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PREFACE.

In the preparation of the following work the object has been to

bring within the compass of one volume of convenient size an ele

mentary treatise on both Conic Sections and Analytical Geometry.

In the first part, the properties of the curves known as the Conic

Sections are demonstrated, principally by geometrical methods
;
that

is, in the investigations, the curves and parts connected with them

are constantly kept before the mind by their graphic representations,

and we reason directly upon them.

In the purely Analytical Geometry the process is quite different.

Here the geometrical magnitudes, themselves, or those having cer

tain relations to them, are represented by algebraic symbols, and we

seek to express properties and imposed conditions by means of these

symbols. The mind is thus relieved, in a great measure, of the ne

cessity of holding in view the often-times complex figures required

in the intermediate steps of the first method. It is, mainly, at the

beginning and end of our investigations that we have to deal with

concrete quantity. That is, after we have expressed known and im

posed conditions, analytically, our reasoning is independent of the

kind of quantity involved, until the conclusion is reached in the

form of an algebraic expression, which must then receive its geo
metrical interpretation.

Much of the value of Analytical Geometry, as a disciplinary

study, will be derived from a careful consideration, in each case, of

this process of passing from the concrete to the abstract and the

7940O7 (ff)



iv PREFACE.

converse, and both teacher and student are earnestly recommended

to give it a large share of their attention.

In both divisions of the work the object has been to present the

subjects in the simplest manner possible, and hence, in the first,

analytical methods have been employed in several propositions when

results could be thereby much more easily obtained; and for the

same reason, in the second division, a few of the demonstrations are

almost entirely geometrical.

The analytical part terminates, with the exception of some exam

ples, with the Chapter on Planes. Three others might have been

added
;
one on the transformation of Co-ordinates in Space, another

on Curves in Space, and a third on Surfaces of Revolution and

curved surfaces in general : but the work, as it is, covers more

ground than is generally gone over in Schools and Colleges, and is

sufficiently extensive for the wants of elementary education. Nu
merous examples are given under the several divisions in the second

part to illustrate and impress the principles.

The Author has great pleasure in acknowledging his obligations

to Prof. I. F. Quinby, A. M., of the University of Rochester, N. Y.,

formerly Assistant Prof, of Mathematics in the United States Mili

tary Academy, at West Point, for valuable services rendered in the

preparation of this treatise, as well as for the contribution to it of

much that is valuable both in matter and arrangement. His thor

ough scholarship, as well as his long and successful experience as an

instructor in the class-room, preeminently qualified him to perform

such labor.

December, 1861.
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CONIC SECTIONS.

DEFINITIONS.

1. A Conical Surface, or a Cone is, in its general accept

ation, the surface that is generated by the motion of a

straight line of indefinite extent, which in its different

positions constantly passes through a fixed point and
touches a given curve.

The moving line is called the generatrix, the curve that

it touches the directrix, the fixed point the vertex, and the

generatrix in any of its positions an element, of the cone.

The generatrix in all its positions extending without

limit beyond the vertex on either side, will by its motion

generate two similar surfaces separated by the vertex,

called the nappes of the cone.

2. The Axis of a cone is the indefinite line passing

through the vertex and the center of the directrix.

3. The intersection of the cone by any plane not pass

ing through its vertex, that cuts all its elements, may be

taken as the directrix
;
and when we regard the cone as

limited by such intersection, it is called the base of the cone.

If the axis is perpendicular to the plane of the base, the

cone is said to be right; and if in addition the base is a

circle, we have a right cone with a circular base. This is the

same as the cone defined in Geometry, (Book VII, Def.

16), and in the following pages it is to be understood that

all references are made to it, unless otherwise stated.

(9)



10- GONIC SECTIONS.

4. Conic Sections are the figures made by a plane cutting
a cone.

5. There are five different figures that can be made by
a plane cutting a cone, namely: a triangle, a circle, an

ellipse, a parabola, and an hyperbola.

HEMARK. The three last mentioned are commonly regarded as

embracing the whole of conic sections
;
but with equal propriety the

triangle and the circle might be admitted into the same family. On
the other hand we may examine the properties of the ellipse, the

parabola, and the hyperbola, in like manner as we do a triangle or a

circle, without any reference whatever to a cone.

It is important to study these curves, on account of their exten

sive application to astronomy and other sciences.

6. If a plane cut a cone through its vertex, and termin

ate in any part of its base, the section will evidently be a

triangle.

7. If a plane cut a cone parallel to its base, the section

will be a circle.

8. If a plane cut a cone obliquely through all of the

elements, the section will represent a curve called an

ellipse.

9. If a plane cut a cone parallel to one of its elements,

or what is the same thing, if the cutting plane and an

element of the cone make equal angles with the base, then

the section will represent a parabola.

10. If a plane cut a cone, making a greater

angle with the base than the element of the

cone makes, then the section is an hyperbola.

11. And if the plane be continued to cut

the other nappe of the cone, this latter inter

section will be the opposite hyperbola to the

former.

12. The Vertices of any section are the points where the

cutting plane meets the opposite elements of the cone,

or the sides of the vertical triangular section, as A and B.
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Hence, the ellipse and the opposite hyperbo
las have each two vertices; but the parabola
has only one, unless we consider the other as

at an infinite distance.

13. The Axis, or Transverse Diameter of a conic

section, is the line or distance AB between the

vertices.

Hence, the axis of a parabola is infinite in length, AB
being only a part of it.

The properties of the three curves known as the Conic

Sections will first be investigated without any reference

to the cone whatever
;
and afterward it will be shown that

these curves are the several intersections of a cone by a

plane.

THE ELLIPSE.

DEFINITIONS.

1. The Ellipse is a plane curve described by the motion

of a point subjected to the condition that the sum of its dis

tances from two fixed points shall be constantly the same.

2. The two fixed points are called

the foci. Thus F, F ,
wefoci.

3. The Center is the point (7, the

middle point between the foci.

4. A Diameter is a straight line

through the center, and terminated both ways by the

curve.

5. The extremities of a diameter are called its vertices.

Thus, DD* is a diameter, and JD and Df are its vertices.

6. The Major, or Transverse Axis, is the diameter which

passes through the foci. Thus, AA e
is the major axis.

7. The Minor, or Conjugate Axis is the diameter at right
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angles to the major axis. Thus, CE is the semi minor

axis.

8. The distance between the center and either focus is

called the eccentricity when the semi major axis is unity.

That is, the eccentricity is the ratio between CA and

CF
CF; or it is

-^7 ; hence, it is always less than unity.

The less the eccentricity, the nearer the ellipse approaches
the circle.

9. A Tangent is a straight line which meets the curve

in one point only; and, being produced, does not cut it.

10. A Normal to a curve at any point is a perpendicular
to the tangent at that point.

11. An Ordinate to a Diameter is a straight line drawn
from any point of the curve to the diameter, parallel to a

tangent passing through one of the vertices of that diame

ter.

REMARK. A diameter and its ordinate are not at right angles,

unless the diameter be either the major or minor axis.

12. The parts into which a diameter is divided by an

ordinate, are called abscissas.

13. Two diameters are said to be conjugate, when either

is parallel to the tangent lines at the vertices of the other.

14. The Parameter of a diameter is a third proportional
to that diameter and its conjugate.

15. The paramater of the major axis is called fhe prin-

cipal parameter, or latus rectum ; and, as will be proved, is

equal to the double ordinate through the focus. Thus
F f

G- is one half of the principal parameter.

16. A Sub-tangent is that part of the axis produced, which

is included between a tangent and the ordinate, drawn

from the point of contact.

17. A Sub-normal is that part of the axis which is includ

ed between the normal and the ordinate, drawn from the

point of contact.
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PROPOSITION I. PROBLEM.

To describe an Ellipse.

Assume any two points, as F and

F and take a thread longer than

the distance between these points, A

fastening one of its extremities at

the point F and the other at the

point F . Now if the point of a pencil be placed in the

loop and moved entirely around the points F and F*
,
the

thread being constantly kept tense, it will describe a curve

as represented in the adjoining figure, and, by definition

1, this curve is an ellipse.

PROPOSITION II.-THEOREM.

The major axis of an ellipse is equal to the sum of the two

lines drawnfrom any point in the curve to the foci.

Suppose the point of a pencil at

D to move along in the loop, hold

ing the threads F D and FD at A
(

equal tension
;
when D arrives at

A, there will be two lines of threads

between F and A. Hence, the entire length of the threads

will be measured by F F+%FA. Also, when D arrives

at A
, the length of the threads is measured by FF +

ZF A .

Therefore, . FF f+ZFA=FF +2F A i

Hence, ... . FA=F A
From the expression FF +^FA, take away FA, and

add F A
,
and the sum will not be changed, and we have

Therefore, . F D+FD=A A
Hence the theorem ;

the major axis of an ellipse, etc.

2
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PEOPOSITION III . T H E B E M

An ellipse is bisected by either of its axes.

LetF, F* be the foci,AA the ma
jor and BBf the minor axis of an

ellipse ; then will either of these A
axis divide the ellipse into equal

parts.

Take any point, as P in the el

lipse, and from this point draw ordinates, one to the ma
jor and another to the minor axis, and produce these or

dinates, the first to P
,
the second to

P&quot;, making the parts

produced equal to the ordinates themselves. It is evident

that the proposition will be established when we have

proved that P and P are points of the curve.

First. Fis a point in the perpendicular to PPf at its

middle point; therefore FP =FP (Scho. 1, Th. 18, B. 1

Geom.) for the same reason FPf=FfP.

Whence, by addition,

FP +FfP =FP+FfP.

That is, the sum of the distances from P to the foci is

equal to the sum of the distances from P to the foci
;
but

by hypothesis Pis a point of the ellipse; therefore Pr
is

also a point of the ellipse, (Def. 1).

Second. The trapezoids P&quot;dCF
,
PdCF are equal, be

cause F C=FC, dP=dP by construction, and the angles
at d and C in each are equal, being right angles ;

these

figures will therefore coincide when applied, and we have

PF equal to PF and the angle PFF equal to the angle
PFF . Hence the triangles PF F, PFFf are equal hav

ing the two sides PF
,
F Fsmd the included angle P&quot;FF

in the one equal, each to each to the two sides PF, FFf

and the included angle PFF in the other.

Therefore, PF +P&quot;F=PF +FP
That is, the sum of the distances from P&quot; to the foci is
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equal to the sum of the distances from P to the foci, and

since P is a point of the ellipse P&quot; must also be found on

the ellipse.

Hence the theorem
;
an ellipse is bisected, etc.

PROPOSITION IV. THEOREM.

The distance from either focus of an ellipse to the extremity

of the minor axis is equal to the semi-major axis.

Let AA 1 be the major axis, J^and

F the foci, and CD the semi-minor

axis of an ellipse ;
then will FD= A

|

FD be equal to CA.

Because F C= CF and CD is at

right angles to F F, we have FfD=FD.
But, FD+FD=A A
Or, 2FD=A A
Therefore, FD=A A, or CA.

Hence the theorem
;

the distance from either focus, etc.

SCHOLIUM. The half of the minor axis is a mean proportional

between the distance from either focus to the principal vertices.

In the right-angled triangle FCD we have

But, FD=AC
Therefore, ~CD

2=AG^ FO*
=(AC+FC}(ACFC)
=AF XAF

Or, AF: CD=CD : FA

PROPOSITION V. THEOREM

Every diameter of an ellipse is bisected at the center.

Let D be any point in the curve, and C the center.

Draw DC, and produce it. From F draw jF
7 17 parallel;
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to FD; and from F draw FD par
allel toF D. The figureDFD F is

aparallelogram by construction; and

therefore its opposite sides are equal.

Hence, the sum of the two sides

FD and D Fis equal to FD and DF; therefore, by def

inition 1, the point Df
is in the ellipse. But the two di

agonals of a parallelogram bisect each other
; therefore,

DC=CDr

,
and the diameter DDr

is bisected at the center,

(7, and DD represents any diameter whatever.

Hence the theorem
; every diameter, etc.

Cor. The quadrilateral formed by drawing lines from

the extremities of a diameter to the foci of an ellipse, is

a parallelogram.

PROPOSITION YI. THEOREM.

A tangent to the ellipse makes equal angles with the two

.straight lines drawn from the point of contact to the foci.

Let F and Ff be the foci and

D any point in the curve. Draw
FD and FD, and produce FD
to //, makingDHDF, and draw

FH. Bisect FHin T. Draw TD
and produce it to t.

Now, (by Cor. 2, Th. 18, B. I, Geom.), the angleFDT=
the angle HDT, and HTD=its vertical angle F Dl

Therefore, FDT=F Dt.

It now remains to be shown that Tt meets the curve&quot;

only at the point D, and is, therefore, a tangent.
If possible, let it meet the curve in some other point,

as
t,
and draw Ft, tH, and F t.

(By Scholium 1, Th. 18, B. I, Geom.) Ft=tH.

To each of these add F t;

Then, F t-}-tH=F t-{-Ft
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But F t and tH are, together, greater than F 1

H, because

a straight line is the shortest distance between two points ;

that is, F t and Ft, the two lines from the foci, are, together,

greater than FH, or greater than F D+FD; therefore, the

point t is without the ellipse, and t is any point in the line

Tt, except D. Therefore, Tt is a tangent, touching the

ellipse at D; and it makes equal angles with the lines

drawn from the point of contact to the foci.

Hence the theorem
;
a tangent, etc.

Cor. The tangents at the vertices of either axis are

perpendicular to that axis
; and, as the ordinates are par

allel to the tangents, it follows that all ordinates to either

axis must cut that axis at right angles, and be parallel to

the other axis.

SCHOLIUM 1. From this proposition we derive the following

simple rule for drawing a tangent line to an ellipse at any point :

Through the given point draw a line bisecting tlie angle included

between the line connecting this point with one of the foci and the

line produced connecting it with the other focus.

SCHOLIUM 2. Any point in the curve maybe considered as a point

in a tangent to the curve at that point.

It is found by experiment that rays of light, heat and sound are

incident upon, and reflected from surfaces under equal angles ;
that

is, for a ray of either of these principles the angles of incidence and

reflection are equal. Therefore, if a reflecting surface be formed by

turning an ellipse about its major axis, the light, heat, or sound

which proceeds from one of the foci of this surface will be concen

trated in the other focus.

Whispering galleries are made on this principle, and all theaters

and large assembly rooms should more or less approximate this figure.

The concentration of the rays of heat from one of these points to

the other, is the reason why they are called the foci or burning

points.

9* T&amp;gt;
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PEOPOSITION YI I. THEOREM.

Tangents to the ellipse, at the vertices of a diameter, are par
allel to each other.

Let DD be the diameter, and F
and F the foci. Draw F D, F D ,

FD, and FD .

Draw the tangents, Tt and Ss, one

through the point D, the other

through the point D1
. These tan

gents will be parallel.

By Cor. Prop. 5, F D FD is a parallelogram, and the

angle F D F is equal to its opposite angle, F DF.
But the sum of all the angles that can be made on one

side of a line is equal to two right angles. Therefore, by
leaving out the equal angles which form the opposite an

gles of the parallelogram, we have

sDfFf+SWF=tDFf+ TDF
But (by Prop. 6) sD F =SD F-, and also tDF = TDF;

therefore, the sum of the two angles in either member of

this equation is double either of the angles, and the above

equation may be changed to

2SD F=2tDF or SD F^tDF
But DF and D F are parallel; therefore SD F and

tDF are, in effect, alternate angles, showing that Tt and
Ss are parallel.

Cor. If tangents be drawn through the vertices of any
two conjugate diameters, they will form a parallelogram

circumscribing the ellipse.

PROPOSITION YIII. THEOREM.

If, from the vertex of any diameter of an ellipse, straight

lines are drawn through the foci, meeting the conjugate diameter,

the part of either line intercepted by the conjugate, is equal to one

half the major axis.
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Let DD be the diameter, and Tt

the tangent. Through the center

drawEEf

parallel to Tt. DrawFD
and DF, and produceDF to K; and

from F draw FG parallel to EEf

or Tt.

2Tow, by reason of the parallels, we have the following

equations among the angles :

tDG=DGF\ A] ( tDG=DHK
TDF=DFG J

But (Prop. 6) WG= TDF;
Therefore, DGF=DFG;
And, DHK=DKH
Hence, the triangles DGF smd DHK are isosceles.

Whence, DG=DF, and DH=DK.
Because HCia parallel to FG, and F C=CF,

therefore, FfH=HG
Add, DF=DG

and we have FfH+DF=DH
But the sum of the lines in both members of this equa

tion is F D+DF, which is equal to the major axis of the

ellipse; therefore, either member is one half the major

axis; that is, DH, and its equal, DK, are each equal to

one half the major axis.

Hence the theorem
; iffrom the vertex of any diameter, etc.

PROPOSITION IX. THEOREM.

Perpendiculars from the foci of an ellipse upon a tangent,

meet the tangent in the circumference of a circle whose diame

ter is the major axis.

Let F
,
F be the foci, G the center of the ellipse, and D a

point through which passes the tangent Tt. Draw F D
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and FD, produce F D to H, mak- -N H
ing DH=FD, and produce FD to

G, makingDG=F D. Then jF .ff

and FG are each equal to the major
axis, A A.

Draw FH meeting the tangent in
A

T and FG meeting it in t. Draw
the dotted lines, CT and Ct.

By Prop. 6, the angle .FDT^the angle F*Dt; and since

opposite or vertical angles are equal, it follows that the four

angles formed by the lines intersecting at D, are all equal.

The triangles DF&quot; G and DHF are isosceles by con

struction
;
and as their vertical angles atD are bisected by

the line Tt, therefore F t=tG, FT= TH, and FT and F t

are perpendicular to the tangent Tt.

Comparing the triangles F GF and F Ct, we find that

JFCis equal to the half ofF F, andF
t,
the half ofF G;

therefore, Ct is the half of FG- ; but A A=FG; hence,

Ct=\A A=CA.
Comparing the triangles FFH and FCT

9
we find the

sides FH and FFf cut proportionally in T and C;

therefore, they are equi-angular and similar, and CT is

parallel to F H, and equal to one half of it. That is, CT
is equal to CA ; and CA, CT, and Ct are all equal ;

and

hence a circumference described from the center (7, with

the radius CA
9
will pass through the points T and L

Hence the theorem: perpendicularsfrom the foci, etc.

PROPOSITION X. THEOREM.

The product of the perpendiculars from the foci of an

dlipse upon a tangent, is equal to the square of one half the

minor axis.

Produce TC and GFf

,
and they will meet in the circum

ference at S; for FT and F t are both perpendicular to
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H
the same line Tt, they are there

fore parallel ;
and the two triangles,

GFTand CF S, having a side, FC,
of the one, equal to the side, CF ,

of the other, and their angles equal,

each to each, are themselves equal.

Therefore, CS=CT, S is in the cir

cumference, and SFf FT.

&quot;Now, since A A and St are two lines that intersect each

other in a circle, therefore (Th. 17, B. 3U, Geom.),
SFf xF t=A F xF A;

Or, FTxF t=A F xF A.

But, by the Scholium to Prop. 4, it is shown that

A F xF A= the square of one half the minor axis.

Therefore, FTxF1 1= the square of one half the minor

axis.

Hence the theorem
;
The product of the perpendiculars, etc.

Cor. The two triangles, FTD and F tD, are similar,

and from them we have TF : F t=FD : DF ; that is,

perpendiculars let fall from the foci upon a tangent, are to

each other as the distances of the point of contactfrom the foci.

PROPOSITION XI. THEOREM.

If a tangent, drawn to an ellipse at any point, be produced

until it meets either axis, and from the point of tangency an

ordinate be drawn to the same axis, one half of the axis will be

a mean proportional between the distances from the center to

the intersections of these lines with the axis.

Let Tt be a tangent at any

point in the ellipse, as P.

Draw F P &n&FP,F and

F being the foci, and produce ^~^ c G F A
F P to Q, making PQ=PF; join T,Q, and draw PG
perpendicular to the axis AA .
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The triangles PFT and PTQ are equal, because PT is

common, PQ=PF by construction, and the
|__ TPF=

the angle [_ TPQ (Th. 6).

Therefore, TP bisects the angle FTQ, and QT=FT.
As the angle at T7

is bisected by TP, the sides about

tliis angle in the triangle F TQ are to each other, as the

segments of the third side, (Th. 24, B. H, Geom.)
That is, F T : TQ : : F1P : PQ
Or, F T : FT: : F P : PF
From this last proportion we have (Th. 9, B. II, Geom.),

F T+FT: F TFT : : F P+PF : F P PF
Or, since F T+FT=2CT and F P+PF=*2CA,
by substitution we have

2CT: F F : : 2 CM : FPPF (1)

Again, because PG is drawn perpendicular to the base

of the triangle F PF, the base is to the sum of the two

sides, as the difference of the sides is to the difference of

the segments of the base, (Prop. 6, PI. Trig.)

Whence, F F : FP+PF : : FPPF : 2CG- (2)

If we multiply proportions (1) and (2), term by term,

omitting in the resulting proportion the factor F F, com
mon to the terms of the first couplet, and the factor

F P PF, common to the terms of the second couplet,

we shall have

2CT-.2CA ::2CA:2CG
Or, CT : CA:: CA : CG
In like manner it may be proved that

Ct : CB :: CB-.Cg
Hence the theorem

; If a tangent, drawn to an ellipse, etc.

PROPOSITION XII.-THEOREM.

The sub-tangent on either axis of an ellipse is equal to the

corresponding sub-tangent of the circle described on that axis as

a diameter.
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Let P be the point of tan-

gency of the tangent line Tt to

the ellipse, of whichAA is the

major axis and the center.

Draw the ordinate PG to this

axis, and produce it to meet A c^~ G~

the circumference of the circle described on AA 1 as a

diameter, at J5, and draw EC and BT, T being the inter

section of the tangent with the major axis
;
then will the

line BT be a tangent to the circumference, at the point B.

By the preceding theorem we have

CT : OA : : GA : CG
And since GA= CB, this proportion becomes

CT: CB: : CB : CG
Hence, the triangles CBT and CBG have the common

angle (7, and the sides about this angle proportional ; they
are therefore similar (Cor. 2 Th. 17, B. II, Geom.). But
CB G- is a right-angled triangle; therefore, CBT is also

right-angled, the right angle being at B. Now, since the

line BT is perpendicular to the radius CB at its extrem

ity, it is tangent to the circumference, and G-T is there

fore a common sub-tangent to the ellipse and circle.

If a circumference be described on the minor axis as

a diameter, it may be proved in like manner that the

corresponding sub-tangents of the ellipse and circle are

equal.

Hence, the theorem
;

The sub-tangent on either axis, etc.

SCHOLIUM 1. This proposition furnishes another easy rule for

drawing a tangent line to an ellipse, at any point.

RULE. On the major axis as a diameter, describe a semi-circum

ference, and from the given point on the ellipse draw an ordinate to

the major axis; draw a tangent to the semi-circumference at the

point in which the ordinate produced meets it. The line that con

nects the point in which this tangent intersects the major axis with the

given point on the ellipse, will be the required tangent.



24 CONIC SECTIONS.

SCHOLIUM 2. Because CBT is a right-angled triangle,

=G
;

\&amp;gt;M.tA G-AG=BG*
Therefore, CG GT=A G AG

PROPOSITION XIII. THE OEEM.

The square of either semi-axis of an ellipse is to the square

of the other semi-axis, as the rectangle of any two abscissas of

the former axis is to the square of the corresponding ordinate.

From any point, as P, of the

ellipse of which C is the center,

AA the major, and BBf the

minor axis, draw the ordinate

PG to the major axis; then

it is to be proved that

~CA* : ~CB* : : AG GA : PG&quot;

Through P draw a tangent line intersecting the axes

at Tand t ; then, by Prop. 11, we have

CT:: CA:: CA: CG

&quot;Whence, CT&amp;gt;CG=CA

and by multiplying both members of this equation by
CG, it becomes

dich may be resolved into the proportion

CA
2

:CG2

::CT:CG
From this we find, (Cor. Th. 8, B. H, Geom.),

ZS2
: Ol2 W-2

:: CT: GT (1)

Again, drawing the ordinate Pg to the minor axis, we
have

Ct: CB:: CB: Cg or PG
Whence, Ct PG=CB2

Multiplying both members of this equation by PG, it

becomes
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a - P 2=OB2
-P

from which we have the proportion

CB 2
: PG* : : Ct : PG

By similar triangles we have

d : PG:: GT: GT
And, since the first couplet in this proportion is the

same as the second couplet in the preceding, the terms of

the other couplets are proportional.

That is, W-.PG2

:: CT: GT (2)

By comparing proportions (1) and (
2
), we obtain

Cff .PG i .OA
2

: CA2 CG
2

(3)

But CA
2

C(?=(CA+ CG) (CACG)=A G AG-,

Whence, by inverting the means in proportion (3) and

substituting the values of CA CG
,
we have finally

or, CA
2

:W : : AG AG : PG*

By a process in all respects similar to the above, we will

find that

Hence the theorem ;
the square of either semi-axis, etc.

SCHOLIUM 1. From the theorem just demonstrated is readily

deduced what is called, in Analytical Geometry, the equation of the

ellipse referred to its center and axes. If we take any point, as P
9

on the curve, and can find a general relation between A G and PG
9

or between CG- and PG, the equation expressing such relation will

be the equation of the curve. Let us .represent CA, one half of

the major axis, by A }
and CB, one half of the minor axis, by B ;

that is, the symbols A and B denote the numerical values of these

semi-axes, respectively. Also, denote the CG by x, and PG by y,

then A G=A-\-x, and AG=A x-
}
and by the theorem we have

J. :
2

: : (A+x) (Ax) :/
Whence,

Or,

3
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This is the required equation in which the variable quantities,

x and y, are called the co-ordinates of the curve, the first, x, being

the abscissa
j
and the second, y, the ordinate; the center C from

which these variable distances are estimated, is called the origin of

co-ordinates, and the major and minor axes are the axes of co-ordinates.

Had we donoted A G by x
}
without changing y, then we should

have AG=2A x,

And J.
2

: B* : : (2A ) x :
y&amp;gt;

B*
Whence, y*=~(2Ax x2

),
which is the equation of the ellipse

JO.

when the origin of co-ordinates is on the curve at A .
*

SCHOLIUM 2. If a circle be described on either axis of an ellipse

as a diameter
j
then any ordinate of the circle to this axis is to the

corresponding ordinate of the ellipse, as one half of this axis is to

one half of the other axis.

Retaining the notation in Scholium 1, and producing the ordinate

PG to meet the circumference described on A A as a diameter, at

jP, we have, by the theorem,

A* : B2
: : (-4+*) (Ax) : y*

But

&quot;Whence,

Or,

That is,

(A+x) (Ax) = GP
A* :*:
A :B: .GP r

\y
GP : y : : A : B

By describing a circle on BB f
as a diameter, we may in like

manner prove that pg : Pg : : B : A

PROPOSITION XIV.-THEOREM.

The squares of the ordinate to either axis of an ellipse are

to each other, as the rectangles of the corresponding abscissas.

B Let AA f be the major, and BB
the minor axis of the ellipse, and

jF6r, P Gr any two ordinates to

the first axis. Denoting CGr by
by x, CG by x

,
PG byy and

P 6r by y
f

,
we have, by Scho. 1,
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Prop. 13, A*y* + B *x 2=A 2JB2

and A*y
f* + B2x *=A*B*

J3 2 B*
Whence, y*=-(A*x*)=(A+x) (Ax) (1)

and y****J&^*)-^A+x?) (Ax
f

)
(2)

Dividing equation (1) by equation (2), member by mem
ber, and omitting the common factors in the numerator

and denominator of the second member of the resulting

equation, it becomes

y\(A+x] (A-x)
y

* (A+x )(A x f

)

By simply inspecting the figure, we perceive that A+x
and A x represent the abscissas of the axis AA

,
corres

ponding to the ordinate y ; and A+x ,
and A x those

corresponding to the ordinate y .

By placing the two equations first written above, under

the form

and proceeding as before, we should find

a? (+y)(S-y)

in which B+y, B y are the abscessas of the axis

corresponding to the ordinate xCG=Pg ,
and

J3 y are those corresponding to the ordinate # = CG f=
P

g&amp;gt;.

Hence the theorem
;

the squares of the ordinates, etc.

PROPOSITION XV. THEOREM.

The parameter of the transverse axis of an ellipse, or, the la-

tus rectum, is the double ordinate to this axis through the focus.
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Let F and Fr be the foci of an

ellipse of which AA and BBf re

spectively are the major and mi-

nor axes.

Through the focus F draw the

double ordinate PP . Then will

PPf be the parameter of the major axis.

We will denote the semi-major axis by -A, the semi-

minor axis by JB, the ordinate through the focus by P, and
?ind the distance from the center to the focus by c.

The equation of the curve referred to the center and

axis, is

If in this equation we substitute c for x, y will become

P, and we have

Transposing the term .B2
^
2
,
and factoring the second

member of the resulting equation, it becomes

A2P2=B* (A
2-*2

) (l)

In the right-angled triangle B CF, since BF=A (Prop.

4) and Bc=B, we have A2
c
2=jB2

.

Replacing A2
c
8 in eq. (1) by its value, that equation be

comes

A2 -P2=J32 -B2

Or, by taking the square roots of both members,

A-P=B-B
Whence, A:B::B:P
Or, 2A:2B::2B:2P

2P is therefore a third proportional to the major and mi
nor axes, and (Def. 14) it is the parameter of the former

axis.

Hence the theorem ;
the parameter, etc.



THE ELLIPSE. 29

PROPOSITION XVI. THEOREM.

The area of an ellipse is a mean proportional between two

circles described, the one on the major, and the other on the mi

nor axis as diameters.

On the major axis AA of the

ellipse represented in the figure,

describe a circle, and suppose this

axis to be divided into any num
ber of equal parts.

Through the points of division

draw ordinates to the circle, and

join the extremities of these consecutive ordinates, and

also those of the corresponding ordinates of the ellipse,

by straight lines. We shall thus form in the semi-circle

a number of trapezoids, and a like number in the semi-

ellipse.

Let 6r/J, G H be two adjacent ordinates of the circle,

and gH gH those of the ellipse answering to them
;
and

let us denote GH by F, G H by F, gHbyy, g H1

by
y j

and the part HHr of the axis by x.

The trapezoidal areas, GHH1G f

, gHHg ,
are respect

ively measured by
y+ F y+y r

^
x and^--z (Th. 34, B. I, Geom.)

But (Prop. 13, Scho. 2)

A:B:: Y:y
::

Y&amp;gt;:y

Hence (Th. 7, B. II, Geom.)

or,

A-.Bi: Y+Y-.y+y

Y+Y/
x

F+F
:

2

y+y

Ifthe ordinates following F, y
f in order, be represented

by F&quot;, #&quot;, etc., we shall also have

3*
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,

That is, any trapezoid in the circle will be to the cor

responding trapezoid in the ellipse, constantly in the ratio

of A to jB; and therefore the sum of the trapezoids in the

circle will be to the sum of the trapezoids in the ellipse

as A is to B; and this will hold true, however great the

number of trapezoids in each.

Calling the first sum S, and the second s, we shall then

have

A:B::S:s

But, when the number of equal parts into which the

axis AA f
is divided, is increased without limit, S becomes

the area of the semi-circle and s that of the semi-ellipse.

Therefore, A : B : : area semi-circle : area semi-ellipse.

Or, A : B : : area circle : area ellipse.

By substituting in this last proportion for area circle, its

value xA2
,
it becomes

A : B : : xA2
: area ellipse.

&quot;Whence area ellipse=7rJ..B,

which is a mean proportional between xA2 and xB2
.

Hence the theorem
;

the area of an ellipse, etc.

SCHOLIUM. This theorem leads to the following rule in mensu

ration for finding the area of an ellipse.

~RuiiE.=Multipli/ the product of the semi-major and semi-minor

axes by 3.1416.

PROPOSITION XVII. THEOREM.

If a cone be cut by a plane making an angle with the base less

than that made by an element of the cone, the section is an el

lipse.

Let VloQ the vertex of a cone, and suppose it to be cut

by a plane at right-angles to the plane of the opposite
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elements, VN VB, these elements

being cut by the first plane at A
and B. Then, if the secant plane
be not parallel to the base of the

cone, the section will be an ellipse,

of which AB is the major axis.

Through any two points, F and

H, on AB
y
draw the lines KL, MN,

parallel to the base of the cone, and

through these lines conceive planes to be passed also par
allel to this base. The sections of the cone made by these

planes will be circles, of which KGL and MIN are the

semi-circumferences, passing the first through 6r, and the

second through J, the extremities of the perpendiculars
to BAj lying in the section made by the oblique plane.

The triangles AFL, AHN, are similar
; so also are the

triangles BMH, BKF; and from them we derive the fol

lowing proportions :

AF-.FLr.AHiHN
BF:KF::BH:HM

By multiplication, AF-BF: FL-KF: : AH-BH: UN-JIM
Because KL is a diameter of a circle, andFG an ordi-

nate to this diameter, we have

and for a like reason,

Therefore, AF-BF : FG2

: : AH-HB : Iff

or, AF-BF : AH-HB : : FG2
: HP

This proportion expresses the property of the ellipse

proved in (Prop. 14) ;
and the section A GIB is, therefore,

an ellipse.

Hence the theorem
; if a cone be cut, etc.

SCHOLIUM. The proportion AF-BF : AH-HB::FG? : Hf
would still hold true, were the line AB parallel to the base of the

cone, and the section a circle
;
the ratios would then become equal
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to unity. The circle may therefore be regarded as a particular case

of the ellipse. Jj

PROPOSITION XYIII. THEOREM.

If, from one of the vertices of each of two conjugate diameters

of an ellipse, ordinates be drawn to either axis, the sum of the

squares of these ordinates will be equal to the square of the

other semi-axis.

an ellipse, of which

AA is the major and

BBr the minor axis
;

also let P, P g be

any two conjugate
diameters. Through
the vertices of these

diameters draw the tangents to the ellipse and the ordi

nates to the axes, as represented in the figure. Then we
are to prove that

and CB=(PG)
2

+(P G
}

2

=(Cgf+(OgJ
Now (by Prop. 11) we have

GT: CA:: CA : OG,
also, Of : CA:: CA: On

&quot;Whence,

and

Therefore,

which, resolved into a proportion, gives

Of : CT:: OG : Cn (2)

By the construction, it is evident that the triangles

OPT, CQ t, are similar, as are also the triangles PGT
and CQn.
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Prom these triangles we derive the proportions

Ct : CT: : CQf
: PT

CQ! :PT: : On : GT
Whence, Ct : CT : : On i GT
Comparing the last proportion with proportion (2)

above, we have

CG: Cn:: Cn: GT
Whence, (Crif=CG GT
But GT=CTCG; then (Cnf= CG (CTCG),
from which we get

(Cn)
2+ CG*= CG-CT= CA* (See eq. 1.)

Substituting, in this equation, for
(&amp;lt;7ft)

2
,
its equalCGr

&amp;gt;

it becomes

In a similar manner it may be proved that

Hence the theorem ; if from one of the vertices of each, etc.

PROPOSITION XIX. THEOEEM.

The sum of the squares of any two conjugate diameters of
an ellipse is a constant quantity, and equal to the sum of the

squares of the axes.

The annexed fig

ure, being the same
as that employed in ^
the preceding prop

osition, by that prop
osition we have

CA=CG + CG
and

By addition, ~CA
9 CG*+PG 2+ CG
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But CG and PG are the two sides of the right-angled

triangle CPG, and CG and PfG r are the two sides of

the right-angled triangle CPfGr

;

Therefore, OA.
2

+ ~CB*

Whence, 4CA
2

+4tCB*

The first member of this equation expresses the sum of

the squares of the axes, and the second member the sum

of the squares of the two conjugate diameters.

Hence the theorem ;
the sum of the squares of any two, etc.

PROPOSITION XX. THEOREM.

The parallelogram formed by drawing tangents through the

vertices of any two conjugate diameters of an ellipse, is equal to

the rectangle of the axes.

Employing the

figure of the last

two propositions, we

have, from proposi
tion 18,

from which, by trans- o

position and factoring the second member, we get

gG
2

=(CA+CG ) (CACGf)=AG A Gf

But CA
2

: CB
2

:: A_G -A G^_P
fG 2

; (Prop. 13.)

CG2
: PfG Z

CG : P G ^Qn (1)

CA : CG (2) (Prop. 11.)

CB2

CB
CA

Whence, C
Or, CA
But, CT

Multiplying proportions (1) and (2),
term by term,

omitting, in the first couplet of the resulting proportion,

the common factor CA, and in the second couplet the

common factor CG, we find

CT: CB:: CA: Qfn
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Whence, CT- Q
fn= CA - CB

Or, 4CT-Q n=4i-CB
The first member of this equation measures eight times

the area of the triangle CQ T, and this triangle is equiva
lent to one half of the parallelogram CQ mP, because it

has the same base, CQ ,
as the parallelogram, and its vertex

is&quot; in the side opposite the base. This parallelogram is

obviously one fourth of that formed by the tangent
lines through the vertices of the conjugate diameters;

4CT.Q n therefore, measures the area of this parallelo

gram. Also, 4CA-CB is the measure of the rectangle that

would be formed by drawing tangent lines through the

vertices of the major and minor axes of the ellipse.

Hence, the theorem
;

the parallelogram formed, etc.

PROPOSITION XXI.-THEOREM.

If a normal line be drawn to an ellipse at any point, and]

also an ordinate to the major axis from, the same point, then

will the square of the semi-major axis be to the square of the

semi-minor axis, as the distance from the center to the foot of \

the ordinate is to the sub-normal on the major axis.

Let P be the assumed point
in the ellipse, and through this

point draw the tangentPI7

,
the

normal PD, and the ordinate

PG, to the major axis
;
then C

being the center of the ellipse,

and A denoting the semi-major, and B the semi-minor

axis, it is to be proved that

A2
: B2

: : CG : DG
By (Prop. 13) we have

A2 :B2 ::A G-AG:TG* (1)

and because DPT is a right-angled triangle, and PGr is a
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perpendicular let fall from the vertex of the right-angle

upon the hypotenuse, we also have

(Th. 25, B. II, Geom.) ~PG?=DG GT
But A G-AG= CG- GT (Scho. 2, Prop. 12)

Substituting in proportion (1), for the terms of the sec

ond couplet, their values, it becomes

A2
:

2
:: CG GT-.DG GT

or A2
:

2 ::CG:DG.
Hence the theorem

; if a normal line be drawn, etc.

Cor. If CGXj then this theorem will give for the

IP

A2

pression.

/i

mibnormal,D6r, the value x, which is its analytical ex-

ST

PROPOSITION XXII. THE OEEM.

If two tangents be drawn to an ellipse, the one through the

vertex of the major axis and the other through the vertex of any
other diameter, each meeting the diameter of the other produced,
the two tangential triangles thus formed will be equivalent.

Let PPf be any diameter of

the ellipse whose major axis

is AA f
. Draw the tangents

JJVand PT, the first meeting
the diameter produced at

and the second the axis pro-
duced at T; the triangles CAN and CPT thus formed are

equivalent.

Draw the ordinate PD; then by similar triangles we
have

CD: CM:: CP: CN
But CD : CA ::CA: CT (Prop. 11)
Whence CP: CN: : CA : CT
Therefore, CP- CT= CN- CA
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Multiplying both members of this equation by sin. Cy

it becomes

CP-CT sin. a= CN- CA sin.

or, iCT CP&m.C^CA CNsm.C (1)

But CP- sin. C=PD, and CN- sin. C=AN;
therefore the first member of equation (1) measures the

area of the triangle CPT, and the the second member
measures that of the triangle CAN.
Hence the theorem

; if two tangents be drawn to an, etc.

Cor. 1. Taking the common area CAJEP, from each

triangle, and there is left &PEN=&AET.
Cor. 2. Taking the common A CDP, from each trian

gle, and there is left AP-DT=trapezoidal area PDAN.

PROPOSITION XXIII.-THEOREM.

The supposition of Proposition 22 being retained, then, if a

secant line be drawn parallel to the second tangent, and ordi-

nates to the major axis be drawn from the points of intersec

tion of the secant with the curve, thus forming two other tri

angles, these triangles will be equivalent each to each to the cor-

responding trapezoids cut off, by the ordinates, from the trian

gle determined by the tangent through the vertex of the major axis.

Draw the secant QnS par
allel to the tangent PT, and

also the ordinates QJR, ng, pro

ducing the latter to p. Then A ^ |n //(:S\
^

^A &quot;ST

is Aj=trapezoid ANVJR,
and A%=trapezoid ANpg. V
The three triangles, CVE,CPD,CNA are similar, by

construction
; therefore,

&CNA : AOFD : : CM2
: : ~CP*

&quot;Whence,

trapezoid ANPD : &CNA : : ~CA*~C~ff : GZ2(1)

(Th. 8, B. II, Geom.)
4
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In like manner,

trapezoid ANVR : &CNA : : CA CR 2
: ~CA

2
(2)

Dividing proportion (1) by (
2
),
term by term, we get

trapezoid ANPD
m
~CA*

trapezoid ANVR ~(JA
2_

Whence,

trapez. ANPD rjrapez.
ANVE : : CA2

UT&amp;gt;

2

: CA
Z CR 2

But JPD
2

: ~QR
2

: : A D DA : A R-RA, (Prop. 14) ;

and since

A D=* CA+ CD, A R= CA+ CR, DA=CACD and

RA=CACR, we have

~PD
2

: QlR
2

: : (CA+ CD) (CACD) : (CA+ CR)

(CACE):: ~CA
2

Clf : ~CA
2

CIl
2

Therefore,

trapezoid ANPD : trapezoid ANVR : :~PD
2

: ~QR
2
,

But the trapezoid ANPD=&TPD, (Cor. 2, Prop. 22);

whence,
;2A TPD : trapezoid ANVR ::PD.:: QR (3)

and since the triangles TPD and SQR are similar, we
have

ATPZ) : ASQR : : ~Plf : QR
2

(4)

By comparing proportions (
3
) and (4) we find

ATPD : trapezoid ANVR : : &TPD : &SQR
&quot;Whence, trapezoid ANVR=&SQR;

and by a similar process we should find that

trapezoid ANpg=A.Sng.
Hence the theorem ; if a secant line be drawn parallel, etc.

Cor. 1. Taking the trapezoid ANpg from the trapezoid-

ANVR, and the A% from the &SQR, we have

trapezoid gpVR=trapezoid gnQR.

Cor. 2. The spaces ANVR, TPVR, and SQR are equiv

alent, one to another.

Cor. 3. Conceive QR and QS to move parallel to their

present positions, until R coincides with C; then QR



THE ELLIPSE.

becomes the semi-minor axis, the space ANVE the tri

angle ANC, and the &QKS equivalent to the ACPI7

.

PROPOSITION XX I Y.-THEOREM.

Any diameter of the ellipse bisects all of the chords of the el

lipse drawn parallel to the tangent through the vertex of the

diameter.

*

A ST

By Cor. 1 to the preceding

proposition we have

If from each of these equals
we subtract the common area

gnm VR, there will remain the

Aranp, equivalent to the AQw V; and as these triangles
are also equi-angular, they are absolutely equal.

Therefore, Qmmn.
Hence the theorem

; any diameter of the ellipse bisects, etc.

