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ABSTRACT 

A total of 1050 specimens of 46 different copper alloys were ex- 

posed at two depths, 2,500 and 6,000 feet, in the Pacific Ocean for 

periods of time varying from 123 to 1064 days in order to determine 

the effects of deep ocean environments on their corrosion resistance. 

Corrosion rates, types of corrosion, pit depths, stress corrosion 

cracking resistance, changes in mechanical properties and analyses of 

corrosion products of the alloys are presented. 

Copper, beryllium-copper, arsenical admiralty brass, aluminum 

brass, nickel brass, G bronze, modified G bronze, M bronze, leaded tin 

bronze, phosphorous bronze A, phosphorous bronze D, nickel-aluminum 

bronzes, Ni-Vee bronze A, Ni-Vee bronze B, Ni-Vee bronze C, copper- 

nickel alloys 95-5, 80-20, 70-30 containing 0.5 percent iron, 70-30 

containing 5 percent iron, 55-45, nickel-silver containing 18 percent 

nickel, and Cu-Ni-Zn-Pb corroded uniformly and thir corrosion rates  ®& 

were low, 1 MPY or less after 1 year at a depth of 2,500 feet and 

after 2 years at a depth of 6,000 feet. 

The remainder of the alloys were attacked by selective corrosion: 

commercial bronze, red brass, yellow brass, Muntz metal, Naval brass, 

manganese bronze, nickel-manganese bronze, wrought 5 and 7 percent 

aluminum bronzes, cast 10, 11 and 13 percent aluminum bronzes, 3 per- 

cent silicon bronze and silicon bronze A. 

The copper alloys were not susceptible to stress corrosion crack- 

ing. 
Only the mechanical properties of the alloys attacked by selective 

corrosion were adversely affected. 

The corrosion products consisted of cupric chloride, copper 

hydroxide-chloride, metallic copper, copper oxy-chloride and nickel 

hydroxide. 



The aggressiveness of the sea water and of the bottom sediments 
on the copper alloys was about the same except for the copper-nickel 

alloys where the bottom sediments were less aggressive. 
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PREFACE 

The U. S. Naval Civil Engineering Laboratory is conducting a 

research program to determine the effects of deep ocean environments 

on materials. It is expected that this research will establish the 

best materials to be used in deep ocean construction. 

A Submersible Test Unit (STU) was designed, on which many test 
specimens can be mounted. The STU can be lowered to the ocean floor 

and left for long periods of exposure. 

Thus far, exposures have been made at two deep-ocean test sites 

and at a surface sea water site in the Pacific Ocean. Six STUs have 

been exposed and recovered. Test Site I (nominal depth of 6,000 feet) 

is approximately 81 nautical miles west-southwest of Port Hueneme, 

California, latitude 33°44'N and longitude 120°45'W. Test Site II 
(nominal depth of 2,500 feet) is 75 nautical miles west of Port Hueneme, 

California, latitude 34°06'N and longitude 120°42'W. A surface sea 
water exposure site (V) was established at Point Mugu, California 

(34906'N - 119°07'W) to obtain surface immersion data for comparison 
purposes. : 

This report presents the results of the evaluations of copper and 

copper alloys exposed at the above three test sites. 

ababal 



INTRODUCTION 

The development of deep diving vehicles which can stay submerged 

for long periods of time has focused attention on the deep ocean as an 

operating environment. This has created a need for information con- 

cerning the behavior of common materials of construction as well as 

newly developed materials with promising potentials, at depths in the 

ocean. 
To study the problems of construction in the deep ocean, project 

"Deep Ocean Studies" was established. Fundamental to the design, 
construction and operation of structures, and their related facilities 

is information with regard to the deterioration of materials in deep 

ocean environments. This report is devoted to the portion of the pro- 

ject concerned with determining the effects of these environments on 

the corrosion of metals and alloys. 

The test sites for the deep ocean exposures are shown in Figure l 

and their specific geographical locations are given in Table 1. The 

complete oceanographic data at these sites, obtained from NCEL cruises 

between 1961 and 1967, are summarized in Figure 2. Initially, it was 

decided to utilize the site at the 6,000 foot depth. Because of the 

minimum oxygen concentration zone found between the 2,000 and 3,000 

foot depths, during the early oceanographic cruises, it was decided to 

establish a second exposure site (STU II-1 and II-2) at a nominal 
depth of 2,500 feet. For comparative purposes, the surface water site 

V was established. Even though the actual depths are shown in the 

tables, the nominal depths of 6,000 and 2,500 feet are used throughout 

the text. 

A summary of the characteristics of the bottom waters 10 feet above 

the bottom sediments at the two deep ocean exposure sites and at the 

surface exposure site is given in Table l. 

Sources of information pertaining to the biological characteristics 

of the bottom sediments, biological deterioration of materials, detail- 

ed oceanographic data, and construction, emplacement and retrieval of 

STU structures are given in Reference 1. 

The procedures for the preparation of the specimens for exposure 

and for evaluating them after exposure are described in Reference 2. 

Previous reports pertaining to the performance of materials in 

the deep ocean environments are given in References 1 through 8. 

This report is a discussion of the results obtained of the 

corrosion of copper and copper alloys for the seven exposure periods 

shown in Table l. 

RESULTS AND DISCUSSIONS 

The results presented and discussed herein also include the 

corrosion data for copper alloys exposed on the STU structures for the 



International Nickel Company, Incorporated. Permission for their 

incorporation in this report has been granted by Dr. T. P. May, Manager, 

Harbor Island (Kure Beach) Corrosion Laboratory, Wrightsville Beach, 

North Carolina, Reference 9. 

Results from other participants in the NCEL exposures are also in- 

cluded; Annapolis Division, Naval Ship Research and Development Center 

(formerly Marine Engineering Laboratory) (Reference 10) and the 

Chemistry Division, NCEL, (Reference 11). 

Deep ocean corrosion results from the Atlantic Ocean (References 

12 and 13), surface corrosion data from the Atlantic Ocean (Reference 

14) and surface corrosion data from the Pacific Ocean (References 15 
and 16) are included for comparison purposes. 

COPPER 

The chemical composition of the coppers are given in Table 2, 

their corrosion rates and types of corrosion in Table 3, their re- 

sistance to stress corrosion cracking in Table 4, and changes in their 

mechanical properties due to corrosion in Table 5. 

Corrosion 

The excellent corrosion resistance of copper is partially due to 

its being a relatively noble metal. However, in many environments its 

satisfactory performance depends on the formation of adherent, relative- 

ly thin films of corrosion products. In sea water corrosion, resist- 

ance depends on the presence of a surface oxide film through which 

oxygen must diffuse in order for corrosion to continue. This oxide 

film adjoining the metal is cuprous oxide covered with a mixture of 

cupric oxy-chloride, cupric hydroxide, basic cupric carbonate and 

calcium sulfate. Since oxygen must diffuse through this film for 

corrosion to occur it would be expected that under normal circumstances 

the corrosion rate would decrease with increase in time of exposure. 

The corrosion rates of copper in sea water, both at depth and at 

the surface, are given in Table 2 and shown in Figure 3. The corrosion 

rate decreased with increase in duration of exposure at the 6,000 foot 

depth in the Pacific Ocean and the data from all three participants, 

Naval Civil Engineering Laboratory, International Nickel Company, Inc. 

and Naval Ship Research and Development Center was in very good agree- 

ment. At the 5,600 foot depth in the Atlantic Ocean, Reference 12, the 

corrosion rate for copper after 1050 days of exposure was practically 

the same as at the 6,000 foot depth in the Pacific Ocean. This close 

agreement of the corrosion rates of copper in the two oceans is not 

unexpected since the corrosion of copper is not appreciably affected by 

changes in oxygen concentration. 

