WEAD
Contributions to the History of Musical Scales
\square

SMITHSONIAN INSTITUTION.

UNITED STATES NATIONAL MUSEUM.

2 CONTRIBUTIONS TO THE HISTORY OF MUSICAL SCALES.

BY

CHARLES KASSON WEAD,

Facteminer, U. S. Patent Ogice.

From the Report of the United States National Museum for 1900, pages 417-46\%, with ten plates.

WASHINGTON:
goternment printing office.
1902.

SMITHSONIAN INSTITUTION.

UNITED STATES NATIONAL MUSEUM.

, CONTRIBUTIONS TO THE HISTORY OF MUSICAL SCALES.

BY

CLLARLES KASSON WEAD,

Examiner, U. 太. Patent Ogice.

From the Report of the United States National Museum for 1900, pages 417-46: , with ten plates.

W ASHINGTON:
GOVERNMENT PRINTING OFFICE.
1902.

CONTRIBUTIONS TO THE HISTORY OF VIUSICAL SCALES.

HY

CHARLES KASSON WEAD, E.raminar, l. S. I'utent O!fice.

TABLE OF CONTENTS.

Page
I. Introduction 421
II. Stringed instrmments 424
III. Instruments of the flute type 426
IV. Instruments of the resonator type 428
V. The influence of the hame 433
VI. Composite instrmments 436
VII. Conclusions 437
Appendix 441
LIST OF ILLUSTRATIONS.
PLATES.
Facing page.
444

1. Stringed instruments
446
446
2. Flutes with equal-spaced holes
3. Flutes with equal-spaced holes
448
448
4. Flutes with equal-spaced holes
5. Flutes with equal-spaced holes
450
450
t. Flutes with equal-spaced holes
t. Flutes with equal-spaced holes
452
452
6. Flutes with holes in two groups
7. Flutes with holes in two groups
454
454
8. Flutes with holes in two groups
9. Flutes with holes in two groups
456
456
10. Composite instruments 458
11. Pan's pipes. 460
12. Scales given by resonators 462
TENT FIGURES.
13. Enropean mandolin, after Viollet le Duc Page.
14. Greek guitar, after Drieberg 424
15. Terra cotta whistle, after Mahillon 430
16. Babylonian whistle, after Engel 431
17. Chinese resonators, after Amiot 431
18. Globular whistles, after Frobenius 432
19. Globular whistle, atter Kraus 432
S. Nylophones, after Kraus 436

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

CONTRIBUTIONS TO THE HISTORY OF MUSICAL SCALES.

By Charles Kasson Wean, Eraminer, United States Patent Office.

I. INTRODUCTION.

In the development of musical scales four stages may be recognized:

1. The stage of primitive musie, where there is no more indication of a scale than in the sounds of birds, animals. or of nature. Students of the origin of music may give free rein to their faney in this period, and the uncertain musical utterances of living primitive peoples may be construed in accordance with almost any prepossession of the hearer.
2. The stage of instruments mechanically capable of furnishing a scale. This stage has been almost entirely orerlooked by students and is the special subject of the following paper.
3. The stage of theoretical melodic scales-Greek, Arab, Chinese, Hindu, Mediæval, etc. All the original treatises concerning these scales imply that a stage of development has been reached far in adrance of the second. Thousands of pages have been written on this stage. largely polemical and lacking in insight. for the subject has been a dark one; but Ellis and Hipkins's work of 1855 has thrown a flood of light on it.
t. The stage of the modern harmonic scale and its descendent, the equally tempered scale, which are alike dependent both on a theory and on the possibility of embodying it in instruments. The relation of this scale to the present study will be noticed later.

These four stages, of course, overlap even in the same locality; they correspond in a rough way to the recognized four culture stages, namely: the savage, barbarons, civilized, and enlightened.

At the outset it should be recognized that the only working hypothesis the physicist can use is that of the instrumental origin of scales. Helmholtz's riew that the harmonics in the voice and in the tones of instruments were influential in settling the positions of the notes of our scale is obrionsly consistent with this hypothesis: and his opinion that this influence acted on other scales need not be wholly rejected, though some of his historical authorities were untrustworthy, and
some of his roincidences between other sates and the hamonic scale "an berexplained in other and simpler ways. Writers less aneful than Helmholtz have made the assumption that these harmonice and the ronstitution of the ear must have guided primitive musicians to a substantially harmonic sable: and one writer has even maintained that instruments cormped the taste of men. But as yet there has been no suhb body of facts collected in support of this assimption as need delay one following out the other theory. Of course the knowledge of the scales is only a stepping-stone to the molerstanding of the masic and something of the life of a people: so some day the materials worked into shape by the physicist may be built into a fairer structure by the peycholugist.

The hroad fact which underles all study of sates was recognized by thu (ireek musician Aristoxenus three centuries before the Christian era. Ite pointed out that the voice, in speaking, whanges its pitch by insensible gradations. while in singing it moves mostly by leaps. We recognize the same fact when we say that a singer follows a serle but do not saty it of a speaker. The one, to use the common figure, ascends or deseends a ladder or stairease: the other follows a contimuons slope, and may norer step twice in the sime place. Now, it is quite possible that in a song the roice may alwars move by leaps. and in repeating the song always take the same leapes as elosely as am be observed, yet never strike a mote which it has struck hefore: just as one may toss a stome up and down on a hillside, marking each time where it lands, and after a hundred tosses finds it had not landed twiee at quite the same level. or in striding up and down hill may never plant his foot twiee at the same level. I think this was the chanacter of the songs of the first stage and of much primitive song to-diay, though the evidenee is too scanty to be eonclusive.

Howerer this matye. it is eortain that most peoples who have attatined any moderate degree of civilization have attempted to limit the mamber of steps to be taken ly the voice in any song between the highest and lowest note, amd to fix these stepes by rules. so that many men maty learn them and he in substantial agreement. Various old writers grive the rules in fogue among (areek theorists; in the last century Amiot deseribed the Chinese rules. while in the last two decades the rules of Apald, Hindu, Japanese, and siamese musicians have been made acessible. The most familiar rules as is well known, depend on that law of vibrating strings which is followed bey a volinist in his tingering mancly. that the freguency of vibation of pats of any -tretehed string is imersely the tength of the parts, provided the temsion does mot changer Our latest rule historically derived from one of the many (ireck and Arab rules hy sublividing the whole tones,
 or mandolin: here it is obvious that the sumersive stopping peonts as
marked by frets get closer and closer fogether the the pitch rises. All musicians know that this number of notes, twelfe, is found confusingly great for ordinary playing, and know the principles by which the player selects certain notes for any tume. But this multiplicity of notes has an important bearing on all studies on nonharmonif music made by harmonic musieians. For every sound within the compass of the instrument eomes very near to some one of the twelre notes and may readily be represented thereby, owing to the diftiontty the hearer has in estimating deviations from the familiar series and in noting them down. The results of this approximation are to mask all deviations from the twelve-tone piano scale, whether intentionally or acreidentally made, and to make it appent to musicians, first, that nearly all the music of the world is performed substantially in our scale: and second, that any other theoretical scales, such as those found among Orientals, or described by our European ancestors, are merely mathematical jugglery and of as little significance as proposals for a change that occasionally appear in modern musical or scientific journals.

