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Conditional and Unconditional Heteroscedasticity
in the Market Model

Abstract

Unlike previous studies, this paper tests for both conditional and

unconditional heteroscedasticities in the market model, and attempts

to provide an alternative estimation of betas based on the autoregres-

sive conditional heteroscedastic (ARCH) model introduced by Engle.

Using the monthly stock rate of return data secured from the CRSP tape

for the period of 1976-1983, it is shown that conditional heterosce-

dasticity is more widespread than unconditional heteroscedasticity,

suggesting the necessity of the model refinements taking the condi-

tional heteroscedasticity into account. In addition, the efficiency

of the market model coefficients is markedly improved across all firms

in the sample through the ARCH technique.





Conditional and Unconditional Heteroscedasticity
in the Market Model

I. Introduction

Over the past two decades, the capital asset pricing model (CAPM)

has heen more widely used in finance than any other model. Inherent

in the CAPM is that capital assets, under some simple assumptions, are

held as functions of the expected means and variances of the rates of

return, and that investors pay only for the systematic risks of capi-

tal assets which are measured by the relationship between the return

on individual assets and the return on the market (e.g., the single-

index market model of Sharpe [14]). However, a number of studies have

raised questions on the validity of the market model to estimate the

systematic risk of financial assets using the ordinary least squares

(OLS) technique. In particular, a significant portion of the previous

studies have focused on the variance structure of the market model

(see for example [1], [2], [4], [5], [6], [8], [91, [12] and [13]).

In the traditional approach, when the mean is assumed to follow a

standard Linear regression, the variance is constrained to be constant

over time. However, many studies have provided strong evidence of

heteroscedasticitv for a number of common stocks not only in the U.S.

market but in the Canadian and European markets and attributed in gen-

eral to model misspecif ication either by omitted variables or through

structural changes. Giaccotto and Ali [10] used two classes of opti-

mal nonparametric distribution-free tests for heteroscedasticity and

applied them to the market model. They found the assumption of

homoscedasticity to be untenable for the majority of stocks analyzed.
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Lehmann and Uarga fll] took issue with Giacotto and Ali's use of

recursive residuals in rank tests in order to provide some information

concerning the stochastic properties of market model regressions.

Nevertheless, most of the previous studies have heen limited to

investigating the existence of heteroscedasticity in the market model

using different statistical tests and rarelv considered estimation of

betas taking heteroscedasticity explicitly into account. Furthermore,

they considered only unconditional variances of the disturbance term,

ignoring the possible changes in conditional variances. Some studies

attempted to find a form of heteroscedasticity in an ad-hoc fashion.

The predominant approach was to introduce an exogeneous variable (the

market return in most cases) which may predict the variance. As

pointed out by Engle [7], this conventional solution to the problem

requires a specification of the causes of the changing variance in an

ad-hoc fashion rather than recognizing that both means and variances

conditional on the information available may "jointly evolve over time.

The purpose of this study is to test for both conditional and

unconditional heteroscedasticities, and provide an alternative estima-

tion of betas based on the autoregressive conditional heteroscedastic

(ARCH hereafter) model, introduced by Engle [7]. The ARCH process is

characterized by mean zero, seriallv uncorrelated processes with non-

constant variances conditional on the past but constant unconditional

variances. This study is different from the earlier ones in some

important aspects. First, using the ARCH model, this study provides

a more realistic measure of betas when the underlying conditional
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variance mav change over Lime and is predicted by the past forecast

errors rather than making conventional assumptions about the distur-

bances. Second, it provides more efficient estimators using the maxi-

mum likelihood method. Third, it does not employ an arbitrary

exogenous variable such as the market return to explain heterosce-

dasticity. Lastly, by the nature of the ARCH process, the effects of

omitted variables from the estimated model, and a portion of non-

normality of the regression disturbance terms, may be picked up.

Section IT describes the model and section III presents empirical

results. Section IV contains a brief summary.

