路

UNIVERSITY OF
 ILLINOIS LIBRARY
 AT URBANA.CHAMPAIGN BOOKSTACKS

Digitized by the Internet Archive
 in 2012 with funding from University of Illinois Urbana-Champaign

Faculty Working Papers

COIPUTERIZED TESTING IN THE beginning accounting course
Eric James Burton, James C. McKeown Jeffrey Shlosberg

College of Commerce and Business Administration

University of lllinois at Urbana-Champaign

COMPUTERIZED TESTIIIG IN THE BEGINNIing ACCOUNTING COURSE

Eric James Burton, James C. McKeown Jeffrey Shlosberg

$$
1-11^{\circ}
$$

$$
=1+1 .
$$

Compuremized Tegturg ir the Bagimning Accomititg course

Erif C Jemes Euriton Ph.D. Candidate, Accountarcy Utbana-Champagn

Tames C. Mc篗eowt Mh. M
Assoclate Professor or Accountamiy

Urbanco Chaw

Jeffrey Shlosizat Arthut Andersen 6 Co. Mnneapolis, Minnesosa

August 4. 1975
Draf゙t 3

- a dode
hathanaulo -anatil!

manis. ketill

2

14et ot wusu
Fintatis

The purpose of this paper is to report on a undque educational sool belng used by the Department of Accountancy of the University of Illinots at Urbaram Champaign (UIUC). The PLATO IV (Programed Loglc for Automated Teaching Operations) computer system is the tool. This note will describe the use of PLATO for examination purposes. A full discussion of the zmplementation of PLATO IV as a teaching device is contained in a paper by James C. Mekeown.

Fow PEATO WORTS

The PLATO system 18 a remote terminal access system. The remote terminais consist of a keyset and aplasma display panel which are linked to Cantral Processing Unit viadirect or dial-access telephone lines. Programs are writtenin azystemspecific languaged called TUTOR.

When he wants to work on PLATO he addresses a temanal by typing in his name, his course and his password. If the machane accepts these items, the student is allowed to select lessons from the course in which he is 11gted. The student user needs absolutely no programing experience or knowledge,

The student sees, on his plama panel, a series of frames (analogous co the pages of book). Each frame Hay contain textual material, graphics. fournal entries, questions, or combinations of thece. When questinns are asked in a lesson, the atudent must type in his response. If his response is correct, it is acknowledged and the student may proceed. If it is incorrect, a wrong answer responae is shown and the student must try again. The sbjective of this procedure is a contlauous check on the student ${ }^{*}$ g understanding. In many instances, if the student can not obtain the correct answer alone there it: a programed in HELP sequence to assist him in understanding the material and obtaining a correct answex.

Accy 101 Experience

Since the Summer Semester of 1973 the UIUC Department of Accountancy has esperimented with the REATO system in the introductory course (Accy 101).

During the Fall Semester 1973, a Latin-squares design experiment was conducted to determine the fifectiveness of the system and the 26 programed lessons as \& teaching tool (see Mckeown). Simpiy said, the results encouraged expansion and further experinencation.

During the Spring, 1974, the Department continued informat axperimentation on a student self-paced basis. Through that Spring Semester and the following Summer Semester an examination procedure was developed. In the $\operatorname{Fali}, 1974$, the examaations were revised and utilized in four (4) sections of Accountancy 101.

Plato Examinations

Three PLATO examations weregiven during the Fill, 1974 semester. The firet examingtion consisted of mitiple cholce questions, other objective types of questions, and Journal entries. The second exan includec multiple chotce questions, journal. entries, and computational questions. The final exam was approximately a 60-40 mix of material covered after the gecond exam and matexial covered on the first two exams. It was comprised of multiple cholee questions, journal eatries. and computattonal questions.

Each stukent recesved a unique examinarton. \%owever, all studencs recefved the same types of questions and the same proportion of questions on the different wtarial belag cested.

Multiple Choice Questions

When mitiple choice questions are used the question pool will mosmaly contain at least two and onewhalf times the number of questious any student will recefve of his exern. (It is, of course, possible to increase this ratio.) For example, if twenty multiple chofce questions will appear on ach Busividual student'g exam, at least fifty questionswill bewritten and programined. if the multiple choice questions cover five bsalctopics, then the 50 questions may be

stratified into blocks of 10 queations per topic. Each student will then receive four questions from each block. The fur questions to be received are seleced by a pre-programed random number generator.