It is the purpose of this paper first to deseribe sereral trpes and forms of instruments widely used, eath embodying a principle of sale building distinctly mbe ours, though sometimes giving at result that seems surprisingly familiar. Nearly all these instruments, it will be noted, belong to what was called above the second or harbarous stage. though a few of them come from comntries where musicians have reached the third and fourth stages. A second purpose is to present a new and generic prineiple of primitive scale-building applicable to the various types of instruments discussed.

But before going further it must be recognized that the word "seale" has many meanings. Perhapes the lowest and loosest is-the series of sounds used in any musical performance arranged in order of pitch. The one that will most closely fit the present needs is - the serics of sounds produced upon a particular mstrment: while the most exact definition, but one applicable only where musical principles are well dereloped is this:

A werle is an independently reproclucible serties af semmens aromenged in ordor "f pitch. recougnized us a stamdurel amd fitted fion immaical purposes.

While the last two definitions imply an instrment in which the scales are embodied, the limitation is in appearance only. for there is no evidence that any musicians do have a standard series of tones. unless they have one or more instruments embodying it. and have learned the series directly or indirectly from such an instrument.

II. STRINGED INSTRUMENTS.

In shatr" (amtrast to that widely used division of a string which we know on the gruitar. showing decreasing distances between the frets as the pitch rises, we find many instances of a miform spacing of the fiets throngh a considerable distance. Instanees from four countries may here be cited:

1. The well-known arehitert, Viollet-le-Duc.' gives a figure (fig. 1) of a mandolin from the end of the sixteenth century which shows frets for the first seren semitones pretty uniformly

Fig. 1.
EUROPEAN MANDOLIN. After Vinllet-le-Duc. - F ared; the frets for the next five to complete the octave are again uniform, thongh closer than before and the following five are also uniformly -paced and still closer. Figures in other books ${ }^{2}$ of European lutes, viols, ete., very often show a similar equal spacing. These are too mumerous to be lightly treated as artists' hunders. Two instruments in the Chited States National Museum are illustrated in Plate 1.
\therefore Among the Greck rules given by Ptolemy is one for the division called Diatonom homertom, in which the whole string being twelve units long the points for stopping would be at 11. 10. 3, and S, giving (, a notw between D_{b} and $\mathrm{D}, \mathrm{E}, \mathrm{F}$, and G. Here it will be noticed the intervalsget larger and harger as the pitch rises. Again, Carl Engel ${ }^{3}$ refers to Drieberg's drawing of the atrient Greek gutar in the Berlin Musemm, which has" seren frets at equal distances," but objects to it ats it does not give a diatonie scale. The tracing of this drawing furnished by Professor Howade of Ilarvard, adds to Engel's data the fact that the whole compats of the six

FHg. 2. GREEK GI'ITAR. After Drieherg. intervals is slightly more than an octare (fig. -2).
3. Among the instrments described in the Arabie treatise of the

[^0]famons Al Farathi. ${ }^{1}$ who died !50 A. I)., is the short-necked fonlomer of Bagdad, usually having two strings: on this a firet was first placed at one-eighth the length of the string from the upper end. and this space then divided into tire equal parts. As the compatis on each string was but little orer a whole tone. each strp was about a quarter-tone. These ligatures or frets are called " heathen "or " pagan," and the tuncs played on them "heathen airs." clearly indicating that there was a scale native to the people whom the Moh:mmedan armies had conquered, a scale utterly different from either that of the lute or the tanbour of Khorassan, with their resemblances to Greek scales. Three hundred years later, or about 1250 A . D.. Sati-ed-din, ${ }^{2}$ a famons musician of Bagdad, wrote for his pupil, the son of the Vizier. a Treatise on Musical Ratios. He based them on string lengeths, and in disenssing instruments gives a figure of the frets on the neck of the lute, and it is noteworthy that these are equally spaced over a distance of a quarter length of the string. Further, he explains how of the ten frets in this short distance, located by various rules, five were fixed by arithmetical bisection or halving of the space between two frets already fixed: one of these, midway between what we should call D and E. if the open string gives C. was called the "Persian middle," and was very much in use in his time. Safi-ed-din ${ }^{3}$ further describes, in two connections, a division of the Fourth, like the Greek one already quoted, where the string lengths are $12,11.10,9$, saying it is consonant and much used; in fact it is preferred to one that is substantially like the theoretical diatonic scale: still it should be added that when he comes to arrange intervals to make up two octaves he puts our arrangement along with the most agreeable half dozen genera.
4. In India there has been in modern times a curious reversion from an elaborate historical scale of twenty-two steps to the octave, of which no modern Hindu or European knows the theory, to an equal linear division; ${ }^{*}$ one-half of the string on the sitar is hisected; the first or end quarter-length is then divided into nine parts. each marked by a fret, and the second quarter-length into thirteen parts similarly marked. Ont of the twentr-three tones within the octave the player selects a limited number, five, six, or seven, rarely eight, for any particular tune. Most of the notes used are found on calculation to be deceptively close to the notes of our chromatic scale, and so may be easily confounded with them hy European hearers.
5. This arithmetical division has been advocated by European

[^1]
 athor refor to wher- who matatained similar views.

11. INSTRUMENTS OF THE FLUTE TYPE.

The - imple thate ane instruments of at type mone primitive and more widely diatributed than fretted stringed instrmments. These instru-

 whislo monthpiece like the flageolet: or blown with at weak reed, as the where For the purporse of this disenssion the mode of exeiting the vihation is immaterial. All of them emboty the law that the frepurne? of vibation of a colum of atir in a tube depends manly on its lemeth, and the variation in lemeth of the air collum so as to produce arratal sumbls from one futhe is produced by opening holes in the -ide wif the tube. In pratioe these holes nerer can open so freely to the ont-ide aif that the pertion of the tube beyond them may be considered an romowed the possibility or neressity of cross-fingering proses this to the phayer). so the proper location and diameter of the holes to produee the notes of our seale of even quality are fixed. not her a simple law an the fretson the gutar are located. but hy laborions "xprommenting to get a standard instrment which is then reproduced with ('himes fidelity.

Now, as ome look ower a collection of wind instroments, like the -phendid one in the L'. S. National Musemm, or examines flutes figured ith berk-. it will be easy to recognize that there are two principal (ypen (A) thens having the holes spaced at semsibly equal distances, and (B) thon having two groups each of three equally spated holes, the interal betwern the wearest holes of the two groups being obviouly ermater tham that between the holes of each group. As the common primitise mothod of making the holes is by burning, the hols ane ornerally mone unform in diameter than those on European

Illatrations of thates of type a are found in Engel's Masical In-trment- amme wh which are copied on Plate 2. Dr. Wikon's
 humb Hut- fom Conta Rian and british (imiama of pottery llutes from Mexien and the \%unii Indians, ul tubes with a simple reed from Egypt and Pabstime of woden llutes homght from Thibet hy Mr. Rockhill,
 -tarhorn that from the - *one age with threre equidistant holes. refersed

[^2]to by Wilson (p. 526). So far as is known not one of the peoples from whom these instruments have come has any musical theory, but some of them do have a principle of instrment construction; for a partly educated young Kiowa Indian, in Washington a few years ago, in a party under charge of Mr. James Mooney, showed the writer how the holes on a flute on which he played were located by measuring three finger-breadths from the lower end to the lower hole, and then taking shorter but equal spaces for the succeeding holes. The interpreter added that he had seen the holes spaced by cutting a short stick as a measure. The late Mr. F. H. Cushing has furnished the additional fact that measmement by finger-breadths is rery common among Indians: and Dr. Fewkes ${ }^{1}$ gives a figure to show how the prayer sticks, used by the Hopi Indians in the Snake ceremonials at Walpi, are measured off into seven parts by the distances from creases on the hand to the tip of the finger. On the Kiowa flute (Plate 4 , No. 2) the distance between the centers of the holes is 32 mm ., which is two medium finger-hreadth:. Some instruments of this type belonging to the U. S. National Museum are shown in Plates 3 and 4.

