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We show, using small examples, that two algorithms
previously published for the Bilevel Linear Programming problem
(BLP) may fail to find the optimal solution and thus must be
considered to be heuristics. A proof is given that solving BLP
problems is NP-hard, which makes it unlikely that there is a good
exact algorithm.

Bilevel Linear Programming (BLP) is a nested optimization

model involving two problems, an upper one and a lower one; both

problems have to be optimized given a jointly dependent set

s= (( x >y)-0 : Ax+By<b}. The upper decision maker, who has control

over x, makes his decision first, hence fixing x before the lower

decision maker selects y. The general form of BLP can be defined

as:

MAX Cj -x + dj -y
x

where y solves:

MAX d2 -y

(1)
such that:

Ax + By < b

x, y > 0.
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In this paper, which is a part of a broader research on BLP

[ Ben-Ayed 1988], we study two algorithms: the Parametric

Complementary Pivot Algorithm [ Bialas-Karwan-Shaw 1980, and

Bialas-Karwan 1984] and the Grid Search Algorithm [Bard 1983]; we

show that those algorithms do not always find the optimal

solution, and we point out some of their potential pitfalls.

Finally, we prove that the problem of solving BLP is NP-hard;

this a special case of a little-known result in Jeroslow [1985],

with a simpler proof. The NP-hardness of BLP suggests that, as

with integer programming problems (which are also NP-hard)

,

algorithms involving some form of branching [ Falk 1973, Gallo and

Ulklicu 1977, Fortuny-Amat and McCarl 1981, Bialas and Karwan

1982, Papavassilopoulos 1982, Candler and Townsley 1982, Bard and

Falk 1982, Bard and Moore 1987] are to be preferred.

1. The Parametric Complementary Pivot Algorithm (PCP)

The Parametric Complementary Pivot Algorithm (PCP) [Bialas-

Karwan-Shaw 1980, and Bialas-Karwan 1984] is distinguished by its

popularity and the large number of papers that refer to it. Most

published BLP algorithms compare their efficiency to that of PCP.

When replacing the lower problem in (1) by its Kuhn-Tucker

conditions after introducing dual variables u, slack variables z

and surplus variables t, an equivalent formulation of the BLP

problem can be obtained:
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MAX Cj -x + dj •

y

such that:

Ax + By + z = b

BT u - t = d2 (2)

Yit, =0

uiZi =0

x, y, u, z , t > .

The PCP algorithm uses formulation (2). At each iteration,

the algorithm tries to find a feasible solution that gives an

objective function value a to the BLP problem by solving the

following system:

Ax + By + z = b

eIy + BT u-t = d 2

c x
• x + dj-y - s = a

(3)
Yit4 =0

uiZi =0

x, y, u, z, t, s >

where s is a one-dimensional surplus variable, I is the identity

matrix and e is a positive scalar sufficiently small so that the

solution to the above system is the same as when z equals zero.

In attempting to solve (3), Bialas et al. added the positive

definite matrix e I to use a technique similar to that proposed by

Wolfe [1959] in solving a system corresponding to convex

quadratic programming problems.
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Although the PCP algorithm may find the optimal solution for

some BLP problems, this is not guaranteed. The following is an

example for which PCP does not give the optimal solution:

MAX 1.5x a
+ 6yi + y2

where y x and y2 solve:

MAX Yl + 5y2

such that:

Xj + 3yj + y2 < 5

2Xj + y, + 3y2 < 5

x, < 1

x x , y l , y2 > 0.

We will consider the problem of finding a solution with

upper objective value a > 2. The system of equations

corresponding to (3) is:

X, + 3y :
+ y2 + z, = 5

2x, + y! + 3y2
+ z 2

=5

Xj + z 3
= 1

. 01y a
+ 3u 2

+ u 2
- tj =1

. 01y2 + Uj + 3u 2
- t 2

=5

1 . 5Xj + 6y x
+ y2

- s = 2

yitj = y2 t 2 = u,z, = u 2 z 2 =0.