To further insure the integrity of the multiple choice section each question is programed with a correct answer andfour facorrect answers. Once a question has been randomy selected for inclusion on a studenc's examination, the answer set that the student will receive is built fnternally. From the five programed answers one is randomy selected to be discarded. The remaning four answers are randomly arranged and shown as A, B, C, or D. Answer E is always shown as "None of the above." If the correct answer was the afscarded answer, then "E" becomes correct. If an incorrect answer was discardec then the correct anawer remains in A, B, C or D and may be selected. (See Exhibit i.)

If a multiple choice question contains a number as an intergral part of the question, that number is randomly generated. When the question requires a numeric answer every answer in the set (except for "None of the Above") is generated through pre-programad formula utilykng random number inputs.

Another example of objective type questlong which are used is classification of accounts. From a pool of perhaps thiry (30) accoun elisies, the machine randomly selects ten (or any other desired number) accounts for each student. The student may then be asked to classify the account as to type (asset, revenue, atc.), normal balance, or both.

Journal Entries

When using journal entries the examiner has the option of giving all students the same questions with the numbers randonly generated for each student, having the machine randomly select a given number of entries for the programmed

-

pool, or a combination of questione randonly selected from a pool and numbers randonly generated for each selected question.

To respond to the joumal entry quastions the gtudent instructs the machine as to whether the account and amount aoout to be entered ahould be debited or credited. Secondy the student types in the account titlo he whanes. (This title, and a machine accepted abbreviations tis contained lu a lont list of posaible accunt titles furnished the student afther on paper, on line on the computer, or botw.) The student sust also supply the appropriate amount, which may be in the form of an arthmetic expresaion. The machine accepts debits and credite in any order and will, in the scordng procedureas collapse two simple entries into one compound entry if necessary. (See Exhibits 2 and 3.)

If an account titie is not racognized as a possibility, the student is so told. The non-recogntion may be from misgpeling, an unaccepted abreviation, tranaposed words, superfluous words, or unknows words. Spelling, tranaposed words and superfluous word errorg ate indicated for whet they ard. The other errors are shaply not accepted and the student wist aubit an acceptable anewer from the previously rentioned Ifst.

Computhticnal Questoma

Any stime a student in reduired to compute at answer, he has avallable two computational methodologies. Firgt, men inserting ar answer the student may input an expression such as $[11350+750)+7]$ inscead of 300 . (See Exhibit 2.) The answer will be scored the orme in elther case.

If the computation Is more complex and the student wants to do it in parts, he may choose to request an on-1ine calculator. The calculator will retain and display the last calculation made. (Calculations requixing any power or root as. Well as trigonometric Functions etc . fhay be entered.) (See calculator in Exhibit 1.)
Hexnen
Damon and Pythias are partners. They have a profitshar-
ing agrement whereby Damon is to receive a salary of
$\$ 6, g d x$ and Fythias a salary of $\$ 4,0 g \%$ and the balance
of income is to be shared equally. If the net loss for
1973 is $\$ 1506$ Damon's shars of the loss wil lesult ind

$$
250.6069
$$

CALCULATOR

$$
(-1500-6 \times 104-4960)<2+6000 \text { ok }
$$

Museric Multipie cholce Question

14
inThe bonds onds bear The bonds are due

The Made-Mistake Co. purchases You're-in-Trouble, Inc. bonds
The bonds The bonds bear ton
in-
on The bonds are due quay est
11%.
5%. 1.1978 ld as a long-term inv are to be hel terest at as. Jan. 1, 1975. General Journal

Make the entry for the collection of interest and amortization of the premium or discount on June 38, 1978.
Enter the amount of the credit.

HELP. ACCOUNT TITLES
CADI. . PROBLEM LIST
GIABLD. DELETE
CURRENT ENTRY
BATT. . NEXT ENTRY
Journal Entry WIth Calculation
TYPE ACCOUNT NAME
OT
TYPE AMOUNT
BCD. ERASE CURRENT
ANE
GATED. IT XT ENTRY
 HELP. ACCOUNT TITLES
CADI. . PROBLEM LIST
GIABLD. DELETE
CURRENT ENTRY
BATT. . NEXT ENTRY
Journal Entry WIth Calculation HELP. ACCOUNT TITLES
CADI. . PROBLEM LIST
GIABLD. DELETE
CURRENT ENTRY
BATT. . NEXT ENTRY
Journal Entry WIth Calculation HELP. ACCOUNT TITLES
CADI. . PROBLEM LIST
GIABLD. DELETE
CURRENT ENTRY
BATT. . NEXT ENTRY
Journal Entry WIth Calculation HELP. ACCOUNT TITLES
CADI. . PROBLEM LIST
GIABLD. DELETE
CURRENT ENTRY
BATT. . NEXT ENTRY
Journal Entry WIth Calculation
(3)

$$
\begin{aligned}
& \text { D.. DEBIT } \\
& \text { C. CREDIT } \\
& \text { W. MOVE UP } \\
& \text { K.. MOVE DOWN } \\
& \text { +..NEXT ENTRY } \\
& \text {-. LAST ENTRY }
\end{aligned}
$$

等

Certain questions are entirely computational in nature. For example, most depreciation entries or inventory costing entries ace tather rote once the calculation has been made. Thersfore, only the calculation may be desired for testing purposes.

