48
x

ROBINSON'S MATHEMATICAL SERIES.

CONIC SECTIONS

AND
ANALYTICAL GEOMETRY;

THEORETICALLY AND PRACTICALLY ILLUSTRATED.

B \mathbf{Y}
HORATIO N. ROBINSON, LL.D.,
LATE PROFESSOR OF MATHEMATICS IN THE U. S. NAVY, AND AUTHOR OF A FULL COURS: OF MATHEMATICS.

$$
\begin{gathered}
\text { NEW YORK: } \\
\text { IVISON, PHINNEY \& COMPANY, } \\
48 \& 50 \text { WALKERSTREET. } \\
\text { CHICAGO: } \\
\text { S. C. GRIGGS \& COMPANY, } \\
89 \& 41 \text { LAKESTREET. } \\
1863 .
\end{gathered}
$$

> The prest Gosipleth , Miost Practical, and most Sclentific Series of Mathematical Text-Books ever issued in this country.

(IN TWWENTY-I'WO VOLUMESS.)

I. Robinson's Progressive Table Book, \$ 12
II. Robinson's Progressive Primary Arithmetic, - 15
III. Robinson's Progressive Intellectual Arithmetic, 25
IV. Robinson's Rudiments of Written Arithmetic, 25
V. Robinson's Progressive Practical Arithmetic, 56
VI. Robinson's Key to Practical Arithmetic, - 50
VII. Robinson's Progressive Higher Λ rithmetic, 75
VIII. Robinson's Key to Higher Arithmetic, 75
IX. Robinson's New Flementary Algebra, 75
X. Robinson's Key to Elementary Algebra, - 75
XI. Robinson's University Algebra, 125
XII. Robinson's Key to University Algebra, 100
XIII. Robinson's New University Algebra, - 150
XIV. Robinson's Key to New University Algebra, - 125
XV. Robinson's New Geometry and Trigonometry, - 150
XVI. Robinson's Surveying and Navigation, - 150
XVII. Robinson's Analyt. Geometry and Conic Sections, - 150
XVIII. Robinson's Differen. and Int. Calculus, (in preparation,)- - 150
XIX. Robinson's Elementary Astronomy, 75
XX. Robinson's University Astronomy, 175
XXI. Robinson's Mathematical Operations, 225
XXII. Robinson's Key to Geometry and Trigonometry, Conic Sections and Analytical Geometry, 150

Entered, according to Act of Congress, in the year 1860, by IIORATIO N. ROBINSON, LL.D., In the Clerk's Office of the District Court of the United States for the Northern District of New York.

PREFACE.

In the preparation of the following work the object has been to bring within the compass of one volume of convenient size an elementary treatise on both Conic Sections and Analytical Geometry.

In the first part, the properties of the curves known as the Conic Sections are demonstrated, principally by geometrical methods; that is, in the investigations, the curves and parts connected with them are constantly kept before the mind by their graphic representations, and we reason directly upon them.

In the purely Analytical Geometry the process is quite different. Here the geometrical magnitudes, themselves, or those having certain relations to them, are represented by algebraic symbols, and we seek to express properties and imposed conditions by means of these symbols. The mind is thus relieved, in a great measure, of the necessity of holding in view the often-times complex figures required in the intermediate steps of the first method. It is, mainly, at the beginning and end of our investigations that we have to deal with concrete quantity. That is, after we have expressed known and imposed conditions, analytically, our reasoning is independent of the kind of quantity involved, until the conclusion is reached in the form of an algebraic expression, which must then receive its geometrical interpretation.

Much of the value of Analytical Geometry, as a disciplinary study, will be derived from a careful consideration, in each case, of this process of passing from the concrete to the abstract and the
converse, and both teacher and student are earnestly recommended to give it a large share of their attention.

In both divisions of the work the object has been to present the subjects in the simplest manner possible, and hence, in the first, analytical methods have been employed in several propositions when results could be thereby much more easily obtained; and for the same reason, in the second division, a few of the demonstrations are almost entirely geometrical.

The analytical part terminates, with the exception of some examples, with the Chapter on Planes. Three others might have been added; one on the transformation of Co-ordinates in Space, another on Curves in Space, and a third on Surfaces of Revolution and curved surfaces in general: but the work, as it is, covers more ground than is generally gone over in Schools and Colleges, and is sufficiently extensive for the wants of elementary education. Numerous examples are given under the several divisions in the second part to illustrate and impress the principles.

The Author has great pleasure in acknowledging his obligations to Prof. I. F. Quinby, A. M., of the University of Rochester, N. Y., formerly Assistant Prof. of Mathematics in the United States Military Academy, at West Point, for valuable services rendered in the preparation of this treatise, as well as for the contribution to it of much that is valuable both in matter and arrangement. His thorough scholarship, as well as his long and successful experience as an instructor in the class-room, preëminently qualified him to perform such labor.

$$
\text { December, } 1861 .
$$

CONTENTS.

CONIC SECTIONS.

DEFINITIONS.

Conic Sections, . 10
THEELLIPSE.
Definitions and Explanations,................................. 11
Propositions relating to the Ellipse,. 13
THE PARABOLA.
Definitions and Explanations,................................. 41
Propositions relating to the Parabola,........................ 43
THEHYPERBOLA.
Definitions and Explanations,............................... 65
Propositions relating to the Hyperbola,. 67
ASYMPTOTES.
Definition, 91
Propositions establishing relations between the Hyperbola and its Asymptotes,
ANALYTICAL GEOMETRY.
General Definitions and Remarks, 96
gEneral properties 0f geonetrical magnitudes.
CHAPTERI.
of positions and straight lines in a plane and the transformation of co-ordinates.
Definitions and Explanations, 97
Propositions relating to Straight Lines in a Plane, 100
Transformation of Co-ordinates, 119
Polar Co-ordinates, 122
CHAPTERII.
THE CIRCLE.LINES OF THE SECOND ORDER.
Propositions relating to the Circle. 124
Polar equation of the Circle, 132
Application in the solution of Equations of the second degree, 134
Examples, 139
CHAPTER III.
THE ELLIPSE.
The deseription of the Ellipse and Propositions establishing its properties, 140
Example, 167
CHAPTER IV.
THE PARABOLA.
The description of the Parabola and propositions establishing its properties, 169
Polar equation of the Parabola, 183
Application in the solution of equations of the second degree, 185
Examples 187
CONTENTS. vii
CHAPTERV.
THE HYPERBOLA.
The Description of the Curve, and Propositions Establishing its Properties, 188
ASYMPTOTESOFTHEHYPERBOLA.
Definition and Explanation, 201
The Equation of the Hyperbola referred to its Asymptotes, and Properties deduced therefrom, 202
CHAPTER VI.
ON THE GEOMETRICAL REPRESENTATION OF EQUATIONS OF THE SECOND DEGREE BE- TWEEN TWO VARIABLES.
Object of the Discussion, 210
Solution and Discussion of the General Equation, 211
Criteria for the Interpretation of any Equation of the Second Degree between two Variables, 221
APPLICATIONS.
First, $B^{2}-4 A C<0$, the Ellipse, 222
Second, $B^{2}-4 A C>0$, the Hyperbola, 226
Third, $B^{2}-4 A C=0$, the Parabola, 231
Examples, 233
CHAPTERVII.
On the Intersection of Lines, and the Geometrical Solution of Equations 237
Remarks on the Interpretation of Equations, 244
CHAPTERVIII.
STRAIGHT LINES IN SPACE.
Co-ordinate Planes and Axes, 249
The Equations and Relations of Straight Lines in Space, 250
CHAPTER IX.
ONTHEEQUATION OFAPLANE.
The Equations and Relations of Planes, 258
Examples Relating to Straight Lines in Space and to Planes, 269
Miscellaneous Examples, 273

CONIC SECTIONS.

DEFINITIONS.

1. A Conical Surface, or a Cone is, in its general acceptation, the surface that is generated by the motion of a straight line of indefinite extent, which in its different positions constantly passes through a fixed point and touches a given curve.

The moving line is called the generatrix, the curve that it touches the directrix, the fixed point the vertex, and the generatrix in any of its positions an element, of the cone.

The generatrix in all its positions extending without limit beyond the vertex on either side, will by its motion generate two similar surfaces separated by the vertex, called the nappes of the cone.
2. The Axis of a cone is the indefinite line passing through the vertex and the center of the directrix.
3. The intersection of the cone by any plane not passing through its vertex, that cuts all its elements, may be taken as the directrix; and when we regard the cone as limited by such intersection, it is called the base of the cone. If the axis is perpendicular to the plane of the base, the cone is said to be right; and if in addition the base is a circle, we have a right cone with a circular base. This is the same as the cone defined in Geometry, (Book VII, Dcf. 16), and in the following pages it is to be understood that all references are made to it, unless otherwise stated.
4. Conic Sections are the figures made by a plane cutting a cone.
5. There are five different figures that can be made by a plane cutting a cone, namely: a triangle, a circle, an ellip.se, a parabola, and an hyperbola.
Remark. The three last mentioned are commonly regarded as embracing the whole of conic sections; but with equal propriety the triangle and the circle might be admitted into the same family. On the other hand we may examine the properties of the ellipse, the parabola, and the hyperbola, in like manner as we do a triangle or a circle, without any reference whatever to a cone.

It is important to study these curves, on account of their extensive application to astronomy and other sciences.
6. If a plane cut a cone through its vertex, and terminate in any part of its base, the section will evidently be a triangle.
7. If a plane cut a cone parallel to its base, the section will be a circle.
8. If a plane cut a cone obliquely through all of the elements, the section will represent a curve called an ellipse.
9. If a plane cut a cone parallel to one of its elements, or what is the same thing, if the cutting plane and an element of the cone make equal angles with the base, then the section will represent a parabola.
10. If a plane cut a cone, making a greater angle with the base than the element of the cone makes, then the section is an hyperbola.
11. And if the plane be continued to cut the other nappe of the cone, this latter intersection will be the opposite hyperbola to the
 former.
12. The Vertices of any section are the points where the cutting plane meets the opposite elements of the cone, or the sides of the vertical triangular section, as A and B.

Hence, the ellipse and the opposite hyperbolas have each two vertices; but the parabola has only one, unless we consider the other as at an infinite distance.
13. The Axis, or Transverse Diameter of a conic section, is the line or distance $A B$ between the vertices.

Hence, the axis of a parabola is infinite in length, $A B$ being only a part of it.

The properties of the three curves known as the Conic Sections will first be investigated without any reference to the cone whatever; and afterward it will be shown that these curves are the several intersections of a cone by a plane.

THE ELLIPSE.

DEFINITIONS.

1. The Ellipse is a plane curve described by the motion of a point subjected to the condition that the sum of its distances from two fixed points shall be constantly the same.
2. The two fixed points are called the foci. Thus F, F^{\prime}, are foci.
3. The Center is the point C, the middle point between the foci.
4. A Diameter is a straight line
 through the center, and terminated both ways by the curve.
5. The extremities of a diameter are called its vertices.

Thus, $D D^{\prime}$ is a diameter, and D and D^{\prime} are its vertices.
6. The Major, or Transverse Axis, is the diameter which passes through the foci. Thus, $A A^{\prime}$ is the major axis.
7. The Minor, or Conjugate Axis is the diameter at right
angles to the major axis. Thus, $C E$ is the semi minor axis.
8. The distance between the center and either focus is called the eccentricity when the semi major axis is unity.

That is, the eccentricity is the ratio between $C A$ and $C F$; or it is $\frac{C F}{C A}$; hence, it is always less than unity. The less the eccentricity, the nearer the ellipse approaches the circle.
9. A Tangent is a straight line which meets the curve in one point only; and, being produced, does not cut it.
10. A Normal to a curve at any point is a perpendicular to the tangent at that point.
11. An Ordinate to a Diameter is a straight line drawn from any point of the curve to the diameter, parallel to a tangent passing through one of the vertices of that diameter.

Remark.-A diameter and its ordinate are not at right angles, unless the diameter be either the major or minor axis.
12. The parts into which a diameter is divided by an ordinate, are called abscissas.
13. Two diameters are said to be conjugate, when either is parallel to the tangent lines at the vertices of the other.
14. The Parameter of a diameter is a third proportional to that diameter and its conjugate.
15. The paramater of the major axis is called the principal parameter, or latus rectum; and, as will be proved, is equal to the double ordinate through the focus. Thus $F^{\prime} G$ is one half of the principal parameter.
16. A Sub-tangent is that part of the axis produced, which is included between a tangent and the ordinate, drawn from the point of contact.
17. A Sub-normal is that part of the axis which is included between the normal and the ordinate, drawn from the point of contact.

PROPOSITION I. PROBLEM.

To describe an Ellipse.
Assume any two points, as F and F^{\prime} and take a thread longer than the distance between these points, Δ fastening one of its extremities at the point F and the other at the
 point F^{\prime}. Now if the point of a pencil be placed in the loop and moved entirely around the points F and F^{\prime}, the thread being constantly kept tense, it will describe a curve as represented in the adjoining figure, and, by definition 1, this curve is an ellipse.

PROPOSITION II.-THEOREM.

The major axis of an ellipse is equal to the sum of the two lines drawn from any point in the curve to the foci.

Suppose the point of a pencil at D to move along in the loop, holding the threads $F^{\prime} D$ and $F D$ at equal tension; when D arrives at A, there will be two lines of threads
 between F and A. Hence, the entire length of the threads will be measured by $F^{\prime} F+2 F A$. Also, when D arrives at A^{\prime}, the length of the threads is measured by $F F^{\prime}+$ $2 F^{\prime} A^{\prime}$.

Therefore, . $F F^{\prime}+2 F A=F F^{\prime}+2 F^{\prime \prime} A^{\prime}$
Hence, $F A=F^{\prime \prime} A^{\prime}$
From the expression $F F^{\prime}+2 F A$, take away $F A$, and $\operatorname{add} F^{\prime \prime} A^{\prime}$, and the sum will not be changed, and we have

$$
F F^{\prime}+2 F A=A^{\prime} F^{\prime \prime}+F F^{\prime \prime}+F A=A^{\prime} A
$$

Therefore, . $F^{\prime \prime} D+F D=A^{\prime} A$
Hence the theorem ; the major axis of an ellipse, etc.

PROPOSITION III.-THEOREM

An ellipse is bisected by either of its axes.

Let $F, F^{\prime \prime}$ be the foci, $A A^{\prime}$ the major and $B B^{\prime}$ the minor axis of an ellipse; then will either of these axis divide the ellipse into equal parts.

Take any point, as P in the el-
 lipse, and from this point draw ordinates, one to the major and another to the minor axis, and produce these ordinates, the first to P^{\prime}, the second to $P^{\prime \prime}$, making the parts produced equal to the ordinates themselves. It is evident that the proposition will be established when we have proved that P^{\prime} and $P^{\prime \prime}$ are points of the curve.

First. $\quad F$ is a point in the perpendicular to $P P^{\prime}$ at its middle point; therefore $F P^{\prime}=F P$ (Scho. 1, Th. 18, B. 1 Geom.) for the same reason $F^{\prime \prime} P^{\prime}=F^{\prime \prime} P$.
Whence, by addition,

$$
F P^{\prime}+F^{\prime \prime} P^{\prime}=F P+F^{\prime \prime} P .
$$

That is, the sum of the distances from P^{\prime} to the foci is equal to the sum of the distances from P to the foci; but by hypothesis P is a point of the ellipse; therefore P^{r} is also a point of the ellipse, (Def. 1).

Second. The trapezoids $P^{\prime \prime} d C F^{\prime \prime}, P d C F$ are equal, because $F^{\prime} C=F C, d P^{\prime \prime}=d P$ by construction, and the angles at d and C in each are equal, being right angles; these figures will therefore coincide when applied, and we have $P^{\prime \prime} F^{\prime}$ equal to $P F$ and the angle $P^{\prime \prime} F^{\prime \prime} F^{\text {e equal to the angle }}$ $P F F^{\prime \prime}$. Hence the triangles $P^{\prime \prime} F^{\prime \prime} F, P F F^{\prime \prime}$ are equal having the two sides $P^{\prime \prime} F^{\prime \prime}, F^{\prime \prime} F$ and the included angle $P^{\prime \prime} F^{\prime \prime} F^{\prime}$ in the one equal, each to each to the two sides $P F, F F^{\prime \prime}$ and the included angle $P F F^{\prime \prime}$ in the other.

Therefore, $\quad P^{\prime \prime} F^{\prime \prime}+P^{\prime \prime} F=P F^{\prime \prime}+F P$
That is, the sum of the distances from $P^{\prime \prime}$ to the foci is
equal to the sum of the distances from P to the foci, and since P is a point of the ellipse $P^{\prime \prime}$ must also be found on the ellipse.

Hence the theorem; an ellipse is bisected, etc.

PROPOSITION IV.-THEOREM.

The distance from either focus of an ellipse to the extremity of the minor axis is equal to the semi-major axis.

Let $A A^{\prime}$ be the major axis, F and $F^{\prime \prime}$ the foci, and $C D$ the semi-minor axis of an ellipse ; then will $F D=$ $F^{\prime \prime} D$ be equal to $C A$.

Because $F^{\prime \prime} C=C F$ and $C D$ is at
 right angles to $F^{\prime \prime} F$, we have $F^{\prime} D=F D$.

But,
Or,
Therefore,

$$
\begin{aligned}
F^{\prime \prime} D+F D & =A^{\prime} A \\
2 F D & =A^{\prime} A \\
F D & =\frac{1}{2} A^{\prime} A, \text { or } C A .
\end{aligned}
$$

Hence the theorem; the distance from either focus, etc.
Scholium.-The half of the minor axis is a mean proportional between the distance from either focus to the principal vertices.

In the right-angled triangle $F C D$ we have

But,
Therefore,

Or,

$$
\begin{gathered}
\overline{C D}^{2}=\overline{F D}^{2}-\overline{F C}^{2} \\
F D=A C \\
\overline{C D}^{2}=\overline{A C^{2}}-\overline{F C}^{2} \\
=(A C+F C)(A C-F C) \\
=A F^{\prime \prime} \times A F \\
A F: C D=C D: F A^{\prime}
\end{gathered}
$$

PROPOSITION V.-THEOREM

Every diameter of an ellipse is bisected at the center.
Let D be any point in the curve, and C the center. Draw $D C$, and produce it. From $F^{\prime \prime}$ draw $F^{\prime \prime} D^{\prime}$ parallel;
to $F D$; and from F draw $F D^{\prime}$ parallel to $F^{\prime \prime} D$. The figure $D F D^{\prime} H^{\prime \prime}$ is a parallelogram by construction; and therefore its opposite sides are equal.

Hence, the sum of the two sides
 $F^{\prime \prime} D^{\prime}$ and $D^{\prime} F$ is equal to $F^{\prime \prime} D$ and $D F$; therefore, by definition 1, the point D^{\prime} is in the ellipse. But the two diagonals of a parallelogram bisect each other; therefore, $D C=C D^{\prime}$, and the diameter $D D^{\prime}$ is bisected at the center, C, and $D D^{\prime}$ represents any diameter whatever.
Hence the theorem ; every diameter, etc.
Cor. The quadrilateral formed by drawing lines from the extremities of a diameter to the foci of an ellipse, is a parallelogram.

PROPOSITION VI.-THEOREM.

A tangent to the ellipse makes equal angles with the two straight lines drawn from the point of contact to the foci.

Let F and $F^{\prime \prime}$ be the foci and D any point in the curve. Draw $F^{\prime \prime} D$ and $F D$, and produce $F^{\prime \prime} D$ to H, making $D H=D F$, and draw FH. Bisect FHin T. Draw TD
 and produce it to t.

Now, (by Cor. 2, Th. 18, B. I, Geom.), the angle $F D T=$ the angle $H D T$, and $H T D=$ its vertical angle $F^{\prime \prime} D t$.

Therefore, $\quad F D T=F^{\prime} D t$.
It now remains to be shown that $I t$ meets the curve ${ }^{-}$ only at the point D, and is, therefore, a tangent.

If possible, let it meet the curve in some other point, as t, and draw $F t, t H$, and $F^{\prime \prime} t$.
(By Scholium 1, Th. 18, B. I, Geom.) $F t=t H$.
To each of these add $F^{\prime \prime} t$;
Then,

$$
F^{\prime \prime} t+t H=F^{\prime} t+F t
$$

But $F^{\prime} t$ and $t H$ are, together, greater than $F^{\prime} H$, because a straight line is the shortest distance between two points; that is, $F^{\prime} t$ and $F t$, the two lines from the foci, are, together, greater than $F H$, or greater than $F^{\prime \prime} D+F D$; therefore, the point t is without the ellipse, and t is any point in the line $T t$, except D. Therefore, $T t$ is a tangent, touching the ellipse at D; and it makes equal angles with the lines drawn from the point of contact to the foci.

Hence the theorem ; a tangent, etc.
Cor. The tangents at the vertices of either axis are perpendicular to that axis; and, as the ordinates are parallel to the tangents, it follows that all ordinates to either axis must cut that axis at right angles, and be parallel to the other axis.

Scholium 1.-From this proposition we derive the following simple rule for drawing a tangent line to an ellipse at any point: Through the given point draw a line bisecting the angle includer between the line connecting this point with one of the foci and the line produced connecting it with the other focus.

Scholium 2. Any point in the curve may be considered as a point in a tangent to the curve at that point.

It is found by experiment that rays of light, heat and sound are incident upon, and reflected from surfaces under equal angles; that is, for a ray of either of these principles the angles of ineidence and reflection are equal. Therefore, if a reflecting surface be formed by turning an ellipse about its major axis, the light, heat, or sound which proceeds from one of the foci of this surface will be concentrated in the other focus.

Whispering galleries are made on this principle, and all theaters and large assembly rooms should more or less approximate this figure. The concentration of the rays of heat from one of these points to the other, is the reason why they are called the foci or burning points.

PROPOSITION VII.-THEOREM.

Tangents to the ellipse, at the vertices of a diameter, are parallel to each other.

Let $D D^{\prime}$ be the diameter, and $F^{\prime \prime}$ and F the foci. Draw $F^{\prime} D, F^{\prime} D^{\prime}$, $F D$, and $F D^{\prime}$.

Draw the tangents, $T t$ and $S s$, one through the point D, the other through the point D^{\prime}. These tangents will be parallel.

By Cor. Prop. 5, $F^{\prime} D^{\prime} F D$ is a parallelogram, and the angle $F^{\prime} D^{\prime} F$ is equal to its opposite angle, $F^{\prime} D F$.

But the sum of all the angles that can be made on one side of a line is equal to two right angles. Therefore, by leaving out the equal angles which form the opposite angles of the parallelogram, we have

$$
s D^{\prime} F^{\prime \prime}+S D^{\prime} F=t D F^{\prime}+T D F^{\prime}
$$

But (by Prop. 6) $s D^{\prime} F^{\prime \prime}=S D^{\prime} F^{\prime}$; and also $t D F^{\prime}=T D F^{\prime}$; therefore, the sum of the two angles in either member of this equation is double either of the angles, and the above equation may be changed to

$$
2 S D^{\prime} F=2 t D F^{\prime} \quad \text { or } \quad S D^{\prime} F=t D F^{\prime}
$$

But $D F^{\prime \prime}$ and $D^{\prime} F$ are parallel; therefore $S D^{\prime} F^{\prime}$ and $t D F^{v}$ are, in effect, alternate angles, showing that $I t$ and Ss are parallel.

Cor. If tangents be drawn through the vertices of any two conjugate diameters, they will form a parallelogram circumscribing the ellipse.

PROPOSITION VIII.-THEOREM.

If, from the vertex of any diameter of an ellipse, straight lines are drawn through the foci, meeting the conjugate diameter, the part of either line intercepted by the conjugate, is equal to one half the major axis.

Let $D D^{\prime}$ be the diameter, and $T t$ the tangent. Through the center draw $E E^{\prime}$ parallel to T4. Draw $F^{\prime \prime} D$ and $D F$, and produce $D F$ to K; and from F draw $F G$ parallel to $E E^{\prime}$ or Tt.

Now, by reason of the parallels, we have the following equations among the angles:

$$
\left.\begin{array}{r}
t D G=D G F \\
T D F=D F G
\end{array}\right\} \text { Also, }\left\{\begin{array}{c}
t D G=D H K \\
T D F=D K H
\end{array}\right.
$$

But (Prop. 6
$t D G=T D F ;$
Therefore,
$D G F=D F G ;$
And,
$D H K=D K H$
Hence, the triangles $D G F$ and $D H K$ are isosceles. Whence, $D G=D F$, and $D H=D K$.
Because $H C$ is parallel to $F G$, and $F^{\prime \prime} C=C F$,
therefore,

$$
F^{\prime \prime} H=H G
$$

Add,
$D F=D G$
and we have

$$
F^{\prime} H+D F=D H
$$

But the sum of the lines in both members of this equation is $F^{\prime \prime} D+D F$, which is equal to the major axis of the ellipse; therefore, either member is one half the major axis; that is, $D H$, and its equal, $D K$, are each equal to one half the major axis.
Hence the theorem; if from the vertex of any diameter, etc.

PROPOSITION IX.-THEOREM.

Perpendiculars from the foci of an ellipse upon a tangent, meet the tangent in the circumference of a circle whose diameter is the major axis.
Let F^{\prime}, F be the foci, C the center of the ellipse, and D a point through which passes the tangent $T 4$. Draw $F^{\prime} D$
and $F D$, produce $F^{\prime \prime} D$ to H, making $D H=F D$, and produce $F D$ to G, making $D G=F^{\prime} D$. Then $F^{\prime} H$ and $F G$ are each equal to the major axis, $A^{\prime} A$.
Draw $F H$ meeting the tangent in T and $F^{\prime \prime} G$ meeting it in t. Draw the dotted lines, $C T$ and $C t$.

By Prop. 6, the angle $F D T=$ the angle $F^{*} D t$; and since opposite or vertical angles are equal, it follows that the four angles formed by the lines intersecting at D, are all equal.
The triangles $D F^{v} G$ and $D H F$ are isosceles by construction; and as their vertical angles at D are bisected by the line $T t$, therefore $F^{\prime \prime} t=t G, F T=T H$, and $F T$ and $F^{\prime \prime} t$ are perpendicular to the tangent Tt.

Comparing the triangles $F^{\prime} G F$ and $F^{\prime} C y$, we find that $F^{\prime} C$ is equal to the half of $F^{\prime} F$, and F^{\prime}, the half of $F^{\prime} G$; therefore, C^{\prime} is the half of $F G$; but $A^{\prime} A=F G$; hence, $C t=\frac{1}{2} A^{\prime} A=C A$.

Comparing the triangles $F F^{\prime} H$ and $F C T$, we find the sides $F H$ and $F F^{\prime}$ cut proportionally in T and C; therefore, they are equi-angular and similar, and $C T$ is parallel to $F^{\prime \prime} H$, and equal to one half of it. That is, $C T$ is equal to $C A$; and $C A, C T$, and $C t$ are all equal ; and hence a circumference described from the center C, with the radius $C A$, will pass through the points T and t.

Hence the theorem: perpendiculars from the foci, etc.

PROPOSITION X.-THEOREM.

The-product of the perpondiculars from the foci of an ellipse upon a tangent, is equal to the square of one half the minor axis.

Produce $T C$ and $G F^{\prime \prime}$, and they will meet in the circumference at S; for $F T$ and $F^{\prime \prime} t$ are both perpendicular to
the same line $T t$, they are therefore parallel; and the two triangles, $C F^{\prime} T^{\prime}$ and $C F^{\prime} S$, having a side, $F C$, of the one, equal to the side, $C F^{\prime}$, of the other, and their angles equal, each to each, are themselves equal. Therefore, $C S=C T, S$ is in the circumference, and $S F^{\prime}=F T$.

Now, since $A^{\prime} A$ and $S t$ are two lines that intersect each other in a circle, therefore (Th. 17, B. III, Geom.),

$$
S F^{\prime} \times F^{\prime} t=A^{\prime} F^{\prime} \times F^{\prime \prime} A ;
$$

$$
\text { Or, } \quad F T \times F^{\prime \prime} t=A^{\prime} F^{\prime \prime} \times F^{\prime} A
$$

But, by the Scholium to Prop. 4, it is shown that $A^{\prime} F^{\prime \prime} \times F^{\prime \prime} A=$ the square of one half the minor axis.
Therefore, $\quad F T \times F^{\prime \prime} t=$ the square of one half the minor axis.

Hence the theorem; The product of the perpendiculars, etc.
Cor. The two triangles, $F T D$ and $F^{\prime} t D$, are similar, and from them we have $T F^{\prime}: F^{\prime} t=F D: D F^{\prime \prime}$; that is, perpendiculars let fall from the foci upon a tangent, are to each other as the distances of the point of contact from the foci.

PROPOSITION XI.-THEOREM.

If a tangent, drawn to an ellipse at any point, be produced until it meets either axis, and from the point of tangency an ordinate be drawn to the same axis, one half of the axis will be a mean proportional between the distances from the center to the intersections of these lines with the axis.

Let $T t$ be a tangent at any point in the ellipse, as P.

Draw $F^{\prime} P$ and $F P, F$ and $F^{\prime \prime}$ being the foci, and produce
 $F^{\prime} P$ to Q, making $P Q=P F$; join T, Q, and draw $P G$ perpendicular to the axis $A A^{\prime}$.

The triangles $P F T$ and $P T Q$ are equal, because $P T$ is common, $P Q=P F$ by construction, and the $L T P F=$ the angle $\llcorner T P Q$ (Th. 6).

Therefore, $T P$ bisects the angle $F T Q$, and $Q T=F T$.
As the angle at T is bisected by $T P$, the sides about this angle in the triangle $F^{\prime} T Q$ are to each other, as the segments of the third side, (Th. 24, B. П, Geom.)
$\begin{array}{ll}\text { That is, } & F^{\prime} T: T Q:: F^{\prime} P: P Q \\ \text { Or, } & F^{\prime} T: F T:: F^{\prime \prime} P: P F\end{array}$
From this last proportion we have (Th. 9, B. II, Geom.),

$$
F^{\prime} T+F T: F^{\prime \prime} T-F T:: F^{\prime \prime} P+P F: F^{\prime \prime} P-P F
$$

Or, since $\quad F^{\prime \prime} T+F T=2 C T$ and $F^{\prime} P+P F=2 C A$,
by substitution we have

$$
\begin{equation*}
2 C T: F^{\prime} F:: 2 C A: F^{\prime} P-P F \tag{1}
\end{equation*}
$$

Again, because $P G$ is drawn perpendicular to the base of the triangle $F^{\prime} P F$, the base is to the sum of the two sides, as the difference of the sides is to the difference of the segments of the base, (Prop. 6, Pl. Trig.)

Whence, $F^{\prime} F: F^{\prime} P+P F:: F^{\prime} P-P F: 2 C G$
If we multiply proportions (1) and (2), term by term, omitting in the resulting proportion the factor $F^{\prime} F$, common to the terms of the first couplet, and the factor $F^{\prime} P-P F$, common to the terms of the second couplet, we shall have.

$$
\begin{array}{ll}
& 2 C T: 2 C A:: 2 C A: 2 C G \\
\text { Or, } & C T: C A:: C A: C G
\end{array}
$$

In like manner it may be proved that
$C t: C B:: C B: C g$
Hence the theorem ; If a tangent, drawn to an ellipse, etc.

PROPOSITION XII.-THEOREM.

The sub-tangent on either axis of an ellipse is equal to the corresponding sub-tangent of the circle described on that axis as a diameter.

Let P be the point of tangency of the tangent line $T t$ to the ellipse, of which $A A^{\prime}$ is the major axis and C the center. Draw the ordinate $P G$ to this axis, and produce it to meet A^{\top}
 the circumference of the circle described on $A A^{\prime}$ as a diameter, at B, and draw $B C$ and $B T, T$ being the intersection of the tangent with the major axis ; then will the line $B T$ be a tangent to the circumference, at the point B.

By the preceding theorem we have

$$
C T: C A:: C A: C G
$$

And since $\quad C A=C B$, this proportion becomes

$$
C T: C B:: C B: C G
$$

Hence, the triangles $C B T$ and $C B G$ have the common angle C, and the sides about this angle proportional ; they are therefore similar(Cor. 2 Th. 17, B. II, Geom.). But $C B G$ is a right-angled triangle; therefore, $C B T$ is also right-angled, the right angle being at B. Now, since the line $B T$ is perpendicular to the radius $C B$ at its extremity, it is tangent to the circumference, and $G T$ is therefore a common sub-tangent to the ellipse and circle.

If a circumference be described on the minor axis as a diameter, it may be proved in like manner that the corresponding sub-tangents of the ellipse and circle are equal.

Hence, the theorem; The sub-tangent on either axis, etc.
Scholium 1.-This proposition furnishes another easy rule for drawing a tangent line to an ellipse, at any point.

Rule. On the major axis as a diameter, describe a semi-circumference, and from the given point on the ellipse draw an ordinate to the major axis; draw a tangent to the semicircumference at the point in which the ordinate produced meets i. The line that connects the point in which this tangent intersects the major axis with the given point on the ellipse, will be the required tangent.

Scholium 2.-Because $C B T$ is a right-angled triangle,

$$
C G \cdot G T=\overline{B G}^{2} ; \text { but } A^{\prime} G \cdot A G=\overline{B G}^{2}
$$

Therefore, $\quad C G \cdot G T=A^{\prime} G \cdot A G$

PROPOSITION XIII.-THEOREM.
The square of either semi-axis of an ellipse is to the square of the other semi-axis, as the rectangle of any two abscissas of the former axis is to the square of the corresponding ordinate.

From any point, as P, of the ellipse of which C is the center, $A A^{\prime}$ the major, and $B B^{\prime}$ the minor axis, draw the ordinate $P G$ to the major axis; then it is to be proved that

$$
\overline{C A}^{2}: \overline{C B}^{2}:: A G \cdot G A^{\prime}: \overline{P G}^{2}
$$

Through P draw a tangent line intersecting the axes at T and t; then, by Prop. 11, we have

$$
\begin{gathered}
C T:: C A:: C A: C G \\
C T C G=\overline{C A}^{2}
\end{gathered}
$$

Whence,
and by multiplying both members of this equation by $C G$, it becomes

$$
C T \cdot \overline{C G}^{2}=\overline{C A}^{2} \cdot C G
$$

sich may be resolved into the proportion

$$
\overline{C A}^{2}: \overline{C G}^{2}:: C T: C G
$$

From this we find, (Cor. Th. 8, B. II, Geom.),

$$
\begin{equation*}
\overline{C A}^{2}: \overline{C A}^{2}-\overline{C G}^{2}:: C T: G T \tag{1}
\end{equation*}
$$

Again, drawing the ordinate $P g$ to the minor axis, we have

$$
C t: C B:: C B: C g \text { or } P G
$$

Whence, $\quad C t \cdot P G=\overline{C B}^{2}$
Multiplying both members of this equation by $P G$, it becomes

$$
C t \cdot \overline{P G}^{2}=\overline{C B}^{2} \cdot P G
$$

from which we have the proportion

$$
\overline{C B}^{2}: \overline{P G}^{2}:: C t: P G
$$

By similar triangles we have

$$
C t: P G:: C T: G T
$$

And, since the first couplet in this proportion is the same as the second couplet in the preceding, the terms of the other couplets are proportional.

That is; $\quad \overline{C B}^{2}: \overline{P G}^{2}:: C T: G T$
By comparing proportions (1) and (2), we obtain

$$
\begin{equation*}
\overline{C B}^{2}: \overline{P G}^{2}:: \overline{C A}^{2}: \overline{C A}^{2}-\overline{C G}^{2} \tag{3}
\end{equation*}
$$

But $\overline{C A}^{2}-\overline{C G}^{2}=(C A+C G)(C A-C G)=A^{\prime} G \cdot A G$;
Whence, by inverting the means in proportion (3) and substituting the values of $\overline{C A}^{2}-\overline{C G}^{2}$, we have finally

$$
\begin{gathered}
\overline{C B}^{2}: \overline{C A}^{2}:: \overline{P G}^{2}: A^{\prime} G \cdot A G \\
\overline{C A}^{2}: \overline{C B}^{2}:: A G \cdot A G: \overline{P G}^{\prime}
\end{gathered}
$$

By a process in all respects similar to the above, we will find that

$$
\left.\overline{C B}^{2}: \overline{C A}^{2}:: B g \cdot B^{\prime} g: \overline{(P g}\right)^{2}
$$

Hence the theorem; the square of either semi-axis, etc.
Scholium 1.-From the theorem just demonstrated is readily deduced what is called, in Analytical Geometry, the equation of the ellipse referred to its center and axes. If we take any point, as P, on the curve, and can find a general relation between $A G$ and $P G$, or between $C G$ and $P G$, the equation expressing such relation will be the equation of the curve. Let us.represent $C A$, one half of the major axis, by A, and $C B$, one half of the minor axis, by B; that is, the symbols A and B denote the numerical values of these semi-axes, respectively. Also, denote the $C G$ by x, and $P G$ by y, then $A^{\prime} G=A+x$, and $A G=A-x$; and by the theorem we have

$$
\begin{aligned}
& A^{2}: B^{2}::(A+x)(A-x): y^{2} \\
& A^{2} y^{2}=A^{2} B^{2}-B^{2} x^{2} \\
& A^{2} y^{2}+B^{2} x^{2}=A^{2} B^{2}
\end{aligned}
$$

Whence,
Or,

This is the required equation in which the variable quantities, x and y, are called the co-ordinates of the curve, the first, x, being the abscissa, and the second, y, the ordinate; the center C from which these variable distances are estimated, is called the origin of co-ordinates, and the major and minor axes are the axes of co-ordinates.

Had we donoted $A^{\prime} G$ by x, without changing y, then we should have

And

$$
A G=2 A-x,
$$

$$
A^{2}: B^{2}::(2 A-x) x: y^{2}
$$

Whence, $\quad y^{2}=\frac{B^{2}}{A^{2}}\left(2 A x-x^{2}\right)$, which is the equation of the ellipse when the origin of co-ordinates is on the curve at A^{\prime}.

Scholium 2.-If a circle be described on either axis of an ellipss as a diameter, then any ordinate of the circle to this axis is to the corresponding ordinate of the ellipse, as one half of this axis is to one half of the other axis.

Retaining the notation in Scholium 1, and producing the ordinate $P G$ to meet the circumference described on $A^{\prime} A$ as a diameter, at P^{\prime}, we have, by the theorem,

$$
A^{2}: B^{2}::(A+x)(A-x): y^{2}
$$

But

$$
(A+x)(A-x)={\overline{G P^{\prime}}}^{2}
$$

Whence, $A^{2}: B^{2}::{\overline{G P^{\prime}}}^{2}: y^{2}$
Or, $A: B:: G P^{\prime}: y$
That is, $\quad G P^{\prime}: y:: A: B$
By describing a circle on $B B^{\prime}$ as a diameter, we may in like manner prove that $\quad p g: P g:: B: A$

PROPOSITION XIV.-THEOREM.

The squares of the ordinate to either axis of an ellipse are to each other, as the rectangles of the corresponding abscissas.

Let $A A^{\prime}$ be the major, and $B B^{\prime}$ the minor axis of the ellipse, and $F G, P^{\prime} G^{\prime}$ any two ordinates to the first axis. Denoting $C G$ by by $x, C G^{\prime}$ by $x^{\prime}, P G$ by y and $P^{\prime} G^{\prime}$ by y^{\prime}, we have, by Scho. 1,

Prop. 13,
and

$$
A^{2} y^{2}+B^{2} x^{2}=A^{2} B^{2}
$$

$$
A^{2} y^{\prime 2}+B^{2} x^{\prime 2}=A^{2} B^{2}
$$

Whence, $\quad y^{2}=\frac{B^{2}}{A^{2}}\left(A^{2}-x^{2}\right)=\frac{B^{2}}{A^{2}}(A+x)(A-x)$
and

$$
\begin{equation*}
y^{\prime 2}=\frac{B^{2}}{A^{2}}\left(A^{2}-x^{\prime 2}\right)=\frac{B^{2}}{A^{2}}\left(A+x^{\prime}\right)\left(A-x^{\prime}\right) \tag{1}
\end{equation*}
$$

Dividing equation (1) by equation (2), member by member, and omitting the common factors in the numerator and denominator of the second member of the resulting equation, it becomes

$$
\frac{y^{2}}{y^{\prime 2}}=\frac{(A+x)(A-x)}{\left(A+x^{\prime}\right)\left(A-x^{\prime}\right)}
$$

By simply inspecting the figure, we perceive that $A+x$ and $A-x$ represent the abscissas of the axis $A A^{\prime}$, corresponding to the ordinate y; and $A+x^{\prime}$, and $A-x^{\prime}$ those corresponding to the ordinate y^{\prime}.

By placing the two equations first written above, under the form

$$
\begin{aligned}
& x^{2}=\frac{A^{2}}{\bar{B}^{2}\left(B^{2}-y^{2}\right)} \\
& x^{\prime 2}=\frac{A^{2}}{B}\left(B^{2}-y^{\prime 2}\right)
\end{aligned}
$$

and proceeding as before, we should find

$$
\frac{x^{2}}{x^{\prime 2}}=\frac{(B+y)(B-y)}{\left(B+y^{\prime}\right)\left(B-y^{\prime}\right)}
$$

in which $B+y, B-y$ are the abscessas of the axis $B B^{\prime}$, corresponding to the ordinate $x=C G=P g$; and $B+y^{\prime}$, $B-y^{\prime}$ are those corresponding to the ordinate $x^{\prime}=C G^{\prime}=$ $P^{\prime} g^{\prime}$.

Hence the theorem; the squares of the ordinates, etc.

PROPOSITIONXV.-THEOREM.

The parameter of the transverse axis of an ellipse, or, the latus rectum, is the double ordinate to this axis through the focus.

Let F and $F^{\prime \prime}$ be the foci of an ellipse of which $A A^{\prime}$ and $B B^{\prime}$ respectively are the major and minor axes.

Through the focus F draw the double ordinate $P P^{\prime}$. Then will
 $P P^{\prime}$ be the parameter of the major axis.
' We will denote the semi-major axis by A, the semiminor axis by B, the ordinate through the focus by P, and and the distance from the center to the focus by c.

The equation of the curve referred to the center and axis, is

$$
A^{2} y^{2}+B^{2} x^{2}=A^{2} B^{2}
$$

If in this equation we substitute c for x, y will become P, and we have

$$
A^{2} P^{2}+B^{2} c^{2}=A^{2} B^{2}
$$

Transposing the term $B^{2} c^{2}$, and factoring the second member of the resulting equation, it becomes

$$
\begin{equation*}
A^{2} P^{2}=B^{2}\left(A^{2}-c^{2}\right) \tag{1}
\end{equation*}
$$

In the right-angled triangle $B C F$, since $B F=A$ (Prop. 4) and $B c=B$, we have $A^{2}-c^{2}=B^{2}$.

Replacing $A^{2}-c^{2}$ in eq. (1) by its value, that equation becomes

$$
A^{2} \cdot P^{2}=B^{2} \cdot B^{2}
$$

Or, by taking the square roots of both members,

$$
A \cdot P=B \cdot B
$$

Whence, $A: B:: B: P$
Or, $2 A: 2 B:: 2 B: 2 P$
$2 P$ is therefore a third proportional to the major and minor axes, and (Def. 14) it is the parameter of the former axis.
Hence the theorem; the parameter, etc.

PROPOSITION XVI.-THEOREM.

The area of an ellipse is a mean proportional between two circles described, the one on the major, and the other on the minor axis as diameters.

On the major axis $A A^{\prime}$ of the ellipse represented in the figure, describe a circle, and suppose this axis to be divided into any number of equal parts.

Through the points of division draw ordinates to the circle, and
 join the extremities of these consecutive ordinates, and also those of the corresponding ordinates of the cllipse, by straight lines. We shall thus form in the semi-circle a number of trapezoids, and a like number in the semiellipse.

Let $G H, G^{\prime} H^{\prime}$ be two adjacent ordinates of the circle, and $g H g^{\prime} H^{\prime}$ those of the ellipse answering to them; and let us denote $G H$ by $Y, G^{\prime} H^{\prime}$ by $Y^{\prime}, g H$ by $y, g^{\prime} H^{\prime}$ by y^{\prime}, and the part $H H^{\prime}$ of the axis by x.

The trapezoidal areas, $G H H^{\prime} G^{\prime}, g H H^{\prime} g^{\prime}$, are respectively measured by

$$
\frac{Y+Y^{\prime}}{2} \cdot x \text { and } \frac{y+y^{\prime}}{2} \cdot x \text { (Th. 34, B. I, Geom.) }
$$

But (Prop. 13, Scho. 2)

$$
\begin{gathered}
A: B:: Y: y \\
\quad:: Y^{\prime}: y^{\prime}
\end{gathered}
$$

Hence (Th. 7, B. II, Geom.)

$$
A: B:: Y+Y^{\prime}: y+y^{\prime}:: \frac{Y+Y^{\prime}}{2}: \frac{y+y^{\prime}}{2}
$$

or, $\quad A: B:: \frac{Y+Y^{\prime}}{2} \cdot x: \frac{y+y^{\prime}}{2} \cdot x$
If the ordinates following Y^{\prime}, y^{\prime} in order, be represented by $Y^{\prime \prime}, y^{\prime \prime}$, etc., we shall also have

$$
A: B:: \frac{\Gamma^{\prime}+Y^{\prime \prime}}{2} \cdot x: \frac{y^{\prime}+y^{\prime \prime}}{2} \cdot x
$$

That is, any trapezoid in the circle will be to the corresponding trapezoid in the ellipse, constantly in the ratio of A to B; and therefore the sum of the trapezoids in the circle will be to the sum of the trapezoids in the ellipse as A is to B; and this will hold true, however great the number of trapezoids in each.

Calling the first sum S, and the second s, we shall then have

$$
A: B:: S: s
$$

But, when the number of equal parts into which the axis $A A^{\prime}$ is divided, is increased without limit, S becomes the area of the semi-circle and s that of the semi-ellipse.

Therefore, $A: B:$: area semi-circle : area semi-ellipse.
Or, $\quad A: B:$: area circle : area ellipse.
By substituting in this last proportion for area circle, its value πA^{2}, it becomes

$$
\begin{aligned}
& A: B:: \pi A^{2}: \text { area ellipse. } \\
& \text { area ellipse }=\pi A B,
\end{aligned}
$$

Whence
which is a mean proportional between πA^{2} and πB^{2}.
Hence the theorem; the area of an ellipse, etc.
Scholium.-This theorem leads to the following rule in mensuration for finding the area of an ellipse.

Rule. $=$ Multiply the product of the semi-major and semi-minor axes by 3.1416.

PROPOSITION XVII.-THEOREM.

If a cone be cut by a plane making an angle with the base less than that made by an element of the cone, the section is an ellipse.

Let V be the vertex of a cone, and suppose it to be cut by a plane at right-angles to the plane of the opposite
elements, $V N V B$, these elements being cut by the first plane at A and B. Then, if the secant plane be not parallel to the base of the cone, the section will be an ellipse, of which $A B$ is the major axis.

Through any two points, F and H, on $A B$, draw the lines $K L, M N$, parallel to the base of the cone, and
 through these lines conceive planes to be passed also parallel to this base. The sections of the cone made by these planes will be circles, of which $K G L$ and $M I N$ are the semi-circumferences, passing the first through G, and the second through I, the extremities of the perpendiculars to $B A$, lying in the section made by the oblique plane.

The triangles $A F L, A H N$, are similar; so also are the triangles $B M H, B K F$; and from them we derive the following proportions:

$$
\begin{aligned}
& A F: F L:: A H: H N \\
& B F: K F:: B H: H M
\end{aligned}
$$

By multiplication, $A F \cdot B F: F L \cdot K F:: A H \cdot B H: H N \cdot H M$
Because $K L$ is a diameter of a circle, and $F G$ an ordinate to this diameter, we have

$$
K F \cdot F L=\overline{F G}^{2},
$$

and for a like reason, $H M \cdot H N=\overline{H I}^{2}$
Therefore, $A F \cdot B F: \overline{F G}^{2}:: A H \cdot H B: \overline{H I}^{2}$
or, $\quad A F \cdot B F: A H \cdot H B:: \overline{F G}^{2}: \overline{H I}^{2}$
This proportion expresses the property of the ellipse proved in (Prop. 14); and the section $A G I B$ is, therefore, an ellipse.

Hence the theorem; if a cone be cut, etc.
Scholium.-The proportion $A F \cdot B F: A H \cdot H B:: \overline{F G}^{2}: \overline{H I}^{2}$ would still hold true, were the line $A B$ parallel to the base of the cone, and the section a circle; the ratios would then become equal
to unity. The circle may therefore be regarded as a particular case of the ellipse.

PROPOSITION XVIII.-THEOREM.
If, from one of the vertices of each of two conjugate diameters of an ellipse, ordinates be drawn to either axis, the sum of the squares of these ordinates will be equal to the square of the other semi-axis.

Let $A P P^{\prime} A^{\prime} Q Q^{\prime}$ be an ellipse, of which $A A^{\prime}$ is the major and $B B^{\prime}$ the minor axis; also let $P Q, P^{\prime} Q^{\prime}$ be any two conjugate diameters. Through the vertices of these
 diameters draw the tangents to the ellipse and the ordinates to the axes, as represented in the figure. Then we are to prove that

$$
\overline{C A}^{2}=(P g)^{2}+\left(P^{\prime} g^{\prime}\right)^{2}=\overline{C G}^{2}+{\overline{C G^{\prime}}}^{2}
$$

and

$$
\overline{C B}^{2}=(P G)^{2}+\left(P^{\prime} G^{\prime}\right)^{2}=(C g)^{2}+\left(O_{g}^{\prime}\right)^{2}
$$

Now (by Prop. 11) we have

$$
C T: C A:: C A: C G,
$$

also, $\quad C t: C A:: C A: C n$

Whence, $\quad \overline{C A^{2}}=C T \cdot C G$,
Therefore, $\quad C T \cdot C G=C t \cdot C n$,
which, resolved into a proportion, gives

$$
\begin{equation*}
C t^{\prime}: C T:: O G: C n \tag{2}
\end{equation*}
$$

By the construction, it is evident that the triangles $C P T, C Q^{\prime} t^{\prime}$, are similar, as are also the triangles $P G T$ and $C Q^{\prime} n$.

From these triangles we derive the proportions

$$
\begin{aligned}
C t^{\prime} & : C T: \\
C Q^{\prime} & : P T:
\end{aligned}: C Q^{\prime}: P T \quad: G T
$$

Whence, $\quad C t: C T:: C n: G T$
Comparing the last proportion with proportion (2) above, we have

$$
C G: C n:: C n: G T
$$

Whence, $\quad(C n)^{2}=C G \cdot G T$
But $\quad G T=C T-C G$; then $(C n)^{2}=C G(C T-C G)$, from which we get

$$
(C n)^{2}+\overline{C G}^{2}=C G \cdot C T=\overline{C A}^{2} \quad \text { (See eq. 1.) }
$$

Substituting, in this equation, for $(C n)^{2}$, its equal ${\overline{C G^{\prime}}}^{2}$, it becomes

$$
\overline{C A}^{2}=\overline{C G}^{2}+\overline{C G}^{2}
$$

In a similar manner it may be proved that

$$
\overline{C B}^{2}=\overline{P G}^{2}+{\overline{P^{\prime} G}}^{2}
$$

Hence the theorem; if from one of the vertices of each, etc.

PROPOSITION XIX.-THEOREM.

The sum of the squares of any two conjugate diameters of an ellipse is a constant quantity, and equal to the sum of the squares of the axes.

The annexed figure, being the same as that employed in the preceding proposition, by that proposition we have

and

$$
\overline{C A}^{2}=\overline{C G}^{2}+{\overline{C G^{\prime}}}^{\prime}
$$

$$
\overline{C B}^{2}=\overline{P G}^{2}+{\overline{P^{\prime} G^{\prime}}}^{2}
$$

By addition, $\overline{C A}^{2}+\overline{C B}^{2}=\overline{C G}^{2}+\overline{P G}^{2}+{\overline{C G^{\prime}}}^{2}+{\bar{P} G^{\prime}}^{2}$

But $C G$ and $P G$ are the two sides of the right-angled triangle $C P G$, and $C G^{\prime}$ and $P^{\prime} G^{\prime}$ are the two sides of the right-angled triangle $C P^{\prime} G^{\prime}$;
Therefore, $\quad \overline{C A}^{2}+\overline{C B}^{2}=\overline{C P}^{2}+\overline{C P}^{2}$
Whence,
$4 C A^{2}+\overline{4 C B}^{2}=4^{2 C P}+\overline{4 C P}^{2}$
The first member of this equation expresses the sum of the squares of the axes, and the second member the sum of the squares of the two conjugate diameters.

Hence the theorem; the sum of the squares of any two, etc.

PROPOSITION XX.-THEOREM.

The parallelogram formed by drawing tangents through the vertices of any two conjugate diameters of an ellipse, is equal to the rectangle of the axes.

Employing the figure of the last two propositions, we have, from proposition 18,

$$
\overline{C A}^{2}=\overline{C G^{2}}+\overline{C G^{\prime}}
$$

from which, by trans-
 position and factoring the second member, we get

	$\overline{C G^{2}}=\left(C A+C G^{\prime}\right)\left(C A-C G^{\prime}\right)=A$
But	$\overline{C A}^{2}: \overline{C B}^{2}:: A G^{\prime} \cdot A^{\prime} G^{\prime}: \overline{P^{\prime} G^{\prime \prime}} ; \quad$ (Prop. 13.)
Whence,	$\overline{C A}^{2}: \overline{C B}^{2}:: \overline{C G}^{2}:{\bar{P} G^{\prime}{ }^{2}}^{2}$
Or,	$C A: C B:: C G: P^{\prime} G^{\prime}=Q^{\prime} n(1)$
But,	$C T: C A$: $C A$: $C G$ (2) (Prop.11.)

Multiplying proportions (1) and (2), term by term, omitting, in the first couplet of the resulting proportion, the common factor $C A$, and in the second couplet the common factor $C G$, we find

$$
C T: C B:: C A: Q^{\prime} n
$$

Whence,	$C T \cdot Q^{\prime} n=C A \cdot C B$
Or,	$4 C T \cdot Q^{\prime} n=4 C A \cdot C B$

The first member of this equation measures eight times the area of the triangle $C Q^{\prime} T$, and this triangle is equivalent to one half of the parallelogram $C Q^{\prime} m P$, because it has the same base, $C Q$, as the parallelogram, and its vertex is " in the side opposite the base. This parallelogram is obviously one fourth of that formed by the tangent lines through the vertices of the conjugate diameters; $4 C T . Q^{\prime} n$ therefore, measures the area of this parallelogram. Also, $4 C A \cdot C B$ is the measure of the rectangle that would be formed by drawing tangent lines through the vertices of the major and minor axes of the ellipse.

Hence, the theorem; the parallelogram formed, etc.

PROPOSITION XXI.-THEOREM.

If a normal line be drawn to an ellipse at any point, and also an ordinate to the major axis from the same point, then will the square of the semi-major axis be to the square of the semi-minor axis, as the distance from the center to the foot of the ordinate is to the sub-normal on the major axis.

Let P be the assumed point in the ellipse, and through this point draw the tangent $P T$, the normal $P D$, and the ordinate $P G$, to the major axis; then C being the center of the ellipse,
 and A denoting the semi-major, and B the somi-minor axis, it is to be proved that

$$
A^{2}: B^{2}:: C G: D G
$$

By (Prop. 13) we have

$$
\begin{equation*}
A^{2}: B^{2}:: A^{\prime} G \cdot A G: \overline{P G}^{2} \tag{1}
\end{equation*}
$$

and because $D P T$ is a right-angled triangle, and $P G$ is a
perpendicular let fall from the vertex of the right-angle upon the hypotenuse, we also have
(Th. 25, B. II, Geom.) $\quad \overline{P G}^{2}=D G \cdot G T$
But $\quad A^{\prime} G \cdot A G=C G \cdot G T$ (Scho. 2, Prop. 12)
Substituting in proportion (1), for the terms of the second couplet, their values, it becomes

$$
\begin{array}{ll}
& A^{2}: B^{2}:: C G \cdot G T: D G \cdot G T \\
\text { or } & A^{2}: B^{2}:: C G: D G .
\end{array}
$$

Hence the theorem; if a normal line be drawn, etc.
Cor. If $C G=x$, then this theorem will give for the subnormal, $D G$, the value $\frac{B^{2}}{A^{2}} x$, which is its analytical expression.

PROPOSITION XXII.-THEOREM.

If two tangents be drawn to an ellipse, the one through the vertex of the major axis and the other through the vertex of any other diameter, each meeting the diameter of the other produced, the two tangential triangles thus formed will be equivalent.

Let $P P^{\prime}$ be any diameter of the ellipse whose major axis is $A A^{\prime}$. Draw the tangents $A N$ and $P T$, the first meeting the diameter produced at N, and the second the axis pro-
 duced at T; the triangles $C A N$ and $C P T$ thus formed are equivalent.
Draw the ordinate $P D$; then by similar triangles we have

$$
C D: C A:: C P: C N
$$

But $C D: C A:: C A: C T$ (Prop. 11)
Whence $C P: C N:: C A: C T$
Therefore, $\quad C P \cdot C T=C N \cdot C A$

Multiplying both members of this equation by sin. C, it becomes
or, $\quad \frac{1}{2} C T \cdot C P \sin . C=\frac{1}{2} C A \cdot C N \sin . C$
But $\quad C P \cdot \sin . C=P D$, and $C N \cdot \sin . C=A N$; therefore the first member of equation (1) measures the area of the triangle $C P T$, and the the second member measures that of the triangle CAN.
Hence the theorem ; if two tangents be drawn to an, etc.
Cor. 1. Taking the common area CAEP, from each triangle, and there is left $\triangle P E N=\triangle A E T$.

Cor. 2. Taking the common $\triangle C D P$, from each triangle, and there is left $\triangle P D T=$ trapezoidal area $P D A N$.

PROPOSITION XXIII.-THEOREM.

The supposition of Proposition 22 being retained, then, if a secant line be drawn parallel to the second tangent, and ordinates to the major axis be drawn from the points of intersection of the secant with the curve, thus forming two other triangles, these triangles will be equivalent each to each to the corresponding trapezoids cut off, by the ordinates, from the triangle determined by the tangent through the vertex of the major axis.

Draw the secant QuS parallel to the tangent $P T$, and also the ordinates $Q R, n g$, producing the latter to p. Then is $\triangle S Q R=$ trapezoid $A N V R$, and $\Delta \operatorname{Sng}=\operatorname{trapezoid} A N p g$.

The three triangles, $C V R, C P D, C N A$ are similar, by construction; therefore,

$$
\triangle C N A: \triangle C F D:: \overline{C A}^{2}:: \overline{C D}^{2}
$$

Whence,
trapezoid $A N P D: \triangle C N A: ~: \overline{C A}^{2}-\overline{C D}^{2}: \overline{C A}^{2}(1)$
(Th. 8, B. II, Geom.)

In like manner,
trapezoid $A N V R: \triangle C N A:: \overline{C A}^{2}-\overline{C R}^{2}: \overline{C A}^{2}{ }^{(2)}$
Dividing proportion (1) by (2), term by term, we get

$$
\frac{\text { trapezoid } A N P D}{\text { trapezoid } A N V R}: 1:: \frac{\overline{C A}^{2}-\overline{C D}^{2}}{\overline{C A}^{2}-\overline{C R}^{2}}: 1
$$

Whence,
trapez. ANPD: trapez. ANVR: : $\overline{C A}^{2}-\overline{C D}^{2}: \overline{C A}^{2}-\overline{C R}^{2}$
But $\overline{P D}^{2}: \overline{Q R}^{2}:: A^{\prime} D \cdot D A: A^{\prime} R \cdot R A$, (Prop. 14); and since

$$
A^{\prime} D=C A+C D, A^{\prime} R=C A+C R, D A=C A-C D \text { and }
$$ $R A=C A-C R$, we have

$$
\begin{aligned}
& \overline{P D}^{2}: Q^{2}::(C A+C D)(C A-C D):(C A+C R) \\
& (C A-C R): \overline{C A}^{2}-\overline{C D}^{2}: \overline{C A}^{2}-\overline{C R}^{2}
\end{aligned}
$$

Therefore,
trapezoid ANPD : trapezoid $A N V R:: \overline{P D}^{2}: \overline{Q R}^{2}$,
But the trapezoid $A N P D=\triangle T P D$, (Cor. 2, Prop. 22); whence,

$$
\begin{equation*}
\triangle T P D: \operatorname{trapezoid} A N V R:: \overline{P D}^{2}:: \overline{Q R}^{2} \tag{3}
\end{equation*}
$$

and since the triangles $T P D$ and $S Q R$ are similar, we have

$$
\begin{equation*}
\triangle T P D: \triangle S Q R:: \overline{P D}^{2}: \overline{Q R}^{2} \tag{4}
\end{equation*}
$$

By comparing proportions (3) and (4) we find
$\triangle T P D: \operatorname{trapezoid} A N V R:: \triangle T P D: \triangle S Q R$
Whence, \quad trapezoid $A N V R=\triangle S Q R$; and by a similar process we should find that trapezoid $A N p g=\triangle$ Sng.
Hence the theorem ; if a secant line be drawn parallel, etc.
Cor. 1. Taking the trapezoid $A N_{p} g$ from the trapezoid$A N V R$, and the \triangle Sng from the $\triangle S Q R$, we have trapezoid $g p V R=$ trapezoid $g n Q R$.
Cor. 2. The spaces $A N V R, T P V R$, and $S Q R$ are equivalent, one to another.

Cor. 3. Conceive $Q R$ and $Q S$ to move parallel to their present positions, until R coincides with C; then $Q R$
becomes the semi-minor axis, the space $A N V R$ the triangle $A N C$, and the $\triangle Q R S$ equivalent to the $\triangle C P T$.

PROPOSITIONXXIV.-THEOREM.

Any diameter of the ellipse bisects all of the chords of the ellipse drawn parallel to the tangent through the vertex of the diameter.
By Cor. 1 to the preceding proposition we have trapez. $g p V R=$ trapez. $g n Q R$. If from each of these equals we subtract the common area $g n m V R$, there will remain the
 $\Delta m n p$, equivalent to the $\Delta \mathrm{Q} m V$; and as these triangles are also equi-angular, they are absolutely equal.

Therefore, $\quad Q m=m n$.
Hence the theorem ; any diameter of the ellipse bisects, etc.
Remark.-The property of the ellipse demonstrated in this proposition is merely a generalization of that previously proved in Prop. 3.

PROPOSITION XXV.-THEOREM.

The square of any semi-diameter of an ellipse is to the square of its semi-conjugate, as the rectangle of any two abscissas of the former diameter is to the square of the corresponding ordinate.

Let $A A^{\prime}$ be the major axis of the ellipse, $C P$ any semidiameter and $C P^{\prime}$ its semiconjugate. Draw the tangents $T P$ and $A N$, the ordipate $Q m$, producing it to meet
 the axis at S; and $P^{\prime} V^{\prime}$, parallel to $A N$, and in other
respects make the construction as indicated in the figure. It is then to be proved that

$$
{\overrightarrow{C P^{2}}}^{2}:{\overline{C P^{\prime}}}^{2}:: P m \cdot m P^{\prime \prime}: \overline{Q m}^{2}
$$

Now in the present construction, the triangles $C P^{\prime} R^{\prime}$ and $C V^{\prime} R^{\prime}$ take the place of the triangles $S Q R$ and $C V R$ respectively, in Prop. 23; and hence by that proposition, the triangles $C P^{\prime} V^{\prime}, C A N$, and $C P T$ are equivalent one to another.

The triangles $C P T$ and $C m S$ are similar; therefore,

$$
\triangle C P T: \triangle C m S:: \overline{C P}^{2}: \overline{C m}^{2}
$$

Whence,

$$
\triangle C P T: \triangle C P T-\triangle C m S:: \overline{C P}^{2}: \overline{C P}^{2}-\overline{C m}^{2}
$$

Or, $\triangle C P T$: trapez. $m P T S:: \overline{C P}^{2}: \overline{C P}^{2}-\overline{C m}^{2}{ }^{(1)}$
From the similar triangles, $C P^{\prime} V^{\prime}$ and $m Q V$, we have

$$
\triangle C P^{\prime} V^{\prime}: \triangle m Q V::{\overline{C P^{\prime \prime}}}^{2}: \overline{m Q}^{2}
$$

But area $\operatorname{Sm} V R+\triangle C V R+\triangle m Q V=$ area $\operatorname{Sm} V R+$ $\triangle C V R+$ trapez. $m P T S$, (Prop. 23.); therefore, $\triangle m Q V=$ trapez. mPTS; also $\triangle C P^{\prime} V^{\prime}=\triangle C P T$.

Substituting these values in the preceding proportion, it becomes

$$
\begin{equation*}
\triangle C P T \text { : trapez. } m P T S:: \overline{C P}^{2}: \overline{m Q}^{2} \tag{2}
\end{equation*}
$$

By comparing proportions (1) and (2), we get

$$
C P^{2}: \overline{C P}^{2}-\overline{C m}^{2}::{\overline{C P}^{\prime}}^{2}: \overline{m Q}^{2}
$$

Or, $\quad C P^{2}: \overline{C P}^{2}:: \overline{C P}^{2}-\overline{C m}^{2}: \overline{m Q}^{2}$
Whence, $\overline{C P}^{2}:{\overline{C P I^{\prime}}}^{2}::(C P+C m)(C P-C m): \overline{m Q}^{2}$
Or, $\quad C P^{2}: \overline{C P}^{2}:: P^{\prime \prime} m \cdot m P: \overline{m Q}^{2}$
Hence the theorem; the square of any semi-diameter, etc.
Remark. The property of the ellipse relating to conjugate diameters, established by this proposition, is but the generalization of that before demonstrated in reference to the axes, in Prop. 13.

THE PARABOLA.

DEFINITIONS.

1. The Parabola is a plane curve, generated by the motion of a point subjected to the condition that its distances from a fixed point and a fixed straight line shall be constantly equal.
2. The fixed point is called the focus of the parabola, and the fixed line the directrix.

Thus, in the figure, F is the focus and $B B^{\prime \prime}$ the directrix of the parabola $P V P^{\prime} P^{\prime \prime}$, etc.

3. A Diameter of the parabola is a line drawn through any point of the curve, in a direction from the directrix, and at right-angles to it.
4. The Vertex of a diameter is the point of the curve through which the diameter is drawn.
5. The Principal Diameter, or the Axis, of the parabola is the diameter passing through the focus. The vertex of the axis is called the principal vertex, or simply the vertex of the parabola.

The vertex of the parabola bisects the perpendicular distance from the focus to the directrix, and all the diameters of the parabola are parallel lines.
6. An Ordinate to a diameter is a straight line drawn from any point of the curve to the diameter, parallel to the
tangent line through its vertex. Thus, $P D$, drawn parallel to the tangent $\nabla^{\prime} T$, is an ordinate to the diameter $V^{\prime} D$. It will be shown that $D P=D G$; and hence $P G$ is called a double ordinate.
7. An Abscissa is the part of the diameter between the vertex and an ordinate. Thus, $V^{\prime} D$ is the abscissa corresponding
 to the ordinate $P D$.
8. The Parameter of any diameter of the parabola is one of the extremes of a proportion, of which any ordinate to the diameter is the mean, and the corresponding abscissa the other extreme.
9. The parameter of the axis of the parabola is called the principal parameter, or simply the parameter of the parabola. It will be shown to be equal to the double ordinate to the axis through the focus. Thus, $B B^{\prime}$, the chord drawn through the focus at right-angles to the axis, is the parameter of the parabola.

The principal parameter is sometimes called the latusrectum.
10. A Sub-tangent, on any diameter, is the distance from the point of intersection of a tangent line with the diameter produced to the foot of that ordinate to this diameter that is drawn from the point of contact.
11. A Sub-normal, on any diameter, is the part of the diameter intercepted between the normal to the curve, at any point, and the ordinate from the same point to the diameter. Thus, in the figure, $\nabla^{\prime} N$ being any diameter, $P T$ a tangent, and $P N$ a normal at the point P, and $P Q$ an ordinate to the diameter; then $T Q$ is a sub-tangent and $Q N$ a sub-normal on this diameter.

When the terms, sub-tangent and sub-normal, are used without reference to the diameter on which they are taken, the axis will always be understood.

PROPOSITION I.-PROBLEM.

To describe a parabola mechanically.
Let $C D$ be the given line, and F the given point. Take a square, as $D B G$, and to one side of it, $G B$, attach a thread, and let the thread be of the same length as the side $G B$ of the square. Fasten one end of the thread at the point G, the other end at F.

Put the other side of the square against the given line, $C D$, and with the point of a pencil, in the thread, bring the thread up to the side of the square. Slide the side $B D$ of the square along the line $C D$, and at the same time keep the thread close against the other side, permitting the thread to slide round the point of the pencil. As the side $B D$ of the square is moved along the line $C D$, the pencil will describe the curve represented as passing through the points V and P.
For $G P+P F=$ the length of the thread,
and $\quad G P+P B=$ the length of the thread.
By subtraction, $P F-P B=0$, or $P F=P B$.
This result is true at any and every position of the point P; that is, it is true for every point on the curve corresponding to definition 1.

Hence,
 $$
F V=V H .
$$

If the square be turned over and moved in the opposite direction, the other part of the parabola, on the other side of the line $F H$, may be described.

Cor. It is obvious that chords of the curve which are perpendicular to the axis, are bisected by it.

PROPOSITION II.-THEOREM.

Any point within the parabola, or on the concave side of the curve, is nearer to the focus than to the directrix; and any point without the parabola, or on the convex side of the curve, is nearer to the directrix than to the focus.

Let F be the focus and $H B^{\prime}$ the directrix of a parabola.
First.-Take A, any point within the curve. From A draw $A F$ to the focus, and $A B$ perpendicular to the directrix; then will $A F$ be less than $A B$.

Since A is within the curve, and B is without it, the line $A B$ must cut the curve at some point, as P. Draw $P F$. By the definition of the parabola, $P B=P F$; adding $P A$ to each member of this equation, we have

$$
P B+P A=B A=P A+P F
$$

But $P A$ and $P F$ being two sides of the triangle $A P F$, are together greater than the third side $A F$; therefore their equal, $B A$, is greater than $A F$.

Second.-Now let us take any point, as A^{\prime}, without the curve, and from this point draw $A^{\prime} F$ to the focus, and $A^{\prime} B^{\prime}$ perpendicular to the directrix.

Because A^{\prime} is without the curve and F is within it, $A^{\prime} F$ must cut the curve at some point, as P. From this point let fall the perpendicular, $B P$, upon the directrix, and draw $A^{\prime} B$.

As before, $P B=P F$; adding $A^{\prime} P$ to each member of this equation, and we have $A^{\prime} P+P B=A^{\prime} P+P F=A^{\prime} F$. But $A^{\prime} P$ and $P B$ being two sides of the triangle $A^{\prime} P B$, are together greater than the third side, $A^{\prime} B$; therefore their equal, $A^{\prime} F$, is greater than $A^{\prime} B$. Now $A^{\prime} B$, the hypotenuse of the right-angled triangle $A^{\prime} B B^{\prime}$ is greater than either side; hence, $A^{\prime} B$ is greater than $A^{\prime} B^{\prime}$; much more then is $A^{\prime} F^{\prime}$ greater than $A^{\prime} B^{\prime}$.

Hence the theorem; any point within the parabola, etc.

Cor. Conversely: If the distance of any point from the directrix is less than the distance from the same point to the focus, such point is without the parabola; and, if the distance from any point to the directrix is greater than the distance from the same point to the focus, such point is within the parabola.

First.-Let A^{\prime} be a point so taken that $A^{\prime} B^{\prime}<A^{\prime} F$. Now A^{\prime} is not a point on the curve, since the distances $A^{\prime} B^{\prime}$ and $A^{\prime} F$ are unequal; and A^{\prime} is not within the curve, for in that case $A^{\prime} B^{\prime}$ would be greater than $A^{\prime} F$ according to the proposition, which is contrary to the hypothesis. Therefore A^{\prime} being neither on nor within the parabola, must be without it.

Second.-Let A be a point so taken that $A B>A F$. Then, as before, A is not on the curve, since $A F$ and $A B$ are unequal; and A is not without the curve, for in that case $A B$ would be less than $A F$, which is contrary to the hypothesis. Therefore, since A is neither on nor without the parabola, it must be within it.

PROPOSITIONIII.-THEOREM.

If a line be drawn from the focus of a parabola to any point of the directrix, the perpendicular that bisects this line will be a tangent to the curve.

Let F be the focus, and $H D$ the directrix of a parabola.

Assume any point whatever, as B, in B the directrix, and join this point to the focus by the line $B F$; then will $t A$, the perpendicular to $B F$ through its middle point t, be a tangent to the parabola. Through B draw $B L$ perpendicular to the directrix, and join P, its intersection with $t P$, to the focus. Then, since P is a point in the perpendicular to $B F$ at its middle point, it is equally distant from the extremities of $B F$; that is, $P B=P F . \quad P$ is there-
fore a point in the parabola, (Def. 1). Hence, the line $t P$ meets the curve at the point P.

We will now prove that all other points in the line $t P$ are without the parabola. Take A, any point except P in the line $t P$, and draw $A F, A B$; also draw $A D$ perpendicular to the directrix. $A F$ is equal to $A B$, because A is a point in the perpendicular to $B F$ at its middle point; but $A B$, the hypotenuse of the right-angled triangle $A B D$, is greater than the side $A D$; therefore $A D$ is less than $A F$, and the point A is without the parabola. (Cor., Prop. 2). The line $t A$ and the parabola have then no point in common except the point P. This line is therefore tangent to the parabola.

Scholium 1.-The triangles $B P t$ and $F P t$ are equal ; therefore the angles $F P t$ and $B P t$ are equal. Hence, to draw a tangent to the parabola at a given point, we have the following

Rule.-From the given point draw a line to the focus, and another perpendicular to the directrix, and through the given point draw a line bisecting the angle formed by these two lines. The bisecting line will be the required tangent.

Scholium 2.-Just at the point P the tangent and the curve coincide with each other; and the same is true at every point of the curve. Now, because the angles $B P t$ and $F P t$ are equal, and the angles $B P t$ and LPA are vertical, it follows that the angles $L P A$ and FPt are equal. Hence it follows, from the law of reflection, that if rays of light parallel to the axis $V F$ be incident upon the curve, they will all be reflected to the focus F. If therefore a reflecting surface were formed, by turning a parabola about its axis, all the rays of light that meet it parallel with the axis, will be reflected to the focus; and for this reason many attempts have been made to form perfect parabolic mirrors for reflecting telescopes.

If a light be placed at the focus of such a mirror, it will reflect all its rays in one direction; hence, in certain situations, parabolic mirrors have been made for lighthouses, for the purpose of throwing all the light seaward.

Cor. 1. The angle $B P F$ continually increases, as the
pencil P moves toward V, and at V it becomes equal to two right angles; and the tangent at V is perpendicular to the axis, which is called the vertical tangent.

Cor. 2. The vertical tangent bisects all the lines drawn from the focus of a parabola to the directrix.

Let $V t$ be the vertical tangent; then because the two right-angled triangles $F V t$ and $F H B$ are similar, and $V F=V H$, we have $F t=t B$.

PROPOSITION IV.-THEOREM.

The distance from the focus of a parabola to the point of contact of any tangent line to the curve, is equal to the distance from the focus to the intersection of the tangent with the axis.

Through the point P of the parabola of which F is the focus and $B H$ the directrix, draw the tangent line $P T$, meeting the axis produced at the point THVFD C T; then will $F P$ be equal to $F T$

Draw $P B$ perpendicular to the directrix, and join F, B.
The angles $B P T$ and $T P F$ are equal, (Scho.1, Prop. 3); and since $P B$ is parallel to $T C$, the alternate angles $B P T$, and $P T C$ are also equal. Hence the angle $T P F$ is equal to the angle $P T F$, and the triangle $P F T$ is isosceles; therefore $F P=F T$.

Hence the theorem; the distance from the focus to, etc.
Scholium.-To draw a tangent line to a parabola at a given point, we have the following

Rule.-Produce the axis, and lay off on it from the focus a distance equal to the distance from the focus to the point of contact. The line drawn through the point thus determined and the given point will be the required tangent.

PROPOSITION V.-THEOREM.

The perpendicular distance from the focus of a parabola to any tangent to the curve, is a mean proportional between the distance from the focus to the vertex and the distance from the focus to the point of contact.

In the figure of the preceding proposition draw in addition the vertical tangent $V t$; then we are to prove that $\overline{F t}^{2}=$ $V F \cdot F P$. Because TtF and VF't are
 similar right-angled triangles, we have

$$
T F^{\prime}: F t:: F t: V F . \quad \text { But } T F=P F,(\text { Prop. } 4) ;
$$

therefore, $P F: F t:: F t: V F$
Whence, $\overline{F t}^{2}=P F$. VF
Hence, the theorem; the perpendicular distance from,etc.

PROPOSITION VI.-THEOREM.

The sub-tangent on the axis of the parabola is bisected at the vertex.

In the figure which is constructed as in the two preceding propositions, draw in addition the ordinate $P D$, from the point of contact to the axis; then we are to prove that $T D$ is bisected at the vertex V.

The two right-angled triangles $T F t$ and $t F P$ have the side $F t$ common, and the angle $F T t$ equal to the angle FPt; hence the remaining angles are equal, and the triangles themselves are equal; therefore $t T=t P$. From the similar triangles $T D P, T V t$, we have the proportion

$$
T t: t P:: T^{\prime} V: V D
$$

But $t T=t P$; whence $T V=V D$
Hence the theorem; the sub-tangent on the axis, etc.

Cor. Since $T V=\frac{1}{2} T D$, it follows that $V t=\frac{1}{2} P D$. That is, The part of the vertical tangent included between the vertex and any tangent line to the parabola, is equal to one half of the ordinate to the axis from the point of contact.

PROPOSITION VII.-THEOREM.

The sub-normal is equal to twice the distance from the focus to the vertex of the parabola.

In the figure (which is the same as that of the last three propositions), $P C$ is a normal to the parabola at the point C, and $D C$ is the sub-normal ; it is to be '
 proved that $D C=2 F V$.

Because $B H$ and $P D$ are parallel lines included between the parallel lines $B P$ and $H D$, they are equal. $B F$ and $P C$ are also parallel, since each is perpendicular to the tangent $P T$; hence $B F=P C$, and also the two triangles $H B F$ and $D P C$ are equal.

Therefore	$H F=D C ;$
but	$H F=2 F V ;$
whence	$D C=2 F V$.

Hence the theorem; the sub-normal is equal to twice, etc.
Scholum.-This proposition suggests another easy process for constructing a tangent to a parabola at a given point.

Rule.-Draw an orainate to the axis from a given point, and from the foot of this ordinate lay off on the axis, in the opposite direction of the vertex, twice the distance from the focus to the vertex. Through the point thus determined and the given point draw a line, and it will be the required tangent.

PROPOSITION VIII.-THEOREM.

Any ordinate to the axis of a parabola is a mean proportion. al between the corresponding sub-tangent and sub-normal.

Assume any point, as P, in the parabola of which F is the focus and $H B$ the directrix. Through this point draw the tangent $P T$, the normal $P C$, and the or- THVFD C dinate $P D$ to the axis. Then in reference to the point P, $T D$ is the sub-tangent, and $D C$ the sub-normal on the axis; and we are to prove that

$$
T D: P D:: P D: D C
$$

The triangle $T F C$ is right-angled at P, and $P D$ is a perpendicular let fall from the vertex of this angle upon the hypotenuse. Therefore, $P D$ is a mean proportional between the segments of the hypotenuse, (Th. 25, B. II, Geom.)

Hence the theorem; any ordinate to the axis, etc.
Scholium 1.-For a given parabola, the fourth term of the proportion, $T D: P D:: P D: D C$, is a constant quantity, and equal to twice the distance from the focus to the vertex, (Prop. 7). By placing the product of the means of this proportion equal to the product of the extremes, we have
$\overline{P D}^{2}=T D \cdot D C=\frac{1}{2} T D \cdot 2 D C$, which may be again resolved into the proportion

Or,

$$
\frac{1}{2} T D: P D:: P D: 2 D C
$$

But $V D$ is the abscissa, and $P D$ is the ordinate of the point P; hence (Def. 8) $2 D C$ is the parameter of the parabola, and is equal to four times the distance from the focus to the vertex, or to twice the distance from the focus to the directrix.

Scholium 2.-If we designate the ordinate $P D$ by y, the abscissa $V D$ by x, and the parameter by $2 p$, the above proportion becomes

$$
\begin{aligned}
& x: y:: y: 2 p \\
& \bar{y}^{2}=2 p x .
\end{aligned}
$$

Whence,
This equation expresses the general relation between the abscissa and ordinate of any point of the curve, and is called, in Analytical Geometry, the equation of the parabola referred to its principal vertex as an origin.

Cor. The sub-normal in the parabola is equal to one-half of the parameter.

PROPOSITIONIX.-THEOREM.

The parameter, or latus rectum, of the parabola is equal to twice that ordinate to the axis which passes through the focus.

Let F be the focus, and $B B^{\prime}$ the directrix of a parabola; and through the focus draw a perpendicular to the axis intersecting the curve at P and P^{\prime}. From P and P^{\prime} let fall the perpendiculars $P B, P^{\prime} B^{\prime}$, on the directrix. Then will $2 P F$ be equal to $2 F H$, or
 to the parameter of the parabola.

By the definition of the parabola, $P F=P B$; and because $P P^{\prime}$ and $B B^{\prime}$ are parallel, and the parallels $P B$ and $F H$ are included between them, we have $P B=F H$.

Hence $P F=F H$, or $2 P F=2 F H=$ the parameter. Scho. 1, Prob. 8.

Cor. Since the axis bisects those chords of the parabola which are perpendicular to it, $F P=F P^{\prime}$. That is, $F P^{\prime}$; therefore $P P^{\prime}=2 F H$. That is,

The parameter of the parabola is equal to the double ordinate through the focus.

PROPOSITION X.-THEOREM.

The squares of any two ordinates to the axis of a parabola are to each other as their corresponding abscissas.

Let y and y^{\prime} denote the ordinates, and x and x^{\prime} the abscissas of any two points of the parabola; then, by Scho. 2, Prop. 8, we have the two following equations:

$$
y^{2}=2 p x \text { and } y^{\prime 2}=2 p x^{\prime}
$$

Dividing the first of these equations by the second, member by member, we have

$$
\frac{y^{2}}{y^{\prime 2}}=\frac{2 p x}{2 p x^{\prime}}=\frac{x}{x^{\prime}}
$$

Whence $\quad y^{2}: y^{\prime 2}:: x: x^{\prime}$
Hence the theorem; the squares of any two ordinates, etc.

PROPOSITIONXI.-THEOREM.

If a perpendicular be drawn from the focus of a parabola to any tangent line to the curve, the intersection of the perpendicular with the tangent will be on the vertical tangent.

Let F be the focus, and $B H$ the directrix of the parabola, and $P T^{\prime}$ a tangent to the curve at the point P. From F draw $F B$ perpendicular to the tangent, THVFD C intersecting it at t, and the directrix at B. We will now prove that the point t is also the intersection of the vertical tangent with the tangent $P T$.

Because the triangle TFP is isosceles, the perpendicular $F t$ bisects the base $P T$; therefore $t P=t T$. Again, since $V t$ and $D P$ are both perpendicular to the axis, they are parallel, and the vertical tangent divides the sides of the triangle $T D P$ proportionally.

Hence, $T V: V D:: T t: t P$; but $T V=V D$ (Prop. 6) therefore, $T t=t P$.
That is, the tangent $P T$ is bisected by both the perpendicular let fall upon it from the focus, and the vertical tangent. Therefore the tangent $P T$, the vertical tangent and the perpendicular $F B$, meet in the common point t.

Hence the theorem; if a perpendicular be drawn, etc.

PROPOSITION XII. THEOREM.

The parameter of the parabo'a is to the sum of any two ordinates to the axis, as the difference of those ordinates is to the difference of the corresponding abscissas.

Take any two points, as P and Q, in the parabola represented in the following figure, and through these points draw the double ordinates $P p$ and $Q q . \quad V D$ and $V E$ are the corresponding abscissas.

Draw PS and pt parallel to the axis. Then, since
$P D=D p$ and $Q E=E q$, we have $Q E+P D$ $=Q t$, equal to the sum of the two ordinates; and $Q E-P D=Q S$, equal to their difference; also $V E-V D=D E$, equal to the difference of the corresponding abscissas. We are now to prove that

$$
2 p: Q t:: Q S: D E
$$

in which $2 p$ denotes the parameter of the parabola.
Because $P D$ and $Q E$ are ordinates to the axis, we have (Scho. 2, Prop. 8)

$$
\begin{equation*}
\overline{P D}^{2}=2 p \cdot V D \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{Q E}^{2}=2 p \cdot V E \tag{2}
\end{equation*}
$$

Whence $\quad \overline{Q E}^{2}-\overline{P D}^{2}=2 p(V E-V D)=2 p \cdot D E$
But $\quad \overline{Q E}^{2}-\overline{P D}^{2}=(Q E+P D)(Q E-P D)=Q t \cdot Q S$,
therefore

$$
\begin{equation*}
Q t \cdot Q S=2 p \cdot D E \tag{4}
\end{equation*}
$$

Whence

$$
2 p: Q t:: Q S: D E
$$

Hence the theorem; the parameter of the parabola, etc.
Cor. By dividing eq. (4) by eq. (2), member by member, we obtain

$$
\frac{Q t \cdot Q S}{Q^{2}}=\frac{D E}{V E}
$$

Whence
$V E: D E:=\overline{Q E}^{2}: Q t \cdot Q S$

PROPOSITION XIII.-THEOREM.

If a tangent line be drawn to a parabola at any point, and from any point of the tangent a line be drawn parallcl to the axis terminating in the double ordinate from the point of contact, this line will be cut by the curve into parts having to each other the same ratio as the segments into which it divides the double ordinate.

Take any point as P in the parabola represented in the figure, and of which $V D$ is the axis, and through this point draw the tangent $P T$ to the curve, and the double ordinate $P Q$ to the axis. Assume a point in the tangent at pleasure, as A, and through it \mathbf{P} draw ΛC parallel to the axis, cutting
 the curve at B and the double ordinate at C. Then we are to prove that

$$
A B: B C:: P C: C Q
$$

By similar triangles we have

$$
P C: C A:: P D: D T ; \text { but } D T=2 D V \text { (Prop. 6) }
$$

therefore $P C: C A:: P D: 2 D V$

But $\quad D V: P D:: P D: 2 p$ (Scho. 2, Prop. 8)
or $\quad 2 D V: P D:: 2 P D: 2 p$.
Inverting terms, $P D: 2 D V:: 2 p: 2 P D=P Q$
By comparing proportions (1) and (2), we get

$$
P C: C A:: 2 p: P Q
$$

But

$$
2 p: C Q:: P C: B C \quad \text { (Prop. 12) }
$$

Multiplying the last two proportions, term by term, we have

$$
2 p \cdot P C: C A \cdot C Q:: 2 p \cdot P C: B C \cdot P Q
$$

The first and third terms of this proportion are equal; therefore the second and fourth are also equal. Hence we have the proportion
$C A: B C: P Q: C Q$
Whence by division, $C A-B C: B C:: P Q-C Q: C Q$ or $\quad A B: B C:: P C: C Q$
If we take any other point, H, on the tangent, and through it draw the line $H L$ parallel to the axis, intersecting the curve at K and the ordinate at L, we will have, in like manner,

$$
H K: K L:: P L: L Q
$$

Hence the theorem; if a tangent be drawn, etc.

PROPOSITION XIV.-THEOREM.

If any thoo points be taken on a tangent line to a parabola, and through these points lines parallel to the axis be drawn to meet the curve, such lines will be to each other as the squares of the distances of the points from the point of contact.

The figure and construction being the same as in the foregoing proposition, we are to prove that

$$
A B: H K:: \overline{P A}^{2}: \overline{P H}^{2}
$$

We have $A B: B C:: P C: C Q$ (1) (Prop. 13.)

Multiplying the terms of the second P couplet of this proportion by $P C$, it becomes

$$
A B: B C:: \overline{P C}^{2}: P C^{C} C Q
$$

But, (Cor. Prop. 12) $V D: B C:: \overline{P D}^{2}: P C^{\cdot} C Q \quad$ (3)
Dividing proportion (2) by proportion (3), term by term, we have

$$
\begin{align*}
& \quad \frac{A B}{V D}: 1:: \frac{\overline{P C}^{2}}{\overline{P D}^{2}}: 1 \\
& \text { Whence, } \quad A B: V D:: \overline{P C}^{2}: \overline{P D}^{2}
\end{align*}
$$

From the similar triangles, $A P C$ and $T P D$, we get the proportion

$$
\overline{P A}^{2}: \overline{P T}^{2}:: \overline{P C}^{2}: \overline{P D}^{2}
$$

By comparing proportions (4) and (5) we find

$$
\begin{equation*}
A B: V D:: \overline{P A}^{2}: \overline{P T}^{2} \tag{6}
\end{equation*}
$$

In like manner we can prove that

$$
\begin{equation*}
H K: V D:: \overline{P H}^{2}:{\bar{P} T^{2}}^{2} \tag{7}
\end{equation*}
$$

Dividing proportion (6) by proportion (7), term by term, we have

$$
\frac{A B}{\overline{H K}}: 1:: \frac{\overline{P A}^{2}}{\overline{P H}^{2}}: 1
$$

Whence, $\quad A B: H K: \overline{P A}^{2}: \overline{P H}^{2}$
Hence the theorem; if any two points be taken, etc.

Application.-Conceive PH to be the direction in which a body thrown from the surface of the earth, would move, if it were undisturbed by the resistance of the air and by the force of gravity. It would then move along the line $P H$, passing over equal spaces in equal times. When a body falls under the action of gravity, one of the laws of its motion is, that the spaces are proportional to the squares of the times of descent; hence, if we suppose gravity to act upon the body in the direction $A C$, the lines $A B, T V, H K$, etc., must be to each other as the squares $P A^{2}, P T^{2}, P H^{2}$, etc.; that is, the real path of a projectile in vacuo, possesses the property of the parabola that has been demonstrated in this proposition. In other words,

The path of a projectile, undisturbed by the resistance of the air, is a parabola, more or less curved, depending upon the direction and intensity of the projectile force.

PROPOSITIONXV.-THEOREM.

The abscissas of any diameter of the parabola are to each other as the squares of their corresponding ordinates. .

Let P be any point on a parabola, $P L$ a tangent line, and $P F$ a diameter through this point. From the points B, V, K, etc., assumed at pleasure on the curve, draw ordinates and parallels to the diameter, forming the quadrilaterals $P C B A, P D V T$, etc.

Now, since the ordinates to any diameter of the parabola are parallel to
 the tangent line through the vertex of that diameter, these quadrilaterals are parallelograms and their opposite sides are equal. But, by the precoding proposition, we have

$$
A B: T V: H K, \text { etc., }:: \overline{P A}^{2}: \overline{P T}^{2}: \overline{P H}^{2}, \text { etc. }
$$

or

$$
P C: P D: P E, \text { etc., }:: \overline{B C}^{2}: \overline{V D}^{2}:{\bar{K} \bar{E}^{2}}^{2} \text { etc. }
$$

By definition 6, $P C$ is the ordinate and $B C$ the abscissa of the point B, and so on.

Hence the theorem ; the abscissas of any diameter, etc.

PROPOSITION XVI.-THEOREM.

If a seeant line be drawn-parallel to any tangent line to the parabola, and ordinates to the axis be drawn from the point of contact and the two intersections of the secant with the curve, these three ordinates will be in arithmetical progression.
Let $C T$ be the tangent line to the parabola, and $E H$ the parallel secant. Draw the ordinates $E G, C D$, and $H I$, to the axis $V I$, and through E draw $E K$ parallel to $V I$.
We are now to prove that

$$
E G+H I=2 C D
$$

The similar triangles, $H K E E^{\circ}$ and $C D T$, give the proprrti n

$$
H K: K E:: C D: D T=2 V D
$$

and, by proposition 12, we have

$$
\begin{equation*}
2 p: K L:: H K: K E . \tag{1}
\end{equation*}
$$

Therefore $2 p: K L:: C D: 2 V D$,
and from the equation, $y^{2}=2 p x$, we get, by making $y=C D$ and $x=V D$,

$$
\begin{equation*}
2 p: 2 C D:: C D: 2 V D \tag{2}
\end{equation*}
$$

By dividing proportion (1) by (2), term by term, we shall have

$$
1: \frac{K L}{2 C D}:: 1: 1
$$

Whence

$$
K L=2 C D
$$

But

$$
\begin{gathered}
K L=H I+K I=H I+E G ; \\
H I+E G=2 C D
\end{gathered}
$$

therefore
Hence the theorem; if a secant line be drawn, etc.

Scholium 1.-If we draw $C M$ parallel, and $M N$ perpendicular to $V I$, then $2 C D=2 M N=E G+H I$; and since $M N$ is parallel to each of the lines $E G$ and $H I$, the point M bisects the line $E H$. That is, the diameter through C bisects its ordinate $E H$; and as $H E$ is any ordinate to this diameter, it follows that

A diameter of the parabola divides into equal parts all chords of the curve parallel to the tangent through the vertex of the diameter.

Scholium 2.-Hence, as the abscissas of any diameter of the parabola and their ordinates have the same relations as those of the axis, namely; that the ordinates are bisected by the diameter, and their squares are proportional to the abscissas; so all the other properties of this curve, before demonstrated in reference to the abscissas and ordinates of the axis, will likewise hold good in reference to the abscissas and ordinates of any diameter.

PROPOSITIONXVII.-THEOREM.

The square of an ordinate to any diameter of the parabola is equal to four times the product of the corresponding abscissa and the distance from the vertex of that diameter to the focus.

