

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University.
UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

Center for Advanced Computation

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA, ILLINOIS 61801

CAC Document No. 134

COMPUTATIONAL TECHNIQUES FOR INPUT-OUTPUT ECONOMEIRIC MODELS
by
Killion Noh and Ahmed Sameh

Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign

CAC DOCUMENT NO. 134

COMPUTATIONAL TECHNIQUES
FOR
INPUT-OUTPUT ECONOMEIRIC MODELS

By

Killion Noh
and
Ahmed Sameh

Center for Advanced Computation University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

September, 1974

This work was supported by a grant from the U. S. Atomic Energy Commission with the cooperation of the National Science Foundation.

ABSTRACT

In an input-output econometric model we are often concerned with solving the system of n equations (I - A) $x=y$, repeatedly for various changes in the elements of A. This system of equations expresses gross output requirements (x) as a function of final demand (y) and the technological structure of the economy (A); changes in the elements of A can come about for a variety of reasons. In this paper we present techniques for solving such large systems of equations, and for updating the solution to account for changes in A. The methods presented effect substantial savings in computing time and storage requirements over those conventionally employed.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
2. SQUARE ROOT FREE GIVENS REDUCTION 3
3. COLUMN MODIFICATION 4
4. ROW MODIFICATION 7
5. ELEMENT MODIFICATION 10
REFFRENCES 12
FORIRAN IV PROGRAMS 13

1. INTRODUCTION

In an input-output econometric model we are often concerned with solving the system of n equations (I - A) $x=y$, repeatedly for various changes in the elements of A. This system of equations expresses gross output requirements (x) as a function of final demand (y) and the technological structure of the economy, and changes in the elements of A can come about for a variety of reasons. In this paper we present techniques for solving such large systems of equations, and for updating the solution to account for changes in A. The methods presented effect substantial savings in computing time and storage requirements over those conventionally employed.

Several methods [1] can be used in solving the system

$$
\begin{equation*}
(I-A) x=y \tag{1.1}
\end{equation*}
$$

Gaussian elimination requires $\frac{1}{3} n^{3}$ multiplications, Householder triangularization requires $\frac{2}{3} n^{3}$ multiplications and n square roots, and Givens triangularization requires $\frac{4}{3} n^{3}$ multiplications and $\frac{1}{2} n^{2}$ square roots. In this paper we use a modification of Givens method developed by Gentleman [2] that requires only n^{3} multiplications and no square roots. There are two reasons for such a choice. The first is that the matrices $B=I-A$ are usually dense and of large size, hence on some computers we may have to resort to secondary storage; and since these input-output matrices are often stored by rows Givens transformations are more suitable than those of Householder. Second, some of the procedures in updating the solution due to changes in B such as removing a row or a column are inherently unstable, so in order to minimize such effects it is desirable to use orthogonal transformations.

The system (1.1) is solved by Givens transformations as follows. We construct an orthogonal matrix Z as the product of Givens transformations such that [2],

$$
\begin{equation*}
Z B=D^{\frac{3}{2}} R \tag{1.2}
\end{equation*}
$$

where D is a diagonal matrix, and R is unit upper triangular. From (1.1) and (1.2) we have

$$
D^{\frac{3}{2}} R x=Z y
$$

i.e.,

$$
\begin{equation*}
\mathrm{Rx}=\hat{\mathrm{y}} \tag{1.3}
\end{equation*}
$$

which is solved by backsubstitution.
Note that we do not store Z, the Givens transformations are multiplied by the final demand vector y as they are produced. When the matrix B is well-conditioned instead of solving (l.1) we may solve the normal equation

$$
\begin{equation*}
B^{t} B x=B^{t} y \tag{1.4}
\end{equation*}
$$

Of course the condition number of the coefficient matrix is the square of the original one; however, this is of no serious consequence since B is very well-conditioned. Using (1.2) we may write (1.4) in the form,

$$
\begin{equation*}
R^{t} D R x=B^{t} y \tag{1.5}
\end{equation*}
$$

Note that we do not store Z, the only storage required is that for B, R, D, x, and y, i.e. $2 n^{2}+3 n$ words. Finally x can be obtained by solving sequentially the systems,

$$
\begin{equation*}
R^{t} x_{2}=B^{t} y, \quad D x_{1}=x_{2}, \quad R x=x_{1} \tag{1.6}
\end{equation*}
$$

When a new right hand side $\tilde{\mathrm{y}}$ is given with B unchanged, (1.6) is again used where we replace $B^{t} y$ by $B^{t} \tilde{y}$.