The PCP algorithm initializes by solving the LP obtained by

ignoring the lower objective function. In this example, that

gives X!=y2 =0, y a
=1.667. The complementary slackness conditions
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then require that ta =u 2 =0 and u x
=.328. The fifth constraint above

is not satisfied, so we introduce an artificial variable w such

that . OlVi +u x
+3u 2 -t 2 +w = 5. This gives the system:

Yj + .333X! + .333y2 + .333z x
= 1.667

z 2 + 1.667xj + 2.667y 2
- .333z! = 3.333

z 3 + l.OXj = 1

u 1
- .OOlx, - .001y2 + .333u 2 - .001z

a
- .333tj = .328

w + .OOlXj + .011y2 +2.667u 2 + .OOlz, +.333tj - 1 . 0t 2
= 4.672

s + . 5Xj + 1.0y 2 + 2-OZi = 8.

The algorithm performs pivoting operations on the above

system in order to make w=0 while preserving the complementarity

conditions. From the w-equation above, we see that entering x
a ,

y2 , u 2 , Zj or tj would decrease w. However, u 2 cannot enter

because z 2 =3.333>0. Similarly, z x and t x cannot enter. If we

choose y2 as the entering variable, z 2 leaves. At the next step,

we may have u 2 enter (u
:

leaves), then z x enters to produce the

system:

ya + .147x, - .059z 2
- .176s = .059

y2 + . 618Xj + .353z 2
+ .059s = 1.647

z 3
+ l.OXj = 1

u 2 - .OOlXi + 3.0u s
+ .001z 2

- l.Otj + .002s = .999

w - .002x a
- 8Uj - .005z 2 + 3 . Otj - 1 . 0t 2

- .006s = 1.985

Zj - .059X! - .176z 2
+ .471s = 3.176.
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The only variable which would decrease w at this stage is

t, , which cannot enter because y^O. Thus, the PCP algorithm

stops at this point with the conclusion that a solution to the

problem with upper objective function value greater than or equal

to 2 cannot be found. However, x 1 =y2 =l, yi =0 is such a solution.

In this small example, one could guess the optimal solution

using hindsight. For example, if we temporarily allowed w to

increase, we could have Xj enter and y x leave in our last system,

which would then allow t a to enter and give the desired solution.

Also, we would have found the solution if x :
entered instead of

y2 at the beginning. However this example is sufficient to show

that the PCP approach is flawed. On larger problems, such "quick

fixes" may not be available.

Bialas-Karwan-Shaw [1980] proposed for their algorithm a

proof based on techniques similar to those used to prove Theorem

3 in Wolfe [1959]. However, the two situations are not identical.

In particular, condition (e) in Bialas-Karwan-Shaw cannot be

obtained in the same way as the corresponding condition in

Wolfe's paper, and this makes the proof invalid. A specific

counter-example is available from the authors and is also

included in Ben-Ayed [1988].

2. The Grid Search Algorithm (GSA)

The Grid Search Algorithm (GSA) was proposed by Bard [1983].

The author claimed that, for some x* between and 1, the
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solution to a BLP problem is the same as the solution to the

following parameterized LP:

MAX t* (c, -x + d, -y) + (1 - t* )d 2 -y

x,y

such that

:

Ax + By < b

x, y > 0.

In other words, by finding the value of t* , one can solve BLP as

an equivalent LP. Unfortunately, the statement is not always

true. For instance, there is no parameterized LP that gives the

same optimal solution as the following BLP problem:

MAX x + y
x

where y solves:

MAX -y

such that:

4x + 3y > 19

x + 2y < 11

3x + y < 13

x, y > 0.

The GSA, intended to find x* , starts with the infeasible solution

(3,4) when t=l (it is infeasible because substituting x by 3 and

solving the lower problem would give a value for y that is

different from 4). 3/5 is the only value of t, between and 1,

that preserves the optimality of (3,4). The vertex (4,1) obtained
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with the new t is feasible and is supposed to be the optimum

according to GSA. However, the actual optimal solution is (1,5).

In general, if the GSA is currently at the point (x.y) such that:

d2 y>d2
y* and c

1
x+ (dj -d2 )y=Cy x* + (d a -d2 )

y*
, then the algorithm has

no way to go to the optimal vertex (x*
,

y*
)

.

Problems with GSA were independently found by F . A. Al-

Khayyal, and P. Marcotte

.

The GSA is very quick; it could be used to provide a lower

bound for other algorithms such as those based on the branch and

bound technique. However, this algorithm is risky for two

reasons. First, as is the case for PCP , it does not tell whether

the solution it gives is global or local. And second, it does not

provide intermediate results (improved upper and lower bounds);

if the algorithm is terminated before the stopping rule is met,

no solution will be given, not even an approximation.

