Computer Science Department

TECHNICAL REPORT

Complexity of Term Rewriting

Ke Li

Technical Report 474

November 1989

NEW YORK UNIVERSITY

Department of Computer Science Courant Institute of Mathematical Sciences

251 MERCER STREET, NEW YORK, N.Y. 10012

Complexity of Term Rewriting

$$
K e L i
$$

Technical Report 474
November 1989

Havilu

Complexity of Term Rewriting

Kie Li
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012-1185
(212)998-3061
like@csd2.nyu.edu

Abstract

Term rewriting systems (TRSs) are efficient reduction systems. They find many applications in logic, languages, specifications, proof systems, etc. Rewriting a term to its normal form is a basic procedure. We show that the optimal normal form rewriting problem for terminating and confluent TRSs are $N P$-complete. If commutative and associative functions are allowed for a terminating and confluent TRS, the optimal normal form rewriting problem is also $N P$-complete.

[^0]

这 1
 2

fonvigh hetwh

$=$ None wive

1 Introduction

The termination and confluence properties of term rewriting systems (TRS for short) have been studied thoroughly. To prove termination, many orderings, such as recursive path ordering, path orderings, etc., and polynomial interpretations can be used[Der82][Der87][KNS85]. For concrete applications of TRS, any simple and effective proof method for termination may be invented. Confluence was studied in deep in [Huet80] and the complete procedure to obtain a confluent system are introduced in [KB70][HO80][DJ88]. So far, we are able to design terminating and confluent TRS. A term rewriting system that has both termination and confluence properties is called a canonical TRS.

In a canonical TRS, any term has a unique normal form. This advantage of canonical TRS is used to solve the word problem in equational logic and other problems in reduction systems. Computing normal forms of terms is a basic procedure in any application of TRS. If we have some way to improve efficiency for normal form rewriting, efficiency for entire application will be improved.

Normal form rewriting have been studied by many researchers. Choppy et al. gave quantitative evaluation of normal form rewriting for a term by an algebraic analysis method[CKS87]. They defined the cost of terms and studied rewriting systems satisfying a special condition. Kapur et al. [KN87][BKN87] proved NPhardness for many AC-matching problems, which are basic in application of TRS. Klop [Klop87] discussed strategies for regular TRS which guarantee that a term can be rewritten to its normal form. He said "for general TRSs there does not seem to be any result about the existence of 'good' reduction strategies".

In this report, we will answer why we may not find good strategies for general TRS by showing that the optimal normal form rewriting problem is $N P$-complete. The optimal normal form rewriting problem is formalized in this way: Given a canonical TRS, a term, and a derivation which rewrites the term to its normal form, we ask if there is a derivation which rewrites the term to its normal form and which has shorter length. With this result, the strategies which can find optimal derivations for term's normal form rewriting will not exist unless $P=N P$. The reason is that if a strategy can find optimal derivation during normal form rewriting for a term, it can answer the question that given a derivation for a term, if there exists a derivation with shorter length for that term.

If we allow some functions have commutative and associative properties in a TRS, we call the TRS an AC-TRS. In many applications of TRSs, the functions have commutative and associative properties, such as " + " (addition) and " - " (subtraction) in arithmetics, " \wedge " (and) and " V " (or) in logic. We prove that the optimal
normal form rewriting problem for AC-TRS is $N P$-complete.
With these results, we unlikely find any very efficient strategies for TRSs and AC-TRSs. But this does not mean we could not do any thing in efficient normal form rewriting. We may find 'good' strategies for subclasses of TRSs. In another report, we propose several efficient strategies for subclasses of TRSs which can obtain optimal or approximate derivations during normal form rewriting for terms.

2 Preliminaries

Each function symbol f has a fixed arity which is the number of arguments of f. The functions with zero arity are called constants, denoted by a, b, c, \ldots. Variables are denoted by x, y, z, \ldots or $\alpha, \beta, \gamma, \ldots$. Function symbols and variables are disjoint. A term is a constant or a variable or $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ where f is a function symbol, the arity of f is n, and $t_{1}, t_{2}, \ldots, t_{n}$ are terms. Terms are denoted by $t, s, t^{\prime}, s^{\prime}, t_{1}, \ldots$ Variable-free terms are called ground terms. A term rewriting system is a set of rules and each rule is of form $t \rightarrow s$ where t and s are terms. As a convention, if a variable occurs at the right side of a rule, it must be occur at the left side of the rule. Generally, a term rewriting system is denoted by R and is abbreviated by TRS.

A position within a term is a sequence of positive integers, describing the path from the root function symbol to the head of the subterm at that position. For example, 2.2 is the position of y in term $g(a, f(x, y), z)$. By t / p, we denote the subterm of t at position p. If the subterm t / p of term t is replaced by term s, we denote the new term by $t[s]_{p}$. A substitution is a mapping from variables to terms. If σ is a substitution, σ can be extended to a function from terms to terms in such a way that $f\left(t_{1}, \ldots, t_{n}\right) \sigma=f\left(t_{1} \sigma, \ldots, t_{n} \sigma\right)$. Term t matching with term s means there is a substitution σ such that $t \sigma=s$. t unifiable with s means there is a substitution σ such that $t \sigma=s \sigma$. Term t rewrites to term s, denoted by $t \rightarrow s$, if there are position p in t, a substitution σ, and a rule $l \rightarrow r$ such that $t / p=l \sigma$ and $s=t[r \sigma]_{p}$. $t \dot{\rightarrow} s$ means t rewrites to s by a number of steps. We say t root-rewrites to s if the left side of the rule $l \rightarrow r$ being applied to t matches with t itself other than a proper subterm of t. Given a TRS R, if term $t \dot{\rightarrow} t^{\prime}$ and t^{\prime} cannot be rewritten further by rules in R, we say t^{\prime} is irreducible and t^{\prime} is a normal form of t.

