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THE COMPRESSION AND TRANSMISSION OF

ILLUMINATING GAS.

The subject of illuminating gas compression is almost

a new one, and the nature of the gas is so entirely

different from that of air that we are obliged to con-

sider the question mainly from the theoretical stand-

point, backed up by a few indicator cards, which have

been furnished us by gas compressors. But you may
be assured that all of the data given herewith is emi-

nently practical, because there has been eliminated all

of the small variables that are important from a chem-

ical standpoint, but which the advancing piston of a

compressor cylinder takes little heed of.

We are riot concerned about the candle power or the

commercial utility of a gas, but simply with its weight
and composition, and what may happen to it after it

leaves the compressor cylinder is not the province of

this paper.

All gases are sponge-like in that they hold various

vapors from water vapor to carbon vapors, which they
lose to a more or less extent when the sponge is

squeezed as in the act of compressing in a cylinder,

and what is squeezed out and how much of it is not

essential to our discussion, and lies better in the realm

of the technical gas engineer.

We have assumed, however, that inasmuch as when
we compress a gas the temperature rises in a fixed

ratio to the pressures, that there is no direct tendency
for a gas to change its physical condition in the com-

pressing cylinder, for an added temperature gives an

added capacity for saturation, and this probably in-

creases in about the same ratio as the volume dimin-

ishes during compression. So that for commercial pur-

poses we can not be far wrong in assuming the physical
condition of the gases as constant during the range of

pressures that will be ordinarily met.

All phenomena of compression and expansion of
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THE COMPRESSION AND TRANSMISSION OF GAS

gases is intimately associated with temperature; in

fact, the power to compress any gas adiabatically in foot-

pounds is simply the difference in temperature between

the gas before and after compression, multiplied by its

weight in pounds, by its specific heat, and then by Joules
'

equivalent to convert heat units to foot-pounds. Ex-

pressed algebraically, this equation is:

L = J W C
p (T T ) where

J is Joules' equivalent = 772.

W the weight in pounds avoirdupois to be com-

pressed.

(7p is the specific heat of the gas at constant pressure.
T is the initial absolute temperature.
T is the final absolute temperature.
L is the work expressed in foot-pounds.
This is the general equation for the compression of

any gas adiabatically.

In glancing at this equation, the first stumbling
block we strike is CP ,

the specific heat of the gas at con-

stant pressure, and this must be first determined.

After that we must discover some means of finding T,
the final temperature.

To anticipate a little, it may be stated here that

these temperatures are all functions of the ratio of the

specific heats of gas at constant pressure, and at con-

stant volume.

It is then our first duty to understand about these

two specific heats and to know how to determine them
for any gas, and the rest is simple.

r- The specific heat of any substance is the amount of

heat one pound of that substance will absorb to raise

its temperature 1 Fah., the specific heat of water

being 1.

When a gas is heated two different results may be

obtained, depending upon whether the gas is allowed

to expand and increase its volume when heated, the

pressure remaining constant, or whether the air is con-

fined, the volume remaining constant, and the pressure

increased. The amount of heat to raise the tempera-
ture of a gas 1 under these two conditions is different.
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THE COMPRESSION AND TRANSMISSION OF GAS

therefore the specific heat is different. The former is

called Specific heat at constant pressure, and the lat-

ter Specific heat at constant volume.

Referring to Table 1, Figure 3, if we have a cylinder

A, containing one pound of gas at atmospheric pres-

sure, and a piston P, without weight, but having an

area of one square foot, and heat the gas until the tem-

perature has risen 1 Fah., the gas will have expanded

by the small amount d as in Figure 4, and raised the

piston. This expansion is 1/460 of the original volume,
at Fah.

It is evident that inasmuch as the piston has raised

and displaced the atmosphere, that work has been

done, which must have absorbed heat in addition to

that necessary to raise the temperature of the air 1.
If the piston was fastened, as in Figure 3, the gas

would have required just that less heat to raise it 1

as was required to lift the piston through the distance

<fc1/460 of its volume. The amount of heat required

in the first instance is called specific heat at constant

pressure, and the latter at constant volume.

Specific heat of most of the gases at constant pres-

sure has been determined by Regnault and others ex-

perimentally, and the symbol is Cp.

The amount of work done in lifting the piston

through the distance d is measured the same as the

work done by any piston by multiplying the pressure

on the piston by the distance passed through. The

area multiplied by the distance is the volume, which

may be expressed by V. The distance d is 1/460 at

Fah.^ or may be expressed by -
.

Let P be the pressure, and R the foot-pounds of

work done, then

j/ p=R and this is called the Simple Gas Equa-

tion, and about it hangs many important deductions.

R is a constant for any gas, because inasmuch as

gas expands uniformly for each 1 of heat, any volume

as V l multiplied by its corresponding P t and divided
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8 THE COMPRESSION AND TRANSMISSION OF GAS

by its corresponding temperature T l will equal R, or

to put it algebraically,

V.P yP V" P"

R being always in foot-pounds, if we divide it by
Joules' equivalent 772, which is, as you know, the

amount of foot-pounds equal to 1 heat unit, and which
is always denoted by J, we shall have the amount of

heat units that were converted into work to raise the

piston, and this amount of heat, we know, must be the

difference between the specific heat at the constant

pressure and the specific heat at constant volume, or,

R_r r
Cp Cv

4

from which we have

r-r R
Cv Cp--

J

an equation from which the specific heat at constant

volume may be determined for any gas within the

limits of its stability, and certainly within the commer-
cial pressures you are likely to encounter.

For a perfect gas, these specific heats are practically

constant; that is, they are not affected by pressure or

temperature, but so far hydrogen and air appear to be

nearer than any other gases. CO and C0 2 ,
which are

inferior components of illuminating gas, as it is now
made, show the greatest deviation, but not enough to

render their vagaries of moment in the consideration of

the power question, consequently all the following data

have been calculated on the basis of the simple gas law.

PV
~ R Constant.

As an example showing how to calculate the specific

heat at constant volume, let us take C2 H 4 . This gas
have been calculated on the basis of the simple gas law.

values ascribed to Regnault in the references we have

at hand.

Upon apptying the simple gas equation to the Reg-
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10 THE COMPRESSION AND TRANSMISSION OF GAS

nault value there was a large discrepancy, and it will

be interesting no doubt to make the calculations here,

and thus make them serve the double purpose of show-

ing how to determine the specific heat at constant

volume and to point out the error.

Regnault gives the Cp of C H4 to be .404, and C v to

be .173. The weight per cubic foot to be .0780922, or

12.8 cubic feet in one pound at 32 Fah.

If, now, one pound, or 12.8 cubic feet, be heated to

1 Fah. and allowed to expand, the simple gas equation

P
-^= R will give at 32

14.7 X 144 X 12.8 = R = 55.
492

Fifty-five foot-pounds of work has been performed

by the gas in expanding against the atmosphere; to

convert this into heat units we divide by Joules' equiv-

alent, 772.

=.07124 units of heat.
772

Inasmuch as

D & = 07124

we have Cv =.404 .07124=.3327, instead of .173 as

determined by Regnault. The ratio between the two

specific heats forms the basis for all the calculations for

the relations between pressure, volume, and tempera-

ture in compressing gas, and that is why we must be

particular about these specific heat factors.

= y (gamma), which we shall discuss further
C\

on, and which is brought in now simply as additional

proof about the figures which we have just obtained for

For C2 HV using Regnault 's values, we have

404

.173

for our values

= =
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12 THE COMPRESSION AND TRANSMISSION OF GAS

In reading a new book by Travers on the study of

gases (page 275), he gives some very interesting calcu-

lations to show the limiting values of ^ or
-y,

C\

His conclusions are that for a monoatomic gas within

PV
the limits of the simple gas equation -=R, the val-

ues of --- can never exceed 1.667, and the value for a
C\-

diatomic gas should range about 1.4 and the polyatomic

gases still less, until we reach the value of 1, where, of

course, there should be no expansion work at all when
heat was applied.

We can see, therefore, that the value of 2.33 from
C\

Regnault's values is an impossibility, the maximum

possible value being only 1.667, and C2 H being the

polyatomic gas, its value would be less than 1.4, all of

which indicates that our figures =1.214 are approxi-
cV

mately correct.

It will now be necessary to apply our understanding
of these principles and try and determine the values of

the specific heats for illuminating gas. There seems to

be plenty of data about the specific heat at constant

pressure for gas mixtures, but nothing about the spe-

cific heat at constant volume.

Reference is now made to the Tables 2, 3, 4, 5, 6, 7,

and 8, which show the composition and heat properties

of seven different g'ases and the methods employed in

determining the weights, specific gravities, and specific

heats.

Column 1 is the chemical symbol for the different

components.
Column 2 is the percentage by volume of the differ-

ent' components.
Column 3 gives reliable weights per cubic foot.



THE COMPRESSION AND TRANSMISSION OF GAS 13

!

