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Abstract

We explore the computational complexity of certain issues regarding

parametric linear and integer linear programming.

For example, we demonstrate that: (1) The equality of optimal value

of two integer programs for all right-hand-sides (r.h.s.), is NP-complete

either when the problem is stated in matrix or in functional form; (2) The

equality of optimal value of two linear programs for all r.h.s. in matrix

form is polynomial, but it becomes NP-complete when one desires equality

for all r.h.s. in a polyhedral cone described by generators; (3) The

equality of a general polyhedral function (allowing nested "maxes") to

the value of a linear program in matrix form, or to another polyhedral

function, is NP-complete; (4) The shortest expression, for the optimur.

to the subadditive dual of an integer program in matrix form, can require

exponential space.
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COMPUTATIONAL COMPLEXITY OF SOME PROBLEMS
IN PARAMETRIC DISCRETE PROGRAMMING: I

by C. E. Blair and R. G. Jeroslow

This paper treats some problems of computational complexity in

connection with the mixed-integer program :

inf ex + dy

(MIP^) subject to Ax + By = b
b

x, y >

x integer

The constraint matrices A, B and objective functions c, d will be assumed

throughout to be fixed and rational. The right-hand-side (r.h.s.) vector

b will vary.

The main focus of the paper is the two special cases of (MIP ) in

which either the integer variables x are entirely absent (A and c are

empty), called the linear program , or the continuous variables y are

entirely absent (B and d are empty), called the (pure) integer progra- .

(Invariably, we drop the adjective "pure" for a pure integer program.)

In Section 3, the premultiplied mixed-integer program is also of interest,

which arises from (MIP), when the r.h.s. "b" is replaced by "Cb" for a
D

fixed rational matrix C (but again b varies). Pre-multiplied linear and

integer programs arise in the same way, and also occur in the paper.

This paper requires some knowledge of both the variation of (MIP )

with changes in the r.h.s., and computational complexity. In Section 2

we give relevant background for parametric programming. Our earlier papers

[2], [3], [4], [5] are a primary source of results on this topic.

Work of the second author partially supported by NSF grant ECS 8001763.
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[8] is our primary source for background on computational complexity.

To date, computational complexity measures have been applied to the stud->

of various classes of programming problems. However, there are few results

about parametric programming questions, such as ascertaining the validitv of

statements of the form:

(1.1) "For every r.h.s. b, the optimal values of the two linear
programs minfcxJAx = b, x > 0} and min{cx|Ax = b, x > 0;

are equal"

The new logical quantifier "for every" appears a priori to complicate

matters, generally raising complexity.

Perhaps the "surprise" of the results given here are some instances

in which the complexity does not increase, as well as instances (like (1.1))

in which a parametric linear programming question is no less complex than its

integer counterpart. In other instances, of course, complexity is strictly

increased by the "for every" quantifier, at least if certain proposed

hierarchies have distinct levels; we shall report on this phenomenon in a

later paper.

The present paper is not intended as a complete study of all parar.etric

questions, but rather it collects together several of the "lover complexitv"

results which can be obtained by methods developed in [A] and [5].
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2. Background

In this section we give definitions and theorems which will be needed

later. We will always assume that if Ax + By = and x, y > then

ex + dy > 0. This implies (non-trivial, see [14] or [4, section A]) that

for any b either (MIP, ) has no feasible solutions or else there is an
b

optimal solution. For given A, B, c, d the value function F(b) = value of

optimal solution if (MIP, ) is feasible; + == if (MIP^) is not f£asiL](..
b b

Some of our work will deal with F(b) which are finite everjvhere,

an approach which is partly justified by the next result.

Theorem 2.1 : [2, Theorem A. 6] Let F be the value function

determined by A, B, c, d. There is a value function G defined by A
' , B',

c', d' such that G(b) = F(b) where F(b) is finite, and G(b) is finite every-

where.

For pure integer programs we do not have the continuous variables y

or the matrix B, but the idea of a value function is the same.

We will say that a given function F: R -+ R is a value function if

a suitable A, B, c, d can be found.

For any natural number m we define the class of Gomorv functions cf r

variables to be the smallest class of functions G such that

(i) If -^cQ^ then F(b) = Ab is in G^;

(ii) If a > 0, a rational and FeG™ then Ci¥<G^;

(iii) If FeG", G(b) = ^F(b) ^ = smallest integer > F(b) is in G"";

(iv) If F, GfG'" then F + GeG"*;

(v) If F, GeG"' and H(b) = max tF(b), G(b)} then H.G".
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The Chvatal functions of m variables are the smallest class of functions

m
C satisfying (i)-(iv). If we insist that all X used in (i) have non-

negative components we have the class of monotone Gomory or Chvatal

functions M6 or MC .

Each member of G or C can be defined by an expression using ceiling

operations, plus signs, and so forth. We will occasionally refer to the

length of a defining expression, which can be defined in a natural way.

Proposition 2.2 : ([A]) Every member of G is the maximuni of finitely

many members of C . Moreover, the length of each defining expression for

the members of l may be < the length of the shortest defining expression

for .

It should be noted that the number of Chvatal functions needed to

represent a Gomory function can grow exponentially as a function of the

size of the expression of the Gomory function. This occurs when the Gomory

function is the sum of many functions which are maxima.

The class of Gomory functions is identified with the class of value

functions for pure integer programs by two results:

Theorem 2.3 : ([A, Theorem 5.2]) For any A, c there is a Gomory

function G, such that for all feasible b, G(b) is the objective function

value of the optimal solution to the integer program with right-hand-side b.

Theorem 2.4 : ([4, Theorem 3.13]) For any Gomory G there are A, c

such that G(b) is the value of the optimal solution to (IPv^) for all

integer vectors b.
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If we fix a specific right-hand-side b, a Chvatal function suffices.

Corollary 2.5 : For A, C, b given there is a Chvatal function F such

that: (i) F(b) = value of optimal solution; (ii) if a = jth column of A

then F(a-') < c ..

Proof : By Theorem 2.3 there is a Gomory function satisfying (i)

and (ii). By Proposition 2.2 this function is a maximuin of Chvatal functions

We choose the appropriate Chvatal function for the given b.

Q.E.D.

