

Y 28

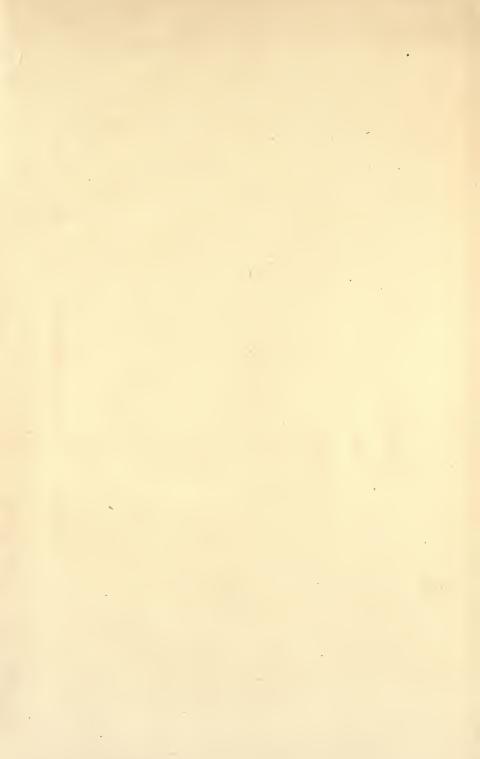
LIBRARY OF THE UNIVERSITY OF ILLINOIS

630.7 IL6b no.37-48

Agric.

NON CIRCULATING

CHECK FOR UNBOUND


NON CIRCULATING

CIRCULATING COPY

--

•

Y

UNIVERSITY OF ILLINOIS, Agricultural Experiment Station.

URBANA, MARCH, 1896.

BULLETIN NO. 42.

CORN EXPERIMENTS, 1895.

Experiments with corn conducted at this Station and reported in this bulletin are comprised under the following numbers and titles:

No.	Ι.	Corn,	Testing	Varieties.

- No. 3. Corn, Time of Planting.
- No. 5. Corn, Thickness of Planting.
- No. 23. Rotation Experiment.

No. 90. Corn, Rate of Growth.

For the benefit of those who desire to consider the effect of meteorological conditions upon the experiments reported there is given on the next page a table of temperatures and rainfall as observed at this Station from January, 1889, to December, 1895, inclusive.

Experiment No. 1. Corn, Testing Varieties.

LAND.

The ground used in this experiment is deep, rich prairie soil, nearly level, and is as uniform as it was possible to select, any difference being in favor of the end at which the line in the diagram indicates the location of a tile drain. Plats I to 80, inclusive, occupy the ground that was used for the same experiment the year previous, and the last crop on plats 81 to 100 was wheat. It was plowed in the fall and well disked and harrowed before planting.

BULLETIN NO. 42.

March,

METEOROLOGICAL RECORDS, 1889-1895.

TEMPERATURE, DEGREES, FAHRENHEIT.

	Ja	nuary.		F	ebruar	у.	М	larch.		A	April.	
	Mean.	Max.	Min.	Mean.	Max.	Min.	Mean.	Max.	Min.	Mean.	Max.	Min.
1889 1890 1891 1892 1893 1894 1895	29.28 33.5 30.26 19.2 14.8 29.4 19.5	57 66 57 57 48 64 57	$-5 \\ 6 \\ -15 \\ * \\ -21$	23.36 34.66 30.45 33 25.8 24.7 17.9	53 68 61 55 51 .58 65	-7.5 7 -9 * * -5 -20.5	39:92 33:35 32:55 36:1 37:8 43:5 35:9	72 61 65 69 76 77 84	2 I * * IO	51.9 52.32 52.78 48 6 49.3 51.4 52.3	75 81 81 70-5 75 85 88	25 29 22 26 30 25 27
Whole period	25.13	66	*-21	27.12	68	*-20.5	37.01	84	*-1	51.22	88	22
	May.			June.			July.		. A	ugust.		
	Mean.	Max.	Min.	Mean.	Max.	Min.	Mean.	Max.	Min.	Mean.	Max.	Min.
1889 1890 1891 1892 1893 1894 1895	59.2 58.27 58.4 57.9 57.4 59.6 59.4	91 87 91 82 84 89 95	28 33 30 36 37 32 28	65.5 74.56 71.9 70.6 70.5 73.4 73.3	88 96 93 94 93 97 98.5	40 47 49 51 53 34 42	72.7 73.02 70.12 73.3 76.4 73.8 71.3	90.5 97.5 93 96.5 98 98 98 94	45 42 46 48 47	69.2 68.74 70.21 71.5 71.1 72 3 73.2	89 96 99 94 96 99 97	29.5 44.5 40 47 37 41 48
Whole period	58.60	95	28	71.39	98.5	34	72.95	98	42	70.89	99	29.5
	1	tembe		1)ctobe		1	vembe			cembe	
	Mean.	Max.	Min.	Mean.	Max.	Min.	Mean.	Max.	Min.	Mean.	Max.	Min.
1889 1890 1891 1892 1893 1894 - 1895	61.32 60.46 69.2 63.9 66.5 65 65 67.7	87.5 89 96 87 97 94 94	32 33 41 42 31 38 32	47.26 52.07 51.3 53.6 53.3 51.9 45.9	82 76 88.5 88.5 84 84 75		36.82 42.62 35.69 34.8 37.3 35.9 38.2	62 68 67 64 75 67 73	21 2 7 6 12	42.71 30.91 37 27.7 30 32.9 31.1	66 58 60 60 63 59 59	15 8 11 -7 -6 -4 -2
Whole period	64.86	97	31	50.76	88.5	12	37 . 33	75	2	33.19	66	-7

RAINFALL, INCHES.

	Jan.	Feb.	Mar.	April	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
1889	1.48	2.08	1.61	.61	5.52	6.81	5.81	.60	2.74	1.42	4.38	1.82	34.88
1890	5.26	1.87	2.70	4.11	3.56	3.80	2.83	1.93	I.19	2.35	1.63	.05	31.28
1891	.99	2.60	.3.55	3.54	.89	2.08	1.41	2.86	.41	1.29	5.58	I 53	26.73
1892	.79	2.64	2.59	6.45	7.86	5.36	2.50	2.45			4.95	1.62	39.05
1893	1.05	4.48	3.20	7.68		1.55						1.09	32.37
1894	1.95	1.32	2.41						4.21		2.77	I.44	24 72
1895	1.36	.52	.70	2.42	2.20	2.24	3.61	1.81	5.27	.21	3.07	5 7 I	29.12
Ave	1.84	2.21	2.39	3.81	4.02	3.37	2.54	1.68	2 62	1.12	3.62	1.89	.31.16

*Record incomplete.