*

l

II

lH

1 1 1 i i
N

*

\/*/?c:AfT
XWCIGHJ-

^
ir,

5 I
SI 5

t'
P

* 9 U

1 iV

GHT

PEff

Ct

f
3f/lH

60
\0

? s
^ <d ^

M



14 THE COMPRESSION AND TRANSMISSION OF GAS

n
it

*h

* ;

i ?
V> i (

'0

Ss

Of
re

A

1 I

*
k



THE COMPRESSION AND TRANSMISSION OF GAS 15



16 THE COMPRESSION AND TRANSMISSION OF GAS

1

S> <5

S 8 3 U
I 1

It!

e/z/o/sses

$ * ? *
> < ^ 5 ^

s ^ ^ s ^
* 8.1'H
5

OD



THE COMPRESSION AND TRANSMISSION OF GAS 17

t

.

rt/tTUf?/IL.

CAS

SUAI

CAL

DECZ



18 THE COMPRESSION AND TRANSMISSION OF GAS

Column 4 gives the specific heat of each component
gas as determined by Regnault and others.

Column 5 gives the product of the different percent-

ages of the component gases and their weights per
cubic foot, or Column 2 multiplied by Column 3. The
total sum divided by 100 gives the weight of the gas

per cubic foot.

Column 6 gives the product of Column 4 and Column
5 for specific heat, being a weight function. We must,
in order to get the specific heat of the compound gas,

take into consideration not only the percentages of the

component parts, but the weights as well, and also the

specific heat of each component. The sum of the

products in column divided by 100, and then by the

weight of one cubic foot of the compound gas, will give

the specific heat at constant pressure Cp .

Column 7 gives the calculations to find the specific

C
heat at constant volume and also R and-^ or y for each

v

gas, and also various factors of y which we will find

useful later.

Table 9 concentrates Tables 2 to 8, so that we may
study them easier.

You will note that our results cover quite a field,

taking in California fuel oil gas, Massachusetts coal

gas, Indiana natural gas, California natural gas, anJ

California carburetted water gas, and after carefully

studying their heat and power properties, as shown in

Table 9, we have selected the fuel oil gas made in Oak-

land as having the best average properties for the pur-

poses we have in view, and particularly as fuel oil gas

is the one you will probably have most to deal with.

We may therefore consider our subject as having for

a basis a gas with the following properties at 32 Fah. :

Weight per cubic foot, .0323577.

Cubic foot in one pound avoirdupois, 30.98.

Specific gravity, .4008.

Cp =.6884.

Cv =.5159.
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#=133.2.

=8467 I :

A cubic foot of gas varies in weight according to

the altitude or pressure, and also according to the tem-

peratures. The law of this variation is expressed as

follows :

Having given the weight of a gas for any tempera-

ture, or any pressure, then the weight at any other

temperature or pressure will be as the ratio of absolute

temperature or pressure, or

W'=W
-^.

or W^ where

W=known weight.

T and P the known temperature or pressure and

W the desired weight.

For example : Our standard gas weights at sea

level, or 14.7 pounds absolute pressure, and 32 Fah.,

.03235 pounds per cubic foot
;
at 20 pounds gauge, or

34.17 pounds absolute, a cubic foot would weigh .03235

X ^^ =.03235 X 2.36=.076346 pounds, and at 60

Fah., instead of 32 Fah., this cubic foot would weigh

520
.076346 X =.0819 pounds, 460 being the absolute

temperature of O and 520 the absolute temperature
of 60 Fah.=460 +60=520.

Altitudes are nothing more or less than pressures
less than sea level, and are treated just the same as

pressures above the normal atmospheric.
Thus at 5225 feet the absolute pressure is 12.044, con-

12 044
sequently gas at this altitude would weigh

'

times the weight at sea level.
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For your convenience it may be well to add here that

when the barometric pressure is known, the atmos-

pheric pressure is found by multiplying the barometric

pressure by .4908, or P = B X -4908.

For example. When the barometer is 29.92 the

atmospheric pressure is 29.92 X .4908, or 14.7, the nor-

mal sea-level pressure.

To find the atmospheric pressure when the altitude

in feet is given, we have

, 70 57000 NN*p
100,000,000

m whlch

N = altitude in feet.

For example. To find the atmospheric pressure at

10,000 feet we have

P _1A 79 57,000X10,000 (1Q,OQO)
2

100,000,000

P = 14.72 -- 4.7 = 10.02, the atmospheric pres-

sure required.

The foregoing rules will be all that is necessary to

calculate all variations of weights due to pressure,

altitude, or temperature, and relative volumes follow

exactly the same laws as relative weights.

For convenience in many calculations Table 10 is

p
given herewith, showing the pressure ratios, or - for

every pound from 1 to 110, and the volumes ratios will

be inversely as the pressure ratios and consequently
the reciprocal of the figures on the table.

This might be called a table showing also the rates of

isothermal compression or expansion or Marriotte 's

law. the general formula for which is :

P V - P V - Constant, or in other words, the

product of any pressure by its volume is always equal

to the product of any other pressure by its volume, and

this rule will be found useful in determining the con-

tents of receivers, etc. It must always be remembered

that in using these rules all temperatures must be

alike, or corrections made according to the rules just

given.
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TABLE jo

Gauge Gauge
fio

Giagc

/066O27 38 3S3SO2.6 75

//36054- 3 (55305'3 76

3-7Z/OGO 77 GJS3G073

3-7&9407 78

3 3*7S 34- 79 6 374/33

ao
/4-76/Q9 3 333/SG a/ 6-5/0/37

+S 32

46 83

JO

/ i

/2

34

7+323f 3S
4- 3333SS 63S03JZ2

37
33 6 336376

4 f37404 39

2O3Q+32 S3 <# 60&+3/ 30 7/22430

2/S6+S9 7/3O4 4T7

4- 74J4SJ-

93

360&+0 57 7 334&3S

<SO 97 7-S936/S

24

25

6

G/ &-/43G4 7 93
2 7O0673 33 7-734-073

2 7686O2 <53 7SOZ 70O

2336729 6* /O' 737O 7X7

23

23

30

GS

&9727G3 Gff

3 O-4OS/0 67 S3S7&09 S 074330

63

32 3176364- 69

33

34

3S

7O

3 3J23/G

72 4/4-943

36 3448372 73 3 4323 7O

7-f 6 O33&9&
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ISOTHERMAL COMPRESSION.

There are two methods of compressing any gas.

First. Where the temperature remains unchanged

during compression. This is called isothermal com-

pression and is the ideal method never realized in

practice.

Second. Adiabatic compression, which is the kind

we meet in practice where the heat developed by com-

pression expands the air being compressed until it fol-

lows a different law from Marriotte.

While isothermal compression is not practical, it is

necessary to know about it and how to make the calcu-

lations concerning it.

We have found that the volume ratios are inversely

as the absolute pressure ratios in isothermal compres-
sion. Consequently if the pressure ratios are 1, 2, 3,

and 4, the corresponding volumes will be 1, %, %, 14.

To show this graphically, refer to Table 1, Figure 1.

Let A B be the line of pressure or the perfect-

vacuum line. C D the intake line and we erect pres-

sures ordinates GH = 2XDBatsL point H equal to

!/2 ,
A B and 7J = 3X##ata point / = % A B and

E K 4 X # # at a point K 1/4 of A B counting all

volumes from F B or the end of the piston stroke.

If we join the points C G I E in a curved line, it will

be the isothermal or logarithmic curve and it will be

noted that the area

EFBK = 4:XV4:

= ^

I L B J = 3 X % = 1.

0JfJBJI = 2X% = l

C D B A 1 X 1 or 1

As found before, P Y = P' V = Constant, and the

figure represents the ideal indicator card for isother-

mal compression for four compressions, counting from

0, and the above method will always be proper to lay-

out an isothermal curve, no matter what the intake

pressure may be.

To find the work of compression and delivery iso-

thermally
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P
P V hyp. log. in foot-pounds in which

P = Initial pressure absolute.

y = Initial volume.

P Final pressure.

L = Work required.

In all our calculations V will be taken as one cubic

foot.

For example: How many foot-pounds of work are

required to compress 1 cubic foot of gas at sea level to

eighty pounds gauge pressure?

For sea level P per square foot = 14.7 X 144

2116.8 pounds. Then

/, =2116.8 hyp. log.
-~

o

Consulting Table 10, we find

p
po

for 80 pounds gauge=6.442 the hyperbolic loga-

rithm of which is 1.863.

Substituting, we have

L == 2116.8 X 1.863 = 3943 foot-pounds.

If a table of hyperbolic logarithms is not at hand, it

would be well to remember that hyp. log. = common

log. X 2.3026.

3945
The H P required for above work will be ==

.1195 H P.

To find the M E P of isothermal compression,

pM E P = P hyp. log.
- using the quantities in

the previous example we have M E P = 14.7 X 1.863

= 27.38 pounds. We know that HP = M
fJT

* -
ooUUU

and for one cubic foot V = 1 X 144. Consequently,

using the last example,

27.38 XIX 144
// P "QQnTvT" ~ .1195, the same result
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1 X 144
as before.

QQQQQ
= .00436. Consequently a short

and convenient formula would be for isothermal com-

pression H P = .00436 X M E P.

It will be noted that none of the physical properties

of gases enter into the above equations, consequently
we must conclude that it takes the same power to com-

press one cubic foot of any gas isothermally to the

same pressure, provided the ratios of pressures are the

same.

ADIABATIC COMPRESSION.