We will show in Section 6 that the size of the expression required in

Corollary 2.5 may grow exponentially as a function of the size of A, c,b.

We will be concerned with placing problems related to value functi>?r.F.

Gomory functions, etc. within the polynomial-time hierarchy. We will use

the theory as expounded in [8]. We have already referred to the size of

matrices, of expressions defining functions, etc. The assumption is always

made that the data are all rational. As usual, the precise definition of

size is not crucial for NP-completeness results.

We will need to use the celebrated result of Khacian that the cor-

sistency of a linear program can be decided in polynomial time. The

following result studies a parametric linear programming problem.

Theorem 2.6 : ([10]) The following problem is NP-complete:

Instance : m*n matrix A, m*k. matrix B, b eQ .
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Question : Does there exist c €{1,-1} such that
m

max {cx|Ax + By = b , x, y > 0} 9* I max {0,c }?
U

j^
1

Finally, we shall need the result of Borosh and Treybig placing

integer program consistency in NP.

Theorem 2.7 : ([6]) There is a polynomial q such that, given ar.y

system of linear inequalities of size S, the system has a solution in

non-negative integer variables if and only if it has a non-negative

integer solution of size < q(S).
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3. Results on Matrix Presentation of Parametric Problems

The results for a purely algebraic presentation of problems (i.e.,

utilizing only matrices and criterion vectors) are more accessible, as

these do not require preliminary lemmas on function classes, etc.

Consequently, we present these first, in this section.

The main development of this section is a parametric linear probler

which is in P (Theorem 3.3) but becomes NP-complete in its pre-multiplied

form (Theorem 3.11). Also of interest is a parametric integer problem

which stays in NP (Theorem 3.5).

Lemma 3.1 :

Let A and A be matrices with n respectively n columns A = [a ].

A = [a ], having the same number of rows.

Then the assertion:

(3.1) "For all r.h.s. b, whenever there is x > with Ax = b,

then also there is x > with Ax = b,"

is true if and only if the following assertion is true:

(3.2) "For all j = 1, ..., n there is x > with Ax = a"" .

"

This result remains valid when x and x are also required to be

integer vectors in both (3.1) and (3.2).

Proof : The necessity of (3.2) is clear, since Ax = a when x is the j-tn

unit vector. As to the sufficiency, if x > solves Ax = a , and
~

- "
(

'

)

x = (x, , ..., x ) > is such that Ax = b, then A( I x.x ) = b and
T,! n - , i

x = I^ x.x J
is a non-negative n vector. The same proof works when

^='
'

-(j)
integrality is required of x and x, for then x is integer.

Q.E.D.
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Theorem 3.2 :

Let L be the language of all quadruples (A, c, A c ) of rational

n respectively n vectors c resp. c, and rational matrices A resp. A of

n resp. n columns and the same number of rows, such that the following

holds:

(3.3) "For all r.h.s. b, min{cx|Ax = b, x > 0} equals or exceeds

min{cx|Ax = b, x > 0}."

Then L is recognizable in polynomial time.

Remark : In assertions like (3.3) are included, by implication, miniiriu-

values of +» (inconsistency) and - ".

Proof : Note that (3.3) holds exactly if the following holds:

(3. A) "For all z and b, whenever there is x > with Ax = b , ex < z,

then also there is x > 0, Ax = b, ex < z
.

"

With A = [a ] (cols.) and c = (c. , ..., c ), by Lemma 3.1 we have (3. A)
1 n

equivalent to:

(3.5) "For each j = 1, ..., n there is an x -' > with

A^^^^ = a^j\ ^^^^ < c."
- J

By Khachian's result, (3.5) can be determined in polynomial time, since

the number n of applications of Theorem 2.5 is less than linear in the

length of ( A, c. A, c ). In fact, since sparse storage is ruled out,

there is at least one word divider in the encoding of A for each column.

Q.E.D.

Theorem 3.3 :

Theorem 3.2 still holds if the words "or exceeds" is dropped in (3.3).

I.e., one can recognize, in polynomial time, whether two linear programs

are equal in value for all r.h.s. b.
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Proof : Two applications of Theorem 3.2, for both z(b) < z(b) and

2(b) < z(b), require polynomial time. Here z(b) and z(b) denote the

respective value functions.

Q.E.D.

Theorem 3.4 :

Let L be the language of all quadruples ( A, c, A, c ) of rational

n respectively n vectors c resp. c, and rational matrices A resp. A of

n resp. n columns and the same number of rows, such that the following holds:

(3.6) "For all r.h.s. b, minfcxJAx = b, x > 0, x integer] exceeds or

equals min{cxjAx = b, x > 0, x integer}."

Then L is in KP.

Proof : We adapt the proof of Theorem 3.2.

Without loss of generality, and with a polynomial computation, we

may assume that both c and c are integer. Then (3.6) holds exactly if:

(3.7) "For all b and integer z, whenever there is x , x > 0,

both X and x integer, with Ax = b , xc + x = z, then

also there is x , x > 0, both x and x integer, with

Ax = b, ex + X = z."

By Lemma 3.1, we have (3.7) equivalent to:

(3.8) "For each j= 1, .... n there is an x -" > 0, with x -^

integer, and Ax = b, ex 1 ^••

For each j =1, ..., n separately, there is a polynomial length of "guess"

adequate to determine whether or not there is an x > integer witli

Ax -' = b, ex -" < c., by Theorem 2.6. The length n vector

X = (x \ ..., X O long enough to store all possible guesses, need only

be polynomial length. Hence the determination of (3.8) is in NP.

Q.E.D.
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Theorem 3.5 :

Define L_ as in Theorem 3.3 with "exceeds or" deleted in (3.6).

I.e., L_ represents the problem of determining the equality of optimal

value of two integer programs, for all r.h.s. b.

Then L is NP-complete.

Proof : By Theorem 3.4, L_ is the intersection of two NP sets; hence

L is in NP.

To prove that L is NP-complete, it suffices to reduce any NP-complete

set S to L by a many-one function reduction. We chose for S the language

of pairs A, b defined in Theorem 2.7. I.e., ( A, b ) e S iff there is

an integer x > with Ax = b .