100	99	98	97	96	95/-	94	93	92×	91	90	89	88	87 [×]	86	85	84	83 [×]	82	81
77	73	69	65	61	57	53	49	45	41	37	33	29	25	21	17	13	9	5×	/×
78	74	70	66	62	58	54	50	46	42	38	34	30	26	RR	18	14	10	6	2
								47										7	3
80	76	72	68	64	60	56	5Z	48	44	40	36	32	28	24	20	16*	12	8	4

DIAGRAM OF PLATS.

TREATMENT.

The accompanying diagram gives the position of the varieties under experiment each occupying a plat two rods square. All were planted the same date, in hills 3 ft. 8 inches apart each way, and were cultivated and treated alike in every particular. At a height of about six inches the crop was thinned to four stalks a hill. The entire area was surrounded by growing corn. The plats marked thus x were planted to the same variety, Boone county white.

Identical treatment of all varieties is open to objection. That form pursued here is manifestly unjust to both the very early and the very late. Any date which may be selected for planting subjects some varieties to possible unfavorable conditions. To say the least they are not the same to which they would be subjected under ordinary circumstances. Any uniform distance of planting will be unnecessarily great for the early and smaller varieties and tend to reduction of vield, or it will be unfavorably close for the gigantic later sorts or both. It is a question too whether the extremes are fully supplied with pollen, certainly not with the superabundance attending the period of fertilization of the medium varieties. These medium varieties seemed to be favored not only by climatic conditions but by the necessary circumstances of experiment, because any attempt to equalize opportunities by closer planting or by special conditions is manifestly not feasible.

MATURITY.

All varieties maturing before September 15th are classed as early, those maturing between September 15th and October 1st as medium, and those maturing after October 1st as late. It is certainly remarkable that under fairly uniform conditions of soil and treatment the same variety when raised on neighboring plats should range from early to late. See Diagram and Table I, Boone county white. It is suggestive in this connection that from what-

BULLETIN NO. 42.

TABLE I. VARIETIES OF CORN, THEIR CHARACTERISTICS.

		· · · · ·		
	Name of variety.	Source of seed.		3
-				Maturing
			0	8
Pl			2	1.3.
Plat			Color	Pe
			•	•
-	Doone country white	Email and Chatter Farm	3371	Tat
I	Boone county white	Experiment Station Farm	White	Late
5	Boone county white	Experiment Station Farm	White	Medium
16	Boone county white	Experiment Station Farm	White	Medium
29		Experiment Station Farm	White	Late
-	Boone county white		White	
43		Experiment Station Farm		Early
53	Boone county white	Experiment Station Farm	White	Late
68	Boone county white	Experiment Station Farm	White	Medium
78	Boone county white	Experiment Station Farm	White	Medium
83	Boone county white	Experiment Station Farm	White	Late
87	Boone county white	Experiment Station Farm	White	Late
92	Boone county white	Experiment Station Farm	White	Late
97	Boone county white	Experiment Station Farm	White	Medium
25	Boone county white	James Riley, Thorntown, Ind	White	Late
80		J. B. Martin, Atwood, Ill		Medium
	Brown			
65	Burr's white	F. E. Burr, Philo, Ill.	White	Early
75	Burr's white-cranberry, cross.	Experiment Station Farm	White	Medium
26	Calico	C. W. Bush, Putnam, Ill	R. & W.	Medium
76		J. C. Suffern, Voorhies, Ill	White	Late
-				
14	Champion white pearl (r.)	W. T. Freeland, Windsor, Ill		Medium
15	Champion white pearl (s.)	W. T. Freeland, Windsor, Ill	White	Early
72	Champion white pearl, cross	Experiment Station Farm	White	Medium
36		J. C. Suffern, Voorhies, Ill		Medium
61	1 2	Experiment Station Farm		Medium
	Clark's Iroquois			
II	Charles Cloud	W. T. Freeland, Windsor, Ill		Medium
45	John Cloud	W. T. Freeland, Windsor, Ill	Yellow	Medium
41	Conqueror	N. B. & G. Co., Minneapolis	Yellow	Medium
30	0 1	W. T. Freeland, Windsor, Ill		Medium
-				
51	Cuban Queen	Nims Bros., Emerson, Iowa		Early
24	Davis' improved	L. H. Davis, Earlville, Ill	White	
6	Dungan's white prolific	Plant Seed Co., St. Louis, Mo	White	Medium
32	Early Butler	J. C. Suffern, Voorhies, Ill	Yellow	Early
58	Early eclipse	Plant Seed Co., St. Louis		Medium
-			-	
54	Early golden Cable	Plant Seed Co., St. Louis.	Yellow	
69		E. A. Riehl, Alton, Ill	White	
34	Early Leaming	J. H. Beagley, Sibley, Ill	Yellow	Medium
47	Early mastodon	J. A. Everitt, Indianapolis	Yellow	Medium
59		H. P. Edmonds, Taylor, Ill	Yellow	
82	Edmonds-Burr's white, cross	Experiment Station Farm	White	
57	Edmonds-Murdock, cross	Experiment Station Farm		Medium
20	Extra early Adams	D. M. Ferry & Co., Detroit, Mich.	White	Very early
31	Extra early Huron	Ford & Son, Ravenna, Ohio,		Very early
		J. A. Everitt, Indianapolis		Medium
17	First premium			_
13	Fisk's white	E. C. Fisk, Havana, Ill	White	Late
98	Flour corn	Wm. H. Maule, Philadelphia	White	Late
74	Forsyth's favorite	J. A. Everitt, Indianapolis	White	Late
22	J. J. Freeland	W. T. Freeland, Windsor, Ill		Medium
				Medium
27	Golden beauty	W. W. Barnard & Co., Chicago		
85	Golden beauty-Leaming, cross.	Experiment Station Farm		Medium
88	Golden beauty-Leaming, cross.	Experiment Station Farm	Yellow	
81	Golden dent	Jas. Moore, Hanover, Ill	Yellow	Early
44	Golden seal	J. A. Everit, Indianapolis	Yellow	
44		W. W. Barnard & Co., Chicago	White	
4	Hickory king	m. m. Damard & Co., Culcago	white	Carty

	I	6	7
--	---	---	---

STALKS, EARS, AND YIELDS OF SHELLED CORN PER ACRE, 1895.