Various methods have been developed for updating matrix factorization
due to changes in the elements of the matrix. We refer mainly to the papers by Gill and Murray [3] and Golub, et. al. [4]. Throughout this paper we use Gentleman's square root free Givens transformation for the updating of the solution x in (1.1) due to row, column, and a single element changes in B.
2. SQUARE ROOT FREE GIVENS REDUCTION

We describe briefly the factorization (1.2). Let us consider a Givens transformation [2] that rotates two row vectors such that

$$
\begin{align*}
& {\left[\begin{array}{ll}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{llllll}
\sqrt{\alpha} & \sqrt{\alpha} & u_{2} & \ldots & \ldots & \sqrt{\alpha} u_{n} \\
\sqrt{\beta} & v_{1} & \sqrt{\beta} & v_{2} & \ldots & \ldots \\
\sqrt{\beta} & v_{n}
\end{array}\right]} \\
& \quad=\left[\begin{array}{cccccc}
\sqrt{\tilde{\alpha}} & \sqrt{\alpha} & \tilde{u}_{2} & \ldots & \ldots & \sqrt{\alpha} \\
\tilde{u}_{n} \\
0 & \sqrt{\tilde{\beta}} & \tilde{v}_{2} & \ldots & \ldots & \sqrt{\tilde{\beta}} \tilde{v}_{n}
\end{array}\right] \tag{2.1}
\end{align*}
$$

where

$$
\left.\begin{array}{rl}
\tilde{\alpha} & =\alpha+\beta v_{l}^{2} \\
\tilde{\beta} & =\alpha \beta / \tilde{\alpha} \\
c & =\alpha / \tilde{\alpha} \\
s & =\beta v_{l} / \tilde{\alpha} \\
\tilde{u}_{i} & =c u_{i}+s v_{i} \tag{2.2}\\
\tilde{v}_{i} & =v_{i}-v_{l} u_{i}
\end{array}\right\}
$$

Note that no square root. evaluations are involved in these formulae and (2.1) may be written as

$$
\begin{align*}
{\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right] } & {\left[\begin{array}{lll}
\alpha & \\
& \beta
\end{array}\right]^{\frac{1}{2}}\left[\begin{array}{ccccc}
1 & u_{2} & \cdots & u_{n} \\
v_{1} & v_{2} & \cdots & \cdot & v_{n}
\end{array}\right] } \tag{2.3}\\
& =\left[\begin{array}{cc}
\tilde{\alpha} & \\
& \tilde{\beta}
\end{array}\right]^{\frac{1}{2}}\left[\begin{array}{ccccc}
1 & \tilde{u}_{2} & \cdots & \tilde{u}_{n} \\
0 & \tilde{v}_{2} & \cdot & \cdot & \tilde{v}_{n}
\end{array}\right]
\end{align*}
$$

We define an n-dimensional Givens transformation $\mathrm{z}_{\mathrm{k}}^{\mathrm{j}}$ by,
in which $c \equiv \cos \alpha_{k i}, s \equiv \sin \alpha_{k i}$, and the angle $\alpha_{k i}$ is chosen such that the element in the position (k, i) of the matrix $z_{k}^{i} B$ is eliminated. Let

$$
z=z_{i+1}^{i} \cdots \cdots z_{n-1}^{i} z_{n}^{i}
$$

and,

$$
\begin{equation*}
z=z_{n-1} \cdots z_{2} z_{1} \tag{2.5}
\end{equation*}
$$

thus,

$$
Z B=D^{\frac{1}{2}} R
$$

where D is diagonal, and R is a unit upper triangular matrix.
As is mentioned in Section $1,2 n^{2}+3 n$ storage locations and n^{3} multiplications without square root operations are necessary for Givens reduction. In this paper and the attached programs we are assuming that the matrices B and R, and the diagonal vector D are stored in the high speed memory of the computer and are available for updating the solutions due to changes in B, which will be discussed in the following sections.
3. COLUMN MODIFICATION

Given the system (1.1) and the factorization (1.2) we wish to determine
the new factorization

$$
\begin{equation*}
\tilde{B}^{t} \tilde{B}=\tilde{R}^{t} \tilde{D} \tilde{R} \tag{3.1}
\end{equation*}
$$

in less than n^{3} operations, where \tilde{B} is different from \dot{B} in only one column ([3], [4]).

We first consider deleting a column b_{i} from B. Let

$$
B_{1}=\left[b_{1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n}\right]
$$

be an $n x(n-1)$ matrix obtained from B by deleting the i-th column, thus

$$
B_{1}{ }^{t} B_{I}=R_{0}^{t} D R_{0}
$$

where R_{0} is R with the i-th column deleted. If we partition R_{o} as

$$
R_{0}=\left[\begin{array}{ccc}
& \vdots & \\
H_{1} & \vdots & H_{2} \\
\ldots \ldots \ldots & \ldots & \ldots \\
0 & \vdots & H_{3}
\end{array}\right]
$$

then the (i-l) x (i-l) submatrix H_{1} is unit upper triangular, and H_{3} is an upper Hessenberg matrix of order ($n-i$). We wish to find an orthogonal transformation Z such that

