

BONTWICK-BRAIN C(IMPANY BLILDINGG, T(ILEIOO, (OHIO

1. Bentley \& sons, Contractors "Mushroom System"

CONCRETE-STEEL CONSTRUCTION

part i-buildings

[^0]
135

HENRY T. EDDY, C. E., Ph. D., Sc. D.
MEM AM MITHEMATICAL ज
MEM AM. PHHLOADPHCAL suc.
MEM AM. PHYミICAL MOC
PROFESNOR OF MATHEMATICA AND MECHANFCS (OLLEGE OF
ENGIVEERING, AND DENN OF THE GRABHATE
SCHOHL, EAERITES, UNHERATTY OF MINAEs(TI
AN1)
C. A. P. Turner, C. E.
MEMI AME soc: (: E

 MINNEAPOLIS, NEW YORK, CHICIGO, ETC.

(01)

13
H. T. EDD)


```
\ddots"
\because!
```


PREFACE

When we eonsider the fact that fire losses in ("anala and tho United States amount each year to half a billion dollars, and that the question of commercial ecomomy and cost determines whetherbuiklings shall be built of fireproof and incombustible materials such as reinforced concrete, or of mflammable materials such as are used in timber construction, it is evident how important it is to the general publie to be able to determine on theoretieally eorrect principles whether safe fireproof buildings can be built at practically no greater cost or even less cost than combustible ones. In case of any uncortainty as to theoretieal principles to be applied, the dexigner is compelled for safety to employ materials in such lavish amomots as to render cost prohibitive.

Engineering writers have heretofore failed to apply the mathomatical theory of elasticity to those forms of remfored eonerete that differ from beams in their mamer of reinforement and that depend for their mechamical action on bond shear as it is involved in multiple way systems. The present treatise is devoted to discussion of the clementary principles and the practical problems presented by buikling work in reinforced eomorete. In it an effort is made to dissipate differeneses of opinion dur to lack of familiarity with the mochanies of reinfored concrete such as tend, at the present time to retard its introduction and to himder to some extent the rapidity of its progrese in the commereial fiedel.

The endeavor is made in this treatise, to bring ont these meshathieal laws, and to treat at length the restraint imposed upon the elements of the composite structure-the sterd and the coneretein accordance with the fixed principles of physies amd merhanics in order that rational mates may be more generally adopeded for the safe and economic derign of this type of fureproof buthtings. Frablure on the part of the enginerering profession to eonsider these latws in drawing up buidding codes, has led to grave errors theretoy offoring a premium on the more dimgerous typer of designs in eonerete building work, aud placing at a disatrantage the more somentife. safe, and conservative types of work as determined by the reonds of these types in practiond construction.

While the mechanieal laws above referred to are simple in the extreme when once understood, their application is so far from obvious in a superficial consideration of the subject that it has required continuous investigation and patient study on the part of the authors for years of time to determine and classify their operation accorting to the mechanical principles and laws of physics, and this supplemented by expert observers engaged for many months in the conduct of experiments and tests to decide the questions which this eontinued study and consideration had raised.

In this treatise patented as well as mpatented types have been included for the reason that while the consulting engineer without license has no right to design patented types, he is called upon to report upon their strength and should for that reason be as familiar with their amalysis as with mpatented constructions.

The hope of the authors, who have devoted so much time and expense to the investigation and presentation of the fundamental principles explamed in these pages, is that as these principles become more widely known and understood needless acedidents and loss of life in the erection of eonerete buikling work will be avoided and unsatisfactory designs caused hy the failure of the enginecring profession at large to molerstand and introduce into practice the proper limitations of steel ratios as depending on the relative thickness or depth of heam and slab to span and the correct arrangement and disposition of the steel in the slat, will disappear from the enginecring field.

The frank avowal of this am, carring with it as it does a criticism of no small amount of work by the profession at large, might be considered egotistical were the engineer anthors unqualified by long experience to speak with some authority, the one as professionally occupied with applied mathematics, having investigated and taught higher mathematics and structural mechanics for nearly fifty years, the other as a bridge and structural engineor engaged in the active practice of his profession for twentr-five years and responsible for the execution of two thousand concrete structures which have been erected without any serious accident to the workmen on them which could be eharged to the risk of such erection, and this notwithstanding the fact that much of this work has been carried on in the unfavorable temperature conditions of the northern winter weather.

The requirements of economy in the arrangement and dissmination of the reinforeement have been dealt with at considerable length. There are many who have the idea that if they get the steed into the eoncrete somehow that is about all that is required, while as a matter of fact, upon the position and arrangement of the reinforcement in the concrete, the strength of a stabmay reatily vary a hundred percent or more depending upon its lateral distribution, and the stiffness may vary four hondret pereent, while with the vertical distribution the strength may vary fifty to eighty percent and the stiffness five humdred percent, and by combining the vertical and lateral arrangement of the same metal the strength may vary four to five hundred pereent, and the stiffness three thousimet percent.

That these differenees are not understoof by the layman is not surprising, but they should be understood by the professional engineer who hats had every opportunity to observe the deportment of finished structures under load, as have those in charge of buiking departments thruout the country.

But aside from these questions of relative arrangement and disposition of materials is one underlying advantage possessed by conerete construction whose dominating effect is apt to be overlooked. That advantage inheres in the monolithir character of this form of construction, which imparts to it a stability and strength which has too frequently not been properly taken into the account either by the layman or the responsible designcr. Following the ideas eurrent in ordinary structural design where the whole is built up by assembling and joining together a number of indepentent elements or mits these preconceived itteas have led to the attempt to analyse these monolithic structures into separate mombers which are assumed to act independently as they do in stem structures. Such assumptions lead to conclusions that have little relation to the facts as shown by testes and hy experience as well.

The Iuthoms.

CONTENTS

CHAPTER I.

Abstract

Page 1. Introtuctory 2. Historical. 3. Materials; Portland Cement Specifications. t. Quick Tests; Acceleraterl Test; Care of Cement. 5. Specifieation for Aggregate; same ; Testing sand: Gravel: stone. 6. Proportions of Materials. 7. Analysis of Strength of Concrete. 8. Hardening of Portland Cement; Inerease of Strength with Age: Corffirient of Expansion. 9. Bond between Concrete and Sterel. 10. Variation in Strength of Concrete with Variation of 'romperature and Moisture. 11. Mathine Mixing. 12. Pouring (onerete. 13. How to Determine when Conerete is thoroly Cured. 14. Handling ('oncrete above Freezing: ('oncrete below Freezing. 15. Aetion of Salt. 16. Curing Concrete where Proper Precautions have not been Taken. 17. Preeautions in Splicing, Mixing, Heating, ete. 18. ('antion Regarling Removal of Forms. 19. Reinforeing Steel; specifications. 20. (quality of sterel. 21. Cold Bending with Mild Sted. 22. Bending Machines. 23. Hot Bending and Precautions with High (arbon steel. 2t. Coutering: Partial Removal of Forms

('HAPTER II

1. Classification of Cemeral Tryes of Floor Construction. 2. Etility of the Theory of Aetion of structures. 3. Principle of Proportion. 4. Variation in strongth with Thickness. 5 . Variation in Strength with span. 6. Theoretieal Treatment by Proportion of Mushroom shabs, Beams and Slabs Reinforced Two Ways supported on Four sides. 7. Wxample of Computation for Deflection of Mushroom Filoor Slabs. S. Rectangular Shab Suppoted by (iarders on Fonr Sides. 9. Computation of Deflection Applied to Practical Examples; Slab Supported on Four sides ly (iirclers. 10. short span Slab and Arela Aetion that maty be (ounted upon in Their Lise. 11. Value of Fimish Coat, strip) Fill amd Wood Floor from the stamlpoint of Deflection.

CHAPTER III

BEAMS

1. Elastic Properties of Materials, Concrete and Steel. Page 2. Tensile Strength. 3. Elasticity of Concrete. 4. Concrete Beams. 5. Modulus of Elasticity. 6. Formulas for Reinforced Concrete Construction. 7. Determining Moment. S. Disenssion of the Elastic Propertios of Beams and Assumtions involved in the Preceding Theory. !. Classification of Beams. 10. Eeonomic Design of Beams. 11. Safe Loads for and Tests of Remforced Conerete Construction. 12. True and Nominal Factor of Safety. 13. Method of Loading for Tests. 14. Shears in Beams. 15. Shear and Diagonal Tension. 16. Working Stresses. 17. Compoume Temsile Strength. 18. The Reinforced Concrete Beam as a Mechanism. 19. Bond Shear in Blocks. 20. Bond shear in splices. 21. Bond shear in Beams. 22. Bond shemer in slabs. 23. Merh(hanies of Embedment. 24. Bond with Deformed Bars. . . . 68-133

('HAPTER IV'
BEAM ACT1ON ANI SLAB ACTION COMPARED THROLGH APPLICATION (GF THE JAWS OF BON1) SHEAR AND THE THEORY OF WORK゙.
1. Introductory. 2. Nah at a Merhamism. 3. Relative stiffness of Beam and slal). 4. Hudieret Tension. 5. Comparison of Deflections at Mid Span of the Diagonal Bolt and the Direct Belt. 6. Bending Moments. 7. Continuity in Flat slabs and in Thin Slab on Beams Contrasted Experimentally. S. Variation in the Position of the Line of Inflection in C'ontimuous Flat slah) (omstruction. 9. Effere of Adding Finish to the Rough Slah. 10. Illustrative Example. 11. Depressed Head or Drop

CHAPTER V

TIIEORY OF FlAT NLABS

1. Flat slab Floors. 2. Notation. 3. Truc and Apparent Bending Moments. 4. Poisson's Ratio. 5. Ceneral Differential Equation of Momentr. 6. General Differential Equation of Deflections. 7. Solution of the Differential Equation in Case of Cniform slab, supported on Columms. S. Solution for Side Belts. 9. Practical Formulas for Stresses in Side Belts. 10. Practical Formulas for Streses in Column Heads. 11. Practical Formulas for Stresses in the Middle Area of Panel. 12. Deffections at Midspan of the side and Diagonal

('HAPTER V'Continued

Belts. 13. Proportionate Deflections at Mid span and Cen- Page ter of Panel. 14. Radial and Ring Rods, and shear around Cap. 15. Standard Mushroom system and Other systems 158-219

(HAPTER VI

COMPLTED STRESAES AND DEFLECTIONS IERIFIED BY TESTA

1. Specimen Computations of Stresses and Deffections in several stabs. 2. Further (alculations of Test slabs. 3. Comparative Test of Norcross and Dushroom slabs.
2. Investigation of struetures by the Berry Extensometer and Interpretation of Results
$220-268$

('HAPTER VII

MOMENTS IN゙ TWO-WAY AND FOER-WAY FLAT sLABS

1. simple Approximate Theory of Four-Way slahs. 2 . simple Approximate Theory of Two-Xay slabs. 3. Weight of steel in Two-Way and Four-Way slahs Compared.
2. Panels Reinforced unequally Lengthwise and Croswise.
3. Slab with Rectangular Panels Supported on Beams or Walls. 6. Steel Ratios and Minimum Thickness of slabs.
4. Size and spacing of Pods in Flat slab Construetion.
5. Hollow Tile and Concrete Construction for Floors.
6. Shatbs Reinforeod with Expanded Metal.............. $269-302$

('HAPTER VIII

REINFORCED CONORETE COLEMNA

1. Gencral Considerations (Governing Distribution of Reinforcement and Placing of Taterial; Types of Columns. 2. Consideration of Safety in Determining ('arrying Loarls. 3. Experimental Data; Tests at Phemixville: Tests by Bach. 4. Reinfored Cohmms ('lassified hy the Mamme in Which the Loads are Applied. z . Considere Formuka. (i. Siaf Eltimate Limit of ('ompresion. 7. Monle of (pperation of Reinforcement in Conorete ('olumms. S. Effect of Hoop)ing. 9. Comparison of Test Datar. 10. Formula for C'olumms where Load is Brought upon the Steel by Direct Bearingen the Metal. 11. Working stresces. 12. Structural Cohmms: Filled with ('onerete. 13. ('oncrete C'olumns ('ompared with Structural sted. 14. Wafl Columms and hoterion Cohmmes in Skeleton ('onstruetion. 1\%. Temperature Effect on Columms. 16. Exonomic ('olumm Design 303-330

CHAPTER IN

FOUNDATIONS

1. Bearing Value on the soil. 2. Column Footings and Page Method of Figuring. 3. Pile Fomdations. 4. Driven Piles. 5. Piles Cast in Place. 6. Safe Bearing Loads for Piles.331-342

('HAPTER X

ELEMENTS OF ECONOMIC CONNTRUCTION AND COST OF REINFORCED CONCRETE WORK

1. Introductory. 2. Column spacing. 3. Floors, strength and Stiffness. 4. C'entering. 5. Cohmms. 6. Bearing Walls or Full Conerete skeleton. 7. Conerete, or Brick Exterior Walls. 8. Rich Mixture (3. Efonomy in Sblecting Aggregate. 10. Cinders. 11.Adaptability. 12. Rapidity of Erection and Ease of securing Materials. 13. Analysis of Items of Cost. 14. Labor, Enit Priees, (Luantities of Material. 15. Cost of steel. 16. Cost of Bending. 17. Cost of Hooping for Columms. 18. Cost of C'entering: Cost of Framing. 19. Season of Year. 20. Dead (harges. 21. General Data on Cost
$343-363$

CHAPTER NI

1. Fireproof Properties of Concrete and the Protection of Steel from Heat. 2. Fire Tests. 3. The Theory of Fire Protection. 4. Terra Cotta and Tile Compared with Concrete. 5. Rates of Insurance on C'oncrete Buildings and Contents. 364-374

('HAPTER XII

1. Protection of Steel and Iron from Corrosion by Portland Cement. 2. Permanence of Concrete Construction when made with Proper Materials. 3. Concrete Mixed Dry and Tamped. 4. Hair Cracks, Map Checks, and Crazing. 5. Temperature Effects. 6. Disintegration of Concrete by Oil, Grease, etc. 7. Electrolysis. 375-387

CHAPTER XHI

1. Floor Finish. 2. Strips and Strip Fill for Wood Floors. Page 3. Width of Flooring. 4. Cement Finish Coat. 5. Nixture of Finish. 6. Hardening Compound. T. Treatment of Floors. S. Concrete stairs. 9. Insulation of Roofs. 10. Protection and Provision for Plumbing. 11. Placing Electric Conduits, Gas Pipe, ete. 12. Plastering on Reinfored Concrete. 13. Suspented Cerilings 388-396

('HAPTER XIV

1. Artistic and ('ommercially Practicable Concrete surface Finishes. Stipple Coat. 2. Plaster Coat on Rough Cast Concrete. 3. Finish obtained by Brushing and Washing. 4. Finish by Tooling. .). Cast stome
$397-408$

CHAPTER XV

1. The Execution of Work: Hardening of ('oncrete: Pouring Conerete: Separation of Materials: Test for Hardness in Warm Weather; Test for Hardness in Cold Weather: Lap of Reinforeement over supports. 2. Responsibility of the Engineer. 3. Responsibility of the Constructor and Engineer superintendent. 4. Significance of Cracks in Reinforced Concrete. 5. Encouragement to Progress in the Concrete Industry by Patents: scope of Patents; Importance of Investigating the scope of a Patent; Prior Art ; fiomus and Species Patent: Consequences of Infringement $409 \cdot 431$

Whghes-oblourke Co., Contractors, Dallats southern itate steel Co., Consulting Engineers

CONCRETE STEEL CONSTRUCTION

('HAPTER 1.

I. Introductory

The history of structural engineering as a science dates from the early part only of the last century. The progress made has been remarkable indeed, and the materials mainly used have varied during well-defined periods. Up to 1860 , timber, wrought and rast iron were mainly used; from 1860 on wrought iron with some east iron was generally employed in bridges and other enginecring structures; from 1890 to the present time steel has replaced wrought iron; and while, for long-span bridges, it will perhaps be some time before a more suitable metal is found, yet for short spans, buildings, warehouses and the like, the enterprise of the manufacturers of Portland cement has placed at the disposal of the engineer a new material, reliable, if properly handled, and of reasonable cost, which bids fair to largely supplant steel in the construction of minor engineering works. Indeed today, a warehouse designed for a capacity of 400 pounds per square foot of Hoor, columns 16 to 24 feet centers, can be built more cheaply of reinforced concrete than of wood frame and floor, with similar brick walls. Where the strength required is less, timber at the present rate is slightly cheaper, since the eost of centering is the same for light as for heary construction. Still, the difference is so slight that, considering the saving in insuramer. owners will shortly be convinced that they camot afford to continue the construction of fire traps if they are to realize the maxirnumpofit on their investment.

The strength of Portland concrete in compression is equal to that of good building stone, with the advantage that it can be platered in monolithic masses. Its tensile strength, like stone, is greatly inferior to that in compression. ('oncrete vieds but little, the streteh being confined to the weak seection. When, however, steel is embedded in the concrete and properly dissominaterd thro it, the deformation or stretch is distributed greatly hy the metal.

The conditions leading to the combination of concrete and stere in a beam or girder are these: Conerete is an exeollent and trustworthy material for compression and sted for tension. Hence
steel should be distributed in such manner as to carry the tensile stresses of the chord and web. To do this economically we can reason from analogy of a truss or beam. The further from the neutral axis the more effective the steel section, hence the reinforcement for tensile chord stress should be at the bottom of the beam or as close to it as satisfactory protection against heat by fire will permit. Now the beams in a building are of constant section, and since a continuous beam is stiffer and stronger than a beam of the same section discontinuous over supports, the ideal concrete-steel beam should be contimous and the top flange reinforced over supports.

As Mörsch states in his treatise:-
"Practice has been far ahead of theory. The principal question in controversy has been whether the tensile streneth of concrete in bending should be considered. Amone practical buiders this was decided at the start, and decided against its inclusion, becanse absolutely no attention is paid to it and the steel is stressed to the safe limit. The temsile strengeth of the conemete is entirely ignored. On this assumptim is hased the first method of the thenetical computation of shas devised by Kornem in Berlin in 1866 and his methol has been used by the majority ever sinese."

2. Historical

Steel and concrete as a combination of materials for engineering structures is much older than is generally supposed. Professor Barbour of the University of Nehraska, in a very interesting lecture delivered to the Cement Lsers of the state of Nebraska, deseribed certain flat arches discovered in the ruins of ancient Rome, which were for a long time a puazle to engineers and arehitects until it was found that they were tied together and the throst in large part resisted hy iron tic rods. Go far as known, little was done, however, in the way of combining the old Roman concrete with iron, except in the isolated instance just cited, and it wats not until 1855 that iron was combined with concrete in a mamer similar to that in which it is utilized at the present time.

At the Paris Exposition of 185.5, Lambot exhibited a boat made of reinforeed roncrete, while François Coignet is credited with having built floors and pipes, in the construction of which he had combined steel and concrete to some extent.

In 1867 , Scott, a Lieutenant Colonel of Engineers of the British Army, took out a British patent on concrete floor slabs reinforced in one direction, and also in two directions, and in some of the drawings in this early patent woven fabric is found combined with rods.

In France, Joseph Monier took out patents about the siume time, and to him, perhaps more than to amy other person, is to be given eredit for the commercial introtuetion of reinforeed concrete on a large scale. His first use of this type of construction was to fabricate large plant tubs which he found more durable than those of wood, and more readily transported than those of cement without reinforeement. In 1867 he took out his first French patent, which he soon followed with a number of others on reservoirs, floors, and straight and arched beams in combination with the floors, ete. In 18St the Monier patents were purchased by the firms of Freitag and Heidschuch in Newstad-on-the-Haardt and Martinstein and Josseaux in Offenbach-on-the-Main. Later the patent rights in Germany were sold to Engineer Wayss, under whose supervision tests were made in Berlin, the results of which were published in 1887, and on the hasis of these experiments Whas succeceded in introducing the Monier system into many structures.

The Scott patent is especially significant since the specification states that tie rods and hoop iron were to take the tensile strains and conerete the compressive stresses, showing clearly that seott understood the basic principle of reinforced concrete. Little was done, however, by the carlier inventors in developing a working theory of design.

Herr Wayss conducted certain tests in Berlin and published his results in a pamphlet entitled "Das System Monier, Eisongerippe mit Zementumhullung." In this pamphlet Wilysi expressed the opinion that the sted must be plaed where the tensile stresers oecurred. The tests were witnessed by govermment officiats as well as by private engineers and arehitects. (6overmment Architect Koenen, now Director of the Actiengesellschaft fur Beton-und Monierlauten, in Berlin, was (ommissioned by Wyats to work out methods of eomputation from these tests, which were publishel in

Morsch, Concrete Stece Construetion, 1907 thas comments on the introduction of reinforced concrete at this period (1ssi) .

[^1]> It was speetially promoted by the publication, in 1904, through the cooperation of experts and practical men of the "Leitsätze" of the Verbands Deutscher Architekten- mal Ingenienrvereine and the Deutsrhen Betonvereins as well as by the Regulations of the Prussian Government, which abolished many restrictive rules, cleared the way, and inspired in the widest circles confidence in the new mothod of building.'

In $187($) Phillip Bramon made what appears to have been the first application for an English patent on reinfored concrete piles. The patent was granted in 1871, showing reinforced concrete piles with longitudinal reinforement of angle irons united by bars riveted across them, the whole being wound spirally with wire.

Thatdens Hyatt between the yars 1873 and 1881 took out between thirty and forty different patents relating to reinforeed concrete work, patement lights, floors and sabs. It does not appear, howerer, that Hyatt made a success of eoncrete construction commereially altho he did made a suceess of his paving lights. Hyatt regarded a reinforecol conerete beam as one corresponding to a steed beam, and he comsidured the rods as erguivalent to the bean flange and the concrete ats the top flange, assuming the nentral axis at mite depth of the beam.

A most important patent was granted to Hyatt in 1874, in England, No. 1715, in which is disclosed spiral and vertical reinforcement for columns, which strangely emough was not appreciated until attention had been called to this type of colum by its reinrention at a later date by considere to whom the engineering profession is indethed for the attention which he directed to it by the valuable teste carried out he him.

During this time there was considerable activity in the Cuited States. E. L. Ransome was building reinfored conerete warehouses as early as 188t, and patented in the Cuited states a twisted bar reinforement.

In 1883 John F. (iolding secured an American patent for expanded metal which was employed as lathing for plaster in lighter gages, and as reinforement for concrete stabs with larger mesh and a No. 10 or heavier gage.

In Cassell's Remfored Concrete, published in 1913, the following sketeh is given of the work of the early pioneers of the art before 1900, Edmond Coignet and François Hemelique:-

[^2]of the subject. Coignet as the scientific investigator, and Hennebique as commercial organizer, are property regarded as 'the pioneers of the modern evolution in the art of building.' The story has often been told of the opposition which Coignet had to fight in getting the masonry of the proposed new system of main drainage in Paris in 1892 replaced by reinforced concrete. He promised a large saving of money and of time required for construetion, and his system, which was finally adopted, was carried out with complete suceess. Hennebique, having organized a technical staff and licensed a large number of the most influential contractors to work his system, was able to secure between the years 1892 and 1899 work to the total value of t wo million sterling, representing three thousand constructions, among the most remarkable of these being the bridge of Chatellerault, 460 ft . long, comprising three arches, two of 133 ft . span and one of 167 ft .

Hennebique's first patent dates from 1892, (Blitish patent, No. 14,530), and in this he demonstrates the utility of stirmps to reinforee beams against shear, in which matters he had to an extent been anticipated by Hyatt in 1877 and Meyenberg in 1891. In 1897 Hemebique introluced eranked-up rods, and placed these one above the other, so as to reduce the width of the beam, following (to some extent) the lines laid down by Hyatt in 1877 and F. G. Edwards in 1892, in which latter year X. Koenen and G. A. Wayss, of Germany, patented in England a mothod of floor construction with rods cranked-up at the point of contraflexure, "the parts in tension being strengthened by roughened or serrated metal rods or strips embedded in the structure."

We have noted the early work of Ransome in the C'nited states. In his work parallel joists about 3 inches wide, spaced three feet centers were frequently used, while narrow intersecting ribs about ten feet centers in two directions surmounted be a thin slab were also emp'oyed.

From 1890 to 1900 while cement was relatively high in price, reduction of mass at increased expense in ferm work was to ber expected.

The expanded metal companies introduced a large amount of short span conerete floors on structural steel frame six to ten feet center to center of beams, competing with hollow tile arches then more commonly employed for fireproof construction.

The Roebling Company, manufacturers of wire, were at the same time putting in a large amount of short opan arches and slahs reinforced with wire fahric and rods.

From 1900 to date, reinforeed conerete building comstruction has increased with wonderful rapidity, eneouraged by the enterprise of the manufacturers of Portland cement in placing at the disposal of the constructor a reliable and uniform product at so low a cost that a most powerful impetus was thms furnished for the more complete development of the commercial ponsibilities of reinforeed concrete in building construction.

The skepticism of building departments and the natural antagonism of tile interests forced the advocates of conerete construction to make imumerable tests with the final result of creating confidence in the construction when properly designed and executed.

During the six years subsequent to 1900 - a short period of time but an epoch from the standpoint of progress in concrete construc-tion-numerous bean theories were proposed and discussed.

Engineering opinion gradually crystallized in the adoption of a modification of the common theory of flexure and the assumption of the linear law of distribution of stress for purposes of computation of beams and slats, and this opinion has been embodied in nearly all building coodes in cities throughout the United States and Canada.

In 190+ a Joint Committee of the American Assoriation of Cement Manufacturers, American society for Testing Materials, American Society of Civil Engineers, American Railway Engineering and Maintenance of Wiay Association, was appointed to investigate and report on concrete and reinforced concrete. After eight years, a report was rendered, for which see Eng. News. Feh. 6, 1913.

The report specifically states that it does not go into all types of construction or all the applications to which concrete and reinforced concrete may be put, * * * * it is not a ppecification but may be used as a basis for specifications."

Treatment of natural types of reinforced concrete is tacking in this report. The treatment of beams, however, embodies the crystallized opinion above referred to and will be referred to more at length later.

That a theoretiral treatment of concrete after the mamer of structural iron work, although making allowance for the elastic properties of the two materials, is unsatisfactory was early recognized by practical men and also by some theoretical writers.

Marsh in his treatise on Reinforced Concrete, Edition of 1905, Part V. p. 209, makes the following remarks on this subject:

[^3]
Abstract

time, yet we may be entirely wrong in our method of treatment. "The molecular theory, i. e. the prevention of molecular deformation by supplying resistances of the reverse kind to the stresses on small particles, may prove to be the true method of treatment for a composite materinl such as concrete and metal. This theory is the basis of the Cottarçin construetion which certainly produces good results and vety light structures, and M.Consid ye's latest researches on the subject of hooped concrete are somewhat on these lines."

In this statement of Marsh there is some idea of a possible new principle of action; but mofortunately he was unable to form and express any conception of how this might operate in accorkance with mechanical principles in a manner which would be of bencfit to the industry at large, or aid in the discussion of the stresses operating in reinforced concrete.

The practical constructor has an advantage over the theorist in this respect; having observed the results obtained by a new principle he immediately profits by it by taking advantage of the results through application of the principles of simple proportion leaving the explanation as a matter of academic interest to follow in the wake of his practical accomplishment. In this simple manner two thousand structures of the Mushroom type have been erected and tested for strength and deflection before a comprehensive seientific explanation of the mode of operation was fortheoming.

The constructor wants the least theory possible and that the simplest to meet the specifie requirements of the work he has in hand. The scientist with broader and more comprehensive vision sees in the specific performance of the builder only a sperial rase to be treated in conjunction with the species to which it belongs. That the latter treatment is by far the more difficult-and when eorrectly earried out more valuable and satisfactory-compensates for the almost inevitable position that the scientist occupies in a now art, following in the wake of the practical constructor, whose simple needs require special rather than general solutions of the problems at hand.

As the athors now view the art broarl general solutions of the problems in reinforeed concrete are in oreler and the elaracter and nature of the new properties added to concrete by the dissomination of steel through it brought out in the following pages it is hoped may harmonize many differences in enginerring opinion existing at the present time relative to the more arlvanced forms of construction.

In the discussion of concrete-steel construction, we must consider, first, the action of the concrete with the steel, the function of each in the combination, the problems presented by beams, slats,
and columns separately, and finally the mix of the concrete and questions of cost in convenient placing of the reinforecment.

Before taking up these points in letail it would seem in order, however, to turn our attention to the concrete, and the materials entering into it, their characteristics, value and fitness and the proper proportions to use.

3. Materials

Portland ('oment only shoukd be used in a reinforeed concrete frame or structure. The following specification is recommended by the Ameriean Soriety of Civil Engineers:

Portland Cement

Deflnition: 'This term is applied to the finely pulverized product resulting from ine rakeination to incipient fusion of an intimate mixture of property proportioned argillateons and ealcareous materiaks and to which no addition greater than $3{ }_{6}$ g has been made subsequent to calcination.

Specific (irarit!

The sperific gravity of cement shall not be less than 3.10. Should the test of cement as received fall below this requirement, a seeond test may be made upon a sample ignited at a low red heat. The loss in weight of the ignited erment shall not exceed 4^{47}.

Finfmess
It shall leave by weight a residue of not more than 8_{6} on the No. 100, and not more than 25^{-6}, on the No. 200 sieve.

Time of Setting

It shall mot develop initial set in less than thirty minutes; and must develop hard set in not less than one hour, nor more than ten hours.

Tensile Strength

The minimum requirements for tensile strength for briquettes one square inch in cross section shall be as follows and the cement shall show no retrogression in strength within the periods speeified.

Veat Cement
Aqe
Strength
24 hours in moist air 175 ll s.
7 days (1 day in moist air, 6 days in water) …...... 500 lbs.
28 days (1 day in moist air, 27 days in water) 600 lbs.
One Part Cement, Three Parts Standard Ottawa Sand.
7 days (1 day in moist air, 6 days in water) …...... 200 lbs.
28 days (1 day in moist air, 27 days in water) 275 lbs.

Constancy of Volume

Pats of neat cement about three inches in diameter, one-half inch thick at the center, and tapering to a thin celge, shall be kept in moist air for a period of twenty-four hours.
(a) A pat is then kept in air at normal temperature and ob,served at intervals for at least 28 days.
(b) Another pat is kept in water maintained as near $70^{\circ} \mathrm{F}$. as practicable, and observed at intervals for at least 28 days.
(c) A third pat is exposed in any convenient way in an atmosphere of steam, ahove boiling water, in a loosely closed vessel for five hours.

These pats, to satisfactorily pass the requirements, shall remain firm and hard and show no signs of distortion, ehecking, crocking, or disintegrating.

Sulphuric Acid and Magnesia

The cement shall not contain more than 1.7.$)_{c}$ of anhydrous sulphuric acid $\left(\mathrm{SO}_{3}\right)$, nor more than 4^{\prime} of magnesia (MgO).

4. Quick Tests

The preceding specifications and methods of investigation presuppose the conveniences of a testing laboratory to be at hand. The constructor, when he comes upon a job, is frequently without such conveniences. He is frequently compelled to decide whether the cement is suitable or not by employing such rough and ready means only as are at hand, and a few words as to such practical methods of investigation as must be used are in order for his benefit.

Fineness

The constructor can readily determine whether the grinding is reasonably coarse or not by feeling of a sample between the thumb and finger without recourse to sereens or sieves.

The effect of fine grinding upon the cement is to render samples of mortar made of sand and rement stronger. In other words, it gives the cement a greator sant carrying power; it remders it quieker setting; a stronger concrote is obtained, or a larger proportion of sand can be used with finely than with coarsely ground cement with the same resulting strength.

In making briquettes of neat eoment, howerer, the coarsely ground cement may show higher results, but what the constructor is interested in is the result obtained with the mortar paste of sand and cement in the usual proportions.

Accelerated Test

The object of this test is to bring out and make evident those qualities which tend to destroy the strength and durability of a cement. As it is highly essential to detcrmine such qualities at once, tests of this character are for the most part made in a very short time, and are known, therefore, as accelerated tests. Failure is revealed by cracking, checking, swelling or disintegration, or all of these phenomena. A cement which remains perfectly sound is said to be of Constant lobume.

Failure to meet the requirements of the aceelerated tests in shipments direct from mill need not be sufficient ground for rejection. The cement may be held for twentr-cight days and a re-test made at the end of that period. But failure to meet the requirements at this time should be considered sufficient canse for rejection.

The acerlerated test is a rongh and reaty means for determining without elaborate equipment whether eement is fit to use. Cement known to have been stored by a deater for some time should be promptly rejecterl if it fails in this test.

If a Portlamd (roment passes the acoelerated test it may be used immediately with reasonable certainty as to its ultimate soundness.

Mcthord of Testing

The method of making the aceclerated test, is as follows: On a piece of glass about four inches square, take a sample of the cement and mix it to a consistency such that the cement can be readily kneaded without erumbling and at the same time not so soft as to run or lose its shape when pressed into a smooth pat with a thin edge. Place the pat so formed under a moist cloth for a period of twenty four homs in a temperature from sixty to seventy five degrees and then expose it to an atmosphere of steam. Or, if preferred, the specimen after curing as above for twonty four hours may be placed in cold water, which is raised to and maintained at the boiling point for several hours. Three to four hours is the usual period. Under this test the pat shoukd harden without cracking or swelling.

Couses of Cnsoundmess

Cracking, (rumbling, or disintegration of work in Portland Cement conerete properly mixed and laid may be caused by an excess of lime; by under burning or by an excess of magnesia in a thoroly burned coment, producing gradual expansion which will disintegrate the mortar or concrete even after several years.

Care of Cement

The inspector should see that the cement is properly housed when delivered to the job and protected from the clements so that it will not be damaged by moisture. Dampness from insufficient protection will render the cement limpy and while it may not destroy its setting properties it will greatly reduce its sand carrying power and efficiency or may even render it entirely worthless.

5. Specification for Aggregate

Sand: Sand used should be clean and coarse, or a mixture of coarse and fine grains with coarse grains predominating, which should be free from clay, loam, mica and other impurities.

Testing Sand: In order to determine the amount of clay, dirt or other impurities, a simple, practical test is to take an ordinary quart glass preserve jar, put in a pint of sand, fill with water and put on the eap. Shake thoroughly and allow it to settle. The result will be that the coarser grains will go to the bottom in the order of their size, and the silt and light impurities will settle in a layer at the top, giving the observer a means of gaging the amount of the impurities accurately and judging of the character of the sand and the proportion of coarse, medium and fine grains in its make-up. From three and one-haif to four percent of clay in the form of fimely divided silt will do no harm in a bank sand or gravel for reinfored concrete work. Even higher percentages than this have been claimed to increase the strength of the concrete under trist, though where it is exposed to the elements and the action of frost a percentage even as high as this seems to be quite detrimental. Howerer, in building work, which is usually under cover, it does no harm whatever.

The effect of the size of the grains of sand has been investigated by Feret. The accompanying figure from Johnson's Materials of Construction, shows results obtained by Feret on a $1: 3$ mortar after hardening one year in fresh water. The sand used comsisted of various proportions of fine grains up to . 5 mm , medium .5 to 2 mm, and coarse 2 to 5 mm , and in the diagram the strength of the mortar is recorded in the triangle at such distances from the base line ats represent the propertions of each size of sand used. the line of equal strength being wherever drawn in the diagram. Thus the strength of the mortar in which only fine sand was used was only 1400 pounds per square inch. The maximum strength of 3.500 peninds per square inch was obtained from a mixture containing 85 pereent of couse sand and 15 percent of fine with a very little sand of medium size.

Any point of an entire contour line represents a sand made up of the different sizes (i, M, and F in proportions corresponding to its perpendicular distance from the sides opposite earh apex but having the same strength as every other point on the same line. This diagram shows that a censiderable variation in the proportion of coarse and fine grains will make a mortar of the same strength, hat that, in general, the strength of a mortar with fine sand of umform size of grains is about one half or less than one half that of amortar made with the same proportion of sand with grains ranging from coarse to fine, and that in general the strongest mortar is secured with a coarse sand with grains ranging from coarse to medimen.

-Showng the Methorl of Represturing Propertionatr Mixtmes of Thres Ingredients.
 $\lambda=1$ modium saml, 0 o8 in, 100.02 in in diameter. $\mathrm{F}^{\prime}=$ fine samd less ithan $0.0: \mathrm{in}$. in dianter.

- (ampressive Ie esistame of lorthand.
 ninf monthe m an alld then llater monthe in
 the emmponition of the samd varying areorlate t busition in the tratmere.

- Compressive Resistance of Portland compnt Mortars, $1 \mathrm{C} .: 3 \mathrm{~S}$. in prounds per square inch, after one year in fresh uater.
coment Vortars 1 ($:$: 3S, in pomats per sumare mels after ome yetre in soterotes. Shaded fort indicates masures which were partially

The effect of an excess of clay, such for instance as the dust from soft magnesium limestone will sometimes greatly retard the hardening of cement, the writer having seen instances where concrete at the age of a month had not attained twenty five percent of its normal strength and where the ultimate strength was reduced perhaps not more than twenty five or thirty percent by the use of this improper mixture.

In many specifications, clean sharp sand is called for in spite of the fact that in many parts of the country sharp sand is not obtainable. Sand with romded grains such as lake or beech sand is perfectly satisfactory, there being little difference in strength between the mortar made with sand of angular or sharp grains and that with rounded grains. The idea that a sharp, angular aggregate is necessary for strong concrete is the basis for the objection made by some to lake or bank gravel as a coarse aggregate, while as a matter of fact better results and stronger concrete is generally secured with the round pebble than with angular stone, provided the specimen tested is not less than six monthe old.

Gravel where used, should be composed of clean, hard pebbles and sand free from clay and other foreign matter, such as rotten stone, hardened lumps of clay and the like. A sample having the coarser materials screened ont may be tested for impurities in the same manner as was given for the sand.

Broken Stone: Broken stone used should consist of sound (rushed stone, such as trap rock, limestone, granite, hard sandstone or eonglomerate. If the texture is crystalline and there are no portions of rotten stone or hardened clay such as is sometimes found in oölitic limestone and shale, the crusher run may be used, if a part of the sand content which would otherwise be used in the mix be left out equivalent to the fine particles of crushed stone in the erusher run.

If, however, the stone can he readily reduced under the hammer to a fine, impalpable powder as is the case with some shales and with the oolitie type of limestone referred to, the dust should be entirely removed.

It is better, where possible to use only that stone which is fomme durable when exposed to the action of the elements and frests, and the harder the stome the stronger the conerete that may be made when using it as the aggregate.

6. Proportions of Materials

In conerete building construction the proportions which experience indicates most economical in concrete for slab and beam construction, columns and column footings except for the case where the loads to be carried are musually great, is one part of cement and two parts sand with four parts broken stone or gravel, this being indicated by the expression 1:2:4. These proportions are customarily taken by measure, each hag of cement being estimated as equal to one cubic foot in volume, thus the proportions of $1: 2: 4$ mean one sack of cement (94 poums) two cublie fect of samd and four cubic feet of crushed stone. Too frecuently the inexperienced builder interperea $1: 2: 4$ concrete to mem a $1: 0$ aggregate or six parts of gravel which may be two thirds satd and one third coarse aggregate. The proportions of $1: 2$ refer to the mortar and mean the ratio of the cement to the volume of samd which rme from about one eighth inch down in size, whike comser material than this may be considered as coanse aggregate or the stone content.

The size of the stome in reinforeed eonerete work in ordinary buifding construction should range from one inch down, observing directions for sereming as detailed muder the specification for broken stome.

The first refuirement in propertioning the aggregate for reinfored concrete work is to see that there is an exeese of fine material over and ahowe that required to fill the voids in the coarse component of the aggregate. The volune of voids in coserse aggregate is greater with a miform size of stone tham where the sizes of coarse aggregate vary from comes to fine, and for that reason the crusher run of stome is preferable where the stome is granite, trap or hard crystalline stome. In heavy mass work, however, a larger proportion of coarse aggregate with the size of stone varying from three to four inches in dimucter down can be adrantageously used, but this is unsuited for reinfored concrete work in the ordinary building line. It is only suitable for hridgr piers, and heary mass work.

7. Analysis of Strength of Concrete

Concrete may be defined as an artificial conglomerate stone in which the coarse aggregate or space filler (generally a hard natural stone, furnace slag or peblde) is hell togethe by a cement mortar matrix. Having selected a given coarse aggregate, the strength of the concrete depends on the strength of the mortar matrix, in other words, on the ratio of cement to sand in the mortar for all samples of the same age, formed under the same conditions.

The Strength of the Concrete depend.s then:

First, on the grade of sand and the proportion of the cement to the sand in the mortar.
second, upon the hardness and the character of the coarse aggregate.

Third, on mamipulation and the conditions under which the concrete is eured or hardened.

Fourth, on the age of the specimen.
Mortar made with a very fine sand is only about half as strong as that made with coarse and medium grains and for that reason the specification regarding the character of the sand whonk be given careful attention.

As shown by Feret, quite a variation in the proportion of medium, coarse and fine grains of sand will give nearly the same strength so that the average clean coarse bank sand will generally fill the requirements for a good concrete mortar.

The richer the mortar the stronger the concrete. As noted above, we recommend a one-to-two mortar for reinforeed concrete, and where high working stresses are to be used in reinforced concrete columns we would recommend a mortar in the concrete as rich as one cement to one and one half sand, oltaining therely an increase of twenty five percent in the permissible working stress.

Coorse Aggregate

The effect of the strength of the coarse aggregate upom the strength of the concrete, in tests of concrete made with shale rock crushed to one and one haif inches or under, at Duluth, show the shale concrete about sisty-five to seventy percent as strong as trop rock concrete and the trap rock concrete from nincty to ninety-five percent as strong as that made with lake gravel for the coarse aggregate. These tests were mate on concrete ahout four monthe old.

Manimelation aud Conditions of C'uring

While the quality of the cement, sand and ageregate have more or less influchee on the resulting concrete, with any good brand of first chass Portland Cement, dean roarse samd amd hard erushed stone, substantially the same results will be secured under identical conditions of mixing and curing. The latter comditions have a most decided influence on the strength of the conerete, viz., whether sufficient water has been useel to permit and promote perfoce cersetallization of the eement, whether an exeres amount of water has hem
used and the fine and coarse materials have been allowed to separate or become segregated, whether the eoncrete has been thoroly mixed, and whether the conditions for curing were favorable, such as kecping the eonerete damp and preventing it from drying out too rapidly or whether it was hardened under unfavorable circomstances in frosty weather. On this account it is difficult to harmonize the large momber of isolated tests that have been made by independent investigators under widely varying conditions.

In building work, howerer, it is a fortunate fact that except in cold wather where the work requires special treatment the general conditions for hardening are most favorable. After one floor has been poured the next is ereeted thereon within a week or so and the exess water dropping from the upper flooss keeps the concrete in the lower property wer, rendering the conditions more favorable for badening and erring than those of the ordinary laboratory test.

8. Hardening of Portland Cement.

The hardening of Portland ('ement is a chemical process which within eertain limits is aceelerated by heat and retarded by cold. This is an important consideration for the baider to keep in mind, since when the temperature of the water used in the mix and the aggregate is at or appoximately near the freezimg peint, the erement lies domant and no fixed rule can be given of a set nomber of days during which time it is neressary for the eonerete to lie in phate on the forms before it will attain a certain given degree of strength. In hardening, as in nealy all chemical reactions, heat is generated by the setting of the cement. This heat is ratiated away very rapidly where the mass is small or thickness of the part of the conrete work is ineonsiderable, while where the mass is large as in the rase of heary walls, piers, and the like, the heat generated by the setting of the cement is mot lost rapidy by raliation and the work tends to cure much more rapidly in heary work in cold weather than in the case of the thin slahs usually used in the floors of buildings. special directions for the treatment of concrete at various temperatures will be given under a special section dealing with building work.

Increase of strength of Concrcte with Age

The following table shows compressive strength of concrete as determined be test made at the Watertown Arsenal in 1899. $1: 2: 4$ mixture.

Brand of cement	7 days	1 month	3 months	6 months
Atlas $\ldots \ldots$	1,387	2,428	2,966	3,953
Alpa $\ldots . .$.	904	2,420	3,123	4,411
Cremania	2,219	2,642	3,082	3,643
Alsen	1,592	2,269	2,608	3,612
Average.....	\ldots			
1,525	2,240	2,944	3,904	

The above gives a fair idea of the increase in strength of concrete with age under normal temperature ahove $60^{\circ} \mathrm{F}$.

After a period of six months the concrete in ordinary buikding is found to increase slowly in strength and considerably in hardness and rigidity. Thus it appears that the stiffness of a long span slab will increase about twenty percent between two months and twelve to fifteen months, and the strength perhaps in a lesser ratio, on the assumption that the compression element only in the combination is hardening and increasing in strength.

Coefficient of Expansion

The coefficient of expansion of concrete is practically the same as that of mild steel. Some investigators have matle this coefficient per degree of Fahrenheit slightly kes and others slightly more than .0000065 , which is usually acrepted for mild steel, hence ordinary changes of temperature eanse no injury to the composite material formed by embedding steel in concrete.

9. Bond between Concrete and Steel.

In the design of any combination of concrete with steel the bond between the two elements is of prime importance. Concrete setting in the air shrinks and grips the reinfored members with a vice-like grip. The richer the mixture the greater this shrinkage stress and the better the bond. In concrete setting in water this shinkage is lacking and in this ease deformed reinforeement or mechanical bond is desirable.

The bond between the conerete and steel has a maximum value with a plastie mix of concrete such that the mortar will flow slowly and thoroly smround the metal. It is greatly reduced with a stiff mixture requiring tamping and at the other extreme also is less with too sloppy a mixture of concrete.

With plain round rods embedded 12 inches the bond value may reach, under favorable conditions, a maximum of 600 pounds per square inch with concrete of a $1: 2$ mortar, six months old, but
with dry tamped concrete the bond value or adhesion as it is sometimes called may rum as low as 200 pounds per square inch of the surface of the bars.

A round har will give a higher bond value than a flat or rectangular shape, while a polished or cold rolled shaft as it comes from the mill will give a value hardly more than a fourth as great as that. Slight rusting of the surface improwes the athesion or bond since the rust combines chemically with the coment and seems to increase the shrinkage grip. Further, slight rusting tends to remove the black mill scale making the athesion uniform along the surface of the metal.

Paint, oil or grease, greatly reduces the athension. With properly arranged reinforerment the designer rarely has oecasion to figure upon the bomel value between the two materials, since it is amply provided for where che precaution hats been taken to render the design safe to execute by properly tying the materials together by an ample lap of the metal over the supports and the use of sufficient cement.

Occasionally the designer may be fored to use shert stoek lengths in beams or siabs, and mader such conditions a working stress not exeeding forty pounds per square inch is permissible providing the bars are abo hooked at the ends. Even with this additional precaution care must be exereised in keeping the work supported much longer than woukl be neerssary with preferatble lengths of rods. The reason for this precantion and the low value recommended is that the bond strength botween comerete and sted varies greatly with the age of the eoncrete and like the shearing resistance it is very low with partly eured concrete but increases with the age and hardness of the work, tho lese rapidly than the resistance in eompression.

The comstructor should keep rlearly in mind the important conditions which insure satisfactory bond botween the metal and concrete. namely: A misture of poper comsistency contaming sufficicut cement and the preferable use of bars roumel in section, which are most readily surounded by the plastic concrete in flowing.

It is interesting to mote in the following table of tests of bond that the average adhesion of the $\frac{1}{2}$ " round rods was twenty percent more than that of the seuare rock with the $1: 3$ mortar; that the adhesion to the sted with the broken stone concrete was greaten than with the $1: 3$ mortar or even the neat cement test; and that the adhesion to the quarter inch by one inch averaged only six tenthe that of the half inch rounds.

TABLE I
SHOWING ADIIESION OF VARIOUS SHAPED RODS TO（\％）NCRETE OF CONSTANT COMPOSITION

		1 Part C＇ement to 3 Parts Sand ＊9－10－11－12， 1 Cement， 2 sand， 4 Broken Stone （Even numbers 40 days－Odd Numbers so Days					
No．	$\begin{aligned} & \text { Section of } \\ & \text { Steed } \end{aligned}$	Length Embed－ ment ins．	$\begin{aligned} & \text { Perimeter, } \\ & \text { ins. } \end{aligned}$	Lomal in lbs．at Failure	Area of contract sif．ins．	Load in lbs．per ar．ins：	$\begin{aligned} & \text { Averinge } \\ & \text { peri } \\ & \text { sp. in. } \end{aligned}$
1		$16 \frac{1}{8}$			12．25		
2		$16 \frac{1}{2}$	$\because 0$	－ 7070	1300	435	432
3	2 stg	6		－5，200	12.00	433	
4		$1{ }^{1}$		－， 300	12．80	424	
5		（ ${ }^{\text {a }}$		4 （60）	9．43	45	
6	$\frac{1}{2}^{\prime \prime}$ round	6	1.571	5，100	9） 43	330	512
7	ב	6		4，600	4．43	4以	．．．
8		$5{ }^{7}$		5，000）	9）203	24	
9		$13 \frac{1}{4}$		4900	15．63	313	
10	$1^{\prime \prime} \times 1^{\prime \prime}$	$1 i_{4}^{1}$	2.5	4，400）	15 ib	\because	293
11	4×1	$6{ }_{8}^{1}$		4，800）	15.20	314	
12		$6{ }_{4}^{1}$		4，400	15． 103	$\because \sim$	
5		$10^{\frac{1}{4}}$		17.400	41.0	424	
6		$10 \frac{1}{4}$		15， 500	40.5	3：1）	111
7		$10^{\frac{1}{4}}$		17，000	10.5	420	
8		10_{4}^{1}		16，¢0\％	11.0	411	
＊ 9	1 square	$10{ }^{1}$		21,2100	10．$\overline{\text { i }}$	－3：3	
＊ 10		$10{ }_{4}^{1}$		24,6000	11.0	1：00	－5\％
＊11		$10 \frac{1}{5}$		24,200	40.5	508	．．．
＊12		10_{5}^{3}		20,000	11.5	（i27	

Test by Emerson，Eng．News，190t，1．2n．2．

That the bond letween the eonerete and steel is really a shrinkage grip may be easily proved by the simple experiment of molding some concrete and plating a piece of round steel on top，lightly pressing it into the conerete without immersing it more them one third the diameter．When the concrete has eured it will he found that there is very little diffieulty in removing the steel．If the piece，howeres， is pressed into the concrete to a considerable depth and the con－ erete in its plastic condition allowed to flow around the bar it will be very difficult indeed to remove and it will be fomm that this is caused by the shrinkage of the eoncrete around the bar in hardening． That this bond between the eonerete and the rod is not due to direet adbesion may be further proved by spheting the concerete about the bar or sawing it down to the side of the har on（ateh side when it will be found that the bar is readily removed from the comerete．

The following table is given by Profestor Hatt．The tests were made by drawing out the rods．In this table it will be noted that
the depth of the rod in the concrete is much larger than in the tests by Emerson, while some tests by Feret with the rod embedded $23^{\prime \prime}$ give values approximately half as great as where the length embedfled is from ten to twelve inchers.

TABLE II.

Diameter of rod inches	Age of -perimen in days	Depth of rod in concrete inches	Acthesion in pounds per square inch of surface in contact		
			Maximum	Minimum	Average
716	32	72	73.5	470	635
$5 / 8$	35	76	780	714	756

The adhesive resistance varies somewhat with the depth to which the rod is embedeled.

It is greater with a rough than with a smooth surface.
It inereases with the proportion of rement up to a eretam limit.
It is a maximum with a plastic mix and a minimmm with a dry mix and tamped (ombrote.

It increases with the age of the concrete.
Comsidere finth that for concerete exposed to air the amomint of water used in mixing has a great inflachere, too dry conerete adhering badly. An excesis of water giving the concrete the necessary flaidity for filling up the voids around the reinforement produred the best results. He considered, however, that this advantage of wet con(rete was counterbalanced by a notable diminution of tensile and compressive resistance. This would be true were it mot a fact that the excess water in rasting reinforeed concrete work in building construction is readily disposed of by absorption of the forms and leakage through them.

The low values found by some investigators for adhesion or bond seem to be readily aceomed for by the prevalent French eustom of tamping der or stiff mixtures of concrete rather than of pouring, if of a wet or plastic consistancy, as is done by the American constructor today. The carly idea was that good concrete could only be made by a dry mix and tamping. Combined with this dry mix the deformed har was manuestionably an improvement, but as the use of the dry mix has long been abandoned the main advantage in the use of the deformed har has largely disappeared with its abmodomment.

By far the grater number of concrete failures have occurred where deformed har reinforcement has been used. This is due in part probably to the fact that some types of deformed har reinforcement are such that with ordinary care the metal is not so well surrounted as in the case with plain rounds, and the shrinkage grip of athesion is less with the irregular section. Further, the designer seems freguently to place too great confidence in the bond strength in these designs. and has frequently neglected a sufficient lap over the support. to render the design safo and conservative.

Plain reinfore e ment would no doubt not have done much better than deformed bar reinforeement with the same arrangement and and length of lap, but over confidence in the deformed bar reinforcement has had a temdency to lead to a typedesign inherently dangerous with any type of reinforeement.

10. Variation in the Strength of Concrete with Variation of Temperature and Moisture.

This questiom is of the greatest importance to the construstor in putting up work. The eoncrete, partly cured, may apparently be stiff and rigid when the forms are removed in cold or freezing weather. Then with a sudden change in the temperature, such as may readily be bronght about hy putting a heating plant into the building, the concrete will sweat and soften and get out of shape. Again, when concrete which has hat as long as two to three months in which to cure during the fall season, is exposed all winter, soaked with water and the water frozen, and in the spring a heating plant is put into the building and the slab thawed out, its strength is temporarily greatly reduced, and if the slab is carrying the weight of other stories which are shored from it, permanent deflection and serious trouble may result.

The older and more thoroly eured the concrets, the more rigid it is and the less the variation in strength resulting from the conditions above noted. Comcrete which is thoroly soaked with water is less rigid in compression than concerete which is thoroly dried out. This change in strength is due to the fact that the comcrete expands with moisture and shrinks or contracts as it dries ont this artion being greater with concrete during the hardening stages.

Hence, the construetor should use eare and sere that his work is not ower-loaded, particularly at the time when he is firing up the heating plant in a buikling in which the floors, though they have had some time to cure in the fall, have been thoroly soaked and frozen.

Undue confidence in the strength of partly cured and frozen conerete arises from observing that when the forms are first removed there is no deflection and the concrete stands up apparently of ample strength and rigidity under the superimposed load of the centering of one or more storics above A sudden change in temperature, cansing the moisture in the slab) to thaw and expand in the conerete will so weaken the stab that a large permanent set will result. The cautious builder will keep the floor well shored up until he is sure that it is thoroly dried out by heat so that there is no chance for the work to get out of shape as above explained.

The extent to which the strength of a slab may be reduced even after it has been oneo fairly well rured, but subsequently exposed to the weather, soaked and frozen is illustrated by a case where it was so softened in thawing out as to deflect right times as much as it did umder identically the same load after drying out and exposure to heat for there weeks. so that the importance of the preeation above ontlined should be apparent. In this ease the sab was east in the latter part of Amgust, was farly well cumed but exposed to the weather, fooded by rain and frozen up durine the winter. The heating plant was placed umber the floor sometime in March and a light load then placed on the shab, which had a span of about 2 geet and was 7 inches thick, well reinfored. A deflection resulted of approximately 2 incbes. The slab returned to its origimal shape after removal of the load, and when thosoly dried out the defiection under the same load was hartly 316 inches.

Deflections are foumd to be increased where the slabl, is wet, and the strength is apparently somewhat diminished.

11. Machine Mixing.

Concrete for a concrete steel huilding should be machine mised, preferably in a bateh mixer. Some of the continuous mixers do good work where bank gravel is used as the aggregate and fail where crushed stone is used. A batch mixer such as the Smith, Cube, Polygonal or Ransome, is to be prefered because it may be eharged with cement, sand and stone hy measure and the exact amount of water added. The water content in the mix is best supplied for a large piece of work by a tank which will contain the amount of water needed for a batch arranged with the usual float trap valve so that all the operator needs to do is to pull the string and the tank of water is discharged at once in the miser. This insures a misture of uniform consistency and effects a material saving of time.

Where the work is of sufficient magnitute to permit an overhead hopper into which the sand and stone may be elevated, and discharged by gravity into the mixer as desired, a large saving in labor is secured. Where the mixing, plant is near a track the hopper may be filled from the cars by a derrick and suitable clam. Where the aggregate is brought to the building by team load, a platform arranged so that the wagon may be driven over it and the stone or sand dumped there-

Fig. 1. Mixing Plant, Limdeko-Wamer Building, st. Pant.

On and then elevated and dischatrged into the top of the hopper, is ahout as conomical an arrangement as the writer has seen.

A view of a mixing plant of this kind used in the erection of the Jindeke-Warner huilding of st. Panl, ereeted hy Butler Bros., is shown in Fig. 1.

In Fig. 2 is shown the mixing plant used in the erection of the John Deere Plow ('ompany's buikling in (Onaha, the hopper in this
case being charged by the locomotive crane, using the clam for transferming the materials from the cars to the hopper.

Consistency of Concrete

For building eonstruction and reinforeed concrete work generally it is necessary that the concrete shall be mixed so that it will flow slowly and thoroly surround the reinforcement but it should be no more plastie than is reguired to attain this result. If mised too dry and tamping is depended upon, voids will be left around the steel and the face of the concrete when the forms are removed will

lig. ᄅ̈. Mixing Plant and Hopper, John Derer Plow Company Building, Omahat.
be found rough and full of pockets and the work will present an appearance of wakness which it very likely does not possess.

12. Pouring Concrete.

In pouring concrete, the lowest portions of the forms should be filled first: Thus neeessitating the least possible flow of the eoncrete to reach its final position in the work. In buikings the columns should be filled first, then the beams and finally the slabs, the operation being continuous as far as practicable. If an attempt is made to reverse this program and fill the beam before the colmm is filled the conerete will flow in an inclined dirertion to the column and as ratch hateh is deposited the more liquid portions wathing over the
inclined surface carry the light laitance and fine sand down into the column, and an inferior concrete and one of little strength will be found at the bottom on removal of the rolumn forms.

In pouring columns, especially where elosely spaced spiral hooping is used, conerete should be poured over the center. If an attempt is made to fill the column from the side the space between the form and hooping is filled up to a considerable height in advance of the central core, the hooping acting as a sereen prevents the eoarse aggregate from flowing to the lower erntral area with the result that the mortar flows to the core and seals to some extent the voids toward the hooping and the next bateh camot flow to fill in the voids thus loft in nearly clean coarse aggregate loctween the hooping and the column form. This leaves rough unsightly work when the forms are removed and while the core may be sound the fireproofing is inferior in character or worthless, and the work presents an appearance of weakness which it does not posisess.

IVhere to Make Joints in the IVork and How to Do It

splicing of concrete in beams and slabs shonld preferably be mate in the eenter and shonld be vertical. The reason for this is that where the conerete is allowed to flow out on an inclined plane in the beam the inert material known as latance comes to the surface, preventing a good bond when the new concrete is added. In fact instances have not infrequently been olserved where wedge shaped pieces of concrete three feet long and rumning from two inches in thickness to one quarter inch at the end dropped away from the beam owing to this manner of placing, the bond being insufficient to carry the weight of the piece. The remedy is to break up the surface of the old concrete and grout it with a neat eement before proeerding to cast the new work.

In very hot weather the erushed stone may readily get so dry and hot that it aborbs the water from the mix and eateses the cement to set too rapidly. When this is the case an open eraek will appear at a joint. The remedy is to first cool the stone by thoro watting with the hose.

13. How to Determine when Concrete is Thoroughly Cured.

It may be moter that most failures oever in the cold season, and the need for a certain and simple methorl of determining whether the concrete has been merely hardened ley frost of really cured is (H)Nons. A good way in cold weather work is to cast a few small sample cubes or cylinders when pouring the flow, and allow them to
harden moler the same conditions as the slab, and these samples may then be examined at any later time. When this has not been done, cut out a small piece of the concrete and phace it over a stove or radiator and if the concrete has been merely stiffened by frost it will sweat and soften up, while if cured it will remain firm, dry and hard.

In the previous pages, dealing with the hardening of concrete the fact has been emphasized that euring has wo direet relation to the number of days that a floor has been poured. Hardening is to be considered first in comnection with the temperature and humidity during the period of curing, and second in comnertion with the treatment of the materials in cold or chilly weather as to whether the water and aggregate hatd been properly heated.

In the smmmer season, during ten or twelve days of continued chilly, ramy wather, concrete frequently hardens so stowly that the early removal of the forms at that period will result in permanent damage to the work, so that the hmondity ame ram must be taken inte comsideration as well as the temperature under which the concrete is cured, in cherding the frasibility of removing false work.

In the chilly weather of the spring or fall, if the concrete has been mised with rold water and subsequently chilled ly frost before it has had time to set apprectably it may he very slow in curing. It is exceertingly differult meler such riremostances for the most expert to tell when the false work may be removed and no modesirable results follow. The concrete may after such treatment, (improper mixing with cold water at a time when the weather is chilly and frosty) apparently fo hard and subsequently swat and soften during the continued hardening process and the work get out of shape. That is, the slab or beam may defleot permanently $\frac{1}{2}$ or $\frac{3}{4}{ }^{\prime \prime}$. Such deflection, while it will not result in permanent weakness after the concrete has finally hardened, will canse the owner to question its strength. It may cause partitions, which were luilt upon it at its original clevation, to be left unsupported and a year or a year and one half after the inelastic sag has oceured, the partitions will rommenee to arack and eome down to a bearing. The owner will feel certain that the concrete work is weak, although it has hardened up and is of ample stength, tho not in the position in which it was left when the forms were removel. These troubles are entirely obviated by the proper treatment of the materials in mixing, as we have explained heretofore.

As a fair example showing the results that may be secured by the
proper treatment of the concrete, we may cite the case of a building in Fort William, Ont., in which the roof slat, was east on the seventh day of December, at a temperature twenty degrees below zero. On the 15 th, a fire was started by the carelessness of a workman in placing a kettle of pitch with which cork board was being applied too near a salamander and the centering burned out from under this roof completely and also from beneath a part of the slab below. Notwithstanding the season of the year and the low temperature at which the work was cast, these shabs which were approximately seventeen feet in span, stood up very well. The under side of the concrete, however, was somewhat pitted by the formation of steam in small cavities and the forcing out of small chanks of the concrete therehy. In this case the pitting eatused by the fire was readily remedied and the work put in shape at a comparatively small cost.

14. Handling Concrete Above Freezing.

Handling concrete to get the bent results requires quite different treatment at different times depending on the temperature. Perhaps the most favorable conditions umder which concrete may be placed are at temperatures ranging from to degrees to so degrees Fahr. Under these eonditions the concrete does not dry out too rapidly and while it may set slowly it hardens up better than when the temperature is higher.

In hot, dry weather the moisture dries out of the eoncrete too rapidly, requiring for the best results, that the work he wet down with a hose, particularly during the first datys exposure to the sun after casting. Wetting should commenere as soon as the surface of the concrote has set.

Frequently in the hot sum large cracks will open up due to the rapid evaporation of the water. These can, and should be promptly filled with a bucket of grout. Sometimes the stone, when exposed to the heat of the sum will beeome so dried out and hot that it will absorb the water rapidly from the mix and the heat of the stone will be sufficient to eatuse the concrete to set before it ean be spread in place. Wetting the rock pile down will climinate this difficulty.

At all temperatures below to degrees Fahro, it is best to wamm the water and wake the eement up, otherwise it is liable to set teo slowly to enable the forms to be safely removed at the usual intervals common in warm weather.

In putting up a large building at Toledo, the contractor wired to Minneapolis for the writer to visit the buiklinge, stating that the
cement in the entire third floor was not setting up and had been in two weeks. The writer was unable to leave immediately and arrived at the building three days after receiving the telegram. The weather had turned warm in the meantine and the eement had started to set. There were places, howrore, where a twenty-penny nail could be pushed into the concrete with the thumb to its full length. The cement had been mixed with water ice cold, and had lain dommant during the chilly weather which sueceeded the two werks after placing the concrete. For the remaining stories, after instructing the foreman to see that the water with which the concrete was mixed was heated to about 120 or li30 degrees there Was no difficulty and the forms were promptly removed every ten or twolve days per story athongh the weather was much colder as the seaton advanced.

C'oncrete Beloen Freczing

In freezing weather it is desirable to wake up the eroment by asing hot water. Water may he heated to 160 or 180 degrees and the sand and stone mixed with water in the mathine before adding the cement. The water will thus warm un the stone and when the eement is dumped into the mixer the temperature will probably be in the neighborhood of 120 degrees.

When the demperature is below zero, boiling hot water is sometimes used. The samd and stome are first placed in the mixer, then the boiling water is added to Warm up the sand and stone, and finally the erment, when the samd and stome has been wamed up and the water has been cooted down to a temperature of not more than 120°. This methorl of procedure is necessary in order to not kill the eement by the boiling water.

At low temperatures salt may be advantageonsly used. The proportion of salt which it is desirable to usis for temperatures between zero and 2.5 abowe zero is a pint and one-half of salt to each batch containing two hags of cement. Below zero, a little more than a pint per sack, and extra care is to be taken in heating the materials and seeng that the concrete gets into place hot.

For these vory low temperatures it is much better to heat the stone and sand oyer a coil of stemp pipe if such is available. In one casce concrete was placed at 28 below zero and the work in this case was executed in a very satisfactory manmer. In addition to the use of hot water the gravel used as an aggregate was thoroly heated over a coil of steampipes. There is mueh less diffoulty in placing eoncrete in large mases in cold weather than in thin slabs and the like.

In large masses such as thick walls, thick slabs, and the like, the cement gencrates heat in setting, sufficient to keep the body of the material warm, whereas in thin slabs this is not always the case and the concrete may and frequently does freeze.

It comes then to a question as to how to handle the concrete in the best and most practical manner. In a building having exterior bearing walls the walls are built up, then the slab is cast and artificial heat should be promptly applied on the under side of the slab to sweat out the concrete and enable it to harden up promptly. Window openings may be readily elosed with eanvas or light cloth.

Fig. 3. Canvas curtain proterting an upher story of the strong-Warner Building, st. Paul, under construction in winter.

Where the building is a skeleton concrete frame it should be protected in winter from outside temperatures by help of canvas curtains in lieu of the walls as shown in Fig. 3. Then the concrete may be artifically heated and hardened.

In a large piece of work the most economical method of heating is to put in a small fan with the usual steam eoil, and heat the building by blowing in heated air in the usual manner. In a small building this is too expensive and the resort is had to salamanders and coke for heating.

15. Action of Salt

The action of salt on concrete is three-fold:
First, it lowers the freezing point and hy so doing gives the conerete a better opportumity to attain its initial set before freezing.

Second, it tends to retard the sotting and athows the materials, the cement, water and aggregate to be heated to a somewhat higher temperature than would be permissible were it not for the salt in the mix.

Thirel, siner salt has an affinity for water, it rotaims in the eomerete the needsing monsture reduired for perfeet erystallization. In other worls, it prevents the emorete from dreing ont before it has had time to set when it thaws after freezing.
(:alcinn ehloride hats also been usid to some extent to prevent the freezing of concerete in cold weather". hut owing to the fact that commons salt is so murh less expensive amel more readily obtained, it is ahmost miversally wied by those acemstomed to do work in the wintel scatom.

The use of salt in the conerete does not apperar to impair its strength in the least, hor does it appear to have an injurions effect on the matal, provided the antal is wall aromed with wet concrete.

The we of berme in the mixtme is patimbarly arlvantageons in phacing mass concrote in preventing sealing of the surface from frost action and while it mas somewhat setard the sotting and hardening the ultimate result appears 10 be a concere of eren greater strength than that hardened moker nominally mome facorable conditions of warm weather.

Concrete in setting gencrates comsiderah)le heat after the action of setting has started. In cold weather it requires artificial heating to start this chemisal action. An experiment was tried on one piece of work when the temperature ontside was abont 25 below zero. A piece of gats pipe was inserted into a colnmom $36^{\prime \prime}$ square just cast. A thermoneter was dropped down the pipe three feet and the upper end sealed with a cork. Epon removing the themometer twelve hours afterwards it registered 9.5 degreos Fahr.

16. Curing Concrete Where Proper Precautions Have Not Been Taken

The congineer is frequently called upon to pass upen concrete which has been placed and the precautions heretofore reeommended have not been forlowed.

We have known of cases where the concrete was placed in December, mixed with cold water, frozen as fast as placed, and when this same material thawed out in March it was as soft as the day when first cast. After the concrete had been kept thoroly wer for two and one-half weeks and then allowed to dry out, a good hard concrete was serured which after eight months stood an exceptionally satisfactory test.

Concrete mest promptly thawed out after it has been frozen, sets so slowly that its hardening may be condemmed as altogether too slow for practical purposes if it is expected to clean up the work and get it finished within a reasonable time, and for this reason it pays the constructor well to heat the materials so that the centers may be removed promptly and the work finished up nearly, if not quite, as rapidly as it is ordinarily done in the summer.

Too great care, however, eannot be exercised in handling work during the winter season since frozen or partly frozen concrete may stand woll when the forms are first remored and then asom as it commences to thaw it will begin to get out of shape and look badly if it does not entirely collapse.

Many mistakes in judgment are made in handling work in the cold season of the year, althongh by the exrerese of care and good judgment there is no reason why the work camot be executed in a thoroly first class and satisfactory manmer.

In working during the winter season snow and ior freduently get on the forms. This can be readily removed by the use of a stem hose, melting the snow and ice in advance of placing the eoncrete.

17. Precautions in Splicing, Mixing, Heating, Etc.

Attention is called pointedly to the neersity of melting snow and ice on old work and on forms hefore casting concrete and it remains to call attention to the necessity of special care in the -plicing work.

The old conerete may be frozen and not hardened. It will he killed or disintegrated hy heating with hot watar as some thoughtless foremen have tried to do. Splices in the work should lo made with great are and in a vertical plane looth for latans amd slato. The old concrete should be cleaned of snow and iere with a steam hose, but no hot water used, then the new eoncrete may be east aqainst it and the moderate temperature of the new consore will gradually soften the old work if frozen and the result will be a satisfartory hond between the two. It is preferable where practicable to eontinue casting until a whole floor is complete unless the work is of too great magnitude.

Inclined splices and irregular joints are very decided sources of weakness in work cast in cold weather, in fact, they can hardly be made good unless by digging out some of the eonerete and thoroly grouting the joint after the work has hardened.

The foreman should be cantioned against killing eement by mixing with boiling hot water. Mixing the sand and stone first with boiling water will take the frost out of the stone and sand and warm it up and reduce the temperature of the mix down to 120 or 130 degrese which will not injure the cement. If there is ample salt this temperature may be exen ten or fifteen degrees higher for a few minutes and not materially damage the mix.

18. Cation Regarding Removal of Forms.

A word of caution to the builder may not be amiss moder this heading. 'The rapidity of the setting of concrete and hence the time at which it is safe to remove the forms varies materially, depending on the hamidity of the atmosphere. In damp, rainy, wet, chilly weather, concrete is liable to set very slowly indeed. In dry wather, and partieularly in high altitudes the concrete sets much more rapidly. In emotral Mimesota for example, moler usual conditions, concrete may be eomuted upen to set more rapidly at temperatures ten or fifteren degrees lower than in situations close to the (ireat Lakes or in the south where there is a large difference in hmmidity. 'The experieneed superintendent son becomes familiar with these comditions for a given locality, hut if he moves about it is well to bear these general fatets in mind sinco he will find a marked differenee in different sections even with the same cement.

As to the time of removal of the forms, the buider should bear the fact clearly in mime that it is not the momber of days time that the concrete has been in place or has stood upon the forms that determines whether it is safe to remose the forms, but the degree of hardness that has heen attained during that period. Conerete may remain on the forms for four momths in a northern climate, freeze and thaw out in epring and he as soft as the day on which it was placed, if the foreman has been so lacking in judgment as to nse cold water to mix the concrete and then allow the material to freeze after it has heen placed.

Frequently as far south as southern Kansas, damp, chilly weather so retards the setting of cement not mixed with warm water that after the forms have remained in place a month the construction will not hold its shape, but will sag materially, owing to its half-hard-
encl condition. This will never occur where the simple, inexpensive precaution has been used of warming up the water at all times when the temperature is below 45 degrees Fahr.

It should be borne in mind by the builder, that the slightest sag in the construction, while it may not affect the strength in the least, usually causes the owner to be suspicions of the integrity of the whole work, and as the constructor depends upon satisfied customers in a large measure for future business, and for the prompt payment of the contract pice for the work, these matters should receive careful attention.

The danger of accident with half-hardened concrete is comparatively remote with multiple way systems, as this type of construction will ahmost invariably give the workman ample time to note its yielding and to prop it up before excessive deflection has occurred. Unfortmately, this is not the case with one-way reinforeement. When it once starts yielding as a rule the whole construction goes by the run, and hence from the stand point of safety to workmen, the superintendent should exercise extreme ware with this type of comstruction.

The question of determining the hardness of the concrete and whether it is safe to remove the forms is one which the builder must decide. As a rough test the concrete should be so hard that a twenty penny nail will double over and ramot be driven into it more than three-quarters of an inch. A good idea can be obtained as to its hardness by trying it with a hammer and reeing how readily it can be indented, as well as by driving a nail into it and finding out its condition under the surface. Examining the concrete around openings, ete., will enable the experieneed foreman to form a correct judgment as to whether it is safe to remove the centering. In any case, these rough tests are sufficient to determine whether the removal of the forms is safo for the workmen.

In long span slabs or beams there may he some sig owing to compression of the concrete if it has not set sufficiently hard atho no acerident may result. Such deflertion or sagging tends to destroy the owner's confidence in the work altho it may have no material effeet from the standpoint of strength. In fact, where a long span slab or beam has sageed a moderate amount before the eonerete is thoroly hare there is generally little lose of strength.

In the case of a slath, if it is afterwards leveled up with additionad concrete, it is stronger than that portion of the work which hat kept its shaper. The owner eonsiders this an evidence of weakness.

The builder knows that if he has filled up the depresion in a panel which has sagged slightly it is probably the strongest slab in the building and a test of it will give exceptionally fine results.

The time during which the centering should remain in place varies for different spans. With a slah sixteen or seventeen feet square and seven inches thick under favorable drying conditions, it should be possible to remove the forms in cight or ten days. Where the span is longer, say twenty or twenty-five fert, two to three weeks at least should be allowed moless the slab, is extra thick. For example, a slab eight inches in thickness and twenty-five fere in span should be allowed three weoks under the most favorable conditions to thoroly harken if it is to keep its shape immediately after removal of the supporting forms. Whereat a pan of the same length. thirteen inches thick would only need practically the same time as the sherter span on aceount of the additional thicknese. These are practical peoints which it is well to bear in mind as upen them commer-

The superintendent should bear in mind, in froezing weather, that eonerete is as readily stiffened up ly frow as the true chemical action of hardening and that when thus hardened he frost it only remains for a rise in temperature to oeewr for the work to get out of shape, if it does not actually collapses. The test in freezing weather to determine whether the concrete has been merely stiffened up by cold or is actually eured, is to dig out a math sample and place it upon a hot stove, then if it sweats: and softems the forms must remain in place. If, on the other hand. it remains hard and rigid and does not sweat and woften up then the conerete may be depended upon to retain its shape and forms may be safely removed.

19. Reinforcing Steel

steel for reinforement should be tough, homogeneous metal, preferably of structural steel grade. where benting is required, or of harder grade for slab rods when bending is monecesary.

The following are the sperifications adopted be the Asociation of American siteel Manufacturers, 1910, governing the chemical and physical properties of eoncrete reinforeng hars:

Standard Specifications for Concrete Reinforcement Bars

1. Wanufacture. Stef may be made by either the upen-hearth or Besemer process. Bars whall be rolled from billets.
2. ('hemical and Physical Properties. The ehemical and physical properties shall conform to the following limits:

Properties Considered	Structural Steel Cirade		Hard Crade		Cold'Twisted Bars
	Plain Bar:	Deformed Bars	Plain Bars	Deformed Bars	
Phosphorws, maximum. Bessemer. Open-hearth	.10 .06	10 .06	.10 .06	10 .06	10 .06
```Cltimate tensile strength, pounds per sq. in. . . . . . . 5.5-70,000```		5.5-70,000	$80,000 \mathrm{~min} .80,000 \mathrm{~min}$.		Recorded only
Yield point, ninimum pounds per sq. in	33,000	33,000	50,000	50,000	5.5,000
Elongation. per cent in $\mathrm{s}^{\prime \prime}$, minimum.	$\frac{1,400,000}{\text { T. S. }}$	$\frac{1,250,000}{\text { T. S. }}$	$\frac{1,200,000}{\text { T.s. }}$	$\frac{1,000,000}{\text { T. S. }}$	$5 / \mathrm{c}$
Cold bend without fracture:					
Bars tinder $\frac{3^{\prime \prime}}{4}$ in diameter or thickness.	$180^{\circ} 11=1 \mathrm{t}$	$80^{\circ} \mathrm{l} .=1 \mathrm{t}$.	$80^{\circ} 11 .=3$	$(1)^{\circ} 1 .=4 t$	$>0^{\circ} \mathrm{d} .=\stackrel{\circ}{1}$

Bars $\frac{3}{4}^{\prime \prime}$ in diameter
or thickness and
over........... $180^{\circ} \mathrm{d}=\mathrm{lt} .180^{\circ} \mathrm{d} .=2 \mathrm{t} . \quad 90^{\circ} \mathrm{d} .=3 \mathrm{t} . \quad 90^{\circ} \mathrm{d} .=4 \mathrm{t} .1 \mathrm{~s} 0^{\circ} \mathrm{d}=3 \mathrm{t}$.
The hard grade will be used only when specified.
3. Chemical Determinations. In order to determine if the material conforms to the chemical limitations prescribed in paragraph 2 , herem, analysis shall be made by the manufacturer from a test ingot taken at the time of the pouring of each melt or blow of steel, and a correct copy of such analysis shall be fumbed to the engineer or his inspector.
4. Iield Point. For the purposes of these specifications, the yield point shall be determined by eareful olservation of the drop of the hean of the testing machine or by other equally areurate method.
5. Forms of s'pecimens. (a) Tensile and bedrling test sperimens may be cut from bars as rolled, but temsild and bending tost specimens of deformed hars may be planed or turned for a longth of at least 9 inches if deemed necessary he the manufacturer in order to obtain uniform cros-section.
(b) Tensile and bending test sperimens of cold-twisted batrs shall be cut from the bars after twisting, and shall be tested in fall size without further treatmont, unless otherwise epecified as in (c), in which ease the conditions therein stipulated wall erovern.
(c) If it is desired that the testing and aceeptance for coldtwisted bars be made upon the hot rolled bars before being twisted, the hot rolled bars shall meet the requirements of the structural steel grade for plain bars shown in this sperification.
6. Number of Tests. At least one tensile and one bending test shall be made from each melt of open-hearth steel rolled, and from each blow or lot of ten tons of Bessemer steel rolled. In case bars differing ${ }_{8}^{3}$ inch and more in diameter or thickness are rolled from one melt or blow, a test shall be made from the thickest and thimest material rolled. shoukd either of these test specimens develop flaws, or should the tensile test specimen break outside of the midde third of its gatoged length, it may be disearded and another test specimen substituted therefor. In ase a temsile test speeimen does not meet the sperifications, an additional test may be made.
(d) The bemding test may be made by pressure or by light blows.
7. Morlifications: in Elongution for Thin and Thick Material. For bars less than 7 if inch and more than ${\underset{4}{3}}_{3}$ inch nominal diameter or thiekness, the following modifieations shall be marle in the requirements for elongation:
(e) For each increase of ${ }_{3}$ inch in diancter or thickness above ${ }_{4}^{3}$ inch, a deduction of 1 shall he made from the sperified percentage of clongation.
(f) For each derease of 16 inch in diameterorthicknessbelow 716 inch, a derluctionof 1 shall be made from the sperified percentage of elongation.
(a) The above moslifications in elongation shatl not apply to cold-t wisted hars.
8. Number of Tests. Cold-twisted hars shall be twisted cold with one complete twist in a length equal to not more than 12 times the thickness of the har.
9. Finish. Material must le free from injurions seams, flaws, or cracks, and have a workmanlike finish.
10. Turiation in Weight. Bars for reinforement are subject to rejection if the actual wejght of amy lot varies more than 5 percent over or under the theoretical weight of that lot.

## 20. Quality of Steel

Unfortunately there is an idea prevalent that almost any grade of metal is good enough for reinforcement. Where the eontractor or
engineer is responsible for the test strength and permanence of the work he needs to see that the steel is of suitable quality.

The product of what is called a fagot mill is generally very undesirable. The trade term, sometimes applied to this product is "Bushel steel." A fagot is formed using muck bar iron flats for bottom and sides and filling in with miscellaneous scrap steel, iron, etc., heating up and rolling into billets and bars. This grade of metal has an ultimate strength of about 45,000 pounds per square inch and a commercial yield point of 25,000 pounds. It will bend easily but when nicked and broken will show a dull fracture of a ragged and coarse texture in strong contrast with the bright, fine crystalline or silky texture of a good grade of steel.

Rerolled rail stock is sold to a large extent for reinforeing metal. Small rods rolled from the flange and stem of the rails make excellent slab reinforcement while those which are rolled from the heads are liable to be brittle and unreliable. This grade of sted rums from 80,000 to 125,000 pounds per square inch ultimate strength and is much too hard to be safely bent cold.

Cold twisting is safe only with a soft or medium soft grade of metal. The effect of cold twisting is to raise the yield point, reeluce toughness and elongation thus rendering the metal more brittle and unreliable and for that reason objectionable. Where the mechanical bond of a twisted bar is demanded hot twisting is preferable for the above reasons.

Hard grade steel has a decided advantage for slab rods of small diameter, since the harder the metal the less liable they are to kink in the handling and shipping. specifications for small hars such as $5 / 16$ to $\frac{1}{2}$ inch, should require that these bars be shipped in boundes of a dozen to fifteen rods per bundle well wired together, so that they will be less liable to be bent in shipment and can be more readily hantled on the work.

## 21. Cold Bending With Mild Steel

In bending rods for beams, columns or slabs, the method used depends somewhat on the character of the steel. With the kind of metal reinforcement reeommented, namely, medium steel, nearly all of the work of bending is done cold and at a comparatively insignificant eost. For instance, bending the column rods for the Mushroom system on one of the large pieees of work cost about fifty cents per ton. In this case a bending machine was arranged
using gears similar to those of the ordinary crab hoist, bending the bars by means of a crank pin ou the drisen shaft. Bars are not damaged to any considerable extent provided that the radius of the bend is not too sharp and that the moving part bending the bar does not jam the metal so that its flow is confined to a short seetion.

This is one of the difficulties with quite a number of the lever bending machines which we have investigated. Bars were found at one building which were cracked at the bend. Knowing the netal to be good, tough, medium steel, the bending matchine wats immediately investigateel. It was found that a die with a shamp comer had been used around which to bend the bar. One or two bars were brokem in handling after bending. Fortmately none of them were in a pesition where direct tensile stress came upon the metal. This die was immediately ordered to be cout over to a reasonable radius of one and one half diameters of the hars.

## 22. Bending Machines

Light rods, such as ${ }_{3}^{3}$ inch and $\frac{1}{2}$ inch aud the like, may be readily bent hy the use of tongs or a shert piece of pipe slipped over the end of the rod. Such tongs are illustrated in the accompanying Fig. 4, and also a bever bemeder for long rools.


Fig. 4. Cut of Lever Bender and Tongs.
In general, a good detail for a lever bender is to arrange a small roller on the moving part of the bending lever so that the pressure is brought against the bar by a roll and so that there may be no tendeney to localize the stretch of the metal at one place by friction, thereby seriously injuring the bar.

For ring rods and the like such as are used in the mushroom system, an ordinary set of blacksmith's tire rolls is the most convenient equipment.

For spirals the same set of rolls is frequently used.


Fig. 5-a.
Hand Power, stas Bender, Bending Column Rods.

The accompanying three figures show a very convenient bending machine, manufactured by Kardong Bros., of Mimeapolis, Mimm.

Fig. 5a shows the bending of a mushroom column rod, the stop on the circular segment fixing the angle of the bend in a hand power machine.

Fig. 5b shows a form of the machine arranged with a gas engine power for rapid operation.

Fig. 5c is a view showing the bending of beam roots and spiral hooping with this marhine.


Fig. 5b.
Gasoline Power, Star Bender, Bending Beam Rods and Spirals.

rig.
Showing Belt side of Star Burnder

## 23. Hot Bending and Precantions with High Carbon Steel

In bending bars hot, which is done commonly where the bars are hard steel over 1 inch diameter, there is sometimes earelessmess in overheating the steel. Heating up to a low cherry red is the highest which should be permitted by the foreman in charge of such work.

High earbon steel is more readily injured by overheating than mild steel. It is too hard to be worked eodd and ean only be bent to the desired form by heating. In heating it is much more liable to be severely damaged than mild steel and hence extra eare should be taken when using this grado of metal, to see that it is not bumed by the smith.

In bending cold twisted bars, where speeified by the arehitect, they should be invariably heated, otherwise in endeavoring to bend them cold the damage done to the bar by the eold twisting will manifest itself in brittleness of the bar and the tendeney to erack or break at the point where the bend is being made.

## 24. Centering

Centering, or false work, is one of the largest elements of cost in reinforeed concrete construction, and accortingly one that should receive eareful consideration from the standpoint of cost, and also from the standpoint of the safety both of the work and of the men putting up the work.

We will first consider centering for flat slab and column construction. Seren-eights inch lagging with $2 \mathrm{x}^{\prime \prime}$ or $2 \mathrm{x} 8^{\prime \prime}$ joists requires
the least lumber and is cheaper with lumber prices from $\$ 18$ to 822 per thousand such as rule in the middle and Eastern states at present, but with lumber at from $\$ 8$ to $\$ 12$ per thousand, plank from ledger to ledger would be more economical, the latter price being common at such Pacific Coast points as Vancouver, Seattle, etr.

Wide boards are undesirable for lagging, since they warp in the sun and swell excessively so that they wet out of shape, leaving an uneven surface; a $1 \times 6^{\prime \prime}$ lagging of No. 1 common fencing S 1 S2E is preferable for the foregoing reason. Natched boards should not be used as the grooves are readily broken out and leave a rough surface.

Joists for an $8^{\prime \prime}$ slab should be not less than 2x6 $6^{\prime \prime}$, sized and abont $22^{\prime \prime}$ centers for spans of 6 feet from ledger to ledger, and $2 x x^{\prime \prime}$ sized for spans of 7 feet to 8 feet center to center.

Spacing of ledgers shomld be armaged with reference to the column spacing, so that the line of columns will come approxinately at the center of a span between ledgers. Thas for columns 20 feet centers, (the joists rumning in the direction of the 20 foot span) a spacing of $6^{\prime} 8^{\prime \prime}$ for ledgers is eronomical, using $2 \times 8^{\prime \prime}$ joists, while if the span is 18 feet, $2 \times 6^{\prime \prime}$ joists with 6 foot pacing of lectgers is hest.

Working stress for pine and common lumber should not exceed 800 pounds per square inch fiber stress, and due regard must be had for the stiffness of the work, while for Douglas fir and long leaf vellow pine forty percent higher stresses are permissible.

## Leelyer:s and Posts

Evidently the fewer the points of support the less will be the work of leveling up the forms. Four by four posts based on weckes 12 inches long, "ut by splitting a $4 x 4^{\prime \prime}$, three inches at the thick eut by one inch at the thin end is the simplest practical adjustment.

For economy the ledgers should be eleep, but attention must be paid to the tentency of a narrow but deep bean to eripple by buekling of the compression side or top face. Many rentering fatheres oceur from this canse, where a $2 \times 10^{\prime \prime}$ or a $2 \times 12^{\prime \prime}$ has been selected by a table of loads as having a sufficient capacity. Then the supports are placed six or eight feet between eenters, and matayed, when if the ledger twists the failure is so sudeten as to give lit the if any warning.

The unsupported length ought not to exeeed thirty times the thickness, as a practical dimemsion, the smport of the bearing joist not being comented unless the lederer is held laterally by eleats to the joist.

When a deep ledger is used, as two $2 \times 10^{\prime \prime}$ or two $2 \times 12^{\prime \prime}$, it should be double; the vertieals shoud be stayed at the underside of the ledger with a light strip of $1 \times t^{\prime \prime}$ ruming transversely to the ledger from post to post and rontinuous through the extent of the centering.

## Formulas for I'ropentioning Beams and Posts

A convenient fommat for the capacity of joists and ledgers as simple heams is, for pine or hembek.

$$
\begin{aligned}
W^{\prime}= & 100 b d^{2} / L, \text { in whieh } \\
H^{\prime}= & \text { capacity of the joist or ledger in pounds for umiform } \\
& \text { loading. } \\
b= & \text { brealth in inches. } \\
d= & \text { depth in inches } \\
L= & \text { span in fert. }
\end{aligned}
$$

When full continuity is secured over two spans, twenty-five percent (am be safely adrad to this caparity.

The above formula is applieablo to phank flatwise as far as the fibere stress is concerned. but the same fiber strese for a plank or board flatwise will give too great a deflecetion, so that the plank or board must be figured or selected for stiffors in keeping with span.

For Douglas fir or rollow pine, fifty perernt increase in the above sate load is perminsible.

Douglas fir or vellow pine timber of $4 \mathrm{xt}^{\prime \prime}$ sertical posts may be figured as safo for soo lhs. per sid. ins, amd Norway pine or spruee for 600 , if stayed laterally in earh direction hy stays six feet apart eenter to center vertically.

A convenient formula for fir or yollow pine posts is

$$
P=1000-10 L / B
$$

in which $P=$ safo loat in llss. per square inch, $L=$ umsupported length between lateral stays in inches, $B=$ the least breadth in inches. For Norwsy pine or hemlock take six tenthe of the above values.

Fig. 6 shows the centermg used in the Minneapolis Knitting Company building, a structure which we have termed type III. The joists used wore $2 \mathrm{x} 6 \mathrm{~s}, 20$ inch centers, with $1 \times 6^{\prime \prime}$ fencing for the floor. For studding tits are usually used, spaced about seven feet apart, eapped by 2xSs double and resting on wedges by means of which the centering ean readily be adjusted to the desired level of the finished floor.

For square columns of small scetion $2 x t s$ spiked together, forming the square ties, are about as cheap as any method of putting the boxes together.

For columns some use $4 \times 4^{\prime \prime}$ side pieces, slotter at the end and $\frac{1}{2}{ }^{\prime \prime}$ bolts. This allows the same frame to be adjusted for different size columns and makes a very substantial form, but somewhat expensive in first cost. For beam boxes $1 \frac{3}{5}{ }^{\prime \prime}$ plank for bottom and $\frac{7^{\prime \prime}}{8}$ boards for sides are preferable. For plain slab forms the following is the writer's preference, where lumber is used:

Joist $2 \mathrm{x} 8^{\prime \prime}, 20$ to $22^{\prime \prime}$ centers. $1 \mathrm{x}^{\prime \prime \prime}$ fencing for sheathing, $2 \times 10$ s double for ledgers spaced eight to ninc feet apart. Vertical


Fig. 6. Centering Northwestern Kinitting Company Building.
posts seven to eight fert conters. The $4 \mathrm{xt}^{\prime \prime}$ verticals butted under the ledger pieces and the ledger was prevented from turning on top of the $4 x 4$ by short pieces of $\frac{7}{5} \mathrm{x}^{\prime \prime}$, nated to both ledger and top of thr $4 \times 4$ s with Sis $^{\prime \prime}$ mails. The bottom of the posts are best adjusted by wedges $12^{\prime \prime}$ long, cut from $4 x 4$. This will allow the leveling up of the centering very readily.

In centering shown in Fig. if the colmm boxes are $1_{2}^{1 / \prime}$ stock banded by 2xt" lapped and fastened together with wire spikes. Beam hoxes were made up of $\frac{7}{8}^{\prime \prime}$ boards and 2xts forming vertical frame and $1 \mathrm{x} 6^{\prime \prime}$ bottom of smme. A light ledger is nated along the side of the beam box to recere the joist for supporting the slab. The
beam box was then braced up and two lines of supports placed under the $2 \mathrm{x} 6^{\prime \prime}$ joist.
sometimes it is desirable to center by using sizes of lumber which (an be worked into boxing such as is used for hardware storage purposes, implement house requirements and the like. In this case verticals can readily be made of $2 x 6 s$, but will require additional lateral staying. Vorticals are usually stayed every four to six feet in height with $1 \times 4^{\prime \prime}$ ribloms in both directions.

## Leveling up (entering

Leveling should he done by using an atehitect's or an enginesers level.

Evidently the fewer vertieals there are the more readily the form ean be leweded up and plated in proper condition for casting conarete. After leveling up, the wedges should be nailed so that there will be no slipping. The vertical studs should be stayed along the line of the joist at the top and longitudinally and transversely midway for stories ten to twelve feet in height, so there will be no danger of the stud kicking or buckling and the centering going down should a beavy car run off the track. Where the area to be centered is large it sometimes pays to deat the sheathing in sections two feet or more wide. This eliminates the neressity for the larger part of the nailing to the joist and enables the taking down of the forms a little more readily.

Wide boards should not be wed for sheathing for the reason that they curl and iplit hadly in the sum and swoll excesively when wet. For that reason $1 \times f^{\prime \prime}$ square edge fencing is best. Yellow pine and wood which will stand considerable hard usage is preferable to hemlock or the softer grades of white pine.

## W'etting doun Wrood C'entering

Where wood sheathing is used for the forms it should be thoroly wet down from one to two hours in advance of placing the concrete to give the timber which has probably dried out in the sun, a chance to swell and elose the eracks so that there will be the least possible loss of cement grout as the casting proceeds.

## Inspection of Centering before C'asting C'oncrete

As a general rule the foreman should be instructed to inspect carefully all centering before starting to pour the concrete for the reason that many of the stays and sometimes some of the verticals, are left out temporarily for convenience in erection, with the expectation of putting them in before pouring concrete commences.

## Column Forms

For octagonal forms we have adopted the standard shown in the Fig. 8 with a cast iron or adjustable sheet metal form for the head.


The column box is bound together by ${\underset{2}{2 \prime \prime}}^{\prime \prime}$ rods bent in semicircular form, with a long thread and mut at the end. These are passed through standard malleable clamps used for wood stove pipe and screwed up.

Another method of making up colum forms is to use shect metal forming adjustable romol or octamonal heads, see Fig. 9.

This is one of the most eeomomical trpes of colmm forms. It is readily hamdled, weighs but little amd costs but little to transport amed is reasonable in first eost.

In eremeral, a light sheet metal form eonsists of serotions which are adjustable by heing lapped amb are helet rigidly hy heary bands of quarter-inch metal at intrivals of about two feet.

## Shert Metal for stab) Forms

To save the cost of sheathing and facilitate rapid hambling at large amount of corrugated steed in phate of fermeing has been wed for decking.

Ceiling of this type is shown in Fig. 10. This type of floor centering is not suitable where it is desired to plaster, but for a wholesale building or in fart any kind where special decorative finish is not desired it is substantial and neat.
( ose of hambling sheet metal is about one-third that of laying boarting. (ireasing it with paraffine ail prewents the eonerete from arthering and facilitates ready removal and rehandling.

Adventage's that are claimed for stheet metal forms are as followe:

That the sheet metal holde the moisture and presents the concrote from drying wat too rapidly. It prevents loss by leakage of the lignid cement mortar, such as somme times ofectus where board forms are hasel. and leaves a dean, smooth job).

The sheret metal rentering cam be wised over and over again and shonkl it be battered out of shape it is a comparatively mexpemsion matter to meprese the sheots. It first ant it is at a disadrantage as ampared with wool eontering, but in the lomg run it is mumb cherapere for the reason that it is lighter, reguires lese labor to handle and involves less labor in carting from point to point. The guage of metal shombl not he lighter than No. 20.

## Improper specifications for Centering

Many architects have a totally erroneons idea as to the proper requirements for centering. For example, the architeets frequently specify matched and surfaced hm-


Fig. 9 ber for forms, with the vague expectation shee Metal Column Forms. that hy so doing they will get an exceptionally smooth job. Unless the lumber is over two inches thick, which would involve an unreasonably great expense, the tongue and groove will be soon broken, ragged joints and edges will be a frequent rather than a rare oceurrence, and on the whole the work will not present so smooth an appearance as thongh ordinary spuare edge fenring was used for the work.

If it is required that the work be finished with a smooth surface the most inexpensive method is to give it a skin coat of plaster as recommended in the sections eovering the sulject of plastering on reinforced concrete.

## Partial Removal of the Forms

It is evident that the earlier the centering can be removed for use in the upper stories the less material will be nefessary in handling the work and the lower the cost if successfully executed. In the mushroom system it is eustomary in good drying weather to remove the forms in from twenty-four to fortr-eight hours from columns.


Fig. 10. View showing Ceiting made with Corrugated siteel Forms, Con. P. Curran Building, St. Louis, Mo.

In this type of construction columms carry little weight until after the removal of the slab forms, and by hamelling the work in this manner a very muth smaller number of forms can be used on a large job. Where, howeror, beam and slab forms are werl the column generally supports the beam boxes and the writer is not in favor of removing the centering in part, lut prefers to ser the whole left standing together exerpt perhaps a few of the stays until the concrete has thoroly cured.

In our illustrations of rap idity of crecetion of reinforeed conserete a number of examples appear whieh indieate cleatly the nomber
of floors under which the centering is left in the conduct of work under favorable comelitions.

Handling amd making up of forms is more a question of craft than of figures. As to the (question of ingenuity the brightest engineer ean as a rule learn something from any foreman and even a good rarpenter with whom he eomes in contact in this line of work. Frequently, however, we see workmen who lack ingenuity and a conception of the simple recuitements of form work. For example, We oreasiomally see a gang of carpenters puting up an expensive braced form for a thin wall, where all that is neecessary to do is to set up the eleated boards and tie them together with No. 10 wire. The pressure on the two sides hataner and the need of bracing is practically nil.

Sperial forms, such as are used for chmmers, are very advantageously made up with sheet motal amd arranged to be slipped upward as the work alvances. It is hardly, howerer, within the seope of this work to go into sperial constructions of this character.

## ('HAPTER II

## GENERAL TYPEN OF CONCRETE FJOOR CONSTRLCTION

1. Classitication-The history of the development of structural work shows that the engineer has been largely influenced in his first efforts to design any new tope hy the forms of construction


Fie 11. Type 1
to which he has beed previously aredstomed. For example, when wrought iron began to be used in plate of timber for railroad trestles the longitudinal bracing was identical with that used in timber construction: indeed it was at first gravely questionad whether these braces ought not to be made of timber for fear of the unknown dangers that might arise from the mequal expansion of these braces of iron and the fommdation on which the trestle was supported, and
today not a few of our conerete theorists are deeply concerned regarding equally insignificant questions.

The common types of concretested floor construction may be classified as follows:
I. The earliest type of timber construction has been followed or imitated closely in some of the pioneer structures in conerete steed and akso in not a few of our hoildings even today. This type may be described as amploying columm to support parallel main girders with joists in one direction only extending erosswise from girder to girder and at thin floor covering the joists. Sore Fig. 11.


11. Similar to l, exerpt the substitntion of a skat without jeists from girder to girder, sinilar to mill construction of beams and thick plank flooring from beam to beam. For Fig. 12.
III. A matmal eoncrete type a true monolith, departing from the characteristics of timber and steel comstruction in the employment of concrete beams from column to colum in two directions and shbs with panels supported on four sides. See Fig. 13.
IV. A serond distinctively eoncrete type, in which the centering is simplified to the limit and consists only of a temporary flooring on which to pour the concrete. The elements involved are two only: columm supports, and a contmons that slab supported directly by the (o)hmms and integral therewith. For Fig. 14.

A modifieation of types I and II is sometimes employed in which arches spring from girder to girder. This modification is not a common type of construction however.

As to safety, these types must be rated with reference to their deportment under overload, whether failure can occur suddenly and without warning, or slowly and gradually.

Failure is more rapid where the flexure under load has a single curvature only under load than where there is double curvature. For example, a slab supported on two sides is deformed in a crymbical


Fitg. 1:3. 'Type 111
sturface. The slab supported on four sides, on the other hame dishes or bags down from all directions and camot fail suddenty for this reason.

Ample lap of reinforecment over the supports, thoroly tying the work together, entanes the sadery of all types.

Most failures entailing loss of life have oceured with reinforesment in one direction only and of these failures the greater part of them have oecurred where insufficiont lap of remforeement has been provided.

From the fireproof standpoint, that form which exposes the least area to heat, which presents the most uniform distribution of metal to provide for the temperature stresses resulting from unequal heating will rank first, and on this basis the natural concrete types III and IV consequently are to be preferred.

In the above types, we have the following five problems in design:
(a) Beams, simple, continuous, partially continuous, etc.
(b) Slab, with panels supported on two sides.


Fige 1t. Type IV.
(c) slab with panels supported on four sides.
(d) Slab with panels supported on four posts or eorners.

In each of the slab problems we ako must consider the conditions of the ends or edges of the panels ats in the treatment of beans.
(e) Columns similar for all types.

The relative economy of the several types will appear from the methods of computation to follow.
2. Utility of the Theory of Action of Structures-No theory can be devised which will take into consideration all of the phenomena presented by an actual structure. In structural work it is usual to treat for example, beams connected by flange angles or resting on
top of girders as simple beams. The stresses in such beams, however, differ somewhat from what they would be on the theoretical assumption that the supports are knife edge bearings without friction. The useful theory then is that which takes into consideration the predominant phenomena presented by the structure under load. The umecessary refinement of taking into accomt small, subsidiary actions, such as the restraint of comnection angles, and restraint of beams which are not supported by frictionless knife edges, is for practical purposes ignored.

Thus, the direct tensile resistance of the concrete as a tension chord being small, is disregarded in practical computations. In reinforced concrete beams the tensile flange resistance offered by the steel alone as a flange is that considered and comnted upon for safety as the predominant action.

The theory of work has this striking advantage over other methods of analysis of such structures, that it indicates this predominant action almost at once in a mamer so clear that it requires little or no computation to arrive at a correct method of treating the structure under discussion.
3. Principle of Proportion - In the early development of reinforced concrete work, constructors were obliged to experiment in order to ascertain the most suitahle proportions and arrangement of materials for supporting a given load on a given span, and from experiments of this kind determine hy proportion the carrying strength for other loarls and other spans. This principle of proportion is indeed a most useful one, and was employed largely by the builder: in the middle ages in the construction of masoury work in the form of arches in the great cathedrals which command our admiration today, which work is not excelled by modern eonstructors with adranced knowledge of mathematics and merhanies.

The law of proportion, as applied to a skh or heam of roinforced concrete, may be stated as follows:
4. Variation in Strength with Thickness -It is known from Hementary principles that for a given pereentage of steel and a given arrangement of reinforeement, the strength of at sha or beam increates direetly as the squate of the depth, and for small differenese in the pereentage of sted, as the preduct of the steel area times the depth, providing, of eomese, the stered is not increased to such an extent that the steel element is stronger than the eonerete element.

In the eombination of conerete and stem, it shond be observed
that as between the two elements, the steel is more homogeneous, more reliable and dependable from the standpoint of miformity of strength. Hence, the combination should be made in such manmer that should faibure occur it would oecur in the steel and not in the concrete, amd when this principle of design is followed out the reliability and safety of the strusture depends on the steel element, and henee no greater factor or margin of safoty is needed than in structural sted work. In fact there would be less uncertainty in this case if this principle were carried out tham in struetural steel work, for the reason that in structural work the members are cut by rivet holes and there is less dependenee to be placed upon the large sted shates so worked and eut than in the case of rods of uniform section and not so nicked or cut.
5. Variation in Strength with Span The strength decreases inversely as the span for the same total load IV, and the same moment of resistane of stere and concrete. If the strength is to be compared on the basis of a mat load per foot of span length then for the same unit load the strength deereases inversely as the square of the speam.

These fundamental principles of proportion emabled the carlier constructors ("oignet and Hemmebigue, to buile suceresfally before the development of the theory involving the relation of the elastic propertios of the two materials, conerete and steed, and enabled Tomer to suecesshally build many great structures on the Mashroom Hat slablstate prion to the development of a rational theory based mon the dastie properties of the materials. It emabled him, not only to guaranter the strength, but alko to guarantere the deflection of his strucomes muler load.

The law of proportion as to deflection may be stated as follows:
Within practiral limits, inchuling proper percentages of steel, the deflecetion for a given hod $W^{2}$ increases as the cube of the span and decreases inversely as the product of the steel area times the square of the depth from the center of the steed to the top of the slab or beam.

These proportionate relations are sufficient to enable the practieal constructor, having exact knowledge of the tested strength and deportment of a reinforeed beam or slab of a given design, to design a similar beam or slab for a larger or smaller load or span with certainty as to the result which can be obtained with the same grade of workmanship and the same kind of concrete.

The method of proportion applied to full sized structures has this advantage over all other methods. It takes for its foundation
or starting point, the tested strength of a member approaching in size that which it is proposed to construct and a comparison is made involving a narower range for the application of the principle of proportionality tham in possible where the theorist umbertakes to develop from the elastic properties of a minute sample or mit eub of the materials employed the properties of a full sized structure made of these materials. On the other hand the method of proportion has the distinct disadvantage of limitation in its seope. It rannot be apphed to any form of structure which differs except within narow limits from the proportions of the sperimen with which it is compared, and hemee this method is defective as compared with a general solution which enables browl eonchasions to be drawn as to the generic type under consideration rather than limited conclusions specifice to one lorm only of the gents.

The methorl of proportion, based as it is on elementary relations. may be used very adrantageonsly to verify the aceuracy of more complex and seientific methods of analysis. The relations above outlined fohow at once from the fumdamental pribeiples woverning the strength and flexure of beams and were developed in substantially the following mamor by Tumer in his treatise on Concerete Steel ('onstruction, published in 1909.
6. Theoretical Treatment-Asiahor beam supported at intervals "ither on points or on walls, if loaded, defleets or bends, and if the load is excessive the concrote cracks first from the lower or tension side upward in a plane nomatl to lines joining the supperts. Since the remforemg metal acts by tension along its length, it is evident in general that so far as the steel is coneemerl, whether the minforerment is in single layers or in multiple layers, the action most be similar in character to the flanges of a beam, and henee the strength of the beam or shab, regardless of the distribution of the stress in the eonerete, depends on the tensile stress in the sted. The mathermatical expression for deflection amd bemoling would be of identically similar form to those for leatms.
$\|^{\prime}=$ the total load on the heam or stah, taken for eombenience in thousamel poumd units.
$L=$ the span in feet.
$d=$ the distance fiom the top of the comerete to the centere of sterel in inches.
$\mathrm{I}_{\mathrm{s}}=$ area of one reinforeing rod in stuare inches.
$f_{s}=$ the intensity of actual strese in the stom in thousamblyound unts.
$\Sigma=$ the usual sign of smmmation.
$M_{1}=$ moment of resistance for stress in the steel.
$\triangle=$ deflection at the center of beam or slab for any load.
$(B)=a$ coefficient which may be variable or constant in value, to be so determined experimentally that $(B) W$ shall equal $M_{1}$.
$(D)=$ a coefficient similarly ohtained for deflection formma.
Then hy the laws of beams, we have the following equations:

$$
\begin{align*}
& \triangle=(l) \begin{array}{l}
11 L^{3} \\
\text { ป.t. } l^{2}
\end{array} \tag{1}
\end{align*}
$$

In formula (1) it will be moted that 8.8 is assumed as a close approximation to the effective lever arm of the steel jed, or the distance from the centroid of tension to the centroid of compression in the beam or stah. This, of course, varies slightly with different percentages of steel. hat for practical purposes it may be assumed that this value does not involve material eroor, and is on the safe side.

The coefferiont ( $B$ ) for the simple beam is ${ }_{5}^{1}$. For the continuous beam it is costomary to take this as 12 at the support and $1 / 16$ at mid span. while for the slab, supported at four sides, $(B)$ is taken as the reciprocal of 30 , and where the reinforemg metal is more elosely spaced at the center third, the reciprocal of 36 , while ( $B$ ) for a mushroom shat is taken as the reeiproeal of 50 . It is assumed in these formulas that $f_{s}=13$, which is expressed in thousand pound units.

The deflection $\triangle$ of slabs will follow the same laws as the deflection of beams a far as factors depending upon $W, L$, and $I$ are concerned, amd will consequently be equal to some multiple of $W L^{3} / E I$. But $I$ varies as $\Sigma A_{s} t^{2}$. Hence $\triangle$ varies as $W L^{3} / \Sigma A_{s} d^{2}$, which is expressed above in equation (2) in which the constant multiplier $(D)$ is to be determined experimentally, but could supposedy he derived analytically in case a sufficiently general theory should be developed to express correetly the manner in which it depends upon the known arrangement and properties of the materials composing the slat.

For simple beams, ( $D$ ) is taken as the reciprocal of 850 and for continuous beams cast integrally with a heary slab, as the reciprocal of 5,000 .
$(D)$ is taken as the reciprocal of 10,000 in the slab supported on four sides, and for the Mushroom system as the reciprocal of 7,000 .

The application of the principle of proportion in the determination of the working stresses is based on the assmmption (which is on the side of safety) that steel stress under working load is proportional to the steel stress at the elastic limit of the steel under a loard which would produce this stress. Now the clastic limit of


Fig. 15. Jushroom Column Reintorcement in Curtios Building.
Panels :mproximately 1 if ft .


Fig. 1ti. Siab Roinforeformt, Mushroom sisstern, in at wall bearing building; pants about 16 ft .
medtum open hearth steel has a practically fixed value which varies little and which can readily be determined be towt.

Having constructed a panel or beam reinfored with this known grade of metal. by loading until the first yelding of the steel oecurs.
we then know the steel stresi under the applied load, and may, by proportion, determine clowely the steel tension for any smaller working load.

The elastic limit above referred to is the limit of elasticity of shape as determined by a slowly applied load, and is to be distinguished from rigid proportionality of shape. By this method of investigation. "oefficients ( $B$ ) may be determined for all types of construction. ('ocfficients ( $D$ ) are figured from the measured deflection of the member or pamel tested. This method of determining the corfficients used is, of eourse, limited to those designs in which the rational method is followed of proportioning the structure so that the stere element determines the safoty of the structure.

No formulas for strength, based on the elastic properties of the mat riats can be aceepted as correct mones the corfespending formata for deflection ran be depemed upon alio. In other words, an elastic theory in order to be acerptable must demonstrate its aceuraey by agrement of the entire elastic deportment of the structure to which it is inteneded to be applied including both stresses and deflections. The determination of the respective coefferents for strength amd deflection having been derived independently of each other, (mpirically or by experiment, their gemeral agreement can be established by a comeroblane of the deflections observed with those computed in structures which have been designed for strength, using the sume coefficients ( $B$ ), for both.

Wre have noted the method of determining the corefficients (B) and (I)) for a specific type of construction. These coefficients can be used for any size or thieknes of panel or percentage of reinforcement if they remain constant in value and are not variables. Their values may be rendered consant by fixing the arrangement of reinforement in strict proportion to the sample tested. We will illustrate this proposition he its applieation to the Mushroom type of reinforcement shown in Figs. 15 and 16 . In this construction the values of the coefficients are mate constant by fixing the diameter of the Mushroom head amd width of belt as identieally or approximately the same fraction of the span of the test panel from whieh the eoefficient was determined. In other words, if the diameter of the head and corresponding width of belt be kept within the limits of 716 to 12 the distance between columm centers in the case of square panels, or $7 / 32$ to $1 / 4$ the sum of the long and short spacing in a rectangular panel, then the coefficients remain practically constant. Otherwise, they beeome extremely variable, increasing in value
several hundred pereent as the width of belt is redued to 50 percent of the above proportions. From this statement it becomes erident that coeffecents of this character must be appled rigidly to similarty

 tanks heing places in position coverine fall area of floor.
proportioned types of reinforement unt the law of their variations is aceuratery detemmined.
$L$ in the formulat for bending and defleetion is taken ats the lomger direct distance between column centers, the shortor direct distante
appearing in the case of a rectangular panel in the determination of the diameter of the head and in the determination of the load $W$ from the unit load per spuare foot.

In the treatment of the steel area it may be noted that the line of weakest section at failure as determined experimentally, cuts across the four way belts practically at right angles. Hence the resisting moment is taken at this, the weakest seretion, as the elastic limit of the steel is approached, although the maximmo stress in the steel dore not ocrur actually at this section on the diagonal belts under lesion load.
7. Example - An illustration of the application of these formulas is given herewith for the Mushroom system in the floor of the Hamm Brewing (ompany Stock house, illustrated in Fig. 17.

Take the case of a panel of the Hamm Brewing Company's buitding, shown in Fig. 17, panet 22'10" hy $26^{\prime} 0^{\prime \prime}$ loaded with four tamks $10^{\prime}$ in diameter, $15^{\prime}$ high full of water. The load is equivalent $t 0200$ tons of miformly distributed load. The floor slab is $1 f^{\prime \prime}$ thick at the outer edge and pitches upwards $3^{\prime \prime}$ to the center and is reinforeed with twenty-five $5^{\prime \prime}$ rounds each way. Taking an equivalent depth of $15^{\frac{1}{4}}{ }^{\prime \prime}$ as the distance from renter of steel to top, we have the following equation:

$$
\triangle=\begin{gathered}
1 \\
7000
\end{gathered} \mathrm{x}^{(400)(26)^{3}}(4 \times 2.5 \times 3)(15.25)^{2} \quad=.144^{\prime \prime}
$$

Another pamel in the sant buidding, $20^{\prime} 10^{\prime \prime}$ by $20^{\prime} 8^{\prime \prime}$. Same loading, thickness and reinforement.

$$
\Delta=\begin{gathered}
1 \\
7000
\end{gathered} \mathrm{x}_{(4 \times 25 \mathrm{x}}^{(400)(20.83)^{3}}(15.25)^{2} .
$$

These figured deflections proved exactly equal to the measured deflections as nearly as the enginere of the brewery could determine by marking the same with a knife elge.

We will take amother case. Test of the state Factory Buileling at Stillwater, Minn., Mr. (. H. Johnston, Architect, shown in Fig. 18. Size of panel $19^{\prime} 9^{\prime \prime}$ by $20^{\prime} 8^{\prime \prime}$. Thickness of slab $S^{\prime \prime}$. Reinforeement seventeen $3^{3 \prime \prime}$ rounds each way. Test load, 450 lhs . per square foot over the full area.

$$
\triangle=\frac{(180)(20.66)^{3}}{(7000)(4 \times 17 \times .11)(7.25)^{2}}=.573^{\prime \prime}=9 / 16^{\prime \prime}
$$

the reported deflection.

The Hoffiman Building, Milwaukee. Test load 142 tons. Panel $17^{\prime} 0^{\prime \prime}$ by $16^{\prime} 8^{\prime \prime}$. Reinforcement seventeen $3^{\prime \prime \prime}$ rounds each way. Slab $8_{2}^{1{ }^{\prime \prime}}\left(7_{2}^{\frac{1}{2}}\right.$ rough and $1^{\prime \prime}$ finish).

$$
\Delta=\frac{(284)(17)^{3}}{(7000)(4 \times 17 \times 11)(7.8)^{2}}=.437=7 / 16^{\prime \prime}
$$

the measured deflection.
Another example: Test of the John Deere Plow Company's building in Omaha. Fig. 18. Panel $18^{\prime} 9^{\prime \prime}$ square. Reinforcement sixteen $\frac{3}{5}$ " rounds diagonally and fourteen ${ }^{\frac{3}{5}}{ }^{\prime \prime}$ rounds directly from


Fig. Is. Teat of John Deere Plow Company Building, Gmaha, Neh. 5.50 pounds per square foot.
rolumn to column. $7^{\prime \prime}$ slab in rough, with strip fill added later about $2_{4}^{1 / \prime}$ thick and $\frac{7_{5}^{\prime \prime}}{5}$ fimish floor of maple. This we find ane equivalent to a slab of about $8_{\frac{3}{4}}$ " conerete as far as deflection is comeerned, the strip being a $1: 3 \frac{1}{3}: 4$ mixture.

$$
\Delta=\frac{(160)(18.75)^{3}}{(7000)(6.6)(8)^{2}}=356^{\prime \prime} \text { or } \sigma^{\prime \prime \prime} \text {, the mesisured }
$$

deflection.
8. Slab Supported on Girders - The treatment of a reetangular slab supported on four sides and cast integrally with the supporting beams by the method of proportion will also le illustrated.

The common arrangement of such slabs is shown in Figs. 19 and 20. For square slab the load, of course, is divided equally between the four supporting heams and coefficient ( $B$ ) is taken as the reciprocal of 30 where the rod spacing is uniform, and as the reciprocal of 36 where the rods are spaced twice as closely for the middle thind as they are for the outer third. The coeffieient $(I)$ is taken th the reciprocal of 10,000 for both types. In the case of a rectangular panel on the assumption that the load transferred to the heams is in proportion to the lengthe of the sides, $a$ and $b$, a meam length for moment and deflection is derived by taking the quotient $\left(a^{2}+b^{2}\right) /(a+b)$ so that the formulas hereme:

lig. $1!$.

lis. 20.

Common Type slabs, supported on fome shdes, reintored two ways.

$$
\begin{aligned}
& M_{1}=(B) H^{\prime}\left(a^{2}+b^{2}\right) /(a+b)=85 d f_{s} \triangle A_{s} / 12 \\
& \text { and } \triangle=(D) \frac{W^{( }\left(a^{2}+b^{2}\right)^{3}}{(a+b)^{3} \searrow A_{s} d^{2}}
\end{aligned}
$$

## 9. Computation of Deflection Applied to Practical Examples -

 We will now proceed to apply these formulas to two cases:First, take the Mimmeapolis Paper Company's building, details shown in Fig. 21, photograph of test load in Fig. 22. Slab, $7^{\prime \prime}$ in the rough, $15^{\prime} 4^{\prime \prime}$ by $21^{\prime} 6^{\prime \prime}$ center to center of columms, strip fill $1 \frac{3^{\prime \prime}}{4}$ and $\frac{7}{8}{ }^{\prime \prime}$ finished floor. Now taking the strip fill as effective for one half of its actual thickness, we find for a load of 234,000 lhs:

$$
\left.\Delta==\int_{10,000}^{1} \times 234 \times \frac{\left(21.5^{2}+1.533^{2}\right.}{215+153}\right)^{3}(5 \times 11) \times(8)^{2}=.30^{\prime \prime}
$$

$=$ deflection of slab at center as measured less the beam deffection.
Take for example the test made at the smythe block at Wichita, Kans. Test load consisted of fifteen tons concentrated at the center over an area of 7 feet square equivalent to about $45,000 \mathrm{lbs}$. uniform load. Size of slab $20^{\prime} 9^{\prime \prime}$ by $24^{\prime} 9^{\prime \prime}, 66^{\prime \prime}$ in the rough, $1 \frac{3^{\prime \prime}}{4}$ strip fill. Reinforcement. $\frac{3}{5}$ " rounds $5^{\prime \prime}$ centers for the central third of the panel


Fig. 21. Details of Rointoreement in Panel of Dinmoapolis Paper Company buikling.
each way and $8^{\prime \prime}$ "enters outside third width each way. Then-

$$
\frac{\binom{20.75^{2} \times 2475^{2}}{45.5}^{3}}{9.5 .25^{2}}=11^{\prime \prime} \mathrm{or}
$$

a full $3 / 32^{\prime \prime}$ the deflection measured.
In the test at Wiehita, the bean deflection, owing to the small load on the panel was practically negligible, and does not need to be considered in arriving at the true slab deflecetion.

Test of the Mimneapolis Knitting ('o,'s Building:
Slab $5_{\frac{1}{2}}{ }^{\prime \prime}$ thack with $1_{k}^{3 \prime \prime}$ strip fill, panel $16^{\prime} t^{\prime \prime}$ a $1.5^{\prime} 8^{\prime \prime}$. Reinforcement $3^{\prime \prime}$ round rods $4^{\prime \prime}$ (enters wach way.


Fig. 22. Photograph of Test Load, Minneapolis Paper Company Building.

$$
\triangle=\frac{1}{10.500} \times 160 \times \frac{\binom{16.33^{2}+15.66^{2}}{32}^{3}}{(10.4) \times(6)^{2}}=.167^{\prime \prime}=532^{\prime \prime}+
$$

The measured defleotion agreed identieally with that figured.
This fermula is based on the assmmption that a large fraction of the internal work of deformation is performed by lateral action after the mamer of a miform contimuous plate and while not strictly accurate it is in much closer approximation to the actual condition of stress than irrational formular based upon a distribution of stress and load in preportion to the fourth power of the respertive sides an derived in the irrational treatment on the basis of independent beam strips through the center of the panel, or upen an inapplicable ap)proximate solution of the general differential equation of such a slat as derived by (irashof. The agrecment of the formula for deflection gives closely approximate results from the practical standpoint and its mathematical deviation from correct values will be disenssed later.

The method of design by proportion, based on the steel stresses as explained in the preceding pages, presmpposes that the concrete element resisting eompression is of greater strength than the tensional steel element as it should be in eonservative design. Tho limiting steel percentages for the various types of strmeture will ber discussed hater rather than under this present heading.

## 10. Short Span Slabs and Arch Action that may be Counted upon

 in Their Use.-We have heretofore diseussed at some length long span slabs. A long span slath will be defimed as at stab, the ratio of whose thickness to length is so smatl that the possibility of its acting effectively as an areh is climinated.It is to long apan shas where the areh aetion is begligible that formulas for bending apply with a high degree of precision. Whens. however, we come to test a short span shat) which is part of a contimons fleor there may be quite a large amome of arehing in the stab by which the loal is cemried to the support withont eansing temsion in the steed to the extent that it womld do provided there was mo rigid skew-back to sustain the throst. Where the span of the stab does not exceed ten times its thickness it is permissible amd good prade ice to figure the bending moment on the siat at IV $L$, 16 , and thismoment is to be increased to If L 10 where the thiekness is ome-sixterenth of the span, with intemerliate vahtes for intermediate ratios of thiekness to span. Where the span is more than sixteren thicknesses of stath it is to be figured as heretofore provided.
11. Value of Finish Coat, Strip Fill and Wood Floor from the Standpoint of Deflection-Many engineers have an idea that a finish coat or strip, fill or the like camnot act in connection with the slab to good purpose for the reason that the bond between the old concrete of the slab and that which is added at a later date will not be equal to the strength of the original concrete.

While this is true to some extent, nevertheless, where the rough concrete is washed off and scrubbed with a steel brush and then given a coat of neat cement grout immediately before adding the finish wat or laying the strips and strip filling, the concrete is nearly as efferent as though it were all cast at the same time, provided that the top coat or strip) fill is given a reasomable time to set up hard before the test load is applied.

A $1_{4}^{3 \prime \prime}$ strip fill with strips $16^{\prime \prime}$ on renters and a $\frac{7^{\prime \prime}}{8}$ wood floor generally deflects the same as a $\frac{\tau^{\prime} "}{8}$ or $1^{\prime \prime}$ finish "oat of concrete. The strip fill gencrally, however, if the strips used are $14^{3 \prime \prime}$ will somewhat exeed this normal thereness sinee it is impracticable to leave the top surface of the rough slab perfeetly level, and we count as a rule that the actual thickness of the nominal $1_{4}^{3 \prime \prime}$ sitrip fill will not be less than $21^{\prime \prime}$ in the eenter of the slab tho it may be a little less around the columns if the columms are poured in aceorlance with our standard practice.

If we assume that the bond between the finish coat and the old concrete is an even 30 pereent of the strength of the original concrete we woukd still have a very large factor of safety in view of the great area of the sab to take care of the horizontal shear between the two layers. This is a fact which is gemerally disregarded by those who are dealing with reinfored concrete. If a sab) the depth of which has been inereased by perhaps 20 pereent hy strip fill and the fimish be figured on the basis of the actual thickness of the rough slab only, a surprisingly high degree of strength will apparently be developed on this basis by test, but a more conservative computation taking into consideration the actual value as ahout one half of this added thickness will estimate the construction at its true worth.

For strip fill, where strength becomes an object, identically the same grade of concrete should be used as in the slab, instead of the weak, indifferent mud filling of cinders of natural eement or brown lime which is sometimes employed. Further, by using Portland cement in the strip, fill, the contractor will find that this filling hardens up and dries out much more promptly than any mixture of
natural cement, brown lime, or Portland cement and lime, thus permitting the finished floor to be laid at an arlier date without danger of having the hard wood swell, buckle and rise up from the cleats to which it is nailed by reason of the moisture absorted from the uncured filling.

In a case where lime was used with an idea of aronomy in a building completed in the fall which the owners were in a hury to occupy, this filling dried very showly, seeming to have an affinity for moisture, and when the finished floor was laid it swelled so as to buckle up in places dightern and twenty inches high, due to the swelling of the boards longiturdinally, while laterally the swelling of this kilu dried maple was oror fifteen inches in a width of fifty feet. Six widths had to be taken out of the floor, and the floor taken up and entirely relaid. The saving in first cost of fill thas proved very expensive in the end.

## ('HAP'TER III

BEAMN

1. Elastic Properties of Materials, Concrete and Steel. In the design of a composite structure, such as a reinfored concrete beam or member hy an elastic theory, it is necessary to know the relative stresses under like deformations. These will depend upon the ratio of the moduli of elasticity of the two respective materiak.

For safe design we need to know the range or limits between which the ratio assumed holds true. For the steel, Young's modulus is $E_{\mathrm{s}}=3 \times 10^{\overline{7}}$. The clastic limit of medium steel may be taken as 35,000 pounds per square inch and for hard steel 50,000 pounds per square inch. (See Stamdard sperifications.)

The resistance which eomerete offers to crushing is variable as we have pointed out in our analysis of the strength of concrete, and depends upon the propertions of the mixture, the character of the sand, gravel and stone, as well as the conditions of hardening and age of the comerete. The form and size of test sperimens also influences the apparent strength. The age of the speemens has a marked effeet upen the strength as well as upom the modulus of elasticity.

As to increase of strongth with age, Mörsch quoters tests in connection with a bridge erected over the Damube at Munderkingen, with oure part cement, two and one half parts sand and five parts pebbles. Test rubes developed the following strength:


These values are materially higher than the average value of broken stone comrrete, which may be accounted for by the excellent quality of sand and the hardness and grade of pebbles uset.

Since the strength of comerete inereases with time, it is pernissible
to use higher working stresses when making an aldition to an old building eonstrueted of good eonerete.
2. Tensile Strength. Results of temsile tests are more variable than those of compression. In most cases, tensile tests are made on mortar specimens; that is those composed of cement and sand only. Few tests have been made on ordinary concrete speeimens with coarse aggregate. The latter exhibit less tensile resistance than the specimens of mortar.

In general it may be stated that the tensile strength of concrete may be taken as having a value between one tenth and one twelfth of the ultimate compressive strength.
3. Elasticity of Concrete. It is impossible to assign a definite value for the modulus of elasticity of concrete since all of the factors entering into the breaking strength influence its elastic behavior and make it diffecult to compare the results obtained by different observers.

Concrete, milike steel, has no definite clastic limit, the stres strain curre of a block when first tested in compression, being a curved line from the begiming. due in part to shrinkage stresses induced in the process of hardening. Considering only the stres. strain curve oltained the first time it is loaded we might say that the modulus is not practically a constant quantity like that for steel but has only an instantaneons value which varies for any given specimen with the load.

Conerete further differs from sted in taking permanent setsunder very light loads, and if these permanent sets are not deducted from the total deformation under gradually increasing load the result does not represent the true clastic deformation. This was pointed out by Professor Bach of Stuttgart in 1895. He fomm for a given maximm loading of lese than half the ultimate strength that repeated loading eliminates the permanent set and gives a fairly constant modulus for subsequent loading, not exceeding this maximum.

As illustrating the variation of the modulus of elasticity with the age of the specimen, the results noted in the following table according to Mörsch, are of interest:

## TEst's OF OLD CONCRETE FOR MODULUS OF

 ELASTICITY|  | Thit Stress | Three Months Old | Two lears Old | Remarks |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $E_{\text {c }}$ | $E_{\text {c }}$ |  |
| $\begin{gathered} \tilde{\Xi} \\ \frac{\pi}{7} \\ \frac{\pi}{3} \\ 0 \end{gathered}$ | 1223.1 |  | 3655000 | Average of three tests |
|  | 1048.2 |  | 37.41000 |  |
|  | 871.9 | 2973000 | 3812000 |  |
|  | 697.0 | 3072000 | 3869000 |  |
|  | 523.4 | 31.58000 | 3954000 |  |
|  | 435.2 | 3229000 | 3983000 |  |
|  | 348.5 | $33+2000$ | 4025000 |  |
|  | 260.3 | 3428000 | 4068000 |  |
|  | 17:3.5 | 3613000 | 412.5000 |  |
|  |  | 37690000 | 13330000 |  |
| $1)$ |  | . | . | One <br> Single <br> test <br> each |
| 药 | 22.8 | 3271000 | 1836000 |  |
|  | 44.1 | $29+4000$ | 449.5000 |  |
|  | (6.). 4 | 2845000 | 423000 |  |
|  | 88.2 | 2759000 | 4409000 |  |
|  | 109.5 | 2489000 | 4381000 |  |
|  | 130.8 | . . . . . | 4310000 |  |
|  | 153.6 | . . . . | 4310000 |  |
|  | 174.9 |  | 4281000 |  |
|  | 190.3 | . . . . . | 4239000 |  |

The acompanying diagran Fig. 23, gives a fair idea of the stress strain eurve plotted from test results at one and 5 months. Fig. 24 shows the stress strain curve arrived at by repeated loading.

When the load is applied gradually, the shortening of the specimen which is at first small, increases more and more rapidly as the load increases as shown in the concave curve Fig. 24, plotted with the applied loads as ordinates and the deformation as abseissas. As the loading is gradually removed the curve YO' takes a convex form and shows a permanent set $O O^{\prime}$ on a horizontal axis. On again applying
the same load, the new stress strain curve starting from the new origin $O^{\prime}$ is still of coneave form looked at from the right just as the original curve $O Y$ was, but to a lesser degree and for the same load as at $Y$ the point $Y^{\prime}$ shows a smaller relative set than the set $O O^{\prime}$. On unloarling


Fig. 23. Stress Strain Curves in Compression from $1: 2: 1$ Cylinders, thirty days and one lundred fifty days old, respectively:
again the origin is moved slightly to $O^{\prime \prime}$. With several sumeresive applications and removals of the same load, the origin is continually removed slightly to the right, but the movement becomes less and lese until there is no additional permanent set. The permatnent
set of concrete appears then to be in a great measure reached under the first loading and for subsequent applications of the same load the eoncrete acts more and more nearly as a perfectly elastic material.


4. Concrete Beams. Where comparationy large seetions of metal are used for the purposes of directly resisting tensile stress due to bending the ratio of the modulus of clasticity of the steel to that of concrete is for practical purposen generally taken as one to fifteen, and the tensile strength of the eoncrete is ratirely neglected This is for the usual $1: 2: 4$ eonerete. For a rich mix such as $1: 1 \frac{1}{2}: 3$ this ratio is sometimes taken as one to tem or twelve.

As pointed out in the historical sketeh, engineering opiniom has erestalized in the adoption of the linear law of distribution of stress for purposes of eomputation of beams amd slabs and the assumptions involved in this modification may be stated as follows:
(a) Adhesion between the concrete and steel shall be sufficient to make the two materials act together.
(b) The steol is to take all direct tensile stress.
(c) The stress strain curve of the comerete in eompression is a straight line for the range of working streses.
(d) A plane (ross-section of an mbated beam will still be plane after bending.
(e) The material in the beam will ober Hooke's law in that stress is proportional to strain.

From the above it follows that mit dofomations of the fibers at
amy section are proportional to their linear distance from the neutral surface, and the unit stress in the fiber at any section of the beam is proportional to the distance of the fiber from the neutral surface. The linear law above stated is the basis of all practical formulas of Hexure except some which have been developed for reinforced eoncrete beams applicable to the conditions as failure is approached rather than the condition for safe loads or for safe working stress.

The Joint Committee (American Society Civil Engineers, ete.) on Concrete and Reinforeed (oncrete, recommended that calculations be mate with reference to working stresses and safe loads rather than with reference to ultimate strength and ultimate loads,-an entorsement of customary practice of experienced builders in this, respect. It also endorsed current practice with regart to the modulus of elasticity and to commonly accepted formulas for beams which are reproduced herewith as follows:
5. Modulus of Elasticity. "The value of the modulus of elasticity of concrete has a witle range, depending on the materials used, the age, the range of stresses between which it is considered, as well as other conditions, It is recommended that in computations for the position of the neutral axis and for the resisting moment of beams and for the eompression of concrete in columns it he assumed ats:
(a) Gne-fifteenth of that of steel, when the strength of the conerete is taken as 2200 lbs . per sq. in. or less.
(b) One-twelfth of that of steel, when the strength of the concrete is taken as greater than 2200 lb . per sq. in. or less than 2900 lb . per sq. in., and
(e) One-tenth of that of steel, when the strength of the concrete is taken as greater than 2900 lb . per sq. in.
Atho not rigorously accurate, these assmmptions will giwe saff results. For the defleetion of beams, which are free to move longitutinally at the supports, in using formulas for deflection which elo not take into aceount the tensile strength developed in the concrete, a modulus one-erighth of that of steel is reecommenderl."
6. Formulas for Reinforced Concrete Construction as reeommended by the Joint Committee.
(a) Stemdard Notations:

1. Rectangular Beams.

The following notation is reeommended:

$$
\begin{aligned}
f_{\mathrm{s}} & =\text { Tensile unit stres in steel, } \\
f_{\mathrm{c}} & =\text { Compressive unit stress in conereto, } \\
E_{\mathrm{s}} & =\text { Moelulus of elasticity of steel, } \\
E_{\mathrm{c}} & =\text { Modulus of elasticity of conerete. } \\
n & =E_{\mathrm{s}} / E_{\mathrm{c}}
\end{aligned}
$$

$I=$ Moment of resistance, or lending moment in general,
$M_{\mathrm{s}}$ for steel, $M_{c}$ for concrete,
$A=$ steel area,
$b=$ Brealth of beam,
$d=$ Depth of beam to center of steel.
$t=$ Ratio of depth of neutral axis to effective depth $d$,
$z=$ Depth of resultant compression below top,
$j=$ Ratio of lever arm of resisting couple to depth $d$,
$j \prime=d-z=$ Arm of resisting couple,
$p=A \quad b x$ steel ratio (not percentages).
2. T-Beams.
$b=$ Width of flamge,
$b^{\prime}=$ Width of stem,
$t=$ Thickness of flange.
3. Beams Reinforeed for Compression.
$A^{\prime}=$ Area of compressive strel,
$p^{\prime}=$ stem ratio for compresive steel,
$f_{s}^{\prime}=$ Compresiver unit stress in steel,
$f^{\prime}=$ Total compressive stress in concrete.
$C^{\prime}=$ Total compressive stress in sterel,
$d^{\prime}=1$ ) ${ }^{\prime}$, th to center of compresive steel,
$z=\mathrm{D}$ (p)th to resultant of $C^{\prime}$ and $C^{\prime}$.
4. Shear and Bond.
$\mathrm{V}=$ Total shear.
$r=$ shearing unit stress,
$u=$ Bond strese per mit area of har,
( $=$ C iremuference or perimeter of bar,
Yo simm of the perimeters of all hars.
5. Columms.

$$
\begin{aligned}
A & =\text { Total net are:a, } \\
A_{\mathrm{s}} & =\text { Area of longitudinal steel, } \\
A_{\mathrm{e}} & =\text { Area of concrete. } \\
P & =\text { Total safe load. }
\end{aligned}
$$

## (b) Formulas

1. Rectangular Beams.

Position of neutral axis,

$$
\begin{equation*}
k=\sqrt{2 p n+(p m)^{2}} p^{\prime \prime} \tag{1}
\end{equation*}
$$

Arm of resisting couple,

$$
\begin{equation*}
j=1-\frac{1}{3} k . \tag{2}
\end{equation*}
$$

(For $f_{\mathrm{s}}=15,000$ to 16,000 , and $f_{\mathrm{c}}=600$ to $650, j$ may be taken at $\frac{7}{5}$.)


$$
\begin{align*}
& f_{\mathrm{s}}=\frac{M}{A j d}=\frac{M}{p j b d^{2}}  \tag{3}\\
& f_{\mathrm{c}}=\frac{2 M}{j k b d^{2}}=\frac{2}{-2} p f_{\mathrm{s}}  \tag{4}\\
& j k
\end{align*}
$$

Steel ratio, for balanced reinforcement,

$$
p=\begin{array}{lc}
1 & 1  \tag{5}\\
2 & f_{f_{\mathrm{s}}} \\
f_{\mathrm{c}} \\
\left(\frac{f_{\mathrm{s}}}{n f_{\mathrm{c}}}+1\right)
\end{array}
$$

2. T-Beams.

Case I. When the neutral axis lies in the flange: Use the formulas for rectangular beams.

Case II. When the neutral axis lies in the stem.
The following formulas neglect the compression in the stem:


Position of neutral axis,

$$
\begin{equation*}
k \cdot t=\frac{2 n d A+b t^{2}}{2 n A+2 b t} \tag{6}
\end{equation*}
$$

Position of resultant compression,

$$
\begin{equation*}
z=\frac{3 \operatorname{lid}-2 t}{3 k i d-t} \cdot \frac{t}{3} \tag{7}
\end{equation*}
$$

Arm of resisting couple.

$$
\begin{equation*}
j d=d-z \ldots \tag{8}
\end{equation*}
$$

Fiber stresses,

$$
\begin{align*}
& f_{x}=\begin{array}{l}
M \\
I_{1} j d
\end{array} \tag{9}
\end{align*}
$$

(For apperoximate results, the formulas for rectangular beams may be maed.)

The following formulas take into areomet the eompression in the -tem; they are reeommented where the flange is small compared with the stem:

Position of mentral axis.

$$
\text { kid } \left.=\sqrt{2}-m t .1+\left(b \quad b^{\prime}\right) t^{2}+\left(\begin{array}{c}
n .1+(b  \tag{11}\\
b^{\prime}
\end{array} \quad b^{\prime}\right) t b^{2} \quad \begin{array}{c}
m+\left(b b^{\prime}\right) t \\
b^{\prime}
\end{array}\right)^{\prime}
$$

Position of resultant compmes.ento.

Amon of resisting eomple.

$$
\begin{equation*}
j d=d \quad: \tag{13}
\end{equation*}
$$

Fiberestresses.

$$
\begin{align*}
& i=\begin{array}{c}
M \\
.1, j l
\end{array} \tag{14}
\end{align*}
$$

3. Beams Reinforced for Compression.

Position of neutral axis,

$$
\begin{equation*}
k=V^{\prime} 2 n\left(p+p^{\prime} d^{\prime} d\right)+n^{2}\left(p+p^{\prime}\right)^{2}-n\left(p+p^{\prime}\right) \tag{16}
\end{equation*}
$$

Position of resultant compression，

$$
\begin{gather*}
z=\frac{1}{3} k^{3} d+2 p^{\prime} n d^{\prime}\left(k-d^{\prime}, d\right)  \tag{17}\\
l_{i}^{2}+2 p^{\prime} n\left(k-d^{\prime} d\right)
\end{gather*}
$$

Arm of resisting couple．

$$
\begin{equation*}
j d=d-z \tag{18}
\end{equation*}
$$



Fiber stresses．

$$
\begin{align*}
& \left.\left.f_{c}=\frac{6 . M}{b_{n} d^{2}\left[3 l_{i}-l_{i}^{2}+\begin{array}{c}
i \\
p^{\prime} \prime \prime \\
l_{i}
\end{array}\left(l_{i}-d^{\prime}\right.\right.} \quad d\right)\left(\begin{array}{lll}
1-d^{\prime} & d
\end{array}\right)\right]  \tag{14}\\
& i_{x}=\frac{M}{p j b t^{2}}=\| i_{c}^{1-k_{i}}  \tag{2}\\
& f^{\prime}=n f_{1}\left(l_{i}-l^{\prime} \quad d\right) l_{i}
\end{align*}
$$

4．Shear，Bond and W゙el Reinforcoment．
In the following formula，د゙口 refors only to the bars constitut－ ing the tension reinforement at the seretion in question，and jit i－ the lever arm of the resisting rouple at the sertion．

For rectangular beams．

$$
\begin{align*}
& i=\begin{array}{l}
1 \\
b, j, l
\end{array}
\end{align*}
$$

（For approximate results，j may be taken at $\vdots$. ）
The stress in wobremforement may be extmated by the following formulas：

Vertical web remforcement,

$$
\begin{equation*}
P=\frac{V s}{j d} \tag{24}
\end{equation*}
$$

Web reinforcement inclined at 45 (not bent-up bars),

$$
\begin{equation*}
P=0.7_{j d}^{V} \tag{25}
\end{equation*}
$$

in which $P=$ stress in single reinforeing member, $V=$ amount of total shear assumed as carried by the remforemment, and $s=$ horizontal spacing of the reinforcing members.

The same formulas apply to beams reinforced for compression as regards shear and bond stress for temsile steel.

For T-beams,

$$
\begin{align*}
& v=\frac{1}{b^{\prime} j d}  \tag{26}\\
& u=\begin{array}{c}
V \\
j_{l} l \\
\\
V^{\prime}
\end{array} \tag{27}
\end{align*}
$$

(For approximate results, jmay br taken at 亏.)
5. Columus.

Total safe loand,

$$
\begin{equation*}
P=f_{c}\left(1_{c}+n A_{s}\right)=f_{c} 1(1+(n-1) p) . \tag{28}
\end{equation*}
$$

Unit stresses.

$$
\begin{align*}
f_{\mathrm{c}} & =\frac{P}{\Lambda(1+(n-1) p)}  \tag{29}\\
f_{\mathrm{s}} & =n f_{\mathrm{c}} \ldots \ldots \ldots \ldots \tag{30}
\end{align*}
$$

7. Determining Moment. In case the steel element in a reinforced concrete hean is weaker than the concrete, the determining resistance is that of the steel, and

$$
\begin{equation*}
M_{\mathrm{s}}=A j d f_{\mathrm{s}}=\mu j b d^{2} f_{\mathrm{s}} \tag{a}
\end{equation*}
$$

If, on the other hand, the beam be wwer reinfored, the determining moment is that of the eoncrete, and

$$
\begin{equation*}
M_{\mathrm{c}}=\frac{1}{2}, j l i b d^{2} f_{\mathrm{c}} \tag{b}
\end{equation*}
$$

For approximate calculations it will be sufficiently correct to assume $j=0.85$ and $k_{i}=0.40$, these being fair arerage values for steel percentages from 0.75 to 1.25 . Equations (a) and (b) then beeome

$$
\begin{aligned}
& M_{\mathrm{s}}=0.85 \mathrm{~A} d i_{\mathrm{s}} \\
& \text { and } M_{c}=0.17 b d^{2} f_{c} .
\end{aligned}
$$


lig. 2.5. $j$ and $k$ curves.

More exact values of $j$ and $k$ for various values of $p$ and $n$ may be obtained from the accompanying $j$ and $k$ curves Fig. 25, which have been computed and plotted from formulas (1) and (2) of Section 6. Also values of $f_{s}$ and $f_{c}$ plotted in accordance with equations (a) and (b) above, are shown in Fig. 26a and 26b.

lig. Dea.
The theory of the flexure of reinforeed concrete beams, assumes that for all practical purposes they may be assumed to obey, with sufficient acemaey, the so-called straight line theory of stresses and strains, a theory moder which according to Hooke's law the stress is proportional to the strain and varies directly as the distance from the neutral axis. But the assumption is more or less inaccurate because the stress strain curve of the eoncrete in the compression zone is not a straight line since the rate of deformation is greater where the stress is larger. This in equivalent to saying that the modulus of elasticity $E_{c}$ of concrete in compresion beeomes smaller the larger the unit stress $f_{0}$ becomes and vice versa. This variation
of the modulus $E_{x}$ as well as any small initial permanent deformation of the concrete will cause some deviation of reinforced concrete beams from perfectly elastic flexure. But this deviation will be less ap)preciable the deeper the beam, becanse any slight increase of deformation in the upper fiber will have less effect upon the sharpnese of


bending in at deep beam, and ronsequently have less effert in camsing "racks or checks in the eoncrete on the under side of it than in a thallow beam. In other words, the deviations of concrete from perlect elasticity have less effect the deeper the beam, and their effect in increasing sharphess of curvature and cracking of the concerete will be more pronomenced the more shatlow the beam.

How these deviations affect the position of the nentral axis and the sharpness of the bemding maty be made evident from Fig. ${ }^{-}-$ which is intended as a representation on a large sale of the deformations, ete., oceurring in a unit kength of two different beams of the
same depth, the two beams being superimposed on each other in the Fig. 27 to assist in the comparison.

Let the two beams have different percentages of reinforcement, but be so loaded that the unit steel stress $f_{s}$ is the same in both. A larger load will be neeessary to produce the same unit steel stress in the beam with the larger pereentage of steel, but the actual mit deformation of the steel will be the same in both beams, viz:

$$
A O=e=f_{*} \quad E_{*}
$$

In bean No. 1, with the lighter load and smaller value of the steel ratio, assume that $f_{c}$ the eompressise stress in the extreme fiber is so moderate that the eonerete in compressiom maty for practical purposes


Fig. 27.
be regarded an obeving Hookes law. Then the line $A B_{1}$ by its horizontal distance from ( 0 ( $)^{\prime}$ at different levels represents the relative mit deformations at those levels. liut by Hooke's law these distances would also represent mit stresses when measured in a suitable scale, because strese is deformation multiphed by modulus of elasticity which latter is taken to be constant in this ease. In bean No. 1 with light loal and small steel ratio $p_{1}$ the total temsion in the steel and the total compression in the concrete will eath be

$$
T=A_{1} f_{s}=A_{1} c E_{s}=\text { area } \theta^{\prime} C_{1} B_{1}
$$

The corresponding neutral axis at $C_{1}$ and point of application of compressive stress $T$ will be nearer the top of the beam the smaller $O B_{1}$ is.

In beam No. 2 with heavier load and larger steel ratio, $p_{2}$, while $A O$ the elongation is monanged the line of deformations will assume some new position $A B_{2}$, and if the compressions near the top surface are large enough in this case to make the modulus of elasticity less than it is at points nearer the neutral axis, the horizontal distances
*See Merriman's Mechanies of Materials 1. 273.
of this line of deformations $A B_{2}$ will no longer also correctly represent the stresses to scale. Those near the top of the beam will bee smaller when plotted to the same scale as in No. 1. But that would reduce the area $T_{2}$ between it and $O O^{\prime}$ if the neutral axis at $C_{2}$ remains fixed. In fact, however, the total steel tension

$$
T_{2}=A_{2} f_{\mathrm{s}}=A_{2} \text { e } E_{\mathrm{s}}=\text { area } O^{\prime} C_{2} B_{2}
$$

is a fixed quantity and the neutral axis must be moved to some lower position $C_{2}^{\prime}$ in order that the total compression represented by the area

$$
T_{2}=O^{\prime} C_{2} B_{2}=O^{\prime} C_{2}^{\prime} B_{2}^{\prime}=T_{2}^{\prime}
$$

may remain constant. It is evident then that there is first a lowering of the position of the neutral axis from $C_{1}$ to $C_{2} b y$ reason of the interease of $p_{1}$ to $p_{2}$ and next a lowering of it from $C_{2}$ to $C_{2}^{\prime}$ by reason of the decrease of the modulus of elasticity $E_{c}$ uncter large values of the unit stress $f_{c}$. This explains more fully why high values of $f_{c}$ should be avoided in shallow beams.

On the other hand, deviations of concrete from perfect elasticity are less, the less the actual compressive unit stress $f_{\mathrm{c}}$ acting upon the concrete. In other words, conercte under the smaller stresses behaves more nearly like perfectly elastic material. An effective method, therefore, of reducing the sharpness of bending and consequent exaggerated tendency of shallow beams to check and crack is to make the compressive stress $f_{\mathrm{c}}$ in the concrete small compared with $f_{s}$ the given stress in the steel. This is equivalent to making the stres ratio $f_{s} f_{c}$ larger for shallow beams than for deep heams, as is the practice among experienced huilders.

There is still another way of stating the consideration which leads to the arloption of small values of $f_{c}$ for shallow beams. It is desirable to limit deflections meler working loads to a figure not much in excess of $L$ 1000. With $f_{s}$ given, the adoption of large values of $f_{\mathrm{s}} \quad f_{\mathrm{c}}$ will make the compressions in the concrete so moderate as to prevent exessive deffections eron tho there should be some small initial deflection due to nomereastie rompression of the eonerete. Values of $f_{\mathrm{s}}$, $f_{\mathrm{c}}$ from 16 to 3 . . for values of $n=12$ and $n=15$ which have heen eomputed from formmat ( $\overline{\text { a }}$ ) section 6 , have been plotted in the accompanying Fig. 28.

Since the sted clement in the combination is more dependable than the concrete from the standpoint of uniformity of strength, the safety of the structure is made ber experieneed buiklers to depend on the steel. In order to effect this the working strength of the conerete should be taken at a smaller fraction of its ultimate strength than
the working strength of the steel is of its ultimate strength. For a $1: 2: 4$ mix 6.50 pounds per square inch is a safe working stress to resist compression in conerete arising from bending. Botls tension and compression are developed in concrete by flexure and by bond shear. The resistanee, however which it offers to tensile stress is small compared with that which it offers to compression. Forty pounds per square inch is a safo value of the working tensile resistance.



Now if a beam is to depend for its stability upon the stress in the steel, that stress must not execed a certain assigned value dependent upon the quality of the steel, or what amounts to the same thing a given quality of steel must not suffer a stress or a corresponding elongation at any point in excess of an assigned value. In order to compare beams of different depths and the same assumed maximum stress $f_{s}$ or elongation $e$ of steel, draw two plane sections of the beam under consideration at right angles to the neutral axis and at a distance of one unit apart. Before bending occurs, the two sections are parallel to each other, but after bending they make the
same elementary angle $\Delta \theta$ with each other. Draw thru one extremity of the unit of length at the neutral axis (which has been unchanged in length by bending) a plane parallel to the section at the other extremity of the unit length. It consequently makes an angle $\Delta \theta$ with the original plane section at this extremity. Any horizontal shearing deformation may he disegarded in this comparison becanse it will affect both sections to practically the same amount. The unit elongation of the steel due to the hending between these two unit sections will be $e=\left(1-l_{i}\right) d \Delta \theta$.

This investigation is made upon the assmmption that e has a value which is constant and the same for different beams, but with the proviso that moter this sted elongation neither the shearmg distortion nor the eompression of the eoncrete antwhere shall exceed permissible limits, questions which will have to be separately inrestigated since they depend on the steel stresses in too complex a manner to be readily introduced into consideration at the same time with the effect of the eonstancy of the steel stresses.

Now other things being equal $\Delta \theta$ decreaves as $p$, the percentage of the reinforement, increases; i. e. $\Delta \theta=c \quad l$ where $c$ is an experimental constant whose valur is dependent upon the grade of concrete, etr. substitute this value of $\Delta \theta$ in the provious expression. then

$$
e \quad\left(:=(1-k) d \quad l^{\prime}=\frac{(1-l i) L}{p . \lambda}\right.
$$

in case d be assmond to be some kmown fraction 1 N of the span $L$, i. $\rho$. or $d=L / N$.

It thus appears that the lat member of this equation will be found to be an experimental constant for reinforeed boams of the same span and grade of concrete; and in case the mumerical value of this constant be determined for any given beam not liahle to excessive deformation at the center, it will have the same value for a bean of different depth, span, and percentage of steel, provided, as before stated that sufficient resistance to compression and diagonal temsion be supplied.

For example, assume $f_{s}=13,000$ and $f_{c}=650$, then $f_{s} f_{c}=20$. Referring to the curve for $f_{\mathrm{s}}, f_{c}$ Fig. 2s the corresponding steel ratio is $p=0.0105$, and taking the rorresponding value of $l$ i from the $l_{i}$ curve, it appears that $\left(1-l_{i}\right)=0$. 73. . It is known by experience that a hean whose depth is 112 of the length should
have this amome of reinforcement, or $N=12$ when $p=0.0105$.
Hence $\frac{\left(1-l_{i}\right) L}{p \mathrm{~N}^{\top}}=\frac{0.573 L}{0.0105519}=4.55 \mathrm{~L}$.
is the constant for such beams.
The same curve shows that for $f_{\mathrm{s}} / f_{\mathrm{c}}=26, p=0.007$ and $(1-k)$ $=0.63 .5$; hence, using these and the comstant 4.55 , we find $N^{\top}=20$.


Fir. 29.

Again, for $f_{s}, f_{r}=32, p=0.00 .5$ and $\left(1-l_{i}\right)=0.68$ and $J^{\prime}=30$. The large values of $f_{\mathrm{s}} / f_{\mathrm{c}}$ which have been assumed above for the shallow heams $\lambda^{*}=20$ and $S^{2}=30$, reduce the working stress $f_{\mathrm{c}}$ and the steel ratio $p$ below the values for $N=12 \mathrm{in}$ aroordance with good practioe. The atcompanying diagram Fig. 29 gives values of $L, d=N$ for usual values of $p$ computed from the equation $N=$ $\left(1-l_{i}\right) / 4.55 p$ and $n=15$.

Now the total temsom $T$ in the sterlat mid span of a smple beamis $T=W^{\prime} L \quad$ Sjd. But $T=b d_{p} f_{s}$ in which $f_{s}$ is the mit steel stress at mid span, hence $f_{s}=\frac{\mathrm{H}^{+} L}{\& . j b d^{2} p}$.
But the identieal elongations of of both the roncrete and the steel at mid span may be written

$$
\begin{aligned}
& \quad e=f_{\mathrm{s}} \quad E_{\mathrm{s}}=f_{\mathrm{c}} \quad E_{\mathrm{c}}, \quad o r^{\prime} \quad f_{\mathrm{s}} \quad f_{\mathrm{c}}=n \\
& \text { and } \quad f_{\mathrm{c}}^{\prime}=\mathrm{W}=, j b d^{2} p^{m}
\end{aligned}
$$

in which $f_{\mathrm{c}}{ }^{\prime}$ is the apparent direet tensile stress in the extreme fiber of the concrete at mid pan as shom by its elongation e while in contact with the reinforerment. The so called apparent stress $f_{6}{ }^{\prime}$ may or may not correspond to an attual stress of some comsiderable amount. It is used here simply as another way of expressing the actual elongation $e$. The experiments of consilere* show that eoncrete when well remforced may remain intact unter elongatioms not only far in excess of any posisible for concrete without remforeement but in fact remain intact unter elongations several times as grat. The reasoning here employed is howerer entirely independent of any gastion of actual ehecking or not for $f_{c}{ }^{\prime}=c E_{c}$ is simply a eonvemiont unit of comparison computed as the product of elongation and moxhlus.

Next ohtain the shearing stresses and the diagonal trmsion in the concrete at the extremity of a simple heam. The total horizontal shear between a unit of length of the remforement and the eomerete is suth that a segment of the beam lying between two vertieal phanes which are one mat apart is hedd in equilibrime by the total vertical shear $\frac{1}{2} \|^{*}$ acting with the am mity and the total herizontal shear s acting with the am $j$ jo.

$$
\text { Hence }{ }^{\frac{1}{2}} \|^{\prime}=S^{\prime} j d \text {, or } S=\frac{1}{2} \|^{\circ} \quad j d
$$

This makes the unit horizontal shear on any horizontal plane below the neutral axis

$$
s=s^{\prime}, b=\frac{1}{2} I \quad \text { jbed }
$$

provided the total sheir in a unit length be requrded as mionmy distributed thruont the breath b of the beemn. This is ergual to the unit diagenal tension at the enel of the beam whieh is produed by the shear akone.

$$
\begin{aligned}
& \text { Hence } s=4 p u f_{c} \quad \lambda \\
& \text { Take } f_{c}=1000 \text { and } n=1.5 \text { then } s=60,000 p \quad X
\end{aligned}
$$

[^4]By using cormeponding values of $p$ and $\lambda$ given previously we find

	$N$	$\pi$
.008 .5	16	32
.009	1.5	36
.009 .5	14	40.7
.01	13	46

Plotting the values of ex coresponding to the assumed values of $p$ it appears that $s$ will reach a safe limiting value of 40 lbs per sc . inch when $p=.0094$ nearly and when the span is somewhat more than fourteen times the thickness. or $L \quad 1=\lambda^{\circ}=14.25$, as may also be seen from the diagram Fig. 29. Beams more shatlow than this will have smaller values of $s$, hut deeper beams where $N<14.25$ will require reinforemg to resist diagonal tension at the ends, when there is a working stress of $16,000 \mathrm{lbs}$. per sq. inch om the steed at mid span.

Reinforement for the purpose of increasing the resistance to diagonal tension consists of diagonal or vertical rods toward the ends of the beam. The reinforeement may be introcluced in such amomet as to make mit steel stresses greater or less at mid span than at the ends. The total resultant diagonal temsion at amy point of the beam per unit of length of the reinforement is compounded of the total direct stress in the steel and the total shearing stress per unit of length of the steel, amd is

$$
R=\frac{1}{2} T+\sqrt{1} T_{1}^{2}+N^{2 *}
$$

in which the letters $T$ and $S$ designate the total direct steed tension due to bending and the total shear at the point considered respectively and do not signily as previously the total tension at mid span and the shear at the end. The inclination $i$ of this resultant tension $R$ to the horizon is found from the expression

$$
\cot 2 i=\frac{1}{2} T / S
$$

The value of $R$ at any point of the span may he readily eonstructed graphically as shown in the aceompanying diagram Fig. 30, in which the ordinates of the parabola called the $T$ curverepresent the totalsteel tension at any point of the span due to the load band and the ordinates of the straight line called the se curve represent the total band shear per mit of length of the steel at any point. Then at any point $P$ the resultant $R=P P^{\prime}$ is constructed and laid off vertically in two segments $P P^{\prime \prime}=\frac{1}{2} T$, and the hypothenense

$$
P^{\prime \prime} S=P^{\prime \prime} P^{\prime}=\sqrt{\frac{1}{4} T^{2}+S^{2}} .
$$

[^5]The ordinates of the locus of $P^{\prime}$ give the total diagonal tension $R$.
The total vertical force in the beam per unit of length of span which must be resisted by vertical reinforcement or tension in the concrete or both is $S=V^{\prime}$, jd as given by equation (24) Section 6 . This is shown by the $S$ curve. At a safe value of forty pounds per square inch of vertical tension in the concrete, the safe vertical resistance of the concrete per unit of length of span is $40 \%$ pounds, Draw a horizontal line on the diagram thru some point $Q$ at this height above $P$. Then vertical or diagonal reinforcement is necessary at all points of the span where the $S$ curve lies above $Q Q$ and the


Fig. 30.
total amount of the tension to be resisted by the vertical reinforcement at any point per foot of span is represented by the vertieal distance of the $S$ curve above $Q Q$ at that point.

It is evident that the point at which a bean will first fail by diagonal tension depends upon $S-40 b$ as compared with the amount and distribution of the reinforcement, and lies at the point where the maxium unit stress occurs. This may occur at any point, depending upon the amount of the vertical steel. In beans with the reinforcing rods turned upward at the ends of the beam and securely anchored there the point is usually removed to some distanee from the ends.

The treatment just given of the vertical stress in the eonerete assumes that the verticals consist of stirrups or the like at some considerable distanees apart horizontally, say $10^{\prime \prime}$ or more.

The case, however, is different if the required vertical steed consists of rods or wires so near together as to prevent checking or cracking of the concrete until the vertical steel has a working stress of 13,000 to 16,000 pounds per square inch. In that case, diagonal tension failure need not occur before the concrete has an elongation $e$ corresponding to an apparent tensile stress of at least 600 pounds per square inch, insteal of 40 pounds; but in that ease the vertical sted should be designed to resist the entire vertical temsions.

If in addition to distributing the vertical steel along the span so completely as to fully reinforee the concrete vertically, some of the


Fig. 31. Tiew Showing Beam Failure by Diagonal Tonsion near the End.
longitudinal steel be rum parallel to the neutral axis so as to fully reinforce the concrete below the neutral axis longitudinally as well this will introduce roaction of the vertical and horizontal steel in such a way as to materially reduce the steel stresses in the web, in the samo manner as oceurs in the steel stresses in slabs. This is the explanation of the striking results obtained by the bean designs of Maciachini, and of Cottançin as shown in Fig. 44.

The theoretical deductions which have been reached in the preceding pages may be confirmed hy reference to a great mass of test data. It will be sufficient, however, at present to refer to certain of the tests reported in Bulletion No. 197, of the Eniversity of Wis-

[^6]

Fig. 32. Reinforement of Test Beam and Cracks
consin,* from which Figs. 31, 32 and 33 have been taken. They show the details of the yielding and failure of several beams with the checking of the concrete as well as the amount and arrangement of the reinforcement. The heams represented are all T-beams supported at the ends with practically one percent of reinforcement, and $N=L / d<9$. The top flange of the beams of these beams afforded sufficient resistance to make any moment failure occur by yied ing of the steed in the bottom of the beam. Moreover, there was sufficient reinforcement against diagonal tension to prevent failure of that kind in the beams of series D, E, and F, but not enough in Series (i. Every failure by yichding of the steel at mid span caused an amount of deflection and a sharpness of bending that crushed the concrete in the flange. The first tension cracks


Fif. 33. View Showing leinforement and Cracks Test Beams, Diagonal Fature
in the middle third began to be visible on the bottom at a stress of 12000 to 15000 lbs . per square inch in the steel. In Series F, the reinforcement against diagonal tension contained no verticals such as oecurred in Series D and E, hut wire mesh was used instead as represented. The cracks show that the beams of scries F while actually failing ly direct tension in the steel were nevertheless appreciably nearer failure by diagonal tension than were those of series D and E. It is stated the mean tensile strength of 6 inch test cylinders of concrete cast at the same time as the beams was 187 lhs . per square
*Tests on Plain and Reinforced Concrete, Series of 1907, by Morton Owen Wither, C. E.
inch and that the beams began to crack by diagonal tension when the unit vertical tensile stress computed by the formula

$$
s=\frac{1}{2} \|^{\prime} / j d b
$$

reached a mean value of 179 lbs . per square inch for all of them. This is in good agreement with the direct tensile strength of the concrete as just quoted, since it differs from it by less than five per cent. But were the steel well spaced at such short intervals along the span as to fully reinforee the web vertically as was done by Maciachini previously reforred to, and were web steel introduced all the way from the ends to the loads where the shears began, we should expect to find the concrete take much larger deformations and apparent stresses than this without cracking.

It will be noticed that these beams were all loaded with equal concentrated loads at the one third points of the span. Such a loading makes the moment and shear curves very different from those given in Fig. 30. The moment curve will be horizontal thruout the middle third. It also makes the shear curve zero in the middle third and horizontal in the end thirds. These beams were consequently especially liahle to diagonal temsion failure at some distance from the ends where the anchorage of horizontal steel at the ends exerts no effect.

Such a failure is shown in Fig. 31 where a $\frac{1}{4}$ inch stirrup is broken just below the arrow, and as a consequence, because the concrete was unable to resist the vertical stress the crack then extended atong the horizontal steel at the bottom and along the flange at the top).

It should be noted that the age of these beams at the time of testing was only 28 days, at which time the resistance of the conerete to shear and diagonal tension was probably not more than 40 pereent of the ultimate, a fact that would be likely to make their behavior when fully cured materially different from that exhibited at the time of test, so far as shearing and diagonal tension are concermed.
8. Discussion of the Elastic Properties of Beams and Assump= tions involved in the Preceding Theory. In discussing the elastic properties of concrete it was shown that the motulus of elasticity of the concrete is not constant for different loads and further that the modulus changes with the age of the concrete, it being only ${ }^{5}$ an great at the age of thirty to forty days as it is at the age of two or more years, and furthermore that while this modulus is usually considered the same for tension and compression, this is open to some question. Accordingly a reasomable approximation to the conditions which
ocour in bending when the building is first ready for occupancy is attempted and in nearly all buidding codes the ratio of the modulus of clasticity of steel to concrete in bending is assumed at 1 to 15 . A difference in this ratio would affert the position of the neutral surface to some extent and the effective lever arm to a still smaller extent, as shown by comparison of the $j$ and $k$ curves in the diagram in Fig. 25. The assmmption of the value of 11 as 15 for bending is aceordingly on the safe side, and the cror involved is not great. On the other hand, this divergener of practical comelitions from the assumptions used in the computation do not justify a high degree of mathematieal precision in the work of pratieal design, for if the computations are carried to a degree of nicety unwarranted by the aceurace or agreoment of the assumption with practical conditions it is a mere expenditure of time without commensurate results. Areordingly, it may be stated that the approximate formulas for beams and slabs are sufficiently aceurate for practical purposes.

In T-beams where the beam is integral with the shab, it is customary to assume a width of slab not excerding four times the slab thickness as forming a part of the compressive flange of the beams. This assumption, of coarse, is conservative. It is evident that the compression in the outside edge of that portion of the slat which is regarded as useful section is less than portions nearer the axis of the beam, and that the sab beyond this imaginary division is also restrained in compresion, the condition approaching what has been designated as the "twilight zone" hotwern exact knowledge and conjecture as to the adtuld conditions. Evidently in a case like this, exact computations beyomel the limits of acerater of the assmontion is a waste of time and the effective depth $j d$ of a T'-beam may be for practical purposes detemined at onee hy the assumption of (1-j)d $=3$ without material error when $d$ lice between 2.5 $t$ and $4 t$.
 ment, the assumption of $j d=.8 .5 d$ is sufficiently aceurate for practical purposes, and for pereontages of sted lese thatn ${ }_{5}^{5}$ pereont the assmonption of $. j l=.9 d$ is sufficiently accurate.

The rase of the douhly reinforced beam is one which the designer rarely is called upon to make use of. In it the compression steel should preferably be about $2_{2}^{1 \prime \prime}$ to $3^{\prime \prime}$ from the top surface of the beam. Inless the percentage of tensile reinforement is very high, say 3 percent or more, and the compressive reinforcement very low, say less than 0.75 poreent, the neutral plane is nearer the compressive streel. Assuming $d^{\prime}$ to equal $d, 10$ when $p^{\prime}$ is 2 percent, it is nearer
the compressive steel for all values of $p^{\prime}$. Thus it follows, since the unit stresses in the compressive and tensile reinforerments are as the distances of these reinforeements from the neutral plane, that the unit stress in the eompresive steel is for these percentages less than that in the tensile steel. For very rough approximate computations, taking $n=15$ and the average value of $j=85, k=45$, we have

$$
f_{\mathrm{s}}=\begin{gathered}
1.17 \mathrm{~J} \\
p b d^{2}
\end{gathered} \quad \text { and } f_{\mathrm{c}}=\begin{gathered}
M \\
\left(.19-10.5 p^{\prime}\right) \text { br } t^{2}
\end{gathered}
$$

The above formula for $f$ is a fair approximation. The formula for $f_{\mathrm{e}}$ with different percentages of steel is by no moms a clow approximation.

A much more satisfactory method of computation is as follows:
From equations (20) we find

$$
\begin{equation*}
f_{\mathrm{c}}=\frac{f_{\mathrm{s}} l_{i}}{n\left(1-l_{i}\right)} \tag{19a}
\end{equation*}
$$

To determine $f_{c}$ we camot asenme an arbitrary value of $l_{i}$ in this equation since that would be tantamont to assuming that the amount of compressive steel would make no difference in $f_{c}$, hence this equation cannot be used as an approximate mothod of determining $f_{\mathrm{c}}$, but it may be employed to determine $f_{\mathrm{c}}$ in an arcurate manner by plotting the curve from the values of $n(1-k)$. $l$ for different percentages of tensile and compressive steel from which we may derive $f_{6}$ by dividing $f_{*}$ by the value taken from the diagram.

The accompanying Fig. 3t show the curves of different pereentages of tensile steel for different pereentages of compressive stere reinforcement noted at the hottom of this Fig. The values of $j$ are given at the left of the diagram and the values of $f_{s}: f_{c}$ for the different pereentages of tensile and compressive reinforeing steel given at the right.
9. Classification of Beams: This is based upon the manner in which the beam is supported:

A simple beam in one which is merely supported at the ruds, and its mathematieal treatment is based upon the eomsideration that the beam is free at the end to turn and that the supports offer no resistance to rotation. Such a beam, does not, of coarse, exist in practice, hut all beams which rest upom supports and are not rigidly restramed or have only a small degree of restraint at supports are treated from the practical standpoint as simple beams and figured as such.

Concrete beams or slabs which are apparently continuous over supports but which have reinforcing metal at the bottom thruout, offer so slight resistance to negative moment at supports that they are treated on the theory of predominant action as simple beams unless their depth be sufficient and the longitudinal restraint offered by the construction such that may be treated semewhat on the areh principle. A slab supported on parallel walls and reinforced in one direction is merely a wide beam and with reinforcement in the bottom thruout is to be treated merely as a wide simple beam.


Fin. 34.

Where, however, a beam is continuous thruout, and rigidly built into and integral with a series of columns, and suitable reinforcement is provided at the top of the beam over the support and extending outward to the line of inflection, and then thruont the bottom of the beam, we hate a true continuous beam in which the bending moments over the support follow the laws of continuous beams except as they are modified by the rigidity of their integral mion or comection with the columns.

The effect of this monolithic comnection is to cause the deportment of the bean to approach more and more nearly, for all spans, to the condition of a continuous beam extending through an indefinite
number of spans: in other worts, to callese the monent over the support for uniform load to become WL 12 and the moment at mid span IV $L / 24$. An end span of the series, however, except in heary warehouse construction will not receive this full degree of restraint. In a heary warehouse with the latge columms, 26 inches and over in diameter, this degree of restraint is for practical purposes fully secured, but with smaller columns it may be less, and its amount is to be determined appoximately by the designer from eomparison of the relative rigidity of the columms and heams, so that in the case of light columns the end spans should be somewhat more heavily reinforced for moment at mid span.

The case of an unloaled span with both adjarent spans fully loaded is not uneommon in a warehouse and this, too, must he provided for.


Fig. 3. Continuou* Beam, Turner system.

Where the construction consists of beams in but one direction with the slat spaming from heam to hean and with insufficient metal parallel to the beam in the stab to fully reinforee the beam to resist the newative moment moder the ciremmstances stated. which may result from the excese of live load stress over and above the dearl load stress, the beam should be treated, in determining the eentral moment, as continuons for deal load omly and as a simple beam for the live load.

The preferable arrangement, howerer, is the provision of heams in both directions from column to columm where beam and stab constructions are used, making the flom a true monolith or a natural concrete type. For this trpe of monstruetion with orelinary spans, beam reinforcoment consisting of say five pork arranged as indicated in Fig. 35 is preferable, in which the beam rods consist of two which extend thruout the length of the beam at the bottom and into the adjacent span, two which are bent up from the quarter point to the top of the heam amd axtent ower into
the adjacent span, and one which while extending into adjacent spans slopes gradually from the top of the support to the bottom of the beam near the center of the span.

An arrangement of this kind, after the manner of the Bollman truss, furnishes liberal provision for shear at the support, while the inclined rods, under bending strain resist shear thru their inclination at the support. It is only necessals to figure the moment over the support as $\mathrm{IV}^{2} \mathrm{~L}$ 12 and provide therefor by the eross section of the

six rods corssing it while the four rods in the bottom of the beam and the five rots at the center are ample for all possible conditions of loating. The lap of rots at the support and beyond the support both at the topand bottom remder sudden failure or collapse practical-

ly impossible after the concrete has had even a few hours under normal temperature conditions in which to harden.

In addition to enhanced safety there is very material economy in such an arrangement, since compared with beams of constant section, the continuous beam is more than five times as stiff and one and one half times as strong as the simple beam having the same cross section of metal thruout the bottom of the beam as the continuous beam has at the top over the support.

Fig. 36 shows the Hemebique continuous beam which has an enviable record from the standpoint of safety by virtue of the liberal lap of reinforeement and stirrup verticals employed.

The fact that concrete is well adapted to be placed in a monolithic mass renders continuons construction the natural type to use for the reason that it combines the highest clegree of safety with the maxium of stiffness and economy.

Even tho settlement of the supports should oceur and the concrete should check by reason thereof, the well designed contimuous floor does not become dangerous and unsafe. So lomg as the concrete is hard and rigid, the checked segments can take compression, and the steel while the bond is intact can furnish the full resistance to tension which was originally figured upon disregarding the direct tensile strength of the concrete itself. This statement is true, of


Fig. 3s. Table of Coefficients of Moments over the Supports Beams Ireely Supported.
course, only where ample lap of the rods has been provided over the support which should always be attended to in order to ensure safe and satisfactory results in beam design.

Independent beam construction has been used to a small extent, that is separate beams east in the shop and sent to the job as individual units. Difficulties in handling made up units in ereetion offset some saving in cost of forming, while their lack of joint action in carrying load puts constructions of this kind at a serious disadsantage compared with monolithic work wherever the loads to be carried are of considerable magnitude. Independent units, however, may be quite economically employed for roof eonstruction and the lightest kind of work where suitable facilities are at hand for carrying on the work of erection economically.

For convenient reference, Fig. 38 gives the bending moment over the supports in a series of equal spans uniformly loaded up to nine spans, while Fig. 39, gives the maximum moment near the mid span for a similar series of contimons beams freely supported and uniformly loaded. From these moments, taking into consideration the relative rigidity of the column and the beam in question, such cases as those above suggested where the rigidity of the columm is small in comparison to the beam, may be correctly treated. The reactions over the suppert are shown in Fig. 40. The amount of bending moment and the reate ioms are to be detemined. of course, by multiplying the coeffiedents in the table hy the total load per

 Batm Freely Supported.
fam ly the length of epan to ohtain the bending moment, while the reations are the fabufter coofferients of ll the total load on a single span.

It is here in order to call attention to the fimdamental relation of moment magnitudes which may be observed in these tables.

For amy span, half the sum of the moments over the supports plus the moment at mid span is a constant, equal to ${\underset{s}{8}}_{\frac{1}{4}} \|^{+}$, in which $W$ is the total load miformly applied and $L$ the span. This relation is of use in treating many problems. The variation of the maximum positive moment from the moment at mid span is greatest in the ease of a contimous beam of two spans where it is $12_{2}^{1}$ per cent. This difference is much less in all other cases and nothing at all whenever the moment over both supports is of equal magnitude.

It will be noted that the greatest moment at mid span for uniform load in the ease of the contimuous beam of two spans is $9 \quad 128$ IV $L$, and the maximm positive moment for a span of indefinite length is WL 24. Further it will be noted in ease of altemate spans unloaded that the usual moment provided for as recommended for live load is $1 / 16 \mathrm{~W} L$. Hence it is apparent that where the columns are fairly rigid and the beams are integral with the colmms, little attention need ordinarily be paid as to whether it is an intermediate or an end span with which we are dealing.
10. Economic Design for Beams. As already noted, the coefficient for benting of a continuous heam is one-thirel as great

 landod and Freoly supported.
at the center as in the case of a simple beam, and two-thirds at the support. Now for safety ample lap of the hats is nesded. hence hy carrying a part of the reinforemg rote requiredat the center up over the support and by carrying them to about the point of contraflexure or so far that the negative moment in case of a single pane load will be taken care of by slab reinforeement parablel to the bean we have need theoretirally (considering moment only) two-thirds the section of sted for about one-third of the length and one-third of the seetion of motal for two-thirds the length of this beam of that required for a simple beam. In other words, we have the following comparison from the standpoint of theoretieal ecomomy. That the metal required for a continnous beam is onchalf that required for a simple bean and further that the comstruc-
tion with a continuous beam is safer to erect since the work is more securely tied together and it can be depended upon with a good concrete not to fail suddenly but only by the actual stretching out of the metal to the point of ultimate fracture in case of loading equal to three or four times that which it was calculated to sustain.

This theoretical economy however cannot be fully realized. Two-thirds in place of onc-half would be nearly the limit attainable.

Evidently the greater the depth the less steel will be required to carry a given load. Usually, however, the depth to be used in an ordinary buidling is determined from the standpoint of appearance and the extra cost of walls for a given clear story height rather than from the theoretically economical proportions of steel and conerete alone.

A mistake which is frequently marle is in building beams too narrow and deep especially where they are spaced elosely. Such construction is lacking in resistance to high temperatures since too great an area is exposed and it should preferably be avoided on that aceount.

A minimum width of tern to twelve inches should be adhered to for reinforeed concrete beans in a building that is intended to be fireproof to a high degree, and such a width for moderate spans of sixteen or cighteen feet will usually give ample concrete to properly surround the reinforement in the beams.

In gencral there should be sufficient width to allow one inch of concrete betwern the bars or a width not less than one and onefourth times the dimeter of the bar if the hars are parallel for any considerable length. Where the hond shear is small and they are bunched as at the tol of the beam where there is ample spread beyond this point in the beam this requirement becomes of no especial importance.

Relative to the economic proportion of concrete and steel, the general relation to be observed, is that the amount of steel decreases with the depth of the beam, while the amom of the concrete increases. With one percent of steel as the clement of reinforcement, it is evident that the eoncrete element will cost more than the steel element on the basis of five dollars a yard for the concrete and steel at fifty dollars per ton. Hence with ordinary values of steel and concrete, the limiting permissible pereentages and relation of safe working stresses fix economic proportions. In the continuous beam, however, where there is domble reinforement over the support,
a nearer approximation of the balance of the cost of concrete and metal may be approached than in the simple beam.

However, in the T-beam which is the usual construction in buildings this percentage would be based upon the area of the beam below the slab plus the area of that part of the slab above and on each side of the rib which it is permissible to consider as forming part of the compression flange of the beam, and the economic proportions would have a smaller proportion of steel, since the portions of the slab figured in with the beam are not added material as far as the beam is concerned, and hence the comparison should be based more properly upon the area of the rib below the slab of the concrete added to form the beam. Hence the economic proportion of steel would in general be reduced below that of the limiting proportion fixed to secure conservative working stresses in the concrete.

This conclusion, that the cost of the steel in the T-beam should be less than the concrete is strengthened by the consideration that the cost of the centering increases with increase of depth of the beam. These practical considerations seem to have been entirely overlooked in the discussion of the paper presented to the American Society of Civil Engincers in 1906 by Capt. Sewell, on the subject of economic construction of remforced concrete floors.

No mathematical formula can be devised which will take into consideration all of the variable elements of cost. Trial designs and the practical judgment of the constructor cnable him to find an approximate and satisfactory solution of this complex problem. The intimate relation of horizontal shear to permissible percentage of steel which we have pointed out earlicr in the discussion is but another of the complex clements entering into the problem.

## 11. Safe Loads for and Tests of Reinforced Concrete Construc=

tion. The Joint Committee of the American Socicty, etc., in their treatment of working stresses lay down this commendable rule:
"In selecting the permissible working stress to be allowed on concrete, we should be guided by the working stresses usually allowed for other materials of construction so that all structures of the same class but composed of different materials nay have approximately the same degree of safety."
12. True and Nominal Factor of Safety. A popular misconception regarding the meaning of the term factor of safety as applied to steel construction has exerted an influence from the economic standpoint adverse to the rapid introduction of concrete construction.

Many have the mistaken idea that the factor of safety of four
in steel construction means that the construction may be safely loaded to four times the rated working eapacity: but this is not the case, since the riek point of steel is only about twice the working load; hence the actual factory of safety is practically two against the mominal factor of four.

In other worls, the nominal factor of satety of fom in structural steel work is based on the ultimate carrving strength in tension of the metal which is about four times the working load, but after the load has reached a little mome than doulde the working load the gield point value of the sted has been mearly or quite reached and it commences to stretch, pulling out in case of mild sted before breaking sometimes as much as twenty pereent or more of its total length. Evidently when this plastie distortion commences in a beam or column the member is soon so deformed that we eamot figure its strength in the frame, thas limiting the ult imate strength to practieally a little more than twier the working load for this nominal factor of fomr.

In properly designed eoncete eonstruction the concrete is mathe stronger than the sted, for one reason becatas it is generally eeonomical so to do, and hemee the strength of the sterl is the strength of the reinfored eonerete eonstruction and it would not be reasomable to experet to sul ejeet the sterl to higher stresses in the ease of eomerete comstruttion thath is permisible in structural work; hence twier the working loarl is a fair test for this tye of work. In reality, in view of the fact that the cement improve with age, if it will stand this test at an age of from three to four monthe the owner can rest asoured that the factor of safoty is greater than with struetural stare comstruction.

Refering to the specifications for remforeing bars, page (34), it will be moted that for structural grade hars (recommended for beams and bent work) the yiek point is 33,000 , or two and onefifth times the working stress of 16,000 pounds allowed by nearly all building coldes, while for hard grade, oto,000 pounds per square inch is the gield point value. Aceortingly, higher test loads cam he applied where the reinforcement is of hard grade sted than with the softer grade. Howerer, greater care is necessary in bending the hard grade metal; the structure is not su tough and the results of the use of this grate of steel are more unerertain.

Excessive tests are not to be recommended, since some pormanent set and weakening of the structure may result therefrom. Elastic
deportment in accord with theory under tests of one and there quarters to two times the working stress for heary work should suffice.
13. Method of Loading for Tests. To secure results of scientific value the material used for test loads should be piled in such a mamer that its action on the slab or beam under consideration shatl not he masked by areh action.

A misleading type of test is shown in Fig. 41. consisting of cast irom piled ip in a mamer whieh emables it to arch readily to a large


Fis th. TeNt in which Areh Aetion occur- trom Main Boan to Main Beam, giving a Midealine indication an to the stremerth of the ligere.
extent from main bean to main beam. In this arae the construction is practically trpe $I$, with the joist girders five feet to six feet aprart. The load shown was adtally 1,000 pounds per foot, but so far ats the girder on which it rested was eoneerned it was probaldy mot
 mammer wheh would prevent arcla action from main girler to main gireler.

A material such as grabel in hulk may arch sombwhat, perhaps to the extent of five to six pereont. With cement satek there may be ato a small amomot of arch arem, hat in viow of the fart that
the material is not rigid in form, as in the ease of pig iron, this action can amount to very little unless special pains be taken to lay the bags in a manner to secure such action, and even with the greatest pains it is doubtful whether the bags can be placed on a large panel in such a manner as would make the areh action amount to more than twice the above limits.

In considering the degree or amount of arch action which may exist in a pile of material it may be noted in first place that the arch action will be greater the greater the height of the pile as compared with its hase.


Thus a pile of gravel seventeen feet square held in by a wall of sacks filled with gravel on each side eight feet high might reduce the actual bending on the slab five to eight percent. If the pile were one-third of this height probably the arch action would not exceed one-half to three-quarters of one percent.

With a pile of pig iron carefully built the amount of arch action might readily become large, since the pigs are rigid, and if laid up carefully a quite perfect Hindu arch could readily be built which would earry over half the load to the support or main bean without straining the girder or slab which it is nominally the intent to test.

Fig. 42 is a test made at the St. Louis Exposition, using cast iron, in which there can be no doubt as to the distribution of the load.

In general, the contractor desires to use for loading the materials about the work which can be conveniently placed upon the panel or area to be tested and he should, of course, be allowed to do this, since the expense of making a reasonably conclusive test on a floor will frequently amount to several hundred dollars.

Brick, cement in sacks, sand or gravel, stone, plaster, and the like will frequently be used by the eontractor if he has them at hand, instead of carting in pig iron from a distance, unless there is some object to be gained from a misleading test.