At depths of 4,250 and 4,500 feet in the Atlantic Ocean, Reference 



13, the corrosion rates were about one-half the corrosion rate at 5,600 

feet in the Atlantic Ocean and about two-thirds the corrosion rate at 

6,000 feet in the Pacific Ocean. They were more in agreement with the 

NCEL corrosion rates of copper at the 2,500 foot depth in the Pacific 

Ocean. 

At the 2,500 foot depth, the corrosion rates of copper as reported 

by INCO, Reference 9, were the same as those at 6,000 feet. However, 

the NCEL corrosion rates at the 2,500 foot depth were lower than those 

at the 6,000 foot depth. In both cases the corrosion rates were practi- 

cally constant with increasing time of exposure. 

The corrosion rate of copper was nearly constant with increasing 

time of exposure at the surface in the Atlantic Ocean at Kure Beach, 

North Carolina, Reference 14, but decreased with time of exposure at 

the surface in the Pacific Ocean at the Panama Canal Zone, Reference 

16, and became constant with time after about 4 years of exposure. 

At Port Hueneme Harbor in the Pacific Ocean, Reference 15, copper 

corroded at a constant rate over a two year period of exposure. 

For practical purposes the corrosion of copper can be considered 

constant and of the same magnitude after exposure for 1 year in sea 

water at the surface and at depths in both the Atlantic and Pacific 

Oceans. The corrosion rates ranged between 0.5 and 1.5 MPY with an 

average of about 1 MPY. 

Copper partially embedded in the bottom sediments at the 6,000 

foot depth corroded at essentially the same rate as in the sea water 

at this depth as shown in Figure 4. The corrosion rate decreased with 

increasing duration of exposure. At the 2,500 foot depth copper cor- 

roded at a lower rate in the bottom sediment than in the sediment at 
the 6,000 foot depth as well as in the water at 2,500 feet. 

The addition of about two percent beryllium to copper did not 

affect the corrosion of copper after 402 days of exposure at a depth of 

2,500 feet. The beryllium-copper was in the form of wrought sheet and 

cast chain. Their corrosion rates were 0.6 and 0.5 MPY, respectively, 

in sea water and 0.5 and 0.5 MPY, respectively, in the bottom sediments 

while those of copper were 0.6 and 0.2 MPY in sea water and in the 

bottom sediment, respectively, Table 3. The corrosion of the wrought 

beryllium-copper sheet was not affected by welding either by the MIG or 

TIG processes. 

Stress Corrosion 

Oxygen free copper was not susceptible to stress corrosion crack- 

ing at stresses equivalent to 75 percent of its yield strength at a 

nominal depth of 2,500 feet for periods of exposure to 402 days as 
shown in Table 4. 

Mechanical Properties 

The effect of exposure on the mechanical properties of the coppers 



is shown in Table 5. The mechanical properties of oxygen-free copper 

and not welded and welded beryllium-copper, by both the MIG and TIG 

processes were not significantly affected by exposure in sea water at 

nominal depths of 2,500 and 6,000 feet. 

COPPER-ZINC ALLOYS (BRASSES) 

The chemical compositions of the copper-zinc alloys (brasses) are 

given in Table 6, their corrosion rates and types of corrosion in Table 

7, their resistance to stress corrosion cracking in Table 8, and the 

effect of exposure in the sea water on their mechanical properties in 

Table 9. 

Corrosion 

Corrosion of the copper-zine alloys usually occurs as uniform, 

pitting, crevice, dezincification or stress corrosion cracking. The 

tendency for the copper-zince alloys to corrode by dezincification and 

stress corrosion cracking varies with the zinc content; the higher the 

zine content of the alloy the greater the susceptibility. Pitting and 

crevice corrosion are usually caused by differential aeration cells. 

Dezincification is the selective corrosion of copper-zince alloys 

(brasses) by which the original alloy is converted into a spongy mass 

of copper which has poor mechanical strength. The most favored theory 

of this mechanism is that the metal corrodes as an alloy and the copper 

is subsequently redeposited. 

Because it is not possible to remove all the corrosion products 

(redeposited, spongy copper) it is not possible to obtain true weight 

losses from which to calculate corrosion rates. Therefore, corrosion 

rates so obtained are always lower than they are actually. Hence, 

corrosion rates determined for dezincified copper-zine alloys are not 

reliable for assessing the corrosion of such alloys. 

The corrosion rates of the copper-zinc alloys are shown graphi- 

cally in Figures 5 through 16. 
The corrosion rates of commercial bronze, shown in Figure 5, were 

constant with duration of exposure through 751 days of exposure in the 

sea water at the 6,000 foot depth and decreased slightly thereafter. 

The corrosion rates in sea water at the 2,500 foot depth were lower 

than those at the 6,000 foot depth and decreased with increasing dur- 

ation of exposure. However, in the bottom sediments at the 6,000 foot 

depth the corrosion rates increased with duration of exposure while 

those at the 2,500 foot depth decreased with increasing duration of 
exposure and they were lower than those at the 6,000 foot depth. The 

corrosion rates of commercial bronze at both depths, both in the sea 

water and in the bottom sediments were lower than those at the surface 

of the Pacific Ocean, at NCEL and at Fort Amador, Panama Canal Zone, 
Reference 16, as shown in Figure 5. 



The commercial bronze was slightly dezincified after 402 days of 
exposure both in the sea water and in the bottom sediment at a depth of 

2,500 feet. It was also reported to have dezincified at the surface in 

the Pacific Ocean at Fort Amador, Panama Canal Zone, Reference 16. 

For all practical purposes the corrosion rates of commercial bronze 

both in sea water and in the bottom sediments at the 6,000 foot and 

2,500 foot depths can be considered constant with increasing time of 

exposure. The corrosion rates at both depths were less than at the 

surface and the rate at the 2,500 foot depth was slightly less than that 

at the 6,000 foot depth. 
The corrosion rate of red brass, Figure 6, was the same in the 

bottom sediments as in sea water at the 6,000 foot depth and decreased 

with increasing time of exposure. However, at the 2,500 foot depth, 

red brass corroded at a much slower rate in the bottom sediments than 

in the sea water and the corrosion rates decreased as the duration of 

exposure was increased. 

After about 400 days of exposure, red brass corroded at about the 

same rate at the surface at Harbor Island, North Carolina in the 

Atlantic Ocean, Reference 10, as it did at 2,500 feet in the Pacific 

Ocean. At the surface in the Pacific Ocean it corroded at about the 

same rate as at the 6,000 foot depth. 

Red brass was slightly dezincified, the first evidence of which 

was found after 123 days of exposure in the bottom sediment at a depth 
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In general, red brass corroded less at the 2,500 foot depth than 

at the 6,000 foot depth and the corrosion rates at both depths decreas- 

ed as the time of exposure increased. 

Yellow brass, Figure 7, also corroded at the same rate in the 

bottom sediments as in the sea water at the 6,000 foot depth and they 

decreased asymptotically with time. At the 2,500 foot depth, yellow 

brass corroded less in the bottom sediments than in the sea water and 

the rates were nearly constant with increasing time of exposure. Ata 

depth of 4,250 feet in the Atlantic Ocean, Reference 13, the corrosion 

rate of yellow brass increased with time of exposure and after 200 days 

of exposure was the same as at a depth of 2,500 in the Pacific Ocean. 

