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PREFACE

Much of the work of calculation done by the engineer or designer is in

the repeated application of a limited number of formulas to a variety of

different conditions, which involves merely the substitution of different

variables in identical equations.

Any mechanical means for performing this operation expeditiously

will not only lead to a saving of time and mental wear and tear, but will

also minimize the chances for error.

Such a device is the calculating chart, or nomogram, and the increasing

frequency with which it is employed in the more recent technical publica-

tions is a good evidence of the growing recognition of its value.

Many excellent examples of these charts have appeared of late years

and are available for use, but it is evident that to realize their full value

as useful instruments the engineer should have a sufficient acquaintance

with their underlying principles to construct charts suited to his individual

needs.

Some of the chart forms employed to-day have been known and used

for many years, but it is only within recent times that any systematic

study has been made of the subject as a whole or any attempt to properly

classify and correlate the different types.

In this work the French have been pioneers, and it is to one of them,

Maurice d'Ocagne, that we owe what is probably the most thorough and

comprehensive text on the subject, his "Traite de Nomographie."

Although books on nomography have been published in many foreign

languages, there does not appear to have been anything written on the

subject in English outside of a few scattered magazine articles which

have covered only restricted portions of the field. Books in English on

graphical calculus and computation are by no means uncommon, but

this is generally looked upon as something different from nomography,

although a strict line of demarcation between the two subjects would be

somewhat difficult to trace.

It was with the idea of supplying an elementary English text in this

neglected field that the following chapters (originally contributed in

serial form to the American Machinist) were written.

210341



VI PREFACE.

Believing that the subject should be particularly useful to the practising

engineer, who is often a trifle rusty in some parts of his mathematics, an

effort has been made to simplify the mathematical treatment. A series

of illustrative problems has also been worked out in detail for nearly all

the chart forms which are here described, as it was thought that a study of

these would afford a clearer insight into the methods and a better under-

standing of the difficulties likely to be encountered than would be possible

from a purely theoretical analysis.

The desire for simplicity in mathematical treatment has made it

necessary to restrict the application of the charts to the simpler forms of

equation. Equations of the more complex types may be and have been

charted, but the mathematical difficulties are such as to make a discussion

of the methods used out of place in the present volume.

The processes described here, if thoroughly understood, should be

sufficient to cover a large proportion of the formulas in common use.

Those of my readers who wish to pursue the subject further are referred

to the more ambitious works of d'Ocagne, Soreau, and others.

JOHN B. PEDDLE.
August, 1910.
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UNIVERSITY

CONSTRUCTION OF

GRAPHICAL CHARTS
CHAPTER I.

CHARTS PLOTTED ON RECTANGULAR CO-ORDINATES.

THE SIMPLEST FORM OF CHART.

The simplest form of graphical chart is that which is frequently used

to compare different systems of units of the same character with each

other. It is often used, for instance, to show the relative values of tem-

peratures as measured on the Centigrade and Fahrenheit scales.

It is exceedingly simple to construct and to use.

If an equation containing but one variable and its function is to be

represented, one side of a straight line is graduated to represent one of the

variables, and the equation solved to give as many corresponding values

of the other variable as are needed. These are laid off on the other side

of the line, and in order to read the chart we have merely to run across

the line from one scale to the other to get corresponding values of the

variables. It may be used for a variety of equations, such as y= ax+b,

v=\/2 g h, s= 1/2 at2
,
a= d 2

, y = log. x
t y = sin. x, etc.

4

For purposes of illustration I have plotted the two charts shown in Fig.

i to represent the corresponding values of the diameter and area of the

circle. Such a chart is of very little practical value, since a table of circular

areas will give the desired results with much greater accuracy and con-

venience. I have introduced it here partly to illustrate the type of chart,

but mainly for the purpose of discussing the relative merits of the two

systems of graduation which are shown.

It will be noted that in Chart A the diameters are expressed in equal

scale divisions, and the areas by divisions which diminish in size as the

areas increase. In B the areas are represented by equal divisions and the

diameters by divisions which increase in size as the diameters increase.

i



2 CONSTRUCTION OF GRAPHICAL CHARTS

The accuracy with which we can read such charts will evidently depend

upon the size of the divisions. In general, the conditions represented in A
are preferable for, although the absolute error in reading the upper part

of the unequal scale will be greater than in the lower part, the percentage

of error throughout the scale will be more nearly equal with A than with B.0123456 Diameter
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B
FIG. i. Plotted scales of the diameter and area of circles.

On the other hand, if most of our readings are to be about the upper

part of the scale, it may pay us to use the B arrangement in order to take

advantage of its larger divisions.

CHARTS PLOTTED ON RECTANGULAR CO-ORDINATES.

Let us take an equation of the form

y = bax. (i)

This equation, when plotted on rectangular coordinates, gives us a

straight line. That is, if we lay off values of y on the vertical or Y-axis

and of x on the horizontal or X-axis and erect perpendiculars to these axes

at corresponding values of x and y, these perpendiculars will intersect at

points which lie on the same straight line. Thus in Fig. 2, line 7 corre-

sponds to the equation

y=io+i/2x.
If we erect a perpendicular to any point on the X-axis, say 40, find its

intersection with line 7, and then run horizontally to the Y-axis, we will get

the corresponding value of y as 30.

If we give b different values, say 15, 20, and 25, leaving a the same, we

get the parallel lines 6, 5, and 4, which intersect the Y-axis in the new

values of b. If we change a, we change the slope of the line; if we make it

negative, we get the downward sloping lines 3,2, and i.

Suppose we make a in the equation equal to i. Our sloping lines will

now run at an angle of 45 degrees. Taking a new chart to avoid confusion

we will have something like Fig. 3. Two sets of diagonals are shown: one
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sloping up as we move to the right and the other sloping down. The first

corresponds to

y= b+ x (2)

and the other to

y= b-x (3)

According to the first equation, we have y as the sum of b and x. If,

therefore, we enter on the^ X-axis at, say 24, run up as indicated by the

heavy line to diagonal 15, and thence to the Y-axis, we will read the sum, or

39. Subtraction would be performed by going in the opposite direction or

by using the b lines designated by negative values.

50

10

10 20 30 40 50

FiG. 2. Lines plotted from the general equation y=bax.

Right here it might be well to suggest that the quantities represented

by the diagonal lines in this or any other chart should be such as are not

likely to vary much, and are capable of being expressed in round numbers.

Fractional values can be much more easily picked off of the scales on the

axes. A large number of diagonals on the drawing is very likely to cause

confusion in reading, and will certainly entail additional labor to construct.

Let us now consider the other set of diagonals, corresponding to

y = b x.

This may also be written

b=x+y. (4)
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It indicates that if we enter the X- and Y-axes with two numbers to be

added and run the perpendiculars out to their intersection, this intersec-

tion will be found on the diagonal numbered with the sum. Thus entering

the X- and Y-axes at 26 and 44, and running as indicated by the heavy

lines, we find the intersection on diagonal 70. Next suppose =
o, and

give a different values. The diagonals will now be a series of radiating

lines from the intersection of the X- and Y-axes. This is shown in Fig. 4.

50

40

20

10

^J

^

&

10 20 30 40 50

FIG. 3. Lines plotted from the general equation y=bx.

Here, as our equation informs us, the chart may be used for multiplication.

Entering the X-axis at 2, running up to the diagonal 3, and from there to

the Y-axis, we read the product, 6. Division is, of course, performed by

going through the chart in the opposite direction.

This chart, while simple in appearance, is not very practical where

the multipliers differ greatly in value. It is easily seen that if we wish to

multiply any number on the X-axis by 10, it will be necessary to have the

chart 10 times as high as it is wide. Moreover, the intersection of the

vertical lines with the diagonals near the ic-line is very acute and neces-

sarily difficult to read accurately. The best position for the diagonal for

this purpose is on or near the 45-degree angle.



CHARTS PLOTTED ON RECTANGULAR CO-ORDINATES 5

These difficulties may be partly overcome by changing the scale values.

If we renumber the diagonals from o . i to i making their values 10 times

as great, as shown in the parentheses, and also give the graduations on

the Y-axis a double set of numbers, we may be able to keep the dimensions

of the chart within reasonable limits and also use diagonals which are

more favorably disposed for accurate reading. In any case, however,

there will be an unavoidaMe crowding together of the diagonals near the

0123456789
FIG. 4. Lines plotted from the equation y=ax.

origin which will make the readings about the low numbers difficult, if

not impossible.

There was no real need to suppose that b in the equation was zero. It

was done merely for convenience in illustrating the point I wished to

explain. If b had had any value, positive or negative, we should have

had the same set of radiating lines, but their point of intersection would

have been shoved up or down the Y-axis by the value which we give to b.

Let us now investigate another form of chart for multiplying, writing

our equation

a=xy (5)

If we give a a definite value and find corresponding values of x and y,
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it will be found that perpendiculars erected at these corresponding points
will intersect on a curve called the equilateral hyperbola. For each

different value of a we will have a different curve.

A chart constructed with them, like Fig. 5, could therefore be used

for multiplication and, of course, for its converse, division. We have

only to pick out the numbers to be multiplied on the two axes, follow up
their perpendiculars to their point of intersection, which will be found

on the curve numbered with the product. Should this point fall between

two curves, instead of on one of them, the product must be interpolated

01234
FIG. 5. Chart for multiplication and

5 6 7 8 9 10

division, plotted from the equation a =xy.

by eye. It will readily be seen that this method is not at all suited

to any case in which the desired number of products is large, since the

labor of drawing in the curves would be prohibitory.

Note that curves i or 10 might be used as tables of reciprocals.

Next, let us consider a case in which some power of one of the quanti-

ties is involved. We will select a case involving several multiplications

in order to show how some of the principles already discussed are applied.

This will be done in some detail in order to clearly show the process of

attacking a simple problem.
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CHART FOR PROPORTIONS OF BAND BRAKES.

Take the formula for the band brake

in which P represents the resultant tangential pull on the brake, A the

area of the cross section of the brake band in square inches, T the tension

in the tight side of the band in pounds per square inch, /the coefficient of

friction (o. 18 in the case of iron on iron) and a the arc of contact of the

band in degrees.

Inside of the parenthesis in our equation there is only one quantity

which need be considered as a variable, a the arc of contact; / will be

constant for any given materials for band and drum and, as indicated

above, will be taken as 0.18. Under these circumstances, instead of

drawing a separate line or set of lines for each quantity inside the parenthe-

sis, we need only draw one line for the parenthesis as a whole, getting the

different values for plotting this line by letting a vary. We will have to

assume the limits within which this variation is to take place. Suppose
we take these as 200 and 300 degrees. Then solve the parenthesis for

every 10 degrees between these limits.

In Fig. 6 the results of these calculations are shown plotted as ordinates

on the chart, while the corresponding arcs of contact are taken as abscissas.

In laying off the latter, one small scale division on the horizontal scale is

used to represent two degrees of arc. The vertical scale will need to be

large as the values of the parenthesis only vary from 0.4666 to 0.6103,

and this, if plotted to a small scale, would make a very flat and therefore

undesirable curve.

Suppose we make one small scale division on the vertical scale equal to

o. 01. This has been done on the chart, and the curve drawn through the

points thus found. These values must now be multiplied by the assumed

values of T, the tension per square inch in the band. According to one

authority, the safe values for T will range from 4500 to 6500 for wrought

iron, and from 8500 to 11,500 for steel. We have therefore to provide for

a total range of 7000 pounds and we will cover this by steps of 500 pounds.

We will adopt the multiplying method shown in Fig. 4, making the radiat-

ing lines stand for the different tensions. They must converge to a point

somewhere on the zero line of the curve just drawn, and this point may
be chosen at will. In reading the chart we must run up or down a vertical

line until we strike the curve, and then go horizontally until we reach the

desired T-line. It is evident that all the jT-lines must be in such a position

that they may be intersected by any horizontal drawn from the curve.
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They must be so drawn that the tangents of the angles they make with the

vertical will be proportional to the tensions they represent. Let us run

up ten of the large divisions from the zero line and then horizontally 41/2,

5,51 /2, 6, etc., of the large divisions, corresponding to tensile stresses of

200 210' 220

Arc of Contact in Degrees
230 240 250 260' 270 290' 300'

FIG. 6. Proportions of band brakes.

4500, 5000, 5500, 6000, etc., so as to get the lines well spread out. If we

take the point of convergence at 14 large divisions to the right of the left-

hand edge of the chart, the conditions we have imposed above will be

fulfilled, and this has accordingly been done. The results of this multipli-
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cation will be read on some horizontal axis, and they must next be multi-

plied by the assumed values of A, the area of the cross section of the band.

We could use the same point of convergence for the A -lines as for the

T-j but inasmuch as this would cause some confusion in reading the dia-

gram, it will be better to use some Other center, which, however, must be

located on the vertical line passing..through the T center. According to

the authority quoted above, the thickness of the band for ordinary cases

should vary between 0.08 inch and o. 16 inch, corresponding, roughly, to

No. 12 and No. 6 Brown & Sharpe gage. If our bands are not to be

less than i inch nor more than 3 inches in width, the maximum variation

in area will be between 0.08 square inch and 0.48 square inch. For

convenience let the areas vary by steps of o . 04 square inch, although any
other size of step might have been chosen. This will give us n lines

which must be so drawn that the tangents of the angles they make with

the horizontal will be proportional to 0.08, 0.12, o. 16, etc.

We must now determine the limits within which our results, the desired

values of P, must fall. For the least area, 0.08 square inch; the least

tension, 4500; and the smallest contact angle, 200 degrees, we have P=i68.

For the largest values of the same quantities we have P= ^^6g. These

values of P will be read on a vertical scale. It \vill be found that if we

allow i large division on the vertical scale to represent 200 pounds it

will give us a convenient scale length and readings may be made with an

accuracy which is sufficient for all practical purposes. The length of

the vertical scale will thus be about 17 of the large divisions.

Therefore, going up 1 7 large divisions from the zero of the curve, we

locate the center for the radiating A -lines on the vertical line which passes

through the center of the TMines. From this center we go 10 large divi-

sions to the left and, going down 2, 3, 4, 5, etc., large divisions (propor-

tional to 0.08, o. 12, o. 1 6, o. 20, etc)., we locate the points through which

the A -lines must be drawn from their center. By this arrangement they

will cover the desired length on the scale of P. Our chart is now complete

except for lettering the lines and scales. The left-hand scale must of

course be lettered so as to make each large division represent 200 pounds'

pull.

To read the chart, enter at the bottom or top at the assumed arc of

contact and run up or down to the curve, from there go horizontally to the

desired tension in the band, then vertically to the area line, and then

horizontally to the vertical scale representing the tangential pull. Or, if

the pull, arc of contact and tension are known, enter as before at the arc

of contact, run vertically to the curve, thence to the tension line, and the
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intersection of the vertical through this point with the horizontal drawn

from the desired pull will be on or near one of the area lines, thus giving

the necessary size of the band.

It is obvious that for all practical purposes our chart might have been

trimmed off on the right-hand side at the end of the curve so as to omit

all of the diagram not sectioned with the small divisions, also that there

is no need of continuing the 2"-lines above or below the curve.

CHARTS WITH IRREGULAR SCALES.

There is no necessity in these charts for having the scale divisions

equal, as has been the case in all the charts except the first. If we admit

this, there is a distinct advantage in many cases in having them irregular.

CHART FOR THE FOCAL DISTANCE OF A LENS.

For instance, take the formula connecting the two foci of a lens with its

principal focus

where / and /' are conjugate focal distances and p the principal focal

distance.

Make

The above equation becomes x+y = b which is identical with equation (4)

above.

We have, in this case, to lay out on the X- and Y-axes the reciprocals

of/ and/' and draw in the diagonals as shown in Fig. 7, just as we did

in Fig. 3. Knowing the principal focal distance of our lens, we select the

diagonal corresponding to it, enter the X-axis, say, at the distance of the

object from the lens, run up to the diagonal, from there to the Y-axis, and

read off the distance at which the object will be in focus.

LOGARITHMIC CHARTS.

A more important case is where the divisions are laid off to a logarith-

mic scale. Paper ready ruled in this way may now be had from dealers

in mathematical instruments and is valuable for many purposes. On it

many problems which would have to be solved by tediously drawn curves,

may be worked with ease by straight lines.
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Let us return to equation (5) a= xy. This may also be written log. a =

log. x+log. y which is identical with (4), the equation for a straight line.

The paper in question is graduated on its horizontal and vertical axes

so that the lengths from the origin are equal to the logarithms of the num-

bers placed opposite the graduation marks.

If in Fig. 8 we connect 2 on the vertical axis with 2 on the horizontal

axis, 3 with 3, and so On, we get a chart similar to Fig. 3, which was

used for addition, but in this case is for multiplication. It also bears some

resemblance to Fig. 5, the equilateral hyperbolas used there being

replaced by straight lines. To use the chart enter at the X- and Y-axes

with the numbers to be multi-

plied and follow out the perpen-

diculars at these points to their

point of intersection, which will

be found at the diagonal num-

bered with the product.

We might also draw the diag-

onals so as to slope upward from

30.

VI.

\

\\

\i\

X *
r_K%

$s&&

^^

\

s^
Distance of Object from Lens

FIG. 7. Chart for focal distances of a lens.

left to right instead of downward,
as shown on the same chart.

This is identical with the second

form of addition chart of Fig. 3,

and may also be used for multi-

plication. Thus, entering on

the X-axis with the multiplicand we run up till we strike the diagonal

numbered with the multiplier, and thence over to the product on the

Y-axis. Such paper is also very convenient for handling equations con-

taining powers and roots of the variables, and especially where these

powers and roots are fractional.

For instance, y=x
2

may be written log. y=2 log. oc.

This indicates that a line drawn so that its tangent with the horizontal

is 2 could be used for squaring numbers on the X-axis, or conversely for

extracting the square roots of numbers on the Y-axis. This is shown in

Fig. 9. The top of the diagram is bisected, and a line drawn to this

point from the origin, enabling us to find any square not exceeding 10.

Entering at 2 on the X-axis and running up till we strike this line and

from there to the Y-axis, we read 2
2

,
or 4.

To get squares greater than 10 we should have to extend our chart

above the lo-line. It would be exactly similar, however, to the part

below, and it is therefore only necessary to lower our squaring line so as to
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1 2 3 456789 10

FIG. 8. Logarithmic chart for multiplication.

