
i^^^."-:^^'

Computer Science Department

TECHNICAL REPORT

Complexity of Term Rewriting

Ke Li

Technical Report 474

November 19S9

NEW YORK UNIVERSITY

I

M
U
PL.

u «
D ^

e

+J

o
•

>i en
4-> c
•H -rH

i< -p
0) -H
i-H U

e 0)

O !-l

o

Department of Computer Science

Courant Institute of Mathematical Sciences

251 MERCER STREET, NEW YORK, N.Y. 10012

\

m

%t:

NEW YOR!< UMIVERSiTY
COURANT INSTITUTE LIBRARY
2S1 Mercar SI New York, N.Y. 10012

Complexity of Term Rewriting

Ke Li

Technical Report 474

November 1989

Complexity of Term Rewriting

KeLi
Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

251 Mercer Street

New York, NY 10012-11S5

(212)998-3061

like@csd2.nyu.edu

Abstract

Term rewriting systems (TRSs) are efficient reduction

systems. They find many applications in logic, lan-

guages, specifications, proof systems, etc. Rewriting

a term to its normal form is a basic procedure. We
show that the optimal normal form rewriting problem

for terminating and confluent TRSs are A''P-complete.

If commutative and associative functions are allowed for

a terminating and confluent TRS, the optimal normal

form rewriting problem is also A'^P-complete.

^This research was supported in part by the Office of Naval Research under contract number

N00014-85-K-0046 and by the National Science Foundation under grant number CCR-89-6949

1 Introduction

The termination and confluence properties of term rewriting systems (TRS for

short) have been studied thoroughly. To prove termination, many orderings, such

as recursive path ordering, path orderings, etc., and polynomial interpretations can

be used[DerS2][DerS7][KNS85]. For concrete applications of TRS, any simple and

effective proof method for termination may be invented. Confluence was studied

in deep in [HuetSO] and the complete procedure to obtain a confluent system are

introduced in [KB70][HO80][DJ88]. So far, we are able to design terminating and

confluent TRS. A term rewriting system that has both termination and confluence

properties is called a canonical TRS.

In a canonical TRS, any term has a unique normal form. This advantage of

canonical TRS is used to solve the word problem in equational logic and other

problems in reduction systems. Computing normal forms of terms is a basic pro-

cedure in any application of TRS. If we have some way to improve efficiency for

normal form rewriting, efficiency for entire application will be improved.

Normal form rewriting have been studied by many researchers. Choppy et al.

gave quantitative evaluation of normal form rewriting for a term by an algebraic

analysis method[CKS87]. They defined the cost of terms and studied rewriting

systems satisfying a special condition. Kapur et al. [KN87][BKN87] proved NP-
hardness for many AC-matching problems, which are basic in application of TRS.

Klop [Klop87] discussed strategies for regular TRS which guarantee that a term can

be rewritten to its normal form. He said "for general TRSs there does not seem to

be any result about the existence of 'good' reduction strategies".

In this report, we will answer why we may not find good strategies for general

TRS by showing that the optimal normal form rewriting problem is iVP-complete.

The optimal normal form rewriting problem is formalized in this way: Given a

canonical TRS, a term, and a derivation which rewrites the term to its normal

form, we ask if there is a derivation which rewrites the term to its normal form and

which has shorter length. With this result, the strategies which can find optimal

derivations for term's normal form rewriting will not exist unless P = NP. The

reason is that if a strategy can find optimal derivation during normal form rewriting

for a term, it can answer the question that given a derivation for a term, if there

exists a derivation with shorter length for that term.

If we allow some functions have commutative and associative properties in a

TRS, we call the TRS an AC-TRS. In many applications of TRSs, the functions

have commutative and associative properties, such as "+" (addition) and "—
" (sub-

traction) in arithmetics, "A" (and) and "V" (or) in logic. We prove that the optimal

normal form rewriting problem for AC-TRS is A''P-complete.

With these results, we unlikely find any very efficient strategies for TRSs and

AC-TRSs. But this does not mean we could not do any thing in efficient normal

form rewriting. We may find 'good' strategies for subclasses of TRSs. In another

report, we propose several efficient strategies for subclasses of TRSs which can

obtain optimal or approximate derivations during normal form rewriting for terms.