The area necessary to be covered in making a satisfactory test of a building, will, of course, depend on the type of construction and the unit which it is desired to investigate. In the ease of the slab between parallel beams, Type II, the loaded length parallel to the beams, should be not less than two times the distance between the beams in order to induce a condition of maximum stress at the center of the loaded area approximately equal to that which would oceur if the full area of the slab were loaded.

In the case of continuous slabs, Types I and II, the most severe positive stress is determined by loading placed upon single panels or alternate panels.

In the Dushroom construction, the maximum deflection at the diagonal center of the panel is secured by loading one panel only. The maximum possible stress over the column for a given unit intensity of load occurs when four panels are loaded, tho this being a uniform stress all around the colum it frequently is not in excess of the unit stress in compression at the underside of the eap with the umbalanced load of the single panel loaded, and as the steel is usually in excess the test of four panels leads to no more knowledge of the deportment of the structure than would be obtained by the single panel test.

In a flat slab on spaced supports, reinforced in two directions, the maximum deflection at the diagonal center of the panel is obtained when five panels are loaded, the panel under consideration and the four panels adjacent to its sides. This difference in deportment is brought about by the fact that the two way reinforeed shath throws the shear on the side belts whereas the four way reinforement tends to transfer it more direetly to the columm center. In other words, while the mode of operation of the two types is substantially the same as regards cantilever head and the eharacter of the stress about the diagonal center of the panel, it is otherwise with the distribution
of shear in cross sections of the direct helts which act after the manner of beams in both constructions, the two way reinforement not taking advantage of all of the advantageous rharacteristies of the four way system.
14. Shears in Beams. shearing stress at and near the supports of a cantilever or eontinuous hean or sab is an action of an essentially different kind from the shear aceompanving benting in a simple beam. At the support of a mifombly lowed continuous beam for example, where the negative moment reaches its greatest momerical Value, the beam resists a sliding stress on its vertieal erose seetion "qual to the load tramsmitted by the beam to the eupport. This is aroompanied bex no horizontal sharing strese arooss this section, and no diagonal temsional stress is called into play by this shiding thear, which may be otherwise designated as punthing shear, nevertheless diagonal shearing deformation oerours here as will be shown later.

We will now eomeider how it may be trae that there is no horizontal shearing otres in this rase, a comelnsion which is entirely opposed to the principles molerleing ordinary bendings shear where -tatical equilibrium requires the intemsite of shear on vertical and horizontal planes to be equal at all points of the material.

In Fig A let A 13 represent a


Fis. 1 reetical seetion at the eelger $A$ of the suppont of a contimuous beam at the left of 1 , while $A^{\prime} B^{\prime}$ is a neighboring vertical section of the beam. This alment of length of the beam is subjected to umequat tensile stresses on those points of its vertical faces lying abow the neutral axis $N$ and to merpual eompressive stresese on the faces below $V$.

Let $T$ represent the differences of the ternsile streses and $C=-T$
the difference of the rompresive stresses on the opposite faces. This difference is greater per unit of length at the support than elsewhere, as appears from the greater sope of the moment rurve here. These differenees or resultant horizontal forees on the faces form a couphe which acts on the element $A B B^{\prime} A^{\prime}$. This couple is held in equilibrimm by the eomple arising from the vertieal wearing stresses
on the opposite faces $A B$ and $A^{\prime} B^{\prime}$. The streses $T$ and $C$ do not. however, canse shears between the horizontal fibers but merely cause differences between the tensions or compressions at their extremitios which determine the law of distribution of the intensity of the total vertical shear $S$ on $A B$ and $A^{\prime} B^{\prime}$ and make it increase as $T$ and (' do, viz: proportionally to distance from the neutral axis $I$.

So long as the reinforeement at the top or tension side of the beam or slal, at the support preserves the concretr perfectly intact it will compel the concrete to act in the mamer just indieated. We shall designate this action as punching shear altho it does not conform to the description of punching shear as used by the doint Committer. since they do not allow any compressions upon $A B$ or $A^{\prime} B$ '. It is doubtful whether such a state of stress is posible as that described in the definition of the Joint Committer.

The diagonal tensional deformations of punching shear are not the same ats in ordinary


Firs. 13 bending shear as may he sean from the accompanying representation, Fig. B. In this diagram if a vertical shearing stress of given intensity on $A B$ will rause $D C$ situated at a distance of one unit from $1 B$ to be displaced to $D^{\prime} C^{\prime}$, then in homogemeots material an equal horizontal shear such as oecurs in hending shear will displater of' an equal amomet, so that the total diagonal displatement (Co" $=\left(C^{\prime}, 2\right.$ is half of it due to each. Comsequently a punching shear in homogeneous materials not arrompamied by horizontal shearing stress, caluse a diagonal doformation only ome-half as great as is catsed hy hending shear where the intensity on the horizontal plane is equal to that on the vertieal plane. Henere only half ats muth diagonal reinforeement would be needed to restrain diagomal elomgation in the one rase as would he required in the other. If the mean unit resistanee to horizontal shoar, howeror, is less than to vertical shear, the horizontal and vertical defomations (c" amel $C^{\prime} C^{\prime \prime}$ will be mequal, as well as their diagomal components ('E' ame $E C^{\prime \prime}$. But they may be readily eomputed when the mean moduli of rertieal and horizontal resistance are known.

Experimental determinations of the strength of concrete in resis－ tance to direct sliding shear not involving diagonal tension show that in general it exceeds 50 percent of its compressive strength but its strength is largely dependent upon the age of the concrete，especially in resistance to punching shear at supports．

Taydor and Thompson＊quote Spofford＇s Experinents on sliding shear in concrete from 24 to 32 days old and say＂these experiments gave a shearing strength ranging from 60 to 80 pereent of the com－ pressive strength of the concrete，which agrees substantially with the experiments of Prof．Arthur N．Talbot in 1906．＂
ln order that any such values of direet shear shoukd exist in a beam or slab the anchorage of the tolnsion steel must be absolutely secure and itsamount sufficient．In this lies the difference between continuous heams and slabs where such anchorage exists，and footings where anchorage is relatively insecure．

As stated previously punching shear，which is the shear at or near supports of continuous beams，is distributed on the vertical section in such a mamer as to be greatest at the extreme fiber and it is entirely unsafe to trust to the stability of umeeinforeed concrete to resist it．Siteel rods should always be put in both the top and bottom layers of continuous beams，more in the top than in the bottom and continued entirely across the top of the support and well anchored at some distance into the next span．The direct shear of such steel like that of rivets can be counted on with certainty，as concrete cammot．

With a $1: 2: 4$ mix， 28 days old，cured under laboratory condi－ tions and containing ．75 of 1 percent of reinforcement，the section may be counted on to resist safely a shearing stress of 6 percent of the compressive strength of the concrete，and with over 2 percent of tensile steel and two－thirds as much in compression，this may be increased 30 to 50 pereent．But no 28 day concrete should be sub－ jected to severe bending and shearing stress if it can be avoided． Resistance to combined bending and shearing develops much more slowly and much later than to compression．But when a beam has been well cured for 90 days in good drying weather，the shearing strength at the supports is much more than double that just stated for 28 day concrete．

Under the conditions which have been outlined it is evident that the integrity of the section is primarily dependent on the sufficiency

[^7]and proper distribution of the reinforcing steel. It is neeessary therefore to introduce the reinforeement as a principal element of strength into the computation of the safe vertical resistance to shear at the supports of continuous beams, which has been done as follows:

For reinforeement arranged as shown in Figs. 35, 36 and 37, so that it has ample anchorage on each side of the support, when the working stress in the concrete is assumed to be merely its resistance to diagonal tension of to lls. per square inch for a $1: 3: 5$ mix, of 50 ll s . for a $1: 2: 4$ mix, or of 65 lb . for a $1: 1 \frac{1}{2}: 3 \mathrm{mix}$, the steel in the upper flange may be safely counted on for a working stress in shear of $10,000 \mathrm{lhs}$ per square inch, and that in the bottom for half as much.

This method is illustrated in the following computations of the allowable working stresses in the continuous beam in Fig. 21, illustrating the Mimeapolis Paper Company buikling, tested after the conerete was well cured for more than 90 days:

Area of Section in square Inches	Stress lbs. per Square Inch	Working Resistance in Lbs.
Concrete. . . . . . . . . . . 240	50	12000
Top steel 6 rods. . . . . . 6	10000	60000
Bottom steel 4 rods. . 2.4	5000	12000
Stirrups 4 rods. . . . . . . 44	15000	6600
		90600

With a design unit load of 500 lbs . upon this floor, the load may be assumed to have been carried hy the beams nearly in proportion to their lengths and then the total load upon one of the longer betms would be

$$
15.33 \times 21.5 \times 500 \times 21.5 ;(21.5+15.33)=92.450 \mathrm{lbs} .
$$

and the shear at a support one half this, or $46,225 \mathrm{lbs}$. The beam was tested to nearly double this amount, or 92,450 lhs., which agrees with the working stress previously eomputed. But this according to the above computations was not half what the beam would have carried safely.

It will appear from this investigation that the eritieal seetion for shear in a beam is not at the support in a continuous heam, neither is it at the support of a properly designed simple heam with steel earried past the supports both at the top and bottom and
properly anchored. Failure from diagonal shear will oceur in the continuous beam nearer the points of inflection and in the simple beam a little way from the supports, dependent upon the arrangement of the sloping reinforeing roels and stimups.

In the construction of the simple beam type, the recommendations of the Joint ('ommittee quoted herewith are conservative, tho these rules camot be reasonably applied in determining the shearing resistane of seientifically designed eontimous beams such as those outlined:
15. Shear and Diagonal Tension.-"In calculations on beams in which the maximum sheating stress in a section is used as the means of measuring the resistame to diagonal tension stress, the following athowable values for the maximum vertical shearing stress ate recommembed:
(a) For beams with horizontal bars only and without wed rein-
 strength. (i. e. for bottom reinforenemt only.)
(b) For beams thoroly reinfored with web reinforement: the value of the shearing stress cateubated as for (a), (that is, using the total extermal vertical shear in Formula (2e) for shearing unitstress), tmast mot exeed fir ; of the rompresiverstrength. The web reinforemont, exelasion of bent-up bats, in this ease, shall be propertioned to resist twothirks of the extemat vertical shear in Formulas (2. 4 ) or (2.0).
(e) For beams in which part of the hongitulinal reinforement is used in the form of bent-up bars distributed oser a pertion of the beam in a way bovering the requirements of this type of web reinforement: the limit of maximum vertical shearing stress (the stress eatculated as for (at) ) $3^{\prime}$; of the compressive strength.
(d) Wher purehing shear owars, that is, shearing stress uncombined with compresion normal to the shearing surface, and with all tension nomal to the shearing plame provided for be reinforement: a shearing stress of $\mathrm{b}^{\prime}$, of the empressive strengti may lo allowed."

But sine we are of the opinion that these reerommendations are not applicable to columns, working stresses for cohums will be specially treated under that heading. The committere failed to recognize the action of bond shear in colum and multiple way slab construction, which action is here regarded as an essential factor in assigning their working stresses. such recognition was perhaps not to be expected in view of the fact that this suhject has not heretofore beren adeguately treated in the literature of reinforeed conerete.
16. Working Stresses-General Assumptions: The following working stresses are recommented for static loads. Proper athowances for vibation and impact are to be added to live loads where necessary to produce an equivalent static load before applying the unit stresses in proportioning parts.

In selecting the permiswible working stress to be allowed on eoncrete, we should be guided by the working stresses usually allowed for other materials of construction, so that all structures
of the same elass but eomposed of different materiak may have approximately the same degree of safoty

The following rerommentations as to allowable stresere are given in the form of percentages of the mbtimate strength of the particular concrete which is 10 be used; this ultimate strength is to be that developed in ertinders $s$ in. in diam ter and 16 in. Kong, made and stored under laboratory eontitions, at an age of 2 s days. In the absener of definite knowledge, in advante of donsoruction, ats to just what strength maty be expereted. the Committere submits the following values as those which souht be obtained with materiats and workmanship in aceordaner with the revommendations of this report.

Athongh ofeavional testes mas thew higher yesulte than thoue
 the maximum uad in design.
 OF CONC'RETE
In pound per sulate inth)

Aggrequte	1:1:2	1:12:3	1:2:4	$1: 2 \mathrm{~T}$	1:3:4
(iranite, traje rock	33800	2 C 10	2000	140	1400
Gravel, hard limestone and					
hard sandstone.	3000	2500	2000	1600	1300
Solt limestone and sand	me:2020	1.900	1.500	1200	1000
C'inders	So)	700	(10)	S0)	400

Bearing: When emmpresion is :applied to a sutian of fon-
 compressive strength may be allowed.

Axial Compression: For concentrie compresion on a phain roncrete colum or piere the longeth of whed bloes mot exered 12 dimmeters, 2.2.5', of the eompressive strength mat be allowed.

Compression in Extreme Fiber: The extreme-filner stress of a beam. rateulated on the assumption of a comstant moklulan of
 to meach 32.5', of the compmessive strength. Aelperent to the support of contimuols betmos stresses 15 'i higher may be used.

Bond: The bond stress betwern eonerete ant plain reinforeing bats may be asoumed at $t^{\prime}$, of the compresive strength, of $\underline{z}^{\prime}$, in the case of drawn wire.

Reinforcement: The temsile of compresive otrengh in stere -hould not execed lf,000 th. per set. in

In strustural-sterel members, the working stresese atoptod hy the Amerian Raihway Engineering Awordation are berommented."

Under the hearting of workinge streses the repont of the doint Committere dealis only with permissible valuer for stresere in onte direetion. Now in concrete work eometroutorl as a rontimmoms monolith the material is freguently stramed in montiphe direrotions for example in Tree I I foor ronstruetion the bottom jortion of
 toware the column and eipromforentially about the rolimme

Morley in his exerellent work on strength of Materials han diseussed the question of eompormal strese very lully. He shows that fablure in elastic materials mater strese results mot fromb babamexd hydranlic stresses but from the mondatarod thearing stroses.

Considere in a valuable series of tests of the compressive strength of concrete cylinders found that the endwise compresise resistance might be almost indefinitely increased hy increase of lateral hydraulic pressure. These tests were carried to the extent of increasing the crushing resistance of cylinders endwise four to five fold. This increase appeared to be limited only by the amount of hydraulic pressure applied laterally.

On this principle the safe radial compression in the lower part of a continuous flat slab may be very conservatively taken at values double those for direct axial compression provided suitable provision is made for shear.

This view is borme out hy practical experience with thousands of such eases in which no revidenee of weakness has been observed with good concere thoroly cured.

Shear amd tension faihures are, howerer, more liable to oceur on the umder side of the slab near the rap than ebewhere when the cement is partly cured and the forms have been prematurely removed. In this case the inspectore daty is to first invertigate this zone for soundness and remose and reeast any damaded material.

As in the ease of Jeams, full altantage of the maximmo compressive bemting resistance eam be taken to the limit only of a certain ratio of thickness to epan and proper reduction made for smaller ratios as disensed in the treatment of permissible steel ratios and shearing stresere for this type of construction.
17. Compound Tensile Strength. The same reasoning applies to tensile stress that applies to eompressive working stress when the steel is distributed in the form of small rok closely spaced. One of the facts in faror of multiple-way remforeement in the natural concrete types is that the direct tensile reistance of the concrete is increased somewhat hy strain in multiple directions. But in view of the fare that the direct tensile resistance of concrete is only one tenth or one twelfth its compressive resistance, an addition of forty to fifty pereent to this direct temsile resistance of roncrete does not render its dependable value of sufficient magnitude to be worthy of consideration as a safe practical element of strength, and as in the case of beams it should be disregarded for this reason.

Further the cocfficient of expansion or contraction being .0000065, it is obvious that a drop of temperature of 25 degrees will overeome ordinary direct tensile reistance of concrete assuming both ends to be rigidly restrained, and as concrete work in Northern latitudes,
at least, is frequently subjected to a range of temperature much greater than this below the temperature at which the concrete has hardened, we are not justified in considering direct tensile resistance as a dependable element of strength even mader the more farorable condition under discussion.

It is a favorable condition in building construction that there is more or less chance for adjustment of moderate temperature effecte and that columns give and bend in and out by suall amounts thus accommodating expansion ant contraction of Hooring, and the same action occurs with walls, ete., otherwise the combination in the same structure of different materials such as stone briek, steel. terra cotta, ete., having widely different coefficients of expansion in the same building would not give satisfactory results.
18. The Reinforced Concrete Beam as a Mechanism. The combination of the two elements, the concrete and the steel in the beam constitutes a device consisting of two relatively constrained parts which by certain predetermined intermotions serve to tramsmit foree and motion in such a mamer as to produce the effect of carying the load to tho respective supports while the arrangement of the metal in its position vertically and horizontally with referenee to the supports determines the general law of operation of the deviee. This operation, nevertheless must conform to certain fixerl or fundamental natural laws. These fundamental laws form the basis of the theory of work which is well understood and generally applied by the engineering profession in the treatment of bridge and frame structures but which seems to have been to some extent ignored in case of such a merehanical deviee as a concrete beam or floor.

The fundamental laws upon which the theory of work is based are derived prinarily from the general principle known as the baw of conservation of energy. This law is expressed in Merrimen's Civil Engineres' Porket Book, in the following statement:
> " If the system of bodies neither receives nor wives nut anergy, then its total store of energy, all forms includad, remans romstant. There may ba a transfer of enorgy from one part of the system to the ot here, but the total gain or lose in one part is exactly equivalent to the loss or gain in the remaineler."

We may also state the law in a gencral way as follows: Energy can be transformed or changed in form but it camot be a costroyed.

When we load a floor, we have an arrangement or deviere by which the load placed on the floor is gradnally lowered from its original position to the lower position asmmed by the shat as it
bends, and if the sab is elastie the act mal mechanical energy developed by the dowmatrel motion of the load under the law stated must be stored as potential energy of elastie deformation within the substance of the floor. This direct relation is ordinarily expressed in the statement that the extemal work of the load is transformed into internal work of deformation. This principle is worket out in great detail in designing bridgestrudures to determine defleetioms by work done, and is of the utmost value to the emgineer in its various applirations.

The above relation was expresed in 1860 in the theorem of ('laperton, (sere Lamé, "Leeons sur lat theorie mathematigue de lólasticite des corps solides," deuxiome edition l'aris, 186i6), and is stated ats follows:
"The exterion fore : applied, multiplied be the dieplamement in the direction of its point of :pplieation, equats the sum of all the intemal work of a body clastically deformed."

This theorem is a direct corollary of the fomdamental law of conservation of merge.

In applying this method of work, we of counse consider only the clastic deformation of the beam relative to ite peonts of support.

When a newly rured heam is first loaded the deffections up to a point where the reinforeement is straned to as mard as form or five thousamel pomels per square inch, are about half or less that half of the rerresponding deflection for the same increment of load where the steed is stresed from ten to twelve thousamel pounde per sfuare inch. This differenter in meatamed steed stress and deflection under the laws noted indieates a differener in the mode of operation of the merhanical devier with which we are deating which it is now in order to investigate. As the stress in the sted approarbes form to six thousand pounds per spuare inch the dired temsion in the eomerete corresponding to the stress in the steed ranges upwards of eso or 360 pounts per square inch, or appoximately the matimate direct temsile strength of the comerete matrix. Jo the lowl is increased further, a riekding of the concrete takes place and eracks begin to develop. This ricleling of the eonerete results in a dissipation or loss of the meehamieal energe stored by the elastie defomation of the eonerete and new energy is developed by the motion of the load then increased deftection until equilibrium is reeestahbished, which energy is stored up in a stable mamner in the stere.

The action which wo have outlined does not constitute a transfer
of the stress in the eomerete to the steel as some inooreetly may consider it, but it represents the dissipation of energy thru the overstrain of the eoncrete, the development of new energy by the motion of the load thru inereased defleetion and the storage of this new energy in the steel so that when the load is removed the intemal work then stored in the beam is only that stored by elastic eleformation which may be given back as the load is removed. For perfectly elastic deformation then we may say that thru indireet stress there is an amount of energy stored by lines of indirect temsion and compression emanating from hond shear at the surface of the steel equal to that stored in the steel and that the lines of principal stress in the reinfored beam are for this reason somewhat analogous to those of a beam of homogencous material. When, however, energy is lost or dissipated thru inclastic stretehing or cracking of the concrete, a different distribution of internal stress results.

The indirect stresses in temsion are greatly decreased in this casw while those for compression are increasel. The action of the combination of the steel and concrete then approaches more and more nearly to that of the flat arch with the tie rod in the bottom in which the lines of eompression areh more and more from the end upward toward the center, for those hars at least which are arranged in the hottom of the beam thruout. lf, however, there are a momber of bars in the beam, part of whieh are in the bottom layer thruout and other hars whieh bend upward from the guarter point or toward the end of the beam, then wo have an arrangement such that the bond shears from the bent up bars toward the end of the beam bring the upper hayers of the concere toward the end into dieset compression and eo-action, which the bars in the bottom of the beam eamost efferetively do. Hence in the heams in which there arre bent-mp bars a higher percentage of steel com he used without owerstraming the beam by indirect temsion than in the ease where the metal is placed in the bottom dayer thruout.

Stirrups in the form of small rods extencling vertically from the bottom of the beam to the top and corsing the lines of indireet stress at an angle assist in resisting indirect stresses and add materially to the shearing strength of the beam. This additional strength afforded hy the stirrups has been rery thoroly investigated by the (ierman firm of Weyss and Freytag, and the results have heren givern quite completely in "Der Eisenbotonbau" hy Emil Mörsoh, which has been translated by E. P. Coodrich, and published hy the Engineering News Publishing Co. under the title " (omoretosteel Construction"


in which the reader will find an exhanstive discussion of these valuable tests.

The dissipation of energy in the combination of concrete and steel in the beam and the inequality of the deflections after the applied loads stress the steel beyond 4000 lbs . have been already noted as due to the overstrain or checking of the concrete largely hy indirect tensions or bond shears. An arrangement of the metal in the web may be made which so reinforees it that there is no loss of energy from this eause and in such mamer that the bending resistance of the steel may be largely increased if not indeed doubled. Since every pound of pull on the bar is induced by bond shear it follows that the energy stored by internal work of indirect stresis in the conerete is equal to that stored in the steel. When, however, yielding of the concrete occurs and energy is dissipated therehy the stress in the steel is found by experiment to largely increase until the stress in the steel is substamtially that which we compute on the basis that the entire tensile resistance is furnished by the steel element.

In the Cottançin construction the entire web) of the beam (which is very thin) is reinforced by a net work of small rolls in such manner that this yielding of the concrete is prevented by thoro dissemination of steel both vertically and horizontally, and any deformation of the concrete brings this net-work of steel into action in such manner that the indirect stresses from the bond shears of the vertical and horizontal rods coact with each other, and deflection of the beam is for all loads light and heavy more nearly proportional to the loads.

Marsh in his work on Reinforced Conerete has called particular attention to this deportment of the Cottançin beam construction which he considers is based upon the theory of prevention of molecular deformation by supplying resistances of the reverse kind to stresses on small particles which produce notably good results and very light structures.

The mechanical operation of the Cottancin bean will become apparent from more complete comsideration of the action of the bond stresses and the storage of energy of the internal work in the web of the bean by the indirect stresses resulting from beond shar in a scientific and stable mamer which it is impersible to effect in a one way reinforced construction lacking thero dissemination of the steel to resist wel) stress in such manner that the low tensile resistance of the concrete may not be over-taxed.

The carrying raparity of the Cottançin beam as Marsh has pointed wut gives results not aecomented for on the basis of the wasul theory hat which maty be acounted for readily when wo consider the scien－ tifie mamere of reinforemg the web so that the indieret stresses are provided for in a mamer which does not over－tax the concrete and so the loss of aterey acompanying the inelastic defomation of the ordinary beam is avoided．

The same general prineiphe differently applied is brought into


plat in multiple way sabs，where the arrangement of the metal is such that the energes stored hy indieect strese is stored in a depend－ able or atabla mamern＇．

In column construction this principle may be amployed by a proper combination of hooping amb rartical steel．If hooping only is used，the fireproofing or outside shell seales early under test， whereas if the combination of rertical steel amd hooping in proper preportion amd arrangement is used 8.5 pereent of the ultimate strength of the specimen mat be developed beforesealing and chipping of the out side shell oecurs．It is to be bome in mind that the erhecking
or cracking under load is an inelastic deformation accompaniod by the dissipation of energy and followed by the development of new energy by the downward motion of the load thru increased deformation before equilibrium cam be reestablished. Thus the hooped column, without verticals, is objeectionable on the gromm of exeessire deformation, whereas with a proper combination of vortical steel and hooping this excessive deformation is prevented since the energy of internal work is stored in a dependable mamore thru at seientific arrangement of the reinforement whieh induces roaction of the indirect stresses in the concrete matrix which are gemerated on the one hamd by the bomd shear between the matrix and the vertieak

and om the other between the hooping and the matrix, as will be explaned more at lengeth in sucoerding pages.

A fundamental primeiple of comerete design from the stampoint of work, may be atated in tha following words:

The most perfeet design is one in which the potential anergy of internat work in stored in the most stable mammer. Surlo a design, from the commercial stampoint, will be ecomonical in the quantity of material reguired and for a given depth of heam or shat, will earry a greater load with less dedectiom, ame mary be experted to prowe most satisfactory under serore conditions of reporated loarling.
 Giovernime These Mechumienl Actioms
19. Bond Shear in Blocks. Let $R$ Fig. 4.) represent a relindridal metallie rod emberderd in a hlorl of concreto $B B$ in which it has
been cast. Let it rest on a ring shaped support sis having a central apperture somewhat larger than the rod. Then the weight $\mathbb{H}^{-}$ applied to the rod will induce a bome shear at the surface of the rod, whose intensity will depend upon several factors, among which will be the magnitude of the weight $\mathrm{II}^{\text {r }}$, the diameter $I$ ) of the rod, the length $L$ of the embedment, and the distance of the point considered from the begiming of the embedment. Other things being equal, the intensity of the bemd whear will be greatest at the point of embedment nearest the point of appliation of $I$, whether the rod be in temsion or in eompression. Sine the conerete which surrounds the rod is in astate of sheating stress along the surface of the rod. it is in a state of stress that may aloo be defined otherwise by saying that there is indirect or induced temsion in the eomerete atong lines Noping at to towards the axis of the rod, represented on Fig. 45 by the arrows with heads at the surface of the rod, and also eompression induced in the concrete along lines stoping at $45^{\circ}$ away from the axis, the intensity of cach of these induced stresses at the surface of the rod being the same as that of the boud shear at the surface and growing las at weater distares from the axis notry inversely ats the distance. The arrow maty be regarted as representing lines of fore or stress in the conctete in such a mamer that the intensity of the stress is propertional to their nearnes to eacho other. The total bond shear between rod and conerete amounts th il , and is so distributed on the surface of the rod that it is smath at the perint of embedment most distant from If and is greatest at the points nearest to If. The bend shear at ally peont is the increment of the tension in the rod at that peint and there is no element of temsion in the rod which is not balanced and tramsmitted to the conerete be a corresponding equal element of bomd shear.

The block tends to decreate in length ber reason of the load thus tramsinited to it at the same time that the part of the rod embedded in the concrete tends to increase in length, so that the point where the first slipping will oceur is at the peint nearest to II. But if no actual slipping oceurs the distortion is greatest at this point This is the reation that the greatest intensity of beond shear oecurs at this point.

In the space where the arrows are represented it might at first be thought that the radial componente of the induced tensions and compressions wouk neutralize eath other. But such is not the case because it is a fundamental property of stres in any material that a shear in any plane (as for example the vertical plane in this
case) in order to maintain equilibrium is necessarily accompanied by an equal opposite shear on a plane at right angles with it, so that these induced vertical stresses act to produce radial shears of equal intensity on each horizontal plane.

This horizontal shear in the block diminishes somewhat as the radius increases but does not vanish until we reach the inner edge of the ring $S 心$. Beyond the inner edge of $S S$ a vertical compression exists in the block which causes a pressure upon the ring Ss, whose intensity is greatest at the imer edge of $S S$, but which diminishes beyond the imer edge of $x \underset{A}{ }$ in a ratio which need not here be considered.

The matter of importance in this disenssion is the mamer in which the stress is transmitted thru the concrete around the rod,

where the concrete has lines of stress in it similar to those in the web of a built bean which eause the two flanges to coact as do the rod and exterior part of the block in this case.

The induced tensions which have just been deseribed are the same as those frequently designated as diagonal tensions. Failure arising from excessive stress of this kind would evidently give rise to eracks nearly at right angles to the arrows representing the induced tensions, i. e. to eracks along the lines of compression. but such eracks eould not oeeur without exeessive elongation along the rert, nor would they be expected to oceur in a block at all moder ortinary ciremmstances, beeanse they would be preceded by slipping of the bond, after which the diagonal shear would be relieved where the slipping took place and transferred to some point further along the rod.
20. Bond Shear in Splices. Leet Fig. 46 represent a splier in a belt of reinforeing rods with laps of length $L$. The entire effective ness of the spliee depends upon the bond shear at the surfaese of the
helt rods in which the aetion of the embedment is in many particulars like that already disensed, hut has several new features especially by reason of the dissmmetry of the embedment laterally, atho longitudinally it has perfeet symmetry such as the block did not possess.

The lateral arramgement is sime that the stresses in the concrete between the roels on the sides where they are nearest together is of math grater intemsity than elsewheres, so that the diagram of the stresese about a red would be much like that shown in Fig. 45, exeept that on one side of the rod the arows would cower the space very clesely, while on the other side the arrows would be few and far betwern. Morewor the suceesive arows wombl be just as neareach other at ome end of $L$ as at the other embl, but nearer together at eath emed than mearer the mikde of $l$. ' Fhe bend shear would fail first

lis. 17.
on eath rod at that emel of $L$ forthest from the ond of the rod. The lines of fore in the horizontal plane of the belt would be as just described, but linse of forer which star out from the rods in a direction above or below that plame would durve aromed sirally from one rod to the othere for eath line of forer mant hase ene end on one rod and the other om some other rod near her.

The strength of the splece depends upon the bemel shear at the surfaces of the rods, amd on resistance to the imbluced tensions and compressions along the lines of stress afforded by the eomerete. The integrity of the eomerete embedment under the action of these streses is essential to the tramsmission of foree along the splice, and were the limiting valuss of ather bond shear, indirect tension, or fompreswon. exeeeded in the eromerete the splice would fail.
21. Bond Shear in Beams. Let Fig. 47 represent a reinforced eonerete beam of length $L$ supported at the ends and loaded with two rqual weights ${ }^{1}$ each placed symmetricelly at the same distance, $n L$ from the end nearest to it. Then the total vertical shear at any point between the equal weights is zero and the bending moment is "HVL, while at any point feetween either load $\mathrm{II}^{\circ}$ and the
end nearest to it the total reptical shear is 11 and the moment is Wr where $x$ is the distance of the point from the and nearest to it. In such a bean where there is no vertical shear at any point of the middle segment there is no horizontal shearing stress at any point of this segment, comseruently the bond shear strese is zero thruont this segment.

Let $I$ represent the position of the neatral asis. The concerete above $N$ is in disect compression and that below $I$ is sulijecet to dieect tension along horizontal lines none of whith are represented in Fig. 47. The antire length of the reinforeeing rod $R$ is under tension, the central segment betwern the appled weightbeing under a uniform tension thruout which will he detemnerd ultimately by the bending moment Wh, for if the weights If are sufficiently great or other eontingoncos such as rapid setting, or long contimed loading have ocrumed, conough vertical aracks will have dewoloped at the bottom of the beam in this segment $t$ o have practically destroyed its direct temsile rosistance to horizontal force. Provided there is sufficient horizontal reinforement to safely rexist this horizontal temsion and the conerete above $I$ is sufferent to resist the compression the existence of vertical cratks in this segment of the beam at the bottom is mot to be regarded as a sign of structural weakness or ultimate failure of the heam. These may mater these conditions be regarded as hambese chatacteristie crates. But in case the reinforement is insuffiriont, yideling will oreme in this part of the beam where the moment in ereatest and surh rielding will rathe failure.

In the emel segments of the leann the moment of the hond sheares
 to the inerement of the hending moment, i. ©. equal to the total vertical shear ${ }^{16}$ provided it he assmod that the reinforement furnishes the entire direct temsile resistanere and the comerete nome. Assmange that case for safe dasign, the homed wear in represented in Fig. 47, in the same mamer as in Fig, fo, viz: the amows with heath at the reinforemg rots reperesent the lines of inclireat tension in the rencrete, atel these with heads at the mentral axis. $I$ represent the lines of compersion imbered by the bond shear. The conerete is abmedantly able to afforel the neres-sary resistane to the indirect compression, hat may be entiody mable to afforl the mocessary resistanere to the indieret of diagonal tension, whim may remsequently eause cracks perpendicular to its direretiont, that is along the lines of indire
of the bond shear. In beams so heavily reinforced as to prevent central videling, faihure due to rupture of diagonal tension and rupture of bond along the stech ordinarily ocems under overload. These two aceompany each other because they are of practically equal intensity as notieed before and the aracks due to slipping of the steed are continuons with those due to diagonal temsion. Additional reinforement to resist diagonal temsion comsists of stirmps and the like, which are emabled to do this he their own seromdary system of bond shears and athehorage.

The system of implued or diagonal temsions which have just been treated are necersabily modified somewhat in amome and direction by their combination with the direet horizontal tensions in the conerete due to the bending where these direet trensions are not climinated by vertical rateks. But the existeme and effectiveness of the indued tensions depernding on the homd shear remains practically mimpaired so long as the homd is intate

It should be motieed that the distribution of the bond shear on the surface of the remforeement mast be more intense on the upper sides of the rods by reason of the greater rigidity of the concrete on that side. due to its batking above, and lack of hacking betow.

In rase of a beam carring a load distributed differently from that assmond in Fig. th, there may be no segment of any finite length where the shear vanishes, hut such a sequent of infmitesimal length will exist wherever the bending moment is constant, i. e. wherever it is a maximmor or minimmon. Moreover the total values of the bond whear per mit of length of the reinforeement, multiplied by jd will equal the total vertieal shear in ease the reinforement takes the entire direct temsion. In such a ease the characteristics of the middle and end segments of Fig. 47.merge into each other somewhat, in a mamer not difficult to moderstamd.

It will ber readily seen that the mamer in which the stresses are distributed in any ease of remforement depends entirely upon the applied forces and the distribution of the rigidities due to the amount and distribution of the sted. hut that the coaction of conerete and steel is brought about by stresses commumicated from one to the other thru the medium of bond shar which is vital to the discussion of any such question, and that together the steel and concrete form a combination or machine which has properties as a whole which are different from the properties of either of the constituents. What those properties may be in any ease most be determined from a careful analysis of the particular case under consideration.

It should be further noticed that the limes of temsion that originate or are generated in the home shear at any given element of the surface of a rod are to be thought of as physically independent of the lines of compression originating at the same point in such fashion that the tension starting at a given point a say, is helel in equilibrim at the other end of that line by a tension at some point $b$, while the compression which originates at the same point $a$, is resisted and held in equilibrimu by a resistance to compression at some entirely different point $c$. Moreover, it may be that $b$ and $c$ are on the surfaces of entirely different bodies, as frequently orfors in care of splices in at belt.


Fig. 4s.
22. Bond Shear in Slabs. Leet Fig. 48 represent the reossing of two reinforeing rods moder temsion in a multiple way reinforeement as for example in a shat where the shearing strese of the bond resists any tembency of the reets $t$ s slip longitudinally in the direction of the long arrows. Then the mutual aretion of the lines of tension and compression arising from the bond shear is that represented in the figure where the arows with points aganst the rods represent lines of temsion and those pointed away from the rode lines of compression. There exist other lines due to the bond shears besides those here represented which are similar in their a lisposition and aretion to those found in beam action wheh has been aldeady disensed. But sueh other lines are here omited from diseussion beeatus by the primeiple of rigidities the lines which are hore represented at affortinge short and direct comestions thru the eonerete are neeessarily the ones which inchude the predominant action of the boud shear. 'This predominant action is here seen to resemble in its gemeral nature that
of a polier but hat latw of distribution peculiarly its own bey reasom of the relative situation of the rods in the eonerete, which is such that the intensity of the stress devoloped is greatly intensified in the immediate vicinity of the point of contact of the rods.

The principle of rigiditios here refereel to at determining the predoninant action is one susedptible of exeecolingly simple illustration yet one whow final implications and applications are of such a mature as to make the layman think for the instant that it is innposible to establish with certainty the definite comelusions that can neverthelese be at one comelusivedy demomstrated.

To ithetrate this point, let there be two springe or apring-l)alanes, one of which is twier as stiff or rigid as the other, and if side bes side they together support a given woight, the more rigid pring will
 of the other. Juat an in aly structure where there are several parts of the structure, cach of which is to carre its part of the loat the question as to how the load will be divided between them is determineol he their relative rigidity or stifferes, that pant which hacks stifferse and yidde casily will carry litthe of the load and will leave the lome of the work to those parts that are rigid and unyieding. Furthermere, sime the defomation multiphed hy the mean foree (or half the final load) is the work done during deformatiom, it is erident that for at given applied load the more rigid parts cary their part of the load with lewe deformations than the other parts could (amry it. Hence the work of defomation is less hey this arangement than it would be hey supening lese rigid patte to carry it. This is the principhe of leas work, which states that of all the ratious ways in which a given matie structure could be supposed to be deformed in carrying a hom, the way in which it will aet natly be defomed is that in which the load will perform the leate work in deforming the -tructure.

Fig. As, कhowing, as it does, morely a ground plan of the line of fore cemmot represent fully the distribution of the peints of attachment of the lines of foree which are gemerated all over the surfaces of the rods and start out everywhere like the quills of a hedgehog, in greatest mumber at point- where the two rox are nearest to each other, until in the immediate meighborhood of the point of contact between the reds, the wemerete grips the rods and holds them with a firmoses :and strength that would sememeredible did not experienee demonstrate its safety and reliabsility.

It is this dominant adion which is greatly increased in four way
reinforcement which distinguishes shat action from bean action. and brings into play the dependable indirect stresses in the concrete in contradistinction from the direct tensile stresese due to beam action. A failure to understand the physies and mechanies of this predominant action of shab reinforcement as depending on the fundamental role which bond shear phays in this case has prevented those who have discussed this subject from grasping the real relations that here exist. It has been denied most vehemently that it is possible for the stress in any rod to influcnce in any way the stress in any rod that crosses it, whereas such action is not only mavoidable when bond shear exists on both, but is the key to the situation and explains the otherwise inexplicable phenomena here observed. The mechanism of lateral interaction between the rods in a slab is such as to make the sab have properties which imitate in many respects those of a continuons plate, and the efficience of this action can be treated as in such a plate by help of a coofficient.

Why should anyone deny that a reinfored shal, ate in a mamer similar to a continuous plate? The only basis for such at denial is the assertion that in order to so act the direct temsile strength of the concrete will have to be relied on which cannot be relied on in a beam. That ascertion involves a fallacy. All that need be relied on to make this action effective is the indirect temsile strength of the concrete which is certainly reliable for this purpose to the reguired extent as appears from the fact that the bond does not in fact suffer rupture in well cured slabs.

Any analytical method of dealing with the phemomena of plate action or shab action hy which the stresser in vaturn directions affect each other depents upon the introduction of the so-called Poiscom's ratio to take aceoment of this interaction, so that the momerous and emphatic demial: in technical papers of the applieability of this ratio to sablation show in fact an (antire ignorance or misunderstamenge of what that action in.

It may in general be stated that stresses in store reinforeement, expecially in slab steed are imparted to the steed by her bond shear and not ly any other kind of anchorage in the concerete, weh as eceurs near the ends of simple hemm. From this it follows that the total stresses in the stere at any point must have existed previonsly in the eomerete. Sinco a given distributed fore or stress monsidered as a single thing has a certain magnitude throme its length, at such places as it is present in the romerete it is mot presont in the sterel
and vice versa. The mean stress to he carried by the steel is consequently diminished by that in the concrete.

It comes about, therefore, that the stresses in the steel are reduced by the action of the concrete, or the steel has less stress to carry by reason of its embedment than if it supplied the total tensile resistance itself. It is thus protected by the action of the embedment from some portion of the tonsile stress without ealling upon the embedment for such direct temsile resistance as is shown to be liable to failure in beams, but is calling instead merely for such indirect tensile stresses as are known to be afe and dependable from what wo know of splices and slath. These two things then are the basis of slab theory: the reliability of bond shear in slabs and the redurtion that it profuces in the stresses that without it would exist in the rods comstituting the multiple way reinforement. As seren above this reduction may amome in certain cases to 50 percent of the total fore acting. A very instructive experiment in this commection was made at the Mimmeapolis Court House of a slab 6 inches thick, and 7 by 10 feet horizontally, reinforeed in two directions lengthwise and croswise with ${ }_{8}^{3}$ inch round rods $S$ inches between centers. When tested as a beam supported at the conds, the crosswise sted not being subject to bond shear or temsile stress, did not increase the resistance to flexure, nor prevent the longitudinal steel from reeciving the full effeet of the bending moments.
23. Mechanics of Embedment. The mechanics of reinforced concrete under flexure may be smmonized as follows:

The co-operation or combined action of the two materials, concrete and sted, to resist bending, depends solety on the bond between the two, which has been disenswed briefly in a preceding article.

In the case of plain rods, this bond is in reality a shrinkage grip which prevents the steel from sliding thru the hardened matrix in which it is embedded, and the resistance afforded by this bond is subject to well defined laws which may be stated as follows:

The bond shear is zero wherever the tension in the steel is constant. It passes thru zero where the increment of the moment passes thru a maximum or minimum. It must he depended upon whether the reinforeement is in one direction only as in a beam, or in multiple directions in the slab.

Bond shear gencrates stresses emanating from the surface of the bars which may be treated as lines of force. These lines of force follow the general laws of distribution of force thrin any medium,
that is, their intensity is inversely as the square of the distance from the surface of the steel on which they we benerated.

These general laws enable us to investigate or follow out the part played by bond shear in the mechanies of a slab or leam. In the case of a simple beam in accordance with the law stated, the intensity of the bond shear is zero at the center for uniform load and a maximum toward the end of the beam, and it is to the bond shear or the lines of force generated thereby to which we may attribute the difference in the failure of an over and an under reinforced beam.

In the rase of the beam with light reinforeement, failure takes place at the center by the yielding of the steel. With heavier reinforcement, on the contrary, failure is more liable to oeenr toward the end by indirect tension induced by the hond shear which is greatest toward the end of the beam and which may be resisted only by the direct tensile strength of the concrete itself.

The deportment of the simple beam as affected by the stresses set up by the bond shear is of interest. In a newly east beam, in the preliminary stages of the loading, the stress in the steel as determined by the extensometer is much less than that figured on the assumption that the steel only resists tension. In fact, it is only about half as great as we should compute the stress to be on the above basis, until the steel is stressed up to four or five thousund pounds per square inch. When this point has been reached, there is a rapid increase in the stress in the sted with no correponding increase in the load until when the steel is stressed up to twelve or fifteen thousand pounds per square inch, the concrete has relieved itself of a large portion of its temsile resistance and the mexumed stress in the steel corresponds closely to the eomputed stress in the steel, assuming the steel not to foe assisted by the concrete in temsiom.

With the sab reinfored in two directions, howerer, the phenomenon differs from that observed in the beam. Take for example the ease of the shab reinfored in two dieedtons, bent in sudh a manner that the rods in both direetions are brought into temsion at the same time. The indirect stresses gencrated by the two sets of rods will under this condition react upon each other. Sinco the lines of foree diverge from each rod they may meet and coact thru the concrete as a medimm of transmision of the stress, which is not possible in the beam with one way reinforement, sine in the loan these stresses cannot eoact with each othor, there being one kind only and not two kinds acting in different directions. This fundatmental difference in the stress indueed by the bond whear in the cease
of a beam from that in a slab renders the two types of structure meehanically different and neeresitates their treatment in a manner which takes into ronsideration the differenee in the mechanical operation of the indirect stresses refored to.

A crack would not materially interfere with the operation of these indirect stresses in a multiple way reinfored slab, because the pathes of the limes of foree will still be able to find other passage ways such as aroid the eracks. But a erack in a beam which is normal to the direetion of the sted would intereept the indireet tensions induced by the bond shear at the seetion chereked, and prevent the aremmatated resistances offered by the indireet stresses from being effertive in dired resistanee to moment.

In treating the rombination of the two materiaks it has been (ristomatry to consider their combined atotion ats determined by the elastie properties of eath taken separately. namely be the ration of the modnlus of elastieity of the conerete in compression amel temsion to the modulas of clasticity of the steer in temsion and eompression. ha a homogeneots alastio stab such as sted in the form of a plate there mand nosels bre taken into consideration in adelition to the modulus of clastidity of the metal in tension atd eompression in one direetion, the additional corefleiont or modnhe of tateral deformation known as Poisson's ratio. This ratio, or laterat effect in a combination of sterel and comerete which is sufficiontly fine gramed to be regarded ate atoting as a homogeneons material. ats is the ease with reinfored comerete, camont be correetly eomsidered as an dastic property of either the comerete or the metal, but on the contrary must be treated as a coefferiont expresing the efferieney of the lateral ate tom of the indieed stresses indued hy the beond shear in the case of multiple way reinforeement in the shat, whech coeffecient, for the reasons abowe explained, mast be zero in the ease of the bean type with remforement in but one dieection on in (ane of the slat in which the reinforeement umber stran rums in hat one direction only. Atho tramevere remforement may be introdued in a beam it can perform mo useful function in reducing the strese on the carrying rods since the indieded stress indured hy one series of rods under strese camot converge to react upom another sot of rods not under stress, but ean react with that sot of rode maly when both are generating indireet lines of foree firm bond shear.
24. Bond With Deformed Bars. Mörsch disensest the action of deformed bar reinforeement thas:*

[^8]"In Ameriea varions forms of reinforcement are emphoyed all of which are thesigned to prevent shipping of the rod in the concrete. In the Ransome rod, this is secured by twisting the square steel bar; in the Johnson bar, elevations on the surface of the rods are produced in the rolling: and the Thather or knotted bar is provided with swedlings, while maintaining a ronstant sortional area. These 'knots' may well have the dosired effect when the rod is anchored in a large mass of concrete, but they will art in an opposite manner in the small stems of T-beams, expecially at their bottoms, where they will have a splitting fffect and thas canse pramature fallure of bond. It will be shown later that the adhesion in the case of ordinary round rods with hooked ends is ample to transfer all artual stresses, and furthermores, the arrangement of the principal reinforcement may be so designed with respert to the shearing stresses that no occasion should arise to make up any deficiency throush the use of those eostly sperial hars."
As regards the mechanies of embedment, the effect of the "knots." as Mörsch terms them, would cause slight irregularities in the intensity of the indirect stresses, asmming that there was any over-strain tending to cause the bar to slip and to bring into action the mechanical bond. This variation from the condition of mifornity of bond shear with the plain hars would not be material under loads producing stresses not exceeding those which are safe, tho the disadvantage suggested hy Mörsch in the case of the thin ribs might be looked for under loads approaching the ultimate strength.

## CHAPTER IV.

## BEAM ACTION ANI) SLAB ACTiON (OMPARED THROUGH APPLICATOON OF TILE LAWS (OF BOND SHEAR AND THE THEORY OF WORK.

1. Introductory. The preceding diseussion of the mechanics of the indirect stresses gemerated by bond shear indieates the laws which govern the distribution of motal reguired in order to secure effective eontinuous pate action in type ll floors, i. e. flat shabs supported by eohumbs.

At the diagonal eenter of a panel, the moment of the applied forces pasies through a maximum and the boud shear aceordingly passes through zero. hewce an arraneement of narrow strips of reinforcement on diagomal lines from colum to column is of no utiaty in securing lateral efficioncy by the operation of indireet stresses. Wide spreading remforement eosering substantially the area between lines of infleretion is the printe requisite for efficiencer

The foree of this remark will be better apprexiated from a detaibed comsideration of the moment eorvo of the eireular surpended plate under uniform had.

The area of a floor of this type may he subdivided aceording to deformation into three divisions:
a. Cantilever area about the columms eonvex ajward amd approaching sphericeal eurvature for equal colum spacing.
b. Suspended rireular plate concare upwate atout the diagonal center of the pamel.
e. Fadder shaped areas between the rantilever areas and the suspended central plate.

Consideing the suspended plate, the moment curve differs from the parabolic curve of a beam uniformty loaded in that the center of gravity of that part of the load transferred to the support is nearer to the support than in the case of the beam by one third. This renders the moment curve very flat at the conter and the moment increment at and for a considerable distance each side of the diagonal center very small, and on the other hand it renders the moment curve correspondingly sharper toward the support, and hence effective lateral artion of indirect stress must occur toward the the outer edge of the plate since the intensity of bond shear depends
on the moment increment. The moment increment being nearly negligible for a considerable distance about the diagonal center and zero at the center, the efficiency of a narrow bett is megligible from the standpoint of plate action as will be shown experimentally in tests to be discussed later of the Mushroom and Norcross type of slabs.

In the cantilever area about the colum the following significant conditions are to be considered:

The critical section is at the support and the resisting section decreases toward the support, bence the necessary radial resstance at the support should be reduced so far as possible hy eircumferential resistance as the support is approached from the line of inflection.

Fortunately the shear at the line of inflection is about sevemty five percent of that at the support and, as the increment of moment


Fig. 49
depends on the vertical shear, cffective action of imbirect stress up to the line of inflection is secured hy the use of wide belte of reinforcement.

Thus the arrangement of the remforcing stecel laterally as well as vertically vitally affects the characereristice of the structure in such wise that when the belts of rods which rum in matiple direetions from support to support are spread sut suffiedently to make the metal cover the entire area with rrosed remforement promitting eoraction of bond stresses it imparts the property of phate action to the stat in wheh eiremonferential resistane oecors in wide areas about the columns where the metal is at the top and atso in the exentral area of each panel where the metal is at he bottom.

Without such wide spreading helts full and rffeetive plate artion is impossible. Narrow belts, of belts part of them in the bottom of the slab at the columms, do mot realize results that compare favorably with the suceres of the Xenshroom structure.
2. Slab as a Mechanism. Treating the Mashroom stath ats a medhanism to carry the load to the supports, the result of its operat tion must be measured and compared with other strudures in terms:

First, of the amount of load it can carry with a given quantity of material:

Second. in terms of its deffection or stiffness under the given load with a given amount of steel ame a given depth of slab.
(layperon's theorem that "The exterior fore applied multiplied ley the displaement in the direction of ite point of application


## Elevation

Fis. 80
equals the sum of all the internal work of a body elastically deformed" gives a basis for ascertaining the mamer of the storage of potential energy in a reinforced structure which it is possible to demonstrate the difference berween the circumferential cantilever action in a Mushroon slab, with four way belts, Type IV, and linear cantilever action such as that of the Hemebique beam type. In making this comparison let the same thickness of slab and cross section of steel he assumed in the two cases and equal colum spaeing in both directions.

Take a circular are of radius $R$ about a columm as a center, then in case it has a radial deformation $\triangle R$ it will have a diremmerential deformation $2 \pi \triangle R$ which makes these deformations equal per linear unit. But since the steel rums in multiple directions in the belts of the Mushroom slah with substantially uniform spacing, equal deformations of equal reinforcement radially and cireumferentially requires the same work of deformation. Henee the work stored circumferentially and radially is substantially the same. This proof assumes the same unit deformation at all distances from the center such as would occur in stretching a perfectly Hat sheet. It will therefore be proper to give a proof by integration of elements applicable to the case of a bent slab where the deformation is not necessarily the same at different distances $r$ from the center.

Referring now to Fig. 50, the position of the slab bent downward about the column is shown in an exaggerated mamer. An elongation of the top surface or fiber of the slab is moted as $\triangle R$. for a radius $R$ and an elemental sereror included betwern radii making an angle with each other $d \theta$.

Treating the reinforement as equivalent to a sheot of uniform thickness, we deduce the relation between radial and dirommferential unit stresses in the following manner:

Problem: In case of uniform stretching of a circular plate one unit thick, to compute the radial and the circumferential work against the elastic forees having a final intensity of $f$ per square unit of croses section.

Resilience $=($ mean mit stres $) \times($ (ross sectiom $) \times($ elongation $)$.
Mean unit stress during deformation $=\frac{1}{2}, f$.
a. Radial Resilience: By definition of modulus $E$.

$$
R: \triangle R:: E: f, \therefore f=\begin{gathered}
E \triangle R \\
R
\end{gathered}
$$

Mean crass section of elementary secotor $=\begin{gathered}R l \\ 2\end{gathered}$
Hence the radial resilience of an elementary sector

$$
=\frac{E \Delta R}{2 R} \times \begin{gathered}
R d \theta \\
2
\end{gathered} \times \triangle R=1_{1}^{1} E(\triangle R)^{2} \| \theta
$$

Total radial resilience of circular plate

$$
=\begin{gathered}
E(\triangle R)^{2} \\
+
\end{gathered} l_{0}^{\because \pi} d \theta=\frac{\pi}{2} E(\Delta R)^{2}
$$

b. Circumferential Resilience of elementary ring of radius $r$. By geometry $2 \pi r: 2 \pi R:: 2 \pi \triangle r: 2 \pi \triangle R:: E: f, \therefore f=\frac{E \triangle R}{R}$

Hence the circumferential resilience of elementary ring

$$
=\frac{E \triangle R}{2 R} \times d r \times 2 \pi \Delta r \text {, lut } \triangle r=\frac{\Delta \Delta R}{R}
$$

$\therefore$ Total circumferential resilience of cireular plate

$$
=\frac{\pi E(\triangle R)^{2}}{R^{2}} \int_{0}^{R} r d r=\frac{\pi}{2} E(\triangle R)^{2}
$$

$\therefore$ Total eiremmerential resilience $=$ total ratial resilience.
In considering the geometry of the comves areas over the head of the colmmes, or the concave areas about the eliagonal center of the panes.s. produred in a siab by loading it, we notier that the deflections in such areas are completed determined and measured when we know the deflection of the meridian or radial corves of those areas. The doflection of there moridian curves involve certain elongations in the reinforemont in radial directoms. They also involve lateral or ciremonferontial comgations. But whice these lateral deformations acempany the radial deformations, and are comected with them, the defertions may lur regarded geometrically as wholly independent of them, and taken as dependent only on the radial deformations.

Now the enorgy of deformation stored in these areas moder load has been shown to be equally divided between that done radially and that dome circumferentially: or that dome longitudinally and that done laterally. In lean artion all the energy is stored longitudinally, and we proceed to make a comparison of this kind of action with the slab action which we have heen comsidering, where it is half longitudinal and haif lateral.

Suppose a given amonnt of energy (e is stored in a wide portion of a shab extending, let us sav, diagonally from cohmm to cohmm, and compare its deportment under load, by beam action, and by slab action. According to beam action. this energy $Q$ is due to a certain load $W_{1}$, gradually applied to the beam, which has a mean defection of $h_{1}$, say, so that $Q=\frac{1}{2} W h_{1} h_{1}$.

But if the same amount of energy be stored in this area regarded as a slab, only half of it will lestored longitudinally so that the work thus stored will be $\frac{1}{2} Q=\frac{1}{1} W_{2} h_{2}$, half of it in the steel and half in the concrete.

But with half as much energy stored longiturlinally, the stress
in the longitudinal rods will be one fourth that in regular beam artion. and the deflection atso one fourth as great, or $h_{2}=\frac{1}{4} h_{1}$.

But if the deflection in the slah is only one fourth as great under the same load as on the heam, the load on the slab would hare to be four times the load on the heam in order to produce the same fleflection in both.
3. Relative Stiffness of Beam and Slab. The significance of this result for shab theory may be set in a clear light by taking account of the fart that a continuous beam is five times as stiff as a simple beam. hut a continuous slab is four times as stiff as a continuous beam, consequently a continuous shah supported on points should be twenty times as stiff as a simple beam of the same cros section on knife edge supports. But since it is not practicable to support a slab on points we mast take into consideration the cliameter of the usual hearing provided therefor.

Taking the breadth of the bearing into eomsideration would have a tendency to increase the relative stiffese of the plate to more than twenty times that of the continuous leam or plate supported on parallel supperts: but this will be referred to in due order.

Now consider further the circumferential action, which has sueh a remarkable offeet upon the deflection as that which has just been declued. In this treatment of the eireumferential frames or the belts of reinforernent, it was asmed that the rods were the equivalent of a sheret of motal of eorresponding extion. The actual fact, however, is that they apmotrh that when bomel tugether in the eoncrete matrix. Taking a diametral section across at colum head it appears that the pull in the rods aderose the eertion eat, especially in the portion of the bolt inside the (ap), is in position to resist bending in the direction of these rock: and hence the rock forming the frames outside the eap act largely in virtur of the bomd values of the eoncrete in which they are embedded, to resist stresese in the same direction ats the radial rods gatallel to them inside the eap.

This is confimatory of the relation which is brought out hy comparing the reinforerment to an equivalent sheet of miform erosis section.
4. Indirect Tension. The law of the emmbination of comerete and metal to resist flexure may be stated in the following terme:

Erery pound of temsion or stress thromet the area of the aross section of the reinforeement, is indueed in the bar by the indireet
tension or bond value of the adhesion of the concrete to the bar, which calluses the rod to coact, or work with the concrete matrix.

Thus it appears that without calling for any resistance to direct tensile stress in the concrete, the emberdment of the steel has induced indirect tensions in the concrete matrix whose total amount is equal in magnitude to the tensile stress in the bars of the ciremuferential frames. This indirect tensiom is developed by the shearing bond bet ween the bar and the matrix, and these stresses are in reality shears extending along the surface of the bar, equivalent to indirect tensions and compressions at $45^{\circ}$ thereto. These indirect tensions may be thought of as lines of foree radiating from the surface of the bar thru the mass of the concrete, and chgaging in action with and held in equilibrium bes similar fores generated at the bond surface of some other system of bars reinforeing this zone of the slab at an angle to the first sistem. This indirect tensile strength differs from direct tensile resistance in a most important particular. viz: that a check or erack in the eoncrete does not seriously interfere with its comtimued action.

It can only be destroyed by the complete disintegration of the matrix, and thus it differs from the direct tensile strength of concrete in the important particular that it is dependable amd permanent.

The preceding explanation may not appear to be elearly established without a comparison of the action of these indirect tensile streses with those oceurring in the case of the slat reinforced two ways and bent under load in one direction only, as a simple beam. In a test of a two way slab made for the purpose, and as the result of the test by simple bending on end supports it was found that no appreciable interaction of indirect tension occurred between the longitudinal bars and lateral bars. The reason for this becomes evident when we consider the mamer of the distribution of the lines of force in the mass of the matrix. As they leave the surface of the bar these lines of force are disseminated thru the mass, and can only be engaged in action and held in equilibrium by simitar lines of force emanating from the surface of another har or bars also under tension at an angle thereto, for the reason that as these forces proceed from the surface of the bar thru the mass, their intensity decreases inversely as the square of the distance, following the usual law of transmission of force thru mass. Thus the area of the surface of a transverse bar not under stress is relatively too small for these forces to act upon and coact with, when the bar is not moder tension, since it does not generate similar forces which can
coact with the first set, except when it is itself moler stress. It is further evident that otherwise there is no reason for these forces to converge, but every reason for them to continue to diverge as they proceed from the generating surface.

The conditions existing in the conerete and steel of a simple beam under small loads, amply justifies this conclusion. The indirect tensile stresses emanating from the surface of the rods finds no other resistance than the direct tensile strength of the conerete to react against. Consequently, as the concrete itself is also elongated in tension, cracts oecur early, leaving these indicect temsions to coact with, or react upon separated seetions of the concrete relieved from the action of direct tensions. The only function of the eoncrete in the tension zone after these temsion cracks occur, is to transmit shears horizontally and vertically, and it can store up no other potential energy except that of shear. The fact that the beam acts as a beam at all shows that the horizontal shearing stresses essential to beam action are in full operation. It is thus that the simple beam retains its load resisting capacity under sted stresses far above those under which the first cracks in the conerete appear.

This change of function of the concrete, differentiates sharply between direct tensile stress in the conerete, which may not be relied upon as an element of strength, and indirect stresses, which necessarily exist in all reinforeed beams and slabs up to the point of complete disintegration of the eoncrete. Indirect stresses are the necessary basis of leam action in all cases, and are depended on by all eonstructors.

For example, it has been shown in mumerous tests that a simple beam can be loateft to a point where the eomputed stress on the steed, disregarding the conerete, would be approximately nine thousand pounds to the squatre inch, with measured rlongations in the steed representing only five thousand pounds per square inch. But after the conerete eracks meder the direet temsiom, the stress in the steed rapidly rises to the amount eomputed hy the usual fommata, and the beam may be further loaded entil the viedel point value of the steed is developed.

It thes appears that the useful amerg stomed up in ome waty remforcement he indired tension is limited by the fact that these tensions mant react against, and be held in equilibrimm hy the direct temsile reistaner of the conerete; whereas, in mattiphe way remforement, on the other hand, these tomsions reare upon similat
indirect tensions disseminated through the eonerete and induced by one or more systems of reinforernent inclined thereto.

During the period that the tensile resistance of the concrete in a beam is in full operation, or, in other words, its modulus of elasticity in tension remains constant, as much potantial energy is stored up by indirect temsions in the concrete ans is stored up within the steel, and ason an arditional amount by dired tomsion in the concrete.

Hener during this period the medermed stress upon the steel is less than half that computed according to the usual beam formula by diseremeding the temsile stress on the concrete.

We may illustrate this point by reference to Bulletin No. 28, University of Illinois, ly Talbot, Table :3, page 16 , describing tests of large reinfored concrote beans.
T.ABLE

Applierl   Load in Pomuls	Deflection in Inchles	Strese insteel in Pounds Perspuare Inch	
		From Deforma-	Fron Bending
		tion	Moment
(97.0) ()	$(1)$	300	4,100
10:3.000	(1)2	1.200	6,300
131.000	(0)3	2.100	8,000
1595,000	(0.)	3.600	9,700
18:9,000	10	6,000	11,500
20.0000	. 11	7.500	13,400
$25: 3.000$	.13)	10,500	15,300
$2 \mathrm{Si}, 000$	17	14.700	17,400
350,000	24	20.100	21,400
414,000	. 31	25.800	25,300

The working loal for above beam was $290,000 \mathrm{lbs}$. impact included; so that for the working load proper no considerable energy of tenside resistance is stored in the comerete. In other words, the storage reservoir of energy in the concrete of a one way reinforced slah or hean is a leaky one which, becanse it involves stress in tension upon the concrete approaching the ultimate strength of the concrete, allows the stored encrgy to escape or be dissipated by the permanent vielding of the concrote or its final cracking; in either
event, unloading the stress upon the steel which, becanse the steel unlike the concrete not being in a condition of orerstrain, is the more rigid e'ement. This result, the shifting of work from concrete to steel, is accomplished either by semi-phastic local stretching in the matrix, or by actual eracking.

This test by Talbot lacks an interesting feature brought out by tests we have recently had made, and that is this: that if a given load be left upon the beam for a long time there is a leaking away of the energy stored in the concrete, even with a perfectly quiescent load of low intensity; since concrete camot endure a stress much exceeding twentr-five pereent of its ultimate direct temsile strength without some increase in strain with no change in the applied load.

This test beam of Professor Talbot was $25^{\prime} 0^{\prime \prime}$ out to out and $2^{\prime} 10^{\prime \prime}$ deep, a larger ratio of depth to span than is usual, and the effects above noted are less marked than would be the case with a heam having a smaller depth relative to length of span.

The values observed for the three lower loads indicate the masking effect of shrinkage stress in curing rather than true clastic deportment.

Returning now to the comparison of sath and beam action, the difference in mechanical operation is such that the continuous flat slab, Mushroom type, requires the same amount of stexl to carry a given load as a beam construction having beams of a depth equal to twice that of the slab. The sab construction has the further adrantage over the beam in that its reinforcement covers the area of the floor while additional slat reinforcement is requisite to complete the beam and slab floos. This relation gives the slab type its greatest advantage for heary loads, tho its utility is not limited to heary eonstruction alone.

The deflections eompared have been limited to that of a simple beam supported on kinife edge supports with that of the continuous slab smpported on points. The actual support must, of course, have considerable hreadth, usually about 0.22 of the span for ordinary slabs. Such supports would reeluce the net span to about 0.8 of the distance center to center of columms direetly and to 1.214 times the direct span in a diagomal direction, the diagonal of the square being $1.414 L$ less. $2 L$, the net diameter of the (atp).

Aceordingly, on this hasis the stiffness of the diagonal as compared with that of the simple bean on linife edge supports, hating the same span as the diagonal of the panel, shouk be inversely ats the cubes
of the ratio of the spams. But it has alrearly been shown that a slab supported on points at the corners is theoretically twenty times as stiff as a simple beam of span $L$. But the eap increases this stiffness in the ratio of $1.414^{3}$ to $1.214^{3}$ or 1.58 to 1 . But $1.58 \times 20$ $=31.6$, hence the cap would increase the stiffese to nearly 32 times that of a simple beam of span $L$, were it not for the disparity in the resisting section as the support is approached in ease of the contimous slab as eompared with the slab of comstant section. The eritical section for hemding is at the support or around it where the negative bemeling moment is greatest and where the resisting material presents not a constant seetion as regurds the eonerete but one reducing or growing smaller as the support is approached. With an effective (at) 0.2 of the span in diameter, the resisting section is approximately $0.2 \pi L=0.63 L$ in circumference and the resisting section at the line of inflection taken roughly as cireular is about 1.4 times the span in circumference which eombined with the massing of the sted at the support would require but a slight reduction in this ratio of 32 to perhaps 27 in order to arrive at the true deflection.

A continuous slab, such as one of the Mushroom type, is not in a striet sense an imitation of a homogemeons plate berause the steel pereentage varies through wide limits in different parts of the slab. It approarhes $l_{\frac{1}{2}}^{\frac{1}{2}}$ or $1_{1}^{3}$ per cent at and close to the column, which is permissible on afeoment of the mamer in which the eonerete is strained under compression at the bottom as the support is approached, while it is redued in the ihin slab to the limit of .2 percent at mide span in the side belts where there is one layer only of rods and to . 4 pereent at the diagmal renter, so that its moment of resistamer as regards reinforcement is variod thru wide limits in order to proportion the sted to the total stress in the various parts of the panel as required ly shat ation, am hence such a slab is more serientific and economical than a mere imitation in the form of a homogeneous phate of miform thickness. This difference is comparable to the difference between a truss and a beam of constant section, a truss providing the most material where it is most needed, while the beam of constant section is wasteful of material in that it is not proportioned with reference to the stresses brought on it by the applied forers.
5. Comparison of Deflections at Mid Span of the Diagonal Belt and the Direct Belt. Having shown the manner of storage of the potential energy of internal work in the cantilever portion of the slab and in the suspended dircular plate about the diagonal of
the panel to be such that it is equally divided so far as the slab rods are concerned between radial and circumferential deformations, and having derived an approximate value for the deflection at this point based upon these relations, and upon the reduction of span by the diameter of the eap, it is in order to eompare the relative magnitude of the deflection at mid span of the direct and diagonal belts respectively.

Considerations of symmetry and equal width of belt for square panels with the wide over-lap of these belts where their width is $7 / 16$ to $1 / 2$ the length of span, would indicate substantially equal division of the load in shear resistance between the four respective belts and on this basis we may proceed to compare the deflections at mid span directly and diagonally between columms. There is no plate action by the indirect stress at the center of the direet belt. The resistance, bowever, of the direct belt is largely augmented by the over-lapping of the diagonal betts when they are of sufficient width to intersect within or approximately at the edge of the direet belt. Their assistance to the direct belt may be considered then as the addition of an effective section which may be without material error considered as in proportion to the extent of over-lap. Thus with $\frac{1}{2} L$ for the width of belt in a square panel, the over-lapping of the diagonal belts may be eonsidered to inerease the resisting section of the direct belt by approximately .7 while if the width of belt is $7 / 16 L$ the increase in effeetive section may be considered as . 5 the section of the direct belt.

The formula for stiffness previously derived shows that the stiffness for the same load is inversely as the eube of the span and inversely as the cross section of the resisting steel. In the diagonal direction plate action doubles the efficioncy of the sted. Hence we may compare the deflections of the direct and diagomal belts on the basis of the cube of the diagonal span betwern lines of inflection, divided by the cube of the direct stan betwern lines of inflection over the effective steel sections for the respective belts. The effective section for the direct belt as we have pointed out being from 1.5 to 1.7 of the section of the direct belt, these ratios are reduced approximately or ronghly to that of the ratios of the squares of the spans in the direct and diagonal directions. This gives us as a rough computation a deflection at the diagomat center about 1.4 times that at mid span of the direct belts where the diameter of the cap $=.2 L$ and all pancls are loaded and the anomont of these deflections we can figure from the ratios previously derived and com-
pare with the computed deflection of the simple beam of constant section. The deflection at mid span of a direct belt is not the same when a single panel only is loaded, tho that at the panel center is mehangel.
6. Bending Moments. The moment of the applied forces in the case of a miform load acting on an interior panel of a contimuous four wayshab assumed to be supported on columms miformly spaced is determined as follows:

From the fumdamental relations of moment magnitudes we know that for uniform loads half the sum of the moments over the supports, plus that at mid span, equals a constant, IV $L$. The division of this moment between the supports and mid span dejends on the nature of the dosign in respect to the relative rigidity of the construction at the support and mid span resperetively.

The relative rigidities of these sections, (presupposing of course, moment resisting calparity in the slab, thruont) fixes the position of the line of inflection which divides the cantilever portion from the suspended span portion of the construction.

If now these relative rigidities are made such that the position of the line of inflection is located the same distance from the support as in a beam fixel at its ends, then the apparent moment over the support is $\|^{*} L^{\prime} / 12$ and $\|^{\prime} L^{\prime} / 24$ at mid span. But if $L$ denoting the distance eenter to center of columns rather than the distance $L^{\prime}$ center to center of supports near the odge of the eap, is to be used in the above expression then these coofficionts must be reduced in hike ratio to the reduction of span by the (ap diameter in order to substitute $L$ for $L^{\prime}$ in the moment values. Thus for an effective cap of $.2 L$ these moments in terms of $L$, (the distance center to center of column) become W $L / 15$ over the support and $W^{\top} L / 30$ at mid span, which values are to be modified in like manner for other values of (eap diameter.

It has been shown that the mamer of storage of the potential energy of intermal work in the cantilever portion of the slab is such that it is to be equally divided so far as the slab rods are concerned between the radial and cireumferential deformations, and this method of distribution would require, under the above proportions of eap diameter to span that provision be made to resist a moment in a radial direction of $11 L / 30$ at the edge of the cap.

In proportioning the steel, the eritical section for bending should be taken as a circle about the capital and of a diameter for the
effective eap on which the steel rests, of the diameter of the cap plus $1 \frac{2}{3}$ times the slab thickness minus 4 to 6 inehes, depending on the size of the panels.

The consideration of symmetry and equal width of belt for square panels would indicate a substantially equal division of the total load in the four belts respectively, and on this hasis it is possible to determine the resisting moment required of the sted at mid span of the diagonal belt and the direct belt.

On the basis of this division, the apparent moment to be resisted by each of the belts at mid span is $W^{\prime} L 120$ and the true moment of stress in the steel times its lever arm is to be determined from the apparent moment and the mochanies of indirect stress heretofore discussed at length. At the center of the diagonal belts, slab action doubles the efficiency of the true moment of the steel stress. Hence the true moment of steel resistance at the eenter of the diagonal belts is $W L / 240$. The conditions to be met at mid span of the direct belt still remain to be considered.

In refering to the diagram, Fig. 16, showing the plan of the reinforeement of this type of construction, it is observed that the diagonal belts over-lap the direct belts and increase by this overlap the efficieney of the direct belt by . 5 to.$\overline{7}$, depending on whether the wirlth of belt is $7 / 16$ or $\frac{1}{2}$ the span in width. If the efficiency of the direct belt be increased by the over-lap of the diagonal belt 7 , then the moment to be resisted by steel at mid span of the direct belt is,

$$
\mathrm{II}^{\gamma} L / 1.7 \times 120, \text { or } \mathrm{W}^{+} L, 204
$$

Whereas if the over-lap is less and incrases the resi, ting steel area in this direction only .5 then the moment at mid span is

$$
\mathrm{W} L / 1.5 \times 120, \text { or } W L / 180
$$

The difference in assistance between the mamer of coaction of one diagonal belt with another and the coaction of the diagomal belt with the direet belt in resistimg moment at mid wam should be specifically noted. The coaction of one diagonal belt with another is brought about by the coaction of the steed in ome belt moder strain with the steel in the other helt under similar strain through the indirect stress generated hy bond shear while the asistance rendered the direct belt hy the over-lap of the diagonal belt at mid span is largely the assistance rendered by the addition of greater cross sectional area, two radically different methochs of
working together and yet each adding to the efficiency of the combination structure.

Having explained the method of arriving at the stress at mid span, and the stress over the support for uniform load, and different diameters of cap, it is next in order to discuss the effect on the continuous heam of loads on single spans as contrasted with all spans loaded uniformly.

In a continuous bean of indefinite longth, the loading of altemate spans has a wery marked offeet upon the condition of stress in unloaded spans. The top of the beam is heavily stamed in tension


Fig. is. Showing deremment of Curves of Measured Defleftion and Mexanred Stress, Mushroom lour Alal,
thruout the mboaled epan and the bottom flange is strained in eompression, the nequtive moment for live load being constant in the top flange thruout the unloaded span and equal to the moment at the support if the dead load of the beam itself be neglected.

This condition of strain results in a negative deflection at mid span of the moloded span in magnitude equal to a large fraction of the deflection in the loaded span. Aecordingly a comparison of the positive deffection of a heavily loaded span of Mushroom construction with the negative deflection in adjacent panels will bring out and show in strong contrast the difference in the mechanics of internal stress of a continuous beam and a continuous slab supported on spaced columns.

The principle of conservation of energy fixes rigidly the relation of proportion between stress and deflection at mid span regardless of the method of reinforcement, as is discussed more at length in
the comparative test of the Mushroom and Norcross type test slab, Chapter VI and also illustrated in test in the diagram Fig. is.

In the test of the Hoffman Building, Milwaukee, Wis., under a load of one thousand pounds per square foot of sand restrained by sacks in the outer edge, a positive deflection of $7 / 16$ inch was measured. The panel was $16^{\prime} 8^{\prime \prime}$ by $1 \sigma^{\prime} 0^{\prime \prime}$, the basement columms $24^{\prime \prime}$ in diameter, the slab $S_{2}^{1 \prime \prime}$ thick. Caroful measurements were made at the center of adjacent panels directly and diagonally and no appreciable negative deflection could be ohserved.

Considering the negative moment of resistance at mid span in comparison with its positive moment of resistance, it is obvious that a negative moment should produce a nogative deflection enormously larger than would be produced hy an equal positive moment, because while the slab is well reinforced to resist positive moment in the bottom layer at mid span, there is no steel at all in the top at mid span to resist negative moment.

Aceordingly, the eonchusion is mavoidahle in view of the trist data cited and many similar tests, that the effect of loating one span is almost negligible upon adjacent spans: and that Mushroom shabs must be consistently treated as atoting in a large measure independently of each other as regards the transmiswion of negative bending moment across column heads and sides into unloarded panels, thus differing radieally from a continuons heam construction. Such tests do not, however, show that a ronsiderable amount of circumferential and radial stress is not transmitted through the portion of the slab around the head. This deportment of the Mushroom slab permits the consideration of any pand as operating to a large extent independently of adjacent panels. In other words, panels conneeted integrally with the columms are far more nearly self contained than are panels cast integrally with T-beams.

In the treatment of beams attention was callerl to the fate that the continuous beam cast integrally with the colnmm, acte more nearly as a restrained beam thath a continuous heam on knife edge supports. So the Mushroom panel acts in a larger measure as a panel restrained at the columns than as one truly oontinuons, permitting the design of all panels with much less attention to the difference in continuity of the sath than would otherwiee lo jermissible.

Careful measurements of keflection show that when the eonerete work is old, and thoroly eured. litte difference in the clastice deportment is to be noticed between an emd pancl and an interion pand.

On the other hand, before the concrete has become thoroly dry, hard and rigid, and in all eases where the forms are prematurely removed, the rigidity of the end panel is much less than that of an interior panel and special care should be exereised in conservatively supporting wall panels mentil the concrete is thoroly rigid and hard. This comsideration has led to the practice of increasing the steel in the direct belts of wall panels longer than cighteen feet where half Mashoom heads are used next to the wall by ten percent, and where the wall end of the sath is framed into a beam or a wall an inerease in the direct belt of fiftern pereent is made standard practice. No increase, however, is needed in the diagonal belts since the object is to seroure such a reduction of the cleflections of those side belts when are perpendicular to the wall as to reduere the trough of the panel which is parallel to the wall in somewhat the same ratio that the trough perpendicular to the wall has been redued by the wall itsolf, thus insuring ordinary phate or sablation in these wall panels by the approximate equality of the tronghe dowsing eath other in them.

The rigidity of the colmmes afferets the deportment of both the continuous bean and the continuous satb, as we have heretofore pointed out. In a contimums slab, supported by columns contiming mpard for ons or more stories above, the amome of restraint is evidently greater than abu be secured in a floor which is merely supported by colmons, since in the latter case the bending resistance of the colmmas is reduced fully fifty pereent. Aceordingly, in the ease of slats thus supported it has been made standard practice to incerease the stere in the direet helts of such eonstruction by ten pereent, making mo inorease whaterer in the diagonal belts, with a corresponding addition in wall panels dependent on the mamer in which they are supported, whether they are integral with beams or with half Mushroom heads.
7. Continuity in Flat Slabs and in Thin Slab on Beams, Con= trasted Experimentally. In a one-way sab on contimuous beams freely supported, the negative moment at the support in the ease of alternately loaded panels is tramserved across the colmmen to the unloaded panel with no dimmition exeept that due to the positive moment of the dead load. Where the continums heam is of conerete and rigidly built into the colmmn this negative moment transferred across to the monded span is not only reduced by the dead load of the span not covered bey live load, hut is also reduced by a moment due to the stiffuess and rigidity of the colmms into which
the beam is framed and acts as a monolith. This reduction in the negative moment depends for its amount evidently on the relative rigidity of the columns and beams.

In the case of the heary warmouse, where the columms are large and stiff, the negative moment transferred to mid span of the unloaded panel would be relatively small but where the beam is framed into a girder the only resistance offered to reduce the tramefor of this moment at mid span of the panel is the twisting resistance offered by the girder, which is relatively small. Hence large negative moments may be transerred from the loaded to the moaded panel in heam construction where the columms are light or the continuous beam frames into girders. The modifying effect of these supports upon the distribution of moments in continuous beams is in strong contrast with that which occurs in continuous slab floors of either of the natural trpes of reinforced concrete III or IV.

In the test of the Hoffman Building in Milwauker, a load of 1000 pounds per foot on a single panel $16^{\prime} 8^{\prime \prime}$ hy $1 \sigma^{\prime} 0^{\prime \prime}$, or a total load of 142 tons, gave a deflection at the diagonal center of the panel of $7 / 16^{\prime \prime}$. No appreciable negative deflection, howerer, was observed at the center of either of the panels adjacent to the loaded panel laterally or diagonally. The supporting columm in this sase was $24^{\prime \prime}$ diameter, reinfored with twelve $1-\frac{1}{4}$ meh rounds. Story height from basement to the first floor was 10'6." The second tier of columns were not comected to the basement columns, but a cast iron hase was provided to form a bearing between the seeond tior and the basement tier. The pand wats reinforeed with seventeen ${ }^{3}$ " round rods in four directions and was $8 \frac{1}{2}{ }^{\prime \prime}$ thick, meluding one inch finish coat.

It is evident that columms of this diameter amd arranged in this mamer would be of meuffiedent rigidity to resist so great a test loarl as this and prevent the transeremer of moment to the arlacent panel if arting on the principle of the beam. Predominating cireumferential artion, however, prewents the linear transforener of moments in the contimuse flat stab in the same mamere as in the rontimuous beam, and this is the reasom that no negative deflections were observed at the eenters of the panols adjaeent to the loaded panel laterally or diagonally.

Similar action oceurs in square pancls remfored in two directions. and supportert on beams rmming from cohmm to wohum in both directions. A very heary test load placed upon a single panel has

measure ciremmferential, which prevents moments from being transfered from one panel to another.

Bearing in mind that eireumferential stresses are coimeident with and dependent for their mamitude upon radial stress, it is evident that stresses of this kind emmot be transfored from panel to panel after the manner of stress tramsfered longitudinally in a member, as in the case of a beam. Nomerons tests of wall panels and interior pamels in two-way heam contruction by Turner prove beyond question that substantially the same formmala applies both to an interior amd to a wall panel of tepe III, even where this wall panel at one side is morely built into the brick side wall of the building. Further that a corner panel built into the brick wall in the same mamer exhibits the same degree of rhastie resistance to defleetion
 extomding for a mamber of pamels eath way and supposted on four sifles by beans giving the same clear span as in the case of the wall panel. While defleet ioms of wall panels and interior panels are abmost identical, it does mot follow that there is no difference in the distribution of stress in the two cases which will be brought out more at length in eonsidering the defommations which oecorr in such eases.
8. Variation in the Position of the Line of Inflection in Con= tinuous Flat Slab Construction. The law of rigidities previously disernsed fixes the pesition of the time of infleetion, subject. however, to the proviso that the shab he able to resist both positive and negative moments in the zome thrn which this change takes place. But wide variations in the position of the line of inflection camot oecur in continuons fat phate construetion beratuse its position is fixed approximately hy the amount of metal in the case of the Mushroom Sstem and by the dip or sharp bemding down of the stal) steel in some other forms, so that the lines of inflection are near the points where the belts aross from above to below the neutral axis. This limits the possible variations in position of the lines of inflection to relatively small distances.

However, the law of variation of the position of the lines of inflection with variations in the moments over the supports and at mid span follow quite a different law in continuous flat slabs from what it follows in beams. What this haw is will appear by considering the magnitutes of the moments as expressed in terms of the load $w$ on unit area instead of expressing it in tems of the total load IV. The sum of half the moment over the smpport, phes that at mid span is a constant $=W L S$. For a beam of breadth $b$ this
is $u b L^{2}$ ， 8 ，but for a square panel it is $w^{3} L^{3} 8$ ．This addi－ tional power of $L$ is introduced in the ease of the continuons shat with equal columm spacing in both directions becaltse $L$ is the breadth of the panel，so that its load per foot of length is $\nsim L$ ，and the total load $w^{\prime} L^{2}$ ．Thus the ratio of the lengthe of the sus－ pended spans between the lines of infleetion will vary for given applied moments as the cube root of the ratio of the given moments determined by the relative rigidities．Thus in the precerling example． if the moment at mid span be increased twentr－three percent，since the cube root of 1.23 is 1.07 there would be a correxponting increase in the length of the suspended spans ． $575 \quad L$ of approximately soren percent or four percent of the span $L$ ，and a variation in position of the line of inflection of two pereent of the span $L$ ．a variation which is not great，and one which in view of the fact that the line of inflection is not clearly defined by a true hinge might realily oceur．

In finding the moment magniturles at the support and mid span， we have made use of the fumbamental relation of moment magnitudes and assumed that the lines of inflection are located in the same position as in fixed beams of constant section．

In the early constructions of Mushroom floors，the rolling mills were not prepared to furnioh small rods in long lengths and hence all belts of rods，as a rule were lapped or splieed over the columm． With such an arrangement of metal，there wouk be twier the rec－ tion of the slabs stee over the cohmm that would oreur with long lengths of rods and no splices at the support．This differenee of one huntred percent in shals steel area at the suppont is a variation which may occur，and demands investigation．

If we over－remfore the conerete at the support，the concerete element determines to a large extent the relative rigidity of the eantilever at the support．The shifting of the neutral plane woule be by no means in proportion to the increase in the pereent of sted as may be observed by reference to the $\mathrm{l}_{\mathrm{e}}$ curves in the diagram shown in Fig．25．Aceordingly a large exeres of steel over amd above that necessary would add a relatively emall amomet to the riginlity of the eantilever．On the other hand，howerer，the eantilever mast be so designed that the sted provided is not wer－stramed therem．

With the columm atp approximately 0.2 of the epan longth， the applied moment of $W^{\prime} L \quad 1.5$ in $180^{\circ}$ at its edge may be eonsidered as a fair average value and the sted proportioned ateordingly．for a slal of miform thickness．
9. Effect of Adding Finish to the Rough Slab. A finish coat does not add to the resistance of the cantilever. But the finish coat adds to the resistance at mid pan, since it increases the effective depth of the slat and its eorresponding rigidity, and it is now in order to disenss the effeet which this change in rigidity has upon the distribution of bending monent.

Take as an example, a floor supported on eolumns of equal spacing, wat 17 feet conter to eenter, with an 8 inch rough skat and assmme a thickness of tinish coat of 11 inches added thereto. With slab rods $3^{3}$ inches diameter in four layers, the distance from center of the shab steed at the suppert to the bottom of the slat would be approximately 7 inches. while at mid sem with the rough sable the distance from the eenter of the shat sterel tothe top of the stab would be about 7.3 inches, or with the fimished shab $\mathrm{s}_{2}^{1}$ inches the redative rigidity of the eentral plate would be as the sequares respectively
 will be distributed betweem mid -path and the supports in such mamer that it is divided in propertion to the rigidities of the cantilever and suspentled apan and in surh manner that half the swm of the moments over the supports, phas the moment at mid pam is eonstant, and
 would redure the applied moment and the mit steed stresses at the suppert by twelve pereent, and would increase the applied moment (o) be resisted at mid span he appoximately 23 pereent. But this increase of the applied moment at mid span would increase the mit stress in the steel at mid span either mot at all or very slightly, because the increase of slab thiekness due to the finish will not only increase d hut also $j$ so that the arm jod of the steed and its moment of resistance will be so increased as to leave the unit stress in the stecel substantially the same.
10. Illustrative Example. Compute the bending moment over the columm in the case of the Northwestem Cilasis Company Building ${ }^{*}$, at Mimestpolis:

Diameter of the basement columns 30 inches. Virtual cap 48 inches: extreme outside diameter it inches. Slab reinforement, four belts of filteen ${ }_{3}^{3}$ inch rounds each way, $7^{\prime} 9^{\prime \prime}$ wide. The central line of columme had no lap of shat rod belt,

The diameter between bearings is $13^{\prime}$ net. Net span erguals

[^9].77 full span, center to center of eolumms. Therefore, the applied moment at the suppert
$$
=.77 \mathrm{H}^{\top} L \quad 120=1 \mathrm{~J}^{\circ} L, 15.6
$$

Radial moment is half the applied moment, $=11$ L 31.2. The load was 95,000 pounds.

$$
M=\frac{!5,000 \times 17 \times 12}{31.2}=620,000 \text { inch pomonds. }
$$

The center of action of steel was 6.4 inches from the bottom of the slab, and jel equals 5.5 inches. The heary radial rods are four $1 \frac{1}{8}$ inch romols. Section of shabsee ster the cap is fom square inches. Total eight spuare inches. 620,000 8 $8.5 .5=$ the arerage of 14,000 permels per inch on the steel. The neutral plane is found to be $2_{1}^{3 \prime \prime}$ from the botem. The (renter of the stat) steed is 0.6 inches above the eonter of action of stem stress, so that the mean sabh steed stress is : as

$$
2.75: 3.35 \text { or as } 14.0000 \mathrm{lth} \text {. : } 16.000 \mathrm{lbs.}
$$

and the steel stress in the large rods is to the mean stress an

These computations are far appoximations within the limit of error involved in the asemmetions mate, mamely, that the coatetion of the large rods with the eonerote is equivalent to miform distribution of their area about the ciremonferenoe. This camot be preasely true beratase the stresses from bomed shear are distributed tho the mass in proportion to the suatre ol therib distance. This relat tion indicater an interesting variation of stress about the head. The form of the noutral plane is no longer a true plathe hut is soalloped in form, approathins betare the midelde of the shat mater the large rods and being funther remored from the midele of the sbath betwern the large rots. Invertigation of the aror involved in the asimmption that the nentral surfare is a true plame, howerer, will show that the erres is not large, making a rednotion of mot more than tem per cent in the sted stress in the latge rork, making a small inerease in the conerete eompresson and rery little change in the sterse in the slabs steel. The results above ohtabed dheck dowely with experimental detemminations.

Thus it is ohvious that with foll lapping of erery bedt there is a large exess of stem in the stamblad Mashroom tope and this exeess of steel would throw the line of maximmm mit stess in the stab, stere to another point than that where the greatest moment to be supported orems.
11. Depressed Head or Drop. The variation in the moment at the support by reason of the addition of strip fill and by modifieation of the diameter of the cap have been considered and it is next in order to investigate the modification in the moment when the slab thicknese is increated at the colmm over and above that at mid span.

If the thickness of the slab be increased by some sisty percent as is commonly done by a square block, or drop head over the eapital, having a size of $0.4 \mathrm{~L} \times 0.4 \mathrm{~L}$ with little or no steel except the belt rods without laps, then the rigidity is increased by reason of the increase of thackness in such a way that the lines of inflection are thereby removed somewhat from the colmmen renters. The stab belte should not be redured in width below $7 \mathrm{lf} L=0.44 L$ because this width is neressaty to make the reinforement cover the pamels properly and they should be located at the top of the shab as far as to the extreme edge of the head, viz: as far ats $0.0 .2 L$ or $0.22 L$ from the colmm eenter. This will fix the lines of inflection at about 0.27 L from colamm renters instead of at $0.22 L$ or $0.23 L$ as in the Mushroom pamel. such a position of the lines of inflertion which enlarges the rathtever areas will decerease the moments at mid span and increase those at the edge of the eape. The thickness of the slab at mid span may be mafy redued by ten pereent for this reason, but the applied moments at the edge of the eap should not in this
 used for slabs.

With designs of this character little or no incerease in steed has usually heen provided over and above the slab rod steel and such designs are likely to show weakness over the (ap). This weakness has too frefuently hern assumed to apply also to the Mushroom ststem which is almost invariably over-peinfored at this important rritical seetion.

The effect of moving out the line of inflecetion is evidently to incerease the bending moment brought upon the column by unbalanced loads and to decrease the toughness of the eonstruction by the introduction of a sharp angle where the depressed head, as it is called, joins the body of the slab. As just stated, these depressed heads or thickening up of the slab, are generally made about 0.4 of the span length in size in each direction and approximately .6 of the depth of the slat in thickness. They permit a reduction of perhaps ten pereent of the thickness in the main slab, whieh is almost exactly off-set by the addition of concrete for the depression.

The forms for this design will cost more than for the Mushroom design, while some saving in steel can be effeeted where the cohmms are of sufficiont size, this saving in steel is more than off-set by increased cost of centering and reduced toughess or ability to withstand unbalanced load without sorious over-stram.

The developments in this chapter are applications of the theory of work to bring out the nature and characteristice of the predominant mechanical artions in flat slabs. This method, while well suited to elucielate the general nature of these actions and explain their general properties, is lacking in precision in its present form and is not so well fitted to be the basis for exart caldeulation of structures as analysis based on the equilibrimm and deformation of the elements of the slah. The following chapters will therefore be devoted to a more rigorous amalysis of the flat slab, based on the conditions of equilibrium and deformation of its infinitosimal elements.

('IREILLY EsTATE BULLI)ING, ふT. LOUIS, MO.
A. B. Groves, Irchitect Durch Bros. Construction Co., Contractors
G. S. Bergendaht, MI. AM., soc. C. E.. Engineer, st. Louis Representative, Mushroom System


TISCHERS CREEK BRIDGE, DULUTH, MINN.
Spans are 26 feet longtitudinally
This type is built with spans up to $50^{\prime} 0^{\prime \prime}$


View of Reinforcement in Place
TISCHERS CREEK BRIDGE, DULLTH, MINN.
Designed ty C. A. P. Turner Geo. H. Lounsbury, Contractor

## ('HAPTER Y.

## THEORY (OF THE STRENGTH AND FLEXLRE OF THE STANDARD MUSHROOM TYPE.

1. The superiority of flat slab floors supported directly on columns, over other forms of construction when looked at from the standpoint of lower cost. better lighting, greater neatness of appearance, and increatsed safety and rapidity of construction, is so generally, or rather so miversally conceded as to remder any reliable information relative to the seientific computation of stresses in this type of construction of great interest. Heilenreich, in his Engineer's Pocket Book on Reinfored Conerete, page 89, clasifies this type as floors without beams and girders-"Mushroom system.'"

Since "mmshroom," as applied to concerete, is an arbitrary or fanciful term, and indeed, almost a contratictory one, a word of explanation as to its origin may be of interest. The tem was originated by (. A. P. Tommer, of Mimmapolis, amd applied to his flat plate construction, more particularly because of the fancied resemblance to the mushroom, of the column and column head remforemont of that particular form of his flat plate construction which he seemed to prefer by reaton of errtain practical advantages. Another fancied resemblance is the rapidity of erection, comparable to the over-night growth of the mushroom. Here the resemblance ceases, since the construction, once erected, is enduring and permanent.

The Mushroom System is a continuous flat plate of concrete supported directly on columns, and reinforeed in such a maner that circular and radial tensile stresses eoneentric with the column are provided for by metal reinforcement in the tension zone above the columns, and similar provision is matle for tensile stresses in the lower portion of the slab concentric with the center of the panel, diagonally between the columns. Since all forces in a plane may be resolved into equivalent components along any pair of axes at right angles to each other, it is possible to provide reinforcement to resist any horizontal tensile stresses in the slab by various arrangements of intersecting belts of rods at zones where these stresses occur.

All arrangements of this kind are by no means equally effective. A system of wide reinforeing belts from column to column com-


Fis. 53. Vertical Section of Standard Mushroom llead showing position of Radial and Ring Rods, and slab Rods, Vertical and Horizontal Secti ns of spirally hooped Column, with Plain Bar Hoop Collar Band, Vertiral Reinforeing Rols aud Elbow Rols.


Fig. 54. Plan of Remforeement in stamlard Mushroom System. Rarlial and Ring Rods, Collar Band and Slab korls. Diameter of Head $=g=\frac{7}{16}(a+b)$.
bined with a system of radial and ring rods to constitute at large, substantial cantilever mushroom head at the top of each column
provides a very effective and economical arrangement for controlling the distribution of the stresses in the slab, and furnishes the resistance necessary to support these stresses by placing the steel where it is most needed. It not only has the same kind of advantage that the continuous cantilever beam has over the simple girder for long spans, but combines with it the kind of superiority that the dome has over the simple arch by reason of eircumferential stresses called into play, which adds greatly to the carrying capacity of the slab.

In the standard mushroom type, which is quite fully discussed in this paper, the heavy frame work, concentric with the column, supports the slab reinforcement at a fixed elevation, furnishes a high degree of resistance to shear, and secures a high degree of safety during construction. It extends as a cantilever approximately one fourth of the way to the next column as shown in Figs. 53 and 54 on page 1.59. Arranged upon the radial rods of this frame rest two or more large hoops and upon these rest the wide spreading belts of rods which extend both directly and diagonally from column to column. Orer the columms the se belts lie near the upper surface of the slab, but they run near the lower surface as they approach points midway between columms.

The cantileror slah thus formed, not only has the same advantages for this form of construction that the cantilever construction has for long sann bridges, but it catuses the slab to have greater stiffness and gives it greater resistance to shear in the neighborhood of the columms; it removes the locus of zero bending moment to a much greater distance from the column than would otherwise be the case, thus dimininishing the area of that part of the slah which tends to become concave on its upper face and enlarging the convex area.

The cantilever frame-work further, not only moves the locus of zero benting outward from the colum, hut it also fixes the locus of zero bending moment at a known position so that it does not vary with inerease and decrease of the load or change of the load from one span to an adjacent span as would be the case were the mass of metal in the frame and its stiffness largely reducol. This is accomplished as follows:

The loens of zero bending moments is fixed by the dip of the reinforceing rods as they leave the upper surface of the slab near the edge of mushroom and pass below the neutral surface to a level near the bottom of the slab. Such change of tensile resistance in the slal necessarily localizes at these points the zero bending moments.

In addition to the advantages just mentioned, which are of so self-evident a character as to be readily appreciated even by the layman, there is another of such an obscure and apparently inexplicable a nature that it was for years denied as incredible and regarded as non-existent by practical builders, and engineers as well, unless they had opportunity to be convinced of its reality by experiment. We here refer to the additional strength and stiffness which is imparted to a belt of rods in a given direction in a slab by another belt at right angles to the first belt, or at various angles with it. This should be designated as slab action proper in distinction from cantilever action. It depends for its amount upon the value of Poisson's ratio of the lateral effect due to direct elongation in the slab, and is the basis of the so called circumferential stresses, which make the strength and stiffness of such reinforced flat skabs much greater than they are estimated to be when these are neglected, as they usually have been. This mistaken view has in the past constituted the most serious obstacle to the adoption of this form of strueture, and has been the ground of conscientious opposition to its introduction on the part of consulting engineers. It is the object of this investigation to remove so far as possible all reasonable uncertainty as to the rational theory of this form of structure.

The following partial bibliography of this subject may be useful to those unfamiliar with what has been done in this field.