There was slight to moderate dezincification of yellow brass after 751 

and 1064 days of exposure in the sea water at the 6,000 foot depth, 

Table 7. After 181 days of exposure at the surface in the Pacific 

Ocean, yellow brass corroded at a higher rate than at the 6,000 foot 

depth and was slightly dezincified. 

Arsenical Admiralty, Figure 8, like yellow brass, corroded at the 

same rate in the bottom sediments as in sea water at the 6,000 foot 

depth and the rate decreased asymptotically with time. At the 2,500 

foot depth it corroded at essentially the same rate in sea water as at 

the 6,000 foot depth. In the bottom sediments at the 2,500 foot depth 

arsenical admiralty corroded at a lower rate than in the sea water. 

The corrosion rate of arsenical admiralty increased with time of ex- 

posure at a depth of 4,250 feet in the Atlantic Ocean, Reference 13, and 



after 200 days of exposure the corrosion rate was the same as at the 

6,000 foot depth in the Pacific Ocean. The absence of any dezincifi- 

cation of arsenical admiralty is attributed to the slight amount of 

arsenic added to this alloy. It corroded at a higher rate at the sur- 

face in the Pacific Ocean than at depth as shown in Figure 8. 

The corrosion of Muntz Metal at the 6,000 foot depth was erratic 

as shown in Figure 9. This is attributed to the dezincification of the 

alloy. The corrosion rates at the 2,500 foot depth were essentially 

constant with time and those in the bottom sediments were lower than 

those in the sea water. Muntz metal corroded at a higher rate at the 

surface in the Pacific Ocean than at either depth and at the Panama 

Canal Zone. Even though Muntz metal was dezincified during exposure at 

the surface in the Pacific Ocean, Fort Amador, Panama Canal Zone, 

Reference 16, its corrosion rate decreased asymptotically with time and 

was lower than at the 6,000 foot depth. Muntz metal suffered from de- 

zincification at the surface and at both depths in the Pacific Ocean, 

the extent varying from slight to severe. The severity of the dezinci- 

fication after 751 days of exposure at a depth of 6,000 feet is shown 

in Figure 10, the thickness of the specimen was reduced by 28 percent. 

The dark bands on the edges are dezincified areas. 

Naval brass, Figure 11, corroded at a slower rate in sea water at 

the 6,000 foot depth in the Pacific Ocean than at a depth of 5,600 feet 

in the Atlantic Ocean, Reference 12, at the surface in the Pacific 

Ocean at Fort Amador, Panama Canal Zone, Reference 16, and at Port 

Hueneme Harbor, California, Reference 15. However, after 1050 days of 

exposure at 5,600 feet in the Atlantic Ocean and 1064 days of exposure 

at 6,000 feet in the Pacific Ocean the corrosion rates of Naval brass 

were essentially the same. The corrosion rates at both surface loc- 

ations and at the 6,000 foot depth decreased and became asymptotic 

with time even though the rates were different. The differences in the 

rates can be attributed at least partially to differences in the tem- 

peratures at the three sites. The Naval brass was reported to have been 

dezincified at the Panama Canal Zone but no dezincification was report- 

ed at the surface at Port Hueneme or at depth in the Atlantic and 

Pacific Oceans. Dezincification could be an additional cause (in 

addition to temperature) for the higher corrosion rate at the Panama 

Canal Zone. 

Manganese bronze, Figure 12, behaved similarly to Muntz metal, 

Figure 9, in that it corroded erratically at the 6,000 foot depth which 

is attributed to dezincification. At the 2,500 foot depth, the 

corrosion rates decreased slightly with increasing time of exposure and 

in the bottom sediment were lower than in the sea water. The corrosion 

rate of manganese bronze at the surface of the Pacific Ocean at NCEL 

was considerably higher than at either depth as well as at other loc- 

ations. It was also severely dezincified. The corrosion rate of man- 

ganese bronze decreased asymptotically with time at the surface in the 

Pacific Ocean, Fort Amador, Panama Canal Zone, Reference 16, and was 

constant with time between one and two and a half years of exposure in 



Port Hueneme Harbor, California, Reference 15; it was lower at the 

latter site. The corrosion rates at the 6,000 foot depth, both in sea 

water and in the bottom sediments, were comparable with that at the 

surface in the Pacific at the Panama Canal Zone. The corrosion rate 

of manganese bronze at the surface in the Pacific Ocean at Port Hueneme 

Harbor, California, Reference 15, was comparable with that in sea 

water at the 2,500 foot depth, both were lower than at the 6,000 foot 

depth and at the Panama Canal Zone. There was negligible corrosion of 

manganese bronze in the bottom sediments at the 2,500 foot depth. The 

manganese bronzes were attacked to a considerable extent by dezincifi- 

cation except that no dezincification was reported for the manganese 

bronze in Port Hueneme Harbor. 

Cast nickel-manganese bronze was severely attacked by dezincifi- 

cation after 402 days of exposure, both in the sea water and in the 

bottom sediments, at a depth of 2,500 feet and after 751 days of ex- 

posure in sea water at a depth of 6,000 feet, Figure 13. The corrosion 

rate of the cast nickel-manganese bronze at the surface in the Pacific 

Ocean was much less than at either depth. The extent of the dezincifi- 

cation after 751 days of exposure at a depth of 6,000 feet is shown in 

Figure 14. The light area on the cross sections depicts the dezincifi- 

cation which is approximately 65 percent of the thickness of the speci- 

men. 
The corrosion rate of aluminum brass decreased gradually with 

increasing time of exposure in the sea water at the 6,000 foot depth, 

Figure 15. After 181 days of exposure at the surface in the Pacific 

Ocean, the corrosion rate was the same as in sea water at the 6,000 

foot depth. In the bottom sediments at the 6,000 foot depth, the 

corrosion rates also decreased with increasing time of exposure to 751 

days, then increased sharply between 751 days and 1064 days. At the 

2,500 foot depth the corrosion rate in sea water also decreased with 

increasing time of exposure but in the bottom sediments it increased 

slightly. However, after 400 days of exposure the corrosion rates 

were the same in sea water and the bottom sediments at the 2,500 foot 

depth and in the bottom sediment at the 6,000 foot depth. At the 4,250 

foot depth in the Atlantic Ocean, Reference 13, the corrosion rate of 

aluminum brass decreased slightly with time and was about the same as 

that in the bottom sediments at the 6,000 foot depth. 

As shown in Figure 16, the corrosion rates of nickel brass de- 

ereased gradually with increasing time of exposure at both depths 

(2,500 and 6,000 feet) except in the sediments at the 2,500 foot depth 

where the alloy was practically uncorroded. Nickel brass corroded at 

slower rates in the bottom sediments at both depths than in the sea 

water and at slower rates at the 2,500 foot depth than at the 6,000 

foot depth. It corroded at the surface in the Pacific Ocean at the 

same rate as in the sediment at the 6.000 foot depth. 

There was one exception to the corrosion behavior which was common 

to all the copper-zine alloys; their corrosion rates in the bottom 



sediment after 403 days of exposure were much lower than those after 

other times of exposure at the 6,000 foot depth, Table 7 and Figures 

5, 6, 7, 8, 9, 12, 15 and 16. These low corrosion rates are attributed 

to a rather passive sediment at this location; i.e., very little if 

any sulfate reducing bacteria. This assumption is substantiated by 

the large population of wood borers and the presence of many deep-sea 

sponges found at the water-sediment interface which require oxygen to 
live and reproduce. 

The performance of the copper-zinc alloys in sea water at the 

2,500 and 6,000 foot depths is summarized in Figure 17 and in the 

bottom sediments at these depths in Figure 18. 

