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PEEFACE.

The appearance of another text-book on Geometry may
perhaps be considered to demand an apology, but I venture

to hope that an examination of the following pages will

shew them to differ considerably from any existing treatise.

The extending use of graphic methods in the solution of

many practical engineering problems has appeared to me
to demand a corresponding extension in the practice of

drawing the curves on which such solutions may frequently

depend, and, though the properties of conic sections have

been discussed thoroughly both geometrically and analyti-

cally, there is so far as I am aware no book treating of the

actual delineation of the curves from given data to any-

thing like the extent here attempted. Independently how-
ever of their applied use, the problems generally will, I

think, be found useful merely as drawing exercises in science

and other schools. A great deal of attention is devoted to

the construction of regular polygons, circles packed into

another circle and similar fancy figures, by methods which

no practical draughtsman ever uses, while the construction

of an ellipse is at the most limited to drawing it from the

principal axes or from a pair of conjugate diameters ; and
the time spent on these and similar exercises might, I think,

E. 3578oo ^



VI PREFACE.

be more profitably devoted to work bringing out the nature

and properties of this and other curves.

I can say from experience that the practice of sketching

a curve freehand through a series of previously found points

is a most valuable element in teaching mechanical drawing,

while the finding the points furnishes abundant exercise in

handling square and compasses, and impresses on the student

in a very striking manner the necessity for neatness and

accuracy in their use.

Each problem may of course be drawn on paper without

reference to the proof of the principle on which its con-

struction depends, but I consider that for the advanced

student at any rate it must be much more satisfactory to

work with as complete an insight as possible into the

methods he is using instead of groping along by mere rule

of thumb, so that in nearly all cases notes in proof of the

property made use of have been added, although such proofs

may be found in numerous published works, and are indeed

so completely common property that I have not thought it

necessary to give direct references to the pages from which

they have been taken.

I cannot however here omit to notice my indebtedness

to Dr Salmon's classical work on Conic Sections, or to

Chasles' Gdometrie Sup^rteure for the chapter on Anhar-

monic Ratio and the Anharmonic Properties of Conies.

Chap. VIII. will, I hope, convince a draughtsman that he

can if he likes make use of an engine very little known in

England and of enormous power. The methods of Modern

Geometry deserve to be brought into much closer relation

with the drawing-board than has hitherto been the case.

The chapter on Plane Sections of the Cone and Cylinder

involves some elementary notions of Solid Geometry or

Orthographic Projection, but the explanations given will, I

hope, enable the average student to work through the chapter
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without referring to any special treatise on Projection. The

ordinary pseudo-perspective diagrams usually given in books

on Conies are I think unsatisfactory, and the method of

referring the solid to two rectangular planes seems to me
in every way preferable. When the mental conception of

a plan and elevation is once thoroughly realised the student

is well repaid by the exactness with which he is able to

lay down on paper any point or line on the surface of the

cone.

The later chapters cannot be read without some know-

ledge of trigonometry, but the practice of translating a

trigonometrical expression into something which can be

represented to the eye is a valuable one, and the hints

given in the chapter on the Graphic Solution of Equations

will I trust be found useful.

My warmest thanks are due to my friend and colleague

Professor Minchin for much valuable advice and assistance

most freely and readily given : without his help the book

would have been much less complete than it is, whatever

its imperfections may be found to be.

It would be too much to hope that a work of this

character should have been compiled and gone through the

press without some errors creeping in. I hope they are not

more numerous than from the nature of the case may be

considered unavoidable, and I shall be thankful for any such

being brought to my notice.

Coopers Hill,

Oct. 1885.
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PLANE CUEYES.

CHAPTER I.

INTRODUCTORY.

The Instruments required for the accurate representation on

paper of almost all known curves are few in number and of

simple construction. For accurate work however it is essential

they should be of good quality, and be kept in good order. A
limited number of good instruments is in every way to be pre-

ferred to a larger number of inferior articles, and where economy

is an object therefore, in preference to the usual large and small

single jointed compasses found in cheap boxes of mathematical

instruments the author strongly recommends the purchase of one

medium size, double jointed pair of compasses with pen and

pencil points, which can be used for both large and small circles

if care be taken to adjust the legs so that the lower portions of

both may be perpendicular to the paper. This is a sine qud non

for good work and it is of course impossible with the ordinary

single jointed instruments. In addition to the above a pair of

dividers, a drawing pen for inking in straight lines, a protractor

which should also contain a diagonal scale of half-inches, a couple

of set squares (45*^ and 60"), pencil and paper may be considered

a complete equipment for the work of the following pages.

More may be learnt as to the proper way of handling these

tools by ten minutes' observation of a practised draughtsman

than from pages of explanation, but failing the opportunity of

this practical instruction, the following hints may be useful.

E. 1



2 . / IIS^ ;OT 'INSTRUMENTS.

Pai^Uel 'j.ili^S;shX)tild; Ije drawn by means of the set squares

;

(they are far better than parallel rulers). The edge of one must

be adjusted in the required direction and held firmly on the

paper, the other should be placed in contact with a second edge

of the first and held in that position, and the first may then be

made to slide along the second till it comes into the position of

the required parallel line. A line perpendicular to another and

passing through a given point should be drawn by adjusting an

edge containing the right angle of one of the squares to the given

line, placing the second square in contact with the hypotenuse of

the first and sliding the first along the second until its third side

passes through the given point, when the required perpendicular

can be drawn.

If a line is to be drawn through two given points, the point

of the pencil should first be placed on one of the points, the

square can then be brought up to the pencil and worked against

it as a centre till it coincides with the other, when the line can

be drawn, and care must be taken that the line passes accurately

through both points, as owing to the thickness of the edge of the

square it is quite possible to make a slight but quite appreciable

error. This is particularly the case if the pencil is cut to a

chisel edge instead of to a circular point, and the author would

express his decided conviction as to the superiority of the circular

point. It is of course quite impossible to draw accurately unless

a good sharp point to the pencil be constantly maintained.

Lines whether straight or circular should be bisected, tri-

sected, &c. by trial, mechanical methods however good in theory

being unnecessary and indeed objectionable in practice. A veiy

little practice in handling a pair of dividers will enable this to

be done with great ease and with all attainable accuracy, if the

amount by which the first shot exceeds or falls short of the

desired result is noted and the legs of the dividers closed up or

extended to the necessary estimated fraction of this amount. If

the required number of parts admits of division, the line should

first be divided in the smaller number of parts necessary, i.e. if

it is to be divided into six parts, it should be first bisected, and
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then each half trisected ; if into nine parts it should 'be first

trisected, and so on. Care must be taken by a light handling of

the instruments, not to damage the paper, until it is found that

it can be marked with the points in the right places, and when

a point is being marked on a line with the dividers, special care

should be taken to press in the point on the line and not merely

somewhere in its neighbourhood. In handling the instruments

they should be constantly kept in as nearly vertical planes as

possible. A point when found should be marked by a light

pencil ring round it and not by a smudge made with a blunt

pointed pencil, which entirely obscures the exact position of the

point.

Problem 1. (Figs. 1, 2.) To draw a line bisecting the angle

between two given lines.

It is frequently necessary to do this when the lines are so

nearly parallel or are otherwise so situated that their point of

intersection does not fall wdthin the limits of the sheet of paper,

or drawing-board, and since the method of proceeding in this

case includes the ordinary simple case, it is the one chosen as

Fig.l.

an example. Let AB, CD (fig. 1) be the given lines. Draw Gil

parallel to ^^ at any convenient distance (BE) from it, and draw

GK parallel to CD at a distance DF equal to BE from it. This

can be done by drawing BE perpendicular to AB from any point

B on it, and DF perpendicular to CD from any point D on it

and making BE = DF, and then using two set squares in the

1—2



4 BISECTION OF AN ANGLE.

way referred to in the introduction. The distance BE should

be so chosen as to bring the point G about as in the figure,

i.e. BE should be somewhat greater than half the least distance

between the given lines. If the angle EGF be now bisected,

its bisector will obviously also by symmetry bisect the angle

between AB and CD. Take any equal distances GH^ GK on GE^

GF respectively or, what comes to the same thing, with centre

G and any radius describe an arc IIK, and with centres H and K,

and with any (the same) radius describe arcs intersecting in L.

Then GL will be the required bisector. For the triangle GHL
is obviously equal and similar in all respects to the triangle GKL.

This method is scarcely satisfactory when the lines are nearly

parallel, on account of the smallness of the angle EGF and the

difficulty of determining accurately the point of intersection G
of two nearly coincident lines, and an alternative method evading

this difficulty is shewn in fig. 2. As before, let AB, CD be the

M

/

\ / 1 N
/ / \

^
1C /D

V
two given lines. At any point B of the one line draw a line as

BF, and at any point D of the other construct an angle GDH
equal to the angle EBF. The exact size of this angle is im-

material but preferably it should not diffipr much from half a

right angle. [An angle {GDH) can be constructed equal to a

given angle {EBF) by describing arcs EF, GH, with the angular

points B, D as centres and with any (equal) radius, and then
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making the chord GR equal to the chord EF by means of a pair

of dividers.]

Let BF and DH intersect in K. The bisector of the angle

BKD will, by symmetry, he 'parallel to the required bisector, i. e.

bisecting the angle BKD by the line KL, the direction of the

required bisector is known. To find its position, draw any line

AC perpendicular to KL meeting the given lines in A and C.

The required bisector must evidently pass through M the centre

point of AG. It can therefore be drawn through this point

parallel to KL.

Problem 2. (Fig. 3.) To find a fourth proportional to three

rjiven lines AB, GD, EF, or to find a line of such length (l) that

AB : GD :: EF : I,

or that the rectangle contained by the two lines AB and I shall be

equal in area to the rectangle contained by GD and EF.

All questions involving proportionals depend on the construc-

tion of similar triangles. Draw any two lines OK^ OL meeting

Fig.3.

in and containing any angle. From along one line set off

OG~AB, the first term of the proportion, and OK= EF, the third

term of the proportion. From along the other line set off

OH = GD, the second term of the proportion, then through K
draw KL parallel to GH meeting OH in L. OL will be the re-

quired fourth term. For obviously by the similar triangles OGH,
OKL,

OG : OH :: OK : OL,

i.e. AB : GD :: EF : OL.
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A similar construction will obviously give a third proportional

to two given lines AB, CD ; i. e. a line of length (I) such that

AB : CD :: CD : I,

or that the rectangle contained hj AB and I shall be equal in area

to the square on CD ; the only difference being that in this case

the lengths OH and OK will be equal to each other.

Problem 3. (Fig. 4.) To divide a line of given length (AB)

similarly/ to a given line CD divided in any manner as at B^F
(There may he any manner ofpoints of division.)

Draw any two lines as OG and OH. Make OG==AB, 0H= CD,
0K=CE,0L= CF.

.

. and draw KM, LN.

.

. parallel to HG, The

line OG, i.e. AB will be divided in M, N... similarly to CD in

F, F....

Problem 4. (Fig. 1.) To draw a line through a given point

and through the intersection of two given lines.

It is of course the simplest possible thing to do this when the

axjtual point of intersection of the two lines is available. As in

Problem 1 however it is frequently necessary to draw a line the

direction of which depends on an inaccessible point. Let AB, CD
be the two given lines and M the given point. (M may be

between the lines as in iig. 1 or on the farther side of either with

regard to the other.) Draw any line through M meeting the

given lines in N and 0, and at any convenient distance from M
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draw a second line parallel to NO meeting the given lines as at

A and G, If we divide ACy as in Q, in similar segments to those

in which M divides NO (Problem 3) the line QM will be the

required line passing through the intersection oi AB and CD.

The most convenient method for dividing ^C is probably thus :

join CN, draw PM through M parallel to CD and meeting ON in

F, and through P draw PQ parallel to AB meeting ^C in Q. AC
is obviously divided in Q similarly to NC in P and therefore

to NO in M.

Problem 5. (Fig. 5.) To find the geometric mean between two

given lines AB, CD, i.e. to find a line of length (l) such that

AB : I :: I : CD,

or that the square on I shall be equal in area to the rectangle con-

tained by AB and CD.

Draw any straight line EOF and set off on it on opposite

sides from 0, OE^AB, OF=CD. On EF describe a semicircle

Ah

Fig.5.

and from draw OG perpendicular to EF meeting the circum-

ference in G. OG will be the required mean proportional or

geometric mean. For, since the angle in a semicircle is a right-

angle (Euclid III. 31), .-. the angles OEG, EGO are together equal

to the angles EGO, OGF, said .: the angle 0^6^ = the angle OGF,
.'. the right-angled triangles OEG, OGF are similar and

.-. EO : OG :: OG : OF,

i.e. AB : OG :: OG : CD.

Problem 6. To divide a given line so that the rectangle con-

tained by its segments is equal to the square on a given line which
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must obviously he not greater than half the line to he divided

(fig. 5).

This is the converse of the last problem. Let EF be the given

line, on it describe a semicircle. Draw the radius KL perpendi-

cular to EF and on it make KM equal to the side of the required

square. Through M draw a parallel to EF meeting the circle in

G and from G drop a perpendicular on EF meeting it in 0, will

be the required point of division.

The construction is obvious from the last problem.

Problem 7. (Fig. 6.) To divide a line medially^ or in extreme

and mean proportion, i.e. to find a point (F) in a line AB such

that

the whole line AB : the greater segment (BF)

:: BF : the lesser segment (AF),

or that the rectangle contained by the whole line and the lesser

segment is equal in area to the square on the greater segment.

Bisect AB in C, from A draw AT> perpendicular to AB and

make AD = AC = \AB. Join BD and on it from B cut off

BE = BA ; from B on BA cut offBF = BE. F will be the required

point. This construction is simplified from Euclid ii. 11, the proof

may be shewn thus.

The sq. on BB = sq. on ^^ + sq. on ^Z> (Euclid i. 47).

Also „ = sq. on EB + sq. on EB + 2 rect. EB . EB,

but EB = AB and EB = FB, (Euclid ir. 4),

.-. sq. on AB = sq. on i^"^ + 2 rect. FB . AB.

Again sq. on AB = sq. on FB + sq. on AF+ 2 rect. AF . FB
(Euclid II. 4),

= sq. on FB + rect. AF(AF+ FB)

+ rect.AF.FB.
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.-. 2 rect. FB.AD^rect. AF. AB + rect AF. FB,

i. e. rect. FB {2AD -AF\= rect. AF. AB,

but 2AD = AB and AB-AF= FB,

.'. finally sq. on i^^- rect. AF . AB.

Problem 8. (Fig. 7.) To find graphically a series of terms in

geometrical progression, being given either two successive terms or

one term and the common ratio.

Draw two lines Oe, OF meeting in at any convenient angle.

On one mark off the 1st given term as OA, and on the other the

2nd given term as OB, or if the common ratio be given a length

0B= 1st term multiplied by the common ratio.

[In the figure OA the first term = 2, and OB — 2- A: ; the com-

mon ratio therefore is 1*2, the unit being 3'78.]

With centre and radius OB describe an arc cutting OA in h

;

through b draw bC parallel to ^^ cutting OB in C. 00 will be

the required third term of the series. Similarly make Oc on OA
= 0C and through c draw cD parallel to AB cutting OB in i>,

OD will be the required fourth term, and so on in succession.

Terms on the other side of OA can also be determined as shown

at OB^, OC^,&c.

The construction evidently depends on the similarity of the

triangles OAB, ObC, &c.

by which OC : OB :: Ob : OA,

I e. since Ob = OB, OB' = OA . OG,
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or each term is a mean proportional between the two on opposite

sides of it, in other words the series is in geometrical progression.

Since OB = r . OA, the above expression for OB^ becomes

t\OA = OC,

and so also r^ . OA = 01) and so on.

Very careful drawing is required to ensure accuracy, and the

scale should be as large as possible, as otherwise, since errors are

cumulative, the lengths obtained for the fourth or fifth and suc-

ceeding terms may differ considerably from their true values.

Problem 9. Given two ratios y and — to determine the ratiom
7— , or to divide a given line so that the ratio of its segments shall

equal the product of two given ratios (Fig. 8).

Draw any line AB and on it make AD— a, DB = h. With

centre B and radius l + m describe an arc, and with centre

A and radius AC the length of the given line to be divided

describe an arc intersecting the former in C. Make BF on BG = I

so that FG = m. Draw AF, GD intersecting in and draw BO
meeting AG in F. E will be the required point of division :

AE AD BF_a l^

^•®* ~EG~'DB'FV~h'm'

AD sin AOD DB sin BOD
^"^

OD~^^^ODA 6D ~~
sin ODB'

AD sin AOD
DB~ sin BOD*
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. ., ,
BF sinBOF sin BOF

similarly -^ =^^^ =^^j^ ,

and
AE sin AOE sin BOF AD BF
EG sin EOC sinBOB BD'FC

It follows of course that in any triangle if lines be drawn from

the vertices ABC meeting the opposite sides in F, E, D and all

passing through the same point 0, AD . BF . CE = DB . FC . EA,

i.e. that the continued products of the alternate segments taken

in order are equal.

Problem 10. To determine graphically the square root of any

number (n), i.e. to determine a line the length of which : length of a

line containing n units measured on any scale :: 1 : sjn.

This is sometimes, though misleadingly, called determining the

square root of a given line. The fact is that the expression the

square root of a given line has no meaning unless we take the line to

represent, by the number of units it contains, a given area; and

then the line to be found is the side of a square, the number of

square units in which is equal to the number of units contained in

the line—the same scale of course being used for each. If a triangle

ABG be drawn, right angled at A and having the sides AB^ AG
each one inch long, the side BG is the side of a square of two

square inches area, and in this sense BG may be said to be the

square root of a line two inches long, or of the number 2, the

unit being one inch, but if the unit be half-an-inch the same

line BG represents the square root of 8, since (Euc. i. 46)

BG^ ^AB' + AG' = 2' + 2' = 8.

If we use a diagonal scale of half-inches, the length BG
may be read on it to two places of decimals, and the number

so obtained is the square root of 8 to two decimal places.

Any question relating to the square root of a number, must

therefore always be taken as involving the application of some

particular scale. The square root of any proposed number can be

found by splitting the number up so as to make it equal to the

sum or difference of two or more squares, and then constructing

right-angled triangles having sides equal to the sides of these
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squares. Thus ^3 = ^4 - 1, = J^^ - 1^ so that if a right-angled

triangle ABC be drawn, right angled at G and having ^^ = 2 inches,

and AC — \ inch, BQ represents ^3, an inch being the unit.

(The triangle may be constructed by drawing a semicircle on AB
as diameter and making^C in it = 1 inch.) If the unit is half-an-

inch BC represents JAB''-AV\ i.e. Ji'-2' or ^12.

^5 = Js^ - 2^, i.e. is the perpendicular of a right-angled

triangle the hypotenuse of which is 3 and the base of which is 2,

or it may be determined as the hypotenuse of a right-angled

triangle one side of which is 2 and the other 1, since ^^5 = J2^ + V.

If we halve the unit the same line would represent ,^20.

J6 = j2'' + j2% i.e. if J2 be first determined, JQ is the

hypotenuse of a rigbt-angled triangle the sides of which are 2 and

J2, or it may be determined from JQ = v 3^ - ^3^.

J7 = J2^ + J 3^, and can be determined if ^3 is known.

^8 has already been given.

J10 = J¥Tv.

Jll= Ji^ - J5^, and can be determined if ^5 is known.

J\2 has been given above; and the method is probably

sufficiently exemplified by the above, but we will take two

examples of larger numbers

Jil = iJW+Jll^, thus being made to depend on ^IJ.

JT79 = Jl3'' +JW thus being made to depend on JTO, it

might also be written =vlP + ^4:7^or could be determined in

other ways. No definite instructions can be given as to the best

mode of working in any particular case, but as a rule triangles

having sides of nearly equal magnitude should be selected, since

the intersections of lines cutting at very acute angles cannot be

accurately determined.
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Definition. Three magnitudes are said to be in harmonic

progression when the first is to the third as the difference between

the first and second is to the difference between the second and

third : and the second magnitude is said to be an harmonic mean

between the first and third.

Thus if the magnitudes represented by the lengths of three

lines (as AB, AC, AD, fig. 9) are in harmonic progression and the

lines be superimposed with a common extremity as in that fig. :

—

then AB : AJ) :: BC : CD.

The reciprocals of magnitudes in harmonic progression are in

arithmetic progression and conversely:—for, if AB, AC, AD are

in harmonic progression then by definition

AB:AB::BO:CD,or^=%,

and if -. „ , —^ , -— are in arithmetic progression then by

definition, -l+_=^^,

but this may be written

J 1_^ J 1_

AB AC~AC AD'

AC-AB AD-AC
AB . AC AC. AD'

BC CD
ab=aD'

an identical expression with the above.

Problem 11. (Fig. 9.) To find the harmonic mean between two

given lines AB, AD, i.e. to find a line of length I such that

AB : AD :: the difference between AB and I

: the difference between AD and I.

Set off the given lengths from the same point {A) on any line

and in the same direction along it, as AB, AD. Take any point
E outside AD and join AE, DE. Through B draw FBG parallel
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to BE meeting AE v^ F and make BG-=BF. Join EG cutting

AD in C and AG will be the required harmonic mean. For by the

A?
Fig.9.

similar triangles ABF, ADE,

AB : AD :: BE : DE,

Also by the similar triangles GBG, CDE,

BG : GD :: ^G^ : DE,

and ^G^ = BE,

,\ AB : ^7) :: BG : CA
:: AG-AB : AD -AG.

Problem 12. (Fig. 9.) To find the third term of a harmonic

j^rogression, the first two terms being give7i.

The above construction may be adapted to find the third term

of a harmonic progression the first two terms being given. Sup-

pose AB and AG given. Superpose them with a common ex-

tremity as in the fig. 9. Take any point F outside AG. Join

FB and produce it to G making BG = BF. Join AF and GC
producing them to meet in E and draw ED through E parallel to

FB meeting AG (produced if necessary) in D. AD will be the

required third term.

Dep. When four points in a straight line as ABGD in fig. 9

fulfil the condition

AB : AD :: BG : GD,

they constitute a Harmonic Range, and if through any point E
outside the line the four straight lines EA, EB, EG, ED be drawn

these four lines constitute a Harmonic Pencil, which is denoted by

E{ABGD}. Any straight line drawn across the pencil is called a
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Transversal, and every transversal of a harmonic pencil is divided

harmonically in the points in which it intersects the lines of the

pencil : i. e. the four points of intersection constitute a Harmonic

Range. For in fig. 9 draw any transversal as HKLM, and through

K drsiw/Kg parallel to FD and therefore to FG, meeting EA, EC
in y* and g. Obviously since BF = BG, .'. Kf^ Kg.

By similar triangles HKf, HME
HK : HM :: fK : EM,

and by similar triangles KLg, MLE
KL : LM :: gK : EM,

but Kf^ Kg,

.-. HK : HM :: KL : LM,

or HKLM constitute a Harmonic Range.

A particular case of a Harmonic Pencil is furnished by the

pencil formed of two straight lines and the bisectors of the angles

between them, as shewn in fig. 10, where AD bisects the angle

BAG and AE is drawn perpendicular to AD, and therefore bisect-

ing the exterior angle between AC and BA produced. For draw

any transversal as BFGE, and through F draw PFK parallel to

AE and meeting AB, AG in P and N.

Then PF=^ FN and

BF : BE :: PF : AE, by similar triangles BPF, BAE,
FG : GE :: FN : AE, by similar triangles FGN, EGA,

.'. BF : Be'^:: FG : GE,

or the pencil is harmonic.
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A line of given length may obviously be divided harmonically

in an infinite number of ways, since a line of length HK = BE
can be drawn from any point //on AB to terminate on AE and

HL : HK :: LM : MIL

Harmonic Properties of a complete Quadrilateral,

If FBeA, FDe^C be harmonic ranges (fig. 11), the straight

lines ACy ee^, BD meet in a point, as also AD, BC and ee^.

\\ Fig.ll.

\ N

\ 'x
c)y •"'

^^^

iy nM?'-<

/..-
/ ,'''

Z^"' \ "-^-i.

For a BD, AG meet in E, draw Ee ; then the pencil

E {AeBF) is harmonic and FC is a transversal, so that e^ must lie

on^e.

Similarly SS. AD and BG meet in 0, the pencil 0{AeBF) is

harmonic and FC a transversal, so that e^ must lie on Oe.

If ABGD is any quadrilateral, E the intersection of the sides

AG and BD, F of the sides AB and GD, the intersection of the

diagonals AD and BG', it follows conversely that EA, EO, EB, EF
form a harmonic pencil, as also FE, FG, FO and FA. If EO meet

AB in e and GD in e^, AeBF and GefiF are therefore harmonic

ranges, and if FO meet ^C in/ and BD in/,, 4/Ui^ and BfDE
are both harmonic ranges.

Further if AD meet /^'^ in a and 5(7 meet it in h, BOGh is a

harmonic range since it is a transversal of the pencil F (EGfA)^

therefore AF, Aa, AE and Ab form a harmonic pencil, and there-

fore FaEb is a harmonic range, i. e. FE is divided harmonically in a

and h.
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Def. a system of pairs of points Aa^ Bb, &c. on a straight

line such that XA . Xa =XB . Xb = ,.. = XP^ = XQ^ is called a

system in Involution, the point X being called the centre^ P
and Q the foci of the system, and any two corresponding points

A, a, conjugate points. ,

Problem 13. Two pairs of conjugate points A, a and B, b,

being given, tofind the centre andfoci of the involution.

The existence of a focus is only possible when both points of

a pair are on the same side of the centre, and hence two cases

arise, 1st, in which one pair of points lies within the other, and

2nd in which each pair lies wholly outside the other.

Case 1. (Fig, 12.) Let ab be less than AB. Through a the

extreme point of the range draw any line ac, and through B the

Fig.l2.

more distant from a of the second pair of points draw a parallel

line Bd. Make ac = ab, Bd = BA, then dc will intersect ABba in

X the required centre—for

Xa : ac :: XB : Bd,

.'. Xa : ab :: XB : BA,

.'. Xa+ab : Xa :: XB + BA : XB,

i. e. Xb : Xa :: XA : XB,

therefore by definition X is the centre of the system.

Take a mean proportional between either XA and Xa or

XB and Xb, which determines the distance XP and XQ from X
of the foci.

E. 2
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Case 2. (Fig. 13.) Through the extreme points of the system
draw any two parallel lines as he, Ad. Make he = ha the distance

Fig.13.

Air

from h of the nearer point of the opposite pair and make Ad = AB
the distance from A of the similar point, then cd will cut -46 in

X the required centre—for

XA : Ad :: Xh : he,

i.e. XA : AB :: Xh : ah,

.-. XA : AB-XA :: Xh : ah-Xh,

or XA : XB :: Xh : Xa.

The foci must be determined as in Case 1,

Since XA : XF :: XP : Xa,

'.'. XA-XP : XA + XP :: XP-Xa : XP + Xa,

i.e. AP : AQ :: Pa : aQ,

or each pair of conjugate points forms, with the foci of the system,

a harmonic range.

It follows of course that if APaQ be an harmonic range and

X the centre point of PQ,

XA.Xa = XP' = XQ\

The following relations between two pairs of conjugate points

Aa and Bh, and their centre X and foci P and Q are sometimes

useful.
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Since XA : Xb :: XB : Xa,

.\ XA : Ab :: XB : aB,

or XA : XB:: Ab : aB

and since Xb : Xa :: XA : XB,

.'. Xb : ab :: XA : AB,

or Xb : XA :: ab : AB (

19

(1),

(2);

therefore, multiplying (1) and (2),

Xb : XB :: Ab.ba :

Again, since QbPB is harmonic,

.-. Qb : QB :: Pb

or Qb : Pb

.'. Qb^Pb : Pb

or 2ZP : Pb

.'. P¥ : PB''

AB.Ba,

PB,

PB,

QB : PB,

QB^PB
2XB : PB,

XP' : XB'

:: Xb : XB
:: Ab.ba : AB.Ba.

This determines the ratio in which Bb is divided by P.

Problem 14. (Fig. 14.) Through a given point P to draw a

line meeting two given lines AB and CD in B and D so that

PB = PD.

Through P draw any line meeting one of the given lines as at

A. On AP produced make Pa = PA and draw aD parallel to BA

Fig.l4

meeting the other given line in D. The line DPB will be the

line required, i.e. PB = PD (by the similar and equal triangles

APB, aPD).

2—2
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Problem 15. To draw a triangle with its sides passing through

three given points A, B, C, and with its vertices on three given con-

current lines OD, 0£J, OF (Fig. 15).

Take any point (as ^) on any one of the given lines and from

it draw lines to any two of the given points (as UA, EB) meeting

the other lines in a and h. Let the lines AB and ah meet in M,

Through M draw a line MG passing through the remaining point

(C) and meeting the lines Oa and Oh in P and Q. PQ will be one

side of the required triangle which can be completed by drawing

the lines PA^ QB which will intersect in i? on the third given line.

There are generally six solutions as lines can be drawn through

each point terminated by either pair of lines.

Problem 16. To drav) a triangle with its vertices on three

given lines AP, BQ, CQP, and with its sides passing through three

given points A, B, C one on each line (fig. 16).

Let two of the given lines (as AP, BQ) meet in ; the third line
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meets the others in P and Q. Draw the lines AQ and BP inter-

secting in I>, and draw OD intersecting FQ in B. Take a mean

proportional FM between GF and FJE (Problem 5), and a mean

proportional QW between CQ and QE. With centres F and Q
and radii respectively equal to FM and ^^ describe arcs inter-

secting in K. Draw a line bisecting the angle FKQ, intersecting

FQ in Z. Z will be one of the vertices of the required triangle

which can be completed by drawing BZ intersecting ^P in X and

AZ intersecting ^^ in F. X and Y are the other vertices and

XY will pass through G.

Problem 17. To determine the locus'^ of the vertex of a triangle

on a given base AB and with sides BP, AF in a given ratio a : b.

(Fig. 17.)

On the given base AB describe any one triangle with sides

BP : AF :: a : h.

Bisect the angle AFB by FD meeting AB in D and di*aw PC
perpendicular to FD meeting AB in G.

On Z) (7 as diameter describe a circle, which will be the required

locus of the vertex.

* For definition of locus, see p. 29 post.
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I'roof, Take any point Q on the circle, and draw QA^ QD,
QB, QU. Since PB bisects the angle AP£

.'. BD : AD .: a '. h (Euc. vi. 3),

Fig.17.

and since DPC is a right angle and PD bisects the angle APB
.'. P{ADBG) is a harmonic pencil (p. 15),

.-. also Q{ADBC) is a harmonic pencil, and consequently since

DQC is a right angle, QD bisects the angle AQB,

.-. BQ : AQ :: BD : AD :: a : b. (Euc. vi. 3.)

Problem 18. To construct a rectangle equal in area to the sum

or difference of two given rectangles ABCD, DEFG (fig. 18).

Apply the smaller rectangle to the side of the larger as in the

figure. Complete the rectangle ABHE. Draw DH cutting FG

Fig. 18.

---- ^

— m— C

in K. Through K draw LM parallel to AB and the rectangle

ABML will be equal in area to the sum of the two given rect-

angles. (Euc. I. 43.)

The dotted lines and the small letters in the fig. shew the con-

struction for the difference of two rectangles.
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Problem 19. From a given point P in a given straight line

PM to draw lines making equal angles with PM and cutting a

second given line CM at equal distances OD, CE from a given

point C (fig. 19).

From P and C draw PJ^, CF perpendicular to CM. Make

the angle MPF equal to the angle MPN and let PF meet CF in

F. With centre F and radius FP describe a circle cutting CM in

D and E which will be the required points.

Proof. CD = CE since CF is perpendicular to DE.

The angle DFP is double the angle DEP. (Euc. iii. 20.)

Half the angle DFP together with the angle FPD = a. right

angle.

The angle DEP together with the angle EPN= a right angle.

.-. the angle i^PZ) = the angle ^PiV,

and .-. the angle MPD = i\iQ angle MPE.

The point C must evidently lie on the opposite side ofM to N.

This is also a solution of the problem to construct a triangle,

given the vertex, the bisector of the vertical angle, and the difier-

ence of the segments of the base made by that bisector: for

DM-ME=WM.
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Examples on Chapter L

1. Draw a circle of radius 2*87. In it place a chord AB of

length 4-8, and draw BC making 60° with AB. If (7 is on the

circle shew that the side ^C of the triangle is approximately 4-96.

Shew that the geometrical mean between 3*76 and 2*43 is

3-02 approximately.

2. Inscribe a square in a given triangle ABC.

(Through A draw a parallel AJ) to BC ; make AD equal in

length to the perpendicular from A to BC, and join i> to the end

of the base BC that will enable it to cut one of the sides AB
or AC in JE. E is one of the angular points of the required

square, the base of which will coincide in direction with BC.)

3. Bisect a given triangle ABC by a straight line drawn

through a given point DmAG. AD<DC.
(Bisect BC in E and through A draw AF parallel to DE

meeting BC in F. DF will be the required line.)

4. Given the middle points P, ^, R of the sides of a triangle,

construct the triangle.

(The side through P is parallel to QR, and so for the others.

TakeP^ = 2, <}i?= 1-8, i?P= 1-3.)

5. Construct a triangle having given the base AB, the verti-

cal angle C, and the difference of the sides AC, CB.

C
(Construct a triangle ABB having the angle ADB= 90** + —

,

J9^ = the given difference and AB the given base. Produce AD
to C, and make the angle DBC = the angle BDC.)

6. Construct a triangle, being given the base AB the difference

of the base angles, and the difference of the sides AG, and BC.

(Make a triangle DBA, with angle DBA = J the given differ-
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ence. £A = the given base and AD the given difference of sides

:

produce AJ) to G and make the angle BBC = angle BDC.)

7. Construct a triangle, being given the base AB^ the vertical

angle G and the sum of the sides AG and BG,

G
(Make an angle ADB = -

, make DA^AC + BG, and AB = the

rj

given base; make the angle DBG = ^ , and so that BG cuts AD in

G between A and D.)

8. Let ^^(7 be any triangle, GD a perpendicular from G on

-4^ and E a point on ^^ such that DE-DB. AE is the differ-

ence of the segments of base made by the perpendicular, then given

AE and any one of the following pairs of data, construct the

triangle.

a. Sum of sides (J(7 + BG) and difference of base angles.

(We are given in the triangle AGE, AG + GE, AE and vertical

angle AGE, i. e. base, vertical angle and sum of sides. The triangle

can therefore be constructed (last example) and from it the required

triangle ABG.)

p. Difference of sides and difference of base angles.

(Make an angle ADE containing 90" + ^ where a is given

difference. Make DA ==the given difference of sides, and ^jE' the

given difference of segments
;
produce AD to G and make DEG

= EDG
;
produce AE to B and make GB=GD = GE. ABG will

be the required triangle.)

y. Sum of sides and vertical angle.

(Construct a triangle AEG on the given difference of segments

^^ as base, with AG + GE — ^Yen sum of sides and the given

vertical angle as difference of base angles (a above), produce AE
to B and make GB = GE).

8. Difference of sides and vertical angle.

(Make an angle ^^^=half the given angle, make ^i^'^the

given difference of sides, produce AF to G and make the angle

FEG = EFG, produce AE to B and make GB=GE = GF.)



2d examples.

: 9. Given the lengths AD^ BE^ CF of the bisectors of the

sides of a triangle ABC, to construct the triangle.

(Construct a triangle FOG making FG = ^AJD, GO = ^BE,
FO = ^FG

;
produce FO to C and make 0C = 2.0Fso that FC is

the given length
;
produce GO both ways to B and F and make BG

= OF = GO so that BF is the given length. Join BC and draw

BFj CF, producing them to meet in A. ABC will be the

required triangle.)

10. Given the lengths AD, BF, CF of the perpendiculars on

the sides from the opposite angles of a triangle ABC, to construct

the triangle.

(Determine a length Mb such that Ci^ : BE :: AD : J/6,and

on it construct a triangle Mbc, making be = BE and 3Ig = AD.
From M drop a perpendicular on be and on it make Md=AD.
Through d draw BdC parallel to b, meeting Mb, Mc in B and C.

MBC will be the required triangle.)

11. Given three points D, E, F, to construct a triangle of

which these points shall be the feet of the perpendiculars on the

sides from the opposite angles.

(The sides are perpendicular to the bisectors of the angles of

the triangle DEF.)

12. Divide a given straight line AB into two parts AC, CB,

such that the difference of the squares on the parts may be equal

to the square on a given line DF < AB.

(Take a third proportional FG to AB and DE. FG will be

the difference between the required parts, and ^-6 is their sum, so

that AC, and CB are known.)

13. Divide a given line AB into two parts AC, CB, such that

the square on AC may be double the square on CB.

(TBke AC : CB :: ^/2 : 1.)

14. Divide a given straight line AB into two parts AC, CB,

such that the sum of their squares shall be equal to the square

on a given line DE.
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4 7?

(Construct a rectangle equal in area to 2DEy - AB^ (Prob.

18). Take a mean proportional between its sides which will be

the difference between AG and GB; the sum and difference of the

parts being known, the parts are known.)

15. Divide a given straight line AB into two parts AG^ GB,

such that AB' + GB' = 2.AG\

(Take JC: GB :: 1 + VS : 1.)

16. Draw any triangle ABG, bisect AB in I), join GB, and

through G draw GE parallel to ^^; shew by drawing a trans-

versal, that the rays GA, GB, GB, GB form a harmonic pencil.

17. Given the directions of one pair of opposite sides of a

quadrilateral AB and GB, and the point (F) of intersection of

the other pair, shew that the locus of the intersection of the

diagonals is a straight line.

(If AB, GB intersect in F, and G is the intersection of the

diagonals, the pencil B (AGGF) is harmonic.)

18. Find the geometric mean (BB) between two given lines

(AB and BG) and shew by construction that the harmonic mean

between AB + BB, and BG + BB is 2BB.

19. A line AB is divided harmonically in G and B, and a

part GB of the line which contains two terms GB and BB is

bisected in F. Shev.^ that FG is the geometric mean of FA
and FB.

20. Divide a given straight line AB medially in the point G,

and produce the line so that the part produced is equal to AG
the smaller segment; shew by construction that the rectangle

contained hj AG and the whole line thus produced, together with

the square on ^^S is equal to four times the square on GB.



CHAPTER II.

THE CIRCLE.

Euclid's well known definition is " A circle is a plane figure

contained by one line, which is called the circumference, and is

such, that all straight lines drawn from a certain point within the

figure to the circumference are equal to one another : and this

point is called the centre of the circle". A radius of a circle is a

straight line drawn from the centre to the circumference, and

therefore by the above definition all radii of a circle are equal.

Hence a circle is completely determined if we know its centre

and the length of its radius, and it might seem at first sight that

two geometrical conditions would be sufficient to determine it.

The position of the centre however must be counted as two con-

ditions, and a circle can generally be drawn to satisfy three

geometrical conditions, and three are in general necessary and suffi-

cient for its determination. Thus an infinite number of circles

can be drawn to pass through two points, or to touch two lines,

and some other condition, such as the position of a third point

through which it must pass or of a line which it must touch in the

first case, or of a third line which it must touch or of a point

through which it must pass in the second, or such as the length of

the radius in either, must be given to make the exact solution of

the problem possible.

The above limitation " in general" is necessary because it is

possible to give certain special positions to the lines and points

which would render the problem impossible : thus e. g. in the first

case a circle cannot be drawn through three points in the same

straight line, or at least no circle of finite radius, or if the given

conditions are "to pass through two given points and touch a
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given line" the line must obviously lie outside the points, i.e. it

must not pass between them, and similarly if the conditions are

"to touch three given lines" one at least of the lines must not be

parallel to the other two, but notwithstanding these special cases

it is generally true that a circle can be drawn to satisfy any three

geometrical conditions.

Definition. When a point is restricted by conditions of any

kind, to occupy any of a particular series of positions, that series

of positions is called the locus of the point.

Problem 20. (Fig. 20.) To describe a circle through three

given points A, B, C, not in the same straight line.

If the line joining ^, ^ is bisected in D and DO is drawn per-

pendicular to AB, DO will obviously be the locus of the centres of

all circles passing through A and jB, i. e. any circle through A and B
must have its centre on DO, since in the equal right-angled tri-

angles ADO, BDO, AO is equal to BO. Similarly, bisecting BC
in E and drawing EO perpendicular to BC, EO is the locus of

centres of circles passing through B and C. Hence the centre of

the circle passing through A, B and G must lie simultaneously on

both these loci, i. e. must be at their intersection, and the distance

from this point to either A, B or G will be the radius of the

required circle.

Euclid in definition 2 of Book iii. defines a tangent to a circle

in these words. " A straight line is said to touch a circle when it
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meets the circle, and being produced does not cut it," and shews

in Corollary to Prop. 16, Bk. in. that the line drawn perpendicu-

lar to a radius at its extremity fulfils the condition of this

definition. This is the most convenient way in which to draw

the tangent at any point on the circumference, and the tangent so

drawn can easily be shewn to agree with the general definition of

a tangent usually given as applicable to all curves, which is as

follows :

—

Definition. If two points be taken on a curve and a chord

drawn through them ; then, if the first point remains fixed while

the second, moving along the curve, approaches indefinitely near

to the first, the chord in its limiting position is called the tangent

to the curve at the first point.

To shew that such chord in its limiting position will in the

circle be perpendicular to the radius at the point, take two points

P, Pj, (fig. 20) on the curve, and draw PP^, then since OP=OP^
the angles OPP^ and OP^P are equal and will remain equal how-

ever close Pj may be taken to P. But when P^ coincides with P
€ach of these angles becomes a right angle, i. e. the tangent at P
will be perpendicular to OP.

To draw a tangent to the given circle from an external point

Q. Join OQ and on it as diameter describe a circle cutting the

given circle in M and M^. (It will necessarily do so in two points

on opposite sides of its diameter.)

Then QM^ QM^ will be tangents to the circle since QMO is a

right angle being in a semicircle. (Euclid, Prop. 31, Bk. in.)

It is always possible to draw two tangents to a circle from any

external point.

Pole and Polar. (Fig. 20.)

The line MM^ is evidently perpendicular to OQ for the tri-

angles QOM, QOM^ are equal in all respects, i.e. the angle MOQ
= the angle MfiQ; then if MM^ meets OQ in J^ we have in the

two triangles NOM, NOM^^ 0M= OM^, ON common and the

angle, NOM = t}iQ angle NOM^^ .-. the angle OiVi/=the angle

ONM^^ and .•. each is a right angle.
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The triangle MON is . •. similar to the triangle QOM and

,',0N '. OM :: OM ; OQ,

or ON. OQ = r\

where r is the radius of the circle.

Now whether the point Q be taken inside or outside the circle,

it is always possible to find on the line 0^ a point N fulfilling the

above condition, and a line MNM^ drawn perpendicular to OQ
through the point N so determined is called the 'polar of Q with

respect to the circle, while the point Q is called the -pole of MK^
with respect to the circle.

To draw \h% polar of any point Q with respect to a given circle.

If the given point be without the circle the polar is, by the

previous definition, the chord of contact of the tangents drawn from

Q to the given circle. If the given point be within the circle,

draw OQ and produce it, and through Q draw MQM^ perpendicu-

lar to OQ, and meeting the circle in M and M^ and at either if or

M^ draw MN or MxN a tangent to the circle, meeting OQ pro-

duced in N, then a line through iV perpendicular to OQ will be the

required polar.

Cor. 1. If the given point be on the circle its polar is the

tangent at the point, i. e. the polar passes through the pole.

Cor. 2. If a point A lie on the polar of Q then Q lies on the

polar of A. For draw OA and on it drop a perpendicular Qq from

Q meeting it in q and the circle in m and w^ : then the triangles

OQq, OAN are similar and

.-. Oq : OQ :: ON : OA, i.e. Oq.OA^OQ. 0N=7^,

by definition, r being the radius of the circle, i.e. mQm^ is the

polar of A which consequently passes through Q.

Cor. 3. The pairs of tangents drawn at the extremities of any
chord through Q intersect in the straight line AB the polar of Q.

Hence the polar may be defined as the locus of the points of inter-

section of tangents at the extremities of chords through a fixed

point.
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Given a circle and a triangle ABC, if we take the polars with

respect to the circle, of A, B, C, we form a new triangle A'B'C

called the conjugate triangle, A' being the pole of BG^ B' of GAy

and G' of AB. In the particular case where the polars of -4, j5, G
respectively are BG , GA, AB, the second triangle coincides with

the first, and the triangle is called a self-conjugate triangle.

Problem 21. (Fig. 21.) To describe a circle to pass through two

given points and touch a given straight line, lying outside the points.

Let A and B be the given points and DD^ the given straight

line. It will be observed that the point of contact of the line is

Fig.2l.

not given—this would be a fourth geometrical condition and

therefore if a circle is required to touch a given line at a given

point, it can only in general fulfil one other condition as e.g. pass

through on^ point outside the line. See next problem.

Join AB and produce it to cut DD^ in G and indefinitely be-

yond as to a. It is a known proposition (Euclid 36, Book iii.),

that "if from any point without a circle two straight lines be

drawn, one of which cuts the circle, and the other touches it

;

the rectangle contained by the whole line which cuts the circle

and the part of it without the circle, shall be equal to the square

on the line which touches it."

If therefore a mean proportional cd be taken between GA and

GB, and its length be set off from G along I>£>^ as GD, then

obviously a perpendicular to BD^ through D will be the locus of

the centres of circles touching the given line in D. It AB be
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bisected in E, and EO be drawn perpendicular to AB, EO will

be the locus of centres of circles through A and B. The required

centre will therefore be at 0, the intersection of these loci and

the distance to ^, ^, or i> will be the required radius. Since

the length CD may be set off on either side of C there are

obviously two solutions as shewn.

If the line joining A and B be parallel to the given line, this

solution fails, but the point of contact can be at once determined,

since by symmetry it is obviously where EO cuts the given line,

and a third point through which the circle must pass being thus

obtained the solution can be completed by Problem 20.

Problem ^2. (Fig. 21.) To describe a circle to pass through a

given point A mid to touch a given straight line BD^ in a given

point D.

The straight line 1)0 through I) perpendicular to J)D^ is

obviously the locus of centres of all circles touching the straight

line in E, and the straight line FO through F the centre point

of AD, perpendicular to AD is the locus of centres of all circles

through A and D. The centre of required circle is therefore at

0, the intersection of these loci, and the distance from to A
or D will be the required radius.

Problem 23. (Fig. 22.) To describe a circle to touch two straight

lines AB, CD, one of them in a given point A.

E.
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A locus of the centre is of course the line AO perpendicular

to AB. A second locus will obviously be the line BO bisecting

the angle ABC, and the required centre will therefore be at 0.

If at a perpendicular OC be drawn to BC, the triangles OBA
and OBC are equal in all respects and therefore OA =^ OC = the

required radius. The given lines make with each other the angle

ABB as well as the angle ABC, and therefore bisecting the

angle ABB, the centre 0^ of a second circle is obtained touching

the other side of AB.

Problem 24. (Fig. 23.) To describe a circle to j^ctss through a

given point G and to touch tioo given lines AC, BF.

The centre must obviously lie on the line KH bisecting the

angle between the given lines in which the given point lieh.

Fig.23.

(See Problem 1.) Draw also the line GL passing through G and

the intersection of the given lines (Problem 6). Take any point

K on HK as centre, and describe a circle touching AC and BF, arid

cutting GL in M and L. This is always possible, since KH is the

bisector of the angle between these lines. Draw GO parallel tt>

MK and GH parallel to KL, and // will be centres of circles

fulfilling the required conditions : for if A is the point of contact

of the trial circle, KA will be perpendicular to AC, and if OB,

HC be drawn perpendicular to AC, KA, OB and HC will all be

parallel, and therefore the triangle GOB will be similar to MKA
and GlIC to LKA, but the triangles MKA, LKA are isosceles,

therefore also OG must be equal to OB and UG to HC, ^
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Problem 25. (Fig. 24.) To describe a circle to touch three

given lines AB, BG, CA, not more than two of vnhich are parallel.

The line AO bisecting the angle BAG will be the locus of

centres of circles touching BA and GA^ the line GO bisecting the

Fig. 24.

angle BGA will be the corresponding locus for BG and GA.

Hence will be a centre for a circle touching all three lines.

Since BA makes with BG and GA not only the angles ABG, BAG
respectively, but also the angles ABE, BAD, a second solution is

obviously obtained by bisecting the exterior angle BAD as shewn

by AO^, and similarly for the remaining sides. Hence four circles

can be drawn touching three straight lines. The exterior circles

are said to be escribed to the triangle ABO.

Problem 26. (Fig. 25.) To describe a circle to touch a given

circle {centre (7, radius GD) and a given straight line AB in a given

point A.

The line AO drawn through A perpendicular to AB i^ a locus

of the required centre. Draw a diameter DD^ of the circle

parallel to AO. Join AD cutting the given circle in E, and join

8—2
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CE producing it to cut AO in 0, will be the centre of a circle

fulfilling the given condition. A second solution is possible, since

Fig.25.

A may be joined to either extremity of DD^. 0, is the centre of

a second circle.

Proof. The angle 0^^= angle CDE, (Euc. i. 29.)

„ CED^ „ CJDE, (Euc. I. 5.)

CEB = „ OEA, (Euc. I. 15.)

.-. „ OAE= „ OEA,

and .-. OE^OA. (Euc. i. 6.)

Hence a circle through A from centre will pass through E and

will there touch the given circle, since they will have a common
tangent perpendicular to CO.

Problem 27. (Eig. 26.) To describe a circle to touch a given

circle (centre A, radius AD) and pass through two given points B,

C, which must be either both inside, or both outside the circle.

Draw a line through EC; bisect EC in E and draw EO per-

pendicular to EC. EO is the locus of centres of circles through

B and C. Take any point such that a circle described witli

centre and radius OB, or OC will cut the given circle as in

MN'. Draw a line through JfiV cutting BC in T, and from 2'

draw tangents TD, TD^ to the given circle (Prob. 20). Lines

joining AD, AD^ will cut EO in points 0,, 0^ which will be the

centres of circles fulfilling the required conditions.
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Two circles can generally be drawn. If the line joining the

given points lie wholly without the given circle, one circle will

ng.26.

o„^-.

touch the given circle externally and one internally (as in the fig.);

if the line joining the points cut the given circle, and both points

lie on the same side of the circle, both circles will touch the

given circle externally, and if the points lie on opposite sides of

the circle both will touch it internally. If the line joining the

given points touch the given circle one circle only can be drawn.

Proof. The rectangle TM . TN ^x^Q,t. TB , TC (Euc. in. 36,

Cor.),

„ „ = sq. on TD. (Euc. iii. 36).

.-. sq. on TD = rect. TB . TC
.'. TB is a tangent to the circle going through B, D, C.

Problem 28. (Fig. 27.) 2b describe a circle to touch a given

circle (centre A, radius AM) and two given straight lines BG, DE.

There are several solutions depending on the relative positions

of the lines and circle. If the lines are parallel the problem is

impossible unless some part of the circle lies between the lines.

In this case the line drawn midway between the lines parallel to

either of them is evidently a locus of the required centre ; a

second locus will be the circle described with centre A and radius

equal to the sum oi AR and half the distance between the lines,

and since these loci intersect in two points, either may be taken as
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the centre of the required circle. If the given lines are not parallel

and the given circle cuts one of them, as in the fig., then by

Fig.27.

drawing lines parallel to the given lines at a distance from them

equal to the radius of the given circle, the problem may be reduced

to describing a circle to touch these lines (in pairs) and to pass

through the centre of the given circle, i.e. may be reduced to

Problem 24. Let the given lines intersect in F and consider first

the circles which can be drawn in the angle EFC. Draw (?//, LK
parallel to FE at a distance from it equal to ^^and similarly HK
and GL parallel to FC. FK will bisect the angle OFF and will

be the locus of the required centres. Take any point on it as

centre and describe a circle to touch GH and GL cutting GA in J/,

J/i. Then AO^ drawn parallel to Mfi to cut FK in 0^ determines

Oj a required centre and AO^ parallel to MO determines 0^ a

second required centre. Similarly for the circles lying in the

angle DFG. Any point 0^ on FL being taken as centre and a

circle described to touch GH and HK cutting HA in N and N^

;

AO^ parallel to J\^fi4 determines O3, the centre of a third circle

fulfilling the required conditions and a line through A parallel to

iVC?4 would determine a fourth centre. It is of course accidental

that in the figure 0^ falls nearly on GA.

If the given circle did not cut either of the given lines, it
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would still be possible to draw four circles toucliing the lines and

the circle, but two of them would have internal contact with the

given circle, instead of all touching it externally as in the figure.

If the given circle cut both lines there would be six possible

solutions.

Problem 29. (Fig. 28.) To describe a circle to touch a given

circle {centre A, radius AF) to touch a given line BC and to pass

through a given point D.

If the given point be within the circle, the given line must

not be wholly outside the circle.

From A draw AC perpendicular to the given line and meeting

the circle in E and F. First join ED and on it determine a point

Fig. 28

G such that the rect. ED .EG=- rect. EC . EF, i. e. take EG a fourth

proportional to ED, EG, EF. [Making Ef (on ED) = EF, draw

fg parallel to DC meeting EG in g and make EG = Eg.'\ Then a

circle through D and G and touching the given line will also touch

the given circle and the problem is reduced to Problem 21. If

ED, EC intersect in T, a mean proportional (TE) must be taken

between TG and TD so determining the point of contact. 2'B

may be set off along EG on either side of T and hence there are

two solutions giving external contact. Second.—Join FD and on

it determine a point G^ such that rect. FD . FG^ = rect. on FG, FE.

i. e. take a fourth proportional to FD, FG, FE. G^ must be taken

on the opposite side of F to D because C and E are on opposite

sides of F. Then circles through D and G^ touching the given line
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will also touch the given circle, and this case also reduces to

Problem 21. There are again two possible circles because if

JJF and BC intersect in T^ the mean
,

proportional (T^H) between

T^D and Tfi^ may be set off on either side of T^.

Proof. Join B the point of contact of circle tlirough D and G
to E meeting the given circle in K and join FK. Then the tri-

angles EKF and ECB are similar

.-. EC : EB :: EK : EF,

or rect. EO . EF= rect. EB . EK,

but „ = rect. ^/>.^(? (const.).

.. rect. ED .EG = rect. EB . EK.

.'. K must be on circumference of circle through BDG. (Euc.

III. 36 Cor.)

Join OK, then angle 0^7t = angle 0KB (Euc. i. 5),

„ AKE= „ AEK{ „ ),

„ AEK= „ 07rj5 (Euc. I. 29),

.-. „ AKE= „ OBK,

and therefore OKA is a straight line, i.e. the two circles will

touch at K.

Problem 30. On a given straight line AB to describe a segment

of a circle which shall contain a given angle (Fig. 29).

Bisect AB in C and through C draw CO perpendicular to AB.

{CO is of course a locus of the centre.) Make the angle OCD

Flg.29.

equal to the given angle (p. 4) and through A draw AO parallel

to CD meeting CO in 0. will be the centre of the required

circle. (Euc. iii. 20.)
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Pkoblem 31. (Fig. 30.) To draw a line toucJdng two given

circles^ neither of which lies wholly inside the other.

A and AB are the centre and radius of the larger circle and C
and CD those of the smaller circle.

Join AC, cutting larger circle in B.

From B on AC make BM^BN=CD, and with A as centre

describe circle MM^M^. From C draw tangents CM^^ CM^ to

ss,^:-
.,Sc

iw-

touch this circle (Prob. 20). Produce A3f^, ^^2 *^ n^^^t the circle

in E and G, and lines ED, GF through E and G parallel to CM^
,

CJ/g will be taiigents to both circles. These tangents meet in (Oj)

a point lying on ^C produced, and are the only pair that can be

drawn if the given circles intersect. If the smaller circle lies

wholly outside the larger, as in fig. 30, a second pair can be drawn

by describing a circle through N with A as centre, drawing tangents

CiYj, CN^ to it, and drawing HJ, KL parallel to these lines re-



42 SYSTEM OF TWO OR MORE CIRCLES.

spectively, which will intersect in (0) a point on AC between the

given circles. The construction is obvious, since UM^ = JBM= CD.

Common tangents to two circles may be drawn practically with

all attainable accuracy by adjusting a set square to touch the

circles, and drawing a line by its edge ; but the points of contact

should always be determined by drawing the radii perpendicular

to the tangent.

Properties of a system of Two or more circles.

The points 0, 0^ in which common tangents to two circles

intersect are called the centres of similitude of the two circles.

As is easily seen, they are the points where the line joining the

centres is cut externally and internally in the ratio of the radii

:

and in this sense both exist when the circles cut each other, in

which case of course only one pair of common tangents can be

drawn, and even when one circle lies wholly inside the other, so

that it is impossible to draw any common tangent.

If through a centre of similitude we draw any two lines meeting

the first circle in the points R, It^, S, S^, and the second in the

points p, /3j , (T, (T^f then the chords R!S, pa- will be parallel, as also

the chords R^S^ and p^<r^ ; and the chords RS and pjO-j, R^S^ and

pa- will intersect respectively in points P and Q on a line perpen-

dicular to the line joining the centres of the circles.

This line is called the radical axis of the two circles.

The rectangle OR . OR^ is constant, since it equals the square

on OH the tangent from (Euc. iii. 36), i. e.

0R.0R^ = 0S.0S^
and Op . Op^ = Oa . Oa-^ .

Proof. In the triangles OAR^ 00p^ the angle AOR -the

angle COp and OA : 00 v. AR : Op,

.'. also OR : Op :: AR : Op (Euc. vi. 7),

O 7?

i.e. the ratio yr- is constant and equal to the ratio of the radii
Op

of the circles wherever the line ORp be drawn,

.-. OR : OS :: Op : Oa-
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and the angle BOS = the angle pOa

;

.'. the triangles BOS, pOcr are similar in all respects, so that the

angle ORS = the angle Opa- and po- is parallel to RS.

Similarly R^S^ is parallel to p^a-^ , which proves the first part of

the proposition^.

Again, since SRR^S^ is inscribed in a circle, the angle P^O= the

angle SS^R^ - the angle Sa-^P. The triangles RRpi and Fa-^S are

therefore similar, since the angle RRp^ is common to both.

.-. FR : Pp, :: Po-^ : PS,

i.e. PR.PS = Pp^.Pa;,

but PR . PS = square of tangent from P to circle A,

and Pp,.Pa;= „ „ „ C;

.-. the tangents from P to the two circles are equal, and

.-. ^'-A£\' = PC\'-aDl';

similarly tangents from Q to the two circles are equal.

But the locus of the intersection of equal tangents to two

circles is a straight line perpendicular to the line joining their

centres, and dividing the distance between them so that the differ-

ence of the squares of the parts is equal to the difference of the

squares of the radii : for ifX be such a point and PX perpendicular

to AC, at every point on it we shall have

PA' - AX' = PX' ^PC^'- CX\
.'. Pa\'-JC^ = AX'--CX';

and as above PA' - PC = AB' - CD' -^ AX' - CX'.