$$
\begin{align*}
B_{l}^{t} B_{1} & =R_{o}^{t} D^{\frac{7}{2}} Z^{t} Z D^{\frac{7}{2}} R_{0} \\
& =R_{l}^{t} D_{I} R_{l} \tag{3.3}
\end{align*}
$$

where

$$
D_{I}^{\frac{3}{2}} R_{I}=Z D^{\frac{3}{2}} R_{0}
$$

in which R_{1} is an ($n-1$) $\dot{x}(n-1)$ unit upper triangular matrix. This can be done by defining Z as a product of the following Givens transformations:

$$
z=z_{n}^{n-1} \cdot \cdot \cdot z_{l+2}^{i+1} z_{i+1}^{i}
$$

That is, Z reduces the upper Hessenberg matrix H_{3} to a unit upper triangular matrix. Thus, deleting a column from B and obtaining a modified factorization involve only the temporary storage of the ($n-i$) x ($n-i$) lower principal submatrix of R_{o}.

We now consider adding a column b to B_{1}. Let

$$
\begin{align*}
& \tilde{B}=\left[\begin{array}{ccc}
B_{1} & \vdots & b
\end{array}\right] \\
& \tilde{R}=\left[\begin{array}{c:c}
R_{1} & \vdots \\
\cdots & \vdots \\
0 & \vdots
\end{array}\right] \tag{3.4}
\end{align*}
$$

and

$$
\tilde{D}=\left[\begin{array}{ccc}
D_{1} & \vdots & 0 \\
\cdots & \vdots & \cdots \\
0 & \vdots & d
\end{array}\right]
$$

in which an n-vector r with its n-th component unity and a scalar d are
to be determined such that

$$
\tilde{B}^{t} \tilde{B}=\tilde{R}^{t} \tilde{D} \tilde{R}
$$

From (3.4),

$$
\left.\begin{array}{rl}
\tilde{\mathrm{B}}^{\mathrm{t}} \tilde{\mathrm{~B}} & =\left[\begin{array}{c}
\mathrm{B}_{I}^{t} \\
\cdots \\
\mathrm{~b}^{t}
\end{array}\right]\left[\begin{array}{l}
\mathrm{B}_{I}
\end{array} \vdots\right. \\
& \mathrm{b} \tag{3.5}
\end{array}\right] .
$$

and

Comparing right hand sides of (3.5) and (3.6), we obtain

$$
\left.\begin{array}{rl}
{\left[R_{1}{ }^{t_{D_{1}}}: 0\right.} \tag{3.7}\\
r
\end{array}\right] r=B_{1}{ }^{t}{ }_{b r} .
$$

from which r and d are computed.
Thus, the modified factorization (3.1) is completely determined and the modified solution \tilde{x} is obtained from

$$
\begin{equation*}
\tilde{R}^{t} \tilde{D} \tilde{R} \tilde{x}=\tilde{B}^{t} y \tag{3.8}
\end{equation*}
$$

by forward and backward substitution as before.
The maximum number of operations necessary for a column modification is only $5 n^{2}$ multiplications. Note that only $3 n$ extra storages for x, y, and a new column in addition to those for B, D, and R are required for deleting and adding a column, and updating D and R.

4. ROW MODIFICATION

Let us first consider deleting a row b_{i}^{t} from B,

$$
B_{1}=B-\left[\begin{array}{c}
0 \\
\cdots \\
b^{t} \\
\ldots \\
\cdots \\
0
\end{array}\right]
$$

then

$$
\begin{aligned}
B_{1}{ }^{t} B_{1} & =B^{t} B-b_{i} b_{i}^{t} \\
& =R^{t} D R-b_{i} b_{i}^{t}
\end{aligned}
$$

where R and D are the original factors of B and we assume that they are available. We wish to determine a unit upper triangular matrix R_{l} and a diagonal matrix D_{1} such that

$$
\begin{equation*}
R_{1}{ }^{t} D_{1} R_{1}=R^{t} D R-b_{i} b_{i}^{t} \tag{4.1}
\end{equation*}
$$