A TRS is terminating if for any term t there is no infinite chain $t \rightarrow t_{1} \rightarrow t_{2} \rightarrow \cdots$. A TRS is confluent, if we have $t \dot{\rightarrow} s_{1}$ and $t \dot{\rightarrow} s_{2}$, then there exists a term u such
that $s_{1} \dot{\rightarrow} u$ and $s_{2} \dot{\rightarrow} u$. It is easy to show that for any terminating and confluent TRS, a term has a unique normal form.

We say function f is associative if f satisfies $f\left(t_{1}, f\left(t_{2}, t_{3}\right)\right)=f\left(f\left(t_{1}, t_{2}\right), t_{3}\right)$ for any terms t_{1}, t_{2}, t_{3}, and function f is commutative if f satisfies $f\left(t_{1}, t_{2}\right)=f\left(t_{2}, t_{1}\right)$ for any terms t_{1} and t_{2}. If f is both associative and commutative, we say f is AC or f has AC properties. In this report, we address only terminating and confluent TRSs, so we assume any TRS to be discussed is both terminating and confluent.

A sequence of rewritings which reduce a term to its normal form is called a derivation (for that term). $|D|$ is the length of D that is the number of rewritings in D.

3 NP-Completeness of Term Rewriting

Optimal Normal Form Rewriting Problem

INSTANCE: A terminating and confluent term rewriting system R, a term t, and a derivation D rewriting t to its normal form.
QUESTION: Is there any derivation D^{\prime} such that D^{\prime} rewrites t to its normal form and $\left|D^{\prime}\right|<|D|$?

The size of the input in the optimal normal form rewriting problem is the number of symbols in the TRS, the term, and the derivation. Suppose we simultaneously try all derivations with lengths $<|D|$ to check if there exists the D^{\prime} required in the problem. Since D is considered as one of inputs, each check is done in polynomial of the input size, so the normal form rewriting problem is in NP.

3-SAT Problem

INSTANCE: Collection $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ of classes on a finite set of variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $\left|c_{i}\right|=3$ for $1 \leq i \leq m$.
QUESTION: Is there a truth assignment for the variables that satisfies all the clauses in C ?

3-SAT Problem is NP-complete, refer [GJ79]. In the following we construct a polynomial transformation from 3 -SAT to the optimal normal form rewriting problem.

Given:

$V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
$C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}, \quad c_{i}=\left\{y_{i_{1}}, y_{i_{2}}, y_{i_{3}}\right\}, \quad y_{i_{j}}=x_{k}$ or \bar{x}_{k}

Construct:

Variables:

$$
\alpha, \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta, \beta_{1}, \beta_{2}, \ldots, \beta_{m+2}
$$

Function symbols: $\quad f$ of arity $m+2$ and g of arity 3

Constants:

$a_{1}^{T}, a_{2}^{T}, \ldots, a_{n}^{T}$	[true values]
$a_{1}^{F}, a_{2}^{F}, \ldots, a_{n}^{F}$	[false values]
$b_{1}^{\text {pos }}, b_{2}^{\text {pos }}, \ldots, b_{n}^{\text {pos }}$	[positive literal]
$b_{1}^{\text {neg }}, b_{2}^{\text {neg }}, \ldots, b_{n}^{\text {neg }}$	[negative literal]
S^{\prime}	start rewriting
S^{\prime}	start ending part
T	true clause
F	false value
E	end of clause sequence
N	normal form
N_{1}, \ldots, N_{J}	lead to $N(J$ defined below $)$

Initial term $t_{i n i}: \quad f(S g(b b b) g(b b b) \ldots g(b b b) E)$
Each clause c_{i} corresponds to a subterm $g(b b b)$.
If x_{j} is in $c_{i}, b_{j}^{\text {pos }}$ is an argument of the subterm.
If \bar{x}_{j} is in $c_{i}, b_{j}^{\text {neg }}$ is an argument of the subterm.

Positive integer: $\quad J=n(m+1)+2$

Derivation $D: \quad t_{i n i} \xrightarrow{r_{B}} \quad N_{1} \xrightarrow{r_{i}} \quad N_{2} \xrightarrow{r_{7}} \cdots \xrightarrow{r_{i}} \quad N_{J} \xrightarrow{r_{i}} N$ (rules r_{6}, r_{7} defined below)

Rules:

Form r_{1} :
$f\left(S \beta_{1} \beta_{2} \ldots \beta_{m} E\right) \rightarrow f\left(a_{1}^{T} \beta_{1} \beta_{2} \ldots \beta_{m} E\right)$
$f\left(S \beta_{1} \beta_{2} \ldots \beta_{m} E\right) \rightarrow f\left(a_{1}^{F} \beta_{1} \beta_{2} \ldots \beta_{m} E\right)$