	Heig	ht, in.	Sta	alks.	Ea	rs.	Lb.	Per c	•′ She	lled c	orn.
					N		b. of ears husked to air-dry.	cent. of cobs.			*Bu
	16		Ва	Ĩ	No. per a.	Wt.	ears ed to y.	of	Wt. per acre.	Per cent water.	Bu.air-dry.
P	Stalk	E	Barren.	Total	er	. 10	to 1	co	Vt. pe acre.	er cen water.	r-d
Plat.	lk.	Ear.	en.	al .	.a.	100.	as bu.	bs.	ber	nt. r.	ry.
1	106	46	1500	11900	10500	. 41	73.7	18.4	3550	17	59
5 16	107	43	1800	11500	9300	35 -	70.4	17.1 18.2	2675	15	45.8
	105	43	2500 600	11900 12200	9900 11800	39	73.3	18.2	3150	17 16	52.5 89.7
29 43	112 107	49 44	2400	12200	· 9900	55 35	73 69.8	17.3	5325 2875	10	49.8
53	116	48	600	12400	11600	57	68.3	18.9	5350	IO	96.7
53 68	118	49	900	11800	10700	66	74.1	18.8	5700	17	95.2
78	105	38	2300	12800	9500	42	75.2	20.6	3150	16	53.2
83	109	50	2500	11800	9400	43	75.1	19.3	3250	18	53.6 89.4
87 92	113 121	48	900 1700	12300 13500	11200 11100	58 65	72.7 71.9	18.5	5300 5950	16 16	09.4
-97	III	49 47	2800	14500	11800	63	73.4	18.6	6025	17	100.8
25	103	45	800	11800	10500	47	76.2	19.6	4000	19	65.3
80	96		3700	11300	8700	48	71.7	16.9	3450	16	57.9
65	95	37 38	1000	11900	11100	51	72	16.7	4725	16	79.2
75	89	34	4300	12500	8500	33	76.4	18.9	2250	20	36.3
26	107	41	1300	11600	11200	45 61	69.2	16	4200	14	72.3
76 14	107 98	44 37	1000 1500	12700 12100	11700 10400	31	71.5	16.7 17.2	5950 2650	16 16	100.3 44.5
15	98	43	2200	11800	9700	31	71.3	15.6	2575	17	44.5
72	99	40	1600	11800	10300	45	68.3	14.5	3975	15	68.1
36	94	32	1200	12600	10900	51	70.7	15.8	4650	16	78.2
-61	119	48	1000	12100	12200	57	68 .	13.6	6000	15	102.5
11	102	43	2800	11600	8800	32	73.8	16.2	2325	19	37.6
45	III	42	700	12200 10600	11400	54	70.8	16.4	5100	16 18	86.2
41 30	94 106	37 44	1900 1500	12000	9500 11100	51 53	72.2	20.2 16.2	3850 4925	18	63.3 81.4
51	100	44	600	112000	11000	36	76.4	15 7	3350	23	52
24	90	36	1000	12600	11800	31	66.8	15.9	3025	11	53.9
6	IIO	47	2900	11200	7800	40	69.7	16.9	2575	14	44.5
32	90	35	1100	11500	11300	28	66	14.1	2750	12	48.5
58	112	48	2900	12300	10300	53	69.6	15.1	4625	16	78.3
54 60	104	42	3700	13700	11000	41	65.2 68.4	11.7 18	3950	14	68.6
34	98 105	32 44	700 1700	13100 12100	13200 10500	35 46	68.7	16.7	3750 4000	11	66.9 69.9
47	111	44	900	12000	10200	34	70.1	16.7	2875	15	49.2
59	99	40	900	11700	11600	50	67.7	14.2	4975	14	86.1
82	91	37	1300	10100	9700	37	72.5	16.8	2975	17	49.3
57	97	39	300	11800	12100	40	67.5	15.5	4150	13	71.9
20	69	18	400	10100	10800	19	70.7	20.7	1625	II	29
31	88 101	32	300	11800 10300	11300 8400	26 38	65.3 81	14.7	2475	11 21	44.4
17 13	101	40 42	1900 2100	12200	10000	36	82.4	21.7 22.6	2525 2800	21 21	39.8 44.3
98 /	114'	52	5700	22000	14600	36	86.1	22.6	4025	25	60.4
74	105	40	2300	11800	9400	56	77.5	22.9	4050	17	67.7
22	98	37	2300	12200	9900	36	73.2	17.4	2975	18	49.2
27	IOI	45	1800	11200	. 8200	34	73.7	16.1	2350	19	38
85	92	42	2000	11900	9600	42	74.9	15.5	3400	17	56.4
88 81	102 89	46	1800 1200	14700	13000 10600	51	68.9	14.9	5700	15	97.2
	96 96	33 36	300	12900 12100	11300	94 38	69.3 67.9	15.3 15.7	3450. 3625	15 13	58.8
4	107	42	800	10500	8900	30	71.9	17.4	2725	16	45.9
						51	1-9		-1-5	1	10.7

TABLE 1.-Continued. VARIETIES OF CORN, THEIR CHARACTERISTICS,

	Name of variety.	Source of seed.		1 7
				Maturing
-			C C	ur
Plat			Color	in
1				0,d
6-	Hickom hing Holms' Imp and	Eunonimont Station Form	White	Late
67	Hickory king-Helms' Imp., cross		White	Medium
2	Illinois early white dent	J. C. Suffern, Voorhies, 111	White	
9	Illinois silver mine Illinois yellow dent	J. H. Beagley, Sibley, Ill J. C. Suffern, Voorhies, Ill		Early Medium
50	Improved Learning	J. C. Suffern, Voorhies, Ill		Medium
63	Improved Learning	Samuel Wilson, Mechanicsville, Pa.		
40 18	Iowa beauty	E. S. Teagarden, Boone, Iowa	White	
38	lowa king Leaming	W. T. Freeland, Windsor, Ill		Early Medium
-		E. E. Chester, Champaign, Ill		Medium
39 96	Leaming	E. G. Meriwether, Shipman, Ill	Yellow	Late
90	Y 1 YII 1	Experiment Station Farm	Yellow	Late
89	Leaming-golden beauty, cross.	Experiment Station Farm		Medium
55	Legal tender	Nims Bros., Emerson, Iowa	Yellow	
77	Little boss.	J. B. Martin, Atwood, Ill.		Medium
66	Macoupin county white	E. G. Meriwether, Shipman, Ill	White	Late
60	Mastodon	J. H. Beagley, Sibley, Ill	Yellow	Early
12	Mills county white	Nims Bros., Emerson, Iowa	White	Early
37	Minear's long grain	George Minear. Wing, Ill		Medium
42	Mortgage lifter.	J. A. Everitt, Indianapolis	Yellow	Late
93	Murdock	Dr. C. H. Mills, Champaign		Medium
64	Murdock's 90-day yellow	Plant Seed Co., St. Louis, Mo	Yellow	Early
23	New white cap yellow dent	J. A. Everitt, Indianapolis	White	Early
52	Ohio Hendren	E. E. Chester, Champaign	Yellow	Late
.71	Premium white	E. E. Chester, Champaign	White	Medium
56	Pride of Columbia	J. H. Beagley, Sibley, 111	Yellow	Early
95	Pride of the north	J. H. Beagley, Sibley, Ill	Yellow	Early
90	Pride of Saline	Hiram Howard, Marshall, Mo	Vellow	Late
84	Queen of the prairie	J. W. Council, Fancy Prairie, Ill	Yellow	Late
91	Reid's yellow dent	J. L. Reid, Delavan, Ill	Yellow	Early
28	Riley's favorite	James Riley, Thorntown, Ind	Yellow	Medium
8	St. Charles white	J. C. Suffern, Voorhies, Ill	White	Late
100	Sanford flint	W. W. Rawson & Co., Boston, Mass		Medium
79	Short stalk	J. B. Martin, Atwood, Ill		Medium
49	Stanner's yellow dent	W. H. Stanner, St. Joseph, Ill		Medium
86	Star	S. P. Campbell, Loami, Ill	Yellow	
48	Sterling	T. J. Groves, Dana, Ind		Medium
21	Storm	W. T. Freeland, Windsor, Ill		Medium
62	Van Dervoort's improved	Wm. Van Dervoort, Ellsworth, Ill.	Yellow	** **
3	Van Meter's white	J. W. Council, Fancy Prairie, Ill	White	Very late
10	Waggoner	W. T. Freeland, Windsor, Ill		Medium
70	White corn.	O. E. Chester, Champaign, Ill		Medium
19	White pearl.	J. H. Beagley, Sibley, Ill	White	Early
7	White prolific	Sam'l Wilson, Mechanicsville, Pa	White	Early
73	Wilson's 137 bu	J. B. Martin, Atwood, Ill.	White	Early
33	Valley corp	W. T. Freeland, Windsor, Ill.	Yellow	
46	Yellow corn	E. C. Fisk, Havana, Ill.		Medium
35	Yellow	C. W. Bush, Putnam, Ill	Yellow	Barry
*Air	-dry, containing eleven per cent, of m	oisture.		-