We have before stated that isothermal compression
is ideal, and not realized in practice. All of the work

expended in compressing a gas is converted into heat

instantly, and this increases both the temperature and

the volume of the gas during compression, so that, in-

stead of having a relation between pressure and vol-

ume (P V = P V = Constant), such as we found in

isothermal compression, we now have a relation P V y

P Vy = Constant, or in other words, the gamma

powers of each volume, multiplied by its corresponding

pressure, is Constant. This is the equation of the

Adiabatic curve, y is the same that we found to be

the ratio between the specific heat at constant pressure

and that at constant volume. This relation can per-

haps be fastened a little easier in the mind by remem-

bering that the equation of the isothermal curve rep-

resents the law of Marriotte and the equation of the

adiabatic curve represents the Exponential law of Mar-

riotte.

Inasmuch as the power to compress a gas is meas-

ured practically by the indicator diagram, and this

in turn is compared to the adiabatic curve which is

theoretical curve of compression, and inasmuch as we

depend upon the value of y to construct this curve, it

will be at once seen why we were so particular to dis-

cover the relation~ = r. Now if Pn VJ = P Vy and
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V P V Pirom the simple gas equation __-_ _^
= E, by

combining these we have all the adiabatic relations be-

tween volume pressure and temperature as follows:

p_ /FV_ (L\ y
-
y
,

P \V )
~

\ToJ

y-i / P \ y^i

y

It will always be necessary to use the above formu-

las in making calculations for pressures, temperatures,

and volumes, or for power to compress any gas which

varies far enough from the standard we have selected

to make it necessary, but there is no doubt that for all

practical purposes, at least for the present, Table 11,

which is calculated for our standard gas, will give the

proper values for rapidly and easily calculating any

problems connected with compressing illuminating gas.

All reference to expansion is purposely omitted, be-

cause gas will probably never be used for expansion

work in an engine as air is used.

Assuming that all may not be familiar with just how
to arrive at the results as indicated in Table 11, let us

p
take a ratio of

Q
2 corresponding to 14.7 pounds

V
gauge pressure and discover what are the values of

-y-

T V / P \ i

and . We have I I -
'

y we have already de~
T F \ P / y

cided from our standard gas to be 1.334.

Therefore, y
=

]~^
= .749 ~

Q
= (^

'?

since

po
i/o or .5 we have
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y .749= .5 or

y
Log. ==log .5 x.749.

Log. .5 = 1.6989 X .749 = 1.77447 = log. giving

y yo
value of -=^

= .5949 and =- will be reciprocal of

~ or 1.681.

To find the ratio of temperature for this same rate

y-l

of compression, we have -^= I
y ~ - = .25.

r \poj y
Hence :

Log.-|ro
=.251og. ~

Log. ^ = .301 X -25 = .07525 = Log. ~
T

1892.OV6.

T = 520 X 1.1892 = 618 absolute or 158 Fah. if

T = 60 Fah. We have then

p yo yO 1 Q~\ F
-= ~ -^T J..DOJ. TV~

= 1.1892 T = 158

Air under the same conditions gives

P V V- = 2
{,=1.6349

~ = .

^ = 1.2226 T = 175 Fah.

These examples will serve to show how this Table 11

was calculated. A few examples will show its use.

Problem. To find the final temperature due to

adiabatic compression.
P T

Opposite and under the headline - will be

found the ratio of absolute temperatures.

Example. What is the final temperature due to 14.7

pounds gauge pressure at sea level and 60 Fah. ?
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P 29 4 T

p=^ = 2. Then . ='1.1892, or 520 X 1.1892 =
618 abs. or 158 Fah.

If the initial temperature has been 100 then 560 X
1.1892 = 666 abs. or 206 Fah.

It is readily noted from this that the higher the ini-

tial temperature, the higher the final temperature, and

it will also be noted that while there is a difference of

40 between the initial temperature, there is a differ-

ence of 48 between the final temperatures ;
a differ-

ence of 8.
Inasmuch as the temperature developed during com-

pression is at the expense of power, it is evident that it

takes more power to compress the same weight of gas
at 100 Fah. than at 60 Fah. to the same pressure, all

other conditions being similar.

It is an axiom, therefore, that the cost of power for

compressing gas will be the least when the initial tem-

perature is the lowest, and it will be shown, later on,

that cooling before compression will effect a consider-

able saving, if the gas to be compressed is drawn from

the holder exposed to the sun, provided, of course, that

cooling water may be had at a small expenditure of

power.
Problem. To find the volume immediately after

compression.

y
Consult Table 11, and under the heading - and

p
opposite the pressure ratio the proper value will

be found
;
and it must always be remembered that these

values of temperature and volumes assume no radia-

tion of heat whatever, for when the heat generated by

compression has radiated the temperatures and vol-

umes are as calculated isothermally.

V
Please note that ---- is measured from the end of the

stroke. The difference given in Table 11 will enable

p
greater or lesser values of to be conveniently deter-
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mined by simple rules of proportion.

From this table the adiabatic curve can be readily

drawn.

Refer to Table 1, Figure 2.

Let A B be the intake line and C D the line of pres-

sure, these lines representing the piston stroke. Divide

A B into a decimal scale; beginning at B erect F D at

the end of the stroke and divide it into equal values

of B D. B D may be the value at sea level or at an

altitude or it may be any intake pressure whatever;

these rules will always apply. These values of B D
may be subdivided into five parts, where special accu-

racy is required, and their values will also be found in

Table 11.

p
D H representing a ratio of = 2, the correspond-

ing value of yo
will be found in Table 11 to be .5948,

and laying off the value the point S will be found.

P V
Similarly at G representing = 3 we find y=

.4388, and laying this off we find that the point M.

P vAnd then F representing
- = 4 has a value for
P yo

of .3536, and we lay off this value and find point J.

Joining the point J M S A we develop the adiabatic

curve, and the shape of this curve will depend upon

C
the length of the card, the value of ~ or v. The

Cv

equation of the curve is P Vy = P' Vn or referring to

the diagram.
M X (M G) y = JLX (J F) y

Problem. To determine the power to compress a

gas adiabatically.

All that precedes this subject has been necessary to

its proper understanding, and while possibly the va-

rious symbols are well remembered, it will probably
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be better to group them together, so that they may be

readily referred to.

P is always the lesser absolute pressure, and conse-

quently the intake pressure in compression. We shall

take this as 14.7 at sea level, for the 4-inch water pres-

sure of the gas will not fill the cylinder at any greater

than atmospheric pressure. P is the final absolute

pressure.

T is the initial absolute pressure, and unless other-

wise specified is taken at 60 Fah. or 520 absolute,

that temperature being the probable temperature of

the gas mains.

T is the final absolute temperature.

y is the volume at P.
V is the volume at P.

p> y T' are intermediate pressures, temperatures,

and volumes.

L is the work expressed in foot-pounds.

H P is horsepower.
M E P is mean effective pressure, which is always

gauge pressure.

W is the weight of a unit volume or one cubic foot

of our standard gas at 60 Fah. and at sea level, with

an absolute pressure of 14.7 Ibs. per square inch, or

2116.8 pounds per square foot, and equals .03063

pounds avoirdupois.

J is Joules' equivalent taken at 772 foot-pounds.

(7P is the specific heat at constant pressure = .6884.

(7
V

is the specific heat at constant volume = .5159.

j/is
~= 1.334.

^-=4. ^i .25 i-.7S
j/-i y y

J CP = 772 X -6844 = 531.45 foot-pounds.

This value is Joules' equivalent for 1 Ib. of gas at

constant pressure.

/ W CP = 531.45 X .03063 = 16.28 foot-pounds =
Joules' equivalent for 1 cubic foot of gas.

J W CP T 16.28 X 520 = 8465 foot-pounds.
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JL x P T70 = 4 X 144 X 1 X 14.7 = 8465

foot-pounds = the intrinsic energy of 1 cubic foot of gas

at 60 Fah. and atmospheric pressure at sea level;

or to reduce those values of foot-pounds to horsepower,
we have

y-\ 33000

All of these foregoing quantities are constants to be

used in determining the power to compress gas, and as

we have said before, are all based on a quantity of 1

cubic foot of our standard gas at sea level and 60

Fah.

We mentioned at the beginning of this paper that

the power to compress any gas adiabatically might be

expressed by the general formula

L = J W Cp
( T T) ,

or to put it in another form,

Sri)
L = J W C*l

You now at once recognize the prefix J W Cp T as

the one for which we have found a value of 8465 foot-

pounds. Therefore, for our standard gas we have

L 8465
|

l
J
which is a practical formula.

T
You also recognize that is all you need solve, and

these values are all given in Table 11 for the various

p
values of . We can now understand our first prob-

lem.

How many foot-pounds are necessary to compress 1

cubic foot of our standard gas to 14.7 pounds gauge

pressure ?

P 2Q4-

4r = ^ r^ = 2 - Consulting Table 11 we find
P 14. /

j^
1 .1892 and 8465 X -1892 = 1601.57 foot-

pounds, and the same method may be applied for all

pressures.
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If we use the value of J W Cp T in horsepower, we

have HP .2564
|

1
)

a perfectly practical for-

mula for 1 cubic foot of our standard gas at 60 Fah.

and at sea level.