Form r_{2} :
For i from 1 to n
For j from 2 to $m+1$ (for convenience, assume β_{0} and β_{m+1} do not exist)
$f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{T} g\left(b_{i}^{p o s} \alpha_{1} \alpha_{2}\right) \beta_{j} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} T a_{i}^{T} \beta_{j} \ldots \beta_{m} E\right)$
$f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{T} g\left(b_{i}^{\text {neg }} \alpha_{1} \alpha_{2}\right) \beta_{j} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} g\left(F \alpha_{1} \alpha_{2}\right) a_{i}^{T} \beta_{j} \ldots \beta_{m} E\right)$
$f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{T} g\left(\alpha_{1} b_{i}^{p o s} \alpha_{2}\right) \beta_{j} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} T a_{i}^{T} \beta_{j} \ldots \beta_{m} E\right)$
$f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{T} g\left(\alpha_{1} b_{i}^{\text {neg }} \alpha_{2}\right) \beta_{j \ldots} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} g\left(\alpha_{1} F \alpha_{2}\right) a_{i}^{T} \beta_{j} \ldots \beta_{m} E\right)$

```
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{T} g\left(\alpha_{1} \alpha_{2} b_{i}^{\text {pos }}\right) \beta_{j} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} T a_{i}^{T} \beta_{j} \ldots \beta_{m} E\right)\)
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{T} g\left(\alpha_{1} \alpha_{2} b_{i}^{\text {neg }}\right) \beta_{j} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} g\left(\alpha_{1} \alpha_{2} F\right) a_{i}^{T} \beta_{j} \ldots \beta_{m} E\right)\)
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{T} g\left(\alpha_{1} \alpha_{2} \alpha_{3}\right) \beta_{j \ldots} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} g\left(\alpha_{1} \alpha_{2} \alpha_{3}\right) a_{i}^{T} \beta_{j \ldots} \ldots \beta_{m} E\right)\)
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{T} T \beta_{j} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} T a_{i}^{T} \beta_{j} \ldots \beta_{m} E\right)\)
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{F} g\left(b_{i}^{p o s} \alpha_{1} \alpha_{2}\right) \beta_{j \ldots} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} g\left(F \alpha_{1} \alpha_{2}\right) a_{i}^{F} \beta_{j} \ldots \beta_{m} E\right)\)
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{F} g\left(b_{i}^{\text {neg }} \alpha_{1} \alpha_{2}\right) \beta_{j \ldots} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} T a_{i}^{F} \beta_{j} \ldots \beta_{m} E\right)\)
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{F} g\left(\alpha_{1} b_{i}^{p o s} \alpha_{2}\right) \beta_{j} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} g\left(\alpha_{1} F \alpha_{2}\right) a_{i}^{F} \beta_{j} \ldots \beta_{m} E\right)\)
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{F} g\left(\alpha_{1} b_{i}^{n e g} \alpha_{2}\right) \beta_{j} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} T a_{i}^{F} \beta_{j} \ldots \beta_{m} E\right)\)
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{F} g\left(\alpha_{1} \alpha_{2} b_{i}^{p o s}\right) \beta_{j} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} g\left(\alpha_{1} \alpha_{2} F\right) a_{i}^{F} \beta_{j} \ldots \beta_{m} E\right)\)
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{F} g\left(\alpha_{1} \alpha_{2} b_{i}^{\text {neg }}\right) \beta_{j} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} T a_{i}^{F} \beta_{j \ldots} \ldots \beta_{m} E\right)\)
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{F} g\left(\alpha_{1} \alpha_{2} \alpha_{3}\right) \beta_{j \ldots} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} g\left(\alpha_{1} \alpha_{2} \alpha_{3}\right) a_{i}^{F} \beta_{j} \ldots \beta_{m} E\right)\)
\(f\left(\beta_{1} \ldots \beta_{j-2} a_{i}^{F} T \beta_{j} \ldots \beta_{m} E\right) \rightarrow f\left(\beta_{1} \ldots \beta_{j-2} T a_{i}^{F} \beta_{j} \ldots \beta_{m} E\right)\)
```


Form r_{3} :

For i from 1 to $n-1$
$f\left(\beta_{1} \beta_{2} \ldots \beta_{m} a_{i}^{T} E\right) \rightarrow f\left(a_{i+1}^{T} \beta_{1} \beta_{2} \ldots \beta_{m} E\right)$
$f\left(\beta_{1} \beta_{2} \ldots \beta_{m} a_{i}^{T} E\right) \rightarrow f\left(a_{i+1}^{F} \beta_{1} \beta_{2} \ldots \beta_{m} E\right)$
$f\left(\beta_{1} \beta_{2} \ldots \beta_{m} a_{i}^{F} E\right) \rightarrow f\left(a_{i+1}^{T} \beta_{1} \beta_{2} \ldots \beta_{m} E\right)$
$f\left(\beta_{1} \beta_{2} \ldots \beta_{m} a_{i}^{F} E\right) \rightarrow f\left(a_{i+1}^{F} \beta_{1} \beta_{2} \ldots \beta_{m} E\right)$

Form r_{4} :
$f\left(\beta_{1} \beta_{2} \ldots \beta_{m} a_{n}^{T} E\right) \rightarrow f\left(S^{\prime} \beta_{1} \beta_{2} \ldots \beta_{m} E\right)$
$f\left(\beta_{1} \beta_{2} \ldots \beta_{m} a_{n}^{F} E\right) \rightarrow f\left(S^{\prime} \beta_{1} \beta_{2} \ldots \beta_{m} E\right)$

Form r_{5} :
$f\left(S^{\prime} T T \ldots T E\right) \rightarrow N$

Form r_{6} :
$f\left(\beta_{1} \beta_{2} \ldots \beta_{m+2}\right) \rightarrow N_{1}$