To do this ([3], [4]), solve

$$
\begin{equation*}
R^{t} D v=b_{i} \tag{4.2}
\end{equation*}
$$

for v and let

$$
s^{2}=1-\|v\|_{2}^{2}
$$

Now we construct an $(n+1) x(n+1)$ matrix

$$
\begin{aligned}
& R_{o}=\left[\begin{array}{cccc}
s & \vdots & 0 \\
\cdots & \ldots & \ldots & \ldots \\
D^{\frac{1}{2}} v & \vdots & D^{\frac{1}{2}} R
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & \vdots & 0 \\
0 & \vdots & D^{\frac{1}{2}}
\end{array}\right]\left[\begin{array}{ccc}
s & \vdots & 0 \\
\cdots & \vdots & \cdots \\
v & \vdots & R
\end{array}\right]
\end{aligned}
$$

and reduce it to a unit upper triangular matrix,

$$
\mathrm{Z}\left[\begin{array}{c:cc}
1 & \vdots & 0 \tag{4.3}\\
\ldots & \vdots & \cdots \\
0 & \vdots & D^{\frac{1}{2}}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s} & \vdots & 0 \\
\ldots & \vdots & \mathrm{R}
\end{array}\right]=\left[\begin{array}{c:c}
1 & \vdots \\
\mathrm{v} & 0 \\
\hdashline & \vdots \\
0 & D_{1}^{\frac{1}{2}}
\end{array}\right]\left[\begin{array}{ccc}
1 & \vdots & \mathrm{r}^{t} \\
\ldots & \ldots & \cdots \\
0 & \vdots & R_{1}
\end{array}\right]
$$

where

$$
z=z_{2}^{l} \ldots \ldots \cdot z_{n}^{l} \quad z_{n+l}^{l}
$$

and, R_{1} and D_{1} are the desired factorization of B_{1}. In order to show that, we have from (4.3)
comparing both sides, we obtain

$$
\begin{aligned}
v^{t} D v+s^{2} & =l \\
R^{t} D v & =r \\
R^{t} D R & =r r^{t}+R_{l}{ }^{t} D_{l} R_{l}
\end{aligned}
$$

Therefore

$$
r=b_{i}
$$

and, the relation (4.1) is satisfied.
For adding a row g_{i}^{t} to B_{l}, let

$$
\tilde{B}=B_{1}+\left[\begin{array}{c}
0 \\
\cdots \ldots \\
E_{i}^{t} \\
\cdots \cdots \\
0
\end{array}\right]
$$

Then

$$
\begin{equation*}
\tilde{B}^{t} \tilde{B}=B_{l}{ }^{t} B_{l}+g_{i} g_{i}^{t} \tag{4.4}
\end{equation*}
$$

Now construct an $(n+1) x n$ matrix

$$
\left[\begin{array}{c}
D_{1}^{\frac{1}{2}} R_{1} \\
\ldots \ldots \ldots \\
g_{i}^{t}
\end{array}\right]
$$

and reduce it to a unit upper triangular matrix,

$$
Z\left[\begin{array}{c}
D_{1}^{\frac{1}{2}} R_{1} \tag{4.5}\\
\cdots \cdots \cdot \cdot \\
g_{i}^{t}
\end{array}\right]=\left[\begin{array}{c}
\tilde{D}^{\frac{1}{2}} \tilde{R} \\
\cdots \cdots \cdots \cdot \\
0
\end{array}\right]
$$

where

$$
z=z_{n+1}^{n} \cdot \cdot z_{n+1}^{2} \quad z_{n+1}^{1}
$$

From (4.5) we obtain

$$
\begin{equation*}
R_{l}{ }^{t} D_{l} R_{l}+g_{i} g_{i}^{t}=\tilde{R}^{t} \tilde{D} \tilde{R} \tag{4.6}
\end{equation*}
$$

Therefore, from (4.4) and (4.6)

$$
\tilde{\mathrm{B}} \tilde{\mathrm{~B}}=\tilde{\mathrm{R}}^{\mathrm{t}} \tilde{\mathrm{DR}}
$$

Thus the modified factorization is completely determined and the modified solution is obtained from

$$
\tilde{R}^{\mathrm{t}} \tilde{\mathrm{D}} \tilde{\sim} \tilde{x}=\tilde{B} \mathrm{t} y
$$

as before.

The number of operations required for the row modification is $5 \frac{3}{2} n^{2}$ multiplications. Again, only $4 n$ extra storage locations are necessary in addition to those for B, D, and R.

For an alternative method for row modification see Sameh and Bezdek [5].

5. ELEMENT MODIFICATION

When only one element of the matrix B is changed and we wish to update the solution, the Sherman-Morrison formula [6] may be utilized since only n^{2} multiplications are required in the process.

Let us consider the problem in which we wish to solve

$$
\begin{equation*}
\left(B+\alpha e_{i} e_{j}^{t}\right) \tilde{x}=y \tag{5.1}
\end{equation*}
$$

where α is a scalar, and e_{i} and e_{j} are the $i-t h$ and the j-th column vectors of an identity matrix, respectively.