II. Model

Consider the single index market model

R. = a. + 8 .R + E. (1)
it l l mt it

where R. and R , are the random return on security i and the random
it mt J

market return, respectively, in period t; a. and 8. are the regression

parameters of security i; E. is the random disturbance term with
it

E(E. ) = for all i and t. The parameter 8. measures the systematic
it i J

risk of security i and is defined as Cov(R. , R )/Var(R ). One of the
l m m

many assumptions that model (1) is based on is that the disturbances

are homoscedastic.

First, we check for unconditional heteroscedasticity using the

White [15] test which does not assume anv specific form of the hetero-

scedast icitv. Second, we test for conditional heteroscedasticity and
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simultaneouslv attempt to reestlmate the market model with an ARCH

specification.

For ease of exposition, let us put model (1) in a general linear

regression framework in matrix notation:

Y = X 8 + E (2)

(Txl)(Txk)(kxl)(Txl)

with k=2. Let 8 be the OLS estimator. If the E's are homoscedastic

,

then a consistent estimator of the variance-covariance matrix of 8 is

given by

VjCS) = a
2
(X'X)

-1
(3)

where a = E'E/T-k and E's are the OLS residuals.

In the presence of heteroscedescity , a consistent estimator of 8

wi 1 1 be

V
2
(6) = (X'X)"

1

(X'EX)(X'X)"
1

(4)

~ 2 ~ 2 ~2
where E = diag (E , E-, . . . , E

T
).

Under homosecdasticity , these two estimates V.(8) and V„C8), will

converge to the same limit. However, in case of possible heterosce-

dasticity, V.(8) is inconsistent and these two estimators will have

different limits. White's procedure is based on examining the sta-

tistical significance of the limits of the k(k+l)/2 distinct elements of

the matrix V = V (8 ) - V (8). Under the assumption of homoscedast icity

,

2
the test statistic is asymptotically distributed as x with k(k+l)/2

degrees of freedom. One attractive feature of this test is that it
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does not depend on a specific form of heteroscedasticity. Assuming

that the disturbances are homokurtic, the test statistic can be

2 ?
calculated as T*R where R is the coefficient of determination

obtained by regressing the square of the residuals on a constant,

-
2

R and R~ . The test statistic will have 2 degrees of freedom (one
mt mt

less because of the presence of an intercept term in the regression).

Following Engle [7], we assume that the conditional heterosce-

dasticity of the market model can be represented by a first-order ARCH

process (suppressing the suffix i) as:

V(VW =°t -*o +
*i

E
t-i •

<5)

where Y n
> 0, anH < y < 1.

This tvpe of conditional heteroscedasticity has some intuitive

appeal since it does not depend on some arbitrarv exogenous variables

and can be viewed as some average of the square of the past distur-

bances. When Yi = ^» we have conditional homoscedasticity. It can be

easily shown that unconditionally E(E ) = 0, V(E ) = Y /(1~Y,) and

E(E E ,) = for t * t' (see Engle [7] for details). Since we do not

have anv lagged dependent variable in our model, V. (8 ) - V„(B) will

have the same probability limit. Therefore, White's procedure will

test only for unconditional heteroscedasticity, while the test for

Y, = in (5) will provide a test for conditional heteroscedasticity.

It is also important to note that under the ARCH model, the E 's are

uncorrelated but dependent, which is a property of non-normal dis-

tributions .

The log-likelihood function assuming normality is given hv
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T

L = Z (a -\ log a
1 - \ Z

2J°h (6)

t = l

where a is a constant term and E = R - a - 8 R . Using Ouandt's
t t mt

subroutine GRADX of his numerical optimization program 0Q0PT3, we

maximize the function L and obtain estimates of a, 3, Y n
and y..

These estimates of a and 8 are compared with the OLS estimates.

Significance of y, will indicate the presence of conditional

heteroscedasticity. This is tested using t-statistics.

We also test for normality of the disturbances of the OLS and ARCH

models. The test statistic is calculated as:

m r (skewness) (kurtosis-3) ,

T [

- + _ ].

Under normality this test statistic asymptotically follows a central

2
X with 2 degrees of freedom (see Bera and Jarque [3] for detaiLs).

III. Empirical Results

Monthly stock rate of return data was secured from the CRSP tapes

for the period 1976-83 (96 months) for 35 randomly chosen firms with-

out missing values. Market model regressions using the OLS and ARCH

methods were run for each firm. The homoscedasticity and normality

tests statistics also were calculated. The results based on the OLS

regression and the ARCH model are shown in Tables 1 and 2, respec-

tively.