1 2 3 4,56789 10

FIG. 9. Lines of powers, roots, etc., on logarithmic paper.
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cut the base of the chart in the middle, and make it pass through the upper

right-hand corner. We thus get a chart which may be used for getting

the square or square root of any number, the only thing to be noted in the

latter operation is that we must use one or the other section of the line

according to the position of the decimal point. If the number whose

square root is desired has one, or three, or five places (any odd number)

Fig. 10. Logarithmic charts plotted from the equation Z

before the decimal point, use the first section of the line; if it has two, or

four, or six places (any even number), before the decimal point, use the

second section.

From what has been said it is plain that the cube line should be drawn

by dividing the upper and lower edges of the diagram into three parts so

as to make the tangent of the angle of slope 3. Here there will be three
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lines crossing the diagram. For getting cube roots the first section should

be used where the number of places before the decimal point is i, 4, or 7,

etc., the second section where the number of places is 2, 5, or 8, etc.,

while the third section is used where the number of places is 3, 6, or 9, etc.

For getting fractional powers or roots the tangent of the angle of

the slope must, of course, be equal to this fractional exponent. Equa-
tions such as pv

n= c are easily solved. In Fig. 9 the line representing

pv
1 ' 41 = 10 has been drawn for purposes of illustration, v being read on the

horizontal, and p on the vertical axis. On the same chart a line has been

drawn for getting circular areas, showing the extreme simplicity of the

method. Diameters are read on the horizontal and areas on the vertical

axis.

In Fig. 10 is shown the application of this paper to the formula for

the section modulus of a beam of rectangular section

In this chart, values of h are read on the base line, b on the diagonals,

and Z on the vertical or Y-axis. For the sake of clearness only two of the

diagonals representing b have been drawn. They are for b = 2 and 6 = 4.

The intersections with the vertical or Z-axis are found by letting h = i .

The tangent of the angle of slope is 2.

In reading any of the logarithmic charts here given, significant figures

only will be found. No definite rules need be given for finding the position

of the decimal point. As with the slide rule, it needs only the application

of a little common sense.



CHAPTER II.

THE ALINEMENT CHART.
.

A type of chart which has received considerable attention of late years

and which differs radically from those already described is that known as

the alinement chart. In the charts hitherto examined the necessary

lines were plotted on what are known as rectangular coordinates; that

is, the axes on which the values of x and y were plotted met at a right

angle. This is by no means a necessary condition. The axes may be

parallel, and, in fact, I have a little book in which the author has de-

veloped a system of coordinate geometry based on parallel, instead of

rectangular coordinates.

To aid us in understanding this form of chart, let us take an equation
of the form

au+bv= c (6)

where u and v are variables and a, 6, and c are constants. TLis is the

equation of a straight line where rectangular coordinates are used. To
illustrate, let us assume a= 4, b = 6,

and c= 60, and draw the line repre-

sented by the equation as shown

in Fig. ii.

Since u and v may have any

values, let w= o, then 6 v=6o, and

v=io. Again, letting v= o, 411 =

60, and ^=15. This gives us the

coordinates of two points on the

line, one on each axis. Lay off u= 15 on the Y-axis and v=io on the

X-axis and join them. Then for v= 4, ^=9, as shown by the heavy line

on the chart.

Now let us lay off the same quantities on the parallel axes in the

second chart of Fig. n. On the axis marked A u lay off 15 and join it

to v= o on the B v axis. Lay off v 10 on the B v axis and join it to

u = o on the A u axis. These two lines meet at the point marked p. It

will be found that all lines joining corresponding values of u and v, as

found from the equation, will pass through the same point. Or, if we

15

FIG. ii. Comparison of a rectangular
and alinement chart.
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take 4 on the B v axis and join it with p, this line prolonged will cut A n

at 9, giving us the same result that we got by the other chart.

Thus, what was the equation of a line with the rectangular system
becomes now the equation of a point. Keeping a and b constant and

changing c gives us, with the rectangular system, a series of parallel

lines. With the parallel coordinates this merely moves the point p up or

down on the line C p. This line is called the "support" for the points

of intersection p. On the other hand, changes of a or b will shift p to the

right or left of the support C p. To establish the point p it will generally

be sufficient to solve the equation for a few easily determined values ~biu

and v, lay them off on their axes, and join corresponding points, as has

just been done. Or it may be worked out analytically as follows:

Let the position of the point be supposed to be located by reference

to rectangular coordinates, of which the line A B represents the X-axis,

and the line through O midway between A u and B v and parallel to them

the Y-axis. Draw a horizontal line through p. It will intersect the

lines A u and B v at the same height above A B asp. Call this distance y.

Equation (6) may now be written

au+b v= a y+b y= c,

or

(7)
a+b'

This gives the distance of the point p above A B.

If oc'j y', and x" y" are the rectangular coordinates of two known points

on a line, analytic geometry teaches us that

x xf yyf

x'-xff= y
f

-y"'

Let us apply this to the two lines originally drawn to locate p, and call the

distances O A and OB, d and + d, respectively. The coordinates

of the points at the two ends of one of the lines are :

x' = -
d, y'

=
---, and x" - d, f = o.
a

Therefore

-d-d c
o

a

For the other line xf = -
d, y'

=
o, and x" ==

d, y" = - are the co-



THE ALINEMENT CHART 17

ordinates of the ends, and its equation will be

x + d y o

-d-d'~ ~~c~*"
Combining these equations so as to eliminate y we get

*r
thus giving us the distanced the point from the vertical line through O.

It shows, also, that this distance is independent of c, and that, therefore,

however c varies (if a and b are constant), p will always lie on the line C p.

The actual location of the various points on this line may be found

by solving the equation for y for different values for a and b, or, as said

before, by joining up corresponding points on the A u and B v axes by
lines whose intersection with the locus, or support, of p will give us the

desired points.

A practical example worked through will, perhaps, give us a better

idea of the methods used than we should gain by a purely abstract

discussion.

CHART FOR AREAS.

A man engaged in making blueprints asked me to make him a chart

for calculating the areas of his prints in order to aid him in fixing his

charges. As it makes a very simple problem for this purpose I will

use it in this demonstration, merely remarking that the diagram furnished

him differs in some particulars from the one used for illustration here,

in order to better adapt it to his needs.

The formula used was

WL
A = --,

144

in which A is the area in square feet, W the width in inches and L the

length in inches.

Write this in its logarithmic form

log. W + log. L =
log. A + log. 144.

Let us plot log. W on the A u axis, log. L on the B v axis and log. A
on the intermediate support.

We must first decide upon the scales by which these lengths are to be

measured on their axes. For instance, u, the measured length of log. W
on the A u axis, is obtained by multiplying log. W by some " modulus"
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or coefficient to get the desired length in inches. Let us call this modulus

/j
for the A u axis, /

2
for the B v axis, and /

3
for the intermediate support.

Then
u =

I, log. W,
v = 1

2 log. L,

and

Mb

2ft.-:

'ir,-
10".-

5 -

log. W = ~,
*i

%. L =
^-.
^2

10

.1-

of

FIG. 12. Alinement chart for areas.

Calling log. A + log. 144 =
c, we have

u v

or

/
2
w + /,

v =
/j

/
2

c.

From equation (8) we have

|-5ft.

Uft.

hsft.

-2ft.

10

9"
8"

7"

6"

5"

4"



THE ALINEMENT CHART 19

from which

/i _ d+x C A

It d-x ~~~~~CB' (9)

thus locating the support for the product.

From the equation (7) we see that

/ / c

c must therefore be multiplied by

in order to give the measured lengths along the third axis, or support,

and this quantity must be its modulus, or

/! -M.' (10)

The graduated lengths along the different axes may be anything we

choose to make them. In general, they should be about equal and as

long as possible while keeping the size of the chart within reasonable

limits. The largest size of print which was called for in this problem

was 40 x 60 inches. The logarithm of 40 is 1.602, and of 60 is 1.778.

These numbers are so nearly equal that it will not pay us to use different

scales in laying them out in order to represent them by exactly equal

lengths on the axes, and /
t
will accordingly be made equal to 1

2
.

The best scale to use for a practical problem would probably be i

inch for a logarithmic value of o. i, thus making the length of the longest

axis about 18 inches. In the drawing made for this article the twentieth

scale was used, giving a chart half this size. This does not refer to the

cut which, of course, has been reduced.

Since /
t
and 1

2
are to be equal, equation (9) shows that the distances

C A and C B are equal, or the support for the areas must be midway
between the outside axes. For the modulus on the third axis we have

from equation (10)

*i k J,

or we must use a scale of fortieths on the middle axis, on which the areas

are plotted, if we use twentieths on the outside axes. The distance

between the outside axes may be anything we wish. If the axes are

too close we get a compact chart, but the intersection of the index line

with the axes may, in some positions, be so acute as to make accurate

reading difficult. The farther the axes are apart the better this condition
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will be, but we must not make the distance so great as to get a chart

which will be awkward to handle.

Perhaps the best arrangement for average conditions will be to have

the chart about square, in which case the index line will never make a

smaller angle with the axes than 45 degrees; this is not objectionable.

The two outside axes are now to be graduated so as to represent the

logarithms of the desired lengths and widths expressed in inches. Start

with i inch (whose logarithm is o) on the A B line.

On the middle axis instead of putting i on the A B line we must

remember that logarithm A is to be added to logarithm 144 (which is

2.158), and we therefore run up 21.58 measured with the fortieth scale

before beginning to graduate. Calling this point i, we lay off from it

the logarithms of 2, 3, 4, etc., and such subdivisions of them as may be

necessary, till we reach 17, a trifle beyond the limits of our other scales.

The chart is now complete with the exception of the lettering.

To read it, lay a straight-edge or draw a fine thread tightly across the

chart so as to join the points representing the length and width of the

print, and the intersection of the line with the middle axis will give the

area in square feet. Better, perhaps, than either the straight-edge or

thread is a piece of glass or thin celluloid with a straight line scratched

on its under surface.

Such charts as this will ordinarily show a very marked advantage
over those previously described. They are usually much simpler to

construct, and they avoid the confusing tangle of lines so often found

with the rectangular type. Moreover, since we do not have to draw a

separate line for each value of the variable, as is sometimes necessary with

the other form, it will be easier to get close readings by interpolation.

The scope of this chart might have been somewhat enlarged, without

much trouble, had it been thought desirable. The prices corresponding

to the different areas might have been marked on the other side of the

area line in something the same manner as was done in Fig. i. Also

the chart might have been extended to give the total area or price of a

number of prints of given size. To do this we should merely have to

consider the area line as the outside axis of a new diagram, the other out-

side axis being graduated to represent any desired number of prints, and

the product would be read off on a new intermediate axis. The A B,

or base, line need not have been left on the chart, as it is of no use after

the construction is once made, and it will generally be omitted.
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CHART FOR COLLAPSING PRESSURE OF TUBING.

Another formula charted on this plan is shown in Fig. 13. It is

//YP =
5oy2io,ooo I 1,

and will be recognized as "Stewart's formula for the collapsing pressure

for bessemer-steel tubing, to be applied to pressures not exceeding 581

pounds or to values of not exceeding 0.023.

In it P is the external pressure in pounds per square inch, t the thick-

ness of the tube in inches, and D the external diameter of the tube, also in

600-

500-

400-

300-

200-

100-

13

-.12"

-.ll"

-.10"

-.07

-.06'

.04

6"

-5

-4

-2"

FIG. 13. Alinement chart for Stewart's formula for collapsing pressures
of Bessemer tubing.

inches. It is very similar to the case we have just worked out, but there

are one or two practical points in which they differ which will make it

worth our while to hastily run through the construction.

The formula may also be written

P D 3 =
5o,2io,ooo/

3

or

log. P+3 log. D = log. 50,210,000 + 3 log. t.

Its essential similarity with our fundamental equation will be readily

seen.
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Suppose we take the range in tube diameters from i inch to 6 inches,

and let our pressures vary from 100 pounds to 600 pounds, the latter a

trifle above the 581 pounds for which the formula is supposed correct.

Log. i is o and log. 6 is 0.778; log. 100 is 2 and log. 600 is 2.778. This

gives us a range of 0.778 in the value of the logarithm in each case. Let

us make the length of line corresponding to this range the same on the

two outside axes, say 7.78 divisions on whatever scale may be convenient.

On account of this equality we may write for the maximum values

of P and D
I, (log. P -

2)
=

3 1
2 log. D

or

O

Then ^ (log. P 2)
=

l^ log. D, showing that the two scales are iden-

tical so far as graduation is concerned.

The logarithms of the values of D will be laid off from the horizontal

base line; the logarithms of P, above 100, from the same line. But it

must be remembered that the real zero for the P-line is 20 divisions

(on the scale we have chosen) below the base line, and that consequently

the line corresponding to A B of Fig. n will slope up from this point

to the point marked i inch on the Z)-line. There is no need to draw it,

however.

The location of the /-line is given by

h = CA A
/
2

C B i

'

Next let us determine the modulus /
3
for the support, or axis, for t.

According to equation (10)

i
*-*' A.

~*iH "4"
Inasmuch, however, as the log. t is multiplied by 3, it will be con-

venient, to consider its modulus as j l
lt
and graduate log. t directly with

this scale instead of using a modulus of J and laying off the values of

3 log. t. The other quantity log. 50,210,000 laid off on this axis will,

however, only be affected by the modulus J /, since the coefficient

of this logarithm is i instead of 3.

In graduating the /-line note that we must add log. 50,210,000 or

7.7007 to log. /, and that the zero from which the graduations are meas-

ured must be on the sloping A 5-line referred to above. If the left-hand

end of the line, corresponding to point A ,
is 20 divisions below the hori-
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zontal base line, the zero for the /-line will be 5 of these same divisions

below. Now, using a scale one-fourth the size of that used on the outside

axes (since /
3
= i /J, lay up 77.007 divisions. This will give us the point

corresponding to i inch on the /-line. Our values for /, being less than i,

will all fall below this.

For example, take / = .i inch;"70g. / = i. This will be measured

down from point i on the /-axis, the length being 30 divisions on the one-

fourth scale or 10 divisions on the three-fourths scale; or, what is the

same thing, we may go up 47.007 divisions from the zero. The other

points on this axis may be located in the same way or by joining up suit-

able points on the outside axes. The chart now needs only to be lettered

to be complete.

A simple modification of the alinement chart as already described

is sometimes of value.

Let our general equation have the form au+ bv= o.

In this equation c has been made zero, and, since this is so, y in equa-
tion (7) is also zero. This shows that the support for the points of inter-

section is now the line A B. In order to have the points of intersection

lie between the points A and B it will be necessary that Au and Bv axes

lie on opposite sides of the line A B. As indicated in the last example,

there is no necessity that A B should lie perpendicular to the axes, and it

will evidently be to our advantage to make it sloping, since in this way
the chart can be made to occupy less room.

CHART FOR TWISTING MOMENT OF A SHAFT.

The methods followed in constructing this diagram will be shown by

working out another practical example. For this purpose let us take

the equation for the twisting moment in a cylindrical shaft

M = 0.196 D 3

f,

or

-0.196 D 3f+M =
o,

where M is the twisting moment, D the diameter of the shaft in inches,

and /the fiber stress in pounds per square inch.

Let

u =
/!/ and v = 1

2 M,
then

u v
f= and M - -,
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0.196 D 3 u = o

or

0.196 D 3
1
2
u + /j

v = o

Now from equation (8)

^-0.196 >
3

/
~

+ 0.196 D 3 L (n)

-190000

- 180000

- 170000

- 160000

- 150000

- 140000

- 130000

- 120000

- 110000 -e

- iooooo I

-
90000-3

.2

r- 80000 H

70000

60000

i- 50000

r 40000

30000

20000

10000

15000

FIG. 14. Alinement chart for the twisting moment in cylindrical shafts.

This is the equation for graduating the support for D. The two

axes must be graduated according to the equations u =
l^f, and

v= l
2 M, which show that the divisions on each axis are to be equal among

themselves, or that the graduation is regular. Let us assume that the

greatest fiber stress we shall need is 15,000 pounds and that our largest

shaft will be 4 inches in diameter. Our maximum moment will then

be about 188,200. If we make i inch equal to 1000 pounds on the/-ajcis,
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this axis will have to be 15 inches long. Making i inch equal to 10,000

pounds on the moment axis will give us a length of about 19 inches; /
x

will, therefore, equal 10 1
2

. Suppose we say that 20 inches will be a

convenient length for the diagonal, then d will equal 10 inches.

Now graduate the outside axes, into inches and tenths, taking as the

zero point on each the intersection of the axis and the diagonal. The

graduations for the Z)-axis or diagonal will be determined by solving

our equation for x. Let us find the point corresponding to the 4-inch

diameter. From equation (u)
10 o.i06X64 X i

x= 10 = i. 1 1.

10+0.196X64X1
The division mark for the 4-inch diameter will, therefore, be placed

1. 1 1 inches to the left of the middle of the diagonal. As many other

points as may be considered necessary are found and laid off in the same

manner. In Fig. 14 this has been done for every quarter inch from

i inch to 4 inches. To save work, the graduations on the fiber stress line

need not have been extended below, say, 8000. The line on which the

diameters are laid off need not extend beyond the 4-inch graduation,

but for the sake of clearness it has been retained here.

IV

in

DOUBLED OR FOLDED SCALES.

When an alinement chart is intended to cover a considerable range of

values we are confronted with the difficulty that it must be large, and

therefore awkward to handle, or we must have scale divisions which are too

small for accurate reading. These

difficulties may be overcome with

but little additional trouble by a

system of double graduation of

the axes.

In Fig. 15 let A and C be the

outside axes of an alinement chart,

and B the support on which the

results are to be read. Say we
wish to graduate the A -axis for a

length equal to a-c, and that this

length is too great for our chart

if we use a desirable scale unit. Take a length a-b, equal to about

half of a-c and lay this off on the left-hand side of A and graduate it.

On the right-hand side of A lay off the rest of the length, or b-c. Call

A B B' c c'

FIG. 15. Diagram of an alinement chart

with doubled scales.



26 CONSTRUCTION OF GRAPHICAL CHARTS

the first scale I and the second II. On the C-axis do the same,

graduating the first half of the desired length (which we will call d-e)

up the left-hand side of the axis, and the second half, or e-f, on the other

side. Mark them I and II to correspond with A. The location of the

central support and its scale unit, or modulus, is determined as previously

8*-
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attempt to combine I on A with II on C we find no place on B where the

result can be read. We are, therefore, compelled to use two new axes,

one for values of B and the other for C. Call these new axes B' and C''.

