;) ;  this  sequence  of  points 

(/*„)  obviously  ha.s  n  for  its  limiting  point ;  and  since  the  region  R  is  closed, 
the  limiting  jMiint  of  any  sequence  of  points  of  A  is  a  ix>int  of  R.  Therefore 
n  is  a  point  of  R. 

Then  |  {P',  11}  |  <  e  when  P'  is  a  point  of  R  such  that  P'U  <  d»,  where  d» 
is  a  positive  number  dej«nding  on  11. 

Choose  n  so  that  2~"Z  ̂ /2  <  8„  ;  then  all  jxiints,  P',  of  »„  are  such  that 
P'n  <  8n ;  and  therefore  ««  .satisfies  condition  (A) ;  which  is  contrary'  to 
condition  (v). 

Consequently,  by  assuming  that  the  process  of  dividing  squares  does  not 
terminate,  we  are  led  to  a  contradiction ;  therefore  all  the  sequences  terminate; 
and  consequently  the  nmnber  of  sets  of  points  into  which  R  has  to  be  divided 
is  finite  ;  that  is  to  say,  the  lemma  is  proved. 

[The  reader  can  at  once  extend  this  lemma  to  space  of  n  dimensions.] 

In  the  one-dimensional  case,  the  lemma  is  that  if,  given  an  arbitrary 

positive  number  f,  for  each  point  /*  of  a  closed  interval  we  can  choose  d 

(depending  on  P)  such  that  |  {/*',  P}\<  t  when  PP  <  5,  then  the  interval 
can  be  divided  into  a  ̂ nite  number  of  sub-intervals  such  that  a  point  Pj  of 
any  sub-interval  can  be  found  such  that  |  {P,  P^}  \  <  *  for  all  points  P  of  that 
sub-interval ;  the  proof  is  obtained  in  a  slightly  simpler  manner  than  in  the 
two-dimensional  case,  by  bisecting  the  interval  and  continually  bisecting  any 
sub-interval  for  which  the  condition  (A)  is  not  satisfied. 

The  proof  that  a  continuous  function  of  a  real  variable  is  uniformly 

continuous  is  immediate.  Let  /(x)  be  continuous  when  a'^  a^%b  ;  we 

shall  prove  that,  given  c,  we  can  find  So  such  that,  if  w',  x"  be  any  two 

points  of  the  interval  satisfying  \x'  —x"\<.  So,  then  \f{x')  -f{x")  \  <  c. 
For,  given  an  arbitrary  positive  number  c,  .since /(a*)  is  continuous, 

corresponding  to  an)^  x  we  can  find  8  such  that 

j  f{x')  -f{x)  I  <  \t  when  |  ^'  -  .r  |  <  8. 
Then,  by  the  lemma,  we  can  divide  the  interval  a  to  b  into  a  finite 

number  of  closed  sub-intervals  such  that  in  each  sub-interval  there  is 

a  point,  a-,,  such  that  \/(x')-/(xi)  |  <  ̂ «  when  x'  lies  in  the  interval 
in  which  ;r,  lies. 

Let  8„  be  the  length  of  the  smallest  of  these  sub-intervals ;  and 

let  x',  x"  be  (i}ii/  two  points  of  the  interval  a  -^  x  ̂   b  such  that 
Ix'-x'l-cBo; 
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than  M,  j^  li«  in  the  imm  or  in  M^ivn^  tab-inlenrttb ;  if  je\  y  li«  in 
Um  auM  •ub-intMTtl*  Umo  wo  ou  ftad  &%  m  that 

If  y,  jT  lie  in  m^*''^'  *ub-int«nraU  let  ̂   be  their  common  end- 
point;  thin  «•  c«n  find  a  puint  x,  in  the  first  tub-interval  and  a 
point  j^  in  the  eeoond  «uch  that 

|/(*')-/(x.)|<J*.  !/(«-/(*,) !<K 
l/(^)-/(A)l<i«.  i/U)-/(*.)l<K •o  that 

l/(y) -/(X-)  - ;  {/(*) -/(x.))  - 1 /(o  -y  (*.)} 
-|/('")-/(^)}  +  {A«-/(A)}l 

In  either  oaae  l/ijO  -  /{r")  \  <  *  whenever  I  ^r'  -  y ;  <  8,.  where  8, 
is  indfpmdtmt  of  y,  x"  ;  that  in  to  say,  /{x)  is  uniformly  continuout. 

18.     Prmifii  «>f  thr  fiillowing  theorems  niay  lie  left  to  the  rtMuier. 
I.     It  AB  )«  A  Himple  cune  with  htuitcd  viuiatiinui  mid  if /(<)  be  con- 

tfawiw  on  the  oune  AB,  then 

!'/(«)  «i.--|^/(«)  A. 
TbAt  i»  to  MV,  cbanging  tbe  orientation  of  the  {nth  of  int4>gnition  chaiigw 

Um  aifii  of  the  integnU  of  m  given  functi<Hi. 

II.  If  C  be  •  puint  on  tlie  aiiuple  oun'e  AB,  and  if  /(<)  be  oonttnuouH  on 
(heourve,  then 

III.  If  t«  and  Z  t«  the  coniplei  coordinaten  of  A  and  B  raipactively,  and 

if  wl  A  l«  a  stniple  cttr%'e  joining  A,  B,  then 

IV.  With  the  noUtion  uf  TlicirenM  I  and  II  of  §  II,  hy  Uking  <p- V'* 

and  Zp  in  turn  equal  to  <y<*i  and  t^ ,  ,<**,  it  followH  that 

^'tds'^  lin.    i  [(«,.,«•» -!,«"») */•>] 

/: 

/: 

•  •••  r-» 

-H>n>      »    [(«r.l«)'-('r'"'>'l 



CHAPTEE   III 

CAUCHYS   THEOREM 

§  14.  The  value  of  an  integral  may  dej)end  on  the  path  of  integration. 

— §  15.  Analytic  functions. — §  16.  Statement  and  proof  of  Cauchy's 
Theorem. — §  17.     Removal  of  a  restriction  introduced  in  §  14. 

14.  Let  Ci,  Co  be  two  unclosed  simple  curves  with  the  same  end- 
points,  but  no  other  common  points,  each  curve  having  limited  varia- 

tions. If  ;So,  Z  be  the  end-points  and  \i  f{z)  be  a  function  of  z  which 
is  continuous  on  each  curve  and  is  one-valued  at  z^,  and  Z,  then 

\^/{z)dz,      \^/{z)dz both  exist. 

\i  f{z)  =  z,  it  follows  from  Theorem  IV  of  §  13  that  these  two 
integrals  have  the  same  value.  Further,  if  Cj,  (7,  be  oriented  so  that 
Zo  is  the  first  point  of  Cx  and  Z  the  first  point  of  Co,  and  if  Cj,  C^  have 

no  points  in  common  save  their  end -points,  Ci  and  C^  taken  together 
form  a  simple  closed  curve,  C,  with  limited  variations,  and 

/<
 

zdz  =  0. c 

This  result  suggests  that  the  circumstances  in  which 

Jiz)dz^O, I 
(where  C  denotes  a  simple  closed  curve  with  limited  variations'  and 
/(z)  denotes  a  function  of  z  which  is  continuous  on  C)  should  be 
investigated. 

'  A  regular  closed    curve,    satisfying  this  condition,   regarded  as  a  path   of 
integration,  is  usually  described  as  a  closed  contour. 
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The  iaveiitifpitioo  appMn  «U  the  more  ueccwHuy  from  the  fiurt' 
that  if  C  be  the  unit  circle  |«|«  1.  deacribed  oouiiterolockwiae,  mad 

/(<)  •  z'\  (to  that  <  «  ooe  I  •*>  I  an  /,  -  V  <  K  v),  it  cati  be  iihewn  that 

/< 

c 

Con<ittiuiiM  fur  the  truth  of  the  equation 

/(a)d!t»0 

/c 

were  titHt  iuv6itiffttid  by  Cauchy*. 
It  iM  N44  nffhitmt  that/(«)  sbouUi  be  oontinaoos  and  one-valued 

on  t)ie  re^uUr  closed  curve  C,  as  is  obvious  from  the  example  cited,  in 

which  /{z)  =  c"' ;  and,  further,  it  is  not  mffident  that/(«)  should  be 
continuous  at  all  points  of  C  and  itM  int^'riur. 

A  sufficient  condition  for  the  truth  of  the  equation  is  that,  given  a 
function  /(;)  which  exists  and  is  continuous  and  one-valued  on  Uie 

curve  C,  it  should  be  possible  to  define  a  function*,  /(z),  which  exists 
and  is  continuous  and  is  one-valued  at  all  points  of  the  closed  r^OQ 

formed  by  ('  and  its  interior,  and  which  possesses  the  further  property 
tliat  the  unique  limit 

should  exist  at  every  point  z  of  this  closed  region,  it  being  supposed 
that  z  is  a  point  of  the  closed  region.  The  existence  of  this  limit 
implies  the  continuity  of/(r)  in  the  region. 

It  is,  further,  convenient,  in  setting  out  the  proof,  to  lay  a  restriction 
on  the  contour  C,  namely  that  if  a  line  be  drawn  parallel  to  Ox  or  to 
Oy,  the  portions  of  the  line  which  are  not  points  of  C  form  a  finite 
number  of  segments.     This  restriction  will  be  removed  in  §  17. 

15.  Dbfixition.  Analytic /unctiotui.  The  one- valued  continuous 
function  /(z)  is  said  to  be  analytic  at  a  |K>int  ;  of  a  continuum,  if 
a  number,  /,  can  be  found  satisfying  the  condition  that,  given  an 

'  Hardy.  A  Cour»e  »f  Purt  M,ithrmatict,  f  :104. 

*  itfmoirt  tur  U0  inUgraltt  (///i'miV*  prtMt  entrt  dei  limiu*  imtaffimaim  (1835); 
this  nMaoir  U  reprinted  in  i.  vti.  »nd  l.  riii.  of  ths  BulUttH  tU»  Scimert  UmtM- 

*  Up  to  tb«  prMent  point  «  function,  /(<),  of  the  complex  variftble  t.  luu  mouit 
OMTtly  a  faneiion  of  the  two  real  variablw  x  and  y. 



32  cauchy's  theorem  [ch.  hi 

arbitrary  positive  number  c,  it  is  possible  to  find  a  positive  number  8 
(depending  on  e  and  z)  such  that 

\/(z)-/(z)-l(z'-z)\%.\(z'-z)\, 

for  all  values  of  z  such  that  \z'  -  z\%8. 
The  number  /  is  called  the  differential  coefficient,  or  derivate,  of 

/(z) ;  if  we  regard  z  as  variable,  I  is  obviously  a  function  of  z ;  we 

denote  the  dependence  of  /  upon  z  by  writing  l=/'(z). 

So  far  as  Cauchy's  theorem,  that  I   /(z)  dz  =  0,  is  concerned,  it  is 

not  necessary  that/(2;)  should  be  analytic  at  points  actually  on  C;  it 
is  sufficient  that  f{z)  should  be  analytic  at  all  points  of  the  interior  of 
C  and  that  for  every  point,  z,  of  C, 

\f{z)-f{z)-f{z).{z'-z)\%.\z-z\, 
whenever  \z  -z\<.8  (where  8  depends  on  c  and  z\  provided  that  z  is  a 
point  of  the  closed  region  formed  by  C  and  its  interior. 

In  such  circumstances,  we  shall  say  that/(«)  is  semi-analytic  on  C. 
It  is  not  difficult  to  see  that  analytic  functions  form  a  more  re- 

stricted class  than  continuous  functions.  The  existence  of  a  unique 
differential  coefficient  implies  the  continuity  of  the  function  ;  whereas 
the  converse  is  not  true  ;  for  e.g.  |  « |  is  continuous  but  not  analytic. 

16.     It  is  now  possible  to  prove  Cauchy's  Theorem,  namely  that : 
If  f{z)  be  analytic  at  all  points  in  the  interior  of  a  regular  closed 

curve  with  limited  variations,  C,  and  if  the  function  he  continuous 

throughout  the  closed  region  formed  by  C  and  its  interior,  then 

I 
^f{z)dz  =  0. The  theorem  will  first  be  proved  on  the  hypothesis  that/(«)  is 

subject  to  the  further  restriction  that  it  is  to  be  semi-analytic  on  C. 
In  accordance  with  §  8,  let  the  orientation  of  C  be  determined  in 

the  conventional  manner,  so  that  if  the  (coincident)  end-points  of  the 
path  of  integration  be  called  z^  and  Z,  with  parameters  ̂ o  and  T,  then, 
as  t  increases  from  tf,  to  T,  z  describes  C  in  the  counterclockwise 
direction. 

The  continuum  formed  by  the  interior  of  C  will  be  called  R~  ;  and 
the  closed  region  formed  by  R'  and  C  will  be  called  R. 

Let  L  be  the  sum  of  the  variations  of  x  and  y  as  s  describes  the 

curve  C ;  take  any  point  of  R~,  and  with  it  as  centre  describe  a  square 
of  side  2L,  the  sides  of  the  square  being  parallel  to  the  axes  ;  then  no 
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point  of  /f  Uei  oaUid«  Uiii  Miiure ;  for  if  (a.  ft)  be  Um  omtn  of  Um 
•quMV  aud  j^,  j%  tlM  mraat  ViloM  of  x  un  //,  th«o 

^  <  j^  i  JV.    0  ̂  X,  -  X,  ̂   /,, 

•0  that  X,  •*•  J^  >  J4  4-  £r  >  X, ;  i.e.  the  riffht-haotl  aide  of  the  aqtuue  ia 
on  the  right  of  H ;  a|>|UyiiiK  «iiuilar  reaaooing  to  t)ie  other  three  ddea 
of  the  iquare,  it  in  apparent  that  no  point  of  /f  is  outxide  the  M|uare. 

Lei  <  be  an  arbitrary  poaitive  number ;  then,  since  /(z)  i»  analytio 

inade  C  and  •eni'analjrtio  on  C,  eorraipooding  to  any  point,  z^  of  H 
«e  can  find  a  positive  number  i  such  that 

l/(«')-/(«)-(«'-*)/'(«)|i:«l«'-»|. 

whenever !«'- 1 1  < S  and  s'  is  a  point  of  H. 

Hence,  by  Goumt's  lemma  (^  12),  we  can  divide  B  into  a  finite 
number  of  aeta  of  points  such  tluit  a  point,  s, ,  of  each  set  can  be  found 
each  that 

!/(«')-/(«.)-(*'-«,)/' («.)l^«l»'-s.l. 
where  z'  is  any  member  of  the  set  to  which  t^  belongs. 

Suppooe  tliat  /{  m  divided  into  such  setii,  as  in  the  proof  of  Goursat's 
lemma,  by  the  pruceM  uf  dividing  up  tite  8i|uare  of  side  2L  into  four 
equal  squarea,  and  repeating  the  process  of  dividing  up  any  of  theae 
■loares  into  four  eijual  stiuares,  if  Huch  a  process  is  necessary. 