Again; the examiner has the option of giving all students the same computational questions with randomy generated numbers tn the question, selecting questions from a pool, or a combination of ranciom questions with rendom numbera.

Essay Questiona

At this time, if essey questions are desired, they are given separately as hand-written exercises. It is possible to allow students to type essay answers onto the machine. However, it would be unecesearlly time consuming as most students do not type as fast as they waite.

It should be pointed out that essay questions are not generally used in the introductory accounting course. However, it is felt that, if desired, plato could be programmed to grade Accy 101 essay questions '(besed on key words, phrases, and concepes) with an acceptable degree of consistency.

Student Movement Within the Exam

Students may answer questions in any order desired fust es in a written exem. They may look back at quections previously anctered or skip a question and cone back to it later. Zor arample, in the multiple choice sections a student may mark a quection for latex revisw whether he originally answered the question or not.

By requesting an index frame the student may see questions answered, quesElons left blank, or questions marked for later revicw. With this information in mind the student then has the option of autorantically cycling back through all questions, only those questions lefe blank, or only those questions marked
for review. Additionally, the student may choose to return to any particular question he chooses. (See Exhibits 4 and 5.)

Concluston of the Exam

When the student has concluded the examination fither because he has corm pieted it or because time has been called) he goes through a procedure which terminates his exam. The final step in this procedure is the typing of "finish." Within 10 seconds of the temaination of the exams the student is shown the number of points he recetved and the number of poincs posalble. Generally, the student is not shown which questions he missed at this moment because of time constraints. He ing however, given this information later. It is anticipated that in the future students will be allowed to review their graded exam inmediately after completing it.

Scoring

Each question of each type (multiple cholee, foumal, entry, etc.) can be neighter as the examiner deatres. In many instances partial credit is svailable and, because of the programed nature, is probably more consistenty applied than on hand graded exame. With multiple cholce guestons the answer is fudged correct or incorrect and partial credit is not granted. This is generaliy the case with all objective questions.

The grading routine for journal entry and computational queations is somewhat more complex. Journal entries are divided into at least four (4) parts (debited account, debited amount, credited account, and credited amount) and each part receives a weight. If the entry is fully correct then nothing is deducted. It any part is incorrect then the appropriate wefght is deducted. If the entry is correct but the debit and credit are reversed a stipulated amount is deducted from the possible score for the question.

What would you like to do now?

Muitaple Index Page.
14. More Entries for Long-Term Investments

+ indicates problern answered

When a question depends upon a preceding question, full credit may be given for the second question even if the answer is technically wrong but is still correct based upon the first answer. For example, assume the correct amount of goods available for sale was $\$ 1,000$ and (say) question 8 asked for the calculation of cost of goods sold while question 9 called for ending inventory. If the response to 8 was wrong but 9 was computed as $\$ 1,000$ minus the student's answer to 8, then 9 would receive full credit.

In addition, the machine can be programed to give partial credit in the event that students give certain anticipated wrong answers. For example, if the question asks for the calculation of ending inventory and the student gives the correct figure for cost of goods sold, he might receive partial credit.

Recording

Each student's examination is filed in its entirety on disk so that the student can review it later and raise any appropriate questions. Also, the students' scores are insted for the instructor. The instructor may choose to have the list in alphabetical order or numeric rank order and may change the form at will.

For each examination the machine computes and displays the number of persons taking the exam, the mean, and the standard deviation. It can also be programed to give a cumulative weighted average if so desired.

At the option of the instructor the machine will display a score frequency graph, segment students according to pre-set grade break points or prepare and present various types of statistical analysis by section and/or by instructor. (See Exhibits 6 and 7.)

Problems

There are certain problems associated with administering examinations on the PLATO system currently. The most pressing problem is the lack of sufficient

Rank
A
ω
ル Nの心
-
$\cdots \quad N \quad N \operatorname{mN}$
$1 \underset{\sim}{\infty} \xrightarrow{\infty} \infty$
$\cdots \quad \operatorname{a} \quad \infty \mathrm{min}$

contiguous terminals to allow everyone to take the examinstion alnultaneously. This problem is baing remedied as rore verminals become avallabia.