Except for Muntz metal and manganese bronze the corrosion rates 

for the copper-zine alloys at the 6,000 foot depth decreased with 

increasing time of exposure and could be encompassed within a rather 

narrow band as shown in Figure 17. The width of the band decreased 

from 1.2 MPY after 123 days of exposure to 0.6 MPY after 1064 days of 

exposure. The dotted curve within this band is for copper for compari- 

son purposes; showing that after 1064 days of exposure the copper-zine 

alloys corrode at rates which are within + 0.3 MPY of that of copper. 

The curves above this band are for Muntz metal and manganese bronze 

both of which were dezincified to considerable degrees. Two other 

points, both for nickel-manganese bronze, were outside this band and 

are attributed to dezincification. The band encompassing the corrosion 

rates for the copper-zine alloys at the 2,500 foot depth indicate that, 

in general, they were constant with time and were lower than the cor- 

rosion rate for copper. These bands also show that the corrosion rates 

of the copper-zinc alloys in sea water at depths of 2,500 feet and 6,000 

feet were comparable, except for Muntz metal and manganese bronze. 

Most of the corrosion rates for the copper-zine alloys in the 

bottom sediments at the 6,000 foot depth can be conveniently encompass- 

ed within a band whose width is about 1.2 MPY after 123 days of expos- 

ure which narrows to 0.5 MPY after 1064 days of exposure as shown in 

Figure 18. The average corrosion rates decrease from 1.0 MPY after 123 

days of exposure to 0.6 MPY after 1064 days of exposure. The dotted 

corrosion rate curve for copper bisects this band with the copper-zince 

alloy corrosion rates being slightly higher than that for copper after 

1064 days of exposure. The curve above the band is for manganese bronze 

which suffered considerable dezincification. The other points outside 

this band are for manganese bronze and nickel-manganese bronze which 

also were dezincified. The small band for the alloys in the bottom 

sediments at the 2,500 foot depth shows quite clearly that in addition 

to the corrosion rates being low, they were essentially constant with 

time. 

A comparison of the bands for the copper-zinc alloys at the 6,000 

foot depth shows that after 1064 days of exposure they were corroding 

at essentially the same rates in sea water and in the bottom sediments. 

However, at the 2,500 foot depth the corrosion rates in sea water were 

higher than those in the bottom sediments. 



Stress Corrosion 

Two copper-zine alloys, arsenical admiralty and Muntz metal were 

exposed while stressed at values equivalent to 50 and 75 percent of 

their respective yield strengths, as shown in Table 8. They were 

immune to stress corrosion cracking for 403 days of exposure at a depth 

of 6,000 feet and 402 days of exposure at a depth of 2,500 feet. 

Mechanical Properties 

The effect of corrosion on the mechanical properties of three 

copper-zine alloys, arsenical admiralty, Muntz metal and nickel- 

manganese bronze are given in Table 9 and shown graphically in Figures 

19, 20, and 21. 

The mechanical properties of arsenical admiralty were not im- 

paired, Figure 19, while those of Muntz metal, Figure 20, and nickel- 

manganese bronze, Figure 21, were impaired. In both alloys, the im- 

pairment increased with time of exposure at both depths, 2,500 and 

6,000 feet. The degree of impairment in both cases roughly paralleled 

the severity of the dezincification. 

Corrosion Products 

The corrosion products which formed on cast nickel-manganese bronze 

during 403 days of exposure at a depth of 6,000 feet were analyzed by 

X-ray diffraction, spectrographic, Infra-red spectrophotometer and 

quantitative analyses methods. The corrosion products were composed of 

cupric chloride (CuCl2°2Hj0); copper hydroxychloride (Cu j(0H)3C1); 

copper as metal 35.98%; minor amounts of aluminum, iron, silicon, and 

sodium; chloride ions as Cl, 0.91%; sulfate ions as S04, 11.53%; small 

quantities of an organic compound or compounds present due to decom- 

posed algae and vegetative materials. 

BRONZES 

The chemical compositions of the bronzes are given in Table 10, 

their corrosion rates and types of corrosion in Table 11, their resis- 

tance to stress corrosion cracking in Table 12 and the effect of ex- 

posure in the sea water on their mechanical properties in Table 13. 

Corrosion 

The corrosion rates of G bronze and modified G bronze are shown 

in Figure 22. At the 6,000 foot depth, from 123 to 1064 days of 

exposure, they corroded at essentially the same rate both in the sea 

water and when partially embedded in the bottom sediments. Their 



corrosion rates at the 2,500 foot depth were also essentially constant. 

The corrosion rates in the sea water at the 2,500 foot depth were 

essentially the same as those at the 6,000 foot depth while those in 

the bottom sediments were slightly lower. The corrosion rate of G 

bronze at a depth of 4,250 feet in the Atlantic Ocean, Reference 13, 

was essentially the same as at the 6,000 foot depth after 200 days of 

exposure. Both alloys (G and modified G bronze) corroded at higher 

rates than at either depth when completely submerged at the surface in 

the Pacific Ocean at Point Mugu, California. After 181 days of expo- 

sure, their corrosion rates were the same (1.3 MPY) and were higher 

than the average corrosion rate at the 6,000 foot depth by 0.9 MPY. 

Both alloys corroded uniformly except for some crevice corrosion of 

modified G bronze after 751 days of exposure in the sediment and 1064 

days of exposure in the sea water at the 6,000 foot depth. 

Two other bronzes, ''M'' and leaded tin bronze, similar in chemical 

composition to modified G bronze, except for the addition of lead, 

corroded similarly to the G bronzes as shown in Figure 23. A compari- 

son of the curves in Figures 22 and 23 shows that they are practically 

identical. "M' bronze corroded at essentially the same rate at a 

depth of 4,250 feet in the Atlantic Ocean, Reference 13, as at a depth 

of 6,000 feet in the Pacific Ocean. At the surface in the Pacific 

Ocean the "M'' bronze and leaded tin bronze corroded at higher rates 

than at either depth as shown in Figure 23. The 'M'' and leaded tin 

bronzes corroded uniformly except for severe general corrosion of the 

leaded tin bronze specimen after 751 days of exposure at a depth of 

6,000 feet. 

The corrosion rates of the phosphor bronzes, "A" and "D", are 

shown in Figure 24. They corroded uniformly and at the same rate at 

both depths, 2,500 and 6,000 feet, both in sea water and in the bottom 

sediments. The corrosion rate decreased between 123 and 400 days of 

exposure and remained constant thereafter. Phosphor bronze "A", ex- 

posed at a depth of 5,600 feet in the Atlantic Ocean, Reference 12, 

corroded at the same rate as at the 6,000 foot depth in the Pacific 

Ocean. Both bronzes corroded at higher rates at the surface in the 

Pacific Ocean at Point Mugu, California than at either depth. Phosphor 

bronze "A'' corroded at higher rates at the surface in the Pacific Ocean, 

in the Panama Canal Zone, Reference 16, and in Port Hueneme Harbor, 

California, Reference 15, than at either depth in the Pacific Ocean. 

The corrosion rates at both locations decreased asymptotically with 

increasing time of exposure. Also, the corrosion rate of phosphor 

bronze "A" in the surface sea water at Point Mugu after six months of 

exposure was higher than in Port Hueneme Harbor. 