Hence the line PQ in the figure must be such locus which proves

the second part of the proposition.

Definition. A line drawn perpendicular to AC, the line

joining the centres of two given circles, through a point X on it,

such that the difference of the squares oi AX and CX is equal to

the difference ofvthe squares of the radii of the two circles is called

the radical axis of the two circles.

As already shewn, it is the locus of the intersection of equal

tangents to the two circles.
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It may be constructed as in the last proposition or immediately

from the definition Ly bisecting AC in. a (fig. 30), and making aX
towards C, the centre of the smaller circle, a fourth proportional

to 2AC, AB + CD, and AB- CD,

i. e. by making aX : li-r : : B + r : 2AC,

where B and r are the radii of the circle, and drawing a line

through X perpendicular to AC j for in this case

AC X 2aX= B' - r' hnt AC ^ AX+ XC and 2aX = AX- CX
.'. (AX + CX) {AX- CX) = B'-r' = AX' - CX\

The radical axis bisects the distance between the polars with

respect to the two circles, of either centre of similitude, which fur-

nishes another method of constructing it.

Given three circles (centres C, (7,, C^, radii r, r^, r^] the line

joining a centre of similitude of C and C^ to a centre of simili-

tude of C and C^ will pass through a centre of similitude of C^

and C^. Let S^ and S^ (fig. 31) be the centres of similitude of

Fig.31.

C and Cj, and S^ a centre of similitude of C and C^, and let S^S^,

Cfi^ meet in S, S will be a centre of similitude of C^ and C^.

For since CSJ : C,SJ :: r : r^ :: CS^ : C,S^,

.'. CSJ : CS^ :: C^S^ : C^S^,

or CS^C^S^ is a harmonic range ; therefore aS' (CSJC^S^) is a har-

monic pencil, and therefore if CC^ cuts SS^' in S^\

CS^'C^S^ is a harmonic range, and since S^ is a centre of

similitude of C and (7,, S^ must be the other.
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Tlirougli C„ draw C^L parallel to CS^ and meeting aS'^S'^ in L,

Then by similar triangles

C,S : C^S :: C,L : C\S„

and C„L CA CS, CS„ or C,L-.
CA ('''%

cs.

C\S : C,S ::

,CA,-'
• CS

OS,
_ c,s,,

CA CA
CS,

cs,

'OA

or aS' is a centre of similitude of C, and C^

.

Since for each pair of circles there are two centres of similitude,

there will be in all six for the three circles, and these will be dis-

tributed along/oi^r axes of similitude, as represented in the figure.

Corollary. If a circle (centre A) touch two others (centres C
and Cj) the line joining the points of contact will pass through

a centre of similitude of G and C^. For when two circles touch,

one of their centres of similitude will coincide with the point of

contact. If A touch G and C^ either both externally or both

internally, the line joining the points of contact will pass through

the external centre of similitude of C and G^. If J. touch one

externally and the other internally, the line joining the points of

contact will pass through the internal centre of similitude*.

Given any three circles, if we take the radical axis of each pair

of circles, these three lines will meet in a point, which is called

the radical centre of the three circles.

For let the radical axes of A and C and of B and C intersect

in R (fig. 34), then the tangents from R to A and G are equal, as

also the tangents from R to B and C; therefore the tangent from

R to A must be equal to the tangent from R to B, i.e. R must be

a point on the radical of A and B, which proves the proposition.

If two circles have a common radical axis, and points L and Z,

be taken on the line joining their centres at a distance from its

* Salmon's Conic Sections.
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intersection (X) with the radical axis equal to the tangent which

can be drawn from A'' to either circle, these points are called the

limiting points of the entire system of circles which have the

same (common) radical axis. They "have many remarkable

properties in the theory of these circles, and are such that the

polar of either of them, with regard to any of -the circles, is a line

drawn through the other perpendicular to the line of centres.

These points are real when the circles of the system have common
two imaginary points, and are imaginary when they have real

points common"^."

When they are real it is evidently impossible for the centre of

any circle of the system to lie between them, and the more nearly

the centre approaches to either of them the smaller must the cor-

responding radius be. The limiting points themselves may there-

fore be considered as circles of the system of infinitely small radius.

If a system of circles have a common radical axis, and from any

point on it tangents be drawn to all the circles, the locus of the

points of contact must be a circle, since all these tangents are

equal ; and it is evident that this circle cuts any of the given

system at right angles, since its radii are tangents to the given

system. It is the circle passing through the limiting points of the

system.

Com^ersely all circles which cut the given system at right

angles pass through the limiting points of the system.

Problem 32. (Fig. 32.) To describe a circle to touch two given

circles {centres A and B, radii AD, BE respectively) and to pass

through a given point C.

Take S a centre of similitude (p. 42) of ^ and B ; draw CS
and find the poles P and P^ of this line with respect to each circle,

(i.e. draw AP, BP^ perpendicular to CaS' and intersecting the

chords of contact of tangents from aS' in P and P^. Draw Xll

the radical axis of the given circles (p. 44) : draw AC, bisect it

in m and make mM on it towards C of length such that

AC : AD :: AD : ImM

;

* Salmon's Conic Sections.
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draw MR perpendicular to AC meeting the radical axis in It

The lines UP, RP^ will cut the circles in the points of contact

a h- a b of the required circles and their centres can be at once

found by producing Aa^ Ba^ &c. to meet in and 0^.

In the figure the circles touch one of the given circles in-

ternally and one externally because S is the internal centre of

similitude. If the external one be taken two more circles can be

drawn, one touching both externally, the other both internally.

Problem 33. To describe a circle to touch two given circles

{centres A and B, radii AC, BD respectively) and a given straight

line EF (fig. 33).

Draw the radical axis of the given circles, meetingEF in R, p. 44.

From A and B drop perpendiculars on the given line meeting it

in E and F and the circles in C, C^, D and D^ respectively.

Join CjZ^j cutting AB in S a centre of similitude of A and B.

Find P and P^ the poles of this line with respect to the circles

(p. 31). Draw RP, RP^ cutting the circles in ab, afi^. Then
aa^, bb^ are the points of contact of circles fulfilling the required

conditions, and the intersections of Aa, Ba^ and of Ab^ Bb^ givt-

the corresponding centres. The above circles each touch both

of the given circles externally or both internally since 8 is the

external centre of similitude of .4 and B (p. 45). If C, be joined
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to Z> or C to D^ cutting AB in the internal centre of similitude,

the poles of these lines give the points of contact of circles touch-

ing one of the given circles internally and the other externally

—

and if C be joined to J) the poles of this line give another pair of

circles touching both externally or both internally. One of these

latter is shewn in the fig. There are altogether 8 solutions.

Second Solution. This problem may also be solved by

dropping perpendiculars from A and B on the given line as AE,
BF^ bisecting the parts lying between the circles and the

lines as CE^ DF, in G and H and describing parabolas having

A and B as foci and G and H as vertices respectively (Prob. 36).

The first will necessarily be the locus of the centres of circles

touching the line and the circle A externally, and the second will

be the locus of the centres of circles touching the given line and

the circle B externally, and hence their intersection (0) will de-

termine the centre of a circle touching both circles externally

and the given line. Similarly if C^E be bisected in G^ and DJ^^

in //, and parabolas be described having A and B as foci and

G^, ZT, as vertices respectively, each of these curves will be the
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locus of centres of circles touching the line and the corresponding

given circle internally. Hence the points of intersection of

these four parabolas determine the centres of circles fulfilling

the conditions of the problem.

Oj gives internal contact with both circles,

0^ gives internal with A external with B,

O3 gives external or internal „ „

and so on.

The proof of the construction is obvious from the definition of

a parabola subsequently given.

Problem 34. To describe a circle to touch three given circles

{centres ABC, radii AD^ BE, CG respectively) (Fig. 34).

If the circle be required to touch the three either all externally

or all internally draw the external axis of similitude SS^ p. 45,

+—^.
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and take the poles PPJ^^ of this line with respect to each circle,

p. 31.

Find the radical centre R of the three circles (p. 45). Then

the lines RP, RP^j RPq cut the circles in the points ab, a^b^, ajb^j

in which the required circles must touch them : and the centre of

the circle touching all three externally is given by the intersection

of Aa, Ba^, Ca^, which three lines will meet in a point, and the

centre of the circle touching all three internally is given by the

intersection of Ab, £b^, Cb^.

A similar construction with the remaining three axes of

similitude, will determine the circles touching one internally and

the remaining two externally and vice versa.

There are altogether eight solutions.

Second solution. Join AP cutting the circles in B, D^, E and

jE',. Bisect DE in K and 7>,^, in if . BK will necessarily be
1 111 J

equal to AK^. With B and A as foci, and K, K^ as vertices de-

scribe an hyperbola (Prob. 89), the branch of which through K
will be the locus of the centres of circles touching circles A and B
externally, and the branch of which through K^ will be the locus

of centres of circles touching these circles internally. Similarly,

join BC cutting the corresponding circles in F^, F, G, G^. Bisect

FG in X, and Ffi^ in L^ and with C and B as foci, and L, L^ as

vertices, describe an hyperbola, the two branches of which will be

the loci of centres of circles touching circles B and G externally

and internally. The intersection of corresponding branches of the

two hyperbolas will therefore determine Oj, 0^, the centres of

circles touching the three given circles all externally or all in-

ternally.

AgaiQ bisecting DE^ in M and B^E in M^ and taking B, A
as foci and if, M^ as vertices, an hyperbola can be described the

branches of which will be the loci of centres of circles touching

circles A and B, the one internally and the other externally, and

the intersections of this hyperbola with that through L and L^ in

Og, 0^ will give centres of two more circles fulfilling the given con-

ditions. The hyperbola through N and N^
,
points corresponding to
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M, J/j, will determine 0^ and 0^, two additional centres corre-

sponding to O3, 0^ and lastly, by its intersection with the two

branches through i¥^ and M^ will determine 0^ and 0^.

The construction is obvious from the definition of the hyper-

bola subsequently given.

Problem 35. (Fig. 35.) To draw a circular arc through three

given points A, B, C without using the centre.

Let AB be greater than either ^C or BC. With centre A
and radius AB describe an arc BD meeting AC in D, and with

centre B and the same radius describe an arc AE meeting BC in

F. From D on each side of it set off on the arc any equal

distances 7)1, and set off the same distances from U on the arc

BA, similarly make 1)2 = E2, and so on. The line joining A to

any point above D will intersect the line joining B to the corre-

sponding point below E and vice versa in points (as F, G) on the

required arc.

Proof. It is easily seen that the angle AFB = angle AGB =r the

angle AGB, &c., and therefore AFCGB all lie on a circular arc.

4-2
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Examples on Chapter II.

1. Describe a circle to pass through two given points, P and

Pi, and to bisect the circumference of a given circle (centre 6',

radius GA).

(Draw PC and produce it to D so that PC .CD = AG\ The
circle through P, D, P^ fulfils required condition.)

2. Draw two circles cutting orthogonally, and shew by con-

struction that any line through the centre of either cutting both

circles is divided harmonically at the points of intersection.

3. Given the base AB oi 2^ triangle and the sum of the squares

of the sides AC^ + BC^^ draw the locus of the vertex.

(A circle, centre at E the middle point of AB^ and radius

4. Draw two circles (centres A and B) cutting orthogonally,

and draw their common chord meeting AB in C. Draw BE a

chord of the first circle passing through B^ and shew that a circle

can be described through ADEC.

5. The centre J. of a circle lies on another circle which cuts

the former in j5, C; ^i> is a chord of the latter circle meeting BC
in E, shew that the polar of D with respect to the first circle passes

through E.

o. At two fixed points A, B are drawn AC^ BD at right angles

to AB and on the same side of it, and of such magnitude that the

rectangle AC, BD is equal to the square on ^^ : prove that the

circles whose diameters are AC, BD will touch each other, and that

their point of contact will lie on a fixed circle.

(The circle on AB as diameter.)

7. With three given points A, B, G not lying in one straight

line as centres describe three circles which shall have three common

tangents.

(Bisect the angle BAG by AD meeting BC in D,

„ CBA by BE „ GA in E,

„ „ AGBhyCF „ AB in F,

then ED, DF, FE will be the required conmion tangents.;
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The question is obviously, given the centres of the escribed

circles of a triangle, to draw the triangle.

8. A and B are two given points on the same side of a given

straight line CD, which AB meets in C. Determine the points on

OB on each side of C at which AB subtends a greater angle than

at any other point on the same side.

(The points of contact of circles through A and B, and touching

CB. Prob. 21.)

9. A and B are two given points within a circle; and ^^ is

drawn and produced both ways so as to divide the whole circum-

ference into two arcs. Determine the point in each of these arcs

at which AB subtends the greatest angle.

(The points of contact of circles through A and B touching the

given circle. Prob. 27.)

10. Shew by construction that the circle which passes through

the middle points of the sides of any triangle ABC will pass through

the feet of the perpendiculars from A, B, on the opposite sides,

and if be the intersection of these perpendiculars, will also pass

through the middle points of OA, OB, 00. Shew also that it will

touch the inscribed and escribed circles of the triangle, and that its

radius is half that of the circumscribing circle.

(The circle is called the nine point circle.)

11. Given four points ABCD in a straight line taken in order.

Shew that the locus of the point P moving so that the angle

APB = the angle OPD, is a circle which may be constructed in

the following manner. Let AB be less than CD, and take h be-

tween and D so that hD = AB. The centre is on the given

straight line at a distance from A, such that

AO : AO :: AB : Oh,

and the radius (?•) is such that

r-=OB, 00=0A, OB.

1 2. Find the locus of a point such that the area of the triangle

whose angular points are the feet of the perpendiculars from it on

the three sides of a given triangle, has a constant area.

/^
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[It is a circle of radius p, concentric with the circle circum-

scribing the given triangle; and p is determined from the equation

where E is the radius of circumscribing circle, k is the given

constant area and A is the area of the given triangle. If 4:k< A,

p is given by the equation

(Salmon's Conic Sections, Chap, ix.)]

As a numerical example, draw any triangle ABO, and take

p : 7? :: Vf : 1,

shew that in this case k = - .

1 3. Given on a straight line four points in the order F,A,B,Q;

describe a circle passing through A and B such that tangents

drawn to it from F and Q may be parallel.

[With centres F and Q and radii JFA, FB, JQA, QB
respectively describe two circles. A circle passing through ^ and

B, and through the points of contact of a common tangent to these

circles will be the one required.]

14. Given a fixed circle and an external point 0. Draw the

tangent at any point F of the circle and complete the rectangle

which has OF for side and the tangent for diagonal. Shew that

the angular point opposite will lie on the polar of 0.

15. From the obtuse angle ^ of a triangle ABO draw a line

meeting the base in D so that AD shall be a mean proportional

between the segments of the base.

[Find the centre of the circle circumscribing ABO. On AG
as diameter describe a circle cutting the base in D, the required

point.]

16. Find on a given line AB a point A such that its polar

with respect to a given circle shall pass through a given point 0.

[Find F the pole of AB, then the pole of OF will lie on AB
i.e. will be the required point A.'\



EXAMPLES. 55

17. Given a point A, a line through it AB, and a circle centre

C; draw a triangle APB which shall be self-conjugate with

respect to the circle (p. 32).

Take P the pole of the given line and from C draw CB perpen-

dicular to AF meeting AB in B, APB will be the required

triangle ; for since B is on the polar of P the polar of ^ will pass

through P, and is perpendicular to GB, i.e. is the line AP.

18. Given a triangle APB obtuse-angled at P, to draw the

circle with respect to which the triangle shall be self-conjugate.

The centre (C) of the circle must evidently be the intersection

of the perpendiculars from the angular points on the opposite

sides. Let the perpendicular from P on AB meet it in i>. The

radius of the circle will be a mean proportional between CP
and CD.

19. Given a circle, describe a triangle which shall be self-

conjugate with respect thereto, and with its sides parallel to those

of a given triangle ahp^ obtuse-angled at p.

Through C the centre of the given circle draw CA perpendicu-

lar to hp, GB perpendicular to ap and CM perpendicular to ah.

The vertices of the required triangle will liej one on each of these

lines. Through any point m on CM draw dme perpendicular to

CM meeting CA in d and CB in e, and through d draw df perpen-

dicular to CB and Bf perpendicular to CA
; f will necessarily lie

on CM.

If D is the point on Cm through which the side of the required

triangle perpendicular to Cm passes :

—

where r is the radius of the given circle, i. e. CD is a mean pro-

portional between r and a length I determined by taking a fourth

proportional to Gf, Cm, and r ; for if

Gf : Cm '.'. T : I,

l = r^, and .'. CD\'^lr.



CHAPTER III.

THE PARABOLA.

If a line be drawn through the centre of a given circle perpen-

dicular to the plane of the circle, the surface generated by a

straight line which passes through a fixed point on the first line

and moves round the circumference of the circle is called a right

circular cone. It will be shewn in Chap. ix. that the intersection

of this surface with any plane must be one or other of the follow-

ing:—a point, a pair of straight lines, a circle, a parabola, an

ellipse or an hyperbola. The construction of these last three

curves from their definition as the sections of a cone seems ct

priori to be the natural way of treating the subject; but the fact

is they are more easily constructed from some of their known

plane properties, and therefore, deferring the consideration of

them as lying on the surface of a solid, each will at first be defined

as the locus of a point moving in a plane so that its distance from

a fixed point is always in a constant ratio to its distance from a

fixed line, both point and line being in the plane of motion.

The fixed point is called the focus, and the fixed line the

directrix.

In the parabola the ratio is one of equality, i.e. the distance

from the fixed point is always equal to the distance from the

fixed line.

In the ellipse the ratio is one of less inequality, i. e. the dis-

tance from the fixed point is always less than the distance from

the fixed line.

In the hyperbola the ratio is one of greater inequality, i. e. the
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distance from the fixed point is always greater than the distance

from the fixed line.

The eccentricity of a conic is the numerical value of this ratio.

A parabola can generally be drawn to satisfy four geometrical

conditions, and four conditions are in general necessary and suffi-

cient to determine the curve. Thus an infinite number of para-

bolas can be drawn to pass through three given points or to touch

three given lines, or to pass through two points and touch a given

line, or to fulfil any three similar conditions, and in each case a

fourth condition must be added to make the exact solution possi-

ble. At the same time four conditions may sometimes lead to

more than one solution, just as, more circles than one can fre-

quently be drawn satisfying three given conditions; and occasion-

ally some limitation as to the position of the points or lines given

as data of the problem, is necessary to enable a real curve to be

drawn.

If the focus is given in any particular problem, this is equiva-

lent to two geometrical conditions, and therefore in general only

two others can be fulfilled, i.e. given the focus and two points

through which the curve is to pass, the problem is completely

determinate and a parabola cannot be drawn to have a given point

as focus and to pass through any three random points. The direc-

trix being given is also equivalent to two geometrical conditions,

and therefore along with it, only two others can be fulfilled, such

as, e. g. to pass through a given point and touch a given line, or to

touch two given lines, or to touch a given line at a given point,

&c.

Problem 36. (Fig. 36.) To draw a parabola thefocus Fand
the directrix MX being given.

Draw FX from F perpendicular to MX. Bisect FX in A
and A will be a point in the curve. With F as centre and any
radius greater than FA (as F 3) draw a circular arc D^D^ set off

from A towards i^ a distance J 3' equal to AZ, and at 3' erect a

perpendicular to FX meeting the circular arc in DD^. These will

be points in the curve, and similarly drawing any number of arcs
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with F as centre and setting off from A towards F^ distances

equal to the distances of the arcs beyond -4, and erecting per-

Fig.36

pendiculars to FX at these points meeting the corresponding

arcs, any number of points on the curve may be determined and

the curve drawn through the points thus obtained.

The construction is obvious : at any point as P draw FN per-

pendicular to AX meeting it in N\ then the distance FP from the

focus is to be equal to FM the perpendicular distance from the

directrix. But FF= FA + the distance of the arc beyond A \ and

PM-XN=XA + the same distance.

.\FP =PM since FA^AX.

(See also the next problem.)

Def. From the construction the curve is evidently symmetri-

cal about FX which is called ilie axis. The point A where the

curve cuts the axis is called the vertex', and any line parallel to the

axis is called a diameter of the curve.
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The parabola consists of one infinite branch. Like the focus

and the directrix, the vertex and axis are each equivalent to two

conditious in the construction, but it should be noticed that certain

pairs of these lines and points given together are equivalent not to

four but only to three conditions. This apparent anomaly may
be thus explained. Suppose directrix and axis are given, these

are two lines at right angles to each other and hence the direction

of either is implicitly involved in that of the other, and thus in-

stead of the two conditions of position and direction being given

independently along with the second line, one only, namely posi-

tion, is really given, and the two lines together are therefore

equivalent to three conditions only. Similarly focus and axis, or

vertex and axis make only three conditions since the position of

the axis is partly involved in that of the focus or of the vertex.

To draw a tangent at any point.

P and D (fig. 36) being any two points on the curve, if the

line through PD meet the directrix in R and DK is parallel to

PM, then
FP : FD :: PM : DK

:: PR : DR
by similar triangles, and .-. FR bisects the exterior angle between

FP and FD (Euc. vi. Prop. A). Hence if the point D move up

to and coincide with P so that the chord PD becomes the tangent

at P (Def. p. 30), in which case FD of course coincides with

FP^ the line FS drawn from the focus to the point in which the

tangent at P meets the directrix, must be perpendicular to FP.

The triangle SFP is therefore equal and similar to the triangle

SMP. Hence the tangent at any point P of a parabola bisects the

angle between the focal distance FP and the perpendicular PMfrom
P on the directrix. It can therefore be drawn either by bisecting

the angle FPM or by making FT on the axis equal to FP, and

joining PT ; for in this case the angle jPPI^= angle FTP^ which

is equal to the alternate angle TPM, PM, FT being parallel.

Def. The perpendicular PN from P on the axis is called the

ordinate of P. The double ordinate through the focus is called
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the latus-rectum of the curve, and its length is always equal to

iAF. It is sometimes called the principal parameter of the

curve. Since

FP =PM=XN^FT and FA^AX,
XN-AX^FT-FA,

i.e. AT^AN or iy^=2, AN.

Def. The line NT is called the sub-tangent at the point P.

The line PG perpendicular to the tangent at P is called the

normal at P.

It has been shewn that the tangent bisects the angle FPM,
.

'

. PG bisects the angle FPL where Z is a point on MP produced,

i. e. the angle FPG - angle LPG = angle PGF,

and .-. FG=FP=PM=XN,
.'. FG-FN=XN-FN,

i.e. A'G = FX = 2AF.

Def. The line NG is called the sub-normal of the point P.

The tangent at the vertex is perpendicular to the axis, as is

obvious from the symmetry of the curve, and a perpendicular

from the focus oti any tangent intersects it and the tangent at the

vertex in the same point.

The focus and directrix being given, tangents to the curve can

be drawn from an external point Q thus (fig. 36). With centre F
and radius equal to the distance of Q from the directrix describe

a circle ; draw tangents to it from Q, and join F to the points of

contact a, a^, producing the lines to meet the curve in VV^. QV,

QV^ will be tangents, for, if VM^ be the perpendicular on the

directrix, and the diameter at Q meet the directrix in X^ and VQ
meet it in S^,

YM^ : QX, :: VS, : Q.S,,

or FY : Fa :: YS^ : Q,S^,

.-. FS^ is parallel to aQ, but aQ is perpendicular to FY, .'. FS^ is

perpendicular to FY, and .-. YS^ or YQ is a tangent through the

point Q ; similarly for F, Q.
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A tangent to a parabola parallel to a given line may be drawn

by constructing the angle GFP = twice the angle which the line

makes with the axis, so determining the point of contact F.

Problem 37. (Fig. 37.) To draw a parabola, the vertex A, the

axis AJ}^ and a point P on the curve being given.

This might be solved by first finding the focus and proceeding

as in the last problem. It can however be solved independently

Fig.37.

without using circular arcs, and the method is evidently applicable

to the last problem after any one point on the curve has been found.

Draw the tangent at the vertex and a diameter through P
meeting it in M. Divide 2fP into any number of equal parts

(say four), and AM into the same number. Then diameters

through the several points on AM will meet lines joining A to the

corresponding points on MP (counting from A in the first case

and from M in the second) in points of the curve as £, C, D. As
the curve recedes from the axis the points found get more and

more distant from each other (compare C to D and D to P), but,

if desirable, points can be interpolated between any two points

already found by subdividing the corresponding spaces on MP and
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AM. In the figure points are thus interpolated between C and D
and between D and P. The curve can be carried beyond F by

carrying on the divisions on the two lines as in the figure.

The other half of the curve can be put in by symmetry.

The tangent at any point I) can be drawn by drawing the

ordinate DN^, and making AT on the axis equal to A^^, on the

other side of the vertex; DT will be the tangent at B, as has

already been shewn.

The focus F is found by drawing the normal at any point B,

bisecting the sub-normal NG and setting off AF=^NG.
The construction for the curve depends on the fact that if a

diameter be drawn through the centre point of any chord, the

tangents at the extremities of the chord intersect on the diameter,

and the curve cuts the diameter at the centre point between the

chord and the intersection of the tangents. Thus ^P is a chord,

the diameter through 2 (on AM) will intersect it in its centre

point F, Al is the tangent at A and therefore the tangent at F
will also pass through 2, and C, which bisects V2 since

6'2 : CV :: J/2 : F2

will be a point on the curve.

Similarly B may be shewn to be on the curve, since it bisects

the diameter between 1 and the centre point of the chord AO, and

D may be shewn to be on the curve as bisecting the diameter

between (73 the tangent at C, and the centre point of the chord

OF.

Problem 38. (Fig. 37.) To draw a parabola the focus F,

the axis FN^ and a point F on the curve being given.

The directrix and consequently the vertex can at once be de-

termined by drawing FM parallel to the given axis, measuring

along it a length FL equal to FF and from L dropping a

perpendicular on the axis intersecting it in X. This per-

pendicular is, of course, the directrix, and the vertex bisects

FX. The curve can then be drawn by either of the preceding

methods.
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Problem 39. (Fig. 38.) To draw a curve formed of cir-

cular arcs approximating to a parabola thefocus F, and vertex A
being given.

The following method depends on the fact that in the

parabola the sub-normal is constant and equal to twice AF.

Fig.38.

Draw the axis AFN and on it take ^1 equal to FA, and draw
any ordinates as BB^^ GC\, J^D^, &c. With 1 as centre de-

scribe an arc through A, extending as far as the centre or-

dinate between A and BB^, from L the foot of ordinate BB^

make Z2 equal to twice AF, and with centre 2 and radius to

the point where arc through A meets the centre ordinate be-

tween A and B describe an arc extending to half-way between

B and C
',
from M the foot of ordinate CG^ make J/3 equal to

twice AF and with centre 3 and radius to the point where

arc through B has been stopped describe an arc extending to

half way between C and D. Similarly from the foot of the

ordinate DD^ measure a distance on the axis equal to twice AF
so determining the centre (4) for an arc through D, and con-

tinue the process for any number of successive ordinates. It

will be seen that the centres are determined by measuring a

constant distance from the foot of the successive ordinates
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equal to the known constant length of the sub-normal in the

parabola (p. 60), but that the radius of each arc depends

entirely on the arc previously drawn, so that the curve must

be commenced from the vertex. Each successive arc extends

some distance on each side of the ordinate from which its

centre is determined. It is convenient, though not essential,

to commence with ordinates dividing AF into equal parts, and

tolerably close together, and as the curve recedes from the

vertex and cuts the ordinates more nearly at right angles the

distance between them may be increased. Carefully drawn, the

method gives a remarkably close approximation to the real

form of the curve, as may be seen by comparing the dis-

tance of the point P in the figure from F with the distance

NX^ its perpendicular distance from the directrix. The half dis-

tance between the ordinates to which each successive arc has to

extend, and which furnishes the starting point for the next arc

can generally be estimated with quite sufficient accuracy by the eye.

Problem 40. (Fig. 39.) To draw a parabola, thefocus F, and

two points A and B on the curve being given.
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With centre A and radius AF describe a circle CFD, and

with centre B and radius BF describe a circle G^FD^. Draw
common tangents CC^ and DD^ to the two circles. (Prob. 31.)

These will be the directrices of two parabolas fulfilling the

given conditions, and the curves may be drawn by any of the

preceding methods.

The construction is obvious.

Problem 41. (Fig. 40.) 7'o draw a parabola, the focus F, a

point A on the curve, and a tangent YT being given.

The point of contact of the tangent is not given, as this

would be a fifth condition. With centre A and radius AF

Fig.40.

describe a circle FM, and on FA as diameter describe a circle

EFE^, the centre being G. From F drop a perpendicular FY
on the given tangent, and from Y draw tangents YE, YE^ to

the given circle. Join FE, FE^ and produce them to meet the

larger circle in M, M^ , then MX, M^X^ drawn parallel to YE,

YE^ respectively will be the directrices of two parabolas fulfilling

the given conditions.

Proof It is known that the perpendicular from the focus

on a tangent passes through the point of intersection of that

E. 5



66 GIVEN FOCUS, POINT AND TANGENT.

tangent aud the tangent at the vertex, hence F is a point on the

tangent at the vertex.

The directrix must evidently touch the circle MFM and

must meet the perpendicular on it from the focus at a point

double the distance from F that it is from the tangent at the

vertex.

In the triangles AEF, AEM^ AF = AM, AE is common
and the angles AEF, AEM are equal, each being a right

angle

;

.-. FE^EM and .-. AM is parallel to EC, since FC=GA\
but EG is perpendicular to YE, and therefore MX which is

parallel to YE is perpendicular to MA, and therefore touches

the circle MFM^.

Draw FX perpendicular to MX and let YE meet it in F,

then FV : FX :: FE : FM;

.-. FX=2FV, since FM=2FE.

Hence two parallel lines have been found, one of which touches

the circle MFM^, while the other passes through F and bisects

the distance between F and the first.

Problem 42. (Fig. 41.) To draw a parabola, thefocus F and

two tangents BT, RT^ being given.

(The problem is impossible if the given lines are parallel, i.e.

they must always intersect in some point B; and F must not lie

on either of them.)

Join EF, and at F on each side of RF construct an angle

RET, RFT^ equal to 1\RS, the angle between the given lines

alternate wifch that in which F is situated. T and T^ will be the

points of contact of the given tangents and the problem is reduced

to Problem 40. As in that problem two lines can be drawn touch-

ing circles with centres T, 1\ and radii TF, ^'^i^" respectively, which

will be the directrices of parabolas having F as focus and passing

through Tand '1\, but only one of these will in addition touch the

given lines at those points.
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Proof. The construction depends on the well-known property

of the parabola, that the exterior angle between any two tangents is

equal to the angle subtended at the focus, by the segment of either

between the 2)oint of intersection and the 2^oint of contact. For if

be any point in ^i^ produced, the angle TFO = twice angle FTE,
since (Prob. 36) the angle FTE =- angle which TR makes with the

axis. Similarly angle ^ji^6> = twice angle FT^S^;

.: angle T^FO - angle ^i^0 = twice (angle FT^S^ - angle FTR),

i.e. TFT^ = twice angle UBT= twice angle T,RS.

Through F draw FJD parallel to the directrix meeting TS in 2),

then FD = FS, since TS bisects the angle between FS and the

directrix. Let FE meet the directrix in K.

By similar triangles

KS : FD :: KE : FE,

KS : KE :: FS : FE\
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and similarly, if S^ denote the intersection of BT^ with directrix,

KS^ : KB :: FS^ : FR,

.', KS : KS, :: FS : FS^.

Hence the angles KFS, KFS^ are either equal or supplemen-

tary. In the figure they are supplementary, i.e. angle KFS= angle

RFS^.

But angle RFT is the complement of angle KFS
and „ EFT^ „ „ „ XFS^,

.-. angle BFT =3iiiglG RFT^,

and .-. each of them = J angle ^^i^I", - angle T^RS,

which proves the property above referred to.

Second Solution.

The problem may also be solved by dropping perpendiculars

from the focus on the given tangents, their points of intersection

determining the tangent at the vertex.

Problem 43. (Fig. 39.) To draw a pa/rabola, the directrix

CC^ and two points A and B on the curve being given.

This is merely the converse of Prob. 40. With the given

points as centres and with radii equal to the distance of each

from the given directrix describe arcs intersecting in F and F^y

either of which may be taken as the focus.

Problem 44. (Pig. 40.) To draw a parabola, the directrix

MX, a point A on the curve and a tangent YT being given.

With centre A describe a circle MFM^ touching MX. This

will of course be a locus of the focus. At S, the point of inter-

section of the given tangent and directrix, construct an angle TSF
equal to the angle between MS and TS produced, i.e. = the angle

MSK. SF will be another locus, i.e. the focus will be at F, the

intersection of the line and circle. The line SF will evidently

meet the circle again beyond A and this point of intersection will

be the focus of a second parabola fulfilling the given conditions,

the point of contact of tangent and the point A being on the same

side of the axis.
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Proof. That the circle is a locus of the focus needs no demon-

stration: that the line is a locus of the focus is proved, since it has

been shewn (Prob. 36) that FS is always perpendicular to the line

joining F to the point of contact of the tangent through S, and

that therefore the two triangles FST, LST, where TL is perpendi-

cular to MS, are equal and similar in all respects; and that therefore

angle 7^^^^= angle LST wangle MSK.

Problem 45. (Fig. 41.) To draw a parabola, the directrix

KX and tivo tangents RT, RT^ being given.

At S, the point of intersection of RT with KX, construct an

angle TSF equal to the angle TSK. As in the last problem SF

FIg.4Ia.

•-—— d,

will be a locus of the focus. Similarly, if RT^ meet the directrix

in aS'j, construct an angle T^S^F equal to the angle T^S^X, and S^F
will be a second locus, therefore the intersection of these Hues deter-

mines F, the focus. In the figure the directrix and the tangent

RT^ do not intersect within any reasonable distance, but the line

through their intersection making the same angle with the tangent

as the tangent does with the directrix can easily be drawn, as shewn
in fig. 41a. Let ab, cd be any two converging lines; from any two

points (a, b) on the one, drop perpendiculars ac, bd on the other

and produce them: make ce= ca, df^ db, then obviously a6 and ef

will pass through the same point on cd and will be equally inclined

thereto.

Problem 46. (Fig. 42.) To draw a parabola, the axis AN and
two points P, Q on the curve being given.

[The two points must not be at equal distances from the axis
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whether on the same or on opposite sides of it, nor must they be

on the same perpendicular to the axis.]

Draw the ordinates PiY, QN^, of which let PN be the greater;

the vertex will then obviously lie on the same side of N as N^

Fig.42.

and beyond it. On NP produced make Pn equal to QN^, and on PN
makePm also equal to QNy Then Nm is evidently equal toPN—QN^.
On the axis make No=Nm and on the same side of iVmake Np^-NP.

Through o draw ox parallel to p?i meeting PN in a?, and through

P draw PA parallel to N^x meeting the axis in A. A will be the

vertex of the required parabola and the problem is reduced to

Prob. 37.

Proof. It is a well-known property in the parabola that

PN\'^ = iAF . AN where F is the focus, PN an ordinate and A the

vertex. __
.-. PN\' : QNy' :: AN : AN^,

PN\'-QNi' : P^\' :: AN-AN, : AN,

(PN+QN,){PN-QN;} : PN\' :: NN, : AN,

AN PN
NN, " {pn+qn;){pn-qn;)

or

i.e

or PN
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If a fourth proportional be taken to

PN, PN+QN,, and PN-QN^,

i. e. if a length I be determined such that

PN : PN ^ QN^ :: PN- QN^ : I,

the above equation may be written

AN PF
~NN, ~

I
'

i.e. ^iV is a fourth proportional to such length I, NN^ and PN.
But this is really what has been done, for

Np : Nn :: No : Nx,

i.e. PN : PN + QN^ :: PN-QN^ : Nx,

i. e. Nx is the required length I,

and Nx : NN^ :: PN : AN.

That Pi^|'= 4^i^. AN may be shewn thus: Join PA and let

it meet the directrix in E. Join EF (F being the focus) and pro-

duce it to meet the diameter through P in L, while the diameter

meets the directrix in M. Then since FA = AX, PL = PM= PF,

for ML is parallel to FX, therefore the circle on ML as diameter

goes through F, and therefore the angles MFL, MFE are both

right angles and

EX. XM^ FX\^=^AF\%

also AN '. AX :: PN : EX by similar triangles,

PN\^ : EX. MX
PiV'h : 4:AF\\

.: PNl'^AAF.AN, since AF-^AX.

Problem 47. (Fig. 43.) To draw a parabola, the axis AN, a

point P on the curve and a tangent OT being given.

[The tangent must not be parallel to the axis, and the point

must lie within the angle formed by the tangent and a sym-

metrical line on the other side of the axis.]

Draw the ordinate PN and let it meet the given tangent in 0.

Make NP^ on the other side of the axis equal to PN, and P^ will
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by symmetry be a point on the curve. Find a mean proportional

between OP and OP^ (Prob. 5) and set off its length OE on OP

Fig.43.

from towards the axis. Draw through E a parallel to the axis

meeting the tangent in ^. ^ is the point of contact of such

tangent. Draw QN^, the ordinate of Q^ and the vertex, A^ will

bisect N^T, the subtangent of Q (Prob. 36). The problem is there-

fore again reduced to Prob. 37.

Proof. That the diameter through Q, the point of contact of

the given tangent, meets OP in E such that OE^ = OP . OP^, may

be shewn thus. Let PAP^ be a parabola and OQ a tangent at Q.

Take any point a on the given tangent, and draw any two chords

as a&c, ah'P^ and let q and q^ be the vertices of the corresponding

diameters, and let the diameter through q meet hem. v. through

a draw ad parallel to qv meeting the parabola in d, and draw du

parallel to he meeting its diameter \xiu.
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Then ah .ac^cw^" -hv\^ (Euc. ii. 6)

= 4:Fq . [qu — qv) (p. 71) if i^ is the focus,

= iFq . ad,

and similarly ah' . aP = 4:Fq^ . ad,

.'. ah.ac : ah' .aP :: Fq : Fq^,

i. e. the ratio of the rectangles depends only on the positions of q

and 5 J
, and is independent of the position of the point a.

If the lines ahc, ah'P move parallel to themselves until they

become the tangents at q and q^, we shall then obtain, if these

tangents intersect in ^^

t^\' : i^q^l' • Fq : Fq^,

and .*. ah.ac : ah' .aP :: t^q^ : t^q^^,

but the tangent aQ may be regarded as a chord cutting the para-

bola in two coincident points, and therefore if the tangent at q
meet aQ in t and vq meet it in m

ah.ac : aQ^" :: 'qt\' : tQ\^

:: ~qi\^ : 'tm\\

Also if Qk is the diameter at Q meeting ac in k, by similar

triangles

qt : tm :: ak : a^,

.-. ah.ac : a^|^ ::
"^1^

: ^\\
or ah . ac = ak\ ^,

which justifies the construction.

Problem 48. (Fig. 44.) To draw a parabola, the axis UN and

two ta/ngents PT, QT heing given.

[The point T must not be on the axis.]

If from the point U in which either of the tangents (as QT)

cuts the axis, a line UR be drawn making the same angle with

the axis as QT but on the opposite side of it, this will, by sym-

metry, be a third tangent to the curve. Let it meet the other

tangent {PT) in V. Describe a circle through the three points

T, U, V (Prob. 20), cutting the axis in F. F will be the focus of
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the required parabola, and FU will be the distance from F of

the point of contact of either of the tangents QU, RU. With

\ Fig.44.

^"-X

\ ^jlt>.

>-..-

/ \
y^Q. ^-^^

\^r """i><?>

centre F and radius FU describe an arc cutting UR in R, with

centre R and the same radius describe a circle, and the directrix

will touch this circle and is of course perpendicular to the axis.

The problem is therefore reduced to Prob. 36.

Proof. The fact that the circle through the points of inter-

section of three tangents is a locus of the focus is generally true,

and is not confined to the case of two tangents meeting on the

axis. For draw any tangent pah meeting the parabola in p, the

two given tangents in a and h and the axis in c, and let Th meet

the axis in t. It has been shewn (Prob. 42) that the angle aht

is equal to either of the angles pFb, PFh^ also the angle Fpc = the

angle Fcp = the angle bet,

.'. the remaining angle Fba of the triangle Fpb,

i. e. if two tangents intersect in b tJm angle which either makes with

Fb is equal to the angle which the other makes with the axis.
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Similarly, since QT^ FT intersect in T, the angle FTa is eqvial

to the angle Ftb^ i.e. htc,

. '. angle Fha - angle FTa^

or a circle goes round aFTh. (Euc. iii. 27.)

Problem 49. (Fig. 45.) To draw a parabola, two tangents A7\

BT, and their points of contact A and B being given.

First method. Divide AT, BT into any (the same) number

of equal parts ; the lines joining opposite points on the two tan-

Fig.4-5.

gents, (i.e. supposing each divided into 8 parts, the lines joining

1 on ^^ to 7' on BT, 2 on ^7" to 6' on BT, and so on,) will be

tangents to the curve, which can easily be drawn to touch them

all. Or points on the curve may be found successively thus.

Bisect AT, BT in the points 4, 4'. The line joining these points

is a tangent to the curve at its centre point, i. e. bisect 4, 4' in i*

and P is a point on the curve. Similarly the line joining the

point of bisection (6) of 4^4 and the point of bisection of (m) 4P
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will be a tangent to the curve at its centre point, and the line

joining the point of bisection (6) of i'B and the point of bisection

(n) of 4'P will be a tangent to the curve at its centre point, and

the method of bisecting the tangents successively may be con-

tinued. It is obvious that the point m found by bisecting 4P
is identical with the point of intersection of the line 44' and

the line joining 6 on -4 to 2' on B. The focus may be found

as the intersection of the circle circumscribing the triangle formed

by any three tangents w4th that circumscribing the triangle

formed by any other three, as e.g. the triangles 47^4' and 5:7^3',

and the directrix may then be determined by Prob. 40.

Second method. The focus may be determined independently,

without drawing additional tangents, thus. Join AJ3, bisect it

in V and join VT. VT will be a diameter of the curve, and

the curve will pass through P the centre point of YT. Bisect

YT in P. Find a third proportional to YT, A Y (Prob. 5), the

length of which will be equal to 2FP if F is the focus. [This

may conveniently be done by making Tv on TY equal to AY
and drawing a line through v parallel to J. F to meet AT. The

length (l) of this line will be the required third proportional,

since TF: YA :: Tv or YA : L]

Describe a circle with centre F and radius equal to ^l which

will be a locus of the focus, and the directrix will be a tangent

MX to this circle perpendicular to the diameter TY. Then F
may be determined as the intersection of a circle, with centre A
and radius AM, the distance of A from the directrix, and the

previously drawn circle.

Third method. It has been shewn (Prob. 41) that the exterior

angle between any two tangents is equal to the angle which either

subtends at the focus. Therefore if on -4 2^ as chord a segment of

a circle be described on the side towards B, containing an angle

AFT equal to the angle ATK (Prob. 30), where K is on BT
produced, this segment will be a locus of the focus. Similarly if

a segment containing the same angle be described on BT towards

A, it will be a second locus and the focus will be at the inter-
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section of the two, and the directrix may be determined by

Prob. 40.

Proof. That the line joining the intersection of tangents to

a parabola to the point of bisection of the chord joining their

points of contact', is a diameter may be shewn thus. Let AB be

two points on a parabola, AT^ BT tangents at the points, F the

focus and AN^ BN^ perpendiculars on the directrix meeting NTN^
parallel to the directrix in N and N^. Join FA, FB and draw

Ta perpendicular to FA and Th perpendicular to FB. Then the

angle ^^a = angle TAN,

.'. TN=Ta, and similarly TN^ = Tb.

But Ta ~ Th, since it has been shewn that angle TFA »= angle

TFB. (Prob. 42.)

.-. TN^TF^.

If TV be drawn parallel to AN or BN^, i.e. to the axis, meeting

AB in F, it will make AY-. VB v. TN i TN^, i.e. AV^VB,,
or the diameter through T bisects AB. Since TN= TN^ it follows

that any straight line through T terminated by the diameters

A and B is bisected in T and more generally that every line

through the point of intersection of two tangents terminated by

diameters through the extremities of the corresponding chord of

contact, is bisected by such point of intersection.

That P, the point in which the curve meets TV, bisects TV
and that the tangent at P is parallel to AB maybe shewn thus:

—

Since AN, TV and BN^ are parallel lines, it follows that every

line meeting the three is bisected by :Z F"; and therefore if the

tangent at the point P be drawn meeting AN yd. G and BN in

G^, PG = PG^ ; but if it meets AT, BT in 4 and 4', it follows as

above that P4 = 4(y, P^' = 4:'G^, and therefore Gi, 4P, Pi' and

4'(xj are all equal, which is only possible if GPG^ bisects TV and

is parallel to AB.

Hence Ti - 4^, Ti' = i'B and 44' - ^AB.

To shew that il F is a mean proportional between VT (or 2PV)
and 2FP, draw FU parallel to ^^ or to 44', meeting PV in U,
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then the angle FUT = angle 4Pf7,

= angle i^4^, (Prob. 48),

and therefore the circle which it is known can be drawn (Prob.

48) through i^4^4', will pass through U.

Hence, AV being twice P4,

~AV\' - 4P4| ^ = 4.PU. PT. (Euc. iii. 35.)

But the angle roT= angle FP^\ since FU i^ parallel to P4',

= angle i'PT = angle FUP,

and therefore FP = PU; also PT=PV,

therefore AV\' = ^FP . PV.

Definition. A chord through the focus parallel to the tan-

gent at P is called the parameter of the diameter through P, and

it follows from the above that its length is always equal to 4:FP.

(See definition of latus-rectum, p. 60.)

Problem 50. (Fig. 46.) To draw a 2yctrabola, three tangents,

TU, TV, UV and the point of contact P of one of them TTJ being

Describe a circle through TUV (Prob. 20), then F the focus

Fig.46.

1
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lies on this circle (Prob. 48). On FT describe a segment of a

circle containing an angle equal to the exterior angle between the

tangents meeting in T, i.e. the angle VTY. (Prob. 30.) This

segment will be a second locus of the focus (Prob. 42), which will

therefore be at the intersection of the segment with the previously

drawn circle.

If P (as in the figure) lies beyond TJ the segment must be

described on the side of TP towards F : but if P lies between T
and ?7, the segment must be described on the other side of TP^

since the focus can never lie inside the triangle TJJY and the

angle it contains must be the angle TJTY, since that would then

be the exterior angle between the tangents.

[The centre for the segment may conveniently be found by

drawing TO perpendicular to YT to meet the perpendicular

bisector of PT in (7.]

Construct the angle UFQ equal to the angle PFU. Q will

be the point of contact of UY, and the direction of the axis is

determined since it is parallel to the diameter joining U to the

centre point of PQ. (Prob. 49.) It can then of course be drawn

through F.

Lastly, the vertex may be found since it is the centre point

between N the foot of the ordinate from P and the point in which

PT cuts the axis (p. 60.)

The point of contact R, of TY, may of course be determined

without drawing the curve by making the angle ^i^jR= angle TFP.

The construction is evident from preceding problems.

Problem 51. (Fig. 47.) To draw a parabola, three points

A, B, C, on the curve, and the direction of the axis, as BD, being

given.

Draw lines through AB, BC, CA, and let BD parallel to the

given direction of axis meet AC in B. Bisect AG in F and draw

FL parallel to BB to meet BC in L. Draw LG parallel to AG
to meet BB in G. Join AG and it will cut FL in R, the vertex

of the diameter through F.
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If HK~HE, AK will be the tangent at A and the focus may

be found by taking HU such that A^^^4.HE .HU, i.e. taking

Fig.47.

KxT. „._.4..___ Hi'-_.\-4—

2HU2i third proportional to 'iHE, AE; drawing UF parallel to AG
and making HF=HU. [If we take a third proportional to EKy
AE it will be 2HU. This may conveniently be done by making

Ea = EA and drawing au parallel to AK. Eu will be the

required third proportional. The problem reduces to Prob. -40.]

Proof. To shew thatH is the vertex of the diameter through

E. Draw BN parallel to ^C meeting EH in N. BN = ED,

and DA.DC = AE\ -' - ED^ = AE'- BJV' (Euc. ii. 5)

;

but in any parabola

AE' = 4..FH.HE,

and BN'^4..FH.HN,

. '. AE" - BN'= ^FR. EN = 4:FE. BI),

.'. DA.DC '.AE' :: BD -, HE
-,

but in the figure

BD -EL :: DC : CE or EL
BD.AE
DG
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AE :EH y.AD . DG,

iiAD'.EL,
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DC '

i.e. DA.DC : AE' :: BD : HE,

or HE has been determined of the proper length.

Problem 52. (Fig. 48.) To draw a parabola, three tangents

UT, TV, VU and the direction of the axis, as AN, being given.

Through T draw MTM^ perpendicular to the given direction

of the axis. It is a known property of the parabola that if the

Fig.48

portion of any tangent UV intercepted between two others UT,

TV\)G projected on any line parallel to the directrix as on MM^
by lines Um, Vm^ perpendicular to MM^ , then any other tangent

to the curve between the points of contact of TU, TV will have

fche same projected length mm^ on the axis. If therefore TM,
TM^ be each made equal to mm^ lines through M and M^ perpen-

dicular to MM^ will intersect TU, TV respectively in Q and Q^

,

E. 6
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the points of contact of TU and TV. The problem is therefore

reduced to Prob. 49, or it may be completed by utilising other

known properties of the curve already demonstrated, e.g.—making

the angle TQF equal to angle TQM, QF is a locus of the focus

;

similarly Q^F (the angle TQ^F being made equal to angle TQ^M^
is a second locus, and F, the focus, is therefore the intersection of

QF, Q,F.

Again, the circle round UT, TV, VU is known to be a locus

of the focus (Prob. 48), and the angle UFQ is known to be equal

to the angle TUV. Prob. 42. Therefore, if on UQ a segment of

a circle be described containing an angle equal to the angle TUV
(Prob. 30), the intersection of this segment with the above circle

will determine F. Any number of tangents to the curve between

Q and Q^ can be at once drawn without previously determining

the focus by measuring the length mm^ anywhere on MM^ between

M and M^ and from the extremities drawing perpendiculars to

MM^ to meet TQ, TQ^. Any pair of such points being joined

will of course give a tangent to the curve.

Proof. That the projected length on MM^ of the portion of

any tangent intercepted between TQ, TQ^ is constant may be

shewn thus. Let R be the point of contact of UV and let the

diameter through R meet MM^ in t. Draw Qn, Q^n^ parallel to

UV meeting tR in n and n^. Then UR = ^Qn (Prob. 49) and

therefore tm = ^ tM. Similarly tm^ = J tM^

.

Therefore mm^ = J il/J/^ = constant, since MM^ is the projection

of the chord of contact of two fixed tangents.

Problem 53. (Fig. 49.) To draw a parabola, two points A, B
on the curve and two tangents TL, TM being given.

[The tangents must not be parallel and the points must not be

on opposite sides of either tangent.]

Draw a line through A and B meeting the given tangents in L
and M. Take LG on LM a mean proportional between LA and

LB (Prob. 5), and MD on ML a mean proportional between MB
and MA. Bisect CD in E. TE will be the direction of the axis
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of a parabola fulfilling the required conditions and CQ, DQ^ drawn

parallel to TE to meet the given tangents will determine Q and Q^ ,

their points of contact. The problem therefore reduces to Prob. 49.

or may be completed similarly to the preceding. Since LC and

MD may be set off on either side of L and Jf, b& LC^, MD^ in the

figure, the point of bisection E^ of G^D^ determines TE^ the

direction of the axis of a second parabola fulfilling the required

conditions. Further, either C^D or CD^ may also be taken as the

segment to be bisected, and there are consequently ybwr solutions.

The proof depends entirely on the property of the parabola

already referred to in Prob. 47.

6—2
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Problem 54. (Fig. 50.) To draw a'parahola^ three points A^ B,

G, and a tangent LM being given.

[The points must all be on the same side of the tangent.]

Join two pairs of the given points as AB, BC and let the joining

lines cut the given tangent in L and M. On LB take LD a mean

Flg.50.

proportional between LA and LB (Prob. 5), and on MB take ME
a mean proportional between MC and MB. Then by the property

of the parabola already referred to (Prob. 47) a line through B
parallel to the axis of a parabola through A and B and touching

LM, will pass through the point of contact of LM with such

parabola ; and a line through E parallel to the axis of a parabola

through B and C and touching LM will pass through the point of

contact of LM with such parabola. Hence the line joining DE
will be parallel to the axis of a parabola which can be described

through AB and G to touch the given line, and its intersection

with LM will determine the point of contact of such parabola.

Since LD, ME can be set oflf on either side of L and M (as

LD^, ME^, similarly the line joining D^ and E^ will be parallel to

the axis of a second parabola fulfilling the conditions of the

problem ; its point of contact being P : and similarly DE^ and

D^E will determine the direction of the axes of two more such

parabolas. The line DE^ determines P^ as the point of contact.
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Hence there are four solutions, and the problem in either case

is reduced to Prob. 51. In the fig. two of the four parabolas are

drawn, viz. those whose axes are parallel to D^E^ and DE^ respec-

tively; the necessary construction in each case being indicated.

It might be considered at first sight that if a mean proportional

were taken between the segments NA, NC of the line joining AG,

the third pair of the given points, cutting the given tangent in N,

two additional points would be obtained which, being joined to

either D, D^, E or E^, would give the directions of axes of ad-

ditional parabolas. This however is not so, since it will be found

that the points thus obtained coincide with the intersections of

ED, E^D^j and of BE^y ED^ respectively, and therefore no more

solutions than the four already mentioned are obtainable.

Problem 55. (Fig. 51.) To draw a parabola, a point A on

the curve and three tangents BG, GD, DB being given.

[No two of the tangents must be parallel, and the given point

must not lie within the triangle formed by the tangents, nor so

that any one tangent lies between it and either of the remaining

tangents.]

Let G be the vertex of the triangle formed by the tangents,

which cannot be reached from the given point without crossing

BD. Through B draw BE parallel to GB and through D draw DE
parallel to GB, meeting BE in E. Through G draw GK parallel

to BD and join EA meeting GK in K, GB in Z, and BD in M.

First let A lie between E and K ; complete the harmonic

range KAEA^, i.e. find a point A^ beyond E on KL such that

KA : KA^ :: AE : EA^ (Prob. 12.)

[Through A, K draw Aa, Ka any two lines intersecting in a,

produce aA to a^ making Aa^ = Aa. Join a^E and produce it to

meet Ka in b. Draw bA^ parallel to aA and it will intersect KA
in the required point.]

Then A^ will be a point on the curve and the problem reduces

to Prob. 53.

Second, let the given point lie beyond E as A^, then, com-

pleting the harmonic range A^EAK (Prob. 11), A will be a
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second point on the curve and the problem again reduces to

Prob. 53.

Fig.5l.

^

In completing the figure, one of the tangents employed should

be the one situated as BD in the figure, because it is necessary to

take a mean proportional between the segments of the chord AA^

included between the tangent and the curve, i.e. to take a mean

proportional between MA and MA^: but it will be found that

MEy MK are each equal to such mean proportional, and therefore

E and K can be at once used without any further construction.

If GB is the second tangent made use of, a mean proportional LG
or LG^ must be determined between LA^ LA^ (Prob. 5), and

two of the four parabolas which can be constructed by means of pairs

of the points Ky E, G, G^ to pass through A and A^ and to touch

BLj BD will also touch CD. There is an ambiguity as to which

particular pairs of points must be selected, but this can easily

be settled by trial in any given case. In the fig. it will be found

that the pairs E, G and -£', G^ are those required, and that
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the pairs K, G and K, G^ give parabolas which while touching

BG, DB, do not touch CD.

There are in general two solutions.

Proof. It i? shewn at the end of Chap, iv. among the har-

monic properties of conies, that the three diagonals of a complete

quadrilateral circumscribing a conic form a self-conjugate triangle.

It is easily proved analytically that every parabola touches the line

at infinity, i.e. has one tangent situated at an altogether infinite

distance. Now BE and DE meet CD, CB respectively in in-

finitely distant points, pass, that is, through the points in which

this infinitely distant tangent meets CB and CD, they are there-

fore diagonals of the circumscribing quadrilateral formed by the

three given and the infinitely distant tangent, and its third

diagonal must be the line CK since this meets BD in infinitely

distant points. E is therefore the pole of the line CK, and con-

versely the polar of K passes through E.

But a straight line drawn through any point is divided har-

monically by the point, the curve and the polar of the point

(see end of Chap, iv.), therefore A^ must be a point on the

curve.

Problem 56. (Fig. 52.) To draw a parabola to pass through

four given points A, B, (7, D.

[The points must not lie at the angles of a parallelogram, and

must be so situated, that being joined in' pairs, the two points

of each pair are both on the same side, or on opposite sides of the

point of intersection of the joining line*.]

Join BC, AD to meet in E. Through C draw CK parallel to

AB meeting AD in K. Take a mean proportional EG between

ED and EK (Prob. 5) and CG will be the direction of the axis

of the required parabola. The Problem is therefore reduced to

Prob. 51.

Since the distance EG may be set ofi" on either side of E as

EG^, the line CG^ will be the direction of the axis of a second

parabola fulfilling the given conditions.

t*
Puckle's Conic Sections. Fourth Edition, Art. 313, Ex. 1.

¥
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Froof. From the construction

EB \EA :: EC : EK,

\ ng.52.

r^ .-fi- 4^-

and EK : EG :: EG -.ED;

.-, EB :EA ::EC :^,
or EG' : EC :: ED.EA : EB,

which may be written

EG' : EC :: ED.EA : EC .EB,

a relation 'which is known to hold in the parabola. (Besant's

Geom. Conies, 3rd Ed., Art. 213.)

Problem 57. (Fig. 63.) To draw a parabola to touch four

given lines AB, BC, CD, DA, no two of which are parallel.

Let CD meet ^jB in -^ and AD meet BC in G.

The circle circumscribing the triangle formed by any three

of the lines will be a locus of the focus (Prob. 48), which may
therefore be determined as the intersection of the circles circum-

scribing any two of such triangles. In the figure, the circles

circumscribing BCE and ABG are drawn. They intersect in F,
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the focus. The tangent at the vertex can be at once determined,

by dropping perpendiculars from F on any two of the given

Fig.63,

tangents as FT, FY^ perpendiculars on AB, BG ; Y and Y^ are

points on the tangent at the vertex. (Notes to Problem 36.)

Problem 58. (Fig. 54.) To determine the centre of curvature

at any point P of a given parabola.