For an arbitrary matrix D, consider the question as to whether the

value functions of the following two programs are equal:

m
min X ^^ + 2 Z (z . + z

.

)

n+1 •=! ^ i

(3.9) subject to Dx + b^x ^. + Iz - Iz = v
•^ n+1

X, X .,, 2 , z > and integer
n+1 -

and

"^ + -
min 2 Z (z . + z .

)

i=l ^
'

(3.10) subject to Dx + Iz - Iz = v

X, z , z > and integer

In (3.9) and (3.10), D is m by n, x = (x , ..., x ), z = (z^, ..., z ),

z = (z,, ..., z ), V = (v., ..., V ), and I denotes an m by m identitv matrix
1 m 1 m
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We claim that the optimal values of (3.9) and (3.10) are equal for

all r.h.s. V, if and only if ( D, b ) t S. Since the construction of

the matrices and criterion vectors in (3.9) and (3.10) can be done in

polynomial time, it defines a polynomial time function f(( D, b )). If our

claim is true, ( D, b > e S iff f(( D, b )) £ L , and we will have

established N -completeness of L .

If ( D, b ) t S, let X > be an integer vector with Dx = b .

Then for anv feasible solution to (3.9) with x .^ > 1 we can, bv
n+i -

changing x in the solution to x + x^ > 0, obtain a new solution with x ,

U - n+I

decreased by one unit. As this change strictly decreases criterion value

(since z and z are unchanged), in any optimal solution to (3.9) we

have X = 0. Thus, if (3.9) has an optimal solution, it is also an

optimal solution to (3.10). If (3.9) is inconsistent, so is (3.10).

Note that (3.9) cannot be unbounded below in value (as the criterion value

is always non-negative). Thus, in all cases, the value of (3.9) is that

of (3.10); and our analysis is independent of v.

Suppose, on the other hand, that ( D, b ) «' S. Then (3.9) has an

optimal value of one for v = b , since x = 0, x ,, = 1, z = z = is a
n+1

solution, and no solution can have criterion value zero (for if x ,, =0,
n+1

z = z =0, then Dx = b , contradicting < D, b ) / S). Also, (3.10)

has an optimal value at least two for v = b , as z = z = in a

solution gives Dx = b , a contradiction. Thus the value function of (3.9)

and (3.10) are unequal for v = b .

Q.E.D.

We next return to the problem of parametric linear programming, but

in a pre-multiplied form. It is also significant that negation ("not")

occurs in (3.11).
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Lt'TTiTna 3.6 :

Let L, be the language of all quadruples { A, c, A, c, D ) of rational

matrices A, A, D and vectors c, c compatibly dimensioned, such that the

following holds:

(3.11) "For some b, the value of minfcxJAx = b, x > 0} does not equ^l

that of minfcxJAx = Db, x > 0}."

Then any set S € NP is polynomial time reducible to L by a many-one

function computation.

This result remains true if, in the definition of L , the matrix D

is restricted to have only unit and zero rows. Furthermore, if one desires,

A and c an be restricted to derive from the linear program:

min i. z.

(3.12) subject to z. - z. = b., j £ J,12 2

z , z >

where J is the set of indices for which D has a unit row. In addition,

"some b" can (optionally) be replaced by "some b with coordinates +1 •

"

We can similarly require coordinates of 0, +1.

Proof : It suffices, for arbitrary S e NP, to provide the necessary

polynomial- time reduction to the sublanguage of L which is defined by

all the restrictions in connection with (3.12).

Note that the value function of (3.12) is I maxiO,b.}. Our result

2^J ^

follows at once, by applying Theorem 2.6 in connection with the dual of

the linear program cited there.

Q.E.D.
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Lemma 3.7 :

Let A, A and D be matrices, suitably dimensioned. Then the assertion:

(3.13) "For all r.h.s. b, whenever there is x > with Ax = b,

then also there is x > with Ax = Db"

is true if and only if the following assertion is true, where A = [a ]

(cols. )

:

(3.1^) "For all j = 1, .... n there is x > with Ax = Da-"."

This result remains valid when both x and z are required to be

integer in (3.13) and (3.14).

Proof: Similar to that for Lemma 3.1.

Q.E.D

By the following result, the direction ">" of the inequality cited

in (3.11) is polynomial- time.

Theorem 3.

&

:

Let L be the language of all quadruples ( A, c, A, c, D ) of rational

matrices A, A, D and vectors c, c compatibly dimensioned, such that tlu

following holds:

(3.15) "For all b, the value of minicxiAx = b, x > 0} equals or exceed?

that of min{cx|Ax = Db , x > 0;.

Then L e P.

Proof : Note, using Lemma 3.8, that (3.15) holds if and only if for

j = 1, ..., n there is a solution x to

ex < c

.

- J

(3.16) Ax = D^^^^
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where A = [a ] (cols.) and c = (c. , ..., c ). By Khacian's result each
1 n

Instance of (3.16) is decidable in polynomial time, and only n instances

are involved.

Q.E.D.

Our next result, which is needed in what follows, states that a

certain specific kind of nonlinear consistency problem lies in NF.

Lemma 3.9 : The language L, of all six-tuples ( P, Q, R, p, q, a } of
D (J

rational matrices P, Q, R, rational vectors p, q and a rational scalar a ,

such that the following assertion holds:

(3.17) "There are 3, w with

p: > p

Qu' > q

and w R :> a

is in NP.

Proof ; The polyhedron P = {"iP:' > p], if non-empty, has a finite basis

[1^]:

(3.18) P = conv{:^|a c A} + cone{?~^|b e B}

for non-empty finite index sets A, B. Assuming P 4 <; , (3.17) holds if

and only if there are scalars a > 0, a c A, and ;;, > 0, b e B, with
a - D -

I Q = 1 and a vector w with:
, a

aeA

(3.19) Qw > q

w*^'^R( I a 0^ + I 6,
0~^) > a-

aeA beB

One way for (3.19) to hold is for there to exist , b t B, and w wit!
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(3.20) Qw > q

w'^RO^ >

Indeed, if (3.20) holds, for any e P and o > large enough,

w'^R(0° + aO~^) > a and 0° -t- o"'^ £ P. Otherwise, when (3.20) has no

solution w for any , in (3.19) we must actually have w R( I a C ) > a„

a A
(since all £. > 0). Bv T a =1, there must exist a e A with

b -
. a

aeA
tr„,a

w R; > a , I.e.