From (5.1) and the Sherman-Morrison formula, we obtain
where

$$
\begin{align*}
\tilde{x} & =\left(B+\alpha e_{i} e_{j}{ }^{t}\right)^{-1} y \\
& =\left(B^{-1}-\beta B^{-1} e_{i} e_{j}^{t} B^{-1}\right) y \\
& =B^{-1} y-\beta B^{-1} e_{i} e_{j}^{t} B^{-1} y \tag{5.2}\\
\beta & =\left(\alpha^{-1}+e_{j}{ }^{t} B^{-1} e_{i}\right)^{-1} \tag{5.3}
\end{align*}
$$

Assuming the original solution is known, $x=B^{-1} y$, (5.2) becomes

$$
\begin{equation*}
\tilde{x}=x-\beta B^{-1} e_{i} e_{j}^{t} x \tag{5.4}
\end{equation*}
$$

If we solve for w in

$$
\begin{equation*}
\mathrm{B} \mathrm{w}=\mathrm{e}_{i} \tag{5.5}
\end{equation*}
$$

using the factorization (1.5), then

$$
\beta=\left(\alpha^{-l}+w_{j}\right)^{-l}
$$

and

$$
\begin{equation*}
\tilde{x}=x-\beta x_{j} w \tag{5.6}
\end{equation*}
$$

Although n^{2} multiplications are necessary for the element modifications, if the i-th column of B^{-1} is available, the number of multiplications is reduced to n.

Only $2 n$ extra storage locations are necessary in addition to those for B, D, and R.

Until now, we have assumed that the computer core memory is large enough so that the matrices B, R, and D can simultaneously be contained in it. However, since we are dealing with matrices of large size, it may happen that the core memory cannot accommodate all or part of them simultaneously. In this case, the matrices can be stored by rows in the secondary storage, and several rows of B or R are brought into the core whenever necessary.

For applying Givens transformation for triangularization of B or updating R, only as many rows of B or R that the core memory can accommodate are brought in since only two rows of B or R are necessary for a single Givens transformation.

In order to compute $B^{t} y$, which appears in (3.7), (3.8), and Section 4 , each row vector of the matrix, B_{i} in the core is multiplied by y_{i}, i-th component of y , i.e.

$$
B^{t} y=\sum_{i=l}^{n} B_{i} y_{i}
$$

REF ERENCES

[1] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford, 1965.
[2] W. M. Gentleman, "Least Squares Computations by Givens Transformations Without Square Roots", J. Inst. Maths. Applics., Vol. 12 (1973), pp. 329-336.
[3] P. E. Gill and W. Murray, "A Numerically Stable Form of the Simplex Algorithm", National Physical Laboratory, DNAM Report No. 87, Teddington, England, 1972.
[4] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, "Methods for Modifying Matrix Factorizations", Math. Comp., Vol. 28, (1974), pp. 505-535.
[5] A. E. Sameh and R. H. Bezdek, "Methods for Increasing the Computational Efficiency of Input-Output and Related Large Scale Matrix Operations", CAC Document No. 66, Center for Advanced Computation, University of Illinois, 1973.
[6] A. S. Householder, The Theory of Matrices in Numerical Analysis, New York, 1964.

C SFEGIPL CAEES FDR GIUENE TRAWGFORMATIDNS
IF (DHEE(UI).LT.EF'S) GO TID 25
DO 2 D M=.JP1, N
$20 R(I, M)=R(I) M)$ MI
$\therefore(I)=欠(I) d I I$
$R(I . J)=1 . \operatorname{GDO}$
$D(I)=U I: 1 \cup I: D(I)$
60 TO 30

36 COHIT IAJIE
[0 $100 \mathrm{~L}=\mathrm{JP} 1, \mathrm{~N}$
$K=\mathrm{F} \cdot \mathrm{J}-\mathrm{L}$

$R 〔 K, J)=0.0 D 0$
EOTO 90
35 EOWTIPUE
IF（CAEECII：GE．EPS） 10 TD 50

TEMF＝－FE（I，M）
R（I．M）＝F（K．M）
4 F （K，H）$=$ TEMF
$T E F T=-K(I)$
$\because C I=W$（K）
$\therefore C K=$ TEIT
$T E M F=D(I)$
[)$<I)=D(K)$
$[\mathrm{CK}=$ TEITP
［01 $45 \quad \mathrm{~F}=\mathrm{JF} 1, \mathrm{~N}$

[)$(I)=V I * W+0(I)$
$\mathrm{FCI}, \mathrm{O}=1 \mathrm{EOD}$
品 TO
5 CO CHTINDE
GIVENS TEHPEFOFIATIUNS
FLLFHF＝［ $\because \mathrm{I}$ ）
EETA＝D（K）

RCI．J＝1．Wag
R（K，Iン＝日 000
EEAR $=$ AI FHM $A^{\prime} \mathrm{C}$（I）
SEAE＝EETH：WIMC（I）
［口