But it is not only among primitive and prehistoric peoples that such a succession of holes is found. The common military fife has it. The hagpiper recently seen on the streets of Washington used a channter (oboe), the holes of which were at sensibly equal distances, so conforming to the well-known fact that the bagpipe seale is intentionally unlike the harp seale. A Japanese Fonye with 7 holes figured in the catalogue of the Kraus collection at Florence shows to the eye holes at nearly equal spaces, and has, as reported, the steps of the scale increasing in length as the pitch rises. From Egypt ${ }^{2}$ there have come twenty-five 3 - and t-hole ancient flutes, or more exactly, oboes, and a few of 5,6 , and more holes. One of the t-holed instruments from a tomb of about 1100 B . C. shows the holes 35 mm . apart and the lowest hole twice this distance from the bottom. Villotean's ${ }^{3}$ plates of modern Egyptian instruments show various types of tubes with equally spaced holes.

Flutes of the second or B type with two groups of equal-spaced holes were sold in quantities at the Java village at the World's Fair held in Chicago in 1893 (Plate 6, No. 1). No two of the instruments seemed to have the same length or location of holes, but this grouping was ummistakable. Of this type is also a curious ancient Chinese instrument, the Tche, described by Amiot. ${ }^{4}$ closed at both ends with

[^3]an cmbonethere at the middle and boles symmetrically plated on eath -ide disiding the whole lometh into thirds, ghaters, and sixthe: so. if the whole lengeth is ealled 12 . the month hole is at 18 and the finger holen at $\because .8 .2$. s. 5 and 10 . Mahillon copied the instrmment, but did
 Mont of tho ohd European wood wind iastrmments figured hy Pratorims ${ }^{1}$ (fila) ate eonspicuously of this type, ats the appented Plate 5 -how- whthont neressity of deseription, and rarions similar instru-ment- of the Masemm colleretions are figured in Plate fis

IV. INSTRUMENTS OF THE RESONATOR TYPE.

1. 'The mext group indudes a raniety of instruments of the resomator tye a tye that is widely distributed and conforms to a law hitherto umbergized as (alpable of furnishing a seale: though Sondhams in 14.anstated the ka and tried afew rough experiments. The mathematicians ${ }^{2}$ have proved that a mass of air in a contined space with a tery -mall marly circular opening. as a short-mecked bottle or a whistle, hats a frequency of vibation propertional to the syatere root of the fraction which expressen the diameter of the hole divided by the volume of the cavity; and if there are two such openings so placed that the How of air through one does not interfere with that through the other, the numerator of the fraction will be the sum of the two diameters. Now ratend the same principle, and one may have a series of sounds rising in pitch as one after amother of several holes in the wall is opened; and provided the character of the ribration is not cssentially changed, the frequeney of vihation of these notes will increase as the separe root of the sum of the diameters of the holes opened. Suppose, for rexample, that a resel has one mouth-hole of diameter 2 and sereral properly pared tinger-holes of diander 1: then on suceessively opening then a sata may be produced having vibution frequencies in the rationf the - guare roots of 2. 3. 4 . 5. ete. A moment's comsideration will -how that in such a soalde the intervals between suceessive somets berome lese and leos as the piteh rises, instead of beroming greater as in the "and with strings of flutes where the spating of frets or holes is uniform.

The mond daborate amd heantiful illustrations of instruments of this
 The Initedstates dational Musemm hat many whistles from (hirigui in ('uhmbiat, mos of them giving lut a single high note: these differ -uh-tant ially. it will her noticed, from stopped organ pipes, since in the latter the month extends the full width of the tube. Whistles with

[^4]bearing the catalogue number 5ason (llate 7 . lig. 1) has served as the type specimen, and is the instrument which led to this investigation. It has a globular body with bird's head, a monthpiece about in the position of a bird's tail, and four finger-holes on the back symmetrically placed; these holes seem to be precisely equal in diameter, and equivalent in musical effect, so the order of fingering is a matter of indifference, and all the tones are clear and distinct; in Dr. Wilson's paper, ${ }^{1}$ Mr. Upham, who is a violinist, notes them as F, A, C. D, E. On measurement the volume was found to be 36.0 ce ., the equivalent diameter of the trapezoidal mouth hole 1 cm.. and the diameter of the finger holes. 65 em . : these diameters, however, need a correction on account of the thickness of the walls, since the air can not pass freely through the rather thick wall. The final result of the calculation is to give, with all finger-holes closed, the note F on the highest line of the treble staff, to within half a semitone, and on opening the fingerholes in any order to give the succession of intervals 4, 3, 2, and 2 equal semitones. with a mean error of only one-eighth E. S. According to the theory the series of intervals depends only on the ratio between the diameters of the holes and the month hole, in this case 1 to 1.62 ; so the series of tones has vibration frequencies approximately as the square roots of $1.6,2.6,3.6,4.6,5.6$, or of $1,1.62,2.24,2.86$, 3.45 ; but the piteh of all depends on the quotient of the radius of the month-hole by the volume. Although the theoretical correction for thickness of wall can not be quite precise, it affects all the holes to nearly the same extent, and the greatest probable error that can be assumed will not change the whole compass more than half a semitone; so the calculated scale would still be substantially what the ear con-firms-F, A, (1, D, E, or in syllables du, mi, sol, la, si.

The Musemm has several other Costa Rican instruments also of pottery quite similar in appearance to this, but not capable of giving such clear tones, or quite so perfect in the equality of the holes. If the holes are unequal in diameter, in thickness of wall, or in loca tion with reference to the ribrating mass of air, the order of piteh will depend on which holes are opened instead of merely on how many; with five holes sixteen combinations are possible: but of the eleren instruments in the Museum eight give only five notes each, two give seren notes, and one gives nine notes. If the finger-holes are small relatively to the month hole, the compass is small, so one high-pitehed whistle has a compass of only six semitones- G to $\mathrm{C}=$ and another rums from B to E: three have a compass of seven E. S., that is, a musical fifth, and two each have, respectively, eight, nine, and eleven semitones.

Still other National Museum instruments. similar in prineiple, but ruder in workmanship and more grotesque in form, have come from Chiriqui, Columbia, and are figured in Dr. Wilson's report, pages 628

[^5]tol difi, In other manoums similar instrmanente ate to be found. A fon from (hirigui were briefly deseribed forty years ago as belonging to the American Ethologeval society. ${ }^{1}$

In the Smmic:an Musom of Natural Mistory in New York, as mported hey Prof. Fi. W. I'umam, half a dozen such three- and fourhole whisthe from the rewion of Santa Marta, Colombia, are to be -0, while under his chatere at (ambridge Mass., there are a nmmber from the L'loat Valley. ('ental Americat: of those figured, there have thres linger-holes and are sad to gito five notes each.