,

(3.21) Qw > q

tr„_a
w Re > a

is consistent. Thus, if P / <f-, (3.17) holds if and only if (3.21) is

consistent for some a £ A or (3.20) is consistent for some b e B.

The vectors ^ , a e A, can be further specified as follows. These

arise exactly as vectors of the forir. .' = J - where (' ,' ) is a

basic feasible solution to the linear system

(3.22) PS""" - p:^ > p

e"^, G^ >

Similarly, the vectors ' =1 - i arise from basic feasible solutions of

(3.23) Z l""- + : G^ = 1

i ' i ^

1 2
?j - p: >

1 2 ~
, >

These facts follow from the usual construction of a finite basis. While

not all finite bases arise this way, at least one does.

We are now ready to give our proceedure for testing the validity of

the assertion (3.17).
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In polynomial time, we can test to see if P ?* 4- . If P =
(f , (3.17)

is false, and no guesses are needed. If P ?* 4>. we proceed to make guesses.

Each guess consists of a pair of sets of columns, one for (3.22) and

one for (3.23). Bases are identified by testing subsets of columns for

linear independence, which is done in polynomial time (if a chosen subset

fails this test, the overall proceedure fails). Each basis is then tested

for feasibility; if the first is infeasible, the whole proceedure fails.

If the second basis is infeasible, we put = 0.

a -b
If we obtain two guesses 9 and G , we proceed to test both in (3.20;

and (3.21) for in polynomial time. If either one of these systems is

consistent, the proceedure is successful for these guesses; otherwise it

fails.

Clearly, the proceedure has at least one success if at least one of

the systems (3.20) or (3.21) are consistent. By our analysis, the latter

event occurs exactly if (3.17) is true.

Q.E.D.

Lemma 3.10 :

The language L^ of all six tuples ( A, A, D, D, c, c ) of rational

matrices A, A D, 5 and vectors c, c such that the following assertion is

true:

(3.24) "For some vector b, min{cx|Ax = Db, x > 0} is strictly less

than min{cx|Ax = Db, x > 0},"

is in NP.

Proof : Suppose that (3. 24) is true.

When the second minimum is + «> (indicating inconsistency) for the

vector b involved, the first cannot be + <=°, and so we must have a solution

to the system:



-17-

OA < c

0Db >

Ax - Db =

(3.25) X >

(The constraints OA < c, QDb > are equivalent to the +^ value for

consistency.) When the second minimum is finite for the vector b involved,

this second minimum value is equal to max{rDb|GA < c}. Hence there is then

a solution to the system:

''A < c

(3.26) ^ - ?Db <

Ax = Db

X >

Note that the second minimu^-i cited in (3. 24) cannot be - °^ for the vector b

involved

.

Thus, the truth of (3.24) entails the consistency of either (3.25)

or (3.26). The converse entailment is also easily verified. By Lemr^ 3.9,

the condition (3.25) respectively (3.26) describe sets S resp. S which

are in NP, are polynomial-time attainable from L . Thus, S U S is als.-

in NP, and is equivalent to (3.24).

Q.E.D.

Theorem 3.11 :

The language L, of Lemma 3.6 is NP complete.
4



-18-

Proof : By Lenima 3.6, we need only prove that L e NP. But

< A, c. A, c, D ) e L, if and only if either < A, A, 1, 5, c, c ) e L_ or
4 7

( A, A, D, I, c, c ) e L . This fact gives a polynomial time function

reduction of L, to the set (L_ x I*) U (I* x L_), where E* is the set of
4 7 7

all words in the alphabet Z of L . Since both L x Z* and Z* x L are in

NP by Lemma 3.10, so is L ,

Q.E.D.
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4. Some Complexity Results from Non-matrix Representation of Functions .

We begin with the problem of determining, given representations of

two polyhedral functions F, G whether or not they define the same function.

We shall see that the complexity of the problem depends on the type of

representation allowed.

Theorem 4,1: Consider functions of the form f.(b) = w b +
1 1

n

I |X..b| where w., X.., bcQ"'. Let F(b) = max f.(b). The probleir,

j=l ^J '

^ ^J l<i<L ^

of determining whether F(b,,...b ) = 2 lb. I for all b is NP-complete.
1 m J

'

Proof : It is easy to show that the inequality is in NP. We can

obtain this as a corollary of Theorem 5.2 in Section 5. To complete the

proof we reduce our problem to a form of the NP-coraplete satisf iabilitv

problem:

Instance: functions h.(b,,...b ) = ;j..b. where a.. = 0, 1 or -1;
1 1 m ij J ij

l<i<L, l<j <m.

Question: Does there exist b such that h.(b) < l|a..b.| for

1 < i < L?

Each b. corresponds to a variable in the satisfiability probler.

—

b. < corresponds to value T, b. > to F. h. corresponds to the ith

clause with a .
= 1 if the jth variable appears a.. = -1 if the negation

of the jth variable appears. The collection of clauses is satisfiable

if and only if the answer to our question is yes.

Now we describe the reduction. Given h. as in the instance define
1

n

f.(b) = h.(b) + Z |6..b.| where £.. = l-|a..l. Then F(b) / l|b.|

iff, for some b, F(b) < l|b.| iff the answer to our question is yes.

Q.E.D.
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Corollary 4.2 : Let F be defined as in A.l.

The problem of determining whether or not F(b) = min{cx|Ax = b, x > 0}

for all b is NP-complete.

Proof : We choose c, A so that min{cx|Ax = b} = l|b.i and apply

Theorem A.l to establish NP-hardness. Again, showing that inequality is

in NP is easy.

Q.E.D.

A different situation arises when we insist that the polyhedral

functions be explicitly given as maxima of linear functions.

Theorem 4.3 : The problem of deciding whether or not

F(b) = maxO.,b, . . .>. b} < G(b) = max{ X b, . . . X^ b} is decidable in polynomialIn- J. L

time

.