$5 \mathrm{ECK} \mathrm{F}=\mathrm{FEMP}$

$\therefore(I)=C E R E+\%(I)+$ SEAR＊$\%(K)$
$\therefore C R=T E H F$
ge RIDTIPJJE
16日 CINTINDE
TEMF＝F（N，N）
XCN＝\％CNYTEMF
$D(N:=T E M F: T E F P+D(N)$
$\mathrm{R}(\mathrm{H} . \mathrm{N}=1 . \mathrm{BLO}$
$\stackrel{r}{r}$
C．EFCKHFED EUESTITITTON
［ $120 \mathrm{I}=1 \mathrm{H}$
$T=11-I+1$
$\mathrm{JF} \cdot 1=\mathrm{J}+1$

IF（IF1．GT．W）GO TD 120
［O 110 M＝TF1．N
119 TEMF＝TEMF＋R（S，M）：$\%$（M）
12G $\because(J)=\breve{C}(J)-T E H P$
13［ COHT IAIE
RETIREN
ERID


```
0
0
Oロ
\square0
```



```
    GRE KNOWNN.
    INFIIT
        NW [ELLAREE [IMENSIOR OF MATRI:K G
        N GRDER OF MRTRI% A
        H MATEIM DF DROER &
        E: RIGHT HARID SIOE YECTOR
        GOL NEN EOLUNH VECTOF:
        IEOL THE IOOL-TH EOLUNTN DF A IS EHFH|BEO
        CIFGORAL WECTOR OETHISNEC FFOM "GISGEN'
```



```
        EFS MADHEFG*(PIOFM DF F% DRTGIPIED FFOMM GIGGEN'
    OUTFIUT
    O UPDRTEC GOLUTIRN VECTOR
    O GFORTED DIFGONAL VEIGTOR
    F: IFOATED UNIT UFFER TRIFNGILARR MATRI%
```



```
    REHL:& FLFHF, EETA, UI, YI, EERR, SEAR, TEMF%, EFS, DHES
    FEFMOE ICOL-TH COLUNN, DF R TO DETAIN FO
    N|1=|-1
        IF 《IOOL EO N` GO TO 210
        00 こG J=ICOL, RMM
        TF1=, J+1
        [0] I=1,JP1
    2Q R(I,J)=F(I,IF1)
    FEDUETIDN DF FEG TO UPFEF: TRIFNGULAFF FORN K1
        [0] 2G0 I=IETL, MMM
        K=I+1
        UI=F(I,I)
        YI=F(K,I)
        IF «OFES(UI). LT.EPG) GO TO 120
        IF (I. ES. ||1) EG TO 115
        0110 J=K人, N+1
    11ब R(I,J)=R区I,J),UI
    115 RCI. I =1. E0Q 
        DcI)=|I:+UI*C\(I)
        B010 125
    12@ F(CI,I)=0. EDO
    125 EONTINUE
        IF (CPESOUI).GE, EFS)GOTD 12O
        R(K,I)=19. 900.
        G10 190
    13G EOMTINUJE
        IF (DAPE:SUI). GE. EFS` GO TO 1.5B
        0135 J=?,N+1
        TEMP=-P(I.J)
        R(I,J)=R(K.J)
    135 R(K.J)=TEIAP
        TEMF=D(I)
        O(I)=D(K)
        DCK)=TEHF
        IF <I. EQ. NH11` GO TO 145
```

```
            OG 14G JaK! Hidi
        14{\mp@code{(I,J)=R(I.J),VI}
        145 厄OHT IH|E
            D(I)=WIF*:I#D(I)
            R!I, I)=1. EDG
            [0] 190
        150 CONTIPHE
            RLFHH=[!(I)
            EETH=CO\K)
            DCI)=RLFHG+EETA+'VI I*YI
```



```
            R!I,I`=1. 且回
            R!K!I)=19.6[4
            DEFE:=HLFHF,D(I )
            SEFR=EETF#WI CMCI
            IF &I. EG.NN1` GO TO 190
            [015S T=K阱M1
            TENF=F(K,T)-UI+FEI,J J
```



```
    155 RCK,J)=TEMP
    190 ETNTIPHE
    2g[ COPTIPUE
C
            (TRFH:GPGEE OF F1):+COL=&
    21E ENWTINEE
            IOOLM1=ICOL-1
            IF &IOL. EO 1》 Bn TO 235
            [# 2-6 I=1, IOOLH1
            TENF=O. SOR
            \20 I=1,N
    20日 TENF=TEHF+A(I,T)*COL(I)
    220%%J%=TE|AP
            IF <IGOL EO M% EiG TO 2E|
    235 COHTIPHE
            0% -5G,T=ICOM, 吽1
            IF1=J+1
            TEITF=O B0, 
```



```
    24日 TENF=TEMF+R(I,IF1)*COL(I)
    25目 ({J)=TEFMF
    ZEG DODTINUE
C
                            GOHFITE THE LFET DOLDNA OF ETILDE AND THE LFST EOMFONENT GF DTILDE
    00220 J=1.NW1
    TM1=J-1
    TEMF=G10 QOM
    IF &T EQ 1) gQ TO 32G
    010 I=1., TH1
    3\@ TEMF=TEIF+FECI, J+FE(I,N)
    3EG R(J, Hう=%(J)-TEMP
```



```
    23日 F(I, |)=F(I,N),O<I
    TEMF'=日. ECM
    [1] -4EI=1, d
    24G TEMF=TEMF+COL(I)*COL(I)
    EETH=E1. S0, 
    [56 I=1,N|1
350 EETA=EETA+R(I,M)*F(I,N)*D(I)
    [@N=TENF-EETH
    P(H,N)=1. WOD
```

```
C
    COMFUTE FHE=\GTILDE)T*B
        IF (ILOL. EQ 1) BO TO 2P5
        [0 EOJ J=1, ILOLML
        TEIF'=0. 000
        01%70 I=1.N
    37Q TEMF=TEMF+F(I,J):EE(I)
    36日 人OT=TENIF
        IF (ICOL. EO.N) [O] TD 4B5
    385 CDNTINDE
        DO 4013 J=ICOL, PNTL
        JF\cdot1=,J+1
        TEMF=0. 50, 
        OO 2OI=1.N
    290 TEMF=TEMF+A(I, JP1)*E\I)
    4G1, K(J)=TEMP
    405 TEMF=0. 000
    DOLO I=1.N
    410 TEMF=TEMTP+COL(I) + E(I)
    K(N)=TEMP
C
    FDEMARED ARID EADEWARC SUESTITUTIONS
        DN 4巳O J=1,N
        JM1=.J-1
        TEMF=E1 E00
        IF (J EO 1) [iO TB 436
        00 420 I=1. N
    420 TEMF=TEMF+R(I, J)+%(I)
    4S日 R心J)=人CT)
        DO 44B I=1.N
    440 <(I)=8(I)/D(I)
    001 4E, I=1,N
    I= \I-I I+1
    JF:1=,J+1
    TEMF=0. RDO
    IF (IP1. GT. N) GO TO 4E0
    00 456 K=,TF1,N
    450 TEMF=TEMF+E(J,K)*%(K)
    4\epsilon日 : (丁口)=%(J)-TEMP
C
    REDRCEEING OF X(1), . . , X(N)
    IF (IOOL EDN: GD TD 4S0
    TEMF=%(N)
    DO 47日 I=ICOL, NM1
    T=N-I+ICOL
    479 <(J)=%(J-1)
    *(IDOL)=TEMP
    4 8 9 ~ E D H T I P N J E ~
        RETURN
    EHC
    SUEROUTINE ROMMOD(NN,N,A,B, ROW, IROW,D,R, K,EFS, V)