On C' graduate the left-hand side exactly the same as the right-hand

side of C, or from e to/, and the other side like the opposite side of C, or

from d to e. Mark these scales III and IV, respectively, and since the

III side of C' is to be combined with the a-b length on A, the latter had

better also be marked III. For the same reason mark the right-hand

side of A, IV.

The central axis, B f

,
must be located in the same relation to A and C'

as was B to A and C, and will be graduated on the left to correspond
with the combination Ill-Ill on A and C', and on the other side to corre-

spond with the combination IV-IV on the same axes.

At first sight this diagram is a little confusing and there is always a

chance for mistakes in connecting up wrong pairs of axes. If a little

care is taken, however, to see that the readings are made on axes bearing

the same Roman numeral, the seeming confusion will disappear and the

liability to error will be small.

The process of constructing this chart is so simple that further expla-

nation seems unnecessary. For purposes of illustration the area chart

shown in Fig. 12 is reproduced in Fig. 16 by this method. A comparison
with Fig. 12 will show that while the new chart is somewhat more com-

plex in appearance, it permits the use of divisions which are so much

larger that they compensate in a large measure for the additional

confusion.

ALINEMENT CHART WITH CURVED SUPPORT.

All of the alinement charts dealt with so far have had straight-line

axes or supports for the different scales. This is by no means necessary

since any one or all of them may be curved.

A case in which the intermediate support is curved will next be con-

sidered. Let the equation take the form

5 =m
2̂

This is the equation for the space passed over by a body falling

under the influence of gravity and starting with an initial velocity. In

it 5 = the space moved over in the time /, V = the inital velocity, and

g=the acceleration of gravity, which we will call 32.

The formula is chosen not so much for its practical value as because
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+ 50-

+ 100 -
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FIG. 1 7. An alinemcnt chart with a curved support, solving the equation S = Vt + -
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its form is a good one for the purpose of illustrating this type of chart.

Let us write it

S= F/ + i6/ 2

,

or

-F/-!-S=i6/ 2
.

Make
u = l^V and v = 1

2S,

then

V= -
M

7-and5=-^-,
/j

/
2

Substituting above we have

or

This is evidently identical with the fundamental equation for the

alinement chart. From equations (7) and (8) for y and x we have

_~

and

These are the equations of the points constituting the support for t.

The choice of the scale units is of little or no importance in this case,

since we are not obliged to work between any definite limits. For sim-

plicity in calculation, then, let us take /
1
= /

2
.

Then

and

it
x = d-

Here our formula does not have a logarithmic form, and we can,

therefore, graduate our scales in lengths proportional to the numerical

values of the quantities involved and not of their logarithms. This has

been done on the scales for V and S. It should be observed that since

the modulus for F, or /p is negative, the positive values of that quantity

are measured down from the base line. The distance between the axes
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may be anything we like, but to simplify our calculations we will make
it 20 of some unit in order that the half distance, or d, may be 10.

Solve the equation

i/
#=io -

! + /

for as many values of / as are wanted. In the chart shown in Fig. 17 the

values taken for / were o, 1/2, i, 2, 3, 4, 5, 6, 7, 8, 9, 10, and u. The

corresponding values of x are 10, 3.33, o, 3.33, 5, -6,- 7. 15, -7. 5,

7.78, 8, 8.18, 8.33. For the same values of / we have for y: o, 2.6,

8, 21.3, 36, 51.1, 66.6, 82.2, 98, 113.8, 129.5, i45- 2 l6l -4-

Plot the curve for these values of x and y, and letter it to correspond

with /. The construction for the point
=

3 has been indicated by dotted

lines.

The horizontal axis on which x is plotted is only used for the con-

struction of the curve and may be omitted in the completed chart. It

is retained in Fig. 17 in order that the process may be clearly indicated.

If we connect two points on the outside axes by a straight line, the

intersection of this line with the curved support will give /, or by connect-

ing the initial velocity V with the time on the curved support we read on

the 5-line the distance passed over. This has been done in the figure

for F=3O and /= 3, giving the value for S as 234. By making the index

line pass through V= o and the given time we get a case corresponding

to the simple law of falling bodies. If V be taken negative we may get

two intersections with the /-line, and either of the times thus found will

satisfy the equation.



CHAPTER III.

ALINEMENT CHARTS FOR MORE THAN THREE VARIABLES

CHART FOR HELICAL COMPRESSION SPRING.

So far the alinement charts as described have only taken account of

three variables. This is not a necessary limitation and we will next con-

sider a case in which the'number of variables is four. For illustration

we will use the formula for the load supported by a helical compression

spring

d3

P= o. igS/,

where P is the load, d the diameter of the wire, r the mean radius of the

coil, and / the fiber stress. Say we wish to have our chart cover wire

from No. 10 to No. oooo B. S. gage, or from 0.102 to 0.46 inch diam-

eter. Let us assume that the mean radius of the smallest spring will be

1/2 inch and of the largest 2 inches, and that / may vary between 30,000

and 80,000 pounds. Put the equation into its logarithmic form

log. P= log. 0.196+3 log. d + log.f log. r.

We will have to make two steps in getting our solution, and in each

step but three variables must appear. Therefore let us say

log. 0.196 + 3 log. d log. r = log. q

and

log. P =
log. q + log. f.

These two equations are evidently of the same form as those pre-

viously treated by the alinement chart, and will be charted by exactly the

same methods. The quantities d and r, or rather their logarithms, we

will plot on the outside axes and read q on the intermediate support. See

Fig. 1 8. Since log. d and log. r are affected by opposite signs, the positive

values of these quantities will be laid off in opposite directions from the

base line. As previously explained, the base line may be made sloping,

and for convenience we will suppose that this has been done here. Our

former constructions depended upon a knowledge of the position of this

line, but once the matter is understood there is no real necessity for ac-

tually locating it, and in the present instance it will be disregarded.

We have assumed that the values of r are to lie between 0.5 inch and

2 inches. The logarithm of 0.5 is 0.301 and of 2 is +0.301, making
a total range of 0.602. Choosing a suitable scale unit, this length is laid

off on a vertical line at the right of the paper. The middle point will
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FIG. 18. Alinement chart for determining load supported by a helical spring.
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evidently be lettered i, and will be the point at which this axis is inter-

sected by the base line a matter of no importance, however, in the pres-

ent instance. If we call directions upward positive and downward nega-

tive, and remember that log. r has a minus sign, we will see that the point

corresponding to 2 will be at thelower end of the line and that correspond-

ing to 0.5 at the upper end. Graduate the intermediate portions for as

many values as are desired, of course, in their logarithms. The other

outside axis, on which d is to be laid off, is drawn to the left of the axis

just constructed and may be placed in any convenient position. The
values of d called for lie between 0.102 and 0.46 inch for which the loga-

rithms are 1.0086 (or 0.9914) and 1.6628 (or 0.3372). Log. d is to

be multiplied by 3, however, and therefore these values become 2.9742

and 1.0116. Their difference is 1.9626 which, after multiplication with

the scale unit, gives the graduated length of the d-axis. If we use a scale

unit of 1/3 the size of that used on the r-line we will get substantially the

same length for the two axes. It will be convenient, in graduating this

line, to take the r-line unit and graduate the logarithms of d directly

from it rather than use the 1/3 scale and then multiply by three, since log. d

is to be multiplied by 3.

The position of the zero on this line (corresponding to i) will evi-

dently be beyond the upper end, since all the logarithmic values are

negative. The point marked 0.46, being nearer i than 0.102, will be at

the upper end and the other at the lower. Having chosen the positions

for the limits of this line, we proceed to graduate it.

The logarithm of 0.102 is 1.0086. Lay your engineer's scale on the

line so that the point chosen to represent 0.102 is opposite 0.86 on the

scale. Then with the aid of a table of logarithms pick off the intermedi-

ate points up to 66.28. Our formula shows that log. 0.196 should be

added to 3 log. d. The method of making this addition was explained
in the previous problems where we worked from the base line. In the

present case where we are ignoring the exact position of the base line we

disregard the log. 0.196 since its only effect is to change the distance of our

indefinite base line from what we must look upon as the fixed position of

the (/-line graduations.

While speaking of the J-line I should like to call attention to the re-

markably regular appearance of the graduations. The nearly equal spac-

ing means that the diameters of the wire increase by approximately a

geometrical progression.

We must next locate the position of the r-d or q support and deter-

mine the value of its scale unit. The scale units on the r- and d- lines are

3
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Jin the ratio of i to i /3. If we take the unit for r as the standard of refer-

ence, we find from equation (10) that the unit for the r-d support will be

and from the ratio of the unit lengths on the outside axes we find that the

intermediate support should divide the distance between them in the pro-

portion of 1/4 to 3/4. Equation (9.) This line may now be drawn and

might be graduated in the unit we have determined if there were any need

to have the numerical result of the r-d operation. As this will not usually

be wanted, we will save ourselves the trouble.

Take now the second of the equations started with,

log. P =
log. q + log.f

which shows that P is the product of the multiplication of q and/. Their

scales will be the outside axes of a new chart and P will be graduated on

an axis between them. We have assumed a variation of / from 30,000 to

80,000. The logarithm of 30,000 is 4.4771 and of 80,000 is 4.9031.

The difference, 0.4260, multiplied by the scale unit chosen, gives the

length of the axis. In the chart made for this article the scale unit selected

for the /-axis is i / 2 that of the reference standard used on r. It would

have been better on some accounts if the unit had been made larger in

order to get greater scale lengths on the different axes. I found, however,

that any larger scale unit that I could use would give a unit for graduat-

ing theP-axis which would be utterly impracticable with the ordinary engi-

neer's scale. The graduation of the P-scale might, of course, be made by
a series of projections from the other axes had there been any pressing

need to have the /-scale long, but this is a tedious operation. In the

problem we are considering the values of /will generally be expressed in

round numbers, and there will be no need of minute subdivision the

chief advantage of a long scale. Accordingly, the unit value of 1/2

was chosen for/
In locating the/-line it was simply placed as far to the right as it would

conveniently go without interfering with the r-line, and, as with the other

axes, the graduations are located on it in any position we please. Begin-

ning at the lower end, which we mark 30,000, we graduate up with the

logarithms of the desired fiber stresses until we reach 80,000.

Lastly, we must locate and graduate the P-axis. The scale unit for

the r-d support has been found to be 1/4; that of the /-line is 1/2.

Therefore, substituting in formula (10), we get for the scale unit for P

i+i I
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The P-axis will divide the distance between the/- and <?-lines into parts

which have a ratio of 2/3 to 1/3, since the units on the side lines are 1/2
and 1/4. Equation (9). The range over which we must suppose the

values of P to vary is a trifle indefinite. It will not do to substitute the

values of the variables already settled upon, which give the minimum and

maximum values of P, for 4his woufd lead to absurd combinations. It is

not probable, for instance, that a spring would be made of No. 10 wire and

a 2-inch coil radius, and it is still less likely that wire 0.46 inch in diameter

would be used in a spring whose coil radius was 1/2 inch. Taking average

conditions, I find that the range for P should be somewhere in the neigh-

borhood of from 10 to 1000 pounds. To make sure of being on the safe

side, I have extended the limits a little beyond each of these values.

Now, when it comes to starting the graduations onPwe ought, properly

speaking, to know the location of the base line; but we have completely
lost track of this, and it cannot, therefore, serve us. We may easily locate

one point on P, however, if we run through a trial calculation. Let

d= 0.102 inch, r = i inch, and/ =
50,000 pounds. Then

. O.I02
3

P =
0.196 50,000 =

10.4.

On the chart join up d = 0.102 with r = i, and find the intersection

with the r-d support. From this point draw a line to 50,000 on the

/-line and find its intersection with the line chosen for P. This must be

the point corresponding to 10.4, whose logarithm is 1.017. We have thus

found a starting point for our graduations, and the other marks may easily

be located with the proper scale, i /6 that of r. The chart is now com-

plete except for lettering. For convenience in reading I have given the

rf-line a double set of numbers, one for the diameters and the other for

the corresponding gage numbers.

To read the chart draw a line between the selected values of r and d

(say 0.8 and 0.204) and get the intersection with the r-d support. Con-

nect this point with the chosen fiber stress (say 80,000). The intersection

with P, which is at 166, gives the load the spring will carry.

CHART FOR STRENGTH OF GEAR TEETH.

Next, let us take a formula containing five variables instead of four.

The principles involved are precisely the same as those already discussed:

we merely carry the process one step further. For the sake of variety

a slight change will be made in the disposition of the axes. The formula
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chosen for charting is the well-known one by Lewis for the strength of

gear teeth

W = spfy
where W is the pitch-line load, s the fiber stress, p the circular pitch,/
the face width, and y a constant corresponding to the number of teeth.

Let us separate the right-hand side of the equation into two parts and

construct a separate chart for each, one giving the product of s and y,

and the other the product of p and/. Then, if we take the resulting prod-
uct lines as the outside lines of a new chart, we will find the value of W
(their product) on their intermediate support. See Fig. 19.

We must impose the customary limits on the variables in order to

determine the size of the chart. Suppose we let p vary between i /2 and

2 inches and / between i and 6 inches. According to the tables which

usually accompany the formula, s may vary between 1700 and 20,000

and y from 0.067 f r a i2-tooth pinion to 0.124 for the rack. For the

sake of simplicity we will suppose the application of the chart to be

limited to the i5-degree involute teeth.

Take first the values of y. The logarithm of 0.067 is 2.8261, and of

0.124 it is 1.0934, giving a difference between the extremes of 0.2673;

this multiplied by the scale unit chosen gives the graduated length of the

axis. Pick out the values of y from the table, find their logarithms, and

lay down the latter on the axis, making the lower end of the line the loga-

rithm of 0.067. Lewis gives a formula

0.684
y-o.124-

for calculating the value of y from the number of teeth. I have made these

calculations and laid off the results on the other side of the line for purposes

of comparison. It will be noted that the tabular values are spaced some-

what irregularly as compared with the calculated. This is a matter of

passing interest, but the chief point to which I wish to direct attention is

the ease with which empirical constants, which are connected by no known

law, may be handled by these diagrams. There is no need of trying to

force them to fit some arbitrary equation for they may be inserted in the

chart exactly as they were obtained from experiment. In lettering this

line we place opposite the graduations the numbers of teeth corresponding

to the different values of y, which we have plotted, instead of the ^-number

themselves. The former we know from our given gear, while the latter

is of no special interest. This line from now on will be called the n- instead

of the y-axis.

Opposite and parallel to this line we draw the axis for s, the fiber stress.
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The logarithm for its lowest value, 1700, is 3.2305, and for the highest,

20,000, is 4.3010, giving a difference of 1.0705. If we take a scale-unit

value of one-fourth that used on the w-axis the two lines will be approxi-

mately equal. Taking the lower end of the line at any convenient point,

mark it 1 700 and graduate up to the top in the logarithms of the desired

values of s. In lettering this line it might be well, in case the gears for which
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the chart is to be used are all to be of the same material, to place opposite

the fiber stresses the appropriate speeds as shown by the table, thus making
the chart entirely self-contained. Where several different materials are

to be used this would probably cause a considerable amount of confusion,

and it has therefore been omitted here.

The lengths of the scale units on the outside axes being i and i /4, we

find the unit length for use on the intermediate support to be

and the support will divide the distance between the outside axes into

intervals whose lengths are 1/5 and 4/5 of this distance. We do not

graduate the intermediate support, since the numerical results of the

multiplication are not wanted.

Next take the values of p and /; p varies from i /2 inch to 2 inches.

The corresponding logarithms are 0.301 and +0.301, making a total

range of 0.602. The lowest value of /is i inch (log.
=

o) and the highest

6 inches (log.
=

0.778), making a total range of 0.778. Since these two

lengths are so nearly equal we might as well use the same scale unit for

each, and it will be found convenient to make it i /5 that used on the w-axis.

The support for the product will have a scale unit i /2 the size of that

used on the outside axes, or will be equal to i /io the length of that which

was used on the w-line. This support and the one previously located

are to be used as the outside axes for the last multiplication, whose product

is W. The size of the scale unit on the TF-line, since those on its outside

axes are i /io and i /5, is

and the line itself will divide the distance between these axes in the ratio of

i /3 to 2
/3 .

It will be convenient to have the PF-line fall between the diagrams used

for the preliminary multiplications in order to avoid confusion. There-

fore, locate it somewhat to the right of the w-axis and then draw a vertical

for the support for the p-f product so that its distance from the TF-line is

1 12 the distance of the latter from the n-s support. At convenient equal

distances from the ^-/support draw the p and /-axes, and graduate them

with the logarithms of p and /, using a scale unit i /5 the size of that we

used for the w-graduation. As before, we may locate the graduated parts

of these lines anywhere we please on them.

The W-axis is now to be graduated, and its graduations, unlike

the others, must start at some definite point. Solve the equation for
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any values within the prescribed limits. Take, for instance, w=i2,

y = 0.067, 5 = 17> /= l
>
and P=i I2 - Then

w = 1700 x i
/
2 x i x 0.067

=
56.95.

On the chart join 1700 on the 5-line with 12 on n, and get the inter-

section with the intermediate axis, which will be at the product (unknown)

of the two. Join i on the /-line with 0.5 on the />-line, and get the inter-

section with their intermediate axis, giving again the product (unknown).

Join the the product of n and 5 with that of p and/, and the intersection

with the PF-line must be the point corresponding to 56.95. Its logarithm

is I -7555- Lay an engineer's scale with the proper-sized graduations

(1/15 that used on the w-line) on the PF-line so that 1.7555 on it is at the

point we have located, and graduate the rest of the line from a table of

logarithms. The method of using the chart should be obvious from what

has preceded, but may be briefly recapitulated. Join the desired values

on n and 5, say, 27 and 10,000, by a straight line and mark its intersec-

tion with the support. Join the desired values of p and/, say, i and 3,

by a straight line and get its intersection with their support. Join these

two points by a third line, and its intersection with the W-line gives

the load, 3000 pounds, which the gear will carry safely.

I believe that a comparison of this diagram with others which have

been published for the solution of this equation will show that it has some

very marked advantages over them in point of clearness of reading and

simplicity of construction. The only point which gave any trouble in

construction was the selection of scale values for the different lines so

that they might all be read from an ordinary engineer's scale. Several

trials were necessary before they were finally settled.

Enough has been said, I think, to indicate the general method to be

followed in cases where the equation to be charted contains more than

three variables, and there should be no difficulty in extending the method

to any case where more than five the largest number treated here are

involved. Before leaving this part of the subject, however, I wish to take

up briefly another case, differing slightly from those which have gone

before, and which is occasionally serviceable in special problems.