Our previous example would then be rendered:

L = .2564 X .1892 = .0485 horsepower for 1 cubic

foot compressed to 14.7 Ibs. gauge. At 80 Ibs. gauge

pressure.

j-
6.442 and yo

= 1.593.

II P = .2564 X -593 = .1520 horsepower per cubic

foot, or 15.20 H P per 100.

MEAN EFFECTIVE PRESSURES.

It will be found that inasmuch as we learn from an

indicator wThat our gas compressor is doing, and inas-

much as M E P pressures are quickly determined by a

planimeter from an indicator card, that to become

familiar with what the M E P should be and compare
it with what the compressor is doing is the best prac-

tical way of dealing with the subject.

We found that

L = J W <7p T (Ll \ and that ,

J W (7p T = ^-P T70
,
therefore

L must always equal M E P X V, we have

ME PXV = -P
ft \

M E P =-2 P I -_ 1 1 and since
y- 1 V /

2 = 4, we have for our standard gas

Take 80 Ibs. gauge pressure.
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T
1 = .593 as determined in a former exam-

ple by Table 11.

P = 14.7.

M E P = 4 X -593 X 14.7 = 34.86 Ibs. per sq. in.

For our standard gas for one cubic foot at

sea level

(T
\ /r

T~ l

)
= 58 '8

\r
"

HP = .00436 X 58.8 (~ l\ == .2564 (~

the same result we obtained in a former example.

INITIAL TEMPERATURES.

The general expression for the work of compression

being

it is evident that so long as
-y-

remains constant, the

power to compress one cubic foot of the same gas is con-

stant, but inasmuch as the temperature of the mains is

practically constant and about 60 Fah., if our initial

temperature from the holder should happen for any

reason to be 100 Fah., as it was entering the compres-

sor, it is evident that the compressor must make an

extra number of revolutions to deliver a fixed quantity

into the mains at 60 Fah. than it would if the mains

were the same temperature as the gas in the holder,

and the ratio would be as the absolute temperatures or

von '
or ^ Per cen^ additional. In a plant where 250

horsepower is used in compressing the gas, this would

mean a saving of 20 horsepower. By passing the gas

through a cooler before it reached the compressor

would correct the loss. Inasmuch as little water is

required for this, and the water is in no wise impaired
for other purposes, that this cooling could always be

done. Vice versa, if the temperature of the holder was
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lower than the mains, as in winter, there would be a

corresponding gain and some of the otherwise lost

heat of compression would be utilized in expanding
the gas to a temperature corresponding to the main.

In the long run, the gain might balance the loss, if no

cooling were done, but it seems a business proposition

to save where possible, especially where it costs little

or nothing.

TWO STAGE COMPRESSION.

If we consider the general equation for the work per-

formed in compressing any gas, adiabatically

L = JWC*(T T)
we note that the only variable is T, the final tempera-

ture, if our initial temperature remains the same. In

other words, the difference between the initial and

final temperature determines always the power ex-

pended in a compressor, just as it does the power given

out by any heat engine. It is evident, then, that the

lower we keep the final temperature the less power it

takes. Water-jacketing the cylinders accomplishes but

little, probably from 3 to 5 per cent, for the reason

that gases being such poor heat conductors that, while

they are rapidly drawn in and pushed out of the com-

pressing cylinder, there is not time for the heat

to radiate through the cylinder walls, and only the

portion immediately in contact with the cool cylinder

walls suffers any reduction of temperature. The water

jacket keeps the cylinder walls cool so that lubrication

is effective and is valuable for that reason principally.

Practically speaking, the compression is adiabatic,

or even greater because the pressure in the cylinder is

always greater than the receiver on account of the

work expended in forcing the gas through the valve

openings, and this extra heat generated overruns the

adiabatic temperature corresponding to the receiver

pressure.

The 'water jacket being ineffective, the device of

stage compression was inaugurated, where, after the

gas was compressed to a portion of the final pressure
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in a cylinder, it was discharged into an intercooler, its

temperature reduced to the initial and then compressed

by a smaller cylinder to the final pressure. The work
was found to be a minimum when the final temperature
of each stage was the same.

If we represent the initial pressure by P and the

final by P', and volumes and temperatures similarly,

we shall have, using our general formula for work ex-

pended,

L =
y^-P

V
ApS

1
)
for first stage and

(T
' \

TJT 1 I f r second stage.f )

We know that before compression P V must equal
P F, consequently if L is. desired to equal L', we must

have

T' /P'\ y-1 -i

_ = / _ I ,
or reducing

pj
=

p-
or P 2 = P P' or P = l/P P'

In other words, to make the work in two stages

equal, and to have the work a minimum, P, the inter-

mediate pressure, must be a mean proportional be-

tween the initial and the final pressure, the volumes
and the piston areas must follow the same law, since

we naturally make the strokes alike.

For an example, let us take 80 pounds final gauge
pressure :

P : : ]/P P' or v/14.7 x 94.7 = 37.31 absolute

or 22.61 gauge pressure. This makes
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P_ == 37.31_ 2 54 and

f-M- 2 ' 54

and inasmuch as these pressure ratios are the same,
the work expended on each stage will be the same
and the piston ratio will be 2.54 also.

We found for the standard gas that

HP=.2564 (L

Referring to Table 11, we find when

|i;
=2.54, that |j= 1.2624.

Then H P = .2564 X -2624 = .06727 for each stage

and for both stages, 2 X .06727 = .13454 H P.

It will be remembered that we calculated the single

stage H P for 80 Ibs. in a former example as .1520.

We have then 13.45 H P per 100 cu. ft. two stage against

15.20 H P single stage, a saving of 13 per cent in power.
If the maintaining of a low temperature is any

advantage in gas compression, we have a temperature
of 366 Fah. in the single stage compression against

195 Fah. in the two stage, a remarkable difference.

Suppose now that we have a cylinder having an area

of 100 sq. inches, when we compress to 80 Ibs. the

maximum strain is 8000 Ibs., if the compressor is single

stage and 4522 Ibs. if the compressor is a tandem two

stage, a remarkable difference, tending to show that

we can build the two stage compressor very much

lighter for the same work.

Another point in favor of the two stage compressor,

it has a greater volumetric efficiency. A piston never

delivers from a cylinder an amount of gas equal to

its displacement, because clearance spaces are filled

with gas at the discharge pressure, which expands in

the return stroke of the piston and occupies more or

less space according to the ratio of compression and

the amount of clearance. The greater the temperature
of compression, the hotter the piston and heads and
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valves get, and the less weight of gas enters the cyl-

inder on account of the clearance expansion. There are

other losses which need not be mentioned here, but these

two are sufficient to make the volumetric efficiency of

single stage compressors at 80 Ibs. average about 75

per cent.

It will be readily seen that the initial cylinder of a

two-stage machine at 80 Ibs. will have its clearance

losses divided by 2.54, because that will be the relative

ratio of pressures and the temperature losses in pro-

portion to

because that is the absolute temperature ratio.

These combined will make the average two-stage com-

pressor good for 90 per cent volumetric efficiency

in other words, 15 per centr better than a single stage.

One can, therefore, afford to pay at least 15 per cent

more for a two-stage machine than for a single-stage

machine, the intake cylinders being the same size, and

this extra 15 per cent will nearly, or sometimes quite,

pay for the difference in price.

It is evident from the calculations we have made
that the efficiency of a two-stage machine over the

single stage increases directly as the pressure ratios

increase, and inasmuch as altitude increases pressure

ratios, it is evident that the higher the altitude the more

urgent becomes the necessity for using the two-stage

machines, and at altitudes above 3000 feet it is prac-

tically imperative.

Theoretically, an infinite number of stages world

give isothermal compression, but practically the losses

involved in driving the gas through too many cylin-

ders and valves would offset this gain, and we can con-

sider that two stages will probably be the limit for all

ordinary purposes.

ALTITUDE COMPRESSION.

We found that it took the same power to compress
one cubic foot of gas at any temperature to the same

final pressure, provided the initial pressures were the
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same, and it naturally followed that it took more

power to compress the same weight at higher tempera-

tures, because there would be a larger volume and the

piston would have to make more strokes.

Altitude acts like an increase of temperature in les-

sening the density of a gas, but it introduces another

element, viz., change of initial pressure, so that as we
reach higher altitudes the pressure ratio is constantly

increasing, which means, of course, that the tempera-
ture of compression is increasing and more work per
unit of gas weight is being done, but the weight is

constantly decreasing as we ascend, and the combina-

tion of these results is that while it takes less work to

discharge any given cylinder full of gas at an altitude,

the increased number of strokes necessary to com-

press a weight equivalent to a given sea level volume is

considerably greater.

Table 17. July, 1905
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quite high in comparison to sea level compression,

which speaks loudly for two-stage compression.

FLOW OF GAS IN PIPES.

After reading the report of the committee on "The

Flow of Gas in Pipes,
' '

for the Ohio Gas Light Associa^

tion, as published in the American Gas Light Journal,

April 24, 1905, the general impression would be that

the formulas were not sufficiently reliable to be of great

service, because there was a variation in the results of

a given problem of from 1 to 200 per cent. It would

seem, however, that six formulas out of the nine do

not vary 15 per cent, and the three most frequently

used do not vary 2% per cent.