2 Preliminaries

Each function symbol / has a fixed arity which is the number of arguments of /.

The functions with zero arity are called constants, denoted by a,6, c, Variables

are denoted by x,y,z, ... or a, /9, 7, Function symbols and variables are disjoint.

A term is a constant or a variable or f{ti,t2.,...,tn} where / is a function symbol,

the arity of / is n, and ti, <2i ---i ^n are terms. Terms are denoted by i, 5, t , 5 , ii,

Variable-free terms are called ground terms. A term rewriting system is a set of

rules and each rule is of form t —^ s where t and 3 are terms. As a convention,

if a variable occurs at the right side of a rule, it must be occur at the left side of

the rule. Generally, a term rewriting system is denoted by R and is abbreviated by

TRS.

A position within a term is a sequence of positive integers, describing the path

from the root function symbol to the head of the subterm at that position. For

example, 2.2 is the position of y in term g{a, f{x,y),2). By t/p, we denote the

subterm of t at position p. If the subterm t/p of term t is replaced by term 5, we

denote the new term by t[s]p. A substitution is a mapping from variables to terms.

If (7 is a substitution, a can be extended to a function from terms to terms in such

a way that /(ii, ..., tn)^ = fiho, ...,i„<7). Term t matching with term 3 means there

is a substitution a such that ta = s. t unifiable with 5 means there is a substitution

<7 such that ta = sa. Term t rewrites to term s, denoted by < —> 5, if there are

position p in t, a substitution a, and a rule / —> r such that t/p = la and 3 = i[ro']p.

t —y s means t rewrites to 5 by a number of steps. We say t root-rewrites to 6 if

the left side of the rule / —> r being applied to t matches with t itself other than

a proper subterm of t. Given a TRS R, if term t —y t and t cannot be rewritten

further by rules in R, we say t is irreducible and t is a normal form of t.

A TRS is terminating if for any term t there is no infinite chain t —^ ti —^ t2 —* • • •.

A TRS is confluent, if we have t -^ Si and t A ^2, then there exists a term u such

that Si —y u and 52 —* u. It is easy to show that for any terminating and confluent

TRS, a term has a unique normal form.

We say function / is associative if / satisfies f{ti, f(t2,t3)) = f{f{ti,t2),t3) for

any terms ^1,^25 ^3? and function / is commutative if / satisfies f{ti,t2) = fit2,ti)

for any terms ti and <2- If / is both associative and commutative, we say / is AC
or / has AC properties. In this report, we address only terminating and confluent

TRSs, so we assume any TRS to be discussed is both terminating and confluent.

A sequence of rewritings which reduce a term to its normal form is called a

derivation (for that term). \D\ is the length of D that is the number of rewritings

inD.

3 A^P-Completeness of Term Rewriting

Optimal Normal Form Rewriting Problem
INSTANCE: A terminating and confluent term rewriting system R, a term t, and

a derivation D rewriting t to its normal form.

QUESTION: Is there any derivation D' such that D' rewrites t to its normal form

and \D'\ < \D\?

The size of the input in the optimal normal form rewriting problem is the number
of symbols in the TRS, the term, and the derivation. Suppose we simultaneously

try all derivations with lengths < |D| to check if there exists the D' required in the

problem. Since D is considered as one of inputs, each check is done in polynomial

of the input size, so the normal form rewriting problem is in NP.

3-SAT Problem
INSTANCE: Collection C = {ci,C2, ...,c,„} of classes on a finite set of variables

{xi,X2., ...,Xn} such that |c,| = 3 for 1 < i < m.

QUESTION: Is there a truth assignment for the variables that satisfies all the

clauses in C?

3-SAT Problem is NP-complete, refer [GJ79]. In the following we construct

a polynomial transformation from 3-SAT to the optimal normal form rewriting

problem.

