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ABSTRACT
The study of the Bayesian learning dynamics with optimizing agents is facilitated by embedding

the individual decision problems within a standard dynamic programming environment. This may be

accomplished by augmenting the state space to include the set of possible beliefs over a parameter

space representing the set of a priori possible model specifications. But to apply the standard

dynamic programming results on the existence of an optimal policy, it is necessary to establish that

the distribution of the posterior beliefs is a continuous function (in the topology of weak convergence

of probability measures) of the current state variable and chosen action. We develop necessary and

sufficient conditions for the continuity of the posterior distribution map.





1. INTRODUCTION

The study of the Bayesian learning dynamics with optimizing agents is facilitated by embedding

the individual decision problems in a standard dynamic programming environment. As first

demonstrated by Hinderer (1970) and Reider (1975), this may accomplished by augmenting the state

space to include the set of possible beliefs over a parameter space representing the set of a priori

possible specifications. But to apply the standard dynamic programming results on the existence of

an optimal policy as in Blackwell (1965) or Maitra (1968) it is necessary to establish that the

distribution of the next period state variable is a continuous function (in the topology of weak

convergence of probability measures) of the current state variable and chosen action. In the context

of a Bayesian dynamic programming problem this requires that the Bayesian's probability

distribution over next period beliefs vary continuously with her current beliefs and chosen action.

The object of this paper is to find a minimal set of sufficient conditions which yield the requisite

continuity.

There has been considerable recent literature in which agent(s) are modelled as solving Bayesian

dynamic programming problems, including work by Aghion, Bolton, Harris and Julien (1991),

Easley and Kiefer (1988), Easley and Kiefer (1989), Feldman and McLennan (1989), Feldman and

Spagat (1991), Kiefer and Nyarko (1988), Kiefer and Nyarko (1989), McLennan (1984), and

Nyarko (1991). Invariably there is a parameter space 0, an action (or action/state) space X, and an

outcome space Y. Let P(Y), P(0) and /
?2(0) denote respectively the space of probability measures

on Y, and P(Q). Suppose that for parameter € and action x e X, the distribution of

outcomes is 4^0, x) e P(Y) and that the distribution of posterior beliefs for prior jj. e P(Q) is

(p(|i, x) g P2(Q). To attain the requisite continuity of the map 9, a frequent assumption is that with

respect to some reference measure v on Y, 4^0, x) has a Radon-Nikodym derivative f(0, x, •) with

f jointly continuous in 9, x, and y.

Unfortunately, requiring that the map 4* has a representation by a jointiy continuous density f is

highly restrictive. The objective of this paper is to determine minimal conditions on *F which are

sufficient for the continuity of (p. Theorem 3.2, the main technical result of this paper, establishes

that if 0, X and Y are separable metric spaces, then 9 is continuous if 4* is continuous when P(0) is

endowed with the total variation (i.e., norm) topology. Examples are provided to demonstrate that if

4* is merely setwise continuous, then <p may fail to be continuous. However, as discussed in Section

5, modulo some relabelling, there is no intrinsic difficulty if some of the components of the outcome

space are deterministic functions of and x.

The organization of the paper is as follows. Definitions and notational conventions are provided

in Section 2. The assumptions regarding the spaces 0, X, and Y, and a statement of Theorem 3.2

are provided in Section 3, along with counterexamples to the conjecture that setwise convergence
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suffices for the continuity of 9. Section 4 contains needed lemmas which are proved in the

Appendix, and the proof of Theorem 3.2. In Section 5 we conclude with some remarks on

application and interpretation of the results.

2. DEFINITIONS AND NOTATION

The set of real numbers is denoted by R. If A c X, the indicator function of A is Ia- Let (S, d)

be a metric space. The Borel a-field is denoted by B(S), the set of Borel probability measures is

P(S), and the set of Borel measures is M(S). For se S, the Dirac measure 8S e P(S) is defined by

8S(A) = Ia(s) for A e B(S). f: S —> R is a Lipschiti function if for some k < °°, sup— ,,
|

< k.