```
Conceretriteel Construction, (30.7)p)
 By C'. A. P. Turner, M. Am Soc. C. E.
 si6 Phoenix Bldg., Mimeapolis, 1909.
Reinforced Conrrete Construction, (2.59pp)
 By Turneaure and Maturer, University of Wisconsin
 Wiley, N. Y., 1!mé.
Concrete, Plain and Reinforeed, (4×3p])
 By 'Taylor and Thompson,
 Wiley, N. V., 1!911.
Trans. An soce C. E.
 Vol. LVI. June 190.
Enginecring News:-
 Oet. 4, 1!906, p. 341.
 Feb. 1s, 1909, p 176.
 Dec. 23, 1909, p. 694.
Engineering Record:-
 March 2ч, 190s, p 3it.
 May \(2,190 \mathrm{~s}, \mathrm{p}\) 5т.
 Oct. 10, 1909, p 411.
 April \(3,1909, p 40 \mathrm{~s}\).
 April 10 1909, p 492.
```


## Notation.

2. All lengthe and areas are measured in inches, and all weights in pounds.
$A=$ arra of crows setion of sted reinforcement per unit width of stab, in case it be asemed to be replaced by a uniform sheet of equal weight.
$A_{1}=$ areal of croses section of all the rods in one side belt.
$A_{2}=$ areat of "roses section of all the rods in ome diagomal belt.
$"=$ one half the longer side of a panel from ernter to center of (o) m mms.
$b=$ one half the shorter side of a panel.
$B=$ the shortest distame along one side of a panel from the edge of a colmm (a]) to the edge of the next (ap).
$f_{1}$ :and ('2 are constants depending on the relative lengthe of the sides of any pandel, which reduce to mity for any square panel.
$I_{1}=$ the deflection of the midde of the longer side of the panel below the edge of the calp.
$I_{2}=$ the deflection of the center of the panel betow the edge of the (al).
$d=$ the effective thicknese of the stab at any point, being the restical distance from the erenter of action of the reinforement to the compreseed surfate of the conerete.
$d_{1}=$ the vertical distance from the center of the rods in the side belt at mide span to the top surfare of the conerete.
$d_{2}=$ the distance at the center of the panel from the eenter of the rods in the serom or mper diagomal belt to the top of the concrete.
$d_{3}=$ the distanee at the edge of the cap from the center of the third belt of rods from the top, to the compressed surface of the concrete.
$E$ or $E_{*}=$ Yomas's modulns for steel $=3 \times 10^{\top}$.
$E_{r}=$ Yomag's modulus for conerets.
$e_{1}=$ elongation in steel parallel to long side belt.
$e_{2}=$ elomgation in steel parallel to shore side belt.
$f_{1}=$ elongation in steel parallel to diagomal belt
```
\(F=\) modulus of elastic resistance to shearing.
\(f_{s}=E \ell=\) intemsity of actual stress in steel.
\(f_{\mathrm{c}}=\) intensity of stress in conerete.
\(g=716(a+b)=\) the diameter of the mushroom head and width
 of belts.
\(h=\) the total actual thickness of concrete slah.
id \(=\) vertical distance from center of tension of steel to nentral
 surface of slab.
\(j d=\) vertical distance from conter of tension in steel to center of
 compression in concrete.
\(k d=\) vertical distance from neutral surface to compresed surface
 of concrete, hence \(i+k=1\).
\(K=\) Poison's ratio of lateral effeet due to longitudinal resistanco in reinforcerl concrete slabs.
\(L_{1}=20=\) long side of panel between column renters.
\(L_{2}=2 b=\) short side of panel botween column centers.
\(l=\) distance from collar band at top of column to edge of (ap).
\(m_{1}=\) true moment of resistance of the tensile stresses in steel parallel to the long side per unit of width of slab.
\(m_{2}=\) true moment of resistance of steel parallel to short side per unit of width.
\(\mathrm{m}_{1}\) and \(\mathrm{m}_{2}=\) apparent moments per unit of width of forers applied parallel to the long and short sides respertively.
\(\mathrm{n} \quad=\) the apparent moments per unit of width of the equal twisting couples parallel to either side.
\(p_{1} \quad=\) intensity of the forces applied parallel to the long side
\(p_{2} \quad=\) ditto for short side.
\(p \quad=\) intensity of stres in extreme fiber of radial rods.
\(q \quad=\) loat on shah in pomels per sutare inch.
\(R_{1}\) and \(R_{2}=\) the radii of curvature of vertical sections of thr slab parallel to the long and short sides respertively.
\(s_{1}\) and \(s_{2}=\) the vertical shearing stresess per mat of width of slab respectively perpenticular to the long and short sides of the slath.
\(s \quad=\) the intensity of vertical shearing stress in radial rods.
\(\mathrm{t}=\) either of the equal horizontal tamential or shearing stresses parallel to the sides of the panel.
```

$t$	$=$ the thickness of a radial rod.
$u$ and $v=$	deformations parallel to the long and short sides re-
	spectively.
$V$	$=$ total vertical shearing stress in radial rod.
$x y z \quad=$	horizontal and vertical coordinates parallel to sides
	of panel.
$\triangle z$	$=$ difference of two vertical coordinates.
$z_{1}$ and $z_{2}=$	deflections of radial rods.
$\delta$	$=$ sign of partial differential.
$\delta z$	$=$ partial differential coefficient of $z$ with respect to $x$.
$\delta x$	



Fig. 5. Phan of Reinforcement Mushrom System. Square Panel, $g=\frac{1}{2} L$ (as drawn). lime of Lltimate Weakness.
3. As prehminary to a general investigation of the rational analysis of the flat slab, it seems desirable in the first place to make a brief exposition of the relationship between the true bending moments and the apparent bending moments in the flat slab as follows:

The fundamental equations of extensional stress and strain in thin flat plates and slabs, established a generation ago and aceepted by Grashof ${ }^{*}$ and by all authorities on the subject since then, may be written in the forms:

$$
\left.\begin{array}{l}
E e_{1}=p_{1}-K p_{2} \\
E e_{2}=p_{2}-K p_{1}
\end{array}\right\} \ldots \ldots \ldots .
$$

in which $p_{1}$ and $p_{2}$ are the extermal applied or apparent stresses per unit of area of cross section of the plate, or of the reinforced slab, which act parallel to the axes of $x$ and $y$ respectively if these latter Lie in the neutral plane of the slab; and $e_{1}$ and $e_{2}$ are extensometer elongations of plate or slab reinforcement per unit of length parallel to $x$ and $y$ respectively. $E$ is Young's moduhus of elasticity, and $K$ is Poisson's ratio of the lateral effect due to linear elongation. Any piece of material which is subjected to stress, and is of such shape that more than one of its dimensions is considerable, as compared with its remaining dimension, must have its stresses and strains considered with reference to the lateral effect produced. This is the case in plates and slabs, as it is not in case of rods and beams.

In the above equations $E e_{1}$ and $E e_{2}$ are the true stresies per square inch of section of reinforcement acting along lines parallel to $x$ and $y$ respectively, whatever $p_{1}$ and $p_{2}$ may be. These latter are the cause of true stresses, but are not themsehes the vahes of the true stresses. as they are in ease of rods, ete. where one chmensiom only is large.

These equations show that the elongation $e_{1}$ in the direction of $x$ is not dependent alone upon the tension $p_{1}$ applied in that direction, for it is diminished by any tension acting along $y$, but is increased by any compression acting along $y$. It thus appears that any tension $p_{2}$ along $y$ assists the piece in resisting elongation along $x$ and makes it able to endure safely a larger applied stress $p_{1}$ with the same degree of safety, i. e., with the same percentages of elongation or true stress. But it is also equally true that any eompression of amount $p_{2}$ reduces the safe value of $p_{1}$ which may be applied to

[^10]it. These principles are not in accordance with those which hold in ordinary computations for rods and bars, whose lateral dimensions are small compared with their lengths, and whose lateral stresses are negligible. This divergence between the true stresses as shown by actual deformations, and the apparent or applied stresses, is a fruitful soure of aror in the attempted computation of stabs.

Equations (1) in their present form apply to simple extensional or compressive stresses and strains but may be extended to apply to bemeding of shabs in the following manner:

Take $A$ as the eross section of the reinforeement per unit of width of shab when the actual memforement is regarded as distributed into at thin sheet of mimorm thickness, and let jol be the vertical distance from the eenter of the rendereement to the center of eompressional resistaner of the eonerete regarded ats a fraction $j$ of $d$, $d$ being the distaner from the eronter of the sted to the top of the slab. Then

$$
\begin{equation*}
m_{1}=A \mu_{1} j d,: m d m_{2}=.1 / 2 j / \tag{2}
\end{equation*}
$$

are the apparent bending moments per amit of width of slab, of the applied apparmit stresses $\rho_{1}$ and $\rho \cdot 2$, tending when positive, to cause lines which before hencling are straight and parallel to $x$ and y respectively, to berome comeave mperarls.

$$
\begin{equation*}
\text { Again } m_{1}=E e_{1} A j d, \text { and } m_{2}=E e_{2} A j d, \tag{3}
\end{equation*}
$$

are the true bembling moments of the actual resistance stresses in the remforement per mit of width of slab, as shown by extensometer strans in the steel parallel to the axes of $x$ amd $y$ respectively.

Multiply equations (1) thru by Ajd and substitute the values given in equations (2) and (3), from which we obtain the following relations between the true and apparent bemeling moments in the slab.

$$
\begin{align*}
& m_{1}=m_{1}-K m_{2} \ldots \ldots  \tag{4}\\
& m_{2}=m_{2} \cdots K m_{1} \\
& \left(1-K 2 m_{1}=m_{1}+K m_{2}\right.  \tag{4a}\\
& \left(1-K^{2}\right) m_{2}=m_{2}+K m_{1}
\end{align*}
$$

These equations bring out in a striking mamer the essential divergence of the comeet theory of slab action from that of beam action in which latter case we have the well known equations

$$
m_{1}=m_{1}, \text { and } m_{2}=m_{2}
$$

i. e., in beams the moment of the applied forees is equal to the moment of the internal resistance. which is not true in slahs.

All attempts to base computations of the defleetion of slabs upon beam action are therefore necessarily erroneous. Such computations are inapplicable and misleading, hence deflections and stresses in slabs camot be correctly computed by any form of simple or eompound beam theory.

Equations (4) show:
1st That at points where $m_{1}$ and $m_{2}$ are of the same sign, (as for example in the convex part of the mushroom near the columns and also near the center of the panel) the true bending moments $m_{1}$ and $m_{2}$, which determine the actual stresses in the reinforeement are less than the apparent bending moments, which latter have been ordinarily aswumed, according to the beam theory, to determine those stresses.

2nd That the compressive stresses in the concrete around the column cap are determined on the same principles as the tensile stresses and are consequently reduced in accordance with the value of $K$ by a considerable percentage below values corresponding to $\mathrm{m}_{1}$ and $\mathrm{m}_{2}$ of the bean theory.

3rd That at points where $m_{1}$ and $m_{2}$ have different signs, as they have for example in the middle part of the span at the side of the panel directly between mushroom heads, the values of the true bending moments are larger tham the apparent moments as found by the beam theory.

4th One deduction from this (which is also confirmed by extensometer tests) is, that in slabs having equal side and diagonal belts of reinforcing rods the greatest actual extensions and true stresses in the stecl oecur at the mid points of those reinforcing rods which run directly between the mushroom heads parallel to the sides of the panel, and do not occur at the center of the panel where $m_{1}$ and $m_{2}$ have their greatest values. Further, the true stresses in the reinforcement are not so large at the edge of the column caps as at the points just indicated. Neither of these conclusions is in accordance with the beam theory as implied in ordinary formulas such as have been frequently adopted in practice in computing slabs.

5th In making any statement or sperification respecting the bending moments at any point of a slab, it is essential to state which bending moments are contemplated, the true bending moments or the apparent moments, with the understanding that the true bending moments only are to be used in determining cross sections and stresses of stecl. Any statement omitting this distinetion is ambiguous, and any requirement seeking to proportion cross sections of steel to apparent stresses and apparent moments is incorrect.
4. Poisson's ratio $K$ plays an important role in the theory of flat slabs and plates, as is evident from equations (1) and (4). Few attempts have been made to detemine $K$ by directly measuring the amount of the lateral effert accompanying the elongation of test specimens, and, were such measurements made, the relative dimensions of the cross section of the specimen would need to be considered as affecting in a very complicated way the tive value of $K$ to be derived from observation. Reliable determinations of $K$ usually depend upon observations of Young's modulus of elasticity $E$ and the shearing modulus of elasticity $F$.

It is proven in the general theory of the deformation of isotropic elastic solids that all the elastic properties of any such solid are determined without excess or defect by its values of $E$ and $F$, and that Poisson's ratio is a function of $E$ and $F$ expressed by the equation

$$
\begin{equation*}
K+1=\frac{1}{2} E / F \ldots \tag{5}
\end{equation*}
$$

There is evidence to show that for concrete $K$ is approximately $0.1^{*}$. For sted it is known that $K=0.3$ noarly.

Now it is evident that a horizontal shab of reinforced concrete, in which the reinforeement consists of rods, differs from one in which its reinforeement is considered to be a simple uniform sheet of metal in this, that the former has much less shearing rigidity in resisting horizontal forees tham the latter, for in it all stresses transmitted from one band or belt of rods to any other belt crossing it are transmitted thru concrete only, as is not the case if the reinforcement consists of a contimuons sheet. It is evident therefore that the value of $K$ which must be employed in applying the foregoing equations to reinfored concrete shats must exceed 0.3 , the value required in case the reinforcement is a sheet of steel.

This analys of the conditions affecting the value of $K$ for a reinforced flat slab differs radically from assming at random that because $K=0.3$ for steel alone and $K=0.1$ possibly, for concrete alone, that therefore some intermediate value of $K$ may be correct for these two materials combined in a slab. Such an assumption is merely a blind guess and has no rational basis.

As already partly stated, the view here put forth is this: Since in any homogeneous, isotropic, elastic material the experimental values of $E$ and $F$ perfectly define all its elastic properties, and since we are evidently at liberty to assume our flat slab as sufficiently fine grained in its structure to act nearly like a slab constructed of some sort of homogeneous materials, it will be possible to determine

[^11]certain mean values of $E$ and $F$ which will define its elastic properties. It is moreover evident that in a slab, where two kinds of clastic solids are combined as they are here, the mean value of $F$ for the combination is much more affeeted by the concrete than is $E$, which latter may be taken as that applying to the steel alone, and, consequently as unchanged by the combination. It is otherwise, however, with $F$, because the arrangement of the combination is such as to require the assumption of a value of $F$ lying somewhere between that for stcel and that for concrete. Since the latter value is much less than the former, the mean value of $F$ is smaller than for steel alone.

This reasoning and other independent theoretical and kinematical considerations have led to the same conclusion, viz: that the correct value of $K$ for the slab is larger than 0.3 .

Assuming $E=30,000,000$, we may compute corresponding values of $K$ and $F$ from (5) as follows:-

$$
\begin{array}{lll}
\text { If } K=0.1 & , & F=13,600,000 \\
\text { If } K=0.3 & , & F=11,600,000 \\
\text { If } K=0.5 & , & F=10,000,000
\end{array}
$$

Were a perfectly complete and accurate mathematical theory of the flat slab at our disposal, we might consider every experimental test of the deflection of such a slab, and every extensometer measurement of its reinforcing rods as an experiment for determining the numerical value of $K$, since deflections and extensions would then all be known functions of $K$. Having brought such a rational theory to a somewhat satisfactory degree of perfection, we have found that, in the light of all known tests of slabs, the value that best satisfies all conditions is $K=0.5$.
It is possible that this value of the constant $K$ for slabs may need some slight modifications hercafter, but for the present this may be regarded as substantially correct for mushroom slabs. It may be found necessary to assume a somewhat different value for other forms of structure, as for example, beam and girder construction. That, however, must be determined later. Moreover it must be said that this value of $K$ applies to tests made upon slabs from 2 to 4 months old, and under loads which have been applied to such relatively soft concrete as this for a period of usually not longer than one or two days, and of an intensity such as to eause a maximum stress in the steel of from 10,000 to $16,000 \mathrm{lbs}$. per square inch. Less loads on better cured concrete, or longer time under load, may show considerable deviation from this value of $K$.

How important a factor $K$ is in slab theory is evident on considering equations (4) which show that in a square panel uniformly loaded the true moments as shown by the elongations of the remforcing rods at the conter of the panel and over the eenters of the columns are only one half the eorresponding apparent moments derived from considering the moments required to hold the applied forces in equilifrium, this being on the assumption of course that

5. In order to derive the general differential equation of shears and moments in any rectangular panel in ath extended horizontal plate or slath, take the axes of $x$ and $y$ in the nentral plane of the plate and paralled rosectively to the longer and shorter sides of the panel with the origin at its center before flexure oceurs, and assume that they remain fixed with reference to the points of support of the panel. Then during flexure the eenter of the panel and all other points of the slab or plate not in rontart with the fixed points of support will attain some deflection $z$, of amount to be determined later. Take $z$ positive downwards.

Then $\delta$ ar $\delta y$ is the horizontal trea of an element of the shab boumedel by vertical planes, and if al be the offective thickness of the slab or plate, the areas of the sides of this element which are respectively perpemelicular to $x$ and ! are d $\delta y$ amd d $\delta x$, while $d \delta x \delta y$ is the volume of the element.

We proceed to ohtain the equations of equilibrium of this element of the slat) ats follows:-

Let $s_{1}$ and $s_{2}$ be the total vertieal shearing streses per mit of witth of sath for sections jerpendicular to $x$ and $y$ respectively. In ease these shears are variable, as they are in a contimuously loaded slab, they respectively contribute elementary fores tending to move the element vertically, of the following amomnts:

$$
\begin{array}{lllll}
\delta s_{1} & \delta y \delta x, & \text { and } & \begin{array}{ll}
\delta s_{2} & \\
\delta x & \delta y
\end{array} \quad \delta \cdot \delta y
\end{array}
$$

Assume that the sab couries a miformly distributed load of $q$ pounds per square unit of area. Then the load upon the elementary area $\delta x \delta y$ is $q \delta x \delta y$, and the equation of equilibrimm of the vertical forces aeting on the element rerluces to this:

$$
\begin{equation*}
\frac{\delta s_{1}}{\delta x}+\frac{\delta s_{2}}{\delta!}+4=0 \ldots \tag{7}
\end{equation*}
$$

in which $s_{1}$ and $s_{2}$ are taken as positive when they are such as would be produced in the slab by the loading $q$ in case it were supported at the origin only.

Let $m_{1}$ and $m_{2}$ be the apparent moments per unit of width of slab of the applied forces which tend to bend those lines in the slab which before bending are parallel to $x$ and $y$ respectively. Take them as positive when they tend to make those lines respectively concave upwards. These are the moments obtained by multiplying the total applied tension per unit of width of slab by the vertical distance $j d$ from the center of the reinforcement of the slab to the center of compression in the concrete as given in (2). These moments are not identical in a slab, with the true resisting moments $m_{1}$ and $m_{2}$ in the same directions, which latter are the moments obtained by multiplying jo by the aetual tension in the steel per unit of width of slab, which last is to be correctly computed by taking the prorluct of the area of steel per unit of wirlth and its elongation multiplied by $E$ its modulus of elasticity as shown in (3).

Again, let $n$ be the twisting moment per unit of width of vertical section of sab eut by planes perpendicular to either $x$ or $y$, and acting about either $x$ or $y$, which moment $n$ is regarded as due to the variation of the vertical shearing stress $s_{1}$ when $y$ varies, and to the variation of $s_{2}$ when $x$ varies. The moment $n$ is held in equilibrimm by horizontal shearing stresses in these same sections, which are opposite in sign above and below the neutral surface. Let t be the total horizontal shearing stress per unit of width of slab in the reinforcement on one side of the neutral plane, then:

$$
\begin{equation*}
n=t A j d \tag{8}
\end{equation*}
$$

At any point $x y$ this horizontal shearing stress $t$ must be the sime for the seetion perpenticular to $x$, as for the seetion perpendicular to $y$, because in every state of stress the tangential components are equal and of opposite sign on any two planes mutually at right angles. Consequently the moment $n$ is the same about $x$ as about $y$, as has been assumed in ( $\delta$ ).

It is implicitly assumed in (2) and (3) that the concrete on the same side of the neutral plane as the reinforcement is ineffective and that its resistance is negligible, so that on that side the resistaner of the reinforeement alone eomets. This condition actually ocours only after a state of quite considerable stress obtains, and of itself affords a sufficient reason why the formulas based on it fail of aceurately representing deffections and elongations at small loads and low stress.

The elementary couples acting on the vertical faces of the element which are in equilibrium with those arising from the shearing stresses are:-

$$
\begin{aligned}
& \left(\begin{array}{c}
\delta \mathrm{m}_{1} \\
\delta x
\end{array}+\begin{array}{l}
\delta \mathrm{n} \\
\delta y
\end{array}\right) \quad \delta x \delta y \text { about } y \text {, and } \\
& \left(\begin{array}{c}
\delta \mathrm{m}_{2} \\
\delta y
\end{array}+\begin{array}{c}
\delta \mathrm{n} \\
\delta x
\end{array}\right) \quad \delta x \delta y \text { about } x
\end{aligned}
$$

while those arising from the shears themestues are:-

$$
\therefore \delta x \delta y \text { and } s_{2} \delta x \delta y .
$$

Consequently the equations of equilibrium of the couples acting on the element reduce to the following:

$$
\begin{align*}
& \delta \mathrm{m}_{1}+\delta \mathrm{n}  \tag{9}\\
& \delta x \\
& \delta, \mathrm{~s}_{1}=0 \\
& \delta \mathrm{~m}_{2} \\
& \delta, \delta \mathrm{n} \\
& \delta!+s_{2}=0
\end{align*}
$$

Differentiate equations (9) with reppect to $x$ and $y$ respectively and substitute in (7), and we obtain

$$
\begin{equation*}
\frac{\delta^{2} m_{1}}{\delta x^{2}}+2 \frac{\delta^{2} n}{\delta x \delta y}+\frac{\delta^{2} m_{2}}{\delta y^{2}}=q \tag{10}
\end{equation*}
$$

which is a general differential equation of the apparent moments of the applied forces which exist in a uniformly loaded slab in terms of rertangular coordinates. From it the differential equation of the deflections may be derived as follows:-
6. To ohtain the general differential equation of the deflections of a slab, note that from geometrical considerations such as are familiar in the theory of beams we have

$$
\begin{equation*}
R_{1} e_{1}=i d=R_{2} e_{3} \tag{11}
\end{equation*}
$$

in which $R_{1}$ and $R_{2}$ are the radii of curvature of sections of the neutral surface by vertical planes parallel to $x$ and $y$ respectively; and $i d$ is the distance from the center of the remforement to the
neutral surface. In equations (1a) replace $p_{1}$ and $p_{2}$ by values given in (2), and $e_{1}$ and $e_{2} b y$ values taken from (11) and we have:-

$$
\begin{align*}
& \left(1-K^{-2}\right) m_{1}=E A i j d^{2}\left(\frac{1}{R_{1}}+\frac{K}{R_{2}}\right) \\
& \left(1-K^{-2}\right) m_{2}=E A i j d^{2}\left(\frac{1}{R_{2}}+\frac{K}{R_{1}}\right) \tag{12}
\end{align*}
$$

But from the theory of curvature

$$
\frac{1}{R_{1}}=\frac{+\delta^{2} z}{\delta x^{2}}, \text { and } \frac{1}{R_{2}}= \pm \begin{gather*}
\delta^{2} z  \tag{13}\\
\delta y^{2}
\end{gather*}
$$

Also write for brevity $\quad I=A i j j^{2}$

Then we have from (12), (13) and (14):

$$
\begin{align*}
& \left(1-K^{-2}\right) \mathrm{m}_{1}=+E I\left(\begin{array}{lll}
\delta^{2} z \\
\delta x^{2} & & \delta^{2} z \\
\delta y^{2}
\end{array}\right)  \tag{15}\\
& \left(1-K^{-2}\right) \mathrm{m}_{2}= \pm E I\left(\begin{array}{lll}
\delta^{2} z & \delta^{2} & +K \\
\delta y^{2} & & \delta x^{2}
\end{array}\right)
\end{align*}
$$

By the fundamental equations of elasticity we also have

$$
\begin{equation*}
\mathrm{t}=F e_{3}=F\left(\frac{\delta u}{\delta y}+\frac{\delta v^{\prime}}{\delta x}\right) \tag{16}
\end{equation*}
$$

in which $F$ is the shearing modulus, $e_{3}$ is the horizontal shearing deformation of the remforcement for two vertical planes one unit apart horizontally, and

$$
\begin{equation*}
u=+i d \frac{\delta z}{\delta x} \quad, \quad v= \pm i d \frac{\delta z}{\delta y} \tag{17}
\end{equation*}
$$

are the deformations along $x$ and $y$ respectively, lue to the vertical distance $i d$ of the reinforcement from the neutral surface.

From (16) by help of (17) we have

$$
\begin{equation*}
\mathrm{t}=+2 \mathrm{H}^{\prime} i d \frac{\delta^{2} z}{\delta x \delta y} \tag{18}
\end{equation*}
$$

In (18) replace $F$ by its value obtained from (5), and then substitute the resulting value of $t$ in (8):we then have

$$
n=\begin{gather*}
E I  \tag{19}\\
1+K
\end{gathered} . \begin{gathered}
\delta^{2} z \\
\delta x \delta y y
\end{gather*}
$$

From (15) and (19) obtain values of the second differential coefficients of the moments appearing in (10), which on being introduced into (10), transform that cquation into the required general differential equation of deftections as follow: -

$$
\begin{gather*}
\delta^{1} z  \tag{20}\\
\delta x^{1}
\end{gathered}+\underset{\delta x^{2} \delta y^{2}}{\delta^{4} z}+\begin{gathered}
\delta^{4} z \\
\delta y^{1}
\end{gather*}={\underset{ }{\left(1-K^{-2}\right)}}_{q}
$$

which is a partial differential equation of the fourth order that must be satisfied be the coordinates $x y z$ of the neutral surface of any uniform phate or slah initially flat, when deflected by the application of a miformly distributed load of intensity $q$. and supported in any mamer whatever.

It may be show that thy deviations from strict accuracy by reason of local stretching of the neltral surfaee (here neglected) are small compared with corresponding deviations in beam theory.
7. The solution of the general differential equation of deflections (20) for the (ase of a horizontal slab) carrying a uniformly distributed load and supperted on rows of columns placed in rectangular array and hatring the peints of support all on the same leved, will now be considered.

The integration or solution of (20) would, since it is a partial differential equation, introluce arbitrary functions of the independent variables $x$ and $y$ whose forms would need to be so determined as to caluse the solution to satisfy the conditions imposed ly the position and character of the supports at eertain points, or along certain lines. It would be possible to expand these functions in terms of ascenting whole powers and products of $x$ and $y$, and, in case the supports are symmetrically situated with respect to the axes, the expansions will contain no odd powers of $x$ or $y$, because the value of $z$ must remain unchanged ly changes of sign of either $x$ or $y$, or both $x$ and $y$. Any form of polynomial expansion which satisfies (20), and also all the conditions of any given case, must be the correct solution for that case, for, the solution of any given case must be unique.

Instead therefore of carrying thru the tedions analytical development involved in solving (20) mathematically and then applying it to the case we are treating, we shall at once write down the form of solution that applies to the case in hand and verify the fact that it satisfies (2) and all the required geometrical conditions. It will therefore be the solution sought for, which might also have been obtained by the somewhat intricate analytical processes involved in the intregation of such differential equations as (20).

Assuming at first that the slab is molimited in extent and uniform thruout in the distribution of its reinforcement and loading, and that the parallel rows of smporting columns divide the slab into equal rectangular pands, we shat find a solution in which erery panel is deformed precisely in the same manner as every other. Modifications matle later will render it possible to take account of variations and irregularities in the distribution and arrangement of the reinforcement, and to estimate to some extent at least the effect of loading only one or more pancls.

Let 20 be the length and $2 b$ be the breaulth of a panel; then the equation of its neutral surface, referred to axes parallel to its sides and to an origin fixed in space at the center of the nentral surface of the panel before deflection, is:-

$$
\begin{equation*}
48 E I z=q\left(1-K^{2}\right)\left[\left(a^{2}-x^{2}\right)^{2}+\left(b^{2} \cdots y^{2}\right)^{2}\right] \ldots \tag{21}
\end{equation*}
$$

This is the correct solution of (20) not only hecanse it satisfies (20), as it will be found to do by trial, (and just as many ot her functions of $x$ and $y$ (lo also) but it also satisfies all the other eonditions required by the ease proposed, viz.:
1.t $z=0$ when both $x= \pm a$ and $!= \pm b$;
because there must be no deflection at these points of suppert which are on the same level as the origin.

2nd $d z \nmid d x=0$. when $x=0$, and also when $x= \pm a$ : we well as $d z \nmid d y=0$, when $y=0$, and also when $y= \pm b$; hecause straight lines drawn in space to touch the shab across its edges, and across its mid sections parallel to those edges, must all her horizontal by reason of the symmetry of the shat on each side of its edges and mid sections. That these conditions hold is avident from the following equations derived from (20):

$$
\begin{align*}
& \frac{\delta z}{\delta x}=\frac{\left(1-K^{2}\right)}{12 E I} q x\left(x^{2} a^{2}\right)  \tag{22}\\
& \frac{\delta z}{\delta!y}=\frac{\left(1-K^{2}\right)}{12 E I}
\end{align*}
$$

It is of interest to note that the sections of this surface made by all vertical planes parallel to the axes of $y, i . e$., by $x=$ constant, are precisely the same except in position, since their equations differ by a constant only. The same is true of sections parallel to $x$. It thus appears, that, in a square panel where $a=b$, the surface may be regarded as a ruled surface described by using the two of these curves on a pair of parallel sides of the panel as directrices and a third one of these curves as a ruler sliding on the first two in such a manner as to remain parallel to the other pair of parallel sides.

The deflections at the center of the panel and middles of the sides are:

$$
\begin{array}{ll}
\text { At } x=0=y, & 48 E I z=q\left(1-K^{2}\right)\left(a^{4}+b^{4}\right) \\
\text { At } x= \pm a, y=0, & \text { 4SE } z=q\left(1-K^{2}\right) b^{4} \\
\text { At } x=0, y=+b, & \text { 48EIz=q(1-K2}) a^{4}
\end{array}
$$

so that in a square panel the center deflection is twice the mid edge deffection.

Differentiating equations (22) we have by help of (11), (13), (14) and (3) :

$$
\left.\begin{array}{rl}
e_{1}=\frac{i d}{R_{1}}= & \pm i d \begin{array}{c}
\delta^{2} z \\
\delta x^{2}
\end{array}=\frac{\left(1-K^{-2}\right)}{12 E A j d q\left(3 x^{2}-a^{2}\right)} \\
e_{2}=\frac{i d}{R_{2}}= & \pm i d \begin{array}{c}
\delta^{2} z \\
\delta x^{2}
\end{array}=\frac{\left(1-K^{2}\right)}{12 E A j d} q\left(3 y^{2}-b^{2}\right) \\
m_{1} & =\begin{array}{c}
\left(1-K^{-2}\right) \\
12
\end{array}\left(3 x^{2}-a^{2}\right) \\
m_{2} & \left.=\begin{array}{c}
\left(1-K^{2}\right) \\
12
\end{array}\right\}\left(3 y^{2}-b^{2}\right) \tag{23a}
\end{array}\right\} \ldots \ldots \ldots .
$$

in which the ambiguous signs are to be so taken that $m_{1}$ and $m_{2}$ in (15) will be positive at $x=0=y$, and negative at $x= \pm a$ and $y= \pm b$.

From (23) it appears that extensions vanish and contra-flexure occurs at lines lying in vertical planes whose equations are

$$
\begin{equation*}
x= \pm \frac{1}{3} a \sqrt{3} \text { and } y= \pm \frac{1}{3} b \sqrt{ } 3 \tag{24}
\end{equation*}
$$

It thus appears that the slab is sublivided by these lines (24) drawn parallel to the edges into a pattern which consists of a rectangle occupying the middle part of each panel, of a size $\frac{2}{3} a \sqrt{3}$ by
$\frac{2}{3} b \sqrt{ } 3, i$. $e$, of the same relative dimensions as the panel itself, and bounded by lines (24), which rectangle is concave upward thruout.

On all four sides of this central rectangle are rectangles of saddle shaped curvature directly between the central rectangles of adjoining panels, while each point of support is situated in a rectangle which is convex upward over its entire area, of dimensions

$$
2 a\left(1-\frac{1}{3} \sqrt{ } 3\right) \text { by } 2 b\left(1-\frac{1}{3} \sqrt{ } 3\right)
$$

From (22) we obtain the equation

$$
\begin{equation*}
\delta^{2} z / \delta x \delta y=0 \tag{25}
\end{equation*}
$$

hence by (18) and (19) it follows that

$$
\mathrm{t}=0=\mathrm{n}, \ldots \ldots \ldots . . .
$$

from which it appears that there is no horizontal shear in the steel, and no twisting moment in vertical planes perpendicular to $x$ or $y$. This would be otherwise evident from considerations of symmetry. It will be shown that this is not true of all other vertieal planes.

Again from (15) and (23) we have

$$
\begin{align*}
& \mathrm{m}_{1}={ }_{12}^{1} q\left[3 x^{2}-a^{2}+K\left(3 y^{2}-b^{2}\right)\right] \\
& \mathrm{m}_{2}={ }_{12}^{1} q\left[K\left(3 x^{2}-a^{2}\right)+3 y^{2}-b^{2}\right] . \tag{27}
\end{align*}
$$

in which we have omitted the sign $\pm$ as superfluous.

From (9) by help of (26) and (27), we have

$$
\begin{equation*}
-\mathrm{s}_{1}=\frac{\delta \mathrm{m}_{1}}{\delta x}=\frac{1}{2} q x, \quad \text { and }-s_{2}=\frac{\delta \mathrm{m}_{2}}{\delta y}=\frac{1}{2} q y . \tag{28}
\end{equation*}
$$

from which it appears that any strip of the panel parallel to $x$ or $y$, and one unit wide exerts a shear at its ends such as it would if it were an isolated beam loaded uniformly with an intensity of $\frac{1}{2} q$ per unit of length. According to this, a total shear of $q a b$, which is one fourth of the total load carried by the panel, appears at each edge of the panel, this total shear on each edge being uniformly distributed along it.

It is seen therefore that the form of solution which we are investigating implicitly assumes that at each edge of the panel there is some auxiliary form of structure that will bear the shears coming to it from each side and at the same time assume the curvatures and fleflections contemplated in (21). This will immediately engage our further attention.
8. In order to investigate more fully the deflections, stresses and strains in the side belts of any panel directly between the mushroom heads, let us consider the results just reached somewhat more fully.

The conclusion drawn from (28) was, that a panel with reinforcement distributed with perfect uniformity thrmout would require to be supported by a narrow auxiliary girder extending from column to column along each side, and of such resisting moment as to take on, under its loarl, the precise curvature required by the neutral surface in (21), which curvature must be produced by a uniformby distributed load of $2 q a b$, one half of it coming from each of the two panels beside it.

It seems then, that up to this point, we have in reality been treating the theory of the continous miform shab with seceially designed continuous boams supporting its edges, without as yet investigating those beanns in detail. But since no such beams in fact exist under the flat slab, it is clear that the side helts of the slab lying directly between the extemed heads of the columms must diseharge the functions which would be diseharged by the auxiliary beams just spoken of Such functions most neressarily be added to those already discharged by those helts in supporting the loading which rests direetly upon them. In order that this may occur in a manner readily amenable to analysis, the extended stiffened headings of the collmmes which eonstitute the mushrooms should in general be approximately of the diameter required to support the ents of a belt of reinforcing rods forming a flat beam which fills the width along the edge of two adjacent panchs betwern the two lines of contrat-flexume on each side of that edge, as given in (24).

This requires that the mushroom head should have a width of at least $\left(1-\frac{1}{3} \sqrt{ } 3\right)=.423$ of the width of the slab between columbs. For reasons that will appear later, it is current practice to make these heads not less than $\frac{7}{6}=.437$ of this width.

The lines of eontra-flexure in (24) have a fixity of position, (in a flat slab constructed with mushroom heads of this size and stiffers, ) under single pancl loads, that does not exist in a uniform slab, or where the headings are not so stiff. It may be readily shown by Mohr's theorem respecting deffection curves as second moment polygons, that where there are large sudden changes in the magnitude of the moment of inertia $I$, such as exist in this case at the lines of contra-flexure at the elges of the mushroom, the lines of contraflexure remain fixed. But in systems where the diameter of the head is smaller than given above, or its stiffuess is much reduced, these
lines may be removed to greater distances from the center in loaded panels surrounded by those not loaded than when all are loaded, thereby increasing the deflections and stresses in a single loaded panel over that of a uniformly loaded slab of many panels.

The lines of contra-flexure in (24) separate the slab) into areas which are largely independent of each other, since no bending moments are propagated from one to another. The only forces crossing these lines of section are the total vertical and horizontal shearing stresses. The horizontal shears (which are unimportant so far as deflections go) will be considered later so far as may be necessary, but the vertical shears found by (28) are of prime importance. Let us then consider one of these side belts.

In any extended slab with its panels all loaded uniformly thruout, the vertical shear must vanish at all points along sections made by vertical planes thru the centers of columns at each side of any panel, as appears by reason of symmetry of loads. Let the edges of the side belts be situated at some given distances, say $x_{1}$ and $y_{1}$ on each side of the centers of all the panels, where $x_{1}$ and $y_{1}$ are not necessarily the values of $x$ and $y$ given in (24), altho those values are also included in this supposition. Then by (28) there is a uniformly distributed vertical shear of intensity $\frac{1}{2} q y_{1}$ along the edge of the belt at $y=y_{1}$, even tho the reinforcement in the side belt may be greater tham that in the central rectangle, for the deviations caused by the irregularity of its distribution may be regarded as umimportant and practicably negligible.

It may then be assumed that any side belt parallel to $x$ must carry, in addition to that already provided for in (21), a total loading of $q y_{1}$ per unit of length, uniformly distributed along the two edges that are parallel to $x$. Now since the width of this belt is $2\left(b-y_{1}\right)$, the load already provided for in (21) is $\frac{1}{2} q$ per unit of areat, or $q\left(b-y_{1}\right)$ per unit of length parallel to $x$, which added to that arising from the shears just mentioned makes a sum total of $q b$ per unit of length of belt, which it will be notieed is independent of the width of the belt. In other words, any such belt must support a load of one fourth of the total load on the two pancls of which it forms a part, or one half of all that lies between the panel center lines which are paralled to it on either side. The other half may be regarded as carried to the heads by the diagomal bels. This in effect tramsfers the entire loading of the slat to the side beits by the ageney of the shearing stresses. It does this in such a way that one half of the total loating of the entire slab is carried by one set of side belts, and the other half by a second set which crosses the first at right angles.

In those parts of the slab area where these sets of belts cross, forming the heading of the columns, the loading is superposed also.

The preceeding investigation of the shears at the edges of side belts and their loading is independent of their width and of the position of the lines of contra-flexure, but their width will be assumed in what follows to be determined by the position of those lines as shown in (24) on account of the independence of action of belts of their width, as previously explained, where it was shown that no bending moments are propagated across those lines.

The question now arises, how the vertieal shears at the edges of the side belts are distributed across their with and carried by them. Nince by symmetry of loading, ete., there is no vertical shear at the erlge of the pand where $y=b$, the shear must diminish from each edge of a belt to zero at that line. If it be assumed to diminish miformly, that is equivalent in its action to a miformly distributed load on the belt, which may be assumed in computation to replace the shears at the edges. Whether it will be so distributed or not depends upon the stiffness of the mushroom head and the smathess of its flexure. Extensometer measurements on the rods of the side belt of the floor slath of the St. Panl Bread Company Buidding by Prot. Wm. H. Kavanangh show heyond question that in the mushroom ssatem the load is so distributed. Other extensometer meensurements to which the writer has aceess also show that in systems in which the heading of the colum is not so stiff as this the distribution of loading cammot be taken an uniform over the side belts.

Now the belt paralle to $x$ was shown to (atry a load per unit of length of $q b$ and to have a width $2\left(b-y_{1}\right)$, in general, or a width $2 b\left(1-\frac{1}{3} \sqrt{ } 3\right)$ for the belt betwern the lines of contraflexure; hence the intensity of the loading on this belt is $4 b / 2\left(b-y_{1}\right)$, instead of q, as it would be in a miformly loaded panel duly supported at its edges by beams from column to column. Let ડ゙A, designate the area of the effective right cross section of the steel in the entire width of a side belt regarded as forming a single sheet of metal of the width of the belt; then $\triangle . A \angle 2\left(b-y_{1}\right)$ is the effective right cross section per unit of width of belt, and we may write (14) in the form

$$
\begin{equation*}
I=i j d^{2} \pm A / 2\left(b-y_{1}\right) \tag{29}
\end{equation*}
$$

Wr shall consider admissible values of $\Sigma \mathrm{A}$ later.
Since the deflection of the side belts may be taken independently of the rest of the slab), let those values for the intensity of loading and the moment of inertia (29) be introduced into (21).

We then obtain an expression for the law governing the deflection of that part of the side belts parallel to $x$ wheh lies between the mushroom heats, and is bounded by lines of contra-flexure, viz:

$$
\begin{equation*}
z=\frac{\left(1-h^{2}\right) q b}{48 E i j d^{2} \leq A}\left[\left(a^{2}-x^{2}\right)^{2}+\left(b^{2}-y^{2}\right)^{2}\right] \tag{30}
\end{equation*}
$$

with a corresponding equation for the side belts parallel to $y$, which may be obtained by replacing $q b$ in (30) by q $a$. Call this second equation (31). Now (30) and (31) would hold thruout the entire length of these belts from column to column were they entirely separate from each other and from the diagonal belts where they cross each other. It will be necessary later to obtain the equation which holds true where these belts cross and combine with each other.
9. Practical formulas for the stresses in the steel and concrete of side belts between the lines of contra-flexure will now be obtained from (30) and (31).

In order to do this, consider the summation in (30) expressing the effective eross section of the steel in the mid area of the site belt regarded as forming a single miform sheet, that mid area being bounded on all sides by lines of contra-flexure.

It is to be noticed that the factor $\left(1-K^{2}\right)$ of (30) takes into aceount the fact that the lattice of rods forming the reinforcement is less effective than the same amount of metal in the form of a sheet, the only question left being this: Will the great irregularity of distribution of the remforement in this area cause it to act differently to any noticeable extent from the manner in which the same amount of metal would act were it posible to distribute it uniformly over the entire areat? There are strong reasons which go to sustain the view that this irregularity of distribution is negligible in the standard mushroom slath, at least for loads less than those that stress the steel below the vield point, or do not stress the concrete for too long a time while it is imperfectly eured. On examining a diagram of the reinforeing rods of a slah made with square panels of such proportions that the width of the belts is one half the elistaner between columm: then the pattem previonsly mentioned into which it would be divided by these belts will be seen to consist of equal squares whose edges are equal to the width of the beelte, with one central square in each pancl concave upwards, and one half of each of the saddle shaped squares which border it, atso lying within the same panel, and onc quarter of wach of the four convex sefuares at the
head of each of the columns at the corners of the pancl, also lying within the same panel, see Fig. 55, page 164.

Each side sfuare will be found in this case to have double (or two belt) reinforement over one half or its area, single belt reinforcement over a diamond occupying one fourth of its mid area, and triple reinforcement ower four triangular areas along its sides which together cover one fourth of the square. This gives a mean value of $\Sigma A=2 A_{1}$ in which $A_{1}$ is the total right cross section of the rods in the side bolt.

The belts in the standard mushroon are, however, not so wide as this, since that system simply reguires that the edges of the side and diagonal belts intersect in as single point, Fig. it, instead of forming four areas of triple reinforement on the sides. This makes the width of the singly reinforecd diamond sufficient to just reach across the side belt. In this practical case we find that very approximately

$$
\begin{equation*}
\Sigma_{A}=1.5 A_{1} \ldots \tag{32}
\end{equation*}
$$

in which, as before, $A_{1}$ is the total right cross section of the side belt in square inches. It is evidently imposible for this single side belt of rods which erosses the diamond. to elongate without a corresponding equal elongation of the double reinforement on all its sides, or at least it is impossible for readjustments to take place in any short time such as will make these direct deformations within the diamond larger than these in the areas along side of it, or before somewhat more permanent deformations hare taken place in the concrete.

In cases where the colum heads are smaller than the standard, and the side belts still narrower, not only may . A become much less than $1.5 A_{1}$ but the belt become so wakened near the central diamond as to rember it very questionable whether the irregularity of distribution of steel in the area considered may be safely disregarded. Diminution of the size of the heading thes not only diminishes cantilever action, but reduces the effective resistance of the reinforeing steel. Not much diminution of the size of head would be required to reduce the value of $\bar{\Sigma} A$ to an amount as small as $A_{1}$.

Introducing the cstimate given in (32) for the standard mushroom into (30) we derive ly (23), (23a) and (3), for that part of the side belt parallel to $x$ between $x=+\frac{1}{3} a \sqrt{ } 3$ and $x=-\frac{1}{3} a \sqrt{ } 3$,

$$
\begin{align*}
& f_{\mathrm{s}}=E e_{1}= \pm E i d \delta_{\delta x^{2}}^{\delta^{2} z}= \pm \frac{\left(1-K^{2}\right) q b}{18 j d A_{1}}\left(3 x^{2}-a^{2}\right) \\
& M_{1}=1.5 A_{1} j d f_{\mathrm{s}}= \pm \frac{\left(1-K^{2}\right)}{12} q b\left(3 x^{2}-a^{2}\right) \tag{33}
\end{align*}
$$

in which $M_{1}$ is the total true moment of resistaner of the side belt, $f_{\mathrm{s}}$ is the true stress per square unit of the reinforeement in the side belt, and $1.5 A_{1}$ is the effective right cross section of the reinforeement. This is independent of $y$ as before noted, showing that the values of $f_{s}$ and $e_{1}$ are the same for one rod as for another, but they attain their greatest values at the midength where $x=0$. If units be pounds and inches, and we assume $j=0.91$ for the very small percentage of reinforcement of the standard mushroom system, then by (33) and (6) the practical formulas for design are:

$$
\begin{align*}
& f_{*}=\frac{3 q a^{2} b}{4 \times 18 \times 0.91 d_{1} A_{1}}=\frac{W L}{175 d_{1} A_{1}}  \tag{34}\\
& M_{1}=1.5 A_{1} j d_{1} f=\begin{array}{l}
W L \\
128
\end{array}
\end{align*}
$$

in which $f_{\mathrm{s}}$ is the true stress in the steed, and $M_{1}$ is the true bending moment of the effertive cross section $1.5 A_{1}$ of the steel in the antire belt as shown by the elongation (at mid span) of the rods in a side belt of length $L$, where $L$ is rither $2 a$ or $2 b$, and $\|^{*}=4 q a b$ is the total load on the panel in pounds, where $d_{1}$ is the vertical distance from the eenter of the rods in the single belt at mid span to the top surface of the slat.

While the values obtained from (34) are conservative for $j=0.91$, corresponding to a percentage of reinforcement for one belt of less than $0.25^{-1}$, (34) should be regarded merely in the light of a specimen equation for that percentage, and any shab where the percentage differs materially from that assumed value should be submitted to separate computation in the same manner.

Values of $j$ are given for heams by Turneaure Naurer in their "Reinforeed Concrete Construction," page 57 , for different percentages of reinforcement on the straight line theory, which latter is now aceepted usage. As already stated, standard mushroom design makes the percentage of reinforeement for warehouse floors where the pancts are, say $20^{\prime} \times 20^{\prime}$, as low as 0.2$)^{\circ}$ or less, at the middle of the side belts, reekoned on the beam theory. But in heavier and larger construction it may reach $0.333^{\circ}$.

We have taken the mean availathle sted in the belt as $1.5 A_{1}$, hence the mean slah reinforcement will not be less than $1.5 \times 0.203=$ $0.4 \%$ in the side belt areas between lines of eontra-flexure.

In case we assume the ratio of $E_{\mathrm{s}}$ for steed to $E_{\text {c }}$ for concrete to be 15 , as is often preseribed, we find the above stated value of $j$ as a
good mean value, which will be less in cases where the percentage of steel is greator. The small pereentage of steel and great relative thickness of concrete is one of the distinguishing features of the standard mushroom design.

We may write (34) in the form:

$$
f_{s}=\begin{gather*}
W L  \tag{34a}\\
175 d_{1} A_{1}
\end{gather*} \text {, and } M_{1}^{\prime}=A_{1} j d f_{\mathrm{s}}=\begin{aligned}
& W L \\
& 192
\end{aligned}
$$

in which $M_{1}$ is the true bending moment of the actual cross section $A_{1}$ at mid belt. We have written this modification of (34), not for use in design, but merely for the purpose of instituting a comparison with empirical formulas obtained by Mr. Turner to express the results of numerous tests made by him. On pages 26 and 28 of his "Concrete sted Construction" he hat given equations expressing the values of stresses and moments in mushroom slahs which in our notation may be written as follows:

$$
M_{1}^{\prime}=A_{1} j d f_{s}=\begin{gather*}
W L  \tag{35}\\
200
\end{gather*}, \text { and } f_{s}=\frac{W^{r} L}{200 \times 0.85 d A_{1}}=\frac{W L}{170 d A_{1}}
$$

in whieh he has asmed 0.85 as a mean value of $j$.
It is seen that equations $(34 a)$, obtained from rational theory alone, are in practical agreement with (35), which were deduced from experimental tests of mashoom shats, where the numerical coefficient introduced is entirely empirical.

As will be seen later, (34) is the equation which ultimately controls the design of the slab reinforcement: so that the agreement of these two entirely independent methorls of establishing this fundamental equation eannot but be regarded with great satisfaction as affording a secure basis for desigus that may be safely guaranteed by the constructor, as has been the custom in eonstructing standard mushroom slabs.

The slab theory here put forth diverges so radically from the results of beam theory that we introfluce here the following comparative computation of the smallest values of true benting moment and stress in steel, which can be ohtained by beam theory for the side belt parallel to $x$, as follows:-

That part of the side belt between the lines of contra-flexure is simply supported at its ends by shearing stresses, and so may be taken to be a simple beam resting on supports at these end lines.

Hence the true stress $f_{\mathrm{s}}$ and the true bending moment $M^{\prime}$ at the middle of this simple uniformly loarled beam may be computed from the equation,

$$
\begin{equation*}
M^{\prime}=A_{1} j d f_{s}=\frac{1}{4} W^{\prime} L^{\prime} \tag{36}
\end{equation*}
$$

in which $M^{\prime}$ is the total moment of resistance.
$A_{1}$ is the total right cross section of the reinforcement, $\mathrm{U}^{\prime}$ is the total uniformly distributed load, and $L^{\prime}$ is the length of the beam. The length of the simple beam in that case is evidently the distance along $x$ between lines of contra-flexure, viz, $L^{\prime}=\frac{2}{3} a \sqrt{ } 3=\frac{1}{3} L \sqrt{ } 3$, where $L$ is the edge of the panel, and the total load at most will be that already proven to be carried by the side belt viz, $q b$ per unit of length, or a total for a span $L^{\prime}$ of $\mathrm{H}^{\prime^{\prime}}=q b L^{\prime}=\frac{2}{3} q a b \sqrt{3}=\frac{1}{6} \mathrm{~W}^{+} \sqrt{3}$ where $W=4 q u b$ is the total loard on the panel, hence

$$
\begin{equation*}
M^{\prime}=A_{1} j d f_{s}=\frac{W^{\prime} L}{48} \tag{36a}
\end{equation*}
$$

It thus appears that according to simple bean theory the true stress, or the cross section of steel required in the belt, is four times that obtained by slab theory as shown by (34a). Since (34a) is in good accord with experimental tests, this comparison justifies the statements made near the beginning of this paper respecting the inapplicability of beam theory to the computation of slab design.

The floor of the St. Paul Brearl Co. Building, previously mentioned, is a rough slab $6^{\prime \prime}$ thick, and has panels $16^{\prime} \times 15^{\prime}$, with ten $3{ }^{\prime} 8^{\prime \prime}$ round rod reinforcement in each belt, built for a design load of 100 pounds per square foot: fonstructed in winter and frozen, the final test was not'made until the end of its first summer after unusually complete curing, such as might make the value of $K$ given in (6) not eutirely applicable. In one long side belt, extensometer measurements were made at the mid span on three rods, (1) a middle rod, (2) an intermediate rod and (3) an outside rod of the belt, with the following values of $f_{s}$ in pounds per stuare inch for the given live load in pounds per square foot:

Live Loads	108.4	316.8*	416.8
$f_{\mathrm{s}}=E e_{1}(1)$	76.50	15000	17940
" (2)	7080	14190	16470
" (3)	7320	13920	17160
Average	7350	14370	17200
$f_{s}$ by (34)	5000	14440	19000

The observed results are seen to be in excellent agreement with those computed from (34) for the heavier loats, while any disagreement is on the safe side. Agreement is not expected for light loads.

The aceuracy and applicability of (34) and preceeding formulas is dependent on the fixity of the lines of contra-flexure (24) which were previously stated to be practically immovable beeanse of the sudden large change of the moment of resistance of the slab at those lines. That fact may be put in a more definite and convincing form than has been done so far. Consider for a moment that form of continuous cantilever bridge where there are joints hetween the cantileversover the sucessive piers (whichare in the form of a letter $T$ ) and the intermediate short spans which connect the extremities of the cantilevers. It such jointe the resisting moments ranish, and they form in a sense artificially fixed points of contra-flexure. The same thing approximately oceurs at the edge of the mashroom, because there the reinforeing sted rapidly dips down from a level above the neutral phane to ome below it, and the sign of the moment of resistanere changes thru zero at that edge.

Furthermere, it may be proper to state in this connection that the foregoing theory has been dereloped in consonance with the general principles of clasticity, and that somewhat different conditions and relations are thought to exist when the steed at the middle of the side belts reaches its yiekl point, as it does in adsance of the rest of the reinforcement. As the yidd point is reached equations (34) no longer hold; for, as will be seen more clearly later, the single belt of reinforcing steel, which crosese the eireumference of an approximately circular area of radius $L / 2$ about the center of each column, will ererywhere reacls the yield point at practically the same instant, and if lowled much beyond this will develop a contimuous line of weakness there. The equations that hok in this case will be appreximately those due to the actual cross section $A_{1}$ of the belt, in place of (34), which contain the effective croses section, viz:

$$
\left.\begin{array}{l}
f_{\mathrm{s}}=\frac{3 q u^{2} b}{4 \times 12 \times 0.91 d_{1} A_{1}}=\frac{W^{\prime}}{117 d_{1} A_{1}}  \tag{37}\\
M_{1}=A_{1} j d_{1} f_{s}=\frac{\|^{r} L}{128}
\end{array}\right\}
$$

which may be regarded as expressing the relations that exist at the limit of the elastic strength of the slat and the begiming of permanent deformation, tho not necessarily of collapse.

The percentage of reinforcement in standard mushroom shabs is small enough to make their elastic properties depend upon the resistance of the steel. The stresses in the concrete may then be be computed from those in the steel, but many uneertainties attend any such computation. It is usage, fixed by the ordinances of the building cotes of most cities to require the application of the so called "straight line theory" in such computations, not because that will give results which will be verified by extensometer tests of eompressions in the concrete, for it will not, but because it is definite and on the side of safety. Furthermore it is ustally preseribed that the ratio of the morlulus of elasticity of steel clivided ly that of concrete shall be assumed to be 15, where the moduli are unknown by actual test of the materials. This is usually far from a correct value. The consequence is that the results of computation of the stresses in concrete are highly artificial in character, and should not be expected to be in agreement with extensomotor tests. With this understanding the computed stress in the concrete at the midelle of the side belt will be found as follows:

Let id be the distance from the center of the steel to the neutral plane. (It happens to be nore convenient in this investigation to use this distance $i d$ here and in our previous formulas than to intreduce the distance from the neutral axis of the slab to the compressed surface of the concrete, as is done by many writers, under the designation $k d$. These quantities are solated that $i+k_{i}=1$ ).

Then, as is well known from the geometry of the flexure of reinforeed concrete beams, in case tension of concrete is disregarded,

$$
f_{\mathrm{c}}=\frac{k}{i} \cdot \frac{E_{\mathrm{c}}}{E_{s}} f_{s}
$$

where the subscripts $c$ and $s$ refer to concrote and to steel respectively.

Applying (38) to the greatest computed stress $f_{s}=19000 \mathrm{in}$ the St. Paul Brearl Co's Building, gives a computed stress $f_{\mathrm{c}}=492$; but taking the greatest ol servedstress $f_{s}=17940$ gives $f_{c}=465 \mathrm{lb}$ s. per sq. inch, as the greatest computed compressive stress in the concrete at the middle of the side belt, if $i=0.72$.

The tensile stress arross the middle of the side belt at the extreme fiber of its upper surface is fixed by the elurvature of the vertical sections of the slah in plames that eut the sifle belt at right angles. As stated previously all such planes make eross sections of the side belt that are identiral in shape. That is a eonserguence of
the eonclusion reached previously, that all the rods in the side belt are subjected to equal tensions. The curvature of these seetions is contrelled by the stiffness of the mushroom heads, which is so great as to make the curvature very small. No considerable tensile cross stresses are consequently to be apprehended; but in case the stiffness of the head were to be decreased, stresses might arise such as to develop longitudinal cracks over the middle rod of the side belts.
10. In order to obtain practical formulas for the deflections and stresses in the sted thruont the areas at and near the tops of the colmmes where all the belts eross each other, and lying between lines of contra-flexure, we shall hate recourse to (30) and (31) which are here superimposed on each other, and combined together. Were there no steel here in addition to the side belts, that superposition could be correctly effected by writing a value of $z$ whose numerator woukl be the smon of the mumerators of (30) and (31), for that would superpose the loads of the two side belts, and thus place the total required loading upon this area as previonsly explained; and then by writing for a denominator the sum of the denominators of (30) and (31), for that would superpose and combine the resistance of all the steel in both belts. Jut such a result wouk leatre out of account the reinforcement arising from the diagonal rods, and the radial and ring rods, which should also be reckoned in as furnishing part of the resistance.

Supposing this alditional steel to be distributed in this area in the same manner as is that of the side belts, a supposition whieh is very close to the fact, we may write

$$
\begin{equation*}
z=\frac{\left(1-K^{-2}\right) q(d+b)}{48 E i j d^{2} \Sigma A}\left[\left(d^{2}-x^{2}\right)^{2}+\left(b^{2}-y^{2}\right)^{2}\right] \ldots \tag{39}
\end{equation*}
$$

in which $\Sigma$ Lis the eross section of the total reinforcement in this area regarded as forming a uniform sheet, $i$ and $j$ stand for mean values that have to be determined by the percentage of reinforcement and its position, while $d$ is the mean distance of the center of action of the sted above the lower compressed surface of the concrete at the point $x y$.

We may conservatively assume in the standard mushroom that the center of action of the steel is at the center of the third layer of rods from the top, as will appear more clearly later. This defines $d$, which we shall consequently designate by $d_{3}$.

It remains therefore to estimate the amount of the total reinforcement $\Sigma_{A}$, and then find mean values of $i$ and $j$.

In case of reinforcing rods which are all of them continuous over a head without laps, the pereentage of reinforement falls only slightly below 4 times that at the middle of a side belt; but on the other hand were none of them continuous for more than one panel and each lap reached beyond the center of the column to the edge of the mushroom, the pereentage of reinforeement would not be less than 7 times that at the middle of a side belt, and to this must be added that due to the steel in the radial and ring rods. Thus the percentage of reinforeement here may be varied not only by reason of the larger or smaller number of laps over each mushroom, but by reason of the length of the laps, from perhaps 3.75 to 7 times that at the middle of a side belt. For standard mushroom construction using long rods, it may be taken conservatively as a 4.25 times that at the middle of a side belt.

It is impossible to make an estimate that will be accurate for all cases, but commonly the 8 radial rods of a $20^{\prime} \times 20^{\prime}$ panel are equivalent in amount to a single $1_{\mathrm{s}}^{1 / \prime}$ round rod, or a $1^{\prime \prime}$ square bar circumscribing the area under consideration, that is to 4 square inches of additional reinforcement to be distributed in the width of a single side belt.

The two rings rod, of which the larger is commonly 7 ' 8 ' round, and the smaller 5 " $8^{\prime \prime}$ round, may be taken to increase the reinforcement of this area by at least one square inch of eross section, giving all told some five square inches of cross section additional, equivalent forty-five $3 / 8^{\prime \prime}$ round rods, or twenty-one $1^{\prime} 2^{\prime \prime}$ rods. It thus appears that the increased reinforcement from this source reaches from 2 to 4 times $A_{1}$, and we may safely assume a mean total reinforcement over this area of

$$
\begin{equation*}
\Sigma_{A}=7.5 A_{1} \tag{40}
\end{equation*}
$$

of which the center of action may be pretty accurately stated to be at the middle of the third layer of reinforcement rods from the top.

In the standard design of mushroom floors for warehouses with panels about $20^{\prime} \times 20^{\prime}$, the mean percentage of reinforcement for a single belt $A_{1}$ being about $0.23{ }^{-}$, may be taken by (40) for a reinforcement $7.5 A_{1}$ as
$7.5 \times 0.23+=1.75 \%$ The corresponding value of $j$ is 0.833 . and we shall have

$$
\begin{equation*}
j \Sigma A=0.83 \times 7.5 A_{1}=6 . A_{1} . \tag{41}
\end{equation*}
$$

As previously stated, these equations (containing estimated mean numerical values) are given as a specimen computation for the purpose
of making comparisons. In actual design, computations like these should be made which introduce the exact values appearing in the design under consideration.

We now derive from (39) and (40) by the help of (23) the following equations for this area where the belts all eross:-

$$
\left.\begin{array}{l}
f_{s}=E \epsilon_{1}= \pm E i d_{3} \frac{\delta^{2} z}{\delta x^{2}}=\frac{ \pm\left(1-K^{2}\right) q(a+b)}{90 j d_{33} A_{1}}\left(3 x^{2}-a^{2}\right) \\
M_{1}=7.5 A_{1} j d_{3} f_{s}=\frac{\left(1-K^{-2}\right)}{12} q(a+b)\left(3 x^{2}-a^{2}\right)
\end{array}\right\}
$$

in which $j$ and $d_{3}$ are lese than in (33) amd (34), as has been stated previonsly.

Apply (42) to find the stresses at the edge of the column cap (on the long side $L_{1}$.

Let $B=2 x$ be the shortest distance along the middle of the side bedt parallel to $x$ between the odges of the eaps of two adjacent columms, athd introduce the values $j=0.83, K=0.5$, and $\mathrm{H}^{\circ}=4 q a b$, them:

$$
\left.\begin{array}{c}
f_{s}=\begin{array}{l}
\| L_{1}\left(L_{1}+L_{2}\right)\left(3 B^{2} / L_{1}^{2}-1\right) \\
800 d_{3} A_{1} L_{2}
\end{array} \\
M_{1}=7 . \pi \Lambda_{1} j d_{3,} f_{2}=\begin{array}{ll}
\|_{1}\left(L_{1}+L_{2}\right)\left(3 S^{2} / L_{1}^{2}-1\right) \\
128 L_{2}
\end{array}
\end{array}\right\}
$$

 and $M_{1}$ is the true resisting moment of the total steel derived from the chomgation, and $d_{3}$ is as stated after (39).

It has bern fomed that the foregoing theoretical expressions which negleet to take areount of the loeal stresses indured in the s.ab just outside the elge of the cap her reasom of the rigidity of the eap itself are inc:apalde of giving results in acoodanoe with experimental data.

Equation (43) implicitly assumes that the shat, while supported on the eap is nevertheless so separate and independent of it as to have no great rigidity over the (atp than (liswhere and is eonse(quently maffected by the mass of the cap. But this assumption is not in aceordance with the face beceatere the cap is integral with the slat and forms a nearly rigid boss on the shal, which largely prevents bemding and stretching over the (al) so that inside the
edge of the cap much smaller extemsions oceur in the belt rods than would otherwise occur, and less than do occur in parallel rods outside the cap. But the total extensions of the several rods of a belt from one line of inflection to another must accompany one another. and those rods that cross the cap and have their extensions mostly prevented inside the cap must suffer correspondingly greater extensions in the remaining parts of their lengths by way of compensation for this loss. This effect will be most accentuated just where the rods cross the edges of the eap and will cause abnomal local extensions especially in the rods along the middle of the belts that eross the edge of the eap nearly perpendicularly. It is just here that the greatest stresses are observed as might be expected. The stresses in rods tangent to the cap are less than these, and in the other rods which are nearer the edges of the belts the stresies are smaller also, partly by reason of the low level at which they are usually placed. These circumstances all conspire to accentuate the stresses of the rods at the edge of the cap.

It is not possible to make an exact mathematical amalysis of the resulting abmomal stresses. But the form of (43) has suggested an expression which will amble us to fix a limiting value to those stresses with considerable assurance, since the greatest steel stresses which have been observed aromod the eap in extensometer tests do not execed the values thus computed.

We feel sure that ample allowance for this increased stress is included in the following amended expression for the greatest stresses in the side belts at the edge of the eap:

$$
\left.\begin{array}{c}
f_{\mathrm{s}}=\frac{\| L_{1}\left(L_{1}+L_{2}\right)\left(3 L_{1}^{2} B^{2}-1\right)}{800 d_{3} A_{1} L_{2}}  \tag{44}\\
=7.5 A_{1} j d_{3} f_{s}=\begin{array}{l}
W L_{1}\left(L_{1}+L_{2}\right)\left(3 L_{1}^{2} B^{2}-1\right) \\
128 L_{2}
\end{array}
\end{array}\right\}
$$

This equation gives the same values of $f_{\mathrm{s}}$ and $M_{1}$ as (43) at the column center, i. e. when $B=L_{1}$. But at other points (43) and (44) diverge from each other, for at amy points between the colmm center and the line of inflection (43) gives smaller values of $f_{\mathrm{s}}$ and $J_{1}$ than at the column center, but (4t) gives larger values for the siresses. and thus makes allowame for alonormal stresses. Moreover (44) makes the stresses greater the smaller $B$ is and the larger the cap. It is evident that these abmormal stresses should inerease with the size of the eap which causes them. But it should be stated again and emphasized that the values thus obtained are an outside limit, and that (44) may give values eonsiderably in exeess of observed stresses.
(44) comsequently should not be used to compute the amount of remforement required in any proposed design. But with a given design it is possible to say with considerable confidence that the greatest stress will not exced those computed by (44).

It should be further stated in this comeretion that abnormal stresses in a few rools at the center of a belt at the edge of the cap is a local phemomenon of 10 serious import for the stability of the sab, berause such stresses if sufficiont will eause a slight yielding at the peint which will bring the other parallel slab rods into play to assist them.

In the same way as (4t) has been obtamed from (43) and (43) from (42), a similar expression may be obtained for the abomormal stress in the rofls of diagomal belts at the edge of the cap,* but the numerical values thus ohtained differ little from those resulting from (44). This expression has therefore herm omitted as umportant.

Tests and long experience show that much higher eompressive stresses may be safely permitted in the eoncerete aromed column eaps where the eompression is in two direetions at onere, cireomferential and radial, than in ordinary direct one way compression. dide from this additional mesistane to these eonverging eompressons the loint (ommittee has recognized a greater eapacity for resistance to eompression at supports than elswhere in recommendmg that in general "the extreme fiber strese of a beam may be allowed to rearh 32.5 pereent of the eompressive strength," while "adjarent to the support of continuous beams stresses 15 pereent higher may be used."

If we ase no higher stresses around the eap tham those allowed by this recommendation for beams we ohtain for a concrete whose compressive strength is taken as 2000 lh . per square inch a working stress of $2000 \times .325 \times 1.15=747.5$ Hs., or 822 lhs. for a concrote having a strength of 2200 lb .

Now various publishef and mpublished extemsometer tests of shabs show that the unit deformation in the conerete immediately adjacent to the edge of the eap designated by $e_{c}$ has a mean value of not more tham seven tenths $(0.7)$ of $e_{s}$ the unit deformation of the stoel in the top belt immediately above it, this ratio varying under the heavier loads between 0.5 and 0.85. Hence the working steel stress $f_{s}$ corresponding to a working stress in the concrete of $f_{c}=747.5 \mathrm{lbs}$. per square inch is

[^12]$f_{\mathrm{s}}=\frac{E_{\mathrm{s}} e_{\mathrm{s}}}{E_{\mathrm{c}} e_{\mathrm{c}}} f_{\mathrm{c}}=15 \times 7+7.5,0.7=16000$.
lbs . per square inch.
It thus appears that ordinary working stresses in the steel at the edge of the cap will be aceompanied by safe stresses in the concrete. As a matter of experisnce, it has known that failure arising from compression around the colum is practirally unknown in conerete that has had opportunity to become reasonably hard.

It will be noticed that in order to make $f_{s}$ and $f_{s}$ as small as possible in this area $d_{3}$ must be made as large as possible, $i . e$., the steel at the edge of the cap must be raised as near the top of the stab, as possible. Neglect of this is to invite failure and weakness such as has overtaken certain imitators of the mushroom system.

A final remark is here in place respecting the values of $j$ and $d_{3}$ in this area. The stresses $f_{s}$ and $f_{c}$ diminish very rapidly towards the lines of contra-flexure, where they vanish, and the fact that the steel also rapidly increases its distance from the top of the slab at the same time might be regarded at first thought as requiring some motification of the assmptions we have made as to the values of $j$ and $d_{3}$, which are approximately correct at the edge of the cap where the steel is placed as near the top surface as due covering will permit. But the fact is this: the only consideration of importance is the one respecting the position of the steel in that part of this area where the moments and stresses are large. The effect of the position of the steel near the lines of contra-flexure is negligible, and the fact that the amount of reinforcement may be somewhat smaller near these lines than elsewhere may also be neglected, so that the mean effective reinforcement previously estimated is likely to be an underestimate rather than the reverse. Further, the fact that the slab is practically clamped horizontally either at the edge of the cap or the edge of the superposed column, insteal of at its center as assumed in our formulas, renters the results given thus far slightly too large.

Good average values of the size of steel used in the standard mushroom system of medium span would make the radial rods $9 / 8^{\prime \prime}$ round, the outer ring rod $\bar{i} 8^{\prime \prime}$ round, the immer ring rod $5 / 8^{\prime \prime}$ and the belt roels $38^{\prime \prime}$ round. The impertance of having the belt rods small is that for a given thickness of stab the smaller these rods are the larger is $d$ in both (34) and (43) and consequently the smaller is $f_{s}$ and $A_{1}$.
11. In attempting to consider the stresses in the diagonal rods of the central rectangle between the side belte of a pancl, it will be
noticed, as stated before, that no true bending moments are propogated across the vertical planes or lines of contra-flexure (24) which bound it, and since the vertical shearing stresses at these lines are uniformly distributed along them, as already shown, (28), there are no true twisting moments in these planes. The curvatures of this rectangle will consequently depend upon its own loading and the resistance of its own moment of incria, regarded as uniformly distributed, independently of that of other parts of the slab.

Hence (21) may be correctly applied to this area, regardless of the values which $I$ (and q) may assume elsewhere, provided only that the values of $I$ in other areas may be assumed to have constant values thruont those areas, and, further, that those areas are symmetrically disposed, so that all central rectangles have one and the same given value of $I$ thrnont, all side belts also have one given value of $I$, and the mushroom heads have a given value also, each of these three sorts of areas being indejendent. The truth of this proposition has been heretofore tacitly assumed in applying (21) to these latter areas as has been done.

It will be seem however, that the values of $z$ obtained from such diverse equations express deflections of any point $x y$ on the supposition that all the areas considered have the same value of $I$; but these separate equations, each with its own peculiar value of $I$, ean be used separately to find the difference of level $z_{1}-z_{2}$ between any two points $x_{1} y_{1}$ and $x_{2} y_{2}$ which lie in an area where $I$ may be regarded as constant. We shall return to this point when we come to the derivation of practical deflection formmas.

For convenience in computing stresses in the rods of the diagonal belt, let the direction of the coordinates be changed so that in square pancls they will lie along the diagonals which make angles of $45^{\circ}$ with those used thus far. In (21) let

$$
\begin{gather*}
x=\frac{1}{2} \sqrt{ } 2\left(x^{\prime}+y^{\prime}\right), \quad y=\frac{1}{2} \sqrt{ } 2\left(x^{\prime}-y^{\prime}\right), \text { then } \\
z=\frac{\left(1-K^{\prime 2}\right) 4 g}{24 E i j d^{\prime} \leq A}\left[a^{+}-a^{2}\left(x^{\prime 2}+y^{\prime 2}\right)+x^{\prime 2} y^{\prime 2}+\frac{1}{4}\left(x^{\prime 2}+y^{\prime 2}\right)^{2}\right] \ldots \tag{47}
\end{gather*}
$$

in which the pamel is square and the axes of $x^{\prime}$ and $y^{\prime}$ lie along its diagonals, while the value of $\Sigma A / g$ is the effective cross section per unit of width of all the reinforcement in this area regarded as a single uniform sheet of metal, and $g=7 / 8 a$, is the width of a diagonal belt, and is equal to the diameter of the mushroom head. In rectangular panels $g=7 / 16(a+b)$.

From (34) we have
$\frac{\delta z}{\delta x^{\prime}}=\frac{\left(1-k^{\prime 2}\right) q g}{2+E i j d^{2} \Sigma A}\left[x^{\prime}\left(x^{\prime 2}+3 y^{\prime 2}\right)-2 a^{2} x^{\prime}\right]$.
$e_{1}^{\prime}=e_{2}^{\prime}=-i d_{\delta x^{\prime 2}}^{\delta^{2} z}=-i \lambda \frac{\delta^{2} z}{\delta y^{\prime 2}}=\frac{\left(1-K^{2}\right) q y}{24 E j d \leq A}\left[2 a^{2}-3\left(x^{\prime 2}+y^{\prime 2}\right](49)\right.$
and $\frac{\delta^{2} z}{\delta x^{\prime} \delta y^{\prime}}=\frac{\left(1-K^{2}\right) q g x^{\prime} y^{\prime}}{+E i j d^{2} \Sigma^{\prime} A}$
These expressions satisfy (20) as they should, for (20) is independent of the directions of the rectangular axes $x$ and $y$.

From (49) it appears that $e_{\mathrm{I}}^{\prime}=0=f_{s}$, on the circumference of the circle $x^{\prime 2}+y^{\prime 2}=\frac{2}{3} a^{2}$. which passes thru the points where the lines of contra-flexure intersect.

By (19), which holds for any rectangular axes, and by (50), we find

$$
\begin{equation*}
\mathrm{n}^{\prime}=\frac{1}{4}(1-K) q x^{\prime} y^{\prime} \tag{2}
\end{equation*}
$$

From (26)' it appears that $n$ sections by all vertical planes parallel to the diagonals, the twisting increases uniformly with the distance from the diagonal.

Hence by (9) we have

$$
\begin{align*}
& -s_{1}^{\prime}=\left(\frac{\delta \mathrm{m}_{1}^{\prime}}{\delta x^{\prime}}+\frac{\delta \mathrm{n}^{\prime}}{\delta y^{\prime}}\right)=\frac{1}{2} q x^{\prime} \\
& -\mathrm{s}_{2}^{\prime}=\left(\frac{\delta \mathrm{m}_{2}^{\prime}}{\delta y^{\prime}}+\frac{\delta \mathrm{n}^{\prime}}{\delta x^{\prime}}\right)=\frac{1}{2} q y^{\prime} \tag{28}
\end{align*}
$$

It thus appears that the same law holds for vertical shearing stresses on planes parallel to the diagonals, as holds in (28) for planes parallel to the edges of the panel.

In standard mushroom designs the edges of the diagonal belts intersect on or very near to the edges of the side belts. That makes the middle half of the central square to be covered by double belting, and the remainder of it by single belting, so that $\leq A=1.5 A_{2}$ or perhaps $1.6 A_{2}$, and the mean value of $A$, the reinforeement per unit of width of slab here, is to be found by dividing this by the width of a belt, which is 78 . We should then find $A=1.5 A_{2} /$ $7 / \mathrm{S} a=1 . \overline{7} A_{2} / a$. But this mean value of $A$ is not its mean effective value for this area, lecause the reinforcement is so disposed as
to furnish the larger values of $I$ in the central diamond just where the largest true applied moments and stresses occur. The mean value of $A$ in the central diamond is $2 A_{2} / 7 / 8 a=2.3 A_{2} / a$. The mean effective value lies between these two extremes, probably nearer the latter than the former. A similar question was discussed in connection with (40) and (41). We shall assume as the mean effective reinforcement in this central rectangle.

$$
A=2 A_{2} / a \text {, and } I=2 A_{2} i j d_{2}^{2} / a
$$

or in case of rectangular panels

$$
\begin{equation*}
I=4 A_{2} i j d_{2}^{2} /(a+b) . \tag{51}
\end{equation*}
$$

In case of rectangular panels the term $2 a^{2}$ in (49) should be replaced by $a^{2}+b^{2}$ as a me:m value to make it depend the dimensions of the panel symmetrically, as it must. Xaking there substitutions in (49) we have at $x^{\prime}=0=y^{\prime}$ the center of the panel.
$f_{\mathrm{s}}=E e^{\prime}=\frac{\mathbb{W}^{\prime}\left(L_{1}+L_{2}\right)\left(L_{1}^{2}+L_{2}^{2}\right)}{102+L_{1} L_{2} A_{2} j d_{2}}=\frac{r_{1} W L_{1}}{25\left(6 A_{2} j d_{2}\right.}$
$\left.M_{1}^{\prime}=2 A_{2} j d_{2} f_{s}=\frac{W^{\top}\left(L_{1}+L_{2}\right)\left(L_{1}^{2}+L_{2}^{2}\right)}{512 L_{1} L_{2}}=\frac{C_{1} W^{\prime} L_{1}}{128}\right\}$
where $C_{1}=\frac{1}{1}\left(L_{1}, L_{2}+1\right)\left(1+L_{2}^{2} L_{1}^{2}\right)$. Take $j=0.89$.
If $1>L_{2} / L_{1}>0 . \pi$. then $1<C_{1}<1.042$, hence $C_{1}$ varies less thatn $5 \%$ while $L_{2} / L_{1}$ varies be 2. O $_{\text {a }}$ between its extreme permissible values. $C_{1}$ may ordinarily be taken as unity, or may be found with sufficient precision by interpolation between the values just given.

The steps by which these equations (52) were deduced may not seen conclusive, since they are not rigorous. They need be only good, working approximations for the purpose for which they will be here used, viz, to show that the stresses at the center of the panel are less than those at the mid span of the side belts in case $A_{1}=A_{2}$.

The value of $d_{2}$ in (52) is less than $d_{1}$ in (34), lout ahways more than $90 \%$ of it. We may define $d_{2}$ as the vertical distance from the center of the second and upper of the two diagonal belts to the top surface of the concrete. We may assume $d_{2}=0.9 d_{1}$ and $j=0.89$ in (52), and then we may compare these stresses for a square panel as follows:-

$$
\begin{equation*}
f_{\mathrm{s}}^{\prime}=\frac{175}{205} f_{\mathrm{s}} . \tag{53}
\end{equation*}
$$

where $f_{\mathrm{s}}^{\prime}$ refers to the center of the panel. Even were the smaller
value for the mean reinforcement, $1.7 \mathrm{~A}_{2} / a$, used in deriving ( 52 and (53), the stress given by these equations would not exceed that given by (34). The compressive stress $f_{c}$ in the concrete at the center of the panel may readily reach a dangerous value in case the forms are removed too soon. It should therefore be carefully considered in each case. Here, we have an approximate value of $i=2 / 3$ and (38) then becomes $f_{\mathrm{e}}=f_{\mathrm{s}} / 30$ with no possible assistance from steel reinforcement since that isall on the bottom of thestab. An estimate that the elastic stress in the steel at the center of the panel does not much exceed $\mathrm{SO}^{-}$c of that at the middle of the side belt cannot be far from the truth.

While this is undoubtedly the fact, it will appear on further consideration that local stresses and strains which exist at ineipient failure are of such magnitude as to make the weakest points of the diagonal belts to lie ultimately not at the center, but, instead, just outside the diamond where they cross each other.

Take the standard case where the central diamond reaches just across to the side belts. For square panels imagine a circle to be drawn concentric with each column of radius $L / 2$. Any circle at a column will be tangent to the edges of four diagonal belts across the tops of the four columns adjacent to it, and then the octagon circumscribing it, whose sides cut at right angles all the befts that cross this column head, intersects but a single belt of rods as every point of its perimeter. It is evident that, so far as remforecment is concemed, such a line or section cuts less steel per unit of perimeter than any other regular figure concentric with the column and that the reinforcement is entirely symmetrically disposed about the column center, so that in case of equal diagonal and side belts, it would be impossible from their geometry to distinguish the one from the other by anything inside the octagon. That fact would make it inherently probably that the stresses and strains of the rods where they cross any one side of this octagon should be approximately the same ultimately as in those that cross any other side, whether they be rods in a diagonal belt or in a side belt. And what will be attempted to be shown immediately is that uttimately the stresses and strains in these several belts approach equality. If that should be established, it will follow from the conclusion already reached as to the excess of the stresses and strains of the side belt over those at the center of the pancl, that ultimately those at the edges of the ocatgon exceed those in the same rods at the center of the panel.

The qualification implied above in affirming that this is what will occur ultimately, is for the purpose of convering the idea that
this is the approximate distribution of stresses and strains which will take place when the slab is. sufficiently loaded to bring the steel at the middle of the side belt to the yield point. At less stress than this there is so much lag in the distribution of the effect of loading that it penetrates to the various parts of the slab unequally.

Taking up now the deferred proof that the diagonal rods where they cross the edge of the octagon are subject ultimately to the same local stresses and strains as the direct rods of the side belts; note that these diagonal rols lie in a triangular area between two side belts, which latter experience equal clongations $e_{1}$ in directions at right angles to each other. The edges of the triangle in which the single layer of diagonal rods lie are continuons with the side belts and necessarily experience the same elongations, which are propogated from the side belts into the triangle by the ageney of horizontal shears on its edges. Such equal elongations at right angles imply the same clongation in every direction in the triangle, as appears from the fundamental properties of equal principal stresses and strains. Hence we have the same elongations along the diagonal rods as along the rods of the side belts at the edges. The existence of an ultimate stress and strain in the diagonal belt "qual to that in the side belt would require that the cross sections $A_{2}$ and $A_{1}$ of the two belts should be equal, altho so far as the elastic value of $f_{s}$ at the eenter of the panel is concerned $A_{2}$ might be less than $A_{1}$, as has been already shown in (52) and (53). The relationships of stress, load, ete., for this ultimate condition, have been already given in (37).

Besides the stresses and strains in the diagonal belts, just investigated, those due to the local stretching (arising from the deflections themselves) (xert their greatest effect on the rols of the diagonal and side belts just in the region of the line of weakest section, and partly because of that fact. While these local stresses may not exceed $10 \%$ in addition to those already present, their existence should prevent any thought of taking $\geq A$ larger than $A_{1}$ in (37) when deriving the ultimate stresses at the yield point. Similar results may be formulated to cover cases where $g$ is greater or less than $7 / 16 \mathrm{~L}$.

It is perhaps desirable at this point to consider a little more at length the matter of local stretching in a slab. It is impossible for a continuous flat floor slah to undergo the deflections which we are treating, consisting of convexities, concavities, ete., without local stretching to allow this to occur. A floor slab of many panels does not undergo any change of its total linear dimensions which would account for these corrugations. A continuous beam under flexure would have its extremities drawn toward each other. But not so
to any such extent with a slab. Such contractions are resisted by loeal cireumferential strains which result in true stresses. An investigation of such stresses leads to the conclusion just stated that in general they cannot exceed $10_{6}^{\sigma}$ of the ordinary stresses due to slab bending when they are left out of the consideration. For this reason a single panel alone will not function precisely in the same way as a panel in a floor of many panels.
12. Aetual deflections are distances which any given points of a slab sink down by reason of the application of a given load, and their theoretical values are to be computed by help of the formulas which have been developed for $z$ in the various areas into whieh the panel has been divided.

We shall now make a slight modification in our definition of the level of the origin of coordinates, and shall take it at the upper or lower plane surface of the flat slab before flexure, in which surface the axes of $x$ and $y$ are assumed to lie. It is of no consequence whether it be the upper or the lower surface which is assumed, the equations will be the same in either case. The reason for this new definition of the position of the origin is this: Each kind of partial area into which the slab has been supposed to be subdivided has its neutral surface at a different depth in the slab, and so it does not furnish a single suitable level from which to reekon deflections, as does the upper or lower surface of the slab. None of the equations which have been derived in this paper will undergo any modification by reason of this change of definition. It has been assumed that each kind of area has a separate value of $I$ whieh remains constant thruout, so that the neutral surfaces of different areas do not join at their edges. As previously explained this is of no eonsequence mechanically by reason of the zero true moments that exist at these edges. The modification just introduced avoids the geometrieal perplexities arising from this discontinuity of neutral surfaces.

Deflections in the side belt area between the lines of contraflexure (24) are to be found from (30), or (31), and (32). To fint the deflection or difference of level in the mid side belt between $x=0, y=b$, and $x=\frac{1}{3} a \sqrt{ } 3, y=b$, substitute these values in (30), take $i=0.71, j=0.91, K=0.5$ and subtract the value $z$ at the second point from that at the first point, which gives the following value of the deflection of the one point below the other:

$$
\Delta z_{1}=\frac{W L_{1}^{3}}{10.7 \times 10^{10} d_{1}^{2} A^{1}}
$$

in which $d_{1}$ is the vertical distance from the center of the single belt of rods at the mid span of the side belt to the effective top of the slab, considering the strip fill or other concrete finish at its effective value.

In the same manner take the difference of level in the central rectangle bounded by the lines of contraflexure between the center point at $x=0, y=0$ and the corner $x=\frac{1}{3} a \sqrt{3}, y=\frac{1}{3} b \sqrt{3}$ by using (21) and (51) and introducing the values $i=23, \quad j=0.59$, ete., and

$$
\begin{align*}
& C_{2}=1 / 4\left(L_{1} / L_{2}+1\right)\left(1+L_{2}^{4} / L_{1}^{4}\right), \text { then: } \\
& \triangle z_{2}=\frac{C_{2} W_{2}^{3} L_{1}^{3}}{6.56 \times 10^{10} d_{2}^{2} A_{2}} \ldots \ldots \ldots \ldots \ldots \tag{55}
\end{align*}
$$

in which $A_{2}$ is the cross section of one diagonal belt and $d_{2}$ is the vertical distance from the center of the upper or second diagonal belt to the effeetive upper surface of the pand at its center.

On evaluating $C_{2}$ abover we find

$$
\begin{array}{ll}
\text { when } & 1>L_{2} / L_{1}>0.75 \\
\text { then } & 1>C_{2}>0.77
\end{array}
$$

hence we may with sufficient aceurary for practical purposes assume

$$
\begin{equation*}
C_{2}=L_{2} / L_{1} \tag{56}
\end{equation*}
$$

Deflections in the mushroom area between lines of contraflexure (24) are to be derived from (39) (40) and (41) by introducing $i=\frac{1}{2}$,
 the cap to be $0.2 L_{1}$ we have, at its edge where $x=0.8 a, y=b$, from (39)

The value of $z$ at the edge of the mushroom area, where $x=\frac{1}{3}$ a $\sqrt{3}$, $y=b$, is to be obtained from (57) by replacing the last factor by $4 / 9$; and the deflection between the edge of the cap and the edge of the mushroom ohtained by taking the difference of these quantities is as follows:

$$
\begin{equation*}
\Delta z_{3}=\frac{W L_{1}^{3}\left(L_{1} / L_{2}+1\right)}{60 \times 10^{10} / /_{3}^{2} A_{1}} \tag{58}
\end{equation*}
$$

in which $h_{3}$ is the vertical distance of the center of the third layer of reinforcing rods over the edge of the cap above the bottom surface of the slab.

Similar expressions may be obtained for the values of $z$ and $\triangle z$ on the side parallel to $y$, where $x=a$ at $y=0.8 b$, and $y=\frac{1}{3} b \sqrt{3}$, by exchanging $L_{1}$ and $L_{2}$ in (57) and (5S).

Take half the sum of ( 57 ) and the corresponding values so obtained at $x=a, y=0.8 b$, as the value of $z$ at the edge of the cap where it is intersceted by the diagonal of the panel, viz.

$$
\begin{equation*}
z=\frac{W\left(L_{1}+L_{2}\right)\left(L_{1}^{4}+L_{2}^{4}\right)}{38.2 \times 10^{10} L_{1} L_{2} d_{3}^{2} A_{1}}\left(\frac{36}{100}\right)^{2} \tag{59}
\end{equation*}
$$

and subtract this from the value of $z$ on the diagonal at the corner of the mushroom area where $x=\frac{1}{3} a \sqrt{3}, y=\frac{1}{3} b \sqrt{3}$ and we have

$$
\begin{equation*}
\Delta z_{4}=\frac{C_{2} W L_{1}^{3}}{12.5 \times 10^{10} d_{3}^{2} A_{1}} \tag{60}
\end{equation*}
$$

as the deflection along the diagonal between the edge of the cap and the intersection of the lines of contraflexure, in which $C_{2}$ and $h_{3}$ are as previously defined.

Expressions (58) and (60) somewhat exceed the true values of these deffections because the slab has no slope at the edges of the cap as tacitly assumed. A close estimate requires that the denominators be increased by 60 percent on this account, thereby changing the factors 60 to 96 and 12.5 to 20 respectively. These amended values of the deflections will be used hereafter instead of (.58) and (60).

$$
\left.\begin{array}{ll}
\text { Let } & D_{1}=\Delta z_{1}+\triangle z_{3}  \tag{61}\\
\text { and } & D_{2}=\Delta z_{2}+\triangle z_{4}
\end{array}\right\} \text {. }
$$

in which $D_{1}$ is the deflection of the mid point of the side belt below the edge of the cap, and $D_{2}$ is the deflection of center of the panel helow the edge of the cap.

The proportionate deflections of these points are obtained by dividing by the spans, riz: $D_{1}, L_{1}$ and $D_{2} \quad V_{L_{1}^{2}}^{2}+L_{2}^{2}$.
13. Estimated proportionate deflections may be obtained from (61) under such eircumstances as to conver reliable information respecting what may be reasonably expected. Let $h=$ the total thickness of the slab. The limiting values of the thickness of standart mushroom construction are expressed as follows:

$$
\begin{equation*}
L_{1} / 20>h>L_{1} \quad 3 \tilde{5}, \tag{62}
\end{equation*}
$$

and assuming that the reinforcing rods are $1^{\prime} \underline{Q}^{\prime \prime}$ rounds with $1^{\prime} \underline{Q}^{\prime \prime}$ covering of concrete we whall have from the definitions of $d_{1}, d_{2}$ and $d_{3}$, already given

$$
\begin{equation*}
h=d_{1}+0.75=d_{2}+1.25=d_{3}+1.75 . \tag{63}
\end{equation*}
$$

Substituting these in ( 62 ) ete. we have

$$
\left.\begin{array}{l}
L_{1} / 20-0.75>d_{1}>L_{1} / 35-0.75  \tag{64}\\
L_{1} / 20-1.25>d_{2}>L_{1} / 35-1.25 \\
L_{1} / 20-1.75>d_{3}>L_{1} / 35-1.75
\end{array}\right\}
$$

If it be assmmed that we are dealing with medimm sized panels about $20^{\prime} \times 20^{\prime}(64)$, may be written in the form:

$$
\begin{align*}
& (1-0.062) L_{1} \quad 20>d_{1}>(1-0.11) L_{1} / 35 \\
& (1-0.1) L_{1} \quad 2()>d_{2}>(1-0.18) L_{1} / 35 \\
& (1-0.15) L_{1} \quad 20>d_{3}>(1-0.255) L_{1} / 35 \\
& \text { or, } \frac{0.94}{20}>\frac{1_{1}}{L_{1}}>\frac{0.89}{3.5} \\
& \left.\begin{array}{l}
{ }_{0.90}^{0.90}>\frac{d_{2}}{L_{1}}>\frac{0.82}{35} \\
\left.\begin{array}{c}
0.50
\end{array}\right\} \frac{d_{3}}{L_{1}}>\frac{0.745}{35}
\end{array}\right\} \tag{65}
\end{align*}
$$

In (54), (55), (58) and (60) replace $W^{\circ} L_{1}$ by its value given in (34), viz, $175 d_{1} A_{1} f_{s}$, and we have

$$
\left.\begin{array}{cc}
\Delta z_{1}= & L_{1}^{2} f_{s}  \tag{66}\\
\left(6.11 \times 10^{*} d_{1}\right. \\
\Delta z_{2}= & \left(d_{2} L_{1}^{2} A_{1} f_{s}\right. \\
3.75 \times 10^{s} d_{2}^{2} A_{2} \\
\Delta z_{3}= & d_{1} L_{1}^{2}\left(L_{1} / L_{2}+1\right) f_{s} \\
55 \times 10^{*} d_{3}^{2} \\
\triangle z_{4}= & C_{2} d_{1} L_{1}^{2} f_{s} \\
11.4 \times 10^{\star} d_{3}^{2}
\end{array}\right\}
$$

in which $f_{s}$ is the greatest stress in the steel, i. e., at the mid side belt, employed here to express deflections instead of expressing them in terms of panel load as was done previously.

Introduce into (66) the numerical values given in (65) which will then express limiting values of deflection for medium spans. For simplicity let $L_{1}=L_{2}$ then:

$$
\begin{align*}
& 287> L_{1} f_{*}  \tag{67}\\
& 10^{5} \triangle z_{1}
\end{align*}>155
$$

By (61) we have the proportionate deflection of the side and diagonal belts as follows:-
 $\left[\begin{array}{c}1 \\ 162\end{array}+\begin{array}{c}1 \\ 440\end{array}\right] \underset{10^{5} \mathrm{v}_{2}}{f_{\mathrm{s}}}<\begin{gathered}D_{2} \\ L_{1}, 2\end{gathered}<\left[\begin{array}{c}1 \\ \left.\frac{81}{81}+\begin{array}{c}1 \\ 203\end{array}\right] \begin{array}{c}f_{\mathrm{s}} \\ 10^{5} \sqrt{2}\end{array}{ }^{5}{ }^{2}\end{array}\right.$
$\frac{f_{5}}{225 \times 10^{-5}}<D_{1}<\frac{f_{s}}{118 \times 10^{-5}}$

$$
\begin{equation*}
\frac{f_{i}}{167 .+\times 10^{5}}<\frac{D_{2}}{L_{1}, 2}<\frac{f}{82 \times 10^{5}} \tag{68}
\end{equation*}
$$


If $\left.f_{\mathrm{s}}=24000 . \quad{ }_{697}<\begin{array}{c}I_{2} \\ L_{1} \mathfrak{V}_{2}\end{array}<\begin{array}{c}1 \\ 341\end{array}\right\}$
If $f_{s}=32000, \quad 1 \quad \frac{D_{2}}{523}<\frac{1}{L_{1} \sqrt{2}}<\frac{256}{2}$

Larger spans then $20^{\prime}$, or smaller steel tham 1 ' $2^{\prime \prime}$ round, or $L_{2}<L_{1}$ will reduce the above values somewhat, while smaller spans or
larger steel will increase these values, all of which ean in each ease be submitted to calculation by the methods here developed.

To recur at this point to the expression for the deflection $D_{2}$ in terms of the panel load II by help of (55), (60) and (61)

$$
I_{22}=\begin{gather*}
C_{2} \| L_{1}^{3}  \tag{70}\\
10^{10} A_{1}
\end{gather*}\left[\begin{array}{cc}
1 \\
6.5\left(j d_{2}^{2}\right.
\end{array}+\begin{array}{c}
1 \\
20 \|_{3}^{2}
\end{array}\right]
$$

By (6.5) we find

$$
\frac{90}{8.5}<\frac{d_{2}}{d_{3:}}<\frac{82}{14.5}, \text { or } 1.1>\frac{d_{2}}{d_{3}}>1.06
$$

and using this inequality $\mathrm{t}_{0}$ climinate $d_{3}$ from (70) we find after reduction

$$
\left.\frac{C_{2} \| I_{1}^{3}}{4.8 \times 10^{10} d t_{2}^{2} A_{1}}<I\right)_{2}<\frac{c_{2} \|^{\circ} L_{1}^{3}}{4.7 \times 10^{10} d_{2}^{2} A_{1}}
$$

from which we may write as a moan value

$$
\begin{equation*}
I_{2}=\frac{C_{2} H L_{1}^{3}}{4.7 .5 \times 10^{1(1)} d_{2}^{2} A_{1}} \tag{71}
\end{equation*}
$$

The empirical deffection formula given on page 29 of Turner's Conarete steel ('onstruetion, when written in these mits, is

$$
I_{2}=\frac{11 L_{1}^{3}}{4.84 \times 10^{10} d_{2}^{2} A_{1}}
$$

This is identieal with (71) when C $C_{2}=0.98$, and diverges from it slightly for other admissible values of (\%2. The practical agreement of (71) and (72) affords a second confirmation of the theoretical deductions madre thus far, and this taken in conjunction with the practical identity of formulas (34) and (35), the theoretical and empirical expressions for the maximmon tensile stresses in the reinforeement, furnishes what on the theory of probabilities may be regaredel ate so strong a probability of the general trustworthiness of the entire theory as to exclude ans rational supposition to the contrary.

The varions formulas for stresses and for deflections which have been developed in this paper have been obtained under the express proviso that the panel under consideration was assumed to be one of a practieally umimited number of equal pancls constituting a contimous slab, all of which are loaded uniformly and equally. The
question at once arises as to the amount and kind of deviations from these formulas which will occur by reason either of discontinuity of slab or loading, such as occurs at the outside panels of a slab or at pancls surrounded partly or entirely by others not loaded. The answer to this question depends very largely upon the construction of the flat slab itself.

In the standard mushroom construction it has been found that the stresses and deflections of any panel are alnost entirely independent of those in surrounding pancls. This is due to the fact that the mushroom head is an integral part of the supporting column in such a mamer that it is impossible for it to tilt appreciably over the column under the action of any eccentric or unequal loading of panels near it. When single panels have been loaded with test loads, no appreciable deflections have been discoverable in surrounding panels, and no greater stresses and deflections have been discovered than were to be expected in case surrounding panels were loaded also. Future careful investigation of this may reveal measureable effects of this kind, but they must be small.

A like statement camot be mate of other systems of flat slab construction where the reinforcement over the top of the colum is not an integral part of the columm reinforcement itself. Tests on these systems have shown clearly the effects of the tipping of the part of the slab on the top of the columm, and lack of stiffness of head, in the increase of the deflection of the single loated panel over the deflection to be expected in case of multiple loaded panels, and especially in the disturbance of the equality of the stress in the otherwise equal stresses in the rods of the side belts. such distrubance, by increasing the stress in part of these rods, would neressitate larger reinforcement in the side belts of such systems than would be required in moshroom slabs. The great stiffness of the mushroom hearl is also of prime importance in taking care of accidental ind unusual strains liable to occur in the removal of forms from under insufficiently cured slabs.
14. In considering the design of the ring rods and radial cantilever rods of the mushroom head, it should be borne in mind that they occups a position in such close proximity to the herel of the neatral surface as to prevent them from being sulbected to severe tensile or compressive streses by reason of the bending of the slab as a whole. Their principal function as shab memhers is to resist shearing stresses and the bembling stresses (hate to
local bending. Their total longitudinal stresses are too small in comparison to require consideration.

Let a eytindrical surface be imagined to be drawn concentric with a column to interseet the slab, then the total vertical shearing stress which is distributed on the surface of intersection is equal to the total panel load IV diminished by the amome of that part of the panel load lying inside the eylinder. If the eylinder be not large, the total shear may be taken as approximately equal to Il itself.

It is evident that the smaller the dimmeter may be that is assmed for this cylinder, the greater will be the intensity of the vertical shear on its surface and that for two reasons: First, because the totel load thas carried to the colum will be greater the smaller the diameter, and seeond beeanse the surface over which the total shear will be distributed decreases with its diameter.
'The result of this is that the dangerons section for shear is the colindrided surface at the edge of the eap). For cylinders smaller than this the increased vertical thickness of the eap diminishes the intensity of the shear. We proeeed therefore to eonsider the manner in which the total vertical shearing stress of appoximately $W$ in amoment is distributed in the material of the erlindrieal surface at the edge of the (eap).

In a bean or slab the horizontal shearing stresses due to bending reach a maximum at the noutral surface. It is a fundamental condition of equilibrimm that shearing stresses on planes at right angles shall be equal, and it is this condition that determines the distribution of the vertical shears, whef are at right angles to the horizontal shears renting from bending the stab as a whole. From this we have the well known fact that the vertieal shear varies from zero at the upper and lower surfaces to a maximmon the neutral surface, and this is neressarily the mamer in which the total shear is distributed at the edge of the (ap). The top belt of rods will be subjected to comparatively small shearing stresses, and successive layers of rods will be moder larger and larger shearing stresses by reaton of their greater nearness to the neutral surface, while the total shear borne by the radial rods near the neutral surface will be much larger than that upon the others. The shearing stress in the concrete will need to be considered also.

It is to be notieed that all the steel of the belts and mushroom head act together without the necessity of supposing large compressive strosses in the concrete to tramsmit vertical forces, because the belts of reinforcement rest directly upon each other, and these in turn upon the ring rods and radial rods, all in metallic contact
with each other, in the mushroom head, and so they transmit and adjust the distribution of stresses within the system to a very large extent indepemdently of the eoncrete.

We ean then safely assign moderate values of the shearing stress to each of the elements that constitute the slab at the edge of the cap, with the assurance that they will each play a part in general aceordance with the distribution which has been already explained.

The mushroom is constructed of great strength and stiffness not merely to effect the results which have appeared previously in the course of the investigation but also to ensure the stability of the slab in case of mexpected or accidental stresses due to the too early removal of the forms, before the slab is well cured, at a time when the only load to which it is subjected is clue to the weight of the structure itself.

The working load to be assumed in designing the mushroom may be taken as the dead load of a single slab plus the design load, provided sufficiently low values of the shearing stresses be assumed in the cross sections of steel and concrete at the edge of the cap for the support of this working load, as follows:

For slabs having a thickness of $h=L \quad 35$ a mean working shearing stress of 2000 lbs per square inch at the right cross section of each reinforcing rod which crosise the edge of the eap, a mean shearing stress of 40 db s. per square inch in the sertieal cylindrical section of the concrete at the edge of the eap, and 8000 lbs per square inch of right eross section of each radial rod.

For slabs having a thickness of $h=L 20$ the intensities just given may be safely increased by 50 per cent for reasons that will be explained later. For slabs of intermediate thickness increase the intemsities proportionately.

These values are sufficiently low to enable the structure to support itself before the concrete is very thoronghly cured, and the head so designed will be found after it is well eured to be so proportioned as to earry safely a test load of double the live and dead loads for which it was designed.

In this connection it seems desirable to inventigate what takes place in case of overloating and incipient failure of an insufficiently cured slab, or one unduly weakened by thawing of partially frozen concrete. Suppose that under such circumstances a shearing crack were formed extending completely thru the head at the edge of the cap, and we wish to investigate the stresses and behavior of the rods
that cross the crack at which shearing deformation has begun to take place. Designate the position of the crack by $X$.

The total vertical shearing stress on a radial rod at $X$ is the sum of two parts found as follows: First, the rertical reaction at the top of a column is made up of the vertical reaction of the concrete core of the column and the reactions of its vertical reinforcing rods. Call the vertical reaction of one of these rods $V_{1}$. The rod is bent over radially and $V_{1}$ expresses also the amount of the vertical shear in that rod where it starts out radially from the column. Between this point and $X$ for a distance which measures usually from 9 to 12 inches, the rod experiences the supporting pressure of the concrete in the eap muler it to a total amount which we will designate by $\mathrm{l}_{2}$. The total shear in the radial rod at $X$ will then amount to

$$
\begin{equation*}
V^{\prime}=V_{1}+V_{2} . \tag{73}
\end{equation*}
$$

provided we neglect the weight of that amall part of the actual load of the slab which lies directly over this piece of the rod and may be regarded as resting upon it. This portion of the radial rod of length $l$ is a cantilever fixed at one end in the top of the column, and earrying a load $I^{\prime}$ at the other end with a supporting pressure underneath of total :umemt $I_{2}$ whese intensity is greatest at $X$ and gradunally decreases atong $l$ from $X$ to the fixed end. The rod has a point of contraflexure and zero moment at $X$. The portion of the rod outside the crack has a fixed point in the slab at the place where it supports the imer ring rod, at a distance from $X$ which should not exeeed $l$ as just defined. Similar conditions hold for this length; i. e. there will be a total hear in the radial rod at a point just inside the imer ring, rod lue to its total shear outside this ring rod and to the vertical louding imparted to it ley the ring rod itself. To this must be added the downward pressure of the concrete between the inner ring rof and $X$. All these, together, constitute the total shear - $V$ at $X$, in equilibrium with the reaction $+V$ already obtained at that point.

We shall disenss separately the action of $V_{1}$ and $V_{2}$ upon a radial rod. A loard $V_{1}$ at the end of a cantilever of length $l$ causes a deflection of amount $z_{1}=\frac{1}{3} V_{1} l^{3} / E I$. in which $I=\pi t^{4} / 64$ where $t=$ the thickness of the rod.

$$
\text { Also } \Gamma_{1}=s_{1} A \quad, \quad A=\pi t^{2} / 4
$$

in which $s_{1}=$ the mean shearing stress per square unit of cross section and $A$ is the cross section of the rod. Hence

$$
\begin{equation*}
s_{1}=3 z_{1} E t^{2} / 16 l^{3} \ldots \tag{75}
\end{equation*}
$$

which shows that so far as $V_{1}$ is concerned, for any given displacement $z_{1}$ the sheaing stress carried per square unit of rod will be proportional to the square of its diameter, and up to its permissible limiting shearing resistance, each unit of section of such a rocl will be effective in proportion to the square of its diameter. For economical construction, this will require the ratial rods to he few and large, rather than numerous and small. The bending moment is greatest at the distance $l$ from $X$ and amounts to $V_{1} l$. The stress in the extreme fiber due to the bending moment $V_{1} l$ in the rod is

$$
\begin{equation*}
\mu_{1}=\mathrm{T}_{1} l t \quad 2 I=\mathrm{S}_{1} l, t \tag{76}
\end{equation*}
$$

This equation shows that the stress in the extreme fiber is so very large at the fixed end of the rod compared with the shear at $I$ that so far as $V_{1}$ is coneerned the rod will suffer permanent deformation by bending long before there is any danger of its shearing. $V_{1}$ is so large comptred with $\mathrm{V}_{2}$ that this conclusiom will not be altered when we come to consider the combined action of $\mathrm{V}_{2}$.

Incipient failure of this kind will therefore catuse distortion and sag without collapse. In case such sag as oceurs in this case is letected underneath the head around the rap, the slab should be blocked up at once and the concrete picked out at all parts showing facture. This should then be refilled with a stronger conerete which will set rapidly. Such repair should not weaken the slab.

Whenever the intensity with which a radial rod presses upon the concrete at the edge of a crack at $I$ passes the compressive strength $f_{e}$ of the concrete, it must begin to vield. At this instant we shall have a pressure of the concrete agamst the rod which gradually diminishes as we pass along the rod from $I$ to the distance $l$, where it beeomes zero. Wro shall assume that the pressure diminishes uniformly with this distance. This may not be precisely correct, but camot be moch in error. If the shear $V_{2}$ at $X$ is the sole cause of this pressure, then $T_{2}=\frac{1}{2} t l f_{c}$ and $\frac{1}{3} V_{2} l=\frac{1}{6} t l^{2} f_{c}$ is the bending moment in the rod at the distance $l$, due to $\mathrm{I}_{2}$ at I and the pressure distributed along $l$.

It will be found that these produce a deflection

$$
\begin{equation*}
z_{2}=3 f_{\mathrm{c}} l^{\frac{1}{2}} / 20 E I=0.3 l^{3} \mathrm{~V}_{2} E I \tag{77}
\end{equation*}
$$

a unit shear of

$$
\begin{equation*}
s_{2}=\Gamma_{2} \quad A=z_{2} E t^{2} \quad 4 . s t^{3} \tag{78}
\end{equation*}
$$

and a stress on the extreme fiber at a distance $l$ amounting to

$$
\begin{equation*}
\rho_{2}=\mathrm{r}_{2} t l \quad 3 I=16 s_{2} l / t \tag{79}
\end{equation*}
$$

It thas appears that the equations expressing the action of $V_{2}$ are precisely similar to those for $V_{1}$, differing only in their numerical coefficients, and consequently all the statements as to the resistance of the radial rods under the action of $V_{1}$, hold for the action of $V_{1}$ and $V_{2}$ together in the case of given initial deformations, $z_{1}=z_{2}$ at $X$.

While the preceding investigation has, in order to make ideas explicit, ostemsibly assumed a erack at $X$ and an initial small shearing deformation at $X$. the investigation applies equally well to the elasticeshering deformation of the concrete at the dangerous section in which case the total shearing stress will consist of an additional eomponement due to the resistane of the eonerete, which however may for additional safety be neglected. If the assumed deformation be confincel within limits so small that the eonerete is able to endure it without aracking then the preeding investigation may properly be appled to it. It is right here that the thickness of the radial rods is able to render its most effeetive service, for it appears from (75) and (78) that any permissible intensity of Whear may be developed in the radial rods by making them of suitable thiekness, even tho the deflection be kept within the elastic limits of the concrete.

As already stated we must not oworlook the fact that the major stresses here are those moler the head of $\mathrm{J}_{1}$, which are due to the direct metallic contacts of the steel rods resting one upon anothor, where large stresses are transmitted and pass independently of the concrete except for the distortions of the steel which meet resistance and the secondary reactions such as have been treated in a single aspect while investigating the action of $V_{2}$.

It is che to this fact that large shearing stresses may be safely borne by the slab at and near the edge of the eap, which the concrete mostly escapes, it merely furnishing some lateral stiffening to the steel. On this prineiple the outer ring rod should have a cross section not much less than one half that of the radial rods on which it rests. For, this arrangement provides for the transferal to the radial rods of all the shear the ring rod is able to carry, it being in double shear compared with the radial rod it rests on.

It is impossible to determine the cross section of the imner ring rod, with the same definiteness as that of the radial rods, but that is umimportant. Its position has already been fixed as not more than $l$ from the edge of the cap, where $l$ is the distance from the top hoop or collar band of the column to the edge of the cap.

The vertical shearing stresses may be regarded as suffieiently resisted outside the mushrom by the eoncrete alone. The eritical eylindrical surface separating those areas where the shear may be assumed to be safely earied by concrete alone, from those areas where the steel may be relied on to carry as much of the shear as may be required, should evidently be taken somewhat inside the outer ring rod, but just where is of no particular consequence.

The supposition of the existence of a erack at $X$, either atetual or potential, on which our computation of the stresses in the ratial rods has been based, is sufficiently satisfactory so far as the rods themselves are concerned; but it seems desirable to consider in more detail the phemomena attending the development of the stresses in the concrete at and near the edge of the cap, especially in soft eenerete when the limit of its compresise resistane is reached in this region.

The horizontal compressive resistance of the eonerete at the lower surface of the shab is that already treated in (38), and it is our present objoct to consirler how that is to be combined with the vertical supperting pressures under the radial rods, and with the horizontal and vortical shears in the shat due to bending. These later are greatest in the neutral surface, as has heen previousy stated, and according the gemeral theory of stresses are equivalent to, and may be replaced by, a compression and a temsion in the material respectively at $45^{\prime \prime}$ with the vertical (and mutually at right angles) of the same intensity as the shear. It is eviclent that the combination and resultant of these theer compressive stresses would form the dangerous element in the stress, since the single tensile element woukl be relatively mimportent, and it would find assistemee in its resisteme from the steel rummer in a direction thru the eoncrete such as to afford it substantial support. This direction is that of the straight lines on the surface of a right cone whose vertex is alose the eenter of the columm and whose slope is 1 to 1.

Comsider now two of the dements of the eompression in the conerete aromel the cap, viz, the horizontal compression which is a maximum at the lower surfare and zero at the nentral surfare, and that due to shear which is paralled to the sides of a right rome with vertex downward, whose sides have an upward and out ward sloper of 1 to 1 , while its intensity is so distributed that it is zero at the bottom of the slab and greatest at the meatral surface. It apperars consequently that the lines of ereatest eompression in the eonerete due to the eombination of these two elements of compression would
lie in vertical planes on a bowl or saucer-shaped surface that is horizontal at the edge of the cap and inclined at a slope of $45^{\circ \prime}$ at the neutral surface; and if the concrete were to crush under these stresses alone, the surface of fracture would have the shape indicated instead of that of the cylindrical surface previously assumed. This change would not, however, materially affect the computations we have made of stresses in steel; it merely serves to fix more definitely the position of the points of contra-flexure of the radial rods.

But there is still one further element or component of the total compression in the concrete to be considered and combined with those just treated in order to arrise at the resultant or total compression. This componement is that due to the conerentrated pressares molderneath cach of the radial rods. These rods are at some distance apart circumferentially and so do mot exert a pressure that is umifomly distributed circumferentially. Any concentrated stress, such as that in the comerete supporting a rod, diffuses itself in the material in such a mamer that its intensity rapidly diminishes with the distance from the surface of the rexl, in areordane the same law as exists in case of eenters of attraction. Since the supporting compression moder the reels is vertical, we cam imagine the lines of greatest compresion in the concrete, when this component is combined with these already mentioned, to lie in vertical plames on a bowl or sancer-shaped surfare which has as many indentations or scollops aromed its edge as there are radial reds, at which indentations the slope of the sides is such more nearly vertical that a slope of $45^{\circ}$. At such parts of the surface the intensity is also more severe, and especially is this the case if the sat) is thin so that the concentrated pressure has small opportunity to distribute itself hey radiating into a considerable body of material before it reaches the bottom of the stab. It thus comes about that thick slate are mabled to carry safely larger intensities of shearing stress aromed the cap than can thin slabs, which is in aceordance with and in justification of the statements already mate as to permissible shears around the cap.

The resulting surface of fracture due to shear and compression around the cap would be of irregular conical shape starting from the edge of the eap and extenting thru the entire thickness of the slab, were this not interfered with in the upper part of the slab by the mat of reinforcing rods, which are so tenacious as to tear to pieces and fracture the upper surface to a considerable distance in all directions whenever any such fracture oceurs around the column.

Nevertheless such lracture as here described does not under
any ordinary circumstances result in a dangerous collapse of the slab, or one that cannot be repaired without much difficulty, for, the radial rods and the reinforcing rods will at most have suffered some indlividual deformation by bending and are still far from being broken. This will become evident later where an experimental attempt to load a full-sized slab to failure is described in detail, and full account of the results reached is explained and illustrated.

It is stated on good authority that in experience with many hundreds of buildings constructed on this system, no case of shear failure or even of incipient shear failure or fracture has occurred in a well cured slab near the column and while a few cases of incipient fuilure have occurred in floors where forms were prematurety remosed, no injury or fatality has resulted therefrom to any person.

It appears that the line of weakest section in the cured slab of the standard mushroom type is that discussed previously in obtaining (37) and shown in Fig. 55, page 164. This is brought out later by a test to destruction of a fairly well cured slab. The line of weakest section in a partly cured slab is on the other hand not definitely fixed, but may be and sometimes is, shearing weakness near the column as has been discussed and pointed out. Provision against such weakness or carelessness is a safeguard which, while costing a small amount in the matter of steel, is an insurance against serious accident well worth the investment involved. It is seeured by making the radial and ring rods sufficiently stiff and strong.
15. This section will be devoted to a consideration of the ${ }^{2}$ mushroon system, and to several more or less similar flat slab, systems, in order to comment on the modifieations in mechanical action that are produced by the particular modifications of the arrangement of the reinforcement in these systems.

Fig. 53, page 159 represents the section of a standard mushroom head by a vertical plane thru the axis of the column. In this the dbow rods are shown, the vertical portions of which are embedded for such distances as may be necessary in the columms or are themselves column rods. One of these is represented separately at the right side of Fig. 53. They are confined just under the elbow at the top of the column by a steel neck band, and are bent over at the elbow to extend radially into the slab. This bent over portion is formed to scale as to length and slopes in accordance with the size and thickness of the stab in which it is to be used, in such a way that when the ring rods and four layers of slab rods rest upon it and are tied in place, the top of the upper layer will be
0.75 inch below the top of the slab at a distance of the thickness of the slab outside the edge of the eap, and at the same time the extremities of the radial rods will be 0.5 inch above the bottom of the slab. In order to accomplish this, the radial portions of these rods must be nearly horizontal over the cap, and have a suitable slope outside the (ap as shown in Fig. 53 , page 159.

Fig. 5.5, page 164, shows the gromel plam of the reinforeement of the mushroom slab when the pand is square so that $L_{1}=L_{2}=2 a$ $=2 b$. In Fig. 5.5 the diameter of the mushroom head is assumed to be of the extreme size $!=L, 2$, a size which would increase the rantilever beyoud that in minal practice to an extent not adopted except in the case of very masmal intemsity of loading. It will be observed that the areas where the reinforerment eonsists of a single belt or layer are theres remered small, and the slab action due to the mutual lateral action of belts which eross each other exists over mearly the whole stath.

In Fig. it, the dimensions of the reetangular sides are so taken that $L_{1 /} L_{2}=0.75$, which is assumed to be the limiting or smallest value of that ratio for eonstructiomal purposes. Further, the diameter of the mashroom is mate as small as will permit the reinforcing belts to corer the antire pamel, viz. $!=7(a+b) / 16$. For (example if $L_{1}=20$, and $L_{2}=15$, whe have $y=7.6 .5+$. This may be comsidered to represent standard practiee, where the alges of the diagonal belts interseet on the clege of the side belts. This Was the ease assmed for treatment in deriving the formulas of the preceeding invertigations. These formulas could be modified to apply to larger values of $g$, by taking lines of contra-flexure at the edges of the head nearer the panel renter than given by (24), and by taking larger values of the effective cross seetion of steel than those amployed in ( 32 ), (40) and ( 51 ).

Now it is revent that systems similar to this may differ from it in several ways:-

1st. The design of the frame-work at the top of the column may be different from this without any change in the belts of reinforeing rods. It is hardly possible for any other form of framework to be substituted for this which will exhib it the same rigidity of comection between it and the columm as do the elbow rods embedded in the eolumn and bent over radially in the slab so as to make the column and slab integral with each other by means of this common reinforeement. Any reduction of the stiffness of eonnection between colmm and frame-work of head results in inereased tipping of the head moder accentric loading of the stab.


Fig. 56
Eccentric loading is any louling of one panel differently from another. Tipping of the heal increases some deflections at the expense of others, ind increased stresses in some of the reinforeing rods at the expense of others, and so requires some alditional reinforcement. Such a frame-work is illustrated in Fig. .fo. which merely rests upon the top of the colum withont the support of metallic connection with the rertical column rork. It consequently affork less resistance to tipping under eceentrie loads than when stiffened by such metallic eonnection.

2nd. The ground plan of the reinforeing belts may remain unchanged but part only of the belt rods may be carried at the top of the slab over the eolumn head, while the rest of them are carred thru under the head at the bottom of the slab. This morlification of design, when a sufficient number of rods go over the head to resist the negative beneling moments there, is very meoonomical of sted, because in the case where they all go over the horat, it is the face that altho the mean tension of the steel is not so great as at mid span, nevertheless, by reason of the overlapping of the belts in crossing, the stresses in the rods at the top reach a value not much less than at mid span, and camot be safely diminished in number. It thus appears that the rods carried ther on the bottom are largely supertluons. Of these two mats of rooks at top and bottom, one of them is necessarily in tension and the other in compression. But it is a mistake to mace steed to resist eompression when eonerete can be hettor used for this purpose. Tho lower mat is superfluous for this reasom.


There is still another and, if possible, more serious objection to this aramgement of rock to form a mat or double layer of rods at the top and at the bottom of the slab near the colmmns. This is becanse they are too far remosed from each other in the slab for the elongations of the sted in one mat to be resisted by lateral contractions in the other. The reinforcement does not therefore conspire to produce the slab action expressed by Poisson's ratio, which requires that the interacting steel eoncerned should lie approximately in the same zone or level.

This arrangement is illustrated in Fig. 57, copied from Taylor and Thompson's Concrete Plain and Reinforced, p. 484. In this design the size of the head is small enough to retuce the width of the belts so greatly that not only are the areas where we have a single layer of rods on the plan much enlarged, but we find that nowhere do more than two layrs lie in metallic contact with each other, and the areas where even this occurs are limited to one relatively small square over each column, and one of equal size at the middle of each panel. The remaining areas are subject to the law of single rod reinforcement, where we must assume lateral action to be such as greatly to diminish $K$ for the combination, a fact very injurious to the efficiency of the reinforcement. This as has been said, is due partly to the smallness of the head and partly to the separation of the layers between the top and the bottom of the slab.

3rd. Another modification of design without change of ground plan is that where the rods that are carried over the head at the top of the slab are given a sudden steep dip at the line of contraflexure to carry them to the bottom of the slab at that line. This is also illustrated in Fig. 57. Such sudden bends or kinks anywhere in the rods may give rise to very serious fractures because of straightening out under tension, especially when the forms are removed. Such bends give rise to great differences of stress in the extreme fibers of the rods, thus diminishing their resistance also. All sudden bends in rods embedded in concrete should be sedulously avoided as tending very effectively to crack the concrete, whether the rods are part of the belts or in the frame-work of the head, as shown in Fig. 55, in which are many such angles and elbows unsupported except by concrete, and therefore objectionable.

It seems fair to conclude that the cracks shown in the plan of the floor of the Deere \& Webber Company Building, Nimeapolis, tested by Mr. Arthur R. Lord, and occuring along the edges of some of the loaded panels at the upper surface, where none usually appear, were due to the elbows in the frame work of the head, like that in Fig. 56, in conjunction with the comparatively small resistance to bending in a vertical plane offered by the rods forming this projecting elbow.

In the mushroom head the only bend permitted is that at the elbow of the radial rods where a strong steel neck band prevents any such bad effect as has just been pointed out.

lig. 5 s

4th. We may notice a form of design in which the diagonal belts are omitted and the entire panel is covered by rods parallel to the sides of the panel. This, while apparently very different in ground plan from those just considered does not differ from it materially in principle. It is clear that the lattice pattern of the web in this case is in many parts of the panel not woven so close as where diagonals exist, while in other parts of the mesh the number of layers in contact with each other has been decreased. Experimental results do not as yet anable us to determine with certainty whether Poision's ratio for this combination is as great as for the mushroom. [pon that depends in part the relative efficiency of the two arrangements. A form of this dexign is seen in Fig. 58.

The maximmo deffections at the eenter of a loaded panel of the system of Fig. sis, would oreur when the pancls touching its four sides were also loaded. In this particular it differs from a loadd pand in a mushrom slat, which would theoretically have its deflaction slighty decreased by loading surrounding panels. tho this is tow imsignificant to hase been olmerved as yet.

Deflections shown be tests of this sestem of two way reinforeement are wholly inconsistont with simple bean theory, and can only be explained on the baxis of sab theory. Nevertheless, some of its adrocates attempt to design its remforement and compute its strenget on the basis of leam theory, which actual deflections show to be untomate. such attompts should be entirely abandoned ats erroneous and misleading.

All comsiderations which have been diseussed under the three previous comuts are to be taken as applying equatly to this plan of arranging the reinforeing rods, especially as to carrying of part of the belts thris on the bottom surface at columns.
ith. Another cement of design is the relative number of rods in the side and diagonal belts. Wre have previously adduced reasons to show that in a square panel the same number of rods is refuired ultimately in the diagonal belts as in the side belts, tho for stresees less than the yield point of the steel, it would be possible to diminish the number of rods in the diagonal belts somewhat. Equation (34) shows that for equal stresses in the steel of the side belts the number of rods should have the same ratio as the lengths of the sides.

A different rule from this has been erroneously proposed, viz, that the ratio of the number of rods in the side belts should be equal to the ratio of the cubes of their lengths. The only foundation for this rule is that according to the beam strip theory as
developed in Marsh's Remforced Concrete, p. 283, a rectangular plate carried by a level rigid support around its perimeter, would divide the load per unit of area which is carried by two unit-wide rectangular strips that cross each other, as the fourth power of their lengths, and hence would carry to the edges of the rectangle loads proportional to the cubes of the lengths of those edges. Were this so, the case of a horizontal rigid support around the entire perimeter of the panel is wholly different from support on columns at the comers, and such a rule would be wholly inapplicable therefore to a floor slab so supported. This rule was, however, evidently adopted in the design of the Larkin Building, Chicago, as shown by a photograph of its reinforcement in place before the concrete was poured, to which the writer has access and published in Cement Era for February, 1913. The very exhaustive tests of this building made by the Concrete Steel Products Company of Chicago, and published in the Cement Era, for January 1913, show that this ratio of rods caused the stresses for the larger loads to be more than twice as great at the middle of the short side belts as at the middle of the long side belts. This was assuredly an uneconomical distribution of steel, since correct design would require these stresses to be equal, when in fact one exceeded the other by 120 to 140 per cent. This discrepancy would be largely rectified by making the number of rods directly proportional to the lengths of the sides, as required by (34).

It also appears that the diameter of the mushroom head and the width of belts of slab rods in the Larkin Building is less than the limiting size in the standard mushroom system, viz. $g=7(a+b) / 16$. This makes the intersection of the diagonal belts fall nearer the center of the panel than the edges of the side belts. The very considerable effect of a very inconsiderable change of this width has been mentioned on p. 182. The result would be that the steel would for this reason be far less effective, and its resistance would be more nearly in accordance with (37) than with (34), a loss of perhaps 25 to $30 \%$ in its cffectiveness.


Tisehers Creek Bridge, Duluth


Test of Tischers Creek Bridge with 30 ton construction cars, each loaded with 20 tons of rails Deflection less than one twenty thousamith part of the span

## C＇HAPTER II

CALCULATION゙ OF ぶTRESSES AND DEFLECTIONS VERIFIED BY TEST＇

## 1．Specimen Computations of Stresses and Deflections in Several Slabs．

Ford Buildiny，Los Angeles．Calif．

$$
\begin{aligned}
& L_{1}=28 \times 12=336^{\prime \prime} \\
& L_{2}=25^{\prime} 10^{\prime \prime}=310^{\prime \prime}
\end{aligned}
$$

Thickness of panel tested varied from $11 \frac{3}{5}$ to $12 \frac{3}{4}$ inches．Effec－ tive thickness taken conservatively at $11 \frac{3}{4}$ inchos $=L_{1} \quad 28=L_{2} \quad 26.4$

By（56）$C_{2}=L_{2} L_{1}=0.92$ nearly．
Diameter of head $g=7\left(L_{1}+L_{2}\right) \quad 32=1+1^{\prime \prime}$ ．
Diameter of cap $L_{1}-B=0.2 L_{1}=\left(6 \sigma^{\prime \prime} . \quad B=0.8 L_{1}=268.8^{\prime \prime}\right.$ ．
Each belt of twenty－five， $7 \quad 16^{\prime \prime}$ round rods．
Cross section of each belt，$A=25 \times 0.15+=3.76 \mathrm{sq}$ ．inches．
Depth of center of mid side belt with $\frac{1}{2}$ inch concrete covering $d_{1}=11.75-0.5-0.2=11^{\prime \prime}$ ．

Depth of center of second layer of shah rods at panel center． $d_{2}=11.75-0.5-0.64=10.6^{\prime \prime}$ ．

Depth of bottom surface below third layer of slab rods at edge of cap with $\frac{3}{4}^{\prime \prime}$（covering，$d_{3}=11.75-0.75-1.1=9.9^{\prime \prime}$ ．

Design load per square foot $=150 \mathrm{lbs}$ ．
Dead load per square foot $=130 \mathrm{th}$ s．
Total design load，$W^{\circ}=280 \times 28 \times 25.56=202,500 \mathrm{lb} \%$ ．
Test load $\mathrm{W}^{*}=300 \times 28 \times 255,6=217,0000 \mathrm{lbs}$ ．