Wrought aluminum bronzes containing 5 and 7 percent aluminum 

corroded at essentially the same rate irrespective of depth (2,500 and 

6,000 feet) and whether or not they were in sea water or partially em- 

bedded in the bottom sediments, Figure 25. The 5 percent aluminum 

bronze also corroded at the same rate at both depths as it did at the 
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surface in the Pacific Ocean at the Panama Canal Zone, Reference 16, 

and in Port Hueneme Harbor, Reference 15. After 181 days of exposure 

at the surface in the Pacific Ocean at Point Mugu, the corrosion rate 

of 5 percent aluminum bronze was 1.1 MPY, slightly higher than at any 

of the other locations, both surface and at depth. The 7 percent 

aluminum bronze corroded the same at the surface at Point Mugu as at 

the other locations except for one lot of specimens which were dealumi- 

nified and corroded at nearly 3 MPY. Their corrosion rates in the sea 

water and in the bottom sediments at both depths decreased slightly 

with increasing time of exposure. 

The corrosion rates of the cast aluminum bronzes containing 10, 

11, and 13 percent aluminum are shown in Figure 26. The corrosion 

rates in the bottom sediments at the 6,000 foot depth were the same as 

in the sea water irrespective of the aluminum content. They were the 

same for the first 751 days of exposure and decreased slightly after 

1064 days of exposure at the 6,000 foot depth. At the 2,500 foot depth 

the corrosion rates in sea water were slightly lower than at the 6,000 

foot depth and in the bottom sediments at 2,500 feet, the corrosion 

rates were lower still, less than 0.1 MPY after 402 days of exposure. 

After 181 days of exposure at the surface at Point Mugu, the corrosion 

rates of the 10 and 13 percent aluminum bronzes were considerably high- 

er than at either depth, 2.1 MPY versus 0.5 MPY at 6,000 feet. AI1l 

three of the alloys were attacked by dealuminification varying in 

degree from very slight to severe; the first evidence being found 

after 123 days of exposure at the 6,000 foot depth and 181 days of ex- 
posure at the surface. 

Although the corrosion rates of the wrought and cast aluminum 

bronzes were approximately the same as evidenced by comparing Figures 

25 and 26 the types of corrosion were different: all the cast alloys 

were dealuminified while there was dealuminification and pitting on 

about half of the wrought 7 percent aluminum bronze specimens and uni- 

form corrosion on most of the wrought 5 percent aluminum bronze speci- 

mens. 

Williams, Reference 17, has reported that dealuminification was 

found on wrought aluminum bronze containing 6.5 - 11 percent aluminum 

after exposure in sea water and that an aluminum bronze containing 6 to 

8 percent aluminum and 3.5 percent iron was not attacked by dealumini- 

fication. In this investigation slight dealuminification was found on 

an aluminum bronze containing 4.76 percent aluminum and less than 0.05 
percent iron at the 6,000 foot depth. There was more dealuminification 

on two lots of aluminum bronze containing about 7 percent aluminum and 

3 percent iron at both the 2,500 and 6,000 foot depths. The perfor- 

mance of the aluminum bronzes at depth in the Pacific Ocean was contrary 

to that found at the surface in the Atlantic Ocean. 

The corrosion rates of the three nickel-aluminum bronze alloys are 

shown in Figure 27. The corrosion rates in sea water and the bottom 

sediments were the same irrespective of the depth, 2,500 and 6,000 feet. 

This shows that variations in the nickel content from 4 to 5 percent, 
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in the aluminum content from 9 to 11 percent, or in the manganese con- 

tent from 0.5 to 3 percent had no effect on the corrosion of these 

alloys. Nickel-aluminum bronze No. 2 tended to corrode at a slightly 

higher rate at a depth of 4,250 feet in the Atlantic Ocean, Reference 

13, than at either depth in the Pacific Ocean. Also, nickel-aluminum 

alloy No. 2 exposed at the surface in the Pacific Ocean at Point Mugu 

corroded at a rate nearly three times greater than at either depth in 

the Pacific Ocean. The corrosion rates at depth decreased slightly 

during the first year of exposure and thereafter, became constant with 

increasing time of exposure. In addition to the uniform type of cor- 

rosion there was some pitting and crevice corrosion and slight dealumi- 

nification. 

The corrosion rates of the silicon bronzes (3 percent silicon and 

3 percent silicon - 1 percent manganese (silicon bronze A)) are shown 

in Figure 28. Both silicon bronzes corroded at the same rate in sea 

water and in the bottom sediments at the 6,000 foot depth and the cor- 

rosion rate decreased gradually with increasing time of exposure. At 

the 2,500 foot depth their corrosion rates in sea water and in the 

bottom sediments were lower than at the 6,000 foot depth with those in 

the bottom sediment being lower than those in the sea water. In 

general, the corrosion rates at a depth of 2,500 feet were constant 

with time. The corrosion rate of 3 percent silicon bronze at the sur- 

face of the Pacific Ocean, Panama Canal Zone, Reference 16, decreased 

sharply between one and two years of exposure and thereafter, became 

constant with increasing time of exposure; and, after two years of ex- 

posure was the same as at the 6,000 foot depth in the Pacific Ocean. 

After 181 days of exposure at the surface of the Pacific Ocean at Point 

Mugu, the corrosion rates of the silicon bronzes were about the same 

as at the 6,000 foot depth. In general, the silicon bronzes were uni- 

formly corroded except for some selective attack at the 6,000 foot 

depth. This attack is designated ''coppering"’ because of the thin layer 

of copper on the surfaces of the specimens after exposure. It is pos- 

tulated that the silicon is either selectively removed by corrosion or 

that the alloy corrodes as such and copper is subsequently redeposited 

on the surface of the specimens. 

The corrosion rates of the Ni-Vee bronzes A, B and C (copper - 

nickel - tin - zinc alloys) are shown in Figure 29, They corroded at 

essentially the same rates in sea water and in the bottom sediments at 

the 6,000 foot depth and in sea water at the 2,500 foot depth. They 

decreased slightly and became asymptotic with increasing time of ex- 

posure. The corrosion rates were less than 0.1 MPY (insignificant) in 

the bottom sediments at the 2,500 foot depth. After periods of exposure 

of 2 years or more at the 6,000 foot depth, the corrosion rates were 

less than 0.5 MPY except for Ni-Vee bronze A and C in sea water after 

751 days of exposure and Ni-Vee bronze A after 1064 days of exposure. 

There was one area of very severe corrosion on Ni-Vee bronze A after 

751 days of exposure and a pit 20 mils deep after 1064 days of exposure 

12 



in the sea water. There was general corrosion of Ni-Vee bronze C after 

751 days of exposure in the sea water. Except for the three cases 

mentioned above, the corrosion on these three alloys was of the uniform 

type. After 181 days of exposure at the surface in the Pacific Ocean 

at Point Mugu, these three alloys corroded at much higher rates than 

at either depth, 1.9 MPY versus 0.7 MPY. 

The corrosion rates of all the bronzes both in sea water and in 

the bottom sediments at both nominal depths of 2,500 and 6,000 feet are 

summarized in Figure 30. Initially, all the corrosion rates except 

those for the silicon bronzes were within the range of less than 0.1 to 

0.8 MPY while those for the silicon bronzes at the 6,000 foot depths 

were about twice as high (1.3 to 1.7 MPY). However, after 1064 days of 
exposure at the 6,000 foot depth, the corrosion rates of all the alloys 

were within the range of less than 0.1 MPY to 0.7 MPY. At the 2,500 

foot depth the ranges were between less than 0.1 to 0.8 MPY after 197 

days and less than 0.1 to 0.6 MPY after 402 days of exposure. In 

general, it can be concluded that the bronzes corroded at nearly con- 
stant rates except for the silicon bronzes which corroded at decreasing 

rates with increasing time of exposure. There were a few values which 

were outside these ranges, most of them (6 of 8) after 751 days of 

exposure at a depth of 6,000 feet; they were aluminum bronzes, nickel- 

aluminum bronzes and silicon bronzes. Most of the bronzes corroded at 

greater rates at the surface in the Pacific Ocean at Point Mugu than 

at either depth; the only exception was the silicon bronzes which 

corroded at the same rate as at the 6,000 foot depth. 

Stress Corrosion 

Four of the bronze alloys, phosphor bronze A, phosphor bronze D, 

aluminum bronze and manganese-silicon bronze were exposed in the stress- 

ed condition to determine their susceptibility to stress corrosion 

cracking. They were stressed at values equivalent to 35, 50 and 75 

percent of their respective yield strength as shown in Table 12. They 

were not susceptible to stress corrosion cracking for periods of ex- 

posure of 400 days at either depth. 

Mechanical Properties 

The effects of exposure in the deep ocean environments on the 

mechanical properties of the bronzes are given in Table 13 and shown in 

Figures 31 through 34. The mechanical properties of the phosphor 

bronzes, A and D, (Figures 31 and 32) were not affected by exposures 

for as long as 402 days at a depth of 2,500 feet or 751 days at a depth 

of 6,000 feet. The elongation of the aluminum bronze (Figure 33) was 

decreased considerably (28%) especially after 403 and 751 days at the 
6,000 foot depth which is attributed to pitting corrosion and dealumini- 

fication. The tensile strength, yield strength and elongation of 
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silicon bronze A (Figure 34) were seriously decreased after 403 days 
of exposure in the bottom sediment at a depth of 6,000 feet. This 

decrease in mechanical properties is attributed to the severe selective 

corrosion (coppering) of the alloy. 

Corrosion Products 

Chemical determinations of the corrosion products removed from 

aluminum bronze showed the presence of copper oxy-chloride, cupric 

chloride; major elements, copper and aluminum; minor elements, iron, 

magnesium, calcium and silicon; chloride ion, 0.9%, and sulfate ion, 

Ns Ojbe 

COPPER-NICKEL ALLOYS 

The chemical compositions of the copper-nickel (Cu-Ni) alloys are 

given in Table 14, their corrosion rates and types of corrosion in 

Table 15, stress corrosion tests in Table 16 and changes in mechanical 

properties due to corrosion in Table 17. 

Corrosion 

The corrosion rates and types of corrosion of the copper-nickel 

alloys are given in Table 15 and are shown graphically in Figures 35 to 

45. 

There were three different lots of 90 copper-10 nickel alloy 
exposed at depths in the Pacific Ocean. As shown in Figure 35, their 

corrosion rates in sea water at the 6,000 foot depth were comparable. 

The corrosion rates of the specimens partially embedded in the bottom 

sediments at the 6,000 foot depth were slightly lower than those in the 

sea water. At the 2,500 foot depth the corrosion rates in sea water 

were comparable with those in sea water at the 6,000 foot depth. In 

the bottom sediment at the 2,500 foot depth the corrosion rates were 

lower than those in the sea water. The corrosion rates after 181 days 

of exposure at the surface in the Pacific Ocean at Point Mugu were 

practically the same as those at both depths. At a depth of 5,600 feet 

in the Atlantic Ocean, 90 copper-10 nickel alloy, after 110 days of 

exposure, corroded at the same rate as at 6,000 feet in the Pacific 

Ocean but, after 1050 days of exposure, its corrosion rate was much 

less than in the Pacific Ocean, Reference 12. The same was true after 

100 days of exposure at a depth of 4,250 feet in the Atlantic Ocean, 

Reference 13, and after 200 days of exposure the corrosion rate was 

slightly lower than in the Pacific Ocean. The corrosion was uniform 

with the specimens being covered with thin light green flaky films of 

corrosion products. 

The corrosion rates of the 70 copper-30 nickel with nominal 0.5 

percent iron are shown in Figure 36. The corrosion behavior of this 
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alloy was very similar to that of the 90 copper-10 nickel alloy at the 

6,000 foot depth. The corrosion rate in the bottom sediment after 123 

days at the 6,000 foot depth was lower than that in the sea water but 

after 1064 days, the rates were the same. The corrosion rates at the 

2,500 foot depth were lower than those at the 6,000 foot depth and 

those in the bottom sediments were lower than those in the sea water. 

The corrosion rates at depths of 4,250 and 4,500 feet in the Atlantic 

Ocean, Reference 13, were lower than those in sea water at the 6,000 

foot depth in the Pacific Ocean and decreased with increasing time of 

exposure. The corrosion rate at the surface in the Pacific Ocean at 

Point Mugu were lower than those in sea water at both depths. At the 

surface in the Pacific Ocean at the Panama Canal Zone, the corrosion 

rates also were less than in the sea water at both depths, Reference 16. 

The corrosion of this alloy was uniform with the surfaces of the speci- 

mens being covered with light green, flaky corrosion products. 

The corrosion rates of 70 copper-30 nickel alloy containing 5 per- 

cent iron were very low as shown in Figure 37. They were the same in 

the bottom sediments as in the sea water at both depths, 2,500 and 

6,000 feet. The corrosion rates at the 6,000 foot depth increased 

between 403 and 751 days of exposure. This increase is attributed to 

the change in the protective film on this alloy. Through 400 days of 

exposure at both depths the specimens were protected by a thin, hard, 

black shiny film which deteriorated during longer exposure time causing 

crevice corrosion and pitting with some selective attack (coppering). 

There were copious deposits of copper on the specimens, especially in 

pits and at faying surfaces. The corrosion rate at the surface after 

181 days of exposure in the Pacific Ocean at Point Mugu was considerably 

higher than at either depth and the alloy was attacked by crevice cor- 

rosion to a depth of 5 mils. At a depth of 4,250 feet in the Atlantic 

Ocean, Reference 13, this alloy corroded at a higher rate than at 

either depth in the Pacific Ocean but at the same rate as at the surface 

in the Pacific Ocean. 

The corrosion rates of the three copper-nickel alloys (90-10, 70-30 

with 0.5% Fe, and 70-30 with 5% Fe) are plotted in Figure 38 to show 

that at the 6,000 foot depth the corrosion rates of the 90 copper-10 

nickel and 70 copper-30 nickel with 0.5% Fe are comparable both in the 

sea water and bottom sediments with the rates in the bottom sediments 

being just below those in the sea water. At the 2,500 foot depth, the 

corrosion rates in the sea water were comparable with those in the 

bottom sediments at the 6,000 foot depth while those in the bottom sedi- 

ments at the 2,500 foot depth were lower than those in the sea water. 

The corrosion rates of the 70 copper-30 nickel with 5% Fe were lower 

than those of the other two alloys at both depths in sea water and in 

the bottom sediments except in the sea water at the 6,000 foot depth 

after 751 days of exposure. In this case, the corrosion rate was about 

the same as the other two alloys. 

The corrosion of 95 copper-5 nickel was uniform, the corrosion 
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rates were the same in the sea water and in the bottom sediments, and 

decreased asymptotically with increasing time of exposure at the 6,000 

foot depth as shown in Figure 39. At the 2,500 foot depth, the cor- 

rosion rate in sea water was uniform with increasing time of exposure 

and was the same as at the 6,000 foot depth after 400 days of exposure. 

In the bottom sediments at the 2,500 foot depth, the corrosion rate in- 

creased slightly with time of exposure and after 400 days was the same 

as at the 6,000 foot depth. 
The corrosion rates of 80 copper-20 nickel alloys are shown in 

Figure 40. The alloys differed in chemical composition with regard to 

their iron contents; the one exposed by NCEL contained 0.62 percent 

iron while the one exposed for the International Nickel Company, Inc. 

contained 0.03 percent iron. The differences in their corrosion rates 

are attributed to the difference in their iron contents. This is 

clearly shown in Figure 40 where, in sea water at both depths, the 

corrosion rates of the alloy with 0.03 percent iron were higher than 

those of the alloy which contained 0.62 percent iron. The reverse was 

found in the specimens exposed in the bottom sediments. The corrosion 

rate of the alloy with 0.03 percent iron after 181 days of exposure at 

the surface in the Pacific Ocean was higher than those for the same 

alloy at both depths. The corrosion was, in general, uniform. 

The corrosion rates of 55 copper-45 nickel alloy (a thermocouple 

alloy) are shown in Figure 41. The alloy corroded uniformly except for 

crevice corrosion to perforation after 1064 days of exposure in the 

bottom sediment at the 6,000 foot depth. The corrosion rates initially 

increased with time, then became constant at about 1.0 MPY at the 

6,000 foot depth in sea water while in the bottom sediments, they 

initially decreased with increasing time of exposure, then became con- 

stant at about 0.5 MPY. At the 2,500 foot depth the corrosion rates 

both in sea water and in the bottom sediments decreased with increase 

in duration of exposure. At both depths the corrosion rates in the 

bottom sediments were lower than those in the sea water. After 181 days 

of exposure at the surface in the Pacific Ocean, the corrosion rate of 

the alloy was much higher than at either depth. 

The corrosion rates of a nickel-silver (65 Cu - 18 Ni - 17 Zn) are 

shown in Figure 42. At the 6,000 foot depth, the corrosion rates both 

in sea water and in the bottom sediments decreased rapidly with in- 

creasing time of exposure. The corrosion rates at the 2,500 foot depth 

were essentially constant with time and those in the bottom sediments 

were very low and much lower than those in the sea water. After 181 

days of exposure at the surface and 197 days of exposure in the sea 

water at a depth of 2,500 feet in the Pacific Ocean, the corrosion rates 

were practically the same. The corrosion rate of this alloy at the sur- 

face in the Pacific Ocean at the Panama Canal Zone was very low (0.03 

MPY) and constant with time of exposure. The type of corrosion was 

uniform. 

The corrosion rates of a copper-nickel-zinc-lead alloy are shown 
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in Figure 43. The corrosion rates in sea water and in the bottom sedi- 

ments at the 6,000 foot depth were comparable and decreased gradually 

with increasing time of exposure. The corrosion rates at the 2,500 

foot depth were lower than those at the 6,000 foot depth and those in 

the bottom sediments were lower than those in sea water. The corrosion 

rate after 181 days of exposure at the surface in the Pacific Ocean at 

Point Mugu was about the same as in the sea water at the 6,000 foot 

depth. The corrosion of this alloy was of the uniform type. 

The corrosion rates in sea water at the 2,500 and 6,000 foot depths 

of all the copper-nickel alloys given in Table 14 and shown in Figures 

35 through 43 are shown within bands in Figure 44. At the 6,000 foot 

depth, the band narrows and decreases asymptotically with increasing 

time of exposure to a width of 0.5 MPY after 1064 days. The arithmeti- 

cal average curve is located about the midpoint of the width of the 

band. The band for the 2,500 foot depth is practically constant with 

time and the average curve practically bisects it. From these bands 

it can be concluded that the corrosion rates of the copper-nickel alloys 

in sea water can be expected to decrease with increasing duration of 

exposure and to corrode at between 0.5 and 1 MPY at depth in the 

Pacific Ocean after about 3 years at a depth of 6,000 feet and after 

about 1 year at a depth of 2,500 feet. The only alloy whose corrosion 

rates did not come within these bands was the 70 copper-30 nickel alloy 

which contained 5 percent iron. However, at the 6,000 foot depth its 

corrosion rate increased when the protective film failed locally and 

after 751 days it was nearly as great as those of the other alloys. 

Similar bands encompassing the corrosion rates of the copper- 

nickel alloys when partially embedded in the bottom sediments are shown 

in Figure 45. The lines within the bands are the average curves. At 

the 6,000 foot depth the band narrows and decreases asymptotically with 

increasing time of exposure to a width of about 0.3 MPY after 1064 days 

of exposure. From this band it can be concluded that the corrosion 

rates of the copper-nickel alloys partially embedded in the bottom 

sediments can be expected to decrease with increasing duration of ex- 

posure and to corrode at between 0.2 and 0.5 MPY after about 3 years 

of exposure. At the 2,500 foot depth there was a slight increase in 

the width of the band between 200 and 400 days of exposure and the 

average corrosion rate curve also increased slightly. After 1064 days 

of exposure at a depth of 6,000 feet, the copper-nickel alloys par-= 

tially embedded in the bottom sediments corroded at slower rates than 

in the sea water as shown by comparing Figures 44 and 45. 

Stress Corrosion 

Five of the copper-nickel alloys were exposed in the stressed con- 

dition to determine their susceptibility to stress corrosion cracking, 

Table 16. They were stressed at values equivalent to 35, 50 and 75 

percent of their respective yield strengths. None of the alloys were 
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susceptible to stress corrosion cracking at depths of 2,500 and 6,000 
feet for periods of exposure of 400 days. 

Mechanical Properties 

The effects of exposure in the deep ocean environments on the 

mechanical properties of the copper-nickel alloys are given in Table 

17. The mechanical properties of none of the alloys were adversely 

affected by exposures of 400 days at the 2,500 foot depth or of 
750 days at the 6,000 foot depth. 

Corrosion Products 

Qualitative chemical analyses of the corrosion products removed 

from 70 percent copper-30 percent nickel-5 percent iron exposed for 

751 days at a depth of 6,000 feet showed that they were composed of 

nickel hydroxide (Ni(0H)2); cupric chloride (Cu Clg); major elements, 

copper and nickel; minor elements, iron, magnesium, sodium, and traces 

of silicon and manganese; chloride ion as Cl, 4.77%; sulfate ions as 

50,, 0.80%; copper as metal, 43.63%. 

SUMMARY AND CONCLUSIONS 

The purpose of this investigation was to determine the effects of 

deep ocean environments on the corrosion of copper and copper alloys. 

To accomplish this a total of 1050 specimens of 46 different alloys 

were exposed at nominal depths of 2,500 and 6,000 feet for periods of 

time varying from 123 to 1064 days. 

Copper 

Copper and beryllium-copper corroded uniformly at all depths but 

copper was pitted during surface exposure in the Pacific Ocean at 

Point Mugu. The corrosion rates were practically constant and of the 

same magnitude after exposure for one year in sea water at the surface 

and at all depths in the Atlantic and Pacific Oceans. In the bottom 

sediments at the 6,000 foot depth the corrosion rates decreased with 

increasing time of exposure and were the same as those in the sea 

water after 35 months of exposure. At the 2,500 foot depth the cor- 

rosion rates both in sea water and in the bottom sediments were lower 

than at the 6,000 foot depth. Copper corroded at the same rate at the 

surface in the Pacific Ocean at Point Mugu as at depth. 

The addition of 2 percent beryllium to copper did not affect its 

corrosion rate. Neither MIG nor TIG welding affected the corrosion 

rate of beryllium-copper. 
Copper was not susceptible to stress corrosion cracking at a depth 

of 2,500 feet in the Pacific Ocean. 
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The mechanical properties of copper and beryllium-copper were not 

adversely affected by exposure at depth in the Pacific Ocean for periods 

of time of up to 2 years. 