```

 FRE KHOUN, Y IS F TEMFIRAR:'N STDFAGE VELTOR
 INFUIT
 MN [DELAFED DINENSIDN OF MHTRIX A
 |N ORCER OF MATEIY A
    ```
```

B A FINTPIX DF DRDEP N
E RIGHT HGFID SIDF YELTOR
FOW REW FOM NELTOR
IEOH THE IFOW-TH FEOW DF A I'S EHFRUGED
O DIBGGMAL WEOTDE DETAIPED FFOTH SIWMEN
FR UNIT UFFEF TFIANGIGLFE NATEI% DETFINAED FROH GIVGEN

```

```

 NIJTFIIT
 Z LIFOHTED SOLISTION VESTOR
 [3 UFCHTED DIFIGINL WELTOF:
 F UFDGTED INIIT IFFEF TFIANGLILAR MATEIK
    ```


```

 SOLSE (RT)**(D)*U=BI FDR V
 OM 10,T=1,N
 10 X(J)=H(1F:OW,J)
 [0] 20 I=1,N
 JN1=,I-1
 TEMF=日, 50,
 IF 乡J. EO 1) MO TO SG
 [0] I=1, TM1
 2@ TENF=TENF+F゙(I,J):W(VI)
 30 WJ)=%(J)-TEMP
 [0] 40 I=1,N
    ```


```

 [n] 45 I=1, |
 45 %1%=600
 0I=1. E[0]
 S=6.000
 [i] 200 I=1.N
 K= |: - I +1
 |I=S
 YI='प(%)
 IF (LHESOMD.GE.EFS) ID TO 135
 UK)=Q EOQ
 [0] TB100
 155 EOHTIHUE

```

```

 [1401 J=FN
 TE|F=-%(J)
 8-J)=FE(K,J)
 149 ECK J`=TEMP
TEMF=OI
[I=[!K\
[CK)=TEIMP
[01.45 J=K,N
145 N(J)=%(J),MI
DI二口I*WI*DI
E=1. E[TM
U(K)=6, 乐DB
10 T0196
150 EONTINUE
FHLFHH=[OI
EETH=D(K)

