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PREFACE

nPHE present work is intended for the use of students who

are learning the practice of Interpolation and Numerical

Integration. The advantages of a practical knowedge of this

part of Mathematics ai-e so obvious that it is needless to insist

on them here : and these subjects form an important part of the

course in the modern Mathematical Laboratory. There are,

however, so many claims on the time of students that the extent

of this course, as of all others, must be kept within narrow

limits : and it has therefore been necessary to restrict the treat-

ment to the most central and indispensable theorems. A large

number of numerical illustrations and examples has been given

of a kind likely to occur in the applications of Mathematics.

My thanks are due to Professor Whittaker and to my

colleague, Mr E. M. Horsburgh, M.A., B.Sc, Assoc. M.Inst. C.E.,

for their valuable criticisms and suggestions.

D. G.

The Mathematical Laboratory,

University of Edinburgh,

July 1915.
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PRELIMINARY NOTE ON COMPUTATION.

DEFORE introducing the formulae required in interpolation

and numerical integration, it may be advisable to mention

a few points which will facilitate the work of computing.

Where computation is performed to any considei'able extent,

computer's desks will be found useful. Those used in the mathe-

matical laboratory of the University of Edinburgh are 3' 0" wide,

r 9" from front to back, and 2' 6|" high. They contain a locker,

in which computing paper can be kept without being folded, and

a cupboard for books, and are fitted with a strong adjustable

l)ook-rest. Thus the computer can command a large space and

utilize it for books, papers, drawing-board, arithmometer, or

instruments. Each desk is supplied with a copy of Barlow's tables

(which give the square, square root, cube, cube root, and the

reciprocal of all numbers up to 10,000), a copy of Crelle's multi-

plication table (which gives at sight the product of any two

numbei's each less than 1000), and with tables giving the values

of the trigonometric functions and logarithms. These may,

of course, be supplemented by a slide rule, or any of the various

calculating machines * now in use, and such books of tables as

bear particularly on the subject in question.

Success in computation depends partly on the proper choice of

a formula and partly on a neat and methodical arrangement of the

work. For the latter computing paper is essential. A convenient

size for such a paper is 26" by 16"; this should be divided

by faint ruling into ^" squares, each of which is capable of

* For descriptions of these see Modern Instruments and Methods of Cal-

cidation, edited by E. M. Horsburgh. London : G. Bell & Sons. 1914.

e. 1



,2 INTERPOLATION AND NUMERICAL INTEGRATION

holding two digits. It will be found conducive towards accuracy

and speed if, instead of taking down a number one digit at a time,

the computer takes it down two digits at a time, e.g., instead of

taking down the individual digits 2, 0, 4, 7, 6, 3, it will be found

better to group them together, as 20, 47, 63. Every computation

should be performed with ink in preference to pencil ; this not

only ensures a much more lasting record of the work but also

prevents eye-strain and fatigue.

It need hardly be emphasized that seven-place accuracy cannot

be obtained by the use of four-figure tables. A fairly safe rule is

to make use of tables containing one digit more than the accuracy

requii-ed ; to use more accurate tables than these is simply to

increase the amount of labour without increasing the efficiency.

For the same reason contracted methods of multiplication and

division should be adopted when machines and tables are not at

hand.



CHAPTER I.

SOME THEOREMS IN THE CALCULUS OF
FINITE DIFFERENCES.

1. DiflFerences.

Let \f{x) denote the increment of a function f{x) correspond-

ing to a given constant increment w of the variable a-, so that

^f{x)=f{x + w)-f{x).

The expression l^/{x), which is usually called the First Differ-

ence of the function f{x) corresponding to the constant increment

w of the variable x, will, in general, be another function of x, and

as such will have a first difference which will be obtained by

operating on A/ (a-) with \ Calling the result of this operation

A^f{x), we have

AV(x) = A{A/(x-)}

= A{f{x + w)-/{x)}

= {/{x + 2w) -f{x + w)}- {/{x + ic) -f{x)]

=f{x + '2w)-2f{x + w)+f{x).

This is termed the Second Difference of f{x) corresponding to the

constant increment w of x. By repeating the process we obtain

in turn ^^f{x), ^^f{x), ... i\'\f{x), which are called the 3rd,

4th, ... nth differences of /{x) corresponding to this constant

increment 7V.

Xote.—It is always possible by means of a suitable trans-

formation to make the value of w unity.

For since w is the increment of x in f{x), then unity is the

increment of — . Replacing x in f(x) by wy, we obtain a new
w

function F {y), which is such that

^F{y) = F{y + \)-F{y).
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Example 1.—Tabulate and difference the successive values of f[x):
from a;= 110 to a;= 118.

A3 A*X 7? A A2

no 1331000

36631

111 1367631

37297

666

112 1404928

37969

672

113 1442897

38647

678

114 1481544

39331

684

115 1520875

40021

690

116 1560896

40717

696

117 1601613

41419

702

118 1643032

In the above table the column headed x^ was obtained from Barlow's

Tables. The column A gives the first differences, being obtained by sub-

tracting each entry of the column x^ from the entry following it, e.g. if

x=114, a;+l = 115, A/(a:) = (a;-i- l)3-a;3= 1520875- 1481544 = 39331. This
result is set on a line midway between the numbers corresponding to a;=114
and a;= 115. In the same way the 2nd differences, A-, are obtained from the

1st differences, the results being set on a line midway between the latter,

and so on.

It will be noticed that the 3rd differences of ar* are constant and that its

4th differences are zero. It will be shown later that the nth differences of a
function of the nih. degree are constant and that the differences of higher
order are all zero.

Example 2.—To determine the successive differences of sin (ax + 6).

Let /(a;) = sin(aa:-l-t).

Then A/{a:) = sin {a x+w-vh) -sin [ax-vh]

= 2 sin ^a IV cos (ax + b + ^aio)

: 2 sin ha w sin (ax + b + haw + ir)

A-'/{x) = A{ 2 sin I a w sin {ax + 6 + ^ a ?t' + tt)}

= 2 sin ^ as

= {2 sin haw}- cos {ax + b + ^2aw + v)

ia w { sin {a x + io + b + ^aw + ir) -sin (a x + b + ^ a w + w)}

{2smhaiv}"am (ax + b-\- ^2aiv + 2 ir).



1, 2] THEOREMS ON DIFFERENCES

Similarly, it can be shown that

A»/(a;) = { 2 sin ^awf sin{a x + h + ^3aw+^Tr)

and, more generally, that

A"f{x) = { 2 sin law}" sin {ax + b + ^n aw + 7nr).

This can be proved by induction in the following way :-

A"+i/(a;) = A [{ 2 sin | a w}" ain {ax +b + ^naw + n ir)']

:
{ 2 sin i a m; }" [sin (ax+w + b + ^naw + mr)

- sin {ax + b + ^naw + mr)]

= { 2 sin I a iv }"+i cos{ax + b + ^{n + l)aw + mr)

= { 2 sin i a «}«+i sin {a x + b + ^ {n+ I) a lu + {n+ I) n).

But the theorem has been proved for n—l, 2. Hence it is true always.

Example 3.—Find the first differences of the functions

cos {ax + b) ; tan—^ ax ;
«''•"=.

Example 4.—Find the nth differences of the functions

— ; a-' ; cos^(a.v + 6).

X

2. Properties of the Operator ^.

The operator A obeys certain of the fundamental laws of

algebra, viz.

—

(i) The Law of Distribution.

For d {fix) + ^ {x)) = {/(x + IV) + c/, (x- + w)) - {/(.«) + c/) ix))

= [fix + w) -f{x)] + {c^{x + w)-<l> {x)]

= A/(a;) + Ac/,(x).

(ii) The Law of Commutation if the coefficients of the various

terms are constants.

For, if a is a constant,

A [a .f{x)] = af{:c + w) - af{x)

= a{f{x^-w)-f{x)]

= a.\f{x).

(iii) The Law of Indices.

For A'- . \^f{x)

== {A . A . A ... (?• factors) .AAA ... (s factors)} /(a;)

= {A . A . A ... (r + s factors) }/(x-)

The indices r and a" are, of course, integers : the operator

A" was defined in the previous section only for integral values of ii.
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Example 1.—If f{x) is a polynomial in x of the nih. degree, then its nth

difference is constant and its differences of higher order than n are zero.

Let f(x) — anX'^+an-\x^-'^+ ... +aix + ao

in which the coefficients a„,an-i, . . ai, ao are constants.

Then Af{x) = {a„ {x + lo)" + «"-i (x + w)"-^ + ... + ai (x + ir) + a^, }

— {a„ X" + a,i-i x"-'^ + ... + ai a; + ao }

= 7t an x"-^ ir + h„_.2 X"-- + ... +bi x + h„

where 6„_2, ..., ^i, 60 are constants.

We thus see that A/(x) is a polynomial in x of degree (71 -1). Repeating

the operation, we have

A^f{x) = {n a„ [x + »')"~^ "' + t„_.j {x + *")"-- + ... + ?>i
(x -^ »•) + ?>,j}

-{nanX^'-'^ ii; + h„-2X"--+ ... +h.^x-\-h(^}

= n(,n-\)a„x"'-->if- + Cn~'iX'^-^-\- ... +Cia; + Co

where c„_3, ..., q, c^ are constants.

Hence A-/(x') is a polynomial in x of degree (/i-2). It is evident that

by continued repetition of this process the degree of the function will be

reduced to zero, and that we shall obtain

A«/(a;) = »i (vi - 1 ) (?j - 2) . . . 3 . 2 . 1 a„ »•"
,

i.e., the ?ith difference of the function is a constant. Obviously the next and

all differences of higher order will be zero. This result is of great import-

ance ; probably no other theorem will be applied as frequently as this. For

instance, it enables us to complete a mathematical table in which there are

gaps. This is illustrated in the next example.

Example 2.—If

/(a:) = 0-5563, /(x f l)-0-p682, /(x + 3) = 0-5911, /(a; + 5) =^0-6128,

obtain /(a; + 2) aad/(a; + 4) on the assumption that /(x) is a polynomial of

the third degree.

It has been shown in § 1 that

^""/{oc) =/(.T + 2 w) - 2f[x + w) +f(x).

By repeating the process we get

A'f{x)=f{x + 4.ir)-4:f(x + 3w) + 6/ix + 2,r)-4/(x + >r)+f(x).

Bat the given function is of the third degree. Hence for it we have

A-'/(.x-) = 0. Noting that w is unity we obtain

f{x + 4) -i/(x + 3) + &/{x + 2)-i/{x+l)+/{x) =

or, denoting /(x + Ji.) by/,,,

/4-4/; + 6/,-4/.-f-/o = 0.

Similarly /o - 4/, + 6/ - 4/, 4-/1 - 0.
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Substituting the given values in these two equations, we get

/4 + 6/3= 4 -0809

/4+ y;- 1-1819

whence /,= 0-5798

,

/j = 0-6021
,

i.e., /(X- + 2) = 0-5798, /(x-r 4) = 0-6021.

Example 3.—If when a; = 0, 1, 3, 4, 6, the corresponding values of

f {x) are 1, 1, 79, '253, 1291, 6nd approximate values for f{x) when x= 2

and when .1=0. Under what conditions will the result be accurate ?

3. Expansion of f{x + mv) for Integral Values of n.

We shall now establish certain formulae which express

J{x-\-mv) (where n is an integer) in terms of differences of

various orders. These formulae will be shown in Chapter II, to

be valid under certain conditions even when n is not an integer.

It will be found convenient to introduce another operator E
defined by the equation

E=i+x y
This new operator will obviously obey the same laws as A.

Now EJ (x) = (1 + ^)/{x) = f{x) + \f{x) ^/{x + w).

Thus the effect of the operator E on the function f{.v) is to increase

its argument x by tlie given constant quantity w. Repeating the

process we get

E"J{x)=f{x + nw)

and since the operator sS. may under the conditions of § 2 be treated

as an algebraical quantity, this last equation may be written

f{x + nw) = {l + ^Yf{x)

=f{x)+,fi,^f{x) + „c,^''f{x)+ ... +^'\f{x) (1)

where ,/.v denotes the coefficient of a'' in the binomial expansion of

(1+a)". The function /(a; + 7iM/-) is here expressed in terms of

f{x) and its successive differences.

It is evident that, since the effect of the operator E on f{x) is

to increase x by w, the result of operating on f{x) with E~'^, where

E~^ is defined by the equation EE'^^^1, will be to subtract w
from X,

i.e., E-^/{x)=^/{x-w).
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Hence the above formula (1 ) may be transformed as follows :

J {x + nw) =/{x) + ,.ci ^f^x) + {l + ^) E-' {,c, A-fix) + „c, ^y(x-)

+ ... +S"/{x)}

=/(•«'•) + ,fii ^J (a) + (1 + Aj {„c, A- f{x - iv)

+ ^^Cs^'/{x-7J))+ ... +1"/{X-W)}

+ (l+A)^-M„+iC,Ay(x-«;)+ ...
}

+ (l+A){„^,c,Ay(x-2u;)+ ...
}

+ ,,+1^4 AV'(« - 2^) + „+oCg A'f{x - 2m;) + ...

Operating next with (1 + A)^-' on the 7th and subsequent

terms, then on those beginning with the 9th term, and so on, we

obtain

f{x + nw) =/{x) + „ci ^/(x) + „c., /\'/{x -w) + „+iC3 Ay (a; - w)

+ „+,c, AV(«-' - 2*«) + „+.c, Ay(X -2w)+... (2)

the formula ending at the term .X-"~^/(x - n - I w).

In the same way it may be shown that

f{x + n w) ^f{x) + „c, Ay'(A' - w) + ,,^^c. A-/(^; - lo)

+ „^,c, AV(-*; - '^^) + ,,+.^4 A-* ;\x - 210)

+ „^.,C5 A'/'(x - otv) + ... {3}

the formula ending at the term A-'"y"(;f - n w).

Changing x into x + w and rt into n-\ in (3) we have

J\x + 11 w) =/{x i-w) + „_iCi \f{x) + ,fi.,
A-y"(a;) + „c. A"/ (a; - w)

+ „+jC, AVXa; -w) + „+,c, A' fix -'2w) + ... (4)

the formula ending at the term A-"/(x -n-2 w).
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Adding (2) and (3) we obtain

f{x + n lo) =f{x) + ,fi, ,^
^

' +— ,fi,
A-7 (,x - w)

A\f{x-w) + ^'/(x-2w)

+ ^„^,c,i\Y{x-2w) + ... (5).

Similarly, addition of (2) and (4) gives

Formulae (1), (2), (3), (4), (5), (6) may be compared with the expansions

introduced in Chapter II. under the names Newton's, Stirling's, etc.,

Formulae of Interpolation.

Again, from the definition of the operator E, we see that

Ay\x) = {E-\r/{x).

Expanding the operator in this last relation we obtain

A"/{x) = E''/{x) -
,fi, ^-VX*-) + .^. E^'-'fi^) ••• + (

- 1)V(^-)

=f{x -\-nw) - „Ci/(x- + n-lw)+ „Co/(.r + w - 2 w)

+ ... +{-\rf{x).

In this result we have the 7ith difference of the function f{x)

expressed explicitly in terms of f{x) and its successive values.

4. Relations between the Differences and the Dif-

ferential Coefficients of a Function.

The second example of g 1 may ha\ e reminded the reader of a

somewhat similar result in the diflerential calculus, viz.,

-— sin (a x + h) = a" sin (« x i-b + hn tt).

dx

This result may be derived from the example in question. For if

we put iv = .\x, where Ax' denotes a small inci-ement in x, and,
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after dividing both sides of the equation by (A x)", make A x tend

to zero, we get

d'\f {^) T (-2 sin ia . Ax^" . , . , . , ..

^d^ = lu['""tx~ ) sm{a*' + 6 + l7.(a.Aa; + 7r)}.

Aa;->0

= a" sin {ax + b + J n tt).

This naturally suggests that there may be some relations connecting

the successive differences of fix) and the successive differential

coefficients of the same function. That such a relation does exist

we now proceed to show.

Applying Taylors Theorem* to the function /(a; + w) we obtain

f{:x + w) =/{x) +wf (a;) + ^y"' (.r-) + ... + ^./'"" {^^ + • •

or, since f{x + id) -J\x) = \f{x),

A/{x) = w/'{x)+ '^^/"{x)+ ... + ^f-'(x) + ...

which is a relation of the kind sought for.

Again, by Taylor's Theorem,

./(^- + "')=/ (-»•)+ wj'{x)+ — _/'(y/)+ ... + --/'""(.'/;)+...
'J> ! in\

f(x+2to)=/{x) + 2w/'{x)+^^^/"{x)+ .. +l^'/<™)(a;) + ...

and generally

/{x + n 2v) =/ (*) + n to/' (x) +^' /" (x) + ...+^' f"" (o:) + ...

Hence

'^"/(•^-') =/(''' + '* '^') - »Ci /{-^ -t- w - 1 tv) + „c,/{x + 11-2 iv)

- ... +{-\)y(x)

= 2 -^ {"'" - „Ci {n - 1)'" + ..Co [n - 2)'" - . . .
}/'"" (x).