The Lipschitz seminorm NAIl is defined by HAIl = sup — ., ,
—

. If f is a bounded Lipschitz

function, the bounded Lipschitz norm is IIiIIbl = Hflt + HflLwhere llflL denotes the usual sup norm.

BL(S, d) is the set of all real-valued, bounded Lipschitz functions on (S, d). Endowed with the

bounded Lipschitz norm, BL(S, d) is a Banach space (see e.g. [Dudley, 1989, Section 11.2 #54]).

The dual bounded Lipschitz metric on P(S) y denoted by Ps (or by P is there is no ambiguity), is

defined by Ps(P, Q) = sup { IJf dP - Jf dQI: llfllB L < 1 }, for P, Q e P(X). If S is separable, p s

metrizes the topology of weak convergence on P(X). Further details on the properties of the dual

bounded Lipschitz metric can be found in Dudley (1966) and Dudley (1989). The total variation

norm on M(S), denoted by xs (or by 1), is defined for r\ , y e M(S) by xs (T|
, y) =

sup lT|(A) - y(A)l. The restriction of x$ to P(S) is also denoted by z$. The sequence {|i n }

converges setwise to ji e M(S) if JJ.n(A) -> |i(A) for all A e B(S).

3. STATEMENT OF THEOREM AND INADEQUACY OF SETWISE CONVERGENCE

3.1. Statement of Theorem

Consider a Bayesian decision-maker with prior belief [Iq on a parameter space O who must

choose an action x e X. Given a parameter e and her action x e X, the decision-maker will

observe an outcome y e Y, the realization of a random element with (unknown) law

4^(0, x) e P(Y). We make the following assumptions:

ASSUMPTION 1 : (O, do), (X, dx), and (Y, dy) are separable metric spaces with respective Borel a-

fields £(0), £(X), and B(Y).

ASSUMPTION 2: The mapping x¥: QxX-^ (F(Y), xy) is continuous where xy is the total variation

metric on P(Y).
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Given a prior (J, and action x, the induced probability measure on the outcome space (Y, B(Y)) is

(j)(|l, x) defined by <j)(|i, x)(A) =
J
4^(0, x)(A) n(d0) for A e B(Y). The corresponding probability

on (0 x Y, 5(0) x B(Y)) is d>(|i, x) defined by 0(|i, x)(A x B) = fa (8, x)(B) |i(d0), for

A e 5(0) and B e B(Y). The posterior belief given prior (I, action x, and outcome y is denoted as

T([i, x, y). Dynkin and Yushkevich (1979) establish the joint measurability of T by extending a

standard proof of the existence of a regular version of conditional probability. The formal statement

of their result is:

LEMMA 3.1. There is a measurable function T: P(Q) x X x Y -> P(0) such that for all

(}l, x) g P(Q) x X, T(ji, x, •) is a regular version of <J)(fi, x)(- II B(Y)).

Proof. Follows directly from discussion on p. 263 of Dynkin and Yushkevich (1979).

For given (ji, x) e P(Q) x X and Borel set D c P(Q), the Bayesian's prior probability of

{T(ji, x, y) e D} is <p(|i, x) where the mapping (p: P(Q) x X -> P2(Q) is defined by (p(]Li, x)(D) =

JId(T(|ll, x, y)) <J)(|i, x)(dy). The main technical result of this paper is:

THEOREM 3.2. Endowing P(Q) and P 2 (0) with the topology of weak convergence,

(p: P(0) xX-) P2(Q) is continuous.

Proof. See Section 4.

3.2. CounterExamples To Theorem 2>2 When 4* is Setwise But Not Total-Variation Continuous

CounterExample 1: We first provide an example where *¥ is only setwise continuous in x (and

jointly setwise continuous) and (p is discontinuous. Suppose = {0o, 0i}, X = [0, 1], Y = [0, 1)

and m is Lebesgue measure on (Y, B(Y)). Let 8i denotes the Dirac measure with mass on 0i.

Suppose that *F(0i, 0) = m, and 4^(00, x) = m for all x e X, (So no learning ocurs if x = 0). Let g

be the density function corresponding to m.