*Air-dry, containing eleven per cent. of moisture.

STALKS, EAKS, AND TIELDS OF SHELLED CONN FER MCRE, 1005.												
	Heigl	nt, in.	St	alks.	Ea	rs.	Lb.	Per c	She	lled c	orn.	
Plat.	Stalk.	Ear.	Barren.	Total.	No. per a.	Wt. 100.	Lb. of ears as husked to bu. air-dry.	Per cent. of cobs.	Wt. per acre.	Per cent. water.	*Bu.air-dry.	
67	110	54	1000	9600	8400	49	78	15.8 16.8	3475	24	52.9	
2	96	36	1700	12000	10100	31	70.5	16.8	2600	15	44.3	
9	90	37	2000	11100	9500	35	71.3	15.7	2825	18	47	
50	108	46	1100	12000	11300 10400	56 64	71.4 72.8	17.3	5275	16	89.3	
63 40	109 105	42 42	1300 500	11300 12700	12400	36	67.2	17.2 15.7	5525 3750	17 12	91.7 66.2	
18	91	35	1700	11700	9500	31	71.4	17.2	2400	16	40.6	
38	104	46	1000	12600	12500	36	65.9	13.9	3825	12	67.9	
39	105	42	100	12000	11700	40	66.5	13.2	4100	14	71.1	
96	112	48	3800	15100	11200	68	75.2	19.1	6150	18	101	
94	98	40	3700	15300	11800	48	71.5	16.7	4725	16	79.4	
89	105	45	1200	12900	12700	50	68.6	14.6	5400	15 16	92.5 80	
55	102 106	41	_ 600 800	13300 11800	10800 11000	52 41	70.3 73.9	15.6 19.4	4725 3625	10	60.9	
77 66	121	33 52	800	12400	12400	63	80.8	22.4	6050	21	96.5	
60	103	42	500	11600	11400	60	73.4	17.2	5625	18	93	
12	97	40	1300	10500	9500	35	69	15.8	2800	14	48 2	
37	IIO	46	800	11900	11200	49	67.1	14.5	4725	13	82.4	
42	104	39	2100	12500	10900	36	68	14.6	3350	14	57 • 7 85.9	
93	110	46	700	12200	11900	49	68.4	16.6	4900	13		
64	92	31	1100	11900	11800	34	64.8 68.2	13	3525	,12	62.5	
23	91	32	1200 1800	11500 11700	9900 9900	29	77.6	16.8 19.6	2350 4200	12 20	41.4 67.3	
52 71	113 106	47 40	900	11900	11100	53 65	75.3	19.0	6000	20	96.3	
56	87	34	1000	12800	11400	38	66.2	13.1	3775	13	66.1	
95	94	39	1700	12800	11200	45	65.2	13.4	4350	12	77.I	
90	125	58	2000	12000	10000	64	77.I	18.6	5250	21	83.7	
84	116	49	1600	12200	9800	53	76.1	17.7	4300	20	68.7	
91	93	41	1000	12400	11500	56	68	14.5	5475	14	94.1	
28 8	104	40	2000	12500	11100	32	67	13.6	3025	14	52.2	
100	108 98	45	300	4200 22600	2900 14100	67	82.3 70.1	24•4 19.1	1475	20 12	23.7 67	
79	96 96	33 37	9300 2400	13100	10300	33 41	77.2	20.4	3775 3325	12	54.1	
40	106	45	700	11200	11400	55	72.7	17.9	5150	16	86.7	
49 86	115	48 .	1700	12200	10200	59	79.1	19	4900	22	76.5	
48	103	41	3200	12700	9600	36	70.3	15.1	2925	16	49.4	
21	103	39	1200	11500	10100	44	76	18.9	3625	19	58.9	
62	104	41	1200	12200	11000	55	69	15.6	5125	14	88.1	
3 ·	103	49	3900	12100	7300	43	78.9	17.6	2550	23	39.6	
10	94 102	42	2500 2000	11700 13000	9000 11500	35	77.4	18.9 18.7	2575 5125	21 16	41 86.3	
70 19	90	40 34	1700	13000	9600	55 27	73 67.3	13.7	2200	10 14	37.9	
7	90	34 37	500	11200	10200	35	72.4	16.8	2850	14	49.4	
73	110	44	700	12700	11900	56	76.4	19.9	5325	18	87.4	
33	110	45	300	10100	10800	57	71.7	16.3	5125	17	85.4	
46	100	39	2100	9800	8400	53	72.8	16.3	3725	18	61.1	
35	86	34	800	12500	11600	43	676	15.6	4200	13	73.6	

STALKS, EARS, AND YIELDS OF SHELLED CORN PER ACRE, 1895.

16**9**

[March,

TABLE 2. SYNOPSIS OF VARIETIES OF CORN, 1895.

