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Abstract

We investigate the behavior of neural network learning algorithms with a .small,

constant learning rate e in stationary, random input environments. It is rigor-

ously established that the sequence of weight estimates can be approximated

by a certain ordinary differential equation, in the sense of weak convergence

of random processes as e tends to zero. As applications, back-propagation in

feedforward architectures and some feature extraction algorithms are studied in

more detail.





1 Introduction

For understanding the performance of neural network learning algorithms, it is of

fundamental importance to investigate how they behave in stationary random

input environments. This analysis yields information about the asymptotic

properties of the learned connection weights as the number of training samples

increases without bound. Thus far, only algorithms with learning rates tending

to zero have been studied. However, most neural network learning is conducted

using a small, constant learning rate. In this paper, we investigate the limiting

behavior of such algorithms.

An on-line (local) learning algorithm can be written as

en+l^On+r,,,Q{Zn,B„), (1)

where 9 is the A:-dimensional vector of network weights to be learned and its

current estimate at time n is denoted by 9^, -n is the training pattern presented

at time n, /?„ is the learning rate employed at time n, and Q{-, •) is a suitable

function characteristic of the algorithm.

The key tool in the analysis of the sequence {9n] is the so-called interpolated

process (9{t).t > 0), usually defined by

e{t) = 9n, t„<t<tn + U (2)

where

to = 0. tn = rii + h Jin-

(Rather than working with the above piecewise constant interpolation of the se-

quence {9n}, one could also use piecewise linear interpolations. The asymptotic

properties of these two processes are very similar.)

If T]n tends to zero at a suitable rate, it can be shown that the interpo-

lated process of {9n} eventually follows a solution trajectory of a correspond-

ing ODE (ordinary differential equation) with probability one (Ljung, 1977;

Kushner & Clark, 1978). This has allowed researchers to draw very valuable

conclusions about the convergence behavior of {On}, see e.g. Oja (1982), Oja Sz.

Karhunen (1985), White (1989), Sanger (1989), Hornik k Kuan (1990), Kuan k
White (1990).

However, if r;n = e, a small constant, the estimates {0„) never stabilize,

and the analysis of the interpolated processes cannot be carried out for fixed c.

Hence, we are interested in asymptotics where e becomes smaller and smaller.

In section 2 of this paper, we shall utilize a result by Kushner (1984) to

establish that as e tends to zero, the corresponding interpolated processes con-

verge weakly to the solution of the associated ODE. The result is then applied

to two of the most important network architectures in section 3. The proof of

the main theorem is deferred to the appendix.



2 Convergence to the ODE limit

Consider the algoritlim (1) with rjn = e. In this case, we shall write {0'^

the sequence of estimates to emphasize the dependence on e, i.e.

lor

0:^ + l=0'n+^Qi^nJ'J. (:})

The corresponding interpolated process {6'^{t),t > 0) is given by

e'(t)^9'^, m <t <(n+l)c. (!)

Our key result is that for e — 0, the interpolated processes can be approximated

by the solution of an ODE, in the sense of weak convergence of random processes.

We have the following definition.

Definition. Let {(^% e > 0} 6e a family of random elements with values ni

some metric space {X,p). We say that ^' converges weakly to ^°, symholicalhj

lim,_oE/(e) = E/(^0)

for all bounded, continuous real functions f on X.

Weak convergence is an extension of the familiar concept of convergence in

distribution of sequences of IR -valued random variables to families of abstract

valued random elements; as a basic reference, we recommend Billingsley (1968).

If /i is a continuous function from A' to IR and ^^ => ^°, then h{^^) -^x> ^(i>°)i

where "— x>" denotes convergence in distribution. (Billingsley, 1968, page 29).

In our case, we shall regard the interpolated processes 9^{-) as random pro-

cesses with values in A' = D*^[0,T'oo), the space of all functions from [0,rcc)

to IR which are right continuous with left-hand limits at every < t < Tr,^.

Here, T^c, is the supremum over all T such that the limiting ODE has a unicine

solution on [0,T] with probability one; in particular, if it has a unique global

solution on [0,oo) for every initial condition, then Too = oo- As a metric on A'

we shall use

Eoo 2-'" min l,supo<,<^^|^(0 - ^(/)| , ^^ ,; € A,
m= 1 _ _ "•

where {Tm} is an increasing sequence with lim,n-_co Tm = Tco, such that A' is

given the topology of uniform convergence on bounded subintervals of [0,Tcx3).