* It would be inopportune at thi.s stage to introduce a discussion of the

questions of convergence whicli arise in connection with the application of

Taylor's Theorem. We shall assume a convergence sufficient for our

purpose.
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But
^"' ~ «Ci (w - 1

)'" + ,fi2 ('« - 2)'" + ...

= if m<7i*

= nl if ni = 71

= i ri (w + 1 ) ! if m = ?i + 1

=— ?i(3« + 1) (?i + -2) ! ifm = 7i + 2

etc.

Making use of these results in the expi'ession for A"/(x) we find that

15 7r (?i + 1) „ . ,„+
^^ 'w"^'J^'^+-{x) + ...

Corollary 1.—Since the rzth differential coefficient of a function

_/'(x') of the nth degree is a constant, and the derivatives of higher

ordei- ai-e zero, we see again from this expression for A"/{x) that

the ?ith difference of a polynomial of degree ?*. is a constant, and the

differences of higher order zero.

Corollary 2.—By reversing the series for Z\"/"(.^'), we obtain an

expansion for the nth differential coefficient of /{x) in terms of its

differences, viz.

lon{n + 2) {n + 3) .... . ^

6! - "-^^'

CoruUary 3.— If the ?«th differences of a function are constant,

then the function is a polynomial of the nth degree.

For since the nth differences are constant, the higher differences

are zero, and therefore the nth. differential coefficient is constant,

Chrystal's Algebra, Fart ii., Chap, xxvii., § 9.
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and the differential coefficients of higher order zero. Thus the

function, when expanded by Taylor's Theorem, takes the form

/(,«) =f(X) ^(x- x)f (X) +
'•'

^ f^\r (X) + ...

.'-^^,/ (.r,
"

n !

and this is of the ?ith degree in x.

Corollary i.—Since e^ = 1 + j-: +— + ... -\
. + ••

we see that the series which represents /{x + w), viz.

f{x) + ivf'(^x)+ y,/"(a^) + ...

may be symbolically represented as

d

e"~^f{x).

Hence Ef{x) = e'^f{x).

MISCELLANEOUS EXAMPLES.

(Asstime in the followiny exercises that w is unity, unless otherwise indicated).

1. Find the first differences of the functions

tail a X ; log x ; ( a-^ - a* ) / (« - 1 )•

2. Prove that

sin
A tan a; =

eosx d cos(a,-+ \)d'

3. Prove that

1 1 e
^ X"'"^^ taii^;^ .

2^ tan—

4. Find the u'-'' differences of the functions

x+\ ^ .
,—- _— . x™+" ; sin ax cos ox.

X- \Zx '

5. Find the »ith difference of each of the factorials a;(a; + a) (x + 2a)... and

1

a;(a; + a)(x + 2a).
there being m factors in each factorial and the increment
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of X being a: and show how to develop any polynomial in x in a series of

factorials.

In particular show that

x^ =x^lx{x-\)^^x{x-\){x-'l)-Vx{x-Y){x~1){x-'>,).

6. If f(x) = a?,^ + 6 2^- prove that

AV(a;)-3A/(x') + 2/(x) = 0.

7. Prove that

A X" - 2A--^ x" + 3 A3 a;" - = (a- ^ 1
)" - (.r - 2)" .

8. Establish the formula for tJ e Jith difference of the product of two

functions

A« {f.x) . 4> {X) } = A«/(.T) • 0(-i-) + n A«-i/(.r + 1 ) . A ( .r)

7i(n-l)
+ ^yy- A«-V(a' + 2) . A'-^,^(a-) + . . .

9. Show that

(E) a\f{x) = a^ <p (a E)f[x)

and find the value of

AV(-«) + — (a - cos 6) A/(.r) + ( 1 _^ cos 6 + ^ )f{x)
a \ a a- /

cos h X
where f{x) =—--—

.

10. The record of exports for the year 1813 was destroyed by fire. Make
an estimate of their value given that the values of the exp(rts for the years

1810, 18 11,. 1812, 1814, 1815, 1816 were 48, 33, 42, 45, 52, and 42 million

pounds respectively.

11. It is asserted that a quantity, which varies from day to ('ay, is a

rational and integral function of the day of the month, of less than the fifth

degree, and that its values on the first seven days of the month are 30, 30,

28, 25, 22, 20, 20. Examine whether these assertions are consistent. If so,

assume them to be true, and find (1) the degree of the function, (2) its value

on the sixteenth day of the month.
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CHAPTER II.

FORMULAE OF INTERPOLATION.

5. Introduction.

The problem of determining the value of a function for

some intermediate value of the independent variable or argu-

ment, when the value of the function is given for a set of discrete

values of the argument, is called Interpolation. When the function

obeys some definite law the approximation to the true value may be

made as accurate as may be desired : but if, as often happens,

the rigorous analytical formulae which occur are very com-

plicated, they will be of little value from the point of view of

computation. It will then be necessary to use a method analogous

to that which has to be employed when the properties of the

function are entirely unknown, save for the values (usually obtained

as a result of experiment or observation) which it has for a certain

limited number of values of the argument. It is to this case that

our attention will be directed.

When the observations are given for values of the argument

equally distant from each other, and are in arithmetical progression

so that they can be plotted on a sti'aight line, the possibility of

interpolating is obvious. But, in general, the observed vahies

do not follow any apparent law, and unless some assumptions

are made regarding the form of the function, the problem is

indeterminate. It is, however, customary to obtain the entry for

values of the argument not far distant from each other ; and when

this is done, in most practical problems it is found that all the

differences at some particular order become sensibly zero. In such

cases the observations may be represented with considerable

accuracy by a polynomial in x of the form

y = flo + «i a; + «,;
» + ... + a„ a?".

This is the equation of a parabola of the nth order, on which

account the method now to be described is sometimes called

Parabolic Interpolation.
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In some cases it is advisable to calculate the function not

directly, but in combination with some other function. The

calculation of the values of the probability integral e-i^" dt

furnishes an example of this kind, since, when the argument becomes

large, the integral and its differences become inconveniently small

and irregular. In this case it will be found convenient to compute

the function ei^' e'^^'dt. At other times some function of the

given function is calculated ; for example, if the observations

formed a geometrical pi'ogression, then we should prefer to make
the interpolation on their logarithms rather than on the quantities

themselves.

Wallis (1616-1703) may be said to have laid down the principle of inter-

polation in his approximation to the area of the circle j/ = (,r- t-)^ '-. In this

work he first assumed that the value of the integral I (x - .i^)^ ' dx might be
Jo

taken as the geometric mean of the values of

x")dx, i.e. of 1 and ^.

Subsequently he saw that this was not exactly true, and that the value of

I (.r -a;-)^ - dx must obey the law expressed by the series

I (x - x')" dx and
}

{x

le saw that this was not

; must obey the law expr

j
{x - xY dx, {x- X-) dx, ... , I (x- x~)" d.i

this was equivalent to interpolating the value of the integral under con-

sideration.

6. Lagrange's Formula of Interpolation.

We shall first show how to find a polynomial of degree (n - 1)

at most, which has the same values as some arbitrary function /(oc)

for n distinct values of x, say x = a^, «o, ... a„. This polynomial

will be represented by the parabola of order {n - 1) already men*

tioned, and may be expressed in the form

/(x) = Cg + C^X + CoX-+ ... + c„_i x"~\

But it will be found more convenient to write it, as is always

possible, in the form

fix) = 2 A^{x-a-^) ... (x - a^_,) (x - a^^-^) ... (x - a„) (1

)
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When ,r is put equal to o, all the terms on the right-hand side of

(1) vanish except the tei'm containing A^: at the same time /(x)
becomes f{a^). Hence

^r =J ("r) / («r - «i) • • («. - «,._,) («, - «,+,) ... (a, - rt,,)

and equation (1) becomes

fir) = y (a^ - CTi) • (« - «,_,) (a? - a,+i) . . . {x - a„)
_^

^"^
rfi K-cii) ... («,-a,._j)K-o,^,) ...(«,.-«„)

^*"'-^ ^-^

This formula expresses /(x) for all values of x in terms of its

values at the n points «„ o.., . . . a„. If /(a?) is a polynomial of

degree less than n, the formula gives its accurate expression. But

\if{x) is not a polynomial of degree less than n, then it is no longer

possible (in default of other information) to determine f{x) from a

knowledge of its values at the points flj, a„_, ... a„ ; for if any one

such function were known we could obtain another by adding to it

any function which is zero at the points a^, a.., ... a,„ e.g., we could

add the function {x - a^) (x - a.,) ... (x - a„)
(f)

(x) where
(f>

(x) does

not become infinite when x = a^, o.,, . . . a„. If, however, /(x) is a

function of which nothing is known except that it takes certain

definite values corresponding to certain definite values a^, a.., ... a„

of the variable, then the simplest assumption which we can make
regarding its form is, that it is the function of degree (n - 1) which

sa,tisfies the given conditions ; and this function is given by

equation (2), The expression on the right-hand side of (2) may
therefore be taken as the expression for /{x) for all values of x in

the interval considered. It may be written in the form

fix) = Z -,

, , , J (a.)
,.^1 (x- a,.) (b (a^)

where (/> (x) = {x - a^) {x - a^) ... (x - a„).

This is known as Layrange^s Formula of Interpolation. The
advantage which it has over other formulae for the same purpose

is that it is in a form suitable for logarithmic computation.

This latter form of Lagrange's formula may be obtained directly from the

formula previously given. It can also be obtained very readily by the

Method of Partial Fractions,

/(£l
<t>

{X)

<t>
{x) = [x - a,) [x - ff.,) ... (.T - a„ ).

For consider the proper fractional function , , . where
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Decomposing it into partial fractions we have

<p [x] X - ttj X - a., X - a„

But, by the general theory of partial fractions, the coefficient A,- is given by

f(a,.\
^'-

<p'{ar)

Hence

/{r) _ /K)
,

/(0.3)
I ,

/( an )

(p(x) (X - a^) (p' (a-^) {x - ao) (p' (ao) '" (x - a„ ) 0'(a„ )

which gives

(X)

^ ^-'"^ " S (*•-«,.)</.'(«,.) -^ ( ^-^ )•

Examplt /.—Construct a polynomial of the third degree in x which

shall have the values -5, 1, 1, 7 when the values of x are -2, - 1, 1, 2

respectively, and determine its value when x is %.

Let f{x) be the required function. Substituting the given values in

Lagrange's Interpolation Formula we have

(.r+l)(.r-l)(a'-2) (r + 2) (.r - 1) (.r - 2)

/(•') - (_2+l)( -2- 1)(- 2-2)^ ^'^ (-l+2)(-l-l)(-l -2)^ ^^^

(X + 2) (.X- + 1) (.v - 2) ,

(X + 2) (.r + 1) (a- - 1) „

(I + 2) (1 + 1) (1 - 2)
^

(2 + 2) (2 + 1) (2 - I)

= tVU-+l) (-f-l) (.r-2) + i(,r + 2) (.r-1) (.r-2)

-
1 [X + 2) (.r + 1 )

(,r - 2) + /. (.r + 2) (.r + 1) (x - 1)

=^-x\\.

From this it follows that /(:') = 2|. But in practice it is not necessary to

obtain the algebraic form of/(.r) if we merely require its value for some

value of X. Direct substitution in the formula will give the result much
more quickly. In the question under consideration

(Hl)(|-1) (i^-2) (1 + 2) (§-1) (§-2)
./ (:')-(_2+l)(-2-l)(-2-2)^ 5) + (_i^.O)(_i. i)(_i_2)

(f+ 2) (1 + 1) (§-2) (5 + 2) (f + 1) (§-1) „

+ (1+2) (1 + 1) (1-2) + (2 + 2) (2+1) (2+1) ( + ''

2J. 7_ J. 3 5. I 345~ 96 48'48~»6

'8*

Example ^. —Find the minimum value of the polynomial of the second

degree which has the following values

.r , 1 , 5

/(x) 11, 5, 21.

G. 2
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Substituting these values in Lagrange's Interpolation Formula we have

., ,
(.r- l) (a--5) x(x-5) x{x~l)

f(x) =-V-(2a:-6) - |(2a;-5) + t^(2.r-11.

For a minimum turning value /' {x) =

i.e., 44(2.r-6)-25(2,T-5) + 21(2a;-l) =
SO.r- 160=

,. _2

Hence the minimum value of /(,i-) corresponds to the value Q of the argument.
The corresponding value of f{x) is 3.

Example 3.—lif(x) is a function of x which assumes the values 20, 35, 56, 84,

when X has the values 0, 1, 2, 3 respectively, express f{x) in terms of x, on
the supposition that A*f(x) = {). Also find an approximate value of x if

/(.t) = 25, third differences being neglected.

Example 4.—If four consecutive values of a function corresponding to the
values 1, 2, 3, 4 of the variable be 601, 777, 902, 999 respectively, find the
value of the function when the argument has the value 1-5.

7. Periodic Interpolation.

When there is reason to suppose that the function is periodic, it is better

to assume for /(a;) an expansion in terms of periodic functions, say,

f{x) = «() + aj cos X + ttg cos 2x+ ... + a„ cos n

x

+ 61 sin .1- + 60 sin 2 .T + ... +6„sinn.T,

the number of unknown coeiEeients corresponding to the number of observa-

tions given. When the observations are given for values of the argument
spaced at equal intervals, the problem becemes one in Fourier's analysis and
will be found treated in the tract on that subject. But when the values of x
are not in arithmetical progression we may use a formula which is analogous

to Lagrange's formula of interpolation, and which Gauss has shown to be

equivalent to the above expansion ior f{x).

If/(,r) is given for x-Xf^, .r,, Xo, ... x^n the corresponding formula is

ff^\ - '^ sm^{x-X(t) ... sin^(x-Xr-:)am^{x-Xr+i)... sin i (.i- - .r2„)
_

'-0 Sin J (xr - .Ti) ... sin 4 {.r,. - Xr-i) sin | {xr - av+i) ... sin ^ (.r,. - X2„)

8. Notation.

Hitherto the points a^, a„, ... a„ have been taken to be any
points whatever. But in the most important class of cases it is

possible to obtain the entry for values of the argument equally

distant from each other. In what follows we shall assume that the
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arguments are spaced at equal intervals, and shall use the notation

of the following scheme which for many purposes * is more con-

venient than that used in Chapter I.

A6Argument. Entry. A A' A^ A^ A5

a — o ?r ./-;i

^Ai
a - 2iv ./'-2 IJ- 8f- 2 8V- 2

l^f-^ S./"-^ /.8V_ V 8\f-

a - ir ./'-I i"-s/'-l s-/-
1 /^ SV- 1 sy-i

/^./-i 8/-i f, sv- i 3V- i /^^V-i 8V-k

a A ^s/; 8Vo /* ^Vo sv; l^8V.

i\f\ Vi H-o~A, •^Vi /-sVi ^A
a + n- A 1^ s./'i ov; /^ ^v; 8'A

i^A 3/5 /^svi sy,

a + 2 w A
i-A

1^8

A

8A

8%

a + 3 IV A
whe^i-e 8Ai =A-A- 1 /^./i = h (A + Ai)

s./l =A-A /xS/,= lm + 8A i)

etc. etc.

8%

9. Newton's Formula of Interpolation.

If we assume that the differences n.^ - a^, a.-a^, ... in Lagrange's

interpolation formula are all equal to iv, and that a^ in the formula

corresponds to a in the scheme, then the 'quantities /(a^) take the

following forms :
—

./(«j=./;=/o+3.4

f(ao)-A=A'+8A =A+-^8j] + 8V,

/(«.o=y;.^3/i . "^ 8v. . ^±z}ltzl} ,j^ , ...

* Especially in connexion with central-diflference formulae.
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Lagrange's Interpolation Formula then becomes, if the number

of given points is denoted by k,

^ {x - g.,) {x - flg) (a; - g,) . {x - a,.)

(rti - a.,) (ai - a,) («!-«,)... (a, - a,
)

'

"

(a? - CTi) (ft7 - CTo) {x -a^) ...{x- a,.)
, . , . ,

+ / w V, ^ ;
; C/o + (^Jh

)

{a.2 - «]) {a., - tto) (a„ - a^) ... (Oo - a^.)
'

,

(..-aOU--)(.^ -«.)...(--«.)
^j-^,^j-_,^^,.^

{as - a,) (a„ - n..) (a. - rt^) . . . (03 - %)

(x - CTi) (.r - a^) (x - g^+o) ... (x - a^)

(g,.+i - gj) ... (gv+i - gj (g^+i - g,+o) ... (g,.+i
-

where g^ = g, g., = g + ?<;, . . ,, g^,. = g + (A; - 1 ) iv.

This is an expression of degree (^ - 1) in a?. In it the coefficient

oi /q is unity when x = a^, a.2, ... a^,, and hence is unity always.