We now proceed to specify *F(0i, x) for x > 0. For x e (0, 1], define k(x) = 2-[x_1 ] where [c]

is the largest integer less than or equal to c. For j = 1,2,..., k(x), define the interval Ij(x) = (\F(j -

l,k(x)), jrtv); and for x > 0, define *F(6i, x) as the probability measure with density gx(y) = 2 for y

e Ij(x) when j is even and gx(y) = otherwise. It is well-known that as x —> 0, gx converges weakly

to g in L^Y, B(Y), m). It follows that ¥(0i, •) is continuous at (0i, 0) when P(Y) is endowed

with the topology of setwise convergence.
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We now demonstrate that (p is not continuous. Choose |io such that |io({9o}) = a e (0, 1). Then

r(|K), 0, y) = |io for all y e Y and <p(no, 0) = 5^). But for x > 0, T(|io, x, y) = §i for y e Ij(x) with

j odd. So (p(no, x)({5o}) = 2 and as x ^ 0, and cp((Oo, x) =£> cp(po, 0).

CounterExample 2 : An example is now provided where map 9 —> ^(G, x) is setwise continuous but

M-n => 1^0 does not imply <p(M.n > x) => <P(M-n, x). Let X = {xoh O = [0, 1/2] u { 1 } and Y = [0, 1].

Suppose ¥(0, x ) and ¥(1, xo) are defined by 4'(0, x ) = 8q, *F(1, x )({0}) = 1/2 and *F(1,

xo)({ 1}) = 1/2. For 9 e (0, 1/2], define 4^(9, xo) as having uniform density on [0, 8]. So for any

sequence 9n -» 9o, ^^n, xo) => H^n, xo); in particular, if 9n -> then ^^n, xo) -> §o = ¥(0,

xo).

Now define fio e P^(0) by fio({0}) = |io({ 1 } = 1/2 and consider the sequence of priors {|in }

where |in({ 1 }) = 1/2 and ^({n" 1
}) = 1/2. Observe that <j)(uo, x )({0}) > and r(\iQ, x , 0)({0}) =

2/3, and so r(|io, xo, 0) g {8o, 5i }. But for n > 0, the outcome is completely informative; i.e.,

<|>(lin , xo) a.s. r(|in , xo, y) e {6o, 5i }. So {(p(|in , xo)} doesn't converge to q>(no, xo).

4. PROOF OF THEOREM

4.1. Some Lemmasfor Probability Measures on Metric Spaces

To prove the Theorem, several intermediate results need to be established. The first, LEMMA

4.1, is an approximation theorem for probability measures. LEMMA 4.2 is a sort of converse to

Scheffe's Theorem. LEMMA 4.3, taken from Dudley, 1989 #54], asserts that if fi is a probability

measure on a separable metric space S, then S can be decomposed into a countable collection of

disjoint (i-continuity sets of arbitrarily small diameter.

LEMMA 4.1. Suppose (S, d) is a separable metric space, e > 0, and {Ai, A2, ... } is a disjoint

e
family of Borel subsets of S with u Aj = S and diam Aj < = t for all j. Define B n = Uj^j Aj.

Suppose also that for probability measures |i and r\ on (S, 5(S)) there exists an integer k such that

H(B k ) > 1 - 8 and ?up
k

|(j.(Aj) - T|(Aj)l < 5k- 1
. Then p(|i, T}) < e.

Proof. See Appendix.

LEMMA 4.2. Suppose (S, d) is a metric space and {vj} and {rjj} are sequences of finite Borel

measures on (S, B(S)) such that: (i) Vj -» vo in total variation, (ii) T]j -> T|o in total variation, and (iii)

dn
Tjj « Vj for j = 0, 1, ... . Suppose also that 3 a sequence {fi} of versions of —l which are

dvj

uniformly bounded in L°°(S, £(S), vo) and let f be a version of—. Then fj -> f in L*(S, 5(S), vo)
dv

and in vo measure.

Proof See Appendix.



LEMMA 4.3. For any separable metric space (S, d), e > 0, and P e P(S), there exists a sequence

{ Aj } of disjoint P-continuity sets with u Aj = S and diam Aj < e for all j.

Proof. This is Lemma 11.7.3 of Dudley (1989).