[A circle can be drawn through any three points of a curve,

but cannot in general be drawn through a greater number taken

arbitrarily. If a circle be drawn through three points of a curve

and the outside points be conceived to gradually move up to the

centre one, the circle in the limiting position it assumes when

the points approach indefinitely near to each other so as ultimately

to coincide, is called the circle of curvature at the point, and its

centre is called the centre of curvature. The circle is said to

pass through three consecutive points of the curve, and obviously

has closer contact with it at the point than any other circle can

L
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have, since it is not possible to draw a circle through fo%ir con-

secutive points. The centre of curvature will necessarily lie on

the normal at the given point, and any circle having its centre

on the normal and passing through the point really passes through

two consecutive points of the curve, since curve and circle have a

common tangent.]

F is the focus, PT the tangent, and PG the normal at the

point P of the given parabola.

Join PF and produce it to K^ making FK equal to FP. Draw

KO perpendicular to PK to intersect the normal at P in 0.

will be the centre of curvature at P.

Fig.54.

If the circle of curvature cuts the parabola again in Q^ it will

be found that PQ, the common chord, makes the same angle with

the axis as PT, the tangent, does, and that

pq = ^PT.

The focal chord FR of the circle of curvature is known to be

in length equal to 4i^P, and it is on this known value of the

focal chord that the construction depends.

The chord iPY) of the circle of curvature through P parallel
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to the axis is also equal to 4#P, since this chord and PR are

equally inclined to the tangent at P.

The length PO of the radius of curvature may also be deter-

mined by taking a fourth proportional to FY, FP and 2FPy where

FY is the perpendicular from F on the tangent at P.

The locus of the centre of curvature of any curve is called the

Evolute of that curve ; and the original curve, when considered

with respect to its evolute, is called an Involute. The chain-

dotted curve in Fig. 54 is the evolute of the portion of the parabola

lying above the axis.

Normals to the curve are tangents to the evolute ; and since

the focal radius of curvature at the vertex = 2 . AF^ the evolute

must touch the axis at a point = 2 . ^F from A.

If the ordinate of the point of intersection of the curve and

evolute be drawn meeting the axis in iV, it will be found that

AN —d) . AF = twice the latus rectum.

The evolute of the parabola is a curve known as the semi-

cubical parabola.

Problem 59. To draw a parabola to touch two given circlesy

the axis hei^g the line joining the centres.

Let G be the centre of the larger circle, c that of the smaller,

R and r their radii. Determine a fourth proportional to 2 (7c,

R ^r, and R-r. From G towards c set off on Gc a length GN
equal to this fourth proportional, i.e. a length such that

GN :R-r ::R + r : 2Gg.

Draw JVP perpendicular to Cc meeting the circle in P, and P
will be the required point of contact of the curve. The problem

therefore reduces to Prob. 47, the given point being also the point

of contact of the given tangent.
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Examples on Chaptek III.

1. Draw a parabola, the focus F, the position of the axis

{FT) and a tangent {PT) being given.

(From F draw FY perpendicular to PT meeting it in Y, and

from Y draw YA perpendicular to FT meeting it in ^. A will

be the vertex of the required parabola.)

2. Draw a parabola, the focus F, a tangent PT and the

length of the latus rectum being given.

(With centre F and radius equal to one-fourth of the given

latus rectum, describe a circle ; from F draw FY perpendicular to

the given tangent meeting it in F, and from Y draw tangents to

the circle. Either point of contact will be the vertex of the re-

quired parabola (two solutions). The given tangent must not cut

the circle.)

3. Draw a parabola, two points (P, Q), the tangent at one of

them (PT), and the direction of the axis being given.

(Bisect PQ in V, draw VT parallel to given direction of axis

meeting the given tangent in T ; QT is the tangent at Q, and

problem reduces to Prob. 49.)

4. Draw a parabola, the vertex (P) of a diameter, and a cor-

responding double ordinate QQ^ being given.

(Bisect QQ^ in V. PFwill be a diameter; on VP produced

make PT=PV. TQ and TQ^ are the tangents at Q and Q^y and

problem reduces to Prob. 49.)

5. Draw the locus of the foci of the parabolas which have a

common vertex (A) and a common tangent PT.

(The parabola which has A for vertex, the perpendicular on

P2^ as axis, and the distance of PT from A as latus rectum.)

6. Inscribe in a given parabola a triangle having its sides

parallel to three given straight lines AB, BC, CA.

(Draw BD parallel to the axis of the parabola meeting AC in
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B and GE parallel to the axis meeting AB in E. Draw a tangent

to the parabola parallel to BE (p. 61) and from P its point of

contact draw FQ, PR parallel to AB, AC meeting the parabola

again in Q, R. PQR will be the required triangle.)

7. Draw a parabola with a given focus, and to touch a given

circle at a given point.

[Let F be the focus, F the point on the circle, draw FT the

tangent, and construct an angle TFM—\hQ angle FFT. The axis

of the required parabola will be parallel to PJ/.]

8. Shew that if tangents be drawn to a parabola from any

point 0, and a circle be described with the focus as centre, passing

through and cutting the tangents in F and Q, FQ will be per-

pendicular to the axis, and its distance from is twice its distance

from the vertex.

9. Draw a circle to touch a parabola in P, and to pass through

the focus. Let it meet the parabola again in Q and Q^ : draw a

focal chord parallel to the tangent at P, and shew that the circle

on this chord as diameter will pass through Q, Q^ , and that the

focal chord and QQ^ will intersect on the directrix.

10. Draw any right-angled triangle BEF (E being the right

angle). Describe a parabola with focus F and to touch EB at Z),

and shew "^at if any circle be described to pass through B and F
and cutting EB produced in F, the tangent to it at F will also be

a tangent to the parabola.

11. Given two lines PR, QR, and a point F on one of them,

shew that any point on the circumference of the circle passing

through P and R and touching QR may be taken as the focus of

a parabola passing through F and to which the given lines shall

be tangents.

12. AJB IB the diameter of a circle; with A as focus and any

point on the semi-circumference of which A is the centre as foot of

directrix describe a parabola, and shew that it will touch the

diameter perpendicular to AB.
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13. If APC be a sector, of a circle of which the radius CA is

fixed, and a circle be described touching the radii CA, CP and the

arc AP, shew that the locus of the centre of this circle is a parabola

and describe it.

14. Given a segment of a circle, describe the parabola which

is the locus of the centres of the circles inscribed in it.

15. If from a point P of a circle PC be drawn to the centre,

and R be the middle point of the chord PQ drawn pai*allel to a

fixed diameter ACB, describe the locus of the intersection of CP,

AR, and shew that it is a parabola.

16. Describe a parabola with latus rectum = 2*7 units, and in

it draw a series of parallel chords inclined at 60° to the axis.

Shew that the locus of the point which divides each chord into

segments containing a constant rectangle = 4 sq. units in area, is

a parabola, the axis of which coincides with the axis of the original

parabola and with the latus rectum = 2*1 units.

17. Draw a parabola to touch the three sides of a given

triangle, one of them at its middle point ; and shew that the per-

pendiculars drawn from the angles of the triangle upon any-

tangent to the parabola are in harmonical progression.

18. Given two unequal circles (centres (x and ^, radii R and r)

touching each other externally, from G the centre of the larger

R — T
circle make GR on Gg towards g = . Draw NP perpen-

2

dicular to Gg meeting the circle in P and describe a pai-abola

with Gg as axis and to touch the circle in P (Prob. 47), and

shew that it will also touch the smaller circle.

19. Given a point F and two straight lines intersecting in ;

describe a parabola with F as focus and to touch the given lines

(Prob. 42) ; and shew that if any circle be described passing

through and F and meeting the lines in P and Q, PQ will be a

tangent to the parabola.
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20. Draw the parabola which is the locus of the centre of a

circle passing through a given point and cutting off a constant

intercept on a given straight line.

(The point is the focus and a perpendicular to the line the

axis.)

21. Given four tangents to a parabola, shew that the directrix

[is the radical axis of the system of circles described on the diagonals

[of the quadrilateral as diameters.

22. Given the focus F^ a point P on the curve and a point

on the directrix, describe the parabola.

[Tangents from L to the circle described with centre P and

radius PF are the directrices of two parabolas fulfilling required

[conditions.]

23. Given a focus F^ a tangent PT^ and a point L on the

directrix, describe the parabola.

[From F draw a perpendicular FY to PT meeting it in F;

)roduce FY to / and make Yf = FY : / is a second point on the

pdirectrix.]

24. Given three tangents to a parabola and a point on the

[directrix, draw the curve.

[The ortho-centre of the triangle formed by the tangents is a

md ^oint on the directrix.]



CHAPTER IV.

THE ELLIPSE.

The ellipse has already been defined (p. 56) as the locus of a
point which moves in a plane so that its distance from a fixed

point in the plane is always in a constant ratio, less than unity,

to its distance from a fixed line in the plane. The corresponding

definition in the case of the parabola furnishes immediately the

best condition for the geometrical construction of that curve, but

this is not so with the ellipse. The ellipse can be more easily

constructed geometrically from a property which will be shewn

immediately to be involved in the above definition, and in virtue of

which the curve may be defined as follows :

—

Dep. The ellipse is the locus of a fixed point on a line of

constant length moving so that its extremities are always on two

fixed straight lines perpendicular to each other.

In Fig. 55 let ACA ^, BCB^ be two straight lines intersecting

each other at right angles in C. If a length (as ah) be marked ofi"

on the smooth edge of a slip of paper, and the slip be moved

round so that the point a is always on the line BCB^ and the

point h on AGA^, then any point as P on the edge of the paper

will trace out an ellipse. When the edge of the slip coincides

with AGA^ the tracing point will evidently be at a distance GA
from G equal to aP, and when it coincides with BGB^ the tracing

point will be at a distance GB from G equal to hP. By this

method of construction the curve is evidently symmetrical about

both the lines AGA^ and BGB^^ i.e. if C^^ be made equal to

C-4, A^ will be a point on the curve, and if GB^ be made eqttal
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to CB, B^ will be a point on the curve. It is moreover obvious

that ACA^ is the longest and BCB^ the shortest line which can

be drawn through G and terminated by the curve.

Def. The line ACA^ is called the major axis, the line BCB^
the 'minor axis, the point C the centre, and the points A, A^ vertices

of the curve.

From B, the extremity of the minor axis, as centre with

radius CA (the semi-major axis), describe arcs cutting the major

axis in F and F^; through B draw B3I parallel to CA, from F
draw FM perpendicular to BF meeting B3f in M, and draw 3fX
perpendicular to CA meeting it in X.

F will be the focus and 3IX the directrix (see definition, page

56).

From the similar triangles FB3f, CFB,

FB : BM :: CF : CA :: CA : CX,

since FB = CA and BM--CX;
.-. CF : CA-CF :: CA : CX-CA^

i.e. CF : FA :: CA : AX,

or FA : AX :: CF : CA :: FB : BM;
also since CF : CA :: CA : CX,

.*. CA-CF : CF+CA :: CX-CA : CA + CX,

or FA : FA, :: AX :A,X,

i.e. i FA : AX :: FA, : A,X;

therefore A, B and A, are points satisfying the original definition.

Def. a circle described on the major axis as diameter is

called the auxiliary circle.

Through any point F on the ellipse draw the ordinate PX
(perpendicular to major axis) meeting the axis in N and the

auxiliary circle in Q. Since QX is parallel to BC and CQ = aP,

.'. aP is parallel to CQ,

.-. PX : QN :: Ph : QC

:: BC : AC,

or PX\' : QX\' :: BC\' : AC^';
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but it is known that in the circle

.'. Wf : AN.NA, :: BC^ : AC\\

This is a very important property of the ellipse and will now be

shewn to result from assuming the ratio FF : NX to be con-

stant.

Through P draw PA, PA^ meeting the directrix in E and //.

Join FH and draw PLK perpeudicular to the directrix meeting

FH in L and the directrix in K.

Since PK is parallel to A^X,

.'. PL : PK :: FA, : A,X
:: FA : AX.

But by supposition FP : PK :: FA : AX,

therefore FP = PL, and the angle LFP :^ FLP = the alternate

angle LFX

;

i.e. FL bisects the angle PFX;

similarly FF bisects the angle between FX and PF produced,

therefore the angle EFH is a right angle, since it is made up of

the two angles EFX and HFX.

By the similar triangles PAX, A EX,
PN : AN :: EX : AX,

also PX : A.X :: BX : A,X,

.-. PX\' : AX.XA, :: EX. EX : AX.A.X
:: FX^ : AX. A,X,

since EFH is a right angle

;

Le. PN^ is to AN . XA, in a constant ratio.

Hence taking PN coincident with BC, in which case

AN=NA, = AC,

BCf : IC,^ :: FX(' : AX.A.X,

and .. PN' : AN.NA, :: EC : AC\

This of course shews that the point P is the same whether deter-

mined as the locus of a fixed point on a line of constant length
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sliding between two fixed rectangular axes or as tlie locus of

a point which moves so that its distance from a fixed point (^F) is

in a constant ratio to its distance from a fixed line [MX), i.e. the

two definitions of the ellipse already given are really identical.

From the symmetry of the curve it is evident that F^ is a second

focus and M^X^ a second directrix.

Five geometrical conditions are generally necessary to deter-

mine an ellipse, and the ellipse shares with the hyperbola the

property of satisfying five geometrical conditions. One or other

of these curves can generally be drawn to pass through five given

points or to touch five given straight lines, or to pass through two

given points and touch three given lines, or to fulfil any five

similar conditions. Which curve will satisfy the given conditions

depends of course upon the relative positions of the given points

and lines, and the necessary limitations will be noticed in discuss-

ing the separate problems. As in the case of the parabola the

giving of certain points and lines is really equivalent in each case

to the giving of two geometrical conditions; of these may be

mentioned the centre, the foci, and the axes.

The eccentricity of the ellipse is (p. 57) the numerical value of

the above fixed ratio ; it is generally denoted by e and calling

CA=a
and CB = h,

its value is eJ-^H,
a

as is evident from the similar triangles FBM, FOB.

Problem 60. (Fig. 55.) To describe an ellijyse having given

axes AA^, BB^.

First Method. Draw two lines perpendicular to each other

intersecting in C. Set off CA^ CA^ each equal to ^AA^, and CB^

CB^ each equal to -| BB^. Take a smooth edged slip of paper and

mark off on it Pa = CA and Fh = CB (a and h may be on the

same or on opposite sides of F). Keep the point a on the minor

axis and the point b on the major axis and (as already demon-

7—2
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strated) the point P will be on the curve. Any number of points

may thus be determined. In the lower portion of the figure the

Fig.55.

lengths CA, CB are shewn set off on opposite sides of P, and this

arrangement is the better when the lengths AA^, J55j are nearly

equal, as in that case, when set off" on the same side of P, the

distance ah is too short to determine the direction of Pa with

accuracy.

Second Method (fig. 56). Arrange the axes as above, and on

each as diameter describe a circle. Draw any number of radii as

CI, C2, &c. From the extremities of the radii of the circle on the

major axis draw lines parallel to the minor axis, and from the ends

of the radii of the circle on the minor axis draw lines parallel to the

major axis. The lines drawn from corresponding points (as 7P,

TP) will intersect on the required ellipse, which can therefore

be drawn through the points thus determined.

The proof is at once obvious by drawing through any point P
on the curve a line parallel to the coiTespouding radius (77,

cutting the axes in h and a. Then

Ca P7 is a parallelogram, and .*. Pa-C7 = CA,

Cb PT is a parallelogram, and .-. P6 = C7' = CB,
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so that the points found by this conHruc'ti6ii ' are identical with

those found by the first.

Third Method (fig. 56). Determine the foci;—i.e. from the end

of the minor axis {B^ as centre describe an arc with radius = CA

cutting AA^m. F and F^. Stick a pin firmly through the paper

at each of the three points B^^ F^ F^^ and tie a fine thread or piece

of silk lightly round these pins, keeping it down in contact with

the paper while doing so. Take out the pin at By and keeping

the string stretched with the point of a pencil, the curve may be

drawn by moving the pencil round the circuit. This method is

theoretically perfect, but it fails in practice to give a very exact

result chiefly owing to the extensibility of the string and the

impossibility of keeping it at a constant tension. It is difficult

moreover to tie up the loop of the string to exactly the proper

length and to keep the string continually in contact with the

paper. Its use therefore cannot be recommended, but it illustrates

a very important property of the ellipse, viz. That the sum of the

focal distances of any 'point on the ellipse is constant and equal to

the major axis, which may be proved thus :
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In fig. 55, P is atiy point on the ellipse,

FF : FK :: FA : ^X;
also F^F : FK, :: F^A : AX,,

.. FP + FF,: FK+PA\:: FA + F,A : AX + AX,
: XX, :: AA, : XX„

i.e. FF + FF, = AA,.

To draw the tangent at any point of the curve.

If Q, and Q^ (fig. 5o) be any two adjacent points of the curve,

and the straight line drawn through them meets a directrix in

f draw QJc,, QJc^ perpendicular to the directrix and draw fF^ to

the corresponding focus.

Then F^Q, : F^Q,^ :: QJc, : QJc^

:: QJ : QJ,
therefore F^f bisects the exterior angle between Q,F, and Q F,.

(Euc. VI. Prop. A.)

Hence, exactly as in the case of the parabola (p. 59), when

(?2 moves up to and coincides with Q, so that the line through

Q1Q2 becomes the tangent at Q, (Def. p. 30), the line F,f becomes

perpendicular to the line joining the focus to the point of contact

of the tangent. The tangent at any point Q, of an ellipse may
therefore be drawn by drawing a line from Q, to either focus,

erecting a perpendicular to this line at the focus meeting tlie

directrix, and drawing the tangent through this point and the

proposed point of contact. It may also be drawn by using the

known property that the normal bisects the angle between the focal

distances, which may be proved thus. In fig. 56 Q is any point of

the curve, i^ is a focus, and FS is perpendicular to QF meeting the

corresponding directrix in S so that QS is the tangent at Q.

Draw the normal QG perpendicular to QS meeting the major axis

in G, and draw FD perpendicular to the major axis meeting QS in

J9, and QK perpendicular to the directrix. Join FK.

The angle QFG is the complement of QFD 2iwd. is therefore

equal to the angle SFD ; the angle FQG is the complement of

SQF and is therefore equal to the angle FSD^ and therefore the

triangle QFG is similar to the triangle SFD.
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Hence FG : FQ :: FD : FS (1).

But since 8FQ^ SKQ are right angles, a circle can be described

round FSKQ, and therefore the angle FSQ = the angle FKQ.

Also the angle ^T^'^r^the angle FQK since GF is parallel

to QK, therefore the angle FQK = SFD, therefore the triangle SFD
is similar to the triangle KQF, and

i<

1

bi

Hence SQT being the tangent the angle SQF is equal to the

angle TQF^ or the tangent is equally inclined to the focal distances

of the point of co7itact. It follows that if F^Q be produced to L
the tangent bisects the angle FQL.

Problem 61. To describe approximately by means of circular

arcs, an ellipse having given axes.

First Method (fig. 57). CA, GB, CA^, CB^ are the semi-axes.

Draw A^M parallel to GB and BM parallel to CA meeting in M.

.'. FD : FS :: FQ : QK :: FA : AX,

.-. FG : FQ :: FA : AX from (1);

similarly F,G : F,Q :: FA : AX,

and .-. FG : Ffi :: FQ : F,Q,

or the angle FQF^ is bisected by the normal QG. (Euc. VI. 3.)

Fig.57. 1^'p^

^
3

V'05

L—-= M

//' \°

KV
c

/

'O,

Bisect A^M in D. Join BD and draw MB^ cutting BD in P. P
will be a point on the true ellipse with axes AA^ and BB^, Bisect
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PB in E. Draw EO^ perpendicular to PB meeting BB^ in 0^, and

with centre 0^ and radius to ^ or P draw the arc PBF meeting in

i^a line through 0^ parallel to AAy Draw FA and produce it to

meet the arc in G. Draw GO^ cutting ^^j in 0^, and with centre

0^ and radius Ofi draw an arc which will be found to pass

through A, since by the similar triangles GO^A, GO^F,

GO^ : AO^ :: GO, : FO,,

i.e. Ofi=O^A.

The two arcs AG and GB form one quadrant of the approximate

ellipse and the remainder can of course be put in by symmetry,

taking centres 0^ and 0^ in corresponding positions to those

already obtained.

Second Method (fig. 58). Draw AM, ^i/ parallel respectively

to BG, AG, meetiug in M. Draw MO, perpendicular to AB,

Fig.58.

cutting BB, in 0, and AA^ in 0^. Find a mean proportional

{BD) between GA and CB. (This may conveniently be done by

making Be on MB produced equal to BG, and describing a semi-

circle on Mc cutting BC in D.) Make AE equal to BD. With
centres 0,, 0^ and radii 0,D, O^E describe arcs intersecting in 0^.

Then 0^, 0^, 0.^ are points which can be used as centres for
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successive arcs of the required curve. The arc struck from Oi will

pass through B and extend of course to F on the line Ofi^, that

from 0^ will pass through F and extend to G on 0^0.^, and that

from Og will start from G and pass through A. Thus each

quadrant will consist of three arcs, and the centres for the

other three quadrants can be taken by symmetry.

The arc struck with centre 0^ and radius Ofi will evidently

pass through A, since GO^ = FO^ = BD = AE and

GO^ = GO^-Ofi^ = GO^-O^E = AE-O^E-^AO^.

It will be shewn hereafter that the points 0^ , 0^ are the centres of

curvature at B and A respectively ; the circular arcs struck with

these centres through B and A coincide therefore more nearly with

the true ellipse at those points than any others which can be

drawn.

Definition. Any line drawn through the centre of the

ellipse and terminated both ways by the curve is called a dia-

meter, and a semi-diameter CD parallel to the tangent at the

extremity of a semi-diameter GP is said to be conjugate to CP.

Every diameter is evidently bisected by the centre.

The following important properties of the ellipse should be

carefully noticed.

Prop. 1. Tangents drawn at the extremities of any chord sub-

tend equal angles at the focus.

Let PP^ (fig. 69) be any chord of an ellipse, and let the

tangents at P and P^ meet in T. Let F be the focus, and from T
draw TM, TM^ perpendicular to FP, FP^, and draw TN perpen-

dicular to the directrix XS. Let the tangent at P, meet the

directrix in S, then FS is perpendicular to FP^ and therefore

parallel to TM^,

.-. FM^ :FP^ ::ST:SP^

:: TI^ : P^K,

where P^K is perpendicular to the directrix

;

.-. FM^ : TN y.FP^ .PJC

:: FA -.AX,
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Similarly
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FM: TN::FA : AX,

Fig.59.

Q q

^rii^

T,

V-'M,
^c \

Hence in the right-angled triangles TFM, TFM^, FM= FM^ and

TF is common, therefore the triangles are equal in all respects,

ie. the angle TFP equals the angle TFP^ and TM= TM^.

Prop. 2. A diameter bisects all chords parallel to the tangents

at its extremities, i.e. all chords parallel to its conjugate.

Let QQ^ (fig. 59) be any chord of an ellipse meeting the

directrix in R and let be the centre point of QQ^ and F^ the

focus. Join F^Q, Ffi^ and draw -F^F perpendicular to QQ^, then

FQ\' -tq;]' ='QY\' - QJ\"

= '2QQ^^0Y (1);

but since Q and Qi are on the ellipse

F,Q : Ffi, :: QE : Q^E,

F,Q'-F^Q^' ^ QR'-Qfi' ^ WE. QQ^
' ' T\Q\' 'QE\' Q^'

*

therefore from (1) and (2),

(2);

0E~ Qe\ "yljr

where ^jlFis drawn through the vertex parallel to QE, meeting

the directrix in W j i.e. OY : OE in a constant ratio.
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Take any second chord qq^ parallel to QQ^^ meeting T^^Fin Y^

and the directrix in i?j, let 0^ be its centre point, then since

OY Y—^ = .^^ , it follows that the line 00 must pass through the
OK O^Jti^

point T^ in which F^ Y meets the directrix and is therefore fixed

for all chords parallel to QQ^. This line T^O will pass through

the centre (i.e. will be a diameter), because the chord through

the centre parallel to QQ^ is bisected by the centre and also by

Tfi. Let T^O meet the ellipse in P^ and suppose qq^ to move

parallel to itself till it approaches and ultimately passes through

Pg, Since O^q = O^q^ throughout the motion the points g, q^ will

evidently approach P^ simultaneously, and in the limiting position

qq^ will be the tangent at P^. It follows that if P^ be the other

extremity of the diameter through P^^ the tangent at P^ is

parallel to QQ^^ and therefore to the tangent at P^.

Corollary. The 'perpendicular on the tangent at any point

from thefocus meets the corresponding diameter in the directrix.

Prop. 3. If PCP^ he a diameter and Q VQy^ a chord parallel

to the tangent at P and meeting PP^ in V, and if the tangent at Q
meet PP, produced in T, then GV . CT=UF\^ (fig. 60).

Let TQ meet the tangents at P and P^ in R and r, and F
being a focus draw RN perpendicular to the focal distance FP

Tn.

Fig.60. mK

\

^"-5^^^ 7^
> /
4

x^^'^/

-^

meeting FP in JV, rn perperpendicular to FP^ meeting it in

and RM, rm perpendicular to the focal distance FQ.



108 CONJUGATE DIAMETERS.

Let F^ be the other focus and join F^P, F,P^.

Since CF^CF,, CP^CP,, and the angle i^CP = the angle

F^CP^, therefore the triangles FGP, F^CP^ are equal in all respects,

and therefore the angle C7Pi^=the angle GP^F^
;

similarly CPF, = the angle CP,F,

and therefore the whole angle i^Pi^'j^the whole angle F.P^F
But the tangents are equally inclined to the focal distances, and

therefore also the angle FPP = the angle F^P^r,

.'. the angle FPP = the angle FP,r,

i.e. the right-angled triangles RPN, rP{ti are similar, and there-

fore RP : rP, :: RN : rn.

But RN= RM and rn = rm (Prop. 1),

But

or CT-CP

.'. CT . CV=--CP\

Cor. 1. Since CFand GP are the same for the point (^d the

tangent at Q^ passes through T or the tangents at the extremities

of any chord intersect on the diameter which bisects that chord.

Gor. 2. Since TP, : TP :: P,V : VP, it follows that TPVp is

harmonically divided (p. 13).

The above proposition has been proved generally; it therefore

holds when the diameter GP coincides with the major axis. Let

Pj be any point on an ellipse (fig. 56) and draw the ordinate P^j^

perpendicular to GA, producing it to meet the auxiliary circle in

jt), and draw the tangent at P, meeting GA in T, then

G^.GT^GA' = G2A

and .'. (7/»P is a right angle,

and therefore pT is a tangent at p to the auxiliary circle : hence

RP : rP, :: RM : rm

RQ : rQ.

TR : Tr :: RP : rP,,

TP : TP, :: PY : PJ,
: GT+GP :: GP-GV : GP + PV,

.-. GT : GP :: GP : CV,



THE ELLIPSE. 109

Cor. 3. The tangents at the extremities of corresponding

ordinates of the ellipse and auxiliary circle intersect on the 7najor

axis.

Draw CD (fig. b&) the diameter conjugate to CP^, dDn the

corresponding ordinate meeting the auxiliary circle in d, and the

tangents at D and d meeting the major axis in t.

Then F,N : pN :: BC : AC '.: Dn : dn,

and P,N -.NT.-.Dn: Cn,

since CD is parallel to P^T,

.'. pN : NT y. dn : Cn,

and therefore Cd is parallel to pT, i.e. pCd is a right angle, or

Cor. 4. Conjugate diaineters in the ellipse project into dia-

meters at right angles to each other in the auxiliary circle.

If the tangent at d meet the major axis in t, since dt is

parallel to Cj), Dt (the tangent at D) will be parallel to CF^, or,

Cor. 5. If CD he conjugate to CP^ , CP^ is also conjugate to CD.

Since pCd is a right angle, the angle dCn is the complement

of the angle pCN, and therefore equals the angle CpN, therefore

the triangles CpN^ dCn are equal in all respects, i.e. Cn-pN
and dn = CN,

CP,^ = P, N' + CN' and CD' = Cif + Dn\
^ .'. Cl\\' + UD\'^CN\'+^\'^I\N\'+~M\'

^CA\' + P;Nf + Dn^ (1).

But P,N : pN :: Dn : dn :: JBC : AC,

.'. P,N: Dn r.pN -.dn,

. •. P,N' + Dn' : P,N' y. pN' + dn' : pN',

and pN' + d7i' = AC';

or P^N' + Dn' {Jv\' :: JBC : AC,

.-. P;N\' + Dn' = JBC\

Therefore, from (1)

Cor. 6. CPr- + CD? =^~CA\ ' +C1B,\
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Prop. 4. If PCP^^ DGD^ be conjugate diameters and QVhe
drawn parallel to CD meeting the ellipse in Q and CF in F, then

QV : PV. VP, :: CD' : CP\

[^F is called an ordinate of the diameter PCP^.]

Let the tangent at Q (fig. 60) meet CP, CD in T and t, and

draw ^t/" parallel to CT meeting CD in U.

Then CV. CT= CP' and CU . Ct = CD' (Prop. 3).

But CU=QV,
.-. CD' : CP' :: QV.Ct : CV.CT

:: Wr : C'F. Fr.

Since C^ : (?F :: Cr : Vl\

and CF. Fl^^CF. Cr-CF^
= CP^-CF^ = PF. FP„

.-. ^F' : PF. VP, :: CD' : (7P^

Problem G2. Given a pair of conjugate diameters to determine

the axes (fig. 61).

F«g.6I,
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PCP^, BCD^ are tlie given conjugate diameters. Tlirongh D
draw Q^DQ perpendicular to CP. Make DQ and DQ^ each equal

to CP and draw the lines C(?, CQ^. Then the major axis ACA^
bisects the angle QCQ^ and the minor axis (BCB^) is of course

a line through G perpendicular to ACA^. The axes are therefore

determined in direction. To determine them in magnitude :

—

On Qfi on opposite sides of C make Cq and Cq^ each equal to CQ,

then Q^q will be the length of the major axis AA^ and Q^q^ will

be the length of the minor BB^. Bisect each of these lines and

CA, CB will be given respectively.

Proof. Since CQ--Cq and BC bisects the angle QGq, therefore a,

the point in which Qq cuts BC, bisects Qq and therefore Da is parallel

to Q^q and = -^ = CA. Similarly h the point in which Qq^ meets

CA bisects Qq^ and Dh is parallel to Q^q and = —]y
- = CB, and

D, h, a are in the same straight line. Hence D is a point on

the ellipse described with CA, CB as semi-axes. Also DQ is

the normal at D, since Q is the instantaneous centre of rotation

for the line ab moving along the axes. Therefore the tangent at D
will be parallel to CP. Lastly, to shew that P will also be on the

curve,

CQ'-^CQ,' = 2CD' + 2DQ' (Euc. ii. 12 and 13),

= 2(CD'+CP').

But CQ, = AC + BC,

and * CQ = AC-BC,
.-. CQ' + CQ^' = 2{AC' + BC%
.-. CD'+CP' = AC' + BC%

a known property of conjugate diameters. (See Cor. 6, p. 109.)

Problem 63. 2^o describe an ellipse having given conjugate

diameters PCP^ , DCD^

.

This might of course be done by the last problem : the curve

may however be drawn inde{)endently, though none of the follow-

ing constructions give any information as to the position of the

axes, foci, or directrices.
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First Method. By contimioiis motion (fig. 62). From C draw
Ca perpendicular to CD and through P draw Pa parallel tc»

CD meeting Ca in a

On CP make Cd=GD and on Ca make Cp = CP. Through

a draw ah parallel to pd meeting GP in h. If a triangle equal

and similar to the triangle ahC be moved round so that the

angle a is always on the diameter DCD^ and the angle h on PCP
,

the angle C will be on the curve. The most convenient way of

proceeding practically is to cut a strip of paper of breadth equal

to the perpendicular distance between C and ah. The points

a and h can then be marked off on one edge (as at aj)^ and the

point C on the other edge (as at CJ. The slip can easily be

adjusted in any number of positions and the corresponding

positions of C^ marked. Any number of points on the curve may
thus be determined"*.

Second Method (fig. 63). Draw PM, P^M^ parallel to CD and

DMM^ parallel to CP meeting PM in AT and P^M^ in M^.

Divide MD into any number of equal parts 1, 2, 3... and CD
into the same number of equal parts. Then lines drawn from P
to any of the points on MD intersect lines drawn from P^ through

the corresponding points on CD in points on the curve, and thus

any number of points in the quadrant PD can be determined.

* I am indebted to Prof. Minchin for this construction.
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Similarly if M^D be divided into any number of equal parts

r, 2', 3'... and CD into the same number 1, 2, 3... lines drawn

from Pj to the points on M^D intersect lines drawn from P to

the corresponding points on CD in points on the required curve,

and thus the quadrant DP^ can be determined. When half the

curve is drawn the remainder can be put in by symmetry, since

every diameter is bisected by the centre ; thus if QCQ^ be drawn

and CQ^ be made equal to CQ, Q^ will be a point on the curve

and similarly for any other points on the semi-ellipse P, D^, P^.

Third Method (fig. 64). PCP^ , DCD^ are the given conjugate

diameters. Draw PM, P^M^ parallel to CD and MDM^ parallel

to CP meeting PM in if and P^M^ in M^.

Draw the line PD and take on it any number of points 1, 2, 3...

Draw the lines la, 26, 3c... parallel to CD meeting DM in

a, 6, c... ; and the lines J/^l, J/j2, M^Z... meeting MP in a\ b', c ....

Then the lines aa\ hh\ cc ... will be tangents to the curve, which

must be drawn in to touch these lines, so giving the quadrant PD.

A similar construction will give a second quadrant DP^^ and

the remaining semi-ellipse can of course be put in similarly or by

drawing any number of diameters.

Fourth Method (fig. 64). Draw PM^, P,^,^ parallel to CD^
and MJ)^M^ parallel to PP^ meeting PM^ in J/^ and PM^ in M^.

Make M^E^P^M^ and divide PM^ into any number of equal

parts as at 1, 2, 3.... Draw E\, El\ E7>... cutting D^M^ irif,g,h

E. 8



114 GIVEN AXIS AND POINT.

respectively. Then tlie lines joining corresponding points on PM_^

and i/gZ^i, as/3, g1 and so on, will be tangents to the curve, which

must therefore be drawn touching these lines.

Similarly for the remaining quadrants, or as before, when half

the ellipse is obtained the other can be put in by symmetry.

To draw a tang&nt at any point of an ellipse having a given

pair of conjugate diameters.

Let Q (fig. 64) be the point, PCP^, DCD^ the given conjugate

diameters. Draw ^iV^ parallel to CP meeting CD^ in A", so that

CN is the abscissa and QN the ordinate of Q referred to the given

conjugate diameters as axes. Make Cn on CP^ equal to GN and

Cd = CJDi and draw through d a line dT parallel to nDi cutting

CD^ in T. The line QT will be the tangent at Q, for by similar

triangles

I.e.

CTiCd ::CD, : Cn,

CT '.CD,:: CD, : CN (Prop. 3, p. 107).

Problem 64. To describe an ellipse, one axis and a point (P)

on the curve being given (Fig. 55).

The axis is of course given in direction and magnitude, and

this really involves the centre of the curve and the position of

the other axis.

First, suppose the major axis AA^ given. Bisect it in C and

draw BCD, perpendicular to AA^. From P with AC as radius



THE ELLIPSE. 115

w

mark the point a on BB^ and draw Fa cutting AA^ in b. Ph will

be the length of the semi-minor axis, which can therefore be

marked off from G to B and B^

.

Second, if the minor axis BB^ is given. Bisect it in C, through

C draw ACA^ perpendicular to BB^. From P with radius BO
mark off the point b on AA^ and draw Fb, producing it to meet

BBj^ in a. Then Fa will be the length of the semi-major axis,

which can be set oflf from (Tto A and A
^

.

The construction is obvious from the original method of draw-

ing the curve.

Problem 65. To describe an ellipse, an axis ACA^ and a

tangent Tt being given (Fig. 65).

T, t are the points in which the given tangent cuts the axes.

Draw the second axis BCB^.

Take ON on (7J, a third proportional to CT, CA (i.e. on CB
make Ca^CA, draw ^t^ parallel to Ta, cutting CB in w, and

Fig.GS

make CN=^ Cn). Then N is the foot of the ordinate of the point

of contact of the given tangent (Prop. 3, p. 107), and therefore by
drawing NF perpendicular to CA meeting the tangent in P, a

point on the curve is determined and the problem reduces to

Problem 64.

8—2
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Peoblem 66. To describe an ellipse, the directions of a pair

oj conjugate diameters CA, CB, a tangent FT and its point of

contact P being given (Fig. 65).

In the figure the given conjugate diameters are the axes,

but the construction holds in any case.

Through P draw PN parallel to GB meeting CA in N. Take

OA a mean proportional between CN and CT, which determines

the length of the semi-diameter CA. Similarly determine the

length CB.

Problem 67. To describe an ellipse, the centre (C), two points

on the curve (P and Q), and the directions of a pair of conjugate

diameters {CA, CB) being given. The lengths CA, CB are not

given (Fig. 66).

From P and Q draw PM, QN parallel to BC meeting CA in

M and iV. [In order that the problem may be possible, if PM is

Fig.66.

less than QN, CM must be greater than CN.^ Produce PM to

E and P^, making J/Pj equal to MP; P, will evidently be a

point on the curve. Similarly, drawing EQnQ^ parallel to CA
meeting PM in E and CB in n, and making nQ^ — nQ, Q^ will be

a point on the curve. Through M draw MX parallel to PQ and

Jt/'Z parallel to P^Q^ meeting EQ^ in X and Y respectively. Find

ND a mean proportional between EX and EY and set it up from

X on a perpendicular to CA. [The mean proportional may con-
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veniently be found by producing XE to y, making Ey = EY, and

on Xy describing a semi-circle cutting Ed perpendicular from E
to Xy in d. Ed is the required mean proportional.] Then a

circle described with centre C and radius CD cutting CA in A

and A^ will determine A and A^ the extremities of that diameter,

and if (7o?i be made = ND on CA j, and a parallel to d^n be drawn

through A^ cutting CB in B, this will determine an extremity of

the other. The curve can then be completed by preceding problems.

Proof. The construction depends on the known proposition

that EP. EP, : EQ . EQ, :: CB' -.CA'-, PP, and QQ, being any

chords parallel to the conjugate diameters CB, CA and inter-

secting in E. Admitting this, then by Prop. 4, p. 110,

QN' '.AN.NA, :: EP.EP, : EQ.EQ,.

By the construction

EX : EQ :: QX : EP,

and EY : EQ, :: QX : EP,
,

.-. EX.EY : EQ.EQ, :: QX^ : EP.EP,;

but EX . EY^-XD' = AX. X'A,,

.'. AX.XA, : QX' :: EQ . EQ, : EP.EP,,

which proves that A A, is the diameter parallel to EQQ, .

Also by construction

CB : CA, :: QX : XB;
.'. CB' : CA,' :: QX' : AX. X'^A,,

or CB is the semi-diameter conjugate to CA,.

That ^/^ . EP, : ^(^ . EQ, :: Ci?' : C^' may be proved thus :—

Through E draw the diameter EBP, and draw the ordinate

7? CT parallel to PP, or to CB, then by Prop. 4, p. 110,

CB'-RU' :
06^^ :: CB' : CA\

and PM' : CA' - CM' :: CB' : CA'

;

.'. CB'-PM' : CM' :: CB' : CA',

so that CB'-RU' : CZ7'' :: CB'-PM' : CM';

but PU' : (7^' :: ^i/' : CM';
.'. CB' : CU' :: CB'^PM' + EM' : CM',

or C^' : CB'-PM' + EM' :: CU' : CM' :: CE' : CE'

;
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.-. CB' : EM'-P3P :: CB' : CE'-CR\
or CB' : EP.EP, :: Cli' : ER.EB,.
Similarly CA' : EQ . EQ, y. CR^ : ER.ER,,
or EP.EF, : EQ.EQ, :: CB' : C^\

Problem 68. To describe an ellipse, the centre (C), direction of

major axis CT, and two tangents {PT, Pt) being given (Fig. 67).

Bisect the angle TPt between the given tangents by PR
meeting CT in R^ and draw PU perpendicular to PR meeting C2'

in U.

Fig.67.

Describe a circle round the triangle RPU and draw a tangent

from G to this circle meeting it in K. CK will be the distance

of either focus from C, i.e. make CF=GF^ = CK, and F and F,

will be the foci of the required ellipse. From F draw FY per-

pendicular to Pt meeting it ''in Y, and make YL on FY produced

^ YF. Draw F^L cutting Pt in Q, and Q will be the point of

contact of Pt, i.e. Q will be a point on the ellipse, which can

therefore be completed by preceding problems.

Proof. Since CK is a tangent to the circle RPUf

CK : CR :: CU : CK;

.-. CK+CR : CK^CR :: CU+CK : CU-CK,
or i^i? : i?i^i :: i^^:^ : F,U,

i.e. J^t^ is divided harmonically in R and i^^ or P{FRF^U} is



THE ELLIPSE. 119

a harmonic pencil. But the angle RPU is a right angle, and

therefore PF and PF^ make equal angles with PR (p. 15).

Therefore also the angle FPQ = the angle F^PT since PR
bisects the angle QPT ; or the tangents from P make equal angles

until the focal distances of P: a known property of the ellipse.

F^L is evidently the length of the major axis, for, by the con-

struction QL = FQj and therefore F^L = F^Q + QF, the sum of

the focal distances (Prob. 60, p. 101).

It follows that Y is on the auxiliary circle, for CF = CF^ and

FY^YL; therefore CF is parallel to and equal to ^F^L - CA :

and similarly if F^ F, , FZ and i^i^i are perpendiculars from tlie

foci on the tangents, Y^, Z and Z^ are all on the auxiliary circle.

Produce YF to meet the auxiliary circle in F^, then FY^ is equal

to F^ Fj , and therefore

FY.FJ^^FY .FY^^^AF.FA^. (Euc. iii. 35.)

Similarly FZ . F^Z^ =AF.FA, = FY.FJ^,
i.e. FY : FZ :: F^Z^ : F^Y^

;

and since the angle YFZ is equal to the angle Y^FiZ^ , therefore

the triangles YFZ, Z^F^ Y^ are similar (Euc. vi. 6), i.e. the angle

FZY^FJ^Z^.
Circles can be described about the figures

YFZP and F.Z^PY^,

and therefore the angle ^PF=the angle FZY,

' „ „ F^PZ^ = „ F^ Y,Z,
;

(Euc. iii. 21.)

therefore the angle i^PF= the angle i^iPiTj , which proves the

property above refeiTed to.

Problem 69. To describe an ellipse^ the centre C, the direc-

tions of a pair of conjugate diameters CT, Ct, a tangent Tt, and a

point P being given (Fig. Q^).

[P must lie between the line Tt and a parallel corresponding

line on the other side of (7.]

Draw PCL meeting Tt in Z, and make CP^ = CP. P^ is a point

on the curve.

Take a mean proportional (Zm) between LP and LP^ and
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make LM on LT equal to Lm. On Tt describe a semicircle

Tqq^t) draw Mn perpendicular to LM and make Mn^GP.
Draw Ln cutting the semicircle in q and q^. From q draw qQ

Fig.68.

~—1P,

perpendicular to LT meeting it in ^ ; then Q will be the point of

contact of Tt^ and Qq will be the length of CD the semi-diameter

conjugate to GQ ; the curve can therefore be completed by

Problems 62 or 63.

Since Ln cuts the semicircle in two points, there are two

solutions.

Proof. The construction depends on the property of the

ellipse proved in Problem 67, that the rectangles contained by

the segments of intersecting chords are in the ratio of the squares

of the parallel diameters ; and on the further property that if the

tangent at Q meet a pair of conjugate diameters in 7' and t, and

GI> be conjugate to CQ,
QT.Qt = GD\

If Q be the point of contact of Tt, it follows that

LP.LP^ : LQ' :: GP' : GB';

but LP. LP^ = IjM^ by construction,

.-. LM : LQ :: GP \ GD;
but by construction

LM : LQ '.: Mn : Qq,

and Mn = GP, so that Qq = GD; also Qq" - QT. Qt, since Tqt is a

semicircle, therefore GD^ - QT. Qt in the figure as drawn.
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To prove that it does so in the ellipse, draw the ordinates

QK, DK, parallel to Ct, and let the tangent at D meet CT in 7t,

then by similar triangles,

QT : QN :: CD : DK,

and Qt : GN :: CD : CK;

.'. QT.Qt : QN.CN :: CD'' : DK.CK.

But CN. CT=^ CA'^ CK. CR (Prop. 3, p. 107),

.-. CN : CK :: CE : CT
CD : QT
DK : QN;

.'. CN.QN=CK.DK,
md .-. QT.Qt = CD\

Problem 70. To describe an ellijjse, the centre C, two tangeiitit

*T, QT, and a point on the curve (R) being given (Fig. 69).

Fig.69.

[It is of course possible to draw at once two more tangents by-

producing TC to Tj, making CT^ = CT, and drawing through 2\

parallels to TP, TQ. The point R must lie within the quadri-

lateral thus formed. Let the parallel {T^t) to TP meet TQ in t.'\
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Draw RCR^ and produce it to meet TQ in L; make CR^ = CR.

Take a mean proportional [Lm) between LR and LR^ and make

LM on TQ = Lm. Draw i/Tj perpendicular to TQ and equal to

C^, and join Lr^, cutting the circle described on Tt as diameter

in q and q^ ; from 5' or ^^ drop a perpendicular {qQ) on ^if, and Q
will be the point of contact of Tt. CD drawn parallel to Tt and

equal to Qq will be the semi-diameter conjugate to CQ.

Proof. By construction,

LM' : LQ' :: Mr^ : Qq\
i. e. LR . LR, : LQ' :: CR' : Qq'

;

therefore if Q is the point of contact of Tt, Qq must be the length

of the semi-diameter parallel to Lt : and since

QT.Qt=Qq'=CD%
Q is such point of contact. (See last problem.)

Problem 71. To describe an ellipse, tJie centre G and three

tanjents {SV, SW, VW) being given (Fig. 70).

Through G draw TCT^ meeting ^F in ^ and SW in T, so that

TT^ is bisected in G (Prob. U, p. 19). GT will be conjugate to GS.

Draw T V parallel to CT meeting VW in v, then T'v will be an

ordinate of the diameter CF, for if it meets GV in m, Tm — mv,

Bince TC=GT,.
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Similarly, if Tw be drawn parallel to CW meeting VW in w,

T^w will be an ordinate of the diameter CW.

Let Tv, T^io intersect in E. Draw -S'^ cutting YWinP, and

P will be the point of contact of VW. Also PQ parallel to Tv

meeting ST in Q will be the chord of contact of the pair of tangents

VT, VW, i.e. P and Q are points on the curve; and the problem

reduces to one of several previously given, or may be completed

thus :—Draw Qy i)arallel to CS meeting CT in iV^. QJ^ is an or-

dinate of the diameter CT, and therefore CA the length of the

semi-diameter is a mean proportional between CiVand C2^ (Prop. 3,

p. 107). Similarly if Qn be drawn parallel to CT meeting CS in

it, CB must be taken a mean proportional between Cn and CS.

Proof. The only point in the construction requiring proof is

that SE cuts FTT in its point of contact;

Now the chords of contact PQ, PR, RQ of the given tangents

are parallel respectively to TE, ET^, T^T, which is impossible

unless EP passes through S the intersection of TQ and TR.

Problem 72. To describe an ellipse, the centre C, two points

(A and B) of the curve and a tangent Tt being given (Fig. 71).

[A second tangent can at once be drawn parallel to Tt on the

opposite side of C, and at the same distance from it; A and B
must lie between these lines.]
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Through C draw CT parallel to AB meeting the given tangent

in T. Bisect ^i? in iV^ and draw NCt meeting Tt in t. CT, Ct are

a pair of conjugate diameters, and the problem reduces to Prob. 69.

Draw the diameter ACA^ meeting Tt in L. Take Lm a mean
proportional between LA and LA^. Make L^f on Lt equal to Lm,

draw Mn perpendicular to Lt and equal to CA and Ln cutting a

circle on l''t as diameter in p and /?,. Perpendicultirs from p and

/^j on Tt will determine two points, either of which can be taken

as the point of contact of Tt, and the length pP will be the corre-

sponding conjugate diameter CQ.

The construction is obvious from preceding problems.

Problem 73. To describe an ellipse, the centre C and three

2)oints P, Q, R being given (Fig. 72).

[Any one of the three points, as R, must lie between one pair of

the parallel lines furnished by the remaining points and their cor-

responding points on the other side of the centre, and outside the

other pair.]

Bisect PQ in p, QR in q, and RP in ?•, and draw Cp, Cq and

Cr, producing each indefinitely. PR is a double ordinate of the

Fig.72

diameter Cr, and therefore the tangents at P and R will intersect

on Cr produced ; similarly the tangents at P and Q will intersect
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on Cj) and those at Q and R on Cq. If therefore a triangle be

drawn the sides of which pas:s through P, Q, R and the vertices of

which lie on Cp, Cq, and Cr respectively, the sides of this triangle

will be the tangents at P, Q and R. This can be done by Prob.

15, p. 20 :—Take any point a on Cr, draw Pa, Ra cutting Cp, Cq
in h and c respectively

;
join ho cutting PR in X, and draw XQ

cutting Ch in T and Cc in t : P2\ Tt, and Rt will be the tangents

at P, Q, and R respectively, and the problem may be completed

by preceding problems, or thus ; through C draw DCD^ parallel

to Tt so that CD is conjugate to CQ ; let TP meet CD in 1\^

draw PX parallel to CQ meeting CD in X. Take CD a mean

proportional between CN and CT^, and CD will be the extremity

of the diameter CD (Prop. 3, p. 107).

The construction is obvious.

The given data are evidently equivalent to a diameter and two

points of the curve.

Problem 74. To describe an ellipse, the foci F arid F^ and a

point Q on the curve being given (Fig. 56).

It has been shewn already that the foci lie on the major

axis and that FP + PF^ = the major axis (p. 101).

Bisect P^F^ in C, and through C draw RCR^ perpendicular to

FF^. On CF, CF, make CA = CA^^^^^~', and make

F£ = F£, = CA. AA^, BB^ will be the axes of the required

ellipse.

Problem 75. To describe an ellipse, the foci F and F^ and a

tangent {PQ) to the curve being given (Fig. 67).

[PQ must not lie between F and F^.]

From F draw FY perpendicular to PQ and produce it to L
making Yfj = P^Y. Draw F^L cutting PQ in Q, which will be

the poiut of contact of PQ and the problem reduces to the pre-

ceding.

The construction is obvious from Prob. 68.
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Problem 76. To describe an ellipse, a focus F, a tangent R2'
with its point of contact R, and a second point P on the curve

being given (Fig. 73).

From F draw FY perpendicular to RT meeting it in Y, and
produce FY to / making Yf= YF.

[F and F must lie on the same side of RT and the distance

of F from F must be less than its distance from a line drawn
through /perpendicular tofR. See Problem 106, Chap, v.]

'^'2.73.

DrSiwfR, -which will be a locus of the second focus. OnfR
towards R make fP^ = FP. Draw PP^ and bisect it in r ; through

r draw rF^ perpendicular to PP^ intersecting fR in F^^ which

will be the second focus. Hence both foci being known the pro-

blem may be completed by Probs. 74 or 75.

Proof That fR is a locus of the second focus has been

shewn in Prob. 68 ; that the second focus lies on rF^ is evident

thus : it must be so situated that

FR + RF^=^FP + PF^^fF^=fP^+P^F^.

But FP=fP^, therefore PF, must be equal to P^F^, which

by construction it is ; therefore i^j is the second focus.

If fP^ be made = FP on Rf produced (i.e. on the side remote

from R)j and a perpendiciilar to PP^ be drawn through the centre

point of PP^ meeting Rf in F^, F and F^ will be the foci of an

hyperbola fulfilling the given conditions.
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Problem 77. To describe an ellipse, a focus F, a tangent R2\

and two points P and Q of the curve being given (Fig. 73).

[F, P, and Q must all lie on the same side of RTJ\

Let FQ be greater than FP, and on FQ make Fp = FP. With

P as centre and radius =pQ describe a circle DG, then evidently

the second focus must be equidistant from this circle and from

the point Q, since the sum of the focal distances is constant.

From F draw FY perpendicular to the given tangent PT, produce

it tof make Yf^ YF, and with/ as centre and radius FQ describe

a circle FG : the second focus will evidently be equidistant

from this circle and from the point Q, for it has been shewn

(Prob. 68) that the distance of/ from the second focus is equal

to the major axis, and therefore equal to the sum of the focal

distances of any point on the curve.

The problem therefore is reduced to finding the centre of a

circle to touch externally two given circles (BG, FG) and pass

through a given point {Q), which is always possible since the

circles must cut each other and Q lie outside both, i. e. the

problem reduces to Prob. 32.

[Draw a common tangent EDM to the two circles meeting

fP in if. Take MN on J/^ such that

MN : MD :: ME : MQ,

and the second focus F^ will lie on the line perpendicular to NQ
and passing through the centre point of NQ."]

If the centre of the circle touching the above two circles

internally be found (as F^, F and F^ will be the foci of an

hyperbola which can be drawn through P and Q and touching RT.

(See Prob. 107.)

Problem 78. To describe an ellipse, afocus F, a point P on the

curve, and two tangents TQ, TR being given (Fig. 74).

[The points F and P must not lie on opposite sides of either

tangent.]

From F draw FYf perpendicular to ^:Z^ and FY^f 2)erpen-

dicular to RT, meeting them respectively in Y and Y^, Make
}/= ri^ and r,/-7iF.
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With centre P and radius PF describe the circle GU. De-

termine the centre (i^,) of a circle to touch this circle internally

Fig.74.
i"^

and to pass through / and /, (Problem 27): F^ will be the second

focus, and the axes can at once be determined by preceding

problems.

Proof. It has been shewn (Prob. 68) that if F^ is the second

focus,/i^i =/i^^i = tlie major axis =FP + PF^^ which by construction

it does.

Referring to Problem 27 it will be seen that if the line ff^

cuts the circle GU and y* and f^ lie on opposite sides of it a

second ellipse can be drawn with foci F and F^. If this second

solution is impossible, a circle can generally be drawn passing

through f and f^ and touching the circle Gil externally. F and

the centre of this circle will be the foci of an hyperbola fulfilling

the conditions of the problem.

Hence either two ellipses or an ellipse and hyperbola can

always be drawn to satisfy the given conditions.
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Problem 79. To describe an ellipse, a focus F and three

tangents TP, TQ and SR being given (Fig. 74).

[The point F must lie within one of the three angles of the

triangles (as PTQ), i. e. it must not lie within either of the angles

(as PSY^) where Y^ is on PS produced.]

From F drop perpendiculars FY/, FY^f , FY^f on the given

tangents meeting them respectively in Y, Zj , Y^, and make Yf- YF,

Y,f = Y,F, YJ^= Y„F; then/,/,/^ must all be equidistant from

the second focus (Prob. 68) and the problem therefore reduces to

finding the centre [F^ of a circle which will pass through three

given points. (Prob. 20.) To do this it is not really necessary

to bisect j/^i and ff^ because it will be found that the perpen-

diculars through their points of bisection will pass through the

points aS' and K in which the given tangents intersect, so that it is

only necessary to draw through S and K perpendiculars to ff and

/1/2' '^^hic^ "^^^1 intersect in F^ the second focus. The major axis

is of course known since it is equal to F^f.

Problem 80. To describe an ellipse, afocus F amd three points

P, Q, R on the curve being given (Fig. 75).

[The point F must lie within one of the three angles PQR,

QRP, RPQ, and if circles be described with two of the given

Fig.75.

E.
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points as centres passing through F and common tangents be

drawn, the third point must be nearer to i^than it is to the tangent

more remote from F?^

First Method. It is a known proposition (Prop. 1, p. 105) that

tangents drawn to an ellipse from any point subtend equal angles

at the focus. The tangents at P and Q will therefore intersect

on Fp the line bisecting the angle PFQ, those at R and Q will

intersect on Fr the line bisecting the angle RFQ, and those at

P and R will intersect on the line Fs bisecting the angle PFR.
If therefore the three concurrent lines Fp, Fr, Fs be drawn and

a triangle be constructed with its sides passing through P, Q and

R and with its vertices on the corresponding lines respectively

(Prob. 15), these sides will be tangents to the curve at those points.

On Fs take any point s. Draw Rs cutting Fr in r, and Ps
cutting Fp in p. Let RP and rp meet in £c, and draw xQ cutting

Fp in T and Fr in t. PT, QT, Rt will be the tangents at P, Q, R
respectively, and the second focus can then be easily determined

and the problem completed by preceding problems.

Although there are generally six solutions to Prob. 15, one only

is available here, since the sides through the points have to terminate

on definite pairs of lines.

Second Method (same fig.).

Draw FP, FQ and FR and let FP be greater than FQ or FR.

Draw PQ and produce it to Z so that PZ : QZ :: FP : FQ,

i. e. on FP make FP, = PQ and PQ, = FQ.

Through P, draw P^Z, parallel to QQ, meeting FQ in Z„ and on

PQ produced make QZ—FZ,. Z will be a point on the directrix.

Similarly on PR produced take a point W such that

PW \ RW wFP : FR.

W will be a second point on the directrix, which is therefore

determined.

From F draw a perpendicular FX to WZ meeting it in X, and

on FX take points AA, such that FA : AX :: FA, :A,X:: FP
is to the perpendicular distance of P from XZ. AA, will be the

major axis.
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The second focus and consequently the length of the major

axis may perhaps be more easily determined thus. It is a known
proposition (p. 102) that the tangent at any point, say Q,

meets the directrix in a point K such that KFQ is a right angle.

Therefore draw FK perpendicular to FQ meeting the directrix

in K, and draw the tangent KQ. From F draw FY/ perpen-

dicular to KQ meeting it in Z, make Yf= YF, and draw fQ
meeting XF in F^ , the second focus. /F^ is of course the length

of the major axis.

Proof. Since by construction

PF .PZ :: QF: QZ,

therefore evidently PF: dist. of P from WZy.QF: dist. of Q from

WZ, and since PF -. PW w RF -. PW,

.\ PF: dist. of P from WZ :: PF : dist. of P from WZ;
therefore the distances of the given points from the focus are in a

constant ratio to their distances from WZ^ which is therefore the

directrix.

If the lines PQ, PR are divided internally in the same ratio

as above, two points are determined which being joined, either

to each other or to the opposite points of the first pair, give three

lines, either of which may be taken as the directrix of an

hyperbola passing through the three given points and having F
as focus. In each case one of the given points will lie on one

branch of the curve and two on the other.

Thus generally four conies can be drawn fulfilling the given

conditions, one of which is an ellipse.

Problem 81. To describe an ellipse, two tangents TQ, TR
with their points of contact Q and R, and a point P on the curve

being given (Fig. 76).