Form r_{7} :
$N_{1} \rightarrow N_{2}, N_{2} \rightarrow N_{3}, \ldots, N_{J-1} \rightarrow N_{J}, N_{J} \rightarrow N$
Intuition for the construction:

- a_{i}^{T} is the true value of variable x_{i} and a_{i}^{F} is the false value of variable x_{i}. $b_{i}^{\text {pos }}$
means positive literal x_{i} is in a clause and $b_{i}^{\text {neg }}$ means negative literal \bar{x}_{i} is in a clause.
- At the beginning, arbitrarily set a truth value of variable x_{1}, say a_{1}^{T}.
- Pass the value from the left of the sequence of the clauses (expressed as arguments of the term) to the right. For each clause, simulate the assignment of values in the clause. T means the clause is true, while F means one of values in the clause is false. If we pass value a_{i}^{T} or a_{i}^{F} but there is no literal x_{i} or \bar{x}_{i} in the clause, just pass the clause.
- After all clauses have tried the truth value of x_{i}, arbitrarily set the truth value of x_{i+1}. And repeat passing the value.
- After all truth values of x_{1}, \ldots, x_{n} have been tried, we get $f\left(s_{1} \ldots s_{m} a_{n}^{T} E\right)$ or $f\left(s_{1} \ldots s_{m} a_{n}^{F} E\right)$ which will be rewritten to $f\left(S^{\prime} s_{1} \ldots s_{m} E\right)$. If all $s_{i}(1 \leq i \leq m)$ is T, that means we get an assignment which satisfies all clauses, then we obtain the normal form N immediately. Otherwise, the term will be rewritten to N via $N_{1}, N_{2}, \ldots, N_{J}$.

For example, $\left(x_{1} x_{2} \bar{x}_{3}\right)\left(\bar{x}_{2} x_{3} \bar{x}_{4}\right)\left(x_{4} x_{5} x_{6}\right)$ is expressed by term:

$$
f\left(S g\left(b_{1}^{\text {pos }} b_{2}^{\text {pos }} b_{3}^{\text {neg }}\right) g\left(b_{2}^{\text {neg }} b_{3}^{\text {pos }} b_{4}^{\text {neg }}\right) g\left(b_{4}^{\text {pos }} b_{5}^{\text {pos }} b_{6}^{\text {pos }}\right) E\right)
$$

Suppose $x_{2}=$ true. We pass the value from left to right:
$f\left(a_{2}^{T} g\left(b_{1}^{\text {pos }} b_{2}^{\text {pos }} b_{3}^{\text {neg }}\right) g\left(b_{2}^{\text {neg }} b_{3}^{\text {pos }} b_{4}^{\text {neg }}\right) g\left(b_{4}^{\text {pos }} b_{5}^{\text {pos }} b_{6}^{\text {pos }}\right) E\right) \rightarrow$
$f\left(T a_{2}^{T} g\left(b_{2}^{\text {neg }} b_{3}^{\text {pos }} b_{4}^{\text {neg }}\right) g\left(b_{4}^{\text {pos }} b_{5}^{\text {pos }} b_{6}^{\text {pos }}\right) E\right) \rightarrow$ $f\left(T g\left(F b_{3}^{\text {pos }} b_{4}^{\text {neg }}\right) a_{2}^{T} g\left(b_{4}^{\text {pos }} b_{5}^{\text {pos }} b_{6}^{\text {pos }}\right) E\right) \rightarrow$
$f\left(T g\left(F b_{3}^{p o s} b_{4}^{\text {neg }}\right) g\left(b_{4}^{p o s} b_{5}^{p o s} b_{6}^{p o s}\right) a_{2}^{T} E\right)$

Denote the constructed term rewriting system by $R_{\text {construct }}$.
Theorem 1. Let R be any term rewriting system which contains no rule $x \rightarrow t$ where x is a variable and t is a term. If any term can be root-rewritten only finite number of times and each application of any rule does not increase the size of the term being rewritten, R is terminating.

Proof. Induction on the size of terms. Let t be any term.
Basis. $|t|=1$. t must be a variable or a constant. Because no rule $x \rightarrow \cdots$ exists, a single variable is irreducible. Rewriting on a single constant is a special case of root-rewriting, so any constant can be rewritten only finite number of times.
Induction. $t=f\left(s_{1} \ldots s_{p}\right),|t|=k(>1)$.
Induction hypothesis: Any term of size less than k can be rewritten only finite number of times.
Suppose there is an infinite reduction chain starting with t. The sizes of s_{1}, \ldots, s_{p} are
all less than k. By the induction hypothesis, they are rewritten only finite number of times, so there must be a root-rewriting in the infinite reduction chain. Suppose t is rewritten to t^{\prime} just before the first root-rewriting and the first root-rewriting is $t^{\prime} \rightarrow t^{\prime \prime}=f\left(t_{2} \ldots t_{p}\right)$. Because any rewriting does not increase the size of the term being rewritten, the sizes of t_{1}, \ldots, t_{p} are all less than k. Hence, they can be rewritten only finite number of times. In the infinite reduction chain, we can find the second root-rewriting. Along this way, infinite number of root-rewritings will be found. A contradiction.

Lemma 1. Only finite number of rules can be applied to a term of form $f(\ldots)$ by root-rewriting.