The  effect  of  bisecting  the  square  of  side  3J^  is  to  divide  /i'  into 
a  ̂mit^  number  of  continue,  by  Theorem  W  of  §  6  combined  with  the 
hypothesis  at  the  end  of  §  14  ;  the  boundarie/i  of  theee  continuH  are  C 

and  the  straight  line  which  bisects  the  Mjuarc  ;  tlie  prooeas  of  dividing 
up  the  aquare  again  is  to  divide  these  eontinua  into  other  oontinua ; 

and  finally  when  /f  lias  been  divided  int<)  Huitahle  hct^  Il~  has  been 
diviiicd  into  a  finite  number  uf  eontinua  whoMe  btjundariea  are  portions 
of  C  and  portions  of  the  sides  of  the  squares. 

The  squares  into  which  the  square  of  side  '2L  luu  been  divided  fall 
into  the  following  three  claases : 

(i)     Squares  auch  that  every  point  inside  them  is  a  point  of  /i. 

(ii)     Squares  such  that  some  points  inside  tliem  are  points  of  /f, 
but  other  points  inside  them  are  not  points  of  It 

(iii)    Si|uares  such  tluit  no  {loint  inside  them  is  a  point  of  If. 

The  points  inside  C  which  are  inside  any  iMirticular  miuare  of 
claas  (i)  form  a  Mmtinuum,  namely  the  interior  of  the  square ;  the 
points  inside  C  which  are  in.<ide  any  {tarticular  i«{uare  uf  cUss  (ii) 
form  one  or  more  eontinua. 

w.  c.  I.  3 
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Let  the  squares  of  class  (i)  be  numbered  from  1  to  iNT  and  let  the 
oriented  boundary  of  the  kth.  of  these  squares  be  called  C*. 

Let  the  squares  of  class  (ii)  be  numbered  from  1  to  iV'.  Let  the 
set  of  oriented  boundaries  of  the  continua  formed  by  points  of  I(~ 
inside  the  Arth  of  these  squares  be  called  Ck'. 

N     r  N'    r 
Consider  2  f{z)dz+  %  /{z)dz; 

we  shall  shew  that  this  sum  is  equal  to  /     /(z)  dz. 

The  interiors  of  the  squares  of  class  (i),  and  the  interiors  of  the 

regions  whose  complete  boundaries  are  C^,  are  all  mutually  external. 
The  boundaries  formed  by  all  those  parts  of  the  sides  of  the  squares 

which  belong  to  R~  occur  twice  in  the  paths  of  integration,  and  the 
whole  of  the  curve  C  occurs  once  in  the  path  of  integration.  By 
Theorem  II  of  §  8,  each  path  of  integration  which  occurs  twice  in  the 
sum  occurs  with  opposite  orientations;  so  that  the  integrals  along 

these  paths  cancel,  by  Theorem  I  of  §  13. 
Again,  the  interiors  of  all  the  regions  whose  boundaries  are  Ck  and 

Cjfe'  are  interior  to  C ;  so  that  the  orientation  of  each  part  of  C  which 
occurs  in  the  paths  of  integration  is  the  same  as  the  orientation  of  C ; 
and  therefore  the  paths  of  integration  which  occur  once  in  the  summation 

add  up  to  produce  the  path  of  integration  C  (taken  counter-clockwise). 
Consequently 

2    \     f{z)dz+'k    f      /{z)dz=[    /{z)dz. 

Now  consider  I      f{z)  dz ;  the  closed  region  formed  by  the  square 

Cfc  and  its  interior  has  been  chosen  in  such  a  way  that  a  point  Zi  of  the 

region  can  be  found  such  that 

\f(z)  -/(%)  -{z-  z,)f'  {z,)  \<.\{z-z;)\, 
when  z  is  any  point  of  the  region. 

Let  f{z)  -f{z,)  -{z-  z,)f'  (z,)  =  v{z-  z,), 
when  z=¥Zi. 

When  z=Zi  let  v=0 ;  then  v  is  a  function  of  z  and  Zi  such  that  |  v|  <e. 
It  follows  that 
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But  by  Theorem  III  of  §  13,  jdz^Z-Zo,  where  z,,  Zare  the  end- 

points  of  the  path  of  integration  ;  since  C*  is  a  closed  curve,  Z~z,,ao 

tliat  /      rfc  =  0 ;  so  also,  by  Tlieorera  IV  of  §  13,  f    ̂  zdz  =  0. 
y(c»)  j(Ci,) 

Therefore  [     /(«)  dz  =  L  .  («  -  «i)  vdz. 

Therefore*,  since  the  motlulus  of  a  sum  b  less  than  or  equal  to  the 
8inn  of  the  moduli, 

^  (      \(z-Zi)vdz\ 

<j^^  l,j2€\dz\ 
^  UAt  J2, 

where  Ik  is  the  side'  of  C^  and  At  is  the  area  of  Ct,  so  that  Aii  =  lk  \  it 

is  obvious  by  the  lemma  of  §  9  that  /  \dz\  does  not  exceed  the  peri- 

meter  of  C*. 

We  next  consider  /     ,  /(«)  dz ;  if  the  region  of  which  C*'  is  the j(Ck) 

total  boundary  consists  of  more  than  one  continuum  (i.e.  if  Ck  consists 

of  more  tlian  one  regular  closed  curve),  we  regard  Cu  as  being  made  up 
of  a  finite  number  of  regular  closed  curves ;  and  since  the  interior  of  each 
of  these  lies  wholly  inside  C,  any  portion  of  any  of  them  which  coincides 
vrith  a  portion  of  C  has  the  same  orientation  as  C ;  and  the  value  of 

\dz^  jzdz  round  each  of  the  r^ular  closed  curves  which  make  up  Cu 

is  zero. 

Hence,  as  in  the  case  of  C*,  we  get 

•  The  expnwion  [\/{x)(U\  means   lim     2   |  (tn-i^^^-'r'^O/C'r'*')!  i  *!»*»  *he 

notation  of  Chapter  11;  arguments  similar  to  those  o(  Chapter  II  shew  that  the 
limit  exists. 

*  The  sqoarea  C^  are  not  necessarily  of  the  same  sixe. 
S— 2 
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where  4'  is  the  length  of  the  side  of  that  square  of  class  (ii)  in  which 
Ck  lies. 

Let  the  sum  of  the  variations  of  x  and  y,  as  z  describes  the  portions 
of  C  which  lie  on  C^,  be  L^  ;  so  that 

JV' 

/^'  . 
(  2  Xjfe'  will  be  less  than  L  if  part  of  C  coincides  with  a  portion  of  a 

side  or  sides  of  squares  of  class  (i).  ] 

Now  L,J<^^l^^'  +  44'; 

for,  by  the  lemma  of  §  9,  /     ,  |  «fe  |  is  less  than  or  equal  to  the  sum  of j{yk) 

the  variations  of  x  and  y  &&  z  describes  the  various  portions  of  C*'. 

Therefore         I  {    ,^  /  {z)  dz  I  ^  {L^  +  44') «  4'  ̂ 2 \J\yk)  I 

since  4'  ̂  2i/ ;  -4  ft'  is  the  area  of  the  square  Cu. 
Combining  the  results  obtained,  it  is  evident  that 

^  2  4^ft  e  ̂2  +  2  (4ylft'  €J2  +  2L( L^  J2). k=\  k=\ 

N  N' 
But  it  is  evident  that  S  Ak+  2  -4fc'  is  not  greater  than  the  area k=\  k=\ 

N' 

of  the  square  of  side  2L  which  encloses  C ;  and  since  2  L^  ̂   L,  we k=\ 

see  that 

/     /(«)  dz   ̂ 4.^  {2Lf  X  c  72  +  26X»  V2 

•  $18cZV2. 

Since  Z  is  independent  of  c,  the  modulus  of  /     f{z)  dz  is  less  than 

a  number  which  we  can  take  to  be  arbitrarily  small.   Hence  /     f{z)  dz 

is  zero,  if /(c)  be  analytic  inside  C  and  semi-analytic  on  C. 



16-17]  CAirilYs  TMKUH&M  87 

17.  The  rmultii  of  tho  fuUowing  two  tbeocwiMi  maka  it  po«ibls  to  remove 
the  iwthcuoii  Uid  on  C  in  j^  14,  dmmI/  tlut  if  a  line  be  drawn  pemllel  to 
(Ar  or  to  Oy,  th<if«  {Mirtioim  of  the  liite  which  are  not  pointo  of  C  form 
»  finite  iiuni  W  uf  liogtueuU ;  aliio  it  will  follow  that  the  aaMimption  made 
at  tho  bogtiining  of  %  18,  that/(i)  ia  aemiatMlytio  on  C,  b  onneoeeMry. 

Thborkm  I.  Oiven^  a  nffular  cUmd  cmtm  C  and  a  potUiwt  mmb$t  ̂   a 
elottd  polggim  D  can  b0  drawn  twAtAat  tmy  point  of  D  i*  iaaidt  C  and  muA 
that,  giren  at^  point  PomC,  a  point  Q  on  Dean  be/tmnd  $yek  thai  P<i<h. 

TBBoaKM  II.  If  /{,»)  bt  eontinuoui  tkromgkont  C  and  its  interior,  thtn 

f  /{i)dt-  I  /(«)A  can  be  wuuU  arbitrarily  tmall  by  taking  h  $uffieimUy 

It  ia  obvioua  that  the  oooditioo  of  §  14  ia  aatiafted  for  polygoua,  ao  that  if 
/(«)  be  cuntinuoua  throughout  C  and  ita  interior  and  if  it  be  analytic  inaide  C, 

(  /(f)  A-0,  and  therefore  \    /(*)<ii-0. 

Trbohbii  I.    Let  the  elementary  ourveit  which  form  C  be,  in  order, 

y^9\{x\    x-A,(y),    y-^t(x),    x-A,(y),  ...  y-y.(x),    4?-A,(y), 

and  let  the  interior  of  C  be  called  S~. 

Let  *  <  lira  sup  \PQ, 

where  P,  ̂   are  any  two  {X)int8  on  C 
Each  of  the  elementary  curvee  which  form  C  can  be  divided  into  a  finite 

number  of  aegmenta  such  that  the  sum  of  the  fluctuations  of  x  and  y  on  each 

aegmeot  doe*  not  exceed  ̂   so  that  Urn  sup  PQ  <  \h,  where  /*,  (^  are  any  two 
pointe  on  one  aegmeot.  Let  each  elementary  curve  be  dinded  into  at  leaat 
three  such  segments  and  let  the  segments  taken  in  order  on  (?  be  called 

o^,  9t, ...  (r,«i,  their  end-iK)int»  being  called  /*,»  Ai  •••  ''■♦i  ("'^j)* 
Choose  JT  <a  BO  that  lira  inf  PQ  >  y,  where  P,  ̂   are  any  two  points  of 

C  whioh  do  not  lie  on  the  same  or  on  adjoining  segments*. 
Oover  the  plane  with  a  network  of  squares  whoae  aides  are  parallel  to  the 

axes  and  of  length  ̂   ;  if  the  end-|)oint  of  any  segment  o-,  lies  on  the  skle  of 
a  square,  ahift  the  squares  until  thin  is  no  longer  the  ease. 

Take  all  the  squares  which  have  any  point  of  a,  inaide  or  on  them  ;  these 

squares  form  a  aingle  dosed  region  S,  ;  for  if  v,  be  on  y«-^(«X  the  squares 
fonning  8r  can  be  grouped  in  oolumna,  each  column  abutting  on  the  column 
on  ita  left  and  also  on  the  column  on  its  right  Let  the  boundary  and  interior 

of  Sr  be  called  C,  and  S,-  respectively. 
Then  S,  posseaaea  the  foUowiuK  propertiea  : 

(i)    Sr  contains  points  inside  C  and  points  ouUdde  C. 

f  This  result  will  be  obUined  by  lbs  methods  of  de  la  ValUe  Ponssin.  CoMr« 

i'Amtitm  It^mMdwuU  (1914).  H  S48-S44. 
•  8ss  note  15.  p.  10. 



38 CAUCHYS  THEOREM 

[CH.  Ill 
(ii)  Sr~  has  at  least  one  point  P,.  (and  therefore  the  interior  of  one 

square)  in  common  with  iS'~^  +  i. 

(iii)  Sr,  Sr+2  have  no  point  in  common;  for  if  they  had  a  common 

point  P,  points  Q^,  Qr  +  2  could  be  found  on  o-^,  0-^  +  2  respectively,  such  that 

PQv^k^'s/^,  ̂ ^r+2<i8V2,  and  then  QrQr+2^i^' s/^  <  8',  which  is  im- 
possible. 

(iv)  Since  Sr-i,  S^+i  have  no  common  point,  Sr  consists  of  at  least 
three  squares. 

(v)  1{  i/=g(x)  has  points  on  m  squares  which  lie  on  a  column,  the  siun 
of  the  fluctuations  of  x  and  y  as  the  curve  completely  crosses  the  column  is  at 

least  (to  — 1)8',  (or  8'  if  m  =  l);  in  the  case  of  a  column  which  the  curve  does 

not  completely  cross,  the  sum  of  the  fluctuations  is  at  least  (to  -  2)  8',  (or  0  if 
TO=1).  The  reader  will  deduce  without  much  diflBculty  that  the  ratio  of  the 

perimeter  of  S^  to  the  sum  of  the  fluctuations  of  x  and  7/  on  o-^  cannot  exceed 
12  ;  in  the  figure,  the  ratio  is  just  less  than  12  for  the  segment  orr  +  i- 

If  (Tr-i,  (Tr,  o-r+i  be  all  on  the  same  elementary  curve,  it  is  easy  to  see  that 
a  point  describing  Cr  counter-clockwise  (starting  at  a  jwint  inside  C  and 

outside  C,._i,  C,.+  j)  will  enter  S~r-i,  emerge  from  S~r-i  outside  C,  enter 

S~r  +  i  outside  Cand  then  emerge  from  S~r+i- 
If,  however,  o-^-i,  o-;.  be  on  adjacent  elementary  curves,  a  point  describing 

Cr  niay  enter  and  emerge  from  S~r-i  more  than  once;  but  it  is  possible  to 
take  a  number  of  squai-es  forming  a  closed  region  <S/,  whoso  boundary  is  Ef, 
consisting  of  the  squares  of  S^  and  Sr-\  together  with  the  squares  which  lie 

in  the  regions  (if  any)  which  are  completely  surrounded  by  the  squares  of 

Sr  and  Sr-i-  Then,  as  a  point  descrilxis  Ef  counter-clockwise,  it  entera  and 

emerges  from  S~r-i  and  S~r  +  i  only  once.  If  we  thus  modify  those  i-egioub 
Sr  which  correspond  to  end  segments  of  the  elementary  curves,  we  get  a  set 

of  ?«-!- 1  (<  n)  closed  regions  T,,,  with  boundaries  Dp  and  interiors  Tp~,  such 
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that  D,  mMto  Dp, I  but  nap-uunwontif  rafkna  mn  whoDjr  «ittrml  to  do* 
•ooUMr. 