[The point P must lie within the parabola which can be

described touching TQ, TR at Q and i^.]

This is of course a simple case of the more general problem

to describe an ellipse to touch two given lines and to pass through
three given points.

9—2
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First Solution. Let QP produced meet the tangent TR in S.

From S draw a line passing through the intersection of PR and

Fig.76. ^.^k

the other tangent QT (Prob. 4) and meeting QR in W ; then W
will be a point on the tangent at P, which can therefore be drawn.

Let it intersect TR in X. Bisect QR in V and draw TVC, which

will evidently be a diameter of the curve, i.e. is a locus of the

centre. Bisect PR in Fj and draw XVfi, which will similarly

be a locus of the centre. The centre is therefore at C, the inter-

section oi TV and XFj, and the centre being known the problem

can be completed by Probs. 70, 71, &c.

Second Solution. Bisect QR in V and through T draw

TD^ VD, which will evidently be a diameter of the ellipse, i. e. will

pass through the centre. Through P draw LPNL^ parallel to

QR, meeting TR in Z, TD in X and TQ in L^. Take Pk a mean

proportional between PL and PL^, and from L and Zj towards X
make LK=L^K,^Pk', then RK or QK^ will intersect TD in D,
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the extremity of the diameter. On TD take a point C such that

TO :CD :: CD : CV,

i.e. TC+CD : TO :: CV+CD : OT,

or TD'. TO :: Fi> : CD,

G will be the centre of the ellipse.

[The point C can easily be found by drawing any two parallels

through T and D (as Td, Dv), making Td=TD and Dv= VD,

and joining dv cutting TD in C]
The direction of the diameter CB conjugate to CD is known,

since it is parallel to QE; its length can easily be determined by

taking a mean proportional between Cn and Ct^ where n is the

foot of the ordinate from Q on CB and ^ the intersection of CB
and of the tangent at Q.

Proof. Let DM be the tangent at D meeting TE in M, and

let LF meet the curve again in p, so that L^P = Lp.

Then LP . Lp : LR^ is the ratio of the squares of the parallel

diameters (p. 117); but MD^ : MR^ is the same ratio,

.-. LP . Lp '. LR' :: MD^ : MR^

:: LK^ : LR' hy similar triangles,

.*. LP . Lp — LK^^ which justifies the construction.

Problem 82. To describe an ellipse, two tangents TP, TQ and
three points A, Bj C on the curve being given (Fig. 77).

[The points ABC must not lie on opposite sides of either line.]

Draw the line AB cutting the given tangents in P and Q.

Find X the centre, and LJ, LJ^, the foci, of the involution A, B
and P, Q (Prob. 13).

[In the figure, Pb on TP^PB, J^j on a parallel to TP drawn

through A is equal to ^^; then qj^ cuts AB in X, the required

centre. XE is a mean proportional between XA and XB.^

E or E^ will be a point on the chord of contact of the given

tangents.

Similarly draw BC cutting the given tangents in p and q, and

find Xj the centre, and F, F^ the foci of the involution B, C and p, q\

then F or F^ will be a second point on the chord of contact of the



184 GIVEN THREE POINTS AND TWO TANGENTS.

given tangents, the points of contact of which i?, R^ are therefore

determined, and the problem reduces to the preceding"^. Since

Fig.77.

E and j&\ can be joined to either F or F^ four chords of contact

can in general be drawn, but one at least of the corresponding

conies will be an hyperbola.

For proof that E and F are points on the chord of contact see

Prop. 7, p. 143.

Problem 83. To describe an ellipse, two points A, B on the

curve, and three tangents PQ, QR, RP being given (Fig. 78).

\A and B must not lie on opposite sides of either line.]

Draw a line through AB cutting the tangents through P in L
and 31 and the remaining tangent in JV.

FindX the centre, and J), D^ the foci of the involution AB and

LM (Prob. 13). D or D^ will be a point on the chord of contact

of the tangents PQ, PR.

* In the figure the point of bisection of RR^ accidentally coincides with F.
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[In tlie fig. La on PR — LA^ Bm on a parallel to PR drawn

through B = B2I, and ma cuts AB in X, the required centre. XD
is a mean proportional between XA and XB.^

F'g.78.

Similarly find X^ the centre, and U, ^, the foci of the involution

I, B and M, X (Prob. 13), and £J or ^i will be a point on the

bhord of contact of the tangents QP, QR.

[In the fig. Mb on Qp — MB, ^t^ on a parallel to QP through

is equal to AX, and bn cuts AB in X^, the required centre,

r,^ is a mean proportional between X^if and X,ir.]

Find MV, the harmonic mean between MB and J/7), M being

le point on the given tangents which has appeared in each of the

ibove involutions (Prob. 11); then ^Fwill cut the opposite tan-

mt PQ in its point of contact (p) with the curve, and therefore

)Eq will be the chord of contact of the tangents QP, QR and pDr
that of PQ, PR. The problem therefore reduces to No. 81.

The construction depends on the property made use of in the

last problem and proved in Prop. 7, p. 143, that the chord of contact

of PQ, PR must pass through D or D^, the foci of the involution

AB and LM, and similarly that the chord of contact of QP and
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QR must pass through E or E^, the foci of the invohition AB
and MN.

Also if rq meets VR in n and the tangent PQ in T,

since BYEM is harmonic (by construction) so also is Truq^ and

therefore ?tFis the polar of ^and therefore determines p, the point

of contact of PF (Prop. 5, p. 141).

Since either D or B^ may be taken with E or E^ there are in

general four solutions.

Problem 84. To describe an ellipse to touch five given lines

AB, BC, CD, DE, EA.

[The lines must form a pentagon without a re-entering angle

and the vertices are supposed to be lettered consecutively.]

Draw AC and BD intersecting in F. Then EF will intersect

BC in P, the point of contact of BC, Similarly ii BD and CE

intersect in G, AG will intersect CD in Q, the point of contact of

CD; and continuing the construction R, T and F, the points of

contact of DE, EA and AB may be determined.

The centre of the curve can easily be found and the curve

completed by preceding problems.

The construction depends on Brianchon's well-known theorem

:
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" The three opposite diagonals of every hexagon circumscribing a

conic intersect in a point."

For if T be the point of contact of AB the pentagon may be

considered as a hexagon AT, TB, BG, CD, DE, EA, and therefore

AC, BE and DT must meet in a point L; and conversely if X is

the point of intersection of ^C and BE^ DL must pass through T,

the point of contact of AB, and similarly for the remaining sides.

Problem 85. To describe an ellipse, four tangents AB, BC,

CD, DA and a point E on the curve being given (Fig. 80).

[The point E must lie within the quadrilateral ABCD, which

must not be a parallelogram.]

Let BE, CE meet AD in B^diud. C^ respectively.

Fig.80. /

Find X the centre, and P and P^ the foci of the involution

AC, SiudDB,. Prob. 13.

Then the tangent at E must pass through P or P, and the

problem reduces to the preceding.

There are two solutions.

In the figure B^c on B,B = B,C,; Ad on a parallel to B^B is

equal to AD and cd intersects AB, in X, the required centre. XP
is a mean proportional between XA and XC

^

.

Also BP and AF intersect in L and CL will pass through T,

the point of contact of A P.
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Problem 86. To describe an ellipse to pass through Jive given

points ABODE (Fig. 81).

[No point must lie inside the quadrilateral formed by the

other four.]

Let AB, DC meet in F and AG, BE in G.

Fig.81

4-

Draw FG meeting DE in P. P will be a point on the

tangent at A.

Similarly if BG and ED meet in H and AG, BD in K, HK
will meet EA in Q, a point on the tangent at B.

The problem can evidently be completed in various ways by

preceding problems.

The construction depends on Pascal's well-known theorem

:

" The three intersections of the opposite sides of any hexagon in-

scribed in a conic section are in one right line." For the tangent at

A may be considered as meeting the curve in two consecutive points

A and a, and therefore P, the intersection of Aa and DE, must lie

on FG, the straight line through the intersections oi AB and DG
and of BE and Ga.

This line is known as the Pascal line.

There is only one solution.
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Problem 87. To describe an ellipse, four points on the curve

A, B, C, B and a tangent ad being given (Fig. 82).

[All the points must lie on the same side of the tangent.]

Draw AB meeting ad in a, BG meeting ad in 6, DO meeting

it in c, and ^i) meeting it in d.

Fig.82

/ ^p

-AC,

Find X the centre, and F and P^ the foci of the involution ac

and bd.

P or Pj will be the point of contact of the given tangent and

the problem may be completed by several preceding ones.

In the fig. ab^ on aA = ab ; dc^ on a parallel to aA = dc, and

6jCj intersects ad in X, the required centre. XF = Xp, a mean

proportional between Xc and Xa.

If DC, BP meet in F, and BC, PA in G, then FG and DA
will intersect in H, a point on the tangent at B.

There are of course two solutions, as either P or P^ may be

taken as the point of contact.
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That P, the point of contact, is a focus of the involution is

proved in Chapter 8.

POLE AND POLAR.

It has been shewn in the case of the circle (Cor. 3, p. 31)

that the ]>airs of tangents drawn at the extremities of any chord

through a fixed point intersect in a straight line.

This is also true in the case of any conic section, for let V
(fig. 83) be any point in a conic and C the centre, and let CV

Fig.83.

meet the curve in P. Take jT in CV produced such that

GV :CP ::CP :CT, and through Fdraw the chord QVQ, parallel

to the tangent at P.

QQ^ will be the chord of contact of the pair of tangents drawn

from T to the conic, and will be bisected in V.
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Through V draw any chord AVB and let the tangents at A
and B intersect in 2\

.

Join CT^^ and draw PN parallel to AB, meeting CT^ in N.

Then if GT^ meet AB in K and the tangent at P in L,

CK . CT^ = CX . CL. (Prop. 3, p. 107.)

.-. CT^ :CL y.CN: CK
CP'.CV

CT: CP;

hence TT^ is parallel to PL, and therefore T^ , the intersection of

the tangents at the extremities of ani/ chord through V, lies on a

fixed line.

Def. As in the circle, the line TT^ is called the polar of the

point V with respect to the conic and the point V is called the

pole of TT^ with respect to the conic.

If the pole lies without the conic (as T), its polar is the line

QQ^ parallel to the tangent at the point (P) where CT meets the

conic, and meeting C^' in a point V such that

CV:CP:: CP : CT,

i. e. is the chord of contact of tangents from the pole.

If the conic be a parabola, since the centre may be considered

as at an infinite distance, the line VT must be drawn parallel to

the axis meeting the curve in P and PT be made equal to PV,

the polar of V will then be parallel to the tangent at P and will

pass through T.

If the pole be on the curve, the polar is the tangent at the

point.

The directrix is the polar of the corresponding focus.

If a point (as T^) lies on the polar of V, the polar of T^ passes

through V.

The following important harmonic properties should be noticed.

Prop. 5. A straight line drawn through any point is divided

harmonically by the point, the curve, and the polar of the point.
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a. Let the point be without the curve, as T (fig. 84), and let

the line meet the curve in ^^ and the polar ol T in C. Draw

Fig;.84

the tangents TP^ TQ meeting the curve in P, Q. C of coiu-se

lies on the line PQ. Through A and B draw DAEF, GBHK
parallel to PQ meeting the tangents respectively in D, F and (?, K
and the curve in F and H.

Then the diameter through T bisects AE and PQ, and there-

fore also bisects BF

;

hence DA = EF and similarly GB - KH,

Also GB'.BK::DA :AF;

.'. GB . BK : GB\' :: DA . AF : Da\%

or GB .GH'.DA. DE •.'~GB\' : DA'

:: GT' .DT";

but GB . GH : DA . DE :: GP" : DP' (p. 117);

.-. GP :PD :: GT : DT,

and .-. TA : TB w AC : CB,

i. e. TAGB is divided harmonically.

p. Let the point be within the curve, as V (fig. 83), then

drawing any chord A VBG meeting in G the polar of F, the polar

of (r passes through V and therefore A VBG is harmonically

divided.
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Prop. 6. If two tangents be drawn to a conic, any third

tangent is harmonically divided by the two tangents, their chord

of contact, and the point in which it touches the curve.

Let LMAN (fig. 84) be the third tangent meeting FQ in Z,

and TP, TQ in M and N. Through N draw Nach parallel to TP
meeting the curve in a, h and PQ in c.

.

Then Na . M : NQ^ :: tF\' : TQ^ (P- H^)

but LN' : LM\' iVcj* : Pif|* by similar triangles,

Na.M:PM\'

IiA\' lAM'i' (^. 117),

i.e. LMAN is divided harmonically.

Prop. 7. If a straight line meet two tangents to a conic in

PQ and the curve in AB, the chord of contact of the tangents

will pass through one of the foci of the involution P, Q and A, B
(fig. 77).

Since X is the centre and £J, E^ the foci of the involution P, Q
and A^ B,

XP :XA::XB :XQ;

.'. XA-XP :XA ::XQ-XB : XQ,

or PA :XA :: BQ : XQ.

Similarly PB : XB :: AQ : XQ,

.-. PA . PB :AQ . BQ :: XA . XB : XQ\' :: XB\' : Z^|^;

but (p. 18) BP : BQ :: PB^ : B^Q, since ^P^,(? is harmonic;

.-. BP : BP + PB^ :: j^^ : BQ + QB^,

or BP :BQ :: 2X^ : 2X^;

.-. PA. PB :AQ . BQ :: ZiPp : ^p ,. (1).

Draw the tangent ghkl parallel to PQ meeting TP^ TQ in g
and k, the chord of contact in I, and touching the curve in h; and
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PB . PA '. ghY

and QA . QB -JchV

if the cliord of contact does not pass through E let it meet PQ in G.

TTiY : %1^ (p. 117)

PGy : IgY by similar triangles,

but Ikhg is harmonic (Prop. 6),

and .-. Uc^" :'lg\' -.-.khY '.~^i\\

.-. PB.PAiQA. QB :: GP^' : ^j^ (2);

but (1) and (2) cannot be simultaneously true unless the points U
and G coincide.

Prop. 8. If a quadrilateral be inscribed in a conic, its opposite

sides and diagonals will intersect in three points such that each is

the pole of the line joining the other two.

This follows at once from the harmonic properties of a complete

quadrilateral, p. 16, combined with Prop. 5, p. 141. For since EGfA
(fig. 11) is harmonic it follows that /is a point on the polar of E
with respect to any conic passing through A and C, and since

EDf^B is harmonic/ is a point on the polar of E with respect to

any conic passing through BD. Therefore j/,, i.e. OF, is the polar

of E with respect to a conic passing through ABCD. Similarly

OE is the polar of F. Also since is on the polar of E the polar

of must pass through E, and since it is also on the polar of F
the polar of must pass through F, i. e. EF is the polar of 0.

The triangle EFG is of course self-conjugate with respect to

any conic circumscribing the quadrilateral, Def. p. 32.

Prop. 9. If a quadrilateral circumscribe a conic its three

diagonals form a self-conjugate triangle (fig. 85(x).

Let ABCD be the quadrilateral and let AB and CD intersect

mG,AC and BD in E, and AD and BG in F. Let BD and ^C
meet EG in K and L respectively. The triangle EKL is self-

conjugate with respect to any conic inscribed in the quadrilateral ',

ABCD.
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Let the polar of F (i. e. the chord of contact PP^) meet FG in

R] then, since R is on the polar of F, it follows that F is on the

polar of R.

Fig.ssa

H Now F {AEBG) is a harmonic pencil (p. 16), and if PP^ does

. not pass through E let FE meet PP^ in T ; then PTP^R is a

harmonic range; hence by (Prop. 5, p. 141) FE is the polar of R.

Similarly, if the other chord of contact QQ^ meet FG in i?j, GE
is the polar of R^ .

.-. ^ is the pole of RR^, i.e. of LK.

Again, DEBK is a harmonic range, and if QP meet AC in S
and CK in F, QSPY i^ harmonic, and therefore S is on the polar

of F; but S is also on the polar of C, therefore CV or C^ is the

polar of aS'. Similarly, if P^ Q^ meet ^C in S^ , AK is the polar of S^

.

.*. JT is the pole of LS^, i.e. of ^Z;

.'. ELK is a self-conjugate triangle.

Problem 88. To determine the centre of curvature at any

point P of a given ellipse (see page 89), fig. 86.

CA, CB are the semi-axes, and F, F^ the foci Draw PG the

normal at P meeting the major axis in G, and draw GK perpen-

E. 10
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dicular to PG meeting PF or PF^ the focal radii through P in K.

KO perpendicular to PK will intersect PG in 0, the required

centre of curvature.

Fig.86.

If AB^ BD be drawn parallel to the axes and DN be drawn

perpendicular to AB meeting the major axis in M and the minor

in N, M and N will be the centres of curvature at A and B
respectively. The evolute of the quadrant AB will therefore

touch the axes at these points, and the evolute of the entire ellipse

is made up of four curves similar to the chain dotted curve shewn

in the figure between M and N.

As in the parabola, if the circle of curvature at P cuts the

curve again in Q, PQ is inclined to the axes at the same angles as

is the tangent at P.

The construction depends on the known value of the radius

PC
of curvature, ^:zZi~TP'l^ (Salmon's Conic Sections, Chap, xiii.),

cos'FPG

for
pfr PG_

PK'
and therefore rad. of curvature = PO.
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Examples on Chapter TV.

1. Describe an ellipse to touch a given straight line (QY)

and pass through a given point (P) ; a focus F and the length

(2a) of the major axis being given.

[From F draw FY perpendicular to QY and produce it to T,

making YT= YF. With T as centre and 2a as radius describe an

arc, and with P as centre and (2a — FF) as radius describe a second

arc intersecting the former in F^ , which will be the second focus.

There are two solutions.]

2. Describe an ellipse to touch two given straight lines; a

focus and the length of the major axis being given (last question).

3. Describe an ellipse to touch two given lines OP, OQ at the

points P and Q ; one focus (F) beiug on the line PQ and the

angle I^OQ less than a right angle.

[The second focus F^ is the point of intersection of lines mak-

ing with the given tangents angles equal to OPQ, OQP respec-

tively, i. e. 0PF,=7r-0PQ and 0QF,=7r-0QP. Bisect PQ
in V; centre lies on OV. Draw i^/iT parallel to PQ meeting OV
in IC Bisect VK in C, which will be the centre of required

elUipse.]

4. Given one focus F of an ellipse, the length 26 of the

minor axis, and a point P on the curve ; draw the locus of the

centre.

[A parabola with the centre point of FP as focus, FP as axis

and latus rectum = 2 ,=r^ .1FP -

5. Given one focus F of an ellipse, the length 26 of the minor

axis and a tangent to the curve ; shew that the locus of the second

focus is a straight line parallel to the given tangent and at a

distance from it = — , where p is the perpendicular from F on the

given tangent.

10—2
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6. Any focal radius FP is drawn in an ellipse, and the point

Q on the auxiliary circle corresponding to F is joined to the centre

G. Shew that the locus of the intersection of FF and CQ, is an

ellipse having F and G for foci.

7. Given the base, and sum of sides of a triangle ; shew that

the locus of centre of inscribed circle is an ellipse, having given

base as major axis.

8. AB and BG are two equal rulers of length a, jointed at B,

P is a point on BG distant h from B. The end A of one ruler is

fixed and the end G of the other moves along a right line AG
through A. Shew that the locus of F is an ellipse with semi-axes

a + 6 and a — h.

9. An ellipse slides between two lines at right angles to each

other : shew that the locus of its centre is a circle of radius

^o? + 6^, where a and h are the semi-axes of the ellipse.

10. Draw an ellipse, and from any point F on it draw lines

P2>, FE equally inclined to the major axis and meeting the curve

again in D and E \ draw FG perpendicular to the major axis

meeting BE in G. If the tangent at F meet BE in 0, shew that

the triangle FOG is isosceles.

11. Shew by construction that the normal FG at any point of

an ellipse is an harmonic mean between the focal perpendiculars

on the tangent at F.

12. Given one focus F of an ellipse, the length 26 of the

minor axis, and a point F on the curve ; draw the locus of the

other focus.

[A parabola with focus /*, axis FF and latus rectum =: 4 -^Tp .]

13. Shew that the locus of intersection of tangents at the

ends of conjugate diameters of a given ellipse (semi-axes a and h) is

an ellipse, the axes of which coincide in direction with the given

ellipse, and the semi-lengths of which are ^2a and J^h.
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14. AB is a line cutting in A and B a circle, centre C ; Q in

a point on the perpendicular from C on AB on the same side of

AB as C and outside the circle. Shew that the locus of the point

P moving so that the tangent from F to the circle is in a constant

ratio to the distance of F from AB {Q being a point on the locus)

is an ellipse touching the circle at A and B.

15. Given any point P on an ellipse, inscribe in the ellipse a

triangle PQB, tlie bisectors of the sides of which shall pass through

the centre.

[Take p the point on the auxiliary circle corresponding to P.

In the circle inscribe the equilateral triangle pqr ; the points

corresponding to q and r will be the vertices of the required

triangle.]

16. Given two tangents TP, TQ \ their points of contact

Pand Q and the radius of curvature (p) at one of them (P suppose)

describe the ellipse.

\TC bisecting PQ is a locus of the centre. Draw the circle

circumscribing the triangle TPQ and let d be its diameter. Draw
a straight line through P such that p (the perpendicular distance

of any point on it from PT) : q (the perpendicular distance of the

same point from QP) :: PT.d : QT . p, i.e. determine the ratio

p PT.d
- == -j—r.— (p. 10). This line is a second locus of the centre,
q Ql\. p ^^ ^

which is therefore known.]

17. Draw an ellipse, a focus P, a tangent PT, its point of

contact P and the radius of curvature (p) at P, being given.

[Reverse the construction of Prob. 88 to determine (?, the

foot of the normal at P, and consequently the direction of the

major axis.]

18. If P is any point on an ellipse and the ordinate Pp per-

pendicular to the major axis meets the auxiliary circle in p, the

angle between the major axis and the radius of the circle through

p is called the eccentric angle of P.
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Shew that

trie angle of

if P be

which is

any point

a, three

on an ellipse, the

points A, i), and C on

eccon-

the

curve, the eccentric angles of which
a

are
-3 f 120'^ and

+ 240", are such that the circle of curvature at each passes
3

through P\ and verify that a circle can be described through

A^ B, 0, and P, and that the bisectors of the sides of the triangle

ABC pass through the centre of the ellipse.

19. Draw in a given ellipse a pair of conjugate diameters;

making a given angle with each other,

[On any diameter of the ellipse describe a segment of a circle

containing the given angle (Prob. 3U). If the points where the

circle meets the ellipse be joined to the ends of the chosen diame-

ters, the required conjugate diameters will be parallel to these

chords. The least possible angle between conjugate diameters of'

a given ellipse is the angle between the diagonals of the rectangle

formed by the axes.]

I



CHAPTER V.

THE HYPERBOLA.

As in the case of the ellipse, the definition of the curve given

on page 56 does not immediately exhibit the property of the

curve which furnishes the most convenient method of constructing

it. It may also be defined as the locus of a point which moves

in a plane, so that the difference of its distances from two fixed

points in the plane is constant, and that the two definitions are

really identical may be shewn thus :

—

In fig. 87 let i^ be the focus andMX the directrix (Definitions,

page 56).

F«g.87.

h.'-----'--

From F draw FXF^ perpendicular to MX meeting it in X,
FA FA

jmd let yi, ^Ij be points on FX such that .-y-^ ~i~v= *^® given
A.JL A.,2l
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constant ratio (greater than unity) for all points on the curve

:

the points A and A^ are called the vertices of the curve, and AA^

the transverse axis, and if ^^j be bisected in C, C is the centre of

the hyperbola.

To shew that the curve can be constructed from a second

focus and directrix corresponding to the vertex A^

Let P be a point on the curve, i.e. let

FF : FM :: FA : AX,

where FM is the perpendicular from F on the directrix.

Draw AF, A^P meeting the directrix in G and //, and let

FR meet FM in K,

Then FK : FA, :: FII : AJI
:: FM : A,X,

or FK : FM :: FA^ : A^X :: FA : AX;

.-. FK= FF and the angle FI{F= the angle FFK
= the angle KFA^.

Similarly FG bisects the angle between FA^ and FF produced,

therefore the angle HFG is a right angle.

In AA^ take a point X^ such that A^X^=AX, and through

X, draw a straight line perpendicular to AA,, and in FA^ pro-

duced take a point F, such that A,F, = AF.

Let FA, and FA produced meet the perpendicular through

X, in h and g and join F,g, FJi,

then (jX, : GX :: AX, : AX
:: A,X : A,X,

:: IIX : hX„

.-. gX, . hX, = GX . X^ = FX' - i^.A",^;

.-. ^i^j/i is a right angle.

Let FK (parallel to axis) meet gX, in 3f,, gF, in m, and FJi

produced in k,

Fm : FM, :: F,A : AX,,

and P^ : FM, :: 7^,^^ : A,X,,

.'. Fm = Fk;
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and mF^ being a right angle,

F,P = Fin^Pk,

.'. F,P : FM, :: F,A, : A,l\,

and the curve can therefore be described by means of the focus

F^ and the directrix X^^fy.

It follows that the curve is symmetrical with regard to the

centre C, and that it lies wholly without the tangents at the

vertices A and A^, which are perpendicular to CA.

We have at any point F of the hyperbola,

FF : FAf :: FA : AX,

F,F : FM, :: F,A, : A,X,

:: F,A : AX,;

.-. F,F-FF : FM,-FM :: F,A-FA : AX\-AX;
but F3I, - FM^ MM, = XX, = AX, - AX,

.', F,F-FF = F,A-FA = AA,,

i.e. the difference of the focal distances is constant and equal to

the transverse axis.

Problem 89. To describe an hyperbola, the foci and a vertex,

or the vertices and a focus, or the transverse and conjugate axes

being given (Fig. 88).

Bisect the distance between the given foci F, F, or the given

vertices A, A,u).C.

With centre F and any radius greater than FA describe arcs

as at Q and q, and with centre F, and the same radius describe

arcs as at Q, and q,. On any convenient line on the paper mark

off a length aa, =^AA,, and with centre a and radius FQ mark off

a point on this line on the opposite side from a, as at Q'. Take

off the distance Q'a, from this line with a pair of dividers or

compasses, and with centres F, and F mark off points on the arcs

already described about the opposite foci as centres. These points

will of course be on the curve, since the difference of the focal

distances of each is equal to AA,, and the process may be repeated

and as many points obtained as is necessary to define the curve

and allow it to be sketched through the points with accuracy.
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Though somewhat tedious, it is the only method for construct-

ing the hyperbola which can be recommended.

Fig.88.

Since the radii of the intersecting arcs may increase indefinitely,

the curve evidently tends to infinity in both directions from C.

Through C draw BCB^ perpendicular to AA^, and let the

circle described on FF^ as diameter intersect the tangent at the

vertex in L. Make CB -GB^- AL, then BB^ is called the con-

jugate axis; and if a second hyperbola be described with vertices

at B and B^ an<l with foci on BB^ at F\ F^' the same distance

from C as those of the original hyperbola, each curve is said to

be conjugate to the other.

The eccentricity of the hyperbola (p. 57) is the numerical

FA
value of the ratio -.-^ . It is usually denoted by e, and its

value in terms of the axes is. = ^?±1\

^here CA=a and CB = h.
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FA _ FA,
__ CF _CL JaF^b'

^^ AX " A,X ~'GA~ 0A~ a

The diagonals of the rectangle formed by the tangents to the

hyperbola and its conjugate at their vertices are called asymptotes.

The axes therefore bisect the angles between the asymptotes.

In fig. 87 let PX drawn from any point P of the curve per-

pendicular to the transverse axis meet it in X, and, as before, let

PA and PA, meet the directrix in G and //,

then PN : AN :: GX : AX,

and PN : A,N :: IIX : A.X;

.'. PX' : AX.A.X :: GX.HX : AX . A,X

:: FX' : AX . A,X,

since GFII is a right angle,

!• e. Tiir
—T~^ IS ^ constant ratio.

AN. A,N

Since FA : ^Z :: T^J^ : A,X,

.-. i^^l + i^^, : i^^^ :: AX + A,X : ^.Y,

or Ci^ : CA :: FA : AX (1),

and FA,- FA : FA :: A,X - AX : AX,

or GA : GX :: i^.l : AX (2),

.-. GF : GA :: C^ : GX :: i^.4 : AX (3).

Also GF '. GX '.: GF' : GF. GX
:: GF' : GA' (4).

Let the directrix meet the asymptotes in D (fig. 88) : then by

the similar triangles GDX, GLA,

CL : GA :: GD : GX-

but GL = GF, therefore from (3) GD = CA, or the circle on AA,

as diameter will cut the asymptote in a point on the directrix.

Def. The circle on A A, as diameter is called the auxiliary

circle.
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Since CD=CA, CF= CL, and the angle DCF is common to

the two triangles DCF and A CL,

.'. the angle CDF^ the angle CAL ^ a right angle,

or the perpendicular from the focus on the asymptote is a tangent

to the auxiliary circle at the point of intersection.

Corollary. DX' = CX . FX.

Again, from (4),

CF'-CA' : CA' :: CF-CX : CX
:: FX"" : CX {CF-CX);

but CF.CX = CA' from (3), and CA'- CX' = AX . ^.A:

Also CF'-'CA'^CB',

.'. GB' : CA' :: FX' : AX.A.X;
and comparing this with the constant ratio above given for

.S^Ift-, we have FX' : AX.XA, :: BC : AC, which may

also be written

FX' : CX'-AC :: BC : AC (5).

Let FX (fig. 88), where F is any ^^oint on the curve and FX
the ordinate, meet the asymptotes in F, then

FX' : CX' :: BC : JC*, by similar triangles (6),

... EX'-FX' : AC :: BC : AC,

or Fp.FF=^BC^FF.Fe,

where p is the point in which FX meets the curve again, and e

is the point in which it meets the other asymptote.

Let the ordinate through F meet the conjugate hyperbola in

F (same fig.), and let BM be the ordinate of li perpendicular to

BC, then of course

BM' : CM'-BC :: AC : BC,

or CM' : BC :: BM' +AC : AC;
but CM=MX and BM= CX,

.-. MX' : BC :: CX' + AC : AC (7);

I



I

THE HYPERBOLA. 157

and combining (6) and (7), we get

RN' - EN^ = JBC = RE. Er = RE . Re,

where r is the point on the other branch of the conjugate hyper-

bola corresponding to R, and e is the point in which Rr meets

the other asymptote.

To draw a tangent and normal at any point of the curve

(Fig. 88).

Let P, be a point on the curve adjacent to any point P, and

let the chord PP^ meet the directrices in K and K^ . Draw KF
to the corresponding focus : then FP : FP^ : : PK : Pj K, or PK
bisects the exterior angle between PF and P^F produced (Euc.

VI. prop. A). Hence, exactly as in the case of the ellipse (p. 102),

when Pj moves up to and coincides with P, so that the chord

PP^ becomes the tangent at P, the line FK becomes perpendicular

to the line FP drawn from the focus to the point of contact of

the tangent. The tangent at any point P of an hyperbola may
therefore he drawn by drawing a line from P to either focus,

erecting a perpendicular to this line at the focus meeting the

directrix, and drawing the tangent through this point and the

proposed point of contact. It may also be drawn by making use

of the known property that it bisects the angle between the focal

distances. For in the two triangles PFK, PF^K^

FP : PK :: F,P : PK„

and the angle PFK— the angle PFJ{^, each being a right angle,

.-. the angle FPK=F^PK^. (Euc. vi. 7.)

Hence the normal bisects the exterior angle between the focal

distances.

Problem 90. To describe an hyperbola^ an asymptote CD,
afocus F, and a 2)oint P being given (Fig. 88).

From F draw FB perpendicular to CD, then D will be a point

on the directrix as has been previously proved. Through P draw
iy parallel to CD and make Pf=PF, then/ will be a second

point in the directrix, which is therefore determined. Draw CF
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perpendicular to Df meeting the given asymptote in C, which will

evidently be the centre of the curve. Make CA, CA^ on CF each

equal CD and AA^ will be the transverse axis, and the curve is

completely determined.

Since Pf can be measured on either side of P there are gene-

rally two solutions.

Proof. The only step in the construction which is not obvious

is taking/ as a point on the directrix. It can easily be shewn to

hold in the hyperbola, for draw Ain parallel to the asymptote

meeting the directrix in wi, then in the hyperbola

FP : FA :: PM : AX
:: Pf :Ani,

where PM is a perpendicular on the directrix.

But Am = DL = AF, .'. FP=^Pf:

and conversely, if Pf be made ^ PF, f will be a point on the

directrix.

Problem 91. To describe an hyperbola, an asymptote CT,

a tangent Tt, and afocus F being given (Fig. 89).

From F draw FD perpendicular to CT meeting it in B, and

FY perpendicular to Tt meeting in Y. Then D and Y are points

on the auxiliary circle. Bisect BY in K and draw KG perpen-

dicular to DY meeting CD in C. C will be the centre of the

curve, CF the direction of the transverse axis, and CD or CY its

semi-length.

Problem 92. To describe an hyperbola, an asymptote CD,

a directrix DD^ and a point P being given (Fig. 89).

Prom D draw DF perpendicular to CD. DF will be a locus of

the focus. Through P draw P/* parallel to CD meeting DD^ in/,

and with centre P and radius Pf describe an arc cutting DF in F.

F will be a focus, and FC drawn perpendicular to DD^ will inter-

sect CD in C, the centre of the curve; which is therefore com-

pletely determined.

[The problem is exactly the converse of Prob. 90.]
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Problem 93. To describe an hyperbola^ the asymj^totes CD, CD^

and a point F on the curve being given (Fig. 89).

Bisect the angles between the asymptotes by the lines ACA^,

BCB^; then ACA^ in the angle in which F lies is the position of

Fig.89.

the transverse axis. Through F draw QFq perpendicular to AA
,

and meeting the asymptotes in Q and q. Take a mean propor-

tional, as Fb, between FQ and Fq. Fb will be the length C£ of

the conjugate semi-axis.

Draw ^^ parallel to ^^4^ meeting the asymptote in U ; then

BE is the length CA of the transverse semi-axis and CU = CF, the

distance of either focus from C.

Froof. The only step in the construction requiring demon-

stration is that in the hyperbola BC^ = FQ . Fq.

Let iV^ be the foot of the double ordinate Fp ; by similar

triangles CAE, CNQ.

QN' : AB' :: CJV' : AC and AB = BG,

.-. QN'-BC : BC :: CN^-AC^ : AC

;

but CjV'-AC'=AN'.NA^ and (p. 156) FN' : AJV.IfA^ :: BC : AC%
.'. QJV'-BC : BC :: FJH' : BC

:
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.-. QN'-BC' = Piy' or QN'-PN' = BC\

Le. {QN-\-PN){QN'-PN) = BC' = PQ.Pq,

for by the symmetry of the curve Nq = NQ.

If qp be made equal to QP, p will evidently be a point on the

curve.

Problem 94. To describe an hyperbola, the asymptotes CT, Ct,

aiid a tangent Tt to the curve being given (Fig. 89).

Bisect Tt in P. P will be the point of contact of Tt, i. e. wdll

be a point on the curve, and the problem therefore reduces to

Problem 93.

The proof will be found on p. 163.

Definition. Any straight line drawn through the centre and

terminated both ways either by the original curve or by the con-

jugate hyperbola is called a diameter, and by the symmetry of the

curve every diameter is bisected by the centre. A diameter CD
parallel to the tangent at the extremity of a diameter CP is said

to be conjugate to CP.

The following important properties of the hyperbola should be

carefully noticed.

Prop. 1. If from any point Q in an asymptote QPpq be

drawn meeting the curve in P, p and the other asymptote in q,

and ifCD be the semi-diameter parallel to Qq,

QP,Pq= CD' and QP^pq (Fig. 90).

Through P and D draw RPr, DTt ^perpendicular to the trans-

verse axis, and meeting the asymptotes in E, r and T, t ; let Rr
meet the axis in N,

RP :: CD : DT\ , •
i , •

i

Pr :: CD : Dt ]
^7 ^""^1^^ ^^^^^S^^^'

RP.Pr :: CD'' : DT.Dt.

= £C' = DT.Dt{i>. 159),

. QP.Pq = CD\

Then QP'.

and Pq:

.. QP.Pq

But RP.Pr
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Similarly qp.pQ= CD'' = QP . Pq

;

or, if Vhe the middle point of Qq,

QV'-PV'=QV'-pV\
Hence PV^pV, and therefore PQ = pq.

161

Fig.QO.

Cor. If a straight line PP^ p^p meet the hyperhola in P, p,

and the conjugate hyperbola in P^, p^, PP^ =PPv

For if the line meet the asymptote in Q, q,

P^ QP^^Piq and PQ-^qp, .'. PPi=pp^.

Prop. 2. A diameter bisects all chords parallel to the tangents

nt its extremities ^ i. e. all chords parallel to its conjugate.

This can be proved exactly as in the analogous proposition for

the ellipse.

Let QQi {G^g. 91) be any chord of an hyperbola meeting the

directrix in E, and let be the centre point of QQ^ and F the

focus.

Join FQ, FQ^y and draw i^F perpendicular to QQ^.

Then FQ' - FQ,' = QY'- Q, Y'

= {QY+Q,Y){QY-QJ)
= 2.QQ^.0Y (1);

but since Q and Q^ are on the hyperbola,

FQ : FQ^:: QR : Q^E;

E. 11
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therefore
F^-FQl _QE' -Q,R^ 2QQ,.0S

ttieietore ~-^^, '"W ^ ' ^^W^

"

therefore, from (1) and (2),

OY FQ' F^
OR " QR'

'~UP '

Fig.91.

(2):

where AW is drawn through the vertex parallel to QR meeting

the directrix in W.

I.e. OY : OR in a constant ratio.

Take any second chord qq^ parallel to QQ^ meeting FY in Y^

and the directrix in ^j. Let 0^ be its centre point ; then, since

OY Y
(YR

^
7)1^ ' ^* follows that the line 00^ must pass through the

point T in which FY meets the directrix, and is therefore

fixed for all chords parallel to QQ^. This line will evidently pass

through the centre (i. e. will be a diameter), for by the last pro-

position it bisects all chords of the conjugate hyperbola parallel

to QQ^ , i. e. it bisects the diameter Dd^ which is also bisected by C.

Let TO meet the hyperbola in P and suppose qq^ to move

parallel to itself till it approaches and ultimately coincides with P.

Since 0^q=0^q^ throughout the motion, the points q^ q^ will evidently
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approach P simultaneously, and in the limiting position qq^ will

be the tangent at P. It follows that if P^ be the other extremity

of the diameter through P, the tangent at P^ is parallel to QQ^,

and therefore to the tangent at P.

Corollary 1. The perpendicular on the tangent at any point

from the focus meets the corresponding diameter in the directrix.

\ Cor. 2. If the tangent at P meet the asymptotes in E and e,

PE = Pe, for by the last proposition the intercept between q and

one asymptote is always equal to the intercept between q^ and the

other asymptote, and when q and q^ ultimately coincide with P
these intercepts become PE and Pe respectively, i.e. the portion

of any tangent between the asymptotes is bisected at the point of

contact.

Cor. 3. If PE be the tangent at P meeting the asymptote

in Ey PE^ = CD^, where CD is the semi-diameter conjugate to GP.

For taking a parallel chord very near the tangent meeting the

curve in p, p^ and the asymptote in e, we have, by Prop. 1,

ep . ep^ = CD\

and therefore when p and p^ coincide in P,

EP' = CI)\

Cor. 4. The asymptotes are the diagonals of the parallelogram

formed by the tangents at the extremities of a pair of conjugate

diameters. For E and e, which are on the asymptotes, are also

angular points of such a parallelogram.

Prop. 3. Tangents drawn at the extremities of any chord sub-

tend equal angles at thefocus.

Let PQ (fig. 92) be any chord of an hyperbola and let the

tangents at P and Q meet in R. Let F be the focus, and from R
draw RN, RM perpendicular respectively to FP, FQ ; draw RW
perpendicular to the directrix and let the tangent at P meet the

directrix in E.

Then EF is perpendicular to FP (p. 157), and therefore

parallel to RK
11—2
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Therefore FN i FP :: ER : EP
:: RW : PK,

where PK is the perpendicular from P on the directrix.

Fig.92.

Therefore FN : RW :: FP : PK
:: FA : AX.

Similarly FM : RW :: FA : AX;

therefore FiV^FM.

Hence in the right-angled triangles RFX, RF3f, FX=FM,
and FR is common.

Therefore the two triangles are equal in all respects, i.e. tlie

angle RFP=^ihe angle RFQ, and RN=RM.

Prop. 4. If PCP^ he a diameter and QVQ^ a chord 2^cirallel

to the ta7igent at P and meeting PP^ produced in V, and if the

tangent at Q meet PP^ in T, then CV.CT= CP' (Fig. 92).

Let 2'Q meet the tangents at P and P^ in R and r, and F being

a focus draw RN perpendicular to the focal distance FP meeting
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it in i\^, rn perpendicular to FP^ meeting it in n, and RM, rm

perpendicular to the focal distance FQ. Let F^ be the other

focus, and join F^P, F^P^.

Since CF=CF,, CP^CP,, and the angle i^CP = the angle

F[CP^, therefore the triangles FGP, FfiP^ are equal in all re-

spects; and therefore the angle CPF — the angle CP^F^.

Similarly the angle CPF, = the angle CP,F.

Therefore the whole angle FPF^ = the whole angle F^P^F; but

the tangents bisect the angles between the focal distances, there-

fore the angle FPP = the angle FP^r ; i.e. the right-angled tri-

angles RPN, rP^n are similar, and therefore

RP : rP^ :: RN : rn;

but RN'=RM SiTid roi = rm (Prop. 3), therefore

RP : rP, :: RM : rm
:: RQ : rQ.

But TR : Tr :: RP : rP^

:: RQ : rQ;

therefore TP : TP, :: PV : PJ
by similar triangles,

or CP-CT : CT+GP :: CV-CP : CV+CP,
i.e. CT : CP :: CP : CV;
therefore CT.CV=CP\

Cor. 1. Since CFand CP are the same for the point Q^, the

tangent at Q, passes through 2\ or the tangents at the extremities

of any chord intersect on the diameter which bisects that chord.

Prop. 5. JfPCP,, BCD, he conjugate diameters, and QV he

drawn j^drallel to CD meeting the hyperhola in Q and CP in V, then

QV : PV.PJ :: CD^ : GP\
Let the tangent at Q (fig. 92) meet CP and CD in T and t

respectively, and draw QU parallel to CP meeting CD in U.

Then CV. GT= CP' and CU . Ct = CD' (Prop. 4)

;

but CU=QV,
therefore CD' : CP' :: QV.Ct : CV.CT;
but Ct : QV :: CT : VT,

.'. CD' : CP' :: QV : CV. VT,
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and CV. VT=CV{CV - CT) = CV - CP'^ PV . PJ;
therefore QV : PV.PJ '.-. CD' : CP\

Peoblem 95. To describe an hyperbola, the transverse axis

AA^ and a point P on the curve being given (Fig. 88).

Bisect AA^ in (7, which will of course be the centre of the

curve. Draw the conjugate axis BCB^. Let PJ,, PA cut BB^
in &j and h respectively. Take a mean proportional CH between

Cb and Cb^, which will be the length {CB or CB^ of the semi-

conjugate axis. The foci can then be determined, since CF=AB.

Proof. Let PJSf be the ordinate at P.

Then PN : bfi :: NA^ : CA^,

and PN : bC :: NA : CA,

or PJST' : iVM.iT^, :: bC.bfi : CA';

therefore bC . bfi = BC (p. 156).

Problem 96. To describe an hyperbola, the transverse axis

ATA^ and a tangent PT being given (Fig. 88).

Bisect AA^ in C, the centre of the curve. On CA towards

CT take CN a third proportional to CT and CA. N will be the.

foot of the ordinate of the point of contact of the given tangent

;

i.e. if IsP be drawn perpendicular to AA^ meeting TP in P, P
will be a point on the curve, and the problem therefore reducea

to the preceding.

It may also be completed by Prob. 19, p. 23, determining

two lines PF, PF^ making equal angles with PT and meeting

AA^ in points equidistant from C\ since it has been already

shewn (p. 157) that the tangent bisects the angle between the

focal distances.

The proof follows from Prop. 4, p. 164, which of course applies

to the principal axes.

Problem 97. To describe an hyperbola, a pair of covjugate

diameters being given (Fig. 93).

PCP^, DCD^ are the given conjugate diameters.
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First Method. Complete the parallelogram QtqT formed by the

tangents at their extremities; then the diagonals of this parallelo-

gram are the asymptotes (p. 1G3), and the axes therefore bisect

the angles between them. Thus CA and CB are determined in

<lirection.

From P draw two lines PF, PF^ making equal angles with

PT, the tangent at P, and meeting ^^, in points i^ and F^ equi-

distant from C (Prob. 19, p. 23). Then F and F^ are the foci,

and the vertices can be determined by dropping perpendiculars

on AA^ from the points in which the circle on FF^ as diameter

intersects the asymptotes.

The curve can therefore be drawn by the general method.

Second Method. Points on the curve can also be determined

without finding the foci thus :

Complete the parallelogram QtqT as before.

Divide QD into any number of equal parts as at 1, 2, 3.

Divide CD^ into the same number of equal parts as at Ij, 2^, 3j;

then PI andPjlj will, when produced, intersect in a point on

the curve, and similarly with the other corresponding points.
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This method can also of course be applied to the principal

axes; it cannot however be recommended, because a slight in-

accuracy in the position of either line makes a considerable

alteration in the position of the point on the curve, since in

producing the lines the error is magnified, and the lines must

often be produced to a considerable distance.

Problem 98. To describe an hyperbola, the centre C, the direc-

tions of a pair of conjugate diameters CA, CB^ and two j^oints on

tfie curve P and Q being given (Fig. 94).

Draw PKj Qn parallel to CB meeting CA in N and n. (Let

PN be less than Qn ; then CiY must be less than Cn.) Produce

Qn to q and draw PMP^ parallel to CA, meeting CB in M.

Make MP^ = MP and nq = nQ. Then P^ and q are points on

the curve. Let PP^ meet Qq in JE. Through n draw nx parallel

to QP^ meeting PP^ in x, and through n draw ny parallel to Pq
meeting PP^ in ?/. Take Ed a mean proportional between Ex
and Ey. On CN describe a semi-circle CDN and make ND — Ed.

CD will be the length CA of the diameter parallel to PP, . On
CA make CG = Ed, and through A draw BA parallel to MG. CB
will be the diameter conjugate to CA, and the problem reduces

to the preceding.
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Proof. The construction, as in the similar problem for the

ellipse, depends on the property of the curve, that "the rectangles

contained by the segments of any two chords which intersect each

other are in the ratio of the squares on the parallel diameters,"

i.e. EP.EP^ \ EQ.Eq :: GA^ : CB\

which may be thus proved :

Through E draw the diameter EPE^, and draw the ordinate

EU parallel to Qq or to CB ; then, by Prop. 5, p. 165,

EU' : CU'-CA' :: CB' : CA',

.'. CB'^EU' : CB' :: Ca' : GA\

and qn' : Cn'-CA' :: CB' : CA';

.'. CB'+qn' : CB' :: Cn' : CA',

so that CB' + EU' : CU' :: CB'+qn' : Cn'.

But EU' : CU' :: En' : Cn',

.'. CB' : CU' :: CB'+qn'-En' : Cn\

or CB' : CB'+qn'-En' :: CU' : Cn'

:: CR' : CE';

.'. CB' : qn'-En' :: CR' : CE'-CR',

or CB' : EQ.Eq :: C7e' : ER . ER^.

Similarly CA' : EP . EP^ :: CR' : ER.ER^,

.-. EP.EP^ : EQ.Eq :: CA' : Ci?'.

Bat by construction EQ : ^P^ :: En : Ex,

and j5'^ : EP :: ^7^ : %,
EQ.Eq : EP.EP^ :: J5'/i' : Ex .Ey;

but ^o; . Ey = Ed' = Niy =CN' -CA' == AN . NA^,

.-. En' or PxV'' : JiV.iYJ, :: EQ.Eq : EP.EP^,

which proves that AA^ is the diameter conjugate to PJS\

Also by construction

CB : CA :: CM : CG :: PN : ND,
.'. CB' : CA' :: PN' : ^iV^.iYi,,

or CB is the semi-diameter conjugate to CA.
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Problem 99. To describe an hyperbola, the centre C, the

directions of a pair of conjugate diameters CT, Ct^ a tangent Tt,

and a point P on the curve being given (Fig. 95).

[If a line be drawn parallel to Tt and at an equal distance

from (7, it will of course be a second tangent, and P must not

lie between these lines.] Draw PVp parallel to Ct cutting CT
in F, and make Vp = VP. p) will be a point of the curve. One
of the two diameters CP or Cp (in the figure Cp) will always

intersect Tt in a point (L) outside Tt\ draw such diameter and

on it make CP^ = Cp. P^ will be a point on the curve.

Take Lm a mean proportional between Lp and LP^. On Tf

as diameter describe a circle; through L draw LK perpendicular

to Lt and on it take a point K such that Cp : Lm :: ^Tt : ZA',

i.e. on LK make Lm^—Lm, and on Lt make Lo = \Tt and Lp^ = (7/a

Through o draw oK parallel to ni^p^, K will be the point required
;

tlien tangents KQM, Q^KM^ from K to the circle on 2't will intei-

sect Tt in points (^Q, and Q^) either of which may be taken for its

2)oint of contact with the curve. There are therefore two solutions.

Through G draw DCd parallel to Tt, make CD'^Cd=QM,
the tangent from Q to the circle. CQ and CD will be conjugate

semi-diameters, and the problem reduces to Problem 97.
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Problem 100. To describe an hyperbola, the centre C, two

tangents PT, QT and a point on the curve (R) being given

(Fig. 96).

Through G draw TCT^ and make CT^ = GT. Draw T^t parallel

to PT meeting QT in t, and draw T^t^ parallel to QT meeting PT

in t^. tT^ and t^T^ will be tangents to the curve and TCT^, tCt^

will be the directions of a pair oi conjugate diameters; and the

problem therefore reduces to the preceding.

[The point R must lie outside the parallelogram TtT^t^ and

within one of the exterior angles, such as PTQ.^

In the figure RC = GR^ and RG meets Tt in L ; Lm is a mean

])roportional between LR and LR^) and LK : Lm :: GT : GR,

where 02'= -|7'^, and ZK is perpendicular to Tt. Then a tangent

/CM from K to the circle on Tt as diameter cuts Tt in its point

of contact (Q) with the curve, and GD drawn through G parallel

to QT and equal to ^J/ will be the semi-diameter conjugate to GQ.

There are two solutions, as two tangents can be drawn from

K to the circle on Tt.
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Problem 101. To describe an hyperbola, the centre C, two

points {A and B) of the curve and a tangent Tt being given

(Fig. 97).

[A second tangent can at once be drawn parallel to Tt on the

other side of G and at the same distance from it; the points A
and B must not lie between these lines.] If the given points lie

on opposite branches of the curve, as e.g. A and B^, i.e. if they

are on opposite sides of Tt, draw BfiB and make CB = GB^, then

B will be on the same branch as A.

\"^.

^ra,

Fig.97.

Draw AB and bisect it in V. Draw GV meeting the given

tangent in T^ and Gt parallel to AB meeting it in t. Then GT,

Gt are the directions of a pair of conjugate diameters, and the

problem reduces to Prob. 99.

In the figure GA^ = GA and AGA^ meets Tt in Z; Lin is a

mean proportional between LA and LA^; LK : Lm :: OT : GA^

where LK i^ perpendicular to Tt and OT — ^Tt.

Then a tangent (Kq) from K to the circle on Tt as diameter

cuts Tt in Qf its point of contact with the curve. GJJ parallel

to Tt and equal to Qq is the semi-diameter conjugate to GQ.
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Problem 102. To describe an hyyerhola^ the centre C, and

three tangents {SV, VW, WS) being given (Fig. 98).

Through G draw TCT^ meeting SV in T and SW in T,, so that

TC=GT^ (Prob. 14, p. 19). CT will be conjugate to CS. Draw

Fig.98.

\T V parallel to OF meeting VW i\\ v, Tw parallel to CW meeting

VW in ly, and draw vT, loT^ meeting in E. Then ES will cut

\VW in P, its point of contact with the curve. Also PQ parallel to

iT will cut VS in Q, its point of contact, and QR parallel to CI' or

\PR parallel to T^w will cut WS in R, its point of contact. The prob-

lem can be completed by several of those previously given or thus;

Draw QN parallel to CT meeting CS in ^Y. QN is an ordinate

fof the diameter CS, and therefore CA, the length of the semi-

Fdiameter, is a mean proportional between CS and CN (Prop. 4,

p. 164). Similarly, if Qn be drawn parallel to C'aS' meeting CT in

n, CB must be taken as a mean proportional between' (7^ and CT.

Problem 103. To describe an hyperbola, the centre G and

three points P, Q, R being given (Fig. 99).

[Each of the points must lie either between both pairs of lines

furnished by the remaining points and their corresponding points,

or outside both these pairs of lines.]
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Bisect PQ in ^, QR in q, and RP in r, and draw Cp, Cq and

Cr, producing each indefinitely. PQ is a double ordinate of the

Fig.99

diameter Gp, and therefore the tangents at P and Q will intersect

on Cp; similarly the tangents at Q and R will intersect on Cq, and

at R and P on Cr. If therefore a triangle be drawn (Prob. 15,

p. 20), the sides of which pass through P, Q and R, and the

vertices of which lie on Cp, Cq and Cr respectively, the sides of

this triangle will be the tangents at P, Q and R. Take any

point a on Cr; draw Pa, Ra cutting Cp, Cq in b and c respectively

;

join be cutting PR in x, and draw xQ cutting Cb in T. QT, PT
will be the tangents at Q and P respectively; and if PT meet Cr

in t, Rt will be the tangent at R. The problem may be completed

by preceding problems.

Problem 104. To describe an hyperbola, the foci F, I\ and a

point P on the curve being given (Fig. 100).

It has been shewn already that the difference between the

focal distances of any point on the curve is equal to the transverse

axis (p. 153).

Let F^P be greater than FP. On PF^ make Pf= PF. Draw
FF^, bisect it in G and make CA = CA^ = ^FJ. AA^ will there-
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fore be the vertices of the curve, and the problem reduces to

Prob. 89.

Fig.lOO.

Problem 105. To describe an hyperbola^ the foci F, F^ and a

ingent Tt being given (Fig. 1 00).

[The tangent must lie between F and F^.']

Bisect FF^ in (7, the centre of the curve. From F or F^ drop

a perpendicular (as FY) on the tangent. On CF, GF^ make

CA = GA^ = GY. A and A^ will be the vertices of the curve, and

the problem reduces to Prob. 89.

Problem 106. To describe an hyperbola, a focus F, a tangent

FT with its point of contact P, and a second point Q on the curve,

being given (Fig. 100).

If F and Q are on the same side of FT, the solution has already

been given in the corresponding problem for the ellipse (Prob. 76).

Hence the case of F and Q lying on opposite sides of FT need

alone be considered here.

From F draw FY perpendicular to FT meeting it in Y, on

FY produced make Yf=^ YF; then Pf will be a locus of the

second focus. From / on fF, on either side of f make fq = FQ.

Bisect Qq in r, and draw rF^ perpendicular to Qq meeting Ff in

F^ , which will be the second focus. Hence, both foci being known,

the problem may be completed by Probs. 104 or 105.

Since q may be taken on either side off there are in general

two solutions.
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Proof. That/P is a locus of the second focus has been shewn
in p. 157 ; that the second focus is at the intersection of fF
and tF^ is evident thus :—it must he so situated that

F,P~FF = FQ~Ffi;
but /Q=FQ and F,q = F^Q,

and FP=fP, .'. F^P^FP = F^P^JP=fF^,
i. e. F^ is the second focus.

If F and Q are on opposite sides of FT, two hyperbolas can in

general be drawn.

If F and Q are on the same side of FT, and the distance of Q
from F is greater than its distance from the line drawn through y*

perpendicular to Pf two hyperbolas can in general be drawn.

If F and Q are on the same side of FT, but the distance of

Q from F is less than its distance from the above perpendicular,

one hyperbola only can in general be drawn, but an ellipse can

also be drawn.

If F and Q are on the same side of Pl\ and the distance of Q
from F is equal to its distance from the above perpendicular, a

parabola can be drawn fulfilling the required conditions, but no

hyperbola or ellipse, since the second focus removes to an infinite

distance.

Problem 107. To describe an hyperbola, a focus F, a tangent

RT and two points P and Q of the curve being given (Fig. 101).

If F, P and Q are all on the same side of RT, the solution

has already been given in Prob. 77, the corresponding jiroblem

for the ellipse. Hence the cases of one or both of the points P, Q
lying on the opposite side of RT to F need be considered.

Case 1. Let F and P be on the same side of RT, and Q on

the opposite side. Produce PF to q, make Fq = FQ, and with

centre P and radius Pq describe a circle qG. From F draw FY
perpendicular to RT, produce it tof and make Yf= YF. With

centre f and radius FQ describe a circle GIf, and find the centre

(F^) of a circle touching the circles qG and Gil internally and
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passing through Q (Prob. 32). F^ will be the second focus. The

problem is always possible, since the circles must necessarily cut

each other and the point Q be inside both.

FIg.lOI.

fq

I
Proof. The second focus F^ must be equidistant from Q and

from the circle qG, since F^P — FP must be equal to FQ — F^Q.

But F,P by construction^ P^-i^\^ and Pq = FP +Fq = FP+FQ.

Also fF^ must be equal to the transverse axis, p. 153,

i.e. to FQ—F^Q or to /G — F^Q, i.e. the second focus must be

equidistant from the point Q and from the circle GIL

Case 2. Let P and ^ be on the opposite side of ^7^ to i?^, as

P, and Q. Let FP^ be greater than FQ. On FP^ make Fq^ = FQ,
and with centre P, and radius P^q^ describe the circle q^ff. Deter-

mine the point / as in Case 1, and with centre / and radius FQ
E. 12
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draw the circle Gil. Determine F^ , the centre of a circle touching

qjl externally and GH internally. F^ will be the second focus,

Froof. FF^ - F^P^ = Fq^ + q^P^ - F^P, = Fq^ - (F^P^ - q^PJ
= FQ-F^Q
=fF^, as in Case 1.

Problem 108. To describe an hyperbola, a focus F, a poijit 1

on the curve, and two tangents TQ, TE being given (Fig. 102).

Fig.l02.

[F and P must be either both on the same side or both or

opposite sides of each tangent.]

If F and P are on the same side of each tangent, the necessary

condition for a possible solution has been explained in the corre

spending problem for the ellipse, Prob. 78, p. 127, and the sohi

tion given. If they are on opposite sides, as in fig., draw FYj

perpendicular to QT meeting it in F, and FY^f perpendiculai

to RT meeting it in T,, and make Yf= YF and YJ, = Y^F.