```

```

 D<K)=FLFHF#EETA,OI
 S=1. ब[05
 WCK%=G. EDB
 CEHF:=FI_FHH,OI
 SEHF:=EETA*UI,OD
 [口1EG J=KN
 TEMF=F:(KっJ)-UI䋨(J)
 X\J)=EEFRP+%(J)+SEFR*R(K,J)
 160 RCK,J=TEMP
 196 EONTIPNJE
 2G6 CONTIP|IE
 C

```

```

 0日 220,J=1.N
 TEMF=目. E100
 0日 210 I=1,N
 E=F<I,I\
 IF (I. EQ. IFOW) S=FOM\I\
 21. TEMF=TEMF+5:E(I)
 220}<(%)=TEM
 C
RECIETION DF RO TO UNIT UFFER TRIFNIULAR: MATEIX RTILDE
DK=1. E1CH
DO 450] I=1,N
IP:1=I+1
|I=R(I.I)
IF (CHE:G(II). LT. EFS) GO TO 225
IF (I.EDN` GO TG 22- [0 -201 J=IF1,N 22日 R(I,T)=R(I,J),UI 322 COMTIPNJE R(I, I)=1. EDG D(I)=UI:+UI % D (I) T0 TO <30 325 R(I,I)=0.00B 3S0 EOMTIP|UE U=F:0|<I IF (DHESMUI). IE. EFE) ro TO 3>5 FOW\I)=日. [10日 5010 T00 335 CONTIPHE IF <DHESUID. EE. EFE` GO TO 359
IF <I. EN. N` Lil TO 342
[0 34日 J=IP1,N
TEMP=-R(I, I)
ECI, d)= FOW(N)
34@1 ROW4!}=\mathrm{ TEMP
342 EONTTP|UE
TEMF=O(I)
D(I)=DK
DK=TEMP
IF (I. EQ. W) GO TD 347
[0] 345 J=IP1.N
345 R(I,N)=R(I,J),NI
3 4 7 CONTIPHUE
D(I)=WI:*WI:+D(I)
R<I, I }=1. बDO
00 T0 390
35G CONTIPNDE

```
```

 HLFHM=[:IO
 ECTR=DK
 C<I`=HLFHA+EETR*WI*UI
 OK=FLFHMFECTHMD(I)
 CEFF:=FLFHFOD(I)
 SEAFR=EETA*MIMD(I)
 FCI, I =1. Q0G
 FOWCI = EOE
 IF《I.EG N` riO TO 3GQ
 [0] 20日 J=1F1. N
 TEMF=FOWCI\-UI:FE(I,J)
 R(I,J)=SERR*R(I,J)+SEPR+FOW(J)
 36[FO|NO=TEMP
 2G日 EONTINUE
 406 CINT IPNE
 C

```

```

 OO 4-8 J=1.N
 TM1L=,T-1
 TEMF=E1. 日CO
 IF (JN1. LT. 1) 010 TOU
 DI 4e区 I=1, JM1
 429 TEMF=TEMP+ECI,J`**< I .
 4Z W!J`=%(J)-TEMP
 [0] 44日 I=1,N
 440 U(I)=|<I),D(I)
 [O| 4E, I=1. M
 I= P-I I +1
 IP1=T I +1
 TEMF==1000
 IF 凸JF1. GT. N) IN TO 4EB
 [O 456 K=.JF1,N
 4SE TEMP=TEMP+F(T, K):%(K)
 4EQ (%J)=W(J)-TEMP
 FETIEFA
 EPNO
    ```

C SOL'E F:T+[%F%%=FT:+E(I)
    OD 20, J=1, H
```

```
    Tili=, i-i
    TEMF=0. 100
    IF (J. EQ. 1) GO TO 30
    [) 201 I=1,JM1
    2@ TEMP=TEMF+R(I,J)*:V(I)
    30 U(I)=F(ITH, I)-TEHP
    [N 40 I=1, N
    4a|(I)=U(I)/D(I)
    [0] ER I=1,N
    I=N-I+1
    IF}1=.\textrm{J}+
    TEFHP=0.1 00B
    IF &J.EG.N) ID TOEO
    [O 501 K=JF1, N
    5⿴囗 TEMF=TEMF+R(J,K):Y(K)
    EG W(J)=V(J)-TEMP
COHFUITE SIGMA FND TFIS
    SITMA=ENT-HCITH,ITH)
```



```
    TAII=SITjMM,TAIJ
C
C COMFIITE THE UFDHTED EOLUITION
    TEIF:=THUI*N(JTH)
    [0] 
    P0 &(I)=S(I)-TEHF+M(I)
    RETIIEN
    END
```


19. Security Class (This Report)

510.841 L 63 C
 CAG DOCUMENTSURBANA ${ }^{\text {COO }}$

 134-140 1974