A maximum tension is found in the slab rods at the midedle of the long side belt，and is to be computed from（34）as follows：

$$
f_{8}=\frac{217000 \times 336}{175 \times 11 \times 3.76}=10,0.50 \mathrm{lbs.per}+1 . \mathrm{int}
$$

Any other loading within elastir limits of the steel would produere proportionate stresses．

The tension in the steel at the center of the panel is computed by（52），as follows：

$$
f_{\mathrm{s}}=\frac{1.02 \times 2025.50 \times 336}{256 \times 3.76 \times 0.89 \times 8.86}=818 t \mathrm{Hbs} \mathrm{per} \mathrm{sq} . \mathrm{in} .
$$

The radial tension at the edge of the cap by (4) is less than

$$
f_{s}=\frac{217000 \times 336 \times 1640(3 \times 1.61-1)}{800 \times 9.9 \times 3.76 \times 310}=19.500 \mathrm{lb} \mathrm{~s} .
$$

per sic. in.
Hence by (45) the unit compression in the concrete at the edge of the (ap) is. less than

$$
f_{c}=19550 \times 0.7 \quad 15=912!\mathrm{hs} .
$$

The compression in the concrete lengthwise of the longer side belt at its middle is to be computed from $f_{s}$ and (38) as follows, by taking the pereentage of belt refuforement at $0.24_{c}^{\circ}$, the corresponding value of $i=0.76$, and $E_{s} E_{c}=1.5$ :

$$
f_{u}=\frac{0.24 \times 10050}{0.76 \times 1.5}=211 \mathrm{lbi} \text { pers. in. }
$$

The compresion at the center of the pancl, where the percentage of slab reinforeement may be comservatively assmed at $0.6 \%$ and $i=0.67$, may be computed thus:

$$
f_{n}=\begin{gathered}
8184 \\
2 \times 1.5
\end{gathered}=2 \pi 3 \mathrm{lln} \cdot \mathrm{per} \cdot \mathrm{sif} \text {. in. }
$$

If a test load of twice the dexign load, viz, in this case of 300 lhs. per square foot, he placed upon the slab, the deflections which will be produced by the addition of this total load of $217,000 \mathrm{lbs}$. may be computed as follows:

$$
\begin{aligned}
& \text { By (54), } \triangle z_{1}=\frac{217000 \times 336^{3}}{10.7 \times 10^{11} \times 11^{2} \times 3.76}=0.169^{\prime \prime} \\
& B y(55), \Delta z_{2}=\frac{0.92 \times 217000 \times 336^{3}}{6.56 \times 10^{10} \times 10.6^{2} \times 3.76}=0.268^{\prime \prime} \\
& B y(58), \quad \triangle z_{3}=\frac{217000 \times 336^{3} \times 2.084}{96 \times 10^{10} \times 9.99^{2} \times 3.76}=0.0485^{\prime \prime} \\
& B y(60), \quad \triangle z_{4}=\frac{0.92 \times 217000 \times 336^{3}}{20 \times 10^{16} \times 9.9^{2} \times 3.76}=0.101^{\prime \prime} \\
& B y(61), D_{1}=0.22 \text { inch, and } D_{2}=0.37 \text { inch. }
\end{aligned}
$$

The observed deflection wat ${ }^{3}$ in. $=0.375$ in. The deflection computed by the less exact equation (71) is $D_{2}=0.378$.

$$
\begin{aligned}
& D_{1}=1 \\
& L_{1}
\end{aligned}=\frac{1}{1530}, \quad \text { and } \quad \frac{D_{2}}{{\sqrt{L_{1}}}^{2}+\overline{L_{2}^{2}}}=\frac{1}{1235}
$$

Any loading differing from this would produce deflections proportionate to its intensity.

The observed results of quites a number of tests of mushroom slab floors are to be found on pp. 32 and 44 of Turner's Concrete Steel Construction. These are there compared with results computed according to Turner's empirical formula, which translated into our present notation has been reproduced in equation (72). The observed and computal results show a very elose agreement. The results given by (72) are in close agreement, as has been seen, with those derived from (61).

Some of these test shas present peculiarities of reinforcement such as need to be intlividually considered in order to make exact computations of their eleflections. It is thought that the specimen computation alreaty given will afford sufficiently guidance in the methods to be employed.

Having considered the stresses and deflections of a shat which is near the minimum thickness for the standard mushroom system, viz. $L_{1} / 35$, it will be instructive to consider a specimen or two near the maximum thickness $L_{1}{ }^{\prime} 20$.

The Bridge (her Tischeres Creek, Duluth, Mimn., is surh an example. See cuts opposite page 1.57 and page 220 . It is supported on three rows of columms arossing the gorge at a dist ancer apsart of 27 fort eonter to conter of columms, the two street car tracks being over the side belt that lies along the eenter line of the bridge lemethwise. Each of these rows eomsist of six eolumms lengthwise of the bridge. at at distance apart of 26 foet from conter to rentros, so that

$$
\begin{aligned}
& L_{1}=27 \times 12=324^{\prime \prime} \\
& L_{2}=26 \times 12=312^{\prime \prime}
\end{aligned}
$$

The siza of the mashroom heats and width of the belts is 12 feede which is in exeess of $7\left(L_{1}+L_{2}\right) 32=1391 \mathrm{~s}^{\prime \prime}=11.6^{\prime}$, thus givmg great stiffness. The objoet to be obtained by maximmm thickness and large head is to sereme great stiffeness and so perdued vib)-

 belt of $A_{1}=\pi$ square inches of metal. The slath is los" derep at its thimest part at the gutter on each side of the roartway and the sterel is kept down to that level throughout the slabs, wat ho at the erown of the roadway under the tracks and ower the erenter row of columms the slath in $5^{\prime \prime}$ thicker, or $20^{\prime \prime}$, with the same thick-
nese over the side rows of columms where the sidewalks are. The mean thickness is somewhat in excess of $L_{2} / 20$. This makes $d_{1}=19^{\prime \prime}$ for the short side belts, $d_{1}=17^{\prime \prime}$ for the long side belts and $d_{3}=14^{\prime \prime}$ approximately for the heads. The design load per square foot $=150$ poumes. The dead load of the shat per square foot $=300$ pomends. Hence $W=4.50 \times 26 \times 27=315,900$ pounds. The effertion roses section of shab steel is so great hy reason of large healls that instrad of (3t) we may take

$$
f_{>}=\begin{gather*}
\| l  \tag{34}\\
200 d_{1} \cdot 1_{1}
\end{gather*}
$$

 The total load impenexd on the shab might be made six times as great without ramsing the steed to rearh its riold point, and the live load might berome goo pomads pers spatere font without ratusing $f_{s}$ to exreed 16,000 porunds.

This sath was tested as shown in the ent, page 2e20, by rummeng two construetion ears loaded with 20 toms of rails each over the brielge at the same time along we track of the short side belt 26


Flat Slab Bridge, Denver, Colo. Pans 43 ft . fi in. Carries llaty luterurbath Cars
feet long. Weight of each ear $=60,000$ pounds. Weight of rails 40.000 pounds. Total weight of train $=200,000$ pounds extending over several spans. The deffections were too small to be discovered by observations with level and rod. It is useless to attempt to compute the deflection of this slab under the test load because the four steel rails of the railway tracks across the bridge were so fastened to the steel cross ties which were embedded in the conerete as to make the rails a part of the reinforcement of the slab. They furnish a cross section of reinforcement equal perhaps to $7 A_{1}$. which would effectually bar the application of our deflection formulas and reduce deflections to very small quantities.

In so thick a slab as this the action of any contemplated load is widely distributed by the slab itself, and such loads, as well as all shocks and vibrations are largely dissipated or ahsorbed by the body of slab itself without causing observable local stresses as they do in steel structures.

The Curtis Ntreet Bridye. Denver, Colorado, is one of four brictges across Cherry Creek, shown by the cut on page 224 , eonstructed on the mushroom system. It has three rows of three columns each crossing the stream, the middle column of each row in mid stream with spans of 42 feet between columns centers lengthwise of the bridge, thus obstructing the waterway as little as possible. It has a width of 28 feet between column centers. The slab is 17 inches thick at the gutters, 26.5 inches at the sidewalks outside the gutters, and $21^{\prime \prime}$ over the center row of columns. The sidewalk is stiffened with fourteen $3 \delta^{\prime \prime}$ round rods lengthwise just helow its top surface as supplementary reinforeement, and there is an outside parapet giving added stiffness. There are also three stiffening rods $24^{\prime \prime}$ apart acros the bridge midway between columns. There are three ring rods, and the width of the belts is $16^{\prime}$. This is in excess of $7\left(L_{1}+L_{2}\right) \quad 32=183.75{ }^{\prime \prime}=1.5$. $16^{\prime}$. The heads are exceptionally stiff each having twelve $1 \quad 3-S^{\prime \prime}$ round radial rods. Each belt has twenty-six is s" round rods, hened $A_{1}=26 \times 0.3=8$ square inches nearly.
$L_{1}=42 \times 12=504^{\prime \prime} \quad . \quad L_{2}=25 \times 12=3360^{\prime \prime}$.
The dead load per square foot $=300$ poumds.
The design load per square foot $=1.50$ pounts.
$W^{\circ}=450 \times 42 \times 28=529.200$ pound.
$t_{1}=20^{\prime \prime}$ for long side belt.
Compute the stress in the stoel hy (34) 11modified to (3t)' hy reason of exceptional stiffers. and we ohtain $f=13,32($ pounds.

Compute the central deflection due to a test load of 100 pounds per square foot. Let $d_{3}=16^{\prime \prime}$. Then in (71) $L_{2} / L_{1}=2 / 3$ : hence $C_{2}=3 / 4$, and we have $D_{2}=0.125^{\prime \prime}$. This is probably considerably in exeess of the correct deffection, since the slab is stiffer than the one considered in equation (71), which was derived for 20 foot spans. More correct values are to be computed from (54), (58) and (61). Moreover for such comparativety light stresses in the concrete, the deflections, as wo have seen previously fall short of those computed by the formula, which agrees with experiment for stresses nearer the yield point of the steel. $D_{2}=0.125^{\prime \prime}$ is less than one four-thousandth of the span, and the deflection under the working loud would undoubtedly be less than one sixth-thousandth of the spatl.

A word is here in plate respecting working stresses and the factor of safety in the reinforeoment of slabs, to the effect that the same values of these quantities in slats affords a greater degree of security than in ordinary structural steel construction, and that oceurs for several reatsons:

1st. Steel rods such as are uad in shats have a higher yield point by perhaps $25 \%$ than the steel of other struetural members. Furthermore, it is quite possible amd desirable to use a higher carbon sted for these rods than the mild steed necessarily used in struetural work, where it must he manipulated in such ways that high carbom steel ramoot be used. But in these rods which suffer no usage teneling to impair their condition, there is good reason to use a steet of higher yield point and greater ultimate strength. This yiek point may readily be $70{ }^{\circ}$ greater that that of ordinary milat steel for structural purposes.

2nd. Rods embedded in coneretr do not yied as do bare single rock in a testing machine or elsewhere by the formation of a neck and trawing out at that point. The eoncrete embedment prevents that.

Bral. In a reinforcement consisting of moltiple parallel rots areting logether, no single rod ean become overstrained and yied to any appreciable extent before bringing into play adjacent rods. This makes the construction tough, and not liable to sudden collapse, as well as obviates eoneentration of stresses thus ensuring a high legree of secourity.
2. Further Calculations of Test Slabs. I verification of the calculated stresses and deffections by discussion of test data in ease of soreral sathe appeared in the Trams. Am. Soce. ('. E., for 191t,

Vol. LAXVII, page 1338 to page 1453 . Some of the more impertant calculations and verifications are here inserted, hut for details comsult the original paper.

Test of the Northwestern Cilasis C'ompomy Building, Minnapoolis, made May, 1913, by F. R. MeMillan.
$L_{1}=17 \times 12=204^{\prime \prime} . L_{2}=16 \times 1 \underline{2}=19 \underline{2}^{\prime \prime}$. Rough slah $s^{\prime \prime}$ thick.

Diameter of eap $=50^{\prime \prime}$; diameter of head $=87^{\prime \prime}$.
Each belt eomsisted of fifteen ${ }^{3 \prime \prime}$ round rods with no other laps than merely splices. Standard Mushroom heads.

Design live load 400 pounds per sequare foot.
Test load taken to be expivalent to a total panel load of 200,000 pounds uniformly distribated.

The umit stress at mid span of the shorter side belts by equation (34), page 183 , is

$$
f_{s}=\frac{200,0000 \times 16 \times 12}{185 \times 7.31 \times 1.6567}=18000 \mathrm{lh} s . \text { per sq. inteh. }
$$

Two of the observed reatings were 17000 pounds, and it is probable that if all the panels instead of omly four of the slab hat been loaded at oner bach with a miformly disiributed load of 200,000 pormels, all the rods in these side belts would have shown nearly or or quite the foregoing computed values of $f$.

The observed stresses at mide epan of the longere side belts in this test were somewhat lese than at mid span of the shorter helts, a divergence from (:34) which seems to be due to the effect of the wall support on the long side of the wall pamels.

By equation (52), page lof, the mit stress in the midelle rod of the diagonal belt at the eenter of the panel is

The observed unit stress at center of interion pemel $=14,200010$ s. which was harger than in the rods on either side of it, as required by theory, but the unit stress at the eemere of one of the wall panels was $20,500 \mathrm{lb}$ s.. probably due to the laet that there is less eantilerer support at the wall than is rexerted by interior colmm heads.

The greatest stresses oerour at the eelege of a ceal when the fome pamels around it are all loaded. Sand a distribution of load oreorred in this test when there was a loat on each of the fom panels which

Was assumed to be equivalent to $106,2.50 \mathrm{lb}$ s. The limiting unit stress at the edge of the cap ealeulated by Equation (44) is 20,700 Ibs., on the side belt and the similar equation for the diagonal belt gives 19,500 lls.

The two highest unit stresses ohserved at the edge of the central (ap) were in the diagonal belt on opposite edges of the (ap) and were $17,500 \mathrm{lb}$ s. and $20,000 \mathrm{lb}$ s. respectively. There was also an ahnormal unit stress of 22,400 llse in a middle diagonal rod of a cap at the edge of the loaded area due to a forcible bending of a radial red.
By equation (71) the deflection in the diagonal eenter of the pamel is

$$
I_{2}=\frac{200.0000 \times 16 \times(17)^{2} \times 17.28}{4.75 \times 10^{10} \times 1.60 .577(6.9375)^{2}}=0.422 \mathrm{in} .
$$

While this load rested on the slab for IS homes the defferetion grad-
 defleetion is entirely satisfactory

By Equations ( 61 ), (5t) and ( 5 ) , as corrected be the introduction of 96 in phate of 60 the values of the deflections at mid Gan of the side leats are:

It point 12: ('omputed 0.229 in.: ( Observed 0.22 in .
At point 20: (omputed 0.228 in.: ()hserved 0.20 in .
The observed side deffections of a single loaded paned are neeressarily lese than where surromeding pamels are equally loaded.

The deformations and stresses doserved in the vertical steel in one of the eothmms at a corner of a panel lomed with some 800 ths. per sef. foot, have by careful analysis given a probable limiting value of that part of the mbalaneed moment due to this load which was resisted by the colum itself. The diameter of the colamm core was 27 inches and the eolum was rentimed to the upper storics. Analysis shows that of the total mbalaneed moment W $L 12$ which is to be resisted at a support only about one fifth took effect upon the collum so far as shown by differences of the deformations of sterel and concrete in the opposite sides of the columm.

Test of the Deere and IV ebber ('ompany Building, Minneapolis.* made by A. R. Lord, Nov, 1910.

Design live load 225 Hos. per square foot.
$L_{1}=19^{\prime} 1^{\prime \prime}=229$ inches. $L_{2}=18^{\prime} 8^{\prime \prime}=224$ inches.
slab, 9 and 38 Sinchos thick; concrete 40 days old at begiming of test. All sial, rods 716 inch round, with 12 rods in each side
*Reported by Mr. Lord. Proceedings Nat. Assor. Cement twers, Vol. VII Philardelphia, 1911.
belt and 1.5 in each diagonal: all slab rods $7_{4}^{\frac{1}{4}}$ inches between eenters, so that the side belts may be taken to be 80 inches wide and the diagonal nearly 90 inches. The head was a rectangular diamomel frame with four rods extending entirely across it. Column eaps it inches in diameter. Mean size of (ap $=0.24 \mathrm{~L}$.

Take $d_{1}=8.5$ inches, $d_{2}=8$ inches and $d_{3}=7.6$ inches. The calculated mit stress at mid span on the short side hy equation (34) under the test had of 350 ll . per square foot or a total load of $350 \times 35629=124.678 \mathrm{ll} \times$. is

$$
i_{\mathrm{s}}=\frac{124678 \times 2.24}{17.5 \times 8.5 \times 12 \times 0.15}=10,000 \mathrm{ll} \mathrm{~s}
$$

The observed unit stress at one mid span was $10,400 \mathrm{lb}$ s. and at others somewhat lese than 10,000 , so that this is a satisfactory determination of the greatest stress at mid span of the short side.

Equation (34) gives for the unit stress at mid span of the longer side $10,220 \mathrm{lb}$ s. The mean ohserved result was only 6600 ll s. s . There was some reason in the arrangement of loaded and unloaded panels to expect a result of this kind, tho larger stresses would hardly be expected on the short side than on the long side mones the bulkhead cracks in the slah had a considerable influence.

The unit stress at the panel center calculated by equation (.52) is

$$
f_{s}=\frac{124678 \times 229}{2.5(j \times 0.89 \times 14 \times 0.15 \times 8}=7440 \mathrm{lh} .
$$

This is larger than the mean of four observed vahese and larger than all but one of them which has an appreciahly abommal observed value.

The limiting unit stress at the edge of the cap by equation (f4) in case we assume a mean of 13 roots $t o$ a belt is

$$
f_{3}=\frac{124(68 \times 229 \times 453}{800 \times 7.6 \times 13 \times 0.15 \times 224}\binom{3 \times 52441}{30625}=201.516 .8
$$

The largest observed unit stress in a side belt was 20,000 lhe. I similar computation for the diagonal belt gives 2240 llns . Therer were two observed stresses larger than this, one of 23400 lbs. and ome of 24,200 , due no doul)t to the lighter head used in this construction.

Applying Equation (71) to the calculation of the deflecetion at the panel center we have

$$
D_{2}=\frac{124678 \times 224 \times 229 \times 229}{4.75 \times 10_{10} \times 64 \times 14 \times 0.15}=0.23 \text { inches }
$$

The mean value of seven rearlinge was 0.224.

The mean deflections of adjacent panels were $0.291,0.271$, or 0.306 inches, these all being somewhat larger because adjacent panels were not loaded.

The interaction of contiguous panels across the column heads was evidently of considerable amount in this slab, which differed from mushroom construction in having no stiff connection with columns such as is afforded by elbow rods. Where the greatest stresses in steel and conerete oceurred around the eap there appears to be a deformation ratio $e_{\mathrm{c}} / e_{\mathrm{s}}$ of 0.5 to 0.6 .

The Larkin Building, Chicago, tested by A. R. Lord.* The design of the belt reinforcement is of the usual four-way type employed in the Mushroom system, but the column heads omit much of the steel and in place of it use a depressed head or "drop" to resist shear and flexure, which is 8 ft . square and 6.75 inehes thick, and is placed on top of each column cap under the slab and integral with it. The panels are $24^{\prime} 2^{\prime \prime}$ by $20^{\prime}$, or $L_{1}=290^{\prime \prime}$ and $L_{2}=240$." The thickness of the slab is 9 inehes except at the drop where it is 15.75 inches. The diameter of the cap $=60$ inches. The width of side belts is 90 to 93 inches and diagonals 105 to 108 inches. All belt rods are $\frac{1}{2}$ inch rounds, 13 in each short side helt, 22 in each long side belt and 21 in cach diagonal belt.

$$
d_{1}=8 \text { inches, } d_{2}=7.75 \text { inches, } d_{3}=14 \text { inches. }
$$

The floor was designed for a dead load of about 120 lbs . per square foot and a live load of from 225 to 250 lbs . with a maximum test load of twice the sum of these, or actually 739 lhs. per square foot.

The total panel load producing stress was

$$
\mathrm{H}^{2}=738 \times 20 \times 2416=356,700 \mathrm{lb} \mathrm{~s}
$$

By (34) the unit stresis at mid span of the shorter side belt is $f_{s}=24,000 \mathrm{lbs}$. The observed stress was $24,200 \mathrm{lb}$. between two loaded panels, which would be decreased slightly if adjacent panels were equally toaded as contemplated in equation (34).

For the long side belt with 22 rods (34) gives the computed unit stress $f_{s}=17,000$. No observed value was so large as this, because all long sides were at the edge of the loaded area.
B. (52) the calculated value of the unit stress in the middle rod of the diagomal at the panel center is $f_{s}=14,070 \mathrm{lbs}$. The oh-

[^13]served rahue is stated as 12,900 which is probably a mean stress in the rods of the diagonal belt and perhaps less than the stress in the middle rod.

To find the unit stress in the steel at the edge of the "ap), it is evident that owing to the drop the effect of the cap in causing abonormal stresses at its edge will be much reduced. Assume that the stress will not exceed that obtained from (43) at the column center where $B=L_{1}$, then
$f_{s}=\begin{aligned} & W L_{1}\left(L_{1} L_{2}+1\right) \\ & 400 d_{3} A_{1}\end{aligned}=\stackrel{356,700 \times 290 \times 2.21}{400 \times 14 \times 19.25 \times .196835}=10,800 \mathrm{lhs}$.
in which a mean belt of 19.25 rods is assumed for purposes of computation becanse all the belts are intimately rombined in their artion in the head. Under this test load no one of the columns was completely surrounded by loaded panels, and this computed stress would be approached only vely exceptionally. There was one observation. however, of $10,400 \mathrm{lbs}$. and others of 7300 lh . ant 7000 lbs.

If, moreover. We suppose that no noticeahle abmomal artion is to bo looked for at the edge of the drop, then the stress would be calculated by (43) by taking $B=290-96=194^{\prime \prime}$, and $d_{3}=7^{\prime \prime}$, with a mean belt of 19.25 rods which gives $f_{s}=14.400 \mathrm{lbs}$. The largest observed unit stress in any rod at the edge of the drep was $14,500 \mathrm{lbs}$ in a side helt and 14.200 lbs . in a diagonal belt.

The test load for deflections was 618 thes. per square foot. Hence

$$
W=618 \times 2+16 \times 20=298700 \mathrm{bk}
$$

By (.74) $\Delta z_{1}=\frac{298700(290)^{3}}{6.56 \times 10^{16}(7.75)^{2} \times 21 \times .191335}=0.246 .3^{\prime \prime}$.
By (5.5) $\triangle z_{2}=\frac{208700 \times 240(290)^{2}}{6.50 \times 10^{10}(7.75)^{2} \times 21 \times .19935}=0.3711^{\prime \prime}$.
$B_{y}(58) \triangle z_{3}=\begin{gathered}2!18700(290)^{3} 2.21 \\ 96 \times 10^{10} \times 14^{2} \times 22 \times .196335\end{gathered}=0.0155^{\prime \prime}$.
$B_{y}(60) \Delta z_{4}=\frac{298700 \times 240(290)^{2}}{20 \times 10^{10} \times 14^{2} \times 21 \times .19975}=0.037 .5^{\prime \prime}$
$B \underset{y}{\prime}(61) \quad I)_{1}=0.265^{\prime \prime} \quad$ and $D_{2}=0.408^{\prime \prime}$.

The corresponding observed values were $0.266^{\prime \prime}$ and $0.40^{\prime \prime}$, respeotivoly, an agreement which is surprising in view of existing circumstances as to reduction of steed in the head and displacement of lines of inflection in this slab) compared with the Mushroom construction for which the equations were dedueed.

The Nt. Paul Breall C'ompany Building. The foor of the st. Pant Broad Compamy Buidting is a rough shab, 6 in. thick, and has 16 hy 1.5 ft . pamels, remforeed with $3^{3}$ in. round rods, tem in wach belt.
 strueted in winter and frozem, hat, as the fimal test was postponed until August, 1912, the stah was very fully (oured, comsiderably more so, in fact, tham most stabs when subperted to test. The test was
 in the following mamer:


DIAGRAM SHOWING LOCATION OF TEST POINTS IN FLOOR SLAB.
SAINT PAUL BREAD COMPANY BUILDING.
"TURNER MUSHROOM SYSTEM"

First, extemsometer measurements were made on serentern 8 im . lengths of stab, rods, which were exposed under a single loaded panel, three of these, Nos. 1, 2, and 3 , being at the middle of three rods of one long side belt at the edge of the load, and the remaining fourteen distributed over the contral area of one diagonal bett. Secont. measurements of deflections were made at two points, one at the eenter of the panel and one near the middte of the interior edge of one long side belt. Third, the embedment of the rock was tested. Table 1 eomtains the observed elongations due to change of hading at all the seventeen positions for each of the test loads, 108.4, 316.s, and 416.8 lb s. per sq. ft., as well as after the removal of the loat. A comparison of the observed elongations at symmetrical points reveals such diserepancies in the observations as to reguire some preliminary discussion.

Observations Nos. 5 and 6 were on a pair of diagomal rods on eateh side of and adjacent to the diagonal line of the panel, there being no rod exactly on the diagonal, and situated just beyond the edge of the other diagonal belt. No reason can be discerned for any difference between these elongations, but the wide difference that appear: must be due to some peculiarity in one of the rods, such as a reok or bend, or some lack of homogeneity in the conerete. Comparing Observations Nos. 5 and 6 with Nos. 4, 10, 15, and 16 , which, being at about the same distance from the center, should, by Equation (49), have about the same congations, it is fomm that No. jo is abmomally large, and at the same time No. 16 is abmomally small. No. 8 is another set of abnormal results, which is evident from the fact that, being midway between Nos. 4 and 11, its elongations should lie between them; it is larger than it should be, with a final compression after removing the loarl. Nos. 7 and 17 should be the same, and Nos. 4 and 17 should be alike. The varving embednente of the portions of this rod which were observed show that theres was probably a kink in it, which might aroount for the observed discrepancies. It is posible, howerer, that some such differences may appear when the loading is piled on one side of the panel before piling it on the other. No such explanation, however, will fit the ease of Nos. 12 and 13, which are at the midelle of the two rock atjacent to the diagonal line at the eenter of the pancl. There ajperasto be no question that No. IB is abmomally large, for No. İ agres well with others, being only a little larger tham those at the mearby positions 9. 11, and 14, and the values at No. 13 are in wide disagreement with them. The very comsiderable differenees between results which should apparently be equal makes it evident how in-

TABLE 1
OBSERVED ELONGOTMONS, IN INCHEN PER MHLION INCHES INDER GIVEN LOADA PER SOEARE FOOT

Note.- 1htain artmal unit streser by multiplying hy 30.

$\begin{gathered} \text { (M)servation } \\ \text { No. } \end{gathered}$	Vhongations umder the Following Loads, in Pommds.			
	10, 1	:31\%	416.)	0
1	25.5	S00	59	80
$\because$	236	473	24!	-- 3
3	$\because 44$	41.1	-7:	- 37
1	(ii)	205	2-3	145
i	(i)	26	$3 \bigcirc$	164
1	(6)	16	$\because 7$	11.
7	4.5	15		6is
$\cdots$	$\because 14$	370	121	-64
$!$	S!	$26 ;$	37	152
10	(is)	120	15:9	46
11	12	-13)	347	1410
12	1.5\%	32	400	2s
13	$\cdots$	\%ist	6.3.)	93
14	(i)	204	$\because 2$	s)
1.5	71	16.1	16i)	1s
16	11	10	-2.	- 30
17	$\because 1$	70	124	17

exact single dotemmations mast often be by reazen of hemde in the mots, latek of hemogeneity in the eomerete, wte., and emphasizes the importance of carefully laying belt rods straght and having them -pared miformly, wedl as embedided equally, before pouring the conerete, if consistent results are desired. It atso shows the importonce of cherking all reathge hy reading at semmetrical positions.

It may be stated in general that the observed unit stresses and the defleretions in this test are lese than they would be for a slab tested at the stage of cumen at which teats are usually made, a stage to which the equations apply more precisely. In romsequence of this, all the romputer rexults will exeed to some extent these actually observed.

Apply Equation (:3t) to compute the unit strese at Nos. 1, 2, and 3 of the long side belt. Aswming $d_{3}=.5 .3$ in..

$$
f=\frac{100,0000 \times 192}{1 \pi 5 \times \pi .3 \times 1.1}=18,800 \mathrm{ll} . \text { per an. in. }
$$

in ease of many panels equally loaded. The mean observed mit

stress in each of the roch being practifally the same, a fitet that speaks well for the stiffness of the head. The computed mit -trese at the renter of the panel is

$$
f_{\star}=\frac{100,000 \times 192}{24 i ; 0.9 \times .3 \times 1.1}=15,150 \mathrm{H}, 14+9 \times 1 . \text { int. }
$$

The observed mat stress at No. 12 was 120001 lh, tho at Nor. 13 the ahmomal value of 109600 lh . wat fommel.
 only a single pathel wat loatod. and the computations asemme that all the pamels are equally loaded, any very elose agrexment of Tathle 1 with the observed results jo not to be expereted: nerortheless, eome parison with that table show- that the computed result a agree with the ohservatioms far better than the observations adee amomg them-


The fleflection at the renter of the panel matere a load of more
 lh. per sf. ft.. Was 0.82 in., whith is lese than 1 solo of the diagomal
 tion ( $\overline{7}$ ) , as follow:

$$
L_{2}=\frac{1000000 \times 180 \times 102^{2}}{4.7 .5 \times 10^{102} \times .5^{2} \times 1.1}=0.50 \mathrm{in} .
$$

Computation of the defteretion at the point near the midulle of the
 lh. on (ately panel of appoximately 0.4 in .

TABLE ב

Trost Latak, in Pomend

		10, 4	$\therefore 16$	114.)		$1)$
( ${ }^{\text {ander of pand }}$	()heratied	1) 1175	(1) :3, ${ }^{(1)}$	(1).437	$1)$	1.5)
"	( 'malutad	1) 1:30	113011	(1). 2010		
Edere of sitle held	()hnetrued	1) 10 \% \%	1).217	11.3:\%	11	121
	( 1 M11]	1) 1)! $: 3$	11.2.1	1) :3.7		






3. Comparative Test of Norcross and Mushroom Slabs. This section will be devoted to a detailed consideration of a test to destruction of two slabs, $12^{\prime} \times 12^{\prime}$ between column centers, constructed for experimental purposes. The tests were made by Professor Wim. H. Kavanaugh, in November and December, 1912, and the results he obtained, together with a mathematical discussion based upon them, will be here given. One slab was constructed in aceordance with the plans and specifications of the U. S. Patent No. 698,542 issued to O. W. Norcross for a slab for flooring of buildings, and the other was a Turner Mushroom slab moler U.S. P'atent No. 1,003.384. The test serves to bring out in a striking manner not only how two slabs, which present a superficial resemblance in the plan of arrangement of reinforcement, differ from an experimental and practical standpoint, but it also makes evident their radical divergence of action mechanically and mathematically.

That two slabs of the same span, thickness and amount of reinforcement should on test show that one of them was more than twenty times as stiff, and more tham five times as strong as the other, and that the failure of the weaker one was a sudden and complete collapse, with little or no warning to the inexperienced eye, while the other gave way by slowly pulling apart little by little, thus gradually getting out of shape without any final break down, are phenomena that deserve the close attention of the designer, and are of the highest interest seientifically as well as practically. The mormous differences in the deflections and in the stresses in the reinforcement as shown by extensomoter measurements, and in the character of the failure in respect of safety and its relation to the line or zone of weakest section, as well as in the difference of design loads and breaking loads amounting to $500 \%$, all illustrate what scientific design will aceomplish and what results are possible by an ingenious arrangement of the remforcement.

These slabs were each of the same thickness, viz $6^{\prime \prime}$, and were supported by columns placed at the corners of a square $12^{\prime} \times 12^{\prime}$ from eenter to center of columns. The slabs projected $2^{\prime}$ to $3^{\prime}$ beyond the centers of the columns on each side, and had precisely the same number and size of reinforcing rods in each belt, viz eleven $3 / 8$ inch round rods. The concrete was of a $1: 2: 4$ mix, and while only about four weeks old at the time of the test, it had been poured warm and kept warm by steam heat under such unusually favorable conditions as to have become well cured at the time of the test. The sted used showed by test a stress at yield point of 51,000 to

55,000 pounds per square inch, and an ultimate strength of 76,000 to 80,000 pounds, with an elongation of twenty to twenty-five per cent.

The first slab was made in accordance with the speeifications of the Noreross patent already referred to except that belts of rods were substituted for the netting mentioned by the patentee. This design was selected as one of the two for this comparative test, not because it is a good design, or one that any engineer would to-day eare to employ, but because it exhibits, according to the express intention of the patentee, simple tension on its lower surface, everywhere between columns, and simple compression everywhere on its upper surface between columns; this being in direct contrast to the other design, which is arranged not only to resist direct tensions over the supports, which the first does not, but also to resist circumferential stresses both around the supports and around the panel centers, as any truly continuous flat slab must.

This test may then be viewed in the light of an experimental demonstration of the difference between a reinforced flat slab constructed in accordance with the bean theory and one constructed in accordance with correct slab theory, where true and apparent moments differ radically as shown at the beginning of this investigation, but are wholly contradictory to any form of simple or continous beam theory. This test may be regarded as settling once for all the question of applying simple beam theory to a cantilever flat slab, reinforced throughout practically its entire area with a lattice of rods crossing each other and in contact. It shows that it is impossible to compute the deflections of such a slab by bean theory Furthermore this impossibility makes it certain that the stresses in such a slab cannot be computed by beam theory, for to do this is to commit an inconsistency such as has heretofore too often been committed, but one which sbould hereafter be carefully aroided.

Norcross in his patent already referred to describes his construction as consisting "essentially, of a panel of concrete having metallic network encased therein, so as to radiate from the posts on which the floor rests The posts are first erected, and a temporary staging built up level with the tops of posts. Strips of wire netting are then laid loosely in place on top of the staging. The concrete is then spread upon or moulded in place on the staging to enclose the metallic network. In practice I have sometimes laid the concrete in layers of different quality, the lower layer of the floor which encloses the wire being laid with the best concrete available...... If the forces acting upon a section of flooring supported between two posts be analyzed it will be found that the tendency of the floor seetion to sag between its supports will cause the lower lavers of the flooring to be mater tension while the upper layers of the flooring will be under compression, these stresses being, of course, the greatest at the top and bottom layers, respectively."


Fig. bll. Reinforcement of Norcross slab


Fig. 61. Norcross -lab Carrying Load 3


Fig. 62. Norcross slab
Table : Loads on Norcross slab in pounds

No.	1		2		3		4	
Areas	per sif. ft.	Total	persay. ft.	Total	per sq. ft.	Total	persis. ft.	'Total
A	114.1	:3138	228.7	ti28s	228.7	6288	228.7	6288
H	114.1	3138	228.7	fi28s	228.7	6288	228.7	6288
( ${ }^{\text {c }}$	114.1	285	240.1	60002	456.8	11420	456.8	11420
1)	114.1	3138	228.7	6285	228.7	6288	228.7	6288
E	114.1	3138	22S.7	6288	228.7	6 ESS	298.7	6288
F							250	7560
G				P Areas	ot Loarded.		250	7560
H							250	7560
I							250	7560
slab,	60	1.5404	121	31154	143	36572	276	66812

The number and arrangement of the reinforeing rods in the Norcross experimental slab, (eleven $3 / \delta^{\prime \prime}$ round rods in each side and diagonal belt) is clearly shown in the view of Oct.31st, Fig.60, which shows the forms ready for pouring the concrete. Stecl plates $20^{\prime \prime} \times 20^{\prime \prime} \times 0.5^{\prime \prime}$ carry the rods and rest on the tops of the columns, which last in this case consisted of steel pipes about $5 \frac{1}{2}{ }^{\prime \prime}$ in diameter filled with concrete and embedded at their lower ends in large concrete blocks. A vertical central bolt in the concrete at the upper end of each pipe permitted the plates to be firmly secured to the tops of the columns. The view of Nov. 30th, Fig. 61, clearly shows the manner of placing the pig iron on the slab for load 3. This slab is $16^{\prime} \times 16^{\prime}$. The loading at first covered an area having the form of a Creek cross whose central square was five feet on a side with arms $5^{\prime} 6^{\prime \prime}$ long, as represented in accompanying diagram of loaded areas A, B, C , D, E, Fig. (i2, and of amounts shown in Table 3.

l'ig. 63. Collaper of Normose Slat,
When 10,000 pounds had been piled on the central part of the slab in addition to load No. 4 , of 66,812 pounds, the slab suddenty failed. In anticipation of such failure timber blocking had been placed under the slab to prevent its falling more than possibly ten or twelve inches.


Fig. it Collapse of Nore russ slab
The two views of Dee. 2d, Fig. 6:3 and Fig. 64, show the condition of the slab, after removing part of the final loading in order to render the nature of the failure visible. Careful extensometer measurements of the elongations of the steel rods at the middle of the side and diagonal belts were made under the action of loads $1,2,3$ and 4 , and also similar extensometer measurements in the concrete both on the top and the bottom of the slab along the center line of the side and diagonal belts near those edges of two of the steel plates which were nearest the center of the belts. Besides these, certain other measurements of the concrete were made at right angles to the diagonals. Deflections were also measured under these loads at the middle of the diagonal belt and of two of the side belts at $\mathrm{I}^{+}, \mathrm{W}, \mathrm{I}, \mathrm{Y}, \mathrm{Z}$.

These measurements all show beyond question that the side and diagonal belts act like simple beams in this form of construction, since the stresses in the steel and concrete on the under side of the slab in the direction of the rods is invariably tensile, while the stresses in the same directions on top of the slab are always compressive. It was the avowed intention of Norcross to reinforce the slab in this manner since he regarded the upper part of the slab as being subjected everywhere to compression and the lower part to tension only, as stated in his specifications as already quoted.

The following computation, Table 4 , shows a good approximate agreement of the results of this test with the beam theory of flexure, assuming for simplicity that the stiff steel supporting plate and interlacing of the ends of the belts diminishes the effective span of the side belts by $12^{\prime \prime}$, and the diagonals in the same proportion, and further assuming that the loading was all applied at the middle of the side and diagonal belts.

The extensometer measurements made were for a length of $8^{\prime \prime}$, consequently the stress in the steel per square inch would be computed thus:

$$
f_{\mathrm{s}}=1 / 8 \text { (elongation in } 8^{\prime \prime} \text { ) } \times 30,000,000 ; \ldots \ldots(1)_{1}
$$ and, this being known from observation, it will be possible to compute the load $W$ carried by the beam in which the given elongation occurs, as follows:

The bending moment due to a concentrated load $\boldsymbol{W}^{\circ}$ at the middle of a beam of length $L$ is $M=\frac{1}{4} W L, \ldots \ldots$. . . . . . . . . . (2) $)_{1}$ and the equal moment of resistance of the reinforeement by which it is held in equilibrium is $M=A j d f_{\mathrm{s}} \ldots \ldots \ldots . . . . . .(3)_{1}$ in which $A$ is the total cross section of the steel in the belt $=$ $11 \times 0.11=1.215 \mathrm{sq}$. in., and the distance from the center of the stcel to the center of compressive resistance of the conerete is assumed to be, $j d=0.9 \times 5.75$
when $d=5.75$ is taken as the distance from the center of action of the steel to the top of the slat,

$$
\begin{equation*}
\text { Hence } W=4 A j d f_{\mathrm{s}} / L \tag{4}
\end{equation*}
$$

is the load required to cause the stress $f_{\mathrm{s}}$ in the steel. In the side belts we assume the span $L$ to be $132^{\prime \prime}$, and in the diagonals $132 \sqrt{ }$.

In Table 4, which follows, it will be noticed that loading No. 1 is too small to develop sufficient elongations or deflections to overeome the initial compressions in the conerete in which the reinforcement is embedded, so that the load carried by the steel is only about one half of the actual load, the other half being evidently carried by the concrete in which it is embedded. This is in complete accord with other similar experiments. But in ease of loads No. 2 and No. 3, where the steel is stressed close to the yield point, the sum of the loads as shown by the stresses in the steel is very close to the total actual load. It is assumed that these total actual loads are carried by the various belts in the same proportion as the computed loads, since there is no other way of dividing the total load between the belts. This may be stated mathematically, as follows:
Table 4, Loads and deflections of the Noreross Slab computed on the simple beam theory from the observed elongations of the steel reinforcement, compared with the

Let $W_{1}=$ the computed load on a side belt.
and $W_{2}=$ the computed load on a diagonal belt.
Let $W_{1}^{\prime}=$ the actual load on a side belt.
and $W_{2}^{\prime}=$ the actual load on a diagonal belt.
Then $4 W_{1}+2 W_{2}=$ total computed load on slab.
and $4 W_{1}^{\prime}+2 W_{2}^{\prime}=$ total actual load on slab.
Then $\frac{4 W_{1}^{\prime}+2 W_{2}^{\prime}}{4 W_{1}^{\prime}+2 W_{2}}=\frac{W_{1}^{\prime}}{W_{1}^{\prime}}=\frac{W_{2}^{\prime}}{W_{2}}$
from which $W_{1}^{\prime}$ and $W_{2}^{\prime}$ can be computed, $W_{1}^{\prime}, W_{2}$ and $4 W_{1}^{\prime}+4 W_{2}^{\prime}$ being already known.

The distribution of load No. $t$ is not such as to render this method of computing it so applicable as to other loads. Having found the actual distribution of loading $\mathrm{H}_{1}^{\prime}$ and $\mathrm{W}_{2}^{\prime}$ the center deflections of the belts have been computed by simple beam theory from the formula.

$$
\begin{equation*}
D_{2}=\frac{\Pi^{\prime} L^{3}}{48 E A i j d^{2}} \tag{6}
\end{equation*}
$$

in which $i d=$ the distance from the steel to the neutral axis and the value of $i$ has been assumed to be $0.69 ; 11^{\prime \prime}$ is the actual load on the belt and $L$ is its span as previously stated.

It appears from Table 4 , that the effect of the reinforcement is accounted for to a reasonably close approximation by considering the belts to act as a combination of simple beams, at least within the range of loading near the yield point of the steel.

It appears that the steel reached its yield point under a total load on the slab of from 15 to 18 tons and final collapse occured under a total load of a little over twice the latter amount not distributed uniformly but piled more in the general form of a pyramid.

It was observed that the application of the relatively small loading on the corner areas $\mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}$, had a vere injurious effect upon the slab, tending to break it across the tops of the columns.

The results of the test may be summarized in the Noreross system as follows:

1st. This slab is of the simple bean type, and the tert shows no cantilever action and no circumferential slab action.

2nd. The narrow belts rumning diagonally leave large areas without reinforcement, and there is consequently no provision for resisting circumferential tensions as required in slab action.

3rd. The concrete showed compressive stresses on the upper surface of the slab in the direction of all the remforeing rods.

4th. The conerete showed tension at the bottom surface in the direction of all the reinforeing rods, in agreement with Noreross' own analysis.

5th. This slab deflected $1.6^{\prime \prime}$ mader 33 tons and then broke down completely under 38 toms.

6th. The first crack appeared murler a loat of 15 tons and deflection of $0 . \mathbf{7}^{\prime \prime}$.

7th. The slah, not being reinforced on the top surface over the columms, inevitably cracks at a column when the slab is loaded aromed the colmmm.

Sth. At failure the steed had passed its yield point. The percentage of reinforecment in the diagonal belt if we regard the belt as about $18^{\prime \prime}$ wide is very nearly 19 , but since a width of concrete somewhat greater than that may be assumed to act with this steel, the percentage of remforecoment is somewhat less than $1 \%$. Similarily, the side belts of width $360^{\prime \prime}$ have a reinforeement less than $0.5^{\prime \prime}$. The full strength of the steel in both belts was developed by the concrete, whith fact demonstrates that the concrete was of high grade and well cured. The steel was also of good standard quality, and the test was therefore in every way fair to the Norross sab, since it was so loaded as to cause the streses in the side and diagonal belts to be practically equal, thus using the stecl most ecomomically. The slab failed because the steel vielded near the middle of the pans, thus raming the concrete above the sterd to erack and break.

The serond slab was made aceording to the Tumer Mushroom System, under the patent already referred to.

Since all forees in a plane may be resolved into components along any pair of axes at right angles to wach other it is possible to provide reinfererment to resist any horizontal tensile stresses in the slab hy various arrangements of intersecting belts of rods at zones where these stresses occur. The combination of such belts with radial and ring rods to constitute a large and substantial cantilever mushroom hearl at the top of each columm affords a very effective and economical arrangenent for controlling the distribution of the stresses in the slab, and it places the reinforcement where it is most needed. It not only has the same kind of arlvantage that the continuous cantilever beam has over the simple girder for long spans, but combines with it the kind of superiority that the dome has over the simple arch by reason of circumferential stresses called into play, which greatly adds to the carrying capacity of the slab.


Fig 65. Reinforcement of Mushroom Slab


Fig. fif. Mushronm ilat,

The mushroom test slab was six inches thick, and was supported on four $18^{\prime \prime}$ by $18^{\prime \prime}$ square reinforced concrete columns distance $12^{\prime}$ from center to center. These had square capitals, $42^{\prime \prime} \times 42^{\prime \prime}$. The slab was appromimately $18^{\prime} \times 18^{\prime}$, and the diameter of the outer ring rod of the Mushroom was $66^{\prime \prime}$, while the imer ring was $42^{\prime \prime}$. These were supported on eight $1-1 / 8^{\prime \prime}$ round radial column rods.


Fig. 67. Mushroom Slab, Load 4.
This will be clearly understood from the view dated October 31st, Fig. 65, which shows the reinforcement and forms ready for pouring the conerete. The remaining viows are explained by their accompanying legends.

The diagram of loaded areas for the mushroom slab Fig. 60, is like that already given for the Noreross slab in every particular except that the size of the mushroom slab being $18^{\prime} \times 18^{\prime}$, while the Norcross slab, was $16^{\prime} \times 16^{\prime}$, the arms of the Greek cross in the mushroom slath are each $6^{\prime} 6^{\prime \prime}$ long and $5^{\prime}$ wide.
Table 5. Loads on Mushroom Slab in pounds.

Table .--Cont. Loads on Mushroom Slab in pounds

Load	6		7		$s$		9		10	
Area	$\begin{gathered} \text { per } \\ \text { sq. } \mathrm{ft} . \end{gathered}$	Total	$\begin{gathered} \mathrm{por} \\ \mathrm{sq} \cdot \mathrm{ft} \end{gathered}$	Total	$\begin{aligned} & \text { per } \\ & \text { sif. } \mathrm{ft} . \end{aligned}$	Total	$\begin{gathered} \mathrm{fer} \\ \mathrm{rl} \cdot \mathrm{ft} . \end{gathered}$	Total	$\begin{gathered} \text { per } \\ \text { sf. } \mathrm{ft} . \end{gathered}$	Total
A	736	23922	72.2.9	25129	899	29222	899	99292	899	29222
B	736	23922	712.9	25122	899	29229	899	29292	899	2922
( ${ }^{\text {c }}$	1480.2	37006	1.569 .4	39236	1889.4	47236	2689.4	65236	3329. ${ }^{\text {¢ }}$	83236
D	736	23922	772.9	25120	899	29222	899	29222	899	29222
E	736	23922	772.9	25129	899	29222	899	29292	250	29222
F			250	10.960	250	10560	2.50	10560	250	10.560
Ci			250	10560	250	10.560	2.50	10560	250	10560
H			250	10560	250	10560	250	10560	250	10560
I			250	10.960	250	10560	250	10560	250	10.560
Slab	409	132695	564.5	181965	63.3	206365	700	226365	748	242365
Inside the pamel		88.53.5		104591		12142.5		14142\%		157425
On the overhang		44160		77374		84940		84940		84940



Fig. fis. Mushroom slab, Load 7.


Fig. 69. Mushroom Slab, Load 9.

The accompanying Table 5, exhibits the loads per square foot of each of the subsidiary areas shown in the diagram as also the total loads on each of those areas. The view of Dee. 3, Fig. 67, shows load 4, and that of Dee. 13, Fig. 68, load 7, while that of Dec. 16, Fig. 69, shows load 9.

Elongations of steel were measured by Berry extensometers in two of the side belts and in one of the diagonal belts until the conerete began to fail under loads Nos. 7 and 8. Deflections were also measured. In Table 6, these will be considered so far as they relate to the middle points of the belts. Loads $8,9,10$, are of great interest as exhibiting the behavior of the slab under excessive loads, showing, as they do, yielding and large permanent deformation without dangerous collapse.

By (52) the uniformly distributed load per square foot of panel area when the stress in the diagonal belt is $f_{\mathrm{s}}$ is found for a square panel from the expression

$$
\begin{equation*}
144 q=u=W 144=\frac{256 j d_{2} A}{144 L} f_{s} \tag{52a}
\end{equation*}
$$

which applied to this slab gives us

$$
\begin{equation*}
u=\frac{2.56 \times 0.89 \times 5.125 \times 1.215}{144 \times 144} \quad f_{s}=f_{s} 14.6 \ldots \tag{52b}
\end{equation*}
$$

The values of this uniformily distributed load $w$ is tabulated in table 4 , for each of the observed values of the $f_{\mathrm{s}}$ in the diagonal belts. The values of $w$ so computed tend to become identical, in ease of the heavier loads, with the loads per square foot on the central area C , as might reasonably be expected, $w$ being the uniformly distributed load which is equivalent so far as the stress on the diagonal belt is concerned to the action of the actual loads which are not uniformly distributed.

Now compute by (54), (55), (58), (60) and (61), the deflections at the mid side belt and at center of the panel, diue to a uniform load. These results are given in Table 4, and accord closely with those actually observed, as they should, because the irregularity of distribution does not produce deflections that differ much from the equivalent uniform load as computed above.

In these computations it is assumed that $d_{1}=5.5^{\prime \prime}, d_{2}=$ $5.125^{\prime \prime}, d_{3}=4^{\prime \prime}$

The double set of values under loads 4 and 5 is due to the fact that readings were had under load 4 , immediately after the load was applied, and again 7 days later before applying load 5 . The second set of readings were the larger as shown. The second set of readings under load 5, were taken four days subsequently to the first set.

It appears from Table 6 , that the observed results are accounted for by the stab theory to a good degree of approximation so long as the concrete was intart.


Fig in. Comparitive Deflection of Sorerosis and Mushroom Slabs.

A graphical representation of the experimental observations in the deflections at the points $\mathrm{V}, \mathrm{W}, ~ \mathrm{X}, \mathrm{Y}, \mathrm{Z}$, of the two slals is found in Fig. 70, which shows in a striking mamer how small the loads and how great the deflections were in the Noreroses slab on the one hand, and how large the loads and how small the deflections were in the mushrom slab on the other hand.
Table 6 ，Loads and Defleetions of the Mushroom Slab computed on the Slab Theory from ohserved Elongations of the Sted Reinforcement，compared with the
Observed Loads and Deflections．
tions．
4
00140 00270


$\therefore \quad \stackrel{\text { た }}{\vdots}$

.0
$.00: 373$
.00610


会
$=$
006028
育
1 会 会 宗 首

0100.58

分 き き
.0353
会 $\stackrel{\text { 百 }}{=}$
$\begin{array}{r}1 \\ \stackrel{1}{8} \\ \hline 1\end{array}$
1
.00020
97.5
（i．）．．
.0206
.0170
.0170 $\stackrel{10}{3}$
637.5
.00985
.0100
Load No．
Diag．（H）s．dong．of mid
Belt rod in $\mathrm{s}^{\prime \prime} \ldots .$.

persq．ft．hy（52b）

 leretion
Ave．obs．clong．in
$8^{\prime \prime} \ldots . . . . . .$.
$f_{s}$ hy（1） $1 . \ldots .$.
$D_{1}$ mid detlection
computalloy（61）

$\frac{\square}{5}$

It will be seen from Tables 3 and j, that the first three loads were practically the same for both slabs. In the Norcross slab load 3, of 18 tons, stressed the steel up to the yield point, but in the mushroom slab the stress was so small, (being in fact less than ten per cent of the former) as probably not to remove all the compression from the concrete in which it was embedded. Indeed the load on the latter slab became five times as much, 90 tons, without stressing its steel out to the yield point, at whieh time it was carrying about twice the load which eaused the complete failure of the Norcross slab.

Moreover the deflection of the Norcross slab under load 3 , was twenty-two times that of the mushroom slab under the same load. This result is in full accord with slab theory which shows that the central deflection of a continuous diagonal beam with fixed ends uniformly loaded with one sixth of the total load on the slab and having the same thickness and reinforeement as the diagonal belt, would have more than six times the central defleetion of the slab, while the stress in its steel would be three or four times as much. This gives a measure of the effect of slab action.

By the phrase "slab action" we designate the increased strength and stiffness of the slab by reason of its resistance to circumferential stresses around the columns and around the center of the panel.

Furthermore, if this continuous beam be compared with a simple beam uniformly loaded and having the same reinforcement, the latter would have five times the deflection of the continuous beam, or thirty times that of the slab, while the stress in the steel would be one and one-half times that in the continuous beam, and six or seven times that in the slab. This last exhibits the effeet of cantilever action combined with slab action.

The apparent discrepancy between the observed ratio of deflections in these two slabs of 22 and the just computed deflections of 30 , is to be accounted for by the fact that the computation assumed equal spans, whereas the Noreross span was assumed to be diminished from $144^{\prime \prime}$ to $132^{\prime \prime}$ by the column plate. A reduction of the span of this amount will change the computed deflections in the ratio of $144^{3}: 132^{3}:: 30: 23$ which is in practical agreement with the observed result of 22 .

By the phrase "cantilever action" we designate the increased strength and stiffness which is due to the continuity of the beam or slab at its supports so that it is convex upwards at such points.

While the concentration of the loading toward the middle of the pancl, such as was the case in this test, may prevent any precise agreement of these numerical estimates based on uniform loading with the results of the tests, they cause the general agreement shown in the tables and tend strongly to sustain our confidence in the validity of the analysis from which these concordant approximate estimates are obtained.

The amazing differ ner in the strength and stiffness of these two slabs, which contain practically the same amount of concrete and steel, is due to the difference of principle of their construction, which may be summarized for the mushroom system by considering its slab action and its cantilever action under the following counts, viz:

1st. Circumferential slak, stresses around the column heads are most economically and effectively provided for by the ring rods and the octagonal interlacing of the slab rods.

2nd. The size of the mushroom heads is such as to make the belts so wide as to provide reinforcement over the entire area of the slab, thus securing slab action in the central part of the panel where the belts lie near the lower surface.

3rd. The reinforcing belts cover a wide zone at the top of the slab over the columns and mushroom head, which thus provides resistance to tension, and ensures effective cantilever and slab action.

4th. Concrete is thus stressed in compression at the bottom of the slab for a wide zone around the columns.

5th. Under a load equal to the breaking load of the Norcross slab, amounting to thirty-eight tons, the mushroom slab deflected at first only $1 / 8^{\prime \prime}$, but after exposure to rain and great changes of temperature for seven days had somewhat softened the concrete the deflection inereased to $1 / 4^{\prime \prime}$.

6th. The first erack appeared underneath the edge of the slab across the side belt under load No. 5, of fifty-six tons, with a center deflection of $0.4^{\prime \prime}$ and an average deflection at the middle of side belts of $0.25^{\prime \prime}$.

7th. No cracks appeared on the upper side of slab at the edge, nor were any seen elsewhere, until load No. 7, of 90 tons was applied, when a center deflection of $1 / 2^{\prime \prime}$ was reached.


Fig. 71. Failure of Mushroom Slab.


Fig. 72. Failure of Mushroom Slab. Load Removed.

Sth. The slab earried its final load of over 120 tons for twentyfour hours without giving way. It demonstrated the impossibility of its sudden failure by gradually vielding until it reached a final deflection of some nine inches, as seen in the views of Dee. 17th and 24th, Figs. 71 and 72.

9th. While the slab steel in each belt was the same as in the Noreross slab, the crossing of the belts increased the percentage of slab reinforeement so much above that of the simple belt reinforeement that stress in the steel did not pass the yield point and the failure was largely due to the giving way of the concrete around the cap, but partly to some yied ling at the line of weakest ultimate resistance, both of which statements are confirmed by the view of Dec. 24th, Fig. 72, where the removal of the loading permits the irregular eircular line previously mentioned to be made out at a (listance from the renter of each column of somewhat less than $L / 2$.

Less steed is required in this system than in the Norcross slat for the same limiting stresses. Since the steel in this sab did not pass the yield point any greater percentage of reinforcement would be useless and would not increase the strength of the slab. It has been found that good practice requires a percentage of steel dependent in the following manner upon the thiekness of the slab:

$$
\begin{aligned}
& \text { If } d=L / 35 \text { the belt reinforement }=0.2 \% \\
& \text { If } d=L^{\prime} 24 \text { the belt reinforcement }=0.3 \% \\
& \text { If } d=L^{\prime} 20 \text { the belt reinforcement }=0.4 \%
\end{aligned}
$$

Comparision of the steel in the test slaths:	Noreross.	Mushroom.
Size of sla	$16^{\prime} \times 16^{\prime}$	$18.4^{\prime} \mathrm{x} \mathrm{17.8}$
Area of slab,	$256 \mathrm{sq} . \mathrm{ft}$.	$328 \mathrm{sq} . \mathrm{ft}$.
Length of $3 / 8^{\prime \prime}$ rods in the stab	1188 ft .	1750 ft .
Weight of $3 / 8^{\prime \prime}$ rods in the slah	446 lbs.	650 lbs .
Weight of Plates or Heads in the	228 lbs.	435 lbs
Total weight of steel in the slah	674 lbs .	1085 ll
Weight of steel per square foot of slab.	2.6 lbs.	3.3 lbs.
Area of Panel $12 \times 12$	$144 \mathrm{sq} . \mathrm{ft}$.	144 sq. ft.
Length of slab rods per pa	638 ft .	638 ft .
Weight of slab rods per pimel	239 lbs.	239 lbs.
Weight in plates or heads per pa	57 lbs .	109 lbs .
Total weight of steel per panel	296 lbs .	348 lbs.
Weight of steel per square foot of panel.	2.06 lbs .	$25 / 12 \mathrm{lbs}$.

The results of this comparative test of two shab lead to several interesting applications of the prineiples previonsly rited under the treatment of such slabs as a kind of merhanism amenable to analysis by the theory of work.

The law of conservation of energy taches that for olastif deflections the average stress for instance at mid span of a floor sab, of one kind compared with the average stress at mid span of another kind of the same uniform thickness and pereentage of steel at the sections compared, will bear the same ratio as the respeetive deflecetions under identical loarls producing thesestreses. In other words. a radical difference in mord of action brought about by a different arrangement of the reinforement in the sabs will not affect the validity of this deduction. The experimental data supplied by the two respective slabs the Norcoss and the Mushroom type sab, is of interest in this comncetion.

Compare the loads which were applied in Creek roos form, the areas A, B, D, E, loaded alike, but the area (' loaded at times, with approximately double the load on the arms of the cross -the idea being to throw upon the repective belts crosing the area ( approxmately the same load as on each direet belt as shown in the following table:

TABLE -

	Load		$\begin{gathered} \text { Steel } \\ \text { Stress } \end{gathered}$			
Type	$\begin{aligned} & \text { On each } \\ & \text { Area }^{\text {A E D }} \text { ( } \end{aligned}$	Total	```Average on beIts at mid span```	Ration	[ ${ }^{2}-$   flaction	Ratio
Norcross	3138 2,52	15404	7690		2207	
Mushroom.	3276 2532	15024	643	12	017	12.
Noreross.	62x 6002	31154	27133		707	
Mushroom.	65.520	3124	1154	23.5	(0353	20 .
Norcross.	62¢ 11400	36572	$34 \times 94$		1.020	
Mushroom.	6.5321045	364646	1422	23.4	0.043	20.

The equality of the ratios above eompared for the respertive steel stresses and deflections is in most satisfatory agreement with the theory when the lack of porfere identity of application of the load as regarels quantitive distribution and the falmer of the whererers to measure stresses and defleetions simaltamemsly is eomsidered.

It will be noted that these ratios remain substantally the same as nearly as ean be experted considering the fact that the measure-
ments of the deflertions and the measurements of the steel stresses were not simultaneons, there being, howerer, some time offert as indicated by the diagrams.

These tests show a surprising difference in stiffness for the same cross section of steel in diagonal bolts, and substantially the same differenee so far as its effieioncy is concorned in direct belts. The enomons difference in stiffnes-the one being 22 times as stiff as the other is a difference little short of amazing, when we consider thr fart that a contimusus beam is only five times as stiff as a simple beam. Hence the test shows clearly that the mode of operation must involve a far more radical difference than mere continuity of reinforemont.

The differenee that is most striking in the arrangement of remforeement in these two slabse lies in the differenee in the width of the belts, the material in the Norerose type slab being concentrated in narrow strijs diagonally, while the material in the Mushroom type is spread out from three to four times as wide, and covers the area of the slab filly.

A eomparisom, them, of the average stress in the respective belts at mid span, should bring out in a striking mamer, the difference in mode of action, beratse of the difference in the width of the belts in the two areas. This comparison should show the difference in effert at mid span of sprearling the belts as against concentrating the metal in relatively narrow diagonal beam strips. The following table of arorage stresses is submitted in order to show the ratio of the strese in the diagonal belt compared to that in the direct belt:

## 



MCNHRGOM 心UA


The ratio of the diagonal belt strese to the direct belt stress is what was to be expected in the Noreross type slath on the beam strip theory ; and this is to be accomnted for hy the unreinforeed triangular areas in the arrangoment of the motal.

The spreating out of the belt reverses the ratio found in the Mushroom slab and changes it so that the relative stress in the diagonal belt at mid span of the Norcross slab, when compared with the stress in the direct belts is one to two hundred percent greater than the similar ratio in the case of the Mushroom slab; and this striking difference between the two, must account then, in a large part, for the amazing difference in deportment of the two respective tests slabs. It should be noted that the Mushroom test slab was at a great disadrantage on account of the Greek (ross type of loating suggested by Mr. Eddy, which was very atvantageous to the Norcross type slab, since it would cause the greatest stress at that section of the slab best able to resist the same; while in the case of the Mushroom slab, a uniform load over the columm areas would produce cantilever action which would temel to neutralize the stress at mid span.

Refer now to the diagram in Fig. 70, page 253, where the deflections of the Mushroom and Norcross test slabs have been plotted.

The Norcross type slat with the steel at the botom is known by the application of the law of rigidities to exhibit in its atetion the predominant phenomena and characteristics of the simple beam. If this deduction be eorrect, a rapid rise in steel stress should he shown by the yielding of the matrix under the larger loads thru over-strain by the action of indirect tensions combined with direct tensions. The following table is instructive in regard to these ration.

NORCROSS TEST SLAB

Load in Terms of Load 1.	Steel itresses in Ratios of that for Load 1 .	flertions in Ratios of that for Load 1
Load 1	7690	2207
Load 2-Lotd $1 \times 2.01$	$7690 \times 3.54$	$2207 \times 3.21$
Loat 3-Load $1 \times 2.35$	$7690 x+53$	$2007 \times 465$

Observe from this table the leaking out of the potential energy stored in the eoncrete, as shown by the inerease in the sterel stress by two hundred and fifty pereent for a one hundred pereent increase in load; or under Load 3 , an increase of three humdred and fifty percent for an increase in load of onc humdred and forty pereent.

Now compare this with the deportment of at true multiple-way reinforced stah, which, by the law of rigidities must act as a true continuous plate, instead of an ageregation of simple beatn strips.

If the preceding theory of storage of potential energy be correct, the storage reservoir of indirect tensile energy found in this case should be dependable or without leak in the slab and a uniform increase in stress and deflection with increase in loads should be the phenomena foumd.

MUSHROOM TEST SLAB

Load in terms of Load $=15624$
Load $1=15024$
Load $2=15624 \times 2$
Load $3=15624 \times 2.3 \sim$
Load $4=15624 \times 4.3$

Areragesteel stress at Deflection in terms of mid span in terms that for Load 1 of that for Load 1 .

643	017
$643 \times 1 \times$	$017 \times 2.07$
$643 \times 2.3$	$017 \times 2.7$
$648 \times 6.34$	$017 \times 7.12$

Loads 1, 2, and 3, on the Norreros test slat, and loads 1, 2, 3, and 4 , on the Mushrom test stah, are strictly comparable, since for these loads, there was identity in location, and approximate equality in the time element of loading.

The proportionality of increase of stress and deflection with the load in this table of the Mushroom test, contrasts strongly with the absence of surh proportionality in the Noreross test slab deportment. Each test shab was supported upon columns, (see Figures 63 and 67 ) and the stress and deflection in "ach test is affected to some extent by the rigidity of the columns. Were the columns perfectly rigid, the proportionality of stress to defleetion would be unaffected by the eolumns, but in care they participate in the bending of the slab, the exactness of this proportionality will not be entirely preserved. But as loads increase, a divergence will appear between the rate of the increase in stress and rate of the increase in deflection.

In the Noreross test slab, where the column effect is a slight unresisted tipping, this is noarly negligible, amounting under load 4, to nearly three percent, while under Load 4, Mushroom test, it amounts to six times as mueh, or to an even eighteen per cent.

The large variation under Load 4 , between the stress ratio and deflection ratio in the Mushroom test, indicates an intimate relation of column stiffuess to stress and deflection. The continuity of the slab being secured by the integral connection of the column and slab, a certain amount of potential energy is stored within the columns by flexure; and as we are tracing out and locating all the leaks in our storage system of energy, these columns must be considered. As restraint of connection is secured in part by the columns, any column bending reduces the amount or degree of fixity, and increases the
slab deflection and stress at mid sam. But increased slab deflection and increased stress at the panel center involve increase of work done on the slab and columns by the load, in greater amount than merely in proportion to the increase of stress in the slab represented by divergence noted in the increase in stress and in deflection. For consider the analogous case of a beam fixed horizontally at supports. If these supports yield sufficiently to cause it to art as a simple beam, the deflection is increased five times, and the work done by the load is multiplied by a somewhat larger number than that. similarly, when the columns supporting a slab, yield somewhat by tipping they must increase the central deflection of the slab and so increase the energy stored in the slab, in addition to what they themselves absorb in the column flexure by tipping. The energy stored in the column itself, like that of any beam, may afford a leak which is a fraction of its energy of flexure, and tho it may not be a large, fraction of the total energy expented upon the structure, it mas nevertheless be the cause of some increase in the total energy of deformation.

The jogs in the seven day period after Loal 4, Fig. 70 and in the four day period after Load 5 , may be areomed for in part hy the fact that the ground was frozen and there was perhaps some heaving affecting the bench marks at which the levels were taken.

In the curves of deflections, Fig., 70 the influence of the direct tensions is observed in the slight curvature of the line between Loads 1 and 3 , and the small pereent of loss from this source is indicated by the fact that the curves of defleetion contime paralled and show little or no divergence in direction under higher loads than under load of lower intensity, which is in strong contract to eurves of deflection of the Norerose test slab).

The views which have been put forth in the foregomg pages to account for the radical experimental difference between the deportment of beams and that of shab by a rigid application of the fundamental laws whieh have heen abrealy emmedated have bern vigoronsly opposed ley an attempt on the part of certain members of the engincering profesion to explain the wide divergenee of antual slabs from the results of beam strip theory by a pretended belief in the effieacy and suffieleney of the direet temsile resistance in eonerete as suffieient to aroount for the phemomente wherved in the flexure of slabs.

In order to determine what, if any, hasis in fact there might be for any such view, a test shb twent y-five feet square and approx-
imately five inches thick, was constructed, which was supported at its edges by walls and at its conter by a masomry pier 20 inches square and reinforced with wire metting radiating from the center in the bottom of the slab. The nettimg was ordimary poultry netting and 2 inch mesh, galvanized. The applied load was 15,000 pounds in the form of concrete barrels partly filled with water and arranged in circular formation at mid span around the central pier. When the load was first applied the slab carried the low by tensile resistance of the conerete without apparent over stram, no cracks of any kind appearing. The load was left in plate and owing to the leaking of the barrels which were imperfere, gractually dimimished by 25 or 30 pereent. In the course of about five days eracks began to derelop in the stab, these extemding in the top radially and circumferentially about the eenter pier and in the bottom of the slat at approximately the same time from one corner along mid spans. The shat was left undistumbed for six day's longer, and these cracks continued to increase until finally the whole structure collapsed completely. The concrete was fomm, after the collapse, to be nearly $5_{4}^{3 \prime \prime}$ thick at the eonter as agamst 5 inches at the edge.

This test is of value as showing somewhat the effect of time, combined with temperature changes upon the emdurance of tensile stresses in the eoncrete. The test wan mate in the fall of the year and the drop in temperature from mean comditions under which the shab was emed maly be stated as approximately 35 to 40 degrees.

The reinforement of this slab was designed with the purpose of making it substantially like the wire netting of certain old floors of similar span which hat, howerer, a thickness of from 12 to 15 inches the outside edges of these latter sabs being supported vertically and laterally by heary masomry retaining walls which formed substantial abutments and in their action as retaining walls caused a certain amoment of thrust to ate upon the slat).

The great thickness of these floors relative to span caused arch action to predominate rather than slab action and their permanent stability in contrast with the slab tested is readily accounted for on this principle, and sharply differentiates stab action from arch attion.

The predominance of areh action is dependent upon a large ratio of thickness to span and vanishes practically in a thin slab of long span.

Mr. Arthur R. Lord, in a paper published in the "Engineering and ('ontracting," Jamary 29,1913 , reports interesting data rela-
tive to the test of the Larkin Building in Chicago, and concludes that there is a marked degree of arch action in a slab the span of which is approximately twenty times its thickness. He reasons that there is such action because where the line of inflection should be, he observed compressions in the concrote both in the top and bottom of the slab, and infers from this that these rompressions are a measure of arch action. Now, it is a fumdamental principle of flexure that the sum of the horizontal compressions must equal the sum of the tensions at any section thru a plate in bending, if no arch action be present. Examining the cross section of this design, we find the slat, rods, at the deflection line, crossing the neutral plane of the slab at an angle, and tuming downward at a considerable inclination. Now since there is shear across this section, these rods must be in tension at the line of inflection, by virtue of vertical shear, and the horizontal component of the tension in the stere must be balanced, to fulfill the laws of flexure, by compressions in the comerete; and hence this supposed arch action is thus readily accounted for as a phenomena of flexure. Moreover the magnitude of the thrust was wholly insufficient to aceount for the carrying capacity of the shat in excess of beam theory.
4. Investigation of Structures by the Berry Extensometer and Interpretation of Results. In the investigation of concrete struetures with the Berry Extensometer, or similar instrument, it is usually possible to secure measurements on one side onty of the reinforeng rod, and hence the measurment is primarily a measurement of fiber stress rather than that of the average stress arross the soction of the bar. Any kink in the bar, due to careless handling before plaring in the structure, is liable to induce a bending stress under working conditions, which will mask in a large measure the character of the average stress in the bar and its true mechanical action in the structure. This difficulty might be obviated if we could get at both the top and bottom of the bar, and take observations on both the lower and upper fibers; but it in generally inpracticable to do this, and far better to check up the aceuracy of the readings be careful comparison with observed deflections.

The next difficulty in the experimental solution of the problem of stresses in flat shab by the strain gage lies in the masking of the true action of the material by the stresses induced in the process of casting. These stresses naturally vary thru a wide range, flependent
on the temperature conditions at which the concrete was cast and the temperature conditions, humidity and barometic pressure of the air under which the conerete was cured.

In practical work, it is frequently the case that where the work is executed in hot weather, the steel and the concrete materials are heated by the sm and are quite warm when the concrete is mixed, so that very rapid setting and hardening results. such hatdening is accompanied in the chemical process of curing with a considerable evolution of heat, and the steel is thus heated to a temperature as high as $130^{\circ}$ Fahrenheit or even more during this process. If the hardening is sufficiently rapid to form a rigid bond between the steel and the concrete during this stage of hardening, (and it frequently does form such bond) the final result is that as the mass cools down, the steel is thrown into tension by the cooling and the concrete to a considerable degree into compression, this compression being distributed over the cros's section of the slab. The result of the combined temperature and shrinkage stresses induced in hot weather, is such as at times to cause the slab to be practically self supporting and remove it.s weight largely or entirely from the supporting forms so that these in hot weather are frequently found to be really loose, and may be knocked out with little resistance.

This condition, to some extent, may, of course, be accounted for by the shrinkage of the lumber forms which are wet in casting, but this shrinkage is insufficient to aceount for the difference in conditions observed in warm weather work contrasted with cold weather work.

The presence of such shrinkage stresses in the material, cause its apparent deportment to be materially different under loads of low intensity from its action under loads of higher intensity where the mechanical operation of the combination is not masked by extrancons influences.

The effect of casting stresses and shrinkage stresses which have been referred to above gradually disappears of course with time and continuance of the chemical process of hardening, and under the repeated changes in form of the structure caused by temperature variations and changes of load. Accordingly it must be kept clearly in mind that positive conclusions as to the mechanical operation of the slab cannot be deduced under loads that are too small to permit the character of the stresses induced by the load to be distinguished from stresses originally induced by the weather conditions while casting.

Measured stresses on newly eared work ean be given weight, aceordingly, only after the loads applied become materially greater than the working load. The true artion of the structure commences. then, to become dominant, because this action is not masked by the influenee above discused. These influences have been, by some, improperly aredited to am imposible direct tensile resistanee of eonerete.

Moreover, measurements of the deformations in the concrete by the extensometer are frequently eroneously interpreted. In the practical testing of a building applied louds remain upon the concrete a considerable period of time, since a comprehensive survey of the stresses in the slah) (ammot be executed short of several day's contimuous work. When it is attempted to interpret extensometer measurements of the concrete which has been subjected to a given load continuously for several days or a week on the hasis or the modulus of elasticity determind hy measurements made on test eytinders of concrete which are loaded with given loads for very short periods only a considerable ermo is involved in such comparison. First, beeause an S ineh cylinder 16 inches long east at the same time that the floor of the building was cast, has a better opportunity to dry out and become hard and rigid before tosting than the concrete work of the practical structure. Second, beeause the short period of time in which the load is applied to the crlinder in the ordinary method of making teste does not correspond to the time element involved in making tests of the work in the finished structure, and neglect of these conditions involven a fundamental arror lost sight of frequently in the experimental determination of concrete stresses. The eorreet method would be to detemme the residual set of the conerete prism under a continual load of the intensity which it is desired to interpret, then deduct this ret from the measmrements made on the practical structure and determine the true modulas of the sperimen herepeated loadings. Serentifo results may be thas secured which would be of value in wedking the mathemationelastic theory.

The great difficulty with extemsometer teste aside from the lathor and expense involved, is due to the great uncertainty arising from the caluses which have beern mentioned and to the fact that, measurements taken on corresonding rods at correspomding points where like results would be expereded differ so greatly as to show that aceidental differences of ronstruction hatere barge an offect upon the measurements as to make prectise defactions very difficult.
such inequalities would, howerer, evidently not be dangerous to the structure because overstrain on any rod would ultimately be relieved by others coming into action nearby.

The measurement and interpretation of deflections under load is not beset by uneertaintitios and difficulties of this character. A defleetion is the result of the combined action of all the elements of the slab and not of any single one exclusively and so has a degree of reliability which cannot attarh to any result derived from measurements on single dements however mumerous. If deflections and stresses are mathematical elements of a comprehensive slab theory the measurement of rither one is sufficient to determine the other just as in the theory of beams. When the profession shall have become convined of the validity and sufficiency of slab theory, there will be littlo bex for extensometer testr. Deflections are sufficient.

## CHAPTER VII

## MOMENTA IN 'TWO-WAY AN゙D FOORR-WVAY FLAT SLABS

1. Simple Approximate Theory of Four-Way Slabs. In order to investigate approximately the applied bending moments and resulting stresses in a four-way flat slab) in a more clementary manner and dispense with the use of higher mathematics, assume that each of the four-way reinforcing belts supports onc-fourth of the total uniformly distributed panels loads $\mathbb{I}$. This is very nearly the fact in the central portion of the slath where the curvature is concave upward and the wide and diagonal belte are to at comsiderable extent separate from each other.

Assume that the central portion of cach side belt for example at least as far as the lines of inflection, is uniformly haded with a part of $\mathrm{W}^{*} / 4$ propertional to its length and that the position of the lines of inflection is the same as would be found in a miform cantilever beam, viz: at a distance $\frac{1}{2} L \quad \backslash \overline{3}=288 L$ each way from mid span. The assumption howerer that so far as the central portion of the side belt is concerned the load If + mat be taken as miformly distributed is only approximate, for the load is concentrated somewhat toward mid span as may be seen from Fig. 73 where the load


Fig. 73.
upon half a side belt of a panel may be taken as that resting on the triangle $A B B^{\prime \prime}$, and that upom half a diagomal helt as that on the quadrilateral A $B C^{\prime} B^{\prime}$. 'This assumes that there ate mer repical shearing stresses in the slab on the lines $1 B$, , $B^{\prime}$ ete.. which wonlel not necessarily be exactly the fact, expecially for oblone pathets.

But the lines of inflection have been assumed above to be at somewhat greater distances from mid span than occurs in a slab where the caps. have a diameter of $0.2 L$ or more, so that the applied moment at mid span of a uniformly loated continuous be:m of length $L$ will be approximately that of a side belt in a standard mushroom slab. It whould howere be noticed that the position of the lines of inflection is a matter which is determined by the designer and within practical limits is within his control, tho so far as known they are universally assmed to oremb where the would be situated in a plate which opposes to the applied moment a miformly distributed moment of inertiat. This is mot the case with a reinfored cantilever slab. any more than it is with a comtinums rantilever bridge where the moment of inertia is reduced to zoro at the ends of the suspended -pan hy joints. The resisting moment of inertia is practically redured to zero in the reinfored slabl, at the lines where the reinforeroment dips below the melutral axis and thas the lines of infleretion are fixed at these lowi.

Designe which have definite bends in the stah rods where they make a somewhat sterp) deserent from the top to the bottom of slab are to be a soded. for any severe stress at such a bend is apt to make ratek in the (emerete. whike there is nothing in slab construction to forbid a very gradual dip from top, to bottom of slab at the lines of inflection where the moments gradually approath zero.

But designs in which sone of the belt rods dip suddenly at one dixtane from the column center, and others at a different distance and still others at another distance, are especially reprehensible beranse they mechanieally obliterate any definite lines of inflection and put them in a different powition for each different umbalanced load, and so introluce uncertainty in place of certainty in design. Espectially is this true in case of any aceidental subsidence of column under fead where the same primeiples obtain as in a cantilever bridge with joints. as compared with a continuous bridge, where the latter is liable to dangerous streses in case of subsidenere from which the rantilever is measurably free.

The designer of as stab, thus having control of the size of his cantilever and consecpently of the position of his lines of inflection naturally removes these lines ar far aremotances will permit from column exnters when by doing the stresses in the eoncrete arombl the columm (ap) are not too greatly increased.

Assume in the first place for the purposes of computation that the part of the side belt lying brtween the points of inflection is a simple beam of length $0.577 L$, loaded with a proportionate load of $0.577 \mathrm{~W} / 4$. Then the applied moment at its eenter will be (as in any simple beam) one eighth the product of these quantities, viz:

$$
(0.575)^{2} \mathrm{H}^{\prime} L / 32=1 \mathrm{~J}^{\prime} L, 96
$$

In order to derive from this applied moment the resisting moment of the rods of the side belt the effeet of the diagonal belts which cross the side belts diagonally and increase the cross seetion of the steel resisting the moment by about 50 per cent on the average must be allowed for, as well as the mutual effect of the reinforeing rods which cross each other under tension at the edges of the belt and the embedment which have an effect to reduce the stresses in the side belt, an effect which is dependent upon Poisson's ratio $K$. thru the action of bond shear already diseussed in this paper. As already shown in Chapter $V$, both the stresses in the steel and the deflection in the slab are reduced in general by the factor $\left(1-K^{2}\right)$ in case of a Poisson ratio $=K$.

No direct determinations of $K$ for such a composite material as reinforeed concrete are available, but every test for stresses or deflection may be regarded in the light of a determination of $K$ provided the formulas for these quantities are completely known otherwise.

A general value of $K=0 . \overline{5}$ brings a good agreement between the formulas previously given and the observed data in a very large number of tests, some of which have already been detailed in Chapter VI entitled Steel Stresses in Flat Slabs. It is probable that $K$ would have somewhat different values for different arrangements of belts with reference to each other. Now the value of $K=0.5$ is one which would necessitrily hold for any ineompressible solid i. e., a solid of constant volume, while $K=1$ is a value which would apply to a sheet of eonstant area without regard to thiekness. Great objection has been raised to arlopting so large a valne of $K$ as 0.5 but its total offect, depending as it does upon the factor $\left(1-K^{2}\right)$, is at most to make the stress 7.5 pereent of what it otherwise would be and that is beliexed not to be an over estimate of the effect of the bond shear which has been previously disenssed.

Introducing therefore the effect of the increase of the amount of reinforecment due to the overlapping of the diagonal belts, and also that due to the lateral effect into the expression for the gart of the resisting moment exerted by the direct rods in the side belts it becomes

$$
\begin{equation*}
2 / 3\left(1-K^{2}\right)\|L \quad 9 \pi=\| L \quad 192 . \tag{1}
\end{equation*}
$$

in which the first factor takes account of the fact that the direct lods constitute on the average only two thirds of the tension reinforcement actually present, and $\left(1-K^{2}\right)=0.75$ if $K=0.5$, takes aceount of the reduction of stress due to the lateral action expressed by Poisson's ratio. This is precisely the same result that was reached in equation (3ta) ('hapter $V$, wheh was derived by the application of exhaustion mathematical amalysis to a continuous uniform slabs suate or ohlong and supperted at the corners, where $L$ is the length of the side belt under consideration.

There is one other question in this comection which needs consideration, viz: the irregularity of the lapping of the belts over the area of the side loelts. The question is as to what amount of irregularity of distribution may exist without materially interferring with or changing the action of the total amount of steel. All designers and investigators agree that a bolt of rods is practically equivalent in its action lemgthwise of the rots 10 a sheet of metal of equal width and Werght if all questions of bond be discegarded, and the question is whether other large irmequarities of distribution such ats oreur in the over-lapping of side and diagomal belts may be diseregarded, and whether the mean weright of metal present is the only significant factor. Such would serm to be the fact within limits of area which are comparatively small fractions of the total panel area. This may be stated more convincingly perhaps by saying that it is impossible to elongate the central portions of the side belts without at the same time elongating the sted of the diagonal belts that lies along the edges of the side belt. Tests show what is otherwise evident that the clongations in all the rods across the side belts are pratetically the same. Hence the diagomal rods at the edges of the side belts participate in the same elongations. And this is the basis of the assumption of an average reinforcement of 50 pereent in addition to the side belts themselves.

Next compute the moments at the middle of the diagonal belts, earb under a total assumed load of $\mathrm{H}^{\circ}+$ miformly distributed. If the distance between inflection points on the diagonal be taken to be 2 times that on the side belts, then the applied moment at the renter becomes IV $L \sqrt{2} 96$ and the resisting moment of the steel at mid span in one diagonal belt may be written

$$
\begin{equation*}
\frac{1}{2} \backslash 2\left(1-K^{2}\right) W^{\top} L, 96=H^{\prime} L / 180 \ldots \tag{2}
\end{equation*}
$$

in which the factor $\frac{1}{2}$ takes areount of the fact that one diagonal belt comprises only one half of the reinforcing steel present, and $\left(1-K^{2}\right)$ takes acooint of the reduction of stress due to the lateral
action expresed by Poison's ratio. No account however has been taken of the reduced concentration of the load at mid span of the diagonals as shown in Fig. 73, wheh in fact makes the stresses at mid span of the diagonal belts not only less than those computerd from (2) but somewhat less aron than those computed from (1) for the side belts, a fact which is established by the observed results of all avalable tests of four-way shabs in bildings. The same fact appears mathematically from the results of the more exaet analysis given in Chapter $V$, so that with equal belts in four-way reinforcement greater stresses occur at mid span of the side belts than at the center of the panel in the diagonals.

Consider in the next place the applied moments at the columm heads. In a uniformly loated cantilever beam such as has been assumed for the purposes of computation, each side belt will have an applied moment at each ond which is twice that at mid span viz.: IV $L$ 48, making a total applied moment for the four belts in $180^{\circ}$ aroumd the column center of HV $L 2$. Owing to the someWhat greater eoncentration of stresses in the eenter rods of the belt by reason of their being at a level above those at the edges of the helt, as well as by reason of the concentration of stress at the middle rods of the belt at the edge of the cap due to its rigidity the decrease of belt stresses arising from the shortening of the clear san by the caps will be disregarded in ohtaining this roughly approximate value of the stresses at the edge of the cap. Discegarding therefore any reduction of the moment due to shortening the sam by the breadth of the support afforded by the colmmen (aps and assuming that each belt is earried across the columm as a contimmos beam the question arises as to what reduction of stress will arise from other steel with which it is in contact hy its coaction therewith. Assume as a safe basis of computation that each belt coacts with one other belt as do each of the diagonal belte at the panel eenter.

The resisting moment of each side belt at the edge of the eap) will then be written

$$
\begin{equation*}
\frac{1}{2}\left(1-K^{22}\right) W^{\prime} L \quad 48=W^{\prime} L \quad 128 . \tag{i;}
\end{equation*}
$$

in which the factor $\frac{1}{2}$ takes aecount of the steel other than the belt itself in assisting the belt, amd ( $1-K^{2}$ ) gives the additional redurtion due to the lateral atetion in the slab of Poisson's ratio.

From this it is evident that with steel at the same distamere from the neutral axis, so per rent more steel would be reduired acoording to this eomputation in cach beet over the colemm head than at mid span, which increase is to be provided for by laps or otherwise in
the belts over the head. But these laps need not be distributed equally among the belts. Any or all the laps may oceur equally well in two belts only by extra rods placed between the belt rods which individually extend several spans. The laps or extra rods will be more effective the nearer they are to the top of the slab and also the nearer they are to the middle of the belt, because the edges of the belts are at a somewhat lower level than the middle of the belts.

The steel of the ring and radial rods has been left out of the account in this rough computation as well as the breadth of the cap, in order to offset the smatler arm with which part of the belts act when col piled one on another at the top of the column as well as to compensate for the lower level of the belts at their edges.
2. Simple Approximate Theory of Two-Way Slabs. To investigate in a similar mamer the flat slab with two-way reinforement suppose the lines of inflection to be situated as before at a distance of .288L earh way from mid soan. Then the width of the central area between lines of inflection is . $575 L$ and the wilth of the side belts is $.42: 3 \mathrm{~L}$.

Let the louding upon each erentral area of a panel between the side belts be tramsmitted symmotrically sidewise to the side belts by the median belts. Each eentral median belt parallel to the sides may be regurded as constituting a simple beam of length .577 L and 'arrying a miform load of IV . if or half that on this central area

There will consequently $\mathrm{l}_{\mathrm{x}}$ a positive central applied moment in each median belt at mid span amomeng to one eighth the product of the load and span, which is

$$
\begin{array}{ll}
1 & \|^{\prime} L \\
8 & 6 \backslash 3
\end{array}=\frac{W^{\prime} L}{83}=.012 \|^{\prime} L
$$

The resisting moment of the steel in one median belt at mid span will be

$$
\begin{equation*}
\frac{1}{2}\left(1-K^{-2}\right)\left\|^{\prime} L / 83=\right\| L / 222 . \tag{4}
\end{equation*}
$$

Where the factor $\frac{1}{2}$ takes account of the fact that one belt is only half of the reinforcement present and $\left(1-K^{-2}\right)$ makes allowance for lateral action of the other belt. This will give the mean stress in the slab rods of the median belt. The middle rods of this belt however have greater stresses than this. The negative moment applied to the median belt across the edge of the panel at the middle of the side belt will be one eighth of the product of its load W/6 by the width of the side belt regarded as the length of the simple beam transmitting this load to the side belt and miformly sup-
ported by it. Hence the moment is

$$
\begin{array}{ll}
1 & \mathrm{IH}^{2} \\
8 & 6
\end{array} .423 L=\frac{\pi}{112}=.004 \mathrm{H}^{\circ} L .
$$

This is also the resisting moment of the median belt at this point because there is no steel in the top of the slab coacting with it. This resisting moment is the greatest in this belt. It consequently determines the cross section of the steel in the entire belt which should not be less at the panel center since the stress in the middle rods at the panel center is greater than at the edges. The effect of the median belts is to transfer that portion of the loarl actually rovering the central area between the side belts, viz. W , 6, and place it upon those belts, so that the load acting mpon each side belt of length $L$ between columns is $\frac{1}{2} \mathrm{If}$, irrespective of its width and the size of the central area.

It will be assumod that this load is miformly distributed along the side belt, tho its apparent distribution has a somewhat greater concentration toward mid span, as may be sern by ronsidering the situation of the square areas included between the pamed diagonals of several pamels, for on drawing these diagonals the square load areas supported by bach side belt have corners at columm centers and at panels centers. The median belts will have some effect to tramsmit loads diagemally as well as laterally and it is not far from "orrect to assume uniform distribution of load upon the side belts. tho that assumption reduces their eentral momenter somewhat, as was the case to a less exterat for the side belts of the four-way slab. With twice the load of the side belt of the four-way slab upen each side belt of the two-way slab the applied moment at mid span of each side belt will be twiee that in the four-way side belt, viz. $\mathrm{IV}^{\circ} L$ 4s at mid span of a side belt. This is also equal to the moments of resistance of the steed in the side belt without the berefit of any ascistance from the steed that aroses this helt. There is no such assistance here becanse the merlian sterel that is in ternsion lies arerose the top surface of slab) amol ramot eobet to any apprectable extent with the steed of the siele belt at the botem, meither ean it roact with
 as is sometimes dome. The applied bending moment in eath side bolt where it crosses the colmun center may be assummed to be twiee that at mid sam, viza: W $L$ g giving a total moment of $11 \quad L \quad 12$ in $180^{\circ}$ about the columm eenter.

Theresistance afforded hy thesterelin each belt at thesilupert eome bined with the lateral artion of that (rossing it at right angles will be

$$
\begin{equation*}
\stackrel{1}{2}\left(1-K^{-2}\right) \text { U } L, \quad 24=W^{+} L, 64 . \tag{5}
\end{equation*}
$$

Which is the same ar that in two belts of the four-way slab. This requires less steel in the belt where it aroses the top of the column than at mil span amd permits a fraction of the side belts rods to be carried thru on the bottom of the saf at the column when so desired It wonld not be good practiee to reduce the total eross section of the side belts at the columns, below that required at mid span, whatever theory may be areepted resperting shearing streses in remforeing rods around the eolmmes.
3. Weight of Steel in Two-Way and Four-Way Slabs Com= pared. In making a comparison of the weight of shat steel required in a two-way banel with that in a fom-way bamel of the same size and thickness, it will be noticol that the roses section of the steel required in cach belt will te proportionl to its resisting moment and its weight will he proportiomal to the product of aross seetion by longth.

Now omitting common factors of 11 and $L$ the weights will be propertional to the following nombers:

In a form-way pancl:
Two side belts together wive he (3) ........................ 2 28
Two lapmed belts half length give .......................... 128
Two diagonal belts givo . . . . . . . . . . . . . . . . . . . . . . . . . . . 2】ロ 128
Making a total of ahout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
In a two-way panel:-
Two side belts together give............................... 2, 48
Two median belts together give. . . . . . . . . . . . . . . . . . . . . 2112
Making a total of............................................ . 16.8
exclusive of laps. This shows an exees of weight of belt rods in the twoway banel of somewhat more than 30 pereent over that required in the four-way panel, but does not take account of any hearl steel hised in supporting the belts in the two-way panel orer the heats of the columms, nor of the Mashroom heads in the fourway panel.

The above simplified analys show how this excess arises in the main, riz: from lack of suitalle arrangements in the two-way reinforeement to takr advantage of coaction of belts, and besides that the excess due to the round about indirect transmission of the loads thru the mediam belts to side belts instead of direct transmission to columns thru diagonals.

The question of the weight of steel required in a $20^{\prime}$ hy $20^{\prime}$ panel designed to carry a total live and dead hoad of 300 lb s. per wuare foot has been discussed reerently by the writer*, and it is shown that such a panel woukd require about 1000 lb s. of steel ateoreling to several authorities on slab design. while sporal others who would reject the foregomg slab theory as inadvisable and insist on beram theory as alone applicable to slabs and essential for safe tesign womld reduire about $2,000 \mathrm{lbs}$ of steel per panel.

It has been tacitly assmed in the foregoing computations and comparisons that reinforeing reels acress the top of the side belts in four-way slabs are mecessary and smperfluons, and that the eracks occasionally observed extenting along the middle of the side helts do not indicate any structural weakness. such is the fact, since the neressary reinforemg sterel to refinst the nequtive moment ocemring acroses the side belts is to be fommel in the fourallel side helts acrose the columm heark. The eracks where they exist allow suflicient deformation and twisting moment to are in the slab to bring this
 sitle belts viewed from the standpoint of mechanices, only server to increase the load upon them and so increase the stress in them, and at the same time relieves to some extent the strese in the diagonals, thus making the mothod of shat operation to resemble the umeconomical action of two way reinforemont.

## 4. Panels Reinforced Unequally Lengthwise and Crosswise.

 The particular solution of the general partial differential equation (20) of Chapter $V$ whirh was develeped in that ('hapter was one that has eperial referencer to shabs resting on separate supperts or colmoms at the eorners of the pemels. It is a solution in which the doflections at mide pan of the sides of a square panel are more than hadf as great as at the panel center", and one in which the ratio of the deffections at mite span of the sides of at recetangular pancl varies as the fourth power of the lengthe of the sides so that for the extreme case of $L_{2} L_{1}=.75$ the defleetion at mide span of the long side would be more than three times that on the shont side. It is evident therefore that such a sehation as that is entirely inapplicable to the (ease of at slath where the edges of the panels are supported on wabls which deffect not at all or on beams wheth are se stiff that their deflections are small compared with slath deflecetions.[^14]Grashof has proposed the following equation as the best he was able to invent to represent the surface of the middle layer of a uniform rectangular plate fixel horizontally at the edges:

$$
\begin{equation*}
24 E I\left(a^{4}+b^{4}\right) z=q\left(a^{2}-x^{2}\right)^{2}\left(b^{2}-y^{2}\right)^{2} . \tag{7}
\end{equation*}
$$

This equation was proposed by (irashof on the analogy of the equation for a beam with fixed ends, and not as a solution of the differential equation, which in fact it is not, tho it has often been quoted as if it were in some way so affiliated with the differential equation as to derive some validity from it. Such is not the fact however. No solution of this differential equation of the fourth order can contain terms of higher elegrer than the fourth, since otherwise the last member would not be constant. We can dismiss Crashof's rquation as simply an invention of an ideal mature. He was aware that the equation sought must rontain the two quantities $\left(a^{2}-x^{2}\right)^{2}$ and $\left(b^{2}-y^{2}\right)^{2}$, and he in fact proposed that the result contain their product as statad above. But as just shown, that is impossible because the degree of the result would prevent it from satisfying the differential equation of which it purports to be a solution.

It can in fact be readily shown that no exact algebraic solution of this differential equation is possible that will fit the case of a slab resting on relatively stiff beams at the edges of the pancels. In equations (! 1 ) , (10) , (11) , (12), howerer, a novel solution is obtained which will be used as a basis for approximate equations applying to a slab resting on beams. It is evident since side beams are designed of arbitrary (ross sections to carry the sab), that their deflections which depend upon their design as to stiffess relative and absolute is the determining factor not only of the slab deflections but of the shears and sted stresses of the slab. Beams and slab are consequently indepentent members of the combination and are not readily amendable to treatment as a simple system.

The general partial differential equation of the surface of the middle layer of a continuous flat slab loaded miformy is, see equation (20) Chapter $V$.

$$
\frac{\delta^{4} z}{\delta x^{4}}+2 \frac{\delta^{4} z}{\delta x^{2} \delta y^{2}}+\begin{gather*}
\delta^{4} z  \tag{8}\\
\delta y^{4}
\end{gather*}=\frac{\left(1-K^{-2}\right) q}{E I}
$$

in which $x y z$ are the coordinates of the deflected surface, $q$ the intensity of the uniform loading, $K$ is Poisson's ratio, $E$ is Young's modulus of elasticity, and $I$ is the moment of incrtia per unit of width of vertical cross section of the slab in any plane parallel to $z$

In deriving ( 8 ) it is assumed that during the small flexure, which occurs by reason of the loading, $z$ only varies, and that the coordinates $x$ and $y$ of any given point of the slab remain unchanged, which assumption undoubtedly is sufficiently in accordance with fact for technical purposes.

A somewhat more general form of solution of (S) than that given in Chapter $V$ may be written as follows:-

$$
\begin{equation*}
24 E I\left(c_{1}+c_{2}\right) z=q\left(1-K^{2}\right)\left[c_{1}\left(x^{2}-a^{2}\right)^{2}+c_{2}\left(y^{2}-b^{2}\right)^{2}\right] \tag{9}
\end{equation*}
$$

in which $c_{1}$ and $r_{2}$ are any arhitrary constants whatever. That (9) in fact satisfies ( 8 ) and is consequently a particular wolution of ( 8 ). may be readily verified hy trial.

A form of solution las gomeral than (9) is the following, which involves but one arbitrary constant $n$ in place of the two foumd in (9).
$24 E I\left\{\binom{b}{a}^{\mathrm{n}}+\binom{a}{b}^{\mathrm{n}}\right\} z=q\left(1-K^{-2}\right)\left\{\binom{b}{a}^{n}\left(x^{2}-a^{2}\right)^{2}+\binom{a}{b}^{\mathrm{n}}\left(y^{2}-b^{2}\right)^{2}\right\}(10)$
which is a form of solution esperially applicable to the single panels of a continuous slat divitled into rectangular panels of size 2ax2b, where the origin of coordinates is at the point ocrupied by the center of the panel before deflection, and the axes of $x$ and !y are paralled to the edges $2_{1}=L_{1}$ and $2 b=L_{2}$ respectively.

It will be noticed that the corners of the panel, $x=a$ ant $y=b$, are fixed points of zero doflection, whatever may be the load. These consequently are points of support of the panel with reference to which ot her points $x$ ! undergo the defleetion $z$.

It is to be observed that solutions (9) and (10) differ in effect from solution (21) Chapter V, in introducing into the solntion mit moments of inertia which are not the same for $x$ as for $y$. For let the solutions $(9)$ and (10) be written in the following form:
$z=\frac{q\left(1-l^{2}\right)}{48 E}\left\{\left(x^{2}-u^{2}\right)^{2} I_{1}+\left(y^{2} \cdots b^{2}\right)^{2} I_{2}\right\} \cdots$
which is identical with (9) and (10) provitleal

$$
\begin{aligned}
& I_{1}=\left(c_{1}+c_{2}\right) I 2 c_{1}=\left(1^{2_{1}}+b^{2 n}\right) I 2 b^{2 n} \\
& I_{2}=\left(c_{1}+c_{2}\right) I 2 c_{2}=\left(r^{2 n}+b^{2 n}\right) I 21^{2 n}
\end{aligned}
$$

Hence the modified moments of incria $I_{1}$ and $I_{2}$ of unit widthes of slab perpendicular respectively to $x$ and ! have the ratio to each other

$$
\frac{I_{1}}{I_{2}}=\frac{c_{2}}{c_{1}}=\frac{u^{2 n}}{b^{2 n}}, \quad \text { or } \quad \frac{1}{I}=\frac{1}{2}\left\{\begin{array}{cc}
1 & 1  \tag{2}\\
-+ & - \\
I_{1} & I_{2}
\end{array}\right\} .
$$

in which $1 \quad I$ is the mean of the reeperocals of the moments of inertia $I_{1}$, antl $I_{2}$

For $n>0$ and $a>b$ we hatro $I_{1}>I_{2}$, and the stab is stiffer lengthwise than rosswise. This deereases the deflections on the long side compared with these on the short side more amt more the larger $1 /$ beeromes in such wise that the are equal in case $"=2$.

By sufficiently incerasing $n$ the eatse maty be treated where the stiffocs alomg $x$ is any required multiple of that along $y$. Solutions (9), ( 10 ), (11) then all refor to a shat wheh in rase 11 is positive is stilfer and has more stere along or per unit of width of shab than along If, a case which is inconerdyable in a homogeneons plate but perfectly realizable in atab, (repereally in a sab with two way reinforeement. As shown hy equation (13) the defferetion on the stiffer bong side will be redued so as to bereome equal to that on the short side or in other wordo $z_{11}=z_{02}$ when the stiffuess along $x$ is so in(reased that $n=\underline{2}$ or $I_{1} I_{2}=b^{1} n^{1}:$ whereat in the mushroom siah in which $I_{1}=I_{2}$ and $n=0$ we fint the ratio of the defleretions at mid span to he *以 $\quad$ an $=b^{\prime} a^{\prime}$.

Asimme that the longer side is $2(a$, so that $a>b$; and designate the deflection at mide enan on the longer edge where $x=0$ and $y=b$ by $z_{01}$, and hy $z_{02}$ the deflection at mid span on the shonter edge where $x=0$ and $y=0$ as shown in the diagram Fig . $7 t$ showing a plan of a panel. Also lat zo be the defleetion at the panel eenter where $x=0=y$. Them in ean $I$ hats the same vahue at all points of the slat, we find.

It wifl be motieed that in "ase of square pancls, where $a=b$, all values of $1 /$ lead to identically the same results, viz.: those alrearly disernsed in ('hapter $V$, where in fact the case of $n=0$ was treated. It was there applied to Hat shabs deroid of stiffening girders other than those forming part of the slah itself, and having a moment of inertia no greater than the rest of the sial). In fare the moment
of imertia at the side belts was taken as somewhat lese than its mean value in those parts of the panel subjeet to the maximum applied bending moments. This ease of (10) where $\mu=0$ has been shown by detailed tests to agree well with such a flat slat) for panels of an oblatemess as great as $b \quad a=0.75$.

In ease $n=0$ the deflection at the mid spans of the longer amd shorter sides of a miform shab without stiffening beams are as the fourth powers of those sides, so that for $b \quad \pi=.75$ the deflection om the shorter side is not quite one third that on the longer side. while one fourth of the total load on the panel is theoretically carried to each edge hy the shears, regardlese of the relative lengthe of the edges. (buite an important portion of the discussion of flat stabs was devoted to the investigation of how this shear is distributed in the beamless miform shab withont producing prohibitive stresses. Now it appears from (11) that in ease $n=1 \quad 2$ the dellections at the panels edges are as the third powers of their lengths, just as oecurs in beams with equal moments of inertia loaded with loads of the same mat intensity. It will be shown later that in cease $n=1 \quad 2$ the shear at the edges of the panel is the same per mat of erge thrmout both the longer and shopter sides.

The results just comsidered as well ats those for intermediate cases will be fomed together with other mattor in Table l, page 284.

The diseussion of the theory of the beamless flat shab, atreally refered to, was rembered possible be introducing into the formulas which were employed such values of the moment of inertia $I$ as were shown to exist in the various parts of the pamel hy reason of the amome and position of the remforement, on the assumption that the action of the reinforement eould be replaced without noteworthy error ly a miform sheet of metal of the stme weight as the actual reinforemment.

But, in cease of a stab with stiffeming beams, it would manifestly be ineoreet to assume that the effeetive moments of inestia may be taken as approximately the same botlo along amb adorose an odge. Hence along erges the value of $I$ will be large compared with $I$ clsesWhere, and along the edges $y=+b$ the value of $\left(x^{2}-a^{2}\right)^{2} \quad I_{1}$ will nearly or quite vanish loge reason of the bargeness of $I_{1}$, the moment of mertia in the girder along the edge; and similarly along the ederes $x=+a$ the value of $\left.\left.(1)^{2}-1\right)^{2}\right)^{2} \quad I_{2}$ will also vimish. It is in this manner that the stath beemes nearly lerol atong the panel oders. As previously stated, the affeet of this stiffeming of the edges will need to be comsidered and allowed for in ohtaming pratedeal formulats


If we compare the value of $z_{0}$ in (11) in case $n=0$ with $z_{0}$ in case $n=2$ we find the latter is the smaller when $a>b$. As will be seen from (10), all sections of that surface marle by vertical planes parallel to an edge are curves that are irlentical in shape, and such that $z_{0}=z_{01}+z_{02}$ in which $z_{01}$ and $z_{02}$ may be regarded cither as the mid deflections of the edges or the mid deflections of the meridian curves of the surface made by vertical phanes respectively parallel to the edges.

Now as 1 increase from 0 to 2 , the deffection $z_{0}$ deereases somewhat, but the afleetion $z_{01}$ of the longer side deereases more rapidly than $z_{0}$, while the deflection $z_{02}$ of the shorter side, or the crosswise deflection the short way of the slab, actually increases. This appears from inspection of Tables 1 and 2. This may be regarded as due to the increase of the portion of the total load carried by the shears to the longer edges, wo that the loading of the erosswise reinforcement inerease with the increater of stiffuess along $x$.

It appeetre from (10) that

$$
\left.\begin{array}{l}
\delta z=q\left(1-K^{22}\right) b^{2 n}\left(x^{3}-a^{2} x\right)  \tag{14}\\
\delta \cdot x \\
6 E I\left(u^{2 n}+b^{2 n}\right) \\
\delta z=q\left(1-K^{2}\right) a^{2 n}\left(y^{3}-b^{2}!\eta\right) \\
\delta!! \\
\left(i E I\left(a^{2 n}+b^{2 n}\right)\right.
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { Hence } \frac{\delta z}{\delta x}=0 \text { at } x=0 \text {, and at } x=+a \\
& \text { and } \frac{\delta z}{\delta y}=0 \text { at } y=0, \text { and at } y=+b
\end{aligned}
$$

consequently the panel in horizontal aroros its meridian sections and atroses its edges, segardless of $n$.

$$
\left.\begin{array}{cc}
\text { Again } & \frac{\delta^{2} z}{\delta x^{2}}=4\left(1-K^{-2}\right) b^{2 n}\left(3 r^{2}-a^{2}\right) \\
6 E I\left(a^{2 n}+b^{2 n}\right)  \tag{15}\\
\text { and } & \delta^{2} z=4\left(1-K^{2-2}\right) a^{2 n}\left(3!y^{2}-b^{2}\right) \\
& \delta^{2}!! \\
6 E I\left(r^{2 n}+b^{2 n}\right) \\
\text { Also } & \delta^{2} z \\
& \delta x d y
\end{array}\right\}
$$

Let $I=i j d^{2} A$ in which $1 A=12\left(1 / A_{1}+1 \quad A_{2}\right)$ where $1 A$ is the mean of the reciprocals of the steel areas
$\left.\begin{array}{ll}\text { Hence } \quad e_{1}=+i d \frac{\delta^{2} z}{\delta x^{2}}=\frac{q\left(1-K^{2}\right) b^{2 \mathrm{n}}\left(3 x^{2}-a^{2}\right)}{6 E A j d\left(a^{2 \mathrm{n}}+b^{2 \mathrm{n}}\right)} \\ \text { and } \quad e_{2}=+i d \frac{\delta^{2} z}{\delta y^{2}}=\frac{q\left(1-K^{2}\right) a^{2 \mathrm{n}}\left(3 y^{2}-b^{2}\right)}{6 E A j d\left(a^{2 \mathrm{n}}+b^{2 \mathrm{n}}\right)}\end{array}\right\}$.
Note that $e_{1}$ is independent of $y$, and $e_{2}$ inclependent of $x$.
Designate the unit elongation along $x$ at $x=0$ by $e_{01}$, and along $y$ at $y=0$ by $e_{02}$, then $e_{02} / \epsilon_{01}=(b, a)^{2-2 \mathrm{n}}$.

In case $n=0$, the elongations (and unit streses) in the reinforeing rods are proportional to the squares of their lengthe, but in case $n=2$ they are inversely as the square of their lengths, and the short cross rods are under the greater stresses. Other intemediate eases are shown in Table 1.

It will be noticed that the signs of the $e_{1}$ and $e_{2}$ change at lines of inflection situated at the same positions as in the mashroom slab giving negative bending moments across the edges of the panels twice as large as the positive moments across the meridian lines parallel to those edges. These negative moments do not in general require any reinforcement at the top of the slat arross the panel edges because they are resisted sutficiently by the reinforcement rumning perpendicular to these adges, to which the entire negative moments are transferred laterally by twisting moments induced in the panel. This is the same kind of action that occurs in the Mushroom shat, by which the applied negative moments acrosis the panel edges are carried laterally by twisting moments toward the columns, until they are held in equilibrimm hy the side betts rmming at the top of the slab over the colimms.

The twisting moments here mentioned are not to be derived analytically from (3) because that equation contemplates the ease of reinforcement distributed thront the panel to resist megative as well as positive moments wherever they maty occur. In case of distributed reinforcement the magnitude of the twisting moment in any vertical plane parallel to the edges per unit of width of shat is

$$
\begin{equation*}
\mathrm{n}=\frac{E I}{1+K} \cdot \frac{\delta z}{\delta x \delta y} \tag{18}
\end{equation*}
$$

therefore $a=0$ by ( 17 ), and the only twisting moment in vertical planes parallel to the edges is that due to the artion just stated, viz. that the steel required to resist negative moments is not to be foumd distributed across the panel edges hat instead is concentrated in parallel positions at the edges of the pamel. such twisting moments induce shearing stresses in stecl and concrete in vertieal phanes parallel to the edges, hut in amomats and with a distribution such as not 10 reepure investigation here.

The intensities of the shearing stresses in (10) per mit of width of slab fomm by equations (9) and (1.5) ('hapter V', are

Henere the shear at any distanere from the eenter is indepernelent of $!$, and viere versa. 'The total shears at the odges $x=a$ and $y=b$ are:

This distribution of sheare on the edgen when $n>1$ is very different from that oceuring in the miform shat supported on columms where $n=0$. The total shear on the four edges is in any case twier the sum of the shears on one short aml ont long edge as just obtamed, amb amomets to $\|^{\circ}=4 q a b$, the total load on the panel.

TABLE 1.

"	0	12	1	32	2
$\begin{array}{ll} z_{102} & z_{111} \\ e_{102} & e_{01} \\ \therefore v_{2} & s_{1} \\ a_{2} & b_{1} s_{1} . \end{array}$	$\begin{array}{cc} (b & a)^{4} \\ (b & a)^{2} \\ b & a \\ & 1 \end{array}$		$\begin{gathered} (b ; a)^{2} \\ 1 \\ (b ; a)^{-1} \\ (b) a)^{-2} \end{gathered}$	$\begin{aligned} & b / a \\ & (b, a)^{-1} \\ & (b / a)^{-2} \\ & (b, a)^{-3} \end{aligned}$	$\begin{aligned} & 1 \\ & (b / a)^{-2} \\ & (b / a)^{-3} \\ & (b / a)^{-1} \end{aligned}$

The diagram in Fig. 74 shows a plan of a single panel arranged to show the notation for deflections. shears and elongations in con-


Fig. -4. Diagram of Nutation. nertion with the formulats of this paper. Trable 1 expresses the ratios of these quantitios for variOns values of $n$ hetween 0 and 2 inclusive and Tahbe 2 gives numerical values of such ratios in (ase b $\quad \|=0.7$. . From these the truth of previous statements as to the relative magnitudes of various deflections, shears, elongations, ate., will be apparent.

TABLE $\because$.

$$
a, b=0.7 .5
$$

$n$	$1)$	1.2	1	32	2
$z_{02} / z_{01}$.	032	0.42	0.50	(1).75	1
$z_{02} / z_{0}$	0.24	0.3	0.36	(1).43	0.50
$z_{01} z_{0}$.	0.76	0.7	0.64	1). 7	0.50
$e_{02} e_{01}$.	0.56	0.75	!	133	1.75
$s_{2} \quad s_{1}$	0.7 .5	1	1.33	175	2.37
$\alpha s_{2}{ }^{\prime}\left(\alpha s_{1}\right.$	I	1.33	177	2.37	3.16

5. Slab with Rectangular Panels Supported on Beams. It is usual practice for architectural and other reasons to make the beams on the long and short sides of panels of the sime depth. In case the stab is unifomly loaded thruout assume that the stem will have equal unit stresses in both beams. In order that this may oecor it is necessary to know the loads that are transmited to the beams from the stab.

It may be shown that the loat which comes upon the beams is nearly miformly distributed when the stab is uniformly loaded thruout and that the load per mit of length is nearly the simm for both side beams even for considerable variations of the relative stiffers of the side beams.

White the same relative distribution of load would continue to hold in case of the beams at the edges of a single loaded panel, the total loads upon these beams would be reduced to one half those of a slab loaded uniformly thruout. But the twisting of the beams due to the umbalanced load on one side of the beam would induce unequal stresses in the several reinforcing rods of the beam so that the stresses in the rods next to the loaded area might experience little or no reduction of stress from removal of load from all except one panel.

In case of three adjacent pancls loaded with their long sides in common, the reduction of the deflection at their ends or short sides to about one half of that in case of uniform loading thruout will have some effect to increase the stresses in the longitudinal reinforcement to the relief of the (rosswise reinforcement, which latter will be shown later to be under the more severe stresses. This ease therefore does not need precial consideration, and the case of uniform load thruout alone needs be provided for.

The fact that in ease of full load on the slat all the side beams have practically the same mit load is due to the peculiar action of the beams in producing a kind of flexure in the slab, which is very different in its nature from what oreurs when it is supperted on columns.

In case of columm support aud stiff heals, the surface of the slab which is convex upward about the colum center has a uniformity of curvature that consures cantilever action and concentric circumferential stresses which are practically uniform completely around the columm. If any slight deviation from this actually occurs it may be assumed to be represented by a slightly greater extension of the cantilever area along the diagonals than along the sides, but the differener is practically negligible.

With deep side beams and a comparatively flexible slal all this is changed under heary loads. Large parts of what in case of no side beams would be cantilever area is changed by the introduction of beams into hollow valleys rumning up towart the column centers at an angle of 45 degrees with the beams. The bending moments across these valleys which in the simple cantilever slab were negative have changed sign, and this change has profoundly modified the mechanieal action of the slab). The surface about the column center instead of being practically uniformly convex now has four valleys and four ridges radiating from the column, and it is evident as previously stated that no expression is possible which is of algebraic form merely, that will express such relations. It would require
certain trigonometrie expressions of multiple angle about the eolumn center to express this scallop-shaped surface.

At the diagonal center of the panels, however, eonditions are sufficiently unchanged by the side beams to admit of approximate algebraic expresion of the meehtmieal and geometrical relations.

The condition of the shab may be regated as having been brought about from the initial condition of a miform slab supported on columns with the nsual side and center deflections by the deformations which would be produced in it ly stiffening or jacking up the sides sufficiently to reduce their deflections by two thirts or three quarters of their initial amomes. This would bend the edges upward enough to form the valleys before mentioned, and at the same time greatly rerlute the width of the saddle across cach side. These reduetions make radical ehanges in the nature of all the curvatures near the sides whith, as has been satid. cannot be readily expressed algebraieally.

But certain aspects of these phemomenat admit of satisfactory graphical expression. It is known from a considerable body of experimental work on slabs with wall supperts or deep beams at the panel edges that for heary loads the valley lines will oceur at angles of pratically 45 degrees with the sides regardless of the relative lengthe of the sites or of the eontinuity of the panels. The valley lines are of neeessity lines of maximmm moments positive ateros them and consequently define at the same time the lines of zero shear. The loads that go to the sides may conseruently be romputed approximately from comsideration of these lines across whieh no loade are transmitted.

Draw lines from the ends of the shert sides of the panel at angles of 45 degrees with them thas forming two right angled isoscoles triangles. The apex of each of these triangles lies on the meridian section of the panel made by a vertical pane midway between the long sides of the panel. The areas of these two triangles and the two halves of the remaining ares of the panel lying on either side of the meritian section conseduently show approximately the relative loads earried to the beams on the short amd long sides of the panel. The load on each short side beatm will be ${ }^{[1} b 20$ and on each long beam $W^{\circ}\left[b^{2}+2(a-b) b\right] \quad 2 a b$ giving us a total load of 2 Wi on the four side beams of which $\mathrm{IV}^{\circ}$ eomes from the panel itself and If from the surrounding pancls. This distribution of loads may be assumed to be exatt in ease of rigid wall supports and approximate
for stiff beams．The relative values of these quantities for vary－ ing proportions of sides are shown graphically in the diagram Fig． 7．Fig．Tins also shows the relative values on the assumption that the pane loads are uniformly distributed along the four sides as expressed in＂equation（21）given later．


Diagram of Loads on Side Beans mb Virion Sivmmptions
liar． 7.
The general agreement of these two assumptions with each other is sufficient to（mable us to adopt a biform distribution on the perimeter as a comenient and closely correct basis of distribution． It might，however，at first be tho that the loads would be more concentrated toward the middle of the sides，but the twisting mom－ cents such as hate already been discussed in case of mushroom slabs largely prevents such inequality．These twisting moments transfer the applied negative moments along the sides even tho there is little or no reinforcement in the top of the slablacrose the beams to resist them and apply them to the side beams at the columns，which beams are se stiff that it seems to be of little importance whether the reinforcement which is carried across the side beams is at the top surface or mot．The exact distribution，however，is dependent to some extent upon the relative stiffness of the side beams．The assumption of a miform distribution is，however，sufficiently exact for practical purposes．

It woukl seem appropriate at this point to refer to another proposed distribution of loading which was put forth by Marsh in his Reinforced Concrete, pages 282 et seg. where it wats attempted to be shown on the hasis of beam strip theory that the loats on the sides are proportional to the fourth powers of the sides. This result has been incorporated into building conles and text-books ahmost universally. But in the opinion of the writers has not a scintilla of eridence to support it either in correet theory or experiment.

Any correct theory would have to find a separate equation for the curvatures of the parts of the panel inte whirh it is separated by the valleys which are known to exist. These vallers are of such a nature as to prevent contimity of beam action such as was assumed to exist in order to arrive at these erroneous comelusions. Since it has been sufficiently shown that no algebrate exprossion is possible which will exactly exprest the relationship here existing it in elear that were this result correet for the ease of supporting walls it eould hardly hold at the same time for supporting beams also. The wide divergence of this theory from the previous nearty coneordant estimates appears from the diagram in Fig. 55 where the relative beam loads on this theory are shown in a manner cemparal)] with the uniform distribution here adopted. Such a theory would render longitudinal reinforement practically meless in any shah whose width is more than a few pereent less than its length. The inherent improbability of this may be regarded as a sufficient dimpoof of this so called law.

This is evident, because the fart of the existence of $4.5^{\circ}$ vallers at which maximum moments exist seems in itself to make it certain that the steel stresses diagonally arose these vallers, of in other words the stresses paralled to the long and short sides of the pancl must be equal. This would require practieally the same remforerment per mit of width of sablengthwise as aroswise of the panel at the valleys where the stresees may be regarded as eritieat. It would thus appear that the reinforement instead of leeing largely superfluous longitudinally should be practically of the same amoment per unit of wielth lengthwise and eroswise of the salb, a reduirement in the most striking eontrast with the eommon hat erroneons theory just mentioned. As the loading of such at stah beromes more severe and the point of failure is approwehed the stresses at the vallers apparently increase more rapidly than elsewhere and the phemomenat accompanying them berome more pronounced. This ultimate
condition is the eontrolling condition and due provision for it is essential in correct design.

If the unit shear at the edges of the panel be taken as constant and the width of the beams be disregarded then the load that is supported on each unit of length of a side beam of a panel in a slab which is uniformly loaded throont with a total load of II per panel will be twice as much as comes to that sithe from the pamel itself. The total perimeter is $4(a+b)$ and the total load on the sides is 2W. Hence $w=1 W^{\circ} 2(a+b)$ is the load per mit on the side beemas.

$$
\left.\begin{array}{l}
\text { The total load on long side }=2 a,=W_{a}=W^{\prime} a \quad(a+b)  \tag{21}\\
" \quad " \quad " \quad " \text { shont } "=2 b w=W_{\mathrm{b}}=11^{\prime} b \quad(a+b)
\end{array}\right\} .
$$

The defleetion formulats for these continums beams will be

$$
\left.\begin{array}{l}
24 E I_{:} z_{a}=\mathbb{U}^{2}\left(x^{2} u^{2}\right)^{2}=W^{2}\left(x^{2}-a^{2}\right)^{2} 2(a+b) \\
24 E I_{b} z_{2}=\|\left(y^{2}-b^{2}\right)^{2}=W^{2}\left(y^{2}-b^{2}\right)^{2} 2(a+b)
\end{array}\right\}(22)
$$

Let $I_{\text {a }}$ and $I_{\mathrm{b}}$ denote the moments of inertia of the long and short side beams respeetively. Let these side beams be of equal depth as usually designed and let them have the same unit stress in the
 since the moments of resistance are proportional in that ease to the crose sections $A_{\text {: }}$ and $A_{1}$, of the remforements and the applied moments at mide span are proportional to the squares of the spans.

$$
\begin{align*}
& \text { By (23) } \begin{array}{c}
I_{: 1} \\
I_{: a}+I_{b},
\end{array}=\frac{a^{2}}{\overline{a^{2}}+\overline{b^{2}}}{ }^{\text {and }} \begin{array}{c}
I_{\mathrm{b}} \\
I_{\mathrm{a}}+I_{\mathrm{b}}
\end{array}=\begin{array}{c}
b^{2} \\
a^{2}+b^{2}
\end{array}  \tag{24}\\
& \text { Hence } z_{\mathrm{a}}=\frac{11\left(a^{2}+b^{2}\right)\left(a^{2}-a^{2}\right)^{2}}{48 E\left(I_{\mathrm{a}}+I_{b}\right) a^{2}(a+b)} \\
& \text { and } \left.z_{b}=\begin{array}{r}
\|\left(a^{2}+b^{2}\right)\left(y^{2}-b^{2}\right)^{2} \\
48 E\left(I_{\mathrm{a}}+I_{b}\right) b^{2}(a+b)
\end{array}\right\} \tag{25}
\end{align*}
$$

These equations permit us to compare the deflections at mid span $z_{10:}$ and $z_{0, b}$ with each other and with the deflections that occur in mushroom slabs at the same points.

$$
z_{0, b} z_{a: a}=b^{2} a^{2}
$$

In ease, $b \quad a=0.75$, we have $z_{\text {ob }} / z_{0 \mathrm{a}}=0.565$.
Compare the deflection at mid span of the long side beam $z_{o a}$ with the mid span deflection $z_{0, b}$ in the long side belt of a Mushroom slab having the same total load per panel and the same amount of
steel in its four belts as in the two side beams, that is $A_{a}+A_{b}=4 A_{1}$, By (30) Chapter $V$, the deflection at mid span of the long side of the mushroom panel is

$$
z_{01}=\frac{\left(1-K^{\circ 2}\right) \|^{\circ} a^{3}}{48 E i j d_{1}^{2} 6 A_{1}}
$$

By (25) above the deflection at mid span of the long side beam is

$$
\begin{aligned}
& W^{\prime}\left(a^{2}+b^{2}\right) a^{2} \\
& z_{\mathrm{aa}}=48 E i j d^{2}\left(A_{\mathrm{a}}+A_{\mathrm{b}}\right)(a+b) \\
& \therefore \frac{z_{01}}{z_{a,}}=\frac{\left(1-K^{2}\right) a(d+b) d^{2}}{1.5\left(a^{2}+b^{2}\right) d_{1}^{2}}=(1+b, a)\binom{d}{2}^{2} \\
& \text { If } d^{\prime} d_{1}=2 . \overline{5}, \quad\left(d^{\prime} d_{1}\right)^{2}=6.25 \\
& \text { " } \quad d \quad d_{1}=3, \quad\left(\begin{array}{ll}
l & d_{1}
\end{array}\right)^{2}=9 . \\
& \text { "b } \quad 1=.75 \text {, then } z_{01} z_{0 a}=0.56\left(d / d_{1}\right)^{2}
\end{aligned}
$$

In case $\left(d, d_{1}\right)=2.5$, then $z_{01} z_{0, i}=3.5$.

$$
" \quad 艹 \quad\left(d^{\prime} d_{1}\right)=3, \quad " \quad z_{n 1} \quad z_{w a}=5
$$

from which it appears that the deffection of the side beam is from one third to one-fifth that of a mushroon stab, dependent upon relative depths of slab and beam.

It should be noticed that reinforeing steel of the stab which is near by and parallel to dither side beam lies at a level compared with that in the beams at which it is able to offer resistance to the negative moments in the beams near the columns. ln particular it largely prevents the propagation of moments across the eolum heads due to unbalanced loads suth as oecur with single or alternate panels loaded. It therefore assists that part of the bean reinforcement which is near the top of the slath over the columns.

Having treated the side beams ronsider now the deflections of the slab supported on side beams. It is evident from the preceding disenssions that while the eurvatures of the meridian or eentral sections of the sab by vertical planes paralled to the sides are eqeatly increased near the sides the rurvatures of these sections near the panels centers are not so much changed. The changes which do occur, however, are such as increase the curvature of the erosswise section and flatten that part of the lengthwise meridian section which lies between the apiees of the valleres. This is equivalent to
increasing the ratio $z_{02} \quad z_{01}$, in (11) if we suppose that the same form of (10) will approxinately represent the actual surface for the central portion of the slab. It is evident that the surface $n=2$ will not make sufficient allowance for the effect of the valleys, because with $n=2$ the surface would have the deflections at midspans of the long and short sides equal, whereas the actual surface has a deeper arosswise deflection than this by reasom of reduction of its saddles and also has a flatter contral portion between valley apiees.

Designate the deffection of the panel center below the mid span of the long side beam hy $l$ ) and assmme, since $z_{12}$ from (13) is not the total deflection of the eenter below mid span of the long beam, that an approxinate value may be obtamed by increasing this value of $z_{02}$ in the ratio of the sides $a b$.

Assmme that the central deflection $z_{02}$ for $11=2$ will be increased in this manner to

$$
\begin{equation*}
l=z_{1!2} a b=\frac{\left(1-K^{-2}\right) q a^{5} b^{3}}{2+E I\left(a^{1}+b^{1}\right)} \tag{27}
\end{equation*}
$$

ath assmption that will need to he verified hy experiment as it seems in faet to be no rerified.

This approximate experesion for the deflection $l$ ) is intemeded to express the difference of level betwern the mid span of the lomg side beam and the panel center. It is not thot possible, however, to obtain any elosely approximate expression for the differenee of level between the mid pan of the short side beam and the panel eenter because of the great disemtimities of curvature that oecom at the apiees or points of intersection of the valleys.

In order to ohtain a pratical and comvenient form of this proposed deftection formula in which the percentage of reinforement parallel to each side is assmmed to be the same let

$$
\begin{equation*}
I=i j d^{2} d \tag{28}
\end{equation*}
$$

in which $A$ is the eroses section of one umit of width of a miform sheet of motal whose weight is equal to that of the reinforeng rods.

Take the ease of two way reinforeement parablel to the edges of the pancl
Let $\dot{L} A_{1}=$ the total across section of all the rods ruming the long way of the panel.
and $\Sigma A_{2}=$ the cross section of these rumning the short way across the pandel.
then $\Sigma A_{s}=\Sigma A_{1}+\Sigma L_{2}=$ the total right crose section of slab steel in square inches.

Let $A_{0}=$ mean right crosesection of stab steel per unit of width of catch single belt.
then $A_{1} L_{2}=\Sigma ._{1}$, and $A_{1} L_{1}=\Sigma A_{2}$.
Hence $A_{0}\left(L_{1}+L_{2}\right)=\Sigma \Lambda_{8}$. and $L_{1} L_{2}=$ area of panel.
Again $A_{0} L_{1} L_{2}=$ total volume of steel in each belt, and $\mathrm{V}^{\prime}=2 A_{11} L_{1} L_{2}=$ total volume of both belts.

Therefore I $L_{1} L_{2}=21_{0}=$ thickness of equivalent uniform sheert.