CHART FOR STRENGTH OF A RECTANGULAR BEAM.

Suppose we have an equation of the form

WL _bh-

This is the equation for a rectangular beam, supported at the ends
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and uniformly loaded. In it W is the total load, L the length of the beam
in inches, b the breadth, and h the height of the rectangular, cross-

section of the beam, both in inches, and /the fiber stress.

Let us suppose for convenience that the beam is of white oak or long-

leaf yellow pine for which the "Cambria" pocket book gives a safe fiber

stress of 1200. Our formula may then be simplified to read

WL=i6oobh\
For our limits let us say thatZ, varies between 10 and 24 feet, or 120

and 288 inches, b from 2 to 10 inches, and h from 4 to 14 inches. Then
W will vary from about 178 to 26,100. Suppose, now, we construct

two charts, one for multiplying W andL and the other for 1600 b times

h 2

, Fig. 20. The two products are to be equal. We may, therefore,

use the same line as the support for the product for each chart if the

scale units on the two supports have the same value. The base lines for

the two charts may or may not coincide, but it is essential that they inter-

sect the intermediate support at the same point if we expect the two index

lines to cut it at a common point. This must be the case if the products

of the two multiplications are to be equal as we have supposed. As in

the previous illustrations, there is no necessity for actually drawing the

base line. The general method of procedure in constructing this diagram
is so similar to what has gone before that it will not be described in detail.

After finding the range of values required for the L-line we choose a

convenient unit length and graduate the line in the logarithms of the

desired values. The PF-line is placed opposite it at any convenient

distance and graduated with a scale unit whose length is one-quarter

that used on L. The support for the product of these quantities must,

therefore, divide the distance between them in the ratio of 1/5 to 4/5, and

its scale unit will be

iXt=1

For the b- and /z-lines it will be found that a scale unit of the same size

as the standard used on L may be taken for b, and one of one-quarter the

standard for h. These will give convenient lengths for the two axes, and

the intermediate axis will also have a scale unit of 1/5, since again

This is essential if, as remarked above, the products of the two multi-

plications are to be represented by equal lengths on the common support.

Remember that when h 2
is plotted the lengths of the logarithms of h

must be multiplied by 2. The scale units chosen for the b- and /z-lines
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being i and 1/4, the support must be distant from these lines in the ratio

of 4/5 to 1/5. Lay off the b- and ^-lines at any convenient distances

from the W-L support which will satisfy this ratio.

10

r-

5"-

4"-

3"-

2-

30000-

-

Common Support
for all Scales.

rll

10

FIG. 20. An alinement chart plotted from the equation W L=i6oo bh2
.

Graduate the 6-line in the logarithms from 2 to 10 with a scale unit of i.

The Mine is to be graduated in twice the logarithms of the numbers

between 4 and 14. The position of the graduations on b is chosen arbi-
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trarily, but for h must be found by a simple trial calculation, since the

location of the base line is unknown.

Assume 6= 2 inches, h= 5 inches, andL = 1 60 inches (13 feet 4 inches).

Then

W=i6oo
I

= zoo.
1 60

Join 500 on the PF-line with 160 inches (13 feet 4 inches) on theZ-line

and mark the intersection with the intermediate axis. Through this

point of intersection draw another line so as to pass through 2 on the Mine.

Where this line intersects the h-\me must be the point numbered 5. Its

logarithm is 0.699. Knowing this and the proper scale length, we may
easily find the other points on this line. To read the chart draw a line

between the chosen values of W and L and mark its intersection with

the support for the product. Any line drawn through this point to the b-

and /-axes will intersect them in values which will give the necessary

strength to the beam. Thus, on the chart, the solution has been found

for the case where ^= 3200 andL= 200 inches (16 feet 8 inches). It is

found that a beam 4 x 10 inches will satisfy the conditions as to strength.



CHAPTER IV.
r

THE HEXAGONAL INDEX CHART.

A type of chart of quite a different character from any of those pre-

viously described will now be considered. Suppose we have a diagram
like Fig. 21, where A O C is any angle whatever, and O B its bisector.

Measure equal distances Oa and Oc on the OA- and OC-axes and erect

perpendiculars ab and cb. They meet, of course, on O B. The length

Oa = Oc = Ob cos. A OB, orOa+Oc=2 Ob cos. A O B.

Now suppose b moved out to V on the perpendicular b b
f

. Project

b' to a' and c''. Then since b b
1 makes the same angles with O A and

O C, its projections on these two axes will be of equal length, or a a' will

equal c c''. Therefore,

Oa+Oc = Oa'+Oc' = 2 O b cos. A O B. \

We have here, evidently, a new form of addition chart. If the scale

values on O A and O C are equal, and that on O B is this unit times

,
the length O b measured to this unit is equal to the sum of

2 cos A OB
Oa! and Oc' . If A O C is 90 degrees the unit length for the O B-axis is

that used on O A multiplied by 7^, and if AO C is 120 degrees the unit
\/2

lengths on all three axes are the same.

If we were to graduate the three axes with their proper units and then

erect perpendiculars to the axes at the division points we could find the

sum of Oa' and Oc' by finding the perpendicular from O B which passes

through the point of intersection of the perpendiculars from a' and c
1

'.

It will readily be seen, however, that this would entail a very confusing net-

work of lines, and it is, therefore, customary with this form of chart to

use what is known as a transparent index. It consists of a transparent

sheet, preferably of thin celluloid, on the lower side of which are ruled

three lines meeting at a point; each line is perpendicular to one of the axes.

The axes having been properly graduated, the index is laid on the chart

(care being taken that the index lines are perpendicular to their respective

axes) and is so adjusted that one perpendicular passes through the se-

lected value on O A and the second through that on O C. The third

43
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perpendicular will then intersect O B at the sum of the two quantities.

The angle A O C may be anything we like, but since we get equal scale

units on the three axes with an angle of 120 degrees, it is advantageous,
in general, to use that value. Where this is done the arrangement is

known as the "hexagonal" type. The whole thing is so simple and self-

V"3

FIG. 21. FIG. 22.

a' b'

FIG. 23. FIG. 24.

Diagrams illustrating the hexagonal index chart.

evident that it scarcely seems to call for an illustrative example, and I will,

therefore, not attempt to do more than refer to some of its more important

peculiarities.

Like the other forms of addition chart already examined, it may be

turned into a chart for multiplication by graduating the axes in the log-

arithms of the numbers instead of the number themselves, Fig. 22.

When the graduation of the middle or O 5-axis is identical in general

form (not necessarily in length) with those on the side axes, it may be
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projected from them by parallel lines whose angle with O A or O C is

the supplement of the angle which O B makes with them. This is a con-

venience in case the angle O A C is, say, 90 degrees, as it does away with

the necessity for a scale whose unit length is -^ times that used on O AV2

and O C. It will also be noted by reference to Fig. 23 that the gradu-

ated lengths on the three axes may be moved as far as we please in a

direction perpendicular to these axes without changing the points at

which the index line cuts them. This is sometimes an advantage in

that it allows us to shift our scales so as to get a more compact and con-

venient arrangement of the chart than is always possible if the axes are' to

meet at O. For instance, suppose we wished to arrange the three scales

on the sides of an equilateral triangle, shown dotted in Fig. 23. It is

plain that we get precisely the same results with the lines a! V^c' d', and

e''/' that we do with the lines a b, c d, and ef; i.e., if a b+ef=c d it is like-

wise true that a' b'
'

-\-e'f
' = c' d' . It is also advantageous in case any of

the quantities is affected by a number of different coefficients. In this

case it is only necessary to draw a separate parallel line for each value

of the coefficient multiplied into the variable, and graduate it with the

product of the two. Then, taking the line affected by the desired coeffi-

cient, pick out the required point on it and pass the index line through
this point.

This form of chart may be arranged easily to take care of a larger

number of variables than three. On Fig. 24 the product of O A and O C
will be found on O B. If we draw a new axis O D, making an angle of

1 20 degrees with O B, we have a new diagram on which we may obtain

the product of O B and O D. The product will be read on O C, or any
line, as O E, parallel to it. This operation may be repeated an indefinite

number of times, and it is here that the advantage of being able to move
the scales in a direction perpendicular to themselves becomes most

apparent. It enables us to handle a large number of variables and have

a separate scale for each one of them.

In problems of this sort it is an advantage to have a transparent index

made in the shape shown in the same figure. It is a hexagon with the

sides parallel to the index lines. This chart takes its name from the shape
of this index sheet. After setting the index to get the product on O B,

place a straight-edge against the side parallel to the O B index line, and

it is easy to slide it into position for the next reading without losing its

orientation, and at the same time always keep the index through the

point last found on O B.
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A MODIFICATION OF THE PRECEDING TYPE.

Personally, I must confess, the method of the transparent index does

not appeal to me very strongly. It has the disadvantage of not being

self-contained, and unless we provide a special index for each chart the

two are not likely to be found together when they are wanted. In the

second place, it is easier to
"
fudge,"

or force the index to give the desired

results than with most of the other

types. Still it must be admitted that

it has its advantages in certain cases,

and I have had one or two problems
A to chart which it seemed impossi-

FIG. 25. Diagram illustrating a modification ble to handle with any approach
of the preceding type. . ,. . .

to simplicity by any other method.

A form of chart which is related to both the hexagonal and alinement

types is shown in Fig. 25 In it the axes O A and O C make any

angle, and O B bisects it. Draw any line a c. Then from similar tri-

angles we have

Od _Oc-bd
~Oa

'

Oc
'

or

Od
bd^

Oa Oc
and

Od bd = i.

Now
Ob

2 cos. A O B
i 2 cos. A O B

Oa Oc Ob
The simplest case is where the angle A O B is 60 degrees; then cos.

A OB=i/2 and iii
Oa

+
(te .O*"

This is in reality the
"
reciprocal" form of the type just described.

The equation we have derived is of the same form as that which was

used in plotting the chart shown in Fig. 7,
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As a matter of interest, this formula has been recharted by the new

method. In Fig. 26 / and /' are graduated on the outside axes and p
on the middle. To read the chart join up points on two of the axes which

are known and get the intersection of the line with the third. This will

be the value necessary to satisfy the equation.

The 6o-degree arrangement of the axes is not quite so satisfactory

in this type of chart as in the last de-

scribed, since when we are working

out toward the limits, the index

line is likely to cut some one of the

axes at an angle which is disagree-

ably acute. For this reason it is

generally considered that the ad-

vantage lies with a smaller angle

even if the work of graduating is

somewhat more difficult.

Where the two outside axes are graduated alike, the central axis may
be marked off without much difficulty by simply joining like points on

the outsides. The marks thus found on the middle axis will have num-

bers whose values are one-half those on the outside lines. This form of

chart might be used for multiplication by plotting the reciprocals of the

logarithms of the numbers to be multiplied on the outside lines and of

their products on the middle. The advantages of such an arrangement
are not very apparent, however, and it has but little practical interest.

F'-
plotted b^method

illustrated
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PROPORTIONAL CHARTS.

A family of chart-forms of great structural simplicity is that which is

known under the general name of the "proportional" or "parallel aline-

ment" type. The ease with which they may be laid out and the fact that

they may be used with certain forms of equations which cannot be handled

so conveniently by those types previously described are strong recom-

mendations for their use in these cases.

Take any two lines meeting at any angle and lay off the distance a and

b, as shown in Fig. 27. Connect the points at the ends of these lengths

by a straight line and draw a parallel to it. This parallel intersects the

axes at the lengths c and d. From similar triangles we have

a c

r

i
jj

If, therefore, we lay off on one side of the vertical axis a scale for the

values of a, and on the other side for c, and similarly, on the horizontal

, _ axis, the scales for b and d, we have

a chart which takes account of four

variables. Knowing a, b, and c, for

instance, we join a and & by a

straight line and draw a parallel to

it through c. This line intersects

the d axis at the required value of

that variable.

It may be advantageous, in certain

cases, to have the scales graduated
on separate lines instead of doubling

up as was done with a and c or b and d. This is also shown in Fig. 27

where two lines parallel to the original axes have been drawn. The solu-

tion d' is found by drawing through c' a parallel to the original a b line.

CHART FOR STRENGTH OF THICK HOLLOW CYLINDERS.

As an illustration of this type of chart take the Lame formula for the

strength of thick hollow cylinders subjected to internal pressure

IJ+7

o
-d

FIG. 27. Diagram of proportional chart.

where D is the outside diameter of the cylinder, d the inside diameter
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(both in inches) , / the fiber stress in the material, and p the internal pres-

sure (both in pounds per square inch).

Squaring both sides of the equation we have

This has the same form as the "fundamental equation. Plot on the

horizontal and vertical axes the desired values of D 2 and d 2
. On the

same axes plot as many values oif+p and/ p as may be deemed neces-
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FIG. 28. Proportional chart for the strength of thick hollow cylinders.

sary. The scale units used for corresponding quantities on the two

axes may be equal or not, as we please. In this case if we use equal scale

units the horizontal axis will be considerably longer than the other, and

the index lines are likely to cut it at a disagreeably acute angle. Accord-

ingly the values of D and/+/> are laid off with a scale unit whose length

4

X
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is 2/3 that used for d and/ p. On the chart the solution is shown for

/=8ooo, p= 4Qoo and d=io inches, giving ^=17.3 inches.

The only objection which might be raised against the chart just shown

is the fact that a preliminary calculation the addition and subtraction

of the quantities / and p is necessary before the chart is used. This,

however, is not the fault of the chart but of the equation which was pur-

posely chosen to bring up this point. A makeshift of this sort should, of

course, be avoided where possible, but is often not objectionable. In this

case where the values of/and p will usually be given in round numbers

the necessary computations otf+p and/ p are easily made mentally

and no serious difficulty will result. I have, however, seen this scheme

used on some charts where it involved quite a little calculation or con-

sultation of tables and where, on account of the complexity of the equa-

tion, it was evidently the only method which permitted it to be charted

at all.

THE ROTATED PROPORTIONAL CHART.

This type of chart is susceptible of a slightly different arrangement

which is sometimes considered advantageous. Suppose the lines carrying

the quantities c and d, Fig. 27, to have been rotated about the origin, O,

through 90 degrees. We will have a diagram like Fig. 29. In making
this rotation the line joining the points c and d will likewise turn through

90 degrees, and will be at right angles

instead of parallel to that joining a and b.

In reading such a chart it is generally

customary to have a transparent index

consisting of a sheet of thin celluloid with

two lines, at right angles to each other,

scratched on its lower surface. This is

laid on the chart in such a way as to have

one of the lines pass through a and b and

the other through c. The intersection of

the latter with the d scale then gives the

required value of that quantity. The same result may be obtained, of

course, by a pair of draftsman's triangles laid against each other.

With this chart, as with the first one described, there is no need that

the axes carrying a and d, or b and c should coincide. Every condition

will be satisfied if the lines are separate but parallel. The advantage of

this arrangement of chart over the other is not very marked, and I do not

FIG. 29. Diagram of rotated pro-

portional chart.
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incline much toward its use. Some authorities, however, seem to look

upon it with considerable favor and that is my main reason for referring to

it at all.

CHART FOR RESISTANCE OF EARTH TO COMPRESSION.

One formula will be worked Out showing its application. For this

purpose let us take the formula for the resistance of earth to compression,

used in calculations for foundations. It is:

7 / i + sin. (f>P = w h{ !

:
I-

\ i sin.

where P is the ultimate load on the earth in pounds per square foot,^ is the

weight of the earth in pounds per cubic foot, h is the depth in feet and

(f> the angle of repose of the earth.

The expression

/i + sin.

\i-sin.

may be treated as a single variable and the equation arranged

P _w
h /i sin. </>

i -f sin.
(f>/

This gives us the simple proportion we need for this type of chart.

The limits were determined as follows: The friction angles given by
Rankine for different conditions lie, roughly, between 15 and 45 degrees,

though they exceed this in a few cases. To cover them all the gradua-

tions on the
(f)

scale will be run up to 60 degrees, though it is probable that

most of the values wanted will lie below 40 degrees. The extreme value

of h was arbitrarily taken as 1 5 feet. The values of w given in the pocket-

books range from about 70 to 130 pounds. Taking h as 15 feet, w as

130 pounds, and
<j>
as 40 degrees, we find P to be about 40,000.

Next let us choose our scale units. If we take the scale unit for h

(which we will call /J as 1/4, then 15 X 1/4=3 3/4 inches, which is about

the length wanted in the original drawing. For w let the scale unit (/ 4 )
be

taken as -fa. Then 130X i /4Q
=

3 i /4 inches, again a convenient length.

For the 0-axis let the unit length (/8 )
be 0^4 The maximum value of

the parenthesis containing is 0.347 when </>= 15 degrees. Then 0.347 X
-5^4-= 8.675 inches, which will be about right.

Now the scale units should be in the same ratio as the quantities they

affect. Hence, calling the scale unit for P 1 2 we have

1

"0.04
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Then

Multiplying the maximum value of P by this unit we get,

40,000 Xi--<nnr=I inches

Connect

I
22

"

25
X

34 -

36

40 -

45 -

50

55

GO

-25000

-20000

150QO
\ *

V'

-10000

- 5000

Weight, w, of 1 Cubic Foot of Earth
in Pounds.

t- oo o>

Depth, h.

if \n

FlG. 30. Proportional chart for earth resistance in compression.
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as the length of the P axis. This was a trifle greater than I wanted for

the limits I had placed on the size of the chart and I arbitrarily reduced

it to about the same length as the <-line, making the maximum value for

P, 35,000. This would correspond to an angle < of about 38 degrees

with h and w at their maximum, and would probably cover most cases.

It was, however, entirely a matter of convenience and there is no reason,

in a practical case, why the scale should not extend as much further as

the conditions in the problems likely to be encountered would seem to

require. The graduation of the different scales is now an easy matter

and the completed diagram is shown in Fig. 30.

The broken lines show the position of the index forw=i2O. ^= 30

degrees, and h=i$ feet, giving the load P 16,200 This is, as stated

above, the ultimate strength of the soil. If a fixed factor of safety may
be used for all cases likely to be met with, it might easily be introduced

when P is plotted; that is, the numbers placed opposite the graduation

marks on this scale would be divided by whatever factor we chose. Then

the diagram would give us safe, instead of ultimate loads.

CHARTS WITH PARALLEL AXES FOR SUMS OR DIFFERENCES.