Let $V X$ be the axis of a paraola, and through any point, as P, of the curve, draw the tangent $P T$, and the diameter $P W$; also draw the secant $Q q$, parallel $P T$, and produce the ordinate $Q N$, and the di-
 ameter $F W$, to meet at D. From the focus let fall the perpendicular $F Y$ upon the tangent, and draw $F P$ and $V Y$. We are now to prove that

$$
\overline{Q v}^{2}=4 P F \cdot P v
$$

Because $F Y$ is perpendicular to $P T, Q v$ parallel to $P T$ and $D Q$ parallel to each of the lines $P M$ and $V Y$, the triangles $D Q v, P M T, T Y V$ and $T Y F$ are all similar.

$$
\begin{align*}
& \text { Whence } \overline{Q v}^{2}: \overline{Q D}^{2}:: \overline{T F}^{2}: \overline{Y F}^{2} \tag{1}\\
& \text { But } \overline{T F}^{2}={\overline{P F^{2}}}^{2} \text { and } \overline{Y F}^{2}=P F \text {. VF. (Prop. 5) }
\end{align*}
$$

Substituting these values in proportion (1) and dividing. the third and fourth terms of the result by $P F$, it becomes

$$
\begin{equation*}
\overline{Q v}^{2}: \overline{Q D}^{2}:: P F: V F \tag{2}
\end{equation*}
$$

Again, from the triangles $Q D v$ and $P M T$ we get

$$
\begin{aligned}
Q D: D v & :: P M: M T=2 V M \\
& :: \overline{P M}^{2}: 2 P M \cdot V M
\end{aligned}
$$

But (Scho. 2, Prop. 8) $\quad \overline{P M}^{2}=4 V F \cdot V M$
Whence $Q D: D v:: 4 V F \cdot V M: 2 P M \cdot V M$; ::4VF:2PM
therefore $2 P M \cdot Q D=4 V F \cdot D v$
By subtracting the equation $\overline{Q N}^{2}=4 V F \cdot V N$ from the equation $\overline{P M}^{2}=4 V F \cdot V M$, member from member, we have

$$
\begin{gathered}
\overline{P M}^{2}-\overline{Q N}^{2}=4 V F \cdot(V M-V N) \\
=4 V F \cdot N M \\
=4 V F \cdot D P
\end{gathered}
$$

Whence
$(P M+Q N)(P M-Q N)=(P M+Q N) \stackrel{+}{D} Q=4 V F \cdot D P$ (4)
Subtracting eq. (4) from eq. (3), member from member, we obtain

$$
(P M-Q N) D Q=4 V F(D v-D P)=4 V F \cdot P v
$$

and because $P M-Q N=D Q$, this last equation becomes

$$
\overline{D Q}^{2}=4 V F \cdot P v
$$

Substituting this value of $\overline{D Q}^{2}$ in proportion (2), we have
or

$$
\begin{aligned}
& \overline{Q v}^{2}: 4 V F \cdot P v:: P F: V F \\
& \overline{Q v}^{2}: 4 P v:: P F: 1
\end{aligned}
$$

Whence $\quad \overline{Q v}^{2}=4 P F \cdot P v$
Hence the theorem ; the square of an ordinate, etc.
Cor. If, in the course of this demonstration, we had used the triangle $v d q$ in the place of $v D Q$, to which it is similar, we would have found that $\overline{v^{2}}=4 P F \cdot P v$; whence $Q v=q v$. And since the same may be proved for any ordinate, it follows that

All the ordinates of the parabola to any of its diameters are bisected by that diameter.

Scrolium.-The parameter of any diameter of the parabola has been defined (Def. 8) to be one of the extremes of a proportion, of which any ordinate to the diameter is the mean and the corresponding abscissa the other extreme.

Now, we have just shown that $\overline{Q v}^{2}=\bar{q}^{2}=4 P F \cdot P v$.
Whence, $P v: Q v:: Q v: 4 P F$. 4PF, which remains constant for the same diameter, is therefore the parameter of the diameter PW. And as the same may be shown for any other diameter, we conclude that

The parameter of any diameter of the parabola is equal to four times the distance from the vertex of that diameter to the focus.

PROPOSITION XVIII.-THEOREM.

The parameter of any diameter of the parabola is equal to the double ordinate to this diameter that passes through the focus.

Through any point, as P, of the parabola of which F is the focus and V the vertex, draw the diameter $P W$, the tangent $P T$, and, through the focus the double ordinate $B D$, to the diameter. It is now to be proved that $4 P F$, or the
 parameter to this diameter, is equal to $B D$.

Because $P W$ is parallel to $T X$, and $B D$ to $T P, T P v F$ is a parallelogram, and $P v=T F$. But $P F=F T$ (Prop. 4), hence $P v=P F$.

By the preceding proposition, $\overline{B v}^{2}=4 P F \cdot P v=4 P F \cdot P F$
Whence, $B v=2 P F$; therefore, $2 B v=B D=4 P F$.
Hence the theorem; the parameter of any diameter, etc.

PROPOSITION XIX.--THEOREM.

The area of the portion of the parabola included between the curve, the ordinate from any of its points to the axis, and
the corresponding abscissa, is equivalent to two thirds of the rectangle contained by the abscissa and ordinate.

Let $V D$ be the axis of a parabola, and VIP any portion of the curve. Draw the extreme ordinate $P D$ to the axis, and complete the rectangle $V A P D$; then will the area included between the curve
 $V I P$, the ordinate $P D$, and the abscissa $V D$, be equivalent to two thirds of the rectangle VAPD.

Take any point I, between P and the vertex, and draw $P I$, producing it to meet the axis produced at E.
Now, from the similar triangles, $P Q I$ and $P D E$, we get the proportion

$$
\begin{equation*}
P Q: Q I:: P D: D E: \tag{1}
\end{equation*}
$$

Whence $\quad P Q \cdot D E=Q I \cdot P D=G D \cdot P D$.
If we suppose the point I to approach P, the secant line $P E$ will, at the same time, approach the tangent $P T$; and finally, when I comes indefinitely near to P, the secant will sensibly coincide with the tangent $P T$, and $D E$ may then be replaced by $D T=2 D V=2 P A$. Under this supposition, eq. (1) becomes

$$
2 P Q \cdot P A=P D \cdot G D .
$$

That is, when the rectangles $G D P H$ and $A^{*} P Q C$ become indefinitely small, we shall have

$$
\text { Rect. } G D P H=2 \text { Rect. } A P Q C \text {. }
$$

We will call Rect. GDPH the interior rectangle, and Rect. $A P Q C$ the exterior rectangle. If another point be taken very near to I, and between it and the vertex, and with reference to it the interior and exterior rectangles be constructed as before, we should again have the interior equivalent to twice the exterior rectangle. Let us conceive this process to be continued until all possible interior and exterior rectangles are constructed ; then would we have

Sum interior rectangles $=2$ sum exterior rectangles.

But, under the supposition that these rectangles are indefinitely small, the sum of the interior rectangles becomes the interior curvilinear area, and the sum of the exterior rectangles the exterior curvilinear area, and the two sums make up the rectangle $A P D V$. Therefore, if this rectangle were divided into three equal parts, the interior area would contain two of these parts.
Hence the theorem ; the area of the portion of the, etc.

PROPOSITION XX.-THEOREM.

If a parabola be revolved on its axis, the solid generated will be equivalent to one half of its circumscribing cylinder.

Con eive the parabola in the figure, which is constructed as in the last proposition, to revolve on its axis $V D$. We are then to find the measure of the volume generated.
The rectangle $I D$ will generate a cylinder having $D Q$ for the radi-
 us of its base, and $D G$ for its axis; and the rectangle $A I$ will generate a cylindical band, whose length is $C I$, and thickness $P Q$.
The solidity of the cylinder $=\pi \overline{D Q}^{2} \cdot D G$
The solidity of the band $=\pi\left(\overline{P D}^{2}-\overline{D Q}^{2}\right) \cdot V G=$ $\pi\left[P D^{2}-(P D-P Q)^{2}\right] \cdot V G=\pi\left[2 P D \cdot P Q-\overline{P Q}^{2}\right] \cdot V G$

Now, under the supposition that the point I is indefinitely near to $P, D Q$ may be replaced by $P D, V G$ by $V D$, , and $\overline{P Q}^{2}$ may be neglected as insensible in comparison with $2 P D \cdot P Q$. These conditions being introduced in the above expressions for the solidities of the cylinder and band, they become

> The solidity of the cylinder $=\pi \overline{P D}^{2} \cdot D G$ The solidity of the band $=2 \pi P D \cdot P Q \cdot V D$

Whence,
sol. of cylinder: sol. of band : : $\overline{P D}^{2} \cdot D G: 2 P D \cdot P Q \cdot V D(1)$
But, when I and P are sensibly the same point,

$$
P Q: G D:: P D: 2 V D
$$

therefore,

$$
2 V D \cdot P Q=P D \cdot G D, \text { or } 2 V D \cdot P Q \cdot P D=\overline{P D}^{2} \cdot D G
$$

The terms in the last couplet of proportion (1) are therefore equal, and we have
sol. of cylinder : sol. of band : : $1: \mathbf{1}$
or sol. of cylinder $=$ sol. of band.
In the same manner we may prove that any other interior cylinder is equivalent to the corresponding exterior band. Hence the sum of all the possible interior solids is equivalent to the sum of the exterior solids. But the two sums make up the cylinder generated by the rectangle $V D \rho^{\prime} A$; therefore either sum is equivalent to one half of the cylinder.

Hence the theorem; if a parabola be revolved, etc.
Remark.-The body generated by the revolution of a parabola about its axis is called a Paraboloid of Revolution.

PROPOSITION XXI.-THEOREM.

If a cone be cut by a plane parallel to one of its elements, the section will be a parabola.

Let $M V N$ be a section of a cone by a plane passing through its axis, and in this section draw $A H$ parallel to the element $V M$. Through $A H$ conceive a plane to be passed perpendicnlar to the plane $M V N$; then will
 the section $D A G I$ of the cone made by this last plane, be a parabola. In the plane $M V N$, draw $M N$ and $K L$ perpendicular to the axis of the cone, and through them, pass planes perpendicular to this axis. The sectious of the cone, by these planes, will be circles,
of which $M N$ and $K L$, respectively, are the diameters. Through the points F and H, in which $A H$ meets $K L$ and $M N$, draw in the section $D A G I$ the lines $F G$ and $H I$, perpendicular to $A H$. Because the planes DAI and $M V N$ are at right angles to each other, $F G$ is perpendicular to $K L$, and $H I$ is perpendicular to $M N$.

Now, from the similar triangles $A F L, A H N$, we have

$$
\begin{equation*}
A F: A H:: F L: H N \tag{1}
\end{equation*}
$$

By reason of the parallels, $K F=M H$; multiplying the first term of the second couplet of proportion (1) by $K F$, and the second term by $M H$, it becomes

$$
\begin{equation*}
A F: A H:: F L \cdot K F: H N \cdot M H \tag{2}
\end{equation*}
$$

But $F G$ is an ordinate of the circle of which $K L$ is the diameter, and $H I$ an ordinate of the circle of which $M N$ is the diameter: therefore
$F L \cdot K F=\overline{F G}^{2}$, and $H N \cdot M H=\overline{H I}^{2}$ (Cor., Th. 17, B. III, Geom.)

Substituting, for the terms of the second couplet, in proportion (2), these values, it becomes

$$
A F: A H:: \overline{F G}^{2}:{\overline{H l^{2}}}^{2}
$$

This proportion expresses the property that was demonstrated in proposition 15 to belong to the parabola.

Hence the theorem; if a cone be cut by a plane, etc.
Cor. From the proportion, $A F: A H:: \overline{F G}^{2}: \overline{H I}^{2}$ we get $\frac{\overline{F G}^{2}}{A F}=\frac{\overline{H I}^{2}}{A H}$; that is, $\frac{\overline{F G}^{2}}{A F}$ or $\frac{\overline{H I}^{2}}{A H}$, which is a third proportional to any abscissa and the corresponding ordinate of the section, is constant, and (by Def. 8) is the parameter of the section.

THE HYPERBOLA.

DEFINITIONS.

1. The Hyperbola is a plane curve, generated by the motion of a point subjected to the condition that the difference of its distances from two fixed points shall be constantly equal to a given line.

Remark 1.-The distance between the foci is also supposed to be known, and the given line must be less than the distance between the fixed points ; that is, less than the distance between the foci.

Remark 2.-The ellipse is a curve confined by two fixed points called the foci; and the sum of two lines drawn from any point in the curve is constantly equal to a given line. In the hyperbola, the difference of two lines drawn from any point in the curve, to the fixed points, is equal to the given line. The ellipse is but a single curve, and the foci are within it ; but it will be shown in the course of our investigation, that

The hyperbola consists of two equal and opposite branches, and the least distance between them is the given line.
2. The Center of the hyperbola is the middle point of the straight line joining the foci.
3. The Eccentricity of the hyperbola is the distance from the center to either focus.
4. A Diameter of the hyperbola is a straight line passing through the center, and terminating in the opposite branches of the curve. The extremities of a diameter called its vertices.
5. The Major, or Transverse Axis, of the hyperbola is the diameter that, produced, passes through the foci.
6. The Minor, or Conjugate Axis, of the hyperbola bisects the major axis at right-angles; and its half is a mean proportional between the distances from either focus to the vertices of the major axis.
7. An Ordinate to a diameter of the hyperbola is a straight line, drawn from any point of the curve to meet the diameter produced, and is parallel to the tangent at the vertex of the diameter.
8. An Abscissa is the part of the diameter produced that is included between its vertex and the ordinate.
9. Conjugate Hyperbolas are two hyperbolas so related that the major and minor axes of the one are, respectively, the minor and major axes of the other.
10. Two diameters of the hyperbola are conjugate, when either is parallel to the tangent lines drawn through the vertices of the other.

The conjugate to a diameter of one hyperbola will terminate in the branches of the conjugate hyperbola.
11. The Parameter of any diameter of the hyperbola is a third proportional to that diameter and its conjugate.
12. The parameter of the major axis of the hyperbola is called the principal parameter, the latus-rectum, or simply the parameter ; and it will be proved to be equal to the chord of the hyperbola through the focus and at rightangles to the major axis.
Explanatory Remarks.-Thus, let $F^{v} F$ be two fixed points. Draw a line between them, and bisect it in C. Take $C A, C A^{\prime}$, each equal to one half the given line, and $C A$ may be any distance less than $C F ; A^{\prime} A$ is the given line, and is called
 the major axis of the hyperbola. Now, let us suppose the curve already found and represented by $A D P$. Take any point, as P, and join P, F and P, F^{\prime}; then, by Def. 1, the difference between $P F^{\prime}$
and $P F$ must be equal to the given line $A^{\prime} A$; and conversely, if $P F^{\prime}-P F=A^{\prime} A$, then P is a point in the curve.

By taking any point, P, in the curve, and joining P, F^{\prime} and $P, F^{\prime \prime}$ a triangle $P F F^{\prime}$ is always formed, having $F^{\prime} F$ for its base, and $A^{\prime} A$ for the difference of the sides; and these are all the conditions necessary to define the curve.

As a triangle can be formed directly opposite $P F^{\prime \prime} F$, which shall be in all respects exactly equal to it, the two triangles having $F^{\prime} F^{\prime}$ for a common side; the difference of the other two sides of this opposite triangle will be equal to $A^{\prime} A$, and correspond with the condition of the curve.

Hence, a curve can be formed about the focus F^{\prime}, exactly similar and equal to the curve about the focus F.

We perceive, then, that the hyperbola is composed of two equal curves called branches, the one on the right of the center and curving around the right-hand focus, and the other on the left of the center and curving around the left-hand focus. In like manner, by making $C B$ equal to a mean proportional between
 $F A$ and $F A^{\prime}$, and constructing above and below the center the branches of the hyperbola of which $B B^{\prime}=2 C B$ is the major, and $A A^{\prime}$ the minor axis, we have the hyperbola which is conjugate to the first. $\quad P P^{\prime \prime}$ is a diameter of the hyperbola, $P T$ a tangent line through the vertex of the diameter, and $Q Q^{\prime}$, parallel to $P T$ and terminating in the branches of the conjugate hyperbola, is conjugate to the diameter $P P^{\prime} . \quad H D$ is the ordinate from the point $I I$ to the diameter $C P$, and $P D$ is the corresponding abscissa.

PROPOSITION I.-PROBLEM.

To describe an hyperbola mechanically.

Take a ruler, $F^{\prime} H$, and fasten one end at the point $F^{\prime \prime}$, on which the ruler may turn as a hinge. At the other end, attach a thread, the length of which is less than that of the
ruler by the given line $A^{\prime} A$. Fasten the other end of the thread at F. With the pencil, P, press the thread against the ruler, and keep it at equal tension between the points H and F. Let the ruler turn on the point $F^{\prime \prime}$, keeping the pencil close
 to the ruler and letting the thread slide round the pencil; the pencil will thus describe a curve on the paper.

If the ruler be changed, and made to revolve about the other focus as a fixed point, the opposite branch of the curve can be described.

In all positions of P, except when at A or $A^{\prime}, P F^{\prime}$ and $P F$ will be two sides of a triangle, and the difference of these two sides is constantly equal to the difference between the ruler and the thread; but that difference was made equal to the given line $A^{\prime} A$; hence, by Definition 1 , the curve thus described must be an hyperbola.

Cor. From any point, as P, of the hyperbola, draw the ordinate $P D$ to the major axis, and produce this ordinate to P^{\prime}, making $D P^{\prime}$ equal to $P D$; and draw $F P, F P^{\prime}$, $F^{\prime \prime} P$ and $F^{\prime \prime} P^{\prime}$. Then, because $F^{\prime \prime} D$ is a perpendicular to $P P$ at its middle point, we have $F P=F P^{\prime}$, and $F^{\prime \prime} P=$ $F^{\prime \prime} P^{\prime \prime}$; whence
$F^{\prime} P-F P=F^{\prime} P^{\prime}-F P^{\prime}$, and P^{\prime} is a point of the hyperbola. Therefore, $P P^{\prime}$ is a chord of the hyperbola at right angles to the major axis, and is bisected by this axis; and as the same may be proved for any other chord drawn at right angles to the major axis, we conclude that

All chords of the hyperbola which are drawn at right angles to the major axis are bisected by that axis. It may be proved, in like manner, that

All chords of the hyperbola which are drawn at right angles to the conjugate axis are bisected by that axis.

PROPOSITIONII.-THEOREM.

If a point be taken within either branch of the hyperbola, or on the concave side of the curve, the difference of its distances from the foci will be greater than the major axis; and if a point be taken without both branches, or on the convex side of both curves, the difference of its distances from the foci will be less than the major axis.

Let $A A^{\prime}$ be the major axis, and F and $F^{\prime \prime}$ the foci of an hyperbola. Within the branch $A P X$ take any point, Q, and draw $F Q$ and $F^{\prime} Q$; then we are to prove

First.-That $F^{\prime \prime} Q-F Q$ is greater than $A A^{\prime}$.
Since Q is within the branch $A P X$, the line $F^{\prime \prime} Q$ must cut the curve at some point, as P. Draw $P F$ and $F Q$.

By the definition of the hyperbola, $F^{\prime \prime} P-P F=A A^{\prime}$. Adding $P Q+P F$ to both members of this equation, it becomes
or,

$$
F^{\prime} P-P F+P Q+P F=A A^{\prime}+P Q+P F
$$

But $P Q$ and $P F$ being two sides of the triangle $F P Q$, are together greater than the third side $F Q$. Therefore $F^{\prime} Q>A A^{\prime}+F Q$; and, by taking $F Q$ from both members of this inequality, we have

$$
F^{\prime} Q-F Q>A A^{\prime}
$$

Second.-Take any point, q, without both branches of the hyperbola, and join this paint to either focus, as F. Then since q is without the branch $A P \dot{F}$, the line $q F$ must cut the curve at some point, P. Draw $q F, q F^{\prime \prime}$, and $P F^{\prime \prime}$.

Because P is a point on the curve, we have $P F^{\prime \prime}-P F$ $=A A^{\prime}$. Adding $P q+P F$ to the members of this equation it becomes

$$
\begin{aligned}
& P F^{\prime \prime}-P F+P q+P F=A A^{\prime}+P F+P q \\
\text { or, } & P F^{\prime \prime}+P q=A A^{\prime}+P F+P q=A A^{\prime}+q F .
\end{aligned}
$$

But $P F^{\prime \prime}$ and $P q$, being two sides of the triangle $F^{\prime \prime} P q$, are together greater than the third side $q F^{\prime \prime}$. Whence $q F^{\prime \prime}<A A^{\prime}+q F^{\prime}$; and by taking $q F$ from both members of this inequality, we have $q F^{\prime}-q F<A A^{\prime}$.
Hence the theorem ; if a point be taken, etc.
Cor. Conversely: If the difference of the distances from any point to the foci of an hyperbola be greater than the major axis, the point will be within one of the branches of the curve; and if this difference be less than the major axis, the point will be without both branches.
For, let the point Q be so taken that $F^{\prime \prime} Q-F Q>A A^{\prime}$; then the point Q cannot be on the curve; for in that case we should have $F^{\prime \prime} Q-F Q=A A^{\prime}$. And it cannot be without both branches of the curve, for then we should have $F^{\prime \prime} Q-F Q<A A^{\prime}$, from what is proved above. But it is contrary to the hypothesis that $F^{\prime \prime} Q-F Q$ is either equal to or less than $A A^{\prime}$; hence the point Q must be within one of the branches of the hyperbola.

In like manner we prove that, if the point q be so chosen that $q F^{\prime \prime}-q F<A A^{\prime}$, this point must be without both branches of the hyperbola.

PROPOSITIONIII.-THEOREM..

A tangent to the hyperbola bisects the angle contained by lines drawn from the point of contact to the foci.
Let $F^{\prime \prime}, F$ be the foci, and $\cdot P$ any point on the curve; draw $P F^{\prime}, P F$ and bisect the angle $F^{\prime \prime} P F$ by the line $T T^{\prime}$; this line will be a tangent at P.

If $T T^{\prime \prime}$ be a tangent at P, ev-
 ery other point on this line will be without the curve.

Take $P G=P F$ and draw $G F$; $T T^{\prime \prime}$ bisects $G F$, and any point in the line $T^{\prime \prime}$ is at equal distances from F^{\prime} and G (Scho. 1, Th. 18, B. I, Geom). By the definition of the curve, $k^{\prime \prime} G=A^{\prime} A$ the given line. Now take any other point than P in $T T^{\prime \prime}$, as E, and draw $E F^{\prime \prime}, E F$ and $E G$.

Because $E F$ is equal to $E G$ we have

$$
E F^{\prime \prime}-E F=E F^{\prime \prime}-E G
$$

But $E F^{\prime \prime}-E G$, is less than $F^{\prime} G$, because the difference of any two sides of a triangle is less than the third side. That is, $E F^{\prime \prime}-E F$ is less than $A^{\prime} A^{\circ}$; consequently the point E is without the curve (Prop. 2), and as E is any point on the line $T T^{\prime \prime}$, except P, therefore, the line $T T^{\prime}$, which bisects the angle at P, is a tangent to the curve at that point.

Hence the theorem ; a tangent to the hyperbola, etc.
Scholium.-It should be observed that by joining the variable point, P, in the curve, to the two invariable points, $F^{\prime \prime}$ and F, we form a triangle; and that the tangent to the curve at the point P, bisects the angle of that triangle at P.

But when any angle of a triangle is bisected, the bisecting line cuts the base into segments proportional to the other sides. (Th. 24, B. II, Geom).

Therefore, $\quad F^{\prime \prime} P: P F=F^{\prime \prime} T: T F$
Represent $F^{\prime \prime} P$ by r^{\prime} and $P F$ by r;
then

$$
r^{\prime}: r=F^{\prime \prime} T: T F
$$

But as r^{\prime} must be greater than r by a given quantity, a, therefore,

$$
r+a: r=F^{\prime \prime} T: T F
$$

Or,

$$
1+\frac{a}{r}: 1=F^{\prime \prime} T^{\prime}: T F^{\prime}
$$

Let it be observed that a is a constant quantity, and r a variable one which can increase without limit; and when r is immensely great in respect to a, the fraction $\frac{a}{r}$ is extremely minute, and the first term of the above proportion would not in any practical sense differ from the second; therefore, in that case, the third term would not essen-
tially differ from the fourth; that is, $F^{\prime \prime} T$ does not essentially differ from $F^{\prime} T$ when r, or the distance of P from F^{\prime} is immensely great. Hence, the tangent at any point P, of the hyperbota, can never cross the line $F F^{\prime \prime}$ at its middle point, but it may approach within the least imaginable distance to that point.

If, however, we conceive the point P to be removed to an infinite distance on the curve, the tangent at that point would cut $A A^{\prime}$ at its middle point C, and the tangent itself is then called an asymptote.

PROPOSITION IV.-THEOREM.

Every diameter of the hyperbola is bisected at the center.
Let F^{\prime} and $F^{\prime \prime}$ be the foci, and $A A^{\prime}$ the major axis of an hyperbola. Take any point, as P, in one of the branches of the curve; draw $P F$ and $P F^{\prime \prime}$, and complete the parallelogram $P F P^{\prime} F^{\prime \prime}$.

We will now prove that P^{\prime} is a
 point in the opposite branch of the hyperbola, and that $P P^{\prime}$ passes through, and is bisected at, the center, C.

Because $P F P^{\prime} F^{\prime \prime}$ is a parallelogram, the opposite sides are equal; therefore $F^{\prime \prime} P-P F=F P^{\prime}-P^{\prime} F^{\prime \prime}$; but since F is, by hypothesis, a point of the hyperbola, $F^{\prime} P-P F=$ $A A^{\prime}$; hence $F P^{\prime}-P^{\prime} F^{\prime \prime}=A A^{\prime}$, and P^{\prime} is also a point of the hiperbola.

Again, the diagonals, $F^{\prime} F, P^{\prime} P$ of the parallelogram, mutually bisect each other; hence C is the middle point of the line joining the foci, and (Def. 2) is the center of the hyperbola. $P P^{\prime}$ is therefore a diameter, and is bisected at the center, C.

Hence, the theorem; every diameter of the hyperbola, etc.

PROPOSITION V.-THEOREM.

Tangents to the hyperbola at the vertices of a diameter are parallel to each other.

At the extremities of the diameter, $P P^{\prime}$, of the hyperbola represented in the figure, draw the tangents $T T^{\prime \prime}$ and $V V^{\prime}$. We are now to prove that these tangents are parallel. By proposition (Prop. 3) $T T^{\prime \prime}$ bisects the angle $F P F^{\prime \prime}$, and
 $V V^{\prime}$ also bisects the angle $F^{\prime \prime} P^{\prime} F^{\text {. But these angles being }}$ the opposite angles of the parallelogram $F P F^{\prime \prime} P^{\prime}$, are equal; therefore the $\left\llcorner T^{\prime} P F=\right.$ the $\left\llcorner P T^{\prime} F=\right.$ the $L V P^{\prime} F$. But the L 's $P T^{\prime} F, V P^{\prime} F$, formed by the line $F P^{\prime}$ meeting the tangents, are opposite exterior and interior angles. The tangents are therefore parallel (Cor. 1, Th. 7, B. I, Geom).

Hence the theorem; tangents to the hyperbola, etc.

PROPOSITION VI.-THEOREM.

The perpendiculars let fall from the foci of an hyperbola on any tangent line to the curve, intersect the tangent on the circumference of the circle described on the major axis as a diameter.

In the hyperbola of which $A A^{\prime}$ is the major axis, F and $F^{\prime \prime}$ the foci, and C the center, take any point in one of the branches, as P, and through it draw the tangent line $T H^{\prime}$. From the foci let fall on the tangent the perpendic-
 ulars $F H, F^{\prime} H^{\prime}$, draw $P F$ and $P F^{\prime \prime}$, and produce $F H$ to intersect $P F^{\prime \prime}$ in G. We are now to prove that H and H^{\prime} are in the circumference of a circle of which $A A^{\prime}$ is the diameter.

Draw $C H$, producing it to meet $F^{\prime \prime} H^{\prime}$ in Q. Then, because $P H$ is a tangent to the curve, it bisects the angle $F P F^{\prime \prime}$; the:efore the right-angled triangles, $F P H$ and
$H P G$, being mutually equiangular, and having the side $P H$ common, are equal. Whence, $F H=H G$ and $P F=$ $P G$. But, by the definition of the hyperbola, $F^{\prime \prime} P-P F$ $=A A^{\prime}$; hence $F^{\prime \prime} P-P G=F^{\prime \prime} G=A A^{\prime}$.

Since $C H$ bisects the sides $F^{\prime \prime} F$ and $F G$ of the triangle $F G F^{\prime \prime}$, we have

$$
F^{\prime \prime} F: F C:: F^{\prime} G: C H
$$

but $\quad F^{\prime \prime} F=2 F C$; therefore $F^{\prime \prime} G=2 C H=A A^{\prime}$
If then with C as a center and $C A$ as a radius, a circumference be described, it will pass through the point H.

Again; the triangles $F H C$ and $F^{\prime \prime} C Q$ are in all respects equal; hence $C Q=C H$, and Q is als a point in the circumference of the circle of which $A A^{\prime}$ is the diameter. Therefore, the right-angled triangle $Q H^{\prime} H$, having for its hypotenuse a diameter $H Q$ of this circle, must have the vertex, H^{\prime} of its right angle at some point in the circumference.

Hence the theorem; the perpendiculars let fall, etc.

PROPOSITION VII.-THEOREM.

The product of the perpendiculars let fall from the foci of an hyperbola upon a tangent to the curve at any point, is equal to the square of the semi-minor axis.

Resuming the figure of the preceding proposition; then, since the semi-minor axis, which we will represent by B, is a mean proportional between the distances from either focus to the extremities of the major axis, we are to prove
 that

$$
B^{2}=F A \times F A^{\prime}=F H \times F^{\prime \prime} H^{\prime}
$$

By the construction, the triangles $F H C$ and $C Q F^{\prime \prime}$ are equal; therefore $\quad F H=F^{\prime \prime} Q$

Multiplying both members of eq. (1) by $F^{\prime \prime} H^{\prime}$ it becomes

$$
\begin{equation*}
F H \cdot F^{\prime} H^{\prime}=F^{\prime} Q \cdot F^{\prime} H^{\prime} \tag{2}
\end{equation*}
$$

Again, it was proved in the last proposition that the points H, H^{\prime} and Q were in the circumference of the circle described on $A A^{\prime}$ as a diameter; therefore $F^{\prime \prime} H^{\prime}$ and $F^{\prime \prime} A$ are secants to this circumference, and we have $F^{\prime \prime} Q: F^{\prime \prime} A^{\prime}: F^{F^{\prime} A: F^{\prime \prime} H^{\prime} \quad \text { (Cor., Th. 18, B. III, Geom). }}$ Whence, $\quad F^{\prime \prime} Q \cdot F^{\prime \prime} H^{\prime}=F^{\prime \prime} A^{\prime} \cdot F^{\prime \prime} A$
But $F^{\prime \prime} A^{\prime}=F A, F^{\prime \prime} A=F A^{\prime}$, and $F^{\prime} Q=F H$. Making these substitutions in eq. (3) it becomes

$$
F H \cdot F^{\prime} H^{\prime}=F A \cdot F A^{\prime}=B^{2} .
$$

Hence the theorem: the product of the perpendiculars, etc.
Cor. 1. The triangles $P F H, P F^{\prime} H^{\prime}$ are similar ; therefore, $\quad P F: P F^{\prime \prime}:: F H: F^{\prime \prime} H^{\prime}$
That is: The distances from any point on the hyperbola to the foci, are, to each other, as the perpendiculars let fall from the foci upon the tangent at that point.

Cor. 2. From the proportion in corrollary 1, we get
$F H=\frac{P F^{\prime} \cdot F^{\prime \prime} H^{\prime}}{P F^{\prime}}$; whence $\overline{F H^{2}}=\frac{P F^{\prime} \cdot F^{\prime} H^{\prime} \cdot F H}{P F^{\prime}}$
But by the proposition, $F^{\prime \prime} H^{\prime} \cdot F H=B^{2}$;
therefore, $\overline{F H}^{2}=\frac{B^{2} \cdot P F}{P F^{\prime}}=\frac{B^{2} \cdot P F}{2 C A+P F}$, because $F^{\prime} G=$ $A A^{\prime}=2 C A$, and $P G=P F$.

In like manner it may be proved that

$$
\overline{F^{\prime} H^{\prime}}=\frac{B^{2} \cdot P F^{\prime}}{P F}=\frac{B^{2}(2 C A+P F)}{P F^{\prime}}
$$

PROPOSITION VIII.-THEOREM.

If a tangent be drawn to the hyperbola at any point, and also an ordinate to the major axis from the point of contact, then will the semi-major axis be a mean proportional between the
distance from the center to the foot of the ordinate, and the distance from the center to the intersection of the tangent with this axis.

Let $A A^{\prime \prime}$ be the major axis, $F F^{\prime}$ the foci and C the center of the hyperbola. Through any point, as P, taken on one of the branches, draw the tangent $P T$ intersecting the axis at T; also draw $P F$, $P F^{\prime \prime}$ to the foci, and the ordinate
 $P M$ to the axis. We are now to prove that

$$
C T: C A:: C A: C M
$$

Because $P T$ bisects the vertical angle of the triangle $F P F^{\prime \prime}$ (Prop. 3), it divides the base into segments proportional to the adjacent sides (Th. 24, B. II, Geom.)

Therefore, $\quad F^{\prime} T: T F:: F^{\prime} P: P F$.
Whence, $F^{\prime \prime} T-T F^{\prime}: F^{\prime} T+T F:: F^{\prime \prime} P-P F: F^{\prime \prime} P+P F$
That is, $\quad 2 C T: F^{\prime} F:: A A^{\prime}=2 C A: F^{\prime} P+P F$
Or, by inverting the means,

$$
\begin{equation*}
2 C T: 2 C A:: F^{\prime} F: F^{\prime} P+P F \tag{1}
\end{equation*}
$$

Now, making $M F^{\prime \prime}=M F$, and drawing $P F^{\prime \prime}$, we have, from the triangle $F^{\prime \prime} P F^{\prime \prime}$,

$$
\begin{array}{r}
F^{\prime \prime} F^{\prime \prime}: F^{\prime \prime} P+P F^{\prime \prime}:: F^{\prime \prime} P-P F^{\prime \prime}: F^{\prime \prime} M-M F^{\prime \prime} \\
\text { (Prop } 6, \text { Pl. Trig.) }
\end{array}
$$

But, because the triangle $F P F^{\prime \prime}$ is isosceles, and $P M$ is a perpendicular from the vertical angle upon the base, $P F=P F^{\prime \prime}, F^{\prime \prime} F^{\prime \prime}=F^{\prime \prime} F+2 F M=2 C F+2 F M=2 C M$;
therefore the preceding proportion becomes

$$
\begin{array}{ll}
& 2 C M: F^{\prime} P+P F:: 2 C A: F^{\prime} F \\
& \tag{2}\\
\text { or, } & \\
2 C M: 2 C A:: F^{\prime} P+P F: F^{\prime} F
\end{array}
$$

Multiplying proportions (1) and (2), term by term, observing that the terms of the second couplet of the resulting proportion are equal, we have

$$
4 C T \cdot C M: \overline{4 C A}^{2}:: 1: 1
$$

Whence, $\quad C T \cdot C M=\overline{C A}^{2}$;
which, resolved into a proportion, becomes

$$
C T: C A:: C A: C M .
$$

Hence the theorem; if a tangent be drawn, etc.
Scholium.-The property of the hyperbola demonstrated in this proposition is not restricted to the major axis, but also holds true in reference to the minor axis.

The tangent intersects the minor axis at the point t, and $P G$ is an ordinate to this axis from the point of contact. Now, the similar triangles $t C T, T H F$, give the proportion

$$
\begin{equation*}
C t: F H:: C T: T H \tag{1}
\end{equation*}
$$

and from the similar triangles $P M T, T F^{\prime \prime} H^{\prime}$, we also have

$$
\begin{equation*}
P M: F^{\prime \prime} H^{\prime}:: M T: H^{\prime} T \tag{2}
\end{equation*}
$$

Multiplying proportions (1) and (2), term by term, we get

$$
\begin{equation*}
C t \cdot P M: F H \cdot F^{\prime} H^{\prime}:: C T \cdot M T: T H \cdot H^{\prime} T \tag{3}
\end{equation*}
$$

But $F H \cdot F^{\prime} H^{\prime}=B^{2}$ (Prop. 7). Moreover, drawing the ordinate $T V$, and the radius $C V$ of the circle, and the line $V \Lambda$, we have by the proposition
or, $\quad C T: C V:: C V: C M$
Therefore, the triangles $V C T$ and $M C V$, having the angle C common and the sides about this angle proportional, are similar (Cor. 2, Th. 17, B. II, Geom.); and bccause the first is right-angled, the second is also right-angled, the right angle being at V; hence

$$
\overline{V T}^{2}=C T \cdot M T(\mathrm{Th} .25, \mathrm{~B} . \mathrm{II}, \text { Geom })
$$

Also, $A A^{\prime}$ and $H H^{\prime}$ are two chords of a circle intersecting each other at T; hence

$$
H T \cdot T H^{\prime}=A T \cdot T A^{\prime}=\overline{V T}^{2}(T h .17, \text { B. III, Geom })
$$

Substituting for the terms of proportion (3) these several values, it becomes

$$
C t \cdot P M: B^{2}:: \overline{V T}^{2}: \overline{V T}^{2}:: 1: 1
$$

Whence, $C t \cdot P M=B^{2}$
Therefore,
$C t: B:: B: P M=C G$

Cor. It has been proved that the triangle $C V M$ is rightangled at V; therefore, $V M$ is a tangent at the point V to the circumference on $A A^{\prime}$ as a diameter, and $T M$ is its sub-tangent. But $T M$ is also the sub-tangent on the major axis of the hyperbola answering to the tangent $P T$; hence

If a tangent be drawn to the hyperbola at any point, and through the point in which the tangent intersects the major axis an ordinate be drawn to the circle of which this axis is a diameter, the sub-tangent on the major axis corresponding to the tangent through the extremity of this ordinate will be the same as that of the tangent to the hyperbola.

PROPOSITION IX.-THEOREM.

In any hyperbola the square of the semi-major axis is to the square of the semi-minor axis, as the rectangle of the distances from the foot of any ordinate to the major axis, to the *vertices of this axis, is to the square of the ordinate.

Resuming the figure to Proposition 8 , the construction of which needs no further explanation, we are to prove that

$$
\overline{C A}^{2}: \overline{C B}^{2}:: A^{\prime} M \cdot A M: \overline{P M}^{2}
$$ assuming $C B$ to represent the

 semi-minor axis.

From the similar triangles $P M T, T H F$ and $T H^{\prime} F^{\prime}$, we derive the proportions

$$
\begin{gather*}
P M: F H:: M T: T H \\
\text { Whence } \frac{P M: F^{\prime} H^{\prime}:: M T: T H^{\prime}}{\overline{P M}^{2}: F H \cdot F^{\prime} H^{\prime}:: \overline{M T^{2}}: T H \cdot T H^{\prime}}
\end{gather*}
$$

But $F H \cdot F^{\prime} H^{\prime}$ is equal to the square of the semi-minor axis (Prop. 7); and because the chords, $H H^{\prime}$ and $A A^{\prime}$, of the circle intersect each other at T, we have
$T H \cdot T H^{\prime}=A T \cdot T A^{\prime}=\overline{V T}^{2} \quad$ (Th. 17, B. III, Geom.)
These values of the consequents of proportion (1) being substituted, it becomes

$$
\begin{equation*}
\overline{P M}^{2}: \overrightarrow{B C}^{2}:: \overline{M T}^{2}: \overline{V T}^{2} \tag{2}
\end{equation*}
$$

The triangles $C V T$ and $T V M$ are similar, and give the proportion

$$
\begin{equation*}
{\overline{M T^{2}}}^{2}:{\overline{V T^{2}}}^{2}:: \overline{V M}^{2}: \overline{C V}^{2}=\overline{C A}^{2} \tag{3}
\end{equation*}
$$

Comparing proportions (2) and (3), we find that

$$
\begin{equation*}
\overline{P M}^{2}: \overline{B C}^{2}:: \overline{V M}^{2}: \overline{C A}^{2} \tag{4}
\end{equation*}
$$

Because $M V$ is a tangent and $M A^{\prime}$ a secant to the circle $A V A^{\prime} H^{\prime}$, we have

$$
\overline{V M}^{2}=A^{\prime} M \cdot A M \text { (Tٌh. 18, B. III, Geom.) }
$$

Placing this value of $\overline{V M}^{2}$ in proportion (4) and inverting the means of the resulting proportion, it becomes

$$
\begin{array}{ll}
& \overline{P M}^{2}: A^{\prime} M \cdot A M:: \overline{B C}^{2}: \overline{C A}^{2} \\
\text { or, } & \overline{C A}^{2}: \overline{B C}^{2}:: A^{\prime} M \cdot A M: \overline{P M}^{2}
\end{array}
$$

Hence the theorem ; in any hyperbola the square of the, etc.
Cor. Proportion (4) above may be put under the form

$$
\begin{equation*}
\overline{C A}^{2}: \overline{B C}^{2}:: \overline{V M}^{2}: \overline{P M}^{2} \tag{a}
\end{equation*}
$$

and from the right-angled triangle $C V M$ we have

$$
\overline{C V}^{2}+\overline{V M}^{2}=\overline{C M}^{2}
$$

from which, because $C V=C A$, we get

$$
\overline{V M}^{2}={\overline{C M}^{2}-\overrightarrow{C A}^{2} .}^{2}
$$

Also, the right-angled triangles CVM, VTM are similar;
therefore, $\quad C M: V M:: V M: M T$
.Whence

$$
\overline{V M}^{2}=C M \cdot M T .
$$

Now, if in proportion (a) we place for $\overline{V M}^{2}$ these values, successively, we shall have the two proportions

$$
\begin{align*}
& \quad \overline{C A}^{2}: \overline{B C}^{2}:: C M \cdot M T: \overline{P M}^{2} \tag{b}\\
& \text { and } \quad \frac{\overline{C A}^{2}}{}: \overline{B C}^{2}:: \overline{C M}^{2}-\overline{C A}^{2}: \overline{P M}^{2}
\end{align*}
$$

Scholium 1. -Let us denote $C A$ by $a, C B$ by $b, C M$ by x, and $P M$ by y; then $A^{\prime} M=x+a$ and $A M=x-a$. Because $\overline{C M}^{2}-\overline{C A}^{2}$ $=(C M+C A)(C M-C A)=A M \cdot A M$, proportion (c), by substitution, now becomes

	$a^{2}: b^{2}::(x+a)(x-a):$
Whence	$a^{2} y^{2}=b^{2} x^{2}-a^{2} b^{2}$
or,	$a^{2} y^{2}-b^{2} x^{2}=-a^{2} b^{2}$.

This equation is called, in analytical geometry, the equation of the hyperbola referred to its center and axes, in which x, the distance from the center to the foot of any ordinate to the major axis, is called the $a b s c i s s a$. The equation $a^{2} y^{2}-b^{2} x^{2}=-a^{2} b^{2}$ therefore expresses the relation between the abscissa and ordinate of any point of the curve.

Scholium 2.-Let y^{\prime} denote the ordinate and x^{\prime} the abscissa of a second point of the hyperbola; then we shall have

$$
a^{2}: b^{2}::\left(x^{\prime}+a\right)\left(x^{\prime}-a\right): y^{\prime 2}
$$

Comparing this proportion with proportion (a^{\prime}), scholium 1, we find

$$
y^{2}: y^{\prime 2}::(x+a)(x-a):\left(x^{\prime}+a\right)\left(x^{\prime}-a\right)
$$

That is: In any hyperbola the squares of any two ordinates to the major axis are to each other, 'as the rectangles of the corresponding distances from the feet of these ordinates to the vertices of the axis.

A similar property was proved for the ellipse and the parabola.

PROPOSITION X.-THEOREM.

The parameter of the major axis, or the latus-rectum, of the hyperbola is equal to the double ordinate to this axis through the focus.

Through the focus F of the hyperbola, of which $A A^{\prime}$ is the major and $B B^{\prime}$ the minor axis, draw the chord $P P^{\prime}$ at right angles to the major axis; then denoting the parameter by P, we are to prove that

$$
A A^{\prime}: B B^{\prime}:: B B^{\prime}: P P^{\prime}=P
$$

(Def. 11.)

By definition $6, \overline{B C}^{2}=F A^{\prime} \cdot F A$, and by proposition 9 we have
${\overline{A C^{2}}}^{2}: \overline{B C}^{2}:: F A^{\prime} \cdot F A: \overline{P F}^{2}=\left(\frac{1}{2} P P^{\prime}\right)^{2}$ (Cor. Prop. 1.)
Whence $\overline{A C}^{2}: \overline{B C}^{2}:: \overline{B C}^{2}:\left(\frac{1}{2} P P^{\prime}\right)^{2}$
Therefore $A C: B C:: B C: \frac{1}{2} P P^{\prime}$ (Th. 10, B. II, Geom.)
Multiplying all the terms of this last proportion by 2, it becomes
or,

$$
\begin{aligned}
& 2 A C: 2 B C:: 2 B C: P P^{\prime} \\
& A A^{\prime}: B B^{\prime}:: B B^{\prime}: P P^{\prime}
\end{aligned}
$$

Hence the theorem; the parameter of the major axis, etc.

PROPOSITIONXI.-THEOREM.

If from the vertices of any two conjugate diameters of the hyperbola ordinates be drawn to either axis, the difference of the squares of these ordinates will be equal to the square of one half the other axis.

Let $A A^{\prime}, B B^{\prime}$ be the axes, and $P P^{\prime}, Q Q^{\prime}$ any two conjugate diameters of the conjugate hyperbolas represented in the figure. Then, drawing the ordinates $Q V, P M$, to the major axes, and the ordinates $P S=M C, Q D=V C$, to the minor axis, it is to be proved that

and that

$$
\overline{C A}^{2}=\overline{M C}^{2}-\overline{V C}^{2}
$$

Draw the tangents $P T$ and $Q t$, the first intersecting the major axis at T and the minor axis at $T^{\prime \prime}$, and the second intersecting the minor axis at t^{\prime} and the major axis at t.

Now, by proposition 8, we have, with reference to the tangent $P T$,

$$
C T: C A: \underset{\mathbf{F}}{C A}: C M
$$

and by the scholium to the same proposition, we also have, with ference to the tangent $Q t$ to the conjugate hyperbola,

$$
C t: C A^{\prime}=C A:: C A: C V
$$

The first proportion gives $\overline{C A}^{2}=C T \cdot C M$, and the second $\overline{C A}^{2}=C t \cdot C V$,

Whence $C T \cdot C M=C t \cdot C V$, which, in the form of a proportion, becomes

$$
\begin{equation*}
C M: C V:: C t: C T \tag{1}
\end{equation*}
$$

From the similar triangles $t C Q, C T P$, we get

$$
\begin{equation*}
C t: C T:: Q C: P T \tag{2}
\end{equation*}
$$

and from the triangles $C Q V, T P M$

$$
\begin{equation*}
Q C: P T:: C V: T M \tag{3}
\end{equation*}
$$

Comparing proportions (1), (2) and (3), it is seen that

$$
C M: C V:: C V: T M
$$

Whence $\overline{C V}^{2}=C M \cdot T M$; but $T M=C M-C T$;
Therefore $\quad \overline{C V}^{2}=\overline{C M}^{2}-C T \cdot C M$.
And because $C T \cdot C M=\overline{C A}^{2}$ (Prop. 8), we have

$$
\begin{aligned}
& \overline{C V}^{2}=\overline{C M}^{2}-\overline{C A}^{2} \\
& \overline{C A}^{2}=\overline{C M}^{2}-\overline{C V}^{2}
\end{aligned}
$$

Again we have

$$
C T^{\prime}: C B:: C B: P M \quad \text { (Scho., Prop. 8) }
$$

and. $C t^{\prime}: C B:: C B: C D=Q V$ (Prop. 8)
Whence $C T^{\prime} \cdot P M=C t^{\prime} \cdot Q V$, which, resolved into a proportion, becomes

$$
\begin{equation*}
P M: Q V:: C t^{\prime}: C T^{\prime} \tag{4}
\end{equation*}
$$

From the similar triangles, $T^{\prime \prime} C P, C t^{\prime} Q$, we get

$$
\begin{equation*}
C t^{\prime}: C T^{\prime}:: t^{\prime} Q: C P \tag{5}
\end{equation*}
$$

And from the triangles $t^{\prime} D Q, C P M$, we also get

$$
\begin{equation*}
t^{\prime} Q: C P:: t^{\prime} D: P M \tag{6}
\end{equation*}
$$

From proportions (4), (5) and (6) we deduce

$$
P M: Q V:: t^{\prime} D: P M
$$

Whence $\quad \overline{P M}^{2}=Q V \cdot t^{\prime} D$; but $t^{\prime} D=6-C t^{\prime}$;
therefore, $\overline{P M}^{2}=\overline{Q V}^{2}-C t^{\prime} \cdot Q V=\overline{Q V}^{2}-c l^{\prime} \cdot C D$.
And because $C t^{\prime} \cdot C D=C B^{2}$ (Prop. 8) we ave
or

$$
\begin{aligned}
& \overline{P M}^{2}=\overline{Q V}^{2}-\overline{C B}^{2} \\
& \overline{C B}^{2}=\overline{Q V}^{2}-\overline{P M}^{2}
\end{aligned}
$$

Hence the theorem; from the vertices of any two, etc.
Cor. By corollary to proposition 9 we have

$$
\overline{C A}^{2}: \overrightarrow{C B}^{2}:: \overline{C M}^{2}-\overline{C A}^{2}: \overline{P M}^{2}
$$

In like manner, in reference to the conjugate hyperbola, we shall have

$$
\begin{aligned}
& \overline{C B}^{2}: \overline{C A}^{2}:: \overline{C D}^{2}-\overline{C B}^{2}: \overline{Q D}^{2} \\
& \quad:: \overline{Q V}^{2}-\overline{C B}^{2}: \overline{C V}^{2} \\
& \overline{C B}^{2}: \overline{Q V}^{2}-\overline{C B}^{2}: \overline{C V}^{2}
\end{aligned}
$$

or,
By composition, $\overline{C B}^{2}: \overline{Q V}^{2}:: \overline{C A}^{2}: \overline{C A}^{2}+\overline{C V}^{2}$
But by this proposition we have

$$
\overline{C A}^{2}=\overline{C M}^{2}-\overline{C V}^{2} \text {; hence } \overline{C A}^{2}+\overline{C V}^{2}=\overline{C M}^{2}
$$

therefore
Whence
$C B: Q V:: C A: C M$
or,
$C A: C B: C M: Q V$

PROPOSITION XII.-THEOREM.

The difference of the squares of any two conjugate diameters of an hyperbola is constantly equal to the difference of the squares of the axes.

In the figure, which is the same as that of the preceding proposition, $P P^{\prime}$ and $Q Q^{\prime}$ are any two conjugate diameters (Def. 10). It is to be proved that

$$
{\overline{P P^{\prime}}}^{2}-{\overline{Q Q^{\prime}}}^{2}={\overline{A A^{\prime}}}^{2}-{\overline{B B^{\prime}}}^{2}
$$

By proposition 11 we have

$$
\begin{aligned}
& \text { and } \overline{C A}^{2}=\overline{C M}^{2}-\overline{C V}^{2} \\
& \text { and } \\
& \text { therefore } \frac{\overline{C B}^{2}=\overline{Q V}^{2}-\overline{P M}^{2}-{\overline{C B^{2}}}^{2}=\overline{C M}^{2}+\overline{P M}^{2}-\left(\overline{C V}^{2}+{\overline{Q V^{2}}}^{2}\right)}{\text { or, }} \begin{array}{l}
\overline{C B}^{2}=\overline{C P}^{2}-\overline{C Q}^{2}
\end{array}
\end{aligned}
$$

Multiplying each member of this equation by 4 , observing that $4 \overline{C A}^{2}={\overline{A A^{\prime}}}^{2}$ \&c., it becomes

$$
{\overline{A A^{\prime}}}^{2}-{\overline{B B^{\prime}}}^{2}={\overline{P P^{\prime}}}^{2}-{\overline{Q Q^{\prime}}}^{2}
$$

Hence the theorem ; the difference of the squares, etc.

PROPOSITION XIII.-THEOREM.

The parallelogram formed by drawing tangent lines through the vertices of any two conjugate diameters of the hyperbola is equivalent to the rectangle contained by the axes.

Let LMNO be a parallelogram formed by drawing tangent lines through the vertices of the two conjugate diameters $P P^{\prime}, Q Q^{\prime}$ of the conjugate hyperbolas represented in the figure. It is to be proved that area $L M N O=A A^{\prime} \times B B^{\prime}$.

We have CA:CB::CS:QV
(1) (Cor. Prop 11.)
Also,
$C T: C A: ~ C A: C S(2)$
(Prop. 8.)

Multiplying proportions (1) and (2), term by term, omitting in the first couplet of the result the common factor $C A$, and in the second the common factor $C S$, we find

$$
\begin{gathered}
C T: C B:: C A: Q V \\
C T \cdot Q V=C A \cdot C B
\end{gathered}
$$

But $C T \cdot Q V$ measures twice the area of the triangle $C Q T$, and this triangle is equivalent to the half of the parallelogram $Q C P L$, because they have the common base $Q C$ and are between the same parallels $Q C, L T(T h .30$, B. I, Geom.)

Now the parallelogram QCPL is one-fourth of the parallelogram LMNO, and $C A \cdot C B$ measures one fourth of the rectangle contained by the axes; therefore the parallelogram and rectangle are equivalent.

Hence the theorem ; the parallelogram formed, etc.

PROPOSITION XIV.-THEOREM.

If a tangent to the hyperbola be drawn through the vertex of the transverse axis, and an ordinateto any diameter be drawn from the same point, the semi-diameter will be a mean proportional between the distances, on the diameter, from the center to the tangent, and from the center to the ordinate.

Let $C A$ be the semi-major axis and $C P$ any semi-diameter of the hyperbola. Draw the tangents $A t, P T$, the ordinate $A H$ to the diameter, and the ordinate $P M$ to the major axis. It is
 now to be proved that $\overline{C P}^{2}=C t \cdot \mathrm{CH}$.

We have CT': CA : : CA:CM,
(Prop. 8)
also $C A: C t$: : $C M$: $C P$ from the similar \triangle 's $C A t, C M P$
Multiplying these proportions term by term, omitting in the result the common factor in the first couplet, and also that in the second, we find

$$
\begin{equation*}
C T: C t:: C A: C P \tag{1}
\end{equation*}
$$

Again we have
$C P$: $C T$: : $C H$: $C A$ from the similar \triangle 's $C P T, C H A$.
Proceeding with these last proportions as with those above, we find

Whence,

$$
C P: C t:: C H: C P
$$

Hence the theorem; if a tangent to the hyperbola, etc.
Cor. 1. From proportion (1) we get $C T \cdot C P=C t \cdot C A$; but the triangles $C T P, C A t$, having a common angle, C, are 8
to each other as the rectangles of the sides about this angle (Th. 23, B. II, Geom.) Therefore $\triangle C T P=\triangle C t A$.

Cor. 2. If from the equivalent areas $\triangle C T P, \triangle C t A$ we take the common area $C T V t$ there will remain $\triangle T A V=$ $\Delta t V P$.

Cor. 3. If we add to each of the triangles $T A V, t V P$, the trapezoid $V A M P$, we shall have area $\triangle T M P=$ area $t A M P$.

PROPOSITIONXV.-THEOREM.

If through any point of an hyperbola there be drawn a tangent, and an ordinate to any diameter, the semi-diameter will be a mean proportional between the distances on the diameter from the center to the tangent, and from the center to the ordinate.

Take any point as D on the hyperbola of which $C A$ is the semimajor axis, and through this point draw the tangent $D T$ and the semidiameter $C D$, also take any other point, as P, on the curve, and draw the tangent $P t$, the ordinate $P H$ to the diameter through D, and the ordinates $P Q$ and $D G$ to the axis. The semi-diameter $C D$ and the tangent $P l$ intersect each other at t^{\prime}. We will now prove that $\overline{(I D}{ }^{2}=C t^{\prime} \cdot C H$

Let $C B$ represent the semi-conjugate axis, then by corollary to proposition 9 (proportion (b)) we have

$$
\overline{C A}^{2}: \overline{C B}^{2}:: C G \cdot T G: \overline{D G}^{2}
$$

and

$$
\overline{C A}^{2}: \overline{C B}^{2}:: C Q \cdot t Q: \overline{P Q}^{2}
$$

Whence $C G \cdot T G: C Q \bullet t Q: \overline{D G}^{2}: \overline{P Q}^{2}$
but $\overline{D G}^{2}: \overline{P Q}^{2}:: \overline{T G}^{2}: \overline{L Q}^{2}$, from the similar $\Delta^{\prime} s$ $T G D, L Q P$;
therefore $\quad C G \cdot T G: C Q \cdot t Q:: \overline{T G}^{2}: \overline{L Q}^{2}$
Drawing $D m$ parallel to $P t$ we have the similar \triangle 's $m G D, t Q P$ which give the proportion

$$
\begin{equation*}
D G: P Q:: G m: Q t . \tag{2}
\end{equation*}
$$

The \triangle 's $T G D, L Q P$ also give

$$
\begin{equation*}
D G: P Q:: T G: L Q \tag{3}
\end{equation*}
$$

From proportions (2) and (3) we get

$$
\begin{equation*}
T G: L Q:: G m: Q t \tag{4}
\end{equation*}
$$

Multiplying proportions (1) and (4) term by term, there results,

$$
C G \cdot \overline{T G}^{2}: C Q \cdot t Q \cdot L Q:: \overline{T G}^{2} \cdot G m: \overline{L Q}^{2} \cdot Q t
$$

Dividing the first and third terms of this proportion by $\overline{T G}^{2}$ and the second and fourth terms by $Q t \cdot L Q$ it becomes

$$
\begin{align*}
& C G: C Q:: G m: L Q \\
& C G: G m: C Q: L Q \tag{5}
\end{align*}
$$

or
Whence $C G: C G-G m:: C Q: C Q-L Q$
That is $\quad C G: C m:: C Q: C L$
Again $\quad C T \cdot C G=\overline{C A}^{2}=C Q \cdot C t$, (Prop. 8.)
therefore $\quad C G: C t:: C Q: C T$
The antecedents in this last proportion and in proportion (6) are the same, the consequents are therefore proportional, and we have

$$
C t: C T:: C m: C L
$$

We have also, $C m: C D:: C t: C t^{\prime}$ from the similar Δ 's CmD , Ctt'

And $C T$: $C D:$: $C L: C H$ from the similar \triangle 's $C T D$ CLH
By the multiplication of the last three proportions term by term we find

$C t \cdot C m \cdot C T: \overline{C D}^{2} \cdot C T:: C m \cdot C t \cdot C L: C L \cdot C t^{\prime} \cdot C H$	
Whence	$C T: \overline{C D}^{2} \cdot C T:: C L: C L \cdot C t^{\prime} \cdot C H$
or	$1: \overline{C D^{2}}:: 1: C t^{\prime} \cdot C I I$
therefore	$\frac{C D}{}{ }^{2}=C t^{\prime} \cdot C H$

Hence the theorem; if through any point of an, etc.
Remark.-The property of the hyperbola just established is the generalization of that demonstrated in the preceding proposition.

PROPOSITION XVI.-THEOREM.

The square of any semi-diameter of the hyperbola is to the square of its semi-conjugate as the rectangle of the distances from the foot of any ordinate to the first diameter, to the vertices of that diameter, is to the square of the ordinate.

Let $P P^{\prime}$ and $Q Q^{\prime}$ be any two conjugate diameters of the conjugate hyperbolas represented in the figure. Through any point as G draw the tangent $G T^{\prime}$ intersecting the first diameter at T and the second at $T^{\prime \prime}$, and from
 the same point draw the ordinates $G H, G K$, to these diameters.

We will now prove that,

$$
\overline{C P}^{2}: \overline{C Q}^{2}:: P H \cdot P^{\prime} H: \overline{G H}^{2}
$$

By the preceding proposition we have $\overline{C P}^{2}=C T \cdot C H$ and multiplying each member of this equation by CH it becomes $\overline{C P}^{2} \cdot \mathrm{CH}=\mathrm{CT} \cdot \overline{\mathrm{CH}}^{2}$

Whence $\overline{C P}^{2}: \overline{C H}^{2}:$: $C T: C H$ from which by division we get $\overline{C P}^{2}: \overline{C H}^{2}-\overline{C P}^{2}:: C T: C H-C T=T H$,

Again we have $\overline{C Q}^{2}=C T^{\prime} \cdot C K$ (Prop. 15) and multiplying each member of this equation by $C K$ it becomes $C Q \cdot \cdot C K=C T^{\prime} \cdot \overline{C K}^{2}$
Whence $\overline{C Q}^{2}: \overline{C K}^{2}:: C T^{\prime}: C K=G H$
The similar \triangle 's $T C T^{\prime}, T H G$ give the proportion

$$
\begin{equation*}
C T^{\prime}: G H:: C T: T H \tag{3}
\end{equation*}
$$

Comparing proportions (2) and (3) we obtain

$$
\begin{equation*}
\overline{C Q}^{2}: \overline{C K}^{2}:: C T: T H \tag{4}
\end{equation*}
$$

And by comparing proportions (1) and (4) we obtain

$$
\overline{C Q}^{2}:{\overline{C K^{2}}}^{2}: \overline{C P}^{2}: \overline{C H}^{2}-\overline{C P}^{2}
$$

or

$$
\overline{C P}^{2}: \overline{C Q}^{2}: \overline{C H}^{2}-\overline{C P}^{2}: \overline{C K}^{2}=\overline{G H}^{2}
$$

But because $C F=C P^{\prime}$ and $\overline{C H}{ }^{2}-\overline{C P}^{2}=(C H-C P)$ $(C H+C P)=P H \cdot(C H+C P)$ the last proportion above becomes $\overline{C P}^{2}: \overline{C Q}^{2}:: P H \cdot P^{\prime} H: \overline{G H}^{2}$

Hence the theorem; The square of any semi-diameter, etc.
Remark.-The property of the hyperbola with reference to any two conjugate diameters just demonstrated is the same as that with reference to the axes established in proposition 9 .

Cor. If the ordinate $G H$ be produced to intersect the curve at G^{\prime} and the above construction and demonstration be supposed made for the point G^{\prime} instead of G, we should finally get the same proportion as before, except the fourth term, which would be ${\overline{G^{\prime}}{ }^{2}}^{2}$; therefore, $G^{\prime} H=$ $G H$. Hence we conclude that
Any diameter of the hyperbola bisects all the chords drawn parallel to a tangent line through the vertex of that diameter.

PROPOSITION XVII.-THEOREM.

The squares of the ordinates to any diameter of the hyperbola are to one another as the rectangles of the corresponding distances from the feet of these ordinates to the vertices of the diameter.

Resuming the figure to the proposition which precedes and drawing any other ordinate $g h$ to the diameter $P P^{\prime}$, it is to be proved that $\overline{G H}^{2}: \overline{g h}^{2}:: P H \cdot P^{\prime} H: P h \cdot P^{\prime} h$

By the foregoing proposition
 we have two proportions following, viz:

$$
\begin{aligned}
& \overline{C P}^{2}: \overline{C Q}^{2}:: P H \cdot P^{\prime} H: \overline{G H}^{2} \\
& \overline{C P}^{2}: \overline{C Q}^{2}:: P h \cdot P^{\prime} h: \overline{g h}^{2}
\end{aligned}
$$

Since the ratio $\overline{C P}^{2}: \overline{C Q}^{2}$ is common to these proportions the remaining terms are proportional.
That is $\quad \overline{G H}^{2}: \overline{g h}^{2}:: P H \cdot P^{\prime} H: P h \cdot P^{\prime} h$
Hence the theorem-The squares of the ordinates, etc.

PROPOSITIONXVIII.-THEOREM.

If a cone be cut by a plane making an angle with its base greater than that made by an element of the cone, the section will be an hyperbola.

Let the \triangle 's $M V N, B V R$ be the sections of two opposite cones by a plane through the common axis, and $B H$ a line in this section not passing through the vertex, and making with $M N$ the $\angle B H N>$ the $\angle B M N$. Through this line pass a plane at right angles to the first plane, making in the lower cone the section
 $I G A G^{\prime} I^{\prime}$; then will this section be one of the branches of an hyperbola.

Let $K L$ and $M N$ be the diameters of two circular sections made by planes at right.angles to the axis of the cone, and at F and H, the intersections of these lines with $B H$, erect the perpendiculars $F G, H I$ to the plane $M V N . F G$ is the intersection of the plane of the section $I G A G^{\prime} I^{\prime}$ with the plane of the circle of which $K L$ is the diameter and is a common ordinate of the section and of the circle; so likewise is $H I$ a common ordinate of the section and of the circle of which $M N$ is the diameter.

Now by the similar \triangle 's $A F L, A H N$, and $B F K, B H M$ we have

$$
\begin{equation*}
A F: A H:: F L: H N \tag{1}
\end{equation*}
$$

Multiplying proportions (1) and (2), term by term, we get

$$
\begin{equation*}
A F \cdot B F: A H \cdot B H:: F L \cdot F K: H N \cdot H M \tag{3}
\end{equation*}
$$

But because $L G K$ and $N I M$ are semi-circles, $\overline{F G}^{2}=$ $F L \cdot F K$ and $\overline{H I}^{2}=H N \cdot H M$. Substituting these values for the terms of the last couplet of proportion (3) it becomes

$$
A F \cdot B F: A H \cdot B H:: \overline{F G}^{2}: \overline{H I}^{2}
$$

If we denote any two ordinates of the corresponding section of the opposite cone by $f g$ and $h i$ we should have in like manner

$$
A f \cdot B f: A h \cdot B h::(f g)^{2}:(h i)^{2}
$$

If, therefore, $A B$ be taken as a diameter of the curves cut out of the opposite cones by a plane through $A H$, at right angles to the plane $V M N$, we have proved that these curves possess the property which was demonstrated in the preceding proposition to belong to the hyperbola.

Hence the theorem; if a curve be cut by a plane, etc.

ASYMPTOTES.

Definition.-An Asymptote to a curve is a straight line which continually approaches the curve without ever meeting it, or, which meets it only at an infinite distance.

We shall for the present assume, what will be afterwards proved, that the diagonals of the rectangle constructed by drawing tangent lines through the vertices of the axis of the hyperbola possess the property of asymptotes, and they are therefore called the asymptotes of the hyperbola.

PROPOSITION XIX.-THEOREM.

If an ordinate to the transverse axis of an hyperbola be produced to meet the asymptotes, the rectangle of the segments into which it is divided by either of its intersections with the curve willbe equivalenttothe square of the semi-conjugate axis.

Let $C A, C B$ be the semi-axes and $C t$, $C^{\prime} t^{\prime}$ the asymptotes of an hyperbola.Through any point, as P, of the curve, draw the ordinate $P Q$ to the major axis and produce it to meet the asymptotes at n and n^{\prime}. By the enunciation we are required to prove that $\overline{C B}^{2}=P n \cdot P n^{\prime}$

By Cor. proposition 9 we have

$$
\begin{equation*}
\overline{C A}^{2}: \overline{C B}^{2}:: \overline{C Q}^{2}-\overline{C A}^{2}: \overline{P Q}^{2} \tag{1}
\end{equation*}
$$

And from the similar triangles $C A B^{\prime}, C Q n$

$$
\begin{equation*}
\overline{C A}^{2}:{\overline{A B^{\prime}}}^{2}=\overline{C B}^{2}:: \overline{C Q}^{2}: \overline{Q n}^{2} \tag{2}
\end{equation*}
$$

Comparing proportions (1) and (2) we find

$$
\overline{C Q}^{2}: \overline{C Q}^{2}-\overline{C A}^{2}: \overline{Q n}^{2}: \overline{P Q}^{2} \text { which gives by }
$$ division $\overline{C A}^{2}: \overline{C Q}^{2}: \overline{Q n}^{2}-\overline{P Q}^{2}: \overline{Q n}^{2}$

$$
\begin{equation*}
\text { or } \quad \overline{C A}^{2}: \overline{Q n}^{2}-\overline{P Q}^{2}: \overline{C Q}^{2}: \overline{Q n}^{2} \tag{3}
\end{equation*}
$$

From proportions (2) and (3) we get

$$
\overline{C A}^{2}: \overline{C B}^{2}:: \overline{C A}^{2}: \overline{Q n}^{2}-\overline{P Q}^{2}
$$

In this proportion the antecedents are the same the consequents are therefore equal; that is

$$
\overline{C B}^{2}=\overline{Q n}^{2}-\overline{P Q}^{2}=(Q n+P Q)(Q n-P Q)=P n \cdot P n^{\prime}
$$

Hence the theorem; if an ordinate to the major axis, etc.
$C o r$. Let us take another point p in the curve and from it draw the ordinate $p Q^{\prime}$ to the major axis; then, as before, we shall have $\overline{C B}{ }^{2}=p t \cdot p t^{\prime} ; t$ and t^{\prime} being the intersections of the ordinate, produced, with the asymptotes.

Whence $P n \cdot P n^{\prime}=p t \cdot p t^{\prime}$, which in the form of a proportion becomes $P n: P t:: p t^{\prime}: P n^{\prime}$

PROPOSITION XX.-THEOREM.

The parallelograms formed by drawing through the different points of the hyperbola lines parallel to and meeting the asymptotes are equivalent one to another, and any one is equivalent to one half of the rectangle contained by the semi-axes.

Let $C A, C B$ be the semi-axes and $C n$, $C n^{\prime}$ the asymptotes of an hyperbola. From any point, as P, of the curve draw the ordinate $P Q$ to the transverse axis, producing it to meet the asymptotes at n, n^{\prime}, and through P and the vertex A draw parallels to the asymptotes, forming the parallelograms PmCt, AECD. This last is a rhombus
 because its adjacent sides $C E, C D$ are equal, being the semi-diagonals of equal rectangles.
It will now be proved that

$$
\text { Area } P m C t=\text { area } A E C D=\frac{1}{2} \text { Rect. } A B^{\prime} B C
$$

By the proposition which precedes we have

$$
\begin{equation*}
\overline{C B}^{2}=P n \cdot P n^{\prime} \tag{1}
\end{equation*}
$$

And from the similar triangles $A B^{\prime} E, P n m$, and the similar triangles $A D b^{\prime}, P t n^{\prime}$ we also have

$$
\begin{aligned}
& A E: A B^{\prime}=C B:: m P: P n \\
& A D: A b^{\prime}=C B:: P t: P n^{\prime}
\end{aligned}
$$

Multiplying these proportions, term by term, we find

$$
A E \cdot A D: \overline{C B}^{2}:: m P \cdot P t: P n \cdot P n^{\prime}
$$

By equation (1) the consequents of this proportion are equal, therefore the antecedents are also equal.

That is, $\quad A E \cdot A D=m P \cdot P t$
If the first member of this equation be multiplied by $\sin . ~ L D A E$, and the second member by the sine of the equal $L m P t$ it becomes

$$
A E \cdot A D \cdot \sin . D A E=m P \cdot P t \cdot \sin m P t
$$

But $A E \cdot A D \cdot \sin D A E$ measures the area of the rhombus $A E C D$ and $m P \cdot P t$ sin. $m P t$ measures the area of the parallelogram $P m C t$; therefore the parallelogram and the rhombus are equivalent. Moreover, because the $\triangle ' s A E C, A D C$ are equal, and the $\triangle ' s A E C, A E B^{\prime}$ are equivalent, it follows that the rhombus $A E C D$ is equiva-
lent to the $\triangle A B^{\prime} C$, or, to one half of the rectangle contained by the semi-axes.

Hence the theorem; the parallelograms formed, etc.
Cor. 1. If from the rhombus $A E C D$ and the parallelogram $P m C^{\prime}$ the common part be taken, there will remain the parallelogram $A K t D$, equivalent to the parallelogram $P m E K$, and if to each of these the curvilinear area $A K P$ be added, we shall have

$$
\text { Area } A P m E=\text { area } A P t D
$$

Had we proceeded in the same way with the parallelogram $P m C t$ and any parallelogram other than $A E C D$ we should have had a like result; therefore

If from any two points in the hyperbola parallels be drawn to each asymptote, the area bounded by the parallels to one asymptote, the other asymptote, and the curve will bo equivalent to the other area like bounded.

Scholium.-If the product $A E \cdot A D$, which is a constant quantity be denoted by a, the distance $C m$ by x, and the distance $m p=C t$ by y, then, by this proposition, we shall have the equation $x y=a$, which, in analytical geometry, is called the equation of the hyperbola referred to its center and asymptotes.

Cor. 2. In the equation $x y=a, y$ expresses the distance of any point of the curve from the asymptote on which x is estimated. From this equation we get $y=\frac{a}{x}$. Now it is evident that as x increases y decreases, and finally when x becomes infinite, y becomes zero. That is, the asymptote continually approaches the hyperbola without ever meeting it, or without meeting it within a finite distance. We were, therefore, justified in assuming that the diagonals of the rectangle formed by the tangents through the vertices of the axes were asymptotes to the hyperbola.

analytical geometry.

ANALYTICAL GEOMETRY.

GENERAL DEFINITIONS AND REMARKS.

Analytical Geometry, as the terms imply, proposes to investigate geometrical truths by means of analysis. In it the magnitudes under consideration are represent by simbols, such as letters, terms, simple or combined, and equations; and problems are then solved and the properties and relations of magnitude established by processes purely algebraic.

A sirigle letter, without an exponent, will always be understood as denoting the length of a line; anä in general, any expression of the first degree denotes the length of a line and is, for this reason, said to be linear; so likewise, an equation all of whose terms are of the first degree is called a linear equation.

An expression of the second degree will represent the measure of a surface, and an expression of the third degree will represent the measure of a volume.
-When a term is of a higher degree than the third, a sufficient number of its literal factors, to reduce it to this degree, must be regarded as numerical or abstract.

The subject of Analytical Geometry naturally resolves itself into two parts.

First. That which relates to the solution of determinate problems; that is, problems in which it is required to determine certain unknown magnitudes from the relations which they bear to others that are known. In this case we must be able to express the relations between the known and unknown magnitudes by independent equations equal in number to the required magnitudes.

After having obtained, by a solution of the equations of the problem, the algebraic expressions for the quantities sought, it may be necessary, or, at least desirable, to construct their values, by which we mean, to draw a geometrical figure in which the parts represent the given and determined magnitudes, and have to each other the relations imposed by the conditions of the problem. This is called the construction of the expression.

This branch of analytical geometry, which may be termed Determinate Geometry, being of the least importance, relatively, will be omitted, after this reference, in the present treatise, and we shall pass at once to division.

Second. That which has for its object to discover and discuss the general properties of geometrical magnitudes. In this the magnitudes are represented by equations expressing relations between constant quantities, and, either two or three indeterminate or variable quantities, and for this reason it is sometimes called Indeterminate Geometry.

GENERAL PROPERTIES

of

GE0METRICAL MAGNITUDES.

CHAPTER I.

OF POSITIONS AND STRAIGHT LINES IN A PLANE, AND THE TRANSFORMATION OF CO-ORDINATES.

DEFINITIONS.

1. Co-ordinate Axes are two straight lines drawn in a plane through any assumed point and making with each other any given angle. One of these lines is the axis of abscissas or the axis of X; the other is the axis of ordinates, or the axis of Y, and their intersection is the origin of coordinates.
2. Abscissas are distances estimated from the axis of Y on lines parallel to the axis of X; ordinates are distances 9
estimated from the axis of X on lines parallel to the axis of Y.
3. The abscissa and ordinate of a point together are called the co-ordinates of the point.
4. The co-ordinate axes are said to be rectangular when they are at right angles to each other, otherwise they are oblique.
5. The two different directions in which distances may be estimated from either axis, on lines parallel to the other, are distinguished by the signs plus and minus.
6. Abscissas are designated by the letter x and ordinates by the letter y, and when unaccented they are called general co-ordinates, because they refer to no particular one of the points under consideration. When particular points are to be considered the co-ordinates of one are denoted by x^{\prime} and y^{\prime}; of another by $x^{\prime \prime}$ and $y^{\prime \prime}$, etc., which are read x prime, y prime, x second, y second, ete.
Illustrations.-Through any point A draw the lines $X X^{\prime}, Y Y^{\prime}$ making with each other any given angle. Call $X X^{\prime}$ the axis of abscissas and $Y Y^{\prime}$ the axis of ordinates. A is the origin of co-ordinates, or zero point. The four angular spaces into which the plane is divided are named, respectively, first, second,
 third, and fourth angles. $\quad Y A X$ is the first angle, $Y A X^{\prime}$ is the second angle, $Y^{\prime} A X^{\prime}$ is the third angle, and $Y^{\prime} A X$ is the fourth angle.

Take any point, as P, in the first angle, and from it draw $P p$ parallel to the axis of Y and $P p^{\prime}$ parallel to the axis of X, the first meeting the axis of X at p, and the second the axis of Y at p^{\prime}; then $p^{\prime} P=A p$ is the abscissa, and $p P=A p^{\prime}$ is the ordinate of the point P.

Now produce $P p^{\prime}$ to P^{\prime} making $p^{\prime} P^{\prime}=p^{\prime} P$, and from P^{\prime} draw a parallel to the axis of Y meeting the axis of X at $p^{\prime \prime}$; then the point P^{\prime} is in the second angle, and $p^{\prime} P^{\prime}$
$=A p^{\prime \prime}$ is its abscissa, and $p^{\prime \prime} P^{\prime}=A p^{\prime}$ is the ordinate. By like constructions we determine the position of the point $P^{\prime \prime}$ in the third angle, and that of the point $P^{\prime \prime \prime}$ in the fourth angle.

It is evident that the abscissas of these four points are numerically equal, as are likewise their ordinates; but if we have reference to the algebraic signs of the co-ordinates, each point will be assigned to its appropriate angle and will be completely distinguished from the others. Abscissas estimated to the right of the axis of Y are positive and those estimated to the left are negative. Ordinates estimated from the axis of X upwards are positive, those estimated downwards are negative.

We shall therefore have for points

From what precedes we see that the position of a point in the plane of the co-ordinate axis is fully determined by its co-ordinates. To construct this position we lay off on the axis of X the given abscissa, to the right, or to the left of the origin, according to the sign; also lay off on the axis of Y the given ordinate, upwards from the origin if the sign be plus, downawards if it be minus. The lines drawn through the points thus found, parallel to the coordinate axes, will intersect at the required point and fix its position.

As rectangular co-ordinates are more readily apprehended than oblique, and as discussions and algebraic expressions are generally less complicated where references are made to the former, than when made to the latter, rectangular co-ordinates will be habitually employed in the following pages. When we have occasion to use others it will be so stated.

PROPOSITIONI.

To find the equation of a straight line,
Let $X X^{\prime}, Y Y^{\prime}$ be two rectangular co-ordinate axes. A being the origin draw any line as $L^{\prime} L$ through this point, and designate the natural tangent of the angle LAX by a.

Then take any distance on $A X$ as $A P$, and represent it by x, and
 the perpendicular distance $P M y$.

Then by trigonometry we havé

$$
\begin{array}{ll}
& \text { Rad }: \tan . M A P:: A P: P M \\
\text { or } & 1: a:: x: y \\
\text { Whence } & y=a x \tag{1}
\end{array}
$$

Whence
Now this equation is general ; that is, it applies to any point M on the line $A L$, because we can make x greater or less, and $P M$ will be greater or less in like proportion and M will move along on the line $A L$ as we move P on the line $A X$. Because the point M will continue on the line $A L$ through all changes of x and y, we say that $y=a x$ is the equation of the line $A L$.

Now let us diminish x to 0 , and the equation reduces to $y=0$ at the same time, which brings M to the point A.

Let x pass the line $Y Y^{\prime}$, then $A P^{\prime}$ becomes- $-x$, and the corresponding value of y will be $P^{\prime} M^{\prime}$, and, being below the line $X^{\prime} X$, will, therefore, be minus.

Therefore $\quad y=a x$.
is the general equation of the line $L L^{\prime}$, extending indefinitely in either direction.

If the tangent a becomes less, the line will incline more towards the line $X^{\prime} X$. When $a=0$ the line will coincide with $X x^{\prime}$.
Now let $A P^{\prime \prime \prime}$ be $+x$, and a become $-a$, then $P^{\prime \prime \prime} M^{\prime \prime \prime}$ will correspond to y, and becomes minus y, because it is
below the axis ' ${ }^{\prime} X^{\prime}$. Or, algebraically $y=-a x$, indicating some point ${ }^{\prime} I^{\prime \prime \prime}$ below the horizontal axis.

It is, therefore, obvious that $y=a x$ may represent any line, as $L L^{\prime}$, passing through A from the 1 st moto the $3 d$ quadrant, and that $y=-a x$ may be made to represent any line, as $L^{\prime \prime} L^{\prime \prime \prime}$, peassing through A from the $2 d$ into the 4 th quadrant.

Therefore $\quad y= \pm a x$
may be made to represent any straight line passing throuyh the zero point.

In case we have $-a$ and $-x$, that is, both a and x minus at the same time, their product will be $+a x$, showing that y must be plus by the rules of algebra.

As an exercise, ret the learner examine these lines and see whether they erorrespond to the equation.

When we have - a we must draw the line from A to the right and below $A X$; then $X A L^{\prime \prime \prime}$ is the angle whose natural tangent is -a. But the opposite angle $X^{\prime} A I^{\prime \prime}$ is the same in value.

When we have $-x$ we must take the distance as $A P^{\prime \prime}$ to the left of the axis $Y Y^{\prime}$, and the corresponding line $P^{\prime \prime} M^{\prime \prime}$ is above $X X^{\prime}$, and therefore plus, as it ought to be.

But the equation of a straight line passing through the zero point is not sufficiently general for practical application; we will therefore suppose a line to pass in any direction across the axis $Y Y^{\prime}$, cutting it at the distance $A B$ or $A D(\pm b)$ or b distance above or below the zero point A,
 and find its equation.

Through the zero point A draw a line, $A N$, parallel to ML.

Take any point on the line $A X$ and through P draw 9*
$P M$ parallel to $A Y$, then $A B M N$ will be a parallelogram. Put $A P=x . \quad P M=y . \quad$ The tangent of the angle $N A P=a$. Then will $N P=a x$.

To each of these equals add $N M=b$, then we shall have

$$
y=a x+b
$$

for the relation between the values of x and y corresponding to the point M, and as M is any variable point on the line $M L$ corresponding to the variations of x, this equation is said to be the equation of the line $M L$.

When b is minus the line is then $Q L^{\prime}$, and cuts the axis $Y Y^{\prime}$ in D, a point as tar below A as B is above A.
Hence we perceive that the equation

$$
y= \pm a x \pm b
$$

may represent the equation of any line in the plane $Y A X$.
If we give to a, x, and b, their proper signs, in each case of application we may write

$$
y=a x+b
$$

for the equation of any straight line in a plane.
Cor. Since the equation $y=a x+b$ truly expresses the relation between the co-ordinates of any point of the line, it follows that if the co-ordinates x^{\prime} and y^{\prime} of any particular point of the line be substituted for the variables x and y the equation must hold true; but if the co-ordinates $x^{\prime \prime}$ and $y^{\prime \prime}$, of any point out of the line be substituted for the variables, the equation cannot be true.

What appears in the particular case of a straight line are general principles which we thus enunciate, viz:

1st. If the co-ordinates of a particular point, in amy line whatever, be substitutcd for the variables in the equation of the line, the equation must be satisfied; but if the co-ordinates of a point out the line, be substituted for the variables in its equation, the equation cannot be satisfied.
2d. If the co-ordinates of anypoint be substituted for the variables in the equation of a line, and the equation be satisfied, the
point must be on the line; but if the equation be not satisfied by the substitution, the point cannot be on the line.

These are principles of the highest importance in analytical geometry, and should be thoroughly committed and fully understood by the student.

Scholium.-Instead of rectangular, let us assume the oblique co-ordinate axes $A X$ and $A Y$, making with each other an angle denoted by m. Through the origin draw the line $A P$ making with the axis of x the angle $P A D=n$; then the angle $P A D^{\prime}=m-n$. Take any point as P in the line and from it draw $P D^{\prime}$ and $P D$ parallel, respectively,
 to the axes of X and Y.

From the triangle $A P D$ we have (Prop. 4, Sec. 1, Plane Trig.)

$$
P D: A D:: \operatorname{Sin} . P A D=\operatorname{Sin} . P A D^{\prime}
$$

or $\quad y: x:: \operatorname{Sin} . n: \operatorname{Sin} .(m-n$.
Whence

$$
y=\frac{\sin . n}{\sin \cdot m-n} x
$$

But $\frac{\sin n}{\sin .(m-n}$ is constant for the same line and may be represented by a.

Therefore, for any straight line passing through the origin of a system of oblique co-ordinate axes we have, as before, the equation

$$
y=a x .
$$

And if we denote by b the distance from the origin to the point at which a parallel line cuts the axis of Y above or below the origin we shall also have for the equation of this line

$$
y=a x+b,
$$

in which it must be remembered that a denotes the sine of the angle that the line makes with axis of x divided by the sine of the angle it makes with the axis of Y.

To fix in the minds of learners a complete comprehension of the equation of a straight line, we give the following practical

EXAMPLES.

1. Draw the line whose equation is $\quad y=2 x+3$.

Then draw the line represented by $y=-x+2$
and determine where these two lines intersect.

Draw $Y Y^{\prime}$ and $X X^{\prime}$ at right angles, and taking any convenient unit of measure lay it off on each of the axes from the origin in both positive and negative directions a sufficient number of times.

Equation (1) is true for all values of x and y. It is true then when $x=0$. But when $x=0$ the point on the line must be on the axis $Y Y^{\prime}$.

When $x=0 . \quad y=3$.

This shows that the line sought for must cut $Y Y^{\prime}$ at the point +3 .

The equation is equally true when $y=0$. But when $y=0$, the corresponding point on the line sought must be on the axis $X X^{\prime}$, and on the same supposition the equation becomes

$$
0=2 x+3, \quad \text { Or } x=-1 \frac{1}{2} .
$$

That is, midway between -1 and -2 is another point in the line which is represented by $y=2 x+3$, but two points in any right line must define the line; therefore $M L$ is the line sought.

Taking equation (2) and making $x=0$ will give $y=2$, and making $y=0$ will give $x=2$; therefore $M Q$ must be the line whose equation is $y=-x+2$, and these two lines with the axis $X X^{\prime}$ form the triungle $L M Q$, whose base is $3 \frac{1}{2}$ and altitude about $2 \frac{1}{3}$.

But let the equations decide, (not about,) but exactly the position of the point M of intersection.

This point being in both lines, the co-ordinates x and y corresponding to this point are the same, therefore we may subtract one vquation from the other, and the result will be a true equation, giving

$$
3 x+1=0 . \quad \text { Or } x=-\frac{1}{3} .
$$

Eliminating x from the two equations we find $y=2 \frac{1}{3}$.
2. For another example we require the projection of the line represented by the equation

$$
y=-\frac{x}{420}-2 .
$$

Making $x=0$, then $y=-2$. Making $y=0$, then $x=-840$.
Using the last figure, we perceive that the line sought for must
pass through S two units below the zero point, and it must take such a direction $S V$ as to meet the axis $X X^{\prime}$ at the distance of 840 units to the left of zero. Hence its absolute projection is practically impossible.
3. Construct the line whose equation is

$$
\begin{aligned}
& y=2 x+5 . \\
& y=-3 x-3 . \\
& 2 y=3 x+5 . \\
& y=4 x-3 .
\end{aligned}
$$

4. Construct the line whose equation is
5. Construct the line represented by
6. Construct the line represented by

The lines represented by equations 4 and 6 will intersect the axis of Y at the same point. Why?
7. Construct the line whose equation is $\quad y=2 x+3$.
8. Construct the line whose equation is $\quad y=-2 x-3$.

The last two lines intercept a portion of the axis of Y which is the base of an isosceles triangle of which the two lines are the sides. What are the base and perpendicular, and where the vertex of the triangle?

Ans. The base is 6 , the perpendicular $1 \frac{1}{2}$, vertex on the axis of X. Construct the lines represented by the following equations.
9.

$$
3 x+5 y-15=0
$$

10.

$2 x-6 y+7=0$
11.
$x+y+2=0$
12.
$-x+y+3=0$
$2 x-y+4=0$

PROPOSITIONII

To find the distance between two given points in the plane of the co-ordinate axis. Also, to find the angle made by the line joining the two given points, and the axis of X.

Let the two given points be $P \quad \bigvee$ and Q, and because the point P is said to be given, we know the two distances

$$
A N=x^{\prime}, N P=y^{\prime}
$$

And because the point Q is given we know the two distances. $A M=x^{\prime \prime}$ and $M Q=y^{\prime \prime}$.

$\begin{array}{ll}\text { Then, } & A M-A N=N M=P R=x^{\prime \prime}-x^{\prime} ; \\ \text { and } & M Q-M R=Q R=y^{\prime \prime}-y^{\prime} .\end{array}$
In the right angled triangle $P R Q$ we have

$$
(P R)^{2}+(R Q)^{2}=(P Q)^{2} . \quad \text { But } D=P Q
$$

That is $D^{2}=\left(x^{\prime \prime}-x^{\prime}\right)^{2}+\left(y^{\prime \prime}-y^{\prime}\right)^{2}$,
Or

$$
D=\sqrt{\left(x^{\prime \prime}-x^{\prime}\right)^{2}+\left(y^{\prime \prime}-y^{\prime}\right)^{2}}
$$

Thus we discover that the distance between any two given points is equal to the square root of the sum of the squares of the differences of their abscissas and ordinates.

If one of these points be the origin or zero point, then $x^{\prime}=0$ and $y^{\prime}=0$, and we have

$$
D=\sqrt{\left(x^{\prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{2}}
$$

a result obviously true.

To find the angle between $P Q$ and $A X$.

$P R$ is drawn parallel to $A X$, therefore the angle sought is the same in value as the angle $Q P R$.

Designate the tangent of this angle by a, then by trigonometry we have

$$
P R: R Q:: \text { radius }: \tan . Q P R .
$$

That is, $\quad x^{\prime \prime}-x^{\prime}: y^{\prime \prime}-y^{\prime}:: 1: a$.
Whence

$$
a=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}}
$$

In case $y^{\prime \prime}=y^{\prime}, P Q$ will coincide with $P R$, and be parallel to $A X$, and the tangent of the angle will then be 0 , and this is shown by the equation, for then

$$
a=\frac{0}{x^{\prime \prime}-x^{\prime}}=0
$$

In case $x^{\prime \prime}=x^{\prime}$, then $P Q$ will coincide with $R Q$ and be parallel to $A Y$, and tangent a will be infinite, and this too the equation shows, for if we make $x^{\prime \prime}=x^{\prime}$ or $x^{\prime \prime}=x^{\prime}$ $=0$, the equation will become

$$
a=\frac{y^{\prime \prime}-y^{\prime}}{0}=\infty
$$

PROPOSITION III.

To find the equation of a line drawn through any given point.

Let P be the given point: The equation must be in the form

$$
\begin{equation*}
y=a x+b \tag{1}
\end{equation*}
$$

Because the line must pass through the given point whose co-ordinates are x^{\prime} and y^{\prime}, we must have

$$
\begin{equation*}
y^{\prime}=a x^{\prime}+b \tag{2}
\end{equation*}
$$

Subtracting equation (2) from equation (1) member from member, we have

$$
\begin{equation*}
y-y^{\prime}=a\left(x-x^{\prime}\right) \tag{3}
\end{equation*}
$$

for the equation sought.
In this equation a is indeterminate, as it ought to be, because an infinite number of straight lines can be drawn through the point P.

We may give to y^{\prime} and x^{\prime} their numerical values, and give any value whatever to a, then we can construct a particular line that will run through the given point P.

Suppose $x^{\prime}=2, y^{\prime}=3$, and make $a=4$.
Then the equation will become

$$
y-3=4(x-2) .
$$

Or

$$
y=4 x-5
$$

This equation is obviously that of a straight line, hence equation (3) is of the required form.

PROPOSITION IV.

To find the equation of a line which passes through two given points.

Let $A X$ and $A Y$ be the co-ordinate axes, and P and Q the given points. Denote the co-ordinates of P by x^{\prime}, y^{\prime} and of Q by $x^{\prime \prime}, y^{\prime \prime}$.

The required equation must be of the form

$$
\begin{equation*}
y=a x+b \tag{1}
\end{equation*}
$$

We will now determine such Y values for a and b as will cause the line representr, d by this equation to pass through the given points.

As the line is to pass through the point P, the co-ordinates x^{\prime}, y^{\prime} of this point when substituted for the variables x, y must satisfy
 the equation, and we shall have

$$
\begin{equation*}
y^{\prime}=a x^{\prime}+b \tag{2}
\end{equation*}
$$

And because the line is to pass through the point Q, whose co-ordinates are $x^{\prime \prime}, y^{\prime \prime}$ we will also have

$$
\begin{equation*}
y^{\prime \prime}=a x^{\prime \prime}+b \tag{3}
\end{equation*}
$$

Subtracting eq. (2) from eq. (3) member from member, we get

$$
\begin{gather*}
y^{\prime \prime}-y^{\prime}=a\left(x^{\prime \prime}-x^{\prime}\right) \\
a=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}} \tag{4}
\end{gather*}
$$

From eqs. (1) and (2) we obtain in like manner

$$
\begin{equation*}
y-y^{\prime}=a\left(x-x^{\prime}\right) \tag{5}
\end{equation*}
$$

Substituting for a in eq. (5) its value in eq. (4) we find

$$
\begin{equation*}
y-y^{\prime}=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}}\left(x-x^{\prime}\right) \tag{6}
\end{equation*}
$$

for the equation sought.
If we subtract eq. (3) from eq. (1) member from member, and substitute for a in the resulting equation its value in eq. (4) we find

$$
\begin{equation*}
y-y^{\prime \prime}=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}}\left(x-x^{\prime \prime}\right) \tag{7}
\end{equation*}
$$

for the required equation.
By simply clearing eqs. (6) and (7) of fractions and reducing, it may be shown that they are in fact but different forms of the same equation.
To prove that either of these equations is that of a line passing through the points P and Q, we have but to sub-
stitute in it, for x and y, the co-ordinates of these points. It will be found that when these substitutions are made for either point, the equation will be satisfied.