With centre P and radius PF describe a circle FG, and fine

F^ the centre of a circle to touch FG and to pass throughy and y*,

Prob. 27. Sincey and y, will necessarily lie within the circle FG
two solutions can generally be obtained.

Proof. If F^ is the second focus, fF^ "^fi^x ^^^ transvers(

axis = FP — F^P, which by construction it does.
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Problem 109. To describe an hyperbola, a focus F and three

tangents PT, QT and RS being given (Fig. 103).

^- Fig.103.

\^F must not lie within the triangle formed by the tangents.]

From F drop perpendiculars FYf, FY^f , FY^f„ on the given

tangents, meeting them respectively in F, Y^ and Y^, and make

Yf^ YF, YJ^^Y^F, and YJ^ = Y^F; then, as/,/, and/ must all

be equidistant from the second focus (p. 153), and the problem

therefore reduces to finding the centre [F^ of a circle passing

through three given points (Prob. 20), F^ will be the second

focus, and the transverse axis is of course known, since it is equal

to FJ.

Problem 110. To describe an hyperbola, a focus F and three

points P, Q, R on the curve being given (Fig. 104).

[With two of the points as centres describe circles passing

through F. The three given points cannot lie on the same branch

of an hyperbola, unless

(1) F lies in one of the three angles PQR, QRP, and RPQ;
and (2) the third point is more distant from F than it is from

the common tangent to the above circles remote from F.

12—2
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Whatever the relative position of the points and focus three

hyperbolas can always be drawn.]

Flg.l04.

The points being as in the figure, the above conditions for the

points lying on the same branch are not complied with; an ellipse

and three hyperbolas can be drawn by the first solution of the

corresponding problem in the preceding Chapter, Problem 80.

The second solution there given can be adapted to the present

case thus: Let F and Q lie on one branch of the required hyper-

bola and E on the other.

Bisect the angle FFQ by the line FC, bisect the angle between

FF and FF produced by FF, and the angle between QF and FF
2jroduced by FF.

Determine the triangle whose sides pass through F termi-

nating on FC and FF, through Q terminating on FF, FC, and

through F terminating on FF and FF (Problem 15). The sides

of this triangle will be tangents to the required curve at F, Q
and R respectively.
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To determine the triangle. Take any point G on FC, draw

CP, CQ cutting CD, CE in D and E, and draw ED, QP intersect-

ing in X. RX will be the tangent at R, and if it meets FE in T^

QT will be the tangent at Q ; similarly, if QT meets FG in T^
,

PT^ will be the tangent at P, passing also through the intersection

of RT and DF.

The construction depends on the well-known property of the

hyperbola, that the angles subtended at the focus by a pair of

tangents are equal or supplementary according as the tangents

touch the same or opposite branches of the curve.

p Problem 111. To describe an hyperbola, two tangents TQ, TR,

with their points of contact Q and R, and a point P on the curve

being given (Fig. 105).

[The point P must lie outside the parabola which can be de-

scribed touching TQ, TR at Q and R.]

The construction is exactly similar to the corresponding

problem for the ellipse. Prob. 81.

Eisect QR in V and through T draw TBV. Through P draw
PLL^ parallel to QR meeting QT in L and RT in L^

.
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Find a mean proportional {Lk) between PL and PL^. (If

PjZj be made equal to PL, P^ will be a point on the curve.) On
PPj make PK= Lk, then QK will intersect TV inD, the extremity

of the diameter TV.

On TV take a point G such that TC : CD -.: CD : CV
',
and if,

as in the figure, Q and R are on opposite branches of the hyper-

bola, C must be taken between T and V ; i.e. on TV as diameter

describe a semi-circle; draw DM making an angle of 45" witli

D V and meeting the semi-circle in M, and from M draw MC per-

pendicular to TV. Evidently MC is a mean proportional between

GT and CV, and is equal to CD. C will be the centre of the

hyperbola, and the asymptotes can easily be determined and the

curve completed by preceding problems.

The proof is identical with that for the ellipse.

Problem 112. To describe an hyperbola, two jjoinfs A and B
on the curve and three tangents PQ, QE, RP being given (Fig. 106).

[Either no one of the three tangents must pass between the

xi5,

FIg.106.

Yd

\

points or all three must do so, and the points must not lie withii

the triangle formed by the tangents.]

Draw a line through AB cutting the tangents through P i^

L and M and the remaining tangent in iV^.
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Find X the centre and i>, i>, the foci of the involution A^ B
and L, M (Prob. 13). D or D^ will be a point on the chord of

contact of the tangents FL, PM,

[In the figure La on PQ = LA , andBm on a parallel to PQ=BM;
am cuts AB in X, the required centre, and XD = XD^ = Si mean

jjroportional between XAI and XL.]

Similarly, find X^ the centre and B, E^ the foci of the in-

volution A, B and M, N (Prob. 13), and E or E^ will be a point

on the chord of contact of the tangents RM and ^iV^.

Find MV the harmonic mean between ME and MD, M being

the point of intersection of AB with the given tangents which has

appeared in each of the above involutions, then QV {Q being the

intersection of tangents through N and L) will meet the tangent

through M in its point of contact (q) with the curve.

Therefore qDr will be the chord of contact of the tangents

PQ, PR, and Eqp the chord of contact of the tangents RP^ RQ.

The proof is identical with that for the ellipse, p. 135.

Problem 113. To describe an hyperbola, two tangents TP, TQ
and three points A, B, G on the curve being given (Fig. 107).

[The points A, B, C being taken together in pairs, each pair

Fig.107. /f,
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of points must be either both on the same side or both on opposite

sides of both tangents. In the figure A and B are both on the

same side, and B and G on opposite sides of both TF and TQ,
as also C and A.']

Draw the line AB cutting the given tangents in F and Q.

Find X the centre and U, E^ the foci of the involution A, B and

P, Q (Problem 13).

[In the figure Fa ~- FA and BQ^ parallel to Fa = BQ. Q^a cuts

AB in X, the required centre. XE— XE^ = a mean proportional

between XA and XB.]

E or E^ will be a point on the chord of contact of the given

tangents.

Again, draw BC cutting the given tangents in p and q, and

find Xj the centre and G, G^ the foci of the involution B, G and

p, q. G or G^ will be a second point on the chord of contact of the

given tangents, the points of contact of which R, R^ are therefore

determined, and the problem reduces to several preceding.

Since E and E^ can be joined to either G or G^ four chords

of contact can in general be drawn, so that there are four solutions.

The construction depends on Prop. 7, p. 143.

Problem 114. To describe an hyperbola, five tangents AB, BC,

CD, BE, EA being given (Fig. 108).

[The pentagon formed by the given tangents must contain

a re-entering angle.]

Draw AC, BD intersecting in F ; and through the remaining

angular point E of the pentagon draw EF meeting BC in F.

F will be the point of contact of the given tangent BC. Similarly,

if BD and CE intersect in G, AG will intersect DC in Q, the

point of contact of the given tangent CD ; and if CE and DA
intersect in U, BH will intersect ED in R, its point of contact.

The problem therefore reduces to Problem 111, or the poini

of contact S and T of the remaining tangents can easily be deter^

mined.
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The construction depends (as in the corresponding problem

for the ellipse, p. 136) on Brianchon s theorem.

Fig.108.

Problem 115. To describe an hyperbola, Jive j^oints ABODE
Ing given (Fig. 109).

Draw AB, BE intersecting in F, and BC, EA intersecting in G\

then, if FG meet CD in H, H will be a point on the tangent at J,

which can therefore be drawn.
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If a line be drawn through G and the intersection of AB and

DO, meeting ED in K, K will be a point on the tangent at B.

Hence two tangents with their points of contact being known
and also (at least) one other point on the curve, the problem may
be completed by Prob. Ill, or the tangents at (7, D and E may
also be found by a similar construction to the above.

[If CD and EA intersect in L, and through L a line LM
be drawn passing also through the intersection of BG and DE
and meeting BD in M, M will be a point on the tangent at G

;

and if LM meet AB in iV, N will be a point on the tangent at D.'\

The construction of the tangent at E is left as an exercise

for the student.

The construction (as in the corresponding problem for the

ellipse, p. 138) is an adaptation of Pascal's theorem.

Problem 116. To describe an hypei-hola, four tangents AB,

BG, GD, DA and a point E on the curve being given (Fig. 110).

Join EG and ED, cutting ^^ in c and D^ respectively. Find

X the centre and F and F^ the foci of the involution A, c and B, D^

Fig.llO.

(Prob. 13); F or F^ will be a point on the tangent at E, which

can therefore be drawn and the problem completed by Prob. 114.
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[In the figure Ba on BC = BA, and cd on a parallel to BG
= cD^; then ad meets AB in X, the required centre of the in-

volution, and XF=XF^ = B. mean proportional between XD^ and

XB.

If FE meets DA in G, the points of contact of the given tan-

gents may be determined by drawing GG, DB intersecting in //,

when FII will meet GD in P, the point of contact of GB

;

GG, DF intersecting in K^ when BK will meet GD in Q^ its point

of contact; GF and GB intersecting in X, when DL will meet

AB in R\ its point of contact; the determination of the point of

contact of GB is left as an exercise for the student.]

Problem 117. To describe an hyperbola^four points A, B, C, D
of the curve and a tangent ad heiiig given (Fig. 111).

Let AB meet the given tangent in a, and BG, GD, DA meet

it in h, c, and d respectively. Find X the centre and F, P^ the

foci of the involution a, c and b, d; P or P^ will be the point of

contact of the given tangent, so that five points being known the

problem reduces to Prob. 115.
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[In the figure Scj on hB = he, and adi on a parallel to bB = ad;

then c^d^ meets ad in X, the centre of the required involution,

and XP is a mean proportional between Xd and Xb; I\, the other

focus, of course lies outside the limits of the figure.

HAP and DC meet in U, and AD, CB in F, EF will meet

PB in ^, a point on the tangent at />.]

Problem 118. To find the centre and radius of curvature at

any 'point P of a given hyperbola (Fig. 112).

The construction is identical with that for the ellipse (Prob.

88).

Fig.II2

Draw PG the normal meeting the axis in G, GH perpendicular

to PG meeting the focal chord PF in H, and HO perpendicular to

PF meeting the normal in 0, the required centre of curvature.
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THE RECTANGULAR HYPERBOLA.

If the axes of an hyperbola be equal, the angle between the

asymptotes is a right angle, and the curve is called equilateral or

rectangular.

If G is the centre, A a vertex, and F the corresponding focus,

it follows that CF' = 2AC\ for it has been shewn (p. 154) that

CF' = CA' + CB\ and in the rectangular hyperbola CB = CA.

Similarly FA'=2AX''j where X is the foot of the directrix,

i.e. the eccentricity is always ^2 : 1.

Conjugate diameters are equal to one another and are equally

inclined to either asymptote, for in any hyperbola

CP'-CD'=CA'-GB' and .-. GF^GB.
Also GPLD (fig. 113) is a rhombus and therefore CL bisects the

angle FGD.

Diameters at right angles to one another are equal, for if CF
be perpendicular to GP the angle BGF = the angle FGA = the

angle BGDy and therefore by symmetry GF= GD.

Corollary. The rectangles contained by the segments of chords

which intersect at right angles are equal since they are in the

ratio of the squares of the parallel diameters (p. 169).

Given three points on an equilateral hyperbola, a fourth is

also given, for if the curve pass through the three points AjB,G it

will also pass through the orthocentre of the triangle ABGy i.e.
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through the intersection of the perpendiculars from A, B, C on

the opposite sides.

This follows at once from tlie above corollary, for if ABC be

a triangle, and the orthocentre, and if CO meets ABC in 1),

the triangles DOA and DBC are similar, and

DO : DA y. DB . DC ',

.: DO.DC^DA.DB,
so that must be a point on the curve.

If P, Q, R are three points on the curve, the centre must lie

on the circle passing through the middle points of the sides of

the triangle PQR. For (fig. 113) let an asymptote meet the sides

^\e,.113.

/y.
y^^^'^/

/ /

V NJy^ 1 /T^V
jh
J<\

—~iZ.

_lf\
^i ^. J o^ C 2£

J
\a\ !P

/ \J^-v;
/l\^ csT^\Ab
^o \\\

>\

PQ, PR in I and l^j and let dy e, f he the middle points of QR,

RP and PQ respectively. Let C be the centre of the hyperbola.

Then (7/* is conjugate to PQ and Ce to PR,

. •. the angle fCe =fCl + 1fie

^elfi^Glf
= PIJ. + Pll^

^fPe
= fde,
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since fdeF is a parallelogram, i. e. the circle through fde passes

also through C (Euclid iii. 21).

Four points are therefore in general sufficient to determine a

rectangular hyperbola, for the orthocentre of the triangle formed

by any three is necessarily a fifth point on the curve, which can

then be completed by the general method of Prob. 115, p. 185;

01* the centre can at once be determined as one of the points

of intersection of the two circles which can be described through

the centre points of the sides of the triangles formed by taking

any three of the four given points in succession.

Similarly a rectangular hyperbola can generally be determined

from four conditions, and the curve cannot in general be described

to satisfy a greater number.

If ^ r be an ordinate of a diameter PCP^
,
QV^^FV .VP^.

For in any hyperbola (Prop. 5, p. 165)

(?r : FV . VF^ '.'.CD' : CF-,

but in the rectangular hyperbola CD — CF^

.-. QV' = FV . VF^,

Hints for the solution of particular cases are given in the

following examples, but as they are usually simple it has not been

considered necessary to illustrate them by figures.

Given the following data, construct rectangular hyperbolas ful-

filling them.

a. An asymptote and focus.

[A line through the focus making 45" with the asymptote

meets it in the centre,]

h. An asymptote LC, a tangent FL and its point of contact F.

[Let the given tangent FL meet the asymptote in Z; on it

lake FL^ — FL, and draw Lfi perpendicular to the asymptote

lecting it in C, the centre of the curve.]

c. The centre C, a tangent FT and its point of contact F.

[From C draw GY perpendicular to FT meeting it in Y.
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The transverse axis bisects the angle PC F, and its semi-length CA
is a mean proportional between CP and CY.]

d. The centre C and two points P, Q on the curve.

[Produce PC to p and make Cp = CP, so that Pp is a diameter.

Describe a circle through the three points P, Q^ p. The tangent

to this circle at Q is parallel to the tangent to the curve at P,

which is therefore known.]

e. The centre C, a tangent PT and a point ^ of the curve.

[From Q drop a perpendicular ^iV on the given tangent,

meeting it in N : bisect QN in n, and draw nt parallel to PT.

A circle passing through C and N and touching nt will meet

P^ again in its point of contact.]

/ The centre C and two tangents PP, QT.

[Produce TC to P, and make CT^^CT; through P^ draw

T^t parallel to QT and meeting PT in ^. C^' and Ct will be the

directions of a pair of conjugate diameters, which determine the

asymptotes.]

g. A focus F and two points P, Q.

[With centre P describe a circle, the radius of which

:PP :: 1 : J%
and with centre Q describe a circle, the radius of which

'.FQ ::\ : J2.

The directrix will be a common tangent to these two circles.]

h. A focus Fj a tangent PT and its point of contact P.

[With centre P describe a circle, the radius of which

: FP :: 1 : J~2',

draw FT perpendicular to PT meeting it in T. A tangent from

T to the circle will be the directrix.]

i. A focus F and two tangents PT, QT.

[From F draw GY perpendicular to PT meeting it in Y; pro-

duce FY to /, and make Y/= YF. Draw the circle which is the
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locus of the vertex of the triangle on base Ff^ and with the

sides terminating in F and f respectively in the ratio of ^2 : 1,

(Prob. 17, p. 21). This circle is a locus of the second focus.

Similarly the tangent QT will furnish a second locus, so that the

second focus must be at one of the points of intersection of the

two circular loci.]

h. A focus F^ a tangent QT^ and a point F.

[From F draw FY perpendicular to QT^ produce it to J\

and make Yf= YF\ a circular locus of the second focus can be

determined from Ff as in the last example. With F and/ as foci

and with distance between the vertices = i^P, describe an hyper-

bola, which will be a second locus of the second focus, which is

therefore at one of the intersections of the hyperbola and circle.]

I. Two tangents FT, QT and their points of contact P and Q.

[Bisect FQ in Y\ then YT is a locus of the centre. On FQ
describe a segment of a circle containing an angle equal to the

supplement of the angle FTQ \ the segment must be on the same

side of FQ as T, and is then a second locus of the centre, which

is therefore known.]

m. Given three points and a tangent.

[From the three points a fourth can be determined (p. 189),

and the curve can be drawn by the general method. Prob. 117,

p. 187.]

n. Given four tangents, AB^ BC, CD, DA.

[Draw the circle to which the triangle formed by some three

of the four tangents is self conjugate (Ex. 18, p. 55); it is a

locus of the centre. A second locus is the straight line joining

the points of bisection of the diagonals of the quadrilateral formed

by the tangents. The centre is therefore known.]

0. Given two points A, B and two tangents FT, QT. (Fig.

114.)

[Let AB meet FT in a and QT in h. Find X the centre,

and 0, Oj the foci of the involution A, B and a, h. The chord of

E. 13
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contact of PT and QT will pass through or Op and if it passes

through 0, TO^ will l^e the polar of and conversely. Through

..y-Q

draw Opq perpendicular to AB. On AB make OA^-OA^ and

find OaS' an harmonic mean between OA^ and OB^ let Og' and ^'6>,

meet in R and join aS'^. A circle described with its centre on

OE perpendicular to SU and to pass through A^ and B will cut

Opq in points ^, q of the required curve.]

p. Given three tangents ^^, ^C, C-i and a pointP. (Fig. 115.)

[The circle (centre /S', radius 80) to which the given triangle

ABC is self-conjugate (Ex. 18, p. 55) is one locus of the centre.

Bisect AB^ BG, CA in c, a, h respectively, and draw PA cutting

he in Z, PB cutting ca in J/, and PC cutting ah in N. The conic

described to touch the sides of the triangle ahc in the points

Xi/iV' (Probs. 81 or 111) is a second locus of the centre. In the
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figure, the required conic is an ellipse and the circular locus cuts

it in the points and 0^ , either of which may be taken as the

centre. The points of contact of the given tangents are p, q, r.]

Examples on Chapters V. and VI.

1. Draw an hyperbola, the centre (C), one asymptote {CL)

and a directrix LL^ being given.

[Draw the axis GF perpendicular to LL^^ meeting it in X.

The vertex ^ is at a distance CL from 6'.]

2. Draw an hyperbola, the asymptotes (7Z, CL^ and the

distance CF of a focus F being given.

3. Given the base ^^ of a triangle and point of contact, F,

with base of the inscribed circle ; shew that the locus of vertex

of triangle is an hyperbola with foci A and B and vertex F.

4. Shew that the tangent at any point P of an hyperbola

bisects any straight line perpendicular to the axis AA^ and

terminated by liP^ A^P.

13—2
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5. Draw the locus of the foci of parabolas passing through

two fixed points P and P^ and having their axes parallel to a

fixed line AB.

[The hyperbola described with P and P^ as foci and with

length of transverse axis = PJ/j the side parallel to AB of a

right-angled triangle on PP^ as hypotenuse.]

6. Given the centre C, vertex A, and a tangent PT meeting

CA in T, describe the hyperbola.

[The foot iV^ of the ordinate of the point of contact (P) may
be determined from GT : CA :: CA : CJV. P is then known.

The asymptotes cut ofi" equal distances on PT on each side of P
and make equal angles with CA (Prob. 19).]

7. Given the centre C, the axis C2\ a tangent PT and its

point of contact P, draw the hyperbola. (See last example.)

8. Determine the locus of the intersection of the bisectors of

the sides of the triangle formed by the asymptotes and any

tangent to a hyperbola.

[A similar and similarly placed hyperbola with axes reduced

in ratio 2:3.]

9. Given a focus F, tangent PT and point Q on an hyperbola,

draw the locus of the second focus.

[From F draw FY perpendicular to PT meeting it in Y:

produce FY to / and make Y/= FY. The required locus is the

hyperbola with foci /* and Q, and transverse axis = FQ.]

10. Given a line QT and two points P and F. From F draw

a perpendicular i^Zto ^7^ meeting it in Y, and produce FY to f^

making Yf= YF, With P and / as foci and with PF as the

distance between the vertices describe an hyperbola. With F
and any point on this hyperbola as foci describe an ellipse to pass

through P, and shew that it will touch QT :

i.e. Given a focus, tangent and point of a conic, the locus of

the second focus is an hyperbola.
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11. Given two tangents PT, QT to a rectangular hyperbola

and tlieir points of contact P, Q. Shew that if QR be drawn

perpendicular to PT, and PR to QP, R will be a point on the

curve.

12. In a given ellipse determine the pair of equal conjugate

diameters.

[They coincide with asymptotes of hyperbola having the same

13. Draw the loci of the points of trisection of a series of

circular arcs described on the straight line AB.

[Branches of two hyperbolas having their centres at the in-

ternal points of trisection of ^^ and asymptotes inclined 60" to

axis.]

14. Given the asymptotes and a point on a directrix, draw

the hyperbola.

15. From a given point P in an hyperbola draw a straight

line, such that the segment intercepted between the other inter-

section with the hyperbola and a given asymptote shall be equal

to a given line.

[With P as centre and the length of the given line as radius

describe a circle cutting the other asymptote. Either point of

intersection joined to P gives the line required.]

16. Given a focus F, and tangent PY to an hyperbola and

the length 2a of the transverse axis, shew that the locus of the

second focus is a circle.

[From F draw FY perpendicular to PY meeting it in Y

;

produce FY to / and make Yf= FY. f is the centre and 2a

the radius of the required circle.]

17. Shew that any point on the circle through the middle

points of the sides of a triangle ABG may be taken as the centre

of an equilateral hyperbola passing through A, B and C.
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18. If four tangents to an equilateral hyperbola be given,

shew that either of the limiting points (p. 46) of the system of

circles described on the diagonals of the quadrilateral as diameters

may be taken as the centre of the hyperbola.

19. Given a focus F, a tangent FT, its point of contact P,

and the eccentricity, draw the conic.

[From F draw FT perpendicular to FP and meeting FT in T
which will be a point on the directrix. With P as centre and

FP
with radius r such that = the given eccentricity, describe a

circle. Tangents from T to this circle will be positions of the

directrix. Two solutions are generally possible.]

20. Draw normals to an ellipse, from a given point P.

[The normals pass through the intersections of the ellipse with

the rectangular hyperbola passing through F and the centre of

the ellipse, and having its asymptotes parallel to the major and

minor axes at distances respectively

' and

where a and h are the semi-axes and a, y8 the co-ordinates of P.]

21. Draw normals to an ellipse from a point on the minor

axis.

[They will pass through the intersections of the ellipse with

the circle described through the foci and point.]
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CHAPTER VII.

EECIPROCAL POLARS AND THE PRINCIPLE OF DUALITY.

In page 31, it has been sliewn how to find the pole of a

given line and the polar of a given point with regard to a given

circle, and the principal properties of poles and polars have been

explained.

In pages 140 et seq. an extension has been made to the case of

an ellipse, and the properties there noticed are applicable to all

conic sections.

The pole of a line with regard to any conic being a point and

the polar of a point a line, it follows that any system of points

and lines can be transformed into a system of lines and points.

This process is called reciprocation, and it is clear that any

theorem relating to the original system will have its analogue in

the system formed by reciprocation.

Def. Being given a fixed conic section (2) and any curve (S),

we can generate another curve (s) as follows; draw any tangent

to *S^, and take its pole with regard to S;, the locus of this pole

will be a curve s, which is called the reciprocal polar of S with

regard to 2. The conic 5 with regard to which the pole is taken

is called the auxiliary conic.

A point (of the reciprocal polar curve s) is said to correspond

to a line (of the reciprocated figure S) when we mean that the

point is the pole of the line with regard to the auxiliary conic % ;

and since it appears from the definition that every point of s is
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the pole with regard to 2 of some tangent to jS, this is briefly

expressed by saying that every point of s corresponds to some

tangent of S.

Theorem. The point of intersection of two tangents to S will

correspond to the line joining the corresponding points of s.

This follows from the property of the conic 2, that the point

of intersection of any two lines is the pole of the Hue joining the

poles of these two lines, (p. 141.)

Now if the two tangents to S be indefinitely near, then the

two corresponding points of s will also be indefinitely near, and

the line joining them will therefore be a tangent to s ; and since

any tangent to S intersects the consecutive tangent at its point

of contact, the above theorem becomes : If any tangent to S cor-

respond to a p>oint on s, the point of contact of that tangent to S
will correspond to the tangent through the point on s.

Hence we see that the relation between the curves is reci-

procal, that is to say, that the curve S might be generated from s

(through the auxiliary conic) in precisely the same manner that

s was generated from S. Hence the name "reciprocal polars*.

"

Being given then any theorem of j)osition concerning any

curve S (i.e. one not involving the magnitudes of lines or angles),

another can be deduced concerning the curve s. For example, if

we know that a number of points connected with the figure S
lie on a right line, we know also that the corresponding lines

connected with the figure s meet in a point (the pole of the line

with regard to ^), and vice versd.

From any one such theorem another can be derived by suitably

interchanging the words "point" and "line," "inscribed" and

"circumscribed," "locus" and "envelope," &c., understanding by

the term envelope " the curve to which a series of lines drawn

according to any given rule are tangents."

The evolute of a curve, e.g. is the envelope of normals to the

curve.

* Salmon's Conic Sections, chap. xv.
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Although the auxiliary conic 2 has hitherto been spoken of

as any conic whatever, it is most common to make this conic a

circle, considerable simplification being thereby introduced, and

generally unless the contrary is specially mentioned, reciprocal

polars may be understood to be polars with regard to a circle.

It has been shewn, p. 31, that the polar of any point with regard

to a circle is a line perpendicular to the line joining the point

to the centre, and conversely that the pole of any given line with

regard to a circle is on the line through the centre perpendicular

to the given line; in either case the product of the distances of

the pole and polar from the centre being equal to the square of

the radius, so that the polar of a given point or the pole of a

given line with regard to a given circle may always be found

by merely drawing tangents to that circle. The centre of the

auxiliary circle is frequently called the origin.

The advantage of using a circle for the auxiliary conic chiefly

arises from the two following theorems, which enable us to trans-

form by this method, not only theorems of position, but also

theorems involving the magnitude of lines and angles.

Theoeem. The distance of any point P from the origin

is the reci^jrocal of the distance Ot from the origin of the cor-

responding line pt

;

i.e. OP.Ot = r\

where Ot is perpendicular to j)t and r is the radius of the auxiliary

circle.

Theorem. The angle TQT^ between any two lines TQ^ T^Q

is eqttal to the angle subtended at the origin by the corresponding

points 2^, P^ ; for Op is perpendicular to TQ and Op^ to T^Q.

Problem 119. To find the polar reciprocal of one circle,

centre C, radius GA^ with regard to another, centre 0, radius OJ/,

i.e. to find the locus of the pole p with regard to the circle (0)

of any tangent PT to the circle C. (Fig. 116.)

Find iT/ifj the polar with respect to the auxiliary circle

(centre 0) of C, the centre of the circle to be reciprocated ; i. e. if
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G is, as in the figure, outside the auxiliary circle, draw CM a

tangent to that circle and draw MAI^ perpendicular to OC, meet-

Fig.116.

A \ C,^'''^\_/''^^ X A, O n

\/x ^'"' /^

la"
\ I

1

^^—>^ N ^
ing it in X. Draw any tangent FT to (C); draw OT perpen-

dicular to FT, and find the pole p with respect to the auxiliary

circle of FT. Then by definition, 00 . 0X= r^^Op. OT, where r

is the radius of the auxiliary circle,

i.e. Op : 00 :: OX : OT
From p draw pN perpendicular to MM^ meeting it in N, and pn
perpendicular to 00 meeting it in n. Also draw OY perpen-

dicular to OF meeting it in Y, so that OT=FY. Then by

similar triangles Opn, 00Y,

Op : 00 :: On : C7,

.-. Op :0C :: OX+On : FY+CY
:: nX : OF.

But nX=pXf
.-. Op : pN :: 00 : OF;

00
but the ratio ^ „ is constant, since both 00 and OF are fixed

distances.
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Therefore the point p moves so that its distance (Op) from a

fixed point is in a constant ratio to its distance {pN) from

a fixed right line MM^; i.e. the locus of ^ is a conic section

of which is a focus, MM^ the corresponding directrix, and

OG
the eccentricity of which is ^^^ . The eccentricity is evidently

greater, less than, or equal to unity according as is outside,

inside, or on the circumference of the reciprocated circle.

Hence, the polar reciprocal of a circle is a conic section, of

which the origin is the focus, the line corresponding to the centre

is the directrix, and which is an hyperbola, an ellipse, or a para-

bola, according as the origin is outside, inside, or on the circle.

The tangents at A and A^, the extremities of the diameter

through 0, correspond to the vertices at a and a^ of the reciprocal

polar. [In the figure At touches the auxiliary circle and at is

perpendicular to 0C\
The extremities of the latus rectum LL^ correspond to the

tangents parallel to OC. Therefore OL . CP — r^, where r is the

radius of the auxiliary circle.

The centre of the reciprocal conic is the pole with respect to

(0) of the polar of with respect to (C), i.e. if is outside ((7)

it is the pole of the chord of contact of tangents from to the

circle (C), and in that case the asymptotes are perpendicular to

these tangents. Of course if is inside (C) real tangents from

it to (C) cannot be drawn, and consequently the ellipse has no

real asymptotes.

Conversely of course the reciprocal of a conic section with

regard to a circle which has one of the foci for its centre is a

circle, with its centre at the pole of the corresponding directrix

and of radius {K) such that the ratio, R : distance between its

centre and the focus, is the eccentricity of the conic.

The above important property enables us to deduce from any

property of a circle, a corresponding property of a conic; and
since the proof of the existence of the relation in the circle will

usually be much simpler than a direct proof of the corresponding
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relation in the conic, the method is frequently of great value. It

will soon be found that the operation of forming the reciprocal

theorem will reduce itself to a mere mechanical process of inter-

changing the words "point" and "line," "inscribed" and "cir-

cumscribed," "locus" and "envelope," &c., as has been already

noticed ; but the method also furnishes admirable examples and

tests of draughtsmanship, and the actual construction of reciprocal

figures should I think be much more largely practised than it is.

Of course a little care is required in taking the original circles

so that the resulting conic may be of convenient proportions, but

a very little practice will enable this to be done and there is no

real difSculty in the construction itself.

A convenient ratio for the eccentricity of an ellipse is one not

very different from 3 : 4, which may therefore be taken as a guide

for the ratio of the radius of the circle to be reciprocated to the

distance of the origin from its centre ; and the auxiliary circle

should then be taken of such radius as to bring the length

between the poles of the tangents at the extremities of the dia-

meter through the origin, i.e. the length of the major axis, a

convenient one. The approximate position of these poles relatively

to any assumed radius is easily seen. The size of the reciprocal

conic depends entirely on the radius of the auxiliary circle.

As an example, fig. 117 gives the figure illustrating the fol-

lowing reciprocal theorems

:

Theorem. Eeciprocal.

If a chord of a circle subtend a If two tangents to a conic move
constant angle at a fixed point on so that the intercepted portion of a

the curve, the chord always touches fixed tangent subtends a constant

a circle. angle at the focus, the locus of the

intersection of the moving tangents

is a conic having the same focus and

directrix.

C is the centre of the circle, M the fixed point on it, and PP,

the chord which moves so that the angle PMP^ is constant, and

which therefore always touches a circle described with centre C.
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F is the centre of the auxiliary circle, and since it is taken inside

the circle (C) the reciprocal polar of this circle will be an ellipse.

Find K the point corresponding to the line MP^ i. e. the pole

Fig.117.

of MP with respect to the auxiliary circle, (in other words draw

Fm perpendicular to MP meeting it in m, drav/ 'nxt a tangent to

the auxiliary circle touching it in t and draw tK perpendicular to

Fm, meeting it in K)\ find L the point corresponding to JfPj,

i. e. the pole of MP^ with respect to the auxiliary circle, (in other

words, since MP^ cuts the auxiliary circle, draw a tangent at one

of the points of intersection meeting FL drawn perpendicular to

J/Pj in L) ; then the line KL corresponds to the point M, and will

therefore be a fixed tangent to the reciprocal conic.

Find Q the point corresponding to the line PP^ , then the line

KQ corresponds to the moving point P, and the line LQ to the

moving point P^, and these lines are therefore moving tangents

to the reciprocal conic, intercepting on the fixed tangent a length

KL which subtends a constant angle at F, for since FK is per-

pendicular to MP and FL to MP^ , the angle KFL is equal to

the angle PMP^ which by supposition is constant.
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Lastly, since Q corresponds to PP^ which is a tangent to a

circle centre G, the locus of Q must be the polar reciprocal of this

circle, and is therefore a conic with focus F and the polar of C
for directrix, i. e. a conic with the same focus and directrix as the

polar reciprocal of the circle MPP^ .

As in the figure F lies outside the circle to which PP^ is a

tangent, the locus of ^ is a hyperbola, the vertices of which are

the poles of the tangents at A and A^, the ends of the diameter

through the origin F,

Examples on Chapter YIT.

Below are given in parallel columns some examples of reciprocal

theorems

:

1. The angles in the same seg-

ment of a circle are equal.

2. Two of the common tangents

of two equal circles are parallel.

3. If a circle be inscribed in a

triangle, the lines joining the vertices

with the points of contact meet in a

point.

4. If two chords be drawn from a

fixed point on a circle at right angles

to each other, the line joining their

ends passes through the centre.

5. Any two tangents to a circle

make equal angles with their chord

of contact.

6. If two chords at right angles

to each other be drawn through a

fixed point on a circle, the line join-

ing their extremities passes through

the centre.

If a moveable tangent of a conic

/ meet two fixed tangents, the inter-

I
cepted portion subtends a constant

angle at the focus.

If two conies have the same

focus, and equal latera recta, the

straight Une joining two of their

common points passes through the

\ focus.

^ If a triangle be inscribed in a

\ conic, the tangents at the vertices

ineet the opposite sides in three

points lying in a straight line.

\ If two tangents of a conic move
so that the intercepted portion of a

fixdd tangent subtends a right angle

at the focus, the two moveable tan-

gents meet in the directrix.

The line drawn from the focus to

the intersection of two tangents bi-

sects the angle subtended at the focus

by their chord of contact.

The locus of the intersection of

tangents to a parabola which cut at

right angles is the directrix.
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[Take the fixed point on the circle as the centre of the auxiliary

circle, and the circle reciprocates into a parabola.]

7. The envelope of a chord of a The locus of the intersection of

circle which subtends a given angle tangents to a parabola, which cut

at a given point on the circle is a at a given angle, is a conic having

concentric circle. the same focus and the same directrix.

8. The rectangle under the seg- The rectangle under the perpen-

ments of any chord of a circle diculars let fall from the focus on

through a fixed point is constant. two parallel tangents is constant.

[Take the fixed point as centre of auxiliary circle.]

9. If lines be drawn from the The points of intersection of tan-

end of a diameter of a circle making gents to a parabola, which are equally

equal angles with a fixed straight inclined to a given straight line, lie

line in the plane of the circle, the on a fixed straight line passing

chords subtended by these lines are through the focus.

parallel.

10. The portion of any tangent The portion of the directrix inter-

to a circle intercepted between two cepted between chords drawn from

parallel tangents subtends a right the ends of any focal chord of a

angle at the centre. conic to any point of the curve sub-

tends a right angle at the focus.

11. Shew that the polar reciprocal of a parabola with respect

to a circle having any point (*S') of the directrix as centre is an

equilateral hyperbola.

[Draw the tangents to the parabola from the point S, which

will be at right angles to each other since S is on the directrix.

The reciprocals of their points of contact will be asymptotes to

the reciprocal curve, because their points of contact (the poles

of the tangents) are at an infinite distance. The tangents at the

vertices can easily be drawn, since they are the polars of the

points in which a line through S parallel to the bisector of the

angle between the asymptotes meets the parabola.]

12. Given three points A, B and C, on a parabola, and a

point L on the directrix, draw the curve.

[If the three points are reciprocated with respect to a circle

described with centre L, and a rectangular hyperbola described
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passing through L and having the polars oi A, B and C for

tangents (Ex. 'p, p. 1 94), any point on the hyperbola when reci-

procated with respect to the same circle becomes a tangent to

the parabola.]

13. If a conic be inscribed in a quadrilateral, shew that the

angles subtended at a focus by the pairs of opposite sides are

together equal to two right angles.

[Reciprocate the well-known theorem : The opposite angles of

any quadrilateral inscribed in a circle are equal to two right

angles.]

14. With the centre of perpendiculars of a triangle as focus

are described two conies, one touching the sides and the other

passing through the feet of the perpendiculars
;
prove that these

conies will touch each other, and that their point of contact will

lie on the conic which touches the sides of the triangle at the

feet of the perpendiculars.

15. An hyperbola is its own reciprocal with respect to either

circle which touches both branches of the hyperbola and inter-

cepts on the transverse axis a length equal to the conjugate

axis.
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CHAPTER VIII.

ANHARMONIC RATIO AND ANHARMONIC PROPERTIES

OF CONICS.

AppUcatioyi of the signs + and — to determine the direction of

segments of a right line.

li A, B are two points in a straight line and it is necessary to

discriminate whether the length AB is to be measured from A
to B or from B to -4, it may be done by calling the one direction

positive and the other negative, the starting point in each case

being called the origin.

Hegard being paid to this convention we may evidently say

AB = -BA or AB + BA=0,

and an obvious interpretation of this equation is that if we go

from A to B and back again from ^ to ^ we are finally at zero

distance from the starting point.

The same thing is evidently true of any number of segments

;

for if we take three points A, B,G in any order in a straight line

and travel from A to B, then from B to C, and finally from C to A^

we arrive at the point we started from, and really perform the

operation expressed by the equation

AB + BC + GA = 0.

Since — CA =AG^ this may also be written

AB + BC=^AC.

When the position of a point A is determined by its distance

from an origin 0, if we wish to refer it to another origin 0^

anywhere on the line through and A, we can always take

OA:r.O^A-Ofi,

E. 14
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for this is identical with the equation

OA-O^A + Ofi = 0,

and, since - O^A = AO^j with

OA+A0^ + Ofi = 0.

The difference of two segmeiits OA, OB of a straight line with

a common origin is always equal to JBA, whatever may be the

magnitudes and directions of the segrnents.

For the equation OA- OB = BA

is identical with OA + AB + BO = 0.

If a is the middle point of a segment Aa and M any point on

the line through Aa^

^^^^MA+Ma,
^^^ 3fA.3fa = Ma\'-'^\

for between the three points M, a, A the relation holds

Ma + aA +A3I=0^

Ma + aA = MA.

Similarly Ma + aa = Ma

;

therefore, adding these equations and remembering that aA=- aa,

since a is midway between A and a,

,^ MA + MaMa=—2—

;

also, multiplying together the right and left-hand members, we get

MA . Ma = ifah + Ma {aA + aa) + aA,aa

since aA = — aa.

Let Aj B, Cj J) he four points in a straight line, then the ratio

of the distances of one point A from two others B and D, divided

by the ratio of the distances of the remaining point C from the

same two (B and D), is called the Anharmonic Ratio of the range

A, B, C, D; i.e. the anharmonic ratio of the range ABCJ) is the

AB CB
numerical value of the expression --^ ^ TTh^ which may also beAU \jD
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written 4^ •^ o^ ^5 . CD : CB . AD. The sign of the ratio

will de2:)end on the signs of the segments of which it is composed,

those which are measured in one direction being considered posi-

tive and those measured in the opposite direction negative.

Thus, if the four points are in the order from left to right

ABCD
J
the three terms AB, CD and AD in the above ratio are

positive and the term CB is negative; and the ratio itself is

negative.

Since four points in a straight line taken in pairs give six

segments, there are really six anharmonic ratios corresponding to

any range, three of which however are merely the inverse values

of the remaining three. Thus instead of taking the ratio of the

distances of A from B and D and dividing by the ratio of the

distances of C from B and D, we might take the ratio of the dis-

tances of A from C and D and divide by the ratio of the distances

of B from C and D, giving the expression

AC^_^BG_ AC^ BD
AD BD' ^'' AD' BC

and in this case if the points are in the order ABCD all the seg-

ments are of the same sign and the ratio is positive.

Again, we might take the ratio of the distances of A from B
and G and divide by the ratio of the distances of D from B and C,

giving the expression

AB DB AB DC
_: rjT*

AC DC AC DB'
where two of the segments are of the same sign and two of oppo-

site sign, so that the ratio is again positive.

In the above ratios the same point A has been associated suc-

cessively with the three remaining C, B, D. In the first A and C
may be said to be conjugate points, in the second A and B, and

in the third A and D,

Of the three fundamental ratios formed as above, two are

always positive and one negative, whatever the order of the points.

14—2
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Besides these there are the three inverse ratios

^__^ :^__-?^ 4^_^^
AB ' CB' AC'mC' AB'^DB'

It is of course necessary to retain throughout any investigation

the particular order adopted at its commencement.

The anharmonic ratio of the range A, B, C^ D is denoted by

{ABCD].

If the anharmonic ratio of a range =-1, the segments are

in harmonic progression; for if the points occur in the order

ACBD and -ryr -f- —-y, = - 1, we haveAD BD
AG _ BC _CB
AD~ BD~ BD'

since BC and CB are measured in opposite directions, and there-

fore of course the three segments AG^ AB, AD are such that

the first : the third : : difierence between first and second : differ-

ence between second and third. If one of the points (D suppose)

AG BC
is at an infinite distance, the anharmonic ratio -n^-^-rrr. reduces

' AD BD

to the simple ratio -jry,, for it may be written -^-p:, -^ >, ,, , and AD^ BC ^ BG BD'
is ultimately equal to BD.

Prop. 1. Iffour fixed straight lines which meet in he cut

hy any transversal in the 2>oints A, B, G, D (fig. 118), then will

{ABCD} be constant.

Draw the straight line aBc parallel to 0Z>, and meeting OA,

OC in a and c.

Then AB : AD :: aB : Oi) by similar triangles.

Similarly, CD : CB :: CD : cB

therefore AB .CD \ AD .CB y. aB : cB,

AB CB _ aB
^^ AD CD~ cB'

but — is a constant ratio for all positions of ac parallel to OD^
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therefore —r- -f- t^-^ , wliich is the anharmonic ratio of the four

points A, B,C, I), is also constant.

Def. a bundle of lines drawn through one point is called

a pencil qfraySj or shortly a pencil.

The anharmonic ratio of a pencil of four rays is the anhar-

monic ratio of the range in which its rays are intersected by any

transversal.

Pencils and ranges are said to be equal when their anharmonic

ratios are equal, corresponding lines and points being taken for

the comparison.

Equiangular pencils are evidently equal.

The anharmonic ratio of a pencil is denoted by 0{AJBCI)];

being the vertex and OA, OB, OC, OD the rays of the pencil.

Prop. 2. The transversal 7nay cut the rays of the pencil on

either side of the vertex.

For if, in the preceding article a transversal is drawn through

B, cutting OA in J^, 00 in 6',, and 01) in 2)^, where D^ lies in

DO produced, then, exactly as before,

A^B : A^D^ '.'. aB \ OD^,

and 6\Z>, '. C,B y. OD^ : cB;

, ^ A^B CB aB AB CB
therefore — .

^^^^
=^ ^

Jj)
^^ CD '



214 PROPERTIES OF TRANSVERSALS.

If a transversal meet AO produced in a, BO produced in ^,

CO produced in y, and i>(9 in 8,

{ABCD] = {aPyh}.

If a transversal be drawn parallel to one of the rays of the

pencil (0(7) suppose, meeting the other rays in a, 6, d, we have as

before for the anharmonic ratio of the range ahcd, where c is

at an infinite distance, —^ , which is therefore = -,->, H- ^c-^ .

ad' AD CD

If the pencil is harmonic —^ = -1 ; therefore ah-- ad, or a is

the centre point of hd.

Problem 120. Given the anharmonic ratio \ of four points,

three of which are given in position, to determine the fourth

(Fig. 119).

Suppose that the three points A, (7, and D of the anharmonic

AC BC
ratio -T-^H- -j^^ = X are given and the point B required. Through

A draw any line and on it set off from A segments Aa, Aa whicli

FJg.ll9.

are to each other in the ratio \ : the segments must be taken on

the same side of -4 if A. is positive, and on opposite sides (as in

figure) if it is negative. Draw aC and a'D meeting in 6, and

draw hB parallel to Aa meeting the WxiqACD in B, which will be

the required fourth point of the range ; for by similar triangles we

have
AC Aa AD Aa'

W~Bb' ^'^^ BD ~Bb'
AC^^BG Aa

^
•'• AD ' BD ~Aa'~ *
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the ratio being negative, since AC^ AB and BB are measured in

one direction and BC in the opposite.

The same construction determines the points C or Z) if the

AG BC
points A, B, B or A, B, C and the ratio y-r.-^ -jtj. = A. are given.

To determine C, e.g. draw Bb parallel to Aa meeting a' Z> in b, and

draw ab to meet AB in C.

If the points B, C, B are given, the given anharmonic ratio

may be written ^r-^——^ = A, and the construction may be made

by substituting the point B for the point A ; by drawing, i.e.

through the point B any line and setting off on it from B seg-

ments Bb', Bb in the ratio \, and joining b' to B and b to C.

If X, instead of being a number positive or negative, is the

ratio of two lines of given length, these lengths may themselves

be set off from A to a and a\ on the same or on opposite sides of A
according as the ratio is positive or negative.

Prop. 3. If A,B,C,B are four points in a straight lins,

then AB . CB + AC . BB + AB . BC = 0, the general rule of signs

being observed (Fig. 120).

Divide by ^^ . CB, and the equation becomes

AC
^
BC ^_^CB

AB' BB'^ AB' CB~

Draw tlie lines OA, OB, DC, OB, being any point, and
draw a transversal parallel to OB meeting OA, OB, OC in a,b,c

;
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then

and

AB ' Dli~ ab'

^'G^I>G _hc _ AD^_^ CD
BA ' DA ~ ha ~ AJJ

' CB *

so that the above equation may be written

ac ch

ah ah
'

or ac + cb-\-ha = 0,

which is always true.

The above equation is formed by multiplying each term of the

identity BC + CD + DB == by the distance of A from the re-

maining point, the first term BG by AD, the second CD by AB,
and the third DB hy AC.

Prop. 4. If Hie anharmonic ratios of two systems of four

points A, B, C, D and a, h, c, d taken on two straight lines and

corresponding each to each are equal, and the lines are so placed

that two Jiomologous 2?oints A and a coincide, the three straight

lines joining the remaining pairs of hoinologous points will meet in

a point (Fig. 121).

For if not, let Bh and Gc meet in 0, and let OD meet the line

ac in d^ : the pencil 0, ABCD is met by two transversals AD

Fig.l2I.

and ad^, and therefore the anharmonic ratio

AB^DB _ah_^d^
MJ ' DC ~ ac ' dTc

'
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but by hypothesis

AG'^DG~ac'^Jc'

therefore -7- =^ , which is impossible unless d and d, coincide.
dc d^c

^ ^

Two lines divided so that the anharmonic ratio of any four

points on the one is equal to the anharmonic ratio of the four

corresponding points on the other are said to be divided homo-

(jraphically.

Prop. 5. Jf the anharmonic ratios of two pencils offour rays,

corresponding each to each, are equal, and the pencils are so placed

that two corresponding lines coincide in direction, the three points

of intersection of the remaining homologous rays lie on a straight

line (Fig. 122).

Let and 0^ be the vertices of the pencils, the ray OA of the

one coinciding in direction with the ray Oa of the other, and let the

Fis.122.

homologous rays OB, Ofi meet in h, and OC, O^c in c ; the straight

line he will pass through the point d where OD intersects O^d,

for if not, let it meet OD in D and O^d in d^ ; then, since the

anharmonic ratios of the two pencils are equal, we have

ab
^
Db ab ^ dp

ac ' Do ac ' d^c
'

which is impossible unless d^ and D coincide.

Two pencils such that the anharmonic ratio of any four rays

of the one is equal to the anharmonic ratio of the corresponding

four rays of the other are said to be homographic.
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Pkoblem 121. Given any number ofpoints A, B, C, D, E...

on a straight line, and any three corresponding points (as a, h, c)

on a second line, to complete the homographic division of the second

line (Fig. 121).

Place the lines at any angle with each other and with two

corresponding points (as A and a) coinciding. Let the lines

joining the remaining pairs of corresponding points {Bh and Gc)

meet in 0, then the lines OD, GE...&C. will meet the second

line in c?, e,, <fec., the required points of homographic division.

The construction is obvious from the known property of the

transversals of a pencil of rays.

It follows conversely that if a pencil of rays intersect any two

lines in points B,b; G,c the lines are divided homographically,

and that the point A in which the two lines intersect is its own
homologue in both divisions.

Problem 122. Given a pencil of rays . ABGDE... and

any three corresponding rays 0^ . abc of a second pencil, to com-

plete the second pencil so that the two shall be homographic

(Fig. 122).

Place the pencils so that two corresponding rays (OA, O^a sup-

pose) shall be coincident in direction, let the homologous rays in-

tersect in b and c ; the straight line be will intersect the remaining

rays of the given pencil in points on the required completing rays

of the second. The construction is obvious from the known pro-

perty of a transversal.

Conversely, when the corresponding rays of two pencils inter-

sect in points on a straight line, the pencils are homographic, and

the line 00, joining the centres is common to both pencils and is

coincident with its own homologue.

Prop. 6. IfAy B, G, D arefour points on the circumference of

a circle, and from any point on the circumference the pencil

. ABGD is drawn, the anharmonic ratio of this pencil is constant.

For if Oi is any other point on the circumference the pencil

0, . ABGD is equiangular with the pencil . ABGD.
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Prop. 7. If four fixed tangents to a circle are met hy any

variable tangent in A, B, C, D^ the anharmonic ratio of this range

is constaiit.

For the angles which the four points subtend at the centre are

constant, and therefore the ranges are transversals of equiangular

pencils.

If we reciprocate these tlieorems (Prob. 119), the four fixed

points in the first correspond to four fixed tangents to a conic, the

variable point corresponds to a variable tangent, the lines OA

,

OB, &c. correspond to the points a, b, c, d in which the variable tan-

gent cuts the fixed tangents; and since points corresponding to

lines lie on lines through the centre of the auxiliary circle perpen-

dicular to the lines to which they correspond, the pencil formed by

joining a, &, c, d to the centre of the auxiliary circle is equiangular

with the pencil . ABCD, i.e. the anharmonic ratio of the range

abed is constant.

Prop. 8. The reciprocal theorem to Prop. 6 therefore is ^'•The

anharmonic ratio of the points in which four fixed taiigents to a

conic cut any variable tangent is constant."

Prop. 9. By exactly similar reasoning the reciprocal theorem,

to Prop. 7 is '''The anharmonic ratio of the pencilformed bypining

anyfour fixed points on a conic to a variable fifth is constant."

If the recij^rocal figures be drawn, by observing the angles

which correspond to the constant angles in the circle, it will

be seen that tlie angles which the four points of the variable

tangent in the first theorem subtend at either focus are constant

;

and that the angles are constant which are subtended at the

focus by the four points in which the inscribed pencil meets the

directrix in the second theorem.

HOMOGRAPHIC RANGES IX THE SAME STRAIGHT LINE. DOUBLE

POINTS.

When two lines divided homographically are superposed, there

exist, in general, two points, each of which considered as be-

longing to the first division coincides with its homologue in the
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second division. They may be called double points, since each

represents two coincident homologous points. The double points

may become imaginary.

Let A, B, C, D... (fig. 123) be any points on a straight line, S
any point, and AJ 3^ line through A making any angle with

AD^ and meeting *S'^, ISCy &c. in /?, y... respectively.

Fig.123.

The ranges ABCD... and A/3yS... are of course homographio,

and if the second range be rotated round A till it coincides in

direction witli AD, the point A, considered as belonging to the

first division, will evidently coincide with its own homologue in

the second division, as will also the point L determined by drawing

SL perpendicular to the line bisecting the angle DAJ.

Two homographic ranges in the same straight line formed as

above possess therefore two double points.

Instead however of the tv/o ranges being formed merely by

the rotation of the second about A, the second may in addition

be moved along AD into any position to the right or left,

bringing (as in the figure) the point corresponding to A to a,

/5 to 6, y to c... In this case also two double points in general

exist, which may be thus found :

—

Problem 123. Given two homograpliic ramjesABCD ..., abed. .

.

in the same straight line, to determine the double points (Fig. 124).

Draw any circle whatever, and from any point 3£ on it draw



ANHAEMONIC PROPERTIES OF CONICS. 221

MA, MB, MC cutting the circumference in A^, B^, C^, and draw

Ma, Mb, Mc cutting the circumference in a^, b^, c,

.

-^--'

Draw Afi^, B^a^ intersecting in K, and A^c^ , C^a^ intersecting

in L, and draw IvL cutting the circumference in F and F^. The

lines IfF, MF^ will cut Aa in the required double points J
and J^

,

For {ABCJ]
= M{A,Bfi,F] = a, [A.Bfi.P] (Prop. 6.)

'-= {NKLP},

where N is the point of intersection of KL and A^a^

and [abcJ] =M {a^b^c^F} = A^ [aJj^c^F]

^{NKLF},

i.e. the point J, considered as belonging to the first range, coin-

cides with its own homologue in the second and is therefore a

double point. Similarly for the point J^ .

It will be seen that the line FF^ is a Pascal line (Prob. 86) in

the circle, for CJ)^ and B^c^ intersect on it.

The double points may also be determined thus :—On Ab,

Ba as chords describe two circles passing also through any

arbitrary point G and intersecting again in G^, on Ac, Ca as

chords describe circles passing through G and intersecting again
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in G^. The circle through G, G^, G^ passes also through the required

double points of the ranges.

A third construction for the double points is shewn in fig. 123.

Through A, any point of the first range, draw AJ, a line making

any angle with the given line. On it make Ap = ab, Ay = ac,

where a, b, c are the points of the second range corresponding to

the points A, £, C of. the first. Draw Bj3, Cy intersecting in S.

Through aS' draw SJ parallel to AG meeting AJ in J, so that / is

the point on the range A^y ... corresponding to an infinitely dis-

tant point on the range ABG .

.

. ; and draw SI parallel to AJ, so that

/ is the point on the range ABG... corresponding to an infinitely

distant point on the range A/3y.... Make aJ^ on the superposed

ranges = AJj so that the range A/Sy. .. Jis identical with the range

abc ... J^. Bisect IJ^ in 0, which will be equidistant from

the required double points. Find the point 0^ on the range abc...

corresponding to the point considered as belonging to the range

ABC... [i.e. join SO cutting AJ in o, and make aO^=Ao].
Then the mean proportional between 00^ and OJ^ will be the

distance from of the required double points F and Q.

On page 17 a system of pairs of points on a straight line

such that XA.Xa^XB.Xb = XG.Xc=...=XP' = XQ' was

defined as a system in Involution, any two corresponding points

such as A^a being called conjugate points, the point X the centre,

and the points P and Q the foci of the involution.

Prop. 10. Wheii three pairs of conjugate points are in invo-

lution, the anharmonic ratio of any four of the points is equal to

the anharmonic ratio of their four conjugates, i. e. taking any four

A, B, C, a and theirfour conjugates a, b, c, A,

AB aB _ab Ab
AC aC ac Ac '

for if is the centre of the involution

OA : OB :: Ob : Oa,

.-. OA-OB : OB :: Ob-Oa : Oa,

or AB :ab :: OB :0a,
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and 0A+ Ob : Ob :: OB + Oa : Oa ;

.-. Ab :aB :: Ob : Oa,

.AB.Ab OB. Ob OA

Similarly of course

ab. aB ~ Oa' Oa'

AC .Ac OA AB. Ab
ac. aC ~ Oa~ ab. aB'

AB. Ab ob.aB

AG. Ac ab . a(J
>

en

ABf aB ab Ab
AC' ' aG~ac'''Ac *

which may be written

which proves the proposition.

A series of points in involution consists of two homographic

ranges, the directions of which coincide, and in which to any

point whatever M of the line the same point m corresponds,

whether 31 be considered as belonging to the first or second system.

For consider M as belonging to the range ABC.y

and 7)1 „ „ abc.'f

then, since the ranges are homographic,

MA CA ma ca

MB'^TjB^mb'Vb'

If they are also in involution we must be able to interchange m
and 31, i.e. considering M as belonging to the range abc... and

771 as belonging to the range ABC.y we must have

Ma ca mA CA
Mb "c6 "^ ^CB'

Dividing each term of the first equation by the opposing term of

the second,

MA mA _ ma Ma
MB^^rnB^mb^Mb'

i.e. the anharmonic ratio of the four points M, A, B, m is equal

to the anharmonic ratio of their four conjugates 7;i, a, b, M, or

the points are in involution.
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Prop. 11. It is always jyossihle to superimpose two liomographw

ranges, so that the two divisions shall be in involution.

For it has been shewn (p. 220) that two pairs of correspondiDg

points can be found equidistant from each other, by drawing viz.

through S (fig. 123) a line LI perpendicular to the line bisecting

the angle between the ranges when the second is placed at any

angle with the first and with two corresponding points A, a a.t the

intersection : the pairs of points A, L and ct, I are then equidistant.

If now the two ranges are superimposed with the point a coinciding

with the point Z, and the point I coinciding with the point A
(fig. 123a), the two ranges will be in involution.

The foci (p. 17) are points at which pairs of conjugate points

coincide, and their existence is only possible when the points of

any conjugate pair in the involution are both on the same side of

the centre.

Thus if the points are in the order ABah, the centre X
must fall between B and a in order that the products XA . Xa
and XB . Xh may have the same sign, and that sign will be

negative since the segments in each of the products are measured

in opposite directions ; but a square number is always positive,

and therefore no foci exist.

If three segments Aa, Bb, Cc are in involution and one ovei-

laps (as above) another, i.e. if the points are in the order ABab,

it will also overlap the third. This is evident if we consider that

if C lies to the left of X, and XC is greater than XA , c must be

on the opposite side of A", and Xc must be less than Xa and vice

versa, and similarly with regard to Bb.

Conversely, if the segment Aa does not overlap Bb, it cannot

overlap Cc, nor can Bb and Cc overlap.

The centre X forms with any two pairs of points A, a and B, h

an involution in which the conjugate to the centre is at an infinite

distance, for if x is conjugate to X, the anharmonic ratio of the

four points XABx^t\\Q anharmonic ratio of the four conjugate

points xdbXj
XA xA _xa Xa
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, ^ XA Xh . ^. . xB xa
but —r-T-, - -^F- )

^"^^ thererore —-7 = -r

,

XB Xa ' xA xb

or xA . xa = xB . xb (a).