In order to obtain the ODE limit of 0'^{-). we must be able to average out

the randomness resulting from the pattern sequence {-n}, so that the limiting

process (as e tends to zero) eventually follows the "mean" behavior. This is the

basic idea of the so-called direct averaging method of Kushner (1984, chapter 5),

cf. also Kushner k Shwartz (1984).



We assun^e the following conditions.

[A 1] {;„} IS a (strictly) stationary and ergodic sequence of random vectors.

[A 2] For each N. there exists a function L^{z) such that Li\(:„) is intajrublc

and

suP|,|,|,-|<.v \Q{z,e)-Q{z,6)\ < Ls{z) \e-o\. (5)

[A3] For each 9. Q{:n-d) is square integrable with expectation

Q(e):=EQ(z„,e).

These conditions are not the weakest possible, but they can easily be verified

or interpreted. The stationarity and ergodicity assumption [A 1] applies when

we have time series data; in particular, it is satisfied when the training patterns

are identically distributed, independent random variables. [A 2] is a Lipschitz-

type of smoothness condition on the function Q, which is satisfied in many
interesting neural network applications, as shown in later examples. [A 3] defines

the correponding ODE. Of course, conditions [A 2] and [A3] are met if the

patterns are bounded and Q is continuously diflferentiable in both arguments.

The following theorem is based on theorem 5.1 in Kushner (1984); its proof

is given in the appendix.

Theorem. Assume [A 1] to [A3] and let 9q = ^o, a fixed vector or a random

vector independent of e. Then

e'{-)^e{-), (6)

where 6{-) is the solution of the ODE

In particular, if < ti < <ti < Too,

(Otj, ei,,) ^v (0iti) e(t,)). (7)

If in addition Oq is nonrandom, then for each T < Tco

,

suPo<(<T l^'(0 - ^(01 — in probability. (8)

Assuming 9o to be nonrandom does not really impose a restriction; in fact, in

virtually all neural network applications, the initial ^o is, although probably cho-

sen at "random" with the aid of some random number generator, independent

from the learning patterns, and we can analyze the behavior of {9^} conditional

on the initial weights.



The above theorem establishes a very close relation between the sequence of

estimates generated by a neural network learning algorithm with small constant

learning rates and the solution paths of its associated ODE. Let 6^ be the sot

of all "desired" limit points of the algorithm; usually, 0^ consists of all which

minimize some criterion function, e.g. the mean square error when appro.xi-

mating targets by actual network outputs in supervised learning. Clearly, we

expect the algorithm to perform well if the domain of attraction of 0^ contains

all (or most) reasonable initial configurations. In particular, 0^ should contain

at least one asymptotically stable equilibrium of the ODE. Of course, optimal

performance is achieved if there is a single, globally attractive equilibrium; how-

ever, we are unaware of any neural network learning algorithm which ha-s this

property. Taking Error Back-Propagation (EBP) as the most prominent exam-

ple, it is well known that the error functions for most architectures contain a

multiplicity of local minima which are equilibria of the associated ODE.
A global asymptotic analysis of the solution paths of the ODE and in partic-

ular, an explicit characterization of the domains of attraction of the equilibria,

usually cannot be carried out. Nevertheless, reasonable performance can be

expected in the cases where the set of all asymptotically stable equilibria is con-

tained in Qd\ some of the feature extraction algorithms investigated in the next

section have this property. However, it has to be pointed out that it may already

be impossible to give a closed analytic description of the set of all equilibrium

points (cf. EBP).

3 Applications

3.1 Error Back-Propagation

Consider the following learning problem. We are given a feedforward network

architecture with output o = F{x,9); here, x is the network input, 9 is the

vector of all adjustable weights and F is a function characteristic of the network

topology. Suppose that we are also given a sequence of identically distributed

training patterns ;„ = (^n^yn) and that it is desired to adjust the network

weights in a way that the mean square approximation error

$(0) = iE|y„-F(x„,^)|2

is minimized. The most prominent (on-line) algorithm which has been proposed

in the neural network literature is the error back-propagation (EBP) algorithm

(Rumelhart, Hinton k. Williams, 1986), which is a simple gradient descent al-

gorithm allowing for efficient updating of the weights due to the feedforward

architecture. In this case,

Q{x,y,0) = VFix,6)iy-F(x,6)), Q(^) - EQ(x„,y,,^) = -V^0).