Now  ooMkier  the  ato  of  each  polygon  D,  which  Um  ontakfe  T'^.i  uid 
r-y.i  butinaider;  tha«  ovvrUppinf  atoi  fonn  •  oIomkI  poljfaa  J>  which  i* 
wh«4l7  toiiife  ̂ *  v*^  ̂ 'B"  of  At  A*  •••«  owivrinf  oo  ii  in  ordar.  Aim,  if  P 
be  aitjr  point  of  #„  therD  ia  «  |Kiint  <^  of  r^  or  rr*i  «biob  b  inaida  a  aqnaiw 
which  abuta  on  D,  and  therafore  the  diirtanoe  of  P  from  aoma  point  of  D  doaa 

not  exceed /V-*^K  <  i<-»-K  <  ̂• 

Theiirrai  I  ie  thcnlara  oomplatdljr  proved. 

Thkomui  II.    Let «  be  an  arbitrary  poattire  namber. 

(i)    Chooae  a  ao  amall  that 

l/(0-A*)l<A'^-'. 
whenever  jj'— ai<8d  and  «,  /  are  any  two  |iuinta  on  or  inside  C,  whUe 
Li^Min  where  L  ia  the  aum  of  the  fluctuAti«iiiN  of  x  and  y  uu  C. 

(ti)    Cbooao  such  a  {mrauieter  t  for  the  cune  C  that 

i/(0-/(«)l<A«^"'. whenever  |f-l|<a:  tht«  i«  obvioualy  poaatble,  for,  if  the  inequality  were 

only  true  when    f*  -  / ;  ̂  XA,  where  X  ia  a  poaitive  tnuuber  lew  than  unity  and 

indepeiKlcut  of  <,  we  uliould  take  a  new  parameter  r«X~'<. 
It  is  evident  fWran  (i)  that 

i/(0-/(«)l<!^«^-'. 
whenever  1 1'  - 1  j  <8  and  s,  x*  are  any  two  {loiiitM  on  C. 

Draw  the  polygon  D  fur  the  value  of  d  under  oou«iderati<>ii,  as  in  Thetwem  L 

Take  any  uno  of  the  ciir>'es  Dp ;  if  it  wholly  c«>ntAiiw  more  than  one  of  the 
regions  S,,  let  thctu  be  .SV - 1.  a^r-  Then  there  in  a  )M>iiit  x^  of  »,. i  or  v,  in  one 
f>f  the  nquareH  <if  Dp  which  abuts  on  Z> ;  let  (^  be  a  point  on  the  aide  of  thia 
aqiuuv  which  im  |Mirt  of  D. 

Then  Sp^i  in  on  tr,  •  t ,  aihI  hence  \tp^i-tp[  duos  not  exceed  the  aum  of  the 
fluctiutioiut  of  X  and  y  on  <rr  _  i ,  <rr«  tr^ « t ;  i.e.    c^ «.  |  —  <^  |  <  |d  <  d. 

Alw>  the  arc  of  D  joining  (p  to  ̂ ^^  i  doea  nut  exceed  12  times  the  stun  of 
the  fluctuations  i^x  and  y  on  the  atVM  <r^_  ,,  v,,  v,,i  and  so  doea  not  cxoeeil 
3d :  and  the  sum  of  the  fluctiiatioiut  of  ̂ ,  if  lut  (  dewrribes  />does  not  exceed  the 
sum  of  tlie  perimeteni  of  the  curves  C„  i.e.  it  does  not  exceed  Li^liL. 

Take  as  the  {lanimeter  r,  of  a  |H>iiit  (  on  />,  the  arv  of  D  measured  (V«im 
a  ftxed  |>oint  to  (. 

We  can  now  omisider  the  value  of  I    /{s)di. 

By  oiHKlitioiiM    i)  ajul  (ii)  ompled  with  The«in*ni  II  of  §  11,  we  see  that, 

MKl  ̂     \^j^/{,)di-   M*,.,-«,)/(«,j}|<|». 
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But  If  nz)dz-f  fiodc \J  C  J  D 

+|{//(0<^c-J^(fp.x-(rp)/m 
I  Ip— 0  p=o  ;  I 

Write 

so  that 

Then 

ip=o  I 

/(Cp)==/(2p)+Vp.      fp  =  2p  +  »7p, 

2   (2p  +  l-2p)A'2p)-(fp  +  l-Cp)/(fp) p=0  I 

2  [('?p-';p+i)/(^p)-(Cp+i-Cp){/(Cp)-/(2p)}] p=0  I 

I    "*  I 
=      2    hp+l{/(2p  +  l)-/(2p)}-(Cp+l-^p)vp]| 
m  m 

<  2  hp  +  ,{/(2p  +  i)-/(^p)}|+    2  KCp  +  i-Uvpl. p=0  p=0 

Now 

by  condition  (ii),  while 

2  |'7p+i{/(^p  +  i)-/(^p)}|<^(»i+l)S'eZ-S 
p=0 

2    |(Cp  +  i-Cp)vpl<3V*A-'  2    |fp  +  i-fp| p=0  p=0 

Therefore,    collecting    the   results  and  noticing  that   (»i  +  l)S'<Z,   we 
see  that 

jj{z)dz-jj{z)dz 
<f. 

If  now,  in  addition  to  the  hypothesis  of  the  enunciation  of  Theorem  II, 
that  f{z)  is  continuous  throughout  Cand  its  interior,  we  assume  that  /(?)  is 
analytic  in  the  interior  of  C,  then  /(«)  is  analytic  throughout  D  and  its 

interior,   and  so    I     f{z)dz=0,   by   §16;    and  then,    bv    the    result    that 

J  d' 

I    f('^)dz\  <  €,  we  infer  that  /    f  (z)  dz^sQ.    The  residt  stated  at  the  be- \J  c  I  J  c 

ginning  of  §  16  has  now  'been  completely  proved. 



CHAPTER  IV 

MISCELLANEOUS  THEOREMS 

I  18.  Change  of  variable  in  an  int4*graL— §  IB.  Diflerentiation  of  an 
integral  with  regard  to  one  of  the  Umita.— §  20.  UnifiHin  differentia* 
Ulity  ittiplioH  a  utntiDUoua  diflerential  coefficient,  and  the  ooa\ 

18.  Changt  t^  tfonable  in  an  integral.  Let  C  be  the  complex 
coordinate  of  any  point  on  a  simple  curve  AB,  with  limited  variationjf. 

Let  £  •  jT  (0  be  a  function  of  C  which  lta«  a  continuous  differential  coeffi- 

deoi,  g'iCi,  at  all  points  of  the  curve,  so  tliat,  if  C  be  any  particular 
point  of  the  curve,  given  a  positive  <,  we  can  find  5  such  tliat 

li/(n-^(C)-({'-C)^'(0!^«IC'-C!. 

when  \f  -t\^h\  it  being  supposed  that  t,  t'  are  the  parameters  of  C  C- 
If  /„  T  be  the  parameters  of  .<4,  B,  suppose  that  z  describes  a 

simple  curve  CD  as  /  increases  from  <,  to  7^. 
Then  the  equation 

/,„/(j(0)^(0<«=j^„/W* 
%$  tru€  i//(z)  be  a  continuotu  function  on  the  curve  CD, 

By  Theorem  II  of  §  11,  K'iven  any  {M)Kitive  number  «,  it  is  possible 
to  find  a  positive  number  S  such  tliat  if  any  r  numbers  /|,  <^,  ■■■  t, 

are  taken  so  that  0  <  <^,  - 1,  ->  5',  and  if  TV  be  such  that  /,  ̂  T,  ̂  <,.  „ then 

l/< Given  the  same  number  «,  wo  can  find  fi"  such  that  if  any  r  numbers 
'i,  <ti  •..  tp  are  taken  so  that  0^<,.,-/,^«",  and  if  T^  be  such  that 
tp^  Tp^tf^i,  then 

\L^^ 
(0)?-(0J{-  s  ((,.,-(,) AX,) g{tt%) pm9  I 
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[CH.  IV where  Wp,  Zp  are  corresponding  points  on  AB,  CI) ;  we  take  8  to  be 

the  smaller  of  8',  8"  and  choose  the  same  values  for  ̂ i,  ̂2,  ...  t,  in  both 
summations,  where  0  %tp^.i-tp%8,  and  we  take  Tp  the  same  in  both 
summations. 

Now  divide  the  range  ̂ 0  to  T  into  any  number  of  intervals  each 
interval  being  less  than  8 ;  and  subdivide  each  of  these  into  a  number 

of  intervals  which  are  '  suitable '  for  the  inequality 

Then  taking  the  end-points  of  these  intervals  to  be  ̂ o>  *i> 
and,  taking  Tp  to  be  the  point  of  the  joth  interval  such  that 

\9{0-9{^Vp)-a-Wp)g'{Wp)\%.\C-Wp\ 
at  all  points  C  of  the  arc  CpCp+i  of  AB,  we  have 

2  {zp,^-Zp)/{Zp)-  2  ap..-QAZp)g'{Wp) p=0  p=0 

K,T, 

2  /{Zp)  {g  (^p,0  -  g  {Q  -  (^p.,  -  Q  g'  ( Wp)} 
j>  =  0 

2  AZp)  [{g (Cp.,) -g{lVp)- (^., -  Wp) g' ( Wp)} 
p=0 

-{9ar>)-9(Wp)-ap-Wp)g'{Wp)}]\ 

^  2  \/{Zp)^{\Cp.,-Wp\^\Wp-(p\}\. 

p=Q 
Let  L  be  the  sum  of  the  fluctuations  oi  $,  t)  on  AB  and  let  ML~^ 

be  the  upper  limit  of  \J(z)\  on  CD;  M  exists  since /(z)  is  con- 
tinuous. 

Then,  by  the  last  inequality, 

2  {zp,,-Zp)f{Zp)-  2  {;p.,-Qf{Zp)g{Wp) p=0  p=0 

iM. 

Therefore 

\\^j^n9{0)9'{^)di:-\^^f{z)dz \l ,J{9{0)g{0dK-  2  {Cp^.-Qf{Zp)g{Wp) AB  p=o 

-/< 

/{z)dz+%  {zp^,-Zp)f{Zp) CD  p=o 

+  2  {i:„^.-Qf{Zp)g{Wp)-  2  (^^-c„)/(Zp) 

<  (2  +  M)  €  ; 
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■inoe  M  b  fisad,  c  m  vbitnmly  lunall  aud  the  two  iuiegnht  aasl»  we 
inf«r  Uuit 

j,,y(»(f))»'<o*-/,^/<.)A. 
CaroUanf.    Tftkiiig/(«)»  1,  we  tee  that 

thin  is  the  fonuttk  for  the  integml  of  a  contitiuotui  difleroiitul  ooefli> 
citMlt. 

19.     Djfinmiiaiitm  t/an  imUgral  tcitA  regard  to  one  qfths  limit$. 

Let  .4  A  be  *  regular  unclosed  curve  such  that  if  any  point  P  on  it 
be  taken,  and  if  Q  be  any  other  iwint  of  it,  the  ratio  of  the  sum  of  the 

ranations  of  the  cur\'e  between  P  and  (^  to  the  length  of  the  chord 

PQ  haa  a  finite  upper  limit',  k. 
iM  /{s)  b»  eomtimmmg  on  th*  curve  and  let  z^t  Z,  Z-^k  he  any 

tkree  points  on  it ;  tkm  if  z^  be  fixed,    I   /{t)  dz  it  a  /unetion  qf  Z 

onijf,  sajf  ̂ {Z);  and 

!-••  n 

t  ietke  difference  qftke  parameter*  qf  Z,  Z  -^  k. 
We  can  find  S  lo  that  /(Z+k)  -/{Z)  [  <  «  when  t  <  B,  where  <  is 

arbitrary. 
Now 

k-'\Mz*k)-^(zn'k-'  j'^''Az)dz 
=  A-  lim     2  /(Z  *  kn .  (Aro<'» - ir*"X 

where  ̂ ••"•^O,  i..,'"»  =  i;  it  being  suppcMcd  that  the  pointe  V  are 
chosen  in  the  itame  way  as  the  points  £,**'  iu  §  10  of  Chapter  II. 

Therefore 

\k-'\Mz^k)^^{zn-AZ) 

~\k-'  lim    i/(Z^krn.(K,r-kr*'*)'k-'/{Z)  i  (il,..<-»-A,«"») 

-  \k-*  lim     J  \AZ^Kn"AZ)\.(K,r  -A.''') 1    — -^ 
'  Thb  eoodiUoQ  U  Mlirtad  bjr  most  eurt—  which  oeeur  in  fnetict. 



44  MISCELLANEOUS  THEOREMS  [CH.  IV 

^\h-'\    lim      ̂ \{/{Z+hrn-/(Z)}\.\hrJ'^)-hr^*)\ n-»oo  r=l 

<|A-M.«2  |A,,,(-)-A,(»)|. r=l 

But,  by  the  lemma  of  §  9, 

\h-'\  2  |A,+i(»)-A,(")|<A:, r=l 

80  that  I  h-'  {i>{Z  +  h)-<f>  (Z)}  -/(Z)  I  <  k€, 
since  «  is  arbitrary  and  A;  is  fixed,  it  follows  from  the  definition  of  a 
limit  that 

20.  Uniform  differentiability  implies  a  continuous  differential 
coefficient,  and  the  converse. 

Let/(s)  be  uniformly  differentiable  throughout  a  region ;  so  that 
when  c  is  taken  arbitrarily,  a  positive  number  S,  independent  of  z, 
exists  such  that 

\f{z')-f{z)-{z'-z)f'{z)\%^^\z-zl 
whenever  \zf  —  z\%h  and  z,  z  are  two  points  of  the  region. 

Since  \z  —  z'\^^,  we  have 

\f{z)-f{z')-{z-z')f'{z')\%\.\z-z'\. 
Combining  the  two  inequalities,  it  is  obvious  that 

\{z-z){f'{z)-f'{z)\\^^^\z-z\^\.\z-z'\, 

and  therefore  I/' {z)  -/'  («)  I  ̂ «, 

whenever  \z  -z\%^;  that  is  to  say, /' (s)  is  continuous. 
To  prove  the  converse  theorem,  let/'(2;)  be  continuous,  and  there- 

fore uniformly  continuous,  in  a  region ;  so  that,  when  c  is  taken 
arbitrarily,  a  positive  number  8,  independent  of  s,  exists  such  that 

\f'{z)-/'{z)\^h, 
whenever  \z'  —  z\  ̂8. 