Now X cannot lie between b and A because the segment Xx
must overlap both Aa and Bb, i. e. x must lie either to the right

of b or to the left of ^ ; if it lies to the right of b the segment xa

is greater than the segment xb and the segment xA is greater

than the segment xB, and therefore the equation (a) cannot hold

unless X is at an infinite distance, in which case the segments

xA, xa, xB, xb are ultimately equal.

Similarly x cannot lie to the left of A except at an infinite

distance, and similar reasoning applies to points in the position

shewn in figs. 12 and 13.

Prop. 12. If on two segments Aa, Bb of a right line as

chords, any two arcs of circles are described, their common chord

passes through the centre X of the involution A, a and B, b (Fig.

125).

For XA.Xa = XG.Xg = XB.Xb.

Fig.l25.

k

If the segments overlap as in the above figure, they may be

taken as diameters of the intersecting circles, and the chord Gg
will be perpendicular to the line AaBb. If the points are situated

as in figs. 12 and 13, circles described on Aa and Bb as diameters

will not intersect in real points, but the centre X will lie on the

radical axis of the two circles.

E. 15



226 INVOLUTION.

If a third circle be described passing through the points Gg
and cutting Ah in the points M, m (fig. 125) it follows, since

XM. Xm = XG . Xg = XA . Xa = XB . Xb,

that 31 and m are another pair of conjugate points in the in-

volution.

The same is evidently true of amj line cutting the circumfer-

ences of all three circles, and we have the important proposition :

—

If three circles pass throiogh two given points^ any straight line

meeting the circles does so in a 'series of points in involution^ the

two points on the same circle being conjugate.

When the three circles described on three segments in in-

volution as diameters intersect, straight lines drawn from either

of the points of intersection to the ends of each segment are

perpendicular to each other ; it follows, that when three segments

of a straight line are in involution, two 2)oints {real or imaginary)

exist, at each of which each segment subtends a right angle; and con-

versely, that if a right-angled triangle turns round that angular

point as centre, the segments which it intercepts on a fixed right

line in any three of its positions have their extremities in involution.

Problem 124. Given A, a and B, b, two pairs of conjugate

2)oints, andC a fifth point ofthe involution, to determifie c the point

conjugate to C.

Through any arbitrary point G describe segments of circles

having Aa, Bb as chords ; they will intersect in a second point g,

and a circle described through the three points G, g and C will

intersect AC in c, the required conjugate point.

Or tlius :—Take any arbitrary point G and draw GA, GB, GC;

di'aw any triangle with its vertices on these lines and two of its sides

passing through a, b. The remaining side will pass through c.

If the point C be at infinity, the same method will give us the

centre of the system.

The construction for this case is, "Through A, B draw any

pair of parallels Ah, Bk, and through a, b a. different pair of

parallels ah, bk; then hk will pass through the centre of the

svstem."
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Prop. 13. Jf Aa, Bh, Cc are any three fixed segments of a

straight line, and a, /?, y their centre points, and if m is any point

on the line, the function mA . ma . (By + mB . mh .ya + mG . mc . a(i

is of constant value whatever the position of m, the general ride of

signs being observed.

TakeM any other point on the line, then (p. 209)

mA = MA - Mm, ma = Ma - Mm ;

. •. 7nA . ma = MA . Ma - {MA + Ma) Mm + Mm'
=MA . Ma - 2iT/a . Mm + Mm^,

and mB . mb =^ MB . Mb -'IMfB . Mm + Mm%
and mC . mc = MO . Mc - 23fy . Mm + Mm^.

Multiply these equations by ^y, ya and ap respectively, then

since (p. 209) f3y + ya + a(3 = 0,

and (prop. 3) Ma . (3y + M^ . ya + My . a^ = 0,

we get mA . ma . (3y + 7nB . mb . ya + mC .mc. a(3

- 3fA . Ma . py + MB.Mb . ya + MG . Mc. a/S,

which proves the proposition.

Prop. 14. If three conjugate pairs of points A, a; B, b; C, c

are in involution, and a, /?, y the centre jyoints of the segments

Aa, Bb, Cc; if any poi^it m be taken on the same straight line,

mA . ma . /Sy + mB . mb . ya + mC . mc . ay8 = 0,

tJie general rule of signs being observed.

By the last proposition the value of the expression is constant

whether the points are in involution or no. When they are in

involution the value is zero when m coincides with the centre

of the involution, since then

mA . ma — 7nB . mb = mC . mc,

so that the equation may then be written

mA . ma ((By + ya + ap) = 0,

which is evidently true since (p. 209) ;

(3y + ya + a(3

is always zero ; and this proves the proposition.

15—2
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Prop. 15. //* -4, a; B, h; C, c are three pairs of conjugate

points in involution, and a, p, y the centre points of the segments

Attf Bhj Cc,

AB .A h a^ aB.ah

AG . Ac ay aC . ac
'

with similarlyformed equationsfor the remaining points.

In the equation proved in the last proposition, suppose that

the point m coincides with the point A. The first term then

becomes zero, since mA is zero, and the equation is

AB. Ah. ya + AC . Ac.ajS^O;

or, since ya = — ay,

AB.Ah _a^ aB.ah
AC . Ac ay aC . ac

*

if we make m coincide with a.

Problem 125. Given two 2mi7's of points A, a and B, h in a

straight line, to find on the same line a fifth point such that the

2)roduct of its distances from one pair shall he to the product of its

distances from the other in a given ratio X, i.e. given A, a and

B, h, to determine a point M such that itTn^-jTri ^ ^ (Fig. 125).

Take any arbitrary point G and describe circles passing

through A, a, G and B, h, G and intersecting again in g. Their

centres will of course lie on lines perpendicular to Aa, Bh bisecting

these segments; let a and /3 be the points of bisection. Divide

aft in the point fi, so that ^ = X, i. e. on any parallel lines through

a and /? make a^ = the numerator, and (Sl' = the denominator of

the given ratio, the lengths al, /3l' being set off on the same side

of a/3 if \ is positive, and on opposite sides if it is negative.

Describe a third circle to pass through G and g, and with its

centre on a line through /w, perpendicular to Ah. This circle will

cut -46 in two pointsM and ?«, either of which fulfils the required

conditions of the problem.
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Proof. The points Mm as found are evidently in involution

with the points Aa and Bh (p. 226).

MA . Ma tia inA . ma , _ ^

,

but ^. = '^ by construction,

which proves the construction.

If the segments Aa^ Bh overlap the problem is always pos-

sible, but otherwise cases of impossibility may arise owing to the

position of the point //,. The problem becomes impossible if ^
falls between F and Q^ the foci of the involution A^ a and B^ h.

1. If one of the segments falls entirely within the other (as

in fig. 12) their centre points a and /3 lie outside the segment FQ
and both on the same side of it. If /a falls within the segment

FQ the ratio ^ = X is positive, and its value lies between -yj—

^p Jrp

. In order that the problem may be possible in this case A.

must be negative or must not be between these limits.

2. If the segments are entirely outside each other (as in

fig. 13) their centre points lie outside the segment FQ, but on

opposite sides of it. If /a falls on FQ the ratio —^ is negative, and
lip

its absolute value is between y-r and -^^. In order that the
1 p Qp

problem may be possible in this case X must be positive or must

not be between these limits.

Problem 126. Given two straight lines AL, BL^, and afixed
point on each A and B. Through a given point F to drav) a

straight line meeting AL in a and BL^ in b, so that the segments

Aa and Bb shall be to each other in a given ratio X (Fig. 126).

Imagine two variable points a^, b^ to move along Aa and Bb
Aa

respectively, so that in corresponding positions
^^

* = X. The points

in corresponding different positions would form homographic ranges
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on the two lines, for if a^, a^^ a^; h^, h^, b^ are corresponding posi-

tions of the moving points,

Aa^
~ Bb^^Bb^ ~

b.J),~

Fig. 126.

Aa^ — Aa^

Bb^-Bb^

L, I, b 'B

and therefore the anharmonic ratio

Aa, ajd, Bb,

^«3 %% ~ ^h
M...

¥/
and the question therefore is to draw through B a line which will

meet the two ranges in homologous points. If the points bJ)J)^...

are joined to B, and the joining lines cut AL in a^ttga^..., the

ranges a^a^a^... and ttja^ag... are also homographic, since aja^ttg...

is a transversal of the pencil B . bfij)^... and the double points of

the ranges a^a^a.^... and aja^ag... are extremities of lines fulfilling

the conditions of the j^roblem.

Determine the positions of I and J^, the points which cor-

respond to infinity. [Through R draw BI^ parallel to AL meeting

BLi in /j, and make AI : BI^ = A; through B draw BJ^ parallel

to BL^ meeting AL in t/^.]

Bisect IJ^ in 0, and on BL^ take a point 0, such that

AO : BO^ = X. Draw BO^ meeting ^7^ in Q. Take a mean propor-

tional (Op) between OJ^ and OQy and on AL make Oa = -Oa^ — Op.

Either of the lines aB, ajl fulfils the required conditions.

In making use of the ratio -7-7-

segments, measured from the two fixed points A and B\ as other-

wise to a point a, we might have corresponding points b^ on

X, signs must be given to the
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either side of the origin B\ so that if the directions in which

the segments are measured is not prescribed, the problem admits

of four solutions instead of two.

Problem 127. -Given two straight lines AL, BL^ and a fixed

point A^ B on each, to draw through a given point R a line meeting

AL in a and BL^ in h, so that the rectangle Aa . Bb shall have

a given value v (Fig. 127).

Exactly as in the last problem, if points a^a^a^... are taken on

AD, and points bfij)^... on BL^, connected by the relation

Aa^ . Bb^ = Aa^ . Bb^ = Aa^.Bb^...= v,

Fig. 127.

I

these points will form homographic ranges; and if the pencil

R.bbb... be drawn meeting AL in a^a^a^... respectively, the

double points of the homographic ranges a^a^a^..., a^a^ttg... will

be points on the lines required.

Corresponding to the point at infinity on the range a^a^a^...

we must evidently have the point B on the range bfij).^..., and

therefore the line BB meets AL in the required point J^. Cor-

responding to the point at infinity on the range a^aattjj... we have

the point I^ on BL^ found by drawing BI^ parallel to AL, and

then / is determined by making AI . BI^ = v. Bisect IJ^ in

and determine 0^ on BL^, so that AO . BO^ = v. Draw EO^

meeting AL in Q, and take a mean proportional {Oj)) between

O'/j and OQ. Make Oa=^- Oa^ = Op, and Ba, Ra^ will be lines

fulfilling the conditions of the problem.
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Problem 128. To draw a triangle having its vertices on three

given lines and its sides passing through three given 2^oints (Fig.

128).

Let JJ^, KK^, LL^ be the given lines, and A^ B, C tlie given

points. Through one of the points, as A, draw any three lines

Fig. 128.

J,

meeting two of the lines, as LL^ , KK^, in a, 6, c, ayb^c^ respectively.

Draw the pencils B . a6c, C . a^h^c^ cutting the third line JJ^ in

1, 2, 3, r, 2', 3' respectivelv, which will evidently be homographic

ranges. Find the double points JJ^ of the ranges (p. 221) and each

will be the vertex of a triangle fulfilling the required condition, for

{123J} = [ahcL] = {r2'3V} = {afi^c.K},

and since the rays aa^, bb^, cc^ pass through^ so also must the

ray KL.

In the figure JKL, JJ^^L^ are the two triangles.

Prop. 16. If a quadrilateral ABGD be inscribed iii a conic,

and any transversal be drawn meeting the four sides in a, b, c, d
and the conic in e and g, then the three pairs of points ac, bd, eg

are in involution (Fig. 85.)

Let ABCD be the angles of the quadrilateral, AB, DC meeting

in E, and BC, BA in F.

Let a transversal cut AB in a, BC in b, CD in c, DA in d,

and the curve in e and g.

The rectangles de . dg, dA . dD are in the ratio of the squares

on parallel diameters, as also are the rectangles be . bg and bB .bC;

but the squares on the diameters parallel to AD and BC are in

the ratio

FA.FD: FC.FB;
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dA .dD FB. FC
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de.dg

he .bg bB.bO ' FA.FD
Fig.85.

dA sin a dD
dc

'

\
sin c

da sin A ' &mD '

bB sin a bC sin c

ba sin B '

be
~
" sin (7

'

dA.dD da..dc sin B sin C
bB . bC ba., be

'

sm A sin D
da .do FA FD

~ ba..be
' FB • FC '

de. dg da . dc

be . bg ba . be
^

de
^
be bg

^
dg

da ' ba be ' de
'

i.e. the anliarmonic ratio of the four points d, e, a, b is equal to

that of their four conjugates

b, g, e, d,

or the three pairs of points are in involution.

Since the diagonals of the quadrilateral form a particular case

of a conic passing through tlie four points, it follows that the

points in which the transversal cuts the diagonals are another

pair in involution with ae, bd, &c.

Cor. If the transversal be a tangent to the curve (meets it,

that is, in two coincident points), it follows that the point of
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contact is a focus of the involution formed by the three pairs of

points in which the tangent cuts the opposite sides and diagonals.

MacLaurin's nietliod of generating conic sections :—
Triangles are described, whose sides pass through three fixed

points A, Bj C, and whose base angles move on two fixed lines

Oa, Ob : the vertices will lie on a conic section (fig. 129).

Fig. 129.

Suppose four such triangles drawn, then since the pencils

through A and B are both homographic with the system through

C, they are homographic with each other; therefore A, B, F,

Fj, Fg, Fjj, lie on the same conic section (Prop. 9). Now if the

first three triangles be fixed, it is evident that the locus of V^ is

the conic section passing through

A,B,o, r„r,.

It follows of course that the locus of the intersection of

homologous rays in two homographic pencils is a conic section.

NewtonHs method of generating conic sections

:

—
Two angles of constant magnitude move about fixed points

P, Q ; the intersection of two of their sides traverses the right

line AA^ ; then the locus of F, the intersection of their other twa

sides, will be a conic passing through P, Q (fig. 130).

Take four positions of the angles, then
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but F.{AA^A^A^} = F.{VVJJ.^}
and Q.{AA^A^A^}^Q.{VV,VJ,},
since the angles of the pencils are the same

;

..F.{vr,v,r^]^Q.{vvj,v,},

and therefore, as before, the locus of V^ is a conic through

^, (?, V, v„ V^.

Fig. 130.

Jf. Chasles' extension of Newton's method.

If the point A instead of moving on a right line moves on

any conic passing through the points P, Q, the locus of V is still

a conic section, since

Prop. 17. If there he any number of ^points a, b, c, d, &c. on a

right line, and a homographic system a^, b^, c^, d^, dec. on another

line, the lines joining corresponding 2^oints will envelope a conic.

For if we construct the conic touched bj the two given lines

and by three lines aa^, bb^, cc^, then, by the anharmonic property

of the tangents of a conic (Prop. 8), any other of the lines dd^

must touch the same conic.

Problem 129. Given two points A and B and a line L ; given

also two lines Sa, Sb, and a point ; to find on L a point, Q, such

that ifOm, On be drawn parallel respectively to AQ andBQ, meeting

Sa in m and Sh in n, the line mn shall

(a) be parallel to a given direction R,

ifi) pass through a given point P (Fig. 131).
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If two homographic pencils be drawn having as common
vertex, the envelope of the lines formed by joining the points in

which the rays of the one meet Sa to the points in which the

corresponding rays of the other meet Sh, is a conic section

(Prop. 17).

Fig. 131

Draw therefore any lines -41, A'2, -43, &c., meeting L in

Ij 2, 3,... and through draw parallels meeting Sa in c, d, e,...

and parallels to ^1, B2, £3,... meeting Sb in c^ d^ e^.... The

pencils 0{cde...), {c^d^e^...) are homographic because the pencils

A (1, 2, 3..,) and B(\, 2, 3...) are so, and therefore cCj, dd^, ee^

are tangents to a conic touching Sa and Sh, and which can there-

fore be constructed (Probs. 84 and 114).

In the figure the point d^ is at an infinite distance (i.e. the tangent

ddi is parallel to Sb) because the line B2 is drawn parallel to Sb.

A line through parallel to the given line L is evidently a

tangent to the conic to be constructed, so that it is only necessary

to draw two pairs of lines Al, Bl, A2, B2, since five tangents to

the required conic are then known.
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For the solution of the first part (a) draw mn, a tangent to

this conic, parallel to the given direction R, and meeting Sa in ni

and Sn in n.

Then AQ drawn parallel to Om and BQ parallel to On will

necessarily meet on the line L and determine the required point Q.

For the solution of the second part (^) it is evidently only

necessary to draw a tangent from P to the conic cutting Sa in ni^

and Sh in n^^ and to draw through A and B parallels to Om^ and

On^ , which will meet in Q^ on the given line L.

This problem is sometimes of importance in questions of

Graphic Statics.

If A and B are on opposite sides of the line L, the conic is an

hyperbola if is situated in the acute angle formed by the lines

Sa and Sb ; and conversely if A and B are on the same side of L.

The conic will be a parabola when parallels to Sa, Sb, through

A and B, meet in the same point on L.

Examples on Chapter YIII.

1. Given on a conic three points A,B,C and three other points

a, b, c, determine on the conic a point P such that {ABCP]^{abGP].

[Either of the points in which the Pascal line (Prob. 85) meets

the conic may be taken as the point P, i. e. draw Ac, Ca intersect-

ing in K, Be, Cb intersecting in L, and KL will cut the curve in

the required point. For if cC meets KL in 3f, the anharmonic

ratio of ABCP is that of the pencil c(ABCP), i.e. of the range

KLMP, and the anharmonic ratio of abcP is that of the pencil

C (abcP), i. e. again of the range XLMP.^

2. Inscribe in a given conic a triangle with its sides passing

through three given points ABC.

[Draw any line through A meeting the conic in a and b, draw
bB meeting the curve in c, and draw Cc, which will not in general

pass through a but will meet the curve in d. Eepeat this twice,

giving a range aa^a^ and a second aa^ag. Find a point P such

that {aa^a^P} = {aa^a^P}. P will be a vertex of one such triangle.]

k
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3. Given two straight lines AL, BL, draw a transversal

meeting them in F and /, so that Ff shall subtend given angles

a and ^ at two given points P and p.

[From the point A draw AP, Aj? and construct the angles

APa — a and Apb ^ /?, the points a and b being on £L. Imagine

A to slide along AL and a and b will form two homographic

divisions, and each of the double points gives a solution.]

4. Given two straight lines AL, PL, draw a transversal

meeting them in F and / passing through a given point P, and

such that Ff subtends a given angle ^ at a second given point p.

[Last example, the angle a being zero.]

5. Determine on a given straight line a segment which shall

subtend given angles at two given points.

[The two lines of Ex. 3 coincide in direction.]

6. Determine on a given straight line a segment of given

length which shall subtend a given angle at a given point.

7. Given two straight lines AL, PL and a point P, draw

through P transversals cutting AL in F, G and PL in /, g, so

that FG, fg are given lengths.

[Draw AP meeting BL in a. On AL make AA^-=FG, and

on BL make cia^=fg; draw Pa^ cutting AL in a; A^ and a will

form homographic ranges, the double points of which give solu-

tions.]

8. Given on two straight lines AL, BTj, two homographic

ranges; draw through two given points P and p, lines Pa, pa^

passing through homologous points a, a^ of the ranges and con-

taining between them a given angle 6.

[Take any point A on the first line and its homologous point

B on the second. Draw pB and Pa meeting AL in a and making

an angle with pB. Imagine A to slide along AL to A^ and A^j

giving corresponding positions a^ a^, of a.

The range aajag is homographic with AA^A^ because the

pencils p [BB^B^ and P (aaja,) are equiangular.

The double points of these ranges give two solutions.]
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9. Given two lines Aa, Ah intersecting in A, the point a

being fixed; given also a point S on the opposite side oi Ab

from a. Draw a line through S meeting Ah ^n P and Aa in p,

and so that AP^ap.

[Problem 126, the fixed points being A and a, and the ratio

one of equality.]

10. Two lines OAB, Oah meet in 0; A, B, a and h are fixed

points on the lines. If OAB remains fixed and Oah turns round

0, shew that the locus of the intersection (*S') oi Aa and Bh is a

circle having its centre (C) on AB, determined by drawing through

any one position oi S 2k parallel aS'C to the corresponding position

of Oah.

[The auharmonic ratio of A, B, 0, C is equal to the an-

hamionic ratio of ahO and an infinitely distant point, so that C
is fixed.]

11. Given two homographic ranges ABC... abc... on two

lines, determine two homologous segments KL, hi which shall

subtend given angles KPL = a, kpl = )8 at two given points P, p.

[Take any point, as A, on the first range and construct the

angle APF^a, and let a and / be the homologous points on the

second range to A and F on the first. Construct the angle

ap/^ = /3, where /i is on the second range. Suppose the point A to

slide along the first range and the points / and /*, will form on

the second range two homographic divisions, the double points of

which will evidently determine two solutions of the question.

Three angles, such as APP, have to be drawn to furnish three

pairs of points on the second range.]

12. Given two homographic ranges ABC... ahc... on two

lines, determine two homologous segments KL and M of given

lengths.

[The principle of the solution of the last example is evidently

applicable.]



CHAPTER IX.

PLANE SECTIONS OF THE CONE AND CYLINDER.

Def. If any fixed point V be taken on a straight line passing

through the centre of a circle perpendicular to the plane of

the circle, and a straight line move so as always to pass through

the circumference of the circle and through the jDoint F, the

surface generated by the moving line is called a Bight Circular

Gone, and the line OV the axis of the cone. If any solid be

conceived as divided into any two parts by any plane passing

through the solid, the resulting plane surfaces of the solid in

contact with the cutting plane are termed sections of the solid.

The most convenient way of treating any question on the

sections of any solid figure, is by obtaining the projections of the

solid on two planes at right angles to each other, the projection

of a figure on any plane being, as already explained, the area

traced out on the plane by perpendiculars drawn from all points

of the figure to the plane.

The projection of any figure on a horizontal plane is called

its lylan, and on a vertical plane an elevation of the figure. In

any given position therefore a solid can have but one plan but

it may have any number of elevations, so that it is always possible

to take the vertical plane on which an elevation is projected

perpendicular to any plane of section of the solid.

For simplicity, the circular base of the cone will be supposed

to be horizontal, and the vertical plane of projection perpendicular

to the plane cutting the cone.
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In figure 132 (p. 242) let o be the centre, and aoh a diameter of

a circle representing the base of a right circular cone resting on

the plane of the paper; draw any line xy parallel to aoh^ and

imagine the part of the paper above xy to be turned up along xy

so as to stand perpendicularly to the part in front of that line
;

draw aa', oo'v, and hb' all perpendicular to xy and meeting it in

a\ o' and h' respectively ; ol and V will be respectively the ele-

vations of a and h the extremities of the circular base, o' will be

the elevation of the centre, and oV will be the elevation of the

axis of the cone. The plan of the axis is obviously the point o.

Let the vertex of the cone be at the height o'v above the circular

base ah, then v' will be the elevation of the vertex; and if the

lines av\ h'v' be drawn and produced indefinitely the triangle

a'v'b' will be the elevation of the portion of the cone between the

vertex and the horizontal plane of projection. The angle a'v'h'

is called the vertical angle of the cone, and since the line vo

evidently bisects this angle either of the angles a'vo\ h'v'o' will

be the semi-vertical angle.

It is evident that any section by a plane perpendicular to the

axis, or parallel to the base of the cone, is a circle, the circle

becoming infinitely small (i.e. the section being a point) when
such plane passes through the vertex ; and that the section by

any plane through the vertex which cuts the cone in any other

point (i.e. which lies within the vertical angle of the cone) will be

two straight lines, the angle between which is greatest when the

plane passes through the axis, in which case the angle is equal to

the vertical angle, and the section is called a Principal Section.

Problem 130. To determine the section of a cone by a plane

which does not contain the axis, and does not pass through the

vertex.

Case I. Suppose the angle which the plane makes with the

horizontal plane to be equal to the angle va'o\ the base angle of

the cone, fig. 132. Let the plane intersect the base of the cone

in the line Im perpendicular to xy, the points I and m being on

the base of the cone, i.e. on the circle ab, and let the line Ir/i

E. 16
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meet xy in I ; draw ZV parallel to av' meeting h'v' in 71. The

line Itti is the horizontal trace, and I'n' the vertical trace of the

Fig. 132.

section plane, those being the lines in which it cuts the planes of

projection respectively. The plan of the point n' will evidently

be on the line oh vertically below n\ i.e. if n'n be drawn perpen-

dicular to xy meeting oh in n, n will be the plan of n'.

Imagine a horizontal plane to cut the solid at any height

between the base and the point ti, as at pq' ; it will evidently

cut the cone in a circle of diameter p'q', and which would in
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plan have o for its centre, and it will cut the section plane in a

horizontal line the elevation of which is the point /, and the

plan of which is the line rry perpendicular to xy. The points of

intersection of the circle and line will evidently be points on the

desired curve of intersection, and therefore if r, r^ are the points in

which the plan of the line cuts the circle pq described with centre

o and radius equal to \p'q\ these will be points on the projected

curve of intersection. Similarly any number of additional points

can be found by taking a series of planes parallel to pq'. The

curve Ir^nrm will be of course the plan of the required curve.

Now imagine the plane of section to be rotated round its

horizontal trace hn until it coincides with the horizontal plane of

projection, carrying with it the various points of intersection as

found. In elevation they would of course travel over circular

arcs described with V as centre and with radii equal to the

distances between V and their respective elevations, while on

plan they would travel along lines through their respective plans

perpendicular to Im.

The point n would therefore reach N, the points r and r^

would reach R and li^ and so on, and the curve IR^NRm would

be the trueform of the section made by the given plane.

Inscribe in the cone a sphere which will also touch the given

plane of section. The elevation of such sphere will be the circle

touching v'a', v'h' and n!l'\ let it do so in the points g', h' and/*',

and let the line g'h' meet I'n' in d'.

d' will be the elevation of the line of intersection of the given

section plane and of the plane through the circle of contact of

the cone and the inscribed sphere. On being turned down along

with the plane of section this line would therefore come into the

position DX, while the pointf would come to F.

The required curve of intersection is a parabola having F for

focus and DX for directrix.

Proof. The line whose elevation is f'r, is a tangent to the

inscribed sphere, since it lies in a tangent plane to that sphere

(the given section plane) and passes through the point of contact

16—2
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of that plane. It is therefore equal in length to any other tangent

to the sphere drawn from the point whose elevation is r', and

since / is really on the surface of the cone, the length of the

tangents drawn from it to the sphere must be equal to the line

AY, which is evidently equal to d'r\ i.e. FR^^rd' -t\\e perpen-

dicular distance of R from DX ; therefore i? is a point on the

parabola described with focus F and directrix DX, and the same

of course holds for any other point of the curve.

Case II. Let the angle which the plane of section makes

with the horizontal plane be less than the angle v'a'o\ the base

angle of the cone (fig. 133).

Proceeding exactly as before, let the plane intersect the plane

of the base of the cone in the line Im perpendicular to xy, and

draw In'n" making any angle less than the base angle of the cone

with xy and meeting v'a\ vh' in n' and n".

Take any horizontal plane (as p'q') at any height between

n' and n", meeting v'a' in p\ v'h' in q', and In" in r', and draw

the plan of the circle in which this plane cuts the cone (the

circle described with centre o and radius op, or oq — \'p'q) and

of the line in which it cuts the section plane (through r per-

pendicular to xy). The points of intersection r and r^ of this

circle and line will be the plans of two points on the required

curve of section. Turning the plane round its horizontal trace

until it coincides with the horizontal plane the point n' reaches

JV, the point n" reaches N^ , and r and r^ come to R and R^ re-

spectively. Similarly any number of points can be found, and

it will be found that they lie on a closed curve.

Inscribe in the given cone spheres to touch also the given

plane of section (two such can be drawn, one above and the other

below the plane) ; let them touch the plane in^*' and/", and v'a,

vh' in g', g", and h', h" respectively : let gh' meet In in d', and

g"h" meet it in d ".

d' and d" will be the elevations of the lines of intersection

of the given plane of section with the planes of contact of the

cone and its inscribed spheres.
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Suppose /' and f" and the lines througli d' and d" to be

turned down along with the plane of section so that /' comes to

F^ f" to F^^ and the lines to DX and Z^,Xj respectively, and the

curve of section will be an ellipse with foci F and F^ with

directrices DX and D^X^.

Fig. 133.

Proof. The line whose elevation is f'r' is a tangent to the

inscribed sphere, since it lies in a tangent plane to that sphere

(the given section plane) and passes through the point of contact

of that plane. It is therefore equal in length to any other
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tangent to the sphere drawn from the point whose elevation is r'\

and since / is really on the surface of the cone, the length of the

tangents drawn from it to the sphere must be equal to the line

}i!q\ which is always in a constant ratio to but is less than d'r,

since the angle d!r'(i is less than A'^''/, i. e. FR is always in

a constant ratio, smaller than unity, to the perpendicular dis-

tance of E from DK.

Therefore j5 is a point on the ellipse described with focus F
and directrix DX^ and the same of course holds for any other

point on the curve.

Case III. Let the angle which the plane of section makes

with the horizontal plane be greater than the angle vdo\ the base

angle of the cone (fig. 134).

The description of the last case applies exactly to the present,

and the figure is lettered to correspond. The plane will neces-

sarily cut both sheets of the cone, and the curve will consist of

two infinite branches.

It will be found to be an hyperbola with foci F and F^ and

with directrices DX and BX^ .

Proof. In this case the line Kq is always in a constant ratio

to but is greater than the line d'r. Hence the distance of any

point on the curve from the focus F is always in a constant ratio,

greater than unity, to its distance from the directrix DX.

The two straight lines in which a cone is intersected by a

plane through the vertex parallel to an hyperbolic section are

parallel to the asymptotes of the hyperbola.

The asymptotes may be thus found. They of course pass

through the point C midway between X and X,. Draw the

generators of the cone parallel to the given section plane, i.e.

draw 'v'w parallel to ZV, which will be the elevation of such

generators, and project w' to w and w^ on the base of the cone.

The tangent planes to the cone along the generators whose plans

are ow, ow^ and whose elevations are v'w' will intersect the given

plane of section in the required asymptotes. If therefore a

tangent at w to the circular base of the cone meet Im (the hori-
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zontal trace of the given section plane) in W, W will be a point

on one asymptote, which will therefore be the line CW. Similarly

the second asymptote can be obtained from the point w^

.

Fig. 134.

Plan
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Problem 131. To cut a conic of given eccentricity from a
given cone (Fig. 135).

Let v'a!h' be the elevation of the given cone, and let the
m

eccentricity be — given by two lines m and n. From o', the foot

of the axis of the cone, set off along the axis a length o'd = n and

Fig. 135.
v'

1
™

1

\
^

1
" 1

\

>rvl' ; \ ''

/ \
'^
y,-\q

o'e

Elevation

m; through d draw dh parallel to the base of the cone

meeting the slant side in h ; from e with radius hb' (the distance

between h and the foot of the slant side) describe an arc cutting

a'b' in g; the required section plane must be inclined to the hori-

zontal plane at the angle ego\ and all sections made by planes

inclined at this angle will have the same eccentricity.

Proof Produce ge to meet the slant side of the cone in q^

and in the cone inscribe a sphere touching the plane of section

geq in the point f and the slant side v'b' in p : through p draw

px parallel to the base of the cone meeting geq in x.

In the triangle pqx,

pq : qx :: sin pxq : sin qpx

;

but pq =-fqy the angle pxq = the angle ego\ and the angle qpx = the

angle hb'g.

fa sin ego' eo' do m . , ,

,

•*• = ^—^iT = ~" -^ IT' = ~
'
s"^c® ^9 = '*o

;

qx &in hog eg ho n
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but y is the focus, q the vertex, and x the trace of the directrix of

the section made by the plane geq.

If the conic is to be an hyperbola, i. e. if m > n, there is a limit

to the vertical angle of the cone in order that the problem may be

possible. It will be observed that the length eq is , where a° cos a

is the semi-vertical angle of the cone, and eg must evidently be

greater than eo or m.

Therefore — must be greater than cos a or a>cos~^ —.i.e. am °
7/1

must be greater than the angle whose cosine is —
, or in other

words the ratio of the heif];ht of the cone to length of slant side

must be less than — .m

Problem 132. From a given cone to cut a conic of given

eccentricity and having a given distance FX between focus and
directrix (Fig. 135).

As in the last problem, draw some one plane of section of the

required eccentricity, as geq, and determine its focus f and the

trace [x) of its directrix.

Draw v'x, vf to the vertex of the cone ; on xf make xf = the

given distance FX, and through f draw fF parallel to xv'

meeting fv' in F. Through F draw a line parallel to gq meeting

the slant sides of the cone in A and A^ and xv' in X. This will

be the trace of the required plane of section, A and A^ being the

vertices, F a focus, and X the trace of one of the directrices.

Def. If a straight line move so as to pass through the

circumference of a given circle, and to be perpendicular to the

plane of the circle, it traces out a surface called a Right Circular

Cylinder. The straight line drawn through the centre of the

circle perpendicular to its plane is the axis of the cylinder.

The cylinder may evidently be regarded as a particular case of

the cone, the vertex being at an infinite distance from the base

so that the generators are ultimately parallel.
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As with the right circular cone, it is evident that a section of

the surface by any plane perpendicular to the axis is a circle, and

that a section by any plane parallel to the axis (i.e. passing

through the infinitely distant vertex) consists of two parallel

lines.

Problem 133. To determine the section of a right circular

cylinder hy a 'plane inclined at any given angle (0) to the axis

(Fig. 136).

Let Im be the line of intersection of the given plane of section

with the horizontal plane of the base of the cylinder, i.e. the

Fig. 136.

horizontal trace of the plane of section. Draw any ground line

xly perpendicular to Im, and through I draw Id' making the angle
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d'ly equal to the complement of the given angle 0. Let o be the

plan of the axis of the cone, and through o draw oo'o" peipen-

dicular to xy, o'o" will be the elevation of the axis of the cone

on the vertical plane of projection, and Id' will be the trace on

the same plane of the given section plane.

With centre o and radius equal to that of the cylinder

describe a circle ah, and draw aoh perpendicular to Im; through

a and h draw aa'a", hh'h" perpendicular to xy, meeting it in

a and h' , and the rectangle a'ab'b" will be the elevation of the

cylinder. Let Id' cut a'a" in n and h'b" in n".

Imagine a horizontal plane to cut the solid at any height

between n and n", as at p'q; it will evidently cut the cylinder

ill a circle of diameter 2^'<i\ and which would in plan have o for

its centre, and it will cut the section plane in a horizontal line

the elevation of which is the point r, in which p'q cuts Id' and

the plan of which is the line rry perpendicular to xy. The

points of intersection of the circle and line will evidently be

points on the desired curve of intersection, and therefore if r, r^

are the points in which the plan of the line cuts the circle ah

(which is of cour.-e the plan of the circle p'q') these will be the

plans of the points in which the horizontal plane at the height

a'jy' above the base of the cylinder cuts the required curve of

intersection.

Now imagine the plane of section to be rotated round its

horizontal trace Im until it coincides with the horizontal plane of

projection. In elevation the point r would travel over the cir-

cular arc r'R' struck with I as centre, meeting the ground line in

R', while on plan the points r and r^ would travel along lines

rR, r^R^ perpendicular to Im reaching the horizontal plane of

projection in the points R, R^ found by drawing R'R^R perpen-

dicular to xy.

Similarly any number of additional points can be found by

drawing a series of planes parallel to p'q, all of which will of

course cut the cylinder in circles, the plans of which are the

circle ah.
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The point ri travels in elevation over the arc 'r\!N\ and the

plan of N' is simultaneously on ah and on N'N perpendicular to

xy\ and the point n", the plan of which is 6, similarly reaches

the horizontal plane at N^,

The required curve of intersection is an ellipse having NN^
for major axis, and for minor axis a length equal to the diameter

of the cylinder.

The minor axes of all ellipses which can be cut from the same

cylinder are consequently of equal length, but the length of the

major axis depends jointly on the diameter of the cylinder and

the inclination of the cutting plane to its axis, since

nri' = a'y cosec Q.

Just as in the case of the cone, if spheres be inscribed in the

cylinder touching the plane of section they will do so in the foci

of the curve of intersection. The elevations of these spheres are

the circles shewn in the figure touching the line M in the points

/' andy*/, and also touching ad\ h'h". f travels over the circular

arc f'F\ and F'F perpendicular to xy, meeting ah in F^ deter-

mines F, one of the foci.

The horizontal planes through the circles of contact of the

spheres and cylinder intersect the plane of section in the direc-

trices of the curve, d' is therefore the elevation of one of them,

which after rotation of the section plane round Im comes into the

position BX.

Proof. The line whose elevation is /// is a tangent to the

inscribed sphere, since it lies in a tangent plane to that sphere

(the given section plane) and passes through the point // in

which the sphere touches the plane. It is therefore equal in

length to any other tangent to the sphere drawn from the point

whose elevation is r', and since r' is really on the surface of the

cylinder, the length of the tangents drawn from it to the sphere

must be i''k', where r'k' is parallel to the axis of the cylinder, and

k' is on the circle of contact of sphere and cylinder. But r'k' : r'd'

in a constant ratio = cos 6, and r'k' = F^B; r'd' = EM, where JRM
is perpendicular to BX meeting it in J/, therefore i^^i? : HM
in a constant ratio, or the locus of i? is an ellipse.
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THE OBLIQUE CYLINDER.

Def. If a straight line, whicli is not perpendicular to the

plane of a given circle, move parallel to itself, and always pass

through the circumference of the circle, the surface generated is

called an oblique cylinder.

The line through the centre of the circular base parallel to

the generating lines is the axis of the cylinder.

The section of the cylinder made by a plane containing the

axis and perpendicular to the base is called the principal section.

The section of the cylinder by a plane perpendicular to the

principal section, and inclined to the axis at the same angle as

the base, is called a suh-contrary section.

It is evident that any section by a plane parallel to the axis

consists of two parallel lines, and that any section by a plane

parallel to the base is a circle.

Problem 134. To determine the sub-contrary section of an

ohlique cylinder.

Let (fig. 137) be the centre of the circular base, and the

circle on ab as diameter the base of the cylinder ; let ob be the

plan of the axis. Draw xy parallel to ab, so that the elevation on

xy as ground line will be parallel to the principal section of the

cylinder; draw aa', oo\ bb' perpendicular to xy meeting it in

a\ o\ b', which will be the elevations of the corresponding points

of the base. Since the elevation is parallel to the principal section,

the angle which the elevation of the axis (i.e. the line o'c) makes

with the ground line will be the real angle which the axis itself

makes with the horizontal plane. Draw a'a^, b'b^ parallel to o'c,

these lines are the elevations of the bounding lines of the solid

projected on the vertical plane standing on xy. Draw any line

a^b^l making the same angle 6 with o'c' as o'c' makes with xy,

meeting xy in I, and draw Im perpendicular to xy.

Im will be the horizontal trace and la^ the vertical trace of a

plane of sub-contrary section ; and if this plane be rotated round

Im till it coincides with the horizontal plane, every point on the
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surface of the cylinder between a/ and 5,' will evidently reach

a point on the circle on ah as diameter, i. e. the true form of the

sub-contrary section is a circle.

The horizontal projection of the sub-contrary section is the

ellipse having cc^ projected from c', the point in which a^h^ inter-

sects the axis of the cylinder as major axis, and afi^ the projec-

tion of rt/S/ as minor.

Problem 1 35. To determine the section of an oblique cylinder

hy a plane not parallel to the axis, to the base, or to a sub-contrary

section.

Case I. Let the plane of section be perpendicular to the

principal section (fig. 137).

Fig. 137.

The horizontal trace (de) of the plane of section must be drawn

perpendicular to ab, the plan of the axis. If the plane of section

makes an angle (<f>) with the horizontal plane, the vertical trace

must be drawn through d making this angle with xy. Let it

meet a'a^' in h' and b'b^' in k'.

Draw any circular section, as p'q, between h' and k' meeting

dk' in r/; the plan is of course the circle on pq as diameter pro-
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jected from p' and ^' on ah^ and if the projection of the point r

cuts this circle in r and r^ these will be the plans of two points

on the required curve. If rr^ meet pq in ?z we have rn^ = pn . nq.

If now the plane of section be rotated round de till it coincides

with the horizontal plane, h' travels in elevation to H' and in

plan to H, k' travels in elevation to K' and in plan to K, and

r and r^ reach R and R^ respectively. Therefore if RR^ meet ab

in N, RN^ =pn .nq^p'r' . r'q'

;

but p'r' : h'r in a constant ratio,

and r'q' : r'k' in the same ratio,

. •. p'r' . r'q' : h'r' . r'k' in a constant ratio

;

but h'r' . r'k' = HJV . iVK,

.
'. RN^ : HN . iV^ in a constant ratio,

or the locus of R is an ellipse (Prop. 4, p. 108).

Case II. Let the plane cut the cylinder in any manner

(fig. 138).

Let ah be the diameter of the base peri^)endicular to the hori-

zontal trace of proposed section plane.

The circle on ab is the plan of the base of the cylinder, ov the

plan, and o'v' the elevation of its axis, the elevation being projected

on a plane perpendicular to the proposed section plane. Lines

through a and h parallel to ov are of course the plans of the

generators through a and b, and if a and b are projected on to the

ground line at a' and b' lines through these points parallel to o'v'

will be the elevations of these generators and will be the bounding

lines of the solid as seen in the proposed elevation.

Im is the horizontal trace, and In^ the vertical trace of the

section plane; let a'n' parallel to o'v' meet In^ in n', and h'n^

meet it in n^ ; n' and n^ are evidently points on the required

curve of intersection, and their plans n and n^ are found by pro-

jecting n' and n^ on to the plans of the generators through a and

b. Take any horizontal section of the cylinder between n' and n^,

as p'q ; the plan is of course a circle of diameter p'q', and its

position can be determined by projecting p and q' on to the plans
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of the generators through a and 6, as at p, q. This horizontal

section and the proposed section plane intersect in a line the

Fig.138.

elevation of which is r', the point in which p'q' cuts In^, and the

plan of this line cuts the circle pq in points r and r^ projected

from /, which are plans of points on the required curve of inter-

section.

Now rotate the section plane round Im, its horizontal trace, till

it coincides with the horizontal plane: in elevation the points

n', r\ nl travel over circular arcs to N\ R\ N^; in plan n, r, r^, w,

travel over lines perpendicular to Im to N, R, JR^, iV^, obtained

by projecting N\ R and iV/.

These are points situated on the true outline of the curve of

intersection, and any additional number of points can be obtained

in precisely the same manner. The curve is an ellipse having

NN^ as a diameter and RR^ as a corresponding double ordinate,

so that DD^, the diameter conjugate to NN^, can at once be drawn
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by bisecting JVN^ in C, drawing through C a parallel to JRE^ or

to Iniy and making on it CD = CD^ = ao the radius of circular base

of cylinder. That the curve is an ellipse may be proved similarly

to Case I.

THE OBLIQUE CONE.

Def. If a straight line pass always through a fixed point

and the circumference of a fixed circle, and if the fixed point be

not in the straight line through the centre of the circle at right

angles to its plane, the surface generated is called an oblique cone.

The fixed point is called the vertex and the line joining the

vertex to the centre of the circle the axis of the cone.

The section of the cone made by a plane containing this axis

and perpendicular to the circular base, is called the principal

section.

The section made by a plane not parallel to the base, but

perpendicular to the principal section, and inclined to the gene-

rating lines in that section at the same angles as the base, is

called a sub-contrary section.

Problem 136. To determine the sub-contrary section of an
oblique cone (Fig. 139).

Let be the centre and oa the radius of the circular base,

and let ov be the plan of the axis. Draw a ground line xy

parallel to ov, and let v' be the elevation of the vertex on a

vertical plane standing on xy. Project o to o\ and the circular

base to a'b' , so that o'v' will be the elevation of the axis, and

a'v'b' the outline of the cone; a'v'b' is evidently also identical

with the principal section.

Draw any line e'd'l making the angle a'e7=the angle v'b'y,

and meeting v'b' in d' and xy in l] the angle e'd'v is evidently

equal to the angle va'b\ so that e'l may be taken as the vertical

trace of the plane of a sub-contrary section, the horizontal trace

of which must be the line Im perpendicular to xy.

E. 17
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Take any horizontal section as
-p'ql between d! and e', the

plan of which will be a circle on 'pq as diameter, p and q being

Fig. 139

the projections of ^' and q^ on the plan of the axis or central

plane of the cone. The plane of this section intersects the plane

of sub-contrary section in a straight line, the elevation of which

is the point / in which 'p'c[ intersects le\ and the plan of which

is rr^ projected from r. If rr^ meet the circle on pq in r and

7*1, these will be plans of two points on the required curve of

sub-contrary section, and if rr, meet 'pq in n,

rri? = np .nq = r'q' . r'p' = r'd' . rV;

since a circle can be described round e'q'd'p'.

Rotate the plane of section round its horizontal trace till it

coincides with the horizontal plane of projection, and e', r' and

d' travel to E', R' and D' the corresponding positions in plan being

E, R and R^ and D their projections. These are of course points

on the real outline of the required curve, and if RR^^ meet ED
in xV, since

RN=rn, EN=e'r\ ND^r'd!,
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we have RN'' = EF.ND,

or the locus of ^ is a circle on EI) as diameter,

i. e. the sub-contrary section of an oblique cone is a circle.

It is evident that all sections parallel to the base or to the

plane elm are also circles.

Planes parallel to the base, or to a sub-contrary section, are

called also Cyclic Planes.

Problem 137. To determine the section of an oblique cone hy

a 'plane not parallel to a cyclic plane and not passing through the

vertex (Fig. 140).

Case I. Let the plane be parallel to a tangent plane of the

cone, i. e. let it be parallel to a generator and perpendicular to

the plane containing that generator and the axis.

17—2
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Let a'v'h' be the elevation of the cone, v the plan of the

vertex the elevation of which is v\ and ah the diameter of the

circular base parallel to the plane of the elevation.

It is convenient to take the plane of section perpendicular to

the plane of the elevation; so that its horizontal trace Im may be

drawn perpendicular to xy^ and its vertical trace must then be

drawn parallel either to a!v' or to h'v', since the plane itself must

be parallel to one or other of these generators—let Iv! parallel to

c^v' be its vertical trace. If Im cuts the circle on ah as diameter

in d and o?j, these will be points on the required curve of inter-

section, and if In! meets h'v in n', 71! will be the elevation of

another point, the plan of which will be w, the intersection of

hv and the projection of ti'.

Draw any horizontal plane as %>'(][ between I and 71, meeting

ci!v' in p', h'v' in q and hi! in r' ; this plane cuts the cone in a

circle the elevation of which is jo'g'', and the plan of which is a

circle on 'pq as diameter obtained by projecting ^' and c[ on av

and hv respectively. It meets the section plane in a line the

elevation of which is the point ?•', and the plan of which is the

line r^i projected from r' \ if this line meets the circle on pq in r

and r^, these are the plans of two points on the required curve

of intersection and similarly the plans of any additional number

of points can be obtained.

Rotate the section plane round its horizontal trace till it

coincides with the horizontal plane of projection; the point n'

travels in elevation to N' and the point / to R' ; in plan n, r, and

r^ travel along nN, rR and r^R^ perpendicular to Im till they meet

the projections of N' and R' respectively, and c?, R, N^ R^ and c?,

will be points on the real outline of the required curve of inter-

section. It is a parabola having the tangent at iV parallel to ^^1.

Proof. If K bisects RR,, KR^ =pV . r'q\

Through n' draw Iin' parallel to j/q' meeting a'v' in A', then

h'n' = p'r'j

r'q' : rV :: h'n' : h'v']
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.*. p'r' .r'q' : Kn' . r'n' :: h'n' : h'v',

.'. KB? : h'n . r'n in a constant ratio,

but r'n =KX cos 6^ where 6 is the angle between KN and pq^

and is constant

;

.-. KR^^KN multiplied by some constant, or the locus of K
is a parabola.

Case IT. Let the plane of section meet all the generating

lines on the same side of the vertex (Fig. 141).

Let a'v'U be the elevation of the cone, v the plan of v the

vertex, and ah the diameter of the circular base parallel to the

Fig. 141

ground line and therefore the plan of a'b'. Let the plane of

section be perpendicular to the vertical plane of projection, and
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draw its horizontal trace Im perpendicular to xy and its vertical

trace cutting a'v' m. h', and h'v' in k'. Project h' to h on ay and

h' to k on bv, then h and k are the p^cms of the points in which

the generators through a and b meet the section plane, i.e. are

the plans of two points on the required curve of intersection.

Imagine the cone cut by any horizontal plane as p'q' between

h' and k', the elevation of the curve of intersection will be the

line p'q', meeting a'v' in p' and b'v' in q' and Ik' in r' ; and the

plan will be the circle on pq as diameter, obtained by projecting

p' on av and q' on bv. The required plane of section cuts this

plane of circular section in a line the elevation of which is ?•', and

the plan of which is rr^ projected from r'. If rr^ meets the circle

on pq in the points r and r^, these are the plans of two points of

the required curve of intersection. Similarly the plans of any

additional number of points can be obtained.

Kotate the plane of section round its horizontal trace till it

coincides with the horizontal plane of projection; in elevation

h'j r' and k' travel to H', li', and K', and on plan h, r, 7\ and k

travel along hll, rB, r^ R^ , kK, perpendicular to bn till they meet

the projections of H', R' and K'. The points H, R, K, R^ are

points on the real outline of the required curve of intersection. It

is an ellipse having HK as a diameter, and RR^ as corresponding

double ordinate. •

Case III. Let the section plane cut both sheets of the cone

(Fig. 142).

Let a'v'b' be the elevation of the cone, v the plan of v' the

vertex, and ab the diameter of the circular base parallel to the

ground line, and therefore the j)lan of ab'. Let the plane of

section be perpendicular to the vertical plane of j^rojection, and

draw its horizontal trace hn perpendicular to xy, and its vertical

trace Ik' cutting b'v' in W, and a'v' in k'. Project K to h on bv,

and k' to k on av, then h and k are the plans of the points in

which the generators through a and b meet the section plane,

i.e. are the plans of two points on the required curve of intersec-
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tion. Imagine the cone cut by any horizontal plane as ^tq ', the

elevation of the circle in which this plane meets the cone will be

Fig. 142

the line p'q meeting av in p', h'v in q ^ and Ik' in r', and the

plan will be the circle on 'pq as diameter obtained by projecting

]} and q on av and hv respectively. The required plane of section

cuts this plane of circular section in a line, the elevation of which

is /, and the plan of which is rr^ projected from /. If rr^ meets

the circle on "pq in the points r and r^ , these are the plans of two

points of the required curve of intersection. Similarly the plans

of any additional number of points can be obtained.

Rotate the plane of section round its horizontal trace Im till
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it coincides with the horizontal plane of projection ; in elevation

h\ r and U travel to H\ R and K\ and on plan A, r, r^ and k

travel along liH, rR^ r^R^ , kK perpendicular to Im till they meet

the projections of H\ K and K'. The points H, i?, R^ and K
are points on the real outline of the required curve of intersection.

It is an hyperbola having IlK as a diameter, and RR^ as corre-

sponding double ordinate of the branch through H.

The asymptotes are parallel to the generators of the cone

which are parallel to the plane of section. If therefore vw be

drawn parallel to Ik' meeting xy in io\ and w be projected to

meet the circular base ah in w and w^, the joZans of the asymptotes

will be parallel to vio, vv)^. Bisect hk in c, and draw cTT, cW^

parallel respectively to vw and vw^, and meeting Im in TT, W^

which will be points on the asymptotes, and they can therefore

be drawn through C the point of bisection of HK.

Examples on Chapter IX.

1. AVA^f an isosceles triangle, obtuse angled at F, is the

elevation of a cone. Shew that if VB be drawn meeting ^^^ in

R, and such that VBf-=AB.BA^ (Ex. 15, Chap, ii.) and any

plane be drawn having its vertical trace parallel to VB, and

horizontal trace perpendicular to ^^j, it will cut the cone in a

rectangular hyperbola.

2. Given a cone and a point inside it determine the conies

which have the given point as focus.

[Draw an elevation av'b' on a plane parallel to the plane

containing the axis of the cone and the given point, and lety" be

the elevation of the given point. The vertical traces of the re-

quired planes of section must be tangents at/' to the circles

touching av and 6V, and passing through /'. Two solutions are

generally possible.]
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3. Shew that all sections of a right cone, made by planes

parallel to tangent planes of the cone, are parabolas, and that

the foci lie on a cone having with the first a comraou vertex and

axis.

[Shew that the foci of parallel sections lie on a straight line

through the vertex.]

4. Find the least angle of a cone from which it is possible to cut

an hyperbola, whose eccentricity shall be the ratio of two to one.

5. Cut from a right cylinder an ellipse whose eccentricity

shall be the ratio of the side of a square to its diagonal.

[In the cylinder inscribe a sphere, centre C ; determine a

point X in the horizontal plane through the centre such that

T
-^^^=the above ratio, where r is the radius of the sphere. The

required plane of section must be a tangent plane to the sphere

through the point X.'\

6. Shew how to cut from a given cone a hyperbola whose

asymptotes shall contain the greatest possible angle.

[The plane of section must be parallel to the axis, pp. 246 and

241.]

7. Cut from a given cone the hyperbola of greatest eccen-

tricity.

[The plane of section must be parallel to the axis, p. 248.]

8. Different elliptic sections of a right cone are taken having

equal major axes ; shew that the locus of the centres of the

sections is a spheroid, oblate or prolate, according as the vertical

angle of the cone is greater or less than 90".

[Consider a series of sections perpendicular to a principal

section of the cone. The centre is a fixed point on a line of

constant length (the major axis), sliding between two fixed lines

(the two generators of that section). It therefore traces out an

ellipse which by revolution round the axis of the cone generates a

spheroid.]
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9. Different elliptic sections of a right cone are taken such

that their minor axes are equal; shew that the locus of their

centres is the surface formed by the revolution of an hyperbola

about the axis of the cone.

[Consider a series of sections perpendicular to a principal

section of the cone. Take any section parallel to the base and

divide the diameter of that section, so that the product of the

two parts = h^ where h is the semi-length of the constant minor

axis; the corresponding elliptic section must pass through this

point of division, and all these points lie on a hyperbola, the

asymptotes of which are the generators of the principal section

taken (Prop. 1, p. 160).]

10. Shew how to cut a right cone so that the section may be

an ellipse whose axes are of given lengths.

[The centre of the section made by the plane perpendicular to

any principal section must be the intersection of the ellipse and

hyperbola in which such principal section cuts the surfaces re-

ferred to in examples 8 and 9.]

11. Shew how to cut from a right cone a section of given

latus rectum.

[Any point i^ on a hyperbola described as in Ex. 9 may be

taken as focus, and the plane of section must be a tangent

plane at F to the sphere inscribed in the cone, and passing

through F.'\



CHAPTER X.

CYCLOIDAL CURVES.

When one curve rolls without sliding upon another, any point

invariably connected with the rolling curve describes another

curve, called a roulette. The curve which rolls is called the

generating curve, and the curve on which it rolls is called the

directing curve, or the base.

Only a few of the simpler examples of roulettes are here

given, the first being the most simple of all, viz. the cycloid.

B^EF. The cycloid is the path described by a point on the

circumference of a circle, rolling upon a fixed right line, in one

plane passing through the line.

In the construction this plane coincides with the plane of the

paper.
r

Problem 138. To describe a cycloid^ the diameter of the circle

being given (Pig. 143).

Let ^i> be the diameter of the given circle, C its centre, and

suppose that the tracing point is the point B, and that at the

momenb A is the point of contact of the circle with the directing

line. Draw the directing line XA Y a tangent at A to the circle.

The tracing point B will evidently reach the guiding line at points

X and Y on opposite sides of A such that AX—AY=i\\Q semi-

circumference ABf since each point of the semi-circumference

comes down successively on a corresponding point of the line.

The following geometrical construction gives an exceedingly

close approximation to the length of the circumference of a

circle :—From C, the centre, draw a radius Gil making an angle of

30" with the radius CB, and draw HK perpendicular to AB meeting

it in K. At A, the extremity of the diameter through B, draw a
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tangent to the circle and on it make AL= 3 . AB. KL will be

Fig. 143.

very nearly the circumference of the circle and its semi-length

may be taken for the length AX ov A Y.

[In the figure L does not fall within the limits of the paper,

but if J^ is bisected in h and hk on a parallel to the tangent at A
be made = 3 times the radius of the circle, Kk may be taken as the

semi-circumference.
]

Divide up ^X into any number of equal parts (say 8) as at

a', h', c',... and divide the semi-circumference AB into the same

number as at a, b, c,... Draw a line through C parallel to XAY,
which will evidently be the path of the centre of the circle, i. e. as

the circle rolls along AX the centre will always be on this line;

and draw a'l, b'2, c'3... perpendicular to AX, the points 1, 2, 3, &c.,

being on the path of the centre. The point a will evidently come

down to a', b to b\ and so on; and when a has come to a', the

centre of the circle will be at 1 and the tracing point will be on a

line making an angle with a'l equal to the angle aCB, which is of

course equal to ACff, since Aa = gB. Draw IG parallel to Cg and

make lG = Cg, the radius of the rolling circle. G will be a point

on the required curve.

Similarly, when b has rolled down to b', the centre of the circle

will be at 2 vertically above b', the tracing point will be on a line

making with b'2 an angle = the angle bCB, i. e. = the angle AC/, or
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it will be on a line 27^ parallel to C/" and at a distance from 2 equal

to tlie radius of the circle.

Similarly for the remaining points c', d\ &c.

It will be noticed that the lengths 16^, 2^, &c., may be deter-

mined without actual measurement by drawing through g^f, &c.,

parallels to AX meeting the corresponding lines through 1, 2, &c.,

in the points (r, F, &c., the figures ICgG, 2C/F are parallelo-

grams and therefore in each case lG = Cg, 2F= Cf, and so on.

The curve should be drawn free-hand through the series of

points thus found, and the half loop corresponding to the circle

rolling on ^ Z may be found by the same construction or may be

put in by symmetry. The line XS is a tangent to the curve at

the point X.

The length AX may be determined arithmetically by multi-

plying the length of the radius AC by 3. 14... and may then be

laid down by scale : the diagonal scales usually supplied with

cases of mathematical instruments can conveniently be used for

the purpose. In many works on geometry the length ^X is

determined by dividing up the semi-circle into any number of

equal parts (say n) and laying oif along AX the length of the

chord of one of the parts repeated n times. This method is radi-

cally bad and should never be adopted : if the number of equal

parts into which the semi-circle is divided is small it gives only a

very rough approximation to the truth, while if the number is

increased it is almost impossible to measure the length of the

chord so accurately but that in repeating it n times an appreciable

error will be introduced. A long length should in fact never

be determined as the sum of a series of short ones.