In the Brusols (omservatory Collection ${ }^{3}$ there are twenty-five tera cotta instrument from Mexions two of them are clearly of this resonator type, giving five notes and having a compass. respectively, of eight and elopen E. S. (fig. ?). Lastly, a similar

Fig. 3.
TERKA COTSA WHIMTLEF. After Mahiloon. instrument deseribed and figured by Dr. Walter Hongh, in the Roport on the Columbian Historical Exposition at Madrid. 1s $42-1893$, has the small compase of six E.s. The point should again be emphasizad that with these instruments the notes get eloser and closer together as the piteh rises; for instance. on the type instrument the successive intervals are in whole numberst, 3, 2. コ. E.S. : on the Brusisels instive ments. $3,2,2,1$ and $+3.2,2$, on the Madrid peremmen. 2. 2, 1. 1. A chart (Plate 10) will show more acourately what the fom intervals are with any peecitiond batio of holes. and whether there js apprectable aron in expressing the interval in whole numbers. Of conser the calculations assume miformity in the howing, for it is casy for the performer to rary the notes by a considerable amomot. Still, it is a surprise to find how well these simple salabsatisfy the eatr.

A sort of stome thageolet from Costa Riea appears to be connected with theore instruments in primejple (Plate 7 . fig. 8). This is elosed a.t ome sud and has a small mouth opminge and four finger-holes armaged in paim: its satale of seron notes from tive holes proves that the hohes ate mot anometically equivalent. hat the two of each pair are fomed to he neaty opnivalent: so on trial it appears that the spuare fond formula may be appled. ly giving to the month-hole the value 5 . 10 and of the nearer holes the value lame to the other holes the value 2: then the wihation frequeneries will be as the square reots of the nmman is © 11 . The calculated intervals fom the lowest note are
 li. :and $\overline{\text { r }}$ 1.. S.

[^6]2. A pottery whistle fomed in the ruins of Bathylon, dating probably from about 5ou B. C., is in the Musemm of the Royal Asiatic Society, London ${ }^{1}$ (fig. 4). Rowhotham ${ }^{2}$ says this is similar to the reindeer joint used by the cave men. Its extreme length is $: 3$ inches and it has two finger holes. The three notes are stated to be C (of 525 d. r.), E , and G : but the holes not being quite equal, the E from one of them is a quarter of a tone flat. By blowing hard the (a can be carried up to A. The chart (Plate 10) shows that if the interval $\mathrm{C}-\mathrm{G}$ is exact, with equal holes the intermediate note E will be a very little sharp of the piano note, but the difference is only about 1 per cent, one-fifth of a semitone, and so is utterly negligible in notes of such uncertain intonation.
3. Striking comparisons have sometimes been made, and expecially by the late Prof. Terrien de la Couperie, between the Assyrian and early Chinese civilizations. Whatever their relations may hare been, it is curions that the only instrument of the resonator type. haring several tinger holes and coming

Fig. 4. babybunian whistle After Engel. from a people who had a masical theory, is the IIsüan (Van Aalst) ${ }^{3}$ or Himen (Amiot) ${ }^{4}$ of the Chinese. said to have been invented some 2.700 yeurs before our cra, and still used in the Confucian eeremonies. though very rately seen. It is described as a hollow cone of baked clay about $3 \frac{1}{2}$ inches high. having a mouth-hole at the top, three equal finger-holes on one side, and two equal holes on the other. The descriptions available

Fig. 5.
CHINESE RESONATORS.
After Amiot. are inconsistent and incomplete, but that given by Amiot a century ago is the fullest. He reports the saale as re, fu, sol. In. do, re. and as he gives a cut (fig. 5), also the diameters of holes and the external measures, an approximate calculation can be made of the scale by the laws of resonators. 'The pitch of the fundamental comes ont D above middle C, , and the other notes, F, G. and A, for one side; theu starting anew for the other side we get C and D, all within a quarter of a semitone. This. it will be noticed, is a five-

[^7] betwon the mathematioal theory and oharration is strikingly close．
t．All the cana thus far refermed to haw heen of prehistoric or very ancont instruments．But some curions litth instruments of this type ate ligumed he Frobenime＂（tig．（i）ats＂a splendid parallel between the culture＂of some Wrest Afrian tribes and the matives of New Pom－

Fis． 1.
 Alter frolnemias． Mamia．These are little whistles made out of ！gurds（a，h，d）or pottery（c）．Ther have the month－hole and two，three．or four finger－ hotes．Nodimmsions ato given．Krans．of Florenor，figures and deseribes a similar instrument from Melanesia made of atgourd fi（cm．in diametor，having three finger－holes －low to the month－hole（fig．$\overline{\text { I }}$ ）．The seale is stated to be A，B，（ $=, ~ \mathrm{E}, \mathrm{F}$ ，but no further masuresare given．However，this series is ansily obtained byassuming the diameter of the month－hole to be 1.0 ，of one hold 0.8 ，and of the others 1.6 ；apparently $\mathrm{D}=$ is omitted． Inthe Fönch Coblectom in the American Musemm of Natural History． in Now Vork（＇ity，there are several similar gourds of different sizes having throw linger－hopes．Thoy are hatheded＂Bläsekngeln，＂＂used が womm．。
\therefore In burope there hav hem many instrments depending on the －atme gemeral primeiple of resonance in a neatly chosed cavity（in dis－ tinction from the open or（lowed organ－pipe principle）． hut mot conforming to the simple law already set forth．Pratorins ${ }^{3}$ in his famoms book of 1618 gives tigures and descriptions of sereral such instrmments． along with the recorlem，fluten，violins．ete．，that one reale of mome frepuently；for instane he says the lagotti ate sometimes cloned at the extreme end，hut have a vide hole：the（＇ormamse has the end closed and holw in the with．Busides these hedeseribes varions in－

Fig． 7.
（：1，）BT－．．AR WHISTLE． Alter Krans． － 1 moment－having－（opped bedias on reeds－the rankett． luar pipu－etc．．．and similar forms on the organ．These things have all grone out of arbalong with the othor delicate and weak－toned instru－ ment－of their timm．＇To－lay masidens demand tones more powerful mal richer in hammins than instrumbento of this type can give．But
 of Hif contury，Which is told of in Gomess Dictionary of Music．A

[^8]flageolet 2 inches long and having only three holes. By partially or wholly closing the end of the tube with his hand he made nee of the resonator principle to lower the pitch of his notes; so he obtained a compass of more than two octaves. The instrument is similar to Pratoriuss schercigel ${ }^{1}$ except that it is shorter, and the accuracy of the notes performed would depend almost wholly on the performer: Later a traveling troupe appeared in European citics with seven instruments called ocarinas. These are familiar to us, being on sale everywhere. They are properly resonators, but the holes are more numerous than in the instruments already considered and vary widely in size. The scale, which the instruments furnish with more or less precision, is not dependent on any simple principle, but is adjusted by the maker by varying the sizes of the holes so as to conform to a scale fixed on other instruments.

V. THE INFLUENCE OF THE HAND.

All the instruments of the three groups now disensed are "fingered:" that is, the acoustical dimensions of the vibrating string or mass of air are varied as the player manipulates the fingers of one or both hands. These instruments therefore involve a feature not associated with drums and othereinstruments of pereussion, or with primitive harps. Instead of using the hand as a whole, the more delicate fingers are utilized separately: so the simple instrument becomes in a peenliar sense a part of the player's means of self-expression and is specially responsive to his own moods. as many legends of the power of music testify. But leaving to the musical writers such eomparisons between instruments, it is important to the physicist to recognize that the dimensions of the human hand have fixed absolutely some dimensions of these instruments.