				·
(· · ·	· · · · · · · · · · · · · · · · · · ·	Reid's yellow dent	Yields.
		Smooth }	VanDervoort's improved	94 88.1 { 91
	Yellow	Rough	Cuban queen Early Buller. Edmonds Extra early Huron. Golden dent. Golden seal. Iowa beauty Legal tender. Mastodon. Murdock go day. Pride of Columbia. Pride of the north.	52 48.5 86.1 44.4 58.8 63.3 66.2 80 93 62.5 66.1 77.1
Early	`	Smooth	Champion white pearl, smooth Early Iowa Extra early Adams. White prolific. Wilson's 137 bu	42.8 66.9 29 49.4 87.4
	White	Rough <	Burr's white Davis' improved. Hickory king. Illinois silver mine lowa king Mills county white. New white cap yellow dent. White pearl.	$ \begin{array}{c} 79.2\\ 53.9\\ 45.9\\ 47\\ 40.6\\ 48.2\\ 41.4\\ 37.9 \end{array} $
-		Smooth <	John Cloud. Conqueror Crowder. Golden beauty . Improved Leaming. Leaming (ave. 3 plats). Murdock.	$\left.\begin{array}{c} 86.2\\ 63.3\\ 81.4\\ 38\\ 91.7\\ 80\\ 85.9 \end{array}\right\} 75.2$
Medium	Yellow, < (72.9 bu.)	Rough <	Champion yellow dent Clark's Iroquois. Early eclipse Early Leaming Early Mastodon Illinois yellow dent. Minear's long grain. Riley's favorite. Sterling. Yellow corn.	78.3 69.9 49.2 89.3 71.2
(04.0 00.)		Smooth	Boone Co. white (ave. 13 plats) J. J. Freeland. Sanford's flint. Storm. Waggoner	$\left.\begin{array}{c}73.2\\49.2\\67\\58.9\\41\end{array}\right\} 57.8$
	White	Rough	Brown Champion white pearl, rough. Chas, Cloud Dungan's white prolific First premium. Illinois early white dent. Little boss. Premium white Short stalk.	44.5 39.8 44.3 60.9 96.3
		Smooth	Ohio Hendren Queen of the prairie Star	67.3 68.7 76.5
	Yellow	Rough	Early golden cable Mortgage lifter Pride of Saline Yantis	57.7 83.7 73.8
Late		Smooth	Flour corn Macoupin county white	60.4 78.4
	White	Rough	Y Macoupin country white	100.3 44.3 67.7 } 55.1

ever cause this variation within the variety arose it was connected with the yield, for the one plat classed as early gave a yield of 49.8 bu.; the five classed as medium, an average yield of 69.5 bu.; and the seven classed as late, an average yield of 79.2 bu. The suggestion is that the labor the corn plant is able to do is to a considerable extent dependent on the time through which its energies are extended. This principle has support from Table 2 in which the varieties classed as late have upon the average the highest yield, even though two or three suffered from failing to mature.

Except in 1892 and the present year, the highest yield has been from the medium maturing varieties, the average yields for eight years being early 56.2; medium 65.1; and late 59.8; from which we infer that the chief danger for late varieties is interruption by frost before their labors are finished, but that they have the capacity for the greatest total results.

That the late varieties are capable of outyielding all others does not argue for their adoption. The element of certainty that attends the growth of medium maturing varieties more than compensates for the possible greater average of later sorts in favorable seasons. The ability to produce a paying crop in an unfavorable season is a chief recommendation for a variety, even though for a period of years its yield might be exceeded by a later sort.

COLOR.

Contrary to the general fact the yellow varieties largely outyielded the white in 1895, the yellow varieties yielding an average of 71.8 bu., and the white, 55 bu. Up to this time the average yield for all yellow varieties for seven years was 60.3 bu., and for all white varieties 61.8 bu.

BARREN STALKS.

Actual count was made of the number of fruitful stalks, of barren stalks, and the total number of ears upon so much of each plat as would constitute one one-hundredth of an acre. These numbers multiplied by 100 appear in Table 1 as the approximate figures per acre.

The reader will be struck by the increased number of barren stalks, amounting to 13 per cent., and will ask: What is the cause? Is it due to a circumstance that may be controlled, or is it an attendant end that must be endured? Are certain varieties more afflicted with barrenness than others? A casual glance at Table I would give this impression, but exceeding wide variations in this matter are seen within the single variety, Boone county white.

171

The Sanford flint variety with 9300 barren stalks also shows the largest total number of stalks, with one exception the largest number of ears, and a very satisfactory yield. This strongly suggests that suckers freely appeared, for in thinning to four kernels to the hill the total number of stalks to the acre is less than 13,000. Whether we are to look upon suckers, improper fertilization, or other accident as the great source of barren stalks, or whether there be an inherent tendency from the seed are interesting questions, yet unanswered, and are questions upon which the Station is working.

NUMBER OF EARS TO THE STALK.

Upon comparing the total number of fruitful stalks with the number of ears produced per acre it is evident that the rule is that one stalk produces but one ear and that there are by no means enough twin ears to make good the number of barren stalks. The fact that in a few cases the number of ears is less than the number of estimated fruitful stalks shows an error at some point in the work, and most likely it is that a few barren stalks escaped notice. Manifestly the column showing total number of stalks per acre is least open to error, and that showing barren stalks the most fruitful of error by oversight.

YIELDS.

The corn was husked by hand, care being taken to secure all ears and nubbins. The weight of ear corn, cobs, and of shelled corn was taken immediately and a quart sample from each plat was put in glass cans for determination of moisture. This work was performed in duplicate by Mr. C. G. Hopkins, chemist of the Station. The final yields are expressed in terms of air-dry grain, containing eleven per cent. of moisture.

It will not do to credit all these variations in yield to varietal differences. A glance at the wide differences in the yield of Boone county white will confirm the truth of this statement. So unaccountable are these extreme variations in yield that it seems necessary to resort to systematic duplication, reducing the number of varieties if need be to give anything like a just comparison for a single season.

While yields vary greatly with the season it is likely true that those of different varieties do not vary together; that is to say, that different varieties of corn, like different plats of ground, are differently affected by season.

It is therefore only after a long series of years and from plantings in a variety of plats that anything like a true comparison can be established. The yields of the more prominent varieties for several years and from different plats are given in Table 3. , 1896.]

				· · ·					
Varieties.	1888.	1889.	1890.	1891.	1892.	1893.	1894.	1895.	Ave.
Champion white pearl,		94.8	74.9	76.5	65.0	37-3	51.0	100.3	71.2
Leaming Burr's white	86.6	80.6	69.4 67.7	67.3	70.1 64.2	34.6 38.6	62.1 69.7	80.0 79.2	68.6 68.6
Clark's Iroquois	68.5	81.9	59	65.4	72.9	30.7	44 3	102.5	65.6
Legal tender Murdock	84.2	68.9 65.0	60 61.6	56.8 59.8	60.3 57.6	33.8	57.0 48.1	89 85.9	63.7 61.7
Edmonds	83.7	66.3	55.9	58.6	58.4	28.3	54.3	86.1	61.4
Riley's favorite	SI.8	66.1	53.3	56.1	74.1	38.1	62.8	52.2	60.5
Varieties.			1890.	1891.	1892.	1893.	1894.	1895.	Ave.
Boone county white			74 6	89.3	85.5	33.8	74.3	73.2	71.8
Champion white pearl,			74.9	70.5	65	37.3	51	100.3	67.5
Burr's white		1	67.7	67.7	64.2	38.6	69.7	79.2	64.5
Leaming			69.4	67.3	70.1	34.6	62.1	80.0	63 9 62 5
Clark's Iroquois Legal tender			59 60.0	65.4	72.9 60 3	30.7 33.8	44.3	102.5	59.5
Murdock			61.6	59.8	57.6		57.0 48.1	85.9	59.5
Edmonds			55.9	58.6	58.4	28.3	54.3	86.1	56.8
Riley's favorite			53.3	56.1	74.1	38.1	62.8	52.2	56.1
Golden beauty				75.8	63.1	36.4	31.6	38.0	49.6

TABLE 3. YIELD IN BUSHELS OF AIR-DRY CORN FOR A SERIES OF YEARS.