Proof. In this proof, a_{i} denotes either a_{i}^{T} or a_{i}^{F}. Suppose $t=f\left(s_{1} \ldots s_{m+2}\right)$.
r_{7} cannot be applied to t by root-rewriting and application of r_{5} and r_{6} by rootrewriting will lead to N, so all we need to do is to prove that if we use r_{1}, r_{2}, r_{3} and r_{4} to root-rewrite t, they can be applied only finite times.

Two mappings $h_{1}:$ Term \rightarrow Integer and $h_{2}:$ Term \rightarrow Integer are defined below:
$h_{1}\left(a_{i}\right)=1 \quad(1 \leq i \leq n)$
$h_{1}(s)=0 s$ is $f(\ldots), g(\ldots)$, variable, constant other than a_{1}, \ldots, a_{n}
$h_{2}(S)=0$
$h_{2}\left(a_{i}\right)=i \quad(1 \leq i \leq n)$
$h_{2}\left(S^{\prime}\right)=n+1$
$h_{2}(s)=0 s$ is $f(\ldots), g(\ldots)$, variable, constant other than $S, a_{1}, \ldots, a_{n}, S^{\prime}$
Here are three mappings defined on $t=f\left(s_{1}, \ldots, s_{m+2}\right)$:
$H_{\text {binary }}(t)=h_{1}\left(s_{1}\right) h_{1}\left(s_{2}\right) \ldots h_{1}\left(s_{m+2}\right)$ This is a binary number $H_{s u m}(t)=(n+1)(m+2)-\left(h_{2}\left(s_{1}\right)+h_{2}\left(s_{2}\right)+\ldots+h_{2}\left(s_{m+2}\right)\right)$ $H(t)=2^{m+2} \times H_{\text {sum }}(t)+H_{\text {binary }}(t)$

Suppose s is any term and s is rewritten to s^{\prime}. It is easy to verify that $h_{1}(s)=$ $h_{1}\left(s^{\prime}\right)$ and $h_{2}(s)=h_{2}\left(s^{\prime}\right)$, because only terms with root $f(\ldots)$ and $N_{i}(1 \leq i \leq J)$ can be rewritten, those terms are rewritten to terms with root $f(\ldots)$ and $N_{i}(1 \leq i \leq J)$, and function values of h_{1} and h_{2} for those terms are always zero. Therefore, if rewriting occurs in the strict subterms of $t=f\left(s_{1} \ldots s_{m+2}\right)$ and s_{i} is rewritten to s_{i}^{\prime}, we have

$$
H\left(f\left(s_{1} \ldots s_{m+2}\right)\right)=H\left(f\left(s_{1}^{\prime} \ldots s_{m+2}^{\prime}\right)\right)
$$

That means, any rewriting of strict subterms of t does not change the H value of t. But we will show that any root-rewriting of t by r_{1}, r_{2}, r_{3}, or r_{4} will decrease the H value.

Let $t=f\left(s_{1} \ldots s_{m+2}\right)$ be rewritten to $t^{\prime}=f\left(s_{1}^{\prime} \ldots s_{m+2}^{\prime}\right)$ by rule r by root-rewriting.

Case 1. r is r_{2}
$H_{s u m}(t)=H_{\text {sum }}\left(t^{\prime}\right)$
$H_{\text {binary }}(t)>H_{\text {binary }}\left(t^{\prime}\right)$
Hence, $H(t)>H\left(t^{\prime}\right)$
Case 2. r is r_{1}, r_{3} or r_{4}
$H_{s u m}(t)=H_{s u m}\left(t^{\prime}\right)+1$
$-2^{m+2}<H_{\text {binary }}(t)-H_{\text {binary }}\left(t^{\prime}\right)<2^{m+2}$
$H(t)-H\left(t^{\prime}\right)=2^{m+2} \times 1+\left(H_{\text {binary }}(t)-H_{\text {binary }}\left(t^{\prime}\right)>0\right.$
Hence, $H(t)>H\left(t^{\prime}\right)$.
Therefore, each application of r_{1}, r_{2}, r_{3}, and r_{4} will decrease the function value of H. But the value of H is non-negative. We conclude that the term t can only be root-rewritten by r_{1}, r_{2}, r_{3} and r_{4} finite times.

Lemma 2. The term rewriting system $R_{\text {construct }}$ is terminating and confluent.
Proof.
Terminating. In $R_{\text {conatruct }}$, there is no rule $x \rightarrow \cdots$. Only constant $N_{i}(1 \leq i \leq J)$ are reducible and they are all rewritten to normal form N. Any term of form $g(\ldots)$ is not root-reducible. Any term of $f(\ldots)$ can be root-rewritten only finite times by lemma 1. Hence, any term can be root-rewritten only finite times in $R_{\text {construct }}$. Application of rules in $R_{\text {construct }}$ does not increase the size of the term being rewritten. By theorem $1, R_{\text {construct }}$ is terminating.

Confluent. Induction on the sizes of terms.
Basis. $|t|=1$. t must be a variable or constant, which is either irreducible or has unique normal form N.
Induction. Suppose $|t|=k(>1)$ and any term of size less than k has unique normal form.
Case 1. $t=f\left(s_{1} \ldots s_{m+2}\right)$. Let t be rewritten to normal form t^{\prime}. If t^{\prime} is not N, it must be of form $f(\ldots)$ because any term of form $f(\ldots)$ is rewritten to a term of form $f(\ldots) . t^{\prime}$ is reducible by r_{6}. This is a contradiction, since t^{\prime} is in normal form. Thus, t must be rewritten to N.
Case 2. $t=g\left(s_{1} s_{2} s_{3}\right) . t$ cannot be root-rewritten and by induction hypothesis, s_{1}, s_{2} and s_{3} have unique normal forms, so t has unique normal form.