3. The BLP Problem is NP-Hard

The Knapsack Optimization problem can be defined as the

problem of choosing from a given set of natural numbers (a : , a 2 ,

. .
.

, an } a subset that adds to the largest value not exceeding a

given natural number B. It is well known that this problem is NP-

hard (see for instance Garey and Johnson 1979). We now show that

if we could always solve BLP quickly, we could solve Knapsack

Optimization problem quickly.
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One way to formulate the Knapsack Optimization problem is

N
MAX I a± xd

i=l

subject to:

(4)
N
I a4 x ± < 6

i=l

x, = or 1

.

The requirement that x ± equal or 1 can be enforced indirectly

by allowing xd to be any real between and 1 and making the

distance from x ± to the nearest integer as small as possible.

That is, the constraints:

x ± = or 1

can be replaced by the requirement that x ± be an optimal solution

to the problem:

N
MIN I y4

i=l

subject to:

Yi = MIN [x± , (1-x, )}

< Xi < 1.

Therefore the Knapsack Optimization problem (4) can be

reformulated as the BLP

:
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N N
MAX I a ± x ± - M E y ±

i=l i=l

where the y± solve:

N
MAX I y ±

i=l

such that: (5)

N
I a± Xi < B

i=l

y4 < 1 - x ±

Xi < 1

Xi , Yi >

where M is a large number to make the minimum of the sum of the

y ± s equal to zero.

The following result shows that, if M is chosen sufficiently

large, every non-integer x used to produce a feasible solution to

the BLP (5) is inferior to an integer solution z. Since there are

only finitely many feasible integer solutions, this implies the

optimal solution to the (5) is integer.

For technical reasons, we will assume that MAX {

a

4 j
> 2. We

can do this since a Knapsack problem with all a ±
=1 is trivial.

Theorem

Let M > (MAX{a A ))
2

, f(x)= I a x x,
,
g(x)= I MIN[x ± , l-x ± j . If x
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is feasible, and not all x± are integer, then there is a feasible

z with all z A integer and:

f(x) - Mg(x) < f(z) - Mg(z) (6)

Proof

Let Q = l-l/MAX{ai j. Our assumption implies that Q > .5. We

modify the feasible x in a sequence of steps of three kinds:

(1) If < Xj < Q for some j=l, make x
i

- 0.

(2) If Q < Xj , Xj, < 1 for some j + k, replace them by z
i

, zk

so that a
3
Zj +ak z k =a j

x
i
+ ak xk , Zj +z k >x i

+xk , and one of the two

new values is 1 while the other is between and 1.

(3) If Q < Xj < 1 for some j, with all other components

integer, make x., = 1.

Each of these steps increases the number of integer

components of x, so we terminate with all components integer.

If we let z be obtained from x by a single use of step (1),

f(z) > f(x)-(MAX{ ai }) Xj . If Xj < .5, g(z) = g(x)-x
d

. If .5 < X, <

Q, g(z) = g(x)+x
3
-l < g(x)-l/MAX{ai } . In either case, (6) holds.

If z is obtained using step (3), we clearly have f(z) > f(x)

and g(z) < g(x), so (6) is immediate.

If z is obtained using step (2) we have f(z)=f(x). The

requirement Zj +z k > x^ +xk > 1 implies that g(z) < g(x) except in

the special case in which aj =ak and z
t

, z k > .5, in which case
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g(z)=g(x). However, we cannot obtain a z with all components

integer by using only steps of this kind, since each such step

leaves at least one component of x strictly between .5 and 1.

Thus, when we obtain z with all components integer, (6) will

be satisfied. It remains to show that the final z is feasible, in

particular that Z a ± x ± < B .

Steps (1) and (2) clearly preserve feasibility. To show that

step (3) also does, note that Z a ± z ± < 1 + Z a ± x A
< 1+B. Since B

and Z a A Zi are integer, Z a ± z ± < B

.

Q.E.D.

This result leaves little hope that a polynomial algorithm

can be found for BLP, and suggests that the situation for BLP is

similar to that for integer programming. In fact, BLP can be

solved as a mixed integer programming problem [ Fortuny-Amat and

McCarl 1982], which makes it an NP-complete problem.

Acknowledgement: The authors were introduced to BLP by David E.

Boyce, who applied Bilevel Programming to the study of

Transportation Network Design problems [Boyce 1986 and LeBlanc-

Boyce 1986]

.
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