(The "V" symbol denotes taking all partial derivatives with respect to the com-

ponents of 9.) Hence, if the conditions of our theorem are satisfied, we have

$'{) ^ e(-), where e{) solves the ODE

e = -V^(9).

A simple application of the chain rule yields that

thus $ is strictly reduced along the solution paths of the ODE unless an equilib-

rium is reached. If we knew in addition that the level sets 0;v = {9 ' ^{9) < A'}

are bounded uubsetsof IR , we could conclude that the set of equilibria is globally

attractive; however, this condition is not satisfied in many important applica-

tions, e.g. in multilayer feedforward architectures with bounded hidden layer

activation functions, or in linear architectures with a bottleneck layer as de-

scribed in Baldi iL' Hornik (1989). Therefore, although the local minima of <I>

are of course the asymptotically stable equilibria of the ODE, it is not neces-

sarily true that the solution paths of the ODE converge to a local minimum of

$ for "most" (e.g. in the sense that the exceptional set has Lebesgue measure

zero) initial values, as is very often claimed.

If we assume that the training patterns Zn have bounded fourth moments,

conditions [A 2] and [A 3] can easily be verified for the usual multilayer multiout-

put feedforward architectures with logistic or arctangent hidden layer activation

functions. As a (notationally convenient) illustration, consider the following sin-

gle hidden layer network where the i-th output component o, is given by

o, = fi{x.9) = g^ r^^^^f^thy-'h ( ^^^j"/»;'^j]
J

' = 1 P;

here, d, q and p are the numbers of input, hidden and output units, respectively,

^j is the j-th input component, and

9 = (an, .. .,a,<i,/?ii ,0pq)-

We then have the following result.

Corollary 1. Suppose that all activation functions xl'h fl"<^ 9i fJ^'e twice contin-

uously differentiable and that in addition, all hidden layer activation functions

iph are bounded and have bounded derivatives up to order two. Then, if the

sequence of training patterns {:„} is stationary and ergodic with finite fourth

moments,

9'{)->9{-),

where 9{) solves the ODE

9^-V^9), 9(0) = 00.



For the proof, let us start by observing that under the above conditions, the

network output F{x,6) is uniformly bounded in x over the weight sets where

1^1 ^ ^- The nonzero entries in VF{x,6) are of the form

oPth oat,
J

where ph = Ylj '^*^i^j ^""^ ^' ~ Zlh l^ih^h{Ph)- Hence, we can find a finite

constant Ca' such that

|VF(j,^)| < cvki, 1^1 < ^.

Similarly, it can be shown that there is a finite constant D\ such that all second

order partials of F with respect to components of 9 can be bounded by Ds\x\,

uniformly in x over {|^| < A''}.

We conclude that if in addition inputs and output have finite fourth mo-

ments, then Q{xn,yn,0) is square integrable by Schwarz's inequality and [A3]

is satisfied. If we let Li\{x, y) := supM|<;v ^Q{^< V^ ^)i then (5) is satisfied and,

again using the above estimates, we see that L!^{xn,yn) is integrable, whence

[A 2].

3.2 Feature Extraction Algorithms for Linear Networks

For many applications it is very important to train networks to be able to extract

the main features inherent in high-dimensional input data streams, thereby sig-

nificantly reducing data dimensionality. Generally speaking, we are looking for

functions F which compress a d-dimensional input vector x into a p-dimensional

output vector y = F{x) (where p < d and usually p <C rf) such that, in a sense

to be made more precise, y contains "as much information about j; as possible".