Given:

V = {xi,a:2, ...,x„}

C = {ci,C2,...,Cm}, c, = {yi,,y,2,y,3}, y,^ = Xk or Xk

Construct:

Variables: a, Cti, a2, CI3, /?, /3i, /?2, •••, /?m+2

Function symbols: / of arity m + 2 and g of arity 3

Constants:

Initial term <,„{:

Positive integer:

Derivation D:

Rules:

aj,a'^,...,al

f{0

m
m
m
m
m
m
m

f{0

.0,.,aJgia^a2br)0:...0,nE) -> f{0,...0,.,TaT0^...0^E)

.f3,.2aJgia,a2a3)/3,...0mE) -. f{l3,...0,.2g{oc^a2az)aj0,...0mE)

0r .2afg{hro.xa2W,...0mE) -^ f{0,

.2afg{br'a,a2)0,...0mE) -> f{0,

.2a[g{a,bra2)0,...0n.E) ^ /(^,

.2af'g{a,br'a2)/3,.../3„,E) ^ /(/?i

.2ar5(a,a26r)^.-/5m^) - /(/3i

.2af^(aia26r)^,.../?^f;) ^ /(A

.2a[g{a^a2a3)/3J.../3^E) ^ /(^i..

...0,^2Ta[0,...0mE)

...l3,.29{aiFa2)af0,...0mE)

...l3,.2Taf0,...0^E)

...0,.2g{a,a2F)af0,...0mE)

...0,.2Ta[0,...0mE)

..0,.29{aia2a3)a[0j...0mE)

.2a[T0,...0^E) ^ f{0,...0,.2Ta[0,...0^E)

Form r^:

For i from 1 to n — 1

f{0,02...0majE) -. f{al,0,02...0mE)

f{0x02...0majE) ^ f{a[^,0^02...0mE)

f{0r02...0mafE) ^ f(al,0,02...0mE)

f{0^02...0r.afE) ^ /(af+i^i^2.../3^f;)

Form r4:

f{0,02...0malE)

f{0,02...0ma^.E)

f{S'0,02...0mE)

fiS'0,02...0mE)

Form Ts:

fiS'TT...TE) -> iV

Form re:

f{0,02...0m+2) - N,

Form ry:

iVi -> N2, N2 -* iV3, ... , iVy_a ^ iVj, Nj

Intuition for the construction:

N

a, is the true value of variable x, and a; is the false value of variable a:,. 6^
P05

means positive literal x, is in a clause and 6"^^ means negative literal x, is in

a clause.

• At the beginning, arbitrarily set a truth value of variable Xi, say Oj .

• Pass the value from the left of the sequence of the clauses (expressed as argu-

ments of the term) to the right. For each clause, simulate the assignment of

values in the clause. T means the clause is true, while F means one of values

in the clause is false. If we pass value aj or af but there is no literal x^ or Xi

in the clause, just pass the clause.

• After all clauses have tried the truth value of x^, arbitrarily set the truth value

of x,+i . And repeat passing the value.

• After all truth values of Xi, ..., x„ have been tried, we get f{si...SmCL^E) or

f{si...SmanE) which will be rewritten to f{S' Si...SmE). If all 5,(1 < i < m) is

T, that means we get an assignment which satisfies all clauses, then we obtain

the normal form N immediately. Otherwise, the term will be rewritten to N
viaTVi, N2,...,Nj.

For example, (xiX2X3)(x2X3X4)(x4X5X6) is expressed by term:

f{S9ibrbrbr)9ibrbrbr)9ibrbrbr)E)

Suppose X2=true. We pass the value from left to right:

MgibrbrbDgibrbTbDgibrbrbDE) ^
fiTa-^gibrbTbDgibrbrbDE) -
/(TgiFbrbDahibrbrbDE) -
/{TgiFbrbDgibrbrbDa'^E)

Denote the constructed term rewriting system by Rconatruct-

Theorem 1. Let R be any term rewriting system which contains no rule x —^ t

where x is a variable and t is a term,. If any term can be root-rewritten only finite

number of times and each application of any rule does not increase the size of the

term being rewritten, R is terminating.

Proof. Induction on the size of terms. Let t be any term.

Basis. \t\ = 1. i must be a variable or a constant. Because no rule x —» • • • exists,

a single variable is irreducible. Rewriting on a single constant is a special case of

root-rewriting , so any constant can be rewritten only finite number of times.

Induction, t = f{si...Sp), \t\ = k{> 1).