REMARK. The property of the
ellipse&quot;

demonstrated in this

proposition is merely a generalization of that previously proved in

Prop. 3.

PROPOSITION XXV. THEOREM.

The square of any semi-diameter of an ellipse is to the square

of its semi-conjugate, as the rectangle of any two abscissas of

the former diameter is to the square of the corresponding ordi-

nate.

Let AA be the major axis

of the ellipse, CP any semi-

diameter and CP its semi-

conjugate. Draw the tan-

gents TP and AN, the ordi-

nate Qm, producing it to meet
the axis at S; and Pf V, parallel to AN, and in other
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respects make the construction as indicated in the figure.

It is then to be proved that

OP
2

: OP2

: : Pm-mP : Qm
&quot;Now in the present construction, the triangles CPU

and CVR take the place of the triangles SQR and CVR
respectively, in Prop. 23

;
and hence by that proposition,

the triangles CP V, CAN, and CPT are equivalent one

to a,nother.

The triangles CPT and CmS are similar
; therefore,

&quot;Whence,

ACtotf : : CP
2

: Cm

AGP77

: ^CPTACmS: : CP 2

: CP*Cm
Or, A OPT7

: trapez. mPTS : : ~CP
2

: CP
2

~Cin &amp;lt;&

From the similar triangles, CPrV and mQV, we have

AOFV : AwF : : OF2
: m~Q

2

But area SmVR+A CVJR+AmQF= area SmVR+
A &amp;lt;7F--ftrapez. mPTS, (Prop. 23.) ; therefore, AwF=
trapez. mPTS ; also A&amp;lt;7P

; V =&CPT.
Substituting these values in the preceding proportion,

it becomes

ACP!T : trapez. mPTS : : OP2
: m 2

(2)

By comparing proportions (1) and (2), we get

CP
2

: OP
2

~Cm : : CP2
: ^Q

2

Or, CP
2

: CPf2
: : ~CP

2

Cm :
m&amp;lt;?

&quot;Whence, OP
2

: OF2

: : (CP+Cm) (CPCm) : ^Q
2

Or, CP
2

: OF2

: : Pm-mP :

Hence the theorem
;

the square of any semi-diameter
,
etc.

REMARK. The property of the ellipse relating to conjugate

diameters, established by this proposition, is but the generalization

of that before demonstrated in reference to the axes, in Prop. 13.
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THE PARABOLA.

DEFINITIONS.

1. The Parabola is a plane curve, generated by the

motion of a point subjected to the condition that its

distances from a fixed point and a fixed straight line shall

be constantly equal.

2. The fixed point is called the

focus of the parabola, and the fixed

line the directrix.

Thus, in the figure, Fis the focus

and BB&quot; the directrix of the para
bola PFP

P&quot;,
etc.

3. A Diameter of the parabola is a line drawn through

any point of the curve, in a direction from the directrix,

and at right-angles to it.

4. The Vertex of a diameter is the point of the curve

through which the diameter is drawn.

5. The Principal Diameter, or the Axis, of the parabola
is the diameter passing through the focus. The vertex of

the axis is called the principal vertex, or simply the vertex

of the parabola.

The vertex of the parabola bisects the perpendicular
distance from the focus to the directrix, and all the diam

eters of the parabola are parallel lines.

6. An Ordinate to a diameter is a straight line drawn

from any point of the curve to the diameter, parallel to the
4*
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tangent line through its vertex. Thus,

PD, drawn parallel to the tangent V T,

is an ordinate to the diameter VT&amp;gt;. It

will he shown that DP=.DGr; and hence

PGr is called a double ordinate.

7. An Abscissa is the part of the diam

eter hetween the vertex and an ordinate.

Thus, VfD is the ahscissa corresponding
to the ordinate PD.

8. The Parameter of any diameter of the parahola is

one of the extremes of a proportion, of which any ordi

nate to the diameter is the mean, and the corresponding
abscissa the other extreme.

9. The parameter of the axis of the parahola is called

the principal parameter, or simply the parameter of the

parabola. It will be shown to be equal to the double

ordinate to the axis through the focus. Thus, BBf

,
.the

chord drawn through the focus at right-angles to the axis,

is the parameter of the parabola.

The principal parameter is sometimes called the latus-

rectum.

10. A Sub-tangent, on any diameter, is the distance from

the point of intersection of a tangent line with the diameter

produced to the foot of that ordinate to this diameter that

is drawn from the point of contact.

11. A Sub-normal, on any diameter, is

the part of the diameter intercepted be

tween the normal to the curve, at any point,

and the ordinate from the same point to

the diameter. Thus, in the figure, V N
being any diameter, PT a tangent, and

PN a normal at the point P, and PQ an

ordinate to the diameter; then TQ is&quot; a sub-tangent and

QN& sub-normal on this diameter.
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&quot;When the terms, sub-tangent and sub-normal, are used

without reference to the diameter on which they are ta

ken, the axis will always be understood.

PROPOSITION I.-PROBLEM.

To describe a parabola mechanically.

Let CD be the given line, and F the

given point. Take a square, as DBG,
and to one side of it, GB, attach a thread,

B

and let the thread be of the same length 31

as the sideGB ofthe square. Fasten one c

end of the thread at the point G, the other end at F.

Put the other side of the square against the given line,

CD, and with the point of a pencil, in the thread, bring

the thread up to the side of the square. Slide the side

BD of the square along the line CD, and at the same time

keep the thread close against the other side, permitting
the thread to slide round the point of the pencil. As the

side BD of the square is moved along the line CD, the

pencil will describe the curve represented as passing

through the points Fand P.

For &amp;lt;7P+P^=the length of the thread,

and GP+PB=ihe length of the thread.

By subtraction, PFPB=0, or PF=*PB.
This result is true at any and every position of the

point P; that is, it is true for every point on the curve

corresponding to definition 1.

Hence, FV= VH.
If the square be turned over and moved in the opposite

direction, the other part of the parabola, on the other side

of the line FH, may be described.

Cor. It is obvious that chords of the curve which are

perpendicular to the axis, are bisected by it.
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PROPOSITION II. THEOREM.

Any point within the parabola, or on the concave side of
the curve, is nearer to the focus than to the directrix; and any

point without the parabola, or on the convex side of the curve,

is nearer to the directrix than to the focus.

Let jPbe the focus and HBf the directrix B
of a parabola.

First. TakeA, any point within the curve.

From A draw AFio the focus, and AB per- B

pendicular to the directrix; then will AF
be less than AB.

Since A is within the curve, and B is without it, the

line AB must cut the curve at some point, as P. Draw
PF. By the definition of the parabola, PB=PF; adding
PA to each member of this equation, we have

PB+PA=BA=PA+PF
But PA and PF being two sides of the triangle APF,

are together greater than the third side AF; therefore

their equal, BA, is greater than AF.
Second. Now let us take any point, as A

,
without the

curve, and from this point draw A F to the focus, and

A B r

perpendicular to the directrix.

Because A is without the curve and F is within it,

AF must cut the curve at some point, as P. From this

point let fall the perpendicular, BP, upon the directrix,

and draw AB.

As before, PB=PF; adding A P to each member of

this equation, and we have A P+PB=A P+PF=A F.

But A P and PB being two sides of the triangle A PB,
are together greater than the third side, A B ; therefore

their equal, A F, is greater thanA B. Now A B, the hy

potenuse of the right-angled triangle A BB is greater
than either side; hence, A B is greater than A B ; much
more then is A F greater than A B .

Hence the theorem; any point within the parabola, etc.
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Cor. Conversely: If the distance of any point from the

directrix is less than the distance from the same point to the fo

cus, such point is without the parabola; and, if the distance

from any point to the directrix is greater than the distance from
the same point to the focus, such point is within the parabola.

First. Let A be a point so taken that A B &amp;lt;A F.

Now A is not a point on the curve, since the distances

A B and A fF are unequal; and A r
is not within the

curve, for in that case A B would be greater than A F
according to the proposition, which is contrary to the hy
pothesis. Therefore A being neither on nor within the

parabola, must be without it.

Second. Let A be a point so taken that AB&amp;gt;AF.

Then, as before, A is not on the curve, since AF and AB
are unequal ;

and A is not without the curve, for in that

case AB would be less than AF, which is contrary to the

hypothesis. Therefore, since A is neither on nor without

the parabola, it must be within it.

PROPOSITION III. THEOREM.

If a line be drawn from the focus of a parabola to any point

of the directrix, the perpendicular that bisects this line will be a

tangent to the curve.

Let F be the focus, and HD the di

rectrix of a parabola.

Assume any point whatever, as B, in B

the directrix, and join this point to the

focus by the line BF; then will tA, the
U
F v F

perpendicular to BF through its middle point t,
be a tan

gent to the parabola. Through B draw BL perpendicu
lar to the directrix, and join P, its intersection with tP,

to the focus. Then, since P is a point in the perpendic
ular to BF at its middle point, it is equally distant from
the extremities of BF; that is, PB=PF. P is there-
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fore a point in the parabola, (Def. 1). Hence, the line tP

meets the curve at the point P.

&quot;We will now prove that all other points in the line tP

are without the parahola. Take A
9 any point except P

in the line tP, and draw AF, AB; also drawAD perpen
dicular to the directrix. AF is equal to AB, because A
is a point in the perpendicular to BF at its middle point;
but AB, the hypotenuse of the right-angled triangle ABD,
is greater than the side AD; therefore AD is less than

AF, and the point A is without the parabola. (Cor.,

Prop. 2). The line tA and the parabola have then no

point in common except the point P. This line is there

fore tangent to the parabola.

SCHOLIUM 1. The triangles BPt and FPt are equal; therefore

the angles FPt and BPt are equal. Hence, to draw a tangent to

the parabola at a given point, we have the following

RULE. From the given point draw a line to the focus, and an

other perpendicular to the directrix, and through the given point

draw a line bisecting the angle formed by these two lines. The bi

secting line will be the required tangent.

SCHOLIUM 2. Just at the point Pthe tangent and the curve co

incide with each other
;
and the same is true at every point of the

curve. Now, because the angles BPt and FPt are equal, and

the angles BPt and LPA are vertical, it follows that the angles

LPA and FPt are equal. Hence it follows, from the law of re

flection, that if rays of light parallel to the axis VF be incident

upon the curve, they will all be reflected to the focus F. If there

fore a reflecting surface were formed, by turning a parabola about

its axis, all the rays of light that meet it parallel with the axis, will

be reflected to the focus
;
and for this reason many attempts have

been made to form perfect parabolic mirrors for reflecting telescopes.

If a light be placed at the focus of such a mirror, it will reflect

all its rays in one direction
; hence, in certain situations, parabolic

mirrors have been made for lighthouses, for the purpose of throwing

all the light seaward.

Cor. 1. The angle BPF continually increases, as the
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pencil P moves toward
&quot;F,

and at V it becomes equal to

two right angles ;
and the tangent at V is perpendicular

to the axis, which is called the vertical tangent.

Cor. 2. The vertical tangent bisects all the lines drawnfrom
the focus of a parabola to the directrix.

Let Vt be the vertical tangent ;
then because the two

right-angled triangles FVt and FHB are similar, and

VF= VH, we have Ft=tB.

PROPOSITION I V. THEOREM.

The distance from the focus of a parabola to the point

of contact of any tangent line to the curve, is equal to the dis

tance from the focus to the intersection of the tangent with the

axis.

Through the point P of the parabola
of which F is the focus and BH the

directrix, draw the tangent line PT,

meeting the axis produced at the point f k v ir i

T; then will FP be equal to FT
Draw PB perpendicular to the directrix, and join F,B.
The angles BPT and TPF are equal, (Scho. 1, Prop. 3) ;

and since PB is parallel to TG, the alternate angles BP T,

and PTC are also equal. Hence the angle TPF is equal
to the angle PTF, and the triangle PFT is isosceles;

therefore FP=FT.
Hence the theorem

;
the distance from the focus to, etc. !

SCHOLIUM. To draw a tangent line to a parabola at a given point,

we have the following

RULE. Produce the axis, and lay off on it from the focus a dis

tance equal to the distance from the focus to the point of contact.

The line drawn through the point thus determined and the given

point will be the required tangent.
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PROPOSITION V. THEOREM.

The perpendicular distance from the focus of a parabola to

any tangent to the curve, is a mean proportional between the

distance from the focus to the vertex and the distance from
the focus to the point of contact.

In the figure of tlie preceding proposi-
tion draw in addition the vertical tangent

Vt; then we are to prove that Ft
2=

VF-FP. Because TtF and VFt are f H y g D c
similar right-angled triangles, we have

TF :Ft::Ft: VF. But TF=PF, (Prop. 4) ;

therefore, PF : Ft : : Ft : VF

Whence, Wf^PF. VF
Hence, the theorem

;
the perpendicular distance from^etc.

PROPOSITION YI. THEOREM.

The sub-tangent on the axis of the parabola is bisected at

the vertex.

In the figure which is constructed as

in the two preceding propositions, draw
in addition the ordinate PD, from the

point of contact to the axis
; then we T H v F D

are to prove that TD is hisected at the vertex V.

The two right-angled triangles TFt and tFP have the

side Ft common, and the angle FTt equal to the angle
FPt ; hence the remaining angles are equal, and the tri

angles themselves are equal; therefore tT=tP. From the

similar triangles TDP, TVt, we have the proportion

Tt: tP: : TV: VD
But tT=tP; whence TV= VD
Hence the theorem

;
the sub-tangent on the axis, etc.
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Cor. Since TV=TD, it follows that Vt^PD. That

is, The part of the vertical tangent included between the vertex

and any tangent line to the parabola, is equal to one half of the

ordinate to the axis from the point of contact

PROPOSITION VII. THEOREM.

The sub-normal is equal to twice the distance from the focus
to the vertex of the parabola*

In the figure (which is the same as that B
of the last three propositions), PC is a

normal to the parabola at the point (7, .

and DC is the sub-normal
;

it is to be T H v F D

proved that DC=2FV.
Because BH and PD are parallel lines included be

tween the parallel lines BP and HD, they are equal.

BF and PC are also parallel, since each is perpendicular
to the tangent PT ; hence BF=PC, and also the two tri

angles HBF and DPC are equal.

Therefore HF=DC;
but HF=2FV;
whence DC=2FV.
Hence the theorem

;
the sub-normal is equal to twice, etc.

SCHOLIUM. This proposition suggests another easy process for

constructing a tangent to a parabola at a given point.

RULE. Draw an ordinate to the axis from a given point, and

from the foot of this ordinate lay off on the axis, in the opposite

direction of the vertex, twice the distance from the focus to the

vertex. Through the point thus determined and the given point

draw a line, and it will be the required tangent.

PROPOSITION YII I. THEOREM.

Any ordinate to the axis of a parabola is a mean proportion

al between the corresponding sub-tangent and sub-normal.

5 D
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Assume any point, as P, in the parabo
la of which. F is the focus and HB the

directrix. Through this point draw the

tangent PT, the normal P(7, and the or- T H v F D c&quot;

dinate PD to the axis. Then in reference to the point P,
TD is the sub-tangent, and 1) the sub-normal on the

axis
;
and we are to prove that

TD : PD : : PD : DC
The triangle TFC is right-angled at P, and PD is a

perpendicular let fall from the vertex of this angle upon
the hypotenuse. Therefore, PD is a mean proportional

between the segments of the hypotenuse, (Th. 25, B. II,

Geom.)
Hence the theorem ; any ordinate to the axis, etc.

SCHOLIUM 1. For a given parabola, the fourth term of the pro

portion, TD : PD : : PD : DC, is a constant quantity, and equal

to twice the distance from the focus to the vertex, (Prop. 7). By

placing the product of the means of this proportion equal to the

product of the extremes, we have

PZ&amp;gt;

2~ TD-DC=TD-2DC, which may be again resolved into the

proportion

\TD\PV\ :PD:2DO
Or, VD:PD : :PD:2DG
But VD is the abscissa, and PD is the ordinate of the point P ;

hence (Def. 8) 2DC is the parameter of the parabola, and is equal

to four times the distance from the focus to the vertex, or to twice

the distance from the focus to the directrix.

SCHOLIUM 2. If we designate the ordinate PD by y, the abscissa

VD by X, and the parameter by 2p, the above proportion becomes

x^

: y : : y : 2p

Whence, y =2px.
This equation expresses the general relation between the abscissa

and ordinate of any point of the curve, and is called, in Analytical

Geometry, the equation of the&quot; parabola referred to its principal ver

tex as an origin.

Cor. The sub-normal in the parabola is equal to one-half of the

parameter.
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PROPOSITION IX. THEOREM.

The parameter, or latus rectum, of the parabola is equal to

twice that ordinate to the axis which passes through the focus.

Let F be the focus, and BB the direc

trix of a parabola ;
and through the focus B

draw a perpendicular to the axis intersecting R
the curve at P and Pr

. From P andP let fall

the perpendiculars P_B, P B ,
on the direc-

trix. Then will ZPF be equal to 2FH, or

to the parameter of the parabola.

By the definition of the parabola, PFPB; and be

cause PP and BB are parallel, and the parallels PB and

FH are included between them, we have PB=FH.
Hence PF=FH, or2PF=2FH= the parameter. Scho. 1,

Prob. 8.

Cor. Since the axis bisects those chords of the parabola

which are perpendicular to it, FP=FP ]

. That is,

FP
;

therefore PP =2FH. That is,

The parameter of the parabola is equal to the double ordi

nate through thefocus.

PROPOSITION X. THEOREM.

The squares of any two ordinates to the axis of a parabola
are to each other as their corresponding abscissas.

Let y and y
r denote the ordinates, and x and x f the

abscissas of any two points of the parabola; then, by
Scho. 2, Prop. 8, we have the two following equations :

y
2
=2px and y

2
=2px

Dividing the first of these equations by the second,
member by member, we have

Whence y* : y
2

: : x : xr

Hence the theorem
;

the squares of any two ordinates, etc.



52 CONIC SECTIONS.

PEOPOSITION XI. TIIEOREM.

If a perpendicular be drawn from the focus of a parabola

to any tangent line to the curve, the intersection of the perpen

dicular with the tangent will be on the vertical tangent.

Let F be the focus, and BH the di-
B|

rectrix of the parabola, and PT a tan

gent to the curve at the point P. From
jFdrawFB perpendicular to the tangent, T H v r D c~

intersecting it at
t,
and the directrix at J3. We will now

prove that the point t is also the intersection of the ver

tical tangent with the tangent PT.
Because the triangle TFP is isosceles, the perpendicu

lar Ft bisects the base PT; therefore tP=tT. Again,
since Vt and DP are both perpendicular to the axis, they
are parallel, and the vertical tangent divides the sides of

the triangle TDP proportionally.

Hence, TV: VD:: Tt : tP; but TV= YD (Prop. 6)

therefore, Tt=tP.

That is, the tangent PT is bisected by both the perpen
dicular let fall upon it from the focus, and the vertical

tangent. Therefore the tangent PT, the vertical tangent
and the perpendicular FB, meet in the common point t.

Hence the theorem ; if a perpendicular be drawn, etc.

PROPOSITION XI I. THEOREM.

The parameter of the parabo
ja is to the sum of any two or-

dinates to the axis, as the difference of those ordlnates is to the

difference of the corresponding abscissas.

Take any two points, as P and Q, in the parabola repre
sented in the following figure, and through these points
draw the double ordinates Pp and Qq. VD and VE are

the corresponding abscissas.

Draw PS and pt parallel to the axis. Then, since
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PD=Dp and QE=Eq, we have QE+PD C^
=

Qt, equal to the sum of the two ordinates
;

and QEPD= QS, equal to their differ

ence; also VEVD=DE, equal to the v(

difference of the corresponding abscissas.

We are now to prove that pv

2p : Qt : : QS : DE *^^
in which 2p denotes the parameter of the parabola.
Because PD and QE are ordinates to the axis, we have

(Scho. 2, Prop. 8)

PD*=2p VD (1)

and QE=2p-VE (2)

Whence QE* Pff==2p (VE VD)=2p-DE (3)

But QE
2

PTf= (QE+PD} (QEPD)= Qt- QS,
therefore Qt-QS=2p-J)E (4)

Whence 2p : Qt : : QS : DE
Hence the theorem

;
the parameter of the parabola, etc.

Cor. By dividing eq. (4) by eq. (2), member by member,
we obtain

Qt-QS_DE

Whence VE : DE : : QE* : Qt- QS

PROPOSITION XIII. THEOREM.

If a tangent line be drawn to a parabola at any point, andfrom

any point of the tangent a line be dravm parallel to the axis

terminating in the double ordinate from the point of contact,

this line will be cut by the curve into parts having to each other

the same ratio as the segments into which it divides the double

ordinate.
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Take any point as P in the parabo
la represented in the figure, and of

which VD is the axis, and through
this point draw the tangent PTto the

curve, and the double ordinate PQ to

the axis. Assume a point in the tan

gent at pleasure, as JL, and through it PJ

draw AC parallel to the axis, cutting//

the curve at B and the double ordinate at C. Then we
arc to prove that

AB:BC::PC: CQ
By similar triangles we have

PC: CA :: PD: DT; but DT=2DV(Prop. 6)

therefore PC: CA : : PD : 2DV (1)

But D V: PD : : PD : 2p (Scho. 2, Prop. 8)

or 2DF: PD : : 2PD : 2p.

Inverting terms, PD : 2DV: : 2p : 2PD=PQ (2)

By comparing proportions (1) and (2), we get

PC: CA::2p: PQ
But 2p : CQ:: PC: BC (Prop. 12)

Multiplying the last two proportions, term by term, we
have

2p-PC: CA-CQ : : 2p-PC: BC PQ
The first and third terms of this proportion are equal ;

therefore the second and fourth are also equal. Hence

we have the proportion
CA: BC:: PQ : CQ

Whence by division, CABC :BC:: PQCQ : CQ
or AB:BC: : PC: CQ
If we take any other point, H, on the tangent, and

through it draw the line HL parallel to the axis, inter

secting the curve at K and the ordinate at L
9
we will

have, in like manner,
HK: KL: : PL: LQ

Hence the theorem
; if a tangent be drawn, etc.
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PROPOSITION XIV . T H E O R E M .

If any two points be taken on a tangent line to a parabola, and

through these points lines parallel to the axis be drawn to meet

the curve, such lines will be to each other as the squares of the

distances of the points from the point of contact.

The figure and construction being
the same as in the foregoing proposi

tion, we are to prove that

AB : HK : : PA2

: PH 2

We have

AB : BC : : PC : CQ (1) (Prop. 13.)

Multiplying the terms of the second PJ

couplet of this proportion by PC, it/
becomes

AB: BC::~PC
2

: POCQ_ (2)

But, (Cor. Prop. 12) VD:BC:: ~P1? : PC- CQ (3)

Dividing proportion (2) by proportion (3), term by term,

we have

AB ,..l
2

.i
YD PI?

Whence, AB :VZ&amp;gt;:: ~PC* : PI? (4)

From the similar triangles, APC and TPD, we get the

proportion* **
rt .

A n . o St?\

PA*:PT ::PC :PD
By comparing proportions W and (5) we find

AB : YD : : ~FA
In like manner we can prove that

HK : VD:: PH 2
:

Dividing proportion (6) by proportion (7), term by term,

we have

^:l::S:lMR PH*
Whence, AB : HK : : PA : Pjf
Hence the theorem

; if any two points be taken, etc.
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APPLICATION. Conceive PH to be the direction in which a body
thrown from the surface of the earth, would move, if it were undis

turbed by the resistance of the air and by the force of gravity. It

would then move along the line PH, passing over equal spaces in

equal times. When a body falls under the action of gravity, one of

the laws of its motion
.is,

that the spaces areproportional to the squares

of the times of descent ; hence, if we suppose gravity to act upon
the body in the direction AC, the lines AJ3, TV, HK, etc., must

be to each other as the squares PA ,
PT

,
PH

,
etc.

;
that is, the

real path of a projectile in vacuo, possesses the property of the

parabola that has been demonstrated in this proposition. In other

words,

The path of a projectile, undisturbed by the resistance of the air
y

is a parabola, more or less curved, depending upon the direction and

intensity of the projectile force.

PEOPOSITION XY. THEOBEM.

The abscissas of any diameter of the parabola are to each

other as the squares of their corresponding ordinates. .

Let P be any point on a parabola,

PL a tangent line, and PF a diame

ter through this point. From the

points B, V,K, etc., assumed at pleas

ure on the curve, draw ordinates and

parallels to the diameter, forming the

quadrilaterals PCBA, PD VT, etc.

!N&quot;ow,
since the ordinates to any di

ameter of the parabola are parallel to

the tangent line through the vertex of that diameter,

these quadrilaterals are parallelograms and their opposite

sides are equal. But, by the preceding proposition, we
have

AB : TV: HK, etc., : :~PA
2

: ~PT
2

: PH\ etc.

or PCiPD: PE, etc., : :~C2

: ~Vff :
KE*&amp;gt; etc.
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By definition 6, PC is the ordlnate and BC the abscis

sa of the point B, and so on.

Hence the theorem
;

the abscissas of any diameter, etc.

PROPOSITION XY I. THEOREM.

If a secant line be drawn -parallel to any tangent line to the

\parabola, and ordinates to the axis be drawnfrom the point of
contact and the two intersections of the secant with the curve,

these three ordinates will be in arithmetical progression.

Let CT be the tangent line to the

parabola, andEH the parallel secant.

Draw the ordinates EG, CD, and

HI, to the axis VI, and through E
draw EK parallel to VI.

We are now to prove that

The similar triangles, HKE and. CDT, give the pro-

p jrti n

HK : KE:: CD: DT=2VD
and, by proposition 12, we have

2p:KL: : HK : KE.
Therefore 2p : KL : : CD : 2 VD, (1)

and from the equation, y*=2px, we get, by making y= CD
and x= VD,

2p: 2OD: : CD: 2FZ&amp;gt; (2)

By dividing proportion (1) by (2), term by term, we
shall have

KL

&quot;Whence KL=2CD
But KL=HI+KI=HI+EG;
therefore HI+EG= 2CD
Hence the theorem; if a secant line be drawn, etc.
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SCHOLIUM 1. If we draw CM parallel, and MN perpendicular

to VI, then 2CD=2MN=EG-}-HI; and since MNis parallel to

each of the lines EG and HI, the point M bisects the line EH.
That is, the diameter through G bisects its ordinate EH) and as

HE is any ordinate to this diameter, it follows that

A diameter of the parabola divides into equalparts all chords of

the curve parallel to the tangent through the vertex of the diameter.

SCHOLIUM 2. Hence, as the abscissas of any diameter of the

parabola and their ordinates have the same relations as those of the

axis, namely; that the ordinates are bisected by the diameter, and

their squares are proportional to the abscissas
;

so all the other prop

erties of this curve, before demonstrated in reference to the abscis

sas and ordinates of the axis, will likewise hold good in reference to

the abscissas and ordinates of any diameter.

PROPOSITION XVII . T H E E E M .

The square of an ordinate to any diameter of the parabola

is equal to four times the product of the corresponding abscissa

and the distance from the vertex of that diameter to the focus.

Let &quot;FJTbe th.e axis of aparaola,

and through any point, as P, of the

curve, draw the tangent PT, and

the diameter PW; also draw the

secant Qq, parallel PT, and pro

duce the ordinate QN, and the di

ameter P W, to meet at D. From the focus let fall the

perpendicular FY upon the tangent, and draw FP and

VY. We are now to prove that

Because FYis perpendicular to PT, Qv parallel to PT
and DQ parallel to each of the lines PM and VY, the

triangles DQv, PMT, TFFand TFFare all similar.

Whence Qv :
QI&amp;gt;

: : TF :TP (1)

But ~TF*=PF* andTF=PF- VF. (Prop. 5)
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Substituting these values in proportion (1) and dividing

the third and fourth terms of the result by PF, it becomes

~~Qvi~Qtf : :PF: VF (2)

Again, from the triangles QDv and PMT we get

QD :Dv ::PM: MT=2VM
: : PM 2

: 2PM- VM
But (Scho. 2, Prop. 8) PM*=VF VM
Whence QD : Dv : : 4 VF-VM : 2PM- VM;

: : 4 F.F : 2PM
therefore 2PM &amp;gt;=4 VF-Dv (3)

By subtracting the equation QN
Z

=4t VF- F^Vfrom the

equation PM
2=4 VF- VM, member from member, we

have

4: VF-
(
VM VN)

Whence
^

(PM+QN] (PMQN)=(PM+QN) DQ=VF-DP (4)

Subtracting eq. (4) from eq. (3), member from member,
we obtain

(PMQN] i&amp;gt;=4 VF (DvDP)= VF-Pv
and because PMQNDQ, this last equation becomes

Substituting this value of JDQ
2

in proportion (2), we have

? : 4VF- Pv : : PF : VF
or ^v

2

: 4Pv: : PF : 1

Whence ~Qv=PF - Pv
Hence the theorem

;
the square of an ordinate, etc.

Cor. If, in the course of this demonstration, we had
used the triangle vdq in the place of vDQ, to which it is

similar, we would have found that qv
2=4PF Pv^ whence

Qv=qv. And since the same may be proved for any ordi-

nate, it follows that
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All the ordinates of the parabola to any of its diameters are

bisected by that diameter.

SCHOLIUM. The parameter of any diameter of the parabola has

been defined (Def. 8) to be one of the extremes of a proportion, of

which any ordinate to the diameter is the mean and the corresponding

abscissa the other extreme.

Now, we have just shown that Qv =qv =^PF Pv.

Whence, Pv : Qv : : Qv : 4PF. 4PF, which remains constant

for the same diameter, is therefore the parameter of the diameter

PW. And as the same may be shown for any other diameter, we

conclude that

The parameter of any diameter of the parabola is equal to four

times the distance from the vertex of that diameter to the focus.

PKOPOSITION XYIII. THEOREM.

The parameter of any diameter of the parabola is equal to

the double ordinate to this diameter that passes through the focus.

Through any point, as P, of the pa- /Jfy
rabola of which F is the focus and V
the vertex, draw the diameter PW, the

tangent PT, and, through the focus the

double ordinate BD, to the diameter.

It is now to be proved that 4PF, or the

parameter to this diameter, is equal to BD.
Because PW is parallel to TX, and BD to TP, TPvF

is a parallelogram, and Pv TF. ButPF=FT (Prop. 4),
hence Pv=PF.

By the preceding proposition, Bv=4tPF-Pv =4PF-PF
Whence, Bv=2PF ; therefore, 2Bv=J3D=PF

i

Hence the theorem
; the parameter of any diameter, etc.

PROPOSITION XIX.-THEOREM.

The area of the portion of the parabola included between

the curve, the ordinate from any of its points to the axis, and
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the corresponding abscissa, is equivalent to two thirds of the

rectangle contained by the abscissa and ordinate.

Let VD be the axis of a parabo

la, and VIP any portion of the

curve. Draw the extreme ordinate

PI) to the axis, and complete the

rectangle VAPD ; then will the

area included between the curve

VIP, the ordinate PD, and the abscissa FD, be equiva
lent to two thirds of the rectangle VAPD.
Take any point J, between P and the vertex, and draw

PI, producing it to meet the axis produced at E.

Now, from the similar triangles, PQI and PDEy we

get the proportion

PQ: QI: : PD : DE:
Whence PQ - DE= QI PD= GD - PD. (l)

If we suppose the point I to approach P, the secant line

PJE will, at the same time, approach the tangent PT; and

finally, when I comes indefinitely near to P, the secant

will sensibly coincide with the tangent PT, and DE may
then be replaced by DT=2DV=2PA. Under this sup

position, eq. (1) becomes

2PQ - PA=PD - GD.
That is, when the rectangles GDPH and.APQC become

indefinitely small, we shall have

Eect. GDPH=2HQct. APQC.
We will call Kect. GDPH the interior rectangle, and

Eect. APQC the exterior rectangle. If another point be

taken very near to J, and between it and the vertex, and

with reference to it the interior and exterior rectangles be

constructed as before, we should again have the interior

equivalent to twice the exterior rectangle. L et us conceive

this process to be continued until all possible interior and

exterior rectangles are constructed
;
then would we have

Sum interior rectangles=2 sum exterior rectangles.
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But, under the supposition that these rectangles are in

definitely small, the sum of the interior rectangles be

comes the interior curvilinear area, and the sum of the

exterior rectangles the exterior curvilinear area, and the

two sums make up the rectangle APD F. Therefore, if

this rectangle were divided into three equal parts, the in

terior area would contain two of these parts.

Hence the theorem
;

the area of the portion of the, etc.

PROPOSITION XX. THEOREM.

If a parabola be revolved on its axis, the solid generated

will be equivalent to one half of its circumscribing cylinder.

Conceive the parabola in the fig-

ure, which is constructed as in the

last proposition, to revolve on its

axis VD. We are then to find the

measure of the volume generated.
T E

V^G
~i&amp;gt;

The rectangle ID will generate
a cylinder havingDQ for the radi

us of its base, and DGr for its axis; and the rectangle AI
will generate a cylindical band, whose length is CT, and

thickness PQ.

The solidity of the cylinder =nDQ*^D&
The solidity of the band =7r(PZ)

2

~DQ*) F=
x[PD*(PDPQy] 7&amp;lt;3W[2PD

- PQ P 2

] VG

E~ow, under the supposition that the point 1 is indefi

nitely near to P, DQ may be replaced by PD, VG by FD, -

and PQ
2

may be neglected as insensible in comparison
with 2PD-PQ. These conditions being introduced in

the above expressions for the solidities of the cylinder and

band, they become

The solidity of the cylinder=7rPZ)
2 DG

The solidity of the band =2nPD -PQ-VD
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&quot;Whence,

sol. of cylinder : sol. ofband : : ~TI? -DG: 2PD- PQ VD (1)

But, when /and P are sensibly the same point,

PQ : GD : : PD : 2 VD
therefore,

The terms in the last couplet of proportion (1) are there

fore equal, and we have

sol. of cylinder : sol. of band : : 1 : 1

or sol. of cylinder=sol. of band.

In the same manner we may prove that any other inte

rior cylinder is equivalent to the corresponding exterior

band. Hence the sum of all the possible interior solids

is equivalent to the sum of the exterior solids. But the

two sums make up the cylinder generated by the rectan

gle VDPA; therefore either sum is equivalent to one

half of the cylinder.

Hence the theorem
; if a parabola be revolved, etc.

REMARK. The body generated by the revolution of a parabola

about its axis is called a Paraboloid of Revolution.

PROPOSITION XXI. THEOREM.

If a cone be cut by a plane parallel to one of its elements,

the section will be a parabola.

Let M VN be a section of a cone by a

plane passing through its axis, and in this

section drawAHparallel to the element VM. K
Through AH conceive a plane to be passed

perpendicular to the planeMVN; then will M&quot;
]t

-^|--

the section DA GI of the cone made by this last plane,
be a parabola. In the plane MVN, draw MN and
KL perpendicular to the axis of the cone, and through
them, pass planes perpendicular to this axis. The
sections of the cone, by these planes, will be circles,
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of which MN and KL, respectively, are the diameters.

Through the points F and H, in which AH meets KL
and MN, draw in the section DA GI the lines FG and

HI, perpendicular to AH. Because the planes DAI and

MVN are at right angles to each other, FG is perpendic
ular to KL, and HI is perpendicular to MN.
Now, from the similar triangles AFL, AHN, we have

AF:AH::FL:HN (1)

By reason of the parallels, KF=MH; multiplying the

first term of the second couplet of proportion (1) by KF,
and the second term by MH, it becomes

AF: AH: : FL-KF: HN MH (2)

But FG- is an ordinate of the circle of which KL is

the diameter, and HI an ordinate of the circle of which

JOT is the diameter: therefore

FL-KF=FG\ and JZ2V-JfJJ=S? (Cor., Th. IT, B. Ill,

Geom.)

Substituting, for the terms of the second couplet, in pro

portion (2), these values, it becomes

AF : AH : : FG 2
: ~H1

2

This proportion expresses the property that was dem
onstrated in proposition 15 to belong to the parabola.

Hence the theorem
; if a cone be cut by a plane, etc.

Cor. From the proportion, AF: AH: : FG 2

: HI2

we

,
.

get j-
1
= -TTT,

that is, -r-=p
or

-jjj-
which is a third

proportional to any abscissa and the corresponding ordi

nate of the section, is constant, and (by Def. 8) is the para
meter of the section.
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THE HYPERBOLA.

DEFINITIONS.

1. The Hyperbola is a plane curve, generated by the

motion of a point subjected to the condition that the

difference of its distances from two fixed points shall be

constantly equal to a given line.

REMARK 1. The distance between the foci is also supposed to

be known, and the given line must be less than the distance between

the fixed points }
that is, less than the distance between the foci.

REMARK 2. The ellipse is a curve confined by two fixed points

called the foci
;
and the sum of two lines drawn from any point in

the curve is constantly equal to a given line. In the hyperbola, the

difference of two lines drawn from any point in the curve, to the

fixed points, is equal to the given line. The ellipse is but a single

curve, and the foci are within it
;
but it will be shown in the course

of our investigation, that

The hyperbola consists of two equal and opposite branches, and

the least distance between them is the given line.

2. The Center of the hyperbola is the middle point of

the straight line joining the foci.

3. The Eccentricity of the hyperbola is the distance from

the center to either focus.

4. A Diameter of the hyperbola is a straight line pass

ing through the center, and terminating in the opposite
branches of the curve. The extremities of a diameter

called its vertices.

6* E
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5. The Major, or Transverse Axis, of the hyperbola is

the diameter that, produced, passes through the foci.

6. The Minor, or Conjugate Axis, of the hyperbola bisects

the major axis at right-angles; and its half is a mean

proportional between the distances from either focus to

the vertices of the major axis.

7. An Ordinate to a diameter of the hyperbola is a

straight line, drawn from any point of the curve to meet

the diameter produced, and is parallel to the tangent at

the vertex of the diameter.

8. An Abscissa is the part of the diameter produced that

is included between its vertex and the ordinate.

9. Conjugate Hyperbolas are two hyperbolas so related

that the major and minor axes of the one are, respectively,

the minor and major axes of the other.

10. Two diameters of the hyperbola are conjugate, when
either is parallel to the tangent lines drawn through the

vertices of the other.

The conjugate to a diameter of one hyperbola will ter

minate in the branches of the conjugate hyperbola.

11. The Parameter of any diameter of the hyperbola is

a third proportional to that diameter and its conjugate.

12. The parameter of the major axis of the hyperbola
is called the principal parameter, the latus-rectum, or simply
the parameter ; and it will be proved to be equal to the

chord of the hyperbola through the focus and at right-

angles to the major axis.

EXPLANATORY REMARKS. Thus, let FT be

two fixed points. Draw a line between them, and

bisect it in C. Take GAj CA
,
each equal to one

half the given line, and CA may be any distance

less than CF; A A is the given line, and is called

the major axis of the hyperbola. Now, let us suppose the curve

already found and represented by ADP. Take any point, as P, and

join P, F and P
}
F r

; then
; by Def. 1, the difference between PF
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and PF must be equal to the given line A A
;
and conversely, if

PF PF=A A, then P is a point in the curve.

By taking any point, P, in the curve, and joining P, F and P
}
F

a triangle PFF is always formed, having F F for its base, and

A A for the difference of the sides
;
and these are all the conditions

necessary to define the curve.

As a triangle can be formed directly opposite PF F, which shall

be in all respects exactly equal to it, the two triangles having F F
for a common side

;
the difference of the other two sides of this

opposite triangle will be equal to A A, and correspond with the con

dition of the curve.

Hence, a curve can be formed about the focus F f

} exactly similar

and equal to the curve about the focus F.

We perceive, then, that the hyperbola

is composed of two equal curves called

branches, the one on the right of the cen

ter and curving around the right-hand

focus, and the other on the left of the

center and curving around the left-hand

focus. In like manner, by making CB
equal to a mean proportional between

FA and FA
,
and constructing above and below the center the

branches of the hyperbola *of which BB =ZCB is the major, and

AA the minor axis, we have the hyperbola which is conjugate to

the first. PP is a diameter of the hyperbola, PT a tangent line

through the vertex of the diameter, and QQ , parallel to PT and

terminating in the branches of the conjugate hyperbola, is conjugate
to the diameter PP . IID is the ordinate from the point H to the

diameter CP, and PD is the corresponding abscissa.

PROPOSITION I.-PROBLEM.

To describe an hyperbola mechanically.

Take a ruler, F H, and fasten one end at the point JP, on

which the ruler may turn as a hinge. At the other end, at

tach a thread, the length of which is less than that of the
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ruler by the given line A A. Fas

ten the other end of the thread at F.

&quot;With the pencil, P, press the thread

against the ruler, and keep it at

equal tension between the points H
and F. Let the ruler turn on the

point F , keeping the pencil close / \

to the ruler and letting the thread slide round the pen
cil

;
the pencil will thus describe a curve on the paper.

If the ruler be changed, and made to revolve about the

other focus as a fixed point, the opposite branch of the

curve can be described.

In all positions of P, except when at A or A
,
PFr and

PF will be two sides of a triangle, and the difference of

these two sides is constantly equal to the difference be

tween the ruler and the thread
;
but that difference was

made equal to the given line A A ; hence, by Definition

1, the curve thus described must be an hyperbola.

Cor. From any point, as P, of the hyperbola, draw the

ordinate PD to the major axis, and produce this ordinate

to P
, making DP equal to PD; and draw FP, FP

,

FP and FP . Then, because FD is a perpendicular to

PP at its middle point, we have FP=FP
,
and F*P=*

FP ; whence

FPFP=FP FP
,
and P is a point of the hyper

bola. Therefore, PP is a chord of the hyperbola at right

angles to the major axis, and is bisected by this axis
;
and

as the same may be proved for any other chord drawn at

right angles to the major axis, we conclude that

All chords of the hyperbola which are drawn at right angles

to the major axis are bisected by that axis. It may be proved,
in like manner, that

All chords of the hyperbola which are drawn at right angles

to the conjugate axis are bisected by that axis.
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PROPOSITION II. THEOEEM.

If a point be taken within either branch of the hyperbola, or

on the concave side of the curve, the difference of its distances

from the foci will be greater than the major axis; and if a

point be taken without both branches, or on the convex side of

both curves, the difference of its distances from the foci will be

less than the major axis.

Let AA be the major axis, and

F and Ff the foci of an hyperbola.
Within the branchAPX take any

point, Q, and draw FQ and F Q;
then we are to prove F A7 A F

First. That F QFQ is greater than AA .

Since Q is within the branch APX, the line F Q must

cut the curve at some point, as P. Draw PF and FQ.
By the definition of the hyperbola, FT PF=AA .

Adding PQ+PF to both members of this equation, it

becomes

FPPF+PQ+PF=AA +PQ+PF
or, F Q=AA +PQ+PF.
But PQ and PF being two sides of the triangle FPQ,

are together greater than the third side FQ. Therefore

F Q&amp;gt;AA +FQ; and, by taking FQ from both members
of this inequality, we have

F Q-FQ&amp;gt;AA .

Second. Take any point, q, without both branches ofthe

hyperbola, and join this point to either focus, as F. Then
since q is without the branch APF, the line qF must cut

the curve at some point, P. Draw qF, qF ,
and PF .