Proof : From familiar results in linear inequality theory F < G

for all b if and only if X . e jo(a^,...a ) for 1 < i < n. For each i^1 1 L - -

this can be determined in polynomial time by the Khacian algorithir..

Q.E.D.

Corollary 4.4 : With F and G as in 4.3 we can determine whether or

not F = G in polj'nomial time.

Next we present a partial result for the problem of deciding whether

a maximum of linear forms and the value function of a linear program

represent the same polyhedral function.

Theorem 4.5 : Let F(b) = max{X b, . . . X b} and

G(b) = min{cx|Ax = b, x > 0}. Suppose that: (i) the LP in G is feasible

for all b; (ii) G(0) ^ - °° (hence G(b) ^ - '=^ for all b); (iii) no dual

degeneracy is present, i.e., c is a linear combination of a subset of

the rows of A only if all rows of A are linear combinations of that subset.
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Then we can decide whether F(b) = G(b) for all b in polynomial

time.

Proof : We study the dual polyhedron P = {X|XA < c}. First we test

whether each X, is a member. Then we must determine whether a ,...A,,
1 IN

includes all the extreme points of P. It suffices to compute, for each

extreme X., all the adjacent extreme points (property (iii) ensures we

can do this) and verify they are also on the list. Also, by (i), (ii)

P is a polytope.

Q.E.D.

We conjecture that Theorem A. 5 is true without assumption (iii).

Possibly the device of perturbing c to eliminate dual degeneracy can be

used.

The analogue of polyhedral functions for integer programcing is the

class of Gomory functions. Here we will establish that the probler, of

determining whether two Chvatal functions are the same is NP-hard.

Since the class of Gomory functions includes the Chvatal functions this

establishes NP-hardness for Gomory functions. In Section 5 we will shov;

that inequality between Gomory functions is in NP. These two results iir.ply

the problem is NP-complete.

Theorem A.

6

: Consider the NP-complete* problem

Instance : Non-negative integers a..,b.., c.,d.;l<i<m,

1 < j < n

Question : Are there x. = or 1 such that
n n J

c.+ Ia..x. >d.+ Sb..x. for 1 < i < m?
' 2=1^' ' - ^ j=l ^' '

- -

*
This problem is clearly equivalent to the problem of whether a system

of linear inequalities has a solution in zero-one variables.
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We can construct in polynomial time Chvatal functionf F, G such that

the answer to the question is yes if and only if there is a z such that

F(z) / G(z).

Proof: The variables we will use in our functions will be r,,...r ;

1 n

s, ,...s, . Define x.(r.) = 1:7' + '^r T' , w.(s.) = ^sT' + ''^sT'. x. andIL 11 1 111 1 11
w. are zero or one depending on whether or not r. and s. are integers.

We will define all our other functions in terms of x. and w., which plav
1 1

the role of "zero-one variables." Define u(x,w) = "(Ix. + Iw
.

)

Ml 1

where M is chosen so that u = if all x., w. are zero, and 1 otherwise.

The function u will enable us to use the constant 1 in our formulas.

Next we define, for 1 < i < m, Chvatal functions F.(x ....x ; v, ,...v.-_)
- - 1 1 n 1 Q

and G.(x, ,...x ; w , ...w^) such that:
1 1 n 1 y

1. If all x and w are or 1 and u ^ (hence u = 1) then

F.(x,w) and G.(x,w) are either 1 or 2. If u = 0, F. = G. = 0.
1 1 11

II. If c + Za. X. < d. + Eb. .x. then F.(x,w) < G.(x,w) for all w.i.iJJ 1.13 3 1 -1
J 3

III. If c + Ea .X > d. + Eb..x. then, for some binary w, F.(x,v) = 2
i i3 3 - 1 13 3 1

and G.(x,w) = 1.

The formulas for F., G. are
1 1

F .= ^ ((l+c.)u + Ea. .X. + w- + 2w„+ ...+2^w^)
1 M 1 ij J 1 2 Q

n Q ^
G .= fr (d . u + Eb . . X . + w^ + 2w^ + . . . + 2 V. )iMiijjl2 Q

where M = 2 > 1 + c + Ea + Eb... Verification of I-III is straight-
i ij 13

forward. For different i, different w-variables are used.

Finally we define
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r 1 "1 n
F = -^*^— I F

2m- 1 i

r
3^

™ 2 in 1
^ " 2^;^ ^^i

"^
in(2nrfl) J^i

If u = 0, F. = G. = F = G = 0. If u ?< 0, F = 2 if all F. = 2 and11 1

F = 1 otherwise. If u y 0, and at least one F. = 1, then G = 1. If all

F. = 2, then G = 1 if all G. = 1, and G = 2 otherwise.

Thus F(x,w) = G(x,w) unless all F. = 2 and all G. = 1. By properties

II and III this can onlv occur if x. is a solution to our zero-one syster.
1

of inequalities.

Q.E.D.
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5. Systems of Inequalities Involving Gomory Functions are in NF

The main result of this section is

Theorem 5.1 : There is a polynomial p such that for any rationals

a , d. and Gomory functions G.: R -»- R the system of inequalities

k
^ a. .G.(x) > d., i € I,

j=l ^J ^ - '
'

(5.1) (I , I disjoint and finite)
k

I a. .G.(x) > d., i £ I^

j=l ^^ J ^ 2

has a solution only if it has a solution x e Q of size < p(S) where S

is the sum of the sizes of a.., d., and the expression defining G..

The proof requires several steps. We begin by reducing the probler.

to one dealing with Chvatal functions.

Lemma 5.2 : If G is an expression of size S defining a Gomory function

t

and y e R there are Chvatal functions D, C., C. such that: (i) For all ::,11
if X satisfies the inequalities

(5.2) C.(x) > C.(x) i £ I

then G(x) = D(x); (ii) y satisfies (5.2); (iii) the size of the expression

defining D is < S; (iv) The sum of the sizes of C., C. is bounded by a

polynomial in S.

Proof : We argue by induction on the expression G. If G is linear

we take D = G and 1 empty. If G = ^T' the induction hypothesis gives

D, C., C, corresponding to G and we simply replace D by 1)~^. The case

G = uG is treated similarly. If G = G + G the induction hypothesis
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gives D corresponding to G , D to G . We take D = D + D . The in-

equality system for G is the union of the systems for G , G .