Experiment No. 3. Time of Planting.

Nine plantings of the same variety of corn were made at different dates one week apart, and at different rates of seeding from two stalks per hill to five, inclusive. Although an excess of seed was planted to be thinned when six inches high, in but few cases was a full stand secured and the actual seeding is less than the plan provided. See Table 4.

The land for all plantings had been treated the same for many years. It had raised a crop of corn the previous season, and each planting was on ground freshly plowed and harrowed.

All plantings were cultivated with the same tool and upon the same day excepting that plantings.6 and 7 were rolled, and 7 and 8 were harrowed before cultivating.

A killing frost on May 14, cut the first and second plantings to the ground, a disaster from which they never fully recovered.

The different plantings show marked differences in disposition to attain size, and the attempt was made to secure comparative growth in terms of height of plant. Though it is difficult to express such data accurately in figures the results given are the averages of many measurements, and express fairly well the development of the different plantings. See Table 5.

The first planting attained a height of 10 inches within 39 days after planting. That of May 6th passed this point sometime between the 25th and the 31st day, and practically with the first planting made 14 days before, whose development it exceeded and

March.

		-		1	<u></u>	Per	cent.	
Plat No	Date of	Stalks	Per cent.	Field wt.	Wt.		Dry	Yield, bu. air-
Z	planting.	per hill.	full stand.	ear corn.	shelled corn.	Cobs.	matter,	dry 11 %
							shelled corn.	moisture.
			65.6	34.75	30	13.7	87.02	52 2
2	*April 22	5 4	63.3	28.75	24.75	13.7	86.62	42.8
3	April 22	3	42.7	12.5	10.5	16	87	18.2
4		5	<u>4.7</u> 92.5	1 45.25	39	25 13.3	84.76	<u> </u>
5 6	*April 29	4	93.7	43.25	39 37	14.9	86 04	63.6
7 8		32	63.5	26.25	22 20	16.2	85.25	37.5
	·	5	<u>62.5</u> 82.5	23.5	38.25	<u>13.8</u> <u>15.5</u>	84.62	33.8
10	May 6	4	91.4	41.5	35.25	15.1	83.38	58.8
11 12	may 0	3	100	46	39	14.7	83.34	65
12		5	100	40	33.25	<u>16.2</u> 15.9	83.90	<u>55.8</u> 53.8
14	May 13	4	90.6	36.75	31.25	14.9	83.65	52.3
15	may 13	3	93.7	39.5	33 25	15.2	83.46	55.5
<u>16</u> 17			103.1 88.1	43.75	36 5	16.6	82.23 82.48	60
18	16.	5 · 4	84.4	44.75 40.75	37.75 34.5	15.0	82.39	56.8
19	May 20	3	92.7	45.5	38	16.5	81.64	62
20		2	109.4	41.5	34.25	16.9	81.93	56.1
21 22		5 4	74.4 63.3	37 25.75	30.25 20	17.6	75.73 72.04	45.8 28.8
23	May 27	3	77.1	32.25	24.5	23.3	69.31	33.9
24		2	90.6	25.5	19.75	22.5	70 30	27.8
25 26		5	69.8 76.6	25	19.75 18.5	21 22.1	74.78 72.88	29.5 26.9
20	June 3	43	85.4	23.75 25	19.25	22.1	65.72	25.3
28		2	79.7	19.5	14.75	24.4	70.39	20.7
29		5	75.6	23.25	17	26.9	62.45	21.2
30 31	June 10	4 3	81.2 86.5	25 21	18 75 14.75	24 29.8	66.36 63.27	24.8 18.6
32		2	81.2	22.5	15 75	30	61	19.2
33		5	76.9	22	15.5	29.5	58.70	18.2
34	June 17	4	81.2	18.75	13.25	29.3	55.86	14.8
35. 36		3	91.7 93.7	24.75	17 15	31.3 33-3	63.01 59.64	21.4 17.8
5-			95.7		- 5	55.5	554	_,

TABLE 4. RESULTS FROM PLANTING ON DIFFERENT DATES AND WITH VARYING AMOUNTS OF SEED, 1805.

*Killed to the ground by frost, May 14th.

whose yield it beat by more than 10 bushels per acre. The planting of May 20th reached a height of 10 inches in 17 days from date of planting, and matured with the planting of May 6th, which it practically equaled in yield.

With this planting we seemed to have passed the point when the corn was able to gain by rapid development sufficient time for a maximum crop, and although the planting of the 27th equaled it did not appear able to exceed the record of its earlier planted neighbor for rapid early development. It gradually fell behind in yield and was clearly distanced, and all later plantings failed to

1896.] FIELD EXPERIMENTS WITH CORN, 1895.

Date of		May.			June.			July.			August.				September.			
planting.	-	31	7	14	21	28	5	12	19	26	2	9	16	23	30	6	13	20
April 22 }	Leaf Tassel	10 	18	25	40	57	70	83 77	93 87		99 92	97 96	95 95	93 94		•••	•••	•••
April 29	Leaf Tassel	8	17	28	44	57	74		99	106	105	105	104	102 101	93	•••	•••	•••
May 6	Leaf Tassel	7	13	23	36	46			88	104	105	105	104	103 107	96			•••
May 13	Leaf Tassel	6	12	21	33	45	60			107	108	107	107	105 106	99		••	• •
May 20 }	Leaf Tassel	4	II	20	31	44	56	72	87	104	107	107	107	100	101		•••	••
May 27 }	Leaf: Tassel		•••	 10	 13	21	31	44	59		89	97	101	109 101 101	95	97	••	•••
June 3	Leaf Tassel	•••	•••	3	··· 7	12	 21	 30	 42	61	70	94 83 86	89			94 90 87	•••	•••
June 10	Leaf	•••	•••	•••	3	5	 10	· 1	27	 45	59 64	70	78	81	83 80	86	85 82	•••
	Tassel	•••	•••	•••		•••	 9	 10		32		55	89 64	65	68	83 72	73	73
(Tassel		•••	•••	•••		•••		••	•••	•••		•••	60	08	72	73	77

TABLE 5. AVERAGE HEIGHTS AND RATE OF GROWTH OF DIFFERENT PLANTINGS IN INCHES TO TIP OF TASSEL AND LEAF, 1895.

mature. Moreover these last plantings betrayed a lessened energy in the matter of rapid early growth, a tendency to take on a less complete development and at little or no saving of time. It seemed a clear case of their inability to make a crop, or even to make the most of the time at their disposal. In other words the last plantings did not accomplish so much in a given time as the earlier ones.