Because P is a point on the curve, we have PFf PF
=AA . Adding Pq+PFto the members of this equa
tion it becomes

PFr PF+Pq+PF=AA +PF+Pq
or, PF +Pq=AA +PF+Pq=AA +qF.
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But PFf and P/, being two sides of the triangle F Pq,
are together greater than the third side qF . &quot;Whence

qF &amp;lt;AA
r

-\-qF; and by taking qF from both members
of this inequality, we have qF qF&amp;lt;A

A .

Hence the theorem
; if a point be taken, etc.

Cor. Conversely : If the difference of the distances from

any point to the foci of an hyperbola be greater than the major

axis, the point will be within one of the branches of the curve ;

and if this difference be less than the major axis, the point will

be without both branches.

For, let the point Q be so taken that F Q FQ&amp;gt;AA
f
;

then the point Q cannot be on the curve
;
for in that case

we should have F Q FQ=AA f
. And it cannot be with

out both branches of the curve, for then we should have

F Q FQ&amp;lt;AA ,
from what is proved above. But it is

contrary to the hypothesis that F Q FQ is either equal
to or less than AA ; hence the point Q must be within

one of the branches of the hyperbola.
In like manner we prove that, if the point q be so cho

sen that qFf

qF&amp;lt;AA ,
this point must be without both

branches of the hyperbola.

PEOPOSITION III. THEOKEM.-

A tangent to the hyperbola bisects the angle contained by

lines drawn from the point of contact to the foci.

Let F
,
F be the fgci, and -P

any point on the curve; draw
PF

,
PF and bisect the angle

F
PF\&amp;gt;j

the line TT ; this line

will be a tangent at P.

If TT be a tangent at P, ev- F^A7 c TA&quot;F

ery other point on this line will be without the curve.
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Take PG=PF and draw GF; TT bisects GF, and

any point in the line TT is at equal distances from F
and G (Scho. 1, Th. 18, B. I, Geom). By the definition

of the curve, Ff Gr=A A the given line. ~Now take any
other point than P in TT

,
as E, and draw EF

,
EF and

EG.
Because JEFia equal to EG we have

EF EF=EF EG.

^uiEF EG, is less than F G, because the differ

ence of any two sides of a triangle is less than the third

side. That is, EF EF is less than A A; consequent

ly the point E is without the curve (Prop. 2), and as E
is any point on the line TT

, except P, therefore, the line

TT
,
which bisects the angle at P, is a tangent to the

curve at that point.

Hence the theorem
;
a tangent to the hyperbola, etc.

SCHOLIUM. It should be observed that by joining the variable

point, P, in the curve, to the two invariable points, F and F, we

form a triangle; and that the tangent to the curve at the point P,

bisects the angle of that triangle at P.

But when any angle of a triangle is bisected, the bisecting line

cuts the base into segments proportional to the other sides. (Th.

24, B. II, Geom).

Therefore, FP : PF=F T : TF
Kepresent PPby r and PF by r;

then r : r=FfT : TF
But as / must be greater than r by a given quantity, a,

therefore, r+a : r=F T : T F

Or, 1+^ : \=F T : TF
Let it be observed that a is a constant quantity, and r a variable

one which can increase without limit; and when r is immensely great

in respect to a, the fraction - is extremely minute, and the first term
r

of the above proportion would not in any practical sense differ from

the second; therefore, in that case, the third term would not essen-
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tially differ from the fourth; that is, F T does not essentially differ

from FT when r, or the distance of P from F is immensely great.

Hence, the tangent at any point P, of the hyperbola, can never cross

the line FF at its middle point, but it may approach within the least

imaginable distance to that point.

If, however, we conceive the point P to be removed to an infinite

distance on the curve, the tangent at that point would cut AA at

its middle point C}
and the tangent itself is then called an asymptote.

PKOPOSITION I Y. THEOREM.

Every diameter of the hyperbola is bisected at the center.

Let F and F be the foci, and

AA 1 the major axis of an hyperbo
la. Take any point, as P, in one

of the branches of the curve
;
draw

PF and PF
,
and complete the

parallelogram PFP F .

We will now prove that P is a

point in the opposite branch of the hyperbola, and thai

PP passes through, and is bisected at, the center, C.

Because PFP F is a parallelogram, the opposite sides

are equal; thereforeFPPF=FP P F ; but since J
is, by hypothesis, a point of the hyperbola, FP PF
AA ; hence FP PfF =AA

,
and P is also a point of

the hyperbola.

Again, the diagonals, F F, P P of the parallelogram,

mutually bisect each other
;
hence C is the middle point

of the line joining the foci, and (Def. 2) is the center of

the hyperbola. P P is therefore a diameter, and is bi

sected at the center, C.

Hence, the theorem
; every diameter of the hyperbola, etc.

PROPOSITION Y. THEOREM.

Tangents to the hyperbola at the vertices of a diameter are

parallel to each other. -
.
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At the extremities of the diam

eter, PP ,
of the hyperbola repre

sented in the figure, draw the tan

gents TT and VV. We are now
to prove that these tangents are

parallel. By proposition (Prop. 3)

TT bisects the angle FPF &amp;gt;

and

VV also bisects the angle FP F. But these angles being
the opposite angles of the parallelogram FPF P ,

are

equal; therefore the [__T PF=ihe [__PT
/F=ihe [_ VP F-

But the LJs PT F, VP F, formed by the line FP meet

ing the tangents, are opposite exterior and interior an

gles. The tangents are therefore parallel (Cor. 1, Th. 7,

B. I, Geom).
Hence the theorem

; tangents to the hyperbola, etc.

PROPOSITION Y I . THEOREM.

The perpendiculars ktfall front the foci of an hyperbola on

any tangent line to the curve, intersect the tangent on the circum

ference of the circle described on the major axis as a diameter.

In the hyperbola of which AA
is the major axis, F and F the

foci, and C the center, take any

point in one of the branches, as

P, and through it draw the tan

gent line TH . From the foci let

fall on the tangent the perpendic
ulars FH, FH ,

draw PF and PF
,
and produce FH

to intersect PF in 6r. We are now to prove thatH and

Hf are in the circumference of a circle of which AA f
is

the diameter.

Draw CH
9 producing it to meet FH in Q. Then,

because Pil is a tangent to the curve, it bisects the angle
FPF ; therefore the right-angled triangles, FPH and



74 CONIC SECTIONS.

HPG, being mutually equiangular, and having the side

PH common, are equal. &quot;Whence, FIIHG and PF=
PG. But, by the definition of the hyperbola, FfPPF
=AA f

; }QncQFfPPG=FfG=AA f
.

Since CH bisects the sides FF and FG of the triangle

FGF
,
we have

FF:FC::Ff G: CH
but FF=2FC; therefore FfG=2CH=AA
If then with C as a center and CA as a radius, a cir

cumference be described, it will pass through the point H.

Again ;
the triangles FHC andFr CQ are in all respects

equal ;
hence CQ= CH, and Q is alstf a point in the cir

cumference of the circle of which AA is the diameter.

Therefore, the right-angled triangle QH H, having for

its hypotenuse a diameter HQ of this circle, must have

the vertex, H of its right angle at some point in the cir

cumference.

Hence the theorem; t\e perpendiculars let fall, etc.

PROPOSITION VII. THEOEEM.

The product of the perpendiculars let fall from the foci of

an hyperbola upon a tangent to the curve at any point, is equal

to the square of the semi-minor axis.

Resuming the figure of the pre

ceding proposition ; then, since

the semi-minor axis, which we will

represent by 13, is a mean propor
tional between the distances from

either focus to the extremities of

the major axis, we are to prove
that

jB2=FA xFA =FHxFH
By the construction, the triangles FHC and CQFf are

equal; therefore FH=F Q (1)
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Multiplying both members of eq. (1) by FH it be

comes

FH -FH =F&amp;gt; Q FH (2)

Again, it was proved in the last proposition that the

points H, Hf and Q were in the circumference of the cir

cle described on AA as a diameter; therefore FH and

FA are secants to this circumference, and we have

F Q : FA : : FA :^Hf

(Cor., Th. 18, B. EJ, Geom).

Whence, F Q -FH=FA -FA (3)

But FA ^FA, FA=FA ,
and F Q=-FH. Making

these substitutions in eq. (
3) it becomes

FH - FH=FA -FA =B2
.

Hence the theorem : the product of the perpendiculars, etc.

Cor. 1. The triangles PFH, PFH are similar ;

therefore, PF : PFf
: : FH : FH

That is : The distances- from any point on the hyperbola to

the foci, are, to each other, as the perpendiculars let fall from
the foci upon the tangent at that point.

Cor. 2. From the proportion in corrollary 1, we get

__ PF-FH =,2 PF-FH -FHFH=--pF, ; whence FH =-

But by the proposition, FH FH=& ;_
2 ^2 . pF 2 . pF

therefore, FH =
pF, ^^CA+PF^

tecause F
AA =2CA, and PG=PF.
In like manner it may be proved that

BZ PF _B\2CA+PF)
PF PF

PROPOSITION YI II. THEOREM.

If a tangent be drawn to the hyperbola at any point, and al

so an ordinate to the major axis from the point of contact, then

will the semi-major axis be a mean proportional between the
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distance from the center to the foot of the ordinate, and the dis

tance from the center to the intersection of the tangent with this

axis.

Let AA be the major axis, F$ f

the foci and C the center of the

hyperbola. Through any point,

as P, taken on one of the branch

es, draw the tangent PT intersect

ing the axis at T; also draw PF,
PFf to the foci, and the ordinate

PM to the axis. &quot;We are now to prove that

CT : CA. :: CA: CM.

Because PT bisects the vertical angle of the triangle

FPF (Prop. 3), it divides the base into segments pro

portional to the adjacent sides (Th. 24, B. II, Geom.)

Therefore, F T: TF : : F P: PF.

Whence, F TTF:F/T+ TF: : F PPF: F P+PF
That is, 2CT : FF : : AA =2CA : F P+PF
Or, by inverting the means,

2CT : 2 CA : : FF : F P+PF (D

Now, making MF&quot;=MF, and drawing PF&quot;, we have,

from the triangle F PF&quot;,

F F&quot; : F P+PF&quot; : : F PPF&quot; : F MMF&quot;

(Prop 6, PL Trig.)

But, because the triangle FPF &quot;

is isosceles, and PM is

a perpendicular from the vertical angle upon the base,

therefore the preceding proportion becomes

2CM: FP+PF: : 2CA : FF
or, 2CM : 2CA : : FP+PF : FF (2)

Multiplying proportions (1) and (2), term by term, ob

serving that the terms of the second couplet of the result

ing proportion are equal, we have
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Whence, CT-CM=CA;
which, resolved into a proportion, becomes

CT:CA: : CA : CM.

Hence the theorem
; if a tangent be drawn, etc.

SCHOLIUM. The property of the hyperbola demonstrated in this

proposition is not restricted to the major axis, but also holds true in

reference to the minor axis.

The. tangent intersects the minor axis at the point t,
and PG is

an ordinate to this axis from the point of contact. Now, the simi

lar triangles tCT, TIIF, give the proportion

Ct : FH:\ CT : TH (1)

and from the similar triangles PMT, TF IT, we also have

PM: FU r.MT: ITT (2)

Multiplying proportions (1) and (2), term by term, we get

Ct-PM : FH-FH : : CT-MT : TH-H T (3)

But FH-FH =B i

(Prop. 7). Moreover, drawing the ordinate

TV, and the radius CVoi the circle, and the line VJ\i, we have

by the proposition

CT: CA .-.CA : CM
or, CT: CV::CV: CM
Therefore, the triangles VCT and MCV, having the angle C

common and the sides about this angle proportional, are similar (Cor.

2, Th. 17, B. II, Geom.) ;
and because the first is right-angled, the

second is also right-angled, the right angle being at F; hence

VT*=CT-MT(Th. 25, B. II, Geom).

Also, AA and HHr
are two chords of a circle intersecting each

other at T; hence

IIT-TH =AT TA = VT* (Th. 17, B. Ill, Geom).

Substituting for the terms of proportion (3) these several values,

it becomes

Ct-PM: B*:: VT* : FT ::1 : 1

Whence, Ct-PM=JP

Therefore, Ct : B : : B : PM= CG
7*
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Cor. It has been proved that the triangle CVM is right-

angled at V; therefore, VM is a tangent at the point V
to the circumference on AA as a diameter, and Of is its

sub-tangent. But TMia also the sub-tangent on the ma
jor axis of the hyperbola answering to the tangent PT;
hence

If a tangent be drawn to the hyperbola at any point, and

through the point in which the tangent intersects the major axis

an ordinate be drawn to the circle of which this axis is a diam

eter, the sub-tangent on the major axis corresponding to the tan

gent through the extremity of this ordinate will be the same as

that of the tangent to the hyperbola.

PROPOSITION IX. THEOREM.

In any hyperbola the square of the semi-major axis is to

the square of the semi-minor axis, as the rectangle of the dis

tances from the foot of any ordinate to the major axis, to the

vertices of this axis, is to the square of the ordinate.

Resuming the figure to Propo-
sition 8, the construction of which

needs no further explanation, we
are to prove that

~CA
2

rCif : : A M-AM: PM\
assuming CB to represent the

semi-minor axis.

From the similar triangles PMT, TIIF and TH F
,
we

derive the proportions

PM-.FH: : MT : TH
PM: F H : : MT : THr

Whence pjf
2

. FH-F Hf
: : MT2

: TH- TR (1)

But FII-FH is equal to the square of the semi-minor

axis (Prop. 7); and because the chords, HHf and AA
,

of the circle intersect each other at T, we have
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(Th. IT, B. in, Geom.)

These values of tlie consequents of proportion (1) be

ing substituted, it becomes

PM2
: &quot;SO

2

: : MT* :W (2)

The triangles CVTand TVM are similar, and give the

proportion

: VT* :: VM2

: OF2=aT (3)

Comparing proportions (2) and (3), we find that
2PM : C : : VM :OA (4)

Because MVis a tangent and MA f a secant to the cir

cle A VA H
,
we have

VM*=A M - AM (Th. 18, B. Ill, Geom.)

Placing this value of VM2

in proportion (4) and invert

ing the means of the resulting proportion, it becomes

PM2
: A M- AM: : ~BC* :~CA*

or, &quot;CT : ~BG
2

: : A M- AM: PM*
Hence the theorem

;
in any hyperbola the square of the, etc.

Cor. Proportion (4) above may be put under the form

~CA
2

: ~BC
2

: : VM* : PM2

(a)

and from the right-angled triangle CVM we have

from which, because CV= CA, we get

Also, the right-angled triangles CVM, VTMare similar;

therefore, CM:VM: : VM : MT
-Whence VM2= CM- MT.

Now, if in proportion (a) we place for VM these val

ues, successively, we shall have the two proportions

C : : : CM-MT: PM (b)

and &quot;CT : ~BC? : : CM -^OA
2

: PM2

(c)
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SCHOLIUM 1. Let us denote CA by a, CB by b, CMbj x, and

PM byy; then A M=x-}~a and AM=x-a. Because CM* OA*

=(CM+CA) (CMCA)=AMt -

Disproportion (c), by substitu

tion, now becomes

a*
: tf : : (^-fa) (x a) : y*. (a )

Whence aY=Vx*a?V
or, ay 6V= a2

6
9
.

This equation is called, in analytical geometry, Ae equation of
the hyperbola referred to its center and axes, in which x, the distance

from the center to the foot of any ordinate to the major axis, is

called the abscissa. The equation a2

^* &
2x2= a2

&
2
therefore ex

presses the relation between the abscissa and ordinate of any point

of the curve.

SCHOLIUM 2. Let y denote tlfe ordinate and x the abscissa of

a second point of the hyperbola; then we shall have

aa
: V : : (x +a) (x a) : y

*

Comparing this proportion with proportion (a ), scholium 1, we

find

f :y&quot;:i (x-f-a) (x a) : (x +a) (x a}

That is : In any hyperbola the squares of any two ordinates to the

major axis are to each other, as the rectangles of the corresponding

distances from the feet of these ordinates to the vertices of the axis.

A similar property was proved for the ellipse and the parabola.

PROPOSITION X. THEOREM.

The parameter of the major axis, or the latus-rectum, of the

hyperbola is equal to the double ordinate to this axis through the

focus.

Through the focus F of the hyperbo-

la, of which AA is the major and BBf

the minor axis, draw the chord PPf at

right angles to the major axis; then de-

noting the parameter by P, we are to

prove that

AA : BE : : BB : PP =P (Def. 11.)
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By definition 6, BC =FA FA, and by proposition 9

we have

~AC
2

: ~BC
2

: : FA FA : PF=(JPP )

2

(Cor. Prop. 1.)

&quot;Whence ~AC* : ~BG
Z

: : ~B(f : (^PPJ
Therefore AC.BG: :JBC: \PP (Th. 10, B. II, Geom.)

Multiplying all the terms of this last proportion by 2,

it becomes

or, AA f
: BB : : BB : PPf

Hence the theorem ;
the parameter of the major axis, etc.

PROPOSITION XI. THEOREM.

If from the vertices of any two conjugate diameters of the

hyperbola ordinates be drawn to either axis, the difference of the

squares of these ordinates will be equal to the square of one

half the other axis.

Let AA
,
BBf be the axes, and

PP
, QQf

any two conjugate diam

eters of the conjugate hyperbolas

represented in the figure. Then,

drawing the ordinates QV, PM,
to the major axes, and the ordinates

PS=MC, QD= VC, to the minor

axis, it is to be proved that

and that ~GB*==~QV
2-.

Draw the tangents PT and Qt, the first intersecting the

major axis at Tand the minor axis at Tr

,
and the second

intersecting the minor axis at t and the major axis at t.

ISTow, by proposition 8, we have, with reference to the

tangent PT,
CT: CA::CA: CM,
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and by the scholium to the same proposition, we also

have, with ference to the tangent Qt to the conjugate

hyperbola,

Ct: CA =CA: : CA : CV
The first proportion gives CA = CT- CM, and the sec

ond~CA
2= Ct CV,

Whence CT- CM= Ct CV, which, in the form of a

proportion, becomes

CM i CV:: Ct : CT (l)

From the similar triangles tCQ, CTP, we get

Ct:CT::QC:PT (2)

and from the triangles CQV, TPM
QC: PT: : CV : TM (3)

Comparing proportions (1), (2) and (3), it is seen that

CM i CV: : CV: TM
&quot;Whence CV2= CM- TM; but TM=CMCT;
Therefore ~CV**= CM 2

CT- CM.

And because CT - CM= CA (Prop. 8), we have

or, ~CA
2=CM2

~CV
2

Again we have

CT : CB:: CB: PM (Scho., Prop. 8)

and Ct : CB : : CB : CD=QV (Prop. 8)

Whence CT -PM= Ct - Q V, which, resolved into a

proportion, becomes

PM: QV: : Ct : CTf
(4)

From the similar triangles, Tf

CP, Ct Q, we get

Ct : CTf
: : t Q: CP (5)

And from the triangles t DQ, CPM, we also get

t Q: CP: : t D : PM (6)

From proportions (4), (5) and (6) we deduce
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PMi
Whence PM == Q V- t D; but t D= -Ctr

therefore, PM 2

=QV2
Ctf - QV=~QV* ^

And because Ctf OD= CB2

(Prop. 8) we
&quot;

ave

or CB
2

=QV2 PM2

Hence the theorem
; from the vertices of any two, etc.

Cor. By corollary to proposition 9 we have

~CA
2

:~CB
2

: : O
2

~OZ
2

: PM*
In like manner, in reference to the conjugate hyperbo

la, we shall have

:CA : ij
Ctf: CV*

or,

By composition,

-^C : :~CA :

: ~QV
2

: :~CA
2

i~CA
2

+CV*
But by this proposition we have

~CA
2= CM 2 CV3

; hence7?A*

therefore ~GB
2

: ~QV
2

: : &quot;OT : CM
Whence CB: QV:: CA: CM
or, CAiCBn CM-. QV

CM*

PROPOSITION XII. THEOREM.

The difference of the squares of any two conjugate diameters

of an hyperbola is constantly equal to the difference of the

squares of the axes.

In the figure, which is the same

as that of the preceding proposi

tion, PPf and QQf are any two con

jugate diameters (Def. 10). It is

to be proved that

PP2

~QQ
2=AA f2 SB?

By proposition 11 we have
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and

CA2= CM2

~CB = QV
2 PM

therefore CA2

CB
2= CM*+PM2

(
CV2+ Q V

2
}

Multiplying each member of this equation by 4, observ

ing that 4iCA 2 AA &c., it becomes

AA 2 BB 2=PP 2

QQ*
2

Hence the theorem
;

the difference of the squares, etc.

PROPOSITION XIII. THEOREM.

The parallelogram formed by drawing tangent lines through

the vertices of any two conjugate diameters of the hyperbola is

equivalent to the rectangle contained by the axes.

Let LMNO be a parallelogram
formed by drawing tangent lines

through the vertices of the two con

jugate diameters PPf

, QQf of the

conjugate hyperbolas represented in

the figure. It is to be proved that

area LMNO=AA xBBf
.

We have CA : CB : : CS : QV (1) (Cor. Prop 11.)

Also, CT: CA : : CA : CS (2) (Prop. 8.)

Multiplying proportions (1) and (2), term by term, omit

ting in the first couplet of the result the common factor

CA, and in the second the common factor CS, we find

CT: CB:: CA: QV
Whence CT - Q V= CA - CB
But CT- QV measures twice the area of the triangle

CQT, and this triangle is equivalent to the half of the

parallelogram QCPL, because they have the common base

QC and are between the same parallels QC, LT (Th. 30,

B. I, Geom.)
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Now the parallelogram QCPL is one-fourth of the par

allelogram LMNO, and CA CB measures one fourth of

the rectangle contained
&quot;by

the axes ;
therefore the paral

lelogram and rectangle are equivalent.

Hence the theorem
;

the parallelogram formed, etc.

PROPOSITION XIV. THEOREM.

Ifa tangent to the hyperbola be drawnthrough the vertex ofthe

transverse axis, andan ordinate to any diameter be drawnfrom
the, same point, the semi-diameter will be a mean proportional

between the distances, on the diameter, from the center to the tan

gent, andfrom the center to the ordinate.

Let CA be the semi-major axis and

CP any semi-diameter of the hyper-
bola. Draw the tangents At, PT, the

ordinate AH to the diameter, and the

ordinate PMto the major axis. It is T AV M

now to be proved that~OP
2= Ci - CH.

&quot;We have CT : CA : : CA : CM, (Prop. 8)

also CAiCti: CM: OPfrom the similar A s CAt, CMP
Multiplying these proportions term by term, omit

ting in the result the common factor in the first couplet,

and also that in the second, we find

CT:Ct::CA:CP (1)

Again we have

CP .CT: : CH: CA from the similar A s CPT, CHA.

Proceeding with these last proportions as with those

above, we find

CP^Ct:: CH: CP
Whence, CP 2

=Ct-CH.

Hence the theorem
; if a tangent to the hyperbola, etc.

Cor. 1. From proportion (1)we get CT-CP= Ct - CA; but

the triangles CTP, CAt, having a common angle, C, are
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to each other as the rectangles of the sides about this an

gle (Th. 23, B. II, Geom.) Therefore ACTP=ACLi.
Cor. 2. If from the equivalent areas ACTP, A(M we

take the common area CTVt there will remain A TA Y==

Cor. 3. If we add to each of the triangles TAV, tVP,
the trapezoid VAMP, we shall have area &TMP=
area tAMP.

PROPOSITION XY.-THEOREM.

If through any point of an hyperbola there be drawn a tan

gent, and an ordinate to any diameter, the semi-diameter will

be a mean proportional between the distances on the diameter

from the center to the tangent, and from the center to the ordi

nate.

Take any point as D on the hy

perbola of which CA is the semi-

major axis, and through this point
B

draw the tangentDTand the semi-

diameter CD, also take any other

point, as P, on the curve, and draw c

the tangent Pi, the ordinate PIfto

the diameter through D, and the ordinates PQ and

DG to the axis. The semi-diameter CD and the tangent
Pi intersect each other at t . &quot;We will now prove that

Let CB represent the semi-conjugate axis, then by co

rollary to proposition 9 (proportion (b)) we have

~3Z
2

: &quot;CB

2

:: CG TG
and -CA

2
: &quot;OS

2

: : CQ-tQ :

Whence C& TG : CQ :
tQ : D(? : ~PQ*

but ~D(? : ~PQ
2

: :~TG? : ~LQ\ from the similar A s

TGD, LQP-,
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therefore CG TG : CQ-tQ : : TG : LQ (1)

Drawing Dm parallel to Pt we have te similar A s

j tQP which give the proportion

Da : PQ : : Gm : Qt. (2)

The A s TGD, LQP also give

DG : PQ : : TG : LQ (3)

From proportions (2) and (3) we get

TG:LQ::Gm:Qt (4)

.Multiplying proportions (1) and (4) term by term, there

results,

CG ~TG2
: CQ-tQ LQ: : ~TG

2 Gm : ~LQ
2

-Qt

Dividing the first and third terms of this proportion by

!T6r
2and the second and fourth terms by Qt LQ it be

comes

CG : CQ : : Gm : LQ
or CG : Gm:: CQ: LQ (5)

Whence CG : CGGm : : CQ : CQLQ
That is CG : Cm : : CQ : CL (6)

Again CT-CG= CA*= CQ -

Ct, (Prop. 8.)

therefore
CG^:

Ct : : CQ : CT
The antecedents in this last proportion and in propor

tion (6) are the same, the consequents are therefore pro

portional, and we have

Ct: CT:: Cm : CL
We have also, Cm : CD : : Ct : Ct from the similar

A s CmD, Ctt
r

And CT: CD:: CL : Off from the similar A s CTD
CLH
By the multiplication of the last three proportions term

by term we find

Ct Cm-CT:~CD
2

CT^: Cm-Ct-CL: CL Ct -CH
Whence CT:~CD

2

-CT:: CL : CL Ct -CII

-or l:~CD
2

: : I : Ctf -CII

therefore ~CI?= Ct - CII
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Hence the theorem
; if through any point of an, etc.

REMARK. The property of the hyperbola just established is the

generalization of that demonstrated in the preceding proposition.

PROPOSITION XVI. THEOREM.

The square of any semi-diameter of the hyperbola is to the

square of its semi-conjugate as the rectangle of the distances

from the foot of any ordinate to the first diameter, to the ver

tices of that diameter, is to the square of the ordinate.

Let PPf and QQ be any two

conjugate diameters of the conju

gate hyperbolas represented in

the figure. Through any point as

Cr draw the tangent G-T inter

secting the first diameter at T
and the second at Tf

,
and from

the same point draw the ordinates GrH, GrK, to these

diameters.

&quot;We will now prove that,

~CP
2

: ~C : : PH-P H* _
By the preceding proposition we have CP = CT- CH

and multiplying each member of this equation by CH it
~

becomes CP2
-CH= CT- GH

Whence CPj^Cff* 1 1 CT : Offfrom which by division

we get CP 2
: CH2 CP 2

: : CT : CHCT=TH, (1)

Again we havel7
2= CT C2&quot;(Prop. 15) and multi

plying each member of this equation by CK it becomes

Whence CQ : CK : : CT : CK=GH (2)

The similar A s TCT
,
THGr give the proportion

CT : aH: : CT: TH (3)

Comparing proportions (2) and (3) we obtain

CQ : CK* ::CT: Til (4)
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And by comparing proportions (1) and (4) we obtain

~CQ* : ~CK
2

: ~CP2
: CH 2 CP 2

or CP2
: ~CQ

2
: CH2 CP2

: CK 2=GH2

But because CP=CP and ~CH
2 ~CP

2

=(CHCP)
(CH+CP) = PH- (CH+CP) the last proportion above

becomes ~CP* : ~CQ
2

: : PH-P H: GH*
Hence the theorem

;
The square of any semi-diameter

,
etc.

REMARK. The property of the hyperbola with reference to any

two conjugate diameters just demonstrated is the same as that with

reference to the axes established in proposition 9.

Cor. If the ordinate GH be produced to intersect the

curve at G f and the above construction and demonstra

tion be supposed made for the point Gf instead of 6r, we
should finally get the same proportion as before, except

the fourth term, which would be G H ; therefore, G H
GH. Hence we conclude that

Any diameter of the hyperbola bisects all the chords drawn

parallel to a tangent line through the vertex of that diameter.

PROPOSITION XYII . T H E R E M .

The squares of the ordinates to any diameter of the hyper

bola are to one another as the rectangles of the corresponding

distances from the feet of these ordinates to the vertices of the

diameter.

Resuming the figure to the

proposition which precedes and

drawing any other ordinate gh to

the diameter PP
,

it is to be

proved that

~GH2

:~gh
2

: . PH PH : Ph-Pfh

By the foregoing proposition

we have two proportions following, viz :

~CP
2

:~CQ
2

:: PH-PH^
CP2

: CQ
2

:: Ph -P h : gh
8*
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Since the ratio CP2
: CQ

2
is common to these pro

portions the remaining terms are proportional.

That is GH2

i^h
2
i-.PH -PfH : Ph -P h

Hence the theorem The squares of the ordinates, etc.

PROPOSITION XYIII.-THEOKEM.

If a cone be cut by a plane making an angle with its base

greater than that made by an element of the cone, the section

will be an hyperbola.

Let the A s MVN, BVR\)Q the

sections of two opposite cones by a

plane through the common axis, and
PH a line in this section not pass

ing through the vertex, and making
withMN the \_BHN&amp;gt; the [_BMN.
Through this line pass a plane at

right angles to the first plane, mak-

ing in the lower cone the section

IGAG fIf

; then will this section be one of the branches

of an hyperbola.
Let KL and MNloe the diameters of two circular sec

tions made by planes at right ^ angles to the axis of the

cone, and at F and JT, the intersections of these lines

with BH, erect the perpendiculars FG, HI to the plane
MVN. FG is the intersection of the plane of the section

IGAGfl with the plane of the circle of which KL is the

diameter and is a common ordinate of the section and oi

the circle
;
so likewise is HI a common ordinate of the

section and of the circle of which MN is the diameter.

Now by the similar A s AFL, AHN, and BFK,BHM
we have

AFiAHi-.FL .HN (1)

and BF:BH::FKiHM (2)

Multiplying proportions (1) and (2), termby term, we get
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AF-BF : AH-BH : : FL-FK : HN-HM (3)

But because LGK and NIM are semi-circles, FGr
2 =

FL-FK and ~ILI*=HN HM. Substituting these values

for the terms of the last couplet of proportion (3) it be

comes

AF-BF: AH-BH-. :W : ~HI*

If we denote any two ordinates of the corresponding
section of the opposite cone by^ and hi we should have

in like manner

Af-Bf : Ah -Bh : : (fg)
2

: (hi)
2

If, therefore, AB be taken as a diameter of the curves

cut out of the opposite cones by a plane through AH, at

right angles to the plane VMN
9
we have proved that

these curves possess the property which was demonstra

ted in the preceding proposition to belong to the hyper
bola.

Hence the theorem
; if a curve be cut by a plane, etc.

ASYMPTOTES.

DEFINITION. An Asymptote to a curve is a straight line

which continually approaches the curve without ever

meeting it, or, which meets it only at an infinite distance.

We shall for the present assume, what will be after

wards proved, that the diagonals of the rectangle con

structed by drawing tangent lines through the vertices of

the axis of the hyperbola possess the property of asymp
totes, and they are therefore called the asymptotes of the

hyperbola.

PROPOSITION XIX. THEOREM.

If an ordinate to the transverse axis of an hyperbola be

produced to meet the asymptotes, the rectangle of the segments

into which it is divided by either of its intersections with the

curve willbe equivalentto the square ofthe semi-conjugate axis.
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Let CA, CB be the semi-axes and Ct,

Ct the asymptotes of an hyperbola.

Through any point, as P, of the curve, B

draw the ordinate PQ to the major axis

and produce it to meet the asymptotes at n c

and n . By the enunciation we are re

quired to prove that CB2=Pn Pn

By Cor. proposition 9 we have

~CA
2

: &quot;OB

2
: :~C

3
~CZ

a
: ~PQ

2
(1)

And from the similar triangles CAB , CQn

$,

2C : =C : :~CQ
2

: ~fyf (2)

Comparing proportions (1) and (2) we find

~CQ
2

j -CQ^-CA
2

: ~Q^
2

: ~PQ
2
which gives by

division CA *
. C *

.

:

-

or ~SI
2

: Qn
2

~PQ
2

: :~CQ
2

: Qn* (3)

From proportions (2) and (3) we get

In this proportion the antecedents are the same the

consequents are therefore equal ;
that is

~ ~

(QnPQ)=Pn-Pri
Hence the theorem

; if an ordinate to the major axis, etc.

Cor. Let us take another point p in the curve and from

it draw the ordinate pQf to the major axis
; then, as be

fore, we shall have CB2
&amp;lt;= pt -pt

f

; t and t
r

being the in

tersections of the ordinate, produced, with the asymptotes.
Whence Pn Pn =pt -pt

r

,
which in the form of a pro

portion becomes Pn : Pt : : pt : Pn

PROPOSITION XX . T H E R E M .

The parallelograms formed by drawing through the different

points of the hyperbola lines parallel to and meeting the asymp
totes are equivalent one to another, and any one is equivalent to

one half of the rectangle contained by the semi-axes.
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P

THE HYPERBOLA.

Let CA, CB be the semi-axes and Cn,

Cn the asymptotes of an hyperbola. From

any point, as P, of the curve draw the ordi-
J

nate PQ to the transverse axis, producing it

to meet the asymptotes at n, n
f

,
and through

P and the vertex A draw parallels to the b

asymptotes, forming the parallelograms

PmCl, AECD. This last is a rhombus

because its adjacent sides CE, CD are equal, being the

semi-diagonals of equal rectangles.

It will now be proved that

Area PmCi = area AECD=\ Eect. AB BC.

By the proposition which precedes we have

~CI?=Pn - Pn (1)

And from the similar triangles AB E, Pnm, and the

similar triangles ADb ,
Pin we also have

AE : AB f=CB : : mP : Pn
AD:Ab f=CBi : Pt : Pn

Multiplying these proportions, term by term, we find

AE AD : ~CB
2

: : mP Pt : Pn - Pn

By equation (1) the consequents of this proportion are

equal, therefore the antecedents are also equal.

That is, AE AD=mP Pt

If the first member of this equation be multiplied by
sin. [_DAE, and the second member by the sine of the

equal \_mPt it becomes

AE- AD sin. DAE=mP Pt sin mPt

But AE -AD sin DAE measures the area of the rhom

bus AECD and mP Pt sin. mPt measures the area of

the parallelogram PmCt; therefore the parallelogram and

the rhombus are equivalent. Moreover, because the

A s AEC, ADC are equal, and the A s AEC, AEBf are

equivalent, it follows that the rhombus AECD is equiva-
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lent to the &AB C, or, to one half of the rectangle con

tained by the semi-axes.

Hence the theorem; the parallelograms formed, etc.

Cor. 1. If from the rhombus AECD and the parallel

ogram PmCtihe common part be taken, there will remain

the parallelogram AKtD, equivalent to the parallelogram

PmEK, and if to each of these the curvilinear areaAKP
be added, we shall have

Area APmE= area APtD.

Had we proceeded in the same way with the parallelo

gram PmCt and any parallelogram other thanAECD we
should have had a like result

;
therefore

If from any two points in the hyperbola parallels be drawn

to each asymptote, the area bounded by the parallels to one

asymptote, the other asymptote, and the curve will be equivalent

to the other area like bounded.

SCHOLIUM. If the product AE-AD, which is a constant quan

tity be denoted by a, the distance Cm by or, and the distance

mp= Ct by y, then, by this proposition, we shall have the equation

xy=a, which, in analytical geometry, is called the equation of the

hyperbola referred to its center and asymptotes.

Cor. 2. In the equation xy=a,y expresses the distance

of any point of the curve from the asymptote on which

x is estimated. From this equation we get y=-. Now
2

it is evident that as x increases y decreases, and finally

when x becomes infinite, y becomes zero. That is, the

asymptote continually approaches the hyperbola without

ever meeting it, or without meeting it within a finite dis

tance. &quot;We were, therefore, justified in assuming that

the diagonals of the rectangle formed by the tangents

through the vertices of the axes were asymptotes to the

hyperbola.
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ANALYTICAL GEOMETRY.

GENERAL DEFINITIONS AND REMARKS.

Analytical Geometry, as the terms imply, proposes to in

vestigate geometrical truths by means of analysis. In it

the magnitudes under consideration are represent by sim-

bolg, such as letters, terms, simple or combined, and equa
tions

;
and problems are then solved and the properties

and relations of magnitude established by processes pure

ly algebraic.

A single letter, without an exponent, will aJwjjjs be un

derstood as denoting the length of a line
;
and in general,

any expression of the first degree denotes the length of a line

and is, for thin reason, said to be linear ; so likewise, an

equation all of whose terms are of the first degree is call

ed a linear equation.

An expression of the second degree will represent the meas

ure of a surface, and an expression of the third degree will

represent the measure of a volume.

&quot;When a term is of a higher degree than the third, a

sufficient number of its literal factors, to reduce it to this

degree, must be regarded as numerical or abstract.

The subject of Analytical Geometry naturally resolves

itself into two parts.

First. That which relates to the solution of determinate

problems; that is, problems in which it is required to de

termine certain unknown magnitudes from the relations

which they bear to others that are known. In this case

we must be able to express the relations between the

known and unknown magnitudes by independent equa
tions equal in number to the required magnitudes.

(96)
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After having obtained, by a solution of the equations

of the problem, the algebraic expressions for the quanti

ties sought, it may be necessary, or, at least desirable, to

construct their values, by which we mean, to draw a geo
metrical figure in which the parts represent the given and

determined magnitudes, and have to each other the rela

tions imposed by the conditions of the problem. This is

called the construction of the expression.

This branch of analytical geometry, which may be

termed Determinate Geometry
!

, being of the least impor

tance, relatively, will be omitted, after this reference, in

the present treatise, and we shall pass at once to division.

Second. That which has for its object to discover and

discuss the general properties of geometrical magnitudes.
In this the magnitudes are represented by equations ex

pressing relations between constant quantities, and, either

two or three indeterminate or variable quantities, and for

this reason it is sometimes called Indeterminate Geometry.

GENERAL PROPERTIES
OF

GEOMETRICAL MAGNITUDES,
CHAPTER I.

OF POSITIONS AND STRAIGHT LINES IN A PLANE,AND THE
TRANSFORMATION OF CO-ORDINATES.

DEFINITIONS.

1. Co-ordinate Axes are two straight lines drawn in a

plane through any assumed point and making with each

other any given angle. One of these lines is the axis of

. abscissas or the axis ofX; the other is the axis of ordinates,

or the axis of Y, and their intersection is the origin of co

ordinates.

2. Abscissas are distances estimated from the axis of Y
on lines parallel to the axis of X ; ordinates are distances

9
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estimated from the axis of X on lines parallel to the axis

of Y.

3. The abscissa and ordinate of a point together are

called the co-ordinates of the point.

4. The co-ordinate axes are said to be rectangular when

they are at right angles to each other, otherwise they are

oblique.

5. The two different directions in which distances may
be estimated from either

t axis, on lines parallel to the

other, are distinguished by the signs plus and minus.

6. Abscissas are designated by the letter x and ordi-

nates by the letter y, and when unaccented they are called

general co-ordinates, because they refer to no particular

one of the points under consideration. &quot;When particular

points are to be considered the co-ordinates of one are

denoted by x and y ; of another by x&quot; and
y&quot;, etc., which

are read x prime, y prime, x second, y second, etc.

ILLUSTKATIONS. Through any point A
draw the lines XX

,
YYf

making with

each other any given angle. Call XX
the axis of abscissas and YYr the axis

X-
of ordinates. A is the origin of co-or

dinates, or zero point. The four angu
lar spaces into which the plane is divi

ded are named, respectively,^^/, second,

third, and. fourth angles. YAX is the first angle, YAX
is the second angle, YAX1

is the third angle, and YAX
is the fourth angle.

Take any point, as P, in the first angle, and from it

draw Pp parallel to the axis of Y and Pp
r

parallel to the

axis of X, the first meeting the axis of X at p, and the

second the axis of Fat p
f

; then p P=Ap is the abscissa,

and pP=Ap r
is the ordinate of the point P.

Now produce Pp r to P making p Pf=p P, and from

P draw a parallel to the axis of Y meeting the axis ofX
at

p&quot;;
then the point P is in the second angle, and p P
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*=
Ap&quot;

is its abscissa, and
p&quot;P

f=Ap r
is the ordinate. By

like constructions we determine the position of the point
P in the third angle, and that of the point P &quot; in the

fourth angle.

It is evident that the abscissas of these four points are

numerically equal, as are likewise their ordinates
;
but if

we have reference to the algebraic signs of the co-ordi

nates, each point will be assigned to its appropriate angle
and will be completely distinguished from the others.

Abscissas estimated to the right of the axis of Y are posi

tive and those estimated to the left are negative. Ordinates

estimated from the axis of JT upwards are positive, those

estimated downwards are negative.

We shall therefore have for points

In the 1st angle, x positive, y positive.
&quot; &quot; 2d &quot; x negative, y positive.
&quot; &quot; 3d &quot; x negative y negative.
&quot; &quot; 4th &quot; x positive y negative.

From what precedes we see that the position of a point
in the plane of the co-ordinate axis is fully determined

by its co-ordinates. To construct this position we lay off

on the axis ofX the given abscissa, to the right, or to the

left of the origin, according to the sign ;
also lay off on

the axis of Y the given ordinate, upwards from the origin
if the sign be plus, downwards if it be minus. The lines

drawn through the points thus found, parallel to the co

ordinate axes, will intersect at the required point and fix

its position.

As rectangular co-ordinates are more readily appre
hended than oblique, and as discussions and algebraic

expressions are generally less complicated where refer

ences are made to the former, than when made to the

latter, rectangular co-ordinates will be habitually em

ployed in the following pages. When we have occasion

to use others it will be so stated.
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PROPOSITION I-

To find the equation of a straight line,

Let XX
,
YT be two rectangu- Y

iar co-ordinate axes. A being the

origin draw any line asLfL through
this point, and designate the natu

ral tangent of the angle LAX by a.

Then take any distance on AX
as AP, and represent it by x, and

the perpendicular distance PMy.
Then by trigonometry we have&quot;

Ead : tan. MAP :;AP: PM
or 1 : a : : x : y
Whence y~ax (l)

Now this equation is general ; that is, it applies to any

point M on the line AL, because we can make x greater
or less, and PM will be greater or less in like proportion
and M will move along on the line AL as we move P on

the line AX. Because the point M will continue on the

line AL through all changes of x and y, we say that yax
is the equation of the line AL.
Now let us diminish x to 0, and the equation .reduces

to ?/=0 at the same time, which brings M to the point A.

Let x pass the line YY
,
then AP becomes #, and

the corresponding value of y will be PM1

, and,being be

low the line X X, will, therefore,be minus.

Therefore y=ax.

is the general equation of the line L_Z7, extending indefi

nitely in either direction.

If the tangent a becomes less, the line will incline more

towards the line X X. When a=0 the line will coincide

with Xlt&amp;gt;.

Fow let AP*&quot; fce +&W& a become a, then P&quot; M&quot;&amp;gt;

will correspond to y, x& beepmes minm y, because it is
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below the axis &X . Or, algebraically y= ax, indica

ting some point JM.
&quot; below the horizontal axis.