```
But be tefinition \(A=V^{\circ} L_{1} L_{2}\), hence \(A=2 A_{0}\),
```

Hence $\triangle I_{\mathrm{s}}=\frac{1}{2} A\left(L_{1}+L_{2}\right)$,

$$
\begin{equation*}
\text { (ii) } A=\frac{2 \sum A_{s}}{L_{1}+L_{2}}=\frac{V A_{5}}{a+b} \tag{29}
\end{equation*}
$$

Substitute (29) in (28), and (28) in (27).
and put $+4 a b=11, \quad K=0.5, \quad i=2 \quad 3, \quad j=0.89, \quad E=3 \times 10^{\overline{7}}, \quad$ and $\left(1+b^{+} a^{4}\right)(1+b, a)=b \quad a$. This last is an approximate numerical value, true for $b \quad a=1$, and $b \quad a=0.5$. We then have the practical deflection formul:a

$$
I=\begin{gather*}
\| L_{2} L_{1}^{2}  \tag{30}\\
1 . s_{2}^{2} \times 10^{111}, i^{2}=I_{2}
\end{gather*}
$$

an expression in which the numerator maly also be written If $\left(_{2} L^{3}\right.$. where ( $2_{2}=L_{2_{2}} L_{1}$. The deftections $I$ ) comsequently vary direetly. an $C_{2}=L_{2} L_{1}=b a$.

The empirical formula in Turner's ('onerete steel Comstruction pages 55 and 56 and found also on page 62 above gives practically the same deflection as (30) in square pancles and slightly greater defleetions for a $>b$.

Computed affectioms may be compared with the following test data 1,2 , and 3 , taken from Turners' ('oncrete steel Comstruc-


## Deflections:

## Building

1 Nimmeapolis Paper ('o

Computed be (s)	Ohserved
(1) 2981	(1) $30{ }^{\prime \prime}$
0.1148"	(). $11^{\prime \prime}$
$0.169 \%$	1). 110
0.0 .97	1). $\overline{5}$
() 2497	112.5

The Mimeapolis Amory panel had one edge on a wall with a wall above and three edges on beams with the steel raised slightly; panels $20^{\prime}$ by $20^{\prime}$ from center to center of girders and $19^{\prime}$ clear spans. Thickness $5.25^{\prime \prime}$ at center, (6.5)" at colge. Reinforcement $\frac{1}{2}$ inch romads at $9^{\prime \prime}$ between renters. Load 40 pounds per square foot. Observed deflection $\frac{3}{1}{ }^{\prime \prime}$.

$$
D=\frac{160,000(240)^{3}}{1.52 \times 10^{10} \times 4.2 .5 \times 4.2 .5 \times 0.2 \times .196}=0.0 .57
$$

The discrepancy in case of this pane is due to several celuses: It was mot built into the wall it rested on. Cnusually large variations of thickness oecurred in it. By reasem of seant thickness it was over reinfored and stresses in conctete were exeessive.

The Nicollet Asomiater Building: Pameks 20'....i" $\left.\times 24^{\prime} 2.5\right)^{\prime \prime}$. Thickness of rongh slab, $7^{\prime \prime}$ and 1.7.5" strip fill. Ne:an thirkness $7_{8}^{7}$ inches. Reinforement $7 \mathrm{if}^{\prime \prime}$ romuds, hatd gramb high carbon sted, $7^{\prime \prime}$ center to center in the midder third of epans, and 9 " center to renter in the rest of the spand. Leall 200 promuls per squatre foot. Deflection $\frac{1}{1}$ inch.

$$
D=\begin{gathered}
990.5 \times 24.5 .5(290.5)^{-5} \\
1.5^{2} \times 10^{10} \times 6.52 \times 6.5 \times .5 \times 67^{2}=2497^{\prime \prime}
\end{gathered}
$$

We comsequently ford justifiod in asserting that (30) is in good agrement with experimental data.

Now asumb that ley reason of the increased curvature the greatest elongation $\rho_{02}$ at the panel eenter is increased in the same ratio $a b$ as the center defleetion. Then the greatest init stress in the eross reinforement at the eenter derived by taking $n=2$ will be given by the expression
provided the same substitutions be used in deriving this final practical formula as were employed in ohtaining (30).

The [iscelntresses ohtain hy (31) vary as $1 \quad C_{2}=L_{1} / L_{2}=a / b$.

Applied to the buildings previonsly mentioned in comection with measured deflections, (31) would give

$$
\text { Building } \quad f_{\mathrm{s} 2} \text { Computed by (31) }
$$

Mimeapolis. Paper Co . . . . . . . . . . . . . . . . . . . . 22.500 lbs . per sq. in.
smythe Block .................................. 4287 " " "
Mimneapolis Knitting (o......................... . 9190" " "
Dimmeapolis Amory ........................ . . . 15500" " "
Nicollet Associates Bldg. . .... . . . . . . . . . . . . . 8890" " "
The stresses computed by (31) are somewhat smaller than those given by Turner's empirical formula for safe design in his Concrete Steel Construction page 55, and also foum on page 62 above.

It is not cortain, however, that the stresses across the line joining the apices as above computed are greater than or even so great as those across the valleys at points near the apices. It is believed. however, that any larger stresses at such points will ly reason of their concentration sield sufficiently to bing into play nearby rods in a way that will afford relief from any dangeroms strenses.

Without having been able to make exhaustive thests sufficient to completely establish the practical accuracy of the theoretical evaluation of stresses as here proposed the writers nevertheless have highly corroborative experimental evidence in support of the substantial correctness of equation (31) for stresser.
6. Steel Ratios and Minimum Thickness of Slab. Since slabs should be so designed that the steel would yied before the concrete, it is important to determine how large a percentage of steel may be introduced without passing this limit. This, however, is dependent upon the relative thickness of the slath. In case of the continuous slab, the ratio of the depth to side span involves somewhat different considerations from that of the ondinary heam since the minimum thickness of the slat on a diagmal span is relatively less than is permissible in bean constructiom. That part of the thickness of the slat which serves as fireproofing and which is constant for any given size of rods bears a greater ratio to the depth than is the case in beam comstruction. Furthemere, the depth necessary for proper embedment over the support and the massing of the sterel at the support reduces the effective lever arm of the steel in the cantilever to $j_{s}$ l, which reduces it to a relatively greater extent than at mid span where the effective depth beedmess id as it does in the case of one way slabl) comstruetion also. This reduction in effective depth for fireproofing. cmbedment and massing of
the sted is, however, a constant for a given size and arrangement of remforeement and for the contmuons shat it is found that we may aceordingly take this constant as follows:
$2{ }^{\prime \prime}$ for $3 \quad 8^{\prime \prime}$ rod reinforeement (or smaller sizes)


The limiling mimimum thickness of slob then may be stated as L. 48 plus the comstant just tabulated for the various sizes of rods.

In rase square twisted rods are used, ther same eonstant should be nsed for $3^{\prime \prime} 8^{\prime \prime}$ square twisted as for $12^{\prime \prime}$ rommes, and for $1 / 2^{\prime \prime}$ *guare fwisted the same "omstant as for jo $\mathrm{S}^{\prime \prime}$ rommes. This will give us a satisfactory minimm thicknese of stab for all spans of this type. $L$ being the longer dieed distane between wolmon centers.

For spatare pande supported on beams or walls at the edges, the constant for the varions size of reinforeing rode should be one inch less than that tabulated aboor, and the minimmm thicknese taken as $L$ th phas this new comstant.

Where the panel is rectamgular and not spuare, and supported on the sides by beams, the sume rules will hold hy using $2\left(a^{2}+b^{2}\right)^{\prime}(a+b)$ in phate of $L$ for the span of the spuate pande in which a and b are the hatf spans in the 1 wo direetions respectively.

Determination of reinforcement required ins slabs. In cate of beams. with different values of $X$ the ratio of depth to span, the proper values of the sterd ratiof were ohtained in ('hapter IIl page Sb. In ease of shabs the ratios so obtained should not be exceeded, but in reckoning the reinforeoment of shats acoome mot be taken of the fate that the steet is in multiple direetions so that the reinforeement per belt will be only a fraction of the total permisible steel.

In the contimons slab with fone way reinforeement and Mushfoom heads, having given the ratio of the thieknese to span taken center to conter of cohumbs, determine the pereentage of steet from the diagran for leams, page sti, and divide this hy 2 to find the limiting pereentage of steel for each belt.

In the slab with two way reinforecment, supported on columns, the side belt may be made a little heavier tham in the four way belt type of of the pereentage given for beams being permissible

In slabs not reinfored with a supplemental cantilever frame, but with a depressed head instead, the minimum thickness should not be lese tham the minmmon thickness allowed for the former type, but the steel ratio may be mate . 5 , that for beams instead of . $\overline{5}$ which is permissible with mashroom heads.

In square slabsemported on beams or walls the perecontage of steel in the strip oecupying the middle third of the panel each way should not exceed that for beams of similar proportions of depth to span. In case the panel is a rectangular panel, the percentage of steel should not exceed that for square pand having a side equal to $2\left(a^{2}+b^{2}\right) /(a+b)$ which we have previously used in determining the minimum thickness of epan for this form of patnel.

With the above interdependent limitations as to the minimmm thickness and maximum steel ratio in mind the designer has to determine how far in amy given design he shall deviate for any reason from them. By making $N^{T}$ smaller and the slab consequently thicker he will be able to reduce the deflection to such figures as may be desired or required. But when such deviations are made the proper relat tionship between steel ratio and slab thiekness is still to be determined from the diagram page 86 as has just been done for the fase of minimm thickness.

The erroneous requirement is mate in some building corles that the maximum deflection of a slab umber test shall be a no greater percentage of length of ipan than that permitted or allowed for a deep beam. A deep beam might be broken and seriously injured under a deflection which would do no damage whatever to a long thin sab. A cortain degree of stiffocs, however, is recpuired under working leats wherever there are partitions in a buidding which may be damaged be molue (leflections. The deflection in a thin slab, should not exceed 1 700th of the span muder working load, and preferably less. In an office building or an apartment house, where there are partitions which might be cracked hy deflection, the deftertion should be limited for working loads to 1 looth of the span.

The inappropriateness of any requirement limiting the deflection to a given fraction of the span will appear from the following investigation of the elementary relations between the deflections and stresses in the steel of reinforeed beams, since similar eomsiderations apply to stabs. Csing the notation previonsly employed we obtain from the well known expression for the steel stress $f_{\mathrm{n}}$, the erpation

$$
H^{\top} L\left(1-l_{i}\right) d=n I f_{\mathrm{s}},
$$

in which $n=4,8,8$ or 12 for four different tases, namely simple and restrained beams carring a load $\mathrm{If}^{\text {e }}$ either conerontrated at mid span or miformly distributerl.

Again the well known expression for the deflection $/$ ) givere us the equation.

$$
W L^{3}=m E I D
$$

in which $m=48,76,8,192$ or 384 for the four eases mentioned.
By combining these equations to eliminate If the following relation between $f_{s}$ and $I$ is obtained:

$$
D=\begin{gathered}
n L^{3} f_{\mathrm{s}} \\
m\left(1-l_{i}\right) d E
\end{gathered}
$$

This shows that the maximum deflection $l$ ) in beams of different depthe $d$, and the same length and unit steel strese $f_{s}$ varies as $1 / d$ while the eoefficient $n$ and $m$ make further wide variations, which make it absurd to limit the permiswible deflection to any given fraction of the span.

For trest loads, however, greater deflections are permissible than for the working loads discussed previonsly. Actual test under common ronditions of partial restrant shows that in a span of forty times the thicknese or depth of the stab i. e., $L=40 \mathrm{~d}$, a deffection "qual to $L$ 2.0) will not materially ingure the comstruction. Consequently in case $L=10 \mathrm{~d}$, a deflection of $L$ 1000) shomid not be exereded.

Since a practical remstructor desires to test only to safe limits rather than to :mything approaching the ultimate limit he will not objeet to requlations twenty percent more rigid than those just mentioned provided the time of making the test is not less than four monthe after casting the comerete.
7. Size and Spacing of Rods in Flat Slab Construction. The plate action which we have been treating, brought about be indirect stress, depemels for its effieiency upon the disemmination of the steel through the mase of the concrete. Large rods and wide spacing should acordingly be avoided. Where the sted pereentage is very small it sometimes happens that is 16 or 3 . 8 inch rock, the smallest practical sizes, will be spaced as far apart as eight or nime inch centers. While reasomable results will be secured with such spacing where the percentage of steel in the belt is as small as . 22 , where the percent of steel is larger the spacing should be closer. Threp-eight he rods $t^{\prime \prime}$ centers are preferable to $716^{\prime \prime}$ rods at six inch centers and far better tham half ind rods at eight inch centers.

One of the common errors in flat slab design is the use of such rods as 1,2 inch or even 58 inch from cight to twelve inches between centers with the expectation of securing results in keeping with a more selentifir and uniform dissemination of metal.
8. Rectangular Panels of Hollow Tile and Concrete with Two= Way Reinforcement and Supported on Side Beams. This combination has been used primarily with the idea of reducing dead weight and of securing greater depth of slath. The construction consists in reality of a network of narrow concrete beans or ribs filling the spaces between hollow tile blocks which usually are about $12 \times 12$ inches horizontally. These heams should preferahly be not less than five inches in width and should be reinforeed with at least two rods each, one at the bottom thruout and lapping eompletely over the supporting beams while the other is bent up over the top and given a lap of at least a foot or two beyond the beams.

It is customary to put the same remforcement in each of the ribs regardless of its position in the slab, thus giving a miform reinforerment thruout the shab.

Such a construction will be properly figured as a beam construction, treating it as contimuons so far as dead load is eoncemed provided it has ample laps, amd as a simple beam as reopects its live loads.

In one form of two-way tile construction the meds of the hollows in the bloeks are elosed by C-shaped pieces of terra cotta thus leaving a rectangular net-work of erisseross chamels to be filled in with reinforeed concrete which also spreads over the entire top surface in a layer sereral inches in thickness. This forms a rectangular net work of T-beams or ribs, but the eontinuity of the lower part of the slab is so imperfect as to transmit no more than a negligible amount of indirect tensile stresis from rod to rod. especially moler heary loads. What it may do mender light loads is of no arcoment in design. Tho some little coaction might posibly oererr thru bomd shear at the intersections of the ribs, the tile blocks are as a ruld twelve inches in width which puts the remforeing rocls some sinteren to seventern inches apart so that the strueture with this wide sparing is not sufficiently fine grained or unform in texture to approximate in effect to the propertios or characteristice of at homogemeons plate. It seems conservatior therefore to treat this combination on the beam strip theory as provided in most huideng corles.

In case of a live load $\mathrm{II}_{1}$ uniformly distributed on a square panel. consider the four triangular areas into which it is divided bey the diagomals. Two of these may be taken to be tramsmitted to the sides by one set of ribs, and two by the other. Sinere the aenter of gravity of each triangle is at a distane $L$ of from the edge amel its load is $\mathrm{H}_{\mathrm{r}} 4$ the total applied moment areross the stah at mid section is

$$
{ }_{4}^{1}\left\|_{1}(L-L-L)=\right\|_{1} L 24
$$

insteal of $W_{1} L$ 16 as would orour in case the load $W_{1} 2$ carried by this parallel set of ribe were miformly distributed along them. The several parallel ribs do mot resist this moment equally, but for a consinterable portion of the with there is little difference in this respert. The hasis of computation, being that of a simple beam, is so liberal that the applied moment 11 ; $L 24$ is ample.

Again, in rase of a dead load of $\mathrm{H}_{2}$, on the panel the building cotes of varions cities prescribe that it shall be computed on the same hasis at the live loads. But since the results so ohtained are not thet to be in good aceordane with experiment it would seem preferable to apply the egrations abready derived for the case of a concerte sath supported on sible beams to this caler. stiff sille beams cause the formation of vatlers in this ease as they do in any slab supporterl in this mamer. But with tile the reinforenger rods in the two direetions adet pratically independently of earh other at heavy Gates. It will therefore not be possible to assume that they in effect form a single sheet of steel as has beem dome where bedte of rods eross each other in solid emberbment. The stem will in this case therefore be only ome half as effective. Moreoter the vahte of $K$ will be so small that its suate is nequgible.

Make these modifications in equations (30) and (31) by first multiplying them hy +3 in order toremove the effect of the embed-



$$
\begin{align*}
& \|_{2} L_{2} L_{1}^{\prime 2} \\
& I)=\frac{.}{.\left(\mathrm{is} \times 10^{111} d^{2}=1\right.}  \tag{32}\\
& \|_{2} L_{1}^{2} L_{2} \\
& f_{22}=\frac{12 L_{1} L_{2}}{24 j / 2 A_{5}} \tag{33}
\end{align*}
$$

For a efuare it will be noticed that on this hasis the unit stress per ponad of live load is twice that per pound of dead lowd in ease of $A_{1}=A_{2}=\frac{1}{2} \pm A_{2}$, because the former is taken to be carried by simple beam attion amb the latter by beams that are mutuatly restrained.

Wre may then on analogy of (33) write the total unit stress as follows:

$$
\begin{equation*}
f_{*}=\left(\left\|_{1}+\frac{1}{2}\right\|_{2}^{\gamma}\right) \quad L_{1}^{2} L_{2} \tag{34}
\end{equation*}
$$

in which the rffect of the relative length of the sides is intronluced for both live and dead loads in the same manner. It is not advisable in this construction to make $L_{2} L_{1}$ less than O.S.

The ohserved deflections under a moderate test loarl of any anount $\mathrm{IV}_{2}$ will be leses than those computed from equation (32), and the results observed will not reach those computed until the stress in the steel reacher approximately eight-tenthe of its vield point value.
9. Expanded Metal as a Form of Reinforcement for Slabs. Expanded metal is formed hy stashing sheets of sted in such mamere that it may be stretehed or expamded laterally to form a diamond mesh. The junction of one mesh to another beside it is called a bridge, and in forming the brielge the metal is not only distorted in a lateral direction but twisted at the bridge. The diamond meshes thus formed are usually exactly or approximately twice the length of the short diameter of the mesh. This proportion gives a right cross seetion of metal half as great laterally as longitudinally and in view of the twisting the stiffness laterally is rery small indeed in comparison with the stiffoest in a longitudinal direction. When embedded in concrete expanded metal forms a very eonvenient means of reinforcemont for short spans and light loads. It must be phaced with the long direetion of the merh in the line of greatest stress sine if it were phared in a lateral instead of in a longitudinal direetion not mly would the effertive cross section of the metal be reduced one half but its efficiencer would be further reduced one half because of the unfavorable angle of inclination of the strand to the direetion of the stress and even this value is further much reducod becans the consecutive diamonds or meshes do not pull in line laterally on aceomet of the offset at the bridge. The net efferet of the form of the mesh, the redued seetion of metal resisting strain in a lateral direction and the offeet at the bridge, areordingly is to redues the lateral efficiency of the sheet as a means of reinforerment to less them $25^{-2}$, of its value longitudinally and probably to about ten or twelve pereent in view of the bridge. All catalogues publisher her mamufacturess of expanded metal give explicit instructions that the long dimension of the diamond shall be placed in the direetion of the greater stress wherever this material is used as a means of reinforemg concrete slab construction.

The coartion of expanded motal with conerete differs greatly from that of a diamond mesh formed of straight rods in two layers crossing eath other diagonally for the reasom that in the cate of the rods shear rexistanee between the two layers is fomished by bome whear between the emorete and the resperetive rods, whereas, in the
case of expanded metal the bridge forms a rigid comection and this shear is developed largely, or almost entirely in the steel itself. Thus the coaction of expanded metal with concrete differs radically from that of rod reinforeoment in the mamer in which energy is stored by the deformations of the concrete and metal. The bond between expanded metal and the concrete is formed by intertocking blocks formed within the mesh of the metal and as stress is brought upon the metal in the direetion of the length of the sheet these blocks are compressed laterally and the temdeney of one mesh to slide upon another is prevented hy the rigid steed section of the bridge.

Efforts were made early in 1901 to comstruct flat slab floors reinfored with expanded metal. Sheets of expanded metat were laid neaty covering the bothom of the stab from colum to colmm and sheets were pataed at the top of the stab oxer the colmoms in the form of at cross, and it is clamed that sheets wore atso placed in parallel position over column tops. Arranged in the form of a
 reinforeement. Since the ends of the sherets forming the eross were arranged to project far beyond the ower lapping aroa it was manifestly impossible to apmoximate plate action in this mamer so that the few structures so arected developed wo greater earrying eapacity the: would be axpeeted on beam strip theory.

Expanded metal in coaction with the concrete, adds, however, a greater increase in strength tham the mere eroses sedion and yiedd point value of the metal would indieate. This would appear to be (hue to the storing up) of encrey in the slab be the lateral eompression of the concerete tharu longitudinal strain in the mesh.

Wire wover fatbries also are often a most convenient form of reinforement and freguently the best possible to be used for wrapping as reinforeement for beams, light slabs, roof work and the like, and altho their cost per pound is greater than rods convenience in handling and placing may more than offisot this difforence. The fact that thoro dissemination of motal in small units thru the concrete is condurive to better results than the use of the same sectional area in larger units makes their use for many purposes almost indispensible.

## CHAPTER VIII

## REINFORCED CONCRETE COLUMN゙

1. General Considerations. The requirements for suitable design for reinforced eoncrete columns in building construction may be briefly stated as follows:

First, that the longitudinal reinforcing metal should be toward the outer portion of the column in order to properly resist any tendency to bend or deflect.

Second, that the bars should be banded or tied together to maintain them in their desired position and add toughness to the colmm.

Thirel, that the bands or ties shouk not so reose the core as to interfere with placing the concrete and securing a monolithic solid core.

Fig. Type A, shows one of the old forms of Hennehique type of column. In this type the principal reinforcement consists of heary vertical or longitudinal bars tied across laterally from one to the other by eomparatively small ties. It will be noted that these ties cross and recross the core of the column, and require considerable care in filling to make sure that there are no voids in the finished work.


Fig. Type . A Colnmin


F"ig. Type Is Colmma

Cases have oceured with this type where the conerete has been arrested part way down in pouring the colum and on removal of the form an open space was found of perhaps as much as two feet between the concrete above and below, so that the load above was carried by the vertical bars only. Evidently such an arrangement of metal is somewhat dangerous, hut with musuat eare it may prove satisfactory from the stampoint of strength if the work be properly exerated.

Fig. Type B, show: an impored form of tying together the dight vertieal hars forming the rertical remforement with horizontal ties in the fom of equares. one inseribed within the other. The adrantage of this tye orer that prevonsly shown lies in the fact that the erontend core of the whmm, or inseribed sequare, is clear and mobstructed thrumut.

Fig. Type ( , shows a colmm reinforement consisting of four vertieal rodk with wapping or tios holding them together at intervals. This is suitahle for very light loads where the eomerete is more than sullement to take the entire compresion without exessive stress.

Fig. Type I), shows a colamm sertion of the (omsislere type in which the vertical row are hooped with spiral reinforement. ('onsderable work has hern exemoded ming hooperl columms that omit the vertical steel. This. at the athoms view it, is a very grave mistake.


Fig. Type () Cohumn Considere Type. Fig. Type C Cohmu ruitable for Light loads Gnly.

Hooping may be of two types: First, a spiral coil in which the wire is wound around the core of the column in the form of a continuous spiral, and second that in which separate independent hoops are placed at intervals and attached to the vertical reinforcement.

The strength of Types A, B, (', and D, all depend, first upon the strength of the concrete second, upon the ameunt of vertieal steel used, and, third, upon the amount of ties or hooping holding the rods in position and bringing lateral restraint upon the concere.

Theoretical formula based on the ratio of the moduli of elasticity of concrote and steel alone camot be depended upon for a satisfactory solution of the problem presented by the third element noted and we must depend hargely upon experimental investigation to determine reasonable and safe pratetical values to nee for our working stress.

In deciding upon these values we need to consider the colum, first, from the standpoint of its ultimate strength in the finished building, second, from the standpoint of its strength and safety during construction, and third, from a consideration of the relation values of the varions types in soruring strength at a minimum cost.

Type $D$, with a proper proportion of vertical steel combined with the hooping ranks first, from the standpoint of safety and economy.

Type B, second.
Type D, with hooping but with no rertieal steel third: and types A and C fourth.

It may be stated that type A is now rarely used and diselussion concerning it may be omitted.

For Type (', the allowance permissible for working stress on a $1: 2: 4$ concrete is 350 pounds per inch of the eore areal between rods, and 10,000 pounds per square inch on the vertical steed and hesides this the volume of metal in the ties is to be treated as forming imaginary verticals with a working stress equal to that allowed for the vertical bars, the ties to be spaced not further apart than ten times the diameter of the vertical hars in case the hars are one inch seetion, but where smaller hars are used the sparing should not exeeed $9^{\prime \prime}$ nor the size of the tie to be less than one quarter inch roumt.

Type B. The allowable working stress for a $1: 2: 4$ mix is 600 pounds per square ineh on the eonerete of the eore, 10,000 pounds on the vertical stere, and one and one half times the volume of the ties treated as imaginary vertifals. These ties shoukl not be spread
further ajart than $9^{\prime \prime}$, and, if they are to be considered of value, they shonld be put not more than ten diameters of the vertical bars apart.

Type D, the Comsidere type, is ly far the most eeonomical type of colum reinforeement that has been invented. It was brought prominently to the attention of the public hy Amand Considere.

The principle involyad is this: by restraining the eoncrete laterally its strength in compression is greatly increased. Just as an ordmary piece of stow pipe filled with sand will carry a load several times greater than the pipe itself would be able to do, so will a hooped eolumn owing to the fact that the metal is stramed in tension, while the filline held in position he the restraint of the pipe, (amies the weight of the load. For strength see seetion i.

There have been quite a mumber of experiments on hooped eon(rete using spiral hooping only. In these experiments it has been found that after the ultimate strength of platin concrete has been developerl, splitting and sealing of the outsite shell oferurs, combined with a large vertical deformation and eonsiderable lateral bending before ultimate faihure.

## 2. Considerations of Safety Determining Carrying Loads.

 If it is expereted to develep the core of the commete to a point beyond its normal strength we must evidently prevent its lateral distortion or bulging and abs the shiding or flow of the concrete between consecutive bands or toms of the spiral, hence a ecortain proportion of vertical steel must be used in comeretion with the hooping to secure the best results.In determining the degree of safety of the various types of column design, an investigation of the manmer of failure of the respective types is in order as to whether it oceurs suddenly and without Waming, or gradually, accompamied by indications of approaching failure long before failure ocerrs, and there is the further question as to whether the eonditions of strain in the column are proportional or comparahle hetween the eolumm under ordinary working stresses and the column as it approaches the breaking (lown point and ultimate strength. The following general observations may be mader as to these puestions:
 warning, the vertical bars bending outward and the ties yielding.

In the hooped column without vertical sterl, when it is loaded from forty to fifty pereent of its ultimate strength, the portion of the eoncrete outside the hooping commences to check and eraek,
and later to seale．From this point the rate of deformation with addition of the load increases rapidly owing $t$ diswipation of anergy by the cracking and sealing of the shell．Further loading is ac－ （ompanied by large lateral deformations up to the final failure．such a columm gises ample warning but the point at which the outer shell or fire protection commences to fail is but little higher than the point at which the ordinary vertically reinforeed columm faiks，so that little advantage in the way of increased working stress is secured unless the hooping is combined with vertieal steed．

The well hooped colum vertically reinfored shows a large increase in strength over that of the vertically reinforced columm with ties and a great increase in toughmess．Its failure is not sudden and without waming as in the former type，while the point at which checking and sealing of the outside shell occurs is raised to eighty or eighty－five percent of the ultimate strength，thus giving a large margin of safety to the fireproofing between the working load and the load where the failure of the shell is in evidence．

3．Experimental Data．A partial report on trets on full sized columms，made at Phoenixville，Pa．，for（ C ．A．P．Tumner，engineer， be Mason D．Pratt，is given in the following table：

Tent No． 1
Marks on columm：None．
Reinforcement：Eight $1 \frac{1}{s}$ inteh round vertical bars．
Bands：spared 9 inches vertically，$\frac{1}{2}$ inch rivets，cross section $1 \frac{3}{4} \times \frac{1}{4}$ inches，inside diameter 14 inches．
Hooped with 732 inch wire spirals，about 2 inch pitch．
Total load at failure $1,360.000 \mathrm{lb}$ s．
Remarks：Point of failure wat about 22 inches from the top． Little indication of failure until ultimate load was reached．

Some slight breaking off of concrote near the top（al），due possibly to the cap not being well seated in the colum itself．

Test No． 2
Mark：on columms：Box 4.
Roinforcement：Eight $1_{5}^{1}$ inch round vortical bars．
Bands：spaced 13 inches vertically，$\frac{1}{2}$ inch rivets，oroses setion $1 \frac{3}{4} \times \frac{1}{1}$ inches，inside diameter 14 inches．
Hooped with 732 inch wire spiral，about 3 inch pitch．
Point of failure：About 18 inches from tep．
Top of cast iron cap（racked at four corners．
Cltimate load：1，260，000 lbs．
Remarks：Both eaps apparently woll soated，as was the case with all the subsequent tests．




Tent No. 3
Matrk onl column: t-h.
Reminforcement: Eight 7 \& inch romed vertical bats.
Bands: spaced 1:3 inches vertically, $\frac{1}{2}$ inch rivets, croses seet ion $13_{4}^{3} \mathrm{x} 3 \quad 16$ incher, outside diameter it inches.
Cltimate load: 900.000 ibs.
Point of failure: About 2 fret from top.
Remarks: Comerete at failure, considerably disintegrated, prol)ably due to continuate of movement of machine after failure

$$
\text { Test No. } 4
$$

Marks on columns: Box tec.
Reinforcement: Eight 1 inch round vertical bars.
Bands: spaced 8 inches vertically, $\frac{1}{2}$ ineh rivets. crows section $1 \frac{3}{4} \times \frac{1}{4}$ inches, inside diameter 14 inches.
Hooped with 7,32 inch wire spirals, about 3 inch pitch.
Total load at failure: $1,260,000 \mathrm{lbs}$.
Remarks: First indications of failure were nearest the bottom end of the column, but the total failure was as in all eolumns, within 2 feet of the top. Large cracks in the whell of the columm extended from both ends to very near the middle. This was the most satisfactory showing of all the columms, as the failure extemed over nearly the full length of the column.


Column No. 1, after Test
Test No. J

Marks on columm: None.
Reinforement: Eight $\frac{7}{5}$ inch vertical hars.
Bands: spaced 10 inches vertically, $\frac{1}{2}$ inch riveds, croses sertion $1 \frac{3}{4} \mathrm{X} \frac{1}{4}$ inches. $14 \frac{1}{2}$ inches outside diameter.
Hooperl with 7 i 32 inch wire spiral as before, 3 inch pitech.

Load at failure: $1,100,000 \mathrm{lbs}$.
Cltimate load: 1,130,000 lhs.
Remarks: 'The main point of failure in this as in all other columms was withim two feet of the top altho this column showed some sealing off at the lower end.

This set of tests were not conducter with any considerable degree of refinemont hut were a practical test of ultimate strength and the yied point value of specimens of full sized members, which lemels greater value to the determimation than laboratory tests of statall sperimens.

The concrete mixture wat ome part Portland cement, one part sand, and one and one-half parts burkwheat gravel, and three and onc-half parts grave ranging from one-puarter inch to threequarter inch in size.

It shoukd be moted that in these tests the aracking of the shell dirl not oerer motil the hoops were over-stramed, and that the strength of the hooping elosely defined the ultimate strength of the eolum with the proportions of vertieal stere newl.

1. In these columbs, presures were developed on the core more tham three times the ultimate strength of plain eoncrete at 2600 poumds per sefuare inch.
2. Incipient failure orecured only by the stretching or bursting of the bamels.

All cohames were approximately octagonal in shape, $10^{\prime} 6^{\prime \prime}$ long ambl $18^{\prime \prime}$ diameter. Final failure orcoured toward the upper end of the columm. Mr. Pratt aceounts for the regularity with which the colmmes failed at the upper end on the ground that the concrete at the lower end was more dense, owing to its being umder considerable hedraulie pressure, while setting. The rods were all shorter than the concrete shaft. Examination of the columms after removal from the testing machine showed in all eases a bulging out of the vertical reinforcoment at the principal point of failure with the bearest hoop ruptured and in every case the wire spiral was broken in one or more coils at the point where the vertical rods were bent out. The vertical bars in nearly every case buged as a column with fixed ends. Where the hoop spacing was six to nine inches, the deformed length of the bar would extend over the space of two hoops. Where the hoop spacing exeeeted nine inches the deformed length of vertical hars was confined to the space between one pair of hoops.

It may be well to review at this point two series of carefully conducted tests upon plain and reinforced conerete prisms. Fig. 76, shows the dimensions and reinforeement of a series of prisms tested by Bach* for Wayss and Freitag. These specimens are Type (' columns.


Fig. Ti showing Dimonsions and leanforcement.
The first table for elasticity test of Type C columns, shows the reinforcement, tie spacing, and elastic deportment under different loads.

The second table for Type (' rolumms, shows the hreaking strength of this series.

[^15]It will be moted under the table showing the breaking strength that the specimens with 1316 inch romd vertieals and 4.6 percent reinforecment, do not show as great an incerease in strength as the specimens with 1.14 pereent reinforeement, but with much closer spacing of the ties, the specimems with the large rods having ties four times as far apart as the sperimene with the small rods.
( 1 ) H . T.SBLE 1
Elasticity Tox of Columme (Barda)

Stresses	$\begin{array}{lc} \text { 4 Rand of } & \text { Tic } \\ \text { 1) } \mathrm{a} \text { anctor } & \text { sparing } \end{array}$	Shortoning in Millionths of the length		
1.bs.aq. in.	luch luchers	Toral	Elastic Dilf.	Permament set
459	Plain ( 'onmert	1:3\%	7	129
4.5:	(is. me 10	11.1	5	10:1
4.51	" "	1111	$\because$	10n
4.59	21	1010	4	102
919	Plain Comarete	: $: 3$	3	?
!119	:i11. ril. 10		-1)	247
!19	" " $\overline{3}$	-11	15	246
919	" " 2 !	$\because 1$	13	2 Sc
133010	Plain Comerate	719	16.1	545
$1: 3010$	\%in. mil 10	が,	(i3)	12.5
$13 \times 1$	". ${ }^{\circ}$	173	$\cdots$	11.5
1:340	- "	121	13	32:

( 1 ) L. TVBIE 11.
Braking strength of (olumms Barth
sperimen : mo. old.
Diameter
of rouls.

Braking itrongth
Liach Average Percent of Itse perseg. in. Reinforeing

Test culbes.

2076	$196 \%$	1977	- $29 \times 16$
-4\%	$\cdots 9$	2475	?3!
23-9	$\because$-bit)	? $\downarrow$ ! !	2.10
3015	2 O	- \nis	291.)
2404	2404	$2+16$	2414
2474	-2030	$\cdots$	270
L1)	2401	$\cdots$	-199
-3,	26:31	2617	-

0
1.14
1.14
1.14
3.04
4.60
0

Looking at the elasticity teste of the specimen reinforeed with the same vertieal steel the marked differenee in toughers. inerease of modulus of elasticity and the redurtion of permament set produced by the increase in the number of ties, is strikingly shown by this series of terstr.

This series of tests show eonchsively that where the vertical hars do not bear directly upon the face plate of the machine and the load is brought upen the reinforcement under the usual condition of the column in the reinfored concrete structure, that is the steel is strained by the load brought on it thru the conerete, that a formula which does not take into consideration the amount and spacing of the ties fails to account for the deportment of the column both as regards elasticity and ultimate resistance. That is, merely an increase in the total cross section of the longitudinal reinforcement does not produce an increase in the breaking strength to the extent which would be expected by the formula

$$
I=f_{\mathrm{e}}\left(A_{\mathrm{c}}+n A_{\mathrm{s}}\right)
$$

Hence in inexperienced hatods, this fomula may produce mate designs by increasing the percontage of longiturdinal reinforcement disproportionately in order to secure columns of smatl diameter. This procedure gives a columm with at caleulated margin of safety which it does not possess.

When the increase in the resistance is compared for equal longitudinal reinforcement, there being a difference in the number of ties, it is shown by these experiments that the steel med as ties is much more effective than the longiturinal steel. As noted, howerer, the colnmms reinfored with vertical steel and ties do not develop that degree of strength which is secured by columns properly reinforced vertically and hooped with bands or spirals. Hence their use has been largely discontinued where loads are at all heary and is confined to those eases where loads are relatively light and some slight saving may be made in the we of ties over the enst of spiral hooping.
4. Reinforced Columns Classified by the Manner in Which Loads are Applied. We have called attention to the type of prisms which were tested by Bach in which the steel was cut short at the end of the concrete prism so that the loat applied to the prism was brought upon the longitudinal steel thru the bond shear between the steel and the eoncrete. This is the eommon mode of arrangement of the steel in the reinforeed concrete colum in the practical buikling. Sometimes, however, in orter to seeure relatively smath columms for heavy loads very high pereentages of vertical sted are used and the load is brought largely upon the steel by direct hearing of sted upon steel. Evidently the coaction of the elements of the composite structure differ widely moler these radically different conditions and correspondingly different formulas umst be applied to these different conditions.

We have cited the interesting series of tests by Bach on rectangular prisms, plain and reinforecd with longitudinal steel and ties and we may profitably consider the corresponding series of tests on hooped and longitudinally reinforeed prisms.

Fig. 77 gives the dimensions and type of reinforcement used while talle III shows the resulte of the tests.


Fig. 77 Dimensions of © © 0 hmms and Type of Reinforemment.

As in the first series the lomgiturdinal steel was eut short of the ends of the prisms so as to secure normal coaction between the steel and the concrete. Percentage of hooping varied thru a wide range and the pitch of the spiral hooping was also varied between wide limits. Unfortumately the series is lacking in a corresponding variation in the percentage of vertical steel.

On the whole, these specimens correspond approximately with results indieated hy the Considère formula and exceed these results for those specimens which approach desirable proportions in point of spacing of the spiral and relation of the vertical steel to the hooping.
Bach＇s Tests of l＇lain and Hooped Conerete Prisms，Longitudinal Nteel C＇ut short of End of Prism．

$\begin{aligned} & \text { (10) } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { De- } \\ & \text { werip- } \\ & \text { tion } \end{aligned}$		Spirals		Verticals			\％Rem－ forecment			1，orat ltos． 10．T sil．in When first racks started	Increased st due to reinf．L．bs per sid．in at yidd pt	Increased   st．Ihs．／ ol   in．per $1 \%$   yed 1 x   reinf．at yiclal			Incre：sised   ult．st．in Lomil when   lbse per erf．monsideringe   in．jeer $1^{\prime \prime} \mathrm{core}$ andy   reinf．Hos sq．in．	
			Dia． wire in．	Pitch	No．	Dial． in．		piral	Vert	Total							
1			Unr	cinfor				$1)$	${ }^{1}$	$1)$	1， $59(1)$			1， 590			
II			2	1．52	$t$	2 s	69.69	S	35	1.23	$\because 29$	370	301	2,260	370	301	3，270
111		＂	25	1.4	4	$\underline{\sim}$	6s．． 71	1．7	36	$\underline{2.14}$	－2，2！ 9	400	187	2,550	（i40	299	3，6650
11	3	$\cdots$	4	1. （i）	4	2 N	（i6） 76	3.24	37	3.61	2,426	830	147	3，420	1，525	42	4，930
$\checkmark$	3	＂	2	1．8）	s	4.	（69） 69	S	1.75	2.63	3，19\％	1，300	49.5	3,210	1，320	502	4，650
V1	3	＂	2	1.4	$\checkmark$	14	6S． S 1	1．5	1.76	3.5	3，270	1，380	359	3，270	1，380	359	1，720
VH	3	＂	4	1.72	＇	4	668	3.17	1．ぶ2	4.93	3，460	1，570	315	4，000	2,110	424	－ 7.80
VIII	3	＊	24	1.24	4	24	6 6， S 1	2.12	． 36	$2+4$	2，730	900	36i3	2,550	960	$3 \times 0$	4.100
$1{ }^{1}$	3	＂	40	1. （i）	4	24	66.76	3.11	37	3.75	$2,4 \geq 0$	836	140	3,000	1，110	294	1，340
X	：	＂	4	1.6 .1		24	（ii）． 61	4.52	$3 \times$	524	2.550	1370	129	3，640	1，750	336	$\therefore 290$
入1	：	＂	56	1.4	4	24	64.47	7.34	3	7.74	2，250	360	47	3，50）	1，616）	204	5，050
X11－I	3		$\because$	1.6	，	20	（S． 5.51	1.64	.37	2.01	2,320	430	214	2,320	430	214	3，360
XII－II	3		41	1.60	，	24	686.76	3.41	． 74	＋．1．）	2，330	410	109	3,270	1，340	333	4,720
X11－111	3		\％	1.60	－	10	6.4 .4	6．52	1.51	人．${ }^{\text {S }}$	$2,(120)$	730	$s$	＋，2！${ }^{(1)}$	2,400	280	6，20）
र111－1	3		－	3.20	－	2	6s． 51	．	72	1.55	－ 3,300	410	26.4	2，300	410	265	3，330
Xl11－11	3		$4)$	3.20	，	14	（if） 76	1.71	1.51	32	2，5．50	（i6i）	20.5	2，580	69\％	214	3,720
Xl11－111	11	＂	Si	3.20	$\checkmark$	4	（6） 47	3.43	2.25	5．65	2， 12.20	760	134	2,830	940	166	1，240
入バー1	：	$\cdots$	24	4 － 0	s	40	（以）．51	（5）	1.4	2.02	－2，200	310	$15 \%$	2,210	320	158	3，199
NパーI	＇3	＂	40	4.80	－	45	66.76	1.1 .5	2.17	3.32	2,600	710	214	$\because, 600$	710	214	3，750
入イハ－Ill	｜ 8	＂	． 20	1． 1 （）	$\checkmark$	is；	（i．4． 47	2.30	3.11	5． 41	2，950	1，640	193	2.940	1，050	19\％	4，250

1 part of 110idel－
Min

Specimens XIII and XIV, in which the pitch of the spiral was exagerated gave results less than the fommala, pointing to the necessity for closer pacing.

In epecimens II, III, IV, VIII, IN, N, XI and NII, the seetional area of the longitudinal rods was small and the results were consequently indifferent, but the greater the total weight of spiral reinforeement the higher were the values.

The tests show that when the spirals are increased in strength, their pitch must be decreased and the eross secetion and number of vertical rods must be increased, for with the inerease of spirals the concrete is in a condition to resist heavier pressure and its tendeney to force its way out between the longitudinal rods and the spiral bemds increase.

Examining the table of the values obtane the inerease in strength and yiedd point ralue per one pereent of total steel is found to be greatest in colum sperimen $V$. in which the spiral reinforeemont is . 88 pereent and the vertical reinforement was 1.75. In colums XII and XIII, with the spiral remforement 6.82 pereent and the vertical reinforement 1.56 pereent, the increase percent of total reinforcement at the yield point was only 87 pomels and the increase of the ultimate strength per percent of the ultimate reinforement 286 pounds per spuare inch, showing an improper proportion of the spiral and vertical reinforement.

On noting the pitch of the spiral it is quite noticeable that the specimen with a small pitch gives the highest resistance per percent of steel. In nome of these specimens, however, are the longitudinal rods of sufficient size to seecure the best results. Had 5 $8,3 / 4$ and 1 inch rods been used in phace of $14 \mathrm{inch}, 7 \mathrm{tf}$ and $1 / 2 \mathrm{inch}$, much higher values would have resulted from the stiffeness of the verticals which must act as beams from coil to coil in resisting outward or bulging pressures.

The following table gives the percentage of vertical steel and hooping in the Phomixville tests, see seetion 3.

COL. TABLE IV
Phoenixville Column Tests. Apecimens 3 mo , old

$\begin{aligned} & \text { No. } \\ & \text { of } \\ & \text { Trest } \end{aligned}$	$\begin{gathered} \text { re } \\ \text { Ver- } \\ \text { ticals } \end{gathered}$	$\underset{\text { rai- }}{\text { ral }}$	Hooping	Apiral and Hooping	Total	Tltimate   Testerl   Strength	$\begin{gathered} \text { Eltimate } \\ \text { Strength } \\ \text { Per Sq. } \\ \text { ln. } \end{gathered}$	Com-   puted Increase per ${ }^{\circ}$ of Sitcel	Strength by Considère Formula
1	5.17	1.54	99	2.53	7.70	1,360,000	$8,8.50$	78.5	1,291,000
$\because$	4.5	1.35	$61 \%$	2.01	6.83	1,260,000	7,630	710	1,279,000
;	3.12	0	72	72	3.84	900,000	5,400	792	898,300
4	4.08	1.36	1.12	2.48	6. 26	1,260,000	8,200	820	1,216,000
5	3.12	1.36	. 90	2.26	5.3s	1,130,000	7,350	842	1,127,000

From these tests it may be observed that the best results are to be secured when the vahe of the vertical sted as an dement of strength is approximately the same as the hooping abeording to C'onsidere's formula, section i. In other words, the reinforrement should be so proportioned that the volume of the hooping for this type of column should be between the limits of 35 and 45 percent of the volume of the vertieal steel to secure the best results in increasing the vield point and ultimate strength of the column. Between these limits the yield point value of the columns shomld vary from 75 to 85 percent of the ultimate strength of the sperimen, so that dae warning of approaching falure is given by the member while ample margin exists between the safe working stress and that point at which the fireproofing will eommenere to scale amed ehip.
5. Considere Formula. As we have pointed out, the C'onsidère formula is conservatively applicable to the vertically reinforeed and hooped colamms provided that the hooping and vertieal sted are properly proportioned. With no vortical sted, the viedel point value of the colum is not sufficiently raised to warrant very material increase in safo working stress over that of ordinary types notwithstamding the fart that there is an insrease in the ultimate resistance and large deformations oecor before altimate falare

The Considere formula for cohmm resistance is as follows:

$$
P=1.5 A_{c} f_{c}+\left(f_{s} A_{s}+2 .+f_{s}^{\prime} A_{s}^{\prime}\right)
$$

in which $A_{\text {, }}$ is the area of the core, $A_{s}$, the area of the longitudinal steel, $A_{s}^{\prime}$ is the area obtamed by dividing the volume of the hooping by the length of the column. The coeffieient 1.5 is a eoeflee ient whieh Comsidere considers represents the effeet of the hooping in increasing the strength of the core, and that this coefficiont is a maximmm at 1.5 and that it is less than this value for a peremtage of hooping whieh does not fumish a resistamer equivalent to 700 poomels per square inch lateral pressure on the column.

Mörsch. however, and also samolers, in disensing the Bach teste where the pereentage of sterl was low, seem to treat this coefficient of Comsidere ats the ratio of the eore to the total area of the column (fireproofing and all). In most huilding ordinances this coefficient, however, is taken as mity. 2.4 times the volume of the hooping is figured as the effect of the stress on the hooping in increasing the erushing resistance of the core by the lateral pressume brought about by the stress in the hooping and represents the resistane which would be developed were the hooping in the form of crlimelers. and filled with a gramular mass such ats sathd subjected to pressure. Hener 2.4 $A^{\prime}$ equals the erose seetion of the equivalent inaginary verticals.

Le Genie ( 1 ivil. Fet). 9, and 16, 1907, reported a very extensive series of tests by Comsidere on 260 columns with lengths varying from 3.15 in . to $13 \mathrm{ft} .1 \frac{1}{2} \mathrm{in}$. and dianeters from 1.8 in . to 27.5 in . The percentage of reinforcement variod from 1 to 14 , varions methots of spiral reinforement, including concentric spirals were tried. The offecte of richmess of mixture, age, percentage of water, ramming and irregularities in workmanship were also studied. One speeimen having 12.9 percent spiral and 1.2 percent lengitudinal reinforcement, and made from a mixture eontaning 1830 lb . of cement per chl ych. of samd wistained $25,600 \mathrm{Ib}$. in. ${ }^{2}$ at rupture. A similar opecimen having only 6.6 pereent of spiral reinforement failed at 17.200 lt . in. ${ }^{2}$ at rupture, with a deformation of 12 pereent. From these and previons tests ('msidere deduced the eomelusions that the rupture load of a spirally reinfored conerete column exceets the sum of the three following factors:

1. The strength of the plain emerete times 1.5 .
2. The strength of the longitudinal rods stressed to their yield point.
3. The strength of a longitudinal reinforement of 2.4 times the weight of the spiral stressed to its siedel point.

Tumer, in the design and guaranter of ofrength for workingseveral humbed thoustmd columme has used the Comsidere formula slightly modifiodathewing soo peomeds per spatere inch on a $1: 2: 4$ mix, 12,000 poundsper sefuare inch on the vertical steet, 16,000 pemods per stpuare inch on the hooping, treating the spirals an imginary verticals having a volume 2.4 times the whmm of the hooping. For these values the ratio of the length of the eolum to its diameter should not exceed 12. For a longer column inereased vertieal sted should be used to resist flexure. Where the vertical resistance of the emerete developed he the hooping exereds 2000 permade per square inch the proportion of the mix should be increased from $1: 2: 4$ to $1: 1 \frac{1}{2}: 3$, and extra care should he used in the selleetion of the stome aggregate to see that it is hard and satisfactory. Seremod gravel is preferable where high working presures are used in the columm. To be efficient, spiral hooping should not exceed a $4^{\prime \prime}$ pitch when rombimed with not less than four vertieal roeds and these should be limited to a minimum diameter of 34 of an inch for cohmms carrying moderate loats. or to a pitch mot excerding 3 " if the full value above recommended is to be used in remsidering the hooping. A reduction of the allowance on the vertical store should be made where the spacing of the vertical bars excerds 9 " center to center in proportion to fifty percent of the increase in spacing of the bars.
6. Safe Ultimate Limit of Compression. A womderful degree of strength which may be developed by properly hoopet and longitudinally reinforced concrete columns is established ly the Considère experiments and it beeomes a question as to how great values it is permissible to use. Turner has found it permissible, where small diameters are desired, to use as the approximate limit of safe design a working stress as high as 4000 pounds per square inch of cross section of the core including the vertical steel. Under these ultimate conditions it is recommended that the colum should have


Fig. Ts. Cut showing reinforement of wolmm earrying working pressure of toon poumds per inch on the corre.
enough vertical steel to earry the entire loat at little mere than the vield point value, say at 50,000 pounds per square inch; that there be sufficient hooping to develop the value of the loakl figured at 40,000 pounds per square inch on imaginary verticals forresponding to 2.4 times the volume of the hooping: and that the groses area of
the column inside the fireproofing should be sufficient to carry the load at 4000 pounds per square inch.
7. The Mode of Operation of the Reinforcement in Concrete Columns. In a practical conerete structure, as a rule, the load is. brought on the colum thru the beams or the conerete of the slab and the load is transferred to the vertical steel thru the medium of the conerete by the bend between the concrete and the steel.

In the texts by Withey and those of some other American investigators, the load on the test seecimens was transferred directly to the steel by direct hearing between the longitudinal reinforcement and the fare plate of the testing marhine. This makes an important difference in the mode of operation of the column. The bertieal steel is a more rigid element under compression than the con(rete and if the load he not applied diree tly to the steel hat be brought on the steel thru the surrounding matrix, the eoaction of the two materials is brought about hy bomd shear amb indieect stress genrated be the boud shear between the steel and the eomerete. Now. since there is no: slipping of the sterel in the eoncrete within the yield print of the colum, the same amount of potential energy or work of deformation is stored up by the indirect stress of the bond whear between the concrete and the steel as is stered directly in the steel. Hence it appears that in this case the steel be help of bond shear operates to store energy more efliciently up to the point where cracks and checks oceur in the comerete than a mere comparison of the relative moduli of steel and concrete would indicate.

This phase of the eo-operation of the steel and the concrete in the column requires, for it, greatest efficiency, a strong, rich, conarete, in order that the most dependable bond may be secured.

If, however, the load be brought upon the steel by a rigid bearing between the face plate of the testing machine and the steel of the longitudinal reinforcement and in like manner on the concrete core, such a bearing makes the elastie deformation of the steel the same as that of the concrete thruout, and no elastic efficiency by coaction of the concrete and metal exists, such as occurs in the practical structure.
8. Effect of Hooping. The crushing of solid bodies eamot take place without lateral swelling. Therefore, by resisting any such swelling, the compressive resistance of the column is increased. In the practical column this resistance to lateral bulging or swelling
is furnished by the hooping in which the spacing should be limited generally to four inches for light pressures and eloser spacing for higher pressures. As the hooping is brought into play by lateral swelling or bulging, the degree of restraint furnished by the hooping alone is not uniform and this lack of uniformity causes the concrete to check and crack outside of the hooping under pressures as large approximately as the ultimate strength of plain conerete.

The addition of vertical steel distributes the bulging pressure from band to band or hoop to hoop to such an extent that the vertical steel which has been added forms beams spanning the spaces between coils or bands and does so to an extent measured by the more or less close spaeing of the vertical bars. In other words, the vertical reinforeement receives lateral pressures between the hoops and transfers it to the hoops as supports. This action destroys the equilibrium of uniform pressure outward upon the hoops and tends to deform the configuration of the circular hoop from eircles to polygons having apices at the point of bearing of the vertical steel against the hoops. This action between the vertical steel and the hooping induces indirect stresses between the hoops and the vertical bars similar to those in the slab with two way reinforeement.

The outer shell of the concrete is subjected to direct compression vertically and cireular tensions, horizontally, brought about by the bulging tendency. These rircular tensions are reduced between verticals by the compression brought about by the tendeney to change configuration in the hooping just mentioned, while the ring tension opposite verticals is increased by this action. The lateral reinforcement by its compressive action exerts a powerful effect to resist bulging and to prevent circumferential elongations so that the reinforement (both lateral and longitudimal), mahles it to withstand much greater deformations without cracking or ehecking than would be otherwise possible.

Let us review the action of the column as the load is applied with reference to the mamer in which the potential energy of intemal work is stored within the structure. As the load is gradually appliod we have a certain clastic deformation and the internal work is the mean weight times the deformation. If yielding of the material oecurs or sealing of the shell, a certain amome of energy is dissipated, equilibrium is destroyed, and new enorgy is developed hy downward motion of the load thru increased deformation until a new rondition of stability of equilibrim in established.
scaling and eracking of the shell means a loss of potential energy stored and correspondingly larger deformations which are inadmissible in the practical structure. The addition of vertical steel prevents this checking and sealing and dissipation of energy because it provides a storage system of raergy which is stable and in which the storage of energy by indirect strest can be depended upon.

Coaction between the hoops and the vertical steel reduces the deformation and henes the quantity of potential energy stored for a given load and romespondingly inereases the efficieney of the structure as a load carrying mechanism.
9. Comparison of Test Data. Having pointed out in detail, the differenee in aetion between these two kinds of columns, it is in order to compare test data. Colum Table V, gives the reinforcement, perentage of stem, and tost rexulte he Wither* of a series of vertically reinfored and hooped columns with vertical steel flush with the cond and resting against hearing plater. These may be compared with the trete be Bach, and the teste at Phoenixville.

Taking up the comparison, first, with the series ber Bath, the following point of differenee is motierable. The test results obtained by Withey can be substantially accountod for by considering the influence of the eonerete and retical sted abme. The test results by Bach, camot be aceomed for in this mamer. Both series show that hooping adde tomghes. Both indicate that larger vertical rods have more effect in raising the vield point than rods of too small diameter, which offer little resistance to lateral bending. The Bach teste, where the epiral pitch of is not too great, and where larger vertical rods are used with close spacing of spirals, are in good aceordance with the Comsidere formulal while the tests by Withey are not in agrement hut are in more clowe agreement with a different formula, which considers the manner in which the load is brought upon the steed, mamely, he direct presure instead of bey bemd shear as in usual operation of the column in practical building.

Comparing the tests by Withey with those at Phoenixville, the longitudinal reinforeenent of the columns, in specimens, $J, N, P$. (), $R$, and $(Q$, is substantially the same: while the hooping in the Phoenixville tests was much greater. The increase in ultimate strength in the Phoenixville test, for one pereent of total steel, ranges from two to three times as much as in the tests by Withey. This

[^16]C＇OL，TABLE V
Withey＇s Tests of Hooped Cohmons Longitudinal steel Full Length of shat

$\begin{aligned} & \text { Col. } \\ & \text { No. } \end{aligned}$	Reinforcement				Percent Reinforce－ ment		$\begin{aligned} & \text { Core Age } \\ & \text { area in } \\ & \text { sel in. days } \end{aligned}$		Mix		$\begin{gathered} \text { stress } \\ \text { at yichd } \\ \text { pt. in } \\ \text { core } \\ \text { Us, sin in } \\ \text { Pl A } \end{gathered}$	Pl 1＇	$\begin{aligned} & \text { Com- } \\ & \text { pressiva } \\ & \text { strength } \\ & \text { of } \\ & \text { itsinders ssin } \\ & \text { Its sin } \end{aligned}$
	Round   Vertical Rods		Spiral										
	No．	Nize	Size	Pitch	$\begin{aligned} & \text { tudi- } \\ & \text { nad } \end{aligned}$	$\begin{aligned} & \text { Lat- } \\ & \text { teral } \end{aligned}$							
1	$\underline{\square}$	3	$t$	5	＋	7	，	！	10	11	12	13	I 1
C 1	0	0	d	$1{ }^{\prime \prime}$	$1)$	$\geq$（\％）	7	62	1－2－1	4．650）	2.720	19 S	2.250
C．2	0	0		$1^{\prime \prime}$	1）	200	75	62	1－2－4	4，3！0）	2，330	（1） 33	2.190
C＇3	11	0		$1^{\prime \prime}$	$1)$	$\because(1)$	7－5	64	1－2－1		1，9．0）	（1）．33	2，1N0
C 4	$1)$	0	${ }^{1 \prime \prime}{ }^{\prime \prime}$	$1^{\prime \prime}$	11	2100	呺	6.5	1－2－4	3.410	－，3：30	（） is	2.150
D 1	9	${ }^{5}$＂${ }^{\prime \prime}$	＊	$1^{\prime \prime}$	3.50	200	－5 5	is	1－2－4	4，47）	3，2！90	（1） 74	2,150
D2	9			$1^{\prime \prime}$	3.50	2110	TS 5	60	1－2－4	4，200	$3,4 \times 0$	（） 53	2，130
D3	9		！＂＇${ }^{\prime \prime}$	$1^{\prime \prime}$	3.30	200	歀	61	1－2－1	4，970	3 ， 5180	07	2，380
D 4	9	$\frac{3}{8}{ }^{\prime \prime}$	＂	$1^{\prime \prime}$	3.50	2.100	－ 5	62	1－2－1	S．360	3，670	（1） is	2，350）
H	11	（）	No．	$2^{\prime \prime}$	1）	（）． 50	动 5	57	1－2－3．3	2，330	1,950	（）$\times 4$	2，040
H2	19	11	No． 7	$2^{\prime \prime}$	11	（）． 50	－ 5	57	1－2－3	2，140	1，76）	（1）$\times$	＊ 1,160
G 1	s	$\frac{1}{2}^{\prime \prime}$	No． 7	$2^{\prime \prime}$	200	6） 50	TS 5	$1!7$	1－3－3．	3，320	2,710	1）$\times$ 2	2，100
G 2	$s$	＇	No． 7	$2^{\prime \prime}$	2006	1）． 30	is 5	S	1－2－3．${ }^{\text {a }}$	3,250	2，710	10 s	＊ 1,420
11	s	，	No． 7	$2^{\prime \prime}$	38	0.50	7－	57	1－2－3	4，240	3，460	$0 \times 7$	2,240
I	8		No． 7	$2^{\prime \prime}$	3 T	0．． 50	75．5	S7	1－2－3．	4，0x0	3，2N0	1） so	2.120
J 1	s	，＇	No． 7	$2^{\prime \prime}$	i） 11	0． 50	75	ら	1－2－3．5	－ 130	4，240	（1）$\times 2$	2.110
J 2	s	$\frac{7}{8}{ }^{\prime}$	No． 7	$2^{\prime \prime}$	（i） 11	（）． 50	75．5	S	1－2－3．5	－， 0.50	4，240	（） at	2,000
L 1	0	0	No． 7	$\underline{\prime \prime}$	0	（1）． 50	75．5	57	1－2－3．3	2，6N0	1，370	${ }^{1}$ ． O	1，780
L 2	0	0	No． 7	$2^{\prime \prime}$	0	0.50	75	5s	1－2－3．5	2，600	1，370	（1） 33	1，760
K1	S	${ }^{\frac{1}{2 \prime \prime}}$	No 7	$1^{\prime \prime}$	$2(0)$	I 100	－N．	． 7	1－2－3．5	4，0．50	$\because, 710$	（） 67	2.100
122	$s$	$\frac{1}{2} \prime \prime$	No． 7	$1^{\prime \prime}$	$\because 110$	1.00	75	57	1－2－3．5	3,760	$2,5 \geq 0$	（1） 67	1，590
N1	$\bigcirc$	${ }_{11}^{11}{ }^{\prime \prime}$	No． 7	$1^{\prime \prime}$	3 －	100	7 S 5	．76	1－2－3．5	$4,0.50$	3，470	（）St	1， 250
N゙2	s	$\frac{11}{16}{ }^{\prime \prime}$	No． 7	$1^{\prime \prime}$	3 W	100	7s		1－2－3．5	4，340	3，250	$1) \mathrm{T}$	1，720
M1	s	$\frac{15}{\frac{7}{5}}$	No． 7	$1^{\prime \prime}$	（3） 11	1100	7－5		1－2－3．5	4,590	3,860	$0 . \mathrm{sl}$	1，660
M2	$\checkmark$	$\frac{5}{4}$	No． 7	$1^{\prime \prime}$	（i） 11	100	75	5 S	1－2－3．5	1，ivil	3,660	（）so	1，710
P 1	－	${ }^{\prime \prime}$	No． 7	$1^{\prime \prime}$	$\therefore$（1）	1.00	75 5	57	1－2－4	6， 616	－3， 516	（1）$\times 2$	2，380
P 2	8	$1^{\prime \prime}$	No． 7	$1^{\prime \prime}$	－（1）	100	7－5		1－2－4	7,600	S， 760	（） 81	2，350
O 1	s	？＂	${ }^{1 \prime \prime}$ rd	$1^{\prime \prime}$	（i） 11	196	75．5	． 27	1－2－4	6.510	1.240	${ }^{1} 18.5$	2，970
O）	s	$\frac{8}{4}$ ，	1，＂＂	$1^{\prime \prime}$	19.11	1914	T \％		1－2－1	6，4．）0	1，（120	$1) 70$	2，690）
1 l	＊	$1^{\prime \prime}$	${ }^{1}{ }^{\prime \prime}$	$1^{\prime \prime}$	S． 00	19	75		1－2－4	7.250	\％，000	（1） 69	$\stackrel{3}{2} 311$
R2	$s$	$1^{\prime \prime}$	${ }^{1 \prime \prime}$	$1^{\prime \prime}$	S． 130	1916	－5．	53	1－2－1	6，6\％0	－，380	（1） s 1	2.470
Q 1	5	$1 \frac{1}{8}^{\prime \prime}$	${ }^{1} 11$	$1^{\prime \prime}$	10．12	196	和 5	53	1－2－4	6，190	－, 190	（） S 4	2,280
（2）	8	$19^{\prime \prime}$		$1^{\prime \prime}$	10．12	196	7N． 5		1－2－1	7.990	1，3，30	（） 71	2，330
W1	0	1	0	$1)$	0	0	Sti 6	52	1－2－4	$\underline{2,660}$			2， 40 （1）
W2	$1)$	0	0	0	0	0	Nfi 6	52	1－2－1	2.6 （itio			$\cdots$
W3	11	（）	1）	11	${ }^{\prime}$	${ }^{1}$	$\times 66$	． 1	1－2－4	2，480			2，250


wide discrepancy，apparently can be accounted for only as above outhed，since the discrepancy is far too great for it to be possible to aceount for it on the ground of differenee in the strength of the concrete．The conerete in the test of the Phoenixville sperimens is undoubtedly closely comparable to the conewe of the sperimerns tested by Bach，and it is undeubtedly a somewhat better grande than the concrete in the specimens tested by Withey．

The conclusions that the authors draw from these teste are：
That it is bat practiee to spliee longitudinal remforming hars by bearing of one bar upen the other．

That it is better to lap bars of comsecutive relumss at the floor line in order that a matural adjustment may take place between
the materials as the load is brought upon the concrete during erection.

That a column constructed by lapping the bars, so that the natural relations between the reinforcement and the concrete are conserved, that is, that indirect stress of the bond shear may be effective, substantially doubles the efficiency of the vertical steel; and hence this detail of reinforcing should be used. If this efficiency is to be counted upon, the diameter of the vertical bars should, for like reason, be limited preferably to $1 \frac{1}{8}$ inch diameter, or in special cases of heavy work to $1_{4}^{\frac{1}{4}}$ inches to $1_{\frac{3}{5}}^{3}$ inch round bars.

That the hooping should not be spaced further tapart than four inches for light pressures, and closer spacing should be used for heavy pressures.

That the spacing of the vertical hars should not exceed nine inches between renters, but if spaced further apart their efficiency should be considered to be reduced by fifty pereent of the relative increase in spacing.
10. Formula for Columns, where the Load is Brought upon the Steel by Direct Bearing on Metal. Tests of this type of column show, up to the yield point, so-called, that the effect of the hooping is relatively small; that beyoul the yiek point the hooping is brought into play, giving the columm a degree of toughness and ability to stand increased load without sudden failure, altho accompanied ly comsiderable deformation. Neglecting the circumferential reinforcement and the concrete outside of it,

Let $A=$ area of core occupiod bey concrete and longitudinal reinforcement having a steel ratio of $p$, so that
$A_{s}=\rho A=$ cross section of longitudinal steel.
$A_{c}=(1-p) A=$ cross seetion of concrete core.
$W^{\prime}=$ total load to yield point that column would carry without circumferential steel.
$e_{1}=.00125^{\prime \prime}=$ average deformation per unit of length at yield point of columm.
$W=\left(A_{\mathrm{s}} E_{\mathrm{s}}+A_{\mathrm{c}} E_{\mathrm{c}}\right) e_{1}$. Let $E_{\mathrm{s}} / E_{\mathrm{c}}=n$, then
$w=\Pi^{\prime} / A=E_{s} e_{1}[(1-p) / n+p]$
is the load at vield pe int per unit of crosis section of concrete.
Let $E_{\mathrm{s}}=30,000,000$, and $n=15$; then
$w=37,500\left[(1-p) / 15+p^{\prime}\right]=2500+35,000 p$

The point here designated on the diagram of unit deformations and load is at intersection $P$ of the tangents to the two slopes of the curve, Fig. 78.


Fig. 78. Diagram Showing Elastic Curve of Column

Equation (1) is in good agreement with the series of tests made by Professor M. O. Withey, C. E., in 1910, at the University of Wisconsin,* with longitudinal reinforcement from 1 percent to 10 percent and cireumferential reinforcement from 0.5 percent to 2 percent, given in Col. Table V. Professor Withey has written empirical formulas for several different percentages of circumferential reinforcement which differ slightly from this, and from each other; but they do not rofer precisely to the point $P$ as above defined, but to a slightly smaller value of $W^{r}$. The point $P$ does not actually fall on the test curve of unit deformations and loads, but is so related to it geometrically as to make its use advisable. The actual deformation at this load will be somewhat in excess of the assumed value of $\epsilon_{1}$.

On page 49, in Bulletin 466 , University of Wisconsin, the following conclusions are drawn from the results of these tests regarding the behavior of columns with rigid metallic hearing for the longitudinal reinforcement built of concrete similar to those tested by Withey.

1. "Closely spaced spiral reinforement will greatly increase the toughness and will considerably increase the ultimate strength of a concrete column, hat will not materially affect the yiekl point. The ultimate strength under dead load will doubtless be somewhat less than the value ohtained from a testing machine. Since spiral reinforcement should be employed principally as a factor of safety against sudden collapse, more than one percent does not appear to be necessary. On account of lack of stiffness in columms made from this grade of concrete and reinforeed with spirals only. it seems necessary to use some longitudinal steel.
2. "Longitudinal steel in combination with such spiral reinforcement raises the yield point and ultimate strength of a column and increases its stiffness. As was shown in Bulletin No. 300 columns reinforeed with longitudinal steel only are brittle and fail suddenly when the yield point of the steel is reached; but they are considerably stronger than plain concrete colums made from the same grade of concrete.
3. "From belavior muder test of the columns reinfored with spirals and vertical steel and the results computed, it would seem that a static load equal to 30 to 40 percent of the yield point would be a safe working load."
[^17]These tests are conchasive as regards the deportment of the cohmm without vertical steel. Spiral reinforcement gives a large increase in the ultimate strength and while providing safety against sudden collapse, does not increase the yied point at which the fireproofing commences to seale, and hence does not permit material increase in the working stress over that of the vertieally reinforeed cohmm trpes with ordinary ties.
11. Working Stresses. (a) The case of modirect metallic bearings. In the vertically reinfored and hooped colmm, in which the hooping follows closely the percentage of the vertical steel recommended previonsly, namely, 35 to . 45 of the volume of the verticads, and the verticals are not less than three patarters of an inch in diameter, and ipaced approximately ats recommended, the yied point of the column may be taken as cighty pereent of the ultimate strength. This would give a field point value, for a cohmm to wherh the ( 'onsidere formula is applicable of . $5(0 \times 1.5=1.2$ times the crushing strength of the concrete times the core area, plus righty pereont of the yiedel point value of the stem in vertieals and hoops.

Since a colamm of this chatacter may be depended upon with certainty, if ordinary care is used in erecting the work, the factor of safety of 2.5 may be emplosed. This would give, in round mombers, soo pounds per square inch for the concrete of the core, 12,000 pounds per inch on the vertieats, and 16.000 pounds per square inch on the hooping, treated as imaginary verticals, for the working stress, the hooping being assumed to be a drawn wire, and possessing a higher yield point than the material of the verticals.

With a $1: 1_{2}^{\frac{1}{2}}: 3$ mix, twenty pereent higher values may be assigned to the rore.
(b) Metallic bearings. Where vertical reinforeoment is used, and the load is brought on the vertical sted by bearing on metal, there is much less ecertanty of miformity of joint action between the matrix and the reinforeement than where the longitudinal bars are lapped; and hence a somewhat higher margin of safety should he allowed. Taking this margin of safety as the reciprocal of $3 \frac{1}{2}$, the writers would recommend a working stress not exceeding 700 pounds per sepuare inch on the eonerete phas 10,000 pounds per square inch on the vertical steel for this type of cohmm with rigid end bearing, limiting the pereentage of hooping to not less than one half of one percent nor less than twenty pereent of the vertical stecl, and the vertical steel limited to not more than cight percent of the column area. This factor of safety is hased on the yield point value of the columm.
12. Structural Columns Filled with Concrete. As steel is more rigid than eonerete, the higher the percentage of the steel the less the assistance we may expect the concrete to be to the steel, and while the formulas given beretofore for the column in which the vertical steel is loaded in large part by direct bearing of metal on metal agrees with tests closely, it should be noted that the percentage of steel in these specimens was not high. Accordingly, it would seem conservative to reduce the allowance on concrete in cases where the percentage of steel exceeds eight percent of the combined area of the concrete and steel in propertion to the inrrease in steel above this percentage.

## 13. Concrete Columns Compared to Structural Steel. From

 the Phoenixville tests, it would seem that there is a higher degree of uniformity in the tested strength of reinforced concrete columms made with ordinary care and with well designed reinforcement than with average structural steel columms. The reason is that in the concrete column, we have a solid core. The larger the column the greater the strength, in strong contrast with some structural steel columms. In the structural steel columns, we have the uncertainty due to the form and make-up of the section. In the make-up of most small struts and colums constructed of steel and iron, we have a specific ratio of the area of the web and flanges comsisting of chamels, or in other forms, a complete circular or bex section, such as the Phoenix column or the box made up of two channels and two plates. The semi-empirical formula for struts has been worked out for the radius of gyration of those forms of seetions: which are comparable in the case of laced channel struts to a certain distribution of metal between the web) and the flange and a certain ratio of flange width to depth, which ratios, under stamdard sections, are comparable to the box and Phoenix seetions. When there is a wide variation from these proportions, the formula based on the radius of gyration is inapplicable as is proved in the original design of the columms of the Quebee Bridge. In this sase the area of the flange as compared to the web was about one tenth of this standard proportion between the area of the web and the chamed, and there is no experimental data in existence covering the action of the latticed bars and secondary stress for such a combination.In concrete work such uncertainties are diminated by the uniform solid core. With ordinary eare there eam be no doubt about securing a solid casting, if the type of reinforement selected is that recommended in this chapter, namely, one in which there is
no obstruction whatever in the core to prevent the concrete from flowing freely and filling the same completely and so securing a solid casting. Improper handling of the concrete might lead to considerable reduction of the strength of the section, but the damage which might occur thru bad workmanship is if anything much less in concrete work than in steel construction and the confidence in the builder in the integrity of his concrete work should be correspondingly greater.
14. Wall Columns and Interior Columns in Skeleton Con= struction. Wall columns differ from the interior column in that the load eomes to them from one side instead of equally or approximately equally from all directions as it does under a uniform load on the floors.

Whether the floor is beam and girder construction or flat slab construction supported dieectly upon columns in view of the monolithic connection betwern the floor and the eolumns certain eccentric loads or bending stresses are brought upon the wall columns to a greater extent than in the ease with interior colmmes.

The amount of bending induced in the cohmm will depend, first on the rigidity of the floor, and secoms, upon whether the resistance of the floor to deformation is furnished by beam action or circumferential stab action. If the resistance is by circomferential slat artion, the effert upon the column is far less for the same deflection than it would be in case of beam action, becatise the slab tends to twist from all directions and so in a large measure the effect of the loat in producing bemding and deformation of the column is counter balanced by the loads coming to the colum from the sides instead of being augmented by these loads so much as is the case in the beam action of one-way reinforeement.

Fatoring Conditions. The walls of a building are made vertical and as the number of stories increases, the columns are reduced in diamoter, but kept flush or vertical on the outer face. This produces an eccentris application of the column load from the upper stories upon the columns of the lower stories which in some large measure off-sets and holds in equilibrium the bending moment of the floor louls.

Little attention is usually paid to this difference in conditions. The wall column is commonly made approximately the same as the interior column except in the upper stories where it is possible to
carry the wall columns up for the last three stories without reduction in size, making thereby a provision for the columns of these upper stories which would be most affected by the eccentric bending moment referred to.

Good practice would limit the dimensions of columns to sixteen inches as a minimum size in office buildings and in warehouse construction, eighteen inches as a minimum.

Provision of material in the beam to take the entire bending resistance figured as simply supported at the wall column and continuous over the interior columns will in no wise eliminate this bending stress in the column itself, and does not excuse failure to make such provision.

In fact if the beams are treated as beams fixed at the imer ends and free at the outer end, and the five rod type of reinforeement used in the Turner beam is adopted, the positive moment provided for near mid span is W $L / 14.4$ nearly, or $.07 \mathrm{~W} ~ L$, while the maximum positive moment in the beam freely supported and continuous over a number of spans in the end span requires a coefficient of from 0.07 for two spans to .08 for three spans, and .077 or .78 for a greater number, so that in this type of design there is nearly sufficient provision without considering the stiffness of the wall column. Nevertheless, in the view of the authors the provision recommended should be followed in practice.

Bending from II ind Pressure. In view of the monolithie character of reinforced concrete construction, wind has much less effect on a structure of this kind than is the ease with the steel frame, sinee each floor forms a monolith of enormous lateral rigidity camsing columns all to act in perfect unison. Where the buidding is narrow the columns should be fully spliced at the floor level which doubles the resistance of the column to flexure. Where the buildings are broad and only six to eight stories in height, provision of this charatter is unnecessary except in wall columns which should be well spliced.
15. Temperature Effect on Columns. (hanges in temperature cause expansion and contraction of the concrete flowe. This is taken up by bending in the column and the in and out motion of the walls where they are above the ground line. There is, however, a tendency for the basement walls to crack every thirty or forty feet because of the restraint of the surrounding earth. There is a further tendency for briek walls to crack where there is expansion
if brick piers are used in place of well reinfored concrete piers in a long building. In a buiding over 300 feet in length, no depentence should be placed upon either a plain brick or a plain concrete pier without reinforement to withstand temperature stresses of expansion and contraction of the floors since mashtly cracks and checks will very likely occur from this ratuse. In a building over 300 feet in length either a full, well reinfored concrete skeleton should be provided or if bearing walls are used the buidding should be cut at 250 foot intervals so that it will allow expansion and contraction without damage to the brick work or umduestrain on the concrete of the floors and columms.
16. Economic Column Design. With reinforeing steel in the column figured at $2 \frac{1}{2}$ eents a pomat and concrete at sti.00 per cubic yarl, we may estimate the proportion of sted and eonerete needed to obtain the most eeonomic support from the stampoint of cost.
 of steed $485^{\circ}$ pounds, a cube of concrete weighing one pound would have a volume 3.2 times as great as a eube of stere of the same weight, and havo a face mearly one amd one-half times as great. On this hasis, for equat cost in carrying lead, $f, f_{c}=37$, but in a fairly rich concrote $11=10$ to 15 , so that a had can be carried with less rost on a concrete pier than mon one of reinfored roncrete, but in carreing the load in this mamner, the diameter of the columns are greater, which is objectionathle in that they ocrupy vatuable room. Chbalanced bids are sometimes reereved on this basis. One puts in a bid using a colmm of a small diameter as sjecified, thus using more sterl, hut saving eqace; another makes a colum larger hy two or three iuches and nses less steel and puts in a lower price. The owner is freguently persuaded to areept the large columns without giving the regular bider an opportunity to revise his bid on the same hasis.

It should be noted that the efficience of the hooping varies as the diameter of the core, while the core area varies as the square of the diameter; hence a small increase in the diameter of the core permits a large decrease in the amount of hooping and vertical steel. Hooping costing $1 . f$ times as much as the vertical bars in a column in place has an efficiency 2.4 times that of the same cost of metal in vertical steel. On the other hand, certain relative proportions between the amount of the vertical steel and hooping are necessary to secure the best results, and these proportions should be adhered to if the formulas recommented are to be applied.

## CHAPTER IN

## FOENDATION゙

1. Bearing Value on Soil. In a huilding the floor loats are earried to the cohmms, or to the walls in ease bearing walls are used, and the weight is concentrated on small areas of ground at the footings of the columms and walls. Evidently if we are to avoid settlement the weight mast be distributed over a sufficient area. The following are suggestions for safe loading for foundations where the material can be clearly defined.

Ordinary ledge rock, such as good shate, limestone and the like, twenty to thirty tons per suave foot. Granite, trap where the ledge is not shattered, fifty to seventy tons per square foot. Hard pan. seven tons per square foot. (iravel, five tons. Clean, coarse sand. four tons. Fine sand, with a little clay, three to three and one-half tons. Hard clay, three tons. Clay, such as is to be found in Regina, which is rather soft, not over one and one-half tons. Blue elay of Winnipeg, two to two and one-half toms.

In each case, howerer, it is well for the engineer to look into the eonditions carefully meses thoroly conversant with the locality. His judgment as to the bearing power of the soil should be checked, if cloing business in atrange erity, by a careful examination of the buildings rosting on similar foundation and general incuiry amomg experienced members of his profession. This cation may prove of value to the enginerr doing business over an extemeded area. particularly if he is arting in a consulting eaparity for a contracting firm assuming responsibility for the design.

In cases where there is filled gromed, marsh, quick-samd and the like it is frequently neeresary to use a pile fommation or distribute the weight over the entire area. In general in reinfored concrete ronstruction, it is economical to we a comparatively thin footing and thoroly reinforee it anel make the roncrete a rich mix.
2. Column Footings and Method of Figuring. Fig. 80 shows a form of footing which seems somewhat ohjectionalbe for the reason that as usually placed the conerete is worked rather dry in order to
make the slope without top forms, and the contractor does not ordinarily get it in place so that it can be depended upon with cortainty.

A preferable form is shown in Fig. S1, in which the footing is

fig. su.
made in two layers. The bottom layer is cast with the rods at the hottom, thern the colum assembled and the top layer cast with the columm. Its advantage from a practical standpoint is first, that


Fig. sl.
the upper layer of rods assist the footing in resisting the shearing strain of the column which tendstopunch thru the footing and secondly it also assists in distributing the load out over the lower plate. The
bottom plate being cast with a wet mix we can depend with certainty on the bond between the steel and the conerete by the shrinkage of the wet mixture as we could not in the footing first mentioned.

In computing the lower plate, the cross sectional area of the steel should be such as to provide for a bending moment of the upward pressure on the unter side of the plate tlistributed miformly over it with the columm as the point of support.

The arm of the total pressure either side of the center may be taken roughly as fivereighths of the half diameter of the footing, hence the actual bending moment is 516 Wb . ${ }^{*}$ The metal acting as a flat plate would be as we have shown for the square panel twice ats efficient as simgle way reinforcement and as the sectional area of each har comes into play on each side of the center of the footing we ean use forr times the area of all rods crossing the footing times .85 of the total thickness of the two layers times the working stress on the steel as the resisting moment.

The amount of sterel placed in the top layer is more a matter of practice than that of exact computation. The rods are generally made the same size as those used in the lower layer and no time is wasted in computing the stresses thereon. It is preferable to take long rods and bend them hair-pin style for the footings rather than to use short rods.

There is a further advantage in ordering the rods this way, that in case the steel for the footings is delayed stock steel can be wised while the steel ordered for footings may be used clsewhere in the building later.
3. Pile Foundations. Where piles if userl will be continually wet and there is no possihility of changing conditions from that to alternate drying out and wetting, there is no type of remforced concrete pile that ean compete with timber piles. However, where the piles are liable to be above the permanent water line or it becomes necessary to excavate thereto, then and there concrete piles beeme an economic method of building up the fom dation.

Practical concrete piles may be divided into two classes, one, those which are made up first and driven afterwards, and secome those in which a core or form is used and the holo filled in with concrete reinforced or otherwise.
4. Driven Piles. Hemebique was one of the finst to new reinforced eoncrete piles that were made up separately and then driven.

[^18]In dexign they were similar to his column which have been previously illustrated, with longitudinal reinforcement coupled with either of several arrangements of lateral tics.

C'onsidère in his pile dexign, shown in the ateompanying Fig. S2, commonly mate nse of spirals for lateral reinforement in place of Hemmelique's ties. His form of piles is used to a large extent on the eontinent and is similar as regarels the point at its lewer extremity to Hemmeligue's.

In driving, it is customary to use a water jet for loosening up the sand or carth at the bottom and rap or jar the pile into place with a


Fig. Show ing Reinforeement of the Considere pile.
hammer. A stean hammer should be used in driving concrete piles rather than a drop hammer. since with the heasy ram and short stroke of the steam hammer there is less shock.
5. Piles Cast in Place. Coming under the second class are the Raymond and Simplex piles.

The Raymond piles are made tapering to secure greater resistanee against settling. The momer of constructing Raymond concrete piles is as follows: A sterl pilc-core the size and shape of pile desired is encased in a thin, closely fitting shell. The core and
shell are then driven into the gromed by means of a pile-driver in the usual mamer. By a simple and ingenious device the core is collapsed or shrunken slightly, so that it loses contact with the shell, and is easily withdrawn, leaving in the ground a clean, perfectly formed hollow tube of the size and depth required, which has only to be filled in with the best Portland cement conerete to complete the pile.

Fig. S3, shows the Raymond pile expanded ready to be driven.

 20 to 13 inches. The ant shows core full size ats it is driven.

Fig. 84, shows the core in the leaders with the shell on the right.


Fig. S4, Pile Core Collapsed or Shrunken, and partly withdrawn from the shell.
The core is expanded when driven and collapsed to be withdrawn from the shell.

The relative merits of the various kinds of piles would apparently depend on outside conditions. A pile like the Raymond pile should be most suitable for a clay soil where the consistency or cohesiveness of the clay is such that the pile core can be driven and the shell omitted.

Raymond piles are made of various lengths, tapering generally from $20^{\prime \prime}$ at the top to $6^{\prime \prime}$ at the botton, making a symmetrical cone affording material resistance to soil penetration by friction.

For the Simplex pile a casing is first driven, and then as the easing is pulled up, conerete is deposited and rammed in place, foreing it out to a somewhat greater diameter than the shell that has been driven.

Figs. 85 and 86, show the make-up of the simplex pile. With the steel casing is driven a point, either of steel or conerete, and afterwards the shell is gradually withdrawn and the hole filled with concrete as the shell is filled up.


For use in earth that is reasonably firm in its texture and free from water, the preparatory removable pile, (see Fig. 8.5) is used. This pile form consists of a length of extra heavy wrought iron pipe, fitted with a suitable driving head of oak, and a conical steel point of a somewhat larger diameter than the pipe, and fitted with an automatic air valve. This preparatory tube is driven into the ground to the required depth, and then withdrawn without difficulty, and the hole so produced is filled with well rammed eoncrete. This form of pile can be constructed of any desired length, as the proparatory tube can be driven and removed with but a fraction of the foree required in the planting or removal of the ordinary pile. It can also be driven thru ground of a density quite impenetrable by any wooden pile and to almost any desired depth, as there is no appreciable frictional resistance. as the depth increases, either in driving or withdrawing the tube.

The ramming process forces the larger pieces of the aggregate into the sides of the hole, materially alding to the frictional hold of the pile on all parte of its surface.

Where the earth is soft, marshy, or where quicksand or water is encountered. a detachable "point" of coneretr", (see Fig. 87) is substituted for the fixed one of steel. This concrete point is driven to the required depth, and as the pipe is being lifted off, conerete is gradually filled in and rammed home thro the pipe. care being taken that a head of the concrete be maintained inside of the pipe white it is being thus gradually withdraw. By this system all water is displaced and the pesibility of the sides of the aperture rlowing in is entirdy remeved.


Fig. s- Coneret Printa for simplex Piles.

Corrugated piles have been patented by Frank B. (iilbreth. One of the clams atvanced in their favor is that the corrugations assist in jetting the piles into place.

Fig. 89 shows a driver hatndling one of the corrugated piles.


Fig. *9. Driving Corrugatod Concrete Piles.
Fig 90 shows the cushion cap used in driving the pile.


Fiz. 3". Cushion Cap used in lriving the corrugated conerote phle.

Concrete piles have this advantage over wood piles; they do not decay, are not subject to destruction by insects and furnish a durable foundation regardless of soil conditions; they can be used in dry filled ground as well as in wet soil, which may dry out and cause wood piles to decay.

A pile foundation generally tends to prevent settlement by the packing and settling of the soil in the vicinity of the pile, frequently rendering the bearing value of the soil around the piles materially greater. See Fig. 91.


Fig. 91. A Trench Filled with Concrete Piles.

Fig. 92, gives a fair idea as to the adrantage of a reinforced concrete pile foundation over the wood pile which must be cut off in the vicinity of the low water.


Reinforeed Concrete likes
Wood Piles.
Fig. 92. showing the alsantage of eonerete over
wood pile foundations.
6. Safe Bearing Loads for Piles. Two cases are to be distinguished; that of piles, the lower emd of which rests upon a hard strata and that of the ordinary pile which is supported largely by skin friction of the material into which it is driven. The eapacity of the former is determined by the strength of the pile as a columm thru the upper or soft strata while the bearing power of the latter is some function of the penetration under a given drop of a ram of a given weight.

Many formulas have been proposed, but the only formulas in anything like general use are known as the Engineering News Formulas. They are:

For a pile driven with a drop hammer $P=\frac{2 \mathrm{IV} h}{S+1}$
For a pile driven with a stean hammer $P=\frac{2 W h}{S+0.1}$
to which $P$ is the safe load in poumds, IV the weight of the hammer in poumds, $h$ the fall of the hammer in feet, and $S$ the penetration or simking in inches under the last blow, assumed to be at an approximately uniform rate. They are deduced for wood piles; but are the bent there are for concrete piles.

Mörseh gives the Brix formula as masally employed on the Continent:

$$
p=\frac{h\left(Q^{2}!\right.}{2 e(Q+!)^{2}}
$$

wherein $h$ is the fall of the hammer;
$Q$ the weight of the hammer;
g the weight of the pile;
$e$ the pernetration of the pile under the last blow;
$p$ is double the safe allowable load for the pile.
The (puatity e will naturally be the average of the last few blows.

## CHAPTER $\times$

## ELEMENTS OF ECONOMIC CONSTRUCTION AND (ONT OF REINFORCED CONCRETE WORK

1. Introductory. Reinforeed concrete construction of buiklings presents problems which from an economical standpoint are so complicated that they cannot well be investigated as fuestions of maxima and minimia by means of equations which show the cost of the several variable items and determine their proper relation by mathematical treatment. For this reason it is necessary to pursue the investigation along simpler lines, hy taking up questions of general arrangement, column spacing, spacing of beans, choier of type of reinforement, cost of centering for each kind, cost of aggregate, ete.
2. Column Spacing. Eighteen feet renter to center of columms in each direction minally costs less than for shorter suans while the increase in cost with increase of column spacing up to twenty feet is very little, if the loads are heary, and the building high. In wholesale hardware buildings, the customary requirement is that of lines of shelving and boxing about twelve feet centers. For such a building, diagonal pacing of columms with flat slab construction, making the columms about seventeen feet between renters, will provide the desired spacing in a multiple of twelve feet for the boxing and shelving, i. e. twenty-four feet in directions parallel to the sides of the building.
3. Floors. In treating the strength of floors by comparison on the principle of proportion it has been noted that the coefficient of bending with continuous flat slab type is smaller than the corresponding coefficient for beam construction. This advantage is offset for light loads by the disadyantage of the smallness of depth which is a factor in the moment of resistance. Further, stiffness varies as the square of the depth, but the coefficient for deflection is smaller than for simple beams. Hence it is evident that for stiffness under light loads, lower percentages of sted are requisite than in the beam type of construction. Where the loals are heary the continuous flat slab type becomes more and more economical compared with other types of floor as the depth of slaf increases by reason
of the relatively small coefficient of bending. A little computation as to the cost of concrete and steel shows that considerable variation from the exact economical proportions of the two materials for a given strength will make comparatively little difference in the ultimate cost, whereas in the flat slab types using a smaller amount of steel and more concrete does make a harge increase in the stiffness.

Flat slab types have the advantage of simpler centering and lower cost of placing the steel, but aside from that they possess little advantage over the two-way beam system for light loads, tho requiring less material both of eonercte and steel for heary loads and moderate spans up to twenty-five or thirty feet, and they compare favorably for greater spans where the loads exeeed five hundred pounds per square foot.

Slabs reinfored in one direction, being supported on two sides only, are at a disadvantage, simer the coeffiedent of bending is three times as high with one-way reinforement, as it is for the slab reinforced in two ways and supported on four sides.

In comparing Types III amd IV, it should be ohserved that if the beams of Trpe III are of twiee the thickness of the slab of Type IV, the same weight of reinforement is required in the beans of Type Ill that is required in the whole floor of Type IV.

Usual proportions would be a depth of beam equal to three times the thickness of the slab of Type IV requiring two thirds the steel for the beams.

The apparent moment to be resisted in the slab support ad on four sides Type III is but two thirels that to be borne by slab of Type IV. Hence a slab maty be used of less thickness than with Type IV tending to equalize the eoncrete quantities and leaving the difference in cost of forms and steel to be considered.

Type II is frequently made of a combination of hollow tiles and thin reinforced concrete beams between the hollow tiles, in order to secure economic depth and redued weight for long spans, with decreased deffection under load. Where this type is used, the cost of centering is kept down to a figure approaching that of the flat slab types but extra care is required in placing the steel and the labor of putting tile in position and the cost of the tile is added. Where tile is low in cost and concrete material is high in cost, tile and concrete for a light building may be more economical. On the other hand, the risk of erection is greater with this type on account of the bittleness of tile and the character of failure of one
way reinforced slabs as pointed out in the discussion of beams. For heavy loads, however, this type camnot compete with the natural concrete types, III and IV.
4. Centering. As we have noted, centering is one of the important considerations since the cost of centering runs to twentyfive to thirty-five percent of the total cost of the ordinary floor.

In the selection of the type of floor to be used, the cost of centering is so large an item that it should be given careful consideration in any approximate solution of an ceonomic design.

Where the spans are long and the loads are light and the cost of concrete materials, stone, gravel and cement are very high, flat slab types cannot compete with the bean type. Type III as a beam and slab, type is more economical than other beam types for heavy loads and panels of sixteen to eighteen feet. Where the columns are equally spaced, the economy is greatest. Where the spacing is such that the panels are rectangular and one side is less: than six-tenths of the longer side, its economy disappears and it is preferable to use an intermediate beam, thus dividing the slab, into panels more nearly square.

For joist and girder construction sumounted bey light slabs, the spacing of the ribs is governed by the character of the centering used. If the centering is arranged in panels so that it is easily handled as such, six to ten foot spacing of beam joists works out very economically. Considerable increase, however in the cost of rentering is brought about by the additional framing of the joists to the main beams or girders.