First, from the results on the White test we can observe that only

for ten firms the test statistics are significant at 1% and 5% levels.

This indicates that the unconditional heteroscedasticity may not be

very important. However, all of the normality test statistics are
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significant indicating the presence of strong non-normality. The OLS

results exhibit the familiar strong significance of the beta coef-

ficient, with 33 of the market models having beta t-values significant

at the 1% level. The intercept a terms are, for the most part, small

and insignificant.

The importance of conditional heteroscedasticity and thus the

appropriateness of the ARCH model can be judged from the significance

of 26 y, values in Table 2. It should be noted, however, that the

significance of y . (a test of conditional heteroscedasticitv) in Table

2 has no relation with the earlier test for unconditional heterosce-

dasticitv in Table 1. This is not surprising since they test two

completely different hypotheses. For the ARCH model also, the 33

betas are significant and the significance of several of the inter-

cepts is enhanced. Of particular interest is the change in beta as a

result of the use of ARCH. Fourteen of the 33 firms with significant

OLS betas have increased betas when ARCH is used; nineteen others have

beta reductions. However, most of the changes are small. Nineteen

ARCH model betas change no more than 4 percent up or down from their

OLS counterparts. Six firms' betas increase by 5% or more when ARCH

is used, while eight betas decrease by at least 5%. Only five firms

(14.3% of the sample) have betas change by 10% or more.

The efficiency of the market model coefficients is markedly im-

proved across all firms. The t-values for all the ARCH model betas

are higher than those for the OLS model due to the lower standard

errors of the coefficients. Thus it appears that incorporation of a
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conditional heteroscedastic component results in greater efficiency,

though affecting the parameter estimates themselves slightly. In sum,

the differences between the OLS and ARCH results reveal the importance

of taking account of conditional heteroscedasticity in the market

model.

Lastly, the results on normality tests indicate strong non-

normality of the disturbance terms in the ARCH model. This is what we

should expect because, as pointed out earlier, the ARCH errors are

inherently non-normal or mutually dependent. The ARCH procedure takes

account of this type of non-normality or the dependent structure,

while the OLS procedure (results of Table 1) neglects it. The gain is

reflected in the improved standard errors of a and B in Table 2.

IV. Summary

A number of studies have shown that heteroscedasticity in the

market model is widespread. However, the previous studies have been

limited to investigating the existence of heteroscedasticity using

different statistical tests and rarely considered estimation of betas

taking heteroscedasticity explicitly into account. Furthermore, they

considered only unconditional heteroscedasticity, ignoring conditional

heteroscedasticity. This paper tests for both conditional and uncon-

ditional heteroscedast icities and provides an alternative estimation

of betas based on the autoregressive conditional heteroscedastic

(ARCH) model introduced by Engle. Using the monthly stock rate of

return data secured from the CRSP tape for the period of 1976-1983, it

is shown that conditional heteroscedasticity is more widespread than

unconditional heteroscedasticity, suggesting the necessity of the
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model refinements taking the conditional heteroscedasticity into

account. In addition, the efficiency of the market model coefficients

is markedly improved across all firms in the sample through the ARCH

technique.
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Table 1

Results Based on the Ordinary Least Squares Regression
( t-statistics are in parentheses)

Homoscedasticity*
Firm No. a 8 (White test) NormaliLv*

1 -.002
(-.026)

1.22
a

(7.70)

0.634 36.33
a

2 .003

(0.29)

1.06 a

(4.82)
3.005 22.40

a

3 -.003
(-0.66)

1.02a

(8.72)

1.152 19. 29
a

4 .008 b

(2.10)

0.69a

(8.35)

3.562 21.03
a

5 .002

(0.18)
1.75a

(6.72)

8.774 b 14.72
a

6 .021b

(1.71)

0.07

(0.24)

0.115 14.47
3

7 .009

(1.02)

-0.14
(-0.69)