Copper-Zinc Alloys (Brasses) 

Except for Muntz metal and manganese bronze the copper-zinc alloys 

corroded at rates which decreased asymptotically with increasing dur- 

ation of exposure both in sea water and in the bottom sediments at the 

6,000 foot depth. After 35 months of exposure the corrosion rates were 

between 0.2 and 0.8 MPY. At the 2,500 foot depth the corrosion rates 

in sea water were about the same as at the 6,000 foot depth but in the 

bottom sediments at 2,500 feet the rates were lower than in the sea 

water at 2,500 feet and in the bottom sediments at 6,000 feet. The 

non-conformity of Muntz metal and manganese bronze with the behavior 

of the other copper-zince alloys is attributed to the dezincification of 

these two alloys. 

Commercial bronze, red brass, commercial brass, yellow brass, 

Muntz metal, Naval brass, Tobin bronze, manganese bronze and nickel- 

manganese bronze were dezincified while arsenical admiralty brass, 

aluminum brass and nickel brass were not dezincified. 

Most of the copper-zinc alloys corroded at faster rates at the 

surface in the Pacific Ocean at Point Mugu than at depth. Commercial 

bronze and Naval brass corroded at slower rates, Muntz metal at a 

faster rate, and manganese bronze at the same rate at depth as at the 

surface in the Pacific Ocean at the Panama Canal Zone. 

Arsenical admiralty brass and Muntz metal were not susceptible to 

stress corrosion cracking at depth in the Pacific Ocean. 

The mechanical properties of arsenical admiralty brass were not 

adversely affected by exposure at depth in the Pacific Ocean while 

those of Muntz metal and nickel-manganese bronze were adversely 

affected. 

Corrosion products consisted of cupric chloride (Cu Cly), copper 

hydroxy-chloride (Cug(0H)3C1) and metallic copper, 36 percent. 

Bronzes 

Except for the silicon bronzes, the bronzes corroded essentially 

at constant rates with increasing duration of exposure both in sea 

water and in the bottom sediments at depths of 2,500 and 6,000 feet in 

the Pacific Ocean. The corrosion rates of the silicon bronzes initially 

were higher than the other bronzes but after 35 months of exposure at 

the 6,000 foot depth they were comparable with the other bronzes. The 

corrosion rates of the bronzes were higher at the surface in the Pacific 

Ocean at Point Mugu than at depth. 

The corrosion rate of phosphor bronze A was higher at the surface 

in the Pacific Ocean at the Panama Canal Zone and in Port Hueneme 

Harbor than at depth while those for silicon bronze and 5 percent and 
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7 percent aluminum bronzes were about the same at the Panama Canal Zone 

as at depth. 
The bronzes, except the aluminum bronzes, nickel-aluminum bronze 

containing 10 percent aluminum and the silicon bronzes, were corroded 

uniformly. These bronzes were attacked by selective corrosion whereby 

either aluminum or silicon was selectively removed with a layer of- 

metallic copper remaining on the surfaces of the specimens. Where an 

alloy is corroded by this type of attack, corrosion rates are not a 

true indication of the amount of corrosion because the weight losses 

are low due to the weight of redeposited copper remaining on the speci- 

mens. Hence in these cases, corrosion rates are not reliable indi- 

cations of corrosion damage. 

Phosphorous bronzes A and D, 7 percent aluminum bronze and silicon 

bronze A were not susceptible to stress corrosion cracking at depths 

of 2,500 and 6,000 feet in the Pacific Ocean. 
The mechanical properties of the phosphorous bronzes A and D were 

not adversely affected by exposure at depth in the Pacific Ocean while 

those of 7 percent aluminum bronze and silicon bronze A were adversely 

affected. This adverse effect is attributed to the selective corrosion 

of the 7 percent aluminum bronze and the silicon bronze A. 

Corrosion products were copper oxy-chloride (CuCl9°3Cu0-4H 20) and 

cupric chloride (CuCl9). 

Copper-Nickel Alloys 

The corrosion rates of the copper-nickel alloys in sea water and 

in the bottom sediments at both the 2,500 and 6,000 foot depths de- 

creased with increasing duration of exposure. However, the corrosion 

rates in the bottom sediments were lower than those in sea water. 

Copper=-nickel alloy, 70 percent copper-30 percent nickel containing 5 

percent iron corroded at much lower rates in sea water at both depths 

through 400 days of exposure than did the other alloys. These lower 

corrosion rates are attributed to the protection afforded the alloy by 

the hard, impervious film on its surface which did not start to deter- 

iorate until after 400 days of exposure; thereafter, the corrosion 

rates increased. The copper-nickel alloys, 70-30 containing 5 percent 

iron, 80-20 and 55-45 corroded at faster rates at the surface in the 

Pacific Ocean at Point Mugu than at either depth; those of 90-10 and 

Cu-Ni-Zn-Pb alloys were the same at the surface and at depth; and those 

of 70-30 containing 0.5 percent iron and nickel-silver were lower at 

the surface than at depth. The 70-30 alloy with 0.5 percent iron cor- 

roded at the same rate after 2 years of exposure at depth as it did at 

the surface of the Pacific Ocean at the Panama Canal Zone. 

Copper-nickel alloys 95-5, 90-10, 80-20, 70-30 containing 0.5 per- 

cent iron, nickel-silver and Cu-Ni-Zn-Pb corroded uniformly. The 70-30 

alloy containing 5 percent iron was attacked by crevice and pitting 

corrosion after 751 days of exposure at the 6,000 foot depth and the 
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55-45 alloy was perforated by crevice corrosion after 1064 days of 

exposure at the 6,000 foot depth. 

Copper-nickel alloys 95-5, 90-10, 80-20, 70-30 containing 0.5 per- 

cent and 5 percent iron were not susceptible to stress corrosion crack- 

ing at either depth in the Pacific Ocean. 

The mechanical properties of 95-5, 90-10, 80-20, 70-30 containing 

0.5 percent iron and 70-30 containing 5 percent iron copper-nickel 

alloys were not adversely affected by exposure at either depth in the 

Pacific Ocean. 

Corrosion products on 70-30 copper-nickel alloy containing 5 per- 

cent iron were nickel hydroxide (Ni(0H)9), cupric chloride (CuCl j) and 

copper metal, 44 percent. 
Because of the selective corrosion of the majority of the copper- 

zinc alloys, the aluminum bronzes, nickel-aluminum bronze containing 

10 percent aluminum and the silicon brzones, they would be unsatis- 

factory for use in sea water applications, especially for long periods 

of constant immersion at depth. 

Copper, beryllium-copper, arsenical admiralty brass, aluminum 

brass, nickel brass, the bronzes except the aluminum bronzes, nickel- 

aluminum bronze containing 10 percent aluminum and the silicon bronzes, 

and the nickel-copper alloys would be satisfactory for deep submergence 

applications because of their low corrosion rates, uniform type of 

corrosion, non-susceptibility to stress corrosion cracking, and no ad- 

verse effect on their mechanical properties. 
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Pigure 2. Oceanographic data at STU sites. 
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Figure 9. Corrosion rates of Muntz Metal. 



Figure 10. Dezincified Muntz metal, 

751 days, 5640 feet. X3. 

Figure 14. Dezincified nickel-manganese 
bronze, 751 days, 5640 feet. 
X3. 
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Figure 12. Corrosion rates of manganese bronze. 
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