The interesting case is G = max{G ,G }. Without loss of generality

we assume G(y) = G (y) > G (y). We take D = D . The inequality system

for G combines the systems for G , G with the additional inequality

D^(x) > D^Cx).

Corollary 5.3 : There is a polynomial q such that for any syster.

(5.1) of size S, if (5.1) has a solution there is a system (5.1)' of size

< q(S) such that: (i) All the functions in (5.1)' are Chvatal functions;

(ii) Any solution to (5.1)' is a solution to (5.1); (iii) (5.1)' has a

solution.

Proof : Let y be a solution to (5.1). Apply Lemma 5.2 to each G..

Form (5.1)' by replacing each G. by the corresponding D and adding

additional inequalities of the form (5.2) for each G..

Q.E.D.

From now on we assume that the G, in (5.1) are Chvatal functions. The
J

next step is to show that if (5.1) has a solution, it has a solution in

which none of the denominators of its components is "too big."

Lemma 5.

A

: There is a polynomial q such that, given any system o:

linear inequalities

X .X > s . i € J,1-1 1

(5.3) [>.. £ q"]

^^ .X > s . i e J^11 2

let S = sum of sizes of components of all A. plus sizes of denominators

of s.. (5.3) has a solution only if it has a solution all of whose

denominators are of size < q(S).
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Proof: Apply the finite basis theorem toP={x|Ax>s,i^J MJ^
' i - i' 1^2'

If (5.3) has a solution, it has a solution which is a weighted average (all

weights equal) of at most |j L' J-| extreme points of P plus an integer

vector (corresponding to a sufficiently large multiple of the directions

of infinity of P). Since each extreme point of P has a demoninator of

bounded size (determinants) we are done.

Q.E.D.

Lemma 5.5 : If a system (5.1) of size S has a solution there is a

system (5.3) such that: (i) every solution to (5.3) is a solution to

(5.1); (ii) (5.3) has a solution; (iii) the sum of the sizes of the

denominators of (5.3) is bounded by a polynomial in S.

Proof : Let y be a solution to (5.1). Each Chvatal function G. can

be written as G . (x) = X.x + F.('^.,x^, ...^. x )"' where the size of F(.,.)
1 1 1 il iN

is < the size of G.. To construct the appropriate system (5.3) we have

the inequalities X..x < '^..iT', A..x > T..y^ - 1 for all i,i together

with inequalities of the form (Za..A.)x > d. - Ia..F.(y) i e I, and

similar inequalities for i c I .

Q.E.D.

Corollary 5.6 : There is a polynomial q such that, if (5.1) is of

size S and has a solution, there is a solution with sum of sizes of

denominators < q(S).

Proof : We use Lemma 5.5 to construct the appropriate system (5.3)

and invoke Lemma 5.4
Q.E.D.

Next we show that any system (5.1) can be replaced by an integer

program of polynoraially bounded size. We require a preliminary result

showing Chvatal functions have a periodicity property.
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Lemma 5.7: Let G . be a Chvatal function and e. the ith unit vector.
J 1

There are integers N.. > 0, M.. such that, for all x, G.(x + N..e )
=

G (x) + M... Moreover the sizes of N.., M.. are polynomially bounded bv

the size of G .

.

J

Proof : We argue by induction on the expression defining G.. If G.

is linear the result is immediate. If G .
= aG I the induction hypothesis

gives N' , M' . We take N.. = KN ' . , M. ,
= aWl .'

. for suitable k. If
ij ij ij ij ij ij

G = ^'~
, N. .

= n: . and M. .
= M! . , if G .

= G] + G'.' we take N. .
= K.' .N'.'.

,

j J IJ ij iJ ij J J J ij iJ iJ

M. .
= M' .N".'. + M'.'.n: .,

Q.E.D.

We are now ready to complete the

Proof of Theorem 5.1 : By corollary 5.3 we can find a systen

k
(5.1)' I a. .H.(x) > d. i £ Jn

j=l ^J ^ - ^
'

I a. .H.(x) > d. i e; -I-,

j=l ^J J -
2

in which all H are Chvatal functions, (5.1)' has a solution and x
3

satisfies (5.1) if it satisfies (5.1)'. By Lemma 5.5 there is a solution y

to (5.1)' with denominators bounded by a polynomial in the size of (5.1)'

[hence, by a polynomial in the size of (5.1)]. Let N.., M.. be as in

Lemma 5.7 with G = H . Let W = JI N .. Let z be such that: (i) the ith
J J ^

i

^-'

component of z is between zero and W.; (ii) z - y is an integer linear

combination of the vectors W.e.. The size of z is polynomial in the
11

size of (5.1). For each L e J U J- there is a P such that, for all

k
1 2 Li

x, I a, .H.(x + W.e.) = P, . + Ea, .H.(x). Let Q, = Za, .H.(z). The system
. ^ Lj J 11 Li Lj J L Lj J

of inequalities with integer variables t. unconstrained in sign
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i=l

(5. A)

I P^ .t. > dL - Q, L e J,
Lx 1 - L 1

n
I P^ .t. > d - Q L e J

. , Li 1 L L 2
1=1

is of polynomial size. Furthermore, if t. is an integer solution to (5. A)

then X = z + It (We) is a solution to (5.1)', hence is a solution t111
(5.1). Since y coresponds to a solution to (5.4), (5. A) is consister.i .

By Theorem 2.7, (5. A) has a solution of polynomial size which gives a

solution to (5.1) of polynomial size.

Q.E.D.

This result immediately implies that the problem of determining if

F(x) ^ G(x) for some x, where F and G are Gomory or Chvatal functions, i?

in NP. Theorem A. 6 then imples that these problems are NP-complete.
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6. Subadditive Duality Requires Exponential Space

In this section, we provide an example of a subadditive dual,

whose every Chvatal function solution requires exponential space to write

down. We accomplish this by, essentially, examining a class of two-

dimensional integer programs due to Bondy (and cited in [ 7 ] , and the

main content of our result is Theorem 6.3.