Lemma 3. Therc is an assignment of values to $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ which satisfies all the clauses if and only if there is a derivation D^{\prime} such that D^{\prime} rewrites the initial term $t_{\text {ini }}$ to normal form N and $\left|D^{\prime}\right|<|D|$.

Proof.
Only if. There is a desirable variable assignment. Note that $|D|=J+1$. Suppose the assignment is $x_{i} \rightarrow a_{i}(1 \leq i \leq n)$ where a_{i} denotes either a_{i}^{T} or a_{i}^{F}. Construct
D^{\prime} as follows: By rule $r_{1}, t_{\text {ini }}$ is rewritten to $f\left(a_{1} g(b b b) \ldots g(b b b) E\right)$. Then a_{1} passes from the left to the right and simulates the values of the m clauses. By rule r_{3}, we get $f\left(a_{2} g(b b b) \ldots g(b b b) E\right)$. Repeat the passing process. At last we get $f\left(S^{\prime} T T \ldots T E\right)$ which will be rewritten to N. The total number of steps is $1+n(m+1)+1=$ $n(m+1)+2=J$. Hence, $\left|D^{\prime}\right|<|D|$.

If. Note that in order to rewrite to N in $<|D|(=J+1)$ steps, rule r_{6} cannot be used; otherwise, at least $J+1$ steps are needed. First the initial term $t_{\text {ini }}$ must go through rule r_{1} and then goes through r_{2} and r_{3}. By r_{1} and r_{3}, an assignment is selected, while by r_{2}, the values are passed to all clauses. To rewrite to N in $<J+1$ steps, the rewriting process must go through r_{5}. The left side is $f\left(S^{\prime} T T \ldots T E\right)$, that means all clauses are satisfied.

Theorem 2. The Optimal Normal Form Rewriting Problem is NP-complete.
Proof. We have already known that the optimal normal form rewriting problem is in NP. By lemma 2, we have constructed a terminating and confluent term rewriting system from an instance of 3 -SAT Problem. The theorem immediately follows lemma 3.

4 Complexity of AC-Term Rewriting

AC Optimal Normal Form Rewriting Problem

INSTANCE: A terminating and confluent term rewriting system R in which some functions are AC, a term t, and a derivation D rewriting t to its normal form.
QUESTION: Is there any derivation D^{\prime} such that D^{\prime} rewrites t to its normal form and $\left|D^{\prime}\right|<|D|$?

As in the last section, if we simultaneously try all derivations with lengths $<|D|$ to check if there exists the D^{\prime} required in the problem, it is easily seen that this problem is in $N P$.

Ensemble Computation Problem (from [GJ79])
INSTANCE: A collection C of subsets of a finite set A and a positive integer J. QUESTION: Is there a sequence

$$
<z_{1}=x_{1} \cup y_{1}, z_{2}=x_{2} \cup y_{2}, \ldots, z_{j}=x_{j} \cup y_{j}>
$$

of $j \leq J$ union operations, where each x_{i} and y_{i} is either $\{a\}$ for some $a \in A$ or z_{k} for some $k<i$, such that x_{i} and y_{i} are disjoint for $1 \leq i \leq j$ and such that for every subset $c \in C$ there is some $z_{i}, 1 \leq i \leq j$, that is identical to c ?

We can always find the desirable sequence in polynomial steps in the problem
above, so we assume J is polynomial of the input size. By the proof on P. 67 of Garey and Johnson's book, the subset can be restricted to exact three elements, that means, the following subproblem of Ensemble Computation Problem is also NP-complete.

3-Element Ensemble Computation Problem

INSTANCE: A collection C of three element subsets of a finite set A and a positive J.

QUESTION: the same as QUESTION of Ensemble Computation Problem.
Reduce 3-Element Ensemble Computation Problem to AC Optimal Normal Form Problem by polynomial transformation.

Note that if function f is associative, we can "flatten" the arguments of f. For example, $f(f(a, b), f(c, d))=f(a, f(b, f(c, d)))$, the latter denoted by $f(a, b, c, d)$. Thus, we consider that the arities of associative functions are not fixed.

Given

$A=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$
$C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}, \quad c_{i}=\left\{e_{i, 1}, e_{i, 2}, e_{i, 3}\right\}, e_{i, j} \in A(1 \leq i \leq m, 1 \leq j \leq 3)$
$J \geq 0$