Still the buift-in rancomitation features grocect the integrity of the examinam thon even though soxe students take it later than other students.

As a test of the thtegriey of the cxaminaticn, stactstical analysis was rum on the regult of the Springs 1975, Plato expertence. Durlngehis texathrea examinationewere administcred to 375 students. The first examinationwas administered on-ilne: the second wat administered on paper, ant the comprehenstve final manimation was divided betwean on-1ine and on paper. Due to the limited muber of terminalis avatiable for testing purposes, the ifrst esaranation was given at 13 different thes over \& eix (6) consecutive day period. The on-ine portion of she final axam was administered at 12 different tises over chree (3) congecutlve day periods. The on paper cyams were almindetered ro all studente simultaneousiy.

The data collected for each student freiuded scores for all examinations, the students" waighted-average score for the course, and the hour zud axy at which the student took the first examination and the hour and day at which the student took the Dato portion of the fir al examination.

The relevan corralation matrix in dixnlayed fn Table I. As can be sen. there is only minor deviation w the corelation mumbers becwean any two exarinations. Examination 2 (written) ad the Diato portion of the Elmal corralate nott atrongly (.77599) while the furgt examinaton (plato) nad che Mritten portion of the final show the smallest correkation mumber (.65159).

*** Ingert Table I about hexe ***

The zesulta shown in Table 2 and Table 3 tndicate, as wre the authors" priors, that the testing technicues did not produce sfgnificantiy different results. Tha within media corcelation numberg are lncluded tre the range of correlation numbers for across nedia.

Table 1
Relevant Correlacton Macrix

	Exam 1 FIato	$\begin{aligned} & \text { Exam } \\ & \text { Hyteten } \end{aligned}$	Fual plato	$\begin{gathered} \text { Exam } 1 \\ \text { Titme } \end{gathered}$
Exam 1-p	1.00000			
Exam 2-Written	. 66828	1. 00000		
Flanl Exam -	. 70902	. 77595	1.00000	
Final Exam - W	. 65159	. 69212	. 73777	Ma
Exam 1 Time	-0.04712	TXA	20	1.0000
Exam 3 Time	TH	NA	-0.15147	. 19732

$N A=$ Not Applicable

*** Insert Tables 2 \& 3 about here ***

Tatia I alsu showa negattve correlation between the time a sturemt took a Plato examiation and his score on the examaation these negative correlations might indicate that the integrity of the \#lato exams was, indeen, intact and that informatson about the exams was elfter not passed on co students taking later exams or friformation which was pasced was mot of value. However since students ware allowed to select the time wt with they took the Plato examinations (no attempt was made to randomize the studencs by ability) these negative correlations could be caused by better students shoosing to take the exams at the earlier times. As shown in Tible i, the correlation between the thacs individual stufents took the two plato examizations 1a quite low (Exam I Time and Exam 3 rine $=.19732$. This would indicate that good students did not tend to take both Plato exam early while poorex student took them iater. We chose, however, to further test the hypothesis that the time at which a
 on the examination as indicateg ty his e ore on chat exam.

An anayysis of covariances with one covariate, was run for the pairings shown below:

Rovarlate	Exata I	Plato Pinal
Exam 1		X
Paper Final		X
Plato Einal	X	
Ave_Exam 13	器	

Table 2
Across Technique Cormelations

Exam 2 - Written	Egam 4 - Written	
Exam 1-Plato	.668828	.6559
	.77599	.73777

3, $⿻$ BKdat
(a)

Table 3

Whthin Mediut Correlations

Exam 1-Plato

Exam 2 - Written

Exati 3-M12to	Exath 4 - Written
.70902	KA
HA	.69112

NA = Not Applicable

2. 6 (dat
 $\operatorname{csx} 300$ protbol

In each case the predictable porthon of the desendent variabla wes elfanated and the remidual (actual score o predicted score) was tested to get if the time when the examination was taken night have caused tuend in the restuals. The mull hypothesis was that there tras no trend. We could not raject this bypotheats at the .10 level. (See Toble 4.)