However, there are a fair number of technical results needed to convert

this latter theorem to the form desired, which is Theorem 6.6. These

technical results concern interrelations between certain proof systems and

monotone Chvatal functions, as well as interrelations between monotone Chvatal

functions (which are related to the inequality format Ax > b for constraints)

and Chvatal functions (which are related to equality format Ax = b).

Our proofs of the technical results are sketchy, since these are

easy. Similarly, we discuss proof systems informally, to save space and

reduce notation. More rigorous treatments of proof systems are available

in [15], [17]. Proof systems were earlier used in optimization contexts,

either implicitly or explicitly, in [1], [7], and [12].

The sentences of our proof system (our "logic") are numerical-valued

linear inequalities in n indeterminates x, , ..., x :

1 n

(6.1) a.x, + a„x„ + ... + a x > b112 2 n n -

(Actual rational numbers a , ... a , b written in binary occur in (6.1).
1 n

In the system discussed in this paper, the sentences and the atomic

sentences are the same (i.e., we do not allow logical connectives or

quantifiers—this is a free variable system).

There are three "rules of deduction": 1) Nonnegative combinations;

2) Chvatal 's rule; and 3) Weakening.
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The rule of nonnegative combinations has any number t of premises

a.x > b., all of which are linear inequalities, and involves t nonnegative

(rational) scalers A , ..., X > 0. Briefly put, it allows the "deduction"

of (lA.a )x > iX.b. from the premises, and is symbolized:.11-. 11
1 1

(6.2) V ^-\' v^ ^2' •••'vr ^
t t

(lA.a.)x > IX. b.^11 -^11

The rule due to Chvatal has one premise, and it is s>Tnbolized:

(6.3) ^^ ^
^

a X > b

It allows the deduction of 3x - 2x > 5 from 2.7x - 2.7x ^ ^-5, for

example.

The rule of weakening allows us to conclude less than we know, and

serves some technical purposes. It is symbolized:

(6. A) ^^ ^
^

a'x > b'

It has one premise and requires that a! > a. for j = 1, ..., n and b' ^ b.

As regards proofs, the only one-line proofs are sentences (6.1).

All proofs of greater length are obtained inductively by use of the rules

of deduction. As the rule (6.2) has several premises, proofs in this

logic occur in "tree form," spread out at the top and coming to a last

sentence at the bottom. The very topmost sentences are called the axiom?

of the proof; the last sentence is its conclusion . (Axioms occurring in

multiple locations can be distinguished from each other or not, as desired.)
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The intended interpretation of our proofs are: if the axioms are true

for the quantities x , . . . , x whenever these quantities are nonnegative

integers, the conclusion of the proof is also true. This interpretation

can be established by induction on the number of rules of deduction used.

Rule (6.2) is actually valid for all x, and rule (6. A) requires only x • 0.

Chvatal's rule (6.3) is true since ax > b implies '"a'^x > b (by x > 0) , and

then, since a x is integer for x integer, we conclude '~a~'x > ' b .

The logic L described is actually complete for consistent sets of

axioms, i.e., it proves exactly the set of valid inequalities. This

completeness property is the content of Shrijver's result [16]. We will

not need completeness in this section.

Proofs in L yield monotone Chvatal functions (Proposition 6.1), and

monotone Chvatal functions correspond to proof schema, i.e., a monotone

Chvatal function together with a set of axioms yields a proof in L. Recall

that a monotone Chvatal function is one in which all the "linear atons" /.v

which occur are nonnegative (A > 0). The detailed description of monotone

Chvatal functions is in [4].

In what follows, the (Chvatal) degree of a proof 1 is the maximurr.

number of occurences of the Chvatal rule (6.3) on any branch of Z (viewing
'

as a tree). Also, the (nested) degree of a Chvatal function F(b) is the

maximum length of a chain "of occurences of the round-up operation . in

(an expression for) F(b), counting also the outermost occurrence of an

operation. Note that the degree of F is a lower bound on the length of

(an expression for) F.

Proposition 6.1 :

To any proof Z, there corresponds a monotone Chvatal function F of

the same degree, such that the last line of I is a weakening of:
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(6.5) I F(a.)x. > F(d)

j=l ^ ^
"

In (6.5), the axioms of Z are Ax > d, and A = [a.] (cols). (An arbitrary

ordering of the axioms of I can be used to form the linear sj'Stem Ax > d)

Proof : First, one establishes this lemma concerning the logic L: all

occurrences of the weakening rule (6.^) can be moved to the very end of a

proof, and be replaced by one occurrence, without changing the conclusions

of I. Thus, it suffices to prove the proposition in the case that Z hat-:

no occurrences of the weakening rule.

Now the proof proceeds by induction on the length of Z.

For a proof of length one, put A = a, d = b, F(v) = v.

When the last line of Z arises in a context (6.2) of nonnegative

combinations, let F be the function associated with the subproof of I

consisting of the line ax > b and the subtree above (k=l, ..., t)

.

Let the premise of the cited subproof be A^x > d , A = [a ] (cols).

J

If A has m vows, let m = m, + . . . + m , and let Ax > d denote the entire
k k It

system Ax>d,...,Ax >d. Then define the monotone Chvatal function

F on q"* by:

f|
: 1= ^iF^(V;l) + ••• ^^t^'^t^

One easily verifies that this is the desired F. The degree of F is the

maximum of the degree of the F , which is the degree of Z.

When the last line of I arises in a context (6.3) of Chvatal 's rule,

and G is the function providing the preceeding line, let F = \G\. One

easily verifies that the degree of F is that of Z, as both have increased

by one.
O.E.D.
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Proposition 6.2 :

For any monotone Chvatal function F = F(v) in m variables v = (v ..., v ),m

and any set of m axioms Ax > d (where A = [a ] (rows) has m rows a ), there

is a proof T from axioms Ax > d of (6.5), in which no weakening rule (6.4)

is used. Moreover, the degree of Z is that of F.

The proof of Proposition 6.2 is by induction on the degree of F, via

ideas similar to those in the proof of Proposition 6.1. We give an example:

to the monotone Chvatal function

F(v , v ) = 3 2v * '^'9 "•" '"v^ + 'v""" ' corresponds the proof schema:

V^2
'\-^2

^v,+v;^

^2

V .^"i
1' 2

Vr-2"^

(6.6)

V "^^ V
1 2 1 2

2'~2v^-+^^ + 'v^+r;;^+'^.