If we use the mean square error of the best linear estimate of x given y (the

"linear reconstruction error") as a criterion, this leads to a statistical technique

known as Principal Component Analysis (PCA), see Bourlard S/. Kamp (1988),

Linsker (1988), Sanger (1989), Baldi k Hornik (1991). In this case, the outputs

are of the form y = Wx, and the set of all optimal p x d matrices W can be

described cis follows. Let Ai > • • • > A^ be the eigenvalues of the input covari-

ance matrix E = E Xnx'n (in what follows, ' denotes transpose), and assume for

simplicity that the inputs are centered, i.e. E j:„ =0, and that all eigenvalues

are distinct and positive. For j = 1, . . . , d, let u, be a unit length eigenvector of

E corresponding to the eigenvalue A,. Then W is optimal iff its rows span the

same p-dimensional subspace of iR as uj, . . . , Up, i.e. iff W = RUp , where R is

an invertible p x p matrix and Up — [ui, . . . , u^.

One class of PCA learning algorithms which have been proposed in the

literature can be described as follows, see e.g. Baldi k. Hornik (1991), Hornik k.

Kuan (1990). \V is decomposed as W = MA, where M is an p x p matrix witli



all diagonal entries equal to one. In particular, we could have M = /, the p x p

unit matrix. The algorithm is

^;+, = .4;+. Q.4(x-„,.4;,A/^),

with y — W X = MAx and

Qa{x,A,M) = yx'-Q^(.yy').4,

Qm{x,A,M) = QM{yy')\

both Qa and Qm are linear operators on the space of p x p matrices.

The following result follows immediately from our main theorem.

Corollary 2. Suppose that the starting values Aq and A/o are independent fro di

f and that the input sequence {xn} is stationary and ergodic luith finite fouilh

moments. Then

(.4'(-).A/^(-))^(.4(),A/()),

where (.4(), A/()) J5 the solution of the ODE

A = MA^-Qa(MA'E:A'M')A, AiO) = .4o,

M = Qm(MAEA'M'), A/(0) = A/o.

If we take Q.4 as the identity mapping and M = /, we obtain an algoritlim

introduced independently by Williams (1985) as the SEC (symmetric error cor-

rection) algorithm, by Baldi ( 1988) fis a symmetric simplification of the BP algo-

rithm for a linear d-p-d architecture in autoassociative mode, and by Oja (1989)

as the subspace algorithm; for more details, see Baldi k Hornik (1991). Of

course, this algorithm is a generalization of the one-unit algorithm introduced

in Oja (1982) as a first order approximation to normalized hebbian learning

with small learning rates. In this case, the limiting ODE is

.4 = AE - A-^A'A.

For the one-unit case (i.e. p = \), the asymptotic behavior of the solutions

of this ODE is completely analyzed in Oja &; Karhunen (1985). It can be shown

that the solution paths always converge to ±u\ unless the starting value is

perpendicular to uy.

For p > I, similar global results do not seem to be available. It can be

shown that all full rank equilibrium points of the ODE are of the form .4 =
/?[u,| , . . . , u,^]', where I < iy < < ip < d and R is an orthogonal p x p
matrix (see e.g. Baldi L Hornik, 1991). Therefore, as these equilibrium points

are not isolated, they cannot be asymptotically stable. More precisely, Krogh Ik.

Hertz (1990) show that all equilibria with {ii, ,ip} ^ {1, . . . ,p} are unstable



and that for equilibria of the form A = RUp, only the components of small

perturbations about the equilibrium .4 which are perpendicular to the row space

of A die out asymptotically. Thus, one might expect that the estimates more

or less "randomly" walk around the manifold

A= {A = RUp : R orthogonal}

rather than being attracted by one particular equilibrium.

These stability problems disappear if instead we use the asymmetric algo-

rithm introduced in Sanger (1989) as the GHA (generalized hebbian algorithm).

In this case, we take M = I and Qa as the "lower" operator which sets all en-

tries of an p X p matrix which are above the main diagonal to zero. As shown

in Sanger (1989), see also Hornik k. Kuan (1990), the asymptotically stable

equilibria of the associated ODE

.4 = .4!]- lower(.4i:.4').4

are given by

.4 = [±ui ±Up]'.

Therefore, the performance of the GHA should be as good as the one of

Oja's one-unit algorithm (which is of course the GHA for p = 1), and it should

be superior to the symmetric algorithm. A satisfactory global analysis of the

asymptotic behavior of the solution paths of the above ODE has not been carried

out thus far. Sanger (1989, p. 463) claims that the domain of attraction of the

set of cisymptotically stable equilibria consists of all matrices .4, which is not

true, due to the existence of equilibria which are not asymptotically stable. In

fact, it is easily seen that if the rows of the initial ,4(0) are perpendicular to

some u,, then the same is true for all A{t), t >0.