We will illustrate the use of these equations by the following

EXAMPLES.

1. The co-ordinates of P are $x^{\prime}=3, y^{\prime}=4$, and of Q, $x^{\prime \prime}=-1, y^{\prime \prime}=3$.

What is the equation of the line that passes through these points?

Here

$$
a=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}}=\frac{3-4}{-1-3}=\frac{1}{4}
$$

And the equation $y-y^{\prime}=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}}\left(x-x^{\prime}\right)$ becomes

$$
y-4=\frac{1}{4}(x-3) \text { or } y=\frac{1}{4} x+3 \frac{1}{4}
$$

By substituting in the equation $y-y^{\prime \prime}=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}}\left(x-x^{\prime \prime}\right)$ we get $y-3=\frac{3}{4}(x+1)$ or $y=\frac{1}{4} x+3 \frac{1}{4}$, the same as that above.
2. Find the equation of the straight line that is determined by the points whose co-ordinates are $x^{\prime}=-4, y^{\prime}=$ -1 and $x^{\prime \prime}=4 \frac{1}{2}, y^{\prime \prime}=-\frac{10}{6}$
Ans. $y=-{ }_{6}^{4}{ }^{4} x-1 \frac{1}{5} \frac{6}{1}$.
3. The co-ordinates of one point are $x^{\prime}=6, y^{\prime}=5$, and of another they are $x^{\prime \prime}=-3, y^{\prime \prime}=3$. What is the equation of the straight line that passes through these points?

Ans. $y=\frac{2}{9} x+3 \frac{2}{3}$.

PROPOSITION ∇.

To find the equation of a straight line which shall pass through a given point and make, with a given line, a given angle.

The equation of the given line must be in the form

$$
\begin{equation*}
y=a x+b \tag{1}
\end{equation*}
$$

Because the other line must pass through a given point its equation must be (Prop. III.)

$$
\begin{equation*}
y-y^{\prime}=a^{\prime}\left(x-x^{\prime}\right) \tag{2}
\end{equation*}
$$

We have now to determine the value of a^{\prime}.
When a and a^{\prime} are equal, the two lines must be parallel, and the inclination of the two lines will be greater or less according to the relative values of a and a^{\prime}.

Let $P Q$ be the given line, making with the axis of X an angle whose tangent is a and $P R$ the other line which shall pass through the given point P and make with $P Q$, a given angle $Q P R$. The tangent of the angle $P R X$ is equal to a^{\prime}.

Because $P R X=P Q R+Q P R$.

$$
\begin{gathered}
Q P R=P R X-P Q R \\
\text { Tan. } Q P R=\tan .(P R X-P Q R .)
\end{gathered}
$$

As the angle $Q P R$ is supposed to be known or given, we may designate its tangent by m, and m is a known quantity.

Now by trigonometry we have

$$
\begin{equation*}
m=\tan .(P R X-P Q R)=\frac{a^{\prime}-a}{1+a a^{\prime}} \tag{3}
\end{equation*}
$$

Whence $\quad a^{\prime}=\frac{a+m}{1-m a}$.
This value of a^{\prime} put in eq. (2) gives

$$
\begin{equation*}
y-y^{\prime}=\left(\frac{a+m}{1-m a}\right)(x-x) \tag{4}
\end{equation*}
$$

for the equation sought.
Cor. 1. When the given inclination is $90^{\circ}, m$ its tangent is infinite, and then $a^{\prime}=-\frac{1}{a}$. We decide this in the following manner.

An infinite quantity cannot be increased or diminished
relatively, by the addition or subtraction of finite quantities, therefore, on that supposition,

$$
\frac{a+m}{1-m a} \text { becomes } \frac{m}{-m a} \text { or }-\frac{1}{a}
$$

Application.-To make sure that we comprehend this proposition and its resulting equation, we give the following example:

The equation of a given line is $y=2 x+6$.
Draw another line that will intersect this at an angle of 45° and pass through a given point P, whose co-ordinates are

$$
x^{\prime}=3 \frac{1}{2}, y^{\prime}=2
$$

Draw the line $M N$ corresponding to the equation $y=2 x+6$. Locate the point P from its given co^{-} ordinates.

Because the angle of intersection is to be $45^{\circ}, m=1$, and $a=2$.

Substituting these values in eq. (4) we have

$$
y-2=-3\left(x-3 \frac{1}{2}\right)
$$

Or

$$
y=-3 x+12 \frac{1}{2}
$$

Constructing the line $M R$ corresponding to this equation, we perceive it must pass through P and make the angle $N M R 45^{\circ}$, as was required.

The teacher can propose any number of like examples.
Cor. Equation (3) gives the tangent of the angle of the inclination of any two lines which make with the axis of X angles whose tangents are a and a^{\prime}. That is, we have in general terms

$$
m=\frac{a^{\prime}-a}{1+a a^{\prime}} .
$$

In case the two lines are parallel $m=0$. Whence $a^{\prime}=a$, an obvious result.

In case the two lines are perpendicular to each other, m must be infinite, and therefore we must put

$$
1+a a^{\prime}=0
$$

to correspond with this hypothesis, and this gives

$$
a^{\prime}=-\frac{1}{a}
$$

a result found in Cor. 1.
To show the practical value of this equation we require the angle of inclination of the two lines represented by the equations $y=3 x-6$, and $y=-x+2$.

Here $a=3$ and $a^{\prime}=-1$. Whence

$$
m=\frac{-4}{1-3}=2 .
$$

This is the natural tangent of the angle sought, and if we have not a table of natural tangents at hand, we will take the log. of the number and add 10 to the index, then we shall have in the present example 10.301030 for the log. tangent which corresponds to $63^{\circ} 26^{\prime} 6^{\prime \prime}$ nearly.
The sign of the tangent determines the direction in which the angles are estimated.
2. What is the inclination of the two lines whose equation are

$$
\begin{array}{ll}
\text { and } & \begin{array}{l}
2 y=5 x+8 \\
3 y
\end{array} \quad=-2 x+6
\end{array}
$$

Ans. The tangent of their inclination is 43

$$
\text { Log. } 4.75 \text { plus } 10=10.676694 .
$$

The inclination of the lines is therefore $78^{\circ} 6^{\prime} 5^{\prime \prime}$.
3. Find the equation of a line which will make an angle of 56° with the line whose equation is

$$
2 y=5 x+4
$$

As the required line is to pass through no particular point, but is merely to make a given angle with the known line, we may assume it to pass through the origin of co-ordinates. Its equation will then be of the form
$y=a^{\prime} x$. We must now determine such a value for a^{\prime} that the two lines will make with each other an angle of 56°.

Represent the tangent of the given angle by t; then by corollary (2)

$$
t=\frac{a^{\prime}-\frac{5}{2}}{1+\frac{5}{2} a^{\prime}}
$$

In the tables we find that log. tangent of 56° to be 10. 171013 , from which subtracting 10 to reduce it to the log. of the natural tangent and we have 0.171013 for the log. of t. The number corresponding to this is 1.483 .

Whence

$$
\frac{a^{\prime}-\frac{5}{2}}{1+\frac{5}{2} a^{\prime}}=1.483
$$

From which we find $a^{\prime}=-1,473$ nearly and the equation of the line making with the given line, an angle of 56° is therefore

$$
y=-1.473 x
$$

PROPOSITION VI.

To find the co-ordinates which will locate the point of intersection of two straight lines given by their equations.

We have already done this in a particular example in Prop. I, and now we propose to deduce general expressions for the same thing.

Let

$$
y=a x+b \quad \text { be the first line. }
$$

And $\quad y=a^{\prime} x+b^{\prime}$ be the second line.
For their point of intersection y and x in one equation will become the same as in the other.

Therefore we may subtract one equation from the other, and the result will be a true equation.

For the sake of perspicuity, let x_{1} and y_{1} represent the co-ordinates of the common point, then by subtraction

$$
\begin{gathered}
\left(a-a^{\prime}\right) x_{1}+b-b^{\prime}=0 \\
\text { Whence } x_{1}=-\frac{\left(b-b^{\prime}\right)}{\left(a-a^{\prime}\right)} \text { and } y_{1}=\frac{a^{\prime} b-a b^{\prime}}{a^{\prime}-a} .
\end{gathered}
$$

EXAMPLE.

At what point will the lines represented by the two equations

$$
y=-2 x+1
$$

and

$$
y=5 x+10 \text { intersect each other. }
$$

Here $a=-2, a^{\prime}=5, b=1, b^{\prime}=10$. Whence $x=-\frac{9}{7}, y=$ $-3 \frac{4}{7}$.

If we take another line not parallel to either of these, the three will form a triangle.

Then if we locate the three points of intersection and join them, we shall have the triangle.

PROPOSITION VII.

To draw a perpendicular from a given point to a given straight line and to find its length.

Let $y=a x+b$ be the equation of the given straight line, and x^{\prime}, y^{\prime} the co-ordinates of the given point.

The equation of the line which passes through the given point must take the form

$$
y-y^{\prime}=a^{\prime}\left(x-x^{\prime}\right) . \quad \text { (Prop. 3.) }
$$

And as this must be perpendicular to the given line, we must have $a^{\prime}=-\frac{1}{a}$. Therefore the equations for the two lines must be

$$
\begin{equation*}
y=a x+b \text { for the given line; } \tag{1}
\end{equation*}
$$

and

$$
y-y^{\prime}=-\frac{1}{a}\left(x-x^{\prime}\right)
$$

Or $\quad y=-\frac{1}{a} x+\left(\frac{x^{\prime}}{a}+y^{\prime}\right)$ for the perpendicular line (2)
Let x_{1} and y_{1} represent the co-ordinates of the point of intersection of these two lines. Then by Prop. 6,

$$
\begin{aligned}
& x_{1}=-\left(\frac{b-\frac{x^{\prime}}{a}-y^{\prime}}{a+\frac{1}{a}}\right) \quad \text { and } y_{1}=\frac{\frac{b}{a}+a\left(\frac{x^{\prime}}{a}+y^{\prime}\right)}{\frac{1}{a}+a} \\
& \operatorname{Or} x_{1}=-\left(\frac{\left.a b-x^{\prime}-a y^{\prime}\right)}{a^{2}+1}\right), \text { and } y_{1}=\frac{b+a x^{\prime}+a^{2} y^{\prime}}{a^{2}+1}
\end{aligned}
$$

Or we may conceive x and y to represent the co-ordinates of the point of intersection, and eliminating y from eqs. (1) and (2) we shall find x as above, and afterwards we can eliminate y.

Now the length of the perpendicular is represented by

$$
\sqrt{\left(x_{1}-x^{\prime}\right)^{2}+\left(y_{1}-y^{\prime}\right)^{2}}=D . \quad(\text { Prop. II. })
$$

Whence $\sqrt{\left(\frac{-a b+a y^{\prime}-a^{2} x^{\prime}}{a^{2}+1}\right)^{2}+\left(\frac{b+a x^{\prime}-y^{\prime}}{a^{2}+1}\right)^{2}}=$ the perpendicular.

If we put $u=b+a x^{\prime}-y^{\prime}$, the quantities under the radical will become

$$
\sqrt{\frac{a^{2} u^{2}}{\left(a^{2}+1\right)^{2}}+\frac{u^{2}}{\left(a^{2}+1\right)^{2}}}=\sqrt{\frac{\left(a^{2}+1\right) u^{2}}{\left(a^{2}+1\right)^{2}}}= \pm \frac{u}{\sqrt{a^{2}+1}} .
$$

Whence the perpendicular $= \pm \frac{b+a x^{\prime}-y^{\prime}}{\sqrt{a^{2}+1}}$.

EXAMPLES.

1. The equation of a given line is $y=3 x-10$, and the co-ordinates of a given point are $x^{\prime}=4$ and $y^{\prime}=5$.

What is the length of the perpendicular from this given point to the given straight line? Ans. $\frac{1}{10} \sqrt{90}$.
2. The equation of a line is $y=-5 x-15$, and the coordinates of a given point are $x^{\prime}=4$ and $y^{\prime}=5$.

What is the length of the perpendicular from the given point to the straight line?

Ans. 7.84+.

PROPOSITION VIII.

To find the equation of a straight line which will bisect the angle contained by two other straight lines.

$$
\begin{array}{ll}
\text { Let } & y=a x+b \\
\text { and } & y=a^{\prime} x+b^{\prime}
\end{array}
$$

be the equations of two straight lines which intersect; the co-ordinates of the point of intersection are

$$
x_{1}=-\left(\frac{b-b^{\prime}}{a-a^{\prime}}\right) \quad y_{1}=\frac{a^{\prime} b-a b^{\prime}}{a^{\prime}-a} \quad \text { (Prop. VI. }
$$

We now require a third line which shall pass through the same point of intersection and form such an angle with the axis of X (the tangent of which may be represented by m) that this line will bisect the angle included between the other two lines. Whence by (Prop. V.) the equation of the line sought must be

$$
\begin{equation*}
y-y_{1}=m\left(x-x_{1}\right) \tag{3}
\end{equation*}
$$

in which we are to find the value of m.
Let $P N$ represent the line corresponding to equation (1) $P M$ the line whose equation is (2), and $P R$ the line required.
Now the position or inclination of $P N$ to $A X$ depends entirely on the value of a, and the inclination of $P M$ depends on a^{\prime} and both are
 independent of the position of the point P. Now $R P N=R P X^{\prime}-N P X^{\prime}$ and $M P R=M P X^{\prime}-R P X^{\prime}$.

Whence by the application of a well known equation in plane trigonometry, (Equation (29), p. 253 Plane Trig.) we have

$$
\tan . R P N=\tan .\left(R P X^{\prime}-N P X^{\prime}\right)=\frac{m-a}{1+a m}
$$

And tan. $M P R=\tan .\left(M P X-R P X,=\frac{a^{\prime}-m}{1+a^{\prime} m}\right.$

But by hypothesis these two angles $R P N$ and $M P R$ are to be equal to each other. Therefore

$$
\frac{2 x-a}{1+a m}=\frac{a^{\prime}-m}{1+a^{\prime} m}
$$

Whence

$$
\begin{equation*}
m^{2}+\frac{2\left(1-a a^{\prime}\right)}{a^{\prime}+a} m=1 \tag{4}
\end{equation*}
$$

This equation will give two values of m; one will correspond to the line $P R$, and the other to a line at right angles to $P R$.

If the proper value m be taken from this equation and put in eq. (3), we shall have the equation required.

Practically we had better let the equations stand as they are, and substitute the values of $a, a^{\prime} x$, and y, corresponding to any particular case.

To illustrate the foregoing proposition we propose the following

EXAMPLES.

Two lines intersect each other :

$$
\begin{align*}
& y=-2 x+5 \text { is the equation of one line, } \tag{1}\\
& y=4 x+6 \text { is that of the other line, } \tag{2}
\end{align*}
$$

Find the equation of the line which bisects the angle contained by these two lines:

Here

$$
a=-2, a^{\prime}=4, b=5, b^{\prime}=6 .
$$

Whence

$$
x_{1}=-\frac{1}{6}, \text { and } y_{1}=\frac{16}{3}
$$

Thus (3) becomes

$$
y-\frac{16}{3}=\dot{m}\left(x+\frac{1}{6}\right) .
$$

And eq. (4) becomes

$$
\begin{gathered}
m^{2}+9 m=1 . \\
m=0.1097 \text { or } m=-9.1097 . \\
y-\frac{16}{3}=0.1097\left(x+\frac{1}{6}\right) . \\
y-\frac{16}{3}=-9.1097\left(x+\frac{1}{6}\right) .
\end{gathered}
$$

Whence
(Or

Equation (4) is that of the line required; (3) that of the line at right angles to the line required. All will be obvious if we construct the lines represented by the eqs. (1), (2), (3), and (4).

For another example, find the equation of a line which bisects the angle contained by the two lines whose equations are

$$
y=x+12, \quad y=-20 x+2 .
$$

Here $a=1, a^{\prime}=-20$. Whence (4) becomes

$$
m^{2}-\frac{42}{19} m=1 .
$$

Therefore $m=-0.385$, or +2.6 .
Nore.-Two straight lines whose equations are

$$
y=a x+b \text { and } y^{\prime}=a+b^{\prime}
$$

will always intersect at a point (unless $a=a^{\prime}$) and with the axis of Y form a triangle. The area of such triangle is expressed by

$$
-\left(\frac{b-b^{\prime}}{a-a^{\prime}}\right) \times\left(\frac{b_{c_{2}} b^{\prime}}{2}\right)
$$

From the given equations we find the co-ordinates of the intersection of the lines to be

$$
x_{1}=-\frac{10}{21}, y_{1}=\frac{24.2}{21}
$$

For the line bisecting the angle included between the given lines we have either

$$
\begin{array}{ll}
& y-{ }_{21}^{242}=-0.385\left(x+\frac{10}{21}\right) \\
\text { or, } & y-{ }_{21}^{24}=2.6\left(x+\frac{10}{21}\right) \tag{2}
\end{array}
$$

By transposition and reduction (1) becomes

$$
\begin{equation*}
y=-0.385 x+11.75 \tag{3}
\end{equation*}
$$

and (2) becomes $\quad y=2.6 x+12.76$
The lines represented by eqs. (3) and (4) are at right angles to each other. The latter line bisects the angle included between the given lines, and the former the adjacent or supplemental angle.
3. From the intersection of two lines whose equations are

$$
\begin{align*}
& 3 y+5 x=4 \tag{1}\\
& 2 y=3 x+4 \tag{2}
\end{align*}
$$

A third line is drawn making, with the axis of X, an angle of 30°. Find the intersection of the given lines and the equation of the third line.
Ans. $\left\{\begin{array}{l}\text { The co-ordinates of the points of intersection } \\ \text { are } x_{1}=-\frac{4}{19}, y_{1}=\frac{32}{19}, \text { and the required equation } \\ \text { is } y-\frac{32}{19}=0,5773\left(x+{ }_{19}^{4}\right) .\end{array}\right.$
4. Two lines are represented by the equations
and

$$
\begin{array}{r}
2 y-3 x=-1 \\
2 y+3 x=3
\end{array}
$$

What kind of a triangle do these lines form with the intercepted portion of the axis of Y, and what are its sides and its area?
Ans. $\left\{\begin{array}{l}\text { The triangle is isosceles; its base on the axis } \\ \text { of } Y \text { is } 2, \text { the other sides are each } 1.201+, \text { and } \\ \text { its area } 0.66+\text {. }\end{array}\right.$
5. Two lines are given by the equations

$$
\begin{gathered}
-2 \frac{1}{b} y+3 \frac{1}{2} x=-2 \frac{1}{4} \\
2 \frac{2}{5} y-\frac{2}{3} x=4
\end{gathered}
$$

and
Required the equation of the line drawn from the point whose co-ordinates are $x^{\prime \prime}=3, y^{\prime \prime}{ }_{1}=0$ to the intersection of the given lines and the distance between these two points.

Ans. $\left\{\begin{array}{c}\text { The equation sought is } y=-0.717 x+2.1523 \text { and } \\ \text { the distance is } \sqrt{(1.8)^{2}+(2.52)^{2}} .\end{array}\right.$

TRANSFORMATION OF CO-ORDINATES.

It is often desirable to change the reference of points from one system of co-ordinate axes to another differing from the first either in respect to the origin or the direction of the axes, or both. The operation by which this is done is called the transformation of co-ordinates. The
system of co-ordinate axes from which we pass is the primitive system and that to which we pass is the new system.

Let $A X$ and $A Y$ be the primitive axes. Take any point, as A^{\prime}, the co-ordinates of which referred to $A X$ and $A Y$ are $x=a, y=b$ and through it draw the new axes $A^{\prime} X^{\prime}$, and $A^{\prime} Y^{\prime}$ parallel to the primative axes. Then denoting the co-ordinates of any point, as
 M, referred to the primitive axes by x and y, and the coordinates of the same point referred to the new axes by x^{\prime} and y^{\prime}, it is apparent that

$$
\begin{aligned}
& x=a+x^{\prime} \\
& y=b+y^{\prime}
\end{aligned}
$$

By giving to a and b suitable signs and values we may place the new origin at any point in the plane of the primitive axes and the above formulas are those for passing from one system of axes to a system of parallel axes having a different origin.

The formulas for the transformation of co-ordinates must express the values of the primitive co-ordinates of points in terms of the new co-ordinates and those quantities which fix the position of the new in respect to the primitive axes.

PROPOSITION IX.

To find the formulas for passing from a system of rectangular to a system of oblique co-ordinates from a different origin.

Let $A X, A Y$ be the primitive axes and $A^{\prime} X^{\prime}, A^{\prime} Y^{\prime}$ the new axes. Through any point as M draw $M P^{\prime}$ parallel to $A^{\prime} Y^{\prime}$ and $M P$ perpendicular to $A^{\prime} X$. Then $A^{\prime} P^{\prime}$ is the new abscissa, $P^{\prime} M$ the new ordinate of the point M, and $A P$ and $P M$ are respectively the primitive abscissa and ordinate of the same point.

Let $A B=a, B A^{\prime}=b, A P=x, \mathbf{Y}_{1}$ $P M=y, A^{\prime} P^{\prime}=x^{\prime}, P^{\prime} M=y^{\prime}$ the angle $X^{\prime} A^{\prime} X^{\prime \prime}=m$, and the angle $Y^{\prime} A^{\prime} X^{\prime \prime}=n$. Now by trigonometry we have
$A^{\prime} K=x^{\prime} \cos . m, K P^{\prime}=L H=x^{\prime}$ sin. m

$$
P^{\prime} H=K L=y^{\prime} \cos . n
$$

And

$$
M H=y^{\prime} \sin . n .
$$

Whence $x=a+x^{\prime} \cos . m+y^{\prime} \cos . n, y=b+x^{\prime} \sin . m+y^{\prime} \sin . n$, the formulas required.

Scholium.-In case the two systems have the same origin, we merely suppress a and b, and then the formulas required are $x=x^{\prime} \cos . m+y^{\prime} \cos . n . y=x^{\prime} \sin . m+y^{\prime} \sin . n$.

PROPOSITIONX.

To find the formulas for passing from a system of oblique coordinates to a system of rectangular co-ordinates, the origin being the same.

Take the formulas of the last problem

$$
x=x^{\prime} \cos . m+y^{\prime} \cos . n, \quad y=x^{\prime} \sin . m+y^{\prime} \sin . n .
$$

We now regard the oblique as the primitive axes, and require the corresponding values on the rectangular axes. That is, we require the values of x^{\prime} and y^{\prime}. If we multiply the first by sin. n, and the second by cos. n, and subtract their products, y^{\prime} will be eliminated, and if x^{\prime} be eliminated in a similar manner, we shall obtain

$$
x^{\prime}=\frac{x \sin . n-y \cos . n}{\sin \cdot(n-m)} \quad y^{\prime}=\frac{y \cos . m-x \sin m}{\sin \cdot(n-m)}
$$

Scholium.-If the zero point be changed at the same time in reference to the oblique system, we shall have

$$
x^{\prime}=a+\frac{x \sin . n-y \cos . n}{\sin .(n-m)} \quad y^{\prime}=\quad b+=\frac{y \cos . m-x \sin . m}{\sin \cdot(n-m)}
$$

We will close this subject by the following

EXAMPLE.

The equation of a line referred to rectangular co-ordinates is

$$
y=a^{\prime} x+b^{\prime}
$$

Change it to a system of oblique co-ordinates having the same zero point.

Substituting for x and y their values as above, we have

$$
x^{\prime} \sin . m+y^{\prime} \sin . n=a^{\prime}\left(x \cos . m+y^{\prime} \cos . n\right)+b^{\prime}
$$

Reducing

$$
y^{\prime}=\frac{\left(a^{\prime} \cos . m-\sin . m\right) x^{\prime}}{\sin . n-a^{\prime} \cos . m}+\frac{b^{\prime}}{\sin . n-a^{\prime} \cos . m}
$$

POLAR CO-ORDINATES.

There are other methods by which the relative positions of points in a plane may be analytically established than that of referring them to two rectilinear axes intersecting each other under a given angle.

For example, suppose the line $\mathbf{Y}^{\prime} \mathbf{Y}$ $A B$ to revolve in a plane about the point A. If the angle that this line makes with a fixed line passing through A be known, and also the length of $A B$, it is evident that the extremity B of this line will be determined, and that there A^{\prime}
 is no point whatever in the plane the position of which may not be assigned by giving to $A . B$ and the angle which it makes with the fixed line appropriate values.

The variable distance $A B$ is called the radius vector, the angle thatitmakes with the fixed line the variable angle and the point A about which the radius vector turns, the pole. The radius vector and the variable angle together constitute a system of polar co-ordinates.

Denote variable angle $B A D$ by v, the radius vector by r and by x and y, the co-ordinates of B referred to the rectangular axes $A X, A Y$; then by trigonometry we have

$$
x=r \cos . v \text { and } y=r \sin . v .
$$

Now from the first of these we have $r=\frac{x}{\cos \cdot v}(v$ may revolve all the way round the pole), and as x and cos. v are both positive and both negative at the same time, that is, both positive in the first and fourth quadrants, and both negative in the second and third quadrants, therefore r will always be positive.

Consequently, should a negative radius appear in any equation, we must infer that some incompatible conditions have been admitted into the equation.

PROPOSITION XI.

To find the formulas for changing the reference of points from a system of rectangular co-ordinate axes to a system of polar co-ordinates.
Let $A^{\prime} X, A^{\prime} Y$ be the co- Y. ordinate axes, A the pole $A B$ the radius vector of any point, and $A D$ parallel to $A^{\prime} X$ the fixed line from which the variable angle is estimated. Denote the co-ordinates $A^{\prime} E$, $A E$ of the pole by a and b and A^{\prime}
 the radius vector $A B$ by r. Draw $B C$ perpendicular to $A^{\prime} X$; then is $A^{\prime} C=x$ the abscissa, and $B C=y$ the ordinate of the point B. From the figure we have

$$
A^{\prime} C=A^{\prime} E+E C=A^{\prime} E+A F=A^{\prime} E+A B \text { cos } . v
$$

and $B C=B F+F C=B F+A E=A E+A B \sin . v$

Whence

$$
\begin{aligned}
& x=a+r \cos . v \\
& y=b+r \sin . v .
\end{aligned}
$$

Scholium.-If instead of estimating the variable angle from the line $A D$, which is parallel to the axis $A^{\prime} X$, we estimate it from the line $A H$ which makes with the axis the given angle $H A D=m$ we shall have

$$
\begin{aligned}
& x=a+r \cos (v+m) \\
& y=b+r \sin .(x+m)
\end{aligned}
$$

CHAPTER II.

THECIRCLE.

LINES OF THE SECOND ORDER.

Straight lines can be represented by equations of the first degree, and they are therefore called lines of the first order. The circumference of a circle, and all the conic sections, are lines of the second order, because the equations which represent them are of the second degree.
PROPOSITIONI.

To find the equation of a circle.
Let the origin be the center of the circle. Draw $A M$ to any point in the circumference, and let fall MP perpendicular to the axis of X. Put $A P=x, P M=y$ and $A M=R$.

Then the right angled triangle
 $A P M$ gives

$$
\begin{equation*}
x^{2}+y^{2}=R^{2} \tag{1}
\end{equation*}
$$

and this is the equation of the circle when the zero point is the center.

When $y=0, x^{2}=R^{2}$, or $\pm x=R$, that is, P is at X or A^{\prime}. When $x=0, y^{2}=R^{2}$, or $\pm y=R$, showing that M on the circumference is then at Y or $Y^{\prime \prime}$.

When x is positive, then P is on the right of the axis of Y, and when negative, P is on the left of that axis, or between A and A^{\prime}.

When we make radius unity, as we often do in trigonometry, then $x^{2}+y^{2}=1$, and then giving to x or y any value plus or minus within the limit of unity, the equation will give us the corresponding value of the other letter.

In trigonometry y is called the sine of the $\operatorname{arc} \mathrm{XM}$, and x its cosine.

Hence in trigonometry we have $\sin .^{2}+\cos ^{2}=1$.
Now if we remove the origin to A^{\prime} and call the distance $A^{\prime} P=x$, then $A P=x-R$, and the triangle $A P M$ gives

$$
\begin{aligned}
& (x--R)^{2}+y^{2}=R^{2} . \\
& y^{2}=2 R x-x^{2} .
\end{aligned}
$$

Whence
This is the equation of the circle, when the origin is on the circumference.

When $x=0, y=0$ at the same time. When x is greater than $2 R, y$ becomes imaginary, showing that such an hypothesis is inconsistent with the existence of a point in the circumference of the circle.

There is still a more general equation of the circle when the zero point is ncither at the center nor in the circumference.

The figure will fully illustrate.
Let $A B=c, B C=b$. Put $A P \mathbf{Y}$ $=x$, or $A P^{\prime}=x$, and $P M$ or P^{\prime} $M^{\prime \prime \prime}=y, C M, C M^{\prime}$, \&c. each $=R$.

In the circle we observe four equal right angled triangles. The numerical expression is the same for each. Signs only indicate positions.

Now in case $C D M$ is the triangle we fix upon,
We put $A P=x$, then $B P=C D=(x-c)$,

$$
\begin{equation*}
P M=y, M D=y-C B=(y-b) . \tag{1}
\end{equation*}
$$

Whence $\quad(x-c)^{2}+(y-b)^{2}=R^{2}$
In case $C D M^{\prime}$ is the triangle, we put $A P=x$ and $P M^{\prime}$ $=y$.

Then $\quad(x-c)^{2}+(b-y)^{2}=R^{2}$
In case $C D^{\prime} M^{\prime \prime \prime}$ is the triangle, we put $A P^{\prime}=x, P^{\prime} M^{\prime \prime \prime}$ $=y$.

Then

$$
\begin{equation*}
(c-x)^{2}+(y-b)^{2}=R^{2} \tag{3}
\end{equation*}
$$

If $C D^{\prime} M^{\prime \prime}$ is the triangle, we put $P^{\prime} M^{\prime \prime}=y$.
Then $\left.\quad(c-x)^{2}+b-y\right)^{2}=R^{2}$
Equations (1), (2), (3), and (4), are in all respects numerically the same, for $(c-x)^{2}=(x-c)^{2}$, and $(b-y)^{2}=(y-b)^{2}$. Hence we may take equation (1) to represent the general equation of the circle referred to rectangular co-ordinates.

The equation $\quad(x-c)^{2}+(y-b)^{2}=R^{2}$
includes all the others by attributing proper values and signs to c and b.

If we suppose both c and b equal 0 , it transfers the zero point to the center of the circle, and the equation becomes

$$
x^{2}+y^{2}=R^{2}
$$

To find where the circle cuts the axis of X we must make $y=0$. This reduces the general equation (1) to

$$
(x-c)^{2}+b^{2}=R^{2}
$$

Or

$$
(x-c)^{2}=R^{2}-b^{2} .
$$

Now if b is numerically greater than R, the first member being a square, (and therefore positive,) must be equal to a negative quantity, which is impossible,-showing that in that case the circle does not meet or cut the axis of X, and this is obvious from the figure.

In case $b=R$, then $(x-c)^{2}=0$, or $x=c$, showing that the
circle would then touch the axis of X. If we make $x=0$, eq. (1) becomes

Or

$$
\begin{aligned}
& c^{2}+(y-b)^{2}=R^{2} . \\
& (y-b)^{2}=R^{2}-c^{2} .
\end{aligned}
$$

This equation shows that if c is greater than R, the circle does not cut the axis of Y, and this is also obvious from the figure.

If c be less than R, the second member is positive in value, and

$$
y=b \pm \sqrt{R^{2}-c^{2}}
$$

showing that if the circumference cut the axis at all, it must be in two points, as at $M^{\prime \prime}, M^{\prime \prime \prime}$.

PROPOSITIONII.

The supplementary chords in the circle are perpendicular to each other.

Definition.-Two lines drawn, one through each extremity of any diameter of a curve, and which intersect the curve in the same point, are called supplementary chords.

That is, the chord of an arc, and the chord of its supplement.

In common geometry this proposition is enunciated thus:

All angles in a semi-circle are right angles.
The equation of a straight line which will pass through the given point B, must be of the form (Prop. III. Chap. I.)

$$
\begin{equation*}
y-y^{\prime}=a\left(x-x^{\prime}\right) \tag{1}
\end{equation*}
$$

The equation of a straight \mathbf{B}
 line which will pass through the given point X, must be of the form $\quad y-y^{\prime}=a^{\prime}\left(x-x^{\prime}\right)$.

At the point $B, y^{\prime}=0$, and $x^{\prime}=-R$, or $-x^{\prime}=R$. Therefore eq. (1) becomes

$$
\begin{equation*}
y=a(x+R) . \tag{3}
\end{equation*}
$$

And for like reason eq. (2) becomes

$$
\begin{equation*}
y=a^{\prime}(x-R) \tag{4}
\end{equation*}
$$

For the point in which these lines intersect x and y in eq. (3) are the same as x and y in eq. (4); hence, these equations may be multiplied together under this supposition, and the result will be a true equation. That is,

$$
\begin{equation*}
y^{2}=\alpha a^{\prime}\left(x^{2}-R^{2}\right) \tag{5}
\end{equation*}
$$

But as the point of intersection must be on the curve, by hypothesis, therefore, x and y must conform to the following equation:

$$
\begin{equation*}
y^{2}+x^{2}=R^{2} . \quad \text { Or } y^{2}=-1\left(x^{2}-R^{2}\right) \tag{6}
\end{equation*}
$$

Whence $\quad a a^{\prime}=-1$; or $a a^{\prime}+1+0$.
This last equation shows that the two lines are perpendicular to each other, as proved by (Cor. 2, Prop. 5., Chap. 1.)

Because a and a^{\prime} are indeterminate, we conclude that an infinite number of supplemental chords may be drawn in the semi-circle, which is obviously true.

PROPOSTION III.

To find the equation of a line tangent to the circumference of a circle at a given point.

Let C be the center of the circle, P the point of tangency, and Q a point assumed at pleasure in the circumference.

Denote the co-ordinates of P hy x^{\prime}, y^{\prime}, and those of Q, by $x^{\prime \prime}, y^{\prime \prime}$,

The equation of a line passing through two points whose co-or-

dinates are x^{\prime}, y^{\prime} and $x^{\prime \prime}, y^{\prime \prime}$ is of the form (Prop. 4, Chap. 1).

$$
\begin{equation*}
y-y^{\prime}=\frac{y^{\prime}-y^{\prime \prime}}{x^{\prime}-x^{\prime \prime}}\left(x-x^{\prime \prime}\right) . \tag{1}
\end{equation*}
$$

We are to introduce in this equation, first, the condition that the points P and Q are in the circumference of the circle, which will make the line a secant line, and then the further condition that the point Q shall coincide with the point P, which will cause the secant line to become the required tangent line.
Because the points P and Q are in the circumference of the circle, we have

$$
\begin{aligned}
& x^{\prime 2}+y^{\prime 2}=R^{2} \\
& x^{\prime \prime 2}+y^{\prime 2}=R^{2}
\end{aligned}
$$

and
Whence by subtraction and factoring,

$$
\begin{equation*}
\left(x^{\prime}+x^{\prime \prime}\right)\left(x^{\prime}-x^{\prime \prime}\right)+\left(y^{\prime}+y^{\prime \prime}\right)\left(y^{\prime}-y^{\prime \prime}\right)=0 \tag{2}
\end{equation*}
$$

from which we find

$$
\frac{y^{\prime}-y^{\prime \prime}}{x^{\prime}-x^{\prime \prime}}=-\frac{x^{\prime}+x^{\prime \prime}}{y^{\prime}+y^{\prime \prime}}
$$

This value of $\frac{y^{\prime}-y^{\prime \prime}}{x^{\prime}-x^{\prime \prime}}$ substituted in equation (l) gives us for the equation of the secant line,

$$
\begin{equation*}
y-y^{\prime}=-\frac{x^{\prime}+x^{\prime \prime}}{y^{\prime}+y^{\prime \prime}}\left(x-x^{\prime}\right) \tag{}
\end{equation*}
$$

Now, if we suppose this line to, turn about the point P until Q unites with P, we shall have $x^{\prime \prime}=x^{\prime}$ and $y^{\prime \prime}=y^{\prime}$, and the secant line will become a tangent to the circumference at the point P.

Under this supposition eq. (3) becomes

$$
\begin{equation*}
y-y^{\prime}=-\frac{x^{\prime}}{y^{\prime}}\left(x-x^{\prime}\right), \tag{4}
\end{equation*}
$$

in which $\frac{x^{\prime}}{y^{\prime}}$ is the value of the tangent of the angle which the tangent line makes with axis of X.

By clearing this equation of fractions, and substituting for $x^{\prime 2}+y^{\prime 2}$ its value, R^{2}, we have finally for the equation of the tangent line,

$$
\begin{equation*}
y y^{\prime}+x x^{\prime}=R^{2} . \tag{5}
\end{equation*}
$$

This is the general equation of a tangent line; x^{\prime}, y^{\prime}, are the co-ordinates of the tangent point, and x, y, the co-ordinates of any other point in the line.

Scholium 1.-For the point in which the tangent line cuts the axis of X, we make $y^{\prime}=0$, then

$$
x=\frac{R^{2}}{x^{\prime}}=A T
$$

For the point in which it meets the
 axis of Y, we make $x^{\prime}=0$, and

$$
y=\frac{R^{2}}{y^{\prime}}=A Q .
$$

Scholium 2.-A line is said to be normal to a curve when it is perpendicular to the tangent line at the point of contact.

Join A, P, and if $A P T$ is a right angle, then $A P$ is a normal, and $A B$, a portion of the axis of X under $i t$, is called the subnormal. The line $B T$ under the tangent is called the subtangent.

Let us now discover whether $A P T$ is or is not a right angle.
Put $a^{\prime}=$ the tangent of the angle PAT, then by trigonometry

$$
a^{\prime}=\frac{y^{\prime}}{x^{\prime}} .
$$

But

$$
\begin{equation*}
a=-\frac{x^{\prime}}{y^{\prime}} . \tag{6}
\end{equation*}
$$

Whence

$$
a a^{\prime}=-1 . \quad \text { Or } \quad a^{\prime}=-\frac{1}{a}
$$

Therefore $A P$ is at right angles to $P T$. (Prop. 5. Chap. 1.) That is, a tangent line to the circumference of a circle at any point is perpendicular to the radius drawn to that point.

Scholium 3.-Admitting the principle, which is a well-known truth of elementary geometry, demonstrated in the preceding scholium, we would not, in getting the equation of a tangent line to the
circle, draw a line cutting the curve in two points, but would draw the tangent line $P T$ at once, and admit that the angle $A P T$ was a right angle. Then it is clear that the angle $A P B=$ the angle $P T B$.

Now to find the equation of the line, we let x^{\prime} and y^{\prime} represent the co-ordinates
 of the point P, and x and y the general co-ordinates of the line, and a the tangent of its angle with the axis of X, then (by Prop III, Chap. I,) we have

$$
y-y^{\prime}=a\left(x-x^{\prime}\right)
$$

Now the triangle $A P B$ gives us the following expression for the tangent of the angle $A P B$, or its equal $P T B$,

$$
a=-\frac{x^{\prime}}{y^{\prime}}
$$

This value of a put in the preceding equation, will give us

	$y^{\prime}-y=-\frac{x^{\prime}}{y^{\prime}}\left(x^{\prime}-x\right)$.
Or	$y^{\prime 2}-y y^{\prime}=-x^{\prime 8}+x x^{\prime}$.
	$y y^{\prime}+x x^{\prime}=R^{2}$, the same as before.

PROPOSITION IV.

To find the equation of a line tangent to the circumference of a circle, which shall pass through a given point without the circle.

Let H (see last figure to the preceding proposition) be the given point, and $x^{\prime \prime}$ and $y^{\prime \prime}$ its co-ordinates, and x^{\prime} and y^{\prime} the co-ordinates of the point of tangency P.

The equation of the line passing through the two points H and P must be of the form

$$
\begin{equation*}
y-y^{\prime \prime}=a\left(x-x^{\prime \prime}\right) \tag{1}
\end{equation*}
$$

in which

$$
a=\frac{y^{\prime}-y^{\prime \prime}}{x^{\prime}-x^{i \prime}}
$$

Since $P H$ is supposed to be tangent at the point P,
and x^{\prime} and y^{\prime} are the co-ordinates of this point, equation ${ }^{(6)}$ Prop. 3, gives us

$$
a=-\frac{x^{\prime}}{y^{\prime}}
$$

Placing this value of a in equation (1) we have

$$
y-y^{\prime \prime}=-\frac{x^{\prime}}{y^{\prime}}\left(x-x^{\prime \prime}\right)
$$

for the equation sought.
This equation combined with

$$
x^{\prime 2}+y^{\prime 2}=R^{2}
$$

which fixes the point P on the circumference will determine the values of x^{\prime} and y^{\prime}, and as there will be two real values for each, it shows that two tangents can be drawn from H, or from any point without the circle, which is obviously true.

Scholium. We can find the value of the tangent $P T$ by means of the similar triangles $A B P, P B T$, which give

$$
\begin{gathered}
x^{\prime}: R:: y^{\prime}: P T . \\
P T=R \frac{y^{\prime}}{x^{\prime}} .
\end{gathered}
$$

More general and elegant formulas, applicable to all the conic sections, will be found in the calculus for the normals, subnormals, tangents and subtangents

OF THE POLAR EQUATION OF THE CIRCLE.

The polar equation of a curve is the equation of the curve expressed in terms of polar co-ordinates. The variable distance from the pole to any point in the curve is called the radius vector, and the angle which the radius vector makes with a given straight line is called the variable angle.

PROPOSITION V.

To find the polar equation of the circle.
When the center is thepole or the fixed point, the equation is

$$
\begin{equation*}
r^{2}=x^{2}+y^{2}=R^{2} \tag{1}
\end{equation*}
$$

and the radius vector R is then constant.
Now let P be the pole, and the co-ordinates of that point referred to the center and rectangular axes be a and b. Make $P M=r$, and $M P X^{\prime}=v$ the variable angle; $A N$ $=x$ and $N M=y$. Then (Prop. 11, Chap. 1.) we have

$$
x=a+r \cos . v, \text { and } y=b+r \sin v
$$

These values of x and y substituted in eq. (1), (observing that $\cos ^{2} v+\sin .{ }^{2} v=1$,) will give

$$
r^{2}+2(a \cos . v+b \sin . v) r+a^{2}+b^{2}-R^{2}=0
$$

which is the polar equation sought.
Scholium 1. $-P$ may be at any point on the plane. Suppose it at B^{\prime}. Then a $=-R$ and $b=0$. Substituting these values in the equation, and it reduces to

$$
r^{2}-2 R r \cos . v=0 .
$$

As there is no absolute term, $r=0$ will satisfy the equation and correspond to one point in the curve, and this is true, as P
 is supposed to be in the curve. Dividing by r, and

$$
r=2 R \cos . v .
$$

This value of r will be positive when cos. v. is positive, and negative when cos. v is negative; but r being a radius vector can never be negative, and the figure shows this, as r never passes to the left of B, but runs into zero at that point.

When $v=0$, cos. $v=1$, then $r=B B^{\prime}$. When $v=90$, cos. $v=0$, and r becomes 0 at B^{\prime}, and the variations of v from 0 to 90 , determine all the points in the semi-circumference $B D B^{\prime}$.

Scholium 2.-If the pole be placed at B, then $a=+R$ and $b=0$, which reduces the general equation to

$$
r=-2 R \cos . v
$$

Here it is necessary that cos. v should be negative to make r positive, therefore v must commence at 90° and vary to 270°; that is, be on the left of the axis of Y drawn through B, and this corresponds with the figure.

Application. The polar equation of the circle in its most general form is

$$
\begin{equation*}
r^{2}+2(a \cos . v+b \sin v) r+a^{2}+b^{2}=R^{2} . \tag{1}
\end{equation*}
$$

If we make $b=0$, it puts the polar point somewhere on the axis of X, and reduces the equation to

$$
\begin{equation*}
r^{2}+2 a \cos . v \cdot r+a^{2}=R^{2} \tag{2}
\end{equation*}
$$

Now if we make $v=0$, then will cos. $v=1$, and the lines represented by $\pm r$ would refer to the points X, X^{\prime}, in the circle.

This hypothesis reduces the last equation to

$$
\begin{equation*}
r^{2}+2 a r=\left(R^{2}-a^{2}\right) \tag{3}
\end{equation*}
$$

and this equation is the same in form as the common quadratic in algebra, or in the same form as

$$
\begin{array}{cc}
& x^{2} \pm p x=q . \\
\text { Whence } & x=r, \quad 2 a= \pm p, \quad \text { and } \quad R^{2}-a^{2}=q \\
a= \pm \frac{1}{2} p, & R=\sqrt{q+a^{2}}=\sqrt{q+\frac{1}{4} p^{2} .}
\end{array}
$$

These results show us that if we describe a circle with the radius $\overline{\sqrt{ } q+\frac{1}{4} p^{2}}$, and place P on the axis of X at a distance from the center equal to to $\frac{1}{2} p$, then $P X$ represents one value of x, and $P X^{\prime}$ the other. That is,

$$
\begin{aligned}
& x=-\frac{1}{2} p+\sqrt{q+\frac{1}{4} p^{2}}=P X . \\
& x=-\frac{1}{2} p-\sqrt{q+\frac{1}{4} p^{2}}=P X^{\prime},
\end{aligned}
$$

Or
and this is the common solution.
When p is negative, the polar point is laid off to the left from the center at P^{\prime}.

The operation refors to the right angled triangle $A P M$.

$$
A P=\frac{1}{2} p, \quad P M=\sqrt{ } q, \text { and } A M=\sqrt{q+\frac{1}{4} p^{2}} .
$$

Let the form of the quadratic be

$$
x^{2} \pm p x=-q .
$$

Then comparing this with the polar equation of the circle, we have

$$
\begin{array}{cl}
2 a= \pm p . & R^{2}-a^{2}=-q . \\
-a= \pm \frac{1}{2} p . & R= \pm \sqrt{\frac{1}{4} p^{2}-q .}
\end{array}
$$

Take $A X=R$ and describe a semicircle. Take $A P=\frac{1}{2} p$ and $A P^{\prime}=$ $\frac{1}{2} p$. From P and f^{\prime} draw the lines $P M$, and $P^{\prime} M^{\prime}$ to touch the circle; and draw $A M, A M$.

Here $A P$ is the hypotenuse of a
 right angled triangle. In the first case $A P$ was a side.

In this figure as in the other, $P M=\sqrt{ } q$; but here it is inclined to the axis of X; in the first figure it was perpendicular to it.

The figure thus drawn, we have $P X$ for one value of x, and $P X^{\prime}$ is the other, which may be determined geometrically.

If

$$
x^{2}+p x=-q
$$

$x=-\frac{1}{2} p+\sqrt{\frac{1}{4} p^{2}-q}=P X, \quad$ or $\quad x=-\frac{1}{2} p-\sqrt{\sqrt{\frac{1}{4} p^{2}-q}}=P X^{\prime}$.
Observe that the first part of the value of x, is minus, corresponding to a position from P to the left.

If

$$
x^{2}-p x=-q,
$$

we take P^{\prime} for one extremity of the line x.

$$
x=\frac{1}{2} p+\sqrt{\frac{1}{4} p^{2}-q}=P^{\prime} X, \quad \text { or } \quad x=\frac{1}{2} p-\sqrt{\frac{1}{4} p^{2}-q}=P^{\prime} X^{\prime} .
$$

Here the first part of the value of $x,\left(\frac{1}{2} p\right)$, is plus, because it is laid off to the right of the point P^{\prime}.

Because $R=\sqrt{ }{ }^{1} p^{2}-q R$ or $A M$ becomes less and less as the numerical value of q approaches the value of $\frac{4}{4} p^{2}$. When these two are equal, $R=0$, and the circle becomes a point. When q is greater than $\frac{1}{4} p^{2}$, the circle has more than vanished, giving no real existence to any of these lines, and the values of x are said to be imaginary.

We have found another method of geometrizing quadratic equations, which we consider well worthy of notice, although it is of but little practical utility.

It will be remembered that the equation of a straight line passing through the origin of co-ordinates is

$$
\begin{equation*}
y=a x, \tag{1}
\end{equation*}
$$

and that the general equation of the circle is

$$
\begin{equation*}
(x \mp c)^{2}+(y \mp b)^{2}=R^{2} . \tag{2}
\end{equation*}
$$

If we make $b=0$, the center of the circle must be somewhere on the axis of X.
Let $A M$ represent a line, the equation of which is $y=a x$, and if we take $a=1, A M$ will incline 45° from either axis, as represented in the figure. Hence $y=x$, and making $b=0$, if these two values be substituted in eq. (2) and that equation reduced, we shall find

$$
\begin{equation*}
y^{2} \mp c y=\frac{R^{2}-c^{2}}{2} . \tag{3}
\end{equation*}
$$

This equation has the common quadratic form.
Equation (1) responds to any point in the straight line $M^{\prime} M$. Equation (2) responds to any point in the circumference $B M M^{\prime}$.

Therefore equation (3) which results from the combination of eqs. (1) and 2), must respond to the points M and M^{\prime}, the points in which the circle cuts the line.

That is, $P M$ and $P^{\prime} M^{\prime}$ are the two roots of equation ${ }^{(3)}$, and when one is above the axis of X, as in this figure, it is the positive root, and $P^{\prime} M^{\prime}$ being below the axis of X, it is the negative root.

When both roots of equation (3) are positive, the circle will cut the line in two points above the axis of X. When the two roots are minus, the circle will cut the line in two points below the axis of X.

When the two roots of any equation in the form of eq. ${ }^{(3)}$ are equal and positive; the circle will touch the line above the axis of X. If the roots are equal and negative,
the circle will touch the line below the axis of X. In case the roots of eq. (3) are imaginary, the circle will not meet the line.

We give the following examples for illustration:

$$
y^{2}-2 y=5
$$

To determine the values of y by a geometrical construction of this kind, we must make

$$
c=-2, \quad \text { and } \quad \frac{R^{2}-c^{2}}{2}=5
$$

Whence $R=3.74$, the radius of the circle. Take any distance on the axes for the unit of measure, and set off the distance c on the axis of X from the origin, for the center of the circle; to the right, if c is negative, and to the left, if c is positive.

Then from the center, with a radius equal to $R=$ $\sqrt{2 q+c^{2}}$, describe a circumference cutting the line drawn midway between the two axes, as in the figure.

In this example the center of the circle is at C, the distance of two units from the origin A, to the right. Then, with the radius 3.74 we described the circumference, cutting the line in M and M^{\prime}, and we find by measure (when the construction is accurate) that $M P=4.44$, the positive root, and $I M^{\prime} P^{\prime}=-1.44$, the negative root.

For another example we require the roots of the following equation by construction:

$$
y^{2}+6 y=27
$$

N. B. When the numerals are too large in any equatinn for convenience, we can always reduce them in the following manner:

Put $\quad y=n z$, then the equation becomes

$$
\begin{aligned}
& n^{2} z^{2}+6 n z=27 . \\
& z^{2}+\frac{6}{n} z=\frac{27}{n^{2}}
\end{aligned}
$$

Or

Now let $n=$ any number whatever. If $n=3$, then

$$
z^{2}+2 z=3 .
$$

Here $c=2 . \frac{R^{2}-c^{2}}{2}=3$. Whence $R=\sqrt{ } 10=3.16$.

At the distance of two units to
 the left of the origin, is the center of the circle. We see by the figure that 1 is the positive root, and -3 the negative root.

But $\quad y=n z, \quad n=3, \quad z=1, \quad y=3$ or -9 .
We give one more example.
Construct the equation

$$
y^{2}+4 y=-6
$$

Here $c=4$, and $\frac{R^{2}-c^{2}}{2}=-6$. Whence $R=2$.
Using the same figure as before, the center of the circle to this example is at D, and as the radius is only 2 , the circumference does not cut the line $M^{\prime} M$, showing that the equation has no real roots.

We have said that this method of finding the roots of a quadratic was of little practical value. The reason of this conclusion is based on the fact that it requires more labor to obtain the value of the radius of the circle than it does to find the roots themselves.

Nevertheless this method is an interesting and instructive application of geometry in the solution of equations.

When we find the polar equation of the parabola, we shall then have another method of constructing the roots of quadratics which will not require the extraction of the square root.

To facilitate the geometrical solution of quadratic equations which we have thus indicated, the operator should provide himself with an accurately constructed scale, which is represented in the following figure. It
consists of two lines, or axes, at right angles to each other, and another line drawn through their intersection and making with them an angle of 45°. On the axes, any convenient unit, as the inch, the half, or the fourth of an inch, etc., is laid off a sufficient number of times, to the right
 and the left, above and below the origin, from which the divisions are numbered $1,2,3$, etc., or $10,20,30$, etc., or $.1, .2, .3$, etc. To use this scale, a piece of thin, transparent paper, through which the numbers may be distinctly seen, is fastened over it, and with the proper center and radius the circumference of a circle is described. The distances from the axis of X of the intersections of this circumference, with the inclined line through the origin, will be the roots of the equation, and their numerical values may be determined by the scale.

By removing one piece of paper from the scale and substituting another, we are prepared for the solution of another equation, and so on.

EXAMPLES.

1. Given $x^{2}+11 x=80$, to find x. Ans. $x=5$, or -16 .
2. Given $x^{2}-3 x=28$, to find x. Ans. $x=7$, or-4.
3. Given $x^{2}-x=2$, to find x. Ans. $x=2$, or- 1 .
4. Given $x^{2}-12 x=-32$, to find x. Ans. $x=4$, or 8 .
5. Given $x^{2}-12 x=-36$, to find x. Ans. Each value is 6 .
6. Given $x^{2}-12 x=-38$, to find x. Both values imaginary.
7. Given $x^{2}+6 x=-10$, to find x. Both values imaginary.
8. Given $x^{2}=81$, to find x. Ans. $x=9$, or- 9 .

For example $8, c=0$ and $\frac{R^{2}-c^{2}}{2}=81$;
Whence, $R=9 \sqrt{2}$.
This method may therefore be used for extracting the square root of numbers. In such cases, the center of the circle is at the zero point.

CHAPTER III.

THE ELLIPSE.

We have already developed the properties of the $E l$ lipse, Parabola and Hyperbola by geometrical processes, and it is now proposed to re-examine these curves, and develop their properties by analysis.

As he proceeds, the student cannot fail to perceive the superior beauty and simplicity of the analytical methods of investigation; and, even if a knowledge of the conic sections were not, as it is, of the highest practical value, the mental discipline to be acquired by this study would, of itself, be a sufficient compensation for the time and labor given to it.
As all needful definitions relating to these curves have been given in the Conic Sections, we shall not repeat them here, but will refer those to whom such reference may be necessary to the appropriate heads in that division of the work.

PROPOSITION I.

To find the equation of the ellipse referred to its axes as the axes of co-ordinates, the major axis and the distance from the center to the focus being given.

Let $A A^{\prime}$ be the major axis, F, F^{\prime} the foci, and C the center of an ellipse. Make $C F=c C A=A$. Take any
point on the curve, and from it let fall the perpendicular $P t$ on the major axis; then, by our conventional notation, is $C_{t}=x$, $t P=y$.

As $F^{\prime} P+P F=2 A$, we may

put $F^{\prime} P=A+z$, and $P F=A-z$. Then the two right angled triangles $F^{\prime} P t, F P t$, give us

$$
\begin{align*}
& (c+x)^{2}+y^{2}=(A+z)^{2} \tag{1}\\
& (x-c)^{2}+y^{2}=(A-z)^{2} \tag{2}
\end{align*}
$$

For the points in the curve which cause t to fall between C and F, we would have

$$
\begin{equation*}
(c-x)^{2}+y^{2}=(A-z)^{2} \tag{3}
\end{equation*}
$$

But when expanded, there is no difference between eqs. (2) and (3), and by giving proper values and signs to x and y, eqs. (1) and (2) will respond to any point in the curve as well as to the point P.

Subtracting eq. (2) from eq. (1), member from member, and dividing the resulting equation by 4 , we find

$$
\begin{equation*}
c x=A z, \text { or } z=\frac{c x}{A} \tag{4}
\end{equation*}
$$

This last equation shows that $F^{\prime} P$, the radius vector, varies as the abscissa x.

Add eqs. (1) and (2), member to member, and divide the result by 2 , and we have

$$
c^{2}+x^{2}+y^{2}=A^{2}+z^{2}
$$

Substituting the value of z^{2} from eq. (4), and clearing of fractions, we have

$$
\begin{array}{ll}
& c^{2} A^{2}+A^{2} x^{2}+A^{2} y^{2}=A^{4}+c^{2} x^{2} . \\
\text { Or, } \quad A^{2} y^{2}+\left(A^{2}-c^{2}\right) x^{2}=A^{2}\left(A^{2}-c^{2}\right) . \tag{5}
\end{array}
$$

Now conceive the point P to move along describing the curve, and when it comes to the point D, so that $D C$ makes a right angle with the axis of X, the two triangles $D C F$ and $D C F^{\prime}$ are right angled and equal. $D F$ and
$D F^{\prime \prime}$ each is equal to A, and as $C F, C F^{\prime \prime}$, each is equal to c, we have

$$
\overline{D C^{2}}=A^{2}-c^{2} .
$$

It is customary to denote $D C$ half the minor axis of the ellipse by B, as well as half the major axis by A, and adhering to this notation

$$
\begin{equation*}
B^{2}=A^{2}-c^{2} . \tag{6}
\end{equation*}
$$

Substituting this in eq. (5), we have for the equation of the ellipse

$$
A^{2} y^{2}+B^{2} x^{2}=A^{2} B^{2}
$$

referred to its center for the origin of co-ordinates.
If we wish to transfer the origin of co-ordinates from the center of the ellipse to the extremity A^{\prime} of its major axis, we must put

$$
x=-A+x^{\prime}, \quad \text { and } \quad y=y^{\prime} .
$$

Substituting these values of x and y in the last equation, and reducing, we have

$$
y^{\prime 2}=\frac{B^{2}}{A^{2}}\left(2 A x^{\prime}-x^{\prime 2}\right)
$$

Or without the primes, we have

$$
y^{2}=\frac{B^{2}}{A^{2}}\left(2 A x-x^{2}\right)
$$

for the equation of the ellipse when the origin is at the extremity of the major axis.

Cor. 1. If it were possible for B to be equal to A, then c must be equal to 0 , as shown by eq. (6). Or, while c has a value, it is impossible for B to equal A.

If $B=A$, then $c=0$, and the equation becomes

$$
\mathrm{A}^{2} y^{2}+A^{2} x^{2}=A^{2} A^{2}
$$

$$
\text { Or } \quad y^{2}+x^{2}=A^{2}
$$

the equation of the circle. Therefore the circle may be called an ellipse, whose eccentricity is zero, or whose eccentricity is infinitely small.

Cor. 2. To find where the curve cuts the axis of X, make $y=0$ in the equation, then

$$
x= \pm A
$$

showing that it extends to equal distances from the center.
To find where the curve cuts the axis of Y, make $x=0$, and then

$$
y= \pm B .
$$

Plus B refers to the point $D,-B$ indicates the point directly opposite to D, on the lower side of the axis of X.

Finally, let x have any value whatever, less than A, then

$$
y= \pm \frac{B}{A}\left(A^{2}-x^{2}\right)^{\frac{1}{2}} .
$$

an equation showing two values of y, numerically equal, indicating that the curve is symmetrical in respect to the axis of X.

If we give to y any value less than B, the general equation gives

$$
x= \pm \frac{A}{\bar{B}}\left(B^{2}-y\right)^{\frac{1}{2}} .
$$

Showing that the curve is symmetrical in respect to the axis of Y.
Scholium.-The ordinate which passes through one of the foci, corresponds to $x=c$. But $A^{2}-B^{2}=c^{2}$. Hence $A^{2}-c^{2}$ or $A^{2}-x^{2}=B^{2} . \quad$ Or $\left(A^{2}-x^{2}\right)^{\frac{1}{2}}=B$, and this value substituted in the last equation, gives $y= \pm \frac{B^{2}}{A}$. Whence $\frac{2 B^{2}}{A}$ is the measure of the parameter of any ellipse.

PROPOSITION II.

Every diameter of the ellipse is bisected in the center.
Through the center draw the line $D D^{\prime}$. Let x, and y, denote the co-ordinates of the point D, and x^{\prime}, y^{\prime}, the co-ordinates of the point D^{\prime}.

The equation of the curve is

$$
A^{2} y^{2}+B^{2} x^{2}=A^{2} B^{2} .
$$

The equation of a line passing through the center, must be of the form

$$
y=a x .
$$

This equation combined with the
 equation of the curve, gives

$$
\begin{gathered}
x=\frac{A B}{\sqrt{a^{2} A^{2}+B^{2}}}, \quad y=\frac{a A B}{\sqrt{a^{2} A^{2}+B^{2}}} . \\
x^{\prime}=-\frac{A B}{\sqrt{a^{2} A^{2}+B^{2}}}, \quad y^{\prime}=-\frac{a A B}{\sqrt{a^{2} A^{2}+B^{2}}} .
\end{gathered}
$$

These equations show that the co-ordinates of the point D, are the same as those of the point D^{\prime}, except opposite in signs. Hence $D D^{\prime}$ is bisected at the center.

PROPOSITION III.

The squares of the ordinates to either axis of an ellipse are to one another as the rectangles of their corresponding abscissas.
Let y be any ordinate, and x its corresponding abscissa. Then, by the first proposition, we shall have

$$
y^{2}=\frac{B^{2}}{A^{2}}(2 A-x) x
$$

Let y^{\prime} be any other ordinate, and x^{\prime} its corresponding abscis-
 sa, and by the same proposition we must have

$$
y^{\prime 2}=\frac{B^{2}}{A^{2}}\left(2 A-x^{\prime}\right) x^{\prime} .
$$

Dividing one of these equations by the other, omitting common factors in the numerator and denominator of the second member of the new equation, we shall have

$$
\begin{equation*}
\frac{y^{2}}{y^{\prime 2}}=\frac{(2 A-x) x}{\left(2 A-x^{\prime}\right) x^{\prime}} \tag{1}
\end{equation*}
$$

Hence, $\quad y^{2}: y^{\prime 2}=(2 A-x) x:\left(2 A-x^{\prime}\right) x^{\prime}$.
By simply inspecting the figure, we cannot fail to perceive that $(2 A-x)$, and x, are the abscissas corresponding to the ordinate y, and $\left(2 A-x^{\prime}\right)$ and x^{\prime} are those corresponding to y^{\prime}.

If we transfer the origin to the lower extremity of the conjugate axis, the equation of the ellipse may be put under the form

$$
x^{2}=\frac{A^{2}}{B^{2}}(2 B-y) y
$$

and by a process in all respects similar to the above, we prove that $x^{2}: x^{\prime 2}::(2 B-y) y:\left(2 B-y^{\prime}\right) y^{\prime}$.

Therefore, the squares of the ordinates, etc.
Scholium.-Suppose one of these ordinates, as y^{\prime} to represent half the minor axis, that is, $y^{\prime}=B$. Then the corresponding value of x^{\prime} will be A and $\left(2 A-x^{\prime}\right.$,) will be A, also. Whence proportion (1) will become

$$
y^{2}: B^{2}=(2 A-x) x: A^{2} .
$$

In respect to the third term we perceive that if $A^{\prime} H$ is represented by $x, A H$ will be $(2 A-x)$, and if G is a point in the circle, whose diameter is $A^{\prime} A$, and $G H$ the ordinate, then

$$
(2 A-x) x=\overline{G H}^{2},
$$

and the proportion becomes

$$
\begin{array}{ll}
& y^{2}: B^{2}=\overline{G H}^{2}: A^{2} \\
\text { Or } & y: G H=B: A . \\
\text { Or } & A: B=G H: y=D H .
\end{array}
$$

If a circumference be described on the conjugate axis as a diameter, and an ordinate of the circle to this diameter be denoted by X and the corresponding ordinate of the ellipse by x, it may be shown in like manner that

$$
A: B:: x: X .
$$

PROPOSITION IV.

The area of an ellipse is a mean proportional between the areas of two circles, the diameter of the one being the major axis, and of the other the minor axis.

On the major axis $A^{\prime} A$ of the ellipse as a diameter describe a circle, and in the semicircle $A^{\prime} D$ A inscribe a polygon of any number of sides. From the vertices of the angles of this polygon draw ordinates to the major axis, and join the points in which they
 intersect the ellipse by straight lines, thus constructing a polygon of the same number of sides in the semi-ellipse $A^{\prime} D^{\prime} A$. Take the origin of co-ordinates at A^{\prime}, and denote the ordinates $B E, C F$, etc., of the circle by Y, Y^{\prime}, etc., the ordinates $B^{\prime} E, C^{\prime} F$, etc., of the ellipse by y, y^{\prime}, etc., and the corresponding abscissas, which are common to ellipse and circle, by x, x^{\prime}, etc.

Then by the scholium to Prop. 3, we have

$$
\begin{aligned}
& Y: y:: A: B \\
& Y^{\prime}: y^{\prime}:: A: B, \\
& Y: Y^{\prime}:: y: y^{\prime}
\end{aligned}
$$

and
whence
from which, by composition, we get

$$
Y+Y^{\prime}: y+y^{\prime}: Y: y:: A: B
$$

But the area of the trapezoid $B E F C$ is measured by

$$
\left(\frac{Y+Y^{\prime}}{2}\right)\left(x^{\prime}-x\right) \text { or }\left(Y+Y^{\prime}\right)\left(\frac{x^{\prime}-x}{2}\right)
$$

and that of the trapezoid $B^{\prime} E F C^{\prime \prime}$ by

$$
\left(\frac{y+y^{\prime}}{2}\right)\left(x^{\prime}-x\right) \text { or }\left(y+y^{\prime}\right)\left(\frac{x^{\prime}-x}{2}\right)
$$

therefore,

$$
\frac{\text { trapez. } B E F C}{\text { trapez } \cdot B^{\prime} E F C^{\prime}}=\frac{Y+Y^{\prime}}{y+y^{\prime}}=\frac{A}{B}
$$

That is, trapez. $B E F C$: trapez. $B^{\prime} E F C^{\prime}: A: B$; or, in words, any trapezoid of the semi-circle is to the corresponding trapezoid of the semi-ellipse as A is to B.

From this we conclude that the sum of the trapezoids in the semi-circle is to the sum of the trapezoids in the semi-ellipse as A is to B. But by making these trapezoids indefinitely small, and their number, therefore, indefinitely great, the first sum will become the area of the semi-circle and the second, the area of the semi-ellipse.
Hence,
Area semi-circle : area semi-ellipse : : $A: B$
or, area circle : area ellipse : : $A: B$
That is, $\quad \pi A^{2}:$ area ellipse $:: A: B$
Whence, \quad area ellipse $=\frac{\pi A^{2} \cdot B}{A}=\pi A \cdot B$
But $\pi A . B$ is a mean proportional between πA^{2} and πB^{2}.

Hence; The area of an ellipse is a mean proportional, etc.
Scholium.-Hence the common rule in mensuration to find the area of an ellipse.
Rule.-Multiply the semi-major and semi-minor axes together, and multiply that product by 3.1416.

PROPOSITION ∇.

To find the product of the tangents of the angles that two supplementary chords through the vertices of the transverse axis of an ellipse make with that axis, on the same side.
Let x, y, be the co-ordinates of any point, as P, and x^{\prime}, y^{\prime}, the coordinates of the point A^{\prime}.

Then the equation of a line which passes through the two points A^{\prime} and P, (Prop. 3, Chap.
 1,) will be

$$
\begin{equation*}
y-y^{\prime}=a\left(x-x^{\prime}\right) \tag{1}
\end{equation*}
$$

The equation of the line which passes through the points A and P, will be of the form

$$
\begin{equation*}
y-y^{\prime \prime}=a^{\prime}\left(x-x^{\prime \prime}\right) . \tag{2}
\end{equation*}
$$

For the given point A^{\prime}, we have $y^{\prime}=0$, and $x^{\prime}=-A$.
Whence eq. (1) becomes

$$
\begin{equation*}
y=a(x+A) \tag{3}
\end{equation*}
$$

For the given point A we have $y^{\prime \prime}=0$, and $x^{\prime \prime}=A$, which values substituted in eq. (2) give

$$
\begin{equation*}
y=a^{\prime}(x-A) \tag{4}
\end{equation*}
$$

As y and x are the co-ordinates of the same point P in both lines, we may combine eqs. (3) and (4) in any manner we please. Multiplying them member by member, we have

$$
\begin{equation*}
y^{2}=\alpha a^{\prime}\left(x^{2}-A^{2}\right) \tag{5}
\end{equation*}
$$

Because F is a point in the ellipse, the equation of the curve gives

$$
\begin{equation*}
y^{2}=\frac{B^{2}}{A^{2}}\left(A^{2}-x^{2}\right)=-\frac{B^{2}}{A^{2}}\left(x^{2}-A^{2}\right) \tag{6}
\end{equation*}
$$

Comparing eqs. (5) and (6), we find

$$
a a^{\prime}=-\frac{B^{2}}{A^{2}}
$$

for the equation sought.
Scholium 1.-In case the ellipse becomes a circle, that is, in case $A=B, a a^{\prime}+1=0$, showing that the angle $A^{\prime} P A$ would then be a right angle, as it ought to be, by (Prop. II, Chap. II.)

Because $\frac{B^{2}}{A^{2}}$ is less than unity, or $a a^{\prime}$ less than $1, *$ or radius; the two angles $P A^{\prime} A$ and $P A A^{\prime}$ are together less than 90°; therefore, the angle at P is obtuse, or greater than 90°.

Scholium 2.-Since $a a^{\prime}$ has a constant value, the sum of the two, $a+a^{\prime}$, will be least when $a=a^{\prime}$.

[^0]Hence the angle at P will be greatest when P is at the vertex of the minor axis, and the supplementary chords equal ; and the angle at P will become nearer a right angle as P approaches A or A^{\prime}.

PROPOSITION VI.

To find the equation of a straight line which shall be tangent to an ellipse.

Assume any two points, as P and Q, on the ellipse, and denote the co-ordinates of the first by x^{\prime}, y^{\prime}, and of the second by $x^{\prime \prime}, y^{\prime \prime}$. Through these points draw a line, the equation of which (Prop. 4, Chap. 1,) is

$$
\begin{equation*}
y-y^{\prime}=a\left(x-x^{\prime}\right) \tag{1}
\end{equation*}
$$

in which

$$
a=\frac{y^{\prime}-y^{\prime \prime}}{x^{\prime}-x^{\prime \prime}}
$$

We must now determine the value of a when this line becomes a tangent line to the ellipse.

Because the points P and Q are in the curve, the coordinates of those points must satisfy the following equations:

$$
\begin{gather*}
A^{2} y^{\prime 2}+B^{2} x^{\prime 2}=A^{2} B^{2} \\
\frac{A^{2} y^{\prime \prime 2}+B^{2} x^{\prime \prime 2}=A^{2} B^{2}}{A^{2}\left(y^{\prime 2}-y^{\prime \prime 2}\right)+B^{2}\left(x^{\prime 2}-x^{\prime \prime 2}\right)=0} \\
\text { By subtraction } \tag{2}\\
\text { Or } \quad A^{2}\left(y^{\prime}+y^{\prime \prime}\right)\left(y^{\prime}-y^{\prime \prime}\right)=-B^{2}\left(x^{\prime}+x^{\prime \prime}\right)\left(x^{\prime}-x^{\prime \prime}\right)
\end{gather*}
$$

Whence

$$
a=\frac{y^{\prime}-y^{\prime \prime}}{x^{\prime}-x^{\prime \prime}}=-\frac{B^{2}\left(x^{\prime}+x^{\prime \prime}\right)}{A^{2}\left(y^{\prime}+y^{\prime \prime}\right)} .
$$

Now conceive the line to revolve on the point P until Q coincides with P, then $P R$ will be tangent to the curve. But when Q coincides with P, we shall have

$$
y^{\prime}=y^{\prime \prime} \text { and } x^{\prime}=x^{\prime \prime}
$$

Under this supposition, we have

$$
a=-\frac{B^{2} x^{\prime}}{A^{2} y^{\prime}} .
$$

The value of a put in eq. (1), gives

$$
\begin{aligned}
& y-y^{\prime}=-\frac{B^{2} x^{\prime}}{A^{2} y^{\prime}}\left(x-x^{\prime}\right) . \\
& A^{2} y y^{\prime}+B^{2} x x^{\prime}=A^{2} y^{\prime 2}+B^{2} x^{\prime 2} . \\
& A^{2} y y^{\prime}+B^{2} x x^{\prime}=A^{2} B^{2} .
\end{aligned}
$$

Reducing
Or
This is the equation sought, x and y being the general co-ordinates of the line.

Scholium 1.-To find where the tangent meets the axis of X, we must make $y=0$.
This gives $x=\frac{A^{2}}{x^{\prime}}=C T$.
In case the ellipse becomes a circle, $B=A$, and then the equation will become $\quad y y^{\prime}+x x^{\prime}=A^{2}$, the equation for a tangent line to a cir-
 cle; and to find where this tangent meets the axis of X, we make $y=0$, and

$$
x=\frac{A^{2}}{x^{\prime}}=C T, \text { as before. }
$$

In short, as these results are both independent of B, the minor axis, it follows that the circle and all ellipses on the major axis $A B$ have tangents terminating at the same point T on the axis of X, if drawn from the same ordinate, as shown in the figure.

Scholium 2.-To find the point in which the tangent to an ellipse meets the axis of Y, we make $x=0$, then the equation for the tangent becomes

$$
y=\frac{B^{2}}{y^{\prime}}
$$

As this equation is independent of A, it shows that all ellipses having the same minor axis, have tangents terminating in the same point on the axis of Y, if drawn from the same abscissa.

Scholium 3. If from $C T$ we subtract $C R$, we shall have $R T$,
a common subtangent to a circle, and all ellipses which have $2 A$ for a major diameter. That is

$$
R T=\frac{A^{2}}{x^{\prime}}-x^{\prime}=\frac{A^{2}-x^{\prime 3}}{x^{\prime}} .
$$

We can also find $R T$ by the triangle $P R T$, as we have the tangent of the angle at $T,\left(-\frac{B^{2} x^{\prime}}{A^{2} y^{\prime}}\right)$ to the radius 1.

Whence we have the following proportion:

$$
\begin{gathered}
1:-\frac{B^{2} x^{\prime}}{A^{2} y^{\prime}}=R T^{\prime}: y^{\prime} \\
R T=-\frac{A^{2} y^{\prime 2}}{B^{2} x^{\prime 2}} .
\end{gathered}
$$

The minus sign indicates that the measure from T is towards the left.

PROPOSITION VII.

To find the equation of a normal line to the ellipse.
Since the normal passes through the point of tangency, its equation will be in the form

$$
\begin{equation*}
y-y^{\prime}=a^{\prime}\left(x-x^{\prime}\right) \tag{1}
\end{equation*}
$$

Because $P N$ is at right angles to the tangent,

$$
a a^{\prime}+1=0
$$

But by the last proposition

$$
a=-\frac{B^{2} x^{\prime}}{A^{2} y^{\prime}}
$$

Whence $a^{\prime}=\frac{A^{2} y^{\prime}}{\mathcal{B}^{2} x^{\prime}}$, and this value of a^{\prime} putin eq. (1) gives

$$
y-y^{\prime}=\frac{A^{2} y^{\prime}}{B^{2} x^{\prime}}\left(x-x^{\prime}\right)
$$

for the equation sought.
Scholium 1.-To find where the normal cuts the axis of X, we must make $y=0$, then we shall have

$$
x=\left(\frac{A^{2}-B^{2}}{A^{2}}\right) x^{\prime}=C N .
$$

Application.-Meridians on the earth are ellipses; the semimajor axis through the equator is $A=3963$. miles, and the semiminor axis from the center to the pole is $B=3949.5$.

A plumb line is everywhere at right angles to the surface, and of course its prolongation would be a normal line like $P N$. In latitude 42°, what is the deviation of a plumb line from the center of the earth? In other words, how far from the center of the earth would a plumb line meet the planc of the equator? Or, what would be the value of $C N$?

As this ellipse differs but little from a circle, we may take $C R$ for the cosine of 42°, which must be represented by x^{\prime}. This being assumed, we have

$$
x^{\prime}=2945 . \quad\left(\frac{A^{2}-B^{2}}{A^{2}}\right) 2945 .=20,+ \text { miles }=C N . \quad \text { Ans. }
$$

Scholium 2.-To find $N R$, the subnormal, we simply subtract $C N$ from $C R$, whence

$$
N R=x^{\prime}-\left(\frac{A^{2}-B^{2}}{A^{2}}\right) x^{\prime}=\frac{B^{2} x^{\prime}}{A^{2}} .
$$

We can also find the subnormal from the similar triangles $P R T$, $P N R$, thus :

$$
\begin{gathered}
T R: R P:: R P: R N . \\
-\frac{A y^{\prime 2}}{B^{2} x^{\prime}}: y^{\prime}:: y^{\prime}:-N R . \quad \text { Whence } N R=\frac{B^{2} x^{\prime}}{A^{2}} .
\end{gathered}
$$

PROPOSITION VIII.

Lines drawn from the foci to any point in the ellipse make equal angles with the tangent line drawn through the same point.

Let C be the center of the ellipse, $P T$ the tangent line, and $P F, P F^{\prime \prime}$, the two lines drawn to the foci.
Denote the distance $C F=\sqrt{A^{2}-B^{2}}$ by $c, C F^{\prime \prime}$

by - c, the angle $F P T$ by V, and the tangents of the angles $P T X, P F T$, by a and a^{\prime}.

Now

$$
F P T=P T X-P F T
$$

By trigonometry, (Eq. 29, p. 253, Robinson's Geometry), we have

$$
\text { Tan. } F P T=\tan .(P T X-\dot{P} F T)
$$

That is, $\quad \tan . V=\frac{a-a^{\prime}}{1+a a}{ }^{\prime}$. (1)
Prop. 6, gives us $a=-\frac{B^{2} x^{\prime}}{A^{2} y^{\prime \prime}} x^{\prime}, y^{\prime}$, being the co-ordinates of the point P.

Let x, y, be the co-ordinates of the point F, then from Prop. 4, Chap. 1, we have

$$
a^{\prime}=\frac{y^{\prime}-y}{x^{\prime}-x}
$$

But at the point $F, y=0$ and $x=c$.
Whence

$$
a^{\prime}=\frac{y^{\prime}}{x^{\prime}-c}
$$

These values of a and a^{\prime} substituted in eq. (1) give

$$
\operatorname{Tan} . V=\frac{\frac{-B^{2} x^{\prime}}{A^{2} y^{\prime}}-\frac{y^{\prime}}{x^{\prime}-c}}{1-\frac{B^{2} x^{\prime}}{A^{2}\left(x^{\prime}-c\right)}}=\frac{-B^{2} x^{\prime 2}+B^{2} c x^{\prime}-A^{2} y^{\prime 2}}{A^{2} y^{\prime}\left(x^{\prime}-c\right)-B^{2} x^{\prime} y^{\prime}}
$$

$$
\operatorname{Tan} . V=\frac{B^{2} c x^{\prime}-A^{2} B^{2}}{\left(A^{2}-B^{2}\right) x^{\prime} y^{\prime}-A^{2} c y^{\prime}}=\frac{B^{2}\left(c x^{\prime}-A^{2}\right)}{c y^{\prime}\left(c x^{\prime}-A^{2}\right)}=\frac{B^{2}}{c y^{\prime}}
$$

observing that $A^{2} y^{\prime 2}+B^{2} x^{\prime 2}=A^{2} B^{2}$, and $A^{2}-B^{2}=c^{2}$. The equation of the line $P F$ will become the equation of the line $P F^{\prime \prime}$ by simply changing $+c$ to $-c$, for then we shall have the co-ordinates of the other focus.

We now have

$$
\tan . F P T=\frac{B^{2}}{c y^{\prime}}
$$

But if c is made - c, then

$$
\tan . F^{\prime} P T=-\frac{B^{2}}{c y^{\prime}}
$$

As these two tangents are numerically the same, differing only in signs, the lines are equally inclined to the straight lines from which the angles are measured, or the angles are supplements of each other.

Whence $F P T+F^{\prime} P T=180$.
But $F^{\prime} P H+F^{\prime} P T=180$.
Therefore $\quad F P T=F^{\prime} P H$.
Cor. The normal being perpendicular to the tangent, it must bisect the angle made by the two lines drawn from the tangent point to the foci.

Scholium.-Any point in the curve may be considered as a point in a tangent to the curve at that point.

It is found by experiment that light, heat and sound, after they approach to, are reflected off, from any reflecting surface at equal angles; that is, for any ray, the angle of reflection is equal to the angle of incidence.

- Therefore, if a light be placed at one focus of an ellipsoidal reflecting surface, such as we may conceive to be generated by revolving an ellipse about its major axis, the reflected rays will be concentrated at the other focus. If the sides of a room be ellipsoidal, and a stove is placed at one focus, the heat will be concentrated at the other.

Whispering galleries are made on this principle, and all theaters and large assembly rooms should more or less approximate to this figure. The concentration of the rays of heat from one of these points to the other, is the reason why they are called the foci, or burning points.

PROPOSITION IX.

The product of the tangents of the angles that a tangent line to the ellipse and a diameter through the point of contact, make with the major axis on the same side, is equal to minus the square of the semi-minor divided by the square of the semimajor axis.

Let $P T$ be the tangent line and $P P^{\prime}$ the diameter through the point of contact mand denote the co-ordinates of P by x^{\prime}, y^{\prime}. The equation of the diameter is

$$
y=a^{\prime} x,
$$

in which a^{\prime} is the tangent of the angle $P C T$.
Since this line passes through the point P, we must have

$$
y^{\prime}=a^{\prime} x^{\prime}
$$

Whence

$$
\begin{equation*}
a^{\prime}=\frac{y^{\prime}}{x^{\prime}} \tag{1}
\end{equation*}
$$

For the tangent of the angle $P T X$ we have

$$
\begin{equation*}
a=-\frac{B^{2} \cdot x^{\prime}}{A^{2} y^{\prime}} \tag{2}
\end{equation*}
$$

Multiplying eqs. (1) and (2), member by member, we find

$$
a a^{\prime}=-\frac{B^{2}}{A^{2}}
$$

Scholium.-The product of the tangents of the angles that a diameter and a tangent line through its vertex make with the major axis of an ellipse is the same (Prop. 5) as that of the tangents of the angles that supplementary chords drawn through the vertices of the major axis make with it.

Hence, if $a=a$, then $a^{\prime}=a^{\prime}$. That is, if the diameter is parallel to one of the chords, the tangent line will be parallel to the other chord, and conversely. This saggests an easy rule for drawing a tangent line to an ellipse at a given point, or parallel to a given line.

OF THE ELLIPSE REFERRED TO CONJUGATE DIAMETERS.
Two diameters of an ellipse are conjugate when either is parallel to the tangent lines drawn through the vertices of the other.

Since a diameter and the tangent line through its vertex make, with the major axis, angles whose tangents satisfy the equation

$$
a a^{\prime}=-\frac{B^{2}}{A^{2}}
$$

it follows that the tangents of the angles which any two conjugate diameters make with the major axis must also satisfy the same equation.

Now let m be the angle whose tangent is a, and n be the angle whose tangent is a^{\prime}, then

$$
a=\frac{\sin \cdot m}{\cos \cdot m}, \text { and } a^{\prime}=\frac{\sin \cdot n}{\cos \cdot n}
$$

Substituting these values in the last equation, and reducing, we obtain

$$
A^{2} \sin . m \sin . n+B^{2} \cos . m \cos . n=0
$$

which expresses the relation which must exist between A, B, m, and n, to fix the position of any two conjugate diameters in respect to the major axis, and this equation is called the equation of condition for conjugate diameters.

In this equation of condition, m and n are undetermined, showing that an infinite number of conjugate diameters might be drawn, but whenever any value is assigned to one of these angles, that value must be put in the equation, and then a deduction made for the value of the other angle.

PROPOSITION X.

To find the equation of the ellipse referred to its center and conjugate diameters.

The equation of the ellipse referred to its major and minor axes, is

$$
A^{2} y^{2}+B^{2} x^{2}=A^{2} B^{2}
$$

The formulas for changing rectangular co-ordinates
into oblique, the orivin being the same, are (Prop. 9, Chap. 1,)

$$
x=x^{\prime} \cos . m+y^{\prime} \cos . n . \quad y=x^{\prime} \sin . m+y^{\prime} \sin . n .
$$

Squaring these, and substituting the values of x^{2} and y^{2} in the equation of the ellipse above, we have

$$
\left\{\begin{array}{c}
\left(A^{2} \sin ^{2} n+B^{2} \cos ^{2} n\right) y^{\prime 2}+\left(A^{2} \sin ^{2} m+B^{2} \cos ^{2} m\right) x^{\prime 2} \\
+2\left(A^{2} \sin . m \text { sin } n+B^{2} \cos . m \cos . n\right) y^{\prime} x^{\prime}
\end{array}\right\}=A^{2} B^{2}
$$

But if we now assume the condition that the new axes shall be conjugate diameters, then

$$
\begin{equation*}
A^{2} \sin . m \sin . n+B^{2} \cos . m \cos . n=0, \tag{F}
\end{equation*}
$$

which reduces the preceding equation to
$\left(A^{2} \sin .{ }^{2} n+B^{2} \cos .{ }^{2} n\right) y^{\prime 2}+\left(A^{2} \sin .^{2} m+B^{2} \cos .^{2} m\right) x^{\prime 2}=A^{2} B^{2}$, which is the equation required. But it can be simplified as follows:

The equation refers to the two diameters $B^{\prime \prime} B^{\prime}$ and $D^{\prime \prime} D^{\prime}$ as co-ordinate axes. For the point B^{\prime} we must make $y^{\prime}=0$, then

$$
\begin{gathered}
x^{\prime 2}=\frac{A^{2} B^{2}}{A^{2} \sin \cdot{ }^{2} m+B^{2} \cos \cdot{ }^{2} m}= \\
\left(C B^{\prime}\right)^{2}=A^{\prime 2} .
\end{gathered}
$$

Designating $C B^{\prime}$ by A^{\prime}, and $C D^{\prime}$ by B^{\prime}.
For the point D^{\prime} we must make $x^{\prime}=0$. Then

$$
\begin{equation*}
y^{\prime 2}=\frac{A^{2} B^{2}}{A^{2} \sin . .^{2} n+\overline{B^{2} \cos .}{ }^{2} n}=\left(C D^{\prime}\right)^{2}=B^{\prime 2} . \tag{Q}
\end{equation*}
$$

From (P) we have $\left(A^{2} \sin . .^{2} m+B^{2} \operatorname{cos.}^{2} m\right)=\frac{A^{2} B^{2}}{A^{\prime 2}}$.
From (Q)

$$
\left(A^{2} \sin .{ }^{2} n+B^{2} \cos .{ }^{2} n\right)=\frac{A^{2} B^{2}}{B^{\prime 2}} .
$$

These values put in (F) give

$$
\frac{A^{2} B^{2}}{B^{\prime 2}} y^{\prime 2}+\frac{A^{2} B^{2}}{A^{\prime 2}} x^{\prime 2}=A^{2} B^{2}
$$

Whence

$$
A^{\prime 2} y^{\prime 2}+B^{\prime 2} x^{\prime 2}=A^{\prime 2} B^{\prime 2}
$$

We may omit the accents to x^{\prime} and y^{\prime}, as they are general variables, and then we have

$$
A^{\prime 2} y^{2}+B^{\prime 2} x^{2}=A^{\prime 2} B^{\prime 2}
$$

for the equation of the ellipse referred to its center and conjugate diameters.

Scholium.-In this equation, if we assign any value to x less than A^{\prime}, there will result two values of y, numerically equal, and to every assumed value of y less than B^{\prime}, there will result two corresponding values of x, numerically equal, differing only in signs, showing that the curve is symmetrical in respect to its conjugate diameters, and that each diameter bisects all chords which are parallel to the other.

Observation.-As this equation is of the same form as that of the general equation referred to rectangular co-ordinates on the major and minor axis, we may infer at once that we can find equations for ordinates, tangent lines, etc., referred to conjugate diameters, which will be in the same form as those already found, which refer to the axes. But as a general thing, it will not do to draw summary conclusions.

PROPOSITION XI.

As the square of any diameter of the ellipse is to the square of its conjugate, so is the rectangle of any two segments of the diameter to the square of the corresponding ordinate.

Let $C D$ be represented by A^{\prime}, and $C E$ by $B^{\prime}, C H$ by x, and $G H$ by y, then by the last proposition we have

$$
A^{\prime 2} y^{2}+B^{\prime 2} x^{2}=A^{\prime 2} B^{2}
$$

Which may be put under the form

$$
A^{\prime 2} y^{2}=B^{\prime 2}\left(A^{\prime 2}-x^{2}\right)
$$

Whence

$$
A^{\prime 2}: B^{\prime 2}::\left(A^{\prime 2}-x^{2}\right): y^{2} .
$$

Or

$$
\left(2 A^{\prime}\right)^{2}:\left(2 B^{\prime}\right)^{2}::\left(A^{\prime}+x\right)\left(A^{\prime}-x\right): y^{2} .
$$

Now $2 A^{\prime}$ and $2 B^{\prime}$ represent the conjugate diameters $D^{\prime} D, E^{\prime} E$, and since $C H$ represents $x, A^{\prime}+x=D^{\prime} H$, and
$A^{\prime}-x=H D$. Also $y=G H$. Hence the above proportions correspond to

$$
\left(D^{\prime} D\right)^{2}:\left(E^{\prime} E\right)^{2}:: D^{\prime} H \times H D:(G H)^{2} .
$$

Scholium.-As x is no particular distance from $C, C F$ may represent x, then $L F$ will represent y, and the proportion then becomes

$$
\left(D^{\prime} D\right)^{2}:\left(E^{\prime} E\right)^{2}:: D^{\prime} F \times F D:(L F)^{2} .
$$

Comparing the two proportions, we perceive that

$$
D^{\prime} H \cdot H D: D^{\prime} F \cdot F D:: \overline{G H^{2}}: \overline{L F^{2}} .
$$

That is, The rectangle of the abscissas are to one another as the squares of the corresponding ordinates.
The same ${ }^{\circ}$ property as was demonstrated in respect to rectangular co-ordinates in Prop. 3.
In the same manner we may prove that

$$
E h \cdot h E^{\prime}: E f f f E^{\prime}::(h g)^{2}:(f e)^{2}
$$

PROPOSITION XII.

To find the equation of a tangent line to an ellipse referred to its conjugate diameters.

Conceive a line to cut the curve in two points, whose co-ordinates are x^{\prime}, y^{\prime}, and $x^{\prime \prime}, y^{\prime \prime}, x$ and y being the coordinates of any point on the line.
The equation of a line passing through two points is of the form

$$
\begin{equation*}
y-y^{\prime}=a(x-x), \tag{1}
\end{equation*}
$$

an equation in which a is to be determined when the line touches the curve.
From the equation of the ellipse referred to its conjugate axes we have

$$
\begin{aligned}
& A^{\prime 2} y^{\prime 2}+B^{\prime 2} x^{\prime 2}=A^{\prime 2} B^{\prime 2} . \\
& A^{\prime 2} y^{\prime 2}+B^{\prime 2} x^{\prime 2}=A^{\prime 2} B^{\prime 2} .
\end{aligned}
$$

Subtracting one of these equations from the other, and operating as in Prop. 6, we shall find

$$
a=-\frac{B^{\prime 2} x^{\prime}}{A^{\prime 2} y^{\prime}} .
$$

This value of a put in eq. (1) will give

$$
y-y^{\prime}=-\frac{B^{\prime 2} x^{\prime}}{A^{\prime 2} y^{\prime}}\left(x-x^{\prime}\right) .
$$

Reducing, and $A^{\prime 2} y^{\prime} y+B^{\prime 2} x^{\prime} x=A^{\prime 2} B^{\prime 2}$,
which is the equation sought, and it is in the same form as that in Prop. 6, agreeably to the observation made at the close of Prop. 10.

PROPOSITION XIII.

To transform the equation of the ellipse in reference to conjugate diameters to its equation in reference to the axes.

The equation of the ellipse in reference to its conjugate diameter is

$$
\begin{equation*}
A^{\prime 2} y^{\prime 2}+B^{\prime 2} x^{\prime 2}=A^{\prime 2} B^{\prime 2} \tag{1}
\end{equation*}
$$

And the formulas for passing from oblique to rectangular axes are (Prop. 10, Chap. 1,)

$$
x^{\prime}=\frac{x \sin . n-y \cos . n}{\sin .(n-m)}, \quad y^{\prime}=\frac{y \cos . m-x \sin . m}{\sin .(n-m)}
$$

These values of x^{\prime} and y^{\prime} substituted in eq. (1) give $\left.\begin{array}{l}\left(A^{\prime 2} \cos .^{2} m+B^{\prime 2} \cos .^{2} n\right) y^{2}+\left(A^{\prime 2} \sin . .^{2} m+B^{\prime 2} \sin .^{2} n\right) x^{2} \\ -2\left(A^{\prime 2} \sin . m \cos . m+B^{\prime 2} \sin . n \cos . n\right) x y\end{array}\right\}=$ $A^{\prime 2} B^{\prime 2} \sin ^{2}(n-m)$.
This equation must be true for any point in the curve, x being measured on the major axis, and y the corresponding ordinate at right angles to it.

This being the case, such values of $A^{\prime}, B^{\prime}, m$, and n, must be taken as will reduce the preceding equation to the well known form

$$
A^{2} y^{2}+B^{2} x^{2}=A^{2} B^{2}
$$

Therefore we must assume

$$
\begin{align*}
& A^{\prime 2} \cos .^{2} m+B^{\prime 2} \cos ^{2} n=A^{2} \tag{1}\\
& A^{\prime 2} \sin .2 m+B^{\prime 2} \sin .^{2} n=B^{2} \tag{2}\\
& A^{\prime 2} \sin . m \cos . m+B^{\prime 2} \sin . n \cos \cdot n=0 \tag{3}\\
& A^{\prime 2} B^{\prime 2} \sin . .^{2}(n-m)=A^{2} B^{2} \tag{4}
\end{align*}
$$

The values of m and n must be taken so as to respond to the following equation, because the axes are in fact conjugate diameters.

$$
\begin{equation*}
A^{2} \sin . m \sin . n+B^{2} \cos . m \cos . n=0 \tag{5}
\end{equation*}
$$

These equations unfold two very interesting properties.
Scholuum 1.-By adding eqs. (1) and (2) we find

$$
\begin{gathered}
A^{\prime 2}+B^{\prime 2}=A^{2}+B^{2} \\
4 A^{\prime 2}+4 B^{\prime 2}=4 A^{2}+4 B^{2} .
\end{gathered}
$$

Or
That is, the sum of the squares of any two conjugate diameters is equal to the sum of the squares of the axes.