The first thing to strike one, considering the hand from this point of view, is the fact that only with difficulty can the five digits be brought into line. so the thumb is not used ou primitive instruments for fingering, so far as observed. In the more highly developed flutes there may be a hole for it on the back side, while on our own flutes, clarinets, etc., it governs one or more kers. Similarly, the little finger does not readily fall in line with the three longer ones, and, besides, is much weaker. The remaining three fingers on a hand of medium size can be bronght into a space of about 1 cm ., or spread to span perhaps 12 cm . (5 iuches). To fix ones ideas hefore comparing these limits with measures on some actual instruments, it will be convenient to recall that on piano keyboards the distance between key-centers an octare apart is 165 mm . ($6 \frac{1}{2}$ inches), the same as on a spinet of 1602 ; but on the physiologieally designed Janko keyhoard, with the octare distance

[^9] fifth, becanor the fingers are not fored into line.

Wammining first some string instruments, it is found that on a guitar
 ranere from :3:3 to $1+$ mm. The greatest distanere noticed between frets is on the large siamese hime (Imppere (No. 27 $\mathrm{S}_{3} 10$, U.S.N.M.). where there ate three apaces respectively of 71 , 78 , and 76 mm . A similar instrument examined at the Worlds Fair held in Chicago had
 the first frets were, meseetively, sis and tot) mm. The smallest distame whered betwen frets is the abowereited 14 mm., except that the syrian lute, Bizu!! (No. S514t, U.S.N.M.). has two spaces of 12 and $1: 3 \mathrm{~mm}$. On most instrments the frets ease when the limit
 for fretted instrments are not of much importance unless one can know that the hand was not shifted fiem one fiet to another.
W'ithour instruments a hifting is notoriously common, but the histories of the violin report that twon three centuries ago it was a notable thing for a phayer to shift. The usual theory of the old many-stringed instrumonts, uf which the Arath lute is a particularly good example, required the strings to he tumed in Fourths, and the strigg lengths were not too great for the fom fingers to govern all the frets within this range-that is, in at quater-length of the string-so a shift would he monecessary. () ${ }^{\prime}$ the Arah lute ${ }^{1}$ there weresometimes ten very unequally spaced frets in this space, but for any one tune only a few of them were used, and in the primeipal modes. © Orlory and Rewst. one fret each for the index and ring lingers sullieed to gire sulstantially our diatonic sale.

With simple wind instruments the case is quite diflerent, for sevrat fingers must he used simultaneonsly to coner holes, so the hand ran mot he shifted. In the Kiowa llate referred to above the uniform distanee hetween holes is 32 mm.: in the stone whistle from Mexion. 20 mm. : in the four Egytian thageolets and oboes figured by Villotean (his l'ate (' ©) the intervals are, respectively. 12, 15, 15, and 36 mm . These distances require only a convenient spread of the fingers. Jany other meatures can readily be ohtained from the accompanying ligure with their appended seates.

If the mmsician has a theory demanding that the holes he so near Werother or a far apart ats to make direet fingering inconvenient or impmihn. Kils with lomg or shom levers are added, as on modern Hhto and datiant . While amoner the Romans extrat holes were bored th frow ide for several gencra, the holes not needed for any tume being Foned hy plage ar rotating rings.

[^10]arm is too short to reath the lower end. Them, necessarily. the hotes to be fingered are located at the middle or upper end of the tube, but the holes are so small that the pitch of the resulting motes is much lower than the position of the holes would suggest. so the discrepaney to the ear is not as great as to the eye. In other cases the length is misleading, for the holes are bered obliquely or holes are bored in the tube below the holes to be fingered, thereby raising and adjusting the pitch of the lowest note, as Mahillon shows in the Brussels catalogue (Nos. 830, 1039, 111ヶ, 1119, and 112:) and Villotean shows on his Plate c c, No. 1. This is a possible explanation of the superfluons holes in the flute on the statue from the ruins of Susa (Plate 2. fig. 1), if the figure be accepted as archaologically correct. In modern instruments, as is well known, the distant holes are controlled by corers at the ends of long levers.

The relation of the instruments of the resonator type to the hand is too obvious to need discussion: the objects must be of such size and shape as to be held by the hand or by two hands while the fingers are manipulated, and the holes must be conveniently located and small enough to be closed by the tips of the fingers, or in the Chinese himen also by the thumbs.

It is rather surprising to see how little the thumb is used in playing upon the instruments under consideration. Although from its anatomical structure the thumb has a peculiar independence in its morements, yet most of its services are rendered by cooperation with the other fingers; and the natural training of these, as in grasping, sewing, wearing, or the most delicate sarage industries appears likewise to call for their cooperation, not for independent action. It is only in playing instruments like the lyre and harp (whose tuning depends on prineiples outside the instrument, and so they do not belong to the present discussion) that one sees a grasping action requiring two or more fingers at once. But in the guitars, flutes, ete., under consideration, the thumb is constantly occupied in merely supporting the instrument, so any variation in the pitch of the sound can come only as the other fingers become independent in action. When we remember how difficult it is for a civilized piano-player or typewriter to-day to acquire a satisfactory independence in movement of all the fingers, especially of the third and fourth, and recall that the early instruction-books for the harpsichord required the use of but two fingers on earch hand, we shall have a higher respect for the technique of primitive mnsicians, and shall not wonder that primitive wind instruments have so few holes. Presumably the index finger first gained independence, and then it marked a long adrance when two finger's could act independently of one another. So the four-hole flute or resonator, requiring the action of two fingers from each hand, and giving a seale of five tones is a monument commemorating an important stage both in the development of the hand and in the extension of musical resources.

VI. COMPOSITE INSTRUMENTS.

Fath of the instrmments thas far examined is capable of furnishing
 phe before me maty be embordied in composite instruments. where each anto hats it- own vihating holy: thas

1. Varions forms of harps and dulcimers show string: of regularly dermatime longth: here of comse, diflerene of tension may mulify the sable due to the langthes. One form is shown on Plates.
\because Pansp phes are sometimes sen with regulary decreasing lengths; it is true that this regulaty is not very common, but it is the only principle of saale building (except

Fig. . $\%$.

.fter Krans. the Chineserevele of tifthe) yet recognizable in these primitive instruments. (Plate 9.)
3. Instruments of the bar type are found frequently in our orehestras and hands under various mames, as arylophome: they are familiar in children's tors and are widely distributed in savage and half-civilized lands under the names of marimba, bule!fong. herrmemicom, stc. (Plate 8 and fig. 8.) The law of the uniform bar is that the frequencies of vibration of a series of bars of the same material are proportional to the guotients of the thickness dividal hy the spuare of the length: the breadth is immaterial if it is miforme. So if one takes aseries of miform harso of the same thickness and regularly decreasing length he maty ohtain aspros of ascenting motes. Thus. let the first har be $2 t$
 unit: the "ighth har will bor 15 mits long, and the fifteenth bar 10 mats: the mories of frepuencies would then be as the reciprocals of the
 vals: with these propertions hat No. s would give the Octave of the lime hut hat No. I.s would give the Twelfth of har No. S. The simplicit! of the rule, howerer, frepuently disappeats, cither hecause of rariation- in the thickness, ats when a savage splits a bamboo stem and then cuts his harsso that the shorter ones are also thinner, or beanse of the attachment of lumps of wax or "ay to the bars to tume them to

theoretical principle of scale determination is certainly and conscously embodied in any instrment anywhere: but some instruments in the National Museum and some drawings in books make the assumption seem plausible, that the primitive type of this instrment is a series of bars, supported at points about one-tifth or one-fourth of their lengrth from their ends, and decreasing in length by equal linear amount:

It is evident that these composite instruments are of minor importance in this study; but in the light of the theoretical laws here suggested perhaps travelers may learn something of the intention of a savage who euts his Pandean pipes or bars to form a musital instrument.