The trend over sfme of the plato final (ushng papar final as covariage was onlymarginallynon-sigmificant (pan.13). An analysis revealed that the trand, if any. In this case world actually be aegative. That is, rather than improving one's score by taking the exan later (see Gxaph 1), the student's score actually decreased (see Graph 2). Having already allowed for the atudent's ablifty (as estrated by the covariate), one would have expected time co have been a positive factor on the unpredicted portion of a atudent's score if information of value was being passed. Contraty to that expectation, the trend over time of the Plato final (using the paper final as covariate) moze closely fitg Graph 2 shan Graph 1.

We would conclude thaty in general, no information of value relative to the content of the plato examfations was passed from those taking the examind tion earlice to those taking later examinathone. In general, the time at which each student chose to rake hig Plato examinetiona had no significant effect upon his score.

Another potental problean occurs ff the PATY system "cxeshes" whtle an examination is betng given. However the crash monnta to amotinconventence since there is an automatic storage routhe which updates each Btufent's file every efght (8) minutes. When a crashoccurs, it is neceasmay co allow the student the to re-do amazimum of eight (8) minutea of work when may have been lost in the syotemulfunction. Such crashes have occurred Infrequently and not at all during the last semester use of the testing gyster. Students are intormed, fn advance, that there isapossibility of a systemmalfunction and that, if it occurs, they will be givan छufficient time to re-do any lost work and to make up for the system down time.

为

Table 4
Dependent Varisble

Exam 1 Piato final

	Plato Final	$\begin{gathered} F=0.1806 \\ F=0.6712 \end{gathered}$	NA
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 4 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	Exam I	NA	$F=0.2369$
	Aug - Exalil 1	$\begin{aligned} & s=0.2083 \\ & y=0.6484 \end{aligned}$	NA
	Paper Final	NA	$\begin{aligned} & F=2.3482 \\ & P=0.1346 \end{aligned}$

D. $F=1$ and 363
$N A=$ Not Applicable
Time is the inacemendent variable.

Graph 2

If time were a uegative factor
(This graph greatly exagerates the magnitude of any actual trend sod is used only to fllustrate the alrection of crend.)

Advantages

Obviously the advantages are multiple. Once an ezamination is constructed, It can be used for several semesters with only minor corrections or changes. Make-up examinations need not be constructed since each exam is unique anyway.

The grading routine provides welcome relief from the usual grading monotony. This is particularly valuable for final examinations wher examinations must be graded and final grades computed in very limited time. The instantaneous grading, cumulative weighted average feature, and central tendency and other statistics Eatures makes the job much casier.

Because of the nature of the routine, grading of examinations is both more consistent and more accurate than hand grading methods. Each time PLATO ancounters a reversed debit and credit on a certain problem it deducts the same amount. Anyone who has hand graded examinationa will recall instances where this was not true with hand grading.

The machine is also quite accurate. It does not look at its answer key, see "B" to be correct, and then not mark a "C" student response wrong because 1t is tired or its attention was momentarily diverted.

When numeric answers are required, the machine is programed to accept anawers within a specified range. This allows for rounding too early in the problem or simply rounding incorrectly. However, the acceptable range is kept narrow enough to avoid accidentally close answers.

Because of the computational alds avallable on-line while the student is taking an examination, it is possible to ask more complez questions than are rormal on hand written exams. For example, the student could be asked to solve present value problems and be given a calculator which would provide the appropriate factor when supplied with rate, periods, and single-value or annuity coimponents. An internal rate of return calculator could be programmed as well.

Calculations requirins any power, including fractional powers, are possible. Trisonometric functions are built-in as well. If one wishes to test accounting concepts and methodologies rather than mathematscal ability, the PLATO system is an excellent tool.

Future Expansion

The Departmeat of Accountancy at UIUC is continuing its experimentation and analysis of the PLATO system as a tool in the accounting curriculum. Experiments are planed with the second, accounting course and it is anticipated that more advanced courses vill begin to use Plato as a tool for teaching certain suitable subject areas. Currently, approsimately 1200 introductory accounting students are utilizing the PJATO system.

Although this paper has dealt specifically with the Plato system, many of the concepts and achievementa are felt to be useful in other CAI syatems. It is thought that the detailed analysis presented here may create additional interest in CAI in general as well as provide ideas for those currently using another CAI syster.

Footnotea

$1_{\text {McKeow, }}$ James C. "Computarmsesisted Instruction for Elementary Accounting," Ficulty Vorking Papers \#1 J, College of Comerce and Business Administration, University of IllinoismTrbana, 1974 , also Accounting Review January, 1976.
${ }^{2}$ The covariate Ave.-Exam 1 wss a tranaformation which computed a weighted average comprised only of the last two examimations. This was done in order that the analysis would not be distortad by having the dependent varlable included in the covariate.