Induction hypothesis: Any term of size less than k can be rewritten only finite

number of times.

Suppose there is an infinite reduction chain starting with t. The sizes of Si,...,Sp are

all less than k. By the induction hypothesis, they are rewritten only finite number

of times, so there must be a root-rewriting in the infinite reduction chain. Suppose

t is rewritten to t just before the first root-rewriting and the first root-rewriting is

i —^ t = f{ti...tp). Because any rewriting does not increase the size of the term

being rewritten, the sizes ofti, ...,tp are all less than k. Hence, they can be rewritten

only finite number of times. In the infinite reduction chain, we can find the second

root-rewriting. Along this way, infinite number of root-rewritings will be found. A
contradiction. ^

Lemma 1. Only finite number of rules can be applied to a term of form /(...) by

root-rewriting.

Proof. In this proof, a, denotes either aj or af. Suppose t = f{si...Sm+2)-

r-r cannot be applied to t by root-rewriting and application of r^ and rg by root-

rewriting will lead to TV, so all we need to do is to prove that if we use ri,r2,r3 and
r^ to root-rewrite t, they can be applied only finite times.

Two mappings hi : Term —> Integer and h^ : Term —* Integer are defined

below:

hi{ai) = 1 (1 < i <n)
h\{s) = s is /(...), g{---), variable, constant other than ai,...,an

/i2(5) =
^2(at) = i (1 < « < n)

h^ls') = n + l

^2(5) = 5 is /(...), ^(•••)i variable, constant other than 5, Ci, ...,a„,S

Here are three mappings defined on t = f{si, ..., 5^+2):

Hbinaryi^) = ^i(-si)/ii(-S2)"-^i(-Sm+2) This is a binary number

H,um{t) = (n + l)(m 4- 2) - (/l2(5l) + h2{S2) + ... + /l2(5m+2))

Hit) = 2^+2 X H,^m(t) + Hb,naryit)

Suppose s is any term and 5 is rewritten to s . It is easy to verify that hi(s) =
hi(s) and /i2(-s) = h^is), because only terms with root /(...) and A'', (1 < i < J) can

be rewritten, those terms are rewritten to terms with root /(...) and Ni (1 < i < J),

and function values of hi and /i2 for those terms are always zero. Therefore, if

rewriting occurs in the strict subterms of t = f{si...Sm+2) and 5,- is rewritten to 5,,

we have

H{f{si...s^+,)) = Hif{s'i...s'^^,))

That means, any rewriting of strict subterms of t does not change the H value of /.

But we will show that any root-rewriting of < by rj, r^, ra, or r4 will decrease the

H value.

Let t = f{si ...Sm+2) be rewritten to t = /(sj ...^^^.j) by rule r by root-rewriting.

Case 1. r is r2

H,umit) = H,um{t)

Hbinaryit) > HbinaTy{t)

Hence, Hit) > H{t')

Case 2. r is rj, ra or r4

H^»um(<) = -ffjtiml*) 4- 1

-2"'+2 < Hb,nary{t) - if6.nar„(<') < 2^+2

H{t) - H{t') = 2^+ 2 X 1 + (i7,_,^(0 _ Hb,nary{t') >
Hence, i?(<) > H{t').

Therefore, each application of ri, r2, ra, and r4 will decrease the function value

of H. But the value of H is non-negative. We conclude that the term t can only be

root-rewritten by ri, r2,r3 and r4 finite times.

Lemma 2. T/ie term rewriting system Rconatruct *•' iermmaftnp and confluent.

Proof.

Terminating. In Rconatruct-, there is no rule i —» • • •. Only constant iV^ (1 < i < J)

are reducible and they are all rewritten to normal form N. Any term of form

g{...) is not root-reducible. Any term of /(...) can be root-rewritten only finite

times by lemma 1. Hence, any term can be root-rewritten only finite times in

Rconttruct- Application of rules in Rconstruct does not increzise the size of the term

being rewritten. By theorem 1, Rconatruct is terminating.

Confluent. Induction on the sizes of terms.

Ba.sis. \t\ = 1. t must be a variable or constant, which is either irreducible or has

unique normal form A'^.