Scholium 2.-Equation eq. (3) or (5) will give us m when n is given ; or give us n when m is given.

Scholium 3.-The square root of eq. (4) gives

$$
A^{\prime} B^{\prime} \sin .(n-m)=A B,
$$

which shows the equality of two surfaces, one of which is obviously the rectangle of the two axes.

Let us examine the other.
Let n represent the angle $N C B$, and m the angle $P C B$. Then the angle $N C P$ will be represented by ($n-m$).

Since the angle $M N K$ is the supplement of $N C P$, the two angles have the same sine and

$N M=A^{\prime}$.
In the right-angled triangle $N K M$, we have

$$
\begin{gathered}
1: A^{\prime}:: \sin .(n-m): M K . \\
M K=A^{\prime} \sin .(n-m) .
\end{gathered}
$$

But

$$
N C=B^{\prime} .
$$

Whence
$M K \cdot N C=A^{\prime} B^{\prime} \sin .(n-m)=$ the parallelogram $N C P M$.
Four times this parallelogram is the parallelogram $M L$, and fonr times the parallelogram $D C B H$, which is measured by $A \times B$, is equal to the parallelogram $H F$. Hence eq. (4) reveals this general truth :

The rectangle which is formed by drawing tangent lines through 14*
the vertices of the axes of an ellipse is equivalcnt to any parallelogram which can be formed by drawing tangents through the vertices of conjugate diameters.

Note.-The student had better test his knowledge in respect to the truths embraced in scholiums 1 and 3 , by an example:

Suppose the semi-major axis of an ellipse is 10 , and the semi-minor axis 6, and the inclination of one of the conjugate diameters to the axis of X is taken at 30° and designated by m .

We are required to find $A^{\prime 2}$ and $B^{\prime 2}$, which together should equal $A^{2}+B^{2}$, or 136 , and the area $N C P M$, which should equal $A B$, or 60 , if the foregoing theory is true.

Equation (5) will give us the value of n as follows:

$$
\begin{gathered}
100 \cdot \frac{1}{2} \tan . n+36 \cdot \frac{1}{2} \sqrt{ } 3=0 . \\
\tan . n=-\frac{36 \sqrt{ } 3}{100} .
\end{gathered}
$$

Or
Log. $36+\frac{1}{8} \log .3-\log$. 100 plus 10 added to the index to correspond with the tables, gives 9.794863 for the log. tangent of the angle n, which gives $31^{\circ} 56^{\prime} 42^{\prime \prime}$, and the sign being negative, shows that 31° $56^{\prime} 42^{\prime \prime}$ must be taken below the axis of X, or we must take the supplement of it, $N C B$, for n, whence

$$
n=148^{\circ} 3^{\prime} 18^{\prime \prime}, \text { and }(n-m)=118^{\circ} 3^{\prime} 18^{\prime \prime}
$$

To find $A^{\prime 2}$ and $B^{\prime 2}$, we take the formulas from Prop. 10.

$$
\begin{aligned}
& A^{\prime 2}=\frac{A^{2} B^{2}}{A^{2} \sin .^{2} 30+B^{2} \cos ^{2} 20}=\frac{100 \cdot 36}{100 \cdot \frac{1}{4}+36 \cdot 3 \cdot \frac{3}{4}}=\frac{3600}{52}=69.23 . \\
& B^{\prime 2}=\frac{A^{2} B^{\overline{2}}}{A^{2} \sin .^{2} 31^{\circ} 56^{\prime} 42^{\prime \prime}+B^{2} \cos ^{2}\left(31^{\circ} 56^{\prime} 42^{\prime \prime}\right)}=\frac{3600}{27 \cdot 99+25 \cdot 92}= \\
& 66 \cdot 77 . \text { And their sum }=136 .
\end{aligned}
$$

This agrees with scholium 1.

As radius		10.000000
Is to	$A^{\prime} \frac{1}{2}(\log .69 .23)$	0.920147
So is sine	$(n-m) 61^{\circ} 56^{\prime} 42^{\prime \prime}$	9.945713
	$\log . M K=$	0.865860
Log. $B^{\prime}=\frac{1}{2}$	og. (66.77)	0.912290
	60.	1.778150

PIOPOSITION XIV.

To find the general polar equation of an ellipse.
If we designate the co-ordinates of the pole P, by a and b, and estimate the angles v from the line $P X^{\prime}$ parallel to the transverse axis, we shall have the following formulas:

$$
x=a+r \cos . v . \quad y=b+r \sin v .
$$

These values of x and y substituted in the general equation $\quad A^{2} y^{2}+B^{2} x^{2}=A^{2} B^{2}$, will produce

$$
\left.\begin{array}{c|c}
A^{2} \sin .^{2} v & r^{2}+2 A^{2} b \sin . v \\
B^{2} \cos . .^{2} v & +2 B^{2} a \cos . v
\end{array} \right\rvert\, r A^{2} b^{2}+B^{2} a^{2}=A^{2} B^{2},
$$

for the general polar equation of the ellipse.
Scholium 1.-When P is at the center, $a=0$, and $b=0$, and then the general polar equation reduces to

$$
r^{2}=\frac{A^{2} B^{2}}{A^{2} \sin .^{2} v+B^{2} \cos ^{2} v}
$$

a result corresponding to equations (P) and (Q) in Prop. 10.
Scholium 2.-When P is on the curve $A^{2} b^{2}+B^{2} a^{2}=A^{2} B^{2}$, therefore

$$
\begin{aligned}
& A^{2} \sin ^{2} v \mid r^{2}+2 A^{2} b \sin . v \\
& \left.B^{2} \cos ^{2} v\right|^{2}+2 B^{2} a \cos . v \mid r=0 .
\end{aligned}
$$

This equation will give two values of r, one of which is 0 , as it should be. The other value will correspond to a chord, according to the values assigned to a, b, and v. Dividing the last equation by the equation $r=0$, and we have

$$
\begin{aligned}
& A^{2} \sin ^{2} v \mid r+2 A^{2} b \sin . v \\
& B^{2} \cos .^{2} v \mid+2 B^{2} a \cos . v
\end{aligned}=0 .
$$

The value of r in this equation is the value of a chord.
When the chord becomes 0 , the value of r in the last equation becomes 0 also, and then

$$
A^{2} b \sin . v+B^{2} a \cos . v=0
$$

Or

$$
\tan . v=-\frac{B^{2} a}{A^{2} b}
$$

a result corresponding to Prop. 6, as it ought to do, because the radius vector then becomes tangent to the curve.

Scholium 3.-When P is placed at the extremity of the major axis on the right, and if $v=0$, then $\sin . v=0$, and $\cos . v=1 a=A$, and $b=0$; these values substituted in the general equation will reduce it to

$$
B^{2} r^{2}+2 B^{2} A r=0
$$

which gives $r=0$, and $r=-2 A$, obviously true results.
When P is placed at either focus, then $a=\sqrt{A^{2}-B^{2}}=c$, and $b=0$. These values substituted, and we shall have

$$
\left(A^{2} \sin ^{2} v+B^{2} \cos .{ }^{2} v\right) r^{2}+2 B^{2} a \cos . v r=B^{4} .
$$

It is difficult to deduce the values of r from this equation, therefore we adopt a more simple method.

Let F be the focus, and $F P$ any radius, and put the angle $P F D=v$.
By Prop. 1, of the ellipse, we learn that

$$
\begin{equation*}
F P=r=A+\frac{c x}{A} \tag{1}
\end{equation*}
$$

an equation in which $c=\sqrt{A^{2}-B^{2}}$, and x any variably distance $C D$.
Take the triangle $P D F$, and by trigonometry we have

$$
1: r:: \cos . v: c+x
$$

Whence $x=r \cos . v-c$.
This value of x placed in (1), will give

$$
r=A+\frac{c r \cdot \cos \cdot v-c^{2}}{A}
$$

Whence

$$
(A-c \cos . v) r=A^{2}-c^{2}
$$

$$
r=\frac{A^{2}-c^{2}}{A-c \cos \cdot v} .
$$

This equation will correspond to all points in the curve by giving to cos. v all possible values from 1 to -1 . Hence, the greatest value of r is $(A+c)$, and the least value $(A-c)$, obvious results when the polar point is at F.

The above equation may be simplified a little by introducing the eccontricity. The eccentricity of an ellipse is the distance from the center to either focus, when the semi-major axis is taken as unity. Designate the eccentricity by e, then

$$
\begin{gathered}
1: e=A: c . \\
c=e A .
\end{gathered}
$$

Whence
Substituting this value of c in the preceding equation, we have

$$
r=\frac{A^{2}-e^{2} A^{2}}{A-e A \cos . v}=\frac{A\left(1-e^{2}\right)}{1-e \cos . v}
$$

This equation is much used in astronomy.

PROPOSITIONXV.-PROBLEM.

Given the relative values of three different radii, drawn from the focus of an ellipse, together with the angles between them, to find the relative major axis of the ellipse, the eccentricity, and the position of the major axis, or its angle from one of the given radii.

Let r, r^{\prime}, and $r^{\prime \prime}$, represent the three given radii, m the angle between r and r^{\prime}, and n that between r and $r^{\prime \prime}$. The angle between the radius r and the major axis is sup-
 posed to be unknown, and we therefore, call it x.

From the last proposition, we have

$$
\begin{align*}
& r=\frac{A\left(1-e^{2}\right)}{1-e \cos \cdot x} \tag{1}\\
& r^{\prime}=\frac{A\left(1-e^{2}\right)}{1-e \cos \cdot(x+m)} \tag{2}\\
& r^{\prime \prime}=\frac{A\left(1-e^{2}\right)}{1-e \cos \cdot(x+n)} \tag{3}
\end{align*}
$$

Equating the value of $A\left(1-e^{2}\right)$ obtained from eqs. (1) and (2), and we have

$$
r-r e \cos . x=r^{\prime}-r^{\prime} e \cos .(x+m)
$$

$$
\begin{equation*}
\text { Or, } \quad e=\frac{r-r^{\prime}}{r \cos \cdot x-r^{\prime} \cos \cdot(x+m)} \tag{4}
\end{equation*}
$$

In like manner from eqs. (1) and (3), we have

$$
r-r e \cos . x=r^{\prime \prime}-r^{\prime \prime} e \cos .(x+n) .
$$

Or,

$$
\begin{equation*}
e=\frac{r-r^{\prime \prime}}{r \cos . x-r^{\prime \prime} \cos \cdot(x+n)} \tag{5}
\end{equation*}
$$

Equating the second members of eqs. (4) and (5), we have

$$
\frac{r-r^{\prime}}{r \cos . x-r^{\prime} \cos .(x+m)}=\frac{r-r^{\prime \prime}}{r \cos . x-r^{\prime \prime} \cos .(x+n)}
$$

Whence, $\quad \frac{r-r^{\prime}}{r-r^{\prime \prime}}=\frac{r \cos . x-r^{\prime} \cos .(x+m)}{r \cos x-r^{\prime \prime} \cos .(x+n)}$

$$
\begin{gathered}
=\frac{r \cos . x-r^{\prime} \cos . x \cos \cdot m+r^{\prime} \sin . x \sin \cdot m}{r \cos \cdot x-r^{\prime \prime} \cos \cdot x \cos . n+r^{\prime \prime} \sin \cdot x \sin \cdot n} \\
=\frac{r-r^{\prime} \cos \cdot m+r^{\prime} \sin \cdot m \tan \cdot x}{r-r^{\prime \prime} \cos \cdot n+r^{\prime \prime} \sin \cdot n \tan \cdot x}
\end{gathered}
$$

For the sake of brevity, put $r-r^{\prime}=d$,
$r-r^{\prime \prime}=d^{\prime}$, the known quantity $r-r^{\prime} \cos . m=a$, and $r-r^{\prime \prime} \cos . n=b$. Then the preceding equation becomes

$$
\frac{d}{d^{\prime}}=\frac{a+r^{\prime} \sin \cdot m \tan \cdot x}{b+r^{\prime \prime} \sin \cdot n} \frac{\tan \cdot x}{\tan }
$$

From which we get successively

$$
\begin{aligned}
& d b+d r^{\prime \prime} \sin . n \tan . x=a d^{\prime}+d^{\prime} r^{\prime} \sin . m \tan . x \\
& \left(d r^{\prime \prime} \sin . n-d^{\prime} r^{\prime} \sin . m\right) \tan . x=a d^{\prime}-d b \\
& \quad \tan . x=\frac{a d^{\prime}-d b}{d r^{\prime \prime} \sin . n-d^{\prime} r^{\prime} \sin . m},
\end{aligned}
$$

The value of x from this equation determines the position of the major axis with respect to that of r, which is supposed to be known, as it may be by observation.

Having x, eq. (4) or (5) will give e the eccentricity. If the values of e found from these equations do not agree, the discrepancy is due to errors of observation, and in such cases the mean result is taken for the eccentricity.

Equations (1), (2) and (3) contain A, the semi-major axis, as a common factor in their second members. This factor, therefore, does not affect the relative values of r, r^{\prime} and $r^{\prime \prime}$, and as it disappears in the subsequent part of the investigation, it shows that the angle x and the eccentricity are entirely independent of the magnitude of the ellipse. To apply the preceding formulas, we propose the following

EXAMPLE.

On the first day of August, 1846, an astronomer observed the sun's longitude to be $128^{\circ} 47^{\prime} 31^{\prime \prime}$, and by comparing this observation with observations made on the previous and subsequent days, he found its motion in longitude was then at the rate of $57^{\prime} 24^{\prime \prime} .9$ per day. By like observations made on the first of September, he determined the sun's longitude to be 158° $37^{\prime} 46^{\prime \prime}$, and its mean daily motion for that time $58^{\prime} 6^{\prime \prime} .6$; and at a third time, on the 10 th of October, the observed longitude was $196^{\circ} 48^{\prime} 4^{\prime \prime}$, and mean daily motion 59' 22'.9. From these data are required the longitude of the solar apogee, and the eccentricity of the apparent solar orbit.

It is demonstrated in astronomy that the relative distances to the sun, when the earth is in different parts of its orbit, must be to each other inversely as the square root of the sun's apparent angular motion at the several points; therefore, $(r)^{2},\left(r^{\prime}\right)^{2}$, and $\left(r^{\prime \prime}\right)^{2}$, must be in the proportion of

$$
\frac{1}{57^{\prime} 24^{\prime \prime} 9}, \frac{1}{58^{\prime} 6^{\prime \prime} 6}, \text { and } \frac{1}{59^{\prime} 22^{\prime \prime} 9},
$$

Or as the numbers

$$
\frac{1}{3444.9}, \frac{1}{3486.6}, \text { and } \frac{1}{3562.9} .
$$

Multiply by 3562.9 and the proportion will not be changed, and we may put

$$
r=\left(\frac{3562.9}{3444.9}\right)^{\frac{1}{2}}, \quad r^{\prime}=\left(\frac{3562.9}{3486.6}\right)^{\frac{1}{2}}, \quad \text { and } r^{\prime \prime}=1 .
$$

By the aid of logarithms we soon find

$$
r=1.016982 \quad r^{\prime}=1.010857 \text { and } r^{\prime \prime}=1 .
$$

Hence $r-r^{\prime}=d=0.006125, \quad r-r^{\prime \prime}=d^{\prime}=0.016982$.

To substitute in our formulas, we must have the natural sine and cosine of m and n.

$$
\begin{aligned}
& \sin . m=\sin .29^{\circ} 50^{\prime} 15^{\prime \prime}=0.497542, \cos =0.867440 . \\
& \text { sin. } n=\sin .68^{\circ} 0^{\prime} 33^{\prime \prime}=0.927238, \cos .=0.374472 . \\
& \quad r-r^{\prime} \cos . m=a=0.140124 . \\
& r--r^{\prime \prime} \cos . n=b=0.642510 \\
& a d^{\prime}=0.0023695, \quad d b=0.00393537 . \\
& d^{\prime} r^{\prime} \sin . m=0.008538616 \\
& d r^{\prime \prime} \sin . n=0.005679332 .
\end{aligned}
$$

These values substituted in the formula

$$
\tan . x=\frac{a d^{\prime}-d b}{d r^{\prime \prime} \sin \cdot n-d^{\prime} r^{\prime} \sin \cdot m}=\frac{d b-a d^{\prime}}{d^{\prime} r^{\prime} \sin . m-d r^{\prime \prime} \sin \cdot n_{1}},
$$

give

$$
\tan . x=\frac{.00156586}{.00285928}=\frac{15.6586}{28.5928}
$$

Log. 15.6586 plus 10 to the index $=11.194746$

Log. 28.5928
Log. tan. $28^{\circ} 42^{\prime} 45^{\prime \prime}$
1.456224
9.738522

Long. of $r 128^{\circ} 47^{\prime} 31^{\prime \prime}$
Long. apogee $100^{\circ} 4^{\prime} 46^{\prime \prime}$
According to observation, the longitude of the solar apogee on the 1st of January, 1800, was $99^{\circ} 30^{\prime} 8^{\prime \prime} 39$, and it increases at the rate of $61^{\prime \prime} 9$ per annum. This would give, for the longitude of the apogee on the 1st of January, 1861, $100^{\circ} 33^{\prime} 03^{\prime \prime} 54$.

To find e, the eccentricity, we employ eq. (5), which is

$$
e=\frac{r-r^{\prime \prime}}{r \cos \cdot x-r^{\prime \prime} \cos \cdot(x+n)}
$$

Whence, by substituting the values of $r, r^{\prime \prime}, \cos . x$, etc., we find

$$
\begin{aligned}
e= & \frac{0.016982}{r \cos .28^{\circ} 42^{\prime} 45^{\prime \prime}-\cos .96^{\circ} 4378^{\prime \prime}}=\frac{.016982}{.891891+.11694} \\
& =\frac{.016982}{1.0088}=0.016833
\end{aligned}
$$

CHAPTER IV.

THE PARABOLA.

To describe a parabola.
Let $C D$ be the directrix, and F the focus. Take a square, as ${ }^{\prime} D B G$, and to one side of it, $G B$, attach a thread, and let the thread be of the same length as the side GB of the square.
 Fasten one end of the thread at the point G, the other end at F.

Put the other side of the square against $C D$, and with a pencil, P, in the thread, bring the thread up to the side of the square. Slide one end of the square along the line $C D$, and at the same time keep the thread close against the other side, permitting the thread to slide round the pencil P. As the side of the square, $B D$, is moved along the line $C D$, the pencil will describe the curve represented as passing through the points V and P.

$$
\begin{aligned}
& G P+P F=\text { the thread. } \\
& G P+P B=\text { the thread. }
\end{aligned}
$$

By subtraction $P F-P B=0$, or $P F=P B$.
This result is true at any and every position of the point P; that is, it is true for every point on the curve.

If the square be turned over and moved in the opposite direction, the other part of the parabola, on the other side of the line FH may be described.

PROPOSITION I.

To find the equation of the parabola.
Take the axis of the parabola for the axis of abscissas and the line at right angles to it through the vertex for the axis of ordinates.

The perpendicular distance from the focus F to the directrix $B H$, is called
 p, a constant quantity, and when this constant is large, we have a parabola on a large scale, and when small, we have a parabola on a small scale.
By the definition of the curve, V is midway between F and the line $B H$, and $P F=P B$.
Put $V D=x$ and $P D=y$, and operate on the right angled triangle $P D F$.

$$
\begin{gathered}
F D=x-\frac{1}{2} p, \quad P B=x+\frac{1}{2} p=P F . \\
(F D)^{2}+(P D)^{2}=(P F)^{2} .
\end{gathered}
$$

That is,

$$
\left(x-\frac{1}{2} p\right)^{2}+y^{2}=\left(x+\frac{1}{2} p\right)^{2} .
$$

Whence $y^{2}=2 p x$, the equation sought.
Cor. 1. If we make $x=0$, we have $y=0$ at the same time, showing that the curve passes through the point V, corresponding to the definition of the curve.

As $y= \pm \sqrt{2 p x}$, it follows that for every value of x there are two values of y, numerically equal, one + , the other -, which shows that the curve is symmetrical in respect to the axis of X.

Cor. 2. If we convert the equation $y^{2}=2 p x$ into a proportion, we shall have

$$
x: y:: y: 2 p,
$$

a proportion showing that the parameter of the axis is a third proportional to any abscissa and its corresponding ordinate.

Cor.3. If we substitute $\frac{1}{2} p$ for x in the equation $y^{2}=2 p x$ we get

$$
y=p \text { or } 2 y=2 p
$$

That is the parameter of the axis of the parabola is equal to the double ordinate through the focus, or, it is equal to four times the distance from the vertex to the directrix.

PROPOSITION II.

The squares of ordinates to the axis of the parabola are to one another as their corresponding abscissas.

Let x, y, be the co-ordinates of any point P, and x^{\prime}, y^{\prime}, the co-ordinates of any other point in the curve.

Then by the equation of the curve we must have

$$
\begin{align*}
& y^{2}=2 p x \tag{1}\\
& y^{\prime 2}=2 p x^{\prime} \tag{2}
\end{align*}
$$

By division $\frac{y^{2}}{y^{\prime 2}}=\frac{x}{x^{\prime}}$.
Whence

$$
y^{2}: y^{\prime 2}:: x: x^{\prime}
$$

PROPOSITION III.

To find the equation of a tangent line to the parabola.
Draw the line $S P Q$ intersecting the parabola in the two points P and Q. Denote the co-ordinates of the first point by x^{\prime}, y^{\prime}, and of the second, by $x^{\prime \prime}, y^{\prime \prime}$.

The equation of the straight line
 passing through these points is

$$
\begin{equation*}
y-y^{\prime}=a\left(x-x^{\prime}\right) \tag{1}
\end{equation*}
$$

in which a is equal to $\frac{y^{\prime}-y^{\prime \prime}}{x^{\prime}-x^{\prime \prime}}$
It is now required to find the value of a when the point Q unites with P, or, when the secant line becomes a tangent line at the point P.

Since P and Q are on the parabola we must have

And

$$
\begin{gathered}
y^{\prime 2}=2 p x^{\prime} \\
y^{\prime \prime 2}=2 p x^{\prime \prime} \\
y^{\prime 2}-y^{\prime \prime 2}=2 p\left(x^{\prime}-x^{\prime \prime}\right) \\
\left(y^{\prime}-y^{\prime \prime}\right)\left(y^{\prime}+y^{\prime \prime}\right)=2 p\left(x^{\prime}-x^{\prime}\right) \\
a=\frac{y^{\prime}-y^{\prime \prime}}{x^{\prime}-x^{\prime \prime}}=\frac{2 p-x}{y^{\prime}+y^{\prime \prime}}
\end{gathered}
$$

Therefore
Substituting this value of a in eq. (1) we have for the equation of the secant line.

$$
\begin{equation*}
y-y^{\prime}=\frac{2 p}{y^{\prime}+y^{\prime \prime}}\left(x-x^{\prime}\right) \tag{2}
\end{equation*}
$$

Now if this line be turned about P until Q coincides with P we shall have $y^{\prime \prime}=y^{\prime}$ and the line becomes tangent to the curve at the point P.

Under this supposition the value of a becomes $\frac{p}{y^{\prime}}$ and equation (2) reduces to

$$
y-y^{\prime}=\frac{p}{y^{\prime}}\left(x-x^{\prime}\right)
$$

Or

$$
y y^{\prime}-y^{\prime 2}=p x-p x^{\prime}
$$

But $y^{\prime 2}=2 p x^{\prime}$; substituting this value $y^{\prime 2}$ in the last equation, transposing and reducing, we have finally

$$
\begin{equation*}
y y^{\prime}=p\left(x+x^{\prime}\right) \tag{3}
\end{equation*}
$$

for the equation of the tangent line.
Cor. To find the point in which the tangent meets the axis of X, we must make $y=0$, this makes

Or

$$
\begin{gathered}
p\left(x+x^{\prime}\right)=0 \\
x^{\prime}=-x
\end{gathered}
$$

That is, $V D=V T$, or the sub-tangent is bisected by the vertex.

Hence, to draw a tangent line from any given point, as P, we draw the ordinate $P D$, then make $T V=V D$, and from the point T draw the line $T P$, and it will be tangent at P, as required.

PROPOSITION IV.

To find the equation of a normal line in the parabola.
The equation of a straight line passing through the point P is

$$
\begin{equation*}
y-y^{\prime}=a\left(x-x^{\prime}\right) \tag{1}
\end{equation*}
$$

Let x_{1}, y_{1}, be the general co-ordinates of another line passing through the same point, and a^{\prime} the tangent of the angle it makes with the axis of the parabola, its equation will then be

$$
\begin{equation*}
y_{1}-y^{\prime}=a^{\prime}\left(x_{1}-x^{\prime}\right) . \tag{2}
\end{equation*}
$$

But if these two lines are perpendicular to each other, we must have

$$
\begin{equation*}
a a^{\prime}=-1 \tag{3}
\end{equation*}
$$

But since the first line is a tangent,

$$
a=\frac{p}{y^{\prime}} .
$$

This value substituted in eq. (3) gives

$$
a^{\prime}=-\frac{y^{\prime}}{p} .
$$

And this value put in eq, (2) will give

$$
y_{1}-y^{\prime}=-\frac{y^{\prime}}{p}\left(x_{1}-x^{\prime}\right)
$$

for the equation required.

Cor. 1. To find the point in which the normal meets the axis of X, we must make $y_{1}=0$. Then by a little reduction we shall have

$$
p=x_{1}-x^{\prime}
$$

But $V C=x_{1}$, and $V D=x^{\prime}$. Therefore $D C=p$, that is,
The sub-normal is a constant quantity, double the distance between the vertex and focus.

Cor. 2. Since $T V=V D$, and $V F=\frac{1}{2} D C, T F=F C$. Therefore, if the point F be the center of a circle of which the radius is $F C$, the circumference of that circle will pass through the point P, because $T P C$ is a right angle. Hence the triangle $P F T$ is isosceles. Therefore, If from the point of contact of a tangent line to the parabola a line be drawn to the focus it will make an angle with the tangent equal to that made by the tangent with the axis.

Cor. 3. Now as V bisects $T D$ and $V B$ is, parallel to $P D$, the point B bisects $T P$. Draw $F B$, and that line bisects the base of an isosceles triangle, it is therefore perpendicular to the base. Hence, we have this general truth :

If from the focus of a parabola a perpendicular be drawn to any tangent to the curve, it will meet the tangent on thic axis of Y .

Also, from the two similar right-angled triangles, $F B V$ and $F B T$, we have

$$
T F: F B:: F B: F V
$$

Whence

$$
B F^{2}=T F \cdot F V
$$

But FV is constant, therefore $(\mathrm{BF})^{2}$ varies as TF , or as its equal PF .

Scholium.-Conceive a line drawn parallel to the axis of the parabola to meet the curve at P; that line will make an angle with the tangent equal to the angle $F T P$. But the angle FTP is equal to the angle $F P T$; hence the $L L P A=$ the

LFPT. Now, since light is incident upon and reflected from surfaces under equal angles, if we suppose $L P$ to be a ray of light incident at P, the reflected ray will pass through the focus F, and this will be true for rays incident on every point in the curve; hence, if a reflecting mirror have a parabolic surface, all the rays of light that meet it parallel with the axis will be reflected to the focus; and for this reason many attempts have been made to form perfect parabolic mirrors for reflecting telescopes.

If a light be placed at the focus of such a mirror, it will reflect all its rays in one direction ; hence, in certain situations, parabolic mirrors have been made for lighthouses for the purpose of throwing all the light seaward.

PROPOSITION V.

If two tangents be drawn to a parabola at the extremities of any chord passing through the focus, these tangents will be perpendicular to each other, and their point of intersection will be on the directrix.

Let $P P^{\prime}$ be any chord through the focus of the parabola, and $P T, P^{\prime} T$ the tangents drawn through its extremities. Through T, their intersection, draw $B B^{\prime}$ perpendicular to the axis $H F$, and from the focus let fall the perpendiculars $F t, F t^{\prime}$ upon the tangents producing them to intersect $B B^{\prime}$ at B and B^{\prime}. Draw, also, the lines $P B, P^{\prime} B^{\prime}$, and $t t^{\prime}$.

First.-The equation of the chord is

$$
\begin{equation*}
y=a\left(x-\frac{p}{2}\right) \tag{1}
\end{equation*}
$$

and of the parabola

$$
\begin{equation*}
y^{2}=2 p x \tag{2}
\end{equation*}
$$

Combining eqs. (1) and (2) and eliminating x, we find that the ordinates of the extremities of the chord are the roots of the equation

$$
y^{2}-\frac{2 p}{a} y=p^{2}
$$

Whence

$$
y^{\prime}=\frac{p+p \sqrt{a^{2}+1}}{a} \text { and } y^{\prime \prime}=\frac{p-p \sqrt{a^{2}+1}}{a}
$$

Therefore the tangents of the angles that the tangent lines at the extremities of the chord make with the axis are

$$
\frac{p}{y^{\prime}}=\frac{a}{1+\sqrt{a^{2}+1}} \text { and } \frac{p}{y^{\prime \prime}}=\frac{a}{1-\sqrt{a^{2}+1}}
$$

The product of these tangents is

$$
\frac{a}{1+\sqrt{a^{2}+1}} \times \frac{a}{1-\sqrt{a^{2}+1}}=-1
$$

Whence we conclude that the tangent lines are perpendicular to each other.

Second.-Because the $\Delta t F t^{\prime}$ is right-angled and $F V$ is a perpendicular let fall from the vertex of the right angle upon the hypothenuse, we have (Th. 25, B. II, Geom.)

$$
\overline{F t}^{2}:{\overline{F t^{\prime}}}^{2}:: V t: V t^{\prime}
$$

and because $t t^{\prime}$ and $B B^{\prime}$ are parallel, (Cor. 3, Prop. 4), we also have

$$
\begin{aligned}
{\overline{F t^{2}}}^{2}:{\overline{F t^{\prime}}}^{2} & ::{\overline{F B^{2}}}^{2}:{\overline{F B^{\prime}}}^{2} \\
& : H B: H B^{\prime}
\end{aligned}
$$

But (Cor. 3, Prop. 4,)

$$
\overline{F t}^{2}:{\overline{F t^{\prime}}}^{2}:: F P: F P^{\prime}
$$

Therefore

$$
F P: F P^{\prime}:: H B: H B^{\prime}
$$

Hence the lines $P B, P^{\prime} B^{\prime}$ are parallel to the axis of the parabola, and (Cor. 2, Prop. 4,) the angles BPt and $t P F$ are equal. Therefore the right-angled triangles $B P t$ and $t P F$ are equal, and $P B=P F$. In the same way we prove that $P^{\prime} B^{\prime}=P^{\prime} F$. The line $B B^{\prime}$ is therefore the directrix of the parabola.

Cor. Conversely: If two tangents to the parabola are perpendicular to each other, the chord joining the points of contact passes through the focus.

For, if not, draw a chord from one of the points of contact through the focus, and at the extremity of this chord draw a third tangent. Then the second and third tangents being both perpendicular to the first, must be parallel.
But a tangent line to a parabola, at a point whose ordinate is y^{\prime}, makes with the axis an angle having $\frac{p}{y^{\prime}}$ for its tangent; and as no two ordinates of the parabola are algebraically equal, it is impossible that the curve should have parallel tangent lines.

PROPOSITION VI.

To find the equation of the parabola referred to a tangent line and the diameter passing through the point of contact as the co-ordinate axes.
Let V be the vertex and $V X$ the axis of the parabola. Through any point of the curve, as P, draw the tangent $P Y$ and the diameter $P R$, and take these lines for a system of oblique co-ordinate axes. From a point M, assumed at pleasure, on the parabola, draw $M R$
 parallel to $P Y$ and $M S$ perpendicular to $V X$; also, draw $P Q$ perpendicular to $V X$.

Let our notation be $V Q=c, P Q=b, V S^{\prime}=x, M S^{\prime}=y$, $P R=x^{\prime}, M R=y^{\prime}$ and $L M R S=L M R^{\prime} S^{\prime}=m$; then the formulas for changing the reference of points from a system of rectangular to a system of oblique co-ordinate axes having a different origin, give, by making $\llcorner n=0$,

$$
\begin{gathered}
V S^{\prime}=\dot{x}=c+x^{\prime}+y^{\prime} \cos . m \\
M S^{\prime}=y=b+y^{\prime} \sin \cdot m \\
\mathbf{M}
\end{gathered}
$$

These values of x and y substituted in the equation of the parabola referred to V as the origin which is

$$
\begin{equation*}
y^{2}=2 p x \tag{1}
\end{equation*}
$$

will give

$$
\begin{equation*}
b^{2}+2 b y^{\prime} \sin . m+y^{\prime 2} \sin .{ }^{2} m=2 p c+2 p x^{\prime}+2 p y^{\prime} \cos . m \tag{2}
\end{equation*}
$$

Because P is on the curve, $b^{2}=2 p c$, and because $R M$ is parallel to the tangent $P Y$, we also have (Prop. 3,)

$$
\frac{\sin \cdot m}{\cos \cdot m}=\frac{p}{b}
$$

Whence

$$
2 b y^{\prime} \sin . m=2 p y^{\prime} \cos . m
$$

By means of these relations we can reduce eq. (2) to

$$
\begin{gathered}
y^{\prime 2} \sin .^{2} m=2 p x^{\prime} \\
y^{\prime 2}=\frac{2 p}{\sin .^{2} m} x^{\prime}
\end{gathered}
$$

Or
If we denote $\frac{2 p}{\sin ^{2} .^{2} m}$ by $2 p^{\prime}$ the equation of the curve referred to the origin P and the oblique axes $P X, P Y$, becomes

$$
y^{\prime} x=2 p^{\prime} x^{\prime}
$$

an equation of the same form as that before found when the vertex V was the origin and the axes rectangular.

Cor. 1. Since the equation gives $y^{\prime}= \pm \sqrt{2 p^{\prime} x^{\prime}}$, that is for every value of x^{\prime} two values of y^{\prime}, numerically equal, it follows that every diameter of the parabola bisects all chords of the curve drawn parallel to a tangent through the vertex of the diameter.

Cor. 2. The squares of the ordinates to any diameter of the parabola are to each other as their corresponding abscissas.
Let x, y and x^{\prime}, y^{\prime} be the co-ordinates of any two points in the curve, then

$$
\begin{aligned}
& y^{2}=2 p^{\prime} x \\
& y^{\prime 2}=2 p^{\prime} x^{\prime}
\end{aligned}
$$

Whence

$$
\frac{y^{2}}{y^{\prime 2}}=\frac{x}{x^{\prime}}
$$

Or

$$
y^{2}: y^{\prime 2}:: x: x^{\prime}
$$

Cor. 3. By a process in no respect differing from that followed in proposition 3 we shall find

$$
y y^{\prime}=p^{\prime}\left(x+x^{\prime}\right)
$$

for the equation of a tangent line to the parabola when referred to any diameter and the tangent drawn through its vertex as the co-ordinates axes.

If, in this equation, we make $y=0$ we get

$$
x+x^{\prime}=0 \text { or } x=-x^{\prime} .
$$

That is, the subtangent on any diameter of the parabola is bisected at the vertex of that diameter.

Soholium.-Projectiles, if not disturbed by the resistance of the atmosphere, would describe parabolas.

Let P be the point from which a projectile is thrown in any direction $P H$. Undisturbed by the atmosphere and by gravity, it would continue to move in that line, describing equal spaces in equal times. But gravity causes bodies to fall through spaces proportional to the squares of the times.

From P draw $P L$ in the direction of a plumb line, the direction in which bodies fall when acted upon by gravity alone, and draw from A, T, H, etc., points taken at pleasure on $P \prime I I$, lines parallel to $P L$. Make $A B$ cqual to the distance through which a body starting from rest, would fall while the undisturbed projectile would move through the space $P A$, and lay off $T V$ to correspond to the proportion

$$
\begin{equation*}
\overline{P A}^{2}: \overline{P T}^{2}:: A B: T V \tag{1}
\end{equation*}
$$

Also lay off $H K$ to correspond to the proportion

$$
\begin{equation*}
\overline{P A}^{2}: \overline{P H}^{2}:: A B: H K \tag{2}
\end{equation*}
$$

In the same way we may construct other distances on lines drawn from points of $P H$ parallel to $P L$.

Now through the points B, V, K, etc., draw parallels to $P I I$, intersecting $P L$ in C, D, L, etc., and through the points B, V,
K, etc., trace a curve. This curve will represent the path described by a projectile in vacuo, and will be a parabola.

Because $A B$ is parallel to $P C$, and $P A$ parallel to $B C$, the figure $P A B C$ is a parallelogram, and so are each of the other figures, $P T V D, P H K L$, etc.

$$
\begin{aligned}
& \text { Let } P A=y, P T=y^{\prime}, P H=y^{\prime \prime} \text { etc. } \\
& \text { and } P C=x, P D=x^{\prime}, P L=x^{\prime \prime} \text { etc. }
\end{aligned}
$$

Then proportions (1) and (2) become respectively

$$
\begin{aligned}
& y^{2}: y^{\prime 2}:: x: x^{\prime} \\
& y^{2}: y^{\prime \prime 2}:: x: x^{\prime \prime}
\end{aligned}
$$

But by corollary 2 of this proposition, the curve that possesses the property expressed by these proportions is the parabola, and we therefore conclude that the path described by a projectile in vacuo is that curve.

PROPOSITION VII.

The parameter of any diameter of the parabola is four times the distance from the vertex of that diameter to the focus.

We are to prove that $2 p^{\prime}=4 P F$.
Let the angle $Y P R=m$ as before. Then by (Prop. 3,)

$$
\begin{equation*}
\frac{\sin . m}{\cos \cdot m}=\frac{p}{b} . \tag{1}
\end{equation*}
$$

The co-ordinates of the point P being
 c, b, as in the last proposition, we have

$$
\begin{equation*}
b^{2}=2 p c . \tag{2}
\end{equation*}
$$

From eq. (1) $\quad b^{2} \sin .{ }^{2} m=p^{2} \cos .{ }^{2} m$.

$$
=p^{2}\left(1-\sin ^{2} m\right)=p^{2}-p^{2} \sin \cdot{ }^{2} m
$$

Or

$$
\sin .{ }^{2} m=\frac{p^{2}}{b^{2}+p^{2}}=\frac{p^{2}}{2 p c+p^{2}}=\frac{p}{2 c+p}
$$

But in the last proposition $\frac{2 p}{\sin { }^{2} m}=2 p^{\prime}$. Whence

$$
\sin .{ }^{2} m=\frac{p}{p^{\prime}}
$$

Therefore

$$
p^{\prime}=2 c+p .
$$

Or

$$
2 p^{\prime}=4\left(c+\frac{p}{2}\right)
$$

But $\left(c+\frac{p}{2}\right)=P F$. (Prop. 1.) Hence $2 p^{\prime}$, the parameter of the diameter $P R$, is four times the distance of the vertex of the diameter from the focus.
Scholium.-Through the focus F draw a line parallel to the tangent $P Y$. Designate $P R$ by x, and $R Q$ by y. Then, by (Prop. 6),

$$
y^{2}=2 p^{\prime} x .
$$

But $P F=F T$, (Prop. 4, Cor. 2.) And $P R=T F$, because $T F R P$ is a parallelogram. Whence $P R=P F$; and, since $P R=x$, and $P F=c+\frac{p}{2}$,

$$
x=\left(c+\frac{p}{2}\right)
$$

'Therefore

$$
4 x=4\left(c+\frac{p}{2}\right)=2 p^{\prime}, \text { or } x=\frac{p^{\prime}}{2}
$$

This value of x put in the equation of the curve gives

$$
y=p^{\prime} \text {, or } 2 y=2 p^{\prime} \text {. }
$$

That is, the quantity $2 p^{\prime}$, which has been called the parameter of the diameter $P R$, is equal to the double ordinate passing through the focus.

PROPOSITION VIII.

If an ordinate be drawn to any diameter of the parabola, the area included between the curve, the ordinate and the corresponding abscissa, is two-thirds of the parallelogram constructed upon these co-ordinates.
Let $V^{\prime} P^{\prime} P Q$ be a portion of a parabola included between the are $V^{\prime} P^{\prime} P$, and the co-ordinates $V^{\prime} Q$, $P Q$ of the extreme point P, referred to the diameter $V^{\prime} Q$ and the
 tangent through its vertex.

Take a point, P^{\prime}, on the curve between P and V^{\prime}; draw the chord $P P^{\prime}$ and the ordinates $P Q, P^{\prime} Q^{\prime}$. Through N, the middle point of $P P^{\prime}$, draw the diameter NS, and at P and P^{\prime} draw tangents to the parabola intersecting each other at M and the diameter $V^{\prime} Q$ produced at T and T^{\prime}. The tangents at the points P and P^{\prime} have a common subtangent on the diameter $V S$, because these points, when referred to this diameter and the tangent at its vertex, have the same abscissa, VN, (Cor. 3, Prop. 6). The point M is therefore common to the two tangents and the diameter VS produced.
By this construction we have formed the trapezoid $P Q Q^{\prime} P^{\prime}$ within, and the triangle $T M T^{\prime \prime}$ without, the parabola, and we will now compare the areas of these figures. From N draw $N L$ parallel to $P Q$, and from Q draw $Q O$ perpendicular to $P^{\prime} Q^{\prime}$, and let us denote the angle $Y V^{\prime} Q$ that the tangent at V^{\prime} makes with the diameter $V^{\prime} Q$ by m.

By the corollary just referred to we have

$$
V^{\prime} T=V^{\prime} Q \text { and } V^{\prime} T^{\prime}=V^{\prime} Q^{\prime} .
$$

Whence $T^{\prime} T=Q^{\prime} Q$; and because N is the middle point of $P P^{\prime}$ we also have

$$
N L=\frac{P Q+P^{\prime} Q}{2}
$$

Therefore (Th. 34, B. I, Geom.,) the area of the trapezoid $P Q Q P$ is measured by

$$
N L \times Q O=N L \times Q^{\prime} Q \sin . m=Q^{\prime} Q \times N L \sin . m .
$$

But $N L$ sin. m is equal to the perpendicular let fall from N upon $Q^{\prime} Q$ which is equal to that from M upon the same line. Hence the area of the triangle $T M T^{\prime \prime}$ is measured ${ }^{-}$ by

$$
\frac{1}{2} T^{\prime \prime} T \times N L \sin . m=\frac{1}{2} Q^{\prime} Q \times N L \sin . m .
$$

The area of the trapezoid is, therefore, twice that of the triangle.

If another point be taken between P^{\prime} and V^{\prime}, and we make with reference to it and P^{\prime} the construction that
has just been made with reference to P^{\prime} and P, we shall have another trapezoid within, and triangle without, the parabola, and the area of the trapezoid will be twice that of the triangle.

Let us suppose this process continued until we have inscribed a polygon in the parabola between the limits P and V^{\prime}; then, if the distance of the consecutive points P, P^{\prime}, etc., be supposed indefinitely small, it is evident that the sum of the trapezoids will become the interior curvilinear area $P P^{\prime} V^{\prime} Q$, and the sum of the triangles the exterior curvilinear area $T P V^{\prime} V$.

Since any one of these trapezoids is to the corresponding triangle as two is to one, the sum of the trapezoids will be to the sum of the triangles in the same proportion. But the interior and exterior area together make up the triangle $P Q T$.

Therefore interior area $=\frac{2}{3} \triangle P Q T$,
and $\triangle P Q T=\frac{1}{2} T Q \times P Q \sin . m=V^{\prime} Q \times P Q \sin . m$.
But $V^{\prime} Q \times P Q \sin . m$ measures the area of the parallelogram constructed upon the abscissa $V^{\prime} Q$ and the ordinate $P Q$. We will denote $V^{\prime} Q$ by x and $P Q$ by y. Then the expression for the area in question becomes

$$
\frac{2}{3} x y \cdot \sin . m
$$

Cor. When the diameter is the axis of the parabola, then $m=90^{\circ}$, and $\sin . m=1$, and the expression for the area becomes $\frac{2}{3} x y$. That is, every segment of a parabola at right angles with the axis is two-thirds of its circumscribing rectangle.

PROPOSITION IX.

To find the general polar equation of the parabola.
Let P be the polar point whose co-ordinates referred to the principal vertex, V, are c and b. Put $V D=x$, and $D M$
$=y$; then by the equation of the curve we have

$$
\begin{equation*}
y^{2}=2 p x \tag{1}
\end{equation*}
$$

Put $P M=R$, the angle $M P X=m$, then we shall have

$$
\begin{aligned}
& V D=x=c+R \cos . m . \\
& D M=y=b+R \sin . m .
\end{aligned}
$$

These values of x and y substituted in eq. (1) will give

$$
\begin{equation*}
(b+R \sin . m)^{2}=2 p(c+R \cos . m) \tag{2}
\end{equation*}
$$

Expanding and reducing this equation, $(R$ being the variable quantity), we find

$$
R^{2} \sin .{ }^{2} m+2 R(b \sin . m-p \cos . m)=2 p c-b^{2}
$$

for the general polar equation of the parabola required.
Cor. 1. When P is on the curve, $b^{2}=2 p c$, and the general equation becomes

$$
R^{2} \sin .{ }^{2} m+2 R(b \sin . m-p \cos . m)=0
$$

Here one value of R is 0 , as it should be, and the other value is

$$
R=\frac{2(p \cos . m-b \sin . m)}{\sin .^{2} m}
$$

When $m=270^{\circ}$, cos. $m=0$ and $\sin . m=-1$. Then this last equation becomes

$$
R=2 b
$$

a result obviously true.
Cor. 2. When the pole is at the focus F, then $b=0$, and $c=\frac{p}{2}$, and these values reduce the general equation to

$$
R^{2} \sin .{ }^{2} m-2 R p \cos . m=p^{2}
$$

But

$$
\sin .^{2} m=1-\cos ^{2} m .
$$

Whence $R^{2}-R^{2} \cos ^{2} m-2 R p \cos . m=p^{2}$.
Or
Or

$$
R=p+R \cos . m
$$

Whence

$$
R=\frac{p}{1-\cos . m}
$$

and this is the polar equation when the focus is the pole.

When $m=0, \cos . m=1$, and then the equation becomes

$$
R=\frac{p}{1-1}, \text { or } R=\frac{p}{0}=\text { infinite },
$$

showing that there is no termination of the curve at the right of the focus on the axis.

When $m=90^{\circ}$, cos. $m=0$, then $R=p$, as it ought to be, because p is the ordinate passing through the focus.
When $m=180^{\circ}$, cos. $m=-1$, then $R=\frac{1}{2} p$; that is, the distance from the focus to the vertex is $\frac{1}{2} p$.
As m can be taken both above and below the axis and the cos. m is the same to the same arc above and below, it follows that the curve must be symmetrical in respect to the axis.

Scholium 1.-If we take p for the unit of measure, that is, assume $p=1$, then the general polar equation will become

$$
R^{2} \sin .{ }^{2} m+2 R(b \sin . m-\cos . m)=2 c-b^{2} .
$$

Now if we suppose $m=90^{\circ}$, then $\sin . m=1, \cos . m=0$, and R would be represented by the line $P M^{\prime}$, and the equation would become

$$
R^{2}+2 b R=\left(2 c-b^{2}\right),
$$

and this equation is in the common form of a quadratic.
Hence, a parabola in which $p=1$ will solve any quadratic equation by making $c=V B, B P=b$, then $P M^{\prime}$ will give one value of the unknown quantity.
To apply this to the solution of equations, we construct a parabola as here represented.

Now, suppose we require the value of y, by construction, in the following equation,

$$
y^{2}+2 y=8
$$

Here $2 b=2$, and $2 c-b^{2}=8$.
Whence $b=1$, and $c=4.5$.
Lay off c on the axis, and from the extremity lay off b at right angles, above the
 axis if b is plus, and below if minus.

This being done, we find P is the polar point corresponding to 16*
this example, and $P M^{\prime}=2$ is the plus value of y, and $P M=-4$ is the minus value.

Had the equation been

$$
y^{2}-2 y=8,
$$

then P^{\prime} would have been the polar point, and $P^{\prime} M^{\prime}=4$ the plus value, and $P^{\prime} M=-2$ the minus value.

For another example let us construct the roots of the following equation :

$$
y^{2}-6 y=-7 .
$$

Here $b=-3$, and $2 c-b^{2}=-7$. Whence $c=1$.
From 1 on the axis take 3 downward, to find the polar point $P^{\prime \prime}$. Now the roots are $P^{\prime \prime} m$ and $P^{\prime \prime} m^{\prime}$, both plus. $P^{\prime \prime} m=1.58$, and $P^{\prime \prime} m^{\prime}=4.414$.

Equations having two minus roots will have their polar points above the curve.

When c comes out negative, the ordinates cainot meet the curve, showing that the roots would not be real but imaginary.

The roots of equations having large numerals cannot be constructed unless the numerals are first reduced.

To reduce the numerals in any equation, as

$$
y^{2}+72 y=146
$$

we proceed as follows:
Put $y=n z$, then

$$
\begin{aligned}
n^{2} z^{3}+72 n z & =146 \\
z^{2}+\frac{72}{n} z & =\frac{146}{n^{2}} .
\end{aligned}
$$

Now we can assign any value to n that we please. Suppose $n=10$, then the equation becomes

$$
z^{2}+7 \cdot 2 z=1.46
$$

The roots of this equation can be constructed, and the values of y are ten times those of z.

Scholium 2.-The method of solving quadratic equations employed in Scholium 1 may be easily applied to the construction of the square roots of numbers.

Thus, if the square root of 20 were required, and we represent it by y, we shall have

$$
y^{2}=20
$$

an incomplete quadratic equation; but it may be put under the form of a complete quadratic by introducing in the first number the term $\pm 0 \times y$, and we shall then have

$$
y^{2} \pm 0 \times y=20 .
$$

Here $2 b=0$, and $2 c-b^{2}=20$; whence $c=10$; which shows that the ordinate corresponding to the abscissa 10 on the axis of the parabola will represent the square root of 20 . In the same way the square roots of other numbers may be determined

EXAMPLES.

1. What is the square root of 50 ?

Let each unit of the scale represent 10 , then 50 will be represented by 5 . The half of 5 is $2 \frac{1}{2}$. An ordinate drawn from $2 \frac{1}{2}$ on the axis of X will be about 2.24 , and the square root of 10 will be represented by an ordinate drawn from 5 , which will be about 3,16 . Hence, the square root of 50 cannot differ much from (2.24) (3.16) $=7,0786$.

ANOTHER SOLUTION.
$50=25 \times 2, \sqrt{50}=5 \sqrt{2}$. From 1 on the axis of X draw an ordinate ; it will measure $1.4+$.

Hence,

$$
\sqrt{50}=5(1.4+)=7,+
$$

What is the square root of 175 ?

$$
175=25 \times 7, \sqrt{175}=5 \sqrt{7}
$$

An ordinate drawn from 3.5 the half of 7 will measure 2.65 . Therefore $\sqrt{175}=5(2.65)=13.25$ nearly.
3. Given $x^{2}-\frac{2}{11} x=8$ to find x. Ans. $x=2.9$. +
4. Given $\frac{3}{4} x^{2}+\frac{3}{5} x=\frac{7}{11}$ to find x. "Ans. $x=0.60+$.
5. Given $\frac{1}{4} y^{2}-\frac{1}{6} y=2$ to find y^{\prime}. Ans. $y=3.17$, or $-2.5+$.

CHAPTER V.

THE HYPERBOLA.

To describe an hyperbola.

The definition of this curve suggests the following method of describing it mechanically:

Take a ruler $F^{\prime \prime} H$, and fasten one end at the point $F^{\prime \prime}$, on which the ruler may turn as a hinge. At the other end of the ruler attach a thread, and let its length be less than that of the ruler by the given line $A^{\prime} A$. Fasten the other end of the thread
 at F.

With a pencil, P, press the thread against the ruler and keep it at equal tension between the points H and F. Let the ruler turn on the point $F^{\prime \prime}$, keeping the pencil close to the ruler and letting the thread slide round the pencil; the pencil will thus describe a curve on the paper.

If the ruler be changed and made to revolve about the other focus as a fixed point, the opposite branch of the curve can be described.

In all positions of P, except when at A or $A^{\prime}, P F^{\prime}$ and $P F$ will be two sides of a triangle, and the difference of these two sides is constantly equal to the difference between the ruler and the thread; but that difference was made equal to the given line $A^{\prime} A$; hence, by definition, the curve thus described must be an hyperbola.

> PROPOSITION I.

To find the equation of the hyperbola referred to its center and axes.

Let C be the center, F^{\prime} and F^{\prime} the foci, and $A A^{\prime}$ the transverse axis of an hyperbola. Draw $C C^{\prime}$ at right angles to $A A^{\prime}$, and take these lines for the co-ordinate axes. From P,
 any point of the curve, draw $P F, P F^{\prime}$ to the foci, and $P H$ perpendicular to $A A^{\prime}$.

Make $C F=c, C A=A, C H=x$, and $P H=y$; then the equation which expresses the relation between the variables x and y, and the constances c and A, will be the equation of a hyperbola.

By the definition of the curve we have

$$
\begin{equation*}
r^{\prime}-r=2 A \tag{1}
\end{equation*}
$$

The right-angled $\triangle P H F$ gives

$$
\begin{equation*}
r^{2}=(x-c)^{2}+y^{2} \tag{2}
\end{equation*}
$$

The right-angled $\triangle P H F^{\prime \prime}$ gives

$$
\begin{equation*}
r^{\prime 2}=(x+c)^{2}+y^{2} . \tag{3}
\end{equation*}
$$

Subtracting eq. (2) from eq. (3) we get

$$
\begin{equation*}
r^{\prime 2}-r^{2}=4 c x \tag{4}
\end{equation*}
$$

Dividing eq. (4) by eq. (1) we have

$$
\begin{equation*}
r^{\prime}+r=\frac{2 c x}{A} \tag{5}
\end{equation*}
$$

Combining eqs. (1) and (5) we find

$$
r^{\prime}=A+\frac{c x}{A}, \quad \text { and } \quad r=-A+\frac{c x}{A}
$$

This value of r substituted in eq. (2) gives

$$
A^{2}-2 c x+\frac{c^{2} x^{2}}{A^{2}}=x^{2}-2 c x+c^{2}+y^{2}
$$

Reducing, we find

$$
A^{2} y^{2}+\left(A^{2}-c^{2}\right) x^{2}=A^{2}\left(A^{2}-c^{2}\right)
$$

for the equation sought.
Scholium.-As c is greater than A, it follows that $\left(A^{2}-c^{2}\right)$ must be negative ; therefore we may assume this value equal to $-B^{2}$. Then the equation becomes

$$
A^{2} y^{2}-B^{2} x^{2}=-A^{2} B^{2}
$$

This form is preferred to the former one on account of its similarity to the equation of the ellipse, the difference being only in the negative value of B^{2}.

Because $A^{2}-c^{2}=-B^{2}, A^{2}+B^{2}=c^{2}$
Now to show the geometrical magnitude of B, take C as a center, and $C F$ as a radius, and describe the circle $F H F^{\prime \prime}$. From A draw $A H$ at right angles to $C F$. Now $C H=c, C A=A$,
 and if we put $A H=B$, we shall have $A^{2}+B^{2}=c^{2}$, as above. Whence $A H$ must equal B.

PROPOSITION II.

To determine the figure of the hyperbola from its equation. Resuming the equation

$$
A^{2} y^{2}-B^{2} x^{2}=-A^{2} B^{2}
$$

and solving it in respect to y, we find

$$
y= \pm \frac{B}{A} \sqrt{x^{2}-A^{2}}
$$

If we make $x=0$, or assign to it any value less than A, the corresponding value of y will be imaginary, showing that the curve does not exist above or below the line $A^{\prime} A$.

If we make $x=A$, then $y= \pm 0$, showing two points in the curve, both at A.

If we give to x any value greater than A, we shall have two values of y, numerically equal, showing that the curve is symmetrically divided by the axis $A^{\prime} A$ produced.

If we now assign the same value to x taken negatively, that is, make $x(-x)$, we shall have two other values of y, the same as before, corresponding to the left branch of the curve. Therefore, the two branches of the curve are
equal in magnitude, and are in all respects symmetrical but opposite in position.

Hence every diameter, as DD^{\prime}, is bisected in the center, for any other hypothesis would be absurd.

Scholium 1.--If through the center, C, we draw $C D, C D^{\prime}$, at right angles to $A^{\prime} A$, and each equal to B, we can have two opposite branches of an hyperbola passing through D and D^{\prime} above and below C. as the two others which pass through the points A^{\prime} and A, at the right and left of C.

The hyperbola which passes through D and D^{\prime} is said to be conjugate to that which passes through A and A^{\prime}, or the two are conjugate to each other.
$D D^{\prime}$ is the conjugate diameter to $A^{\prime} A$, and $D D^{\prime}$ may be less than, equal to, or greater than $A^{\prime} A$, according to the relative values of c and A in Prop. 1.

When B is numerically equal to A, the equation of the curve becomes

$$
y^{2}-x^{2}=-A^{2}
$$

and $D D^{\prime}=A A^{\prime}$. In this case the hyperbola is said to be equilateral.
Scholium 2.-To find the value of the double ordinate which passes through the focus, we must take the equation of the curve

$$
A^{2} y^{2}-B^{2} x^{2}=-A^{2} B^{2}
$$

and make $x=c$, then

$$
A^{2} y^{2}=B^{2}\left(c^{2}-A^{2}\right)
$$

But we have shown that $A^{2}+B^{2}=c^{2}$, or $B^{2}=c^{2}-A^{2}$.
Whence $\quad A^{2} y^{2}=B^{4}$.
Or

$$
A y=B^{2}, \text { or } 2 y=\frac{2 B^{2}}{A}
$$

That is,

$$
2 A: 2 B:: 2 B: 2 y
$$

showing that the parameter of the hyperbola is equal to the double ordinate, to the major axis, that passes through the focus.

Scholium 3.-To find the equation for the conjugate hyperbola which passes through the points D, D^{\prime}, we take the general equation

$$
A^{2} y^{2}-B^{2} x^{2}=-A^{2} B^{2}
$$

and change A into B and x into y, the equation then becomes

$$
B^{2} x^{2}-A^{2} y^{2}=-A^{2} B^{2}
$$

which is the equation for conjugate hyperbola.

PROPOSITION III.

To find the equation of the hyperbola when the origin is at the vertex of the transverse axis.

When the origin is at the center, the equation is

$$
A^{2} y^{2}-B^{2} x^{2}=-A^{2} B^{2}
$$

And now, if we move the origin to the vertex at the right, we must put

$$
x=A+x^{\prime}
$$

Substituting this value of x in the equation of the hyperbola referred to its center and axes, we have

$$
A^{2} y^{2}-B^{2} x^{\prime 2}-2 B^{2} A x^{\prime}=0
$$

We may now omit the accents, and put the equation under the following form:

$$
y^{2}=\frac{B^{2}}{A^{2}}\left(x^{2}+2 A x\right)
$$

which is the equation of the hyperbola when the origin is the vertex and the co-ordinates rectangular.

PROPOSITION IV.

To find the equation of a tangent line to the hyperbola, the origin being the center.

In the first place, conceive a line cutting the curve in two points, P and Q. Let x and y be co-ordinates of any point on the line, as S, x^{\prime} and y^{\prime} co-ordinates of the point P on the curve, and $x^{\prime \prime}$ and $y^{\prime \prime}$ the coordinates of the point Q on the
 curve.

The student can now work through the proposition in precisely the same manner as Prop. 6, of the ellipse was worked, using the equation for the hyperbola in place of that of the ellipse, and in conclusion he will find

$$
A^{2} y y^{\prime}-B^{2} x x^{\prime}=-A^{2} B^{2}
$$

for the equation sought.
Cor. To find the point in which a tangent line cuts the axis of X, we must make $y=0$, in the equation for the tangent; then

$$
x=\frac{A^{2}}{x^{\prime}}=C T
$$

If we subtract this from $C D\left(x^{\prime}\right)$ we shall have the subtangent

$$
T D=x^{\prime}-\frac{A^{2}}{x^{\prime}}=\frac{x^{\prime 2}-A^{2}}{x^{\prime}}
$$

PROPOSITION V.

To find the equation of a normal to the hyperbola.
Let a be the tangent of the angle that the line TP makes with the transverse axis, (see last figure), and a^{\prime} the same with reference to the line $P N$. Then if $P N$ is a normal, it must be at right angles to $P T$, and hence we must have

$$
\begin{equation*}
a a^{\prime}+1=0 . \tag{1}
\end{equation*}
$$

Let x^{\prime} and y^{\prime} be the cor-ordinates of the point P on the curve, and x, y, the co-ordinates of any point on the line $P N$, then we must have

$$
\begin{equation*}
y-y^{\prime}=a^{\prime}\left(x-x^{\prime}\right) \tag{2}
\end{equation*}
$$

In working the last proposition, for the tangent line $P T$ we should have found

$$
a=\frac{B^{2} x^{\prime}}{A^{2} y^{\prime}}
$$

This value of a put in eq. (1) will show us that

$$
a^{\prime}=-\frac{A^{2} y^{\prime}}{B_{\mathrm{N}}^{2} x^{\prime}}
$$

And this value of a^{\prime} put in eq. (2) will give us

$$
y-y^{\prime}=-\frac{A^{2} y^{\prime}}{B^{2} x^{\prime}}\left(x-x^{\prime}\right)
$$

for the equation of the normal required.
Cor. To find the point in which the normal cuts the axis of X, we must make $y=0$.

This reduces the equation to

$$
1=\frac{A^{2}}{\overline{B^{2} x^{\prime}}}\left(x-x^{\prime}\right)
$$

Whence

$$
x=\left(\frac{A^{2}+B^{2}}{A^{2}}\right) x^{\prime}=C N
$$

If we subtract $C D,\left(x^{\prime}\right)$, from $C N$, we shall have $D N$, the sub-normal.

That is, $\quad\left(\frac{A^{2}+B^{2}}{A^{2}}\right) x^{\prime}-x^{\prime}=\frac{B^{2} x^{\prime}}{A^{2}}$, the sub-normal.

PROPOSITION VI.

A tangent to the hyperbola bisects the angle contained by lines drawn from the point of contact to the foci.

If we can prove that

$$
\begin{equation*}
F^{\prime \prime} P: P F:: F^{\prime \prime} T: T F, \tag{1}
\end{equation*}
$$

it will then follow (Th. 24, B. II, Geom.,) that the angle $F^{\prime \prime} P T=$ the angle $T P F$.

In Prop. 1, of the hyperbola, we
 find that

$$
F^{\prime} P=r^{\prime}=A+\frac{c x}{A}, \text { and } P F=r=-A+\frac{c x}{A}
$$

and by corollary to Prop. 4

$$
F^{\prime} T=F^{\prime \prime} C+C T=c+\frac{A^{2}}{x}, \text { and } T F=c-\frac{A^{2}}{x}
$$

We will now assume the proportion

$$
\begin{equation*}
\left(A+\frac{c x}{A}\right):\left(-A+\frac{c x}{A}\right)::\left(c+\frac{A^{2}}{x}\right): z . \tag{2}
\end{equation*}
$$

Multiply the terms of the first couplet by A, and those of the last couplet by x, then we shall have

$$
\left(A^{2}+c x\right):\left(-A^{2}+c x\right)::\left(c x+A^{2}\right): x z
$$

Observing that the first and third terms of this proportion are equal, therefore

$$
\begin{gathered}
x z=c x-A^{2} . \\
z=c-\frac{A^{2}}{x}=T F .
\end{gathered}
$$

Or
Now the first three terms of proportion (2) were taken equal to the first three terms of proportion (1), and we have proved that the fourth term of proportion (2) must be equal to the fourth term of proportion (1), therefore proportion (1) is true, and consequently

$$
F^{\prime} P T=T P F
$$

Cor. 1. As $T T^{\prime}$ is a tangent, and $P N$ its normal. it follows that the angle $T P N=$ the angle $T^{\prime} P N$, for each is a right angle. From these equals take away the equals $T P F, T^{\prime} P Q$, and the remainder $F P N$ must equal the remainder $Q P N$. That is, the normal line at any point of the hyperbola bisects the exterior angle formed by two lines drawn from the foci to that point.

Cor. 2. The value of $C T$ we have found to be $\frac{A^{2}}{x}$, and the value of $C D$ is x, and it is obvious that

$$
\frac{A^{2}}{x}: A:: A: x
$$

is a true proportion. Therefore (A) is a mean proportional between CT and CD.

A tangent line can never meet the axis in the center, because the above proportion must always exist, and to make the first term zero in value, we must suppose x to be infinite. Therefore a tangent line passing through the center cannot meet the hyperbola short of an infinite distance therefrom.

Such a line is called an asymptote.

OF THE CONJUGATE DIAMETERS OF THE HYPERBOLA.
Definition. - Two diameters of an hyperbola are said to be conjugate when each is parallel to a tangent line drawn through the vertex of the other.

According to this definition, $G G^{\prime}$ and $H H^{\prime}$ in the adjoining figure are conjugate diameters.

Explanation. 1.-The tangent line which passes through the point H is parallel to $C G$. Hence $C G$ makes the same angle with the axis as that tangent line does.

If we designate the co-ordinates of the point H, in reference to the center and axes by x^{\prime} and y^{\prime}, and by a the tangent of the
 angle made by the inclination of $C G$ with the axis, then in the investigation (Prop. 6,) we find

$$
\begin{equation*}
a=\frac{B^{2} x^{\prime}}{A^{2} y^{\prime}} \tag{1}
\end{equation*}
$$

Now if we designate the tangent of the angle which $C H$ makes with the axis by a^{\prime}, the equation of $C H$ must be of the form

$$
y^{\prime}=a^{\prime} x^{\prime}
$$

because the line passes through the center.
Whence

$$
\begin{equation*}
a^{\prime}=\frac{y^{\prime}}{x^{\prime}} \tag{2}
\end{equation*}
$$

Multiplying eqs. (1) and (2) together member by member, and we find

$$
a a^{\prime}=\frac{B^{2}}{A^{2}}
$$

to which equation all conjugate diameters must correspond.
Explanation 2.-If we designate the angle $G C B$ by n, and $H C B$ by m, we shall have

$$
\frac{\sin . m}{\cos . m}=a^{\prime}, \quad \frac{\sin \cdot n}{\cos \cdot n}=a
$$

And

$$
\tan . m \tan . n=\frac{B^{2}}{A^{2}} .
$$

PROPOSITION VII.

To find the equation of the hyperbola referred to its center and conjugate diameters.

The equation of the curve referred to the center and axes is

$$
A^{2} y^{2}-B^{2} x^{2}=-A^{2} B^{2}
$$

Now, to change rectangular co-ordinates into oblique, the origin being the same, we must put

And

$$
\left.\begin{array}{l}
x=x^{\prime} \cos . m+y^{\prime} \cos . n \\
y=x^{\prime} \sin . m+y^{\prime} \sin . n
\end{array}\right\} \text { Chap. 1, Prop. } 9
$$

These values of x and y, substituted in the above general equation, will produce

$$
\begin{gather*}
\left\{\begin{array}{c}
\left(A^{2} \sin .^{2} n-B^{2} \cos ^{2}{ }^{2} n\right) y^{12}+\left(A^{2} \sin .{ }^{2} m-B^{2} \cos ^{2} m\right) x^{\prime 2} \\
+2\left(\sin . m \sin \cdot n A^{2}-\cos . m \cos . n B^{2}\right) x^{\prime} y^{1}
\end{array}\right\} \\
=-A^{2} B^{2} . \tag{1}
\end{gather*}
$$

Because the diameters are conjugate, we must have

$$
\begin{equation*}
\frac{\sin . m}{\cos . m} \cdot \frac{\sin . n}{\cos . n}=\frac{B^{2}}{A^{2}} \tag{k}
\end{equation*}
$$

Whence (sin. $\left.m \sin . n A^{2}-\operatorname{ccs} . m \cos . n B^{2}\right)=0$
This last equation reduces eq. (1) to $\left(A^{2} \sin .^{2} n-B^{2} \cos .^{2} n\right) y^{\prime 2}+\left(A^{2} \sin .{ }^{2} m-B^{2} \cos .^{2} m\right) x^{\prime 2}=-A^{2} B^{2}(2)$ which is the equation of the hyperbola referred to the center and conjugate diameters.

If we make $y^{\prime}=0$, we shall have
$x^{\prime 2}=\frac{-A^{2} B^{2}}{\left(A^{2} \sin \cdot{ }^{2} m-B^{2} \cos { }^{2} m\right)}=\overline{C H}^{2}$
If we make $x^{\prime}=0$, we shall have

$$
\begin{equation*}
y^{12}=\frac{A^{2} B^{2}}{\left(A^{2} \sin .{ }^{2} n-B^{2} \cos ^{2} n\right)}=\overline{C G}^{2} \tag{4}
\end{equation*}
$$

If we put $A^{\prime 2}$ to represent $\overline{C H^{2}}$, and regard it as positive, the denominator in eq. (3) must be negative, the nu17*
merator being negative. That is, $A^{2} \sin ^{2}{ }^{2} m$ must be less than $B^{2} \cos ^{2}{ }^{2} m$.

That is,

$$
\begin{aligned}
& A^{2} \sin ^{2} m<B^{2} \operatorname{cos.}^{2} m \text {. } \\
& \tan . m<\frac{B}{A} .
\end{aligned}
$$

But
Whence $\tan . n>\frac{B}{A}$, or, $A^{2} \sin .{ }^{2} n>B^{2} \cos ^{2} n$.
Therefore the denominator in eq. (4) is positive, but the numerator being negative, therefore $\bar{C} \bar{G}^{2}$ must be negative. Put it equal to $-B^{\prime 2}$.

Now the equations (3) and (4) become

$$
\begin{aligned}
& A^{\prime 2}=\frac{-A^{2} B^{2}}{\left(A^{2} \sin .^{2} m-B^{2} \cos .^{2} m\right)},-B^{\prime 2}=\frac{A^{2} B^{2}}{\left(A^{2} \sin .{ }^{2} n-B^{2} \cos .^{2} n\right)}, \\
& \text { Or } \quad\left(A^{2} \sin .{ }^{2} m-B^{2} \cos .^{2} m\right)=\frac{-A^{2} B^{2}}{A^{12}}, \\
& \quad\left(A^{2} \sin ^{2} n-B^{2} \cos .^{2} n\right)=\frac{A^{2} B^{2}}{B^{12}} .
\end{aligned}
$$

Comparing these equations with eq. (2) we perceive that eq. (2) may be written thus :

$$
\frac{A^{2} B^{2}}{B^{\prime 2}} y^{\prime 2}-\frac{A^{2} B^{2}}{A^{\prime 2}} x^{\prime 2}=-A^{2} B^{2}
$$

Whence

$$
A^{\prime 2} y^{\prime 2}-B^{\prime 2} x^{\prime 2}=-A^{\prime 2} B^{\prime 2}
$$

Omitting the accents of x^{\prime} and y^{\prime}, since they are general variables, we have

$$
A^{\prime 2} y^{2}-B^{\prime 2} x^{2}=-A^{\prime 2} B^{2}
$$

for the equation of the hyperbola referred to its center and conjugate diameters.

Scholium 1.-As this equation is precisely similar to that referred to the center and axes, it follows that all results hitherto determined in respect to the latter will apply to conjugate diameters by changing A to A^{\prime} and B to B^{\prime},

For instance, the equation for a tangent line in respect to the center and axes has been found to be

$$
A^{2} y y^{\prime}-B^{2} x x^{\prime}=-A^{2} B^{2} .
$$

Therefore, in respect to conjugate diameters it must be

$$
A^{\prime 2} y y^{\prime}-B^{\prime 2} x x^{\prime}=-A^{\prime 2} B^{\prime 2}
$$

and so on for normals, sub-normals, tangents and sub-tangents.
Scholiom 2.-If we take the equation

$$
A^{\prime 2} y^{2}-B^{\prime 2} x^{2}=-A^{\prime 2} B^{\prime 2}
$$

and resolve it in relation to y, we shall find that for every value of x greater than A^{\prime} we shall find two values of y numerically equal, which shows that $O N$ bisects $M M$ and every line drawn parallel to $M M$, or parallel to a tangent drawn through L, the vertex of the diameter $L L^{\prime}$.

Let the student observe that these several geometrical truths were discovered by changing rectangular to oblique co-ordinates. We will now take the reverse operation, in the hope of discovering other geometrical truths.

Hence the following :

PROPOSITION VIII.

To change the equation of the hyperbola in reference to any system of conjugate diameters, to its equation in reference to the axes.

The equation of the hyperbola referred to conjugate diameters is

$$
A^{\prime 2} y^{\prime 2}-B^{\prime 2} x^{\prime 2}=-A^{\prime 2} B^{\prime 2} .
$$

To change oblique to rectangular co-ordinates, the formulas are (Chap. 1, Prop. 10,)

$$
x^{\prime}=\frac{x \sin \cdot n-y \cos . n}{\sin \cdot(n-m)}, \quad y^{\prime}=\frac{y \cos \cdot m-x \sin . m}{\sin \cdot(n-m)}
$$

Substituting these values of x^{\prime} and y^{\prime} in the equation, we shall have

$$
\frac{A^{\prime 2}(y \cos . m-x \sin . m)^{2}}{\sin ^{2}(n-m)}-\frac{B^{\prime 2}(x \sin . n-y \cos . n)^{2}}{\sin ^{2}(n-m)}=-A^{\prime 2} B^{\prime 2}
$$

By expanding and reducing, we shall have

$$
\begin{aligned}
& \left\{\begin{array}{c}
\left(A^{\prime 2} \cos ^{2} m-B^{\prime 2} \cos ^{2} n\right) y^{2}+\left(A^{\prime 2} \sin .{ }^{2} m-B^{\prime 2} \sin . .^{2} n\right) x^{2} \\
2\left(-A^{\prime 2} \sin \cdot m \cos . m+B^{\prime 2} \sin \cdot n \cos . n\right) x y
\end{array}\right\} \\
& =-A^{\prime 2} B^{\prime 2} \sin . .^{2}(n-m)
\end{aligned}
$$

which, to be the equation of the hyperbola when referred to the center and axes, must take the well known form,

$$
A^{2} y^{2}-B^{2} x^{2}=-A^{2} B^{2} .
$$

Or \cdot in other words, these two equations must be, in fact, identical, and we shall therefore have

$$
\begin{align*}
& A^{\prime 2} \operatorname{cos.}^{2} m-B^{\prime 2} \operatorname{cos.}^{2} n=A^{2} \tag{1}\\
& A^{\prime 2} \sin .{ }^{2} m-B^{\prime 2} \sin .{ }^{2} n=-B^{2} \tag{2}\\
& -A^{\prime 2} \sin . m \cos . m+B^{\prime 2} \sin . n \cos . n=0 \tag{3}\\
& -A^{\prime 2} B^{\prime 2} \sin .^{2}(n-m)=-A^{2} B^{2} \tag{4}
\end{align*}
$$

By adding eqs. (1) and (2), observing that ($\cos ^{2} m+$ $\left.\sin .{ }^{2} m\right)=1$, we shall have

$$
A^{\prime 2}-B^{\prime 2}=A^{2}-B^{2}
$$

Or

$$
4 A^{\prime 2}-4 B^{\prime 2}=4 A^{2}-4 B^{2}
$$

which equation shows this general geometrical truth:
That the difference of the squares of any two conjugate diameters is equal to the difference of the squares of the axes.

Hence, there can be no equal conjugate diameters unless $A=B$, and then every diameter will be equal to its conjugate: that is, $A^{\prime}=B^{\prime}$.

Equation (3) corresponds to $\tan . m \tan . n=\frac{B^{2}}{A^{2}}$, the equation of condition for conjugate diameters.

Equation (4) reduces to

$$
A^{\prime} B^{\prime} \sin .(n-m)=A B
$$

The first member is the measure of the parallelogram $G C H T$, and it being equal to $A \times B$, shows this geometrical truth :

That the parallelogram formed by drawing tangent lines through the vertices of any system of conjugate diameters of
the hyperbola, is equivalent to the rectangle formed by drawing tangent lines through the vertices of the axes.

Remark.-The reader should observe that this proposition is similar to (Prop. 13,) of the ellipse, and the general equation here found, and the incidental equations (1), (2), (3), and (4), might have been directly deduced from the ellipse by changing B into $B \sqrt{-1}$, and B^{\prime} into $B^{\prime} \sqrt{-1}$.

OF THE ASYMPTOTES OF THE HYPERBOLA.

Definition.-If tangent lines be drawn through the vertices of the axes of a system of conjugate hyperbolas, the diagonals of the rectangle so formed, produced indefinitely, are called asymptotes of the hyperbolas.

Let $A A^{\prime}, B B^{\prime}$, be the axes of conjugate hyperbolas, and through the vertices $A, A^{\prime}, B, B^{\prime}$, let tangents to the curves be drawn forming the rectangle, as seen in the figure. The diagonals of this rectangle produced, that is, $D D^{\prime}$ and
 $E E^{\prime}$, are the asymptotes to the curves corresponding to the definition.

If we represent the angle $D C X$ by $m, E^{\prime} C X$ will be m also, for these two angles are equal because $C B=C B^{\prime}$.

It is obvious that

$$
\begin{aligned}
& \qquad \tan . m=\frac{B}{A} \\
& \text { Whence } \\
& \text { But } \operatorname{cos.}^{2} m=1-\sin .^{2} m . \quad \text { Therefore } \\
& \cos ^{2} \cdot m \\
& \frac{\sin .^{2} m}{1-\sin .^{2} m}=\frac{B^{2}}{A^{2}} \\
& A^{2}
\end{aligned}
$$

Consequently $\sin .^{2} m=\frac{B^{2}}{A^{2}+B^{2}}$, and $\cos .^{2} m=\frac{A^{2}}{A^{2}+\overline{B^{2}}}$, which equations furnish the value of the angle which the asymptotes form with the transverse axis.

PROPOSITION IX.

To find the equation of the hyperbola, referred to its center and asymptotes.
Let $C M=x$, and $P M=y$. Then the equation of the curve referred to its center and axes is

$$
\begin{equation*}
A^{2} y^{2}-B^{2} x^{2}=-A^{2} B^{2} \tag{1}
\end{equation*}
$$

From P draw $P H$ parallel to $C E$, and $P Q$ parallel to $C M$. Let $C H=x^{\prime}$, and $H P=y^{\prime}$.
Now the object of this proposition is to find the values of x and y in terms of x^{\prime} and y^{\prime}, to substitute them in eq. (1). The resulting equation reduced to its most simple form will be the equation
 sought.
The angle $H C M$ is designated by m, and because $H P$ is parallel to $C E$, and $P Q$ parallel to $C M$, the angle $H P Q$ is also equal to m.

Now in the right angled triangle $C H h$ we have $H h$ $=x^{\prime} \sin . m$, and $C h=x^{\prime}$ cos. m.
In the right angled triangle $P Q H$ we have $H Q$ $=y^{\prime} \sin . m$, and $P Q=y^{\prime}$ cos. m.
Whence $H h-H Q=Q h=P M=y=x^{\prime} \sin . m-y^{\prime} \sin . m$.
Or $\quad y=\left(x^{\prime}-y^{\prime}\right)$ sin. m.

$$
\begin{equation*}
C h+Q P=C M=x=x^{\prime} \cos . m+y^{\prime} \cos . m . \tag{2}
\end{equation*}
$$

Or

$$
\begin{equation*}
x=\left(x^{\prime}+y^{\prime}\right) \text { cos. } m \text {. } \tag{3}
\end{equation*}
$$

These values of y and x found in eqs. (2) and (3) substituted in eq. (1) will give

$$
A^{2}\left(x^{\prime}-y^{\prime}\right)^{2} \sin .^{2} m-B^{2}\left(x^{\prime}+y^{\prime}\right)^{2} \cos .^{2} m=-A^{2} B^{2}
$$

Placing in this equation the values of $\sin .{ }^{2} m$ and cos. ${ }^{2} m$, previously determined, we have

$$
\frac{A^{2} B^{2}}{A^{2}+B^{2}}\left(x^{\prime}-y^{\prime}\right)^{2}-\frac{A^{2} B^{2}}{A^{2}+B^{2}}\left(x^{\prime}+y^{\prime}\right)^{2}=-A^{2} B^{2}
$$

Dividing through by $A^{2} B^{2}$, and at the same time multiplying by $\left(A^{2}+B^{2}\right)$, we get

$$
\left(x^{\prime}-y^{\prime}\right)^{2}-\left(x^{\prime}+y^{\prime}\right)^{2}=-\left(A^{2}+B^{2}\right)
$$

Or
Or

$$
\begin{gathered}
-4 x^{\prime} y^{\prime}=-\left(A^{2}+B^{2}\right) . \\
x^{\prime} y^{\prime}=\frac{A^{2}+B^{2}}{4},
\end{gathered}
$$

which is the equation of the hyperbola referred to its center and asymptotes.

Cor. As x^{\prime} and y^{\prime} are general variables, we may omit the accents, and as the second member is a constant quantity, we may represent it by M^{2}. Then

$$
x y=M^{2}, \text { or } x=\frac{M^{2}}{y} .
$$

This last equation shows that x increases as y decreases; that is, the curve approaches nearer and nearer the asymptote as the distance from the center becomes greater and greater.

But x can never become infinite until y becomes 0 ; that is, the asymptote meets the curve at an infinite distance, corresponding to Cor. 2, Prop. 6.

PROPOSITION X.

All parallelograms constructed upon the abscissas, and ordinates of the hyperbola referred to its asymptotes are equivalent, each to each, and each equivalent to $\frac{1}{2} \mathrm{AB}$.

Let x and y be the co-ordinates corresponding to any point in the curve, as P. Then by the equation of the curve in relation to the center and asymptotes, we have

$$
\begin{equation*}
x y=M^{2} \tag{1}
\end{equation*}
$$

Also let x^{\prime}, y^{\prime}, represent the co-ordinates of the point Q. Then

$$
\begin{equation*}
x^{\prime} y^{\prime}=M^{2} . \tag{2}
\end{equation*}
$$

The angle $p C D$ between the asymptotes we will represent by $2 m$. Now multiply both members of equations (1) and (2) by sin. $2 m$.

Then we shall have

$$
\begin{align*}
& x y \sin .2 m=M^{2} \sin .2 m . \tag{3}\\
& x^{\prime} y^{\prime} \sin .2 m=M^{2} \sin .2 m . \tag{4}
\end{align*}
$$

The first member of eq. (3) represents the parallelogram $C P$, and the first member of eq. (4) represents the parallelogram $C Q$; and as each of these parallelograms is equivalent to the same constant quantity, they are equivalent to each other.
Now A is another point in the curve, and therefore the parallelogram $A H C D$ is equal to ($M^{2} \sin .2 m$), and therefore equal to $C Q$, or $C P$. Hence all parallelograms bounded by the asymptotes and terminating in a point in the curve, are equivalent to one another, and each equivalent to the parallelogram $A H C D$, which has for one of its diagonals half of the transverse axis of A.

We have now to find the analytical expression for this parallelogram.
The angle $H C A=m, A C D=m$, and because $A H$ is parallel to $C D, C A H=m$. Hence, the triangle $C A H$ is isosceles, and $C H=H A$. The angle $A H q=2 m$. Now by trigonometry

$$
\sin .2 m: A:: \sin . m: C H .
$$

But sin. $2 m=2 \sin . m$ cos. m. Whence $2 \sin . m \cos . m: A:: \sin . m: C H$.

$$
C H=\frac{A}{2 \cos \cdot m}
$$

Multiply each member of this equation by $C A=A$, and $\sin . m$, then

$$
A \cdot(C H) \sin \cdot m=\frac{A^{2}}{2} \frac{\sin \cdot m}{\cos \cdot m}=\frac{A^{2}}{2} \tan . m .
$$

The first member of this equation represents the area of the parallelogram $C H A D$, and the $\tan . m=\frac{B}{A}$. Hence, the parallelogram is equal $\frac{A^{2}}{2} \cdot \frac{B}{A}=\frac{1}{2} A B$, which is the value also of all the other parallelograms, as $C Q, C P$, etc.

PROPOSITION XI.

To find the equation of a tangent line to the hyperbola referred to its center and asymptotes.

Let P and Q be any two points on the curve, and denote the co-ordinates of the first by x^{\prime}, y^{\prime}, and of the second by $x^{\prime \prime}, y^{\prime \prime}$.

The equation of a straight line passing through these points will be of the form

$$
\begin{equation*}
y-y^{\prime}=a\left(x-x^{\prime}\right) \tag{1}
\end{equation*}
$$

in which $a=\frac{y^{\prime}-y^{\prime \prime}}{x^{\prime}-x^{\prime \prime}}$.
We are now to find the value of a when the line becomes a tangent at the point P.

Because P and Q are points in the curve, we have

$$
x^{\prime} y^{\prime}=x^{\prime \prime} y^{\prime \prime}
$$

From each member of this last equation subtract $x^{\prime} y^{\prime \prime}$, then

$$
x^{\prime} y^{\prime}-x^{\prime} y^{\prime \prime}=x^{\prime \prime} y^{\prime \prime}-x^{\prime} y^{\prime \prime}
$$

Or

$$
x^{\prime}\left(y^{\prime}-y^{\prime \prime}\right)=-y^{\prime \prime}\left(x^{\prime}-x^{\prime \prime}\right)
$$

Whence

$$
a=\frac{y^{\prime}-y^{\prime \prime}}{x^{\prime}-x^{\prime \prime}}=-\frac{y^{\prime \prime}}{x^{\prime}} .
$$

This value of a put in eq. (1) gives

$$
\begin{equation*}
y-y^{\prime}=-\frac{y^{\prime \prime}}{r^{\prime}}\left(x-x^{\prime}\right) . \tag{2}
\end{equation*}
$$

Now if we suppose the line to revolve on the point P as a center until Q coincides with P, then the line will be a tangent, and $x^{\prime}=x^{\prime \prime}$, and $y^{\prime}=y^{\prime \prime}$, and eq. (2) will become

$$
y-\dot{y^{\prime}}=-\frac{y^{\prime}}{x^{\prime}}\left(x-x^{\prime}\right),
$$

which is the equation sought.
Cor. To find the point in which the tangent line meets the axis of X, we must make $y=0$; then

$$
x=2 x^{\prime} .
$$

That is, C_{t} is twice $C R$, and as $R P$ and $C T$ are parallel, $t P=P T$.

A tangent line included between the asymptotes is bisected by the point of tangency.

Scholium.-From any point on the asymptote, as D, draw $D G$ parallel to $T t$, and from C draw $C P$, and produce it to S.

By scholium 2 to Prop. 7 we learn that $C P$ produced will bisect all lines parallel to $t T^{\prime}$ and within the curve ; hence $g d$ is bisected in S.

But as $C P$ bisects $t T$, it bisects all lines parallel to $t T$ within the asymptotes, and $D G$ is also bisected in S; hence $d D=G g$.

In the same manner we might prove $d h=k v$, because $h k$ is parallel to some tangent which might be drawn to the curve, the same as $D G$ is parallel to the particular tangent $t T$.

Hence, If any line be drawn cutting the hyperbola, the parts between the asymptotes and the curve are equal.
This property enables us to describe the hyperbola by points, when the asymptotes and one point in the curve are given.

Through the given point d, draw any line, as $D G$, and from G set off $G g=d D$, and then g will be a point in the curve. Draw any other line, as $h k$, and set off $k v=d h$; then v is another point in the curve. And thus we might find other points between x and g, or on either side of v and g.

PROPOSITION XII.

To find the polar equation of the hyperbola, the pole being at either focus.

Take any point P in the hyperbola, and let its distance from the nearest focus be represented by r, and its distance from the other focus be repre-
 sented by r^{\prime}.

Put $C H=x, C F=c$, and $C A=A$. Then, by Prop. 1, we have

$$
\begin{align*}
& r=-A+\frac{c x}{A} \tag{1}\\
& r^{\prime}=A+\frac{c x}{A} \tag{2}
\end{align*}
$$

Now the problem requires us to replace the symbol x, in these formulas, by its value, expressed in terms of r and r^{\prime}, and some function of the angle that these lines make with the transverse axis.
First.-In the right-angled triangle PFH , if we designate the angle $P F H$ by v, we shall have

$$
1: r:: \cos . v: F H=r \cos v
$$

$$
C H=C F+F H . \quad \text { That is, } x=c+r \text { cos. } v .
$$

The value of x put in eq. (1) gives

$$
r=-A+\frac{c^{2}+c r \cos \cdot v}{A}
$$

Whence

$$
\begin{equation*}
r=\frac{c^{2}-A^{2}}{A-c \cos . v} . \tag{3}
\end{equation*}
$$

Second.-In the right-angled triangle $F^{\prime \prime} P H$, if we designate the angle $P F^{\prime \prime} H$ by v^{\prime}, we shall have

$$
1: r^{\prime}:: \cos . v^{\prime}: F^{\prime} H=r^{\prime} \cos . v^{\prime}
$$

But $F^{\prime \prime} H=F^{\prime} C+C H$. That is, $r^{\prime} \cos . v^{\prime}=c+x$.
Or $\quad x=r^{\prime} \cos . v^{\prime}-c$,
and this value of x put in eq. (2) gives

$$
r^{\prime}=A+\frac{c r^{\prime} \cos \cdot v^{\prime}-c^{2}}{A}
$$

Whence

$$
\begin{equation*}
r^{\prime}=\frac{A^{2}-c^{2}}{A-c \cos \cdot v^{\prime}} \tag{4}
\end{equation*}
$$

Equations (3) and (4) are the polar equations required. Let us examine eq. (3). Suppose $v=0$, then $\cos . v=1$, and

$$
r=\frac{c^{2}-A^{2}}{A-c}=-A-c .
$$

But a radius vector can never be a minus quantity, therefore there is no portion of the curve on the axis to the right of F.

To find the length of r when it first strikes the curve, we find the value of the denominator when its value first becomes positive, which must be when A becomes equal to c cos. v; that is, when the denominator is 0 . the value of r will be real and infinite.
If

$$
\begin{gathered}
A-c \cos . v=0, \\
\cos . v=\frac{A}{c} .
\end{gathered}
$$

This equation shows that when r first meets the curve it is parallel to the asymptote, and infinite.
When $v=90^{\circ}, \cos . v=0$, and then r is perpendicular at the point F, and equal to $\frac{c^{2}-A^{2}}{A}$, or $\frac{B^{2}}{A}$, half the parameter of the curve, as it ought to be.

When $v=180^{\circ}$, then $\cos . v=-1$, and $-c \cos . v=c$; then

$$
r=\frac{c^{2}-A^{2}}{c+A}=c-A=F A,
$$

a result obviously true.
As v increases, the value of r will remain positive, and, consequently, give points of the hyperbola until cos.v again becomes equal to $\frac{A}{c}$, which will be when the radius
vector makes with the transverse axis an angle equal to 360° minus that whose cosine is $\frac{A}{c}$. Equation (3) will therefore determine all points in the right hand branch of the hyperbola.
Now let us examine equation (4). If we make $v^{\prime}=0$, then

$$
r^{\prime}=\frac{A^{2}-c^{2}}{A-c}=A+c=F^{\prime} A
$$

as it ought to be.
To find when r^{\prime} will have the greatest possible value, we must put

$$
A-c \cos \cdot v^{\prime}=0 .
$$

Whence

$$
\cos . v^{\prime}=\frac{A}{c} .
$$

This shows that v^{\prime} is then of such a value as to make r^{\prime} parallel to the asymptote and infinite in length. If we increase the value of v^{\prime} from this point, the denominator will become positive, while the numerator is negative, which shows that then r^{\prime} will become negative, indicating that it will not meet the curve.

The value of r will continue negative until the radius vector falls below the transverse axis, and makes with it an angle having $+\frac{A}{c}$ for its cosine. Values of v between this and 360° will render r positive and give points of the hyperbola. Equation (4) will, therefore, also determine all the points in the right hand branch of the hyperbola:

By changing the sign of c, we change the pole to the focus $F^{\prime \prime}$, and eqs. (3) and (4), which then determine the left hand branch of the hyperbola, become

$$
r=\frac{c^{2}-A^{2}}{A+c \cos \cdot v},
$$

and

$$
r^{\prime}=\frac{A^{2}-c^{2}}{A+c \cos \cdot v^{\prime}}
$$

General Remarks.-When the origin of co-ordinates is at the circumference of a circle, its equation is

$$
y^{2}=2 R x-x^{2}
$$

When the origin of a parabola is at its vertex, its equation is

$$
y^{2}=2 p x
$$

When the origin of co-ordinates of the ellipse is at the vertex of the major axis, the equation of the curve is

$$
y^{2}=\frac{B^{2}}{A^{2}}\left(2 A x-x^{2}\right)
$$

When the origin of co-ordinates is at the vertex of the hyperbola, the equation for that curve is

$$
y^{2}=\frac{B^{2}}{A^{2}}\left(2 A x+x^{2}\right)
$$

But all of these are comprised in the general equation

$$
y^{2}=2 p x+q x^{2}
$$

In the circle and the ellipse, q is negative ; in the hyperbola it is positive, and in the parabola it is 0 .

CHAPTER VI.

ON THE GEOMETRICAL REPRESENTATION OF EQUATIONS OF THE SECOND DEGREE BETWEEN TWO VARIABLES.
1.-It has been shown in Chap. 1, that every equation of the first degree between two variables may be represented by a straight line.

It has also been shown that the equations of the circle, the ellipse, the parabola and the hyperbola were all some of the different forms of an equation of the second degree between two variables. It is now proposed to prove that, when an equation of the second degree between two variables represents any geometrical magnitude, it is some one of these curves.