Next let us take a case like that shown in Fig. 31. Here the quan-

tities are laid off from an arbitrary zero line on two axes which are

parallel. Draw a transversal between the ends of the lengths a and 6,

and another parallel to it cutting the axes in the lengths c and d. An in-

spection of the diagram shows that

a b = c d,

or the difference between the lengths on the two axes cut by any system

of parallel lines is constant. If one pair of corresponding quantities had

been laid off below the zero and the other above it we should have had

a constant sum instead of a constant difference. We may even get a case

corresponding to

a b = c + d,

if we lay off the quantity d below the zero and the others above. This

will be referred to later. As in the previous type of chart, there is no

need to have the values a and c, or b and d laid off on the same axes.

They may be laid off on parallel axes if the distance between each pair of

axes is the same. This distance might be varied if the need for it arose,

but it would require an alteration in the scale units to correspond.

To save referring to it again, it might as well be noted here, once for

all, that this chart, and all of those yet to be described involving four
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variables, has the same rotational property as was indicated in Fig. 29
for the first type. This is shown in Fig. 32, where the c and d axes have

been turned through 90 degrees without altering their relative positions.

The position of the index is shown by the fine lines, and the construction

is sufficiently clear, I think, to render any further explanation unnecessary.

FIG. 31.

Diagrams of proportional charts.

A chart of the kind we have been examining is of little importance if

we are only to use it for addition and subtraction; but it acquires an

added value if, instead of plotting the numbers themselves on the axes,

we plot their logarithms. This transforms the chart into one for multi-

plication and division.

CHART FOR CENTRIFUGAL FORCE.

An example of the use of it is given in Fig. 33. The formula used is

that for centrifugal force,

C = w v

where C is the centrifugal force in pounds, w is the weight in pounds, g
is the acceleration of gravity, v is the velocity in feet per second, and r is

the radius in feet of the path of the weight. Rewrite the equation

Then

log. C log. w = 2 log. v log. gr

which is identical with the fundamental equation given above. The

limits between which we are to work are of no special importance here,

since the chart is not supposed to be applied to any particular problem.

We will have to fix some conditions, however, so let us say that w varies
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from i pound to 100 pounds, v from i foot to 50 feet, and r from o.i foot

to 10 feet. The maximum value of C will be 776.4, and of its logarithm

2.89. The maximum value of log', v 2
is 3.398, of log. w is 2, and of log.

32.2 r is 2.508.
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FIG. 33. Proportional chart for centrifugal force.

In graduating the axes the same scale unit must be used throughout.

All except the r-scale commence with mark,i at the zero point, and are

laid off in any convenient sized divisions from a table of logarithms.

The C-scale was extended to 800 instead of stopping at its exact upper
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limit, 776.4. In the case of the r-scale we must place mark i at a distance

of 1.508 (log. 32.2) above the zero, and graduate above and below this as

desired. Fig. 33 shows the completed diagram with transversals drawn

to indicate a solution for w =
30, v =

9, and r =
10; C should then

equal 7.55.

CHART FOR PISTON-ROD DIAMETER.

With this type of chart it is not necessary that the equation be in the

form of a simple proportion, though it should be capable of being placed

in that form by a little manipulation. For instance, take the formula

given by Kent for the diameter of the piston rod of a steam engine,

d =
0.013 \/ D lp,

where d is the diameter of the rod, D is the piston diameter, and / the

length of the stroke, all in inches, and p the maximum steam pressure in

pounds per square inch. Squaring, this becomes

D I p
d 2 = 0.000160 D I p = -

.

5917

In its proportional form it is:

I

D 59*7

~T'
or in logarithms,

2 log. d - log. D =
log. I - (log. 5917

-
log. p),

which agrees with the fundamental equation for this type of chart.

Here we plot the logarithms of d 2

,
D and / as usual. In the case of

p, however, we first lay off the log. of 5917 (
=

3.772) from the zero and

from that point plot the logarithms of p downward, since we use the recip-

rocal of p and not p itself in the last member of the proportion. For the

sake of compactness it is well to have all four scales on about the same

horizontal zone, and since those of / and p are much higher than the others

we drop their zeros by equal distances below those of d and D. The

zeros are not shown in the chart, Fig. 34, since none of the graduations

go down that far, and only the working parts of the scales are needed.

No error is introduced by this shifting of the scales since the slopes of the

lines joining them are the same before and after the transfer. The units

used in graduation must be the same for all scales unless a different one

is indicated by the exponent of the quantity. Therefore, D, I and p are

plotted with one unit, and d (since it is squared) with one twice as large.

The resulting chart is shown in Fig. 34, and the broken parallel lines give
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the solution for the case where D = 20 inches, / = 30 inches, and p =

100 pounds. Then d =
3.18 inches.

It may be mentioned here that this type of chart may be applied to

equations containing but three variables. If, for instance, in our equa-

tion
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FIG. 34. Proportional chart to determine piston-rod diameter.

a, b and d are variables and c a constant, the c graduation is reduced to

a single point through which all lines referring to c must pass. The
method of using such a chart is precisely the same as for those just de-

scribed, and it is hardly of sufficient importance to merit more than a

passing notice.
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THE Z-CHART.

The examples which have been given will illustrate sufficiently well,

I think, the general methods to be followed in cases involving a simple

proportion, and we will now proceed to examine a new type which,

while it bears a family resemblance to some of those previously described,

differs from them in several important particulars.

In Fig. 35 we have three axes arranged in the form of a letter Z.

Draw a transversal across them. From similar triangles we have

bd=
, or a

a c c

Add d to each side of the equation and we have

hd dbd d
d = - -+ d = (b + c).

C/

FIG. 35. FIG. 36.

Diagrams illustrating Z-charts.

Now (b + c), the length of the diagonal of the Z, is a constant which

we may call k.

.'. a + d = k.
c

Draw a second line parallel to the first transversal. Then

d

(12)

and the original equation becomes

a + d = k. (13)

If then the equation which we are to chart has the form

x
w



PROPORTIONAL CHARTS 59

we lay off u on the upper horizontal, v on the lower, x also on the lower

and y on the diagonal. Joining the values of u and v corresponding to

a and d by a transversal, and drawing a parallel to it through the value

of oc corresponding to e we get the resulting value of y, or /, on the

diagonal.

Similarly, we may get the solution of a problem where the difference

of two quantities is used instead of their sum. Fig. 36 shows the arrange-

ment. Here, as before,

a b bd

and

- = or a =
d c

c c c

.\a-d = --k.

I r

The selection of the scale units is of some importance with this chart

and a brief discussion of their mutual relation is necessary. It is under-

stood, of course, that the numerical values of the quantities u, v, x and y

are to be multiplied by certain scale units in order to get their measured

lengths, a, d, e and /on the axes. Let these lengths be l
lt

/
2 ,

/
3
and 1

4

for
, v, x and y, respectively. For u and v the scale unit must be the

same (1^=1^), since otherwise parallel lines joining their scales would

not indicate a constant sum, but /
3
and /

4 may be chosen at will. Now
since a= l

1
u )

d= l
l
v

)
e= l

3
x and /= /

4 y we have by substitution in

equation (13)

or snce

x
u+v ..-,

and

k=(b + =
-y-,
*3

which gives the necessary length of the diagonal of the Z.

For the subtraction formula this becomes

(15)
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Sometimes we wish to make /
3
= lr In this case

c)
-=

It, (16)

or the diagonal is the same length as the scale unit used in graduating it.

It should be noted here that the a and d scales may be shifted along

their axes the same amount and in the same direction as far as we please,

without changing the direction of the transversal joining them and that,

therefore, no error will be introduced. This sometimes permits us to

make a more convenient arrangement of the scales as will be shown later

in connection with the chart for chimney draft.

CHART FOR POLAR MOMENT OF INERTIA.

As the first illustration for the construction of the Z-chart I have

chosen the formula for the polar moment of inertia of a flat rectangular

plate about an axis perpendicular to its plane and passing through the

center. It is sometimes used in the power calculations for the draw spans

of bridges, the assumption being that the span may be taken as having

approximately the same polar moment of inertia as the flat plate. The

formula is:

W
I = -(B>+L>),

where 7 is the polar moment of inertia, W the weight of the plate, and

B and L its breadth and length. The weight will be expressed in pounds
and B and L in feet. The engineer who wishes to have the forces in his

final results in pounds instead of poundals, will usually prefer to divide

at once by g, instead of doing this at the end of his calculations; in which

case the formula becomes

This may be written

386.4
and we evidently have an equation suited to the Z-type of chart.

When planning this chart my intention was to give it something like

a practical form by taking the maximum values of B and L as about 10

and 80. However, since these quantities are to be squared and L 2 =

6400, while B 2
is only 100, it is evident that if we lay them off to the

same scale and use any practicable length for 6400, 100 would be so small

(after the necessary reduction by the engraver) that its subdivisions for
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90000-J-30'

FIG. 37. Z-chart plotted from formula for polar moment of inertia.
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smaller values of B would be illegible in the cut. In view of the fact,

however, that the charts which illustrate this book are intended pri-

marily as examples of methods of construction and application, I

have not hesitated in many cases to sacrifice a practical chart for the sake

of getting one which showed a process clearly, and this I shall do in the

present instance. The conditions are assumed to give clear reading scales

in the cut, but the chart in its present form will have little practical value

for the bridge designer.

Let us say then that the maximum value for W is to be 35,000, that

the maximum value for B is 10 feet, and for/,, 30 feet. Then the maxi-

mum value for I' is very nearly 90,000. The scale units and scale lengths

must next be fixed. I wished to keep the original drawing inside of a

length of 10 inches. By making the scale unit for /'
y-g-g-g- <j-

1 get a gradu-

ated length of

90,000 X TTroinF
=

9 inches.

This is the scale unit we called /
3
in the preliminary explanation. For

the 1^-line it will be convenient to make the scale unit, /., equal to

5000

Then

35,000 386.4^- X - =
7 inches

386.4 5000

is the graduated length of this axis. This unit makes it possible to plot

W directly from the 50 side to an engineer's scale without bothering about

the coefficient- . For the L and B scales let us take /
x

= i /ioo.
386.4

Then for!,
2 we have a graduated length of 900 X i /ioo

=
9 inches, the

same as for I', and for B 2 ioo X i /ioo
= i inch. Substituting the scale

units thus found in equation (14) we get for the length of the diagonal of

the Z,

n * 3*864,000
(b + c)

=
7

=-*- = - - =
7.728 inches.

Timnr

Having drawn our axes (the diagonal making any convenient angle

with the parallels) we have only to graduate them, and this is a simple

matter, B and L being plotted in the squares of the desired values with a

scale unit of i /ioo, while the W- and /'-lines are plotted directly from

the innnr and f ooflT scales. The parallel broken lines show how the

chart is read for the case where B =
8, L = 20, W =

30,000, which gives

for /' 36,000.
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CHART FOR INTENSITY OF CHIMNEY DRAFT.

The next formula which I have charted is one for the intensity of

chimney draft

7-95

!

600-

f- h
\hr- T^ L

2
l

I

where/ is the draft expressed in inches of water, h the height of the chim-

ney in feet, T
l
the absolute temperature of the chimney gases, and T

2

the absolute temperature of the external air.

The formula will be seen at once to belong to the second type of Z-

chart where we have a difference instead of a sum of two variables. The

general method of procedure is

identical with that just described,

but there are a few differences of

minor detail which require a brief

description. Thus the variables T
l

and T
2 appear in the denominators

of the fractions instead of the

numerators, which indicates that

the plotted values are proportional

to the reciprocals of these quantities

and not to the quantities them-

selves. For our limits let us take

h as varying between 50 and 150

feet, T
l
from 761 to 1161 degrees

absolute (or from 300 degrees

Fahrenheit to 700 degrees Fahren-

heit), and T
2
from 461 to 561

degrees absolute (or from o degrees

Fahrenheit to 100 degrees Fahren-

heit). Then / will have a maxi-

mum value of 1.46 inches and we will graduate it from o to 1.5 inches.

The scale unit on the /-line (/3)
I took as ~ which gives a length of

1.5 X ^r =
7.5 inches for its graduations; /

4 ,
the /t-scale unit was taken

as i /4O. This gave a graduated length from zero of 150 X i /4Q
=

3.75

inches; lv the unit used for T
l
and T

2
was made i /o.ooi. The extreme

length of the T^-line from its zero will then be

I

'ft
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too great for the size of chart planned which I wished to keep within a

length of 10 inches. The lower limit of the graduations on this line is

7.64
7- X o.o oi^ I3-^2 inches

from the zero. This is an empty space which is of no advantage, and the

chart will be improved in appearance and compactness if we slip the

graduations along the axis toward the zero point or the point where the

diagonal intersects this $xis. In my drawing the graduations were

shifted a distance of 8 inches, which brought them within the prescribed

limits. The 7\-graduations were shifted the same amount in the same

direction, and thus no change was made in the direction of the trans-

versals joining them and no error introduced.

The length of the diagonal, from equation (15) is

/ / i v *

fL \ 1 4 o.OOl ^40 02 V.

~l ~r~
=

0.04
=

5 inches.

As many values of -J and -^ as are wanted are now calculated
*- 2 *

1

and plotted, remembering that their zeros are 8 inches beyond the points

where the diagonal intersects their axes, h is plotted on the diagonal

and/ on the same axis with T 2 .

In lettering the 7\- and TVlines it will be a convenience for the person

who uses the chart to have the temperatures marked in the Fahrenheit

scale instead of from the absolute zero. This has been done on the chart,

Fig. 38, but the absolute temperatures have been retained at each end of

the scales as an aid to a clearer understanding of the construction. The

position of the parallel index lines shows the application of the chart to

the case where the chimney temperature is 400 degrees Fahrenheit, the

temperature of the outside air 60 degrees Fahrenheit, and the height of

the chimney 100 feet. The draft gage reading should then be a trifle

over 0.54 inch.

CHART FOR SAFE LOAD ON HOLLOW CAST-IRON COLUMNS.

An interesting application of the Z-type of chart is to certain equations

where a variable appears twice. Since each time it appears it occupies

a scale, the number of variables we can handle is reduced from four to

three. Suppose the fundamental equation to be of the form

v
u+v =

y
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24

FIG. 39. Z-chart to determine safe load of hollow cast-iron columns.
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This evidently refers to equation (12) used in demonstrating the

Z-chart. Here one index line instead of two is used in making a reading.

This gives a particularly useful chart since equations of this type are

by no means uncommon and are awkward things to handle by any of the

methods hitherto described. A formula which will serve as an excellent

illustration is the one given below which is taken from the "Cambria"

pocket book:

P- 5

U
SooD 2

It is the formula for the safe load on hollow round cast-iron columns

with flat ends. In it P = the safe load in tons (of 2000 pounds) per

square inch of column section, D is the outside diameter of the column

in inches and L the length of the column also in inches. The successive

steps required to put the formula into working shape are indicated below

L 2

5

800 D 2 P
and

0.2 P

Let us take the limits for D as 6 and 15 inches, forZ, as 72 inches (
= 6

feet), and 288 inches (
= 24 feet). Then P will vary between 1.3 tons and

4.86 tons. The maximum value to be laid off on the L-line will be 288*

or 82,944, on the D-line 8ooX I5
2= 180,000, and on P, 0.2X4.86= 0.972.

The scale units for L and D being the same, it is evident that the value

180,000 will control the choice of the scale unit if we are planning a chart

of a certain size. Suppose the scale unit /
x
is made 1/20000. Then

1 80,000X i / 20000= 9 inches,

which is about right. For L we have

82,944X1/20000= 4.147 inches.

The scale unit /
4
used in graduating P on the diagonal will be taken as

i /o.i and the graduated length will, therefore, be

0.972X1/0.1=9.72 inches.

Since /
3
= l

t
the length of the diagonal intercepted between the parallel

axes is, according to equation (16), 1
4
or i /o.i

= 10 inches. On the chart,

Fig. 39, Z>
2 has been graduated for every inch between 6 and 15 inches,

and from its zero the diagonal, 10 inches long, has been drawn in any
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convenient direction. On it we may consider that we are graduating

0.2 P with a scale unit of i/o.i or P with a scale unit of 1/0.5. Lastly,

the second parallel is drawn from the end of the diagonal and graduated

for!,
2

. This has been done for every 12 inches and the points marked

with the corresponding values in feet.

As noted above, but a single transversal or index line is required for

reading this chart.

By joining 15 feet on theL-line with 10 inches on the D-line, we find

the safe load per square inch on the column is 3.56 tons.

Before leaving this subject it might be well to call attention to the fact

that another way of treating three variables by the Z-chart is to imagine
that one of the four which normally belong to it is replaced by a constant.

The scale belonging to it then reduces to a point through which all of the

lines pertaining to it must pass.



CHAPTER VI.

EMPIRICAL EQUATIONS.

In the previous chapters I have discussed some of the methods used in

plotting curves and charts from given equations. The present one will

be devoted to the reverse process, namely, the derivation of equations to

fit a given set of empirical data when these data are plotted in the form of

a curve or chart.

The subject is one which is full of difficulties, and, so far as I know, no

systematic general method has ever been devised which will give the

correct form of equation to be used. The discovery of the equation's form

is to a large extent a matter of intuition which can only be acquired by

long experience. Some persons seem to be peculiarly gifted in the ability

to pick out the proper kind of equation for use in compensating a particular

set of observations, but for the rank and file of the men engaged on experi-

mental work this is, and probably always must be, a matter of pure guess-

work, which must be verified by cut-and-try methods.

In getting an algebraic expression to show the relations between the

components of a given set of data there may be two entirely distinct objects

in view, one being to determine the physical law controlling the results

and the other to get a mathematical expression, which may or may not

have a physical basis, but which will enable us to calculate in a more or

less accurate manner other results of a nature similar to those of the

observations.

To attain the first result it will generally be necessary to have as a

starter some soft of hypothesis as to the physical relations of the data in

question, although in a few isolated cases it has been possible to arrive at

hitherto unknown laws by a fortuitous treatment of the observations.

In such a case as this, questions as to the intricacy or convenience of the

formula in use are considered subordinate to correctness of form.

In the second case, where we want an expression which will enable us

to calculate results of the same general character as the observations,

form will generally be sacrificed to convenience of handling and no pre-

tense will be made that the derived formula conforms to any physical

law. This condition is one very commonly met with in engineering

practice, and will be the one with which this chapter is chiefly concerned.