To motivate LEMMA 4.4 suppose that S is a metric space, A e B(S) and |in => \M) e ^(S) with

|io(A) > 0. We can define a sequence of conditional measures i"|k on (S, B(S)) for k = 0, 1,2, ..., by

"HkCQ =
• In general, r\ K doesn't necessarily converge, and if it does converge, the limit

Wc(A)

need not be r|o- But if A is a jio contiinuity set, then% =$ T|n.

LEMMA 4.4. Suppose S is a metric space, |in => po e ^(S), and A is a |io-continuity set with \1q(A)

> 0. For k = 0, 1, ..., define the probability measure % on (S, B(S)) by T)k(C) =
. Then

Wc(A)

Proof Let F c S be closed; it suffices to show that limsup T|k(F) < T|o(F). Since jik => M-0 and

F n cl A is closed, limsup fik(F n cl A) < (i(F n cl A) = |i(F n A), where the equality follows

from A being a jio-continuity set Since |ik(A) -> }i(A) > 0, we have:

r «^^r r ^k(F nclA) w p(F n cl A) [i(Fr>A)
limsup Tik(F) < hmsup F

—
]
< = = Tio(F).

Wc(A) H(A) Ji(A)

Lemmas 4.5 and 4.6 are respectively variants of Scheffe's Theorem [e.g., [Billingsley (1986),

Theorem 16. 11]] and a generalized Dominated Convergence Theorem in Royden (1988, Proposition

11.18). Since I was unable to locate a reference containing needed versions of these theorems, for

completeness proofs are provided.

LEMMA 4.5. Let (S, F, v) be a measure space. Suppose: (i) for all A e F, Xn(A) = ffn (s) v(ds) and

\(A) = Jf(s) v(ds) for densities fn and f, and (ii) for n = 1,2, ..., Xn(S) = ^(S) < <». Then fn —> f in

v measure is a necessary and sufficient condition for is(A,n , X) -> 0.

Proof See Appendix.

LEMMA 4.6. Let (S, F) be a measurable space and {v n } a sequence of measures that converge

setwise to a finite measure v. Suppose {fn } is a sequence of uniformly bounded, real-valued

functions on S with fn -> f in v measure. Then: Jfn (s) vn (ds) -» jf(s) v(ds).

Proof See Appendix.
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4.2. Proof ofTheorem and Auxiliary Results

PROPOSITION 4.7: If A is a |io-continuity set, then the map <j>a: P(&) x X -> (M(Y), xY) defined by

<j)A(j!, x)(B) = <J>(|1, x)(A x B) = [^(e, x)(B) |i(d0) is continuous at (no, x) for all x e X.

Proof See Appendix.

COROLLARY 4.8: Endowing P(Y) with the total variation topology, the map (j): P(Q) xX^ P(Y) is

continuous.

Proof For all |i e P(0), is a |i-continuity set and so §o is total variation continuous at all

(ji, x) e P(0) x X. Since (j)0()J., x) = <})(!-L x), the result follows.

Proof of THEOREM 3.2. Let g: P(0) —> R be a bounded, continuous function. It is necessary to

verify that for any sequence {(|in , xn)} with (in => [Iq and xn —» xq, that Jg((i) (p(M-n> xn )(dfi) —>

Jg(fi) (p(ji , xo)(dji). Since Jg(ji) (p(|in , xn)(d|i) = Jg(r(^n , xn , y)) <t>(^n, xn)(dy) and

Jg(|i) 9(^0, xo)(d^l) = Jg(r(|io, xo, y)) <|)(M.o, xo)(dy), it suffices to demonstrate that for

(fin, xn ) -> (|I0, xo),|g(r(fln , xn , y)) <j)(|in, x n)(dy) -> Jg(r(|io, xo, y)) ({)(M-0> xo)(dy).