The limits assigned to this work compel us to be as brief in this investigation as is consistent with clearness. We shall, therefore, restrict ourselves to a demonstration
of this proposition; the determination of the criteria by which it may be decided in every case presented, to which of the conic sections the curve represented by the equation belongs, and the indication of the processes by which the curve may be constructed.
2.-The equation of the second degree between two variables, in its most general form, is

$$
A y^{2}+B x y+C x^{2}+D y+E x+F=0
$$

for, by giving suitable values to the arbitrary constants, A, B, C, etc., every particular case of such equation may be deduced from it.

The formulas for the transformation of co-ordinates being of the first degree in respect to the variables, the degree of an equation will not be changed by changing the reference of the equation from one system of co-ordinate axes to another. We may therefore assume that our co-ordinate axes are rectangular without impairing the generality of our investigation.

The resolution, in respect to y, of the general equation gives

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}\left|x^{2}+2 B D\right| x+\overline{D^{2}}}
$$

Now let $A X, A Y$ be the co-ordinate axes, and draw the straight line $M Q$, whose equation is

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A}
$$

For any value, $A D$, of x, the ordinate, $D C$, of this line, is expressed by

$$
-\frac{B}{2 A} x-\frac{D}{2 A}
$$

and this ordinate, increased and diminished successively by what the radical part, when real, of the general value of y becomes for the same substitution for x, will give
two ordinates; $D P, D P^{\prime}$, corresponding to the abscissa $A D$.
Since P and P^{\prime} are two points whose co-ordinates, when substituted for x and y, will satisfy the equation, $A y^{2}+B x y+C x^{2}+$, etc., $=0$, they are points in the line that this equation represents. By thus constructing the values of y answering to assumed values of x, we may determine any number of points in the curve.

In getting the points P and P^{\prime}, we laid off, on a parallel to the axis of y, equal distances above and below the point $C ; P P^{\prime}$ is, therefore, a chord of the curve parallel to that axis, and is bisected at the point C.

The solution of the general equation in respect to x, gives

$$
x=-\frac{B}{2 C} y-\frac{E}{2 C} \pm \frac{1}{2 C} \sqrt{B^{2}\left|y^{2}+2 B E\right| y+\overline{E^{2}}}
$$

The equation

$$
x=-\frac{B}{2 C} y-\frac{E}{2 C}
$$

is that of a straight line, making, with the axis of y, an angle whose tangent is $-\frac{B}{2 C}$, and intersecting the axis of X at a distance from the origin equal to $-\frac{E}{2 C}$.

As above, it may be shown that any value of y that makes the radical part of the general value of x real, responds to two points of the curve, and that the straight line whose equation is

$$
x=-\frac{B}{2 C} y-\frac{E}{2 C}
$$

bisects the chord, parallel to the axis of X, that joins these points.

By placing the quantity under the radical sign in the value of y equal to 0 , we have an equation of the second degree in respect to x, which will give two values for x.

If these values are real the corresponding points of the curve are on the line $M Q$; that is, they are the intersections of this line with the curve, since, for each of these values, there will be but one value of y, which, in connection with that of x, will satisfy the general equation, and these values also satisfy the equation,

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A}
$$

In like manner, placing the quantity under the radical sign in the value of x equal to 0 , we shall find two values of y, to each of which there will respond a single value of x, and the points of the curve answering to these values of y will be the intersections of the curve with the line whose equation is

$$
x=-\frac{\mathrm{B}}{\bar{\sigma}^{\prime} \bar{C}} y-\frac{E}{2 C}
$$

A diameter of a curve is defined to be any straight line that bisects a system of parallel chords of the curve. From the preceding discussion we therefore conclude,

1. That if an equation of the second degree between two variables be resolved in respect to either variable, the equation that results from placing this variable equal to that part of its value which is independent of the radical sign will be the equation of that diameter of the curve which bisects the system of chords parallel to the axis of the variable.
2. The values of the othervariable found from the equation which results from placing the quantity under the radical sign equal to zero, in connection with the corresponding values of the first variable, will be the co-ordinates of the vertices of the diameter.
3. The formulas for changing the reference of points from a system of rectangular co-ordinate axes to any other system having a different origin are

$$
\begin{aligned}
& x=a+x^{\prime} \cos . m+y^{\prime} \cos . n \\
& y=b+x^{\prime} \sin . m+y^{\prime} \sin . n
\end{aligned}
$$

Substituting these values of x and y in the equation

$$
A y^{2}+B x y+C x^{2}+D y+E x+F=0
$$

developing, and arranging the terms of the resulting equation with reference to the powers of y^{\prime} and x^{\prime} and their product, we find
$\left\{\begin{array}{c}\left(A \sin .^{2} n+B \sin . n \cos . n+C \operatorname{cose}^{2} n\right) y^{\prime 2} \\ +\left(A \sin .^{2} m+B \sin . m \cos . m+C \cos ^{2} m\right) x^{\prime 2} \\ +[2 A \sin . m \sin . n+B(\sin . m \cos . n \\ +\sin n \cos . m)+2 C \cos . m \cos . n] x^{\prime} y^{\prime} \\ +[(2 A b+B a+D) \sin . n+(2 C a+B b+E) \\ \text { cos. } n] y^{\prime} \\ +[2 A b+B a+D) \sin . m+(2 C a+B b+E) \\ \cos . m] x^{\prime} \\ +A b^{2}+B a b+C a^{2}+D b+E a+F .\end{array}\right\}=0$ (1)
Since we have four arbitrary quantities, a, b, m, and n entering this equation we may cause them to satisfy any four reasonable conditions. Let us see if, by means of them, it be possible to reduce the coefficients of the first powers, and of the product of the variables, separately to zero.
We should then have
$\left\{\begin{array}{c}2 A \sin . m \sin . n+B(\text { sin. } m \cos . n+\sin . n \\ \cos . m)+2 C \cos . m \cos . n .\end{array}\right\}=0$
$(2 A b+B a+D) \sin . n+(2 C a+B b+E) \cos . n=0$
$(2 A b+B a+D) \sin . m+(2 C a+B b+E) \cos . m=0$
These equations may be put under the form
$2 A \tan . m \tan . n+B(\tan . m+\tan . n)+2 C=0$
$(2 A b+B a+D)$ tan. $n+2 C a+B b+E=0$
$(2 A b+B a+D) \tan . m+2 C a+B b+E=0$
Now, since it is necessary that m and n should differ in value, it is evident that, in order to satisfy eqs. (3^{\prime}) and (4^{\prime}), we must have

$$
\begin{align*}
& 2 A b+B a+D=0 \tag{5}\\
& 2 C a+B b+E=0 \tag{6}
\end{align*}
$$

And

Whence

$$
a=\frac{2 A E-B D}{B^{2}-4 A C}
$$

And

$$
b=\frac{2 C D-B E}{B^{2}-4 A C}
$$

These values of a and b are infinite when $B^{2}-4 A C=0$, and it will then be impossible to satisfy both eqs. (3^{\prime}) and $\left(4^{\prime}\right)$, and consequently to destroy the co-efficients of the first powers of the two variables in eq. (1); we shall, for the present, assume that $B^{2}-4 A C$ is either greater or less than zero.
By transposition and division eqs. (5) and (6) become

$$
b=-\frac{B}{2 A} a-\frac{D}{2 A}
$$

And

$$
a=-\frac{B}{2 C} b-\frac{E}{2 C}
$$

the first of which, if a and b be regarded as variables, is the equation of the diameter that bisects the chords of the curve which are parallel to the axis of y, and the second, that of the diameter which bisects the chords which are parallel to the axis of X. The values of a and b, given above, are, therefore, the co-ordinates of the intersection of these diameters.

Since eq. (2') contains both of the undetermined quantities, m and n, we are at liberty to assume the value of either, and the equation will then give the value of the other. Let us take for the new axis of X the diameter whose equation is

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A}
$$

then $\tan . m=-\frac{B}{2 A}$. This value of $\tan . m$ substituted in eq. (2^{\prime}) gives

$$
2 A(B-B) \text { tan. } n=B^{2}-4 A C,
$$

Or $\tan . n=\frac{B^{2}-4 A C}{0}=\infty$

That is, the new axis of y is at right angles to the primitive axis of X.

The values of a, b, and $\tan . n$ which we have thus found, in connection with the assumed value of tan. m, will reduce the co-efficients of the first powers and of the product of the variables in eq. (1) to zero.

To find what the co-efficients of $y^{\prime 2}$ and $x^{\prime 2}$ become, we must first get the values of the sines and cosines of the angles m and n from the values of tan. m and tan. n.
Since tan. $m=-\frac{B}{2 A}$ and $n=90^{\circ}$ we have

$$
\begin{aligned}
& \sin . m= \pm \frac{B}{\sqrt{4 A^{2}+B^{2}}} \cos m=\mp \frac{2 A}{\sqrt{4 A^{2}+B^{2}}} \\
& \sin . n=1 \quad \cos . n=0 .
\end{aligned}
$$

The sign \pm is written before the value of $\sin . m$, and the sign \mp before that of cos. m, because if the essential sign of tan. m is minus, which will be the case when A and B have the same sign, sin. m and cos. m must have opposite signs ; but if the essential sign of tan. m is plus, then A and B have opposite signs, and $\sin . m$ and cos. m must have like signs.

Making these substitutions in eq. (1) 'it will become, whether the signs of A and B are like or unlike,

$$
\begin{align*}
& A y^{\prime 2}-A\left(\frac{B^{2}-4 A C}{4 A^{2}+B^{2}}\right) x^{\prime 2}=-\left(A b^{2}+B a b+C a^{2}+D b+E a\right. \\
+ & F
\end{align*}
$$

Now, since the first term of the general equation may always be supposed positive, the two terms in the first member of equation (1^{\prime}) will have like signs when B^{2} $4 A C<0$, and unlike signs when $B^{2}-4 A C>0$. In the first case the form of the equation is that of the equation of the ellipse, and in the second, the form is that of the equation of the hyperbola, referred in either case, to the center and conjugate diameters.

Hence, when the transfurmation by which eq. (1') was derived from the general equation

$$
A y^{2}+B x y+C x^{2}+D y+E x+F=0
$$

is possible, we conclude that the latter equation will represent either the ellipse, or hyperbola, according as

$$
B^{2}-4 A C<0, \text { or } B^{2}-4 A C>0 .
$$

4.-Let us now examine the case in which

$$
B^{2}-4 A C=0 .
$$

Since, under this hypothesis, the co-efficients of the first powers of both variables in eq. (1) cannot be destroyed, we will see if it be possible to destroy the absolute term of the equation, and the co-eflicients of the product of the variables, the second power of one variable and the first power of the other variable.

Then the equations to be satisfied are

$$
\begin{equation*}
A b^{2}+B a b+C a^{2}+D b+E a+F=0 . \tag{7}
\end{equation*}
$$

$\left\{\begin{array}{l}2 A \sin . m \sin . n+B(\sin . m \cos . n+\sin . n \cos . m) \\ +2 C \cos . m \cos . n\end{array}\right\}=0$.

$$
\begin{gather*}
A \sin .{ }^{2} m+B \sin . m \cos . m+C \cos .{ }^{2} m=0 . \tag{8}\\
(2 A b+B a+D) \sin . n+(2 C a+B b+E) \cos . n=0 .
\end{gather*}
$$

when it is required that the co-efficients of $x^{\prime 2}$ and y^{\prime} should reduce to zero in connection with the absolute term and the co-officient of $x^{\prime} y^{\prime}$, in eq. (1). To reduce the co-efficients of $y^{\prime 2}$ and x^{\prime} to zero, instead of those of $x^{\prime 2}$ and y^{\prime}, it would be necessary to replace eqs. (8) and (3) by

$$
\begin{gather*}
A \sin .^{2} n+B \sin . n \cos . n+C \cos ^{2} n=0 \tag{9}\\
(2 A b+B a+D) \sin . m+(2 C a+B b+E) \cos . m=0 \tag{4}
\end{gather*}
$$

Equations (2) and (8) may be written

$$
\begin{gather*}
2 A \tan \cdot m \tan . n+B(\tan . m+\tan . n)+2 C=0 . \\
A \tan \cdot{ }^{2} m+B \tan \cdot m+C=0 .
\end{gather*}
$$

From eq. (8^{\prime}) we find

$$
\tan . m=-\frac{B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}=-\frac{B}{2 A},
$$

and this value of $\tan . m$ substituted in eq. (2') gives

$$
2 A(B-B) \tan \cdot n=B^{2}-4 A C
$$

$$
\tan \cdot n=\frac{0}{0} .
$$

That is, when $\tan . m$ is equal to $-\frac{B}{2 A}$, eq. (2^{\prime}) and, therefore, eq. (2), will be satisfied independently of the angle n.

Equation (7), being what the general equation becomes when a and b take the place of x and y respectively, shows that the new origin of co-ordinates must be on the curve. Solving this equation with reference to b, and introducing the condition $B^{2}-4 A C=0$, we find

$$
b=-\frac{B}{2 A} a-\frac{D}{2 A} \pm \frac{1}{2 A} \sqrt{2(B D-2 A E) a+D^{2}-4 A F}
$$

Now, because the imposed conditions require that the transformed equation shall be of the form

$$
M y^{\prime 2}=N x^{\prime},
$$

it follows that every value of x^{\prime} must give two numerically equal values of y^{\prime}; hence, the new axis of Y must be parallel to the system of chords bisected by the new axis of X. That is, n must be equal to 90°, and, consequently, $\sin . n=1, \cos . n=0$.

Equation (3) will therefore become

$$
2 A b+B a+D=0
$$

Whence $b=-\frac{B}{2 A} a-\frac{D}{2 A}$, and the radical part of the value of b will disappear, or we shall have

$$
2(B D-2 A E) a+D^{2}-4 A F=0
$$

From which we get

$$
a=-\frac{D^{2}-4 A F}{2(B D-2 A E)}
$$

These values of a and b place the new origin at the vertex of the diameter whose equation is

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A},
$$

and make the new axis of Y a tangent line to curve at the vertex of this diameter.

The values of a, b, m and n which we have now found, substituted in eq. (1), will reduce it to

$$
\begin{aligned}
& A y^{\prime 2}+(2 C a+B b+E) \cos . m x^{\prime}=0 \\
& y^{\prime 2}+\frac{1}{A}(2 C a+B b+E) \cos . m x^{\prime}=0
\end{aligned}
$$

Or
Denoting the co-efficient of x^{\prime} by $-2 p^{\prime}$, this last equation becomes

$$
\begin{equation*}
y^{\prime 2}=2 p^{\prime} x^{\prime} \tag{10}
\end{equation*}
$$

which is of the form of the equation of the parabola referred to a tangent line and the diameter passing through the point of contact.

The transformation by which eq. (10) was derived from the general equation is always possible when $B^{2}-4 A C$ $=0$, unless we also have $B D-2 A E=0$. If we suppose that both of these conditions are satisfied, the gentral value of y, which is
$y=-\frac{B}{2 A} x-\frac{D}{2 A} \pm \frac{1}{2 A} \sqrt{\left(B^{2}-4 A C\right) x^{2}+2(B D-2 A E) x+D^{2}-4 A F}$ reduces to

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A} \pm \frac{1}{2 A} \sqrt{D^{2}-4 A F}
$$

whence

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A}+\frac{1}{2 A} \sqrt{D^{2}-4 A F}
$$

and

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A}-\frac{1}{2 A} \sqrt{D^{2}-4 A F}
$$

which are the equations of two parallel straight lines.
Under the suppositions just made, the general equation may be written under the form
$\left(2 A y+B x+D+\sqrt{\left.D^{2}-4 A F\right)}\left(2 A y+B x+D-\sqrt{D^{2}-4 A F}\right)=0\right.$, which may be satisfied by making, first one, then the other factor of the first member, equal to zero. Each of
the equations thus obtained, being of the first degree in respect to x and y, will represent a right line.

If the further condition, $D^{2}-4 A F<0$, be imposed, the right lines will have no existence, and the general equation can be satisfied by no real values of x and y.

The value of $2 p^{\prime}$, the parameter of the diameter which becomes the new axis of X, will be found by substituting in the expression

$$
-\frac{1}{A}(2 C a+B b+E) \cos . m
$$

the values of a, b and cos.m. These values are

$$
\begin{gathered}
a=-\frac{D^{2}-4 A F}{2(B D-2 A E)}, b=\frac{4 A D E-4 A B F-B D^{2}}{4 A(B D-2 A E)} \\
\cos . m= \pm \frac{2 A}{\sqrt{4 A^{2}+B^{2}}}
\end{gathered}
$$

To reduce eq. (1) to the form

$$
\begin{equation*}
x^{\prime 2}=2 p^{\prime \prime} y^{\prime} \tag{11}
\end{equation*}
$$

we must satisfy equations (7), (2), (9) and (4).
From eq. (9) we find $\tan . n=-\frac{B}{2 A}$, and this value of tan. n substituted in eq. (2^{\prime}) gives tan. $m=\frac{0}{0}$; results which might have been anticipated, since eqs. (3) and (4) are the same, except that m in the former takes the place of n in the latter.

Because eq. (11) will give two numerically equal values of x^{\prime} for every value of y^{\prime}, the new axis of X must be parallel to the system of chords bisected by the new axis of Y; hence $m \doteq 0^{\circ}$, $\sin . m=0$, cos. $m=1$, and equation (4) therefore reduces to

$$
2 C a+B b+E=0
$$

Whence

$$
a=-\frac{B}{2 C} b-\frac{E}{2 C}
$$

Solving eq. (7) with reference to a we have

$$
a=-\frac{B}{2 C} b-\frac{E}{2 C} \pm \frac{1}{2 C} \sqrt{2(B E-2 C D) b+E^{2}-4 C F}
$$

By comparing this value of a with that which precedes we find

$$
2(B E-2 C D) b+E^{2}-4 C F=0
$$

Whence

$$
b=-\frac{E^{2}-4 C F}{2(B E-2 C D)}
$$

These values of a and b place the new origin at the vertex of the diameter whose equation is

$$
\begin{aligned}
& x=-\frac{B}{2 C} y-\frac{E}{2 C} \\
& y=-\frac{2 C}{B} x-\frac{E}{\bar{B}}
\end{aligned}
$$

The transformation by which eq. (4) is derived from eq. (1) will be impossible when b is infinite; that is when $B E-2 C D=0$.
It may be easily proved that when $B^{2}-4 A C=0$, the condition $B D-2 A E=0$ necessarily includes the condition $B E-2 C D=0$; that is, when we cannot transform eq. (1) into eq. (10), it will also be impossible to transform it into eq. (11).
For

$$
B D-2 A E=0 \text { gives } \frac{B}{2 A}-\frac{E}{D}=0 .
$$

And

$$
B^{2}-4 A C=0 \text { gives } \frac{B}{2 A}=\frac{2 C}{B}
$$

Whence

$$
\frac{2 C}{B}-\frac{E}{D}=0 \text {, or } B E-2 C D=0 \text {. }
$$

5.-We have now established the following criteria for the interpretation of any equation of the second degree betiween two variables, viz:

For the ellipse, $B^{2}-4 A C<0$.
For the hyperbola, $B^{2}-4 A C>0$.
For the parabola, $B^{2}-4 A C=0$.
It remains for us to indicate the construction of any of these curves from its equation, and in doing this, we 19*
shall follow the order in which the conditions are given above.

$$
\text { First, } B^{2}-4 A C<0 \text {, the ellipse. }
$$

6.-Let us resume the formulas.

$$
\begin{gathered}
a=\frac{2 A E-B D}{B^{2}-4 A C} \\
b=\frac{2 C D-B E}{B^{2}-4 A C}, \tan \cdot m=-\frac{B}{2 A} .
\end{gathered}
$$

$A y^{\prime 2}-A\left(\frac{B^{2}-4 A C}{4 A^{2}+B^{2}}\right) x^{\prime 2}=-\left(A b^{2}+B a b+C a+D b+E a\right.$ $+F$,
and suppose, for a particular case, $B=0$, and $A=C$.
We shall then have $a=-\frac{E}{2 A}, b=-\frac{D}{2 A}$
And

$$
y^{\prime 2}+x^{\prime 2}=\frac{D^{2}+E^{2}-4 A F}{4 A^{2}}
$$

That is, the general equation, under the suppositions made, represents a circle having $a=-\frac{E}{2 A}, b=-\frac{D}{2 A}$ for the co-ordinates of its center, and $\sqrt{\frac{\overline{D^{2}+E^{2}-4 A F}}{4 A^{2}}}$ for its radius.
Draw $A X, A Y$ for the primitive co-ordinate axes, lay off $A B=$ $-\frac{E}{2 A}, A D=-\frac{D}{2 A}$, and through the points B and D draw the parallels $B C$ and $D C$ to the axes. Their intersection, C, is the center of the circle, and the circumference de-
 scribed with $C E=\sqrt{\frac{D^{2}+E^{2}-4 A F}{4 A^{2}}}$ as a radius, will be that represented by the given equation.

The general equation gives
$y=-\frac{B}{2 A} x-\frac{D}{2 A} \pm \frac{1}{2 A} \sqrt{\left(B^{2}-4 A C\right) x^{2}+2(B D-2 A E) x+D^{2}-4 A F}$.
Placing the quantity under the radical sign, in this value of y, equal to zero, we have

$$
\begin{equation*}
x^{2}+2 \frac{(B D-2 A E)}{B^{2}-4 A C} x+\frac{D^{2}-4 A F}{B^{2}-4 A C}=0 \tag{p}
\end{equation*}
$$

and denoting the roots of this equation by x^{\prime} and $x^{\prime \prime}$, the value of y may be written

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A} \pm \frac{1}{2 A} \sqrt{\left(B^{2}-4 A C\right)\left(x-x^{\prime}\right)\left(x-x^{\prime \prime}\right)}
$$

Now x^{\prime} and $x^{\prime \prime}$ are the abscissas of the vertices of the diameter whose equation is

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A}
$$

The corresponding values of y are

$$
\begin{aligned}
& y^{\prime}=-\frac{B x^{\prime}+D}{2 A} \\
& y^{\prime \prime}=-\frac{B x^{\prime \prime}+D}{2 A}
\end{aligned}
$$

Substituting these values of $x^{\prime}, x^{\prime \prime}$ and $y^{\prime}, y^{\prime \prime}$ in the formula

$$
\sqrt{\left(x^{\prime}-x^{\prime \prime}\right)^{2}+\left(y^{\prime}-y^{\prime \prime}\right)^{2}}
$$

we have $\frac{x^{\prime \prime}-x^{\prime}}{2 A} \sqrt{B^{2}+4 A^{2}}$ for the length of the diameter. The diameter which is conjugate to this is that which is parallel to the axis of y. We find the ordinates of its vertices by substituting $a=\frac{x^{\prime}+x^{\prime \prime}}{2}$ for x in eq. (q), which then becomes

$$
y=-\frac{B\left(x^{\prime}+x^{\prime \prime}\right)}{4 A}-\frac{D}{2 A} \pm \frac{x^{\prime}-x^{\prime \prime}}{4 A} \sqrt{4 A C-B^{2}}
$$

Denoting these two values of y by y_{1}, y_{2}, their differ ence, which is the length of the conjugate diameter, is

$$
y_{1}-y_{2}=\frac{x^{\prime}-x^{\prime \prime}}{2 A} \sqrt{4 A C-B^{2}}
$$

To find the angle that the conjugate diameters make with each other, let $V V^{\prime}$ be the first diameter and $Q Q^{\prime}$ the second. The angle that $V V^{\prime}$ makes with the axis of X is equal to $V^{\prime} V R$, and its cosine

is

$$
\frac{V R}{V V^{\prime}}=\frac{x^{\prime \prime}-x^{\prime}}{\frac{x^{\prime \prime}-x^{\prime}}{2 A} \sqrt{B^{2}+4 A^{2}}}=\frac{2 A}{\sqrt{B^{2}+4 A^{2}}},
$$

and the $L Q C V^{\prime}=$ the $L B V V^{\prime}=90^{\circ}$ + the $L V^{\prime} V R$.
When the roots of eq. (p) are equal, the vertices of the first diameter, and also those of its conjugate, coincide, and the ellipse reduces to a point. Equation (q) may then be put under the form

$$
y=-\frac{B x+D}{2 A} \pm \frac{x-x^{\prime}}{2 A} \sqrt{B^{2}-4 A C}
$$

Because $B^{2}-4 A C$ is negative, this value of y will be imaginary for every value of x except the particular one, $x=x^{\prime}$, which causes the radical to disappear.

When the roots of eq. (p) are real and unequal, that one of the factors $\left(x-x^{\prime}\right),\left(x-x^{\prime \prime}\right)$ under the radical in eq. (q), which corresponds to the root which is algebraically the greater, will be negative, while the other will be positive, for all values of x included between the limits of the smaller and greater roots. The quantity under the radical, being then composed of the product of three factors, two of which are negative and one positive, will itself be positive and the corresponding values of y will therefore be real.

All values of x which exceed the greater, and, also, all values of x which are less than the smaller, of these roots, will render the quantity under the radical negative and the corresponding values of y imaginary. The roots x^{\prime} and $x^{\prime \prime}$ are therefore the limits within which we would
select values of x to substitute in the equation to get the co-ordinates of points of the curve.

When the roots of eq. (p) are imaginary, the product of the factors $\left(x-x^{\prime}\right),\left(x-x^{\prime \prime}\right)$ under the radical in eq. (q) will remain positive for all real values of x; and because the other factor is $B^{2}-4 A C<0$, the radical will always be imaginary: that is, no real value of x which will give a real value for y. There is, then, in this case, no point in the plane of the co-ordinate axes whose co-ordinates will satisfy eq. (q), and, consequently, the equation from which it was derived, and the curve, has no existence, or it is imaginary.

By the solution of eq. (p) it will be found that when the expression

$$
(B D-2 A E)^{2}-\left(B^{2}-4 A C\right)\left(D^{2}-4 A F\right)
$$

is positive, the roots of the equation are real and unequal; when the expression is zero the roots are real and equal, and when negative the roots are imaginary.

If we solve the general equation with reference to x instead of y, and place the quantity under the radical sign equal to zero, we shall find that when the expression

$$
(B E-2 C D)^{2}-\left(B^{2}-4 A C\right)\left(E^{2}-4 C F\right)
$$

is positive, the roots of the resulting equation are real and unequal ; when zero, these roots are real and equal, and when negative they are imaginary.

It might be inferred that if these roots are real and unequal, equal, or imaginary when the general equation is resolved with reference to one variable, they would be like characterized when it is resolved with reference to the other. To prove this, we develope the first of the above expressions and find that it becomes

$$
4 A\left(A(E)^{2}+C(D)^{2}+F(B)^{2}-B D E-4 A C F \cdot\right)
$$

The development of the second is

$$
4 C\left(A(E)^{2}+C(D)^{2}+F(B)^{2}-B D E-4 A C F .\right)
$$

The only difference in these developments is that the coefficient of the parenthesis in the first is $4 A$, and in the second it is $4 C$; but when $B^{2}-4 A C<0, A$ and C must have the same sign, hence these expressions must be positive, negative, or zero at the same time.

Second, $B^{2}-4 A C>0$, the hyperbola.
7.-We will begin by supposing $B=0$, and $A=-C$.

The formulas for a, b and $\tan . m$ will then give

$$
a=\frac{E}{2 A}, b=-\frac{D}{2 A}, \tan \cdot m=0,
$$

and eq. (1^{\prime}) will become

$$
y^{\prime 2}-x^{\prime 2}=\frac{D^{2}-E^{2}-4 A F}{4 A^{2}}
$$

This is the equation of an equilateral hyperbola whose semi-axis is the square root of the numerical value of the expression $\frac{D^{2}-E^{2}-4 A F}{4 A^{2}}$. Since tan. $m=0, m=0$, and one of the axes of the hyperbola is parallel and the other perpendicular to the primitive axis of X. If the sign of $\frac{D^{2}-E^{2}-4 A F}{4 A^{2}}$ is negative, the transverse is the parallel axis; if negative, it is the perpendicular axis.

To construct the curve, let $A X$ and $A Y$ be the primitive co-ordinate axes. Lay off the positive abscissa $A D=\frac{E}{2 A}$, and the negative ordinate $A E=-\frac{D}{2 A}$; the parallels to the axes

drawn through D and E will be the axes of the hyperbola, and C will be its center. On these axes, lay off from the center, the distances $C V, C V^{\prime}, C R, C R^{\prime}$, each
equal to $\sqrt{\frac{D^{2}-E^{2}-4 A F}{4 A^{2}}}$, and we have the axes of conjugate equilateral hyperbolas. The foci may be found by describing a circumference with C as a center and $C H$, the hypothenuse of the isosceles right-angled triangle $C V H$, as a radius; the circumference will intersect the axes at the foci.

For another case, let us suppose $A=0$ and $C=0$; then the value- $\frac{B}{2 A}$ which was assumed for tan. m becomes infinite, or the new axis of X is perpendicular to the primitive axis of X, and since tan. n is also infinite, the new co-ordinates axes would coincide; in other words, with this value of tan. m, it would be impossible, under the hypothesis, to transform the original equation into eq. (1^{\prime}). But if $A=0$, and $C=0$, the co-efficient of $x^{\prime} y^{\prime}$ in eq. (1) becomes

$$
B(\sin . m \cos . n+\sin . n \cos . m)
$$

Placing this equal to zero, and dividing through by B cos. m cos. n, we have

$$
\tan . m+\tan . n=0
$$

Or

$$
\tan . m=-\tan . n .
$$

Since we are at liberty to select a value for either m or n, let us make $n=45^{\circ}$; then $m=-45^{\circ}$. The values of a and b, which will destroy the co-efficients of x^{\prime} and y^{\prime} are,

$$
a=-\frac{D}{B}, b=-\frac{E}{B} .
$$

Substituting these values in eq. (1), reducing and transposing, we have

$$
y^{\prime 2}-x^{\prime 2}=\frac{2(D E-B F)}{B^{2}}
$$

which is also the equation of the equilateral hyperbola, the co-ordinates of whose center are $a=-\frac{D}{\mathcal{B}}, b=-\frac{E}{\bar{B}}$,
and whose semi-axis is the square root of the numerical value of $\frac{2(D E-B F)}{B^{2}}$. The asymptotes of this hyperbola are parallel to the primitive axes, and if $\frac{2(D E-B F)}{B^{2}}$ is negative, the transverse axis makes a negative angle with the primitive axis of X, if positive, it makes a positive angle with that axis.

There is another case in which the transformation by which eq. (1^{\prime}) was obtained, cannot be made with the value $-\frac{B}{2 A}$ for $\tan m$. It is that in which A becomes zero, and C does not. We then assume for tan. m the tangent of the angle that the diameter whose equation is

$$
x=-\frac{B}{2 C} y-\frac{E}{2 C}
$$

makes with the axis of X. That is, we make

$$
\tan \cdot m=-\frac{2 C}{B}
$$

Proceeding with this as with the value- $\frac{B}{2 A}$, we shall find for the transformed equation

$$
C y^{\prime 2}-C\left(\frac{B^{2}-4 A C}{\sqrt{4 C^{2}+B^{2}}}\right) x^{\prime 2}=-\left(A b^{2}+B a b+C a^{2}+D b+E a+F\right.
$$

By making $A=0$, this equation becomes

$$
C y^{\prime 2}-\frac{C B^{2}}{\sqrt{ } 4 C^{2}+\overline{B^{2}}} x^{\prime 2}=-\left(B a b+C a^{2}+D b+E a++F^{\prime}\right)
$$

which is that of an hyperbola referred to a system of conjugate diameters, one of which bisects the chords which are parallel to the primitive axis of X.

In the general case the course to be pursued for the hyperbola differs so little from that already indicated for the ellipse, that it is unnecessary to dwell upon it at length.

The quantity under the radical in the general value of y placed equal to zero gives the equation

$$
x^{2}+\frac{2(B D-2 A E)}{B^{2}-4 A C} x+\frac{D^{2}-4 A F}{B^{2}-4 A \cdot C}=0,
$$

The roots of this equation are the abscissas of the vertices of the diameter, whose equation is

$$
y=-\frac{B}{2 A} x-\frac{D}{2 \dot{A}}
$$

When these roots are real and unequal, the diameter terminates in the hyperbola; when imaginary, it terminates in the conjugate hyperbola.

Denoting these abscissas, when real, by x^{\prime} and $x^{\prime \prime}$, and the corresponding ordinates by y^{\prime} and $y^{\prime \prime}$, we have

$$
\begin{aligned}
& y^{\prime}=-\frac{B x^{\prime}+D}{2 A} \\
& y^{\prime \prime}=-\frac{B x^{\prime \prime}+D}{2 A}
\end{aligned}
$$

By placing these values of $x^{\prime}, x^{\prime \prime}$ and $y^{\prime}, y^{\prime \prime}$ in the formula

$$
\sqrt{\left(x^{\prime}-x^{\prime \prime}\right)^{2}+\left(y^{\prime}-y^{\prime \prime}\right)}
$$

we shall have the length of the diameter, and the angle included between it and its conjugate will be found precisely as in the ellipse.

If x^{\prime} be the smaller and $x^{\prime \prime}$ the greater abscissa, then all values of x between x^{\prime} and $x^{\prime \prime}$ will give imaginary values for y, and will answer to no points of the curve; but all values of x less than x^{\prime}, and also all values of x greater than $x^{\prime \prime}$ will give real values for y^{\prime}, and such values of x with the corresponding values of y will be the co-ordinates of points of the hyperbola.

When the roots $x^{\prime}, x^{\prime \prime}$ are imaginary, the diameter whose equation is

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A}
$$

terminates in the hyperbola which is conjugated to that represented by the given equation, and the diameter which is conjugate to this diameter will terminate in the given hyperbola.
The conjugate diameter may be found in the case of both the ellipse and hyperbola by making first $y^{\prime}=0$ in eq. (1^{\prime}), and taking the square root of the corresponding numerical value of $x^{\prime 2}$, and then $x^{\prime}=0$, and taking the square root of the corresponding numerical value of $y^{\prime 2}$.
8.-In the transformation of co-ordinates by which the original equation was changed into eq. (1) had the condition, that the new co-ordinate axes should be rectangular, been imposed, as it might, we would have had $n-m=90^{\circ}$, $n=90^{\circ}+m$. Sin. $n=\cos . m$, cos. $n=-\sin . m$.
These values being substituted in eq. (2) will give $2 A \sin . m \cos . m-B \sin .{ }^{2} m+B \cos .^{2} m-2 C \sin . m \cos . m=0$, which, by dividing through by $\cos ^{2} m$, and denoting $\frac{\sin . m}{\cos m}$ by , becomes
cos. m

$$
2 A t-B t^{2}+B-2 C t=0 .
$$

Whence $\quad t=\frac{A-C}{B} \pm \frac{1}{B} \sqrt{B^{2}+(A-C)^{2}}$.
Since the product of these two values of t is equal to -1 , they are the tangents of the angles that two straight lines at right angles to each other make with the axis of X. Now, if eqs. (5) and (6) are satisfied at the same time; that is, if the new origin be placed at the point of which the co-ordinates are

$$
a=\frac{2 A E-B D}{B^{2}-4 A C}, \quad b=\frac{2 C D-B E}{B^{2}-4 A C},
$$

the values of t just found will be the tangents of the angles that the axes of the ellipse, or hyperbola, as the case may be, make with the primitive axis of X. Denoting these tangents by t^{\prime} and $t^{\prime \prime}$, we shall have

$$
\begin{aligned}
& y-b=t^{\prime}(x-a), \\
& y-b=t^{\prime \prime}(x-a),
\end{aligned}
$$

for the equations of the axes, and by combining the equations of the axes with the original equation, we may find the co-ordinates of their vertices, and, consequently, their length.
9.-When the roots x^{\prime} and $x^{\prime \prime}$ become equal, the value of y may be written

$$
y=-\frac{B x+D}{2 A} \pm \frac{x-x^{\prime}}{2 A} \sqrt{B^{2}-4 A C .}
$$

For the hyperbola, $B^{2}-4 A C>0$, and these values of y are real. We therefore have

$$
\begin{equation*}
y=-\frac{B}{2 A} x-\frac{D}{2 A}+\frac{x-x^{\prime}}{2 A} \sqrt{B^{2}-4 A C} \tag{r}
\end{equation*}
$$

and

$$
\begin{equation*}
y=-\frac{B}{2 A} x-\frac{D}{2 A}-\frac{x-x^{\prime}}{2 A} \sqrt{B^{2}-4 A C} \tag{s}
\end{equation*}
$$

These equations represent two right lines, and, since the co-efficients of x, when the second members are arranged with reference to it, are different, these lines will intersect. We see that by making $x=x^{\prime}$, the two equations will give the same value for y. Hence, $x=x^{\prime}$, and $y=-\frac{B x^{\prime}+D}{2 A}$ are the co-ordinates of the intersection of the lines.

The line $B E$, whose equation is

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A},
$$

still has the property of bisecting all lines drawn parallel to the axis of Y, which are limited by the lines
 $B C$ and $B D$, whose equations are eqs. (r) and (s).

$$
\text { Third, } B^{2}-4 A C=0 \text {, the parabola. }
$$

10.-The equation of the diameter that bisects the chords of the curve which are parallel to the axis of Y is

$$
y=-\frac{B}{2 A} x-\frac{D}{2 A},
$$

and that of the diameter which bisects the chords parallel to the axis of X is
or

$$
\begin{aligned}
x & =-\frac{B}{2 C} y-\frac{E}{2 C} \\
y & =-\frac{2 C}{B} x-\frac{E}{\bar{B}}
\end{aligned}
$$

Since a tangent line drawn through the vertex of a diameter is parallel to the chords that the diameter bisects, it follows that the diameters represented by the above equations are perpendicular to each other, and, therefore, (Prop. 5, Chap. 4), their intersection, in the case of the parabola, is on the directrix.

The abscissa of the vertex of the first diameter is the value of x given by the equation .

$$
2(B D-2 A E) x+D^{2}-4 A F=0
$$

the first member of which is the quantity under the radical in the general value of y, after we have made $B^{2}-4 A C=0$.

Denoting this abscissa by x^{\prime} we have
and

$$
\begin{gathered}
x^{\prime}=-\frac{D^{2}-4 A F}{2(B D-2 A E)}, \\
y^{\prime}=-\frac{B x^{\prime}+D}{2 A} .
\end{gathered}
$$

If we denote the co-ordinates of the vertex of the second diameter by $x^{\prime \prime}$ and $y^{\prime \prime}$, we have

$$
\begin{gathered}
y^{\prime \prime}=-\frac{E^{2}-4 C F}{2(B E-2 C D)^{\prime}} \\
x^{\prime \prime}=-\frac{B y^{\prime \prime}+E}{2 C} .
\end{gathered}
$$

Let P and P^{\prime} be the two vertices thus found. Through the first draw $P T$ parallel to the axis of Y, and through the second, $P^{\prime} T$ parallel to the axis of X. These lines will be tangent to the parabola at P and P^{\prime} respectively,
and their intersection, T, will be a point of the directrix. The lines $C M, B N$, drawn through P and P^{\prime}, making, with the axis of X, angles having for their common tangent

$$
-\frac{B}{2 A}=-\frac{2 C}{B},
$$

are diameters of the curve, and
 $B C$ drawn through T perpendicular to these diameters, is the directrix. With P as a center and $P C$ as a radius, or with P^{\prime} as a center and $P^{\prime} B$ as a radius, describe an arc of a circle. This arc will cut the chord $P P^{\prime}$ at the focus F. The perpendicular $F D$, drawn through F to the directrix, is the axis, and the middle point, V, of $F D$, is the vertex of the parabola.

EXAMPLES.

It will aid in the construction of the curve represented by any equation to find the points in which it is intersected by the co-ordinate axes. If we make either variable equal to zero in the equation, the values of the other variable given by the resulting equation will be the distances from the origin to the intersections of the curve, with axis of the latter variable. When the roots of the equation which we solve are real and unequal, there will be two intersections, where real and equal, the axis will be tangent to the curve at the point thus determined, and when imaginary, the curve and the axis will have no common points.
1.-Construct the curve represented by the equation

Whence \quad| $y^{2}+2 x y+3 x^{2}-4 x=0$. |
| ---: |
| $y=-x \pm \sqrt{ }=2 x(x-2)$. |

Here $A=1, B=2, C=3$; therefore $B^{2}-4 A C<0$, and 20*
the curve is an ellipse which passes through the origin of co-ordinates, since the equation has no absolute term.

$$
y=-x
$$

is the equation of a diameter of the curve and the co-ordinates of its vertices are $x^{\prime}=0, y^{\prime}=0$ and $x^{\prime \prime}=2, y^{\prime \prime}=-2$. By making $x=1$ in the original equation, we find $y=+$. $41+$, or -2.41 for the ordinates of the vertices of the diameter conjugate to the first.

The length of the first diameter is
 equal to $\sqrt{8}=2.82+$, and the length of the second is $+.41+2.41=2.82$.
2.-Determine the curve that corresponds to the equation

$$
y^{2}+2 x y+x^{2}-6 y+9=0 .
$$

Here $A=1, B=2, C=1$, hence $B^{2}-4 A C=0$, and the curve is a parabola. We find

$$
y=-x+3 \pm \sqrt{ } \overline{-6 x},
$$

And

$$
x=-y \pm \sqrt{6 y-9 .}
$$

The diameter whose equation is $y=-x+3$ has $x^{\prime}=0$, and $y^{\prime}=3$ for the co-ordinates of its vertex. The axis of y is therefore tangent to the curve. The co-ordinates of the vertex of the diameter whose equation is $x=-y$ are, $x^{\prime \prime}=-1 \frac{1}{2}$, and $y^{\prime \prime}=1 \frac{1}{2}$, and a line drawn through this point parallel to the axis of X will be tangent to the curve.

Let P^{\prime} be the vertex of the first diameter and P that of the second. The chord $P P^{\prime}$ passes through the focus. $P^{\prime} S^{\prime}, P S$ making with the axis of X, on the negative side, angles of 45° are diameters of the curve, and $B T$ a perpendicular to $P S$ is the directrix.

3.-Determine the curve of which the equation is

$$
y^{2}+2 x y-2 x^{2}-4 y-x+10=0 .
$$

In this case $A=1, B=2, C=-2$; hence $B^{2}-4 A C>0$, and the curve is an hyperbola. The equation gives

$$
y=-x+2 \pm \sqrt{3 x^{2}-3 x}-6 .
$$

The abscissas of the vertices of the diameter whose equation is

$$
y=-x+2
$$

are the roots of the equation

$$
3 x^{2}-3 x-6=0
$$

Whence $x^{\prime}=-1$, and $x^{\prime \prime}=2$, and the corresponding values of y are $y^{\prime}=3$ and $y^{\prime \prime}=0$.

The diameter which is parallel to the axis of y is conjugate to $P P^{\prime}$, and terminates in the conjugate hyperbola. The co-ordinates of its vertices are imaginary and may be found by making $x=\frac{1}{2}$ in the original equation. We would thus find

$$
y=3 \pm \frac{5.2 \sqrt{2}-1}{2}
$$

The conjugate diameter will therefore be about 5.2. The point E in which the curve intersects the axis of X is on the left of the origin and at a distance from it equal to $2 \frac{1}{2}$ units.
4.-Determine the curve represented by the equation

$$
y^{2}+6 x y+9 x^{2}-2 y-6 x-15=0
$$

In this, the condition $B^{2}-4 A C=0$ is satisfied, and the curve is the parabola; but it answers to the case in which the parabola reduces to two parallel lines.

In fact the equation may be put under the form

$$
(y+3 x)^{2}-2(y+3 x)=15 .
$$

Whence

$$
\begin{aligned}
& y+3 x=1 \pm \sqrt{16} \\
& y+3 x=5 \text { or }-3 .
\end{aligned}
$$

The first member of the equation may therefore be resolved into the factors $y+3 x-5$, and $y+3 x+3$; which, placed separately equal to zero, give for the parallel lines the equations

And

$$
\begin{aligned}
& y=-3 x+5, \\
& y=-3 x-3
\end{aligned}
$$

5.-Determine the curve of which the equation is

$$
y^{2}-4 x y+5 x^{2}-2 y+5=0 .
$$

In this we have $B^{2}-4 A C<0$, and the curve is an ellipse, but it answers to the case in which the curve becomes imaginary. For, resolving the equation in relation to y, we find

$$
y=2 x+1 \pm \sqrt{-(x-2)^{2}} .
$$

The quantity under the radical in this value of y will be negative for every real value of x, hence, all values of y are imaginary ; that is, there is no point whose co-ordinates will satisfy the given equation.

By inspection we may also discover that the first member of the equation can be placed under the form

$$
(y-2 x-1)^{2}+(x-2)^{2},
$$

which is the sum of two squares, and must therefore remain positive for all real values of x and y.
6.-What kind of a curve corresponds to the equation

$$
y^{2}-2 x y-x^{2}-2 y+2 x+3=0 ?
$$

Ans. It is an hyperbola. The axis of Y is midway between the two branches. One branch of the curve cuts the axis of X at the point -1 ; the other branch cuts the same axis at the point +3 .
7.- Determine the curve represented by the equation

$$
y^{2}-2 x y+2 x^{2}-2 x+4=0 .
$$

Resolving, we find

$$
(y-x)^{2}+(x-1)^{2}+3=0
$$

The condition for the ellipse is satisfied, but the curve is imaginary.
8.-What kind of a curve corresponds to the equation

$$
y^{2}-2 x y+x^{2}+x=0 ?
$$

Ans. It is a parabola passing through the origin and extending without limit, in the direction of x and y negative.
9.-What kind of a curve corresponds to the equation

$$
y^{2}-2 x y+x^{2}-2 y-1=0 ?
$$

Ans. It is a parabola, cutting the axis of X at the distance of -1 and +1 from the origin, and extending indefinitely in the direction of plus x and plus y.
10.-What kind of a curve corresponds to the equation

$$
y^{2}-4 x y+4 x^{2}=0 ?
$$

Ans. It is a straight line passing through the origin, making an angle of $26^{\circ} 34^{\prime}$ with the axis of Y.
11.-What kind of a curve corresponds to the equation

$$
y^{2}-2 x y+2 x^{2}-2 y+2 x=0 ?
$$

Ans. It is an ellipse limited by parallels to the axis of Y drawn through the points -1 , and +1 , on the axis of X.

CHAPTER VII.

on the intersections of lines and the geometrical solution of equations.

We have seen that the equation of a straight line is

$$
y=t x+c,
$$

And that the general equation of a circle is

$$
(x \pm a)^{2}+(y \pm b)^{2}=R^{2} .
$$

The first is a simple, the second a quadratic equation,
and if the value of x derived from the first be substituted in the second, we shall have a resulting equation of the second degree, in which y cannot correspond to every point in the straight line, nor to every point in the circumference of the circle, but it will correspond to the two points in which the straight line cuts the circumference, and to those points only.

And if the straight line should not cut the circumference, the values of y in the resulting equation must necessarily become imaginary. All this has been shown in the application of the polar equation of the circle, in Chap. 2.
Let us now extend this principle still further. The equation of the parabola is

$$
y^{2}=2 p x,
$$

an equation of the second degree, and the equation of a circle is

$$
(x \pm a)^{2}+(y \pm b)^{2}=R^{2}
$$

also an equation of the second degree. But when two equations of the second degree are combined, they will produce an equation of the fourth degree.

But this resulting equation of the fourth degree cannot correspond to all points in the parabola, nor to all points in the circumference of the circle, but it must correspond equally to both ; hence, it will correspond to the points of intersection, and if the two curves do not intersect, the combination of their equations will produce an equation whose roots are imaginary.

Let us take the equation $y^{2}=2 p x$, and take p for the unit of measure, (that is, the distance from the directrix to the focus is unity,) then $x=\frac{y^{2}}{2}$, and this value of x substituted in the equation of the circle, will give

$$
\left(\frac{y^{2}}{2} \pm a\right)^{2}+(y \pm b)^{2}=R^{2}
$$

Let the vertex of the parabola be the origin of rectangular co^{-} ordinates.

Take $A P=x$, and let it refer to either the parabola or the circle, and let $P M=y, A F=\frac{1}{2}, A H=a$, $H C=b$, and $C M=R$.

Now in the right angle triangle
 $C M D$, we have

$$
C D=H P=x-a, M D=y-b,
$$

and corresponding to this particular figure, we shall have in lieu of the proceding equation

$$
\left(\frac{y^{2}}{2}-a\right)^{2}+(y-b)^{2}=R^{2}
$$

Whence $\quad y^{4}+(4-4 a) y^{2}-8 b y=4\left(R^{2}-a^{2}-b^{2}.\right) \quad(\mathrm{F})$
This equation is of the fourth degree, hence it must have four roots, and this corresponds with the figure, for the circle cuts the parabola in four points, $M, M^{\prime}, M^{\prime \prime}$, and $M^{\prime \prime \prime}$.

The second term of the equation is wanting, that is, the co-efficient to y^{3} is 0 , and hence it follows from the theory of equations, that the sum of the four roots must be zero.

The sum of two of them, which are above the axis of $A X$, (the two plus roots,) must be equal to the sum of the two minus roots corresponding to the points $M^{\prime \prime}$ and $M^{\prime \prime \prime}$.

The values of a and b and R may be such as to place the center C in such a position that the circumference can cut the parabola in only two points, and then the resulting equation will be such as to give two real and two imaginary roots.

Indeed, a circumference referred to the same unit of measure and to the same co-ordinates, might not cut the
parabola at all, and in that case the resulting equation would have only imaginary roots.

In case the circle touches the parabola, the equation will have two equal roots.

Now it is plain that if we can construct a figure that will truly represent any equation in this form, that figure will be a solution to the equation. For instance, a figure correctly drawn will show the magnitude of $P M$, one of the roots of the equation.

We will illustrate by the following

EXAMPLES.

1.-Find the roots of the equation

$$
y^{4}-11.14 y^{2}-6.74 y+9.9225=0
$$

This equation is the same in form as our theoretical equation (F), and therefore we can solve it geometrically as follows:

Draw rectangular co-ordinates, as in the figure, and take $A F=\frac{1}{2}$, and construct the parabola.

To find the center of the circle and the radius, we put

$$
\begin{equation*}
4-4 a=-11.14, \quad \text { (1) } \quad-8 b=-6.74 \tag{2}
\end{equation*}
$$

and

$$
4\left(R^{2}-a^{2}-b^{2}\right)=-9.9225 .
$$

From eq. (1), $a=3.78$. From eq. (2), $b=0.84$.
And these values of a and b, substituted in eq. (3), give

$$
R=3.34 \text {, nearly. }
$$

Take from the scale which corresponds to $A F=\frac{1}{2}, A H=a=3.78$, $H C=0.84$, and from C as a center, with a radius equal to 3.34 , describe the circumference cutting the parabola in the four points, M, M^{\prime}, $M^{\prime \prime}$, and $M^{\prime \prime \prime}$. The distance of M from the axis of X is +3.5 , of M^{\prime}
 it is +0.7 , of $M^{\prime \prime}$ it is -1.5 , and of $M^{\prime \prime \prime}$ it is -2.7 , and these are the four roots of the equation.

Their sum is 0 , as it ought to be, because the equation contains no third power of y.
2.- Find the roots of the equation

$$
y^{4}+y^{3}+6 y^{2}+12 y-72=0
$$

This equation contains the third power of y; therefore this geometrical solution will not apply until that term is removed.

But we can remove that term by putting

$$
y=z-\frac{1}{4} .
$$

(See theory of transforming equations in algebra).
This value of y substituted in the equation, it becomes

$$
z^{4}+5 \frac{5}{8} z^{2}+9 \frac{1}{8} z=74 \frac{1}{2} \frac{6}{6} \frac{8}{6}^{2},
$$

and this equation is in the proper form.
Now put $4-4 a=5 \frac{5}{8},-8 b=9 \frac{1}{8}$, and $4\left(R^{2}-a^{2}-b^{2}\right)=74 \frac{1}{2} \frac{5}{6}$.
Whence $a=-\frac{1}{3} \frac{3}{2}, b=-\frac{73}{6} \frac{3}{4}$, and $R=4.485$.
These values of a and b designate the point C^{\prime} for the center of the circle. From this center, with a radius $=4.485$, we strike the circumference, cutting the parabola in the two points m and m^{\prime}. The point m is $2 \frac{1}{4}$ units above the axis $A X$, and the point m^{\prime} is $-2 \frac{3}{4}$ units from the same line, and these are the two roots of the equation. The other two roots are imaginary, shown by the fact that this circumference can cut the parabola in two points only.

If we conceive the circumference of a circle to pass through the vertex of the parabola A, then will

$$
a^{2}+b^{2}=R^{2},
$$

and this supposition reduces the general equation (F) to

$$
y^{4}+(4-4 a) y^{2}-8 b y=0 .
$$

Here $y= \pm 0$ will satisfy the equation, and this is as it should be, for the circumference actually touches the parabola on the axis of X.

Now divide this last equation by this value of y, and we have

$$
\begin{equation*}
y^{3}+(4-4 a) y=8 b . \tag{G}
\end{equation*}
$$

Here is an equation of the third degree, referring to a parabola and a circle ; the circumference cutting the parabola at its vertex for one point, and if it cuts the parabola in any other point, that other point will designate another root in equation (G).

It is possible for a circle to touch one side of the parabola within, and cut at the vertex A and at some other point. Therefore it is possible for an equation in the form of eq. (G) to have three real roots, and two of them equal.

The circumferences of most circles, however, can cut the parabola in A and in one other point, showing one real root and two imaginary roots.

Equation (G) can be used to effect a mechanical solution of all numerical equations of the third degree, in that form.*

We will illustrate this by one or two

EXAMPLES.

1.-Given $\mathrm{y}^{3}+4 \mathrm{y}=39$, to find the value of y by construction. (See fig. following page)

Put $4-4 a=4$, and $8 b=39$. Whence $a=0$, and $b=4 \frac{7}{8}$.
These values of a and b designate the point C on the axis of Y for the center of the circle, $C A=4 \frac{7}{8}$, the radius.

The circle again cuts the parabola in P, and $P Q$ measures three units, the only real root of the equation.
2.-Given $\mathrm{y}^{3}-75 \mathrm{y}=250$, to find the values of y by construction.

When the co-efficients are large, a large figure is required; but to avoid this inconvenience, we reduce the co-efficients, as shown in Chap. 2.

[^1]Thus put $\quad y=n z$.
Then the equation becomes

$$
\begin{aligned}
n^{3} z^{3}-75 n z & =250 \\
z^{3}-\frac{75}{n^{2}} z & =\frac{250}{n^{3}}
\end{aligned}
$$

Now take $n=5$, then we have

$$
z^{3}-3 z=2
$$

In this last equation the co-effi-
 cients are sufficiently small to apply to a construction.

$$
\begin{array}{lr}
\text { Put } & 4-4 a=-3, \text { and } 8 b=2 . \\
\text { Whence } & a=1 \frac{3}{4} \text {, and } b=\frac{1}{4} .
\end{array}
$$

These values of a and b designate the point D for the center of the circle. $D A$ is the radius.

The circle cuts the parabola in t, and touches it in T, showing that one root of the equation is +2 , and two others each equal to -1 .

But $y=n z$. That is, $y=5 \times 2$, or $-5,-5$.
Or the roots of the original equation are $+10,-5,-5$.
When an equation contains the second power of the unknown quantity, it must be removed by transformation before this method of solution can be applied.
3.-Given $\mathrm{y}^{3}-48 \mathrm{y}=128$ to find the values of y by construction. Ans. $+8,-4,-4$.
4.-Given $\mathrm{y}^{3}-13 \mathrm{y}=-12$, to find the values of y by construction. Ans. $+1,+3$, and -4 .
Conversely we can describe a parobola, and take any point, as H, at pleasure, and with $H A$ as a radius, describe a circle and find the equation to which it belongs.

This circle cuts the parabola in the points m, n and o, indicating an equation whose roots are $+1,+2.4$, and - -3.4.

We may also find the particular equation from the general equation

$$
y^{3}+(4-4 a) y=8 b
$$

observing the locality of H, which corresponds to $a=3 \cdot 3$ and $b=-1$, and taking these values of a and b, we have

$$
y^{3}-9.2 y=-8,
$$

for the equation sought.
REMARKS ON THE INTERPRETATION OF EQUATIONS.
In every science it is important to take an occasional retrospective view of first principles, and the conviction that none demand this more imperatively than geometry will excuse us for reconsidering the following truths so often in substance, if not in words, called to mind before.

An equation, geometrically considered, whatever may be its degree, is but the equation of a point, and can only designate a point.

Thus, the equation $y=a x+b$ designates a point, which point is found by measuring any assumed value which may be given to x from the origin of co-ordinates on the axis of X, and from that extremity measuring a distance represented by $(a x+b)$ on a line parallel to the axis of Y.

The extremity of the last measure is the point designated by the equation. If we assume another value for x, and measure again in the same way, we shall find the point which now corresponds to the value of x. Again, assume another value for x, and find the designated point.

Lastly, if we connect these several points, we shall find them all in the same right line, and in this sense the equation of the first degree, $y=a x+b$, is the general equation of a right line, but the right line is found by finding points in the line and connecting them.

In like manner the equation of the second degree

$$
y= \pm \sqrt{2 R x-x^{2}}
$$

only designates a point when we assume any value for x, (not inconsistent with the existence of the equation), and take the plus sign. It will also designate another point
when we take the minus sign. Taking another value of x, and thus finding two other points, we shall have four points,-still another value of x and we can find two other points, and so on, we might find any number of points. Lastly, on comparing these points we shall find that they are all in the circumference of the same circle, and hence we say that the preceding equation is the equation of a circle. Yet it can designate only one, or at most, two points at a time.

If we assume different values for y, and find the corresponding values of x, the result will be the same circle, because the x and y mutually depend upon each other.

Now let us take the last practical example

$$
y^{3}-13 y=-12
$$

and, for the sake of perspicuity, change y into x, then we shall have

$$
x^{3}-13 x+12=0 .
$$

Now we can suppose $y=0$ to be another equation; then will

$$
\begin{equation*}
y=x^{3}-13 x+12 \tag{A}
\end{equation*}
$$

be an independent equation between two variables, and of the third degree.

The particular hypothesis that $y=0$, gives three values to $x,(+1,+3$, and -4$)$, that is, three points are designated: the first at the distance of one unit to the right of the axis of Y; the second at the distance of three units on the same side of the axis of Y; and the third point four units on the opposite side of the same axis, and this is all the equation can show until we make another hypothesis.

Again, let us assume $y=5$, then equation (A) becomes

$$
5=x^{3}-13 x+12, \text { or } x^{3}-13 x+7=0,
$$

and this is, in effect, changing the origin five units on the axis of Y. A solution of this last equation fixes three other points on a line parallel to the axis of X.

Again, let us assume $y=10$, then equation (A) becomes

$$
x^{3}-13 x+2=0,
$$

and a solution of this equation gives three other points.
And thus we may proceed, assigning different values to y, and deducing the corresponding values of x, as appears in the following table, commencing at the origin of the co-ordinates, where $y=0$, and varying each way.

$$
\begin{array}{llll}
y=30.0388 & x=-2.2814 & +4.1628 & -2.0814 \\
y=25 . & x=-1.1 & +4.03 & -2.91 \\
y=20 . & x=-0.40 & +3.80 & -3.41 \\
y=15 . & x=-0.20 & +3.70 & -3.50 \\
y=10 . & x=+0.14 & +3.52 & -3.66 \\
y=5 . & x=+0.55 & +3.3 & -3.85
\end{array}
$$

When $y=0$. then will $x=+1 . \quad+3 . \quad-4$.

$y=-5$	$x=+1.66$	+2.477	-4.14
$y=-6.0388$	$x=+2.0814$	+2.0814	-4.1623

Taking $y=0$, a solution of the equation $y=x^{3}-13 x+12$, gives the three points a, a, a, on the axis of X.
Then taking $y=5$, and a solution gives three points b, b, b, on a line parallel to the axis of X, and at the distance of 5 units above said axis.

Again, taking $y=10$, and another solution gives the three points c, c, c. Now joining the three points $(a, b, c$, (a, b, c), and (a, b, c), we shall have apparently three curves corresponding to the equation of the third degree, and thus, we might hastily conclude that every equation of the third degree would give three curves, and every equation of the fourth degree four curves, etc., etc., but this is not true.
If we continue finding points as before, we shall find that the three curves $(a, b, c),(a, b, c$,$) and (a, b, c$,$) are$ but different portions of the same curve, and we can now venture to draw this general conclusion :

That in an equation involving y, the ordinate, to the first power,

INTERPRETATION OF EQUATIONS.

and the abscissa, x , to the third power, the axis of X , or lines parallel to that axis, may cut the curve in three points.

From analogy, we also infer that if we have an equation involving x to the fourth power, the axis of X, or its parallels, will cut the curve in four points; and if we have an equation involving x to the fifth power, that axis or its parallels will cut the curve in five points, and so on.

In the equation under consideration, $\left(y=x^{3}-13 x+12\right)$, if we assume y greater than 30.0388 , or less than -6.0388 , we shall find that two values of x in each case will become imaginary, and on each side of these limits the parallels to X will cut the curve only in one point.

Two points vanish at a time, and this corresponds with the truth demonstrated in algebra, "that imaginary roots enter equations in pairs."

The points m, m, the turning points in the curve, are called maximum points, and can be found only by approximation, using the ordinary processes of computation, but the peculiar operation of the calculus gives these points at once.

To find the points in the curve we might have assumed different values of x in succession, and deduced the corresponding values of y, but this would have given but one point for each assumption ; and to define the curve with sufficient accuracy, many assumptions must be made with very small variations to x. We solved the equations approximately and with great rapidity by means of the circle and parabola as previously shown.

We conclude this subject by the following example:
Let the equation of a curve be

$$
\left(a^{2}-x^{2}\right)(x-b)^{2}=x^{2} y^{2}
$$

from which we are required to give a geometrical delineation of the curve. From the equation we have

$$
y= \pm \frac{\sqrt{\left(a^{2}-x^{2}\right)(x-b)^{2}}}{x} .
$$

The following figure represents the curve which will be recognized as corresponding to the equation, after a little explanation.
If $x=0$, then y becomes infinite, and therefore the ordinate at A is an asymptote to the curve. If $A B=b$, and P be taken between A and B, then $F M$ and $P m$ will be equal, and lie on different sides of the abscissa $A P$. If $x=b$, then the two values of
 y vanish, because $x-b=0$; and consequently, the curve passes through B, and has there a duplex point. If $A P$ be taken greater than $A B$, then there will be two values of y, as before, having contrary signs, that value which was positive before, now becomes negative, and the negative value becomes positive. But if $A D$ be taken $=a$, and P come to D, then the two values of y vanish, because $\sqrt{a^{2}-x^{2}=0}$. And if $A P$ is taken greater than $A D$, then $a^{2}-x^{2}$ becomes negative, and the value of y impossible; and therefore, the curve does not extend beyond D.

If x now be supposed negative, we shall find

$$
y= \pm \sqrt{a^{2}-x^{2}} \times(b+x) \div x .
$$

If x vanish, both these values of y become infinite, and consequently, the curve has two infinite arcs on each side of the asymptote $A K$. If x increase, it is plain y diminishes, and if x becomes $=-a, y$ vanishes, and consequently the curve passes through E, if $A E$ be taken $=A D$, on the opposite side. If x be supposed, numerically, greater than $-a$, then y becomes impossible; and no part of the curve can be found beyond E. This curve is the conchoid of the ancients.

CHAPTER VIII.

STRAIGHT LINES IN SPACE.

Straight lines in one and the same plane are referred to two co-ordinate axes in that plane, -but straight lines in space require three co-ordinate axes, made by the intersection of three planes.

To take the most simple view of the subject, conceive a horizontal plane cut by a meridian plane, and by a perpendicular east and west plane.

The common point of intersection we shall call the origin or zero point, and we might conceive this point to be the center of a sphere, and about it will be eight quadrangular spaces corresponding to the eight quadrants of a sphere, which extended, would comprise all space.
The horizontal east and west line of intersection of these planes, we shall call the axis of X. The horizontal intersection in the direction of the meridian, the axis of Y; and that perpendicular to it in the plane of the meridian, the axis of Z. Distances estimated from the zero point horizontally to the right, as we look towards the north, we shall designate as plus, to the left minus.

Distances measured on the axis of Y and parallel thereto, towards us from the zero point, we shall call plus; those in the opposite direction will therefore be minus. Perpendicular distances from the horizontal plane upwards are taken as plus, downward minus.
The horizontal plane is called the plane of $x y$, the meridian plane is designated as the plane of $y z$, and the perpendicular east and west plane the plane of $x z$.
Now let it be observed that x will be plus or minus, according to its direction from the plane of $y z, y$ will be plus or minus, according to its direction from the plane
$x z$, and z will be plus or minus, according as it is above or below the horizontal place $x y$.

PROPOSITIONI.

To find the equation of a straight line in space.
Conceive a straight line passing in any direction through space, and conceive a plane coinciding with it, and perpendicular to the plane $x z$. The intersection of this plane with the plane $x z$, will form a line on the plane $x z$, and this is said to be the projection of the line on the plane $x z$, and the equation of this projected line will be in the form

$$
x=a z+\pi . \quad \text { (Chap. 1, Prop. 1.) }
$$

Conceive another plane coinciding with the proposed line, and perpendicular to the plane $y z$, its intersection with the plane $y z$ is said to be the projection of the line on the plane $y x$, and the equation of this projected line is in the form

$$
y=b z+\beta .
$$

These two equations taken together are said to be equations of the line, because the first equation is a general equation for all lines that can be drawn in the first projecting plane, and the second equation is a general equation for all lines that can be drawn in the second projecting plane; therefore taken together, they express the intersection of the two planes, which is the line itself.

For illustration, we give the following example: Construct the line whose equations are

$$
\left.\begin{array}{l}
x=2 z+1 \\
y=3 z-2
\end{array}\right\}
$$

Make $z=0$, then $x=1$, and $y=-2$. Now take $A P=1$, and draw $P m$ parallel to the axis of Y, making $P m=-2$; then m is the point in the plane $x y$, through which the line must pass.

Now take z equal to any number at pleasure, say 1 , then we shall \mathbf{Y} have $x=3$ and $y=1$.

Take $A P^{\prime}=3, P^{\prime} m^{\prime}=+1$, and from the point m^{\prime} in the plane $x y$ erect $m^{\prime} n$ perpendicular to the plane $x y$, and make it equal to 1 , because.we took $z=1$, then n is another point in the line. Draw $n m$ and produce it, and it will be the line designated by the equations.

PROPOSITION II.

To find the equation of a straight line which shall pass through a given point.

Let the co-ordinates of the given point be represented by $x^{\prime}, y^{\prime}, z^{\prime}$.

The equations sought must satisfy the general equations

$$
\left.\begin{array}{l}
x=a z+\pi . \tag{1}\\
y=b z+\beta .
\end{array}\right\}
$$

The equations corresponding to the given point are

$$
x^{\prime}=a z^{\prime}+\pi . \quad y^{\prime}=b z^{\prime}+\beta
$$

Subtracting eq. (1) from these, respectively, we have

$$
x^{\prime}-x=a\left(z^{\prime}-z\right), \text { and } y^{\prime}-y=b\left(z^{\prime}-z\right),
$$

the equations required.

PROPOSITION III.

To find the equations of a straight line which shall pass through two given points.

Let the co-ordinates of the second point be $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$, Now by the second proposition, the equations which express the condition that the line passes through the two points, will be

And

$$
\begin{aligned}
& x^{\prime \prime}-x^{\prime}=a\left(z^{\prime \prime}-z^{\prime}\right), \\
& y^{\prime \prime}-y^{\prime}=b\left(z^{\prime \prime}-z^{\prime}\right) \cdot \\
& a=\frac{x^{\prime \prime}-x^{\prime}}{z^{\prime \prime}-z^{\prime}}, b=\frac{y^{\prime \prime}-y^{\prime}}{z^{\prime \prime}-z^{\prime}} .
\end{aligned}
$$

Whence
Substituting the values of a and b in the equations of a line passing through a single point (Prop. 2,) we have

$$
x-x^{\prime}=\left(\frac{x^{\prime \prime}-x^{\prime}}{z^{\prime \prime}-z^{\prime}}\right)\left(z-z^{\prime}\right) . \quad y-y^{\prime}=\left(\frac{y^{\prime \prime}-y^{\prime}}{z^{\prime \prime}-z^{\prime \prime}}\right)\left(z-z^{\prime}\right),
$$

for the equations required.

PROPOSITION IV.

To find the condition under which two straight lines intersest " in space, and the co-ordinates of the point of intersection.

Let the equation of the lines be

$$
\begin{array}{lr}
x=a z+\pi . & y=b z+\beta . \\
x=a^{\prime} z+\pi^{\prime} . & y=b^{\prime} z+\beta^{\prime} .
\end{array}
$$

If the two lines intersect, the co-ordinates of the common point, which may be denoted by x, y, z, will satisfy all of these four equations, therefore by subtraction, we have

$$
\left(a-a^{\prime}\right) z+\pi-\pi^{\prime}=0, \quad\left(b-b^{\prime}\right) z+\beta-\beta^{\prime}=0
$$

Whence, by eliminating z, we find

$$
\frac{\pi-\pi^{\prime}}{a-a^{\prime}}=\frac{\beta-\beta^{\prime}}{b-b^{\prime}},
$$

which is the condition under which two lines intersect. Now $z=\frac{\pi^{\prime}-\pi}{a-a^{\prime}}$, and this value of z being substituted in the first equations, we obtain

$$
x=\frac{a \pi^{\prime}-a^{\prime} \pi}{a-a^{\prime}} \quad \text { and } \quad y=\frac{b \beta^{\prime}-b^{\prime} \beta}{b-b^{\prime}}
$$

for the value of the co-ordinates of the point of intersection.

Cor.-If $a=a^{\prime}$, the denominators in the second member will become 0 , making x and y infinite; that is, the point of intersection is at an infinite distance from the origin, and the lines are therefore parallel.

PROPOSITION V.-PROBLEM.

To express analytically the distance of a given point from the origin.
Let P be the given point in space ; it is in the perpendicular at the point N, which is in the plane $x y$.

The angle $A M N=90^{\circ}$. Also, the angle $A N P=90^{\circ}$.

Let $A M=x, M N=y, N P=z$. \mathbf{y}

Then $\overline{A N}^{2}=x^{2}+y^{2}$.
But $\overline{A P}^{2}=\overline{A \cdot N}^{2}+\overline{N P}^{2}=x^{2}+y^{2}+z^{2}$.
Now if we designate $A P$ by r, we shall have

$$
r^{2}=x^{2}+y^{2}+z^{2}
$$

for the expression required.

PROPOSITION VI.-PROBLEM

To express analytically the length of a line in space.
Let $P P^{\prime}=D$ be the line in question.
Let the co-ordinates of the point P be x, y, z, and of the point P^{\prime} be x^{\prime}, y^{\prime}, z^{\prime}.

Now $M M^{\prime}=x^{\prime}-x=N Q$.

$$
\begin{gathered}
Q N^{\prime}=y^{\prime}-y . \\
\overline{N N^{\prime}}=\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}=\overline{P R^{2}} \\
P^{\prime} R=z^{\prime}-z .
\end{gathered}
$$

In the triangle $P R P^{\prime}$ we have

$$
\begin{align*}
& {\overline{P P^{\prime}}}^{2}=\overline{P R}^{2}+{\overline{P^{\prime} R}}^{2}=\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}+\left(z^{\prime}-z\right)^{2} . \\
& \text { Or } \quad D^{2}=\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}+\left(z^{\prime}-z\right)^{2},
\end{align*}
$$

which is the expression required.
Scholium.-If through one extremity of the line, as P, we draw $P A$ to the origin, and from the other extremity $P^{\prime \prime}$, we draw $P^{\prime} S$ parallel and equal to $P A$, and draw $A S$, it will be parallel to $P P^{\prime}$, and equal to it, and this virtually reduces this proposition to the previous one. This also may be drawn from the equation, for if A is one extremity of the line, its co-ordinates x, y, and z are each equal to zero, and

$$
D^{2}=x^{\prime 2}+y^{\prime 2}+z^{\prime 2} .
$$

PROPOSITION VII.-PROBLEM.

To find the inclination of any line in space to the three axes.
From the origin draw a line "parallel to the given line; then the inclination of this line to the axes will be the same as that of the given line.

The equations for the line passing from the origin are

$$
\begin{equation*}
x=a z, \text { and } y=b z . \tag{1}
\end{equation*}
$$

Let X represent the inclination of this line with the axis of x, Y its inclination with the axis of y, and Z its inclination with the axis of z.

The three points P, N, M, are in a plane which is parallel to the plane $z y$, and $A M$ is a perpendicular betweenthe two planes. $A M P$ is a right-angled triangle, the right angle being at M.
Let $A P=r$ and $A M=x$. Then, by trigonometry, we have

As $\quad r: \sin .90^{\circ}:: x: \cos . X$. Whence $x=r \cos . X$.
Also, as $r: \sin .90^{\circ}:: y: \cos . Y$. Whence $y=r$ cos. Y.

Also, as $r: \sin .90^{\circ}:: z: \cos . Z$. Whence $z=r \cos . Z$. From Prop. 5 we have

$$
\begin{equation*}
r^{2}=x^{2}+y^{2}+z^{2} . \tag{2}
\end{equation*}
$$

Substituting the values of x, y, and z, as above, we have

$$
r^{2}=r^{2} \cos .^{2} X+r^{2} \operatorname{cos.}^{2} Y+r^{2} \cos ^{2} Z .
$$

Dividing by r^{2} will give

$$
\begin{equation*}
\cos .{ }^{2} X+\cos .{ }^{2} Y+\cos ^{2} Z=1, \tag{3}
\end{equation*}
$$

an equation which is easily called to mind, and one that is useful in the higher mathematics.

If in eq. (2) we substitute the values of x^{2} and y^{2} taken from eq. (1), we shall have

$$
\begin{equation*}
r^{2}=a^{2} z^{2}+b^{2} z^{2}+z^{2} \tag{4}
\end{equation*}
$$

But we have three other values of r^{2} as follows:

$$
r^{2}=\frac{x^{2}}{\cos ^{2} X}, \quad r^{2}=\frac{y^{2}}{\cos .^{2} Y}, \quad \text { and } r^{2}=\frac{z^{2}}{\cos .^{2} Z} .
$$

Whence

$$
\begin{equation*}
\frac{x}{\cos X}= \pm z \sqrt{1+a^{2}+b^{2}} . \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{y}{\cos . Y}= \pm z \sqrt{1+a^{2}+b^{2}} . \tag{6}
\end{equation*}
$$

And

$$
\begin{equation*}
\frac{1}{\cos Z}= \pm \sqrt{1+a^{2}+b^{2}} . \tag{7}
\end{equation*}
$$

In eq. (5) put the value of x drawn from eq. (1), and in eq. (6) the value of y from eq. (1), and reduce, and we shall obtain

$$
\left.\begin{array}{l}
\cos . X=\frac{a}{ \pm^{\sqrt{ } 1+a^{2}+b^{2}}} \\
\cos . Y=\frac{b}{ \pm^{\sqrt{1+a^{2}+b^{2}}}} \\
\cos . Z=\frac{1}{ \pm^{\sqrt{1+a^{2}+b^{2}}}}
\end{array}\right\} \begin{aligned}
& \text { The analytical expressions } \\
& \text { for the inclination of a line } \\
& \text { in space to the three co-or- } \\
& \text { dinates. }
\end{aligned}
$$

The double sign shows two angles supplemental to each other, the plus sign corresponds to the acute angle, and the minus sign to the obtuse angle.

PROPOSITION VIII.

To find the inclination of two lines in terms of their separate inclinations to the axes.

Through the origin draw two lines respectively parallel to the given lines. An expression for the cosine of the angle between these two lines is the quantity sought.

Let $A P$ be parallel to one of the given lines, and $A Q$ parallel to the other. The angle $P A Q$ is the angle sought.

Let the equations of one of these lines be

$$
x=a z, \quad y=b z
$$

and of the other

$$
x^{\prime}=a^{\prime} z^{\prime}, \quad y^{\prime}=b^{\prime} z^{\prime}
$$

Let $A P=r, A Q=r^{\prime}, P Q=D$, and the angle $P A Q=V$.
Now in plane trigonometry (Prop. 8, p. 260, Geom.,) we have

$$
\begin{equation*}
\cos . V=\frac{r^{2}+r^{\prime 2}-D^{2}}{2 r r^{\prime}} \tag{1}
\end{equation*}
$$

From Prop. 6 we have

$$
D^{2}=\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}+\left(z^{\prime}-z\right)^{2}
$$

Expanding this, it becomes
$\left\{\begin{array}{l}D^{2}=\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)+\left(x^{2}+y^{2}+z^{2}\right) \\ -2 x^{\prime} x-2 y^{\prime} y-2 z^{\prime} z .\end{array}\right.$
But by Prop. 5 we have
and

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

Whence $2 x^{\prime} x+2 y^{\prime} y+2 z^{\prime} z=r^{2}+r^{\prime 2}-D^{2}$ 。
This equation applied to eq. (1) reduces it to

$$
\cos . V=\frac{x^{\prime} x+y^{\prime} y+z^{\prime} z}{r r^{\prime}}
$$

But r and r^{\prime} may have any values taken at pleasure; their lengths will have no effect on the angle V. Therefore, for convenience, we take each of them equal to unity.

Whence

$$
\begin{equation*}
\cos . V=x^{\prime} x+y^{\prime} y+z^{\prime} z \tag{2}
\end{equation*}
$$

But in Prop. 7 we found that $x=r \cos . X, y=r \cos . Y$, etc., and that $x^{\prime}=r^{\prime} \cos . X^{\prime}, y^{\prime}=r^{\prime} \cos . Y^{\prime}$, etc.; and since we have taken $r=1$ and $r^{\prime}=1, x=\cos . X$, etc., and $x^{\prime}=$ $\cos . X^{\prime}$, etc. Hence
$\cos . V=\cos . X \cos . X^{\prime}+\cos . Y \cos . Y^{\prime}+\cos . Z \cos . Z^{\prime}$. (3)
But by Prop. 7 we have
$\cos . X=\frac{a}{ \pm \sqrt{1+a^{2}+b^{2}}}$, and $\cos . X=\frac{a^{\prime}}{ \pm \sqrt{1+a^{\prime 2}+b^{\prime 2}}}$, etc.
Substituting these values in eq. (3) we have

$$
\cos . V=\frac{1+a a^{\prime}+b b^{\prime}}{ \pm\left(\sqrt{1+a^{2}+b^{2}}\right)\left(\sqrt{1+a^{\prime 2}+b^{\prime 2}}\right)}
$$

for the expression required.
The cos. V will be plus or minus, according as we take the signs of the radicals in the denominator alike or unlike. The plus sign corresponds to an acute angle, the minus sign to its supplement.

Cor. 1.-If we make $V=90^{\circ}$, then $\cos . V=0$, and the equation becomes

$$
1+a a^{\prime}+b b^{\prime}=0,
$$

which is the equation of condition to make two lines at right angles in space.

Cor. 2.-If we make $V=0$, the two straight lines will become parallel, and the equation will become

$$
\pm 1=\frac{1+a a^{\prime}+b b^{\prime}}{\sqrt{1+a^{2}+b^{2}} \sqrt{1+a^{\prime 2}+b^{\prime 2}}}
$$

Squaring, clearing of fractions, and reducing, we shall find

$$
\left(a^{\prime}-a\right)^{2}+\left(b^{\prime}-b\right)^{2}+\left(a b^{\prime}-a^{\prime} b\right)^{2}=0 .
$$

Each term being a square, will be positive, and therefore the equation can only be satisfied by making each term separately equal to 0 .

Whence $a^{\prime}=a, b^{\prime}=b$, and $a b^{\prime}=a^{\prime} b$.
The third condition is in consequence of the first two.

CHAPTER IX.

ON THE EQUATION OF A PLANE.

An equation which can represent any point in a line is said to be the equation of the line.

Similarly, an equation which can represent or indicate any point in a plane, is, in the language of analytical geometry, the equation of the plane.

PROPOSITIONI.

To find the equation of a plane.
Let us suppose that we have a plane which cuts the axes of X, Y and Z at the points B, C and D, respectively; then, if these points be connected by the straight lines $B C, C D$ and $D B$, it is evident that these lines are the intersections of the plane with the planes of the co-ordinate axes.

Now a plane may be conceived as a surface generated by moving a straight line in such a manner that
 in all its positions it shall be parallel to its first position and intersect another fixed straight line. Thus the line $D C$, so moving that in the several positions, $D^{\prime} C^{\prime}, D^{\prime \prime} C^{\prime \prime}$, etc., it remains parallel to $D C$ and constantly intersects $D B$, will generate the plane determined by the points D, C and B.

The line $D B$ being in the plane $x y$, its equations are

$$
\begin{equation*}
y=0, z=m x+b \tag{1}
\end{equation*}
$$

and for the line $D C$ we have

$$
\begin{equation*}
x=0, z=n y+b . \tag{2}
\end{equation*}
$$

The plane passed through the line $D^{\prime} C^{\prime}$ parallel to the
plane $z y$, cuts the axis of X at the point p. Denoting $A p$ by c, the equations of the line $D^{\prime} C^{\prime}$ become

$$
\begin{equation*}
x=c, z=n y+b^{\prime} . \tag{3}
\end{equation*}
$$

It is obvious that eqs. (3) can be made to represent the moving line in all its positions by giving suitable values to c and b^{\prime}, and that, for any one of its positions, the coordinates of its intersection with the line $D B$ must satisfy both eqs. (1) and (3). That is, c and b^{\prime}, in the first and second of eqs. (3), must be the same as x and z, respectively, in the second of eqs. (1). Hence

$$
b^{\prime}=z-n y, \text { and } b^{\prime}=m x+b .
$$

Equating these two values of b^{\prime}, we have
or

$$
\begin{align*}
& z-n y=m x+b, \\
& z=m x+n y+b . \tag{4}
\end{align*}
$$

This equation expresses the relation between the co-ordinates x, y and z for any point whatever in the plane generated by the motion of the line $D C$, and is, therefore the equation of this plane.

Cor. 1.-Every equation of the first degree between three variables, by transposition and division, may be reduced to the form of eq. (4), and will, therefore, be the equation of a plane.

Cor. 2.-In eq. (4), m is the tangent of the angle which the intersection of the plane with the plane $x z$ makes with the axis of X, n the tangent of the angle that the intersection with the plane $y z$ makes with the axis of Y, and b the distance from the origin to the point in which the plane cuts the axis of Z.

Hence, if any equation of the first degree between three variables be solved with respect to one of the variables, the co-effcient of either of the other variables denotes the tangent of the angle that the intersection of the plane represented by the equation, with the plane of the axes of the first and second variables, makes with the axis of the second variable.

Scholium.-If we assume

$$
m=-\frac{A}{C}, n=-\frac{B}{C}, b=-\frac{D}{C},
$$

and substitute these values in eq. (4), it will become, by reduction and transposition,

$$
A x+B y+C z+D=0
$$

which is the form under which the equation of the plane is very often presented.

From this equation we deduce the following general truths:
First.-If we suppose a plane to pass through the origin of the co-ordinates for this point, $x=0, y=0$, and $z=0$, and these values substituted in the equation of the plane will give $D=0$ also. Therefore, when a plane passes through the origin of co-ordinates, the general equation for the plane reduces to

$$
A x+B y+C z=0
$$

Second.-To find the points in which the plane cuts the axes, we reason thus:

The equation of the plane must respond to each and every point in the plane; the point P, therefore, in which the plane cuts the axis of X, must correspond to $y=0$ and $z=0$, and these values, substituted in the equation, reduces it to

Or

$$
A x+D=0 .
$$

$$
x=-\frac{D}{A}=O P
$$

For the point Q we must take $x=0$ and $z=0$.
And

$$
y=-\frac{D}{B}=O Q .
$$

For the point $R, \quad z=-\frac{D}{C}=O R$.
Third.-If we suppose the plane to be perpendicular to the plane $X Y, P R^{\prime}$, its intersection with, or trace on, the plane $X Z$, must be drawn parallel to $O Z$, and the plane will meet the axis of Z at the distance infinity. That is, $O R$, or its equal, $\left(-\frac{D}{C}\right)$, must be infinite, which requires that $C=0$, which reduces the general equation of the plane to

$$
A x+B y+D=0,
$$

which is the equation of the trace or line $P Q$ on the plane $X Y$. If the plane were perpendicular to the plane $Z X$, the line $O Q$, or its equal, $\left(\frac{D}{B}\right)$, must be infinite, which requires that $B=0$, and this reduces the general equation to

$$
A x+C z+D=0
$$

which is the equation for the trace $P R$, and hence we may conclude in general terms,

That when a plane is perpendicular to any one of the co-ordinate planes, its equation is that of its trace on the same plane.

PROPOSTION II.-PROBLEM.

To find the length of a perpendicular drawn from the origin to a plane, and to find its inclination with the three co-ordinate axes.

Let $R P Q$ be the plane, and from the origin, O, draw $O p$ perpendicular to the plane; this line will be at right-angles to every line drawn in the plane from the point p.

- Whence $O p Q=90^{\circ}, O p R=90^{\circ}$, and $O p P=90^{\circ}$ 。

Let $O p=p$.
Designate the angle $p O P$ by $X, p O Q$ by Y, and $p O R$ by Z.

By the preceding scholium we learn that

$$
O P=-\frac{D}{A}, O Q=-\frac{D}{B}, \text { and } O R=-\frac{D}{C}
$$

A, B, C and D being the constants in the equatinn of a plane.

Now, in the right-angled triangle $O p P$, we have

$$
\begin{equation*}
O P: 1:: O p: \cos . X \tag{1}
\end{equation*}
$$

That is, $\quad-\frac{D}{A}: 1:: p: \cos . X$.

The right-angled triangle $O p Q$ gives

$$
\begin{equation*}
-\frac{D}{\bar{B}}: 1:: p: \cos . Y \tag{2}
\end{equation*}
$$

The right-angled triangle $O_{p} R$ gives

$$
\begin{equation*}
-\frac{D}{C}: 1:: p: \cos . Z \tag{3}
\end{equation*}
$$

Proportion (1) gives us
(2) gives
and (3) gives

$$
\left.\begin{array}{l}
\cos ^{2} X=\frac{p^{2}}{D^{2}} A^{2} \\
\cos ^{2} Y=\frac{p^{2}}{D^{2}} B^{2}, \\
\operatorname{cos.}^{2} Z=\frac{p^{2}}{D^{2}} C^{2} \tag{6}
\end{array}\right\}
$$

Adding these three equations, and observing that the sum of the first members is unity, (Prop. 7, Chap. 8), and we have

$$
\frac{p^{2}}{D^{2}}\left(A^{2}+B^{2}+C^{2}\right)=1
$$

Whence

$$
\begin{equation*}
p= \pm \frac{D}{\sqrt{A^{2}+B^{2}+C^{2}}} \tag{7}
\end{equation*}
$$

This value of p placed in eqs. (4), (5) and (6), by reduction, will give

$$
\begin{align*}
& \cos . X= \pm \frac{A}{\sqrt{A^{2}+B^{2}+C^{2}}} \tag{8}\\
& \cos Y= \pm \frac{B}{\sqrt{A^{2}+B^{2}+C^{2}}} . \tag{9}\\
& \cos . Z= \pm \frac{C}{\sqrt{A^{2}+B^{2}+C^{2}}} . \tag{10}
\end{align*}
$$

Expressions (7), (8), (9) and (10) are those sought.

PROPOSITION III.-PROBLEM.

To find the analytical expressions for the inclination of a plane to the three co-ordinate planes respectively.

Let $A x+B y+C z+\bar{D}=0$ be the equation of the plane, and let $P Q$ represent its line of intersection with the co-ordinate plane ($x y$).

From the origin, 0 , draw OS perpendicular to the trace $P Q$. Draw $p S$. $O p S$ is a right-angled triangle, right-
 angled at p, and the angle $O S p$ measures the inclination of the plane with the horizontal plane $(x y)$. Our object is to find the angle $O S p$.

In the right-angled triangle $P O Q$ we have found

$$
O P=-\frac{D}{A}, \quad O Q=-\frac{D}{B}
$$

Whence $\quad P Q=\frac{D}{A B} \sqrt{ } \overline{A^{2}+B^{2}}$.
Now PS, a segment of the hypothenuse made by the perpendicular $O S$, is a third proportional to $P Q$ and $P O$. Therefore

$$
\begin{gathered}
\frac{D}{A B} \sqrt{A^{2}+B^{2}}:-\frac{D}{A}:-\frac{D}{A}: P S . \\
\sqrt{A^{2}+B^{2}}:-B::-\frac{D}{A}: P S=-\frac{B D}{A^{\sqrt{ }} \overline{A^{2}+B^{2}}} .
\end{gathered}
$$

Or
The other segment, $Q S$, is a third proportional to $P Q$ and $O Q$. Therefore

$$
\frac{D}{A B} \sqrt{\overline{A^{2}+B^{2}}}:-\frac{D}{B}:-\frac{D}{B}: Q S .
$$

Or $\sqrt{A^{2}+B^{2}}:-A::-\frac{D}{B}: Q S=\frac{A D}{B^{\sqrt{A}+B^{2}}}$.
But the perpendicular, $O S$, is a mean proportional between these two segments. Therefore we have

$$
O S=\frac{D}{\sqrt{A^{2}+B^{2}}}
$$

Now, by simple permutation, we may conclude that the perpendicular from the origin O to the trace $P R$ is

$$
\frac{D}{\sqrt{A^{2}+C^{2}}}
$$

and that to the trace $Q R$ is

$$
\frac{D}{\sqrt{B^{2}+C^{2}}}=
$$

We shall designate the angle which the plane makes with the plane of $(x y)$ by $(x y)$, and the angle it makes with $(x z)$ by $(x z)$, and that with $(y z)$ by ($y z)$.

Now the triangle $O p S$ gives

$$
O S: \sin .90^{\circ}:: O p: \sin . O S p
$$

That is, $\frac{D}{\sqrt{A^{2}+B^{2}}}: 1:: \frac{D}{\sqrt{A^{2}+B^{2}+C^{2}}}:$ sin.OSp.
Whence $\quad \sin .{ }^{2} O S p=\sin .{ }^{2}(x y)=\frac{A^{2}+B^{2}}{A^{2}+B^{2}+C^{2}}$.
Similarly,

$$
\sin ^{2}(x z)=\frac{A^{2}+C^{2}}{A^{2}+B^{2}+C^{2}}
$$

And

$$
\sin .^{2}(y z)=\frac{B^{2}+C^{2}}{A^{2}+B^{2}+C^{2}}
$$

But by trigonometry we know that $\cos ^{2}{ }^{2}=1-\sin .^{2}$.
Whence $\operatorname{cos.}^{2}(x y)=1-\frac{A^{2}+B^{2}}{A^{2}+B^{2}+C^{2}}=\frac{C^{2}}{A^{2}+B^{2}+C^{2}}$, etc.
Whence $\quad \cos .(x y)=\frac{ \pm C}{\sqrt{A^{2}+B^{2}+C^{2}}}$

$$
\left.\begin{array}{l}
\cos .(x z)=\frac{ \pm B}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
\cos \cdot(y z)=\frac{ \pm A}{\sqrt{A^{2}+B^{2}+C^{2}}}
\end{array}\right\} \text { Expressions sought. }
$$

Squaring, and adding the last three equations, we find

$$
\cos ^{2}(x y)+\cos ^{2}(x z)+\operatorname{cos.}^{2}(y z)=1
$$

That is, the sum of the squares of the cosines of the three angles which a plane forms with the three co-ordinate planes, is equal to radius square, or unity.

PROPOSITION IV.-PROBLEM.

To find the equation of the intersection of two planes.
Let

$$
\begin{gather*}
A x+B y+C z+D=0 \tag{1}\\
A^{\prime} x+B^{\prime} y+C^{\prime} z+D^{\prime}=0 \tag{2}
\end{gather*}
$$

be the equations of the two planes.
If the two planes intersect, the values of x, y and z will be the same for any point in the line of intersection. Hence, we may combine the equations for that line.

Multiply eq. (1) by C^{\prime} and eq. (2) by C, and subtract the products, and we shall have

$$
\left(A C^{\prime \prime}-A^{\prime} C\right) x+\left(B C^{\prime}-B^{\prime} C\right) y+\left(D C^{\prime}-D^{\prime} C\right)=0
$$

for the equation of the line of intersection on the plane $(x y)$. If we eliminate y in a similar manner, we shall have the equation of the line of intersection on the plane $(x z)$; and eliminating x will give us the equation of the line of intersection on the plane $(y z)$.

PROPOSITION V.-PROBLEM.

To find the equation to a perpendicular let fall from a given point ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}$,) upon a given plane.

As the perpendicular is to pass through a given point, its equations must be of the form

$$
\begin{align*}
& x-x^{\prime}=a\left(z-z^{\prime}\right) \tag{1}\\
& y-y^{\prime}=b\left(z-z^{\prime}\right) \tag{2}
\end{align*}
$$

in which a and b are to be determined.
The equation of the plane is

$$
A x+B y+C z+D=0
$$

The line and the plane being perpendicular to each other, by hypothesis, the projection of the line and the trace of the plane on any one of the co-ordinate planes will be perpendicular to each other.

For the traces of the given plane on the planes $(x z)$ and $(y z)$, we have $A x+C z+D=0$ and $B y+C z+D=0$.

From the former $\quad x=-\frac{C}{A} z-\frac{D}{A}$.
From the latter $\quad y=-\frac{C}{\bar{B}} z-\frac{D}{\bar{B}}$.
Now eqs. (1) and (3) represent lines which are at right angles with each other.

Also, eqs. (2) and (4) represent lines at right angles with each other.

But when two lines are at right angles, (Prop. 5, Chap. 1), and a and a^{\prime} are their trigonometrical tangents, we must have $\quad\left(a a^{\prime}+1=0\right)$.

That is, $\quad-a \frac{C}{A}+1=0$, or $a=\frac{A}{C}$.
Like reasoning gives us $b=\frac{B}{C}$, and these values put in eqs. (1) and (2) give

$$
\left.\begin{array}{l}
x-x^{\prime}=\frac{A}{C}\left(z-z^{\prime}\right) \\
y-y^{\prime}=\frac{B}{C}\left(z-z^{\prime}\right)
\end{array}\right\} \begin{aligned}
& \text { for the equations } \\
& \text { sought. }
\end{aligned}
$$

PROPOSITION VI.-PROBLEM.