""^ To draw the normal at any 'point of a cycloid.

In all roulettes the normal at any point passes through the

corresponding point of contact of the rolling and guiding curves.

This point is called the Instantaneous Centre. The direction of
motion of the tracing point will evidently at any moment be

perpendicular to the line between it and the point about which

the rolling curve is turning, i.e. the corresponding instantaneous
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centre, and since the direction of motion at any point must co-

incide with the tangent at that point, the normal must pass

through the instantaneous centre.

In the figure, when the tracing point is at E the centre is at 3

and c' is the instantaneous centre, so that Ec is the normal at E

;

this is evidently parallel to eA, e being the point in which a

parallel to AX through E meets the circle on AB as diameter, so

that the normal at any point P may be thus constructed :

—

Through P draw a parallel to the directing line -4F meeting

the circle on AB in the point Q. The normal at P will be parallel

to AQ, and since the angle AQB is a right angle the tangent at P
will be parallel to QB.

If the normal at P meet the directing line in M and PM be

^

produced to S so that Pas' = '2PM, S will be the centre of curvature

at the point P. The evolute of the cycloid is two equal semi-

cycloids, the vertices being at X and Y and the cusp on BA
produced at a distance from A=AB.

Let the tangent at P meet the tangent at the vertex in T,

then the length of the arc BP of the cycloid is double the intercept

TP of the tangent, i. e. double the chord BQ of the circle. Hence
the whole length of the cycloid is 4 times the diameter of the

generating circle.

^ ^Bra^ If, as in the cycloid, a circle rolls along a straight line,

any point in the plane of the circle but not on its circumference

traces out a curve called a Trochoid.

PROBLBai/139. To describe a trochoid, the diameter of the

circle and the distance of the tracing point from its centre being

given (Fig. 144).

Let ABhQ the diameter of the given circle, C its centre, and

CP the distance of the tracing point from the centre.

Draw XA Y a tangent to the circle, and as in the last problem

determine the length AX or AY equal to the semi-circumference

of the circle AB. Draw C8, the path of the centre, through C
parallel to XAY, and through X draw XS perpendicular to XA.
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Divide CS into any number of equal parts (8 in the fig.), and with

centre C and radius CP draw a circle. The point F in which this

circle cuts AB produced will be the vertex of the required curve.

Divide the semi-circumference of the circle into the same number

of equal parts Fg, gf, &c., as has been chosen for the division of

the path of the centre.

Draw IG parallel to Cg and gG parallel to ^X : their intersec-

tion G will be a point on the required curve. Similarly 2F paral-

lel to Cf and /F parallel to AX will intersect in a point on the

curve, and so on in succession. When B has come down to X the

tracing point will evidently be at F^ vertically below X on 8X
produced so that 8F = CF ; the tangent at F^ is parallel to AX.

The construction is obvious from that of the cycloid.

In the figure a second trochoid is drawn generated by a point

Q inside the rolling circle, to which the foregoing description

applies exactly by the substitution of Q for F.

To draw the normal at any point of a trochoid.

Consider for a moment the point F. When the tracing point

is at F the centre of the rolling circle will be at 2 and the point

of contact of the rolling circle and directing line will be H on AX
vertically below 2 ; i.q. H will be the instantaneous centre, and

therefore FH will be the normal at F, since the direction of motion

of F must be perpendicular to FH. But FH is parallel to/A,



272 THE EPI-CYCLOID.

since the triangles F2H,fCA are in all respects equal and are

similarly situated, and therefore the normal at any point R may
be thus constructed :

—

Through R draw a parallel to the directing line meeting the

circle described with C as centre and CP as radius in the point r,

and the normal RM will be parallel to the line joining r to A^ the

lowest point of the rolling circle when its centre is C.

Tofind the centre of curvature at any point R*.

Find Ky the position of the centre of the rolling circle corre-

sponding to R. (/f will of course be vertically above M.) Join

RK and draw 31JV perpendicular toRM meeting RK in iT. Draw
IfS perpendicular to the guiding line meeting R3I in S. S will

be the required centre of curvature.

-" Def. The Epicycloid is the path described by a fixed point

on the circumference of a circle rolling on the convex side of a

fixed circle, both circles lying in the same jjlane.

Problem 1X0. To describe an epicycloid, the radii of Wie

rolling and directing circles being given (Fig. 145).

Let be the centre of the directing circle, OA its radius,

AC the radius of the rolling circle, C, on OA produced, its centre,

and let B be the other extremity of the diameter through A.

Suppose B to be one position of the tracing point. As the one

circle rolls round the other let the point B come down to X on

the one side of A and to Y on the other, X and F being on the

directing circle. The arc AX will necessarily be equal to the

arc AYf and equal to the semi-circumference of the rolling

circle.

These points may be thus determined :

—

Let the length of the semi-circumference AB be S, then

JS = 7r.AC,

IT being the circular measure of two right angles.

* The construction for the centre of curvature of this and the following

roulettes was given by M. Savary in his Legons des Machines a VEcole

Polytechnique, and is quoted by Williamson, Differential Calculus, 3rd ed,,

p. 345, where its proof is given.
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Let 6 be the circular measure of the angle subtended by the

Fig. 145.

arc AX (the length of which is S), at the centre of the directing

circle ; then

S = e.A0 = 7r.AC;

.'. 6 : TT '.'.AC lAO,

or if n is the number of degrees in the angle A OX,

71 : 180" :: AC : AG,

or «=180»^,
which determines n.

[In the figure AG ^ SAC so that the angle AGX contains

60°.]

Draw the path of the centre of the rolling circle, i.e. an arc

with centre G, and radius OC, and let GX produced meet it in 8.

Divide up the arc (78 into any convenient number of equal parts

(8 in the fig.) and draw the radii 01, G2... cutting the directing

circle in a' h' .... Divide up the semi-circumference of the rolling

circle into the same number of equal parts Aa, ah... .

K 18
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As the one circle rolls on the other, the point a will evidently

come down to the point a\ h to h' and so on : when a has come to

a\ the centre of the rolling circle will be at the point 1, and
the tracing point will evidently be on a line making with a\
an angle equal to the angle aCB which is equal to the angle ACg.
Hence an arc described with centre 1, and radius CB, will inter-

sect an arc described with centre 0, and radius Og, in a point

G of the required curve, for the triangles 6^10 and gCO are

equal in all respects :—i.e. G is the position of the tracing point

corresponding to a\ being the point of contact of the rolling and
directing circles.

Similarly an arc described with centre 2, and radius CB will

intersect an arc described with centre 0, and radius 0/ in a point

F of the required curve, and so on in succession for the points

3, 4, &c.

The arcs gG,fF, &c. will cut the corresponding arcs described

with the successive centres 1, 2, &c. in two points, but it is

evident by inspection which of the points must be taken, viz.

that on the side of the corresponding radius 01, 02, &c. remote

from OA.

The radius 0X8 is a tangent to the curve at the point X.

To draw the normal at any point P of an epi-cycloid. From
P with the radius AC oi the rolling circle describe an arc cutting

the path of the centre in K. [It will do so in two points but

the one lying within the angle POB must be taken.] This will

be the position of the centre of the rolling circle when the tracing

point is at P. Draw KO cutting the directing circle in J/, the

point of contact between the circles when .the tracing point is at

P: i.e. if is the instantaneous centre corresponding to P.

Therefore PM is the normal at P.

To find the centre and radius of curvature at any point P.

From M the instantaneous centre draw MN perpendicular to

PM meeting PK, the radius of the rolling circle when the tracing

point is at P, in iV. Then NO (0 being the centre of the guiding
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circle) will cut FM produced in S the required centre of cur-

vature.

Def. The Hypo-cycloid is the path described by a fixed

point on the circumference of a circle rolling on the concave side

of a fixed circle, both circles lying in the same plane.

Problem 141. To describe a hijpo-cycloid the radii of the

rolling and directing circles being given (Fig. 145).

OA is the radius of the directing circle, and its centre, AC
is the radius of the rolling circle, and B' the tracing point when
the centre is at C. The construction is identical with that for

the epi-cycloid. In the figure the radius AC is equal to AC the

radius of the epi-cycloid, and B' of course reaches the directing

line at X and Y—the points F' and D' are the positions of the

tracing point when the points b^ and d^ are the points of contact

of the rolling and directing circles.

Def. When, as in the epi-cycloid, a circle rolls on the convex

side of another, any point in the plane of the rolling circle,

but not on its circumference traces out a curve called an Fpi-

trochoid.

Problem 142. To describe an epi-trochoid^ the rolling and
guiding circles , and the position of the tracing point being given

(Fig. 146).

[In the figure the tracing point is assumed outside the rolling

circle; it might be inside it.]

Let be the centre of the directing circle, OA its radius,

^Cthe radius of the rolling circle; G, on OA produced, its centre;

let B be the other extremity of the diameter through^, and F on
CB produced be one position of the tracing point. As in the
epi-cycloid determine an arc ^X or ^7 of the guiding circle equal
in length to the semi-circumference of the rolling circle, so that
B comes down to X and Y as the circle rolls round: i.e. construct
angles AOX and AOY each containing n degrees Where

[In the figure AO = ZAC bo that n = 60.]

18—2
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Draw the path of the centre of the rolling circle, i.e. the

circular arc with centre 0, and radius OC, and produce the

Fig .146.
P
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^-^.^^

\

B~"^\

\d _.ji
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radius OX to meet it in 8. Divide up C8 into any convenient

number of equal parts CI, 12, '&c.—(8 in the figure), and divide

up the semi-circle drawn through F, with centre C, into the same

number Pg, gf, &c. "With centra 1, and radius equal to CP,

describe an arc, and with centre 0, and radius Og, describe a

second arc cutting it in G. G will be a point on the curve.

Similarly with centre 2, and radius equal to CP, describe an arc,

and with centre 0, and radius Of, describe a second arc cutting

it in F. F will be a point on the curve, and so on in succession

for the points 3, 4, &c.

The arcs gG, /F, &c. will cut the corresponding arcs described

with the successive centres 1, 2, &c. in two points, but it is

evident by inspection which of the points must be taken, viz.

that on the side of the corresponding radius 01, 02, &c. remote

from OA.

The radius 0X8 is a normal to the curve at the point P^.
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To draw the normal at any point R of an epi-trochoid.

Find Z'the corresponding position of the centre of tlie rolling-

circle, i.e. with centre R, and radius equal to OP, describe an arc

cutting the path of the centre in K. [It will do so in two points,

but the one must be taken lying within the angle ROB.'\

Draw KO cutting the directing circle in M. M will be the

instantaneous centre corresponding to R. Therefore RM is the

normal at R.

To find the centre and radius of curvature at any point R.

From M the instantaneous centre draw MN perpendicular to

RM meeting RK (K being as above) in J^. Then, if is the

centre of the directing circle, OJV will cut the normal RM pro-

duced in Sf the required centre of curvature.

Def. The Hyjyo-trochoid is the curve traced out by any point

in the plane, but not on the circumference of a circle, rolling

on the concave side of a fixed circle, both circles lying in the

same plane.

Problem 143. To describe a hypo-trochold, tJie directing and

rolling circles^ and the position of the tracing point being given

(Fig. 146).

[In the figure the tracing point is inside the rolling circle,

but by the above definition this is not a necessary condition.]

OA is the radius of the directing circle, and its centre, AC
is the radius of the rolling circle, and Q the tracing point when

the centre is at C". The construction is identical with that for

the epi-trochoid.

Companion to the cycloid.

Def. If a line liE (Fig. 147) be drawn perpendicular to a

fixed diameter ^^ of a circle, meeting it in JV, and the circle

itself in e, and if JSfE be made equal to the arc Be, the locus of

the point B is called the Companion to the Cycloid.

Problem 144. To describe the companion to the cycloid, the

generating circle being given (Fig. 147).

C is the centre, and ABdi. diameter of the given circle. Through



278 COMPANION TO CYCLOID.

A draw XAT a tangent to the given circle, and on it make
AX = AY= the semi-circumference. (Prob. 138.) Divide AY

Fig. 147.

into any convenient number of equal parts as at a', h\c' .., and

divide the semi-circumference AB into the same number of equal

parts as at «, 5, c...

It will be observed that the lettering proceeds from A in the

one case, and from ^ in the other.

Through a', h\ c ... rule perpendiculars to AY^ and through

«, 6, c... rule parallels to AY. The intersections of corresponding

lines ^^ D, E^ F ... are points on the required curve.

The construction is obvious.

To draw the tangent at any point P.

Draw PM parallel to AX meeting the circle in /), and the

diameter ^^ in M. Make Cm on CB = Mp, and join m to K
the extremity of the diameter perpendicular to A C. The tangent

at P is parallel to mK. The curve has parallel tangents at

points equi-distant from CK.

To find the radius of curvature at any point P.

It is easily proved analytically that p = —frn » where p is the

radius of curvature, m and M are points corresponding to P as

above, and a is the radius of the generating circle.
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Make Km^ on KC = Km, and draw m^R perpendicular to KC
meetiug Km in R, also make Kk on KG = CM. Through m^

draw m^s parallel to kR meeting KR in s, and Ks will be the

length of the required radius of curvature. Make PS on the

normal at P = Ks, and S will be the centre of curvature at P.

Evidently Ks \ KR v. Km^ : Kk,

KR . mK
or Ks CM '

7nK'
but KR : Km :: Km^ : CK, or Zi^

J. mK\
a. CM ^

Examples on Chapter X.

1. Shew that if the diameter of the rolling circle be half

that of the directing circle, the hypo-cycloid becomes a straight

line.

2. Shew that if the diameter of the rolling circle be half that

of the directing circle any hypo-trochoid becomes an ellipse.

3. Shew that if AOB be a diameter of the guiding circle, and

P any point on it, the hypo-cycloids described by the circles

having AP and BP as diameters, and P as tracing point, are

identical.

4. -4 is a fixed point on the circumference of a circle of

radius R. The points L and M are taken on the same side of

A such that arc AL^m. arc AM, where m is a constant. Shew
that LM will always touch the epi-cycloid described with a circle

of radius r (= ) rolling on a circle of radius p^R-2r, the
\ m+ 1/

° r 5

point A being the centre of the loop, and the centre of the

guiding circle coinciding with that of the given one.

[As a numerical example take R = 3|, m = 4.]
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5. ^ is a fixed point on the circumference of a circle of

radius R. The points L and M are taken on opposite sides of A,

such that arc AL =m . arc AM, where w is a constant. Shew that

LM will always touch the hypo-cycloid described with a circle of

radius r = j rolling under a circle of radius p = B+2r, them — 1
r '

point A being the centre of the loop and the centre of the guiding

circle coinciding with that of the given one.

6. Shew that the radius of curvature of an epi-cycloid at

any point varies as the perpendicular on the tangent at the point,

from the centre of the fixed circle.

7. Shew that the evolute of the epi-cycloid described with

guiding circle of radius a and rolling circle of radius 6 is a similar
2

figure, the radii of the fixed and generating circles being——7 and

^^ respectively.

8. Shew that the evolute of the hypo-cycloid is a similar

figure, the radii of the fixed and generating circles being —

—

and TTT respectively.
a — lb

[To make a practicable figure h must be much smaller

than a.]

9. If a parabola rolls on another equal parabola shew that

lo^

other.

the locus of the focus of the rolling one is the directrix of the
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SPIKALS.

When a line rotates in a plane about a fixed point of its

length, and a point travels continuously in the same direction

along the line according to some fixed law, the path of the moving

point is called a spiral. The fixed point is called the pole; a fixed

line in the plane passing through the pole from which the position

angle of the moving line may be measured is called the initial

line, and the line drawn from the pole to any point of the curve is

called the radius vector of that point.

After rotating through four right angles the revolving line

comes back to the position it occupied at starting, but there is of

course a different value for the length of the radius vector, and since

the position angle may increase without limit, so too does the value

of the radius vector. Spirals consequently extend to an infinite

distance from the pole, and consist of a series of convolutions

round it.

Cases of mathematical instruments usually contain a diagonal

scale, the unit of which is half-an-inch, and on which lengths can

be read to two places of decimals. In the numerical examples

which follow, this scale is intended to be used.

Def. In the Spiral of Archimedes the length of the radius

vector is directly proportional to its position angle.

Let r be the length of the radius vector of any point, 6 the

angle which it makes with the initial line ; the above definition is

expressed symbolically by the equation r=.aB, where a is any

numerical constant.
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In this equation 6 is the circular measure of the position angle,

and therefore r — a when is unity, i.e. when the number of

degrees in the position angle is 57*2957... i.e. corresponding to this

angle measured from the initial line, the tracing point is at a

distance of a imits (inch, or any other that may be chosen) from

the pole; when r = 0, ^ = 0, or the initial line is the position of the

revolving line when the travelling point is at the pole.

Problem 145. To describe the spiral of ArcJdmedes, the pole,

two points on the curve, and the unit of the curve being given

(Fig. 148).

Let be the pole, P and Q the two points on the curve which

we will suppose to be on the same convolution; and let OQ be

Fig. 148

greater than 0P\ let 6 be the angle between OP and the initial

line, and the length L the given unit.

0P = a6

0Q = a{6 + Q0P);
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therefore OQ-OP = ax circ. meas. of QOP

OQ-OP
circ. meas. of QOP

'

OQ-OP can be measured by scale, the number of degrees in

the angle QOP can be measured by a protractor and its circular

measure can be obtained from a table of the circular measures of

OP
angles, and the numerical value of a thus calculated: then^ =—

,

the length OP being of course measured on the same scale as that

used for determining OQ — OP^ which gives the circular measure

of the angle between OP and the initial line, and the correspond-

ing number of degrees can be obtained from the table.

To take a numerical example

:

Let the unit of length be \ an inch. Suppose

0^ = 2,

OP =1-5,

and the angle QOP - 60", the circular measure of which is

3-14159..

3

2-1-5 -5

1-0472...

^ = •477.
1-0472 1-0472

then ^^_J^^3-14

the number of degrees corresponding to which may be taken 180".

The initial line will therefore be the line OA. If the tracing

point after one complete revolution of the generating line cuts OP
again in F we have

OP = ae

and 0P' == a(0+27r),

therefore OF -0P == 27ra.

Successive points on the cur^^e may at once be found thus :

—

Construct an angle QOP = angle QOP; with centre and radius

OP describe an arc cutting 0^ in^; on OQ produced make
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Qr = Qp and with centre and radius Or describe an arc cutting

OR in i? a point of the curve.

A A

Similarly if ROS = FOQ, and Qs on OQ produced = 2Qp, an arc

described with centre and radius Os will cut OS in S a. point of

the curve. (In the figure S coincides with A on the initial line.)

In like manner points can be found nearer the pole than F by

constructing angles on the side of OP remote from Q equal respec-

tively to FOQ, 2F0Q, 3F0Q, &c., and diminishing the radii

A^ectores by the constant difference pQ.

To draw the tangent at any point of the curve.

A known expression for the angle which the tangent at any

r
point makes with the radius vector is ^ = tan~^ — , i.e. the tangent

a

of the angle is the radius vector divided by the given constant of

the curve.

Therefore to draw the normal at any point Q, on the radius

OG at right angles to OQ measure a length OG = a, the constant

of the curve, and QG will be the normal at Q, for evidently

tan OG^^ -^ = - = tan (jf).

Ubr a

Hence if a circle be drawn with centre 0, and radius = a, nor-

mals at all the points on the curve can at once be drawn by merely

joining them to the corresponding points in which such circle cuts

the perpendicular radii.

The initial line is a tangent at the pole.

If p is the radius of curvature at any point

p : J^^T? ;: a' + r" : 2a' +r',

so that p can be calculated without much difficulty.

Peoblem 146. To describe the spiral of Archimedes^ tlie pole,

the initial line and the constant of the curve being given (Fig. 149).

Here a is given in the equation r = aO. Let be the pole,

and OA the initial line. In the figure, the unit being the length

L, a =-239.
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Determine some convenient length of radius corresponding to

a multiple (n) of 4 right angles ; say the greatest distance to which

Fig. 149.

it is proposed to draw the curve. In the figure e.g. A is taken at

angular distances of 8 right angles from the initial line (i.e. n = 2),

so that OA = -239 x i-rr

= •239x4x3-14159...

=: 3-60 units.

Draw OD at right angles to OA and divide up the quadrants

formed at into any number (m) of equal parts (in the figure m=S)
and draw the radii OB, OC, &c. through the points of division.

Divide OA into 4 . m . w equal parts. In the figure therefore

OA is divided into 24 equal parts. Then arcs drawn through the

successive points on OA with centre will intersect the corres-

ponding radii in points on the curve. The point P in the figure of

course bisects OA, and after one complete convolution has been

found the curve can be completed by measuring from B, C, &c.

on the successive radii a constant distance BQ, CR, &c. =AP.

I

THE RECIPROCAL OR HYPERBOLIC SPIRAL.

5J ^-

-^ Def. In this curve the length of the radius vector is inversely

proportional to its position angle.
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The equation to tlie curve may therefore be written
1

where r is the length of any radius vector, 6 the circular measure

of the angle it makes with the initial line, and a a numerical

constant.

When ^ = 0, r is therefore infinite, and r diminishes as 6 in-

creases, but the curve does not reach the pole for any finite value

of 6. Corresponding to the value 6 = 1, r = -; i.e. the radius

vector makinp; 57 '2957... deorrees with the initial line is - units

long.

A line parallel to the initial line and - units distant from it, is

an asymftote to the curve.

Problem 147. To draw the reciiwocal spiral, the pole, the

initial line and the unit and constant of the curve being given

(Fig. 150).

Let be the pole and OA the initial line. In the figure « =
^

the unit being the length L.

Fig. 150.

4 Asymptote

10\
>.;

-^ia
12 N
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Draw 04: perpendicular to OA and with as centre, and -

as radius describe a circle 4, 8, 12,... and divide it up into any

number of equal parts, as at 1, 2, 3...

Draw the line OB making 57*2957... degrees with OA and

cutting the circle in B ; B will be a point on the curve.

Determine the length of radius vector corresponding to any

convenient division of the circle—say the radius making 45" with

the initial line—i.e. determine

1 4 24

Draw the line 02, and produce it to C making (9(7 = 7*63 units.

C will be a point on the curve. As the angle doubles the radius

diminishes one half; so that if 00 is bisected in d, the length Od
will be the length of radius vector making a right angle with the

initial line, i.e. D on the line 04, OD being equal to Od, is another

point on the curve.

Bisect OD in e and make OB on 08 = Oe ; B will be a point

on the curve.

OB is also of course — ^OC.

Similarly OB the radius corresponding to ^ = 2;r is ^OB or

G the point on the curve corresponding to ^ = § • j is at a

distance § of OC from 0. OH the radius corresponding to ^ = 3 .
-

is of course ^OG or i of OC. OK the radius corresponding to

77 .

^ = 6 . ^ is ^OR.

OM the radius corresponding to 6 = ^ .- is |0(7, and OiV the

TT

radius corresponding to ^ = 5 . - is ^OM or ^OC.
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In the second convolution

OP on OCj i.e. corresponding to ^ = 9 . ^ is \0C^

OQ on OD „

ITOR OH OH ,, „ „ :=11.^ is3-\0C,

OS on OE „ „ „ = 12 . ^ is J^^^.

atid so on, and similarly any additional number of points can be

obtained.

In the figure OF bisects the angle AOG and therefore

OV^^.OG,

W bisects the angle AOC and W= 2 . 00.

To draw the tangent at any point p.

Draw the radius Oq of the circle described with centre and

radius - perpendicular to Op. 2^9 ^^^^^ ^® ^^^ tangent at p.
a

To determine the centre and radius of curvature at any point p.

Draw the normal j^;m perpendicular to the tangent pq and

meeting qO in m. On pq make pr = Oq = ~, and pn = mq. Then
a

ns drawn through n parallel to rm, meeting pm in 5, determines s

the required centre.

THE LITUUS.

In this curve the radius is inversely proportional to the square-

root of the angle through which it has revolved. Its equation

is therefore

r

or as it may also be written



I
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The radius therefore diminislies as the angle increases and

is of infinite length when ^ = : it never vanishes however large

may be, so that the spiral never reaches the pole, but makes an

injSnite series of convolutions round it.

Problem 148. To draw the Lituus, the pole, the initial line

and the unit and constant of the curve being given (Fig. 151).

Let be the pole, and OA the initial line. In the figure « = 1

the unit being the length Z. Draw 00 perpendicular to OA,

and determine the value of r corresponding to 6 = ^j i-®* ^^ ^

being the circular measure of a right angle.

In the figure

1 _ 1 ^

Make Oc on OA equal to this length, and make OB on AO
produced equal to unity on the scale adopted. A mean pro-

portional between OB and Oc will evidently be the required

length 00, i.e. a semi-circle on Be will cut 00 in 0, a point on

the curve.

Draw radii OG, OH bisecting the quadrants COB, BOB.

Trisect Oc in e and g, and take two parts measured from

as Og. A mean proportional between OB and Og will be equal

to the length OG at which the curve cuts the bisector OG of the

right angle COB.

Bisect Oc in d. A mean proportional between OB and Od
will give the length of the radius vector 01) corresponding to

Divide Oc into five equal parts, and take two of them from

as Oh. A mean proportional between OB and Oh will give

the length Off oi the radius vector corresponding to

^ = T-
19
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A mean proportional between OB and Oe (^rd of Oc) gives

q
OE the length corresponding to ^ = — .

Similarly a mean proportional between OB and fOc would

give OK the radius corresponding to ^= Jtt, and a mean pro-
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portional between OB and ^Oc would give OF corresponding to

6 =-- 27r, but this is more easily determined by making it equal

\0C, for since the square of the radius is inversely proportional

to the angle, the radius diminishes J as the angle increases four

times.

For the same reason the length OJ on HO produced will be

20D since the angle AOJ—^ of two right angles:

Draw the angle AOP to contain 57. 29... degrees; the arc

subtending this angle is equal to the radius, i.e. corresponding

to it, = 1, and therefore OP the corresponding radius must

contain - units (in the fiojure OP ^ 3).

2
Bisect the angle AOP by OQ, and make OQ^ = —^ (in the figure

ci

0^ = Vl8 = 4-24...).

(2 is a point of contrary flexure in the curve, i.e. at that point

it becomes convex towards the initial line, the radius of curvature

being infinite.

Bisect the angle AOQ by OB, and make OP = twice OP ', R
will be a point on the curve.

Bisect ^0^ by OS, and make 0>S' = twice OQ; S will be a

point on the curve.

In the second convolution the following table gives the values

of r corresponding to successive values of 6 difiering by 45", and

similarly for the third convolution.

T

If 2 be taken as the numerator of all the fractions the suc-

cessive denominators evidently differ by unity.

The values of r may of course all be calculated arithmetically,

instead of being obtained geometrically from the calculated value

of one of them.

19—2
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e ,.2

...I > i.e. r must be a mean proportional between05 and - Oc

...I lo^ loc

^^^^i
^.oc

i""

Sir > loc

-4' .V» .. ^0.

2.4' > ^Oc

--^T S- B*
4rr 1- loc

To draw the tangent at any point.

A known expression for the angle which the tangent at any

point makes with the radius vector is

,^ = tan-(--y;

.-. tan<^ = --^, =-2^.
T'a

The value of tan <^ for any point can therefore easily be

calculated numerically, and the corresponding number of degrees

obtained from a set of tables; the angle then being plotted by

means of a protractor. The minus sign in tlie above expressions

denotes that ^ is always greater than a right angle when measured

on the 6 side of the radius. It becomes more and more nearly a

right angle as the angle increases. At the poiut Q corresponding to

The tangent may be constructed geometrically, though not

very conveniently, thus :

—

20P'
we have *^°*=-?^' =
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where OP is tlie radius corresponding to unit angle. Determine

a length I such that

OB : OP :: 20P : I,

so that l = 20P^, since 0£ is unity on the scale adopted
;

I
.'. tan d) =

:, .

r

The value of r^ is known, because it is some definite fraction of

Ac. At G on the curve for example it is the length Og. From
the point at which the tangent is required measure any convenient

fraction of the length r^ along the radius vector, from the ex-

tremity draw a line perpendicular to the radius, and measure on

it the same fraction of the length I, and the required tangent will

pass through the point thus obtained.

In the figure Gm is ^Og, and m?i is ^l, then Gn is the

tangent.

Owing to the rapid diminution of r^ as the angle increases

the method very soon becomes impracticable.

If p is the radius of curvature at any point, and r the corre-

sponding radius vector,

p : J4: + a'r' :: r (4 -f a'r') : 2 (4 - a'r').

The Logarithmic or Equiangular Spiral.

In this spiral the radius increases in a geometric while the

angle increases in an arithmetic ratio. The angle of revolution

is therefore proportional to the logarithm of the length of the

radius vector, v/hence it derives its first name ; it is called equi-

angular because in it the tangent at any point makes a constant

angle with the radius vector.

This constant angle is called the angle of the spiral.

The equation to the curve is generally expressed in the form

^ r = a\

^b^here a is some constant on which the form of the curve de-

^Hpends. From it evidently

^F log r^eioga-,

m
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and since the logarithm of 1 is 0, r must evidently be of unit

length when ^ = 0, i.e. the curve must cut the initial line at unit

distance from the origin.

If this condition is not fulfilled the equation to the curve is

of the form r — ha where h is another constant, and in this form

the initial line must be taken so that it cuts the curve at a distance

h from the origin.

The known constant value ^ of the angle which the tangent

at any point makes with the radius vector is

<h — tan~^ -, ,

log, a

where e is the base of Napierian logarithms, i.e. ^ is an angle

such that

tan d> =^

log, a

The value of log,„e is 0-43429448.

From the definition of the curve it follows that any radius

vector is a mean proportional between the two at equal an-

gular distances from it on opposite sides. This property gives

the best method of constructing the curve geometrically when

the pole and two points are given or determined.

Problem 149. To draw a logarithmic spiral, the value of the

constant in tJie equation, and the unit of the curve being given

(Fig. 152).

Let the equation be r= 1 . 15| , the unit being the length L.

Take the pole, and 0^ the initial line—^the curve will cut

this line in the point M at unit distance from 0.

Suppose the revolving line to have made one complete revo-

lution, so that it again coincides with OA ; the corresponding

value of will be the circular measure of four right angles
;
—

i.e. 27r or 2 (3-14159...) = 6-28318.
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The corresponding value of r is given by

logr=6-283181og(M5)

= 6-28318 X -0606978

= -381376

;

. -. r = 2'4:l very nearly — = OiT,

and iY is a second point on the curve.

Fig. 152.
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Make OP on MO produced a mean proportional between OM
and ON, and P will be a tliird point on the curve. Through

draw QOp at right angles to OJ/, make OQ a mean proportional

between OP and ON, and Q will be a point on the curve.

Similarly if the curve cuts QO again ini?, OR : ON :: ON : OQ
which determines P. To do so evidently all that is necessary is

to draw NP parallel to PQ or perpendicular to QN, and thus a

series of points lying on two lines perpendicular to each other,

and passing through the pole can be determined.

It is of course easy to' interpolate points between those of

kthe
original series ; for bisect the angle TOP by the line OS, and

make OS a mean proportional between OT and OP, and on SO
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>S^ and V will be points on the curve.

Draw OTTat right angles to OS, and make OW a. mean pro-

portional between OS and OV (i.e. on SV describe a semi-circle

cutting OF" in W), and W will be a point on the curve. Then

a series of points on the lines OS and W can be obtained by-

drawing, as shewn by the dotted lines, parallels to SW and WV
alternately.

The angle between any tangent and its radius vector is given

by the equation

_, -43429448
<^ = tan

i.e. tan <^ =

iog(M5)

;

43429448

•0606978

= 7-155,

whence (f>=
82" nearly (more exactly Sl^.SS').

The tangents can therefore be drawn at all the points found

by drawing lines through them making this angle with the radii.

The dotted part of the curve arises from negative values of

the angle of rotation; it never reaches the pole.

Centre of Curvature.

The centre of curvature at any point S can easily be deter-

mined when the angle between the radius and tangent is known.

Draw the normal SC, and from the pole draw OC perpendicular

to OS the radius vector ; G will be the required centre.

Problem 1 50. To describe an equiangular spiral, the pole

and two points S and K on the curve being given (Fig. 152).

Let OS=r^, OK = r,, and the angle KOS= a. (In the figure

aS^=3-3, OK =2-78, smd KOS= 1-22173... = the cm. of 70".)

The angle of the spiral may be determined from the following

equation

—

^_ alog,„c _ 1-22173 X -43429 _...-, g.
^ ^ ~ log r, - log r," -5135139 --4440448"' '

whence <^ = 82" nearly.
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The constant a of tlie curve is then given by

log,„„J-2?i^^=:^^.0609,
^''^ tan<^ 7-124

.
•

. a = 1 -15 very approximately.

Taking OK as the initial line the equation to the curve may

be written r = r^a .

Draw OJ at right angles to OK and on it take a length OJ
It

equal to r^a^, i.e. determined from the equation

log (9/= log 7-^+^ log a

= '4440448 + 1-5707 x -0609 = 3-47.

We have now two points on radii at right angles to each other,

and other points can at once be found by the preceding problem.

Any number of j)oints on the curve can be found without

determining either £» or <^ by making each radius a mean propor-

tional between the two at equal angular distances from it. Thus

the radius bisecting the angle KOS must be a mean proportional

between OK and OS^ and the radius making an angle 2a with OK
must be a third proportional to OK and OS.

Points at equal angular distances can easily be found by

Problem 8, when the lengths of two radii separated by that angu-

lar distance are known.

In practice cfi should always be determined, and tangents

drawn at all the points found, because these tangents are of great

assistance in tracing the curve through the points.

Problem lol. To inscribe a Logarithmic Spiral in a given

parallelogram (Fig. 153).

Let ABCD be the given parallelogram, a the circular measure

of its acute angle. [In the figure AB = 3, AD = 4, the unit being

the length L, and the angle BAD contains 75", so that its circular

measure is 1-309...]

Let p and q be the perpendicular distances between the oppo-

site pairs of sides, p being greater than q.
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In the fig. 'p = 3-86, and ^ = 2-89.

Fig.l53.

~^-^^

If <^ be the angle of the spiral, it can be determined from the

equation

tan^
logjo-logg

or with the above dimensions

1-309 X -43429
*^^*^~

-5865873 --4608978

•5385
= 4-284,

•1257

.-. <^ contains 77" very nearly.

Next determine the number (iV suppose), the log. of which

Trloge

i.e. in the present case log JV

tan
(f>

'

3-1416 X -43429

4-284

= -3185,

.'. from a table of logs iV-2-08.

Divide the perpendiculars p and q so that one portion shall be

to the other :: 1 : iV^, and lines drawn through these points of
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division parallel to the sides of the given parallelogram will inter-

sect in the pole of the required spiral. In the figure the per-

pendicular Gc is divided by making Cd on CB — unity on any

convenient scale, and (ie = 2*08 on the same scale, then dmn parallel

to ec divides Cc at the point ni in the required ratio. Similarly

Aa is divided in n, and nO and mO perpendicular to Aa and Cc

respectively intersect in the required pole.

The Involute of the Circle. The Evolute of a Curve has already

(p. 91) been defined as the locus of the centres of curvature, and

considered with respect to its Evolute the curve is called the

Involute of its Evolute. If an inextensible string be imagined to

lie in contact with the evolute and to be kept stretched while

gradually unwound from it, a certain fixed point on the string will

describe the corresponding involute. The free portion of the

string will be a tangent to the evolute at the point it quits it, and

a normal to the involute at the point reached at the moment by

the tracing point.

Problem 152. To draw the Involute of a given circle to pass

through a given point (Fig. 154).

1st. Let the given point be on the circle. Let C be the

centre and AB ?i diameter of the given circle, and let J. be a point

Fig. 154.

4 5 6 7 D
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on the involute. Draw the tangent at A, and on it determine a

length AD equal to the circumference (see p. 267). Divide AD
into any convenient number of equal parts ^1, 1.2,... (fee, and the

circumference into the same number AV, V'2'.... Draw tangents

to the circle at 1', 2'...

If we imagine a string unwound from the circle starting from

A,—when its point of contact is 1', i.e. when the free portion of the

string is a tangent to the circle at 1', the length of the free portion

will of course be equal to the arc AV^ or to the length ^1 of the

straight line AD. Make V£J on the tangent at 1' equal to ^1,

and U will therefore be a point on the curve. Similarly make 2'F

on the tangent at 2' equal to A2, and i^ will be a point on the

curve, and so on in succession.

2nd. Let the given point be P. Through P draw a tangent

to the given circle meeting it in p. If A is the point where the

required involute through F would meet the circle and be the

circular measure of the angle subtended at the centre by the arc

Ap we have 6 =—j-^j— ; but the length of the arc Ap must be the

line Fp so that if the lengths Fp and AC he measured on any

scale the numerical value of 6 can be calculated, and the corres-

ponding number of degrees obtained from a table. This of course

determines A and the construction reduces to the first case.

As the distance from the pole increases and the points found on

the curve get further and further apart, others can be determined

between those of the original series by bisecting the corresponding

arcs of the circle and divisions of the straight line ADj as shewn

at M.

Tangents to the circle are of course normals to the involute,

and the centre of curvature at any point is the point of contact of.

the tangent drawn from that point to the circle.

The involute of the circle is the locus of the intersection of

tangents drawn at the points where any ordinate meets a circle

and the corresponding cycloid.
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Examples on Chapter XI.

1. Draw a spiral of Archimedes to touch a given line, the

pole and the constant {a), and unit of the curve being given.

[If r is the length of rad. vector to the point of contact of the

given tangent, and p the length of the perpendicular on it from

the pole

-f^.x/a^^f.

Construct therefore a rectangle equal to the sum of the two

rectangles

;7x|, andpx y^a-+| (Prob. 18.)

The last expression is of course the length of the hypotenuse of a

right-angled triangle, the sides of which are a and -: , and is con-

sequentlv always greater than ^. The negative sign in the above

equation therefore gives an imaginary result. A mean propor-

tional between the sides of the rectangle constructed as above is

the required length n]

2. Draw a spiral of Archimedes to touch a given line PT at

a given point P, and to have a given pole 0.

[Through F draw Pa perpendicular to PT, and through

draw Oa perpendicular to OP meeting Pa in a. The length Oa is

the unit of, and is proportional to, the constant of the curve, and

the initial line is at an angle POA from OP given by

OP
circular measure of POA — ^— .1

Oa -*

3. Draw a reciprocal spiral, the pole 0, and two points P, Q
on the curve being given.

[Compare problem 145. Let OP = r, OQ = r^ of which let r be

the greater ; the angle POQ = a, and the angle between the initial
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line and 0P =-e, then

1

r

1

11 1 r-r,
= aa, or a = - .

'

.

7'j r a rr^

The value of a can be obtained from a table of the circular

measures of angles, and if a fourth proportional I be determined to

r — r^j T and r^ 1 ^

a

which determines a. Any convenient scale can be used for measur-

ing I and the unit of that scale will then be the unit of the curve
;

then Q-^~ x -
, the length of r beinf]f measured on the same scale.

a T

The initial line can then be drawn.]

4. Draw a reciprocal spiral, . the pole 0, a point P on the

curve and the tangent at that point being given.

[Draw OT perpendicular to OP meeting the tangent at P in

T. OT =: -
, so that the constant of the curve is known. If the

a

circular measure of the angle between the initial line and OP is 6

\__ 1 OT
0P~ OT '

""^ OP'

and the initial line can be drawn.]

5. Draw the Lituus, the pole and two points P and Q on

the curve being given.

[Let OP = r, OQ = i\^ r being greater than r^ ; the angle

POQ = a, and the angle between the initial line and 0P= 6.

Then - = aje,
T

~ = aJ6 + a,
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r'e = r^'{6 + a\

f\ — r, 1

r - r*

'

Take a fourth proportional I to

rj, r + r^ and r-'•i

Q e^J-f,

303

L

then

and can be calculated, the lengths r^ and I being measured on any

convenient scale.]

6. Draw an equiangular spiral to touch three given lines AB,

BC, CA in three given points F, Q, R respectively.

[On PR as chord describe a segment of a circle containing an

angle equal to the external angle between the tangents AB and

GA. This is a locus of the pole. Similarly on PQ as chord

describe a segment of a circle containing an angle equal to the

external angle between the tangents AB and BG which will be a

second locus. The pole is thus determined.]

7. Draw an equiangular spiral of given angle (<^) to touch

three given lines AB, BG, GA.

[Suppose the spiral is to touch BA and BG produced.

Through B draw a line dividing the angle ABG so that the

perpendicular (^j>J dropped from any point on it on AB is to the

perpendicular {p^ dropped from the same point on BG as 1 : a*

where a is the constant of the required curve, and a is the circular

measure of the supplement of the angle ABG, i.e. — = a*.

P\

a is of course the number whose logarithm is

0-43429448 x cot <^,

and can therefore be obtained from a table of logarithms. The
line so drawn is a locus of the pole. Similarly draw a line through

A dividing the angle between BA produced and AG, so that
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n B— = « , where q^ and q^ are perpendiculars on AB, AC respectively,

and 7> is tlie circular measure of the angle BAG. This line will

be a second locus of the pole which is therefore known.]

8. Draw an equiangular spiral, the pole 0, and two tangents

TP, TQ being given.

[Draw perpendiculars f^ , p^ on TP^ TQ from of which let p^

be the greater ; then

Avhere a is the constant of the curve, a the circular measure of the

angle between the tangents alternate with that in which lies,

and </) the constant angle between the tangent and radius vector.

</> can therefore be determined from a table of logarithms.]



CHAPTER XII.

MISCELLANEOUS CURVES.

The Harmonic Curve or Curve of Sines.

In this curve the ordinates are proportional to the sines of

angles which are the same fractions of four right angles as the

corresponding abscissae are of some given length. It is the curve

in which a musical string vibrates when sounded.

Problem 153. To draw the Harmonic Curve, the length and

amplitude of a vibration being given (Fig. 155).

Let AB hQ the given length, AO the given amplitude. With
centre on BA produced describe a semi-circle 4^4', and divide

it up into any convenient number of equal parts. Bisect -4^ in

(7, and divide u^ AG and CB into the same number of equal parts

chosen for the semi- circle. Draw the successive ordinates la,

lb, &c,, and from the corresponding points on the semi-circle draw

parallels to AB meeting the ordinates in a, b,... &c., which will

be points on the curve. The length from J. to (7 is half a wave

length which will be repeated from C to ^ on the other side of

AB. (7 is a point of inflection on the curve, the radius of curva-

ture there becoming infinite.

To draw the tangent at any point P.

Through P draw pFM parallel to AB, cutting the semi-circle^

in p'j and make FM=AC. Draw pm perpendicular to OA
cutting it in m, and make Jfrn' on J/P= Om^ Through M draw

MN perpendicular to BM or AB, and on it make Mg— 3.14...

on any convenient scale. On J/P make Mk = unity on the same

E. 20
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scale, and draw mN parallel to kg cutting MN in N'. iV will be a

point on the tangent at P.

^ ,-

The lines corresponding to m'N will of course be parallel for

all points on the curve, so that the points k and g need only be

found once.

A parallel to kg through the point 6 (the quadrisection of CA

)

cutting 4^ in T determines AT and CT, the tangents at A
and (7.
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Ovals of Cassini.

When a point moves in a plane so that the product of its

distances from two fixed points in the plane is constant, it traces

out one of Cassini's ovals. The fixed points are called the foci.

The equation of the curve is therefore rr^ = k^, where r and r^

are the distances of any point on the curve from the foci and

^ is a constant.

Corresponding to any given foci an infinite number of ovals

may of course be drawn by varying k.

Problem 154. To describe an oval of Cassini^ the foci F and

F^ and the constant k of the curve being given (Fig. 156).

Draw a line . through F and F^ and bisect FF^ in C : through

C draw BCB^ perpendicular to FF^, and with F as centre and

radius = k describe an arc cutting BCB^ in B and B^ . B and B
will evidently be points on the curve.

Draw FK perpendicular to FF^ and make FK=k, and on

CF make CA and CA^ each= CK. A and A^ will be points on the

20—2
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curve, for CA' = CK' = CF' + FK\
.'. CA' - CF' = k' = (CA + CF)(CA - CF);

but CA + CF= F^A and CA-CF= FA,

.-. FA.F^A^k'.

With centre F and any radius greater than FA and less than

FA^ describe an arc dJ) cutting FA in d. Through K draw Kd^

perpendicular to dK and cutting FF^ in d^. A circle described

with centre F^ and radius Fd^ will cut the arc dD in D, a point

on the curve.

Evidently by symmetry D^, the intersection of arcs of the

same radii as the above but struck from the opposite foci as

centres, will also be on the curve, and so also will be the inter-

sections on the other side of AA^. Similarly any number of

points may be found.

An alternative method may be adopted as soon as two points

such as A and Z>, not very far apart, and the two corresponding

points A^ and D^ are found. If two series of terms in geo-

metrical progression are found, FA and FD being successive terms

of the one and FA^ and FD^ successive terms of the other

(Problem 8), circles struck with the corresponding terms of

each as radii and with the opposite foci as centres intersect in

points of the curve, the radii increasing from the one focus and

diminishing from the other. This is shewn in the figure, and this

construction moreover enables at once any number of ovals to be

drawn, the intersection of any two circles of opposite series

being taken as a starting point, and the successive intersections

giving succeeding points. The second curve drawn in the figure

is an example of this.

It may be noticed that a circular arc with centre at tho

focus coincides very closely with the oval at the vertices A
and A^.

To draw the tariffent at any j^oint P.

The angle FPG which the normal at any point P makes with

the focal chord FP is equal to the angle which the other focal
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chord F^P makes with the chord CP drawn from P to the

centre.

TJie Cissoid of Diodes.

This curve, named after Diodes, a Greek mathematician,

who is supposed to have lived about the sixth century of our

era, was invented by him for the purpose of constructing the

solution of the problem of finding two mean proportionals. The

curve is generated in the following manner :

—

kin
the diameter ACB of the circle ADBE (fig. 157) make

AN=BM, and draw MQ and NE perpendicular to AB, and let

MQ meet the circle in Q^ then AQ and NR intersect in a point on

the curve, i.e. the locus of this intersection is the Cissoid.

^ ..,,., liN QM JAM. MB . , ..^ .

By similar triangles -^ =-^ = ^^ , since AQB is a

right angle; or if we call RN'=y, AJ}^ = x, and the radius of the

circle a,

y_ J{2a-x)x
X '2a — X V 2a -x'

which is the equation to the curve referred to rectangular axes

with A as origin and AB as axis of x."t3*

Problem 155. To describe the Cissoid corresponding to a

circle of given diameter (Fig. 157).

Of course the above description is really a construction for

the curve, since by it any number of points can be determined.

The curve may also be described by continuous motion thus :

Draw a diameter AB of the circle, and the tangent at B.

If ^ is a point on the curve, this tangent will be an asymptote.

Through C, the centre of the circle, draw a parallel to the tangent

at B of indefinite length, and make ^0 on CA produced equal to

A C. Cut a piece of paper to a right angle as abc, and on one side

of it mark ofi* from the angle the points d, c, making bd = dc=AC\
the radius of the given circle. If the paper be now placed

so that the edge ba passes through 0, and the point c is always

on BCD, the point d will be on the curve, and by moving it
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the positions of any number of points can easily be marked off

on the paper. The curve is evidently symmetrical about AB,

Fig. 157.

there is a cusp at A, and D and E, the extremities of the diameter

perpendicular to AB, are points on the curve.

To draw the tangent at any point P.

From P, with radius AC, mark off L on the diameter ECD.
Through L draw LG parallel to AB, and through draw OG
parallel to PL, meeting LG in G, G will be a point on the

normal at P, and the tangent is therefore perpendicular to PG.

It may be noted that the area included between the curve

and the asymptote is three times the area of the generating

circle.

The problem of finding two mean proportionals between two

given quantities a and h is, to find two quantities m and n

such that

m^ = an and n^ = mb,

or that m^ = a^b and n'' = ah^.

By means of the cissoid corresponding to the circle, the radius

of which is equal to a, the smaller of the given quantities a and h,

the first term m can easily be found thus :
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Make CS on the diameter DCE=h. By hypothesis S will

always fall beyond E. Draw BS cutting the cissoid in K. Then

AK will cut CS in a point T at sl distance from C equal to the

required quantity m, i.e. CT^ = m^ = a%. For draw the ordinate

Kn. By similar triangles

CT AG ^„3 Kn^
3^- = -^ , or CT^= -r—^ a%Kn An An^

CS BC BC
and

Kn Bn 2a-An'

... CS=^ a;
2a— An

but An is the x and Kn is the y of the point Z, and it has been

therefore already proved that

... ^r3.-^.^3«'
'la -An An\

^'"^
a^^CSa^

2a -An
= a'h.

When m is found the second mean proportional n can be found

by similar triangles, for

a '. m :: n : h.

If CS or h be made equal to 2a, m will be the length of the

side of a cube^ the volume of which is twice that of a cube of side

a, since in this case m^= 2a^.

The ConcJioid of Nicomedes.

If through a fixed point a straight line POp be drawn

meeting a fixed right line LM in R, and RP^ Rp be taken each

of the same constant length, the locus of P and p is called the

conchoid.

If CD be drawn perpendicular to LM meeting it in A, and

OA = a, RP=b, and AOR^O,

OP=OR+RP=-^+h.
cos



312 THE CONCHOID.

Also Op = OR-Bp, since we go in the positive direction from

to R, and in the negative from R to p;

.: Op i,

SO that the polar equation of the curve, being the pole and AD
the initial line, will be

(r ± h) cos = a.

Problem 156. To draw the GoncJioid, the constants a and h

being given (Fig. 158.)

Draw the line OD^ and make OA on it =a, and AD, Ad each

= ^•

FIg.lBS.

D

Through A draw LAM perpendicular to OA ; LM will be an

asymptote of the curve. Draw any line OP through meeting

LM in Rf and on it make RP = Rp = b.

By definition P and p will be points on the curve, and

similarly any additional number of points may be determined.

The curve is evidently symmetrical about OD.

If b is less than a, the form of the curve is that shewn by the

dotted lines.

When b- a the point is a cusp on the curve.

To draw the nor7nal at any point Q,

Let OQ meet LM in r; draw rG perpendicular to LM and

OG perpendicular to OQ intersecting in G, which will be a point

on the required normal ; for the line OQ is moving so that it

always passes through while a fixed point on it is travelling along
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LM j i.e. at the moment the line is moving along OQ (or turning

about some point on OG), and also along LM (or turning about

some point in tG\ i.e. G is the centre of instantaneous rotation.

The Witch of Agnesi.

Let AB (fig. 159) be a diameter of a circle, iO/a line per-

pendicular to AB meeting it in iV and the circle in 3f. If F be

taken on iOf produced so that

An ~ AN'

the locus of the point P is tlie curve called the Witch.

If a be the radius of the circle we have from the above

PN^ _MN' BF 2a -AN
4a' ~~AN' ~ AN-~ AN '

or putting AN=x, and PN=y^
xy^ = ia^ (2a - x),

which is the equation to the curve referred to rectangular axes

with A as origin and AB axis of x.

Problem 157. To describe the Witch of Agnesi corresponding

to a circle ofgiven diameter (Fig. 159).

Let AB be the given diameter, C its centre ; draw the tangent

at B, and through A draw any number of lines AE, AF,...&.c.,

cutting the circle in F, F, &c., and the tangent at B in 6,/,...

&c. Lines drawn through F and e respectively parallel and per-

pendicular to the tangent will intersect in Q, a point on the curve
;

similarly lines through F and /intersect in Pj and so any number

of points can be determined.

The construction is obvious from the definition of the curve.

The curve is symmetrical about ^^ aud cuts the diameter per-

pendicular to AB at distances from the centre equal to the diame-

ter ; the tangents at these points pass through B.

If CB be bisected in B and BK be drawn perpendicular to ^^
meeting the curve in X, K is a, point of inflection on the curve.

The tangent to the circle at A is an asymptote to the curve.
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To draio the tangent at any point T.

Through T draw tTv parallel \>o AB meeting the tangent at B
in t and the asymptote in v. Draw Aw perpendicular to At meet-

ing the ordinate tlirough C, the centre of the circle in w. The

tangent at T is parallel to vw.
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THE CATENARY.

The curve in which a heavy inextensible string, freely sus-

pended from two points, hangs under the action of gravity, is

called the Catenary. If the mass of a unit length of the string is

everywhere constant, i.e. if the string is of uniform density and

thickness, the curve in which the string hangs is called the

Common Catenary.

Investigation of the conditions of the statical equilibrium of

the string gives for the curve of the common catenary the well-

known equation

X a-.

2' = |{«' + ^"1'

tlie axis of y being a vertical line through the lowest point of the

curve, and the axis of a; a horizontal line in the plane of the string

at a distance c below the lowest point, c is the length of string,

the weight of which measures the tension at the lowest point, and

e is the base of Napierian logarithms.

At a distance c from the origin measured along the axis of a;,

the corresponding value of 2/ is

at a distance 2c it is

Ik+«-'i.

tK+^-^
and so on ; and if we make c the unit of length the corresponding

values of y are \ {e^ + 6~^},

and so on.

The third column of the following table gives the value of -

at the corresponding points along the axis of x as shewn by the

first column

e = 2-718281828... lo^JO = -43429448...

I.
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Abscissae J{e'^+e ^}

x=j 1(1-28405 + -77880)

y
c

1-03142

x=^- 1(1-6487 + -60653) 1-1276

3c
i(2-J17 + -47144) 1-294422

x=c 1(2-71828 + -36788) 1-54308

x^lc 1(7-389 + -13534) 3-76217

x=-.Zc 1(20-0855 + -049787) 10-0676...

a;= 4c 1(54-598 + -018316) 27-308...

Problem 158. To draw the common catenary, the unit c being

given.

Example 1. {c=OA) fig. 160.

Draw the horizontal line Ox and the vertical line Oy. On Oy
measure OA =c. A will be the lowest point of the curve. Set off

from along Ox lengths Oa = ah — hd = c, and draw the ordinates

through a, h, d... parallel to Oy.

On the ordinate through a measure from a a length ap^ ~ (the

number in third column of above table opposite aj = c) x c, i.e.

1-54308 X c (e.g. if c is Y ^^ ^^ ^^Y necessary to measure off on a

diagonal scale of half inches a length 1-54). p^ will be a point on

the curve. Similarly on the ordinate through h measure hp^ =

(number in column 3 opposite a; = 2c) x c, ie. 3-76217 x c. p^ will

be a point on the curve. Similarly for ordinate through d.

Points can of course be found between A and p^ by using the

fractions of c given in the table.

Example 2. {c=OA) fig. 161.

The points p^^ p^, p^, p^ on the ordinates through a, h, d, e,

where Oa = ab = bd=de = |c,

are given by the table : the next point furnished by the table

would be on the ordinate through /, where e/= Oe. Points on
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ordinates between e and f may be found without calculation as

follows

:

d 3C

Any three equidistant ordinates (2/„_j, 2/„, Vn^^ ^re connected

by the relation

where h is some constant, i.e. if eg^^de

e^' + F
9P,

dpz
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Construct the right-angled triangle AOm, with hypotenuse

Am ^ api, the ordinate at distance Oa — de = eg from origin : the

length Om is the value of the constant h.

li p^q^ be drawn parallel to Ox and meeting 0^ in j^,

so that the required length gp^ can be determined by taking a

third proportional to dp^ and mq^.

Similarly, if gh = eg= Oa,

ep^ '. mq^w mq^ : Jip^i

or, since eh = he, hp^ may be determined from

hp^ : mj^ :: m,q^ : hp^,

where m^ is a point on Ox such that Am^ = bp^.

To draw the tangent at any point (p^ say).

With centre and radius OA describe a circle; through p.

draw p^q^ parallel to Ox and meeting Oy in q^. The tangent at ])^

will be parallel to one of the tangents which can be drawn from q^

to the above circle.

From g^ the foot of the ordinate at p^, draw gt perpendicular to

the tangent at p^ meeting it in t. gt= OA, the c of the curve, and

p^t is the length of the arc of the curve between p^ and the lowest

point, i.e. p^t = arc Ap^.

To determine the centre and radius of curvature at any point

(asp,).

Draw the normal at p^ meeting the horizontal axis Ox in G.

On the normal make p^S=pfi. /S' will be the required centre,

and Sp^ the radius of curvature.

Problem 159. To draw a catenary, the vertex A, the axis Ay
and a point Q being given (Fig. 161).

The following method is approximate only, but gives tolerably

close results provided the depth of A below Q does not exceed

two-thirds of the distance of Q from Ay.

Find on Ay the centre (F) of the circle passing through A and

Q, and determine the length of the circular arc A Qj i.e. from a
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table of the circular measure of angles get the circular measure

corresponding to the number of degrees in the angle AFQ and

multiply this number by the length FA measured on any con-

venient scale. [In the figure AFQ contains 64", the circular mea-

sure of which is 1*117, and FA =5, the unit being J inch; the

length of the circular arc ^^ is therefore 5*585 units.] From Q
set off downwards on a parallel to Ai/ drawn through Q the length

QL = the circular arc AQ as above determined, and let the horizon-

tal through A meet QL in k, and make XiV on Q produced through

L a third proportional to twice Qk and kL ; i.e. take

Zi\^ : JcL :; kL : 2 . Qk.

]V will be a point on the axis Ox of the required catenary, i.e.

c is determined for the required curve.

[iV is easily determined by inflecting from L to Ak produced a

length Lk^ = twice Qk; produce k^L to n making Ln = kL.
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n will be a point on the required axis of Ox; for by the

similar triangles Lkk^ , LNn,

LN : Lk :: Ln : Lk^ :: Lk : 2 . Qk]

The construction is based on the assumption that the length of

the arc of a catenary near the vertex does not sensibly differ from

the circular arc passing through its centre and extremities j and

the point N is determined so that the tangent from it to a circle

with centre Q and radius QL shall be equal to Nk.

Problem 1 60. To draw a catenary, a point of suspension P,

the tangent FT at that pointy and the depth PK of the loop being

given (Fig. 161).

Draw the horizontal through K meeting PT in R.

On PR produced make RT = RK, and draw TI^^ perpendicular

to PT meeting PK in N^.

KN^ = the unit c for the required curve. PT is the length of

the arc between P and the lowest point, and a known expression

for its length is

where x=^AI{. Also

P^,=-^{ehe%

PN.+PT ^

or - log e = log PJ^^ + PT- log c,

1.8. X

which determines the vertex^.

'( loge j'

Problem 161. To draw a catenary, tJie axis Oy, a point P
on the curve, and the tangent PT being given (Fig. 161).