68
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It has been a common matter of complaint among the so-called
"
prac-

tical" men that the "theorists" who are responsible for the formulas are

very prone to unnecessary complication, and that the formulas they offer

are in many cases no more exact,than others of a much simpler type.

It cannot be denied that there is some justification for these charges, due,

perhaps, to a popular impression fhat a complicated formula presupposes

brain work of a high order for its production.

That this is not necessarily true needs no special proof, but, on the

other hand, we should be carefully on our guard lest we be led by a desire

for simplicity into devising mere rules of thumb, applicable, perhaps,

to the very special conditions in which they originated, but nowhere else.

As an example of this, take the numerous formulas which have been pro-

posed in the past for the strength of gear teeth; formulas giving results

which in some instances differ from each other by several hundred per cent.

A few words of caution may be necessary at the start to prevent the

reader from expecting too much of the processes described. Except in

some of the simplest cases where the line connecting the plotted data is

straight, it will generally be possible to fit a number of very different

forms of equation to the same curve, none of them exactly, but all agree-

ing with the original about equally well. Interpolation on any of these

curves will usually give results within the desired degree of accuracy.

The greatest caution, however, should be observed in exterpolation, or

the use of the equation outside of the limits of the observations.

If the form of the equation is known at the start to be correct and the

observations are merely used to determine the constants, exterpolation

will generally be safe. If, on the contrary, the form of the equation has

been guessed at, exterpolation is hazardous in the extreme, and, if an

attempt is made to use the formula much outside of the range of the

observations on which it is based, serious errors may be committed.

The whole subject is full of pitfalls against which one must constantly

be on guard.

About the only process for getting empirical equations which is dis-

cussed in the text-books is that known as the method of least squares. It

will yield satisfactory results where a good equation has been chosen at

the start, but it is tedious and laborious in the extreme even under the

most favorable circumstances, while for certain forms of equation the

difficulties of the method are so great that it can hardly be considered as

practicable. On this account, and because it can be found fully described

in the ordinary text-books, I shall not touch upon it here, but confine my-
self to a number of graphical or semigraphical methods with which I am
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acquainted. Some of these at least are but little known. Nevertheless,
there are some very decided advantages in their use, as I hope to show
later.

Square

Feet

of

Belt

Surface

per

Minute.
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appears to have favored the lower group in drawing his line of average

values.

This proceeding is in many instances not only justifiable, but impera-

tive, if we wish to have our line represent the best probable values. It often

happens that certain observations are known to be more accurately made

than others, and hence^should be given greater weight in determining the

final result. In the least-square method the better observations are

affected by coefficients corresponding to their greater accuracy and in

the graphical method the same end is attained by causing our line to pass

closer to the points representing the better observations. Just what reason

Mr. Trooien had for giving greater weight to one group than to the other

is not stated. It may be that the builders had a better reputation or the

results may have been more in conformity with theoretical considerations.

Our average line being located (and it will generally be found advan-

tageous to use a fine thread stretched through the points for this purpose)

its equation is easily determined. The general form will, of course, be,

y= ax+b,
where b is the height of the intercept on the Y-axis (in this case at 1000)

and a is the tangent of the angle made by the line with the horizontal.

The Y-axis, as just noted, is cut at 1000, and the ordinate, through 1000

horse power is cut at 22,000. The difference is 21,000. Dividing this by

1000, the horizontal distance, gives 21 as the value of a.

Our formula then reads,

y = 2i x+ 1000,

or, as y represents belt speed and x the horsepower,

5=21 H. P. + 1000.

Where the points representing the observations scatter as badly as is

the case here, the formula must be looked upon as a very rough approxi-

mation, and considerable deviation from it may be allowed in practice

when for any reason this seems desirable. To indicate the limits within

which this deviation may be made without departing from common

practice, Mr. Trooien draws two lines to include the extreme cases and

derives the constants for them in the same manner as before. Since all

the lines meet at the same point on the axis, the value for b is 1000 in each

case, while a varies from a maximum of 35 to a minimum of 18.2.

The quantity laid out on the X-axis does not have to be of the first

power, as in the case just discussed, and may even be itself a product of

several variables. In such a case we must lay off not x itself, but x2
,
x3

,

, etc., as the case may be, or x z if it is a product.
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ANOTHER ILLUSTRATION OF FINDING THE EQUATION FOR A STRAIGHT LINE.

This may be illustrated by the chart for the connecting rods of Corliss

engines shown in Fig. 16 of the same bulletin and reproduced here in

Fig. 41.

If the Euler formula for struts be taken as correct for the connecting

rod, it may be reduced to the

expression.

30 40

Values of \/T)L

FIG. 41. Chart showing relation between
diameter of connecting rod and square root

of piston diameter times the length of rod for

Corliss engines. Equation of middle line is

d = 0.092^DL.

ordinates and of \/DL as abscissas,

straight and pass through the origin, and the angle with the horizontal

gives the desired value of C as 5.5/60, or 0.092, for the mean and 0.104

and 0.081 as the maximum and minimum values.

where d is the diameter of the

rod, C a constant whose value

is to be determined, D the

diameter of the piston (supposed
to be acted upon by a standard

steam pressure), andL the length

of the rod.

From the data furnished by
the engine builders the points in

the chart shown in Fig. 41 were

plotted, using the values of d as

The resulting line should be

FINDING THE EQUATION OF A CURVE.

Next let us consider the case where the line connecting the observations

is curved. Here we have no ready-made equation as with the straight

line, requiring merely the discovery of a couple of constants. The general

form of the equation must be guessed at if the physical law is unknown,
and here we encounter one of the greatest difficulties connected with the

subject and one for which it is practically impossible to offer much real help.

The appearance of the curve may or may not afford a clue, and in this

connection it is suggested that a book like Frost's "Curve Tracing,"

may be useful for reference. It contains a large number of curves plotted

from various equations and their shapes will sometimes suggest a good

form of equation if we are at fault.

It has sometimes been suggested as a solution of this difficulty that we

plot a considerable number of functions, such y
= x 2

, y = x
3

, y
=

log. x,

y=i/x, etc., on a straight line and then from any pole draw a series of
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radiating lines through the points thus found as shown in Fig. 42 where

y
= x? has been used. The observed results are plotted on a similar

straight line for equally spaced values of the variable. This graduated

line is then laid on the radiating lines and shifted around until we get

the plotted points falling on them. Such an agreement would indicate

at once the proper function to use, V v \ / /
p .* ^JXZ \3 \< 5/ ^

and a measurement of its distance

from the pole would indicate the

coefficient.

While this looks promising, my
Own experience leads me to accord FlG - 42. Trial diagram of a known function.

. In this case y=x 2
.

it but little practical value. The

observation points can hardly ever be made to agree even approximately
with the trial function.

Many experimenters assume that an equation of the parabolic form,

y = a+b x+c x 2
. . . . etc.

may be used for almost any class of observations with good results, and

it is surprising sometimes how closely it may be made to fit unpromising
conditions.

It should not, however, be blindly used for all cases, for while, on the

one hand, it may be forced, with a sufficient number of terms, into the

semblance of an agreement with almost any set of data, on the other hand,

a large number of terms is detrimental to its subsequent use in calculation

and in many cases a far simpler equation may be discovered which will

not only be easier to handle, but may even give more accurate results.

For instance, the crest of a sine curve may be made to agree quite closely

with a parabola, but the longer this arc is the greater is our difficulty in

getting a fit.

In fitting an equation to a given set of observations the first step is. to

draw through the plotted points a smooth curve. If the experimental
work has been carefully and accurately done the curve may be made to

pass through, or close to, almost all the points. If not, the curve must be

drawn in such a way as to represent a good probable average; that is,- so

as to leave about an equal number of points at about equal distances on

either side of it, these distances, of course, being kept as small as possible.

Such a curve is assumed to represent the most probable values of the

observations, and we then attempt to get its equation.

It may be stated that it is always possible to get an equation which

will agree exactly with a given curve at any desired number of points,

providing we use an equal number of constants in our equation.
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7

10 11 12 13 14 15

Speed in Knots
17 18

FIG. 43. Chart showing relation between indicated horsepower and speed in knots for the

battleship "Maine." Equation of the dashed curve is y = 440.5* 82. T,2x
2 + $.6$x

3
.
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METHOD OF SELECTED POINTS.

This is called the method of selected points and will be described

first as it is the simplest and quickest method and, if a good equation

has been chosen at the start, we may get results of a very satisfactory

character.

For purposes of illustration I have chosen a curve given in the

Journal of American Society of Naval Engineers for November, 1902.

It shows the relation between the speed in knots and the indicated horse-

power for the battleship "Maine" and is reproduced by the solid line

in Fig. 43.

The data from which the curve was plotted are not given and there is

no means of knowing how accurately it represents the results of the test.

It will, therefore, be taken as it stands and an attempt made to find the

compensating equation. As to the form of the equation, we will disre-

gard all theoretical considerations and assume it to be parabolic since

it has most of the ear-marks of this type. ...
.

The curve stops at about eight knots and we have nothing to guide

us as to its shape below this point. The assumption will be made,

however, that the horsepower and speed became zero together; that

is, that the curve passes through the origin. If this is so the first

constant in the general parabolic equation (the one unattached to a

variable) vanishes.

Let us assume that the equation contains the first three powers of x,

or that

y=ax+bx
2 + ex*

where y represents the indicated horsepower and x the speed in knots.

We have here three constants whose values must be determined. To

do this take three points on the curve, one at about the middle and the

others at or near the ends, and form three equations, inserting in them

the values of y and x for these points taken from the curve.

In the case in question I have selected the points at 9, 13, and 17

knots. The corresponding values for y (the horsepower) are 1400, 4180,

and 11,350.

Inserting these in the chosen equation we have:

1,400= ga+'&ib+ 729 c,

4,180=13 0+169 6+2,197 c,

11,350=17 0+289 b+ 4^3 c.

These equations are solved by the customary methods for a, b, and c,

giving us 440.5 for a, 82.32 for b, and 5.628 for c.
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The equation then reads:

#-82.32 x 2 + 5.628 A-
3

,

or

H. P. = 440.5 5-82.32 S 2 + 5.628 S\
The curve for this equation has been drawn as a broken line on the

same chart as the original curve, and is seen to pass through the chosen

points exactly and to give a very fair agreement at nearly every other

point.

At the upper end, however, although the two curves are not much

separated, there is a considerable difference in the horsepower as read

from the two curves, and the indications are that this will become worse

as we overstep the limits of the chart. Up to about 171/2 knots, however,

the equation would usually be considered a passable fit. The rapid rise

in the horsepower as the speed increases at the upper end of the curve

would indicate that better results might have been reached by the use of

a higher power of x in the equation.

ANOTHER ILLUSTRATION OF THE METHOD OF SELECTED POINTS.

The above method will answer every requirement in many cases, but

too much reliance should not be placed in it without an actual test of the

results. As an example of the danger of this I have applied the method

to a series of experiments showing the variation of the coefficient of fric-

tion of straw-fiber friction drives with the slip.

The experiments were made by Professor Goss, who describes them

in the Transactions of the American Society of Mechanical Engineers

for 1907, page 1099.

To avoid a confusion of notation, I have replotted the curve from the

original paper in Fig. 44, with the ordinates and abscissas interchanged.

The small circles represent the observations and the solid curve is Pro-

fessor Goss' idea of the best representation of their average value. We
will attempt to compensate this curve by a suitable equation.

At first glance the curve seems to have some of the characteristics

of the parabolic type, enough at any rate to make it amenable to treatment

by that form of equation. It straightens out suspiciously, however, in

each direction, as it leaves the region of greatest curvature near the ordi-

nate erected at 0.4, and this would suggest the hyperbolic rather than the

parabolic type. As an experiment, however, we will run it out on the

assumption of its being a parabola and will try compensating by the

equation

y= a+ b x+ c cc
2

-f- d x
5

.
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The four constants will make it possible to get four points of exact

agreement instead of three, as in the previous example, and we should

naturally expect that the general agreement would be better on account

of this larger number of points.

Let these points be y = o.$$, #= 0.15; ^
=

0.825, #= 0.3; ^=1.42,

#= 0.4; ^= 2.7, #= 0.45. The four equations then become:

-55 =^+ 0.15 +0.0225 + 0.003375 d, I

0.825
= + 0.3 6+ 0.09 + 0.027 d,

1.42 =0+ 0.4 6+ 0.16 + 0.064 d,

2.7
= + 0.45 6+ 0.2025 + 0.091125 </.

/

0.2 0.3

Coefficient of Frictiou

FIG. 44. Chart showing relation between coefficient of friction and slip for straw-fiber

frictions. Equation is y = '- + 0.181.
# 0.502

The solution of these equations gives us a = -5.89, b = 80.5,

c = -
308, d -381.8,

or,

y = -5.89+ 80.5 *-3o8*
2 + 381.8 ;v

3
.

The values of y were now calculated for every 0.05 of x from o.i to

0.5, and the result is shown by the broken line on the same diagram. It
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hits the selected points with practical exactness, but it would require

a vivid imagination to say that the fit elsewhere was even fairly good. A
larger number of selected points and constants would undoubtedly have

helped materially in improving this state of affairs, but the most cursory

inspection of the diagram will show that the trouble is not due to the

small number of points, but rather to the choice of an improper form

of equation.

Returning now to the suggestion made above as to its hyperbolic form,

let us see what can be done on that supposition. We will assume that the

curve is a rectangular hyperbola of which we do not know the asymptotes.

Let us try an equation of the form

(y+a}(x+b)=c.
The three constants will demand three equations, and we will select

for our points ^ = 0.55, #= 0.15; ^
=

0.825, #= 0.3; ^ = 2.7, #= 0.45.

Substituting these values in the equation above we have,

(0.82 5 + a) (0.

The solution of these equations for a, b, and c, gives us

a = 0.1806,6= 0.5015, and c= 0.1298.

These values, in round numbers, substituted in the original equation

give us

(^-0.181)^-0.502)= -0.13,

or,

+ 0.181.
x 0.502

If, now, we substitute values of x for every 0.05 from 0.15 to 0.45,

we get the points represented by the double circles in the chart. They

agree so closely with the original curve as to be practically identical with

it. Thus, with a less number of points we have obtained an extremely

satisfactory fit, and have given a practical illustration of the statement

made above as to the desirability of starting with a good equation rather

than trying to force a fit by the use of an unsuitable equation and a large

number of constants.

VALUE OF LOGARITHMIC CROSS-SECTION PAPER IN DETERMINING FORM

AND CONSTANTS OF AN EQUATION.

This may be a good place to say that the logarithmic paper described

in a previous chapter is often of great service in determining the form and

constants of an equation.
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, If the equation involves only a simple product or quotient with no

addition or subtraction, its trace on logarithmic paper will be a straight

line. The tangent of the angle made by this line with the horizontal

(and this may be positive or negative) will give the exponent of the vari-

able, while the intercept on the Y-axis will give the constant by which the

variable is multiplied.

It is much to be regretted that the ordinary commercial logarithmic

paper is only laid off from i to 10 on the axes, for my experience is that

almost invariably the line will extend beyond these limits, and it then

becomes difficult to see clearly if it is rectilinear, since it must be broken

and appear in two or more places on the sheet. If such paper were

printed with graduations on each axis from i to 100 instead of from i to

10, it would greatly facilitate many of these operations. Any curve having
the aspects of the hyperbolic or parabolic type should always be so plotted,

since, if it does appear as a straight line, it saves a large amount of labor

in determining its equation.

One special case may be mentioned here, which is sometimes useful

in gas-engine work; namely, the determination of the exponent of the

v in the equation for the expansion curve. If we have an indicator

diagram we take the ordinates representing the pressures (absolute) and

lay them out on the logarithmic paper from points on the X-axis repre-

senting the volumes (which must include the clearance). The points

thus found should fall upon a line which is sensibly straight if the exponent
is constant for all parts of the curve. Otherwise the exponent must be

determined for any particular point by drawing the tangent to the curve

there.

As an illustration, I have reproduced the expansion line from the indi-

cator diagram of an old Clerk gas engine. The volumes are measured

from the clearance line in any convenient unit. The length of the diagram
made it convenient to call the clearance volume 9. From there on, the

indicator diagram was divided, as shown in Fig. 45 (a), and the logarithms

corresponding to the numbers on the X-axis were laid off on the X-axis of

the lower logarithmic diagram, (b) of Fig. 45.

The pressures from the absolute zero were then measured from the

indicator card and their logarithms laid off from the corresponding points
of the X-axis of (b).

A straight line was now drawn to indicate the general direction of the

middle set of points and then a parallel to it through 10 on the X-axis.

Its intercept on the Y-axis measured in linear (not logarithmic) units

gives the tangent of the angle of slope. In this case it is 1.32 which,



8o CONSTRUCTION OF GRAPHICAL CHARTS

divided by i (the distance to 10 measured on X), gives 1.32 as the value

of the exponent.

The method of selected points, while accurate enough for many pur-

poses, especially where the form of the equation is definitely known at the

9 10 12 14 16 18 20 22 24 26

FiG. 45. Expansion line of a gas-engine indicator card and logarithmic determination of

value of exponents in the equation of the expansion curve.

start, is not so satisfactory when we wish for greater refinement, and

especially when we are in the dark as to the proper form of equation. The

number of points which can influence the result is no more than the

number of constants employed, and if we wish to use a small number of
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constants we cannot expect any high degree of accuracy in the fit. Some

method by which a larger number of points on our curve may enter into

the result without burdening the equation with constants is, therefore,

much to be desired.

i

METHOD OF EQUATING THE AREA AND MOMENTS OBTAINED FROM

MEASURING THE AREA UNDER A CURVE WITH THE

INTEGRATION OF THE ASSUMED EQUATION
OF THE CURVE.

Suppose that, an observation curve being drawn, we obtain its area by

any planimetric method. If, now, we find the area of the curve of the

assumed equation by integration and equate it to the area just found of

the observation curve, we evidently have a condition in which we can take

account of as large a number of points as we please without necessarily

using a large number of constants. In fact, this one equation takes care

of one and only one constant. It would, of course, be possible to have

two curves of equal area and quite different shape if the assumed formula

were not well chosen.

Suppose, however, that we get the moment of the area of the original

curve by dividing it up into a number of vertical slices, taking the area of

each slice above the X-axis and multiplying it by the distance of its center

from any arbitrary vertical axis, generally Y, and then adding the moments

thus found; we shall in this way obtain the moment about the assumed

axis of the entire area between the curve and X. Its value will evidently

depend upon the form as well as the area of the curve. The moment of

the assumed curve may likewise be determined by integration and can be

placed equal to the measured moment. This accounts for another con-

stant. Similarly we may obtain second and third moments, etc., by

multiplying the areas of the slices by the square and cube of the distances

from the assumed axis and, from each of these, form equations with the

same moments of the theoretical curve. We must, of course, have as

many of these equations as we have constants to determine.