The average of eight seasons is the same for plantings ranging from May 4th to 18th with tendencies slightly favoring the later dates. See Table 6.

Dates.	Bushels air-dry corn per acre.											
	1888.	1889.	1890.	1891.	1892.	1893	1894.	1895.	'Ave.			
April 22–26 April 27–May 4 May 4–11 " 11–18 " 19–25 " 26–June 1 June 1–8	87 86 87 83 81	52 44 51 56 50 55 50	67 71 75 71 74 61	51 50 48 50 52 34 37	72 70 63 66 59 68	 47 48 40 37 34	58 60 61 60 61 40 42	29 50 61 55 59 34 26	48 60 62 62 61 56 50			
**************************************	50 • •	50 	60 	19 	49 30	38 22	21 12	21 18	39 21			

TABLE 6. RESULTS FROM PLANTING AT DIFFERENT DATES, 1888-1895.

Experiment No. 5. Thickness of Planting.

The plantings made at successive dates in Experiment No. 3 were made to be thinned to four rates of seeding, viz., 2, 3, 4 and

175

March,

5 kernels to the hill. In most cases a full stand was not secured, though manifestly less difficulty was encountered with the thinner seedings.

Table 7 gives the per cent. of a full or desired stand and the yield of each, disregarding the extreme plantings as outside the range of agricultural practice. It will be noticed that the average yield declines from the greatest to the least seeding, but it will also be noticed that the actual seeding was considerably thinner than the nominal.

In three out of the six seedings the 5 kernels (actually but $4\frac{1}{2}$ kernels) was most successful. Once three kernels, and once 2 kernels secured the highest yield, but in both cases the stand was full.

Date of planting.	Per	cent. of	full st	and.	Yield.				
	5 ker.	4 ker.	3 ker.	2 ker.	5 ker.	4 ker.	3 ker.	2 ker.	
April 29 May 6 May 13 May 20 May 27 June 3 Average.	92.5 82.5 88.8 88.1 74.4 69.8	93.7 91.4 90.6 84.4 63.3 76.6 83.3	1	62.5 100 103.1 109.4 90.6 79.7	67 63.3 53.8 62.2 45.8 29.5 53.6	63.6 58.8 52.3 56.8 38.8 26.9	$ \begin{array}{r} 37.5 \\ 65 \\ 55.5 \\ 62 \\ 33.9 \\ 25.3 \\ 46.5 \end{array} $	33.8 55.8 60 56.1 27.8 20.7	

TABLE 7.º INFLUENCE OF THICKNESS OF PLANTING UPON VIELD.

In nearly every case more nubbins appeared in the thicker seeding, and generally more good ears in the medium seeding, but the total yield shows a disposition to follow the nubbins rather than the highest number of large ears, although in the seeding of May 13th the largest yield accompanied the fewest ears of all, 6900, raised from two stalks to the hill.

Planting 3 ft. 8 inches each way provides 3240 hills per acre. This shows that two stalks per hill, each bearing a good ear, are capable of a fair yield of corn, but the result is seldom attained; and most of the fair yields, and all the great ones are from at least 10,000 ears per acre.

Experiment No. 23. Rotation Experiment.

Table 8 gives full results of experiments with corn in rotation, with oats alone and with both oats and clover, as compared with corn raised continuously both with and without manure. The principal facts are more clearly set forth in Table 9, in which each method is compared with corn raised continuously without manure. 1806.]

CONTINUOUS CROPPING WITH CORN, AND ROTATION, 1888-1895.

VABLE 8.

		10	Stover, lb.	3750 3650 5180 5180 2198 23198 23268
		Plat No. 10.	Grain,	46.4 59 3 59 4 49.6 57.5 57.5 57.5
		lat N		h h h h
		P	Crop.	Corn Corn Cl'v'i' Cl'v'i' Corn Corn
		.6.	Stover, lb.	51.2 3120 50.3 120 54.4 1748 42 2500 55.6 2918 25.2 2075
		Plat No. 9.	Grain, bu.	61.2 50.3 54.4 55.6 25.2
		Pla	Crop.	Corn Corn Oats Oats Oats Corn Corn
any kir		8.	Stover, lb.	3045 2664 1930 2812 1334 1334 1992 1519
ers of a		Plat No. 8.	Grain, bu.	56.4 58.2 55.3 55.3 24 52.3 17.7
No manure or commercial fertilizers of any kind,	Corn, oats, and clover.	PI	Crop.	Corn Corn Corn Oats Oats Oats Corn
ercial	s, and	7.	Stover, 1b.	3030 3060 3060 2088 2246 2038 1438 2036 2036 596
conum	rn, oat	Plat No. 7.	Grain, bu.	61.9 61.9 33.9 33.9 29.8 52.5 52.5
nure of	ပိ	Id	Crop.	Cl ¹ v ¹ r Cl ¹ v ¹ r Corn Corn Oats Oats Oats
No mai		6.	Stover, lb.	1665 6665 2900 2554 2554 2636 2160 1816 1816
876		Plat No. 6.	Grain, bu.	48 •••• 43.8 56.5 57.5 54.9 14.3
since 1		Id	Crop.	Oats Cl'v'r Cl'v'r Corn Corn Oats Oats
In rotation since 1876		5.	Stover, lb.	2145 8080 3010 2910 2910 2920 2216 2308 2308
In re		Plat No. 5.	Grain, bu.	48.6 67.6 34.1 65.1 11.1
		PI	Crop.	Oats Cl'v'r Cl'v'r Cl'v'r Corn Corn Oats Oats
	ats 1g.	4.	Stover, 1b.	3070 1775 1332 2100 1710 1802 1936 1936
	Corn and oats alternating.	Plat No. 4.	Grain, bu.	49.5 37.4 37.2 33.2 33.2 29.6 57.2 20.8
	Corralt		Crop.	Corn Oats Corn Corn Oats Corn
	No ertilizers.	Plat No. 3.	Stover, lb.	2575 2380 2460 1490 2418 2080 2418 2418
ce 1876	fertili		Grain, bu.	54.3 43.2 48.7 28.6 33.1 28.6 33.1 21.6 34.8 34.8 34.8
In corn annually since 1876.	Comerc'l fertilizers applied annually.	Plat No.2.	Stover, lb.	4640 57.4 3840 3392 41.5 2680 3284 29.2 2680 3284 29.2 2400 2500 32 7 1530 2603 39.8 2662 3682 39.8 2652 3682 39.8 2652 3887 18.9 1752
nuna	Con fert app	Plat	Grain, bu.	4640 57.4 3302 4159 3284 29.2 2261 32 7 3072 19.3 3682 39.8 2187 18.9
orn a	pap x		Stover, lb.	666.7 4640 57. 77.4 45. 44.1 3392 41. 60.5 2610 32 24 3072 19. 23.5 3682 39. 3382 187 18.
In co	Barnyard manure applied annually	Plat No. I.	Grain, bu.	96.7 7.4 7.7.4 7.4 14.1 14.1 14.1 14.1 14.
	Bau m al	Pla		1888 66.7 4 1889 77.4 1890 55.1 5 1891 44.1 5 1893 260.5 2 1893 24 32.5 1894 32.5 1894 32.5 1895 1833

EFFECT OF CONTINUOUS CROPPING

Table 9 is capable of but one interpretation upon this point. viz., that the vield from unmanured land continuously in corn is slowly, but surely decreasing. This decrease is not gradual, but the vield as it rises and falls in response to season sinks into a deeper trough with each recurring unfavorable year, from which it fails to emerge with its former vigor. (See next page.)