Again, the coefficient of S/1 is at a^, 1 at gg, 2 at gg, ... r at

g,.+i, ..., and as this coefficient must be a polynomial in x of degree

less than k, it must be no other than . In fact the terms in

8/^ in the above series simply constitute the expansion of

S/. by Lagrange's formula. We shall denote bv w, so
w '^ "^ w ^

that w is a real quantity, not necessarily an integer. The

coefficient of 8f, is thus n. Similarly the coefficient of S-/J is

r(r-l)
at gj, at g^, 1 at gs, ... —-

—

— at g^+i . .
.

, and in the same way

we see that this coefficient is —

—

- for any value of n. The

other coefficients can be determined in the same way, and we
thus finally have Lagrange's formula transformed into the equation

/(g + «M;)=/o + riS/i + S-/ + ' ^/^ + ...
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This is called Neicton's Formula of Interpolation* In it the

diifei-euces are those which occur along a line parallel to the upper

side of the triangle in the scheme. It may on this account be

termed a Forward Difference formula of interpolation, and will be

found very useful when the value of the function near the beginning

of a limited series of observations is required.

It must be understood that the function furnished by Newton's

formula is the polynomial of lowest degree which has the given

values at the k given points a, a+v:, a+'2io, ... ,
a-\-{k-\)w:

and the series on the right is a terminating series. If the given

values at the k given points are the values of some given function

^ {x) at the points, we cannot conclude that <^ {x) is represented by

Newton's formula unless 4> {^) is the polynomial of lowest degree

which passes through the points.

Suppose, now, that the values of a function are given not

merely for a finite set of values of its argument, but for the infinite

set

x = a + riv {r = Q,\,'2,'c>, ... ad inf.).

Then we can, by Newton's formula, construct a polynomial of

degree {k - \) which has the given values for the first k of these

values of the argument, where k is any positive integer : and it

may happen that, as k increases indefinitely, the series on the right

in Newton's formula becomes (for some range of values of a;) a con-

vergent series, having for its sum a function f{oi). The function

/(*) will now have the given values for each of the values a + rw
(r = 0, 1, 2, 3, ... ad inf.) of the argument. There are, however, an

infinite number of functions which satisfy this condition and /(a-)

is that one of them which is the limit, when ^ -> x , of the polynomial

of lowest degree which has k of the given values.

An expression for the diff'erence between the value of the

function and the sum of the first (»" + l) terms of the limiting

form of this polynomial will now be obtained. Let

n{n-\) ... (ti- r \-\) . , „
t\a + mv)=S, + n^J. + ... + '—^^ 67^ + R.

Then "

r/ ^ r s/ m{m-\) ... {m-r+\)
f{a + m9v) -J^-niSji^ - ... —— 6/^ - H

Cf. § 3, Formula (1)
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will be zero for ?n = 0, 1, 2, ... r and n: its derivate of order (r+ 1)

will therefore be sero for some value n of 7n lying between the

least and the greatest of the quantities 0, r, n, and hence the

residue is given by

E = „C,+,to'-+' /"+'' (a + n' n-).

It may be remarked that Newton discovered the binomial coefficients

when studying the expansion in series of a function by interpolations. He
first of all considered the expansions of the expressions (1 -a'-)", (l-.i-)^,

(1 -.r-)'-^, ... and deduced from them the expansions of (1— ,<-)'^, (1 -x^fi , ... .

Then, by analogy, he obtained the expression for the general term in the

expansion of a binomial, and thus established the binomial theorem.

determine the value oi/{3-5).

X fix)

1 0-208460

Example 1.—From the following table of values of the function f{x)

A3

•29242

29029

28789

28523

0-237702

0-266731

0-295520

0-324043

-213

-240

-266

27

In this example a=l, n= ^, w=\

/y =/(!) = 208460.

PhHence /(3-5)=^ + i 5/, - I S'-^j

= 0-208460

14621

27-2

= 0-223106.

E.ramplc J.—Corresponding values of x and/(,t:) are given in the fuUowiiig

table :

4

4-1

4-2

4-3

4-4

4-5

/(-)

54-5982

60-3403

66-6863

73-6998

81-4509

90-0171

Obtain the value of /(4-05).
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A certain amount of discretion is necessary in the application

of Newton's formula. Let us assume, for instance, that the

f!;iven observations are finite — say seven — in number, and

correspond to the values a - 3 w, a-2w, ... a + Ziv of the

argument as in the scheme, § 8. If a + n w lies between a - 3 w
and a-'lw, then Newton's formula fory(a + nw) will involve the

quantities /_:„ S/_ s, S-/_._;, S\f_ ^, 8^/_i, 8^/_ ^ and 8^/1, all of which

occur in the scheme. Thus a good approximation to the value of

/(a + nw) may be obtained by means of the formula. But if

a + 7iw lies between a + 2w and a + 3w, then in the Newton's formula

for /{a + n w) the only known terms are the first two depending

on /a and 5/g. In general, these are quite insufficient to determine

the value of f{a + n w) to the necessary degree of accuracy. It is

therefore expedient in this case to find a formula involving a

larger number of known quantities. A suitable one may be

obtained by replacing iv in the original formula by - w. Then,

since

we must replace t>j\ by

Similarly, since

/,-/-! or -S/_i.

we must replace S'-yj by

./; - i/Li +/L, or 671i

.

In the same way we can determine the functions which must

take the places of S*./#, S^/j, .... Newton's formula then becomes

n(n-\) ^, , n(7i-l) hi-2) ^. ,

J{a-mv)=/,-ndJ^.^+ \^ ^

<^-./-i - -^
37 ^V-s+ •••

This expansion involves diiFerences along a line parallel to the

lower side in the scheme, and it may therefore be regarded as

a formula for Backward Interpolation. When a + n w lies between

a + 2 w and a + 3 1<;, the formula will depend on the quantities

fi-,
5/s, S-/^, S^/|, S^/i, 8f/^, and S^/o) all of which are known: it

is therefore very convenient when the value of fix) is required for

values of X near the end of the series of observations.
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Example 3.—From the following table of values oi f{x) determine the

values of /( 104 -25).

X /(.f) A A--^

101 1030198

30906

102 1061104

31518

612

103 1092622

32136

618

104 1124758

32760

624

105 1157518

In this example a — 105, n — 0'75, " = 1

/y=/(105) = 1157518

/(104-25)

0-75 (0-75 - 1) 0-75 (0-75- 1) (0-75 - 2)
-/o-0-75o/.^ + ^^—^5y_,- --^ 5y-«+...

=/o-0-75 5/'_, - 0-09375 5-/_, - 0-0390625 sy. + ...

= 1157518-0-75 (3-2760) -0-09375 (6-24) - 0-0390'625 (6)

= 1157518-24570

58-5

0-234375

= 1132889-265625.

Example 4-—Using the data of Example 2, find the value of/(4-45).

10. Stirling's. Formula of Interpolation.

As Newton's formula involves differences -which lie along a

slanting line it will frequently not be suitable for calculating the

value of the function for a value of the argument near the middle

of a series of observations. By a suitable transformation of this

formula, however, we may derive another involving differences

which lie on a horizontal line : such a formula is termed a Central-

Difference Formula.

Since

6J\ - 8/_^ = S^Jl

we have

Hence
8jl =ijlSj[, + }.8'-/o.
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In the same way the higher differences which occur in Newton's

formula may be determined in terms of the differences which occur

on the same horizontal line Sis/,,. Substituting these in Newton's

formula we obtain

/{a + n w) - /; + 7i{ji 3 /; + }, 3;/;} + ^^^^^—- { S-/o + /^ 5"_/o + -h ^Vo}

n {n - 1 )
{to - 2)

3"! {fx oVo + § 8\/l + II S% + i S%} + . .

.

=Jo + n II oy,3 + — 6-/o + -^^-^— jx b-J, +^ SVo

n {ii- - 1) (vr — 4j

i^ 8%

This is known as Stirling's Formula of Interpolation. It should

not be used for determining the value of a function for values of the

argument near the beginning or the end of a series of observations,

as it would not then be possible to obtain a sufficiently high order

of differences.

Example i.—Using the data of §9, Example 1, determine the value of

/(3-5).

.r fU-) A A- A3

1 0-208460

29242

2 0-237702

29029

-213

-27
3 0-266731 (28909)

28789

-240 (-27)

-26

4 "295520 (28656)

28523

-266 (-26)
- 26

5 0-3-24043

28-231

-292

6 0-35-2274

In this case a = 3, IV = 1, 11 ---\

fo = /(3) = 0-26673L

/(3-5) = /o + i^5/o + i- 5Vo - tV 5Vo
= 0-266731

14455

2- 30

= '281158.

Examj}/e ^^— Using the data of § 9, Example 2, Hnd the value of /(4-21).
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If n is greater than 0'5, it is better to use backward differences.

The corresponding formula may be obtained by merely changing

the sign of w in Stirling's Forward Difference Formula, viz. :-

—

/{a - n iv) = /; -nix of, + ^^ 8\tl -
^^

^'^
~

/x S\fl

71- (n- - 1 ) ^ , , 71 (71- - 1 ) («- - 4) .. .

4 !

Of course, either formula may be applied whether it is greater or

less than 0-5 : thus, when a check is necessar)^, it will be found

better to compute/(.r) by the formula not already used.

Example 5.—Use this Bickward Difference Formula to check Example \.

Here a = 4, c- = 1, n — ^

/o=/(4) = 0-295520

/(3-5) -/, - i M 5/o + I 5-A + -h 5Vo

= 0-295520 - 14328

33

2

= 0-281157.

The agreement with the former result is perfect when we take into

consideration the fact that the last figure is forced in both cases.

Example 4.—Using the data of § 9, Example 2, find the value of/(4-29).

11. Gauss' and Bessel's Formulae of Interpolation.

Another central difference formula may be obtained by trans-

forming Stirling's formula.

Since /^S/, = 8y,- |8V;

,xSi^j^ = S^f^-i8% etc.,

we see that Stirling's formula may be written in the form

J {a +71 IV) =j, + 71 8/^ + ^^, sv^ + ^—Yr

—

- ^A
(n+l)7i{7l-\)

(
71-2)

^ {71 +2) {71+ I) 71 (71- I) {71 -2) ^^^. ^
5 !

• I

In this result, which is frequently known as Gauss Formula,

the /x-terms do not occur. The differences which occur in this
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formula are those which lie on two adjacent horizontal lines of

the scheme in § 8.

Again, since t\ +/o ^ - /Vl

hav(

^f, = \^^f,-\^f, etc.

w€ nave

and hence

f\a + n w)

(^t + 2)(7^+ 1) 7i (« - 1) (?t - 2) ,.

+
g-^ 0/^+ ...

, . . 71 (lb -\) ^, 71 (n — \) (n - h) ^.. .

{n + l)n{n-l){n--2)
+ -

^

^-^
— /^^A

+ ;-; 6'yj^ + . .

.

This is frequently known as BesseVs Formula. In it the differ-

ences are those wdiich occur on a horizontal line mid-way between

the lines on which /J, and/j stand.

The formula most suitable for the construction of mathematical

tables, when differences of higher order than the fourth are

neglected, is obtained from the first of these on putting

When this substitution is made we get

./ (a + 71 iv) = /o + n 6/, + \^ ^

' 6% \ ' ^J\

W (1 - 71-) (2 - 7l) ,, .
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Bessel's formula will be found particularly suitable when n is

equal to |-, for in this case the formula becomes

/(»+j„j.,4+ i^.ov,. (i±Mli^ll(izlVsv>...

in which only even differences occur.

As with Stirling's formula, none of these results should be

employed when the value of the function is required for values

of the argument near the beginning or the end of a series of

observations. Stirling's formula will be found more convenient

when 71 is very small, or when the number of observations given

is odd : Bessel's when n is nearly equal to a half, or the number
of observations even.

The backward difference formula corresponding to Bessel's

forward difference formula may be obtained in the same way as in

Newton's and Stii-ling's cases. But, except as regards sign, the

coefficients in the two formulae will be the same, and therefore the

one cannot be used as a check on the other. When a check is

required to a result computed from Bessel's formula, it is better

to compute it again using Stirling's formula.

Example /. —The values of a function for the values -2, -1, u, 1, 2, of

the argument are respectively 0-12569, 0-17882, 0-23004, 0-27974, 0-32823.

Using Gauss' formula, show that when the argument has the value 0-4, the
value of the function is 0-25008.

X fix) 1 X' A3

-2 0-1-2569

5313
-

1

0-17S82 - 191

5122 39
0-23004 -152

4^ ,^~ 31

1 0-27974 - 121

4849

2 0-328-23

In this example a = 0, n = O'i, ic = 1

/;, =/(0) = 0-23004.

Hence /(0-4) = /„ + 4 5/^ - 0-12 o'Vo 0-056 5^;..

= 0-23004

1988

18-2

= 0-25008.
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Example 2.—Using the data of §9, Example 2, find the values of/(4"21)

and /(4 -29).

12. Evaluation of the Derivatives of the Function.

When, as often happens, the values of the differential co-

efficients of a function which is given by a series of observations

are required, use may be made of the symbolic equality established

in § 4, Cor. 4.

For, since

e"'~^f{:c) = Ef{x)
we have

w — .J\x) = log E .f{x).

The method will be evident from the following example :

—

Examph 1.—The values of a function corresponding to the values I'Ol,

1-02, 1-03, 104, 1 05 of the argument are 1030301, 1-061208, 1092727,

ri24864, 1*157625 respectively. Find the value of the first differential

coefficient of the function when the argument has the value 1 "03.

Here ,r = O'Ol. Let /o = /(I -01).

d
Then *'• j^/(l-03) = log £". /(1'03)

= log E.f,

= log E.E^f,

= log(l+A).(l + A)2./„

/ A2 A^ X

= 1-^ - T+ T -...). (1 +2 A + A--'j./o.

Neglecting differences of higher order tlian the 4th, this gives

0-01-^^,/(l-03) = (A + |A2+iA^'-AA^)/„

= {j\-iE+^E'-j\E')/,

= i(/3-/i)-TV(/4-/«)

= 0-042437 -0-010610

= 0-0318-27

/'(l-03) = 3-1827.

Examplt 2.—The values of a function corresponding to the values 1-5, 2,

2-5, 3, 3-5, 4, of the argument are 4-625, 2-000, -0125, -1, 0-125, 4000,

respectively. Find the value of the first differential coefficient of the function

at the points where the argument has the values 2-5 and 3-0.
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The method is perfectly general. The same result may be

obtained by diiierentiating any of the formulae of interpolation

already established. For example, if we differentiate with respect

to n the formula of Stirling,

f{a + n w) = /; + nix 8jl + J^ S\f„ + ^ '^~
/^ ^Vo

7r{n--l)
+ 4!"" -^"^ -

we have

wf {a + nw) =
tJ. 8/0 + n 8' f, + ^{Sn--l)ix S\fl

+ ^\,{2rv'-n)S\f,+ ...

w-f" {a f n w) = S-_/q -\-nii S-'/q + J-.- (6 rr - 1 ) S-*/', + . .

.

Putting ?i = these become

wf (a) = IX 8/1 -}ix 8% + gV H- ^Vo - • • •

w"-/" (a) = S\/l - ^\ 8\fl +^ 8% -...

These formulae are of use in determining the turning values of

a function, the values of the argument corresponding to given

values of the differential coefficients, the points of inflexion on a

curve of which isolated points are given, and also in determining

whether a series of observations is periodic.

Example 3.—The consecutive daily observations of a function being

0-099833, 0-208460, 0-314566, 0-416871, 0-514136, 0-605186, 0-688921,

'764329, show that the function is periodic and determine its period.

From the given observations we obtain the table :

—

X

1

y=f{x)
0-099833

A

108627

A" A" A*

2 0-208460

106106

-2521

-1280

3 0-314566

102305

-3801

-1239
41

4 0-416871

97-265

-5040

-1175

64

5 0-514136

91050

- 6215

-1100
75

6 0-605186

83735

-7315

-1012
88

7 0-688921

75408

-8327

8 0-7643-29
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Taking a = 3, /« -/(a) =./"(3), we have, since tv =\,

/"(3) = svo- w5*/;-.

= -3801-iV41
= -3804

1
^,

3804
••

/(3)
•/"(^) = - 314566

= - 0-0121.

In the same way we find that

(i) When a = 4, /, -/(4)

/"(4)= -5045, j;^/"(4)= -0-0121

(ii) When a = 5, /„ = /{5)

f"(o)= -6-221, jr^f"(b)= -0-0121

(iii) When a = 6, ./'o
=./'(6)

/"(6)= -732-2, ^-:^-/"(6)= -0-0121.

1

Hence in all cases 77T\/"('t') - -0-0121. Putting y = J {x), this gives the

differential equation
1 (Py-

-r.,:=
-0-0121

y dx-

d-y
whence -^., + 0-0121 3/ =

y - A cos 0*11 a- + 5sin011.T.

This result shows that y or f(x) is a periodic function of x, and that its

period is 2 tt/ Oil, or 57-12 days.