VII. CONCLUSIONS.

There have now been considered all the types of instruments in which several notes of different pitch are produced from the sume vibrating body-whether string, colmm of air. or mass of air.
(1a.) There have heen found examples from varions parts of the world of the intentional location of the stopping points of a vibrating string at equal linear distances: since with all stringed instruments the fingering will cause a slight increase of tension, the equivalent length of the string is less than the actual length.
(17.) There have been found numerous examples of wind instruments pierced with holes in one or two groups spaced at equal linear distances; since these holes are never sufficiently large to allow the air to flow through them with perfect freedom (unless in some Chinese flutes) the equivalent length of the vibrating folumn of air is greater than the actual distance from the mouthpiece to the hole.
(2.) There have been found instruments of the Marimba type with bars of regularly decreasing lengths.
(3.) There have been found many forms of instruments of the resonator type emhodying a series of equal and similarly-located holen; in these, thickening the wall is equivatent aconstically to making the holes smaller; while locating the hole nearer the point where the vibrating air hats its maximmm change of density is equivalent to cnlarging the hole.

Three simple laws give to the first approximation the seales of these several instruments, namely:
(1) The law of inverse length.
(2) The law of inverse squares of lengths.
(3) The law of the square roots of a series of numbers proportional to stums of diameters.
The first and second laws give seales whose intervals inerease as the pitch rises; seales based on the third law have deereasing interrals. Some resnlts are shown in a table in the appendix and graphically in Plate 10.

From thene it is evident that whicherer thpe of instrument one may take. there will be some intervals that rery elonely agree with intervals of our familiar mate. In a few cases this romes about because our seale is primeipally dorived from the (reeek theorists. who based their sables on proportional string-lengths: so, if the unit of equal distamee 1 m as simple gritar ebances to be am atifuot part of the lengeth of the string from the bridge to the mut, some of the resulting notes will belonge to our abale. (Howerer. the divisor must not have a prime fitcor ereater than tive.) But whatever the instrument, on any doctrime of ehames, there will be some apmoximate coincidences; and these womedemere as judged by the ear, will be fomed much closer and more mumerons that when judged mathematically or graphically; for the training of modurn musicians, as has often heen reeognized, not only allows but compels them to ignore deviations from theirstandard sable-deriations amomong sometimes to more than half a semitone. so one is foreed to condude that the recognition. even hy a musically educated car, of a series of notes as agreeing substantially with our diatonic sate or with any other known seale. does not afford any adequate ground for judging of the principles underlying the series: in fact. the failure tonote the deriation mat prevent the recognition of the underlying prineiple.

The type Costa Rican four-hole whistle is the most striking example of a serios agreeing elosely with notes of our scale, get hased on an aboolntely ditlerent primeiple; for the mean computed deviation from the piano intervals is only one-eighth of a semitone.

Furthere the whole discussion make it evident that the people who made and used these instrmments, of any single type of them, had not that idea of a sale which underlies all our thinking on the subject, mamely: A meries rither of tones or of intervals recognized as a standart, independent of any particular instrument, but to which every instrument must conform. Modern Europeans for the sake of harmony have nealy hanished all sates hut one and seldom know hy what rules the instrumonts are tumed to furmish this. But for these people the intrument is the primatry thing and to it the rule is applied, while the sale is a sent or a socondary thing: and the satme rule applied a lumdent tame may prosibly give a homded diflerent sates. Naturally wan dowe mot axpert to tinf much coneerted musie among people it this stage of derolopment.

Tha ramome mandisensed :above maty be mited in a generic one, n:amely:
 !lidll "woule is tle mplition uf eloments similur to the eqe: the size,

This principhe show itself in the oreasional equal -pates on the neck
or table of a stringed instrument. and conspicuonsly in the series of holes on flutes and primitive oboes, white a semse of halamee and symmetry added to the repetition appears in the two groups of holes on the flates, ete.. and especially in the resonators, and appears in a different way in the trapezoidal forms of dulcimers. Pans pipes, and marimbas. The pitch-determining elements are therefore primarily decorative. In fact no one can examine any collection of primitive wind instruments, or drawing of them. without being struck by the way in which the holes often cooperate in the decoration; while they are not found interfering with the artistic design (see fig. 3. page 430: Plate 2. figs. 1 and 2: Plate 3, fig. .2).
simple decoration involving only repetition and symmetrical placing or grouping of similar parts is not only foum among living primitive peoples everywhere that musical instruments embodying a sale can be found, but is prehistoric. The prehistoric tlutes are believed to come from the neolithit age. and the pottery from this age shows a multitude of geometrical designs, some of which are collected in Wilson's Plates 19 and 20. The paleolithic age has fumished few geometrical designs and no flutes or many-holed resonators. In applying such decoration to the hollow bones of amimals or human enemies, to the hollow reeds that Lucretius says whistle in the wind, or to gourds and simple pottery, nothing can be more natural than sometimes to perforate the walls and to get a several-toned musital instrument as the result. So although no conclusions regarding the mental operations of prehistoric man ean be absolutely certan, one feels a strong conviction that, as with immature minds among ns, art appealed first to the eye and later to the ear: that beanty of material form incidentally furnished series of sounds that could be repeated, and could give to the ear and the mind the idea of the definite leaps or steps that Aristoxenus, comntless ages afterward, called the characterintic of music. (Of course rhythm in morement and in sound are independent of the structure of an instrument.) Any influence that may have been exerted on the estahlishment of scales by the songs of birds, by the recognition of overtones in the sounds of the human voice, or ly the production of harmonics on the horn must have been limited and trivial. The principle here presented is at any rate a cero cousco, and explains facts hitherto unexplained: further, (1) it is extremely simple both in theory and practice; (2) it is flexible, allowing of multifarious results in pratetice; (3) it is suggested by prehistoric instruments, supported by the instruments of many living primitive peoples and repeatedly confirmed by its survival in several instruments of peoples in an adranced stage of musical culture.

It only remains to add, in order to prevent misunderstanding, that the principle bere set forth never appears as the dominating one among peoples who are known to have had a theory of the seale. The Greek
theoretical scales. diatonio and mondiatonic, are doubtles. its direct descemdants, thongh at present it is not known what the influence was that so, trameformed them and made them depend on ratios, not on difference of lengths. Posibly the theory of mmbers bewitched musifians then ats it has sometimes sime though the converse speculation is at plansible one - that the recognized musical ratios gave a mystical meaning to mumbers. It is curions to note that Aristoxemus had somehow got far emongh to complain that flutes distort most of the intervals (p. t2, MIb.) and if his lost treatise on boring flates should he fomed it might throw light on this history. The Arah "step ly step" methed is apmarently a late descendant of the equal linear divisions, appearing after men had learned to recognize the equality of intervals as well ats of -pates. But the Chinese cycle of tifthe monst be explained and determined on entirely different physical principles, and the various European males as defined by theorists or rendered by the best violinists or fixed hy good tumers, when properly examined, reveal elements as diverse as the clements of our language or our population. The principle in question is therefore presented only as the simplest, earliest. and most primitive principle of scale-building.