Any of the well-known methods for getting the areas and moments

may be used, but as it will make the explanation simpler I shall get my
areas and moments in what follows by taking the mean ordinates of a

series of vertical slices in the same way that we do when averaging an

indicator diagram, and assume that all necessary accuracy can be secured

by making the strips narrow and of considerable number. As an illus-

tration of the application of the method it will be interesting for purposes
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of comparison to take again the curve for the speed and horsepower of

the "Maine."

The same formula will be assumed as before, having three constants

to be determined and, therefore, demanding three equations. The curve

extends practically from 8 to 18 knots and these will be taken as the

limits within which to work.

For convenience we will divide this space into 10 vertical slices. A

greater number would lead to greater accuracy, but the work of calcula-

tion is laborious at the best and for illustrative purposes this will be

amply sufficient. The height of the curve at the middle of each of these

spaces is then measured and tabulated in the column headed y alongside of

the corresponding value of x. Next to the oc column is one of x 2
. Then

follow columns for x y (the first moment) and# 2

y (the second moment).

>'
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The integral of this expression is the area of the curve, or

fx 2 axdx+bx 2 dx + cx3
dx,

x^

where x
1
and x

2
are the limits between which the integration is to be

performed (here 8 and 18), or

b c
=

;(*i-*?)
+ v|i*i *2)f-<*i-*i,.

This, after substituting the values of x
l
and x

2 given above, is placed

equal to 53,170.

If we multiply the differential area y d x by x we get its moment about

the Y-axis and its integral will be the first moment of the entire area, or

i J
Xi

a '

3

*
4

*

5

*

This is placed equal to the measured first moment, or 792,785.

Multiplying the differential area next by x
2

,
we get its second moment

about the Y-axis and its integral will be the second moment of the whole

area, or

a
4 4

b
5 5

c

4
*

5
l

6
^

which must be placed equal to 12,143,327.

After substituting the limiting values of x^ and x
2)
which are 8 and 18,

we have the three equations

1300+1773 6+25, 218 =53,170,

17730+25,2186+371,366^=792,785,

25,218 0+371,366 6+ 5,624,977 =12,143,327.

In solving these equations, while it may not be necessary to run all

calculations out to the last figures, it will generally be desirable to carry

them out to five or six significant figures, since we often have to take the

difference between two numbers of nearly equal magnitude, in which

case the last figures may have an important influence on the result.

The slide rule is, therefore, absolutely useless for these calculations

except as a check against large errors. After the calculations are complete

it will generally be safe to throw away all except the first three or four

significant figures in order to simplify the formula for practical use.

The solution of the above equations gives
= 422.8, 6= -77.98, =5.4115,

making the equation read

;y
= 422.8# 77.98 ^+5.4115 XB

,

or, more simply,

}'
= 423*-78A*

2

+5.4i:v
3

.
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By the method of selected points we got

^= 481 #-88.5 x 2
-}- 5.853 x

3
.

The agreement is as close as could be expected and is really closer

than the appearance of the equation might lead us to suppose.

This is shown in Fig. 43, where the equation just obtained is

plotted with the previous one by selected points. As the curves run

pretty close together, I have not attempted to draw the last one, but

have simply indicated the value of y for each even knot by a small

circle.

The difference between the two curves is quite small, the last one being

possibly slightly nearer the curve we are trying to compensate than the first.

So small a difference would hardly make it worth while, as a rule, to use

the more laborious method of moments if we knew that the results were

going to come out this way beforehand. We have no means of knowing

this, however, and there is generally an added feeling of safety in using it

on account of the larger number of points which are taken account of.

We should probably have obtained a closer approximation to the

original curve by using a larger number of ordinates in getting our

area and moments. Whether or not this would be desirable would

have to be determined after an inspection of the calculated curve to

see if its deviation from the original was within the desired limits of

accuracy.

This method is of very general application and may be used for any

equation of integrable form.

AN ALINEMENT CHART METHOD.

The next method I propose to discuss is one based on the alinement

chart described in Chapter II.

The method is due to Captain Batailler, of the French artillery service,

who describes the process in the Revue (TArtillerie of December, 1906.

Those who are interested are referred to it if they desire fuller information

than can be given in this brief outline. The process depends on the

alinement of a series of points taken from the data or from a curve which

is assumed to represent them.

It is not easy to explain the method in a simple manner, but I hope
that I shall at least be able to make the practical application clear. This

I think can be best done by working out a practical example, explaining

each step as it is taken.

The example chosen will be the data given by Prof. R. T. Stewart as
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the results of his experiments on the collapsing pressure of bessemer-

steel tubes, and published in the Transactions of the American Society of

Mechanical Engineers for 1906. Professor Stewart showed his results in

chart form by laying off the values of the thickness of the tube divided by
the diameter, or

//</,
on the X-axis and the corresponding collapsing pres-

sures as ordinates. He found that a smooth curve drawn through these

points was difficult to represent fay any simple formula and, therefore,

took two bites at it, so to speak, and derived two formulas limited in their

application to different parts of the field. This is a very common and

useful expedient where the experimental curve is rebellious to representa-

tion by a simple formula.

Let us see what can be done toward getting the whole range of

results into one equation. To start with, the averages from the

tabulated results have been plotted in Fig. 46, and are indicated by
the small circles. In doing this I have interchanged the ordinates and

abscissas as they appear in Professor Stewart's chart since, with the

form of equation I wish to try, there might otherwise be some confusion

of nomenclature.

Then a smooth curve was passed through these points so as to

represent as nearly as possible a good general average. This is not

strictly necessary for the first process I am going to describe, but I

have done it in order to have something definite to work toward as a

measure of the success of the method, and also because a definite

curve is more suggestive of the type of equation than a number of scat-

tered points. Professor Stewart assumed that the greater part of the

curve is a straight line with a sharp bend toward the origin as the lower

values are approached.

He was probably justified in doing this, as the small number of obser-

vations among the higher values make the direction of the curve in that

region somewhat uncertain.

In my chart I have drawn the line with a reversal of curvature to per-

mit it to pass closer to the higher-value observations and thus get a some-

what closer agreement with the actual tests. At the lower end of the

curve, according to Professor Stewart, the collapsing pressure seems to

vary as (//d)
3

,
or t/d is proportional to the cube root of the collapsing

pressure. Acting on this hint, we will use *$/x in our equation (x being

taken to represent the collapsing pressure) .

Now, the curve as I have drawn it reverses its direction of curvature

as it moves away from the origin. This effect could be brought about

by the use of some power of x in the equation in addition to the root.
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FIG. 46. Chart showing relations between collapsing pressure of bessemer steel tubes and the

ratio of thickness to diameter. Equation of curve is = 0.00274 ,y/.P
+o.oooooooonP 2

.
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The power will have but little influence on the shape of the curve for

the lower values of x where the predominant effect of the root is felt, but

as we get to the higher values the power will overbalance the effect of the

root and cause the reversal we wish. A high power is evidently not indi-

cated as the bend upward is comparatively small, hence (as it is easily

calculated) we will try the second.

Let our trial equation then* take the form

where y represents t/d and x the collapsing pressure.

For convenience in handling let us express these pressures in units of

1000 pounds.
The general form of equation used in the discussion of the alinement

diagram was

au+b v Cj

where u and v represent measured distances on the U- and V-axes. If

u and v are kept constant while #, 6, and c vary, we get a series of points

lying along the straight line joining u and v. Hence, if this line can be

determined, its intersection with the U- and V-axes should fix the values

of u and v.

In our assumed formula A and B are constants, therefore let us

consider that they replace the quantities u and v in the alinement

equation. Now tyx, x 2
,
and y may be given various values, hence

let us suppose that they take the place of a, 6, and c in the alinement

equation.

In order to get the position of the points lying on the line joining u

and v or, as we now call them, A and B, we make use of formulas (7) and

(8) developed in Chapter II. There, in order to locate our points, we

used rectangular coordinates of which the Y-axis was parallel to, and

midway between, the U- and V-axes and the X-axis was the line joining

the zero points on these same axes.

The formulas for the coordinates of the various points on the third

line of the diagram were then found to be

* ^
5

-* f J

b+ a b+ a

d being the half distance between the U- and V-axes.

In these equations we replace a by ^/x, b by x
2

,
and c by y.

Now, x and y are the coordinates either of the points representing

the observations or of the chosen points on the curve. We will in this

instance consider them as belonging to points on the curve.
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Below are tabulated the quantities we shall require, x and y being
read from the curve and x being given in 1000 pound units:

y
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The line extended cuts the U-axis at 0.0274 and the V-axis at o.oon,

which are, therefore, the desired values of A and B. Before using them

in the equation, however, we shall have to modify them slightly to take

account of the change in size of the pressure unit which is really 1000

times that which we have been working with. Thus A will have to be

divided by ^/iooo, or 10, and B will have to be divided by iooo 2
,
or

1,000,000, and our final formula becomes, after substituting t/d for y

and P for x,

t/d
= 0.002j4 ^/P +0.000000001 1 P 2

.

The formula was now solved for a series of values of P, and the results

are shown by the double circles on the chart. The curve could not be

drawn in a satisfactory manner as it

lies very close to the original for a

considerable portion of its length,

and this closeness is a good indica-

tion of the success of the method.

Lest I be misunderstood, let me

say here that I make no pretense at

having obtained a better mathe-

matical expression for his results

than Professor Stewart. The scarcity

of data in the region of higher values

renders it extremely unsafe to say

whether the line there is straight or

curved. What interested me mainly
in this problem was the possibility of

expressing the entire series of results

by one formula. This, I believe, has

FIG. 47. Alinement diagram for testing

points found in determining equation for

curve of Fig. 46.

been accomplished with a very fair degree of success and by the use of a

comparatively simple equation.

The method we have been investigating is generally quite sensitive,

and if the equation is not a good one for the purpose the points will depart

markedly from the straight line. Thus the possibility of forcing an un-

suitable equation into the appearance of an agreement with the original

curve, which may be done with most of the other methods, is largely

absent here. Often a portion of the points will lie along a straight line

while the others depart from it. In this case it indicates that in a limited

field the compensation is possible and may be good, a fact which it is

sometimes desirable to ascertain.

In the example just explained, we have assumed that not only the
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general type of the compensating equation was known, but also the

values of the exponents of x.

Some guide to the choice of the exponents is evidently much to be

desired, since if we rely upon guesswork we may consume a great deal of

valuable time in hunting for them, and may even then not hit upon the

best values.

ANOTHER ILLUSTRATION OF THE ALINEMENT-CHART METHOD.

The Batailler method just described may be extended to do this for

many types of equation in a manner which is comparatively simple in

operation, though a little difficult to explain. The additional one or two

constants which may thus be determined are not limited to exponents,

but may also be coefficients.

As before, I shall make the explanation while working out a problem.
The example chosen will be taken from Rateau's "Flow of Steam Through
Nozzles," and is the diagram shown in Plate IV of that book for Hirn's

experiments on the flow of air through thin plate orifices. I have redrawn

the curve for this in Fig. 48. In it the abscissas represent the ratio of

back pressure p to initial pressure P, and the ordinates the ratio of

observed discharge to the maximum discharge. The abscissas on the

X-axis are numbered from i to 0.4, but I have reversed the numbering
in order to avoid confusion and will afterward insert the quantities as

they appear in the original diagram. My numbers will then be o, o.i,

0.2, 0.3, etc., instead of i, 0.9, 0.8, 0.7, etc.

The problem will be to see how nearly we can compensate this curve

by an equation of the type

y = Axp + Bxq

in which ^4, B, p, and q are all unknown and are to be evaluated.

The first step is to differentiate the curve and obtain its first and

second derivatives, y' and y". Then A and B are eliminated from these

equations, and p and q determined by a process analogous to that last

described.

The equation and its first and second derivatives are :

y = Axp + Bxq

y
f == Apx

p ~ l + Bqx
q
~

l

y"
= Ap(p -

i)x
p ~ 2 + Bq(q-i)x

q
~ 2

To eliminate A and B from these equations and put them in the neces-

sary form for use, I am constrained to use determinants. Any other

method lands us in such a snarl of equations as to be very objectionable,
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FIG. 48. Chart showing relation of ratio of back pressure to initial pressure, and ratio

of observed to maximum discharge of air through thin plate orifices.
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while by determinants we can reach the desired results by a com-

paratively simple process. ,A11 forms of equation will not demand this

treatment, and each case must be looked upon as more or less of a

special problem.

The three equations may be written in the determinant form as

follows:

Ax* Bxq

Apx
p~ 1

Bqx
q~ l

Ap(p-i)x
p ~ 2

Bq(q-i)x
q~ 2

Divide the second column by Axp and the third column by Bxq and

we have:

=o

px qx

y
= o

Then multiply the second row by x and the third by x
2

, giving:

Xy' = o

Taking the three columns as the coefficients of three equations of

the alinement type, we have:

y=xy'u + x
2

y"v

i=pu+p(p-i)v
i = qu+q(qi)v

The first equation is affected only by x or its functions y f y', and y
ff

,

the second by p only, and the third by q only.

Three supports for an alinement diagram may be constructed from

these three equations on the same U- and V-axes, giving us three curves,

one for x, one for p, and one for q.

If we join up some point on the ^>-line with another on q, the con-

-necting line will cut the #-line in what must be looked upon as a corre-

sponding value. But according to the original assumption p and q were

constants in the equation and remain so whatever the value of x. If

this is true, the desired values of p and q must be so located that the line

joining them will cut every value of x on the x-\me. This can only be

possible by having the support for x a straight line joining these constant

values of p and q.

Our next step is to plot the support for x from the equation:

y=xy'u+x
2

y"v
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The coordinates for the points on this line will be found from the

equations used in the previous example, which will read here

v=
x

Here oc and y are*, of course, the coordinates of any points on the obser-

vation curve; y' and y" must, however, be determined from this primary
curve. As is well known, the tangent to a curve at any point corresponds

to the first derivative. If we get the tangents at a sufficient number of

points their values may be plotted into a second curve of which the ordi-

nates are y'. Similarly by drawing tangents to this second curve, we get

the values of the quantity y".

These values of y' and y" are then to be substituted in the equations

for X and Y.

The chief and only difficulty connected with this process is in drawing
the tangents to the curves. The "curve of error" is sometimes recom-

mended for this purpose but is, in my opinion, too cumbersome for prac-

tical use where any considerable number of points is to be operated on.

My own preference is for taking two ordinates at equal distances on

either side of the point at which the tangent is desired and draw the chord

of the curve between them. If the curve is flat these side ordinates may
be considerably separated, but if not they must be closer. The slope

of the chord will be nearly equal to that of the tangent. The greatest care

must be exercised in this part of the process, but if this is done the method

will yield results of a very satisfactory character.

To get the numerical value of the tangent, or y', a parallel to the chord

is drawn from a point on the base line at unit distance to the left of the

foot of the ordinate we are operating on and its intersection with the

ordinate gives the desired value of y' when measured by the same scale

as was used for the ordinates of the original curve.

If this unit distance is inconveniently small or large we may increase

or diminish it to a more suitable value but must remember that the read-

ing on the ordinates must then be changed to correspond.
In Fig. 48 the primary curve and its first and second derivatives are

shown, the last being represented only by points and the actual curve

omitted as unnecessary . It was convenient in laying out these secondary
curves to use a base unit on the X-axis equal to i /io; hence the readings

on the y' curve must be multiplied by io to get their true value and those

of the /' curve by 100 (since we have used the i/io base unit twice).
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In the accompanying table are given the quantities necessary for our

calculations, the values of y, y
f and y" being read directly from the curves;

/', it will be noted, has the minus sign prefixed throughout, as its points

all lie below the X-axis.

X
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titles are laid off. The half distance d between the U- and V-axes appears
in the equation for X, but since they are not shown, its only function will

be that of a scale unit, which we may make any size we please. Here it

32.8

-16.2

FIG. 49. Alinement diagram for testing points found in determining an equation
for curve of Fig. 48.

was made of such a size that all of the points given above could be plotted

within the limits of Fig. 49, except the one corresponding to x =
0.30.

We do not need this point, however, as there are enough other points

without it to determine the alinement.
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An examination of Fig. 49 shows that, although the plotted points do

not lie exactly on any straight line, they are in very close agreement with

the one shown. Exact agreement is never expected, of course, and there

will generally be more divergence than shown here. The alinement of

the points indicates that the type of equation chosen is good for the pur-

pose. If it had not been the points would have scattered badly, or would

have had a curve as their locus.

Now, we must plot the curves for p and q for such values of these

quantities as we suppose to lie near the line just drawn.

The p and q equations for this type of formula are identical, hence

they will be represented by only one curve instead of by two, as is the

case with other types where p and q are not symmetrically disposed. In

order to get a value each for p and q, we must, therefore, have two inter-

sections between the x support and the suppport for p q.

The alinement equation for p as given previously is

i=p u + p (p i) v.

The coordinates for the various points on the p support will then be

p
T T

y __

These equations have been solved for p =
0.5, 0.6, 0.7, 0.8, 0.9, i, 1.5,

and 2, and the points thus found plotted in Fig. 49.

A larger scale for the drawing would have made things clearer, but

it can be seen that the ^-support cuts this curve at two points, one of them

exactly at 1.5 and the other at a point between 0.5 and 0.6, which I have

called 0.53. It would have required but a slight shift of the ^-support

to have made the intersections at the points 0.5 and 2. If convenience

in use were an important factor these latter values could probably be

employed with but little less accuracy. However, we will use the original

more exact figures and call ^1.5 and q 0.53. It is immaterial at this stage

which quantity is assigned to which letter.

Having found p and q, our equation now reads

and our next step is to proceed exactly as we did in the previous example

to find A and B, using the equations
^0.53 V 1.6 .

Y_ i
x ~x V=
#o -M

+*'-
6 '

"V-"** 1 '1
"

in order to locate the points on the test line.
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As there is nothing novel in the process the details will be omitted

and reference merely made to Fig. 50, where the points have been plotted

and where they are seen with but one exception to lie almost exactly upon
a straight line, again indicating the adaptability of the formula to the por-

tion of the curve we have operated on. This line extended to the U-

and V-axes is found to cut them

at the points 0.59 on U and

+ 1.425 on V.