No exact rule can be given covering all cases, as the conditions of the problem, such as size of the building, mamer in which it divides up for the purposes intended, ete., fix so many of the conditions that any rule disregarding these conditions might readily be misleading. The number of stories figures largely in the cost of centering. The cost of framing beam boxes as a rule must be figured for three stories. Additional stories, if the framing is worked out so that the same boxes can be used over and over again reduces the cost per foot greatly and these are conditions which must be taken into consideration in any practical comparison of different types.
5. Columns. The heoped column is the safest type to erect and where the loads are at all heary the most economical type to adopt. The coonomy of the reinforcement depends largely upon the
adoption of the proper proportion of hooping and vertical steel. The hooping adds to the toughness of the column and to its ultimate strength but does not raise the point where the column shell commences to scale and chip unless the hooping be combined with the proper proportion of vertical steel. When this has been done, very high values indeed can be safely developed. The carrying capacity, however, of the column is secured at a minimum cost by concrete rather than by reinforcement. Still a certain amount of steel is necessary to secure toughness and resist flexure. Again, consideration of the value of floor space freguently limits the size of the colum which the architect or owner is willing the designer should employ.

As to what maty be done with the reinforced concrete columm, Tumer has used a twenty-seven inch core, heavily handed and reinforced vertically, for working loads from eleven to twelve hundred tons. This pressure being a little over 4000 pounds per square inch of core area. The development of such high working values by heary reinforecment, tho mobjectionable from the standpoint of safety and desirable from the stamdpoint of ocerupying small floor space is not eronomical from the stamelpoint of first cost of providing a post of proper capacity for a given load. A rich concrete is more economical than a lean misture, and where the loads are heary a $1: 1 \frac{1}{2}: 3$ mixture is recommended in place of the usual $1: 2: 4$ employed under ordinary conditions.
6. Bearing Walls or Full Concrete Skeleton. A very important question in ecomomic design is the question as to whether bearing walls are to be preferred to a full concrete skeleton.

For such a low building as four to five stories, bearing walls are generally cheaper than a full concrete skeleton. For buildings higher than five stories a full concrete skeleton with curtain walls costs less than heary bearing walls.

In putting up a concrete skeleton, the additional cost involved in making provision for two or three additional stories is generally so small that it is arlvisable for the owner to make this provision if there is a reasomable probability that he may use the atclitional floor space in the future and the value of the real estate warrants such investment.
7. Concrete, or Brick Exterior Walls. In some cases where the concrete aggregate is cheap and mion brick layers' wages are high it is botter to use a concrete exterior wall. Conerally, however, exterior walls may be constructed much more cheaply of brick, or
of some material that can be laid up without the necessity of using forms, since the forms for exterior wall construction run into money quite rapidly.
8. Rich Mixture. Economic construetion in reinforced eoncrete requires a rich mixture. This is a necessity, first, from the standpoint of certainty of computation, second from the standpoint of quick hardening which enables the early removal of the forms with economy incident to repeated use of the same form lumber, and from the standpoint of ceonomy due to the fact that we can use less material of good quality which we ean absolutely depend upon than we ean of material of an inferior quality and uncertain character which is liable to be discredited by reason of its slow hardeming through the lack of necessary amount of cement. Further, where the material used has been of good quality the construction can be increased in strength to any desired degree by the addition of more good conerete tho the strength so secured will not be at so low a cost as if the original design was for heavier construction.
9. Economy in Selecting Aggregate. Good bank gravel when obtainable makes an excellent aggregate. Its adaptability for the purpose should be tetermined by sereening out the sand and pebbles which are under $\frac{1}{4}$ inch diameter and eomparing the volume of sand with the volume of coarse agoregate. If these proportions depart from those desired, that is, one cement, two sand, and four of the coarse aggregate, then the cement content must be increased to makr the mortar of the proper proportion, or else crushed stone must he added to the misture.

Where the expense of securing crushed stone is high and the eost of eement is low, the addition of more cement to kerp the mortar a true $1: 2$ mix is cheaper than the addition of stone, and in a way preferable, because with the excess of mortar there is less liability of voids and poor work. sometimes erushed stome and gravel is not available and a good hard furnace or smelter slag may be secured. slag should be examined for chemical impurities which might injure the cement and for hardness which determines its fitness as a good aggregate.
10. Cinders. Cinders are sometimes used as an aggregato for eoncrete. Cinder from the soft Iowa coal is gencrally very injurious to the cement. In fact it may be stated as a general ruke that the only einder fit to make a permanent conerete is that which is a hard or more or less vitrified elinker such as generally results from burning soft coal with a mechanical stoker. Too great
care cannot be exercised in this respect as upon the character of the aggregate and its freedom from sulphur or other injurious chemical elements which would damage the cement, depends the permanence and integrity of the work.

In general a clinker concrete should not be used where a high degree of strength is required. It is desirable to use it for such work as roof work where the spans are short and it is desired to nail a tile or slate cover to the concrete roof slab. For such purposes the concrete should not be mixed too rich, otherwise it will be difficult to nail into it.
11. Adaptability. Reinforced concrete is not adapted for long spans and light loads. For instance, in a span of fifty or sixty feet in a shop or factory building, having only a light roof load, reinforced conerete is not an economical material to use. Structural steel costs far less and is generally employed. For bridges of long spans and light loads reinforeed concrete is not economical in first cost. Where the loads are heary, as for a city bridge, and the grade such that there is opportumity for ample rise, a reinforced concrete arch may be built at a cost not greatly execeding that of a good structural steel bridge and when the maintenance charges are considered the concrete will be the least expensive.

For office buildings and ordinary business blocks reinforced concrete will in general save the owner from onc-lalf to three-quarters of the cost of a structural steel skeleton.

Reinforced concrote is particularly well adapted for school luildings. The difference in cost between the ordinary timber floor and a reinforced concrete floor will frequently not exceed ten or fifteen cents per square foot. With this fact in mind it is really astonishing to olserve how frequently dangerous fire traps are erected to serve as school buildings on which expensive and ornamental exteriors have been used when plainer buildings with fireproof construction could be erected for the same money.

The arehitect for a school building, in order to make a show, frequently specifies a fancy brick exterior, terra cotta or stone trimmings and other external frills and then economizes in the interior construction of the building by the use of timber joists $1 \frac{1}{2}$ or $1 \frac{3}{8}$ inches thick by $16^{\prime \prime}$ covered with $\frac{7}{8}$ inch rough floor and $\frac{7}{9}$ inch hardwood finished floor, with wood lath and plaster on the under side, rlectric wires, heating flues, ete., between the joists. This is a construction in which if a fire once st:urted there would be
hardly time for the occupants of the building to escape before the collapse of the floor with the probable loss of life incident thereto.

The Collinwood disaster well illustrates this fact. The state of Wisconsin has passed a law making it compulsory to build school buildings of fireproof materials and other states may well follow her example.

For buildings subject to the vibration of heavy machinery concrete steel construction has many advantages. Properly designed, the joints (comections of floor to columns) are far more rigid than in any of the old types of construction, hence a rigid building costs least in concrete steel.

The Forman-Ford Company, plate glass dealers, ete., make the statement that twenty-five percent more work is done in their cutting and polishing department in their new concrete building with the same men than in the old timber framed structure previously oecupied owing to the increase in rigidity of the structure.

Impact or shoek at any point of a steel strueture is propagated longitudinally along elastic members extending in a linear direction from the point and it goes practically undiminished to the far ends of these members where it is subdivided among other members and propagated still further. An allowance up to eighty or ninety percent is usually added for impact to the static effeet of a moving load in bridges.

Impact, or the dynamic effect upon any point of a reinforeed conerete slab, however, is entirely different from this. In the first place, the effect of the blow does not travel in one direction only but in all directions rarlially from its point of application, so that in a very thin slab its effect at any other point would be inversely as the distance and in a very thick slab inversely as the square of the distance. This would make the allowance for impact in the thick concrete floor of a bridge or building very small in comparison with that inevitable in steel construction.

Secondly, the effect of impact must be inversely proportioned to the weight of the body receiving the blow. Now in monolithic conerete construction the mass affected is of far greater weight than would be the case in a steel frame which is made up of independent steel members and tile as in the old style buildings and for that reason the effect of impact on a monolithie concrete floor would be reduced by a large pereentage.

Third, the continuity and stiffness of the floor greatly reduces
its vertical, lateral and torsional defomations below those of the steel structure. The work done during an impact and its effect depend on the amplitudes of the deformations. In particular the horizontal resistance of the slab) is many thousand times that of the steel members in a structure. The vilratory energy absorbed by the stah during impart is consequently smath.

Fourth, the small amount of energy which is absorbed is not tramsmitted (as it is in a highly elastic and resilient structure) to a considerable distance in the slall, but owing to the nature of the concrete, is dissipated near its souree, transformed into heat, and rapielly alsombed.

Fifth, concrete slahs are tough and not brittle, like terra cotta, for example. so that, in cases where great weights have fallen on them, little effect has been produced, whereas brittle slats such as those of concrete and tike hare beem smathed under suth diremostances, and haw failed.

The emerete of the empmestion zone is such a shock-absorber as to protect the temsion zone from jaring and vibation, both as regards steel, in temsion and the boond of the eoncrete to the steel as well.

For all these reasons the shock which a rolling load imparts to a slab is incomederable, and is ahsorbed and dissipated so readily that it is a negligible factor, rendering reinfored comerete adaptable for ase in railroal structures and in huidings where the service is most serere from shock of machinery such as beater floors in paper mills and hammers in stamping and working metal.

As illustrating these statements, im interesting aceident occurred in Wimipeg where a heary cornice block of hard Tyndale limestone, weighing between a quarter and a half tom, was dropped seventy feet, striking a $5 \frac{1}{2}$ inch concerete slab) 19 feet square in the center. The effeet of this blow was a small dent half inch deep where the comer of the stome struck the slah and the stome itself was badly broken and shattered. The slab, however, was uninjured and showed no cracks or evidence of over-strain.

In Mimeapolis, a steel water-tower failed moder wind pressure and a fifty ton tank dropped ten feet on a light roof slab of concrete reinfored after the manner of the Mushroom system in four directions. The slab was approximately 22 feet by 23 feet clear span, seven inches thick, reinforeed with $7 / 16$ inch rounds averaging eight indhes centers in two directions with diagonat belts of fourteen

716 inch rounds. The shock of the fifty tons falling ten feet dented the slab down about eight inches and produced some shear cracks but it earried the load and eaused the contents of the tank to fall outside of the building, demolishing two freight cars and the awning over the loarling phatform. The toughness of this slab saved a wreck of the side of the building and the elevator machinery.

Other interesting cases might be cited, but it is thought that these unusual examples illustrate the remarkable toughness and dependability of concrete reinforeed in multiple directions and its great adaptability from the standpoint of capacity to withstand severe usage with high degree of safety for all purposes when seiontifieally designed and properly exc⿻uted.
12. Rapidity of Erection and Ease of Securing Material. No type of building can be so rapidly or quickly designed, detailed and srected, as the natural types of reinforeed concrete construction. If we take Type IV, for instance, a single computation is suffieient for a panel and where panels are tabulated for various loads two hours' work is sufficient to make the computation for a given size of factory buiding or manufacturing plant, including an estimate of the cost of reinforcement, quantities of concrete and eentering with sufficient precision for bidting purposes.

In no type of building construction can the materials be secured so promptly as for the reinforerd eonerete structure. An ordinary four or five-story building can sometimes be erected complete in the time ordinarily required to get out the shop details for a structural steel frame. Especially where the building is irregular in form there is this advantage with reinforced concrete, that the joints are made with the eement in plastie form, that the rods ean be lapped more or less over the supports, avoiding the necessity for the large amount of figuring required for the sew conncetions of structural work, hence the engineer's end in this line of buikling construction is greatly simplified.

The accompanying figure shows the rapidity of eonstruction of the Bostwick Braun Building; its condition August 1st showing the sea wall and arljacent footings incomplete: November 11th, showing the eentering nearly completed for the roof, or cight stories in place.

This is merely a matal example in the construction of a large building. A floor per week of the concrete skeleton and rough slab can easily be erected meler favorable weather ronditions.

The is little difference hetween a large buidding and a small building in this respert, since with a larger building it is possible to rig up in


Aug, 1st, slowing suawall and Adjacent Fometings Incomplete.


Nov, 11th, Showing Centering Ne, rrly Complete for the Roof, Eight Stories in Place.
a manner that will facilitate the handling the work more rapidly. In fact where there is a large area it permits the employment of more men and makes it possible to keep them at work on the various features such as centering, pouring conerete, placing steel, in one continnous operation, centering going ahead for one floor as the steel is being placed, the concrete men in turn following up those placing the steel. When the earpenters are thru with this floor they immediately proceed to ercet the forms for the next on that portion of the floor where the concrete has been east.

Where the amount of work to be handled rums eight to ten thousand yards, it pays well to rig up with overhead bins and mixing plant and to arrange for the use of half-yard dump cars in placing the concrete. Where the yardage is much less the wheelbarrow or two-wheeled truck and seale hoist becomes an economic method of handling material. The later mixers are arranged with a charging device which saves wheeling material up an incline as was eustomarily done in earlier work.
13. Analysis of Items of Cost. In arriving at a detail estimate of cost we have the following items to consider:

## Basis of Labor

Materials and cost of handling:
Concrete,
Unit price $\left\{\begin{array}{l}\text { Cement } \\ \text { Sand } \\ \text { Stone } \\ \text { Water } \\ \text { Common labor } \\ \text { Cost of plant }\end{array}\right\}$ Quantities and base prices.
Steel $\left\{\begin{array}{l}\text { Cost of metal } \\ \text { Cost of unloading } \\ \text { Labor, cost of bending (union or common) } \\ \text { Labor, cost of placing (union or common) }\end{array}\right.$

Centering $\left\{\begin{array}{l}\text { Cost of lumber } \\ \text { Cost of framing beam boxes, columns, ete. } \\ \text { Cost of erecting and rehandling } \\ \text { Slab forms, beam forms and column forms. }\end{array}\right.$
Season of the year.
Floor finish or strip fill.
Dead expense.
Ceneral data on costs per foot of floor and items entering into it.
14. Labor, Unit Prices, Quantities of Material. Under the general heading of labor the contractor must consider, first, the wages per hour; second, the character and efficiency of the labor, whether the labor is union or non-mion, probability of strikes and delay of work into the mfavorable seasom when artificial heat must be used.

Where trade unions are strong the specialist in reinfored con(rete can never tell whenhis work will be tied up by some disagreement between master plumbers and walking delegates or other trades with which he has no relation whatever further than that a sympathetie strike may be called without notice or grievance at any time and his (1perations heroght to a stamdstill.

This comdition means idle equipment and sometimes cost of heating materials :and may mean readily an additiomal cost of five to ten per cent in the work.

In (hicago the brieklayers' mion demands that the comtractor shall keep employed an extra brick foreman who is supposed merely to watel the placing of comerete wherever there may be brick work toll the joll.

While a labor mion shombt prowe of benefit to employer and employee alike in case it, motor is efficiency and akilled service. it loses beth pablic sompathy and suphert when it cultivates ineffi(iency and loads the work up) with men whe are useldese is is the case with an extra foreman. In many cases concrete is ned for exterion walls in place of brick where, were it mot for this short-sighted poliey, brick would be need from an wemomic standperint.

For purpose of discusion and comparison we will take the following costs: (ommon lathor. S2.2.5 per day of ten hours; carpenters, s3.00 per dige of eight homers steel to be placed hy common laher at $\$ 2.25$ to $\$ 3.00$ per day.

> C'nit Price of Comereter $1: 2:+\mathrm{Mix}$

Material for one culbe sard of concrete, wet mix:

('ement	$1 \frac{1}{2}$ b)に.
Crushed stome	9 cubic yards.
sand.	45 cubie yards.

Where a crusher rum, including dust of good hard erystalline stome is used the sand may be readily reduced to one-third yard.

The above amoments required to make a cubie yard of wet mixed emorete in place may vary somewhat on the character of the crushed stone or gravel. hut for stimating purposes they are conservative.

$$
1: 1 \frac{1}{2}: 3 \mathrm{Mix}
$$

Thaterial for onc cabie yard of concrete, wet mix:
Cement
2 bbls.
sand 43 cubic yards.
stome S.5 cubic yards.

$$
1: 3: 5 \text { Mix }
$$

Material for one colbic yard of concrete, wet mix:

Cement.......
sand ... ... .... ... 52 cubie yards.
Stone. . . . . . . . ......... $\quad .5$ cubie yards.

## Labor of Handling

(iiven an ordinary equipment such as a half-yard smith, Cube or Ransome machine the labor cost of handling concrete may br stated as follors:

Wheelbarrow gang, from \$1.2.5 to \$1.50 per cubic yard, including cost of coal or gasoline for the engine. In walls, footings or where there is quite a mass this may be reduced to $\$ 1.00$ per eubic yard.

On a large joh where onc-half yard cars are used and orroread bins for handling the aggregate by gravity, the lathor cost may be reduced to 35 er to 40 per cubic yard. To this must be atded, however, the cost of fitting up the plant which will increase this figure to sixty or even seventy cents per cubic yard.

The labor costs will increase or decrease as the price of common labor is above or helow twenty-two and one-half cents per hour, figured upon.

Cost of cennent varies with the market and distance of the work from the nearest mill from eighty rents or a dollar per barrel to two or three dotlars.

Cost of ernshed stome varies with the locality and distance of the work from railroad or crushing plant.

In Mimeapolis and St. Panl, from \$1.25 to \$1.75 on the work. Milwanker, S1.2. to \$1.59. Wished gravel, Ohio river points, $\$ 1.00$ to $\$ 1.25$.

Cost of carting amd hanling most he investigated in each individual case. In many of the smaller towns good concrete gravel (am he sermed as low as thirty to fifty cents per cubse yard and in
order to give a clear idea as to the general questions of cost these variables must be carefully considered and investigated by the bidder if figuring reasonably close.

In securing this essential information the conservative business man will secure quotations in writing, especially when not personally acquainted with the reliability of the parties quoting; then if the work is secured he maty at his option hold the bidder to his price or seek redress by suit.

In giving the foregoing average values it should be noted that the cost of placing varies eight to ten per cent with the character of the reinforement. Where there are numerous bean boxes and stirrups and increased work of puddling the conerete, the cost may readily rum five or six per cent above the average while where there is a plain flat slat such as the mushrom system the cost will readily run five or six per cent lower than the average given.
15. Cost of Steel. Medium steel, Open Heath or Bessemer, Manufacturers' standard seerification is at present writing at $\$ 1.20$ base. Pittshurg.

The hase price is given in all the engineering and iron trade papers. All bars from $\frac{3}{4}$ " romods to three inches are base. Smaller bars are sold at hase plus card extrats.

The following is the standard sted classification:

$3 / 4^{\prime \prime}$ to $3^{\prime \prime}$. . . . . Base	Extra	Rounds or square
$5 / 8^{\prime \prime}$ to $11166^{\prime \prime}$	05	
	10	
$7 / 16^{\prime \prime}$.	20	
$3 / 8{ }^{\prime \prime}$	25	
.) $166^{\prime \prime}$	30	
1/4" to 9 / $32^{\prime \prime}$	35	
1 to $6^{\prime \prime} \mathrm{x} 3 / 8$ to $1^{\prime \prime}$		Flats and heavy
1 to $\mathrm{i}^{\prime \prime} \times 1 / 4$ to 5 / $16^{\prime \prime}$	20	bands.

The above are full extras and such sizes as we can ordinarily use to advantage in conerete steel construction.

In figuring, take base price plus extras plus freight to destination. Freight rates to all peints in the United States and the Dominion of Camada are given in compact form in a book published be the American Steel it Wire Company.

Cost of deformed bars rolled to standard specification at the
present writing, onc dollar per ton above plain bars. Special reinforcement sold with design from eight to twelve dollars per ton additional.
16. Cost of Bending. Medium steel with proper equipment rods for the mushroom system can be bent cold for fifty to sixty cents per ton; where high carbon steel is used and rods are heated, one and a half to two dollars per ton for bending.

Beam rods, such as are used in Turner beam system, can be bent for from two to two and a half dollars per ton; where more complicated bends are employed, from two and a half to three and a half per ton.

Cost of placing steel, including handling and bending, in Mushroom flat slab work has run from sis to ten dollars per ton. With a beam system in beams spaced four to six feet centers a cost of ten to twelve dollars wonk be a fair basis upon which to figure.
17. Cost of Hooping for Columns. Spirals made at the shop (an, at the present time, be furnished at a less cost than they can be fabricated in the field, except in parts of Canada where this statement may not be true. Shop work is better done than field work and should be preferred other things being equal.
18. Cost of Centering. No item in concrete construction is so generally underestimated as the cost of false work for reinforced roncrete. In fact, so generally is this the case that the contractor inexporienced in this kind of work is more than likely to underbid those possessing both equipment and experience by reason of underestimating this item of cost.

Cost of the centering per foot of floor, including columns and beams, will vary anywhere from six to more than twenty cents per square foot, depending on the following items:

1. The number of beam boxes, whether they frame into each other or into colmm boxes only.
2. The number of columns for a given floor area.
3. The number of stories or floors that are alike.
4. The rapidity with which it is desired to push the work and whether the weather conditions are favorable for the prompt remoral of the forms.

Where the buidding has a full concrete skeleton, contering eosts generally are a third more than where bearing walls are used. Evidently the greater the momber of stories the more times the lumber
may be moved up and used over. Where the work is to be rushed rapidy in cold weather a larger amomet of lumber is required.

The practical constructor is inclined to check his estimate of cost on the hasis of so much per foot of floor for centering for reinforcement and concrete, and estimating in this rough way will generally detect any error of more than four or five per cent in an daborate detailed estimate.

Attention may be called to the following elements necessary in any estimate:

1. Lumber required, mals and fastenings.
2. Carpenter labor of framing beam boxes, columm boxes, etre, per thonsand feet.
3. Labor of setting plain slab forms.
4. Labor of taking flown forms and moving up to upper story per thousand feet B. M.
5. Waste of lumber and value of ohl centering.

Under 1 , the amomit of hamber reguired, it should be observed that the emomen will vary with the type of design. In such a type as the Mushroom system, Type IN, Fig. H. there must be for the shathing approximately one foot B. M. for each flat foot of floor area. For the joist, ${ }_{4}^{3}$ of a foot B. M. per flat foot of floor area. For ledgers, ome-third of a foot, B. M. for each flat foot of floor. For uprights, ${ }_{5}^{5}$ of a foot B. M. for each flat foot of floor. For colthmms, spacing $18^{\prime}$ centers, from one-third to one-half foot B. M. for weh that foot of floor. Total, about three and one-quater or three and one-half feet B. M. per foot of foom.

If the work is to be pushed rapidly it is necessary to figure, under favorable conditions for centering, not less than two complete floors of centering plus waste. If the weather conditions are unfavorable there should be enough lumber for centering for three to four floors. ( $)_{1}$ a building having eight stories we would ordinarily figure enough contering for threr floors, plus waste. With the flat slab system there is no waste with the joists as they are simply lapped by and the waste in the boards would amount to about two per cent each time they are used. There will be some waste in the uprights if the stories are of different heights, which must be figured in each individuad case.

Where a beam system is used the waste will be much greater as the loss from loreakage and cutting the lumber to the size of the panels will generally rmu the waste up to ten to twenty per rent of the
lumber in each floor，and sometimes much more thatn this．Also the surface contact is increased by the area of the sides of all beams requiring additional hmber．

Cost of Froming．Labor for framing beam boxes．column boxes，etc．．will generally rm about twelve dollars per thousand feet B．M．Labor of placing plain slab forms，carpenter＇s wages， being figured at $37 \frac{1}{2}$ c per hour．will rmo about five to six dollars per thousand feet．The cost of taking down the forms and moving them up shonld rum about three dollars per one thousand feet B．M．， for the flat shab type and five to seren dollars per thousand where there are a large number of heam boxes，ete．Nails and fastenings are generally a small item．

Where sheet metal is used for the sheathing the rost per foot of laying it and greasing it with paraffine is about one－third the cost of placing hoards．altho the first eost of the metal is considerably higher．

Mr．L．（＇．Wisom．president of the Alberthaw Comstruction Company．of Bostom，at the fifth ammal convention of the National Association of C＇enent Csers at（＇leveland，ohio，presented a paper on rosts from whith the following table is condensed．giving the cost of handling and some very interosting rosts of rentoring．It wonld be well for the reader to look up this paper which is reprinted in part in the Engineering News．banuary 14．1909，and a momber of the other engineering papers．

The following table，combensed by the Enginering Nows，from the original paper，is given as a fair indication of the variation in cost of different designs and different conditions．The author states that only typical rases are given where the itmos of cost were aceurately known．Enough are given for a fair average exept in the case of long span flat slab which appears to him by comparison a recent type of constrmetion．

By reference to the general arerage on form work in the areom－ panying tables the cost of forms per square foot of surface contact． naturely：Colmmens，so． 3 ；floors with reinforeed eoncrete beams． $\$ 0.116$ ：flat floors without beams，s0．111；short span shabs between sted beam incluting the fireproofing on the side of the beams． $\$ 0.05$ ；wall－exposed to viow above ground，s0．093；the writer be－ lieves are all higher in priee than matly believed to be a fair cost by most builders．It is upon the suefers of hamblling forms that good results financially depend．ha regard to concrote bathor i－

TABLE 1．SHOWING COST OF FORMS AND CONCRETE ON VARIOLSA MFMBERS IN REINFORCED－CONCRETE STRUCTURES

PLAIN CONCLETE COLUMN゙S゙

Location	Forms per sq．ft．				Concrete per cu．ft．													
	Carpen－ ter Labor	$\begin{array}{r} \text { Nails } \\ \text { Lum- and } \end{array}$		Total	$\begin{aligned} & \text { Con- Gen- } \\ & \text { crete eral } \end{aligned}$		Cr－	Aggre	Tean									
				and			1 Plant		To－									
Coat pocket，Lawrence，Miss．	． 1057	123	0() 1	$0 \times 2$	166	． 003	073	． $0+1$	．00s	． 016	307							
Mill，Southbridge．Mass．	097	$0 \times 2$	002	1.1	073	0）．56	$1)^{7}$	0.35	027	0330	328							
Mill，Atthboro，Mases．	093	022	（1）1	116	110	$1) 14$	$(1) 2$	038	01：3	0334	271							
Mill，Southbridger，Mat	0．50	$0.26 ;$	001	137	103	1） 4.5	100	0.37	013	031	340							
Coal procket，lWartford C＇t	$09 \%$	047	002	147	（1） 9	1） 4.3	1069	0.5 .5	017	． 013	286							
Garage，Brookline，Mass．	071	0.51	（0）2	124	10	02 n	072	（1）\％	041	020	289							
Warchouse．Portland，． 1 e	11s	016	001	133	0．3i	027	0 NT	110	039	02.5	335							
Textile mill，Lawrence，Miss	041	013	0101	07.5	（09．）	019	199	127	015	01.5	28.3							
Highest ．．．．．．	13.3	（1）2	0 02	1 l 1	16 i	（）as）	109	（1） 1	041	034	340							
Lowest．	0.78	013	（1）1 1	17.5	（1）i－7	003	082	127	009	013	271							
Avorage of 9	（12） 2	036	（1）1	130	（096	$1)^{2} 7$	10.3	1119	021	023	301							
Highrest	165	10.3	（1） 1	275	1s6	03.5	1！－－	101	0.52	（0） 3	170							
Lowest．	0.37	02 C	0191	018	017	（0）4	${ }^{0} 71$	（1：37	007	010	202							
Average of is	\％70	（）4．5	$00_{2}$	11 ；	111	（120）	106	（10：3	025	1124	354							
Highest	07.5	0.393	（0）：3	115	116	017	109	024	026	1）39	374							
Lowest	$0{ }^{10}$	037	（1）1	106	013	$(101$	$0 \backslash \stackrel{\rightharpoonup}{1}$	1153	012	010	252							
Average of 3.	071	035	（1）02	111.	097	00！）	（0）${ }^{\text {i }}$	070	019	（1）24	315							
REIN゙け）RCEサ－（\％NCRETE ALABA BETWEEN゙ SEEL BEAMS																		
Highest	110	071	（0）：3	1心f	144	015	20－	（150）	061	（1）46	128							
Lowest	023	012	（1）1	（） $4!1$	15.3	（10．）	10.6	026	001	010	272							
Avoritge of 1：3	（6） 1	． 032	002	095	112	（1）19	129	O65	n24	${ }^{017}$	350							
Highros	136	073	00.3	176	$1+6$	11.52	10.5	187	077	0.5 .5	146							
Lowest	（1）ti）	（116	001	079	112	004	0，31	（） 43	007	（10） 5	174							
Avortge of 17	（12）	$11: 36$	（1）12	12 N	090	1114	1173	（1）6	12.2	019	361							
FサCND．ATION W゙ALLS																		
Highest	134	O15	001	193	213	$0: 37$	20， 3	116	0.75	（1）40，	519							
Lowest．	032	（0）4	001	（1）．${ }^{\text {a }}$	1140	$0{ }_{0}$	0.35	$02^{2}$	003	010	14.							
Averenge of 14	（103	033	． 1012	103	076	01.5	（0）0	（）62	019	${ }^{1} 17$	269							
11ighu－	119	075	0013：	198	0 S 1	120		099	． 013	0） 49	275							
Lowest．	016	OMG	001	O15	125	（0）1	（） 27	043	． 003	010	181							
Averitge of 10.	0．\％	0311	002	1193	015	（1）7	071	17.7	0107	021	229							

the variable item which mast be earefully considered．Any person of intelligence cam make a careful estimate of the materials to be used，hut note the average prices of labor per enbic fout of concrete， namely：For columms，$\$ 0.123$ ；beam floors，s0．131；flat floors， $\$ 0.106$ ；floors between steel beams， 80.121 ；walls，$\$ 0.106$ ；foundations， \＄0．091；and mass work in comection with buildings，s0．052．Not until the last item is a price reached which aceording to observa－ tion amb experienee must be experted to ohtain in ordinary buikding work．Many who have had wide experience in handling large quantities of concrete in mass have oceasionally attempted a lighter type of ronstruction and have been greatly surprised at the large expernse comected therewith．Men with this experience have frequently added fifty to one hundred per cent to the cost of mass work and only by doing so have they folt that they were sufficiently coverel for light structural work．

Table II is an exact copy of a "master carl" which gives the complete financial history of the job, when it is finally completed. The first column, which is blank, is occasionally used for an estimate of the first cost, the proposal including the profit as well as the estimated actual cost. It will be seen that on some items, a loss was incurred, as well as a profit on others, showing that it is difficult to reach the right price on everything, even on work on which a company is fairly experienced, and also that when slight changes are made by the owner or architect they often entail heavy loss even though the changes appear to be extremely trivial. Take the case of the extemal walls. The owners furnished the window frames and sash, which were all of metal. The original design was for a frame with two sash, which coulfl easily be put into a six-inch wall.


They later decided, for greater fire protection, to use four sash. This required an eight-inch wall instead of a six ineh, and the form work on the inside had to be built inward and then the space umber the windows paneled to save material. To save making a very narrow panel at the side of the window, which would eost more than the eoncrete sased, the space was filled up solid so that the colmmes appear to be wider than they were actually figured. This slight
(lange. which did not appear great at the time, when the job wat entirely complete showed that the concrete of the walls showed an actual loss instead of profit because the form work cost more than twice what was originally estimated that it should cost.
19. Season of Year. The season of the year has to be considered in its relation to the cost of reinforced concrete work. In the summer season when the eoncrete dries out rapidly the forms may be removed every ten to twelve days, while in the fall and early spring during frosty weather the water must be heated or the forms left in place longer, reguiring more lumber for centering. In the winter when the materials must be heated by artificial heat and artificial heat used in sweating out the concrete, the cost of work will be increased from ten to twelve per cent. Additional cost of merely heating the water is of course small. In the chilly weather of fall or spring good results mas be frequently obtained merely bey tuming the exhanst stean into the water barrel and warming the water up so that the eomerote will set quickly motwithstanding the chilly temperature.
20. Dead Charges. No contracting firm can do business without a considerable general expense. Which must be distributed over all work executed by them. This expense includes office expense, alvertising, soliciting work, estimates on not only the work taken but the work which the concern fails to secure, depreciation of the plant, freight, storage and equipment, the cost of keeping the organization together in sack periods. This expense may readily vary with various concerns from five to seven per eent of the cost of the work executed. In addition to this dead expense and the actual cost of labor there must be included the item for liability imsurance Which the contractor camot afford to neglect to earry. Frequently the owner requires a surety bond for the faithful execution of the work and the payment of bills, the cost of which must be added to the incidental charges in the estimate of cost.
21. General Data on Cost. The architect is in the habit of figuring the building as so much per coble foot. For heavy warehouses with the plainest kind of finish and large size the cost per (ubic foot may rom as low as six and one-half to seven cents up to ten and twelve rents for the smaller size of buildings with office fixtures, phombing and the like. No approximate cost per cubie foot of any value wan be given for office buildings, hotels and the like, since this iten would vary greatly with the character and difference in the quality of the finish, fittings and the like.

For the concrete end of the building, however, a rough approximate estimate can be made very readily by figuring a unit prier per square foot of floor area. In a large building of six or seven stories having a floor area of twenty to thirty thousand feret, panels approximately righteen feet square, labor as outlined, sand at $\$ 1.00$ per yard, cement, $\$ 1.20$, crushed stone, $\$ 1.40$, capacity of floorthree hundred pounds per foot: rough slabs. columms and footingmay be erected at an approximate cost of the contractor of about forty cents per square foot of fleor area. Where the buideng is narrow and there are more columm in proportion to the floor area, on the same hasis fifty cents per square foot would be a reasonable price.

Reduction in the How load carried makes a relatively small reduction in the cost of the construetion, since the centering would be the same for the light and the heary building.

Where the load is increased fifty per cent above these requirements the additional cost would be increased orer eight per cent. While doubling the load would mot increase the eost ower about ten or eleven per cent.

This is the semeral type of information the shewd eontractor carefully figures ont for himself and which enables him quickly and accurately to check up estimates made by his assistants or even to take work on an approximate estimate of this kind without going inte details. Turner, when presed for time once took a s60,000 contract on a twenty-minute estimate based on at eomputation only of the floor area and a knowledge of the conditions covering labor and cost of materials.

Where there are platin reinfored floors resting on walls and the panels are of large size such as in comet house work and many other public buildinge and where gravel (an be cheaply obtamed the cost per foot of floor may rm as low as 30 cents per squate foot. In other localitise forty rents per foot moler lese farmable comditionwould be a reasomable figure.

## ('HAPTER XI

1. Fireproof Properties of Concrete and the Protection of Steel from Heat. The value of concrete as a fireproof material has been pretty well demonstrated in a large mumber of severe conflagrations and also in many fire tests by the buiding departments of various cities. In fact, it may be stated that concrete ranks as the best fireproof buidding material and it is to this quality together with its low eost that the enomons inerease in its use is due.

Intense heat injures the surface of the concrete, but it is so good a non-conductor that if sufficiently thick it provides ample protection for the steel reinforement and the interior of the mass is maffecterl evern in monsally severe fires.

For efficient fire protection in stabs under ordinary conditions with one-way reinforement the lower surface of the steel rods should be $\frac{3}{4}^{\prime \prime}$ above the bottom of the stab. With two-way reinforement this may be redured to $\frac{1}{2}^{\prime \prime}$, for in base one layer of rods should berome overheated the upper layer is still amply protected.

Structural beams, girders and columms should have at least $2 \frac{1}{2}^{\prime \prime}$ of good conerete for efficient protection. In beams having large rods the thickness of the concrete coating outside of the rods should never be less than $1_{4}^{1 \prime \prime}$ nor less than the diameter of the largest rod used in the beam. In columns the shell outside the reinforcement should be considered as fire protection and no dependence placed upon it in figming the strength of the section, in carrying the working loarl.

These limitations are sufficient for ordinary purposes. Where, for example, a factory building is to be erected in which there will be scarcely any inflammable materials to be stored, it is a waste of money to provide a thick concrete protection to resist possible fire. On the other hand, where the building is to be used for storage of material capable of creating not only a hot fire but an intense heat of long duration, special provision may be made by using an excessive thickness of concrete for fire protection tho in such a situation a sprinkler system would be preferable.

A most severe practical test occurred in a fire at the Pacific Coast Borax Refinery at Boyame, N. J. This building was a fourstory factory built entirely of reinforced concrete except the roof. The contents of the building, the roof and interior wood trim were destroyed, but the walls and floors remained intact except where an eightcen ton tank fell thru the roof and cracked some of the floor beams. The heat was so intense that brass and iron castings were melted to junk. A small annex built of structural steel frame was completely wrecked and the metal bent and twisted into a tangled mass.

In general. the fire resistance of Portland cement concrete is governed or affected by the character of the aggregate and the amount of rement in the mortar.

First, we may state it as a gemeral rule that the richer the mortar or the greater the amount of cement used the greater the fire resisting propertics of the concrete. Rich mortar makes a stronger concrete better able to resist severe temperature stresses while the high proportion of cement when dehydrated on the exposed surface makes a very perfect non-conducting material, preventing the uninjured parts from further or rapidly progressive injury.

Second, as regards the aggregate, the smaller the stone the better the fire resisting qualities.

Trap rock will make a concrote offering greater resistance to extreme heat than limestone or granite.

In a series of experiments to determine the effect of vory high temperatures on concrete, with the acetylene oxygen blow-pipe, interesting results were secured. The heat of this flame is approximately $6500^{\circ}$ Fahr. Applied to concrete paving block 2 inches thick and five years old, made of sand and gravel, the heat under the flame was sufficient to melt the siliea sand and form a little puddle of glass. Pebbles of feldspar or granite under this intense heat popped. but the little puddle of glass once formed tid not seem to increase under the continued application of the flame and hardened up as soon as the flame was removed.

This series of experiments was continued by using a concrete of silica sand mised with a higher pereentage of brine and it was found with such concrete possible to glaze the surface in this mamner, while the concrete back of the glazing did not seem to be materially injured in point of strength. Whether a concrete block of selected materiak can be glazed in this manner uniformly is, of course, open
to question, but any effort to cut concrete by intens heat as steel is cut, was proved by this work to be impracticable.
2. Fire Tests. Building elepartments sometimes require fire tests of the finished construction. A test required in the Railway Exchange Building, Denver, ('olo., is of interest from the fact that two tests were made, one on thoroly cured conerete and the other on eomerete mot well cored nor dried out. The first test was a fire (onsisting of a cord of pine wool eplit in faggots about two inches square and soaked with oil, applied to the under side of the first floor slath. The fire gave a very intense heat and as it dried down a fire hose was tmoned on the white hot surface. The damage to the slab eronsisted in the eballing of an area alout two foet in diameter to a rkpth of about one and ome-half inches. spalling was aceompamied by reports dexeribed as being as sharp ats pistol shots. The caluse of this spalling was at firs somewhat puzaling. An examination of the aggregate showed it to be at eood hard sambtome which had been at some period metamorphosed hy heat. There were, however, mumerous porons veins rmming thris thestone athel it seems that these veins hating absorbed considerable water in mixing the soncrete which had not beent dried out in the curing, offered an apportmity for the generation of steam in the small eavities under the heat of the fire resulting in the bursting of the stone with a shap report. The fractures noted wew dean dat. as would be expereted from such at rallase.

Allowing the sab to thoroly der ont for an additional period of five weeks, a seoond test was made, smilar to the first, with absohutely no spalling and no apparent injury to the slab). ('ut showing this test is shown in Fig. 93.
3. The Theory of Fire Protection. The theory of fire proteretion is given hy Mr. Newherry an follows:
"Two principal sourees from wheh rement amerete derives its capacity to resist fire and prewent transeremee of the heat to the steed are its combined water and porosity. Portland erment takes 1p) in harelening a variable amenut of water, depending on surrounding comblions. In a dense briguette of neat cement the combined Water may read twelve per eent. A mixture of eement with thres parts salld will take up water to the amomet of about dighteen per rent of the cement contamed. This water is chemically rombined, amd mot given off at the boiling point. (on heating, a part of the water goes off at about five homdred degrees Fahre, but the dehydration is not complete matil nime hmetred degree Fahre, is reached.


Fisher Bros., Architects, Denver, Colo. Martin Carroll, Contractor, Kansas City, Mo.

Fig. 93.
This raporization of water absorbs heat and keeps the mass for a long time at a comparatively low temperature. A steel beam or column embedded in concrete is thus cooled by the volatilization of water in the surrounding cement. The principle is the same as in the use of crystallized alum in the casings of fireproof safes; natural hydraulic cement is largely used in safes for the same purpose.

The porosity of concrete also offers great resistance to the passage of heat. Air is a poor conductor, and it is well known that an air space is a most efficient protection against conduction. Porous substances, such as asbestos, mincral wool, etc., are always used as heat insulating material. For the same reason cinder concrete, being highly porous, is a much better non-conductor than a dense concrete made of sand and gravel or stone, and has the added advantage of lightness. In a fire the outside of the concrete may reach a high temperature but the heat only slowly and imperfectly pen"trates the mass, and reaches the steel so gradually that it is carried off by the metal as fast as it is supplied."

In regard to cinder concrete it may he added, first, that it is not a desirable material to use from the standpoint of strength. Second, that as usuatly employed, insufficient cement is used to make a good fire resisting material. Thus Prof. Norton eompares the action of stome and cinder concrete in the Baltimore fire as follows:
"Little difference in the action of the fire on stome and cinder concrete eould be noted and as I have earlier pointed out the burning of hits of eoal in poor sinder concrete is eventy balancerl by the splitting of stome in the stone concrete. I have never been able to see that in the long rum either stood fire better or worse than the other. Howerer, owing to its demsity. the stome emerete takes fonger to heat through."

Pertaps if the relative preportion of eement were the same in a ach, the cimber conderete, if the einders are real clinker, would prove the bether fire resisting material as Mr. Newherry assumes. This perint camont be too much emphasized.

A concerete must be rich in cement to makr a first elass fireproof material and for this reasou alone a leamer mixture than 1:2:4 shoud not be allowed in an impertant building.

Thus far our attention has been primarily directed to the fireproof qualities of comerete as sum. In comsidering the fire resisting properties of the emmosite material known as concrete steet or reinfored concrete, the effect of the medual heating of different parts of the comstruction must be comsidered. It has been previously noted that the coefficient of expamsion of steed and conerete are practically identical. Their coefficients of heat capacity and conductivity, however, differ widely and for this reason the distribution of the metal in the form of small bars rather than in large units will give a more satisfactory result from the fireproof standpoint .
4. Terra Cotta and Tile Compared with Concrete. The difficulty with the combination of tile or terra cotta and structural steel as a fire resting material lies largely in the fact that the roeffiejent of expansion of the two materials is different.

This is well illustrated in Fig. ! 4 showing the effect of heat in hreaking and cracking tile between sted beams after exposure to a severe fire.

Professor Norton, in his report on the Baltimore fire to the hisurance Engincering Experiment Station, states:
"Where concrete floor arehes and concrete steel eomstruction reseived the full fore of the fire it appears to have stood well, distinetly better than the terra colta. The reasems I believe are


Fig at Effect of Fire on Tile Constmetion
there: first, beramse the comerete athe steel expanded at semsibly the same rate, and hence when beated do not subject one another to stress, but terra cotta bsially expands about twior as fast with increase in temperature as steel, and hence the partition and floor arches soon beeone tow large to be eontained by the sted members which under ordinary temperature properly enclose them. Under this condition the partition must buekle and the segmental arehes must lift and break the bonds, (rushing at the same time the lower surface member of the tiles.
"When brick or terrat cotta are beated no chemical atetion onceurs, hut when concrete is carried up to about 1,000 degrees Fahre, its surface becomes deeomposed, dehydration occurs, and water is driven off. This process takes a relatively large amomint of heat. It would take about as much heat to drive the water out of this outer quarter inch of the concrete partition as it would to ratise that fuarter inch to 1,000 degrees Fahr. Now, a seeond action begins. After dehydration the comerete i s much improved as a non-eonduetor and yet thru this laver of nom-eondurting material must pass all the heat to dehydrate and raise the temperature of the layers below. a process which camot proceed with great speed."

In the composite material of concrete and steel in the form of a continuous concrete monolith there are severe temperature stresses set up by the mequal heating of different parts of a floor during a fire and the mamer in which the material will withstand these stresses will depend in a large measure on how thoroly the steel is disseminated thru the eonerete to enable it to take up the tensile stresses induced by this unequal expansion in the various parts caused by the unequal heating, hence that type of construction which is reinforeed practically in all directions is best calculated to withstand the severe stresies so produced. Further, since the concrete is injured or disintegrated on its surface the smaller the surface exposed the less will be the damage, and the fewer irregularities in the form of the construction, the less it will be imjured.

Looking at the question from this standpoint then, the flat slab type of construction would rank first from the fireproof standpoint and Type III second. In other words, the natural conerete types which are in no wise imitations of older types of construction are far better adapted to resist the severe conditions of a conflagration than those types which are merely imitations of older forms of ronstruction.

In reporting to the Chief of Engineers, U. S. A., regarding one of the reinforced concrete bildings which passed through the Baltimone fire, Capt. sewell writes:*
"It was surrounded by non-fireproof buildings, and was subjected to an extremely severe test, probably involving as high temperature ats any that existed anywhere. The concrete was made with broken granite as an aggregate. The arches of the roof and the eciling of the upper story were cracked along the crown, but in my judgmont very slight repairs would have restored any strength lost here. ('utting out a small section-say an inch wide-and caulking it lull of good strong cement mortar would have sufficed. The exposed corners of columms and girders were cracked and spalled, showing a tendency to round off to a curve of about three inches radius. In the upper stories, where the heat was intense, the concrete was raleined to a depth of from $\frac{1}{4}$ to $\frac{3}{4}$ inch, but it showed no tendency to spall, except at exposed comers. On wide, flat surfaces, the ealcined material was not more than $\frac{1}{4}$ inch thick, and showed no disposition to come off. In the lower stories, the concrete was absolutely mimpaired, tho the contents of the building were all

[^19]burned out. In my judgment, the entire concrete structure could have been repaired for not over twenty to twenty-five per cent of its original cost. On Mareh 10th, I witncssed a loarling test of this structure. One bay of the second floor, with a bean in the center, was loaded with hearly three hundred pounds per square foot superimposed, without a sign of distress, and with a deflection not exceeding $\frac{1}{4}$ inch. The floor was designed for a total working load of 150 pounds per square foot. The seetions next to the front and rear walls were cantilevers, and one of these was loaded with 150 pounds per square foot, superimposed, without any sign of distress, or undue deflection."

In concluding the subject of the fireproof qualitien of concrete it may be well to call attention to the stock argument of the burned clay advocate.

A small specimen of burned chay or terra cotta if subjected to a temperature of 2,000 degrees and then immersed in water will remain undamaged.

A small sample of concrete subjected to similar treatment will be totally disintegrated. Hence the burned elay advocate argues that conerete is not a suitable fireproof material.

The fallacy in this plansible argument as has been pointed out in an excellent editorial in the Engineering News lies in the fart that the conditions in a building during a fire and in the furnace are radically different.

In a fire in a building the concrete is not exposed to heat on all sides, nor is it exposed continuously for any long time to very high temperatures. The greatest heat is generally near the reiling when the surface, as noted in C'apt. Sewall's report, may be dehydrated slightly and protert the material back of the injured portion. The net result is that less damage results than to the terra cotta or hollow tile, since the latter does not expand in unison with the supporting steel frame, and is arushed and broken hy the severe temperature stress resulting from this cause.

Combination structures of bollow tile and concrete are open to the same eriticism from the fireproof standpoint, namely, the combination of two elements in a composite structure having radically different coeffirients of expansion. Evidently the expectation that the combination will, under severe conditions, prove satisfactors ramot be realized.
5. Rates of Insurance on Concrete Buildings and Contents. Boards of fire underwiters representing the older line companies.
have been somewhat sow in recognizing concrete as a fireproof material and it serms to the concrete eonstructor frequently that they do not recognize the great differenees that exist in this material as dependent on the character of the mixture and disermination of the metal reinforeement.

The position that some of these boards have taken in rating the mill buikding with a sprinkler syem lower than a conerete building without a sprinkler is a position hard to explain except that possibly members of these boarde are financially interested in -prinkler syotem erpipments.
(on the other hand. the muthal companies appear to have been more progressive and are writing policies at rates that appeal to the eonstruetor as lar more eonsistent and rational.
('omparing the bowest rate which has come to the writer's attention for a timber building, mill construction, used for mereantile purposes, equiperd with prinkler system. X. I). T. watehman serviee, ete., with the lowest rate which has come meler his notice for a reinfored concere building similarly equipped with a sprinkler semem, the rate for the concrete building was less than one-half that for the timber building. being a six-cent rate for the eonerete strueture against atwore and one-halferent rate for the timber building. The alvantages from the liveprool stampoint may be stated as follows:
(1) I well dowiged reinfored aborede buiding offers secority agamst disast rous fire and total lose of structure.
(2) It reduces the danger of damage to the contents by prerenting the spread of fire from floor to foor.
(3) It prevents damage to the eontrints by water from story to -10ry.
(4) It renders - frinklers umecessary in buidelings whose eontents are not espectally inflammable.
(5) It reduces the danger of panic and lose of life incident thereto among amployes or orempants of the buikling.

Evidently in order to prevent the spreat of fire from floor to floor, the floors should be continuous, or have openings propery protected ly antomatie shuttere or doors. Thus, if we are to protect the goods or contents on the floors abowe from fire below, it is beressary to have the elevator shafte protected by antomatic fire foors and stairway cut off in a similar mamer. This cam be dome at a comparatively small expense.

Protection from exterior exposure may be readily made by the employment of wire glass，motal frames and the like，in place of wood frames and ortinary glass windows．

A good ronerete floor is pratically waterprool ambla slight piteh with suitable semppers would practically eliminate water loss in floors below from flooding a floor in which fire has broken out in the contents or gools stored thereon．

In the ordinary factory or mereantile building with word Hoors， loss from water is frequently greater than the lose ber artal fire where an incipient blaze has hern extinguished．

In the eonerete building，on the other hand，tath floor beeomes ahmost a waterproof rool．Frequently a temant moses into the lower stories of a eoncrete luilding before the upper portion is complete， the foors above ateting as a roof．

According to Mr．Kimhardt，viee－president of the Bostom Mamufactarers Xatual Fire Insurance（＇ompany，these mutual companies take a business－like stand regarding the extent of fire protection reguired in eateh individual ease．While the valne of the automatice spinkler is recognized and the general mile specifies its installation the Factory Matazal（ompanies do not refuire it in the concrete building exerpt where there is sufficiont inflammable material in the contents to fumish fuel for a fire．

An esential feature in good factory comstruction inclades not only eomsifleration of the bulding but protertion aderguate to its needs only．The extent to which the above is fathfully carried out will eventatly be the determining feature in the cost of insurance．

Dre．Kimhardt gives the following table：

（ieneral storehons	20 ：	$1 . \%$	bioc	11）\％	10 mc	12\％	2．） 0
Wool Storehonsi	20.	3.0	$40 \cdot$	106	7in	10010	250
Office Builsling	150	；） 0	3.9	\％）	100 c．	$10 \%$	250
Cotton Fastory	$40 \times$	$100 \times$	1000	2006	$20 \%$	30010	50，
Tannery	20.	$10{ }^{\circ}$	7.50	1000	100）	10010	－5\％
Shoe Factory	$2 . \%$	SOC．	75e	1000	$1: 5 \%$	$\because 0010$	50 ${ }^{\circ}$
Wollen Mill	：30．	＞o．	75	1000	160	－ $200 \%$	50.
Machine ，thop	$1 . \%$	$\cdots$	50 c	500	1100	100\％	25
	$3 \%$	7.0	\％）	1000	1000	1．80．	2.0

These costs are based on the absence of automatic sprinklers and other private fire protective appliances of the usual completely equipped buidding. Thes are not schedule rates, but may be an approximation to actual costs maler favorable conditions based on examples in various parts of the country.

As illustrating the value of fire protection, Mr. Kumbardt states, that in the Boston Mambacturers' Mutual ('ompanies, the average cost of insurance on the better class of protected factories has now for some rears averaged, axeluding interest, lase than seven cents on cach humdred dollars of risk taken, amd on first clase warehouses comected with them, ono-half of this amomot. These figures can be compared with the table as ilhstrating the gain by the installation of proper sateguards for preventing and extinguishing fire.

In these same protereded fateories and warehouses the actual fire athe mater loss is less than four eronts on each sloo of insurance athe he regards it pesible to reduee this lose materially practically atong the lines above omtlined.

Where sprinkler sustems are installed in comerete buildings, and in partioular where these buithing are of the flat slab type Which does mot interfere with the most perfeet operation of the sprinkler, rates quoted as low an 10 or $1 \times$ e ents for the building and 15 eents for the contents are not mommon at the present time ( 1914 ), providing that so pereent of the imsurable value of the buikding and eontents is covered and further that the policy is written for the term of five vears.

## ('HAPTER XII

1. Protection of Steel and Iron from Corrosion by Portland Cement. Deterioration of steel by corrosion or rusting is one of the difficult problems in nearly all structures intended to be permanent.

Paint of linseed oil combined with some pigment is ordinarily used for the protection of structural steel and its efficiency depends on the complete removal of rust before painting. Further, this coat of paint must be renewed at frequent intervals.

Fortunately in conerete steel construction we have in the cement itself the most perfect protective coating known for iron and steel. If bars that are somewhat rusty be placed in wet eonerete and removed after one week they will be found to be perfectly elean, the rust having been chemically destroyed by the cement.

The bond between coment and steel is formed botter with bars that are somewhat rusty when placed in the conerete than with bars new from the mill. The reason seems to be that a small amount of rusting removes the black mill seale and allows the cement to come in contact with the solid bar. Paint, oil or grease tend to weaken the bond of the concrete.

Bars, removed from cement after over twenty yours' exposure of the specimens to the elements, have been fomd bright and as good as when first placed in the work.

This protection however is dependent antirely on the thero ewering of the steel hy the wat concrete and hence the inportane of using a plastic mixture, or one that will flow slowly and thoroly surround the steel, and require only pudding rather than tamping to secure substantial work.

It may be noted incidentally also that exactly the same kime of misture is essential if we are to secure smonth work, neat in appearance, that is, work without ragged patehes, and showing no rough stone that expose voids not filled with mortar.
A. B. Newherry states the chemieal theory of proteretion of iron emberlded in comerete as follows:
"fhe rusting of iron comsists of oxidation of the metal to the condition of hydrated oxide. It does not take place at ordinary temperatures, in dry air or in moist air free from carbonic oxide. The combined action of moisture and carbonic arid are necessary. Ferrons carbomate is first formed; this is at onere oxdized to ferrie oxide and the liberated rarbom dioxide acts on a fresh portion of motal. Gnce started the corrosion proceeds rapidly, pernaps on aceomet of the gatsanic action betwern the oxide and the metal. Water hodding carbonic acid in solution, if free from oxygen, soon ath as an acid and rapidly attacks iron. In lime water or soda wohtion the metal remains loright. The action of cement in preventing rust is now apparent. Portame coment contains about sixte-three pereent lime. By the aetion of water it is converted inte a revstalline mass of hydrated caleimm silicate and calcium hedrate. In the hardening it rapidly aboerbs earbonic acid and beromes coated on the surface with a film of carbomate. ("ement mortar thus atcts an afficient protector of iron and captures and imprisons exery eatomic acid molecule that threatens to attack the metal. The artion is, therefore, mot dae to the exclusion of the air, amd even tho the concrete be porous, and not in contact with the motal at all points, it will still filtor out ame neutralize the arod and prevent its corrosive effect."
2. Permanence of Concrete Construction when made with Proper Materials. 'The best grade of Porthand concrete made with the first reass cement solected ageregate, properly mised and cured is indeed a most permament material, fully justifying all that can be said in its faror. It will withstand the aretion of the elements as well as gramite and quartzite, and will withstamd the heat of fire better tham gramite, while in small samples is not equal to the granite in point of strength, in large masses it may be said that it may be depended mpon with great rertainty becanse there are no seams, flaws or planes of weakness surb as are liable to be found in masses of matural stome.

A good eoncrete increase in strength with age and grows harder and stronger as time continues. 'The increase in strength is rapid for the first three monthe and continues at a gradually decreasing rate for the next six or cight months, amd then very slowly as time goes on, perhaps thru a period of twenty-five years or more.

Where the concrete, howerer, is not made from suitable aggere gates, is not properly mixed and cured, it is by no means a permanent material when expered to the artion of the elements. C'oncrete
having for an aggregate a soft stone, such as some of the oölitit limestones, shale or one which is made with sand which is fine amt containing considerable clay will inevitably be affected materially by frost in the severe climate of the north.

Concrete Made with Improper Materials. In building work concrete is mader cover and in the main protected from the elements, and henee some contractors have an idea that this being the case almost anything cam low utilizet as aggregate. Thus einders in which there is quite a largo pereentage of ash, partly bumed coal and the like, have been used in some easos and with exceedingly barl results.

In one ease where the eoncrete had been made from dinders from southern Iowa coal, the concrete after it was cast in the form of slabs expanded to such an extent that it pushed the face brick out of the side of the building and the shab checked and ratacked to a considerable extent owing $t$ th this same action.

The following is from an artieles by Mr. D. B. Butler in the Engineering Record.*
 BREEZE."
"On account of a mumber of failmes of roof and floor sals, made of coke breeze concrete, which were ealled to bis attention, Mr. D. B. Butler undertook a series of experiments to determine the expansion of such eonerete since an exammation of the fanty structures indieated that such action was responsible for the fathers. His conchasions were presented in a paper before a reerent meting of the Society of Arehitects, England, from which these notes are taken.
"In meatly all samples of sorealled brerze eoneretr examined by Wr. Butler, a very ronsiderable quantity of materiad other thain pure coke was notioeahle in the agoregate, such as elinkers, stones, shate and ashes, together with, in some instances, a noticeable amount of eoat. Whatever may be the disadsantages of othere extrancous material fombl in breeze, coal is not, in Mr. Butlersopinon a desirable comstituent for conerete; in the first place, on ateomet of its smooth, shiny sufare, the adheremer of the wement womd he extremely poor; in the seromel place, it is worse thath aseless as a fireproof material, an areoment of its temblency to decompose on heating. 'The question arose, however, whether apart from being modesimble for the reasons aforesaid, sither eoke berene or roal was in athy waty dangerons as being likely to cansw expamsion of the roncrete.
"The first experiment was of asomewhat romgh amb reaty hat ure, and was made with eoal. An ordinary bitmminous homse doal was erushed and sifted about the finenese of sandard sand; with this coal a 1 to 3 mortar was matle, amd two small 2 -ommer glase bottre filled with the mixture; one bottle was filled quite full, and the other was filled to within a catarter inch of the top and seated down with a paste of neat remont, the object of the sealing being to aserertain whether the imprisomment of any herbocatoons set free from the eroal

[^20]would have any bursting effect. For comparative purposes similar bottles were atso filled with a paste of neat eement and 1 to 3 mortar of standard sand.
"The whole of the bottles eventually racked, with the exception of one filled with standard sand-cement mortar. But while those entirely filled with the eoal mortan generally eracked within two or three days, and with a very few exerestions continued to expand unt il the bot tes burst away into several pieces, those filled with the neat cement and the sand mortar frequently did not develop any cracks whatever till several months, and it was the exception rather than the rule for them to continue expanding sufficiently to burst the bottle. Buth the meat erment and samd cement mortat bottles remained perfertly sound after cleven months and then only devetoprd very minate cracks, whereas the eoal mortar bottle was cracked in twolve days and burst right ofl in forty 1 wo days. This suggests that the eatise of the eracking after subli protracted periods might be due to mequal expansion of the ghase and the mortars at varying 101mperatures.
"The subserfuent experiments were made with rectangular
 and rontratetion of which were areurately measured in the Batasdiinger midromoter calliper apparatus. Wy the use of this a minnte variation of 0.00 .nmm, or 0.00 per ant in the lengh of the prism, may be deterems.
"Kiaht bats or prisms were mato with satisfactory erment, four being made with neat ement amd four with 1 to ${ }^{3}$ stamdard sand rement mortar. Two of each series wore kept ent irely in air and two phated in water after fwonty-four hours and kept therem during there months. The test pieers mumbered 300 and involved 5,000 mestarements.

A moticeable feature of the experiments in that many of the peremens which show very marked expansion when placed under Water ats seon as set expand very mueh less when left enticely in air. It therefore seemed a point worth determining as to whether exposiure to damp or moisture would in any way affert these air-set secemens at the and of the three monthes 1 esi, alter they had become thoroughly seasoned. ()ne of the duplicate air bars from eath seris was therefore placed moler water, the time dapsing betweren the date of mombling and phateing under water ranging from 91 to 29.2 days. Immersion had pratetially mo effect upon those sperimens which had previonsly thewn 1 en expansion which kept under water, but it ramsed ahmost immediate expansion of at very serions nature with those fractions of breeze which had previonsly developed expansion when phared meler water in the first instance. This clearly shows that the expansive agent, whatever it may be, is more or less dommant in the dry air-set block, and only reguires to become damped to renstitute a serious element of danger.
"Taken as a whole, the experiments as far as they go seem to boint to the fact that as regards subsequent expamsion there is not much danger to be apmehended from grood, ream eoke or clinkers, or or ceren anthraeite roal, but that some kinds of ashes and furnace refuse we highly dangerons, while any considerable quantity of bituminous coat is absolutely fatal. One noticeable feature of the experiments, however, was, 1 hat most of the coke-breeze mortars had atendence more or less serionsy to attate the irom moulds, catsing them tornst during the short jace of twenty-four homs between the monding of the sperimens and their removal from the monds. Mr. Butler is unaware il suth results have been found to any apprerebahle extent in artual paretiere, but samples of breeze concretesent him for examination a short time ago showed distinet marks of eonsiderable rusting having taken phae where the conerete had been in contace with the rolled joists."

Mr. Butler's experiments quoted above coincide with our observations. In general, einder, if fit to use, should be free from ash and should be well burned stoker elinker. Concrete made from good hard clinker has proved a good and substantial fire proofing material.

There is this difficulty in its use, however, that the eontractor too frequently furnishes cinders rather than hard clinker.
3. Concrete Mixed Dry and Tamped. Concrete mixed dry and tamped in the old fashioned way is more or less porous, and liable to disintegrate under severe conditions of exposure, as for example, whenever the concrete is soaked with water, frozen and thawed repeatedly. Such conditions may occur in an aggravated form in retaining walls.

The govermment sea wall at the ship canal, Duluth, made in the old fashioned manner, mixing the concrete dry and tamped is showing the effect of exposure to a far greater degree than we should expect had the work been executed in accordance with the present standard practice.

In this sea wall it should be noted that in the cold season the wall was alternately wet and dry as the waves washed against it : that moisture is altemately frozen and thawed in the exposed surface, and owing to the fact that the method of mixing leaves the ronerete slightly porous some disintegration naturally results.

In general, the best concrete to withstand such severe conditions is that which is most dense, is strongest, and made from the hardest and most durable stone as an aggregate and with clean, coarse sand.

Where brick or building stone is made of a fairly dry or moist mixture and is not exposed to the severe conditions above described it proves very durable material.
4. Hair Cracks, Map Checks and Crazing. In troweling a finished surface on concrete the moisture is brought to the surface by the working of the material, resulting in somewhat unequal conditions of moisture. The exposure promotes the rapid drymg out of the surface and causes what is known as hair cracks, map, checks and the like. These are generally only of very slight depth and mean little as to the permanence of the material, providing the ronerete is made of good cement and a first elass aggregate is used.

A peculiar fact concerning this defect in concrete finished surfaces is that on some blocks it will not appear at all. while others
made under almost identieal conditions will be badly affected. Perhaps the difference in part may be accounted for by the thoroness with which the concrete has been mixed, the time expended in mixing, as well as the conditions of drying and curing.

Concrete which has been thoroly mixed in a machine for doubla of triple the ordinary time will be a little stronger than conerete which has been mixed for only fifteen or twenty revolutions. If the mixing is continued for twenty minutes there will be less tendencer towards rapid setting and shrinkage and the development of dhecks and aracks, mueh on the order of the results obtained by silled merhames by retempering eoment mortar in patehing old work.

In the theatment of concrete which is finisher with a troweded surface to prevent checking it is desirable, where it is exposed, to keep it proterted be burlap soaked in water and to keep the direct rays of the sun from it hy an additional cover of eanvas. In this Way steps and similar work may le executed with the least trouble from this soumer, provided are has heen wed in the selection of both sand and stone heod as ageregates.

In the mamufarture of cast stome this diffieulty is one which the worker in this field is fored to mere and it is resential that the mixing should contimue without intermission matil the material is rim into the mold.

In general, east stome made hy the sand mold process will keep its color better than such natural stone as Bedford, altho it may diseolor in straks amd hotehes known as crazing. Efforts made to overeome crazing may be summarized as follows:

First, by the addition of other ingredients to the cement in mixing with the intent to remer the material more perfectly waterproof and more uniform in sotting.

Second, to coat or waterproof the material after it has beem rast, with a compomed repellent to moisture.

Third, to remove a thin layer of the surface of the stone and concrete and get below the depth of the hair lines or depressions which form in easting and cause this peculiar marking or diseoloration when exposed to the weather.

The first two methods have apparently been suceessful in somewhat mitigating this difficulty, while the third method has been successful as practiced hy the Roman Stome Company, of Toronto. Their method is to use a carbormndum wheel, dressing and tooling the surface therewith.
5. Temperature Effects. Changes of temperature catace changein the volume in concrete as in all materials with which we have to deal. The difficulty which is encountered is the cracking of the ronercte as it is brought into tension by change in volume. Nansive walls, unless cut at intervals of thirty feet or thereabouts will crack thru from this calle. Where openings, such as windows are cut thru a solid wall of concrete cracks are liable to develop at the cornerunless the concrete is well reinforeed loy steel rods crossing the corners in such a manner as to take care of this tensiom and prevent the development of cracks.

In slabs reinforced in one direction there should the uned not less than eight-hundrefthe percent of metal for temperature stres. if it is expected to prevent the development of unsightly cheres.
6. Disintegration of Concrete by Oil, Grease, etc. In factory muildings, machine shops, ete., sil and grease are liahle to "ome in contact with the eonerete amb it is important to know what effect it will have upon the material. (ertain kinds of sils are known to be positively injurious to concrete in the earlier stages of hardening and to disintegrate it to a comsiderable extent. Where, however. the concrete has had ample time to harden there seems to be little if any damage resulting from lubricating oils such as are ordinarily employed in a factory or machine shop. Where it is desired to use a floor which has not had at least two monthe in which to thoroly farden we would reemmend coating the concrete with some good waterproofing compound or floor paint, therels protecting it until after it has had opportunity to become thoroly cured and hardened thruout.

The question of disintegration of Portland rement briquettes and experiments to prevent it have been quite fully diselused hy Mr. James D. Hain, Assoc. MI. Am, Soe. (. E., in the Engineering News, March 16, 190.5. His conclusions may be summarized as follows:

1. Most oils penetrate concrete mortar, which makes them dangerous.
2. Comerete is more liable to be disintegrated when saturated with oils and fats if not thoroly set.
3. A good quality of conerete is lesis liable to be damaged by oil tham a poorer quality, surch as a perous, poorly mixed or impreperly seasoned concrete.
t. Ordinary concrete work is rarely subigereme to continued
doses of oil. It is more often only occasionally spattered. Disintegration under the latter conditions seems remote, especially in the case of the first class, well seasoned conerete.

Last, even tho subjected to the equivalent of continued saturation, this disintegration would be long drawn out if the concrete were properly made and well set. Even under ordinary conditions it seems desirable to use a wash for oil spattered concrete to prevent the oil from penetrating it.

Mr. Hain in his experiments tried the following wash: Five per eent solution of alum and a seven percent solution of castile coap, and also experimented with paraffine. None of these proved satisfactory where the briguettes were immersed in oil.

The following table shows the result of some of these experiments of Mr. Hain:

ksombl after applying oil nime monthe at which tests were discontimed Sll briguettes set seven days in air before applying oil.

Mr. Reid in his work on concrete states that one of the briquettes tested with signal oil was sent to the laboratory of Toch Brothers, Long Island City, and a careful analysis was made. Mr. Maximilian Foch states that a determination of the soluble substances in the briquette showed that the disintegration was due to the formation of oleate and stearate of calcium. To reduce this to its simplest, expression, the animal oils contain acids which combine with the lime and crystals and stearate and oleate of lime are formed. It is very likely that these crystals in the process of formation have increased in lualk in the briquette and the bond which has been formed by the lime in the set cement has been totally disintegrated and ruptured. These crystals were isolated and verified under the microscope.

Mr. Toch also states that machine oils are almost all paraffine oils, do not contain animal fats, and hence do not affect concrete.

Silicate of magnesia, sold under the name of fluate, has often been used as a wash to protect concrete against the action of oil. When this wash is applied to concrete, silica is liberated and fills up the pores. The magnesimm fluate acts as a bineler, and the cement becomes excessively hard after a few months. Limestone and building stone have been treated with this material in Europe with great success. This compound is, however, expensive.
7. Disintegration of Reinforced Concrete by Electrolysis. Laboratory experiments by Toch, Knudson and Langstorf in 1906 and 1907 show that under certain circumstances passage of direct electric current from the reinforcing metal into the concrete gives rise to corrosion of the metal and to cracking and splitting of the surrounding concrete which seems to be brought about by the mechanical pressure developed hy the oxides which occupy a volume over twice as great as the metal from which they are formed.

The conditions under which remforced concrete may be seriously injured hy electrolysis are fortmately exceptional rather than the rule. That it may be injured even in exceptional cases presents a problem of importance which requires a statement of the eonditions under which injury may oceur and the method of controlling them.

The conditions under which electrolysis may oceur and the eoncrete suffer by electrolysis are moisture and difference of potential between the electroles and contact with the mass of the conerete. Perfectly dry concrete below grade level is seldom found, while there are few places in our eities at the present time where some appreciable differences of potential camot be found between two points which are more than a few yards apart. On the other hand, concrete has to be very wet in order to possese a maximum of conductivity. Any reduction of the moisture content below the saturation point canses an increase in its resistance and consequent decerease in the current which will flow thru the concrete merer a given potential difference.

The resistance of ordinary air-dried concrete is manally abont ten times that of wet eomerete, and for this reason eonerete aboore grade level is less suserptible to electrolitie demage tham if locaterl where it is permanently wot. While air-dried eonerote is mot immone from electrolysis troubles, difference of potential dur to stray eurents is rarely sutlicient to protuce trouble and in the absence of special conditions clectrolitie damage to concrete at amy level above grade is extremely rare.

Special emphasis should he laid upon the conditions that are liable to protuce damage by the flow of the electric current between
electrodes in contact with the concrete. The conduction being electrolitic the reactions take place only at the electrodes and in the absence of such electrodes no reactions occur within the concrete. The only effect therefore would be the slow removal of the constituents which are soluble in water and hence the effect on plain concrete would not he essentially different from that of slow water seepage.
sonerces of stray Currents. The sources of potential differences in concrete structures may be elassified under two heads: those due to direct contact between conductors of direct current lighting or power eircuits in some part of the building and those which have their origin in stray currents from electrie railways or other grounded power lines.

The former may happen in any buikling containing direct current electric wires thru defective insulation. It is not neeessary that both sides of the line be gromeded in the building itself, sinee if one side of the line is grounded on the building and the other grounded in some remote quarter of the system those portions of the building near the wire may be subjected to a considerable difference of potential. If the wire be gromuled directly on the eonerete and not on the reinforeroment the eomparatively small seetion of the bath of the current near the point of contact between the concrete and the wire will canse most of the total drop of potential to the ground to oceur within the restrieted region near the wire and it is only here that any damage maty be expected, and since the current will be small the damage if any will be smati.

Cltimately in rase both sides of the line are not grounded in the strueture any "urrent that leaks from the wire would pass into the earth thru the footings and fommations and thru pipe systems entering the buiding. The eross section of these pathis is so large in the aggregate that the potential gratients would be insufficient to raise the temperature appreciably and no appreciable damage is likely to occur, since the corrosion above roferred to occurs in wet conerete only and not to any considerable extent untilat least a temperature of $113^{\circ}$ raher. is reached. Acording however, to determinations made by the Burean of Standards, if the power wire be grounded directly on a portion of the reinforcing metal the condition is more serions. The extent of the damage will be greater if such large area of the reinforeement is in metallir contact with the electric wires, as to reduce the resistance across this area to a small amount. In case the gromed is on the positive side, the potential gradient near the reinforerment may become high enough to cause rapid corrosion
and consequent destruction of the reinforeing metal. If on the other hand the reinforcing metal be the negative eleetrode a softened condition of the concrete would be developed near the surface of the iron which would tend to destroy the bond and this would probably be the more serious condition of the two since it will not manifest itself by producing local cracks in the concrete and might not become known until a large portion of the building had become weakened.

While such a condition as this might possibly oecur, and if neglected might become serious, it is nevertheless a trouble that can be readily guarded against.

The other source of current that, under certain circumstances. might possibly give rise to trouble is the grounded current of electrice railwars. Various electrolysis survers show that a potential difference exceeding two volts due to stray currents between any two parts of the buiding is extremely rare and this would almost inevitably be distributed over so great a distance that the potential gradient would not be great enough to cause appreciable trouble. Stray currents may enter a building thru water pipes, gas pipes, lead cable sheathes and the like. Differences of potential considerably larger than two volts may be brought about between the different portions of the buitding in this mamer or between parts of the building and the earth. If the pipe sistems come in contact with the concrete only and not with the reinforcing metal any damage that may occur will be slight and confined to the immediate vicinity of the pipes or cables, but if the pipes come into metallic contact with the reinforcement the latter comes to the same potential as the pipes and may become anode or cathode aceording to the direction of flow in the circuit. Cases may arise where a difference of potential of serious magnitude may be produced in this way.

Conchusions from Laboratory Experiments. Laboratory experiments show that the corrosion of iron even in wet concrete is very slight at temperatures bolow 113 degrees Fahr. For any fixed temperature the amount of corrosion for a given number of ampere hours is independent of the current strength. The rapid destruction of anode specimens of moist concrete at high roltage (60 to 100 volts or more) is made possible mainly by the heating effeet of the current which raises the temperature above the limit above stated. If the specimens be artifically cooled no appreciable corrosion occurs and no cracking results. The potential gradient necessary to produce a temperature rise to 113 degrees Fahr., with consequent corrosion was 60 volts per foot in the specimens tested by the C . S. Bureau
of standards. For air dried concrete it is much higher. This indieates that under actual conditions corrosion caused by stray currents may be expected only under very unusual and speeial conditions.

Specimens of nomal wet conerete carrying currents increase their resistance 100 fold or more in the course of a few weeks which fact further lessens danger of trouble. The presence of a small amount of salt greatly increases the initial conductivity of wet conarete thus allowing more eurrent to flow and it also destroys the passive conditions of iron at ordinary temperatures increasing the rate of corrosion and emsequent tendency of the eonerete to crack.
comerete structures built in contact with salt water or in salt marshes are mone sureptible to electrolysis than concrete not subjected to surh influencer.

Comditions may arise in practiee which give rise to damage due to stray currents hat the danger from this soure has heen greatly overestimated. While precautions are neecesaty under certain conditions there is mo caluse for serions alam.

It may la here noted that alternating wirents have largely disphaced direct current- for lighting and pewer purpose becanse of roduced tranmiswion lowes in alternating rirenits. It should be further moted that offie building with struetural steel seletons which have pasoch thru the periond during which direct current was used ahmost cutirely for lighting, have suffered little or mot at all from this cause and it may be stated that there is little or no reason to expect electrolysis trouble in reinfored concrets buildings generally, and that ouly in sperial olases of huildings such as ice cream factorics, cold storage plants, packing houses, and the like, where steam and ammonia or acid funces come in contart with the floors may serious trouble be expected from this camse.

Protective Mensures. la all cases it is conservative to forego the wee of salt or chloride of caldem in winter on reinforced construction below grade level regardless of the character of the building This would demand greater "are in protecting the work and heating material for this part of the structure. Also careful attention should be given to the insulation of gas pipes, water piper and soil pipes from all contact with the reinforement. Proper insulation of the wires should be provided so that any leakage to reinforement may be prevented. Finally in that clase of buildings in which the conditions are farorable to damage from electrolysis, alternating current, for lighting and power should preferably be adopted. In bridge work for carrying electrie lines and power lines fiber conduits
are to be preferred to metal conduits. Any possible damage from altemating currents may be considered insignificant or negligible in comparison to that by direct currents transmitting the same power.

Mr. H. P. Brown, Engineering News, June, 1911, offers the following suggestions in regard to electrical currents in damp reinforced concrete buildings:

Do not depend for insulation upon even the best rubber covered wire nor upon japanned conduits in rooms subjected to fumes and vapors.

Do not permit the gromding of the intermediate wire in threewire systems.

Do not permit any grounding of the secomtary cireuit of a transformer.

In the vicinity of electric power houses or substations use wooden pipe for gas or water serving pipes from the street mains. Use insulating tubes around the gas, water or steam pipes where they pass thru concrete floors or walls.
The following are recommendations from Bulletin No. 18, U. S. Bureau of Standards on "Electrolysis in Concrete" by E. B. Rosa, Burton McCollum, and O. S. Peters.

In order to insure safety of reinforced ponerete from electrolysis the investigation shows that potential gralients must be kept much lower in struetures exposed to the action of salt waters, pickling baths, and all solutions which tend to tlestroy the passive state of iron.

All direct current electrie power circuits within the conerete building shoult be kept free from grounds. If the power supply comes from a central station the local eircuits should be perionifally disconnected and tested for grombls and incipient defects in the insulation. In the case of isolated plants ground detectors should be installed and the system kept free from gromid at all times.

All pipe lines entering conerete building should, if possible, be provided with insulating joints outside the buidting. If a pipe line passes thru a buikfing and continues beyond, one or more insulating joints should be placel on earh side of the building. If the potential drop around the isolated section is large, say, sor 10 volts or more, the isolated portion should be shunted bey means of a copper cable.

Lead-covered cables entering such buildings should be ixolated from the eoncrete. Wooden or other nommetallic supports which prevent actual contart between the cable and the concrete will give sufficient isolation for the purpose. such isolation of the leadcovered cable is desirable for the protection of the cable as well as the building.
Partial Bibliography of Electrolysis in Concrete:
Max Toch, German Electric Chemical Society Vol. 9, page $\overline{7}, 1906$
". ". Iron Trade Review, Vol. th, page 1007, 1910.
Engineering News, Vol. 60, page 710, A. J. Nirholes.
" " Vol. 63, page 3 32,0 . L. Eltinge.
" " Vol. (i5), page (ist, H. P. Brown.
" " Vol. 66 , page 10, Barker is Lpson.
" " Kol. 66, page 152, B. C. Worth-II. P. Brown.
" " Vol. 66, page 20 ,
Engineering Record, Yol. 62, page 132.

$$
" \quad \text { " Yol } 63 \text {, page } 222
$$

U. S. Burean of Standards, Bull. No. 1s, Electrolysis in Concrete. Am. Electric Ry. Practice, Herrich © Boynton, (Electrolysis and its Prevention), page 347, 397 .

## CHAPTER XIII

1. Floor Finish. The rough conerete shab in a warehouse, factory or office building may be finished in a variety of ways. The requirements for factory purposes and offiee huildings frequently demands a wood finished floor, while in a warehouse and some classes of manufacturing buikdings, the concrete finished floor is preferable.
2. Strips and Strip Fill for Wood Floors. Preparation of the rough shab is made for the wood floor as follows: Parallel strips are lad at about sinteen inch intervals, embededed in concrete and the flooring mailed thereto. The better time to apply the strip fill is immediately after the rough shah is sufficiently hardened to work upon for the reason that at this time the strips can be readily spiked down to the partly hardened eomerete and wedged and aligned to the propere level without difficulty. Then the strip fill ran be put in with the sume equipment that has been used to cast the floor slab. For the reason that a haud strip fill adde materially to the strength and stifforso of the shat it is preferable to make the mix approximately the same as that for the slab exeppt where the loads are light and strength is no object. Then a $1: 3 \frac{1}{2}: 4$ mix is ample for all purposes. In this mix, howerer, the coarser aggregate should be in the form of greavel in size from $3_{3}^{3}$ inch down, or crushed stone from! ! inch down.

No natural ement or lime should be wad in the mix sinee where it is used trouble almost mevitably realts hy reason of its slow hardening. The moisture in the strip fill swells and expands the wood flooring to such an extent that it springs away from the fastenings to the strips necessitating the entire relaying of the floors in many cases.

Strips are economically and conveniently made by splitting up old centering lumber, such as 4 ly 4 , ripping them thru the center and then ripping the 2 by 4 with a beveled cut giving a strip $1 \frac{1}{2}$ inches wide at top, $2_{4}^{1}$ inches wide on the hottom and $1_{4}^{3}$ inches deep. This is a good way to work off the old lumber.
3. Width of Flooring. Narrow widths of maple flooring are preferable to the wider widths. Two and one-half inches is as wide
as can be recommended where the floor is $\frac{7}{5}$ inches in thickness. Where $1 \frac{1}{4}$ or $1_{\frac{3}{4}}^{3}$ thickness is used $3 \frac{1}{4}$ to $3 \frac{1}{2}$ inches is the preferable limit.
4. Cement Finish Coat. In no part of concrete construction has there been so much difficulty in securing first class and satisfactory work as in putting down concrete floor finish. A good bond is desired between the finish coat and the concrete of the rough slab, To secure this bond, some endeavor to apply the finish integrally with the rough sial). The difficulty attending this method is the shrinkage of the body of the work, checking and injuring the top coat together with the fact that if this finish is applied while the rough slab is still plastic the hardening of the surface in getting its initial set will be slow. This means that some partly hardened cement will be broken up in troweling and the finish will be brittle and will dust badly altho it looks well when the work is first completed.

Again, working on the finish before it has sufficient time to dry in placing the centering thereon for the succeeding stories is quite likely to scratch and mar the finish and leave it in bad shape when the building is done.

A further difficulty occurs from unequal moisture conditions about the base of the column. When the columns for the next story are cast the excess of water in the mix wets down and swells: the concrete surface about their bases and expands it and as this dries more slowly than the rest of the slab shrinkage cherks and spider web, cracks will very likely be found in the fimish about the column bases when it dries, if the work has been executed in this mamer.

The application of the finish coat before casting the succeding story has this adrantage: The dripping from the floor above does not coat the rough slah, and prevent securing a good bond thereto, as sometimes happens where this dirt and cement wash is not removed before the application of the finish. The trouble of cleaning the floor thoroly is therely obsiated.

If it is desired to lay the fimish before carrying up the next story it is recommended that after the concrete has stiffened up and before it is thoroly hard, the surface be roughened with a rake to secure a better bond for the finish, and that the rough slab be then allowed to stand for not less than twenty-four hours in good drying weather and longer where the weather is chilly so that the rough slabl becomes thoroly rigid. Then the finish may be successfully applied, cutting it back from the foot of the column in squares at least a foot from the column base, and applying this part of the finish at
a later date. The surface then should be protected preferably by sawdust thoroly wet down, while the centering for the floors above should be well supported on planks so that the finish coat will not be abraded during the process of curing.

If the finish is to be applied after the rough work of the building is eomplete, which is the usual mamer, the surface of the slab should be first thoroly cleaned of dirt, and the drippings from the upper floor removed. It should then be prepared to recoive the finish, by thoroly soaking with water.
5. The Mix of Finish. The mix of the finish should preferably be one part Portland cement, to one and one-half parts dean coarse sand. A good siliceous sand is a better aggregate for this purpose than crushed gramite.

The finish coat should be thoroly mixed as a stiff paste, sereeded to the proper level as it is appliod, ame as soon as it has taken its initial set, troweled and rubbed to a smooth surface.