VALUE OF BARNYARD MANURE.

Nothing could be clearer than the benefit of liberal dressings of barnvard manure except in exceedingly dry seasons when it is inoperative or positively injurious. It shows in this experiment in one instance a benefit of nearly 80 per cent. advance in yield, and an average of 11.6 bu. or over 30 per cent.

VALUE OF COMMERCIAL FERTILIZERS.

Though applied in great variety. but in moderate amounts no benefit to yield can be as yet discovered, either in actual increase or in tendency.

BENEFIT OF ROTATION.

While the plat under rotation between corn and oats showed at first a less ability to yield than did the plat continuously in corn, the later yields have been decidedly in favor of the rotation plat,

BULLETIN NO. 42.

Continuous.							In rotation.							
Year.	With- out ma- nure.	Barn- yard ma- nure.	Gain or loss.	Com- mer- cial fertil- izers.	Gain or loss.	With oats.	Gain or loss.	ıst crop after clover.	Gain.	2nd crop after clover.	Gain.			
1838 1839 1890 1891 1892 1893 1894 1895	54.3 43.2 48.7 28.6 33.1 21.6 34.8 21 1	66.7 77.4 55.1 44.1 60.5 24 32.5 18.3	12.4 34.2 64 15.5 27.4 2.4 -2.3 -2.8	57.4 45.9 41.5 29.2 32.7 19.3 39.8 18.9	-3 I 2.7 -7.2 .6 4 -2.3 5 -2.2	49.5 Oats 54.3 33.2 Oats 29.6 Oats 20.8	-4.8 5.6 4.6 8 	56.4 61.9 43.8 67.6 45.8	13.2 13.2 15.2 34.5 24.2	58.2 33.9 56.5 34.1 60.3	95 5.3 23.4 12.5 25.5			
Ave			11 6		I		2.6		20		15.2			

TABLE 9. CORN CONTINUOUS AND IN ROTATION.

with an average of 2.6 bu. per year. This is perhaps scarcely enough pronounced to warrant the statement that a rotation with oats is a substantial relief, but it affords strong presumptive evidence.

BENEFIT OF CLOVER.

He who runs may read not only a decided increase every year in which corn follows clover, amounting to an average of 20 bushels, but that the second crop after clover is substantially benefited, amounting to an average of 15.2 bushels.

Experiment No. 90. Rate of Growth.

Data upon this matter are tabulated in Table 5 to which the student is referred. It can scarce fail of notice that the rate of growth not only varies greatly throughout the life time of the plant, but that the corn plant passes through the same stages of development much more rapidly at some seasons than at others, and that the rate of growth is to a considerable degree independent of temperature.

SUMMARY.

Commonly medium maturing varieties have given slightly the highest average yield but in the season of 1895 the heaviest average yield was from the late varieties.

The earliest plantings did not secure the greatest yield.

Corn frozen to the ground recovered, and yielded a fair crop, 'though some of the earliest planting was killed outright.

1896.] FIELD EXPERIMENTS WITH CORN, 1895.

Medium plantings grow faster, attain a greater development, and secure a higher yield than extremely early or extremely late plantings.

Thicker plantings give the higher yields, but smaller ears and more nubbins.

A considerable number of stalks are barren, usually for all varieties about 11 per cent.

Barrenness varies greatly with both variety and season for unknown reasons.

Maximum yields are generally from about 10,000 ears per acre.

The same variety raised on neighboring plats varies from early to late, and from 45.8 bushels to 100.8 bushels in yield per acre.

Land continuously in corn without addition of fertility shows a decided tendency to decrease of yield.

Barnyard manure applied annually has added to yield, but is no advantage in extremely dry seasons.

Commercial fertilizers have exerted no effect in these experiments.

In rotation with oats corn shows the same tendency to decrease of yield, but apparently in a lessened degree.

Land under a rotation containing clover gives decidedly superior yields.

EUGENE DAVENPORT, M. AGR., Agriculturist. W. J. FRASER, B. S.

ORGANIZATION.

BOARD OF TRUSTEES, UNIVERSITY OF ILLINOIS.

NELSON W. GRAHAM, Carbondale, President. JOHN P. ALTGELD, Springfield, Governor of Illinois. JAMES W. JUDY, Tallula, President State Board of Agriculture. SAMUEL M. INGLIS, Springfield. Superintendent Public Instruction. RICHARD P. MORGAN, Dwight. ISAAC S. RAVMOND, Sidney. DR. JULIA H. SMITH, Chicago. SAMUEL A. BULLARD, Springfield. NAPOLEON B. MORRISON, Odin. ALEXANDER McLEAN, Macomb. JAMES E. ARMSTRONG, Chicago. MRS. LUCY L. FLOWER, Chicago.

BOARD OF DIRECTION, EXPERIMENT STATION

THOMAS J. BURRILL, PH.D., Urbana, Prof. of Botany and Horticulture, President.
E. E. CHESTER, Champaign, of State Board of Agriculture.
E. A. RIEHL, Alton, of State Horticultural Society.
H. B. GURLER, DeKalb, of State Dairymen's Association.
N. B. MORRISON, Odin, Trustee of the University.
ISAAC S. RAYMOND, Sidney, Trustee of the University.
ANDREW S. DRAPER, LL.D., Urbana, President of the University.
STEPHEN A. FORBES, PH.D., Urbana, Professor of Zoölogy.
EUGENE DAVENPORT, M.S., Urbana, Professor of Animal Husbandry.

THE STATION STAFF.

THOMAS J. BURRILL, PH.D., Horticulturist and Botanist, President Board of Direction.

WILLIAM L. PILLSBURY, A.M., Urbana, Secretary, EUGENE DAVENPORT, M.S., Agriculturist. CYRIL GEORGE HOPK INS, M.S., Chemist.
STEPHEN A. FORBES, PH.D., Consulting Entomologist. DONALD MCINTOSH, V.S., Consulting Veterinarian.
GEORGE W. MCCLUER, M.S., Assistant Horticulturist. GEORGE P. CLINTON, M.S., Assistant Botanist. WILL A. POWERS, B.S., Assistant Chemist.

· .

-.

Υ.