It is, therefore, obvious that yax may represent any

line, as LL
, passing through A from the list into the %d

quadrant, and that y= ax may be made to represent any

line, as L*I/&quot;, passing through A from the 2d into the

4th quadrant.

Therefore y=&x
may be wade to represent any straight line passing tJirouyh the

zero point.

In case we have a and x, that is, both a and x mi

nus at the same time, their product will be -+(ix, showing
that y must be

^&amp;gt;fe? by the rules of algebra.

As an exercise, Set the learner examine these lines and
see whether they ^correspond to the equation.
When we have a we must draw the line from A to

the right and below AX; then XAL &quot;

is the angle whose

natural tangent is a. But the opposite angle X^AU is

the same in value.

When we have x we must take the distance as AP
to the left of the axis YY7

,
and the corresponding line

P M&quot; is above XX
,
and therefore plus, as it ought to be.

But the equation of a straight
line passing through the zero

point is not sufficiently general
for practical application ;

we will

therefore suppose a line to pass

in any direction across the axis

YY
, cutting it at the distance

AB or AD (6) or b distance

above or below the zero point A,
and find its equation.

Through the zero point A draw a line, AN, parallel to

ML.
Take any point on the line AX and through P draw

9*



102 ANALYTICAL GEOMETRY.

PM parallel to A Y, then ABMNv?\\\ be a parallelogram.
Put AP=x. PM=y. The tangent of the angle

NAP=a. Then will NP=ax.
To each of these equals add NM=b, then we shall have

y=ax+b
for the relation between the values of x and y correspond

ing to the point M, and asM is any variable point on the

line ML corresponding to the variations of x, this equa
tion is said to be the equation of the line ML.

&quot;When b is minus the line is then QL ,
and cuts the axis

YY in 1), a point as far below A as B is above A.

Hence we perceive that the equation

may represent the equation of any line in the plane YAX.
If we give to a, x, and b, their proper signs, in each

case of application we may write

y=ax+b

for the equation of any straight line in a plane.

Cor. Since the equation yax+b truly expresses the

relation between the co-ordinates of any point of the line,

it follows that if the co-ordinates x and y
1 of any partic

ular point of the line be substituted for the variables x

and y the equation must hold true
;
but if the co-ordinates

x&quot; and
y&quot;,

of any point out of the line be substituted for

the variables, the equation cannot be true.

&quot;What appears in the particular case of a straight line

are general principles which we thus enunciate, viz :

1st. If the co-ordinates of a particular point, in any line

whatever, be substituted for the variables in the equation of the

line, the equation must be satisfied; but if the co-ordinates of

a point out the Ine, be substituted for the variables in its equa

tion, the equation cannot be satisfied.

2d. If the co-ordinates of anypoint be substituted for the va

riables in the equation of a line, and the equation be satisfied, the
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point must be on the line ; but if the equation be not satisfied by

the substitution, the point cannot be on the line.

These are principles of the highest importance in ana

lytical geometry, and should be thoroughly committed

and fully understood by the student.

SCHOLIUM. Instead of rectangular, let us as- Y
sume the oblique co-ordinate axes AX and AY

t

making with each other an angle denoted by m.

Through the origin draw the line AP making with

the axis of x the angle PAD=n ; then the angle

PAjy=m n. Take any point as P in the line

and from it draw PD* and PD parallel, respectively,

to the axes ofX and Y.

From the triangle APD we have (Prop. 4, Sec. 1, Plane Trig.)

PI): AD:: Sin. PAD=Sm. PAD1

or y : x::Sm. n : Sin. (m n.)

Whence y=
sin * n

sm.m n

But-is constant for the same line and may be repre-
sin. (ra n

sented by a.

Therefore, for any straight line passing through the origin of a

system of oblique co-ordinate axes we have, as before, the equation

yax.
And if we denote by b the distance from the origin to the point

at which a parallel line cuts the axis of Y above or below the origin

we shall also have for the equation of this line

in which it must be remembered that a denotes the sine of the

angle that the line makes with axis of x divided by the sine of the

angle it makes with the axis of Y.

To fix in the minds of learners a complete comprehension of the

equation of a straight line, we give the following practical

EXAMPLES.

1. Draw the line whose equation is y=2x-}-3. (1)

Then draw the line represented by y= x-j-2 (2)

and determine where these two lines intersect.
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1 2

Draw FF and XX at right angles,

and taking any convenient unit of meas

ure lay it off on each of the axes from

the origin in both positive and negative

directions a sufficient number of times.

Equation (1) is true for all values of

x and y. It is true then when x=Q.

But when x=0 the point on the line

must be on the axis FF.

Whenaj=0. y=3. Y

This shows that the line sought for must cut FF at the point

+3.
The equation is equally true when ?/=0. But when y=0, the

corresponding point on the line sought must be on the axis XX
,

and on the same supposition the equation becomes

That is, midway between 1 and 2 is another point in the

line which is represented by y 2ar-f-3, but two points in any right

line must define the line; therefore ML is the line sought.

Taking equation (2) and making x=Q will givey=2, and making
?/ will give x=2; therefore MQ must be the line whose equation

is y x-\-2, and these two lines with the axis XX form the tri

angle LMQj whose base is 3| and altitude about 2J.

But let the equations decide, (not about,) but exactly the posi

tion of the point M of intersection.

This point being in both lines, the co-ordinates x and y corres

ponding to this point are the same, therefore we may subtract one

equation from the other, and the result will be a true equation,

3s+l=0. Or x= J.

Eliminating x from the two equations we find y=2^.
2. For another example we nequire the projection of the line repre

sented by the equation

*==--
*

2
420

Making e=0, then y 2. Making y=0, then x= 840.

Using the last figure, we perceive that the line sought for must
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pass through S two units below the zero point, and it must take

such a direction SV as to meet the axis XX! at the distance of 840

units to the left of zero. Hence its absolute projection is practi

cally impossible.

8. Construct the line whose equation is y=2x-{-5.

4. Construct the line whose equation is y 3# 3.

5. Construct the line represented by 2y 3a?-j-5.

6. Construct the line represented by y4x 3.

The lines represented by equations 4 and 6 will intersect the axis

of Y at the same point. Why ?

7. Construct the line whose equation is y=r2#-}-3.

8. Construct the line whose equation is y=. 2x 3.

The last two lines intercept a portion of the axis of Y which is

the base of an isosceles triangle of which the two lines are the sides.

What are the base and perpendicular, and where the vertex of the

triangle 1

ANS. The base is 6, the perpendicular 1, vertex on the axis of X.

Construct the lines represented by the following equations.

9. 3a?+5y 15=0

11. *+y+2=0
12. a?+y+3=0
13. 2x-y+4=0

PROPOSITION II

To find the distance between two given points in the plane of

the co-ordinate axis. Also, to find the angle made by the line

joining the two given points, and the axis of X.

Let the two given points be P
and

,
and because the point P is

said to be given, we know the two

distances

AN=x f

, NP=y r
.

And because the point Q is

given we know the two distances.

AM=x&quot; and MQ=y&quot;.

P

N
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Then, AM AN=NM=PR=x&quot; x ;

and MQMR=QR=y&quot;y .

In the right angled triangle PRQ we have

(PJR)
2+(Q)2

=(PQ)
2

. But D=PQ.
That is D2

=(x&quot;
x

}

2

+(y&quot; yj,

Or D=^(x&quot;x f+(y&quot;yJ

Thus we discover that the distance between any two

given points is equal to the square root of the sum of the

squares of the differences of their abscissas and ordinates.

If one of these points be the origin or zero point, then
r=0 and ?/ =0, and we have

a result obviously true.

To find the angle between PQ and AX.

PR is drawn parallel to AX, therefore the angle sought
is the same in value as the angle QPR.

Designate the tangent of this angle by a, then by trigo

nometry we have

PR-. RQ:: radius : tan. QPR.
That is, x&quot;x

r
: y&quot;y

f
: : 1 : a.

fyf

Whence a==
x&quot;
_xf

In case
#&quot;=?/ , PQ will coincide with PR, and be paral

lel to AX, and the tangent of the angle will then be 0,

and this is shown by the equation, for then

x&quot; x

In case x&quot;=x
f

,
then PQ will coincide with RQ and be

parallel to A Y, and tangent a will be infinite, and this

too the equation shows, for if we make x&quot;=x
r or x&quot;x

f

=0, the equation will become

y&quot;y
f

aV.__^_=oo
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PROPOSITION III.

To find the equation of a line drawn through any given

point.

Let P be the given point : The equation must be in

the form

y=ax+b (1)

Because the line must pass through the given point

whose co-ordinates are x and ?/ ,
we must have

y =ax
r+ b. (2)

Subtracting equation (2) from equation (1) member
from member, we have

y y
r

=a(x xf

) (3)

for the equation sought.

In this equation a is indeterminate, as it ought to be,

because an infinite number of straight lines can be drawn

through the point P.

&quot;We may give to y
r and x their numerical values, and

give any value whatever to a, then we can construct a

particular line that will run through the given point P.

Suppose # =2, 2/ =3, and make a=4.

Then the equation will become

y_3=4(z 2).

Or y4,x 5.

This equation is obviously that of a straight line, hence

equation (3) is of the required form.

PROPOSITION IY.

To find the equation of a line which passes through two

given points.

Let AX and A Y be the co-ordinate axes, and P and Q
the given points. Denote the co-ordinates of P by x

, y
r

and of Q by x&quot;, y&quot;.

The required equation must be of the form
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VVe will now determine such

vrlues for a and b as will cause the

Ime represented by this equation

to pass through the given points.

As the line is to pass through
the point P, the co-ordinates x

,

y
f of this point when substituted

for the variables x, y must satisfy

the equation, and we shall have

y
f=axf

-\-b

Q

N M:

(2)

And because the line is to pass through the point ,

whose co-ordinates are
x&quot;,y&quot;

we will also have

y&quot;=ax&quot;+b (3)

Subtracting eq. (2) from eq. (3) member from member,
we get

&quot;Whence a=y
&quot;~y

(4)

xu x

From eqs. (1) and (2) we obtain in like manner

y y =a(x x f

] (5)

Substituting for a in eq. (5) its value in eq. (4) we find

yy =y-^-.(xx } (6)
x x

for the equation sought.
If we subtract eq. (3) from eq. (1) member from mem

ber, and substitute for a in the resulting equation its value

in eq. (4) we find

yy&quot;--

for the required equation.

By simply clearing eqs. (6) and (7) of fractions and re

ducing, it may be shown that they are in fact but different

forms of the same equation.

To prove that either of these equations is that of a line

passing through the points P and
,
we have but to sub-
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stitute in it, for x and y, the co-ordinates of these points.

It will be found that when these substitutions are made
for either point, the equation will be satisfied.

We will illustrate the use of these equations by the fol

lowing

EXAMPLES.

1. The co-ordinates of P are x =3, 2/ =4, and of
,

*=-i, y=3.
&quot;What is the equation of the line that passes through

these points ?

Here

And the equation y y
r=& ~~^ -(x x ) becomes

x x

By substituting in the equation y ?/&quot; 7~ 7(# x&quot;)

U &quot; *C

we gety 3=j(x+l) ory=Jx-f 3J, the same as that above.

2. Find the equation of the straight line that is deter

mined by the points whose co-ordinates are x f

4, y
1 and z&quot;=4i, V= V
Ans. y= ^x Ijf.

3. The co-ordinates of one point are z =6, 2/ =5, and

of another they are x&quot;= 3, y&quot;=S. What is the equation
of the straight line that passes through these points ?

Ans.

PROPOSITION V.

To find the equation of a straight line which shall pass

through a given point and make,with a given line, a given angle.

The equation of the given line must be in the form

v=ax+6. (1)

10
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Because the other line must pass through a given point

its equation must be (Prop. III.)

y y =a (x xf

).
(2)

&quot;We have now to determine the value of a .

&quot;When a and a are equal, the two lines must be paral

lel, and the inclination of the two lines will be greater or

less according to the relative values of a and a .

Let PQ be the given line,

making with the axis of JTan

angle whose tangent is a and

Pit the other line which shall

pass through the given point P
and make with P, a given an- Q

gle QPR. The tangent of the /
angle PPJTis equal to a .

Because PRX=PQR+QPR.
QPR=PRZPQR

Tan. P#=tan. (PRXPQR.)
As the angle QPR is supposed to be known or given,

we may designate its tangent by m, and m is a known

quantity.

Now by trigonometry we have

m=tan. (PRXPQR}=~- f
. (3)

Whence a
1 ma

This value of a put in eq. (2) gives

for the equation sought.

Cor. 1. &quot;When the given inclination is 90, m its tan

gent is infinite, and then af _. &quot;We decide this in the
a

following manner.

An infinite quantity cannot be increased or diminished
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relatively, by the addition or subtraction of finite quanti

ties, therefore, on that supposition,

1 ma ma a

APPLICATION. To make sure that we comprehend this

proposition and its resulting equation, we give the fol

lowing example :

The equation of a given line is y=2x+6.

Draw another line that will in

tersect this at an angle of 45 and

pass through a given point P,
whose co-ordinates are

Draw the line MN correspond

ing to the equation y=2x+6. Lo
cate the point P from its given co~

ordinates.

Because the angle of intersection is to be 45, w=l,
and a=2.

Substituting these values in eq. (4) we have

Or y= 3z+12J.

Constructing the line MJR corresponding to this equa

tion, we perceive it must pass through P and make the

angle NMR 45, as was required.

The teacher can propose any number of like examples.
Cor. Equation (3) gives the tangent of the angle of the

inclination of any two lines which make with the axis of

X angles whose tangents are a and a . That is, we have

in general terms

af a

I+aaf

In case the two lines are parallel m=0. &quot;Whence a =a,
an obvious result.
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In case the two lines are perpendicular to eacli other,

m must be infinite, and therefore we must put

to correspond with this hypothesis, and this gives

~-i
a

a result found in Cor. 1.

To show the practical value of this equation we require
the angle of inclination of the two lines represented by
the equations y=%x 6, and y= x+2.
Here a=3 and af= 1. Whence

--*
This is the natural tangent of the angle sought, and if

we have not a table of natural tangents at hand, we will

take the log. of the number and add 10 to the index, then

we shall have in the present example 10.301030 for the

log. tangent which corresponds to 63 26 6&quot; nearly.

The sign of the tangent determines the direction in which

the angles are estimated.

2. What is the inclination of the two lines whose equa
tion are

and 3y=__2-f 6 ?

Ans. The tangent of their inclination is 4f
Log. 4.75 plus 10=10.676694.

The inclination of the lines is therefore 78 6 5&quot;.

3. Find the equation of a line which will make an an

gle of 56 with the line whose equation is

As the required line is to pass through no particular

point, but is merely to make a given angle with the

known line, we may assume it to pass through the origin
of co-ordinates. Its equation will then be of the form
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y=a r
x. We must now determine such a value for af that

the two lines will make with each other an angle of 56.

Represent the tangent of the given angle hy t; then
&quot;by

corollary (2)

1+fa
Tn the tables we find that log. tangent of 56 to be 10.

171013, from which subtracting 10 to reduce it to the log.

of the natural tangent and we have 0.171013 for the log.

of /. The number corresponding to this is 1.483.

Whence a/~i-== 1.483

From which we find a = 1,473 nearly and the equa
tion of the line making with the given line, an angle of

56 is therefore

y= 1.473z.

PROPOSITION VI.

Tofind the co-ordinates which will locate the point of inter

section of two straight lines given by their equations.

We have already done this in a particular example in

Prop. I, and now we propose to deduce general expressions

ibr the same thing.

Let y=ax+b be the first line.

And y=a x-\-b
f be the second line.

For their point of intersection y and x in one equation
will become the same as in the other.

Therefore we may subtract one equation from the

other, and the result will be a true equation.
For the sake of perspicuity, let x

l
and y l represent the

co-ordinates of the common point, then by subtraction

(aa f

)x 1

Whence x.= fc^l
(o-O

10*
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EXAMPLE.

At what point will the lines represented by the two

equations

y= 2x+l
and y=5x+~LQ intersect each other.

Here a= 2, a =5, 6=1, =10. Whence 3=$, y=
-34.

If we take another line not parallel to either of these,

the three will form a triangle.

Then if we locate the three points of intersection and

join them, we shall have the triangle.

PROPOSITION VII.

To draw a perpendicular from a given point to a given

straight line and to find its length.

Let y=ax+b be the equation of the given straight line,

and x
, y the co-ordinates of the given point.

The equation of the line which passes through the giv
en point must take the form

yy =ar (xxf

). (Prop. 3.)

And as this must be perpendicular to the given line,

we must have a = -. Therefore the equations for the

two lines must be

y=ax-\-b for the given line; (1)

and y y = _(# x
);

CL

1 fxf
\

Or y -x+ ( - +y )
for the perpendicular line (2)

a \a /

Let x
l andf/j represent the co-ordinates of the point

of intersection of these two lines. Then by Prop. 6,
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+pW)a \a 1

,
-a ,.-

Or we may conceive x and y to represent the co-ordin

ates of the point of intersection, and eliminating y from

eqs. (1) and (2) we shall find x as above, and afterwards

we can eliminate y.

Now the length of the perpendicular is represented by

Whence

v C*, x^+(y l y ?=I&amp;gt;. (Prop. H.)

1

(b+ax y y
+ ( a*+l /

-

perpendicular.

If we put u=b+ax
r

y 9
the quantities under the radi

cal will become

u

&quot;Whence the perpendicular

EXAMPLES.

1. The equation of a given line is y=3x 10, and the

co-ordinates of a given point are x =4 and 2/ =5.

What is the length of the perpendicular from this given

point to the given straight line ? Ans. y^N/90.

2. The equation of a line is 7/= 5x 15, and the co

ordinates of a given point are x/=4 and y =5.

What is the length of the perpendicular from the given

point to the straight line ? Ans. 7.84+ .
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PROPOSITION VIII.

Tofind the equation of a straight line which will bisect the

angle contained by two other straight lines.

Let y=ax+b (1)

and y=a x+V (2)

be the equations of two straight lines which intersect
;

the co-ordinates of the point of intersection are

fb b f
\ du abf

/T\ TTT
*i= 7 2/i= (Prop. YI.

\a a I a a

&quot;We now require a third line which shall pass through
the same point of intersection and form such an angle

with the axis of X (the tangent of which may be repre

sented by m) that this line will bisect the angle included

between the other two lines. &quot;Whence by (Prop. Y.) the

equation of the line sought must be

y y =m(X j) (3)

in which we are to find the value of m.

Let PN represent the line cor-

responding to equation (1)PMthe

line whose equation is (2), and PR
the line required.

Now the position or inclination

ofPN to AX depends entirely on

the value of a, and the inclination

ofPM depends on a and both are A

independent of the position of the point P.
Now RPN^RPX NPX* and M
Whence by the application of a well known equation

in plane trigonometry, (Equation (29), p. 253 Plane Trig.)
we have

tan. RPN=t&n.
( TfPX

r NPZr

}=
m~~a
I+am

And tan. MPR=tsm. (MP37 of m
1

1-fa w
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But by hypothesis these two angles RPN and MPR
are to be equal to each other. Therefore

&quot;Whence mz+m=l. *
(4)

a -k-a

This equation will give two values of m; one will cor

respond to the line PR, and the other to a line at right

angles to PR.
If the proper value rn be taken from this equation and

put in eq. (3), we shall have the equation required.

Practically we had better let the equations stand as

they are, and substitute the values of #, a x, and y, cor

responding to any particular case.

To illustrate the foregoing proposition we propose the

following

EXAMPLES,

Two lines intersect each other :

is the equation of one line. 0-)

Is tlmt of the other line, (2)

Find the equation of the line which bisects tjie apgle
contained by these two lines :

Here a= 2, a =4, 6=5, & =6.

Whence x
l
=

i, and y l
= **

Thus (3) becomes

And eq. (4) becomes

&quot;Whence m=0,1097 or w= 9.1097.

y_y=
(Or y V=



118 ANALYTICAL GEOMETRY.

Equation (4) is that of the line required ; (3) that of the

line at right angles to the line required. All will be ob

vious if we construct the lines represented by the eqs. (1),

(2), (3), and (4).

For another example, find the equation of a line which

bisects the angle contained by the two lines whose equa
tions are

Here a=l, a = 20. Whence (4) becomes

m2

ffm=l.

Therefore m= 0.385, or +2.6.

NOTE. Two straight lines whose equations are

y=ax-{- b and y a-^-l)

will always intersect at a point (unless a a ) and with the axis of Fform
a triangle. The area of such triangle is expressed by

From the given equations we find the co-ordinates of

the intersection of the lines to be

For the line bisecting the angle included between the

given lines we have either

y
2
3
4
T
2=

0.385(3+ J?) a)

or, y-W=2.6(*+if) (2)

By transposition and reduction (l) becomes

y= 0.385Z+11.75 (3)

and (2) becomes #=2.6z+12.76 (4)

The lines represented by eqs. (3) and () are at right an

gles to each other. The latter line bisects the angle in

cluded between the given lines, and the former the adja

cent or supplemental angle.

3. From the intersection of two lines whose equations
are
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4 (1)

and 2?/=3a;+4 (2)

A third line is drawn making, with the axis of -J, an

angle of 30. Find the intersection of the given lines

and the equation of the third line.

( The co-ordinates of the points of intersection

Ans.-l are #,= T\, ^ 1 =ff, and the required equation
I is?/ fj=0,5773(z+A).

4. Two lines are represented by the equations

and

&quot;What kind of a triangle do these lines form with the

intercepted portion of the axis of F, and what are its sides

and its area ?

( The triangle is isosceles ;
its base on the axis

Ans.
&amp;lt; of F is 2, the other sides are each 1.201+, and

Mts area 0.66+.

5. Two lines are given by the equations

2?/+3j:r= 2J

and 2y |x=4

Required the equation of the line drawn from the point

whose co-ordinates are ic&quot;=3, y^O to the intersection of

the given lines and the distance between these two points.

, f The equation sought is y= 0.717^+2.1523 and

I the distance is ^(1.8)
2

+(2.52)
2
.

TRANSFORMATION OF CO-ORDINATES.

It is often desirable to change the reference of points

from one system of co-ordinate axes to another differing

from the first either in respect to the origin or the direc

tion of the axes, or both. The operation by which this

is done is called the transformation of co-ordinates. The
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&quot;V&quot;

system of co-ordinate axes from which we pass is the prim
itive system and that to which we pass is the new system.

Let J.JTand A Y be the primi
tive axes. Take any point, as A

,

the co-ordinates of which referred

to AX and A Y are x=a, y=b and

through it draw the new axes

A X, and A 1 Y1

parallel to the

primative axes. Then denoting
the co-ordinates of any point, as

M, referred to the primitive axes by x and y, and the co

ordinates of the same point referred to the new axes by
x and y ,

it is apparent that
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Let AB=a, BA =b, AP=x, y
PM=y,A fP =x

,
P M=yf the an

gle XA Xv

=m, and the angle
YfA f

A&quot;=n. ~Now by trigonome

try we have

A fK=x Qos.m,KP =LH=x sin.m
P H=KL=y f cos. n. &quot;A

And MH=yf
sin, n.

Whencex=a+x cos.m+y coa.n,yb-}-x sin. w-f ?/ sin.w,
the formulas required.

SCHOLIUM. In case the two systems have the same origin, we

merely suppress a and b, and then the formulas required are

x=x cos. cos. i. y=x sin. m-{-y
f
sin. n.

PROPOSITION X.

To fold the formulas for passing from a system of oblique co

ordinates to a system of rectangular co-ordinates, the origin be

ing the same.

Take the formulas of the last problem
xx* cos. m+y r cos. ft, y=x f

sin. m-\-y sin. ft.

We now regard the oblique as the primitive axes, and

require the corresponding values on the rectangular axes.

That is, we require the values of x f and y . Ifwe multi

ply the first by sin. ft, and the second by cos. ft, and sub

tract their products, y will be eliminated, and if x be

eliminated in a similar manner, we shall obtain

f__x sin. ft y cos. ft ,_y cos. m x sin m
sin.

(ft m) sin.
(ft m)

SCHOLIUM. If the zero point be changed at the same time in

reference to the oblique system, we shall have

x sin. n y cos. n ,_ i \_J/ cos.ra x sin. m
x =a+

sn. w m}

We will close this subject by the following
11
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EXAMPLE.

The equation of a line referred to rectangular co-ordi

nates is

y=a x+bf
.

Change it to a system of oblique co-ordinates having
the same zero point.

Substituting for x and y their values as above, we have

xf sin. m+y sin. n=a (xcoa.m-)-y
f cos. n]+b

r
.

Eeducing

,__( cos. m sin. m)x ,
b

sin. n a cos. m sin. n a1 cos. m

POLAR CO-ORDINATES.

There are other methods by which the relative posi

tions of points in a plane may be analytically established

than that of referring them to two rectilinear axes inter

secting each other under a given angle.

For example, suppose the line

AB to revolve in a plane about

the point A. If the angle that

this line makes with a fixed line

passing through A be known, and

also the length of AB, it is evident

that the extremity B of this line

will be determined, and that there A! X
is no point whatever in the plane the position of which

may not be assigned by giving to AB and the angle

which it makes with the fixed line appropriate values.

The variable distance AB is called the radius vector, the

angle that itmakes with the fixed line the variable angle and

the point A about which the radius vector turns, the pole.

The radius vector and the variable angle together consti

tute a system ofpolar co-ordinates.
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Denote variable angle BAD by v, the radius vector by
r and by x and y, the co-ordinates of B referred to the

rectangular axes AX, A Y; then by trigonometry we
have

xr cos. v and y=r sin. v.

Now from the first of these we have r= (v may re-
cos, v

volve all the way round the pole), and as x and cos. v are

both positive and both negative at the same time, that is,

both positive in the first and fourth quadrants, and both

negative in the second and third quadrants, therefore r

will always be positive.

Consequently, should a negative radius appear in any

equation, we must infer that some incompatible conditions

have been admitted into the equation.

PROPOSITION XI.

To find theformulasfor changing the reference ofpointsfrom
a system of rectangular co-ordinate axes to a system of polar

co-ordinates.

Let A X, A Y be the co- y
ordmate axes, A. the pole AB
the radius vector of anypoint,
and AD parallel to A X the

fixed line from which the va

riable angle is estimated. De
note the co-ordinates A E,
AJEof the pole by a and b and A.

the radius vector AB by r.

D

EC X
Draw BC perpendicular to

A X; then is A 1 C=x the abscissa, and BC=y the ordi-

nate of the point B. From the figure we have

A r C=A E+EC=A fE+AF=A E+AB cos.v

and BC=BF+FC=BF+AE=AE+AB sin. v
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Whence
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x=a-\-r cos. v

y=b-\-r sin. v.

SCHOLIUM. If instead of estimating the variable angle from the

line AD, which is parallel to the axis A X, we estimate it from the

line AH which makes with the axis the given angle HAD=m we
shall have

x=a-{-r cos. (v-\-m)

y=b-\-r sin. (x-\-ni)

CHAPTER II.

THE CIRCLE.
LINES OF THE SECOND ORDER.

Straight lines can be represented by equations of the

first degree, and they are therefore called lines of the first

order. The circumference of a circle, and all the conic

sections, are lines of the second order, because the equa
tions which represent them are of the second degree.

PEOPOSITION I.

To find the equation of a circle.

Let the origin be the center of

the circle. Draw AM to any

point in the circumference, and let

fall MP perpendicular to the axis

ofX. Put AP=x, PM=y and

AMR.
Then the right angled triangle

APM gives

and this is the equation of the circle when the zero point
is the center.
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When y=0, xz
=R*, or x=R, that is, P is at X or J/.

When =0, y
2=R2

,
or dby=R, showing that Jf on the

circumference is then at Y or Y&quot;.

When x is positive, then P is on the right of the axis

of Y, and when negative, P is on the left of that axis, or

between A and A 1

.

When we make radius unity, as we often do in trigo

nometry, then x*+y
2
=l, and then giving to x or y any

value plus or minus within the limit of unity, the equation
will give us the corresponding value of the other letter.

In trigonometry y is called the sine of the arc XM, and x

its cosine.

Hence in trigonometry we have sin.
2+cos. 2=l.

Now if we remove the origin to A and call the distance

A f

P=x,ihenAP=x R, and the triangle APM gives

(z~RJ+y^R*.
Whence y

?=2Rxx*.

This is the equation of the circle, when the origin is on

the circumference.

When x=Q,y=Q at the same time. When x is greater

than 2jR, y becomes imaginary, showing that such an hy

pothesis is inconsistent with the existence of a point in the cir

cumference of the circle.

There is still a more general equation of the circle

when the zero point is neither at the center nor in the

circumference.

The figure will fully illustrate.

Let AB=c, BC=b. Put AP Y
=x, or AP =x, and PM or Pf

M &quot;=y, CM, CM ,
&c. each=J2.

In the circle we observe four

equal right angled- triangles.

The numerical expression is the

same for each. Signs only indi

cate positions.

11*
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Now in case CDM is the triangle we fix upon,

We put AP=x, then BP= CD=(xc),
PM=y, Ml}=yCB=(yb}.

Whence (x c)
2

+(y b)
2=R2

(1)

In case CDMr
is the triangle, we put AP=x and PMr

=y&amp;gt;

Then
(
X c)

2

+(by)
2=R2

(2)

In case CD M&quot; is the triangle, we put AP =x, P M&quot;

=!/

Then
(
C xf+(y b)

2=Sz
(3)

If CD M&quot; is the triangle, we put FM&quot;=y.

Then (cx)
2+by)2=R2

(4)

Equations (1), (2), (3)
?
and (4), are in all respects numer

ically the same, for
(c x)

2

(x c)
2

,
and (b -y)

2

=(y b)
2
.

Hence we may take equation (1) to represent the general

equation of the circle referred to rectangular co-ordinates.

The equation (xc)
2

+(yb)
2=R2

(1)

includes all the others by attributing proper values and

signs to c and b.

Ifwe suppose both c and b equal 0, it transfers the zero

point to the center of the circle, and the equation becomes

x2+y2=2^

To find where the circle cuts the axis of X we must

makey=0. This reduces the general equation (1) to

(xc)
2+b2=R2

.

Or
(
X c)

2=R2 b
2
.

~Now if b is numerically greater than J, the first mem
ber being a square, (and therefore positive,) must be equal
to a negative quantity, which is impossible, showing
that in that case the circle does not meet or cut the axis

of JT, and this is obvious from thefigure.

In case 6=jR, then (x c)
2

=0, or x=c, showing that the
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circle would then touch the axis of X. If we make #=0,
eq. (1) becomes

Or
This equation shows that if c is greater than R, the

circle does not cut the axis of F, and this is also obvious

from the figure.

If c be less than R, the second member is positive in

value, and

showing that if* the circumference cut the axis at all, it

must be in two points, as at
Jf&quot;,

M&quot; .

PROPOSITION II.

The supplementary chords in the circle are perpendicular to

each other,

DEFINITION. Two lines drawn, one through each ex

tremity of any diameter of a curve, and which intersect

the curve in the same point, are called supplementary

chords.

That is, the chord of an arc, and the chord of its sup

plement.
In common geometry this proposition is enunciated

thus:

All angles in a semi-circk are right angles.

The equation of a straight

line which will pass through
the given point B, must be of

the form (Prop. HI. Chap. I.)

y-y =a(xx ).
(1)

The equation of a straight

line which will pass through the given point JT, must be

of the form yy r=a (xx ).
(2)
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At the point B, y =0, and z = E, or

Therefore eq. (1) becomes

y=a(x+K). (3)

And for like reason eq. (2) becomes

y=a (x ll\ (4)

For the point in which these lines intersect x and y in

eq. (8) are the same as x and y in eq. (4) ; hence, these

equations may be multiplied together under this sup

position, and the result will be a true equation. That

is, .

?/3=aa (z
2 jR2

). (5)

But as the point of intersection must be on the curve,

by hypothesis, therefore, x and y must conform to the fol

lowing equation :

y*+x*=R*. Or y*= l(x* R*}. (6)

Whence aa = 1
,
oraa +l-j-O.

This last equation shows that the two lines are perpen
dicular to each other, as proved by (Cor. 2, Prop. 5.,

Chap. 1.)

Because a and af are indeterminate, we conclude that

an infinite number of supplemental chords may be drawn

in the semi-circle, which is obviously true.

PROPOSTION III.

To find the equation of a line tangent to the circumference

of a circle at a given point.

Let C be the center of the cir

cle, P the point of tangency, and

Q a point assumed at pleasure in

the circumference.

Denote the co-ordinates of P
by z

, y ,
and those of Q9 by of

, y&quot;,

f~ c
I \

The equation of a line passing

through two points whose co-or-
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dinates are x
, y and

x&quot;, y&quot;
is of the form (Prop. 4,

Chap. 1).

y x-. (1)

JO &quot;&quot;&quot;&quot;*

We are to introduce in this equation, first, the condi

tion that the points P and Q are in the circumference of

the circle, which will make the line a secant line, and

then the further condition that the point Q shall coincide

with the point P, which will cause the secant line to be

come the required tangent line.

Because the points P and Q are in the circumference

of the circle, we have

xn+yn=%*
and x&quot;

2

+y&quot;

2=IP

Whence by subtraction and factoring,

(x +x&quot;) (x x&quot;)+(y +y&quot;) (y y&quot;)=0
(2)

from which we find

y y&quot;
x +x&quot;

This value of ^ ^ substituted in equation (1) gives us
X X

for the equation of the secant line,

&quot;Now,
if we suppose this line to turn about the point P

until Q unites with P, we shall have x&quot;=x
r and

y&quot;=y
f

,

and the secant line will become a tangent to the circum

ference at the point P.

Under this supposition eq. (3) becomes

y-y =-x-
r
(x-x

1

), (4)

y

x
in which _ is the value of the tangent of the angle

which the tangent line makes with axis of X.
I
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By clearing this equation of fractions, and substituting

for xf2+yf2
its value, JR\ we have finally lor the equation

of the tangent line,

yy +xxf=R2
. (5)

This is the general equation of a tangent line
; ,2/ ,

are the co-ordinates of the tangent point, and #, y, the

co-ordinates of any other point in the line.

SCHOLIUM 1. For the point in which

the tangent line cuts the axis of X, we

make^ =:0, then

Q

For the point in which it meets the

axis of
J&quot;,

we make x =Q, and

SCHOLIUM 2. A line is said to be normal to a curve when it is

perpendicular to the tangent line at the point of contact.

Join A, Pj and if APT is a right angle, then AP is a normal,

and AB, a portion of the axis of X under it, is called the sub

normal. The line BT under the tangent is called the subtangent.

Let us now discover whether APT is or is not a right angle.

Put a = the tangent of the angle PAT, then by trigonometry

But

Whence

a=-

aa= Or

Eq. (6)

1

Therefore AP is at right angles to PT. (Prop. 5. Chap. 1.)

That is, a tangent line to the circumference of a circle at any point

is perpendicular to the radius drawn to that point.

SCHOLIUM 3. Admitting the principle, which is a well-known

truth of elementary geometry, demonstrated in the preceding scho

lium, we would not, in getting the equation of a tangent line to the
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circle, draw a line cutting the curve in

two points, but would draw the tangent

line PT at once, and admit that the angle

APT was a right angle. Then it is clear

that the angle APB= the angle PTB.

Now to find the equation of the line,

we let x and y
r

represent the co-ordinates
&quot;A-

of the point P, and x and y the general co-ordinates of the line,

and a the tangent of its angle with the axis of X, then (by Prop

III, Chap. I,) we have

Now the triangle APB gives us the following expression for the

tangent of the angle APB, or its equal PTB,

This value of a put in the preceding equation, will give us

y -y=-
x-

t
(x -x).

y
Or y tyy ^x t+xx .

Whence xx ^R*^ same as before.

PROPOSITION IY.

To find the equation of a line tangent to the circumference

of a circle, which shall pass through a given point without the

circle.

Let H (see last figure to the preceding proposition) be

the given point, and x&quot; and
y&quot;

its co-ordinates, and x and

y the co-ordinates of the point of tangency P.

The equation of the line passing through the two points

H and P must be of the form

yy&quot;=a(xx&quot;)
(!)

in which a= ^ &..

x x&quot;

Since PH is supposed to be tangent at the point P,
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and x and y are the co-ordinates of this point, equation

(6) Prop. 3, gives us

.

Placing this value of a in equation (1) we have

for the equation sought.

This equation combined with

which fixes the point P on the circumference will deter

mine the values of x and ?/ ,
and as there will be two

real values for each, it shows that two tangents can be

drawn from H, or from any point without the circle,

which is obviously true.

SCHOLIUM. We can find the value of the tangent PT by means

of the similar triangles ABP, PBT, which give

x : R : : y
r

: PT.

x

More general and elegant formulas, applicable to all the conic

sections, will be found in the calculus for the normals, subnormals,

tangents and subtangents

OF THE POLAR EQUATION OF THE CIRCLE.

The polar equation of a curve is the equation of the

curve expressed in terms of polar co-ordinates. The
variable distance from the pole to any point in the curve

is called the radius vector, and the angle which the radius

vector makes with a given straight line is called the vari

able angle.
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PROPOSITION T.

To find the polar equation of the circle.

When the center is the pole or the fixed point, the equa
tion is

and the radius vector It is then constant.

2s~ow let P be the pole, and the

co-ordinates of that point referred

to the center and rectangular axes

be a and 6. Make PJf=r, and

MPJP=v the variable angle; AN
=x and NM=y. Then (Prop. 11,

Chap. 1.) we have

xa-\-r cos. v, and y=b+r sin v.

These values of x and y substituted in eq. (1), (ob

serving that cos.2
y+sin.

2

tf=l,) will give

?^+2(a cos. v+b sin. v)r+a?-)-b
2

j

which is the polar equation sought.
SCHOLIUM 1. P may be at any point

on the plane. Suppose it at B . Then a

= R and bQ. Substituting these

values in the equation, and it reduces to

r
a ZRrcos. v=Q.

As there is no absolute term, r=0 will

satisfy the equation and correspond to one

point in the curve, and this is true, as P
is supposed to be in the curve. Dividing by r, and

r=2R cos. v.

This value of r will be positive when cos. v. is positive, and neg
ative when cos. v is negative ;

but r being a radius vector can never

be negative, and the figure shows this, as r never passes to the left

of B\ but runs into zero at that point.

When v=0, cos. v=I, then rBB . When v=9Q, cos. v=Q,
and r becomes at B

,
and the variations of v from to 90, deter

mine all the points in the semi-circumference BDB .

12
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SCHOLIUM 2. If the pole be placed at B
y
then a=.-\-R and 6=0,

which reduces the general equation to

r= 2R cos. v.

Here it is necessary that cos. v should be negative to make r pos

itive, therefore v must commence at 90 and vary to 270 j
that is,

be on the left of the axis of Y drawn through B, and this corre

sponds with the figure.

APPLICATION. The polar equation of the circle in its most gen

eral form is

r -f2(a cos. v+6 sin v)r+a?-\-b*=R*. (1)

If we make 6=0, it puts the polar point somewhere on the axis

of Xj and reduces the equation to

r
2

-j-2a cos. ^.r-)-a
2=^2

. (2)

Now if we make v=0, then will cos.

v=l, and the lines represented by r

would refer to the points X} X, in the

circle.

This hypothesis reduces the last equa

tion to

r*+2ar=(R* aa

) (3)

and this equation is the same in form as the common quadratic in

algebra, or in the same form as

x*px=q.
Whence x=r, 2a=p, and R* at

=q

These results show us that if we describe a circle with the radius

Vq ~fip
2

&amp;gt;

and place P on the axis of X at a distance from the cen

ter equal to to p, then PX represents one value of x, and PX*
the other. That is,

Or x=-Jp-^2+t= PXr

,

and this is the common solution.

When p is negative, the polar point is laid off to the left from

the center at P .

The operation refers to the right angled triangle APM.
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=\p, PM= tfq, and AM |/$Hri/.

Let the form of the quadratic be

x*^ipx= q.

Then comparing this with the polar equation of the circle, we

have

2a=p. R^a&amp;gt;=q.

Take AX=.R and describe a semi-

circle. Take AP=$p and AP=
%p. From P and 1 draw the lines

PMj and PM to touch the circle;

and draw AM, AM.
Here AP is the hypotenuse of a

right angled triangle. In the first case AP was a side.

In this figure as in the other, PM= ^/q; but here it is inclined

to the axis of X; in the first figure it was perpendicular to it.

The figure thus drawn, we have PX for one value of x, and PX
is the other, which may be determined geometrically.

If c
a

-\-px= q

or x=
Observe that the first part of the value of x

}
is minus, correspond

ing to a position from P to the left.

If x* px= q,

we take P for one extremity of the line x.

q=, or x=p yp
Here the first part of the value of x, (Jp), is plus, because it is

laid off to the right of the point Pf
.

Because R= |/lp
a

q R or AM becomes less and less as the

numerical value of q approaches the value of ip
2

. When these

two are equal, 7?=0, and the circle becomes a point. When q is

greater than ip
2

,
the circle has more than vanished, giving no real

existence to any of these lines, and the values of x are said to be

imaginary.

We have found another method of geometrizing quad
ratic equations, which we consider well worthy of notice,

although it is of but little practical utility.
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It will be remembered that the equation of a straight

line passing through the origin of co-ordinates is

y=ax, (!)

and that the general equation of the circle is

(x^c)
2

+(y^b}
2=fi2

. (2)

If we make 6=0, the center of the circle must be some

where on the axis of X.

Let AM represent a line, the

equation of which is y=ax, and

if we take a=l, AM will in

cline 45 from either axis, as rep- [E A[/^ c p| \s X
resented in the figure. Hence

?/=x, and making 6=0, if these

two values be substituted in eq. (2) and that equation re

duced, we shall find

(3)

This equation has the common quadratic form.

Equation (1) responds to any point in the straight line

M M. Equation (2) responds to any point in the circum

ference BMMf
.

Therefore equation (3) which results from the combina
tion of eqs. (1) and 2)

?
must respond to the points M and

Mf

,
the points in which the circle cuts the line.

That is, PM and PMf are the two roots of equation

(3), and when one is above the axis of X, as in this figure,

it is the positive root, and P Mf

being below the axis of

X, it is the negative root.

When both roots of equation (3) are positive, the circle

will cut the line in two points above the axis of X. When
the two roots are minus, the circle will cut the line in two

points below the axis of X.

&quot;When the two roots of any equation in the form of eq.

(3) are equal and positive, the circle will touch the line

above the axis of X. If the roots are equal and negative,
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the circle will touch the line below the axis of X. In

case the roots of eq. (3) are imaginary, the circle will not

meet the. line.

We give the following examples for illustration :

f %=5.
To determine the values ofy hy a geometrical construc

tion of this kind, we must make

c=_2, and ^Z^=5.
a

Whence .#=3.74, the radius of the circle. Take any
distance on the axes for the unit of measure, and set off

the distance c on the axis of X from the origin, for the

center of the circle
;

to the right, if c is negative, and to

the left, if c is positive.

Then from the center, with a radius equal to R=
,
describe a circumference cutting the line drawn

midway between the two axes, as in the figure.

In this example the center of the circle is at (7, the

distance of two units from the origin A, to the right.