If we should accept the largest of these three, called

the Pittsburg formula, we wrould probably not be far

wrong, and particularly as the results do not differ

greatly from those obtained by using Cox's computer,

and I am informed by- those who have used the com-

puter that it is perfectly safe.

Again, the variation in the areas of those pipe sizes

most likely to be used are much more considerable than

the variations of any of the six formulas above referred

to. Thus, taking the commercial sizes of pipe from

1" to 6", the average variation between the areas of

each size is 35 per cent.

If we therefore make a practice of using the pipe

that is the nearest size larger than our calculations,

we shall have an ample safety factor.

For air we have been using a formula developed by
Mr. J. E. Johnson, Jr., and published in the American

Machinist July 27, 1899.

-0006 * L

P' = absolute initial pressure.

P" = absolute final pressure.

Q = free air equivalent in cubic feet per minute.

L = length of pipe in feet.

d = diameter on pipe in inches.

Practical results from this formula show that it is a
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little too liberal, and that P' 2 P" 2 = >

Us

would be nearer the results.

The Pittsburg gas formula reduces to the same value

when the proper substitutes are made for the relative

specific gravities of gas and air.

Inasmuch as the specific gravity of gas is always re-

ferred to air as 1, it seems right that our gas formula

should refer to air and a co-efficient used for each gas.

The velocity of different gases through a pipe varies

inversely as the square root of their densities, or what

amounts to the same thing, their specific gravities or

weights compared to air, then the velocities will vary
as

- or V G
Where G is the specific gravity of gas.

Prefixing this to our original equation, we have in

general, for any gas,

p/2 _ p//2
_

.o005i/ x
<

~^
Or

44.72 |P'
2 P"2 X4^-il I

I/ a \ L
Inasmuch as certainly for some considerable time

crude oil gas will be most extensively used by members

of this Association, let us substitute in the above form-

ula the value of the largest probable specific gravity,

viz., .49, and we have 1/749
~

-1 and

p/ 2 __ p//
_ 00035 9L^. (A)

d5

Or
|
D/2 P//2 V/ fJo

Q = 53.45 J" JL-

Q is in cubic feet per minute rather than per hour,

because all compressors are so rated.

Table 12 gives values of P' 2 - - P" 2 for 100 feet of

various sized pipes and quantities will be found conve-

nient for figuring gas flows in pipes. The values are

calculated from equation (A).
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Example I

1000 cubic feet per minute of gas at 90 pounds gauge

pressure is discharging into a 4" pipe 26,000 feet long.

Required the terminal pressure.

P' 2 = 10962. (Table 13)

P's __ p"2 = 35.04 for 100 feet. (Table 12)

Multiplying by 260 for 26,000 feet

P'2 __ p"2 9HO.

p//2 = p/2_ (p/2_p//
2
)
= i0962_ 9110= 1852.

P" 2 = 1852. P" = 28 pounds.

Example II

A pipe line 3" diameter and 11,000 feet long. Re-

quired to find the quantity of gas that will be delivered

at a terminal pressure of 1 pound, the initial pressure

being 40 pounds.
P' 2 = 2992. (Table 13)

P" 2 = 279 (Table 13)

p/2 _ p//2 = 2713 for 11,000 feet of pipe or 24.6

for 100 feet.

Referring to Table 12, we find value of 23.70 for 420
cubic feet per minute.

Example III

A pipe line is 11,000 feet long and 4" diameter. The

equivalent of 1000 cubic feet is wanted at the end of

the line at 10 pounds pressure. What must be the

initial pressure?
p/2 _ p// 2 _ 35 04 for 100 feet (Table 12). Multiply-

ing by 110 we have

p/ 2 _ p// 2 _ 3854 for ii ?000 feet.

P"* = 610. (Table 13)

p/2 = p//2 + ( p/2 _ p// 2)
_ 3854 + 610 == 4464

P' == j/4464.

Referring to Table 13 we find 52 pounds gauge pres-

sure to be the initial pressure.

Example IV

The equivalent of 200 cubic feet per minute is to be

put through a pipe 53,000 feet long. The initial pres-
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sure is 20 pounds. The final pressure must be 6 pounds.
What will be the size of the pipe ?

P' 2 = 1204. (Table 13)

P" 2 = 428. (Table 13)

p/2 _ P" 2 = 776 for 53?000 feet of pipe or l 464

per 100 feet. Referring to Table 12, we find 4" to be

the proper size.

SOME CORROBORATIONS.

Table 15 gives at Figure 1 a card from the gas cylin-

der of a compressor at Fresno, compressing crude oil

gas at a pressure of 27 pounds gauge.
If we draw the line of 27 pounds' pressure and take

the M E P with a planimeter, following the curve A B
and the straight lines B C CD and A B, we shall

have the M E P of a perfect card following the actual

compression line. This M E P we find to be 17.4

pounds, using the y which we found for Fresno gas,

the adiabatic HEP for 27 pounds = 17.58, making a

good check on our values.

Figures 2 and 3 are from a compressor pumping
natural gas at Anderson, Indiana, each having an in-

take pressure of 11 pounds drawing lines of 50

pounds' pressure at Figure 2 and 60 pounds at Figure

3, and taking the M E P in the same way that we did

in Figure 1, we find that the M E P for Figure 2 is 26

pounds, and for Figure 3, 30 pounds.

Using the value of y which we developed for natural

gas and calculating the adiabatic M E P, we find they
are 26.30 and 30.85 pounds, respectively, a very satis-

factory check, and from these we may fairly conclude

that our theories and formulas are reasonable.

It will be noted that the line of the compressor curve

is very near the adiabatic, even though the compressors
were making but 60 to 70 revolutions per minute. An
air card would show at least double the separating

space.

This would appear to show that the jackets were

doing but very little good, and possibly because illu-

minating gas may be a much poorer conductor of heat

than air.
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The line of compression comes so near the adiabatic

that we may well call the compression adiabatic^ for

safety in our calculations but while the M E P adia-

batic for any pressure represents the greatest possible

power required to compress a gas, a still greater power
must be applied for example look at the Fresno card,

Figure 1, Table 14 the area above the 27-pounds line

represents work done in overcoming the inertia of the

outlet valves in pushing the gas into the main, and this

area will be greater or less depending upon the valve

area and the size of the discharge openings and the

piston speed. It will also be noted that there is an area

representing suction work below the line A D, not-

withstanding that the gas has a 4" water pressure at

holder. This probably indicates that the pipes from

the holder to the compressor are too small.

Now, if we run a planimeter over the actual area of

the card, we find that the real M E P is 19.4, or about

10 per cent greater than the adiabatic, and this agrees

quite well with ordinary air practice, where a safe rule

for single-stage work is to take the M E P at 10 per
cent above the adiabatic and the two-stage M E P the

same as the adiabatic. Slow speed, well-constructed

compressors will do somewhat better, but it is well to

calculate on the average type.

Now, for brake power to be delivered to a gas com-

pressor, we have to allow a mechanical efficiency of the

compressor at not to exceed 85 per cent, so that this 15

per cent loss combined with the 10 per cent loss in the

cylinder points to the fact that we should add 26^/2

per cent to the adiabatic H P for the brake power re-

quired.

The steam-engine cards on the Fresno compressor
show an M E P reduced to the size of the air cylinder

of 20.75 pounds, or 20 per cent higher ,than the adia-

batic air M E P, but this compressor had a Meyer cut-

off, which helped its economy considerably.

Referring to Table 9, column 17, gives the formula

for computing the power to compress one cubic foot

of the gas at sea level and 60 Fah. If the calculation
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be made it will be noted that it takes practically the

same power to compress one cubic foot of any of these

gases, consequently Table 19 may be used generally.

In conclusion your attention is called to Table 19,

which contains in convenient form the results which we
have obtained, and which it is hoped you will find very

helpful in considering thermodynamic questions re-

garding the standard illuminating gas made from

crude oil.



SOME ECONOMICS IN HIGH PRESSURE GAS
TRANSMISSION.

By EDWARD A. MX.

Mr. President and Fellow Members of the Pacific

Coast Gas Association.

Last year I had the pleasure of presenting for your
consideration a paper entitled "The Compression and

Transmission of Illuminating Gas," in which the gen-

eral theory of the subject was discussed, and methods

shown for calculating the specific heats of various gas

mixtures, the heat developed by compression, and the

power required. Also various losses in pressure and

power in pushing gas through pipes, and some co-

efficients for all this data, so that one could approxi-

mate, with some degree of certainty, the various ele-

ments of a practical plant. The length of the paper
did not permit of bringing it to such a closing that

those not caring for the theoretical part could readily

solve some everyday problems pertaining to a high-

pressure gas transmission. It is, therefore, the intent

of this paper to briefly supply this deficiency, and at

the same time to introduce the element of cost of

compressing gas and a method for determining the

proper size of pipes so that the gas engineer may be

able to readily and easily arrive at the essential ele-

ments in his problem.