Rubner & Tavian (1990) introduced an algorithm where, upon presentation

of a new pattern x, A is updated according to a hebbian learning rule with

columnwise normalization, and M is modified using an asymmetric (i.e. hierar-

chical) decorrelation filter. If instead we use Oja's one-unit algorithm for each

of the rows of .4 (Baldi h Hornik, 1991), we obtain another algorithm contained

in our general class, with the choices Q^ = diag and Qm = —subdiag ("'diag"

respectively "subdiag" are the linear operators which set the offdiagonal respec-

tively the superdiagonal entries of a square matrix to zero). The corresponding

ODE is

.4 = MAE-dmg(MAEA'M')A
lit = -subdiag(A/.4S.4'.V/')

with the appropriate initial conditions; usually, ^o is "random" and Mq — I.

Hornik &: Kuan (1990) show that the asymptotically stable equilibria of this

ODE are given by

A = [±ui ±uJ', M = I.



The global asymptotic behavior of the solution paths has not been described

thus far.

Of course, many other PCA learning algorithms exist. Foldiak (1989) sug-

gested an algorithm which combines Oja's one-unit algorithm and lateral inhibi-

tion terms. As this algorithm uses a feedback rather than the above feedforward

architecture, it cannot be dealt with in our framework, because the learning

patterns r,, then consist of the new input x^ and some feedback term yn which

depends on all previous inputs and weight estimates (the case of "'state depen-

dent noise"). Hornik k Kuan (1990) analyze the asymptotic behavior of such

feedback feature extraction algorithms for the case where the learning rates tend

to zero at a suitable rate; the case of constant learning rates is currently being

investigated.



Appendix - Proof of the theorem
We proceed along the lines of theorem 5.1 in Kushner (1984). (Our notation is

different from Kushner's; the correspondencies are 6 ^-* x, z <-^ ^, and Q <— G;

also observe that in our case, both Q and {zj} do not depend upon e.)

Due to stationarity, establishing uniform integrability of

{s'>P|9|<yv IQ(~';,^)|,i>0}

reduces to showing that E sup|^|<^ \Q{~j , ^)| < ^"^ (cf. Billingsley ( 1968, p. 32),

which follows from

sup|,|<^ |Q(c,,^)| < sup|,|<^ |Q(^,,^)-Q(;,,0)| + |Q(;;,0)|

< sup|,|<^ L^{zj)\e\ + \Q{zj,0)\

< NLr,~{zj) + \Q(z,,0)\,

integrabiUty of L,\{zj ) and square integrability of Q(zj , 0), thereby establishing

(A5.2.1).

For |^|,|^| < A' we have

Esup|,-_,|<,3 \Q{zJ,O)-Q{z,,0)\<^EL^-{zJ),

hence the left hand side tends to zero as S ^ 0, establishing (A 5. 2. 2. a). Finally,

stationarity and ergodicity of {r„} ensure that

1

""^ -
TQ{=j,o) - EQ(zj,e) = Q{e)

n — m ^—

'

J =m

in mean square as n — 77? — oo (Doob, 1953, theorem X.6.1), which in turn

implies (A 5. 2. 3. a).

Theorem 5.1 in Kushner (1984) now yields that if A' is given the Skorohod

topology (see Kushner, 1984, pages 30-33), then 6^{-) ^ 6{-). In fact, Kushner

assumes that Too = oo; however, it is straightforward to see that everything goes

through mutatis mutandis if Too < oo. Proceeding along the lines of chapter 18

in Billingsley (1968), it can be shown that we also have B^-) => 9{-) if A' is given

the topology of uniform convergence on bounded subintervals.

The remaining assertions can now easily be established. The mappings

X € A t— (x(/i), . . . ,x{ti)) and x € A i— supo<,<x k(0 — y(Ol for fixed (and

nonrandom) y G A are continuous mappings from A' to IR respectively IR.

Using the Continuous Mapping Theorem (Billingsley, 1968, theorem 5.1), (7)

follows immediately and (8) together with the fact that weak convergence to a

nonrandom limit is equivalent to convergence in probability to that limit, see

e.g. Billingsley (1968, p. 25).

10
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