£
Suppose (jin , xn) —> (jJ-o, xo) and pick e > 0. Defining 5 = t, by Lemma 4.3 there exists a

disjoint cover Ai, A2, ... of 0, with diam Aj < 5, consisting of |io-continuity sets. Define T(j n and

vn on (Y, B(Y)) by Tij,n(C) = <D(^n , xn)(Aj x C) =
(j)Aj(^ x„)(C) and v„(C) = 0(^n , x„)(0 x C) =

(KM-rii xn)(C). By Proposition 4.7 and Corollary 4.8, rij n —> T|j
?o and v n —> vo in total variation.

dn
Define fj, n as the version of —"- such that fj n (y) = r(fi n , xn , y)(Ai) for all ye Y. Define

dv
J>n

Bm = UjH1

! Aj, and choose k such that: <J)(|io, xo) ({y: r(|io, xo, y)(Bk) > 1 - 5}) > 1 - 5/2.

Defining D = {y: T([iQ, xo, y)(Bk) > 1 - 5}, <|>(Ho. xo)(D) > 1 - 5/2.

We now defme a set En cY such that (3(r(fin , xn , y), Hjio, xo, y)) < e for y e Dn En . Let En

= (y: sup ir(^ , xo, y)(Aj) - r(|in , xn ,
y)(Aj)l < 5-k- 1

}. If y e D n E n , then p(r(|i n , xn , y),
l£j<k

r(|io, xo, y)) < e by Lemma 4.1. By Lemma 4.2, fj,n -> fj,o in vo measure for all j (and in particular

for j < k). So for n sufficiently large, vo(En ) > 1 - 5/2, vo(D n En) > 1 - 5, and vo({y: P(r(jin > xn ,

y), r(no, xo, y)) < e}) > 1 - e.

Define the functions ho: Y -» P(0) and hn : Y -» P(Q) by hn(y) = T(fi.o, xo, y) and hn (y) =

HM-n» xn , y). From the above paragraph and Theorem 9.2.2 of Dudley (1989), hn -> ho in (J)(|io, xo)

probability (when P(Q) is endowed with the topology of weak convergence). Since g is continuous,



g(hn) -> g(ho) in (J)((io, xp) probability. By Corollary 4.8, (j)(u.n , xn) -> (j)(|ip, xo) in total variation

and hence setwise. So by Lemma 4.6:

Jg(hn(y)) <K|in, xn)(dy) -> Jg(ho(y)) <|>(H0, xo)(dy),

or

fg(r(|in , xn , y)) <|>(Hn, xn)(dy) -» Jg(r(|ip, x , y)) <|>(HP, XQ)(dy).

5. SOME REMARKS ON APPLICATIONS

In many dynamic programming problems it is natural for some components of the state space be

deterministic functions of previous actions and state variables. But in such settings, if the set Y in

Assumptions 1 and 2 is identified with the state space, Assumption 2 will not be satisfied and

Theorem 3.2 will not be applicable. Fortunately, such difficulties are easily surmounted in a manner

which will be briefly sketched.

Consider a Bayesian dynamic programming problem with parameter space O, state space S,

action space A and transition map ^: O x S x A —> P(S). The generalized or Bayesian state space is

X = P(Q) x S. With this generalized state space, the Bayesian optimization problem is a conventional

dynamic programming problem. Let £: £ x A —> P(L) be the induced generalized transition map. To

apply standard results on the existence of optimal policies, it is necessary to be able to verify that C, is

continuous.

In many dynamic programming problems, including those alluded to above, the space S will

have a product representation S = Y x Z. Suppose this is the case and let St = (Y t, Zt) represent the

time t state variable with Y
t
and Z

t
respectively taking values in Y and Z. Suppose additionally that

Y t is a sufficient statistic; that is, conditional upon the past state variable action pair (st-i, at-i) and

outcome yt, the distribution of Z t is independent of O. Then all that is required for the distribution of

posterior beliefs to be continuous is that the marginal distribution ^y:0xSxA-> P(Y) defined by

^y(0, s, a)(B) = ^(0, s, a)(B x Z) be continuous when P(Y) is endowed with the total variation

topology. Summarizing, £ will be continuous if t, is continuous and the marginal map ^y is total

variation continuous.