Curve sheet No. 20 has been constructed for this

purpose and conditions as general as possible have

been assumed, and in order that it may be easy for

anyone to construct a similar curve sheet for other

conditions, the method of making it may well be

explained. Inasmuch as gas is generally sold and

handled by the 1,000 cubic feet, it seems proper to

make that the basis for quantity, and one cent per

kilowatt hour seems a natural base from which to cal-

culate the cost of power, and should anyone have steam

power or power other than electric, it is a simple mat-

ter to convert it to kilowatt hours.
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If a kilowatt hour costs one cent, a horsepower will

cost practically three-quarters of a cent, one horse-

power hour=60x33,000 or 1,980,000 foot pounds for

three quarters of a cent, one cent would therefore pro-
000

duce ::p- =2,640,000 foot pounds.
. ( o

Eight horsepower equals 264,000 foot pounds, con-

sequently every 8 horsepower will cost 1-10 of a cent

per minute. This gives us the basis for our curve, for

if we lay out our sheet in equal divisions of any size

and call each one along the vertical line 8 horsepower,
we can also make each division represent 1-10 of a

cent, and each horizontal division we can conveniently

call 10 pounds.
If you will now refer to Table 19, the last table

which I read at our last meeting, it will be possible

to construct the curve, remembering that the table

is constructed for 100 cubic feet per minute, the horse-

power therein contained must be multiplied by 10, for

the 1000 feet capacity we are now considering.

Take, for example, 50 pounds gauge pressure, the

brake horse-power required for 100 cubic feet is 14.56,

and for 1000 would be 145.6. Where the vertical line

indicating 50 pounds meets the horizontal line drawn
from 145 horse-power will be a point on the curve.

Similarly other points can be made, and joining the

points together, we shall have a cost and power curve

combined which will be very useful in our calculation.

I have constructed two of these curves, A and B.

A is the curve of single stage compression and B for

two-stage compression. Single stage is rarely used

beyond 100 pounds pressure, nor two stage below 90

pounds pressure. You will note quite a difference in

favor of two-stage compression. For example, at 100

pounds pressure it costs 2.35 cents per 1000 for two-

stage and 2.75 cents for single-stage. In even a small

plant using 50,000,000 feet per year, the difference

would be $200 per annum, which is well worth saving.

The two-stage curve may be readily constructed

from the single-stage curve by remembering that the
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intermediate absolute pressure between the stages is

a mean proportional between the initial and final abso-

lute pressure, and, inasmuch as it takes the same

power for each stage, if we double the power required

for the first stage we shall have the desired results,

thus the intermediate gauge pressure for 200 pounds

pressure will be 41 pounds. We note from the single-

stage curve that 41 pounds requires 128 horse-power,

consequently twice this is 256 horse-power, which, laid

out on our curve sheet on the 200-pound vertical line,

will give us the point N on the two-stage curve, and so

on for other points to complete the curve.

It must be understood that the horse-powers are for

1000 cubic feet per minute, and the cost will be per

1000, and if you wish to eliminate the element of time

just multiply the horse-power by 33,000 and the re-

sult will be the foot pounds to compress 1000 cubic

feet of gas, and independent of time.

If power costs more or less than 1 cent per kilowatt

hour, or the quantity to be compressed is greater or

less than 1000 cubic feet per minute, the results may
be read from the curve by simply using a correspond-

ing proportion, for example :

The curve shows that 1000 cubic feet can be com-

pressed to 20 pounds gauge pressure at the cost of 1

cent, it follows, therefore, that 2000 cubic feet can be

compressed to 20 pounds for 2 cents, or if power costs

2 cents per kilowatt hour instead of 1 cent, then only

one-half the quantity can be compressed for 1 cent, or

double the quantity if power costs but y2 a cent a

kilowatt hour. This method of proportion, however,

does not apply to the matter of pressure, for you will

note that while a cost of 1 cent gives 20 pounds pres-

sure, a cost of 2 cents gives 58 pounds pressure, and a

cost of l
/2 a cent gives only 8 pounds pressure. In

other words, it costs just as much to compress gas

from to 8 pounds as it does from 8 to 20 pounds,

and just as much to compress from to 20 pounds as

from 20 to 58 pounds. It would be well right here
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to consider this fact, for it has a great bearing on high-

pressure transmission.

If it was found, for example, that it was costing 1

cent per 1000 to deliver gas through a certain pipe

at 20 pounds pressure, and it became necessary to

double the pressure in order to supply an increased de-

mand, the gas company might consider it inadvisable

because it might double the cost. Consulting the curve,

it will be seen that the cost for compressing at 40

pounds pressure is only 1.6 cents per 1000 cubic feet

instead of 2 cents, as may be imagined, and this fact

might justify the increased pressure, and the higher

the pressure the more the seeming disproportion.

From the curve take a geometrical progression of

gauge pressure, 5-10-20-40-80-160-320, and we note the

corresponding costs of compression for 1000 cubic feet

to be, in cents, .3-.575-1.00-1.6-2.4-3.-3.9, in other words,

while the pressure from 5 to 320 has increased sixty-

four times, the cost of compression has increased but

thirteen times.

It must not, however, be hastily inferred that be-

cause of this decreasing power ratio that it is econom-

ical to compress at high pressure, because it may not

be so and depends upon the amount of gas to be

pumped, for while the rate for 1000 may be small and

make no material difference where a small quantity is

pumped, with a large quantity the total amount of

the yearly cost of pumping may exceed so materially

the interest and depreciation on a larger pipe using a

lower pressure that the latter installation will be

deemed preferable.

The question of whether a large pipe and small

pressure, or a small pipe and high pressure shall be

used is simply a matter of equating the relative costs

of pumping, together with the interest and deprecia-

tion on the plant, and, with the curve given herewith,

it may be easily determined, and it is to show how to

make this determination quite accurately and simple

that I have written this paper. It has seemed to me
that the cost of attendance, buildings, laying out
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pipe, etc., for any one problem may be neglected, for

while it is an item of cost, it will be practically the

same for whatever pipe you may select. We can then

make our comparison, using the market cost of pipe
and the cost of power only, to which may be added the

other costs after the size of the pipe is determined,
in order to give the total cost per 1000 for handling
the gas.

The power and cost curves, as constructed, can be

called
" Standard" and white prints made from it,

and upon these white prints the pipe curves laid out,

as will be shown, and this same white print can be

used in all cases. Let us then take two examples, one

for small quantity and one for large quantity, and

before starting at it let us make a general standard

formula, which will simplify many of the calculations.

No plant will pump less than 10,000,000 cubic feet

per year, which is about 1200 per hour, or at a less

distance than 10,000 feet, consequently take for a

basis :

10,000,000 feet per year=a
10,000 feet of pipe=Z>
1 cent per foot cost of pipe

10% per annum interest and depreciation

on the pipe.

Then equating these quantities we will find that the

pipe cost C for 1000 cubic feet of gas will be 1/10 of a

cent.

For any other quantity Q, and length of pipe L, and

price of pipe P, we shall have:

Pipe cost per 1000 C = ~? X ^
o\2 1U

Example 150,000,000 cubic feet per year, or 6000

per hour, 50,000 feet of pipe, and power to cost i/o cent

per kilowatt hour, substituting in our formula

La P 50,000 X 10,000,000 JP =_JP

bQ 10
W

10,000 X 50,000,000 10" 10

That is to say that whatever size pipe we select the

pipe cost per 1000 cubic feet of gas will be 1/10 the

market cost of pipe per foot.
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Taking the market prices of to-day, then if we should

use:

1% pi?6 ?
cost per 1000 cubic feet, equals ......... 559

iy2 pipe, cost per 1000 cubic feet, equals ......... 67

2 pipe, cost per 1000 cubic feet, equals ...... . . .894

21/k pipe, cost per 1000 cubic feet, equals. ....... 1.429

3 pipe, cost per 1000 cubic feet, equals ........ 1.875

Having thus blocked out the matter of pipe, we must

find what pressure it is necessary to use to pump the

gas through these various sized pipes, assuming al-

ways that the terminal pressure shall be one pound

gauge.

You will remember that we developed a formula in

my paper, read last year, which may be used here with

accurac.

is the difference between the squares of the initial and

final absolute pressures.

Q is the quantity of gas in cubic feet per minute.

L is the length of pipe, in feet.

D is the pipe diameter, in inches.

Substituing in this equation the elements in our prob-

lem, we have :

_35X100X100X50,000 _ 175,000
Fl

~~

~100,00<fXd~
Fl

~
d-

Then P/
2 XP 2

2
equals for

1% pipe ....................... 57,370

1V2 pipe ....................... 23,000

2 pipe ........................ 5,500

2% pipe ....................... 1,800

3 pipe ................. . ..... 700

P 2 being our final pressure lib. or 15.7 Ibs. absolute makes

P./
2
=246, and remembering that P l

2 ?^=(P l

2 ? l
2Jr

P/2

we have

\
l
/4 pine P./2 absolute=57,616 then P l gauge=225 Ibs.