Induction. Suppose \t\ = k{> 1) and any term of size less than k has unique normal

form.

Case 1. t = f{s\...Sm+i)- Let t be rewritten to normal form t . If < is not N, it

must be of form /(...) because any term of form /(...) is rewritten to a term of form

/(...). t is reducible by rg. This is a contradiction, since t is in normal form. Thus,

t must be rewritten to A'^.

Case 2. t = g{siS2S3). t cannot be root-rewritten and by induction hypothesis, Si,

52 and $3 have unique normal forms, so t has unique normal form. |--|

Lemma 3. There is an assignment of values to {xi,X2, ...,a-„} which satisfies all

the clauses if and only if there is a derivation D' such that D' rewrites the initial

term <,„, to normal form N and \D'\ < \D\.

Proof.

Only if. There is a desirable variable assignment. Note that \D\ = J + 1. Suppose

the assignment is Xj —> a,(l < i < n) where a; denotes either a[or a[. Construct

9

D' as follows: By rule rj, ii„,- is rewritten to f{a\g{bbb)...g{bhh)E). Then a\ passes

from the left to the right and simulates the values of the m clauses. By rule r^, we

get f{a2g{bbb)...g(bbb)E). Repeat the passing process. At last we get f{S'TT...TE)

which will be rewritten to A^. The total number of steps is 1 + n{m + 1) + 1 =
n{Tn + 1) + 2 = J. Hence, \D'\ < \D\.

If. Note that in order to rewrite to A'^ in < |I?|(= J + I) steps, rule re cannot be

used; otherwise, at least J + 1 steps are needed. First the initial term tin, must go

through rule rj and then goes through r2 and r^. By rj and r^, an assignment is

selected, while by r2, the values are passed to all clauses. To rewrite to TV in < J +

1

steps, the rewriting process must go through r^. The left side is f{S'TT...TE), that

means all clauses are satisfied. ^

Theorem 2. The Optimal Normal Form, Rewriting Problem is NP-complete.

Proof. We have already known that the optimal normal form rewriting problem

is in NP. By lemma 2, we have constructed a terminating and confluent term

rewriting system from an instance of 3-SAT Problem. The theorem immediately

follows lemma 3. ^

4 Complexity of AC-Term Rewriting

AC Optimal Nornial Form Rewriting Problem
INSTANCE: A terminating and confluent term rewriting system R in which some

functions are AC, a term i, and a derivation D rewriting t to its normal form.

QUESTION: Is there any derivation D' such that D' rewrites t to its normal form

and \D'\ < \D\?

As in the last section, if we simultaneously try all derivations with lengths < |i>|

to check if there exists the D' required in the problem, it is easily seen that this

problem is in NP.

Ensemble Computation Problem (from [GJ79])

INSTANCE: A collection C of subsets of a finite set A and a positive integer J.

QUESTION: Is there a sequence

< 21 = Xl U yi,22 = 12 Ul/2,---,2j = Xj U J/j >

oi j < J union operations, where each i, and y, is either {a} for some a E A or Zk

for some k < i, such that x, and y, are disjoint for 1 < i < j and such that for every

subset c E C there is some Zi, I < i < j, that is identical to c?

We can always find the desirable sequence in polynomial steps in the problem

10

above, so we assume J is polynomial of the input size. By the proof on P.67 of

Garey and Johnson's book, the subset can be restricted to exact three elements,

that means, the following subproblem of Ensemble Computation Problem is also

NP-complete.

3-Element Ensemble Computation Problem
INSTANCE: A collection C of three element subsets of a finite set A and a positive

J.

QUESTION: the same as QUESTION of Ensemble Computation Problem.

Reduce 3-Element Ensemble Computation Problem to AC Optimal Normal

Form Problem by polynomial transformation.

Note that if function / is associative, we can "flatten" the arguments of /. For

example, /(/(a, 6), /(c, rf)) = f{a,f{b,f{c,d))), the latter denoted by f{a,b,c,d).

Thus, we consider that the arities of associative functions are not fixed.