8.304b 22.72
a

8 .012

(1.58)
0.75a

(4.44)
9.053 b 33.81

a

9 .021

(1.43)

1.73 a

(5.31)

0.557 20.79
3

10 .002

(0.33)

1.02a

(6.81)

2.803 23.75
a

1 1 -.001 1.05 a 16.435 3 21.08
3

(-0.15) (7.32)
9.05

b
12 .015 1.87 a 0.701

(1.64) (8.86)
13 .010

(1.34)
0.99a

(5.88)

6.682 b 42.68
a

14 .002

(0.23)

1.07 a

(6.95)
1.123 16. 31

a

15 .010

(1.03)

1.28a

(5.69)

4.848 20.39
a

16 .016

(1.38)

0.77 a

(3.04)
2.131 33.26

a

17 -.006
(-0.85)

1.26a

(8.36)
10.589 a 47.57

a

*x
2

test statistics.

Significant at the VI level; the critical value for t-statistics
2.37 and the critical value for x statistics = 9.21.

Significant at the 5% level; the critical value for t-statistics
1.66 and the critical value for x statistics = 5.99.



Table 1 (con't.

)

Results Based on the Ordinary Least Squares Regression
( t-statistics are in parentheses)

Homoscedasticitv*
Firm No. a B (White test) Normal i ty

18 -.003
(-0.37)

0.96 a

(5.92)

3.907 40. c>7
a

19 .006 1.08a 0.816 21.74
a

(0.67) (5.18)

7.73
b

20 .010 0.76a 0.701

(1.20) (4.25)
0.97

a
21 .001 4.080 32.42

a

(0.18) (6.54)
22 .003

(0.47)
0.88a

(5.74)

2.390 44.86 a

23 .009

(1.08)
1.95a

(10.41)
13.834 3 33.27

a

24 .009

(1.31)
0.83a

(5.13)

11.539 a 37.97
a

25 -.001

(-0.08)
1.31a

(6.21)
2.688 33. 19

a

26 .008

(1.25)

0.83a

(5.90)

9.907 a 13.64
a

27 .006

(1.00)

0.89a

(6.74)
5.126 25.66

a

28 .002

(0.40)
0.58a

(4.55)
0.048 19.31

a

29 .011

(0.68)

0.94a

(2.68)

4.0^0 36.11
3

30 -.003
(-0.41)

1.05 a

(6.44)
4.906 34.26

a

31 .024 b

(2.30)
1.31 a

(5.64)
3.629 17.40

a

32 ,011 b

(1.77)
1.07 a

(7.80)
4.704 29.44

a

33 .009

(0.97)
1.1 5 a

(5.31)
3.725 38.32 a

34 .023 a

(2.79)

1.27 a

(6.81)
10.003 3 18.21

3

35 .007

(0.76)
1.71 a

(8.72)
2.803 30.63

3

*x
2

test statistics.

a.
Significant at the L% level; the critical value for t-statistics =

2.37 and the critical value for x
2 statistics = 9.21.

Significant at the 5% level; the critical value for t-statistics =

1.66 and the critical value for x
2 statistics = 5.99.



Table 2

Results Based on the ARCH Model
( t-stattstics are in parentheses)

a a
^ » Normality

Firm No. a 8
Y

.003
a

.305
a

Test Statistics*

1 -.003 1.33
a

33.37
a

2

(-.61)
.004

(12.30)
0.95*

(5.90)
.007

a
(2.18)

.172 22.56
a

3

(0.69)
-.003

(6.46)
-0.98 a

(7.09)
.002

a
(1.47)

.142 19.l4
a

4

(-0.095)
.008

a
(12.51)
0.64

a
(7.62)

,008
a

(1.59)
.275

a
20.18

3

5

(3.61)
.002

(12.15)
1.77

a
(6.68)

.010
a

(2.40)
.204 14.49

3

6

(0.23)
.018

b
(10.48)
-0.05

(6.85)
.ou a

(1.61),
.166

b
14.23

a

7

(2.24)
.008

(-0.25)
-.216

(7.83)
.006

a
(1.72)

.106 22.70
a

8

(1.39),
.on b

(-1.59)
.784

a
(8.14)