There still remains the issue of determining if ^y is total variation continuous. This task is

simplified if there exists a a-finite measure X on (Y, £(Y)) such that for all (0, s, a) e O x S x A,

5(6, s, a) « X. Then by Lemma 4.6, a necessary and sufficient condition is that for

ra o o \ v ta \ *u . d^y(8n, s n ,
an )

v
d^y(6p, sp, ap) ,

(o n , sn , an ) -> (6p, sp, ap) that -> — in v measure.
dv dv

In particular, suppose Y c Rm , X is Lebesgue measure, and £,y(9, s, a) can be represented by a

density f(y, 8, s, a). Then ^y is total variation continuous if and only (0 n , sn , an ) -> (0p, sp, ap)

implies that f(-,0n , sn , an ) converges in Lebesgue measure to f(-,0p, sp, ap).
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APPENDIX

Proof of LEMMA 4.1. Select f e BL(S, d) with llfllBL ^ 1. It suffices to verify that

I |f(s) |i(ds) - jf(s) rj(ds)l < e. Define an = inf f(s) and bn = sup f(s). Since IIAIbl £ 1, it follows

S S S6An seAn

that: (i) sup { lf(s) - f(t)l: s, t e An } < diam An < 8, (ii) bn - an < 5, and (iii) lan l, lbn l ^ 1.

Since,

Jf(s) Ti(ds) > Jan T|(ds) = Ti(A n )-an > [fi(A n ) - Sir 1
]*,,,

An An

and

ff(s) [i(ds) < |KA n)-b n ,

An
we have

Jf(s) ji(ds) - Jf(s) ri(ds) < ^(An)-bn - tn(An ) - 8-k-i]-an < (n(A„) + k-i)-5.

An An

Similarly, Jf(s) T)(ds) - Jf(s) |l(ds) < (n(An ) + k"l)-5,

An An
SO

I Jf(s)Ti(ds)- Jf(s) ji(ds)l< (n(An) + Jri)-8,

An An

and

I Jf(s) Ti(ds) - Jf(s) ji(ds)l < [\i(Bn) + 1]-S < 2-5.

B n B n

remaining task is to bound I Jf(s) T|(ds) - Jf(s) (i(ds)l.

~R„ ~B n

Hie remaining task is to bound Jf(s) ri(ds) - |f(s) u(ds)l. Observe that

-Bn

Tl(~B n ) = 1 - TKB n ) < 1 - *i(B n ) + 8 < 28.

:e lf(s)l < 1,

I

-B n ~B n ~B n

Combining these results,

I ff(s) Tl(ds) - jf(s)|l(ds)l

I Jf(s) *n(ds)l < 28, I Jf(s) H(ds)l < 5, and I Jf(s) *n(ds) - ff(s) |i(ds)l < 38.

~R„ ~R„ ~R„ ~Bn

<l Jf(s) Ti(ds) - Jf(s) M-(ds)l + I Jf(s) T](ds) - Jf(s) |i(ds)l < 5-8

-R,, ~Bn Bn B n

Proofof LEMMA 4.2. Pick e > 0, let xs denote the total variation metric on P(S), and let II- IU denote

the L°°(S, B(S), vo) norm. Select M > such that llfjIL < M for all j, and choose k such that for n >

e
k, Xs(v n , vo) < and x(*n n , "Ho) < £/4- Since

8-M
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flfn(s) - f(s)l v (ds) < 2-
A
su£

S)
| ffn(s) v (ds) - ff(s) v (ds)l,

and

I ff„(s)v (ds)- ff(s) v (ds)l

< I fffi(s) v (ds) - ffn(s) v„(ds)l + I ff„(s) vn(ds) - ff(s) v (ds)l

< 2-M-XS(v , Vn) + |Tln(A) - T|o(A)l

<2-M-xs(v , v n)+xs(T|n,rio)

<e/2,

we conclude that Jlfn(s) - f(s)l vo(ds) < e. Since e is arbitrary, fn —> f in L*(S, £(S), vo) and hence

in vo measure.

Proof of LEMMA 4.5. To prove sufficiency, suppose fn —> f in v-measure but xs(An , A.) -h 0. Then

3 e > and a subsequence {fnk } with supAeF lAnk
(A) - A,(A)I > e. But since fnk

—> f in v measure, 3

a further subsequence fnk .
—> f v a.e. [see e.g., Theorem 2.5.3 of Ash (1972)]. From the standard

version of Scheffe's Theorem (as in Billingsley (1986)), supAe/7 'Ank
(A) - A(A)I —> 0, contradicting

supAeF lA.nk(A) " A(A)I > e for all k.

To prove necessity, suppose xs(An , A) —> 0. By Theorem 1.1 of Devroye and Gyorfi (1985),

2-supAeF l^n(A) - A(A)I = Jlfn (s) - f(s)l v(ds); and by definition, xs(An , X) = supAeF 'A-n(A) -

A.(A)I. So fn —> f in L^S, F, v) and hence in v measure.

Proof of LEMMA 4.6. We first establish that if fn -» f v-a.e., then Jfn (s) v n (ds) -> Jf(s) v(ds).

Choose K such that lfn(s)l < K for all s. Define E = {s: fn (s) -h f(s)}. Define gn , g: S -> R by gn (s)

= fn(s) for s £ E and g(s) = f(s) for s € E, while gn (s) = g(s) = for s e E. Since gn(s) -> g(s) for

all s e S, by Proposition 11.18 of Royden (1988), Jgn (s) vn (ds) -> fg(s) v(ds). Since v({s: g(s) ±

f(s)}) = 0, ]g(s)v(ds)= Jf(s) v(ds). Furthermore, since flg n (s) - fn (s)l vn (ds) = 0,

and f lgn(s) - f„(s)l Vn(ds) < 2K-vn(~E),

I Jgn(s) vn(ds) - ffn(s) vn (ds)l < + 2K-vn(~E) -» 0.

So,

I ff(s) V(ds) - ffn(s) Vn(ds)l

< I fg(s) v(ds) - fgn(s) vn (ds)l + I Jgn(s) vn (ds) - ffn(s) v„(ds)l -> 0,

-11-



verifying that Jfn (s) v n(ds) —> Jf(s) v(ds) when fn —> f v almost everywhere.

Extending the proof to the case where fn -» f in v measure, now follows the technique used in

the proof of Lemma 6. Suppose that for some e > 0, 3 a subsequence {

f

nk } with

ijfnfc(s) vnk(ds) - Jf(s) v(ds)l > e. But then 3 a subsubsequence fnk .
-» f v a.e.. But by the above

paragraph, I |fnk.(s) vnk.(ds) - Jf(s) v(ds)l -> 0, contradicting ljfnk(s) vnk(ds) - Jf(s) v(ds)l > e.

Proof of PROPOSITION 4.7: Let A be a |io-continuity set, jin =* W), and xn -> xo e X. We must

verify that for B e B(Y), $a(Mu» xn)(B) -> <|>a(H0» xq)(B) uniformly in B. If Ho(A) = 0, then

(j)A(M-n» xn)(B) < fin(A) -> = <|)a(W), xo). So we may restrict attention to |io(A) > 0.

|In(A n B)
For fio(A) > and n sufficiently large, define yn and yo on (0, B(Q)) by yn(B) =-

Hn(A)

and yo(B) =
. By Lemma 4, yn => yo. Let 5n , 5o e P(X) denote respectively the Dirac

Mo(A)

measures with mass at xn and xo. Define the probability measures T| n , r|o on (0 x X, B(Q) x B(X))

by T| n(B x C) =
MAn B )

.yn(C) and Tlo(B xC) =
^°(A - B)

-yo(C). By Theorem 4.4 of

IVA) fio(A)

Billingsley [1968], r\ n =* t\q.

For B e £(Y), define ^b: x X -> R by *F B (6, x) = *F(0, x)(B), and note that

J^B(e,x)T] n (d(e, x)) = <j>A(Hn, x„)(B) and J^ B (e,x)r|o(d(0, x)) = <j)A (ji , xo)(B). A direct

consequence of Assumption 2 is the equicontinuity of the family of functions {^b- B e B(Y)}.

Since {^b: B e B(Y)} are equicontinuous and T| n => T|o, by Exercise 8, p. 17 of Billingsley [1968],

4>A(Hn, xn)(B) = JVB (0, x) r| n (d(9, x)) -» J^B (6, x) TKd(9, x)) = <j>A (|io, x )(B) uniformly in

B.

-12-
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