Given

A= {ei,e2,...,e„}

C = {ci,C2,...,c^}, Ci = {e,-,i,e.-,2,e.-,3}, e,-,j E A {1 < i < m, 1 < j < 3)

J>0

Construct

AC function symbols: / and g

Constants: ei, 62, ..., €„, N, iVi, iVj, ..., Nk (K defined below)

Variable: a, a-i^a^, ..., a^, 0, l3i , ^2, ••, ^m
Initial term <<„.-: t = /(g(ei,iei,2ei,3)5(e2,ie2,2e2,3)---5(em,ieTn,2em,3))

Positive integer: K = J — m + 1

Derivation!): <.„.
"^' iVj "^' ••• "^' Nk ^^' N

Rules:

T2 /(g(e.e,ai)^(eie,«2)/?i.../3m-2) ^ /(iViV/3i...^„_2) (1 < ^ < ; < n)

r„_i /(ff(e,e,ai)...5(e,e,a„,_i);9) - /(iViV...iV/?) (1 < i < ; < n)

r„ /(p(e.e,aj)...g(e.-e,a^)) ^ f{NN...N) (l < i < j < n)

r^+i f{NN...N)-^N

rm+2 /(^l/52) ^ iVl

rm+3 N, -^ iV2,iV2 ^ N3,...,Nk ^ iV

Explanation: (1) The construction of rules forces the function g to be associa-

11

tive and commutative, since without the properties f{g{e3e2ei)g{e4e2ei)) cannot be

rewritten. (2) Because / is cissociative, any term of form fisi...Sp) (p > 2) can be

rewritten to A'^i by rm+2-

If a subset c, = {e^, , e,j, e.j), then c, can be computed by two operations: z^^ =
{e,j}U{e,j} and z^^ = Zj^\j{e,^]. Therefore, J < 2m. There are polynomial number
of rules. Obviously, each rule has polynomial number of symbols, so the reduction is

a polynomial transformation. Define the size of a term to be the number of function

symbols, variables and constants used in the term. The size of term t is denoted by

Lemma 4. The term rewriting system constructed is terminating and confluent (in

terms of A C).

Proof.

Terminating. Application of ri, ...,r„i,rm+i, and rm+2 decreases the size of the term

being rewritten, so these rules can be used only finite times, r^+a reduces any

Ni (1 < i < K) to N and N is irreducible, so r^+a can be used only finite times.

Therefore, for any term, only finite rules can be used. That means, the system is

terminating.

Confluent. Induction on the size of terms.

Basis. Terms of size 1 are variables or constants, which are either irreducible or

written to normal form TV by rm+3- Hence, any term of size 1 has unique normal

form.

Induction. Let the size of i be k{> 1) and suppose any term of size less than k has

unique normal form.

Case 1. t = g(si...Sp). Because t cannot be root-written, the normal form of t is

5r(sj...5p), where s- (1 < t < p) is a normal form of s,. The sizes of si,...,Sp are

less than k. By induction hypothesis, the normal form of Si (1 < i < p) is unique.

Hence, t has unique normal form.

Case 2. i = f{si...Sp). Let t be rewritten to normal form t' . If t' is not N, it must
be a term of form /(...) because any term of form /(...) is rewritten to a term of

form /(...). t is reducible by rm+2- This is a contradiction, since t' is in normal
form. Thus, t must be rewritten to A''. ^
Lemma 5. There is a required sequence of length j ^ J

< 2i = xi U yi,Z2 = X2 Uy2,...,Zj = Xj U y_, >

if and only if there is a derivation D' such that D' rewrites the initial term t,„, to

normal form N and \D'\ < \D\.

Proof.

12

Only if. Given < zi = xi U yi, 22 = X2 U y2, •••, 2j = Xj U yj >. It is always possible

to construct a sequence

< ui = {e„,i} U {e„,2},...,Up= {eip,i} U {€^^,2},

where ei,,i, e,,,2(l < I < P + m) are one of constants ei,...,e„, Ufc,(l < / < m) is

one of Ui,...,Up and p + m < j, such that the sequence is a subsequence of the

given sequence and satisfies the requirement of 3-Element Ensemble Computation

Problem. The reason p+m may be less than j is that there may be some redundant

operations. For example, z.j = Zi^Uzi^ is a redundant operation, because any subset

contains only three elements. We construct D' as follows: If u; (1 < / < p) is

contained in w number of subsets Up+^,^,...,Up+y^, rule r^, can be used to simulate

this operation and sets w arguments of / to N. Because the subset c, corresponds

to argument g{...) of / one by one, eventually all arguments of / will be set to N.