.003
a

(1.50),
.310

b
33.33

a

9

(2.23)
.023

a
(7.03)
1.74

a
(6.11)

.017
a

(2.29)
.077 20.7 5

3

10

(2.42)
.005

(8.14)
1.02

a
(8.80)

.003
a

(1.30),
.241

b
23.82

a

11

(1.10)
-.003

(10.44)
1.18

a
(6.63)

.003
a

(1.90),
.205

b
15.42

3

12

(-0.82)
.016

a
(12.69)

1.90
a

(7.63)
.007

a
(2.11)

.118 9.09
b

13

(2.51)
.009

(13.64)
0.98

(7.98)
.004

a
(1.44)

.182
b

42.87
a

14

(1.76)
.001

(8.67)
1.03

a
(7.12)

.003
3

(1.84),
.138

b
16.11

3

15

(0.30),
.on b

(10.11)
1.55

a
(8.22)

.005
a

(1.83)
.452

a
19.38

a

16

(1.79)
.017

a
(11.34)

0.72
a

(6.01)
.008

a
(2.99),

.254
b

33.37
a

17

(2.38)
-.007

(4.48)
1.23*

(6.77)
.003

a
(2.15)

.149 47.70
3

(-1.62) (12.44) (6.92) (1.42)

test statistics.

Significant at the 1% level; the critical values for t-statistics

2.37 and the critical value for x statistics = 9.21.

Significant at the 5% level;„the critical values for t-statistics
1.66 and the critical value for x statistics = 5.99.



Table 2 (cont'd. )

Results Based on the ARCH Model
( t-stat ist ics are in parentheses)

^ » Normality

Firm N'o. a 8
Y

.004
a

Y
l

.142
b

Test Statistics*

18 -.003 0.92
a

40.61
3

(-0.70) (8.45)
1.09

a
(7.74) (1.69),

.273
b

19 .004 .006 21.86
a

(0.75) (8.11) (6.91) (2.18)
7.79

b
20 .007 0.75

3
.003

a
.392

a

(1.45) (6.85) (6.04) (2.65),
.137

h
21 .0008 0.95

a
.003

a
32.61

a

(0.17) (9.65)
0.89

(7.88) (1.72),
.243

b
22 .003 .003

a
44.96

a

(0.70) (8.98) (5.68) (1.69),
.221

b
23 .006 1.80

a
.005

a
33.43

a

(1.17) (14.57) (7.17) (2.20)
.224

h
24 .011

b 0.84
a

.no3
a

37.94
a

(2.29) (7.86)
1.29

a
(6.55) (1.96)

.18325 -.00003 .006 32.39
a

(-0.005) (9.39) (7.25) (1.81)
26 .004 0.89

a
.002 .506

a
14.08

a

(1.14) (10.18) (6.10) (3.04)
.357

b
27 .006 0.82

a
.002

a
25.69

a

(1.62) (9.79)
0.68

(6.04) (2.19),
.244

b
28 -.0009 .002

a
16.43

a

(-0.03) (8.15) (7.42) (2.33) u
.138

b
29 .006 0.90

a
.018

a
36.48

a

(0.60) (3.87) (7.88) (1.71)
30 -.002 1.09

a
.004

a
.117 34.45

a

31

(-0.33)
.024

a
(10.07)

1.20
a

(8.12)
.008

(1.62),
.151

b
16.78

3

(3.47) (7.72) (7.98) (1.85)
32 .010

a
0.95

a
.002

a
.343

a
27.83

a

(2.55) (11.09) (6.61) (2.76)
.21033 .008 1.16

a
.006

a
38.16

3

(1.20) (8.03)
1.15

a
(6.55) (1.66),

.243
b

34 .022
a

.005
a

18.17
3

(4.12) (9.39) (6.72) (1.92),
.316

b
35 .004 1.65

a
.005

a
29.86

a

(0.77) (12.64) (6.13) (2.34)

test statistics.

Significant at the 1% level; the critical values
2.37 and the critical value for x statistics = 9.21.

for t-statistics =

Significant at the 5% level; the critical values
1.66 and the critical value for x~ statistics = 5.99.

for t-statistics =
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