Construct

AC function symbols: f and g
Constants: $e_{1}, e_{2}, \ldots, e_{n}, N, N_{1}, N_{2}, \ldots, N_{K}$ (K defined below)
Variable: $\alpha, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}, \beta, \beta_{1}, \beta_{2}, \ldots, \beta_{m}$
Initial term $t_{i n i}$: $t=f\left(g\left(e_{1,1} e_{1,2} e_{1,3}\right) g\left(e_{2,1} e_{2,2} e_{2,3}\right) \ldots g\left(e_{m, 1} e_{m, 2} e_{m, 3}\right)\right)$
Positive integer: $K=J-m+1$
Derivation D : $t_{i n i} \xrightarrow{r_{m+2}} \quad N_{1} \xrightarrow{r_{m+3}} \ldots \xrightarrow{r_{m+3}} \quad N_{K} \xrightarrow{r_{m+3}} N$
Rules:

$$
\begin{array}{ll}
r_{1} & f\left(g\left(e_{i} e_{j} \alpha\right) \beta_{1} \beta_{2} \ldots \beta_{m-1}\right) \rightarrow f\left(N \beta_{1} \beta_{2} \ldots \beta_{m-1}\right)(1 \leq i<j \leq n) \\
r_{2} & f\left(g\left(e_{i} e_{j} \alpha_{1}\right) g\left(e_{i} e_{j} \alpha_{2}\right) \beta_{1} \ldots \beta_{m-2}\right) \rightarrow f\left(N N \beta_{1} \ldots \beta_{m-2}\right)(1 \leq i<j \leq n) \\
\ldots & f\left(g\left(e_{i} e_{j} \alpha_{1}\right) \ldots g\left(e_{i} e_{j} \alpha_{m-1}\right) \beta\right) \rightarrow f(N N \ldots N \beta)(1 \leq i<j \leq n) \\
r_{m-1} & f\left(g\left(e_{i} e_{j} \alpha_{1}\right) \ldots g\left(e_{i} e_{j} \alpha_{m}\right)\right) \rightarrow f(N N \ldots N)(1 \leq i<j \leq n) \\
r_{m} & f(N N . N) \rightarrow N \\
r_{m+1} & f(N N . N \\
r_{m+2} & f\left(\beta_{1} \beta_{2}\right) \rightarrow N_{1} \\
r_{m+3} & N_{1} \rightarrow N_{2}, N_{2} \rightarrow N_{3}, \ldots, N_{K} \rightarrow N
\end{array}
$$

Explanation: (1) The construction of rules forces the function g to be associa-
tive and commutative, since without the properties $f\left(g\left(e_{3} e_{2} e_{1}\right) g\left(e_{4} e_{2} e_{1}\right)\right)$ cannot be rewritten. (2) Because f is associative, any term of form $f\left(s_{1} \ldots s_{p}\right)(p \geq 2)$ can be rewritten to N_{1} by r_{m+2}.

If a subset $c_{i}=\left\{e_{i_{1}}, e_{i_{2}}, e_{i_{3}}\right\}$, then c_{i} can be computed by two operations: $z_{j_{1}}=$ $\left\{e_{i_{1}}\right\} \cup\left\{e_{i_{2}}\right\}$ and $z_{j_{2}}=z_{j_{1}} \cup\left\{e_{i_{3}}\right\}$. Therefore, $J \leq 2 m$. There are polynomial number of rules. Obviously, each rule has polynomial number of symbols, so the reduction is a polynomial transformation. Define the size of a term to be the number of function symbols, variables and constants used in the term. The size of term t is denoted by $|t|$.

Lemma 4. The term rewriting system constructed is terminating and confluent (in terms of $A C$).

Proof.
Terminating. Application of $r_{1}, \ldots, r_{m}, r_{m+1}$, and r_{m+2} decreases the size of the term being rewritten, so these rules can be used only finite times. r_{m+3} reduces any $N_{i}(1 \leq i \leq K)$ to N and N is irreducible, so r_{m+3} can be used only finite times. Therefore, for any term, only finite rules can be used. That means, the system is terminating.

Confluent. Induction on the size of terms.
Basis. Terms of size 1 are variables or constants, which are either irreducible or written to normal form N by r_{m+3}. Hence, any term of size 1 has unique normal form.

Induction. Let the size of t be $k(>1)$ and suppose any term of size less than k has unique normal form.
Case 1. $t=g\left(s_{1} \ldots s_{p}\right)$. Because t cannot be root-written, the normal form of t is $g\left(s_{1}^{\prime} \ldots s_{p}^{\prime}\right)$, where $s_{i}^{\prime}(1 \leq i \leq p)$ is a normal form of s_{i}. The sizes of s_{1}, \ldots, s_{p} are less than k. By induction hypothesis, the normal form of $s_{i}(1 \leq i \leq p)$ is unique. Hence, t has unique normal form.
Case 2. $t=f\left(s_{1} \ldots s_{p}\right)$. Let t be rewritten to normal form t^{\prime}. If t^{\prime} is not N, it must be a term of form $f(\ldots)$ because any term of form $f(\ldots)$ is rewritten to a term of form $f(\ldots) . t^{\prime}$ is reducible by r_{m+2}. This is a contradiction, since t^{\prime} is in normal form. Thus, t must be rewritten to N.

Lemma 5. There is a required sequence of length $j \leq J$

$$
<z_{1}=x_{1} \cup y_{1}, z_{2}=x_{2} \cup y_{2}, \ldots, z_{j}=x_{j} \cup y_{j}>
$$

if and only if there is a derivation D^{\prime} such that D^{\prime} rewrites the initial term $t_{\text {ini }}$ to normal form N and $\left|D^{\prime}\right|<|D|$.

Proof.