Example 4.—The following table represents one of the Bessel func-

tions, / (x)

:

—

1-0 0-765198

1-1 0-719622

1-2 0-671133

1-3 0-620086

1-4 0-566855

1-5 0-5118-28

1-6 0-455402

dy d-y
Find the values of -j-, and -j-,, for x — 1 -3, and hence, by substituting (with

four-place accuracy) in the equation

ah^ \ dy / 71^
\

d^^ + lc d^ + {^-lc^)y = ^'

determine the value of n.
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Forming the table of differences we have

Here

Hence

0-765198

0-7 19622

0-671133

0-620086

0-566855

0-511828

0-455402

A

- 45576

- 48489

-51047

(-52139)

- 53231

- 55027

- 56426

2913

2558

2184

1796

1399

A^*

355

374

(381)

388

397

w = 0-1, rt = 1-3, /o =/(a) =/(l-3

0-l/'(l-3) = -0-052139 -i(0-0003Sl)

/'(1-3) = -0-52203

•01/" (1-3) = -0-002184 -iV (0-000014)

/"(I -3) = -0-2185.

Substituting these in

we have

t4 + - T^ + (1 - — )y = 0,
dx-^ X d X \ x^ } " '

•0-2185 + j-:^( -0-5220) + (l - Tf^.) (0-6201) =

-0-2185 - 0-4016 + (l - TfWi) (0-6-201) =

-0-6201 + (l - TyW,) (0-6201) =

1 + 1
(1-3)-^

ti = 0.

Hence the Bessel function in question is /(,(»').

Example 'j.—Show that the following observations are these of a periodic

function, and find its period :

—

X (years) ,/(.»)

1 198669

2 0-295520

3 0-389418

4 0-479425

5 0-564642

6 0-644217

7 0-717356

8 0-783327
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Example tf. — Observations were taken of the cooling of a boiler, and the

results are given in the following table :
-

t (time in hours) 1-2 19 26 3-3 40
e (temperature °F) 182-3 1752 ITl'l 1643 16U0

(le

Determine as carefully as you can the value of -^ wlien < = 2-6 hours.

MISCELLANEOUS EXAMPLES.

1. Find a polynomial of the third degree in x which assumes the values

37, II, L3, 29 when x is equal to 2, 1, -1. -2 respectively. Also find the

minimum value of the function.

2. A steam electric generator on three long trials, each with a different

point of cut off on steady load, is found to use the following amounts of steam

per hour for the following amounts of power :
—

Lb. of steam per hour 40-20 66o0 10800

Indicated horse-power 210 480 706

Kilowatts produced 114 290 435

Find the indicated horsepower and the weight of steam used per hour when

330 kilowatts are being produced.

3. Using first differences only, find the value of /(4817'36) if

.< 4816 4817 4818

f{x) 69.3974063 694046108 694118146

To what extent may the result be relied on ?

4. Interpolate for .>; = 35-2967 from the following table and state the

accuracy of the result :^
X /(-f)

35-28 162021-40139

35-29 162043-22198

35-30 16-2065-04777

5. If the sun's apparent longitude at O. M.N. on 1914 Aug. lat was
128° 2-2' 25"-8

; on Aug. 3rd 130" 17' 15" -2 ; on Aug. 5th 13-2" 12' 7"-8
; find

the longitude at G.M.N, on Aug. 2nd.

6. At the following draughts in sea water a particular vessel has the

following displacements :

—

Draught in feet - - 15 12 9 6

Displacement in tons - '2098 1512 1018 536

What are the probable displacements when the draughts are 11 and 13 feet

respectively ?

7. The following table gives the expectation of life for males of the ages

mentioned :

—

Present age .... 5 10 15 25 35

Expectation of life in years - 50-87 47-60 43-41 35*68 28-64

Find the expectations of 3 men whose ages are 18, 20, 30 years respectively.
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8. The HM table of the Institute of Actuaries gives the following values

of h :-
a: l^

10 100000

12 99113

14 98496

16 97942

18 97245

20 96223

Obtain the values of Ix when x has the values 11, 13, 15, 17, 19.

9. The sun's apparent right ascension at mean noon is given in the follow-

ing table :
—

June 1 4 34 0-69

6 4 54 31-75

11 5 15 10-64

16 5 35 55-34

21 5 56 43-18

26 6 17 30-99

Determine the apparent right ascension for 1914 June 15d. 16h.

10. Let the number of recruits in the United States army whose height

did not exceed x inches be denoted by y. Determine the number whose

height exceeded 66 inches, but did not exceed 66| inches, if

62 618

63 1855

64 3802

65 6821

66 10296

67 14350

68 17981

69 21114

70 23189

71 24674

m's apparent declination 3 at mean noon ^

314, May 1 + 14° 54' 19" -6

3 + 15° 30' 25" -0

5 + 16° 5' 28" -4

7 + 16° 39' 27" -6

9 + 17° 12' 20" -3

11 + 17° 44' 4" -3

Determine the hourly difference in ? for 1914 May 5 and 7.
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12. In the following table s denotes the space described at the time t by

a point in a mechanism. Tabulate the values of the velocity and the acceler-

ation, and obtain their values when t = OAo.

t (time in sees.) O'l 0-:2 03 0-4 0-5 O'O O'T O'S 0-9 1-0 1-1

« (space in feet) O-OS-' 0-12 0-2S1 0-J2j 0-804 1-200 1-725 2-229 2-753 3-2S2 3-Sll

13. There is a piece of mechanism whose weight is 200 lbs. The following

values of s in feet show the distance of its centre of gravity from some point

in its straight path at the time t seconds from some era of reckoning. Find

its acceleration at the time < = 2-05, and the force in pounds which is giving

this acceleration to it.

t 200 2-02 2-04 2-06 2-OS 2-10

s 0-3090 0-4931 0-6799 0-S701 10643 1-2631

14. The following values of p (lbs. per sq. foot) and d"C are for saturated

steam. Calculate with as much accuracy as the numbers will allow the value

dp
of ^for ^=115T.

e 105 110 115 120 125

p 2524 2994 3534 " 4152 4854

15. From the following table of the secular variations of the magnetic

declination determine the chief period :

—

Year. Declination.

1540-5 - 7° -463

1580-5 - 8° -500

1620-5 - 6°-250

1660-5 - 0°-500

1700-5 + 8° -228

1740-5 +15° -755

1780-5 +20° -832

1820-5 +22° -380

1860-5 +19° -364

1900-5 +14° -833
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CHAPTER III

THE CONSTRUCTION AND USE OF
MATHEMATICAL TABLES

13. Interpolation by First Differences.

All mathematical tables are alike in that they give numerical

values of the function for certain values of the argument, which

are so chosen that intermediate values of the function may

be derived by interpolation. The interval of the argument

varies in the different mathematical tables, its choice in

each case being determined by the rapidity of variation of the

function. In most of the published elementary tables, which are

intended for the use of students, the interval of the argument is

so chosen that the second difference is smaller than one unit in

the last place of decimals retained : on this account it is not

necessary to consider second differences in the interpolation, and

the function can be calculated for any value of the argument

intermediate between two of the tabulated values by a simple

proportion in the following manner :

—

Consider a function f{x) which is tabulated for the values

.To, Xq + w, Xq + 2w,.... of the argument. Then, since the function

increases uniformly, when digits beyond a certain place of decimals

are neglected, we have

/(xq + w') -/(Xq) _ «;'

f{Xo + w)-f{Xa) w
where 0<w'<w.

From this it follows that
in'

/{x, + iv') =/{x,) + — {/{X, + W) -f{Xo) },

so that, if the first difference /(a-Q + w) -/(x'o) is known, the value

of the function for any value of x between Xq and Xq + w may be

found. This equation is known as the " Rule of Proportional

Parts." Geometrically, what we do is to I'eplace the curve through

two consecutive points by the chord joining them.



13] MATHEMATICAL TABLES 37

If the first differences are only sensibly constant, the result

obtained will be subject to a certain error. If tv = n iv where

0</i< 1, then the error may be put in the approximate form

n{n-\)
,wj- (x-^rn w)

where 0<n'<l.

Example, 1.—In the following table the entry is the cube root of the

corresponding argument. Find the cube root of 1619"25.

Argument. p]ntry. A

1619 11-7421858

24171

1620 11-7446029

24161

1621 11-7470190

If we desire accuracy up to the fifth decimal place, then we may regard the

first differences as constant.

Here ,r„^1619 »'-=l !/y = 0-25.

Hence ^^1619-25 = 11 74219 + -^^ (000-242)

= 11-74280.

Example 2. — If a; = 1000 show that, when second differences are

neglected, the error committed in computing by this method the value of

log 10(1000 +/'•), where -= ir < 1, will have no effect on the sixth decimal

place of the logarithm.

Here log {x + w) = log x + w
{
log {x + 1 ) - lug x

}

and the error committed is

E-~^''^\-;-^/"ix+.')

where 0<m;'< 1 and /(.r) = logio.i-.

Now J [x+w) = ^2 logjo(.c + M;')

-1 "'
t

I

(x + iv')'
I

where m — modulus of common logarithms = 0-43429.

But the maximum value of w{l - »•) is ^ since

Hence the error committed is less than

J
43429

' (1000+H-')-
'

1

16 . 10«

0-0000000625,
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which shows that the error committed does not affect the sixth decimal place

in the logarithm of the number (1000+ id).

Example 3.—The differences between the six-figure logarithms, to base 10,

of the successive integers between 5000 and 5100 are sensibly constant.

Prove this and determine the value of the constant difference.

14. Case of Irregular Differences.

When the second diiFeiences cannot be neglected, however,

this method cannot be applied. This happens frequently when

the rate of change of the function is large compared with that of

the argument, as is the case with the logarithmic sines and

tangents of small angles. We must then use the formulae of

Chapter II., including differences to the order required.

Example 7.—To obtain log sin 0° 16' 24"
-5.

From Schron's tables we have

A A- A»

iysinO°16'10" = 7-6723450

44543

L sin 0° 16' 20" -7 -6767993 -452

44091 9

L sin 0^^ 16' 30" = 7 6812084 - 443

43648

i/sinO 16'40"= 7-6855732

Using Gauss' formula

n(n-\) (n+\)n{,i-\)
f[a+nii-)=^j„ + nbjy+—^y^ 5-./o + 5T~ ^".4

we obtain

L sin0° 16' 24" -5 = 7 -6767993 - 1

19841

56

= 7-6787889

This is the answer correct to 7 places, the value correct to 10 places being

found from Vega to be 7-6787889383.

The value obtained by the " Rule of I'roportional Parts" is 7-6787834.

This result is correct only to 4 places of decimals, and shows the necessity of

interpolating by some such method as the above the value of the logarithmic

sine of a small angle. This may be shown to be also true in the case of the

logarithmic tangents of small angles.

Example, i?.— Compute the value of log tan 0° 15' 35".
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15. Construction of New Tables.

In spite of the large number of different mathematical tables

that have been constructed to assist the computer, further

research in the various branches of mathematics and the kindred

sciences shows that these are not sufficient for all purposes. A
research student often requires new tables for the question which

he is discussing, and these he must construct for himself.

The first question to be settled is the degree of accuracy to

which the tables are to be computed, i.e., the number of decimal

places to be retained. This varies in different cases ; but it is

always desirable to extend the original calculations beyond the

number of places which are ultimately to be retained, in order to

avoid the cumulative effect of the neglected digits.

The general plan of the calculation is to compute first with great

accuracy the values of the function for a series of widely-spaced

values of the argument. For this purpose infinite series are generally

employed. The values of the function for a more closely-spaced

series of values of the argument are then derived from these by

means of the formulae of Chapter II. : this second process is called

Subtahulation. We shall consider these processes in §§ 17, 18.

16. Tabulation of a Polynomial.

The simplest case to be considered is the tabulation of a polynomial.

If the degree of f{x) is n, it will not be necessary to compute its value

directly for more than (w-l- 1) values of the variable, as may be seen from the

following examples.

Example 1.—Let J{x) = .c^ + 3.v- + 2x-\.
When .I'-O, 1, 2, 3, we have f{x)= -1, 5, 23, 59. We thus obtain the

following table :

—

Ax) A A-i

-1

12

18

23

36

3 59

Since /(a) is of the third degree in x, its third differences will be constant

;

in this case they will be equal to 6. Extending the column A'^ by inserting

6'8 we can then extend the column A- by simple additions or subtractions.

A repetition of the same process will enable us to extend the column A, and
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thereafter to determine the values of /{x) for all integral values of ;r. The

resulting table is

X /(x) A A^ A3

-3 -7 -12

12

23

36

60 6

4 119 30

90 6

5 209 36

By this simple method we are enabled to determine the values of a poly-

nomial f{x) for all positive and negative integral values of .r. We can then

use any of the formulae of interpolation already established to obtain the

values of f(x) for fractional values of .r. The method may be extended to

functions which are not rational or integral, but in this case it will be

necessary to make the interval between successive values of x so small that

the dififarenoei of some definite order are constant throughout the range of

values under consideration.

Example 2.—Form the table of values of J'{x)-x*^ ox^ - T.c-^-.c - 4 for the

values 0, 1, 2, 3, 4 of the argument ,r, and then deduce the values of /(,()

corresponding to the values - 1, - 2, - 3, - 4 of ,r.

17. Calculation of the Fundamental Values for a

Table of Logarithms.

We shall now illustrate the process of computing tables of

functions other than jaolynoniials by describing the calculation

of a table of logarithms.

The first stage in this consists in determining the logarithms

of all the prime numbers between certain limits. It is evident

that when the logarithms of the primes are known, the logarithms

of all composite numbers can be derived from theui by mere use of

the formula
log a h = log a + log h.
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[n order to obtain the logarithms of the primes we take two

equations whose roots are integers and which differ only in their

constant term. Such a pair are

X" - 3 u; + 2 =

ic- - 3 a; - 2 = 0.

Now x'-3x + 2 = (x-iy (x + 2)

x-^-Sx-2 = {x+l f {x - 2).

Hence
log {x-\) + h log {X + 2)- log {x+l)-h log {X - 2)

_ a''-3a;+2
2^^o

x" -

1 +

-3 X-
oJ

ilog
OCT' -3 X

1 -
o

3x

which, by use of the ordinary logarithmic series, may be written,

if the logarithms are all to the base e,

2
I

2 1^ r 2 V'

X' - 3 X '^
Ix''^ - 3 x) ' Ur -3x1

This is called Bordas Formula.

Putting x = b, 6, 7, 8, we obtain the four equations

log 2 - f log 3 + Mog 7 = 0-0181838220854376...

4- log 2 + logo- log 7 = 0-0101013536587597...

- 2 log 2 + 2 log 3 - i log 5 =0 0062 11 2599992784...

- ^ log 3 + i log 5 + log 7 = 0-0040983836020895...

Solving these four equations we obtain the logarithms (to the

base e) of the prime numbers 2, 3, 5, 7, viz. :

—

log 2 = 0-6931471805599453...

log 3 = 1-0986122886681096...

log5 = 1-6094379124341003...

log 7 = 1-9459101490553133...

Further substitution for. x in Borda's formula will give immedi-

ately the logarithms of the other prime numbers. For exauiple, on

putting x = 9 the left-hand side becomes

\o" 8 + .1, lo" 1 1 - loir 10 - J log 7.
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Of these log 7 has been found

;

logs -3 log 2 = 2-0794415416798359...
;

and log 1 = log 2 + log 5 = 2-3025850929940456 ....

Hence we obtain log 11 = 2-3978952727983705....

It is to be noted that these logarithms are to the base e. But

as we have now found log^ 10, we can at once derive its reciprocal

logio 6 = 0-43429448 190325 18..., and all the above logarithms

can now be converted to the base 10 by multiplying them by this

"modulus."

We thus obtain the table

logio 2 = 0-3010299956639812

logjo 3 = 0-4771212547196624

logio 5 = 0-6989700043360188

log,o 7 = 0-8450980400142568

logioll = 1-0413926851582250

etc.

For the calculation of the logarithms of the larger primes Haros" Formula

will be found more useful. In this case consider the equations

.f*-25.i-- =

.c-"- 25 .1-2 + 144= 0.

From these we deduce

(f + 5)(.u-5).r-
__

x^-2ox^ _ (x-^ - 25 .r'-' + 72) - 72
^^^

(.f + 3) (.1- - 3) (.f + 4) {x - 4)
~ ^°S x^ - 25 .x-'- + 144 " ^°2

(x^ - 25 x^ + 72) + 72

whence, if the logarithms are to the base 10, we have

log(.r + 5) = {log(.i- + 3) + log(.c-3) + log(.c + 4) + log(,v-4)}-{log(.c--5) + 21og.i'}

^, r ?2 /__ 72 x3 \

'-''"\.T^-25.r= + 72 + ^Kx^-lbx'^l-l) +••
/

where m= log^j e.

Example 1.—To obtain the logarithm of the prime number 43 to the

base 10.

Let .v + 5= 43.

Then x= 3S

log 43 = log 41 + log 35 + log 42 + log 34 - lug 33 - 2 log 38

- 0-8685889638065036 [0-000035137'24O'2040 + 0-UUOO000O00OO0145[.

But the logarithms of 41, 35, 42, 34, 33, 38 are assumed to have been

previously calculated. Hence

log 43 - 1 -6127838567197355 - 1 -5185139398778875

1 -544068044350-2756 3- 159567 1932336'203

I -6232492903979005 00000305198190724

1-531478917042-2551

-1-6334684555795865

Example ^.—Show that logjo l;31=i 2 -1172712956557643.
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18. Amplification of the Table by Subtabulation.