To find the angle included by two planes given by their equations.

$$
\begin{array}{ll}
\text { Let } & A x+B y+C z+D=0, \\
\text { And } & A^{\prime} x+B y^{\prime}+C^{\prime} z+D^{\prime}=0,
\end{array}
$$

be the equations of the planes.
Conceive lines drawn from the origin perpendicular to each of the planes. Then it is obvious that the angle contained between these two lines is the supplement of the inclination of the planes. But an angle and its supplement have numerically the same trigonometrical expression.

Designate the angle between the two planes by V, then Proposition 8, in the last chapter gives

$$
\begin{equation*}
\cos . \quad V=\frac{1+a a^{\prime}+b b^{\prime}}{ \pm\left(\sqrt{\left.1+a^{2}+b^{2}\right)\left(\sqrt{1+a^{\prime 2}+b^{\prime 2}}\right)}\right.} \tag{3}
\end{equation*}
$$

The equations of the two perpendicular lines from the origin must be in the form

$$
\begin{array}{ll}
x=a z, & y=b z \\
x=a^{\prime} z & y=b^{\prime} z
\end{array}
$$

But because the first line is perpendicular to the first plane, we must have

$$
a=\frac{A}{C}, \quad \text { and } \quad b=\frac{B}{C}, \quad \text { (Prop. 5.) }
$$

And to make the second line perpendicular to the second plane requires that

$$
a^{\prime}=\frac{A^{\prime}}{C^{\prime}}, \quad \text { and } \quad b^{\prime}=\frac{B^{\prime}}{C^{\prime \prime}} .
$$

These values of a, b, and a^{\prime}, b^{\prime}, substituted in eq. (3) will give, by reduction,

$$
\operatorname{cos.} V= \pm \frac{A A^{\prime}+B B^{\prime}+C C^{\prime \prime}}{\sqrt{A^{2}+B^{2}+C^{2}} \sqrt{\overline{A^{\prime 2}+B^{\prime 2}+C^{\prime 2}}}}
$$

for the equation required.
Cor.-When two planes are at right angles, cos. $V=0$, which will make

$$
A A^{\prime}+B B^{\prime}+C C^{\prime}=0
$$

PROPOSITION VII.-PROBLEM.

To find the inclination of a line to a plane.
Let $M N$ be the plane given by its equation

$$
A x+B y+C z+D=0
$$

and let $P Q$ be the line given by its equations

$$
\begin{aligned}
& x=a z+a . \\
& y=b z+\beta .
\end{aligned}
$$

Take any point P in the given line, and let fall $P R$, the perpendicular, upon the plane ; $R Q$ is its projection on the plane, and $P Q R$, which we will denote by V, is obviously the least an-
 gle included between the line and the plane, and it is the angle sought.
Let

$$
x=a^{\prime} z+\pi^{\prime}, \quad \text { and } \quad y=b^{\prime} z+\beta^{\prime},
$$

be the equation of the perpendicular $P R$, and because it is perpendicular to the plane, we must have (by the last proposition)

$$
a^{\prime}=\frac{A}{\bar{C}}, \quad \text { and } \quad b^{\prime}=\frac{B}{\bar{C}}
$$

Because $P Q$ and $P R$ are two lines in space, if we designate the angle included by V, we shall have

$$
\cos . V= \pm \frac{1+a a^{\prime}+b b^{\prime}}{\sqrt{1+a^{2}+b^{2}} \sqrt{1+a^{\prime 2}+b^{\prime 2}}}=\text { (Prop.8, Chap. 8.) }
$$

But the cos. V is the same as the $\sin . P Q R$, or $\sin . v$, as the two angles are complements of each other.

Making this change, and substituting the values of a^{\prime} and b^{\prime}, we have

$$
\sin . v= \pm \frac{A a+B b+C}{\sqrt{1+a^{2}+b^{2}} \sqrt{C^{2}+B^{2}+A^{2}}}
$$

for the required result.
Cor.-When $v=0, \sin . v=0$, and this hypothesis gives

$$
A a+B b+C=0,
$$

for the equation expressing the condition that the given line is parallel to the given plane.

We now conclude this branch of our subject with a few practical examples, by which a student can test his knowledge of the two preceding chapters.

EXAMPLES.

1.-What is the distance between two points in space of which the co-ordinates are

$$
\begin{array}{r}
x=3, y=5, z=-2, x^{\prime}=-2, y^{\prime}=-1, z^{\prime}=6 . \\
\text { Ans. } 11.180+.
\end{array}
$$

2.-Of which the co-ordinates are

$$
\begin{array}{r}
x=1, y=-5, z=-3, x^{\prime}=4, y^{\prime}=-4, z^{\prime}=1 . \\
\text { Ans. } 5_{\frac{1}{10}} . \\
\text { nearly. } .
\end{array}
$$

3.-The equations of the projections of a straight line on the co-ordinate planes (xz), (yz), are

$$
x=2 z+1, \quad y=\frac{1}{3} z-2,
$$

required the equation of projection on the plane (xy).

$$
\text { Ans. } y=\frac{1}{6} x-2 \frac{1}{6} .
$$

4.-The equations of the projections of a line on the co-ordinate planes (xy) and (yz) are

$$
2 y=x-5 \quad \text { and } \quad 2 y=z-4,
$$

required the equation of the projection on the plane (xz).

$$
\text { Ans. } \quad x=z+1 \text {. }
$$

5.-Required the equations of the three projections of a straight line which passes through two points whose co-ordinates are

$$
x^{\prime}=2, y^{\prime}=1, z^{\prime}=0, \text { and } x^{\prime \prime}=-3, y^{\prime \prime}=0, z^{\prime \prime}=-1 .
$$

What are the projections on the planes (xz) and (yz) ?

$$
\text { Ans. } \quad x=5 z+2, y=z+1 \text {. }
$$

And from these equations we find the projection on the plane ($x y$), that is, $5 y=x+3$.
(See Prop. 3, Chap. 8.)
6.-Required the angle included between two lines whose equations are

$$
\left.\left.\begin{array}{l}
x=3 z+1 \\
y=2 z+6
\end{array}\right\} \text { of the } 1 \text { st, and } \begin{array}{l}
x=z+2 \\
y=-z+1
\end{array}\right\} \text { of the } 2 \mathrm{~d} .
$$

(See Prop. 8, Chap. 8.)
23^{*}
7.-Find the angles made by the lines designated in the preceding example, with the co-ordinate axes
(See Prop. 7, Chap. 8.)
Ans. The 1st line $\left\{\begin{array}{ll}36^{\circ} 42^{\prime} & \text { with } X, \\ 57^{\circ} 41^{\prime} & 20^{\prime \prime} \\ 74^{\circ} 29^{\prime} & 54^{\prime \prime} \\ Y, & Z,\end{array}, \begin{array}{ll}54^{\circ} 44^{\prime} & \text { with } X, \\ 125^{\circ} 16^{\prime} & Y, \\ 54^{\circ} 44^{\prime} & Z .\end{array}\right.$
8.-Having given the equation of two straight lines in space, as

$$
\left.\left.\begin{array}{l}
x=3 z+1 \\
y=2 z+6
\end{array}\right\} \text { of the } 1 \text { st, and } \begin{array}{l}
x=z+2 \\
y=-z+\beta^{\prime}
\end{array}\right\} \text { of the } 2 \mathrm{~d}
$$

to find the value of β^{\prime}, so that the lines shall actually intersect, and to find the co-ordinates of the point of intersection.

$$
\text { Ans. } \begin{cases}\beta^{\prime}=7 \frac{1}{2}, & y=7 \\ x=2 \frac{1}{2}, & z=+\frac{1}{2} .\end{cases}
$$

(See Prop. 4, Chap. 8.)
9.-Given the equation of a plane

$$
8 x-3 y+z-4=0,
$$

to find the points in which it cuts the three axes, and the perpendicular distance from the origin to the plane.
(Prop. 2.)
Ans. It cuts the axis of X at the distance of $\frac{1}{2}$ from the origin; the axis of Y at $-1 \frac{1}{3}$; and the axis of Z at +4 .

The origin is $.4649+$ of unity below the plane.
10.-Find the equations for the intersections of the two planes (Prop. 4.)

$$
\begin{gathered}
3 x-4 y+2 z-1=0 \\
7 x-3 y-z+5=0
\end{gathered}
$$

Ans. $\left\{\begin{array}{l}\text { On the plane }(x y) \quad 17 x-10 y+9=0 . \\ \text { On the plane }(x z) \quad 19 x-10 z+23=0 .\end{array}\right.$
11.-Find the inclination of these two planes.
(Prop. 6.)
12.-The equations of a line in space are

$$
x=-2 z+1, \text { and } y=3 z+2 .
$$

Find the inclination of this line to the plane represented by the equation (Prop. 7.)

$$
8 x-3 y+z-4=0
$$

Ans. $48^{\circ} 13^{\prime} 13^{\prime \prime}$
13.-Find the angles made by the plane whose equation is

$$
8 x-3 y+z-4=0,
$$

with the co-ordinate planes.
(Prop. 3.)

$$
\text { Ans. }\left\{\begin{array}{r}
83^{\circ} 19^{\prime} 27^{\prime \prime} \text { with }(x y) \text {. } \\
110^{\circ} 24^{\prime}, 8^{\prime \prime} \text { with }(x z) . \\
21^{\circ} 34^{\prime} 5^{\prime \prime} \text { with }(y z) .
\end{array}\right.
$$

14.-The equation of a plane being

$$
A x+B y+C z+D=0,
$$

Required the equation of a parallel plane whose perpendicular distance is (a) from the given plane.

Ans. Because the planes are to be parallel, their equations must have the same co-efficients, A, B, and C.

In Prop. 2, we learn that the perpendicular distance of the origin from the given plane may be represented by

$$
p= \pm \frac{D}{\sqrt{A^{2}+B^{2}+C^{2}}} .
$$

Now, as the planes are to be a distance a asunder, the distance of the origin from the required plane must be

$$
\frac{D}{\sqrt{A^{2}+B^{2}+C^{2}}}+a \text { or } \frac{D+a \sqrt{A^{2}+B^{2}+C^{2}}}{\sqrt{A^{2}+B^{2}+C^{2}}} .
$$

Whence the equation required is

$$
A x+B y+C z+\left(\frac{D+a \sqrt{A^{2}+B^{2}+C^{\overline{2}}}}{\sqrt{A^{2}+B^{2}+C^{2}}}\right)=0 .
$$

15.-Find the equation of the plane which will cut the axis of Z at 3, the axis of X at 4 , and the axis of Y at 5 .

$$
\text { Ans. } \quad 5 x+4 y+6 \frac{2}{3} z=20 .
$$

16. -Find the equation of the plane which will cut the axis of X at 3, the axis of Z at 5 , and which will pass at the perpendicular distance 2 from the origin. At what distance from the origin will this plane cut the axis of Y ?

Ans. The equation of the plane is

$$
10 x+\sqrt{89} y+6 z-30=0 .
$$

The plane cuts the axis of Y at $\pm \frac{30}{\sqrt{89}}$.
17.-Find the equations of the intersection of the two planes whose equations are

$$
\begin{aligned}
3 x-2 y-z-4 & =0, \\
+7 x+3 y+z-2 & =0 .
\end{aligned}
$$

$A n s .\left\{\begin{array}{c}\text { The equation of the projection of the inter- } \\ \text { section on the plane }(x y) \text { is } \\ 10 x+y-6=0 . \\ \text { On the plane }(x z) \text { it is } \\ 23 x-z-16=0, \\ \text { and that on the plane }(y z) \text { is } \\ 23 y+10 z+22=0 .\end{array}\right.$
18.-Find the inclination of the planes whose equations are expressed in example 17.

$$
\text { Ans. } V=60^{\circ} 50^{\prime} 55^{\prime \prime} \text { or } 119^{\circ} 9^{\prime} 5^{\prime \prime}
$$

19.-A plane intersects the co-ordinate plane (xz) at an inclination of 50°, and the co-ordinate plane (yz) at an inclination of 84°. At what angle will this plane intersect the plane (xy)?

$$
\text { Ans. } V=40^{\circ} 38^{\prime} 6^{\prime \prime}
$$

MISCELLANEOUS PROBLEMS.

1. The greatest diameter or major axis of an ellipse is 40 feet, and a line drawn from the center making an angle of 36° with the major axis and terminating in the ellipse is 18 feet long; required the minor axis of this ellipse, its area and excentricity.

Note.-The excentricity of an ellipse is the distance of either focus from the center, when the semi major axis is taken as unity.

$$
\text { Ans. }\left\{\begin{array}{l}
\text { The minor axis is } 30.8752 . \\
\text { Area of the ellipse, } 969.972 \text { sq. feet. } \\
\text { Excentricity } .63575 .
\end{array}\right.
$$

2. If equilateral triangles be described as the three sides of any plane triangle and the centers of these equilateral triangles be joined, the triangle so formed will be equilateral; required the proof.

Let $A B C$ represent any plane triangle, A, B and C denoting the angles, and a, b and c the respective sides, the side a being opposite the angle A, and so on.

On $A C$, or b, suppose an equilateral triangle to be drawn, and let P be its center.

Make the same suppositions in regard to the sides c and a, finding P_{1} and P_{2}. Draw $P P_{1}, P_{1} P_{2}$ and $P P_{2}$; then is $P P_{1} P_{2}$ an equilateral triangle, as is to be proved.

We shall assume the principle, which may be easily demonstrated, that a line drawn from the center of any equilateral triangle to the vertex of either of the angles, is equal to $\sqrt{\frac{1}{3}}$ times the side of the triangle. Hence we have
$A P=\frac{b}{\sqrt{3}}, P C=\frac{b}{\sqrt{3}}, A P_{1}=\frac{c}{\sqrt{3}}, P_{1} B=\frac{c}{\sqrt{3}}, B P_{2}=C P_{2}=\frac{a}{\sqrt{3}}$
Also, the angles $P A C=30^{\circ}, P_{1} A B=30^{\circ}, P_{1} B A=30^{\circ}$
and so on. Now it is obvious that the angle $P A P_{1}$ is expressed by $\left(A+60^{\circ}\right)$, the angle $P_{1} B P_{2}$ by $\left(B+60^{\circ}\right)$, and $P C P_{2}$ by $\left(C+60^{\circ}\right)$. We must now show that the analytical expressions for $P P_{1}$ and $P_{1} P_{2}$ are the same. In analytical trigonometry it was found that the cosine of an angle, A, of a plane triangle would be given by the equation

$$
\cos . A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Whence, $\quad a^{2}=b^{2}+c^{2}-2 b c \cos . A$.
That is, The square of one side is equal to the sum of the squares of the other two sides, minus twice the rectangle of the other two sides into the cosine of the opposite angle.

Applying this to the triangle $P A P_{1}$ we have

$$
\begin{equation*}
{\overline{P P_{1}}}^{2}=\frac{b^{2}}{3}+\frac{c^{2}}{3}-\frac{2 b c}{3} \cos \cdot\left(A+60^{\circ}\right) \tag{1}
\end{equation*}
$$

Also, $\quad{\overline{P_{1}} P_{2}^{2}}^{2}=\frac{c^{2}}{2}+\frac{a^{2}}{3}-\frac{2 a c}{3} \cos .\left(B+60^{\circ}\right)$
And $\quad{\overline{P P_{2}}}^{2}=\frac{a}{3}+\frac{b^{2}-2 a b}{3} \cos .\left(C+60^{\circ}\right)$
By trigonometry, cos. $(A+60)=\cos . A \cos .60-\sin . A$ $\sin .60$.

But $\cos .60^{\circ}=\frac{1}{2}$, and $\sin .60=\frac{1}{2} \sqrt{\overline{3}}$
Whence, $\quad \cos .(A+60)=\frac{1}{2} \cos . A-\frac{\sqrt{3}}{2} \sin . A$
This value substituted in eq. (1) that equation becomes

$$
\begin{equation*}
{\overline{P P_{1}}}^{2}=\frac{b^{2}}{3}+\frac{c^{2}}{3}-\frac{b c}{3} \cos . A+\frac{b c}{\sqrt{3}} \sin . A \tag{4}
\end{equation*}
$$

But cos. $A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$. Whence $\frac{b c}{3} \cos . A=\frac{b^{2}+c^{2}-a^{2}}{6}-$ This value of $\frac{b c}{3} \cos . A$ placed in eq. (4), gives

$$
\begin{equation*}
{\overline{P P_{1}}}^{2}=\frac{2 b^{2}}{6}+\frac{2 c^{2}}{6}-\frac{b^{2}}{6}-\frac{c^{2}}{6}+\frac{a^{2}}{6}+\frac{b c}{\sqrt{3}} \sin . A \tag{5}
\end{equation*}
$$

Or, $\quad{\overline{P P_{1}}}^{2}=\frac{a^{2}+b^{2}+c^{2}}{6}+\frac{b c}{\sqrt{3}} \sin . A$.

By a like operation equation (2) becomes

$$
\begin{equation*}
\overline{F_{1} P_{2}^{2}}=\frac{a^{2}+b^{2}+c^{2}}{6}+\frac{a c}{\sqrt{3}} \sin . B \tag{6}
\end{equation*}
$$

But by the original triangle $A B C$ we have

$$
\frac{\sin . A}{a}=\frac{\sin . B}{b}, \text { or } \sin . A=\frac{a}{b} \sin . B
$$

Placing this value of \sin. A in equation (5) that equation becomes

$$
\begin{equation*}
\widehat{P P_{1}^{-2}}=\frac{a^{2}+b^{2}+c^{2}}{6}+\frac{a c}{\sqrt{3}} \sin . B . \tag{7}
\end{equation*}
$$

We now observe that the second members of (6) and (7) are equal ; therefore, $\quad P P_{1}=P_{1} P_{2}$

And in like manner we can prove $P P_{1}=P P_{2}$. Therefore the triangle $P P_{1} P_{2}$ has been shown to be equilateral.

problem.

Given, the excentricity of an Ellipse, to find the difference between the mean and true place of the planet, corresponding to each degree of the mean angle, reckoned from the major axis; the planet describing equal sectors or areas in equal times, about one of the foci, the center of the attractive force.

Let $A B$ be the major axis of an ellipse, of which $C B=C A=A=1$ is the semi-transverse axis, and also let C be the common center of the ellipse and of the circle of which $C B$ is the radius. Then $F C=e$, and F is the focus of the ellipse.

Suppose the planet to be at B,
 the apogee point of the orbit, (so called in Astronomy). Also, conceive another planet, or material point, to be at B, at the same time. Now, the planet revolves along the ellipse, describing equal areas in equal times, and the hypothetical planet revolves along the circle $B P Q$, describ-
ing, in equal times, equal areas and equal angles about the center C.
It is obvious that the two bodies will arrive at A in the same time. The other halves of the orbits will also be described in the same time, and the two bodies will be together again at the point B.
But at no other points save at A and at B (the apogee and perigee points) will these two bodies be in the same line as seen from F, and the difference of the directions of the two bodies as seen from the focus F is the equation of the center. For instance, suppose the planet to start from B and describe the ellipse as far as p. It has then described the area $B F p$ of the ellipse, about the focus F. In the same time the fictious planet in the circle has moved along the circumference $B P$ to Q, describing the sector $B C Q$ about the center C. Now the areas of these two sectors must be to each other as the area of the ellipse is to the area of the circle. That is,
sector $B F p$: sector $B C Q$: : area Ell. : area Cir.
Through p draw $P D$ at right angles to $A B$, and represent the arc of the circle $B P$ by x.
Then $C D=\cos . x$, and $P D=\sin . x$. Draw $C p$ and $C P$.
But, denoting the semi-conjugate axis by B, we have
area $D p B$: area $D P B:$: area Ell. : area Cir.

$$
\begin{array}{lrl}
:: & B & : A \\
:: & p D & : P D
\end{array}
$$

Also we have $\triangle C p D: \triangle C P D:: p D: P D$
Hence, area $D p B: \triangle C p D:$ area $D P B: \triangle C P D$
Therefore,
area $D p B+\triangle C p D:$ area $D P B+\triangle C P D:: B: A$
or, \quad sector $C p B:$ sector $C P B:: B: A$: : area Ell. : area Cir.
Hence it follows that
sector $F p B$: sector $C p B$: : sector $C Q B$: sector $C P B$
Whence
sector $F p B$-sect. $C_{p} B$: sect. $C Q B$-sect. $C P B:: B: A$

$$
\text { ol, } \begin{aligned}
\triangle F p C & : \text { sector } Q C P:: B: A \\
& : \text { : area Ell. : area. Cir. }
\end{aligned}
$$

But the area of the ellipse is $\pi A B$ and the area of the circle is $A^{2} \pi$. But $A=1$ and $B=\sqrt{1-c^{2}}$.

The area of the triangle $F C p$ is $\frac{1}{2} e(p D)$, and the area of the sector is $\frac{1}{2} y$, representing the are $Q P$ by y.

Whence $E(p D): y:: \sqrt{1-e^{2}}: 1$.
But we have $\quad P D: p D:: A: B$

$$
:: 1: \sqrt{1-e^{2}}, \quad \text { and } P D=\sin . x
$$

Hence, $\sin . x: p D:: 1: \sqrt{1-e^{2}} ; \quad p D=\sin x \sqrt{1-e^{2}}$
This value of $p D$ placed in (1) that proportion becomes

$$
\begin{equation*}
e \sin . x^{\sqrt{1-e^{2}}}: y:: \sqrt{1-e^{2}}: 1 \tag{2}
\end{equation*}
$$

Or, $\quad e \sin . x: y:: 1: 1 . \quad y=e \sin . x$.
Definitions.-1st. The angle x, in astronomy, is called the excentric anomaly.

2 d . The angle $Q C B$, or $(x+y)$ is called the mean anomaly.

3d. The angle $p F B$ is called the true anomaly.
4th. The difference between $Q C B$ or $n C B$ (of the triangle $F n C$) and $n F C$ (which is the angle n of the triangle CFn) is the equation of the center.

The angle $Q C B$, the mean anomaly, is an angle at the center of the ellipse, which is equal to the sum of the angles at n and F; that is, n taken from the angle at the center will give the true angle at the focus, F.

We will designate the angle $p F B$ by t. Now, by the polar equation of an ellipse, we have

$$
F_{p}=\frac{1-e^{2}}{1-e \cos \cdot t} \quad A \text { being } 1
$$

Again, by the triangle $F D p$, we find,

$$
F p=\sqrt{F D^{2}+p D^{2}}
$$

But $\quad \bar{F} D^{2}=(e+\cos . x)^{2}=e^{2}+2 e \cos . x+\cos ^{2} x$
And $\overline{p D}^{2}=\sin .^{2} x\left(1-e^{2}\right)=\sin .^{2} x-e^{2} \sin .^{2} x$
Therefore, $F D^{2}+p D^{2}=e^{2}+2 e \cos . x+1-e^{2} \sin .^{2} x$
But $\quad e^{2} \sin .^{2} x=e^{2}-e^{2} \operatorname{cos.}^{2} x$.

Substituting this value of $e^{2} \sin ^{2} \cdot x$ in the preceding expression we have

$$
\overline{F D}^{2}+{\overline{p D^{2}}}^{2}=1+2 e \cos . x+e^{2} \operatorname{cos.}^{2} x
$$

Whence $\quad F_{p}=\sqrt{F D^{2}+p D^{2}}=1+e \cos . x$.
Equating these two values of $F p$ and we obtain

$$
\begin{gather*}
1-e^{2}=(1+c \cos \cdot x)(1-e \cos \cdot t) \\
\cos . t=\frac{e+\cos \cdot x}{1+e \cos \cdot x} \tag{3}
\end{gather*}
$$

Whence
Here we have a value of t in terms of x and e, but the equation is not adapted to the use of logarithms.
By equation (27) Plane Trigonometry, we have

$$
\tan . \frac{1}{2} t=\frac{1-\cos . t}{1+\cos . t}
$$

If the value of cos. t from equation (3) be placed in this we shall have

$$
\tan . \frac{1}{2} t=\frac{1-\frac{e+\cos \cdot x}{1+e \cos \cdot x}}{1+\frac{e+\cos \cdot x}{1+e \cos \cdot x}}=\frac{1+e \cos \cdot x-e-\cos \cdot x}{1+e \cos \cdot x+e+\cos \cdot x}
$$

Or, $\tan .{ }^{2} \frac{1}{2} t=\frac{(1-e)-(1-e) \cos . x}{(1+e)+(1+e) \cos . x}=\frac{(1-e)(1-\cos . x)}{(1+e)(1+\cos . x)}$
That is, $\tan . \frac{1}{2} t=\left(\frac{1-e}{1+e}\right)^{\frac{1}{2}} \tan . \frac{1}{2} x$.
From eq. (2) we obtain

$$
\begin{equation*}
\text { Mean Anomaly }=x+e \text { sin. } x \tag{5}
\end{equation*}
$$

By assuming x, equation (5) gives the Mean Anomaly. Then equation (4) gives the corresponding True Anomaly. To apply these equations to the apparent solar orbit, the value of e is .0167751 the radius of the circle being unity. But $y=e \sin . x$, and as y is a portion of the circumference to the radius unity, we must express e in some known part of the circumference, one degree, for example, as the unit.
Because 180° is equal to 3.14159265 , therefore the value of e, in degrees, is found by the following proportion.

$3.14159265: 180^{\circ}:$: . $0167751: d$ degree		
By log.,	$\log .180^{\circ}$	2.2552725
		0.4799377
	log. π	0.4971499
Log. e, in degrees, of arc, A.dd log. 60		-1.9827878
		1.7781513
Log. e, in min. of are,		1.7609391

We are now prepared to make an application of equations (4) and (5)
For example, we require the equation of the center for the solar orbit, corresponding to 28° of mean anomaly, reckoning from the apogee. The excentric anomaly is less than the mean by about half of the value of the equation of the center at any point; and x must be assumed.

2

True anomaly $27^{\circ} 5^{\prime} 58^{\prime \prime}$
Mean Anomaly $27^{\circ} 58^{\prime} 39^{\prime \prime} 1$
Equation of center $52^{\prime} 41^{\prime \prime}$ corresponding to the mean anomaly of $27^{\circ} 58^{\prime} 39^{\prime \prime} 1$, not to 28° as was required.

Now let us take $x=27^{\circ} 40^{\prime}$; then $\frac{1}{2} x=13^{\circ} 50^{\prime}$ $\sin . x \quad 27^{\circ} 40 \quad 9.666824$

Con. 1.760939
$e \sin . x \quad 26^{\prime} 777 \quad \overline{1.427763}$
Add $x 27^{\circ} 40^{\prime}$
Mean Anomaly, $\overline{28^{\circ} 6^{\prime} 46^{\prime \prime}} 6$

$$
\begin{array}{rrr}
\tan . \frac{1}{2} x=13^{\circ} 50^{\prime} & 9.391360 \\
\text { Con. } & -1.992714 \\
\tan . \frac{1}{2} t & 13^{\circ} 36^{\prime} 43^{\prime \prime} & \frac{9.384074}{}
\end{array}
$$

$$
t=\frac{2}{27^{\circ} 13^{\prime} 26^{\prime \prime}}
$$

Mean anomaly $28^{\circ} \quad 6^{\prime} 46^{\prime \prime} 6$
Eq. center,
$53^{\prime 2} 20^{\prime \prime} 6$ corresponding to $28^{\circ} 6^{\prime} 46^{\prime \prime} 6$.
Now, we can find the equation corresponding to 28° by the following obvious proportion :

$28^{\circ} 6^{\prime \prime} 46^{\prime \prime} 6$	$53^{\prime} 20^{\prime \prime} 6$	$28^{\circ} 00^{\prime} 00^{\prime \prime}$
$27 \quad 58 \quad 391$	52411	$27 \quad 5391$
$8^{\prime} 7^{\prime \prime 5}$:	$39^{\prime \prime} 5:$	$1^{\prime \prime} 20^{\prime \prime 9}$: $4^{\prime \prime 7}$
Add		$52^{\prime} 41^{\prime \prime 1}$
ation or value s	ght,	$52^{\prime} 45^{\prime \prime} 1$

In like manner we can find the value of the equation of the center of any and every other degree of the mean anomaly in the orbit of the sun, or any other orbit, when the excentricity is known.

LOGARITHMIC TABLES:

\triangle LSO A TABLE OF

NATURAL AND LOGARITHMIC

SINES, COSINES, AND TANGENTS,

TO EVERY MINUTE OF THE QUADRANT.

LOGARITHMS OF NUMBERS

FROM
1 то 10000 .

N.	Log.	N.	Log.	N.	Log.	N.	Log.
1	0000000	26	1414973	51	1707570	76	1880814
2	0301030	27	1431364	52	1716003	77	1886491
3	0477121	28	1447158	53	1724276	78	1892095
4	0602030	29	1462398	54	1732394	79	1897627
5	0698970	30	1477121	55	1740363	80	1903090
6	0778151	31	1491362	56	1748188	81	1908485
7	0845098	32	1505150	57	1755875	82	1913814
8	0903090	33	1518514	58	1763428	83	1919078
9	0954243	34	1531479	59	1770852	84	1924279
10	1000000	35	1544068	60	1778151	85	1929419
11	1041393	36	1556303	61	1785330	86	1934498
12	1079181	37	1568202	62	1792392	87	1939519
13	1113943	38	1579784	63	1799341	88	1944483
14	1146128	39	1591065	64	1806180	89	1949390
15	1176091	40	1602060	65	1812913	90	1954243
16	1204120	41	1612784	66	1819544	91	1959041
17	1230449	42	1623249	67	1826075	92	1963788
18	1255273	43	1633468	68	1832509	93	1968483
19	1278754	44	1643453	69	1838849	94	1973128
20	1301030	45	1653213	70	1845098	95	1977724
21	1322219	46	1662578	71	1851258	96	1982271
22	1342423	47	1672098	72	1857333	97	1986772
23	1361728	48	1681241	73	1863323	98	1991226
24	1380211	49	1690196	74	1869232	99	1995635
25	1397940	50	1698970	75	1875031	100	2000000

Note. In the following table, in the last nine columns of each page, where the first or leading figures change from 9 's to 0 's, points or dots are now introduced instoad of the 0 's through the rest of the line, to catch the eye, and to indicate that from thence the corresponding natural number in the first column stands in the next lower line, and its annexed first two figures of the Logarithms in the second column.

N.	0	1	2	3	4	5	6	7	8	9
100	000000	0434	0868	1301	1734	2166	2598	3029	3461	3891
101	4321	4750	5181	5609	6038	6466	6894	7321	7748	8174
102	80	9026	9451	9876	. 300	. 724	1147	1570	1993	2415
103	012337	3259	3680	4100	4521	4940	5360	5779	6197	6616
104	7033	7451	7868	8284	8700	9116	9532	9947	. 361	. 775
105	021189	1603	2016	2428	2841	3252	3664	4075	4486	4896
103	5303	5715	6125	6533	6942	7350	7757	8164	8571	8978
107	9384	9789	. 195	. 600	1004	1408	1812	2216	2619	3021
108	033424	3826	4227	4628	5029	5430	5830	6230	6629	7028
109	7426	7825	8223	8620	9017	9414	9811	. 207	. 602	. 998
110	041393	1787	2182	2576	2969	3362	3755	4148	4540	4932
111	5323	5714	6105	6495	6885	7275	7664	8053	8442	8830
112	9218	9606	9993	. 380	. 766	1153	1538	1924	2309	2694
113	053078	3463	3846	4230	4613	4996	5378	5760	6142	6524
114	6905	7286	7666	80.4	8426	8805	9185	9563	9942	. 320
115	050698	1075	1452	1829	2206	2582	2958	3333	3709	4083
116	4458	4832	5206	5580	5953	6326	6699	7071	7443	7815
117	8186	8557	8928	9298	9668	. 38	. 407	. 776	1145	1514
118	071882	2250	2617	2985	3352	3718	4085	4451	4816	5182
119	5547	5912	6276	6640	7004	7368	7731	8094	8457	8819
120	9181	9543	9904	. 266	. 626	. 987	1347	1707	2067	2426
121	082785	3144	3503	3861	4219	4576	4934	5291	5647	6004
122	6360	6716	7071	7426	7781	8136	8490	8845	9198	9552
123	9905	. 258	. 611	. 963	1315	1667	2018	2370	2721	3071
124	093422	3772	4122	4471	4820	5169	5518	5866	6215	6562
125	6910	7257	7604	7951	8298	8644	8990	9335	9681	1026
126	100371	0715	$10 \breve{9}$	1403	1747	2091	2434	2777	3119	3462
127	3804	4146	4487	4828	5169	5510	5851	6191	6531	6871
128	7210	7549	7888	8227	8565	8903	9241	95i9	9916	. 253
129	110590	0926	1263	1599	1934	2270	2605	2940	3275	3609
130	3343	4277	4611	4944	5278	5611	5943	6276	6608	6940
131	7271	7603	7934	8265	8595	8926	9256	9586	9915	0245
132	120574	0903	1231	1560	1888	2216	2544	2871	3198	3525
133	3852	4178	4504	4830	5156	5481	5806	6131	6456	6\%81
134	7105	7429	7753	8076	8399	8722	9045	9368	9690	. . 12
135	130334	0655	0977	1298	1619	1939	2260	2580	2900	3219
136	3539	3858	4177	4496	4814	5133	5451	5769	6086	6403
137	6721	7037	7354	7671	7987	8303	8618	8934	9249	9564
138	9879	. 194	. 508	. 822	1136	1450	1763	2076	2389	2702
139	143015	3327	3630	3951	4263	4574	4885	5196	5507	5818
140	6128	6438	6748	7058	7367	-7676	7985	8294	8603	8911
141	9219	9527	9835	. 142	. 449	. 756	1063	1370	1676	1982
142	152288	2594	2900	5205	2510	3815	4120	4424	4728	5032
143	5336	5640	5943	6246	6549	6852	7154	7457	7759	8061
144	8362	8664	8965	9266	9567	9868	. 168	. 469	. 769	1068
145	161368	1667	1967	2266	2564	2863	3161	3460	3758	4055
146	4353	4650	4947	5244	5541	5838	6134	6430	6726	70.2
147	7317	7613	7908	8203	8497	8792	9086	9380	9674	9968
148	170262	0555	0848	1141	1434	1726	2019	2311	2603	2895
149	3186	3478	3769	4060	4351	4641	4932	5222	5512	5802

LOGARITHMS

N.	0	1	2	3	4	ס	6	7	8	9
150	176091	6381	6670	6959	7248	7536	7825	8113	8401	8689
151	8977	9264	9552	9839	. 126	. 413	. 699	. 985	1272	1558
152	181844	2129	2415	2700	2985	3270	3555	3839	4123	4407
153	4691	4975	5259	5542	5825	6108	6391	6674	6956	7239
154	7521	7803	8084	8366	8647	8928	9209	9490	9771	. 51
155	190332	0612	0892	1171	1451	1730	2010	2289	2567	846
156	3125	3403	3681	3959	4237	4514	4792	5069	5346	5623
157	5899	6176	6453	6729	7005	7281	r 556	7832	8107	8382
158	8657	8932	9206	9481	9755	. . 29	. 303	. 577	. 850	1124
159	201397	1670	1943	2216	$\begin{array}{r} 2488 \\ 273 \end{array}$	2761	3033	3305	3577	3848
160	4120	4391	4663	4934	5204	5475	5746	6016	6286	6556
161	6826	7096	7365	7634	7904	8173	8441	8710	8979	9247
162	9515	9783	. 51	. 319	. 586	. 853	1121	1388	1654	1921
163	212188	2454	2720	2986	3252	3518	3783	4049	4314	4579
164	4844	5109	5373	5638	$\begin{array}{r} 5902 \\ 264 \end{array}$	6166	6430	6694	6957	7221
165	7484	7747	8010	8373	8536	8798	9060	9323	9585	9846
166	220108	0370	0631	0892	1153	1414	1675	1936	2196	2456
167	2716	2976	3236	3496	3755	4015	4274	4533	4792	5051
168	5309	5568	5826	6084	6342	6600	6858	7115	7372	7630
169	7887	8144	8400	8657	$\begin{array}{r} 8913 \\ 257 \end{array}$	9170	9426	9682	9938	. 193
170	230449	0704	0960	1215	1470	1724	1979	2234	2488	2742
171	2996	3250	3504	3757	4011	4264	4517	4770	5023	5276
172	5528	5781	6033	6285	6537	6789	7041	7292	7544	7795
173	8046	8297	8548	8799	9049	9299	9550	9800	. . 50	. 300
174	240549	0799	1048	1297	$\begin{array}{r} 1546 \\ 249 \end{array}$	1795	2044	2293	2541	2790
175	3038	3286	3534	3782	4030	4277	4525	4772	5019	5266
176	5513	5759	6006	6252	6499	6745	6991	7237	7482	7728
177	7973	8219	8464	8709	8954	9198	9443	9687	9932	. 176
178	250420	0664	0908	1151	1395	1638	1881	2125	2368	2610
179	2853	3096	3338	3580	$\begin{array}{r} 1032 \\ 342 \\ 242 \end{array}$	4064	4306	4548	4790	5031
180	5273	5514	5755	5996	6237	6477	6718	6958	7198	7439
181	7679	7918	8158	8398	8637	8877	9116	9355	9594	9833
182	260071	0310	0548	0787	1025	1263	1501	1739	1976	2214
183	2451	2688	2925	3162	3399	3636	3873	4109	4346	4582
184	4818	5054	5290	5525	$\begin{array}{r} 5761 \\ 235 \end{array}$	5996	6232	6467	6702	6937
185	7172	7406	7641	7875	8110	8344	8578	8812	9046	9279
186	9513	9746	9980	. 213	. 446	. 679	. 912	1144	1377	1609
187	271842	2074	2306	2538	2770	3001	3233	3464	3696	3927
188	4158	4389	4620	4850	5081	5311	5542	5772	6002	6232
189	6462	6692	6921	7151	$\begin{array}{r} 7380 \\ 229 \end{array}$	7609	7838	8067	8296	8525
190	8754	8982	9211	9439	9667	9895	. 123	. 351	. 578	. 806
191	281033	1261	1488	1715	1942	2169	2396	2622	2849	3075
192	3301	3527	3753	3979	4205	4431	4656	4882	5107	5332
193	5557	5782	6007	6232	6456	6681	6905	7130	7354	7578
194	7802	8026	8249	8473	$\begin{array}{r} 8696 \\ 224 \end{array}$	8920	9143	9366	9589	9812
195	290035	0257	0480	0702	0925	1147	1369	1591	1813	2034
196	2256	2478	2699	2920	3141	3363	3584	3804	4025	4246
197	4466	4687	4907	5127	5347	5567	5787	6007	6226	6446
198	6665	6884	7104	7323	7542	7761	7979	8198	8416	8635
199	8853	9071	9289	9507	9725	9943	. 161	. 378	. 595	. 813

OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9
200	301030	1247	1464	1681	1898	2114	2331	2547	2764	2980
201	3196	3412	3628	3844	4059	4275	4491	4706	4921	5136
202	5351	5566	5781	5996	6211	6425	6639	6854	70.38	7282
203	7496	7710	7924	8137	8351	8564	8778	8991	9204	9417
204	9630	9843	. . 56	. 268	$\begin{array}{r} .481 \\ 212 \end{array}$. 693	. 906	1118	1330	1542
205	311754	1966	2177	2389	2600	2812	3023	3234	3445	3656
206	3867	4078	4289	4499	4710	4920	5130	5340	5551	5760
207	5970	6180	6390	6599	6809	7018	7227	7436	7646	7854
208	8063	8272	8481	8689	8898	9106	9314	9522	9730	9938
209	320146	0354	0562	0769	$\begin{array}{r} 0977 \\ 207 \end{array}$	1184	1391	1598	1805	2012
210	2219	2426	2633	2839	3046	3252	3458	3655	3871	4077
211	4282	4488	4694	4899	5105	5310	5516	5721	5926	6131
212	6336	6541	6745	6950	7155	7359	7563	7767	7972	8176
213	8380	8583	8787	8991	9194	9398	9	9805	. . 8	. 211
214	330414	0.17	0819	1022	$\begin{array}{r} 1225 \\ 202 \end{array}$	1427	163)	1832	2034	2236
215	2438	2340	2842	3044	3246	3447	3649	3850	4051	4253
216	4454	4655	4856	5057	5257	5458	5658	5859	6059	6260
217	6460	6660	6860	\%060	7260	7459	T659	7858	8158	8257
218	8456	8656	8855	9054	9253	9151	9650	9849	. 47	. 246
219	340444	0642	0841	1039	$\begin{array}{r} 1237 \\ 198 \end{array}$	1435	1632	1830	2028	2225
220	2423	2620	2817	3014	3212	3409	$3 ¢ 06$	3802	3999	4196
221	4392	4589	4785	4981	5178	5374	5570	5766	5962	6157
222	6353	6549	6744	6939	7135	7330	7525	7720)	7915	8110
223	8305	8500	8694	8889	9083	9278	9472	9666	9860	. 54
224	350248	0442	0636	0329	$\begin{array}{r} 1023 \\ 193 \end{array}$	1216	1410	$16 \cup 3$	1796	1989
225	2183	2375	2568	2761	2954	3147	3339	3532	3724	3916
226	4108	4301	4493	4685	4876	5058	5260	5452	5643	5834
227	6026	6217	6408	6599	6790	6981	7172	7363	7554	7744
228	7935	8125	8316	8506	8696	8886	9076	9266	9456	9646
229	9835	. . 25	. 215	. 404	$\begin{aligned} & .593 \\ & 190 \end{aligned}$. 783	. 972	1161	1350	1539
230	361728	1917	2105	2294	2482	2671	2859	3048	3236	3424
231	3612	3800	3988	4176	4363	4551	4739	4926	5113	5301
232	5488	5675	5862	6049	6236	6423	6610	6796	6983	7169
233	7356	7542	7729	7915	8101	8287	8473	8659	8845	9030
234	9216	9401	9587	9772	$\begin{array}{r} 9958 \\ 185 \end{array}$. 143	. 328	. 513	. 698	. 883
235	371068	1253	1437	1622	1806	1991	2175	2360	2544	2728
236	2912	3096	3280	3464	3647	3831	4015	4198	4382	455
237	4748	4932	5115	5298	5481	5664	5846	6029	6212	6394
238	6577	6759	6942	7124	7306	7488	7670	7852	8034	8216
239	8398	8580	8761	8943	$\begin{array}{\|r} 9124 \\ 182 \end{array}$	9306	9487	9668	9849	. 30
240	380211	0392	0573	0754	0934	1115	1296	1476	1656	1837
241	2017	2197	2377	2557	2737	2917	3097	3277	3456	3636
242	3815	3995	4174	4353	4533	4712	4891	5070	5249	5428
243	5606	5785	5964	6142	6321	6499	6677	6856	7034	7212
244	7390	7568	7746	7923	$\begin{array}{r} 8101 \\ 178 \end{array}$	8279	8456	8634	8811	8989
245	9166	9343	9520	9698	9875	. 51	. 228	. 405	. 582	. 759
246	390935	1112	1288	1464	1641	1817	1993	2169	2345	2521
247	2697	2873	3048	3224	3400	3575	3751	3926	4101	4277
248	4452	4627	4802	4977	5152	5326	5501	5676	5850	6025
249	6199	6374	6548	6722	6896	7071	7245	7419	7592	7766

N.	0	1	2	3	4	5	6	7	8	9
250	397940	8114	8287	8461	8634	8808	8981	9154	9328	9501
251	9674	9847	. . 20	. 192	. 365	. 538	. 711	. 883	1056	1228
252	401401	1573	1745	1917	2089	2261	2433	2605	2777	2949
253	3121	3292	3464	3635	3807	3978	4149	4320	4492	4663
254	4834	5005	5176	5346	5517	5688	5858	6029	6199	6370
					171					
255	6540	6710	6881	7051	7221	7391	7561	7731	7901	8070
256	8240	8410	8579	8749	8918	9087	9257	9426	9595	9764
257	9933	. 102	. 271	. 440	. 609	. 777	. 946	1114	1283	1451
258	411620	1788	1956	¢124	$\ulcorner 293$	2461	5629	2796	2964	3132
259	3300	3467	3635	3803	3970	4137	4305	4472	4639	4806
260	4973	5140	5307	5474	5641	5808	5974	6141	6308	6474
261	6641	6807	6973	7139	7303	7472	7638	7804	7970	8135
262	8301	8467	8633	8798	8964	9129	9295	9460	9625	9791
263	9956	. 121	. 286	. 451	. 616	. 781	. 945	1110	1275	1439
264	421604	1788	1933	$\therefore 097$	2261	2426	2590	2754	2918	3082
265	3246	3410	3574	3737	3901	4065	4228	4392	4555	4718
266	4882	5045	5208	5371	¢53 4	5697	5860	6023	6186	6349
267	6511	6674	6836	6999	7161	7324	7486	7648	7811	7973
268	8135	8297	8459	8621	8783	8944	9106	9268	9429	9591
269	9752	9914	. 75	. 236	. 398	. 559	. 720	. 881	10.42	1203
270	431364	1525	1685	1846	2007	2167	2328	2488	2649	2809
271	2969	3130	3290	3450	3610	3770	3930	4090	4249	4409
272	4569	4729	4888	5048	5207	5367	5526	5685	5844	6004
273	6163	6322	6481	6640	6800	6957	7116	7275	7433	7592
274	7751	7909	8067	8226	8384	8542	8701	8859	9017	9175
					158					
275	9333	9491	9648	9806	9964	. 122	. 279	. 437	. 594	. 752
276	440909	1066	1224	1381	1538	1695	1852	2009	2166	¿323
277	2480	2637	:793	2959	3105	3263	3419	3576	3732	3889
278	4045	4201	4357	4513	4669	4825	4981	5137	5:93	5449
279	5604	5760	5915	6071	6226	6382	6537	6692	6848	7003
280	7158	7313	7468	7623	7778	7933	8088	8242	8397	8552
281	8706	8861	9015	9170	9324	9478	9633	9787	9941	. 95
282	450249	0403	0557	0711	0865	1018	1172	1326	1479	1633
283	1786	1940	2093	2247	2400	2553	2706	2859	3012	3165
284	3318	3471	3624	37%	3930	4082	4235	4387	4540	4692
235	4845	4997	5150	5302	5454	5606	5758	5910	6062	6214
286	6366	6518	6670	6821	6973	7125	7276	7428	7579	7731
287	7882	8033	8184	8336	8487	8638	8789	8940	9091	9242
288	9392	9543	9634	9845	9995	. 146	. 296	.417	. 597	. 748
289	460898	1048	1198	1348	1499	1649	1799	1948	2098	2248
290	2398	2548	2697	2847	2997	3146	3296	3445	3594	3744
291	3893	4042	4191	4340	4490	4639	4788	4936	5085	5234
292	5383	5532	5680	5829	ธ977	6126	6274	6423	6571	6719
293	C868	7016	7164	7312	7460	7608	7756	7904	8052	8200
294	8347	8495	5643	8790	8938	9085	9233	9380	9527	9675
					147					
295	0822	9969	. 116	. 263	. 410	. 557	. 704	. 851	. 998	1145
296	471292	1438	1585	1732	1878	2025	2171	2318	2464	2610
297	2756	2903	3049	3195	3341	3487	3633	3779	3925	4071
298	4216	4362	4508	4653	4799	4944	5090	5235	5381	5526
299	5671	5816	5962	6107	6252	6397	6542	6687	6832	6976

OF NUMBERS. 7										
N.	0	1	2	3	4	5	6	7	8	9
300	477121	7266	7411	7555	7700	7844	7989	8133	8278	8422
301	8566	8711	8855	8999	9143	9287	9481	9575	9719	9863
302	480007	0151	0294	0438	0582	0725	0869	1012	1156	1299
303	1443	1586	1729	1872	2016	2159	2302	2445	2588	2731
304	2874	3016	3159	3302	3445	3587	3730	3872	4015	4157
					142					
305	4300	4442	4585	4727	4869	5011	5153	5295	5437	5579
306	5721	5863	6005	6147	6289	6430	6572	6714	6855	6997
307	7138	7280	7421	7563	7704	7845	7986	8127	8269	8410
308	8551	8692	8833	8974	9114	¢255	9396	9537	9667	9818
309	9959	. . 99	. 239	. 380	. 520	. 661	. 801	. 941	1081	1222
310	491362	1502	1642	1782	1922	2062	2201	2341	2481	2621
311	2760	2900	3040	3179	3319	3458	3597	3737	3876	4015
312	4155	4294	4433	4572	4711	4850	4989	5128	5:67	5406
313	5544	5683	5822	5960	6099	6238	6376	1,515	6 6. 53	6791
314	6930	7068	7206	7314	7483	7621	7759	7897	8035	8173
315	8311	8448	8586	8724	8862	8999	9137	(275	94:2	5550
316	9687	9824	9962	. . 99	. 236	. 374	. 511	. 648	. 785	. 922
317	501059	1196	1333	1470	1607	1744	1880	$\bigcirc 017$	2154	2291
318	2427	2564	2700	2837	2913	3109	5246	3382	3518	3655
319	3791	3927	40.3	4199	4335	4471	4607	$47+3$	1878	5014
320	5150	5283	5421	5557	5693	5828	5964	699)	6234	6370
321	6505	6640	6775	6911	70.46	7181	7316	7451	7586	7721
322	7856	7991	812 j	8260	8:395	8530	8664	8799	8934	9008
323	9203	9337	9471	96'16	9740	9874	. . 9	. 143	. 277	. 411
324	$510.5+5$	0679	05:3	09.47	$\begin{array}{r} 1081 \\ 134 \end{array}$	1215	13.9	1482	1616	$1: 50$
325	1883	2017	2151	2284	2418	2551	2684	2818	2951	3084
326	3218	3351	3484	3617	3750	3883	401.	4149	4282	4414
327	4548	4681	4813	4946	5079	$\dot{6} 211$	$534{ }^{\text {¢ }}$	5476	5604	¢741
328	5874	60 ± 6	6139	6271	6403	6545	6668	6800	6932	(0) 4
329	7196	7328	7460	7592	7724	7855	7987	8119	8251	8382
330	8514	8646	8777	8909	9040	9171	9303	9434	9566	9697
331	9828	9959	. . 90	. 221	. 353	. 484	. 615	. 745	. 876	100:
332	521138	1269	1400	1530	1661	1792	1922	2053	2183	2:14
333	2444	2575	2705	2835	2966	3096	3226	3356	3486	3010
334	3746	3876	4006	4136	4266	4396	4526	4656	4785	4915
335	5045	5174	5304	5434	5563	5693	5822	5951	6081	6210
336	6339	6469	6598	6727	6856	6985	7114	7243	7372	7501
337	7630	7759	7888	8016	8145	8274	8402	8531	8660	8788
338	8917	9045	9174	9302	9430	9559	9687	9815	9943	. . 72
339	530200	0328	0456	0584	0712	0840	0968	1096	1223	1351
340	1479	1607	1734	1862	1960	2117	2245	2372	2500	2627
341	2754	2882	3009	3136	3264	3391	3518	3645	3772	3899
342	4026	4153	4280	4407	4534	4661	4787	4914	5041	5167
343	5294	5421	5547	5674	5800	5927	6053	6180	6306	6432
344	6558	6685	6811	6937	$\begin{array}{r} 7060 \\ 129 \end{array}$	7189	7315	7441	7567	7693
345	7819	7945	8071	8197	8322	8448	8574	8699	8825	8951
346	9076	9202	9327	9452	9578	9703	9829	9954	. 79	. 204
347	540329	0455	0580	0705	0830	0955	1080	1205	1330	1454
348	1579	1704	1829	1953	2078	2203	2327	2452	2576	2701
349	2825	2950	3074	3199	3323	3447	$35 \% 1$	3696	3820	3944

8	LOGARITHMS									
N.	0	1	2	3	4	5	6	7	8	9
350	544068	4192	4316	4440	4564	4688	4812	4936	5060	5183
351	5307	5431	5555	5578	5805	5925	6049	6172	6296	6419
352	6543	6666	6789	6913	7036	7159	7282	7405	7529	7652
353	7775	7898	8021	8144	8267	8389	8512	8635	8758	8881
354	9003	9126	9249	9371	9494	9616	9739	9861	9984	. 196
					122					
355	550228	0351	0473	0595	0717	0840	0962	1084	1206	1328
356	1450	1572	1694	1816	1938	2060	2181	2303	2425	2547
357	2668	2790	2911	3033	3155	3276	3393	3519	3640	3762
358	3883	4004	4126	4247	4368	4489	4610	4731	4852	4973
359	5094	5215	5346	5457	5578	5699	5820	5940	6061	6182
360	6303	6423	6544	6664	6785	6905	7026	7146	7267	7387
361	7507	7627	7748	7868	7988	8108	8228	8349	8469	8589
362	8709	8829	8948	9068	9188	9308	9428	9548	9667	9787
363	9907	. 26	. 146	. 265	. 385	. 504	. 624	. 743	. 863	. 982
364	561101	1:21	1340	1459	1578	1698	1817	1936	2055	2173
365	2293	2412	2531	2650	2769	2887	3006	3125	3244	3362
366	3481	3600	3718	3837	3955	4074	4192	4311	4429	4548
367	4666	4784	4903	5021	5139	5257	5376	5494	5612	5730
368	5848	5966	6084	6202	6320	6437	6555	6673	6791	6909
369	7026	7144	7262	7379	7497	7614	7732	7849	7967	8084
370	8202	8319	8436	8554	8671	8788	8905	9023	9140	9257
371	9374	9491	9608	9725	9882	9959	. 76	. 193	. 309	. 426
372	570543	0660	0776	0893	1010	1126	1243	1359	1476	1592
373	1709	1825	1942	2058	2174	2291	2407	2528	28,39	2755
374	2872	2988	3104	3220	$\begin{array}{r} 3336 \\ 116 \end{array}$	3452	3568	3634	3800	3915
375	4031	4147	4263	4379	4494	4610	4726	4.841	4957	5072
376	5188	5303	5419	5534	5650	5765	5880	5996	6111	6226
377	63 ± 1	6457	6572	6687	6802	6917	7032	7147	7262	7377
378	7492	7607	7722	7836	7951	8066	8181	8295	8410	8525
379	8639	8754	8868	8983	9097	9212	9326	9441	9555	9669
380	9784	9898	. 12	. 126	. 241	. 355	.469	. 583	. 697	. 811
381	580925	1039	1153	1267	1381	1495	1608	1722	1836	1950
382	2063	2177	2291	2404	2518	2631	2745	2858	2972	3085
383	3199	3312	3426	3539	3652	3765	3879	3992	4105	4218
384	4331	4444	4557	4670	4783	4896	5009	b122	5235	5348
385	5451	5574	5686	5799	5912	6024	6137	Ci250	6362	6475
386	6587	6700	6812	6925	7037	7149	7262	7374	7486	7599
387	7711	7823	7935	8047	8160	8272	8384	8496	8608	8720
388	8832	8944	9056	9167	9279	9391	9503	9615	9726	9834
389	9950	. . 61	. 173	. 284	. 396	. 507	. 619	. 730	. 842	. 953
390	591065	1176	1287	1399	1510	1621	1732	1843	1955	2066
391	2177	2288	2399	2510	2621	2732	2843	2954	3064	3175
392	3286	3397	3508	3618	3729	3840	3950	4061	4171	4282
393	4393	4503	4614	4724	4834	4945	5055	5165	5276	5386
394	5496	5606	5717	5827	$\begin{array}{r} 5937 \\ 110 \end{array}$	6047	6157	6267	6377	6487
395	6597	6707	6817	6927	7037	7146	7256	7366	7476	7586
396	7695	7805	7914	8024	8134	8243	8353	8462	8572	8681
397	8791	8900	9009	9119	9228	9337	9446	9556	9666	9774
398	9883	9992	. 101	. 210	. 319	. 428	. 537	. 646	. 755	. 864
399	600973	1082	1191	1299	1408	1517	1625	1734	1843	1951

N.	0	1	2	3	4	5	6	7	8	9
400	602060	2169	2277	2386	2494	2603	2711	2819	2928	3036
401	3144	3253	3361	3469	3573	3686	3794	3902	4010	4118
402	4226	4334	4442	4550	4658	4766	4874	4982	5089	5197
403	5305	5413	5521	5628	5736	5844	5951	6059	6166	6274
404	6381	6489	6596	6704	6811	6919	7026	7133	7241	7348
					108					
405	7455	7562	7669	7777	7884	7991	8098	8205	8312	8419
406	8526	8633	8740	8847	8954	9061	9167	9274	9381	9488
407	9594	9701	9808	9914	. 21	. 128	. 234	. 341	. 447	. 554
408	610660	0767	0873	0979	1086	1192	1298	1405	1511	1617
409	1723	1829	1936	2042	2148	2254	2360	2466	2572	2678
410	2784	2890	2996	3102	3207	3313	3419	3525	3630	3736
411	3842	3947	4053	4159	4264	4370	4475	4581	4686	4792
412	4897	5003	5108	5213	5319	5424	5529	5634	5740	5845
413	5950	6055	6160	6265	6370	6476	6581	6686	6790	6895
414	7000	7105	7210	7315	7420	7525	7629	7734	7839	7943
415	8048	8153	8257	8362	8466	8571	8676	8780	8884	8989
416	9293	9198	9302	9405	9511	9615	9719	9824	9928	. . 32
417	620136	0240	0344	0448	0552	0656	0760	0864	0968	1072
418	1176	1280	1384	1488	1592	1695	1799	1903	2007	2110
419	2214	2318	2421	2525	2628	2732	2835	2939	3042	3146
420	3249	3353	3456	3559	3663	3766	3869	3973	4076	4179
421	4282	4385	4488	4591	4695	4798	4901	5004	5107	5210
422	5312	5415	5518	5621	5724	5827	5929	6032	6135	6238
423	6340	6443	6546	6648	6751	6853	6956	7058	7161	7263
424	7366	7468	7571	7673	7775	7878	7980	8082	8185	8287
					103					
425	8389	8491	8593	8695	8797	8900	9002	9104	9206	9308
426	9410	9512	9613	9715	9817	9919	. 21	. 123	. 224	. 326
427	630428	0530	0631	0733	0835	0936	1038	1139	1241	1342
428	1444	1545	1647	1748	1849	1951	2052	2153	2255	2356
429	2457	2559	2660	2761	2862	2963	3064	3165	3266	3367
430	3468	3569	3670	3771	3872	3973	4074	4175	4276	4376
431	4477	4578	4679	4779	4880	4981	5081	5182	5283	5383
432	5484	5584	5685	5785	5886	5986	6087	6187	6287	6388
433	6488	6588	6688	6789	6889	6989	7089	7189	7290	7390
434	7490	7590	7690	7790	7890	7990	8090	8190	8290	8389
435	8489	8589	8689	8789	8888	8988	9088	9188	9287	9387
436	9486	9586	9686	9785	9885	9984	. 84	. 183	. 283	. 382
437	640481	0581	0680	0779	0879	0978	1077	1177	1276	1375
438	1474	1573	1672	1771	1871	1970	2069	2168	2267	2366
439	2465	2563	2662	2761	2860	2959	3058	3156	3255	3354
440	3453	3551	3650	3749	3847	3946	4044	4143	4242	4340
441	4439	4537	4636	4734	4832	4931	5029	5127	5226	5324
442	5422	5521	5619	5717	5815	5913	6011	6110	6208	6306
443	6404	6502	6600	6698	6796	6894	6992	7039	7187	7285
444	7383	7481	7579	7676	$\begin{array}{r} 7774 \\ 93 \end{array}$	7872	7969	8067	8165	8262
445	8360	8458	8555	8653	8750	8848	8945	9043	9140	9237
446	9335	9432	9530	9627	9724	9821	9919	. 16	. 113	. 210
447	650308	0405	0502	0599	0696	0793	0890	0987	1084	1181
448	1278	1375	1472	1569	1666	1762	1859	1956	2053	2150
449	2246	2343	2440	2530	2633	2730	2826	2923	3019	3116

10	LOGARITHMS									
N.	0	1	2	3	4	5	6	7	8	9
450	653213	3309	3405	3502	3598	3695	3791	3888	3984	4080
451	4177	4273	4369	4465	4562	4658	4754	4850	4946	5042
452	5138	5235	5331	5427	5526	5619	5715	5810	5906	6002
453	6098	6194	6290	6386	6482	6577	6673	6769	6864	6960
454	7056	7152	7247	7343	$\begin{array}{r} 7438 \\ 96 \end{array}$	7534	7629	7725	7820	7916
455	8011	8107	8202	8298	8393	8488	8584	8679	8774	88.70
456	8965	9060	9155	9250	9346	9441	9536	9631	9726	9821
457	9916	. . 11	. 106	. 201	. 296	. 391	. 486	. 581	. 676	. 771
458	660865	0960	1055	1150	1245	1339	1434	1529	1623	1718
459	1813	1907	2002	2096	2191	2286	2380	2475	2569	2663
460	2758	2852	2947	3041	3135	3230	3324	3418	3512	3607
461	3701	3795	3889	3983	4078	4172	4266	4360	4454	4548
462	4642	4736	4830	4924	5018	5112	5206	5299	5393	5487
463	5581	5675	5769	5862	5956	6050	6143	6237	6331	6424
464	6518	6612	6705	6799	6892	6986	7079	7173	7266	7360
465	7453	7546	7640	7733	7826	7920	8013	8106	8199	8293
466	8386	8479	8572	8665	8759	8852	8945	9038	9131	9324
467	9317	9410	9503	9596	9689	9782	9875	9967	. . 60	. 153
468	670241	0339	0431	0524	0617	0710	0802	0895	0988	1080
469	1173	1265	1358	1451	1543	1636	1728	1821	1913	2005
470	2098	2190	2283	2375	2467	2560	2652	2744	2836	2929
471	3021	3113	3205	3297	3390	3482	3574	3666	3758	3850
472	3942	4034	4126	4218	4310	4402	4494	4586	4677	4769
473	4861	4953	5045	5137	5228	5320	5412	5503	5595	5687
474	5778	5870	5962	6053	$\begin{array}{r} 6145 \\ 91 \end{array}$	6236	6328	6419	6511	6602
4\%5	6694	6785	6876	6968	7059	7151	7242	7333	7424	7516
476	7607	7698	7789	7881	7972	8063	8154	8245	8336	8427
477	8518	8609	8700	8791	8882	8972	9064	9155	9246	9337
478	9428	9519	9610	9700	9791	9882	9973	. 63	. 154	. 245
479	680336	0426	0517	0607	0698	0789	0879	0970	1060	1151
480	1241	1332	1422	1513	1603	1693	1784	1874	1964	2055
481	2145	2235	2326	2416	2506	2596	2686	2777	2867	2957
482	3047	3137	3227	3317	3407	3497	3587	3677	3767	3857
483	3947	4037	4127	4217	4307	4396	4486	4576	4666	4756
484	4854	4935	5025	5114	5204	. 5294	5383	5473	5563	5652
485	5742	5831	5921	6010	6100	6189	6279	6368	6458	6547
486	6636	6726	6815	6904	6994	7083	7172	7261	7351	7440
487	7529	7618	7707	7796	7886	7975	8064	8153	8242	8331
488	8420	8509	8593	8687	8776	8865	8953	9042	9131	9220
489	9309	9398	9486	9575	9664	9753	9841	9930	. . 19	. 107
490	690196	0285	0373	0362	0550	0639	0728	0816	0905	0993
491	1081	1170	1258	1347	1435	1524	1612	1700	1789	1877
492	1565	2053	2142	2230	2318	2406	2494	2583	2671	2759
493	2847	2935	3023	3111	3199	3287	3375	¿463	3551	3639
494	3727	3815	3903	3991	$\begin{array}{r} 4078 \\ 88 \end{array}$	4166	4254	4342	4430	4517
+95	4605	4693	4781	4868	4956	5044	5131	5210	5307	5394
496	5482	5569	5657	5744	5832	5919	6007	6094	6182	6269
497	6356	5444	6531	6618	6706	6793	6880	6968	7055	7142
498	7229	7317	7404	7491	7578	7665	7752	7839	7926	8014
499	8101	8188	8275	8362	8449	8535	8622	8709	8796	8883

OF NUMBERS. 11										
N.	0	1	2	3	4	5	6	7	8	9
500	698970	9057	9144	9231	9317	9404	9491	9578	9664	9751
501	9838	9924	. 111	. . 98	. 184	. 271	. 358	. 444	. 531	. 617
502	700704	0790	0877	0963	1050	1136	1222	1309	1395	1482
503	1568	1654	1741	1827	1913	1999	2086	2172	2258	2344
504	2431	2517	2603	2689	$\begin{array}{r} 2775 \\ 86 \end{array}$	2861	2947	3033	3119	3205
505	3291	3377	3463	3549	3635	3721	3807	3895	3979	4065
506	4151	4236	4322	4408	4494	4579	4665	4751	4837	4922
507	5008	5094	5179	5265	5350	5436	5522	5607	5693	5778
508	5864	5949	6035	6120	6206	6291	6376	6462	6547	6632
509	6718	6803	6888	6974	7059	7144	7229	7315	7400	7485
510	7570	7655	7740	7826	7910	7996	8081	8166	8251	8336
511	8421	8506	8591	8676	8761	8846	8931	9015	9100	9185
512	9270	9355	9440	9524	9609	9694	9779	9863	9948	. . 33
513	710117	0202	0287	0371	0456	0540	0625	0710	0794	0879
514	0963	1048	1132	1217	1301	1385	1470	1554	1639	1723
515	1807	1892	1976	2030	2144	2229	2313	2397	2481	2566
516	2650	2734	2818	2902	2986	3070	3154	3238	3326	3407
517	3491	3575	3659	3742	3826	3910	3994	4078	4162	4246
518	4330	4414	4497	4581	4665	4749	4833	4916	5000	5084
519	5167	5251	5335	5418	5อั02	5586	5669	5753	5836	5920
520	6003	6087	6170	6254	6337	6421	6504	6588	6671	6754
521	6838	6921	7004	7088	7171	7254	7338	7421	7504	7587
522	7671	7754	7837	7920	8003	8086	8169	8253	8336	8419
523	8502	8585	8668	8751	8834	8917	9000	9083	9165	9248
524	9331	9414	9497	9580	$\begin{array}{r} 9663 \\ 82 \end{array}$	9745	9828	9911	9994	. . 77
525	720159	0242	0325	0407	0490	0573	0655	0738	0821	0903
526	0986	1068	1151	1233	1316	1398	1481	1563	1646	1728
527	1811	1893	. 975	2058	2140	2222	2305	2387	2469	2552
528	2634	2716	2798	2881	2963	3045	3127	3209	3291	3374
529	3456	3538	3620	3702	3784	3866	3948	4030	4112	4194
530	4276	4358	4440	4522	4604	4685	4767	4849	4931	5013
531	5095	5176	5258	5340	5422	5503	5585	5667	5748	5830
532	5912	5993	6075	6156	6238	6320	6401	6483	6564	6646
533	6727	6809	6890	6972	7053	7134	7216	7297	7379	7460
534	7541	7623	7704	7785	7866	7948	8029	8110	8191	8273
535	8354	8435	8516	8597	8678	8759	8841	8922	9003	9084
536	9165	9246	9327	9403	9489	9570	9651	9732	9813	9893
537	9974	. 55	. 136	. 217	. 298	. 378	. 459	. 440	. 621	. 702
538	730782	0863	0944	1024	1105	1186	1266	1347	1428	1508
539	1589	1669	1750	1830	1911	1991	2072	2152	2233	2313
540	2394	2474	2555	2635	2715	2796	2876	2956	3037	3117
541	3197	3278	3358	3438	3518	3598	3679	3759	3839	3919
542	3999	4079	4160	4240	4320	4400	4480	4560	4640	4720
543	4800	4380	4960	5040	5120	5200	5279	5359	5439	5519
544	5.99	5679	5759	5838	$\begin{array}{r} 5918 \\ 80 \end{array}$	5998	6078	6157	6237	6317
545	6397	6476	6556	6636	6715	6795	6874	6954	7034	7113
546	7193	7272	7352	7431	7511	7590	7670	7749	7829	7908
547	7987	8067	8146	8225	8305	8384	8463	8543	8622	8701
548	8781	8860	8939.	9018	9097	9177	9256	9335	9414	$949 ?$
549	9572	9651	9731	9810	9889	9968	. . 47	. 126	. 205	. 284

12	LOGARITHMS									
N.	0	1	2	3	4	5	6	7	8	9
550	740363	0442	0521	0560	0678	0757	0836	0915	0994	1073
551	1152	1230	1309	1388	1467	1546	1624	1703	1782	1860
552	1939	2018	2096	2175	2254	2332	2411	2489	2568	2646
553	2725	2804	2882	2961	3039	3118	3196	3275	3353	3431
554	3510	3558	3667	3745	$\begin{array}{r} 3823 \\ 79 \end{array}$	3902	3980	4058	4136	4215
555	4293	4371	4449	4528	4606	4684	4762	4840	4919	4997
556	5075	5153	5231	5309	5387	5465	5543	5621	5699	5777
557	5855	5933	6011	6089	6167	6245	6323	6401	6479	6556
558	6634	6712	6790	6868	6945	7023	7101	7179	7256	7334
559	7412	7489	7567	7645	7722	7800	7878	7955	8033	8110
560	8188	8266	8343	8421	8498	8576	8653	8731	8808	8885
561	8963	9040	9118	9195	9272	9350	9427	9504	9582	9659
562	9736	9814	9891	9968	. 45	. 123	. 200	. 277	. 354	. 431
563	750508	0586	0663	0740	0817	0894	0971	1048	1125	1202
564	1279	1356	1433	1510	1587	1664	1741	1818	1895	1972
565	2048	2125	2202	2279	2356	2433	2509	2586	2663	2740
566	2816	2893	2970	3047	3123	3200	3277	3353	3430	3506
567	3582	3660	3736	3813	3889	3966	4042	4119	4195	4272
568	4348	4425	4501	4578	4654	4730	4807	4883	4960	5036
569	5112	5189	5265	5341	5417	5494	5570	5646	5722	5799
570	5875	5951	6027	6103	6180	6256	6332	6408	6484	6560
571	6636	6712	6788	6864	6940	7016	7092	7168	7244	7320
572	7396	7472	7548	7624	7700	7775	7851	7927	8003	8079
573	8155	8230	8306	8382	8458	8533	8609	8685	8761	8836
574	8912	8988	9068	9139	$\begin{array}{r} 9214 \\ 74 \end{array}$	9290	9366	9441	9517	9592
575	9638	9743	9819	9894	9970	.. 45	. 121	. 196	. 272	. 347
576	760422	0498	0573	0649	0724	0799	0875	0950	1025	1101
577	1176	1251	1326	1402	1477	1552	1627	1702	1778	1853
578	1923	2003	20:8	2153	2228	2303	2378	2453	2529	2604
579	$\therefore 679$	2754	2829	2904	2978	3053	3128	2203	3278	3353
580	3428	3503	3578	3653	3727	3802	3877	3952	4027	4101
581	4176	4251	4326	4400	4475	4550	4624	4699	4774	4848
582	4923	4998	5072	5147	5221	5296	5370	5445	5520	5594
583	5669	5743	5818	5892	5966	6041	6115	6190	6264	6338
584	6413	6487	6562	6636	6710	6785	6859	6933	7007	7082
585	7156	7230	7304	7379	7453	7527	7601	7675	7749	7823
586	7898	7972	8046	8120	8194	8268	8342	8416	8490	8564
587	8638	8712	8786	8860	8934	9008	9082	9156	9230	9303
588	9377	9451	9525	9599	9673	9746	9820	9894	9968	. . 42
589	770115	0189	0263	0336	0410	0484	0557	0631	0705	0778
590	0852		0999	1073	1146	1220	1293	1367	1440	1514
591	1587	1661	1734	1808	1881	1955	2028	2102	2175	2248
592	2322	2395	2468	3542	2615	2688	2762	2835	2908	2981
593	3055	3128	3201	3274	3348	3421	3494	3567	3640	3713
594	3786	3860	3933	4006	$\begin{array}{r} 4079 \\ 73 \end{array}$	4152	4225	4298	4371	4444
595	4517	4590	1653	4736	4809	4882	4955	5028	5100	${ }^{5173}$
596	5246	5319	5392	5465	5538	5610	5683	5756	5829	5902
597	5974	$60+7$	6120	6193	6265	6338	6411	6483	6556	6629
598	6701	6774	6846	6919	6992	7064	7137	7209	7282	7354
599	7427	7499	7572	7644	7717	7789	7862	7934	8006	8079

OF N M B ERS. 13										
N.	0	1	2	3	4	5	6	7	8	9
600	778151	8224	8296	8368	8441	8513	8585	8658	8730	8802
601	8874	8947	9019	9091	9163	9286	9308	9380	9452	9524
602	9596	6669	9741	9813	9885	9957	. 29	. 101	. 173	. 245
603	780317	0389	0461	0533	0605	0677	0749	0821	0893	0965
604	1037	1109	1181	1253	$\begin{array}{r} 1324 \\ 72 \end{array}$	1396	1468	1540	1612	1684
605	1755	1827	1899	1971	2042	2114	2186	2258	2329	2401
606	2473	2544	2616	2688	2759	2831	2902	2974	3046	3117
607	3189	3260	3332	3403	3475	3546	3618	3689	3761	3832
608	3904	3975	4046	4118	4189	4261	4332	4403	4475	4546
609	4617	4689	4760	4831	4902	4974	5045	5116	5187	5259
610	5330	5401	5472	5543	5615	5686	5757	5828	5899	5970
611	6041	6112	6183	6254	6325	6396	6467	6,538	6609	6680
612	6751	6822	6893	6964	7035	7106	7177	7248	7319	7390
613	7460	7531	7602	7673	7744	7815	7885	79.6	8027	8098
614	8168	8239	8310	8381	8451	8522	8593	8663	8734	8804
615	8875	8946	9016	9087	9157	9228	9299	9369	9440	9510
616	9581	9651	9722	9792	9863	9933	. . 4	. . 74	. 144	. 215
617	790285	0356	0426	0496	0567	0637	0707	0778	0848	0918
618	0988	1059	1129	1199	1269	1340	1410	1480	1550	1620
619	1691	1761	1831	1901	1971	2041	2111	2181	2252	2322
620	2392	2462	2532	2602	2672	2742	2812	2882	2952	3022
621	3092	3162	3231	3301	3371	3441	3511	3581	3651	3721
622	3790	3860	3930	4000	4070	4139	4209	4279	4349	4418
623	4488	4558	4627	4697	4767	4836	4903	4976	5045	5115
624	5185	5254	5324	5393	$\begin{array}{\|r\|} 5463 \\ 69 \end{array}$	5532	5602	5672	5741	5811
625	5880	5949	6019	6088	6158	6227	6297	6366	6436	6505
626	6574	6644	6713	6782	6852	6921	6990	7060	7129	7198
627	7268	7337	7406	7475	7545	7614	7683	7752	7821	7890
628	7960	8029	8098	8167	8236	8505	8374	8443	8513	8582
629	8651	8720	8789	8858	8927	8996	9065	6134	9203	9272
630	9341	9409	9478	9547	9610	9685	9754	9823	9892	9961
631	800026	0098	0167	0236	0305	0373	0442	0511	0580	0648
632	0717	0786	0854	0923	0992	1051	1129	1198	1266	1335
633	1404	1472	1541	1609	1678	1747	1815	1884	1952 '	2021
634	2089	2158	2226	2295	2363	2432	2500	2568	2637	2705
635	2774	2842	2910	2979	3047	3116	3184	3252	3321	3389
636	3457	3525	3594	3662	3730	3798	3867	3935	4003	4071
637	4139	4208	4276	4354	4412	4480	4548	4616	4685	4753
638	4821	4889	4957	5025	5093	5161	5229	5297	5365	5433
639	5501	5669	5637	5705	5773	5841	5308	5976	6044	6112
640	6180	6248	6316	6384	6451	6519	6587	6655	6723	6790
641	6858	6926	6994	7061	7129	7157	7264	7332	7400	7467
642	7535	7603	7670	7738	7806	7873	7941	8008	8076	8143
643	8211	8279	8346	8414	8481	8549	8616	8684	8751	8818
644	8886	8953	9021	9088	9156	9223	9290	9358	9425	9492
645	9560	9627	9694	9762	9829	9896	9964	. 31	. 98	. 165
646	810233	0300	0367	0434	0501	0596	0636	0703	0770	0837
647	0904	0971	1039	1106	1173	1240	1307	1374	1441	1508
648	1575	1642	1709	1776	1843	1910	1977	2044	2111	2178
649	2245	2312	2379	2445	2512	2579	2646	2713	2780	2847

LOGARITHMS

N.	0	1	2	3	4	5	6	7	8	9
650	812913	2980	3047	3114	3181	3247	3314	3381	3448	3514
651	3581	3648	3714	3781	3848	3914	3981	4048	4114	4181
652	4248	4314	4381	4447	4514	4581	4647	4714	4780	4847
653	4913	4980	5046	5113	5179	5246	5312	5378	5445	5511
654	5578	5644	5711	5777	$\begin{array}{r} 5843 \\ 67 \end{array}$	5910	5976	6042	6109	6175
655	6241	6308	6374	6440	6506	6573	6639	6705	6771	6838
656	6904	6970	7036	7102	7169	7233	7301	7367	7433	7499
657	7565	7631	7698	7764	7830	7896	7962	8028	8094	8160
658	8226	8292	8358	8424	8490	8556	8622	8688	8754	8820
659	8885	8951	9017	9083	9149	9215	9281	9346	9412	9478
660	9544	9610	9676	9741	9807	9873	9939	... 4	. 70	. 136
661	820201	0267	0333	0399	0464	0530	0595	0661	0727	0792
662	0858	0924	0989	1055	1120	1186	1251	1317	1382	1448
663	1514	1579	1645	1710	1775	1841	1906	1972	2037	2103
664	2168	2233	2299	2364	2430	2495	2560	2626	2691	2756
665	2822	2887	2952	3018	3083	3148	3213	3279	3344	3409
666	3474	3539	3605	3670	3735	3800	3865	3930	3996	4061
667	4126	4191	4256	4321	4386	4451	4516	4581	4646	4711
668	4776	4841	4906	4971	5036	5101	5166	5231	5296	5361
669	5426	5491	5556	5621	5686	5751	5815	5880	5945	6010
670	6075	6140	6204	6269	6334	6399	6464	6528	6593	6658
671	6723	6787	6852	6917	6981	7046	7111	7175	7240	7305
672	7369	7434	7499	7563	7628	7692	7757	7821	7886	7951
673	8015	8080	8144	8209	8273	8338	8402	8467	8531	8595
674	8660	8724	8789	8853	$\begin{array}{r} 8918 \\ 65 \end{array}$	8982	9046	9111	9175	9239
675	9304	9368	9432	9497	9561	9625	9690	9754	9818	9882
676	9947	.. 11	. 775	. 139	. 204	. 268	. 332	. 396	. 460	. 525
677	830589	0653	0717	0781	0845	0909	0973	1037	1102	1166
678	1230	1294	1358	1422	1486	1550	1614	1678	1742	1806
679	1870	1934	1998	2062	2126	2189	2253	2317	2381	2445
680	2509	2573	2637	2700	2764	2828	2892	2956	3020	3083
681	3147	3211	3275	3338	3402	3466	3530	3593	3657	3721
682	3784	3848	3912	3975	4039	4103	4166	4230	4294	4357
683	4421	4484	4548	4611	4675	4739	4802	4866	4929	4993
684	5056	5120	5183	5247	5310	5373	5437	5500	5564	5627
685	5691	5754	5817	5881	5944	6007	6071	6134	6197	6261
686	6324	6387	6451	6514	6577	6641	6704	6767	6830	6894
687	6957	7020	7083	7146	7210	7273	7336	7399	7462	7525
688	7588	7652	7715	7778	7841	7904	7967	8030	8093	8156
689	8219	8282	8345	8408	8471	8 5ั34	8597	8660	8723	8786
690	8849	8912	8975	9038	9109	9164	9227	9289	9352	9415
691	9478	9541	9604	9667	9729	9792	9855	9918	9981	. . 43
692	840106	0169	0232	0294	0357	0420	0482	0545	0608	0671
693	0733	0796	0359	0921	0984	1046	1109	1172	1234	1297
694	1359	1422	1485	1547	$\begin{array}{r} 1610 \\ 62 \end{array}$	1672	1735	1797	1860	1922
695	1985	2047	2110	2172	2235	2297	2360	2422	2484	2547
696	2609	2672	2734	2796	2859	2921	2983	3046	3108	3170
697	3233	3295	3357	3420	3482	3544	3606	3669	3731	3793
698	3855	3918	3980	4042	4104^{-}	4166	4229	4291	4353	4415
699	4477	4539	4601	4664	4726	4788	4850	4912	4974	5036

16	LOGARITHMS									
N.	0	1	2	3	4	5	6	7	8	9
750	875061	5119	5177	5235	5293	5351	5409	5466	5524	5582
751	5640	5698	5756	5813	5871	5929	5987	6045	6102	6160
752	6218	6276	6333	6391	6449	6507	6564	6622	6680	6737
753	6795	6853	6910	6968	7026	7083	7141	7199	7256	7314
754	7371	7429	7487	7544	7602 57	7659	7717	7774	7832	7889
755	7947	8004	8062	8119	8177	8234	8292	8349	8407	8464
756	8522	8579	8637	8694	8752	8809	8866	8924	8981	9039
757	9096	9153	9211	9268	9325	9383	9440	9497	9555	9612
758	9669	9726	9784	9841	9898	9956	. . 13	. . 70	. 127	. 185
759	880242	0299	0356	0413	0471	0528	0580	0642	0699	0756
760	0814	0871	0928	0985	1042	1099	1156	1213	1271	1328
761	1385	1442	1499	1556	1613	1670	1727	1784	1841	1898
762	1955	2012	2069	2126	2183	2240	2297	2354	2411	2468
763	2525	2581	2638	2695	2752	2809	2866	2923	2980	3037
764	3093	3150	3207	3264	3321	3377	3434	3491	3548	3605
765	3661	3718	3775	3832	3888	3945	4002	4059	4115	4172
766	4229	4285	4342	4399	4455	4512	4569	4625	4682	4739
767	4795	4852	4909	4965	5022	5078	5135	5192	5248	5305
768	5361	5418	5474	5531	5587	5644	5700	5757	5813	5870
769	5926	5983	6039	6096	6152	6209	6265	6321	6378	6434
770	6491	6547	6604	6660	6716	6773	6829	6885	6942	6998
771	7054	7111	7167	7233	7280	7336	7392	7449	7505	7561
772	7617	7674	7730	7786	7842	7898	7955	8011	8067	8123
773	8179	8236	8292	8348	8404	8460	8516	8573	8629	8655
774	8741	8797	8853	8909	$\begin{array}{r} 8965 \\ 56 \end{array}$	9021	9077	9134	9190	9246
775	9302	9358	9414	9470	9526	9582	9638	9694	9750	9806
776	9862	9918	0974	. . 30	. . 86	. 141	. 197	. 253	. 309	. 365
777	890421	0477	0533	0589	0645	0700	0756	0812	0868	0924
778	0980	1035	1091	1147	1203	1259	1314	1370	1426	1482
779	1537	1593	1649	1705	1760	1816	1872	1928	1983	2089
780	2095	2150	2206	2262	2317	2373	2429	2484	2540	2595
781	2651	2707	2762	2818	2873	2929	2985	3040	3096	3151
782	3207	3262	3318	3373	3429	3484	3540	3595	3651	3706
783	3762	3817	3873	3928	3984	4039	4094	4150	4205	4261
784	4316	4371	4427	4482	4538	4593	4648	4704	4759	4814
785	4870	4925	4980	5036	5091	5146	5201	5257	5312	5367
786	5423	5478	5533	5588	5644	5699	5754	5809	5864	5920
787	5975	6030	6085	6140	6195	6251	6306	6361	6416	6471
788	6526	6581	6636	6692	6747	6802	6857	6912	6967	7022
789	7077	7132	7187	7242	7297	7352	7407	7462	7517	7572
790	7627	7683	7737	7792	7847	7902	7957	8012	8067	8122
791	8176	8231	8286	8341	8396	8451	8505	8561	8615	8670
792	8725	8780	8835	8890	8944	8999	9054	9109	9164	9218
793	9273	9328	9383	9437	9492	9547	9602	9656	9711	9766
794	9821	$98 \% 5$	9930	9985	. . 59	. 94	. 149	. 203	. 258	. 312
795	900367	0422	0476	0531	0586	0640	0695	0749	0804	0859
796	0913	0968	1022	1077	1131	1186	1240	1295	1849	1404
797	1458	1513	1567	1622	1676	1736	1785	1840	18.4	1948
798	2003	2057	2112	2166	2221	2275	2329	2384	2438	2492
799	2547	2601	2655	2710	2764	2818	2873	2927	2981	3036

OFNUMBERS. 17										
N.	0	1	2	3	4	5	6	7	8	9
800	903090	3144	3199	3253	3307	3361	3416	3470	3524	3578
801	3633	3687	3741	3795	3849	3904	3958	4012	4066	4120
802	4174	4229	4283	4337	4391	4445	4499	4553	4607	4661
803	4716	4770	4824	4878	4932	4986	5040	5094	5148	52012
804	5256	5310	5364	5418	5472 54	5526	5580	5634	5688	5742
805	5796	5850	5904	5958	6013	6066	6119	6173	6227	6281
803	6335	6389	6443	6497	6551	6604	6658	6712	6766	6820
807	6874	6927	6981	7035	7089	7143	7196	7250	7304	7358
808	7411	7465	7519	7573	7626	7680	7734	7787	7841	7895
809	7949	8002	80 ¢̆6	8110	8163	8217	8270	8324	8378	8431
810	8485	8539	8592	8646	8599	8753	8807	8860	8914	8967
811	9021	9074	9128	9181	9235	9289	9342	9396	9449	9503
812	9556	9610	9663	9716	9770	9823	9877	9930	9984	. 37
813	910091	0144	0197	0251	0304	0358	0411	0464	0518	0571
814	0624	0678	0731	0784	0838	0891	0944	0998	1051	1104
815	1158	1211	1264	1317	1371	1424	1477	1530	1584	1637
816	1690	1743	1797	1850	1903	1956	2009	2053	2115	2169
817	2222	2275	2323	2381	2435	2488	2541	2594	2645	2700
818	2753	2806	2859	2913	2966	3019	3072	3125	3178	3231
819	3284	3337	3390	3443	3496	3549	3602	3655	3708	3761
820	3814	3867	3920	3973	4026	4079	4132	4184	4237	4290
821	4343	4396	4449	4502	4555	4608	4660	4713	4766	4819
822	4872	4925	4977	5030	5083	5136	5189	5241	5594	5347
823	5400	5453	5505	5558	5611	5664	5716	5769	5822	5875
824	5927	5980	6033	6085	6138	6191	6243	6296	6349	6401
825	6454	6507	65559	6612	6664	6717	6770	6822	6875	6927
826	6980	7033	7035	7138	7190	7243	7295	7348	7400	7453
827	7505	7558	7611	7663	7716	7768	7820	7873	7925	7978
828	8030	8083	8185	8188	8240	8293	8345	8397	8450	8502
829	8555	8607	8659	8712	8764	8816	8869	8921	8973	9026
830	9078	9130	9183	9235	9287	9340	9392	9444	9496	9549
831	9601	9653	9706	9758	9810	9862	9914	9967	. 19	. 71
832	920123	0176	0228	0280	0332	0384	0436	0489	0541	0593
833	0645	0697	0749	0801	0853	0906	0958	1010	1052	1114
834	1166	1218	1270	1322	1374	1426	1478	1530	1582	1634
835	1686	1738	1790	1842	1894	1946	1998	2050	2102	2154
836	2206	2258	2310	2362	2414	2466	2518	2570	2622	2674
837	2725	2777	2829	2881	2933	2985	3037	3089	3140	3192
838	3244	3296	3348	3399	3451	3503	3555	3607	3658	3710
839	3762	3814	3865	3917	3969	4021	4072	4124	4147	4228
840	4279	4331	4383	4434	4486	4538	4589	4641	4693	4744
841	4796	4848	4899	4951	5003	5054	5103	5157	5209	5261
842	5312	5364	5415	5467	5518	5570	5621	5673	5725	5776
843	5828	5874	5931	5982	6034	6085	6137	6188	6240	6291
844	6342	6394	6445	6497	6548 52	6600	6651	6702	6754	6805
845	6857	6908	6959	7011	7032	7114	7165	7216	7268	7319
846	7370	7422	7473	7524	7576	7627	7678	7730	7783	7832
847	7883	7935	7986	8037	8088	8140	8191	8242	8293	8345
848	8396	8447	8498	8549	8601	8652	8703	8754	8805	8857
849	8908	8959	9010	9061	9112	9163	9216	9266	9317	9368

18	L O G A R ITHMS									
N.	0	1	2	3	4	5	6	7	8	9
850	929419	9473	9521	9572	9623	9674	9725	9776	9827	9879
851	9930	9981	. 32	. 83	. 134	. 185	. 236	. 287	. 338	. 389
852	930440	0491	0542	0592	0643	0694	0745	0796	0847	0898
853	0949	1000	1051	1102	1153	1204	1254	1305	1356	1407
854	1458	1509	1560	1610	$\begin{array}{r} 1661 \\ 51 \end{array}$	1712	1763	1814	1865	1915
855	1966	2017	2068	2118	2169	2220	2271	2322	2372	2423
856	2474	2524	2575	2626	2677	2727	2778	2829	2879	2930
857	2981	3031	3032	3133	3183	3234	3285	3335	3386	3437
858	3487	3538	3589	3639	3690	3740	3791	3841	3592	3943
859	3993	4044	4094	4145	4195	4246	4269	4347	4397	4448
860	4498	4549	4599	4550	4700	4751	4801	4852	4902	4953
861	5003	5054	5104	5154	5205	5255	5303	5356	5406	5457
862	5507	5558	5608	5658	5709	5759	5809	5860	5910	5960
863	6011	6061	6111	6162	6212	6262	6313	6363	6413	6463
864	6514	6564	6614	6665	6715	6765	6815	6865	6916	6966
865	7016	7056	7117	7167	7217	7267	7317	7367	7418	7468
866	7518	7568	7618	7668	7718	7769	7819	7869	7919	7969
867	8019	8069	8119	8169	8219	8269	8320	8370	8420	8470
868	8520	8570	8620	8670	8720	8770	8820	8870	8919	8970
869	9020	9070	9120	9170	9220	92.0	9320	9369	9419	9469
870	9519	9569	9616	9669	9719	9769	9819	9869	9918	9968
871	940018	0068	0118	0168	0218	0267	0317	0367	0417	0467
872	0516	0566	0616	0566	0716	0765	0315	0865	0915	0964
873	1014	1064	1114	1163	1213	1263	1313	1362	1412	1462
874	1511	1561	1611	1660	1710	1760	1809	1859	1909	1958
875	2008	2058	2107	2157	2207.	2256	2306	2355	2405	2455
876	2504	2554	2603	26.53	2702	2752	2801	2851	2901	2950
877	3000	3049	3099	3148	3198	3247	3297	3346	3396	3445
878	3495	3544	3593	3643	3692	3742	3791	3841	3890	3939
879	3989	4038	4088	4137	4186	4236	4285	4335	4384	4433
880	4483	4532	4581	4631	4680	4729	4779	4828	4877	4927
881	4976	5025	5074	5124	5173	5222	5272	5321	5370	5419
882	5469	5518	5567	5616	5665	5715	5764	5813	5862	5912
883	5961.	6010	6059	6108	6157	6207	6256	6305	6354	6403
884	6452	6501	6551	6600	6649	6698	6747	6796	6845	6894
885	6943	6992	7041	7090	7140	7189	7238	7287	7336	7385
886	7434	7483	7532	7581	7630	7679	7728	7777	7826	7875
887	7924	7973	8022	8070	8119	8168	8217	8266	8315	8365
888	8413	8462	8511	8560	8609	8657	8706	8755	8804	8853
889	8902	8951	8999	9048	9097	9146	9195	9244	9292	9341
890	9390	9439	9488	9536	9585	9634	9683	9731	9780	9829
891	9878	9926	9975	. 24	. .73	. 121	. 170	. 219	. 267	. 316
892	950365	0414	0462	0511	0560	0308	0657	0706	0754	0803
893	0851	0900	0949	0997	1046	1095	1143	1192	1240	1289
894	1338	1386	1435	1483	$\begin{array}{r} 1532 \\ 48 \end{array}$	1580	1629	1677	1726	1775
895	1823	1872	1920	1969	2017	2056	2114	2163	2211	2260
896	2308	2356	2405	2453	2502	2550	2599	2647	5696	2744
897	2792	2841	2889	2938	2986	3034	3083	3131	3180	3228
898	3276	3325	3373	3421	3470	3518	3566	3615	3663	3711
899	3760	3808	3856	3905	3953	4001	$40+9$	4098	4146	4191

LOGARITHMS

N.	0	1	2	3	4	5	6	7	8	9
950	977724	7769	7815	7861	7906	7952	7998	8043	8089	8135
951	8181	8223	8272	8317	¢363	8409	8454	8500	8546	8591
952	8637	8683	8728	8774	8819	8865	8911	8956	9002	9047
953	9093	9138	9184	9230	9275	9321	9366	9412	9457	9503
954	9548	9594	9639	9685	9730	9776	9821	986%	9912	9958
955	980003	0049	0094	0140	0185	0231	0276	0322	0367	0412
956	0458	0503	0549	0594	0340	0685	0730	0776	0821	0867
957	0312	0957	1003	1048	1093	1139	1184	1229	1275	1320
958	1366	1411	1456	1501	1547	1592	1637	1683	1728	1773
959	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226
960	2271	2316	2362	2407	2452	2497	2543	2588	2633	2678
961	2723	2769	2814	2859	2904	2949	2994	3040	3085	3130
962	3175	3220	3265	3310	3356	3401	3446	3491	3536	3581
963	3626	3671	3716	3762	3807	3852	3897	3942	3987	4032
964	4077	4122	4167	4212	4257	$43 J 2$	4347	4392	4437	4482
965	4527	4572	4617	4662	4707	4752	4797	4842	4887	4932
966	4977	5022	5067	5112	5157	5202	5247	5292	5337	5382
967	5426	5471	5516	5561	5606	5651	5699	5741	5786	5830
968	5875	5920	5965	6010	6055	6100	6144	6189	6234	6279
969	6324	6369	6413	6458	6503	6548	6593	6637	6682	6727
970	6772	6817	6861	6906	6951	6996	7040	7035	7130	7175
971	7219	7264	7309	7353	7398	7443	7488	7532	7577	7622
972	7666	7711	7756	7800	7845	7890	7934	7979	8024	8068
973	8113	8157	8202	8247	8291	8336	8381	8425	8470	8514
974	8559	8604	8648	8693	8737	8782	8826	8871	8916	8960
975	9005	9049	9093	9138	9183	9227	9272	9316	9361	9405
976	9450	9494	9539	9583	9628	967\%	9717	9761	9806	9850
977	9895	9939	9983	. . 28	. 72	. 117	. 161	. 206	. 250	. 294
978	990339	0383	0428	0472	0516	0561	0605	0650	0694	0738
979	0783	0827	0871	0916	0960	1004	1049	1093	1137	1182
980	1226	1270	1315	1359	1403	1448	1492	1536	1580	1625
981	1669	1713	1758	1802	1846	1890	1935	1979	2023	2067
982	2111	2156	2200	2244	2288	2333	2377	2421	2465	2509
983	2554	2598	2642	2686	2730	2774	2819	2863	2907	2951
984	2995	3039	3083	3127	3172	3216	3260	3304	3348	3392
985	3436	3480	3524	3568	3613	3657	3701	3745	3789	3833
986	3577	3921	3965	4009	4053	4097	4141	4185	4229	4273
987	4317	4361	4405	4449	4493	4537	4581	4625	4669	4713
988	4757	4801	4845	4886	4933	4977	5021	5065	5108	5152
989	5196	5240	5284	5328	5372	5416	5460	5504	5547	5591
990	5635	5679	5723	5767	5811	5854	5898	5942	5986	6030
991	6074	6117	6161	6205	6249	6293	6337	6380	6424	6468
992	6512	6555	6599	6643	6687	6731	6774	6818	6862	6906
993	6949	6993	7037	7080	7124	7168	7212	7255	7299	7343
994	7386	7430	7474	7517	$\begin{array}{r} 7561 \\ 44 \end{array}$	7605	7648	7692	7736	7779
995	7823	7867	7910	7954	7998	8041	8085	8129	8172	$8 ๕ 16$
996	8259	8303	8347	8390	8434	8477	8521	S5564	8608	8652
997	8695	8739	8792	8826	8869	8913	8956	9000	9043	9087
998	9131	9174	9218	9261	93305	9348	9392	9435	9479	9522
999	9565	9609	9652	9696	9739	9783	9826	98.10	9913	9957

TABLE II. Log. Sines and Tangents. (0°) Natural Sines.