Consider  only  those  points  z  whose  distance  from  the  boundary  of 

the  region  exceeds  8  ;  take  '^  z-  Z\  "$8. 
Then  since  /(c)  is  differentiable,  to  each  point  (,  of  the  straight 

line  joining  z  to  Z  there  corresponds  a  positive  number  8^  such  that 

whenever  |  {'  -f  j  ̂  8^  and  C  is  on  the  line  zZ. 
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By  (}<MirMt'ii  bmna,  we  nay  divMia  the  line  tZ  into  a  ̂ iu 
nnmber  of  inUmraU,  ny  %t  Um  pointo  {.(*<)•  Ci»  {>•••{•.  d.i(*i?)* 
•ooh  that  there  is  •  point  z,  in  the  rth  intervkl  which  i«  Kuch  that 

!/(0-/<«r)-(C-«r)/'(«r)l<4«l«-«r!. 
for  all  pointe  C  of  the  intenral. 

Therefoie    /(t)-/(«r)-(C-«r)/'(«r)-«v(Cr-«r). 

AIms  since  |Sr-«l<^ 

/'(«r)-/'(*)^1».. 

Therafore  /(C)  -/(t-,)  -  (Cr  -  C-,)/'  («r) 

Taking  r  •  I,  S,  ...«•*■!  in  tarn,  and  summing  we  get 

/(Z)-/(s)-(Z-x)/'(.-) 

=  'aV(Cr-Cr-,)*"a    K(t-«r)-«'/(Cr-,-*r)}. r-l  r-l 

But«  tinoe  the  points  C(=<)>  ̂ i  Ci.  <••••{..  £..  {•*i(-Z)  are  in 
order  on  a  atimigfat  line, 

M-l 
r«l 

audio     |/(Z)-/U)-(^-«)/'(«)l^i«!^-«''^i«'^-«!. 
wheMTW  I Z  -  s  I  <  S  and  the  dirtance  of  z  from  the  boundary  of  the 

region  does  not  exceed  K    Therefore,  if/'  (;)  is  continuous  throughout 
a  rcgkn,  /(<)  is  uniformly  differentiable  throughout  the  interior  of 
th«r«gioik 

The  reader  will  find  no  difficulty  in  proving  the  corresponding 

tbaorems  when  /(;)  is  uniformly  differentiable  or  when/'(r)  is  con 
tioooiis,  and  ;  is,  in  each  case,  restricted  to  be  a  continuous  function  of 
a  real  variable  t. 



CHAPTER  V 

THE   CALCULUS   OF   RESIDUES 

§  21.  Extension  of  Cauchy's  Theorem. — §  22.  The  diflferential  coefficients 
of  an  analytic  function. — §  23.  Definitions  of  pole,  residue. — §  24.  The 
integral  of  a  function  round  a  closed  contour  expressed  in  terms  of  the 

residues  at  its  poles.— §  25.  The  calculation  of  residues. — §  26. 
Liouville's  Theorem. 

21.  Let  C  be  a  closed  contour  and  let  f{z)  be  a  function  of  z 

which  is  continuous  throughout  C  and  its  interior,  and  analytic  inside 

C.  Let  a  be  the  complex  coordinate  of  any  point  P  not  on  G.  Then 

the  extermon  of  Cauchy's  theorem  is  that 

-^  f  i^dz  =  Q       if  P  be  outside  c] 
2Tn  jc z-a  J- . 

=  /(«)  if  P  be  inside  C  J 

The  first  part  is  almost  obvious  ;  for  if  P  be  outside  C  it  is  easily 

proved  that  f{z)/{z  -  a)  is  analytic  at  points  inside  C  and  continuous 
on  C.    Therefore,  by  the  result  of  Chapter  III, 

2W 
iirt  Jc  Z-a 

Now  let  P  be  a  point  inside  C. 

Through  P  draw  a  line  parallel  to  Ox;  there  will  be  two^  points 
Qi,  $2  on  this  line,  one  on  the  right  of  P,  the  other  on  the  left,  such 

that  Qi,  Q,,  are  on  C,  but  no  point  of  QiQ^  except  its- end-points  lies  on 

C.  [The  existence  of  the  points  ̂ i ,  Q.  may  be  established  by  arguments 
similar  to  those  in  small  print  at  the  foot  of  page  11.] 

1  Points  on  the  line  which  are  sufficiently  distant  from  P  either  to  the  right  or 
left  are  outside  C.  Since  a  straight  line  is  a  simple  curve,  the  straight  lines 
joining  P  to  these  distant  points  meet  C  in  one  point  at  least. 
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Vi.  <A  divide  C  luto  two  iMirt«  <r,.  <r,  with  tlie  mim  oheaiftliont  m 

(' ;  l«t  <r|.  If,  b«  ch<Men  m  tliat  (/, .  V,  are  the  eiulpotnli  of  the  orienlad 
etirre  v,,  aod  (/„  (^,  are  tlie  end-pointJi  of  tlis  oriented  curve  «r,. 

Let  the  ahortest  dietanoe  of  pointu  on  C  from  Z'  be  S, ;  cbooMe  B  to 
that  ScSi.  S<1  and 

/*(»)-/(a)-(«-a)/'(a)|<«|»-«| 
whan  |«-ai  <  £»  where  «  it  an  arbitrary  positive  number;  draw  a  circle 

with  eentre  /'  and  radius  r  ( <;  ̂S). 
liOt  QiQt  meet  this  circle  in  Pi,  l\ ;  let  tlie  upper  lialf  of  the  circle, 

with  the  oneutation  (a-  rya-¥r)  of  it«  end-point«,  be  called  Bu  and 
let  the  lower  half  of  the  circle,  with  the  orientation  (a  -f  r,  a  -  r)  of  ita 
end-pointa,  be  called  lit. 

Let  the  circle,  properly  oriented,  be  called  C„  ao  that  tlie  orienta- 
tions of  Bi  and  /A  are  opposite  to  that  of  Ci. 

Proofii  of  the  following  theorems  are  left  to  the  reader : 

(i)     ̂ u  QtPu  Bu  PiQi  form  a  closed  contour,   C^  properly 
oriented 

{>»)  »«.  ̂ Z*!.  Bu  PtOt  form  a  closed  contour,  C,,  properly oriented. 

<iii)    P  is  outside  C,  and  Cf 

(iv)  /i:)l{z  -  a)  'i»  analytic  inside  Ci  and  (7, ;  and  it  is  continuous 
Uiroughout  the  regions  formed  by  6\,  C,  and  their  interiors. 

Now  consider 

JCiZ-a         Jc,s-a 



48  THE   CALCULUS   OF   RESIDUES  [CH.  V 

The  path  of  integration  consists  of  the  oriented  curves  o-j,  o-j, 
P^Qu  QxPu  P2Q,,  Q,P„  Bu  B,. 

The  integrals  along  the  oriented  curves  o-j,  o-j  make  up  the  integral 
along  C.  The  integrals  along  the  oriented  curves  P\Qi,  QiPi  cancel, 
and  so  do  the  integrals  along  the  oriented  curves  P^Qi,  QtPi ;  while  the 
integrals  along  the  oriented  curves  Bi,  B^  make  up  minus  the  integral 
along  the  oriented  curve  C3,  since  the  orientations  of  B^,  B,  are 
opposite  to  the  orientation  of  Cg. 

Hence 

jCyZ  —  a         jc^z-a         Jc  z-a         Jc^  z-a 

Now  f{z)l{z  -  a)  is  analytic  inside  Cj  and  C^  and  is  continuous 
throughout  the  regions  formed  by  Ci,  C^  and  their  interiors.  Hence,  by 
§  17,  the  integrals  along  C^  and  G^  vanish. 

Hence'  i^^  dz=  l    -^dz. JCz-a         Jc^z-a 

Let  /(z)  -/{a)  -{z-  a)/'  (a)  =  v{z-  a), 
so  that,  when  5;  is  on  C3,  |  v  |  $  c 

Then 

[    fM  dz^fia)  I    —  +/'(«)  [   dz+  [    vdz. Jc^z-a        ''^'jc^z-a    •"   ̂   ' JC^         JCs 

But,  since  C3  is  a  closed  curve,  I    dz  =  0,  by  Theorem  HI  of  §  13. 
r       dz 

To  evaluate    /       ,  put  z  =  a  +  r  (cos  0  +  i  sin  6);   6*  is  a  real 

JC3  z  —  a, number  and  is  the  angle  which  the  line  joining  z  to  a  makes  with 

Ox.  Consequently,  since  a  is  inside  C,,  0  increases  by  27r  as  s  de- 
scribes C3. 

Hence,  by  the  result  of  §  18, 

f      dz    _  /■»+2»  -  sin  ̂   +  i  cos  0 

Jc^  z  —  a~Ja         cosO  +  i sin  6 =  27r/. dd 

Therefore  f    P^  dz-2m/{a)=  j    vdz, JC2  z     a  JCf 

*  This  result  maybe  stated  "The  path  of  integration  may  be  deformed  from 
C  into  C3  without  affecting  the  value  of  the  integral." 
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Putting  s»« ^r(o(Ml 4- lainlX  ««g«t' 

when  i;**<<r*i«.    ̂ ••^-<..    «.♦,••♦ -<;  +  J»». 

Heooe  /c  0i  ̂- "  ̂''■•^<'')  | 

is  leas  than  2«rc,  where  r  <  I  and  €  iN^rbitmnly  Huiall.     ('onseiiueiitly 
it  must  be  leru  ;  that  in  to  nay 

Jc  s-a  ''^  ' 

22.  Let  ̂ '  be  a  closed  contour,  and  let  /(s)  be  a  function  of  z 

which  iM  analjTtic  at  all  pointa  in»ide  ('  and  continuous  throughout  C 

and  '\U  interior ;  let  a  be  the  complex  coordinate  of  any  |)oint  inaide  C. 

Then  /{:)  pmmmM  mmi</«^  di^errntial  ctt*>fficiemU  qf'  aU  ordtn  at  a  ; ttttd 

d'Aa)      H}^  [      /(*) 
da*        2w»  Jc  iz  -  «!•*• 

All  points  sufficiently  near  a  are  inside  C ;  let  S  be  a  positive 

number  «uch  that  all  points  Natisfying  the  inei|uality  z-a  <  25  are 
inxide  C ;  and  let  i  be  ciajr  complex  number  such  tliat  ,  A  I  <  £. 

Then,  by  8  21, 

*  The  BOtalioo  of  Chapter  II  i»  hrin«  etnplojrvd. 
w.  c,  L  4 
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Therefore 

/(a+A)-/(«) 
2m  jc  (z  -  af  2m  jc  (z  -  af  (z-a  -  h) h 

Now  when  z  is  on  C, 

\z-a\^2h,  \z-a-h\^h,  and*  \f{z)\<K, 

where  A'  is  a  constant  (independent  of  h  and  S). 

Hence,  if  L  be  the  sum  of  the  variations  of  x  and  y  on  C 

lc(z-ay{z-a-hy^\^  }c {z-aY{z-a-h)      \     jc\{z-af{z-a-h)\ 

Therefore 

f{a  +  h)-f{a)       1     r  J>) 

A  2mjc{z-aY  ' 

where  |  v  |  <  |  A  |  ZX/(87r83). 

Hence,  as  ̂   ̂   0,  u  tends  to  the  limit  zero. 

Therefore  li„ /("-tiiz/W 

has  the  value  ̂ p-.  I    .    ̂̂ 'vjO?^;  that  is  to  say, ^TTI  JC  \Z  —  CI/) 

da-^^""'     2m}c{z-af'^^' 

The  higher  differential  coefficients  may  be  evaluated  in  the  same 
manner;  the  process  which  has  just  been  carried  out  is  the  justification 

of '  differentiating  ̂ ^^th  regard  to  a  under  the  sign  of  integration '  the 
equation 

'^  ̂   '     2m  jc  Z-a 

If  we  assume  that  —j\     exists  and 

{a)_n\    (      f{z)  ,. d^f{a)_n\    f      f{z) 
da 

*  On  G,  the  real  and  imaginary  parts  of  f{z)  are  continuous  functions  of  a  real 
variable,  t;  and  a  continuous  function  is  bounded.  See  Hardy,  A  Course  of  Pure 
Mathematics,  §  89,  Theorem  I. 
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m  •imiltf  proeaM  will  jiuttfy  diffenrntutiBg  Uiii  equation  with  ragard 

to  •  onder  the  aign  of  int<»frmti<»»i  <k>  that 

But  (6)  in  true  when  «  -^  I  ;  hence  by  (6ri),  (6)  in  true  wlien  n  ■  9  ; 
and  hence,  by  induction,  (6)  i«  true  for  all  puiitive  integral  value*  of  n. 

23.  Dsnytnova.  PoU,  Rtmduf.  Let  /(«)  be  continaotu 

throughout  a  cloeed  contour  C  and  itji  interior,  except  at  certain  poinu 

(I,,  a,,  ...  a.,  inmd*  C,  and  anal3rtic  at  all  poiutii  in«ide  C  except  at 
a„  a„  ...  a.. 

Let  a  function  ̂   (s)  exist  which  DatiMfien  the  following  conditions : 

(i)  ̂   (z)  is  continuous  throughout  C  and  its  interior,  analytic  at 
all  points  inside  C. 

(ii)    At  pointM  on  and  inside  C,  with  the  exception  of  a„  a,, ...  a., 

/(s)  =  ̂ (c)+  5  ̂,(5)      (7X 

Then  /(c)  is  said  to  have  a  poh  of  order  Mr  at  the  point  a, ;  the 

coefficient  of  (z  -ar)'\  viz.  f\,,  is  called  the  residue  of /(*)  at  a,. 
It  is  evident  by  the  result  of  Chapter  III  tliat 

/.
 

^^(z)di  =  0; 

m  that,  by  (7),  j^./(^)^-  =  ̂ ^   \c^r{z)dz. 

24.     TluN  hut  eiiuation  enables  us  to  evaluate  {/(z)dz\   for 

consider   \^,(z)dz.    The  only  point  inside  6^  at  which  ̂ (c)  is  not 

analjrtic  ii*  the  point  z^a^.  With  centre  a^  draw  a  circle  C  of  positive 

radius  p,  lyinx  wholly  inside  ('\  then  by  reasoning  precisely  similar  to 
that  of  li  'i\,  we  can  defomi  the  path  of  inte^p^tion  ('  into  C  without 
aflfecting  the  value  of  the  integral,  so  tlmt 

4-J 



52  THE   CALCULUS   OF  RESIDUES  [CH.  V 

To  evaluate  this  new  integral,  write 

z  =  ar  +  p  (cos  0  +  i  sin  6), 

so  that  6  increases  by  27r  as  z  describes  C" ;  as  in  §  21,  if  a  be  the 
initial  value  of  0, 
r  fa+tir 

j  ̂<f)r(z)dz=  j         <f>r(z)p(-smO  +  icosO)dO 

^r  fa+2ir 

=    2  6«,r/o^-*'^/        {cofi{n-l)0-lsm{n-l)e\dO. 

Now  it  is  easily  proved  that 
'a+2n  gQg 

/: 

m6de  =  0, 
sm 

if  m  is  an  integer  not  zero. 