Having now obtained the logarithms of the prime numbers

within a certain range, we derive from them, by mere addition, the

logarithms of the composite numbers which lie in this range, and

thus obtain the logarithms of all the integers within the range.

We shall now show how, by subtabulation, the extent of this table

may be increased manyfold. It will be supposed that 7-place

accuracy is required.

For example, suppose the logarithms of the integers 31, 32, 33,

34, 35, 36 have been obtained directly ; we shall show how the

logarithms of all the integers between 330 and 340 can be derived

from them.

Neglecting the characteristics of the logarithms, which can

always be written down by inspection, we form the following

table :

—

X- log X A A- A^ A*

31 •49136169

1378829

32 •50514998

1336396

-42433

2535

33 •51851394

1296498

-39898

2312 (
-223

-208)

34 •53147892

1258912

- 37586

2120

-192

35 •54406804

1223446

- 35466

36 •55630250

Putting a = 33, n=^ iV '"=^ "1 Gauss' formula

/{a + u IV) =y; +

+

, .
«(1-

''
"-^i 2 !

n (1 - ,v) (2

4!

(1-

3r'^'A

we obtain

/(33-1) =/; + 0^1 6/, - 0-045 6-/o - ^-0165 6;/^ + 0^0081 /x 87;

= •51851394-38

129650 1

1795

= •51982800.
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Thus to 7 decimal places log 331 = 2-5198280. But it is not

necessary to calculate the values for all the numbers between

330 and 340 in this way. It is, in fact, simpler to calculate

log 332 from the formula

y (a + ^% w) =/ {a + T-V ic) +[J{a + j\ w) -/(a) } + 8.,

where 8.,=/{a+ f^w) - '2/{a + -^w)+f{a)

= 0-01 87o + 0-001 sy, - 0-001 At sy,

and then to calculate log 333 from the formula

J{a^ j;"^ w) =f(a + ^oW) + {/{a + ^o «') -/(« + to "^) } + ^3

where S3 =/(« + f'„ w) - 2f{a + ^^ 10) +/ {a + -iy ^)

= 001 SVo + 0-002 8V^ - 00017 {x SV,

.

The complete table of these quantities S is as follows :

—

8„ = 0-01 SVo + 0-001 8\f, - 0-0010 /x 8'J]

S3 = 0-01 Sy + 0-002 Sy - 0-0017 /j. 8\f^

8, = 0-01 s-/; + 0-003 8' /; - 0-0019 /x sy;

Sg = 0-01 6-y; + 0-004 sv; - 0-0021 /x sy^

s, = 0-01 sy + 0-005 sv; - 0-0020 iM sy
8, = 0-01 Sy + 0-006 S-;/' - 002 1 /x 8\/[

Sg = -01 sv; + -00 7 sv; - o -oo 1 8 /x sv;

Sg - 0-01 sv; + 0-008 sv; - 0-0017 /x sv;

8j„ = -0 1 sVo + -009 svi - -00 1 2 /x sv';

The numerical work is arranged as in the following table, in which

the logarithms required are found in the last column.

-39898-0 + 2312-0-2 08-0 129649-8 2-51851394

1

To + 1795-4- 38-1 - 1-7 = - 1755-6 131405-4 2-519827994

To - 399-0 + 2-3 + 0-2== - 396-5 131008-9 2-521138083

fV - 399-0 + 46 + 0-4 = - 394-0 130614-9 2-522444232

A - 399-0 + 6-9 + 0-4 = - 391-7 130223-2 2523746464

5
TO - 399-0 + 9-2 + 0-4 = - 389-4 129833-8 2-525044802

To - 399-0 + 11-6 + 0-4 = - 387-0 129446-8 2-526339270

To - 399-0 + 13-9 + 0-4 = - 384-7 129062-1 2-527629891

To - 399-0 + 16-2 + 0-4 = - 382-4 128679-7 2-528916688

10
- 399-0 + 18-5 + 0-4 = - 3801 128299-6 2-530199684

To - 399-0 + 20-8 + 0-2 = - 378-0 127921-6 2-531478900
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The method followed in constructing this table will best be shown by

considering two examples.

In the line tV

+ 1795 '4 is the numerical value obtained for 0'045 5Vo
- 38-1 „ ,, „ -0-0165 8%^
- 1-7

,, „ „ 0-008 m5^/i

1755 "6 is the sum of the three preceding numbers.

129649'8 is the numerical value obtained for 01 dj\.

131405-4 is the sum of the two preceding numbers, and therefore

represents

-01 d/^ + -045 5-Jl - 0165 8\/\ + O'OOS /x d\f^

.

2-51851394 is the numerical value of /;,

2-519S27994, which is obtained as the sum of the two preceding

numbers, represents

/o + O-Ol 5./; + 0045 5Vo- 0-0165 oV) + -008 m 5Vl •

In the line ^j^

- 399-0 is the numerical value obtained for 0-01 S"/o

+ 2-3 „ „ „ 0-001 5V;

+ 0-2 ,, ,, „ -0-00lfx5{f\

-396-5, which is obtained by summing the three preceding numbers,

represents

0-01 8"fo + 0-001 5VI - 0-001 M 5V\ or 5.,.

131405-4, which has previously been obtained, represents

131008-9, which is obtained by summing the numbers immediately

above it and to the left of it, represents

/(« + tV "•)-/(«) + 5,.-

Now 2-519827794, as we have already seen, represents f(a+i\w).

2-521138083, which is obtained by adding the numbers immediately

above it and to the left of it, represents

f(a + r^w).

The results in the last column are the logarithms of the numbers

330, 331, ... 340. They cannot, of course, be relied on up to the

last figure, but will be found correct up to seven decimal places.

This accuracy may be obtained by taking one decimal more in the

first difference than in the tabular function, one decimal more in

the second difference than in the first, and so on, when these can

be obtained. A check on the accuracy is obtained by carrying

on the process until log 340 is computed. Comparison of this

result with the value for log 34 will show whether the computa-

tion has been accurately performed.
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We may remark that it is an improvement on the foregoing-

process if the differences required for the subtabulation are

computed independently from the expressions in series, instead of

being derived by forming a table of differences.

Example i.—Given log 24 = 1 -38021 12

log 25 = 1 -3979400

log 26 = 1 •4149733

log 27 = 1 4313638

log 28 = 1-4471580

log 29 = 1-4623980

obtain the logarithms of the numbers 261, 262, ... 269.

19. Radix Method of Calculating Log^arithms.

When the logarithm of a number is required to a large number

of decimal places, its determination either by means of an infinite

series or by interpolation becomes very laborious and liable to

error. A much simpler and more useful method in such a case is

that known as the Radix Method.

Let N be the given number whose logarithm is required to n

places of decimals. Then since

ir=10^.a.{l+iVo)

where N^ is a decimal, x an integer, and a = 0, 1, 2, ... 9,

logio N=^x + logjo a + logio (1 + i\'o)-

Thus, to determine logjoiV, it will be sufficient to compute log,oa

and logio(l + N^). The former has been obtained above. We shall

now show how to evaluate the latter.

Let r^ denote the decimal consisting of the first m figures in

iVo) ^"d let A^i be the difference of Nf^ and r^ Then

Now divide iVj by (1+?-,) until there are m figures in the

quotient r„. If we call the remainder N.j, then

N,-{l+r,)ro = N„.

Similarly, if the remainder, after dividing No b}' (l+ri)(l+n)

until there are m figures in the quotient r., is denoted by N^, we

have
N,-{l+r,){\+r.;)r, = N,,

and in general,

iV^_l-(l+r,)(l+r,)...(l+r^_Or^ = ^"^.
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These equations may be written in the form

JV, -JV. ={l+r,){l+r,)-{l+r,)

JV. -N, ={l+r,){l+r^(l+r,)-{\+r,){l+r,)

N,_,-N^_, = {\ +n) (1 +r,) ... (1 +.v_0

-(l+r,)(]+n)...(l+7V,)

iVV:-i\^^ =(l+r,)(l+r,)...(l+rv)

-(l+r,)(l+r,)...(l+r^_i)-

Adding, we obtain

(1+iV^o) -A\ =(l+rO(l+r,)...(l+r,)

whence
1 + i^o = (1 + n) (1 + r„) . . . (1 + ?v) + A^j,

If, therefore, the remainder A^^, has no significant figures in its

first n decimal places,

log(l+iV'o) =log(l+r,) + Iog(l+r,)+ ... +]og(l+r^,)-

The quantities (l+r,), (1+?^), ... are called the radices. As

they will be of the form
[
1 + Ynf) where k and I are integers, and

as k is always small compared with 10' we may compute log (1 + r^)

by means of the logarithmic expansion

log {^+r,) = r„-hrj' + \rj; - { r^/+ ...

The values of the logarithms of these i-adices when k = 0, 1, 2, ...

999, and ^ = 3, 6, 9, 12, 15, 18, 21, 24, as well as of the numbers

1, 2, ... 9, have been computed to twenty-four places of decimals.*

The inverse process of determining the antilogarithm corre-

sponding to a given logarithm is equally simple. When the

logarithm is not in the table, we have merely to take out the

next lower and subtract it from the given one. Then take out

the next lower and subtract it from this remainder; and so on

until the remainder consists of zeros. The product of the radices

corresponding to the logarithms taken out is the number required.

* Gray, Tables for the formation of Logarithms and Antilogarithms to

twenty-four or any less number of places. London, C. & E. Layton (1900).
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We shall illustrate these two methods in the following

examples :

—

Example. 1.—To determine logj||43 to 24 places of decimals.

Here.r = l, a = 3.

Taking m= 3, as in Gray's tables, we have

\ + N^ = \- 433 333 333 333 333 333 333 333

l+r, = l-433

A'l = • 000 333 333 333 333 333 333 333

r.3= 0- 000232

A'2 = 0- 000 000 877 333 333 333 333 333

( 1 + ri ) r., - 000 332 456 /. e. , • 000 333 333 - • 000 000 877

{\+r^)(\+r.^ = [\+r,) + (\+r,)r.,

= 1-433 332 456.

The above will be sufficient to indicate the general theory. The process

can, however, be simplified by arranging the work in the following manner :

—

1 • 433 333 333 333 333 333 333 333
1-433

DifiF. ^ 0- 000 333 333 333 333 333 333 333

1 • 433 ) • 000 333 333 333 333 333 333 333 (
• 000 232

286 6

46 73

4299

3743

2 866

1-433333333

0-000000877

Remainder.

Diff. = 1-433 332 456 = New Divisor.

1 • 433 332 456 )
0- 000 000 877 333 333 333 333 333 (

0- (OOOf 612 '

859 999 473 6

17 333 859 73

14 333 324 56

3 000535173

2 866 664 912

133 870261 = Remainder.

1-433333 3.33 333 333333

0-000 000 000133 870 261

Diff. = 1 - 433 333 333 199 463 072 = New Divisor.

Should the original dividend not be known beyond the 24th place of

decimals, we should now have to proceed by a method of contracted division.

In the present ease we know the figures after the 24th decimal, and may
therefore continue as above. But we shall adopt the contracted method.

* 0-(000)-612 is written in place of 0- 000 OCO 612

0- (000)^093 ,, „ 0-000000000 093 and soon.

I
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The new divisor contains 19 figures ; the new dividend

•(000)3133 870261333 333

contains only 15 significant figures after the point. We must therefore cut

off 4 figures from the divisor. Thus we obtain

1 • 433 333 333 199,4^6 )
0" (OOO)^ 133 870 'J61 333 333 (

0- (000)3 093 *

128 999 999 987 951

4870 261345 382

4299 999 999 598

570 261 345 784 = Remainder.

1-433 333 333 333 333 333 333 333

• 000 000 000 000 570 26 1 345 784

Diff. = 1-433 333 333 332 763071 987 549 = New Divisor.

As the new dividend 0- (OOO)"* 570 261 345 784 contains only 12 significant

figures and the divisor "25 we must cut off 13 figures from the latter. It

then becomes 1-433 333 333 33. As these are the figures in the original

dividend there will be no further new divisors. This will usually happen

when the fourth division is reached. We may therefore determine the

remaining figures by continued contracted division.

1 • 433 333 333 33 ) (000)^ 570 261 345 784 (
- (000)^ 397 856 752 873

430000000000

140261345 784

129 000000000

11261345 784

10033 333333

12-28 012451

1146 666 666

81345 785

71666 667

9679118

8 600 000

1079118

1003333

75785

71667

4118

2867

1251

1146

105

100

~5

4
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The remaining radices are thus

1- (000)^ 397

l-(000pS56

1 • {000)« 752

1 • (000)7 873

Using Gray's tables of the radices we have

logs =0-477 121254 719 662437 295 028

log 1 • 433 = • 1 56 246 190 397 344 475 994 693

log 1-000232 = 100 744 633875 845 680796

log I -(000)- 612 = 265 788141593627 087

log 1- (000)3 093 = 40 389386 815124

log 1- (000)^397 = 172414 909316

log 1- (000)5 856 = 371756077

log 1- (000)6 752 = 326589

log 1- (000)' 873 = 379

Sum = 0-633468 4555795865-26 405089

Hence since .t'= 1 the required logarithm is

log 43 = 1 • 633 468 455 579 586 526 405 089.

Example 2.—To determine the antilogarithm of

1-120 619 882 724133 396 646 450.

As the integral part only affects the characteristic we shall neglect it for

the present.

Using Gray's tables we then obtain

0- 120 619 882 724 133 396 646 450

log 1-3-20 =0- 120 573 931 205 849 868 472 706

Diff.

log 1-000105

Diff.

log 1 -(000)2 812

Diff.

log 1 -(000)3 793

Diff

log 1 -(000)^ 443

Diff.

log 1 -(000)5 922

Diff.

log 1 -(000)6 831

Diff.

log 1 -(000)' 516

Diff

45 951518 283 528173 744

45 598 526 719080137 349

352 991564448 036 395

352 646976130 787551

344 588 317 248 844

344 395 5-24 012 7-26

192 793 236118

192 392 455 483

400 780635

400419512

361 123

360899

224

Multiplying these radices together we have

1 -(000)^ 443 X 1 -(000)' 922 x 1 -(OOO)* 831 x 1 -(000)' 51( 1 (000)^443 922 831 516.
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This product of the last four factors can always be written down by

inspection. The other multiplications may be arranged as follows :
—

1 • 000 000 000 000 443 922 831 516

1-000000000 793

1 • 000 000 000 000 443 922 831 516

700 000000 000 310

90000000 000040

3 000000 000 000

1 • 000 000 000 793 443 922 831 866

1-000000 812

1 • 000 000 000 793 443 922 831 866

800 000000 634 755138

10 COO 000 007 934 439

2000000001586 888

1 • 000 000 812 793 444 567 108 331

1- 000 105

I - 000 000 812 793 444 567 108 331

100000 081279 344 456 711

5 000004 063 967 2-22 836

1 • 000 105 812 878 787 878 787 878

1-320

1 • 000 105 812 878 787 878 787 878

300 031 743 863 636 363 636 363

20 002 1 16 257 575 757 575 757

1 • 3-20 139 672 999 999 999 999 998

Since the cliaracteristic in the given logarithm is 1, there will be 2 figures

before the point in the corresponding antilogarithm. Thus the required

result is

13- -201 396 729 999 999 999 999 98.

Exami^le 5.— Given tt^:^ 3- 141 592 653 589 793238 462 643 show that

log TT = 0- 497 149 872 694 133 854 351 268.

Examjih 4-—Show that the antilogarithm of

0-434294 481903-2518-27 651129 is 2- 718 "281 828 459045 235 360290.

20. Inverse Interpolation.

Suppose the values of a function have been tabulated, and that

it is required to find the value of the argument which corresponds

to some given value of the function, intermediate between two of

the tabulated values. The process by which we obtain this value,

which may be called the "antifunction," is known as Inverse

Interpolation.
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Lety (a + n w) be the given value of the function. Then

^ . n in - 1 ) ^, .

J{a-^nw) =y,j + n 6j, + -

^ ,

- - 5;/j + . .

.

7(,(n - I) ... (71 - 7- + I) , .

+ ^ —
,

oy,. +...
?• . Y

In this equation /(a + 71 w) is given, and as the vakies of

fotfi, ... have been tabulated, the values of of^, 8"-/], ... are also

known. Hence the only unknown quantity in the equation is 71,

and this is the numbei- required for the determination of the anti-

function (a + 7iw).

To obtain it we must solve this equation. It has been pointed

out already that the differences of the function under consideration

usually become sensibly constant at some definite order, say r.

The higher differences will therefore be zero, and this equation then

becomes one of degree r in ?t. It can, therefore, be solved by a

method of successive approximation, as follows :

—

If we write the above equation in the form

V^^~^-A^

and neglect differences of the second and higher orders, we get as

a first approximation the value «i where

Let us next take second differences into account and put jIj for n

in the denominator of the expression on the right-hand side. Then

the next approximation 71.2 is given by

f—f

When third differences are taken into account, 7i.^ is substituted in

the denominator for w^, giving

^ .f^Ii
"""

sy; -f 1 (n, - 1) sv; + \ {71., - 1) {n., - 2) 37:
•

Proceeding in this way we obtain closer and closer approxima-

tions to the value of 71. The method, though rather laborious, has

the advantage that any error introduced in the computation of any
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one appi-oxiniation will not cause the final result to be wrong,

being itself rectified in the higher approximations. Thus the sole

effect of the eri-or introduced is merely to make the approximation

less rapid, and therefore to increase the amount of labour involved

in the accurate determination of n. On this account the process is

a safe one to employ.

Other formulae for determining the antifunction may be

obtained by reverting any of the formulae of interpolation. We
shall exemplify this by reverting Stirling's formula

/(a + 71 tv) =Jl + „ ^ 8/o + — SV; +
3, H- SYn

?i-(w--l),, .
71(71" - I) (n- - 4:1 .. .

Neglecting differences of higher oi-der than the fifth, and arranging

in powers of «., we have

/(a + 71 w) =/„ + (/. 5y; - 1 /^ 5^0 + .V /^ sv;) ,i + (i sv; - a. sy^) ,,^

which may be written

F= An + Bri" + Cn^ + D71' + E7i^

where

F=f{a + nw)-fQ

A=ix8/l-lix?i'fo + rhl^^%

C = hl-^Vo-^\f^8Vo ,

^ = ASVo
^=Tk/-S7;

Reverting this series we obtain successively

(i)
F

(ii)

F B /F\-

F B /FV- f,/BV C\fF\'
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F BVF B (F\^ fo^^V ^l/^l'T

" Z IT ^ T u / /
~

vi U /

" ^ ^ U/ y^\A) a]\a]

A more convenient form * may be obtained by putting

F n— = Wj and -7- = ^' a-nd rearranging the terms.

We then obtain the formvila

n = Wi + /i 7ii +/^ ?^l- +/; ?z/ 4-/4 Wj''

where

/ = _ 5r + 2 {Brf - 5 (^r)^^ + 14 (Br)'

f,^Cr{ -I +5 Br- 21 {Brf}

f, = Dr{-l + 6Br) + 3{Crf

J\=-Er.

If the first derivate of the function /{a + 7iiv) is tabulated, the

values of the quantities A, B, C, D, E may be obtained by forming

the successive differences of wf {a + n tv). As fourth difFei-ences of

the derivate are of the same order as fifth differences of the

function we need not extend the table beyond this order of

differences.

* Van Orstrand, Phil. Mag. (6) 15 (1908), p. 630.
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Argument. Entry. A A- A3 A^

a - 3w «'./'-3

""^f'-n
a -'2 IV wf'-2

wSf _^

n-B\r_,

w^/L.
a-w n-f'-.

wS/'_,^

«.'S7"-.

w^/:^
w8Y'-.

a "^./'o

ic\f\^

wS^'o
w^'^

wS'f'o

a + w Wf\
10 S/\

w o-f\

«;5y'3

wB^f\

a + 2 9v Wf'r,

^v¥\
w8\r.

a + 3w w/'s

Differentiating the equation

/{a + nw) =y; + An + Btr + Cnf + Dn* + Eiv"

we see that

A=wf\: B = \w\f:'; C = \vff;"; D=.}fW'f^'^

Now from Stirling's formula we have

n'" j,„ ., n hr - 1 ) ^ .,

wj" {a + nw) = IVJ 'o + nwfxoj Q+ ^ iv &f ^ + ^-y— w fi 6'J „

4!

oo ., 3 ?i" - 1 „„ ,, 2 n" - 71

w-f ' {a + n w) = n-fx8j o + n?r6y „ + ^ tv ixd'J „ + —p^— wdj q

iv\f"' (a + n 71-) = 7vS\f'o + mvixS'f\ + '~^r^ w^Y'o

?6-V<-" (a + n tu) = IV fjL Sy ',j + n tv 8\f'o

?.t'5/*^' {a + n ^v) = wSy

Putting w = in these equations we obtain

A = IVf (a)

5 = 1
10'
f" (a) = i XV IX. 8/'o - yV w /x Sy'o

c = i ioy'" (a) = 1 .^ sy - ^v xv sy 'o

^=Tk^^y'''(«)=Tk^5y'o.
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A third method of determining the antifunction is to determine

?ij as in the first method, and then, using shorter intervals, to

retabulate the function for values of n in the neighbourhood of n^

The second approximation is now obtained from this new table in

the same way as n^ was obtained from the original table. One or

two repetitions of this process will give the value of n to a very

high degree of accuracy.

An approximation to the value of the error committed by computing ?i

by the first method will next be obtained.

Since

/-/o

n-1

f-fo
n-\

^f.+^jW'f" [x + n'w)

-/o f, ,

»i - 1 o f"{x + n'w) \
-1

1^1

the numerical value of the error committed is

54 • 2! "'
54

I

I

7i(?i- 1) _^
/" [x^-n! w)

I

Example 1.—The following table gives the logarithms of the distance

of Venus from the earth. To find when the logarithm had the value

9-9351799.

Date. log. A A^ A^ A* A^

1914 Aug. 18 9-9617724

- 74079

20 9-9543645 - 1497

- 75576 - 46

22 9-9468069 -1543 3

-77119 -43 1

24 99.390950 (-77912) -1586 (-41) 4 (1)

- 78705 - 39

26 9-9312245 -1625 4

- 80330 - 35

28 9-9231915 -1660
- 81990

30 9-9149925

We shall use the second method described above.
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Let /•o= 9-9390950.

Then 'a= -0-0077912 + 0-0000007= -0-0077905

if =-0-0000793

C= -0-0000007

D=
E=

9-9.3ql799- 9-9390950 _^,_. -
"i- -0-0077905 -0-50253O

r= -64-5062

5r= 0051153

Cr= 0-0000452

2)r=

Er^

/i=- 0-0050637 f\n^ = -0-002545

/;= - 0-0000440 fyi^^= -0-000011

/,= Hi= 0-502535

./•4= n = 0-499979.

Hence the time required is

1914 Aug. (24 d. + 0-499979 x 48h.)

or 1914 Aug. 24 d. 23 h. 59 niin. 56 s.

Example S.—To show that when .t = ]1000 and w -= 1 the error in com-

puting w from the formula
log (a; + 10) - log X

'''-log(x+l) -logo;

is less than 0-000125.

Here

I

£"
I

= ——— —-r-jy— where •

I

w{\-n-) m 1

2 (a- + w'f log (a- + 1 ) - log X
I

But by Taylor's theorem
in

log (.T + 1 ) - log X = ^ , ^^,„
where < iv" -=1.

I
V)(\- w) x + iv"

I

^ F - 1000"

< 0-000125.

Example 3.—The following table gives the values of /j(.r) :

—

X J,(.r)

1-1 0-47090

1-2 0-498-29

1-3 0-52202

1-4 0-54195

1-5 0-55794

1-6 0-56990

1-7 0-57777

Find the value of x corresponding to the value 0-55302 of Ji(x).
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21. Various Applications of Inverse Interpolation.

The method of inverse interpolation may also be employed to

obtain the maximum and minimum values of a function which is

given as a series of observations, or as a graph. In this case we

should differentiate one of the formulae of interpolation, say,

/(a + n w) =/o + n 8J\ +
"^''-^^ 8^, + ...

Differentiation with respect to n gives

_ 2 w - 1 ,, ^
7vJ {a + n w) = 6/^^ + — — 6-/i + . .

.

For maxima or minima we have

f {a + n iv) = 0,

so that n is given by the equation

2 w - 1 ^„ , 3 ?r - 6 7i + 2 „„ .

0-8/1 +—^ 5v; + ^ svg+...

w^iich is solved in the same way as the corresponding equation in

last section.

When it is desired to obtain the value of ?;, for which the

gradient of the function has a particular value o, say, the equation

for determining n becomes

. ^ 2 n - U._

The same method may be employed to obtain the solution of

any equation involving one unknown, whether it be algebraic or

transcendental. For we may tabulate the values of the expression

occurring in the equation and obtain their siiccessive differences.

The solution of the equation is then the same as finding the values

of the argument corresponding to zero values of the function.

Examiplt 1.—Approximate to the roots of the equation

1
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First form the table.

X fU-) A A2 A3

-3 _ 2

1-875

-2-5 - 125

0-125

-1-750

0-75

-2
- 0-875

-1-000

0-75

-1-5 - 0-875

- 1-1-25

- 0-250

0-75

-1 _ 2

- 0-625

0-500

0-75

-0-5 - 2-625

0-625

1 -250

0-75

- 2

2-625

2-000

0-75

0-5 0-625

5-375

2-750

0-75

10 6

8-875

3-500

0-75

1-5 14-875

13-125

4-250

0-75

20 28

18-125

5-000

0-75

2-5 46-125

23-875

5-750

3-0 70

The positions of the roots will be found by examining the column ./'('^')-

We then see that when /(.r) = 0, the value of x- lies between and 0-5. It

will also be seen that f(x) is zero when x= -2, and that there is a

possibility of another root in the interval -2-5<a'<-r5. We shall

consider the various approximations to the root for which 0< x < 0-5.

Using the formulae of the first method of § "20 we have

/-/o

0-(-2)
^ 2-6-25

= 0-7619

"5A + i(%-i)5Yi

_ 2
~ 2-625- 0119 X 2-75

= 0-8704
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yv^^
"' " 5 /; + i ("o - 1 ) s-./'i + h ("o - 1 ) («2 - '2) 5v;

2
^ 2 -625 -0 0648x2 -75 + 0244x0 -75

= 0-8113

• ~
5./; + h ( "a - 1 ) Kfi + U "3 - 1 )

(n. - 2) 5^/;

2
"^ 2-625 - 0-0944 x 2-75 + 0-0374x0-75

= 0-8356.

The first four approximations to the value of n are therefore

n, = 0-7619

Wg =: 0-8704

w, = 0-8113

714 = 0-8356

But the tabular interval is one-half. Hence the first four approximations to

this root are

.^1 = 0-3810

Xo = 0-4352

xs = 0-4057

Xi = 0-4178

The correct value of the root is 0-4142. Subtracting each of the values

obtained from 0-4142 we get

0-4142 -.T, = +0-0332

0-4142 -r. = -0-0-210

0-4142 -.r., = +0-0085

0-4142 -.(, = -0-0036

These differences show that each step gives a much closer approximation

to the root, and that by continuing the process we can get a result which

shall be correct to any given number of decimal places.

Examples of the second method, in which only first differences are taken

into account, will be found in any text-book which discusses the solution of

numerical equations.

Example 2.—Approximate to the real roots of the equations

(i) e-^-a;3=

(ii) e^ + a;2-4 =

(iii) 0-5.r"5-121ogioa- + 2sin2a- = 0-921.

I
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MISCELLANEOUS EXAMPLES.

1. If y = xt%n--^x, calculate a table of first differences near .v— O'-tS for

increments 0'0(X»2 in .v.

2. The following table gives the moon's right ascension

Date. R. A.

1914, March 5d. Oh. 5h. 3m. 7 -26 8.

10 h. 26 m. 58 -96 8.

20 h. 51m. 14-83 s.

6d. 6h. 6h. 15 m. 48 -96 8.

16 h. 40 m. 34 -76 8.

7d. 2h. 7h. 5 m. 25-36 s.

Complete the table for every hour from March 5d. 20 b. to March 6d. 6h.

3. Prove that in a table of logarithmic tangents to base 10, the difference

for one minute in the neighbourhood of 60° is 0-00029.

4. Determine the values of (1) log tan T 29' 33"

(2) log sin r 15' 1-2"

5. Show that logjo 1031 = 3" 013 -258 665 "283 516 546 909 664.

6. Show that the number whose logarithm to 20 places of decimals is

given by 0- 004 892 890 303 "239 039 78 is 1 -01 133.

7. From the following table determine the value of x for which /(x) has

the value 0-2-2389.

X fix)
1-5 0-51183

1-7 0-39798

1-9 0-28182

2-1 0-16661

2-3 " 0-05554

8. Approximate to the real roots of the equations

(i) .re' + 2.v-5 = 0.

(ii) 6^-e-* + 0-4.r-10=

(iii) 2.r3'i-3.T-16 =

(iv) 2-42x- - 3-15 log^.f - 20-5-0.

9. From the series

berx = 1
2-2

,
4-2 1- 2'2

. 4^^
. 6- . 8- 2'- . 4- .

6- . 8^ . 10- . 12-

eompute a table of ber a; from .r:=00 to .r— 50 at intervals of 0-5, correctly

to 6 places of decimals.

Hence, by subtabulation, compute a table of ber.^- from a;= 2-0 to a:= 3-0

at intervals of O'l.
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10. The confluent hypergeometric function W^
^^ (:;) is computed for large

values of z from its asymptotic expansion

I 71=1

while for small values of z it is computed from the formula

r(-2m) r(2m)

where
[ \ + m-k {\ + m-k){% + m-k) \

M,, ,n (^) = zi+m ,-fc|l + 1, (2m + l)
^ + 2! (2m + l)'(2m + 2)

^'+
-j

_

Compute tables and draw graphs of W^
,^
(:) for positive values of z in the

cases

y!;=-3-l, wi=+2-2

k^-O-l, m=:+0-2

^=+2-2, m=+0-2.



CHAPTER IV

NUMERICAL INTEGRATION

22. Introduction.

The method of evaluating the definite integral of a function

from a series of numerical values of the function is called

Mechanical Quadrature or Numerical Integration.

If a function is given by its graph, the simplest way of deter-

mining an area bounded by the curve, two given ordinates and a

given abscissa, is by means of a planimeter. This method would

naturally be used in the case of the indicator diagrams of steam,

gas, or oil engines, or the cards from certain hydraulic motors,

or the stress-strain diagrams drawn by various types of testing

machines. The accuracy of the result obtained would in such

cases be as good as is required, but it is to be remembered that

graphical methods are not susceptible of great refinement. If,

therefore, considerable accuracy is required, or indeed in general

whenever the function is specified by a table of numerical values, the

method of numerical integration is preferable to the use of the plani-

meter. The method of nujnerical integration must also be resorted to

when a function is specified by its analytical expression, but cannot

be integrated in terms of known functions by the methods of

the Integral Calculus ; e.g., the elliptic integrals belong to the class

of functions which cannot be evaluated by the elementary

methods of the integral calculus.

The formulae necessary for numerical integration are derived

from the formulae already established for interpolation. As in

the case of interpolation, the order of differences which must be

taken into account, will depend entirely on the rapidity with

which the differences decrease as the order increases. It need

hardly be said that unless the convergence of the series can be

ensured the process is of no avail. Consider, for example, the
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determination of the area of a semicircle, the ordinates being

perpendicular to the diameter. No matter how many ordinates

are taken (i.e. no matter the order of differences employed), the

approximation to the area by means of many of the formulae to be

hereaftet established will not be a good one. But if we evaluate

the area included between an arc of a circle, less than a semicircle,

a diameter, and the two perpendiculars from the extremities of the

arc on this diameter, we can, from the same formulae, obtain an

approximation to the true value with any degree of accuracy we

please. The reas(m for the failure in the first instance is that the

differential coefficients of the ordinates at the limits of integration

are infinite, and as a result the series is not convergent. For this

same reason we must assume that the function represented by the

observations, and its differential coefficients up to the order of

differences employed, are continuous ; a condition which is not

, necessarily fulfilled in natural problems, as may be seen by an

examination of an ordinary barometric curve.

23. Evaluation of Integrals by the Integration of

Infinite Series Term by Term.

Before applying the methods of finite differences we shall give

an example showing how in many cases the value of the integral

of a function which is analytically known may be obtained by

expanding the function in a uniformly convergent infinite series,

and then integrating it term by term.

Example i.— Consider the complete elliptic integral

TT

dx

^<^--l.V fc- sin" X
)

= 1 dx (l - k- sin" x) -

Jo

Assuming that
|

A;
|
< 1 and expanding the term (I -k-sin-x)'^

by the binomial theorem, we have

TT

^(^' I) = [ "c^ x(l + l k- sin- X + .57-77 ^' s^^' *
Jo ^ " -". ^ .

1.3.5

2^ 3 !

¥' sin" X +
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1 . 3.5 ... (2n-l) -

But

Hence

I
.siir" 6 dd = —'—^

^
—

J, 2. 4. 6... 2 71

If k is small this series is very suitable for obtaining the

value of F ; but it is evident that if k approaches unity a large

number of terms must be included to get a fair approxima-

tion to tlie value of /''.

Let k-0-\. Then to obtain F correct to 4 decimal places it is only neces-

sary to iaelude two terms of the series. For

/ ^\ ^ S
025 0140623 )

^V^l.")=^il + 10Cr+ 10000 +-1

^ ^ {1 + 0-0025 + 0-0000140G25 + ..
}

= ^{1-0025}

= 1-5747.

Example ;?.—Find the value of F (k, ^) when ^• = sin 10"

Example 5.—Show that I Jl-lc^sin-x is equal to r54415 when k has

the value sin 15°.

2 fo-o 2

Example 4.—Show that the value of the integral —p^ I c'^'dx is

V TT Jo
'60386.

24. A Formula of Integration Based on Newton's

Formula.

We shall now show how integration may be performed by the

aid of interpolation-formulae. Integrating Newton's interpolation

formula

J (a + 71 w) =/o + n 8/ + !ii!Lzi) S2
/• + _ _
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with respect to n, we have

1 /(a + ?i ?r) d7i = /o I d ?i + / l/i o? w + — o'./i I w (?i - \)dn

+ ^Sf/;, [n{n~\){n--2)dn+...

He

+ ...

Jo

f
/(a + « .r) dn =f^_, + 1 8y;_, - J. 8V; +^ ^'fr+^ - r^o ^Vr-

J r-\

Adding these equations we have

/{a + n?c)dn= ./o +/i + ••• +/r--i

But

8/1 + 8/;+...+ o/;_, = /; -ji +./; -./; + . . . +./; -/-i

87; + 8v;+ ...8v; = oy;-8/; + 8y;-8y; + ... + s/;^,-8y;_,

=sy;+.-8yi
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Hence

J\a + n ?() d n = hf^ +/i +/, + . . . +f,_, + 1 /;

-7^(sv;.+.-sv;)+

Putting x^a + nn- this gives

1 f
«+'•«

—I ./'(x ) c£ X = If, +y; + /.; + . . . + /;_ J
+ 1 /;.

- A (^;+i -
« A) + -v (sv:-+: - ^\t\)

-T^^(sv;.+.-sv;)+

Tliis expansion will give the value of the definite integral, pro-

vided it is possible to obtain values of f{x) outside the limits of

integration in order to obtain the differences.

When this result is written in the form

1 f"+'-'"

—J
./-(.r) dx=it\ +./; + ... +/-,) + h (./;.+. /o) - iV (s/;+i - 34)

it is easily seen that the coefficients are those of a; in the expansion

, 7- : = 1 + Jo X + A^ X- + A., x^+ ...

log(l+a;)

Clausen * has computed the first thirteen of these, viz. :

—

1 ^ 33953
Ao=+— A,

2 3628800

1 . 8183
^'12 ' ' 1036800

1 , 3250433
A„= +— A,

J4
" 479001600

19 , 4671
'^'~

720 ^'° 788480

3
,

13695779093
As= +T-7rX ^11 =

160 '' 2615348736000

863 . 2224234463

A

60480 '- 475517952000

275

54192

* Jour, reine angew. Math., 6 (1830), p. 287-9.
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In the same memoir it is shown that when the limits of

integration are a - h n- and a + (r+ i) ?t- the coefficients are tliose

in the expansion

1 + B.x" + B.gif + B.x^ + ...

J {\+x)\og{\+x)

These are also tabulated.

The formula obtained above must be subjected to another

transformation when values outside the limits of integration cannot

be obtained.

iSTow

(i) 8/;,+, = 5;/:.+s/._x

(ii) sv;^;-2sv;-+sv:-i=sy.

i.e. s=/.^,-2 8y,= -5y,_, + s*/^.

(iii) ^/r=^A.+^-^^fr+l + ^^fr-l~^fr-^
i.e. ^fr+% = ^Vr + 3 ^.^, - 3 sv;_, + i%_^

Substituting these values in the formula we have

^£^' f{x) d X = \f, +f, + /; + . . . + /,_: + hfr

- ^i^fr-i - sy.) - tIo (sy.-. + sy

)

This form involves only diiferences which can be calculated

from values of the function which are within the limits of

integration, and is the form to be used when no values outside

those limits can be obtained.

Example l.—lo determine it from the equation

I

4 -J^
1+.^

using differences of J^.

Here f{^) =
1

/o=/(0) = 1; /:

11 = 0-1; r = 10

:/(l)=.0-5;

Inspection of the formula will show that it is not necessary to form a

complete table of differences. The highest order of differences retained will

be the 4th, and as d^/.^ and oVs are the only two of this order required, the

central portion of the table may be omitted as in the following scheme :

—



0-0

0-1

0-2

0-3

0-4

0-5

0-6

0-7

0-S

0-9

1-0

fix)

1 -00000

0-99010

96154

0-91743

0-86207

80000

0-73529

0-67114

0-60976

•55-249

0-50000

NUMERICAL INTEGRATION

A A-

- 990

-1866

-2856

-4411

-5536

-6415

-6138

5727

-5249

From this table we have

^/„ = 0-50000

/i ^ 0-99010

/. = 0-96154

f, = 0-91743

/, = 0-86207

/g = 0-80000

/h = 0-73529

/- = 0-67114

/s = 0-60976

/g =^ 0-55-249

i/i„- 0-25000

Sum = 7-84982

Hence

1555

1125

311

430

-277

411

478

134

67

x0 05-249

-0-00990

Diff. = -0-04259

5Vi -
4 0-00478

-0-01866

Sum = -0-01388

00067

00311

Diff. = -0 00244

5v; =

5V, =
-0-00067

0-00119

Sum ^ 0-00052

10
Jo 1 + ^^

7-84982

19

72~0

04259)

-0-00-244)

A*

119

67

(0-00052)
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= 7-84982

355

58

6 - 1

= 7-85400

IOtt

—T- = 7-85400

TT = 3-14160.

Example 2.—Determine log« 2 from the equation ^ loge 2 — I
\

-

using differences of -^ .

25. Case when the Upper Limit is not a Tabulated

Value.

Ill the previous section it has been assumed that the quantity r

in the upper limit was an integer, so that the tabular value of f{x)

was known when x had the value a + r tr. When the upper limit

is a + r'u; where r<r'<r+l, and the lower limit coincides with

one of the values of the argument, so that y (a;) is known when
x = a, a + n; ... a + 7- n; a + r + 1 w, . . . the value of the integral

may be obtained as follows :

—

First determine, as in last section, the value of

ra+ ru.

j

f{x)dx.

Then, dividing the range {a^-ru\ a + r'ic) into a convenient

number of equal intervals, interpolate the values of /(x) for each

of these sub-intervals. The value of

f"+'-
»

Ja+rw
)dx

may now be obtained by making use of these new values of f(x)
and their differences.

When the lower limit does not coincide with a tabular value of

the argument, a similar process will enable the value of the integral

between the given limit and the nearest tabular value of the

argument to be obtained.
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Another method which might be employed is to obtain the

value of I f{x)dx for different ranges of integration, and then

determine the value for the given range by interpolation.

J 20°

20'

Example 1.—Evaluate I cosx'rfx, given the values of cus a; when
J 20°

a: = 20°, 22°, 24°, 26°, 28°, 30°, 32°.

Forming the table of differences we have

X cos.f A A- A^ A*

20° 0-9396926
- 125087

22° 0-9271839 -11297
- 136384 166

24' 0-9135455 -11131 16

- 147515 182
•26° 0-8987940 -10949 9

- 158464 191
28° 0-88-29476 -10758 16

- 169222 207
30° 8660254 -10551

-179773
32 0-8480481

1*30"

j20^.'
Firat Method.—We shall first of all determine | cos x dx. Substituting

in the formula

i-
P'

"/{x) dx^hf, +J\ + . . . +/-, + 4/- - ^ (5/; _ . - 5/p - ^ (5^/._i + 8-A)

we have

1 P°" 7 f..ifin«^ftQ ,
r-169222-1 , T - 10758-] x,, T lOn

0-9135455

0-8987940

0-88-29476

0-4330127

= 4-5257896

(•30"

I cosa;(Za- = 01579798.

J 20"

Now by using Newton's formula for backward interpolation

n(n-l) „ .
n(n-l){n-2) ^^ .

/(a - 71 ir) = /;,
- n dj\ j + - .-^-j— 5-f_ ^ 3:

determine the values of . /'(.(,), I.e. cos x, when x has the values 30° 20', 30° 40',

31°, 31° -20', 31° 40'. We thus obtain the following table :
—
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30^0' 0-8660254

- 29235
30" 20' 0-8631019

- 295-28

30° 40' 0-8601491
-29818

sro' 0-S571673
-30109

3r20' 0-8541564
- 30397

31 = 40' 0-8511167
- 30686

32=0' 0-8480481

om this table we obtain

1
•3] " 20'

30

COS .f dx -^0-4330127 -i\0058178
0-8631019

0-8601491

0-8571673

0-4270782

-3-4405189

f Zl" 20'

COS X dx -0-0200161

•293

290

291

288

•289

r- 301091 _ , r---29n

L + 29235J ^*L-293j

Adding these results together we get

rsi" -20'

cos .i(/.t= 0-1779959

Second il/e//iO'/. — Obtain by the general me I hud thu values of I cos .i- cZa;

when the lower limit is 20 and the upper limits are 22', 24 , 26 ,
-28', 30% 3-2'

respectively. We thus obtain the following table :

—

X
1 cos X dx A A^' A3

20° 0000000

325865
22'' 0-0325S65

321300

-4565

390
24- 0-0647165

316345

-4955

-385
26° 0-0963510

311005

-5340

-381
28° 0-1274515

305284

-5721

-370
30° 0-1579799

299193

-6091

32° 0-1878992
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Using Newton's formula of backward interpolation we obtain the value of

the required integral, viz.

f3i<'20' ^Ui-1) A(4-i)(i-2)
cos.fdt—O-1878992-t (299193)+ ., , ( -6091) -

3 ,
(
" -^'O)

= 01779961.

The values obtained by the two methods agree to 6 places of decimals.

The result correct to 8 places is 0'17799.398, but as the last figure is always

forced, the one method can hardly be assumed better than the other. Probably

the latter method is to be preferred, as in the former the division of the range

between the given upper limit and the new upper limit into suitable intervals

may give rise to values of the argument consisting of many decimal figures

which would increase the amount of labour involved in the interpolation.

r 30" -20'

Example J.—Evaluate I sinxdx, given the values of sin.r when
J

20"

x = 2{)°, 22°, 24% 26% 28% 30% 32 .

f4-5 dx 1

Example 3.— Evaluate 1 . if the values of ,
,

, are given for

integral values of x.

26. A Formula Based on Bessel's Expansion.

Another series for the definite integral is obtained by integrating

Bessel's formula of interpolation,

, „ . n(7i-]) ^, . V4(M - l)('/i - -i) ^, .

J{a+ n ?c) = IIJ^ + (n-h) 8j^ + \,
,

/x ir/^ + — S"/,

n{ir-l}{H - 2)
-\

—
n 0%/, + . .

.

Putting x = a + nw we have by integration

— f(x)dx= t\a+niv)dn

= l\fA dn + 8jA {n-h)du + ii6-J^\ —^, dn

< 11 (71 - \) (n - h)

•i/i(?r-- l){n-2)

a ii
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Similarly,

^ J a+K
' ' '

^^ J,,+ (,-!,«,

Hence

w

+

or, since

SV; + 5\/; + . . . + SV;._i = 54 - 6y- + Sy- - Sy, + . . . + 8y;_ , - Sy;_

.

and therefore

we have

1 f
''+'•«

, .

—J ^

/(x) d X = -jy; +yl +/;+•• +/.-1 + h/r

+

But
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and, similarly,

Hence, finally, we obtain the formula

1 r«-^'-'"—
I

^ J (x) (/ X = ifo +j\ +/, +... +/-1

+

y'r

75

f
lOo dx

Example i.—Calculate — to 8 places of decimals.

J 100 •*-

1

Here /{x) -, /o=100, r^o, w^l.

In order to obtain the dififereaces required, it will be necessary to form

/(c) for all integral values of x from x- = 9S to ;c=107. These may be

obtained from Barlow's Tables. We thus obtain the following :

—

.(- /(a-) A A- A^

98 0-010204082

- 103072

99 010101010

- loioio

2062

-62

r— 1(A) 0-t)10(MH)00(»
(
- 100010)^

- 99010

•2(3(30 (
- 60)

-58

101 0-009900990

- 97(368

1942

-58

102 0-0(^9803922

- 95184

1884

-53

103 0-(W9708738-

- 93353

1831

-53

104 0(309615385

- 91575

1778

-51
^— 105 (J -009523810 (~ 90712)

- 89848

1727 (-49)

-47

106 0-009433962

- 88168

1680

107 0-009345794

.Substituting in the formula

f
I'J.J dx

-- = ^ .'o + -'i + -/--i + J'^ +J4 + hA-^ (m S/, - p. 5/o) + ^Vo (/^ 5% - M 5Vo)
Jioo ^

we get

f
105 dx

I
- rr u 048790940 - -(3(;k3000775 f -( )0(XM3(3(30<3

Jiou ^

^0018790165.

The value correct to 10 places is 0487901642.
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Note. —It is to be remarked that the expression

l/o +J\ +/2 +/) +/4 + 4/5= -048790940

gives the answer correct to six decimal places ; this approximation is quite

sufficient for most practical purposes.

f3 dx
Example 2.—Approximate to the value of the integral 1 ,, Q_t>„2 1 o \

'

jo \ y^ -X" + —J

27- The Euler-Maclaurin Expansion.

In the foregoing the value of the integral is expressed as a

series involving differences. In many cases in which the function

is known analytically, it will be found more convenient to use what

is known as the Euler-Maclaurin expansion which employs

'f differential coefl&cients instead of differences. The rapidity of

' convergence is of the same order as that given by Bessel's formula.

It may be obtained as follows :

—

Since

= ^[J{a+w)-j\a-w)]

W'
= h {/(«) + "^/' («) + y/" («) + •••

-fia) + wf (a) - ^/" (a) + . . .

}

= w/'{a)+ '^/"'(a)+...

and similarly

/x Sy, = tvj ' {a + r to) + —y '" {a + r to) +

w''

Ij. B^f,. = vff" (a + r iv) + —./"*'' (a + r w)
4

we have by substituting in the formula

If*'" fix) dx=\j\ +j, +y; + . . . +./;._, + y.
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the result

^j"^'
" ./ (^^ dx = 1 /; + /; + .. . + /;_, + 1 /;.

-TroiTo"'-M/.'^'-/o'") + ...

This is the EuIerMacIauriii* expansion. The coefficients of the

various items in it are proportional to the well-known Bernoullian

numbers. For if f we put f{x) = e^-" in the formula and at the

same time chansfe the limits to a ~ w and a + tv we iret

e-" dx = ifo +/] + y: + A w {fj -/;) + b «- (/;'" -./;'")

where A, B, ... are constants.

But

—
I

e" " dx ^ — I

W Ja-w W J-„.
dx

— (e'" - e-'").
w

Hence

— (e'" - e-"') = .i/o + /; + 1/, + ^ 7r (/,' -./;/) + B >r (./:'" - /;,'") + . .

.

=
I e-'" 4-1+1- e'" + A w (e"' - e'"') + B ir^ (e'" - e~'"} + ...

from which it is easy to deduce that

^;
::.

:, = I - A iv - B >r* - ...

w to , , „ r.

T—. cot -T—. = \ - Aw- - Bijcr - ...
'1% 2

1

But the Bernoullian numbers are the quantities ^j, B.., ... in the

expansion

and therefore .4, ^, ... are proportional to B^., B.,, ...

* For a rigorous discussion, c/". Whittaker and Watson's Modern
Analysis, p. 128.

t Poisson, Mem. de I'Acad. des Sc, lb23.
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Example i.— Calculate — to 8 places of decimals, and check the

J 95 '^

result by computing it as - loge(l - ygy) by the logarithmic series.

Here /o= tfV, ^"=^, r = ^-

Then

Jp5 ^ 2 95 ' 96 97 98 99 2 100

T^ ^ 100- 95-7 ^
-
" V " '*»' 95V

w -O-OOOlOO0OO\i/ -0 000000010

^

- 0-005-63158 1^ + 0-000110803/ ^'-"\ +0-000000012/
010416667

0-010309278

0-010204082

0-010101010

0-005000000

= 0-051294195

-0-000000900

= 0-051293295

Again

, /, 5 \= ^^. (0-05;^ (0-05)3 (005)^ (0-05)3 (o-05)«

-i°g^(i-ioo; o'^«+-T-+-^-+—r-^~5-^-6~~

= 0-050000000

0-001250000

0-000041667

0-000001563

0-000000063

0-000000003

= 0-051293296

The two results will be seen to agree to 8 places of decimals.

fl05 d.r
Example 2.—Evaluate I -7- to 8 places of decimals.

IT

Example 3.—Approximate to tlie value of 1 co^-xdx.

28- An Exceptional Case-

Legendre* remarked that if the odd differential coefficients above a

certain order take the same value at both limits, the formula fails to give an

accurate value of the definite integral. For instance, if the integral under

* Fonctions Elliptiques, Vol. 11., p. 57.
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discussion were the elliptic integral of the second kind taken between limits

and 7r/2, viz.

rTT's

I J l—JS^ sin^ X dx,
Jo

all the odd differential coefficients become zero at both limits, and thus the

value of the integral would appear to be given by

i/o +/i +/2 +•• +./;-! +i/;-.

But the value given by this expression is not in close agreement with the

true value of the integral. The reason of this is that the numerical

coefficients introduced in the successive differentiations increase without

limit, so that each term takes the form oc x 0, which is, of course, inde-

terminate.

Better methods of evaluating the three kinds of elliptic integrals will be

given in another tract in the present series.

29. The Formulae of Woolhouse and Lubbock.

We shall next derive from the Euler-]\Iaclaui-in expansion a

formula which is of use when it is required to evaluate the sum of

a large number of terms.

If the interval between consecutive values of the argument in

the Euler-Maclaurin formula is w, we have

and if this interval is w jm the formula becomes

- f{x) dx= ./; + / , +/ , + . . . +./;.
- 1 (/o +/,.)

n- J f, mm
-A^(./;.'-y:')+Tk|(./;--y;"')+...

Subtracting the latter from m times the former we deduce

/o+/i +J I
+ .-• +J>m{f,+J\+... +/.) - '"-^ (/;+/.)

12 m^'^' '^'>

m* - 1 tv' ^ .,„ ^.,„^
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Tliis is Woolhouse's Formula. OV)viou,sly by using the right-

hand expression instead of the left-hand one, the labour involved in

determining the sum ^ 4-/2 +./" 1 + + A- is enormously reduced.

A somewhat similar formula, in which differences are employed

instead of differential coefficients, is due to Lubbock. Expressing

the derived functions in Woolhouse's formula in terms of the

successive differences of /q, J\, /, we obtain the formula in

question,

m — \

12m '"5 2 24 ?/t

(m-^-l)(19m^-l)

I 20 7H' ' ' ^

(m--l){9m-- 1)

480 m" {8V>-2 + ^V2)

3j0 1

E.rample 1.—To determine 2 —

•

'/! = 300 "

Let w = 10, ?o=10.

Then from Woolhouse's formvila we have

350 J_ M +J_ +J_ +J_ +J_ + J_\
rMw ^ "^^^300 310 320 330 340 350/

2 VSOO 350/ 12 V 350- 300V

= 018512761-0-02785714

2432

= 0-15724615

Losing Lubbock's formula we get

2 IT = 10 (/o +/i + • • +^5) - s (./'o +./;) - -/-vo (5 n - 5/a ) - i?^ roV\ + s% >

n = 300

720000 ^ -'-V •'4' 480000 ^"-'-i ^ "-'2^

^0-18512761 -0027S5714

193S

487

3

3

= 15724616
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To test the accuracy of these answers, the reciprocals of the numbers

300, 301, 302, ..., 350 were taken from Barlow's tables, and summed by

means of a comptometer. The result was found to be 0'15724616. The
closeness of the approximation is remarkable.

175 1

^.rrt??ip/e ^.—Obtain the value of 2 —

•

n = ioo "

Examplf 3.—By giving n increasing positive values, show that

T 1

30. Formulae of Approximate Quadrature

The expansions which have been obtained in the preceding

articles furnish the value of an integral to any required degree of

accuracy, provided a sufficient number of terms is taken. We shall

now consider certain formulae which are in theii' nature only

aj>proxiinate, and which, though frequently useful, cannot be used

where great accuracy is required.

Suppose that it is required to integrate a function /(.x) between

limits, which may, without loss of generality, be taken to be - 1

and + 1. We shall endeavour to obtain expressions of the type

^o/(^'u) + H,f(K) + ...+ iiJiK)

which represent the integral as closely as possible, where Aq, h^, ... h„

are (n+l) values of x within the range of integration and h^, h^, ... h,„

Bq, //j, ... Zr„ do not depend on the function /(.r).

Let us first choose B„, B^, ... B,„ so as to make the formula

strictly accurate, so long as f{x) is a polynomial of degree less

than n + \.

Let F{x) = (.X - /g {x-h,) ... (x - h„).

F(x)
Then -— is a polynomial of degree less than n+l, so that the

X - h,.
•' °

F (x)
formula must be strictly accurate when for /(xj we put —^ ." X - h,.

This gives

F(x)B.L

BrF'{K).
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Hence, whatever hg, //j, ... h„ may be, in order tliat the above con-

dition may be satisfied, the values of Hq^ IIj, ... H^ must be

given by

In practice it is convenient to make the intervals between

successive values of the argument equal to each other. Suppose,

then, that A,i, ^i, ... A„ are chosen so as to divide the whole range

of integi'ation into n equal parts.

Then A^ = - 1

1

1

K = -i +—
n

/i., = -1 + 1
n

H,
'

{h, -K) ... (h, - /i,,„,
)
{h, - A,+, ) . . . (A, - AJ

X (x- Ao) • • (•>' - K-i)(^' - h,.+i) . .
(x - h„) i

r 2(r-l) 2- -2 -4 _ 2 (n - r)

?i 7J n n ti n

( - 1)"-^

("—Y\-! (ri-r)!

Now^ let t = -^{x-\-l).

Then

//.=
^~^^" '^^

,

f%(^-l)... (<-r+l)(<-r-l) ... (t-n)dt.
n . r\ [n - r) I Jo

Hence, finally, if we put

1*0 = a, ... h^ = a + r w
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wo obtain

\y{x) dx^j: II,f{a + r w)
J a )-=o

whei'i

//,= ^-^—

^

-^ rV<-l) ... (t-r+l){t-~r-l) ... {t-n)dL
r I {71 - r) ! Jo

This is known as Cotes Formula of Quadrature. By means of

it we may calculate the value of the integral without first of all

forming a table of diifei'ences.

Special Cases.

(i.) Let?i=l. Tlien

f 4 w

f{x) d X = nj{a) + II,/{a + n-)

— iv r^
where H, =——- {t-l)dt = h rr

! I ! J

Hence

[^'\f{x)dx = ^ {f(^a)+f{a + iv)].

This is known as the Trapezoidal Rule.

(ii.) Letw = 2. Then

where

r^' "'./•(.r) d X = HJ{a) + HJ (a + w) + H.J(a + 2 w)

Hence

1+2 19 ?0 ,, 4 7t'

./ {x) dx =^ —y («) + ^y (a + «;) + yy (a + 2 w).

This is called Simpson''s * i??i/e or the Parabolic Rule.

* It was, however, first given by James Gregory.
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Corollary.—If we divide the whole range of integration, say

{a, b), into 2 n equal parts, and apply Simpson's Rule to each of

them, the value of the integral may be expressed as

/ = -g^ {yo + 2/2n+2(?/o + y4+ ...+?/.2„-:)+4(t/,+2/:;+..-+?/2„_l)}

where
i/q, y^, ... y..,, are the values oi /(x) "when x has the values

h - a

2 n

form. The rule may be stated thus :

—

Divide the area into an even number of strips by equidistant

ordinates y^„ t/j, ... v/.j„ : to the sum of the extreme orJinates add

ttvice the sum of the other ordinates with even suffixes, and four

times the sum of the ordinates with odd suffixes, and multiply this

total by one-third of the common distance betiveen the ordinates.*

(iii) Let n = 3. Then

fa+3w)

f{x) dx = HJ{a) + IIJ {a + ic) + HJ{a + 2iv) + HJ{a + 3 to)

where H, = -^^^^^{t-\){t -•2)(t -?,) dt = %w

Hence

T"^ VH dx ^%w {f(a) + 3/(« + tw) + 3 /'(a + 2 w) + /{a + 3 w)],

which is often termed the Three-Eighths Ride.

(iv) Let n = 6. Tlien it may be shown, as in the above

special cases, that

f(x)dx = lU {Uf(a) + 2\Gf{a + w) + 27f{a -{- 2 tv)

+ 272/(a + 3 m;) + 27f {a + 4 w) + 216f{a + 5 w)

+ 41/(a + 6M7)}.

* The reader is warned that the notation varies in the different text-

books, so that in all cases aa examination of the notation used should first

of all be made.

i:
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Adding

ih S!/*(« + 3 w) =
-^Ijj

{/{a) - 6/(a + w) + 15/(ffl + 2 w)

- 20,/"(« + 3 w) + 1 bj\a + 4 w) - 6/(a + 5 w;)

+/(a + 6M;)}

we obtain

Ttt+Ow

/(,«) ci X- + ^i^ S7 (a + 3 w;) = ^io {^V\<^) + ^lOy^a + t^)

^^
+ 42/(a + 2 w) + 252/(« + 3 m;)

+ 42/(a + 4 w;) + 210/(a + 5 w)

+ 42/(a + 6to)}

= TO {/(«) + 5/(« + ^<^) +/(« + - «*^")

+ 6/(a + 3 Mj) +/(« + 4 ztf)

+ 5/(a + 5 w) +/(« + 6 i«) }

.

Neglecting the term -^\-^h^f {a-^?> lo), which will be fairly

small, we get Weddl&s Rule of Quadrature for 6 intervals.

J{x)dx = j% {
/(a) + 5/ {a + lo) +/(a + 2 w) + 6/(a + ow)

"^

+/{a + 4 w) + of{a + 5 iv) +f{a + 'oiv)].

31. Comparison of the Accuracy of these Special

Formulae.

We may compare the accuracy of these formulae by evaluating, by each

n fix
of these methods, the definite integral I ~^^, , the correct value of which is

log^7 = 1-94591.

(i) Using the Trapezoidal Rule six times, i.e., dividing the region into

six equal portions and applying the rule to each of them, we get

f7 dx— = \f{<i) +J\a + w) +f(a + 2iv)+ ... +f{a + 5w) + y'(a + 6w)

= 2-02143.

(ii) Using the Parabolic Rule repeated three times we get

n dx

= ^1+1 + 1 + 1 + 1 + 1 + 1)

= 1-95873.
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(iii) Applying the Three-Eighths Rule twice we have

n d.c

1 T " a '-^("^ + ^J^'^ + "') + -Vi" + 2w) + 2/{a + 3 ic) + 3./'(a + 4 ir)

•' +3/(a-f 5t(j)+/(a + 6j«)}

= t{i + § + l + ! + § + if + i}

= 1-96607.

(iv) Weddle's Rule gives

\[^ = A{i + f +Hf + i + f + i}

= 1 •95286.

None of these gives the result with any high degree of accuracy, the
errors being

(i.) U -07552

(ii.) 0-01282

(iii.) 0-02016

(iv.) 0-00695

Example I.—

E

evaluate j^^ by each of the methods of § 30.

Example ^.—Plot the curve y- = 2 .r -f25 aud find the area in square inches
between the curve, the ^-axis, and the double ordinate at ,r= 12, the unit
being one inch.

Examjde 3.—The ordinates of the boundary of the deck of a ship are
8, 30, 36, 40, 42, 42, 40, 38, 34, 28, and 8 feet respectively, and the common
distance between them is 21 feet. Find the area of the deck.

Example J,.—The velocity of a train which starts from rest is given by the
following table, the time being reckoned in minutes from the etart and the
speed in miles per hour.

t 2 4 6 8 10 12 14 16 18 20
mlh 10 18 25 29 32 20 11 5 2 at rest.

Estimate the total distance run iu "20 minutes.

32. Gauss' Method of Quadrature.

The accuracy of the method given in § 30 may be increased if

we no longer suppose the intervals between the successive values

/t,„ ^1, ... ^„ of the argument to be equal.

Let us now endeavour to choose //„, //j, ... //„, //„, h^, ... h„ in

such a way that the formula

j
J{^dx= Hj\h,) + HJ{h,)^ ... +IIJ{K)
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shall be accurate foi- all functions /(x) of dcgi-ee equal to or less

than (2 n+ 1).

Taking

fix) = F{x)^{.i')

where </>(«) denotes any polynomial of degree <(n+ 1), and where

F{x) = {x - h,} {x - h,) (x -h.^ ... {x - h„)

we see that the condition to be satisfied may be written

f F{x)<fjij:)dx = 0.

Now it is well known that if F,,^^ (x) denotes the Legendre

polynomial * of degree (?t+ 1), we ha-se

r P„+A^^}4> {'>') dx =

and, conversely, this condition is sufficient to determine the

Legendre polynomials. Hence we have (save for a multiplicative

constant)

F{x) = P„_,,(x)

and therefore the quantities Z/^, /tj, ... h„ must be the roots of the

equation

^,,-1-: (^) - 0.

The foUuwing are the values of the constants h^, h^, ... h , //„, H^, ... H
in the simplest cases.

(i) Whenn^l.

K =
1

"v^3

K-
1

(ii) When7i = 2.

/in = - ^'k

li, =

/l, = •Ji

H, = 1

H, - 1

H, _ 5— y

H, = 1!

H., _ 5— y

* Cf. Whittaker and Watson's Modern Analysis or Byerly'a Fourier's

Series and Spherical Harmonics.
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(iii) When?t = 3.

K= - s^( 'i + is v^30) H, = h- rk ^/30

'>i= - V ( ? - i's v'30) Hi = i+ sV v/30

''i = >/{?- Tft V30) ^2 = i + gV x'30

'^.i = s'( f + y^ V^30) i^:, - i - 3^6 V30

(iv) When w = 4.

K= -
- s'({; + ^n'70)

K= -
• N'(^-i^V70)

h.,=

h,= xAa-Av^70)

^4 = N^(H6lTV^70)

^^ ^ 322 + 13 v/70

900

900

128

225

322+13\/70

900

322-13V70

^^=
900

^'
900

Example I.—Determine the val

(i) Using 3 urdinates

r'^ = 5 _J__
J-] 3+^ 9 -3- ^1-4

in

J-l 3+«

9 3 9 • 3+ x'f

= 0-69312165.

(ii) Using 5 (jrdinates

3-22- 13v/70 1 3-22+ 13 V
900

1

3+ V(|-

70

6-3

1

900

1-28

+ 225

322-

0-693147157.

3- N^(^

. 1 3

3 +

-13V70
900

+ 6^V70)
'

22+13v70
900

L

3 - s!{^ - h sHO]

v/70)

3+ v'(|+ ff-ov70)

The correct value is 0-69314718, so that using 3 ordinates the error is in the
5th decimal place : using 5 ordinates, in the 8th decimal place.

^xa»ip/e i^.—Determine the values of (i) I -r4>
'
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MISCELLANEOUS EXAMPLES.

L The values of a function /(.r) for the values 1-050, 1060, 1-070, 1-080,

1-090, 1-100 of the argument are 1-25386, 1-26996, 1-28619, 1-30254, 131903,

1-33565. Use Newton's formula of quadrature to show that the value of

fi-inu

.fix)dx
J 1-050

is 0-06 472.

2. The ordinates of a plane curve are of the following lengths, 3-5, 4-7,

58, 68, 7-6, 8-1, 80, 7-2 feet, and they are 4 feet apart. What is the area

included between the two end ordinates? and what is the distance of the

centre of gravity of that area (i) from the extreme left-hand ordinate, and

(ii) from the base line ?

3. Approximate to the values of the following definite integrals :

—

(i) r dx.^{S-.v + x^)

(ii) c/a

i:

IT

f? dx

4. Use (i) Lubbock's formula, (ii) Woolhouse's formula, to determine the

value of an annuity-certain for 36 years, interest being at the rate of 3%.

5. Verify that the area of the curve y~A + Bx + Cx- + Dx^ between the

limits x = h and x= -h is equal to the product of h into the sum of the

ordinates at ,r = A/^'3 and x= -h/^/S.

In the case of the curve i/=f(x) =A + Bx+ Cx'^ + Dx^ + Ex^ \- Fx-' verify in

like manner that the area between x = h and x= -h is equal to

{ 5f(h Jl ) + 8/ (0) + 5/( - h JJ ) } /t/9.

6. Corresponding values of .r and y are given in the following table, the

unit being the inch. Find the volume of the solid of revolution formed when

this curve revolves about the .r-axis. Find also the centre of gravity of this

uniform solid.

4 8 12 16 20

0-50 2-58 4-41 5-40 5-10 0-50
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7. A body of 200 lbs. is acted on by a variable force F. No other force

acts on the body. When the body has passed through the distance x feet

the force in pounds is as follows :
—

0-1 0-2 3 0-4 Oo 0-6 07 0-8 0-9 1

20 21 21 20 19 18 5 ISO 1.3-5 9 4-5

Determine the work done upon the body from .r = to x = 0'4. If the

velocity is when x = 0, what is its value when a; = 0'4 ?

8. The semi-ordinates in feet of the deck plan of a ship are respectively

3, 16-6, 25-5, 28-6, 298, 30, 29-8, 29-5, 28-5, 24-2, and 6-8, the common
interval between them being 28 feet. Find the area of the deck.

9. The "half" ordinates in feet of the mid ship section of a vessel are

12-5, 12-8, 12-9, 13, 13, 128, 124, US, 104, 68, Oo respectively, and the

common interval is 2 feet. Find the area of the whole section and the

position of its centre of gravity.

10. The area of a ship's load-water plane is 8000 sq. ft. ; the body

below the load-water plane is divided into six portions by equidistant

horizontal sections, 3 feet apart, whose areas in sq. ft. are respectively

7600, 7000, 6000, 4500, 2800, and 250. Find (a) the displacement in tons,

and (b) the number of tons which must be taken out of the ship to lighten

her 4 inches.
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