11/2
" " "

=23,246
" " " -140

"

2
" " " = 5,746

" " " == 61
"

2 l/2
" " = 2,046

" " " = 31
"

3
" "

946
" M "

-- 16
"

Now we are ready to put all this on our curve sheet

in order that we may have a graphic representation of
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the situation. The power cost curve is on a basis of 1

cent per kilowatt hour; if, therefore, we plot any
other costs on this standard sheet, they must be in-

creased or diminished by the ratio the actual power cost

bears to the standard power cost of 1 cent per kilo-

watt. Our problem calls for a power cost of % cent

per kilowatt hour, consequently we must plot in our

pipe costs at double their real amount, for the standard

power cost curve is double the cost stated in our prob-
lem. Take, then, the 2-inch pipe. We have found the

pipe cost to be .894, which, multiplied by 2, equals

1.798, and the initial pressure required is 61 pounds.
If then we lay off the point P on the 61 pounds pres-

sure ordinate and opposite the cost Line 1.798 or 1.8, we
shall have the two-inch pipe established, and similarly

we can establish the other points, and joining them by
lines we have a pipe cost curve S. C., which shows

the cost of pipe per 1000 cubic feet of gas for all sizes

from 1% to 3 inch. It is evident that the total cost

of pumping the gas is the pipe cost plus the power cost,

consequently if we add the pipe cost curve to the power
cost curve, we shall have a curve of total cost. Take

the 2-inch pipe once more, and with dividers measure

off the distance W. P., the cost of the pipe line, and

add it to the line W. Y., which is the power cost, and we

have the point T., as the result of the addition. Do the

same for the other sizes of pipe, join these points by

lines, and we have the curve D. F. as the final result,

showing the combined power and pipe cost per 1000

cubic feet of gas for all the sizes of pipe under consid-

eration.

It is evident at a glance that the 2-inch pipe shows

the least cost, consequently the solution of our prob-

lem is 2-inch pipe at 60-pound initial pressure. Total

cost per 1000 3.6 cents on a basis of 1 cent per kilowatt

hour, but as our power costs % a cent per kilowatt

hour, the total cost is 1.8 cents per 1000 cubic feet of

gas.

The graphical method is very satisfactory, for one

can see at a glance the relations between the various
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elements, for example : You will note that it cost prac-

tically the same to pump this gas through a l^-inch

pipe at 225 pounds pressure or a li/o-inch pipe at 140

pounds pressure or the 3 -inch pipe at 16 pounds pres-

sure, which is interesting.

PROBLEM TWO.

Take 5000 cubic feet per minute, 300,000 per hour or

2,500,000,000 per year, through the same length pipe

as in our former problem, and at the same power cost

per kilowatt hour. The pipe being the same length

and the quantity fifty times greater. We will have

P P
for pipe cost per 1000 where we had formerly,

and taking pipe casing prices up to 12 inches, which

was the largest I could get, and assuming them above

that size simply for illustration, we find the following

prices per 1000 feet of gas for these pipes :

10 inch equals .25 cent per 1000 cubic feet of gas.

12 inch equals .30 cent per 1000 cubic feet of gas.

14 inch equals .40 cent per 1000 cubic feet of gas.

16 inch equals .60 cent per 1000 cubic feet of gas.

18 inch equals .80 cent per 1000 cubic feet of gas.

20 inch equals 1.00 cent per 1000 cubic feet of gas.

and the respective pressures necessary to force the gas

through these pipes to be :

10 inch equals 53 pounds. 16 inch equals 12 pounds.
12 inch equals 26 pounds. 18 inch equals 8 pounds.
14 inch equals 20 pounds. 20 inch equals 4 pounds.

Multiply the pipe cost by 2 and transferring those

quantities to our curve sheet, precisely as we did in the

other problem, we have a pipe curve, E, showing the

pipe cost per 1000 cubic feet, and adding this to the

power curve, we have the final result in the curve F,

which shows this rather surprising fact, that the 12-

inch pipe is the best, and that it will carry this gas at

26 pounds pressure, and at a cost of 8/10 of a cent per

1000 for power and pipe.

The curve shows also that the gas can be put through
the 10-inch pipe at 53 pounds pressure at the same
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cost as through the 20-inch pipe at 4 pounds pressure.

I believe this graphical method will be of service to

you, particularly as these curve sheets can be filed

away and always used for quick reference, for the eye

can take in the whole relative situation at a glance. I

believe this method of handling the subject removes it

from the realm of speculation, and makes an orderly

comparison of power and pipes possible, to the end

that an adequate selection can be made.







SOME ECONOMICS IN HIGH PRESSURE GAS
TRANSMISSION.

By EDWARD A. RIX.

Mr. President and Fellow Members of the Pacific

Coast Gas Association.

Last year I had the pleasure of presenting for your
consideration a paper entitled "The Compression and

Transmission of Illuminating Gas," in which the gen-

eral theory of the subject was discussed, and methods

shown for calculating the specific heats of various gas

mixtures, the heat developed by compression, and the

power required. Also various losses in pressure and

power in pushing gas through pipes, and some co-

efficients for all this data, so that one could approxi-

mate, with some degree of certainty, the various ele-

ments of a practical plant. The length of the paper
did not permit of bringing it to such a closing that

those not caring for the theoretical part could readily

solve some everyday problems pertaining to a high-

pressure gas transmission. It is, therefore, the intent

of this paper to briefly supply this deficiency, and at

the same time to introduce the element of cost of

compressing gas and a method for determining the

proper size of pipes so that the gas engineer may be

able to readily and easily arrive at the essential ele-

ments in his problem.
Curve sheet No. 20 has been constructed for this

purpose and conditions as general as possible have

been assumed, and in order that it may be easy for

anyone to construct a similar curve sheet for other

conditions, the method of making it may well be

explained. Inasmuch as gas is generally sold and

handled by the 1,000 cubic feet, it seems proper to

make that the basis for quantity, and one cent per
kilowatt hour seems a natural base from which to cal-

culate the cost of power, and should anyone have steam

power or power other than electric, it is a simple mat-

ter to convert it to kilowatt hours.
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If a kilowatt hour costs one cent, a horsepower will

cost practically three-quarters of a cent, one horse-

power hour=60x33,000 or 1,980,000 foot pounds for

three quarters of a cent, one cent would therefore pro-
000

duce - =2,640,000 foot pounds.
. / o

Eight horsepower equals 264,000 foot pounds, con-

sequently every 8 horsepower will cost 1-10 of a cent

per minute. This gives us the basis for our curve, for

if we lay out our sheet in equal divisions of any size

and call each one along the vertical line 8 horsepower,
we can also make each division represent 1-10 of a

cent, and each horizontal division we can conveniently

call 10 pounds.
If you will now refer to Table 19, the last table

which I read at our last meeting, it will be possible

to construct the curve, remembering that the table

is constructed for 100 cubic feet per minute, the horse-

power therein contained must be multiplied by 10, for

the 1000 feet capacity we are now considering.

Take, for example, 50 pounds gauge pressure, the

brake horse-power required for 100 cubic feet is 14.56,

and for 1000 would be 145.6. Where the vertical line

indicating 50 pounds meets the horizontal line drawn

from 145 horse-power will be a point on the curve.

Similarly other points can be made, and joining the

points together, we shall have a cost and power curve

combined which will be very useful in our calculation.

I have constructed two of these curves, A and B.

A is the curve of single stage compression and B for

two-stage compression. Single stage is rarely used

beyond 100 pounds pressure, nor two stage below 90

pounds pressure. You will note quite a difference in

favor of two-stage compression. For example, at 100

pounds pressure it costs 2.35 cents per 1000 for two-

stage and 2.75 cents for single-stage. In even a small

plant using 50,000,000 feet per year, the difference

would be $200 per annum, which is well worth saving.

The two-stage curve may be readily constructed

from the single-stage curve by remembering that the
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intermediate absolute pressure between the stages is

a mean proportional between the initial and final abso-

lute pressure, and, inasmuch as it takes the same

power for each stage, if we double the power required
for the first stage we shall have the desired results,

thus the intermediate gauge pressure for 200 pounds

pressure will be 41 pounds. We note from the single-

stage curve that 41 pounds requires 128 horse-power,

consequently twice this is 256 horse-power, which, laid

out on our curve sheet on the 200-pound vertical line,

will give us the point N on the two-stage curve, and so

on for other points to complete the curve.

It must be understood that the horse-powers are for

1000 cubic feet per minute, and the cost will be per

1000, and if you wish to eliminate the element of time

just multiply the horse-power by 33,000 and the re-

sult will be the foot pounds to compress 1000 cubic

feet of gas, and independent of time.

If power costs more or less than 1 cent per kilowatt

hour, or the quantity to be compressed is greater or

less than 1000 cubic feet per minute, the results may
be read from the curve by simply using a correspond-

ing proportion, for example :

The curve shows that 1000 cubic feet can be com-

pressed to 20 pounds gauge pressure at the cost of 1

cent, it follows, therefore, that 2000 cubic feet can be

compressed to 20 pounds for 2 cents, or if power costs

2 cents per kilowatt hour instead of 1 cent, then only

one-half the quantity can be compressed for 1 cent, or

double the quantity if power costs but y2 a cent a

kilowatt hour. This method of proportion, however,

does not apply to the matter of pressure, for you will

note that while a cost of 1 cent gives 20 pounds pres-

sure, a cost of 2 cents gives 58 pounds pressure, and a

cost of y<2 a cent gives only 8 pounds pressure. In

other words, it costs just as much to compress gas

from to 8 pounds as it does from 8 to 20 pounds,

and just as much to compress from to 20 pounds as

from 20 to 58 pounds. It would be well right here
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to consider this fact, for it has a great bearing on high-

pressure transmission.