Only if. Given $<z_{1}=x_{1} \cup y_{1}, z_{2}=x_{2} \cup y_{2}, \ldots, z_{j}=x_{j} \cup y_{j}>$. It is always possible to construct a sequence

$$
\begin{array}{ll}
< & u_{1}=\left\{e_{i_{1}, 1}\right\} \cup\left\{e_{i_{1}, 2}\right\}, \ldots, u_{p}=\left\{e_{i_{p, 1}}\right\} \cup\left\{e_{i_{p, 2}}\right\}, \\
& u_{p+1}=\left\{e_{i_{p+1}, 1}\right\} \cup u_{k_{1}}, \ldots, u_{p+m}=\left\{e_{i_{p+q}, 1}\right\} \cup u_{k_{m}}>
\end{array}
$$

where $e_{i_{l}, 1}, e_{i_{i}, 2}(1 \leq l \leq p+m)$ are one of constants $e_{1}, \ldots, e_{n}, u_{k_{l}}(1 \leq l \leq m)$ is one of u_{1}, \ldots, u_{p} and $p+m \leq j$, such that the sequence is a subsequence of the given sequence and satisfies the requirement of 3 -Element Ensemble Computation Problem. The reason $p+m$ may be less than j is that there may be some redundant operations. For example, $z_{i_{1}}=z_{i_{2}} \cup z_{i_{3}}$ is a redundant operation, because any subset contains only three elements. We construct D^{\prime} as follows: If $u_{l}(1 \leq l \leq p)$ is contained in w number of subsets $u_{p+v_{1}}, \ldots, u_{p+v_{w}}$, rule r_{w} can be used to simulate this operation and sets w arguments of f to N. Because the subset c_{i} corresponds to argument $g(\ldots)$ of f one by one, eventually all arguments of f will be set to N. r_{m+1} rewrites $f(N N \ldots N)$ to N. So, by $\leq p$ applications of rules of form r_{1}, \ldots, r_{m}, we get $f(N N \ldots N)$ and by rule r_{m+1}, we get the normal form N. The number of rewriting steps in D^{\prime} is $\leq p+1 \leq j-m+1 \leq J-m+1=K$, but $|D|=K+1$.

If. The initial term $t_{\text {ini }}$ is rewritten to N in $k \leq|D|(=K+1)$ steps. Only rules of form $r_{1}, \ldots, r_{m}, r_{m+1}$ can be used, since r_{m+3} does not match with the term and application of r_{m+2} needs more than K steps to rewrite the term to N. Any application of rules of form r_{1}, \ldots, r_{m} can be simulated by an operation $z_{i}=\left\{e_{p}\right\} \cup\left\{e_{q}\right\}$. After k steps, $t_{\text {ini }}$ is rewritten to N. The last rule applied must be $f(N N \ldots N) \rightarrow N$, that means after $k-1$ steps t is rewritten to $f(N N \ldots N)$ and two of three elements of each subset have been unioned. Add m operations $z_{p_{1}}=\left\{e_{p_{2}}\right\} \cup z_{p_{3}}$, we obtain the required sequence of length $k-1+m \leq K-1+m=(J-m+1)-1+m=J$.

Theorem 3. The AC Optimal Normal Form Rewriting Problem is NP-complete.
Proof. We have already known that the AC optimal normal form rewriting problem is in NP. By lemma 4, a terminating and confluent term rewriting system with AC functions has been constructed from an instance of 3-Element Ensemble Computation Problem. The theorem immediately follows lemma 5.

Acknowledgements

This research was done under the supervision of Prof. Zvi Kiedem and Dr. Krishna Palem. Many thanks to their inspiration, reading, correcting, and guidance. Without them this work could not be done. I am also grateful to Prof. D. Kapur, who read the early version of this report and gave very helpful comments.

References

[BKN87] D.Benanav, D.Kapur and P. Narendran, "Complexity of matching problems", J. Symbolic Computation 3 (1987), 203-216.
[CKS87] C.Choppy, S.Kaplan, M.Soria, "Algorithmic complexity of term rewriting systems", 2nd Int. Conf. on Rewriting Techniques and Applications, 256-270, 1987.
[Der82] N. Dershowitz, "Orderings for term-rewriting systems", Theoretical Computer Science 17 (1982), 279-301.
[Der87] N. Dershowitz, "Termination of rewriting", J. Symbolic Computation(1987) 3, 69-116.
[DJ88] N. Dershowitz and J.-P. Jounnaud, "Rewriting systems", Draft, 1988.
[GJ79] M.R. Garey and D.S. Johnson, "Computers and intractability: A guide to the theory of NP-completeness", W.H. Freeman and Company, New York, 1979.
[HO80] G. Huet and D.C. Oppen, "Equations and rewrite rules: A survey", in Formal Languages: Perspective and Open Problems, R. Book(ed.), Academic Press, 1980.
[Huet80] G. Huet, "Confluent reductions: abstract properties and applications to term rewriting systems", JACM 27, 4 (1980), 797-821.
[KB70] D.E. Knuth and P.B. Bendix, "Simple word problems in universal algebras", in: (J. Leech, ed.) Computational Problems in Abstract Algebra, Pergamon Press, 1970, 263-297.
[KN87] D.Kapur and P.Narendran, "Matching, unification and complexity", SIGSAM Bull. 21, 4(Nov. 1988), 6-9.
[KNS85] D. Kapur, P. Narendran, and G. Sivakumar, "A path ordering for proving termination of term rewriting systems", CAAP'85, LNCS 185.
[Klop87] J.W. Klop, "Term rewriting systems: A tutorial", Bulletin of the European Asso. for Theoretical Comp. Sci. 32, 1987.

This book may be kept
FOURTEEN DAYS
A fine will be charged for eacb day the book is kept overtime.

[^0]: ${ }^{1}$ This research was supported in part by the Office of Naval Research under contract number N00014-85-K-0046 and by the National Science Foundation under grant number CCR-89-6949