Tm+i rewrites f{NN...N) to N. So, by < p applications of rules of form ri,...,rm,

we get f{NN...N) and by rule r^+i, we get the normal form N. The number of

rewriting steps in £>' is < p + 1 < j - m + 1 <J-m + l = K, but \D\ = K + I.

If. The initial term Uni is rewritten to iV in A; < \D\{= K + I) steps. Only rules

of form Ti, ...,rTO,rm+i can be used, since r^+a does not match with the term and

application of rm+2 needs more than K steps to rewrite the term to N. Any appli-

cation of rules of form ri, ..., r^ can be simulated by an operation 2, = {cp} U {e,}.

After k steps, tj„, is rewritten to N. The last rule apphed must be f{NN...N) —+ N,

that means after fc — 1 steps t is rewritten to f{NN...N) and two of three elements

of each subset have been unioned. Add m operations 2pj = {cpj} U 2p3, we obtain

the required sequence of length k — l +m<K — l+m = {J — m + 1) — l + m = J.

D
Theorem 3. The AC Optimal Normal Form Rewriting Problem is NP-complete.

Proof. We have already known that the AC optimal normal form rewriting prob-

lem is in NP. By lemma 4, a terminating and confluent term rewriting system

with AC functions hcis been constructed from an instance of 3-Element Ensemble

Computation Problem. The theorem immediately follows lemma 5. p

Acknowledgements

This research was done under the supervision of Prof. Zvi Kedem and Dr. Krishna

Palem. Many thanks to their inspiration, reading, correcting, and guidance. With-

out them this work could not be done. I am also grateful to Prof. D. Kapur, who

read the early version of this report and gave very helpful comments.

13

References

[BKN87] D.Benanav, D.Kapur and P. Narendran, "Complexity of matching

problems", J. Symbolic Computation 3 (1987), 203-216.

[CKS87] C.Choppy, S.Kaplan, M.Soria, "Algorithmic complexity of term rewrit-

ing systems", 2nd Int. Conf. on Rewriting Techniques and Applica-

tions, 256-270, 1987.

[Der82] N. Dershowitz, "Orderings for term-rewriting systems". Theoretical

Computer Science 17 (1982), 279-301.

[Der87] N. Dershowitz, "Termination of rewriting", J. Symbolic Computa-

tion(1987) 3, 69-116.

[DJ88] N. Dershowitz and J. -P. Jounnaud, "Rewriting systems". Draft, 1988.

[GJ79] M.R. Garey and D.S. Johnson, "Computers and intractability: A guide

to the theory of NP-completeness", W.H. Freeman and Company, New
York, 1979.

[HO80] G. Huet and D.C. Oppen, "Equations and rewrite rules: A survey",

in Formal Languages: Perspective and Open Problems, R. Book(ed.),

Academic Press, 1980.

[HuetSO] G. Huet, "Confluent reductions: abstract properties and applications

to term rewriting systems", JACM 27, 4 (1980), 797-821.

[KB70] D.E. Knuth and P.B. Bendix, "Simple word problems in universal alge-

bras", in: (J. Leech, ed.) Computational Problems in Abstract Algebra,

Pergamon Press, 1970, 263-297.

[KN87] D.Kapur and P.Narendran, "Matching, unification and complexity",

SIGSAM Bull. 21, 4(Nov. 1988), 6-9.

[KNS85] D. Kapur, P. Narendran, and G. Sivakumar, "A path ordering for

proving termination of term rewriting systems", CAAP'85, LNCS 185.

[Klop87] J.W. Klop, "Term rewriting systems: A tutorial", Bulletin of the Eu-

ropean Asso. for Theoretical Comp. Sci. 32, 1987.

14

NYU COMPSCI TR-47 4

Li . Ke

O
to O
S '.:

IP ...

This book may be kept

FOURTEEN DAYS
A fine wfll be charged for each day the book is kept overtime.