The cause of much of the difficulty with flowe finish is due to the mistaken ide:a that it requires a very wot mix to secure a good bond to the ohd concrete. With this sloppy mix more or less separation ocrurs and the inert material and latance comes to the surface. Then when it is leveled off the workmen are obliged to wait until some of the erment has attained its final instead of its initial set before they can proceed to trowed off the finished surface. The cement in the finish that has attained its final set is broken up and does not recover its strength while that which has not progressed so far harelens in a nomal manner. The result is that the portion of the cement which has attamed its final set combined with inert material brought to the surface by troweling forms a dust which is readily rubbed up on the finish. The condition of the floor finished in this wise is better or worse ctependent on the following conditions:

Where temperature conditions are such that the cement hardens very slowly, as in the fall of the year, and the finish is allowed to stand five or six hours before it gets sufficiently hard to work upon, the resulting finish is most inferior. Where, however, the temperature conditions are such that the cement sets more rapidly, a much better surface results, sometimes one that is fairly satisfactory.
6. Hardening Compounds. A number of compounds have been placed on the market to harden floor finish and render it tougher under wear. Giood results with any of these compounds depend, as in the ease of the cement finish, upon proper workmanship and
attention to the misture, and that particularly in the eool season a stiff mixture is used. Steel filings and a small percentage of carborundum in the proportion of 16 pounds to the sack of eement produce good results.
7. Treatment of Floors. A concrete floor may be treated in a manner somewhat similar to a wood floor. It may be shellaced and wased or vamished and painted if desired. Where a floor has been put down and the finish is unsatisfactory from the standpoint of dusting, if not too bad the trouble may be remedied by a coat of floor paint made with a thin vamish as the base. The thinner the paint of the first coat the greater its penctration and the better the result from the standpoint of reducing the tendency to dust.

Where, however, the surface is musually bad there is no remedy exeept by rubbing it down with the earborundum wheel in a manner similar to that in which the finish is secured in terrazzo floors.
8. Concrete Stairs. Reinforeed conerete provides an mexpensive means for building stairways which are far more nearly fireproof than any other type which can be constructed.

The aceompanying typical detail of reinforecment Fig. 9.5, shows the usual method of reinforcing employed for this purpose.

For ordinary runs, such as twelve feet, $\frac{3}{5}{ }^{\prime \prime}$ rounds, $6^{\prime \prime}$ on center's are ample for the inclined slab. The inclined slab, is generally built $4 \frac{1}{4}$ or $5^{\prime \prime}$ thick for ordinary runs and the horses are cast on top of the incline. Where fancy treads are desired they are sometimes made of white Portland cement and crushed quartz. This makes a very durable tread and a material which in its good appearaner ranks next to marble and will wear somewhat botter.

When marble or slate treads are used they can be readily bedded on the conerete horse and the riser brushed up, rubbed and painted or varnished as preferred. Freguently it is desirable to suspend stair platform supports from above. This can very readily be done by dropping the slab rods down to the level of the platform from the slab above on one or more sides and encasing the suspender rods in an ordinary $2^{\prime \prime}$ partition of cement plaster for fire protection. Fastenings for metal hand rats can be readily cast in the end or top of the stair treads as the work is placed.
9. Insulation of Roofs. Those not familiar with reinforeed conerete frequently make the mistake of designing roof slabs in a cold ctimate without insulation. The result is that the moisture in the warm air in the room below theroof weds "is. comensed on
the underside of the cold slab and drips continually whenever the slab is colder than the air within the room. This is readily remedied by a cinder filling from four to six inches thick. In fact, we frequently recommend to our clients that instead of putting on a roof slab, proper the ceiling slab be cast level which may at some future date be used for a floor should a story be added and on this slab to build up with cinders sufficiently to give the standardpitch-and-gravel


Fig. 9.9. Typical Detall of Reinforeement Concrete Stairs
roof the usial slope. This slope should preferably be in the neighborhood of $5 / 16$ to $3 / 8$ inch to a foot of rum. On the top of the cinder insulation a one inch coat of cement mortar mixed about one cement to three sand is spread which forms a good base for the pitch-and-gravel roof. In place of the cinder filling a fake roof is frequently built up using old centering lumber. Where this is done atl openings thru the ceiling and roof shoukd he cucased or protected by a concrete fire wath, then ano fusther damage woccur than the
burning up of the comparatively inexpensive false roof should the same eatch fire from above. The ceiling slab, should the roof burn away, would protect the goods or business earried on beneath it until the false roof could be replaced.

Insulation is of the utmost importance in concrete roofs in the climate of the United States, north of Southern or Central Kansas. We would hesitate to allow any work to be executed with our guarantee against this difficulty in latitudes north of this. On the Pacific Coast insulation may be omitted as far north as Portland without serious difficulty.
10. Protection and Provision for Plumbing. In plumbing fixtures a considerable amount of lead piping is used. This should be either entirely eliminated where it comes in contact with concrete or well protected by a heary coating of tar or asphalt paint since pieces of lead piping uneoated when removed from concrete are often found tramsformed almost completely into red oxide.

Cast iron, wrought iron or steel and brass fittings are not injuriously affected.

In general, provision should be made in the pouring for all large fixture pipes, since digging large holes in the concrete should not be allowed because frequently these come at points where they may serionsly weaken the construction.

Cases have occurred where the phumber thotlessly dug a hole right thru the center of a beam, leaving an insignificant amount of concrete cach side of the hole to take care of the shear and, in doing so, cut one of the main bean rods, thus forcing the slat to cary a load provided for safely only by the portion of the beam cut away.
11. Placing Electric Conduits, Gas Pipes, etc. The most convenient disposition in reinforced concrete work of pipes. conduits. and the like, is to bury them in the middle of the slab with outlets at desired points. So buried, comduits if of moderate size, in no wise weaken the construction. They should not, however, be placed beneath the reinforcement. This is a mistake that is too oftem made.
sometimes conduit pipes are placed right along on top of the eentering with perhaps ${ }^{3}{ }^{3 \prime}$ of concrete under them in the finished work, and reinforcing bars resting on top of the conduit pipe dip downward in the slab (on each side of the conduit to a greater or less extent. Then, as som as the centering is struck and the strain comes upon the rods, there is a temdency to straighten out under pull, and
to cause the slab to defleet or sag and open up large unsightly eracks near the bottom of the conduit pipe. The reduetion in strength due to this position of the pipe may be as much as from ten to twentyfive pereent of the strength of the slab. In the ceiling the erack, from the standpoint of appearance is unsightly and leads to somewhat unwarranted suspicion of extreme weaknes. This should be avoided.

Standard outlet boses as furnished by electric supply companies are unfortumately usually much too shallow. They should be deep enough so that the pipe comections can be readily made without interference with the reinforemont. The writer has frequently had wood plugs turned up and put in these boxes in order to keep them at the proper elevation and give an opportunity to place the conduits without bending and kinking them as they enter the box.

Provision for openings in floors for stam pipes, soil pipes, leaders and the like, may be made most eronomically by placing thimbles of sheet motal (filled with sand) on the forms in the desired location, thus saving the expernse of cutting later.

When holes have to be eut thru the stab the entting should eommence from the boottom. If the hole is cut thru from the top, as soon as the drill or chisel strikes the hars a large unsightly chunk will be broken out of the malerside of the slab. Since it is quite diffieult to patch these places with plaster the architeret should not allow the work to be done in this mamer.
12. Plastering on Reinforced Concrete Work. This is a feature of concrete building construction which is of considerable interest to the architect. It is decidedly annoring for a client to come to the architect and state to him that a large section of the plaster has dropped off from certain sections of his building. This happens far more frequently than the advocate of reinforced concrete likes to admit, altho when the causes of the failure of plaster to adhere to the work are fully investigated and the work properly executed there is little trouble from this cause.

Plasterers are in the habit of plastering on wire lath, wood lath or the like. With such a base upon which to work there is ample opportunity for a lean mortar to clinch in a firm and satisfactory mamer. When plastering on concrete, however, plaster is held to the concrete by adhesion only. There is little or no chance for efficient elinch or mechanieal bond such as oceurs when plastering on lath or wire cloth. The materials, the conerete and the plaster,
which do not have exactly the same coefficient of expansion are held together by adhesion between the two, and evidently this will be greater the richer the plaster mortar. It will be greater when the surface of the forms used for centering are rough sawed lumber than with surfaced lumber. The tendency to drop off will be less the thimer the plaster coat and less damage can result from the fall of any given section of plaster: hence, a thin coat of plaster is to be preferred to a thick scratch coat and finish coat thereon.

Lime mortar well gaged with Portland cement just before use will adhere better to reinforced concrete than the gypemm or patent plasters. Any plaster will adhere to concrete best when the conerete is thoroly sot and dry. Trouble almost invariably results from the attempt to plaster on comerete before it has had a chance to thoroly dry out and set hard, as it seems that the moisture from the eonerete prevents the plaster from drying and setting properly.

Washing the surface of the concrete before plastering with at solution of one part vinegar to three parts clean water greatly improves the bond botween the two materials, since it removes the inert matter from the surface of the concrete.

Some plasterers prefer to coat the comerete work with R. I. W., or other tar paint in :whance of applying the plaster in order to secure a more satisfactory hond.

Considerable trouble has wecurred with plaster upon reinfored concrete, tho in all cases, on invertigation, it has been found either that the plaster was applied upon partially cured concrete or improperly put on.

Sometimes the plasterer will endearor to put on a thick roat. get air bubbles between the new plaster and the eonerete and these expanding and contracting with cach changr of temperature will gradually loowen up quite a large area of the plaster coat and after six or eight week it will drop off in large chumks.

The remedy for this difficulty is as follows:
First, see to it in eentering the flow that the rough side of the lumber is placed next to the concrete, giving a rough surface rather than a smooth surface for the plaster to stirk to.
second, see to it that the concrete work is thoroly driod before attempting to plaster it.

Thirel, thoroly wash the under side of the surface of the slat with the vinegar solution reeommemed.

Fourth, see to it that a rich mortar is used.

Fifth, make the finish as thin as possible, a skin coat $1 / 16$ to 132 inch thick being ample to make a good finish.

Sixth, aroid the use of soap, grease or benzine to prevent the concrete from adhering to the centering.

Nearly all of the patent gypsum plasters will, when applied wet to steel or iron, hadly corrode the metal. Fortunately this corrosion seems to eontinue only until the paster sets but it is sufficient to stain the plaster badly in the vicinity of the metal. It may be prevented in the manner recommended for the protection of lead in concrete.
13. Suspended Ceilings. Frequently a slah is put up where it is desired to suspend a ceiling below, either to conceal pipes, flues and the like, or ate insulation for the roof. This is readily arranged in the following mamer:

Take ordinary $4_{4}^{\prime \prime}$ romd wire. make a $3^{\prime \prime}$ loop on the upper end and drop it thru a hole in tho form. It will then be anchored in the concrete as soon as the concrete is cast, and the free end may be used to tie up :angles, tees or groove irons which are to be used for the ceiling frame.

## CHAPTER NIS

## ARTISTIC AND COMIMERCLALLY PRACTICABLE CONCRETE sCRFACE FINISHES.

1. Stipple Coat. It is found that by applying a stipple coat, either rough or smooth as desired, a very pleasing effect can be readily obtained. An example of this treatment is shown in the figure of the Smythe block, Wichita, Kansas. The writer has adopted this finish for most of his bridge work, as it gives a greater appearance of strength, readily covers up the minor imperfections in the centering, and affords a pleasing contrast with the highly ornamental stone railings with which he prefers to finish his work.

The stipple coat is usually applied with a broom-corn brush and consists of a thoroly mixed grout of a neat erment one part, and sand one part. Treatment of the surface should be as follows:

Wet down the face of the wall thoroly with a hose. Then apply the stipple coat, spattering it on. This method of treatment is being adopted to a large extent by architects in the finishing of exterior cement plaster wath for residences. A rery neat effect indeed is obtained in this mamer at a low cost. Expanded metal wire lath is nailed to the studs, plastered with a Portland coment mortar mixed usually with same ten percent, of hyrdrated lime, the mixture being practically one cement to one and one-half sand and finished with a stipple coat as outlined.

Failure of cement plastered walls may be attributed in the main to failure of the contractor to use enomgh cement. Too many workmen put forward the argument that the concrete will not be good if it is made too rich. while as a matter of fact it requires a rich, strong mixture to withstand the frost and severe climate in all northern states. Plaster work which would stand without injury in Cuba and Arizona would fall to pieces in short oreler in Minnesota or Manitoba. A properly applied erment coat of a rich mortar, however, will stand the climatic conditions in the north while in the south also a rich mixture is to be deciderlly prefersed.
2. Plaster Coat on Rough Cast Concrete. A Vory expensive effort was marle to secure a goerd surface finish on the Cirand aremue
viaduct in Milwataer. The specifications required that the inside of the forms be lathed with expanded metal and plastered with a


mixture of phaster of Pearis and lime. This plaster coat was to be siled in advance of plawing the comerete and the concrete to be placed amd tamped in layers. On remoral of the forms, notwithstanding the greatest care on the part of the contractor, the line of demarkation between the several tayers was plamly visible and it was found impossible to put up the work withent bemish as required in the speceifications.

The work was finally carried out by removing the forms on the exposed surface as soon as practicable and plastering with a thin coat of rich cement grout. This is a practice which is not to be recommended because wherever the mass of the concrete has had time to get fairly hard this plaster coat is liable to check and seale off, tho occasionally it has been applied with a fair degree of suceess before the concrete has had time to thoroly harden.
3. Finish Obtained by Brushing and Washing. Mr. Heury H. Quinby of Philadelphia appears to have been one of the first to introduce a method of brushing and washing the concrete surfaces, to bring into relief the aggregate used.

The process consists of removing the forms after the material has set, but while it is still friable, and then immediately washing and rinsing the cement which has formed against the mold and thereby expose the particles of sand and stone. The appearance then depends upon the character of the aggregate in the concrete as respects its color and the uniformity of its clistribution in the mixture.

The time to be allowed for setting before washing must depend upon the nature of the cement and the temperature conditions. Quick setting cement and warm weather call for the removal of the forms in from seven to ten hours. The appearance may be controlled somewhat by the extent of washing which may be to the point of leaving the stome aggregate in decided relief producing a rough coarse texture much admired by most arehitects.

An interesting article on this subject will be found in a book entitled "Concrete Factories," by Leslie, published by Bruce and Baming of New York, and in some of the older numbers of the "Cement Age."

A well written paper on the same subject has been published by the Universal Portland Cement Company in their trade bulletins, numbers 54,55 and 56 , which, thru the courtesy of the company, is reproduced in part herewith:

The ordinary conerete surface, it must be admitted, is anything but pleasing in appearance, being usually a comparatively smooth, lifeless surface of a somber grayish color. It makes but little difference what eement, sand or aggregate is used, or in what proportions they are mixed, the general aspect of the unfinished form surface is the same. There may be the greatest difference in color, shade and texture of the aggregate used in two separate concrete surfaces, yet unless they are so treated as to bring out and expose the aggregate, the resulting surfaces will look alike.


Figure I


Figure II



Figure IV.


Figure V.


It is quite difficult to distinguish an ordinary unfinished concrete surface in which bank gravel is the aggregate from one in which crushed red granite is used, but the same surfaces, if subjected to any one of a number of different methods of surface treatment, will present a marked and pleasing contrast in appearance. It is the monotonous sameness in the appearance of conerete work that architects object to so strongly. To show what can be accomplished in producing pleasing, artistic and commercially practicable surface finishes for concrete work is the objee of this article.
(on the preceding pages are found phetographic reproductions of brushed concrete surfares. The difference between these surfaces and that of ordinary gravel concrete is bery striking, yet they are all practieal, commercial finishes, and cam be obtained by the use of material from ordinary gravel bank.

Figure I shows a comparatively fine, even-grained surface, composed of one part Portland cement and three parts of fine sand all of which passed a No. 8 and was retained upen a No. 50 mesh sereen. Figure II is very much like Figure I in general appearance and color, but of a rougher, more meven texture. This surface is a 1: mixture, with coarse sand, passing thru a No. 4 and retained on a No. 8 sereen. Figure III represents a finish made from a $1: 3$ mixture of cement, and $1_{1}^{1 /}$ to $\frac{1}{2}$ " pehdses. Thus these surfaces are identical in every respert, except as to size of aggregate. The three surface finishes were all produced by the sime method of treatment.

The cuts give but a poor idea of the appearance of the actual surfaces, as the color and texture which give life and individuality to the surfaces are lacking. To appreciate the value of this finish for concrete work, the surfaces from which these cuts were made should be seell.

Figures IV, V' and VI are three cuts from photographic reproductions of concrete surfaces similar ats to surface treatment to those previously shown, but differing from them in the aggregates used.

Figure IV shows a decidedly pleasing, even-grained surface composed of one part Portland cement and two and one-half parts red granite screenings, all of which passed a No. S and was retained on a No. 16 seive. Figure $V$ is a reproduction of a surface composed of one part cement to two and one-half parts ordinary, quarter inch, granite screcnings, the material passing a No. 8 sieve being rejected. Both these surfaces are quite similar in every respect in texture, that represented by Figure $V$ being of a rougher texture than the other. As the cement is barely perceptible on these
surfaces both look very much like rough, undressed red granite, the color being practically the same as that of the screcnings of which they were made. Figure VI represents a treated surface composed of one part cement to two and one-half parts of black pebbles, varying in size from those retained on a No. 10 sieve to those passing a $1_{4}^{1^{\prime \prime}}$ mesh. The cut gives but a poor idea of the pleasing contrast between the light colored cement background and the black pebbles which stand out in bold relief from the surface.

Comparing these cuts and those in the preceding page, quite a variation in general aspect and texture is to he noted, and an examination of the actual surfaces would reveal a still greater difference in appearance owing to the striking variation in color and size of the aggregate used. Had these six surfaces been left untreated, they would have looked practically alike.

By varying the kind, size and proportions of the aggregates, surface finishes of practically any desired color and texture can be obtained, the possibilities being limited only by the number of different aggregates available and the combinations of same. A great varicty of finishes may be produced by using red and black granite and limestone sreenings, black and white marble chips and different colored pebbles and sands.

All the cuts shown represent brushed concrete surfaces, the process consisting of simply brushing the surfaces with a stiff brush, permitting it to harden for a few days and then treating it with a dilute solution of hydrochloric acid, the method of procedure being as follows:

Haring deeided upon the gemeral eolor scheme and texture of the desired surface the first step is the making and treating of small sample surfaces. A limited amount of experimenting with the materials available will abwars prove profitable. The eolor and texture of the fimished surface depends upon the eolor, size and proportions of the aggregates used, and the suceessful reproduction of the desired surface is dependent upon the proper solecting, grading, proportioning and mixing of the materials and the proper phateng and finishing of the surface. After determining hy experiment the proper size and proportions of aggregates to protuce the desired effects and the proper consistency of the min, adherestrietly to them: that is, take the trouble to measure the materials for each bateh of concrete and to gatue them with a measured amount of water. The results obsained will more than justify the extra expense this will entail over the all too prevalent methot of measmring material by wheelbarow loads and adding the water with a hose; in fact,
uniform results camot be oltained unks the work is done as pointed out.

The slightest imperfections and irregularities in form surface are transferred to the concrete, producing unsightly surfaces when left untreated, and a pleasing surface camot be obtained by a nicety of form comstruction alone. For hrushed surfaces, all that is required of the forms is that the fate lagging be kept true to surface and the joints be tight. For surfaces too large to concrete in one day the forms should be so construeted as to permit of the removal of sections of the fare form. This eam be aecomplished by setting the studs or uprights back a lew incher from the face lagging and comereting both by means of eleats and wedges. The face forms alto should be well oiled to prevent the conerete sticking to the forms. In large areas the introduction of buttresses and panels or the breaking up of the surface by horizontal joints or courses will add greatly to the appearance, the joints being simply indentations in the surface produed bey beveled beads fastemed to the forms. It is extremely hard to join two different days work so that the joint is mot pereeptible and msightly, and the breaking up of the surface ats indicated will greatly assist in the conereting if care the taken to boul and start each suceecting day's work at a course or joint.

The facing material shouth be from one to one-and-ithalf inches thick, the remaining thickness of the work heing composed of ordinary concrete, but the facing and backing must be deposited at the same time so as to make one solid mas, therely insuring perfect bond. The facing material may be applied to the forms just ahead of the backing. which is placed against and rammed into it, or the baeking first and then hrushed back from the form with a spale and the facing material deposited between the barking and the form. Both these methots have been suceresfully used. A third and possibly the best method of placing the facing material consists of the use of what might be called a metal facing form or mold, constructed and used as follows: To short lengths of $316^{\prime \prime}$ irom plates $S$ or 10 inches wide and 6 foet long. three 1 or $1_{2}^{1 / \prime}$ :angles are riveted, placing an angle at the center of the plate and one about six inches from each end. One edge of the phate should be slighty flared to atsist in depositing the material and this edge provided with handles. The metal facing plate is placed against the wall form with the handles up and the angles tight against the form. The space between it and the back of the wall filled with the conerete backing and the 1 or $1_{2}^{1 / \prime}$ space between the metal form and the face form filled with
the facing material. The metal form is drawn ahost out, and after thoroly tamping the backing against the facing the process is repeated.

For brushed surfaces the forms must be removed from the work as soon as possible and the concrete surface brushed while still green. It is not possible to state how old the work should be before removing the forms and brushing the surface. This will depend upon a number of conditions, the character of the work, cement and aggregate used, eonsistency of the mixture, and very much upon the weather conditions. As a rule in hot weather the forms ean be removed the next day and the surface brushed, but in cold weather the facing form camot be removed so som, several days perhaps a week being required for the concrete to attain the necessary hardness and strength. Care must be taken that the brushing is not done too srom, as little particles of aggregate will be remosed, resulting in a pitterl, unsightly surface. On the other hand the longer the surface stands before being brushed the more brushing it will require to remove the film of material that has flushed to the surface. Brushing should be done just as soon as it can be without removing particles of aggregate. When this can be done, ean only he determined by experimenting with the particluar surface. An ordinary serubbing brush with stiff palmetto fibers or a metal wire brush will answer for the work. Two or three days after the brushing the surface shouk be washed down with a dilute solution of commercial hydrochloric acid, one part acid to two or three parts water. The acid should be applied with an ordinary calcimining brush and the walls thoroly rubbed, while wet with the acid, with a stiff vegetable fiber brush. The acid should not be allowed to reman on the surface for any length of time-not orer half an hour- and should be washed off with a hose and rlean water. It is important that the surface be thoroly washed after the acid treatment, for if it is not it will have a mottled, streaky appearance.

A desirable surface can be obtaned by simply brushing and then washing with a hose and clean water, hat the final acid treatment in comection with the brushing will produce a still better surface.

This method of treatment remoses the film of mortar that has flushed to the surface, exposes the aggregate, erases all traces of form markings and produces a rougher, more artistie surface. The roughmess of the surface breaks up the tight, the color of the aggregate adds variety and life, and we have a pleasing, artistice, true concrete surfare.
4. Finish by Tooling. Where the architect is not limited in point of cost, an excellent effect can be secuerd by tooling the surface of the concrete either by hand or using pneumatic tools. The effect will depend largely on the character of the aggregate and


Fig. 97. Cast Stone Railing, bridge at Fergus Falls, Minn. John Lauritzen, Contractor. (. A. 1'. Turner, Engineer.
where this has been carefully selected the finish is quite attractive, especially when the surface is broken into blocks by rustication or grooves.

The expense of tooling ranges from five to ten cents per surface foot, depending on the equipment used, while that of brushing and washing should not rum more than one-fifth of this amount.
5. Cast Stone. Where suitable aggregate is available an excellent building material is made by casting concrete in sand molds.

The process is similar to the iron molders' art. Wood or plaster patterns are used, a sand mold prepared and the concrete which is to be cast is mixed to about the consistency of cream. When the resulting material has been tooled it is hard to distinguish it from the natural stone.


Fig. 98. Ornamental Cast stone Railing.
In cost it camot be manufactured to compete with the natural stone where there is little freight to pay, but where the work is at all complicated and there is a duplication of the parts and quarries of good building stone are not situated convenient to the locality, there is a good field for this product.

It has been very successfully manufactured in Toronto. St. Louis, and other parts of this country and also in Germany.

Success in cast stone work depends, first, on a rich misture, second upon the selection of the proper aggregate, which must be a crushed
stome or hard pebble which will weather without disintegration, and third, on the proper method of mixing and agitating the mixture until it is desposited in the sand mould.

The misture must be semi-fluid so that it will flow and fill the mould and must be kept continually agitated until in place in the mould. Otherwise separation occurs with an inferior casting as the result.

Details of the process of manufacture are beyoud the seope of our present purpose. The preceding statement, however, comparing the mote of easting to the irom moulders art gives a clean cut idea as to the method pursued.

## CHAPTER XV.

1. The Execution of Work. Construction work of any kind involves a great responsibility, not only on the part of the designer, but also on the part of those in charge of the work, and that responsibility is for the safety of those erecting the work.

Perhaps the arection of no type of building is so free from hazard and risk to the lives of those ereeting it as reinforced concrete construction when seientifically designed and intelligently executed.

During the last ten or twelve years, the manufacturers of Portland Cement, have through improvements in methods of manufacture and great reduction in cost, placed this material on the market at such reasonable rates that it has given a remarkable impetus to the construction of concrete work in all lines. Since, as a material of construction, it has but recently come into general use, it is not surprising that a large part of the enginecring and arehitectural profession have not yet become so familiar with its characteristics, but that designs lacking in conservatism from a scientific standpoint have been frequently made, and this combined with the execution of the work by unskilled contractors, has resulted in a mumber of instances in needless sacrifice of life and large property losses, such as a more thoro knowledge and study of the characteristics of the material should entirely prevent.

It would be neglect of duty to fail to briefly summarize and to call attention pointedly to those properties and characteristics of concrete which must be known and appreciated by the engineer and constructor in order that he may avoid the serious disasters into which those ignorant or forgetful of them have been too frequently led.

The Hardening of Concrete. Concrete may be defined as an artificial conglomerate stone in which the coarse aggregate or space-filler is held together ly the cement matrix. The cement should conform to the Standard Specifications for Cement, recommended by the American Society for Testing Materials.*

The contractor and architect should, at least, see to it that the cement is finely ground, and that it meets the requirements of the

[^21]boiling test. This last may be readily made by forming pats of the cement of $3 \frac{1}{2}$ to 4 inches in diameter on a piece of glass, kneading them thoroly with just enough moisture to make them plastic, so that they will hold their shape without flowing, and taper to a thin edge. Store the pats under a moist cloth at a temperature of sixty-five to seventy-five degrees Fahr. for a period of 24 hours. Then place the pats in a kettle or pan of cold water, and after raising the temperature of the water to the boiling point, continue boiling for a period of four hours. If the pats do not then show cracks, and if they harden without cracking or disintegrating, the constructor may be satisfied that the cement is suitable for use in the work. Coarse grinding reduces the sand-carrying capacity of the cement, and its consequent efficiency.

The function assigned to the eoncrete clement in the combination of reinforced concrete is to resist compresive stresses in bending; but when first mixed the concrete is nothing more than mud, and in order for it to become the hard, rigid material necessary to fulfill its function in the finished work it must evidently pass in the process of hardening thru all stages and varying degrees of hardness from mud and partly comed cement to the final stage of hard, rigid material. This curing or hardening being a chemical process, does not oceur in any fixed period of time, sate and except the temperature conditions are absolutely eonstant. Hence the time at which forms may be safely removed is not to be reckoned by a given number of days, but rather it must be determined by the degree of hardness attained by the cement. In other words, during warm summer weather, concrete may berome reasonably woll cured in twelve or fifteen days. If the weather, however, is ramy and chilly, it may not become cured in a month. In the cold, frosty weather of the spring and autum, unless warm water is wed in the mix, the conerete may require two or three months to become thoroly cured, while by heating the mixing water, whenever the temperature is below 50 degrees Fahr., the concrete will harden approximately as it does during the more favorable season.

Concrete which has been chilfed by the use of ice cold water, or that has become chilled within the first day or two of the time it is cast, has this peculiarity, that it is very difficult indeed for the most expert to determine when it is in such condition that it will retain its shape after the removal of the forms. Once having been chilled in the early stages, it goes thru successive stages of sweating with temperature changes, and during these periods it sometimes happens that the concrete diminishes in compressive
strength, and if the props are removed it sags and gets out of shape. Such deformation will generally result in checks and fine cracks, though there may not be any serious diminution of the ultimate strength. These checks may be prevented as explained above by the simple method of heating the mixing water whenever the temperature has dropped below 50 degrees Fahr. In colder weather, that is below the freezing point, not only must the water be heated, but as a rule the sand and stone too, also a little salt may be advantageously used, as discussed in Chapter I, Section 15, Page 30. The work must then be properly housed and kept warm for at least three weeks subsequent to pouring.

Pouring Concrete. Bad work frequently results from improper pouring, or easting of the work. In filling the forms, the lowest portion of the forms must be filled first. A column should be filled from the center and not from the side of the cap. Filling from the center will insure a clean smooth face when the forms are removed. Filling from the side will frequently give a bad surface because the mortar will flow into the center of the columm through the hooping, leaving the coarse aggregate with voids unfilled at the outside. Asmore concrete is then poured in, the voids between the core and the out-side portion will become filled, and the soft mortar will not be able to flow back to completely fill the voids between the hooping and the casing. Where the spacing of the hooping is wide, this is not so important, but it becomes very important where the spiral used has close spacing. It is better to cast the column and mushroom frame complete, continuing to pour the concrete over the center of the column so that it always flows from the column into the Mushroom slab rather than the reverse. All splices must be made in a vertical plane, in a beam preferably at the middle of the span, and in a slab at a center line of a panel.

Separation of Materials. In pouring concrate where the mix is too sloppy, separation of the material is liable to occur. This is particularly the ease in filling columns where with too sloppy a mix layers of sand and gravel and cement may result instead of a concrete of uniform composition.

In spouting concrete, careful attention shoukl be given to the mixture at the point of discharge, since if the inclination of the spout is too great, considerable separation ocrurs and inferior concrete is the result, and where such separation oceurs the concrete should be re-mised before allowing it to be deposited in its final position in the work.

Test of Mardness in Warm Weather. We have pointed out that the eriterion governing the safe removal of forms is the hardness or rigidity of the concrete. A test of hardness in concrete not frozen may be made by driving a common eight-penny nail into it; the nail should double up before penctrating more than half an inch. The concrete should further be hard enough to break like stone in knocking off a piece with the hammer. Noting the indentation under a how with the hammer, gives a fair idea of it- comelition to those having experience.
sub-erentering is a desirable method of preventing deformation, where the we of the forms is desired for mpere stories before the conerete is fully coured.

Test for IIardness in Cold Heather. Comerete freshly mixed and frozen hard will mot only sustam itself but catry a large load in addition, mont it thaws out and softems. When collapse in whole or in fart is inevitable. Partly eured concrete if frozen, sweats and softens with a rise in temperature, henee in cold weather there is damer of mistaking parth cured concerete mate rigid by frost for thoody cured material. In fact the only test that can be depernded upon with certanty in cold, frost weather, is to dig out a piece of concrete, place at sample on atowe or hot ratiator, and note whether, ats the frost is thatwed out of it, it sweats amd softens. This gives the buider and engineer a perfectly comelusive test of the condition of the concerete as to whethes it is cured or merely stiffened ul) by frost.

Lap of Reinforcement over supports. Thoroly tying the work together he ample lap of the reinforeement is a prime requisite for safety in any form or type of comstruction. This general preraution insures toughness, and prevents instantancous eollapse, should the workmen exercise bad judgment in prematurely removing forms.
2. Responsibility of the Engineer. The steps which it is possible for the angineer to take in seruring a safe construction are limited in the first pace to the production of a conservative design, and one which will present toughness, so that its failure unter overload or under premature removal of the forms will be slow and gradual This he can do, and this it is beliesed he is morally bound to do. On the other hand, he camot design reinforeed concrete work which will hold its shape without permanent deformation, unless it is properly supported until the conerete has hat time under proper conditions to become thoroly cured.

The engineer is accountable for the sclection of a type of design which is safe to erect. That is, a derign in which a sudden collapse cannot readily occur. He should so design his work that it can be excented by the exereise of ordinary care. He should design it so that there shall be a minimum chance of bad work or disastrous results thru lack of care on the part of workmen.

We have called attention to the fact that concrete is a material natmally best fitted for monolithic construction, that the natural concrete types are best tied together hy so reinforcing the construction that it will act as a continuous monolith. To do this ample lap of the hars is esential orer all supports whether bearinge or supporting columms.

Every failure in concrete construction is detrimental to all who are engaged in this line of husiness, regardless of the system, type of construction, or particular reason for the collapere, and accordingly all engaged in this line hate a like interest in tracing out the (ause and profiting hy the leson of every mishap which oceurs.


Fig. 99 Detail of beam cansing trouble through insufficent lap of reinforcement over suport.
The accompanying dotail shows the bean and sab reinforcement of a structure which collaped during erection and the characteristics of this failure are worthy of note, as due to insufficient laps over the supports. This failure started in an upper story whers the small diameter of the colum gave little or no lap of the steel over the supporting concrete while the lower stories where the columns provided greater overlap were ereeted without mishap) until broken by the fall of the upper stories. Where there is insufficient lap, owing to the shinkage of the concrete in settmg, we have not only the shear on partly hardened conerete but also temsile shrinkage stresses temeling to crack the concerete thru at the point where the bars are not sufficiently lapped ower the supports.

A further weaknes in the detail illustrated lies in the fact that none of the reinforement for positive moment was carred up ower the support to resist negative moment as in the Hemebique ame Tumer trpes of continuous beams, ilhstrated in ('hapter IIL. This detail, viz. the carrying of a portion of the reinforcement
in a contimous har orer and beyond the support, enables a portion of the load to be carried by such bars as in a swing and greatly relieves the shear stress from such loads as may be brought upon partly hardened concrete, and thus increases the safety of the work during the eritical period of construction, or renders failure slow and gradual under these conditions instead of sudden and without warning, should the partly cured work be over-loaded. This safeguarel it is within the province of the engincer to provide. No exerse can be matle for failure so to do on the gromed of increased cost or special patent monopoly standing in the way.

Thearing and tomsile resistance, as has been noted, is developed during curing, at a les rapid rate tham compressive resistance and hence any reasonable safe-cuard of value such as that just deseribed should not be neglected by the engineer.

It has been almost invariably the wase where combinations of tile and concrete have been used, that a failure starting on one floor has carried with it one floor after another to the basement. Such failures do not oreur in well designed reinforeed concrete struetures. Hencr where comomic ronditions permit, the engineer is areountable to a large extent for the selection of the safer, tougher types of eonstruction in place of a fragile construction which may be readily destroved by the impate of any large mass aceidentally falling upen it.

In most eates where failures have oerorred, had the centering been left in place for a period of from four to six months, in the authors' jutement, the work would have stood and no serious trouble would have resulted. (On the other hathd, they are mable to regard that kind of doxign as legitimate which must nocessarily be treated with this extreme degree of care, there being no excuse for designing in a mamer which leaves an opportunity for sudden and complete failure of the work.

The engineer desiguer is responsible for failure to provide a type of column design in which there are no whatructions in the shaft of the column to interfere with securing a solid casting. Column failure in a nmmber of structures moler construction have oceurred where the longitudinal column reinforcement was arranged with prongs projecting into the body of the columm but with no ties binding the longitudinal steel together. These prongs interfered with the flow of the concrete material in the shaft of the column, interupt the concrete in its descent, leaving large voids which in some eases caused failure when the forms are removed. The use of this type has fortunately to a large extent been diseontinued.

In the case of an eleven story huilding, some years ago, the designer used vertical remforcing bars in the columns and tied them across the shaft with numerous quarter inch ties. In pouring the concrete in several columns these ties bloeked the flow of the concrete and when the forms were removed large voids were found two or three feet in length in several column thru the interference of the ties in pouring the column. There is no excuse for the employment of such details.

A slab reinforced in two directions and supported on four sides may be loated until it is cracked thru and if the stab is a large one may be loaded until the deflection is twelse or fifteen inches and still carry the load which broke the construction down at this point and strained the steel beyond the yield point value.

A slab reinforced in one direction only will on the other hand break down completely and sometimes let go quickly and almost without warning. This is especially true where forms are prematurely removed.

We have noted in ('hapter X under "Elements of Eronomic Construction," that the true concrete typer which are continuoumonolithic construction have the lowest coefficient of bending, hemes there is little excuse on the part of the designer for failure to adopt the safest type of construction, particularly in view of the fact that it may be figured with greater certainty and a higher degree of scientific areuracy than the topes of simple heam or one way reinforcement that have been used in this composite type of structure.

While the engineer may be held responsible for aceurate computation and for features that hear upon the rafety of the design. he camont, undess on the ground, preerent the inexperienced forman from knocking centers at too carly a periorl. He caumot prevent the deffection of reinfored concrete work where the material has not been allowed sufficient time to property harten before the removal of the foms. If. however, his design is one of the two natural concrete typer of comstruction there is little dimger of a suden collapse and the worst that san happen will probably be the newessity or digging out and replacing some work which has got out of thape owing to lack of judgment and haste on the part of the ereetion superintendernt.

The superintendent on the joh shombl make a sereial peint of inspection of all points of the construction where cantikere adion is depended upon for stiffies and strength. Wherever such artion
is required, the steel should be at the top and its position at the top shoukd be made certain by such inspection. Far too frequently carelessmess has been exhibited in this respect and umsatisfactory results secured from the standpoint of strength and service.

## 3. Responsibility of the Constructor and Engineer Superinten=

 dent. The constructor is primarily responsible-For the homest execution of the work.
For the proper housing of the cement and the simple methods of tetermining the fineness and quality as reeommended in Chapter I.

He is resposible for the use of sufficient cement.
Gecuring a proper aggegate and sering that the mixture of conceret has the proper consistemey to produce good work, i.e. that the stone is of proper hatedeses, suitable size athd free from dirt amd mud. That reasonably dean, coarme samed is mased.

He shoukl imspeet the rentering and we that it is erected of proper stamgth amb that ledgers amol posts are properly braced so that collapse cammet oerenr during ereetion

He should be responsible for the exereise of eare in leaving the forms in place matil the conerete has beeome properly equed.

11s shoukt we that splies are properly mate between old and new work and that segregation and reparation of the eonerete does not ocrur in pouring.

He should see that the reinforerment is placed as required by the enginerers plans and while he eamot be held responsible for the design he should exereise greater eare in putting up the less conservative typen which eonsist of one-way reinforement than is essential in putting up moltiple way systems or natural eoncrote typers.

Ho ean determine whether the steed furnished is of reasonable quality hy the beneling test and by nicking and breaking so that the fact is aseretamed whether the metal is of the undesirable material known as hushet steel or a uniform quality of good metal. This is of rpecial importaner in tensile reinforeement in stab and beam sterl, hooping and the like, and of less conseguence in reinforement for compression.
4. Significance of Cracks in Reinforced Concrete. Concrete in setting shrinks, and sometimes cracks by reason of this shrinkage, partienkarly when it hardens rapidly, as it does in hot weather.

This shrinkage sets up certain stresses in the concrete, which, eombined with temperature changes, oceasionally manifest themselves by subsequent cracks in the work. Such checks or cracks do not of necessity indieate weakness, providing the concrete is hard and rigid, since the steel is intended to take the tensile stresses and the eoncrete the compressive. Such checks sometimes cause an unwarranted lack of confidence in the safety and stability of the work arising from the common lack of familiarity with the characteristies of the material. For example, the owner of a frame buikding would never imagine it to be unsafe because he found a few seaton checks in the timber. $H e$ is sufficiently familiar with the seasoning of timber to understand how these cheeks occur, and that in most instances they do not mean a loss of strength, since, as the timber hardens by thoroly drying out, it becomes stronger, as a rule, to an amount in exerss of any slight weakness which might be developed by ordinary season cracks or checks. so in concrete, when the general public becomes more familiar with its characteristices they will regard as far less important than they now do, checks whieh are protuced hy temperature and shrinkage stresses, or possibly by slight unequal settlement of supports.

Like timber, concrete grows harder and stronger with time, so that the ordinary temperature theck does not reduce the strength of the work as mueh as the hardening of the eoncrete with age increases it as the steel is the tensile element and tho eompressive element, the conerete, having grown stronger with time, the strength of the combination has usually increased more that the decrease in strength brought about by the eherk.

Taking the modulus of elasticity of the concrete at $2,000,000$, and the temsile strength of eoncrete at 300 pounds per square inch, with eoefferients of expansion of . 0000006 , if the embs of a slab or beam are rigidly fixed it would require a drop of 24 degrees below the mean temperature at which the concrote hardens to stress the conerete in temsiom up to its ultimate rapacity. The ends of our beams and shabs are rarely aboblutely fixerl, as the walls ean denerally go and come slightly and acemmodate some temperature change. A certain amount of temperature reinforement, howerer, should always be provided where the reinforement is in one direetion only. Eight humdredths of one pereent should be the minimmm in sabs. Even with this remforement or with multiple way reinforeoment, shrinkage combined with temperature will oceasionally cause eracks in the work. The sason of the yar and the tempera-
ture conditions at which the work is cast or the condition of the cement, all play their part in producing this phenomenon and while the comstructor can guarantee safe work from the standpoint of strength, he camont guarantee with certainty that temperature aracks will not oceur.

Their oceurence is less frequent bey fith the natural types of concrete and multiple-way reinforement than with one-way slab and girder construction, such as Type II, or the combination of tile and conerete discusionl elserwhere.

Where structural steel frame work is fireproofed with concrete, or eomerete slabs are built in or supported by and mate integral with structural shapes and beams, temperature aracks are much larger and more noticeahle tham with the reinfored eoncrete types for the reason that altho the coefficient of expansion of eoncrete and steel is substantially the same, the suereifer heat and ronductivity of the two materials is widely different. Henco where the steel is placed in the concrete in large sertions it responds more quickly to changes in trmperature than does the eonerete omedop and ac-
 the large section of sterl sepatrates the concrote surrounding it, cansing a weakess which is manifest be the concentration of the temperature effect at the weak seretion, areounting for the results noter.

## 5. Encouragement to Progress in the Concrete Industry by

 Patents. The Ferleral Comstitution, Art. I. Sortion 8, provides that Congress shall have the power to encourage the progress of science and promote the useful arts bey seroring to authors and inventors, for limited periods, explusive righte to their merentions and diseoveries. In ateoretanere with this aththorization and in persuance of the object mentioned. (ongress, by the enactment of seretion 48S6. Revised statutes of the L'nited States, provides that any person who has invented or discovered any new and useful art, machine, mambiacture or composition of matter, or any improvement thereof, may ohtain a patent therefor moter certain preseribed rukes and restrictions.statute law identical with this hat been in forer since April 10, 1890, except that the conditions and limitations relating to it have been morlifiod some what from time to time.

The worker in concrote-steel comstruction is maturally interested in coming to a complete maderstanting of the some and the extent of protertion afforded him by this statute.
*The word "discovery" is not used either in the Constitution or the statute, with it, broadest significance. In these documents it is a smonym for the word "invention," and in them it means nothing else. The discoveries of inventors are inventions. The same man may invent a machine and may discover a law of nature. For doing the first of these things the patent latw may reward him because in so doing he is an inventor, hut under those laws he cannot be rewarded for diseovering a law of nature becanse he has originated or invented nothing by this act.

A diseovery, or the devising of some means to utilize a discovered law of nature in a new and novel mamer is an invention.
$\dagger$ The statute provides that a grant of a patent may be made, and it says that the grant shall be limited in three respects:

1. For respective diseoveries, and hence to the inventor and no one else.
2. For limited times, and henee no perpetual monopoly:
3. For useful art, and hence every patent must posses utility.

The character of inventions are broadly divided into six classes:

1. A marhine. 2. A manufacture. 3. A composition of matter. 4. An art. 5. An improvement in a marhine or process. 6. A devign.

Those engaged in the industry of reinfored concrete construction are not interested from the standpoint of patent protection in reinforced concrete as an art, for as such the emberment of iron or metal in a concrete matrix has heen practiced, as we have pointed out in our historical sketelh, since the time of the Roman Empire, and in modern times to a considerable extent sineer 18.00. As used in a building or bridge, a patent for a dosign would offer little protection.

Reinforced conerete cammot be logically dassified as a composition of matter for there would be no means of distinguishing between different concrete dowigns from this stantpoint, as having different degrees of utility and strength. If it is treated from the standpoint of a manufaeture, the same process, the same mathine. the same tools and the same general clasese of material are used in the manfacture of all conderete struetures. The mere form of a building and shape of a room is not patentable if the decision of the Court of Appeals in the Folding Bed Company case is comsidered

[^22]conclusive. Hence the mere external form of a structure camot form the basis of a ralid clam.

If we treat the reinforced concrete structure from the standpoint of its mode of operation as a mechanism, we have here a means of differentiating between the mechanical efficiency and operation of different arrangements of reinforement in the same matris, which results in differences in the strength and stiffness of the structures using the same guantity of metal and comerete. Hence improvement in the design of reinfored eomerete structures can be rewarded by our patent laws only as riewed in the light of an improvement in their mode of operation which emables us to differentiate ome $t$ ype or gemus from amother and to differentiate between different forms of the same peries. It is on this theory that the fixed practier of the Cnited states Patent Offiee is founded in granting patents on the different types of design of reinforeed concrete members and structures.

This statement is substantiated by the many decisions of the Primary Examiner in charge of the concrete division of the Patent Office in numerous motions for disolation in interference proceedings. Differentiation between the ease under comsideration and the prior art citect in the motion to disoulse the interference is effected hey considering the mode of operation of the structure as a machine or merhanism on the gencral principles clucidated in the preceding chapters.

The word "machine" as used in the patent statute is not confined to the popular idea of a mechanism consisting of pulleys, shafts, levers, ete., in which the motion is quite obvious, but is to be interpreted in aceordance with the broader, general definition of machine, as given in Wehster's Dictionary, as follows-
> "Any deviee consisting of two or more resistant, relatively constraned parts, whirh, ly a cortain prodetermined intermotion, may serve to transmit and modify forer and motion so as to produce some siven effect or to do some tesired kind of work. According to the strict definition, a erowbar abotting against a fulcrum, a pair of pliers in use, or a simple pulley blork with its fall, would be a mathline."

In applying this definition it is evident that there are resistant parts in the composite structure of a beam or slab, to wit: the steel and the concrete. When any load is hrought upon this combination, deformations oceur in both steel and the concrete and the relative motion of these parts is constrained hy the shrimkage grip of the concrete on the stecl operating thru bond shear. This combination performs the desired work of carrying the load to the
support. It modifies the motion of the load and transmits motion in its parts until equilibrium is established between the load and the supporting combination, the steel and the concrete.

That the movements in a slab or beam are not noticeable to the ordinary observer in no wise affects the application of this definition. We might state for example, that in the machine or mechanism for transmission of sound, known as the telephone, the motion of the dise is too slight to be observed by the eye. We, however, readily measure the rapidity and extent of its motion by the sound it produces. So in the beam or slab where these motions are enormously greater than they are in the tolephone dise, they are readily measured by the deflectometer and strain gage.

There are many patents upon remforeement as a manufacture, per se, such that when combined with eonerete in the finished strusture they do not produce a load-carrying mechanim differing in any wise in principle from others which have preceded them. Such patents, protect an invention, the utility of which is limited to more convenient handling of the materials in the erection of the structure or more economical method of placing the material in the desired position in the finished structure without the introdurtion in any wise of anything new or novel in the mode of operation of the structure itself.

Scope of Patents. The "scope" of a patent or its power to secure to its owner the limited monopoly, or control of the invention which forms its subject depends on the relation of the invention to the state of the art, or what had been done at the time of the appearamer of the invention, and ako upon the skill with whith the clams have been drawn. Having referenee to the chemology, or the time relation of the invention to the state of the art, a patent may be basic, or "pioneer" as it is usually termed, or it may be a percific or narrow patent. Putting it otherwise, a patent may be generice, that is for a genus; or speefife, that is for a partirular seecies of the genus which forms the subject of the generid or pionerer patent, and, obviously, this relation of gemus and seedes reefuires that the thing constituting the species must be within the control or dominion of the genus patent.

Even tho a givem invention maty not, in the most general aspeet, be new, and hemoe a pioneer in tho broadest sense, yot by virtur of its practical value and importance in the art it may be regarded by the courts as, in a semse, a piemeer and to such a patent the courts have applied the term of "limited pionerer," and the seope of its
protection is broad. Such a patent may be regarded, so to speak, as a sub-genus, and obviously the invention thereof ean exist in the form of various specios falling within this sub-genus and hence proper to be dominated by the limited pioneer patent.

To ilhastrate the matter by the subject in hand, at the time of advent of the "Mashroom" or true flat shab type of reinforced conrete construction, reinfored concerete wats an old thing in building construetion. The " Mushroom" invention, therefore, could not be covered by a patent which woukd dominate or control any and all combinations of concrete and steel combined to utilize the compressive strength of eoncrete and the temsile strength of steel. The patent covering it could not be a pioneer patent in the broadest semser But the "Mushroom" invention bemg the first instance in the art of a true contimuous flat shat resting on columms, and resisting Hexure by eiremmerential cantilerer ade ton about the head of the column as explamed in ('hapters IV and V', and which by flexure betwern the columms about the diagonal center, secures plate action by wide spreading remforecment of substantially egoral strength in all directions, a patent therefor is to that extent a pioneer, and is for a sub-genus in reinfored eonerete eonstruction, and all subseguent patents having characteristice of the sub-genus are merely species thereol and hemee proper to be dominated or controlled by the sub-genns patent if the clams of this patent are finally sustamed by derisioms of the courts as they have been in repeated eonteste in the Patent Offiee.

The Importance of Imestiguting the scope of a Patent. The scope of a patent is determined by the breadth of its elams. Any limitations or conditions placed in its clams narrow and restrict its seope.

The seope, and eonsequently the vahue of a patent as a means of controlling a given construction, while depending prineipally on the character of the patent elams, is also affected by the state of the art at the time of the advent of the invention, and by the effect of proceerlings in the Patent office to secure the rlaims. A patent attorney, thru a misumberstanding of the invention, or from want of skill or experionce, may draw or word the clams so that, tho in fact, the invention is a pioneer, the patent itself is narrow or specific, and limited to a particular species of a genus, insted of dommating all species of that genus. The state of the art may be such that the fied for a new construction is so circumseribed that the seope of the clams may be restricted aven to the identical construction shown in the drawings of the patent. At this point, it seems proper
to explain that the state of the art embraces everything relating to the subject, whether foumd in books or other publications, and patents here and abroad, and what has loeen dome in this comentry in actual use.

The Patent Office, by reason of its limited forer and facilities rarely does more tham search thru United states and foreign patents before deciding whether or not to grant a patent. It has absolutely no facilities for aseertaining what has been done in the way of artual use, and, hence imnocently and exeusahly, at times grants patents for what has ahready long been in actual use, but such patents, of course, have no validity.

Revised Statute, section 4886, covers this point in the following words:
"A patent may be obtaimed by any prom who has invented
or diwooved any new and useful art, machine, matufacture, or
composition of matter, or any now and useful improvement thereof,
not knourn or used by others in this rountry before his incmtion or
discoery thercof, and not patented or described in any printed publi-
cation in this or any foreign commtry before his incmtion or dis-
covery thereaf, or more than thro yrars prion' th his application, and
not patented in " country formign to the C'nited S'ates on an applica-
tion filed mome than twelre months befors his application, and not in
public use or oun sale in the L'nited states for more than ture yerers
prion to his applicution, unless the same is proved to have been
abandoned, upon payment of the fees required by law and other
due proceedings had."

The effect of proceedings in the Patent office and the importances of looking into the matter when determining the value of a patent is well shown in a recent ('ase. A patent was submitted to an engineer for purchase, for which he was willing to pay son 0 , 000 , providing it was what it was puported to be. An exammation of the applieation and the records of the Offiee soom diselosed, that by reason of amendments and disclamers filed by the inventor in response to rejections of the Patent (office, the datms of the patent were of such narrow scope as not to cover even the actual commorerial form of the invention, and so the patent was valueless.

Prior Art. The art necessarily includes all prior patents, applications, domestic and foreign, and all domestic nse prior to actual date of invention. It may be said that the only differene betwen the limitations by prior ant and antioipation is that the former limits. the seope of the elaims while the latter kills them and it is not infrequently a fact that the limitation of a clatim by the prior art is such as to all intents and purposes destroys its utility.

Regarding such limitations, the Court of Appeals of the Second Circuit says:
"Where the patentee specifies a sereial form by which the efferet of the intention is produred or otherwise confines himself to the partienlar form of what is preseribed he is limited thereby in his claims tor infringement."

And in the Keystome Bridge ( 6. case, !5 Fent. C. S. 274, at page 278 , the supreme ('ourt said:
"Ther (the patentees) camot expert the eourts to wade theru
the history of the art, and spell out what they might have elamed
tand have not ebtimed. . . . But the rourts thave no
right to enlatere a patent beyond bhe seope of its clams as allowed
by the Patent Offire. . Is patents arreproured er parte,
the public is not bomme by them, but the pettenteres are Amd
the hatter ramos show that their invention is browler than the
terms of their aldim, or, if beomer, they motst be held to have
sumendered the surplus to the public."
(ienus and Špereies Patents.: It sermis desirable to correct a widespread error as to the seope of the \&rant of the patent be the Patent Offiee in its relation to other patents (either carlier or of later date of issume) as far as the right to use the eomstruction of such patent is concernet.

The gramt of a patent confers now right to use the construction shown in the patent. It simply gives the right to the owner of the patent to prevent others from using that remstruction. The legal propesition may loe illustrated in this way:

A patent is iswed in 1910 to ( on a given type of construction. All that this patent gives to (" is the right to stop other persoms from making use of or selling the eonstruction set forth in the clams of that patent. It gives no such right, at the right to use the subject matter of the patent and the patent office has no authority in law to give the right actually to wee the eonstruction shown in the patent for the reaten that beeanse of some dominating genus patent the owner of the latter B has the right to prevent others from using the construction which forms the subject of the patent to (' to whief patent that of ('stands in the relation to that of B of a speeces to a gemus. The fact that the comstruction of $C$ and B belong to the same family, the B enmus, in reality are merely different species thereof or different expresions of the same idea, explains the relation of a broad to a peceific or narrow grant.

Consequences of Infringement. For the infringement of a patent, the latw provides reelrese in two forms: (he in compensation in mones, which eovers the profite madn by the infringer and the

[^23]damages (which the Court may treble) to the owner of the patent, together with the costs of the suit. The other is an injunction prohibiting further infringement, which in the case of a building would be the prohibition of further use of it. Among the persons liable for infringement in the ease of a building are the buildor, the owners and the user.

Indeed, the Courts have gone so far as to order the destruction of the infringing thing. Thus the supreme Court of the Enited States in Birchell r. Shatiol, 112 U. S. 485, said:
> "But an infringer does not, by paying damages for making and using a machine in infringement of a patent, acquire any right himself to the future use of the machine. On the eontrary, he may, in addition to the parment of damages for its infringement, be restrained by injunction from its further use, and when the whole machine is an mfringement of the patent, be ordered to deiber it up to be destroyed."

Some idea of the great favor which the law gives to the owner of a patent in enforemg his rights may be gathered from a fow decisions of the courts. The Court of Appeals of the serenth Circuit speaks of the patent owner as a "czar," so great is his power under the law, and other Courts describe his power in language equally as strong. Sait that Court of Appeals (which sits at Chicago) in Victor Talking Machine Co. v. The Fair, 123 Fed. Rep. 424:
"All that the government can and does grant, is the right to exchde others from practicing his invention without his consent. Within his domain, the patentee is czar. The people must take the invention on the terms he dictates, or let it alone for seranteen years. This is a neressity from the nature of the grant.

The field being his own property and there is no kaw for soizing it and adjurging his damages, he eammot be compelled to part with his own except on inducements to his liking."
said the Court in Ceneral Electric v. Wise, 119 Fed. Rep. 922:
"No time will be used in answermg this suggestion, exerpt to say that if complainantos patents are valid, it is contitled to protertion by injunction against all the world. No other person or eompany ean use its property of this deseription without its consent, and relegate it to an attion for damages. If this pateme is valid eomphainatht has an absolute right mader the laws of our comotry to the use of the patent and to designate the parties on whom it will confer the right to use it."

While the preceding statements elearly illustrate the position taken by the Court in the ease of machines used to turn out a product, the deedsions are less numerous and atre somewhat conflicting with reference to structures or load-earreing machines. In a buideng, looking at it as a lowlearying merhamism from the viewpeint taken by the supreme ('ourt in the Birdselly. Shaliol case, the Court took the stand that the infringer may be restramed by injunction from
the further use of it as a machine and when the whole mathene is an infringement of the patent, to order him to deliver it up to be destroyed. Here the Court seems to apply what was termed the "Rule of Reasen" which ereated mueh diseussion in the rulings relative to the seope of the theman law.

While no ultimate conclusions have been reached in the cases involving huilding construetion where patents have been sustamed, this rule would indicate they should be so construed as to do justice to the holders of such patents and to fairly rarry out the contract entered into by the govermment when it issued such patents.

In view of the fact that the finished building eontains much more than the mere load carying skeleton or mechanism of reinforced concrete, an ingunction against its use without qualifieation would be mequitable to the owner and in a mearure mureasomable. A choice in extreme cases betwern an ingunction and the payment of there times a contractor's profit of fifteen pereent of the value of the cement work in the ase of contested cases and of the asual fee in cases not contested would seem to be the limit of reasonable protection to which the holder of a hroal patent may be entitled, even tho this amome might not pay in a single instance for the expense of carrying a suit to comelusion.

In eases where the patent covers merely a convenient form of make-ready for the reinforeement without involving a new mode of operation differing materially from other and older forms, it would seem that the redress should be logically limited to a judgment for damage to be recovered from those making or putting up the structure who have been directly benefited by the eeonomy resulting from the form of manufactured material used. Certainly in this second class of inventions, classification as a new and novel load-carrying device or merhansim would not hokl good.

Were an injunction unqualified as suggested issued against the owner of an infringing structure, unconditionally, it would place the owner in the serious position of being forced to pay any amount which the patentee might demand. The inequity of such a position as this has apparently deterred some members of the Judiciary from deciding in favor of the patent. One Federal Judge made the assertion that he would not issue an injunction which apparently was the only remedy because in the ease of a building he did not eonsider it to be equitable and construed the claims of the patent in an extremely narrow manner, which decision enabled him to escape the dilemma.

The Court of Appeals was apparently disatisfied with this decision when it was confronted with similar considerations. Instead of upholding the decision of the Lower Court on the grounds on which it was rendered it stated that in its opinion at concrete flow slab was merely an aggregation. In other words, the bemeng resistance of the slab, was the smm of the bending resjistance of the steel and the concrete acting separately. In this deerision, altho furnished with a complete libary of all Anerican treatises on reinforeed concrete the Court ower-looked the comerting link between the concrete and the metal known as adhesion or bomd which canses the two materials to act together and fom a true combination. This legal point may need some disursion.

## Macomber <br> Refering to Pined Law of Patents:

". dCiREGATION: The distinctom botween atn agerrogtion and at true combination is not always chatr. The math test lios in examination of the result-the fumetion performed. If that result is the sum of the several atetoms of the elements, it is an argergation; if it is the product of those atetions-if the action of one element so modifies the action of another that the resultant aretion differs from the sum of the sefarate aretions-it is at true combination."

The Circuit Court of the Eighth (ireuit, No. 3801, thus explains the differenee between an aggregation and a combination.
"For example, it is mot insention to take a fire pot from an old stove, a floe from amother and a conal reservoir from a third and assemble them where eath morely ferforms its old function in its new loweatmo." Hailes v Van Wommer, $20 \mathrm{Wa}_{\mathrm{W}} \mathrm{H}$. Bn?.

The error of the view that this is thestate of the rase with a momerete beam or slab may he illustrated as follows: Comsider the case of two planks, one superimposed upen the other, and load them in this position; then the resistanee supplied by the two planks in beuding muler load is the aggeregate resistance of the two planks and is areompanied by the phomone of the lower corners of the upper plank sliding hy the upper comers of the lower plank, as the planks bend under load. In this case the bending resistanee of the planks is the aggregate of the bemeting wesistane of the two elements. and this phemomena of sliding must oreme when the comeneting link of hond shear is lacking between the two phanks. But when by bolting and glueing the two planks together *o that stiding is pervented we seenere sharing rexistane between them, the stifferse of the two planks sen joined beeomes fond fold the aggregate stiffies of the two moder load and the strength is inereased one humderd perent. With this arrangement the two phank no longer form an aggregation, they have beeome a combination with greatly in-
creased efficiency as a load carrying mochansim, and were the combination novel to the art would be patentable.

Now we have pointed out in earlior chapters that the joint action of the two materials in a Mushroom shab, thru bond shear produces a result widely different from the aggregate resistance of the two elements and the same quantities of the two elements have widely different officiencies dependent upon the mannor and arrangement of the reinforcement in the matrix vertically and horizontally, which determines the law or mode of operation of the structures. This consequently is a combination and patentalbe, as held by the experts of the Patent Office.

In the decision handed down by the Lower Court in an Eastern (irevit, the Judge conceduded that a patent on a remforeed concrete structure could only be granted as at patent for an art. The art of burying motal in concrete being ohdor than (hristian civilization, if this decision is eoncurred in bey the higher courts, the United States Patent Offier is placed in the position of having accepted fees in at wholesale mamer for patents on a branch of science or industry not patentable mader the (omstitution, and the tramed experts of the patent Office are open to raticism not for having erred exemsally in granting patents for what had alreaty been in artual use but for inangurating a poliey of acerpting fees upon an modustry which the ruling of the courts holde to be an improper subject matter for patent.

Looking at the decision of the Court of Appeals, referred to in another light, if the strength of comoreto and reinforeement is an ageregation and hond shear plays mo part in the mode of operation of the structure then the terehmeal men of the Patent Office are in pror in granting patents on alleged improvements which must from their very nature as an agoreation be absolutely useless.

This conclusion would seem, however, to be incorrect, for the reason that the Examiners in Chief and the (ommissioner of Patents maugurating this practice, are tramed experts in their particular branches, while the training of the Federal Judiciary is along legal rather than along techmieal lines. Further, the humbeds of millions of dollars of reinfored concote construction show that it is commerrially valuable and useful. Any opinion which involves a hypothesis to the contrary is acootingly eroneous and untenable.

In the specifie instances cited, while these decisions are not in accord with the general tenor of rulings by Federal Conrts, never-
theless, a comparison of the efficiency of the present method of court procedure in deciding terhnical eauses where the judge is trained along legal lines in contradistinction to one trained along technical lines in the particular branch under which the case eomes may not be amiss.

One engineer thus describes the operation of the Federal Courts: After two rears' time, at an expense of fifteen to twenty thonsand dollars, the probability is that the litigant will secure in a complicated case, a decision from some Court of Appeals which he implication convers to the expert the mavoidable conclusion that the law of gravitation and conservation of energy is held he the Court to be inoperative or unconstitutional in this particular branch of seience. Persererence and continned effort for two or three years more may secure an opposing derision in another cireuit and then he earrying the matter to the Supreme C'ourt of the L'nited states, in the course of cight or ten years from the date of filing the original suit, a decision will very likely be rendered in acoordance with fixed natural laws.

The juticiary, howerer, are not really to be blamed for this state of affiairs. They perform their appointed task as best they may.

Should a structural engineer be requented by his employer. first to report on a complicaterl question of inorganic chemistry, then upon a metallurgical question, and then on a merhamical proposition entirely outside of his special line of busincss, in the samt month, he would deedine to undertake the work and conclude that his employer was non compos mentix, and resign his mgagement. The employer of the Federal Judges in this rase is the I nited States Comgress which has exhbited in its provision for the adpudication of techmieal cases a lack of caparity in kreping with its lazek of technieal knowledge. The sysem inaugurated hy ond ('mgress is incomparably bat. It provides the same judge or man learned in law to try a rase involving compliated questions of structural dasign as to deride eomplicated questions in the chemister of dres. It provides a judge qualified by learning in law only to decide motathargical questions and to deride all mamere of eperial lewhnieal and mechanieal questions which it would serem mast $t r y$ his pationere to the extreme, for he is supposed to fimel the time to stmely and digest all the sedentifie principles that mat bo involved in the fuestion at issue presented by the one side amd the dever misleading evidence
of experts on the other side, specially designed to confuse rather than clear up the question of fact at issue.

In this eommection a eomparison of the relative efficiency of a seientific expert as a juctere with the judge qualified by ordinary legal training will (mphasize the point above made.

The disenssion of the entire prior art and the technieal prineiples involved are brought into quastion in the course of an interference he a motion for diswolution in the Patent Office. Such a motion is usually disposed of in from three to six hours argument before the expert examiner as judge. It is needless to say that no principles of mementary mechanics nor any digest of the theoretieal primeiples nerd be presented to such a judge. He would be thoroly familiar with those prinedples, and hence in two to four hours the same gromal would be eovered as would be eovered in two to four yeare time in deciding the same duestions before the Feeteral Jurliciary.

The welative officience from the stamdeoint of rost may be compared without exagereation hy aring that where it would cost dollars in deciding a question before a teremical jurger. it costs am "epual mumber of thonsambs of dollans to deodele the points at issume before the Federal dudiciary in any ease which involves mechanieal primeiples that are in the least eomplieaterd.

Thas by establishing am masientific system, (omgress hat to a large degree mullified the intent of the ('onstitution in its attempt to drourage the poor hat worthy inventor and hy its provisions for his bemofit, has remered a patent a luxury for the wealthy only, a privilege entitled to respect only in proportion to the bank aceount of the holder. 'The walthy piratical infringer under the present system experts to wear out the desorving inventor by the expense Which is necessarily involved in carrying wat this emmbersome syotem of enforemg his rights, and in the opportumity which this system offers for bringing fakr suits on patents which are worthless and morely alleged to apply to the sulbect matter of the improvement for the purpose of arippling the inventor from the finameial standpoint.

As the the apparent fotal absenee of systematic provision for rendering just juticial deedsions of techmical questions as outlined in the preceding diseussion were in fact lacking in some particulars that might prevent it from heing as bat as could possibly be devised,

Congress has provided that there shall be nine different independent fecteral circuit courts earh to be local and provincial in its chatactere, and ommipotent in its own district. But the dedisions of no one court are of binding forer in any other district. No patent court of appeak exists which may remeler a decision in a single suit once and for all for the country at large in the interest of simplifieation of legal controversies about patents, exerpt in case of conflicting decisions as previonsty stated. This arrangement tho well devised for the emolument of the legal fraternity is objeetionable in the extreme from the standpoint of the interests of the common citizen.

## INDEX

ADHENJON（sice Bomd） Page
ACGRECiATE
Broken Stome ..... $13,1 \%$
（＇oarsor ageregate ..... 15）
Gravel ..... 13
Projortions ..... 14，3．17
sind ..... 11－13
Specifications for ..... 11
NAAMSN
Crment ..... －$-11,16$
siand ..... 11－13
Strel ..... 34－3s， 40
Strengell of（omeretr ..... $14-17,21,65,69$

B．DRS
1）eformed hars ..... $15-21$
Effert of shatpe of batr on allareson ..... 15
Quality，How determined ..... 36－：37
Roust of bats ..... 1s
sperification for ..... 34－36
BE．AMs
Classification ..... 9.5
（＇ontinumats ..... 916－101
Cottancin Beam Construction ..... 90，119－120
Diagram of $k$ athe $j$ curves ..... $7!$
Diagomal tension ..... s7 43， 112
Eeonomic：dexign ..... 101－10；
$74-78$ Formulas for ..... 9 s
Limiting strel ratios of deed and shatlow be：am－ ..... s1－87
］rerentage of reinforcement ..... s（0）－96
Position of nettral axis ..... 81－ホ＂
Reinfored for compression． ..... 77，96
stamdard notation ..... 73， 74
she：tr． ..... ง7，10s－1t？
ぶirrup ..... 117
Turner＇tye ..... 97
BEARIN゙（i VALIE（）F Noll（Nee Foundations）
BEARIN（：WYIJA ..... 346
BENDIN゙（：MAC＇IHNEN ..... $3 \mathrm{~S}-40$
BENDIN゙（ MOMENTT
As afferted by cont inuity in beams and in slabs ..... $14 \mathrm{~S}-150$
Experimental results illust rating same ..... $14 \mathrm{~s}-1.5$
Fundamental relations of moment magnitudes ..... 146
Infour－way sabs at mids span and support． ..... 146,147
In beams． ..... 97－101
Relation of bending moments and shears ..... 10S，287
True and apparent noment ..... 166,167
BOND Page
Between tonnore and steel ..... 17－21
Between roncrete and different shaped bars ..... 17．14
Between rough sab and finish coat or strip fill ..... 3
Deformed bars ..... $20,21,132-133$
BOND SIIEAR
In blocks ..... $121-123$
In splices． ..... 123－124
In beams． ..... $12+127$
In がかに， ..... 127－130
Nechanics ol ..... 130－132
CALCLLATOON゙
Calculations of strexses and deflections verified beve tests
203－204
Bridge over Tischers（reek，Duluth
253－9（5．）
Comparison of Norcross and Mushroom slathe
20．5，296
20．5，296
Dere and Webber Co．Buikling．，Minneatolis ..... $217,29!$
Ford Buibling，Los Angeles ..... 221，23：
Larkin Building，（＇hicago ..... 219，230，23
Mushroom slab， ..... $2+6-233$
Noreross slah， ..... $236-2+6$
Northwestern Cida－Co．Buidding ..... 22－29
Rectangular panels supported on beams ..... 2，－J－2！．
st．Paul Bread Company Building ..... 1，5，232－23．5
slats resting on beams ..... $293-29.5$
CAsT－TONE ..... $3 \backslash 0,40^{-}, 40 \backslash$
（＇EILIN゙（i，ぶかPENDED） ..... 396
CEMENT
Composition ..... $!$
Influence of fineness ..... $!$
Proportions in concrete ..... 14
Quick tests ..... ！
soundness ..... 10
standard specifieation ..... S，！
storage of ..... 11
（＇ENTERIN（：
Column forms ..... 4． .46
Design of ..... 13
Kimel，wood or sheet mestat ..... 1.5
Partial removal of forms． ..... $32-3+47,4$
Proportioning posts and joists ..... 42
saving in rentering hy using rich eonerete ..... 347
sheet metal forms ..... 4．） 17
Wood forms ..... 41
（（1）LIMNビ
Bach＇s tests ..... 311 ：316
Concrete and struetural rolmmes eompared ..... 32
Comsidere formula ..... ：317 ：31
Ecomomio dexign of ..... 3：3！
Effect of vertical reinforement and hoopsing ..... $306-307,: 320,23\}$
Formula based on kind of bearing ..... 324
Formular for Withey＇：（＇olumns ..... 321,325
Gieneral trues ..... ：30：＇：311；
Aosle of operation of vertical sted ..... $\because 20$
Necersary fireroofing ..... 
Phoenixville tests ..... $30-310,316$
bomring columbs． ..... －．5． 111
Siale upper limit of working stress ..... 319
COLUMN゙ーContimmed Page
spatcing ..... 343
Structural columms with concrete ..... 327
Temperature efferts on cotumns． ..... 329
Wall columber ..... 328， 329
Wither＇s tests ..... 322， 323
Working stresses ..... 326
COMTPARINON
Bean the．ny and sab theory ..... 237
Conerete and st ruetural columms ..... 327
Concrete and terra cotta ..... 368
Continnity in beams and sabs． ..... $148-151$
Cost of summer and winter work ..... 362
Defleetion of diagonal and direet beets ..... 145
Fire resist ance of eonerete and tile ..... 368－371
Limiting ste⿻日禸 ratios，leep and shallow treams ..... $8.4-88$
Limiting stombratios，thick amd thinstaths ..... 295， 296
Moment curve in stab and beam ..... 135
Norross and Mashroom shab tests ..... 236
Slab action amb areh action ..... $65,264,265$
Stifiness of beam and sab ..... 139－144
Terst data for eollumme ..... 32.2
Two－way and folm－w：s sabs ..... 276，277
COMPITATION
By propertion ..... 53－55
By the therry of work ..... 115， 116
By equilibrimm of infinitesimal elements of shat ..... 170－172
（ONCDETE
dergerate$11-15,347$
letistir finish
Atipple coat ..... 397
Pastor conat ..... 345
Brushing amd washing ..... 399－405
Tooling ..... 406
Compmessive strength ..... $14-17,21,65$
Coedlicient of expatasion ..... 17，114
Consisterncy ..... 24
（razing，hair cracks，ote ..... 379， $3 \times 0$
（ Bring ..... $15,16,409,410$
Deformation umber repeated loading ..... 70－72 ..... 69－73，s？
Elastie properties
Effect of temperature and moistmere ..... 21，22，32
Effere of oil，grease，wte ..... 381，3世2
Eleat rolysis of ..... 3ณ3， 384
Fireprof mopertios of ..... 364－368
Fire resistane of eomerete and tile eompared ..... 36s－371
Fire tests．336，368， 370
Floor fimish ..... 385－391
Hardening at rifferent temperatures ..... 25－34
Hadening eomponomds ..... 390
Improper matarials． ..... 13，377，378
Method of hathing eoncerete in warm and cold weather ..... 27－34
Mixed dry and tamped ..... $37!$
Mixing ..... 22，23
Partial removal of forms ..... 32
Permanemed of ronerete structures ..... 376
Pouring，proper and improper methods ..... $24,25,411$
Protection of sterl by eonerete from eorrosion ..... 375， 376
Shearing strength ..... 111，11：
Splices and preeantions in cold weather ..... 2．5， 31
Temperature aracks ..... 381
CONCRETE（Continued） Page
Tensile strength．$6!$
Test for harilnes before removal of forms ..... $2.5,2+3,3: 3+12$
Lse of salt in eonerete ..... 24，30
Removal of forms（properi time for） ..... 30 ．34
CON゙DUTT
Proper plar－ing ..... 396
Provision for pipes，plimbing，ete ..... 393
CONSTRLC＂TION
Exechtion of work ..... 409
Harlening of conerete ..... 40： $2-410$
Pouring conciete． ..... 411
Responsibility of the anginerer ..... $412-115$
Responsibility of constructor and moineer superintendent ..... 416
COsT
Adaptability of eonmerete ..... 34
Adrantaqe of concrete for heary builelings ..... 34
Adrantage in lower cont for fire resistance． ..... 34
Advantages of sab over beam eonstruetion ..... $343,3+4$
Amatysis of items of cost，materials，labor，ets ..... $3.51-3.5$
Beating walls rs full concrote skeleton ..... 346
Bending st ex ..... 3.7
（＇entering，relative cost of different types ..... 34．5，3．5－361
（ imber conerete ..... 347,377
（＇oneraters briek exterior walls ..... $3+1 i$
（＇olumn spating ..... 343
（＂olumn hooping ..... 3.7
Dead eharge ..... $360^{2}$
Eeonomic column dexign ..... 230
Eeonomy ley nar of dich mixture ..... 347
Eronomy in selerting aggregate ..... 347
Genmeal data ..... 362,363
Rapid ereetion ..... 3.51
Resistance to shorek ..... 349.3 .50
C R ACK゙ヘshrinkage$379,340,+1!$
signifirature of ..... $37!$ ， $3 \rightarrow 1,416-414$
Trmperature ..... ふ以
DEFLEC＂TION
Defleetion of diagonal and direet bedte，fome way llat skabs ..... 14.5
Deflection of side beatus ..... $3!(0)$
Efferd on deflection of fimish cobat ..... （64，15．t
Elastic amb inclatio deflection，sag ..... $22,26,3: 34,26,5$
Examples of romputation of－
IIamm Brewing（＇o．Stork llouse，St．Patal ..... （ii）
Hoffman Buikling，Milwankee ..... （il
John Deere Plow（ompany lbldg．，（）matha ..... （il
 ..... （i3）
Mimmetpolis Paper Company Buidenge ..... （i2）
smythe Bloerk，Wiehita，Kas ..... （i） 3
stale Jrisom Fatory，stillwater，Mam ..... （i）
Formma for two way sab supported on widers ..... 13，102，2！2，2！ 2
 ..... 294,29

Limits for stem ..... $3.5,: 3$
Limits for contreto（i！） $7=$
Jimits for conlmms at vield point ..... ？21， $2=-$
Moshulus of elastivity of eobmerete ..... 70
Morluhts of elastiodic of sterl ..... （i）
EXPANDED METAL（ACO Reintorement） Page
ENPANSON
Coediciont for＂omereta ..... 17
Coellicient for steed ..... 17
Joints when needed ..... 330
DNPANSHON JOMNT ..... 330

「このTOR OF SAFETY
Nominal ..... 103， 104
Trise ..... 103， 104
FNNEI
Art istir surfaces ..... 397－406
Cement flom fimish ..... 389
Hardening（＇ompommes ..... 390
Mixture of comerete finish ..... 390
Paint on samish ..... 391
Plastar on concreto ..... 394， 395
Wood flow（proper widthe of flooring ） ..... 66，67，358
Stres fill ..... 66，67，358
FIREPROOFIN゙；
Thickures of，for steel ..... 364

ドかのバ
Beam ：and slab ..... （61－65，217，245－291
（ablculation of deflemion（sion（abeulation）Flat sala（serestab）Finish（sore finish）Permisuible delledion297
Relation of span to ：tremghth ..... 54， 5.5
Relation of thicknes to strength ..... 53,54
strip fill388
Tes loads． ..... 105－107
Tile ：mul moneren ..... 299－300
Typer ..... $4!-52$

FolNodTloNs
Bearing on soil，stome cta ..... 331－342
Colunn footing． ..... ：332，333
l＇iles
ldvantages of comerete piles ..... 340
Cast in place，Raymond ..... 335， 336
（＇orrugated pila ..... 339
Driverl ..... 333， 334
s：afe bearing（fomula for） ..... 3＋1，342Simplex．334，337， $33 \varepsilon$
（iRAVEL（Sere Aggregate）
HARDENIN（：COMIPOCND ..... 390
HEATINC：
Heating materials for conerete when neressary ..... 2s，29， 31
Provision for jijes ..... 393， 394
IISTORICAL SKETCHIDevelomment reinfored concrete1－-
INSURANCE Page
Rates on building ..... $31-374$
Rates on contents. ..... 37:3
Rates where surinkler systems are used ..... 30:2,37t
Rates compared with timber construetion ..... 37.3
INSULATION OF ROOFN ..... 3:2
JoINTH
Expansion ..... 2.5, 320
In beams ..... 25, 31
In slabs ..... 25:31
Proper and improper methods of making joint- ..... 25. 2330
LIMIITS
Deflection permiswible ..... 297,294
Siteel ratios ..... (0) ! !
Ratio of clepth to span fors sabs ..... 29\%
Chit stresses in columms ..... $31!$
LANEN (OF INFLECTTON ..... $102,1 \% 3$
MACMINES
Benting ..... 34
Mixing ..... 22,23
Overbead hoppers ..... 2:3
MOMENT
Determining moment, conerete or sted ..... 7. A.3, 20.7
Fundamental relation of moment magnitules ..... 146
Relation of maximum moment to shear ..... 1:34
NOTATION
For flat slabe supported on beams ..... 2n5, 292
For Mushrom :ystem ..... $16 i^{2}-164$
For proportion. ..... -.)-.is
standard for beams. ..... 7:3-7.
PATENTS
Eneouragement to progress by ..... 41s, 4:31
Gemus and aperios patents. ..... 424
Jmportane of invertigating seope of ..... $121-42: 3$
Consequener of infringement ..... 42.5
PLEMBBNG:
Provision for ..... 393
Protertion of lead pipes ..... 393
PROPORTION
(ement and aggregate (see (ondrete)Stength by (Ace Computation)
PILEA (Comerete)
Considère ..... $3: 3$
(iilbroth ..... 33s, 3:3:1
Hemerbique $33: 3$
Raymond ..... 33:1-33:3
Simplex ..... 334, 335, 33:
Siafe loals for ..... 341.352
RERNFORCENAENT
Expmaded metal ..... 301, 302
Lap over supports ..... 112
Size and pacing of rosk ..... 29
Spereification for stem ..... 3431
Stere ratios in beams ..... 7!)-s
stocel ratios in wabs. ..... 2!!
Tile const ruetion ..... 229. 3010
Wire fabric ..... 301.:30
NAN
Analymis of
11
11
Intiuence of size of grains ..... 11, !
Speceification for ..... 11. 1:
SHEAR ア：ロッ
Allowable shearing stresses in beams ..... 111
Allowable shearing stresses in slabs ..... 20
Around the eap ..... 2195.207
Difference in continuous and simple beams ..... 1 ｜ 1
Worizontal in beams ..... Si
Punching shear in beams10ヶ－1111，112
Resistance to shear of reinforeement aromel cap$\because(0), 209$
Resistance of reinforement to shear in continmons beams ..... 95
Resistance of reinforeement to shear in simple beams ..... 117
Strength in，of concrote$11.112,207$
にしいに
Apparent and true bending moments ..... 10．7－169
Approximate theory，fom－way shat supported on eotumms ..... $269-274$
Approximato theory，two－way sath shported on rethmons ..... －2．-276
Areh ：ution in（i．）
（＇omphation，method of siee（＇omputation）
Effect of width of belts13.5
Example of catrulation of stresere and deflertion verified hy axt（Ser Calculation）．


（a）Comerotesterl Prodnets Design ..... $\because 5$
（b）Taylor atur Thompson design ..... 216
（e）With depreseed heads ..... $1.06,1.7$
Flexure and streneth，theory of ..... 15s， 161
Gemerad dillorential equation Lor doflection ..... 172－174
Gieneral differential equation for moment ..... 1711．172
Gemeral dilferential equations，solnion of ..... 17世17．
Notation for stambard type ..... 16i2－164
Notation，reetamgular patnels ..... ごッ，2！2
Poiswon＇s ratio． ..... Ifis， 169
Radial and eiremmferent ial resiliener． ..... 1：36－13．
Sirle amd diagomat belts，deflection at mid span ..... $199-201$
Stresses in eohmom heals，formmatar ..... 1ぶー $19: 3$
Stresese in colmon heads，formada for ..... 1か－193
Streswes in middle area of pamel，formula for ..... $198-196$
stresses in the side belts． ..... $1 \times 1-154$
size and spacing of rods ..... 3！
Steel rations 7．s．
Test data（see（ almatatons）
Theory of stabs mecpuatly reinfored in two direetions
（a）Supported on colimmas． ..... 27 こい
（b）Sinp）ortal on beams． ..... 2，$)^{2}-9 \%$
心てA！R心 ..... $: 31-3!2$
ぶTIRRUPば ..... 117
SCNPENDED（＇EHLIN（is ..... 304
TENSION
Diagonad and indiredt ..... $87-33,112,121-132,1+0$
Birert ..... $\because,-2$
TENT
Mothorl of loading ..... 111．5－107
For defleetion（see defleet ion）
Test of slabs（see slabs）
Testshy Borry Extensometor amd Defleotometer ..... 26i．）－2tis
WORKIN（ ぶTRESSEA
Forsteel ..... 113
For comerete ..... 11.3
For colmoms ..... 318

## DATE DUE




62
TA683
玉先。1
Eddy，Herry Turner， $10 \pm 4-1 y 21$ ．
Concrete－steel constructione by Henry T．Eday arc C．A．P．Turner．
Minneapolis，Printed by the heywood Mfe．Cc．， 1314.

青 $\qquad$


[^0]:     AND EAECLTION OF REINFORCED (ONCRETE

    WORKIN BEILDINGG

[^1]:    "Commenceing at that time (1sisi) athereveleat fommention was ("volved, acomding to which the desien of reinfored eomerete work would be elferted, and theough these prediminary lathors, this methad of eonstruetion was extensively abopoted in (iermany and dastriat. A turnmegroint in its develojment was the Internat
     Fimperser, mblished at that time in regatd to the pasition whele the subject oecuphied.
    
    

[^2]:    "The former of whom, by applying the known principles of mechanics, evolved a system of calculation that has proved remarkably truthful, and the latter of whom, basing his methods of ralculation upon results obtained in praretiee, has also made extremely important contributions to the technical eonsideration

[^3]:    "When properly combined with metal, concrete appears to gain properties wuich do not exist in the material when by itself, and although much has been done by various experimenters in recent years to increase our knowledge on the subject of the elastic behavior of reinforced concrete we are still very far from having a true pereeption of the characteristics of the composite material.
    "It may be that we are wrong from the commencement in attempting to treat it after the manner of structural iron work and that although the proper allowanes for the elastic properties of the dual material is an advancement on the empirical formula at first employed and used by many constructors at the present

[^4]:    

[^5]:    * See Merriman's Mechanies of Materials, Page 273.

[^6]:    * See Marsh, Reinfored Conrrete, 2nd Edition, Page 7 it.

[^7]:    ＊Conerate Plain and Reinforeed，2nd Ed．，1．Зぶロ．

[^8]:    * Concwetested ('onsturtion p. 17.

[^9]:    *Described in a paper by H. T. Eddy, to the American Society of Civil Enginerers, Vol. LAXVII, 1. 133s, 1914.

[^10]:    *Theorie der Elasticität und Festgketit, F. Grashof Berlin 1s7心.

[^11]:    * Turneaure and Nlaurer's Reinforced Concrete Construction 2nd Ed. 1907, p. 210.

[^12]:    * Sio Proc. Am, sior. (". E. Jan. 1914, p. 77.

[^13]:    * The' results of this test were presented by Mr. Lord to the Ninth General Convention of Cement Users. Extracts from his paper appoared in the Cement Era, Jan. 1918, page 53.

[^14]:    

[^15]:    *see Het Cement-Ijzer, stunders. p. 91.
    Eisenbetonban, Mörsch.

[^16]:    *Bulletin of the Cniversity of Wisconsin, No. 466.

[^17]:    *Bulletin No. 466.

[^18]:    *In this notation $b$ is the breadth or diametor of footing.

[^19]:    *Eng. News, March 24, 1904.

[^20]:    *. I mon 19, 1909, page

[^21]:    *Suhstantially the same specifieations are ahmed thruont England and America.

[^22]:    *See Walker on Patents, Art. 1, Chap. 2.
    $\dagger$ Dacomber, Hand Book of Patents.

[^23]:    *Reinforeal Comerete Patents, Willizmson.