Then, with the radius 3.74 we described the circumfer

ence, cutting the line in M and M1

,
and we find by meas

ure (when the construction is accurate) that JHP=4.44,
the positive root, and MPr=

1.44, the negative root.

For another example we require the roots of the following

equation by. construction:

IT. B. &quot;When the numerals are too large in any equa
tion for convenience, we can always reduce them in the

following manner:

Put y=nz, then the equation becomes

Or *+-*-.
n w

12
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Now let 7i= any number what

ever. If 7i=3, then

Here c=2.
2

&quot;Whence

At the distance of two units to

the left of the origin, is the center of the circle. We see

by the figure that 1 is the positive root, and 3 the neg
ative root.

But y=nz, n=3, 2=1, y=3 or 9.

We give one more example.
Construct the equation

7)2_fS.

Here c=4, and -___= 6. Whence _K=2.
2

Using the same figure as before, the center of the cir

cle to this example is at _D, and as the radius is only 2,

the circumference does not cut the line M M, showing
that the equation has no real roots.

We have said that this method of finding the roots of

a quadratic was of little practical value. The reason of

this conclusion is based on the fact that it requires more

labor to obtain the value of the radius of the circle than

it does to find the roots themselves.

Nevertheless this method is an interesting and instruct

ive application of geometry in the solution of equations.

When we find the polar equation of the parabola, we shall

then have another method of constructing the roots of quad
ratics which will not require the extraction of the square root.

To facilitate the geometrical solution of quadratic

equations which we have thus indicated, the operator

should provide himself with an accurately constructed

scale, which is represented in the following figure. It
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23456

consists of two lines, or axes,

at right angles to each other,

and another line drawn
through their intersection and

making with them an angle
of 45. On the axes, any con- (

venient unit, as the inch, the

half, or the fourth of an inch,

etc., is laid off a sufficient

number of times, to the right
and the left, above and below the origin, from which the

divisions are numbered 1, 2, 3, etc., or 10, 20, 30, etc., or

.1, .2, .3, etc. To use this scale, a piece of thin, transpa
rent paper, through which the numbers may be distinctly

seen, is fastened over it, and with the proper center and

radius the circumference of a circle is described. The
distances from the axis of JT of the intersections of this

circumference, with the inclined line through the origin,

will be the roots of the equation, and their numerical

values may be determined by the scale.

By removing one piece of paper from the scale and

substituting another, we are prepared for the solution of

another equation, and so on.

EXAMPLES.

1. Given x2

+llx=80, to find x. Ans. x=5, or 16.

2. Given z2
3x=28, to find x. Ans. z=7, or 4.

3. Given x2
x=2, to find x. Ans. x2, or 1.

4. Given x2 12x= 32, to find x. Ans. z=4, or 8.

5. Given x2 12x= 36, to find x. Ans. Each value

is 6.

6. Given x2 I2x= 38, to find x. Both values imag

inary.

7. Given x2+6x= 10, to find x. Both values imag

inary.

8. Given 2*= 81, to find x. Ans. x=9, or 9.
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For example 8, c=o and __ZL_=81;

&quot;Whence, J2=9\/2.

This method may therefore be used for extracting the

square root of numbers. In such cases, the center of the

circle is at the zero point.

CHAPTER

THE ELLIPSE.

have already developed the properties of the El

lipse, Parabola and Hyperbola by geometrical processes, and

it is now proposed to re-examine these curves, and de

velop their properties by analysis.

As he proceeds, the student cannot fail to perceive the

superior beauty and simplicity of the analytical methods

of investigation; and, even if a knowledge of the conic

sections were not, as it is, of the highest practical value,

the mental discipline to be acquired by this study would,
of itself, be a sufficient compensation for the time and

labor given to it.

As all needful definitions relating to these curves have

been given in the CONIC SECTIONS, we shall not repeat

them here, but will refer those to whom such reference

may be necessary to the appropriate heads in that division

of the work.

PKOPOSITION I.

To find the equation of the ellipse referred to its axes as the

axes of co-ordinates, the major axis and the distance from the

center to the focus being given.

Let AA f be the major axis, F^F* the foci, and C the

center of an ellipse. Make CJF=c CA=A. Take any
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point on the curve, and from it

let fall the perpendicular Pt on

the major axis
; then, by our

conventional notation, is Ctx,

As F P+PF=2A, we may
putF P=A+z, and PF=A z. Then the two right an-

gled triangles F Pt, FPt, give us

(1)

(2)

For the points in the curve which cause t to fall between

C and F, we would have

(cx)
2+f=(Azy (3)

But when expanded, there is no difference between eqs.

(2) and
(3), and by giving proper values and signs to x

and y, eqs. (1) and (2) will respond to any point in the

curve as well as to the point P.

Subtracting eq. (2) from eq. (1), member from member,
and dividing the resulting equation by 4, we find

cx=Az, or z= c- (4)A
This last equation shows that F P, the radius vector,

varies as the abscissa x.

Add eqs. (1) and (2), member to member, and divide

the result by 2, and we have

Substituting the value of zz from eq. (4), and clearing
of fractions, we have

Or, A2
y

2

+(A
2

(?)x
2=A2

(A
2

c
2

).
(5)

conceive the point P to move along describing

the curve, and when it comes to the point Z), so that DC
makes a right angle with the axis of JT, the two triangles

DCF are right angled and equal.
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DFf each is equal to A, and as C-F, CF ,
each is equal to

c, we have

It is customary to denote DC half the minor axis of the

ellipse by B, as well as half the major axis by A, and ad

hering to this notation

jB2=JL2
c
2

. (6)

Substituting this in eq. (5), we have for the equation
of the ellipse

referred to its center for the origin of co-ordinates.

If we wish to transfer the origin of co-ordinates from

the center of the ellipse to the extremity A of its major

axis, we must put

x= A+x f

,
and y=y .

Substituting these values of x and y in the last equa

tion, and reducing, we have

Or without the primes, we have

for the equation of the ellipse when the origin is at the

extremity of the major axis.

Cor. 1. If it were possible for B to be equal to A,
then c must be equal to 0, as shown by eq. (6). Or, while

c has a value, it is impossible for B to equal A.

If jB=J., then e=0, and the equation becomes

A2

y
2+A2x2=A2A2

.

Or y*+3*=A*,

the equation of the circle. Therefore the circle may be

called an ellipse, whose eccentricity is zero, or whose eccen

tricity is infinitely small.
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Cor. 2. To find where the curve cuts the axis of JT,

make y=0 in the equation, then

showing that it extends to equal distances from the center.

To find where the curve cuts the axis of F, make 2=0,
and then

Plus B refers to tha point D, B indicates the point

directly opposite to ./), on the lower side of the axis of JT.

Finally, let x have any value whatever, less than A,
then

an equation showing two values of ?/, numerically equal,

indicating that the curve is symmetrical in respect to the

axis of X.

If we give to y any value less than jB, the general equa
tion gives

Showing that the curve is symmetrical in respect to the

axis of Y.

SCHOLIUM. The ordinate which passes through one of the foci,

corresponds to x=c. But A9
.Z?

8
=ic

a
. Hence A3

c
a

or

A y x t=B\ Or (J.
2 x^=B, and this value substituted in

TP 272*
the last equation, gives y== -- Whence_ is the measure of

A A
the parameter of any ellipse.

PROPOSITION II.

Every diameter of the ellipse is bisected in the center.

Through the center draw the line DDf
. Let x, and y,

denote the co-ordinates of the point D, and x
, # ,

the

co-ordinates of the point D .
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The equation of the curve is D

The equation of a line passing

through the center, must be of the

form y=ax.
This equation combined with the

equation of the curve, gives

AB aAB
x=

AB aAB

These equations show that the co-ordinates of the point

Z), are the same as those of the point D , except opposite
in signs. Hence DD is bisected at the center.

PROPOSITION III.

The squares of the ordinates to either axis of an ellipse are

to one another as the rectangles of their corresponding abscissas.

Let y be any ordinate, and x

its corresponding abscissa.

Then, by the first proposition,
we shall have

Let y
f be any other ordinate,

and x its corresponding abscis

sa, and by the same proposition we must have

Dividing one of these equations by the other, omitting
common factors in the numerator and denominator of the

second member of the new equation, we shall have
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f _ (2Ax)x
y
n (2Ax )x

r

Hence, y* : y
l2=(2Ax)x : (2Ax )x

f

. (1)

By simply inspecting the figure, we cannot fail to per
ceive that (2A x), and x, are the abscissas corresponding
to the ordinate y, and (2A x

)
and x are those corres

ponding to y*.

If we transfer the origin to the lower extremity of the

conjugate axis, the equation of the ellipse may be put
under the form

and by a process in all respects similar to the above, we

prove that ^ . ^ .
; (2

_
y)y ; (2jB

_yy.

Therefore, the squares of the ordinates, etc.

SCHOLIUM, Suppose one of these ordinates, as y to represent

half the minor axis, that is, y B. Then the corresponding value

of x will be A and (2A z ,) will be A, also. Whence proportion

(1) will become

y
1

: B*=(2A x)x : A*.

In respect to the third term we perceive that if A His represented

by x, AH will be (2A #), and if G is a point in the circle, whose

diameter is A A
}
and GH the ordinate, then

(2A x*)x=

and the proportion becomes

Or y : GH=B : A.

Or A:B=GH:y=DH.
If a circumference be described on the conjugate axis as a diam

eter, and an ordinate of the circle to this diameter be denoted by
X and the corresponding ordinate of the ellipse by x, it may be

shown in like manner that

13
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PROPOSITION IY.

The area of an ellipse is a mean proportional between the

areas of two circles, the diameter of the one being the major

axis, and of the other the minor axis.

On the major axis A A of the

ellipse as a diameter describe a

circle, and in the semicircle A D
A inscribe a polygon of any num
ber of sides. From the verti-

ces of the angles of this polygon
draw ordinates to the major axis,

and join the points in which they
intersect the ellipse by straight lines, thus constructing a

polygon of the same number of sides in the semi-ellipse

A D A. Take the origin of co-ordinates at A f

,
and de

note the ordinates BE, CF, etc., of the circle by Y, F
,

etc., the ordinates Bf

E, C F, etc., of the ellipse by y, y
r

,

etc., and the corresponding abscissas, which are common
to ellipse and circle, by x, x f

,
etc.

Then by the scholium to Prop. 3, we have

TiynAiB
and Y : y : : A : B,
whence Y : Yf

: : y : y ,

from which, by composition, we get

Y+ Y : y+y :Y:y::A:B
But the area of the trapezoid BEFC is measured by

and that of the trapezoid B EFG by

( \(x Xj or \y~\~

therefore,

trapez. BEFC Y+ Y A
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That is, trapez. BEFC : trapez. B EFC :A:B
,

or, in words, any trapezoid of the semi-circle is to the corres

ponding trapezoid of the semi-ellipse as A is to B.

From this we conclude that the sum of the trapezoids
in the semi-circle is to the sum of the trapezoids in the

semi-ellipse as A is to B. But by making these trape
zoids indefinitely small, and their number, therefore, in

definitely great, the first sum will become the area of the

semi-circle and the second, the area of the semi-ellipse.

Hence,

Area semi-circle : area semi-ellipse : : A : B
or, area circle : area ellipse : : A : B
That is, xA2

: area ellipse : : A : B

&quot;Whence, area ellipse= &quot;*!._!____ TrA.B
_/

But TrA.B is a mean proportional between nAz and

Hence ; The area ofan ellipse is a mean proportional, etc.

SCHOLIUM. Hence the common rule in mensuration to find the

area of an ellipse.

RULE. Multiply the semi-major and semi-minor axes together,

and multiply that product ty 3.1416.

PROPOSITION Y.

To find the product of the tangents of the angles that two

supplementary chords through the vertices of the transverse axis

of an ellipse make with that axis, on the same side.

Let #, y, be the co-ordinates of

any point, as P, and x
, y

r

,
the co

ordinates of the point A .

A I

Then the equation of a line

which passes through the two

points A and P, (Prop. 3, Chap.

1,) will be
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y y a(x x
).

00

The equation of the line which passes through the

points A and P, will be of the form

y y&quot;=a (x x&quot;}.
(2)

For the given point A ,
we have 2/

/==0, and xf= A.

&quot;Whence eq. (1) becomes

y=a{x+A). (3)

For the given point A we have
#&quot;=0, and x&quot;=A, which

values substituted in eq. (2) give

y=a (xA). (4)

As y and x are the co-ordinates of the same point P in

both lines, we may combine eqs. (3) and (4) in any man
ner we please. Multiplying them member by member,
we have

y
z=aa (x

2 A2

).
(5)

Because F is a point in the ellipse, the equation of the

curve gives

^=J(^-**)=-JV-^). (6)

Comparing eqs. (5) and (6), we find

for the equation sought.
SCHOLIUM 1. In case the ellipse becomes a circle, that is, in case

A=JB, aa -f-l=:0, showing that the angle A PA would then be a

right angle, as it ought to be, by (Prop. II, Chap. II.)
7?2

Because is less than unity, or aa f
less than 1,* or radius ;

A*
the two angles PA A and PAA are together less than 90

;
there

fore, the angle at P is obtuse, or greater than 90.

SCHOLIUM 2. Since aa has a constant value, the sum of the two,

,
will be least when a=a f

.

* In trigonometry we learn that tan. x cot. =#2=1. That is, the pro

duct of two tangents, the sum of whose arcs is 90, is equal to 1. When
the sum is less than 90, the product will be a fraction.
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Hence the angle at P will be greatest when P is at the vertex

of the minor axis, and the supplementary chords equal ;
and the

angle at P will become nearer a right angle as P approaches A or

A .

PROPOSITION VI.

To find the equation of a straight line which shall be tangent

to an ellipse.

Assume any two points, as

P and
,
on the ellipse, and

denote the co-ordinates of the

first by x 1

, y
1

,
and of the second

by &quot;, y&quot;. Through these points

draw a line, the equation of

which (Prop. 4, Chap. 1,) is

yy =a(xx )y (1)

in which y
x x&quot;

&quot;We must now determine the value of a when this line

becomes a tangent line to the ellipse.

Because the points P and Q are in the curve, the co

ordinates of those points must satisfy the following equa
tions :

By subtraction

Or A*(y +y&quot;)(y -y&quot;)=B*(x
f

+x&quot;}(x -x&quot;}. (2)

Whence n-jr^f **(*+*)
x x&quot; A*(y +y&quot;)

Now conceive the line to revolve on the point P until

Q coincides with P, then PE will be tangent to the curve.

But when Q coincides with P, we shall have

y =y&quot;
and x =x&quot;.

13*
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Under this supposition, we have

A*y
f

The value of a put in eq. (1), gives

~y

Reducing A*yy +B*xx =A*y *+B*tf**

Or A*yy +B*xx =A*B*.

This is the equation sought, x and y being the general
co-ordinates of the line.

SCHOLIUM 1. To find where the tangent meets the axis of X,
we must make y=0.

This gives x=^-= CT.

In case the ellipse becomes a circle,

J3=A, and then the equation will be-

come yy -\-xx =A 2
,

the equation for a tangent line to a cir

cle; and to find where this tangent meets the axis of
X&amp;gt;

we make

y= 0, and

x^ CT, as before.

In short, as these results are both independent of JB, the minor

axis, it follows that the circle and all ellipses on the major axis AB
have tangents terminating at the same point T on the axis of J5T,

if drawn from the same ordinate, as shown in the figure.

SCHOLIUM 2. To find the point in which the tangent to an

ellipse meets the axis of T
}
we make #=0, then the equation for

the tangent becomes

y-y
y

As this equation is independent of A, it shows that all ellipses

having the same minor axis, have tangents terminating in the same

point on the axis of Y, if drawn from the same abscissa.

SCHOLIUM 3. If from CTwe subtract CM, we shall have
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a common subtangent to a circle, and all ellipses which have 2A for

a major diameter. That is

x x

We can also find RT by the triangle PRT, as we have the tan

gent of the angle at T, / -) to the radius 1.

\ A*y I

Whence we have the following proportion :

The minus sign indicates that the measure from T is towards the

left.

PROPOSITION VII.

To find the equation of a normal line to the ellipse.

Since the normal passes through the point of tangency,

its equation will be in the form

f ff f\ /^\

Because PN is at right angles

to the tangent,

oa +l=0.

But by the last proposition

a -

Whence a = *JL, and this value ofa put in eq. (1) gives
JL&amp;gt; X

for the equation sought.

SCHOLIUM 1. To find where the normal cuts the axis of X, we

must make ^=0, then we shall have
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APPLICATION. Meridians on the earth are ellipses; the semi-

major axis through the equator is A=39G3. miles, and the semi-

minor axis from the center to the pole is .Z?r=3949.5.

A plumb line is everywhere at right angles to the surface, and

of course its prolongation would be a normal line like PJV. In

latitude 42, what is the deviation of a plumb line from the center

of the earth ? In other words, how far from the center of the

earth would a plumb line meet the plane of the equator? Or, what

would be the value of CNf
As this ellipse differs but little from a circle, we may take CR

for the cosine of 42, which must be represented by x . This being

assumed, we have

s =2945. ==C r

.Ar Ans.
A 2

J

SCHOLIUM 2. To find JWR, the subnormal, we simply subtract

(7.^ from CR, whence

A* A*

We can also find the subnormal from the similar triangles PR T,

PNR, thus :

TR:RP::RP:RN.
A tf*

: r. : ATR. Whence NR=

PROPOSITION VIII.

Lines drawn from the foci to any point in the ellipse make

equal angles with the tangent line drawn through the same point.

Let C be the center of

the ellipse, PT the tangent

line, and PF, PF
,
the

two lines drawn to the foci.

Denote the distance

JB* by c, CFf
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by c, the angle FPTby V, and the tangents of the angles

P2!Z, PFT, by a and a .

Now FPT=PTXPFT.
By trigonometry, (Eq. 29, p. 253, Robinson s Geometry),
we have

Tan. ^PT=tan. (PTXPFT\
That is, tan. F= &quot;&quot;. (!)

1-foa

Prop. 6, gives us a=-^.
* ,?/ , being the co-ordi-

2p

nates of the point P.

Let x, y, be the co-ordinates of the point F, then from

Prop. 4, Chap. 1, we have
w y

a!=- *L.

x x

But at the point _F, y=Q and xc.

Whence af=JL__
x f c

These values of a and af
substituted in eq. (1) give

B*x __ y
f

A*~y
f x c -~

A*y (x
f c}B*x y

r

B*cx A* B*
Tan. ^

=(AtB*)y?y A*cy
f

cy (cx A*) ctf

observing that J.y 2+^^/2 =J. 2^2
,and J. 2 JB*=c*.

The equation of the line PF will become the equation of

the line PF by simply changing +c to c, for then we
shall have the co-ordinates of the other focus.

We now have

tan.

cy
But if c is made c, then

tan. 2PPT=
cy



154 ANALYTICAL GEOMETRY.

As these two tangents are numerically the same, differ

ing only in signs, the lines are equally inclined to the

straight lines from which the angles are measured, or the

angles are supplements of each other.

Whence FPT+F PT=18Q.

But FfPH+F PT=18Q.

Therefore FPT=F PH.

Cor. The normal being perpendicular to the tangent,
it must bisect the angle made by the two lines drawn
from the tangent point to the foci.

SCHOLIUM. Any point in the curve may be considered as a

point in a tangent to the curve at that point.

It is found by experiment that light, heat and sound, after they

approach to, are reflected off, from any reflecting surface at equal

angles ;
that is, for any ray, the angle of reflection is equal to the

angle of incidence.

. Therefore, if a light be placed at one focus of an ellipsoidal re

flecting surface, such as we may conceive to be generated by revolv

ing an ellipse about its major axis, the reflected rays will be con

centrated at the other focus. If the sides of a room be ellipsoidal,

and a stove is placed at one focus, the heat will be concentrated at

the other.

Whispering galleries are made on this principle, and all theaters

and large assembly rooms should more or less approximate to this

figure. The concentration of the rays of heat from one of these

points to the other, is the reason why they are called the foci, or

burning points.

PROPOSITION IX.

The product of the tangents of the angles that a tangent line

to the ellipse and a diameter through the point of contact, make

with the major axis on the same side, is equal to minus the

square of the semi-minor divided by the square of the semi-

major axis.
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Let PT be the tangent
line and PPf the diameter

through the point of contact ///^ ^x^^^x^Xj X

B$ and denote the co-ordi

nates of P by x
, y . The

equation of the diameter is

in which af
is the tangent of the angle PCT.

Since this line passes through the point P, we must

have

y
f a xf

Whence a =^ (1)
x f

For the tangent of the angle PJ!Xwe have

Multiplying eqs. (1) and (2), member by member, we
find

, --
A*

SCHOLIUM. The product of the tangents of the angles that a

diameter and a tangent line through its vertex make with the major

axis of an ellipse is the same (Prop. 5) as that of the tangents of

the angles that supplementary chords drawn through the vertices of

the major axis make with it.

Hence, if a=a, then a =a . That is, if the diameter is paral

lel to one of the chords, the tangent line will be parallel to the other

chord, and conversely. This suggests an easy rule for drawing a

tangent line to an ellipse at a given point, or parallel to a given line.

OF THE ELLIPSE REFERRED TO CONJUGATE DIAMETERS.

Two diameters of an ellipse are conjugate when either

is parallel to the tangent lines drawn through the vertices

of the other.
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Since a diameter and the tangent line through its ver

tex make, with the major axis, angles whose tangents

satisfy the equation

it follows that the tangents of the angles which any two

conjugate diameters make with the major axis must also

satisfy the same equation.

Now let m he the angle whose tangent is a, and n be

the angle whose tangent is a
,
then

cos. m cos. n

Substituting these values in the last equation, and re

ducing, we obtain

A 2 sin. m sin. n-\-J52 cos. m cos. 7i=0,

which expresses the relation which must exist between A,

B, m, and n, to fix the position of any two conjugate di

ameters in respect to the major axis, and this equation is

called the equation of condition for conjugate diameters.

In this equation of condition, m and n are undeter

mined, showing that an infinite number of conjugate di

ameters might be drawn, but whenever any value is as

signed to one of these angles, that value must be put in

the equation, and then a deduction made for the value of

the other angle.

PBOPOSITION X.

To find the equation of the ellipse referred to its center and

conjugate diameters.

The equation of the ellipse referred to its major and

minor axes, is

The formulas for changing rectangular co-ordinates
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into oblique, the origin being the same, are (Prop. 9,

Chap. 1,)

x=x f cos. m+y f cos. n. yx 1 sin. m-\-y
f sin. n.

Squaring these, and substituting the values of x2 and

y
2 in the equation of the ellipse above, we have

( (A
2siu2n+B2cos2

n)y
2

+(A
2sm2m+B2voa2

m)x
2

} ^ijp
\ +2(J.

2siii.m sin.n+.B
2cos.m coa.n)y

fx f

)

But if we now assume the condition that the new axes

shall be conjugate diameters, then

J.2
sin. m sin. n+IPcos. m cos. n=0,

which reduces the preceding equation to (F)

which is the equation required. But it can be simplified

as follows :

The equation refers to the two di

ameters B&quot;B and D&quot;D as co-ordi

nate axes. For the point B we
must make ?/

;

=0, then

Xf2=
2

.

A*W _=

-A 2
. (P)

Designating CB
f

by A ,
and CD by B .

For the point D f we must make x =Q. Then

A1T&
From (P) we have (J.

2
sin.

2m+ JB2cos. 2

m)=i^-.xL

A2 *

From (Q) (J.
2
sin.

2n+^2
cos.2

7i)=-g72--

These values put in (F) give
A 2 T&amp;gt;2 A2T)2^2+^-x f2=A2B2

.

B 2 y A 2

Whence An
y

2+B 2x 2=A 2Br2
.

14
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We may omit the accents to x f and ?/ ,
as they are gen

eral variables, and then we have

for the equation of the ellipse referred to its center and

conjugate diameters.

SCHOLIUM. In this equation, if we assign any value to x less

than A
,
there will result two values of y, numerically equal, and

to every assumed value of y less than B 1

,
there will result two

corresponding values of x, numerically equal, differing only in signs,

showing that the curve is symmetrical in respect to its conjugate

diameters, and that each diameter bisects all chords which are paral
lel to the other.

OBSERVATION. As this equation is of the same form as that of

the general equation referred to rectangular co-ordinates on the

major and minor axis, we may infer at once that we can find equa
tions for ordinates, tangent lines, etc., referred to conjugate diame

ters, which will be in the same form as those already found, which

refer to the axes. But as a general thing, it will not do to draw

summary conclusions.

PROPOSITION XI.

As the square of any diameter of the ellipse is to the square

of its conjugate, so is the rectangle of any two segments of the

diameter to the square of the corresponding ordinate.

Let CD be represented by A ,
and c 1^

CE by B ,
CH by x, and GH by y,

then by the last proposition we have

Which may be put under the form jy
Bf2(A *xz

\. &
&quot;Whence A 2

: Bf *
: : (A

2 x2

)
: y\

Or (2A Y : (ZBJ : : (A +x)(A x) : y*.

Now 2A 1 and 2B f

represent the conjugate diameters

D D, E E, and since CH represents x, A +x=D H, and
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A x=HD. Also y=GH. Hence the above propor
tions correspond to

(D D)
2

: (E E)
2

: : D HxHD : (GH}\
SCHOLIUM. As x is no particular distance from C, CF may

represent x, then LF will represent y, and the proportion then be

comes

Comparing the two proportions, we perceive that

D H-HD : D F-FD :: GH* : LF*.

That is, The rectangle of the abscissas are to one another as the

squares of the corresponding ordinates.

The same&quot; property as was demonstrated in respect to rectangular

co-ordinates in Prop. 3.

In the same manner we may prove that

Eh-hE : Ef-fE :: (hg)* :

PBOPOSITION XII.

To find the equation of a tangent line to an ellipse referred

to its conjugate diameters.

Conceive a line to cut the curve in two points, whose

co-ordinates are x*
, ?/ ,

and
x&quot;, y&quot;,

x and y being the co

ordinates of any point on the line.

The equation of a line passing through two points is

of the form

yy f=a(xx
r

),
(i)

an equation in which a is to be determined when the line

touches the curve.

From the equation of the ellipse referred to its conju

gate axes we have

A 2

y
f2+ 2x/2=A 2J3f2

.

Subtracting one of these equations from the other, and

operating as in Prop. 6, we shall find

Bf2xa= _ .

A 2
y
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This value of a put in eq. (1) will give
T?/2/

y;u =
X
(XX \

2^r
Reducing, and A 2

y y+B/2x x=A 2B 2
,

which is the equation sought, and it is in the same form

as that in Prop. 6, agreeably to the observation made at

the close of Prop. 10,

PROPOSITION XIII.

To transform the equation of the ellipse in reference to con

jugate diameters to its equation in reference to the axes.

The equation of the ellipse in reference to its conju

gate diameter is

A 2
y

2+B 2x 2=A 2B 2
. (l)

And the formulas for passing from oblique to rectangu
lar axes are (Prop. 10, Chap. 1,)

,_sin. n ycos.n ,_j/cos.ra xsm.m
JU ~-- . tJ ~~~- ^.

sin.
(ft m) sin. (n m)

These values of x f and y
f substituted in eq. (1) give

}

j2(A 2
sin. m cos. m+Br2

sin. n cos. n)xy
A f2 JS 2 sm. 2

(n m).

This equation must be true for any point in the curve,

x being measured on the major axis, and y the corres

ponding ordinate at right angles to it.

This being the case, such values of A f

,
Bf

, m, and n,

must be taken as will reduce the preceding equation to

the well known form

Therefore we must assume

A 2 cos. 2m+B * cos. 2 n=A2
. (1)

A 2 sin. 2m+B f * sin. 2 n=B*. (2)

=0. (3)

(4)
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The values of m and n must &quot;be taken so as to respond
to the following equation, because the axes are in fact

conjugate diameters.

^ 2
sin.msin.7i-f--52 cos.mcos.7i==0. (5)

These equations unfold two very interesting properties.

SCHOLIUM 1. By adding eqs. (1) and (2) we find

Or 44 2+4 /
=&amp;lt;

That is, the sum of the squares of any two conjugate diameters is

equal to the sum of the squares of the axes.

SCHOLIUM 2. Equation eq. (3) or (5) will give us m when n is

given -,
or give us n when m is given.

SCHOLIUM 3. The square root of eq. (4) gives

which shows the equality of two surfaces}
one of which is obviously

the rectangle of the two axes.

Let us examine the other.

Let n represent the angle NCB, &amp;gt;^M

and m the angle PCB. Then the

angle NCP will be represented

by (n m).

Since the angle MNK is the

supplement of NCP, the two an

gles have the same sine and

In the right-angled triangle NKM, we have

1 : A : : sin.(n m) : MK.
MK=A sm.(nm).

But NC=B .

Whence

MK-NC=A B sm.(n m) the parallelogram NCPM.
Four times this parallelogram is the parallelogram ML, and fonr

times the parallelogram DOBII, which is measured by Ay^B, is

equal to the parallelogram HF. Hence eq. (4) reveals this general

truth :

The rectangle which is formed by drawing tangent lines through

14* L
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the vertices of the axes of an ellipse is equivalent to any parallelo

gram which can be formed by drawing tangents through the vertices

of conjugate diameters.

NOTE. The student had better test his knowledge in respect to the

truths embraced in scholiums 1 and 3, by an example :

Suppose the semi-major axis of an ellipse is 10, and the semi-minor

axis 6, and the inclination of one of the conjugate diameters to the axis

of X is taken at 30 and designated ~by m.

We are required to find A 2 and .Z?
2

,
which together should equal

AZ+BZ, or 136, and the area NCPM, which should equal AB, or 60,

if the foregoing theory is true.

Equation (5) will give us the value of n as follows :

100- Jtan./H-36-i-N/3=0.

n 36v/3Or tan.Tinr _L
100

Log. 36+i log. 3 log. 100 plus 10 added to the index to corres

pond with the tables, gives 9.794863 for the log. tangent of the angle n,

which gives 31 56
42&quot;,

and the sign being negative, shows that 31

66 42&quot; must be taken below the axis of JT, or we must take the sup

plement of it, NCB, for n, whence

71=148 3
18&quot;,

and (n m)=118 3 18&quot;.

To find A * and .#
,
we take the formulas from Prop. 10.

100-36 =3600=69 2g
52

3600

99+25-92
66-77. And their sum=136.

This agrees with scholium 1.

As radius 10.000000

Is to 4 J(log.69.23) 0.920147

So is sine (n m) 61 56 42&quot; 9.945713

log. MK= 0.865860

Log. B =.\ log. (66.77) 0.912290

60. log. 60= 1.778150
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PROPOSITION XIY.

To find the general polar equation of an ellipse.

If we designate the co-ordinates

of the pole P, by a and 6, and es

timate the angles v from the line

PX parallel to the transverse axis,

we shall have the following formu

las :

x=a+r cos.v. y=b+r sin v.

These values of x and y substituted in the general

equation A2

y
2+J32x2=A2

lF,
will produce

A2
sin.

2
*;

for the general polar equation of the ellipse.

SCHOLIUM 1. When P is at the center, a 0, and b=Q, and

then the general polar equation reduces to

a result corresponding to equations (P) and ( Q) in Prop. 10.

SCHOLIUM 2. When P is on the curve J.
2
5
2

-

therefore
&quot;--&quot;-

sin.i&amp;gt;

This equation will give two values of r, one of which is 0, as it

should be. The other value will correspond to a chord, according

to the values assigned to a, b, and v. Dividing the last equation

by the equation r=0, and we have

sin.v A

The value of r in this equation is the value of a chord.

When the chord becomes 0, the value of r in the last equation

becomes also, and then
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Or

a result corresponding to Prop. 6, as it ought to do, because the

radius vector then becomes tangent to the curve.

SCHOLIUM 3. When P is placed at the extremity of the major
axis on the right, and if vr^O, then sin. vmO, and cos. #=1 a=A

f

and 6
;
these values substituted in the general equation will re

duce it to J2V-f2.Z?
a

^4r=0,
which gives r=Q, and r= 2A, obviously true results.

When P is placed at either focus, then a=*/A* J3*=c, and

5=0. These values substituted, and we shall have

It is difficult to deduce the values of r from this equation,

therefore we adopt a more simple method.

Let F be the focus, and FP any radi

us, and put the angle PFD=v.

By Prop. 1, of the ellipse, we learn

that

(!)

an equation in which c -s/J.
8

*,
and x any variably distance

CD.

Take the triangle PDF, and by trigonometry we have

1 : r :: cos.v : c-\-x.

Whence x=:r cos.v c.

This value of x placed in (1), will give

cr. cos.v c
a

r=A+ J-
Whence (A c cos.v}r=A* c

a

A 9
c
9

Or
A c cos.v

This equation will correspond to all points in the curve by giving

to cos.v all possible values from 1 to 1. Hence, the greatest

value of r is ( J.-j-c), and the least value (J. c), obvious results

when the polar point is at F.
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The above equation may be simplified a little by introducing the

ecci iitririty. The eccentricity of an ellipse is the distance from the

center to either focus, when the semi-major axis is taken as unity.

Designate the eccentricity by e, then

1 : e=A : c.

Whence c=eA.

Substituting this value of c in the preceding equation, we have

e
a

)

A eA cos. v 1 e cos. v

This equation is much used in astronomy.

PROPOSITION XV. PROBLEM.

Given the relative values of three different radii, drawnfrom
the focus of an ellipse, together with the angles between them,

to find the relative major axis of the ellipse, the eccentricity,

ami the position of the major axis, or its angle from one of the

given radii.

Let r, r
,
and

r&quot;, represent the

three given radii, m the angle be

tween r and r
,
and n that between

r and r&quot;. The angle between the

radius r and the major axis is sup

posed to be unknown, and we therefore, call it x.

From the last proposition, we have

1 e cos. x

r=
1 e cos. (x+m)

A(le2

)/=_^_ L_
(3\

1 e cos. (x+rt)

Equating the value of A(l e
2

)
obtained from eqs. (1)

and
(2), and we have

r re cos. xrf
r

f
e cos. (x+m)



166 ANALYTICAL GEOMETRY.

r_rt

~r cos. x r cos. (x+m).

In like manner from eqs. (1) and (3), we have

r re cos. x=r&quot; r&quot;e cos. (x+ri).

_ rr&quot;__~~
r cos. x r&quot; cos. (x+ri)

Equating the second members of eqs. (4) and (5), we
have

r r&amp;gt;_____rr&quot;_
r cos.x r1

cos.(x+m)&quot;~r cos.x r&quot; cos.(x+ri)

Whence,
r~r =r coa. xr eoa. (x+m)
r r

&quot;

r CO s. x r&quot;

r cos. x r cos. x cos. m+r sin. x sin. m
~r cos. x r&quot; cos. x cos. n+r&quot; sin. x sin. n

r r
1

cos. m+r sin. m tan. x

~~r r&quot; cos. n+ r&quot; sin. n tan. x

For the sake of brevity, put r rf

=d,
r r&quot;=d

,
the known quantity r rf cos. ma,

and r r&quot;cos.w= b. Then the preceding equation becomes

d a+r sin.m tan.z

d ~b+r&quot;sm.n tan.z

From which we get successively

db+dr&quot; sin. n tan. x=adf+dfr
l

sin. m tan. #

(dr&quot;
sin. TI e^r sin. m) tan. xad db,

ad db
tan. x=-j~rf -.

-
17-7 :

--
&amp;gt;

dr sin.n d r sm.m
The value of x from this equation determines the posi

tion of the major axis with respect to that of r, which is

supposed to be known, as it may be by observation. *

Having x, eq. (4) or (5) will give e the eccentricity. If

the values of e found from these equations do not agree,

the discrepancy is due to errors of observation, and in

such cases the mean result is taken for the eccentricity.
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Equations (1), (2) jind (3) contain A, the semi-major

axis, as a common factor in their second members. This

factor, therefore, does not affect the relative values of r,

r and
r&quot;,

and as it disappears in the subsequent part of

the investigation, it shows that the angle x and the eccen

tricity are entirely independent of the magnitude of the

ellipse. To apply the preceding formulas, we propose
the following

EXAMPLE.

On the first day of August, 1846, an astronomer observed

the sun s longitude to be 128 47
31&quot;,

and by comparing this

observation with observations made on the previous and subse

quent days, he found its motion in longitude was then at the

rate of 57 24&quot;. 9 per day. By like observations made on the

first of September, he determined the sun s longitude to be 158

37
46&quot;,

and its mean daily motion for that time 58 6&quot; 6
;
and

at a third time, on the Wth of October, the observed longitude

was 196 48
4&quot;,

and mean daily motion 59 22&quot;. 9. From
these data are required the longitude of the solar apogee, and the

eccentricity of the apparent solar orbit.

It is demonstrated in astronomy that the relative dis

tances to the sun, when the earth is in different parts of

its orbit, must be to each other inversely as the square root

of the sun s apparent angular motion at the several points ;

therefore, (r)
2

, (r )

2
,
and

(r&quot;)

2
,
must be in the proportion of

J_ J_
., and _ J_

57 24&quot; 9 58 6&quot; 6 59 22&quot; 9

Or as the numbers

J_ J_
,
and _!_

3444.9 3486.6 3562.9

Multiply by 3562.9 and the proportion will not be

changed, and we may put

/3562.9U
r, /3562.9U

\ 3444.97 V 3486.6 /
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By the aid of logarithms we soon find

r=1.016982 r =1.010857 and / =!.

Hence rrf=d= 0.006125, rr&quot;=d = 0.016982.

158 37 46&quot; 196 48 4&quot;

128 47 31 128 47 31

m= 29 50 15 71= 68 33

To substitute in our formulas, we must have the natu

ral sine and cosine of m and n.

sin. m=sin. 29 50 15&quot;= 0.497542, cos.= 0.867440.

sin. n=sin. 68 33&quot;=0.927238, cos.=0.374472.

r rr cos.ra=a=0.140124.

r r&quot; cos. 71=6=0.642510.

0^=0.0023695, ^6=0.00393537.

d r sin. m=0.008538616,
dr&quot; sin. 71=0.005679332.

These values substituted in the formula

x_ ad db db adr-_^____^_
.7i ^V sin.m ^V sin.m dr&quot; sin.w

give

tan y==
-QQ156586

== 15.6586

.00285928 28.5928

Log. 15.6586 plus 10 to the index=11.194746

Log. 28.5928 1.456224

Log. tan. 28 42 45&quot; 9.738522

Long, of r 128 47 31&quot;

Long, apogee 100 4 46&quot;

According to observation, the longitude of the solar

apogee on the 1st of January, 1800, was 99 30 r

8&quot;39,

and it increases at the rate of 61&quot;9 per annum. This

would give, for the longitude of the apogee on the 1st of

January, 1861, 100 33 03&quot;54.

To find e, the eccentricity, we employ eq. (5), which is
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rr&quot;g= __ .

r cos.z r&quot; cos.(x+ri)

Whence, by substituting the values of r, r&quot;,
cos. x, etc.,

we find

0.016982 .016982=~
r cos. 2842 /45 /

cos. 96 4318&quot; .891891-f .11694

1.0088

CHAPTER IV.

THE PARABOLA.
To describe a parabola.

Let CD be the directrix, and F the

focus. Take a square, as D-B(7, and

to one side of it, GB, attach a thread,

and let the thread be of the same

length as the side GB of the square.

Fasten one end of the thread at the point 6r, the other

end at F.

Put the other side of the square against CD, and with

a pencil, P, in the thread, bring the thread up to the side

of the square. Slide one end of the square along the

line CD, and at the same time keep the thread close

against the other side, permitting the thread to slide

round the pencil P. As the side of the square, _RD, is

moved along the line CD, the pencil will describe the

curve represented as passing through the points V and P.

GP+PF= the thread.

GP+P= the thread.

By subtractionPFP=0, or PF=PB.
This result is true at any and every position of the

point P ; that is, it is true for every point on the curve.

Hence, FV=VH.
15
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If the square be turned over and moved in the oppo
site direction, the other part of the parabola, on the other

side of the line FH may be described.

PROPOSITION I.

To find the equation of the parabola.

Take the axis of the parabola for

the axis of abscissas and the line at

right angles to it through the vertex

for the axis of ordinates.

The perpendicular distance from the &quot;H V . F D

focus F to the directrix BH, is called \
p, a constant quantity, and when this constant is large,

we have a parabola on a large scale, and when small, we
have a parabola on a small scale.

By the definition of the curve, V is midway between F
and the line BH, and PF=PB.
Put VD=x and PD=y, and operate on the right an

gled triangle PDF.

(FD)
2

+(PD)
2

=(PF)
2

.

That is, (XT-%p)*+f=(x+p)
2
.

Whence y
2
=2px, the equation sought.

Cor. 1. If we make cc=0, we have y=Q at the same time,

showing that the curve passes through the point &quot;F,
cor

responding to the definition of the curve.

As ?/= v/
^j9x, it follows that for every value of x

there are two values of y, numerically equal, one -f ,
the

other
,
which shows that the curve is symmetrical in

respect to the axis of X.

Cor. 2. If we convert the equation y
2=2px into a pro

portion, we shall have

x : y : : y : 2p,
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a proportion showing that the parameter of the axis is a

third proportional to any abscissa and its corresponding ordi-

nate.

Cor. 3. If we substitute \p for x in the equation y
2

2px
we get

y=p or 2y=2p.

That is the parameter of the axis of the parabola is equal

to the double ordinate through the focus, or, it is equal to four
times the distance from the vertex to the directrix.

PROPOSITION II.

The squares of ordinates to the axis of the parabola are to

one another as their corresponding abscissas.

Let x, y, be the co-ordinates of any point P, and

the co-ordinates of any other point in the curve.

Then by the equation of the curve we must have

y*=2px. (1)

y
2
=2px , (2)

By division ^7i
M T

Whence y
2

: y
2

: : x : d .

PROPOSITION III.

To find the equation of a tangent line to the parabola.

Draw the line SPQ intersecting

the parabola in the two points P and

Q. Denote the co-ordinates of the

first point by a/, y ,
and of the sec

ond, by x&quot;, y&quot;.

The equation of the straight line T~&quot;~

passing through these points is

(1)
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y -y&quot;

in which a is equal to x , xn

It is now required to find the value of a when the

point Q unites with P, or, when the secant line &quot;becomes

a tangent line at the point P.

Since P and Q are on the parabola we must have

y
2

=2px
f

And
y&quot;

2

=2px&quot;

Whence y *y&quot;*= 2p(x x&quot;)

or (y-yw +/)=%&amp;gt;(*
-*

)

y u&quot; 2pX
Therefore a=V-^/= -TIT/x x y +y

Substituting this value of a in eq. (1) we have for the

equation of the secant line.

Now if this line he turned about P until Q coincides

with P we shall have y&quot;=y

f and the line becomes tangent
to the curve at the point P.

73

Under this supposition the value of a becomes j and

equation (2) reduces to

Or y y y
*^

But y
2

2px , substituting this value y
12 in the last

equation, transposing and reducing, we have finally

yy =p(x+x ) (3)

for the equation of the tangent line.

Cor. To find the point in which

the tangent meets the axis of JT,

we must make y=0, this makes

Or x = x.
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That is, VD= VT, or the sub-tangent is bisected by the

vertex.