Then A is 0.59 and B, 1.425,

and our equation reads

y= -0.59 x lf5+ 1.425 x'
53

.

Reverting now to the first dia-

gram where, as was stated, the

nbmbering on the X-axis was

altered, we see that we can get

the original numbers by putting

!.**&

I.?*

1.15

J.03

l.OJS

(l.'A

o.w
0.938

p IP being the ratio of the back

to the initial pressure and the

final equation may then be written

FIG. 50. Alinement diagram for testing

points found in determining an equation for

curve of Fig. 48.

A series of points has been calculated from this formula and plotted

on the chart in Fig. 48, as indicated by the small circles, and the agree-

ment will be seen to be quite good.

The lengthy description which I have given of the Batailler method

has, I know, a somewhat formidable sound, but in practical operation "It

is," as Bill Nye observed of Wagner's music, "much better than it sounds."

The only operation which presents much difficulty is the graphical

differentiation which must be done with great care, or the results will be

poor. Otherwise the work is all of a simple character, and may be carried

out very expeditiously as compared with some of the other processes.

While other types of equation are developed on the same general lines as

the one explained, there are differences of detail which have to be looked

out for, and which could not even be touched upon here without lengthen-

ing this discussion beyond reasonable limits. The equation we have

worked on is, perhaps, the one most commonly met with in practice and

shows as well as any other the very decided advantage of this process for

certain classes of work.



CHAPTER VII.

STEREOGRAPHIC CHARTS AND SOLID MODELS.

THREE DIMENSIONAL CHARTS.
i

Two dimensional charts for the representation of mathematical equa-
tions or experimental data are in very common use nowadays and are

everywhere recognized as valuable devices for giving a clear conception
of the manner in which the variables are related.

Their application is generally restricted, however, to cases where there

is but one variable and its function, if the variation to be shown is continu-

ous. Nevertheless cases often arise in which there are two variables and
a function to be represented and where it is desirable to show a continuous

variation for all three.

A simple and logical extension of the two-dimensional chart, in which

the variation is represented by a plane curve, leads us to the idea of a solid,

three-dimensional chart in which the variation is shown by a surface.

It has received some attention at the hands of a number of writers on

engineering matters and graphics, but for some reason, probably the labor

and expense involved in its construction, its actual use has been rather

limited. Where it has been used it has in some instances been fruitful

in good results and has thrown much light upon obscure phenomena. In

this connection its chief value has probably come from the facility with

which we are able to detect maximum and minimum conditions and rates

of change among variables whose relationship is complex or unknown.

Often we must deal with conditions where no known equations will

connect our experimental results and where a mere tabulation of figures

will not yield the desired information without much tedious study. The
well recognized superiority of any graphical representation over an equa-
tion or table in conveying a clear impression to the mind of the way in

which a set of variables is related will often in itself be a sufficient justifica-

tion for the use of this type of chart.

Between the solid model and the plane chart there is a borderland

occupied by types which do not truly belong to either and which are

really plane projections of solid models. They may be orthographic,

isometric, perspective or, generally, axonometric, according to the taste

of the maker or the exigencies of the subject.

The orthographic projection here referred to is the topographic map
projection in which the relief of the model is indicated by a series of
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contour lines. Each line passes through a series of points at the same

elevation and is numbered to show this elevation. Only a slight effort of

the imagination is required to give a very good idea of the undulating sur-

face which they represent. The familiar weather map is a good

example of such a chart. Here points of equal barometric pressure are

connected by curved lines called isobars. Charts of this description have

been, much used to record tidal

phenomena, magnetic observa-

tions, etc., and also in the pre-

sentation of vital and financial

statistics.

Axonometric projections will

usually be found superior to the

topographic in bringing out clearly

the shape of the surface and are

not at all difficult to construct.

The special case where the pro-

jection is isometric was very fully

dealt with by Prof. Guido Marx in

the American Machinist, Volume

31, Part 2, page 701.

Any of the other well-known methods of rectangular axonometry or of

perspective may, of course, be applied to these figures. As these methods

are generally understood or may be found described in almost any good
book on projection or descriptive geometry, no attempt will be made
to discuss their principles here.

The accompanying table may, however, be convenient for reference

as indicating the proper choice of angles for the axes to conform to the

scale units most commonly used.

TABLE OF RATIO OF UNIT LENGTHS ON THE AXES AND ANGLES OF
THE AXES FOR AXONOMETRIC PROJECTIONS

FIG. 51. Axes and angles for axonometric

projection.

Ratio of unit lengths
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The letters in the table refer to the same symbols in Fig. 51 and the

scale values, designated by u, represent the ratio of sizes for a unit length

on each of the axes.

The question of scales in the projection of such figures as we are now

considering is, however, of relatively little importance since the units used

on the different axes have generally no relation which makes any special

scale ratio necessary. The angles for the axes, on the other hand, should

be so chosen as to agree, approximately at least, with those given in the

table, otherwise the figure may have an awkward and unnatural ap-

pearance.

AXONOMETRIC CHARTS.

But one simple illustration will be given for this type of chart which

will, howeVer, show some interesting and rather unusual features. It is

taken from the Zeitschrift des Vereines Deutscher Ingenieure for December

27, 1902, and occurs in an article by O. Lasche on the friction of journals

with high surface velocities.

Fig. 52 was redrawn from a chart given in this paper with a few

unimportant modifications to render it better adapted to purposes of

illustration. The chart was constructed from data obtained from experi-

ments on a nickel-steel journal running in a white-metal bearing and is

intended to show the relation between the temperature of the bearing in

degrees Centigrade, the surface velocity in meters per second and the

heat generated per square centimeter of effective projected area, expressed

in heat units, and also in meter-kilograms per second.

The experiments were made at a specific pressure of 6.5 kilograms per

square centimeter, but since, with the lubrication used, the product of the

specific pressure and the coefficient of friction was sensibly constant over

a considerable range, the results are said to be applicable to any specific

pressure from 3 to 1 5 kilograms per square centimeter.

In laying out a chart of this description the three coordinate axes and

their planes are first drawn and the former properly graduated between

the limits set by the experiments. From the graduations on the ground

plane axes perpendiculars, lying in the ground plane, are drawn, thus

giving a checkered surface on which points may be located as is done with

ordinary section paper. At the points thus found perpendiculars are

erected to the ground plane, their height being so taken as to represent

the value of the third variable. The tops of these lines are now connected

by suitable curves, which must lie in the surface we are seeking and which

are assumed to represent it.
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In the chart under discussion five different curves were drawn parallel

LJ the temperature-heat 'plane, and then, to bind them together and

render the shape of the surface more apparent, three more curves were

drawn at right angles to the first and parallel to the velocity-heat plane.

Taking one of these latter curves, that corresponding to 50 degrees, we see

that at this constant temperature the heat generated by friction mcreases

with increasing velocity, not exactly in direct ratio with it, however, since

FIG. 52. Axonometric chart showing relation between journal bearing temperature,
surface velocity and heat generated.

the coefficient of friction does not remain quite constant as the velocity

changes. Keeping the velocity constant and varying the temperature,

we see that the heat generated by friction decreases as the temperature

rises, rapidly at first and then more slowly.

It is evident from the chart that with the journal in question the heat

produced by friction will be greatest when it is starting up and the tem-

perature is low. Also that at this temperature the radiation to the

surrounding atmosphere will be small on account of the small temperature

difference. The heat produced therefore goes to warm the bearing, but

as its temperature rises the heat generated becomes less and the radiation
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greater until we reach a point where the radiation just balances the heat

production and the temperature remains stationary.

The question naturally arises as to whether it is possible to tell where

this point will be. If the necessary experimental data are at hand it may
be done on the chart. Suppose we have this data and from it construct a

second chart on the same heat, temperature and velocity axes as before.

See Fig. 53. It shows the capacity for heat radiation per square centi-

meter of effective projected area for the bearing we are considering and is

FIG. 53. Axonometric chart showing capacity for heat radiation per unit of

effective projected area of journal bearing.

constructed for a room temperature of 20 degrees Centigrade. When the

bearing has this temperature its radiation is, of course, zero. The radiation

is independent of the velocity of the journal and this is indicated by the

fact that the surface is a ruled one composed of straight lines parallel to

the velocity axis. Increasing bearing temperature means,- of course,

increasing radiation.

Next suppose these two charts to be combined as in Fig. 54. It is

apparent that the two surfaces will intersect along some line as h c j,
the

location of which is easily found by the rules governing this form of pro-

jection.
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Any point on this line will correspond to some temperature and veloc-

ity at which the radiation just equals the heat production, the necessary

condition for constant temperature. This line projected to the ground

plane gives us the line i d
j. Any point in the ground plane, projected

from the temperature and velocity axes, which falls in front of the line

will indicate that under these conditions the radiation is greater than the

FIG. 54. Chart combining charts of Figs. 52 and 53.

heat generation or that natural cooling will be effective to keep the bearing

below the chosen maximum temperature. Points which fall beyond this

line correspond to conditions where artificial cooling must be resorted to.

Suppose, for instance, we take some point, such as c on the line h c
j.

Project it to the ground and we find that it falls at the intersection of ordi-

nates from 80 degrees on the temperature axis and 5 meters per second
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on the velocity axis. Under these conditions the temperature will be

steady.

Next suppose that we arbitrarily fix the upper limit for temperature
at 80 degrees, and that we have a velocity of lo-meters per second.

Entering the radiation diagram on the 8o-degree line at a we run up
till we reach its surface at b. Then, following the surface along the line

be, we find its intersection with the lo-meter plane of the friction diagram
at e. Through this point a perpendicular is drawn to the ground. The

length /# on this perpendicular measures the heat generated by friction,

efis the amount carried off by radiation, while eg represents the remainder

which must be artificially removed by circulating a current of water, oil, or

air around the bearing.

The writer of the article from which I take this illustration goes on to

show how, after measuring eg in heat units, a very simple calculation will

give the amount of cooling fluid.

It will be apparent from the foregoing description that the axono-

metric projection has some advantages over its solid prototype from the

facility with which we can project through the figure in case of need.

Special attention should also be directed to the use which has been made
of the line of intersection of the two surfaces. It is a rather novel feature

and one which should prove valuable in many engineering problems.

THE SOLID MODEL.

Next let us consider the true solid model. It has received attention

at the hands of several eminent writers, among them the late R. H. Thur-

ston. He published a number of articles explaining its uses and advan-

tages, among which articles may be cited one on glyptic models in the

Transactions, American Society of Mechanical Engineers, for 1898. He

appears to have been much impressed by the possibilities it offered for the

solution of a certain class of problems and he illustrates its application

by a number of examples.

In spite of his optimistic views as to its value, the solid model has never

seemed to "take" well; at least there are relatively few recorded instances

of its use. This may be partly due, as was observed before, to the labor

involved in its construction, but possibly, also, to a lack of sufficient

exploitation.

These models may be made in various ways. Wood is a suitable

material where the surface to be produced is sufficiently regular, but this

is not often the case. Ruled surfaces may be produced by strings
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stretched on suitable frames, but the material most generally used is

plaster of Paris. After the first model is made, replicas may, of course,

be cast in any suitable metal or material. Cardboard, as will be shown

later, is a cheap and convenient substitute for some of the above-named

materials.

In making the plaster-of-Paris model, we first stretch a sheet of section

paper on a board and lay off on It the points corresponding to two of the

variables in the usual manner. At these points we next insert vertical

FIG. 55. Solid model showing relation between heat units per hour per brake horse-

power, compression pressure and volume of gas mixture for a gas engine.

wires which are cut off at heights corresponding to the third variable. A
box is then formed around the whole and wet plaster of Paris is poured
into it until all the wires are covered. After it has set, the upper surface

is carefully cut and smoothed away until the tops of the wires are exposed
and the resulting surface is taken as the graphical representation of the

law of connecting the variables.

A comparatively recent example of such a model is found in an article

on the mixture ratio for gas engines in the Zeitschrift des Vereines Deut-

scher Ingenieure for September 14, 1907.

This model is represented in Fig. 55. It is based on data obtained

from a gas engine running at four horsepower on producer gas, 'and is

intended to show the relation between the heat units per hour per brake



106 CONSTRUCTION OF GRAPHICAL CHARTS

horsepower, the compression pressure in atmospheres and the volume of

mixed gas and air per 1000 heat units of lower heating value.

The front horizontal axis is graduated to represent the cubic meters

of mixture per 1000 heat units and extends from about 1.7 cubic meters

to 3. Perpendicular to this axis, and also horizontal, is the axis for com-

pression pressures graduated from back to front between 4 and 13

atmospheres.

The vertical axis is used for the heat units required per brake horse-

power-hour, the graduations beginning at 2500 at the ground plane and

running up to 5000.

The hollowed surface in the middle of the model covers the range

within which the experiments were conducted, and the cut-off portions

at the sides of the hollow have no meaning.

Without in any way attempting to discuss the conditions under which

the experimental results were obtained, we will take the model as it

stands, and see what conclusions may be reached from a simple

inspection of it.

The bottom of the valley indicates the lowest heat consumption per

horsepower-hour in any given locality.

The intersection of the valley with the back vertical plane is a curve

somewhat resembling a parabola with steeply rising sides. As we come

toward the front the curves cut by parallel vertical planes flatten out and

the vertex of the curve becomes lower, indicating a smaller heat consump-
tion as the compression increases. At the back of the model the lowest

part of the curve is tangent to a horizontal line at about 4100, while in

front it touches 3100.

It will also be noted that the slope of the bottom of the valley is steepest

in the rear and is nearly horizontal in front, indicating a more rapid gain

in heat economy from increased compression when the original compres-

sion is low than when high.

The bottom of the valley shows a tendency to drift to the left as we

come forward, indicating that with increased compression the best econ-

omy was obtained by increasing the dilution of the mixture. The flatten-

ing out of the front part of the valley indicates that as compression in-

creases the necessity for an exact mixture ratio for good economy becomes

progressively less important.

These points are all interesting, and while they might have been dis-

covered from an inspection of a series of curves or of the tabulated data,

it is clear that the model has greatly simplified the process of deduction,

and has thus justified its construction.
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CARDBOARD SUBSTITUTE FOR THE SOLID MODEL.

Reference has been made above to the cardboard model as a cheap
substitute for the solid type. The next illustration will be an example

showing its construction.

If we assume one of three variables to have different constant values,

we get a series of plane curves connecting the other two. Then, by doing
the same with one <5f the other variables, we get a second series of curves

FIG. 56. Cardboard substitute for a solid model.

for planes at right angles to the first. Each of these curves is cut from

a piece of cardboard and slit half way up or down the lines of intersection

with the cards at right angles to it. They are then fitted together some-

thing on the principle of an egg box, and the result will be a series of plane

curves, properly spaced with reference to each other, all of which lie in

the surface we are trying to represent. It is evidently closely related to

the axonometric projection previously described.

Such a model is shown in Fig. 56. It was constructed from the curves

given in a paper in the Transactions, American Society of Mechanical

Engineers, for 1904, by E. S. Farwell, entitled "Tests of a Direct Con-

nected Eight Foot Fan and Engine." These curves were chosen chiefly

on account of the irregular hilly character of the surface to which they

belong as affording a good test of the method. They occur in Fig. 39, of

the article referred to, and are supposed to show the relation between the
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efficiency of the fan and the area of the outlet opening for various speeds,

the area of opening being designated as a percentage of the product of the

fan diameter by the width of periphery.

Eight different curves are given for eight different speeds, which

advance by steps of 25 from 50 revolutions per minute to 225 revolutions

per minute. The curves shown in the figure had the efficiencies plotted

as ordinates, and the outlet-opening percentages as abscissas, and were

used as they stood for one set of cards. Then taking the intersection of

these curves with one of the perpendiculars to the outlet axis we get a

series of lengths which we use as equally spaced ordinates for a curve at

right angles to the plane of the original drawing, the ordinates again

representing efficiencies while the abscissas this time are velocities. As

many similar curves as were deemed necessary were taken from the other

perpendiculars. All were cut out and fitted together, forming the model

shown in the photograph. Such a model may be applied to many, if not

most, of the purposes for which the solid type is used and has a decided

advantage in simplicity of construction.

THE TRI-AXIAL MODEL.

Before leaving this subject a brief reference must be made to an in-

genious form of solid chart described by Professor Thurston in several of

his articles. It is called the tri-axial model. By its use it is possible to

take into account four different variables

instead of three as was previously the case.

It is a necessary condition, however, that

for each set of corresponding variables three

of them should add up to a constant value,

generally 100 per cent. The fourth is unre-

stricted. These models have been very use-

ful in representing the properties of ternary

alloys, furnace slags, etc. If we have an

.

Fl(
f- 57-7

D
?agram illustrating equilateral triangle as shown in Fig. 57, and

principle of tn-axial solid model.
from any point, O, within it we drop per-

pendiculars to the three sides, geometry tells us that the sum of these

perpendiculars is constant wherever the point may be located.

Therefore, if we wish to study the alloys composed of, say, copper,

tin, and zinc, with reference to any property such as strength, ductility,

hardness, or melting point, a large number of experiments are made with

specimens of varying composition and the value of the quality we are

studying tabulated with the composition of the alloy.
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This composition is expressed for each constituent as a percentage,

and the three percentages necessarily add up to 100.

Laying out a triangle whose altitude to some scale is TOO, we designate

one side as copper, another as tin, and the third as zinc. Parallels are

then drawn to the sides, distant from them by amounts corresponding to

the percentage of each metal in

the specimen. The, scale in -which

these distances are measured is

the same as that which was used

in laying off the altitude of the

triangle. These three parallels

must meet in a point which is

taken to represent the alloy in

question. Perpendicular to the

ground plane at this point we in-

sert a wire whose length repre-

sents the value of the quality we

are studying. When all the wires

are fixed the whole is covered with

plaster of Paris, as explained be-

fore, Which is then pared down to FlG - 58.-Professpr
Thurston's solid tri-axial

model for copper alloys.
the tops of the wires.

The resulting model is shown in Fig. 58, and from it Thurston found

that the strongest alloy had a composition of Cu =
55 per cent., Zn = 43

per cent., and Sn = 2 per cent.

Models of this description are evidently of especial value in the study

of metallurgical problems and are by no means uncommon, particularly

in that field of work.

Often, however, instead of the solid model, a topographical chart of

it with the necessary contour lines is plotted, which answers many pur-

poses almost equally well and commends itself for use in a great many
cases.
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