Therefore      I  ,  ff>r  (z)  dz=  \         bi^ridB  =  2 W  6i, r .  '^ 

Therefore  finally, 

^^f{z)dz^lj^<i>r{z)dz m, 

r=\      ' 
This  result  may  be  formally  stated  as  follows : 

Xf  f{z)  he  a  fwmtion  of.  z  analytic  at  all  points  inside  a  closed 
contour  C  with  the  exception  of  a  number  of  poles,  and  continuous 

throughout  C  and  its  interim-  (except  at  the  poles),  then   I    f(z)dz  is 

J  ̂ 

equal  to  2Tri  multiplied  by  tJie  sum  of  the  residues  of  f{z)  at  its  poles 
inside  C. 

This  theorem  renders  it  possible  to  evaluate  a  large  number  of 
definite  integrals ;  examples  of  such  integrals  are  given  in  the  next 
Chapter. 

25.  In  the  case  of  a  function  given  by  a  simple  formula,  it  is 

usually  possible  to  determine  by  inspection  the  poles  of  the  function. 
To  calculate  the  residue  of  f{z)  at  a  pole  z  =  a,  the  metliod 

generally  employed  is  to  expand  f{a  +  t)  in  a  series  of  ascending 

powers  of  t  (a  process  which  is  justifiable**  for  sufficiently  small 

values  of  |*|),  and  the  coefficient  of  t'^  in  the  expansion  is  the 
required  residue.     In  the  case  of  a  pole  of  the  first  order,  usually 

"  By  applying  Taylor's  Theorem  (see  §  34)  to  {z-a)'*f(z). 
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rallMl  a  simple  \n>U\  it  U  fMMnUjr  sboiter,  in  pnotioe,  to  eTaliutto 

liiii  (t  -  «)/<«)  by  the  rules  toft  daterminiiig  limito ;  •  oomideimtioo  of 

the  6Xpree«ioii  for/(s)  in  the  iioiKhbourhood  of  a  pole  ahawt  that  the 
reRitiuc  {m  this  limit,  providod  tliat  the  limit  exista. 

26.     LaouviLLB'8  Tiikokkm.     /W  /(z)  tf0  anaiytic  /or  all  vahm  qf 
z  ami  tt^  iy(s) !  <  K  trAiTf  A'  i/»  <i  cuiittant.     TAm/(z)  in  a  cntutant. 

l^et  c,  z  be  any  two  points  and  lot  C  be  a  contour  «uch  tluit  :.  z' 
are  inside  it ;  then  by  g  29 

take  6'  to  be  a  circle  whose  centre  is  z  and  whose  radius  is  p  >  2 1  s'  -  :  |. 

(>n  C  write C=  s  +  p<^;  since  ( C- s' I  >  ip  when  C  ia  on  C,  it  follows  tluit 

<2\z-z\Kp-\ 
Tliis  is  true  for  all  values  of  p  >  2 1  r*  —  s  i. 
Mttke  p-*-  X ,   keepinjj  z  and  z    fixed ;   then   it  \a  obvious  tliat 

/(2')-/(*)-0 ;  tliat  is  to  say, /(c)  is  constant. 



CHAPTER  VI 

THE   EVALUATION    OF    DEFINITE   INTEGRALS 

§  27.  A  circular  contour.— §  28.  Integrals  of  rational  functions.— §  29.  In- 
tegrals of  rational  functions,  continued. — §  30.  Jordan's  lemma. — 

§  31.  Applications  of  Jordan's  lemma. — §  32.  Other  definite  integrals. — 
§  33.     Examples  of  contour  integrals. 

27.     If/(^,  y)  be  a  rational  function  of  w  and  y,  the  integral 

r. 
Jo /(cos  e,  sin  B)  dS 

can  be  evaluated  in  the  following  manner  : 

Let  z^cosd  +  i sin  0,  so  that  z~^  =  cos6- i sin  6  ;  then  we  have 

wherein  the  contour  of  integration,  C,  is  a  unit  circle  with  centre  at 

z  =  0.  If/ (cos  0,  sin  6)  is  finite  when  0  <  ̂  $  27r,  the  integrand  on  the 
left-hand  side  is  a  function  of  s  which  is  analytic  on  C ;  and  also 
anal3rtic  inside  C  except  at  a  finite  number  of  poles.     Consequently 

L J  (cos  e,  sin  &)  dO 0 

is  equal  to  2tri  times  the  sum  of  the  residues  of 

«-'^-v{^(^+^-o,  ̂ -(^-^-o} 
at  those  of  its  poles  which  are  inside  the  circle  ls|  =  1. 

„  ,        r^''        dO  27r  ,        .      ,  .        . 
Lxample.      j  .  — -  =  ̂ /7  i"^ji\i  t"^^  **5"^  being  given  to  the 

radical  which  makes  \a  -  J{a^  —  ̂01  <  l^i)  *^  being  supposed  that  a/b  is 
not  a  real  number  such  that^  -  1  $  afb  %  1. 

'  Apart  from  this  restriction  a,  h  may  be  any  numbers  real  or  complex. 
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MiikiiiK  th«  above  •nbcUtatioD, 

iiUen  %  fi  an  th6  roou  oi  b:* -*■  iaz  ■*■  f>  =  n.  The  polm  of  the  intogruid 
are  the  iiointe  s  *  «,  £  ■  /8. 

Since  <i/9  1,  of  the  two  numborh  a  ,  /9'  one  in  greater  than  1 
and  one  leiw  tliaii  1,  unlesM  both  are  equal  to  1.  If  both  are  eqnal  to  1, 

put  •oooey-ficiny,  where  y  U  real;  then  /8  =  a-*«oo§y-i«iny,  so 
tlint  Si^5  «  -  «  -  /J  «  -  2  coe  y,  i.e.  -  1  <  a/^  <  I,  which  ii»  contrary  to 
liyiM)llieiii. 

Let..-.ty(«'_r*5.  /g.r£r.>^«lz*5,u«it«gn  being  given 
til  thenulical  which  inakee  la- ^(a*-ft^l  <I6! ;  so  that  :a|<l,  |/9|>1; 
then  s  -  a  is  the  only  pole  of  the  int^^nd  inside  C,  and  Ute  reeidue  of 

K«-«)(5-i9)}-atc  =  «i«(«-^)-'. 

TTieiefcie       f         »       ̂   =  2»*  ̂   ..  x  — « 
/o  a  -»- fr cos B  lb     a-  fi 

28.     1/  P  (x\  Q  (x)  U  polffnomiaU  in  x  nieh  that  Q  (jt)  ktu  no  rtal 

liHfiir  J'ttcior*  and  tin  degree  itf'  P (x)  it  Um  than  the  d«grm4/Q{x)  by (*  P(x) 

at  Uad  %  tk*n  *  |      vr-W  dx  i»  e*fual  to  2-ri  time*  the  $um  qf  tkt  rmdmm 
</  P(:)/Q(i)  at  tko9e  qf  iU  poles  which  He  in  the  ha{f  plamabow  tkt 
real  axit. 

liCt  P(j')  =  a.j*  +  a,jr»-' -»•  ...+a,, 

Q  (x)  =  b,jr  +  6, J'-*  ̂   ..."».  6., 

where  «  -  n  >  2,  fi,  4i  0,  A.  4'  0 ;  choose  r  m  Urge  that 

r        r  r* 

and  -i-  +  ̂   +  ..,*  —■  ̂   J  A,' ; 

*  TIm  nmiet  will  rtmMnbnr  that  »n  Inflnilc  inU^tnU  U  de6n«d  in  tb«  following 

:  If  l/ij)4s^0(lt),ihm  j  /{x)dx  dmuu  litn  0{n). 
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[CH.  VI 

P(.^\= 
a,                 Oh 

«,,  +  — +...+^ 

^1    1     l«ll           l«lil 

'5  2|aol. 

Q{^)\^\K\- 

> 

\K\- 

\b,\     \b,\ 

r        r^ 

\b„,\ 

and 

so  that,  \i\z\^r,  then  Ic™"" P  (c)/Q  (~)l  ̂  4  iao^o"'!- 
Let  C  be  a  contour  consisting  of  that  portion  of  the  real  axis  which 

joins  the  points  —  p,  +p  and  of  a  semicircle,  r,  above  the  real  axis, 
whose  centre  is  the  origin  and  whose  radius  is  p;  where  p  is  any  number 
greater  than  r. 

f  P(z) 
Consider  |    ̂/  ( dz ;  this  integral  is  equal  to 

Jc  WAS) 

/: 

Piz) 

,Q{z)^'''  hQ{z) 
L 

^i(^h^ 
dz. 

Now  F  (z)/Q  (z)  has  no  poles  outside  -the  circle  |s|  =  »* ;  for  outside 

this  circle  \P {z)/Q  (s)\^A  |ao^o~'  I  r""'". 

Therefore  f '  ̂l  dz  +  [  ̂.  dz J  -p  (^  {z)  Jt  V  W 

is  equal  to  2in  times  the  sum  of  the  residues  of  P  (z)/Q  (z)  at  its  poles 
inside  C ;  i.e.  at  its  poles  in  the  half  plane  above  the  real  axis. 

.  Further,  putting  z  =  p  (cos  6  +  i  sin  6)  on  r, 

\  f  P(z)      I     I  /■"■  P(z) 
/    77/  \<^-h=    I     ttM  P  (cos  ̂   +  «■  sin  ̂ )  ̂rf^ \Jr  H{z)      I      |./o    ̂ (c)^ 

f'  I  P  (z') 

^  r  ̂\aoh-'z'-'"\pde 
Jo 

Since  w -»i  + 1  ̂ - 1,    lini   /    ,,  y( dz ^ 0. 
p-»  Jt  Q  (-) 
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..«^ 

liu>    /' 

where  Sr^  nittiiui  the  Mum  uf  the  raudnet  of  P(:)!Q(s)  at  iU  polet 
ill  the  hulf  plane  above  the  real  axU. 

Sbea  it  luM  ht<en  lihewii  tliat  lini  /  ..  ̂'Vc-O,  thiit  is  the  theorem 
fitateiL 

Kmmpl,.     (/«>,,.    j'^  y^^ .  r  .  f  ̂   ■  .  ̂  
The  Talue  of  the  integral  \»  twi  tintos  the  randue  of  (•'•l-a')''  •(  a' : 

The  randue  ia  therefore  - 17(40*) ;  and  hetioe  the  integral  is  equal  to 

If  Q(jr)  haM  non-repeated  real  linear  factors,  the  priitnpai  mJmf* 

of  the  integral,  which  is  written  /'  i      ̂ /''dLr,  exist*.     //*  raim^  m 

iwi  time$  the  turn  </  tkf  rrmdHen  of  P(:)!Q(z)  at  tkote  qf  it*  polm 

wkirk  tie  in  tJkt>  ka(/  plane  aU>rr  tkr  retil  axig  plus  iri  tiaiet  tk»  turn  qf 
tka  rtmdm$*  at  tkute  qf  the  polet  trkirk  lie  im  tke  real  axis. 

To  prove  thiM  theorem,  let  <i/  be  a  real  root  of  Q  (x).  Modify  the 

contour  by  omitting  the  {MirtA  of  the  real  axis  between  a,'  -  &,  and 
a,'  *■  I,  and  inserting  a  semicircle  r^,  of  radius  i^  and  centre  a,,  above 
the  real  axis ;  carry  out  this  proceKN  ftir  each  real  root.  When  a 
contour  is  modified  in  this  way.  ho  tliat  its  interior  is  diminished,  the 
contour  in  said  to  be  imtmted. 

The  limit  of  the  integral  along  the  surviving  parts  of  tlie  real  ax\* '  *    If  f  \ 

when  the  numbers  4-  tend  to  lero  in  P  \       .,,-(  Jjr. 

'  Mine*    lim      I      tsisu.  it  U  equal  to    Itm    I 
A*"**  .'-#  0  -»•  }    # 

*  Bromwieh,  Thtnr^  of  ImUmiU  S*rin.  p.  41A.     Tbe  u*r  of  lb«  l«Mrr  /'  tn  Iwo 
will  nol  autm  eoofusion. 



58  THE   EVALUATION   OF   DEFINITE   INTEGRALS  [CH.  VI 

If  Vp  be  the  residue  of  P{z)IQ{z)  at  ap',  the  integral  along  the 

semicircle  y^  is  -  /  q¥^  {z - o,p) idd,  where  z  =  a^  +  ̂pS*',  and  this 

tends  to  -  -jrirp  as  Sp-^O;  hence 

7 ^  >  .da^-iril  r„'  -  2wi  2  r„ . 

29.     A  more  interesting  integral  than  the  last  is    /     n7~i  ̂ ^* 

where  P  {x),  Q  (a:)  are  polynomials  in  a:  such  that  Q  (.r)  does  not  vanish 
for  positive  (or  zero)  values  of  x,  and  the  degree  of  P  (.r)  is  lower  than 
that  of  Q  (x)  by  at  least  2. 

The  value  of  this  integral  is  the  sum  of  the  residues  of 

\og{-z)P{z)iq{z) 

at  the  zeros  of  Q  {z);  where  the  imaginary  part  of  log  (-  z)  lies 
between  ±eV. 

[The  reader  may  obtain  the  formula  for  the  principal  value  of  the  integral 

when  Q{x)  =  0  has  non-repeated  positive  roots.] 

f  P(z) 
Consider  /  log  (-  z)  ̂  yi  dz,  taken  round  a  contour  consisting  of 

the  arcs  of  circles  of  radii  **  R,  8,  and  the  straight  lines  joining  their 
end-points.  On  the  first  circle  -z  =  Re^^  {- ir  ■^  6  %  it)  ;  on  the  second 
circle  —z  =  he^^ {-tt^B  %Tr).  And  log (- z)  is  to  be  interpreted  as 
log  l^l +earg(-c),  where  —  tt  ̂   arg  (— c)  $  tt  ;  on  one  of  the  straight 
lines  joining  S  to  R,  arg  (-  z)  =  tt,  on  the  other  arg  {-  z)  =  -  ir. 

*     (The  path  of  integration  is  not,  strictly  speaking,  wliat  has  been 
previously  defined  as  a  contour,  but  tlie  region  bounded  by  the  two  arcs 

'  In  future,  the  letter  11  will  not  be  used  to  denote  '  the  real  part  of.' 
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und  Um  ftnigbt  linM  in  olmonaly  one  to  which  Qoarwfs  Imnnui 
Mild  the  Mudjnu  of  Chaptor  III  can  be  applied.) 

n'iU  ikt  omwmiimt asto]og(-g\  log(-£)  P(t)IQ{z)  is ammiftie 
imtitU  tMt  txmtomr  ̂ jtnpi  at  tk§  unt  qfQ{x). 

Aa  ill  S  2K  we  can  chooM  >?«  and  ̂   ao  that  \t^P(s)/Q(z)\  doea 
not  exoeed  a  lixeti  number,  JC,  when  \t\<'B>B;  and  no  that 

\P(*)/Q (^)\*  ̂   whc"  -    ̂  < ^;  where  IC  in  independent  of  S and  //. 
Let  the  circle  of  rmliuH  It  be  called  r,  and  the  circle  of  radiiu  i  be 

<-allo<i  y ;  let  c,,  r,  be  the  linea  arg (-  :)  *•  -  ••,  arg (-  x)  =  ». 
Then  tlie  integral  round  the  contour  is  3W  times  the  sum  of  the 

nwiduw  of  Utg  (- z)  P  (z)/Q  (z)  at  the  reroe  of  Q{z)  (theee  are  the 
••nly  \to\e*  of  the  integrand  witliin  the  contour). 

But  the  integral  round  the  contour  =/    -fl    -t-l    -*-|> 

which  -»0  as  R~^x> ,  gince  /i~*  log  /f -►O  as  /f-»x . 

<  ['   logS  +  i^ATWtf, 
which  tends  to  U  as  6-^0,  since  SlogS-«>0  as  S-»0. 

Put  -  s  -  jtt-**  on  C| ,  -  5  -  xe*'  on  c,.     Then 

nnd  /         /     (#«•  + l«>g  J-)  ̂r-T-N  <'•'*. 

Hence  2W  tiine«  tlie  «um  of  the  residues  of  log  (-  z)  P  {i)IQ(i)  at 
the  leroH  of  <J(z) 

which  proves  the  proposition. 
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The  interest  of  this  integral  lies  in  the  fact  that  we  ai)ply  Cauehy's 
theorem  to  a  particular  value  (or  branch^)  of  a  many  valued  function. 

If  P  {x),  Q  (x)  be  polynomials  in  a*  such  that  Q  (.r)  has  no  repeated 
positive  roots  and  Q  (0)  +  0,  and  the  degree  of  P  (.r)  is  less  than  that 
of  Qix)  by  at  least  1,  the  reader  may  prove,  by  integrating  the  branch 

of  (-  z)"'^  P  {z)IQ  {z)  for  which  |  arg  (-  c)  |  ̂  tt  round  the  contour  of 
the  preceding  example  and  proceeding  to  the  limit  when  S-»-0,  7?-^* , 

that,  if  0  <  a  <  1  and  af^~^  means  the  positive  value  of  a^~^,  then 
r     p  (x) 

P  \    ̂'^  Tr)\  dx  =  Tr  cosec  (air)  "Xr  —  Tr  cot  {air)  2r', .'0  H  K^) 

where  2r  means  the  sum  of  the  residues  of  (-  c)""'  P  (z)/Q  (z)  at  those 

zeros  of  Q(z)  at  which  z  is  not  positive,  and  2r'  means  the  sum  of  the 
residues  of  x^~^P(x)IQ(x)  at  those  zeros  of  Q.(^)  at  which  x  is 
positive.     When  Q  (x)  has  zeros  at  which  x  is  positive,  the  lines  Ci,  c, 
have  to  be  indented  as  in  the  last  example  of  §  28. 

Examples.    If  (i<a<l, 

r  xf-'  .      TT     „  r  ̂ -'  , I     .        ax  =  -.   ,  P  I   dx  =  tr  cot  air. 
jQ    l+x         sm  aw        J  a    \-x 

30.  In  connection  with  e.xamples  of  the  type  which  will  next  be 
considered,  the  following  lemma  is  frequently  useful. 

Jordan's  Lemma".  Let  f{z)  be  a  function  of  z  2vkich  satisfies  the 
folhiinng  conditions  ichen  \z\>c  and  the  imaginary  part  of  z  is  not 
negative  (c  being  a  positive  constant)  : 

(i)    f(z)  is  analytic, 

(ii)    \f(z)  I  -^  0  uniformly  as\z\-*'cc. 

Let  m  be  a  positive  constant,  and  let  T  be  a  semicircle  of  radius 

R  (>  c),  above  the  real  axis,  and  having  its  centre  at  the  origin. 

Then  lim  (  I  e""'f(z)  dz)  =  0. 
ii-*.»  \.'r  / 

If  we  put  z  =  R  (cos  6  +  i  sin  6),  0  increases  from  0  to  x  as  c  de- 
.scribes  r. 

Therefore  /  e'"^'f(z)  dz  =  ('  ze"'''f(z)  idO, Jv  Jo 

•  Forsyth,  Theory  of  Fiinctioim,  Chapter  vni. 

''  Jordan,  Coi(r»  (VAtuilyse,  t.  ii,  §  270. 
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<jfjit#-/(«)|^ 
<  r  !»/?#-"«*'•  d». 

wliere  i|  iit  th«  grafttott  value  of  i/(s) ;  wheti   s.^  B. 
Ill  the  iMt  iiit«gnil,  divide  the  range  of  integration  into  two  parts, 

vii.  from  o  to  |v  and  from  |r  to  v ;  write  v  -  0  for  9  in  the  taoond 

part;  then,  noting  that,  when*  Q^$^\w,  nn0>90/w,  lo  that 
,  ■  tjita*  <  4 -teM^,  ««  Me  that 

^''^Z. 

<^(l-'-*)<f«»-». =  0. 
But  If  -»0  a«  /^-^  X  ;  and  thenjfore 

lim  I  /  <r*-/(s)  d: 
K^»  '  Jv 

3L  'riio  following  theorem  may  be  proved,  by  the  uoe  of  Jordan's lemma : 

LM  P(jf),  Q(jt)  b«  pofymtmial*  in  x  fttrk  that  Q{x)  ktu  ho  r«*ii 
liimtr/aeior*,  amd  tk»  d»grm  (^  P  (x)  does  wd  extxtd  the  dsgm  qf  Q  (<r) ; 
and  Utm>Q. 

"-    /;{^-8--»-}^ 
M  eiimU  to  wiP  (0)/<^  (0)  ptn*  2*i  timet  the  $um  qf  the  rmdttee  qf 
P(z)^ 

,j4-(  -^  at  the  term  <if  Q  (s)  in  the  ha{f' phne  aborm  the  real  axie, 

[The  reader  msy  obuiii  the  funutiU  for  the  prindpiU  valu«  of  Um  integnU 
wh«m  ̂ (x)«0  ban  iM>ii>re|iMU«d  real  r«M>tA.] 

Consider  /   ttt-I^^  —  taken  aloii*{  a  contour  C  cotutisting  of  the 

stfaiglit  line  joining  -  ft  to  -^  a  semicircle,  y,  of  radius  5,  alxtve  the 
real  axi«,  and  with  it^  centre  at  the  origin,  tlie  utraight  lino  joining;  £  to 

*  It  w«di»w  Uw  Rimphs  yacinx.  ystU/r,  UiU  inequality  appHU*  obviotu;  il ■in  0 

may  be  proved  by  •hewing  that  —^  diwwiiii  ae  0  inewawi  from  0  to  |v. 
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R,  and  the  semicircle  r,  where  8  <  80,  i?  >  i<:,„  and  8  and  It  are  to  be  so 
chosen  that  all  the  poles  oiP(z)/Q  (z)  lie  outside  the  circle  is|  =  80  and 
inside  the  circle  |5;|  =  ̂o- 

~^.  e"""  -^  is  equal  to  2m  times  the  sum  of  the  residues 

P  (z)  e"*^" of  Qj^.  —  at  the  zeros  of  Q  (z)  which  lie  in  the  upper  half  plane,  as 
may  be  shewn  by  analysis  similar  to  that  of  §  28. 

.dz 

Then  / Jc 

„»II2 
JcQ{z)        z      \)-R     Jy      Js       hJQ{z)        z 

Put  5  =  -  a?  in  the  first  integrand,  and  z=x\\\  the  third ;  then 

\)-R^ Jb  )q{z)'   z   h  \Q{xY     gpio      It- 

Since   lim    P(z)/Q(z)  is  finite,   /"  ̂̂ ^--^^o  as  7?-x,  by 
Jordan's  lemma. 

Also,  putting  ;:;  =  8«'*  on  y, 

where  \f{z)\  does  not  exceed  a  number  independent  of  c  when  8  <  8„. 

Hence  lim  /  fi!-).-^  =  -„-^). 5*0   Jy  Q{Z)  Z  q  (0) 

Making  i2-.-x,  8-^0  in  the  above  formula  for  f  TrP^e'""  —  ,  the 
JC  (/  (5)         z result  stated  follows  at  once. 

Carollaiy.     Put  P  (z)  =  Q(z)=l;  then,  if  m>0, 
sin  ma: 

1: 
dx  =  W. 

/o        x 

By  arguments  similar  to  those  used  in  proving  Jordan's  lemma,  we 
may  shew  that 

1: ̂
acosto  gJn  (^  gjjj  ̂ ^)  j:^^  ̂  1  ̂   (^^e-».  _  j)^ 

'0 

if  a  >  0,  6  >  0,  r  >  0. 

f  zdz 
Consider  /    ̂ «^  -*  ̂ ^^ ,  where  the  contour  C  consists  of  the  straight 

line  joining  the  points  -  H,  E  and  of  the  semicircle  r,  where  R  >  2r. 
The  only  pole  of  the  integrand  inside  the  contour  is  at  z  =  ri; 

and  the  residue  of  the  integrand  is  easily  found  to  be  !<?«*"*'. 
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III  the  fimt  iiiioKml  put  s  *  -x,  in  the  lecond  put  s  »  x. 
Tlieii 

Now  <»«^- I +<M»*-^  — o^»**  + ... 

wfcfre  l«'l"l**Tr'*""8T  ■*■' 

<I  + 

a#^ 
and  ou  T,  |^|  =  ̂ -*««»n» <  i,  where z==B(cM0*Uin0);  so  that 

Conseriuently,  putting  c  =  /f  (cob  ̂   +  i  sin  $)  on  T, 

9:^+1^     Jo  s"  +  r* 
But  |s«^-r'i>!s«|-|r»i>J/ir», 

and  therefore  /      .    — ,  <  r-ss. 
■  |./#  5" -♦■HI     8/f» 

whiK-  r,ii^ te  .^  i(/^|  K  r  I  a«^' ip  --'* _, i\/0 1 .'0  z'+  r       I     /o   I  c*  +  r*        1 

.'0 

<  ̂   <r.  ,  as  in  Jordan's  lemma. 

lV)ii«e.jueiitly  /.''***'  r«  /r" '  "  ̂   **' 
where  hin   «k»0;    and   therefore,  by   the  detinition   of  au   infinite 

inti'K'ral, 
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32.  Infinite  integrals  involving  hyperbolic  functions  can  fre- 
quently be  evaluated  by  means  of  a  contour  in  the  shape  of  a  rectangle  ; 

an  example  of  such  an  integral  is  the  following  : 

/■"  cosh  ax  ,      ,       ,        , 
;     — -,   ax  =  hsec ha,  wmn  -■7r< a  <Tr. 
Jo    coshirar 

Consider  I   — ^ —  dz  taken  along  the  contour  r  formed  by  the 
Jr  cosh  TTZ 

rectangle  whose  corners  have  complex  coordinates  -R,   R,   Ii-*-i, 
-B  +  i,  where  R>0;  let  these  corners  be  A,  B,  C,  D.    The  zeros  rf 

-R-f  i 

I R  +  t 

D 

'¥ 

C 

A B 

cosh  TTZ  are  at  the  points  s  =  (w  + 1)  i,  where  n  is  any  integer;  so  that 

the  only  pole  of  the  integrand  inside  the  contour  is  at  the  point  z-^i. 
li  z  =  \i  +  t,  then 

cosh  irz  i  sinh  irt 

_  ̂  {l+at  +  ha'f  +  ...) -^'    (l+^7r2>+...)      ' 

so  that  the  residue  of  e*"  sech  -rrz  at  U  is  e^^^Kvi). 

Therefore 

2e^ 

Jr  cosh  TTZ 

Now         I     ̂^    dz=((    +  I     +  /     +  f    ),:^„J^-' Jv  COSh-n-Z  \JaB      Jbc       J  CD      J  DA  /  ̂ OSn  TTZ 

on  A  B  we  may  put  z  =  a:  where  x  is  real ;  on  CD  we  may  put  c  =  /  +  ̂  

where  x  is  real ;  on  BC  we  may  put  5  =  ijJ  +  iy  where  y  is  real ;  and  on 

DA  we  may  ipntz=-B  +  iy  where  y  is  real.     Therefore 

,  vi2  .R  ax  f-R         ̂ (i  +  J) 

jr  cosh  its;  ;  _ij  cosh  rr.v  Jr     cosh  tt  (2  +  x) 

■"  jo  coshVpT^/'^^''  A  cosW(^^>)  "^ 

=  (l+f^"')/ 
cosh  ttX 

dx  +  <^, 



32-3.')]  THE   EVALUATION   OP   DEFINITE   INTEORALH  65 

«1ko  /     — p — Jjfm  I    — r      dje*l     —-r — dm 

"  ]%  cosh  vj*        /#  oathvar     ' 
on  writing  -  jr  for  x  in  the  iiecond  integral. 

Therefore       2#***-2(l  ■^o/'^^^  +  «Jl• 

Now      I..I  ̂   I j^  ̂̂^  ̂   ̂^^  ̂  ̂^^  .^y  I  .    /^  ̂fi^OR^) '^  I 

jo  lcoi»li»i^/t'i- »y)|     Jo  looehrC^-ryJl' 

A1m>  |2ooA»(/?±i»i«j<r<«*'r)-f«— (**<»)| 

/•I       ̂ R  fl     g-att 
Tlierefore        |«iii^/    T-r — ndy+l     .  v — ^</y 

'  *'     Jo  Binh  irR   '     Jo  8inh»/f   ̂  

^2  cosh  (o^) 

sinh  (irH) ' 
But,  if  -  ir<a<»,   lim   2  .  ,)    ui  =  0:  therefore,  if -»<a<», «♦•     sinh  (irJi) 

lim  «j|  -  0. 

But  /     — ,  —  (ir  is  equal  to  -r-r,   3\  ;  *nti  therefore 
Jo   com  wx  ^  2  (1  -»•  «r) 

[     COAll  fill* 

/         L       <ir=i8ecla,    (-«"<a<»). 

33.  Solutions  of  the  fulKiwing  exainplcK,  of  which  the  earlier  ones 
are  taken  from  recent  College  and  rniven<ity  Kxaininatiou  Pa{)er8,  can 
be  obtained  by  the  methods  <ievelupe<I  in  X\\\*  cliapter. 

1.    Shew  that      /  ,   ~  de  =  ,7  («  -  Ja^  -  W\ la     tt  ■*■  It  COM  if  fr sin'tf 
.'0 

when  a>  b>  0.     Give  reasons  why  tliis  equation  Khotild  litill  l>e  tnte 

when  rt  -  6.  (Math.  Trip.  1'.m»4.) 
w.  c.  I.  ii 
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2.  Evaluate      j^   ̂̂   ̂  j^j  ̂^  ̂  ̂y  when/>  0,  gr  >  0. 
(Trinity,  1905.) 

3.  Shew  that  j_^  (^  ̂-^,j (^.:,  ,.).  =  2a-6(a  +  6)-  ̂̂ ^^  «"^'  *"«• 
(Whittaker,  Modern  Analysis.) 

4.  Prove  that,  if  a  >  0,  6  >  0,  c>  0,  b--ac>0,  then 

i,  «'T2iV.^%«„^(,,,«)-     (Tr
inity,  .908.) 

5.  Evahiatej^    (.^  ̂  a^  {a-  +  6^  (^  +  <ff  ̂^""  ̂ '  ̂'  "  ̂'^  ̂ ^^- 
(St  John's,  1907.) 

6.  Shew  that,  if  a  >  0, 

Cw^-'-^^Vli-  (Trinity.  1902.) 

7.  Shew  that  I     ̂ — ;   (?^  =  ̂  tan  ha  when  -  tt  <  a  <  tt. 
Jo    smrnra; 

8.  Shew  that  I    -^^dx  =  '^.  (Clare,  1903.) 

9.  By  integrating   I  e-"^  <fo  round  a  rectangle,  shew  that 

[     e-*'cos2a^.«?^=e-«'r(^),        [     e-«'sin2a*.<?*  =  0. 

10.  Shew  that      i    ̂ ^  dx  =  ̂ir t&uYi^ir.  (Clare,  1905.) 

f      /t*  COS  /Z^  7r  ̂ ^^'^ 
11.  Shew  that    |    -^-,       dx  =  jz   —x-,,  when  a  is  real 

Jo     smha?  (l+e"*")^ (Math.  Trip.  1906.) 

12.  Evaluate    I  — -4  taken  round  the  ellipse  whose  equation  is 

sc'-xy  +  f  +  x^y  =  (i.  .  (Clare,  1903.) 

13.  Shew  that,  if  m  >  0,  «  >  0, 

[    xsinrnx  J        TT    -^2    .ma         /m  •  -i.     mA/?  \ 
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14.  Shew  that        j  *"^y^<faf  |y.       (Pet«riioaM,  190A.) 

lA.    Shew  that,  if  «  >  0,  a  >  0, 

(Peterhouae,  1907.) 

15.  Shew  that     // (Y7^*f  =  |(»+»^'). (Petarfaotue,  1907.) 

17.    Shew  thftt,  if  a  >  0, 

(Math.  Trip.  ItKni.) 

la    Shew  that,  if  m  >  0,  a  >  0, 

(Trinity,  1907.) 

19.  Shew  that,  if  m  >  0,  a  >  0, 

r"    sin' our  w  . 

j.   **(a'*x«)'^  =  W^'        -**^*">- (Trinity,  191«.) 

20.  Shew  that,  if  a  >  0, 

(CUre,  1902.) 

21.  Shew  that       f*  **'~?^'<ir  =  a  (Trinity.  1 90S.) 
22.  Shew  timt,  when  n  is  an  even  positive  integer, 

/     3 — i     •    —(fj-^ryj    t\  .-I-        (Jesus,  1908.) 

23.  By  taking  a  4uatlrant  of  a  circle  indented  at  ai  as  contour, 
shew  that,  if  m  >  0,  a  >  0,  then 

/*  or  cos  11U-*  a  sin  nu-  ,  •--*•/  ••-v    /on-     1  u  v I   ^   i   rfj-^-*****/!  («•*■■).   (SciUomilch.) 

[/•(#••)  is  defined  by  Bromwich,  lt\finit^  Srrief,  \\.  3*i5.] 5—2 
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24.  Shew  that,  if  m>0,  c>  0  and  a  is  real, 

/         ^^   <-  -z — 7,  =  -; — o  i  1   (c  COS  ma -a  sin  ma)  \ . 
;_«e        x-a       ar»  +  c''     a*  +  tr' I  c    ̂   ^J 

(Trinity,  1911.) 

25.  Shew  that,  if  m>n>0  and  a,  6  are  real,  then 

sin  m{x-a)  sin  w  (x-b)  ,   _    sin  yt  (a  -  b)   (tX  —  T    r   , 
a  —  0 

(Math.  Trip.  1909.) 

26.  Shew  that,  if  0  <  a  <  2,  then 

["sin^xsmax,       ,  ,      „  /t         j     n /       -J   cte=  *7ra-i7r«-'.  (Legendre.; 
Jo  ^ 

27.  Shew  that  PI       dx  =  ̂ Tr.  (Legendre.) 
Jo        X 

28.  By  using  the  contour  of  §  29,  shew  that,  if  -  1  <j»<  1  and 
—  ?r  <  X  <  TT,  then 

/■*  x'Pdx  TT      sinoA.  ._,  ,     . 
I     , — t:   c   5=^        .-",  .  (Euler.) ;o    1  +  2a:  cos  k  +  ar    sm  pv  sin  a 

29.  Draw  the  straight  line  joining  the  points  ±  i,  and  the  semi- 
circle of  I «  I  =  1  which  lies  on  the  right  of  this  line.  Let  C  be  the 

^ontour  formed  by  indenting  this  figure  at  —i,  0,  /.     By  considering 

I   z""^  (z  +  z"^)"* dz,  shew  that,  if  n>m>-l,  then 

[  '  ̂̂   cos™  ̂   (f^  =  2 ̂ -'"  sin  ̂   (»  -  m)  TT  f  r-""'  (1  -  O"*  <^^- 
J-iir  '  Jo 

Deduce  that* 

/. 
^           /,        m/,7/1                              irr(m+l) 

COS  nO  cos™  ̂   rf^  =   
/o    ̂"'''^''^"°   ""       2"^^^(^w^  +  i7l+l)^(^w-i«  +  l)' 

and  from  the  formula  cos  (n  +  1)  ̂  +  cos  (n  -  1)  6*  =  2  cos  ̂   cos  nd,  estab- 
lish this  result  for  all  real  values  of  «  if  w  >  -  1. 

30.     By  integrating  I  e~'^  dz  round  a  rectangle  whose  corners  are 

0,  B,  R  +  at,  ai,  shew  that 

f    e-"  8m  2 at.  dt^e-'^  I  ̂dy. 

»  The  result  T  (a)  T  (1  -  a)  =  ir  cosec  air,  which  is  required  in  this  example,  may 
be  established  by  writing  x  =  //(l  -  t)  in  the  first  example  at  the  end  of  §  211,  when 
0<fl<l,  and  making  use  of  the  value  of  the  first  PJulerian  integral;  it  maybe 

proved  for  all  values  of  a  by  a  use  of  the  recurrence  formula  T  («  +  1)  =  a  r(a). 
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81.    iM  Q(»)  be  •  polynomUI  mkI  let  the  red  pert  of  «  be 

namerioelly  Ioms  Uiaii  w.     By  integreting  f    X  ̂  " — ^-  d»  roood  e /  ooelK-f  eoiA 
reotengle,  »hew  tlut 

Deduce  thet 

32.  liet  r,  be  e  contour  consisting  of  the  pert  of  the  reel  axis 
joining;  Uie  |x>iutM  ±  /i,  and  of  a  itemicircle  of  radius  /t  above  the  reel 

axis,  the  contour  being  indented  at  the  points  nw/'b  where  «  tekes  ell 
integral  values  and  />  >  0 ;  also  let  bUjw  be  half  an  odd  integer.  Let 
r,  be  the  reflexion  of  F,  in  the  real  axis,  profjeriy  oriented. 

Shew  that,  if  -b<a  <b  and  if  P {z\  Q {z)  are  polyuomiahi  such 
that  Q  (z)  has  no  real  fiustors  and  the  degree  of  Q  {z)  exceeds  that  of 

/»(s),  then 

^r     ̂     P{x).       ...     //•     «-     /»(»). 

jr.  «n  6z  Q  («)*•/ • where  the  limit  is  taken  by  making  A  -»ao  and  the  radii  of  the 
indentations  tend  to  lero. 

Detlucethat    pC  -f,     f'.^'^dU' =  «(Sr-Sr'X 

where  Sr  means  the  sum  of  the  residues  of  the  integrand  at  its  polae 

in  the  upiwr  lialf-plane  and  Sr'  the  sum  of  the  residues  at  the  poles  in 
the  lower  half-plane. 

33.  Shew  that,  if  -  6  <  a  <  &,  then 

., /"Hinrtj"    </x        ,     sinha       ̂ /"cosar  xi/x      ,     cosh  a 
/o    »in /«x  1+x*     '    sinh^'       .'o   «m  Ax  I  •♦■  x*     '     sinh6' 

p  /*  sinaj*      ̂ ^         ,     sinh  a      „  r*  cos  ax    djr    _y    ooah  e 
;.   oos&rx(l-^j«)*«'coSli*       ./,  cos«wl*>     *'oiihA- 

(Legentlre,  Cauchy.) 



70  THE   EVALUATION   OF  DEFINITE   INTEGRAI^  [CH.  VI 

34.  If  (2m-l)b<a<(2m+ l)b  and  w  is  a  positive   integer, 
deduce  from  Example  33  that 

„  /■"  sin  ax    dx    _^     cosh  {a  -  2mh)  -  g"" 
io    sin  6a:  1  +  ar*     ̂   sinh  b  ' 

and  three  similar  results.  (Legendre.) 

/■"  dx 

35.  Shew  that      I     tz — Zs\   xTn. — s  =  log2. 

(Math.  Trip.  1906.) 

[Take  the  contour  of  integration  to  be  the  square  whose  corners 

are  ±N,  ±N+  2Ni,  where  N is  an  integer ;  and  make  N-*- » .] 

The  results  of  Examples  36 — 39,  which  are  due  to  Hardy,  may  be 
obtained  by  integrating  expressions  of  the  type 

f        g"  dz 

j  1  +  2p^  ±e^'  z  +  ia 
round  a  contour  similar  to  that  of  Example  35.     In  all  the  examples 

a  and  8  are  real ;  and,  in  Examples  36  and  38,  —  ir  <  8  <  tt. 

Jo  cosh  x  +  cos8a^  +  af     a  sin S  „=o { (2»  +  l)'ir  +  a}^-8^' 
Deduce  that 

1  <^  1  1 
Jo 
/o  cosh  x  +  co8  8tt^  +  a^     8  sin  8     4  sin^  i  8 ' 

Jo  cosh ;r  + cosh 8  a'^  +  ar'     sinh8  n=o{(2»  +  l)T  +  aP  +  8«' 

r      cosh  I  a?  dx  w         «   (  -  )"  { (2w  +  1)  tt -4- g} 

Jo  cosh  X  +  cosh  8  a^  +  ̂   ~  flj  cosh  i  8  „=o  { (2w  +  1)  tt  +  a}*  +  8** 

r      cosh^a?         cga?     ̂        TT         I  (-)"{(2w+l)7r+a} 
'     Jo  cosh  ar  +  cos  8  a*  +  a:^     aco8|8  ,1=0  {(2n+ l)7r  +  ap- 8*  " 

Deduce  that 

Jo  cosh  (I  a;)  .  (a''  +  a^)     a  Jo  1  +  ̂'     " 

39   rC       ̂          dx  ̂    1    (  8    ,n_.4_. 
j_oo  sinhar-sinh  8  Tr'  +  a:*     cosh  8  l8* +  71^     8j      sinh  8 
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40.     Shew  that,  ifa>0,  M>Oi,-l<r<l, 
xdLr  aiaSMr  A 

/. 

/•  4rd[r  nnor  itr^ 

Shew  tluit,  if  the  {irinciiMiI  nduaii  of  the  integmb  are  taken,  th« 

ramltii  are  true  when  r«  1.  (Legmdre.) 

41.  By  integrating  \  ̂^       dz  round  the  rectangle  whoee  oomen 

are  0,  R,  l(  •»■  i,  i,  (the  rectangle  being  indented  at  0  and  t)  shew  that, 
if  a  be  real,  then 

f  ̂ ̂'j  ̂  =  1  coth  (i  a)  -  i  a'\  (LegeDdrei) 
42.  By  employing  a  rectangle  indented  at  \  i,  ahew  that,  if  a  be 

real,  then 

/  ̂v',<"^=t«"'-ico«®ch(}a).  (Ugendre.) 

43.  By  int^rating  \«-*^  2"-'  dz  round  the  sector  of  radios  R 

bounded  by  the  lines  arg  s  » 0,  arg  c  =  a  <:  |  «■,  (the  Hector  being  in- 
dented at  0),  shew  tliat,  if  X  >  0,  «  >  0,  then 

I   x«-»#  *'«^*ooe(Aj-8ina)dlr-X— r(ii)ooiiNK 

/    X-- »  «-*■«••  sin  (Aj*  sin  o)  (ir     X—  V  (»)  sin  no. 
.'0 

TlieHe  results  are  true  when  a  =  |  «•  if  n  <  1. 
Deduce  that 

rcoe(y)</y=  r«in(y»)i/y -(;»)*.  (Baler.) .'•  /o 

44.  Tlie  contour  C  starU  from  a  point  R  on  the  real  axis, 

encin'les  the  origin  unce  counterciiH^kwise  and  returns  to  R.  By 
defonuiitt;  the  cunt«iur  into  two  straight  linoM  and  a  circle  of  radius  S 
(like  the  figure  of  !i29  with  the  lnr;;i>  circle  omitted),  and  making 

h  —  o,  i»hew  tliat,  if  ̂  >  0.  (where  C  -  ̂  ♦  »1/.  «»«d  -»  ̂   arg  (-  s)  ̂  «•  on  C\ 
then 

lim   ((    2)f  »i.-'«/s--2i«n(rC).r(C). 
(Hankel,  Math.  Amn.  M  I.) 



72  THE   EVALUATION   OF   DEFINITE   INTEGRALS  [CH.  VI 

45.  If   r  (0  be  defined  when  ̂   <  0  by  means  of  the  relation 

r  (^+  1)  =  ̂r  (0,  prove  by  integrating  by  parts  that  the  equation  of 
Example  44  is  true  for  all  values  of  C 

46.  By  taking  a  parabola,  whose  focus  is  at  0,  as  contour,  shew 
that,  if  a  >  0,  then 

r  (0  =  ̂^  f  e-'^t'  (1  +  fy-  i  cos  {2af  +  (2^- 1)  arc  tan  t}  dt. 
(Bourguet.) 

47.  Assuming  Stirling's  formula",  namely  that 

{logr(«+  l)-{z  +  ̂ )\ogz  +  z-Uog27r}->^0 

uniformly  as  \z\^>^  cc,  when  -  ir  4-  8  <  arg  « -=  tt  -  8,  and  8  is  any  positive 
constant,  shew  that,  if  -  ̂   ir  <  arg  (-  0  <  ̂  '^j  t'hsn 

where  a  >  0,  and  the  path  of  integration  is  a  straight  line.  (The 
expressions  may  be  shewn  to  be  the  sum  of  the  residues  of  the  second 
integrand  at  its  poles  on  the  right  of  the  path  of  integration.) 

(Mellin,  Acta  Soc.  Fennicae,  vol.  xx.) 

48.  Let  C  be  a  closed  contour,  and  let 

f{z)=  n  {z-arT'<l>{z) r=l 

where  the  points  ar  are  inside  C,  the  numbers  Wr  are  integers  (positive 
or  negative),  while  ̂   {z)  is  analytic  on  and  inside  C  and  has  no  zeros  on 

or  inside  C.    Shew  that,  if  /'  {z)  be  the  derivate  of  /  {z),  then 

±.j'(^dz=  2  ur.  (Cauchy.) 2-n  Jc   /{Z)  r=l 

49.  By  taking  the  contour  C  of  Example  48  to  be  a  circle  of 

radius  R,  and  making  ̂   -*-  ao ,  shew  that  a  polynomial  of  degree  n  hits 
n  roots.  (Cauchy.) 

50.  With  the  notation  of  Example  48,  shew  that,  if  il/{z)  be 
analytic  on  and  inside  C,  then 

-1-.  [  ̂{z/l:^^dz=  1  7,,^  (a,).  (Cauchy.) 

"*  Stieltjes,  Liouville's  Journal,  t.  rv. 



CHAPTER   VU 

EXPANSIONS    IN   SBRIBi 

I  34.    Taylor'*  Tbeoreni.— g  S5.    LiiirMii'M  Theoram, 

34.  Tayu)r'8  Tukuekm.  LH  f{t)  b«  a  /itmetiom  <^  z  wkitA  is 

anafytic  at  aU  poiitU  intids  a  eireU  q/*  radius  r  whose  cfntrs  is  tks 
poimi  ttkose  complex  eoordinats  is  a.  Lti  C  ̂   f>*!f  point  umde  tkit 
drds, 

Tktm  /{O  f*tf*  f**  sjrpand^  into  tkf  nrnvergent  seriss : 

/(o  -/(a)>  (c-«)/'(«)  *  ̂-^u-ayr  (<>)*'" + ^.(c-«r /^-»(«)+ .... 

wksrt/*^  (a)  dsnctes  ̂ '^^jf^  • 
Let|{-a|.»^,  M>t)iAtO<0<  1. 

Let  C  be  the  contour  fonuetl  by  the  circle  |s-a{<"^r,  whers 
9<tt  <\  ;  let  $',9  m»^,  m  that  C-oi-^  |£-a| "  ̂i  <  1  ;  then  by  |  SI. 

%wt  Jc  t-a\        t-aJ 

1      -    y    f{z)ds  I     /   /(O(C-a)-' 

where  **-  ̂ ^r.^/c(^-ar•' 

/<••  (a),  by  |  2tl. 
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On  C,  \f(z)\  does  not  exceed  some  fixed^  number  K,  8ince/(«)  is 
analytic  and,  a  fortiori,  continuous  on  C. 

Therefore 

2ire 

It^^l 

Or 

<jsri9
,«+v(i

-^i), 

since  \z-V\  =  \{z-a)-{t,  —  o)\>\z  —  (i\-\l-a\. 

Now   lim  ̂ ^i"*V(l  -  ̂1)  =  0,  since  0  ̂   ̂1  <  1 ;  and  therefore 

,.        1    f  /(z)a-ar-^ 
(;2-a)»+^(z-0 
"a  .... 

consequently /(^)=   lim    2  —^,(C -«)"*;    since  this  limit  exists  it 

00  ^ 

follows  that  the  series    2    — ̂ (^-a)"*   is   convergent;    and   it  has 
m=0  Wil 

therefore  been  shewn  that  /  (0  can  be  expanded  into  the  convergent 
series  : 

/(o=«o+^,a-a)  +  |^(c-a)^+...+^a-ar-f... 

where  a   -f^^)(a)-—  f    ̂̂ ''^^'^ 

35.  Laurent's  Theorem.  Z«#  f{z)  he  a  function  of  z  which  is 
analytic  and  one-valued  at  all  points  inside  the  region  bounded  by  two 

oriented  concentric  circles  (F,  T'),  centre  a,  radii  r^,  r/  where  r/  <  r^. 

Let  C  be  any  point  inside  F  and  outsids  F ';  th&nfijC)  can  he  expressed 
as  the  sum  of  two  convergent  series  : 

/(0=«o  +  «i(C-a)  +  «2(4-a)-+  •••  +  «m(^ -<*)"'+-•  • 

+  h,a-a)-'  +  h,{^-a)-'+...+h^(^-a)-'^+,.., 

*-       ̂ '^  =  i^lc0^-     ̂"•  =  24e-l(-«)""'^«^^^ 
the  circles  C,  C  are  concentric  with  the  circles  F,  F'  and  are  of  radii 
r,  r  such  that  r/  <  r'  <  |  ^  —  a  |  <  r  <  rj . 

*  See  note  4  on  p.  50. 
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Dr»w  a  dijunetar  A  BCD  of  cbe  eiiolat  C,  C,  uot  pMnni;  thrmifb  C 

Ii0t  6',,  CV  bo  the  Mmicirclat  od  om  ade  of  thin  duuneter,  while  O,,  Ci 
are  the  fletnicircle*  on  the  other  ndt. 

Umii  C|,  AB,  Ci,  CD  can  be  oriented  to  form  a  contour  T, ;  and 

Ctt  DC,  C,',  BA  can  be  oriented  to  fonii  a  contour  F,;  it  h  eaitily  seen 
that  AB,  BA  have  opposite  orientationn  in  tlie  two  contours,  as  do 

CD,  DC;  C,,  r,  have  the  name  orieiitatiun  as  C;  C,',  C,'  hare 
opposite  orientations  to  C  ;  and  /(z)  is  analytic  in  the  closed  regions 
formed  by  T,,  l\  and  their  interiors, 

Th,«fo«  /•  ̂̂ <^..|  ̂ ^d,,  f-^-«A-  I  ̂-^<U: Jt\s~i         JvtS-i         Jcs-i         Jcs-i 
the  integrals  along  BA ,  A  B  cancel,  and  so  ilo  thoxe  along  CD,  DC. 

But,  by  8  21,    /'  '^J^hz  *  /'  -{^'hz  =  -i^i/CC) ; .'r,  z~  Q         Jr,  z~i 

for  C  is  inside  one  of  the  contours  T,,  T,  and  outsiile  the  other. 
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By  the  arguments  of  §  34,  it  may  be  shewn  that  the  last  integral 

tends  to  zero  as  n^c»:  so  that  t—-.  (   -^^dz  can  be  expanded  into 00 

the  convergent  series  2  a,„  (C  -  «)". 
m=0 

In  like  manner 

_  1  I  m  i, = _L.  f  m  u  -  ̂ — «)-  d. 

1     /•   /(r)(c-a)" 

Since,  on  C", 
U^  — a <  1,  the  arguments  of  §  34  can  be  applied  to 

\i-a shew  that  the  last  integral  tends  to  zero  as  w-*qo  ;  so  that 

_±  if{z) 
2-iri 

Jcz-i 
can  be  expanded  into  the  convergent  series  2  6,„(«-a)~'";  that  is 7>l  =  l 

to  say 

m=0  m=l 

each  of  the  series  being  convergent. 



CHAPTER   VIII 

HISTORICAL    SUMMARY 

§  S6l     DeflnitionH  of  Aniilytic  functuMui.— )|  37.     Pnnih  of  (*«uchjr'H  thearmL 

36.  The  earliwt  saggestion  of  the  theorem  to  which  Ckachy's 
name  haA  been  given  is  contained  in  a  letter'  from  (Sauiu)  to  Beaael 
iiateil  Dec.  IK,  1811  ;  in  thi.s  letter  (lautw  }X)intA  out  that  the  value  of 

I X'*  dr  taken  along  a  complex  path  depends  on  the  path  of  integration. 
The  earliest  investigation  of  Cauohy  on  the  subject  is  contained  in  a 

memoir'  dated  1814,  and  a  formal  proof  of  the  complete  theorem  is 
given  in  a  memoir'  publi8hed  in  1825. 

The  proof  contained  in  this  memoir  consists  in  proving  that  the 

Tariation  of  |      f{z)dz^  when  the  path  of  integration  undergoes  a 

small  variation  (the  end-points  remaining  fucetl),  is  zero,  provided  that 
/{z)  has  a  unique  continuous  differential  coefficient  at  all  |Mints  oo 
the  })ati)  A  B. 

The  following  is  a  summary  of  the  various  assumptions  on  which 

proofs  of  Cauchy's  theorem  liavc  been  based  : 

(i)  The  h>'pothe«is  of  Goursat':  /"(i)  exists  at  all  {wints  within and  on  C. 

(ii)    The  hypotJiesis  of  Cauchy*:  /'  (:)  exists  and  is  timtimmms. 

I  Brie/»etctu<l  tritckrm  Gum**  umd  llf$t*l  (IHK)),  pp.  IM^  157. 

*  Ofurrn  compltUs,  t^r.  I.  I.  1,  p.  Wi  *t  »*H- 
*  itimtoire  tur  U»  int/finiUt  tWnnirt  pritet  fntrt  ttfi  timtiU*  iima^maim. 

Ii«f«r0nc««  to  Cauobj'ii  iiul>MN]urnt  rf>«<<«rcli«>«  mrv  i;ivrn  1>t  I.in«iri6f,  CaU-ml  de 
Rltidtu. 

*  TramMUtUmt  of  the  Amtfrirat  itathrmuttictit  .^wiriVfy.  >ul.  i  (ItfOO),  pp.  14-16. 
*  6m  Um  memoir  cited  above. 
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(iii)  All  hypothesis  equivalent  to  the  last  is :  f{z)  is  uniformly 

differentiable  ;  i.e.,  when  e  is  taken  arbitrarily,  then  a  positive  S,  inde- 

pendent  of  z  can  be  found  such  that  whenever  z  and  z'  are  on  or  inside 
C  and  \z'  -z\  %  5,  then 

\f{z')-f{z)-{z'-z)f'{z)\^.W-z\. 
In  the  language  of  Chapter  II,  this  inequality  enables  us  to  take 

squares  whose  sides  are  not  greater  than  8/^2  as  'suitable  regions.' 

(iv)  The  hypothesis  of  Riemann* :  f(z)  =  P  +  iQ  where  P,  Q  are 
real  and  have  continuous  derivates  with  respect  to  a;  and  y  such  that 

cP_SQ       ̂ _Q__^P 

dx       dy  '       dx         dy' 
These  h3rpotheses  are  effectively  equivalent,  but,  of  course,  (i)  is 

the  most  natural  starting-point  of  a  development  of  the  theory  of 
functions  on  the  lines  laid  down  by  Cauchy.  It  is  easy  to  prove  the 

equivalence''  of  (ii),  (iii)  and  (iv),  but  attempts  at  deducing  any  one 
of  these  three  from  (i),  except  by  means  of  Cauchy's  theorem  and  the 
results  of  §§  21-22,  have  not  been  successful;  however,  it  is  easy 

to  deduce  from  §  22,  by  using  the  expression  for  /'  {z)  as  a  contour 
integral,  that,  if  (i)  is  assumed,  then  (ii)  is  true  in  the  interior  of  C. 

The  definition  of  Weierstrass  is  that  an  analytic  function  f{z) 

is  such  that  it  can  be  expanded  into  a  Taylor's  series  in  powers  oi z  -a 
where  a  is  a  point  inside  C.  This  hj^othesis  is  simple  and  funda- 

mental in  the  Weierstrassian  theory  of  functions,  in  which  Cauchy's 
theorem  appears  merely  incidentally. 

37.  A  proof  of  Cauchy's  theorem,  based  on  hypothesis  (i),  requires 
Goursat's  lemma  (which  is  a  special  case  of  the  Heine-Borel  theorem) 
or  its  equivalent ;  the  apparent  exception,  a  proof  due  to  Moore*, 
employs,  in  the  course  of  the  proof,  arguments  similar  to  those  by  which 

Goursat's  lemma  is  proved. 
The  hypotheses  (ii)  and  (iii)  are  such  as  to  make  it  easy  to  divide 

G  and  its  interior  into  suitable  regions. 
The  various  methods  of  proof  of  the  theorem  are  the  following : 

(i)  Goursat's  proof,  first  published  in  1884  [this,  in  its  earliest 
form*,  employs  hypothesis  (iii)],  is  essentially  that  given  in  this  work. 

*  Oeuvres  inathimatiquex  (1898),  Dissertation  iaaugurale  (1851). 

"  The  equivalence  of  (ii)  and  (iii)  has  been  proved  in  §  20. 
8  Transactions  of  the  American  Mathematical  Society,  vol.  i  (1900),  pp.  499-506. 

8  Acta  Mathematica,  vol.  iv,  pp.  197-200  ;  see  also  his  Cours  d' Analyse,  t.  n. 
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(U)    Cauchy't  proof  luui  alroady  bean  deioribed. 

(Hi)    Riemann'N  pruuP*  coimmU  in  tran«formiii|; 

jiPdo'  -  Qdy)  ̂   i  jiQdj-  ̂  Pdy) 

into  a  double  integral,  by  using  Stukeit'  theorem. 

(iv)  Moore'it  proof  oon^iittM  in  aKMuniing  that  the  integral  taken 
round  the  A\de»  of  a  square  is  md  xeru,  but  luis  luudulus  tf, ;  the  square 
is  divided  into  four  equal  sqnares,  and  the  modulus  of  the  integral 
along  at  least  one  of  them;  must  be  >  ̂i^;  tiie  process  of  subdividing 

squiU'es  is  cuntiiuied,  giving  rise  to  at  least  one  limiting  point  {  inside 
•very  square  S,  of  a  sequence  such  that  the  modulus  of  the  int^^l 

along  ̂ V  i"  not  less  tlian  rfji".  Assuming  tliat  /(z)  has  a  derivate  at 
C  it  is  proved  tliat  it  is  possible  to  find  y,  such  tliat,  when  k>  !>«,  the 

modulus  of  the  integral  along  IS,  is  less  than  y}^'4'.  This  is  the  contra- 
diction  neede<i  to  complete  the  proof  of  the  theorem.  The  deduction 
of  the  theorem  for  a  closed  contour,  not  a  squ&re,  may  then  be 
obtained  by  the  methods  given  above  in  §  17. 

Finally,  it  should  be  mentioned  that,  although  the  use  of  Cauchy's 
theorem  may  afford  the  simplest  methixl  of  evaluating  a  definite 
integral,  the  result  can  always  be  obtained  by  other  methods ;  thus 

a  direct  use  of  Cauchy's  theorem  can  always  be  avoided,  if  desired, 
by  transforming  the  contour  integral  int^)  a  double  integral  as  in 

Kiemann's  prouf.     Further,  Cauchy's  theorem  cannot  be  employed  to 

evaluate  all  definite  integrals ;  thus  /    e'*'  dr  has  not  been  evaluated 

eacoept  by  other  methods.      £tc  (SfrU/w^f    Utl  T\  , 

*"  See  the  diaserUtion  cited  abore. 
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