If it was found, for example, that it was costing 1

cent per 1000 to deliver gas through a certain pipe

at 20 pounds pressure, and it became necessary to

double the pressure in order to supply an increased de-

mand, the gas company might consider it inadvisable

because it might double the cost. Consulting the curve,

it will be seen that the cost for compressing at 40

pounds pressure is only 1.6 cents per 1000 cubic feet

instead of 2 cents, as may be imagined, and this fact

might justify the increased pressure, and the higher

the pressure the more the seeming disproportion.

From the curve take a geometrical progression of

gauge pressure, 5-10-20-40-80-160-320, and we note the

corresponding costs of compression for 1000 cubic feet

to be, in cents, .3-.575-1.00-1.6-2.4-3.-3.9, in other words,

while the pressure from 5 to 320 has increased sixty-

four times, the cost of compression has increased but

thirteen times.

It must not, however, be hastily inferred that be-

cause of this decreasing power ratio that it is econom-

ical to compress at high pressure, because it may not

be so and depends upon the amount of gas to be

pumped, for while the rate for 1000 may be small and

make no material difference where a small quantity is

pumped, with a large quantity the total amount of

the yearly cost of pumping may exceed so materially

the interest and depreciation on a larger pipe using a

lower pressure that the latter installation will be

deemed preferable.

The question of whether a large pipe and small

pressure, or a small pipe and high pressure shall be

used is simply a matter of equating the relative costs

of pumping, together with the interest and deprecia-

tion on the plant, and, with the curve given herewith,

it may be easily determined, and it is to show how to

make this determination quite accurately and simple
that I have written this paper. It has seemed to me
that the cost of attendance, buildings, laying out
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pipe, etc., for any one problem may be neglected, for

while it is an item of cost, it will be practically the

same for whatever pipe you may select. We can then

make our comparison, using the market cost of pipe
and the cost of power only, to which may be added the

other costs after the size of the pipe is determined,
in order to give the total cost per 1000 for handling
the gas.

The power and cost curves, as constructed, can be

called
" Standard" and white prints made from it,

and upon these white prints the pipe curves laid out,

as will be shown, and this same white print can be

used in all cases. Let us then take two examples, one

for small quantity and one for large quantity, and

before starting at it let us make a general standard

formula, which will simplify many of the calculations.

No plant will pump less than 10,000,000 cubic feet

per year, which is about 1200 per hour, or at a less

distance than 10,000 feet, consequently take for a

basis :

10,000,000 feet per year=a
10,000 feet of pipe=&
1 cent per foot cost of pipe

10% per annum interest and depreciation

on the pipe.

Then equating these quantities we will find that the

pipe cost C for 1000 cubic feet of gas will be 1/10 of a

cent.

For any other quantity Q, and length of pipe L, and

price of pipe P, we shall have:

Pipe cost per 1000 C =^ X ^
Example 150,000,000 cubic feet per year, or 6000

per hour, 50,000 feet of pipe, and power to cost % cent

per kilowatt hour, substituting in our formula

p L a P 50, 000 X 10, 000, 000 _P = =
P

bQ 10
W

10,000 X 50,000,000 10 10

That is to say that whatever size pipe we select the

pipe cost per 1000 cubic feet of gas will be 1/10 the

market cost of pipe per foot.
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Taking the market prices of to-day, then if we should

iy^ pipe, cost per 1000 cubic feet, equals ......... 559

1% pipe, cost per 1000 cubic feet, equals ......... 67

2 pipe, cost per 1000 cubic feet, equals ......... 894

2y2 pipe, cost per 1000 cubic feet, equals ........ 1.429

3 pipe, cost per 1000 cubic feet, equals ........ 1.875

Having thus blocked out the matter of pipe, we must

find what pressure it is necessary to use to pump the

gas through these various sized pipes, assuming al-

ways that the terminal pressure shall be one pound

gauge.

You will remember that we developed a formula in

my paper, read last year, which may be used here with

accurac.

p ,__p ,=1d
is the difference between the squares of the initial and

final absolute pressures.

Q is the quantity of gas in cubic feet per minute.

L is the length of pipe, in feet.

D is the pipe diameter, in inches.

Substituing in this equation the elements in our prob-

lem, we have :

P , P , _ 35X100X100X50,000 n2 _175,000
Fl

100,000 Xd Fl
d 5

Then P x

2 XP,2
equals for

1^4 pipe ....................... 57,370

1V2 pipe ....................... 23,000

2 pipe ....................... 5,500

2i/2 pipe ....................... 1,800

3 pipe ....................... 700

P 2 being our final pressure lib. or 15.7 Ibs. absolute makes
P 2

2=246, and remembering that P!
2 P 2

2=(P l
2 P l

2+
Pi'

2

we have

ikj. pine P./
2

absolute=57,616 then P l gauge=225 Ibs.

11/2
" " "

=23,246
" " " =140

"

2
" " " = 5,746

" " " = 61
"

2V2
" " " - 2,046

" " " = 31
"

3
^ = 946

" " " = 16
"

Now we are ready to put all this on our curve sheet

in order that we may have a graphic representation of



56 SOME ECONOMICS IN

the situation. The power cost curve is on a basis of 1

cent per kilowatt hour; if, therefore, we plot any
other costs on this standard sheet, they must be in-

creased or diminished by the ratio the actual power cost

bears to the standard power cost of 1 cent per kilo-

watt. Our problem calls for a power cost of y2 cent

per kilowatt hour, consequently we must plot in our

pipe costs at double their real amount, for the standard

power cost curve is double the cost stated in our prob-

lem. Take, then, the 2-inch pipe. We have found the

pipe cost to be .894, which, multiplied by 2, equals

1.798, and the initial pressure required is 61 pounds.
If then we lay off the point P on the 61 pounds pres-

sure ordinate and opposite the cost Line 1.798 or 1.8, we
shall have the two-inch pipe established, and similarly

we can establish the other points, and joining them by
lines we have a pipe cost curve S. C., which shows

the cost of pipe per 1000 cubic feet of gas for all sizes

from 1*4 to 3 inch. It is evident that the total cost

of pumping the gas is the pipe cost plus the power cost,

consequently if we add the pipe cost curve to the power
cost curve, we shall have a curve of total cost. Take

the 2-inch pipe once more, and with dividers measure

off the distance W. P., the cost of the pipe line, and

add it to the line W. Y., which is the power cost, and we

have the point T., as the result of the addition. Do the

same for the other sizes of pipe, join these points by

lines, and we have the curve D. F. as the final result,

showing the combined power and pipe cost per 1000

cubic feet of gas for all the sizes of pipe under consid-

eration.

It is evident at a glance that the 2-inch pipe shows

the least cost, consequently the solution of our prob-

lem is 2-inch pipe at 60-pound initial pressure. Total

cost per 1000 3.6 cents on a basis of 1 cent per kilowatt

hour, but as our power costs !/o a cent per kilowatt

hour, the total cost is 1.8 cents per 1000 cubic feet of

gas.

The graphical method is very satisfactory, for one

can see at a glance the relations between the various
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elements, for example : You will note that it cost prac-

tically the same to pump this gas through a l^-inch

pipe at 225 pounds pressure or a li/o-inch pipe at 140

pounds pressure or the 3 -inch pipe at 16 pounds pres-

sure, which is interesting.

PROBLEM TWO.

Take 5000 cubic feet per minute, 300,000 per hour or

2,500,000,000 per year, through the same length pipe

as in our former problem, and at the same power cost

per kilowatt hour. The pipe being the same length

and the quantity fifty times greater. We will have

P P
for pipe cost per 1000 where we had formerly,

and taking pipe casing prices up to 12 inches, which

was the largest I could get, and assuming them above

that size simply for illustration, we find the following

prices per 1000 feet of gas for these pipes :

10 inch equals .25 cent per 1000 cubic feet of gas.

12 inch equals .30 cent per 1000 cubic feet of gas.

14 inch equals .40 cent per 1000 cubic feet of gas.

16 inch equals .60 cent per 1000 cubic feet of gas.

18 inch equals .80 cent per 1000 cubic feet of gas.

20 inch equals 1.00 cent per 1000 cubic feet of gas.

and the respective pressures necessary to force the gas

through these pipes to be:

10 inch equals 53 pounds. 16 inch equals 12 pounds.
12 inch equals 26 pounds. 18 inch equals 8 pounds.
14 inch equals 20 pounds. 20 inch equals 4 pounds.

Multiply the pipe cost by 2 and transferring those

quantities to our curve sheet, precisely as we did in the

other problem, we have a pipe curve, E, showing the

pipe cost per 1000 cubic feet, and adding this to the

power curve, we have the final result in the curve F,

which shows this rather surprising fact, that the 12-

inch pipe is the best, and that it will carry this gas at

26 pounds pressure, and at a cost of 8/10 of a cent per
1000 for power and pipe.

The curve shows also that the gas can be put through
the 10-inch pipe at 53 pounds pressure at the same
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cost as through the 20-inch pipe at 4 pounds pressure.

I believe this graphical method will be of service to

you, particularly as these curve sheets can be filed

away and always used for quick reference, for the eye

can take in the whole relative situation at a glance. I

believe this method of handling the subject removes it

from the realm of speculation, and makes an orderly

comparison of pow
rer and pipes possible, to the end

that an adequate selection can be made.






