,	Sine.	D 10"	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Colang.	N.sine.	N. \cos.	
0	0.000009		10.000000		0.000000		Infinite.	00000	100000	60
1	6.463726		000000		6.463726		13.536274	00029	100090	59
2	764753		030000		764756		235244	00058	100000	58
3	940347		009000		940847		059153	03087	1000: 0	57
	7.065786		030000		7.065786		12.934214	00116	10900	56
5	162696		000000		162696		837304	00145	100000	¢J
6	241877		9.999999		241878		758122	00175	100000	54
-	308824		939999		308825		691175	00204	100030	53
8	366816		999999		366817		633183	00233	100000	52
9	417968		999999		417970		582030	00262	100000	51
10	463725		999998		463727		536273	00291	100000	50
11	7.505118		9.999998		7.505120		12.494880	00320	99999	49
12	542903		999997		542909		457091	00349	99999	48
13	577668		999997		577672		422328	00378	99999	47
14	609853		999996		609857		390143	00407	99999	46
15	639816		999996		639820		360180	00436	99999	45
16	667845		999995		667849		332151	00465	99999	44
17	694173		999995		694179		305821	00495	99999	43
18	718997		999994		719003		280997	00524	99999	42
19	742477		999993		742484		257516	00553	99998	41
20	764754		999993		764761		235239	00582	99998	40
21	7.785943		9.999992		7.785951		12.214049	00611	99998	39
22	806146		999991		806155		193845	00640	99998	38
23	825451		999990		825460		174540	00669	99998	37
24	843934		999989		843944		156056	00698	99998	36
25	861663		999988		861674		138326	00727	99997	35
26	878695		999988		878708		121292	00756	99997	34
27	895085		999987		895099		104901	00785	99997	33
28	910879		999986		910894		089106	00814	99997	32
29	926119		999985		926134		073866	00844	99996	31
30	940842		999983		940858		059142	00873	99996	30
31	7.955082		9.999982		7.955100		12.041900	00302	99996	29
32	968870	2298	999981	0.2	968889	$\left.\begin{aligned} & 2298 \\ & 2227 \end{aligned} \right\rvert\,$	031111	00931	99996	28
33	982233	2161	999980	0.2	982253	2227 2161	017747	09960	99995	27
34	995198	2161 2098	999979	0.2 0.2	995219	2098	11004781	00989	99995	26
35	8.007787	2098 2039	999977	$0 \cdot 2$	8.007809	2098	11.992191	01018	99995	25
36	020021	1983	999976	$0 \cdot 2$	02004a		979955	01047	99995	24
37	031919	1983	999975	$0 \cdot 2$	031945	1983	958055	01076	99994	23
38	043501		999973		043527		956473	01105	99994	22
39	054781	1880	999972	$0 \cdot 2$	054809	1880 1833	945191	01134	99994	21
40	065776	1787	999971	0.2	065806	1787	934194	01164	99993	20
41	8.076500	1784	. 9999969	${ }_{0}{ }^{\circ} 2$	8.076531	1787	11.923469	01193	99993	19
42	086965	1744	999968	02	086997	1744	913003	01222	99993	18
43	097183	1664	999966	$0 \cdot 2$	097217		902783	01251	99992	17
44	107167	1664 1626	999964	0.2	107202	1664 1627	892797	01280	99992	16
45	116926	1591	999963		116963	1627 1591	883037	01309	99991	15
46	126471	1597	999961	0 0 0 0	126510	1591	873490	01338	99991	14
47	135810	1557	999959	0.3	135851	1557	864149	01367	99991	13
48	144953	1524	999958		144996		855004	01396	99990	12
49	153907	1492	999956	0.3	153952	1493	846048	01425	99990	11
50	162681		999954		162727		837273	01454	99989	10
51	8.171280	1433	9.999952	0.3	8.171328	1434	11.828672	01483	99989	9
52	179713	1405	999950	0.3	179763	1406	820237	01513	99989	8
53	187985	1379 1353	999948	0.3	188036	1379	811964	01542	99988	7
54	196102	1353	999946	0.3	196156	1353	803844	01571	99988	6
55	204070	1328 1304	999944	0.3 0.3	204126	1328	795874	01600	99987	5
56	211895	1304 1281	999942	0.3	211953	1304	788047	01629	99987	4
57	219581	1281	999940	0.4	219641	1281	7803 99	01658	99986	3
58	227134	1259	999938	0.4	227195	1259	772805	01687	99986	2
ธ9	234557	1237	999936	0.4	234621	1238	765379	01716	99985	1
60	241855	1216	999934	0.4	241921	1217	758079	01745	99985	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N. sine.	'

89 Degrees.

22		Log. Sines and Tangents. (1°)				Natural Sines.		TABLEE II.		
	Sine.	D. $10^{\prime \prime}$	osine	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	sine.	N. cos.	
0	8.241855		9.999934		8.241921		11.758079	01742	99985	60
1	249033		999932	. 4	249102	1177	750898	01774	99984	59
2	256094	1158	939929	. 4	256165	1158	743835	01803	99984	58
3	263042	1149	99927	0.4	263115	1140	736885	01832	${ }_{9}^{99983}$	57
4	269881	1122	25	0.4	269956	1122	730044	01862	99983	
5	276514	1105		0.4	283323	105	723309	01920		55
6	28				289856		71014	01949		54
8	29620		999915		296292		703708	01978	99980	5
9	3025		999913		302634	1057	697366	02007	99980	51
10	308794	1027	999910		308884	1037	691116	02036	99979	50
11	8.314954	1012	9.999907	0.4	8.315046	1013	11.684954	02065	99979	49
12	321027		999905	- 4	321122	1013	678878	02094	99978	48
13	32701	985	99	0.4	27114	985	72886	02123	99977	47
14	332924	971	99899	0.5	333025	972	6669 尔	02152	99977	46
15	338753	959	99897	0.5	333856	959	661144	02181	99976	45
16	344504	946	99894	0.5	344610	946	6553971	02211	99976	44
17	350181	934	91	0.5	350289	34	649711			
18	355783	922		0.5		22		02298		1
19	361	910	999882		366895	911	633105	02327	99973	40
21	8.372171	899	0.999879		8.372292	899	11.627708	02356	94972	39
22	377499		999876	0.5	377622		622378	0238	99972	38
23	382762		999873		382889		617111	0241	99971	37
24	387962		999870	0.5	388092.	857	611908	024	99970	36
25	393101	846	999867	0.5	393234	847	067			35
26	398179	837	988	0.5	983	837	601685			34
	40	827	999861	0.5	403338	828	596662			3
28	408161	18	999858	5	88304	818	1696	0256	9967	
29	413068	809	854	0.5	413213	809	586787	025	99966	
30	417919	800								0
31	8.422717	791	9.999848 999844	$0 \cdot 6$. 422	791	11.57831			8
33	432156	782	999841	6	432315	783	567685	02705	99963	27
34	436800	774	999838	0.6	436962	774	563038	02734	99963	26
35	441394	758	999834	0.6	441560	75	558440	02763	99962	25
36	445941		999831		446110		553890	02792	99961	24
37	450440	742	999827	0.6	450613	743	549387	02821	99960	23
38	45489	735	98	0.6	4550	735	544930	02850	99959	22
39	459301	727	-	0.6		728	540519	028	99959	21
		0	999816		463849	720	536151	0290	99958	20
41	8.46798	12	9.999812		8.468172	713	11.531828	0293	99957	19
42	47220		99980	. 6	472454	707	527546	0296	99956	18
43	47649	699	9805	0.6	4766	700	523307	0299	99955	17
	480693	692	999801	0.6	480892	693	519108	0302	99954	16
45	484848		999797	0.7	485050	686	514950	0305	99953	15
46	48890	679	999793 999790	$0 \cdot 7$	489170	680	510830	03		
47	493	673		0.7		674				
	50108	667		0.7	01298	668	498702	031	99995	12
50	5050		9997		505267	655	494733	031	99949	10
51	8.508974		. 99977		8.509200	650	11.490800	032	99948	9
52	512867		999769		513098		486902	032	9947	8
53	516726		999765		516961		483039	0328	99946	7
54	520551		999761		520790	633	479210	0331	39945	6
55	524343		999757		24586	627	475414	0334	9944	5
56	528102	621	999753	0.7	528349	622	471651	03374	99943	4
57	531828		999748	0.7	532080	616	467920	03403	${ }_{9} 99942$	2
58	535523	611	99744	0.7	535779	611	464221	03432	9941	2
60	542819	611	999735	.	539447	606	460553 456916	$\begin{aligned} & 0346 \\ & 034 \end{aligned}$	940	1 0
Cosine.			sine.		Cotan		Tang.	N. cos.	N.sine.	
88 Degrees.										

TABLE II. Log. Sines and Tangents. (2°) Natural Sines.

	Sıе.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Trang.	D. $10^{\prime \prime}$	Cotang.	N. sine.	N. cos.	
0	8.542819	600	9.999735	0.7	8.543084	60	11.456916	03490	99939	60
	546422	595	999731	0.7	546691	593	453309	03519	99938	59
2	549995	595	999726	0.7	550268	593	449732	03548	9393 í	58
3	553539		999722	0.7	553817	587	446183	03577	99936	57
4	557054	586.	999717	0.8	557335	587	442664	03606	99935	56
5	560540	576	999713	$0 \cdot 8$	560828	577	439172	03635	99934	55
6	563999	572	999708	$0 \cdot 8$	564291	573	435709	03664	99933	54
7	567431	562	999704	0.8	567727	573	432273	03693	99932	53
8	570836	563	999699	0.8 0.8	571137	564	428863	03723	99931	52
9	574214	50	999694	0.8 0.8	574520	564 559	425480	03752	99930	51
10	577566	554	999689	0.8	577877	555	422123	03781	99929	5 C
11	8.580892	554	9.999685	0.8	8.581208	ธ55	11.418792	03810	99927	49°
12	584193	546	999680	0.8 0.8	584514	547	415486	03839	99926	48
13	587469	542	999675	0.8	587795	543	412205	03868	99925	47
14	590721	542	999670		591051	b4	408949	03897	99924	46
15	593948	534	999665	0.8	594283	535	405717	03926	99923	45
16	597152	534	999660	0.8	597492	530	402508	03955	90922	44
17	600332	526	999655	0.8	600677	527	399323	03984	99921	43
18	603489	526	999650	0.8	603839	527	396161	04013	99919	42
19	606623	519	999645	0.8	606978	519	393022	04042	99918	41
20	609734	515	999640	0.8	610094		389906	04071	99917	40
21	8.612823	515	9.999635		8.613189	516	11.386811	04100	93916	39
22	615891	508	999629	0.9	616262	508	383738	03129	99915	38
23	618937	504	999324	0.9	619313	508	380687	04159	99913	37
24	621962	501	999619	$0 . \dot{9}$	622343	501	377657	04188	99912	36
25	624965	497	999614	0.9	625352	501	374648	04217	99911	35
26	627948	494	999608	0.9	628340	495	371660	04246	99910	34
27	630911	490	999603	0.9	631308	495	368692	04275	99909	33
28	633854	490	999597		634256		365744	04304	99907	32
29	636776	484	999592	0.9	637184	485	362816	04333	99906	31
30	639680	484	999586	0.9	640093	485	359907	04362	99905	30
31	8.642563	7	9.999581	0.9	8.642982	47	11.357018	04391	99904	29
32	645498	474	999575		645853	47	354147	04420	99902	28
33	648274	471	999570	0.9	648704	475 472	351296	04449	99901	27
34	651102	468	999564	0.9 0.9	651537	472	348463	04478	99900	26
35	653911	468	- 999558	1.9 1.0	654352	466	345648	04507	99898	25
36	656702	462	999553	1.0	657149	463	342851	04536	99897	24
37	659475	459	999547	.	659938	46	340072	04565	99896	23
38	662230	456	999541	1.0	662689	457	337311	04594	99894	22
39	664968	453	999535	1.0	665433	457	334567	04623	49893	21
40	667689	451	999529	1.0	668160	453	331840	04653	99892	20
41	8.670393	448	9.999524	1.0	8.670870	449	11.329130	04682	99890	19
42	673080	448	999518		673563	4	326437	04711	99889	18
43	675751	442	999512	1.0	676239	446	323761	04740	99888	17
44	678405	442	999506	1.0	678900	443	321100	04769	99886	16
45	681043	437	999500	1.0	681544		318456	04798	99885	15
46	683665	434	999493	1.0	684172	438	315828	04827	99883	14
47	686272	432	999487	1.0	$6 \cdot 6784$	433	313216	04856	99882	13
48	688863	429	999481	1.0	689381	433	310619	04885	99881	12
49	691438	429	999475		691963	4	308037	04914	99879	11
50	693998	424	999469	1.0	694529	42	305471	04943	99878	10
51	8.696543	424	9.999163	1.0	8.697081	42	11.302919	04972	99876	9
52	699073		999456		699617		300383	05001	99875	8
53	701589		999450		702139	420	297861	05030	99873	7
54	704090	417	999443	1	704246	418	295354	05059	99872	6
55	706577	412	999437		707140	415	292860	05088	99870	-
56	709049	410	999431	1.1	709618	413	290382	05117	99869	4
57	711507	407	999424	1.1	702083	411	287917	05146	99867	3
58	713952	405	999418	1.1	714534	408	285465	05175	99866	2
59	716383	405	999411		716972		283028	05205	99864	1
60	718800	403	999404	1.1	719396	404	280604	05234	99863	0
	cosine.		Sine.		Cotang.		'T'ang.	N. cos.	N.sine.	

87 Degrees.

Log. Sines and Tangents. (3) Natural Sines. TABLE II.

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	N. sine.	N. cos.	
0	3.718800		9.999404		8.719396		11.280604	05234	99863	60
1	721204	401	999398	1.1	721806	402	278194	05263	99861	59
2	723595	398	999391	1.1	724204	399	275796	05292	99860	58
3	725972	394	999384	1.1	726588	395	273412	05321	99858	57
4	728337	394	999378	1.1	728959	395	271041	05350	99857	56
5	730688		999371	1.1	731317		268683	05379	99855	55
6	733027	388	999364	1.1	733663	389	266337	05408	99854	54
7	735354	388 386	999357	1.2	735996	387	264004	05437	99852	53
8	737667	384	999350	1.2	738317	385	261683	05466	99851	52
9	739969	384 382	999343	1.2 1.2	740326	383	259374	05495	99849	51
10	742259	382	999336	1.2	742922	381	257078	05524	99847	50
11	8.744536	380	9.999329	1.2	8.745207	379	11.254793	05553	99846	49
12	746802		999322	2	747479	3	252521	05582	99844	48
13	749055	374	999315	1.2 1.2	749740	375	250260	05611	99842	47
14	751297	374 372	999308	1.2	751989	375 373	248011	05640	99841	46
15	753528	372 370	999301	1.2	754227	371	245773	0د669	99839	45
16	755747	368	999294	1.2	756453	369	243547	05698	99838	44
17	757955	368	999286	1.2	758668	36	241332	05727	99836	43
18	760151	364	999279	1.2	760872	365	239128	05756	99834	42
19	762337	364	999272	1.2	763065	365	236935	05785	99833	41
20	764511	361	999265	1.2	765246	362	234754	05814	99831	40
21	8.766675	361	9.999257	1.2	8.767417	362	11.232583	05844	99829	39
22	768828		999250		769578	360	230422	05873	99827	38
23	770970	357	999242	1.3	771727	35	228273	05902	99826	37
24	773101		999235		773866		226134	05931	99824	36
25	775223	352	999227	1.3	775995	35	224005	05960	99822	35
26	777333	352	999220		778114	353	221886	05989	99821	34
27	779434	350	999212	1.3	780222	351	219778	06018	99819	33
28	781524	348	999205	1.3	782320	3	217680	06047	99817	32
29	783605		999197		784408		215592	06076	99815	31
30	785675		999189	1.3	786486		213514	06105	99813	30
31	8.787736		9.999181		8.788554		11.211446	06134	99812	29
32	789787	340	999174		790613		209387	06163	99810	28
33	791828	340	999166	1.3	792662	34	207338	06192	99808	27
34	793859	337	999158	1.3	794701	348	205299	06221	99806	26
35	795881	337	999150	1.3	796731	338	203269	06250	99804	25
36	797894		999142		798752		201248	06279	99803	24
37	799897	33	999134	1.3	800763		199237	06308	99801	23
38	801892		999126	1.3	802765		197235	06337	99799	22
39	803876	329	999118	. 3	804858	331	195242	06366	99797	21
40	805852	329	999110		806742	331	193258	06395	99795	20
41	8.807819		9.999102		8.808717	32	11.191283	06424	99793	19
42	809777		999094		810683	328	189317	06453	99792	18
43	811726		999086		812641		187359	06482	99790	17
44	813667		999077	1.4	814589	325	185411	06511	99788	16
45	815599	322	999069	1.4	816529	323	183471	06540	99786	15
46	817522		999061	1.4	818461	32	181539	06569	99784	14
47	819436	319	999053	1.4	820384	320	179616	06598	99782	13
48	821343	316	999044	1.4	822298	319	177702	06627	99780	12
49	823240	316	999036	1.4	824205	318	175795	06656	99778	1
50	825130		999027		826103		173897	06685	99776	10
51	8.827011	313	9.999019	1.4	8.827992	315	11.172008	06714	99774	9
52	828884	312	999010		829874	314	170126	06743	99772	8
53	830749		999002	1.4	831748	312	168252	06773	99770	7
54	832607	309	998993	1.4	833613	311	166387	06802	99768	6
55	834456	307	998984		835471	310	164529	06831	99766	5
56	836297	307	998976	1.4	837321	308	162679	06860	99764	4
57	838130		998967		839163	307	160837	06889	99762	3
58	839956		998958		840998	306	159002	06918	99760	2
59	841774		998950		842825		157175	06947	99758	1
60	843585	302	998941	1.5	844644	303	155356	06976	99756	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	1

TABLEF II. Log. Sines and Tangents. (4) Naluial Sines.

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	T	D. $10^{\prime \prime}$	Cotang.			
0	8.84		9.998941	1.5	8.844644		11.155356		6	60
1	845357	-	998932		846455	301	153545	07005	99754	59
2	847183	299	998923		848260	301	151740	07034	52	58
3	848971	29	998914		850057	29	149943	07063	99750	5
4	850751		998905		851846		148154	07092	99748	56
5	852525	29	998896		853628	293	146372	07121	99746	55
6	854291	293	998887		855403	29	144597	07150	4	54
7	856049	292	998878	.	857171	293	142829	07179	42	53
8	857801	291	998869	.	85893	292	41068	07208	0	52
9	859546	290	998860		860586	291	139314	07237	738	51
10	861283	288	998851		862	290	56	0726	736	50
11	8.863014		9.998841		8.864173		11.135827	07295	734	49
12	864738		998832		865906	288	134094	07324	731	48
13	866455		998823		867632		132368	07353	9729	47
14	868165	284	998813		869351	285	30649	07382	27	46
15	869868	283	998804		871034	285	128936	07411	725	45
16	871565	282	998795	1.6	872770	283	27239	07440	23	44
17	873255	282	998785	1.6	874469	282	25531	07469	719	3
18	874938	279	998776	1.6	876162	281	23838	07498	719	42
19	876615	279	98766	1.6	87784	280	22151	0752	716	
20	878285	277	998757		879529	279	120471	075	11	40
21	8.879949	6	9.998747		.	278	11.118798	0758	712	39
22	881607		998738		88286	27	117131	0761	710	38
23	883258	274	998728	. 6	884530	276	115470	07643	9708	37
24	- 884903	+	998718		88618	27	13815	0767	705	36
25	886542		998708		887833		112167	0770	703	35
26	888174		98699		88947	27	10524	0773	9701	34
27	889801		998689		891112		08888	0775	99	33
28	891421		998679		892742	27	107258	07788	696	32
29	893035		998669		894366		05634	0781	694	
30	894643		998659		895984	26	104016	078	992	30
31	8.896246	266	9.998649	1.7	8.897596	268	11.102404	07875	9689	0
32	897842		998639		899203		100797	07904	99687	28
33	899432	26	998629	1.7	00803	266	09197	07933	99685	27
34	901017		998619	1.7	902398	265	097602	07962	99683	26
35	902596	262	998609	1.7	0398	264	09013	07991	99680	
33	904169		998599		905570		094430	08020	888	
37	905736	0	998589	1.7	907147	262	92853	08049	676	23
38	907297		998578	1.7	908719	262	91281	08078	9673	
39	908853	258	98568	1.7	91028	260	089715	0810	671	
40	910404	258	998558	1.7	9118	260	088154	08136	99668	1
41	8.911949		9.998548		8.913401		11.086599	08165	9666	19
42	913488	256	998537		914951	25	085049	0819	9664	18
43	915022	256	998527		916495	2	083505	08223	9661	
44	916550		998516	1.8	918034		081966	08252	9659	16
45	918073		998505		919568		080432	08281	65	
46	919591	252	998495	1.8	921096	254	78904	08310	99654	
47	921103	202	998485	1.8	922619	254	77381	08339	9652	
48	922610		998474		924136		75864	08368	99649	
49	924112	249	998464		925649		074351	08397	964	10
$5!$	925609		998453		927156		072844	08426	64	10
51	\&.927100		9.998442		928658	249	11.071342	0845	642	
6	928587		998431		930155		069845	0848	639	
53	930038	2.15	998421	1.8	931647	248	068353	0851	9637	
53	931544	2	998410	1.8	933134	247	66866	085	9635	
55	933015	244	998399	1.	934616	2.16	65384	08571	63:	
56	934481	24	C98388	1.	36093	245	63907	08600	630	
57	935. 4		998377		937565		62435	0862	\%2.	
58	937398	242	998366		939032	244	060968	08658	9625	
59	938850	~42	998355		940494	243	059506	0868	9622	
60	940296	2	998344	1.8	941952		80		99619	
	Cosine.		Sine.		Cotang.		Tang.	N.	N.sine.	

Log. Sines and Tangents. (5) Natural Sines. TABLE II.

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	T Ta	D. $10^{\prime \prime}$	Cotang.	N.		
0	8.940296		9.998344		8.941952	2	11.058048	08716	996	60
1	941738	239	993333	1.9	943404	242	056596	08745	99617	59
2	943174	239	998322		944852		055148	08774	99614	58
3	944606	238	998311	1.9	946295	240	053705	08803	99612	57
4	946034	238	998300	1.9	947734	240	052266	08831	99609	56
5	947456	236	998289	1.9	949168	238	050832	08860	99607	55
6	94887	235	998277	1.9	950597	237	049403	08889	99604	54
7	950287	235	998266	1.9	952021	237	047979	08918	99602	53
8	951696	234	998255	1.9	953441	236	046559	08947	99599	52
9	953100	234	998243		954856	236	0.45144	08976	99596	51
10	954499	232	998232	9	956267	234	043733	09005	99594	50
11	8.955894	232	9.998220	1.9	8.957674	234	11.042326	09034	99591	49
12	957284	231	998209	1.9	959075	233	040925	09063	99588	48
13	958670	230	998197	1.9	960473	232	039527	09092	9958	47
14	969052	229	998186	1.9	961866	231	038134	09121	99583	46
15	961429	229	998174	1.9	963255	231	036745	09150	99580	45
16	962801	228	998163		964639	231	035361	09179	99578	44
17	964170	227	998151	1.9	966019	229	033981	09208	99575	43
18	965534	227	998139	1.9	967394	229	032606	09237	99572	42
19	966893	226	998128	2.0	968766	228	031234	09266	99570	41
20	968249	225	998116	2.0	970133	227	029867	0929	9567	40
21	8.969600	225	9.998104		8.971496	227	11.028504	0932	9564	39
22	970947	224	998092		972855	226	027145	0935	99562	38
23	972289	224	998080		974209	226	025791	0938	9559	37
24	973628	222	998068		975560	224	024440	0941	99556	36
25	974962	222	998056		976906	224	025094	0944	9553	35
26	976293	221	998044	2.0	978248	223	021752	09469	99551	34
27	977619	220	998032	2.0	979586	222	020414	09498	99548	33
28	978941	220	998020	2.0	980921	222	019079	09527	99545	32
29	980259		998008	2.0	982251	221	017749	0955	99542	31
30	981573		997996		983577		016423	0958	99540	30
31	8.982883	218	9.997984		8.984899		11.015101	0961	537	29
32	984189	218	$9979{ }^{\circ} 2$		986217	22	013783	0964	99534	28
33	9855491	6	997959	2. 0	987532		012468	0967	9531	27
34	986789		997947	2.0	988842		011158	0970	99528	26
35	988083		997935	2.0	990149	21	099851	0972	99526	25
36	989374		997922	2.1	991451		008549	0675	99523	24
37	990660	214	997910	2.1	992750		007250	0978	550	23
38	991943	14	997897	2.1	994045	21	005955	0981	99517	22
39	993222		997885		995337	21	004663	0984	9514	21
40	994497	212	997872	2.1	996624	21	003376	0987	99511	20
41	3.995768	212	9.997860	2.1	8.997908	21	11.002092	0990	99508	19
42	997036	211	997847	2.1	999188	213	000812	0993	99505	18
43	998299	211	997835	2.1	9.000465	213	10.999535	0996	99503	17
44	999560		997822	2	001738		998262	0999	99500	16
45	3. 000816		997809		003007		996993	10019	99497	15
46	002039		997797		004272		995728	1004	99494	14
47	003318		997784	2.1	005534	210	994466	1007	99491	13
48	004563		997771	2.1	006792	21	993208	1010	488	12
49	005805	206	997758	2.1	008047	208	991953	1013	99485	11
56	0.7044	206	997745	2.1	009298	208	990702	1016	482	10
51	9.003278	205	9.997732		9.010546	207	10.989454	1019	479	9
52	009510	205	997719	2.1	011790	207	988210	1022	476	8
53	010737	2	997706	2.1	013031		686969	1025	99473	7
54	011962	20	997693	2.1	014268	206	985732	10279	470	6
55	013182	20	997680	2.2	015502	206	984498	1030	99467	5
56	014400	202	997667	2.	016732	204	983268	1033	99464	4
57	015613	202	997654	2.	017959	204	983041	10366	99461	3
58	016824	201	997641	2.2	019183	2i)	980817	10395	99458	2
59	018031	201	997628	2.2	020403	20	979597	1042	99455	1
60	019235	201	997614	2.2	021620	20	978380	10453	452	0
	Cosine.		e.		Cotang.		Tang.	N. cos.	N.sine.	T
84 D-grees.										

TABLE II. Log. Sines and Tangents. (6") Natural Sines.

,	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10{ }^{\prime \prime}$	Cotang.	N. sine.	N. \cos.	
0	9.019235	200	9.997614	2.2	9.021620	202	10.978380	10453	99452	60
1	020435	19	997601	2.2	022834		977166	10482	99449	59
2	021632	199	997588	2.2	024044	201	975956	10511	99446	58
3	022825		997574		025251	201	974749	10546	99443	57
4	024016	198	997561	2.2 2.2	026455	200	973545	10569	99440	56
5	025203		997547	2.2	027655	199	973345	1059;	99437	¢5
6	026386	197	997534	2.3	028852	199	971148	10626	99434	54
7	027567	19	997520	2.3	030046	198	969954	10655	99431	53
8	028744	196	997507	2.3	031237	198	968763	10684	99428	52
9	029918	195	997493	$2 \cdot 3$	032425	197	967575	10713	99424	51
10	031089	195	997480	$2 \cdot 3$	033609	197	966391	10742	99421	50
11	9.032257	194	9.997466	$2 \cdot 3$	9.034791	196	10.965209	10771	99418	49
12	033421	194	997452	2.3	035969	196	964031	10800	99415	48
13	034582	193	997439	2.3	037144	195	962856	10829	99412	47
14	035741	192	997425	2.3	038316	195	961684	10858	99409	46
15	036896	192	997411	2.3	039485	194	960515	10887	99406	45
16	038048	191	997397	$2 \cdot 3$	040651	194	959349	10916	99402	44
17	039197	191	997383	2.3	041813	193	958187	10945	99399	43
18	040342	190	997369	$2 \cdot 3$	042973	193	957027	10973	99396	42
19	041485	190	997355	$2 \cdot 3$	044130	192	955870	11002	99393	41
20	042625	189	-997341	2.3	- 045284	192	10.954716	11031	99390	40
21	9.043762	189	9.997327	2.4	9.046434	191	10.953566	11060	99386	39
22	044895	180	997313	2.	047582	191	952418	11089	99383	38
23	046026	188	997299	2.4	048727	190	951273	11118	99380	37
24	047154	187	997285	2.4	049869	190	950131	11147	99377	36
25	048279	187	997271	2.4	051008	189	948992	11176	99374	35
26	049400	186	997257	2.4	032144	189	947856	11205	993.0	34
27	050519	186	997242	2.4	053277	188	946723	11234	09367	33
28	051635	185	997228	2.4	054407	188	945593	11263	99364	32
29	052749	185	997214	2.4	055535	187	944465	11291	99360	31
30	053859	184	997199	$2 \cdot 4$	056659	187	943341	11320	99357	30
31	9.054966	184	9.997185	2	9.057781	186	10.942219	11349	99354	9
32	056071	184	997170	2.4	058900	186	941100	11378	99351	8
33	057172	183	997156	2.4	060016	185	939984	11407	99347	7
34	055271	183	997141	2.4	061130	185	938870	11436	99344	26
35	059367	182	997127	2.4	052240	185	937760	11465	99341	25
36	060460	182	997112	2.4	063348	184	936652	11494	99337	24
37	061551	181	997098	2.4	064453	184	935547	11523	99334	23
38	062639	181	997083	2.5	0655656	183	934444	11552	99331	22
39	063724	180	997068	2.5	066655	183	933345	11580	99327	21
40	064806	180	997053	2.5	067752	182	932248	11609	99324	19
41	9.065885	179	9.997039	$2 \cdot 5$	9.068846	182	10.931154	11638	99320	19
42	066962	179	997024	$2 \cdot 5$	069038	181	930062	11667	99317	18
43	068036	179	997009	2.5	071027	181	928973	11696	99314	17
44	069107	178	996994	2.5	072113	181	927887	11725	99310	16
45	070176	178	996979	2.5	073197	180	926803	11754	99307	15
46	071242	177	996964	2.5	074278	180	925722	11783	99303	14
47	072306	177	996949	2.5	075356	179	924644	11812	99300	13
48	073366	176	996934	2.5	076432	179	923568	11840	99297	12
49	074424	176	996919	2.5	077505	178	922495	11869	99293	11
50	075480	175	996404		078576	178	921424	11898	99290	10
51	9.076533	17.	9.996889	2.5	9.079644	178	10.920356	11927	99286	9
52	077583	175	996874	2.5	080710	177	919290	11956	99283	8
53	078631	174	996858	2.5	081773	177	918227	11985	99279	7
54	079676	174	996843	2.5	082833	176	917167	12014	99276	6
55	080719	173	996828		083891	176	916109	12043	99272	5
56	081759	173	996812	2.6	084947	175	915053	12071	99269	4
57	082797	172	996797	2.6	086000	175	914000	12100	99265	3
58	083832	172	996782		087050	175	912950	12129	99262	2
69	084864	172	996766	2.6	088098	174	911902	12158	99258	1
60	085894	172	996751	2.6	089144		910856	12187	39255	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos	N.sine.	,

Log. Sines and Tangents. (7) Natural Sines.
TABLE II.

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	N. sine.	N. cos.	
0	9.085894	171	9.996751	2.6	9.089144	17	10.910856	12187	99255	60
1	086922	171	996735	2.6	090187	173	909813	12216	99251	59
2	057947	170	996720	2.6	091228	173	908772	12245	99248	58
3	088970	170	996704	2.6	092266	173	907734	12274	99244	57
4	089990	170	996688	2.6	093302	172	906698	12302	99240	56
5	091008	169	996673	2.6	094336	172	905664	12331	99237	55
6	092024	169	996657	2.6	09 ธั367	171	904633	12360	93233	54
7	093037	168	996641	2.6	096395	171	903605	12389	99230	53
8	034047	168	996625	2.6	097422	171	902578	12418	99226	52
9	095056	168	996610	2.6	098446	170	901554	12447	99222	51
10	096062	167	996594	2.6	099468	170	900532	12476	99219	50
11	9.097055	167	9.996578	2.7). 100487	169	10.899513	12504	99215	49
12	038056	166	996562	2.7	101504	169	898496	12533	99211	48
13	099065	166	996546	2.7	102519	169	897481	12562	99208	47
14	100062	166	996530	2.7	103532	168	896468	12591	99204	46
15	101056	165	996514	2.7	104542	168	895458	12620	99200	45
16	102048	165	996498	2.7	105550	168	894450	12649	99197	44
17	103037	164	996482	2.7	106556	167	893444	12678	99193	43
18	104025	164	996465	2.7	107559	167	892441	12706	99189	42
19	105010	164	996449	2.7	108560	166	891440	12735	99186	41
20	105992	163	996433	2.7	109559	166	890441	12764	99182	40
21	9.106973	163	9.996417	2.7	9.110556	166	10.889444	12793	99178	39
22	107951	163	996400	2.7	111551	165	888449	12822	99175	38
23	108927	162	996384	2.7	112543	165	887457	12851	99171	37
24	109901	162	996368	2.7	113533	165	886467	12880	99167	36
25	110873	162	996351	2.7	114521	164	885479	12908	99163	35
26	111842	161	996335	2.7	115507	164	884493	12937	99160	34
27	112809	161	996318	2.7	116491	164	883509	12966	99156	33
28.	113774	160	996302	2.8	117472	163	882528	12995	99152	32
29	114737	160	996285	2.8	118452	163	881548	13024	99148	31
30	115698	160	996269	2.8	119429	162	880571	13053	99144	30
31	9.116656	159	9.996252	2.8	9.120404	162	10.879596	13081	99141	29
32	117613	159	996235	2.8	121377	162	878623	13110	99137	28
33	118567	159	996219	2.8	122348	161	877652	13139	99133	27
34	119519	158	996202	2.8	123317	161	8766683	13168	99129	26
35	120469	158	996185	2.8	124284	161	875716	13197	99125	25
36	121417	158	996168	2.8 2.8	125249	160	874751	13226	99122	24
37	122362	158	996151	2.8	126211	160	873789	13254	99118	23
38	123306	157	996134	2.8	127172	160	872828	1328319	99114	22
39	124248	157	996117	2.8	128130	159	871870	13312	99110	21
40	125187	156	996100	2.8	129087	159	870913	13341	99106	20
41	9.126125	156	9.996083	2.8	9.130041	159	10.869959	18370	99102	19
42	127060	156	996066	2.9 2.9	130994	158	869006	13399	99098	18
43	127993	155	996049	2.9	131944	158	868056	13427	99094	17
44	128925	155	996032	2.9	132893	158	867107	13456	99091	16
45	129854	154	996015	2.9	133839	157	866161	13485	99087	15
46	130781	154	995998	2.9	134784	157	865216	13514	99083	14
47	131706	154	995980	2.9	135726	157	864274	13543	99079	13
48	132630	153	995963	2.9	136367	156	863333	13572	99075	12
49	133551	153	995946	2.9	137605	156	862395	136009	99071	11
50	134470	153	995928	2.9	138542	156	861458	13629	99067	10
51	9.135387	152	9.995911	2.9 2.9	9.139476	155	10.860524	13658	99063	9
52	136303	152	995894	2	140409	155	- 859591	13687	99059	8
53	137216	152	995876	2. 9	141340	155	858660	13716	99055	7
54	138128	152	995859	2.9	142269	154	857731	13744	99051	6
55	139037	151	995841	2.9	143196	154	856804	13773	99047	5
56	139944	151	995823	2.9	144121	154	855879	13802	99043	4
57	140850	151	995806	$\stackrel{2}{2.9}$	145044	153	854956	13831	99039	3
58	141754	150	995.88	2.9	145966	153	854034	13860	99035	2
59	142655		995771	2.9	146885	15	853115	$13885{ }^{4}$	99031	1
60	143555	1.	995753	2.9	147803	1	852197	13917	99027	0
	Cosinc.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	1
82 Degrees.										

30		Log. Sines and Tangents. (90)				Natural Sines.		TABLE II.		
	Sine.	D. $10^{\prime \prime}$	Cosine	D. $10^{\prime \prime}$	Tang.	D. 10	Cotang.			
0	9.194332	133	9.994620	3.3	9.199713	136	10.800287	156	98769	0
1	195129	133	994600	3.3	200523	136	799471	15672	98764	59
2	195925	133	994580	3.3	201345	136	798655	15701	98760	58
3	196719		994560	3.4	202159	135	797841	157309	98755	57
4	197511	132	994540	3.4	202971	135	797029	15758	98751	56
5	198302	132	994519	3.4	203782	135	796218	157879	98746	55
6	199091	131	994499 99479	3.4	204592 205400	135	795408	15816	${ }_{98737}^{98741}$	54
8	1998966	11	994159	3.4	206207	134	793793	15873	98732	5
9	201451	131	4438	3.4	207013	134	792987	15902	98728	51
10	202234		18	3.4	207817	34	792183	15931	98723	50
11	9.203017		9.994397	3.4	9.248619	133	10.791381	159599	98718	49
12	203797	130	994377	3.4	209420	133	790580	15988	98714	48
13	204577	130	994357	3.4	$\stackrel{210220}{21018}$	133	789780	16017	98709	47
14	205354	129	94336	3.4	211018	133	788982	16046	98704	46
15 16	206131	129	${ }_{9}^{994316} 9$	3.4	21	133	9	1607	98700	45
16	20	129	994295	3.4	212611	132	787389	1610	98695	44
17	207679	129	94274	3.5	213405	132	786595	16132	98690	43
18	208452	128	94254	3.5	214198	132	785802	16160	98686	42
19	209222	128	994233 $99+212$	3.5	214989	132	735011	1618		41
20	20397	128		3.5		131		162	98676	40 39
21	9.210760	128	994191	3.5	217356	131	10.783432 782644		98671	39
23	212291	127	994150	3.5	218142	131	781858	16304	98662	37
24	213055	127	994129	. 5	218926	131	781074	16333	98657	36
25	213818	127	994108	3.5	219710	130	780290	16361	98652	55
26	214579	127	994087	3.5	220492	130	779508	16390	98648	34
27	215338	126	994066	3.5	221272	130	778728	16419	98643	33
28	216097	126	994045	3.5	222052	0	777948	16447	98638	32
29	216854	126	94024	5	222830	129	777170	16476	98633	31
30	217609	126	993	3.5	223606	129	776394	16505	98629	30
31	9.218316	125	9.9	3.5	9.224382	129	$\begin{array}{r}10.775618 \\ 774844 \\ \hline\end{array}$	16533	98624	29
32	219116	125	仡	3.5	225156	129	774844 774071	16562	98619	28
		12	993918	3.5	226700	129	773309	16620	98609	26
35	221367	125	993896	3.6	227471	128	772529	16648	98604	25
36	222115	124	93875	3.6	228239	128	771761	1667	98600.	4
37	222861	124	93854	3.6	229007	128	770993	1670	98595	3
38	223606	124	3832	3.6	229773	127	770227	1673	98590	22
39	224349	124	${ }_{993811}^{993}$	3.6	230539	127	769461	1676	8585	1
40	225092 225833	123		3.6		127				0
41	- 2226573	123	99374	3.6	232826	127	. 767174	16849	98570	18
43	227311		993725		233586	27	766414	1687	98565	17
44	228048	123	993703	3.6	234345	126	765655	16906	98561	16
45	228784	123	993681	3.6	235103	126	764897	16935	98556	15
46	229518	122	993660	3.6 3.6	235859	126	764141	1696	98551	14
47	230252		993638	3.6 3.6	236614	126	763386	1699	98546	13
48	230984	122	993616	3.6	237368	125	762632	17021	98541	12
49	231714	122	993594	3.7	238120	125	761880	17050	98536	11
50	232444	121	993572	3.7	238872	125	761128	17078		
52	- 233172 233899	121	. 993550	3.7	. 239622	125	10.760378 -759629	17107		9
52	233899	121		3.7	24031	125	759629	171	8521	8
	23	121	993484	3.7		124	758135	171	98511	6
55	236073		993462		242610	124	757320	1722	98506	5
56	236795		933440	3.7	243354	124	756646	1725	98501	4
57	237516	120	993418	3.7	244097	124	755903	1727	98496	3
58	238235		993396	3.7	244839	123	755161	1730	88491	2
	238953	120	993374	3.7	245579	123	754421	173	8486	1
60	239570		993351		246319		75368	173	481	0
	Cosine.		Sine.		Cotang		Tang.	. cos.	N.sine.	
80 Degrees.										

table II.		Log. Sines and Tangents. (10°)					Natural Sines.	31		
1	Sine.	$10^{\prime \prime}$	Cos	D. $10^{\prime \prime}$	ng.	D. $10^{\prime \prime}$	Cotang.	N.S		
0	9.239670	119	9.993351	7	9.246319	12	10.753681	173	81	60
1.	240386	119	993329	3.7	247057	123	752943	17393	476	59
${ }_{3}^{2}$	241101	119	993307	3.7	247794	123	752206	17422	98471	58
3	241814	119	993285	3.7	248	122	751470	17451	446	57
4	242526	118	9932624	3.7	249	122	750002	17508		55
5	243947	118	993217	3.7	25	122	749270	17537	98450	54
7	24465	118	993195	3.8	251461	122	748539	17565	98445	53
8	24536	118	993172		252191	122	747809	1759	98440	52
9	24600		993149		252920	121	747030	1762	8435	1
10	246775	117	993127		253648		746352	1765	98430	50
11	9,247478		. 993104		9.254374	121	10.745626	17680	98425	49
12	248181	117	993081	3.8	255100	121	744900	17708	98420	48
13	24888	117	993059	3.8	255824	120	744176	17737	8414	47
14	24958	116	993036	3.8	256547	120	743453	1776	98409	46
15	25028	16	993013	3.8		120	1	1779	8404	5
16	2	116		. 8		120			94	43
18	2516373	116	992944		259429	120	740571	17880	8389	42
19	253067	116	992921	3.8	260146	120	739854	1790	98383	41
20	253761	115	992898	3.8	260863	119	739137	1793	8378	40
21	9.254453	115	. 992875		9.261278		10.738422	1796	98373	39
22	255144	115	992852	3.8	262292	119	737708	1799	98368	38
23	255834	115	29	3.9	05	119	736995	1802	8362	37
24	256523	115	992806	3.9	263717	118	736283	1805	8357	36
25	257211	114	992783	3.9	264428	118	73557	1808	98352	35
26	257898	114	992759		265138	118	734862	181	8347	34
27	25858	114		3.9		118	734153	18		3
		114		3.9		118			88	2
29	25995	114	2690	3.9	267967	118	732739	1819	98331	31
30	26063	113		3.9			732033	1822	8325	30
31	9.26	113	. 99		. 2688671	117	10.731329	1825	8320	29
32	261994	11	992	3.9		117	730625	1828	98315	28
33	26267	113	${ }_{992596} 9$	3.9	270077	117	729923	1830	98310	28 20
34	26335	113	${ }_{9}^{992572}$	3.9	270779	117	729221	1833	8304	20
35	264	113		3.9		116				24
36	26	112	992501	9	272876	116		18424	982 S	23
38	26605	112	92478	3.9 4.0	273573	116	7264	1845	98283	22
39	266723	112	992454	4.0	274269	116	725731	1848	98277	21
40	267395	112	992430	. 0	274964	116	725036	1850	98272	¢0
41	9.268065	111	9.992406		9.275658		10.724342	1853	98267	19
42	268734	111	992382		276351		723649	1856	98261	18
43	269402	111	2359	4.0	277043	115	722957	1859	98256	17
44	270069	111	23335	4.0	277734	115	722266	1862	8250	16
45	270735	111	992311	4.0	278424	115	721576	1865	98245	15
46	271400	111	992287	4.0	279113	115	720887	1868	${ }_{98234}^{9824}$	14
47	272	110	992263 992239	4.0		114	720199	1871	98234	12
48		110		4.0		114		1873	98229	12
49 50	273388 274049	110	992190	4.0	281174	114		1876	98218	10
51	9.274708	110	9.992166	4.0	9.282542	14	10.717458	1882	98212	
52	275367	110	992142		283225	114	716775	1885	98207	8
53	276024		992117		283907		716093	18881	98201	7
54	276681		992093	4.	284588		715412	18910	98196	6
55	277337	109	22069	4.1	285268	113	714732	1893	8190	5
56	277991	109	992044	4.1	235947	113	714053	1896	8185	4
57	278644	109	${ }_{991920}^{9920}$	4.1	286624	113	713376	18995	98179	${ }_{2}$
58	279297	109	991996	4.1	287301	113	712699	19024		1
59	279948 280599	108	991971 991947	4.	287977 288652	112	$\begin{aligned} & 712023 \\ & 711348 \end{aligned}$	1905 1908		1
60	Cosine.		sine.		Cotang.		Tang.	N.	,	
79 Degrees.										

TABLE II. Log. Sines and Tangents. (120) Natural Sines.

		D. $10^{\prime \prime}$	Cosine.	10^{\prime}	Tang.	D. $10^{\prime \prime}$	Cotang.	e. A. cos.	
0	9.317879		9.990404		9.327474		0.672526	2079197815	60
1	318473	99.0 98.8	990378	4.5 4.5	328035	103	671905	2082097809	59
2	319336	98.7	993351	4.5	328715	103	671285	2084897803	58
3	319658	98.6	990324	4.5	329334	103	6;0 sivi	2087797797	57
	320249	98	990297	4.5	329953	103	670047	2090597791	56
5	320840	98.3	990270	4.5 4.5	330570	103	669430	2093397784	55
6	321430	98.3 98.2	990243	4.5 4.5	331187	103	668813	2096297778	54
7	322019	98.0	999215	4.5	331803	102	668197	2099097772	53
8	322607	97.9	990188	4.5 4.5	332418	102	667582	2101997766	52
9	323194	97.7	990161	4.5	333033	102	666967	2104797760	51
10	323780	97.6	990134	4.5	333646	102	666354	2107697754	50
11	9.324366	97.5	9.990107	4.6	9.334259	102	10.665741	2110497748	49
12	324950	97.3	990079	4.6 4.6	334871	102	665129	2113297742	48
13	325534	97.2	990052	4.6	335482	102	664518	2116197735	47
14	326117	97.0	990025	4.6	336093	102	663907	2118997729	46
15	326700	96.9	989937	4.6	336702	102	663298	2121897723	45
16	327281	96.8	989970	4.6	337311	101	662689	2124697717	44
17	327862	96.6	989942	4.6 4.6	337919	101	662081	2127597711	43
18	378442		989915		338527	101	661473	2130397705	42
19	329021	96	989887	4	339133	101	660867	2133197698	41
20	329599		989360		339739	101	660261	2136097692	40
21	9.330176	96.1	9.989832	4.6	9.340344	101	10.659656	2138897686	39
22	330753	96.1 96.0	989804	4.6	340948	101	659052	2141797680	38
23	331329	95.8	989777	4.6	341552	100	658448	2144597673	37
24	331903	95.7	989749	4.6	34215 5	100	657845	2147497667	36
25	332478		989721	4.7	342757		657243	2150297661	35
26	333051	95.4	989693	4.7	343358	100	656642	2153097655	34
27	333624	95.4	989665	4.7	343958	100	656042	2155997648	33
28	334195	95	989637	4.7	344558	100	655442	2158797642	32
29	334766	95	989809	4.7	345157	100	654843	2161697636	31
30	335337	94.9	989582	4.7	345755	100	654245	2164497630	30
31	9.335906	94.8	9.989553	4.7	9.346353	199	10.653647	2167297623	29
32	336475	94.8 94.6	989525	4.7	346949	99.4 99.3	653051	2170197617	28
33	337043	94.5	989497	4.7	347545	99.2	652455	2172997611	27
34	337610	94.5	989169	4.7	348141	99.2	651859	2175897604	26
35	338176	94.4 94.3	989441	4.7	348735		651265	2178697598	25
36	338742	94.3 94.1	989413	4.7	349329	99.0	650671	2181497592	24
37	339306	94.1	989384	4.7	349922		650078	2184397585	23
38	339871	93.9	989356	4.7	350514	95.7	649486	2187197579	22
39	340434	93.7	989328	4.7	351106		648894	2189997573	21
40	340996	93.6	989309	4.7	351697		648303	2192897566	20
41	9.3415 58		9.989271	4.7	9.352287		10.647713	2195697560	19
42	342119		989243	4.7	352876		647124	2198597553	18
43	342679		989214	4.7	353465	93.0	646535	2201397547	17
44	343239	93.1	989186	4.7	354053	97.9	645947	2204197541	16
45	343797	93.1 93.0	989157	4.7	354640	97.7	645360	2207097534	15
46	344355	93.0 92.9	989128	4.8	355227	97.6	644773	2209897528	14
47	344912	92.7	989100	4.8	355813	97. 6	644187	2212697521	13
48	345469	92.6	989071	4.8	356398		643*03	2215597515	12
49	346024	92.6 92.5	989042	4.8	356982	97.4 97.3	643018	2218397508	11
50	346579		989014	4.8	. 357566		642434	2221297502	10
51	9.347134	92.4	9.988985	4.8	9.358149		10.641851	2224097496	9
52	347687		988956	4.8	358731	96.9	641269	2226897489	8
53	348240	92.1 92.0	988927	4.8	359313	96.8	640687	2229797483	7
54	348792	92.0 91.9	988898	4.8	359893	96.7	640107	2232597476	6
55	349343		988869	4.8	360474		639526	2235397470	5
56	349893	91.7 91.6	988840	4.8	361053	96.5	638947	2238297463	4
57	350443	91.6	988811	4.8	361632	96.5	638368	2241097457	3
58	350992		988782		362210		637790	2243897450	2
59	351540		988753		362787	96.1	637213	2246797444	1
60	352088	91	988724	4.9	363364	96.1	636636	2249597437	0
	Cosi		Sine.		Cotang.		Tang.	N. cos. N.sine.	
77 Degrees.									

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Ta	. $10^{\prime \prime}$	Cot			
0	9.352088	91.1	9.988724	4.9	9.363364		10.636636	22495	97437	60
1	352635	91.1	988695	4.9 4.9	363940	96.0	636060	22523	97430	59
2	353181		988666		364515		635485	22552	97424	58
3	353726	90.8	988636	4.9	365090	95.7	634910	22580	97417	57
4	354271		988607	4.9	365664	95.7	634336	22608	97411	56
5	354815		988578		366237		633763	22637	97404	55
6	355358		988548		366810		633190	22665	97398	54
7	355901		988519		367382		632618	22693	7391	53
8	356443		988489	4.9	367953		632047	22722	97384	52
9	356984		988460	4.9	368524		631476	2275	378	51
10	357524		988430	4.9	369094		. 630906	2277	371	50
11	9.358064		9.988401	4.9	9.369663		10.630337	22807	7365	49
12	358603		988371		370232		629768	22835	358	48
13	359141		988342		370799		629201	22863	7351	47
14	359678		988312		371367		628633	22892	345	46
15	360215		988282	5.0	371933		628067	22920	97338	45
16	360752		988,252		372499		627501	22948	331	44
17	361287	89.1	988223	5.0	373064	94.1	626936	22977	97325	43
18	361822		988193	5.0	373629	94.1	626371	23005	97318	42
19	362356		988163		374193		625807	2303	7311	41
20	362889		988133	5.0	374756	93.8	625244	23062	04	40
21	9.363422		9.988103	5.0	9.375319		10.624681	23090	298	39
22	363954		988073		375881		624119	23118	97291	38
23	364485		988043		376442		623558	2314	97\%84	37
24	365016		988013		377003		622997	2317	278	36
25	365546		987983		377563		622437	23203	97271	35
26	366075		987953		378122		621878	23231	264	34
27	366604		987922		378681		621319	23260	97257	33
28	367131		987892		379239		620761	2328	251	32
29	367659		987862	5.0	379797		620203	23316	244	31
30	368185		987832	5.0	380354		619646	2334	237	30
31	9.368711		9.987801	5.1	9.380910		10.619090	23373	97230	29
32	369236		987771	5.	381466		618534	23401	97223	28
33	369761		987740		382020		617980	23429	97217	27
34	370285	87.2	987710	5.1	382575		617425	23458	97210	26
35	370808	87.2	987679	5.1	383129	92.3	616871	2348	7203	25
36	371330		987649	5.	383682		616318	2351	7-96	24
37	371852		987618		384234		615766	23542	97189	23
38	372373		987588		384786		615214	2357	182	22
39	372894		987557	5.	385337		$\checkmark 14663$	23599	97176	21
40	373414		987526	5.	385888		614112	23627	97169	20
41	9.373933		9.987496	5.1	9.386438		10.613562	23656	97162	19
42	374452		987465	5.1	386987	91	613013	23684	7155	18
43	374970		987434	5.1	387536		612464	2371	97148	17
44	375487		987403	5.1	388084		611916	2374	97141	16
45	376003	88.0	987372	5.2	388631		611369	23769	97134	15
46	376519	885	987341	5.2	389178	91.1 91.0	610822	23797	97127	14
47	377035		987310	5.2	389724		610276	23825	97120	13
48	377549	85.7	987279	5.2	390270		609730	23853	97113	12
49	378063	85.7	987248	5.2	390815		609185	23882	97106	11
50	378577		987217	5.2	391360		603640	23910	97100	10
51	9.379089	85.4 85.3	9.987186	b. 2	9.391903	90	10.608097	23938	37093	9
52	379601		987155		392447		607553	23966	97086	8
53	380113		987124	5.2	392989		607011	23995	97079	7
54	380624	85	987092	5.2	393531	90.	606469	24023	97072	6
55	381134	85.0 84.9	987061	5.2	394073	90	605927	24051	97065	5
56	381643	84.9	987030	5.2	394614	90	605386	24079	9;05:3	4
57	382152		986998		395154		604846	24108	97051	3
58	382661		986967	.	395694		604306	2413	97044	2
59	383168		986936		396233		603767	2416	97037	1
60	383675	8	986904	5.2	396771	89.7	603229	241	97030	0
	sine.		Sine.		Cotang.		Tang.	N. cos	$\overline{\text { N, sine }}$	
76 Degrees.										

	Sine.	D.		D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	g.	N. sine.		
0	9.383675		9.986904	2	9.396771	89.6	. 603229			6
1	384182		986873	2	397309	89.6	602691	24220	7023	5
2	384687		986841	3	397846		502154	24249	15	
,	385192	81	986809	5.3 5.3	398383	89	601617	24277	008	
4	385697		986778	5,3	398919		601081	24305	001	
c	386201	81.0 83.9	986746	5.3 5.3	399455	89	600545	24333	9994	
6	386704		986714		399990		600010	24362	987	
8	387207	83.7	986683	5.3	400524	89.0	599476	24390	80	
8	387709	83.6	986651	5.3	1058	89.0	42	24418	73	
9	388210		986619	5.3	401591		598409	24446	6	
10	388711		986587	5.3	24		597876	24474	959	
11	9.389211		9.986555		9.402656		10.597344	24503	952	
12	389711		986523	5.3	403187		596813	24531	6945	48
13	390210	83.2	986491	5.3	03718		596282	24559	96937	
14	390708	83.0	986459	5.3	404249	88.3	595751	24587	96930	4
15	391206	83.0	986427	5.3	404778	88.3	595222	24615	6923	4
16	391703		986395		405308		594692	24644	6916	
17	392199		986363		405836		594164	24672	6909	4
18	392695		986331		406364		593636	2470	5902	42
19	393191		986299		06892		593108	247	4	
20	393685		986266		407419		592581	2475	887	
21	9.394179		9.986234		9.407945		10.592055	2478	8880	
22	394673		986202		408471		591529	24813	8873	
23	395166		986169		408997		591003	24841	886	
24	395658		986137		409521		590479	24869	588	
25	396150		986104		410045		89955	2489	885	
26	396641		986072		10569		89431	24925	844	
27	397132		986039		411092		88908	24954	8837	
28	397621		986007		11615		838	24982	829	
29	398111		985974		412137		87863	25010	822	
30	398600		985942		412658		7342	25038	15	
31	9.399088		9.985909		9.413179		10.586821	25066	6807	
32	399575		985876		413699		586301	25094	96800	
33	400062		985843		14219		585781	25122	96793	
34	400549		985811		14738		85262	25151	786	
35	401035		985778		15257		84743	25179	778	25
36	401.520		985745		415775		84225	25207	6771	
37	402005		985712		16293		83707	25235	764	23
38	402489		985679		116810		83190	25263	756	22
39	402972		985646		7326		82674	25291	749	1
40	403455		985613		417842		582158		42	20
41	9.403938		. 985580		9.418358		10.581642	25348	734	9
42	404420		985547		418873		581127	25376	727	18
43	404901		985514		19387		80613	25404	96719	17
44	405382		985480		419901		580099	25.432	712	16
45	405862		985447		20415		79585	25460	705	
46	406341		985414		420927		79073	25488	96697	14
47	406820		985380		421440		78560	25516	690	
48	407299		985347		421952		78048	25545	96682	12
49	407777		985314		422463		577537	25573	96675	
50	403254		985280		422974		577026	5601	6667	10
51	9.408731		. 985247		. 423484		10.576516	25629	96660	9
52	409207		985213		423993		576007	25657	653	
53	409682		985180		424503		75497	25685	645	
54	410157		885146		425011		74989	25713	96638	
55	410632		985113		25519		74481	25741	96630	
56	411106		985079		26027		73973	25766	623	
57	411579		985045		426534		73466	25738	96615	
58	412052		985011		27041		2959	25826	96608	2
59	412524		984978		427547		572453	25854	96600	
60	412996		984944	5.6	428052	84.3	19	88	96593	0
					Cotang.		Tang.	N. \cos.	N.sin	

Log. Sines and Tangents. (15°) Natural Sines.
TABLE II.

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Co	ine.	cos	
0	9.412996		9.984944		9.428052	84.2	10.571948	25882	96593	60
1	413467		984910	5.7	428557	84.2 84.1	571443	25910	96585	59
2	413938		984876	7	429062		570938	25938	96578	58
3	414408		984842	5.7	429566		570434	25966	96570	57
4	414878	78.3	984808	5.7	430070	83	569930	25994	96562	56
5	415347	78.2 78.1	984774	5.7 5.7	430573	83.8	569427	26022	96555	55
6	415815	78.0	984740	5.7	431075	83.7	568925	26050	96547	5
7	416283	77.9	984706	5.7	431577	83.6	568423	26079	96540	53
8	416751	77.8	984672	5.7	432079	83.5	567921	26107	96532	52
9	417217	77.7	984637	5.7	432580	83.4	567420	26135	96524	51
10	417684	77.6	98460	5.7	433080	83.3	566920	26163	96517	50
11	9.418150		9.984569	5.7	9.433580	83.2	10.566420	26191	96509	49
12	418615	77.4	984535	5.7	434080	83.2	565920	26219	96502	48
13	419079	77.3	984500	5.7	434579	83.1	565421	26247	96494	47
14	419544	77.3	984466	5.7	435078	83.0	564922	26275	96486	46
15	420007	77.2	984432		435576	82.9	564424	26303	96479	45
16	420470		984397	5.8	436073		563927	2633	6471	44
17	420933		984363	5.8 5.8	436570	82.8	563430	26359	96463	43
18	421395		984328	5.8	437067		562933	26387	96456	42
19	421857	76.8	984294	8	437563	82.6	562437	26415	96448	41
20	422318	76.8	984259		438059	82.5	561941	26443	96440	40
21	9.422778		9.984224	5.8	9.438554	82.4	10.561446	26471	96433	39
22	423238		984190	5.8	439048	82.3	560952	26500	96425	38
23	423697		984155		439543		560457	2652	96417	37
24	424156		984120		440036	82.2	559964	26556	96410	36
25	424615		984085		440529	82.1	559471	2658	96402	35
26	425073	76.2	984050	5.8	441022	82.0	558978	26612	96394	34
27	425530	76.1	984015	5.8	441514	81.9	558486	26640	96386	33
28	425987	76.1 76.0	983981	5.8	442006	81.9	557994	26668	96379	32
29	426443	76.0	983946	5.8	442497	81.8	557503	26696	96371	31
30	426899		983911	8	442988	81.7	557012	26724	96363	30
31	9.427354		. 9838875	8	9.443479	81.6	10.556521	26752	96355	29
32	427809		983840		443968	81	556032	2678	96347	28
33	428263	75.6	983805	5.9	444458	81.5	555542	26808	96340	27
34	428717	75.6	983770	5.9	444947	81.4	555053	26836	96332	26
35	429170		983735	5.9	445435	81.3	554565	26864	96324	25
36	429623	75.4	983700	5.9	445923	81.2	554077	26892	96316	24
37	430075	75.2	983664	5.9	446411	81.2	553589	26920	96308	23
38	430527	75.2	983629	5.9	446898	81.1	553102	26948	96301	22
39	430978	75.2 75.1	983594	5.9	447384	81.0	552616	26976	96293	21
40	431429	75.0	983558	5.9	447870	80.9	552130	2700	96285	20
41	9.431879		. 983523	5.9	9.448356	80.9	10.551644	27032	6277	19
42	432329	74.9	983487	5.9	448841	80.9 80.8	551159	27060	96269	18
43	432778	74.9	983452	5.9	449326	80.7	550674	27088	96261	17
44	433226	74.7	983416	5.9 5.9	449810	80.6	550190	27116	96253	16
45	433675	74.6	983381	5.9	450294	80.6	549706	2714	6246	15
46	434122	74.6	983345		450777	80.5	549223	27172	96238	14
47	434569	74.4	983309	5.9	451260	80.4	548740	27200	96230	13
48	435016	74.4	983273	5.9	451743	80.3	548257	27228	96222	12
49	435462	74.3	983238	6.0	452225	80.2	547775	2725	96214	11
50	435908	74.2	983202	6.0	452706	80.2	547294	2728	6206	10
51	9.436353	74.2	9.983166		9.453187		10.546813	27312	6198	9
52	436798		983130	6.0	453668	80.0	546332	27340	96190	8
53	437242	74.0	983094	6.0	454148	80.0 79.9	545852	27368	6182	7
54	437686		983058	6.0	454628		545372	2739	6174	6
55	438129	73.9	983022	6.0	455107	79.8	544893	27424	96166	5
ธ56	438572	73.7	982986	6.0	455586	79.7	544414	27452	96158	4
57	439014	73.6	982950	6.0	456064	79.6	543936	27480	96150	3
58	439456		982914		456542		543458	27508	96142	2
59	439897		982878		457019		542981	27536	96134	1
60	440338		982842		496	79.5	542504	2756	96126	0
	Cosine.		Sine.		Cotang.		Tang.	N. co	N.sin	1

74 Degrees.

TABLE II.
Log. Sines and Tangents. (16°) Natural Sines.

	Sine.	D. $10^{\prime \prime}$	Cosi	D. $10^{\prime \prime}$	T	D.	Cotang.		N. cos.	
0	9.410338	73.4	9.982842	6.0	9.457496	79	10.542504	27564	96126	60
1	440778	73.4 73.3	982805	6.0		79.4 79.3	542027	27592	96118	59
2	441218	73.3 73.2	982769	6.0 6.1	458449	79.3 79.3	541551	27620	96110	58
3	441658	$73 \cdot 1$	982733	6.1.	458925	79.2	541075	27648	96102	57
4	442096		982696		459400		540600	27676	96094	56
5	442535	73.0	982660	6.1	459875	79.0	540125	27704	96086	55
6	442973	72.9	982624	6.1	460349	79.0	539651	27731	96078	54
7	443410	72.8	982587	6.1	460823	78.9	539177	27759	96070	53
8	443847	72.7	982551	6.1	461297	78.8	538703	27787	96062	52
9	444284	72.7	982514	6.1	461770	78.8	538230	27815	96054	51
10	444720	72.6	982477	6.1	462242	78.7	537758	27843	96046	50
11	9.445155	7.6	9.982441		9.462714		10.537286	27871	96037	49
12	445590		982404		463186		536814	27899	96029	48
13	446025		982367		463658		536342	27927	96021	47
14	446459		982331		464129		535871	27955	96013	46
15	446893		982294		464599		535401	27983	96005	45
16	447326		982257		465069		534931	28011	95997	44
17	447759	72.0	982220	6.2	465539	78.3	534461	28039	95989	43
18	448191	72.0	982183	6.2	466008	78.1	533992	28067	95981	42
19	448623	71.9	982146	6.2	466476	78.0	533524	28095	95972	41
20	449054	71.8	982109	6.2	66945		533055	28123	95964	40
21	9.449485	71	9.982072		9.467413		10.532587	28150	95956	39
22	449915	71.6	982035	6.2	467880	77.8	532120	28178	95948	38
23	450345	71.6	981998	6.2	468347	77.8	531653	28206	95940	37
24	450775	71.5	981961	6.2	468814	77.7	531186	28234	95931	36
25	451204		981924	6.2	469280	77.7	530720	28262	95923	35
26	451632		981886		469746		530254	28290	95915	34
27	452060		981849		470211		529789	28318	95907	33
28	452488		981812		470676		529324	28346	95898	32
29	452915	71.1	981774	6.2	471141		528859	28374	95890	31
30	453342		981737	6.2	471605		528395	28402	95882	30
31	9.453768		9.981699	6.3	9.472068		10.527932	28429	95874	29
32	454194	71.9	981662	6.3	472532		527468	2845%	95865	28
33	454619		981625		472995		527005	28485	95857	27
34	455044	70.7	981587	6.3	473457	77.0	26543	28513	95849	26
35	455469	70.7	981549	6.3	473919	77.0	526081	28541	95841	25
36	455893	70.6	981512	6.3	474381		525619	28569	95832	24
37	456316	70.6	981474	6.3	474842	76	525158	28597	95824	23
38	456739	70.4	981436	6.3	475303	76.7	524697	28625	95816	42
39	457162	70.4	981399	6.3	75763	76.7	524237	28652	95807	21
40	457584	70.3	981361		476223		523777	28680	95799	20
41	9.458006	70.2	9.981323	3	9.476683	76.6	10.523317	28708	95791	19
42	458427	70.2	981285		477142		522858	28736	95782	18
43	458848	70.1	981247	6.3	477601		522399	28764	95774	17
44	459268	70.0	981209	6.3	478059	76.4	521941	28792	95766	16
45	459688	69.9	981171	6.3	478517		521483	28820	95757	15
46	460108	69.8	981133	6.3	478975	76.3	521025	28847	95749	14
47	460527	69.8	981095	6.4	479432		520568	28875	95740	13
48	460946	69.7	981057	6.4	479889	76.1	520111	28903	95732	12
49	461364	69.7 69.6	981019	6.4	480345	76.0	519655	28931	95724	11
50	461782	69.5	980981	6.4	480801	76.0	519199	28959	95715	10
51	9.462199	69.5	9.980942	6.4	9.481257	75	10.518743	28987	95707	9
52	462616	69.4	980904	6.4	481712		518288	29015	95698	8
53	463032	69.4 69.3	980866	6.4	482167	75.8	517833	29042	95690	7
54	463448	69.3 69.3	980827		482621	75.7	517379	29070	95681	6
55	463864	69.3 69.2	980789	6.4	483075	75.7	516925	29098	95673	5
56	464279		980750		483529		516471	29126	95664	4
57	464694	69.0	980712	6.4	483982	75.5	516018	29154	95656	3
58	465108	69.0 69.0	980673	6.4	484435	75.5	515565	29182	95647	2
59	465522		980635		484887		515113	2920	95639	1
60	465935		980596	6.4	485339	75	514661	29247	95630	0
	Cosine.		Sine.		Cotang.		Tang.	N. eos.	N.sine.	1
73 Degrees.										

Log. Sines and Tangents. (17°) Natural Sines. TABLE II.

TABLE II. Log. Sines and Tangents. (18 ${ }^{\circ}$) Natural Sines.

,	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	ine.	N. co	
0	9.489982	64.8	9.978206	6.8	9.511776	71.6	10.488224	30902	95106	60
1	490371	64.8 64.8	978165	6.8	512206	71.6	487794	30929	95097	59
2	490759	64.8 64.7	978124	6.8	512635	71.6	487365	30957	95088	58
3	491147	64.7 64.6	978083	6.9	513064	71.4	486936	30985	95079	57
4	491535	64.6 64.6	978042	6.9	513493	71.4	486507	31012	95070	56
5	491922	64.6 64.5	978001	6.9	513921	71.3	486079	31040	95061	55
6	492308	64.5 64.4	977959	6.9	514349	71.3	485651	31068	95052	54
7	492695	64.4	977918	6.9	514777	71.2	485223	31095	95043	53
8	493081	64.4 64.3	977877	6.9	515204	71.2	484796	31123	95033	52
9	493466	64.3 64.2	977835	6.9 6.9	515631	71.1	484369	31151	95024	51
10	493851	64.2 64.2	977794	6.9 6.9	516057	71.0	483943	31178	95015	50
11	9.494236	64.2 64.1	9.977752	6.9 6.9	9.516484	71.0	10.483516	31206	95006	49
12	494621	64.1 64.1	977711	6.9 6.9	516910	71.0 70.9	483090	31233	94997	48
13	495005	64.1	977669	6.9	517335	70.9	482665	31261	94988	47
14	495388	64.0 63.9	977628	6.9	517761	70.9	482239	31289	94979	46
15	495772	63.9 63.9	977586	6.9	518185	70.8	481815	31316	94970	45
16	496154	63.9 63.8	977544	7.0	518610	70.8	481390	31344	94961	44
17	496537	63.8 63.7	977503	7.0	519034	70.6	480966	31372	94952	43
18	496919	63.7	977461	7.0	519458	70.6	480542	31399	94943	42
19	497301	63.7 63.6	977419	7.0	519882	70.6 70.5	480118	31427	94933	41
20	497682	63.6	977377	7.0	520305	70.5	479695	31454	94924	40
21	9.498064	63	9.977335	1.0	9.520728	70.4	10.479272	3148	94915	39
22	498444	63.5 63.4	977293	7.0	521151	70.4 70.3	478849	31510	94906	38
23	498825	63.4 63.4	977251	7.0	521573	7.3	478427	31537	94897	37
24	499204	63.4 63.3	977209	7.0	521995	70.3	478005	31565	94888	36
25	499584	63.3 63.2	977167	7.0	522417	7.3	477583	31593	94878	35
26	499963	63.2 63.2	977125	7.0	522838	70.2	477162	31620	94869	34
27	500342	63.1 63.1	977083	7.0	523259	70.1	476741	31648	94860	33
28	500721	63.1	977041	7.0 7.0	523680	70.1	476320	31675	94851	32
29	501099	63.1 63.0	976999	7.0	524100	70	475900	31703	94842	31
30	501476	63.0	976957	7.0	524520	70.0	475480	31730	94832	30
31	9.501854	62.9 62.9	9.976914	7.0	9.524939		10.475061	31758	94823	29
32	502231	62.9 62.8	976872	7.1	525359	69.9	474641	3178	94814	28
33	502607	62.8 62.8	976830	7.1	525778	69.8 69.8	474222	31813	94805	27
34	502984	62.8 62.7	976787	7.1	526197	69.8 69.7	473803	31841	94795	26
35	503360	62.7	976745	7.1	526615	69.7 69.7	473385	31868	94786	25
36	503735	62.6	976702		527033	69.7 69.6	472967	31896	94777	24
37	504110	62.6	976660	7.1	527451	69.6 69.6	472549	31923	94768	23
38	504485	62.5	976617	7.1	527868		472132	31951	94758	22
39	504860	62.5	976574	7.1	528285	69.5 69.5	471715	31979	94749	21
40	505234	62.3	976532	7.1	528702	69.5 69.4	471298	3200	94740	20
41	9.505608	62.3 62.3	9.976489	7.1	9.529119	69.4 69.3	10.470881	32034	94730	19
42	505981	62.3	976446	7.1	529535	69.3 69	470465	$3{ }^{\text {²0 }} 0$	94721	18
43	506354	62.2	976404		529950	69.3	470050	3208	94712	17
44	506727	62.2	976361	7.1	530366	69.3 69.2	469634	3211	94702	16
45	507099	62.0	976318	7.1	530781	69.2 69.1	469219	3214	94693	15
46	507471	62.0 62.0	976275	7.1	531196	69.1	468804	32171	94684	14
47	507843	62.0 61.9	976232	7.1	531611	69.1	468389	32199	94674	13
48	508214	61.9 61.9	976189	7. 2	532025	69.0 69.0	467975	32227	94665	12
49	508585	61.9	976146	7.2	532439	69.0 68.9	467561	32250	94656	11
50	508956		976103	7. 7	532853	68.9 68.9	467147	32282	94646	10
51	9.509326	61.8	9.976060	7.2	9.533266	68.9 68.8	10.466734	32309	94637	9
52	509696		976017	7.2	533679		- 466321	32337	94627	8
53	510065	61.6	975974	7.2	534092	68.8 68.7	465908	32364	94618	7
54	510434	61.6 61.5	975930	7.2	534504	68.7 68.7	465496	32392	94609	6
55	510803	61.5 61.5	975887	7.2	534916	68.7 68.6	465084	32419	94599	5
56	511172	61	975844	7.2	535328		464672	32447	94590	4
57	511540	61.4 61.3	975800	7.2	535739	68.6 68.5	464261	32474	94580	3
58	511907	61.3	975757	7.2	536150	68.5 68.5	463850	3250	94571	2
59	512275	61.3 61.2	975714	7.2	536561	68.5 68.4	463439	32529	94561	1
60	512642	61.2	975670	7.2	536972	68.4	463028	3255.	94552	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	7
71 Degrees.										

Log. Sines and Tangents. (19°) Natural Sines.

	Sme.	D. 10	Cosine.	V. 10^{\prime}	T'an	1D. 10	Cotang.			
0	9.512642	61.2	9.975670	7.3	9.536972	68.4	10.463028	32557	94552	60
1	5131009	61.1	975627	7.3	537382	68.3	462618	32584	94542	59
2	513375	61.1	975583	7.3	537792	68.3	462208	32612	94533	58
	513741	61.1 61.0	975539	7.3	538202	68.3	461798	32639	94523	57
4	514107	60.9	975496	7.3	538611	68.2	461389	32667	94514	56
5	514472	60.9	975452	7.3	539020	68.1	460980	32694	94504	55
6	514837	60.8	975408	7.3	539429	68.1	460571	32722	94495	54
7	515202	60.8	975365	7.3	539837	68.0	460163	32749	94485	5
8	515566	60.8 60.7	975321	7.3	24	68.0	459755	32777	94476	52
5	515930	60.7	975277	7.3	540653	67.9	459347	32804	94466	51
10	516294	60.6	975233	7.3	541061	67.9	9	32832	4457	50
11	9.516657		9.975189	7.3	9.541468	67.8	10.458532	32859	94447	49
12	517020		975145	7.3	541875	67.8	458125	32887	94438	48
13	517382		975101	7.3	542281		457719	3291	428	47
14	517745		975057	7.3	542688	67.7	457312	32942	94418	46
15	518107		975013	7.3	543094		456906	32969	94409	45
16	518468	60.3	974969	7.4	543499	67.6	456501	32997	94399	4
17	518829	60.2	974925	7.4	543905	67.5	56095	3302	94390	43
18	519190	60.1	974880	7.4	544310	67.5	455690	33051	94380	42
19	519551	60.1	4836	7.4	715	67.4	55285	33079	370	41
20	519911		974792	4	545119		454881	331	361	40
21	9.520271		9.974748	7.4	9.545524	67.3	10.454476	33134	94351	39
22	520631		974703	7.4	545928	67.3	454072	33161	94342	38
23	520990		974659	7.4	546331	67.2	453669	33189	94332	37
24	521349		974614	7.4	546735	67.2	453265	33216	94322	36
25	521707	59.8	974570	7.4	547138	67.1	452862	33244	94313	35
26	522066		974525	7.	547540	67.1	452460	33271	94303	34
27	522424		974481	.	547943		452057	33298	94293	33
28	522781		974436		48345		451655	33326	94284	32
29	523138		974391		548747		51253	33353	4	31
30	523495		974347	5	549149		450851	33381	94264	30
31	9.523852		9.974302		9.549550		10.450450	33408	94254	29
32	524208		974257		549951		450049	33436	94245	28
33	524564		974212		550352		449648	33463	94235	27
34	524920		974167		50752		449248	33490	94225	26
35	525275		974122	7.5	551152		448848	33518	94215	25
36	525630	59.2	974077	7.5	51552	66.6	448448	33545	94206	24
37	525984		974032	7.5	551952		448048	33573	94196	23
38	526339		973987	7.	552351		447649	33600	94186	22
39	526693		973942		552750		447250	33627	94176	21
40	527046		973897		553149		446851	3365	94167	20
41	9.527400		. 973852		9.553548		10.446452	33682	94157	19
42	527753		973807		553946		446054	33710	94147	18
43	528105		973761	7.	554344		445656	33737	94137	17
44	528458		973716		554741		445259	33764	94127	16
45	528810		973671	7.6	555139		444861	33792	94118	15
46	529161		3625		55536		444464	33819	94108	14
47	529513	58.6	73580	7.6	55933	66	444067	33846	94098	13
48	529864	6	73535	7.6	56329	66	443671	33874	94083	12
49	530215		73489		556725		443275	33901	94078	11
50	530565		973444	7.6	557121	66	442879	33929	94068	10
51	9.530915		9.973398		9.557517		10.442483	33950	94058	9
52	531265		973352	7.6	557913	65.9	442087	33983	94049	8
53	531614		973307		558308		441692	34011	94039	7
54	531963		973261	7.	558702		441298	34038	94029	6
55	532312		3215		559097		440903	34065	94019	5
56	532661		973169	7.	59491		440509	34093	94009	4
57	533009		73124		9885		40115	34120	999	3
58	533357		9730 \%	7.6	560279		439721	34147	93989	2
59	533704		973032	6	560673		439327	34175	93979	1
60	534052		972986	7.7	561066		438934	34202	93969	0
	Cosine.		Sine.		Cotang.		Tang.	N. co	,	
70 Degrees.										

TABLE II. Leg. Sines and Tangents. (20 ${ }^{\circ}$ Natural Sines.

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	N. sine.	N. cos.	
0	9.534052		9.972986	7.7	9.561066	65.5	10.438934	34202	93969	60
1	534399	57.8	972940	7.7	561459	65.5 65.4	438541	34229	93959	59
2	534745	57.7	972894	7.7	561851	65.4 65.4	438149	34257	93949	58
3	535092	57.7	972848	7.7	562244	65.4 65	437756	34284	93939	57
4	535438	57.6	972802	7.7	562636	65 65	437364	34311	93929	56
5	535783	57.6	972755	7.7	563028	65.3 65.3	436972	34339	93919	55
6	536129	57.5	972709	7.7	563419	65.3 65.2	436581	34366	93909	54
7	536474	57.4	972663	7.7	563811	65.2	436189	34393	93899	53
8	536818	57.4	972617	7.7	564202	65.2 65.1	435798	34.421	93889	¢2
9	537163	57.4 57.3	972570	7.7	564592	65.1	435408	34448	93879	51
10	537507	57.3	972524	7.7	564983	65.0	435017	34475	93869	50
11	9.537851	57.2	9.972478	7.7	9.565373		10.434627	34503	93859	49
12	538194	57.2	972431	7.8	565763	64.9	434237	34530	93849	48
13	538538	57.1	972385	7.8	566153	64.9 64.9	433847	34557	93839	47
14	538880	57.1	972338	7.8	566542	64.9	433458	34584	93829	46
15	539223	57.0	972291	7.8	566932	64.8	433068	3.1612	93819	45
16	539562		972345	7.8	567320	64.8 64.8	432680	34639	93809	44
17	539907	56.9	972198	7.8	567709	64.8 64.7	432291	34666	93799	43
18	540249	56	972151	7.8	568098	64.7	431902	34694	93789	42
19	540590	56.8	972105	7.8	568486	64.6	431514	34721	93779	41
20	540931		972058	7.8	568873		431127	34748	93769	40
21	9.541272	56.7	9.972011	7.8	9.569261	64.5 64.5	10.430739	34775	93759	39
22	541613	56.7	971964	7.8	569648	64.0 64.5	430352	34803	93748	38
23	541953	56.6	971917	7.8	570035	64.5 64.5	429965	34830	93738	37
24	542293	56.6	971870	7.8	570422	64.5 64.4	429578	34857	93728	36
25	542632	56.5	971823	7.8	570809	64.4	429191	34884	93718	35
26	542971	56.5	971776	7.8	571195	64.4 64.3	428805	34912	93708	34
27	543310	56.4	971729	7.9	571581	64.3	428419	34939	93698	33
28	543649	56.4	971682	7.9	571967	64.3 64.2	428033	34966	93688	32
29	543987	56.4	971635	7.9	572352	64.2 64.2	427648	34993	93677	31
30	544325		971588	7.9	572738	64.2	427262	35021	93667	30
31	9.544663	56.2	9.971540	7.9	9.573123	64.2 64.1	10.426877	35048	93657	29
32	545000	56.2	971493	7.9	573507	64.1	426493	35075	93647	28
33	545338	56.1	971446	7.9	573892	64.1 64.0	426108	35102	93637	27
34	545674	56.1	971598	7.9	574276	64.0	425724	35130	93626	26
35	546011	56.0	971351	7.9	574660	64.9 63.9	425340	35157	93616	25
36	546347	56.0	971303	7.9	575044	63.9	424956	35184	93606	24
37	546683	55.9	971256	7.9	575427	63.9	424573	35211	93596	23
38	-547019	55.9	971208	7.9	575810	63.8	424190	35239	93585	22
39	547354	55.8	971161	7.9	576193	63.8	423807	35266	43575	21
40	547689	55.8	971113	7.9	576576	63.7	423424	35293	93565	20
41	9.548024	55.7	9.971066	8.0	9.576958	63.7	10.423041	35320	93555	19
42	548359	55.7	971018	8.0	577341	63. 6	422659	35347	93544	18
43	548693	55.6	970970	88.0	577723	63.5 63.6	422277	35375	93534	17
44	549027	55.6	970922	8.0	578104	63.6	421896	35402	93524	16
45	549360	55. 5	970874	8.0	578486	63.5	421514	35429	93514	15
46	549693	55.5	970827	8.0	578867	63.5	421133	35456	93503	14
47	550026		970779	8.0	579248	63.5 63.4	420752	35484	93493	13
48	550359		970731	8.0	579629	63.4 63.4	420371	35511	93483	12
49	550692	55.3	970683	8.0	580009	63.4 63 4	419991	35538	93472	11
50	551024	55. 55.3	970635	8.0	580389	63.4 63.3	419611	35565	93462	10
51	9.551356	55.2	9.970586	8.0	9.580769	63.3 63.3	10.419231	35592	93452	9
52	551687	55.2	970538	8 8.0	581149	63.3 63.2	418851	35619	93441	8
53	552018	55.2	970480	8.0	581528	63.2 63.2	418472	35647	93431	7
54	552349	55.1	970442	8.0	581907	63.2 63.2	418093	35674	93420	6
55̆	552680	55.1	970394	8.0	582286	63.1 63.1	417714	35701	93410	5
56	553010	55	970345	8.1	582665	63.1	417335	35728	93400	4
57	553341	55	970297	8.1	583043	63.1	416957	35755	93389	3
58	553670	54.9	970249	8.1	583422	63.0 63.0	416578	35782	93379	2
59	554000	54.9	970200	8.1	583800	63.0 62.9	416200	35810	93368	1
60	554329	54.9	970152	8.1	584177	62.	415823	35837	93358	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	,
69 Degrees.										

Log. Sines and Tangents. (210) Natural Sines.
TABLE II.

		D. $10^{\prime \prime}$		D. $10^{\prime \prime}$	Tang.	"	Cotang.		N. cos.	
0	9.5		9.970152		9.5		3		8	
1	554658		970103	8.1	584555	9	415445	35864	93348	
2	554987		970055		584932		415068	358	337	
3	555315		970006	8.1	58 5̄309		4691	359	327	
4	555643		969957	8.1	585686		14314	3594	93316	
5	555		69909	8.1	58	62.7	13938	35973	93306	
6	555299		69860	8.1	586439		13561	36000	5	
8	556626		939811	8.1	815	62.6	413185	3602	5	
8	55		62	8.	37190	62.6 62.6	2810	6608	4	
9	557280		969714	8.	566	62.5	2434	3608	4	
10	557606		9.969616	8			412059 10	6135		
11	9.557932		9.969616	8. 2	9.588316		10.411684	36135	43	
12	558258		969567	8.2	588691		11309	36162	232	
13	558583		969518	8.2	589066		410934	3619	222	
14	558909		69469	8.2	589440		0186	36244	11	
		54.1		8.2	590188	62.3	09812			
17	988		99321	8.2	90562	62.3	09438	36298	-	
18	560207		59272		90935		09065	36325	93169	
19	560531		922		91308		08692		93159	
20	560855		9691		59168		408319	63	48	
21	9.561178		. 969124		9.592054		10.407946	36406	37	
22	561501		969075		592426		407574	64	93127	
23	561824		69025		92798		07202		16	
24	562146		6897		93170		06829	3648	106	
25	562468		68926		535		06458	36	95	
26	562790		68877		391		06086	365	084	
27	563112		68827		94285		05715	,	74	
28	563433		88777		94656		05344		063	
29	563755				7		04973	仡	2	
30	56407				5398		404602	366)42	
31	9.564396		. 968628		. 59576		0.404232	366	1	
32	564716		968578		59613		403862		20	
33	036		968528		8		403492			
34	565356		968479		6878		03122	367	999	
35	565676		68429		7		02753	367	988	
36	565995		68379		9761		02384	368	978	
37	66314		68329		97985		2015	36	967	
38	566632		968278		9835		01646	36	5	
39	56695		8228		72		01278			
40	567269		968178		599091		400909	369	5	
41	9.567587		. 968128		9.599459		10.400541	369	926	
42	567904		968078		599827		400173	3697	913	
43	568222		68027		600194		999806	3700	902	
41	568539		67977		00562		99438	3702	2	
45	56885		67927		00929		99071	3705	1	
46	569172		67876	8	01296		98704	3708	70	
47	569488		7826	8.	01662		98338	371		
48	569804		7775		2029		397971	3713		
49	570120		7725	8	02395		397605			
5	570435		967674		602761		397239	3191	827	10
51	9.570751		9.967624		9.603127		10.396873	3721	816	
52	571066		67573		03493		396507		805	
53	571380		7522		3858		396142	3727	794	
54	1695		67471		04223		95777	3	-	
55	72009		7421	8.5	4588	60.8	395412	37326	773	
56	72323		967370	8.	4953	60.8	95047		762	
57	572636		967319		05317		394683	37380	92751	
58	72950		967268	8.5	5682	60.7	394318	3740	740	
5	573263		967217	.	¢06046	60.7	393954	373	729	
60	5735 ¢5	52.1	967166	8.5	606410		393590	374619	8	0

TABLE II.
Log. Sines and Tangents. (22°) Natural Sines.

,	Sine	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	N. sine	cos.	
0	9.573575	52.1	9.967166	8.5	9.606410	60.6	10.393590	37461	92718	60
1	573888	52.1	967115	8.5	606773	60.6	393227	37488	92707	59
2	574200	52.0	967064	8.5	607137	60.5	392863	37515	92697	58
3	574512	51.9	967013	8.5	607500	60.5	392500	37542	92686	57
4	574824		966961		607863		392137	37569	92675	56
5	575136		966910	8.5	608225	60.4	391775	37595	92664	55
6	575447	51.9	966859	8.5	608588		391412	37622	92653	54
7	575758	51.8	966808	8.5	608950	60.3	391050	37649	92642	53
8	576069	51.7	966756	8.6	609312	60.3	390688	37676	92631	52
9	576379	51.7	966705	8.6	609674	60.3	390326	37703	92620	1
10	576689	51.6	966653	8.6	61	60.2	389964	37730	2609	0
11	9.576939		9.966602		9.610397		10.389603	37757	2598	49
12	577309	51.6	966550	8.6	610759	60.2	389241	37784	92587	48
13	577618	51.6	966499	8.6	611120	60.2	388880	37811	2576	47
14	577927	51.5	966447	8.6	611480	60.1	388520	37838	92565	46
15	578236	51.4	966395	8.6	611841	60.1	388159	37865	2554	45
16	578545		966344	8.6	612201	60.	387799	37892	92543	44
17	578853		966292	8.6	612561	60.0 60.0	387439	37919	532	43
18	579162		966240	8.6	612921		387079	37946	2521	42
19	579470		966188	8.6	613281		386719	37973	510	41
20	579777		966136	8.6	613641		386359	3799	2499	40
21	9.580085		9.966085	8.7	9.614000		$10 \cdot 386000$	3802	92488	39
22	580392		966033	8.7	614359		385641	38053	92477	38
23	580699		965981		614718		385282	3808	466	37
24	581005		965928	8.7	615077	59.7	384923	38107	2455	36
25	581312		965876	8.7	615435	59	384565	3813	2444	35
26	581618		965824	8.7	615793	59	384207	38161	92432	34
27	581924		965772	8.7	616151	59	383849	38188	92421	33
28	582229		965720	8.7	616509		383491	38215	92410	32
29	582535		965668	8.7	616867		383133	38241	2399	31
30	582840		965615	8.7	617224		382776	38268	92388	30
31	9.583145	50.8	9.965563	8.7	9.617582		$10 \cdot 382418$	38295	2377	9
32	583449	50.8	965511	8.7	617939		382061	3832	92366	28
33	583754	50.7	965458	8.7	618295	59.4	381705	38349	2355	27
34	584058	50.6	935403	8.7	618652	59.4	81348	38376	2343	26
35	584361	50.6	9 95353	8.8	619008	59.4 59.4	380992	3840	2332	25
36	584665	50.6	965301	- 8	619364	59.4 59.3	380636	3843	2321	24
37	584968		965248		619721		380279	3845	2310	23
38	585272	50.5	965195	8.8	620076	59.3	379924	3848	2299	22
39	585574	50.5	965143	8.8	620432	29.3	379568	3851	92287	21
40	585877	50.4	965090	8.8	620787	59.2	379213	3853	276	20
41	9.586179	50.4	. 965037	8.8	9.621142	59.2	10.378858	38564	92265	19
42	586482	50.3	964984	8.8	621497	59.1	378503	38591	254	18
43	586783	50.3 50.3	964931	8.8	621852	59.1	378148	38617	92243	17
44	587085		964879	8.	622207		377793	38644	92231	16
45	587386	50.2	964826	8.8	622561		377439	38671	92220	15
46	587688	50.2	964773	8.8	622915		377085	38698	92209	14
47	587989	50.1	964719	8.8	623269		376731	3872	92198	13
48	588289	50.1	964666	8.8	623623		376377	3875	92186	12
49	588590	50.0	964613	8.9	623976		376024	38778	22175	11
50	588890	50.0 50.0	964560	8.9	624330		375670	38805	92164	10
51	9.589190		9.964507		9.624683		10.375317	38832	2152	9
$5 \cdot 2$	589489	49.9	964454	8.9	625036		374964	3885	2141	8
53	589789	49.9	964400	8.9	625388	58.8	374612	38886	92130	7
54	590088	49.8	964347	8.9	625741		374259	38912	2119	6
55	590387	49.8 49.8	964294	8.9	626093	58.7	373907	38939	92107	5
56	590686		964240		626445		373555	38966	92096	4
57	590984		964187	8.	626797		373203	3899	2085	3
58	591282	49.7	964133		627149		372851	39020	92073	2
59	591580	49.6	964080	8	627501	58.	372499	39046	92082	1
60	591878	49.6	964026	-	627852	58.5	372148	39073	92050	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N. sine.	,

67 Degrees.

Log. Sines and Tangents. (230) Natural Sines.
TABLE II.