Hence, to draw a tangent line from any given point, as

P, we draw the ordinate PD, then make TV= VD, and

from the point T draw the line 2P, and it will be tan

gent at P, as required.

PROPOSITION IV.

To find the equation of a normal line in the parabola.

The equation of a straight line passing through the

point P is

y-y =a(x-x }.
(1) .

Let #!, 3/j, be the general co-ordinates of another line

passing through the same point, and a the tangent of

the angle it makes with the axis of the parabola, its

equation will then be

y l y =af

(x l
x r

}. (2)

But if these two lines are perpendicular to each other,

we must have

aaf= 1. (3)

But since the first line is a tangent,

This value substituted in eq. (3) gives

il

a =^-.
P

And this value put in eq, (2) will give

for the equation required.
15*
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Cor. 1. To find the point in

which the normal meets the axis of

X, we must make y ,

= 0. Then by
a little reduction we shall have

p=x l
x f

.

But VC=x l9
and VD=x f

. Therefore DC=p, that is,

The sub-normal is a constant quantity, double the distance

between the vertex and focus.

Cor. 2. Since TV= VD, and VF=$DC, TF=FC.
Therefore, if the point F be the center of a circle of

which the radius is FC, the circumference of that circle

will pass through the point P, because TPC is a right

angle. Hence the triangle PFTis isosceles. Therefore,

If from the point of contact of a tangent line to the parabola

a line be drawn to the focus it will make an angle with the tan

gent equal to that made by the tangent with the axis.

Cor. 3. Now as V bisects TD and VB is, parallel to

PZ&amp;gt;,
the point B bisects TP. Draw FB, and that line

bisects the base of an isosceles triangle, it is therefore

perpendicular to the base. Hence, we have this general

truth :

Iffrom the focus of a parabola a perpendicular be drawn to

any tangent to the curve, it will meet the tangent on. the axis of Y.

Also, from the two similar right-angled triangles, FB V
and FB T, we have

TF-.FB:: FB : FV.

Whence ~BF*= TF - FV.

But FV is constant, therefore (ft}?}
2 varies as TF, or as its

equal PF.

SCHOLIUM. Conceive a line drawn par

allel to the axis of the parabola to meet

the curve at P; that line will make an

angle with the tangent equal to the angle

FTP. But the angle FTP is equal to

the angle FPT; hence the L LPA=ih&
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[_ FPT. Now, since light is incident upon and reflected from sur

faces under equal angles, if we suppose LP to be a ray of light in

cident at P, the reflected ray will pass through the focus F, and

this will be true for rays incident on every point in the curve;

hence, if a reflecting mirror have a parabolic surface, all the rays of

light that meet it parallel with the axis will be reflected to the focus
;

and for this reason many attempts have been made to form perfect

parabolic mirrors for reflecting telescopes.

If a light be placed at the focus of such a mirror, it will reflect

all its rays in one direction
j hence, in certain situations, parabolic

mirrors have been made for lighthouses for the purpose of throwing

all the light seaward.

PROPOSITION Y.

If two tangents be drawn to a parabola at the extremities

of any chord passing through the focus, these tangents will be

perpendicidar to each other, and their point of intersection will

be on the directrix.

Let PPf be any chord through the focus

of the parabola, and PT, PrT the tangents
drawn through its extremities. Through
T, their intersection, draw BB f

perpendic
ular to the axis HF, and from the focus let

fall the perpendiculars Ft, Ft1

upon the

tangents producing them to intersect BB
at B and B . Draw, also, the lines PB, P B ,

and it .

First. The equation of the chord is

(1)

and of the parabola
f=2px (2)

Combining eqs. (1) and (2) and eliminating x
9
we find

that the ordinates of the extremities of the chord are the

roots of the equation



176 ANALYTICAL GEOMETBY.

&quot;Whence _
y,_P+pS*+J and ,f=P-P^+i

a a

Therefore the tangents of the angles that the tangent

lines at the extremities of the chord make with the axis

are

P a

The product of these tangents is

a a _
1 tf+~

Whence we conclude that the tangent lines are perpen

dicular to each other.

Second. Because the AtFtf
is right-angled and FV is

a perpendicular let fall from the vertex of the right angle

upon the hypothenuse, we have (Th. 25, B. II, Geom.)

Ff : Ft
*

: : Vt : Vt

and because W and BBf are parallel, (Cor. 3, Prop. 4), we

also have

Ff .Fi*i:FBi

: FB&amp;gt;*

nHB: HB
But (Cor. 3, Prop. 4,)

J? : Ft
*

: : FP : FP
Therefore

FP : FPf ::HB: HB
Hence the lines PB, PB f are parallel to the axis of

the parabola, and (Cor. 2, Prop. 4,) the angles BPt and

tPF are pqual. Therefore the right-angled triangles BPt
and tPF are equal, and PB=PF. In the same way we

prove that P B =PfF. The line BBf
is therefore the

directrix of the parabola.

Cor. Conversely: If two tangents to the parabola are per

pendicular to each other, the chord joining the points of contact

passes through the focus.
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For, if not, draw a chord from one of the points of

contact through the focus, and at the extremity of this

chord draw a third tangent. Then the second and third

tangents being both perpendicular to the first, must be

parallel.

But a tangent line to a parabola, at a point whose or-

dinate is ?/ ,
makes with the axis an angle having ^ for

&

its tangent ;
and as no two ordinates of the parabola are

algebraically equal, it is impossible that the curve should

have parallel tangent lines.

PROPOSITION VI.

Tofind the equation of the parabola referred to a tangent line

and the diameter passing through the point of contact as the

co-ordinate axes.

Let Vbe the vertex and &quot;PLI the

axis of the parabola. Through
Y

any point of the curve, as P, draw

the tangent PFand the diameter

PR, and take these lines for a sys

tem of oblique co-ordinate axes.

From a point M, assumed at plea

sure, on the parabola, draw MR
parallel to PY and MS perpendicular to VX ; also, draw

PQ perpendicular to VX.
Let our notation be VQ=c, PQ=b, VS =x, MS =y,

PR=x
, MR=y f and [__MRS=[_MIl S =m; then the

formulas for changing the reference of points from a sys

tem of rectangular to a system of oblique co-ordinate

axes having a different origin, give, by making [_n=0,

x= c-\-x + ?/
rcos.w

M
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These values of x and y substituted in the equation of

the parabola referred to V as the origin which is

y*=2px (1)

will give
b2 +2by 8iu.m+y

2sm. 2m &amp;lt;2ipc+2px
f

+2py
fcos.m (2)

Because P is on the curve, 65 =2pc, and because JRM
is parallel to the tangent P Y, we also have (Prop. 3,)

cos.m b

Whence 26?/ sin.m=2p/ cos.ra

By means of these relations we can reduce eq. (2) to

Or

If we denote-- by 2p the equation of the curve
sm. 2m J

referred to the origin Pand the oblique axes PJT, PY,
becomes

y&quot;=2pV

an equation of the same form as that before found when
the vertex V was the origin and the axes rectangular.

Cor. 1. Since the equation gives y =^2p x f

,
that is

for every value of x two values of y
1

, numerically equal,

it follows that every diameter of the parabola bisects all chords

of the curve drawn parallel to a tangent through the vertex of

the diameter.

Cor. 2. The squares of the ordinates to any diameter of
the parabola are to each other as their corresponding abscissas.

Let x, y and x
, y be the co-ordinates of any two

points in the curve, then

Whence IL=5_
yfZ Xf
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Or y* : y
f2

: : x : x f

Cor. 3. By a process in no respect differing from that

followed in proposition 3 we shall find

for the equation of a tangent line to the parabola when
referred to any diameter and the tangent drawn through
its vertex as the co-ordinates axes.

If, in this equation, we make y=0 we get

x+x =Q or x= x 1

.

T]jat is, the subtangent on any diameter of the parabola is

bisected at the vertex of that diameter.

SCHOLIUM. Projectiles, if not disturbed

by the resistance of the atmosphere, would

describe parabolas.

Let Pbe the point from which a projec

tile is thrown in any direction PH. Undis

turbed by the atmosphere and by gravity, it

would continue to move in that line, describ

ing equal spaces in equal times. But grav

ity causes bodies to fall through spaces pro

portional to the squares of the times.

From P draw PL in the direction of a plumb line, the direction

in which bodies fall when acted upon by gravity alone, and draw

from A, T, H, etc., points taken at pleasure on PH, lines parallel

to PL. Make AB equal to the distance through which a body

starting from rest, would fall while the undisturbed projectile would

move through the space PA, and lay off TV to correspond to the

proportion

PA* : PT*::AB: TV (1)

Also lay off HK to correspond to the proportion

PA* iPffr.AB: EK (2)

In the same way we may construct other distances on lines drawn

from points of PH parallel to PL.
Now through the points B

} V, K, etc., draw parallels to PH,

intersecting PL in (7, D, L, etc., and through the points B, V,
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Kj etc., trace a curve. This curve will represent the path de

scribed by a projectile in vacuo, and will be a parabola.

Because AB is parallel to PC, and PA parallel to JBC, the figure

PAJSOis a parallelogram, and so are each of the other figures,

PTVD, PHKL, etc.

Let PA=y, PT=y r

, PH=y&quot; etc.

and PC=x, PD=x f

,
PL=x&quot; etc.

Then proportions (1) and (2) become respectively

y* :y *::x : x
f

y z
:y&quot;*\:x : x&quot;

But by corollary 2 of this proposition, the curve that possesses

the property expressed by these proportions is the parabola, and we

therefore conclude that the path described by a projectile in vacuo

is that curve.

PROPOSITION VII.

The parameter of any diameter of the parabola is four times

the distance from the vertex of that diameter to the focus.

We are to prove that 2p =4PF.
Let the angle YPR=m as before.

Then by (Prop. 3,)

sin.
m=rpm a)

cos.w b

The co-ordinates of the point P being

c, by as in the last proposition, we have

b
2

=2pc. (2)

From eq. (1) 6
2
sin.

2
ra=&amp;gt;

2
cos.

2m.

=p
2

(l sin .
2

m)=

Or sin.
2m=_^ = ^-

b
z+p2

2pc+p
2

But in the last proposition _ _=2 . Whence
sin.

2m
sin. *m=-?~.

p&amp;gt;
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Therefore ^/ 2c+p.

Or 2p =4(c+)
\ 2i I

But
( c+^) =PF. (Prop. 1.) Hence 2p ,

the param-
\ ^/

eter of the diameter PJR, is four times the distance of the

vertex of the diameter from the focus.
SCHOLIUM. Through the focus F draw a line parallel to the

tangent PY. Designate PR by x, and RQ by y. Then, by

(Prop. 6),

But PF=FT, (Prop. 4, Cor. 2.) And PR=TF, because

is a parallelogram. WhencePR=PF; and, since PR=x,

and P.#=c+,

Therefore 4;r=4f c-f-- j
=2z/. or &amp;lt;*

P

V 2/ 2

This value of a; put in the equation of the curve gives

That is, the quantity 2p ,
which has been called the parameter

of the diameter PR, is equal to the double ordinate passing through
the focus.

PROPOSITION VIII.

If an ordinate be drawn to any diameter of the parabola,

the area included between the curve, the ordinate and the cor

responding abscissa, is two-thirds of the parallelogram con

structed upon these co-ordinates.

Let VP PQ be a portion of a

parabola included between the arc

PP P, and the co-ordinates WQ,
PQ of the extreme point P, re

ferred to the diameter V Q and the ^

tangent through its vertex.

16
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Take a point, P ,
on the curve betweenP and V ; draw

the chord PPf and the ordinates PQ, Pf Q . Through N,
the middle point of PP

,
draw the diameter NS, and at

P and P draw tangents to the parabola intersecting each

other at M and the diameter V7 Q produced at T and Tf
.

The tangents at the points P and Pf have a common sub-

tangent on the diameter VS, because these points, when
referred to this diameter and the tangent at its vertex,

have the same abscissa, VJN, (Cor. 3, Prop. 6). The point
M is therefore common to the two tangents and the di

ameter VS produced.

By this construction we have formed the trapezoid

PQQ P within, and the triangle TMT without, the par

abola, and we will now compare the areas of these figures.

From ^draw NL parallel to PQ, and from Q draw QO
perpendicular to P

,
and let us denote the angle YV Q

that the tangent at V makes with the diameter V Q by m.

By the corollary just referred to we have

V T= V Q and VT = V Q .

&quot;Whence TT= Qr Q ; and becauseN is the middle point
of PP we also have

Therefore (Th. 34, B. I, Geom.,) the area of the trap

ezoid PQQP is measured by

NLx QO=NLx Q Qsin.m=Q QxNL$m.m.
ButNL sin.ra is equal to the perpendicular let fall from

j^Vupon Q
f Q which is equal to that from M upon the same

line. Hence the area of the triangle TMT is measured&quot;

The area of the trapezoid is, therefore, twice that of

the triangle.

If another point be taken between P and V7
,
and we

make with reference to it and P the construction that
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has just been made with reference to Pf and P, we shall

have another trapezoid within, and triangle without, the

parabola, and the area of the trapezoid will be twice that

of the triangle.

Let us suppose this process continued until we have in

scribed a polygon in the parabola between the limits P
and V ; then, if the distance of the consecutive points

P, P , etc., be supposed indefinitely small, it is evident

that the sum of the trapezoids will become the interior

curvilinear area PP V Q, and the sum of the triangles
the exterior curvilinear area TPV V.

Since any one of these trapezoids is to the correspond

ing triangle as two is to one, the sum of the trapezoids
will be to the sum of the triangles in the same propor
tion. But the interior and exterior area together make

up the triangle PQT.
Therefore interior area=f&PQT,
and APT=j:rxPsin.m=F xPsin.w.
But VQxPQaiTi. m measures the area of the parallel

ogram constructed upon the abscissa Vr Q and the ordi-

nate PQ. We will denote VQ\&amp;gt;jx and PQ by y. Then
the expression for the area in question becomes

frj/.sin.m

Cor. &quot;When the diameter is the axis of the Q,

parabola, then m=90, and sin. m=l, and the

expression for the area becomes fry. That

is, every segment of a parabola at right angles

with the axis is two-thirds ofits circumscribing rec

tangle.

PROPOSITION IX.

Tofind the general polar equation of the parabola.

Let Pbe the polar point whose co-ordinates referred to

the principal vertex, T7
&quot;,

are c and b. Put VD=x, and DM
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=y ;
then by the equation of the curve we

have

y
2=2px. (1)

Put PM=R, the angle MPJ=m, then y /

we shall have \
F

VD=x=c+R cos. m.

DM=y=b+R sin. m.

These values of x and y substituted in eq. (1) will give

(b+R sin. m)
2=2p(c+R cos. m). (2)

Expanding and reducing this equation, (R being the

variable quantity), we find

R2 sm. 2m+2R(b sin. m p cos. m)=2pc b*

for the general polar equation of the parabola required.

Cor. 1. When P is on the curve, b2=2pc, and the gen
eral equation becomes

R2
ain.*m+2R(b sin.m p cos.m)=-=0.

Here one value ofR is 0, as it should be, and the other

value is

D_2(p cos. m b sin. m)
jfl i . : -

When m=270, cos. m= and sin.m= 1. Then this last

equation becomes

a result obviously true.

Cor. 2. When the pole is at the focus F, then 6=0, and

c=P, and these values reduce the general equation to

But sin. 2m=l cos. 2m.

Whence R2 R2 cos. 2m 2Rpcos.mp2
.

Or R2=p 2 -}-2Rpeos.m+R2 cos. 2m.

Or R=p+R cos.m.

Whence R= ?.

1 cos. m
and this is the polar equation when the focus is the pole.
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When m=0, cos.m=

1Z= P
1, and then the equation becomes

or ?.= infinite,11
showing that there is no termination of the curve at the

right of the focus on the axis.

When m=90, cos.ra=0, then R=p, as it ought to be,

because p is the ordinate passing through the focus.

When m=180, cos.m= 1, then R=p; that is, the

distance from the focus to the vertex is \p.
As in can be taken both above and below the axis and

the cos.m is the same to the same arc above and below,
it follows that the curve must be symmetrical in respect

to the axis.

SCHOLIUM 1. If we takep for the unit of measure, that is, as

sume p=]-, then the general polar equation will become

J?2 sin.2m-|-2 JR(6sin.m cos.m)=2c 62 .

Now if we suppose m=90, then sin.m=l, cos.m=0, and R
would be represented by the line PM

,
and the equation would be

come

and this equation is in the common form of a quadratic.

Hence, a parabola in whichjp=l will solve any quadratic equa
tion by making c= VB, JBP=b, then PM will give one value of

the unknown quantity.

To apply this to the solution of equations, we construct a parabo
la as here represented.

Now, suppose we require the value of *S

y, by construction, in the following equa- +2

tion, .

Here 25=2, and 2c Z&amp;gt;

2 =8.
Whence 6=1, and c=4.5.

Lay off c on the axis, and from the ex

tremity lay off b at right angles, above the

axis if b is plus, and below if minus.

This being done, we find P is the polar point corresponding to

16*

-1

-2

-3

1234

M



186 ANALYTICAL GEOMETRY.

this example, and PMT=2 is the plus value of y, and PM 4 is

the minus value.

Had the equation been

j,*-2y=8,_
then P would have been the polar point, and PM=4 the plus

value, and P M= 2 the minus value.

For another example let us construct the roots of the following

equation :

y* $y= 1.

Here b= 3, and 2c 6 2= 7. Whence c=l.

From 1 on the axis take 3 downward, to find the polar point P&quot;.

Now the roots are P&quot;m and P&quot;m
,
both plus.- P&quot;m=1.58, and

P&quot;m =4.4l4.

Equations having two minus roots will have their polar points

above the curve.

When c comes out negative, the ordinates caiinot meet the curve,

showing that the roots would not be real but imaginary.

The roots of equations having large numerals cannot be con

structed unless the numerals are first reduced.

To reduce the numerals in any equation, as

we proceed as follows :

Puty nz, then

= 146

n n2

Now we can assign any value to n that we please. Suppose

71=10, then the equation becomes

The roots of this equation can be constructed, and the values of

y are ten times those of z.

SCHOLIUM 2. The method of solving quadratic equations em

ployed in Scholium 1 may be easily applied to the construction of

the square roots of numbers.

Thus, if the square root of 20 were required, and we represent

it by y, we shall have
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an incomplete quadratic equation; but it may be put under the

form of a complete quadratic by introducing in the first number the

term xy, and we shall then have

^0x^=20.
Here 25=0, and2c 2 =20; whence c=10; which shows that

the ordinate corresponding to the abscissa 10 on the axis of the pa

rabola will represent the square root of 20. In the same way the

square roots of other numbers may be determined

EXAMPLES.

1. What is the square root of 50 ?

Let each unit of the scale represent 10, then 50 will be repre

sented by 5. The half of 5 is 2. An ordinate drawn from 2 on

the axis of X will be about 2.24, and the square root of 10 will be

represented by an ordinate drawn from 5, which will be about 3, 16.

Hence, the square root of 50 cannot differ much from (2.24) (3.16)

= 7,0786.

ANOTHER SOLUTION.

50=25x2, v/50=W2^ From 1 on the axis of X draw an

ordinate
;

it will measure 1.4-)-.

Hence, ^50=5(1.4+)=7,+.
&quot;What is the square root of 175?

175=25 x 7, x/175= 5v/7.

An ordinate drawn from 3.5 the half of 7 will measure 2.65.

Therefore ^175=5(2.65)=13.25 nearly.

3. Given x 2
T\z=8 to find x. Ans. sc=2.9.-j-

4. Given %x
2
-\-$x=T\to&nd x.

*

Ans. #=0.60 -f.

5. Given \y
2 y=2 to find y. Ans. y=3.17, or 2.5-f.
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CHAPTER V.

THE HYPERBOLA.
To describe an hyperbola.

The definition of this curve suggests the following

method of describing it mechanically :

Take a ruler F H, and fasten one

end at the point F 9
on which the ru

ler may turn as a hinge. At the

other end of the ruler attach a thread,

and let its length be less than that of

the ruler by the given line A A.

Fasten the other end of the thread

at F.

With a pencil, P, press the thread against the ruler and

keep it at equal tension between the points H and F.

Let the ruler turn on the point F1

, keeping the pencil

close to the ruler and letting the thread slide round the

pencil; the pencil will thus describe a curve on the

paper.

If the ruler be changed and made to revolve about the

other focus as a fixed point, the opposite branch of the

curve can be described.

In all positions of P, except when at A orA
,
PFf and

PF will be two sides of a triangle, and the difference of

these two sides is constantly equal to the difference be

tween the ruler and the thread
;
but that difference was

made equal to the given line A 1A
; hence, by definition,

the curve thus described must be an hyperbola.

PROPOSITION I.

To find the equation of the hyperbola referred to its center

and axes.
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Let C be the center, F and Fr the

foci, and AA r the transverse axis of

an hyperbola. Draw CO at right

angles to AA f

,
and take these lines

_&amp;lt;s

for the co-ordinate axes. From P,

any point of the curve, draw PF, PFf to the foci, and

PH perpendicular to AA f
.

Make CF=c, CA=A, CH=x, and PH=y; then the

equation which expresses the relation between the vari

ables x and y, and the Constances c and A, will be the

equation of a hyperbola.

By the definition of the curve we have

rf r=2A. (1)

The right-angled APffiPgives

r*=(xcy+y*. (2)

The right-angled &PHF gives

r/a=(a;+ c)a+y3. (8)

Subtracting eq. (2) from eq. (3) we get

Dividing eq. (4) by eq. (1) we have

.

J.

Combining eqs. (1) and (5) we find

r =J.+-, and r= ^L+^..A -a.

This value of r substituted in eq. (2) gives

A2 2cx+=x*
A2

Reducing, we find

for the equation sought.

SCHOLIUM. As c is greater than A, it follows that (A 2 c 2)

must be negative ;
therefore we may assume this value equal to

J52 . Then the equation becomes
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This fdrm is preferred to the former one on account of its simi

larity to the equation of the ellipse, the difference being only in the

negative value of 2
.

Because A 2 c*=B*
Now to show the geometrical mag

nitude of Bj take C as a center, and

CF as a radius, and describe the circle

FI1F . From A draw AH at right

angles to CF. Now CH=c, OA=A,
and if we put AH=B, we shall have A2+B2=c2

,
as above.

Whence AH must equal B.

PROPOSITION II.

To determine the figure of the hyperbola from its equation.

Kesuming the equation

and solving it in respect to y, we find

If we make =0, or assign to it any value less than A,

the corresponding value of y will be imaginary, showing

that the curve does not exist above or below the line A A.

If we make x=A, then y

showing two points in the curve, both

at A.

If we give to x any value greater -Pt

than Ay we shall have two values of y,

numerically equal, showing that the

curve is symmetrically divided by the axis A rA produced.
If we now assign the same value to x taken negatively,

that is, make x
( x\ we shall have two other values of

y, the same as before, corresponding to the left branch

of the curve. Therefore, the two branches of the curve are
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equal in magnitude, and are in all respects symmetrical but op

posite in position.

Hence every diameter, as DD
,
is bisected in the center, for

any other hypothesis would be absurd.

SCHOLIUM 1. If through the center, C,

we draw CD, CD
,
at right angles to A A,

and each equal to J3, we can have two opposite

branches of an hyperbola passing through D
and D above and below C. as the two others

which pass through the points A and A, at

the right and left of C.

The hyperbola which passes through D and D is said to be con

jugate to that which passes through A and A
,
or the two are con

jugate to each other.

DD is the conjugate diameter to A A, and DD may be less than,

equal to, or greater than A A, according to the relative values of c

and A in Prop. 1.

When B is numerically equal to A, the equation of the curve

becomes

y*-x*=A*,
and DD =AA . In this case the hyperbola is said to be equilateral.

SCHOLIUM 2. To find the value of the double ordinate which

passes through the focus, we must take the equation of the curve

and make x=c, then

But we have shown that A*+B*c*, or .B2=c2 A*.

Whence A*y*=E4
.

Or Ay=B\ or 2y=2^!.A
That is, 2A : 2B : : 2B : 2y,

showing that the parameter of the hyperbola is equal to the double

ordinate
t
to the major axis, that passes through the focus.

SCHOLIUM 3. To find the equation for the conjugate hyper

bola which passes through the points D, D f

,
we take the general

equation
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and change A into E and x into y, the equation then becomes

JB*x2 A*y*= A**,
which is the equation for conjugate hyperbola.

PROPOSITION III.

To find the equation of the hyperbola when the origin is at

the vertex of the transverse axis.

When the origin is at the center, the equation is

And now, if we move the origin to the vertex at the

right, we must put

Substituting this value of x in the equation of the hy

perbola referred to its center and axes, we have

AyB*x 2 2JB2Ax = 0.

We may now omit the accents, and put the equation

under the following form :

which is the equation of the hyperbola when the origin

is the vertex and the co-ordinates rectangular.

PROPOSITION IY.

To find the equation of a tangent line to the hyperbola, the

origin being the center.

In the first place, conceive a line

cutting the curve in two points, P
and Q. Let x and y be co-ordinates

of any point on the line, as $, xr

and y co-ordinates of the point P
on the curve, and x&quot; and

y&quot;
the co- s/

ordinates of the point Q on the .

curve.
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The student can now work through the proposition in

precisely the same manner as Prop. 6, of the ellipse was

worked, using the equation for the hyperbola in place of

that of the ellipse, and in conclusion he will find

for the equation sought.

Cor. To find the point in which a

tangent line cuts the axis of JL, we
must make y=0, in the equation for

the tangent ;
then

x

If we subtract this from CD (x
f

)
we shall have the sub

tangent = A * x 2 A*~

PRO POSITION Y.

To find the equation of a normal to the hyperbola.

Let a be the tangent of the angle that the line TP makes

with the transverse axis, (see last figure), and a the same

with reference to the line PN. Then if PN is a normal,

it must be at right angles to PT, and hence we must have

oa +l=0. (1)

Let x and/ be the cor-ordinates of the point P on the

curve, and x, ?/, the co-ordinates of any point on the line

PN, then we must have

y-.yr=a
f

(x x
}.

(2)

In working the last proposition, for the tangent line

PTwe should have found

This value of a put in eq. (1) will show us that

a!~

17
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And this value of a put in eq. (2) will give ns

for the equation of the normal required.

Cor. To find the point in which the normal cuts the

axis of X, we must make y=0.
This reduces the equation to

Whence = CN.

If we subtract CD, (x ) 7
from CN

9
we shall have DN,

the sub-normal.

That is, ,
the sub-normal.

PROPOSITION VI.

A tangent to the hyperbola bisects the angle contained by lines

drawnfrom the point of contact to the foci.

If we can prove that

F P: PF: :F T:TF, (1)

it will then follow (Th. 24, B. IE,

Geom.,) that the angle F PT=t~hQ

angle TPF.
In Prop. 1, of the hyperbola, we

find that

=r =^L+.-, and
A

and by corollary to Prop. 4

F&amp;gt;T=F
fC+CT=c+

We will now assume the proportion

,
and TF=

x x
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Multiply the terms of the first couplet by A, and those

of the last couplet by x, then we shall have

(A*+ cx) :
( A*+cx) : : (cx+A

2
)

: xz.

Observing that the first and third terms of this propor

tion are equal, therefore

xzcx A 2
.

Or z=c ^-=TF.-
x

Now the first three terms of proportion (2) were taken

equal to the first three terms of proportion (1),
and we

have proved that the fourth term of proportion (2) must

be equal to the fourth term of proportion (1), therefore

proportion (1) is true, and consequently

F PT=TPF.
Cor. 1. As TT is a tangent, and PN its normal, it

follows that the angle TPN= the angle FPN, for each

is a right angle. From these equals take away the equals

TPF, T PQ, and the remainder FPNwuti equal the re

mainder QPN. That is, the normal line at any point of the

hyperbola bisects the exterior angle formed by two lines drawn

from the foci to that point.
A 2

Cor. 2. The value of CT we have found to be ,
and

x
the value of CD is x, and it is obvious that

A*
A A x. ~cL . . yi .X,

X

is a true proportion. Therefore (A) is a mean proportional

between CT and CD.

A tangent line can never meet the axis in the center,

because the above proportion must always exist, and to

make the first term zero in value, we must suppose x to be

infinite. Therefore a tangent line passing through the center

cannot meet the hyperbola short of an infinite distance there

from.
Such a line is called an asymptote.
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OF THE CONJUGATE DIAMETERS OF THE HYPERBOLA.

DEFINITION. Two diameters of an hyperbola are said to

be conjugate when each is parallel to a tangent line drawn

through the vertex of the other.

According to this definition, GGr and jET.fi&quot; in the ad

joining figure are conjugate diameters.

EXPLANATION. 1. The tangent line

which passes through the point H is par

allel to CG. Hence CG makes the same

angle with the axis as that tangent line

does.

If we designate the co-ordinates of the

point If, in reference to the center and axes

by x and y ,
and by a the tangent of the

angle made by the inclination of CG with the axis, then in the in

vestigation (Prop. 6,) we find

Now if we designate the tangent of the angle which CH makes
with the axis by a

,
the equation of OH must be of the form

because the line passes through the center.

Whence a =.__ .

(2)

Multiplying eqs. (1) and (2) together member by member, and

we find

to which equation all conjugate diameters must correspond.

EXPLANATION 2. If we designate the angle GOB by n, and

HOB by m, we shall have

And

sin. m , sin. n=a
, =a.

cos. m cos. n

tan. m tan. n= ,
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PROPOSITION VII.

To find the equation of the hyperbola referred to its center

and conjugate diameters.

The equation of the curve referred to the center and

axes is

,
to change rectangular co-ordinates into oblique,

the origin being the same, we must put

x~*f
cpB.m+y cp

B.n
}

And y=x f sin. m+y sin. n
J

These values of x and y, substituted in the above gen
eral equation, will produce

-f 2(sin. m sin. nA* cos. m cos. n
= A**. (1)

Because the diameters are conjugate, we must have

sin.m sin. n B2

cos. m cos. n A2

Whence (sin. m sin. n A 2 ccs. m cos. nB2
)=Q (k)

This last equation reduces eq. (1) to

which is the equation of the hyperbola referred to the

center and conjugate diameters.

If we make 2/
r

=0, we shall have

(3)

If we make x =0, we shall have

J2J?2

-,=CG (4)

If we put A 2 to represent CH*, and regard it as posi
tive, the denominator in eq. (3) must be negative, the nu-
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merator being negative. That is, ^
2
sin.

2m must be less

than J9
2
cos.

2
w.

That is,
.4

2

sin.
2

ra&amp;lt;

2
cos.

2
w.

B
tan. ra&amp;lt;-7.

7&amp;gt;a

B ut tan. m tan. n
-p.

T)

Whence tan.
n&amp;gt;-f,

r
?
^ 2

sin.
2

ft&amp;gt;.5

2

cos.
2
%.

Therefore the denominator in eq. (4) is positive, but

the numerator being negative, therefore CG* must be

negative. Put it equal to B&quot;.

Now the equations (3) and (4) become

A *= j-^-^T
?

f ,
B* -

a
.

a

^ 2

-
a

Or (^
2

sin.
2m

Comparing these equations with eq. (2) we perceive
that eq. (2) may be written thus :

&quot;Whence A *y
n

Omitting the accents of x f and y* ,
since they are gene

ral variables, we have

AyBf2x2=A 2 2
,

for the equation of the hyperbola referred to its center

and conjugate diameters.

SCHOLIUM 1. As this equation is precisely similar to that re

ferred to the center and axes, it follows that all results hitherto de

termined in respect to the latter will apply to conjugate diameters

by changing A to A and B to B
,

For instance, the equation for a tangent line in respect to the

center and axes has been found to be
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Therefore, in respect to conjugate diameters it must be

199

and so on for normals, sub-normals, tangents and sub-tangents.

SCHOLIUM 2, If we take the equation

and resolve it in relation to y, we shall find

that for every value of x greater than A r we

shall find two values of y numerically equal,

which shows that ON bisects MM and every

line drawn parallel to MM, or parallel to a

tangent drawn through L, the vertex of the

diameter LL .

Let the student observe that these several geometrical truths were

discovered by changing rectangular to oblique co-ordinates. We
will now take the reverse operation, in the hope of discovering other

geometrical truths.

Hence the following :

PROPOSITION VIII.

To change the equation of the hyperbola in reference to any

system of conjugate diameters, to its equation in reference to the

axes.

The equation of the hyperbola referred to conjugate
diameters is

A 2
y

2 _B 2xf2=A IS 2
.

To change oblique to rectangular co-ordinates, the for

mulas are (Chap. 1, Prop. 10,)

,_xain.n ?/cos.n ,_?/cos.w xsin. m
sin. (n m) sin. (n m)

Substituting these values of x and y
f in the equation,

we shall have

A \y cos. m x sin. m)
2 B \x sin. n y cos. rif_ j,2M

sin.
F
(w m) sin.

2

(n m)

By expanding and reducing, we shall have
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(J.
/2
cos.

2w
2(

= A2Bf2
sin.

2

(ft m).

which, to be the equation of the hyperbola when referred

to the center and axes, must take the well known form,

A2fB2x2=A2B2
.

Or *in other words, these two equations must be, in

fact, identical, and we shall therefore have

A 2 cos.2mB 2 co8 2n=A2
. (1)

A 2 8in.
2mB 2

sin.
2/*= B2

. (2)

An sin. ra cos. m-\-Bf2 sin , n cos. n= 0. (3)

A 2Bfz $in.\nm)=A2B2
. (4)

By adding eqs. (1) and (2), observing that (eos.
2
w-J-

8in.
2

m)=l, we shall have

Or 4J/2 4Bf2=4Ay

which equation shows this general geometrical truth :

That the difference of the squares of any two conjugate di

ameters is equal to the difference of the squares of the axes.

Hence, there can be no equal .conjugate diameters un
lessAB

y
and then every diameter will be equal to its con

jugate : that is, A B .

T&amp;gt;2

Equation (3) corresponds to tan.mtan.n=_
?
the -equa-

_^L

tion of condition for conjugate di

ameters.

Equation (4) reduces to

A B &m.(nm)=AB.
The first member is the measure

of the parallelogram GCHT, and it

being equal to A X B, shows this ge
ometrical truth :

That the parallelogram formed by drawing tangent lines

through the vertices of any system of conjugate diameters of
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the hyperbola, is equivalent to the rectangle formed by drawing

tangent lines through the vertices of the axes.

REMAKK. The reader should observe that this propo
sition is similar to (Prop. 13,) of the ellipse, and the gen
eral equation here found, and the incidental equations (1),

(2), (3), and (4), might have been directly deduced from

the ellipse by changing B into B */ i?
and B r into

OF THE ASYMPTOTES OF THE HYPERBOLA.

DEFINITION. If tangent lines be drawn through the

vertices of the axes of a system of conjugate hyperbolas,

the diagonals of the rectangle so formed, produced inde

finitely, are called asymptotes of the hyperbolas.

Let AA
,
BB

,
be the axes of

conjugate hyperbolas, and through
the vertices A

,
A

, B, B ,
let tan

gents to the curves be drawn form

ing the rectangle, as seen in the

figure. The diagonals of this rect

angle produced, that is, DDf and

EE
,
are the asymptotes to the curves corresponding to

the definition.

If we represent the angle -DOJTby m, E CX will be m
also, for these two angles are equal because CB= CB .

It is obvious that
T&amp;gt;

tan. m
A

sin. 2 m B2

whence 2
=-^

cos2
, m A2

But cos. 2 m=l sin.^ra. Therefore

sin.
2m _-B

2

1 sin.
2m A2
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Consequently sin.2 m=
2 P2 &amp;gt;

and cos.
2 w=-___,

.4. ~T -D -A ~T-O

which equations furnish the value of the angle which the

asymptotes form with the transverse axis.

PROPOSITION IX.

To find the equation of the hyperbola, referred to its center

and asymptotes.

Let CM=x, and PMy. Then the equation of the

curve referred to its center and axes is

A*&. (1)

From P draw PH parallel to CE, and

PQ parallel to CM. Let CH=x
,
and

~Now the object of this proposition is

to find the values of x and y in terms of

x and?/ ,
to substitute them in eq. (1).

The resulting equation reduced to its

most simple form will be the equation

sought.
The angle HCMis designated by m, and because IIP

is parallel to CE, and PQ parallel to CM, the angle HPQ
is also equal to m.

Now in the right angled triangle CHh we have Hh
=x sin. m, and Chx cos. m.

In the right angled triangle PQH we have HQ
=y r sin. m, and PQ=y cos. m.

Whence Hh HQ=Qh=PM=y=x sin. m y
r sin. m.

Or y=(% j/0 sin. m. (2)

Ch+ QP= CM=x=xf

cos. m-fy cos. m.

Or z=(a: -HO cos. m. (3)

These values of y and x found in eqs. (2) and (3) sub

stituted in eq. (1) will give
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A\x yJ sin.
2
ra W (x +y }

2
cos.

2 w= J.
2JB2.

Placing in this equation the values of sin.
2mandcos.2

w,

previously determined, we have

Dividing through by AZB2
,
and at the same time mul

tiplying by (J.
2
-f-B

2

),
we get

Or

or .

which is the equation of the hyperbola referred to its

center and asymptotes.

Cor. As x and y
f are general variables, we may omit

the accents, and as the second member is a constant

quantity, we may represent it by M2
. Then

xy=M2

,
or x=^l

y
This last equation shows that x increases as y decreases

;

that is, the curve approaches nearer and nearer the asymptote

as the distance from the center becomes greater and greater.

But x can never become infinite until y becomes 0; that

is, the asymptote meets the curve at an infinite distance, corres

ponding to Cor. 2, Prop. 6.

PROPOSITION X.

All parallelograms constructed upon the abscissas, andordi-

nates of the hyperbola referred to its asymptotes are equivalent,

each to each, and each equivalent to JAB.
Let x and y be the co-ordinates corresponding to any

point in the curve, as P. Then by the equation of the

curve in relation to the center and asymptotes, we have

x=Mz
. (1)
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Also let x
, y 9 represent the co-ordinates

of the point Q. Then

x y =M\ (2)

The angle pCD between the asymptotes
we will represent by 2m. Now multiply
both members of equations (1) and (2) by
sin. 2m.

Then we shall have

xy sin. 2m=M2
sin. 2m. (3)

x y
1
sin. 2m=M2

sin. 2m. (4)

The first member of eq. (3) represents the parallelo

gram (7P, and the first member of eq. (4) represents the

parallelogram CQ ;
and as each of these parallelograms

is equivalent to the same constant quantity, they are equiv

alent to each other.

Now A is another point in the curve, and therefore the

parallelogram AHCD is equal to (M
2
sin. 2m), and there

fore equal to CQ, or CP. Hence all parallelograms
bounded by the asymptotes and terminating in a point in

the curve, are equivalent to one another, and each equiv
alent to the parallelogram AHCD, which has for one of

its diagonals half of the transverse axis of A.

We have now to find the analytical expression for this

parallelogram.
The angle HCA=m, ACD=m, and because AH is pa

rallel to
&amp;lt;7D,

CAH=m. Hence, the triangle CAH is

isosceles, and CH=HA. The angle AHq=2m. Now
by trigonometry

sin. 2m : A : : sin. m : CH.

But sin. 2m=2 sin. m cos. m. Whence
2 sin. m cos. m : A : : sin. m : CH.

2cos.m

Multiply each member of this equation by CA A
9
and

sin.m, then



THE HYPERBOLA. 205

. m.
2 cos.m 2

The first member of this equation represents the area
75

of the parallelogram CHAD, and the tan. w=_. Hence,
A.

A2 T&amp;gt;

the parallelogram is equal _-_=J^-B, which is thevalue
2t A.

also of all the other parallelograms, as CQ, CP, etc.

PROPOSITION XI.

To find the equation of a tangent line to the hyperbola re

ferred to its center and asymptotes.

Let P and Q be any two points on the

curve, and denote the co-ordinates of the

first by x
, # ,

and of the second by #&quot;, y&quot;.

The equation of a straight line pass

ing through these points will be of the

form

y y =a(x x
) (1)

in which a=^ ^
.

x x&quot;

We are now to find the value of a when the line be

comes a tangent at the point P.

Because P and Q are points in the curve, we have

x f

y =x&quot;y&quot;.

From each member of this last equation subtract

then

Or

Whence

x (y -y&quot;)=-y(x -x&quot;).

=^ * **

x x\ x

This value of a put in eq. (1) gives

y /= ^(x-x
f

).
(2)
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Now if we suppose the line to revolve on the point P
as a center until Q coincides with P, then the line will

be a tangent, and x f

=x&quot;,
and y =y&quot;,

and eq. (2) will be

come

?/
y y = ?-(x *

)&amp;gt;

which is the equation sought.

Cor. To find the point in which the

tangent line meets the axis of JT, we
must make y=Q ;

then

x=2x .

That is, Ct is twice CR, and as RP
and CT are parallel, tP=PT.

A tangent line included between the asymp
totes is bisected by the point of tangency.

SCHOLIUM. From any point on the asymptote, as
Z&amp;gt;,

draw DG
parallel to Tt, and from C draw CP, and produce it to S.

By scholium 2 to Prop. 7 we learn that CP produced will bisect

all lines parallel to tT and within the curve; hence gd is bisected

in S.

But as CP bisects tT, it bisects all lines parallel to tT within the

asymptotes, and DG is also bisected in S ; hence dD= Gg.
In the same manner we might prove dh=kv, because hk is par

allel to some tangent which might be drawn to the curve, the same

as D G is parallel to the particular tangent t T.

Hence, If any line be drawn cutting the hyperbola, the parts be

tween the asymptotes and the curve are equal.

This property enables us to describe the hyperbola by points,,

when the asymptotes and one point in the curve are given.

Through the given point d, draw any line, as D G, and from G
set off Gg=dD, and then g will be a point in the curve. Draw

any other line, as hk, and set off kv=dh ; then v is another point

in the curve. And thus we might find other points between v and

g, or on either side of v and g.
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PROPOSITION XII.

To find the polar equation of the hyperbola, the pole being at

either focus.

Take any point P in the hyperbola,
and let its distance from the nearest

focus be represented by r, and its dis

tance from the other focus be repre- p&amp;gt; A: C A! F H

sented by r .

Put CH=x, OF=c, and CA=A. Then, by Prop. 1,

we have

,
(1)

A.

(2)

A *

&quot;Now the problem requires us to replace the symbol x,

in these formulas, by its value, expressed in terms of r

and r
,
and some function of the angle that these lines

make with the transverse axis.

First. In the right-angled triangle PFH, if we desig
nate the angle PFH by v, we shall have

1 : r : : cos. v : FH=r cos. v.

CH= CF+FH. That is, x=c+r cos. v.

The value of x put in eq. (1) gives

A .(?+cr cos. vT
Whence r= ^^ _. (3)

A c cos. v

Second. In the right-angled triangle F PH, if we des

ignate the angle PFH^j v f

,
we shall have

1 : r : : cos. v f
: FfH=r cos. v .

But FH=F 0+ CH. That is, r cos. v =c+x.

Or x=r cos. v r
c*
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and this value of x put in eq. (2) gives
crr cos. v f

(?

Whence r = .

A c cos. v 1

Equations (3) and (4) are the polar equations required.

Let us examine eq. (3). Suppose fl=0, then cos.v=l,
and

Ac
But a radius vector can never be a minus quantity,

therefore there is no portion of the curve on the axis to

the right of F.