Through P draw PN^ parallel to Oy, and PM perpendicular

to Oy meeting it in M. Let the angle TPN^ = 6, and if PT is
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= length of arc between P and A the vertex, we have if TN^ is

perpendicular to PT,

PT-PiT,COS^=||€''-€~''|,

and PiV, = ||€<=+€ «
|,

PAT

.'. PiYj (1 + COS ^) = c.cS

but c = :riV^ = PiV>in^,

, e ?^ ^^ J
.'. cos^=sin^€'' or € ** =cot^,

PM. , J
••• -y-l0g€ = l0gC0t^,

r_iog€_

jlogcot-

By means of a table of logarithms, the value of c can be

calculated, and when the length N^T is known, the points N^ and

T are of course easily determined.

THE TRACTORY OR ANTI-FRICTION CURVK

The involute of the Catenary is called the Tractrix or Tractory.

Since in the catenary (fig. 161) gt drawn from the foot of the

ordinate at any point P, perpendicular to the tangent at P, meets

it in a point t such that Pt = arc of catenary measured from the

lowest point, t is evidently a point on the involute of the catenary

and tg is a tangent to the involute. Also tg is constant (p. 318)

and equal to OA, and therefore the Tractory is a curve such that

the intercept on its tangent between the point of contact and a

fixed right line is constant. This fixed length is called the

constant of the curve.

E, 21
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The equation of the tractory may be written

+ X + Jf -'if =^0,tlog
y

where OA (fig. 162) is the axis of y^ ON the axis of x and OA = t

the constant of the curve.

Peoblem 162. To draw a Tractory the constant t being given

(Fig. 162).

Describe the catenary corresponding to the unit t == OA
(Problem 158).

-^«is

Flg.l62.

/

.^/

In the figure since ON = OA, QN the ordinate of the catenary

r543... X OAj and so for other points.
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Draw QP the tangent at Q (p. 318) and NP perpendicular to

QP and therefore parallel to Op. P is a point on the tractrix as

akeady shewn, and similarly other points can be determined.

The centre of curvature at P is of course the point Q.

The line ON is an asymptote to the curve, and by the revolu-

tion of the curve round ON a solid is generated, the form of

which has been adopted for the foot of a vertical shaft working

in a socket or step. This pivot is known as Schiele's Anti-Friction

Pivot. The theoretical advantage of the adoption of the form in

this case is that the vertical wear of the pivot and step is every-

where equal.

INVERSE CURVES.

Def. If on any radius vector OP drawn from a fixed origin

0, a point P" be taken such that the rectangle OP . OP' is con-

stant, the point F is called the inverse of the point P; and if P
describe any curve, P describes another curve called the inverse

of the former, with respect to the pole 0.

Let be the pole and P, Q two points on any curve, and let

Pj, Q^ be the inverse points, then by definition

OP . OP^ = OQ . OQ^ = ¥ suppose.

A circle can therefore be described round PQQ^P^ and hence

the triangles OQP and OP^Q^ are equiangular. (Euc. in. 22.)

PQ ^OP
^
OP .OQ ^ OP.OQ

''' 'P,Q\~OQ,~OQ.OQ,~ F •

Since the angle OQ^P^ = the angle OPQ, it follows that when

Q moves up to and coincides with P so that PQ becomes the

tangent at P, ^i moves up to and coincides with P^ and Q^P^

becomes the tangent at P^, and the angle OP^T^ between OP^ and

Q^P^ produced is equal to the angle OPQ^ so that the tangents to

a curve and its inverse at corresponding points make equal angles

with the radius vector but on opposite sides of it.

21—2
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The Limagon, The inverse of an ellipse or hyperbola with

respect to a focus is called a limagon. The polar equation to an

ellipse or hyperbola, the focus being the pole and the major axis

the initial line, is r = — .
—— where a and h are the maior and

a 1 + ecos^' '^

minor axes of the ellipse or the transverse and conjugate axes of the

hyperbola, and e is the eccentricity of the curve (pp.99 and 154).

If r be produced to a length r' such that rr' = k^ (Def. p. 323),

the above equation becomes

-T = - T-. a or r = -y^ (1 + e COS 6),

which is of the form / = ^ cos ^ + ^ the equation to the Lima^on.

the positive sign being taken for an hyperbola, negative for an

ak" A
ellipse, and B=-j^ so that -^ = e the eccentricity of the conic.

Hence the constant for the Inverse being given, the values of

A and B for the limagon corresponding to any particular conic

can be calculated—and conversely the equation to the Limagon

being given, and also the constant kj the particular conic of which

it is the inverse may be determined by solving the above two

equations for a and b.

Evidently A is less than B in the inverse of the ellipse, and

greater in the inverse of the hyperbola.

Problem 163. To describe a Limaron, the equation to tJie

curve being given (Fig. 163).

Let the given equation he r = A cos 6 + B.

Draw a circle of diameter OD = A^ and on DO set off from D
on each side of D lengths DM^ Din each equal to B. M and m
are evidently the points corresponding to the values of ^, zero and

180", being the pole; i.e. OD must be the initial line.
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Through draw any line whatever cutting the circle in Q.

Flg.l63

I

On it from Q on each side of Q set off lengths QPj Q}^ each equal

to B. P and p will be points on the curve

;

for OP = OQ + QF = OI)cobDOQ + QP

= A cos 6 + B,

and Op=QP-OQ = QP- OD cos DOQ

= QP+ OB con (180 + DOQ)

= A cos + £,

jhe 6 in this case of course corresponding to the radius 0/?.
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Similarly, by drawing a series of lines through and setting

ojff on them from the points where they cut the circle, the constant

length B any number of points can be determined.

In the figure the outer curve with plain letters is the inverse

of an ellipse, and the inner one with suffixed letters the inverse

of an hyperbola.

The values of the constants are ^ = 2-1,

B for the outer curve= 2*4,

B „ inner „ = -84, the unit being the length I.

Hence corresponding to the value F = 1-7 we have

and 2-4 = -Y2-«^,

whence a=3 and 6 = 1-46 the semi-axes of the ellipse of which

the figure is the inverse ; and corresponding to the value ^^ = 9

we have

2-i = |7ci^TF,

whence a = 2*0 3,

6 = 4-66,

the semi-axes of the hyperbola of which the inner curve is the

inverse.

To draw the normal at any 'point B of a Limagon.

Through D draw DG parallel to OP, meeting the circle on 0Z>

as diameter again in G^ which will be a point on the required

normal.

Tofind the centre of curvature at any point P.

On OP as diameter describe a semicircle, and draw QV perpen-

dicular to OP meeting it in V. On PGj the normal at P, make
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Pv =PV and draw vX parallel to GV meeting PT in X. On
PV make Pg = 2 . PG and draw Gx through G parallel to Pg and

= PX. gx will intersect PG in s, the other extremity of the

diameter of curvature at P, so that S the required centre is the

point of bisection of Ps.

Proof. It is easily shewn analytically that if p is the radius

of curvature at P,

^~ 2A' + SAB cos e + B' '

where A and B are the constants of the curve and 6 is the

angle DOP.

But A' + 2AB cos 6 + B' = PG',

and . •. A'+ AB cos e = PG'- (B' + AB cos 6),

^ PG^
**• f'~2.PG'-(B' + ABcose)'

But QV'^OQ . QP^ABcos 6,

and PV = PQ' + QV' = B' + AB cos 0,

PG^
*'• ^~2PG'-Pr'

By construction PX : PV :: Pv : PG,

and Pv^PVy .'. PX.PG = PV\

•*• ^~2PG-PX'
i.e. 2p : PG :: 2PG : 2PG-PX,

or 2p:2p-PG::2PG:PX,

but Ps :Gs::Pg: GX,

le. Ps:Ps-PG::2PG:PX,

.'. Ps=2p.

The limagon is an epi-trochoid, the diameters of the directing

and rolling circles being equal.
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The Inverse of a Parabola is called a Cardioid, i.e. a Cardioid

is a Limagon in the equation of which the constants A and B are

equal.

Its equation is therefore r = ,4 (1 + cos ^).

The inner loop disappears in this case, and the origin is a

cusp on the curve.

Problem 164. To describe a Cardioid, the equation to the

curve being given (Fig. 164).

Let the given equation be

r = ^ (1 + cos 6).

Fig.i64.

Draw a circle of diameter OD = A and on OD produced set off

D3f=A.

M is evidently the point on the curve corresponding to zero

value of 6, being the pole; i.e. OD must be the initial line.

Through draw any line whatever cutting the circle in (?,

and on OQ produced make QP = OD = A. P will be a point on
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the curve, for

0F=0Q + QP = ODcosD0Q+QP = A (l+cosO).

Similarly, any number of points on the curve can be ob-

tained.

To draw the noi'mal at any point P.

Through D draw DG parallel to OP meeting the circle again

in G. (? is a point on the required normal.

THE LEMNISCATE OF BERNOULLI.

The inverse curve of the Rectangular Hyperbola with respect

to its centre is called a Lemniscate.

The polar equation to the rectangular hyperbola, the centre

being the pole, and one of the axes the initial line, is

7^cos2e = a\

If any radius vector OP, being the centre, is produced to

P so that OP . OP' = k^, where k is any constant, P will by

definition be a point on the inverse.

If OP = r, OP' =. r', this may be written

TV' = k' or r'^ = -3COs2^;
a

the polar equation to the lemniscate may therefore be written

The lemniscate is a particular case of the ovals of Cassini, the

distance between the foci being J2K and the product of the focal

distances of any point of the curve being -^ ,

Problem 165. To describe a lemniscate, the constant of the

curve being given (Fig. 165).

Draw any two lines OB, Ob at right angles to each other.

On OB make OA - 0^, = the constant K of the curve. A and A^
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are evidently points on the curve corresponding to tlio values of

6, zero and 180". On Ob make Oa= OA, and with as centre,

and ^a as radius, describe a quadrant of a circle Bh.

Draw any line OD through meeting the circle in D, and

draw DN perpendicular to OA meeting it in N. With A as

centre, and ON as radius describe an arc cutting Oh in p, and

make OP, OP^ on OD each = Op. P and P^ will be points on the

curve.

Similarly any additional number can be determined.

The curve passes through the origin for r = when 26 = 90*',

and lines drawn through making 45" with OA (the initial line)

are tangents to the curve at 0.

Proof, The equation to the curve may be written

r' =K' (2 cos^ ^ - 1) or "^f = cos^ 0,

but cos' DON: oM

2K'

o^w
0D\

.-. t''=6n~\-K\

which by construction it does since

AP^ON and OA = K,
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Between the values 90" and 270" for 20^ cos 20 is negative,

and consequently no real values for r exist.

The length OQ corresponding to an angle AOQ = 30'^ is ^OB,

and the tangent at ^ is parallel to OB.

To draw the tangent and normal at any point.

The angle OFG between the radius vector OP and the normal

PG is twice the angle POA. Considered as one of Cassini's ovals

the foci are at F and F^ where OF= OF^ = \0B^ and the normal

may of course be dra\^n in the manner given for those curves,

i.e. by making the angle F^PG ^ angle OPF.

Problem 1G6. Given two points A and 0, and a line OB
through one of them, to determine the locus of a point P moving so

that the angles which OP makes with PA and with a parallel to

OB through P, shall he equal (Fig. 166).

On OA as diameter describe a circle, and through draw a

perpendicular to OB.
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With as centre and any radius less than OA, describe a

circle cutting the circle on OA in a and a^ , and the perpendicular

through in 6 and b^.

Draw Aa meeting parallels to OB through h and Sj in F
and Pj, and draw Aa^ meeting the same parallels in Q and Q^ .

F, Q, F^ and Q^ will be points on the required locus, for the

triangles ObQ^ Oa^Q, e.g. are equal in all respects.

Similarly any additional number of points can be determined

as shewn.

The curve extends to an infinite distance on both sides of 0,

and has an asymptote parallel to OB on the opposite side to A
and at the same distance from OB as -4 ; or if AI^ be drawn

perpendicular to OB and NX on it be made equal to AN, the

asymptote passes through X.

The internal and external bisectors of the angle AOB are

tangents at to the two branches of the curve passing through

that point. The tangent at A is inclined to OA at an angle OAT
= angle AOBy and parallels to OB at distances from it = 0A are

tangents to the curve. The points of contact L and M of these

last are determined by drawing LAM perpendicular to OA,

At some point beyond 3£ the curve becomes convex to the

asymptote.

This problem is a solution of the question :—to find the point

on a spherical mirror, on which a ray from any point A must

impinge in order that it may be reflected parallel to a given

direction.

For if be the centre of the mirror, the circular arc repre-

senting the section of the mirror by the plane passing through

Aj 0, and the line OB through parallel to the given direction,

will of course cut the curve in points such that the incident and

reflected rays make equal angles with the normals at those points.

In other words the problem is to find the point F on a given circle

at which the lines AF, FB, A being a given point and FB being

parallel to a given line make equal angles with the normal at F,

The whole curve in such a case need not be drawn, since it
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is easy to find points on the curve in the neighbourhood of the

part of the mirror required and to draw an arc of the curve

through them.

Problem 167. Given three points A, i>, (7, to determine the

locus of a poi7it P moving so that the angles which PC makes ivith

PA and PB are always equal (Fig. 167).

Let ^C be greater than BG. On AC and BC &h diameters

describe circles, and with centre C and any radius not greater than

J^ Fig. 167.

BC describe an arc cutting the circle on AG in a and a^, and the

circle on BG in b and h^. The lines Aa, Aa^ will intersect both

the lines Bb and Bb^ in points on the required locus. Only three

of the intersections are shewn in the figure, viz. the points /*, Q
and Pj the fourth not falling within the limits of the paper.

Similarly any additional number of points can be determined as

shewn.

The curve extends to an infinite distance on both sides of the

line AB, and has an asymptote parallel to the line joining C to the

centre point of AB, and which cuts AB between A and D the

foot of the perpendicular from C on AB at a distance DE from
D, which may be thus determined.
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Let BC = a, AC=h, AD = m, BD = n and CD^h.

It can be shewn analytically that the length

d^ + h^

'm-n\'-\-2h\'

On DA m2i'keI)F=DJ3, therefore AF=m-n.

Draw FG perpendicular to A£ meeting BC in 6^, so that

FG = 2I)G = 2h;

.-. AGi' = AF\' + FG\' = 7n-ni' + 2h\\

I Draw GK perpendicular to ^ 6^ meeting AB in K, so that by

similar triangles

AF : AG :: AG : AK

;

.-. AG[' = AF.AK.

In the figure K is beyond the limits of the paper, but if ^ 6^ is

bisected in g, and gk is drawn perpendicular to AG meeting AB
ink, Ak = lAK and therefore AG\'' = 2.AF. Ak

The above expression for DF therefore becomes

Draw CL perpendicular to AC and make CL = CB so that

Ar = a' + b\

On AB make Al=AL, and through I draw O/ parallel to

KL meeting AL in J/. (In the figure AL is bisected in L so

that ^Zj is parallel to KL.) By similar triangles

Al.AL AL\'AM : Al :: AL : AK or ^if

AK
i.e. -4illf will be the required length DE. The asymptote can

then be drawn through E parallel to the line joining G to the

middle point oi AB.
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The internal and external bisectors of tlie angle ACB are

tangents at C to the two branches of the curve passing through

that point.

The tangents AT, BT^ at A and B make angles CAT, CBT,

with CA and CB equal respectively to the angles CAB, CBA.

This problem is a solution of the question :—to find the point

on a spherical mirror on which a ray from A must impinge in

order that it may be reflected to B

;

—for if C be the centre of the

mirror, the circular arc representing the section of the mirror by

the plane passing through A, B and C will of course cut the curve

in points such that the rays from A and B make equal angles

with the normals at the points. In other words the problem is

to find the point P on a given circle at which the lines AP, BP,

A and B being given points make equal angles with the normal

at P.

The whole curve in such a case need not be drawn, since it

is easy to find points on the curve in the neighbourhood of the

point required and to draw an arc of the curve through them.

Magnetic curves.

The locus of the vertex of a triangle described on a given

base and having the sum of the cosines of the base angles constant,

is called a magnetic curve.

If ^j5 be the given base, and P a point on the locus, we must
therefore have cos PAB + cos PBA = k, and corresponding to

different values of k, we get a series of curves passing through

A and B. These represent the lines of force in the plane of the

paper due to a magnet whose poles are the points A and B.

The greatest value of k is 2, since the numerical value of the

cosine of an angle is never > 1, and k may have any value between

and 2.

Problem 168. To draw a magnetic curve, the base AB and
the constant k being given (Fig. 168).

On AB as diameter describe a circle ARQB, and on AB take

a point M such that

AM^h.AB,
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Draw any line through A cutting the circle in Qj and make
AqonA3I= AQ.

Fig. 168.

With centre B, and radius BB = Mq describe an arc cutting

the circle in R.

BR will intersect AQ in P a point on the required curve, for

cos5^P = 4l and cos^J5P-^;
AB AB

. •. cos BAP + cos ABP = , .,— = -^~—= k.AB AB

Similarly, any additional number of points can be obtained.
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The tangents at A and B may be determined by considering

that when F moves down to B the angle BAP becomes zero, and

its cosine = unity

;

.-. cosABT=k-l.

In the curve marked 1 in the figure ^ = f

,

» )> •^
)> ^ = 1>

>» » " » "' ~ 2'

it a ^ j> «' — :j)

j> » 5 9> ^ — -g'

For curve number 2 therefore M coincides with B^

„ 3 „ Jf „ C, the centre

of the circle on AB.

For curves Nos. 4 and 5 Jf is at M^ and Jf^ respectively

bisecting and quadrisecting AG.

Corresponding to the value 2 of ^ we get the diameter AB
itself for the locus, and corresponding to the value zero we get the

productions of the diameter to the right and left of AB.

Each curve cuts the diameter of the circle perpendicular to

AB
AB at a distance from ^ or ^ = -^— .

k

The chain-dotted curves in the figure are equi-potential curves

(see next problem) and cut all the lines of force or magnetic

curves at right angles.

Equi-potential Curves.

If the lines of force due to a magnet, in any plane passing

through its poles, are cut normally by a series of curves, these are

known as equi-potential curves, and by revolution round the line

joining the poles they generate equi-potential surfaces.

If A and B are the poles of the magnet, and the length

AB — c, the distances of any point F on one of the curves, from

A and B are known to be connected by the relation

AF BF'c
E. 22
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where h is constant throughout the particular curve considered,

i.e. the equation to the series of curves may be written

r T-j c'

where r and r^ denote the distances of a point from A and B,

The value of h of course varies from curve to curve of the

series.

Problem 169. To draw an equi-'potential curve^ the poles A
and B and the constant k being given (Fig. 169).

First determine the points in which the curve cuts the

lineil^.

/^^-^\
\

Fig.

\

169.

^^

\ \*

1 //
' 7^

i
k / y<^^ V \

/ / /
|B 1

\\\
M/k l-^

li 1

\

I

;——1

—

wt; ^—

4\ v^iiu-J)

k:^>/ 3SV/ /

At the point K we evidently have

AK + BK = c, i.e. r^r^=c or r^=c — r
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which, combined with the equation

1 1 k

determines the value of r and rj

.

We evidently have

I k 1 1

r c r^ c - r

c-kr 1
or ^^ ,

cr c - r^

or d'- {2 + k) cr + kr^ =

a quadratic to determine r or AK, but the smallest of the two

roots is the only admissible solution.

At the point L we have BL - AL = Cy

i.e. r^-r = c or r, = c + r.

Ilk
The equation — = - becomes therefore in this case

r r^ c

1_^__J_ c-kr _ 1

re c + r cr c +r*
«'

or r + cr = Tf

and one of the roots of this equation is the length AL.

To find any points on the curve ; on AB determine a length

AO such that AO = -r , i.e. take
rC

AO : AB :: 2 : k.

Through draw any line Oa and on it make Oa = OA ; set off

on aO on each side of a equal lengths aq, aq^ ; and through a

draw ap parallel to Aq meeting J.5 in p and also drawapj parallel

to Aq^^ meeting AB in p^ . Then Ap and Ap^ are corresponding

values of r and r^ for a point on the curve and therefore a circle

described with centre A and radius Ap will intersect a circle

described with centre B and radius = Api in points F and F^ on

the curve.

22—2
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The distances aq, aq^ must be taken within certain limits,

since the length Ap which depends on aq cannot be greater than

AL or less than AK. These limits can evidently be determined

by drawing through A a parallel to Ka meeting aO in y, and

similarly drawing Ag parallel to a line through a and point I on

AB such that Al =AL. The points q must then be taken

betweeny and g.

In the figure, the value of h for the curve marked 1 is f,

» » » » ^ if ^f

l» >f tf J> ^ 11 21

if 17 i> it ^ 11 ii

and the corresponding values of ^Z" and AL are

4^ 1 AZ^ ^ AT V33-3
fori, AK =

^, AL=c.—-—
,

„ 2, AK='^(3~j5), ^Z = |(V5-1),

„ 3, AK = ^{5-.Jl7), AL=c,

„ 4, ^Z=|{9-V65}, AL = ^{^/T7-l),

These values can of course be determined arithmetically, or

graphic methods may be employed.

Proof. From the similar triangles Opa^ OAq

Ap OA I .. r^A 1
1 ^ + ^3'-^ = 7.— = -r-— \i OA = l or -T- =

,

aq Oq l + aq Ap I .aq

from the similar triangles Oap^^ Oq^A

Ap^ _ OA _ I 1 _l-aq^

aq~~'Oq^~l-aq^ ^ Ap^~l.aq^

1 12.
.'. -.— = Y Since aq, =aq.

Ap Ap^ I
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but I by construction =y ;

J^ 1^ _k
Ap Ap^ c

or Ap and Ap^ are corresponding values of r and r^.

It may be noticed that the line corresponding to Oa of

curve 1 , is, for No. 3 the line oa^, the distance between A and

the intersection of AB and oa^ being 4 . AB ; that the limits,

between which points corresponding to q must be taken are/j and

g^, and that the point B on the curve corresponds to s and s^

on oa^ , a^r being parallel to As and a^r^ to -4si ; so that

AB^Ar and BB=^Ar,.

The equi-potential curve corresponding to zero value of k, is

the perpendicular to A B through its centre point.

THE CARTESIAN OVAL.

This curve owes its name to Descartes who first discussed its

properties. M. Chasles, Mr Cayley, Mr Casey and others have

since devoted a good deal of attention to it. A short discussion

of the curve, treated geometrically, will be found in Chap. xx. of

Williamson's Differential Calculus^ 4th Edition, from which the

following is mainly taken.

Def. The locus of a point moving so that the sum or differ-

ence of its distances each multiplied by some constant from two

fixed points, called the foci, is constant, is called a Cartesian

oval.

If F, F^ are the two fixed points, P the moving point, and

FP= r, FP^ = r, and FF^ = c, the equation of the curve may be

written in either of the forms

nr± lr^ = mG (1),

or r ± Mr^ =K (2),

where K is some given length and M may be assumed to be less

than unity.
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Problem 170. To draio a Cartesian oval, the foci and constants

of the curve being given (Fig. 170).

Let F^ and F^ be the given foci, and the length F,F^ = c^.

The line joining F^, F^ is called the axis.

Fig.170.

Let the distance of any point F on the curve from F^ he

denoted by r^, and from F^ by r^, and suppose the equation of the

curve to be written in the second of the above forms, i.e.

r^ ± Mr^ = K.

On the line joining the foci, make F^X= K, and through X
draw a line XY making any convenient angle with the axis.

On XY determine a length XY such that

XY : F,X :: I : M.

With centre F^ and any convenient radius less than F^X
describe an arc pp^ cutting the axis in p^ ; draw p^k parallel to

FiY meeting XY in k, and with centre F^ and radius = X^
describe an arc cutting the former in ;? ; ^ will be a point on the

curve, for
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•
« M '

but (p^X^)= K-r^f

and Xk : p^ \\ XY : F,X :: 1 : if,

i.e. Z^ or r3= -^- .

Similarly any additional number of points may be deter-

mined.

Again with centre F^ and any convenient radius greater than

F^X describe an arc Qq cutting the axis in q. Draw qm parallel

to F^ cutting YX in m, and with centre F^ and radius =Xw
describe an arc cutting the former in Q. Q will be a point on the

curve, for

but Xq=r^-K,

and Xm '. Xq :: XY : F,X :: 1 : Jf,

I.e. Xirn or r, = ,> .

The curve consists of two ovals one lying wholly inside the

other, the point p belonging to the inner, and Q to the outer.

The radii F^p, F^Q must be taken within certain limits which

may be determined thus :

—

Tofind the points in which the curve cuts the axis.

Let the inner curve cut the axis in v and v^, and the outer in

Fand Fj.

We have

r,^Mr^ = K, .: r,^-^

,

r-K
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the positive sign referring to the inner curve, and the negative

sign to the outer.

At V and V we have

i.e. K'^ + c. = K^ =-j^>
or F^v{l + M) = K-M.c^,

which determines F^v, and

F V-K
F,V+c, =FJ=^^,

or FJ(l-M)='K + M.c^,

which determines F^V.

Again at v^ and F, we have

i.e. F^v^ + F^v^=c, = F^v,+^^\

or F^v^ (1 -M) = K-M. c^,

which determines F^v^, and

FJ.^FJ^^c.^FJ^^-"-^^,

or i^,F,(l + J/) = /i:+if.C2,

which determines F^ F,

.

The radii for points on the inner oval must be greater than

F{o and less than F^v^ , and for points on the outer greater than

FyV^ and less than FJ.

Geometrical properties of the Curve.

The curve is evidently symmetrical about the axis.

Draw any line through F^ cutting the curve in P and Q (on

the same side of F^)', describe a circJe round the triangle PQF^
cutting the axis again in F^, then F^P . F^Q =F^F^.F^F^; but

F^P .F.Qia constant, for

F^P\' = F^pY + c/ - 2F^P. c^ . cos F^F^P = ^^^ ^
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or F^\' (1 -M')-2{K- c^M ' cos F^F^P) F^P - M' . c/ + K' = 0,

and F^P and F^Q are the roots of this equation, so that their

product =—
^j

„3 ^ and is constant. Hence F^ is a fixed point

and it possesses the same properties relative to the curve as F^ and

F^-y in other words F^ is a third focus. This may most con-

veniently be shewn from the equation of the curve in the form

where r^ is the distance of any point on it from F^ , r^ its distance

from F^ and F^F^ = c^, and n>m,>l. Let F^F^ = c^ and denote

the distance of a point from F^ by r^.

It is easily seen that the triangles FJPF^ and F^FJ^ are

equiangular;

" F,F^ F,P F^F^ F^P'

. '. the equation nF,Q-l. F^Q = m,F^F^

may be written

n . F^F^ - I . F^P=m. F,P,

i.e. m.r^+l. r^r=n.c^ (3),

which shows that the distances of any point on the inner oval

from F^ and F^ are connected by an equation similar in form to

(1) and consequently F^ is a third focus of the curve.

In like manner since the triangles F^QF^ and F^FJP are equi-

angular, the equation

n.F^P + l.F^P = mF^F^

gives n.F,F^ + l.F^Q = m.F^Q,

or mr^ ~ I . r^ = n. c^ (4),

or the same holds for the outer oval.

Combined with the previous result, this shews that the con-

jugate ovals of a Cartesian referred to the two internal foci are

represented by the equation

mr, :i=lr =n.c (5),
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and referred to the two extreme foci by

Similarly it is easily seen that referred to the middle and

external foci, they are represented by

nr^-mr^= ^Ic^ (6),

where c^ = F^F^

.

Taking the equation (5) referred to the two internal foci,

it may be written

I n
^ ± _ r„ = — c

,m - m ^

ov r^^ A , r^ = B where A and B are constants.

With centre F^ and radius = B describe a circle DE.

[Evidently comparing equations (1) and (2) we may take

71 = 1, l-M^ m
F,F,'

so that 5 or - c=-^.F,F^,m ^ K ^

i.e. B : F,F^ :: F,F^ : K.]

Let any line through F^ meet it in D and the curve in P and

Q. Let DF^ meet the circle again in E.

Now PD = B-PF^=A.PF^,

QI) = F,Q-B^A.F^Q;

.-. F^Q : F^P :: QD : DP,

so that F^D bisects the angle PF^Q.

Produce PF^ and QF^ to intersect F^E in Q^ and P,. The

triangles PF„D and P^F^E are similar and

P,E _PD ^ .

•'•
F\P^~ F^P~ ''

and consequently the point P^ lies on the inner oval. So also the

point ^j lies on the outer.
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Again, since F^D bisects the angle PF^Q,

F,P.F^Q = PD.DQ + F^D\'

^A\F^P.F^Q + F'fi\\

1 or (1-A')F^P.F^Q = f;d\%

F P F D
and by similar triangles -^ = -^^^

;

.-. {l-A')F^Q.F^P^ = F,D.F^E,

i.e. the rectangle under F^Q and F^P^ is constant ; a theorem due

to M. Quetelet.

If the curve has been constructed from the two internal foci,

the external focus can easily be determined, for the angle F^P^F^

= the angle F^PF^ = F^F^Q, i. e. the angle F,P,Q = the angle F.F^Q

or a circle through F^P^Q passes also through Fy

To draw the tangent and normal at any point P.

Let F^P meet the circle DE (of radius as previously described)

in D and let F^D meet the circle through PQFJF^ in P. Then

i? is a point on the normal at P and also on the normal at Q.

They may also easily be drawn without using the circle DE.

The equation of the curve referred to the extreme foci has

been shewn to be

w, ± Ir^ = mc^.

On PF^, PF^ measure lengths PL, PM proportional to n and I

respectively, i. e. make PL : PM :: n : I.

Bisect LM in G and G will be a point on the normal at P.

The normal at Q may be constructed in exactly the same way,

one of the two lengths being measured on the corresponding focal

radius produced.

Similarly lengths on PF^, PF^ proportional to m and I deter-

mine the normal at P from vectors drawn from the internal foci.
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ELASTIC CURVES.

In the widest sense of the term, an elastic curve is the figure

assumed by the longitudinal axis of an originally straight bar under

any system of bending forces. It is here restricted to the figure

taken by a slender flat spring of uniform section when acted upon

by a pair of equal and opposite forces.

The essential property of the curve under these conditions is

that the radius of curvature at any point is inversely proportional

to the perpendicular distance of that point from the line of action

of the forces. Its equation may therefore be written

where p is the radius of curvature at any point, y the distance of

that point from a fixed line in the plane of the curve and a con-

stant.

A very close approximation to the form of the curve can be

easily drawn by considering it as formed of a series of circular

arcs—the appropriate radius for each being determined.

Problem 171. To draw an elastic curve the constant of tlie

curve and the distance of the extreme point of the loopfrom the line

of action of theforces being given.

1st. A bent bow (Fig. 171).

Let AB be the line of action of the given forces, CD the

maximum ordinate of the curve from AB. From any point D in

AB draw DC perpendicular to AB and on it make DC = the given

maximum ordinate. From C inflect to ^^ a length (7^= the

given constant of the curve and draw EO^ perpendicular to CE
meeting CD in 0,. Evidently CD .CE :\GE : 0,C, so that 0,

is the required centre of curvature at C and may be taken as the

centre of a circular arc extending to a reasonably short distance

on either side of (7, draw it say to F and since FO^ is the normal

at F the centre for the adjacent arc must be taken on FO^. Draw
FG parallel to AB meeting CD in G and on DA make DH= CE
= the given constant of the curve. HK perpendicular to GH
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meets 00^ in a point K such that

GD , DH :: DH : DK-,

Fig.171.

s

\l

1 \

1 \

1 1 \
/ 1

//I
A h/ / !D

1

E,''\ B^

_..i^-^

i. e. DK is the required radius of curvature at F, and therefore if

FO^ on FO^ be made equal to DK, 0^ may be taken as the centre

of a circular arc extending to a reasonably short distance from F
as to L. Any number of successive centres may similarly be

determined.

2nd. An undulating figure crossing ^^ at any number of

intermediate points.

a. Let the given constant of the curve be greater than the

maximum ordinate (Fig. 172).

Divide the given length AB into a number of equal parts

corresponding to the number of required undulations and at the
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centre of one such segment of the line draw CD perpendicular to

AB and equal to the given maximum ordinate, from G inflect to

AB a length CE equal to the given constant and draw EO^ per-

pendicular to CE meeting CD in 0,. 0^ will be the required

centre of curvature at C for evidently CD : CE : : CE : CO^

;

and a circular arc may be drawn through C with centre 0^ and

extending to a reasonably short distance on either side of (7 as to

F. The centre of the adjacent arc must lie on FO^ . Draw F/
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parallel to AB meeting CD in / and on DC, DB respectively

make De — De^ = GE. Through e draw em^ parallel to fe^ , meeting

AB in w^ ^^^ ^'"^2 ^^^^ ^® *^® required radius of curvature at F
for evidently D/ : De^ :: De i Dm^^ i. e. py= a* where y is the

ordinate of F. On FO^ make FO^ = Dm^ and 0^ may be taken

as the centre of the arc adjacent to GF. Similarly any number

of additional centres may be determined—supposing the second

arc extends to G^ draw Gg parallel to AB^ em^ parallel to ge^ and

on GO^ make GO^ equal to Dm^, 0^ will be the centre of curvature

at G. As the radius of curvature at A is infinite the portion AH
may be drawn tangential to the adjacent arc.

p. Let the given constant be less than the maximum ordinate

(Fig. 173).

Divide w^ AB and draw CD the maximum ordinate as before.

On CD describe a semicircle and in it make CE equal to the

Fig.I73.

given constant : draw EO^ parallel to ^^ meeting CD in the

required centre of curvature at C, The rest of the construction

is exactly similar to the above. De = De^ = CE. Ff is parallel to

AB and em^ parallel to fe^ determines Dm^ the radius at F. In
the figure G is taken on EO^ so that g coincides with and em
parallel to O^ei determines Dnig the radius of curvature at G.
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3rd. The points A and B coinciding, which may give, with an

endless spring, a figure of 8 (Fig. 174).

On CD describe a semi-circle; in it make CD equal to the

given constant and draw EO^ perpendicular to CD meeting it in

Fig.l74.

Oi which will be the required centre of curvature at G. Make
De = Dcy = GEy De^ being perpendicular to DC, and successive

Fig.l75.
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centres may be determined precisely as before, the curve at D
being drawn tangential to the adjacent arc.

4th. In figs. 171 to 174 inclusive the forces are directed to-

wards each other. When they act in directions from each other

the spring may form one or more loops, with the ends and inter-

mediate portions meeting or crossing AB, as shewn in fig. 175,

^

E. 23
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the construction for which is exactly similar to the preceding and

which is lettered to correspond.

5th. If the forces are directed from each other at the points

A
J
B, in two rigid levers AD, BE to which the spring is fixed at

D and E, the spring forms one or more looped coils lying alto-

gether at one side of the line of action AB (fig. 176).

The general method of construction is the same as before, but

the radius of each arc corresponding to its central portion instead

of to one extremity has been determined.

Let GF be a maximum ordinate ; on it describe a semi-circle

and in the semi-circle make GH equal to the given constant : draw

HO^ perpendicular to GF meeting it in 0^ the centre of curvature

at G. Draw GO^ parallel to GF and at a distance from it equal

to one-half the desired length of the loop of the curve, and on it

make Gh = GH the given constant : make Gh^ on AB equal to

Gh. Take any convenient point K at about the centre point of

the intended second arc of the curve and draw Kk parallel to

AB meeting GO^ in ^, then Ay/ig drawn through h parallel to kh^

determines Gm^ the required radius of curvature at E. Take any

convenient point L on the arc struck through G and join it to

the centre G^; make LO^ on LG^ = Gm_^^ and G^ will be the re-

quired second centre. Similarly any additional number of centres

can be determined.

CURVES OP PURSUIT.

When a point A moves so that it is continually directed to-

wards a second point B also in motion in some known curve, the

locus of A is called a " curve ofpursuiV^

The problem was first presented in the form—To find the

path described by a dog which runs to overtake its master.

The velocities of the two moving points must of course be

known, and the required locus can then be easily traced to any

required degree of approximation by supposing the direction of
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motion to be constant for a short interval and then to be suddenly

deflected.

Problem 172. A moves in a straight line from A to B with

constant velocity, and G startsfrom C with constant velocity double

that ofA and is constantly directed on A. To find the curve of

pursuit (Fig. 177).

Set off from A along AB any convenient equal distances Al,

\

\
V

V

V
<

I

f

I

i

23—2
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12, 23,... While A advances from -4 to 1 suppose (7's motion to

be directed on c the centre point of -41. Then when A arrives

at 1, (7 will be at the point I) on Cc such that (7Z> = twice Al—
while A advances from 1 to 2 suppose (7's motion to be directed

on d, the centre point of 12; then when it is at 2 (7 will be at

the point E on Dd such that i>^= twice 12, and similarly any

number of successive points can be determined.

Examples.

1. Draw a Harmonic Curve given the length A£ of a vibrar

tion and a point F on the curve.

[From F draw FJV^ perpendicular to ^^ meeting it in N. If

a is the amplitude of the vibration PiV= a sin 0,

and e : 27r :: A]^ : AB,

FN
.'. a =

. 27r.AN-'
sin AB

which determines a.

AN
The expression lir . -r-f^ is the circular measure of the angle,

the sine of which can then be obtained from a trigonometrical

table.]

As a numerical example take ^i5=10'8, AN=\'16, FN'=1'Q7.

a then equals 1*96 very approximately.

2. Draw a Cassini's oval, the foci F, F^, and a point F on

the curve being given.

[Take a mean proportional (k) between the focal distances

FF, F^F. h is the constant of the curve. Prob. 154.]

3. Draw a Cassini's oval, the foci F, F^ and a tangent FT
being given.

[Bisect FF^ in C and draw CT perpendicular to FT meeting

it in T. From one of the foci F draw a line meeting CT in Q
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and on CF^ describe a segment of a circle containing an angle

equal to the angle CQF (Prob. 30) and cutting FQ in p. The

locus of p will intersect the given tangent in its point of contact,

and the question reduces to the preceding. The line FQ must be

drawn within certain limiting positions in order that the circle

may meet it in real points.]

4. Draw through a focus i^ of a lemniscate a line which shall

cut the curve at a given angle a.

[Let C be the centre and F^ the second focus. On CF^

describe a segment of a circle containing an angle ^ — a, and

meeting the curve in P. FP will be the required line.]

5. Given the centre C, direction of axis CJ, and a point P,

on a lemniscate, draw the tangent at the point.

[Draw CB perpendicular to CA, and GT (between CB and

CP) making the angle BCT=sing\e AGP. Bisect CP in D and
draw DT perpendicular to GP. T will be a point on the tangent

at P.]

6. Describe a lemniscate with given centre C, given direction

of axis GA, and to cut a given right line at a given angle.

[The direction of a tangent is obviously given. Through G
draw a line parallel to this given direction, and the angle between

this line and GB, perpendicular to CJ, is three times the angle

AGP, where P is the point in which the required tangent

meets the given line.]

7. Describe a lemniscate, with given centre (7, given direction

of axis GA, and to pass through a given point P.

[Draw the tangent and normal at P. Ex. 5. Let the

normal meet GA in G. Bisect the angle GPG by PD meeting

GA in D. Through P draw lines making equal angles with PD
and cutting off equal distances CP, GF^ on GA. (Prob. 19.) F
and Pj are the foci of the required curve.]
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8. a6, a'ah' are two lines at right angles to eacli other and

a!a = ah' = ^ab. ah moves round in the plane of the two lines till

h comes to ¥ and a to a', the centre point c of ah moving always

along ca and a certain point d of ah describing a circular arc

round h'. Determine the position of d and draw the loci of h and

a throughout the motion.

9. A pendulum 5" long vibrates uniformly in an arc of 40**.

A fly starting at the bottom crawls at a uniform speed to the

top, arriving there in the time taken by a forward and backward

swing of the pendulum. Trace the course of the fly.

10. A train is running in a straight line at 10 miles an

hour. The door (30" wide) of one of the carriages is opened

with uniform angular velocity till it stands at right angles to the

direction of motion in J a second and closed again in the same

time. Draw the curve traced out by a point on the edge of the

door. Scale, J = 1 foot (Harmonic Curve).

11. BD is a line If" long. Draw AB, DC perpendicular to

BB and each 2" long, the points A and C being on opposite sides

of BD. Consider these lines as three bars jointed at B and />,

and free to turn in the plane of the paper about the points A and

C as centres. Trace the locus of the centre point of BD.

[The complete locus is a figure of 8, the central portion being

very nearly straight lines.]

12. C is the centre of a circle, A and B are points outside

the circle and in its plane. A double string is wrapped round

the circle and the free loop is led oflf so that one portion passes

round A and the other round B. Shew that any fixed point on

the loop describes an hyperbola as the string is unwound by the

rotation of the circle.

As a particular example take CA = 2", CB = 2", diameter of

circle f", and one position of the tracing point IJ" from A and

2J" from B.



CHAPTER XIII.

SOLUTION OF EQUATIONS.

Graphic methods may be applied to the solution of alge-

braical and trigonometrical equations, and in certain cases the

process is much simpler and more expeditious than the arith-

metical or analytical one. This is particularly the case with

certain statical questions in which a position of equilibrium is

defined by two angles for which two equations are given. " The

equation for either variable which results from eliminating the

other may be one of high degree, the approximate solution of

which by the methods of the Theory of Equations would be very

troublesome. In such cases it is often possible to obtain a

solution sufficiently accurate for practical purposes by construct-

ing curves corresponding to the equations and taking their points

of intersection*."

For example, to find 6 from the equation

c sin (2^ — a)=a sin $ (1),

c, a and a being given constants.

If we trace the curves r = a sin 6,

r = G sin (2^ — a),

then at their points of intersection the equation (1) is satisfied

—

the same origin and initial line being of course taken in tracing

both loci.

* Minchin's Statics, 3rd Edition, p. 49.
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At first a rough tracing only is necessary, the object of this

rough preliminary tracing being merely to find the places in the

neighbourhood of which the curves really intersect. Then devote

very special care to the tracing of the curves in these indicated

neighbourhoods and in these alone. We shall thus get a value

or values of the unknown variable accurate within certain narrow

limits of error due to the draughtsmanship and possibility of

measuring given quantities. This is as exact a solution as the

graphic method pure and simple enables us to obtain, but by

analysis a further step can be taken. We have obtained a near

value (say w) of 6, which does not quite satisfy (1), but cd + 8

does, where S is a small unknown quantity. If we write w + S

for ^ in (1) and then, 8 being very small, put cos 8 = 1, sin 8= 8,

we have

c sin'(2o) - a) + 2c cos (2o) — a) x h — a sin w + o^ cos w x 8,

-J

a sin o) — c sin (2q> — a)

2c cos (2(0 — a) — a cos w

'

so that 8 and therefore w + 8, or a still nearer value of ^, is known.

In general, if we have to solve F{6) ~/(0), i. e. any given

function of ^ = to some other given function, we may trace the

cui-ves r= F(6); T =f (6),

and get an approximate value o> of ^ from their points of inter-

section as above. Then the correction 8 is given by the equation

the dashes denoting the differential coefficients of the original

functions.

Example:—Solve the equation 2^= 5 sin 0.

r= 2^ represents an equiangular spiral, (Prob. 149),

r = 5 sin 6 represents a circle of diameter 5 units, j)assing

through the origin and its centre on line through the origin per-

pendicular to the initial line.
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Let 0) be the circular measure of the angle between the initial

line and the radius drawn from the origin to a point of inter-

section of these curves, then

5 cos (o — 2'^log^2
'

CO will be an approximate solution of the original equation ; and

CO + S a more exact one.

Pkoblem 173. To solve the quadratic equation

x'-2Ax + £'^0 (Fig. 178).

Draw two lines Oa, Ob at right angles to each other, and on

one of them make Oh = B.

With h as centre and A as radius describe an arc cutting Oa

in a, so that Oa — jA^ — B^; and with centre a and radius ab

p.

fr-

Fig.178.

Or a " d^

describe arcs cutting Oa in d and d^. Od and Od^ are lines

representing the two values of x in the above equation. If the

numerical values of the roots are required they must be measured

of course on the same scale which has been used for laying off the

lengths A and B.

If A is numerically less than B the roots become imaginary,

and the graphic method is not applicable.

As a numerical example we may take the equation to deter-

mine the length AK in problem 169.

Here AK is one of the roots of kr^ — 2 + k\cr + c" = 0,

, 2 + Jc c' .
or r'--^c.r + ^=0,
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which is of the above form if ^ = (?^^ and ^ = -^

Suppose h = ^ then A =— and B = '^c,

where c is a given length.

Make Oe in fig. 178 = this given length c.

On 0<x, Oh, take Of=Of^, thenjg^, represents J2 the length

0/ being the unit; make OF on Ob ^ff^.

With centre f^ and radius = 2.0/* describe an arc cutting Oa

in G^ then 06^ represents ^3, the length Of being the unit.

Through e draw a parallel to FG meeting Oh in h.

Since evidently Oh \ Oe w J2 : ^3,

05 = the constant B of the equation.

7c .

With centre 5 and radius = -^ describe an arc cutting Oa in

a, and with centre a and radius ah describe arcs cutting Oa
in d and d^ . Oc?, OtZ^ represent the values of r in the equation,

Oe
and the particular value of AK in Problem 169 is Od = -^.

Problem 174. To solve the quadratic equation

x' + 2Ax + B'=0.

The solution is exactly the same as that of the last problem,

but both roots are negative.

Problem 175. To solve the quadratic equation

x'-2Ax-B' = 0{Yig. 179).

Draw 2 lines Oa, Oh at right angles to each other and on

them make Oa = Aj Oh = B :

then ah = JA'' + B\

With centre a and radius ah describe an arc cutting Oa in d

i

J
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and d^. Od, Od^ represent the roots of the equation, but the

smaller one must be taken with negative sign.

A may be greater or less than B.

b

\
FIg.179.

P-

^\

\^
'd O 'a

1

'd,

Problem 176. To solve the quadratic equation

x'+2Ax-JB' = 0.

The solution is identical with that of the last problem, but

the greater root must be taken with negative sign.

As a numerical example take the equation to determine the

length AL in Problem 169.

T^ + cr—{ —7-
)
= so that A=- and B = —-

,

suppose k = ^. .•. Oh : c -.'. J2 : 1.

Make Oe = c ; bisect Oe in a and make Oa^^ = Oa so that

aa^ :0a:: J2 : 1.

Make OF on Ob = aa^ and through e draw eh parallel to aF

;

then Oh = B.

With centre a and radius ah describe arcs cutting Oa in d
and c?j . Od is the positive root of the equation, and is the length

ALm. curve No. 3 of Problem 169.
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Problem 177. To solve graphically the equation

acose + bsiiie = c (Fig. 180).

Draw 2 lines at right angles to each other as AO, AB. Make
AO=^a and AB — h on any convenient scale. Describe a circle

Fig.180.

round OAB (its centre will of course be at the middle point of

OB) and with centre and radius OD = c describe an arc cutting

it in B, the angle AOB is the required angle 0.

[In the figure a =2*5, 6 = 1-3, c-2'66, the unit being the

length Z and ^ = 47 -S".]

OD c
Proof. cos BOD =

OB ~ OB '

cos (AOD- AOB) = ^^,

cos AOD cos AOB + sin AODsm AOB:

cos AOD ^^^ + sin AOD-^ = -^^,

OB'

.: A0D = 6.

The second point D^ in which the arc described with centre

and radius c would cut the circle gives when c is greater than a a

second solution, the angle AOD^ being the value of 6 in this case.

When c is less than a so that D^ falls between and A the

second solution corresponds to a cos 0—h sin = c.
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Problem 178. A and B are two fixed points and P a variable

point, the position of which is defined hy the angles PAB (= 6) and

PBA [- <fi); draw the locus represented hy the equation

sin $ + sin 4> = <^,

where a is constant. \a may he either positive or negative hut

its numerical value cannot he greater than 2.] (Fig. 181.)

On AB make BG = a . AB, and describe a semi-circle on AB.

Draw a line Ap meeting the semi-circle in p and on BA make

Bh = Bp. With centre A and radius = hC describe an arc cutting

the semi-circle in q, and draw Bq cutting Ap in P. P will be a

point on the required locus. Similarly any number of points can

be determined.

If a is greater than unity, i.e. if BC is greater than AB, the

locus will meet AT, BT^ drawn perpendicular to AB, in points T
and T^ determined by inflecting AR, BE in the semi-circle each

equal to AG and drawing BR, AR^ meeting AT, BT^ in T and T^

respectively. BT, AT^ are tangents to the required locus at T
and T^ . Lines drawn from A to points between R^ and B do not

intersect the locus in real points.

If a is less than unity, i.e. if BG^^ is less than AB, the curve

passes through A and B and the tangents at those points can be

drawn by inflecting BV, AY^ in the semi-circle each equal to BG

.

AY, BY^ are tangents to the required curve. In the figure the

value of a for the upper curve is \ and for the lower |. There
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are similar branches on the other side of AB corresponding to

negfative values of the angles.

Proof.

i.e.

BhiFAB = ^~^, and BmF£A=4^,AB AB

. . . ,
pB + Aq Bb + hC BC

sm d + sin<f>= — „ = tt:— = —,. = a-AB AB AB

Problem 179. To determine values of r and 6 ivhich simul-

taneously satisfy the equations

r^ cos 29 = a^... (1), and r .sin a-0 = b .sin a. . .(2),

vjhere is the angle between the radius vector r and a fixed right

line and a, b and a are constants.

Equation (2) may be written j = ; j^ , so that r and b are
6 sm(a-6^)

evidently sides of a triangle the opposite angles of which are a

(or TT—a) and a-d.

Let OA (fig. 182) be the fixed straight line from which 6 is

measured, the origin. On it make OB = b and through B draw

'I

Flg.l82.
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BP makiug an angle a with the positive direction of the initial

line. BP is the locus represented by (2), for P being any point

on it OP = r and BOP = 6, so that

OP sin OBP sin a

OB Bin BPO sina^

To find points on the second locus. Make OA = a; when 0=0,
r = ± a so that the curve passes through A, andA^ on the other side

of such that OA^ = a would be a second point on the locus.

The curve is symmetrical about OA because negative values of

give the same r as the corresponding positive values. Through

draw any line Op and make the angle ^0^ = twice the angle

AOp. Draw AQ perpendicular to OA meeting OQ in Q, then

cos 2. A Op = ^-^, and .*. if j9 is a point on the curve

0P''%-0A^

or Op' = OA.OQ.

Make Oq on OA = OQ and on Oq describe a semi-circle cutting

AQ in p^ and make Op= 0])^. Similarly any additional number

of points on the curve may be determined, and at the points P
and P^ where the line BP intersects the curve the same values of

6 and r hold for both.

As the angle AOp increases the line OQ will not intersect

AQ within any reasonable distance; the length OQ may however

be determined by bisecting or quadrisecting OA and taking the

intersection of the ordinate through the point of division with

the line corresponding to OQ—the distance of which from will

be the half or quarter of the diameter of the required semi-

circle. The length Or, for example, corresponding to the radius

vector OE is one-fourth the diameter of the semi-circle which

determines r^ on J. ^ and so the length OB,

The only portions of the second locus which it is necessary

to trace, are of course those in the immediate neighbourhood of
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the points where it cuts the line, and a trial or two readily

shews whereabouts the radii Op should be drawn.

The second locus is a rectangular hyperbola with centre

and transverse axis 2a, and if this were recognised from the

equation, the ordinary method of drawing an hyperbola might of

course be adopted.

Problem 180. A and B are two fixed points and P a variable

point, whose position is defined by the angles FAB {- 6) and PBA
(= <^), what locus is represented by the equation

a cot (6— a) + b cot (0 — ^) = c,

where a, b, c, a, jS are constants ?

Equations of which the above is the general form frequently

occur in statical problems, .and therefore a knowledge of what it

represents and how it is liable to modification may be useful

(Fig. 183).

Draw AC, BG making with AB the angles BAC = a and

ABG = p. The required locus is a conic circumscribing the tri-

^1^^^_

;.I83.

.^y^ -1^ o 1

\a ,/P

\ _\iT

r^-

angle ABC, the tangents to which at those points are easily

drawn.

The distance of any point T on the tangent at C from BC : its

distance from AC produced :: 5 sin a : a sin p.
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li Ap on AC=b and pn be drawn perpendicular to AB^

pn^bsiii a,

and if Bq on BC = a and qm be drawn perpendicular to AB,

qm = a sin )8.

T can therefore be determined by drawing parallels to BC and

AC 8it distances =j97i and qm respectively.

The tangent at A divides the exterior angle at A so that the

distance of any point t from AC : distance from

AB : : a : (a cot a+b cot /3 + c) sin a.

The length given by this last term is easily obtained, for if the

angle mAB (fig. 184) = a, and Bm perpendicular to Am = a,

^m = acota, draw Bk parallel to Am and make kBC = (3, and Ck
perpendicular to Bk = 6,

then Bk or mn = b cot jS,

Fig.184.

make nl= c, I being taken on the same side of w as ^ if c is

negative and on the opposite side if c is positive and the length

Al = a cot a+b cot )8 ± c : from I draw Is perpendicular to AB and
Is = Al sin a.

The tangent at A is determined by drawing parallels to AC,
AB respectively at distances a and Is intersecting in t.

Similarly the tangent at B divides the exterior angle at B so

that the distance of any point t^ from BC : its distance from AB
:: b : (a cot a + b cot /3 + c) sin p.

The conic is therefore completely determined.

E. 2.4
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<f>
= m.

If acota + 6cot)8 + c = the tangents at A and B evidently

coincide with the line AB^ and the locus becomes a straight line

through C, identical with the tangent at in the general case.

If a and (3 both equal zero, i. e. if the equation is

a cot + h cot
<f>
= Cj

the locus is a right line, which may be constructed as shewn in

the next problem; for the point C is evidently in this case some-

where on the line AB, and the tangents at A and B again coincide

with the line AB.

•(1).

(2),

Problem 181. To solve the equations

acos6 + bcoB<f> = c

kcot6 + I cot <fi = m
where a, 6, c, k, I, m are constants (Fig. 185).

The second equation represents a right line which may be

Flg.l85.

drawn as follows : Draw any straight line AB and produce it to D

so that AB :BI)::l-k: k, and dr&w DC so that cotCDB =j^ ,

i.e. i£l)E = m, EG = l-k.

[On any line through B make Bd=k, da = l, and draw dD
parallel to Aa. This determines D. Make DE =m and EC per-

pendicular to DE, = aB,
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At any point 'p of the line we have, if 'pAq = ^, 'pBq = 4>,

cot ^ = ~ , cot </) = — ,

pq pq

and we want to shew therefore that

k . Aq + l. Bq = m.pq ••••(«);

.'. (a) may be written k (Aq + Bq) = I {Dq — Bq),

i.e. k.AD = l.BD,

which by construction it does.]

To find points on the locus represented by (1). With the

points A and B as centres describe two circles S and T of radii

- . AB and - . AB respectively. Draw any common ordinate NLQ,

meeting aS' in Z and T in N ] then the lines AL and BN intersect

in a point, P, on the required locus ; for

AQ + QB=AB,

or AL cos 6 + ^iTcos <j> = AB, if BAL is and ABN is
<f>,

r

or - . AB . cob6 + - AB cos d> = AB.
c c

^

which is the given equation.

If the line DC meet the curve in E and B^ the angles BAB,

R^AB are the required values of By and the angles RBA, B^BA

those of <^.

There is a precisely similar loop on the other side of AB.

In the particular case in which a = h the locus is the Magnetic

Curve. (Prob. 168.)

Problem 182. Tofind 6 and cfi/rom the equations

-—7, + -7—- = c...(l), and cos ^ = A;cos<f)., (2),
smc' sm</) ^ ' T

\
'

where a, b, c, k are constants (Fig. 186).
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sin 6 sin </>

= c and cos ^ = A; cos <^.

Take two points A and B sucli that ^^ ^ a + 6; make AO^a,
OB = h and draw OD perpendicular to J.^; with A as centre and

Fig.l86.

c as radius describe a circle, and draw any radius AC meeting

OD in L; inflect BJ^LC (J" being on OD); then P, the point of

intersection oi AG and BJi^ a point on the locus represented by

(1), the angles 6 and <^ being ALO and BJO respectively.

There is a precisely similar loop on the other side of AB.

Again the equation cos ^ = ^ cos
<f>

gives sin PAB = ^ . sin PBA
or PB - h . PA, i.e. P is the vertex of a triangle on a given base

AB and with sides in a given ratio (Problem 17), i.e. the locus

represented by the second equation is a circle whose diameter

QQ^ is the line joining the points which divide AB internally

and externally in the ratio 1 : k; i.e.

AQ : QB :. \ : k ;: AQ, : Q^B.

The values of 6 and <^ which satisfy both equations are those

belonging to the points of intersection of this circle and the

previous curve.
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Examples.

1. Solve the equation = ^ .

X 2

oc

[Trace the loci y = sin x (harmonic curve) and y = - (a straight

line through the origin) : the values of x corresponding to their

points of intersection are solutions.]

2. Solve the equation sin x = ax + b.

[The intersections of the harmonic curve y = sin x and of the

straight line y = ax + h where a and h are constants.]

3. Solve the equation 2=5 sin 6.

[The intersections of the equiangular spiral r = 2 and of the

circle r = 5 sin 0.'\

4. Find 6 and <jS> from the equations

tan ^ = 9*tan^ (1),

a cos ^ = 6 cos <^ + c (2),

where a, b, c and n are given constants.

[The 2nd equation represents a locus identical with (1) of

Problem 181, attention being paid to the usual conventions as to

sign.

The 1st equation represents a right line perpendicular to AB
(fig. 185), the base of this locus, and meeting it in D so that

AD^n.BI).]

5. Find and
<f)
from the equations

I cos 6 +71 cos (fi
= a — m cos a,

I sin^ — Qi sin <^ = m sin a

where I, m, n, a and a are constants.

[Draw two lines AB, AC including an angle a, and make
AB = a and AC = m. With centres B and C and radii == n and I
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respectively describe arcs intersecting in D on the same side of

BC as AB. Let CD meet AB in E. BED is the required value

of 6 and DBE that of </>.]

6. Determine 6 from the equation

a cos A . cos (X + 2^) = c . cos (a + 6)

where a, c, X and a are given constants.

[The locus represented by the right-hand side of the above

equation is a circle of radius c, the origin (0) being the extremity

of a diameter, and the initial line making an angle a therewith.

To draw the locus represented by the left-hand side :—draw a

line through the origin making an angle X with the initial line,

and on it measure a length OL = a. Draw ZiV perpendicular to

the initial line meeting it in iV so that OiV= a cos X. With
centre and radius Oli describe a circle. From any point Q
on this circle draw QM perpendicular to OL meeting it in M.

Draw OF bisecting the angle JVOQ and make OP = OM. P will

be a point on the second locus, and any additional number of

points may be similarly determined. Let the two loci intersect

in Xj and the angle between OX and the initial line is the

required angle 6.']

This equation defines the position of equilibrium of a uniform

rectangular board resting in a vertical plane against two equally

rough pegs in a horizontal line.

THE END.
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