Specifically, if 1 . 5x - 2.5x + .3x > .7 and .2x - 1.3x > - 1.4

are taken as axioms, (7.6) yields the proof in Figure 1. In Figure 1

different occurences of the same axiom were viewed as instances of the one

axiom. Next to a deduction line, we have indicated if (6.2) was used (L)

or (6. 3) was used (C).

Theorem 6.3 :

Any proof of I with last line -x > from the axioms 2mx - x > 0,

-2mx ~ X > - 2m, has degree at least m.
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Proof: The polytope P , consisting of all (x, ,x ) > which satisfy

the axioms, has vertices (0,0), (1,0), and (1/2, m), and contains only

the integer points (0,0) and (1,0).

For a (rational) polyhedron P, let P' denote the convex set defined

by imposing, simultaneously, all possible deduced inequalities with proofs

of degree zero or one. (From [13], P' is a rational polyhedron).

k+1 k _
Inductively set P = (P ) ' . Note also the monotonicity: P r; Q

implies P' p Q'

.

We show that:

(6.7) If k < m, P contains a point (x, ,x ) with x„ > 0.
ra 1 Z /

Note that (6.7) establishes the theorem, since a proof of degree k < m

has a conclusion which is valid for all points in P .

m

By monotonicity, (6.7) follows from

(6.8) P - P , for m > 1
m — m-1

E.g., if (6.8) is true, P^ ^ (P ,)' ^ P „, etc., so that P :^ P° m ~ m-1 — m-2 m ~ in-k

for k < m; yet (1.2, 1) e P^.

The proof of (6.8) is not hard.

Let a X + a^x^ > be anv linear inequality with P to one side,
1 1 2 2 - ' m

such as can be derived without Chvatal operations (using (6.2) and (6.4)

alone). Note that ^,~^x, + '^T'x^ > b also has P to one side.11 2 2 - m

Without loss of generality, b is as large as possible.

Since (0,0) (1,0) and (1/2, m) are the extreme points of P , we have
m

(6.9) b = minfO, ^a^ , 1/2^^"^ + m^^"^}
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Thus, if the result of a Chvatal operation (6.3) is nontrivial (i.e.,

if '"b"' > b), we have b = q + 1/2, where q is integer. Since (1/2, m-l)

is interior to P , we have 1/2 ^aT' + (m-l) ^7" > ""b ' = q + 1. Thus,
m ± z —

(1.2, m-l) satisfies the conclusion of any one use of Chvatal 's rule

I

Hence (0,0) (1,0), (1/2, m-l) e P , and (6.8) is immediate.

Q.E.D.

Q.E.D.

Corollary 6.

A

:

Any monotone Chvatal function F which satisfies

^(-D ^-'

(6.10) F('^) < -1

has degree at least m.

Proof : This follows from Proposition 6.2 and Theorer. 6.3

We note that our proof in Lemma 5.1A of [4] actually establishes

the following result:

Lemma 6.5 :

If F is a Chvatal function with F(-e.) < for j = 1, ..., n,

there is a monotone Chvatal function F*, of the same degree as F, such

that:

(6.11) F(v) = F*(v) for all v e z"

We remark that, in (6.11) we can take F*(v) = Xv + F**(v), where

X > O.and all linear atoms Ov of F** have < 6 < 1. However, we shall

not need this sharper result below.
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Corollary 6.6 :

Any Chvatal function F which satisfies

(6.12) F(_°^) >

F(_°) <

has degree at least m.

Proof : This follows by Corollary 6. A and Lemma 6.5.

We recall from [8], that the pure integer program in equality

format

min ex

(6.13) subject tc Ax = b A = [a.] (cols)

X > 0, integer

has, as its "subadditive dual"

max F(b)

(6.1A) subject to F(a-') < c. j = 1, ••., n

F Chvatal

We proved in [8] that, when (6.13) has a finite value, then its dual

(6.19) has an equal finite value, which is attained (see Corollary 2.5)

Theorem 6.7:

Q.E.D,

Any optimal solution to the subadditive dual of
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mxn -X

(6.15) subject to 2inx^ - x - x =

-2nix, - x„ - X, = -2in
1 Z 4

X , X , X , X , > and integer

has degree at least m.

Consequently, any such solution is of exponential length.

Proof : The integer program (6.15) is min {-x„ I (x^ ,x„) e P ), where
2 12 m

P is as defined in the proof of Theorem 6.3. Since the onlv integer
m

points in P are (0,0) and (1,0), the value of (6.15) is zero. Consequentlv,
m

anj' optimal solution F to the dual of (6.15) satisfies (6.12), and

Corollary 6.6 applies, showing that F has degree at least m.

As regards the "consequently," a degree m function F has at least

m occurrences of the round-up operation ' • ' , hence length at least m.

For m = 2 , the length of the program (6.15) is linear in n (as m is

written in binary), yet the dual is of exponential length 2 .

Q.E.D.

Corollary 6.8 :

There are arbitrarily large integers d > 1, such that some Chvatal

function of degree d is not equal (even for all integer vectors) to any

Chvatal function of degree less than d.

Proof : If the results were false, there exists an integer d such that

any Chvatal function is equal (for all integer vectors) to some Chvatal

function of degree d or less. This contradicts Theorem 7.7.

Q.E.D.
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In [13], the second author described an integer program, which is

solvable using the Chvatal operation, but requires exponential time via

branch-and-bound. In contrast, the program (6.15) requires exponential

space to arrange its proof, hence at least exponential time for solution

by algorithms based on Chvatal operations (such as Gomory's Method of

Integer Forms), even though it is solved by branch-and-bound in one

arbitration of a variable (set x = versus x = 1). By juxtaposing

these two examples, we see that there cannot be any purely theoretical

result, for "general" integer programs, which shows the dominance of

branch-and-bound over the special class of cutting-plane methods considered,

or vice-versa. If theoretical results of dominance are established, they

will require assumptions on the "structure" of the integer program (i.e.,

the types of quantities A, b, c) or the distribution of the data.

Alternatively, such results are empirical (and hence even more likely to

require structural assumptions, as experience has shown).
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