To find the length of r when it first strikes the curve,

we find the value of the denominator when its value first

becomes positive, which must be when A becomes equal
to c cos. v ; that is, when the denominator is 0. the value

of r will be real and infinite.

If A ccos.v=0,
A

then cos. v _
.

c

This equation shows that when r first meets the curve

it is parallel to the asymptote, and infinite.

When v=90, cos.v=0, and then r is perpendicular at

the point F, and equal to
c _ or __ half the paranie-A A

ter of the curve, as it ought to be.

&quot;When #=180, then cos.v= 1, and ccos.v=c; then

c+A
a result obviously true.

As v increases, the value of r will remain positive, and,

consequently, give points of the hyperbola until cos.-y

again becomes equal to _
,
which will be when the radius

c
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vector makes with the transverse axis an angle equal to

360 minus that whose cosine is __. Equation (3) will
c

therefore determine all points in the right hand branch

of the hyperbola.
Now let us examine equation (4).

If we make i/=0,
then

A c

as it ought to be.

To find when rf will have the greatest possible value,

we must put
A ccos.?/=0.

Whence cos.t/=__ .

c

This shows that v is then of such a value as to make r1

parallel to the asymptote and infinite in length. If we
increase the value of v from this point, the denominator

will become positive, while the numerator is negative,
which shows that then / will become negative, indicating
that it will not meet the curve.

The value of r will continue negative until the radius

vector falls below the transverse axis, and makes with it

an angle having -f_ for its cosine. Values of v between
c .

this and 360 will render r positive and give points of the

hyperbola. Equation (4) will, therefore, also determine

all the points in the right hand branch of the hyperbola-.

By changing the sign of c, we change the pole to the

focus F
,
and eqs. (3) and (4), which then determine the

left hand branch of the hyperbola, become

(3 )

. v

and r^ A* c*
(4/)

A+c cos. v

10* o
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GENERAL REMARKS. When the origin of co-ordinates is at the

circumference of a circle, its equation is

When the origin of a parabola is at its vertex, its equation is

ya=2pa;.
When the origin of co-ordinates of the ellipse is at the vertex of

the major axis, the equation of the curve is

When the origin of co-ordinates is at the vertex of the hyper

bola, the equation for that curve is

But all of these are comprised in the general equation

In the circle and the ellipse, q is negative ;
in the hyperbola it is

positive, and in the parabola it is 0.

CHAPTER VI.

ON THE GEOMETRICAL REPRESENTATION OF EQUATIONS
OF THE SECOND DEGREE BETWEEN TWO YARIABLES.

1. It has been shown in Chap. 1, that every equa
tion of the first degree between two variables may be

represented by a straight line.

It has also been shown that the equations of the circle,

the ellipse, the parabola and the hyperbola were all some

of the different forms of an equation of the second de

gree between two variables. It is now proposed to prove

that, when an equation of the second degree between two

variables represents any geometrical magnitude, it is

some. one of these curves.

The limits assigned to this work compel us to be as

brief in this* investigation as is consistent with clearness.

&quot;We shall, therefore, restrict ourselves to a demonstration
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of this proposition ;
the determination of the criteria by

which it may be decided in every case presented, to which

of the conic sections the curve represented by the equa
tion belongs, and the indication of the processes by
which the curve may be constructed.

2. The equation of the second degree between two

variables, in its most general form, is

Ay*+Bxy+ Cx*+Dy+Ex+F=Q,
for, by giving suitable values to the arbitrary constants,

A
9 B, Cj etc., every particular case of such equation may

be deduced from it.

The formulas for the transformation of co-ordinates

being of the first degree in respect to the variables, the

degree of an equation will not be changed by changing
the reference of the equation from one system of co-or

dinate axes to another. We may therefore assume that

our co-ordinate axes are rectangular without impairing

the generality of our investigation.

The resolution, in respect to ?/, of the general equation

gives

~2A
X

2^L 2^\|. 4AC
&quot;Now let AX, A Y be the co-ordinate axes, and draw

the straight line M Q, whose equation is

_B_X__I&amp;gt;_

2A 2A*
For any value, AD, of x, the or-

dinate, DC, of this line, is ex

pressed by

B D E X

2T 2TAA ^J^l. x

and this ordinate, increased and diminished successively

by what the radical part, when real, of the general value

of y becomes for the same substitution for x, will give
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two ordinates; DP, DP , corresponding to the abscissa

AD.
Since P and P are two points whose co-ordinates,

when substituted for x and ?/, will satisfy the equation,

Ay*+Bxy+Gx?+, etc., =0, they are points in the line

that this equation represents. By thus constructing the

values of y answering to assumed values of x, we may
determine any number of points in the curve.

In getting the points P and P
,
we laid off, on a par

allel to the axis of y, equal distances above and below

the point C; PP is, therefore, a chord of the curve par
allel to that axis, and is bisected at the point C.

The solution of the general equation in respect to x,

gives

-
2(7&quot; 2(7 4GP 4OF

The equation

_

20 2C&quot;

is that of a straight line, making, with the axis of #, an
T)

angle whose tangent is _
,
and intersecting the axis

2t G
-rji

of JT at a distance from the origin equal to - .

A G

As above, it may be shown that any value of y that

makes the radical part of the general value of x real, re

sponds to two points of the curve, and that the straight

line whose equation is

x^-Zy-Z
IC2

20
bisects the chord, parallel to the axis of Jf, that joins

these points.

By placing the quantity under the radical sign in the

value of y equal to 0, we have an equation of the second

degree in respect to #, which will give two values for x.
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If these values are real the corresponding points of the

curve are on the line MQ ;
that is, they are the intersec

tions of this line with the curve, since, for each of these

values, there will be but one value of y, which, in con

nection with that of x, will satisfy the general equation,
and these values also satisfy the equation,

2A 2JL

In like manner, placing the quantity under the radical

sign in the value of x equal to 0, we shall find two values

of y, to each of which there will respond a single value

of x, and the points of the curve answering to these val

ues of y will be the intersections of the curve with the

line whose equation is

*=-_V-_^
2(7 2(7

A diameter of a curve is defined to be any straight line

that bisects a system of parallel chords of the curve.

From the preceding discussion we therefore conclude,
1. That if an equation of the second degree between two

variables be resolved in respect to either variable, the equation

that resultsfrom placing this variable equal to that part of its

value which is independent of the radical sign will be the equa
tion of that diameter of the curve which bisects the system of

chords parallel to the axis of the variable.

2. The values of the other variable found from the equation

which results from placing the guantity under the radical sign

equal to zero, in connection with the corresponding values of the

first variable, will be the co-ordinates of the vertices of the

diameter.

3. The formulas for changing the reference of points

from a system of rectangular co-ordinate axes to any
other system having a different origin are

x=a-\-x coQ. m-f^/ cos. n.

y=b+z sin. m-fy sin. n.
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Substituting these values of x and y in the equation

developing, and arranging the terms of the resulting

equation with reference to the powers of y
f and x f and

their product, we find

(A sin.
2 n+B sin. n cos. n+ C cos.

2

ft) y
n

+(A sin.
2 m+B sin. m cos. m-\- C cos2

m) x

+\%A sin. m sin. n+B (sin. m cos. n

-fsin ft cos. m) +2(7 cos. m cos. ft]

+l(2Ab+Ba+D) =0 (1)

COS.
ft]?/

+[2^16+^a+D) sin.

cos. m]x
+Abz+Bab+ Ca?+Db+Ea+F.
Since we have four arbitrary quantities, a, 6, m, and ft

entering this equation we may cause them to satisfy any
four reasonable conditions. Let us see if, by means of

them, it be possible to reduce the coefficient of the first

powers, and of the product of the variables, separately

to zero.

&quot;We should then have

f 2A sin. m sin. n+B (sin. m cos. ft-fsin. ftl
__Q

j

cos. m) +2C cos. m cos. ft.

j

sin. n+(2Ca+Bb+E) cos. ft=0 (3)

sin. m+(2Ca+Bb+E) cos. m=0 (4)

These equations may be put under the form

2J. tan. m tan. n+B (tan. m+tan. ft)+2&amp;lt;7=0
(20

(2^6+^a+D) tan. n+SGH-^+JE^O (3/)

(2Ab+Ba+D) tan. m+2(7a+J56+^=0 W
Now, since it is necessary that m and ft should differ in

value, it is evident that, in order to satisfy eqs. (3 )
and

(4 ),
we must have

2Ab+Ba+D=0 (5)

And 2Ca+Bb+E=Q (6)
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Whence aJ^AK-BD
W-A.AG

And b

These values of a and b are infinite whenB2

41(7=0,
and it will then be impossible to satisfy both eqs. (3 )

and

(4 ),
and consequently to destroy the co-efficients of the

first powers of the two variables in eq. (1) ;
we shall, for

the present, assume that B2 41 (7 is either greater or

less than zero.