APPENDIX.

The laws briefly stated on page 437 for the several kinels of instruments discused in the paper may be expressed more accurately by the following formale:

Let $\mathrm{N}=$ number of complete vibrations per second.
$l=$ length of string or column of air or bar.
$u=$ diameter of mouth-hole of resonator, corrected for thickness of wall.
$l=$ diameter of finger-holes of resonator, corrected for thickness of wall.
$n=$ nomber of finger-holes opened on resonator.
$t=$ thickness of bar.
$\mathrm{K}=$ constant, depending on material and units of measurement.
Assuming centimeter-gram-second units and orlinary temperatures,
$\mathrm{K}^{\mathrm{i}}=\sqrt{ }$ Tension in dynes \div mass in grams per cm. $=$ velocity ; e. g., in pians strings 17,000 to $40,000 \mathrm{~cm}$.-sec.; in violin strings from 13,000 for the covered string to 43,000 for the gut E-string; in weak primitive instruments probably much less.
$\mathrm{K}^{\mathrm{ii}}=34,000 \mathrm{~cm} .-$ ser\cdot., the velocity of sound in air.
$\mathrm{K}^{\mathrm{iii}}=520,000 \mathrm{~cm}$.-set. for iron hars; 340,000 to 520,000 for wood bars supported as usual in a xylophone.
$\mathrm{K}^{\mathrm{iv}}=5,500$.
Then, corresponding with the brief laws,
(1a) For strings: $\mathrm{N}=\frac{\mathrm{K}^{\mathrm{i}}}{2 l-\frac{1}{2 \times 1} \sqrt{ } \text { tension } \div \text { - linear density. }}$
(1b) For columns of air: $N=\frac{\mathrm{K}^{\mathrm{i}}}{2 l+}=\frac{17,000}{l+}$.
(2) For bars: $\mathrm{N}=\mathrm{K}^{\mathrm{iii}} \frac{t}{l^{2}}=340,000$ to $520,000 \frac{t}{l^{2}}$.

These constants are sufficiently accurate for the general purposes of the anthropologist and musician. But the results should be expressed in musical terms. The French standard pitch, now adopted by the Piano Makers' Aswociation, gives $A=435 \mathrm{~d} . v$, or $C=258.7 \mathrm{l} . v$. , and the ratio for ${ }^{\circ}$ any interval of p piano semitomes is $2 \frac{p}{12}$. In most cases it is much more convenient to have intervals than ratios; and incomparably the most convenient unit of intervals is the piano semitone, of which 12 by definition make an octave; these can readily be grouped by anyone with slight musical knowledge into larger intervals, Thirds, etc., and the musical value of any whole number of them can instantly be found on a well-tuned piano.

Since the reduction of ratios to intervals can not ordinarily be done without logarithms, a short table has been calculated and is appented by the use of which the reduction may be done by inspection in most practical cases. This tablegives the logarithm of every whole number from 1 to 40 , and the product of these $5 y$, 40 , less one three-hundredth, together with the succesive differences; these are in semitones; for the factor is so chosen that when the logarithm of the ratio $2: 1$ is multiplied by it the product will be 12 , which is the number of semitones corresponding to the ratio of the octave. Much more elaborate tables, but without the column of differences, have been published by Prony and by Ellis. In using the table it is well to remember that the average uncertainty in pitch of public performers in Berlin was found to be about one-tenth of a semitone.

```
NAT MUS 1900-- 31
```

L-ifthetrations of the we of the talike, find the successive intervals of the scale of the 1 Iintu Nitur, the string leeing stopped suceswively at $36,35,34, \ldots 27$; the correFonting differemes in column tof the table are $0.49, .50, .52, \ldots .63 \mathrm{E}$. s., the
 wetare, the - [ate $2 \overline{2}$ to 18 is to be divided into 13 equal parts; substitute for the ratio $27: 15$, , $8: 3,3,2: 24$, ant we the table again; the differences are now $0.45, .46, \ldots$

If the law he that of the sifuare ronts, as with resonators, the table is to be used in predely the same way, but the final results are to be divided hy 2 ; for example, in the type resonator, calling the equivalent radius of the month hole 1.0 , that of the limgor holes is 0.6 (more atcurately, 0.12) ; the series of terms will therefore be 1.0 , $1.6, \because .2,2.5,3.4$; multiply all by 10 , and take the correxponding mumbers from cohumn 3 of the tahle; divide the differences $b y 2$, and add the quotiente to the fundamental piteh. The resulte are as follows:

E.S.				
10	39.86		F	
16	48.00	8.14	4.07	$\mathrm{~A}+.07 \mathrm{E} . \mathrm{S}$.
22	53.51	13.65	6.83	$\mathrm{C}-.17$.
28	57.69	17.83	8.92	$\mathrm{I}-.08$.
34	61.05	21.19	10.60	$\mathrm{E}-.40$.

If 0.6% hal heen taken the remits womld have been slightly ligher in pitch.
Plate 10 has treen pintted to give directly the intervals of resonator seales for any numbur of operi holes up to 5 , and for ratios of radii between 0 and 1. The dotted line correspembe to the type resonator.

The talhe may also be used for hars; the only change is that the differences are to be doubled instead of halved. Thus, with a series of uniform bars whose lengths are 24,23 , ctr., to 17 , the compass will be $2 \times(55.02-49.05)=11.94$ E. S., which is practically an octare, as stated on page 436 .

Talle for computing musical intercals.

EXPLANATION OF PLATE 1

stinivged 1nstrements.
Fig. 1. smab Terkisif Tambotra.
(C'at. No. 95312, C. S. N. M.)
Fig. 2. Menhey Colascioni (Italian).
(Cut. No. 95307, U. S. N. M.)
Nore.-The scale shown on this and most of the following plates is 20 centimeters long.

444

Stringed instruments.

EXPLANATION OF PLATE 2.

FLUTES WITM EQUAL-SIPACED HOLES, TYPE A.
Fig. 1. Pipe from Susa. Engel, Music of the Most Ancient Nations, p. 77.
Fig. :2. Bone Flote, ahont 6 inches long, disinterred at Truxillo, Peru. British Insemm. Engel, Musical Instruments, p. 64.
Figs. 3, 4. Aztec Pres, called by Mexicans pito; usual form; scale, a, h, é, e, f $=$. Eingel, Musiad Instruments, p. 62.
Fig. it. Aztec Pipe; unusnal form. Engel, Musical Instruments, p. 62.

Flutes with equal-spaced Holes.

EXPLANATION OF PLATE 3.

FLITTES WITIJ EQTAJ-SP.ICED MOLEN, TV'PE A.
Figr. 1. Wotrble Flavieolevir. Mexiar.

('at. So. !a9s, l゙. A. N. M.)
Fig. 4 . BoNE Flamenlet. Costal Iijaa.
(f'at. No. 1~10s, T. S. N. M. Report 1596, fig. 273.)

Fig. - Li.amber Wrilstas. Thibet.

 (:31, Nu, sintisf, I. A. N. M.)

14

Flutes with equal-spaced Holes.

EXPLANATION OF PLATE 4.