	Sine.	D. 10^{\prime}	Cosille.	D. 1	Tang.	D. $10^{\prime \prime}$	Cotang.		cos.	
) 9.591878		9.964026	8.9	9.627852	58.5	10.372148	39073	92050	60
1	592176		963972	8.9 8.9	628203	58.5 58.5	371797	39100	92039	59
2	592473		963919		628554		371446	39127	92028	58
3	592770	49.5	963865	9.0	628905	58.4	371095	39153	92016	57
4	593067	49.5 49.4	963811	9.0	629255	58.4 58.4	370745	39180	92005	5 6
5	593363	49.4	963757	9.0	629606	58	370394	39207	91994	55
6	593659	49.4 49.3	963704	9.0	629956	58.3	370044	3923	91982	54
7	593955	49.3	963650	9.0	630306	58.3	369694	39260	91971	53
8	$59+251$	49.3	963596	9.0	30656	58.3	369344	39287	1959	52
9	594547	49.3 49.2	963542	9.0 9.0	631005	58.3	368995	39314	91948	51
10	594842	49.2 49.2	963488	9.0	631355	58.2	368645	3934	11986	50
11	9.595137		9.963434	9.0	9.631704	58.2	10.368296	39367	91925	49
12	595432	49.1	963379	9.0	632053	58.1	367947	39394	91914	48
13	595727	49.1	963325	9.0	632401	58.1	367599	39421	91902	47
14	596021	49.0	963271	9.0	632750	58.1	367250	39448	91891	46
15	596315	49.0	963217	9.0	633098	58.0	366902	39474	91879	45
16	596609	49.0 48.9	963163	9.0	633447	58.0	366553	39501	91868	44
17	596903		963108	9.1	633795	58.0	366205	39528	91856	43
18	597196		963054	9.1	634143	57.9	365857	3955	91845	42
19	597490	48.8	962999	9.1	634490	57.9	365510	39581	91833	41
20	597783		962945	9.1	634838	57.9	365162	3960	91822	40
21	9.598075		9.962890	9.1	9.635185	57.8	10.364815	39635	91810	39
22	598368	48.7	962836	9.1	6355532	57.8	364468	39661	91799	38
23	598660	48.7 48.7	962781	9.1	635879	57.8	364121	39688	91787	37
24	598952	48.7 48.6	962727	9.1	636226	57.7	363774	39715	91775	36
25	599244		962672	9.1	636572	57.7	363428	39741	91764	35
26	599536		962617	9.1	636919	57.7	363081	39768	91752	34
27	599827		962562	9.1	637265		362735	3979	1741	33
28	600118	48	962508	9.1	637611		362389	39822	91729	32
29	600409		962453	9.1	637956	57.6	362044	39848	91718	31
30	600700		962398	92	638302		361698	39875	91706	30
31	9.600990		962343	9.2	9.638647		10.361353	39902	91694	29
32	601280		962288	9.2	638992		361008	39928	1683	28
33	601570	48.3	962233	9.2	639337		360663	39955	1671	27
34	601860		962178	9.3	639682		360318	39982	91660	26
35	602150	48.2 48.2	962123	9.2	640027	57.4	359973	40008	91648	25
36	602439	48.2	962067	9.2	640371	57.4	59629	4003	1636	24
37	602728	48.1	962012	9.2	640716	57.3	359284	40062	91625	23
38	603017	48.1	961957	9.2	641060	57.3 57.3	358940	4008	91613	22
39	603305	48.1	961902	9.2	641404		358596	4011	1601	21
40	603594	48.0	961846	9.2	641747	57.3 57.2	358253	4014	1590	20
41	9.603882		. 961791	9.2	9.642091		10.357909	40168	1578	19
42	604170	47.9	961735	9.2	642434	57.2	357566	4019	91566	18
43	604457	47.9	961680	9.2	642777	57.2	357223	40221	91555	17
44	604745	47.9	961624	9.3	643120	57.1	356880	40248	91543	16
45	605032	478	961569	9.3 9.3	643463	b7.1 57.1	356537	40275	91531	15
46	605319	47.8	961513	9.3	643806	57.1	356194	40301	91519	14
47	605606	47.8	961458	9.3	644148	57.0	355852	40328	91508	13
48	605892	47.7	961402	. 3	644490	-7.0	355510	40355	91496	12
49	606179	47.7	961346	9.3 9.3	644832	57.0	355168	40381	91484	11
50	605465	47.6	961290	9.3	645174	57.0	354826	4040	91472	10
51	9.606751		. 961235		9.645516		10.354484	40434	91461	9
52	607036		961179	9.3	645857	56.9	354143	40461	91449	8
53	607322	47.6	961123	9.3	646199	56.9	353801	40488	91437	7
54	607607	47.5	961067	93	646540	56.8	353460	40514	91425	6
55	607892	47.4	961011	9.3	646881	56.8	353119	40541	91414	5
56	608177	47.4	960955	9.3	647222	56.8	352778	40567	91402	4
57	608461	47.4	950899	9.3	647562	56.8	352438	40594	91390	3
58	608745	47.3	960843	9.4	647903	56.7	352097	4062	91378	2
59	609029	47.3	960786	9.4	648243	56.7	351757	4064	91366	1
60	13	4	30	9.4	648583	5	351417	106	91355	0
	Cosine.		Sine.		Cotang.		Tang	N.c.	F.sin	r
66 Degrees.										

	Sine.	$0^{\prime \prime}$	Cosine.	1011	Tang.	D. $10^{\prime \prime}$	Cotang.	e.		
0	9.625948		9.957276	9	9.668673		10.331327	42262	90631	60
1	626219		957217	9.8	669002	55.0 54.9	330998	42288	90613	59
2	626490	45.1 45.1	957158	9.8	669332	54.9 54.9	330668	42315	90606	58
3	626700	45.0	957099	9.8	669661	54.9 54.9	330339	42341	90594	57
4	627030	45.0	957040	9.8	669991	54.8	330009	42367	Y 5582	ธ6
5	627300		956981	9.8	670320	54.8 54.8	329680	42394	90569	55
6	627570	44.9	956921	9.9	670649	54.8	329351	42420	90555	54
7	627840	44.9 44.9	9 956862	9.9	670977	54.8	329023	42446	90545	53
8	628109	44.9	956803	9.9	671306	54.7	328694	42473	90532	52
9	628378	44.9	9506744	9.9	671634	54.7	328366	42499	90520	51
10	628647	44.8	956684	9.9	671933	54.7	328037	42525	90519	50
11	9.628916	44.7	9.956625	9.9	9.672291	54.7	10.327709	42552	90495	49
12	629185	44.7	956566	9.9	672619	54.7 54.6	327381	42578	90483	48
13	629453	44.7	956506	9.9	672947	54.6	327053	42604	90470	47
14	629721	44.6	956447	9.9	673274	54.6	326726	42631	90458	46
15	629989	44.6	956387	9.9	673602	54.6	326398	42657	90446	45
16	630257	44.6	956327	9.9	673929	54.5	326071	42683	90433	44
17	630524		956268	9.9	674257	54.5	325743	42709	90421	43
18	630792	44.5	956208	10.0	674584	54.5	325416	42736	90408	42
19	631059	44:0	956148	10.0	674910	54.4	325090	42762	90396	41
20	631326	44.5	9506089	10.0	675237	54.4	324763	42788	90383	40
21	9.631593	44.4	. 950029	10.0	9.675564	54.4	10.324436	42815	90371	39
22	631859	44.4 44.4	955969		675890		324110	42841	90358	38
23	632125	44.4	955909	10.0	676216		323784	42867	90346	37
24	632392	44.3	955849	10.0	676543		323457	42894	90334	36
25	632658	44.3	955789	10.0	676869		323131	42920	90321	35
26	632923	44.3	955729	10.0	677194		322806	42946	90309	34
27	633189	44.2	955569	10.0	677520		322480	42972	90296	33
28	633454	44.2	955609		677846		322154	42999	90284	32
29	633719	44.2 44.2	9555548	10.0	678171	54.2 54.2	321829	43025	90271	31
30	633984	44.1	955488	10.0	678496	54.2	321504	43051	90259	30
31	9.634249	44.1	9.955428	10.1	9.678821	54.2 54.1	10.321179	43077	90246	29
32	634514	44.0	955368	10.1	679146	54.1	320854	$4310+$	90233	28
33	634778	44.0	955307	10.1	679471	54.1	320529	43130	90221	27
34	635042		955247	10.1	679795	54	320205	43156	90208	26
35	635303	43.9	955186	10.1	680120	54.0	319880	43152	30196	25
36	635570	43.9 43.9	955126	10.1	680444	54.0	319556	43209	90183	24
37	635834	43.9	955065	10.1	680768		319232	43235	90171	23
38	636097	43.8	955005	10.1	681092	54.0	318908	43261	90158	22
39	636360	43.8	954944	10.1	681416	53.9	318584	43287	90146	21
40	636623	43.8	954883	10.1	681740	53.9 53.9	318260	43313	90133	$\bigcirc 0$
41	9.636886		9.954823	10.1	9.682063		10.317937	43340	90120	19
42	637148	43.7	954762	10.1	682387	53.9	317613	43366	90108	18
43	637411	43.7	954701	10.1	682710	53.8	317290	43392	90095	17
44	637673	43.7	95.1640	10.1	683033	53.8	316967	43418	90082	16
45	637935	43.6	954579	10.1	683356	53.8	316644	43445	90070	15
46	638197	43.6 43.6	954518	10.2	683679	53.8	316321	43471	90057	14
47	638458	43.6	954457	10.2	684001	53.7	315999	43497	90045	13
48	638720	43	954396	10.2	684324	53.7	315676	43523	90032	12
49	638981	43.5	954335	10.2	684646	53.7	315354	43549	90019	11
50	639242	43.5	954274	10.2	684968	53.7	315032	43575	90007	10
51	9.639503	43.5 43.4	9.954213	10.2	9.685290	53.6	10.314710	43602	89994	9
52	639764	43	954152	10.2	685612	53.6	314388	43628	89981	8
53	640024	43.4 43.4	954090	10.2	685934		314066	43654	89968	7
54	640284	43.4 43.3	954029	10.2	686255		313745	43680	89956	6
55	640544	43.3	953968	10.2	686577	53	313423	43706	89943	5
56	640804	43.3 43.3	953906	10.2	686898	53.5	313102	43733	89930	4
57	641064	43	953845	10.2	687219	53.5	312781	43759	89918	3
58	641324	43.2	953783	10.2	687540	53.5 53.5	312460	43785	89905	2
59	641584	43.2	953722	10.3	687861	53.5 53.4	312139	43811	89892	1
60	641842	43.2	953660	10.3	688182	53.4	311818	43837	89879	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sive.	,
64 Degrees.										

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	N. sine.	N. \cos.	
0	9.641842		9.953660	10	9.688182	53.4	10.311818	43837	89879	60
1	642101		953599		688502		311498	43863	89867	59
2	642360	43.1	953537	10	688823	53	311177	43889	89854	58
3	642618	43.1 43.0	953475	10.3 10.3	689143	53.4	310857	43916	89841	57
4	642877	43.0 43.0	953413	10.3 10.3	689463	53.3 53.3	310537	43942	89828	56
5	643135	43.0	953352	10.3	689783	53.3 53.3	310217	43968	89816	55
6	643393	43.0	953290	10.3 10.3	690103	53.3	309897	$4399+$	89803	54
7	643650	42.9	953228	10.3 10.3	690123	53.3 53.3	309577	44020	89790	53
8	643908	42.9	953166	10.3 10.3	690742	53.2	309258	44046	89777	52
9	644165	42.9	953104	10.3	691082	53.2	308938	44072	89764	51
10	644423	42.8	953042	10.3 10.3	691381	53.2 53.2	10308619	44098	59752	50
11	9.644680	42.8	9.952980	10.4	9.691700	53.2 53.1	10.308300	44124	89739	49
12	644936	42.8	952918	10.4	692019	53.1	307981	44151	89726	48
13	645193	42.7	952855	10.4	6 6 2338	53.1	307662	44177	89713	47
14	645450	42.7	952793	10.4	692656	53.1	307344	'44203	89700	46
15	645706		952731		692975	53.1	307025	44229	89687	45
16	645962	42.6	952669	10.4	693293	53.0	306707	44255	89674	44
17	646218	42.6	952603	10.4	693612	53.0	306388	44281	89662	43
18	646474	42.6	952544	10.4	693930	53.0	$3050{ }^{3} 0$	44307	89649	42
19	646729	42.5	952481	10.4	694248	53.0	305752	44333	89636	41
20	64698.4	42	952419	10.4 10.4	694566	52	10 305434	44359	99623	40
21	$9.64 \% 240$	42.5	9.952356	10.4	9.694883	52.9	$10 \cdot 305117$	44885	89610	39
22	647434	42	952244	10	695201	52.9	304799	44411	30597	38
23	647749		952231	10	695518		304482	44437	9584	37
24	648004		952168	10.4	605836		304164	44464	9571	36
25	648258		952103	10.0	696153		303847	44490	89558	35
26	648512		952043		696470	52.8	303550	44516	89545	34
27	648766		951980		696787	52.8	303213	44542	89532	33
28	6490\%	42.3	951917	10.5	607103		302897	44568	89519	32
29	649274	42.3	951854	10.5	69 1420	52.8	302580	44594	9506	31
30	649527		951791		697736		302264	44620	89493	30
31	9.649781		9951728		9.698053	52.7	10.301947	44646	89480	29
32	650334		951665	10.5	698369	52.7	301681	44672	89467	28
33	659287		9:51602		698685		301315	44698	89454	27
34	650539		951539	10	699001		300999	44724	441	26
35	650792		951476	10	699316		300684	44750	89428	25
36	651044	42.0	951412	10.5	699632		300368	44776	3415	24
37	651297	42.0	951349	10.5	699947	52.6	300053	44802	89402	23
35	651549		951286		700263		299737	44828	89389	22
39	651800	42.0	951222	10.6	700578		299422	44854	89376	21
40	652052		9551159		700893		299107	44880	89363	20
41	9.652304		9.951096		9.701208		10.238792	44906	89350	19
42	652555	41.9	951032	10.6 10.6	701523	52	298477	44932	89337	18
43	652806		950968	10.6	701837		298163	44958	89324	17
44	653057	41.8	950905	10.6	702152	52.4	297848	44984	89311	16
45	653308		950841		702466		297534	45010	89298	15
46	653558		950778		702780		297220	45036	9285	14
47	653808	41.7	950714	10.6	703095		296905	45062	89272	13
48	654059		950650	10	703409		296591	45088	89259	12
49	654309		950586	10.6	703723		296277	45114	89245	11
50	654558		950522		704036		295964	45140	9232	10
51	9.654808		9.950458		9.704350		10.295650	45166	89219	9
52	655058	41.6	950394	10.7	704663	52.2	295337	45192	89206	8
53	655307		950330	10.7	704977		295023	45218	S9193	7
54	655556	41.5	950366	10.7	705290	52.2	294710	45243	89180	6
ธ5	65.5805		950202	10.7	705603	52.2	294397	45269	9167	5
56	656054	41. 4	950138	10.7	705916	52.1	294084	45295	89153	4
57	656302	41.4	950074	10.7	706228	52.1	293772	45321	89140	3
58	656551		950010	10.7	706541	52.1	293459	45347	89127	2
59	656799		949945	10.7	706854	52.1	203146	45373	89114	1
60	657047	41.3	949881	10.7	707166	52.1	292834	45399	89101	0
	Cosine.		Sine.		Cotang.		'iang.	N. cos.	N-sine.	
63 Degrees.										

Log. Sines and Tangents. (27°) Natural Sines.

,	Sine	D. 10^{\prime}	Vosine	D. 10	lang.	D. $10^{\prime \prime}$	Cotang.	N. sine.	N. cos.	
	9.657047		949		707166		292834	45399		0
1	657295		949816		707478		292522	45425	7	59
2	657542	41.2	949752		707790		292210	45451	74	58
3	657790	41.2	94	10	718102	52.0	291898	45477	89061	57
5	658037	41.2	${ }_{9}^{949623}$	10.8	708414	51.9	291586	4503	89048	56
5	658284	41.2	949558		708726	51.9	291274 290963	45529	035	55
6	658531	41.1		10	709037	51.9	290963		021	54
8		41.1	949364	10.8	709660	51.9	290340	45606	88995	2
8	9271	41.	949300		709971		290029	45563	88981	51
10	659517		949235		710282		289718	45658	88968	50
11	9.659763		949170		710593		10.289407	45684	88955	49
12	660 J99		949105	10.8	710904		289096	45710	8942	48
13	660255		949040		711215	51.8	288	4573	88928	47
14	660501	40.9	94	10.8		51.7				46
	660	40.9		10.8		51.7				5
16	660991	40.8	948845	10.8	712146	51.7	287854	45813	88888	44
17	661236		948780	10.9	712456	51.7	287544	458		43
18	661481	40.8	9487		71		4	458		42
		40.7		10.9		51.6				1
20	661970	40.7		10.9		51.6	10286614	459178	35	40
21	9.662214	40.7	918	10.9	. 71	51.6	10.286304		22	39
22	662459		948		74					8
23	662703	40.6	948388	10.9		51.5				37
24	662946	40		10.9		51.5	285876	4602	8782	36
25	663190		948257		749	51.5	285067	460	78	35
26	663433	40	948							4
27	663677	40.5		10.9		51.4	284449			3
28	663920	40	948060	10	715860	51.4	284140	4612	72	32
29 30	664163 664406	,	7995	11	716168	51.4	283832	4614	15	31 30
31	9.664348	40.4	. 947863	11.0	. 716785	51.4	10.283215	46201	88	29
32	664391		947797		717093		282907	4622	867	8
33	665133		91773		717401		282599	462	8861	27
34	665	40	947665	11.0	717709	51	282291	462	47	26
35		40.3		11.0		51.3				5
36	665:359	40.2		11.0	718325	51.3	281675			4
37	666100	40	947467	11.0	718940	51.2	281367	4635	8607	23
38	6663	40.2	01	11.0	718940	51.2	281060	4638	8593	2
39	666583	40		11.0		51.2				
	. 667			11.		51.2	10.280138			9
42	667305		947136		720169		279831	46484	88539	18
43	667546		947070		720476		279524	4651	88526	17
44	667786		947004		720783		279217	465	S512	16
45	668127		946937		721089		278911	465	8499	15
46	668:		946871	11.1	721396		278604	46587	88485	14
47	668.506	39.9	9468	11.1	7217		27829	46613	88472	13
48	668746	39.9	946738	11.1	722009		277991	466	8458	12
49	668986	39.9	671	11.1			277685	4666		10
50	669.22		946604	11.1	72262		277379	46690	88431	10
51	9.66	39	. 946538	11.1	. 722927	51	10.277073	4671	88417	9
52	669703	39.8	946471	11.1	723232	50.9	276	467	88404	8
53	669942	39.8		11.1		50.9	276462	4676	8390	7
54	670181		946337	11.1	723844		276156	4679	8377	6
	67011		946270		724149		275851	46819	88363	5
56	6701558		946203	11.2			275546	468	8349	4
57	670396		136	11.2			275241	468	33	3
58	671134	39.6	946069	11.2	506		274435	4689	322	2
59	67137	39.6	946002		53	50.	274631	4692	88308	1
0	671609		93		225674		274326		88295	0
	Coxine.		e.		Cotang.		Tang.	,	N.si	
62 Degrees.										

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	N. sine.	N. cos.	
0	9.671609		9.945935	2	9.725674		10.274326	46947	88295	60
1	671847	39.5	945868	11.2	725979		274021	46973	88281	59
2	672034	39.5	945809	11.2	726284	50.8	273716	46999	88267	58
3	672321	39.5	945733	11.2	726588	50.7	273412	47024	88254	57
4	672558	39.5	945666	11.2	726892	50.7	273108	47050	88240	56
5	672795	39.5	945598	11.2	727197	50.7	272803	47076	88226	55
6	673032	39.4 39.4	945531	11.2	727501	50.7	272499	47101	88213	54
7	673268	39.4	945464	11.2	727805		272195	47127	88199	53
8	673505	39.4	945396	11.3	728109	50.6	271891	47153	88185	52
9	673741	39.4 39.3	945328	11.3 11.3	728412	50.6	271588	47178	88172	51
10	673977	39.3	945261		728716	50.6	271284	47204	88158	50
11	9.674213	39.3 39.3	9.945193		9.72902¢	50.6	10.270980	47229	8144	49
12	674448	39.3 39.2	945125	11.3 11.3	729323	50.6	270677	47255	88130	48
13	674684	39.2	945058	11.3	729626	50.5	270374	47281	8117	47
14	674919	39.2	944990		729929		270071	47306	8103	46
15	675155	39.2	944922	11.3	730233	50.5	269767	47332	88089	45
16	675390	35.2	944854	11.3	730535	50.5	269465	47358	88075	44
17	675624		944786		730838		269162	47383	88062	43
18	675859	39.1	944718		731141		268859	47409	88048	42
19	676094	39.1	944650		731444		268556	47434	88034	41
20	676328	39.0	944582		731746		268254	47460	88020	40
21	9.676562	39.0	9.944514	11.4	9.732048	50.4	10.267952	47486	88006	39
22	676796		944446		732351		267649	47511	87993	38
23	677030		944377		732653		267347	47537	87979	37
24	677264		944309		732955		267045	47562	87965	36
25	677498	38.9	944241		733257		266743	47588	87951	35
26	677731	38.9	944172		733558		266442	47614	7937	34
27	677964	38	944104	11	733860	50.3	266140	47639	87923	33
28	678197	38	944036	11	734162	50.2	265838	47665	87909	32
29	678430		943967		734463		265537	47690	87896	31
30	678663		943899		734764		265236	47716	87882	30
31	9.678895		9.943830	11	9.735066		10.264934	47741	87868	29
32	679128	38.7	943761		735367		264633	47767	87854	28
33	679360	38.7	943693	11.4	735668		264332	47793	87840	27
34	679592		943624		735969	50.1	264031	4781	87826	26
35	679824	38.7	943555	11.5	736269	50.1	263731	47844	87812	25
36	680056		943486	11	736570		263430	47869	87798	24
37	680288		943417		736871		263129	47895	87784	23
38	680519		943348		737171		262829	47920	87770	22
39	680750		943279		737471		262529	47946	87756	21
40	680982		943210		737771		262229	47971	87743	20
41	9.681213		9.943141		9.738071		10.261929	47997	87729	19
42	681443		943072	11.5	738371		261629	48022	87715	18
43	681674	38.4	943003	11.5	738671	49.9	261329	48048	87701	17
44	681905	38.4	942934	11.5	738971	49.9	261029	48073	87687	16
45	682135	38.4	942864	11.5	739271	49.9	260729	48099	87673	15
46	682365	38.8	942795	11.6	739570	49.9	260430	48124	87659	14
47	682595	38.3	942726		739870		260130	48150	87645	13
48	682825	38.3 38.3	942656	11.6	740169	49.9	259831	48175	87631	12
49	683055	38.3	942587	11.6	740468	49.9	259532	48201	87617	11
50	683284		942517		740767	49.8	259233	48226	87603	10
51	9.683514	38.2	9.942448		9.741066	49.8	10.258934	48252	87589	9
52	683743		942378		741365		258635	48277	87575	8
53	683972		942308	11.6	741664	49.8	258336	48303	87561	7
54	684201	38.2	942239	11.6	741962	49.8	258038	48328	87546	6
55	684430		942169	11.6	742261	49.7	257739	48354	87532	5
56	684658	38.1	942099	11.6	742559	49.7	257441	48379	87518	4
57	684887		942029		742858		257142	48405	87504	3
58	685115		941959	11.6	743156	49.7	256844	4843	87490	2
59	685343		941889	11.6	743454	49.7	256546	48456	87476	1
60	685571	38	941819	1	743752	49	256248	48481	87462	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	r
61 Degrees.										

	Sine.	D. $10^{\prime \prime}$	Cos	$10^{\prime \prime}$	Ta	D. $10^{\prime \prime}$	Cotang.			
0	9.685571	38.0	9.941819	11.7	9.743752	49	10.256248	48481	87462	60
1	685799	38.0	941749	11.7	744050	49.6 49.6	255950	48506	87448	59
2	686027	37.9	941679	11.7	744348	49.6 49.6	255652	48532	87434	58
3	686254	37.9 37.9	941609	11.7	744645	49.6 49.6	255355	48557	87420	57
4	686482	37.9	941539	11.7	744943	49.6	255057	48583	87406	56
5	686709		941469		745240		254760	48608	87391	55
6	686936	37.8 37	941398	11.7	74553	49.5	254462	48634	77	54
7	687163	37.8	941328	11.7	745835	49.5	254165	48659	87363	53
8	687389	37.8	941258	11.7	74	49.5	253868	48684	87349	52
9	687616		941187	11.7	746429	49.5	253571	48710	35	51
10	687843		941117	11.7	746726	49.5	253274	48735	321	50
11	9.688069	37.7	9.941046	11.8	7470	49.4	10.252977	48761	87306	49
12	688295	37.7	940975	11.8	747319	49.4	252681	48786	87292	48
13	688521	37.6	940905	11.8	61	49.4	252384	48811	278	47
14	688747	37.6 37.6	940834	11.8	747913	49.4	252087	48837	87264	46
15	688972	37.6	63	11.8	748209	49.4	251791	48862	250	45
16	689198		940693	11.	748505		251495	48888	87235	44
17	689423		940622	11.8	748801	49.3	251199	48913	87221	43
18	689648		940551	11.8	749097		250903	48938	87207	42
19	689873		940480	11.8	749393	49.3	250607	48964	93	41
20	690098		940409		7490		250311	48989	7178	40
21	9.690323		. 940338		749985		10.250015	49014	87164	39
22	690548		940267		750281	49.2	249719	49040	7150	38
23	690772	37.4	940196	11.8	750576	49.2	249424	49065	7136	37
2	690996	37.4	940125	11.9	750872	49.2	249128	49090	87121	36
25	691220		940054		751167	49.2	248833	49116	87107	35
26	691444		939982	11.9	751462	49.2	248538	49141	87093	34
27	691668		939911	11.9	751757	49.2	48243	49166	7079	33
28	691892		939840		752052	49.1	247948	49192	87064	32
29	692115		39768		752347	49.1	247653	49217	87050	31
30	692339		939697	11.9	752642	49.1	247358	49242	87036	30
31	9.692562		. 939625	11.9	9.752937	49.1	10.247063	49268	87021	29
32	692785	37.2	939554	11	753231	49.1	246769	49293	87007	8
33	693008	37.1	939482	11.9	753526	49.1	246474	49318	86993	27
34	693231	37.1	939410	11.9	753820	49.0	246180	493	978	6
35	693453	37.1	939339	11.9	754115	49.0	245885	49369	86964	5
36	693676	37.0	39267	12.0	754409	49.0	245591	49394	6949	4
37	693898	37.0	939195	12.0	754703	49.0	245297	49419	86935	3
38	694120	37.0	939123	12.0	754997	49.0	245003	49445	86921	22
39	694342	37.0	939052	12.0	755291	49.0	244709	49470	86906	1
40	-694564	36.9	9 938980		$\begin{array}{r}755585 \\ \hline\end{array}$	48.9	10.2444152	49495	86892	20
41	9.694786 695007	36.9	9.938908	12.	. 7555878	48.9	10.244122 243828	49521	86878	19
43	695229	36.9	938763	12.0	756465	48.9 48.9	243535	49571	86849	17
44	695450		938691		756759		243241	49596	86834	16
45	695671		938619	12.0	757052	48.9	242948	49622	86820	15
46	695892	36.8	938547	12.0	757345	48.8	242655	49647	86805	14
47	696113	36.8	938475	12.0	757638	48.8	242362	49672	86791	13
48	696334	36.8	938402	12.1	757931	48.8	242069	49697	86777	12
49	696554	36.7	938330	12.1	758224	48.8	241776	49723	86762	11
50	, 696775	36.7	9338258	12.1	758517	48.8	10 241483	49748	86748	10
51	9.696995	36.7	9.938185	12.1	9.758810	48.8	10.241190	49773	86733	9
52	697215	36.6	938113	12.1	759102	48.7	240898	49798	86719	8
53	697435	36.6	938040	12.1	759395	48.7	240605	4982	86704	
54	4697654	36.6 36.6	937967	12.1	759687	48.7	240313	49849	86690	6
	697874	36.6	937895	12.1	759979	48.7	240021	49874	86675	5
	698094		937822		760272		239728	49899	86661	4
	698313		937749	12.1	760564	48.7	239436	49924	86646	3
58	698532		937676	12.1	760856		239144	49950	S6632	2
9	698751		937604		761148		238852	49975	86617	1
60	-6989\%0		937531		761439		238561	50000	86603	0
	Cosiue.		Sine.		Cotang.		Tang.	N. cos.	N.sime.	

T'
D. $10^{\prime \prime}$ Cosine.

| 0 | 9.698970 |
| :--- | ---: | ---: |

39	3
3	3

| 3 |
| :--- | :--- |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |

 \({ }_{4}\)
 9.9375
 937
937531
$\left.\left.\right|_{12.1} ^{12.2}\right|^{9.7}$
Tang.
D. $10^{\prime \prime}$ Cotang. N. sine N. cos.

60
59
58
57
56
55
54
53
52
51
50
49
48
47
49
45
44
43
42
41
40
39
38
37
36
35
35

$230430 \mid 5070486192$

229852 50754 86163
10

238561
2389797
23

5000086603
5002588
50
2699407
699844
700062
00280
700498
700716
00933
$10 \quad 701151$
119.701368
$\begin{array}{ll}12 & 701585 \\ 13 & 701802\end{array}$
702019 702236
702452
02885
703101

20	703317
21	9.703533

703749
703964
70417
704179
704395
704610
704825
705010
705254
9.705683

31	9.705683
32	705898

06112
706326

706753

707180
707606
$\begin{array}{r}-707819 \\ 708032 \\ \hline\end{array}$
708245
44708458
$\begin{array}{lll}45 & 703670 \\ 46 & 708882\end{array}$
$47 \quad 709094$

48	709305
49	703518
50	

19.709941
52
$53 \quad 710364$
54710575
$56 \quad 710967$
58 711208
58
59
60
60
711419
711629
711839

Log. Sines and Tangents. (31 ${ }^{\circ}$) Natural Sines.
TABLE II.

,	Sine.	\|D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	N.sine.	N. cos	
	9.711839	35.0	9.933036		9.778774	47	10.221226			60
1	712050		932990		779060		220940	51529	85702	59
2	712260		932914		779346		220654	51554	85687	58
3	712469		932838		779632		220368	51579	85672	57
4	712679		932762		779918		220082	51604	85657	56
5	712889		932685	12	780203		219797	51628	85642	55
6	713098	. 9	932609	12.7	780489	47.6	219511	51653	85627	54
7	713308	34.9 34	932533	12.7	780775	47.6	219225	51678	85612	53
8	713517		932457		781060		218940	51703	85597	52
9	713726	34.8	932380	12.7	781346	47	218654	51728	85582	1
10	713935		932304		781631		218369	51753	5567	50
11	9.714144	34.8	9.932228		9.781916		10.218084	51778	85551	49
12	714352		932151		782201		217799	5180	85536	48
13	714561	34.7	932075		782486	47	217514	51828	85521	47
14	714769	34.7	931998		782771		217229	51852	5506	46
15	714978	34.7	931921	12.8	783056	47	216944	51877	854	45
16	715186	34.7	931845	12.8	783341	47	16659	51902	85476	44
17	715394		931768		783626	47	216374	5192	85461	43
18	715602		931691	12.	783910		216090	51952	85446	42
19	715809		931614	12.8	784195	47.4	215805	51977	85431	41
20	, 716017		931537 9931460		984479	47.4	10 215521	52002	85416	39
21	9.716224 716432	34.5	9.931460 931383	12.8	9.784764 785048	47.4	10.215236 214952 21568	52026	85401	39
23	716639	34.5	931306	12.8	785332	47.4	214668	52076	85370	37
24	716846		931229		785616		214384	5210	853	
25	717053		931152		785900		214100	52126	85340	5
26	717259		931075		786184		213816	5215	532	
27	717466		930998		786468		213532	52175	85310	3
28	717673		930921		786752		213248	5220	85294	
29	717879	34.4	930843	12	787036		212964	5222	5279	
30	718085		930766	12.9	787319	47.2	212681	5225	5264	
31	9.718291		-. 930688	12.9	9.787603	47.2	10.212397	5227	5249	
32	718497	34.3	930611	12.9	787886	47.2	212114	52299	85234	
33	718703	34.0	930533	12.9	788170	47.2	211830	5232	8	
34	718909	34.3	930456	12.9	788453	47.2 47	211547	52349	85203	
35	719114	34.2	930378	12.9	788736	47.2	211264	52374	85188	25
36	719320		930300		789019		210981	52399	85173	
37	719525	34.2	930223		789302		210698	52423	85157	
38	719730	34.2	930145	13.0	789585	47.1	210415	52448	85142	2
39	719935	34.1	930067		789868		210132	52473	85127	
40	720149	34.1	929989		790151	47.1	209849	52498	85112	20
41	9.720345		9.929911		9.790433		10.209567	52522	85096	19
42	720549		929833		790716		209284	52547	85081	18
43	720754		929755		790999	47.1	209001	5257	85066	
44	720958	34.0	929677		791281		208719	52597	85051	16
45	721162	34.0	929599	13.0	791563		208437	52621	85035	15
46	721366	34.0	929521		791846		208154	52646	85020	14
47	721570	34.0	929442	13.0	792128	47.0	207872	52671	85005	13
48	721774	33.9	929364		792410		207590	52696	84989	12
49	721978	33.9 33.9	929286	13.1	792692		207308	52720	4974	11
50	722181		929207		792974		207026	52745	84959	10
51	9.722385		9.929129		9.793256		10.206744	52770	84943	9
52	722588		929050		793538		206462	5279	84928	
53	722791	33.8	928972	13.1	793819		206181	52819	84913	
54	722994	33.8	928893	13.1	794101	46.9	205899	52844	84897	
55	723197		928815		794383		205617	52869	84882	
56	723400		928736		794664		205336	52893	84866	
57	723603		928657		794945		205055	52918	84851	3
58	723805		928578		795227		204773 \|	52943	84836	
59	724007	33.7	928499	13.	795508		204492	52967	84820	
60	724210	33.7	928420	13.	795789	46	204211	52992	84805	0
	Cos									

,	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	\|	N. eos.	
0	9.724210		9.928420		9.795789		10.204211	52992	84805	60
1	724412	33.7	928312	13.2	796070	46	203930	53017	84789	59
2	724614	33.7 33.6	928263	13.2	796351	46.8	203649	53041	84774	58
3	724816	33.6	928183	13.2	796632	46.8 46.8	203368	53066	84759	57
4	725017	33.6 33.6	928104	13.2	796913	46.8	203087	53091	84743	56
5	725219	33.6 33.6	928025	13.2	797194	46.8	202806	53115	84728	55
6	725420	33.5	927946		797475		21,2525	53140	84712	54
7	725622	33.5 33.5	927867	13.2	797755	46.8	202245	53164	84697	53
8	725823	33.5	927787	13.2	798036	46.8	201964	53189	84681	52
9	726024	33.5 33.5	927708	13.2	793316	46.7	201684	53214	84666	51
10	726225	33.5 33.5	927629	13.2	798596	46.7	201404	53238	84650	50
11	9.726426		9.927549		9.798877		10.201123	53263	84635	49
12	726626	33.4	927470		799157	46.7	200843	53288	84619	48
13	726827	33.4	927390		799437	46.7	200563	53312	84604	47
14	727027	33.4 33.4	927310	13.	799717	46.7	200283	53337	84588	46
15	727228	33.4	927231	13.	799997	46.6	200003	53361	84573	45
16	727428	33.4 33.3	927151	13.3 13.3	800277		199723	ธ3386	84557	44
17	727628	33.3 33.3	927071	13.3 13.3	800557	46.6 46.6	199443	53411	84542	43
18	727828	33.3 33.3	926991	13.3	800836	46.6	199164	53435	84526	42
19	728027	33.3 33.3	926911	13.3	801116	46.6	198884	53460	84511	41
20	728227	33	926831		801396		198604	5348	84495	40
21	9.728427		9.926751	13.3	9.801675		10.198325	53509	84480	39
22	728626	33.2 33.2	926671	13.3	801955	46.6	198045	53534	84464	38
23	728825	33.2 33.2	926591	13.3	802234		197766	53558	84448	37
24	729024	33.2 33.2	926511	13.4	802513	46.5	197487	53583	84433	36
25	729223		926431		802792		197208	53607	84417	35
26	729422		926351		803072		196928	53632	84402	34
27	729621	33.1	926270	13	803351		196649	53656	84386	33
28	729820	33 33	926190	13.4	803630		196370	53681	84370	32
29	730018		926110	13.4	803908		196092	53705	84355	31
30	730216	33.0 33.0	926029	13.4	804187		195813	53730	84339	30
31	9.730415	33.0	. 925949	13.4	9.804466	46.5	10.195534	53754	84324	29
32	730613	33.0	925868	13.4	804745		195255	53779	84308	28
33	730811	33.0	925788	13.4	805023	46.4	194977	5380	84292	27
34	731009		925707	13.4	805302		194698	53828	84277	26
35	731206	32.9 32.9	925626	13.4	805580	46.4 46.4	194420	53853	84261	25
36	731404		925545	13.4	805859	46.4	194141	53877	84245	24
37	731602	32.9 32.9	925465	13.5	806137	46.4 46.4	193863	5390	84230	23
38	731799	32.9	925384	13.5	806415	46.4 46.3	193585	53920	84214	22
39	731996	l	925303	13.5	806693		193307	53951	84198	21
40	732193	32.8	925222	13.5	805971	46.3	193029	53975	84182	20
41	9.732390		9.925141		9. 807249		10.192751	54000	84167	19
42	732587		925060	13.5	807527		192473	5402	84151	18
43	732784	32.8 32.8	924979	13.5	807805	46.3 46.3	192195	54049	84135	17
44	732980	32.7	924897	13.5	808083	46.3 46.3	191917	54073	84120	16
45	733177	32.7	924816	13.5	808361		191639	54097	84104	15
46	733373	32.7	924735	13.6	808638	46.3 46.2	191362	5412	84088	14
47	733569	32.7	924654	13.6	808916	46.2	191084	54146	84072	13
48	733765	32.7 32.7	924572	13.6	809193	46.2 46.2	190807	54171	84057	12
49	733961	32.6	924491	13.6	809471	46.2 46.2	190529	54195	84041	11
50	734157		924409		809748		190252	5422	84025	10
51	9.734353		9.924328	13.6	9.810025	46.2	10.189975	54244	84009	9
52	734549	32.	924246	13.6	810302	46.2	189698	54269	83994	8
53	734744	32.6 32.5	924164	13.6	810580	46.2	189420	54293	83978	7
54	734939	32.5	924083	13.6	810857	46.2	189143	54317	83962	6
55	735135		924001	13.6	811134	46.2	188866	54342	83946	5
56	735330		923919	13.6	811410	46.1	188590	54366	83930	4
57	735525		923837	13.6	811687	46.1	188313	54391	83915	3
58	735719	- 32.5	923755	13.6	811964	46.1	188036	54415	83899	2
59	735914	32.4	923673	13.7	812241	46.1	187759	5444	83883	1
60	736109	32	923591	13	812517	46	187483	54464	83867	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	1
57 Degrees.										

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	T	D. $10^{\prime \prime}$	Cotang.	ne.	N	
0	9.736109	32.4	9.923591		9.812517		10.187482	54464	83867	60
1	736303		923509		812794		187206	54488	83851	59
2	736498	32.4	923427		813070		186930	54513	83835	58
	736692	32.4	923345	13.7	813347	46.1	186653	54537	83819	57
4	736886	32.3	923263	13.7	813623		186377	54561	83804	56
5	737080		923181	13.7	813899		186101	54586	83788	55
6	737274	32.3	923098		814175	46.0	185825	54610	83772	54
7	737467	32.3	923016	13.7	814452	46.0	185548	546	3756	53
8	737661		922933		814728		185272	54659	83740	52
9	737855		22851	1	815004		184996	5468	83724	51
10	738048	. 2	922768		815279	46.0	184721	5470	708	50
11	9.738241	22.	9.922686		. 815555	46.0	10.184445	54732	3692	49
12	738434		922603		815831		184169	5475	83676	48
13	738627		922520	13.8	816107		183893	54781	83660	47
14	738820		922438	13.8	816382		183618	5480	83645	46
15	739013		922355		816658		183342	5482	83629	45
16	739206		922272		816933		183067	5485	83613	44
17	739398	32.1	922189		817209		182791	548	83597	43
18	739590		922106		817484		182516	5490	5581	42
19	739783	32.0	922023		817759		182241	5492	3565	41
20	739975	32.0	921940		818035		181965	5495	83549	40
21	9.740167	32.0	9.921857		9.818310		10.181690	54975	83533	39
22	740359		921774		818585		181415	54999	83517	38
23	740550		921691		818860		181140	550	83501	37
24	740742		921607		819135		180865	55048	83485	36
25	740934		921524		819410		180590	5507	3469	35
26	741125		921441		819684		180316	5509	3453	34
27	741316		921357		819959		180041	551	437	33
28	741508	31.	921274		820234		179766	551	421	32
29	741699		921190		820508		179492	5516	3405	31
30	741889		921107		820783		179217	51	3389	30
31	9.742080		9.921023		9.821057		10.178943	5521	3373	29
32	742271		920939		821332		178668	55	3356	28
33	742462		920856	14.	821606		178394	552	83340	27
34	742652		920772		821880		178120	52	3324	26
35	742842		920688		822154		177846	5531	3308	25
36	743033		920604		822429		77571	5533	33292	24
37	743223		920520	14.0	822703		77297	5536	3276	23
38	743413		920436		822977		77023	5538	83260	22
39	743602		920352		823250		176750	5541	3244	21
40	743792		920268		823524		176476	554	3228	20
41	9.743982		9.920184		. 823798		10.176202	5546	3212	19
42	744171		920099	14.0	824072		175928	5548	83195	18
43	744361	31.6 31.5	920015	14.0	824345		175655	55509	3179	17
44	744550		919931		824619		175381	55533	3163	16
45	744739		919846		824893		175107	5555	3147	15
46	744928		919762		825166		174834	5558	3131	14
47	745117		919677		825439		174561	5560	115	13
48	745306		919593		825713	45.	174287	5563	3098	12
49	745494		919508		825986		174014	5565	082	11
50	745683		919424		826259		173741	L567	3066	10
51	9.745871		9.919339		9.826532		10.173468	55702	3050	9
52	746059		919254		826805		173195	5572	3034	8
53	746248		19169		827078		172922	5575	017	7
54	746436		919085	1	827351		172649	5577	3001	6
55	746624		919000	1	827624		172376	5579	2985	5
56	746812		918915		827897		172103	55823	82969	4
57	746999		918830		828170		171830	5584	2953	3
58	747187		918745		828442		71558	55871	82936	2
59	747374		918659		828715		171285	55895	82920	1
60	747562	31.2	918574	14.2	828987	45.4	171013		04	0
	Cosine.		Sine.		Cotang.		Tang.	N. co	. sin	,

TABLE II. Log. Sines and Tangents. (34 ${ }^{\circ}$) Natural Sines.

,	Sine.	$10^{\prime \prime}$	Co	D.	Tang.	$0^{\prime \prime}$	Co	N.sine	N. cos.	
	9.747562		9.918574	14.2	9.828987		10.171013	55919	82904	60
1	747749	31.2	918489	14.2	829260	45.4	170740	55943	82887	59
2	747936	31.2	918404	14.2	829532	45.4	170468	55968	82871	58
3	748123	31.1	918318	14.2	829805	45.4	170195	55992	82855	57
4	748310	31.1	918233	14.2	830077	45.4	169923	56016	82839	56
5	748497	31.1	918147	14.2	830349	45.3	169651	56040	82822	55
	748683	31.1	918052	14.2	830621	45.3	169379	56064	82806	54
7	748870		917976	14.2 14.3	830893	45.3	169107	56088	82790	53
8	749056	31.0	917891	14.3	831165	45.3	168835	56112	82773	52
9	749243	31.0	917805	14.3	831437	45.3	168563	56136	82757	51
10	749426		917719	14.3	831709	45.3	168291	56160	82741	50
11	9.749615	31	9.917634	14.3	9.831981	45.3	10.168019	56184	82724	49
12	749801	31	917548	14.3	832253		167747	56208	82708	48
13	749987	30.9	917462	14.3	832525	45.3 45.3	167475	56232	82692	47
14	750172	30.9	917376	14.3	832796	45.3	167204	56256	82675	46
15	750358		917290		833068		166932	56280	82659	45
16	750543		917204		833339		166661	56305	82643	44
17	750729	30.9	917118	14.4	833611	45.2	166389	56329	82626	43
18	750914	30.9	917032		833882	45.2	166118	56353	82610	42
19	751099		916946		834154		165846	56377	82593	41
20	751284		916859		834425		165575	56401	82577	40
21	9.751469		9.916773		9.834696		10.165304	56425	82561	39
22	751654		916687		834967		165033	56449	82544	38
23	751839		916600		835238		164762	56473	2528	37
24	752023		916514		835509		164491	56497	82511	36
25	752208		916427		835780		164220	56521	82495	35
26	752392		916341		836051		163949	56545	82478	34
27	752576		916254		836322		163678	56569	82462	33
28	752760	.	916167		836593		163407	56593	82446	32
29	752944		916081		836864		163136	56617	82429	31
30	753128	30.6	915994	14.5	837134		162866	56641	82413	30
31	9.753312		9.915907		9.837405		10.162595	56665	82396	29
32	753495		915820		837675		162325	56689	82380	28
33	753679		915733		837946		162054	56713	82363	27
34	753862		915646		838216		161784	56736	82347	26
35	754046		915559		838487	45	61513	56760	82330	25
36	754229	30	915472		838757		161243	56784	82314	24
37	754412		915385		839027		160973	56808	82297	23
38	754595		915297		839297		160703	5685	82281	22
39	754778		915210		839568		160432	5685	264	21
40	754960		915123		839838		160162	56880	82248	20
41	9.755143		9.915035		9.840108		10.159892	56904	82231	19
42	755326	30.4	914948		840378	45.0	159622	56928	82214	18
43	755508		914860		840647		159353	56952	82198	17
44	755690		914773		840917		159083	56976	82181	16
45	755872		914685		841187		158813	57000	82165	15
46	756054		914598		841457		158543	57024	82148	14
47	756236		914510		841726		158274	57047	82132	13
48	756418		914422		841996		158004	57071	82115	12
49	756600		914334		842266	44.9	157734	57095	82098	11
50	756782		914246		842535		157465	57119	82082	10
51	9.756963		9.914158		9.842805		10.157195	57143	82065	9
52	757144		914070		843074		156926	57167	82048	3
53	757326		913982		843343		156657	57191	82032	7
54	757507		913894	1	843612		156388	57215	82015	6
55	757688	30.1	913806		843882	44.8	156118	57238	81999	5
56	757869	30.1	913718	14.7	844151	44.8	155849	57262	81982	4
57	758050		913630		844420		155580	57686	81965	3
58	758230	1	913541	14.7	844689		155311	57310	81949	2
59	758411		913453		844958		155042	57334	81932	1
60		30.1	913365	1	845227	44.8	154773	57358	81915	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	sin	r
55 Degrees.										

,	Sine.	D. 10^{\prime}	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	N. sine.	N. cos.	
0	9.758591	30.1	9.913365	14.79	9.845227		10.154773	57358	81915	60
1	758772		913276	14.7	845496		154504	573818	81899	59
2	758952		913187	14	843764		154236	57405	81882	58
3	759132	300	913099	14.8	846033	44.8	153967	57429818	81865	57
4	759312	30.0 30.	913010	14.8	846302	44.8 44.8	153698	57453	81848	56
5	759492		912922		846570		153430	57477	81832	55
6	759672		912833		846839	44	153161	57501	81815	54
7	759852		912744		847107		152893	57524	1798	53
8	760031	29.9	912655	14.8	847376	44.7	152624	57548	81782	52
9	760211	29.9	912566	14.8	847644	44.7	6	57572	65	51
10	760390	29.9	-912477	14.8	8 817913	44.7	152087	575	748	50
11	9.760569	29.8	9.912388	14.8	9.848181	44.7	10.151819	57619	1731	49
12	760748		912299	14.9	84844		151551	57643	1714	48
13	760927		912210		848717		151283	57667	1698	47
14	761106		912121		848986		151014	57691	1681	46
15	761285		912031		849254		150746	57715	1664	45
16	761464		911942		849522		150478	5773	1647	44
17	761642		911853		849790		150210	5776	1631	43
18	761821		911763	14.9	850058	44.6	149942	5778	1614	42
19	761999		911674		850325		49675	57810	1597	41
20	762177		911584		850593	44.6	-149407	57833	81580	40
21	9.762356		9.911495		9.850861	44.6	10.149139	57857	81563	39
22	762534		911405		851129		148871	57881	81546	38
23	762712		911315	14.0	851396	44	148604	57904	81530	37
24	762889		911226	15.0	851664		148336	5792	1513	36
25	763067		911136		851931	44	148069	57952	1496	35
26	763245		911046	15	852199	44	147801	57976	81479	34
27	763422		910956		852466		147534	57999	81462	33
28	763600		910866		852733		147267	58023	81445	32
29	763777		910776		853001		146999	58047	1428	31
30	763954		910686		853268		146732	58070	1412	30
31	9.764131		9.910 96		9.853535		10.146465	58094	1395	29
32	764308		910506		853802		146198	58118	81378	28
33	764485		910415		854069		145931	58141	81361	27
34	764662		910325		854336		145664	58165	81344	26
35	764838		910235		854603		145397	58189	81327	25
36	765015		910144		854870		145130	58212	81310	24
37	765191		910054		855137		144863	58236	81293	23
38	765367		909963		855404		44596	58260	81276	22
39	765544		909873		855671		144329	582838	81259	21
40	765720		909782		855938		144062	583078	81242	20
41	9.765896		9.909691		9.856204		10.143796	58330	81225	19
42	766072		909601		856471		143529	58354	81208	18
43	766247		909510		856737		143263	58378	81191	17
44	766423		909419		857004		142996	58401	81174	16
45	766598		909328		857270		142730	58425	81157	15
46	766774	29.2	909237	15.2	857537		142463	58449	81140	14
47	766949		909146		857803		142197	58472	81123	13
48	767124	29.2	909055		858069		141931	58496	81106	12
49	767300		908964		858336		141664	58519	81089	11
50	767475		908873		858602		141398	58543	81072	10
51	9.767649	29	9.908781		9.858868		10.141132	58567	81055	9
52	767824		908690		859134		140866	58590	81038	8
53	767999	29.1	908599	15.2	859400		140500	58614	81021	7
54	768173		908507		859666		140334	58637	1004	6
55	768348		908416		859932		140068	58681	80987	5
56	768522	29.0	908324	15.3	860198		139802	58684	80970	4
57	768697		908233	15.3	860464	44.3	139536	58708	80953	3
58	768871	29.0	908141	15.3	860730	44.3	139270	58731	80936	2
b9	769045		908049		860995		139005	58755	80919	1
60		,	90795	15.3	861261	44.3	13873	58779	80902	0
	Cosine.		Sine.		Cotang.		Tang.	N. co	N.sin	,
54 Degrees.										

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. 10	Cotang.	N. sine.		
	9.76	29.0	9.9	15.3	9.861261		10.138739	58779		60
	769393	29.0	866	15.3	861527	44.3	138473	58802.8	80885	59
2	769566		907774		861792		138208	588268	80867	58
3	769740	28	907682	15.3	862058		137942	5884	80850	57
4	769913	28.9	9075	15.3	8623	44.2	137677	58873	0833	56
5	770087	28.9	907498	15.3	862589	44.2	137411	58896	16	${ }^{55}$
6	770260	28.8	907406	15.3	862854	44.2	137146	5892	9	54
7	770433	28.8	14	15.4	19	44.2	1368815			5
8	770		907		863650		136350	5899	80748	51
10	770952		907037		863915		136085	5901	80730	50
11	9.771125		9.906945		. 864180		10.135820	5903	80713	49
12	771298		903852		864445		1355555	59061	8069	48
13	771470		906760		864710		135290	5908	80679	47
14	771643		906667		864975		1350	591		46
15	771	28	06	15.4		44				45
16	771987	28.7		15.4		44.1	134495	5915		44
17	772159	28.7		15.5	65770	44.1	134230	5917	61	43
18	772331	28.6	906296	15.5	66035	44.1	133965	5920	059	42
19	772503	28.6		15.5		44.1	133700			41
20	77		9061				. 133			39
22	772847	28	9059	15.5	867094		${ }_{1} 132906$	5929	80524	38
23	773190		905832	15.5	867358		132642	5931	80507	37
24	773361		905739		867623		132377	593	0489	36
25	773533		056		867887		132113	5936	0472	35
26	773704		905552		868152		131848	593		34
27	773875		905459	15.5	868416		13158			33
	77	28.	05366	15.6		44.0	131320			32
29	774217	28.5		15.6	868945	44	131055	5945	0403	31
30	774388	28		15.6	869209	44	130791	594	86	30
31	9.774558		. 905085		9.869473		10.130527			29
	774729		9048	15			130263	595	80351	28
33	774899	28.4	904898	15.6			129999	595	80334	27
34	775070	28	904804	15.6	87026		129735	595	80316	26
35	775240		904711	15.6	8705	44.0	129471	59		25
36	77541	28.3	904617	15.6	870	44				4
		28.3		15.6		44.0	89			,
38	775750	28.3		15.7	871321	44.0	128679	596	80247	22
39	775920	28.3	904330	15.7	87158	44.0	128415	596		21
40	77609	28.3	904241	15.7		43.9	12			19
41	9.776	28.3		15.7		43.9	0.127888			18
42	77	28.2	0395	15.7	\%26.	43.9	127360	5978	80160	18
44	776768	28.2	903864	15.7	872903	43.9	127097	598	80143	16
45	776937		903770		873167		126833	598	0125	15
46	777106		903676		873430		126570	598	0108	14
47	777275		903581		873694		126306	598	80091	13
48	777444		903487		873957		126043	5990	80073	12
49	777613	28	903392		8742		125780	599	0056	11
50	777781	28.1	903298		87448		125516	599	003	0
51	9.777950		. 903202		. 874747		10.125253	599	80021	9
52	778119	28.1	903108	15.8	875010		124990	599	00	8
53	778287	28.0	903014	15.8	87527	43.8	124727	600		7
54	778	28.0		15.8		43.8				5
		28.0		15.8		43.8	124200		9934	4
	778792	28	902729 902634	15.8	876063	43.8	1239374	60112	79916	3
58	779128		902539		876589		123411	6013	7989	2
59	779295		9024		876851		123149	6015	7988	1
60	$779+63$		902349		711	43.8	1228	6018	798	0
	Cosine		Sine		Cotang.		Tang.	N. c		
53 Degrees.										

Log. Sines and Tangents. $\left(37^{\circ}\right)$ Natural Sines.
TABLE II.

	Sine.	D. $10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	ang.			
	9.779463		9.902349		9.877114		0. 122886			60
	779631		902253	15.9	877377		122623	60205	9846	59
2	779	27	902158		877640		122360	60228	79829	58
3	779	27.9	902063	15.9	877903	43.8	122097	60251	79811	57
4	780	27.9	901967	15.9	8781	43.8	121835	6027	79	56
5	780300	27.8	01872	15.9	878428	43.8	121572	60298	79776	55
6	780	27.8		15.9	878691	43.8	121309	60321	79758	54
8	7808	27.8	901	15.9	953	43.7	121047	603		53
9	780968		901490		8794	43.7	12052	603		51
10	781134		9013		879741		12025	604	9688	50
11	9.781301		-120		. 880003		10.119997	60	¢	49
12	781468	${ }_{27}{ }^{7} 7$	901202		880265	43.7	119735	604	65	48
13	781634		01106		880528		119472	60	9635	47
14	781800		1010		880790		119210	605		46
15	781966	27.7	909914	16.0	881052		118948	605	79600	45
16	782132		900818	16.0	881314	43.7	118686	605		44
17	782298		900722		881576		118424	605	79565	43
18	782464		906626		881839	43.7	1181	605	54	42
19	78263		0529		882101		117899	6062	953	41
20	782796				88		117637	6064	79512	40
21	9.782961		900		8826		10.117375	6066	79494	39
22	783127		900242		8828		117113	60691	79477	38
23	783292		900144		883148		116852	60714	7945	37
24	783458		900047		883410		11659	60738	7944	36
25	783623		899951		883672	43.6	116328	6076	942	35
26	78378		899854	16.1	883934		116066	6078	940	34
27	783953		899757	1.1	88419		115804			33
28	784118		660		84457		115543	608	371	32
20	784282		504		884719		115281	608	935	31
39	784447		9467		884980		115020	608	9835	30
31	9.784612		893370		885242		10.1147		31	29
32	784776		899273		885503		114497	6092	930	28
33	784941		899176		885765		114235	609	928	27
34	785105		899078		886026		113974	6096	26	26
35	7852		898981		288		1137	6099		25
36	785433		898884		886549		113451	6101	22	24
37	785597		898787		886810		113190	6103	21	23
38	785761	21	898689	16.2	887072	43.5	112928	6106	193	22
39	78592		89351	16.2	887333	43.5	112667	6108	176	21
40	78	27.3	898494	16.3	88	43.5				20
	. 78	27.2		16.3		43.5	. 111884	6115	122	8
43	786579	27.2	89820	16.3	888	43	111623	6117	9105	17
44	786742		898104		888639		111361	6119	79087	16
45	786906		898006		888900		111109	6122	069	.
46	787069		897908		889160		110840	6124	79051	1
47	787232		897810		889421		110579	6126	9033	13
48	787395		897712		889682		110318	6129	016	12
49	787		8976		88994	43.5	110057	6131	998	11
50	787720		897516		890204		109796	613	998	10
51	9.787883		9.897418		. 890465		10.103535	6130	8962	9
52	788045		897320		890725		109275	6138	3944	8
53	78820		222		89098		109014	6140	926	7
54	788370		897123		891247		108753	6142	3908	6
55	788532		897025		891507		108493	6145	8891	5
56	788694		896926		891768		108232	6147	8873	4
57	788856		896828		89202		107972	6149	855	
58	789018		29		892:289		107711	6152	837	2
59	789180		896631		892549		107451	6154	19	1
60	89342				892810		107190		8801	0
	C				Cotang.		Tan			
52 Degrees.										

0	9.78		9.8965		9.892810		10.1			
1	7895		896433		893070		06930	61589	78783	
2	78966		96335		893331		106669	61612	65	
3	78982		896236		893591		106409	61635	747	
4	789988		96137		893851		06149	61658	729	
5	790149		896038		894111		05889	61681	711	
6	790310		95939		894371		05629	61704	4	
7	790471		95840		2		05368	61726	676	
8	790		95741		892		05108	6174	8	
9	79	26	5		2		104848	6177	640	
10	790		5542		895412		104588	6179	2	
11	9.791115		9.895443				10.104328	6181	4	49
12	791275		9534		895932		104068	618	586	
13	791		9524		896192		03808	618	568	47
14	7915		895145		2		03548	188	550	
15	791		895045		96712		3288	6190	532	
16	791917		894945		971		3029	193	8514	
17	79207		948		7231		02769	6195	496	
18	792		94746		1		02509	6197	478	
19	92		464		751	43	02249	200	8460	
20			894546				10. 101990	6202	442	
22	792	26	9434		898530	43	01470	206		
23	79303		894246		898789		1211	209	87	
24	931		84146		904		00951	211	9	
25	79		84046		899308		00692	6213	8351	
26	7935		394		9956		043	216	333	
27	93		38		7		017	2	8315	
28	79383		3745		00086		99	620		
29	79399		36		00346		99654	222	79	
30	7941		554		605		099395	225	61	
31	9.794		893444				10.099136	6227	3	
32	794		893343		901124		098876	6229	5	
33	794		893243		901383		886	232		
34			893142		01642		98358	234	8	
35			041		901		88099	23		
36			92940		2160		97840	238		
37	795		92839		02419		97581	241		
38			73		2679		7321	4		
39	795		92638		02938		97062		98	
40	795		89		903197		096803	247	079	
41	9.7958		. 892435		90		10.096545	62502	8061	
42	7960		89334		4		096286	62 524	043	
43	79620		892233		903973		9027	6254	025	
44	79636		892132		904232		寿	62570	007	
45	79652		030		04491		5509	52592	888	
46	79667		891929		04750		95250	6261	80	
47	79683		827		008		4992	2638	52	
48	599		81726		905267		94733	6266	1	
49	7971		624				94474	62683	16	
50	79730		891523		90		094216	270	879	10
1	9.79746		. 891421		9.906043		10.093957	62728	879	
52	79762		1319		906302		93698	-	61	
53	79777		121		06560		33440	62774	843	
5	79793		1115		06819	43.	3318	2796	824	
55	79809		1013		07077	4.	292		80	
56	79824		890911		07336		92664	,		
57	79840		890809		07594	43	92406	6286	769	
58	79856		7707		07852	4	02148	62887	7751	
50	798716		890605		908111		091889	62909	77733	
60	79887		3		8369		163			
	Cosin		Sin							

Log. Sines and Tangents. (39) Natural Sines. TABLE II.

,	Sine.	[D. $10^{\prime \prime}$	Cosin	D. 1	Tang.	D. $10^{\prime \prime}$	Cotang.	ne.	N. cos.	
0	9.798772	26.0	9.8905		9.903369		10.091631	62932	77715	60
1	799028	26.0	890400	17	908628		091372	62955	77696	59
2	799184	26.0	890298	17.1	908886		091114	62977	77678	58
3	799339	25	890195	17.1	909144		099856	63000	77660	57
4	799495	25.9	890033	17	909402		090598	63022	77641	56
5	799651	25	889990	17.1	909360		030340	63045	77623	55
6	799806		889888	17	909918		090082	63058	77605	54
	799962	25	889785	17.1	910177		089823	63090	77586	53
8	800117	25.9 25.9	8896	17.1	910435	43	089565	63113	77568	52
9	800272		889579	17.1	910693		089307	63135	77550	51
10	800427		88947	17	10951		089049	63158	77531	50
11	9.800582		9.889374		9.911209		10.088791	93180	77513	49
12	800737		889271		911467		088533	63203	77494	48
13	800892		889168	17.2	911724		088276	63225	77476	47
14	801047		889064		911982		088018	63248	77458	46
15	801201		888961		912240		037760	63271	77439	45
16	801356		888858		912498		087502	63293	77421	44
17	801511		888755		912756		087244	63316	77402	43
18	801665		888651		913014		036986	63338	77384	42
19	801819		888548		913271		086729	63361	77366	41
20	801973		888444		913529		086471	63383	77347	40
21	9.802128		9.88834		9.913787		10.086213	63406	77329	39
22	802282		888237		914044		085956	63428	77310	38
23	802436		888134		914302		085698	63451	77292	37
24	802589		888030		914560		085440	63473	77273	36
25	802743		887926		914817		085183	63496	77255	35
26	802897		887822		915075		034925	63518	77236	34
27	803050		887718		915332		084668	63540	77218	33
28	803204		887614		915590		084410	63563	77199	32
29	803357		887510		915847		084153	63585	77181	31
30	803511		887406		916104		083896	63603	77162	30
31	9.803664		9.887302		9.916362		10.083638	63630	77144	29
32	803817		887198		916619		083381	63653	77125	28
33	803970		887093		916877		083123	63675	77107	27
34	804123		886989		917134		082866	63698	77088	26
35	804276	25	886885	17.4	917391		082609	63720	77070	25
36	804428		886780		917648		08235:	63742	77051	24
37	804581		886676		917905		082095	63765	77033	23
38	804734		886571		918163		081837	63787	77014	22
39	801886		883466		918120		081580	63810	76996	21
40	805039		886362		918677		081323	63832	76977	20
41	9.805191		9.886257		9.918934		10.081066	63854	76959	19
42	805343		886152		919191		080809	63877	76940	18
43	805495		886047		919448		080552	63899	76921	17
44	805647		885942		919705		080295	63922	76903	16
45	805799		885837		919962		080038	6394	76884	15
46	805951		885732		920219		079781	6396	76866	14
47	806103	25	885627	17.5	920476	42.8	079524	6398	76847	13
48	806254		885522		920733		079267	6401	76828	12
49	806406		885416		920990		079010	64033	76810	11
50	806557		885511		921247		078753	64056	76791	10
51	9.806709		9.885205		9.921503		10.078497	64078	76772	9
52	806860		885100		921760		078240	64100	76754	8
53	807011		884994		922017		077983	64123	76735	7
54	807163		884889		922274	42.8	077726	64145	76717	6
55	807314		884783		922530		077470	64167	76698	5
56	807465	25	884677		922787		077213	64190	76679	4
57	- 807615		884572		923044		076956	64212	76661	3
58	807766		884466		92330 J		076700	6423	76642	2
59	807917		884360		923557		076443	64256	76623	1
60	808067	25.1	884254		923813		076187	64279	76604	0
	Cosine.		Sine.		Cotang.		Tang.	N. cos.	N.sine.	

1	Sine.	D. $10^{\prime \prime}$	Cosin	D. 10	Tang.	D. $10^{\prime \prime}$	Cotang.	N.sine.	N. cos.	
	9.80		9.8	17.7	9.923813	42.7	10.076187	64279	76604	60
1	808218	25.1	148	17.7	924070	42.7	075930	64301	76	59
3	808368	25.1	884042	17.7	924327	42.7	075673	64323 64346	76567	58
3	808519	25.0	883936 88329	17.7	${ }_{9244548}$	42.7	075417	64346	76548	57
4	808669 808819	25.0	883	17.7	924840	42.7	075160			56
6	808969	25.0	883617	17.7	${ }_{9}^{925095}$	42.7	074904	64	76511	54
7	809119		883510		925609		074391	644	76473	53
8	809269		883404		925865		074135	6445	76455	52
9	809419	24.9	883297		926122	42.7	73878	64479	76	51
10	809569	24.9	883191		9263	42.7	073622	6450	64	50
11	9.809718		. 88		. 92		10.073366	645	6398	49
12	809868	24.9		17.8		42.7	073110	645	76380	48
13	810017	24.9	871	17.8		42.7	072853	6456	76361	47
14	810167	24.9	882764	17.8	27403	42.7	072597	6459	76342	46
15	810316	24.8	8882550	17.8	${ }_{927915}$	42.7	072341	64612	76323	45
16	810	24.8		17.8		42.7	072085	646		43
18	810763		882336	17.8		42.7			76267	42
19	810912		882229		928683		071317	6470	6248	41
20	811061		882121		928940		071060	6472	6229	40
21	9.811210		. 882014		. 929196	42.7	10.070804	647	76210	39
22	811358		881907		929452		070548	6476	6192	38
23	811507		81799		929708		070292	647	76173	37
24	811655		81692		929964		0700			36
25	811804	24.7	881584	17.9	930220	42.6	69780	648	5	35
26	811952	24.7	881477	17	930475	42.6	069525	6485	76116	34
27	812100	24.7		17.9		42.6	069269	6487	76097	33
		24.7		18.0	930987	42.6	,	649		2
30	812544	24.6	881046	18.0		42.6			041	30
31	9.812692		. 880938		9.9317	42	10.068245	6496	6022	29
32	812840		880830		932010		067990	64989	76003	28
33	812988		880722		932266		067734	65011	5984	27
34	813135		880613		932522		67478	6503	75965	26
35	813283		880505		932778		67222	6505	75946	25
		24.5	880	18.0	93303	42.6	066967	6507	75927	24
37	813578	24.5		18.1	933289	42.6	66711	6510		23
38	813725	24.5		18.1		42.6	066455	6512	89	22
39	813872	24.5	880	18.1	933800	42.6	066200	6514	75570	21
40	814019	24.5	879	18.1	934056	42.6	065944	651	51	20
	81	24.5		18.1	${ }_{934567} 93411$	42.6	10.065689			19
43	814460	24.5	879637	18.1		42.6		6523	5794	17
44	814607		879529		935078		064922	6 ¢525	75775	16
45	814753		879420		935333		054667	6527	75756	15
46	814900		879311		935589		064411	65298	5738	14
47	815046		879202		935844		064156	65320	75719	13
48	81519		879093		936100		063900	65342	75700	12
49	815339		878984		936355		063645	6536	75680	11
50	815485		878875	18.2	936610		063390	6538	5661	0
51	9.815631		. 878766	18.2	. 936866	42	10.063134	6540	75642	9
52	815778		878656	18.2	937121		062879	65430	75623	8
	815924		878547	18.2	937376		062624	6545	75604	7
54	816069	24.3	87	18.2	93		062368	6547	75585	6
55	816215	24.3	8783	18.2	93188		062113	65496	75566	5
56	816361	24.3	878219	18.3	938142	42.5	061858	65518	75547	4
	81650	24.2	878109	18.3	938398	42.5	061602	655		${ }_{2}$
	81	24.2		18.3		42.5	061347			1
60	816943	24.2	877780	18.3	3	42	060837	6 ธังข6		0
	Cosi		Sine.		Cotang.		Tang.	A. cos		
49 Degrees.										

Log. Sines and Tangents. (410) Natural Sines.

table 1I.		Log. Sines and Tangents. (420)					tural Sines.		63	
	Sine.	$10^{\prime \prime}$		D. 10	Tang.	D. $10{ }^{\prime \prime}$	Cotang.	N. sine.		
09	9.825511	23.4	. 87	19.0	9.9544	42.3	10.045563			60
1	825651	23.3	870960		954691		045309	66935	74295	59
2	825791	23.3	870846		954945		045055	66956	74276	58
3	825931		870732		955200	42.3	044800	66978	74256	57
4	826071	23.3		19.0	54	42.3	044546	66999	74237	56
5	826211	23.3	0	19.0	55961	42.3	044293	67021	744217	55
6	826:3	23.3	390	19.0	${ }_{955061}^{95615}$	42.3	${ }_{0}^{044039}$	67043 67064	74198	54
7	826491	23.3	87026	19.0		42.3	$0+3531$	670		23
8	826831	23.3		19.0	956723		043277	6710	74139	51
10	826910	23.2	869933	19	956977		$0+3023$	6712	74120	50
11	9.827049		. 869818		9.957231	42	10.042769	6715	74100	49
12	827189		869704		957485		042515	6717	74080	48
13	827328		869589		957739		042261	67194	74061	47
14	32746		69474		957993		007	67215	74041	46
15	827606	23.2	869360	19	958246	42.3	041754	6723	74022	45
16	827745	23.2		19.1		42	041500	6725	74002	44
17	827884	23.1	69130	19.1	958754	42.3	041246	6728	73983	43
18	828023		99015	19.2	959008		0409	673		2
19	828162	23.1	808900	19.2	959262	42.3	040738		44	41
20	828301	23.1		19	959516	42.3	040484	673	73924	40
21	9.828439				. 959769	42.3	10.040231	673	73904	39
22	828578		868555	19.2	960023		039977	73	3885	38
23	82	23.1	868440		9602		0397	674	3865	37
24	82885	23.0	86832	19	960531	42.3	039469	674	73846	36
25	828993	23.0	868209	19.2	960784	42.3	039216	6745	73826	35
26	829131		868093	19.2	961038		389	74		34
27	82	23.0	867978	19.3	961	42.3	038709	6749	378	33
28	82940	23.0		19.3		42.3	845	675	73767	32
29	8295	23.0		19.3	961799	42.3	038201	6753	73747	31
30	82968	23.0	867631	19.3	962052		0379	(i75		30
31	9.8		. 867515		. 962306		10.037694	6758	73708	29
32	829959	22.9		19.3	962560	42	037440	676	7368	28
33	83009		867283	19.3	962813		037187	6762	73669	27
34	83023		867167		963067		036933	6764	73649	26
35		22.9	1	19.3			036680	6766	73629	25
36	830509	22.9		19.4	963574		36426	6768	610	24
37	8306	22.9	819	19.4	963827		036173	677	359	23
38	8307	22.9	866703	19.4	964081	42.3	035919	6773	73570	22
39	830921	22.8		19.4		42.3		677		21
40	8	22.8		19.4		42.2	10.035158			9
42	831332		866237	19.4	965095	42.2	034905	6781	73491	18
43	83146		66120		965349		034651	6783	73472	17
44	831606	22.8	866004		965602		034398	6785	7352	16
45	831742		865887		965855		034145	6788	73432	15
46	83187		865770		966109		033891	6790	73413	14
47	8320	22.7	865653		966362		033638	6792	73393	13
48	8321 ¢ั2		865536		966616		033384	6794	73373	12
49	832288	22.7		19.	966812	42.2	033131	6796	73353	11
50	83242		865302	19.	967123	42.2	${ }^{0} 032877$	6798	73333	10
51	983256			19.	9.967376		10.032624	6800	73314	
5^{5}	832697		865068		967629		032371	6802	73294	8
53	832833	22.7	4950		967883		032117	6805	73274	7
54	83296		864833	19.6	968136	42.2	031864	6807	73254	6
55	833		864716	19.6	968389	42.2	031611	6809		
56		22.6		19.6		42.2				4
58		22		19		42.2	030851		73175	2
59	833		864245		969403		030597	68179	7315	1
60	833783		86		969656		03	68		0
	Cosine.		Sine.		Cotang.		Tang		N.mine.	
					47 Degre					

Log. Sines and Tangents. (43 $)$ Natural Sines. TABLE II.

		D.	Cosine.		'Janr.	D. $10^{\prime \prime}$	Cotanc.	N .sine.	N. cos.	
	9.833783		9.864127		9.96965 6		10.030344	68200	5	60
,	833919		864010	19.6	969999	42.2 42.2	030091	68221	73116	59
2	834054	22.5	863892	19.6	970162	42.2	029838	68242	73096	58
3	834189		863774	19.7	970416	42.2	029584	68264	73076	57
	834325	22.5	863656	19.7	970669	42. 2	029331	68285	73056	56
5	834460	22.5 22.5	863538	19.7 19.7	970922	42.2 42.2	029078	68306	73036	55
6	834595	22.5	863419	19.7	971175	42.2 42.2	028825	68327	73016	54
7	834730	22.5 22.5	863301	19.7	971429	42.2 42.2	028571	68349	72996	53
8	834865	22.5	863183	19.7	971682	42.2	028318	68370	72976	52
9	834999	22.5 22.4	863064	19.7	971935	42.2 42.2	028065	68391	72957	51
10	835134	22.4	862946	19.8	972188	42.2	027812	68412	72937	50
11	9.835269		9.862827		9.972441		10.027559	68434	72917	49
12	835403	22.4	862709	19.8	972694	42.2	027306	68455	72897	48
13	835538	22.4	862590	19.8	972948		027052	68476	72877	47
14	835672	22.4	862471	19.8	973201		026799	68497	2857	46
15	835087		353	19.8	973454	42.2	026546	68518	2837	45
16	835941		862234	19.8	973707	42.2	026293	68539	72817	44
17	836075		862115	19.8	73960	42.2	026040	68561	72797	43
18	836209		861993	19.8	974213	42.2 42.2	025787	68582	72777	42
19	836343		861877	19.8	974466	42.2	025534	68603	72757	41
20	- 836477		861758	19	974719	42.2	025281	68624	72737	40
21	9.836611		9.861638	19.9	9.974973	42.2	10.025027	68645	72717	39
22	836745		831519		975226	42.2	024774	68666	72697	38
23	836878	22.3	861400	19.9	975479	42.2	024521	68688	72677	37
24	837012	22.2	861280	19.9	975732		024268	68709	72657	36
25	837146		861161	19.9	975985		024015	68730	72637	35
26	837279	22.2	861041		976238		023762	68751	2617	34
27	837412	22.2	860922		976491		023509	68772	72597	33
28	837546		860802	19.9	976744		023256	68793	72577	32
29	837679		860682	20.0	976997	42.2 42.2	023003	6881	2557	31
30	837812		860562	20.0	977250		022750	68835	72537	30
31	9.837945		9.860442	20.0	9.977503	42.2	10.022497	6885	2517	29
32	838078		860322	20.0	977756	42.2 42.2	022244	68878	72497	28
33	838211		860202	20.0	978009	42.2 42.2	021991	68899	72477	27
34	838344	22.1	860082	20.0	978262	42.2 42.2	021738	68920	72457	26
35	838477	22.1	859962	20.0	978515	42.2 42.2	021485	6894	2437	25
36	838610	22.1	859842	20.0	978768	42.2 42.2	21232	68962	2417	24
37	838742	22.1	859721	20.1	979021	42.2	020979	68983	72397	23
38	838875	22.1	859601	20.1	979274	42.2	20726	6900	2377	22
39	839007		859480	20.1	979527		020473	69025	72357	21
40	839140		859360	20.1	979780	42.2 42.2	020220	6904	72337	20
41	9.839272		9.859239	20	9.980033		10.019967	69067	72317	19
42	839404		859119	20.1	980286		019714	6908	72297	18
43	839536		858998	20.1	980538	42.2	019462	69109	72277	17
44	839668		858877	20.1	930791		019209	69130	2257	16
45	839800	22.0	858756	20.2	981044	42.1	018956	69151	72236	15
46	839932		858635		981297		018703	6917	72216	14
47	840064		858514	20.2	981550		018450	69193	72196	13
48	840196	21.9	858393	20.2	981803	42.1	018197	6921	72176	12
49	840328		858272		982056		017944	6923	72156	11
50	840459		858151	20.2	982309		017691	6925	72136	10
51	9.840591		9.858029		9.982562		10.017438	6927	72116	9
52	840722		857908	2.2	982814		017186	69298	72095	8
53	840854	21.9	857786	20.2	983067		016933	6931	2075	7
54	840985		857665	20.3	9333:0	42.1	016680	69340	72055	6
ธ5	841116		857543	20.3	983573	42.1	016427	6936	2035	5
56	841247		85.422		983826		016174	6938	72015	4
57	841378	2	85730 J		934079		015921	6940	1995	3
58	841509		851178		984331		015669	6942	71974	2
51	841640	2	857056	20.3	984584		015416	6914	1954	1
60	841771		853934	20.3	984837	42	015163	69466	71934	0
	C sine.		Sine.		Cotang.		Tang.	. co	N.sine.	γ
46 Degrees.										

TABLE II.
Log. Sines and Tangents. (44) Natural Sines.

	ne.	$10^{\prime \prime}$	Cosine.	D. $10^{\prime \prime}$	Tang.	D. $10^{\prime \prime}$	Cotang.	N. sine.	cos.	
0	9.841771		9.856934	20.3	9.984837	42.1	10.015163	69466	71934	60
1	841902	21.8	856812	20.3 20.3	985090	42.1	014910	69487	71914	59
2	842033	21.8	856690	20.3 20.4	985343		014657	69508	71894	58
3	842163	21.8	856568	20.4 20.4	985596	42.1	014404	69529	71873	57
4	842294		856446	20.4 20.4	985848	42.1	014152	69549	71853	56
5	842424	21.7 21.7	856323	20.4 20.4	986101	42.1	013899	69570	1833	55
6	8425 5̆		856201	20.4	986354	42.1	013646	69 ă91	1813	54
	842085	21.7	856078	20.4	986607	42.1	013393	69612	71792	53
8	842815	21.7	855956	20.4	986860	42.1	013140	69633	71772	52
9	842946	21.7	855833	20.4	987112		012888	69654	1752	51
10	843076	21.7 21.7	855711	20.5	987365	42.1	012635	69675	1732	50
11	9.843206		9.855588		9.987618	42.1	10.012382	69696	1711	49
12	843336	21	855465	20.5	987871	42.1	012129	69717	71691	48
13	843466	21.6	855342	20.5	988123	42.1	011877	69737	71671	47
14	843595	21.6	855219	20.5	988376	42.1	011624	69758	71650	46
15	843725	21.6 21.6	855096	20.5	988629	42.1	011371	69779	71630	45
16	843855	21.6	854973	20.5	988882	42.1	011118	69800	71610	44
17	843984		854850		989134		010866	69821	1590	43
18	844114		854727		989387		010613	69842	71569	42
19	844243		854603	20	989640		010360	69862	71549	41
20	844372	21.5	854480	20.6	989893	42.1	010107	69883	71529	40
21	9.844502		9.854356	20	9.990145	42.1	10.009855	69904	71508	39
22	844631		854233		990398	42.1	009602	69925	71488	38
23	844760	21.5	854109	20.6	990651	42.1	009349	69946	1468	37
24	844889		853986	20.6	990903		009097	69966	1447	36
25	845018	21.5	853862	20.6	991156	42.1	008844	6998	1427	35
26	845147		853738	20.6	991409		008591	70008	71407	34
27	845276	21	853614	20.6	991662	42.1	008338	70029	71386	33
28	845405		853490		991914		008086	70049	71366	32
29	845533		853366		992167		007833	70070	71345	31
30	845662		853242	20.7	992420	42.1	007580	70091	1325	30
31	9.845790		9.853118		9.992672		10.007328	70112	1305	29
32	845919		852994	20.7	992925		007075	70132	1284	28
33	846047		852869		993178		006822	701503	71264	27
34	846175		85274 ă		993430		005570	70174	243	26
35	846304	21	852620	20.7 20.7	993683		006317	70195	1223	25
36	846432		85̈2196		993936		006064	702	1203	24
37	846560		852371	20.8	994189	42.1	005811	70236	1182	23
38	846688		852247		994441		005559	7025	1162	22
39	846816		852122		994694		005303	7027	141	21
40	846944	21	851997	20	994947		005053	70298	1121	20
41	9.847071		9.851872		9.995199		10.004801	70319	1100	19
42	847199		851747	20	995452		004548	70339	71080	18
43	847327		851622		995705		004295	70360	1059	17
44	847454	21	851497	20.8	995957	42.1	004043	70381	71039	16
45	847582		851372		996210		003790	70401	71019	15
46	847709		851246		996463		003537	70422	70998	14
47	847836	21.2	851121	20.9	996715	42.1	003285	70443	70978	13
48	847964	21	850996		996968		003032	70463	70957	12
49	848091	21.2	850870	20.9 20.9	997221	42.1	002779	70484	70937	11
50	848218		850745		997473		002527	70505	70916	10
- 51	9.848345		9.850619		9.997726		10.002274	70525	70896	9
52	848472		850493		997979		002021	70546	0875	8
53	848599	21.1	850368	21.0	998231		001769	70567	0855	7
54	848726	21	850242	21.0	998484		001516	70587	70834	6
55	848852	21.1	850116		998737		001263	70508	70813	5
56	848979	21	849990	21.0	998989		001011	70628	70793	4
57	849106		849864		999242	42.1	000758	70649	70772	3
58	819232	21.1	849738	21.0	999495	42.1	000505	70670	70752	2
59	849359		849611		999748		000253	70690	70731	1
60	849485	21.1	849485	2	10.000000	4	000000	70711	70711	
	Cosine.		Sine.		Cotang.		'Tang.	N.co	X.sin	,
45 Degrees.										

TABLE III.

LOGARITHMS OF NUMBERS.

From 1 то 200,
INCLUDING TWELVE DECIMAL PLACES.

N.	Log.	N.	Log.	N.	Log.
1	000000000000	41	612783856720	81	908485018879
2	301029995664	42	623249290398	82	913813852384
3	477121254720	43	633468455580	83	919078092376
4	602059991328	44	643452676486	84	924279286062
5	698970004336	45	653212513775	85	929418925714
6	778151250384	46	662757831682	86	934498451244
7	845098040014	47	672097857926	87	939519252619
8	903089986992	48	681241237376	88	944482672150
9	954242509439	49	690196080028	89	949390006645
10	Same as to 1.	50	Same as to 5.	90	Same as to 9.
11	041392685158	51	707570176098	91	959041392321
12	079181246048	52	716003343635	92	963787827346
13	113943352307	53	724275869601	93	968482948554
14	146128035678	54	732393759823	94	973127853600
15	176091259056	55	740362689494	95	977723605889
16	204119982656	56	748188027006	96	982271233040
17	230448921378	57	755874855672	97	986771734266
18	255272505103	58	763427993563	98	991226075692
19	278753600953	59	770852011642	99	995635194598
20	Same as to 2.	60	Same as to 6.	100	Same as to 10.
21	3222192947	61	785329835011	101	004321373783
22	342422680822	62	792391699498	102	008600171762
23	361727836018	63	799340549453	103	012837224705
24	380211241712	64	806179973984	104	017033339299
25	397940008672	65	812913356643	105	021189299070
26	414973347971	66	819543935542	103	025305865265
27	431363764159	67	826074802701	107	029383777685
28	447158031342	68	832508912706	108	033423 755487
29	462397997899	69	838849090737	109	037426497941
30	Some as to 3.	70	Same as to 7.	110	Same as to 11.
31	491361693834	71	851258348719	111	045322978787
32	505149978320	72	857332496431	112	049218022670
33	518513939878	73	863322860120	113	053078443483
34	531478917042	74	869231719731	114	056904851336
35	544068044350	75	875061263392	115	060397840354
36	556302500767	76	880813592281	116	084457989227
37	568201724067	77	886490725172	117	068185861746
38	579783596617	78	892094602690	118	071882007306
39	591064607026	79	897627091290	119	075546961393
40	Same as to 4.	80	Same as to 8.	120	Same as to 12.

OF NUMBERS.

N.	Log.	N.	Log.	N.	Log
121	082785370316	148	170261715395	175	243038048686
122	086359830675	149	173186268412	176	245512667814
123	089905111439	150	176091259056	177	247973266362
124	093421685162	151	178976947293	178	250420002309
125	096910013008	152	181843587945	179	252853030980
126	100370545118	153	181691430818	180	255272505103
127	103803720956	154	187520720836	181	257678574869
128	107209969648	155	190331698170	182	260071387985
129	110589710299	156	193124588354	183	262451089730
130	- Same as to 13.	157	195899652409	184	264817823010
131	117271295656	158	198657086954	185	267171728403
132	120573931206	159	201397124320	186	269512944218
133	123851640967	160	204119982656	187	271841606536
134	127104798365	161	206825876032	188	274157849264
135	130333768495	162	209515014543	189	276461804173
136	133538908370	163	212187604404	190	278753600953
137	136720567156	164	214843848048	191	281033367248
138	139879086401	165	217483944214	192	283301228704
139	143014800254	166	220108088040	193	285557309008
140	146128035678	167	222716471148	194	287801729930
141	149219112655	168	225309281726	195	290034611362
142	152288344383	169	227886704614	196	292256071356
143	155336037465	170	230448921378	197	294466226162
144	158362492095	171	232996110392	198	296665190262
145	161368002235	172	235528446908	199	298853076410
146	164352855784	173	238046103129		
147	167317334748	174	240549248283		

LOGARITHMS OF THE PRIME NUMBERS From 200 то 1543, INCLUDING TWELVE DECIMAL PLACES.

N.	Log.	N.	Log.	N.	Log.
201	303196057420	277	442479769064	379	578639209968
203	307496037913	281	448706319905	383	583198773968
207	315970345457	283	451786435524	389	589949601326
209	320146286111	293	466867 620354	397	598790506763
211	324282455298	307	487138375477	401	603144372620
223	348304863048	311	492760389027	409	611723308007
227	356025857193	313	495544337546	419	622214 U22966
229	359835482340	317	501059262218	421	624282095536
233	367355921026	331	519827993776	431	634477270161
239	378397900948	337	527629900871	433	636487896353
241	$3820{ }^{17} 042575$	347	540329474791	439	642424520242
251	399673721481	349	542825426959	443	646403726223
257	409933123331	353	547774705388	449	652246341003
263	419955748490	359	E55094 448578	457	659916200070
269	429752280002	367	564666064252	461	663700925390
271	422969290874	373	571708831809	463	665580991018

68		L O G A R THM S			
N.	Log.	N.	Log.	N.	Log.
467	659510 8805¢6	821	914343157119	1171	068556895072
479	680335513414	823	915399835212	1181	0 i2249 807613
487	687528961215	827	917505503553	1187	074450718955
491	691081492123	829	918554530550	1193	076640443670
499	$698100^{\prime} 545623$	839	923761960829	1201	079543007385
503	701567985056	853	930949031168	1213	083860800845
509	706717782337	857	932980821923	1217	085290578210
521	716837723300	859	933993163831	1223	087426458017
523	718501688867	863	936010795715	1229	089551882866
541	733197265107	877	942999593356	1231	090258052912
547	737987326333	881	944975908412	1237	092369699609
557	745855195174	883	945960703578	1249	096562438356
563	750508394851	887	947923 619832	1259	100025729204
569	755112 26639〕	907	957607287060	1277	106190896808
571	756636108246	911	959518376973	1279	106870542460
577	761175813156	919	963315511386	1283	108226656362
587	768638101248	929	968015 713994	1289	110252917337
593	773054693364	937	971739590888	1291	110926242517
599	777426822389	941	973589623427	1297	112939986066
601	778874472002	947	976349979003	1301	114277296540
607	783138691075	953	979092900638	1303	114944415712
613	787460474518	967	985426474083	1307	116275587564
617	790285164033	971	987219229908	1319	120244795568
619	791690649020	977	989804563719	1321	120902817604
631	803029359244	983	992553517832	1327	122870922849
641	806858029519	991	996073654485	1361	133858125188
643	808210972924	997	998695158312	1367	135768514554
647	810904280669	1009	003891166237	1373	137670537223
653	814913181275	1013	005609445360	1381	140193678544
659	818885414594	1019	008174184006	1399	145817714122
661	810201459485	1021	009025742087	1409	148910994096
673	828015064224	1031	013258665284	1423	153204896557
677	830588668685	1033	014100321520	1427	154424012366
683	-834420 703682	1039	016615547557	1429	155032228774
691	839478047374	1049	020775488194	1433	156246402184
701	845718017967	1051	021602716028	1439	158060793919
709	850646235183	1061	025715383901	1447	160468531109
719	856728890383	1063	026533264523	1451	161667412427
727	861534410859	1069	028977705209	1453	162265614286
733	865103974742	1087	036229544086	1459	164055291883
739	868644 48839ă	1091	037824750588	1471	167612672629
743	870988813761	1093	038620161950	1481	170555058512
751	855639937004	1097	040206627575	1483	171141151014
757	879095879500	1103	042595512440	1487	172310968489
761	881384656771	1109	044931546119	1489	172894731332
769	885926339801	1117	018053173116	1493	174059807708
773	888179493918	1123	050379756261	1499	175801632866
787	895974732359	1129	052693941925	1511	179264464329
797	901458321396	1151	061075323630	1523	182699903324
809	907948521612	1153	061829307295	1531	184975190807
811	909020854211	1163	065579714728	1543	188365926053

AUXILIARY LOGARITHMS.

N.	Log.	N.	Log.
1.009	003891166237)	1.0009	000390689248
1.008	003460532110	1.0008	000347296684
1.007	003029470554	1.0007	000303899784
1.006	002598080685	1.0006	003260498547
1.005	002166061756 A	1.0005	009217092970 B
1.004	001733712775	1.0004	000173683057
1.003	001300933020	1.0003	000130268804
1.002	000867721529	1.0002	000086850211
1.001	000434077479	1.0001	000043427277

C

$m=0.4342944819 \quad$ log. -1.637784298.
By the preceding tables - and the auxiliaries A, B, and C, we can find the logarithm of any number, true to at least ten decimal places.

But some may prefer to use the following direct formula, which may be found in any of the standard works on algebra:

$$
\log \cdot(z+1)=\log \cdot z+0.8685889638\left(\frac{1}{2 z+1}\right)
$$

The result will be true to twelve decimal places, if z be over 2000.

The log. of composite numbers can be determined by the combination of logarithms, already in the table, and the prime numbers from the formula.

Thus, the number 3083 is a prime number, find its logarithm.

We first find the log. of the number 3082. By factoring, we discover that this is the product of 46 into 67 .

Log. 46, Log. 67,	1.6627578316 1.8260748027
Log. 3082	3.4888326343
Log. $3083=3.4888326343$	$+\frac{0.8685889638}{6165}$

NUMBERS AND THEIR LOGARI'THMS,

often used in computations.

Circumference of a circle to dia. 1) Log.
Surface of a sphere to diameter 1$\}=3.14159265 \quad 0.4971499$
Area of a circle to radius 1
Area of a circle to diameter $1=.7853982-1.3950899$
Capacity of a sphere to diameter $1=.5235938-1.7189986$
Capacity of a sphere to radius $1=4.18879020 .6220886$
Are of any circle equal to the radius $=57^{\circ} 29578 \quad 1.7581226$
Arc equal to radius expressed in sec. $=206264^{\prime \prime} 8 \quad 5.3144251$
Length of a degree, (radius unity) $=.01745329-2.2418773$
12 hours expressed in seconds, $=43200 \quad 4.6354837$
Complement of the same, $\quad=0.00002315-5.3645163$
360 degrees expressed in seconds,$=1296000 \quad 6.1126050$
A gallon of distilled water, when the temperature is 62° Fahrenheit, and Barometer 30 inches, is 277. $\frac{274}{160}$ cubic inches.

$$
\begin{array}{ll}
\sqrt{277.274}=16.651542 \text { nearly. } \\
\sqrt{\frac{277.274}{.775398}}=18.78925284 & \sqrt{231}=15.198684 . \\
\sqrt{\frac{282 .}{.785398}}=18.948708 . & \sqrt{282}=16.792855 .
\end{array}
$$

The French Metre=3.2808992, English feet linear measure, $=39.3707904$ inches, the length of a pendulum vibrating seconds.
(ansen

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed. This book is DUE on the last date stamped below. ENGINEERING LIBRARY,

794007

QA 551 R6

Engin. Lib.

[^0]: * In trigonometry we learn that $\tan . x \cot . x=R^{2}=1$. That is, the product of two tangents, the sum of whose arcs is 90°, is equal to 1 . When the sum is less than 90°, the product will be a fraction.

[^1]: * Observe that the second term, or y^{2}, in a regular cubic is wanting. Hence, if any example contains that term, it must be removed before a geometrical solution can be given.