By transposition and division eqs. (5) and (6) become

, B D
o= a

21 21
f) IT1

J3 i Mi

~~~2C 2C
the first of which, if a and b be regarded as variables, is

the equation of the diameter that bisects the chords of

the curve which are parallel to the axis of ?/,
and the sec

ond, that of the diameter which bisects the chords which

are parallel to the axis of X. The values of a and b,

given above, are, therefore, the co-ordinates of the inter

section of these diameters.

Since eq. (2 )
contains both of the undetermined quan

tities, m and ft, we are at liberty to assume the value of

either, and the equation will then give the value of the

other. Let us take for the new &quot;axis of X the diameter

whose equation is

2A 2A
T&amp;gt;

then tan. ra= This value of tan. m substituted in
2A

eq. (2 ) gives

2A(B B) tan. n=52
41(7,

Or

l

tan.
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That is, the new axis of y is at right angles to the

primitive axis of X.

The values of a, 6, and tan. n which we have thus

found, in connection with the assumed value of tan. m,
will reduce the co-efficients of the first powers and of the

product of the variables in
-eq. (1) to zero.

To find what the co-efficients of y
2 and xf2

become, we
must first get the values of the sines and cosines of the

angles m and n from the values of tan. m and tan. n.

T&amp;gt;

Since tan. m=
, and 71=90 we have

2JL

sin. m=db cos. m=qc

sin. n=~L cos. n=Q.

The sign is written before the value of sin. w, and
the sign rp before that of cos. m, because if the essential

sign of tan. m is minus, which will be the case when A
and B have the same sign, sin. m and cos. m must have

opposite signs ;
but if the essential sign of tan. m is plus,

then A and B have opposite signs, and sin. m and cos. m
must have like signs.

Making these substitutions in eq. (1) it will become,
whether the signs ofA and B are like or unlike,

Ay 2 A \ x 2=
(Ab

2+Bab+ Ca2+Db+Ea
&amp;gt; 4^1

~&quot;J-JL&amp;gt;
/

+F. (! )

E&quot;ow, since the first term of the general equation may
always be supposed positive, the two terms in the first

member of equation (I/) will have like signs when B2

4JLC&amp;lt;0, and unlike signs when B2
4J.(7&amp;gt;0. In the

first case the form of the equation is that of the equation
of the ellipse, and in the second, the form is that of the

equation of the hyperbola, referred in either case, to the

center and conjugate diameters.



INTERPRETATI N OF EQUATIONS. 217

Hence, when the transformation by which eq. (I/) was
derived from the general equation

is possible, we conclude that the latter equation will

represent either the ellipse, or hyperbola, according as

4. Let us now examine the case in which
B2 4-40=0.

Since, under this hypothesis, the co-efficients of the

first powers of both variables in eq. (1) cannot be de

stroyed, we will see if it be possible to destroy the abso

lute term of the equation, and the co-efficients of the

product of the variables, the second power of one varia

ble and the first power of the other variable.

Then the equations to be satisfied are

f 2J.sin.wsin.7i-f.B(sin.mcos.tt-fsin.ncos.w)

\ -f-2(7cos.mcos.n

A&\n. 2m-\-B sin.m cos.m-f &amp;lt;7cos.
2m=0. (8)

(2Ab+Ba+D)aiu.n+(2Ga+Bb+I!)coB.n==Q. (3)

when it is required that the co-efficients of x * and y
f

should reduce to zero in connection with the absolute

term and the co-officient of x y ,
in eq. (1). To reduce

the co-efficients of y
fz and x to zero, instead of those of

x 2 and y ,
it would be necessary to replace eqs. (8) and

(3) by
A sin. 2ft-fB sin.n cos.n+ (7cos. 2n=0. (9)

Equations (2) and (8) may be written

Atan. 2m+B tan.m-f (7=0. (8 )

From eq. (8 )
we find

B 1
|~~

B

18
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and this value of tan.m substituted in eq. (2 ) gives

or tan. n=.
73

That is, when tan.m is equal to
, eq. (2 ) and,

therefore, eq. (2), will be satisfied independently of the

angle n.

Equation (7), being what the general equation becomes

when a and b take the place of x and y respectively,

shows that the new origin of co-ordinates must be on the

curve. Solving this equation with reference to 6, and

introducing the condition B2
4J.(7=0, we find

Now, because the imposed conditions require that the

transformed equation shall be of the form

it follows that every value of x* must give two numeri

cally equal values of y ; hence, the new axis of Y must

be parallel to the system of chords bisected by the new
axis of X. That is, n must be equal to 90, and, conse

quently, sin.ft=l, cos. 7i=0.

Equation (3) will therefore become

Whence b= _ a _
,
and the radical part of the

2A 2A
value of b will disappear, or we shall have

2(_RD
From which we get

=

These values of a and b place the new origin at the

vertex of the diameter whose equation is

y--^-^,2A 2A
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and make the new axis of Y a tangent line to the curve

at the vertex of this diameter.

The values of a, 6, m and n which we have now found,

substituted in eq. (1), will reduce it to

Or
JO.

Denoting the co-efficient of xf

by 2p ,
this last equa

tion becomes

y
3=2p z

, (10)

which is of the form of the equation of the parabola re

ferred to a tangent line and the diameter passing through
the point of contact.

The transformation by which eq. (10) was derived from

the general equation is always possible when JS 2 4AC
=0, unless we also have BD %AE=Q. If we suppose
that both of these conditions are satisfied, the general

value of y, which is

reduces to

whence

and

which are the equations of two parallel straight lines.

Under the suppositions just made, the general equa
tion may be written under the form

which may be satisfied by making, first one, then the

other factor of the first member, equal to zero. Each of
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the equations thus obtained, being of the first degree in

respect to x and y, will represent a right line.

If the further condition, D2 4J.J7
r

&amp;lt;0,
be imposed, the

right lines will have no existence, and the general equa
tion can be satisfied by no real values of x and y.

The value of 2p ,
the parameter of the diameter which

becomes the new axis of JT, will be found by substituting
in the expression

the values of a, b and cos. m. These values ajre

cos.m=

To reduce eq. (1) to the form

z 2=2/y (11)

we must satisfy equations (7), (2), (9) and (4).
T&amp;gt;

From eq. (9) we find tan. n -, and this value of
2iA

tan. n substituted in eq. (2
r

) gives tan.
w=-^&amp;gt;

resu^s

which might have been anticipated, since eqs. (3) and (4)

are the same, except that m in the former takes the place

of n in the latter.

Because eq. (11) will give two numerically equal val

ues of x for every value of y
f

,
the new axis of JTmust

be parallel to the system of chords bisected by the new
axis of Y; hence m=0, sin. w=0, cos. w=l, and equa
tion (4) therefore reduces to

-r&amp;gt;

~ffl

Whence a= __ b _ -

2(7 2(7

Solving eq. (7) with reference to a we have
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T)
~fjl

-I

a=

By comparing this value of a with that which precedes
we find

Whence b=_E*-4CF

These values of a and 6 place the new origin at the

vertex of the diameter whose equation is

**-.20 2(7

,-?!-!
The transformation by which eq. (4) is derived from

eq. (1) will be impossible when b is infinite
;
that is when

It may be easily proved that when W 4A (7=0, the

condition BD 2AE=Q necessarily includes the condi

tion BE 2(7.D=0
;
that is, when we cannot transform

eq. (1) into eq. (10), it will also be impossible to trans

form it into eq. (11).

For BD 2AJE=Q

And ^4^(7=0 gives
j

2(7 E
Whence &quot;&quot;=

&amp;gt;

or

5. &quot;We have now established the following criteria for

the interpretation of any equation of the second degree
between two variables, viz :

For the ellipse, B2
4AC&amp;lt;0.

For the hyperbola, B2
4AC&amp;gt;0.

For the parabola, B2 4J.G=0.

It remains for us to indicate the construction of any
of these curves from its equation, and in doing this, we

19*
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shall follow the order in which the conditions are given
above.

First, B* 4AC&amp;lt;0, the ellipse.

6. Let us resume the&quot; formulas.

aJlAEBD

B*-4AC 2A

A (
B2 ^AC

\r 2=(A b *+Bab+ Ca

and suppose, for a particular case, J3=0, and A=C.
E i D

&quot;We shall then have a= ;r-p
b HI

And y
f2+x f2

That is, the general equation, under the suppositions

made, represents a circle having a= r-j&amp;gt;

^=
ir-4

ôr^e
&-A- Z-A

co-ordinates of its center, and I

^AU fOT ^s ra,

\ 4A2

dius.

Draw AX^ A Y for the primitive

co-ordinate axes, lay off AB
77T T\

,
AD= -

,
and through the

points B and D draw the parallels

jB(7and DC to the axes. Their

intersection, (7, is the center of the

circle, and the circumference de

scribed with CE= l-Lr+H AF ag a ra^iug win &quot;be

N 4A2

that represented by the given equation.

The general equation gives
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B D 1

Placing the quantity under the radical sign, in this

value of y, equal to zero, we have

and denoting the roots of this equation by x f and
z&quot;,

the

value of y may be written

Now x and x&quot; are the abscissas of the vertices of the

diameter whose equation is

2A 2A
The corresponding values of y are

f==_Bx +D

Bx&quot;+D

2A

Substituting these values of #
,

x&quot; and # , y&quot;
in the for

mula

we have
x x

\B2
-\-4A

2 ôr ^ne length of the diameter.

The diameter which is conjugate to this is that which is

parallel to the axis of y. We find the ordinates of its

x f
+x&quot;

vertices by substituting a= - for x in eq. (q), which
2

then becomes

B(x +x&quot;}
Z&amp;gt; ,x

y= ~^A~ &quot;lA-lA-^
-^

Tb-oL &-c\- rt-n. ^^

Denoting these two values of y by y^ y^ their differ

ence, which is the length of the conjugate diameter, is

x x&quot;
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To find the angle that the con

jugate diameters make with each

other, let VVr be the first diameter

and QQ the second. The angle
that W makes with the axis of

X is equal to V VR, and its cosine

B D E

VE
vv&amp;gt;

xs

and the [_QCVf=t^Q t_BVVf=$Q+the \_V VE.

&quot;When the roots of eq. (p) are equal, the vertices of the

first diameter, and also those of its conjugate, coincide,

and the ellipse reduces to a point. Equation (q) may
then be put under the form

Because JB2 &AC is negative, this value of y will be

imaginary for every value of x except the particular one,
x=x r

,
which causes the radical to disappear.

When the roots of eq. (p) are real and unequal, that

one of the factors (x x \ (x x&quot;)
under the radical in eq.

(q), which corresponds to the root which is algebraically

the greater, will be negative, while the other will be pos

itive, for all values of x included between the limits of

the smaller and greater roots. The quantity under the

radical, being then composed of the product of three

factors, two of which are negative and one positive, will

itself be positive and the corresponding values of y will

therefore be real.

All values of x which exceed the greater, and, also, all

values of x which are less than the smaller, of these roots,

will render the quantity under the radical negative and

the corresponding values of ?/ imaginary. The roots x

and x&quot; are therefore the limits within which we would
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select values of x to substitute in the equation to get the

co-ordinates of points of the curve.

When the roots of eq. (p) are imaginary, the product
of the factors (x x \ (x x&quot;]

under the radical in eq. (q)

will remain positive for all real values of x; and because

the other factor is IP 4:A
(7&amp;lt;0,

the radical will always
be imaginary : that is, no real value of x which will give
a real value for y. There is, then, in this case, no point
in the plane of the co-ordinate axes whose co-ordinates

will satisfy eq. (q), and, consequently, the equation from

which it was derived, and the curve, has no existence, or

it is imaginary.

By the solution of eq. (p) it will be found that when
the expression

is positive, the roots of the equation are real and unequal ;

when the expression is zero the roots are real and equal,

and when negative the roots are imaginary.
If we solve the general equation with reference to x

instead of y, and place the quantity under the radical

sign equal to zero, we shall find that when the expression

(BEZ CD)
2

(

2

4AC) (E
2

CF)
is positive, the roots of the resulting equation are real

and unequal ;
when zero, these roots are real and equal,

and when negative they are imaginary.

It might be inferred that if these roots are real and

unequal, equal, or imaginary when the general equation

is resolved with reference to one variable, they would be

like characterized when it is resolved with reference to

the other. To prove this, we develope the first of the

above expressions and find that it becomes

4J. (A(fi)*+ C(D}
2

+F(B)
2 BDE-4A

OF.)

The development of the second is
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+ C(D}
z+F(BfBDE-4ACF.\

The only difference in these developments is that the

coefficient of the parenthesis in the first is 4A, and in the

second it is 4(7; but when jB2

4J.(7&amp;lt;0, A and C must
have the same sign, hence these expressions must be posi

tive, negative, or zero at the same time.

Second, B2

4JL(7&amp;gt;0, the hyperbola.

7. &quot;We will begin by supposing B=Q, and A C.

The formulas for a, b and tan. m will then give
Tjl J~\

a
,
b= _ . tan.ra=0,

2A* 2A
and eq, (! )

will become

4J.

This is the equation of an equilateral hyperbola whose

semi-axis is the square root of the numerical value of the

expression . Since tan. m=0, m=0, and

one of the axes of the hyperbola is parallel and the other

perpendicular to the primitive axis of X. If the sign of

iF
- is negative, the transverse is the parallel

axis
;

if negative, it is the perpendicular axis.

To construct the curve, let AX
and A Fbe the primitive co-ordinate

axes. Lay off the positive abscissa

jji
==
n. ) and the negative ordinate
ZuoL

=
;
the parallels to the axes

2A

drawn through D and E will be the axes of the hyper

bola, and C will be its center. On these axes, lay off

from the center, the distances CV, CV&amp;gt; CR, CR
,
each
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equal to

\
PIP 4AF and we have ^e^eQ of con_~ ~~

jugate equilateral hyperbolas. The foci may be found

by describing a circumference with C as a center and CH,
the hypothenuse of the isosceles right-angled triangle

CVH, as a radius
;
the circumference will intersect the

axes at the foci.

For another case, let us suppose -4=0 and C=0
;
then

T)

the value -which was assumed for tan. m becomes
2J.

infinite, or the new axis of X is perpendicular to the

primitive axis of X, and since tan. n is also infinite, the

new co-ordinates axes would coincide
;
in other words,

with this value of tan. m, it would be impossible, under

the hypothesis, to transform the original equation into

eq. (V}. But if J.=0, and (7=0, the co-efficient of x y
in eq. (1) becomes

-B(sin. m cos. 71+ sin. n cos. m).

Placing this equal to zero, and dividing through by
B cos. m cos. 7i, we have

tan. m-f tan. 7i=0,

Or tan. m= tan. n.

Since we are at liberty to select a value for either m or

7i, let us make 71=45
;
then m= 45. The values of a

and 6, which will destroy the co-efficients of xr and y
f

D , E
a=-_,6=-_.

Substituting these values in eq. (1), reducing and trans

posing, we have

which is also the equation of the equilateral hyperbola,
D E

the co-ordinates of whose center are a= ^, 6--
-&amp;gt;

JD JL&amp;gt;
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and whose semi-axis is the square root of the numerical

value of -i- --L The asymptotes of this hyperbola
O/ 7~) TT 7-? 77^

are parallel to the primitive axes, and if 3 _--- is

negative, the transverse axis makes a negative angle with

the primitive axis of JT, if positive, it makes a positive

angle with that axis.

There is another case in which the transformation by

which eq. (V) was obtained, cannot be made with the
73

value for tan m. It is that in which A becomes zero,
2-&amp;lt;4_

and C does not. We then assume for tan. m the tangent
of the angle that the diameter whose equation is

B _E
~~Wy 20

makes with the axis of X. That is, we make

2 G
tan. m=

75

Proceeding with this as with the value ,
we shall

2A
find for the transformed equation

By making A=Q, this equation becomes

which is that of an hyperbola referred to a system of

conjugate diameters, one of which bisects the chords

which are parallel to the primitive axis of X.
In the general case the course to be pursued for the

hyperbola differs so little from that already indicated for

the ellipse, that it is unnecessary to dwell upon it at

length.
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The quantity under the radical in the general value

of y placed equal to zero gives the equation

&amp;gt;

The roots of this equation are the abscissas of the ver

tices of the diameter, whose equation is

y=-^x-.
2A 2A

When these roots are real and unequal, the diameter

terminates in the hyperbola; when imaginary, it termi

nates in the conjugate hyperbola.

Denoting these abscissas, when real, by xf and
x&quot;,

and

the corresponding ordinates by y and y, we have

Bx +D
y

1 -

f-

2A
Bx&quot;+D

2A

By placing these values of a/, x&quot; and y , y&quot;
in the for

mula

we shall have the length of the diameter, and the angle
included between it and its conjugate will be found pre

cisely as in the ellipse.

If x f be the smaller and x&quot; the greater abscissa, then all

values of x between x and x&quot; will give imaginary values

for ?/, and will answer to no points of the curve
;
but all

values of x less than x 1

,
and also all values of x greater

than x&quot; will give real values for # ,
and such values of x

with the corresponding values of y will be the co-ordi

nates of points of the hyperbola.
When the roots x

,
x&quot; are imaginary, the diameter

whose equation is

2A 2A
20
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terminates in the hyperbola which is conjugated to that

represented by the given equation, and the diameter

which is conjugate to this diameter will terminate in the

given hyperbola.
The conjugate diameter may be found in the case of

both the ellipse and hyperbola by making first ?/ =0 in

eq. (I ),
and taking the square root of the corresponding

numerical value of x 2
,
and then =(), and taking the

square root of the corresponding numerical value of y
n

.

8. In the transformation of co-ordinates by which the

original equation was changed into eq. (1) had the condi

tion, that the new co-ordinate axes should be rectangular,
been imposed, as it might, we would have had n m=90,
n= 90 +m. Sin. 71= cos. m, cos. n sin. m.

These values being substituted in eq. (2) will give

2A sin.m cos. m B sin.
2
m-fJ3cos.2m 2(7sin.mcos.m=0,

which, by dividing through by cos.2
m, and denoting

sin m
by *, becomes

COS. ill

Whence ^
Since the product of these two values of t is equal to

1, they are the tangents of the angles that two straight
lines at right angles to each other make with the axis of

X. Now, if eqs. (5) and (6) are satisfied at the same
time

;
that is, if the new origin be placed at the point of

which the co-ordinates are

the values of t just found will be the tangents of the

angles that the axes of the ellipse, or hyperbola, as the

case may be, make with the primitive axis of X. De

noting these tangents by t
r and

t&quot;,

we shall have
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yb=t (xa),

for the equations of the axes, and by combining the

equations of the axes with the original equation, we may
find the co-ordinates of their vertices, and, consequently,
their length.

9. When the roots xf and x&quot; become equal, the value

of y may be written

JBx+D, x x
y= ___ __ Mo2 4 A n

2A 2A
&amp;gt;p

For the hyperbola, HP
4JL(7&amp;gt;0, and these values of y

are real. We therefore have

These equations represent two right lines, and, since

the co-efficients of x
9
when the second members are ar

ranged with reference to it, are different, these lines will

intersect. We see that by making x=x ,
the two equa

tions will give the same value for y. Hence, x=x ,
and

y= are the co-ordinates of the intersection of
2A

the lines.

The line BE, whose equation is

y=-*^,2A 2A
still has the property of bisecting all

lines drawn parallel to the axis of

Y&quot;,
which are limited by the lines

BC and BD, whose equations are eqs. (r) and (s).

Third, B2

4L4C==0, the parabola.

10. The equation of the diameter that bisects the

chords of the curve which are parallel to the axis of Y is
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and that of the diameter which bisects the chords paral

lel to the axis of JTis

2C E
y= --^-ff

Since a tangent line drawn through the vertex of a di

ameter is parallel to the chords that the diameter bisects,

it follows that the diameters represented by the above

equations are perpendicular to each other, and, therefore,

(Prop. 5, Chap. 4), their intersection, in the case of the

parabola, is on ftie directrix.

The abscissa of the vertex of the first diameter is the

value of x given by the equation ,

2(J3D ZAE}x+D* 4^=0,
the first member of which is the quantity under the radical

in the general value of ?/, after we have made HP 4./i(7=0.

Denoting this abscissa by x we have

If we denote the co-ordinates of the vertex of the sec

ond diameter by x&quot; and y, we have

,,= ^ 2 4CF

2C
Let Pand Pf be the two vertices thus found. Through

the first draw PT parallel to the axis of F, and through
the second, Pf T parallel to the axis of X. These lines

will be tangent to the parabola at P and Pr

respectively,
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and their intersection, T, will be

a point of the directrix. The

lines CM, BN, drawn through
P and P;

, making, with the axis

of Jfj angles having for their

common tangent

_B_ JLC_
2A B*

\are diameters of the curve, and

BC drawn through T perpendicular to these diameters,
is the directrix. With P as a center and PC as a radius,

or with P as a center and P B as a radius, describe an

arc of a circle. This arc will cut the chord PPf at the

focus F. The perpendicular FD, drawn through F to

the directrix, is the axis, and the middle point, V, of FD,
is the vertex of the parabola.

EXAMPLES.

It will aid in the construction of the curve represented

by any equation to find the points in which it is inter

sected by the co-ordinate axes. If we make either vari

able equal to zero in the equation, the values of the other

variable given by the resulting equation will be the dis

tances from the origin to the intersections of the curve,

with axis of the latter variable. When the roots of the

equation which we solve are real and unequal, there will

be two intersections, where real and equal, the axis will

be tangent to the curve at the point thus determined, and

when imaginary, the curve and the axis will have no

common points.

1. Construct the curve represented by the equation

Whence

Here J
20*

_
2x(x 2).

, JB=2, (7=3; therefore B2
4AC&amp;lt;0, and
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the curve is an ellipse which passes through the origin

of co-ordinates, since the equation has no absolute term.

y=x
is the equation of a diameter of the

curve and the co-ordinates of its ver

tices are x =0, y
f= and x&quot;= 2,/= 2.

By making x=~L in the original equa

tion, we find y=+. 41-f, or 2.41

for the ordinates of the vertices of the

diameter conjugate to the first.

The length of the first diameter is

equal to ^8=2.82+, and the length of the second is

+.41+2.41=2.82.

2. Determine the curve that corresponds to the equation

y*+2xy+x
2

6y-f9=0.

Here^=l, .=2, (7=1, hence B2
4^(7=0, and the

curve is a parabola. We find

And z= yy 9.

The diameter whose equation is y= +3 has x =0,
and ?/ =3 for the co-ordinates of its vertex. The axis of

y is therefore tangent to the curve. The co-ordinates of

the vertex of the diameter whose equation is x= y are,

x&quot;= 1J, and y=l|, and a line drawn through this point

parallel to the axis of X will be tangent to the curve.

Let P be the vertex of the first

diameter and P that of the second.

The chord PP passes through the

focus. P S
,
PS making with the

axis of X, on the negative side?

angles of 45 are diameters of the

curve, and BT a perpendicular to

P$is the directrix.

X
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3. Determine the curve of which the equation is

In this case A=l, 5=2, C= 2 ;
hence W 4AC&amp;gt;0,

and the curve is an hyperbola. The equation gives

The abscissas of the vertices of the diameter whose

equation is

2/= x+2
are the roots of the equation

Whence x f=
1, and x&quot;=2,

and the corresponding val

ues of y are y =S and ?/&quot;=0.

The diameter which is parallel to

the axis of y is conjugate to PP\
and terminates in the conjugate hy

perbola. The co-ordinates of its

vertices are imaginary and may be

found by making x=-| in the original

equation. We would thus find

2

The conjugate diameter will therefore be about 5.2.

The point E in which the curve intersects the axis of X
is on the left of the origin and at a distance from it equal
to 2J units.

4. Determine the curve represented by the equation

In this, the condition B2 4AC=Q is satisfied, and the

curve is the parabola ;
but it answers to the case in which

the parabola reduces to two parallel lines.

In fact the equation may be put under the form

Whence
Or 2/4-3z=5 or 3.
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The first member of the equation may therefore be re

solved into the factors y+Sx 5, and y+3x+&, which,

placed separately equal to zero, give for the parallel lines

the equations

And y= 3x 3.

5. Determine the curve of which the equation is

In this we have -B2 4A
(7&amp;lt;0,

and the curve is an ellipse,

but it answers to the case in which the curve becomes

imaginary. For, resolving the equation in relation to y,

we find

(x 2)
2
.

The quantity under the radical in this value of y will

be negative for every real value of cc, hence, al] values of

y are imaginary ;
that is, there is no point whose co-ordi

nates will satisfy the given equation.

By inspection we may also discover that the first mem
ber of the equation can be placed under the form

( 2/_2z-l)
2

+(r-2)
2
,

which is the sum of two squares, and must therefore re

main positive for all real values of x and y.

6. What kind of a curve corresponds to the equation

Ans. It is an hyperbola. The axis of Y is midway be

tween the two branches. One branch of the curve cuts

the axis of X at the point 1
;
the other branch cuts the

same axis at the point -f 3.

7. Determine the curve represented by the equation

Eesolving, we find

(yx)
2

+(x 1)
2+3=0.
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The condition for the ellipse is satisfied, but the curve

is imaginary.

8. What kind of a curve corresponds to the equation

Ans. It is a parabola passing through the origin and ex

tending without limit, in the direction of x and y negative.

9. What kind of a curve corresponds to the equation

Ans. It is a parabola, cutting the axis of X at the dis

tance of 1 and -f 1 from the origin, and extending in

definitely in the direction of plus x and plus y.

10. What kind of a curve corresponds to the equation

Ans. It is a straight line passing through the origin,

making an angle of 26 34 with the axis of Y.

11. What kind of a curve corresponds to the equation

Ans. It is an ellipse limited by parallels to the axis of

Y drawn through the points 1, and +1, on the axis

of X.

CHAPTER VII.

ON THE INTERSECTIONS OF LINES AND THE GEOME
TRICAL SOLUTION OF EQUATIONS.

&quot;We have seen that the equation of a straight line is

ytx-\-c^

And that the general equation of a circle is

(xa)*+(yb)*=E
2

.

The first is a simple, the second a quadratic equation,
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and if the value of x derived from the first be substituted

in the second, we shall have a resulting equation of the

second degree, in which y cannot correspond to every

point in the straight line, nor to every point in the cir

cumference of the circle, but it will correspond to the two

points in which the straight line cuts the circumference,
and to those points only.

And if the straight line should not cut the circumfer

ence, the values of y in the resulting equation must neces

sarily become imaginary. All this has been shown in the

application of the polar equation of the circle, in Chap. 2.

Let us now extend this principle still further. The

equation of the parabola is

an equation of the second degree, and the equation of a

circle is

also an equation of the second degree. But when two

equations of the second degree are combined, they will

produce an equation of the fourth degree.

But this resulting equation of the fourth degree can

not correspond to all points in the parabola, nor to all

points in the circumference of the circle, but it must cor

respond equally to both
; hence, it will correspond to the

points of intersection, and if the two curves do not in

tersect, the combination of their equations will produce
an equation whose roots are imaginary.

Let us take the equation y
2

=2px, and take p for the

unit of measure, (that is, the distance from the directrix

to the focus is unity,) then z=^_, and this value of x
2t

substituted in the equation of the circle, will give
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Let the vertex of the parabola Y
be the origin of rectangular co

ordinates.

Take AP=x, and let it refer to

either the parabola or the circle,

and let PM=y, AF=^ AH=a,
JHC=b, and CM=E.

ISTow in the right angle triangle */

CMD, we have

and corresponding to this particular figure, we shall have

in lieu of the preceding equation

&quot;Whence
^/

4

+(4 4%2

8%=4(^
2 a2

b\) (F)

This equation is of the fourth degree, hence it must
have four roots, and this corresponds with the figure, for

the circle cuts the parabola in four points, M, Mf

, M&quot;,

and M&quot;
r
.

The second term of the equation is wanting, that is,

the co-efficient to y* is 0, and hence it follows from the

theory of equations, that the sum of the four roots must
be zero.

The sum of two of them, which are above the axis of

AX, (the two plus roots,) must be equal to the sum of

the two minus roots corresponding to the points M&quot;

and M &quot;.

The values of a and b and R may be such as to place
the center C in such a position that the circumference can

cut the parabola in only two points, and then the result

ing equation will be such as to give two real and two

imaginary roots.

Indeed, a circumference referred to the same unit of

measure and to the same co-ordinates, might not cut the
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parabola at all, and in that case the resulting equation
would have only imaginary roots.

In case the circle touches the parabola, the equation will have

two equal roots.

Now it is plain that if we can construct a figure that will

truly represent any equation in this form, that figure will be a

solution to the equation. For instance, a figure correctly

drawn will show the magnitude of PM, one of the roots

of the equation.

We will illustrate by the following

EXAMPLES.

1. Find the roots of the equation

y_-11.14?/
2

6.74^+9.9225=0.
This equation is the same in form as our theoretical

equation (F), and therefore we can solve it geometrically as

follows :

Draw rectangular co-ordinates, as in the figure, and

take AF=^ and construct the parabola.

To find the center of the circle and the radius, we put
4 4a= 11.14, (1) 86= 6.74, (2-)

and 4(^
2 a2

6
2

)= 9.9225. (3)

From eq. (1), a=3.78. From eq. (2), 6=0.84.

And these values of a and 6, substituted in eq. (3), give

.=3.34, nearly.

Take from the scale which cor- y
responds to AF=, ^LZT=a=3.78,
HC= 0. 84, and from C as a center,

with a radius equal to 3.34, des

cribe the circumference cutting the

parabola in the four points, M, Mf

, C

M&quot;,
and M &quot;. The distance ofM ^

from the axis of X is +3.5, ofM
it is +0.7, of M&quot; it is 1.5, and of M &quot;

it is 2.7, and
these are the four roots of the equation.

H !
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Their sum is 0, as it ought to be, because the equation
contains no third power of y.

2. Find the roots of the equation

y*+y*+fy
2

+l2y 72=0.

This equation contains the third power of y ; therefore

this geometrical solution will not apply until that term is

removed.

But we can remove that term by putting

(See theory of transforming equations in algebra).

This value of y substituted in the equation, it becomes

and this equation is in the proper form.

Nowput 4 4a=5f, 86=9J, and 4(jft
2 a2 62)=74jf |.

Whence a= Jf, 6= |f, and -R=4.485.

These values of a and b designate the point Cf for the

center of the circle. From this center, with a radius

=4.485, we strike the circumference, cutting the parabola
in the two points m and m . The point m is 2J units

above the axis AX, and the point mf
is 2f units from

the same line, and these are the two roots of the equation.

The other two roots are imaginary, shown by the fact that

this circumference can cut the parabola in two points only.

If we conceive the circumference of a circle to pass

through the vertex of the parabola A, then will

a?+b*=It2
,

and this supposition reduces the general equation (F) to

Here y=0 will satisfy the equation, and this is as it

should be, for the circumference actually touches the par
abola on the axis of X.

Now divide this last equation by this value of y, and

we have

21
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Here is an equation of the third degree, referring to a

parabola and a circle
;
the circumference cutting the par

abola at its vertex for one point, and if it cuts the par
abola in any other point, that other point will designate
another root in equation (G).

It is possible for a circle to touch one side of the par
abola within, and cut at the vertex A and at some other

point. Therefore it is possible for an equation in the

form of eq. (G) to have three real roots, and two of them

equal.

The circumferences of most circles, however, can cut

the parabola in A and in one other point, showing one

real root and two imaginary roots.

Equation (G) can be used to effect a mechanical solu

tion of all numerical equations of the third degree, in

that form.*

&quot;We will illustrate this by one or two

EXAMPLES.

1. Given y
3
-f4y=39, to find the value of j by construc

tion. (See fig. following page)

Put 4 4a=4, and 86=39. Whence a=0, and &=4f.
These values of a and b designate the point C on the

axis of Y for the center of the circle, CA=4-J, the radius.

The circle again cuts the parabola in P, and PQ mea
sures three units, the only real root of the equation.

2. Given y
3

75y=250, to find the values of y by con

struction.

When the co-efficients are large, a large figure is re

quired ;
but to avoid this inconvenience, we reduce the

co-efficients, as shown in Chap. 2.

* Observe that the second term, or 7/
2

,
in a regular cubic is wanting.

Hence, if any example contains that term, it must be removed before a

geometrical solution can be given.
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Thus put y=nz.

Then the equation becomes

nBz3 75ftz=

Now take n=5, then we have

z*3z=2.
In this last equation the co-effi

cients are sufficiently small to apply to a construction.

Put 4 4a= 3, and 86=2.

Whence a== ^%, and 6=J.

These values of a and b designate the point D for the

center of the circle. DA is the radius.

The circle cuts the parabola in t, and touches it in T7

,

showing that one root of the equation is +2, and two

others each equal to 1.

But y=nz. That is, #=5x2, or 5, 5.

Or the roots of the original equation are +10, 5, 5.

When an equation contains the second power of the

unknown quantity, it must be removed by transforma

tion before this method of solution can be applied.

3. Given y
3

48y=128 to find the values of y by con

struction. Ans. +8, 4, 4.

4. Given y
3

13y= 12, to find the values of y by con

struction. Ans. +1, +3, and 4.

Conversely we can describe a parobola, and take any

point, as H, at pleasure, and with HA as a radius, de

scribe a circle and find the equation to which it belongs.

This circle cuts the parabola in the points m, n and o,

indicating an equation whose roots are +1, -f 2.4, and

3.4.

We may also find the particular equation from the

general equation
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observing the locality of H, which corresponds to a=3-3
and 6= 1, and taking these values of a and b, we have

f 9.2?/= 8,

for the equation sought.

EEMAEKS ON THE INTEEPEETATION OF EQUATIONS.

In every science it is important to take an occasional

retrospective view of first principles, and the conviction

that none demand this more imperatively than geometry
will excuse us for reconsidering the following truths so

often in substance, if not in words, called to mind before.

An equation, geometrically considered, whatever may be its

degree, is but the equation of a point, and can only designate a

point.

Thus, the equation y=ax-\-b designates a point, which

point is found by measuring any assumed value which

may be given to x from the origin of co-ordinates on the

axis of X, and from that extremity measuring a distance

represented by (ax-\-b) on a line parallel to the axis of Y.

The extremity of the last measure is the point designated

by the equation. If we assume another value for x, and

measure again in the same way, we shall find the point
which now corresponds to the value of x. Again, as

sume another value for x, and find the designated point.

Lastly, if we connect these several points, we shall find

them all in the same right line, and in this sense the equa
tion of the first degree, y=ax+b, is the general equation of
a right line, but the right line is found by finding points
in the line and connecting them.

In like manner the equation of the second degree

only designates a point when we assume any value for x,

(not inconsistent with the existence of the equation), and

take the plus sign. It will also designate another point
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when we take the minus sign. Taking another value of

x, and thus finding two other points, we shall have four

points, still another value of x and we can find two other

points, and so on, we might find any number of points.

Lastly, on comparing these points we shall find that they

are all in the circumference of the same circle, and hence we

say that the preceding equation is the equation of a circle.

Yet it can designate only one, or at most, two points at

a time.

If we assume different values for y, and find the cor

responding values of x, the result will be the same circle,

because the x and y mutually depend upon each other.

Now let us take the last practical example

y
z

13y= 12,

and, for the sake of perspicuity, change y into x, then we
shall have

x3 13x4-12=0.

Now we can suppose ?/=0 to be another equation ; then

will

y=tf 13x+12 (A)

be an independent equation between two variables, and
of the third degree.

The particular hypothesis that y=0, gives three values

to x, (+1, +3, and 4), that is, three points are designated:
the first at the distance of one unit to the right of the

axis of Y; the second at the distance of three units on
the same side of the axis of Y; and the third point four

units on the opposite side of the same axis, and this is all

the equation can show until we make another hypothesis.

Again, let us assume ?/=5, then equation (A) becomes
5=x3

13x4-12, or x3

13x4-7=0,
and this is, in effect, changing the origin five units on the

axis of Y. A solution of this last equation fixes three

other points on a line parallel to the axis of X.

Again, let us assume J/=10, then equation (A) becomes

x3
13x4-2=0,

21*
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7/=25.
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and the abscissa, x, to the third power, the axis of X, or lines

parallel to that axis, may cut the curve in three points.

From analogy, we also infer that if we have an equa
tion involving x to the fourth power, the axis of X, or

its parallels, Will cut the curve in four points ;
and if we

have an equation involving x to the fifth power, that axis or

its parallels will cut the curve in five points, and so on.

In the equation under consideration, (y=x* 13x+12),
if we assume y greater than 30.0388, or less than 6.0388,

we shall find that two values of x in each case will be

come imaginary, and on each side of these limits the

parallels to JTwill cut the curve only in one point.

Two points vanish at a time, and this corresponds with

the truth demonstrated in algebra,
&quot; that imaginary roots

enter equations in
pairs.&quot;

The points m, m, the turning points in the curve, are

called maximum points, and can be found only by approx

imation, using the ordinary processes of computation,
but the peculiar operation of the calculus gives these

points at once.

To find the points in the curve we might have assumed

different values of x in succession, and deduced the cor

responding values of y, but this would have given but

one point for each assumption ;
and to define the curve

with sufficient accuracy, many assumptions must be made
with very small variations to x.

,
We solved the equa

tions approximately and with great rapidity by means of

the circle and parabola as previously shown.

We conclude this subject by the following example :

Let the equation of a curve be

(a
2 x2

)(x 6)
2=ry,

from which we are required to give a geometrical deline

ation of the curve. From the equation we have
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The following figure represents the curve which will

be recognized as corresponding to the equation, after a

little explanation.

If =0, then y becomes infinite,

and therefore the ordinate at A is an

asymptote to the curve. If AB=b,
and P be taken between A and _B,

then FM and Pm will be equal, and

lie on different sides of the abscissa

AP. If x=b, then the two values of

y vanish, because x 6=0; and consequently, the curve

passes through B, and has there a duplex point. If AP
be taken greater than AB, then there will be two values

of y, as before, having contrary signs, that value which

was positive before, now becomes negative, and the nega
tive value becomes positive. But if AD be taken =a,
and P come to D, then the two values ofy vanish, because

+/az XvQ f
And if AP is taken greater than AD, then

a2 x2 becomes negative, and the value of y impossible ;

and therefore, the curve does not extend beyond D.

If x now be supposed negative, we shall find

y=zb^a2
&quot;-^? x (b +x)~-x?

If x vanish, both these values of y become infinite, and

consequently, the curve has two infinite arcs on each side

of the asymptote AK. If x increase, it is plain y dimin

ishes, and if x becomes = a,y vanishes, and consequently
the curve passes through E, if AE be taken =AD, on

the opposite side. If x be supposed, numerically, greater

than a, then y becomes impossible ; and no part of the

curve can be found beyond E. This curve is the conchoid

of the ancients.
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CHAPTER VUL

STRAIGHT LIKES DT SPACE.

Straight lines in one and the same plane are referred

to two co-ordinate axes in that plane, but straight lines

in space require three co-ordinate axes, made by the inter

section of three planes.

To take the most simple view of the subject, conceive

a horizontal plane cut by a meridian plane, and by a per

pendicular east and west plane.

The common point of intersection we shall call the

origin or zero point, and we might conceive this point to

be the center of a sphere, and about it will be eight quad

rangular spaces corresponding to the eight quadrants of

a sphere, which extended, would comprise all space.

The horizontal east and west line of intersection of

these planes, we shall call the axis of X. The horizon

tal intersection in the direction of the
. meridian, the axis

of T; and that perpendicular to it in the plane of the

meridian, the axis of Z. Distances estimated from the

zero point horizontally to the right, as we look towards

the north, we shall designate as plus, to the left minus.

Distances measured on the axis of Y and parallel

thereto, towards us from the zero point, we shall call plus;

those in the opposite direction will therefore be minus.

Perpendicular distances from the horizontal plane up
wards are taken as plus, downward minus.

The horizontal plane is called the plane of xy, the me
ridian plane is designated as the plane of yz, and the per

pendicular east and west plane the plane of xz.

Now let it be observed that x will be plus or minus, ac

cording to its direction from the plane of yz, y will be

plus or minus, according to its direction from the plane
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xZy and z will be plus or minus, according as it is above or

below the horizontal place xy.

PROPOSITION I.

To jmd the equation of a straight line in space.

Conceive a straight line passing in any direction through

space, and conceive a plane coinciding with it, and per

pendicular to the plane xz. The intersection of this

plane with the plane xz, will form a line on the plane xz,

and this is said to be the projection of the line on the

plane xz, and the equation of this projected line will be

in the form

x=az-\-7r. (Chap. 1, Prop. 1.)

Conceive another plane coinciding with the proposed

line, and perpendicular to the plane yz, its intersection

with the plane yz is said to be the projection of the line

on the plane yx, and the equation of this projected line

is in the form

These two equations taken together are said to be

equations of the line, because the first equation is a gen
eral equation for all lines that can be drawn in the first

projecting plane, and the second equation is a general

equation for all lines that can be drawn in the second

projecting plane ;
therefore taken together, they ex

press the intersection of the two planes, which is the line

itself.

For illustration, we give the following example : Construct

the line whose equations are

=32 2
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Make 2=0, then rc=l, and ?/= 2.

Now take J.P=1, and draw Pm
parallel to the axis of Y, making
Pm= 2

;
then m is the point in

the plane xy, through which the / T7~
X

line must pass. /- IL.

Now take z equal to any num
ber at pleasure, say 1, then we shall

have z=3 and y=l.
Take J.P^=3, P m =-f 1, and from the point mr in the

plane xy erect mrn perpendicular to the plane xy&amp;gt;
and

make it equal to 1, because .we took 2=1, then n is an

other point in the line. Draw n m and produce it, and it

will be the line designated by the equations.

PROPOSITION II.

To find the equation of a straight line lohich shall pass

through a given point.

Let the co-ordinates of the given point be represented

by #
, j/ ,

zf
.

The equations sought must satisfy the general equa
tions

x=az+x.

The equations corresponding to the given point are

x =az +K. y =bz f

+fi.

Subtracting eq. (1) from these, respectively, we have

x r

x=a(z
f

2),
and y

f

y=b(z
f

z\

the equations required.

PROPOSITION III.

To find the equations of a straight line which shall pass

through two given points.
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Let the co-ordinates of the second point be
x&quot;, y&quot;,

z&quot;,

Now by the second proposition, the equations which ex

press the condition that the line passes through the two

points, will be
x X

=a(z&quot;
z

) 9

Alid yy&amp;gt;
=

b(z&quot;Z
f

}.

&quot;Whence a-^JZ^, b=y
&quot;~~y

-.

2&quot;_2/ Z Z &amp;gt;

Substituting the values of a and 6 in the equations of a

line passing through a single point (Prop. 2,) we have

for the equations required.

PROPOSITION IV.

To find the condition under ivhich two straight lines intersect

in space, and the co-ordinates of the point of intersection.

Let the equation of the lines be

x=a z+n . y=bf

z+p
f
.

If the two lines intersect, the co-ordinates of the com-

mojo. point, which may be denoted by x
9 y, z, will satisfy

all of these four equations, therefore by subtraction, we
have

Whence, by eliminating 2, we find

7T--7r = /9 p

which is the condition under which two lines intersect.

Now 2= 7r ^ and this value of z being substituted
a a

in the first equations, we obtain

an +~ctn , b8 b&amp;gt;

and y
^

a a
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for the value of the co-ordinates of the point of inter

section.

Cor. If a~a
,
the denominators in the second mem

ber will become 0, making x and y infinite
;
that is, the

point of intersection is at an infinite distance from the

origin, and the lines are therefore parallel.

PROPOSITION V. PROBLEM.

To express analytically the distance of a given point from
the origin.

Let P be the given point in

space ;
it is in the perpendicular

at the point N9
which is in the

plane xy.

The angle AMN=9Q. Also,

the angle JJVP=90.
Let AMXj MN=y, NP=z.

Then JJ?
2

=,

But T~P 2

&quot;Now if we designate AP by r, we shall have

r2=x2
-f;?/

2+22

for the expression required.

PROPOSITION YI. PROBLEM

To express analytically the length of a line in space.

Let PP =D be the line in question.
z

Let the co-ordinates of the point P
be x, ?/,

z
9
and of the point Pf be x

9

y ,
z .

Now MM =x x=NQ.
QN =y y.

22
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In the triangle PEPf we have

Or &=(x f

x)*+(y
f y^+y zf, (1)

which is the expression required.

SCHOLIUM. If through one extremity of the line, as P, we

draw PA to the origin, and from the other extremity P ,
we draw

P $ parallel and equal to PA, and draw AS, it will be parallel to

PPf

,
and equal to it, and this virtually reduces this proposition to

the previous one. This also may be drawn from the equation, for

if A is one extremity of the line, its co-ordinates x
} yt

and z are

each equal to zero, and

PROPOSITION VII. PROBLEM.

To find the inclination of any line in space to the three axes.

From the origin draw a line z
**
parallel to the given line

;
then

the inclination of this line to the

axes will be the same as that of

the given line.

The equations for the line pass-

ing from the origin are

x=az, and y=bz. (1)

Let X represent the inclination of this line with the

axis of x, Y its inclination with the axis of y, and Z its

inclination with the axis of z.

The three points P, N7 M, are in a plane which is par
allel to the plane zy, and AM is a perpendicular between&quot;

the two planes. AMP is a right-angled triangle, the

right angle being at M.
Let APr and AM=x. Then, by trigonometry, we

have

As r : sin. 90 : : x : cos. X. Whence x=r cos. X.

Also, as r : sin. 90 : : y : cos. Y. Whence y=r cos. F.
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Also, as r : sin. 90 : : z : cos. Z. Whence zr cos. Z.

From Prop. 5 we have

r *= x2+y2+ Z*. (2)

Substituting the values of x, y, and z, as above, we
have

r2=r2 cos. 2
JT&quot;-f r

2 cos. 2 Y+r2 coa. 2Z.

Dividing by r2 will give

cos.sJT-fcos. 2 r+cos. 2 =l, (3)

an equation which is easily called to mind, and one that

is useful in the higher mathematics.

If in eq. (2) we substitute the values of x2 and y
2 taken

from eq. (1), we shall have

But we have three other values of r2 as follows :

r2= x*

,
r2= ^2

_ and r2=_?__.
cos. 2X cos. 2 Y cos. 2 Z

&quot;Whence ~^^
cos.A

And _= v 1+a8+ 52 .
(7)

COS. ^
In eq. (5) put the value of x drawn from eq. (1), and in

eq. (6) the value of y from eq. (1), and reduce, and we
shall obtain

The analytical expressions
for the inclination of a line

in space to the three co-or

dinates.COS. ^=

The double sign shows two angles supplemental to

each other, the plus sign corresponds to the acute angle,

and the minus sign to the obtuse angle.
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PKOPOSITION VIII.

To find the inclination of two lines in terms of their sepa

rate inclinations to the axes.

Through the origin draw two lines respectively paral
lel to the given lines. An expression for the cosine of

the angle between these two lines is the quantity sought.
Let AP be parallel to one of the given lines, and AQ

parallel to the other. The angle PA Q is the angle sought.
Let the equations of one of these lines be

x=az, y=bz,

and of the other

x*=a z
9 y =b z .

Let AP=r, AQ=rf

, PQ=D, and the angle PAQ= V.

Now in plane trigonometry (Prop. 8, p. 260, Geom.,)
we have

2rr

From Prop. 6 we have

Expanding this, it becomes

2x x2y y2z z.

But by Prop. 5 we have

Q
&quot;

P

and x f

*+yf2+z 2=r/2
.

Whence 2x x+2y y+2z z=r*+r s D*.
This equation applied to eq. (I) reduces it to

cos. V
rr

But r and rr

may have any values taken at pleasure;
their lengths will have no effect on the angle V. There

fore, for convenience, we take each of them equal to

unity.

Whence cos. V=*xrx+y y+zf
z. (2)



STKAIGHT LINES IN SPACE. 257

But in Prop. 7 we found that x=rGos.^ y=r cos.
Y&quot;,

etc., and that x r r cos.^T
, y

f=rj cos. Y
,
etc.

;
and since

we have taken r=l and r =l, x=cos. X, etc., and x =
cos.JT

,
etc. Hence

cos. 7=cos.Xcos.J^ +cos. Fcos. Y +cos.^cos.Z . (3)

But by Prop. 7 we have

CL

cos.JT= . r=. and cos.X=

Substituting these values in eq. (3) we have

l+ao +W
cos. y=-

for the expression required.

The cos. V will be plus or minus, according as we take

the signs of the radicals in the denominator alike or un

like. The plus sign corresponds to an acute angle, the

minus sign to its supplement.
Cor. 1. If we make 7=90, then cos. 7=0, and the

equation becomes

which is the equation of condition to make two lines at

right angles in space.

Cor. 2. -If we make 7=0, the two straight lines will

become parallel, and the equation will become

1=

Squaring, clearing of fractions, and reducing, we shall

find

(a!_a)+ (fi/_&)2+ (aV a b?= 0.

Each term being a square, will be positive, and there

fore the equation can only be satisfied by making each

term separately equal to 0.

&quot;Whence a =a, b =6, and abf=af
b.

The third condition is in consequence of the first two.

22* E
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CHAPTER IX.

ON THE EQUATION OF A PLANE.

An equation which can represent any point in a line

is said to be the equation of the line.

Similarly, an equation which can represent or indicate

any point in a plane, is, in the language of analytical ge

ometry, the equation of the plane.

PROPOSITION I.

Tofind the equation of a plane.

Let us suppose that we have a plane which cuts the

axes of JT, Y and Z at the points JB, C and D, respec

tively ; then, if these points be connected by the straight

lines BCj CD and DJ3, it is evi

dent that these lines are the inter

sections of the plane with the

planes of the co-ordinate axes.

Now a plane may be conceived

as a surface generated by moving a

straight line in such a manner that

in all its positions it shall be parallel to its first position

and intersect another fixed straight line. Thus the line

DC, so moving that in the several positions, D C&quot;, D&quot;C&quot;,

etc., it remains parallel to DO and constantly intersects

DjB, will generate the plane determined by the points D,
C and B.

The line DB being in the plane xy, its equations are

2/=0, z=mx+b, (1)

and for the line DC we have

z=0, z=ny+b. (2)

The plane passed through the line U C parallel to the
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plane zy, cuts the axis of JTat the point p. Denoting Ap
by Cj the equations of the line D f Cf become

x=c, z=ny+b . (3)

It is obvious that eqs. (3) can be made to represent the

moving line in all its positions by giving suitable values

to c and b f

,
and that, for any one of its positions, the co

ordinates of its intersection with the lineDB must satisfy

both eqs. (1) and (3). That is, c and b
,
in the first and

second of eqs. (3), must be the same as x and
, respec

tively, in the second of eqs. (1). Hence

b =z ny, and b =mx+b.

Equating these two values of b
,
we have

z ny=mx+b,
or z=mx+ny+b. (4)

This equation expresses the relation between the co-or

dinates x, y and z for any point whatever in the plane

generated by the motion of the line DC, and is, there

fore the equation of this plane.

Cor. 1. Every equation of the first degree between
three variables, by transposition and division, may be re

duced to the form of eq. (4), and will, therefore, be the

equation of a plane.

Cor. 2. In eq. (4),
m is the tangent of the angle which

the intersection of the plane w
Tith the plane xz makes with

the axis of X, n the tangent of the angle that the inter

section with the plane yz makes with the axis of Y, and

b the distance from the origin to the point in which the

plane cuts the axis of Z.

Hence, if any equation of the first degree between three vari

ables be solved with respect to one of the variables, the co-effi

cient of either of the other variables denotes the tangent of the

angle that the intersection of the plane represented by the equa-

tionjjoith the plane of the axes of the first and second variables,

makes with the axis of the second variable.
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SCHOLIUM. If we assume

ro= =-:. =-
C C

and substitute these values in eq. (4), it will become, by reduction

and transposition,

which is the form under which the equation of the plane is very
often presented.

From this equation we deduce the following general truths :

First. If we suppose a plane to pass through the origin of the

co-ordinates for this point, #=0, y=0, and 2= 0, and these values

substituted in the equation of the piano will give D=Q also. There

fore, when a plane passes through the origin of co-ordinates, the

general equation for the plane reduces to

Ax+y+Cz=Q.
/Second. To find the points in which the plane cuts the axes, we

reason thus :

The equation of the plane must respond
to each and every point in the plane ;

the

point P, therefore, in which the plane cuts

the axis of X, must correspond to y=0
and 2=0, and these values, substituted in

the equation, reduces it to

Or *=!:
A

For the point Q we must take x=Q and =0.

And y= ~L.~OQf.

For the point R, z= _=OJ2.

Third. If we suppose the plane to be perpendicular to the plane
XY, PR ,

its intersection with, or trace on, the plane XZ, must be
drawn parallel to OZ, and the plane will meet the axis of Z at the

distance infinity. That
is, OR, or its equal, (

-
)

,
must be infi

nite, which requires that (7=0, which reduces the general equation
of the plane to
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Ax-\-By-\-D-Qj
which is the equation of the trace or line PQ on the plane XY.
If the plane were perpendicular to the plane ZX, the line Q, or

its equal, (--
j,

must be infinite, which requires that .#=0, and

this reduces the general equation to

which is the equation for the trace PR, and hence we may conclude

in general terms,

That when a plane is perpendicular to any one of the co-ordinate

planes, its equation is that of its trace on the same plane.

PKOPOSTION II. PEOBLEM.

To find the length of a perpendicular drawn from the origin

to a plane, and to find its inclination with the three co-ordinate

axes.

Let JRPQ be the plane, and from the

origin, 0, draw Op perpendicular to the

plane ;
this line will be at right-angles

to every line drawn in the* plane from

the pointy.

Whence Op =90, Op^=90, and

QpP=90.
Let Op p.

Designate the angle pOP by X, pOQ by Y9
and

by^.
By the preceding scholium we learn that

=-, 06=- and OR=-

A, 13, C and D being the constants in the equation of a

plane.

Now, in the right-angled triangle OpP9 we have

OP : 1 : : Op : cos. X.

That is, -. :l::p: cos. Z. (1)
A
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The right-angled triangle OpQ gives

:?:!::: cos. Y.
B

The right-angled triangle OpR gives

_2&amp;gt;.

C&quot;

Proportion (1) gives us

P. :l::pi cos. r. (2)
_B

: 1:
:2&amp;gt;:

coa.Z. 0)

5s

(6)

(2) gives cos.
2Y=^B

and (3) gives cos.
2

^==^
(7

:

Adding these three equations, and observing that the

sum of the first members is unity, (Prop. 7, Chap. 8), and

we have

(5)

Whence y?= P CO

This value of p placed in eqs. (4), (5) and (6), by re

duction, will give

cos. JT= =b
A __ (8)

COS. F=dr __
. (9)

cos. Z= . (10)

Expressions (7), (8), (9) and (10) are those sought.

PROPOSITION III. PROBLEM.

To find the analytical expressions for the inclination of a

plane to the three co-ordinate planes respectively.
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Let Ax+Ey+ Cz+D=0 be the equa
tion of the plane, and let PQ represent
its line of intersection with the co-ordi

nate plane (xy}.

From the origin, 0, draw OS per

pendicular to the trace PQ. Draw pS.

OpS is a right-angled triangle, right-

angled at p, and the angle OSp measures the inclination

of the plane with the horizontal plane (xy]. Our object

is to find the angle OSp.

In the right-angled triangle POQ we have found

D *** JD *

OP=-

DWhence

Now PS, a segment of the hypothenuse made by the

perpendicular OS, is a third proportional to PQ and PO.
Therefore

: B : : -r : PS=A
Or

The other segment, QS, is a third proportional to PQ
and OQ. Therefore

D . D D
.

AB
Or

AD

But the perpendicular, OS, is a mean proportional be

tween these two segments. Therefore we have

OS=

!N&quot;ow, by simple permutation, we may conclude that the

perpendicular from the origin to the trace PR is
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D

and that to the trace QR is

D

&quot;We shall designate the angle which the plane makes

with the plane of (xy] by (xy)&amp;lt;
and the angle it makes

with (xz) by (xz\ and that with (yz} by (yz).

!N&quot;ow the triangle OpS gives

OS : sin. 90 : : Op : sin. OSp.

D D
That is, , : 1 : :

Whence

But by trigonometry we know that cos.
2=l sin.2.

A 24- 7?2 r72

mence003.^)=!---=, eta

Whence c

C2

_u A

cos.(yz)

C2

&amp;gt; Expressions sought.

C2

^

Squaring, and adding the last three equations, we find

cos.2

(r?/)+ cos.
2

(#2) -f cos.
2

(yz)=l.

That is, the sum of the squares of the cosines of the three

angles which a plane forms with the three co-ordinate planes,

is equal to radius square, or unity.
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PKOPOSITION IV. PROBLEM.

To find the equation of the intersection of two planes.

Let Ax+By+Cz+D=Q, (1)

A x+B y+ C 2+jD =0, (2)

be the equations of the two planes.

If the two planes intersect, the values of
, y and z

will be the same for any point in the line of intersection.

Hence, we may combine the equations for that line.

Multiply eq. (1) by Cf and eq. (2) by (7, and subtract

the products, and we shall have

(A C A 1

C}x+(BO B f

C)y+(DC D
&amp;lt;?)= 0,

for the equation of the line of intersection on the plane

(xy). If we eliminate y in a similar manner, we shall

have the equation of the line of intersection on the plane

(xz) ;
and eliminating x will give us the equation of the

line of intersection on the plane (yz).

PKOPOSITION Y. PROBLEM.

To find the equation to a perpendicular let fallfrom a given

point (x , y ,
z

,) upon a given plane.

As the perpendicular is to pass through a given point,

its equations must be of the form

xx =a(zz ) 9 (1)

yy f=b(zz \ (2&amp;gt;

in which a and b are to be determined.

The equation of the plane is

The line and the plane being perpendicular to each other,

by hypothesis, the projection of the line and the trace of

the plane on any one of the co-ordinate planes will be

perpendicular to each other.

For the traces of the given plane on the planes (xz) and

(yz\ we have Ax+ Cz+D=Q and By+ Cz+D=0.
23
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From the former x z _. (3)
A A

From the latter y= ~z :?. ()
JD JD

ISTow eqs. (1) and (3) represent lines which are at right

angles with each other.

Also, eqs. (2) and (4) represent lines at right angles

with each other.

But when two lines are at right angles, (Prop. 5, Chap.

1), and a and a1 are their trigonometrical tangents, we

must have (aa -f-l=0).

That is, &amp;lt;+l=0, or a=^.
^JL O

T&amp;gt;

Like reasoning gives us b=
,
and these values put in

C

eqs. (1) and (2) give

xx =~(zz )

|

for

,; y-y&amp;gt;=*(z
-z

.)

PROPOSITION VI. PROBLEM.

To find the angle included by two planes given by their

equations.

Let Ax+By+Cz+D=09 (1)

And A x+3y +C z+iy=09 (2)

be the equations of the planes.

Conceive lines drawn from the origin perpendicular to

each of the planes. Then it is obvious that the angle
contained between these two lines is the supplement of the

inclination of the planes. But an angle and its supple

ment have numerically the same trigonometrical ex

pression.
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Designate the angle between the two planes by V, then

Proposition 8, in the last chapter gives

Jr I+aa +bb
COS. V= - -

. (3)

The equations of the two perpendicular lines from the

origin must be in the form

x=az, y=bz,
xa z y=b z.

But because the first line is perpendicular to the first

plane, we must have

a=4, and 6=:?, (Prop. 5.)o u

And to make the second line perpendicular to the sec

ond plane requires that

- and V-.

^These
values of a, 6, and a

, V, substituted in eq. (3)
will give, by reduction,

cos. T^+

for the equation required.

Cor. When two planes are at right angles, cos. F=0,
which will make

AA +BB +

PROPOSITION VII. PROBLEM.

To find the inclination of a line to a plane.

Let MN be the plane given by its equation

and let PQ be the line given by its equations
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x=az+a.

1VP

Take any point P in the given line,

and let fall PR, the perpendicular, up
on the plane ; RQ is its projection on

the plane, and PQR, which we will

denote by F, is obviously the least an-

gle included between the line and the plane, and it is the

angle sought.

Let xafz+7r y
and y=b

f

z+f?,

be the equation of the perpendicular PR, and because it

is perpendicular to the plane, we must have (by the last

proposition)

a
=^,

and & =:*

Because PQ and PR are two lines in space, if we des

ignate the angle included by F, we shall have

cos. F= .
(
p

rop&amp;lt; 8?

But the cos. F is the same as the sin. PQR, or sin. v,

as the two angles are complements of each other.

Making this change, and substituting the values of a

and &
,
we have

Bn.,

for the required result.

Cor. When #=0, sin. #=0, and this hypothesis gives

for the equation expressing the condition that the given
line is parallel to the given plane.

&quot;We now conclude this branch of our subject with a

few practical examples, by which a student can test his

knowledge of the two preceding chapters.
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EXAMPLES.

1. What is the distance between two points in space of

which the co-ordinates are

3=3, y=5, *= 2,
=

2, /= 1, * =6.

.An*. 11.180+.

2. (y w/McA the co-ordinates are

x=I, y= 5, z=3, 3 =4, y =-4, * =!.

Ans. 5^3 nearly.

3. TAe equations of the projections of a straight line on the

co-ordinate planes (xz), (yz), are

3=2*+l, 2/=Jz 2,

required the equation of projection on the plane (xy).

Ans. y\x 2J.

4. 7%e equations of the projections of a line on the co-ordi

nate planes (xy) and (yz) are

2yx 5 and 2y=z 4,

required the equation of the projection on the plane (xz).

Ans. xz-\-1.

5. Required the equations of the three projections of a

straight line which passes through two points whose co-ordinates

are

z/=2, # =1, 2 =0, and z&quot;= 3, /=0, z&quot;= 1.

What are the projections on the planes (xz) and (yz) ?

Ans. x=5z+2, y=z-\-\.

And from these equations we Und the projection on the

plane (xy\ that is, 5?/=-f 3.

(See Prop. 3, Chap. 8.)

6. Required the angle included between two lines whose

equations are

I of the 1st, and
x=z+ 2

I of the 2d.

j y=z+I j

Ans. F=
(See Prop. 8, Chap. 8.)

23*
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7. Find the angles made by the lines designated in the pre

ceding example, with the co-ordinate axes

(See Prop. 7, Chap. 8.)

( 36 42 with JT, f 5444 with -J,

Ans. The 1st line 1 57 41 20&quot; F,2d
?

line^ 125 16 F,

(74 29 54&quot; ^, (54 44 Z.

8. Having given the equation of two straight lines in space,

as

f the j and
;?/=

to find the value of /3 ,
so that the lines shall actually intersect,

and to find the co-ordinates of the point of intersection.

j x== &amp;lt;

(See Prop. 4, Chap. 8.)

9. Given the equation of a plane

8x Zy+z 4=0,

to find the points in which it cuts the three axes, and the perpen

dicular distance from the origin to the plane.

(Prop. 2.)

Ans. It cuts the axis of X at the distance of J from

the origin ;
the axis of Y at 1J ;

and the axis of Z at

+4.

The origin is .4649+ of unity below the plane.

10. Find the equations for the intersections of the two

planes (Prop. 4.)

r-1-0,

(On the plane (xy) 17z 10y+9=0.

( On the plane (xz) 13x 102+23=0.

11. Find the inclination of these two planes.

(Prop. 6.)

Ans. 41 27 41&quot;.
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12. The equations of a line in space are

x=2z+l, and y=32+2.
find the inclination of this Line to the plane represented by

the equation (Prop. 7.)

Sx 3y+z 4=0.
Ans. 48 13 13&quot;

13. Find the angles made by the plane whose equation is

Sx Zy+z 4=0,

with the co-ordinate planes.

(Prop. 3.)

f 83 19 27&quot; with (xy\

Ans.{ 110 24 38&quot; with
(xz).

( 21 34 5&quot; with (yz).

14. The equation of a plane being

Required the equation of a parallel plane whose perpendicu

lar distance is (a) from the given plane.

Ans. Because the planes are to be parallel, their equa
tions must have the same co-efficients, J., B, and C.

In Prop. 2, we learn that the perpendicular distance of

the origin from the given plane may be represented by

Now, as the planes are to be a distance a asunder, the

distance of the origin from the required plane must be

or

&quot;Whence the equation required is

Ax+By+

15. Find the equation of the plane which will cut the

axis of Z at 3, the axis of 5 at 4, and the axis of Y at 5.

Ans.
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16. Find the equation of the plane which will cut the axis

of X at 3, the axis of Z at 5, and which will pass at the

perpendicular distance 2 from the origin. At what distance

from the origin will this plane cut the axis of Y ?

Ans. The equation of the plane is

10z+^89?/+62: 30=0.

30
The plane cuts the axis of Y at .

17. Find the equations of the intersection of the two planes

whose equations are

3x 2j/ z 4= 0,

The equation of the projection of the inter

section on the plane (xy) is

10z+?/ 6=0.
A

ry\ Q

23# z 16=0,
and that on the plane (yz) is

23^+10^+22=0.
18. Find the inclination of the planes whose equations are

expressed in example 17.

Ans. 7=60 50 55&quot; or 119 9 5&quot;.

19. A plane intersects the co-ordinate plane (xz) at an in

clination of 50, and the co-ordinate plane (yz) at an inclina

tion of 84. At what angle will this plane intersect the plane

Ans. F=4038 6&quot;.



MISCELLANEOUS PROBLEMS. 273

MISCELLANEOUS PROBLEMS.

1. The greatest diameter or major axis of an ellipse is

40 feet, and a line drawn from the center making an an

gle of 36 with the major axis and terminating in the el

lipse is 18 feet long ; required the minor axis of this el

lipse, its area and excentricity.

NOTE. The excentricity of an ellipse is the distance of either focus

from the center, when the semi major axis is taken as unity.

( The minor axis is 30.8752.

AnsA Area of the ellipse, 969.972 sq. feet.

^
Excentricity .63575.

2. If equilateral triangles be described as the three sides

of any plane triangle and the centers of these equilateral

triangles be joined, the triangle so formed will be equilat

eral
; required the proof.

Let ABC represent any plane

triangle, A, B and C denoting the

angles, and a, b and c the respect

ive sides, the side a being opposite

the angle A, and so on.

On A C, or 6, suppose an equilat

eral triangle to be drawn, and let

P be its center.

Make the same suppositions in regard to the sides c and

a, findingPl
and P2 . Draw PP

l , P,P2 and PP2 ;
then

is PP
l
P2 an equilateral triangle, as is to be proved.

We shall assume the principle, which may be easily

demonstrated, that a line drawn from the center of any equi

lateral triangle to the vertex of either of the angles, is equal to

times the side of the triangle. Hence we have

-

\/3 \/3 V3 x/3

Also, the angles PJ.&amp;lt;7=30, PlVl_B=30 ,
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and so on. Now it is obvious that the angle PAP i
is

expressed by (J.-f 60), the angleP^P2 by (5+60), and

PCP2 by ( (7+60). We must now show that the analyt
ical expressions for PP

l
and P

1
P2 are the same. In an

alytical trigonometry it was found that the cosine of an an

gle, A, of a plane triangle would be given by the equation

cos. A=

Whence, a2=6 2 +c 2 2bc cos. A.

That is, The square of one side is equal to the sum of the

squares of the other two sides, minus twice the rectangle of the

other two sides into the cosine of the opposite angle.

Applying this to the triangle PAPl
we have

Z +3 3&quot;

cos_ , c
2

,

a2 2ac

Also, PjP,, =2+3
--

3~ cos - (-#+60) (2)

_ 2 a b2 2ab
And PP/=3+g

--
g-

cos. ((7+60) (3)

By trigonometry, cos. (J.+60)=cos. A cos. 60 sin. A
sin. 60.

But cos. 60=}, and sin. 60=^3
-v/3

Whence, cos. (J.+60)=J cos. A--- sin. A
2

This value substituted in eq. (1) that equation becomes_
2

b
2

c2 be be

PPi K=
3~+3 3

cos -

b
2+c2 a2 be

But cos. A= QA~ . Whence -o-cos. A=

This value of ~ cos. A placed in eq. (4), gives_2 262
,2c

2 b2
c
2
,a

2
,bc .

pp -TT-+ - - - +- + sm. Ar
* 6 6 6 6 6 v

Or,
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By a like operation equation (2) becomes

But by the original triangle ABC we have

sin. J._sin. B a

^- g &amp;gt;

or sin - A==
b

sin. B

Placing this value of sin. A in equation (5) that equa
tion becomes

._aH-y+?+ *c_ Bin&amp;gt; B (7)
1 6 v/8

We now observe that the second members of (6) and

(7) are equal ; therefore, PP
l
=P

1
P2

And in like manner we can prove PPj=PP2 . There

fore the triangle PPt
P2 has been shown to be equilateral.

PKOBLEM.

G-iven, the excentricity of an Ellipse, to find the difference

between the mean and true place of the planet, corres

ponding to each degree of the mean angle, reckoned from

the major axis; the planet describing equal sectors or

areas in equal times, about one of the foci, the center of

the attractive force.

Let AB be the major axis of an

ellipse, of which CB CA=A\ is

the semi-transverse axis, and also

let C be the common center of the

ellipse and of the circle of which

CB is the radius. Then FC=e,
and F is the focus of the ellipse.

Suppose the planet to be at _B,

the apogee point of the orbit, (so called in Astronomy).

Also, conceive another planet, or material point, to be at

_B, at the same time. Now, the planet revolves along the

ellipse, describing equal areas in equal times, and the hy

pothetical planet revolves along the circle BPQ, describ-
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ing, in equal times, equal areas and equal angles about

the center C.

It is obvious that the two bodies will arrive at A in the

same time. The other halves of the orbits will also be

described in the same time, and the two bodies will be to

gether again at the point B.

But at no other points save at A and at B (the apogee
and perigee points) will these two bodies be in the same

line as seen from F, and the difference of the directions

of the two bodies as seen from the focusF is the equation
of the center. For instance, suppose the planet to start

from B and describe the ellipse as far as p. It has then

described the area BFp of the ellipse, about the focus F.

In the same time the fictious planet in the circle has mov
ed along the circumference BPto Q, describing the sector

BCQ about the center C. Now the areas of these two

sectors must be to each other as the area of the ellipse is

to the area of the circle. That is,

sector BFp : sector BCQ : : area Ell. : area Cir.

Through p draw PD at right angles to J.J5, and repre
sent the arc of the circle BP by x.

Then (7-D=cos. x, and PD=sin. x. Draw Op and CP.

But, denoting the semi-conjugate axis by B, we have

area DpB : area DPB : : area Ell. : area Cir.

: : B :A
:: pD : PD

Also we have ACpD : ACPD : : pD : PD
Hence, area DpB : ACpD : : area DPB : ACPD
Therefore,

area DpB+A.CpD : area DPB+ACPD : : B : A
or, sector CpB : sector CPB : : B: A

: : area Ell. : area Cir.

Hence it follows that

sector FpB : sector CpB : : sector CQB : sector CPB
&quot;Whence

sector FpB sect. CpB : sect. CQB sect. CPB : :B:A
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or, &FpC: sector QCP : : B : A
: : area Ell. : area. Cir.

But the area of tlie ellipse is xAB and the area of the

circle is A2
x. But A=l and B=^\ c

2
.

The area of the triangle FCp is \e (pD\ and the area

of the sector is Jy, representing the arc QP by y.

Whence JE(pD) iyii ^l^e^: 1. (1)

But we have PD : pD : : A : B
: : 1 : 1 e

2
,

and PD=sin. x.

Hence, sin. x : pD : : 1 : ^1 e
2

; pD=smx^l e
2

This value of pD placed in (1) that proportion becomes

e sin. x^l e
2

: y : : ^1 e
2

: 1

Or, e sin. x : y : : 1 : 1. y=e sin. x. (2)

DEFINITIONS. 1st. The angle x, in astronomy, is called

the excentric anomaly.
2d. The angle QCB, or (x+y) is called the mean

anomaly.

3d. The angle pFB is called the true anomaly.
4th. The difference between QCB or nCB (of the tri

angle FnC) and nFC (which is the angle n of the trian

gle CFn) is the equation of the center.

The angle QCB, the mean anomaly, is an angle at the

center of the ellipse, which is equal to the sum of the an

gles at n and F; that is, n taken from the angle at the

center will give the true angle at the focus, F.

&quot;We will designate the angle pFB by t. Now, by the

polar equation of an ellipse, we have

Again, by the triangle FDp, we find,

But
_

~FD
2

=(e+coa. x)
2=e 2+2e cos. z-f cos.2z

And pJD =sin.2 x (1 e
2

)=sin.
2 x e

2
sin.

2 x

Therefore, FD2+pD2=e 2+2e cos. x+le 2 sm.2 x
But e

2
sin.

2 xe, 2

2.4
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Substituting this value of & sin.
2

- in the preceding

expression we have

cos.

&quot;Whence Fp=&amp;lt;/FD2+pDz=l+e cos. x.

Equaling these two values of Fp and we obtain

1 e
2

=(l-j-c cos. x) (1 e cos.
t)

e-f-cos. x
Whence cos.^-
Here we have a value of t in terms of x and e, but the

equation is not adapted to the use of logarithms.

By equation (27) Plane Trigonometry, we have

1 cos. t

If the value of cos. t from equation (3) be placed in this

we shall have
e+cos. x.._
1+e cos. x i_|_g Cos. x e cos. x

1-fecos.a;

Or

e+coa.x l+ecos.z+e-t os.z

(l+e)+(l+6) cos. a; (l+c) (1+cos.z)

That is, tan. J^= (

l~e

)
* tan. Jx. (4)

From eq. (2) we obtain

.Mean Anomaly=-{- sin. x. (5)

By assuming a:, equation (5) gives the Mean Anomaly.
Then equation (4) gives the corresponding True Anomaly.
To apply these equations to the apparent solar orbit, the

value of e is .0167751 the radius of the circle being unity.

But y=e sin. x, and as y is a portion of the circumfer

ence to the radius unity, we must express e in some
known part of the circumference, one degree, for exam

ple, as the unit.

Because 180 is equal to 3.14159265, therefore the value

of e, in degrees, is found by the following proportion.
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3.14159265 : 180 : : .0167751 : d degrees.

By log., log. 0167751 2.2246652

log. 180 2.2552725

0.4799377

log. n 0.4971499

Log. e, in degrees, of arc, 1,9827878

Add log. 60 1.7781513

Log. e, in min. of arc, 1.7609391 constant log.

lZ7 / 0.9832249
-1-992714 cons. log.

&quot;We are now prepared to make an application of equa
tions (4) and (5)

For example, we require the equation of the center

for the solar orbit, corresponding to 28 of mean anom

aly, reckoning from the apogee. The excentric anomaly
is less than the mean by about half of the value of the

equation of the center at any point; and x must be as

sumed.

Thus, suppose z=27 32
;
then Jz=13 46

sin. z=sin. 27 32 9.664891

Constant, 1.760939

e sin. x= 26 6518 1.425830

Add x 27 32

Mean Anomaly=27 58 39&quot;!

Tan. Jx 13 46 9.389178

Const. 1.992714

tan. J* 13 32 59&quot; 9.381892

2

True anomaly 27 5 58&quot;

Mean Anomaly 27 58 39&quot;!

Equation of center 52 r
41&quot;! corresponding to the

mean anomaly of 27 58
39&quot;1,

not to 28 as was required.
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Now let us take z=27 40
;
then ^=13 50

sin. x 27 40 9.666824

Con. 1.760939

e sin. x 26 777 1.427763

Add x 27 40

Mean Anomaly, 28 6 46&quot;6

tan. }z=13 50 9.391360

Con. 1.992714

tan. \t 13 36 43&quot; 9.384074

2

*=27 13 26&quot;

Mean anomaly 28 6 46&quot; 6

Eq. center, 53 20 &quot;6

corresponding to 28 6 46&quot;6.

Now, we can find the equation corresponding to 28 by
the following obvious proportion :

28 6 46&quot;6 53 20&quot;6 28 00 00&quot;

27 58 39 1 52 41 1 27 5 39 1

8 7&quot;5 : 39&quot;5 : : V 20&quot;9 : 4&quot;7

Add 52 41&quot;!

Equation or value sought, 52 45&quot;!

In like manner we can find the value of the equation
of the center of any and every other degree of the mean

anomaly in the orbit of the sun, or any other orbit, when
the excentricity is known.
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Log. 46, 1.6627578316

Log. 67, 1.8260748027

Lo. 3082 3.4888326343

Log. 3083=3.
6165

NUMBERS AND THEIR LOGARITHMS,
OFTEN USED IN COMPUTATIONS.

Circumference of a circle to dia. 1 } Log.
Surface of a sphere to diameter IV =3.14159265 0.4971499
Area of a circle to radius 1

)

Area of a circle to diameter 1 = .7853982 1.8950899

Capacity of a sphere to diameter 1 = .6235988 1.7189986

Capacity of a sphere to radius 1 =4.1887902 0.6220886

Arc of any circle equal to the radius = 5729578 1.7581226
Arc equal to radius expressed in sec. = 206264&quot;8 5.3144251

Length of a degree, (radius unity)=.01 745329 2.2418773

12 hours expressed in seconds, = 43200 4.6354837

Complement of the same, =0.00002315 5.3645163
360 degrees expressed in seconds, = 1296000 6.1126050

A gallon of distilled water, when the temperature is 62

Fahrenheit, and Barometer 30 inches, is 277. ^VV cubic

inches.

,/277.274= 16.651 542 nearly.

277 27
=18.78925284 V 231 =15.198684.

.775398_ J28~2~= 16. 792855.

282 ._= 18.948708.
.785398

The French Metre -3.2808992, English feet linear mea

sure, =39.3707904 inches, the length of a pendulum vi

brating seconds.
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