FldTLES WITH EQUTAL-SPACE1 HOLES, TYPE A.
Fig. 1. Dikect Flute. Peru.
(Cat. No. 95901, U. S. N. M.)
Fig. e.. Flitye or Flatieolet. Kiowa Indians. (Cat. No. 153544, U. S. N. M.)
Fig. 3. Fhete or Flageolet. Mohave Indians. (Cat. No. 1075:5, U゙. S. N. M.)
Fig. f. Flite: or Flatienlet. Dakota Imdians. (Cat. No. 23724, C゚.s. N. M.)
Fig. 5. Transyerse Flate (Ti-tzu). China. (Cat. No. 13046, U. S. N. M.)
Fig. 1i. Transverse Flete (Komu Fuye). Japan. (Cat. No. 93205, U. S. N. M.)
Fig. 7. (1boe (fre Cheurar). Siam. (Cat. No. 27313, U. S. N. M.)
Fig. 8. Flageolet (Sopilkit). Little Russia. (Cat. No. 96f66, U. S. N. M.)
Fig. 9. Double Flageolet. Thihet. (Cat. No. 95816, U. S. N. M.)

Flutes with equal-spaced Holes.

EXPLANATIONOF PLATE 5.

FLCTES WITI HOLES IN TWU GROUPS, TYPE B.
From Proborinsestutaga Musicum of 1618 , to show finger-hole grouped in two sets. 452

Flutes with Holes in Two Groups.

EXPLANATION OF PLATE 6.

FLUTES WITH HOLES IN TWO GROUPS, TYIE B.
Fig. 1. Flageoler (Ámling). Java. (Cat. No. 95669, TV. S. N. M.)
Fig. 2. Direct Flute. Ceylon. (Cat. No. 9ラ̃27, U. S. N. M.)
Fig. 3. Dikect Flevte (Manjairuh). Syria. (Cat. Ňo. 95150, U. S. N. M.)
Fig. 4. (rerman I) Flute. New York. (Cat. No. 55624, U. ․ N. M.)
Fig. 5. Flaceolevt (Soulimy). Jalva. (Cat. No. 95666, T. S. N. M.)
Fig. 9. Thansvemse Flute (Murali). Bengal. (C'at. No. 92707, U. S. N. M.)
Fig. 7. Thancyerse Flete. Manila. (('at. No. 9506t, U. S. N. M.)
Fig. 8. Tifansverse Flute. Manila. (Cat. No. 9.4tio, C. S. N. M.)

454

flutes with Holes in Two Groups.

EXPLANATION OF PLATE 7.

('ENTRA1, IMERICAN REKONAJORN OR WIIS'TLEN.
Fig. 1. ('onta Rica.

Fig. ㄹ.. Conta Rica.

Fig. 3. Costa Rucs.
 N. N .1

Fig. 4. Conti Ricas.

Fig. 5. (ista Rica.

Fig. if. P'axama, Chmiqus.

$245-26$. seale: cnd closed, f, $g, a b, b b ;$ open, $f=, g=, a=, \mathrm{b}$. (at. No. 1096: U.S. N. M.)
Fig. 7. ('心sti Ruc.

Fig. s. (osta Rica.

Central american Resonators, or Whistles.
(OMPOSITE INSTRUMENTS.
Foir. 1. J'in's l'ripes. ('ajro, Egypt.

F゙ig. O. Kisctede. Finlamil.

Fïr. 3. Tokkı, Japan. Two bars turned edgewise to show their form. (Cat, No. 96is41, I. ハ. N. M.)
The batper seale is 20 centimeters lomg.
45

Composite instruments.

EXPLANATION OF PLATE 9.
 pan's pipes.

Fig. 1. Pis's PiPEs (Sufufir). Egypt.

Fig. 2. V'ルN's Pıres. Fiji Archipelago.
(Report ए.s. Nat. Mus., 1896, p. 559; Cat. No. 23912, T. Һ. N. М.)
Pig. 3. Pas's Pupes (Hunyru Puhura). Peru, from an ancient grave. (Cat. No. 136世69, I. S. N. M.)

Pan's Pipes.

EXPLANATION OF PLATE 10.

SCALES GIVEN BY RESONATORS.
The construction of this chart has been explained in the appendix. To use it, find in the base line the number which expresses the radius of the finger holes, that of the month hole being considered 1.0, and erect a perpendicular therefrom; the heights of the points of intersection with the successive curves, measured on the left-hand scale, give the pitch of the successive notes produced as the holes $1,2,3$, etc., are opened, expressed in equally tempered semitones, F. S. The dotted line corresponds to the position on the chart of the type resomator. The chart shows clearly how the snceessive intervals become smaller as the monber of open holes increases, and how the total compass is small if the finger holes are relatively small.
Use may be made of the chart for many ready calcmlations of intervals other than those due to equal differences, and by doubling the readings in E. S. the result may be applied to string ratios; e. g., find the interval corresponding to the ratio $5: 4$, or $1+0.25$; the chart gives directly 1.9 ; the double of which is 3.8 E.s. The table in the appendix gives more accurately 3.56 E . S., showing that the just Third is 0.14 E. S. flatter than the piano Third.

University of California SOUTHERN REGIONAL LIBRARY FACILITY 305 De Neve Drive - Parking Lot 17 - Box 951388

LOS ANGELES, CALIFORNIA 90095-1388
Return this material to the library from which it was borrowed.

ML

UC SOUTHERN REGIONAL LIB
|||||||||||||||||||||||||||
AA 0001179

[^0]: ${ }^{1}$ Dictionnaire raisommé dn mobilier français, 1 I , 187I, pl. LI.
 fig. 1; xvi, lig. 1; xvit, fig. t; xx, figs. 1, 3.

 Bomanni, Theription des instrments harmoniques. 2el. ml. Rome, 17ti. Plates

 x, fig. $16 ;$ xif, figw. 3, $九$.

[^1]: ${ }^{1}$ Land's translation in Travaux de la 6^{e} session du Congrès internationale des Orientalistes ì Leide, 1883, pp. 107-114.
 ${ }^{2}$ Carra de Vaux's translation in Journal Asiatique, X'ㄴII, 1891, p. 330.
 ${ }^{3}$ Idem, pp. 308-317.
 ${ }^{4}$ Tagore, Musical Scales of the Hindus, Calcutta, 1884, supplement. Partly quoted by C. R. Day, Music . . . of Southern India, 1891, and Ellis, Journal society of Arts, XXXIII, 1885, p. 502.

[^2]:

[^3]: ${ }^{1}$ Journal of American Ethnology and Archaeology, IV, 1894, p, 25-26.
 ${ }^{2}$ Loret, Journal Asiatique, Sth ser., XIV', 1889, pp. 111, 197. Musical Times, London, XXXI, 1890, pp. 585, 713.
 ${ }^{3}$ Description de l'Egypt, État moderne, II, 1809, plate cc.
 ${ }^{4}$ Mémoires concernant l'histoire des Chinois, VI, 1780, p. 76, pl. vi, fig. 42. Mahillon, Brussely Conservatory Catalogue I, No. 865 .

[^4]:

[^5]: ${ }^{1}$ Report of United States National Museum for 1896, p. 617.

[^6]:

[^7]: ${ }^{1}$ Engel, Music of the Most Ancient Nations, 1. 75.
 ${ }^{2}$ History of Music, II, 1. 628.
 ${ }^{3}$ Chinese Music, Shanghai, 1884, p. 82.

 + Mémoires concernant l'histoire . . . des Chinois, p. 225.

[^8]:

[^9]: ${ }^{1}$ Syntagma Musicum, 1. 39, pl. ix.

[^10]:

