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PKEFACE

This volume completes the plan of a course in mathematics out-

lined in the preface to the first volume.

The subject of integration of functions of a single variable is

treated in the first eight chapters. Emphasis is here laid upon the

fundamental processes, and the conception of the definite integral

and its numerous applications are early introduced. Only after the

student is well grounded in these matters are the more special

methods of evaluating integrals discussed. In this way the student's

interest is early aroused in the use of the subject, and he is drilled

in those processes wliich occur in subsequent practice. A new

feature of this jmrt of the book is a chapter on simple differential

equations in close connection with integration and long before the

formal study of differential equations.

With the ninth chapter the study of functions of two or more

variables is begun. This is introduced and accompanied by the use

of the elements of soHd analytic geometry, and the treatment of

partial differentiation and of multiple integrals is careful and rea-

sonably complete. A special feature here is the chapter on line

integrals. This subject, though generally omitted from elementary

texts, is needed by most engineering students in their later work.

The latter part of the wcrk consists of chapters on series, the

complex number, and differential equations. In the treatment of

differential equations many things properly belonging to an ex-

tended treatise on the subject are omitted in order to give the

student a concise working knowledge of the types of equations

which occur most often in practice.

1039200



IV PREFACE

lu conclusion the authors wish to renew their thanks to the

members of the mathematical department of the Massachusetts

Institute of Teclmology, and especially to Professor H. W. Tyler,

for continued helpful suggestion and criticism, and to extend

thanks to their former colleague, Professor W. H. Eoever of

Washington University, for the construction of the more difficult

drawings particularly in space geometry.

Massachusetts Institute of Technology
February, 1909
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A COURSE m MATHEMATICS

CHAPTER I

INFINITESIMALS AND DIFFERENTIALS

1. Order of infinitesimals. An infinitesimal is a variable which

ap^proaches zero as a limit. The word " infiuitesimal " in the mathe-

matical sense must not be considered as meaning "very minute."

For example, the size of an atom of matter is not a mathematical

infinitesimal, since that size is regarded as perfectly definite. That

a quantity should be infinitesimal it is essential that it can be

made smaller than any assigned quantity. In operating with in-

finitesimals it is not, however, necessary to think of them as

microscopic or of negligible size. They are finite quantities and

obey all the laws of multiplication, division, etc., like finite

quantities. It is generally the last step in a problem mvolving

infinitesimals to determine the limit of some expression, usually

a quotient or a sum, when the infinitesimals contained in it

approach zero.

Ex. 1. To find the velocity of a moving body (I, § 106)* it is necessaiy to

find tlie limit of the quotient ~, as As and M approach zero as a limit, where
A^

As is the space traversed in the time M. Here As and M are infinitesimals and

the velocity is the limit of the quotient of two infinitesimals.

Ex. 2. To find the area of a circle it is customary to inscribe in the

circle a regular polygon of n sides and to divide the polygon into n tri-

angles by radii of the circle drawn to the vertices of the polygon. When

n is increased without limit, the area of each triangle is infinitesimal, and

the area of the circle is the limit of the sum of the infinitesimal areas of

an indefinitely great number of triangles.

* References preceded by I refer to Vol. I.
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2 INFINITESIMALS AND DIFFEKENTIALS

In a mathematical discussion involving infinitesimals there will

usually be two or more infinitesimals so related that as one ap-

proaches zero the others do also. Any two of these may be com-

pared by determining the limit of their ratio. We have accordingly

the following definitions

:

Two infinitesimals are of the same order when the limit of their

ratio is a finite quantity not zero.

An infinitesimal /3 is of higher order than an infinitesimal a

. /3 .

if the limit of the ratio — is zero.

Ex. 3. Let /3 = sin a and 7

Then Lim — = Lim
a

cos a, where a is an infinitesimal angle,

sin a
a 1,

7 T- 1-cosa
Lim — = Lim = 0.

a a
(I, § 151)

Hence /3 is of the same order as a, and 7 is of higher order.

Ex. 4. Let the arc AB (fig. 1) be an arc of a

circle of radius a with center at 0, the chord AB
the side of an inscribed regular polygon of n

sides, and CD the side of a regular circumscribed

polygon. Also let

a = the area of the triangle A OB,

/3 = the area of the triangle COD,

7 = the area of the trapezoid ABDC.

Then if n is indefinitely increased, a, ^, and 7 are

infinitesimal. To compute their values, draw OE
perpendicular to AB and CD. ThenFig. 1

ZAOB 27r

n
ZEOB OE = a cos — , EB — a sin FD a tan — •

n

From this it follows that

AB
OE



ORDER OF INFINITESIMALS

R 1

Hence Lim — = Lim = 1,

sin2 —

Lim — = Lim = 0.
a -TT

cos2 —
n

Therefore /3 is of the same order as a, and y is of higher order.

2. Particular importance attaches to the case in which the limit

of the ratio of two infinitesimals is unity. Suppose, for example, that

Lim — = 1.
a

Then, by the definition of a hmit (I, § 53),

a

where e approaches zero as a approaches zero. Hence

/3 = (t + ae.

Now the term ae is an infinitesimal of higher order than a, for

Lim — = Lim e = 0, so that /3 and a differ by an infinitesimal of
a

higher order than each of them.

Conversely, let /3 and a differ by an infinitesimal of higher

order than either of them, i.e. let

yS = a + 7,

7
where, by hypothesis, Lim - = 0- Then

Lim- = Lim(l + -)=!.
a \ a/

We have accordingly proved that the two statements, "Two

infinitesimals yS and a differ by an infinitesimal of higher order

"

13
and " Lim — = 1 " are equivalent.

Ex. 1. The infinitesimals a and sin a differ by an infinitesimal of higher

order (I, § 151).

Ex. 2. The areas of the triangles AOB and COD (Ex. 4, § 1) differ by an

infinitesimal of higher order, namely, the area of the trapezoid ABDC.



4 INFINITESIMALS AND DIFFERENTIALS

3. Fundamental theorems on infinitesimals. There are two im-

portant problems which arise in the use of infinitesimals, namely

:

1. A quotient problem : to find the limit of the quotient of two

infinitesimals as each approaches zero.

2. A sum problem : to find the limit of the sum of a number of

infinitesimals as the number increases without limit and each in-

finitesimal approaches zero.

Each of these problems has been illustrated in § 1 ; for each

there is a fundamental theorem as follows

:

1. If the quotient of two infinitesimals has a limit, that limit is

unaltered by replacing each infinitesimal by another which differs

from it by an infinitesimal of higher order.

2. If the stim of n positive infinitesimals has a limit, as n increases

indefinitely, that limit is unaltered by replacing each infinitesimal

by another which differs from it by an infinitesimal of higher order.

To prove theorem 1, let a and /3 be two mfinitesiraals and let

«i and 13^ be two others wliich differ from a and /3 respectively by

infinitesimals of higher order. Then we have (§ 2)

Lim — = 1, Lim ^^ = 1,

whence a = a^+ €^a^, jB = I3^+ e.,^^,

where e^ and e^ approach zero as a and /3 approach zero. Then

/3_ /3^+£A ^/Qi 1 + ^2

a a^-\- e^a^ a^ 1 + ^i

Therefore

Lim - = Limpi • ^—^ = Lim ^ Lmi —-^ = Lim — •

Ex. 1. Since the sine of an angle differs from tlie angle by an infinitesimal

of higher order, . „ o o

Lim = Lim -— = -

.

sin 2 a 2 a 2

To show tliis directly, we may write

sin 8 a _ 3 sin a - 4 sinSo: _ 3 _ 2sin2a

sin2(ar"~ 2sinarcosa 2cosa cosa

^. sin 3 a 3
Therefore Lim

sin 2 a 2



FUNDAMENTAL THEOREMS ON INFINITESIMALS 5

To prove theorem 2, let a^, a„, a^, • • • , a„ be n positive infini-

tesimals so related that, as 7i increases indefinitely, each of the

infinitesimals approaches zero and their sum approaches a limit

;

and let /3^, /3.„ ^.^, • • •
,
yS„ be n other infinitesimals such that

Lim -^ = 1, Lim — = 1, Lim — =1, • • • , Lnn — = 1.

«! S «3 «n

We wish to show that

Lim(/8,+ /S,+ ^83+ • • • + /3J = Lim (a:^ + a, + ^3 + ' • • + ««)•

Now (§ 2) /3^= a^-l- e^ffp

A = *2 + ^2^2'

A=«3+e3«3'

/3„ =«„+£,«„;

whence Lim (/3j + /8., + yS^ + • • • -f A,)
n= 00

= Lim (ttj + «2 + *3+ • • + ^«)
n= 00

+ Lim (ejrt^ + Co^. + ^3^3 H 1" ^h^«)-
n = 00

Now let 7 be a positive quantity which is equal to the largest

numerical value of the quantities e^ e^, e^, • • •, e„.

Then — 7 ^ e^ ^ 7,

whence — 70;^ ^ e^a^ g ya^,

since by hypothesis a^ is positive and may multiply the inequality

without change of sign. Similarly,

— 70:2 ^- ^2'^2 = 7^2'

- 7«^3 = ^3^3 = y^3>

7«„ ^ e„«„ ^ 7«„

;

whence

^ 7 (a^ + «, + «3 H h «„).



6 INFINITESIMALS AND DIFFEKENTIALS

As n increases indefinitely, a^-\- a^+ a^-{- • • + a^ approaches a

finite limit by hypothesis, and 7 approaches zero.

Therefore Lim {e^a^ + e^a^ + 63^:3 + • • • + e„a:„) = 0, and hence
n= 00

Lim (/S^+ /3._,+ /S3+ • • • + /3„) =Um {a^+ a^^+ a^+ + aj.

The theorem is thus jsroved for positive infinitesimals.

Ex. 2. The limit of the sum of the areas of n triangles such as AOB (fig. 1)

is the same as the limit of the sum of the areas of n triangles such as COD,
when n is indefinitely increased.

The theorem is also true if the infinitesimals are all negative,

siace to change the sign of each infinitesimal is simply to change

the sign of the limit of the sum. If the infinitesimals are not all

of the same sign, however, the theorem is not necessarily true.

Ex. 3. Let

1 11 1
^ai = —-i <T2 = -1 (Xz = —=1 0-4= -, etc.,

/3i = «! + - 1 /32 = «2 + - ) /Ss = «3 + - , /34 = a4 + - , etc.
n n n n

Then ori + ^2 + trs H h a„ = 0, or = —= >

^1 + /32 + ft + • • • + ^„ = 1, or = 1 + -_,

according as n is even or odd ; and

Lim (n-i + rt-2 + as + h o:») = 0,
n = 00

Lm (/3i + ft + ft + .
. . + ft) = 1.

4. Differentials. The process of differentiation is an illus-

tration of the quotient problem of § 3. For if y =f{x) is a

continuous function of x which has the derivative f'{x), and

Ax and Ay are the corresponding infinitesimal increments of

X and y, then, by definition,

Ax= iSX
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It appears from (1) that Aic and A^/ are infinitesimals of the same

order, except in the cases in which f'{x) is or oo. Moreover, (1)

may be written .

where Lim e = 0, and hence

A^ = f'{x)^x + €^x. (2)

It appears, then, that f'{x)Ax differs from Ay by an infinitesimal

of higher order than Ax, and f'{x)Ax may therefore be used in

place of Ay in problems involving limits of quotients and sums.

The quantity f{x)Ax is called the differential of y, and is rep-

resented by the symbol dy. Accordingly

dy=f'{,x^)Ax. (3)

Now in the special case in which y = x, formula (3) reduces to

dx = Ax. . (4)

Hence we may write (3) as

dy=f'{x)dx. (5)

To sum this up : Tlie differential of the independent variable is

equal to the increment of the variable; the differential of the

function is equal to the differential of the independent variable

multiplied by the derivative of the function, and differs from the

increment of the function by an infinitesimal of higher order.

From this point of view the derivative is called the differential

cocffcient.

The use of differentials instead of increments is justified by the

fundamental theorems of § 3 in many problems which are eventu-

ally to involve the limit of a quotient or the limit of a sum.

It is to be emphasized that dx and dy are finite quantities, sub-

ject to all the laws governing such quantities, and are not to be

thought of as exceedingly minute. Consequently both sides of (5)

may be divided by dx, with the result

•^ ^ ^ dx
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That is, the derivative is the quotient of two differentials. This

explains the notation already chosen for the derivative.

Ex. 1. Let y = x".

We may increase x by an increment Ax e(iual to ilx. Then

Ay = (x + dxf - x3 = 3 x^dx + 3 x (dx)- + {dx)\

On the otlier hand, by definition,

dy = S x~dx.

It appears that Ay and dy differ by tlie expression 3 x(dx)2 + (dx)-^, which is

an infinitesimal of liigher order tlian dx.

Ex. 2. If a vokxme b of a perfect gas at a constant temperature is under

k
the pressure p, then u = - , where k is a constant. Now let the pressure be

increased by an amount Ap = dp. The actual change in the volume of the

gas is then the increment

Ab
k

p + dp

kdp

p(p + dp)

The differential of v is, however,

dv — —
kdp

which differs from Av by an infinitesimal of higher order. The differential dv

may, accordingly, be used in place of Av in problems which involve the limit

of quotients or sums of this and other infinitesimals.

5. Graphical representation. The

distinction between the increment

and the differential may be illus-

trated graphically as follows:

Let the function be represented

by the curve y =/(*) (fig- 2)- Let

F{x, y) be any point of the curve,

and Q(x-\- Hx, y + Ay) a neighboring

])()int. Draw the lines PR and BQ
jiarallel to the axes, the chord PQ,

Fig. 2 and the tangent PT. Then

tAx = dx = PR, Ay = P Q, f'{.r) = tan RPT,

dy =f\x)dx = (tan RPT)PR = RT.
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Hence the increment and the differential differ by QT. That QT is

an infinitesimal of higher order than FB may be shown as follows

:

^. QT ^. RT-RQ RT ^. BQ
Lim -— = Lim ^ = Lim—-

PR FR FR FR
= tan RFT— Lim (tan RFQ) = 0.

6. The formula

dy=f'{x)dx (1)

has been obtained on the hypothesis that x is the independent

variable and y =f{jc).

Consider now the case y=f{x), where x = ^(t) and t is the

independent variable. By substitution we have

Then, by (1), dy=F'{t)dt. (2)

Butbyl, §96, (7), F'{t)=f{x).c^'{t).

Substituting in (2), we have

dy =/'{.) c^'{t)dt. (3)

But since t is the independent variable and x = 4>(t), we have,

from (1),
^

^ dx = 4>'{t)dL

Substituting in (3), we have

dy ^f{x)dx.

This is the same form as (1). Therefore (1) is always true

whether x is the independent variable or not.

7. Formulas for differentials. By virtue of the results of the

preceding article, the formulas for differentials can be derived

from the formulas for the corresponding derivatives.

For example, since the derivative of u" with respect to u is nu"'^,

d{u"} = nu''-hlu,

whether to be an independent variable or the function of another

variable.



10 INFINITESIMALS AND DIFFERENTIALS

Proceeding as in the above example, we deriv6 the foUowing

formulas

:

d (w + c) = du,

d{cu) = c du,

d (u + v) = du + dv,

d {uv) = udv + V du,

, lu\ V du — udv

(1)

(2)

(3)

(4)

(5)

d(%C) — niC~^du, (6)

d sin u = cos u du, (7)

d cos u = — sin u du, (8)

d tan u = sec^ u du, (9)

d ctn w = — CSC" ?6 f^«, ( 1 0)

d &eQ,u = ^e.Qui2i\iudu, (11)

c? CSC -zi =— csci^ ctn^^ du, (12)

du

d cos'

d tan"

d ctn'

c? sec"

f?CSC"

10=^
du

vi::

du

1+ M-'

du

u = ±

T-

du

du

d sin it = ± (13)

f? e" = e" 6?w,

,

,

du
d log ii =— >

fZ a" = a" log ri^ f??<.,

, , , du
d log„% = log„e

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)
y/l-u'

8. Differentials of higher orders. By definition

dy—f'(x)dx. (1)

But dy is itself a function of x, and may, accordingly, have a

differential, which will be denoted by d'^y ; i.e. d (dy) = d'^y, and,

in general, d{cl"~^y) = d"y. The differentials d'^y, d^y, -, d"y are

called differentials of the second, the third, • • • , the 7ith order

respectively.

When X is the independent variable, its increment dx may be

taken as independent of x. With this assumption, applying our

definition of a differential to (1), we have

dhj = d[f(x) dx] = [f"{x) dx] dx =f"(x) dx\

where dx^ is written for convenience instead of (dx^.

In like manner,

d^y=f"'{x)dx\

and, in general, d"y = f''''\x) dx".
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The reason for the notation used for derivatives of the second,

the third, • • • , the nth orders is now apparent.

If X is not the independent variable, the expressions for the

differentials become more complex, since dx cannot be assumed as

independent of x. We have, then,

d'i/ = d [f'{x) dx] =f"{x) d^ +f'{x)d\ (by (4), § 7)

where, \i x = ^{t), dx = (f)'{t)dt, and d^x = (f)"{t)dt^, t being the in-

dependent variable. It appears, then, that the formula for the

second differential is not the same when written in terms of the

independent variable as it is when written in terms of a function

of that variable. This is true of all differentials except the first

(see § 6).

Hence the higher differentials are not as convenient as the first,

and the student is advised to avoid their use at present.



CHAPTEE II

ELEMENTARY FORMULAS OF INTEGRATION

9. Definition of integration. The process of finding a function

when its differential is knoivn is called integration. This is e\T.-

dently the same as the process of finding a function when its

derivative is known, called integration in I, § 110.

In that place integration was performed by rewriting the deriv-

ative in such a manner that we could recognize, by the formulas of

differentiation, the function of which it is the derivative. But this

method can be applied only in the simpler cases. For the more

complex cases it is necessary to have formulas of integration, which

can evidently be derived from the formulas for differentials (§ 7).

Using the symbol fto denote integration, it is evident from the

definition that if
f(^dx = dF(x),

then I f{,r)dx=F{x).

The ex-pression f (x) dx is said to be under the sign of integration,

and/(.c) is called the integrand. F{x) is called the integral oif{x) dx.

10. Constant of integration. Two functions which differ only

by a constant have the same derivative and hence the same differ-

ential ; and conversely, if two functions have the same differential,

they differ only by a constant (I, § HO ;
II, § 30).

Hence if /(.«) dx = dF(x), (1)

it follows that / (x) dx = d[F (x) + C]

,

(2)

where C is any constant.

Eewriting (1) and (2) as formulas of integration, we have

Cf{x)dx = F{x) (3)

and ffix) dx = F{x) + C. (4)

12
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It is evident that (3) is but a special case of (4), and hence that

all integrals ought to be written m the latter form. The constant C
is called the constant of integration and is independent of the form

of the integrand. For the sake «if brevity it will be omitted from

the formulas of integration, but must be added in all integrals

evaluated by means of them. As noted in I, § 110, its value is

determined by the special conditions of the problem in which the

integral occurs.

11. Fundamental formulas. The two formulas

/ edit = c I du (1)

and
I
(du + dv + dw -i ) = / du + I dv + j dw -\ (2)

are of fundamental importance, one or both of them being used in

the course of almost every integration. Stated in words, they are

as follows

:

(1) A constant factor may he changed from one side of the sign

of integration to tlie other.

(2) The integral of a sum of a finite mimber offunctions is the

sum of the integrals of the separate functio7is.

To prove (1), we note that since cdu = d{cu), it follows that

j c du = I d (cti) = etc = c
I
du.

In like manner, to prove (2), since

du + dv + dw + • • = d (u -{- V + w + • • •),

we have

/ {du + dv -\- dw -{-•)=
j d (w + V + 2V -\- • • )

= u + V + w + • •

= jdtt-{-l dv +
I
dw + • • •

The application of these formulas is illustrated in the following

articles.
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12. Integral of u". Since

d{u"') = mu"'~'^du,

it follows that I mir-^u = ir.

But by §11(1), if m^O,

m
I
u"'-'^du= I mu'"~'^du ^^r,

r m-l 7

^^"^

or I u d'lL =
J ni

Placing m = 71 + 1, we have the formula

/u-du =—-— (1)
n + 1

for all values of n except n = — 1.

If 71 = — 1, the differential under the integral sign in (1) becomes

— > which is recognized as d{\ogu).

Therefore
f^-^

= logu. (2)

In applying these formulas, the problem is to choose for u some

function of x which will bring the given integral, if possible, under

one of the formulas. The form of the integrand often suggests the

function of x which should be chosen for w.

Ex. 1. Find the value of f/ax^ + bx -\ 1- ~)dx.

Applying § 11 (2) and then § 11 (1), we have

-f (ax^ + bx + - + ^Adx= fax'^dx + fbx '^^ +f ^'^^ +f ^2*^^

= a Cx-dx + b Cxdx + c f — + efx-^dx.

The first, the second, and the fourth of these integrals may be evaluated

by formula (1), and the third by formula (2), where u-x, the results being11 e
respectively -ax^, - bx^, , and c logx.

Therefore

f(ax^ + bx + - + -]dx = ^ ax^ + ^ 6x2 + c logx - ^ + C.
J \ X xV S 2 X
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Ex. 2. Find the value of C {x"^ + 2)xdx.

If the factors of the integrand are multiplied together, we have

C{x^ 4 2)xdx- C(x^ + 2x)dx,

which may be evaluated by the same method as that used in Ex. 1, the result

being ^x* + x^ + C.

Or, we may let x^ + 2 = u, whence 2xdx = du, .so that xdx = }f du. Hence

I
{x'^ + 2)xdx =

I
^udu = ^ I

udu

2 2

= 1 (X2 + 2)2 + C.

In.stead of actually writing out the integral in terms of u, we may note that

X dx = ^ d (z2 + 2), and proceed as follows .-

r{x2 + 2) X dx = r{x2 + 2) 1 d (x2 + 2)

= i/(^^ + 2)d(x2 + 2)

= 1 (x2 + 2)2 + C.

Comparing the two values of the integral found by the two methods of

integration, we see that they differ only by the constant unity, which may
be made a part of the constant of integration.

Ex. 3. Find the value of
j (ax2 + 2 6x)-^(ax + b)dx.

Let ax2 + 2 6x = u. Then (2ax + 2ft)dx = d?/, so that (ax + 6)dx = ^dw. Hence

r{ax2 + 2 6x)3 (ax + b)dx- f^u^du

2 J 2 4

= I (ax2 + 2 bx)* + C.

Or, the last part of the work may be arranged as follows

:

r(ax2 + 2 6x)3 (ax + b)dx= f {ax'^ + 2 bxf ^ d (ax2 + 2 bx)

= 1 r(ax2 + 2 6x)3d (ax2 + 2 bx)

= I (ax2 + 2 bx)* + C.
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4 {ax + b) dx
Ex. 4. Find the value of / ax2 + 2bx

As in Ex. 3, let ax^+ 2bx=u. Then (2 ax+2b)dx=du, so that {ax+ b)dx= ^du.

Hence

/4 (ax + b)dx _ r 2du _ r du

ax^ + 2bx ~ J u ~ J u

= 2 log u + C

= 2 1og{aa;2 + 2 6x) +0
= log (ax2 + 2 6x)2 + (7.

/• 4 (ax + 6) dx _ r 2 d (ax^ + 2 6x)

' J ax^ + 2bx J ax2 + 2 6x

_^ fd (ax2 + 2 6x)

~
-' ax2 + 2 6x

= 2 log (ax2 + 2 6x) + a

= log (ax2 + 2 6x)2 + C.

Ex. 5. Find the value of C{e'"' + b)^e"''dx.

Let e"^ + 6 = m. Then e'-'adx = dit. Hence

Me"^ + b)-e"^dx =
|

m'^—

u^du
a J

= — m3 + C
3a

3a

Or, r(e«^ + by^e"^dx = f - (e«^ + bfd(e"-^ + b)

= - f(e"^ + 6)2(Z(e"^ + b)

J tn

= J- (e"^ + 6)3 4- C.
3a

sec2(ax + b)dx
Ex. C. Find the value of .

,an (ax + 6) + c

Let tan (ax + 6) + c = u. Then sec^ (ax + 6) a dx = dw. Hence

/sec2(ax + b)dx _ rl du

tan (ax + 6) + c ^ a m

_ 1 rdu
~ a J u
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= ~ logu + C

= - log [tan (ax + b) + c] + C.

„ r sec2(ax + b)dx _ r 1 d [tan {ax + b) + c]

J tan{ax+b) + c J a tan(aa; + 6) + c

_ 1 r fZ [tan {ax + 6) + c]

a J tan (ax + b) + c

= - log [tan (ax + 6) + c] + C.
a

The student is advised to use more and more the second method,

illustrated in the preceding problems, as he acquires facility in

integration.

13. Integrals of trigonometric functions. By rewriting the

formulas (§7) for the differentiation of the trigonometric func-

tions, we derive the formulas

cos tt du = sin tc, (1)

sin ic du = — cos tt, (2)

sec^u du = tan u, (3)

csc^u die = — ctn u, (4)

sec ti tan u du = sec u, (5)

;sc»ctu»*.=-csc». (6)

In addition to the above are the four following formulas

:

tan u du = log sec u, (7)

ctn u du, = log sin tt, (8)

I
sec u du = log (sec u + tan u) = log tan ( -r + ^ )

'

(9)

/
11

CSC w die = log (esc w — ctn u) = log tan - • (10)
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sin u .

To derive (7) we note that tan u = and that —s,m.udu
^ ' cosw

= d{Q,0Qu). Then

I tan u du=—
j

d (cos u)

cosu

= — log COS u

= log sec u.

In like manner,/r cos udu
ctn tt du = I

—
-. = log sm u.

J smu

Direct proofs of (9) and (10) are given in § 68. At present they

may be verified by differentiation. For example, (9) is evidently

true since 71/ , ^ \ 7d log (sec u + tan u) = sec u du.

The second form of the integral may be found by making a

trigonometric transformation of sec u + tan u to tan ( -7 + q )•

Formula (10) may be treated in the same manner.

Ex. 1. Find the value of fcos (ax^ + bx) (2 ax + b) dx.

Let ax^ + bx = u. Then (2 ax + b)dx = du.

Therefore Tcos {ax'^ + bx) (2 ax + b)dx= Ccos (ax^ + bx) d {ax~ + bx)

= sin (ax2 + bx) + C.

Ex. 2. Find the value of Tsec {e'^^ + b) tan (e«^ + b) e«^x dx.

Let e«^ + b = u. Then e"^ 2axdx — du.

Therefore Tsec (e"^ + 5) tan (e«^ + 6) e°^ x dx

=— fsec (e«^ + b) tan (e"^' + b)d (e<^' + b)

2a J

=— sec (e"^ + b)-\-C.
2a

The integral may often be brought under one or more of the

fundamental formulas by a trigonometric transformation of the

integrand.
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Ex. 3. Find the value of | cos'-xdx.

Since cos^x = ^ (1 + cos2x), we have

I
cos^ X fZx = ^ /

(1 + cos 2 x) dz

= 1 fdx + 1 fcos 2 X d (2 a;)

= ^ X + J sin 2 X + C

Ex. 4. Eind the value of ( sec^ 2 x dx.

If we let sec6 2 x = sec* 2 x • sec^ 2 x, and place sec* 2 x = (1 + tan^ 2 x)2 =
1 + 2 tan2 2 X + tan* 2 x, the original integral becomes

f(l + 2 tan2 2 X + tan* 2 x) sec^ 2 x dx.

Place tan 2x = u. Then sec^ 2 x • 2 dx = dw. Making this substitution and

simplifying, we have

fsecs 2 X dx = J /"(I + 2 u2 + m*) du

= ^ tan2x + ^ tan32x + yi^ tan62x + C.

14. Integrals leading to the inverse trigonometric functions.

From the formulas (§ 7) for the differeutiatiou of the inverse trig-

onometric functions we derive the following corresponding formulas

of integration

:

/
d2t . _i _i= sin u or — cos u,

du

/;

/ 1 + U
du

- = tan ^u or — ctn u,

= sec"^'?^ or — csc~^w.

u^/u^ — 1

These formulas are much more serviceahle, however, if u is

replaced by - {a > 0). Making this substitution and evident

reductions, we have as our required formulas:

du . , ^t _1 W /^ ^= sm — or —cos — > (1)/

h

/du 1 , -i"?^ 1 . -i'*^ /ON
-;; — - tan - or ctn ' - > (/)
a' + u a a a a

du 1 ,u 1 _i ^^ /o\= — sec" - or CSC -• (o)

u^u^ _ a' a a a a
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Eeferring to I, § 153, we see that in (1) sin ^ - must be taken

in the first or the fourth quadrant and that cos - must be taken m
u

the first or the second quadrant. In hke manner in (3) sec - and

csc~^ - must be taken in the first or the third quadrant.
a

It is to be noted that the two results in (1) differ only by a

constant. For let sin"^ - = ^ and cos~^ -- = yjr, where (^ is in the

first or the fourth quadrant and -^ is in the first or the second

quadrant. Then

sin<p = —

>

cosY' = —

'

a a

cos<^ = x|l-J' sin^=->Jl-'^

TT

Therefore cos (</> + i/r) = 0, whence (j) + ^}r ={2k + 1) -> where

k is any integer or zero.

Hence
(f>
={2 k + 1)'^- ^{r, or

sm"^ - = (2 ^^ + 1) - — cos-^ -.
a 2 a

Similarly, the results in (2) or (3) may be shown to differ by

constants.

Ex. 1. Find the value of (
— •

•^ V9 - 4 x2

Letting 2 a; = m, we have du = 2 dx, and

di2x) 1 . ,2x
, ^ 1 _ ,2xr dx _ 1 r ^(^ = - sni i^lJU + C or --C0S-1— +(7.

(2x)

dx

2 2 3 2 3

X V3

If we let V3x :

/dx _ r

^ -v/q -..2 ^ a J

x2 - 4

If we let V3 X = it, then dw = V3 dx, and we may write

V3x2-4 -^ V3x V(V3x)2-4 2 2 2 2
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dx
Ex. 3. Find the value of (

V4 X - x2

Since V4 x — x- = v 4 — (x — 2)-, we have

dx _ f dx _ r d{x — 2)/ax _ r ax _ r

>Ja t _ t2 J -v/j. — Irr — 0\2 <JV4 X - X- -^ V4 - (x - 2)2 -^ V4 - (X - 2)2

. ,x — 2 ,x-2 -,

sin-1 h C or — cos-i \- C.
2 2

Ex. 4. Find the value of
dx

2 + 3x + 5*

To avoid fractions and radicals, we place

J 2x-'2

dx 8 dx _ 4 dx

2x2 + 3 a; + .5 lGx2 + 24x + 40 (4x + 3)'-2 + 31

Therefore

dx _ r 4 dx _ r d (4 x + 3)

J2x'^ + 3x + 5 "J (4x4-3)2 + 31 J+ 3x + 5 -'(4x + 3)2 + 31 ^(4x + 3)2 + 31

2 ^ ,4x + 3 ^ 2 4 a; + 3 ^=—^tan-i—^ + C or ctn-i —- + C.
V31 V31 Vsi V3I

The methods used in Exs. 3 and 4 are often of value in dealing with

functions involving ax2 4- 6x + c.

Ex. 5. Find the value of C (^' + '^)<^^
.

J 5 + 4 X*

Separating the integrand into two fractions, i.e.

x^ X
+

5 + 4 X* 6 + 4 X*

and using § 11 (2) we have

p{x^ + x)dx r x^dx r xdx^(x^ + x)dx _ r x-^dx r

J 5 + 4 X* ~J 5 + 4x*"^J+ 4x* J5 + 4x* v'5 + 4x*

_ , r x^dx 1 rlGx^dx 1
, ,- , ,^But

I
= —

I
= — log 5 + 4 X*)

:

J 5 + 4 X* 10 J 5 + 4 X* 16 ^ '

and f
^^-^ = 1 fJ 5 + 4x* 4 J

5 + 4 X* 16

4 xdx

+ 4x* 4 J 5 + {2x2)2

1 , ,2x2 1 ^ ,2x2
tan-i—= or = ctn-i—^•

4V6 Vs 4V5 V5

Therefore
'(.r3 + x)dx 1

, ,, , ^, 1 . ,2x2
^^

—

^^—^— = — log (5 + 4 X*) H = tan-i —-
5 + 4x'i 16 *^ 4V5 VB

1 12 3-2± log (.5 + 4 X*) ctn-i—= + C.
1<^ 4 V5 V5
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15. Closely resembling formulas (1) and (2) of the last article

ui the form of the integrand are the following two formulas

:

/:
du

= = log {u +y/ii^ + a') (1)

C du 1 , u — a 1 ^ a — u .„

and [—, i
= 7r-l°g

—

\

— ^^ ^7- log— (2)

J u — a 2a u + a 2a a + u

To derive (1) we place u = a tan </>. Then du = a sec^ (f)d4>, and

Vw^+ d^ = a sec
(f).

Therefore

—==^ =
I
sec

<f) d(f>

Vw^ + d' J
= log (sec (ji + tan

<f>)
(by (9), § 13)

,
/u + Vii^ + d^

= ^°S( a

= log (w + Vw'^ + d^) — log a.

But log a is a constant, and may accordingly be omitted from

the formula of integration. If retained, it would affect the con-

stant of integration only.
-^

Formula (2) is derived bymeans of the fact that the fraction -^
^

may be separated into two fractions, the denominators of which

are respectively u — a and u + a; i.e.

1 / 1

10^— a^ 2 a \«. — a u + a^

du

(§53)

Then C .
^^
o^tt" \i ^~)

J u^—cr 2a J \u — a it + a]

_ \ I C du _ r du \

2 a \J it — a J ic + a)

= TT- [log {u-a)- log {u + a)]
2 a

1 , u — a—— log
2 a ti + a
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The second form of (2) is derived by noting that

r (lit r- ^^
1 / \

/ =
/ = log (a — u).

J u — a J a — u

The two results differ only by a constant, for

a — u u~ a

a + u u + a

and hence log = lot^ (— 1) + log ;

a + u '

u + a

and log(— 1) is a constant complex quantity which can be ex-

pressed in terms of i (§ 170).

Ex. 1. Find the value of
/:

dx

V3x2 + 4x

To avoid fractions we multiply both numerator and denominator by v3.

dx Vsdx Vsdx
Then

V3x2 + 4x V9x2 + 12x V(3x + 2)2-4

Letting 3 x + 2 = m, we have dii = 3 dx, and

dx 1 r 3 dx/dx _ 1 r
v/.Q 0.2 _L 4 T -v/s JV3x2 + 4x V3«^ V(3x + 2y-2- 4

=~ log(3x + 2 + V(3x + 2)2-4) + C
V3

=— log (3 X + 2 + V9x2 + 12x) + C.
V3

Ex. 2. Find the value of
J 2x2

dx

+ X - 15'

Multiplying the numerator and the denominator by 8, we have

dx ^ r 4(Zx
r ^ =2fJ 2x2 + x-15 J (4x2X2 + X - 15 J (4x + 1)2 _ (11)2

I
,

(4x + l)-ll ^= -_ log ^!^ 11^-! + C.
II *(4x + l) + ll

1 2x — 5 1 2x — 5 1
This maybe reduced to — log h C, or — log log2+C,

11 °2x + 6 ' 11 x + 3 11

and the term — ^j log 2, being independent of x, may be omitted, as it will

only affect the value of the constant of integration.
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If in the formulas for the differentiation of

sinh-^w, cosh~-^w, and tanh~^w (I, § 161)

It

we replace uhy —> they become

du

d . , .u dx
smh - =

dx a Vm^ + a^

du

d , _i ?t dx
-— cosh
dx a V w'— a^

du
a—

, d
^ ^ ,u dx

and —- tanh - =
dx a d^— li^

The corresponding formulas of integration are evidently

du . , _-,u= smh -»
V?^- + d^ CL

du
1 1 u.^= = cosh ->

-^u'—d'' «

and / r'" ..
= - tanh~^ —r du _ 1

J cr— u^ a

These forms of the integrals are often of advantage in problems

where the resulting equation has to be solved for the value of u in

terms of the other quantities in the equation.

By formulas (2), § 14, and (2) of this article we cau find the value/dx—z
'—— We can also find the

ax^ + hx + c

value of any integral of the form | -^ — , as shown in Ex. 3.

J ax + hx + c/P (x\ dx—--^ > where P(x') is a
ax^+hx + c ^

'

polynomial, can always be found, since by division the integrand is

equal to a polynomial plus a fraction of the form just mentioned.
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Ex.3. Find the value of f_(^l±3^.
J 2 x2 + X - 15

If 2 x2 + X - 15 = M, dw = (4x + 1) dx.

Now 3x + 4 may be written as |(4x + 1) + i_^.

Therefore A (3^ + 4)dx ^ . [j (4x + 1) + y]^
J2x2 + x-15 ^ 2x2 + x-15

_ 3 r {4x + l)dx 13 /" dx
~4 J 2x2 + X- 15 TJ2x2 + x-15"

The first integral is | log(2x2 + x -15), by §12 (2), and the last integral is

of the form solved in Ex. 2, and is — log
44 X + 3

Hence the complete integral is

^ log (2x2 + X - 15) + i^ log-^^ + C.
4 44 X + 3

Ex. 4. Find the value of
(2 X + 5) dx

V3 x2 + 4 X

The value of this integral may be made to depend upon that of Ex. 1 in the

same way that the solution of Ex. 3 was made to depend upon the solution of

Ex. 2. For let 3 x2 + 4 X = ti ; then dw = (6 x + 4) dx.

Now 2x4-5=1 (6 x + 4) + -y-.

Therefore fil^±3^^ . [_K6x + 4) + y ]dx

•^ V'3x2 + 4x '^ Vs x2 + 4

X

= 1 r(3x2 + 4x)-'[(6x + 4)dx] + ^r-—J^=-
3J 3J V3x2 + 4x

The first integral is § V3 x2 + 4 x, by § 12 (1), and the second integral is

^log(3x + 2 + V9x2 + 12 x), by Ex. 1. Hence the complete integral is

3V3
11

§ V3 x2 + 4 X + ^ log (3 X + 2 + V9x2 + 12x) + C.

3V3

16. Integrals of exponential functions. The formulas

Ce"du = e'' (1)

and fa"cla=-^a" (2)

are derived immediately from the corresponding formulas of differ-

entiation. The proof is left to the student.
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17. Collected formulas.

/ ,n+l

du =
W + 1

/du ,— = log u,
u

I
sin u du = — cos u,

I
i^ec^udu = tan w,

I
csc^w du = — ctn u,

Jcsc»ctn»*,=-csc«,

•

I
tan u du = log sec w,

I
ctn -?«. dii = log sin w,

I
sec i^ c??i = log (sec to + tan u) = log tan

(
7 +

:^
)

'

/It
CSC udu = log (esc it — ctn w) = log tan - >

/du . _, u= sui '-

y/d'-tt^ a

C-1

I;
^

/
^'^^ = log (u + y/u' + a^) or sinli"^ -

:

/ ,

= log (u + Vw^— a^) or cosh"^ -

+ ir a

du

u _, ii

or — cos —

'

a

1^-1^ 1 , _lW= - tan - or ctn -
a a

1 .% 1 _iW
= = - sec - or CSC - >

i a a a a

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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=— log or — log or tanh -> (18)
w'-a' 2a ^u + a 2 a '^ a + u a a ^ '

Ce"dic = e'', (19)

fa^du^-^a'^' (20)
J log a

18. Integration by substitution. In order to evaluate a given

integral it is necessary to reduce it to one of the foregoing standard

forms. A very important method by which this may be done is

that of the substitution of a new variable. In fact, the work thus

far has been of this nature, in that by inspection we have taken

some function of x as ii.

In many cases where the substitution is not so obvious as in the

previous examples, it is still possible by the proper choice of a

new variable to reduce the integral to a known form. The choice

of the new variable depends largely upon the skill and the experi-

ence of the worker, and no rules can be given to cover all cases. A
systematic discussion of some types of desirable substitution will

be taken up in later chapters, but we shall in this chapter work a

few illustrative examples.

Ex. 1. Find the value of
x'^dx

V2X + 3

Let 2 X + 3 = z2. Then x = ^ (2^ - 3) and dx = z dz. Substituting these val-

ues in the original integral, we have

1 Hz* - 6 z2 + 9)d2 = 1 (i z5 - 2 z3 + 9 z) + C.

Replacing z by its value in terms of x, we have

/
x^dx

V2X + 3 S
= - V2x + 3{x2 _ 2 X + 6) + C.

/Vx2 4- a^
dx.

X
, dx I , zdz

Let x2 + a2 = z2. Then xdx = z dz, and — = -- x dx =
^

Then, after substitution, we have

I
=

I IH 1 dz = z + log 1- C.
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Replacing z by its value in terms of x, we have

I dx = ^x- +a^ + ~ log ~^z=^= 1- C.
•^

a; 2 Vx^ + a2 + a

Ex. 3. Find the value of j
Va- - x^ dx.

Let X = a sin z. Then dx = a cos z dz and Va^ — x^ = a cos z.

Therefore C Va^ — x- dx = a- ( cos^ z dz = ^ a- / ( 1 + cos 2 z) dz

= 1 a2 (z + i sin 2 z) + C.

But z = sin-i - , and sin 2 z = 2 sin z cos z = 2— ^a- — x^.

a 0(2

Finally, by substitution, we have

r Va2 _ a;2 dx = Vx Vo2 - X2 + 0^2 sill"! -"j + C.

Ex. 4. Find the value of / x^ Vx2 — cC^ dx.

Let X = a sec z. Then dx = a sec z tan z dz, and Vx2 — <jfi = a tan z.

Therefore
| x^ Vx2 — a2 dx = a^ j tan2z sec* zdz

= a^
I
(tan2z + tan*z) sec2 zdz

= a5(i tan^z + 1 tan^z) + C.

But secz = - , whence tanz = ? so that, by substitution, we have
a a

fx^ Vx2 - a2 dx = -jJy V(x2 - a2)3 (2 a2 + 3 x2) + C.

/dx
z-

(x2 + a2)i

Let X = a tan z. Then dx = a sec2 z dz and Vx2 + a'- = a sec z.

m f r dx I r dz If , 1 . , „
Therefore | = — |

= —
| cos z dz = — sin z + C

'^ (x2 4- a2)j a2 J .secz a^ J cC-

X X
But tan z = - , whence sinz = — , so that, by siibstitution,

^ Vx2 + a2

dx

•'' (x2 + a2)S
a-2 Vx2 + a2
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dx
•'<!:

(2x + l) V5x2 + 8a; + 3

Let 2x + l=-- Then x = - ( 1), dx = — —-.dz, and V5 x'- + 8 x + 3
2 2\z J 'iz- ^

1
,= ^ V z2 + 6 2 + 5.

Therefore

dx c dz r dzC ^'^ — C — C
J /9 T a. 1 \ Vfi 1-2 J. «->. _L a «^ -v/r2 1 « ^ _L r: J

(2 X + 1) Vs x2 + 8 z + 3 *^ V22 + 62^5 J V(2 + 3)2 - 4

= - log (2 + 3 + V22 + (J 2 + 5) + C.

But 2 = ? and hence
2x + 1

1 / , o , ^/ ..
,

,. rT\ 1
fix +4 + 2 VSx'^ + 8x + 3— log (2 + 3 + V22 + (jz + 5) = — log —

2x + l

1 2x + l
, „= log log 2.

3x + 2 + V5x2 + 8x + 3

.-. r "^ = 10.
^ ^ + 1

^r7,
•^ (2x + l)V5x2 + 8x + 3 3x + 2+V5x2 + 8x + 3

— log 2 having been made a part of the constant of integi'ation.

The student should refer freely to tliese examples as possil)ly

suggesting a type of substitution desirable in the solution of a new
problem. From them the following hints for substitution ui similar

cases may be deduced

:

In integrals involving '^a + hx try a + hx = z'\ as in Ex. 1.

In integrals involving V^"-+ a^ try either x"-{- a' = r, as in Ex. 2,

or x = a tan z, as in Ex. 5.

In integrals involving ^a^—cif try x = a sin z, as in Ex. 3.

In integrals involving v.r— a^ try x = a secz, as in Ex. 4./dx 1
try Ax + 7? = -

,

ao 111 ±..K. u. ('^•'^' + ^') ^^1"^^+ bx + C ^

It is not to be supposed that the above substitutions are desir-

able in all cases. For instance, in Ex. 2 the substitution x — a tan z

does not simplify the integral; but the sul)stitution .t"+ a^=z^ is

of advantage, tliough it is rare that the substitution of a single

letter for the square root of a quadratic polynomial leads to any

simplification.
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IS. Integration by parts. Another method of importance in

the reduction of a given integral to a known type is that of inte-

gration hy parts, the formula for which is derived from the formula

for the differential of a product,

d (uv) = u dv + V du.

From this formula we derive directly that

uv = I udv + I V du,

which is usually written in the form

I udv = uv — I V du.

In the use of this formula the aim is evidently to make the orig-

inal integration depend upon the evaluation of a simpler integral.

Ex. 1. Find the value of j xe^dx.

If we let X = « and e'^dx — dv, we have du = dx and v = e*.

Substituting in our formula, we have

I
xe^dx = xe^ — j e^dx

= xe^ — e^ + C
= (X - 1) e^ + C.

It is evident that in selecting the expression for dv it is desirable, if possible,

to choose an expression that is easily integrated.

Ex. 2. Find the value of j sm~^xdx.
dx

Here we may let sin-^x = u and dx — dv, whence du = and v = x.

Substituting in our formula, we have V
1 — x

I
sin- 1 X dx = X sin- 1 X — j

-
xdx

Vl - x'

= X sin-ix + Vl -x2 + C,

the last integral being evaluated by § 12 (1).

Ex. 3. Find the value of
j
xcos^xdx.

Since cos^x = ^ (1 + cos 2 x), we have

Jx cos2xdx = -'
I

(x + X cos2x)dx = \- ~
j
xcos2xdx.
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Letting x = u and cos 2xdx = dv, we have du — dx and v = ^ sin 2 x.

Therefore / x cos 2 x dx = - sin 2 x— / sin 2 x dx
J 2 2 J

X 1= - sin 2 X + - cos 2 X + C.
2 4

.•. I X cos2x ctx = h -
I
- sin 2 X + - cos 2 x 1 + C

J 42 \2 4 /

= ^ (2 x2 + 2 X sin 2 x + cos 2 x) + C.

Sometimes an integral may be evaluated by successive integra-

tion by parts.

Ex. 4. Find the value of j x^e^dx.

Here we will let x^ = u and e-^dx = dv. Then du = 2xdx and v = e*.

Therefore CxH^dx = x'^e^ — 2 Cxe^dx.

The integral i xe' dx may be evaluated by integration by parts (see Ex. 1),

so that finally

fx^e^dx = xV - 2(x - l)e^ + C = e^(x2 - 2x + 2) + C.

Ex. 5. Find the value of ( e"^ sin bxdx.

Letting sin bx — u and e«^ dx = dv, we have

/e"'' sin 6x dx = - e"^ sin 6x | e"-^ cos bx dx.
a a J

In the integral I e'"cos6xdx we let cos6x = u and e"'"dx = du, and have

/e"'' cos bxdx = - e"'' cos 6x + - / e"'' sin 6x dx.
a a »/

Substituting this value above, we have

/e"^ sin bxdx = e"^ sin 6x l- e"^ cos 6x + - | e""^ sin bx dx ] •

a a \a a J J

Now bringing to the left-hand member of the equation all the terms con-

taining the integral, we have

/ b'^\ r 1 b
1 1 H 1 I e"^' sin bx dx = - e"'" sin bx e^'' cos bx,
\ a'^f J a a2

, r • , , e<^(a sin bx — b cos bx)
whence I e"-^ sin bx dx = —

^

J a2 -h 62
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Ex. 6. Find the value of i e"-" cos bxdx.

. e"^ (a cos bx + b sin bx) ^. , , . , ^^ .. J.^ ^ i <. •

The result is ^^ : the work being left to the student, since

it is exactly like that of Ex. 5.

xdx

Ex. 7. Find the value of j
Vx^ + a^ dx.

Placing Vx2 + cfi = u and dx = dv, vi^hence du =
"^""^

and u = x, we have
Vx2 + a^

Vx2 + cfi dx = X Vx2 + a2 -
I

(1)
'^ Vx2 + a2

Since x'^ = (x'^ + a'-) — a^, the second integral of (1) may be written as

r (x2 + a2) dx
.^
r dx

•^ Vx2 + a2 -^ Vx- + a2

which equals |
Vx- + a-dx - a- (

——
Vx2 + a2

Evaluating this last integral and substituting in (1), we have

r Vx2 + a^ dx = X Vx2 + a2 - fVxM^ cZx + a^ log (x + Vx^ + a?),

whence f Vx^ + a- dx = l [x Vx^ + a^ + a^ log (x + Vx^ + a'-) ]

.

20. Possibility of integration. In this chapter we have learned

how to express the integrals of certain types of functions in terms

of the elementary functions, and the discussion of methods of inte-

gration will be continued in Chaps. VI and VII. But it should

be noted now tliat it is not always possible to express the integral

of elementary functions in terms of elementary functions. For

example, /

'''

cannot be so expressed ; in fact,

this integral defines a function of x of an entirely new kind.

Accordingly when it is said that the integration of certain func-

tions is not possiljle, it is meant that the integration is not possible

for one who knows only the elementary functions, which are in

fact the functions generally used in applied mathematics. In this

respect integration differs radically from differentiation, which can

always be performed upon elementary functions. This fact is not

surprising, since it is closely analogous to what takes place in
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connection with other operations which are tlie inverse of each

other. For example, the addition of positive numbers can always

be expressed in terms of positive numbers, but the inverse opera-

tion of subtraction is made always possible only by the introduc-

tion of negative numbers ; also the involution of rational numbers

is always possible, but evolution is always possible only after

irrational numbers are introduced.

PROBLEMS

Find the values of the following integrals

:

1. f{Sx^ + 6x + l)dx.

2.

r x + v'x^ + 5
4. I

-
'
-' -

dx.

Vx
•3 + x2

</a

dx.

7. fix - l)~x^dx.

x^dlx

X + 2

0. j Vl + e'^e^dx.

- r e^dx

J e'' + a+

J X logx

^ r dx
' J {1 + x'-)tan-ix'

. r 1 + cos X
4.

I
dx.

«/ (X + sin x)3
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28. /(e- + 6)'^6-=xdx. 32. / ^^^i^i|L+^ dx.

29. r(J^^-J^)dx. 33. r5^-4^,,.

30./^- 34. r-"^-^^dx.

31.
I
—=:^ —

, s
• 35. I

sin^ X cos X dx.
J Vx2 + a2 log(x + Vx'2 + a2) J

36. f [sin* (ax + b) + cos* (ox + b)] sin (ax + 6) cos (ax + 6) dx.

37. r(csc6x-ctn6x)csc6xdx. 46. J(sec 3x - tan 3x)2dx,

clx

sin2 (ax + b)
38 r

^^^
47.

r«e«^^ + ta"^^dx.

J sin2(ax + 5) J secx + tanx

/. sec'^(x2 + a^)-xdx
_ ^g r^.^^

^^^ ^.^^ ^^ ^^ ^^,^ _^ ^^
J tan3 (x2 + a2) J

^^ r secxManx^-xdx
_ ^g T

.^^ ^^^^ p^,^ ^^ ^^^ (^ _^ ^)_

J a- + sec x2 «^

4L r(secxtanx + secx)2dx. 50. Jsin(ax + f.)cos(a'x + b')dx.

Jsin22xdx. 5L J(tan2x + ctn2x)2dx.
42

43

44

45

rcos2xdx^ 52. r(secx2 + tanx2)2secx2 - xdx.

J sin X

r • o ^^ 53. rcos2(l - 2x)dx.
.

I
cos X sm 2 X ax. J

. /^/sin2x cosx\ ,

J(tan2x - ctn2x)dx. 54.
J (^-—^ + ^r^^j'^^-

55. /"(sec 2 X + tan 2 x - 1) (sec 2 x - tan 2 x - 1) dx.

dx
56. r /cscx+ctnx^^_ 6L /^

'^ \ CSC X — ctn X ^ + COS X

Ctn X dx

57
o fl -Ja r^n r ctn X dx

/* cos2^a5 62. I
•

•
I
—:;

^ n' «^ sin X — 1
J COS ^ — sm ^

^„ r sec eri^ 63. f
^^—

•

58. —2,—;—3- J 9x2 + 25
J sec ^ + tan d

^

,„ rsin^de 64. r
^"^

.

J 1 - sin e
V oi - 4 X

o/v r 1 - cos X - 65 r
^^

.

60. I dx. ''^-
j /-^^ r

J 1 + cos X "^
a; V25 x2 - 1
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dx or r dx
f

'^^
. 85. f-

73 '

^^

79

V-a;2 -3x + 4

dx o„ /• dx
67. f—^^5 86. f-J 2x^ + 1 J

^

'• f-^^=- »' f-^xV5x2-3 -' V-2x2-7x + 4

2 ^^ + 1 '^ (3 X - 1) V3x2-2x-8

68. r i! • 87 r ^?

^ V a6 - x6 J 2 x2 + 1

71. f—^^=- 90. r:^^ii:L-dx.
•^ X Vx* -a* ^ 3x* + 7

72. f ^, f ,
. 91. r^^^dx.

J 13-GX + X2 J v;^3^

74. r
^^

93 r sinxdx
-^ xVa2x2-62 -^ 1 + cos2x'

75. r—^5 94 r_
'^^

./ x2 + 2 X sin a + 1 j ^22 + 62cos2x

76. r^.^^=. 95. r^^.
•^ V4 X - x2 •/ 4 x2 - 9

77. f
""^^

96. f—J^.
J e2-« + 2 e"^ tan a + sec2a «^ V9 x- -{ 2

78. f /^ 97. r-^^.
•^ rx-2Wx2-4x4-2 J 3x2-1(x-2)Vx2-4x + 2

dx rto r (^a;r dx gg /•

V2x-3x2 '' V4x2-3

80. f ^

^^^^ — . 99. f
^^

_. 100. r
+1 -'

^^
101. f

^x2 + 5x + 4
-^

83. f
^-^ 102. f—^

-* x2sin2ar + xsin2a + l Jx* + 4x- + 2

84. f
""^^

. 103. r
^

^^

•^ V3 - 6 x2 - X* V x2 - 2 X tan a - 1

81

82

Vl - 2e^ctntr- e-""
"^ ^2 ii? - 1

r ^^
100. f-^

J 2x2-2x + l -' 4-18x2

• dx
j^Qj^

r x^dx

(2 X + 5) Vx2 + 5x + 4 -^ Vxfi - a6
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104 f
"-^ 123. r^i+3^.

105. f
^^

124. r
^-^'-"'^^

.

•^ Va;"-^ + 2 X sin a + 1 "^ x Vx'-^ + afi

106
' ^*

•/3X2-6X+2
-

125. r:^^;^^
"^ X Vx — 1

108 '

'^^

109 '

"^^

dx

Vs x2 - 3 X - 3 126. /"(a-*- + x«) dx.

/(Zx
15 + 2x-x2' 127. J(e- + e-')3dx.

^ V3x2-2x + l'
128. j(„.^ + a--)2xc^x.

1^°- /.3731^.- 129..p+^xcZx.

111. r-=^^=- 130. r^^.
•^ V 2 x2 + 4 X - 5 "^ x2 Ve

3x3 + 2x.._/'3x*> + zx, r
112. — ax. 131. j a <=°** 2 X sin X CO.S X dx.

^ Vx* -a* ^

^^3 ri2x + 6)dx
^ ^32

p_ta^-Wx_

J 2 x'^ + 3 X + 1 ^ 1 + x2

114 r(12x + 2)dx
_ ^33 C^ + cxah + <^^dx.

J 9 x2 - G X - 3 -*

115 C (2^-^)^^ 134. r{a''^ + 6'''^)2dx.

•^ V2 + X + x2 _ .,

/^g sin a"

dx.

I
,

VI -X*
•^ Vx2 + 4 X - 1

CSC X (esc X log a + ctn x)
-

(J
ctn .T g CSC X

a^dx

117. f-A^
J 3x2-4x + 4

ior» r a '•ax

118. I
-^^

'
• ^ Va2-'+2a^ + sec2a

J X2 + 4 X + 1

r (l-2x)dx 138. f_^^^.

120. r4|^+J^. 139. J^,^.-
•^ Vl+2x-2x2

^

121. r ^^^ 140. r\^dx.
' J 4 x2 + 4 X sec a + tan2 ^^ gl _|. i

122. rJ^- + ')^-
. 141. r^!^

-^ Vl-2x-x2 J e'^ + 1

dx.

dx.
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142. f ;" . 160. f-^^

f
^-^ 161. f-^143 .

V(a2 — x^)*

x'' (7x

157

dx
158

(i x'' dx

(5 — 7 x3)3

x^dx

(1 + X^)3'144. r^;^^^«_^dx. 162./
J X

145. /-^IL=. 1«3-/^-
•^ V(a2 - X2)3 ^ ^ '

lAft r '^^ 164- f—^5^.
146. J--y===- ^^3 + 2x3

•^ X'^ V x^ — a2

x^dx

dx
r x«dx 165. f-

Ua'^-x^/ •^xV4x^-4x-l

148. /x^ Va^ + x-^dx.
166.

J
--^===^.

149. r-^^. 167. r -J"
J (X- - a-^)' "^ (X + 2)Vx2 + 8x + 13

150. r—^^i:^.- 168. f
/"

•^ X Va2 + x2 -' (X - 1) V2 x2 - 2 X - 1

^^^- /v¥^- 169. r
•^ Va2 + x2 J

dx

(X + 3)Vl4 + 2x-x2

152. f-—i^ ,-^ r dx
J Ve2«--62 l^O-

J X + 4x6

153. r^^^dx. 171 r^J^^^.
•^ Vx-1 "J (1 + 3x3)2

154. rx2V27 + 3dx. 172. f -.•

•^ -^ X2 (X + 4 X6)3

., _ _ r x-dx

J V^Tj' 174.
J

log ax dx.

axdx.j x{x + a)' dx. 175 C^m log

r dx

-^ W^^^ 176. /tan- 1
ax dx.

159. r_^!^^. 177 fl-Z^il^d^.
•^ Vx2 + a- J a;
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L86.
I
x^ sin ax dx.

L87. f{\ogax)"dx.

78. J log (X + Vx2 + a2) dx.

79.
I
X sin axdx.

80.
I
sec- 1 axdx.

81.
I
X sec- 1 axdx.

82.
I
X tan- lax dx.

83. Cx~e"^dx.

84. r(x + l)2e^dx.

85.
I
x^ cos axdx.

88. r(xlogax)2dx.

89.
I
xsin2 axdx.

90. Ce^^cos'^xdx.

91.
I

e'' sin 2 X sin x dx.

92 .

I
e^ ^ sin 3 X cos X dx.

93. I X sin- 1 axdx.



CHAPTEK III

DEFINITE INTEGRALS

21. Definition. We have said in § 3 that there are two impor-

tant problems in the use of infinitesimals, the one involving the

limit of a quotient, the other the limit of a sum. We have also

noted in § 4 that the derivative of a function is the limit of the

quotient of two infinitesimal increments, so that the limit of a quo-

tient is fundamental in the differential calculus and its apphcations.

Similarly, there exists a limit of a sum which has fundamental

connection with the subject of integration. This limit is called a

defiyiite integral and is defined as follows

:

If f{x) is a function of x which is continuous and one-valued

for all values of x between x = a and x = b inclusive, then the

definite integral of f(x)dx between a and b is defined as the limit,

as n increases indefinitely, of the following sum of n terms,

f{a)Ax +f{x;)^x +f{x,)Ax+- +f{.x^_,)Ax,

where Ax = -^^ and x^, x„, x^, • , x^_^ are values of x between
n

a and b such that

x^=a-\-Ax, x„=x^ + Ax, x^= x„_ + Ax, •••, b = x^_^ + Ax.

The sum in the above definition is expressed concisely by the

notation ,=n-i

1 =

where V (sigma), the Greek form of the letter S, stands for the

word " sum," and the whole expression indicates that the sum is

to be taken of all terms obtamed from f{x;)Ax by giving to i in

succession the values 0, 1, 2, 3, , n — l, where x^^ a.

39
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Also the definite integral is denoted by the symbol

/ f(x)dx,
U a

where | is a modified form of S. Hence the definition of the

definite integral may be expressed symbolically by the equation

J

The numbers a and b are called the lower and the U2:)per limit *

respectively of the definite integral.

Ex. The conception of mechanical work gives an illustration of a definite

integral. By definition, the work done in moving a body against a constant

force is equal to the force multiplied by the distance through which the body

is moved. Suppose now that a body is

^ A iVj iln Ms ih ^^s A ^ moved along OX (fig. 3) from A(x = a)

-p, o to B{x = b) against a force which is

not constant but a function of x and

expressed by f(x). Let the line AB be divided into n equal intervals, each

equal to Ax, by the points Mi, M^, M3, • •, M„-i. (In fig. 3, n = 7.)

Then the work done in moving the body from A to Mi would be f{a) Ax if

the force were constantly equal to f{a) throughout the interval AMi. Conse-

quently, if the interval is small, f{a) Ax is approximately equal to the work done

between A and Mi. Similarly, the work done between Mi and Mo is approxi-

mately equal to /(Xi) Ax, that between M2 and Ms approximately equal to

/(X2) Ax, and so on. Hence the work done between A and B is approximately

equal to
f(a) Ax + /(Xi) Ax + /(X2) Ax -I- • • • + /(x„_i) Ax.

The larger the value of n, the better is this approximation. Hence we have,

if W represents the work done between A and B,

W = LimV f{Xi) Ax = r /(x) dx.

1 =

The use of the word "integral" and of the symbol | suggests a

connection with the integrals of the previous chapter. This con-

nection will be shown in § 25 ; for the present, it is to be empha-

sized that the definition is independent of either differentiation or

integration as previously known.

* The student should notice that the word " limit " is here used in a sense quite dif-

ferent from that in which it is used when a variable is said to appi'oach a limit (I, §53).
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In distinction to the definite integral / f{x)dx, the integral

/'
Ja

f {x)dx is called the indefinite integral.

The definition assumes that the limit of '^/{x^^x always exists.

A rigorous proof of this will not he given here, but the student

will find it geometrically obvious from the graphical representation

of the next article.

22. Graphical representation. Let LK (fig. 4) be the gragh of

f{x), and let OA = a and OB = b.

For convenience, we assume in the first place that a<h and

that f(x) is positive for all values ol x between a and h. We find

Ax = and lay off the

equal lengths A3I^^ 31^31, =
M,M,= . . . = 3I„_^B^Ax.
(In fig. 4, n = 9.)

Let 03/j^
= x^, 031^ = ,r„,

• • •, OJ/„_j = x^^_^. Draw
the ordinates AD = f{(i),

M,r, = f{x^), 3l^F,=f{x^)^

•••,^„-i-Pn-i=/(^,.-i), and

BC. Draw also the lines

DR^, P^R„, P^R.-^, •, P,,_^R,^ parallel to OX. Then

1 Ah il/a Mi Mi Mi MtMt M^ B
Fig. 4

f(a)Ax = the area of the rectangle ADR^M^,

f{x^) Ax = the area of the rectangle 3I^P^RJ\T^,

f{x^ Ax = the area of the rectangle 3I.^P^R^3I^,

f{x^_^Ax — the area of the rectangle 3I^^_^P^^_^RJB.

The sum

f{a)Ax +f{x^)Ax +f{x.^Ax + • • • +f{x„_,)Ax

is then the sum of the areas of these rectangles, and equal to the

area of the polygon ADR^P^R^ • • R^_^I^_^R,^B. It is evident that

the limit of this sum as n is indefinitely increased is the area

bounded by AD, AB, BC, and the arc DC.
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Hence I f(x)dx = the Sivesi ABCD.
tJ a

It is evident that the result is not vitiated if AD or i>C is of

length zero.

The area ABCD is exactly the sum of the areas ADPiMi, MiPiPoM^,

M2P2P3M3, etc. But one such area, for example MiPiP^M^, differs from

that of the corresponding

rectangle M1P1R2M2 by

the area of the figure

P1R.2P2, which is less

than that of the rectangle

Ax Ay, where Ay = R0P2.

The area of P1R2P2 is an

infinitesimal of higher order

than M1P1R2M2, since

P1R2P2 Ax Ay _ Ay

M1P1R2M2 y Ax 2/

'

whence Lim
P1R2P2

-0.

Fig. 5

M1P1R2M2
Therefore (§ 3) the areas

of the triangular figures

such as P1R2P2 do not

affect the limit of the sum used in finding the area of the entire figure.

If f{x) is negative for all values of x between a and b{a<h),

the graphical representation is as in tig. 5. Here

/(a) A« = — the area of the rectangle AM^R^D,

f{x^^x = — t\\e area of the rectangle 3IJl^R^P^, etc.,

so that r f{x) dx = — the area ABCD.
U a

In case f{x) is sometimes positive and sometimes negative we

have a combination of the foregoing results, as follows

:

If a<h, the integral I f{x) dx rejJresents the algebraic sum of

the areas hoimded hy the curve y =f{x), the axis of x, and the

ordinates x = a and x = h, the areas above the axis of x being

jpositive and those below negative.
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If a>h, Ax is negative, since Ax
b — a

The only change

necessary in the above statement, however, is in tlie algebraic

signs, the areas above the axis of x being now negative and those

below positive.

Ex. The work done in moving a body against a force may be represented

by an area. For if tlie force is f{x) and W is tlie work in moving a body along

the axis of x from x = a to x — b, then (Ex., § 21)

W= C^f{x)dx.
J a

Consequently if the force is represented by the graph DEC (fig. 6), the eqiiation

of which is y =/(x), the area ABCED represents the work W.

This fact is taken advantage of in constructing an indicator diagram attached

to a steam engine. Here AB represents the distance traversed by the piston, and

the ordinate represents the

pressure. Then as the piston

travels from ^ to B and back

to A the curve BECFD is

automatically drawn. The

area ABCED represents the

work done by the steam on

the piston. The area ABCFD
represents the work done by

the piston on the steam. The

difference of these two areas,

which is the area of the closed

curve DECFD, represents the net work done by the steam in one stroke of the

piston. In practice this area can be measured by an instrument, called a plani-

meter, or the figure is divided into rectangles and the area computed approxi-

mately. The latter method illustrates the definition of the definite integral.

23. Generalization. In the definition of § 21,

x^— Xq= x„— x^=^ x^— x.-,= • • • = x^— a^„_i= Ax,

where x^= a and x^ = h. The sura

f{a)Ax+f{x;)Ax+f{x.;)Ax+ • +f{x„_;)Ax

may accordingly be written

1
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Tliis sum may be generalized in two ways

:

In the first place, it is a mere matter of convenience to take the

increments •x^^j^— x^ equal for all values of x^. In fact the n — 1

values Xj^, x^, x^, •, x^_^ may be taken at pleasure between the

values x — oL and a; = & without altering the limit approached by

the sum (1), provided all the differences x^^^— x^ are made to

approach zero as n increases without limit. This is geometrically

obvious from the graphical representation, for the bases AM^, M^M^,

M^M^, • • • of the rectangles of fig. 4 may be of unequal length.

Fig. 7

In the second place, the factor /(•?,) in each of the terms of

the sum (1) may be replaced by /(|,), where f • is any value of

X between x^ and x.^^. The effect on the graphical representa-

tion of fig. 4 is to alter the altitudes of the rectangles without

altering the limit of their sum, as exemplified in fig. 7. It may

be noted that the rectangles here differ from those of fig. 4

by infinitesimals of higher order. Hence the sum theorem of

§ 3 applies.

For a rigorous discussion of these points the student is referred

to advanced treatises.*

* See, for example, Goursat-Hedrick, Mathematical Analysis, Chap. IV.
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24. Properties of definite integrals. The following properties of

definite integrals are consequences of the definition

:

ef{j_)dx = c
j

f{j:)dx,
a U a

U a J a J a

fi^x)d.c = — / f{x)dx,
a Jb

f{x)dj'=
\

f{x)dx-\- { f{x)dx,
a U a nJ c

5. I f{x)dx = {!) — a)f{^), where a < f < h.

kJ a

The truth of formulas 1 and 2 follows at once from the defini-

tion, and that of formula 3 follows at once from § 22. We shall

show the truth of formulas 4 and 5 graphically. A fully rigorous

Fig. 8

proof could be based on the definition of § 2 1 without the use of

diagrams, but would follow the outlines of the following graphical

discussion.

To prove formula 4, consider fig. 8, where OA = a,OC= c, OB— h.

Then / f{x)dx = i\\Q area ACFE, j f{x)dx = t]\e area CBGF,

and / f {x) dx = WxQ, area ABGE. The truth of formula 4 is aj)-

U a

parent for any order of the points A, C, B, reference being had,

if necessary, to formula 3.
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To prove formula 5, consider fig. 9, where the area ABCD repre-

sents the value of I f{x)dx, and let m and 31 respectively be the

smallest and the largest value assumed hyf{x) in the interval AB.

Construct the rectangle ABKH with the base AB and the altitude

AH= M. Its area is AB AR= {b — a) M. Construct also the rec-

tangle ABLN with the base AB and the altitude AN= m. Its

area is AB • AN= {b — a) m.

Y

Now it is evident that the area ABCD is greater than the area

ABLJVsind less than the area ABKH. That is,

(b - a) m < C f{x) dx <{b- a)M*
%J a

Consequently / /(^') dx = {b — a) fi,

where \i is some quantity greater than m and less than M, and is

represented on fig. 9 by AS. But since /(;«) is a continuous function,

there is at least one value ^ between a and b such that /(|) = /x,

and therefore
j,

^J{x)dx = {b-a)f[^).

Graphically, this says that the area ABCD is equal to a rectangle

ABTS whose base is AB and whose altitude AS lies between

AN and AH.

* A slight modification is here necessary if /(x) = k, & constant. Then M= m = k

anfi
I
f{z)dx={b — a)k.

'J a
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25. Evaluation of the definite integral by integration. When
f{x) is a known function and a and h are constants, the value of

the integral is fully determined. Hence if we replace the upper

limit 6 by a variable x, the definite integral is a function of x.

Graphically (fig. 10), I /(«)(fa;= area AMPC, where OA = a, a

constant, and 0M= x, a variable. Let us place

4> (•'') =
f

/(''') (^"^ = tlie area AMFC.

Now we have shown in I, § 109, 6, that

dx
(j)(x)=y=f{x).

A new proof of this can be given

by use of the properties of § 24, and

this proof has the advantage of being

really independent of the graphical

representation, although for conven-

ience we shall refer to the figure.

Take MJSr= h. Then

Xx+ h

f{x)dx = the area AA-QC,

Xx+ h

f{x)dx

= the area 3INQP, (by 3 and 4, § 24)

= /'/(!), (by 5, §24)

where x < ^ < x + h. Therefore

4>{x + h)-4>{x)
^j-^^y

Taking now the limit as 7i approaches zero, and remembering that

Lim— — = —
(f)

(x) and Lim f = x, we have
/.= o h dx h=o

d_

dx
cf>{x)=f{x).
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Let now F(x) be any known function whose derivative is /(x).

Then i''('^') differs from (f){x) by a constant (§ 30), that is,

f f{x)dx=F{x)-]-C.

f{x) dx = 0.

a

Then = F{a) + C, whence C = — F{a).

Therefore \ f{^() d^ = ^('«) - ^(«),

whence
j

f(x) dx = F{h) - F{a).

This result gives the following rule for evaluating a definite

integral

:

To find the value of i f{x)dx, evaluate
j f(x)dx, substitute

X = h and x — a successively, and subtract the latter result from the

former.

It is to be noticed that in evaluating
|
f{x)dx the constant of

integration is to be omitted, since —F(a) is that constant. How-
ever, if the constant is added, it disappears in the subtraction, since

[F(b) + C]-[F{a) + C]=F{h)-F(a).

In practice it is convenient to express F(li)—F{a) by the sym-

bol [F{x)]l, so that

'^''f{^dx = [F(x)tf%J a

20.Ex.1. rW=P_T=y-i
Ji L4J1 4 4

E.x. 2. ( ^ sin zdx = [— cosx]| = — cos—h cosO = 1.
Jo "2

Ex. 3. f —^"^^
dx = [2 lo2;{a;2 -|. a; + 2)]J = 2 log4 - 2 log2 = log 4.

Jo x^ + X + 2

Ex.4, f '~^^= [tan-ixl^= tan-i\^-tan-i(-l).
J-i l + x2 ^

^-^ ^
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There is here a certain ambiguity, since tan-i V^ and tan-i(- 1) have each

an infinite number of values. If, however, we remember that the graph of

tan-^x is composed of an infinite number of distinct parts, or branches, the

ambiguity is removed by taking the values of tan-i Vs and tan-i(— 1) from

J'*

^ dx = tan-ift — tan-la
a 1 + X2

and select any value of tan- 1 a, then if b = a, tan- 1 b must be taken equal to

tan- la, since the value of the integral is then zero. As 6 varies from equality

with a to its final value, tan-i6 will vary from tan-^a to the nearest value of

tan- 16.

The simplest way to choose the proper values of tan-i6 and tan-i a is to take

them both between and — . Then we have
2 2

XVs dx _ TT / TtX _ 7 TT

-1 r+x^~ 3 ~\ 4/ T2"

a a

Ex.5, f^ — =rsin-i-l^=sin-ii -sin-iO.
Jo •v/a2 - x2 L "Jo

The ambiguity in the values of sin- 11 and sin-iQ is removed by noticing

X
that sin-i- must lie in the fourth or the first quadrant, and that the two

a
values must be so chosen that one comes out of the other by continuous

change. The simplest way to accomplish this is to take both sin- 1 ^ and

sin-iQ between
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But F{h) - F{a) = f f{x) dx

and ^(g_^(g= r>(/),

f{x)dx= j (f)(t)dt.

Ex. 1. Find f Va^ - x^ dx.
Jo

Place X — a sin 4>. Then dx = a cos d0, and when x varies from to a, <^

varies from to — • Hence

I
Va^ - x-2 dx= \ a2 cos^-<pd<p = —^ + = -r wa^.

Jo Jo L 2 4 Jo 4

In making the substitution care should be taken that to each

value of X between a and b corresponds one and only one value of t

between t^ and t^, and conversely. Failure to do this may lead to

error.
TT

Ex. 2. Consider |
^ cos d(p, which by direct integration is equal to 2.

"2
T dx

Let us place cos<^ = x, whence (p — cos- ix and d^ =
'

where the sign

VI - x2

depends upon the quadrant in which </> is found. We cannot, therefore, make
TT

this substitution in | ^cos0d0, since <^ lies in two different quadrants; but

we may write 2

~ -

/^ cos 4>d(p = ( cos (pd(f) -\-
f

^ cos <^ cZ0,
_ir J_E Jo

2 2

and in the first of the integrals on the right-hand side of this equation place

= cos-ix, d0 = — . and in the .second 0= cos-^x, d0 = • Then
Vl - x2 Vl-x2

/2 ,
/•ixdx r^ xdx ^ r^ xdx „

\os<pd<p= ^
/ . =2/ = 2.

TT Jo Vl _ 7-2 ^1 VI — t2 «^0Vl- X2 ^1 Vl- X2 -'O VT

Ex. 3. Consider / dx and place x^ = ^.

Then, when x = — 1, ^ = 1, and when x = 1, f = 1; and the attempt to substi-

tute without care would lead to error. But x = — t^ and dx = — ^V^dt when

X is negative ; and x — P and dx = \t~"^dt when x is positive. Hence

C^ dx= f'^dx+ f dx = - f lt-hli+ f U~''dt= f r*d< = 2.
J_l J -I J I) Ji ' Jo Jo
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27. Integration by parts. If it is desired to integrate by parts,

and a and h are values of the independent variable, then

it dv = [uv] — j V du.
a tJ a

To prove this, note that it follows at once from the equation

d (uv) =
I

(ic dv + V du) =
I

It dv + j v du.
%J a U a \J a

Ex. 1. Find f x&^dz.
Jo

Take x — u, e^dx = dv; then

f xe^dx = [xe^]^— f e-^dx = e - [e-^]^= 1.

Jo Jo ^

IT

Ex. 2. Discuss ( ^siiV'xdx.
Jo

Take sin«-ix = u, sinxdx = dv; then

77 JL —

r ^sin»xdx = [— cosxsin«-ix]'"+ (n — 1) f
" sin«-2x cos^xdx

Jo „
° "^t)

= (n — 1) f

" (sin''-2x — sin«x)dx.
Jo

By transposing we have

n f'^ sin" X dx = (n - 1) f
^ sin" - 2x dx,

Jo Jo

whence f " sin"x dx = ^ f ^ sin" - ^x dx. (1)
Jo ?i Jo

If, in (1), we place n = 2, we have

- 1-1
I

^ sin'^x dx = -
I

'^ dx = - •
-

•

Jo 2 Jo 2 2

If, in (1), we place n = 3, we have

rl 2 rl . , 2
I sin^x dx = - I sni x dx = - •

Jo 3Jo 3

If, in (1), we place n = 4, we have

r^ 3 /- 1 . „ , 3 . 1 TT

I
sin* xdx — -

\ sin2 x dx = -—- • - •

Jo 4Jo 4-2 2
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If, in (1), we place n = 5, we have

J"^
siii^ X dx = -

I

^ sin^ x dx = ^
5«/o 5-3

Continuing in this way, we find

1.3- 5- ••(2 A; -1) TT
sin^^xdx

I
"^sin-^+ixdx =

Jo

2-4.0--.2A:

2 • 4 ... 2 A:

3 . 5 • 7 • • . (2 t + 1)

28. Infinite limits. It is possible to have tlie upper limit cc,

where by definition

Xf(x) dx = Lim I /(.k) fZ.«.

The integral, then, is represented by the area l)ounded by the

curve y=f{x), the axis of x, and the ordinate x = a, the figure

being unbounded at the right hand. There is no certainty that

such an area is either finite or detenumate. The tests by which it

may be sometimes determined whether
|
f{x)dx has a meaning

%J a

will not be given. In case, however, it is possible to find the in-

definite integral F{x) = I f{x)dx, the definite integral can be found

^ by the formula

£f{x)dx=F{y,)-F{a),

wliere F{rc)=lAmF{h).

Ex.1. r'^^-^ = [2^xX = o

•^' Vx

Ex.2. r^t=r-T='-

(fig- 11)

(fig. 12)

Fig. 13

Ex.3.
I

sinxdx = [— cosxJo
Jo

= indeterminate, (fig. 13)

Similarly, the lower limit, or both limits, of the definite integral

may be infinite.
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29. • Infinite integrand. According to the definition of § 21 it is

unallowable that/ (a.^) in
|
f(x)dx should become infinite between

x = a and x = h. It is, however, possible to admit the case ui which

/{x) becomes infinite when x = b hy means of the definition

f(x)dx = JAml f(x)dx,

and to compute the integial by the formula

J.
f{x)dx = F(h)-F{a),

where F(h) means Lini i^(& — /;).

A =

The integral has not, however, necessarily a finite or determinate

value. Graphically, the integral is represented by the area between

the curve 3/ =f{x), the axis of x,

the ordinate x = a, and the asymp-

tote x = h.

Ex.2.
I

= sin-i- = -
-'o Vaa _ x^ L «Jo 2

(tig. 15)

Similarly, f{x) may become in-

finite at the lower limit or at both

limits. If it becomes infinite for any value c between the limits,

the integral should be separated into two inte-

grals having c for the upper and the lower limit

respectively. Failure to do this may lead to error.

Fig. 15

Ex. 3. Consider
r-^-^dx

Since — becomes infinite when x = (fig. 16), we sepa-

x2

rate the integral into two, tlius

:

-^ dx irfxr+^dx _ r" dx r^ax

J_i x'^ J_i x^ Jo x'^
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Had we carelessly applied the incorrect formula

J-i x^ L xj-i

we should have been led to the absurd result — 2.

30. The mean value of a function. We have seen in § 24 that

/(i)=^
J^'a-^-)^-^,

(1)

where ^ lies between a and h. The value

is called the mean value of /(«) in the interval from a to h. This is

in fact an extension of the ordinary meaning of the average, or mean,

value of n measurements. For let Vo, y^, y^,- •, y„-x, correspond

to n values of x, which divide the interval from a to 6 into n ec[ual

parts, each equal to ^x. Then the average of these n values of y is

y^+ yx+ y-2+ • • + Vn-i

This fraction is equal to

(3/0+3/1+3/2+ • • • + 2/,.-i)
Aa; ^ yAx+ y^^x-\- y^^x+ • • • +y,,_^^x

nAx b — a

As n is indefinitely increased, this expression approaches as a

1 r'' 1 r''
limit ( y dx = / fix) dx. Hence the mean value of a

function may be considered as the average of an " infinite number "

of values of the function, taken at equal distances between a and h.

Ex. 1. Find the mean velocity of a body falling from rest during the time ti.

The velocity is r/i, where g is the acceleration due to gravity. Hence the mean

1 r'l
velocity is ( (jtdt = \gti. This is half the final velocity.

^1 — J

Ex. 2. In using the indicator diagram (§ 22) engineers use the " mean effect-

ive pressure," which is defined as the constant pressure which will do the same

amount of work per stroke as is done by the varying pressure shown by the

indicator diagram. It is found by dividing the area of the diagram by 6 — a,

and is accordingly an example of the mean value of a function.
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Formula (1) may be written in another form, not involving the

integral sign. Let us Y>^SiCe I f (x) dx = F(x) ; then f(x) = F'{x),

and (1) becomes ^

F'{^) = \F(h)-F{a)l

or

(2)

(3)

1) — a

F{h)-F{a) = {b-a)F'{^).

Formula (2) lias a simple graphical meaning. For let LK
(fig. 17) be the graph of F{x) and let OA=a and OB=h. Then
b-a=AB, F{b)-F(a) = BE- AD = CF, and

F(h)-F(a) CF , , . , , ,-~ ^ = TZ7, = tlie slope of the chord DF.
b — a DC

If now I is any value of x, F'{^) is the slope of the tangent at

the corresponduig point of LK. Hence (2) asserts that there is

some point between A and B for which the tangent is parallel

to the chord DE. This is

evidently true if F{x) and

F'{x) are continuous.

Formula (3) may be used to

prove the proposition, which

we have previously used with-

out proof, namely : If the

derivative of a function is

always zero, the function is

a constant. For let F'(x) be

always zero and let a and b be any two values of x. Then, by (3),

F{b) — F(a)=0. That is, any two values of the fimction are

equal ; in other words, the function is a constant.

From this it follows that two functions which have the same

derivative differ by a co7ista7it. For if F'{x) — <i>' (x), then

j-[F(x)-^{x)] = 0; whence F(x) = ^(x)+C.

31. Taylor's and Maclaurin's series. Formula (3), § 30, is a

special case of a more general relation, which we will now proceed

to obtain. Let us take the equation

X f"{x)dx=f'{x)-f'{a),
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multiply both sides by dx, and integrate between a and x. We
nave px r>x px px

\ \ f{x)d3(?=
I
f'(x)dx-

j
f'{a)dx

Un %Ja %J a U a

=/C^0-/(«)-(^-«)/'(^O-

Therefore /(.«) = /(a) + ( jj
- a) f{a) + C Cf'^x) dot?.

But if m is the smallest and 31 the largest value of f"{x) between

a and x, then (§ 24), when x>a,

m {x — a) < j f"{x) dx < M{x — a),

*J a

mix—af rr M, ..1 M(x — aY
whence -^—-< / / f'!{x)dx'<—^—^•

f"{x) dx^ = ^—^^^ '-
, where m < fji < M.

If f"(x) is a contmuous function, there is at least one value of x,

say f^, between a and x, for which /"(^J = /*(!,§ 56). Therefore

we have, finally,

/(..) =/(«) + {x- a)/' (a) + ^^^V"(^i)- (1)

Again, let us take

£f"'{.>^dx=f"{x)-f"{a). -

Then f f f"'{;^:}dx^ = rf"{x)dx- Cy"{a)dx
Ua Ua %J a U a

and

f rfy"'{x)dx'= rf{x)dx- ff'{a)dx- f\x-a)f"{a)dx

whence
=/(^) -/(«) - (.^^ - «)/'(«)- ^^V^/"(«)'

/(r.) =f{a) + (X - «)/'(«) + ^i^|2^/"(«) + ^^^-[3^/'"(f.)* (2)

where a < |.^ < .x.

~

* The symbol [2 means 1-2, |^ means 1-2-3, and, in general, |_n, read factorial «,

means the product of tlie n integers from 1 to n inclusive.
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f''"'^^\x)dx, we obtain

/(,c) =/(a) + (^ - «)/'(«) + ^:^^V"(«) + ^^^^/"'(«) + • • •

where i?,. = -^^ ^-—/^»+i>
(|), where a < f < .r, the only restrictionsn+1

being tliat the 7^ + 1 derivatives of f{x) exist and are continuous.

The vakie of E^^ in (3) is not known exactly, since | is unknown,

but it usually happens that, if a; — a is a sufficiently small quantity,

Lim^„= 0. Then the value oif{x) may be expressed approximately

by the first w + 1 terms of (3), omitting 7?,,, and this approximation

approaches f{x) as a limit as n is indefinitely increased. In this

case we say that f{x) is expanded into the infinite series

fix) =f{a) + {X - a)/' (a) + ^^^=^f"{a)

+ ^^9^V»+--- (4)

For larger values oi x — a, however, it may happen that the

value of E^ increases without limit as 7i mcreases. Hence the

omission of E„ in (3) leaves n + 1 terms, the sum of whicli

differs more and more from f(x) the more terms are taken.

In such a case the series (4) cannot be taken to represent the

function.

The determination of the values oi x — a for which (4) is valid

is, in general, a matter involving a knowledge of mathematics which

lies outside the limits of this course. In the illustrative examples

and in the problems for the student we shall simj)ly state the facts

in each case without proof.

Formula (4) is known as Taylor's series. Here a is a known
value of X for which f(x) and its derivatives are known. The series

then enables us to compute the value of f(x) for values of x not

too remote from a.
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Another convenient form of (4) is obtained by placing x — a = h,

whence x = a + h. We have, then,

f{a + li) =/(«) + hf'{a) + ^f"{a) + |V'"(«) + • • • • (5)

Here the remainder is usually expressed as

B,^~—f"+\a + 6h), where < ^ < 1.

>

ii + r

A special form of (4) arises when a = 0. We have, then,

f(x) =/(0) + ./'(O) + ^/"(O) + |/'"(0) + . . .

.

(6)

This is known as Maclaurin's series, and the function is said to

be expanded into a power series in x.

Ex. 1. e^.

By Maclaurin's series (6), we find, since f{x) = e^, f'(x) — e^, f"{x) = e^, etc.,

and/(0) = l,/'{0) = l,/"(0) = 1, etc.,

X X2 X^ X*

This expansion is valid foi' all values of x. If we place x = ^, we have

e' = 1 + ^ + -jJj + y^^ + Y5V4 ~ 1-3956, correct to four decimal places. If x

has a larger value, more terms of the series must be taken in the computation,

so that the .series, while valid, is inconvenient for large values of x.

Ex. 2. sinx.

By Maclaurin's series,

x^ x^ x''

""" = "-^ + [5-[7 + ---'

which is valid for all values of x.

To find sin 15°, we first change 15° to circular mea.sure, which is -fVo ^
= -jJ^ TT = .2618. Then the first two terms"of the series give sin 15° = .2588, cor-

rect to four decimal places.

By Taylor's .series (5), we have

sin {a + h) = sin a + h cos a — — sin a — .— cos « + •••.

I I

Ex. 3. cosx.

By Maclaurin's series,

x2 X* x^
cos x = I —

,
h

,

, h • • •

.

^ [4 [6
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Ex. 4. (a + x)".

By Maclaurin's series,

[2 [3

This is the binomial theorem. If n is a positive integer, the expansion is a

polynoiuial of n + 1 terms, since /(''+i)(x) and all higher derivatives are equal

to 0. But if n is a negative integer or a fraction, the expansion is an infinite

series which is valid when x is numerically less than a.

Ex. 5. logx.

The function log x cannot be expanded by Maclaurin's series, since its

derivatives are infinite when x = 0. We may use Taylor's series (4),

placing a = 1. We have, then,

1 / ix (3^-1)- (a; -1)3 (x-1)*
log X = (x - 1) - ^ + '- - ^ H .

Or we may expand log(l + x) by Maclaurin's series with the result

X^ X"^ x^
log{l + x) = x- - + --- + ....

2 3 4

This expansion is valid when x is numerically less than 1.

32. Operations with power series. When a function is expressed

as a power series, it may be integrated or differentiated by integrat-

ing or differentiating the series term by term. The new series will

be valid for the same values of the variable for which the original

series is vahd. If the method is applied to a definite integral, the

limits must be values for which the series is valid.

Similarly, if two functions are each expressed by a power series,

their sum, difference, product, or quotient is the sum, the differ-

ence, the product, or the quotient of the series.

Ex. 1. Required to expand sin-ix.

We have

sin-ix=
I

—
I (1 — x2)~'dx

-'0 Vl -x2 '^o

= rYl + \x^ + \^x^ + \^^' + • • ^d^ (by Ex. 4, § 31)
Jo\ 2 2-4 2-4-6 /

1 x3 1-3 x5 1.3-5 x''

= x -\ h 1 .

2 3 2-4 5 2-4-6 7
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Ex. 2. To find f e-^dx.
Jo

The indefinite integral cannot be found directly. We may expand e-^ by

Ex. 1, § 31. Then

/>a: „ /'^/ X'^ .T* X^ \ , X^ X^ X''

Ex. 3. To expand

I

(1 + X)3

By division, = \ — x + x"^ — x^ + x!^ — x^ + ---.

By successive differentiation,

- (l + x)-2 = - 1 + 2x -3a;2 + 4x3-5x* + •

2 (1 + x)- 3 = 2 - 6 X + 12 x2 - 20 x3 + • • •

.

Therefore (1 + x)-3 = 1 - 3x + Gx^ - lOx^ + • • ..

l + x
Ex. 4. To expand log

l + x
log = I02; (l + x) — log (1 — x)

1 — x
X^ X* X5 \ / X2 X3 X*/ X2= lx — —

^ , r^ 1 sm-'x
Ex. 5. To expand •

Vl-x2
. , x3 3x5 5xT

ByEx.l, sm-ix^x + - +— +— + ...;

1 x2 Sx* 5x8
by Ex. 4, §31, (i_x2)-^ = l + - +— +— + ....

Hence, by multiplication,

sin-ix _ 2x3 8x5 IGxJ_== _ X + — +— + -^

33. By means of Taylor's theorem we can complete the rule

given in I, § 62, for the maximum and the minimum values of a

function of one variable. Let a be a value of x for which the first n

derivatives of f{x) are zero ; i.e. let f'{a) = 0, f"{a) = 0, f"'{a) = 0,

. . ., f"\a) = 0, but /"+"(«):#. 0. Then, by Taylor's theorem (5),

f(a + h)-f(a)=
i ;^^^'

' +^:'n+r
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If h is sufficiently small, the term —r^ ^-J- will l)e larf^er
\n + l

"^

numerically than R^j^^, since the latter contains 7;"+^ as a factor.

Hence the sign of f{a + h)—f{a) depends upon the sign of

If n is even, ri + 1 is odd, and the sign of IV' ^^ changes with the

sign of h. Hence the sign of f{a + h) —f(a) changes with that

of h. Therefore /{a) is neither a maximum nor a minimum value

oif(x).

If n is odd, w + 1 is even and /t"+^ is always positive. Hence the

sign of /(a ±h)—f(a) is the same as the sign of /^"+^^(a). There-

fore ii /'"+^\a)>0, f{a) is a minimum value of f{x); and if

f'-"+^\a)<0,/\a) is a maximum value of/(«).

PROBLEMS

Find the values of the following definite integrals

Jo
+ 3 X + 3) dx.

2
pi dx

• Js x2 - 4
' .

3.
(

{a- — x^'^dx.
Jo

4. ( dx.
Jo 2a — X

X dx.

y/x^+1,

6.
I

xe~-''-dx.
Jo

7. I ^tanxdx.
Jo

8. H-^.
Jo cosx

TT

9. r^(l + sin6')2cos(?d6i.
Jtt

0. f-^^^^dx.
Ji e" — 1

fJo1. /
'-^— dx.
cos^e-^

/:
e^dx

vr

„ r'" ax

J_oo5 + 2x + x^

TT

'sin^ede.

>. / cos" - dB.
Jo 4

18
Jo I

dx

(a2 + x2)?

19. r" Va2-x2dx.
«/ — a

20. r^Vx2-a2dx.
•/a

2 1 .

I
X sin X dx.

«/o

22. r 'x2 log X dx.

23. ( 'sin-ixdx.

6. r®sin2 0cos3rf,d0. 24. | x2sin-ixdx.
Jo "^o

/»" dx

Jo (x2 + a? L25. / x2e-^dx.



30.

31.

32.
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26. Prove f
^ sin^ dd - ^ f^ sin* 6 dd.

Jo Jo

27. Prove f ^ x" sin x dx = n f^ x" -i cos x cZx, if n > 1.

Jo Jo

28 Show that f" — has a definite value when, and only when, fc > 1.

J I X*

29 Show that r — has a definite value when, and only when, k<\.
J a (6 - X)*

/> a

). If/(-x) = -/(x), show graphically that I /(x)dx = 0.

L. If /(- x) =/(x), show graphically that
J

/(x)dx = 2j /(x)dx.

If /(a - x) =/(x), show graphically that j f(x)dx = '^

j f{x)dx.

33. Show graphically that f
"/{sin x)dx = k f /(sinx)dx.

34. If a<b, and /i(x), /2(x), /3(x) are three function.s such that, for all

values of x between a and b inclusive, /i{x) </2(x) <fz(:x), prove

f /i (X) dx < f fi (x) dx< f fs (X) dx.
Ja ^a «^a

35. Find the mean value of the lengths of the perpendicular.s from a diameter

of a semicircle to the circumference.

36. Find the mean value of the ordinates of the curve y = sin x between

X = and x = tt.

37. A particle describes simple harmonic motion defined by the formula

s-a sin kt. Show that the mean kinetic energy during a complete vibration is

half the maximum kinetic energy.

Obtain the following expansions. (The values of x for which the expansion

is valid are given in each case.)

, (x log a)2 (x log a)3 .

40. a^ = l + xloga + ^ " + ^ ,^ ' - + •. (-oo<x<co)
[2 [S

41. tanx = x + - +— +— + ••. (-2<"<2)

42. tan-ix = X - ^ x3 + 1 x5 - 1. x^ + . • •

.

(- 1< x < 1)

/ ^ 1 «' 1-3 x5 1.3-5 x\ i^^^i
43. log(x + VTT^=x-^.- +— .--^-^g.-^---. -l<x<l
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44. sinh x = x + f- + ^ + r~ + ••. (-Qo<x<Qc)
[2 i2 \1

45. cosh x = l + f- + % + f^ + •. (-QO<X<00)
|_2 [4 \U

46. Compute the value of tanh ^ to four decimal places.

47. Given log 2 = 0.693, log 3 = 1.099, what error would be made in assuming

log 21 = log2 + 1 (1.099 - 0.693)?

48. A.ssuming .sin 60° = i V3 = .8660, cos 60° = ^, find sin 61° to four decimal

places.

Verify the following expansions:

1-1 +
12 22 32 42Jo X

50
ioT3^'" =

-(r2+^^-^32 + 4^2+---)-

51. r^^dx='-^-+-^ ^+
Jol + x'' a a + b a + 2b a + 36

COS X^dX = X — —^ + ^777 — 7^;7;; +
X" X^ X^

6[2
"^

9[i
~

13"[6



CHAPTER IV

APPLICATIONS TO GEOMETRY

34. Element of a definite integral. In this and the subsequent

chapter we shall give certain practical apphcations of the definite

integral. Here we return in every case to the summation idea of

§ 21. The general method of handling one of the various problems

proposed is to analyze it into the limit of the sum of an infinite

number of infinitesimals of the form f{x)dx. The expression

f{x)dx, as well as the concrete object it represents, is called the

element of the sum.

35. Area of a plane curve in Cartesian coordinates. It has

already been shown (§ 22) that the area bounded by the axis of x,

the straight lines x = a and a; = 6 (a<h), and a portion of the

curve y =f{x) which lies above the axis of x is given by the defi-

nite integral

y dx. (1)

It has also been noted that either of the bounding lines x = a or

x = b may be replaced by a point in which the curve cuts OX.

Here the element of integration y dx represents the area of a rec-

tangle with the base dx and the altitude y.

Similarly, the area bounded by the axis of y, the straight lines

y = c and y = d (c<d), and a portion of the curve x =/{y) lying

to the right of the axis of y is given by the integral

I X dy, (2)

where the element xdy represents a rectangle with base x and

altitude dy.

Areas bounded in other ways than these are frequently found

by exj)ressing the required area as the sum or the difference of

areas of the above type.

64
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Ex. 1. Find the area of the ellipse h —
a2 62

1.

It is evident from the symmetiy of the curve (fig. 18) that one fourth of the

required area is bounded by the axis of y, the axis of x, and the curve. Hence,

if IT is the total area of the ellipse,

= 4: ( ydx = i
I

~ Va2 — x^ dx
Jo J a

=— X V a^— x-^ + a^ sin- 1 - = Trab.
a L' ajo

Ex. 2. Find the area bounded by the

axis of X, the parabola 2/^ = 4 px, and the

straight line 2/ + 2x-4p = (fig. 19).

The straight line and the parabola in-

tersect at the point C{p, 2p), and the Yig. 18

straight line intersects OX at -B(2p, 0).

The figure shows that the required area is the sum of two areas OCD and

CBD. Hence, if K is the required area,

F

K= f Vipxdx f f" (4p-2x)dx
Jo J p

= [4pM]J+[4pX-X--2]2?^=5-p2.

Fig. 19

Ex. 3. Find the area inclo.sed by the curve (y — x — 3)'- = 4 — x^.

Solving the equation for y, we have

y = X + S ± V4 — X-,

showing that the curve (fig. 20) lies between the straight lines x = — 2 and x = 2.

It is clear from the figure that the area ACEBB =
j

y\dx and the area

: f'yodx, where yi = x + 3 + V4 - x^ and j/2 = x + 3 - V4 - x^.ACFDB
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Therefore, if K is tlie required area CEBFC,

K= ( pidx — ( y^dx =
I {yi — Vifdz = 2 ( V4 — x'^ dz

«/ —

2

v — 2 «'—

2

•^—

2

= X V4 — x2 + 4 sin-1

= 4 7r.

lu the above examples we have replaced y in / y dx hy its

value /(•<;) taken from the equation of the curve. More generally,

if the equation of the curve is in the parametric form, we replace

both X and y by their values in terms of the independent parameter.

This is a substitution of a new variable, as explained in § 26, and

the limits must be correspondingly changed.

Ex. 4r. Let the equations of tlie ellipse be

x = a cos </), y = h sin ^.

Then the area K of Ex. 1 may be computed as follows :

K = 4
(

ydx — — A\ ah sin^ (pdcp = iab I
" sin^ (f>d<p = irah.

Jo «/£ i/O

Similarly, if the equation of the curve is, in polar coordinates,

T =f(0) and the area sought is one of the above forms, we may place

X = r cos 6 =f{0) cos 6,

y = r sin 6 =f{0) sin 6,

and obtam thus a para-

metric representation of

the curve.

In case the axes of

reference are oblique, the

method of finding the

area is easily modified,

as follows

:

Let the axes OX and OY (fig. 21) intersect at the angle 6), and

let us find the area bounded by the curve y =f(x), the axis of x,

and the ordinates x = a and x = h. The area is evidently the limit

of the sum of the areas of the parallelograms whose sides are

Fig. 21
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parallel to OX and OY. The area of one such parallelogram is

y b^x sin to. Hence the required area is

sin ft)Jy dx.
a

(3)

36. Area of a plane curve in polar coordinates. Let (fig. 22) be

the pole, 031 the initial line of a system of polar coordinates (r, 6),

OA and OB two fixed radii vectors for which 6 = a and 6 = ^
respectively, and AB any curve for which the equation is r =/{&).

Required the area AOB.

The required area may be divided into

71 smaller areas by dividing the angle

AOB =^— a into w equal parts, each of

8—

a

which equals = A^, and drawing the

Fig. 22

lines Oi^, OP^, OB,,---, 0P„_^, where

A0P, = P,0B,=I10B, = - =i:,_,0B

= M. (In the figure n = S.) The

required area is the sum of the

areas of these elementary areas for

all values of n. The areas of these
^

small figures, however, are no easier

to find exactly than the given area, but we may find them approxi-

mately by describing from as a center the circular arcs AE^^,

P,B„P,R„---,P^_,E,^. Let

OA = r„ OP,^r„ OP, = t^, ---, 01^,_, = r„_,.

Then, by geometry,

the area of the sector A OR^ = \ r^ Ad,

the area of the sector P^OB,^ = ^ r^ Ad,

the area of the sector P„_^OB,^ = \ rl_^Ae.

The sum of these areas, namely

I = n — 1

1 =

is an approximation to the required area, and the limit of this sum

as n is indefinitely increased is the required area.
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To show tins we need to show that the area of each of the cir-

cular sectors (e.g. I^OIi^) differs fi-om the corresponding elementary

area {P^OP^ by an infinitesimal of higher order than either. For

that purpose draw from P^ an arc of a circle with center inter-

secting OP^ in S. Then

area P^OR^ < area P^OP^< area SOP^,

area POP, area SOP
or 1< ?

—

- < .

area P^ OR^ area P/JR^

But area P^OR^=l r|A(9 and area SOP^= \ r^Ad = ^ {r^+ ArfAd.

Therefore
area^OT; ^ (r. + Arf ^ / ^ArV
ure&J^OR^ r,' \ rj

Now as 11 increases w^ithout limit, A6 and consequently Ar

1 T . T-T -r •
area SOP

, ,

approach zero as a limit. Hence Lim —~= 1, and there-

area ^OP "=" areai^Cii:,

fore Lim -—— = 1.

„=a> area J^OR^

Hence the area J^OR^ differs from the area I^OP^ by an infini-

tesimal of higher order than either {§ 2), and therefore the limit

of the sum of such areas as PiOR-,^^ equals the limit of the sum of

such areas as I^OI^^^, as n is increased indefinitely (§ 3). But the

latter limit is the area AOB, since

^^ Oif^j = the area AOB
1 =

for all values of n. Hence, finally,

the area AOB = Lim \2^r^Ae = 1
j r~dd = l / [f{d)Yde.

The student should compare this discussion with that of I, § 189.

The a])ove result is unchanged if the point A coincides with 0,

l)ut in tliat case OA must be tangent to the curve. So also B may
coincide with 0.
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Ex. Find the area of one loop of the curve r = a sin 3 d (I, § 177).

The required area K is given by the equation

ir

2 Jo

To integrate, place ^d — <t>;
then

a Jo 12

37. Volume of a solid of revolution. A solid of revolution is

a solid generated hy tlic revolution of a jilcine figure aloid an axis

in its plane. The simplest case is that in which the plane figure is

bounded by the axis of revolution, two straight lines at right angles

to the axis, and a curve which does not cut the axis. Such a solid

is bounded by two parallel plane bases which are circles and by

a surface of revolution generated by the revolving curve. Each

point of this curve generates a circle whose center is in the axis

of revolution and whose plane is parallel to the bases and perpen-

dicular to the axis. Consequently, if planes are passed perpendicular

to the axis, they will divide the solid into smaller solids with par-

allel circular bases. We shall proceed to find an approximate

expression for the volume of one of these smaller solids.

Let KL (fig. 23) be the revolving curve, the equation of which

is X —f{y), OY the axis of revolution, CK the line y = c, and DL
the line y = d{c < d). Eequired the volume generated by the revo-

lution of the figure CKLD. Divide the Ime CD into n equal

d — c
parts, each of which equals = Ay, by the points N^, N^,

n

N^,.- •,^„-i where OJY^= y„ ON.^=y,, ON^=y„ •,O.Y„_, = y„_,.

Pass planes through the points N^, N„, N.^, -, iV"„_i, perpen-

dicular to OY. They will intersect the surface of revolution in

circles with the radii x^, x„, x^, • • • , x^^_^, where x^ = ^i^, ^2 = -^2^'

x^= N^I^, • • •, a.-„_i= iV^„_i^_i. The areas of these sections, begin-

ning with the base of the solid, are therefore ttx^, Traf , 7ra:|, • • •,

"^^l-v where Xq= CK.

The solid is now cut into n slices of altitude Ay. We may consider

the volume of each as approximately equal to that of a cylinder with
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its base coincident with the base of the shce and its altitude equal

to that of the slice. The sum of the volumes of the n cylinders is

irx^^y + '^xl^y + 7r;r|Ay -\ + 7r.c^_, Ay,

and the limit of this sum as n is indefinitely increased is, by defi-

nition, the volume of the solid of revolution.

This definition is seen to be reasonable and in accordance with

the common conception of volume as follows. Whatever the defini-

Y Y

D
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Hence Lim ~—^-^— = Lim -^^-^^ ^ = 1,
vol. iVg-V^/S'/^ x'^

,
. _.. vol. N.N-.P.P,

,and consequently Lim —^-^-^ = 1.^ -^

vol. iV^iV^Vi^

Therefore the volume of the slice differs from that of the cylinder

by an infinitesimal of higher order than that of either (§ 2), and

therefore the limit of the sum of the volumes of the slices is the

same as that of the sum of the volumes of the cylinders (§ 3).

Hence, finally,
« = " -

1

^<i

vol. CKLB = Lim ir^xfAi/ = tt I x^di/. (1)

It is evident that the result is not invalidated if either L or K
lies on OY.

Similarly, the volume generated by revolving about OX a figure

bounded by OX, two straight lines x = a and x = h(a < b), and

any curve not crossing OX is

r ffdx. (2)

To evaluate either of these integrals it is of course necessary to

express x in terms of 3/, or 1/ in terms of x, or both x and y in

terms of a new variable, from the equation of the curve.

The volume of a solid generated by a plane figure of other shape

than that just handled may often be found by taking the sum or

the difference of two such volumes as

the foregoing.

Ex. Find the volume of the ring solid gen-

erated by revolving a circle of radius a about an

axis in its plane b units from the center (b > a).

Take the axis of revolution as OY (fig. 24)

and a line through the center as OX. Then the

equation of the circle is {x — b)^ + y'^ = a^.

The volume required is the difference between the volume generated by

CLEKD and that generated by CLFKD. But the volume generated by

Xidij where xi = b + ^a- — ?/2, and the volume generated
- a

by CLFKD is tt f xSdy where Xj = 6 - Va^ - y^.
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Therefore the required volume is

TT f" xfdu -TT f x.fdy = ir f {xf -x|) dy
J— a iJ — a ^ — a

= 4 7r6 r " ^a^-y'^dy = 4wb\f Va'^ - y^ + - sin-i^l" = 2 Tr^a'^b.

38. Volume of a solid with parallel bases. Fig. 25 represents a

solid with parallel bases. The straight line OT is drawn perpen-

dicular to the bases, cutting the lower base at A, where y = a, and

the upper base at B, where y = h. (The axis of x may be any line

perpendicular to OY, but it is

not shown in the figure and is

not needed in the discussion.)

Let the line AB be divided into

n parts each equal to = Ay,
n

and let planes be passed through

each pomt of division parallel to

the bases of the solid. Let A^

be the area of the lower base

of the solid, A^ the area of the

first section parallel to the base,

A.^ the area of the second sec-

tion, and so on, A^_^ being the

area of the section next below

the upper base. Then A^Ay

represents the volume of a cyl-

inder with base equal to A^ and

altitude equal to Ay, A^Ay represents the volume of a cylinder

standing on the next section as a base and extending to the section

next above, and so forth. It is clear that

A,Ay + A^Ay + A.^Ay+ • +A^^_^Ay

is an approximation to the volume of the sohd, and tliat the limit

of this sum as n indefinitely increases is the volume of the solid.

That this is rigorously true may be shown by a discussion similar

to that of the previous article. That is, the required volume is

Ady.
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To find the value of this integral it is necessary to express A in

terms of y, or both A and 3/ in terms of some other independent

variable. This is a problem of geometry which mnst be solved

for eacli solid. The solids of revolution are special cases. It is clear

that the previous discussion is valid if the upper base reduces to a

point, i.e. if the solid simply touches a plane parallel to its base.

Similarly, botli bases may reduce to points.

Ex. 1. Two ellipses with equal major axes are placed with their equal axes

coinciding and their planes perpendicular. A variable ellipse moves so that its

center is on the common axis of the given ellipses, the plane of the moving
ellipse being perpendicular to those of the given ellipses. Required the volume

of the solid generated.

Fig. 26

• Let the given ellipses be ABA'B' (fig. 26) with semiaxes OA = a and OB = 6,

and ACA'C with semiaxes OA = a and OC = c, and let the common axis be

OX. Let NMN'M' be one position of the moving ellipse with the center P
where OP — x. Then if A is the area of NMN'M',

A = 7rPM-PN. (by § 35, Ex. 1)

x2 PM
But from the ellipse ABA'B' 1 = 1,

x2 PN^
and from the ellipse ACA'C 1 = 1.

a2 c2

Therefore PM-PN=- (a2 - a;2).

a2

Consequently the required volume is

I
— (a2 — x2) dx = - Trabc.

J-a a2 ^
'

3

The solid is called an ellipsoid (§ 86, Ex. .5).
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Ex. 2. The axes of two equal right circular cylinders intersect at right

angles. Required the volume common to the cylinders.

Let OA and OB (fig. 27) be the axes

of the cylinders, OY their common per-

pendicular at their point of intersection

0, and a the radius of the base of each

cylinder. Then the figure represents

one eighth eft the required volume V.

A plane passed perpendicular to OY
at a distance ON = y from intersects

the solid in a square, of which one side

>A is i\^P = VoP^
Therefore

ON'^ = Va2 - yK

\y =j ''nP- dy =j "(a^ - y^)dy= § a^

and T^ = Jj*^ a^.

39. The prismoidal formula. The formula r= I ^ fZz/ leads to
U a

a simple and important result in those cases in which A can be

expressed as a polynomial in y of degree not greater than 3. Let

us place ^ ^ ^^^^3 _^ ^^^2 ^ ^^^ _f_ ^^

and take 0, for convenience, in the lower base of the solid. Then

if h is the altitude of the solid,

I

I

v=
\ {%f + «ir + «2y + ^'3) ^^i/

J

If now we place B for the area of the lower base, h for the area

of the upper base, and M for the area of the section midway be-

tween the bases, we have

'hV /hV 111
B = a^, h = aji^+ aji'+ aji + a^, M= ((J^]+ciA-)+ aJ - + a^.

The formula for V then becomes

r=-{B + 4.M+h).
6

This is known as the jyrismoidal formula.
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To show its applicability to a given solid, we need only to show
that the area of a cross section of the solid may be expressed as

above. The most important and frequent cases are when A is a

quadratic polynomial in y. In this w\ay the student may show
that the formula applies to frustra of pyramids, prisms, wedges,

cones, cylinders, spheres, or solids of revolution in which the gen-

erating curve is a portion of a conic with one axis parallel to the

axis of revolution, and also to the complete solids just named.

The formula takes its name, however, from its applicability to

the solid called the prismoid, which we define as a solid having

for its two ends dissimilar plane polygons with the same number
of sides and the corresponding sides parallel, and for its lateral

faces trapezoids.*

Furthermore, the formula is applicable to a more general solid,

two of whose faces are plane polygons lying in parallel planes and

whose lateral faces are triangles with their vertices in the vertices

of these polygons.

Finally, if the number of sides of the polygons of the last

defined solid is allowed to increase without limit, the solid goes

over into a solid whose bases are plane curves in parallel planes

and whose curved surface is generated by a straight line which

touches each of the base curves. To such a solid the formula also

applies (see § 91, Ex. 5).

The formula is extensively used by

engineers in computing earthworks.

40. Length of a plane curve in rec-

tangular coordinates. To find the length

of any curve AB (fig. 28), assume n — 1

points, P^, P^, • • •
, ^_p between A and B

and connect each pair of consecutive
j^j^^ 28

points by a straight line. The length

of AB is then defined as the limit of the sum of the lengths of

the n chords AP^, P^l^, P^T^,- • •, ^_i-5 as n is increased without

limit and the length of each chord approaches zero as a limit

(I, § 104).

* The definition of the prismoid is variously given hy different authors. We adopt

that which connects the solid most closely with the prism.
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Let the coordinates of ^ be (ic., y.) and those of I*^^ be {x.+ Ax,

y.+ Ay). Then the length of the chord ^i^^^ is V(A«)'+ (Ay)', and

the length of AB is the limit of the sum of the lengths of the n

chords as n iacreases indefinitely. But V(Aa;)'+ (Ay)"^ is an infini-

tesimal which differs from the infinitesimal Vdoi?+ d'lf by an

infinitesimal of higher order. For

MfS
^dx'+dif

j
/dijV ^^ -

Now if X is the independent variable, A« = dx (§4); if x is not

A.c . Ay dy
the independent variable, Lim^ = 1 (§ "i)- ^^so Lim T7 = j;^'

Hence Lim ^^^^^iM" = l. Therefore (§3), in finding the

^dj? + dif

length of the curve, we may replace V(A.'j)' + (Ay)"'' by ^dur + dif.

Therefore if 8 is the length of AB, we have

J^(7J)^dx^+df, (1)

(-1)

where {A) and {B) denote the values of the independent variable

for the points A and B respectively.

If x is the independent variable, and the abscissas of A and B
are a and h respectively, (1) becomes

«y a

'+©"• »>

=r4

If y is the independent variable, and the values of y at yl and B

are c and d respectively, (1) becomes

T^dy. (3)

If X and y are expressed in terms of an independent parameter t,

and the values of t for A and B respectively are t^ and ^^ (1) be-
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Ex. 1. Find the length of the parabohi y- = 4_px from the vertex to the

point {h, k).

/x + p ,
' dx.Formula (2) gives * ~

/ \/

1 ^k —
Formula (3) gives s =— ( y/y- -{- 4ip^dy.

2v Jip

Either integral leads to the result

s-— vA;2 + 4p2 +piog--Z_ Z__?

—

4p 2p

Ex. _2. Find the length of an ellipse.

If the equation of the ellipse is f- ^ = 1, and we measure the arc from the

end of the minor axis, we have
^

1 c'^ \a^ - e"-x2-s= ( -» ax,
4 i/o \ a''^ — x^

Va2 _ 52
where e = , the eccentricity of the ellipse. Let us place x = asin0;

then

1 s = a r ^ Vl- e^sinV d<t>.

The indeiinite integra l cannot be found in terms of elementary functions.

We therefore expand Vl— e^sin^^ into a series by the binomial theorem

(§ 31, Ex. 4) ; thus

Vl — e^sin^d) = 1 e^sin^^ e*sin*<i)
'— e^sin^d) — •• ..

2 2.4 2.-4.6

This series converges for all values of 0, since e^gins^ <; j. jjien

-s= a\ f^d(f> e2 f'^s'm-(pdd> e* f^sinirfxZrf) ^^e^ ( '^sin^^d^ I

4 \Jo 2 Jo 2-4 Jo 2-4-6 Jo
v v

j-

=T'{-Gr-(^.)i-(^:)i-}- '^^^^''^^^'

The length of the ellipse may now be computed to any required degree of

accuracy.

41. Length of a plane curve in polar coordinates. The formula

s= -Jihr+dif

of § 40 may be transferred to polar coordinates by placing

x = r cos 6, y = r sin 6.



78 APPLICATIONS TO GEOMETRY

Then

and

Therefore

dx = cos 6 dr — r sin d dd,

dy = sm 6 dr + r cos 6 dO,

dx~+ dif' = dr^ + r^ d&'\

^dr- + r^dd'' (1)

If Q is the independent variable, and the values of 6 for A and

B are a and ^ respectively, (1) becomes

t/or --(ly- (2)

If r is the independent variable, and the values of r for A and

^ are a and & respectively, (1) becomes

-i'A (3)

42. The differential of arc. From

=
I

-\/dd^ + c?2/^

it follows (§ 9) that ds = y/dx'+dy-. (1)

This relation between the differentials of x, y, and s is often rep-

resented by the triangle of fig. 29. This figure is convenient as a

device for memorizing formula (1), but it

should be borne in mind that RQ \?i not

rigorously equal to dy (§ 5), nor is PQ
rigorously equal to ds. In fact, RQ = Ay
and PQ — As, but since Ay and As differ

from dy and ds respectively by infinitesi-

mals of higher order, the use of RQ as

dy and of PQ as ds is justified by the

theorems of § 3. If now the triangle of fig. 29 is used as a plane

right triangle, we have an easy method of recalling the formulas

ds"^ = dx~ + dy"^,

Fig. 2'J

— = cos (/),

ds

dy

ds
= sin (/),

dy

dx
= tan ^.
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s= CVdr'+r^dd^

ds^y/dr+r-de\

Similarly, from

we find ds^-\/dr+r-de^, (2)

which is suggested by the triangle of fig. 30, where PQ is the arc

of any curve and Pli the arc of a circle with radius OP = r. This

figure, if used as a straight-line figure, also gives the formulas

,
r dd , dr .^ Jq

tan Y — —T' ' ^'^^ T ~ "T

'

x, >^dr

sin -v/r =

ds

r dd

ds

43. Area of a surface of revolu

tion. A surface of revolution is

surface generated by the revolution

of a plane curve around an axis in its plane (§ 37). Let the

curve AB (fig. 31) revolve about OY as an axis. To find the area

of the surface generated, assume n — 1 points, I^, P^, I^, • -, ^_p
between A and B, and connect each pair of consecutive points by

a straight line. These lines are omitted in the figure since they

are so nearly coincident with the arcs. The surface generated by

AB is then defined as the limit of the sum

of the areas of the surfaces generated by

the n chords AP^, PJl, P,P„ ,P^_^B as

7i increases without limit and the length

of each chord approaches zero as a limit.

Each chord generates the lateral sur-

face of a frustum of a right circular cone,

the area of which may be found by ele-

mentary geometry. Let the coordinates

of Pi be {x^, y.) and those of ^^^ be (x^ + Ax, y,+ Ay). Then the

frustum of the cone generated by -^-^+i has for the radius of the

upper base A^^^_^^J, for the radius of the lower base A\.^, and for

its slant height ^'^+i. Its lateral area is therefore equal to

(NP-^N. P )

But N,P,=x„ N,^,P,^,= x,+ Ax, P,P,^,. .y/{Axf+{Ayf.
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Therefore the lateral area of the frustum of the cone equals

This is an infinitesimal which differs from

2 TTxyJd^+ dy^ = 2 Trxjds

by an infinitesimal of higher order, and therefore the area gener-

ated by AB is the limit of the sum of an infinite number of these

terms. Hence, if we represent the required area by S^, we have

xds. (1)

To evaluate the integral, we must either express ds in terms of

X, or express x and ds in terms of y, or express both x and ds in

terms of some other independent variable.

Similarly, the area generated by revolving AB about OX is

y ds. (2)

Ex. Find the area of the ring surface of tlie Ex., § 37.

The equation of the generating curve is

(a; - hf + 2/2 = a?,

and ds — A / 1 + (— ) dy = dy.
^ \dy/ Va2 - 2/2

Tlie required area is tlie sum of the areas generated by the arcs LEK and

LFK (fig. 24). Hence

dy
Sy^'lTT f "{x. + a:.)

°
dv = i irab f " _-J^-_ == 4 7r2a&.

J-a y/(j2 _ y2 J- a y/dfi _ yi

PROBLEMS

1

.

Find the area bounded by tlie axis of x and tlie parabola x- — IQx + Ay — O.

2. Find the area included between a parabola and the tangents at the ends

of the latus rectum. (The equation of the parabola referred to these tangents

as axes is x^ + y^ = a^ (I, § 09).) „ „

3. Find the total area bounded by the witch y = ., ,
. „ and its asymptote.



PROBLEMS 81

a( - -~\
4. Find the area bounded by the catenary ?/ = - \,e« + e « j, the axis of x, and

the lines x = ±h.

5. Find tlie total area of the curve a^y'^ + hH'^ = a%-z'^.

6. Find the area bounded by the curve xhj" +a-lP' = aP-y- and its asymptotes.

7. Find the area bounded by the curve y{x'^ + a-) = a~{a — x), the axis of

X, and the axis of y.

8. Find the area of a segment of a circle of radius a cut off by a chord h

units from the center.

9. Find the area contained in the loop of the curve y"^ = x'^{a — x).

10. Find the area bounded by the curve y'^ (x- + a'-) = a'-x- and its asymptotes.

X^ w2
11. Show that the area bounded by the hyperbola — = 1, the axis of x

and the diameter through Pi(Xi, yi) on the curve is — log {— + — ).

2 \a 6/

12. Find the area bounded by the tractrix ?/ = - log —:^z^^ — Va^ — x^,

the axis of x, and the axis oi y.
^ a- Va2 - x2

13. Find the area between the axis of x and one arch of the cycloid

X = a(0 — sin0), ?/ = a(l — cos^).

14. Find the areas of each of the two portions into which the circle

x2 + 2/2 = 8 is divided by the parabola y2 — 2 x = 0.

15. Find the area bounded by the parabola x^ — 4 ?/ = and the straight line

3x-2y - 4=0.

16. Find the area of the figure bounded by the parabolas y'^ = 18 x and

x2 = -y- y.

8 a^
17. Find the area between the parabola x^ = 4:ay and the witch y —

x- + 4 a2
18. Find the total area of the lemniscate r^ = 2a^ cos 2^.

19. In the hyperbolic spiral rO — a show that the area bounded by the spiral

and two radii vectors is proportional to the difference of the length of the radii.

20. Find the area traversed by the radius vector of the spiral of Archimedes

r = ad in the first revolution.

21. Find the area described by the radius vector of r = a sec ^ from

d=z- to e--.
G 3

22. Find the total area of the cardioid r = a{l + cos 6).

23. Find the area of the lima^on r = a cos 9 + b when b > a.

24. Find the area bounded by the curves r = a cos 3 and r — a.

25. Find the area of a loop of the curve r^ — a^ cos nO.

26. Find the area of a loop of the curve r = a sin nd.

27. Find the area of a loop of the curve r cos^ = a cos 2^.
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28. Find the area of the loop of the curve r^ = ^2 ^og 2 e cos 6 which is bisected

by the initial line.

29. Find the total area of the curve (x^ + y-Y — 4 a%2 + 4 jfiy-i, (Transform

to polar coordinates.)

30. Find the area of the loop of the curve (x^ + y^Y = 4 a'^xhj'^. (Transform

to polar coordinates.)

31. Find the volume generated by revolving about OY the surface bounded

by the coordinate axes and the curve x^ + y^ = ai

32. Find the volume of the solid generated by revolving about OY the plane

surface bounded by OF and the hypocycloid x^ + y^ = a'.

33. Find the volume of the solid formed by revolving about OX the figure

bounded by the catenary y = - \e" + e " j, the axis of x, and the lines x = ±h.

34. Find the volume of the solid formed by revolving about OY the plane

figure bounded by the witch y — and the line y = a.
x2 + 4 a^

35. Find the volume of the solid formed by revolving about OX the plane

figure bounded by the cissoid y"^ =
, the line x = a, and the axis of x.

2a — X

36. Find the volume of the solid generated by revolving about OY a segment

of the circle x^ + y'^ = a- cut off by the choi'd x = h.

37. Find the volume of the solid generated by revolving a semicircle of

radius a around an axis parallel to the boundary diameter of the semicircle,

(1) when the arc of the semicircle is concave toward the axis; (2) when the

arc is convex toward the axis.

38. Find the volume of the solid formed by revolving an ellipse around its

major axis.

39. Find the volume of the ring surface formed by revolving the ellipse

^^ ~ ^^"
+ ^ = 1 around OY{d>a).

a?- b'^

40. Find the volume of the solid generated by revolving about OX the sur-

face bounded by the hyperbola = 1 and the line x = a + h.

a"^ 6-

41. Find the volume of the solid generated by revolving about OY the sur-

JJ.2 y1
face bounded by the hyperbola ~ = 1, the lines y = ±h, and the axis of y.

a? 52

42. Find the volume of the solid formed by revolving about the line y — — a
IT

the figure bounded by the curve y = sin x, the lines x = and a; = — , and the

line y— — a.

43. Find the volume generated by revolving about the axis of x the figure

bounded by the parabola y"^ = ^px and the line x — h.

44. Find the volume of the solid formed by revolving about OY the figure

bounded by the parabola y^ = 4px, the axis of y, and the line y —h.
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45. Find the volume of the solid formed by revolving about the line x = — a

the figure bounded by that line, the parabola y'^ = ^ px, and the lines y — ± h.

46. Find the volume of the solid formed by revolving about the line x = a

the figure bounded by the parabola y^ = 4:px and the line x = h{a> h).

47. A right circular cone has its vertex at the center of the sphere. Find the

volume of the portion of the sphere intercepted by the cone.

48. A steel band is placed around a cylindrical boiler. A cross section of the

band is a semiellipse, its axes being G and Vg in. respectively, the greater being

parallel to the axis of the boiler. The diameter of the boiler is 48 in. What is

the volume of the band ?

49. Find the volume of the solid generated by revolving the cardioid

r = a(l + cos^) about the initial line.

50. Find the volume of the solid generated by revolving about OY the figure

bounded by the axes of coordinates and the tractrix.

51. Prove by the method of § 38 that the volume of a cone with any base is

equal to the product of one third the altitude by the area of the base.

52. Prove that the volume of a right conoid is equal to one half the product

of its base and its altitude. (A conoid is a surface generated by a moving straight

line which remains parallel to a fixed plane and intersects a fixed straight line.

If the moving line is perpendicular to the fixed line, the conoid is a right conoid.

The base is then the section made by a plane parallel to the fixed line, and the

altitude is the distance of the fixed line from the plane of the base.)

53. On the double ordinate of the ellipse \-~=l an isosceles triangle is

constructed with its altitude equal to the length of the ordinate. Find the volume

generated as the triangle moves along the axis of the ellipse from vertex to vertex.

54. Find the volume cut from a right circular cylinder by a plane through

the center of the base making an angle d with the plane of the base.

55. Find the volume of the wedge-shaped solid cut from a right circular

cylinder by two planes which pass through a diameter of the upper base and

are tangent to the lower base.

56. Two circular cylinders with the same altitude have the upper base in

common. Their other bases are tangent at the point where the perpendicular

from the center of the upper base meets the plane of the lower bases. Find

the volume common to the cylinders.

57. Two parabolas have a common vertex and a common axis but lie in per-

pendicular planes. An ellipse moves with its center on the common axis, its

plane perpendicular to the axis, and its vertices on the parabolas. Find the

volume generated when the ellipse has moved to a distance h from the com-

mon vertex of the parabolas.

58. A cylinder passes through great circles of a sphere which are at right

angles to each other. Find the common volume.
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59. A variable circle moves so that one point is alvpays on OY, its center is

always on the ellipse ^- — = 1, and its plane is always pei-pendicular to OY.

Required the volume of the solid generated.

60. Two equal four-cusped hypocycloids are placed with their planes per-

pendicular and the straight line joining two opposite cusps of one in coinci-

dence with a similar line in the other. A variable square moves with its plane

perpendicular to this line and its vertices in the two curves. Find the volume

of the solid generated.

61. Two equal ellipses are placed with their major axes in coincidence and

their planes perpendicular. A straight line moves so as always to intersect the

ellipses and to be parallel to a plane perpendicular to their common axis. Find

the volume inclosed by the surface generated.

62. A variable rectangle moves so that one side has one end in OY and the

other in the circle x^ + y^ = a^. The ratio of the other side of the rectangle to

the one mentioned is - , and the plane of the rectangle is perpendicular to OY.

Required the volume of the solid generated.

63. The cap of a stone post is a solid of which every horizontal cross section

is a square. The corners of all the squares lie in a spherical surface of radius

8 in. with its center 4 in. above the plane of the base. Find the volume of the cap.

64. Find the length of the semicubical parabola y"^ = x^ from the vertex to

the point for which x = h.

e^ 4-

1

65. Find the length of the curve y = log from x = 1 to x = 2.

e^ — 1

66. Find the total length of the four-cusped hypocycloid x^ + y^ = a*.

67. Find the length of the catenary from x = to x = A.

68. Find the length of the tractrix y = -log ^ - ^ _ Va- - x^ from

X = /i to X = a. ^ ~ "^^^ ~ -^

69. Find the entire length of the curve (-l^+lr) =1-

4
70. Find the length of the curve y'^ = (x — 2 p)^ from x = 2 p to x = h.

21 p
71. Find the length from cusp to cusp of the cycloid x = a(^ — sin0),

y = a{l — COS0).

72. Find the length of the epicycloid from cusp to cusp.

73. Find the length of the involute of a circle x = a cos
<f) + a(p sin 0,

y = a sin
(f>
— a4> cos ^ from (^ = to = ^i.

74. From a spool of thread 2 in. in diameter three turns are unwound.

If the thread is held constantly tight, what is the length of the path described

by its end ?

75. The cable of a suspension bridge hangs in the form of a parabola. The

lowest point of the cable is 50 ft. above the water, and the points of suspension

are 100 ft. above the water and 1000 ft. apart. Find the length of the cable.
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76. Show that the length of the logarithmic spiral between any two points

is proportional to the difference of the radii vectors of the points.

77. Find the length of the curve r - a cos* - from the point in whicli the

curve intersects the initial line to the pole.

78. Find the complete length of the curve r = a sin^ -

.

79. Find the length of the cardioid r=a{\+ cos0).

80. Find the area of a zone of a sphere bounded by the intersections of the

sphere with two parallel planes at distances hi and hn from the center.

81. Find the area of the curved surface formed by revolving about OX the

portion of the parabola y^ -4tpx between a; = and x = h.

82. Find the area of the curved surface of the catenoid formed by revolving

e« + e~ "j between x=-h and x = h.

83. Find the area of the surface formed by revolving about OY the tractrix

a, a + '^a^ — x'^ ^/—, 5

y = - log——-—== — V a^ - x^.

2 a — y/a? — x^

84. Find the area of the surface formed by revolving about OY the hypocycloid

2 2 3

X* + ?/3 = C[3.

85. Find the area of the surface formed by revolving an arch of the cycloid

X = a (0 — sin0), ?/ = a(l - cos^) about OX.

86. Find the surface area of the oblate spheroid formed by revolving an

ellipse about its minor axis.

87. Find the surface area of the prolate spheroid formed by revolving an

ellipse around its major axis.

88. Find the area of the surface formed by revolving about the initial line

the cardioid r = a(l + cos^).

89. Find the area of the surface formed by revolving about the initial line

the lemniscate r^ = 2 a^ cos 2 Q.



CHAPTER V

APPLICATIONS TO MECHANICS

44. Work. The application of the definite integral to determine

the work done in moving a body in a straight line against a force

in the same direction has been shown in § 21. Problems for the

student will be found at the end of tMs chapter.

The case of a body moving in a curve, or acted on by forces not

in the direction of the motion, is treated in Chap. XIV.

45. Attraction. Two particles of matter of masses 77i^ and m^

respectively, separated by a distance r, attract each other with a

7)% '}}!'

force equal to k—V^ > where A; is a constant which depends upon
r"

the units of force, distance, and mass. We shall assume that the

units are so chosen that h = 1.

Let it now be required to find the attraction of a material body

of mass m upon a particle of unit mass situated at a point A. Let

the body be divided into n elements, the mass of each of which may

be represented by A?n, and let ^ be a point at which the mass of

one element may be considered as concentrated. Then the attrac-

tion of this element on the particle at A is —— j where r- = FA,

and its component in the direction of OX is —^cos^, where

^^ is the angle between the directions I^A and OX. The wdiole

body, therefore, exerts upon the particle at A an attraction whose

component in the direction OX is equal to

T-
. ,^ cos t'. .

If now cos 6^, r., and Am may be expressed in terms of a smgie

independent variable, we have, for this component,

,. '4;'cos6'. ^
rcose.

Lim y——' Am = I —^ dm,

86

I
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where the limits of integration are the values of the independent

variable so chosen that the summation extends over the entire

body. The manner in which this may be done in some cases is

illustrated in the following example.

Ex. Find the attraction of a uniform wire of length I and mass m on a par-

ticle of unit mass situated in a straiglit line i^erpendicular to one end of the wire

and at a distance a from it.

Let the wire OL (fig. 32) be placed in the axis of y with

one end at the origin, and let the particle of unit mass

be at A on the axis of x where A0= a. Divide OL into

n parts, OJlfi, M1M2, M^Mz, • • •, l/„_ii, each equal to

- = Ay. Then, if p is the mass per unit
n
of length of the wire, the mass of each ,

element is pAy = Am. We shall consider y^^l

the mass of each element as concen- ,;'''V'','

trated at its first point, and shall in

this way obtain an approximate ex-

pression for the attraction due to the

element, this approximation being the

r

L

Mj

- M^

.' M,

Mi

M,

Fig. 32

-X

better, the smaller is Ay. The attraction of the element MiMi^i on J. is

then approximately
p^y p^y

where yi = OMi.
AMi a^ + yt

The component of this attraction in the direction OX is

pAy „„„ ^ ^ T,,
paAy

cC' + yt
cos OAM,

(a- + 2/?)^

and the component in the direction OY is

sni UAMi = :r-^.

a2 + yf (a2 + y^^)%

Then, if X is the total component of the attraction parallel to OX, and Y
the total component parallel to OF, we have

! = n -

1

X = Lim V —^^' ^
3 = pa f

— dy

Lim
n = 00

= n-l

-\5 Jo

(a2 + 2/2)5

y dy

(a2 + 2/2)i
(a2 + y~y-

To verify this we may show that the true attraction of MiMi^i differs from

the approximate attraction, which we have used, by an infinitesimal of higher

order. Let I be the true x-component of the attraction of jV/",!/; + 1, 7i the approx-

imate attraction found by assuming that the whole mass of MiMi + i is at Mi,
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and Ii the approximate attraction found by assuming that the whole mass of

MiMi + i is at 3/1 + 1. Then, evidently, I2 < I < I\; that is, — < — < 1. But

I, ^^«^ , J, = P^
. , and ^ = r

"' + ^'
1^ Therefore

Lim ^ = 1 and Lim -- = 1. Hence 7i differs from I by an infinitesimal of higher

order (§ 2), and may therefore be used in place of I in finding the limit of a

sum (§3). A similar discussion may be given for the ^/-component.

To evaluate the integrals for X and Y, place y = a tan 6. Then, if

a = tan-i - = OAL,
a

p r" „ ,„ P . ^ .A = - ( cos d ad = -sma = —; sm a,
a Jo a al

Y =- \ sin ddd= - (1 - cos a-) = — (1 - cos a),
CL J d Cll

since Ip = m.

If i? is the magnitude of the resultant attraction and )3 the angle which its

line of action makes with OX,

R ^ VX2 + r2 =^ sin ^ a,
al 2

, F , 1 — cos a 1
/3 = tan- 1 — = tan- 1 — - a.

A'' sin a 2

46. Pressure. Consider a plane surface of area AA immersed

in a liquid at a uniform depth of h units below the surface. The

submerged surface supports a column of liquid of volume JiAA,

the weight of which is ivhAA, where w (a constant for a given

liquid) is the weight of a unit volume of the liquid. This weight

is the total pressure on the immersed surface. The pressure per

unit of area is then , . -

w/iAA ,= 7V/l,

AA

which is independent of the size of AA. We may accordingly

think of AA as infinitesimal and define wh as the pressure at a

point h units below the surface. By the laws of hydrostatics

this pressure is exerted equally in all directions. We may accord-

ingly determine the pressure on plane surfaces which do not lie

parallel to the surface of the liquid in the following manner.

Let OX (fig. 33) be in the surface of the liquid, and Off, for which

the positive direction is downward, be the axis of h. Consider a

surface ABCD bounded by a portion of OH, two horizontal
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lines AD (h = a) and BC{h = b), and a curve with the equation

x=f{h). Divide AB into n segments, AM^, M^M,^, M,M^, ,
M , B, each equal to = A/t, and

draw a hne M-F^ through each point M^

parallel to OX. Consider now the ele-

ment of area M^P^I^^ ^M^ + 1, where M^If = x^

—fi^i^. Its area is equal to that of a rec-

tangle with base MJ^Ii^^ and altitude some

line between M,P, and M.^^P^^^ (5, § 24),

and is therefore equal to {x. -\- ej A^, where

€• < Aic. The pressure on ' the element

would be wll^ {x,^ -f- e^) AA, if all points of

the element were at the depth OM^ = /? ,.,

and would be w;(7ti-t- A/0(a'i+ e;)A/t, if all points were at the depth

OJ/._^^ = A.-f A/i. Consequently, the pressure on if/i^^+i-^i+i is

w'h^x^l^U plus an infinitesimal of higher order. Therefore the total

pressure P on the area ABCD is

Vm. 33

P = Lim '^wh-x-I^U = I ivhxdh = w I hf{h)dh.

The modification of this result necessary to adapt it to areas

of slightly different shapes is easily made by the student and is

exemplified in the following example.

Ex. Find the total pressure on a verti-

cal circular area, a being the radius of

the circle and 6 the depth of the center.

In fig. 34 let OC = 6, CA^CK= a,

OM = A, MN = Ah. Then OA-b- a,

OB = b + a, LK=2MK= 2Va^-{h-b)^,

and the pressure on the strip LKIG is

2wh^a'-(h -b)'^Ah, except for an infin-

itesimal of higher order. Therefore the

total pressure on the circle is

Jtb-\-
a

Va2 -{h - hy^ hdh.
b — (I

To integrate, place h-b- a sin cp
;
then

P = 2w r ^
a2 cos2 0(6+ ffl sin 0)(?<^ = 7ra26w.

~2
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If the equation of the curve CD (fig. 33) is x =f{y), referred to

an origin at a depth c below the surface of the liquid, OX being

parallel and OY perpendicular to the surface of the liquid, the

pressure on ABCD may be shown to be

%J a

a and h being the y coordinates of A and B respectively.

If this formula is used in the example, the center of the circle

being taken as the origin of coordinates, we have

F = 2w
j

{h + y) Vrt" — y'^ cly = 7ra%w.

47. Center of gravity. Consider n particles of masses m^, m^,

'>n^, •-, tn,^, placed at the points P^{x^, y^, P^ix^, y,^), Ps{x^, y^), • -,

P^{x^, 2/„)
(fig. 35) respectively. The weights of these particles form

a system of parallel forces equal to

m^g, m^g, m^g,, m^g, where ^.is

the acceleration due to gravity. The

resultant of these forces is the total

weight W of the n particles, where

W= m^g + m^g + m^g+• + m/j

i= n

Fig. 35 ^
This resultant acts in a line which is determined by the condi-

tion that the moment of W about is equal to the sum of the

moments of the oi weights.

Suppose first that gravity acts parallel to Y, and that the line

of action of W cuts OX in a point the abscissa of which is x. Then

the moment of W about is gx^m^ and the moment of one of the

n weights is g m^x^.

Hence gxV wi^. = 9^ wi -x..

Similarly, if gravity acts parallel to OX, the line of action of the

resultant cuts F in a point the ordinate of which is y, where
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These two lines of action intersect in the point G, the coordinates

of which are .^^ _-\

-x =^, y = %^'. (1)

Furthermore, if gravity acts in the XO Y plane, but not parallel

to either OX or Y, the line of action of its resultant always passes

through G. This may be shown by resolving the weight of each

particle into two components parallel to OX and Y respectively,

finding the resultant of each set of components in the manner just

shown, and then combining these two resultants.

If gravity acts in a direction not in the XO Y plane, it may still

be shown that its resultant acts through G, but the proof requires

a knowledge of space geometry not yet given in this course.

The point G is called the center of gravity of the n particles.

If it is desired to find the center of gravity of a physical body,

the problem may be formulated very roughly at first by saying that

the body is made up of an infinite number of particles of matter

each with an infinitesimal weight ; hence the formulas for the co-

ordinates of G must be extended to the case in which n is infinite.

More precisely, the solution of the problem is as follows. The body

in question is divided into n elementary portions such that the

weight of each may be considered as concentrated at a point

within it. If m is the total mass of the body, the mass of each

element may be represented by A//i. Then if {x^, y.) are the coordi-

nates of the point at which the mass of the ^'th element is concen-

trated, the center of gravity of the body is given by the equations

V.V.Am _ ^Vi^m
X = Lim ^^^ , 1/ = Lim ^=^- •

yA7?i 2^Am

In case x^, y., and Am can be expressed in forms of a single inde-

pendent variable, these values become

\ xdm I y dm

I dm j
dm

(2)
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where the limits of integration are the values of the independent

variable so chosen that the summation extends over the entire body.

It is to be noticed that it is not necessary, nor indeed always

possible, to determine x^, ?/. exactly, since, by § 3,

i=n i= n

Lun V(c^^+ e.) Av/i = Lim V .?;. Am,

if e, approaches zero as Am approaches zero.

The manner in wliich the operation thus sketched may be car-

ried out in some cases is shown in the following articles. Discus-

sion of the most general cases, however, must be postponed until

after the subjects of doulile and triple integration are taken up.

48. Center of gravity of a plane curve. Wlien we speak of the

center of gravity of a plane curve we are to think of the curve as

the axis of a rod, or wire, of uniform small cross section. Let

LK (fig. 36) be such a curve, and let p

be the amount of matter per unit of

length of the wire wliich surrounds LK.

That is, if s is the length of the wire

and m is its mass, we have for a homo-

oeneous wire

T
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If p is constant, these formulas become

sx= i xds, sy = \ y ds, (2)

where s is the length of LK.

Ex. 1. Find the center of gravity of a quarter circumference of tlae circle

x2 + y^ = a2, wliicli lies in the first quadrant.

We have ds — Vdx'^ + dy"^ = ^dx = — ^ dv.
y X

Therefore Cxds =— C adij = a^,

I
yds =

I
a dx = a2,

and s = — ) a quarter circumference.
2

Hence
_ _ 2a
x = y =

The problem may also be solved by using the parametric equations of the

circle x — a cos (p, y — a sin <p.

Then Cx ds = a'^ C '^ cos d(p = a^,

I y ds = a-
I

^ sin (pd(p = a^.

2 a
Therefore x = y = — , as before.

Ex. 2. Find the center of gravity of a quarter circumference of a circle when
the amount of matter in a unit of length is proportional to the length of the arc

measured from one extremity.

We have here p = ks, where k is constant. Therefore, if we use the para-

metric equations of the circle,

I pxds
I
sxds

I
^ a^(p cos d(f>

_ (47r-8)a
7r2

(pdfpJpds Jsds Ciffi^

IT

I
py ds j sy ds j ^ a'^4> sin dxf)

j pds
J

sds C^a^<pd<p
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49. Center of gravity of a plane area. By the center of gra\dty

of a plane area we mean the center of gravity of a thin sheet of

matter having the plane area as its

middle section. We shall first assume

that the area is of the form of fig. 37,

being bounded by the axis of x, the

curve y=f{3c), and two ordinates.

Divide the area into n elements by

n — 1 ordinates which divide AB into

A' n parts each equal to A«. We de-

note by p the mass per unit area.

That is, if A is the area and m the

mass, we have for a homogeneous sheet of matter

A?7t

a2

:
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Therefore it is sufficient to consider the mass of MNQP as con-

centrated aiG ix, :^y Hence formulas (2), § 47, become

/ pxydx \ j
pifdx

j Pi/ dx j py dx

If /) is a constant, these formuhis become

/ xy dx 1
I
y'^dx

x = - , y =— .

j y dx i y dx

(1)

(2)

which can be written

Ax = I X dA, Ay =
^ j y dA. (3)

If it is required to find the center of gravity of a plane area of

other shape than that just discussed, the preceding method may be

modified in a manner illustrated by Ex. 2.

If the area has a line of symmetry, the center of gravity evi-

dently lies upon it, and if this line is perpendicular to OX or OY,

one of the coordinates of the center of gravity may be written

down at once.

Ex. 1. Find the center of gravity of the area bounded by the parabola

?/2=:4j)x (fig. 38), the axis of x, and the ordinate through a point (/;, k) of

the curve. Here

Ax =
I

xT/dx = 2p- I x'-dx = $ p-h- = ^-h-k,
Jo Jo "" *

y~dx =:2p j xdx = pli- = \ hk~,

and -4=1 ydx = 2p^-\ x'' dx = ^ p-h"" = ^ hk.
Jo Jo

Fig. 38

Tlierefore X = I A, y = ^k.
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Ex. 2. Find the center of gravity of the segment of the ellii^se ^- ~ = 1
a?- 62

(fig. 39) cut off by tlie chord through the positive ends of the axes of the curve.

Divide the area into elements by lines parallel to OY. If we let y^ be the ordi-

nate of a point on the ellipse, and y^ the ordinate 'of a point on the chord, we
have as the element of area

dA = ((/2 - 2/i) dx.

The mass of this element may be considered as concentrated at (a;, ^ —\

p a

I (2/2-yi)i
- Jo

)xdx

Hence

f (2/2 - 2/i) dx
Jo

hr{y.!-yl)dx
Jo

Fig. 39 iy-2-yi)dx( {y-2-yi)(
Jo

From the equation of the ellii^se yo = - Va^ — x-, and from that of the chord

yi = - (a - ^)-

The denominator / {y-i — y\) dx is equal to the area of the quadrant of the

ellipse minus that of a right triangle, i.e. is equal to

Hence

-
I

X [ Va'- — x'^ — (a — x)'\(
aJo

' \dx
2a

Hhl)
'^""'^

y =
—- [(a2-x2)-(a-x)2]dx
ia^ Jo

«Ki-^) '^""'^

50. Center of gravity of a solid or a surface of revolution of

constant density. Consider a solid of revolution generated by re-

volving about OY the plane area bounded by OF, a curve x =f{^y),

and two lines perpendicular to Y. The solid may be resolved into

elements by passing planes perpendicular to OF at a distance dy

apart (§ 37). The same planes divide the surface of revolution

into elements (§ 43). If the density of ilie solid is uniform, it is

evident from the symmetry of the figure that the mass either of

an element of the solid or of the surface may be considered as

lying in F at the point where one of the planes which fixes the

element cuts OY.

M\
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Consequently, the center of gravity lies in Y, so that

x = 0.

Now if V is the volume of the solid and S the area of the sur-

face, we have, by § 37 and § 43,

dV= TTX^ dij and dS = 2 irx ds.

Consequently, to find the center of gravity of the solid we have

to replace dm of § 47 (2) 1)y p-rrx^dy with the result

/ piTxSj dy j xSj dy

I piTx^dy j x'^dy

(1)

and to find the center of gravity of the surface of revolution we

have to place in § 47 (2) dm = F

2 Trpx ds with the result

I 2 Trpxy ds I xy ds

I 2 irpx ds I X ds

(2)

Ex. 1. Find the center of gravity

of a splierical segment of one base

generated by revolving tlie area BDE
(fig. 40) about OY.

Let OB = a and OE = c. The equa-

tion of the circle is x^ + y"^ — a?,

and

Fig. 40

j^
\'^y dy £ "(a^-y - y^) dy ^^ ^^ ^ ^^^

Cx'^dy j {a^ -y-)dy
4 2a + c

Ex. 2. Find the center of gravity of the .surface of the spherical segment

of Ex. 1.
^ ^j

Using the notation and the figure of Ex. 1, we have ds = —— , and therefore

f\yds fjydy ^ + c

2
j

xds
j

dy

The center of gravity lies half w^ay between E and B.
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51. Center of pressure. The pressures acting on the elements

of a submerged plane area form a system of parallel forces perpen-

dicular to the plane. The resultant of these forces is the total

pressure P(§ 46) and the point at which it acts is the center of

pressure. To find the center of pressure of an area of the type

considered m § 46, we may proceed in a manner analogous to that

used in finding the center of gravity of a plane area, only we have

now to consider, instead of the w^eight of an element, the weight

of the column of liquid which it sustains.

Let (x, Ti) be the coordinates of the center of pressure. Then

the moment of the total pressure about OX is PTi, and the moment
of the total pressure about OH is Px. Also the pressure on an

element J[/,l/,-^^^^^if (fig. 33) is a force equal to wh-x^Ah plus an

infinitesimal of higher order (§ 46). By symmetry this force acts

at the middle point of the element, the coordinates of which are

—
' and hf, except for infinitesimals of higher order (§ 49). Hence
A

the moment of this force about OX is ^vh?x^Ah and the moment
about If is ^ivh^x^Ah, excejDt for infinitesimals of higher order.

Now the moment of the resultant must be equal to the sum of the

moments of the component forces. Hence
-1 r'b1=11 —^ nt)

PJi = Lim Vw/i.^ac.A/t = w{ Ji^x dh,
" = " t = «>'"

Px = LimV|- wh^xfAJi = ^ to j hrdh.

Ex. Find the center of pressure of the circular area of the Ex., § 46.

By symmetry it is evident that x = 0.

From the discussion just given,

Jb — a

= 2w j
^ a^ cos^ (p{b + a sin (p^drp (where h — b = a sin 0)

2

= 2 a'^hho f ^ cosV d0 + 4 a^bw f ^ cos^^ sin0 d0 + — lo f
' sin22

<f> d(f>
J _ V J_ JT 2 «/_ E

2 2 2

= iraP-b'^w + I
ira'^w.

But P = irofibw (Ex.
, § 46). Tlierefore ^ = 6 + —

.

46
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PROBLEMS

1. A positive charge m of electricity is fixed at 0. Tlie repulsion on a unit

charge at a distance x from is — • Find the work done in bringing a unit charge

from infinity to a distance a from O.

2. A rod is stretched from its natural length a to the length a+ x. Assuming

that the force required in the stretching is proportional to - , find the work done.

3. A piston is free to slide m a cylinder of cross section S. The force acting

on the piston is equal to pS, where p is the pressure of the gas in the cylinder.

Find the work as the volume of the cylinder changes from Vi to Vo, (1) assum-

ing pu = k, (2) assuming puv = k, y and k being constants.

4. A spherical bag of radius a contains gas at a pressure equal to po per unit

of area. Assuming that the pressure i^er unit of area is inversely proportional

to the volume occupied by the gas, show that the work required to compress the

bag into a sphere of radius & is 4 ira^po log - •

6

5. The resistance offered by any conductor to the passage of a current of

electricity is proportional to the distance traversed by the current in the con-

ductor and inversely as the area of the cross section of the conductor. If a

source of electricity is aiiplied to the entire interior surface of a cylindrical shell,

and the current flows radially outward, what resistance will be encountered ?

The length of the sliell is h, the right circular section of the interior surface is

of radius a and of the exterior surface is of radius 6, and a unit cube of the

substance of which the shell is made offers a resistance k.

6. A particle of unit mass is situated at a perpendicular distance c from the

center of a straight homogeneous wire of mass M and length 2 I. Find the force

of attraction exerted in a direction at right angles to the wire.

7. Find the attraction of a uniform straight wire of mass ifupon a particle of

unit mass situated in the line of direction of the wire at a distance c from one end.

8. Find the attraction of a uniform straight wire of mass M upon a particle

of unit mass situated at a perpendicular distance c from the wire and so that

lines drawn from the particle to the ends of the wire inclose an angle 6.

9. Find the attraction of a uniform circular wire of radius a and mass ^f

upon a particle of unit mass situated at a distance c from the center of the ring

in a straight line perpendicular to the plane of the ring.

10. Find the attraction of a uniform circular disk of radius a and mass M
upon a particle of unit mass situated at a perpendicular distance c from the

center of the disk, (Divide the disk into concentric rings and use the result

of Ex. 9.)

11. Find the attraction of a uniform right circular cylinder with mass M,
radius of its base a, and length I, upon a particle of unit mass situated in the

axis of the cylinder produced, at a distance c from one end. (Divide the cylinder

into parallel disks and use the result of Ex. 10.)
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12. Find the attraction of a vmiform wire of mass M bent into an arc of a

circle with radius a and angle a, upon a particle of unit mass at the center of

the circle.

13. Prove that the total pressure on a plane surface is equal to the pressure

at the center of gravity multiplied by the area of the surface.

14. Find the total pressure on a vertical rectangle with base b and altitude a,

submerged so that its upper edge is parallel to the surface of the liquid at a

distance c from it.

15. Find the center of pressure of the rectangle in the previous example.

16. Find the total pressure on a triangle of base b and altitude a, submerged

so that the base is horizontal, the altitude vertical, and the vertex in the surface

of the liquid.

17. Show that the center of pressure of the triangle of the previous example

lies in the median three fourths of the distance from the vertex to the base.

18. Find the total pressure on a triangle of base 6 and altitude a, submerged

so that the base is in the surface of the liquid and the altitude vertical.

19. Show that the center of pressure of the triangle of th§ previous example

lies in the median half way from the vertex to the base.

20. Find the total pressure on an isosceles triangle with base 2 b and alti-

tude a, submerged .so that' the base is horizontal, the altitude vertical, and the

vertex, which is above the base, at a distance c from the surface of the liquid.

21. A parabolic segment with base 2b and altitude a is submerged so that

its base is horizontal, its axis vertical, and its vertex in the surface of the liquid.

Find the total pressure.

22. Find the center of pressure of the parabolic segment of the previous

example.

23. A parabolic segment with base 2 6 and altitude a is submerged so that

its base is in the surface of the liquid and its altitude is vertical. Find the

total pressure.

24. Find the center of pressure of the parabolic segment of the previous

example.

25. Find the total pressure on a semiellipse submerged with one axis in the

sui'face of the liquid and the other vertical.

26. Find the center of pressure of tjie ellipse of the previous example.

27. An isosceles triangle with its base horizontal and vertex downward is

immersed in water*. Find the pressure on the triangle if the length of the base

is 8 ft., the altitude 3 ft., and the depth of the vertex below the surface 5 ft.

28. The centerboard of a yacht is in the form of a trapezoid in which the

two parallel sides are 1 and 2 ft. respectively in length, and the side perpen-

dicular to the.se two is 3 ft. in length. Assuming that the last-named side is

parallel to the surface of the water at a depth of 2 ft., and that the parallel

sides are vertical, find the pres.sure on the board.

* The weight of a cubic foot of water may be taken as 62^ lb.
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29. Find the moment of the force which tends to turn the centerboard of

the previous example about tlie line of intersection of the plane of the board

with the surface of the water.

30. Find the pressure on the centerboard of Ex. 28 if the plane of tlie board

is turned through an angle of 10° about its line of intersection with the surface

of the water.

31. A dam is in the form of a regular trapezoid with its two horizontal sides

300 and 100 ft. respectively, the longer side being at the top and the height 20 ft.

Assuming that the water is level with the top of the dam, find the total pressure.

32. Find the moment of the force which tends to overturn the dam of Ex. 31

by turning it on its base line.

33. A circular water main has a diameter of G ft. One end is closed by a

bidkhead and the other is connected with a reservoir in which the surface of

the water is 100 ft. above the center of the bulkhead. Find the total pi'cssure

on the bulkhead.

34. A pond of 10 ft. depth is crossed by a roadway with vertical sides.

A culvert, whose cross section is in the form of a parabolic segment with

horizontal base on a level with the bottom of the pond, runs under the road.

Assuming that the base of the segment of the parabolic segment is 6 ft. and

its altitude 4 ft., find the total pressure on the bulkhead which temporarily

closes the culvert.

35. Find the center of gravity of the semicircumference of the circle

x^ + ?/2 = a- which is above the axis of x.

36. Find the center of gravity of the arc of the four-cu.sped hypocycloid

x^ + yS = a^ which is in the first quadrant.

37. Find the center of gravity of the arc of the four-cusped hypocycloid

x-^ + y^ — a' which is above the axis of x.

38. Find the center of gravity of the arc of the curve 9 ay- — x(x — 3 a)^ =
between the ordinates x = and x = 3 a.

39. Find the center of gravity of the area bounded by a parabola and a

chord perpendicular to the axis.

40. Find the center of gravity of the area bounded by the semicubical

parabola ay'^ = x^ and any double ordinate.

41. Find the center of gravity of the area of a quadrant of an ellipse.

42. Find the center of gravity of the area between the axes of coordinates

and the parabola x' + y- = a-.

43. Find the center of gravity of the area contained in the upper half of

the loop of the curve ay^ = ax'^ — x^.

44. Show that the center of gravity of a sector of a circle lies on the line

. o:

2
'"'2

bisecting the angle of the sector at a distance - a from the vertex, where
3 rt

a is the angle and a the radius of the sector. —
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45. Find the center of gravity of the area bounded by the curve y = sinx

and the axis of x between x = and x = tt.

Jl 2 2

46. If the area to the right of the axis of y between the curve y = —~e-^ *

and the axis of x is ^, what is the abscissa of the center of gravity of this area ?

47. Find the center of gravity of a triangle.

48. Find the center of gravity of the area between the parabola 2/^ = 4px

and the straight line y = mx.

49. Find the center of gravity of the plane area bounded by the two parabolas

?/2 =: 4 px, and x^ = 4 py.

50. Find the center of gravity of the area bounded by the two parabolas

x^ — 4p (y — 6) = 0, x2 — 4py = 0, the axis of ?/, and the line x = a.

51. Find the center of gravity of the plane area common to the parabola

x2 _ 4py = and the circle x^ + y2 _ 32p2 _ o.

52. Find the center of gravity of the surface bounded by the ellipse

x2 ifl
^- ^ = 1, the circle x^ + 2/2 = a^, and the axis of y.

a- b^

53. Find the center of gravity of half a spherical solid of constant density.

54. Find the center of gravity of the portion of a spherical surface bounded

by two parallel planes at a distance hi and h'z respectively from the center.

55. Find the center of gravity of the solid formed by revolving about OX
the surface bounded by the parabola y~ = ipx, the axis of x, and the line x = a.

56. Find the center of gravity of the solid formed by revolving about OY the

plane figure bounded by the parabola y'^ = 4px, the axis of y, and the line y = k.

57. Find the center of gravity of the solid generated by revolving about the

line x = a the surface bounded by that line, the axis of x, and the parabola

2/2 = 4px.

58. Find the center of gravity of the .solid formed by revolving about OY
the surface bounded by the parabola x^ — ipy and any straight line through

the vertex.

59. Find the center of gravity of the solid formed by revolving about OY
x2 w2

the .surface bounded by the hyperbola — = 1 and the lines y = and y = b.

a2 62

60. Find the center of gravity of a hemispherical surface.

61. Find the center of gravity of the .surface of a right circular cone.

62. Find the center of gravity of the .surface of a hemisphere when the

density of each point in the surface varies as its perpendicular distance from

the circular base of the hemisphere.



CHAPTEE VI

INTEGRATION OF RATIONAL FRACTIONS

52. Introduction. The sum

a^x + b^ a^x + h^ a^x^ + h^x + Cg

each term of which is a rational fraction in its lowest terms with

the degree of the numerator less than that of the denominator, is

fix)
known by elementary algebra to be a fraction of the form

,
>

where ^ '

F{x) = (a^x + hj) {a„x + h.^ (a^x^ + h^x + c^

and /(.A-) = A ^{ci^x+ 1>.^ («3"''^+ h^x + c^+A^{a^x+ h^ («3j;^+ h^K+ c^

+ {A^x + B„) (a^x + h^) {a„x + &„).

Again, consider the sum

4 A[
,

A,
,

^,.>' + 5, ,

A',x+B',
3 +—^ +—^+ , ./ ; .^ ,. +

(a^*- + ^j)" aj^,« 4- &j^ a„x + 5^ (ag.r+ b^x + Cg)^ agO;^+ b^x + Cg

Here the linear polynomial a^x + &^ appears both in the first and

the second powers as denominators of fractions which have the

same form of numerator, a constant ; also the quadratic polynomial

a^x^-\-b^x+ c^ appears both in the first and the second powers as

denominators of fractions which have the same form of numerator,

a linear polynomial. If this sum is denoted by ^ ^
> then

F{x) = (a^x + b^f (a.,>, +
?>J (a.^x' + b^x + Cg)^

and f{x), when determined, will be of lower degree than F(x).

In both examples, /(x) and F(x) have no common factor and

f{x) is of lower degree than F(x).

103
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We proceed in the following articles to consider, conversely, the

fix)
possibility of separating any rational fraction "^—^ in which f{x)

is of lower degree than F{x) into a sum of fractions of the types

we have just added.

53. Separation into partial fractions. Consider now any rational

fraction > where f{x) and F{x) are two polynomials having
F{x)

no common factor. If the degree of f{x) is not less than that of

F{x), we can separate the fraction, by actual division, into an inte-

gral expression and a fraction in which the degree of the numera-

tor is less than that of the denominator.

For example, by actual division,

2 x'^ -f- x" -f x^ + x"— 18 ./; — 6 „ , x^+x"+2>= 2 ,c 4- IH
a;*-

9

a;"-

9

Accordingly, we shall consider only the case in which the degree

oif{x) is less than that of F{x).

Now F{x) is always equivalent to the product of linear factors

(I, § 42), which are not necessarily real ; and if the coefficients

of F{x) are real, it is equivalent to the product of real linear

and quadratic factors (I, § 45). We shall limit ourselves in this

chapter to polynomials with real coefficients and shall assume

that the real linear and quadratic factors of F{x) can be found.

We shall make two cases

:

Case I, where no factor is repeated.

Case II, where some of the factors are repeated.

Case I. As an example of this case let

F{x) = {a^x -f h^ (a„x + h.,) {a^x' + h^x -f- Cg).

May we then assume, as suggested by the work of the pre\ious

article, that

F(x) a^x + h^ a^c -f- h^ a^x? \- b^x -f- c^

where A^, A^, A^, and B^ are constants ?
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It is evident that the sum of tlie fractions in the right-hand

member of (1) is a fraction the denommator of which is F(x), and

the numerator of which is a polynomial, which, like /(.«), is of

lower degree than F(x).

It will he proved in §§ 55, 56 that A^, A^, A^, and B^ exist. As-

suming this, we may multiply both sides of (1) by -F(x), with the

following result

:

/(x) = A^{a^x+ &J («3.x'V l,x+ c.^)+A.^{a^x+ h^) (a^jf-^ h^c+ c^)

+ (A^ + B,) (a^x + h^) {a^x + h^). (2)

As (2) is to hold for all values of x, the coefficients of like

powers of x on the two sides of the equation must be equal.*

The right-hand member is of degree three, and by hypothesis the

left-hand member of degree no higher than three. Hence, placing

the coefficients of x^, x^, x, and the constant term on the two sides

of the equation respectively equal, we have four equations from

which to find the four unknown constants A^, A^, A^, B^.

Solving these equations and substituting the values of A^, A^,

A^, and B^ in (1), we have the original fraction expressed as the

sum of three fractions, the denominators of which are the factors

of the denominator of the original fraction. The fraction is now
said to be separated into partial fractions.

It is evident that the number of the factors of F(x) in no way
affects the reasoning or the conclusion, and there will always be

the same number of equations as the number of the unknown
constants to be determined.

* If the two members of the equation

aoX" + a^x''-^-\ \-a,^^iX + a,^=box" + bix"-'^ -\ \-h„_iX + b„ (1)

are identical, so that (1) is true for all values of x, the coefficients of like powers of x

ou the two sides of (1) are equal, i.e. ao= b^, ai= bi, , a„= b„.

Writing (1) in the equivalent form

(ao - 6o) ^" + ("1 - ^'i)
a;"-^ + • + («„-i - K-i) a: + (a» - K) = 0, (2)

we have an algebraic equation of degree not greater than n, unless Uq— Iq, ai= bi,
•••, a„=b„.

Then (2) is true only for a certain number of values of x, since the number of roots

of an algebraic equation is the same as the degree of the equation. But this is contrary

to the hypothesis that (1), and therefore (2), is true for all values of x. Hence ao= b^,

<^i= ^i> > «n = &ni ^s was stated.
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. , ^ . x2 + llx + 14
Ex. 1. Separate into partial fractions ^— — •

(x + 3) (x2 - 4)

Since the degree of the numerator is less than the degree of the denominator,

we assume
x^ + Ux + U A B ^ C

1

(X + 3) {x2 - 4) X - 2 X + 2 X + 3

where A, B, and C are constants.

Clearing (1) of fractions by multiplying by (x + 3) (x^ - 4), we have

x2 + 11 X + 14 = ^ (X + 2) (X + 3) + B(x - 2) (x + 3) + C(x - 2) (X + 2), (2)

or x^ + nx + U = {A+B + C)x^ + {5A+B)x + (6A-6B-iC). (3)

Since (3) is to hold for all values of x, the coefiBcients of like powers of x on

the two sides of the equation must be equal.

Therefore A + B + C = 1,

bA +5 = 11,

6^-6B-4C = 14,

whence we find Ar=2, B = l, and C = — 2.

Substituting these values in (1), we have

x2 + llx + 14 _ 2 1 2

(X + 3) (x-^ - 4) X - 2 X + 2 X + 3

If the factors of the denominator are all linear and different, as in this ex-

ample, the following special method is of decided advantage. In (2) let x have

in succession such a value as to make one of the factors of the denominator of

the original fraction zero, i.e. x = 2, x = — 2, x = — 3.

When x = 2, (2) becomes 40 = 20^, whence A = 2; when x = - 2, (2) be-

comes - 4 = - 4 B, whence B = 1 ; and when x = - 3, (2) becomes - 10 = 5 C,

whence C = — 2.

The method just used may seem to be invalid in that (2) apparently holds

for all values of x except 2, - 2, and - 3, since the.se values make the multi-

plier (x -I- 3) (x2 - 4), by which (2) was derived from (1), zero. This objection

is met, however, by considering that the two polynomials in (2) are identical

and therefore equal for all values of x, including the values 2,-2 and — 3.

. , , . x3 + 4 x2 + X
Ex. 2. Separate into partial fractions

x^ — 1

Since the degree of the numerator is not less than that of the denominator,

we divide until the degree of the remainder is less than the degree of the

divisor, and thus find

X8 + 4X2 + X _ 4x2 + X + l
_

,jv

X3 - 1

~
X3 - 1

The real factors of x' - 1 are x - 1 and x^ + x + 1. Hence we assume

4x2 + x + l_ A Bx + C
^2)

X8-1 ' ~X-1 X2 + X + 1*
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Clearing of fractions, we have

ix^ + X + 1 = A {x^ + X + 1) + {Bx + C) {X - 1)

= {A + B)x^ + {A - B + C)x + {A - C). (3)

Equating coeflBcients of like powers of x in (3), we obtain the equations

A+B = 4,

A -B + C = l,

A-C = l,

whence A = 2, B = 2, C = 1.

4x2 + a; + 1 2 2x + l
Hence — = h

x^ — 1 X — 1 X"'^ + X + 1

x3 + 4x2 + x , 2 2x + l
and •— — =: 1 + h

x^ — 1 X — 1 x2 + X + 1

The values of ^, B, and C may also be found by assuming arbitrary values

of X. Thus when x-= 1, (3) becomes 6 = 3 J. ; when x = 0, (3) becomes 1 = A — C;
and when x = 2, (3) becomes 19-1A+2B+C; whence A = 2, C =1, B = 2.

54. Case II. We will now consider the case in which some of

the factors of the denominator F(x) are repeated. For example, let

i^(«) = (a^x + hy (a.,x + &,) (a^x"^ + h^x + Cg)^.

We assume

F{x) (a^x + b^ a^x + h^ a^x + h^ {a^jt? + h^x + Cg)^

A^x + B^

a^x^ + h^x + Cg

as suggested by the work of § 52.

Multiplying (1) by F{x), we have an equation of the 6th degree

in X, since the degree oif{x) is, by hypothesis, less than that of F{x).

Equating the coefficients of x^, x^, x^, x?, x^, x, and the constant

term on the two sides of the equation, we have seven equations

from which to determine the seven unknown constants, A^, A[,

It is evident that, granted the existence of these constants, the

above method for determining them is perfectly general.
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Xi — Qx^ -\- 16
Ex. 1. Separate into partial fractions •

(X + 2) {x2 - 4)

Since the degree of tlie numerator is not less than that of the denominator,

we find by actual division

X4_6x2 + 1G ^^ o 2x2

(x + 2)(x2-4) ^ (x + 2)(x2-4)

2x2 ^ , B , C ,„,We now assume ^

—

— = -—
-I

-— H • ('i)

(X + 2) (x2 - 4) (X + 2)2 X + 2 X - 2

Clearing of fractions, we have

2x2 = ^(x - 2) + 5(x2 - 4) + C{x + 2)2

= {B + C)x2 + (^ + 4C)x + (-2yl -4B+4C). (3)

Equating the coefficients of like powers of x, we obtain the equations

B + C = 2,

A + 4C = 0,

-2^-45 + 4C = 0,

whence A=-2, B=^, C = 1.

Therefore substituting in (2), we have

2x2 2 ^ I , i

(X + 2) (x2 - 4) (X + 2)2 X + 2

so that finally

X* - 6x2 + 16 x-2 — + — T- +
(x + 2)(x2-4) (x + 2)2 2(x + 2) 2 (x - 2)

3 x^ + x6 - 6 x* - 8 x2 - 11 X +
Ex.2. Separate into partial fractions ^^ ,

2 (x^ — 1)2

By division we first find

3xT + x6- 6x*- 8x2-llx + n 3 1 x3-4x2-7x + 4— = - X + ; (i)

2(X3-1)2 2 2 (X3-1)2

We now assume

x3-4x2-7x + 4 A
,

B
,

Cz + D
H r +

(X3 - 1)2 {X-lf X - 1 (X2 + X + 1)2

Ex + F
X2 + X + 1

and clear of fractions. The result is

(2)

x^ - ix^ -7x + i = {B + E)x^ + {A + B - E + F)x*

+ {2A + B + C -F)x3 + (SA-B-2C + 1)- E)x^

+ {2A-B + C-2D + E-F)x + (A-B + D + F). (3)
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Equating the coefficients of like powers of x in (3), we obtain the equations

B + E = 0,

A+B-E + F=0,
2A-\-B+C-F^l,

3A~B-2C + D-E = -4, (4)

2A-B + C~2n-]-E-F = -7,

A-B + D + F=4,

whence A=- ^, B = 0, C = 3, Z> = 4, ^ = 0, F = |.

Substituting these values in (2), we have

a;3_4a;2_7x + 4 2 3x + 4 2

(x3 - 1)2 3 (X - !)- (X- + X + 1)2 3 (x2 + X + 1)

so that finally

3x" + x6-6x*- 8x2-llx + 9 3 1 2 3x + 4= :; a; + - - — +
2 (x3 - 1)2 2 2 3 (X - 1)2 (X2 + X + 1)2

2

^3(x2 + x + l)'

55. Proof of the possibility of separation into partial fractions.

In the last two articles we have assumed that the given fraction

can be separated into partial fractions, and proceeding on this as-

sumption we have been able to determine the unknown constants

which were assumed in the numerators. We will now give a proof

that a fraction can always be broken up into partial fractions of

the types assumed in §§ 53, 54.

Let the given fraction be _^' > where f[x) and F{ic) are poly-

nomials having no common factor.

Let x — r be a linear factor of F{x) which occurs m times,

and F^{x) be the product of the remaining factors. Then F{x)

= {x — r)"'F^{x) and

/('•) _ /(^^)

F{x) {x-ry"F^{x)

Now the equation

(1)

/(•^') _ -^ ^/M^iAL^
(2)

(x — r)"' F^{x) {X — ?)'" {x — r)'" F^{x)

is identically true, A being any constant.
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If we can determine A so that

f{r)-AF,{r)=0, (3)

theu f(x) — AF^{x) is divisible by « — r (I, § 40) and may be de-

noted by {x — T)f^{x).

But by hypothesis neither /(«) nor F^{x) is divisible by {x — r),

and hence /(r) ^ and F^{r) ^ 0. Tlierefore, from (3),

^ = /^, (4)
F,{r)

a constant, which is not zero.

With this value of A we have

F{x) {x-r}'" {X - r)"'-'F^{x)
^

Applying this same method to ^ ' ^—- > we have^^
'' ^ {x — ry"~^F^{x)

^^-rr-'F,{a^ (x-r)'"-' {x-r)-'F,{x)

where J,= 47T ^nd (x-r)f,{x)=f,{x)-A,F^{x).

It is to be noted, however, that A^ may be zero, since /^(r) may

be zero ; but A^ cannot be infinite since F^{r) =^ 0.

Applying this method m times in succession, we have

F{x) {x-ry (x-r)"'-' (x-ry-'' x-r F^{x)

where A, A^, A^, • • • A^ are all finite constants, of which A is the

only one which cannot be zero.

By the above reasoning it is evident that corresponding to any

linear factor of the denominator which occurs m times we may

assume m fractions, the numerators of which are constant, and the

denominators of which are respectively the mth, the (m — l)st,

• • •, 1st powers of the factor.

After these fractions have been removed, the remaining frac-

f (x)
tion, i.e.

'^"'^
> may be treated in the same way.

F^[x)
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In the above discussion r and the coefficients of f{x) and F{x)

may be real or complex. Consequently, the method may be apphed

successively to each factor of F(x), thus making a complete separa-

tion into partial fractions. If, however, f{x) and F{x) have real

coefficients and we wish to confine ourselves to real polynomials, we

will apply the method to real linear factors only, and proceed in

the next article to deal with the quadratic factors.

56. Proceeding now to the case of a quadratic factor of F{x), of

the form (x — cif + If, which cannot be separated into real linear

factors, let ^,, x r/ x1 , T^^mr^, \'

F{x) = [(x — af+ h-]'"F^{x).

Then ^^ = P^^ (1)
771/ .A r/„^ „\2 1 7,21m IT / .,\ V '

f(x) ^ f{x

F{x) [{x — af-\- h'^Y'F^ (x)

Now the equation

f(x) Ax + B f(x)-(Ax + B)F,(x)

[{X - ay + bJ'F^{x) [{X - af + &^]"' \{x - af + IffF^c)

is identically true, A and B being any constants.

If we can determine A and B so that

/(a + hi) -[A{a + hi) + B] F^{a + hi) = 0,

and f{a-hi)-[A{a-hi)+B]F^{a-hi)=0, ^

then f{x) — (Ax + B)F^{x) is divisible hj x — a — hi and x— a -\-hi

(I, § 40), and hence is divisible by their product {x — af+ If, and

we can place

f{x) - {Ax + B)F,{x) = \{x - a)^+ h^y.ix).

By hypothesis neither f(x) nor F^(x) is divisible by {x — a)^ -\- 5^;

hence f{a ± hi) 4^ and F^{a ± hi) ^ 0.

Denoting ^^'^ "^ ^'^ by P + Qi, and
^''"' ~ ^'

^r by P - Qi, we

shall have^> + ^^) ^^(^-^^)

A{a + hi) +B=P+Qi
and A{a-hi) +B=P- Qi,

where P and ^ are finite quantities, both of which may not be

zero at the same time.
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Therefore aA + B = P,

two equations from ^yhich A and B are found to have real finite

values which cannot both be zero.

With these values for A and B we have

f(xi__ Ax + ^ ^ _ /i(->-)

F{x) [{X - af + b']'" [{X - a)-+ ¥]'" -'I\{x)

and repeating this process as in the case of the linear factor we

have finally

/(^;)^ Ax + B A^x + B, />)
F{x) [{X - af+ Wr [{X - af+ &-^]"'- F,[x)

It should be added that A and B may not be zero at the same

time, and that any or all of the other constants may be zero.

The same method may evidently be applied to each one of the

quadratic factors of F{aS).

To sum up, if

F{x) = (x- r^Y{x — r^)" • • • [{x — a)' + h"]' • • •

,

and we apply the above methods to the linear factors in succession

and then to the quadratic factors in succession, we have finally

/(^)^ A A, A^

B B, B.

(x-r,)" (a; -7-,)"-^ x-r^

Cx + D C^x + D^
^ [{X - af + &•-']' ^

[(,« - af + h^y-'
^"'

C,x + D, ^

{x — af+ h

where I is either zero or an integral expression in x.

'

But if the degree oi f{x) is less than that of F{x), and we shall

always reduce the fraction to this case by actual division, ^-^ and
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all the fractions on the right-hand side of the equation are zero

when a; = CO ; hence / is zero and the fraction is separated into

the partial fractions noted.

57. In tlie discussion of the last article the quadratic factors of

the denominator are only those which represent the product of two

conjugate imaginary factors, all the real linear factors having been

previously removed. But some of these real linear factors may be

surd, in which case the algebraic work of the determination of the

numerators (§§ 53, 54) is burdensome. If, however, the surd fac-

tor is of the form x — a — V&, where a and h are rational, this work

may be avoided in the following manner

:

(1) It may be shown by a method similar to that used in I,

§§ 44, 45, that if F{x) has only rational coefficients, and x — a — "vb

is a factor of F(x), then x — a + y/b is also a factor, and hence that

F(x) contains (x — «)^— b as a factor.

(2) If [{x — a)'-^— b]" is a factor of the denominator F(x),the

other factor being F^{,i^, then

F{x) = [ix-af-brF,{x).

Then the rational fraction ' may be proved equal to

Cx + D f,{x)

^l^^^-af-bY [(.^-af-liY-'F^{x)

The proof, being similar to that of the last article, is left to

the student.

Accordingly, if all the coefficients of the denominator are rational,

and the surd factors, if any, are of the type just noted, the fraction

will be separated into partial fractions, the denominators of which

shall be of the forms {x — rf, [{x — af+ 5']", and [{x — af— &]".

58. Integration of rational fractions. The integration of a

rational fraction in general consists of two steps: (1) the sepa-

ration of the fraction into partial fractions
; (2) the integration of

each partial fraction, and the subsequent addition of the integrals.

There will then be four types of integrals to consider

:

r Adx r Adx r (Ax + B) dx r (Ax + B)dx
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The first three, however, have ah-eady been discussed. Turning

then to the fourth, we may put that in the form

[2{x-a)] + B+aA

J [(^' -«)•'+ 6-]"

which is equal to the sum of the two integrals

and

^ {\(^x- af + h'^y"2{x- a) dx

The first of these integrals is readily seen to be

A 1

2{-n + l)' [{x-af+y'Y'^'

The second may be evaluated by placing x — a = 'b tan 6. Then

dxr dx 1 r 2

I = —;—7 I cos de.

Wlien n = 2, this integral is evaluated as in Ex. 3, § 13. The

case n> 2 rarely occurs in practice, but if it does occur,

/cos^"~^ddd may be evaluated by methods of § 65, or the inte-

/^ /7y . ...
ral

— may be evaluated by successive applications
[{x — af + y^Y

of the reduction formula
/i

/
du

2 (vt - 1) cf {u' +^ + (2^-3)/.
du

{li^+d-y-^

which will be derived in § 73.

Ex. 1. Find the value of |
-^^— ^—^

J x3 + 2a;2_x-2

Since x" + 2 x2 - a; - 2 = (x - 1) (x + 1) (a; + 2), we assume

x2 + 8 X + 3 ABC
+ 7 +

x3 + 2x2-x-2 x-1 x + 1 x + 2
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Determining A, B, and C by the methods of the previous articles, we have

a;2 + 8x + 3 2 2 3

x^ + 2x^-z-2~x-l x + 1 x + 2

r (a;g + 8x + 3)dx _ /• / 2 2 ^ \7
J x^ + 2x'^ -x-2~J \x-l^x + l~x + 2/

= 2f^^+2f-^-Sf-J X — I J X + 1 J X + 2

= 2 log(x - 1) + 2 log(x + 1) - 31og(x + 2) + C

^ (x-l)^(x + l)^

(X + 2)3

,
(X2 - 1)2= log^^ '-\-C.
(X + 2)3

Ex. 2. Find the value of f
(^^^ + 2x2 + 6x + 18)c^x

J 8 x3 + 278 x3 + 27

_,,... 8x* + 2x2 + 0x + 18 2x2-21x + 18By division, = x A (Y\
8x3 + 27 8x3 + 27 ^'

The real factors of 8x3 + 27 are 2x+ 3 and 4x2 - 6x + 9. Therefore, we
assume „ „2x2-21x + 18 _ A Bx + C

8x3 + 27 ~ 2x + 3 "^4x2- 6x + 9' ^'

Determining A, B, and C by the methods of the previous articles, we have

2x2-21x + 18 _ 2 3x

8x3 + 27 ~2x + 3 ~4x2- 6x + 9' ^'

'(8x* + 2x2 + 6x + 18)dx r/ 2 3xr (8x* + 2x^ + 6x + 18)dx _ r/ 2 _ 3x \

"J 8x3 + 27 ~Jv"'"2x + 3~4x2-6x + 9/

= fxclx+ f^^^ r_Sxdx
J J 2x + 3 J4x2-Gx + 9^'/I z' 2 fir

xdx = -x2,
I

:!^ = iog(2x + 3),
2 J2X + 3 *^ "

r Sxdx _3 r (8x - 6)dx 9 r dx

-'4x2-6x + 9~8J4x2-6x + 9 iJ 4x2-6x + 9

3, ,. „ ^ ^. 3 4x - 3= -log(4x2 - Gx + 9) + ^tan-i =-•
8 4 V3 3 V3

Substituting the values of the integrals in (4), we have finally

(8 x^ + 2x2 + 6x + 18)(/x

8 x3 + 27

-x2+ log(2x + 3)- ^log(4x2-6x + 9) ^tan-i ^^"!^ + C
2 8 4V3 3V3
1 „

, ,
2x + 3 3 ,4x -3 ^

- x2 + log tan-i :^ + C.
2 (4x2-Gx + 9)« 4V3 3V3

/
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Ex.3. Findtlie value of ^ ~

The fraction being tlie same as that of Ex. 2, § 54, we have the first step of

the woi'k completed.

/

Hence

(3x'' + x6 - Gx* - 8x2 _iix + 9)dx

2 {x3 - 1)2

rS , rl, /- 2dx /-(3x + 4)dx r 2dx
=^ -xdx+ -dx- +^ ^^—^—;+ ^

—

-, :• 1)
J 2 J 2 J 3 (X- 1)2 J (x2 + x+l)2 J 3(x2 + x + l)

Now the first, the second, the third, and the fifth integrals are readily eval-

3 1 2
uated by previous methods, their values being respectively -x-, -x, -

,^o,i 423 (x-1)
, 4 ^ ,2x + 1

^ '

and = tan- 1 ^- •

3V3 V3
(3x + 4)dx

There remains the fourth integral |
-^^

, which may be reduced to" J (X2 + X + l)--^

- r(x2 + a; + l)-2(2x + l)c?x + - f
^ -•

2 J
^

2 J (x2 + X + 1)2

3
The first integral is 1 while the second integral may be

2(x2 + x + l)/dx
, and can be evaluated by placing

[(2x + l)2 + 3]2

2 X + 1 = V3 tan e. The result will be

40 r ^ = ^- fcos^-ed9
J [(2x + l)2 + 3]2 3V3-'

= ~ e + sin 2

3 V3 3 V3

10 ,2x + l 5 2x + l= tan-i = h -

3 V3 V3 x2 + X + 1

(3x + 4)d!x 3 10 ^ ,2x + l
J '- =

1 tan- 1 ^-
(X2 + X + 1)2 2 (X2 + X + 1) 3 V3 V3

Hence (
^ " '

'' =
1 ^ tan

5 2 X + 1
+

6 x2 + a; 4.

1

Finally, substituting the values of the integrals in (1) and simplifying, we

have, as the value of tlie original integral,

3,1 2 5x-2 ,14 , ,2x + l ^
-x2 + -X H 1- ^tan-1 \- C.
4 2 3{x-l) 3(x2 + x + l) 3V3 V3



PKOBLEMS 117

PROBLEMS

Separate tlie following fractions into partial fractions

:

. a;2 + a;-4
^

x"^ - x + 6

;a;3 + 5x2-6x 2x^ + x'^ + ix + 2

2 z« + 2 x3 + X - 1 .- 3x2 -4x
x3 + x2 — 2 X x3 — 2 X + 4

3
3x + 1 - . 12 x5 + x3 + 2 x2 - X

4x3 + 8x2-x-2 3x4-2x2-1

. x3- llx-1 ._ 2x8 -x2 + 5x4-2

x3 + 2x2 - 6x-6' ''
X* + 3x2 + 4

_ 3x2-x-3 ._ x5 -x4 + x3- 2x2 -2x-l
X* + x3 x* + 3x2 + 2

g x2-7x + 2 . x* + 5x2 + 2x + 6

'4x*-4x3 + x2' x5 + 6x3 + 9x

-, xS-x2-12x-8 ,- x* + x3 -4x2 - 6x +

8

7. 10.
x{x + 2)3 x5 -2x* - 4x3 + 8x2 + 4x

g 8x* -4x3- 2x2 + 7x j_ x3 - x2 + X + 3

(2X + 1)3 (X2 + X + 1)2

Find the values of the following integrals

:

(14x + 3)dx „^ /'14x2-3x-15
i x2 + 4 X — 15 J x3 — X

-g ,
(3x + 4)dx q^ f (6-12x)dx

J

r (Bx + 4)dx 2^ /• (t

J 2 + 3x-9x2' J x3- 2 x2 - 5 X + 6

.g r {3x~ 10) dx /' (3x2-10x-16)dx
J2x2 + 5x-12' J x3 + x2-4x-4 '

20 r(3x + 7)dx^
29. rJ^^i±^l±J-dx.

-'x2 + 4x + l J2x3 + 5x2-3x

2^ r (5x + 4)d!x .
/' 6x4 + 17x3-3x2-6x + 4

^^
J 4x2 + 4x + 2

'

J 2 x3 + 7 x2 + 2 X - 3

22 /'X3 + X2 + X +
1^^^ 3^ .4X4 + 10X3-8X2-20X + 1^^

^ 3-2x-x2 J 4x3 + 8x2-9x-18

23. f'^'
+ '^-^-^dx. 32. r^^------"dx.

^ 9x2 + 12x + 8 J 4x3- 4x2 + x

24

9x3 + 3x2 -X -3^ -„ /•16x2-18x + 3
dx. 32. / (

9x2 + 12x + 8 J 4x3- 4x2 + x

x3 + 2x2 + 3x^ /- (x2 + 2x + 4)dx^x^+2x-M^x^^
33. f-

x3 + 6x2 + 12x+8

2x2-llx-6, „. /'(6x2 + 10x + 9)dx
25. r^^^-""-^dx. 34. fiJx3 + x2-6x J4+ x2-6x J 4x3 + 8x2- 3x-

9
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(3 -2a;- 4x2) dx ^g r (15z2 - 29x - 17)dx

4x3 + 12x2 + 9x + 2
'

J (3 x2 + 2) (x^ - 2 x + 3)

r (3-2x-4x2)dx ^g /- (15x2 - 29x - 17)dx

J 4x3 + 12x2 + 9x + 2' J

3g r {^x-2)dx
^g

/" (2x2 + x + l)dx

J x3 + 2x2-4x-8" J (x2 + 3)(2x2 + x + 5)'

37 r2 + 5x-x2-2x3^^^
^x'> -3x3-7x2-4x + 2

^

J x'' + 2x3 + x2 47.
J ^^-^-^

-(

^^•/ 'fx^-e^^'
^^-

48 r 4x^-4x3 + x2-|-13x-3

J 8 x3 + 27
• X* — 2 x' — X — 1

39. r
*"

r:"^ ^dx

16x5- 8x*- 8x3+ 2x2-1 ""J (x2-3)(3x2 + 3x + 5)

40. /

'

X3 + X2 - 2

x(x-\r 49 r 9x3 + 20x2 + 21x -5^^

dx.
16x4-8x2 + 1 /- x2 + 2

X

^^ j
4x2 + 6x-5

^^
-J (X2 + 3)

50. r^JL^^dx.
J (X2

~"

2 x3 + 10 x2 + 4 X

42 r (x''-13a:)dx ^^- J ^
(2x2 + 1)2

^"^

• J x3-3x2 -2x + 2
5x3-llx2 + 19x-27 ,

dx..- /-3x3-12x + 8, 52. f
43.

I
dx. J x5 + 6x3 + 9x

J X* — lb

44 r ^^^ 53 r2 + IPX + 2x2 -6x3^
• J X* + (a-6)x2- a6 J x- 4x3 + 4x5



CHAPTER VII

SPECIAL METHODS OF INTEGRATION

59. Rationalization. By a suitable substitution of a new vari-

able an irrational function may sometimes be made a rational

function of the new variable. In this case the integrand is said

to be rationalized, and the integration is performed by the methods

of Chap. VI. We shall now discviss in §§ 60-63 some of the

cases in which this method is possible, together with the appropri-

ate substitution in each.

60. Integrand containing fractional powers of a -f bx. Expres-

sions involving fractional powers of a -|- ^^ and integral powers of

X can be rationalized by assuming

a+'bx = «",

where n is the least common denominator of the fractional expo-

nents of the binomial.

For if a + hx = 2", then « = -{«" — a) and dx = - z"~'^dz. Also,

if (a+ hx)" is one of the fractional powers of a + hx, {a + hxy = z'"',

where j)n is an integer. Since x, dx, and the fractional powers of

a + hx can all be expressed rationally in terms of z, it follows that

the integrand will be a rational function of z when the substitution

has been completed.

Ex. 1. Find the value of
/;

x'^dx

Here we let 1 + 2 a; = z^ ; then x = ^ (z^ — 1), and dx = | z^ dz.

Therefore f
^"^^

= - f {z^ - 2z^ + z)dz

= 3(^28-|z5 + iz'^) + C

= 5I0 2^ (-5 ^^ - 1<3 z^ + 20) + C.

Replacing z by its value (1 + 2x)^ and simplifying, we have

r_:^_d^_ ^ _3_^^ ^ ^ x)^^ - 12 x + 20 x^) + C.
•^ (l + 2x)^ 320

'

119
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dx.Ex. 2. Find the value of f (-^ + 2)^ - (x + 2)^

'^ (X + 2)* + 2

Since the least common denominator of the exponents of the binomial is 4,-

we assume x + 2 = z* ; then x = 2* — 2, and dx = 4 z^dz. On substitution, the

integral becomes

p^-g*
^^ ^ 4 r/^s _22_2z + 2 +

^^~^
Vz

J z2 + 2 J \ z^ + 2/

= 4 ri z4 _ 1 ^3 _ 22 + 2 z + 2 log (z2 + 2) -^ tan- 1 -^-=1 + C.

L4 3 V2 V2J

Keplacing z by its value (x 4 2)% we have

/
(X + 2)^ - (X + 2)i

dx
(X + 2)^ + 2

= x + 2 - 4(x + 2)i -4(x + 2)^ + 8(x + 2)« + 81og(Vx + 2 + 2)

-8V2tan-i^^^l^ + C.

V2

61. Integrand containing fractional powers of a + bx". If the

integrand is the product

a;™ {a + hxy,

where q and r are integers, there are two cases in which rational-

ization is possible.

Case I. When is an integer or zero. Let us assume

a + l)jf = z^

and observe the result of the substitution. Then

1 i ^ i_i _
x = —(f—aY, and dx = —-^(f

— a)"- z'' ^ dz.

Therefore

x"\a + hxydx = —^ ^''+'--^(^'" — ff)^^ dz.

But if is an integer or zero, this new integrand is a
n

rational function of z, and the assumed substitution is an effect-

ive one.
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Ex. 1. Find the value of Cx^l + 2x^)hlx.

Since = 2, we assume 1 + 2 a:3= z2^ whence x3=~ (22-1), and x^dx= zdz.^
r 2 3

The new integral is J / {z* - z^) dz, which reduces to v,L ^3 (3 ^2 _ 5) + (7.

Replacing z by its value, we have

Jx^l + 2x»)'^dx = ^^(l + 2x3)^(3x3 - 1) + C.

Case II. Wlien \- - is an inteqer or zero. Here we will
n r

assume ,
,

a + ox' = x'^z''.
1 1

Then x = j and dx = — dz.

(z'--hf niz'--hf^^

+ -

ra

1+1
, 7

Therefore x"Ua -\- hx"Ydx = — '^

dz.

71 (Z' — 0) " '

This new expression is a rational function of z.

Ex. 2. Find the value of f
^^^ + ^ ^'

ax.of fi^
J X*

Here [-
" = 1 and accordingly we let 2 + x^ = x-z"^. After the sub-

n r ' , ,

, the value of which is

z2 — 1 2 z — 1

Replacing 2 by its value, we have

r{2 + x2)' ^ V2 + x2(x2 - 4) 3 , V2 + x^ + x ^
J X^ 2 X 2 a/9 _U t2 _ t

62. Integrand containing integral powers of Va + &x + x^.

If the integrand contains only integral powers of x and of

Va + 5c« + a?y it may be rationalized by the substitution

V o -\- hx + x^ = z — X

;

for from this equation

z^ — a / r, ^\-'bz-\- a
X = . ,

Vft + i.^t- + X' =
22+6 22r+&

and dx = —^^^^

'^-—-^ tZ?.

(2 z + ?^)--'

The result of the substitution is evidently a rational function of z.
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x'^dx

Vl + X + a;2

Ex. Find the value of I

Letting v 1 + x + x- = z — x, we have as the new integral 2 / —dz^

which, by the method of Chap. VI, is ^^ ^ + -^^^

ir „ „ 48Z + 33 , ,-, ,
n ^

- 22 _ 32 Z log(2z + l +C.
8L 4(2z + l)2

°^
'J

Replacing z by its value x + Vl + x + x^, we have as the value of the

original integral

- [(x + Vl + X + x2)2 - 3 (x + Vl + X + x2)

_ 48x + 33 + 48Vl + x + x2 _ log (2 x + 1 + 2 Vl + x + x2)1 + C.

4(2x+l + 2Vl + x + x2)2
-•

If the coefficient of ixf' under the radical sign is any positive

constant other than unity, we may factor it out, thereby bringing

the expression under the case just discussed.

63. Integrand containing integral powers of Va + bx — :^. In

this case the substitution of the previous article fails, as a? could not

be expressed rationally in terms of z. We may now, however, write

,7, 2 /27\4« + &-/ h
a -\- ox — X = a — [X — ox) = x — -

an expression which can be factored into two linear factors of

the form {i\+ x) (r._,— x), which are real except when— ^ 0.

But then it is evident that 1-^' — -| is negative for all

values of x, and hence y/a + bx — x;^ is always imaginary.

Now place

Va + bx — X?- = V(^i + '^) (''2 — x) = z (r^— x).

Solving this equation for x, we have

x = -^- i
> -ya + hx — x^ = M^ -^

,

z'+l z'+l

and ax = —^ --^ dz.
(z'+iy

After the sul)stitution the new integrand is evidently a rational

function of z.
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dx
of/-

X V2 — X — x2

Since 2 — x — x^ = (2 + x) { 1 — x) , we assume

V2 - X - x2 = V(2 + x)(l - x) = z (1 - x).

/dz
, which is equal

2^ — 2
1 z - V2

to -— log -^ + C.

2 + V 2 1^-—
Replacing z by its value a /^^^

, we have
X

dx 1 , V2 + X - V2 - 2x— = = log ^;^^ :z=^
X V2 — X — x2 V2 -^2 + X + a/2 — 2 X

64. Integration of trigonometric functions. There are certain

types of trigonometric functions for which definite rules of pro-

cedure may be stated. The simplest case is that in which the

integrand is any power of a trigonometric function multiplied by

its differential, e.g. I sin^ x cos x dx, which may be integrated by one

of the fundamental formulas. It is evident that this class requires

no further consideration here. To deal with the more complex cases

it is usually necessary to make a trigonometric transformation of

the integrand, the choice of the particular transformation being

guided by the formulas for the differentials of the trigonometric

functions. Some of these transformations are given in §§ 65-70.

65. Integrals of the forms /sin"j:djr and \Q,os"xdx. We may
distinguish three cases.

Case I. n an odd iiiteger. In the integral I sm^xdx we may
place . , • _i • 7

sm X dx = sm" x sm x dx.
n-\

Now sin x dx = — f/(cos x), and sin"~^a; = (1 — cos~,t) ^
, which

is a rational function of cos x since —;— is an integer.

Then / ^\\\"'xdx = —
j (1 — cos^a-) ^ d{cosx).

In like manner we may prove

/ cos"xdx= I (1 — sin^A') ^ d{smx).
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Ex. 1. Find the value of I ain^xdx. * m

j
sin^xdx = — 1(1 — cos2x)2d(cosa;)

= — cosx + I cos^a; — ^ cos^x + C.

dx
Ex. 2. Find the vakie of |

J cos^x
/dx c d(sinx) ^ . , .=

j
^^ To integrate, place sin x = z

cos^x J {\- sin2x)2 ^ '

^ Then

r d (sin x) r dz \ z 1,1 — 2_
I

'^ ^_ -
\

= log 1- C
J (1 - Sin2x)2 J (1 - ^2)2 2 1 - 22 4 * 1 + z

1 sin X 1 , 1 — sin x ^= log h C.
2 cos2x 4 1 + sinx

Case II. n a positive even integer. In this case we may evaluate

the integral by transforming the integrand by the trigonometric

formulas sin'^ = |( 1 - cos 2 x),

cos' a; = ^ (1 + cos 2 x),

as shown in the following example.

Ex. 3. Find the value of | cos'^xdx.

Applying the second formula above, we have

/ cos^xdx = \ \
dx + \ { cos2xdx + | I cos2 2xd?;.

Applying this formula a second time, we have

I
cos- 2xdx = % j (1 + cos 4 x) dx.

Completing all the integrations, we have finally

I X + 1 sin 2 X + ^L •'^i" 4 x + C.

Case III. n a negative even integer. In this case we replace

sin X by and cos x by and proceed as in § 68.

66. Integrals of the form j sin'"x cos"x dx. There are two cases

in whicli an integral of this type may be readily evaluated.

Case I. Either m or n a positive odd i^iteger. If on, for example,

is a positive odd integer, we place

sin™ a; cos" a? dx = sin^^-^a.' cos" a; (sin x dx)
m —1

= — (1 — cos'ic) ' cos" a; c? (cos a:).
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7/2/ 1

Since by the hypothesis —-— is a positive integer, it is evident

that the new integral can readily be evaluated.

Similarly, if n is an odd integer we express the integrand as a

function of sin x.

Ex. 1. Find the value of | Vsinx cos^xdx.

/ Vsinx cos'^xdx =
| Vsinx(l — sin2x)d(sinx)

= 52_.sin^x(7-3sin2x) + C.

Sometimes when one of the exponents is a negative integer the

same method is apphcable, but it is apt to lead to functions the

integration of which is laborious.

Ex. 2. Find the value of \

sin^x
dx.

C^wv-x , /^sni2xd(.sinx) r zHz , , . ,

I
ax =

I
— ^- =

I
(where z = sin x)

J cosx J 1 — sm^x ^ 1 — z2

= -z + \\og\±^ + C
2 1 — z

1 , 1 + sin X _= - sin X + - log :; ; h C.
2 1 — sm X

Case II. Both m and n positive even integers. In this case the

integrand is transformed into functions of 2 a; by the two formulas

of the last article and the additional formula

sin X cos a:; = ^ sin 2 ic.

Ex. 3. Find the value of j sin^x cos^xdx.

Placing sin^x cos*x = (sin x cos x)^ cos^x,

we have sin^xcos^x = ^sin2 2x(l + cos2x).

Therefore ( sin^ x cos* x dx = ^ rsin2 2 x dx + ^ rsin2 2 x cos 2 x dx.

Applying the same method again, we have

/ sin2 2xdx= i /(I — cos 4 x) dx.

Completing all the integrations, we have finally

I
sin^x cos*x dx = ^'^ x + J^ sin^ 2 x — gL sin 4 x + C.
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67, Integrals of the forms / tan" jr dx and / ctn"x dx. Since tan x

and ctn x are reciprocals of each other, we need consider only the

case in which 7i is a positive quantity. Accordingly, if n is a

positive integer we may proceed as follows. Placing

tan"*' = tan"~^a; tannic,

and substituting for tannic its value in terms of secic, we have

tan"a; = tan"~^«(sec^a; — 1).

Therefore | tan"a;rf,«= I tQii^~'^x SiQC^xdx— j ta.n"~^xdx

= tan"~-^.K— / tan''~^xdx.
n-1 J

It is evident that the original integral may be completely evalu-

ated by successive applications of this method. The same method

is evidently applicable to the integral I ctn" x dx.

Ex.1. Find the value of I tan^xdx.

Placing tan^x = tan^cc tan^x = tan-^x(Rec2x — 1),

we have / tan^xdx = j tan^xsec^xdx —
|
tan^xdx

= ^ tan^x —
I
tan^xdx.

Again, placing tan^x = tanx(sec2x — 1),

we have | tan^xdx =
|
tanxsec^xdx — I tanxdx

= ^ tan^x + log cosx + C.

Hence, by substitution,

I
tan^xdx = l tan*x — ^ tan2x — log cosx + C.

Ex. 2. Find the value of j ctn*2xdx.

Placing ctn*2 X — ctn^ 2 x (csc^ 2 x — 1),

we have
j
ctn* 2 x dx = I ctn^ 2 x csc^ 2 x dx — j ctn^ 2 x dx

= - ^ ctn3 2 X - rctn2 2 x dx.

Again, jjlacing ctn^ 2 x = csc^ 2 x — 1,

we have |
ctn^ 2 x dx = / (csc^ 2 x — 1) dx

= - ^ ctn 2 X - X + C.

Hence
f
ctn* 2 x dx = — ^ ctn^ 2 x + ^ ctn 2 x + x + C.
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68. Integrals of the forms I sec"x dx a.nd lcsc"xdx. We shall

consider these integrals only for the case in which n is an integer.

Case I. If n is a positive even integer^ we place

= I (l + tan'.r) ' d{t^nx),

^ 2
where the integrand is a rational function of tan x, since —-— is

a positive integer.

In the same manner, we may show that/p n — 2

CQc"xdx—— I (1 + ctn'^a;) ^ d(ctnx).

Ex.1. Find the value of |sec*3xdx.

Csec*Sxdx = i ("(1 + tan2 3a;)d(tan3x)

= 1 tan 3 X (3 + tan2 3 x) + C.

Case II. If n is any integer other than a positive even integer, it

is evident that the integral falls under the case of § 65 when sec x

is replaced by or when esc x is replaced by , as the case
, cos x sm Xmay be.

Ex. 2. Find the value of | secxdx.

dx rcosxdxr , f dx ri
\ secxdx = / =

I
-

*/ J cosx J COS-'X

/d (sin x) 1 , 1 — sin X ^—
^^ '- = - - log H C

sin2 X — 1 2 1 + sin X

1 , 1 + sin X ^= -log / .
+C

2 1 — sm X

1
, (1 + sinx)2 „= - log ^—^!^ ~ + C

,2 1 — sin'^x

1, /I 4- sin x\ 2 ^

2. \ cosx /

= log (sec X + tan x) + C.

In like manner it may be shown that / esc x dx = log (esc x — ctn x) + C.
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69. Integrals of the forms I tan'"jrsec"xdj:and j ctn"'xcsc"xdx.

Case I. If n is a positive even integer, we may write//^ n —

2

tan"'*' sec"*d« = | taii"'a;(l + tan^aj) ^ (^(taii«),//-> n —

2

ctn'"^ Q,^Q''xdx — — \ ctu^o; (1 + civ^x) ^ d (ctn x),

where is a positive integer.

Ex.1. Find the value of rtan?2zsec*2xdx.

Placing sec* 2 x = sec^ 2 x sec^ 2 x, we have

jtan^ 2 X sec* 2xdx = ^ ftan' 2 x (1 + tan^ 2 x) cZ (tan 2 x)

= 1 tan5 2 X + I tan= 2 x + C.

Case II. If m is a positive odd integer, we place

I
tan" a:; sec"ic dx = / (tan'""^^; sec""^a;) (tan x sec a; c?a?)/m — 1

sec"~^a.'{sec^aj — 1) ^ (^(seca?),

and / ctn™ a? G&Q''xdx = I (ctn"'~^a; csc"~^a:) (ctn x esc x dx)/7n — 1

csc''~'^a;(csc^a:; — 1) ^ c^(csca:;),

where —-— is a positive integer.

Ex. 2. Find the value of ( tan^ 3 x sec' 3 x dx.

jtan^axsec^SxtZx = r(tan2 3xsec~^3x) (tan 3 x sec 3 x dx)

= J rsec~^3x(sec2 3x - l)d(sec3x)

= 1 sec^ 3 X — sec^ 3 X + C.

Case III. If in is an even integer and n is an odd integer,

the integral may be thrown under the 'cases of § 66 by placing

1 , ^ sin X
sec X = and tan x =

cos X cos X
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70. The substitution tan j: = z. The substitution tan - = z, or
* 2

x = 2 tan~^2;, is of considerable value in the integration of trigo-

nometric functions, since if the integrand involves only integral

powers of the trigonometric functions, the result of this substitu-

tion is a rational function of z. For, if

then

and

. X
tan- =
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71. Algebraic reduction formulas. It was shown in § 61 that

an integral of the form / x'"{a + Ix^ydx, where i^ is a rational

VI -t
m+1 m + 1

,

number, can be rationalized it or h 'p is zero or an
n n

integer. In general, however, an integral of this type is evaluated

by use of the so-caUed reduction formulas, by means of which the

original integral is made to depend upon another integral in which

the power either of x or of the binomial a + &u;" is increased or

decreased.

The four reduction formulas are

:

/

/

/

/

a;"' (a + hx"Ydx

{up + m-\-l)h {np + m +l)hj

x'"{a + Ix^ydx

^ x^^-\a + hxr ^ npa C^n^^ + h.fy-Hx, (2)
np + ??i + 1 np + m + 1

J

x^^a + hx'ydx

x--^{a + hxr^^ {np + n + m + l)l r,,., ^ ^

{m + l)a {m+l)a J

x"'(a + hyfydx

x--\a + hxr^^ ^np + n + m + 1 T
.^^ ^ l^^^y^^d^. (4)

7i{p + l)a n{p + l)a J

These formulas may be verified by differentiation ; their deriva-

tion will be given in the next article.

Formulas (1) and (2) fail if np + m +1 = 0; but in that case

we proved in § 61 that the integrand can be rationalized.

Formula (3) fails if »i + 1 = ; and in that case also the mte-

grand can be rationalized.

Formula (4) fails if ^ + 1 = ; and in that case it is evident that

the integration may be performed by the method of § 60.
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72. Proof of reduction formulas. To derive formula (1), § 71,

we uote that d{a + hx") = nhx"~^dx, and accordingly place

/vim — n+1

x'"(a + hxydx ='—— {a + hjf)"nhx'"^dx
nh

and integrate by parts, letting

™m — n +

1

= u, and (a + hx")''7ihx''''^dx = dv.
nh

Then du = —- x'^-'^dx, and . v = ^ '-

nh p + 1

As a result,

j x"'{a + hx")Pdx

To bring this result into the required form, we place

x"'-"(a + hx")''+^ = X'"-" (a + hx'') {a + hx'Y

whence = {ax-^+hx^ia + hxr,

j x^-"{a + hx")''-^^dx

= a I a'"" -"(a + haf-ydx + h I jf"{a + hx^fdx.

Substituting this value in (1), we have

I x"'{a + hx")''dx

= ^ '- J a I x"" (a + hx")^dx
nh{p+l) 7ih{p+l) [J ^

+ h I
X'" {a + hafy dx I • (2)

Solving (2) for I x"\a + hxydx, we have formula (1), § 71.

If we solve the equation defining formula (1), § 71, for

I x"'-"{a + hx")''dx,

and then replace m — nhj m, the resvdt is formula (3), § 71.
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To derive (2), § 71, we integrate by parts, letting {a + 6^")^ = w,

and x'^dx = dv. Then

diL = pnhx'' ~ ^ (a + hx")P~'^ dx, and v =
Then ^^+^

\ x'^{a + hx''Ydx

= ^—^^—

^

^ I
«" +

" a + 5x'") ^-^dx. (3)
wi + 1 m + 1

J

'
^ '

To bring this result into the required form we place

«;"' + "(« + &«")""^

= a;'"(^

^ j(« + &x")"-^

= r {
*-"'(« + i^,'") '' - ax''' {a + ?>^;") ^ "^

}

,

whence

= - jx'" (a + &af) Pdx — j Cx'" (a + 5a;") ^ - ^ c^ir.

Substituting this value in (3), we have

j x'"{a + bx")''dx

m + 1 m -^

— ajx"'{a + hx") '^ - ^ ^^' I •

(4)

Solving (4) for j x'"(a + hx")"dx, we have formula (2), § 71.

If we solve the equation defining (2), § 71, for / x''\a + bx"y-'^dx,

and replace ^ — 1 by p, the result is formula (4), § 71.

73. We will now apply these reduction formulas to the

evaluation of a few integrals. Many of these can also be

evaluated by substitution, without the use of the reduction

formulas.

^—-^ ^ ^ I

.«'" {a + bx") P dx
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Ex, 1. Find the value of fx'^ Va^ _|. ^'^ ^x.

Applying formula (1), § 71, we make the given integral depend upon

\ X Va^ + x'^ dx, an integral which can be evaluated by the elementary for-

mulas. The work is

:

Cx^ Va'^ + x2 dx = I x2 (a2 + a;2)? - f
^2 C^ (a^ + x^)^ dx

= I x2 (a2 -I-
x2)i _ ^_ a2 (a2 ^. a;2)i + (7

= T 5 (^ *^ - 2 a^) (a^ + a;2)' + C.

Ex. 2. Find the value of /
dx

x2 Va2 - x2

Applying (3), § 71, we have

r dx ^ g-i(u2 - x2)^ _ ^ r dx _ _ Va2 - x"

•^ o'2a/«2 _ o-a ,
— a2 «/ ->/„2T ^ ffl2T.

—

X2"
Ex. 3. Find the value of C^^—jf^dx

Applying (3), § 71, we have

/'(a2-x2)3 x-i(a2-x2)S 4 />,„„, ,~ r^^* = ^^ ^ ( {a^ - x'^)^ dx. (1)

Applying (2), § 71, to the integral iu the right-hand member of (1), we have

/(a2 - x2)2 dx = i X (a2 - x^)^ + | a2J (a2 _ x'^)^ dx. (2)

Applying (2), § 71, again, we have

f (a2 - x2)^ dx = - X (a2 - x2)^ + ^
ifi C

^^
, (3)

1 r dx . , X ^
and

I
—=^ = sin-i—|- C.

•^ Va2 - x2 «

Substituting back, we have finally

/'(a2-x2)? (a2-x2)5 x(a2-x2)^ S ,. ,,
I

-^^

;;
dX=- 5^

'- X (a2 - x2)*
J x2 a-2x a2 2 ^

'

So- ,x „
a^sin-i - + C.

2 a

/dx
, where n is a positive integer.

(x2 + a2)"
^

Applying (4), § 71, we have

r dx _ x(x2-f a2)-"+^ _2n + 3 r dx

J (x2 4-a2)«~~ 2(-n-hl)a2 "^ 2(- n -h l)a2J (x2 + a2)"-i

= ^
[

^
, + (2^-3) r—^^1.

2(n-l)a2L(x2 + a2)»-i ^ V (x2 -f
a2)n-ij

This formula is the one which is sometimes used in integrating rational

fractions.
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xdz
Ex. 5. Find the value °'/

V2 ax — x'^

If we divide both numerator and denominator of the integrand by x', it
1

X'
becomes —^z^=^z= , a form to which we can apply a reduction formula. Apply-

V2a — X

ing (1), § 71, we have

xdx

= — x^2a — x)^ + a
I
x~^{2a — x)~^dx.

r
^^^ = fxi{2a-xr'^dx

0 * ' • . dx
But /x ^ (2 a — x) ^dx= I

~^7=
•^ V2 ax - x2

/dx . , X — a _,— - = sm- 1 h C.

Va2 - (X - a)2 «

dx . ,x — a
- — sm- 1

- (X - a)2 «

rr,, ,-
r xdx r: . , X — a _,

Therefore I
—— = - V2 ax - x^ + a sin-i \- C.

Ex. 6. Find the value of

V2 ax — x2

dx

/ (2 ax — x-)2

Writing 2ax — x^ as a^ — (x — a)^, and noting that dx = d(x — a), we can

apply (4), § 71, to advantage. The result is

dx

x^Y J

(x — a) [a2 — (x — a)~]~ i

•^ (2 ax - x2)2 "^

— (X-

X — a

+ f[a^ ~{x - a)2]-2dx

i2 V2 ax — x2

+ C.

74. Trigonometric reduction formulas. It was proved in § 67

that

/teii\"xdx = tan""^*.'— I tan'' ~^ xdx. (1)n-1 J

Similarly, lctn"xdx= cin"~'^.v — I ctn^'^xdx. (2)

Formulas (1) and (2) are evidently reduction formulas for the

integration of this particular type of integrand. There are four

others which we shall derive, i.e.
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sin"" a; cos" a; dx

sin"'
+

^ X cos" ~ ^ X . 01 —

1

111 + n

sin"" X cos" X dx

?i + 1 n +

sin'"X cos^X dx

sin"'
~

^ X cos"
"•"

^ « 771 — 1

-\ / sin'"a; cos"~^a;c?a;, (3)m + nj ^ ^

-— / siu^iKcos"^^^^^!?./;, (4)

sin"' + ^K cos""^^::c m + % + 2
+

7)1 + 71

sin"'^ cos^xdx

sin"'"^^a; cos""*"^*' 7n -{- n -{- 2

-{ /sin'" ^xcos"xdx, (5)
7>i + nJ ^ '

+^a;cos"+^*- m + w+2 f . „^2 „ . ...
1

I
%\\\ ^ ^ x CQS X dx. (6)m+

1

m+ 1 J ^ ^

These formulas are useful when m and 7% are mtegers, either posi-

tive or negative, or zero.

Formulas (3) and (5) fail if m + w. = 0; but in that case the

integral can be placed under (1) or (2). by expressing the integrand

in terms of tan x or ctn x. Formula (4) fails when 7i + 1 = and

formula (6) fails when m + 1 = ; but in these cases the integra-

tion can be performed by the methods of § 66.

To derive (3) we place sin™ a; cos".r dx = cos"~^;:c(sin"'a? cos x dx)

and let cos"~^aj = u and sin"" a? cos xdx = dv for integration by parts.

As a result

/ sin"* x cos" X dx

sin'"
"*"^ X cos" "-^ X n, — 1n. 1 r

-I \ si\\"'^^xc,08"-~^xdx. (1)m + 1

To bring this into the required form we place

sin^ + ^a? cos"~^a;

= sin™ a? ( 1— cos^ a') cos" " ^ «= sin"' a; cos" ~ ^ a;— sin™x cos" x.

Then

/sin™ "*" ^ « cos" ^xdx

^f.in'.cos-'.c!.-fsin'.eos'.d..
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Substituting this value in (1), we have

/ siu'"ic cos^xdx

sin"'"^^a; cos"~^r n— 1 , . ^ „_„ ,

H I
sm ic cos xdx

m +1 wi +
n— 1

u-
/sin^^cos"^;^^^;. (2)

Solving (2) for I sin"' x cos" x dx, we obtain formula (3).

If we solve formula (3) for / sin"' a; cos"~^xdx and then replace

n by n + 2, the result is formula (4).

The derivations of formulas (5) and (6) are left to the student.

Ex. 1. Find the value of / sin^x cos'^xdx.

By formula (5),

I
sin^x cos2x dx = — J- sin^x cos^x + f |

sin x cos^xdx,

and
I
sin x cos^x dx = — ^- cos^x,

by the elementary integrals.

Therefore
j
sin^x cos^x dx —— ^^ cos^x (3 sin^x + 2) + C.

Ex. 2. Find the value of ( cos* xdx.

Applying formula (3), and noting that m = 0, we have

I
cos*xdx = 1 sinx cos^x + f |

cos^xdx.

Applying formula (3) again, we have

j cos 2 X cZx = ^ sin x cos x + ^ j dx = ^ sin x cos x + i x.

Therefore, by substitution,

/ cos* xdx =
I
sin x cos^ x + | sin x cos x + | x + C.

75. Use of tables of integrals. In Chap. II we have evaluated

many simple integrals Ijy l;)ringing them under the fundamental

formulas collected in § 17, and in Chaps. VI and VII methods of

dealing with more complex integrals have been discussed. But

in the solution of problems involving integration it is found that
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some integrals occur frequently. If these integrals are tabulated

with the fundamental integrals, it is evident that the work of inte-

gration may be considerably hghtened by reference to such a table.

Accordingly the reader is advised to acquire facility in the use of

a table of integrals.

No table of integrals will be inserted here, but the reader is

referred to Professor B. 0. Peirce's " Short Table of Integrals."

PROBLEMS

Find the values of the following integrals

f

'f

v'xa + l

Vxdx
x-1

'

3. f ^^y+^ dx.

\/x3 + Va;

4_ Hx - 2)^ - (X - 2)^

(X - 2)^ - (X - 2)3

xdx

dx.

•^ 1

(X + 1)' - (X + 1)5

Vl-X
+ x

dx.

^ r V1+3X-2
'

-^ 1 + 3X + 2^(l + 3x)5

sjx + VTT^^^
X — Vl + X

9 rVx dx

dx.

•^
1 + Vx
+ X6);6\3

dx.

^ (1

/.-:

x"

dx

(1 + 2x5)5

12
dx

13.

x'^ (3 + x3)?

x^dx

(x3 + 3)^'

4.

5.

6.

7.

8.

9.

20.

21.

22.

23.

24.

25.

26.

27.

rx9(3x5 + l)'dx.

rx^(2 + 3x4)°dx.

r dx

•^ X (3 x^ + 2)'

Cx(4: + x4)'dx.

/
dx

X Vx'^ + 3 X - 2

/* dx

•^ xV2x2 + 3x + 5

/• dx

^ X V3 + 2 X — x2

r dx

•^ (X2 + X + 1)^

r xdx

"^ Vx2 + 2 X + 3

/dx

/

r
'^ V(2 -3x - 2x2)3

I
sin^x cos^xdx.

I
cos^ 3 X sin3 3 x dx.

x2 Vx — 3 x2

x^dx

(1-x- 2x2)^

x2dx
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28. fsiii-xdx. 48. fsece-dx. 68. f
^^

J J 2 J x^ V a2 - x2

29. /cos^xdx. 49. /csc^|dx. 69. ^.^cM^^dx.

30. /.sin3(2x + l)dx. 50 Je.scsSxdx. 70.^ V^^T^^dx.

.
/(.sin2x + cos2xr^dx. ^^ ^^^^3^^^^^ ^^ /.aV^^^^dx.

I.
/ I

.sin - - COS - dx.
c-n T ^^ , r x'^dxJ \ 3 3/ 52. / csc5-dx. 72 /

^ "^

J SIsin^ 2 X

- (a2 + x--^)2

33.
I
sin^axcos'^axdx. r x x

J 53. I
ctn^ - CSC* - dx. -, r ^-^

J 3 3 73. /
-.

34. r.siu4xco.s2xdx. ,
(1 + x^)'

J _. rctn&ax
04- I

dx. ^ x^dx

fsin^xdx
'''^''•^ ^*-

I
^•35

36. rco.s62xdx.
"""

-^
2'^^

2 75 f
55.

I
tan -.sec^-dx.

dx

x-(l + x4)^

37./sin*|cos*|dx. 56./tan5|^3ec|dx.
^^^ ^

g.

^sC^l^dx. 57./tan^xs.......
^^^ ^^^

•^ Vr>nc2 9 r

sec^xdx.

v^cos2 2 X
""*"

"".
77. f
—-

. fsec^ 5 X tan2 5 x dx. '^ x V2 ax - x^58. / sec3 5xtan2 5xdx. " x\

f^!^dx. 59. r^^—. 78.
/V^

I
X J 5 -I- 4 cos X

I COS -
*^ 2 , „^ r

X

r__dx__ 79. JxV2
J 3 cos x + 5

^z sin-^4x J an /
cu.-'^

ax — x^dx.

dx ' J 3 -|- sin X
61. „—-^ "^ V2 ax - x2

J 3 + sm X

g2 r ^5 81. fsin^x cos*xdx.

J 3 sin X — 2 cos x
42 r ^^

' ^ cos53x ^ dx 82. f
o»*- :—:

—

7^' "J

J 3 — 4 sin 2 X

cos53x" ^ d^. 82 r —
sin^x cos^x

64
. J(x2 + a2)?dx. ^^-Jsinax

43. rtan3 3xdx.

44. rctn&3xdx.

r X 65. r(a2-x2)"-dx. 84. f
45. ftan^-dx. J ^ ' J cos''3x

66. ( . 85. (
-^ Vx2 + a2 ^ • J

dx

dx

sin<>x ,
ax.

46. fctn^-dx. '^ Vx2 + a2 'J cos^x
J 3

dx /•cos*2x

47. J(ctnx + tanx)3dx. ^^^ /x3Vi^TT2"
^^ Z^^'^'
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87. Find the area bounded by the hyperbola — = 1 and the chord x = h.
a?- b'^

88. Find the area of the loop of the curve cy'^ = (x — a) (x — 6)^, (a < 6).

89. Find the total area of the curve a^y"^ = x^ (2 a — x).

90. Find the area of the loop of the curve 16 a'^y'^ — b^x'^ {a^ — 2 ax).

91. Find the area of a loop of the curve y^{a'^ + x-) = x^{a^ — x^).

92. Find the area of the loop of the curve (x + y)'^ = y''{y + !)•

93. Find the area inclosed by the four-cusped hypocycloid x* + j/^ = a^.

94. Find the area inclosed by the curve |-| + |-i=l.
^«^ ^^'

X3
95. Find the area included between the cissoid y'^ = and its

. . 2 a — X
asymptote.

'r2 /ft A- ^\
96. Find the area of the loop of the strophoid y"^ = —^^

^2 /^ _L ^\
97. Find the area bounded by the strophoid y^ ——^^ and its asymptote,

excluding the area of the loop.

98. Find the area of a loop of the curve r = a cos nd + b sin n9.

99. Find the entire area bounded by the curve (-) +|-j=l.

100. Find the area of the loop of the Folium of Descartes, x^ + ?/3 _ 3 dxy = 0,

by the use of polar coordinates.

101. Find the length of the spiral of Archimedes, r = a6, from the pole to the

end of the first revolution.

102. Find the length of the curve 8 a^y = x"* + a-x^ from the origin to the

point X = 2 a.

103. Find the volume of the solid formed by revolving about OX the figure

bounded by OX and an arch of the cycloid x = a{<p — sin0), y = a(l — cos</)).

104. Find the volume of the solid bounded by the surface formed by revolv-

ing the witch y = about its asymptote.
x^ + 4 a-

105. Find the volume of the solid generated by revolving about the asymptote

of the cissoid y"^ = the plane area bounded by the curve and the asymptote.
2a — X

106. A right circular cylinder of radius a is intersected by two planes, the

first of which is perpendicular to the axis of the cylinder, and the second of

which makes an angle d with the first. Find the volume of the portion of the

cylinder included between these two planes, if their line of intersection is tan-

gent to the circle cut from the cylinder by the first plane.

107. An ellipse and a parabola lie in two parallel horizontal planes, the

distance between which is h, and are situated .so that a vertex of the ellipse is

vertically over the vertex of the parabola, the major axis of the ellipse being

parallel to and in the same direction as the axis of the parabola. A trapezoid,
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having for its upper base a double ordinate of the ellipse and for its lower base

a double ordinate of the parabola, generates a solid, whose upper base is the

ellipse, by moving with its plane always perpendicular to the two parallel

planes. Find the volume of the solid, the semiaxes of the ellipse being a and 6,

and the distance from the vertex to the focus of the parabola being -

.

4

108. Find the center of gravity of the arc of the cycloid x — a{<p — sin^),

y = a{l — cos<p), between the first two cusps.

109. Find the center of gravity of the plane surface bounded by the first

arch of the cycloid and the axis of x.

110. Find the center of gravity of the plane surface bounded by the two

circles, x^ + ?/2 = a^ and x"^ + y^ — 2 ax = 0, and the axis of x.

111. Find the center of gravity of that part of the plane surface bounded

by the four-cusped hypocycloid x^ + y^ = a^, which is in the first quadrant.

112. Find the center of gravity of the surface generated by the revolution

about the initial line of one of the loops of the lemniscate r^ = 2 a^ cos 2^.



CHAPTER VIII

INTEGRATION OF SIMPLE DIFFERENTIAL EQUATIONS

76. Definitions. A differential equation is an equation which con-

tains derivatives. Such an equation can be changed into one which

contains differentials, and hence its name, but this change is usually

not desirable unless the equation contains the first derivative only.

A differential equation containing x, y, and derivatives of y
with respect to x, is said to be solved or integrated when a relation

between x and y, but not containing the derivatives, has been

foimd, which, if substituted in the differential equation, reduces

it to an identity.

The manner in which differential equations can occur in prac-

tice and methods for their integration are illustrated in the two

following examples

:

Ex. 1. Required a curve such that the length of the tangent from any point

to its intersection with OY is constant.

Let P(iC, y) (fig. 41) be any point on the required

curve. Tlien tlie equation of tlie tangent at P is

dz

wliere (X, Y) are the variable coordinates of a moving

point of the tangent, (x, y) the constant coordinates

of a fixed point on the tangent (the point of tangency),

and — is derived from the, as yet unknown, equa-

tion of the curve. The coordinates of i?, where the tangent intersects OY,

are then X = 0, Y=y -x, and the length of PR
dx

Fig. 41

'•'aFmIF
Representing by a the constant length of the tangent, we have

\dx/

dy Va2 — x2

dx
= ± (1)

141
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which is the differential equation of the required curve. Its solution is clearly

Va2 - «2

f 'dx + C

= ± Va2 - x2 + - log — + C.
2 a ± v'a2 — x2

(2)

The arbitrary constant C shows that there are an infinite number of curves

which satisfy the conditions of the problem. Assuming a fixed value for C, we

y see from (1) and (2) that the curve

is symmetrical with respect to OY,

that x^ cannot be greater than a^,

dy
and y — C when x — a,

dy

that
dx

and that ^ becomes infinite as x
dx

approaches zero.

From these facts and the defining

property the curve is easily sketched,

as shown in fig. 42. The curve is

called the tractrix (I, p. 299).

y-(^ Ex. 2. A uniform cable is sus-

pended from two fixed points. Re-

quired the curve in which it hangs.

Let A (fig. 43) be the lowest

point, and P any point on the re-

quired curve, and let PT be the

tangent at P. Since the cable is in

equilibrium, we may consider the

portion J.P as a rigid body acted

on by three forces, — the tension

i at P acting along PT, the ten-

YiQ, 42 sion h at A acting horizontally,

and the weight of ^P acting ver-

tically. Since the cable is uniform, the weight of AP is ps, where s is the

length of ^P and p the weight of the cable per unit of length. Equating the

horizontal components of these forces, we have

t cos<p = h,
'

.

J,

and equating the vertical components, we have

t sin (p — ps.

From these two equations we have

p
tan </) = - s,

h
dy

dx

where - = a, a constant.
P
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This equation contains three variables, x, y, and s, but by differentiating

with respect to x we have (I, § 105, (4))

the differential equation of the required path.

To solve (1), place — = p. Then (1) becomes
dx

dx

dp _ dx

whence log (p + Vl + p^ = ^ + C. (2)
a

Since A is the lowest point of the curve, we know that when x = 0, p = 0.

Hence, in (2), C = 0, and we have

X

( - --)
or. p = i\e« - e "/,

dv «f - --^
, /-f/

whence, since j) = —

,

2/ = - Ve« + e "/ + C .

dx -i

The value of C depends upon the position of OX, since y = a + C when

X = 0. We can, if we wish, so take OX that OA = a. Then C- 0, and we

have, finally,
(X x\

the equation of the catenary (I, p. 281).

The order of a differential equation is equal to that of the

derivative of the highest order in it. Hence (1), Ex. 1, is of the

first order, and (1), Ex. 2, is of the second order.

The simplest differential equation is that of the first order and

of the first degree in the derivative, the general form of which is

dx

or Mdx + Ndi/ = 0, (1)

where 3f and N are functions of x and y, or constants.
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We shall consider three cases in which this equation is readily

solved. They are

:

1. Wlien the variables can be easily separated.

2. When 3/ and -ZVare homogeneous functions of x and y of the

same degree.

3. When the equation is linear.

77. The equation Mdx + Ndy = when the variables can be

separated. If the equation (1), § 76, is in the form

it is said that the variables are separated. The solution is then

evidently

J /, (,«) cU +
J /, {y) dy = c,

where c is an arbitrary constant.

The variables can be separated if ilfand N can each be factored

into two factors, one of which is a function of x alone, and the

other a function of y alone. The equation may then be divided

by the factor of M which contains y multiplied by the factor of N
which contains x.

Ex. 1. dy =f{x)dx.

From this follows y =
]
f(x) dx + c.

Any indefinite integral may be regarded as the solution of a differential

equation with separated variables.

Ex.2. Vl - 2/2d!x + Vl -x^dy = 0.

This equation may be written

dx dy

Vl — x^ Vl — 2/2

whence, by integration, sin-^x + sin-iy = c. (1)

This solution can be put into another form, thus : Let sin- ^ x = (^ and

sin-iy =
'A- Equation (1) is then <^ + i/- = c, whence sin(0 + i/') = sine

;
that

is, sin </) cos -^ + cos sin ^ = k, where fc is a constant. But sin ^ = x, sin i/' = y,

cos
(f>
= Vl — x2, cos

\f/
= Vl — y-

; hence we have

X Vl-?/2 + y Vl-x2 = k. (2)

In (1) and (2) we have not two solutions, but two forms of the same solution,

of the differential equation. It is, in fact, an important theorem that the differ-

ential ecjuation Mdx + Ndy = has only one .solution involving an arbitrary

constant. The student must be prepared, however, to meet different forms of

the same solution.
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Ex. 3. (1 -x^— + xy = ax.
dx

This is I'eadily written as

(1 — x^) dy + x{y — a)dx = 0,

dy xdx

y — a 1 — x'^

whence, by integration,

log {y - a) - i log (1 - «2) = c,

y — a
which IS the same as log —^^^ = c,

Vl - x2

and this may be written y — a = k Vl — x^.

78. The homogeneous equation Mdx + Ndy = 0. A polynomial

in X and y is said to be homogeneous when the sum of the expo-

nents of those letters in each term is the same. Thus ax^-{- hxy+ cy^

is homogeneous of the second degree, ax^ + hx^y + cxy"^ + ey^ is

homogeneous of the third degree. If, in such a polynomial, we

place y = vx, it becomes x"f(v) where n is the degree of the poly-

nomial. Thus ^^^ ^ j^,y + cy''=^a?{a + -bv + cv'),

ax^-\- hx^y + cxy' + ey^ = x^(a + hv + cv^ + ev^).

This property enables us to extend the idea of homogeneity to

functions which are not polynomials. Eepresenting by f{x, y)

a function of x and y, we shall say that f{x, y) is a homogeneous

function of x and y of tlie Tith degree, if, when we place y = vx,

f(^x, y) = x"F(v). Thus Va?^ -|- y^ is homogeneous of the first degree,

since '\x^+y^=x'\^l + v^, and log- is homogeneous of degree

0, since log - = log v = x^ log v.

When M and H are homogeneous functions of the same degree,

the equation Mdx + Ndy =

is said to be homogeneous and can be solved as follows

:

Place y = vx. Then dy = vdx + xdv and the differential equa-

tion becomes ^nj-^
^ ^^ ^^ ^ ^nj-^^

^^,^ ^^,^^ _^ ^^,^ ^ q^

or [f, (V) + vf, (r)] dx + xf, (v) dv = 0. (1)

If /j(v)-f- vf^(v) ^ 0, this can be written

dx
^

Mv)dv ^Q
x Mv)+vf^{v)
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where the variables are now separated and the equation may be

solved as in § 77.

If /^ (v) + vf.^ (v) = 0, (1) becomes dv = 0, whence v = c and y = ex.

Ex. (x2 - 2/2) dx +2xydy = 0.

Place y = vx. There results

(1 — v'^)dx + 2 V {X dv + V dx) = 0,

dx 2vdv
or

\

= 0.
X 1 + v'^

Integrating, we have logx + log(l + v^) = c',

whence x(\ + v^) = c,

or x2 + 2/2 = ex.

79- The equation

{aix + biy + Ci) dx + {a^x + b^y + Co) dy — (1)

is not homogeneous, but it can usually be made so, as follows

:

Place X = x' + h, y = y' + k. (2)

Equation (1) becomes

(aix' + biy' + aih + bik + ci) dx'

+ {UiX' + b^y' + ao/i + bik + C2)dy'= 0. (3)

If, now, we can determine h and A: so that

aih + bik + ci —
a^h + bik + co —

(3) becomes (aix' + biy') dx' + (aox' + boy') dy' = 0,

which is homogeneous and can be solved as in § 78.

Now (4) cannot be solved if Uibo — azbi — 0. In this case, ^^ = — = k, where

k is some constant. Equation (1) is then of the form ^ ^

(aix + biy + ci) dx + [k (aix + biy) + Co] dy = 0, (5)

so that, if we place UiX + biy — x', (5) becomes

,, , X
dx' — aidx

(x + Ci) ax + (a:x + C2) = 0,

which is dx H dx' = 0,
(61 — aik)x' + biCi — aiC2

and the variables are separated.

Hence (1) can. always be solved.

80. The linear equation of the first order. The equation

where /^ (x) and f^ (x) may reduce to constants but cannot contain

y, is called a linear equation of the first order. It is a special case

of 3Idx + Ndij = 0, where M=f^{x)y—f^{x), N=l.

(4)
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To solve the equation we will try the experiment of placing

y = uv,

where u and v are unknown functions of x to be determined later

in any way which may be advantageous. Then (1) becomes

dv duu— + v— +f^{x) uv =/, (x),

or

IX/JU thJb

du
,

, , .
'

(2)

Let us now determine u so that the coefficient of v in (2) shall

be zero. We have ,

^ +/,(;.•)» = 0,

or f- f^{x)dx = 0,

of which the general solution is

log u + I f^ (x) dx = c.

Since, however, all we need is a particular function which will

make the coefficient of v in (2) equal to zero, we may take c = 0.

Then

or

log ic =—
j
f^{x)dx,

u = e
•'

(3)

With this value of u, (2) becomes

-ff,(.x)dx dv

or
dv f/iWrf^ . .

,

dx =
' ^^^"^'

and v=
I

e-'
' ' f^{x)dx + c.

Whence, finally, since y = uv,

- f.t\(x)dx f ff^Cx)dx - f/^(x)dx

y = e
-^

j e^ f,,(x)dx + ce
•'

(4)

(5)
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Ex. (1 — X-)— + xy = ax.
dx

Rewriting this equation as

dy X ax
+ z
—7.y^

dx 1 — x'^ 1 — x'^

we recognize a linear equation in which

fi{x) = - -^ Mx) =
l_a;2 —' ' l_x2

log Vl - a-2 _
/i(x)dx =- logVl -x2, and e-^

' =e
V 1 — x2

Hence y = Vl - x'^ f—^^^—
- dx + c Vl - x^

•^ (l-x2)i

= a + c Vl — x'^.

This example is the same as Ex. 3, § 77, showing that the methods of solving

an equation are not always mutually exclusive.

81. Bernouilli's equation.

dy
The equation ^ + /i (a;) 2/ = f-i i^) V,

dx

while not linear, can be made so, as follows :

Dividing by ^", we have

dx

and placing y^-^ = z, and multiplying by 1 - n, we have

dz
^ +(l-n)/i(x)2 = (l-n)/2(x),
dx

a linear equation.

Ex. ^-^ = x'^y*.

dx X

That is,
A^iy ^ o o

y-'^-f---y-^ = x^,
dx X

or h ^^— = — 3 x2, where z = y-^.
dx X/rSdx
fi{x)dx-j = logxs,

r/(a-)rfx

whence eJ = x\

Hence z = —
|
(- 3x5)dx 4- —

i

x^ J x*

and - = -^x3 + -.
w-J 2 x^
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82. Certain equations of the second order. There are certain

equations of the second order, occurring frequently in practice,

which are readily integrated. These are of the four types

:

We proceed to discuss these four types in order

:

By direct integration

dx
X -j- Cj,f{x)d.

This method is equally applicable to the equation —^ =/(«)•

Ex. 1. Differential equations of this type appear in the theory of the bend-
ing of beams. Each of the forces which act on the beam, such as the loads and
the reactions at the supports, has a moment about any cross section of the beam
equal to the product of the force and the distance of its point of application from
the section. The sum of these moments for all forces on one side of a given section

is called the bending moment at the section. On the other hand, it is shown in

the theory of beams that the bending moment is equal to — , where E, the
R

modulus of elasticity of the material of the beam, and J, the moment of inertia

of the cross section about a horizontal line through its center, are constants,

and R is the radius of curvature of the curve into which the beam is bent. Now
by I, § 101,

cPy

1 _ dx2

R~
[-(^)T

where the axis of x is horizontal. But in most cases arising in practice —- is

I
dx

very small, and if we expand — by the binomial theorem, thus :

R

R dx'^l 2\dx/
'^"j
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we may neglect all terms except the first without sensible error. Hence the

bending moment is taken to be EI This expression equated to the bending

moment as defined above gives the differential equation of the shape of the beam.

We will apply this to find the shape of a beam uniformly loaded and sup-

ported at its ends.

Let I be the distance between the supports, and w the load per foot-run.

Take the origin of coordinates at the lowest point of the beam, which, by sym-

metry, is at its middle point. Take a plane section C (fig. 44) at a distance x

from and consider the forces at the

right of C. These are the load on CB
(J j^ and the reaction of the support at B.

"
fe"-^ The load on CB is w( x), acting at

Fig. 44 I

X
2

the center of gravity of CB, which is at the distance of from C. Hence

iH
the moment of the load is — '-, which is taken negative, since the load

2
lol

acts downward. The support B supports half the load equal to— The moment
will \

^

of this reaction about C is therefore — | x\- Hence we have
2 \2 /.

El'^ = '^il-x\-^l-xX = ^'--x\
d£^ 2 \2 / 2 \2 / 2 \4 /

The general solution of this equation is

^^^=2(x-i2) + ^^" + '^^-

But in the case of the beam, since, when x = 0, both y and — are 0, we have

Ci = 0, C2 = 0.
^

Hence the required equation is

^y ^~y
The essential thing here is that the equation contains -j- and -r-^ >

but does not contain y except implicitly in these derivatives. Hence

.„ ,
dy

,
d^y dp

.

II we place -^r = p, we have -^-2 = -7- ' and the equation becomes
7 ClX cLx U/X

j7 —f{^> P)> which is of the first order in 2^ and x. If we can find

dy
p from this equation, we can then find y from -j- = p. This

method has been exemplified in Ex. 2, § 76.
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o ^_./ ^
dv d^v

The essential thing here is that the equation contains ~ and -^4

'

but does not contain x. As before, we place -j-.^ P, but now write

d^y dp dpdy dp
. dp

-T-j = 3~ = T~j~=P7~'S0 that the equation becomesp -j- =f(^y^pi)^

which is of the first order in p and y. If we can find p from this

dy
equation, we can find y from -T-=p.

Ex. 2. Find the curve for which tlie radius of curvature at any point is equal

to the length of the portion of the normal betvi^een the point and the axis of x.

The length of the radius of curvature is ± ^

—

-^=- (I, § 192). The
equation of the normal is (I, § 101) ^

Y-y=-^(X-x).
dy

This intersects OX at the point (x + y^ , ) . The length of the normal is

\ dx /

therefore y\}^ + \— ) •

The conditions of the problem are satisfied by either of the differential

equations
^

)f tb

dx^

d^y \ \dx/

T.-i • Ay , d'^y f?p . ,,,
Placing -^ = p and —^ = p -^ in (1), we have

dx dx2 dy
dp

1 + p2 _ jty ,

dy

, dy pdp
whence » _ x- x-

(1)

(2)

y 1 + p2

The solution of the last equation is

y = ci Vl + jp2,

V2/2
wnence p =

Cl
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dy Cidy ,

Replacing p by -^ , we have
.

^ ^
= "^J.

This is most neatly solved by the use of hyperbolic functions. We have (§ 15)

CiCOsh-i- = x - C2,

X - C2

or
y^cicosh^—

2

This is the equation of a catenary with its vertex at the point (C2, Ci).

If we place ^ = p, and P^=P~ i" (2), we have
^ dx dx2 dy

dp

dy

whence ^ ~l + p2

The solution of this equation is y
—

dy _-pdp
P'

Vi + p^

_ Vcf - 2/2

whence P z

Replacing P by - , we have ^7^^=^, - '**•

Integrating, we have - Vcf - y^ = x - C2,

or (a; - C2)2 + 2/2 = cf •

This is the equation of a circle with its center on OX.

If we multiply both sides of this equation by 2 ^ dx, we have

c?x' ^a^ -^ ^^^ dx

Integrating, we have (-£)=
f
^^filMy + ^i'

whence, by separating the variables, we have

/
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Ex. 3. Consider the motion of a simple pendulum consisting of a particle P
(tig. 45) of mass m suspended from a point C by a weightless string of length I.

Let the angle ACP= d, where AC is the vertical,

and let AP — s. By I, § 108, the force acting in the

direction ^P is equal to m — ; but the only force

acting in this direction is the component of gravity.

The weight of the pendulum being mg^ its compo-

nent in the direction AP is equal to —mgsmd.
Hence the differential equation of the motion is

d-sm— = — mq sm 0.

We shall treat this equation first on the hypothe-

sis that the angle through which the pendulum swings is so small that we may

place sin 6 = 6, without sensible error. Then since 6 = -, the equation becomes

d~s

,ds
Multiplying by 2— dt, and integrating, we have

dt

I
— = Ci - - s2 = ii (a2 - s2),
\dtj I r ''

where a^ is a new arbitrary constant. Separating the variables, we have

ds

r^/'^

whence

Va2-

a \ I

where <o is an arbitrary constant. From this, finally,

s = asin-^-(i — ^o).

The physical meaning of the arbitrary constants can be given. For a is the

maximum value of s ; it is therefore the amplitude of the swing. When t = to,

s = ; hence ^o is the time at which the pendulum passes through the vertical.

We will next integrate the equation

d^sm— = — 7110 sin 6
di^

^

without assuming that the arc of swing is small. Placing s = Id, multiplying

by 2 --- dt, and integrating, we have

a- 2 9 cos 6 + Ci.
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If, now, the pendulum does not make a complete revolution around the point of

dd
pport C,— = for some value of a

dt

and our equation becomes /ddV

do
support C,— = for some value of which we will call a. Hence C = - 2 gr cos a,

dt

1 1 — ) = 2g (cos e — cos a),
\dt/

whence ,

V2 (cos — cos a)

where U is the value of t for which = 0. To bring the integral into a famil-

a
2 """" 2 ~%iar form, place cos 6* = 1 - 2 sin^ - , cos a = 1 - 2 sin"^ - , and let A; = sin - . We

have, then, ,„
\ 1 / d0

=nI<'-

- = k sin <b. Th
I

'^o Vl- A;2sin2^ ^^

2

Place, now, sin " = k sin <p. There results

If we measure time from the instant in which 6 = 0, we have

d0
= V^/og Jo Vl-k^sm^<f>

The integral can be evaluated by expanding (1- k'^sin'^(l>)~^'bj the binomial

theorem, the expansion being valid since k^sin'^<p<: 1, and a table for the value

of this series is found in B. 0. Peirce's Tables, p. 118.

The pendulum makes one fourth of a complete swing when varies from to

a, and cp from to - • If 4 T is the time of a complete swing, then

-w:[-Gr-(^r-(^7— ]•

as may be verified by the use of Ex. 2, § 27.

PROBLEMS

Solve the following equations

:

^ xdx ydy 4. sec^xdx + tanx tanydy = 0.

l + y 1 + x 5. (x^y'^-y^)dx + {x''- + ijH'^)dy = 0.

2. 2 X sin ydx + cos ydy = 0. 6. (x + y) dx - xdy = 0.

3. xVl + y'^dx + yVl + x'^dy = 0. 7. (y + Vx^ + y") dx-xdy = 0.

8. [Vx2 -y'^ -y sin-i -|dx + xsin-i -dy - o.

9. sin X sin ydx — cos y cos xdy = 0.
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10. (x sin - - w cos -)dx + X cos - dy = 0.

\ X x/ X

11. {e^ + e~^^){xdy -ydx) + \e^- e'^)xdx = 0.

12. (2?/2 _ Sxy)dx + (3x2 - xy + y")dy = 0.

13. (X + 2 y - 3) dx + (2 X - ?/ - !)# = 0.

14. (2/ + 3)dx + (x + 22/ + 4)d// = 0. gg_ ^-22/=:x2.
15. (X + 2/) dx + (-c + y + 1) dy = 0. ^^

16. ^ + , = sinx. ^^•d^-"^^^^"^-
dx

'^^

17. {x + l)'^-2y = e-{x + l)^ 37. ^ = sin ax.
cix dx2

18. (x + 1)
'^ - y = (X + 1)3. 38. ^ = xe\
dx dX'

19. (x-2/cos^)dx + xcos^d2/ = 0. ^^ d2^/^^ioga;.

da; 40. 11^ ^ + X = 0.

21. (y + x2?/) dx + (X - x?/2) dy = 0.
^^-^'^ ^-^

22. xdy -2/dx + Vx2Ty2dx = 0. 41. x^- — = 0.

23.^- ^

dx2 dx

dy
,

2/

dx

dy

24.^ +
dx

25. - + 2/ tan X = sin 2 X. ^, /^^^ 2 ^^

26. (x2-2?/2)dx + (3x2+ 4x2/)dy = 0.
d"^" ^^^^ ''^

dx x2 — 1

dx 2?/

= 0.

29.x2(l + x2)^^-x3y = .3. 47.x^ + (^j-l = 0.

30. (1 + x2)5^ - 2/ + 2/2 = 0. 48. 2yp{ - 2(^y= 2/^-

dx dx2 \dx/

31. X2/(l + x2)d2/ - (1 - 2/')dx = 0.
^^ / rf2^ _ dy\dy _ j ^ q

32. (x2 ^x3 + 2/3 - 2/3) dx + xy'^dy = 0.
'

\ ^^2 dx/dx

33. ^ + -^!-2/ = l. 50. ^^ = -^-^2/.

dx e"- + 1 da;^

34. 3^ -
2/ secx = 2/nanx. 51. —| = A;22/.,--vo..-.-. .c......

^^.,
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62. Solve —- = - 2/-, undei- the hypothesis that when x = l,y = 1 and -^ = -

.

dz- 3 dx 3

53. Solve —- = - sin 2 ?/, under the hypothesis that when x = 1, y = -
, dx'^ 2

'

2

and^ = l.

dx

54. Solve —- = sin 2 y, under the hypothesis that when y = 0, — = 0.

dx2 dz

55 Solve 2 —- = , under the hypothesis that — = when y = cc.

dx2 y'^ dx

56. Solve —- = y+1, under the hypothesis that when x = 2, y = and— = 1.

dx^^ dx

57. Find the curve in which the slope of the tangent at any point is n times

the slope of the straight line joining the point to the origin.

58. Find the curve in which the chain of a suspension bridge hangs, assuming

that the load on the chain is proportional to its projection on a horizontal line.

59. Find the curve in which the angle between the radius vector and the

tangent is n times the vectorial angle.

60. Find the curve such that the area included between the curve, the axis

of X, a fixed ordinate, and a variable ordinate is proportional to the variable

ordinate.

61. Show that, if the normal to a curve always passes through a fixed point,

the curve is a circle.

62. Find the curve in which the length of the portion of the normal between

the curve and the axis of x is proportional to the square of the ordinate.

63. Find the curve in which the perpendicular from the origin upon the

tangent is equal to the abscissa of the point of contact.

64. Find the curve in which the perpendicular upon the tangent from the

foot of the ordinate of the point of contact is constant.

65. Find the curve in which the length of the arc from a fixed point to any

point P is proportional to the square root of the abscissa of P.

66. Find the curve in which the area bounded by the curve, the axis of x,

a fixed ordinate, and a variable ordinate is proportional to the length of the

arc which is part of the boundary.

67. Find the deflection of a beam fixed at one end and weighted at the

other.

68. Find the deflection of a beam fixed at one end and uniformly loaded.

69. Find the deflection of a beam loaded at its center and supported at its

ends.

70. Find the curve whose radius of curvature is constant.

71. Find the curve in which the radius of curvature at any point varies as

the cube of the length of the normal between that point and the axis of x.
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72. A p<article moves in a straight line under the influence of an attracting

force directed toward a fixed point on tliat line and varying as the distance from

the point. Determine tlie motion.

73. A particle moves in a straight line under the influence of an attracting

force directed toward a point on the line and varying inversely as the square of

the distance from that point. Determine the motion.

74. Find the velocity acquired by a body sliding down a cui-ve without

friction, under the influence of gravity.

75. Assuming that gravity varies inversely as the square of the distance from

the center of the earth, find the velocity acquired by a body falling from infinity

to the surface of the earth.



CHAPTEE IX

FUNCTIONS OF SEVERAL VARIABLES

83. Functions of more than one variable. A quantity/ z is said

to be a ficnction of two variables, x and y, if the values of z are

determined when the values of x and y are given. This relation is

expressed by the symbols z =f{x, y), z = Fix, y), etc.

Similarly, u is a function of three variables, x, y, and z, if the

values of u are determined when the values of x, y, and z are

given. This relation is expressed by the symbols u =f{x, y, z),

u = F{x, y, z), etc.

Ex. 1. If r is the radius of the base of a circular cone, h its altitude, and v

its volume, « = ^ Trr^/i, and u is a function of the two variables, r and h.

Ex. 2. If /denotes the centrifugal force of a mass m revolving with a velocity

V in a circle of radius r,f= , and / is a function of the three variables, ?n,

B, and r.

Ex. 3. Let V denote a volume of a perfect gas, t its absolute temperature,

and p its pressure. Then ^— = 'k, where k is a constant. This equation may be
t

t t \
written in the three equivalent forms : p — k-, v = k-, t = -pv.hj which each

V p k

of the quantities, p, v, and t, is explicitly expressed as a function of the other two.

A function of a single variable is defined explicitly by the equa-

tion y =f(x), and implicitly by the equation F{x, y)= 0. In either

case the relation between x and y is represented graphically by

a plane curve. Similarly, a function of two variables may be

defined explicitly by the equation z=f{x, y), or implicitly by the

equation F{x, y, z) = 0. In either case the graphical representa-

tion of the function of two variables is the same, and may be

made by introducing the conception of space coordinates.

84. Rectangular coordinates in space. To locate a point in

space of three dimensions, we may assume three number scales,

XX', YY', ZZ' (fig. 46), mutually perpendicular, and ha\ing their

zero points coincident at 0. They will determine three planes,

158
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XOY, YOZ, ZOX, each of wliich is perpendicular to the other

two. The planes are called the coordinate planes, and the three

Imes, XX', YY', and ZZ', are called the axes of x, y, and z

respectively, or the coordinate axes, and the point is called the

origin of coordinates.

Let P be any point in space, and through P pass planes perpen-

dicular respectively to XX', YY', and ZZ', intersecting them at

the points L, M, and N respectively. Then ^
if we place x — OL, y = 031, and z = OX, I

as in I, § 16, it is evident that to any

point there corresponds one, and only one,

set of values of x, y, and z\ and that to

any set of values of x, y, and z there cor- A"—

responds one, and only one, point. These

values of x, y, and z are called the coordi- y/
I

,

^

nates of the point, which is expressed as
T>/ X

Fig. 46
P{x, y, z).

From the definition of x it follows that x is equal, in magnitude

and direction, to the distance of the point fy'om the coordinate

plane YOZ. Similar meanings are evident for y and z. It follows

that a point may be plotted in several different ways by construct-

ing in succession any three nonparallel edges of the parallelopiped

(fig. 46) beginning at the origin and ending at the point.

In case the axes are not mutually perpendicular, we have a system of oblique

coordinates. In this case the planes are passed through the point parallel to the

coordinate planes. Then x gives the distance and the direction from the plane

YOZ to the point, measured parallel to OX, and similar meanings are assigned

to y and z. It follows that rectangular coordinates are a special case of oblique

coordinates.

85. Graphical representation of a function of two variables.

Let/(x', y) be any function of tw^o variables, and place

2 =f{^, y)- (1)

Then the locus of all points the coordinates of which satisfy (1) is

the graphical representation of the function f{x, y). To construct

this locus we may assign values to x and y, as x = x^ and y = y.^,

and compute from (1) the corresponding values of z. There will
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be, in general, distinct values of z, and if (1) defines an algebraic

function, their number will be finite. The correspondmg points all

lie on a line parallel to OZ and intersecting XOY at the point

-^i(^i> 3^1)' ^^^*^ these points alone of this line are points of the locus,

and the portions of the line between them do not belong to the

locus. As different values are assigned to x and y, new lines

parallel to OZ are draw^n on which there are, in general, isolated

points of the locus. It follows that the locus has extension in

only two dimensions, i.e. has no thickness, and is, accordingly, a

surface. Therefore tlie graphical representation of a function of

tiuo variables is a surface.*

\if{x, y) is indeterminate for particular values of x and y, the

corresponding line parallel to OZ lies entirely on the locus.

Since the equations z =f{x, y) and F{x, y,z)= are equivalent,

and their graphical representations are the same, it follows that

the locus of any single equation in x, y, and z is a surface.

There are apparent exceptions to the above theorem, if we demand that the

surface shall have real existence. Thus, for example,

x2 + 2/2 + z2 _ _ 1

is satisfied by no real values of the coordinates. It is convenient in such cases,

however, to speak of " imaginary surfaces."

Moreover, it may happen that the real coordinates which satisfy the equa-

tion may give points which lie upon a certain line, or are even isolated points.

For example, the equation x^ + w^ =

is satisfied in real coordinates only by the points (0, 0, z) which lie upon the

axis of z ;
while the equation 3.2 ^ ^2 + ^2 _ q

is satisfied, as far as real points go, only by (0, 0, 0). In such cases it is still con-

venient to speak of a surface as represented by the equation, and to consider

the part which may be actually constructed as the real part of that surface. The

imaginary part is considered as made up of the points corresponding to sets of

complex values of x, ?/, and z which satisfy the equation.

86. The appearance of any surface can be thus determined from

its equation by assigning values to any two of the coordinates and

computmg the corresponding values of the third. This method,

however, has practical difficulties. In place of it we may study

* It is to be noted that this method of graphically representing a function cannot

be extended to functions of more than two variables, since we have but three dimen-

sions in space.
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any surface by means of the sections of the surface made by planes

parallel to the coordinate planes. If, for example, we place 2: = in

the equation of any surface, the resulting equation in x and y is

evidently the equation of the plane curve cut from the surface by

the plane XOY. Again, if we place z=^z^, where z^ is some fixed

finite value, the resulting equation in x and y is the equation of

the plane curve cut from the surface by a plane parallel to the

plane XOY and z^ units distant from it, and referred to new
axes O'A"' and O'Y', which are the intersections of the plane z = z^

with the planes XOZ and YOZ respectively ; for by placing z = z^

instead of « = 0, we have virtually transferred the plane XOY,
parallel to itself, through the distance z^.

In applying this method it is advisable to find first the three

plane sections made by the coordinate planes a? = 0, ?/ = 0, 2: = 0.

These alone will sometimes give a general idea of the appearance

of the surface, but it is usually desirable to study other plane sec-

tions on account of the additional information that may be derived.

The following surfaces have been chosen for illustration because

it is important that the student should be familiar with them.

Ex. 1. ^x +% + Cz + Z> = 0.

Placing z = 0, we have (fig. 47)

^x +% + Z> = 0. (1)

Hence the plane XOY cuts this surface in a straight line. Placing 2/ =
and then x = 0, we find the sections of this surface made by the planes ZOX
and YOZ to be respectively the straight lines

Z
Ax + Cz + D = 0, (2)

I

and By + Cz + D = 0. (3) /k

Placing z = z\, we have / 1 x'"'^
/ I X

Ax + By + Czi + D = 0, (4)
(^V jO'^J^^,^ y'

which is the equation of a straight line in the L>-'^..\.l...-^ x
plane z = Zi. TiJie line (4) is parallel to the y'/y /' ^^^--'''^^

/ A\ /^^^"^^^
line (1), since they make the angle tan-i ( 1 /"^

\ J^/ y/ Fig. 47

with the parallel lines O'X' and OX and lie in

parallel planes. To find the point where (4) intersects the plane XOZ, we place

2/ = 0, and the result Ax + Czi + D = shows that this point is a point of the

line (2). This result is true for all values of zi. Hence this surface is the locus
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of a straight line which moves along a fixed straight line always remaining

parallel to a given initial i^osition ; hence it is a plane.

Since the equation Ax + By + Cz +D = is the most general linear equation in

three coordinates, we have proved that the locus of every linear equation is a plane.

Ex. 2. z = ax- + by^, where a > 0, 6 > 0.

Placing 2 = 0, we have ax^ + by'^ = 0,

and hence the XOY plane cuts the surface in a point (fig.

we have

(1)

18). Placing y - 0,

z = ax2, (2)

which is the equation of a pa-

rabola with its vertex at

and its axis along OZ. Plac-

ing X = 0, we have

z = by\ (3)

which is also the equation of a

parabola with its vertex at

and its axis along OZ.

Placing z = Zi, where zi > 0,

we may write the resulting equa-

tion in the form

b
1, (4)

which is the equation of an ellipse

with semiaxes -\ /— and -\ /— •

\a \b
As the plane recedes from the

origin, i.e. as Zi increases, it is

evident that the ellipse increases

in magnitude.

a
If we place z = — z\, the result may be written in the form — X'

2l
1,

and hence there is no part of this surface on the negative side of the plane XOY.
The surface is called an elliptic paraboloid., and evidently may be generated by

moving an ellipse of variable magnitude always parallel to the plane XOY, the

ends of its axes always lying respectively on the parabolas z = ax^ and z — by^.

While the appearance of the surface is now completely determined, we shall,

nevertheless, find it of interest to make two more sections. In the first place, we

note that both the coordinate planes through OZ cut the surface in parabolas

with their vertices at O and their axes along OZ, and hence arises the question.

Do all planes through OZ cut the surface in parabolas ?

To answer this question we shall make a transformation of coordinates by

revolving the plane XOZ through an angle </> about OZ as an axis. The formulas

of transformation will be y. ^ ^, ^^^ ^ _ y, ,,;„ ^^

y — x' sin <p-\- y' cos0,
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for z will not be changed at all, and x and y will be changed in the same man-

ner as in I, § 115. The transformed equation is

z — a(x' cos <p — y' sin <f>f- + h (x' sin
<t>

\- y' cos ^)'^.

Placing y' — 0, we have z = (a cos^-^ + 6 sin2 0)x"^, (5)

which is a parabola with its vertex at and its axis along OZ. But by chang-

ing we can make the plane X'OTj any plane through OZ^ and hence every

plane through OZ cuts this surface in a parabola with its vertex at and its

axis along OZ.

Finally, we will place

y — yx and write the result-

ing equation in the form

which is the equation of a

parabola with its axis par-

allel to OZ and its vertex

at a distance hy^ from the

plane XOY.

Ex.3, ^i^yi-t^x.
aP- b'^ c'^

Placing z = 0, we have

1,2x2 y^

a2^ 62
(1) Fig. 49

which is the equation of an ellipse with semiaxes a and b (fig. 49). Placing

y — 0,Vfe have x2 _ 22 _
o o — '

(2)

which is the equation of an hyperbola with its transverse axis along OX and

its conjugate axis along OZ. Placing x = 0, we have

7/2 z2

which is the equation of an hyperbola with its transverse axis along OY and

its conjugate axis along OZ.

If we place z = ± Zi , and write the resulting equation in the form

y = 1. (4)

we see that the section is an ellipse with semiaxes a VI + — and b VI + —

»

which accordingly increases in magnitude as the cutting plane recedes from

the origin, and that the surface is symmetrical with respect to the plane XOY,
the result being independent of the sign of Zi-
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Accordingly this surface, called the unparted hyperboloid or the hyperboloid

of one sheet, may be generated by an ellijase of variable magnitude moving

always parallel to the plane XOY and with the ends of its axes always lying

on the hyperbolas = 1 and = 1.

If now we revolve the plane XOZ about OZ as an axis by making the trans-

01ma ion
x = cc'cos^ — 2/'sin0, ?/ = x'sin^ + ?/'cos0,

the transformed equation is

(x' cos 4) — y' sin 0)2 (x' sin + y' cos 4>Y ^^ _ -i

-r^, • , ^ 1 /cos^(j) sin2|^\ z2
Placing y = 0, we have {

\
)x^ = 1, (5)

\ a'^ b^ I c^

and have thus proved that the section made by any plane through OZ is an

hyperbola with its conjugate axis along OZ.

Finally, we place y = ± 2/1, and write the resulting equation in the form

X2_22_ ^^
cfi c2

~ 62

'

whence we see that the surface is symmetrical with respect to the plane XOZ.
To discuss the equation further we shall have to make three cases according to

the value of ?/i.

If 2/1 < b, we put the equation in the form

t2 9.2

1-^ C2 1-^^
62/ V 62/

which is the equation of an hyperbola with its transverse axis equal to

I yf
2 a '\\1 and parallel to OX. Hence the vertices will approach coincidence

\ 52

as the cutting plane recedes from the origin.

If 2/1 = 6, the equation may be put in the form

\a c) \a c]
= 0,

which is the equation of two straight lines which intereect on OY.

If 2/1 > 6, we write the equation in the form

which is the equation of an hyperbola with its transverse axis equal to

2 c \|— — 1 and parallel to OZ. Hence the vertices separate as the cutting

plane recedes from the origin.
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Ex. 4. _4. rL _ _
a- 6- c'^

0.

This surface (fig. 60) is a

cone, with OZ as its axis and

its vertex at 0.

Ex. 5.

3.2 y2 2^

- + ^ + -2
a- 0- c^

1.

Tliis surface (fig. 51) is the

ellipsoid.

Ex. 0. _ ^ _ ?! = 1
62 c2

This surface (fig. 52) is the

biparted hyperholoid or tlie hy-

perboloid of two fiheets. X'ig. 50

The discussions of the last

three surfaces are very similar to that of the unparted hyperboloid, and for

that reason they have been left to the student.

Ex. 7. z = ax2 — by^, where a > 0, 6 > 0.

Placing 2 = 0, we obtain the equation

ax2 - 6?/2 = 0, (1)

i.e. two straight lines intersecting at the origin (fig. 58). Placing y = 0, we have

z = ax2, (2)

the equation of a parabola with its vertex at and its axis along tl>e positive

direction of OZ.

Placing X = 0, we
have

z = - by\ (8)

the equation of a pa-

rabola with its ver-

tex at and its axis

along the negative

direction of OZ.

Placing X = ± Xi,

we have

Fid. 51

or

2/2.

hy\

(z - ax^), (4)

a parabola with its axis parallel to OZ and its vertex at a distance axf from

the plane XOY. It is evident, moreover, that the surface is symmetrical with

respect to the plane FOZ, and that the vertices of these parabolas, as different

values are assigned to Xi, all lie on the parabola 2 = ax2.
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Hence this surface may be generated by the parabola z = — by^ moving

always parallel to the plane FOZ, its vertex lying on the parabola z = ax^.

The surface is called the

hyperbolic paraboloid.

Finally, placing z = zi,

where Zi > 0, we have

2 - by'^,

or —X-
Zl 2l

y. 1, (5)

an hyperbola with its

transverse axis parallel

to OX and increasing in

length as the cutting

plane recedes from the

origin.

If z = — zi, -we may
write the equation in the

form

^2/^-^x2 = 1, (0)
Zl Zi

an hyperbola with its transverse axis parallel to OF and increasing in length

as the cutting plane recedes from the origin.
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Ex. 8. 2 = kxy.

As the algebraic sign of the constant k merely shows which side of the plane

XOY we take as the positive side, we will assume A;>0, and discuss the surface

(fig. 54) on that hypothesis.

Placing 2 = 0, we have xy = 0, which is the equation of the axes OX and OY.
Placing ?/ = 0, or X = 0, we have 2 = 0, and gain no new information about
the surface.

Placing 2 = 2i, where 2i > 0, we have

-2/ = !' (1)

an hyperbola referred to its asymptotes as axes (I, § 117, Ex.). Placing 2

we have the hyperbola

Hence all sections made by planes parallel to XOY are hyperbolas with OX
and OY as their asymptotes, and lying in the first and the third quadrants or in

the second and the fourth quadrants according as the cutting plane is on the

positive or the negative side of the XOY plane.

Placing X = Xi, where Xi > 0, we have

2 = kxiy, (3)

which is the equation of a straight line intersecting OX and parallel to the

plane YOZ. If x = — Xi, we have the straight line

2 = - kxiy. (4)

Similarly, placing y = yi, where yi > 0, we have

2 = kyix, (5)
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which is the equation of a straight line intersecting OF and parallel to the plane

ZOX. li y — — 111, we have the straight line

z = — ky\X. (6)

As the cutting plane recedes from the origin it is evident that these straight

lines revolve about OX and OY respectively as they move along them, but

always remain parallel to the planes YOZ and ZOX respectively.

Finally, we will revolve the plane XOZ
about OZ as an axis, the transformed equa-

tion being

z - k{x'cos4> - y'sm(p){x'mn<p + y'coscp).

Placing y' — 0, we have

z = kx'^ cos (p sin (p, (7)

the equation of a parabola

with its vertex at O and its

axis along OZ. Hence all

planes through OZ cut this

surface in parabolas with

their axes along OZ.

The surface is a special

case of the hyperbolic pa-

raboloid of Ex. 7 ; for if

.-:-'' we keep OZ in its original position and

swing OX and OY into new positions by

the formulas of I, § 117, and choose the

angle
<f>

as in the illustrative example of

that article, the equation z = ax^ — by-

Here the coordinates are oblique unless b = a;

Tig. 65

assumes the form z
iab

xy.
a + b

but if b = a, the coordinates are rectangular and we have the case just con-

sidered, where A; = 2 a.

The portion of this surface on which the coordinates are all positive shows

graphically the relations between the pressure, the volume, and the tempera-

ture of a perfect gas (§ 83, Ex. 3). This part of the surface is shown in fig. 55.

87. Surfaces of revolution. If the sections of a surface made

by planes parallel to one of the coordinate planes are circles with

their centers on the axis of coordinates which is perpendicular to the

cutting planes, the surface is a surface of revolution (§37) with that

coordinate axis as the axis of revolution. This will always occur

when the equation of the surface is in the form F{y/a?+ y^ z) = 0,

which means that the two coordinates x and y enter only in the

combination y/x^+f ; for if we place z = z^\\i this equation to
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find the corresponding section, and solve the resulting equation for

X" + 2/^ we have, as a result, the equation of one or more circles,

according to the number of roots of the equation in x^ + i/.

Again, if we place x= 0, we have the equation F{i/, z) = 0,

which is the equation of the generating curve in the plane YOZ.

Similarly, if we place 3/ = 0, we have F{x, z) = 0, which is the

equation of the generating curve in the plane XOZ. It should be

noted that the coordinate which appears uniquely in the equation

shows which axis of coordinates is the axis of revolution.

Conversely, if we have any plane curve F{x, 5;) = in the plane

XOZ, the equation of the surface formed by revolving it about OZ as

an axis is F{y/o(?+ if, z)= 0, which is formed by simply replacing

X in the equation of the curve by V^r + if.

Ex. 1. Show that the vinparted hyperboloid — + — = lisa surface of

, ^. cC^ 0^ a'^
revolution.

Writing this equation in the form

we see that it is a surface of revohition witli OY as the axis.

Placing z = 0, we have — = 1, an hyperbola, as the generating curve.
a^ b-

The hyperbola was revolved about its conjugate axis.

Ex. 2. Find the paraboloid of revolution generated by revolving the parabola

y^ = 4px about its axis.

Eeplacing y by Vy- + z^, we have as the equation of the required surface

y^+ 22 — 4px,

88. Cylinders. If a given equation is of the form F{x, y) = 0,

involving only two of the coordinates, it might appear to represent

a curve lying in the plane of those coordinates. But if we are

dealing with space of three dimensions, such an interpretation would

be incorrect, in that it amounts to restricting z to the value 2 = 0,

whereas, in fact, the value of z corresponding to any simultane-

ous values of x and y satisfying the equation F{x, y)=0 may be

anything whatever. Hence, corresponding to every point of the

curve F{x, ?/) = in the plane XOY, there is an entire straight line,

parallel to OZ, on the surface F{x,y)=0. Such a surface is a
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cylinder, its directrix being the plane curve F{fc, y)= in the

plane z = 0, and its elements being parallel to OZ, the axis of the

coordinate not present.

For example, .t'^ -h y^ = ci^ is the equation of a circular cylinder,

its elements being parallel to OZ, and its directrix being the circle

X- + if = d^ in the plane XO ¥.

In like manner, z' = ky is a parabolic cylinder with its elements

parallel to OX.

If only one coordinate is present in the equation, the locus is a

number of planes. For example, the equation a/— {ct + l)x+ab = (d

may be written in the form {x — a) (x — h)=0, which represents

the two planes x— a = and x—h = 0. Similarly, any equation

involving only one coordinate determines values of that coordinate

only and the locus is a number of planes.

Regarding a plane as a cylinder of which the directrix is a

straight line, we may say that any equation not containing all the

coordinates represents a cylinder.

If the axes are oblique, the elements of the cylinders are not

perpendicular to the plane of the directrix.

89. Space curves. Tlie two surfaces represented respectively by

the equations /^ {x, y, z)= and f^ (x, y, z)= intersect, in general,

in a curve, the coordinates of every point of which satisfy each of

the equations. Conversely, any point the coordinates of which

satisfy these equations simultaneously is in their curve of inter-

section. Hence, in general, the locus of two simultaneous equations

in x, y, and z is a curve.

In particular, the locus of the two simultaneous linear equations,

A^x + B^y+C^z + D^=^,

A.^x + B.^y + C^ +A = 0,

is a straight line, since it is the line of intersection of the two

planes respectively represented by the two equations.

If, in the equations f{x, y, z)= 0, f(x, y, s) = 0, we assign a

value to one of the coordinates, as x for example, there are two

equations from which to determine the corresponding values of

y and z, in general a determinate problem. But if values are

assigned to two of the coordinates, as x and y, there are two



SPACE CURVES 171

equations from which to determine a single unknown z, a prob-

lem generally impossible. Hence there is only one independent

variable in the equations of a curve.

In general, we may make x the independent variable and place

the equations of the curve in the form y = ^^{x), z = (f>^{x), by

solving the original equations of the curve for y and z in terms

of X. The new surfaces, y = <^^{x),z= ^^ (a;), determining the curve,

are cylinders (§ 88), with elements parallel to OZ and OY respec-

tively. The equation y = <^^ (x) interpreted in the plane XO Y is

the equation of the projection (§ 92) of the curve on that plane.

Similarly, the equation z = ^2('')' interpreted in the plane ZOX, is

the equation of the projection of the curve on that plane.

In particular, if we solve the equations

A^x + B^7j + C^z + D^=0,

J,a;+i?,y + C,s+A=0,

for y and z in terms of x, we have two equations of the form

y = 2)X + q, Z = 7'X + s,

as the equations of the same straight line that was represented by

the original equations.

90. If t is any variable parameter, and we make x a function

of t, as x=f^{t), and substitute this value of x in the equations

y = ^^(x),z = (f)^{x) (§ 89), we have

^=A{t), y=fM ^=A(t)>

as the parametric equations of the curve.

More generally, the three equations

«^=/i(0> y=/.(0, ^=A{f)^

represent a curve, the equations of which may be generally put in

the form y = (f)^{x),z = <f)^{x), by eliminating t from the first and

the second equations, and from the first and the third equations.

Ex. The space curve, called the helix, is the path of a point which moves

around the surface of a right circular cylinder with a constant angular velocity

and at the same time moves parallel to the axis of the cylinder with a constant

linear velocity.
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Let the radius of the cylinder (fig. 56) be a, and let its axis coincide with

OZ. Let the constant ant,uilar velocity be w and the constant linear velocity

be V. Then if d denotes the angle through

which the plane ZOP has swung from its

initial position ZOX, the coordinates of

any point P (x, y, z) of the helix are given

by the equations

X = a cos 6, y — a sin d, z = vt.

But d = iot, and accordingly we may have

as the parametric equations of the helix

X = a cos uit, y = a sin wt, z = vt,

t being the variable parameter.
Q

Or, since t = ~ , we may regard 6 as

the variable parameter, and the equa-

tions are

X = a cos d,

where k is the constant

y — a sni i

V

kd,

91. Ruled surfaces. A surface

which may be generated by a mov-

ing straight line is called a 7^uled

surface. The plane, the cone, and

y ^^^'
the cylinder a.re simple examples

of ruled surfaces, and in § 86, Ex. 8, it was shown that the hyper-

bolic paraboloid is a ruled surface.

Ex. 1. Prove that the ruled surface generated by a straight line which

moves so as to intersect two fixed straight lines not in the same plane and at

the same time remain parallel to a fixed plane is an hyperbolic paraboloid.

Let the fixed straight lines have the equations y = 0, z = 0, and y = c, z =z kx,

and let YOZ be the fixed plane, the axes of coordinates being oblique. Then the

straight line x — a, y = mz is a straight line which is parallel to the plane YOZ
and intersects the line y = 0, z = 0, for all values of a and m. If this Ime

intersects the line y = c, z = kx, evidently m - -- Therefore the equations of

c
^^

the required line are x = a, ?/ =— z. Any values of x, y, z which satisfy these
ka

f. ]^

equations satisfy their product xy = -z, or z = -xy. Hence the line always

k k c

lies on the surface z = -xy, an hyperbolic paraboloid (§ 86, Ex. 8).

x'-i y^

Ex. 2. Prove that the unparted hyperboloid ^ + 7^
= 1 is a niled sur-

face having two sets of rectilinear generators, i.e. that through every point of it

two straight lines may be drawn, each of which shall lie entirely on the surface.

Ul
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If we write the equation of the hyperboloid in tlie form

r2- _ _ = 1 _ '^ n\

it is evident that (1) is the product of the two equations

(2)

a c \ of

a c ki\ 6,

for any value of ki. But (2) are the equations of a straight line (§ 89). More-

over, this straight line lies entirely on the surface, since the coordinates of every

point of it satisfy (2) and hence (1). As different values are assigned to ^i, we
obtain a series of straight lines lying entirely on the surface.

Conversely, if Pi(xi, yi, Zi) is any point of (1),

Xi
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If we place z = 0, we have x = q, y = s, the parametric equations of the sec-

tion of tlie ruled surface by the plane XOY. Similarly, if we place z = Zi, we

have X = pzi + q, y = tzi + s, the parametric equations of a section parallel to

XOY. Suppose now when t varies trom ^o to ^i, the straight-line generator of

the surface traverses the perimeter of the section z = Z\. Then the area of this

section is

.f
CV-ldt + z, rVs^ + r"^) clt + ps^-^dt.

^Jio dt Jt, \ dt dtf J I, dt

This is a quadratic polynomial in zi. Hence the prismoidal formula holds for

a portion of a ruled surface bounded by parallel planes.

The prismoid itself is a special case of such a surface.

PROBLEMS

1. Show that the surface lfi{x, y, z) + kf^ix, y, z) = 0, where I and k are

constants, is a surface passing through all the points common to the two sur-

faces /i(x, y, z) = ancl/2(a;, y, z) = 0, and meeting them at no other points.

2. Discuss the surface xyz = a^ by means of plane sections.

3. Show that the surface z = a — Vx- -|- t/- is a cone of revolution, and find

its vertex and axis.

4. Prove that the surface ax + by = cz^ is. a cylindroid, and discuss its

plane sections.

5. Discuss the surface x^ + y^ + z^ = a^ by means of plane sections.

6. Prove that the surface {ax + by)'^ = cz is a cylindroid, and discuss its

plane sections.

7. Discuss the surface x* -(- ?/^ + z' = a* by means of plane sections.

8. Find the equation of a right circular cylinder which is tangent to the

plane XOZ and has its axis in the plane YOZ.

9. Find the«equation of a right circular cylinder which is tangent to the

planes XOZ and XOY.

10. Describe the locus of the equation z + {y + l)^ = 0.

11. Describe the locus of the equation 2y^ — 5y — S = 0.

12. Describe the locus of the equation (ax -|- by)- — cH"^ — 0.

13. Find the equation of the oblate spheroid, i.e. the surface generated by

an ellip.se revolving about its minor axis.

14. Find the equation of a biparted hyperboloid of revolution with OY
as its axis.

15. Find the equation of the prolate spheroid, i.e. the surface generated by

revolving an ellipse about its major axis.
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16. Find the equation of the surface generated by revolving tlie paraljola

2/2 = 4px about OY as an axis.

17. Find tlie equation of the ring surface generated by revolving about OX
the circle x^ + {y — b)^ = a'^, where a <b.

18. Write the equation of the surface generated by revolving the hyperbola
xy ~ c about either of its asymptotes as an axis.

19. Find the equation of the surface formed by revolving the four-cusped
hypocycloid x^ + y^ =a^ about OY as an axis.

20. What surface is represented by the equation x^ -\- {y- + z'^)^ = o^ ?

21. What surface is represented by the equation x^ + z'^ — y^ = 0?

22. What is the line represented by the eqtiations y- + z- — 6x = Q,

x-3 = 0?

23. Show that the line of intersection of the surfaces x^ + y'^ — a- and y = z

is an ellipse. (Rotate the axes about OX through 45°.)

24. Show that the projections of the skew cubic x = t, y —. t-, z — t^ on the

coordinate planes are a parabola, a semicubical parabola, and a cubical

parabola.

25. Prove that the projections of the helix x = a cos 9, y = a sin 5, z = k0

on the planes XOZ and YOZ are sine curves, the width of each arch of

which is k-TT.

26. Prove that the projection of the curve x = e', y = e-*, z = tV2, on
the plane XOY is an equilateral hypei'bola.

27. Turn the plane XOZ about OZ as an axis through an angle of 45°, and
show that the projection of the curve x = e', ?/ = e-', z = t\'2 on the new
XOZ plane is a catenary.

28. Show that the curve x = P, y = 2 1, z = t is a, plane section of a para-

bolic cylinder.

29. Prove that the skew quartic x = t, y = t^, z — t"^ is the intersection of

an hyperbolic paraboloid and a cylinder the directrix of which is a cubical

parabola.

30. The vertical angle of a cone of revolution is 90°, its vertex is at 0, and
its axis coincides with OZ. A point, starting from the vertex, moves in a spiral

path along the surface of the cone so that the measure of the distance it has

traveled parallel to the axis of the cone is equal to the circular measure of the

angle through which it has revolved about the axis of the cone. Prove that the

equations of its path, called the conical helix, are x = tcost, y = isin^, z = t.



CHAPTEE X

PLANE AND STRAIGHT LINE

-i\^

92. Projection. The j^rojecHoji of a point on a straight line

is defined as the point of intersection of the line and a plane

through the point perpendicular to the line. Hence in fig. 46

L, M, and iV are the projections of the point P on the axes of x, y,

and z respectively.

The projection of one straight line of finite length upon a

second straight line is the part of the second line included

between the projections of the ends of the first line, its direction

being from the projection of the

initial point of the first line to the

projection of the terminal point of

the first line. In fig. 57, for ex-

ample, the projections of A and B
on MN being A: and J5' respec-

tively, the projection of AB on

MN is A!B\ and the projection of

BA on MN is B^A! . If MN and

AB denote the positive directions

respectively of these lines, it fol-

lows that A^B' is positive when it has the same direction as MN
and is negative when it has the opposite direction to MN.

In particular, the projection on OX of the straiglit line P^P^ drawn

from P]_{x^, y^, z^ to P^{x,^, y^, z^) is L^L^, where OL^ = x^ and

0L^= x^. But L^L^= x^ — x^ by I, § 13. Hence the projection

of P^Il on OX is x^— x^] and similarly, its projections on OY
and OZ are respectively y^^

— y^ and z^— z^

If we define the angle between any two lines in space as the

angle between lines parallel to them and drawn from a common
point, then the projection of one straiglit line on a second is the

170

Fig. 57

lii
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product of the leiigth of the first line and the cosine of the angle

between the positive directions of the two lines. Then if <}> is the

angle between AB and 3IN (tig. 57),

A'B' = AB cos </).

To prove this proposition, draw .4' C parallel to ^B and meet-

ing the plane ST at C. Then A'C = AB, and A'B' = A' C cos
(f),

by I, § 14, whence the truth of the proposition is evident.

Defining the projection of a broken line upon a

straight line as the sum of the projections

of its segments, we may prove, as in I,

§ 15, that the projections on ani/^ straight

line of a broken line and the

straight line joining its ends

are the same.

We will now

show that the

projection

of any

Fig. 58

plane area upon another p)lane is the product of that area arid

the cosine of the angle between the planes.

Let X'OY (fig. 58) be any plane through OY makmg an angle

^ with the plane XOY. Let A'B' be any area in X'OY such that

any straight line parallel to OX' intersects its boundary in not

more than two points, and let AB be its projection on XOY.

Then (§ 35) ?ive?iA'B'=C{.r'.,-j{)dy, (1)

the limits of integration being taken so as to include the w^hole area.

In like manner, area ^7? =
|
{x.^—x^dy, (2)

the limits of integration being taken so as to cover the whole area.
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But the values of y are the same in both planes, since they

are measured parallel to the line of intersection of the two planes

;

and hence the limits in (1) and (2) are the same. Since the x

coordinate is measured perpendicular to the line of intersection,

x^ = iCg cos ^, x^ — x'^ cos (^, and (2) becomes

area AB =/(4 ':'^ cos ^ dy

= cos ^ I
(a-^— x'^ dy

= (cos (\>) (area A!B').

93. Distance between two points. Let ^(.'\, y^, z^ and i^(«2.

Vv ^2) (fig-S9) t>e any two points. vPass planes through P^ and P^

parallel to the coordinate planes, thereby forming a rectangular

2 parallelopiped having the edges parallel

to OX, OY , and OZ, and having P^P^ as

a diagonal. Then the edges are equal

respectively to x^—x^, Vi—Vx^ and z^—z^

(§ 92), being equal to the projections of

-X P1P2 on OX, OY, and OZ.

Hence

Pil'.

R"-

Fig. .59

If the two points have two coordinates the same, as, for example,

y.y= ^1, z.^= z^, the formula reduces to i^i^ = a'2— x^.

Ex. 1. Find a point \^ units distant from each of the three points

(1, 0, 3), (2, - 1, 1), (3, 1, 2).

Let P(x, y, z) be the required point.

'-^^^^^
{X - 1)2 + {ij - 0)2 + {z- 3)2 = 14,

{X - 2)2 + {y + 1)2 + (. _ 1)2 ^ 14^

(X - 8)2 + (y- 1)2 + (2 _ 2)2 = 14.

Solving these three equations, we determine the two points (0, 2, 0) and (4, —2, 4).

E.x. 2. Find the equation of a sphere of radius r with its center at

-Pi(a;i, 2/1, 2i).

If P(x, ?/, z) is any point of the spliere,

(X - Xi)2 + {y- 2/i)2 + (z - 2i)2 = r2. (1)

Conversely, if P(x, ?/, 2) is any point the coordinates of which sati.sfy (1),

P is at the distance r from Pj, and hence is a point of the sphere. Therefore

(1) is the required equation of the sphere.
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94. Length of a space curve in rectangular coordinates. The

method of tiuding the length of a space curve is similar to that of

finding the length of a plane curve, so that the proof of § 40 may

be repeated.

If AB (fig. 60) is the given curve, we assume n — 1 points

I(, P^, I^, • • •, -^_i between A and B, and connect each pair of

consecutive points by a straight line. Tlie length AB is then

defined as the limit of the sum

of the lengths of the n chords Al{,

^^^•••j ^-\^> ^s n is increased

without limit and the length of

each chord approaches zero as a -p^^ ^q

limit (I, § 104).

Let the coordinates of ^ be (^., y^, z) and those of P̂^^ be

(«,+ A^,', y,+ Ay, z,+ Az). Then ^i^^, =V^?+IF+S'(§ 93).

Now if X, y, z are functions of a variable parameter t (§ 90), and

have the derivatives -^ , -^ > ^-^ > then ^Ax+Ay'+Az' is an
dt at at

infinitesimal which differs from the infinitesimal Vdx^ dy~ + dz:^

by an infinitesimal of higher order. For we have

\ldx'-\-df+iz' l/dx\'
, /di/Y ,

/&\- 'l^

^{d-tj+[dt)+{dt)

Since t is the independent variable, At = dt (§ 4) ; also

Lim/M^ ^,etc.
^'^''\At/ dt

Hence Lim
,

= 1.

^dx^+df+dz^

Therefore (§ 3), in finding the length of the curve, we may

replace y/'Ax+Ay^'+Az' by ^dx-+ dy''+ dz\ Hence, if s denotes

the length of AB, we have

Vdx^+dy'' + dz\
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where (^4) and (B) denote the vakies of the independent variable

for the points A and B respectively. From this formula for s it

follows (§9) that ^^ ^^a^+df+d^.

Ex. Find the length of an arc of the helix x = a cos^, y = asin^, z = k9,

corresponding to an increase of 2 tt in 6.

Here dz = - a sin dd, dy = a cos 6 dd, and dz = k dd.

= 2 TT Va- + ^2.

95. Direction of a straight line. The direction of any straight

line in space is determined by means of the angles which it makes

with the positive directions of the coordinate axes OX, OY, OZ.

We denote these angles by a, yS, and

7 respectively (fig. 61). Then their

cosines, i.e. cos a, cos yS, cos 7, are

called the direction cosines of the

line.

It is to be noted that the same

straight line makes the angles a^, ^^,

7^ or TT — a^, TT — yS^, TT — 7i with the

coordinate axes, according to the di-

rection in which the line is drawn.

Hence its direction cosines are either cosa^, cos/3^, cos7i or

— cosa^, — cos/8j, — cos7i. A straight line in wliich the direc-

tion is fixed has only one set of direction cosines.

The three direction cosines are not independent, for they satisfy

Fig. 61

the equation cosV -I- cos^/3 -f cos^7 = 1

;

that is, the sum of the squares of the direction cosines of any

straight line is always equal to unity.

To prove this theorem, let the line I(P^ (fig. 59) be any straight

line and let it make the angles a, yS, and 7 with OX, OY, and

OZ respectively. Then

cos a =W
A'^2

COS /9 = FP
COS 7 = PP
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Squaring and adding these equations, we have

cos a + cos p + COS" 7 = — -

_ p^p;

But P,Q'+P,p'+P,s'=P,lf.

Therefore cos" a; + cos^/3 + cos^7 = 1.

96. If Pi{x^, 2/i,
z^) is any fixed point (fig. 59), the coordinates of

any second point P^ may he denoted by {x^-\-Ax, 7/^ + Ay, z^+Az)^

where Ax, Ay, and A^; are arbitrary.

If cos a, cos yS, cos 7 are the direction cosines of the straight

line P^P^, we have, by the work of the last article,

Ax Ay
cos a =

,
J cos yy =

Va?+a7+A/ VAa?+A7+A?
Az

cos 7 =
^

'

yJAx^+ Ay^+ Az^

for P^Q = Ax, P,E=Ay, P,S = Az,

and P^P, = VA^'+ Ay^+ Az^

.

Hence, if Ax, Ay, and Az are given, the direction of a straight

line is determined, but the particular straight line having that di-

rection is not determined, for the values of A.i-, Ay, and A^ in no

way determine x^, y^, and z^, the coordinates of the initial point of

the line. Moreover, the ratios of Ax, Ay, and Az are alone essen-

tial in determining the direction of the line. Accordingly we may

speak of the direction Ax : Ay : Az, meaning thereby the direction

of a straight line, the direction cosines of which are respectively

Ax Ay A2— —
> — —

> — ..
'

^Ax'+A^'\Az^ Va«'+A?/'-|-As' ^Ax'+Ay'+Az"

Furthermore, if vi, B, and C are any three given numbers, we

may speak of the direction A\B:C. For we may place Ax = A,

Ay = B, Az = C, and thus determine a direction, the direction

cosines of which areABC
V^2 + ^2 ^ c' V^2 + ^' + C'--^ y/A' + B^ + C
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97. Direction of a space curve. If we regard the position of a

poiut P {x, y, z) of a curve as determined by s,— its distance along

the curve from some fixed point of the curve,— as in I, § 105, x,

y, and z are functions of s, i.e.

«^=/i(s). y=A{s), z=f,{s).

Then if s is increased by an increment As, a second point

Q{x -{- Ax, y + Ay, z + Az) of the curve is located, and the direc-

tion cosines of the chord PQ are

- _^ ^;^_^ _^^y__ _^ , ^^ _^ . (§96)

Vax"+ AyV a/ VAa;V A?/"+ Az^ vA*-V AyV As^

The limits of these ratios, as As = 0, are the direction cosines of

the tangent to the curve at P.

Ax Ax As
Now

whence Lim

VaT+a/Ta? ^^ ^Ax\Ay'+Az'
Ax dx

2
, XT.2 , x-2 dsAs-0 VA.rVAyVA^

for Lim ^_i., _= = 1- (I> § 10^)

V A.r^+AyVAs;^

Proceeding m the same way with the other two ratios, we have

— , -^ , — as the direction cosines of the curve at any point,
ds ds ds

since the directions of the tangent and the curve at any point are

the same.

Instead of giving the direction cosines, we may speak of the

direction of the curve as the direction dx : dy : dz, since

ds = y/djf + dy^ + dz\ (§ 94)

Ex. Find the direction of the helix

x=:aco.s^, y = asin6, z = kd,

at the point for which ^ = 0.

Here dx = - asmOdd, dy = a cofiddO, dz = kdd. Therefore, at the point

for which = 0, the direction is the direction Q:add:kdd, and the direction

^ a k
cosines are 0,

VoMTP Va2 + A;2
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98. Angle between two straight lines. Let the directions of any

two straight hnes be respectively A^x -.A^y-.A^z and A^x : A^y : A^z,

where the subscripts are used merely to distinguish the two direc-

tions. If two straight lines having these direc- y^Pi

tions are drawn from any point F(x, y, z) they

will pass through the two points P^{x + A^x,

y + A^j, z + A^z) and P^{x + A^x, y + A,,y, z + A^z) p.

(fig. 62) respectively.

Then if 6 is the angle between these two lines, we have, by

trigonometry,

cosg =
^'+^-^''.

(1)
2FF^PF^

But P^'=A^Va^'+A^',

F^"=A~/+A^/+A;z\

liTC= (A,.« - A,..f + {A,y-A,yf + {A,z-A,z)\ (§ 93)

whence, by substitution in (1) and simplification,

cos e - ^^''^ +^^^ • ^-^-^i^^-^^_ (2)

Va~»''+A^"'+A^''' • ^A^o^'+A^y'^+A^z^

or if cos a^, cos yS^ cos 7^ are the direction cosines of any straight

line with the first direction, and cos a„, cos ^„, cos ^„ are the direc-

tion cosines of any straight Ime with the second direction, the

above formula becomes

cos 6 = cos a^ cos a^ + cos ^^ cos /S, 4- cos 7^ cos 'y^. (3)

If the two directions are given as A^ : B^ : C^, and A„:B„: C^,

(2) evidently becomes

eo,,^ ^

A.A,+ B,B,+ CA.
. (4)

y/Al + Bl + C^ VJ| + Bl + C^

If the lines are perpendicular to each other,

A^A.^ + B^B.^+C,C,= Q, (5)

since cos ^ = ; and if they are parallel to each other.

A,_B,_C,
A, B, C,

since cos a^ = cos a^, cos ^^ = cos /3„, cos 7^ = cos 7^

(6)



\ds

184 PLANE AND STRAIGHT LINE

If 6 represents the angle between any two curves, we have,

99. Direction of the normal to a plane. Let i^(«p y^, z^} and

i^ (x^ + Ax, y/j + Ai/, z^ + A^) be any two points of the plane

Ax + Bi/ + Cz+D = 0. (1)

Substituting their coordinates in (1), we have

Ax^ + Bij^+Cz^ + D=0, (2)

A (x^ + Ax) + B{y^ + Ay) + C {z, + Ac) + i> = 0. (3)

Subtracting (2) from (3), we have

A-Ax+B-Ay + C-Az=Q, (4)

whence, by (5), § 98, the direction A:B:Cis normal to the direc-

tion A* : Ay : Az. But the latter direction is the direction of

any straight line of the plane. Hence the direction A : B : C is the

direction of the normal to the plane Ax + By + Cz-\- D = {).

We may now show that the equation of any plane is a linear

equation of the form (1). For let the given plane pass through

a fixed point P^{x^, y^, z^ and be perpendicular to a straight line

having the direction A:B : C.

Now the equation
^^^. ^j.yj^Cz +D=0

represents a plane perpendicular to the direction A:B: C. This

plane will pass through i^ if

Ax^ + By^+Cz^ + D = 0,

whence Z> = — (Ax^^ + By^ + C\).

Therefore A(x- x^) + B{y- y^) +C{z- z^) = (5)

represents a plane perpendicular to the direction A:B:C and

passing through the fixed point J^ (x^, y^, z^). But only one plane

can satisfy these conditions ; hence the given plane has the equa-

tion just determined. Any plane may be determined in this way,

however, and hence every plane may be represented by a hnear

equati(jn.
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Ex. Find the equation of a plane passing througli the point (1, 2, 1) and

normal to the straight line having the direction 2 : 3 : - 1.

The equation is
2 (X - 1) + 3 (2/

- 2) - 1 (z - 1) = 0,

2x + Sy - z-7 = 0.

100. Normal equation of a plane. Let a plane be passed throuoli

the point Ji{x^, y^, z^) perpendicular to the straight line Oil (fig. 63).

By § 96, the direction

of Oil is the direction

x^:7/^:z^, and hence the

equation of the required

plane is, by (5), § 99,

+ z,(z-z,)=^0, (!)

which may be put in the

form

x^x + y^y + z^z

-(x^ + y^ + z:^)=0. (2)

If the direction cosines of ^

Oil are denoted respectively by /, m, and w, i.e. / = cos a, m = cos ^,

n = cos 7, and the length of OP^ is denoted by p, then

1 =
^x'^+yl+zl

and

^x^ + yl+ z'l

p='^4 + yi + ^l-

n =
^x'^+yl+zl

Accordingly, if we divide equation (2) by V^'f + yl + z'l, it becomes

Ix + my + nz — jj = 0, (3)

which is known as the normal equation of the plane.

Equation (3) may also be derived geometrically as follows:

Let F(x, y, z) (fig. 63) be any point of the plane, and let OL = x,

LM=y, MP= z. Draw OP. Then the projection of OP on OP^

is OP^, and the projection of the broken line OLMP on OP^ is

l-OL + m- LM+ n MP (§ 92). Hence

l-OL + m- LM+ n MP -OP^=0,

or Ix + 7ny + nz — 2) = 0.
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The general equation of the plane

Ax + Bij + Cz + D = ^

may evidently be made to assume the normal form by dividing the

equation by V.4"'^+ B^+ C'^, since the direction of the normal to

the plane is the direction A:B:C. The sign of the radical must

be taken opposite to the sign of Z> in order that the constant term

may be the negative of the distance of the plane from the origin,

as in (3).

Ex. Find the direction cosines of the normal to the plane 2x— Sy+Gz+ll^O,
also its distance from the oriein.

Dividing by - V22 + 32 + &, i.e. - 7,

we have — |x + f2/
— fz — 2 = 0.

Hence the direction cosines of the normal to this plane are —^,^, — f , and

the plane is 2 units distant from the origin.

101. Angle between two planes. Let the two planes be

A^x+B^ij + C^z-i-D^=0, (1)

A^x + B.^ij + C'„2 + 1), = 0. (2)

The angle between these planes is the same as the angle between

their respective normals, the directions of which are respectively

the directions A^^: B^^: C^ and A^ : B^ : C^. Hence if 6 is the angle

between the two planes,

cos e = A^A, + B,B +C,C,
_

^A^ + Bl+ C^-Vjf+Bf+C}

The conditions for perpendicularity and parallelism of the planes

are respectively
^^^^ ^ ^^^^ + ^^^^ ^

and A = A^^.
A ^. C,

102. Determination of the direction cosines of any straight line.

Let the equations of the straight line be in the form

A^x + B^y + C,z + D^=0, (1)

A^x + B.^ + C> +A = 0, (2)
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and let its direction cosines be I, m, and n. Since the line lies in

both planes (1) and (2), it is perpendicular to the normal to each.

Therefore (by (5), § 98),

A^l + Bjiii + C\n = 0,

AJ + B^m + C^7i = ;

also P+m-+7f=l. (§95)

Here are three equations from which the values of /, m, and n may

be found.

From the first two equations we have (I, § 8)

^1
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is beyond P^ from P^, I^P and P^P^ have opposite directions, and

k is a negative number, its numerical value ranging all the way

from to CO.

In fig. 64, which represents the first case, pass planes through

Jl, P, and J^ perpendicular to OX; and let them intersect OX at

the points 31^, M, and M^ respectively. Then 031= 031^+31^31',

and since P^P = k{P,P^), by geometry 31^31= k{3f^3I^\.

.-.031= 031^ + k {3I^3Q

,

whence, by substitution,

x = x^+ k (.^2— x^)- (1)

By passing the planes through the points perpendicular to Y
and perpendicular to OZ, it may be proved in the same way that

z = z,+ k(z-z^. (3)

The construction and the

proof for the other two cases

are the same, and the re-

sults are the same in all the

cases.

By assigning different values to k we can make equations (1),

(2), and (3) represent any point on the straight line determined

by the points P^ and P^. Conversely, if .r, y, and z satisfy these

three equations, the point must be a point of the straight line

P^P^. Hence (1), (2), and (3) are the parametric equations of the

straight line determined by two points, k being the variable

parameter.

104. By eliminating k from the three equations (1), (2), and (3)

of the last article, we have

Fig. 64

x — x^ _y — Vi _ z — z^

^2~ ^1 y-i 2/i h~ ^1

(1)

Here are but two independent equations in x, y, and z. This

result proves the converse of § 89, that two linear equations

always represent a straight line; for we have any straight line
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represented by two linear equations. The direction of the line

is the direction x^— x^ : y^—y^:z^— z^ (§ 96).

It is to be noted that, if in the formation of these fractions any

denominator is zero, the corresponding direction cosine is zero, and

the line is perpendicular to the corresponding axis.

Ex. Find the equations of the straight line determined by the points

(1, 5, - 1) and (2, - 3, - 1).

X — 1 2/ — 5 z + 1

X — x^
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106. Equations of a straight line in terms of its direction

cosines and a known point upon it. Let i^(a^i, y^ z^) (fig. 65) be

a known point of the line, and let I, m, and n be its direction

cosines. Let P{x, y, z) be any point of the line. On P^P as a

diagonal construct a parallelopiped as in § 93. Then if we

denote l^P by r, we have

P^Q = Ir, P^Pi = mr, J^S = nr.

But JlQ = x — x^, P^B=i/ — y^, P^S = z — z^,

whence x = x^ + Ir, y = y^+ mr, z = z^+ nr. (1)

These are the parametric equations of the line, the variable param-

eter being r, r being positive if the

point is in one direction from i^, and

negative if it is in the other direction

from I[.

By ehminatiug r we have

^>-'

y

I n
(2)

Fig. 65
which are but two independent linear

equations.

107. Problems on the plane and the straight line. In this

article we shall solve some problems illustrating the use of the

equations of the plane and the straight line.

1. Plane determined hy three known points. Let the three given

points be P^ix^, y^, z^, I^{x„, y.,, z„), and Pgix^, y^, z^), and let the

equation of the plane determined by them be

Ax + By+Cz + D = 0. (1)

Since i^, I^, and J^ are points of the plane, their coordinates

satisfy (1). Therefore

Ax^ + By^+Cz^ + D = 0, (2)

Ax^ + By.^+Cz.^-\-P = 0, (3)

Ax, + By,+ Cz, + 1) = 0. (4)

We may now solve (2), (3), and (4) for the ratios of the unknown

constants A, B, C, and I), and substitute in (1), or we may eliminate

Ml
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A, B, C, and D from the four equations (1), (2), (3), and (4). By

either method the equation of the required plane is found to he

X
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If the equation of the plane is in the form

Ax + By-\-Cz+D= 0,

finding the values of I, m, n, and jj, and substituting in (4), we have

y/A^ + B'+C^

as the magnitude of the required distance, being positive for aU

points on one side of the plane and negative for all points on the

other side. If we choose, we may take the sign of the radical

always positive, in which case we can determine for which side of

the plane the above result is positive by testing for some one point,

preferably the origin.

Ex. 2. Find the distance of the point (1, 2, 1) from the plane Ix-Zy
+ G2 + 14 = 0. The required distance is

2(1) -3(2) + 6(1) + 14 _^^
7

^

Furthermore the point is on the same side of the plane as the origin, for if (0, 0, 0)

had been substituted, the result would have been 2, i.e. of same sign as 2f.

3. Plane through a given line and subject to one other condi-

tion. Let the given line be

A^x + B^ij + C^z + D^={), (1)

A^c + B^ +O + D, = 0. (2)

Multiplying the left-hand members of (1) and (2) by A\ and l\_

respectively, where h^ and k^ are any two quantities independent

of X, y, and z, and placing the sum of these products equal to zero,

we have the equation

k^ (A^x + B^y + C^z + D,) + k, {A,x + B.^j + C,z + A) = 0. (3)

Equation (3) is the equation of a plane, since it is a linear equa-

tion, and furthermore it passes through the given straight line,

since the coordinates of every point of that line satisfy (3) by

virtue of (1) and (2). Hence (3) is the required plane, and it may

be made to satisfy another condition by determining the values of

k^ and k^ appropriately.
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Ex. 3. Find the equation of the plane determined by the point (0, 1, 0) and

the line 4x + 3?/ + 2z - 4 = 0, 2 x - U y - 4 z - 12 - 0.

The equation of the required plane may be written

ki{4x + S7J + 2z - 4) + k..(2x - lly - Az - 12) = 0. (1)

Since (0, 1, 0) is a point of this i^lane, its coordinates satisfy (1), and hence

Jci + 23 A;2 = 0, or ki = - 23 k^.

Substituting this value of ki in (1) and reducing, we have as the required

equation
9x + 8y + 5z -8 = 0.

Ex. 4. Find the equation of the plane passing through the line -ix + Sy + 2z

— 4 = 0, 2x— lly — 42 — 12 = 0, and perpendicular to the plane 2x + y — 2z

+ 1 = 0.

The equation of the required plane may be written

A;i(4x + 3?/ + 22-4) + A:2(2x-ll?/-42- 12) = 0, (1)

or (4A;i + 2A:2)x + (3fci - nk.2)y + {2 ki - ikojz + {- iki -12ko) = 0.

Since this plane is to be perpendicular to the plane 2x + y — 2z + l = 0,

2 (4 fci + 2 ^-2) + 1 (3 /<-! - 1 1 k^) -2{2ki-4:k2) = 0,

whence ^2 = — "^i-

Substituting this value of k^ in (1) and reducing, we have as the required

equation
x-8?/-3z-8 = 0.

108. Change of coordinates. 1. Change of origin without change

of direction of axes. Let 0'{Xq, y^, Zq) be taken as a new origin of

coordinates, the new axes being parallel respectively to the original

axes, i.e. O'X' parallel to OX, 0' Y' parallel to OY, and O'Z' parallel

to OZ. Let X, y, and z be the coordinates of any point P with

respect to the original axes, and let x\ y', and z' be the coordinates

of the same point with respect to the new axes. Then

X = x^+x', y = y^+y', z = Z^+z', (1)

the proof being similar to that of I, § 112.

2. Change of directio7i of axes without change of origin. Let

OX, OY, OZ, and OX', OY', OZ' be two sets of rectangular axes

meeting at and making angles with each other, whose cosines
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are given in the following table, where l^ is the cosine of the angle

between OX and OX', l^ is the cosine of the angle between OX
and OY', etc. Let x, y, and z be the coordinates of any point P
with respect to the axes OX, OY, OZ, and let .//, y' , and z' be the
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Also, by § 95, l^-\- 'm'~+ n{=l,

and /f+/|+/|=l,

m^ + 7/t| + m^ = 1,

n^+ n.^+ n^= 1.

All these formulas are easily remembered by aid of the above table.

PROBLEMS

1. Find a point of the plane 2x + 3?/ + 2z = equally distant from the

three points (0, 0, - 1), (3, 1, 1), (-2, - 1, 0).

2. Find a point on the line 3x — ?/ — z — 5 = 0, x — y + z — 6 = equally

distant from the origin and the point (—2, 1, — 2).

3. Find the equation of the sphere passing through the points (— 1, 4, 4),

(- 5, 1, 3), (4, 0, 7), (- 1, 1, - 5).

4. A point moves so that its distances from two fixed points are in the

constant; ratio k. Prove that its locus is a sphere or a plane according as

A; 7^ 1 or A; = 1.

5. Prove that the locus of points from which tangents of equal length can

be drawn to two given spheres is a plane perpendicvilar to their line of centers.

6. Find the length of the curve x = t'^, y = 2t, z = t from the origin to the

point for which t — 1.

7. Find the length of the curve x = e', y = e-*, z = i Vi between the points

for which f = and t = 1.

8. Find the length of the conical helix x = (cosi, y = tsint, z = t between

the points for which t = and i = 2 tt.

9. Prove that a straight line can make the angles 60°, 45°, 00° respectively

with the coordinate axes.

10. Show that the helix makes a constant angle with the elements of the

cylinder on which it is drawn.

11. Find the angle between the conical helix x = tcost, y = tsint, z = t and

the axis of the cone.

12. Show that the angle between the conical helix x= tcost, y = tsint,

z = t and the element of the cone is tan-i—=•
V2

13. Find the equation of a plane three units distant from the origin and per-

pendicular to the straight line through the origin and (2, — 3, 6).
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14. The equations of three planes are x + 2y--Sz=l, 2x — Sy + 5z = S,

and 7x — y — z = 2. Find the equation of the plane through their point of

intersection and equally inclined to the coordinate axes.

15. If the normal distance from the origin to the plane which makes inter-

cepts a, b, and c respectively on the axes of x, y, and z is p, prove that

p2
"

a2
"^

52 c2

16. Find the equation of the plane normal to the helix x — a cos d,y= a sin 6,

z = kd Sit the point ^ = 0.

17. Find the equation of the plane normal to the conical helix x = teost,

y = t sin t, z — t a,t the point for which t = -

18. Find the equation of the normal plane to the curve x = e', y — e-*,

z = t\^.

19. Find the equation of the normal plane to the skew cubic x = t, y = f^,

z = t^ Sit the point for which ^ = 1.

20. Find the direction cosines of the line 2x + 3?/ — z = 6, x + 3z — 7 = 0.

21. Prove that the three planes 3x — 2?/ — 1 = 0, 47/ — 32 + 2 = 0, z — 2x
+ 4 = are the lateral faces of a triangular prism.

22. Prove that the two lines
*

JSx + y -1 z+n-0\ r X + ITy + 2(3z -48 = 01

\ 2x + 42/ + z-3 = 0J
^"^ \4x -2y- 15z + 25 = 0J

are coincident.

23. Prove that the lines

r 2/+l = 0T r 2y-Sz + ^ = 0\
\2x + Sy + 2z- 1 = 0/

''^"^ Xlx-iy ~ z - 10 = 0J

intersect at right angles.

24. If Zi, mi, ni and I2, mo-, n^ are the direction cosines of two given straight

lines, and Z, m, n are the direction cosines of a normal to each of them, prove

., .
I m n

that
min,2 — m^ni riilz — ^2^1 'i"i2 — hmi

25. Find the equation of the plane passing through (1, 4, 1) perpendicular to

the line x + 3?/ + .5 2 + 6 = 0, 2/ + 2x-l = 0.

26. Find the angle between the line x — 2?/ — 8 = 0, 3y + 2 + 8 = and the

plane Sx + y - 2z + 1 = 0.

27. Find the coordinates of a point on the straight line determined by

(0, 1, 0) and (2, 3, 2) and 1 unit distant from (1, 1, 1).

28. Find the equation of a plane perpendicular to the straight line joining

(1, 3, 5) and (4, 3, 2) at a point one third of the distance from the firet to the

second point.

29. Find the equations of a straight line passing through (1, 2, — 1) parallel

to the line z + 22/-32 + l = 0, 2x + 2/ + 5z-l = 0.
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30. Find the foot of the perpendicular drawn from (1, 2, 1) to the plane

x-Sy + z — 7 = 0.

31. Find the equations of the tangent to the skew quartic x = t, V-t^,

z = f* at the point for which t = \.

32. Find the equations of the tangent to the curve x = ^'^, y = 2 f, z = i at

the point for which ^ = 1.

33. Find the equations of the tangent to the curve x = e', ?/ = e-«, z = « V2.

34. Find the direction of the conical helix x-tcos,t,y = tsiw i, z = « at the

origin, and the equations of the tangent.

35. Find the equation of the plane determined by the three points (1, 2, - 4),

(3, - 1, 2), (2, 1, - 2).

36. Find the angles made with the coordinate planes by the plane deter-

mined by the three points (1, 2, 0), (4, 1, - 2), (- 2, 2, 2).

37. Find the point of intersection of the lines

/ 2x-2/-3 = 0\ rSx -2'7/-5 = 0^

\32/-2z + 6 = 0j^"''l 2x-z-l = 0r
38. Find whether or not a plane can be determined by the lines

j'z = 42/-7\ / x-27/ + z + 9 = 0|
\z = 7 - 2x/ "" l3x + 22/ + z - 16 = O/'

39. Find the equation of the plane determined by the two lines

x + 22/+l = 01 r7x + z-24 =

22/ + z + 1 = 0/ ''^"'^

\72/ + 3z + 6 =

40. Find the equation of the plane determined by the point (2, 4, 2) and the

straight line passing through the point (1, 2, 3) equally inclined to the coordi-

nate axes.

41. Find the equation of a plane passing through the line x - ?/ + z = 0,

2a;-i-2/ + 3z = and perpendicular to the plane x — 2/ + 2z + l = 0.

42. Find the equations of the projection of the line x + 2/ + z — 2 = 0,

a;4-22/ + z-2 = upon the plane 3x + 2/ + 3z — 1 = 0.

43. Find the equation of the plane passing through (2, - 1, 2) and (- 1, 2,

— 1) perpendicular to the plane 2x — 3?/ + 2z — = 0.

44. Find the equation of a plane passing through the line x-22/ + z-3 = 0,

2x + 3y-2z-l = and parallel to the line 3x + 2/ + 2z-4 = 0, '2x-Zy

-2 + 5 = 0.

45. Prove that the plane 4x + 3?/ + 52 = 47is tangent to the sphere

(X - 2)2 + {y - 3)2 + (z + 4)2 = 60.

46. Find a point on the line x-z + 3 = 0, 4x-?/-6 = equally distant

from the planes 3x + 3z-5 = and x + 42/ + z = 7.

47. Find the center of a sphere of radius 7, passing through the points

(2, 4, - 4) and (3, -1,-4) and tangent to the plane 3x-6?/ + 2z+ 51 = 0.



CHAPTEE XI

PARTIAL DIFFERENTIATION

109. Partial derivatives. Consider f{x, y), where x and y are

independent variables. We may, if we choose, allow x alone to

vary, holding y temporarily constant. We thus reduce f{x, y) to

a function of x alone, which may have a derivative, defined and

computed as for any function of one variable. This derivative is

called the 'partial derivative of f{x, y) with respect to x, and is

dfix 7/)

denoted by the symbol ^ ^ '
"^

• Thus, by definition,
ex

dfjx, y) _ -j^.^^
f(x + Ax, y) -f{x, y)

^^^
dx Ax= Ax

Similarly, if x is held constant, f{x, y) becomes temporarily a

function of y, whose derivative is called the partial derivative of

f{x, y) with respect to y, denoted by the symbol
'

' Then

g/(^, y) ^ L- j^
f{oc,y + Ay)-fi:Jc,y)

.

^2)
cy A.v=o Ay

Graphically, if z=f{x, y) is represented by a surface, the rela-

tion between z and x when y is held constant is represented by the

curve of intersection of the surface and the plane y = const., and

— is the slope of this curve. Also, the relation between z and y
dx

^

when X is constant is represented by the curve of intersection of

dz
the surface and a plane x — const., and — is the slope of this curve.

dy

Thus, in fig. 66, if PQSR represents a portion of the surface

z=f{x, y), PQ is the curve y = const., and PR is the curve x = const.

Let P be the point {fc, y, z), and LK = PK' = Ax, LM = P3I' = Ay.

198
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Then LP=f(x, y), KQ=f{.v + Ax, y), MR=f{.c, y + Ay),

K'Q=f{x + Ax, y)-f{x, y), M'R=f{x, y+Ay)-f{x, y), aud

— = Lim —-, = slope oi PQ,
dx PK' ^

dz ^. M'Pi , » „„— = Lim : = slope ot PR.
dy PM' ^

Fig. 66

ct
Ex. 1. Consider a perfect gas obeying the law u = —

. We may change the

P
temperature while keeping the pressure unchanged. The relation between the

volume and the temperature is then represented by a straight line on fig. 55.

If M, aud A« are corresponding increments of t and v, then

c{t + M) ct _ cM,

P P P
dv _c
'di~p'

Av =

and

Or, we may change the pressure while keeping the temperature unchanged.

The relation between the volume and the pressure is then represented by an

hyperbola on the surface of fig. 55. If Ap and Av are corresponding increments

of p and V, then
^ c^ _ ct ^ ctAp

p + Ap p p'^ + pAp
dv ct

and
p-i

So, in general, if we have a function of any number of variables

f{^, y> • • •} ~)> we may have a partial derivative with respect to
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each of the variables. These derivatives are expressed by the sym-

bols^» /^. ••'4'' ov mmoMmeshy f^{x, y, • , z), f {x, y, • , z),

dx dy cz

' • •, f^{x, y, • , z). To compute these derivatives, we have to

apply the formulas for the derivative of a function of one variable,

regarding as constant all the variables except the one with respect

to which we differentiate.

Ex. 2. / = x3 - 3 x-^y + 2/3, Ex. 3. / = sin {x2 + 7/2),

^ = 3x2-6x2/, ^ = 2xcos(x2 + ?/2),

dx dx

i^^_3x2 + 3?/2. -^=2?/cos(x2 + 2/2).

dy dy

Ex. 4. / = log Vx2 + 2/2 + z2,

df ^ X

dx X2 + 2/2 + 22

'

df y

dy X- + y'^ + 22

^_ z

dz x2 + 2/2 + z2

110. Increment and total differential of a function of several

variables. Consider f{x, y), and let x and y be given any incre-

ments ^x and Ay. Then / takes an increment A/, where

^f=f{^ + ^'«' 2/ + ^^) -/('^^ y)-

In fig. 66, A^>S=/(« + Aic, y + A^/) and A^',S' = A/. If x and y

are independent variables, A.r and At/ are also independent. Thus

the position of S in fig. 66 depends upon the choice of LK and

LM, which can be taken at pleasure.

The function fix, y) is called a continuous function of x and y

if A/ approaches zero as a limit when A« and Ay approach zero

as a limit in any manner whatever.

Thus in fig. 66, if 2 is a continuous function of x and y, the point

S will approach the point P as LK and LM approach zero, no

matter what curve the point N traces on the plane XO Y or the

point S on the surface.
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The expression for A/ may be modified as follows

:

=f{x + Ax, y + A^) -/(.,, y + Ay) +/(./, y + At/) -/(.x^ y).

But Lim •^^•'^ ^ ^^' '^ "^ ^y)~/(-^'' y + Ay) ^ g/(^', y + Ay)

AJiO A.C ^iC

Therefore /C« + A^^ 2/ + Ay) -/>, y + Ay) ^ g/(..,y + Ay)
^ ^,

A^' dx

or /(;« + A.., y + Ay) -/(,., y + Ay) = /^^^i^^l-tM + A Ax,

where Lim e' = 0. Also, since — is a continuous function,
Aa:=o dx

^f^'^'V + ^y) = ^A:^ + e", where Linr e" = 0. Therefore
dx dx Aj/=o

/(.; + A.-, y + Ay) -f{x, y + Ay) = (^^^ + ^,) A^,

where e^ = e' + e".

Similarly, f{x, y + Ay) -/(,., y) = (^^^ + e,") Ay,

where Lim e., = 0. Hence we have finally
A2/=fcO

A/= g A^- +
I
Ay + e,Ax + e,Ay. (1)

In like manner, if / is a function of any number of variables

X, y, • • • ,z, then

A/ = / A;c + 1^ Ay + • . • + ^ As; + e^Ax + e.,Ay + • • • + e,.A2. (2)
dx dy dz

In a manner analogous to the procedure in the case of a func-

tion of one variable (§ 4), we separate from the increment the

terms e^A,* + e^Ay + • • • + e^As;, call the remaining terms the dif-

ferential of the function, and denote them by df. The differen-

tials of the independent variables are taken equal to the increments,

as in § 4. Thus, we have by definition, when / is a function of

two independent variables x and y,

dfjldx + %dy, (3)
dx cy
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aud if / is a function of the independent variables x, y, - • -yZ,

df=^-ldx + ^-^dy-\---- + ^-^dz. (4)
dx dy cz

In (3) and (4) dx, dy, etc., may be given any values whatever.

If, in particular, we place all but one equal to zero, we have the

partial differentials, indicated by d^f, dj, etc. Thus,

dj-fdx, dj=fdy.
ex &y

A partial differential expresses approximately the change in the

function caused by a change in one of the independent variables

;

the total differential expresses approximately the change in the

function caused by changes in all the independent variables. It

appears from (4) that the total differential is the sum of the

partial differentials.

Ex. The period of a simple pendulum with small oscillations is (Ex. 3, § 82)

Small errors dl and dg, in determining I and gr, will make an error in T of

dl dg -^Ig 9\g
The ratio of error is dT 1 dl 1 dg

111. Derivative of f(x, y) when x and y are functions of t.

We have been considering /(.r, 3/) as a function of two independent

variables. We shall now suppose that x and y are functions of a

single independent variable t, so that the variations of x and y are

caused by the variations of t. Graphically, if z =f{x, y) represents

a surface and x and y are independent, the point P(.r, y, z) may

move over the entire surface. If, however, x = <^^{t), y = <p^{t), the

point P is restricted to a curve on the surface, whose projection on

the plane XOY has the parametric equations x = ^^{t), y = (f>„(t).

The equations of the curve on the surface are, therefore, x = <f>i{t),
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In this way, f{x, y) is now a function of t and may have a

derivative witli respect to t, which may be found as follows :

Give t an increment ta^t. Then x and y take increments Aa; and

A?/, and / in turn receives an increment A/, where

A/ = ^ Aa- + ^ Ay + e,A^ + e.Mj.
8x dy

A/ df b.x a/ A?/ Aa; Av
Then -/- = — -i-+ — T^ + e, -— + e.,-^-

A< dx td dy ^t 'At " A^

By allowing A^ to approach zero as a limit, and taking the

limits, we have ir ^j- i ^j- jd£^^dx_^^dy^
dt dx dt dy dt

If we multiply each term of (1) by the differential dt, we have

%dt = ^I.'^dt + ^-^^-^dt
dt dx dt dy dt

But since /, x, and y are functions of a single variable t, we have,

df^'^-^dt, dx =— dt, dy = '^dt.
-^ dt dt '^ dt

df df
Hence we have df =— dx + — dy, (2)

dx dy

showing that formula (3) of § 110, made on the hypothesis that

X and y were independent, holds also when x and y are functions

of t.

In a similar manner, if we have/(.c, y, • ,z), where x, y, • • , z

are all functions of t, then

df^^dx_^^dy_^ + ^ ^

,

(3)
dt dx dt dy dt cz dt

df=^-fdx + ^-fdy+...+fdz. '(4)

dx dy dz

Ex. Let F(x, y, z) be the electrical potential at a point in an electrified

dV dV dV
field, that is, let — = -- X, — =— Y, — = — Z, where X, F, Z are the com-

dx dy dz
ponents of force in the directions of the coordinate axes. Required the rate of

change of F in a direction which makes the angles a, p, y with the axes.
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A straight line making the given angles with the axes has the equations,

by (1), § 100,
X — Xi + r cos a,

y = yi + rcosp,

z = Z\ + r cos 7.

If these values are substituted for x, ?/, and z in T', it becomes a function of

r, and its rate of change with respect to r is — . By (3),
dr

dV_dVdx dV^dy dV^dz

dr dx dr dy dr dz dr

= — X cos a — Y cos /3 — Z cos 7.

By the principle of the composition of forces this is minus the component o!

force in the given direction.

112. Tangent plane to a surface. Let x = 4>-^{t), y = ^^{t),

z =f{x, y) be a curve on the surface z =f{x, y), and let -^ {x^, y^, z^)

be a point on the curve. Then the tangent line to the curve at

the point i^ has the equations (§ 105)

(1)
dx

X
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may simply touch the surface, as in the case of the sphere or the

ellipsoid, or it may intersect the surface at the point of tangency,

as in the case of the hyperboloid of- one sheet.

In order that the function fix, y) shall have a maximum or a

minimum value for x = x^, y = y^, it is necessary, but not suffi-

cient, that the tangent plane to the surface z=f{x, y) at the point

{x^, y^, z^ should be parallel to the plane XO Y. This occurs when

-^1 = 0, (7^) = 0. These are therefore necessary conditions for
dx)^ \dy/i

a maximum or a minimum, and in case the existence of a maxi-

mum or a minimum is known from the nature of the problem, it

may be located by solving these equations.

Ex. 1. Find the tangent plane and the normal line to the paraboloid

z = ax^ + by^.

dz Pz
Here — = 2ax and — = 2 6y. Hence the tangent plane is

dx cy

(X - Xi) 2 axi + {y - yi) 2 byi - (z - Zi) = 0,

or 2 axiX + 2 byiy — 2 ax^ — 2 by^ — z + zi = 0.

But since 2 axf + 2 by^ — 2 zi, this may be written

2 axix + 2 byiy — z — Zi = 0.

Xi 2/ - 2/1 z - Zi
The normal is

2 axi 2 byi — 1

Ex. 2. It is required to construct out of a given amount of material a cistern

in the form of a rectangular parallelepiped open at tlie top. Required the

dimensions in order that the capacity may be a maximum, if no allowance is

made for thickness of the material or waste in construction.

Let X, y, z be the length, the breadth, and the height respectively. Then the

superficial area is xy + 2xz + 2 yz, which may be placed equal to the given

amount of material, a. If v is the capacity of the cistern,

axy — x2w2
V = xyz =

2{x + y)

^, dv _{a — 2xy — x-) y^ cv _ {a — 2xy — y"^) x^

dx" 2 (X + 2/)2 ' dy
~

2 (X + y)^

Eor the maximum these must be zero, and since it is not admissible to have

X = 0, y — 0, yve have to solve tlie equations

a — 2 x?/ — x2 = 0,

a - 2 xy - 1/2 = 0,
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which have for the only positive solutions x=2/ = a/-i whence z = --^-.

Consequently, if there is a maximum capacity, it must be for these dimensions.

It is very evident that a maximum does exist; hence the problem is solved.

The graphical interpretation of the differential can now be given

in a manner analogous to that in the case of one variable (§ 5).

In fig. 67 let PQ'S'R' be the tangent plane at P(.r^, t/i, ^J. Then,

if LK== dx and LM= chj, the coordinates of S are {x^+ dx, y^ + dy,

Si+ As), and the value of z corresponding to S' is found by-

replacing X by x^ + dx and y by y^ + dy in (3). There results

z = z, + l—\dx + i-—\dy = z. + dz. Therefore
\dxj^ \8y/^

]Sf'S'= dz, whereas N'S = Az.

113. Derivatives of f{x, y) when x and y are functions of s

and t. If x and y are functions of two independent variables s

and t, then f{x, y) is also a function of s and t and may have the

derivatives — and — • To find — we will give s an increment As.
ds dt ds

Then x and y take increments Aa; and Ay, and / takes an mcre-

ment A/. As in § 111, we find

As dx As dy As ^ As " As
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Now let As approach zero and take the Hmit, remembering that

Lim -f- = -^y Lim —- = — , etc. We have
As ds As ds

Similarly,

^/.
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Ex. 2. Let it be required to cliange from rectangular coordinates (x, y) to

polar coordinates (r, 0), where x — r cos 0^ y = r sin 0.

Then
ex

dr

dx

Jo

COS0,

— r sin 0,

cy

dr

cy_

30

(1)

r cos 6,

and consequently, if / is a function of x and y,

B^ = ^cos^ + ^sin^,
dr dx dy

df df . df— = — r— sin + r— cos 0.

d0 dx cy

Also, since r = "vx^+y^ and = tan- 1 -
,' X

(2)

whence

cr X— — cos



PEOPERTY OF THE TOTAL DIFFEEENTIAL 209

cr RO
and RQ= Ar is thus determined. Then — = Lim —-^ = cos 9. It happens here

dx dr „ ,?x. ,,, , ce . .J^ .^J°Q , .

,

that — = — But — HI (1) and — in (3) are neither equal nor reciprocal.
dr dx dO dx

In cases where ambiguity is likely to arise as to which variable is constant

in a partial derivative, the symbol for the derivative is sometimes inclosed in a

parenthesis and the constant variable is written as a subscript, thus (— ) •

\dr/e

Ex. 3. Consider /(x, y, z) when z = 0(x, y). We may find — from the first
ex

of formulas (2) in that we place s = x and t = y. Then — = 1 , — =1. Direct
-^ ds dt

substitution in (2) would yield the symbol — in two different senses. On the
dx

left of the equation it means the partial derivative of / with respect to x when

y is constant, and attention is given to the fact that z is a function of x. On the

right of the equation it means the partial derivative of / with respect to x on

the assumption that both y and z are constant. Ambiguity is avoided by the

use of subscripts as suggested at the close of Ex. 2. Thus we have

Vx),dxjy \cxjyz CZ dX

114. Property of the total differential. An important property

of the total differential is expressed in the following theorem

:

If f{x, y, • • , z) = c for all values of the independent variables^

then df = 0.

1. Let us suppose first that x, y, • - -, z are the independent

variables. Then /(;c, y, • • • , z) = c for all values of x, y, • - -, z.

Hence
j-^^ + Ax,y,..., z) -f(x, y,...,z)=0,

and
/(a; + Aa;, y, , z) -f{x, y, ,z) ^ ^

A^
df

for all values of x. Taking the limit as Ax = 0, we have 7- = 0.

Similarly, ^ = 0, •••, — = 0, and hence
dy CZ

df=^^dx+—di/+..- + ^^ dz = 0.
^ dx dy CZ

2. Suppose, secondly, that x, y, •-, z are functions of the inde-

pendent variables s, t, • • • , tc. Then ii x, y, •, z are replaced in

f{x, y, , z) by their values in terms oi s, t, , u, we have the

first case again, and hence as before ^ = 0, -^ = 0, • • • ,
— = 0.^

ds ct du
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Hence df = — dx + — dy -\ \-—dz
ox dy dz

= ^ds + ^dt-j----+^du = 0.
ds dt du

It is to be emphasized that the coefficients of dx, dy, • • •, dz are

not equal to zero.

115. Implicit functions. Case I. f{x, y) = 0. The equation

f(^x, y)= defines y as an implicit function of x, or x as an

implicit function of y, since if one of the variables is given, the

values of the other are determined. Then, by § 114,

df = ^dx+^dy = 0,
dx dy

whence ^=-^' (1)

dy

Ex. 1. Find the tangent and the normal to the curve f{x, y) = 0.

By I, §§ 100, 101, the equations of the tangent and the normal are respectively

y -yi = i-pj (^ - ^i)

and y -yi = - r£\ (x - Xi).

By use of (1) these equations become

and

{x-xM'A+iy-yJ%)=0
\cx/i \cyJi

(x - xi) _ {y - yi)

(-) (-)

'

\dx/i \cyn

Case II. f{x, y, z) = 0. The equation f{x, y, z)= defines any-

one of the variables x, y, z as a. function of the other two. We
will take x and y as the independent variables. Then, by § 114,

df= ^dx-{-^dy + ^dz=0.
dx dy dz

But dz = — dx -\ dy.
dx dy

Therefore /^ + ^ ^)dx + /^ + ^ ^)dy = 0.

\dx dz dx] \dy cz cy

)
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This is true for all values of the independent differentials dx

and dy. Therefore

df , df dz . , df df dz _
'— + — — = and -^-\r ^ = 0,

dx dz dx dy dz dy

whence

^/
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Ex. 3. Find the equations of the tangent line to the space curve /i(x, y, z) =0,

/zCx, y, z) = 0.

By § 105 the required equations are

X - x-i _ y - yi _ z-zi
dx dy dz

where the values of dx, dy, dz given in (3) may be substituted.

116. Higher partial derivatives. The partial derivatives of

f(yX, y) are themselves fuuctious of x and y which may have

partial derivatives called the second partial derivatives of f{x, y).

Tl'^y -« k(£)' J(|)' 1(1)' 1(1)- J^ut it may be shown

that the order of differentiation with respect to x and y is imma-

terial (§ 117), so that the second partial derivatives are three in

number, expressed by the symbols

dx\dxj dx^ '^^

dx\dy) dy\dx) dxdy "^
""'

Similarly, the third partial derivatives of /{x, y) are four in

number, namely

:

dx\dx:y dx^'

dy\dx^j dx\dxdy) dx^\dy/ dx?dy

dx\dy^j dy\dxdy) dy^\dx) dxcy^

_a_/ay\ ay

dy\dfj df'

So, in general, — signifies the result of differentiating /(*, y)

p times with respect to x and q times with respect to y, the order

of differentiating being immaterial.

The extension to any number of variables is obvious.
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117 To prove the relation = for any particular values x = a, ?/= 6,

. 1
"

, . dxdy cydx
consider the expression "

-. f(a + h, b + k)-f{a, b + k)-f{a + h, b)+f{a, b)^=
h~k

where for convenience h and k are taken as jjositive. We shall prove I equal to

(—^) on the one hand, and to (-^— ) on the other hand, where {?i, tji)

and (fo, Vi) a.re two undetermined points within the rectangle of fig. 70.

In the first place, let/(x + h, y) —f{x, y) = F(x, y). Then

7 =
1 F{a, b + k)- F{a, b)

h k

whence," by § 30, (2),

I = -Fy{a, 7?i)

fy{a + h, nx)-f„{a, m)

h

where Fy{a, iji) = I
—

ing § 30, (2), a second time, we have

"^) . Apply.
^cy /^= «

:

6+fc
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118. Higher derivatives of f{x, y) when x and y are functions

of t, or of s and t. By § 111, if x and y are functions of t,

d£^d/_dx_^df_dy^

dt dx dt dy dt

To differentiate again with respect to t, we must notice that

each term on the right-hand side of (1) is a product and must

be handled by the law of products (I, § 96, (4)). We have,

then, in the first place

dll ^d£<£x dx d^/df\ dX^d^ dy dt(df\^

df dx df dt dt \dxl dy df dt dt \dy)

Now — ( — ) and — ( — ) may be found from (1) by replacing / by
dt \dx/ dt \dy/

— and — respectively. Hence
dx dy

dj _d£d^ dx/dj dx dj dy\ df dSj

'd?~'Yx df dt \^x^ dt dxdy dt ) dy df

dy/dj dx djdy
dt \dxdy dt df dt

_^y/dA\ 2 gy dxdy dy/di/V dfd'x df d'y

da^ydt) dxdy dt dt dif\dt} dx df dy df ^'

In a similar manner, if x and y are functions of s and t,

df_dV/dxV ^ df dxdy df/dyV dfd'x df dSj
^

ds" dx\dsj dxdy ds ds df\ds) dx ds" dy ds''

dy^df/dxV dy dxdy dy/dyV dfd^x d/^y^

df dx\dtj dxdy dt dt dy^dt) dxdf dydf ^'

dj _^djdxdx df /dxdy dxd2j\ d^dydy

dsdt dx'dsdt dxdy\ds dt dt ds) df ds dt

_^df^^dlly_^
dx dsdt dy dsdt

The extension of these formulas to any number of variables is

obvious.
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Ex. 1. Required to express -\ , where F is a function of x and y in

polar coordinates. -^

Since r — Vx^ + y'^ and = tan- ^
( )

»

cr _ X dH _ 2/2 g^ ^ _
2/ oH 2 xy

ar 2/
g2y 3-2 ^Q a; g2^ _ 2 a;?/

^V Vx2 + 2/2 f?/2 (x'^ + 2/2)2 c'2/ x2 + y^ dy^ (x2 + y-)^

Hence, from (3),

e2F _ dW x2 a2-p a;2/ dW 2/2 g-p ^^2

gx2 ar2 x2 + 2/2 ar-a^ (x2 + 2/2)2 ae2 (x2 + 2/'^)^ S»* (x2 + 2/2)^

aF 2x2/
+

00 (X2 + 2/2)2

a2F _ a2F 2/2 ^27- X2/ a2F x2 dV x^

dy^ ~ ar2 x2 + y2 g^g^ ^3.2 _^ 2/2)8 ae2 (X2 + 2/2)2 g^ ^^2 ^ y2^^

cV 2x2/

"""a^ (X2+ 2/2)2*

a2F a2F a2F 1 a2F 1 dV
Hence 1 =

1 1
— —

ax2 a2/2 ar2 x2 + 2/2 30- Vx^ + 2/2 ^^

_a2F J- e^ 1 eF
g}.2 5.2 g^2 y gy

Ex. 2. If z =/i(x + ai) +/2(x — «^), where fi and /2 are any two functions,
a2z a2z

show tliat— = a2
a^2 ax2

Let X + at — u, X — at = V ; then — = 1, — = a, — = 1, — = — a, and
ex at ax af

dz^dfidudf2dv^dfidf2
dx du dx dv ex du dv

dz _ dfi du df2 dv _ dfi_ ^
dt du ct dv It du dv

Differentiating these equations a second time, we have

a2z _ d^i /aw\2 d% /a^y_ d^ d%
ax2 dvfi \dx/ d»2 \^x/ dvfi dt)2

a«2 du'^Xct) dv'^Xdt) du2 (i„2'

By inspection tlie required result is obtained.
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119. Differentiation of a definite integral. Consider

u= I f{x, a) dx,

%J a

where a is a parameter independent of x. In the integration

a is considered as constant, but the value of the integral is a

function of a. Let a be given an increment Aa. Then u takes

an increment ^u, where

Jnb
pb

fix, a + Aa) dx —
|

fix, a) dx

=
I

[f(x, a + Aa) —f{x, a)] dx.

U a

Now by § 31, (1),

, dfix, a) (Aa)' d^fix, |)
fix, a + A«) =/(.;, a) + A«-^-^ +^ -^^^ •

Hence Ait =
go: 2 ^a-

%J a _

Dividing by Aa, and taking the limit as Aa approaches zero as a

«-'.--™
^=rffi£^,.. (1)
da J„ ^a

The proof assumes that a and I are finite. It is not always

possible to differentiate in this way an integral with an infinite

limit. The discussion of this lies outside the scope of this book.

The integral u is also a function of the upper limit I, and we

have, by § 25,

?^=m«)- (2)
CO

Xh
/-'a

f{x, a)dx =— I f{x, a)dx,

^±=-fia,a). (3)
da
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Suppose now that a, h, a are all fuuctions of a single variable t.

Then, by § 111, (3),

du du dh dn da du da

dt dh dt da dt da dt

j-n .
db J., ,

da
,
da r^df{x,a) , ...= f(b, a) f(a, a) / ^—^-^

—

'- dx. (4)^'^' ' dt
-^^

' ' dt dt J^ da ^ '

Ex. If u = ( log (1 — 2 a cos X + a^) dx,
Jo

du /•" — 2 cos X + 2 a ,

cos X + OL^

du _ r^ — I c(

da JO 1 — 2a

.1 fTi "^ >x
a J \_ 1 — 2a cos x + a!^}

I dx

^
(l-a)2 + (i + a)nan2-

= tan-i( tan -
|

a a\_ \l-a 2/Jo

= 0.

Therefore u = const. But when a = 0, m =
(

(log 1) dx = 0. Therefore it = 0.
Jo

In this way the value of a definite integral can sometimes be found when
direct integration is inconvenient or impossible.

PROBLEMS

1. Given z = log(x2 + ?/-), prove y x— = 0.

dx dy

2. Given z = x* + x'^y^ + y*, prove x \- V— = 4z.
ex dy

dZ dZ
3. Given x^ + y^ — 2xy + 2z^ = c, prove

1
= 0.

dx dy

4. Given y = e"^ sin bx, prove x— = a 1-6—'^
dx da db

5. Given z = (x^ + y^) tan-i - , prove x \- y— = 2z.
X dx dy

?/ cz cz
6. Given z"^ = xy -\- tan-i -

, prove zx [- zy — = xy.
X dx dy

M dz dz
7. Given z = e^sin-i (x — y), prove

1
= z.

dx dy
1 2z dz

8. Given z = y^ + 2 ye^, prove x^ \- y — = 2i/^.

dx dy
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9. If 2 = xy, illustrate the difference between Az and dz by constructing a

rectangle with sides x and y.

10. A triangle has two of its sides 6 and 8 in. respectively, and the included

angle is 30°. Find the change in the area caused by increasing the length of

each of the given sides by .01 in. and the included angle by 1°, and compare

with the differential of area corresponding to the same increments.

11. A triangle has two of its sides 8 and 12 in. respectively, and the included

angle is 60°. Find the change in the opposite side caused by making the given

sides 7.9 and 12.1 in., the angle being unchanged, and compare with the differ-

ential corresponding to the same increments.

12. A right circular cylinder has an altitude 12 ft. and the radius of its base

is 3 ft. Find the change in its volume caused by increasing the altitude by .1 ft.

and the radius by .01 ft., and compare with the differential of volume corre-

sponding to the same increments.

13. The distance of an inaccessible object A from a point B is found by

measuring a base line BC = h and the angles CBA = a and BCA = p. Find

the expression for the error in the length oi AB caused by errors of dh, da, dp

in measuring h, a, ^, assuming that higher powers of the errors of measurement

may be neglected.

, dz dz dx dz dy . , i ^, x n
Verify the formula — = 1

^ , in each of the following cases :

dt dx dt dy dt

14. z = x2 + ?/2, a; = i, ?/ = t^.

15. z =; .sinxj/, X = e"', y = e^K

X
16. z = - , X = sin t, y — cos t.

y

17. z = e^ + v'^, X = sini, y = cost.

18. Find the tangent plane to the cone z = a — VxM-^.

19. Show that the tetrahedron formed by the coordinate planes and any

tangent plane to the surface xyz — a^ is of constant volume.

20. Show that any tangent plane to the surface z = kxy cuts the surface in

two straight lines.

21. Find the point in the plane ax + 62/+ cz + d= which is nearest the origin.

22. Find the points on the surface xyz = a^ which are nearest the origin.

23. Find a point in a triangle such that the sum of the squares of its distances

from the three vertices is a minimum.

24. Of all rectangular parallelopipeds inscribed in an ellipsoid find that

which has the greatest volume.

25. Find the point inside a plane triangle from which the sum of the squares

of the perpendiculars to the three sides is a minimum. (Express the answer in

terms of K, the area of the triangle, a, 6, c, the lengths of the three sides, and

X, y, z, the three perpendiculars on the sides.)
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26. Ifz=/(^), pr
dz dz

ove X \- y —
ex cy

27. lif{lx + my + nz, x^ + y- + z^) = o, prove

dz dz
(ly — mx) + {ny — mz) \- {Iz ~ nx) — = 0.

ex vy

- + logy ,prove^ = 22/--^.XI dy y dx

29. If /"(x, u) is a homosreneous function of degree n, prove x \- y — = nf.
^ "

dx dy

e9 + e-s eO-e-9
30. Given x = r , y = r , prove

2 2

/dx\ ^ /dr\
^

(^1\=- (^ ,

\drje \dxjy \dr/e \dyl

x

\de/r \dxly \delr \dylx

31. Given u - log Va;^ + 2/2, v - tan-i -
, prove

.dy/x\du/v\dx/y\du/v

\dx/y\dv/u \dy/x\dv/u
1.

32. Find tlie tangent plane to the ellipsoid — + ^ + ?- = 1 at the point
a2 b'^ c^

(«!, yi, zi).

33. Show that the sum of the squares of the intercepts on the coordinate

axes of any tangent plane to x^ + y'^ + z^ = a^ is constant.

34. Show that the sum of the intercepts on the coordinate axes of any tan-

gent plane to x^ + y^ + z^ — a^ is constant.

35. Prove that the plane Ix + my + nz = p is tangent to the ellipsoid

?!i^ + ^ = l ifp = VaH-^ + b-hn^ + c^ri^.

a-2
^ 62 c2

36. Prove that the plane Ix + 7ny + nz = p is tangent to the paraboloid

bl'^ + am^
ax2 -\-by- = z it p = ^

—

4ao>i

37. Find the cosine of the angle between the normal to the ellipsoid and the

straight line drawn from the center to the point of contact, and prove that it

is equal to - , where p is the distance of the tangent plane from the center and
r

r the distance of the point of contact from the center.

38. Find the angle between the line drawn from the origin to the point

(a, a, a) of the surface xt/z = a^ and the normal to tlie surface at that point.

39. Find the angle of intensection of the spheres x- + y'^ + z^ = a^ and

(X - 6)2 + 2/2 + z2 ^ c2.
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40. Prove that the families of surfaces x'^y'^ + z^x- = Ci and x'^ - y"^ - z"^ = c^

intersect everywhere at right angles.

41. Derive the condition that tvFO surfaces f(x, y, z) — Q and ^(x, y, z) =

intersect at right angles.

42.1f/(.,.,z) = 0,.„ow«,a.(|)j|)^(|)^=-l.

43. If /(x, 1/) = and <p{x, z) = 0, and z is taken for the independent variable,

show that T- ~ zr ':r'
dx dy dz Bx dz

44. Find the equations of the tangent line to the curve of intersection of the

X2 yl 2'^

ellipsoid \- — -{— = 1 and the plane Iz + my + nz = 0.

a^ 62 c2

45. Find the equations of the tangent line to the curve of intersection of the

cylinders x- + y^ = a^, y"^ + z" = b^.

X2 ?/2 22

46. Find the highest point of the curve of intersection of — + -r; + -5 = l

and Ix + my + nz — 0.

47. Find the highest point of the curve of intersection of the hyperboloid

x2 + 2/2 _ 22 =: 1 and the plane x + y + 2 z = 0.

48. Find the angle at which the helix x^ + 7/"^ = a^, z = k tan-i| intersects

the sphere x^ + ^/^ + 2^ = r^ {r>a).

49. Find the angle at which the curve y"^ - z'^ = a, x = b(y + z) intersects

the surface x'^ + 2 zy = c.

c^z c^z
Verify = in each of the following cases

:

dxdy dydx

50. 2 = ^^. „ . .y
X + y 53. z — sm-i-.

X

51. z = log Vx2 + 2/2. _. ^ .* 54. 2 = e^sin?/.

52. 2 = log{x + V'x2 + ?/2).

II 5^2 £22

55. If z = log (x2 + 2/2) + tan- 1 ^ , prove _ + ^ = 0.

3^2 8^2
56. If z = (e^ - e-^) cosy, prove -- + —- = 0.

dx^ dy^

57. If z = sec(x - at) + tan(x + at), prove ;^ = «^-
/

7,
Sz ()H dz d^z

58. If z = Vx - y^, prove — —;- = — —-
•

dx dxdy dy dx^

d^z
,

d^z
,

oz
f.

59. If z = sin y + e-y cos (x - y), prove — + —— + ^ = 0-
8^2 d'^z dz

dx^ dxdy dx

3"2?/2 d^Z
60. If z = -^ + logx - er-, prove ^^^ = xy.

4 0X^2/

61 Given x = C'cosv ?/ = e«sint), find in terms of the derivatives of

,
' dudv

V with respect to x and y.
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_n ^. . dW dW „ /dW
,
dW\

63. Given x = e" cos v, y = e" sin v, prove = e~ -^

"

-\
I

•

63. Given x = u + v, y = , prove a^ = a^

gS
-I- e- 9 c^ — e- ^

64. Given x = r ^
, y = r , prove

?!K_^-^_i^ 1 aF

3x2 gy2 gy2 J.2 ^02 y ^y

65. If X =f{u, v) and ?/ = 0(u, u) are two functions wlucli satisfy the equa-

tions — = — , — =
) and V is any function of x and y, i^rove

du dv dv 8u

du^ dv^~\dx^ dy^/Wcu) \dv) j'

. If 2 = x4>(^\ + ^jy(^], prove x2— + 2xy-^ + y^— = 0.

\x/ \x/ cxr dxdy cy^

67. If z = 0(x + iy) + \j/{x — iy), wliere t = V — 1, prove 1 = 0.
cx2 cy^

68. If u =/(x, y) and y = F{x), find

69. If /(x, y) = 0, prove^ = -
^^'

'
^^^ gxgy rx gy ry2W/_

dx2
l^-^Y

\cy/

70. Differentiate u= ( log (1 + a cos x) dx with respect to a, and thence find
Jo

the value of the integral.

XI
^fi ^

dx with respect to a, and thence find the value

01 tne integral. ' ^°S*

66



CHAPTEE XII

MULTIPLE INTEGRALS

120. Double integral with constant limits. Let f{x, y) be any

function of x and y which is single valued and continuous and posi-

tive for all pairs of values of x and y for which a= x= h and c= y^d.
Divide the interval h — a into 7i equal parts, denoting each part by

Ax, thus forming the series of values of x, x^, x„, x^,---, x^_^, where

Xj^ = a -{- Ax, x^ = x^-\- Ax, • • , & = «„ _ ^ + Ax.

Similarly, divide the interval d — c into m equal parts, denoting

each part by Ay, thus forming the series of values of y, y^, y„,

2/3' ••^y.n-^^ where

2/i
= c + %, y2 = yx + ^y, ••> d = y,n-i+^y-

The above values of x determine a series of straight lines par-

allel to Y, and the values of y determine a series of straight lines

parallel to OX (fig. 71).

Every line of either set intersects

every line of the other set, and any

one of these points of intersection

may be represented by ^(a:,-, y^,

where i has all integral values from

to 71 — 1 and j has all integral

values from to m — 1, x^ being a

and y^ being c.

Taking the value of f{x, y) at

each point of intersection, we form the series

f{a, c)AxAy +f{a, y^)AxAy + +f{a, y^_^)AxAy

+ f{x^, c)AxAy +f{x^, y,)AxAy + • • • +f{x^, y„^_,)AxAy

-{-/(x^, c)AxAy +f{x^, y,)^xAy+ +/(.«„ y,,_;)AxAy

+
+/K-P c)AxAy + f{x^_^, y^)AxAy + ^

222

d

2/4

y.
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This series can be expressed more concisely by the notation

: H - 1 j=m-l

X X fi'^^.y^^^'^^y, (2)

i= ./ =

where two ]^'s are used, since there are two elements i and j

which vary.

The limit of (2) as m and n are both increased indefinitely is

called the double integral of f{x, y) over the area bounded by the

lines x = a, x^^h, y = c, and y = d.

The summation of the terms in (2) may evidently be made in

many ways, but there are two which we shall consider in par-

ticular: (1) when the sum of the terms of each row is found, and

these sums added together
; (2) when the sum of the terms in each

column is found, and these sums added together. It will appear

from the grapliical representation (§ 121) that these two methods

lead to the same result ; and it may be shown that the result is

always independent of the order of summation.

If the first method is followed, it is to be noted that the value

of X is the same in all the terms of any one row, and hence each

row is exactly the series used in defining a definite integral (§ 21)

with y as the independent variable. Accordingly, when we let m
increase indefinitely, (2) becomes

+ (J
/('.> 2/)%)^^ + • • • + (J /(''»-!' 2/)^y)Ax (3)

But (3) is the series used in defining a definite integral with x

as the independent variable and / f(x, y)dy as the function of x.

Letting n increase indefinitely, we have

j^'(J
/(•'', 2/) rfy)^^-^, (4)

which represents the double integral on the hypothesis that first m
and then n is made to increase indefinitely.
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Another way of writing (4) is

n f{x,y)dxdy, (5)

where the summation is made in the order of the differentials from

right to left, i.e. first with respect to y and then with respect to x,

and the limits are in the same order as the differentials, i.e. the

limits of y are c and d, and the Hmits of x are a and h*
If the second method of summation is followed, we have

(6)

or fix, y)dydx. (7)

Ex. The moment of inertia of a particle about an axis is the product of its

mass by tlie square of its distance from the axis. From this definition let us

determine the moment of inertia of a lamina of uniform thickness k about an

axis perpendicular to its plane. Let the

density of the lamina be uniform and de-

noted by p, and let the plane XOY coin-

cide with the i^lane of the lamina, the axis

being perpendicular to the plane at 0. Let

the lamina be in the form of a rectangle

(fig. 72) bounded by the lines x = a, x = 6,

y = c, y = d. Divide the lamina into rec-

tangles by the lines
O
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inertia would be [(Xi -\- Axy + {yj -\- ^y)'^'] pk ^x^y . Letting M represent tlie

moment of inertia of tlie rectangle, we have

i=n~l j=m-\ i=n-l j = m-l

i = i = i = ./ =

Tlie limits of these sums as n= co, wi= oo, and Ax=0, Ay = are the same {§ 3), for

j^jj^
[(X,- + Ax)2 + (yj + Ay)'^]pfcAxAy ^ ^

(X? + yf) pkAxAy

Hence we define M by the equation

M= f f (x2 + ?/2) pkdxdy.

If p and i are each placed equal to unity, the result is often referred to as the

moment of inertia of the plane area bounded by the lines x=a, z= b, y=c, y= d.

121. Graphical representation. Placing z=f(x, y), we have

the equation of a surface which is the graphical representation

of /(^> y) (fig- 73). Through the lines x = a, x = 'b, y = c, y = d

pass planes parallel to OZ. Then the volume bounded by the

Fig. 73

plane XOY, the planes x = a, x = h, y = c, y = d, and the surface

z=f{x, y) is a graphical representation of the double integral of

§ 120. For if the planes x — x^, x = x^, x = x^, -
, y — yi, y = y^,

y = y^, • • are constructed, they divide the above volume, which

we will denote by V, into columns such as MNQP, each of which
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stands on a rectangular base A/'Ay in the plane XOY. If the

coordinates of M are (x^, y^), the corresponding term of (2), § 120,

\&f{x„ yJ)AxA2j, and since /(«,, ijj)=3IF, the term/(^,, %)A«Ay

is the volume of a prism standing on the same base as the column

3INQP, and the volume of this prism is approximately the volume

of the column. Hence (2), § 120, is the sum of the volumes of

such prisms, and is approximately equal to F; and as m and n

both increase indefinitely, the limit of the sum of the volumes

of these prisms is evidently V.

The significance of the two ways of summation is now clear.

For if the integral is written as (5), § 120, the prisms are first

added together, keeping x constant, the result being a series of

slices, each of thickness Aa?, which are finally added together to

include the total volume ; and if the integral is written in the form

(7), § 120, the prisms are first added together, keeping y constant,

the result being a series of slices, each of thickness A?/, which are

finally added together to include the total volume. It follows that

(5) and (7) are equivalent, as was noted before.

122. Double integral with variable limits. We may now extend

the idea of a doul)le integral as follows: Instead of takmg the

integral over a rectangle,

as in § 120, we may take

it over an area bounded by

any closed curve (fig. 74)

such that a straight line

parallel to either OX or OY
intersects it in not more

than two points. Drawing

straight lines parallel to Y
and straight lines parallel

to OX, we form rectangles

of area AicAy, some of

which are entirely within

the area bounded by the

curve and otliers of which are only partly withm that area. Then

XX/(''''^)^'"^^'
(1)
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where the summation includes all the rectangles which are wholly

or partly within the curve, represents approximately the volume

bounded by the plane XOY, the surface z =f{x, y), and the cylinder

standing on the curve as a base, since it is the sum of the volumes

of prisms, as in § 121. Now, letting the number of these prisms

increase indefinitely, \^^hile A« = and A?/ — 0, it is evident that

(1) approaches a definite limit, the volume described above.

If we sum up first with respect to y, we add together terms of

(1) corresponding to a fixed value of x, such as x^. Then if MB is

the line x = x-, the result is a sum corresponding to the strip

ABCD, and the limits of y for this strip are the values of y corre-

sponding to a^ = x^ in the equation of the curve ; i.e. if MA =f^(x^

and MB =f^(x^), the limits of y are f-^{x.) and f^i^,). As different

integral values are given to i, we have a series of terms correspond-

ing to strips of the type ABCD, which, when the final summation

is made with respect to x, must cover the area bounded by the

curve. Hence, if the least and the greatest values of x for the

curve are the constants a and h respectively, the limit of (1) appears

in the form , .^,.^

f / /(-«> y) d^dy, (2)

where the subscript i is no longer needed.

On the other hand, if the first summation is made with respect

to X, the result is a series of terms each of which corresponds to a

strip of the type A'B'C'D', and the limits of x are of the form

(f>j^{y)
and 4>.,(y), found by solving the equation of the curve for x

in terms of y. Finally, if the least and the greatest values of y for

the curve are the constants c and d respectively, the limit of (1)

appears in the form , ^ «„(;,)

I / /(*'. y) dydx. (3)

Wliile the limits of integration in (2) and (3) are different, it is

evident from the graphical representation that the integrals are

equivalent.

123. In §§ 120-122, f(x, y) has been assumed positive for aU

the values of x and y considered, i.e. the surface z =f{x, y) was

entirely on the positive side of the plane XOY. If, however.
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f{x, y) is negative for all the values of x and y considered, the

reasoning is exactly as in the first case, but the value of the

integral is negative. Finally, if f{x, y) is sometimes positive and

sometimes negative, the result is an algebraic sum, as in § 22,

Furthermore, it is not necessary that all the values of A:« should

be equal and all the values of Ay equal ; also in place of f{x^, yj)

we may use/(^,., 77,), where «,< ^,<a:\. + i
and yj<Vj<'l/j + y

The work of making these extensions being similar to that of

§§ 22-23, it is not repeated here, but the student is advised to

review those articles.

124. Computation of a double integral. The method of comput-

ing a double integral is evident from the meaning of the notation.

I xydxdy.
'Jo

As this integral is written, it is equivalent to
|
M xydy\dx, the integral

in parenthesis being computed first, on the hypothesis that y alone varies.

XVi.=[f];=2x.

f 2xdx=: [x2]^=9.

Ex. 2. Find the value of the integral
j

j
xydxdy over the first quadrant of

the circle x^ + ?/2 = a'^.

If we sum up first with respect to y, we find a series of terms corresponding

to strips of the type ABCD (fig. 75), and the limits of y are the ordinates of the

points like A and B. The ordinate of A is evidently 0, and from the equation

Y of the circle the ordinate of B is Va^ - a;2, where OA = x.

Finally, to cover the quadrant of the circle the limits of

X are and a. Hence the required integral is

ffJo Jo

V^-
xydxdy

A D
Fig. 75

Jo L 2 Jo

- {a? — X-) dx
2

_ 1 ra2x2 xH"

~2L^"^Jo

Since the above computation of a double integral is simply the

repeated computation of a single definite integral, the theorems of

§ 24 may be used in simplifying the work.
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125. Double integral in polar coordinates. If we have to find

the double integral of /(r, 6) over any area, we divide that area

up into elements, such as ABCD {fig. 76), by drawing radii vectors

at distances A^ apart, and concentric circles the radii of which

increase by Ar. The area of ABCD
is the difference of the areas of the

sectors OBC and GAD. Hence, if

OA = r,

area ABCD = \{r + A^fA6'- \ r'^M

= rArA^ + l^r^ -Ad.

Therefore any term of the sum cor-

responding to (1), § 120, is,

at first sight, of the form

f{r, 6) (rArA6'+|A^'. Af). ^

But in taking the limit, rArAO + IA)

rArAd (§ 3), for

/(r, 6) {rArAd + l A7-'- A^)

Fig. 70

A^ may be replaced by

Lim- = i.i.(i.l.^) = i.

f{r,d). {rArAd)

Hence the required integral is

Jff,XX f^'^^ ^)r^rA0 =jjf{>; d)rdrdd. (1)

If the summation in (1) is made first with respect to r, the result

is a series of terms corresponding to strips such as A^B^C^D^, and

the limits of r are functions of 6 found from the equation of the

bounding curve. The summation with respect to 6 will then add

all these terms, and the limits of 6 taken so as to cover the entire

area will be constants, i.e. the least and the greatest values of 6 on

tlie bounding curve.

If, on the other hand, the summation is made first with respect

to 6, the result is a series of terms corresponding to strips such as

A^B^C^D.,, and the limits of are functions of r found from the

equation of the bounding curve. The summation with respect to

r will then add all these terms, and the limits of r will be the

least and the greatest values of r on the bounding curve.
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Ex. Find the integral of r^ over the circle r = 2 a cos d.

If we sum up first with respect to r, the limits are and 2 a cos ^, found

from the equation of the bounding curve,

and the result is a series of terms cor-

responding to sectors of the type AOB
(fig. 77). To sum up these terms so as

to cover the circle, the limits of B are

and -
2 2

/:/:"

The result is

r^dddr =
r-2 rr*"]2«c

J_-L4jo
dd

=r ia'^cos^edd

The graphical representation may be made by the use of cylin-

drical coordinates defined in § 127.

126. Triple integrals. Let any volume (fig. 78) be divided into

rectangular parallelopipeds of volume A.-tAv/A^ by planes paral-

lel respectively to the coordinate Z

planes, some of the parallelopipeds

extending outside the volume in a

manner similar to that in which

the rectangles in § 122 extend out-

side the area. Let (x., ijj, z,) be a

point of intersection of any three of

these planes and form the sum

1 = J = A-=

as in § 122. Then the

limit of this sum as n,

m, and p increase in- y
definitely, while Aa? == 0,

Ay =0, As; = 0, so as to

include all points of the volume, is called the triple integral of

f{x, y, z) throughout the volume. It is denoted by the symbol

///
/(./;, y, z)dxdydz,
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^'

the limits reraaiuing to be substituted. If the summation is made

first with respect to z, x and y remaining constant, the result is to

extend the integration throughout a column of cross section Aa'A?/
;

if next X remains constant and y varies, the integration is extended

so as to combine the columns into slices ; and finally, as x varies,

the slices are combined so as to complete the integration throughout

the volume.

127. Cylindrical and polar coordinates. In addition to the

rectangular coordinates defined in § 84, we shall consider two other

systems of coordinates for space of three dimensions,— (1) cylin-

drical coordinates, (2) polar coordinates.

1. Cylindrical coordinates. If the x and

the y of the rectangular coordinates are

replaced by polar coordinates r and 6 in

the plane XOY, and the z coordinate is re-

tained with its original significance, the new
coordinates r, 6, and z are called cylindrical

coordinates. The formulas connecting the

two systems of coordinates are evidently

x = r cos 6, y = r sin 6, z = z.

Turning to fig. 79, we see that z — z^ determines a plane parallel

to the plane XOY, that 6 = 6^ determines a plane MONP, passing

through OZ and making an angle 6^ with

the plane XOZ, and that r = 7\ determines

a right circular cylinder with radius r^ and

OZ as its axis. These three surfaces inter-

sect at the point P.

2. Polar coordinates. In fig. 80 the cylin-

drical coordinates of F are 031= r, MP= z,

and Z LOM = d. If instead of placing

0M= r we place OP = r, and denote the

angle NOP by <^, we shall have r, ^, and 6

as the polar coordinates of P. Then, since 0N= OP cos (/> and

0M= OP sin ^, the following equations evidently express the con-

nection between the rectangular and the polar coordinates of P:

z = r cos <^, X = r sin ^ cos 6, y = r sin (/> sin 6.
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Fig. 81

The polar coordinates of a point also determine three surfaces

which intersect at the point. For 6 = 6^ determines a plane (fig. 81)

through OZ, making the angle

6^ with the plane XOZ ; cj) = cj)^

determines a cone of revolution,

the axis and the vertical angle of

which are respectively OZ and

2
(f)^ ; and r = r^ determines

a sphere with its center

at and radius r^.

In both sys-

tems of coordi-

nates 6 varies

from to 2 TT,

and in polar coor-

dinates
(f>

varies

from to TT. The

coordinate r is

usually positive

in both systems, but may be negative, in which case it wdl be laid

off on the backward extension of

the line determined by the other

two coordinates, as in I, § 177.

128. Elements of volume in

cylindrical and in polar coordi-

nates. If it is desired to express

the triple integral of § 126 in

either cylindrical or polar coor-

dinates, it is necessary to know

the expression for the element

of volume in those coordinates.

1. The element of volume in

cylindrical coordinates (fig. 82)

is the volume bounded by ^

two cylmders of radii r and

r + Ar, two planes corresponding to z and z+Az, and two planes

corresponding to 6 and 6+^6. It is accordingly, except for
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infinitesimals of higher order, a cylinder with altitude Az and

base rArA^(§ 125). Hence the element of volume is

'dV = rdrdddz. (1)

2. The element of volume in polar coordinates (fig. 83) is the

volume bounded by two spheres of radii r and r + Ar, two conical

surfaces correspond-

ing to ^ and ^ + A</>,

and two planes cor-

responding to 6 and

e + Ad. The volume

of__the spherical pyr-

amid 0-ABCD is

equal to the area of

its base ABCD mul-

tiplied by one third

of its altitude r.*

To find the area of

ABCD we note first

that the area of the

zone formed by com-

pleting the arcs AD
and i?C is equal to

its altitude, r cos — r cos (^ -f A<^), multiplied by 2 irr. Also the

area of ABCD is to the area of the zone as the angle A^ is to 2 tt.

Hence area ABCD = rAd [r cos (j) — r cos (^ -|- A^)],

and vol 0-ABCD = i r^'AO [cos <^ - cos
{(f) + A(f))].

Similarly,

vol 0-EFGH= 1 (r + Ar)'A6' [cos 4> — cos ((/> + Ac/))].

Therefore

Yo\ABCDEFGH=\[{r-\-Arf-7'^'\Ad[coB<l>-coB{<^+A4>)].

But this expression differs from r" sin (f>ArA(f)Ad by an infinitesi-

mal of higher order. Accordingly, the element of volume is

dV= r^ sin (}>drd4>dd. (2)

Fig. 83

* The volume of a spherical pyramid is to the volume of the sphere as the area of

its base is to the area of the surface of the sphere.
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It is to be noted that dV is equal to the product of the

three dimensions AB, AD, and AE, which are respectively rd^,

r sin (f)d6, and dr.

129. Change of coordinates. When a double integral is given

in the form I jf{x, y)dxdy, where the limits are to be substituted

so as to cover a given area, it may be easier to determine the value

of the integral if the rectangular coordinates are replaced by polar

coordinates. Then f{x, y) becomes /(r cos 6, r sm 6), i.e. a function

of r and 6. As the other factor, dxdy, indicates the element of area,

in view of the graphical representation of § 121 and the work of

§ 125, we may replace dxdy by rdrdO. These two elements of area

are not equivalent, but the two integrals are nevertheless equiva-

lent, provided the limits of integration in each system of coordi-

nates are taken so as to cover the same area.

In like manner, the three triple integrals

///

///

///

f{x,y,z)dxdydz,

f{r cos 6, r sin 6, z) rdrdddz,

f{r sin (^ cos 6, r sin (/> sin 9, r cos <^) r'^ sin <f>drd<pd0

are equivalent when the limits are so taken in each as to cover the

total volume to be considered.

PROBLEMS

Find the values of the following integrals :

I
^dxdy. 5.

f f
rkledr.

.X r.2 -•cose -

r- sin ddddr.

X

{''^\xx dydx. 7. / /
'\rdYdQ.

n Jo y «^0 -'-cos-r-

2

J

•.4 /.Vv r2 „ r^ />log- py-1x
, , ,

I
x\o"-dydx. 8-

I 'I e^-^i'+-dxdydz.
2 Ji y 'Jo •^o Jo
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9. rr^— r
Jo ./o «/o Va"-^ — X- — y"^ — z^

^2 ^:r ^U dxdydz^
1 ^ .r2 sin 9 cos 9

11. 1^/
/

rdedrdz. 13. I I r* sm3 ^(i^d^dr.
Jo Jo Ju '^o '^o Jo

77 TT

14 /^2 /'s r^
I j 1

r sin cos <(> cos 6ddd<pdr.
Jo Jo J a sin (f)

15. Prove that f f f{x) f(y)dxdy = J f{x)dx .



CHAPTER XIII

APPLICATIONS OF MULTIPLE INTEGRALS

130. Moment of inertia of a plane area. The moment of inertia

of a particle about an axis is the product of its mass and the square

of its dista7iee from the axis. The moment of inertia of a number

of particles about the same axis is the sum of the moments of

inertia of the particles about that axis. From this definition

we derive (§120) a definition of the moment of inertia of a

homogeneous rectangular lamina of thickness 7c and density p

about an axis perpendicular to the plane of the lamina. The

result may be written in the form

M=phf C {.r^+f)dxdy, (1)

where M represents the moment of inertia.

If p and k are both replaced by unity, (1) becomes

M= f ( {^'^'+y'')dxdy, (2)

which, as was noted in § 120, is called the moment of inertia of

the rectangle about an axis perpendicular to its plane at 0.

Reasoning in the same way, we may form the general expression

// x^-\-7f)dxd2j, (3)

where the integration is to extend over a given area in the plane

XOY. Then (3) is the moment of uiertia of that area about the

axis perpendicular to the plane at 0.

Ex. Find the moment of inertia, about an axis perpendicular to the plane at

the origin, of the plane area (fig. 84) bounded by the parabola y'^ = iax, the line

y = 2a, and the axis OY.

236
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If the integration is made first witli respect to x, the limits of that integra-
y-2

tion are and — , since the operation is the summing of elements of moment
4 a

of inertia due to the elementary rectangles in any y
strip corresponding to a fixed value of y ; the limit

4a
is found from the axis of y, and the limit

is found from the equation of the parabola.

Finally, the limits of y must be taken so as to

include all the strips parallel to OX, and hence

must be and 2 a.

Therefore M— j I
'^ [xr + y") dydz

Jo Ju

— 4- -• — Idy
192 a3 4 a/Jo \192

Fm. 84

131. If the plane area is more conveniently defined by means

of polar coordinates, (3) of § 130 becomes
;

31 =
I j r- {rdrcW)

; (1)

for, by § 129, in place of dxdi/ as the element of area we take

the element of r.rea rdrdO, and the factor x^ + y'^ evidently

becomes r^.

Formula (1) may also be de-

rived directly from the fundamen-

tal definition at the beginning of

§ 130, and the student is advised

to make that derivation.

Ex. Find the moment of inertia, about

an axis jjerpendicular to the plane at 0,

of the plane area (fig. 85) bounded by one

loop of the curve r = a sin 2 6.

M We .shall take the loop in

Fig. 8') the first quadrant, since the

moments of inertia of all the

loops about the chosen axis are the same by the symmetiy of the curve.

If the first integration is made with respect to r, the result is the moment of

inertia of a strip bounded by two successive radii vectors and a circular arc ; and

hence the limits for r are and a sin 2 d. Since the values of 6 for the loop of
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the cui-ve vary from to - , it is evident that those values are the limits for

in the final inteorration.

Therefore
Jo Jo

r^dedr

sin* 2 (

132. In the two preceding articles we have found the moment

of inertia of a plane area about an axis perpendicular to the plane,

which, with the exception of a constant factor, is the moment

of inertia of a corresponding

homogeneous lamina about the

same axis. We shall now find

the moment of inertia of a

homogeneous lamina about an

axis in its plane.

Let the lamina be bounded

by the closed curve (fig. 86),

and let its density at any point

be p and its thickness be k.

LetOX be the axis about which

the moment is to be taken.

'-^ Divide the area into rec-

tangles of area A,rA?/. Then

the mass of any corresponding element of the lamina, as PQ, is

pkAxAy. If this mass is regarded as concentrated at P, its moment

about OX is pky^AxAy ; and if the mass is regarded as concen-

trated at Q, its moment about OX is pk{i/+AyfAxA7/.

Therefore, if M^ represents the required moment,

the summations to cover the entire area.

Since Lim^^^^^^^^^^^^^ = l, the double sums of (1) have
pky-AxAy

the same limit (§ 3), and accordingly

M^^jjpkfdxdy, (2)

where the integration is to cover the entire area.

Fig. 86
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If p and h are each replaced by unity, (2) defines the moment

of inertia of the plane area about OX.

If My denotes the moment of inertia about Y, in similar manner

My=\\pkjrdxdy. (3)

Ex. Find the moment of inertia about OY of the plane area bounded by the

parabola y'^ = A ax, the line y ::= 2 a, and the axis OY.

Since the above area is the same as that of the Ex. in § 130, the limits of

integration will be the same as there determined, but the integrand will be

changed in that x^ + y'^ is replaced by x"^.

>/-

Hence My =
( |

"oc^hlydx
Jo Jo

1 r'^"=
I

y*'dy
192 a^ Jo

— -2- a*— 2 1 "

If it is desirable to use polar coordinates, (2) becomes

J4= ffpkr' sin' ddrdd, (4)

and (3) becomes

31^= CCplr' cos- edrdd, (5)

the substitution being made according to § 129.

133. Area bounded by a plane curve. The area bounded by an

arc of a plane curve, the axis of x, and the ordinates of the ends of

the arc has been determined in § 35 by a single integration. By tak-

ing the algebraic sum of such areas any plane area may be computed.

The area bounded by any plane curve may also be found by a-

double integration as follows : Draw straight lines parallel to OX
and to F respectively, forming rectangles of area Ai'Ay, some of

which, as in fig. 74, will be entirely within the curve, and others

of which will be only partly within the curve. Form the double

sum ^Z^^xAt/ of these rectangles, and then let their number

increase indefinitely while Ax = and Ay = 0. Then the double

integral ^^
I I dxdy (1)

is the required area.



240 APPLICATIONS OF MULTIPLE INTEGRALS

Ex. Find the area inclosed by the curve {y — x — 3)2 = 4 — x- (fig. 87).

The element of area is the rectangle AxAy. If the first integration is made

with respect to y, the result is the area of a strip like the one shaded in fig. 87,

and the limits for y will be found by solving the equation of the curve for y in

terms of x. Since y = x + S

/

area —
\ \

dxdy

=f (2/2 - 2/i) dx

= 2 f" Vi -x^dx

= 4n-.

This example is Ex. 3,

§ 35. Comparing the two

solutions, we see that the

result of the first integra-

tion here is exactly the inte-

~-^ grand in § 35. It is evident

that this will be the case

in all similar problems, and

hence many areas may be found by single integration. The advantage of the

double integral consists in the representation of the area of a figure for which

the limits of integration cannot easily be found.

134. In like manner, the area bounded by any curve in polar

coordinates may be expressed by the double integral

±V4
is yi-

- x'^, the lower limit

X + 3 - V4 x^ and

the upper limit is ?/2 = s; + 3

+ V4 — x^. For the integra-

tion with respect to x the

limits are — 2 and 2, since

the curve is bounded by the

lines X = — 2 and x = 2.

Therefore

Fig. 87

//rdrdd, (1)

the element of area being that bounded by two radii vectors the

angles of vi^hich differ by A^, and by the arcs of two circles the

radii of which differ by Ar.

If the first integration of (1) is with respect to r, the result

before the substitution of the limits is ^ r^dO. But this is exactly
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the integrand used in computation by a single integration. Hence

many areas may be computed by single integration in polar

coordinates.

135. Area of any surface. Let C (fig. 88) be any closed curve

on the surface /(.^', y, z) = 0. Let its projection on the plane XOY
be C. We shall assume that the given surface is such that the

perpendicular to the plane XOY at any point within the curve C
meets the surface in but a single point.

In the plane XOY draw straight lines parallel to OX and OY,

forming rectangles of area Aa^A?/, which lie wholly or partly

in the area bounded by C. Through these lines pass planes

parallel to OZ. These planes z

will intersect the surface in

curves which intersect in points

the projections of which on the

plane XOY are the vertices of

the rectangles ; for example, M
is the projection of P. At every

such point as P draw the tan-

gent plane to the surface. From

each tangent plane there

will be cut a parallelo-

gram * by the

planes drawn

parallel to OZ.

We shall now

define the area

of the surface f{x, y, z) = 0, bounded by the curve C, as the limit

of the sum of the areas of these parallelograms cut from the tan-

gent planes, as their number is made to increase indefinitely, at

the same time that Aa; = and Ay = 0. This definition involves

the assumption that the limit is independent of the manner in

which the tangent planes are drawn, or of the way in which the

small areas are made to approach zero. This assumption may be

proved by careful but somewhat intricate reasoning.

* This parallelogram is not drawn in the figure, since it coincides so nearly with the

surface element.
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If A.4 denotes the area of oue of these parallelograms in a tan-

gent plane, and 7 denotes the angle which the normal to the tangent

plane makes with OZ, then (§ 92)

Aj:;A?/ = A^ cos 7, (1)

since the projection of A.I on the plane XO Y is i^xAy. The direc-

tion cosines of the normal are, by § 112, (2), proportional to
cz

dx

' — 1 ; hence

and hence

cos 7 =

AA =

1



From (1),

AKEA OF ANY SURFACE

ydz
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represents any surface through the line of intersection of (1) and (2), and hence

it only remains to choose A;i and k^ so that (3) shall be independent of z. Accord-

ingly let fci = 1 and A;2 = — 1, and (3) becomes

,
. x2 + 2 ay - 4 a2 = 0.

From (2),
dx
= 0,

cz

vY

V 4 a'i — 'lay

V2 ay — y'^

adydx

- ^4 a2 - 2 ay V'l Uy — y'^

= 2aV-2a —

^

(4)

by (2)

The limits of integration were determined from (4), which is the projection

of the bounding line of the required area on the plane XOY.
As an equal area is intercepted on the negative side of the plane XOY, the

above result must be multiplied by 2. Hence the required area is 16 a^.

The evaluation of (4) may sometimes be simplified by trans-

forming to polar coordinates in the plane XOY.

Ex. 3. Find the area of the sphere x'^ + ij" + z^ = a^ included in a cylinder

having its elements parallel to OZ and one loop of the curve r = a cos 2 6* (fig. 91)

in the plane XOY as its directrix.

Proceeding as in Ex. 1, we find the integrand Transform-

V a'^ — x'^

ing this integrand to polar coordinates, we have (§ 129)

y^

= "fM
a cos 2 6 ardedr

for the first integration

with respect to r covers a

sector extending from the

origin to a point on the curve

r = a cos 2 6, since the curve

passes through the origin

;

and the final integration

with respect to d is from
IT IT . ^,1

to -, since the loop
4 4'

chosen is bounded by the

radii vectors = -- and 6 = '^-
Tlie factor 2 before the integral is necessary

4 4

because there is an equal amount of area on the negative side of the plane XOY.

Fio. 91
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IT

,«co8-2e rdddr

-"I'd Va2 — r2

TT

= 2 a^f ^(1 + sin 2 ff) lie + 2 a^ P (1 - sin 2 ^) d(9

= (rr - 2) a2.

If the required area is projected on the plane YOZ, we have

where the integration extends over the projection of the area on

the plane YOZ ; and if the required area is projected on the plane

XOZ, we have
i

———-—
-^

where the integration extends over the projection of the area on

the plane XOZ.

136. Center of gravity. In § 47 we defined the center of gravity

of a system of particles all of which lie in the same plane, the result-

ing formulas being x-^ -^

X = 5 y = —— •

If the particles do not all lie in the same plane, we are obliged to

add a third equation, -r^

to define the third coordinate of the center of gravity, the deriva-

tion of which is not essentially different from that given in § 47.

To determine the center of gravity of a physical body, we divide

the body into elementary portions, the mass of any one of which

may be represented by Am. Then if (ic., y^, «,.) is any point such

that the mass of one of the elementary portions may be considered

as . concentrated at that pomt, we define the center of gravity

(x, y, z) of the body by the formulas

VA?/^ ]^Am
X"^''^
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The denominator of each of the preceding fractions is evidently M,

the mass of the body.

Formuhis (1) can be expressed in terms of definite integrals, the

evaluation of which gives the values of x, y, and z. We shall here

take up only those cases in which the definite mtegrals introduced

are double or triple integrals.

137. Center of gravity of a plane area. The center of gravity

of a plane area in the plane XOY has been defined in § 49. From

that definition we have immediately that z= 0.

To determine x and y we divide the area into rectangles of area

Aa;Ay (fig. 86), and if we denote the density by p, Lm = pi::!kxi:i^y.

If we consider the mass of an element, as PQ, concentrated at P,

we have, by substituting in (1), § 136,

X%p^x^y

an expression which is evidently less than x ; and if we consider

the mass oi PQ as concentrated at Q, we have

X'X{Xi+ ^x)p^x^y

2^2)pA.rAy

an expression which is evidently greater than x.

But the limits of (1) and (2) are the same (§ 3), for

rc,/3A.iA?/

I i pxdxdy

The limit of (1) is "^ , both integrals being taken over the

(2)

entire area.
I
ipdxdy

\\ pxdxdy
^ j

pydxdy

Therefore ^ = '^ ' ^^fT
' ^^^

Ijpdxdy jjpdxdy

y being derived in the same manner as x.
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If p is constant, it can be canceled ; and in any problem in

which p is not defined, it will be understood that it is constant.

In that case the denominator of each coordinate is the area of the

plane figure.

Ex. Find the center of gravity of tlie segment of the ellipse 1- — = 1 cut

off by the chord through the positive ends of the axes of the curve.

This is Ex. 2, § 49, and the student should compare the two solutions.

The equation of the chord is bx + ay = ab.

To determine x and y we have to compute the two integrals I ( xdxdy and

I I
ydxdy over the shaded area of fig. 39, and also find that shaded area.

The area is the area of a quadrant of the ellipse less the area of the triangle

formed by the coordinate axes and the chord, and is accordingly

1 {wab) - hab = ^ab{Tr -2).

(lb — bx
For the integrals the limits of integration with respect to y are yi =

and 7/2 = - Va2 — x'^, yi being found from the equation of the chord, and yo being

found from the equation of the ellipse. The limits for x are evidently and a.

If" xdxdy =
( ( - X Va^ — x'^ — 6x H )dx

Jo Jah-hx- J \a O, I

I I

" ydxdy — \ ( — b'^x- + ab^x) dx
Jo Joh-hx a^Jo

i62a.

2a _ 2b
y =

3 (tt - 2) 3 (tt - 2)

138. If the equation of the bounding curve of the area is in

polar coordinates, we have, by transforming equations (3), § 137,

by § 129, .^
I

\ pr cos Odrdd

x =^ .

ffprdrde
^

(1)

fCpr sin edrde

y =^
ffprdrdd
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Ex. Find the center of gravity of the area bounded by the two circles

r = a cos ^, r = b cos 6. (6 > a)

It is evident from the symmetry of the area (fig. 02) that ^ = 0.

As the denominator of the fractions, after canceling p, is the area, it is

equal to = - tt (o^ — a^).
4 4 4

The numerator for x becomes

M / M r2 cos 6»d^dr = J (63 _ a^) I 2 cos*6id6i

= l7r(63-a3).'

, _ _ 62 + a6 + a2

2 (6 + a) '

Fig. 92
^

139. Center of gravity of a solid. To find the center of gravity

of any solid we have merely to express the A?/i of formulas (1),

§ 136, in terms of space coordinates and proceed as in § 137. For

example, if rectangular coordinates are used, Am = p^xAijAz, and

I
I

I
p.rdxdydz

jjjpdrAydz

i
I

\ pydxdydz

I I
\pdxdydz

I I \ pzdxdydz

j I I pdxdydz

the work of derivation being like that of § 137.

If desired, formulas (1) may be expressed in cylindrical or polar

coordinates.

Ex. Find the center of gravity of a body of uniform density, bounded by one

nappe of a right circular cone of vertical angle 2 a and a sphere of radius a, the

center of the sphere being at the vertex of the cone.

X =
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If the center of the sphere is taken as the origin of coordinates and the axis

of the cone as the axis of 2, it is evident from tlie symmetry of tlie solid that

X = y = 0. To find 2, we shall use polar coordinates, the equations of the sphere

and the cone being respectively r = a and (p = a.

.27r

Then
\ I I

^ COS . r2 sin (}>d6d^dr
Jo Jo Jo

I
I I

r"^ sin (pddd^idr
Jo J J

The denominator is tlie volume of a spherical cone the base of which is a zone

of altitude a(l — cos a); therefore its volume equals ^7ra^{l — cos a) (§ 128).

/i27r /\(Z /y(i pin r*ct

\ I I
>*^ cos (p sin (j>ddd(pdr = i a'' ( I cos (p sin (j>ddd(j>

J J J J J

- la*(l - cos^a) f de
Jo

= 1 ira^{\ — cos'- a).

.-. z = I (1 + cosa)a.

140. Volume. In §§ 126, 128 we found expressions for the

element of volume in rectangular, in cylindrical, and in polar

coordinates. The volume of a solid bounded by any surfaces

will be the limit of the sum of these elements as their number

increases indefinitely while their magnitudes approach the limit

zero. It will accordingly be expressed as a triple integral.

Ex. 1. Find the volume bounded by the ellipsoid

From symmetry (fig. 93) it y
is evident that the required

volume is eight times the vol-

ume in the first octant

bounded by the surface

and the coordinate

planes.

In summing up the

rectangular parallel-

opipeds Aa;A2/Az to

form a prism with

edges parallel to OZ,

the limits for z are

?/2 z2 ,

+ — 4- — = 1.
6'^ ^ c2

and c
\ a? 62

the latter being

found from the

equation of the

ellipsoid. Y' Fig. 93
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Summing up next with respect to ?/, to obtain the volume of a slice, we have

\ a2
as the lower limit of y, and b\jl ^'as the u^jper limit. This latter limit is

determined by solving the equation ^- — = 1, found by letting z = in the

equation of the ellipsoid ; for it is in the plane z = that the ellipsoid has the

greatest extension in the direction OF, corresponding to any value of x.

Finally, the limits for x are evidently and a.

Therefore V=?>r(' ai T^ <a b^^xdydz
Jo Jo Jo

na pb\ 1—- j x'^

Jo Jo A/ a''

•/:(-S)

-dxdy
0^

=:2Trbr (1 -_]dx

— i Trabc.

It is to be noted that the first integration, when rectangular

coordinates are used, leads to an integral of the form

//<^2~ ^i)
dxdy,

where z^ and z^ are found from the equations of the bounding sur-

faces. It follows that many volumes may be found as easily by

double as by triple integration.

In particular, if z^ = 0, the volume is the one graphically repre-

senting the double integral (§ 121).

Ex. 2. Find the volume bounded by the surface z — ae-(^ + s^) and the plane

z = 0.

To determine this volume it will be advantageous to use cylindrical coordi-

nates. Then the equation of the surface becomes z = ae-'-, and the element of

volume is (§ 128) rdrdddz.

Integrating first with respect to z, we have as the limits of integration and

ae- ""^ If we integrate next with respect to r, the limits are and co, for in the

plane z = 0, r = co, and as z increases the value of r decreases toward zero as a

limit. For the final integration with respect to 6 the limits are and 2 tt.

P'2tt /ICO ^ae"**"

Therefore V=
\ I (

rdedrdz
Jo Jo Jo

^ 2 Tf /> oo

= ffl
j I

re-^-dOdr
Jo Jo

,2n-

Jo
dd
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In the same way that the computation of the volume in Ex. 2

has been simplified by the use of cylindrical coordinates, the com-

putation of a volume may be simplified by a change to polar coor-

dinates ; and the student should always keep in mind the possible

advantage of such a change.

141. Moment of inertia of a solid. The moment of inertia of a

solid about an axis may be found as follows : Divide the solid into

elements of volume, and let Am represent the mass of such an

element. Let h and h + AA represent the least and the greatest

distances of any particle of Am from the axis. Then if Am is

regarded as concentrated at the least distance, its moment of inertia

would be /t^Arn ; and if Am is regarded as concentrated at the

greatest distance, its moment of inertia would be {h + AhfAm.
If the moment of inertia of the entire solid is denoted by M,

^ h^Am<M<^ {h + Ah)-Am,

where the two sums include all the elements of volume into which

the solid was divided.

Lim ^^—-;

—

~ = 1, when the number of the elements of
h'A'm

volume increases indefinitely while their magnitude approaches

the limit zero.

Hence we define 31 by the equation

M=Um^h^Am. (1)

It is to be noted that the cases of §§ 130-132 are but special

cases of (1).

The computation of 31 requires us to express (1) as a definite

integral in terms of some system of coordinates, the choice of a

particular system of coordinates depending upon the solid.

Ex. Find the moment of inertia of a homogeneous sphere of density p and

radius a about a diameter.

"We sliall take the center of the sphere as the origin of coordinates, and tlie

diameter about wliicli the moment is to be tal^en as the axis of z. Tlie problem

will then be most easily solved by using cylindrical coordinates.

The equation of the sphere will be r- + z'^ = a^, and dm = prdrciedz, where p

is the density ; also A = r, so that we have to find the value of the triple integral

pCCCrHedrdz.
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Integrating first with respect to z, we find the limits, from the equation of

the spliere, to be — y/cfi — r^ and Va^ — r^. Integrating next with respect to r,

we have the limits and a, thei-eby finding the moment of a sector of the sphere.

To include all the sectors, we have to take and 2 7r as the limits of d in the last

integration.
., ^ ,

Therefore M =^ p I I I r^dddrdz.
Jo J J - VaS - (-2

As a result of the first integration,

M-2p f f r^ Va2 - r-
J Jo

dddr.

Making the next integration by a reduction formula or a trigonometric sub-

stitution, we have „2 7r

M = At pa^
I

dd = /^ irpa^.
Jo

142. Attraction. In § 45 the attraction between two particles

was defined, and the component in the direction OX of the attrac-

tion of any body on a particle was derived as LimV

—

^ A7n,

where Am represents an element of mass of

the body, r^- may be considered the shortest

distance from any point of the element to

the particle, and 6. is the angle between OX
and the line r^. This expression is entirely

general, and similar expressions may be de-

rived for the components of the attraction

in the directions OY and OZ.

Now that we can use double and triple

integrals the application of these formulas

is simplified.

Ex. Find the attraction due to a homogeneous

circular cylinder of density p, of height h, and radius

of cross section a, on a particle in the line of the axis

of the cylinder at a distance h units from
-^ one end of the cylinder.

Take the particle at the origin of coor-

dinates (fig. O'l), and the axis of the cylin-

der as OZ. Using cylindrical coordinates
,

we have dm = prdrdOdz and n = v z^ + r^.

From the symmetry of the figure the resultant components of attraction in

the directions OX and OY are zero, and cos^j= —^=z for the resultant

component in tlic direction OZ. v:22 + y2
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Therefore, letting ^j represent the component in the direction OZ, we have

Ag = p I i I ^ dedrdz,
Jo J Jb (z- + r'-)"^

where the limits of integration are evident from fig. 94.

A. = pr rY—'——-—v^'^*-
Jo Jo\^jj-2^f2 V(6 + hf + rV

= P f "(/i + V62 + a2 - V(6 + h)^ + a^)de
Jo

PROBLEMS

1. Find the moment of inertia of the area between the straight lines x + y= l,

X = 1, and y = 1 about an axis perpendicular to its plane at 0.

2. Find the moment of inertia of the area bounded by the parabolas 2/^ = 4 ax

+ 4 a^, y^ = — ibx + 4:b^ about an axis perpendicular to its plane at 0.

3. Find the moment of inertia of the area of the loop of the curve b-ij-
—

x"{a — x) about an axis perpendicular to its plane at 0.

4. Determine the moment of inertia about an axis perpendicular to the plane

at the pole of the area included between the straight line r = asec^ and two

straight lines at right angles to each other passing through the pole, one of these

lines making an angle of 60° with the initial line.

5. Find the moment of inertia of the area of one loop of the curve r = a cos 3 d

about an axis perpendicular to its plane at the pole.

6. Find the moment of inertia of the area of the cardioid r = a{cosd + 1)

about an axis perpendicular to its plane at the pole.

7. Find the moment of inertia of the area of one loop of the lemniscate

r2 = 2 a^ cos2 ^ about an axis perpendicular to its plane at the pole.

8. Find the moment of inertia of the total area bounded by the curve

r2 = a2 sin 6 about an axis perpendicular to its plane at the pole.

9. Find the moment of inertia of the entire area bounded by the curve

r^ = a^ sin 3 about an axis perpendicular to its plane at the pole.

10. Find the moment of inertia of the area of a circle of radius a about an

axis pei"pendicular to its plane at any point on its circumference.

11. Find the moment of inertia of the area of the circle r — a which is not in-

cluded in the curve r=a sin 2 6 about an axis perpendicular to its plane at the pole.

12. Find the moment of inertia about the axis of y of the area bounded by

the hyperbola xy = a^ and the line 2x + 2y — 5a = 0.

13. Find the moment of inertia about the axis of x of the area of the loop

of the curve b'^y^ = x^ (a — x).

14. Find the moment of inertia of the area of one loop of the lemniscate

r2 = 2 a^ cos 2 ff about an axis in its plane perpendicular to the initial line at

the pole.
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15. Find the moment of inertia of the area of the cardioid r = a (cos ^ + 1)

above the initial line, about the initial line as an axis.

16. Find the moment of inertia of the area bounded by a semicircle of radius

2 a and the corresijonding diameter, about the tangent parallel to the diameter.

17. Find the area bounded by the hyperbola xij = a^ and the line 2x + 2y
- 5 a = 0.

18. Find the area bounded by the parabola x^ = iay and the witch

19. Find the area bounded by the limacon r = 2cos^ + 3 and the circle

r — 2 cos 6.

20. Find the area bounded by the confocal parabolas ?/2 = 4 ax + 4 a^,

y- = — 4bx + i b'^.

21. Find the area bounded by the circles r = a cos e, r — a sin 9.

22. Find the areas of the three parts of the circle x^ + y~ — 2ax = into

which it is divided by the parabola y'^ = ax.

23. Find the area cut off from the lemniscate r- = 2a^ cos 2 5 by the straight

line r cos = a.
2

24. Find the area of the surface cut from the cylinder x- + y- = a^ by the

cylinder y'^ + z'^ = a"^.

25. Find the area of the surface of a sphere of radius a intercepted by a right

circular cylinder of radius i a, if an element of the cylinder passes through the

center of the sphere.

26. Find the area of the surface of the cone x- + y- — z'^ = cut out by the

cylinder x^ + y^ — 2 ax = 0.

27. Find the area of the surface of the cylinder x^ + ?/2 — 2 ax = bounded

by the plane XOY and a right circular cone having its vertex at 0, its axis

along OZ, and its vertical angle equal to 90°.

28. Find the area of the surface of the right circular cylinder z^ + (x cos a

+ y sin a)2 = a^ included in the first octant.

29. On the double ordinates of the circle x^ + ?/2 = a- as bases, and in planes

perpendicular to the plane of the circle, isosceles triangles, each with vertical

angle 2 a, are described. Find the eipiation of the convex surface thus formed,

and its total area.

30. Find the area of the surface z = xy included in the cylinder (x- + 2/^)2 =
x2 - 7/2.

31. Find the area of the sphere x- + y" + z- = a" included in the cylinder

with elements parallel to OZ, and having for its directrix in the plane XOY a

single loop of the curve r = a cos 3 6.

x^ — ?/2

32. Find the area of that part of the surface z = ^ the projection of
2 a

wliich on the plane XOY is bounded by the curve r- —a'^ cos 9.
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33. Find the area of the sphere x- + ij^ + z^ = ia^ bounded by the intersec-

tion of the spliere and the right cylinder, the elements of which are parallel to

OZ and the directrix of which is the cardioid r = a (cos ^ + 1) i" the plane XOY.

34. Find the center of gravity of the plane area bounded by the parabola

X' + ?/5 = a^ and the line x + y = a.

35. Find the center of gravity of the plane area bounded by the parabola

x^ =^ iay and the witch y = •

x^ + 4 a^

36. Find the center of gravity of the plane area bounded by the cissoid

2/2
— and its asymptote.
2a — X

37. Find the center of gravity of the area of the part of the loop of the

curve a*y'- = a-x* — x^ which lies in the first quadrant.

38. Find the center of gravity of the area in the first quadrant bounded by

the curves x^ + y'^ = a^ and x^ + y'^ = a".

39. Find the center of gravity of the plane area bounded by OX, OY, and

the curve x' + y^ — a?.

40. A plate is in the form of a sector of a circle of radius a, the angle of the

sector being 2 a. If the thickness varies directly as the distance from the center,

find its center of gravity.

41. How far from the origin is the center of gravity of tlie area included in

a loop of the curve r = a cos 2 ^ ?

42. Find the center of gravity of the area bounded by the cardioid r =

a(cos^ + 1).

43. Find the center of gravity of a thin plate of uniform thickness and den-

sity in the form of a loop of the lemniscate r^ = 2 a^ cos 2 Q.

44. Find the center of gravity of a homogeneous body in the form of an
1^2 r^fl ^1

octant of the ellipsoid 1- -— + — = 1.

a- 0- c-

45. Find the center of gravity of the homogeneous solid bounded by the

surfaces z = kix, z = k-ixik^ > fci), x^ + 2/2 = 2 ax.
3.2 y2 ^2

46. The density of a solid bounded by the ellipsoid — + — + - = 1 varies
a2 0'- c2

directly as the distance from the plane YOZ. Find the center of gravity of the

portion of this solid lying in the first octant.

47. Find the center of gravity of the homogeneous solid bounded by the

surfaces z = 0, y = 0, y = b, b-z'^ — y^ {a^ — x^).

48. A homogeneous solid is bounded by a sphere of radius a and a right

circular cone, the vertical angle of which is - , the vertex of which is on the

surface of the sphere, and the axis of which coincides with a diameter of the

sphere. Find its center of gravity.

49. Find the center of gravity of a right circular cone of altitude a, the den-

sity of each circular slice of which varies as the square of its distance from the

vertex.
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50. rind the center of gravity of an octant of a sphere of radius a, if the

density varies as the distance from the center of tlie sphere.

51. Find tlie center of gravity of a liomogeneous solid bounded by the sur-

faces of a right circular cone and a hemisphere of radius a, which have the

same base and the same vertex.

52. Find the volume bounded by the surface x^ + y^ + z^ = a^ and the coor-

dinate planes.

53. Find the volume of the part of the cylinder x^ + y^-2ax = included

between the planes z = kiX, z = k2X{ki < k-z).

X2 7/2 2*

54. Find the total volume bounded by the surface •— + — + — = 1-

a^ 0^ c*

55. Find the volume included in the first octant of space between the coor-

dinate planes and the surface y^ — 16 il — -\ +82(1 — -|=0.

56. Find the volume in the first octant bounded by the surfaces z=(x + yY,

x2 + 2/2 = a^.

57. Find the volume bounded by the surface 6-2- = y- {a- — x-) and the planes

2/ = and y = b.

58. Find the volume bounded by the surfaces az = xy, x + y + z = a, z = 0.

59. Find the volume bounded by the cylindroid z~ = x + y and the planes

X = 0, ?/ = 0, 2 = 2.

60. Find the volume of the paraboloid ?/2 + 2^ = 8 x cut off by the plane

y = 2x-2.

61. Find the volume bounded by the surfaces 2 = ax- + 6;/-, y- = 2cx—x'^, 2= 0.

62. Find the volume bounded by the surfaces x^ + y'^ = ax, x~ + y- = bz, z — 0.

63. Find the total volume bounded by the surface x* + ?/* -|- z* = a'.

64. Find the volume cut from a sphere of radius a by a right circular cyl-

inder of radius -
, one element of the cylinder passing through the center of the

sphere.

65. Find the volume bounded by the surfaces z = a(x 4- 2/), z = a{x- + y-).

66. Find the volume bounded by the surfaces z = 0, z = ar-, r = b cos e.

67. Find the total volume bounded by the surface {x^ + y^ + z-f= 27 a^xyz.

(Change to polar coordinates.)

68. Find the volume bounded by a sphere of radius a and a right circular

cone, the axis of the cone coinciding with a diameter of the sphere, the vertex

being at one end of the diameter and the vertical angle of the cone being 60°.

69. Find the total volume bounded by the surface {x^ + y^ + z-f = axyz.

70. Find the volume of the sphere x^ + y- + z^ = cfi included in a cylinder

with elements parallel to OZ, and having for its directrix in the plane XOY one

loop of the curve r — a cos 3 d.
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71. Find the volume bounded by the plane XOT, the cylinder x'^ + y'^-2ax

= 0, and the right circular cone having its vertex at 0, its axis coincident with

OZ, and its vertical angle equal to 90°.

72. Find the total volume bounded by the surface r^ + z^ = ar (cos ^ + 1).

0^2 y2 ^2

73. Find the moment of inertia of a homogeneous ellipsoid — + — + — = 1,
Oj c

of density p, about OX.

74. Find the moment of inertia about its axis of a homogeneous right cir-

cular cylinder of density p, height h, and radius a.

75. A solid is in the form of a right circular cone of altitude h and vertical

angle 2 or. Find its moment of inertia about its axis, if the density of any par-

ticle is proportional to its distance from the base of the cone.

76. The density of a solid sphere of radius a varies as the distance from a

diametral plane. Find its moment of inertia about the diameter perpendicular

to the above diametral plane.

77. A homogeneous solid of density p is in the form of a hemispherical

shell, the inner and the outer radii of which are respectively n and r2. Find

its moment of inertia about any diameter of the base of the shell.

78. A solid is bounded by the plane 2 = 0, the cone z = r (cylindrical coor-

dinates), and the cylinder having its elements parallel to OZ and its directrix

one loop of the lemniscate r- = 2a^ cos2 6i in the plane XOY. Find its moment

of inertia about OZ, if the density varies as the distance from OZ.

79. Find the attraction of a homogeneous right circular cone of mass M,

altitude h, and vertical angle 2 a on a particle at its vertex.

80. A portion of a right circular cylinder of radius a and uniform density p

is bounded by a spherical surface of radius b{b>a), the center of which coin-

cides with the center of the base of the cylinder. Find the attraction of this

portion of the cylinder on a particle at the middle point of its base.

81. Find the attraction due to a hemisphere of radius a on a particle at the

center of its base, if the density varies directly as the distance from the base.

82. The density of a hemisphere of radius a varies directly as the distance

from the base. Find its attraction on a particle in the straight line perpendic-

ular to the base at its center, and at the distance a from the base in the direc-

tion away from the hemisphere.

83. A homogeneous ring is bounded by the plane XOY, a sphere of radius

2 a with center at 0, and a right circular cylinder of radius a, the axis of which

coincides with OZ. Find the attraction of the ring on a particle at 0.



CHAPTEE XIV

LINE INTEGRALS AND EXACT DIFFERENTIALS

143. Definition. Let C (fig. 95) be any curve in the plane XOY
connecting the two points L and K, and let M and N be two func-

tions of X and y which are one-valued and continuous for all points

on C. Let C be divided into n seg-

ments by the points i^, i^, ^, • • • , ]^_^,

and let A^ be the projection of one of

these segments on OX and A?/ its pro-

jection on Y. That is, Aa; = -^-'i+i— ^v

Ay=i/i_^_y— i/;, where the values of Ax

and Ay are not necessarily the same
^^^' '*'^

for all values of i. Let the value of

31 for each of the n points i, ^, i^, • • •, ^_i be multiplied by the

corresponding value of Ax, and the value of X for the same point

by the corresponding value of Ay, and let the sum be formed

i = H - 1

'^[M{x^,y;)Ax + N(x„y^Ay].
i =

The limit of this sum as n increases without limit and Ax and

Ay approach zero as a limit is denoted by

/J(.C)(Mdx + Ndy),
1(C)

and is called a line integral along the curve C. The point K may

coincide with the point L, thus making C a closed curve.

If X and y are expressed in terms of a single independent vari-

able from the equation of the curve, the line integral reduces to a

definite integral of the ordinary type ; but this reduction is not

always convenient or possible, and it is important to study the

properties of the line integral directly.

We shall give first a few examples, showing the importance of

the line integral in some practical problems.

258
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Ex. 1. Work. Let us assume that at every poiut of the plane a force acts,

which varies from point to point in magnitude and direction. We wish to find

the worlc done on a particle moving from L to K along the curve C. Let C be

divided into segments, each of which is denoted by As and one of whicli is rep-

re.sented in fig. 9(5 by PQ. Let F be the force

acting at P, PR the direction in which it acts,

PT the tangent to C at P, and 6 the angle

RPT. Then the component of F in the direc-

tion PT is P cos d, and the work done on a par-

ticle moving from P to Q is Pcos 6As, except for

infinitesimals of higher order. The work done

in moving the particle along C is, therefore.

W = LimXF cos eAs= f F cos 6ds.

Now let a be the angle between PR and OX, and the angle between PT
and OX. Then 6 = <p — a and cos d = cos <p cos a + sin

<f>
sin a. Therefore

W= ( {F cos </> cos a + F sin <p sin a) ds.

But F cos ex is the component of force parallel to OX and is usually denoted by

jr. Also Psin a is the component of force parallel to OY and is usually denoted

by Y. Moreover cos <pds = dx and sin 0ds = dij (§ 42). Hence we have finally

W= f (Xdx + Ydy).

Ex. 2. Flow of a liquid. Suppose a liquid flowing over a plane surface, the

lines in which the particles flow being indicated by the curved arrows of fig. 97.

We imagine the flow to take place in planes parallel to XOY, and shall assume

the depth of the liquid to be unity. We wish to

find the amount of liquid per unit of time which

flows across a curve C.

Let q be the velocity of the liquid, a the angle

which the direction of its motion at each point

makes with OX, u — q cos a the component of

velocity parallel to OX, and v = q sin a the com-

ponent of velocity parallel to OY. Take an ele-

ment of the curve PQ = As. In the time dt the

particles of liquid which are originally on PQ will

flow to P'Q', where PP'=QQ' = qdt (except for

infinitesimals of higher order). The amount of liquid crossing PQ is therefore

the amount in a cylinder with base PQQ'P' and altitude unity. The volume

of this cylinder is PP' PQsind = qdt sin BAs, where e = P'PQ. Hence the

amount of liquid crossing the whole curve C in the time dt is

Lim^ qdt sin dAs = dt Lim^ q sin 6As = dt
j q sin dds

and the amount per unit of time is

I
q sin 6ds.
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To put this in the standard form, let </> be the angle made by PQ with OX.
Then 6 = <p — a and sin d = sin (p cos a — cos <p sin a. Hence

q sin 6ds = q sin cos ads — q cos sin ads = — ucZx + udy.

Therefore the amount of liquid flowing across C per unit of time is

I
( — vdx + udy).

Ex. 3. Heat. Consider a substance in a given state of pressure p, volume v,

and temperature t. Then p, v, t are connected by a relation f{p, v, t) = 0, so

that any two of them may be taken as independent variables. For a perfect gas

pv = let, if t is the absolute temperature, and the state of the substance is indi-

cated by a point on the surface of fig. 55, or equally well by a point on any one

of the three coordinate planes, since a point on the surface is uniquely deter-

mined by a point on one of these planes. We shall take t and v as the inde-

pendent variables and shall therefore work on the {t, v) plane.

Now if Q is the amount of heat in the substance and an amount dQ is added,

there result changes dp, dv, dt in p, r, and t respectively, and, except for infin-

itesimals of higher order, dQ = Adp + Bdv + Cdt.

From the fundamental relation /(p, v, t)

whence we have

^lap + '-^dv + '^dt
dp cv dt

dQ = Mdt + Ndv.

0. it follows that

0,

Hence the total amount of heat introduced into the substance by a variation

of its state indicated by the curve C is

Q^ f (Mdt + Ndv).

Ex. 4. Area. Consider a closed curve C (fig. 98) tangent to the straight lines

X = a, X — b, y = d, and y = e, and of such shape that a straight line parallel to

either of the coordinate axes intersects it in

not more than two points. Let the ordinate

through any point M intersect C in Pj and

P2, where MPi = yi and MP-2. = yo. Then,

if A is the area inclo.sed by the curve,

y.^dx — / yydx

A M
Fig. 98

y-zdx -
I

yidx
b Ja

-~
\

ydx,

the last integral being taken around C in a direction ojiposite to the motion of

the hands of a clock.
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Similarly, if the line NQ2 intersects C in Qi and Q2, where NQi = Xi and

N(h = X2, we have
' A= I x^dy —

I
Xidy

Jd Jd

the last integral being taken also in the direction opposite to the motion of the

hands of a clock. By adding the two values of A we have

2A= f {— ydx + xdy).

If we apply this to find the area of an ellipse, we may take x = a cos gi,

2/ = &sin (I, § lOG). Then ^ = ^ f" abdcp = wab.

144. Fundamental theorem. In using integrals around closed

curves, we need some means of distinguishing between the two

directions in which the curve

may be traversed. Accordingly,

when the curve is a portion of

the boundary of a specified area,

we shall define the positive direc-

tion around the curve as that in

which a person should walk in

order to keep the area on his left

hand. Thus in fig. 99, where the

shaded area is bounded by two

curves, the positive direction of each curve is indicated by the arrows.

With this convention, the fundamental theorem in the use of

line integrals is as follows

:

If M, N, > and — are continuous and one-valued in a closed
''

dy dx

area A and on its boundary curve C, then

where the double integral is taken over A and the line integral is

taken in the positive direction around C.

Fig. 99
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To prove this, we shall first assume that the closed area is of

the form described in Ex. 4, § 143, and shall use the notation of

that example and fig. 98. Then

r r dM , , r\ r-'-^ dM
,

\ \
— dxdy = ( d,i: I ay

= r [^'^(•«, y.^-M{x, y;j\dx
\Ja

M(x, y^dx- { M{x, y^dx

= - rM{:x,y.^dx- rM{x,y^)
Jb Ja

dx

= — I Mdx,
J(.C)

(1)

the last integral being taken in the positive direction around C,

Similarly,

I
I
—dxdy= I Ndy. (2)

By subtracting (2) from (1) we have the theorem proved for a

closed curve of the simple type considered.

The theorem is now readily extended to any area which can be

cut up into areas of this simple type. For example, consider the

area bounded by the curve C (fig. 100).

By drawing the straight line LK the

area is divided into three areas A', A",

A''', and the theorem applied to each

of these areas. By adding the three

equations obtained we have on the

left-hand side of the new equation the

double integral over the area bounded

by C, and on the right-hand side the

line integral along C and the straight

line LK traversed twice in opposite directions. The integrals

along tlie line LK therefore cancel, leaving only the integral

around C.

Fig. 100
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The theorem is also true for areas bounded by more than one

curve. Consider, for example, the area bounded by two curves C

and C (tig. 101). By drawing _ _ /r

the line LK the area is turned

into one bounded by a single

curve, and the theorem may be

applied to it. It appears that
\ \\ O'l^jo

the line integral is taken twice

along LK in opposite directions,

and these two integrals cancel

each other. The result is that
1 T 1 • . 1 .1 FlCx. 101

the double integral over the area

is equal to the line integral around each of the boundary curves

in the positive direction of each. In the same way the theorem is

shown to hold for areas bounded by any number of curves.

Ex. If M = y and N = — x, we have

I I
2 dxdy = —

I
{ydx — xdy),

agreeing with the result of Ex. 4, § 143.

145. Line integrals of the first kind, -r— = -t— • // M andN
*^

^ dy ox "^

are two functions of x and n, such that =— > and the discus-

sion is restricted to a portion of the (x, y) plane in which M, N,

—— J and— are continuous and one-valued, then
dij dx

(1) The line integral i {Mdx+Ndy) around any closed curve

zero. ^
(2) The line integral I {J\ldx + 'Ndy) Ictween any two points is

a function of the coordinates of the points, and is independent

of the curve connecting the points. ^ , ,

(3) There exists a function <^ {x, y) such that — = M, -- = JSf.

Conversely, if any one of the conclusions (1), (2), or (3) is fulfilled,

,, dM dN
then — =— •

dy ex

IS zero
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To prove (1), consider the fuuclamental theorem of § 144. It
o 71,/" pi AT /•

is at once evident that if —' =— > I {Mdx+Ndy) = Q around any

closed curve.
"^ ^

To prove (2), let L and K be any two points, and C and C
(fig. 102) any two curves connecting them. Let / be the value

of the line integral from L to K along C, and /' the value of the

line integral from L to K along C'. Then —I' is the value of the

line integral from A' to L along C' Now by (1)

^ -—'K /+(-/')= 0.

Therefore /=/'.

To prove (3), consider the line in-

tegral /^(oc,v)

X
I

{3Idx -\- Ndy),
Fig. 102 Juo,yo)

where {j:^, yj is a fixed point and {x, y) a variable point. By (2)

this integral is independent of the path and is therefore fully

determined when {x, y) is given. Hence, by the definition of a

function of two variables, we may write

L
(', y)

{Mdx + Ndy) = </> (,«, y).

' {Mdx + Ndy),
(0. Va)

and since tliis integral is independent of the curve connecting the

upper and the lower limits, we may take that curve as drawn first

to {x, y) and then along a straight line to {x + h, y). Then

(3Idx + miy) + / {Mdx + Ndy)
(^Oi Vo) •^(a-, y)

J/^x
+ h

M{x,y)dx,
X

since in the last integral y is constant and dy = 0.

Then, by § 30,

4>(x + h, y)-(t> {x, y) = liM{l y), {x<^<x + h)

whence <f>(x + h, y)-cf>{x, y) ^ ^^^^^ ^^_
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Letting h approach zero and taking the limit, we have

OX

In like manner we may show that

and the third conclusion of the theorem is proved. It is to be

noted that (/> is determined except for an arbitrary constant which

may be added. This constant depends upon the choice of the fixed

point L. If another point L' is chosen, the value of ^ differs from

that obtained in using L by the value of the line integral between

L and i'.

We must now show that, conversely, if any one of the conclusions

of the theorem is fulfilled, then — =
dy dx

Let us first assume that the integral around any closed path

whatever is zero ; we wish to show that = 0. If
cij dx dy dx

is not zero at all points, let us suppose it is not zero at a particular

point K. Then, since— and ^—- are continuous functions by hy-

dM dN .
^y ^';

pothesis, — is also a continuous function, and hence has, at
dy dx

points sufficiently near to K, the same sign which it has at A'.

It is therefore possible to draw a closed curve around A', so that

dM dN— — has the same sign for all points in the area bounded by the
^y '^•^ rr/dM dN\
curve. Then

| j
( ) dxdy taken over this area is not zero,

Jj\dy dx J

and therefore / {3Idx + Ndy) taken around the bounding curve is

not zero. But this is contrary to the hypothesis that I {Mdx + Ndy)

taken around any curve whatever is zero. Hence — =—
^ at all

points. "^

Let us now assume that
|
{Mdx + Ndy) between any two points is

independent of the curve connecting the points. Tliis is equivalent
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to assuming that the integral around a closed curve is zero, and

,
, ,

dM dN
uce, as an-eady shown, — =

dy dx

Finally, let us assume that a function 4> exists such that

y
^2 JL
c <p

hence, as already shown, -^ =—
di/ dx

e that '<

^ = 21, ^ = ^V. Then it follows that —^ = -^ > since each is
c.e cy dy ex

equal to
d.i:cy

The theorem of this article is now completely proved.

/-

Ex.1. LetjV/= ^-, N= ; then— =— = -^ Hence

ydz + xcb/
^'' + y'^ x^ + y-2 dy dx {x^ + y^)^

^ = 0, if taken around a closed curve within wliich M, N, and
x"^ + y-

their derivatives are finite and continuous. These conditions are met if tlie

curve does not inclose the origin. In fact, if we introduce polar coordinates,

placing X = r cos d, y = r sin ^, then (
= fdd. Now, for any path

J X2 _|_ 2^2 J

which does not inclose the origin, 6 varies from its initial value a baelc to the

same value, and therefore I dd = 0. If the path winds once around the origin,

varies from a to a: + 2 tt, and therefore | d^ = 2 tt.

The function 4> of the general theorem is, in this example, equal to ^ = tan- 1 -

.

Ex. 2. Work. If X and Y are components of force in a field of force, and

— =— , then the work done on a particle moving around a closed curve is
dy dx

zero, and the work done in moving a particle between two points is independent

of the path along which it is moved. Also there exists a function 0, called a

force function, the derivatives of which with respect to x and y give the com-

ponents of force parallel to the axes of x and y. It follows that the derivative

of (p in any direction gives the force in that direction (Ex., § 111). Such a force

as this is called a conservative force. Examples are the force of gravity and

forces which are a function of the distance from a fixed point and directed along

straight lines passing through that point.

Ex. 3. Flow of a liquid. If we consider a liquid flowing as in Ex. 2, § 143, it is

clear that the net amount which flows over a closed curve is zero, since as much
must leave the closed area as enters, there being no points within the area at

which liquid is given out or drawn off. Hence
|
(— vdx + udy), taken over any

dv du
closed curve, is zero ; and conseciuently 1 = 0. There exists also a function,

dy dx

usually denoted by xj/, such that — = — v, — = u.
dx dy
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146. Line integrals of the second kind, ^^ =^ -trr • -^'^ ^^^^ ^"

and N are stick functions that ^^' tlie value of the line tnte-

dij OM
^

gral I (Mdx+JVchj) depends upon the jjath, and there exists no func-

tion of tvhich M and N are partial derivatives.

Ex. 1.
I

{ydx - xdy).
J (0, 0)

Let us first integrate along a straight line connecting O and Pi (fig. 103).

Tlie equation of the line is ?/= ^x, and therefore along this line ydx - xdt/ = 0,

and hence the value of the integral is zero.

Next, let us integrate along a parabola connecting O

and Pi, the ecjuation of which is y"^ = — x. Along this

parabola

J-'Cn,
!/i) yi r^i /- ,

{ydx - xdy) — \ Vx dx - ^ Xi?/i.

(0,0) 2vxi'^o

Next, let us integrate along a path consisting of the

two straight lines 0.¥i and 3/iPi. Along OMx, y =
and dy-Q; and along iViPi, x = Xi and dx-0. Hence the line integral

reduces to — | Xidy = — xiyi.

Finally, let us integrate along a path consisting of the straight lines ONi

and iViPi. Along OA^i, x = and dx = 0; and along A^iPi, y = 2/i and dy = 0.

Therefore the line integral reduces to
|

y^dx = Xiyi.
Jo

Ex. 2. Work. If the components of force X and Y in a field of force are

such that — 9£— , then the work done on a particle moving between two
dy dx .

points depends upon the path of the particle, the work done on a particle

moving around a closed path is not zero, and there exists no force function.

Such a force is called a nonconservative force.

Ex. 3. Heat. If a substance is brought, by a series of changes of temperature,

pressure, and volume, from an initial condition back to the same condition,

the amount of heat acquired or lost by the substance is the mechanical equiva-

lent of the work done, and is not in general zero. Hence the line integral

Q = f{Mdt + Ndv) around a closed curve is not zero, and there exists no function

whose partial derivatives are M and N. In fact, the heat Q is not a function of

t and V, not being determined when t and v are given.

Ex. 4. Adiabatic lines. The line integral /"(J/di +A^dv) of Ex. 3 is zero if taken

along a curve whose differential equation is

Mdt + Ndv = 0.
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We will change this equation by replacing the variable t by p, which can be

done by means of the fundamental relation /(p, v, t) = 0.

It is shown in the theory of heat that for a perfect gas the equation then

becomes
vdp + ypdv = 0,

where 7 is a constant. The solution of this equation is

pv"^ = c.

If, then, a gas expands or contracts so as to obey this law, no heat is added
to or subtracted from it. Such an expansion is called adiabatic expansion, and
the corresponding curve is called an adiabatic curve.

The mathematical interest here is in the concrete illustration of a line integral

being zero along any portion of a certain curve or family of curves.

In the line integrals of the kind before us, { ^— ], there is

\ dy dx j
still a meaning to be attached to M and N. For, suppose the inte-

gral to be taken along the straight line y = c from x to x-\- Ax,

and let Au be the value of the integral ; that is,

(Mdx + Ndij)

Xx + Ax

M{x, y) dx

= AxM{ly), (§30)
where x<i^ <x+ Ax.

Consequently Lim— = 31 {x, y).
Ax-. :0Aa^

Similarly, Lim— = N{x, y).

We shall write these two equations as

du\ _ /du\ _
dxjy" ' \dyir

It is to be noticed that these derivatives are of different

character from the partial derivatives of Chap. XI, since u is

not a function of x and y. The property proved in § 117 does

not hold here.
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Ex. 6. Heat. Returning to the notation of Ex. 3, we have

\dt/v \av/t

M is the limit of the ratio of the increment of heat to the increment of tem-

perature when the volume is constant. Therefore, if we consider M as sensibly-

constant while the temperature changes by unity, M may be described as the

amount of heat necessary to raise the temperature by one unit when the volume

is constant.

Similarly, N may be described as the amount of heat necessary to change the

volume by one unit when the temperature is constant.

147. Exact differentials. We have seen that if 31 and N are

two functions of x and y satisfying the condition ^— = -— > there

exists a function <f) such that — =M,-~= N. Then
dx dij

Mdx + Ndy = -^ dx -{-^ dy = d(f),

dx dy

and Mdx + JSfdy is called an exact differential* Then also

{Mdx + Ndy) =
(f>

{x^, y,) - (f>
(x„ y,),

the integral bemg independent of the curve connecting {x^, y^) and

{x^, y^. The function ^ may be found by computing the line inte-

gral along a conveniently chosen path, but it is usually more con-

venient to proceed as follows : Since -^ = M{x, y), it follows that
ox

I
M{x, y) dx, where y is considered constant, will give that part

of ^ which contains x, but not necessarily all the part which

contains y. We may write, therefore,

<^(«. 2/)= \
^idx+f{y)^

where f{y) is a function of y to be determined. This determination

is made by using the relation -^ = iV. Then — | Mdx +f'{y) = N,
^y ^yj

which is an equation from which f{y) may be found.

*In § 110, where the emphasis is on the fact that both x and yare varied, d4> is

called a total differential. Here the emphasis is shifted to the fact that d<P is exactly

obtained by the process of dift'ereutiatiou, and hence it is called an exact differential.
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This method is valuable in solving the equation

Mdx + Ndij = 0,

when the condition —- = — is satisfied. Such an equation is

dy dx

called an exact differential equation. Its solution is

(/) = C,

where c is an arbitrary constant and ^ is the function obtained in

the manner just described.

Because of the importance of the method of obtaining </>, we give

it in a rule as follows

:

Integrate I Mdx, regarding y as constant and adding an unknown

function ofy; differentiate the resnlt with respect to y and equate

the neiv result to N ; from the restdting equation determine the

unknown function of y.

If more convenient, the above rule may be replaced by the

following

:

Integrate I Ndy, regarding x as constant and adding an unknown

function of x ; differentiate the result with respect to x and equate

the new result to M ; from the restdting equation determine the

unknown function of x.

Ex. 1. (4x3 + 10x^3 -Zyi)dx + (15xV _ 12x2/3 + 5?/*)dy = 0.

Here — = 30 xy- — 12 y^ — — , and the equation is therefore exact. Pro-
cy ex

ceeding according to the rule, we have

= J (4 x3 + 10 xir - 8 y") dx + f{y)

= X4 + .5x22/3 -3 XT/* +/(//).

Then from — = iV, we have

1.5 x22/2 - 12 X2/3 + /' {y) = 1.5 xhy"^ - 12 xy^ + 5 y*,

whence /'(?/) = 5?/*, and/(2/) = y^. Tlie sohition of the differential equation is

therefore
X* + 5 x-y^ — 3 xy* -{- y^ =. c.
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Ex. 2. (^ ^
^ dx +

,

dy = 0.

^ X Vy- — x'^/ Vy'^ — x^

Here— = ~ = — ' and the equation is therefore exact. Following

the second rule, we have

0= f
—-^ = log (2/ + ^y'^ - ^'^ + /(x).

Erom — = If, we have
^* -a;

, r./ ^ 1 y

V2/2 _ x2 (y + V2/2 - X2) ^ X Vy2 _ a;2

whence /' (x) = 0, and /(x) - c. Hence the solution of the differential equation is

log (y + y/y^ - X--2) = c',

which reduces to x^ — 2 cy + c^ = 0.

148. The integrating factor. We have seen that 3Idx + Ndi/ is

not an exact differential when :#^ But in all cases there
di/ dx

exist an infinite number of functions such that, if JIdx + Ndy is

multiplied by any one of them, it becomes an exact differential.

Such functions are called integrating factors. That is, if /jl is one

of the integrating factors of Mdx + iW/?/, then, by definition,

fi (Mdx + JS^dg) is an exact differential.

Ex. 1. The expression ydx — xdy is not an exact differential. But

ydx - xdy _ / 7/

x^ ~ \ X

X2 + ?/2 \ y

ydx — xdy _ , /, x

xy \ y/

are exact differentials, and the functions — , 1 — are integrating factors.
X- x2 + z/2 xy

To show that integrating factors always exist, we shall need to

assume (§ 173) that the differential equation

Mdx + Ndg = (1)

has always a solution of the form

f{x,g,c) = 0, (2)

where c is an arbitrary constant, and that (2) can be written

(/,(.«, 2/)
= .. (3)
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dM_dN
dv dx ff(x)<ix

1. If — =/(*)' then e-' is an integrating factor of

3Idx + Ndij = 0.

dM_dN

2. If — —=/{>/)> then c
•''

is an integrating factor of

Mdx -\- Ndy =^ 0.

3. If M and N are homogeneous and of the same degree, then

is an integrating factor of Mdx + Ndy = 0.

4. If J/=
;?//i(«2/), N=ayf^{xy) ; then is an integi-ating

factor of Mdx + Ndy = 0.
^

5. e^ *
is an integrating factor of the linear equation -^ +

As a practical point, the student should look for an integrating

factor only after he has tried to integrate by other methods.

Ex. 1. (4 x2y _ 3 yi) dx + (x3 - 3 xy) dy = 0.

dM dN .

dy dx 1
Here N X

' ffx

Consequently e-' ^ = x is an integrating factor. After multiplication by the

factor, the equation becomes

(4 x^y - 3 x?/) dx + {x* - 3 x^y) dy = 0,

the integral of which is x'^y — § x^y^ = c.

Ex, 2. (a;2 - 7/'^)dx + 2xydy = 0.

Since this equation is homogeneous, it has the integrating factor

1 _ 1

xM + yN x3 + xy^

After multiplication by the factor, the equation becomes

x2 - ?/2 2 a;?/

dx + dy = 0,
x^ + xy- x^ + xy2

2y
X2 + 2/2

the solution of which is log (x2 + ?/-) — log x = c',

\X2 + 7/2 X/

X + — = C.

X
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For this equation we have also

dM BN
dy ex _

Hence it has also the integrating factor

After multiplication by this, the equation becomes

0,
x'V X(-S'

y'
X + — = c.

X
the solution of which is

The equation may also be solved by the substitution y = w (§ 78).

150. Stokes's theorem. The theorems of §§ 144-145, which are

limited to a plane, may be exteudecl to space as follows : If F, Q, R
are three fimctions of x, y, and z, the

line integral

j
{Pdx + Qdy + Rdz)

.^ along a space curve is defined in

a manner precisely similar to the

definition of § 143. Let the integral

be taken around a closed curve C

(fig. 104) and let a surface ^S" be

bounded by C. Let dS be the element of area of the surface and

cos a, cos yS, cos 7 be the direction cosines of its normal. Then

\

Fig. 104

JJ(.'i)

dQ dR\—^ cos
cz dy

IcR dP\ r,
,

(cP dQ\
isa + h; — C0S/3+- cos 7

\cjc cz J \dy ex]
dS

- \{Pdx + Qdy + Rdz),

where the double integral is taken over the surface S and the

single integral is taken around C, and the direction of the hue

integration and that of the normal to S have the relation of

fig. 104.

<
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To prove this, let z =f{x, y) be the equation of S, and consider

— I F{x, y, z)dx.
J(C)

Then, since P(x, y, z)=P[x, y,/(x, y)'] = J((x, y), the values of

P which correspond to points on C are the same as the values of I(

which correspond to points on C, the projection of C on the plane

XOY. Hence ^ ^— I Pdx = —
I
Pidx. (1)

c/(C) Jit")

But by § 144 - fP^dx= ff ^ dxdzj, (2)

where S' is the projection of S on the plane XOY.
^•^^ d^_dP dPdz_

dy dy dz cy'

where the right hand of this equation is computed for points on S.

Hence from (1) and (2) we have

-fpdx={n'-^+'-^^^\dxdy. (3)
J iC) JJiS)\cy dz dy)

But (§ 112) — : ;7- : — 1 = cos a : cos /S : cos 7, and (§ 92) dxdy =

cosy dS. Substituting in (3), we have

- fpdx = ff (— cos 7 -— cos ^\ dS.
J(C) JJ^sAdy dz

Similarly,

_£q,^^
^J£(^^

^^^ ^ ^Q

- fpdz = ff (— cos /3 -— cos a)dS.
J(C) JJis\dx dy J

Strictly speaking, the differential dS is not the same in these

three results, since the same element will not project into dxdy^

dydz, and dzdx on the three coordinate planes. But smce in a

double integral the element of area may be taken at pleasure with-

out changing the value of the integral (§ 129), we may take dS as

equal in the three integrals. Adding the equations, we have the

required result.

cos a cos 7 )
dS.,

dx
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In the above proof we have tacitly assumed that only one point

of the surface S is over each point of the coordinate planes, and

that a, y8, 7 are acute angles. The student may show that these

restrictions are unessential.

151. From the preceding discussion we derive the following

theorem

:

If P, Q, and R are three functions of x, y, and z, such that

dP _dQ dQ_dR dR_dP_

dy dx dz cy dx cz

and the discussion is restricted to a portion of sjyace in which the

functions and their derivatives are continuous and one-valued, then

1. Tke line integraljiP,U+ Qiy+Rd^) around any .losed cur..

IS zero.

2. The line integral I {Pdx+ Qdy+ Edz) hctioeen any two points

is independent of the path.

3. There exists a function (f){x, y, z), such that

dx dy dz

and Pdx + Qdy + Rdz is an exact differential d(f).

Conversely, if any one of the above conclusions is fulfilled, then

dP _dQ dQ_dR dJl_dP_

dy dx dz dy dx dz

The proof is as in § 145, and is left to the student.

PROBLEMS

1. Find, by the method of Ex. 4, § 143, the area of the four-cusped hypo-

cycloid X — acos3 0, y = asm^(t>.

2. Find, by the method of Ex. 4, § 143, the area between one arch of a hypo-

cycloid and the fixed circle.

3. Find, by the method of Ex. 4, § 143, the area between one arch of an

epicycloid and the fixed circle.

4. Show that the formula for the area in Ex. 4, § 143, includes, as a special

case, the formula for area in polar coordinates.
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Jr.(l,2)[2x{x + 2y)dx + (2 z- — y"^) <hj] is independ-
(0, 0)

ent of the path, and find its vahiu.

6. Show that the integral / (xdx + ydy) is independent of the path, and

find its value. *'"' *^^

7. Find the force function for a force in a plane directed toward the origin,

and inversely proportional to the square of the distance from the origin.

8. Find the force function for a force in a plane directed toward the origin

and inversely proportional to the distance from the origin.

9. Prove that any force directed toward a center and equal to a function of

the distance from the center is conservative.

10. Find the value of / [{y — x)dy + ydx] along the following curves:
•/(O, 0)

(1) the straight line x = t, y = t;

(2) the parabola x = t-, y = t;

(3) the parabola x = t, y = t-;

(4) the cubical parabola x — t, y = t^.

11. Find the value of
| [(x — y'^) dx + 2 xydy] along the following paths :

(1) a straight line between the limits

;

(2) the axis of x and x = 1

;

(.3) the axis of y and y = 1.

12. Find the value of I [y-dx + (xy + x'^)dy] along the following paths :

•^(0,0)

{l)y = 2x;

(2) 2/ = 2x2.

,„ p(-l.-3)
13. Find the value of I [{1 + y-) dx + {1 + x-) dy] along the following

paths:
^<°''^>

(1) (/ = 5x + 2;

(2) 2/ =-5x2 + 2;

(3).= ^^.
^

'

l + 2x

Show that the following differential eqixations are exact, and integrate them :

14. {2x - y + l)dx + {2y - X -1)dy = 0.

15.l±J^dx-'-±^ydy = 0.

x^ x~

16. (x + yy^dx + (x2 + 2 xy + 3 ?/) dy = 0.

Vx2 + 2/2 \ x'x-i + y-2

,o 2x — w, 2w + x,
18. ^ dx + ^

dy = 0.

X2 + 2/2 a;2 +y2 "
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Solve the following differential equations by means of integrating factore

:

19. (x2 + 2/2)dx~~dy = 0.

3y

20. (l + y + x^y) dx + (X + x^) dy = 0.

21. ye^^'dx - \xe~" +y)dy = 0.

22. (x3 - 2/3) dx + xyHy = 0.

23. (X2/2 -y)dx + {x^y + x)dy = 0.

24. (5x3- Sxy + 2 2/2)dx + (2 x?/ - x2) d?/ = 0.

25. dy — (2/ tan x — cos x) dx = 0.

26. sin (x + y) {dx + dy) — y cos (x + y)dy = 0.

27. (2/ + 2 X2/2 + x22/3) dx + (2 x'^y + x)dy = 0.

28.^+ y --
dx 1 + X



CHAPTER XV

INFINITE SERIES

152. Convergence. The expression

«!+ ^2+ «3+ a4+ «6"1
' (1)

where the number of the terms is unlimited, is called an infinite

series.

An infinite series is said to converge, or to he convergent, lolien the

SU771 of thefirst n terms apin-oaches a limit as n inci^eases without limit.

Thus, referring to (1), we may place

s, = a^-{- a^,

s^= a^+ a,+ ttg.

Then, if Lims„ = J,

the series is said to converge to the limit A. The quantity A is

frequently called the sum of the series, although, strictly speaking,

it is the limit of the sum of the first n terms. The convergence of

(1) may be seen graphically by plotting s^, s.,, s.^, • , s^ on the

number scale as in I, § 53.

A series which is not convergent is called divergent. This may

happen in two ways : either the sum of the first n terms increases

without limit as n increases without limit; or s„ may fail to approach

a limit, but without becoming indefinitely great.

Ex. 1. Consider the geometric series

a + ar -\- ar- + ar^ + •

.

'Y ^"

Here Sn = a + ar + ar""- + h ar« -i = a Now if r is numerically
1 — r

less than 1, r« approaches zero as a limit as n increases without limit ;
and

279
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therefore Lim s„ = —^ • If, however, r is numerically greater than 1, r" in-

n = oo 1-r
creases without limit as n increases without limit; and therefore s„ increases

without limit. If r = 1, the series is

a + a + a4-« + ---,

and therefore s,j increases without limit with n. If r = — 1, the series is

a — a + a — a-\----,

and s„ is alternately o and 0, and hence does not approach a limit.

Therefore, the qeometric series converges to the limit when r is numerically
'

1 — r

less than unity, and diverges when r is numerically equal to or greater than unity.

Ex. 2. Consider the harmonic series

i+^Ui + Ui + Vl + . .. + ! + ..,
2 3 4 5 6 7 8 n

consisting of the sum of the reciprocals of the positive integers. Now

and in this way the sum of the first n terms of the series may be seen to be

greater than any multiple of i for a sufficiently large n. Hence the harmonic

series diverges.

153. Comparison test for convergence. If each term of a given

series of positive numbers is less than, or equal to, the correspond-

ing term of a known convergent series, the given series converges.

If each term of a given series is greater than, or equal to, the

corresponding term of a known divergent series of p>ositive nuinhers,

the given series diverges.

Let a^+ a^-[- a^-\- a^-\ (1)

be a given series in which each term is a positive number, and let

\+h+K+^,+ --- (2)

be a known convergent series such that a,. ^ &^.

Then if s„ is the sum of the first n terms of (1), s|, the sum of

the first n terms of (2), and B the limit of s[, it follows that

s„ s < < B,

since all terms of (1), and therefore of (2), are positive. Now as n

increases, s„ increases but always remains less than B. Hence s„

approaches a limit, which is either less than, or equal to, B.

The first part of the theorem is now proved ; the second part is

too obvious to need formal proof.
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In applying this test it is not necessary to begin with the first

term of either series, but with any convenient term. The terms

before those with which comparison begins, form a polynomial the

value of which is of course finite, and the remaining terms form

the infinite series the convergence of wliich is to be determined.

Ex. 1. Consider 1111 1

^ + I + ^ + P + ^ + '" + (n- l)"-i
"^

*

Each term after the third is less than the corresponding term of the convergent

geometric series

l + ^ + 2-2 + ^ + ^ + --- +^ + ---

Therefore the. first series converges.

Ex. 2. Consider

i + 4= + -^ + -^ + -^ + --- + -7= + ----

V2 V3 V4 V5 Vn

Each term after the first is greater than the corresponding term of the divergent

harmonic series 1111 1

2 3 4 5 n

Therefore the first series diverges.

154. The ratio test for convergence. If in a series of positive

numbers the ratio of the {n +l)st term to the nth term approaches

a liinit L as n increases loithout limit : then, if L<1, the series

converges; if L> 1, the series diverges; if L^l, the series may

either diverge or converge.

Lef «^+ 0^2+ ^3+ •• + «„+ «„+iH (1)

^H + 1

be a series of positive numbers, and let Lim -^ = L. We have

three cases to consider.

1. X < 1. Take r any number such that L<r<l. Then, since

the ratio -^^^ approaches Z as a limit, this ratio must become and
n

remain less than r for sufficiently large values of n. Let the ratio

be less than r for the ruth and all subsequent terms. Then
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Now compare the series

«„.+ ««, +!+ «m +2+«m + 3+--- (2)

with the series

^m + '^''.J + ^^„f + (^'uf H • (3)

Each term of (2) except the first is less than the corresponding

term of (3), and (3) is a convergent series since it is a geometric

series with its ratio less than unity. Hence (2) converges by the

comparison test, and therefore (1) converges.

2. L>1. Since approaches i as a limit as n increases
n

without limit, this ratio eventually becomes and remains greater

than unity. Suppose this happens for the mt\\ and all subsequent

terms. Then
^n
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22 33 44 ^^n

Ex. 2. Consider l + r- + F; + r; + --- + f^ + "--
[2 [3 [4 [n

71" (n + 1)"+^
The nth term is — and tlie {r + l)st term is ^ The ratio of tlie

\n |n + 1

. (n + l)»+i /n + 1\» ,

(n + l)st term to the ?ith term is ^ =
) , and.

^ '

(n + 1) n" \ n /

Lim(^'^V=Limfl+ ^V=e. (I, § 150)

Therefore the given series diverges.

155. Absolute convergence. The absolute value of a real num-

ber is its arithmetical value independent of its algebraic sign.

Thus the absolute value of both + 2 and — 2 is 2. The absolute

value of a quantity a is often indicated by |«|. It is evident that

the absolute value of the sum of n quantities is less than, or equal

to, the sum of the absolute values of the quantities.

A series converges when the ahsohite values of its terms form a

convergent series, and is said to converge ahsolutely.

Let «! + «., + «3+ «4 H (1)

be a given series, and

the series formed by replacing each term of (1) by its absolute

value. We assume that (2) converges, and wish to show the con-

vergence of (1).

Form the auxiliary series

K+|«l|) + K+|«2l) + («3+k^3|) + K+|«4|)+---- (3)

The terms of (3) are either zero or twice the corresponding terms

of (2). For a,. = — \a^\ when a,, is negative, and a,. —
|

a^\ when a^. is

positive.

Now, by hypothesis, (2) converges, and hence the series

2\a^\+ 2\a.^+ 1\a,\ + 2\a^\+ . . . (4)

converges. But each term of (3) is either equal to or less than the

corresponding term of (4), and hence (3) converges by the com-

parison test.
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Now let s„ be the sum of the first n terms of (1), s[ the sum of

the first 11 terms of (2), aud s[l the sum of the first n terms of (3).

Then
s - s" - s'

and, since s'^ and s'^ approach limits, s„ also approaches a limit.

Hence the series (1) converges.

We shall consider in this chapter only absolute convergence.

Hence the tests of §§ 153, 154 may be applied, since in testing for

absolute convergence all terms are considered positive.

156. The power series. A power series is defined by

rtg -\- a^x-\- a^x^ + a^x^ + • • • + «„-''-" + • • •

,

where a^, a^, a^, a^, • • • are numbers not involving x.

We shall prove the following theorem : If a power series coti-

verges for x = x^, it converges absolutely for any value of x such

that \x\ < |a'j|.

For convenience, let \x\ = X, |rt„| = J„, \x^\ = X^. By hypothesis

the series
, , ,

, a , i ., .,« i /i\

converges, and we wish to show that

A, + A,X+ A^X-' + A,X'++ A„X^ + • • • (2)

converges if X< X^.

Since (1) converges, all its terms are finite. Consequently there

must be numbers which are greater than the absolute value of

any term of (1). Let 31 be one such number. Then we have

A„X^ < M for all values of n.

Then /xY /XY

Each term of the series (2) is therefore less than the corre-

sponding term of the series

,,+^g);..g)v..g)v...+3/g)%.... (3)

But (3) is a geometric series, which converges when X<X^.
Hence, by the comparison test, (2) converges when X < X^.
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From the preceding discussion it follows that a power series

may behave as to convergence in one of three ways only

:

1. It may converge for all finite values of x (Ex. 1).

2. It may converge for no value of x except x=0 (Ex. 2).

3. It may converge for values of x lying between two finite

numbers —R and +R, and diverge for all other values of x

(Ex. 3).

In any case the values of x for which the series converges are

together called the region of convergence. If represented on a

number scale, the region of convergence in the three cases just

enumerated is (1) the entire number scale, (2) the zero point only,

(3) a portion of the scale having the zero point as its middle point.

3* X^ X^ X^ ~ ^

Ex. 1. Consider 1 + - + - + — + ••• + + • •

.

1 [2 [3 |n - 1

X" ~^ X" . X
The nth term is , the (?i + l)st term is -, and their ratio is -•

|n- 1
^ '

\n n

Lim - = for any finite value of x. Hence the series converges for any value
n = a, n
of X and its region of convergence covers the entire number scale.

Ex. 2. Consider

H-X + [2x2 + |3x3 + ••• + |n- l x"-i+----

The nth term is |n - 1 x»-i, the (n + l)st term is \nx'\ and their ratio is nx.

This ratio increases without limit for all values of x except x = 0. Therefore

the series converges for no value of x except x = 0.

Ex. 3. Consider

1 + 2x + 3x2 + 4x3 + h nx''-i + •••.

The nth term is nx»-i, the (n + l)st term is (n + l)x», and their ratio is

" "*"

X. Lim ^]l^ X = X Lim ( 1 + - ) = x. Hence the series converges when
(-^)n

|x|<l and diverges when |x|> L The region of convergence lies on the num-

ber scale between — 1 and + 1.

A power series defines a function of x for values of x within the

region of convergence, and we may write

f(x) = «o + a^x + «,«' + a^x^ H h a^ -\ , (4)

it being understood that the value of f{x) is the limit of the

sum of the series on the right of the equation. We shall denote
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by s^{x) the polynomial obtained by taking the first n terms of

the series in (4). Thus

s„{x) — ((q+ a^x,

• «n('^') = '''o + «i* H f- «„_ia^"~^

Graphically, if we plot the curves y = s^{x)
, y = s„(a;), y = sj^x),

etc., we shall have a succession of curves which approximate to

the curve of the function y=f{x). These curves we shall call

the approximation curves, calling y = s^{x) the first approximation

curve, y = s,{x) the second approximation curve, and so on. The

graph of y =/{x) we shall call the

limit curve.

Ex. 4. Let

fix) = 1 + a; + a;2 + x3 + + x» +

The limit curve is the portion of the

hypex'bola (fig. 105)

1

1 — X

between x = — 1 and x = 1. The first ap-

jiroximation curve is the straiglit line

?/ = 1, the second approximation curve

is the straight line y = I + x, the third

approximation curve is the parabola y = 1

+ X + x^, etc. In fig. 105 the limit curve

is drawn heavy and the first four approxi-

mation curves are marked (1), (2), (3), (4).

It is to be noticed that the curves, ex-

cept (1), cannot be distinguished from
each other for values of x near zero.

The power series has the im-

portant property, not possessed by all kinds of series, of behaving

very similarly to a polynomial. In particular

:

1. The function defined by a power series is continuous.

2. The sum, the difference, the product, and the quotient of two

functions defined by power series are found by taking the sum, the

difference, the product, and the quotient of the series.
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3. If f{x) = a^ + a^x + a^r -{ + a^jf + • • •

,

then

f{x)dx= I aQdx+ I a^X(lx+
j

a^xrdx + ---+ I a^x"dx-\ ,

a %J a U a %J a *J a

provided a and h lie in the region of convergence.

4. If /(/') = rto + «!« + ^2^^+ ^*^3*'^+ • • • + «„'«" + • • •

,

then f\x) = ftj + 2 a,^x + 3 a^j?- + • • • + wa^it;""^ + • • •

,

and the series for the derivative has the same region of convergence

as that for the function.

For proofs of these theorems the student is referred to advanced

treatises.*

157. Maclaurin's and Taylor's series. Wlien a function is

expressed as a power series, it is possible to express the coeffi-

cients of the series in terms of the function and its deriva-

tives. For let

/(.«) = rto + a^x -f- a^f? + a^x^+ a^x^ + . . . + a^^xJ" -f • • •

.

By differentiating we have

f\x) = rr.^ -f- 2 a./j -|- 3 a^? + 4 a^x'' ^ \- na^x" -^
-i ,

f"{x) = 2 «.,+ 3 • 2 a^^ -{- 4 • 3 a^jf-\ \- n ()i — !)«„«"-' -\ ,

f"'{x) =3-2 ^3 +4. 3-2 a^x +...+n (n - 1) {n - 2)«X"' + ' • •

'

f"\x)=[n{a-l){7i-2) . . . 3 .2]a,, + . . ..

Placing a; = in each of these equations, we find

. Consequently we have

f"(0) f"'(0) f"\0)
m=f{0)+f\0)x+'-^x^+'-^,f+... + '-j^

This is Maclaurin's series (§ 31, (6)).

* See, for example, Goursat-Hedrick, Mathematical Analysis, Chap. IX.
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Again, if in the riglit-liaud side of

f{x) = «o + ct-^x + a^^a?+ a^x^ + . . . + a^jf + • •
•

,

we place x = a + x\ and arrange according to powers of x', we have

f{x) = \^ l^x'+ h^x'^ + \x'^+'••+ &„«'"+ • • •

,

or, by replacing x' by its value x — a,

f{x) = K + b^{x-a) + K{x-af+h,(x-a)'-\- • • • + h,Xx-ay+. • •

.

By differentiating this equation successively, and placing x = a

in the results, we readily find

Hence

/"(«) f"'ia)
f{x)=f{a)+f\a){x-a) + '-^{x-af+'-^{x-af+...

+ 'L-^^x-aY+.... (2)

This is Taylor's series (§ 31, (4)).

We have here shown that if a function can be expressed as a

power series, the series may be put in the form (1) or (2). In § 31

we showed that any function which is continuous and has con-

tinuous derivatives can be so expressed. Usually when a known
function is expressed by either (1) or (2), the region in which the

expression is valid as a representation of the fimction is coincident

with the region of convergence of the series. Examples can be

given in which this is not true, but the student is not likely to

meet them in practice.

158. Taylor's series for functions of several variables. Con-

sider f{x, y) a function of two variables x and y. If we place

x=^ a -\-lt, y = ^' + '^^^U

where a, h, I, and m. are constants and t is a variable, we have

/(«. 2/) =/(« + lt,h + mt) = F{t).
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Now, by expansion into Maclaiirin's series,

7^"(0) F"'(0)
F{t) = F{0) + F'{0)t + -^ e+-^ f + . . ., (1)

and, by §§111 and 118,

dx dy .

F"{t) =^ ^2 _^ 2 -^ Im +% m\
dx' cxcy dy

F"'(t) =^ f + 3-^ I'm + 3 -^, /m^ +^ m\
^ ' dx' dx-cy dxdif dy'

When ^ = 0, we have x= a and y= h. Hence F{0) =f{a, h), and,

if we denote by a subscript zero the values of the derivatives of

f(x, y) when x = a, y = h,

"•-0.-0-
"mJ?l\F"{0) \l' + 2

d:f
hn +m^\

^dx'l \dxdyl \dy-l

\dx-^ \dx-dy^ \dxdy~J^ \dy /,

By substitution in (1), noting that It = x — a and mt = y — b,

we have

/(.«, y) =f(a, h) + (%) (X - a) +(pl (y - b)

1

^\\dx
^y\^^-a)^-+2l^\x-a)iy-b) + ('^\y-

cxcyk Wy^r]

+ ''A
(., _ «)B+ 3(^ j

(^. _ af(y - b)

\3l\dx'l dx-dy/^

+ 3©>-«)(^-*)^+©>-">" + ••. (2)
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Another form of this series may be obtained by placing x—a = h

and 1/
— h = k. Then

/{a + h,h + /.) =f{a, h) + f^]h + (^\k
Vi/

+

+

"'•"-<&-

vr/o^cx~cyi^ \dxdy
]^

In a similar manner, we may show that

+ (3)

V^Wo v^5

\a//a^/o \dzdx,

cxcyj^

+ (4)

The terms of the n'ih degree in this expansion may be indicated

symbolically as
i / ^ q q\«

/i \ a,« cz

159. Fourier's series. A series of the form

-^ + a^ cos ic + «2 cos 2 a; + • • • + «„ cos nx +

+ &^ sin X + ?>2 sin 2 rt' + . . . + />„ sin 7i.c« + (1)

where the coefficients a^, a^, • • •, h^, h.,, do not involve x and are

determined by the formulas derived in § 160, is called a Fourier's

series. Every term of (1) has the period* 2 tt, and hence (1) has

that period. Accordingly any function defined for all values of

X by a Fourier's series must have the period 2 tt. But even if

a function does not have the period 2 tt, it is possible to find a

Fourier's series which will represent the function for all values

of X between — tt and tt, provided that in the interval — tt to tt

* f{z) is called a periodic function, with period k, iif{x + k) =/(a;).
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the function is single-valued, finite, and continuous except for

finite discontinuities,* and provided there is not an infinite number

of maxima or minima in the neighborhood of any point.

160. We will now try to determine the formulas for the coeffi-

cients of a Fourier's series, which, for all values of x between — tt

and TT, shall represent a given function, f{jS), which satisfies the

above conditions.

n
Let /(a.') = Y^ + «^ cos « -I- ttg cos 2 if -I- • • • -I- ft,, cos nx -f • • •

-f l^ sin X + &2 sin 2 c>; -|- • • • + &„ sin nx -)-•••. (1)

To determine a^, multiply (1) by dx and integrate from — tt to

TT, term by term. The result is

£f{x) dx = ft^TT,

TT

1 C'
whence «o = -

I fi-^) ^'^> (2)

since all the terms on the right-hand side of the equation, except

the one involving a^, vanish.

To determine the coefficient of the general cosine term, as «„.

multiply (1) by cos nx dx, and integrate from — tt to tt, term by

term. Since for all integral values of m, and n

i:
sin mx cos nx dx = 0,

IT

Xcos mx cos nx dx = (m^n)

and
I

cos^nxd-x^ir,

all the terms on the right-hand side of the equation, except the

one involving ft„, vanish and the result is

I
/(,/) cos nx dx = ft,,7r,

1 C
whence «„ = —

I ^X'") cos nx dx. (3)

* If X, is any value of x, such that /(a-, - e) and /(a-, + «) have different limits as e

approaches the limit zero, then/(a;) is said to have a finite discontinuity for the value

x = Xi. Graphically, the curve ?/=/ (a;) approaches two distinct points on the ordi-

nate X = Xu one point being approached as x increases toward a;,, and the other being

approached as x decreases toward Xi.
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It is to be noted that (3) reduces to (2) when n = 0.

In like manner, to determine 5„, multiply (1) by sin nxdx, and

integrate from — tt to tt, term by term. The result is

I sin nx dx. (4)

For a proof of the validity of the above method of deriving the

formulas (2), (3), and (4), the reader is referred to advanced treatises.*

Ex. 1. Expand x in a Fourier's series, the development to hold for all values

of X between — tt and jr.

By (2),

by (3),

and by (4),

1 C"
ao = —

I
xdx = 0,

1 /"^
a„ = -

( X cos nx dx — 0,

'i^ r ^ 2
o„ = — X Hinnxax := cos mr.

(:3jr,0)

EiG. 106

Hence only the sine terms appear in the series for x, the values of the

coefficients being determined by giving n in the expression for b,, the values

1, 2, 3, • • • in succession. Therefore 6i = 2, 62 = — |, ^3 and

a; = 2
sinx sin 2 X sin 3 x

The graph of the function x is the infinite straight line passing through the

origin and bisecting the angles of the first and the third quadrants.

The limit curve of tlie series coincides with this line for all values of x be-

tween — TT and TT, but not for x = — tt and x = tt ; for every term of the series

vanishes when x = — tt or x = ;r, and therefore the graph of the series has the

points (± TT, 0) as isolated points (fig. 106).

By taking xi as any value of x between — tt and tt, and giving k the values

1, 2, 3, • • • in succession, we can represent all values of x by Xi ± 2 kir. But the

See, for example, Goursat-Hedrick, Mathematical Analysis, Chap. IX.
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series has the period 2 ir, and accordingly has tlie same vahie for a;i ± 2 Attt as

for Xi. Hence the limit curve is a series of repetitions of the part between

X = — TT and X = TT, and the isolated points (± 2A;7r, 0).

It should be noted that the function defined by the series has finite discon-

tinuities, while the function from which the series is derived is continuous.

It is not necessary that /(a;) should be defined by the same law

throughout the interval from — tt to tt. In this case the integrals

defining the coefficients break up into two or more integrals, as

shown in the following examples

:

Ex. 2. Find the Fourier's series for f(x) for all values of x between — tt

and TT, where /(x) = x+7rif — n-<x<0, and f{x) =7r — xif0<x<7r.

Here Oo = —
I (x + tt) cZx +

I
(tt — x) dx = TT

;

a„ = —
I

(x + tt) cos nxdx +
I

(tt — x) cos jix dx

= v (1 — cos rnr)

;

6„ = -
I

(x + tt) sin nxdx + ( (tt — x) sin nx dx I

Fig. 107

4 /cos X cos 3 X cos 5 x

2
"^ ^ \ 12

'^
32 "^ 52 "^ •)

Therefore the required series is

(

The graph of f{x) for values of x between — tt and tt is the broken line ABC
TT 4 /I 1 1 \

(fig. 107). When x = 0, the series reduces to — H— (—| 1-— + ..-| = 7r, for111 7r2 * 2 7r\l2 32 52 /—I 1 !-. =— When X = + TT, the series reduces to 0. Hence the
12 32 ^ 52

^
8

limit curve of the series coincides with the broken line ABC at all points.

From the periodicity of the series it is seen, as in Ex. 1, that the limit curve

is the broken line of fig. 107.

* Byerly, Fourier's Series, p. 40.
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Ex. 3. Find the Fourier's series for/(x), for all values of x between -

and IT, where f{x) = if - tt < x < 0, and f(x) = tt if < x < tt.

Here ao = -
I

I
Odx+ j Trdx\ = ir;

a,t = - ( TT cos 9ix dx = ;

ttJo

1 /"^ 1

b,i = I TT sin nx dx = - (1 — cosriTr).
ttJo «•

Therefore the required series is

TT /sinx sin3x sin5x

The graph of the function for the values of x between — tt and tt is the axis

of X from X = - TT to X = 0, and the straight line AB (fig. 108), there being a

finite discontinuity when x = 0.

r

Fig. 108

The curves (1), (2), (3), and (4) are the approximation curves corresponding

respectively to the equations ^

w =—h 2 sin X,

TT /sinx sinSx'

^ 2 \ 1 3

TT /.sinx sin3x sin5x\

^=2 +n^ + ~^^
1 5 x\

(1)

(2)

(3)

(4)

They may be readily constructed by the method used in I, § 149, Ex. 5. It is

to be noted that all the curves pass through the point /o, ||,
which is midway

between the points yl and 0, which corre.spond to the finite discontinuity, and

that the successive curves approach perpendicularity to the axis of x at that point.
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161. The indeterminate form - • Consider the fraction

fM,
(1)

and let a be a number such that /(») = and (^ {a) = 0. If we

place x = a in (1), we obtain the expression -, which is literally

meaningless.

It is customary, however, to define the value of the fraction (1)

when x=a, as the limit approached by the fraction as x approaches a.

In some cases this limit can be found by elementary methods.

Ex.1.
«^-^^

a — X

When X = a. this becomes - • When xj^a.viQ may divide both terms of the

fraction by a — a;, and liave ^<, ^2
= a + x (1)

a — X

for all values of x except x = a. Equation (1) is true as x approaches a,

and lience 2 _ ^2
Lim = Lim (a + x) = 2 a.

x = a a — X x = a

Ex. 2. L-^"^"^.
X

When X = 0, this becomes - When x 7^ 0, we have
'

l_Vl-x2 i_Vl -x2 1+Vl -x2 X

Hence Lim ^ ~ ^^ ^ = Lim ^ =
x = X

Ex.3. ?^^.

14-Vl-X2 1+Vl-X2

mi =^^=
x = o 1 + VI - X-

snix

When X = 0. this becomes - • When x 7^0, we may expand each term by

Maclaurin's series, and have ., 3

gx _ 1 h [2.

Hence

sinx
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The method by expansion into series, used in Ex. 3, suggests a

general method. Since we wish to determine the limit approached

by ^^-^ as X approaches a, we will place x = a -\-h and expand by
(f>{x)

Taylor's series. We have (§31, (5))

f{a) + hf{a) + ^/"(«) + l^f"'{a) + • • •

f(x) ^ f{a + h) if 1^

But by hypothesis /(«) = and (f){a) = 0. Therefore, since h =^ 0,

(2)
f{x) \± \±

<i>(x) ,
h ,, h^ ,,,

[h If

Now as X = a, h== 0, and hence, unless /'(«) = and (f>'{a) = 0,

we have from (2) f^ a rr/,y\

Um'-^-^=^^-^- (3)

If, however, /'(«) = and </>'(«) = 0, the right-hand side of (3)

becomes -• In this case (2) becomes

o

whence Lim ^7-^^ = ,./
'

>

a;ia 9(«) 9 (C^)

unless /"(a) = and ^"(«) = 0. In tlie latter case we may go back

again to (2) and repeat the reasoning.

Accordingly we have the rule

:

To find the value of a fraction which takes the form — ivlicn

x=- a, replace the numerator and the denotninator each hy its deriv-

ative and substitute x = a. If the new fraction is also -> repeat

the process.
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Ex. 4. To find the limit approached by when x = 0.
sinx

By the rule, Lim
^~^~"

= re-J^^-| =1^^.
X = sin X L cos X Jx= 1

gx 2 cos X -l- c~ ^

Ex. 5. To find the limit approached by -. when x = 0.

X sin X

If we apply the rule once, we have

^ . e*' — 2 cos X + e- ^ Pe^ + 2 sin x — e- ^"1

Lim ^ = —
:

=-•
x = o xsmx L sinx + xcosx jx = o

We therefore apply the rule again, thus

:

^ . e^ — 2 cosx + e-^ Fe'' + 2 cosx + e-^"! 4
Lim =

:
= ~ = 2.

x = o xsinx L 2 cosx — xsmx Jx = o 2

162. The derivation of the rule in § 161 assumes the possibility

of the expansion of f{ji) and </>(«) into power series. It is, how-

ever, sometimes necessary to consider functions for which this

assumption is not valid. We shall accordingly give the following

new proof of the rule.

Consider formula (3), § 30, namely,

F{h)-F{a) = {h-a)F\^).

From this it follows that if F{h) = and F{a) = 0, then F'{^) = 0,

where | is some number between a and h. Let us apply this to

the arbitrarily formed function

^w=gffj [*(-)-*(«)] -[/«-/(«)].

where F(h) = and F(a) = 0, as may be seen by direct substitu-

tion. Then .... j,, .

Now, in (1), let /(a) = 0, (f){a) = 0, and place b = a + Ji. We have

/{a + h) _ /(I)

</,(« + h) c/>'(f)
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As h = 0, ^ = a, since a < | < a + ^. Hence

Lim -^ ^ ^ = Lim ^r^

'

which may be written Lim ^^^ = Lim ^-^ • (^)

If/'(«) and (/)'(«) are not both zero, (3) gives

x = a ^{x) <p'{a)

If, however, /'(«)= and </>'(«)= 0, (3) gives

^. f^x) ^. f'{x) ^. f"{x)
Lim 4^-^ = Lim ^VtH = ^^^^ T777T

'

The rule of § 161 thus residts.

163. The indeterminate form ^. If /{a) = cc and <^(a)=cc,

the fraction ^^^ takes the meaningless form ~. The value of the
(J){X)

fraction is then defined as the limit approached by the fraction as

X approaches a as a limit. We shall now prove that the rule for

finding the value of a fraction which becomes - holds also for a

fraction which becomes -^^

To prove this, we shall take first the case in which the fraction

^-^ becomes ^ when x = oo. By placing 6 = ^;, a = c in (1), § 162,

(f){x)
=°

we have /(^-Q-.m ^ Zjg), ^,^^^^.
cf>{x)-4>{c) (/>'(!)

which is equivalent to j^/^a

fM = f(&
^"^

(1)
#>•) c/>'(|)

^ f{c)

fix)
Now we assume that "^ / ' approaches a limit h as x = co. Hence

f'(c) f'(^)
we may take c so great that "V^ ' and therefore ^r^ ' differs from
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k by as little as we please. This fixes c ; we may then take x so

much greater than c that ^-^ and -^ may each differ from zero

by as little as we please. By proj3er choice of c and x, then, we

have, from (1), fr ^

^=(/.: + eJ(l + 6,),

where e^ and e^ may be as small as we please. Hence

Lim/<^=i = Lim^. (2)
x=x 9(c/;) x=x 9 (*)

To extend this result to the case in which
' becomes ^ when

1 </>(^«)

a? = a, we place x = a -\ Then
1/

Then —— becomes ^ when y = co. Therefore, from (2),

^. F{y) •
. 7^'(y)

Lim —^^ = Lnn—r^ •

Now F'{y) =f'{^c) ^' = - -, /'(.^),
dy y

and ^'{2/) = (/>'(4^^=-i(/,'(.r).

"^y y

„ i^'(i/) /'(^O ,
-r

. i^'(y)
-r

. f'{x) „ ,

Hence —^ =
,

> and Lim ^ ,

"^ = Lim
,

Hence we have
^'(if) 4>'{x) ,=. ^'{y) ..a c}>'{x)

^. f(x) ^. fix) ._.

Lim —^^ = Lim -——- • (3)

From (2) and (3) follows the proposition that we wished to prove.

Iqo* ^
Ex. To find the limit approached by —^^ as x becomes infinite.

1

By the rale, Lim —^^^ = Lim = Lim— = 0.



300 INFINITE SEEIES

164. Other indeterminate forms. There are other indeterminate

forms indicated by the symbols

• CO, 00—00, 0", 00°, 1".

The form • co arises when, in a product /(x) • ^ (a;), we have

f{ci) = and <^{a) = oo. The form co — oo arises when, in f{x)—
4> (x), we have f{a) = co, <^ (a) = oo.

These forms are handled by expressing /(;») • (f)(x) ovf{x)— 4>{x),

as the case may be, in the form of a fraction which becomes - or

^ when X = a. The rule of § 161 may then be applied.

Ex. 1. xH-^-.

When X = 00, this becomes co • 0. We have, however, x^e- ^- = — , which
GO

becomes — when z = oo. Then

^. x» ... 3x2 _.. 3x ... 3 ^
Lim— = Lim = Lim = Lim = 0.
1=00 6'^- a:=oo2xe^ a = 0D2e*= a;=oo4xe^-

In tlie same manner Lim x"e-^^ =

for any value of n.

Ex. 2. secx — tanx.

When X = — ) this is go — oo. We have, however,
2

1 — sin X
sec X — tan x = ,

cosx

which becomes - when x = — • Then
2

_. , . XT- 1-sinx ^. -cosx ^Lim (sec x — tan x) = Lim = Lim = 0.
.IT . n cos X . n — sill X

ar= — X = — x = —
2 2 2

The forms 0°, co", 1" may arise for the function

[/(.)]*^-)

when x = a.

If we place u = [f(x)f^'\

we have log u = (f){x) logf{x).

If Lim (fi (x) logf(x) can be obtained by the previous methods,
X = a

the limit approached by u can l)e found.
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1

Ex. 3. (1-x)^.

When X = 0, this becomes 1°°. Place
'

1

M = (1 -x)^;

, log(l-x)
then logu = ^

^. log(i-x) r -1 1 1
Now, by § 161, Lim -^^ '- = = - 1.

Hence logu approaches the limit — 1 and u approaches the limit -•

PROBLEMS
1. Prove that the series

1 - 1 - - - + - + — + •••

where there are two terms of the form — , four terms of the form — , eight
-I-

J
4«

terms of the form — , and 2^ terms of the form —— , (A; = 1, 2, 3, • •), converges
Qa (2,^)'^

when a > 1.

2. By comparison with the series in Ex. 1 or with the harmonic series

(Ex. 2, § 152), prove that the series

i + l + i + i + ... + i + ...

2" 3« 4» n«

converges when a > 1, and diverges when a^l.

Test the following series for convergence or divergence :

23 25 22»-i

4.1+1 +4 + -L + ...+ '

3 5[2 7|J (2 n - 1)
I

n - 1

c 1 1 1 , 1 ,

5-i-. + p + s.
+ -- + (^^ + ---

1.23-4 6-6 (2n-l)2n

7. 1^1 + '+...+ 1 .

1-2 2-3 3-4 n(n + l)

J_ ^ j^ 3-

1-22. 33-4 n(n + l)



)2 INFINITE SERIES

9.I + i + |j + .^. + ^ + .... 10. 1 + 1 + 1 + ..
. + i +

4 4- 4-5 4" 2^ 8-^ n"..111 1
11. 1 H \

1 - + ••••

1.2.3 2.3-4 3 4.0 h()i + 1) (h + 2)

111 1 2* 3-^ 11^

12. i + :^ + ± + . . . + _!_ + . .
. . 13. 1 + ^ + ^^ + . . . + ^ +

2 5 10 n2 +

1

1 2 II 1^

Find the region of convergence of each of the following series

:

iA 3 „ 4 , u 4 1
14. X + - x2 H x3 H \

x» H .

5 10 n- + 1

15. 1 + 2-x + 32x2 _| 1- n2x" -1
-\ .

,^ . , 1 x3 1-3 x5 1.3.5...(2n-3) x^"-'^
16. sm-ix = X H 1 1- h ^

2 3 2.4 5 2.4.0...{2?i-2)2n-l

17. log(l + x) = x-~ + \---- + {~ 1)« +1 - + • •

.

18. sinx = x-^ + ^-... + (-l)" +i^ - + ••••

[3 |_5 |2 ?i — 1

19. e-^ = 1 + X + — + h
;

+ • • •

.

1 , 1 1 • 3 , 1
. 3 • 5 • • (2 n - 3)

20. = 1 + -X 4- X2 + ...+ 5^ Lxn-l + ....

Vn^ 2 2.4 2.4.6...(2n-2)

21. log(x+Vl + x2) = x--.- + -— •-
2 3 2-45

1 .3.5...(2?i -3) x2"-i

^ ' 2 • 4 . • . (2 n - 2) 2 >i - 1

«« 1 1 '' b"^ „
^"-^

22. = _ + _x + ~x2 + ... + x" -!+•••.
a — bx a a2 a^ a"

Expand each of the following functions into a Maclaurin's series, obtaining

four terms

:

23. secx. 25. l()g(l + sinx). 27. e«*"-'-^

24. e^secx. 26. e'**"^. 28. log cos x.

Expand each of the following functions into a Fourier's series for values of

X between — tt and tt :

29. x2. 30. e"^.

31. /(x), where /(x) =-7rif -7r<x<0, and/(x) = tt if < x < tt.

32. /(x), where /(x) =-xif -7r<x<0, and /(x) = if < x < tt.

33. /(x), where /(x) = -7rif -7r<x<0, and /(x) = x if < x < tt.

34. /(x), where /(x) = Oif -7r<x<0, and /(x) = x2 if < x < tt.
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Find the limit approached by each of the following functions, as the variable

approaches the given value :

-- cosx-cosa .n anx" + aix«-i4 ha™ ^ „
35. , X = a. 49. ; , ,

,x=ao.
X - a boX" + biZ"

-
1 H h 'J«

36. , X = 0. 50. (tt — x) tan - , x = tt.

sin 2 X 2

TT
»_ e2^ — e-2^ — 2x . . 51. sec5xcos7x, x = --
37. , X = 0. 2

X — sin 2 X

38. ^'^::l^^x = o.

__ (x — a)3
39. ^ -, X = a.

gi _ e«

._ log cos 2 X
40. — , X = TT.

(TT - X)2

., X - sin-ix .

41. , X = 0.

sin^x

. - tan X - X
42. , X = 0.

X — sin X

._ secx . TT

43. , X = -•
sec 5 X 2

, . 1 - logx . ^44. 2„ , X = 0.

47. — , X = 00.

52.



CHAPTEE XVI

COMPLEX NUMBERS

165. Graphical representation. A coinfUx number is a number
of the form x + iy, where x aud y are real numbers and i is defined

by the equation i^ = — 1 (I, § 12). In this chapter we shall denote

a complex number by the letter z, thus

z = x + iy.

The number x is the real part and the number iy is the imagi-

nary i^art of z. When y = 0, z becomes a real number ; and when
x= 0, z becomes a pure imaginary number. When both a- = and

y= 0, then z=0 ; and 2=0 when, and only when, x = and y= 0.

To obtain a graphical representation of

a complex number, construct two axes of

coordinates OX and OY (fig. 109), take any

point F, and draw OP. Then the complex

number x + iy is said to be represented

either by the point P or by the vector * OP.

For if a complex number, z = x-\- iy, is

known, x and y are known, and there corresj^onds one and only

one point P and one and only one vector OP. Conversely, to a

point P or a vector OP corresponds one and only one pair of values

of X and y, and therefore one and only one complex number. In

this connection the axis of x is called the axis of reals, since

real numbers are represented by points upon it; and the axis of

y is called the axis of imaginaries, since pure imaginary numbers

are represented by points upon it.

If we take as the origin aud OX as the initial line of a system

of polar coordinates, we have x = r cos B, y = r sin Q,

and therefore z = x + iy = r(cos -\- i sin Q).

* A vector is a straight line fixed in length and direction but not necessarily in

position.

304
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The number r = Va;"^ + if, which is always taken positive, is

called the modulus of the complex number and is equal to the

length of the vector OP. The angle 6 = tan" ^ i. is called the aryu-

ment, or amplitude, of the complex number, and is the angle made

with OX by the vector OP. Any multiple of 2 tt may be added to

the argument without altering the complex number, since

r [cos (6' + 2 hit) + i sin {d + 2 l-rr)] = r(cos 6 + i sin 0).

The modulus is also called the absolute value of the complex

number and is denoted by \z\, thus

:

j -^tei+^a)

, , , . ,

/-> -^ ^''^^^

\z\ = \x + ii/\ = V,r -\- )j- = r.

166. Addition and subtraction. If z^ = x^

+ 17/^ and ^2 = .^2+ ^//e'
then, by definition,

^1 + ^2 = (^\ + ^'2) + *'

(^1 + 2^2)- Fig. 1 10

In tig. 110 let ij" and ^ represent the two complex numbers,

and let OJ^ and 0^ be the corresponding vectors. Construct the

parallelogram OI^P^P^. Then it is easy to see that P^ has the

coordinates (x^ + x^_^, y^ + y.^ and therefore represents the complex

number z^+z„. The addition of complex numbers is thus seen to

be analogous to the composition of forces or

velocities.

Since OP,= \z,\, OP^= \z.^, and 07^= |^,+ 2;2|,

the equahty sign holding only when OI^ and

OP-^ have the same direction.

To subtract z.^ from z^, we first change the

sign of ^2 and add the result to z^. Graphically,

the change of sign of z^ corresponds to replacing

P^ (fig. Ill) by P^, symmetrical to ^ with respect

to 0, or to turning the vector OP^ through an angle of 180°. The

parallelogram OP^P^P^ is then completed, givmg the point P^ corre-

sponding to z^—z^.

Jl{z,.z,)

P,{-z,)

Fig. Ill
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167. Multiplication and division. If Zj^= j.\+ ii/^ and z^= x^-\- iy^,

then, by detinition,

If we use polar coordinates, we have 2:^= r^(cos ^^+ r siu^^),

z^ = r., (cos ^2 + i sin ^g)? ^^^^

z^z.-, = ?'jr2 [(cos 6^ cos ^g— •'^i^i ^1 sin 6^)

+ I (sin 6^ cos ^2 + cos 6^ sin ^2)]

= r,r2 [cos {0^ + 6*2) + i sin (^^ + 6'2)].

Hence, in the multiplication of two complex numbers, the mod-

uli are multiplied together and the arguments are added. Graphic-

ally, the vector corresponding to a product is found by rotating

the vector of the multiplicand in the positive direction through an

angle equal to the argument of the multiplier, and multiplying

the length of the vector of the multiplicand by the modulus of the

nudtiplier. In particular, the multiplication by i is represented by

rotating a vector through an angle of 90° ; and the multiphcation

by —1 is represented by rotating a vector through an angle of

180°, as noted in § 166.

The quotient — is a number which multiplied by z., gives z^.

Hence, if z^ = rj(cos 6^ + i sin 6^) and z., = r.^ (cos 6,^ + i sin ^2),

'^ = 'h^os (6^- 0.;)+i sin (6-6.^1
^2 '2

Graphically, tlie vector corresponding to a quotient is found by

rotating the vector of the dividend in the negative direction through

an angle equal to the argument of the divisor, and dividing the

length of the vector of the dividend by the modulus of the divisor.

168. Involution and evolution. The value of z'\ where n is a

positive integer, is obtained l)y successive multiplication of z by

itself. Therefore, ii z = r (cos 6 + i sin 6),

z" = ?'" (cos n0 -(- i sin /i6). (1)

The root z", where n is a positive integer, is a nundier which

raised to the nth power gives z. Accordingly we have, at first
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( cos- + i sin- )• But if we remember (§ 1H5) tliatsight, Z" = ?•"( cos - + i sin

z = ?-[cos(^ + 2 hir) + i sin(^ + 2 Att)], where h is zero or an inte-

ger, we have also

zn = r"

2 /.'TtX (6 2 l-TT

COS I
-

-I + t sn» - H
7t '/t / \n n

(2)

1

There are here n distinct values of ««, obtained by giving to k

the 11 values 0,1,2, •, (n — 1). Since the equation z"=c has only
1

n roots (I, § 42), (2) gives all the values of z. In this result r»

means the positive numerical root of the number r, such as may

be found by use of a table of logarithms.

By a combination of (1) and (2), we have

z'l = ri cos — +—^— + * sill — +—^-
\2 2/ \2 1 .

(3)

where h = Q, 1,2, ,
{q-l)

Finally,
1 cos + * sin

z'" ?-"'(cos md + i sin mO)

= ?--"'[cos (— 1110) + i sin (— m.d)\

The nth roots of unity can be found by placing r = 1 and ^ =

in (2). Thou
2^,^ 2^,r

V 1 = cos h i sm

The points which represent these roots graphically are the ver-

tices of a regular polygon of n sides, inscribed in a circle with

center at and radius unity, the first vertex lying on the axis of

^^^^^'
n, (2^ + l)7^ . .

{2Tc + l)ir

Similarly, V— 1 = cos h % sm

169. Exponential and trigonometric functions. The exponential

and the trigonometric functions are defined in elementary work in

a manner which assumes that the variable is real. For example,

the definition of sin x requires the construction of a real triangle

with an angle equal to x, and the definition of e" involves actual
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involution and evolution. In order to be able to regard the inde-

pendent variable as a complex number, we adopt the following

definitions

:

^ 3

z^ z^ z}

sin « = 2- - + |7 -,-+•••, (2)

^ [^ IZ
2 4 6

Wlien z is real, each of these functions is the corresponding real

function, since these series are those found in § 31.

Wlien z is complex, each of the series converges. To show this,

place z — r(cos ^ + * sin ^) in (1), for example. We have

2 ^3

1 + r cos ^ + ,— cos 2 ^ + ,— cos 3 ^ + •

[2 [3

r sin ^ + |-7j
sin 2 ^ + ,-^ sin 3 ^ +

Each term of the two series in parentheses is less in absolute

value than a corresponding term of the known convergent series

1 + r + 1—h |V + • • • • Therefore each of these series converges
[2 [3

(§ 153) and hence (1) converges. In the same manner it may be

shown that (2) and (3) converge. It follows that each of the

series (1), (2), and (3) may properly be used to define a function.

It is necessary, however, to give new proofs of the properties of

the functions, based upon the new definitions.

From (1) we have
e° = l, e^i.e^2 = ri + ^»,

which are the fundamental properties of the exponential function.

From (1), also, if we replace z by iz, we have

iz (izf (izY (izY (izf

"-^+1^
1^ 1^ ii [^

,. ^ ^* \ .( z' z'



e
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Ex. 1. Prove s'm^z + cos'-z = 1.

From (5) and (6),

Sin2z + C0S23 = ( -^
1
+ ( ;

J

=: 1.

Ex. 2. Prove sin (zi + z^) = sin zi cos Z2 + cos Zi sin Zg.

From (5),

sin (zi + Z2) = —
z I

1 r •— — Tgisigiza _ g-i2ie-JZ2|

2 I

= — [(cos zi + i sin zi) (cos Z2 + i sin Z2)

2 i

— (cos Zi — i sin zi) (cos Z2 — i sin Z2)]

= sin zi cos Z2 + cos Zi sin Z2.

170. The logarithmic function. \i z = e'", then, by definition,

w = log z.

The properties of the logarithmic function, namely

log (21-2) = log ^1 + log ^2' log r- = log 2i- log z^,
"2

log 2;" = n log 0, log 1=0, log = — CO,

are deduced from the definition, as in the case of real variables.

The logarithm of a comjjlex number is itself a complex num-

ber. For, let us place

z = x + iy = r (cos 6 + i sin 6) = re'^.

Then
1 1 - y

log 2 = log r + log e'^ = log T + i6 = - log {jf+ //') + * tan~^ -^ •

Here log r is the logarithm of the positive number r, and may

be found as in I, § 154.

We may now find the logarithm of a real negative number. For,

if — a is such a number, we may write — a = a (cos tt M- * sin tt)= ae'",

whence i / ^ ^ r. , <
.-^

log (— a) = log a + ITT.

In particular, log (— 1) = iir.
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It is to be noticed that, in the domain of the complex numbers,

a logarithm is not a unique quantity. For

where k is zero or an integer. Therefore

log Z = 'W + 2 klTT.

We may express this as follows : The exponential fiinction is a

periodic function with the period 2 iir, and the logarithm has aii

infinite number of values, differing hi/ multiples of 2 iir.

171. Functions of a complex variable in general. We have

seen that functions of a complex variable obtamed by operating

on a; + iy with the fundamental operations of algebra, or involving

the elementary transcendental functions, are themselves complex

numbers of the form u + iv, where u and v are real functions of

X and y. Let us now assun:ie the expression lo — u-\- iv, and inquire

what conditions it must satisfy in order that it may be a function

ot z = x + iy.

In the first place, it is to be noticed that in the broadest sense

of the word " function " (I, § 20), w is always a function of z, since

when z is given, x and y are determined and therefore it and v are

determined. But this definition is too broad for our present purpose,

and we shall restrict it by demanding that the function shall have

a definite derivative for a definite value of z. The force of this

restriction is seen as follows : In order to obtain an increment of

z, we may assign at pleasure increments Aa? and A?/ to x and y
respectively and ol:)tain As = Aic + iH^y. The direction in which

the point Q (fig. 112), which corresponds to 2 + As in the graph-

ical representation, lies from P, which corresponds to z, depends

Av
then on the ratio —

^

, which may have any value whatever. Cor-
A.c

responding to a given increment As, to takes an increment Ai^,

where (§110)

A» = (| + .,)A.+g + ,JA, + ,: |+.)A.+(g+eJA.
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Dividing by Az = Ax + ^A^ and taking the limit as Ax == and

Ay -0, we have
^^^^ _

^^ /^^^
. g^\ ^v

l-i h( h*— -T-
A'i^ dx dx \d>/ dy dx ...

Lim-— = ^^ ^ (1)
A2 = o Az

^ ^
.dy

dx

Unless special conditions are imposed upon u and v, the expres-

dv
sion on the right-hand side of the above equation involves -j- , and

the value of Lim —- depends upon the direction in which the
As = Az

point Q (fig. 112) approaches the point P. Now the value of

the right-hand side of (1), when -^^ = 0, is \- i— , and its value
dx ex dx

du . dv
h *77-

when -^ = CO is ——:

—

- Equating these

-^^—

'

two values, we have

Fig. 112 ^^ ^U X^V ^-^

This, then, is the necessary condition that Lim —— should
7 n Az = Az

be the same for the two values -f^
= and -^ = oo. It is also

dx dx

the sufficient condition that lim —— should be the same for all
, A2 = o A^; 1

values of '-^^
, for if (1) is simplified by aid of (2), -f disappears

„ ., dx dx
from it.

Now (2) is equivalent to the two conditions

du _dv
dx dy ' /o\

du _ dv

dy dx

Hence the equations (3) are the necessary and sufficient condi-

tions that the function u + iv should have a derivative with respect

to X + iy which depends upon the value of x + iy only.

A function u -f iv which satisfies conditions (3) is called an

analytic function of a; -|- ii/.
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172. Conjugate functions. Two real functions u and v, which

satisfy conditions (3), § 171, are called conjugate functions. By

differentiating the first equation of (3), § 171, with respect to x,

the second with respect to y, and adding the results, we have

Also, by differentiating the first equation of (3), § 171, with

respect to y, the second with respect to x, and taking the

difference of the results, we have

dx'' df

That is, eacli of a pair of conjugate functions is a solu-

tion of the differential equation

?^ + ?^ = 0.

dx^ cy^

Let us construct now the two families (§ 173) of curves u = c^

and V = c„. If (x\, y^) is a point of intersection of two of these

curves, one from each family, the equations of the tangent lines

at {x^,
2/i)

are (§ 115, Ex. 1)

(.-..)(S)+(.-..)(g)=o.

But from (3), § 171,

dxj^xl \8y/,\dyA

Hence the two curves intersect at right angles; that is, every

curve of one family intersects every curve of the other family

at right angles. We express this by saying that the families

of curves corresponding to two conjugate functions form an

orthogonal system.
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Examples of conjugate functions and of orthogonal systems of

curves may be found by taking the real and the imaginary parts of

any function of a com-

plex variable.

Ex. 1. {X + iyY
= x~ — y^ + 2 ixy.

From this it follows that

x"^ — 2/2 and 2 xy are conjugate

functions, and that the curves

xi — yi — c^ and xy = C2 form

X an orthogonal system (fig. 113).

In fact, the system consists of

two families of rectangular hy-

perbolas, the one having the

coordinate axes for axes of the

curves and the other having the

coordinate axes for asymptotes.

Fig. 113

Ex. 2. log{x + iy)

= logVx'-' + 2/2 + i tan-i

Hence logv x- + y- and

tan-i- are conjugate func-

tions, and the curves x"^ + y-

= C\ and y = c^x form an

orthogonal system (fig. 114).

In fact, one family of curves

consists of circles with their

centers at the origin, and the

other consists of straight lines

through the origin.

Fi(i. 114

PROBLEMS

Find the sums of the following pairs of complex numbers and the difference

obtained by subtracting the second from the first, and express the results

graphically

:

1. 3 + 2i, 4 + 5i 3. 0-lOi, 3+2i.

2. - 3 - 7 i, 4 + 8 i. 4. - 8 -h 12 i, 6 -t- 9 i.
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Find the products of the following pairs of complex numbei-s and the quotient

of the first by the second, and express the results graphically

:

c 7r..7r TT . . IT 7. 1 + i Vs. V3 + i.
O. cos—f-ism-, cos—hism —

.

_ _
<3 4 i 8. 2 + 2 i VS, 3 - 3 i V2.

^ TT . . TT 2 7r . . 27r 9. 1+i, -1 + i.

b. cos—I- 1 sin - , cos 1- 1 sm
3 3 3 3 10. 1 + i, 1 - i.

Find the following powers and express the results graphically

:

11. (2 + 3 0-. 12. (1 - i Vsf. 13. (1 + 1)3. 14. (1 + i)*.

Find the following roots and locate them graphically

:

15. V]. 16. ^y^. 17. ^T. 18. irri, 19. v~8. 20. ^s.

21. Prove, for complex numbers, cos(zi + z^) — coszi COSZ2 — sinzi sinzo.

22. Prove, for complex numbers, sin Zi + sin Zo = 2 sin i (zj + 22) cos i (zi — Z2).

23. Prove sinh iy = isiny. 24. Prove conhiy = cosy.

Find the values of the following logarithms :

25. log(-2). 26. log(l + i). 27. log(-l + i). 28. logi.

Find the orthogonal systems of curves defined by the real and the imaginaiy
parts of the following functions

:

29.-. 30. loe^^^. 31. log (z2-a2).
z - z + a o\ /

Find the orthogonal systems of curves defined by the real and the imaginary

parts of the following functions, using polar coordinates:

32. 23. 33. Vi.



CHAPTER XVII

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

173. Introduction. Consider the equation

fi:x,y,c)=Q, (1)

in which c is an arbitrary constant. If c is given a fixed value, (1)

is the equation of a certain curve ; and if c is supposed to take all

values, the totality of the curves thus represented by (1) is called

a family of curves.

To determine the curves of the family which pass through any

fixed point P{x^, y^, we may substitute 'i\ and y^ for x and y in

(1), thereby forming the equation

The number of roots of (2), regarded as an equation in c, is the

number of curves of family "(1) wliich pass through i^, and their

equations are found by substituting these values of c in (1).

The direction of any curve of family (1) is given by the equa-

tion (§ 115, (1)) gy

f=J±, (3)
dx df

^
'

dy

which, in general, involves c. In general, however, we may elimi-

nate c from (1) and (3), the result being an equation of the form

^(.,y,|)=0. (4)

dy
If we substitute the coordinates of P^ in (4), the values of ^

which satisfy the resulting equation are the slopes of the respec-

tive curves of (1) which pass through P^ Hence (4) defines the

same family of curves that is defined by (1), but by means of

the directions of the curves instead of the exphcit equations of

316
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the curves themselves. Hence (4) is called the differential equa-

tion of tlie family of curves represented hij (1).

We have seen how an equation of type (1) leads to a differential

equation of type (4). Conversely, to an equation ofform (4) there

always corresponds a family of curves 'which may he represented

hy an equation of form (1). For if the coordinates of a point ![

(fig. 115) are assigned to x and y in (4), (4) determines one or more

directions through 1^. Following one of these directions, we may

move to a second point 7^. If the coordinates of i^ are substituted

in (4), a direction is determined in which we may move to a third

point P^. Proceeding in this way, we trace a broken line such that

the coordinates of every vertex and the direction of the following

segment at that point sat-

isfy (4). The limit of this

broken line, as the length of

each segment approaches

the limit zero, is a curve

such that the coordinates

of each point and the direc-

tion of the curve at that

point satisfy (4). Since in

this construction P^ may be any point of the plane, there is evi-

dently a family of curves represented by (4), as we set out to

prove. The constant c in the equation of the family may be

taken, for example, as the ordinate of the point in which a curve

of the family cuts the axis of y or any other line x = x^. Hence

every differential equation of form (4) has a solution ofform (1).

The problem of proceeding from a differential equation (4) to its

solution (1) is, however, a difficult one, which can be solved only in

the simpler cases. Some of these cases have been discussed in this

volume for equations in which ^ appears to the first power only.

These are the following :

Fig. 115

I. Variables separable.

la. Homogeneous equation.

lb. Equation of the form

{a^x + h^y + c^) dx -\- {a,x + h^y + c,) dy = 0.

({

(§

77)

78)

79)
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IT. The linear eqiiatiou (§ 80)

Ila. Bernouilli's equation. (§ 81)

111. The exact equation. (§ 147)

Ilia. Solution by integrating factors. (§ 149)

Wliile the above methods often prove serviceable, the student

should appreciate that they may all fail with a given differential

equation, since the above list does not contain all possible differen-

dii
tial equations which are of the first degree in -—- • Moreover, the

ax

solution will in general involve integrations of which tlie results

can be expressed as elementary functions only in the simpler cases.

174. Solution by series. The solution of a differential equation

may usually be expressed in the form of a power series.

Ex. -^ = x'^ + ?/2.

ax

Assume ?/ = Oo + ctiX + a^x'^ + a^x^ + • • . iSubstituting in the given equation,

we liave „ o .i <, / •. o ^o
ai + 2 ttox + 3 azX^ -\- = X" -\-{ao + aix + aox^ + a^x^ + • • -y,

in which tlie coefficients of lilce powers of x on tlie two sides of the equation

must be equal, since tlie equation is true for all values of x.

Equating coefiicients, we have

«! = a^,

2a2 = 2 ttoai,

3 as = 1 + of + 2 aoa2,

whence a\ = a^,

as = 1(1 + 3 a,'),

Hence the required solution is

y = ao + alz + a^x"^ + J (1 + 3 a*) x^ + • • •

.

175. Equations not of the first degree in the derivative. If the

differential equation of the first order is of higher degree than the

first in " ) new methods of solution are necessary. Denoting -f-
dx ax

by p, we shall make three cases

:

1. Equations solvable for p.

2. Equations solvable for y.

3. Equations solvable for x.
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176. Equations solvable for p. Let the given equation be an

equation of the wth degree in ;p, and let the roots of the equation,

regarded as an algebraic equation in jp, he p^, p.,, • , p„, where p^,

Po, •
, Pn ^^^ functions of x and y, or constants. Then the equa-

tion may be written in the form (I, § 42)

{p-PdiV-P-^---ip-Pn)=^- (1)

But (1) is satisfied when and only when one of the n factors is

zero, and hence the solution of (1) is made to depend upon the

solutions of the n equations

P-Pi=^> P-p-2=^> •••' P-Pn=^- (2)

Let the solution of p—p^= be f^{x, y, c^ = 0, the solution of

p —p,,= be f,{x, y, c^) = 0, etc., where c^, c„, • are arbitrary

constants. Since each of these constants is arbitrary, however, and

there is no necessity of distinguishing among them, we will denote

them all by the same letter c.

Now form the equation

The values of x and y which make any factor of (3) zero satisfy

(1) by making the corresponding factor of its left-hand member

zero. Hence (3) is a solution of (1), since the values of x and

y which satisfy (3) are all the values of x and y necessary to

satisfy (1) ; and since (3) contains an arbitrary constant, it is the

general solution.

Ex. 1. p3 _ 2p2 + Ay - x2 - ^\p - 2 ^22/ - a;2 - g^
= 0.

Solving this equation forp, we have

V , V
p = 2, « = - — X, and p = — ~ + x.^

' ^ X '

^ X

The solution of the first equation is evidently y -2x + c = 0. The second

equation, when written in the form — y = — x, is seen to be a linear equa-
dx X

tion, and its solution is y + x'^ — ex = 0.

The third equation may also be written in the form of a linear equation, and

its solution isx^ — 3xy + c = 0.

Hence the solution of the original equation is

{y — 2x + c){y + X- — ex) (x^ — 3 xy + c) = 0.
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Ex.2. ,(^y+ 2x^-^ = 0.

\dxj dx
X Vx2 + 2/2

Solvino; for p, we nave p = ±

Vx2 + 2/2X
The equation p = h^ 2/2/

is a homogeneous equation, and its solution is Vx^ + ?/2 — x + c = 0.

The equation ^ Vx^Tl/^
^ ~ y y

is also a homogeneous equation, and its solution is Vx'-' + ?/2 + x — c = 0.

Hence the required solution is y^ + 2 ex — c2 = 0.

177. Equations solvable for y. Let tlie given equation be

f{x,y,p)^Q. (1)

Solving this equation for y, we have the equation

y = F{x,p). (2)

1 - . (It/ ,

Differentiating (2) with resi^ect to x, and replacing -^ by j^, we

have the equation / ^jj\

p = (f>(x, 2^,
J-]'

(3)

in which j^ and x are the variables. Let the solution of (3) be

yjr{x,p,c)=0. (4)

Eliminating p between (1) and (4), we have a function of x, y,

and an arbitrary constant which is, in general, a solution of (1).

But the process of solution may bring in extraneous factors or

otherwise lead to error, and the solution should be tested by

substitution in (1).

If the elimination cannot be performed, equations (1) and (4)

may be taken simultaneously as the parametric representation

(I, § 163) of the solution, p being the variable parameter.

Ex. 1. xp2 — 2 yp + ax = 0.

, . . ,
xp

,
ax /-.v

Solvnig for ?/, we have y = ^ n~' ^ '

By differentiating (1) with respect to x, we ohtain

1 / dp\ all X dp\

(-.-)('-ff)--
<^'
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The first factor placed equal to zero gives p = ± Va. If this value is substituted

for p in the given equation, we have 2 ax ± 2 y Va = 0, which is found on trial

to be a solution of the equation. This solution, however, involves no arbitrary-

constant, and hence is of a different type from that already considered. It will be

discussed in § 182.

Placing the second factor equal to zero, and solving the resulting equation,

we find p = ex. Substituting this value of p in (1), we have, as the general

solution,
^^2 a

2 2c

Ex. 2. ClairauVs equation, y — px +/(p).

As this equation already expresses y in terms of x and p, we proceed imme-

diately to differentiate with respect to x, with the result

[x+/'(p)])|^ = 0.

As in Ex. 1, placing the first factor equal to zero cannot give us the general

solution. Neglecting that factor, we have y- = 0, whence p^c. Substitutmg

this value forp in the original equation, we have, as the general solution,

y = ex +f{c).

Hence the general solution of Clairaut's equation may be written down

immediately by merely replacing p by c in the given equation. The ease of this

solution makes it desirable to solve any equation for ?/, in the hope that the new

equation may be Clairaut's equation.

Ex. 3. y = 'px + a VT+p^.

Since the equation is in the form of Clairaut's equation, with/(p) = a Vl + p^,

its solution is

y = ex + a Vl + c"^.

178. Equations solvable for x. If the given equation can be

solved for x, with the result

we may form a new equation,

u X 1

by ditferentiating (1) with respect to y, and replacing ^ by - •

Let the solution of (2) be

f{ij,p,c)=Q. (3)
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Then (1) and (3) may be taken simultaneously as the parametric

representation of the solution of (1). Or p may be eliminated from

(1) and (3), the result being a function of x, y, and an arbitrary

constant, which is, in general, a solution of (1), but which should

be tested by substitution in (1).

Ex. X — 2p — logp = 0.

Solving for x, we have x = 2p + logp. (1)

Differentiating with respect to y, we obtain the equation

dy = (2p + l)dp, (2)

the solution of which is y = p'^ -\- p -[ c. (3)

Since the result of eliminating p from (1) and (3) is complicated, we take (1)

and (3) as the parametric representation of the solution of (1).

179. Envelopes. Let f{x,y,c)=0 (1)

be the equation of a family of curves formed by giving different

values to the arbitrary parameter c. If any particular value of c is

increased by Ac, the equation of the corresponding curve is

f{x,y,c + Ac)=0. (2)

The limiting positions of the pomts of intersection of (1) and (2),

as Ac = 0, will be called hrait pomts on (1). We wish to discuss

the locus of the limit points.

One method is evidently to solve (1) and (2) simultaneously for

X and y in terms of c and Ac. The limiting values of x and y, as

Ac = 0, wiU be the coordinates of a limit point expressed in terms

of c. If c is eliminated from these values of x and y, the result is

the Cartesian equation of the locus of the limit pouits.

A second method is as follows: Any point of intersection of

(1) and (2) is a point of

f{x, y, c + Ac)-f(x, y, c) _
^^ ^^^

Ac

so that we may use (3) m place of (2). As it is only the limiting

positions of the points of intersection of (1) and (3) that are to be

considered, we may take the limit of (3) as Ac = 0, i.e.

1^=0. (4)
oc
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Then (4) is a curve passing through the limit points. EKniinating

c between (1) and (4), we obtain the equation of the required locus.

Ex. Find the locus of the limit points on the straight lines represented by

y — mx — a Vl + m- — 0, m being the variable parameter.

First method. We first solve the equations

y — mx — a Vl + m- = 0, (1)

y -{m + Am)x - a Vl + (?«, + Am)2 = 0, (2)

with the results x = a
Vl + m'^ — Vl + {m + Am)2

Am

\^l + ?n2 — Vl + {m + A?n)2 r-
^^-^

—

+ a Vl +
Am

Taking the limits of (.3) and (4), as Am = 0,

we have
d r-,

~„ «"i
X = — a '^— V 1 + 7/1^ =

,
, (i))

(3)

(4)

y =

dm

a

VTT 771'=

Vi +

the coordinates of any limit point expressed in

terms of 77i.

Eliminating m, we have

Fig. 110x2 + 7/2 = a2. (7)

It is thus evident (fig. 116) that the locus is a circle tangent to each of the

straight lines represented by the given equation.

Second method. From (1),

?/ = 0. (8)
dm Vl + 77i2

Eliminating 77t from (1) and (8), we have

x2 + 7/2 _ a2 - 0,

the locus of which is the circle found by the first method.

180. In the illustrative example of the last article, the locus of

the limit points of the family, as those curves approach coincidence,

is a curve tangent to every curve of the family. Hence the question

is suggested, Is the locus of limit points always tangent to every

curve of the family ? To answer this question, we proceed as follows :

Let (x^, y^) be a limit point on one of the curves represented by

Ax,y,c)^0. (1)
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Then its coordinates satisfy (1) and

dc
= 0.

The tangent to the curve of the family at {x^, y^ is

is as in Ex. 3, § 113.

(2)

(3)

where the meaning of

The equation of the locus of the limit points may be found theo-

retically by substituting the value of c in terms of x and y from (2)

in (1). Then the equation of the tangent to the locus of the limit

points at (a;^, y^ is

or (§113, Ex. 3)

But since ^ = 0, (5) reduces to

yd +
of ^'<^'

dc dy

dc

(a^-a^i)(^)+(^-yi) = 0,

= 0. (5)

(6)

which is the same as (3). Hence, in general, the locus of the limit

points is tangent to every curve of the family.

There may be limit points, however, which lie on a locus that

is not tangent to every curve of the family. For let each curve

of the family have one or more singular jwints, i.e. points for

,hich ^)=0, ( — )=0. Then such points will be a part of the
cx/„ \dyj.

locus of the limit points; for, from (1), we have

dxj^ ^yjx dc

But at a singular point the first terms vanisli, and hence the coor-

df
dinates of any singular point satisfy f{x, y, c)= and ^ = 0> ^^^

are limit points. But at a singular point the equation of the tan-

gent Ijecomes indeterminate, and hence the locus of the limit pouits
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may or may not be tangent to each curve of the family. Accord-

ingly, we shall separate that part of the locus of limit points which

is tangent to each curve of the family, and give it the special name

envelope. That is, the envelope * is that pai-t of the locus of the limit

points of a family of curves which is tangent to every curve of the

family. Hence, in finding the equation of the envelope, it is neces-

sary to find the locus of the limit points, throwing out any extra-

neous factor brought in by the elimination, and also discarding any

part of the locus which is not tangent to each curve of the family.

181. The second method of finding the locus of limit points is

exactly the method of determining the condition that f{x, y, c) = 0,

if it is an algebraic equation in c, shall have equal roots (I, § 64).

Hence, if we form the discriminant of f{x, y, c) = 0, regarded as an

equation in c, and place it equal to zero, the locus of the resulting

equation will contain the envelope. If there are any additional

loci, they are the loci of singular points, or correspond to extrane-

ous factors brought in by the elimination.

Ex. The equation of the example in § 179 may be written in the form

(x2 - a2) Hi2 - 2 xym + (y"^ - a-) = 0.

The discriminant of this quadratic equation in m is (I, § 37)

(- 2 x?/)2 _ 4 (x2 - a-){y- - a'^) = 4 a- {x^ + y^ - aF).

Hence the condition for equal roots is

x2 -I- 2/- - a2 - 0,

and this is the equation of the envelope, since there are no extraneous factors.

182. Singular solutions. Let

f{^,y,c) = ^ (1)

be the general solution of a differential equation of the iirst order,

<^{.c,y,p)^Q. (2)

Then every curve of the family represented by (1) is such that

the coordinates of every point of it and the slope of the curve at

that point satisfy (2). If the family of curves has an envelope, the

slope of the envelope at each point is that of a curve of the family-

It follows that the envelope is a curve, such that the coordinates

* Some writers call the whole locus of the limit points the envelope, while other

writers define the envelope as a curve tangent to every curve of the family.
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of every point of it and the slope of the curve at that point sat-

isfy (2). Hence the equation of the envelope is a solution of (2).

It is not a particular case of the general solution, since it cannot

be obtained from the general solution by giving the constant a

particular value, and is called the singular solution.

Accordingly, we may find the singular solution, if one exists, by

finding the envelope of the family of curves represented by the

general solution. This method requires us to find the general solu-

tion first ; but we may find the singular solution, without knowing

the general solution, as follows :

Let (1) and (2) (tig. 117) be two curves of the family represented

by (1), intersecting at ^{x^, y^, and having the respective slopes ^^

and j^r Then x^, y^, i\, and x^, y^, p.^ satisfy (2). As curves (1)

and (2) ajjproach coincidence, in general, P^

approaches a point of the envelope as a limit,

and p^ and p.^ become equal. Hence the locus

of points for which (2), regarded as an equation

in p, has equal roots must include the envelope,

if one exists. The equation of tliis locus may

be found by placing the discriminant of the equation, regarded as

an equation in p, equal to zero.

As in the determination of envelopes, so here, extraneous factors

may appear in the course of the work, and they can be eliminated

most easily by testing them in the differential equation, to see if

they satisfy it.

Ex. 1. Find the singular solution, if one exists, of the differential equation

y = px + a Vl + 23'^.

First method. The general solution has been found to be (§ 177, Ex. 3)

y = ex + a Vl + c2

;

and the envelope of this family of straight lines is (§ 179, Ex.) the circle

x2 + y2 _ c[2
_ 0. Hence there is a singular solution, i.e.

X2 4- y2 _ (j2 _ Q

Second method. Writing the differential equation as a rational algebraic equa-

tion in p, we have (3.2 _ ^^2)^2 -2xyp + {y^ - a"^) = 0,

the discriminant of which is 4 a^ (x^ + y^ — a^).

Since x^ + y^ - cfl — satisfies the differential equation, it is the singular

solution.
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Ex. 2. In solving Clairaut's equation (§ 177, Ex. 2), we neglected the factor

X -|-/'(p). The equation x +f'{p) = 0, however, is the equation which would be

derived if Clairaut's equation were differentiated with respect to p. Hence the

elimination of p between this and Clairaut's equation would give us an equa-

tion which would include the singular solution, if one exists. In Ex. 1 of § 177

we found the solution 2ax ±2y Va = 0. This is now seen to be a singular

solution of the given equation.

183. Orthogonal trajectories. A curve which mtersects each

curve of the family represented by the equation

f(^r,y,c)=0 (1)

at a given angle is called a trajectory. In particular, if the given

angle is a right angle, the curve is called an ortliogonal trajectory.

It is only this special class that we shall consider.

To determine the equation of the family of ortliogonal trajectories,

we first find the differential equation of the family represented by

(1) in the form (§ 173) ^A.
,, |j^ o. (2)

Since the trajectory and the curve of the family intersect at right

angles, the slope of the curve of the family is mmus the reciprocal

of the slope of the trajectory. Hence, if we replace -~ m (2) by

) the resulting equation
dy

4,.,-g)=0 (3)

is the differential equation of the famil}' of orthogonal trajectories.

The solution of (3) is the equation of the orthogonal trajectories.

Ex. Find the orthogonal trajectories of the family of hyperbolas xy = a^.

The differential equation of this family of hyperbolas is

ax

Hence the differential equation of the orthogonal trajectories is

the solution of which is x~ — y- = c.

Hence the orthogonal trajectories are hyperbolas, concentric with the given

hyperbolas and having their common axis making an angle of 45° with the

common axis of the given hyperbolas (tig. 113).
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184. Differential equation of the first order in three variables.

The integrable case. Auy family of surfaces

f{x,y,z,c)=Q (1)

satisfies a differential equation of the form

Pdx + Qdy + Bdz = 0. (2)

Fo.,by§114. |rf. + |rfy + |,fe = 0,

and the elimination of c from this equation by means of (1)

gives (2).

Conversely, we ask if an equation of the form (2) alwa3"s has a

solution of the form (1). To answer this question, we notice that

(1) may be written
^ ' ^ 4>{x, y,z) = c,

d<b dd> d(b
whence ^ c?.r + -^ dy + ~^dz = 0, (3)

dx dy dz
'

which is an exact differential equation (§ 151).

As (3) does not contain c, it must either Ije the equation (2) or

differ from it by some factor. Hence equation (2) has an integral

(1) only when it is exact or can be made exact by means of a

factor, called an integrating factor. A special case of an exact

differential equation is one in which the variables are separated.

We shall accordingly consider three cases of equation (2), namely:

Case I, equations in which the variables can be separated.

Case II, exact equations.

Case III, equations having integrating factors.

Case I. If the variables can be separated so that the equation

may be written in the form

where any coefficient may reduce to a constant, the solution is

evidently of the form

jfM) ^'^+jfM 'hi +ffA^) <^^ = (5)
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Ex. 1. (x + a) ijzdx, + (X - a) {y + h) zdy + (x - a) (z + c) ydz = 0.

Dividing the equation by (x — a) yz, we liiive

—— dx + dy H dz = 0.

X — a y z

Hence the solution is

c^^Aj^dx+ r^L^dy+ r-±^dz = K
J X — a '^ y J z

or X + 2 a log (x - a) + ?/ + 6 log y + z + c log z = fc,

or X + y + z + log [(x - a)^"2/''z^] = k.

Case II. The necessary and sufficient conditions that (2) shaU

be an exact differential equation are (§ 151)

dy dx dz dy dx dz

These conditions being fulfilled, equation (2) is of the form

^±dx + ^-±dy + ^-^dz=^, (7)
dx dy dz

and the problem is to find (^.

If we omit from (2) one term, say Bdz, we have the equation

Pdx + Qdy = 0, (8)

which, because of (6), is an exact differential equation (§ 147)

obtained from (7) by considering z as constant. Therefore, if we

integrate (8), holding z constant, we shall have all that part of cf)

which contains either x or y. The arbitrary constant in the solu-

tion of (8) must be replaced by an arbitrary function of z, since

"constant" in this connection means "independent of x and y."

If, then, the solution of (8) is

f}>i{x, 2/>2) = (/),(^),

where ^^ is a known and
(f).,

an unknown function, we have

(t)
= (j)^{x,y,z)-(ji.,(z).

Substituting in (7) we should have equation (2), and comparison

with (2) will give an equation from which to determine (f).^{z).
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Ex. 2. (?/2 + 2;2) xdx + {z"- + x'^) ydy + (pfl + 7/2) zriz = 0.

This equation is exact.

Omitting tlie last term, we liave the exact equation

(?/2 + 2;2) xdx + {Z- + X^) y^y = Q,

the solution of whicli is oi^y'^ + ^2x2 + y'^z'^ + F{z) = 0.

Forming an exact equation from this solution, we have

2 (2/2 + 22) xdx + 2 (22 + x2) ydy + [2 (?/2 + x2) 2 + F'(2)] dz = 0.

Comparing this equation with the given equation, we have F'{z) = 0, whence
F{z) = c. Tlierefore the general solution is

x22/2 + 22x2 + ^2^2 = fc.

Case III. If equation (2) has an integrating factor /x, then

fxFdx + ixQdij + ixRdz = (9)

is an exact differential equation, and therefore

l-^(^F) = lMi). £(;.<?)= ^(^7.>), |;(M) = |(^P). (10)

Equations (10) may be placed in the form

\dy ex J ox dy

IdQ dR\ dix di,

\cz cyj cy dz

\dx cz I dz ex

Multiplying the first equation by E, the second equation by P,

and the third equation by Q, and adding the three resulting

equations, we have

p(!«_^)+,(|?_£^)+^/£^_^).o. (11)
\cz dy I \cx oz I \cy dxj

This is then a necessary condition that must be fulfilled in order

that (9) may be an exact differential equation or that (2) may
have an integrating factor. It may be shown that the condition

(11) is also sufficient; that is, if (11) is fulfilled, equation (2) has

an integrating factor.
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Let us now suppose that (11) is satisfied for a given equation of

form (2). Then if it were possible to find the integrating factor

fi, we should form the equation (9), and, omitting the last term,

should solve the exact differential equation

/iiPdx + f^Q(^!/ = 0,

as in Case II. But since /u, is not known, we may solve the equiv-

alent equation p^_^^. ^ q^^ ^ q^

writing the solution in the form/(.i-, y, F(z)) = 0, where F{z) takes

the place of the arbitrary constant. From this point on, the work

is similar to that in Case II.

Ex. 3. yzHz + {i/'^z - xz2) dy - y^dz = 0.

This equation lias an integrating factor. •

Regarding y as constant, we have tlie equation

yz^dx — y^dz = 0,

tlie sohition of whicli is x + — + F{y) = 0.

From tliis solution we form the differential equation

dx + r^ + F'{y)] dy - ^ dz = 0.

If we divide the given equation by yz"^, we have

whence, by comparison, - -\ \- F'{y) — 0.

But ^ + ^ + ^:i^ = o,
y z y

so that F\y) - ^^ = 0,
y

whence F{y) = cy.

Therefore the general solution of the given equation is

X + - + cy = 0,
z

or ? + ^ + c = 0.
y z

The student should notice the difference between the equations

3Idx + Ndy =
and Pdx + Qdi/ + Edz = 0.
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The former has always an integrating factor and a solution

f{x, y, c)=0 (§ 173). The latter has an integrating factor and a

solution /(.r, y,.z, c)=0 only when condition (11) is satisfied.

185. Two differential equations of the first order in three vari-

ables. Let the two equations be

F^dx + Q/li/ + E^dz = 0,

I^dx + QJ.i/ + RJz = 0,

(1)

where I^,Q^, R^, ^, Q^, R^ are functions of x, y, and z, or constants.

By I, § 8, we have

dx : dy : dz =

or

Q.
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dx _dy _dz
iliX. 1. — — — — —

•

xy y z

^ dy dz ,

From — = — we have y = Ciz.
y z

,„, . dx dy , ... dx
The equation — = — may be written — = dy, whence

xy y X

X = c-2,ey.
'

Therefore the complete sohition consists of the equations

y = CiZ, X = c^e^

taken simultaneously.

If only one of the equations (2) can be solved by the above

method, we may proceed as follows: Suppose, for example, that

we have solved the first of equations (2) with the result (3) ; we

may then solve (3) for either x ox y and substitute in one of the

two remaining equations, thus forming an equation in y, z, and c^

or X, z, and Cj, which can be solved. This solution taken simul-

taneously with (3) constitutes the solution of (2).

Ex 2. ^ = ^^_^.
X y xyze^

, . .dxdy. n
The solution of — = -^ \s y— Cix = 0.

X y ^z
Equating the first and the third fractions, we have dx = ——.• Substituting

dz yze^

CjX for y in this equation, we have Cixe^'dx = — , whence

Ci(x — l)e^ = logC2Z.

Therefore the complete solution consists of the equations

y — CiX = 0, Ci (x — 1) e-^ - log C2Z =

taken simultaneously.

If both of the previous methods fail, we may proceed as follows :

By the theory of proportion we may write

dx dy dz _ A\dx + k^dy + k^dz

where k^, k^, k^ are arbitrary functions of x, y, and z, or constants.

There are three cases to consider

:

1. k^, k„, k^ may be so chosen as to give between the fourth

fraction and one of the original fractious an equation which can be

solved (see Ex. 3).
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2. A'j, l'„, Z-j may be so chosen as to make k^P + kj^ + Ic^Ii = 0.

Then k^dx + kjii/ + Z^3«n?2; = 0, and if this equation falls under one

of the cases of § 184, its solution is one of the equations of the

solution of tlie given differential equations (see Ex. 4).

3. We may form a new equation

k^dx + k./li/ + k/lz _ k[dx + k'^di/ + k'^dz

k^F + kJ^ + k^E ~ k[F + k'^Q + k'^R

so choosing the multipliers k^, k„, k^, k[, k'^, k'^ as to make the new
equation solvable by previous methods (see Ex. 5).

Ex.3. ^ =
X
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^ ^ dx dy -dz
Ex. 5. ; = ; = ;

y + z z + x x + y

Let ii = A;2 = fcs = 1.

„ dx dy dz d(x + y + z)
Then = = = —

y + z z + x x + y 2(x + y + z)

(^ (^ . y\

Again, let A;i = 1, A:2 = — 1, A:3 = 0, and we obtain tlie equal fraction
;

y x

also, letting ki = 0, k^^l, ks = — 1, we obtain the equal fraction ~
z — y

_
d(x + y + z ) _ d{x-y) _ d{y -z)

" 2{x + y + z) y -X z-y

whence Vx + y + z = ,

X -y
C<2.

Vx + ?/ + z
y - z

186. Differential equation of the first order in three variables.

The nonintegrable case. Consider again the equation

Pdx + Qdy + Bdz = 0. (1)

Geometrically, the equation asserts that the direction dx : dy : dz

is perpendicular to the direction P:Q:R. Consequently, the geo-

metrical solution of (1) consists of loci perpendicular to the curves

defined by the equations dx_d_i_dz
P~ Q~ r' ^'

We may therefore seek the solution of (1) first in a family of

surfaces
y^^,^ y^ ^^ ,) _ 0, (3)

which will be orthogonal to the curves (2). This is the form of

the solution discussed in § 184, and does not always exist. This

leads to the geometric theorem that it is not always possible to

find a family of surfaces orthogonal to a given family of curves.

When the solution of (1) in the form (3) does not exist, it is

still possible to find curves which satisfy (1) and hence cut the

curves (2) at right angles. In fact, we may find a family of such

curves on any surface assumed at pleasure. For let

</,(,x, 2/,2)=0 (4)

be the equation of any arbitrarily assumed surface. Then, from (4),

^-^dx + ^-^dy+^-^dz = 0. (5)
dx dy ' dz
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Equations (1) aud (5) may then be taken* simultaneously. Their

solution will be a family of curves which lie on (4) and satisfy

condition (1).

Ex. xydx + ydy + zdz = 0. (1)

This equation cannot be satisfied by a family of surfaces. It may, however,

be satisfied by curves which lie on any assumed surface and cut at right angles

the curves ^^ ^y ^^— — — — — > \^)
xy y z

or (Ex. 1, § 185), y = Ciz, x = c^ey.

Let us assume the sphere x"^ + y^ -\- z"^ = a?-. (3)

Then xdx + ydy + zdz = 0, (4)

and from (4) and (1), dx = 0, whence x = c.

Hence the circles cut from the sphere x^ + y- + z^ = a^ by the planes x = c

satisfy (1).

Again, let us assume the hyperbolic paraboloid

z = xy. (5)

Then ydx + xdy — dz = 0, (6)

and, from (0) and (1),
'^ = '^^ = —^ (7)-y -xz xy + zy x'^y - y'^

One solution of (0) is known to be z = xy. Using this, we have

xdx _ dy

1 + X2~ 1 + ?/'

whence (1 + y) Vl + x^ = c. (8)

Then the curves defined by (5) and (8) also satisfy (1).

PROBLEMS

Express the .solution of each of the following equations in the form of a series:

1. ^ ^ 2/2 _ X. 2. 2/^ = x2 + 2/. 3. ^ = x3 + 2/2.

dx dx dx

Solve the following equations

:

4. p2 _ 3p _ 10 -- 0. 10. P2/2 - 2p2a;y + pH^ = 1.

5. xyip"^ + 1)- {x'^ + y'^)p-(i. 11. 2/(1 + P") - 2px = 0.

6. x2p2 j^xyp -2y'^ = 0. 12. y = yp'^ + 2px.

7. p^ + 2 yp^ - x2j92 _ 2 x^yp = 0. 13. (1 + y'^)p^ - 2 xyp^ + x2p* = 1.

8. p2 (a;2 _ a2)2 _ 4 a2 = 0. 14. 2 2/
- 2p = p2.

9. p2 + 2p2/ ctn X - 2/2 = 0. 15. p^ -A^xyp + ^y'^ = 0.
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16. a;2p2 _ p2 + 1 = 0. 18. p2 + 2px^ = 4x2?/.

17. y{p + y)- P'x = 0. 19. p{x + yY = 1.

20. X = 4i32 + 4j3. 22. y = iP-x + p.

21. x22/p2 _ a;2 (X + 2/)p + (X - 2/) (x + ?/)2 = 0. 23. ?/ = p2 _ 2p.

24. p3 - {x2 + xy + ?/2)i)2 + xy {3? + xy + ?/)p - a;3!/3 = 0.

25. ?/ + 2p?/ - 2p2x = 0. 26. p2 _ 2xp + x2 + 4?/2 = o.

27. ?/* - 4xy3p + 4252y2(a;2 _ i) + i = o. (Let y- = z.)

28. e3'^(p - 1) + p3e2?/ = 0. (Let e" = f), e^ = m.)

29. P2/2 (px - y) + X = 0. (Let ?/2 = ?;, x2 = k.)

Find the general and the singular solutions of the following equations

:

30. j32(i+x2)-2x2/i) + 2/2-l=0. 34. ?/2 + (i_2x2/)p + x2p2^0.

31. 3 X2 - 4 Xp + p2 = 0. 35. «2 - ?/ = p2y2.

32. (x2 - a2)p2 _ 2 xyp - x2 = 0. 36. x^j)'^ + x^yp + a^ = 0.

33. 2/ = — xp + x'*p2.

37. Find the singular solution of the equation p^ - 4 xyp + Sy'^ = 0.

38. Find the singular and the general solutions of the equation y - px +

V62 + a2p2^ and interpret them geometrically.

Solve the following equations :

39. {xy^z - xz) dx + {x^i/z + yz) dy + (x2y2 - x^ + y'^ -\)dz = 0.

40. (?/ + 2) (2 X + ?/ + 2) dx + (2 + x) (2 2/ + 2 + x) dy + (x + ?/) (2 z + X + y) dz = 0.

41.3 x2yzdx + (2 if-z + z) dy + 2 (y + ijz-) dz = 0.

42. (y + 2 - 6 - c) dx + (z + X - c - a) dy + (X + y - a - 6) dz = 0.

43. (y2 + yz) dx + (22 + zx) dy + (y2 - xy) dz = 0.

44.(l-^>x + (l-^>yW^-^Vzz = 0.

\y x2/ \z y2/ \x z2/

45. (1 + X + ?/) dx + (1 + X + y) dy + {x + y)dz = 0.

46. yz2dx + (y2z - xz2) dy - y'^ (y + z)dz = 0.

47. yzdx - zxdy + (x2 + y2)dz = 0.

Solve the following systems of simultaneous equations

:

48.

49.

52.
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_„ dx xdy dz
06. — = —

54. — =

56.

z x"
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75. Find tlie polar equation of the curve in wliicli tlie perpendicular from the

pole upon any tangent is always equal to the constant k.

76. Find the polar equation of a curve such that the perpendicular from the

pole upon any tangent is k times the radius vector of the point of contact.

77. Find the orthogonal trajectories of the family of parabolas y- — 4px.

78. Find the orthogonal trajectories of the family of ellipses — -| — = 1,

X being the variable parameter. ^ "^

79. Find the orthogonal trajectories of the family of ellipses 1

—- - = 1.

a'^ a-

80. Find the orthogonal trajectories of the family of parabolas y'^ =4: ax + 4: a".

81. Find the orthogonal trajectories of a family of circles each of which is

tangent to the axis of y at the origin.

82. Find the orthogonal trajectories of the family of circles each of which

passes through the points (± 1, 0).

83. Iiflr,0, — 1 = is the equation of a family of curves, prove that

/ 1 r, 0, — r^ — I = is the equation of the orthogonal trajectories.
\ dr/

84. Find the orthogonal trajectories of the family of lemniscates r- =
2 a2 cos 2 d.

85. Find the orthogonal trajectories of the family of cardioids r= a(cos 6 + 1).

86. Find the orthogonal trajectories of the family of logarithmic spirals



CHAPTEE XVIII

THE LINEAR DIFFERENTIAL EQUATION

187. Definitions. The equation

where p^, p^^, • • •, ^„_p p^, and f(x) are independent of y, is a

linear differential equation. If the coefficients j9j, p^, • •, p>n-v Pn
are constants, the equation becomes the linear differential eqiiation

with constant coefficients,

d"y d"~^2/ di/ ,, ,

where a^, a.-,, • , a„_i, «„ are constants.

In both (1) and (2) f{x) is a function of x, which may reduce

to a constant or even be zero.

We shall begin with the study of (2). To do this, it is con-

venient to express -y- by By, —^ by D"i/, ,
-~ by U'y, and to

rewrite (2) in the form

i)"2/ + a,D^-'y + • • • + a,^_,Dy + a,,j =f(x),

or, more compactly,

{ir + a^D" -!+... + «_ J) + «J y =f{x). , (3)

The expression in parentliesis in (3) is called an ojjerator, and we
are said to operate upon a quantity with it when we carry out the

indicated operations of differentiation, multiplication, and addition.

Thus, if we operate on sin x with D^— 2D^+ 3D— 5, we have

(D^— 2 D^+ 3 Z) — 5) sin ic =— cos x + 2 sin x+ 3 cos a; — 5 sin ic

= 2 cos X — 3 sin x.

340
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Also, the solution of (2) or (3) is expressed by the equation

V = ^^ fi.A, (4)

where the expression on the right \\.zvA of this equation is not to

be considered as a fraction but simply as a symbol to express the

solution of (3). Thus if (3) is the very simple equation Dy =/(«),

then (4) becomes
^

In this case — means integration with respect to x. What the
D

more complicated symbol (4) may mean, we are now to study.

188. The equation of the first order with constant coefficients.

The linear equation of the first order \vith constant coefficients is

dx -^ ''^ ^'

or, symbolically, (B — a) tj =f{x). (1)

This is a special case of the linear equation discussed in § 80, and

we have only to place /^ (a;) = — «,/„(.«)=/(4 iii formula (5) of

§ 80 to obtain the solution. We have in this way

y = J^Ji-'^)
= ^^'"^+ e"-Je-'-f(x)dx. (2)

The solution (2) consists of two parts. The first part, ce"^, contains

an arbitrary constant, does not contain /(x), and, if taken alone,

is not a solution of (1) unless f{x) is zero. The second part,

gox
j e-"^f(x)dx, contains f(x), and, taken alone, is a solution of

(1), since (1) is satisfied by (2) when c has any value including 0.

Hence e'"" j e'""'f{x)dx is called a. 2^artic'idar integral of (1), and,

in distinction to this, ce"* is called the complementary function.

The sum of the complementary function and the particular inte-

gral is the general solution (2). The complementary function can

be written down from the left-hand member of equation (1), but

the determination of the particular integral requires integration.
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Ex. 1. Solve ^ + 3?/ = 5x3.
dx

The complementary function is ce-^^. The particular integral is

5 e- 3x Ce^^x^dx = ^x^ - &x'^ + J^O- x - ^a.

dv
Ex. 2. Solve — + y = sin x.

dx

The complementaiy function is ce-^. The particular integral is

e- ^
I

e^ sin x dx = i^ sin x — J cos x. (§ 19, Ex. 5)

Therefore the general solution is y — ce--^ + isinx — |^cosx.

189. The operator — • The solution of linear equations of

higher order with constant coefficients depends upon the solution

of the equation of the first order. Hence a knowledge of the oper-

ator is of prime importance. We give a few of the results
D — a

1

obtained by operating with upon certain elementary func-

tions which occur frequently in practice. In writing these formulas

the complementary function, which is ce"^ in all cases, is omitted.

cu = c u. (1)D — a D — a

-{u + v + w^ )= —

—

-u + — ^'+— 10^ . (2)
I) — a I) — a D — a D — a

a;'" = — (
— H ~- H ^ ^ 1 \ unless a = 0. (3)D — a \a a a

1 ri,m + 1

Lx-^ = - (4)

e^'^ = y unless k = a. (5)D — a k — a

1

D — a
e"^ = xe'"'. (6)

D — a \k— a (k.— af (k — a)

unless k = a.

_L_^.'V''=e-^—

.

(8)D—

a

m+1
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. , —am^JiX— kcoskx , ,. ,„

siu kx = —7:;
> unless a= ± k%. (9)

s:„4^. =___. (10)

— a cos kx+ k sin kx , , . , . .

,

cos kx — —

—

> unless a = ±_ hi. (11)
a" +k^ '

_ cos A'.e = — -— ' JJl)

These formulas may all be proved by substituting the special

functions concerned in the general formula (§ LSS, (2)). For (3),

(7), (9), and (11) the student may refer to Exs. 4, 5, and 6, § 19.

The derivation of (10) is as follows: By § 188, (2),

D-
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been multiplied together, regarding D as an algebraic quantity.

Similarly, we find

{D - h) {D - a)y = [i)'- (« + &)!>+ al^y ={D-a){D- h)y.

That is, the order in which the two operators D — a and 2) — 6 are

used does not affect the result.

Moreover, if (D' + pD + q)y is given, it is possible to find a and

h so that (1) is satisfied. In fact, we have simply to factor D^ +
pDH- q, considering D as an algebraic quantity.

This gives a method of solving the linear equation of the second

order with constant coefficients. For such an equation has the form

—I + p ~ + qy = fix),

or, what is the same thing,

{D' + ijD + q)y=f{x), (2)

where p and q are constants and f{x) is a function of x which may

reduce to a constant or be zero.

Equation (2) may be written

{D-a){D-h)y=f{x),
whence, by §188, (2),

(I)-h)y = jy—, f(^') = '''"^+ ^J
'~

"'Z^^) ^^•

Again applying § 188, (2), we have

= c/'+ e"" fe- "'/c'e"" + e"^ Ce' "^/(x) dx^ dx. (3)

There are now two cases to be distinguished

:

I. If a ^ h, (?)) becomes

y = c/"+ c^e'^+ c"" r/e^"
- '>" Ce- "^/(x) dx\dx (4)

II. If a = b, (3) becomes

y = (c.^+ c^x) e"^+ e"--" Cfe- "^/(x) dx\ (5)

In each case the solution consists of two parts. The one is the

complementary function c/^-\-c/'' or {c^^+ c^x)e"^, involving two

arbitrary constants but not mvolving f{x). It can be written down
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from the left-hand member of the equation, and is, in fact, the solu-

tion of the equation {D — a){D—'b)y = 0. The other part of the

general solution is the particular' integral, and involves /(«). Its

computation by (4) or (5) necessitates two integrations.

Formula (4) holds whether a and h are real or complex. But

when a and 1) are conjugate complex, it is convenient to modify

the complementary function as follows : Let us place

a = ni-\- in, h = m — in.

Then the complementary function is

= e"'^[c^(cos nx + i sin nx) + c^(cos nx — i sin nx)"]

= e""'( C^ cos nx + C^ sin nx), (6)

where C^=c^-\- c.,, C„=i{c^— c^). Since c^ and c^ are arbitrary con-

stants, so also are C^ and C^, and we obtain all real forms of the

complementary function by giving real values to C^ and C^.

The form (6) may also be modified as follows : Whatever be the

values of C^ and C^ we may always find an angle a such that

C C
cos a = ^

, sin a = ^
• Then (6) becomes

Jce"" cos (nx — a), (7)

where a and Jc=Vcf+C^ are new arbitrary constants. Or, we may
Q (J

find an angle yS, such that sin /3 = ,

^
' cos ^ = .

"
•

Then (6) becomes ^ ^'i + ^2 ^ ^1 ^ ^2

A;e""- sin {nx — jS). (8)

Ex.1. ^+5^-M + 6y=^.
dx2 dx

This equation may be written

(D + 2) (D + 3) ?/ = e^.

The complementaiy function is therefore cie---^ + c-ze-^^. To find the par-

ticular integral, we proceed as follows :

1 r I

^ '^
I) + 2 J 3

y = -^— (^A = e-3^ fl e*-' dx ^^e^.
D + S\S / J S 12

Therefore the general solution is

y = cie-2-^- + C2e-3^ + xV ^-
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Ex.2. ^ + 2^ + 2/ = a;.

dx'^ (Ix

This equation may be written (D + l)'^y = x.

Therefore the complementary function is (ci + C2x)e-^. To find the partic-

ular integral, we proceed as follows :

(D + l)y = X = e- ^ fxe^dx = x - 1.

I) + 1 J

(x - 1) = e--^ C{x - 1) e^dx = x - 2.

Therefore the general solution is

?/ = (ci + Cox)e-^ + x — 2.

Ex. 3. Consider the motion of a particle of unit mass acted on by an attract-

ing force directed toward a center and proportional to the distance of the par-

ticle from the center, the motion being resisted by a force proportional to the

velocity of the particle.

If we take s as the distance of the particle from the center of force, the

ds
attracting force is — ks and the resisting force is — h— , where k. and h are

positive constants. Hence the equation of motion is

d2s
, ^ ds— = — ks — h—

,

dt^ dt

or {D2 + hD + k)s = 0. (1)

,.. , ^ h ^fi^-ik\/^ h Vh'^-ik
The factors of the operator m (1) arel Z> -\

/l
-^ "^ '

We have therefore to consider three cases :

I. /i'-^ — 4 fc < 0. The solution of (1) is then

Vik-h'i^
. V4k - h^

,C 1 cos 1 + Co sin 1

2 2

ae ^ sin 1

The graph of s has the general shape of that shown in I, § 155, fig. 161. The

particle makes an infinite number of oscillations with decreasing amplitudes,

which approach zero as a limit as t becomes infinite.

II. h:^ -'ik> 0. The solution of (1) is then

(h VA2 - 4 k \ (h VAi-4A;V
S = Cie ^2 2 /' _|- coe ^2"^ 2 / .

The particle makes no oscillations, but approaches rest as t becomes infinite.

III. h"^ -Ak = 0. The solution of (1) is

_h

S = (Ci + C2«)e~2'.

The particle approaches rest as t becomes infinite.
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191. Solution by partial fractions. Another method of solving

the eq nation /t." , r^ , \ ^/ \ /i\

when the factors of the operator are unequal, is as follows

:

We may express the solution in the form

•^ If + pD + ^i
(X* - a) (D-hy^ '

Now we have seen that in many ways the operator D may be

handled as if it were an algebraic quantity. This raises the ques-

tion whether it is proper to separate — —

—

— into partial

fractions. Algebraically we have, of course,

1 1/1 1

{D — a) {D — h) a — h\D — a I)

and the question is, Is

a solution of equation (1) ?

The way to answer this question is to substitute this value of y

in (1) and observe the result. We have then, on the left-hand side

of (1),

(Z> - rt) {B - h)

1

— 1) — a a — JJ — J

a — h

_ 1

a — h

_ 1

a — h

(i)_Z,)(i>_«)_l_/(,-)_(I)_a,)(Z>-&)_l_/(;,)

[(D-h)f{x)-{I)-a)f{x)]

[-hf{x)+af{x)]

Consequently (2) is a solution of (1).

Writing (2) out in full, we have

y = c,e-+c„c''^+ -^."'- fe-'-f{x)dx--^e'- fe''^f(x)dx. (3)
^ " a — h J a — h J
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It is to be noted that the complementary function is the same

as in § 190, (4), but the particular integral appears in another form.

This method fails ii a = b.

Ex. ^ + ^-62/ = e2^.

dx2 dx

Since this equation may be written

(i»-2)(D + 3)?/ = e2^,

the complementary function is Cie^^ + CoC-^^ To find the particular integral,

we proceed as follows

:

j

y
D2 + D - 6

5 L-D - 2 D + 3]

= ^ e2 ' fdx - 1 e- 3^ fe^^dx

X 1

5 25

Therefore the general solution is

y = Cie2^ + C2e-3^ + ?e2^-— e2^.

5 25

192. The general equation with constant coefficients. The

methods of solving a linear equation of the second order with

constant coefficients are readily extended to an equation of the

?ith order with constant coefficients. Such an equation is

^+,,ir!| + ... + „„_,^/ + „„,=/(.), (1)
dx" ^dx"-^ dx

or, symbolically written,

(2>"+ a^D-'+ • • • + a„_,D + a,yy=f{x). (2)

The first step is to separate the operator in (2) into its linear

factors and to write (2) as

{D - r,) (D - r,) • • • (D - rj =f{x), (3)

where r^,r^, • •
• , r„ are the roots of the algebraic equation

r"+«,r"-'H h«„_i^+a„= 0.

It may be shown, as in § 190, that the left-hand members of

(2) and (3) are equivalent, and that the order of the factors in

(3) is immaterial
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The general solution of (1) consists now of two parts, the com-

plementary function and the particular integral.

The complementary function is written down from the factored

form of the left-hand side of (3), and is the solution of (1) in the

special case in which /{«) is zero. If r^, i\, • • •, r„ are all distinct,

the complementary function consists of the n terms

c^e'''^+ c,/'"»'H h e/^'', (4)

where Cj, c,, • • • , c,, are arbitrary constants.

If, however, D — r. appears as a /.--fold factor in (3), Tz of the

terms of (4) must be replaced by the terms

Also, if two factors of (3) are conjugate complex numbers, the

corresponding terms of (4) may be replaced by terms involving

sines and cosines, as in (6), § 190.

The particular integral is found by evaluating

^-

f{^)' (5)^D-r,){D-r,)...{D-ry^ ' ^^

This may be done in two ways

:

1. The expression (5) may be evaluated by applying the opera-

tors ) > • • • in succession from right to left. This
I)-r„ D-r^_^ ^

leads to a multiple integral of the form

'p-"p'-''-f-m'^^- (6)

2. The operator in (5) may be separated into partial frac-

tions. When the factors of (5) are all distinct, this leads to an

integral of the type

A.e'-^'' fe-'-^'^f(x)dx + A./^-'- fe-'-^'f{x)dx-\--

-^-A,/""" I c"''^'f(x)dx. (7)

If some of the factors of (3) are repeated, the previous method

must be combined with this.
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In evaluating (6) and (7) the constants of integration may be

omitted, since they are taken care of in the complementary

function.

The general solution is the sum of the complementary function

and the particular integral.

193. Solution by undetermined coefficients. The work of find-

ing the particular integral may be much simplified when the form

of the integral can be anticipated. The particular integral may

then be written with unknown, or undetermined, coefficients, and

the coefficients determined by- direct substitution in the differential

equation. Since both (6) and (7), § 192, consist of successive appli-

cations of the operator , we may apply the formulas of § 189

in many cases. From (2), § 189, it follows that if /(«) consists of

an aggregate of terms, the particular integral is the sum of the

parts obtained by taking each term by itself. From (1), § 189, it

follows that the coefficient of a term of f{x) affects only the coeffi-

cient of the corresponding part of the particular integral. From

the other formulas of § 189 we can deduce the following:

1. Wlren f{x)= «oA'"'+ a^x"'~^+ • • • + ^m-i^ + *m {^^ ^ positive

integer), the particular integral is of the form AqX'"+ A^x'"~^+ • • • +
^m-\^ '^ ^m' unless the left-hand member of the differential equa-

tion contains the factor D". In the latter case the particular

solution is of the form x''(Af^x'" +A^x'"~'^ + • —\-A^^^_^x -\-AJ, while

terms of the form A^_^_^x''~'^-\- • • • +A^_^_^_^x+A^^^_^_^ occur in the

complementary function, and hence need not be assumed as part

of the particular integral.

2. When /(,/;) = ae'^, the particular integral is of the form ^e^"*,

unless the left-hand member of the differential equation contains

a factor (D — ky. In the latter case the particular integral is of the

form 7l»V"% while terms of the form {A^x'"'^+ • • • +A^_yV-i-A^)e'^

occur in the complementary function, and hence need not be

assumed in the particular integral.

3. When f(x) = a sin kx or a cos kx, the particular integral is of

the form A sin kx + B cos kx, unless the left-hand member of the

differential equation contains the factor {D^ + A;^)'". In the latter
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case the particular integral is of the form x'' {A siu kx + B cos lix)^

while terms of the form xf~'^(A^ sin hx + B^ cos kx) + .
.

. + (J^sin kx

+ B^ cos kx) occur in the complementary function, and hence need

not be assumed in the particular integral.

4. Wlien f{x) — ax'^e'"'' {m a positive integer), the particular inte-

gral is of the form (Jo;c"'+ ^i«"'~^+ • • • +^^_i« -f A„)e^"'^, unless

the left-hand member -of the differential equation contains a fac-

tor (X> — ky. In the latter case the particular integral is of the

form x"" {A^x"^ -\- A^x""-^+ H^,„-i* +^»,)«^^ while terms of the

form (^„,^^«''~^H +^,„ + ,._ia3+J„,_^,.)e^'^ occur in the comple-

mentary function, and hence need not be assumed in the partic-

ular integral.

The above statements may all be summed up in the following

rule, wdiich may also be sometimes used when f{x) is not one of

the forms mentioned above

:

If u is a term of f{x), and if u^^ n.,, • • , u^. are all the distinct

functions {disregarding constant coefficients) ivliich can he obtained

from u by successive differentiation, then the corresjionding fart

of the jparticular integral is of tlie form Au + A^n^+ -\-A^.u,,,

unless u is a term of the convplementary function, or siich a

term multiplied by an integral power of x. In the latter case the

corresponding j5«r;! of the p)artietdar integral is of the form

x"" {Au -^^ A^u^-\- • • • + A,.ti,), where r is the number of times the

factor, which gives in the complementary function the term u, or

u divided by an integral power of x, appears in the left-hand

member of the differential equation.

The above rule is of course valueless unless the functions %i^, u^,

• • •
, % are finite in number. In applying it to functions other than

those already discussed, the student should consider that he is mak-

ing an experiment. If a function assumed in accordance with the

rule is found to satisfy the differential equation, the use of the rule

is justified. When it fails, recourse may always be had to the gen-

eral formulas (6) and (7), § 192.

When /(.«)= /''^(a'), the work of finding the particular integral

may be lightened by substituting y = e^^z in the differential equa-

tion. Then, since all derivatives of e^^'z contain the factor c*"', the
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new differential equation may be divided by e^"", and there ls left

an equation for z in which tlie left-hand member is ^(a^). When
this equation is solved for z, y is readily found (see Ex. 2).

.Ex.1. ^-2^ + ^ = xe2x + ,.
dx^ dx2 dx

This may be written D{D — l)'^y — xe^^ + e%

whence the complementary function is Ci + (cz + c^x) e^. The term xe^^, if suc-

cessively differentiated, gives only the new form e^^. Hence the corresponding

part of the particular integral has the form Axe^"^ + Be-^. The term e^ gives no

new form if differentiated ; but since it appears in the complementary function

corresponding to the double factor (D — 1)2, the corresponding part of the par-

ticular integral is Cx^e^. Substituting

y — Axe"^^ + Be-^ + Cx^e^

in the differential equation, we have

2 J.xe2^ + (5 J. + 2 J3)e2^ + 2 Ce^' = xe^^ + e^.

Then 2^ = 1, 5^ + 2J5 = 0, 2C = 1,

whence ^=J, ^ = — |, C* = J-

The general solution of the differential equation is, accordingly,

y-ci + {c.. + Csx) e* + 1. xe2^ - I e2-^- + 1 x2e^.

Ex. 2. — + 2/ = xe^^sinx.
dx2

We place y = e^-^z. There results

d2z dz „
1- b h 10 2 = X sin X.

dx2 dx

The complementary function is e-3^(cisinx + C2COSX). For the particular

integral we assume

z = Ax sin X + JSx cos x + C sin x + £' cos x,

and, on substitution, have

(9yl - 6B)xsinx + (6^ + 9B)xcosx + (6yl -2B + 9C- 6^)sinx

+ {2A + 6B + G C + 9 E) cosx = X sinx.

Therefore 9yl-6JB = l,

6A + 9B = 0,

6A-2B + 9C -6E = 0,

2A + 6B + GC + 9E = 0,

whence A = ^^, B = -^%, (^ = - xf 9, -^ = yf fT-

Therefore the general solution of the original equation is

y = Cisinx -I- C2COSX + e3a:(yi^x sinx — ^^^x cosx — yfg^ sinx + yfly cosx).
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194. Systems of linear differential equations with constant

coefficients. The operators of the previous articles may be employed

ill solving a system of two or more linear differential equations

with constant coefficients, when the equations involve only one

independent variable and a number of dependent variables equal

to the number of the equations. The method by which this may

be done can best be explained by an example.

Ex. ^_3'^ + 4x = sin2«,
dt^ dt

d-y „dx ,^ + 3 h 4 ?/ = cos 2 «.

df^ dt

These equations may be written

(D2 + 4) a; - 3 By = sin 2 1,
'

(1)

3 Dx + (D2 + 4) y = cos 2 1. (2)

We may now eliminate y from the equations in a manner analogous to that

used in solving two algebraic equations. We first operate on (1) with D^ + 4,

the coefficient of y in (2), and have

(ZH + 8 Z>2 + 16) X - 3 (Z>3 + 4 D) 2/ = 0, (3)

since (2)2 + 4) sin 2 i = - 4 sin 2^ + 4 sin 2t = 0. We then operate on (2) with

SB, the coefficient of y in (1), and have

9 I>2x + 3 {Z>3 + 4 D) ?/ = - 6 sin 2 t, (4)

since 3 D cos 2 ^ = — 6 sin 2 i. By adding (3) and (4) we have

(D4 + 17D2 + 16)x = -6sin2«, (5)

the solution of which is

X = Ci sin it + €:> cos it + Cz sin t + c^ cos t + ^ sin 2 1. (6)

Similarly, by operating on (1) with 3D and on (2) with D^ + i, and sub-

tracting the result of the former operation from that of the latter, we have

(D* + 17 Z>2 + 16) ?/ = - 6 cos 2 1, (7)

the solution of which is

y = C5 sin it + Cq cos it + C-! sin t + Cs cos t + ^ cos 2 t. (8)

The constants in (6) and (8) are, however, not all independent, for the values

of X and y given in (6) and (8), if substituted in (1) and (2), must reduce the

latter equations to identities. IMaking these substitutions, we have

12 {cq - ci) sin 4 i - 12 (C5 + c«) cos 4 < + 3 (cg + C3) sin t

— 3 (C7 — C4) cos < + sin 2 ^ = sin 2 1.

- 12 (ce - Ci) cos 4 « - 12 (Cj + C2) sin 4 i + 3 (cs + Cs'* co-s t

+ 3 (cy — Ci) sin « + cos 2 i = cos 2 1-
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In order that these equations may be identically satisfied, we must have

Cg = Cu C5 = - C2, Cs = -Cs, C^-Ci.

Hence the solutions of (1) and (2) are

X = Ci sin 4 1 + ('2 cos 4 i + C3 sin ( + C4 cos i + 1 sin 2 1, (9)

y = — c-2 sin 4 i + Ci cos 4 i + C4 sin t — C3 cos i + 1 cos 2

1

(10)

The method of solving may be modified as follov?s : Having found as before

the value of x in (0), we may substitute this value in (1). We have then

Dy = — 4 Ci sin 4 i — 4 Ca cos it + Cz sin i + C4 cos t — ^ sin 2 1,

whence y = Ci cos it — c^s'mit — Cg cos t + C4 sin < + l cos 2 ^ + C

The constant C is found to be zero by substitution in (2), and we have again

the solution (10).

195. The linear differential equation with variable coefficients.

The equation

where the coefficients p^, p.-,, • • , Pn-v Pn ^^^ functions of x, can

rarely be solved in terms of elementary functions. In fact, such

an equation usually defines a new transcendental function. We
may, however, easily deduce certain simple properties of the solu-

tion of (1). Consider first the equation

cl"y
,

f?"~\y
, ,

dy ^
TT> +Pi TT3I + • • • + I>n-1±+ PnV = 0, (2)
dx d.i:

^ dx

which differs from (1) in that the right-hand side is zero.

^f y , V'^,
• •> yn-i> Vn ^'''^ ^ linearly independent * solutions of

(2), then the general solution of (2) is

y = c^y^ -f cjj„ -\ + c„ _ ,7/„ ^ 1 + c„y„, (3)

where c^, c^, • • • , Cn-v ^« ^"'^ arbitrary constants.

The fact that (3) is a solution of (2) may easily be verified by direct

substitution in (2). That (3) is the general solution of (2) depends

upon the fact that it contains n arbitrary constants, and the number

of constants in the general solution of a differential equation is equal

to the order of the equation. This statement we shall not prove.

*• The n functions ?/,, y,, • • •, ?/n-i, ijn are said to be linearly independent if there

exists no relation of the form

fllZ/i + O'lVi H + On - l2/n - 1 -|- (Intjn= 0,

where a^, a^, •, an-i, «« are constants, and = means " identically equal."
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Eeturning now to (1), we may say

:

If Vv V-^'
' ' '

' Vn-v Vn ^^^ ^ linearly independent solutions of (2),

and u is any jjarticidar solution of (1), then the yeiteral solution

""^ ^^^ *'
2/ = ^1^1+ c,y.+ • • • + ^=„y„+ ^^, (4)

where c^, c^, • • • , c„ are arbitrary constants.

The fact tliat (4) is a solution of (1) may be verified by substi-

tution. The fact that it is the general solution we shall accept

without proof.

It appears now that the complementary function and the partic-

ular integral of § 192 are only special cases of (4). There exists,

however, no general method of finding the solution (4) when the

coefficients of (1) are not constant.

Methods of solution may, however, exist in special cases, and

we shall notice especially the equation

where a^, a.-,, • , a^_^, a,, are constants. This equation has the

peculiarity that each derivative is multiplied by a power of x

equal to the order of the derivative. It can be reduced to a linear

equation with constant coefficients, by placing

For

where
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Hence x^ = By,
ax

Ex. :.3^ + 5x^^ + 3x'^ = x2.
dx^ dx'^ dx

Placing X = e^, and making the substitution as above, we have

wlience y = ci + CgZ + €36-2^ ^ e^^ = Ci + Co(logx) + — H x^.
16 x2 16

196. Solution by series. The solution of a linear differential

equation can usually be expanded into a Taylor's or a Maclaurin's

series. This is, in fact, an important and powerful method of

investigating the function defined by the equation. We shall limit

ourselves, however, to showing by examples how the series may be

obtained. The method consists in assuming a series of the form

y = a^x"' + a j,x'"'
+ ^ + a„x'^ + ^ _j

^

where m and the coefficients a^, «j, a^, • • • are undetermined. Tliis

series is then substituted in the differential equation, and m and the

coefficients are so determined that the equation is identically satisfied.

Ex. 1. x^ + (x-3)^-22/ = 0.
(Zx2 dx

We assume a series of the form given above, and write the expression for each
term of the differential equation, placing like powers of x under each other.

We have then

d2ya;— = m(m-l)aoX'»-i4-(?n + l);naiX»'+ • • +(?n+ r+ l)(m+r)a,.+iX"'+'"H
,

dy
a;— = maoX"'+ • • • + (m + r)arX'"+'-+ • • •

,

dv
- 3— = — 3?nao3;"'~^-3(?» + l)aiX"'— • • • — 3(w + r+l)a,+iX'"+'"— • • •,

-2y= _2aoX"'---- - 2a,;c»'+'- .

Adding these results, we have an expression which must be identically equal to

zero, since the assumed series satisfies the differential equation. Equating to

zero the coefficient of x'"-i, we have

m (m — 4) ao = 0. (1)
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Equating to zero the coefficient of x"*, we have

(m + 1) (m - 3) ai + {m - 2) ao = 0. (2)

Finally, equating to zero the coefficient of x"' + '", we have the more general

relation
^^^^ + r + 1) (m + r - 3) a, + i + (m + r - 2)a, = 0. (3)

We shall gain nothing by placing ao = in equation (1), since aoX"' is assumed

as the first term of the series. Hence to satisfy (1) we must have either

m = or m = 4.

Taking the first of these possibilities, namely m — 0, we have, from (2),

ai = — I ao,

and from (3), ""' + ' = -
^r + inr - S)

"''' ^^^

This last formula (4) enables us to compute any coefficient, a,+i, when we know

the previous one, a,.. Thus we find a2 = — ^ ai = J ao, as = 0, and therefore all

coefficients after as equal to zero.

Hence we have as one solution of the differential equation the polynomial

2/i = ao(l-§x+ 1x2). (5)

Returning now to the second of the two possibilities for the value of m, we

take m = 4. Then (2) becomes
5ai + 2ao = 0,

J.
I 2

and (3) becomes ar + i
= — — cir- (6)

(r + 6) (r + 1)

Computing from this the coefficients of the first four terms of the series, we

have the solution (23 4 \
a;*--x5 + —-x6_^__x7 + --- • (7)

5 5 • b 5 o • 7 /

We have now in (5) and (7) two independent solutions of the differential equa-

tion. Hence, by § 195, the general solution is

y - CiVl + C22/2.

Ex. 2. Legendre's equation. (1 - x2) —^ - 2 x -^ + ?i (n + 1) y = 0.

dx" dx

Assuming the general form of the series, we have

— = m (m - 1) aoX"'-a + (m + 1) viaix'"-'^ + {m + 2)(?n + 1) asX"' + • • •

,

dx2

_ x2— = - m (m - 1) aox"' - • •

,

dx2

_2x^= -2maoX"' ,

dx

n{n + l)y= n{n + ^aox'" -\ .
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Equating to zero the coefficients of x'«-2, x'''-^ and x»', we have

m {m - 1) ao = 0, (1)

{m + 1) mai = 0, (2)

(m + 2) {m + 1) a2 - {m - n) {m + n + 1) ao = 0. (3)

To find a general law for the coefficients, we will find the term containing

a;m + r-2 in each of the above expansions, this term being chosen because it con-

tains a,, in the first expansion. We have

dx2
+ (m + r) (m + r - 1) a,-x"> + ''-^ +

_ x2^ = (m + r-2) {m + r - 3)a,_2X"' + '--2
,

_ 2x^ = 2(m + r - 2)a,_2X'" + '--2
,

dx

n{n + l)y= h n (n + l)rt,.-2^"' + '"~^ + •
••

The sum of these coefficients equated to zero gives

{m + r) {m + r - 1) a^ - {m - n + r - 2) {m + ji + r - 1) a,._2 = 0. (4)

We may satisfy (1) either by placing m = or by placing in = 1. We shall

take m = 0. Then, from (2), ai is arbitrary ; from (3)

n{n + 1) /CN
02=

—

——-do; y^'

(n - r + 2) (n. + r - 1) ,(..

and from (4) a^ = - ^ -^— ar-2. (b)
V / r (r — 1

)

By means of (6) we determine the solution

(, n{n + l)^.n(n-2){n + \){n + 8) \

.,,,/ _^-^^^^ + ^^r
I

(n-l)(n-3Hn + 2)(n + 4) ^, \
^^^

Since Uq and ai are arbitrary, we have in (7) the general solution of the dif-

ferential equation. In fact, the student will find that if he takes the value

m = 1 from (1), he will obtain again the second series in (7).

Particular interest attaches to the cases in which one of the series in (7)

reduces to a polynomial. This evidently happens to the first series when n

is an even integer, and to the second series when n is an odd integer. By

giving to ao or ai such numerical values in each case that the polynomial
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is equal to unity when x equals unity, we obtain from tlie series in (7) the

polynomials p =x

2 2

Pj = - a;3— X,
2 2

7-5 , „-5-.3 , 3-1

4-2 4-2 4 2 '

each of which satisfies a Legendre's differential equation in which n has the

value indicated by the suffix of P. These polynomials are called Legendre's

coefficients.

Ex. 3. BesseVs eq^iaUon. x- \- x 1- (x^ — n-) y = 0.

dx"^ dx

Assuming the series for y in the usual form, we have

d^v
x2—^ = m {7n - 1) aox'" + {m + 1) ?naiX"' + 1 + (»i + 2) {m + 1) aiX'" + ^ + • •

,

dx-

x— = ma„x"' + {in + l)aiX"' + i + {m + 2) anX'" + '2 + • • •

,

dx

— n-y = — 7i-«oX'" — n2aix"' + i — w%2X"' + ^ — • • •

,

x2y = aoX"' + 2 + ....

Equating to zero the sum of the coefficients of the first three powers of x, we

^^^^*^ (m2- ji2)ao = 0, (1)

[(»i + l)2-n2]ai = 0, (2)

[{m + 2)2 - n-]a2 + ao = 0. (3)

To obtain the general expression for the coefficients, we have

x2— = •
. + (m + r) {m + r — 1) UrX"' + '' + •••,

dx-

X^ = • • • + (m + r) a,.x'" + '" + ••,
dx

— n^y = . . . — n^a,x^" + r _ . . .

^

x2?/ = . • + a,._.23;"' + '' H •

Equating to zero the sum of these coefficients, we have

[(?n + r)2 - ?i2]ar + a,._2 = 0. (4)

Equation (1) may be satisfied by m — ± n. We will take first m = n. Then

from (2), (3), and (4) we have

ai = 0, tto = , ttr =
2 (2 n + 2) r (2 n + r)
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By use of these results we obtain the series

Similarly, by placing m — — n, we obtain the series

^^ = ""^'i' + ^(2^) + 2.4.(2n-'2)(2n-4) +
"

'

)• ^'^

If, now, ji is any number except an integer or zero, each of the series (5) and

(G) converges and the two series are distinct from each other. Hence in this

case the genei-al solution of the differential equation is

y = CiVi + C22/2.

If n = 0, the two series (5) and (0) are identical. If n is a positive integer,

series (6) is meaningless, since some of the coefficients become infinite. If n is a

negative integer, series (5) is meaningless, since some of the coefficients become

infinite. Hence, if n is zero or an integer, we have in (5) and (6) only one par-

ticular solution of the differential equation, and another particular solution must

be found before the general solution is known. The manner in which this may

be done cannot, however, be taken up here.

The series (5) and (6) define new transcendental functions of x called BesseVs

functions. They are important in many applications to mathematical physics.

PROBLEMS

Solve the following equations

:

1.3^ + 2^ = 0. 10.^ + 8^ + 16^ = 0.

da; da;2 dx

2. ^ + 32/ = x2 + isinx. ll.^ + 9y = 0.

dx ~ dx-

3. ^_22/ = e3-+e-cosx. 12. ^-Q^+I3y = 0.

dx dx^ dx

4. '^ + y = Se-- + xe^. 13. ^ + 2^ - 32/=x''-2x3+ 5x.
dx dx^ dx

5. ^ + 4 2/ = 6 sin2x. 14. ^ - y = 4 sin2x.

dx dx2

6. ^-y = _J 15. ^ + 3^-102/ = 2cos3x.
dx e^ + e-^ dx2 dx

7. ^_2?/ = sin2xcos3x. 16. ^ + 3^ -4?/ = 6.

dx dx2 dx

8. ^ + 2^-82, = 0. 17. ^ + 3^ = x3 + 4x2 + l.

dx2 dx dx2 dx

9. ^_.5^ = 0. 18. ^ + ^-6y = e2-(5x2-8x-4).'
cZx2 dx dx2 dx
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19. ^-2^ + y = e^ + 4e2^. 39. ^ -^ = (x^ + l)e^.

20. ^ + 2^ + 2/ = x3-l. -40. ^ + 8^+16,y=.isin2x.
dx2 dx dx* dx2 ^

21. —^-6— + 9w = 41. ^^ -4—^ + 4— =3e2^ +4.
dx2 dx (x-3)2 dx3 dx2 dx

22. ^ + 4^ + 42/ = 5e2xsiu3x. 42. ^ +^ = x3.
dx2 dx dx3 dx2

23. ^ + 42/ = e2xsin2x. 43. ^% ^ -
^^ = 0,

dx2 dt dt

24. ^ + 2/ = 2sin5xsin3x. — + — + 2x - 3?/ = 0.
dx2 • dt dt

cm ^^y
, A t c .. dx dy

25. -—
- + 47/ = 4cos2x. 44. 1- ^ _ x - 4w = e^'

dx2 d« de

26. ^ + 32/=rxsin2x. ^ + ^_2x-3y=:e2*.
dx2 ^ d^ d«

27. -f|-4^ + 132/ = e2^sin3x. 45. 2^ + ^ + 3x = e',
dx2 dx di di

no d-y dy , dx dy _ . „^
28. -^ + / + 2/ = 1 + e^. — + -f

- 2 y = sin 2 «.

dx2 dx dt dt

29. ^ + 2^ + 52/ = x2e--+le3x 46. ^ = 2x-2/-5,
dx2 dx -^ d«

30. ^-^ + y = 3x2 + 4x-l. ^^ = 3y-2x + 4.
dx2 dx d^

„. d^y d'^y ai ^^ ^ -,0
ol. -z— — o— = 0. 47. — =:5x — w — 13,

dx3 dx2 d<

32.^ + ^ = 0. ^ = 2x + 2y-10.
dx3 dx d^

33. ^-y = 0. 48. ^ + ^^ = «2,

dx3 "^ di2
^ d^

34.^ + 2ff + y = 0. ^ + 2| + 2x-y = 2.
dx* dx2 di2 d^

35. ^ +^ = 2. 49. ^-2^ + ^ = 3e-2S
dx* dx2 di2 dt dt

36. f^ + y=iex_ie-x. ^ + '^ _ 2x + 2y = «3.

dx*
.J - (^^ (7^

37. p^ + y = (e^ + e-')cosx. 50. ^ _ a22/ = 0,
dx3 di-2

38. ^ +2^ + 49y=3x3-le-3- ^ + a2x = 0.

dx* dx2 ^ 2 d«2
^
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Solve the following equations by means of series

:

57. x-^^i^ + (x-2x'^)^-92/ = 0. 60. x'^^ + x^^^ + (x - G)r/ = 0.

dx2 dx dx^ dx

58. x^ + (X - 4)^ - 3y = 0. 61. ;^ + nxy = 0.

dx2 ^ dx dx^

59. (X - x^)^-^ + 5^ + 6, = 0. 62. (1 + x'^)^ + x'^ - n, = 0.
^ dx- dx "x^ dx

63. A particle of unit mass moving in a straight line is acted on by an

attracting force in its line of motion directed toward a center and proportional

to the distance of tlie particle from the center, and also by a periodic force equal

to a cos kt. Determine its motion.

64. A particle of unit mass moving in a straight line is acted on by three

forces, an attracting force in its line of motion directed toward a center and

proportional to the distance of the particle from the center, a resisting force

proportional to the velocity of the particle, and a periodic force equal to acosfcf.

Determine the motion of the particle.

65. Under what conditions will the motion of the particle in Ex. 64 consist

of oscillations the amplitudes of which become very large as the time increases

without limit ?



CHAPTER XIX

PARTIAL DIFFERENTIAL EQUATIONS

197. Introduction. A partial differential equation is an equa-

tion which involves partial derivatives. The general solution of

such an equation involves one or more arbitrary functions. Thus
^z 3z

z=f(^x — y, y — X) is a solution of the equation ^- — =
^t// C (J

(§ 113, Ex. 1), no matter what is the form of the function/. Also

z = f^(x -\- at) + f,-^{x— at) is a solution of the equation —; = a"—-

(§ 11 8, Ex. 2), no matter what are the forms of the functions /^ and/j.

Only in comparatively few cases can the solution of a partial

differential equation be written down explicitly. In general, the

nature and the properties of functions defined by such equations

must be studied by the methods of advanced mathematics. In a

practical application, the problem is usually to determine a func-

tion which will satisfy the differential equation and at the same

time meet the other conditions of the practical problem.

198. Special forms of partial differential equations. Partial

differential equations sometimes occur which can be readily solved

by successive integration with respect to each of the variables, or

which can be otherwise solved by elementary methods. No general

discussion can very well be given for such equations, but the fol-

lowing examples will illustrate them.

Ex.
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Ex. 2. — = - a'^z.

If X were the only independent variable, the solution of this equation would be

z = Ci sin ax + c^ cos ax.

This solution will also hold for the partial differential equation if we simply

impose upon Ci and Cz the condition to be independent of x but not necessarily

independent of the other variables. That is, if z is a function of x and y, we

have for the solution of the differential equation

z = <f>i (y) sin ax + 02 {y) cos ax,

where (pi{y) and 02(2/) are arbitrary functions.

Ex. 3. a- —;,
= 0.

dy'^ cx^

Placing X + ay = u, and x — ay = u, we have (§ 118)

a^ 2 a2 h a
cy^ cu^ cucv ' cv

^_^ +2— + —
d'J? dv? ducv cv^

and the differential equation becomes

dudv

the solution of which (Ex. 1) is

Z = 01 (U) + 02 (V).

Hence the .solution of the given equation is

2 = 0i(x + ay) + 02(x - ay).

When a2 = - 1, we have z = 0i(x + hj) + (p2(x - iy)

. d^z dH -

as the solution of the equation —- ^ = U.

c5x2 cy^

199. The linear partial differential equation of the first order.

Consider the equation „

p'^ + Qf=R, • (1)
ox oy

where P, Q, and R are constants or functions of one or more of

the variables x, y, and z. The solution of (1) is a function

z=f{x,y), (2)

which, substituted in (1), reduces it to an identity.
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Now equation (2) represents a surface, the normal at any point

of which has the direction — :— : — 1 (§ 1 12). Equation (1) there-
dx dy

fore asserts that the normal to (2) at any point is perpendicular to

the direction P:Q:R (§98, (5)). Consequently we may start

from any point on (2) and, moving in the direction P:Q:R, remain

always on the surface. That is, the surface (2) is covered by a

family of curves each of which is a solution of the simultaneous

equations dx^dy^dz^

Now (2) is any solution of (1), and hence we reach the conclu-

sion that the solution of (1) consists of all surfaces which are cov-

ered by a family of curves each of which is a solution of (3).

We may proceed to find these surfaces as follows : Let us solve

(3), obtaining, as in § 185, the solution

u {x, y, z) = Cj, V {x, y, z) = c^. (4)

Then, if we form the equation

4>{u,v)=Q, (5)

where ^ is any function whatever, we have a surface which is

covered by curves represented by (4). For if in (4) we give c^ and

Cg such values that 4> (^p c^) = 0, the corresponding curve lies on (5).

That is, by means of (5) we have assembled the curves (4) into

surfaces, and have therefore the solution of (1). We may formu-

late our result into the following rule

:

To solve the equation
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cz c z
Ex. (ny - mz) \- (Iz - nx) — = mx - ly. (1)

cx cy

dx dy dz .„,

We form the equations = = r- > \^)
ny — mz Iz — nx vix — Ly

the solutions of which are

x2 + ?/2 + 2- =: Ci, Ix + luy + nz - C2. (3)

Hence the solution of (1) is'

</> (X- + 2/2 + 2-, te + ?H?/ + nz) = 0. . (4)

Geometrically, the first equation of (3) represents all spheres with their cen-

ters at the origin, and the second equation of (3) represents all planes which

are normal to the line

? = ^ = ^. (5)
I m n

Hence the two equations (3) taken simultaneously represent all circles whose

centers are in the line (5) and whose planes are perpendicular to (5). Equation

(4), then, represents all surfaces which can be formed out of these circles ; that

is, all surfaces of revolution which have the line (5) for an axis. These surfaces

of revolution form the solution of (1).

200. Laplace's equation in the plane. Solutions of Laplace's

equation in the plane,
^ ^

car dy

have already been found in §§ 172, 198. Another method of

dealing with this equation is as follows : Let us place V = XY,

where X is a function of x alone and Y is a function of y alone,

and ask if it is possible to determine X and Y so that Laplace's

equation may be satisfied. Substituting in the given equation

and dividing by XY, we have

i^ + i ^-0
X dx^ Y dif

~
'

which may be put in the form

1 d^X _ 1 d'Y

X dx"
" Y dy

(2)

According to the hypothesis, the left-hand member of (2) cannot

contain y and the right-hand member cannot contain x. Hence
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they are each equal to some constant, which we will denote by (x\

Then (2) breaks up into two ordinary differential equations,

^-a'X=0, (3)
dx'

^ + a'Y=0. (4)
di/-

By § 190, the solution of (3) is

and the solution of (4) is

V = B^ cos ai/ + B„ sin ay.

Hence V = e""" cos mj, V = e'"' siu arj,

V = e- '"' cos ay, V = C ""^ sin ay,

are particular solutions of the given equation.

If the value of the constant had been denoted by — a', we should

have obtained the particular solutions

V = e"" cos ax, V = e"'-' sin ax,

V=e- "' cos ax, V = c' "'' sin ax.

The particular solutions thus obtained are, in fact, the real and

the imaginary parts of the functions e''', e-"\ e-'"', and e'"^ (§ 172).

The sum of two or more particular solutions of (1), each multi-

plied \)\ an arbitrary constant, is also a solution of (1), as is easily

verified. Hence we may form the particular solutions

m-= rx> ni= 00

F = Jo + 2^ AJ-
'"^ sin mx +^ 5,/- '"^ cos vix, (5)

m=l "1=1

m = -Tj m = X

F = ^0 +T J,/"'^ sin mx + 2^ i?,/'"'' cos mx. (6)

™=1 m=l

Solution (5) has the property of reducing to A^ when ?/ = cc, while

solution (6) becomes infinite with y.

Ex. Find the pei*manent temperature at any point of a thin rectangular plate

of breadth tt and of infinite length, the end being kept at the temperature unity

and the long edges being kept at the temperature zero.

If u is the tempei-ature, it is known that u satisfies the differential equation

^j!^ + £!!f = o. (1)

ex- cy-
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If we take the end of the plate as the axis of x, and one of the long edges as

the axis of y, we have to solve (1) subject to the conditions :

if X = 0, u = 0,
*

(2)

if X = TT, u = 0, (3)

if ?/ = CO, M = 0, (4)

if ?/ = 0, M = 1. (5)

Condition (4) is satisfied by the solution

)?i = X m = 00

u =^ A,ne- "'y sin mx +^ B,„e- ""J cos mx.

m = 1 JM = 1

By condition (2), =V J3,„e- "'J'

»»= 1

for all values of y, and hence i?„, = for all values of m. Our solution is now

reduced to »« = ^

u =^ ^mC" "'2/ sin mx,

=^ J-m sin mx. (6)

which satisfies (2), (3), and (4). In order that it may satisfy (5), we must so

determine the coefficients A„, that
m= 00

1

m= 1

But (6) is a special form of a Fourier's series (§§ 159, 160). Accordingly, we

multiply (6) by sinrnxcZx, and integrate from to tt. As a result, we have
2 /I — cos m7r\

,
^4.^.41 mu *Am = - 1

I » whence Ai = -, Ai^O, As = , • • •
. Therefore

ir\ m J
-^ T 3

4 / 1 1
u = -le-y sin x + - e-^if sin 3 x + - e- s.v sin 5 x +

7r\ ^3 5

is the solution of our problem, since it satisfies all the conditions.

201. Laplace's equation in three dimensions. The general form

of Laplace's equation in rectangular coordinates is

d'^V c^V d'V

dx' df dz' ^
'

If cylindrical coordinates are used, (1) becomes

and in polar coordinates (1) becomes

l/,«^U^A/sin^?i:U_^^ = 0. (3)
dr\ drj sin (f>d(t>\ d4>l sm^(j) d6'



LAPLACE'S EQUATION IN THREE DIMENSIONS 369

The general discussion of these equations is beyond the limits

of this text. We shall, however, consider particular solutions of

(3) in the special case in which V is independent of the diedral

angle d. In that case ^;^ = 0, and (3) reduces to

U^I\ + ^1U,4,K\^^. (4)

Letting V = 7t4>, where E is a function of ?• alone and <I> is a

function of
(f)

alone, we may replace (4) by the two ordinary dif-

ferential equations ^ / ^j>\

dr \ dr

j

(5)

1 d I . , d^\
,

^ , „ ,^,

[i(pd(f)\ d(f>/

where a^ is an arbitrary constant.

Expanding (5), we have

dr'^ dr

the solution of which is, by § 195,

where m = — ^ -\- vV + ^. From this value of m we have

a^ = m {m + 1), and (6) becomes

-^^ f
«i^ ^^) + ''' ("^ + 1)^ = 0. (7)

sm 9 «9 \ d(p J

Changing the independent variable from <^ to t, where t = cos <^,

we have Legendre's equation (§ 196, Ex. 2),

(l-O^-2^^ + m(m + l)cI> = 0. (8)

In the particular case in which m is an integer, we may choose for

$ Legendre's coefficient ^, (t) = .^, (cos <^).

Therefore the particular solutions of (4) are

V=r"'P^{cos(}i),

^'" + 1



370 PARTIAL DIFFERENTIAL EQUATIONS

Ex. Find the potential due to a circular ring of small cross section and radius a.

If the center of the ring is taken as the origin of coordinates, and the axis

OZ is perpendicular to the plane of the ring, Laplace's equation assumes the

form d / ,dV\ 1 ? / . ^tV\ . ,^.- r2—
)
+ - — sin</)— =0, (1)

dr\ dr / sin d<p\ ccpj

since, from the symmetry of the problem, V is independent of 6.

This equation is satisfied by

m=cc R \

(2)

where A,n and B„, are arbitrary constants.

At any point on the axis OZ distant r from the origin

V= JL_ , (3)

where M is the mass of the ring, as shown by the method of Ex. 9, p. 99.

Tlnen, when = 0, cos0 = 1, and by § 19(5, Ex. 2, P„(cos0) = 1, At the

same time the right-hand members of (2) and (3) must be equal, i.e.

Va2 +
=V lA,nr"> + + 1

and the coefficients A,,, and B,,, must be chosen so as to .satisfy this equation.

If r<a (§31, Ex. 4), j^ _^^/i ^ ^^ 1-3 r*

Va2 + f^
~ a\ 2 a2 2 i a*

M 'M (a \a^ 1-3 a^

Hence if r Ca, we place all the 5's equal to zero, Aq = ^-^, ^i = 0, ^2 =

_ _ . _ . - , etc. , and obtain the solution

Af / 1 r2 1 • 3 r* \
TT = ^(1 _ i r_ P2(COS0) +—T - P4(COS0) ,

and if r>a, we place all the A'a equal to zero, Bo = ^—
a, Bi = 0, B2 =

_ _— a^^ . .
.

, and obtain the .solution

a 2

F = ^0Po(cos0)-l.^>.(cos0) + ^.^P4(cos0) -...).
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(The answers to some problems are intentionally omitted.)

CHAPTER II

Page 33
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2 lx^ + 2x—^. ^^^ ^^- log(tan-ix).
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I {hi + hz) from the center.

55.x-§a. 56. ^=fA;. 57. x = ^^^^ 6(62 = 4pa).

58. y = ^yi (2/1 is the ordinate of the point of intersection of the line and the

parabola).

59. y = ^% b.

60. At the middle point of the radius of the hemisphere perpendicular to

the base.
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61. On the axis of the cone, two thirds of the distance from the vertex to the

base.

62. On the radius of the hemisphere perpendicular to the base, two thirds

of the distance from the base to the vertex.

CHAPTER VI
Page 117

1.1- ^ L_. 4.1 '- '-+ '

3z 3(2x + 3) 3x-2
"

2(x+ l) x-2 2 (x + 3)

1 1 1 K 1
,

2 3 1

2. X + H 1 5.- + —
2 X X - 1 2 (X + 2) X x2 x3 X + 1

? 1 1 ^21^ '>

7.

(2x + l) 2(2x-l) 3(x + 2) X' x (2x-l)2 2x-l
2 3 2 1

x + 2 (x + 2)2 (x + 2)3 X

I

3 1 4
8. x-2 + +

(2x + l)3 (2x + l)'^ 2x + l

14
x2 + 2

,„ - ,
x-2 15. -r -r10.^—- + - —-• X-2 (x'''-2)--2 x2-2

x + 2x^ — 2x + 2 '' '

9.^ ^—. 14. J-+ ^ + ^ .

2 X + 1 x2 + 2 3 X (x2 + 3)2 3 (x^ + 3)

x-2 15. 1 h

2x + 5 x-2
3 3 2 16. — ^^-T7;; +

11. 4X+ h h (X2 + X + 1)2 x'^ + x + 1

2(x-l) 2(x+ l) 3x2+ 1
^ ' ^ ^ 17. bg[(2x-3)2(2x + 5)2].

12. .
-

^ + ^:-^—^' 18. logW-l^±i
\(3x-2:

2x 1

x2 + X + 2 x2 - X + 2 ^ " '"^ \ (3 X - 2)2

'

2 X 1 1 Q 1 (^ + 4)^

IS. x-l~-^^ + ^—. 19. log
^

x2 + 1 x2 + 2

'

V'2 X - 3

3 1 X + 2 -V3
20. -log(x2 + 4x + l) + -log -.

2 2 V3 X + 2 + V3
21. f log(4x2 + 4x + 2) + ^, tan-i(2x + l).

22. X - I x2 - log [(X - 1) (X + 3)5].

23. -x2~x + ^log(9x2 + 12x + 8) + -tan-^
"''^"^

•

2 6 ^ 2 2
J
—

24. -x2 + 4x + 61og(x2-2x -1) + 4V21og '^~ ~ ^_ •

2 X-1+V2

(X - 2)2 '^
(X - 3)3

(X - 1)2 ^ (X - 2)2

o« .. ,
(2x-l)^

29. 2x + log-^, '-—.

x^ (X + 3) 3
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30. I x2 - 2 X + § log (X + 1) + 1 1 log (2 X - 1) + V- log i^ + 3)-

1 , 1
, (2 X - 3)'^ (2 X + 3)

32. log[x3(2x-l)] + r -
2 X — 1

34. ,o,[(x-I)v'2x + 3] + ^^jA_.

Page 118 .

1 12
35. log(x + 2). 38. x + — + -log(3x-2).

2x + 1 3x 3

°(x + l)'5 x(x + l) 2 8(4x^-1)

41. log[(x -1) V(x-^ + 2x + 2)3] + 4taii-i(x + l).

^o ,
(x + l)2 3 , X-2 -V2

42. log

-

7-'^- ^log -
Vx^ - 4 X + 2 V2 X - 2 + V2

43. ^log(x-3 + 4) + log^|^-ltan-|.

44. log A/
a + b \x2 + a

,,5, x2-2x + 3 1 ..x-l 3^ ,3x
45. -log 1-—^tan-i

—

=tan-i—^•
2 " 3 x--^ + 2 V2 V2 Vg Ve

46. log rZ±^+ Atan-i^-itan-i^-:^.
\2x- + x + 5 v'3 v3 V39 ^ 3!)

47. X - |log(x2-2x + 2)- 3tan-i(x - 1)- tan-i(x + 1).

1 1 ,
(2x + 3)* 13 , ,

4x - 3
48. -(x2-2x) + — log—5^ ' ^+ -tan-i — •

4^ ^16 ''4X2-6X + 9 24 V3 3 Vs
3 1 , X-V3 10 ,6x + 3

49. ^ log (x2 - 3) + -- log -_ + --= tan- 1—^ •

2 V3 X+V3 V5I V51

=« 1 , X 2 + X
50. ^tan-i—^

2V3 V3 2(x2 + 3)

1 5 /- 3+lOx
51. ^log(2x24l) + --^_tan-^xV2-^^^^,^.

52. 3 log^^^^V^ tan-^ + -^, + 4-.
a; 3V3 V3 3(x2 + 3)

,„ ,
x2 13 , xV2-l 3 + 7x

53.' losf log
^2x2-1 4V2 XV2 + I 2(2x2-1)
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CHAPTER VII
Page 137

1. |\^-|log(^ + l). 2. 2V^ + lo, ^

3. |(2\/^-3V^ + r2v^x)-81og(-v^ + l).
Vx + 1

4. -f (x-2)i

5. _3(x + l)J_(x + l)-|(x + l)l

6. 2Vr^ + V2 1o.^^^-^
Vl - X + V2

7- </i + Sx-4:-\/l + Sx + 41og(-v^l + 3x + 2).

8. 1 + x + 4 Vl + X + 21og(x -Vl + x) +^log6 , 2VH-X-I-V5
V5 2V1 + X-I + V5

9. X - 2 Vx + log(\/x + l)^ , _ V3 + x^

in (1 + ^'^)' ^*
^°- ~~8^r-- ,, x3 + 9

I

13.

j^
X 2 Vx3 + 3

VrT2^

"

14- 4^7 (8 ^^ - 1) (3 xs + 1)=

15. T-io(5x'^-2) (2 + 3x'')l

16. ^[^10,^^-^ + ^--^^
^

' ].
3 L2 V2 V3 x3 + 2 + V2 V3x3 + 2j

17. i x2 V4 + X* + log (x2 + V4 + X* )

.

1 Q /^ * 1 ^ + ^^^'^ + 3 X - 2
18. V2tan-i

V2

, „ 1 , X V2 + V2 x2 + 3 X + 5 - VH
19. —=log—— -^ —

V5 X V2 + V2 x2 + 3 X + 5 + Vs

20. -Lw^^^E^^^^. 21.
'<'^ + l>

b

V3 VS + 3 X + VS-x 3 Vx2 + X + 1

22. Vx2 + 2 X + 3 - log (1 + X + Vx2 + 2 X + 3).

2(1 + Ox) /l-3x 2^ 2(28x3 + 21x2 + 12x-8)

3x \ x~~" '. 243(1- X- 2x2)?

25.
^^"-^ -Jitan-i ;^^^

25V2-3x-2x2 V2 \l-2x
26. 1 sin^x — 1 sin'^x. 27. cos^ 3 x {j\ cos^ 3 x - 1 cos 3 x).

Page 138

28. 1 cos^x - I cos^x + cos^x - cosx. 33 / x
^ ^.^^

x\ /
,^^^ _ gV

29. sinx - fsin^x + isinSx. \ 3 3/ \ 3 /

30. icos(2x+l)[cos2(2x + l)-3].
33^ 1(1 ,i,4«^ _ 1

,i„6«,y
31. X — ^cos4x. a \4 (3 /
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34. iV ^ - 6^ «i" 4 X - J^ sin3 2 x. 35. | x - 1 sin 2 x + ^V ^i" 4 x.

iX.36. 1% X + 1 sin 4 X - ^V ^"^^ ^ ^ + tI s
^i"

37. ^asX-g^'5sin2x + 5|2sin'*^-
i l + cos4x cos4x

40. — los-

38. J-j \^cos2x(cos22x -7). '

lo ''l-cos4x 8sin24x

X
1+ sin -

2 2 . „x „ . X 1, l-cos2x cos2x
39. log -sm3--2sm-. 41. -loj?

X
I

-

2

.x3 2 2 8''l + cos2x4 sin2 2 x
1 — sm

tanS - - 2 tan ^ + x. 48. 2 tan - ( 1 + - tan^
'^ + - tan* - )

2 2 2 \ 3 2 6 2/

sin a X sin 3 x 1 , 1 - sin 3 x
42

I

iog :
—-— •

12 cos* 3 X 8cos2 3x 16 l + sm3x

43. ^ tan2 3 x + 1 log cos 3 x.

44. 1 log sin 3 X + J ctn2 3 x - yV ctn* 3 x.

45.^
3

46. - -ctnS- + ctn3?-3ctn^-x. 4 3.

5 3 3 3 49. __ctn 3 + ctn2-

47. l(tan2x - ctn2x) + 2 log tanx. 3 4 \ 4

50. - 1 ctn 3 X (1 + ctn2 3 x + f ctn* 3 x + i ctn6 3 x).

sin2x 1, l-sin2x
51. log

4cos2 2x 8 l + sm2x
X ,, X 1 X

5 cos - 15 cos - _ 1 - cos -

5 5 15, 5
52. + T?

^^

4 sin*- 8sin2^ 1*^ 1 + cos^
5 5 5

53. --ctn4 5(3 + 2ctn2^
4 3\ 3

1 / 1 \ 2 X
54. -/.sinax + 2cscox- -csc^axj- 55. 7*5^^5-.

sec*-
21 5.

56. 25^sec|(l-lsec2| + i

57. tan?x(f + t\ tan2x + ^% tan*x).

sin 5 X sin 5 x 1 , 1 - sin 5 x
58. — -— + — lo"

20 cos* 5 X 40 cos2 5 x 80 1 + sin 5 x

2,..-i/lt...?\.
-^ 2tan5 + 3-^^

62. —=log'
I
- tan -

)

\3 2/
59. T tan - 1

- ucm - 1 •
1

~ 2

60.
2
^tan-if^tan^V ^1^ 2tanU3+Vl3
2 \2 2/ ^

3 tan - + 1 1 , 3 tan X - 4 - V?
„, 1 , 2 63. -log -=•

61. —=tan-i 2V7 3tanx-4+V7
V2 2V2

64. ^ X (2 x2 + 5 a2) (x2 + a2)' + | a* log (x + VxM^)-
1 1 3 X

65 . - X (5 a2 - 2 x2) {a^ - x^y + - a* sin-i - •

8 ^ 8 a
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66. I [x Vx2 + a2 - a2 log (x + Vx- + a-)]

.

67. —— log
'ia'^x^ 2 a3 Vx2 + a2 + a

,\/a2 - x2
,

1 , X
68. —— + -— log

2 a2x2 2 a3 Va^ - x^ + a

69. - x{2 x^ + a-) Vx^ + a^ log(x + Vx^ + cC^).

70. - X (2 x2 — a-) Va2 - x^ H sin-
1

'

8 8 I

71. - yV (3 x2 + 2 a2) (a2 - x2)?-

72. ^^ + _Ltan-i-.
2 (a2 + x2) 2 a a

73.

(1 + X3)5

74. I {x3 - 2) (1 + x3)'

75.
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Page 140

108. (TTrt, -+a).
j^jj

/256a 256a

109. (TTrt, fa).
" \3157r' 3157r

110. /« —^^—-V 112.(^(V2 + l),oV
V^ 2(4 7r-3V3)/ \3^ /

CHAPTER VIII

Page 154

1. 3x2 + 2x3-32/2 -2?/3 = c. y

2. e^'sin?/ = c.
®- * = c^^-

3. VTT72+vm;^ = c.
' ^' = 2c2/ + c2.

4. tanx = ccos2/.
8. 2 logx + (sin-i|y= c.

5. X + ?/ -I
= C. n'' X y 9- cos X sin 1/ = c.

Page 155
25. ?/ = c cosx — 2 co.s'^x.

10. X sin - = c. „„ o , o , o o
X 26. x^ + 3 xy + 2 ?/^ = ex.

11. xU' - e~-) - c.
27. y = -(x^ - 1) + c—^.

10 / , Ni 4T 28. w2 = - i(2x2 + 2x + 3) + ce2^.
12. (x + y)^ = cy*e v

.

•> 4 ^
'

' / '

13. x2 + 4x?/ - 2/2 - 6x - 2 )/ = c. 29. ?/ = ^ (^ + ^^^

.

14. (2/ + 3) (X + 2/ + 1) = c.
2
+_f^

15. (X 4 2/)2 + 2 2/ = c. 30. y =
otan'

16. 2 2/ = sinx - cosx + ce--^. et»""^+c

17. 2/ = (X + 1)2 (e- + c). 31. x2(l - ?/) = c(l + x2).

18. 2/ = 1 (X + 1)3 + c(x + 1). 32. x2 1ogx2 + (x3 + 2/^^)"3 = cx2.

_ ^.^.v 33. 2/ (e-^ + 1) = e^ + a; + f.

19. X = ce '""^.
34. (secx + tanx)(l + 2/"^)=a; + c.

20 2/=e./l--^U^. 35. 42/ = ce2-_(2x2 + 2x + l).

\ a;/ X 36. 2/ = (x + c)e«^.

21. logx?/ + \ (x2 - 2/2) = c. sin ax

22. x2 = c2 +'2 cy.
37. 2/ = - ^^ + cix + c..

23. 2/ = 1 + a*-'-^ + cV l + x2 . 38. 2/ = e*(x — 2) + Cix + C2.

24. 2/ = 1 + c (x - Vl + x''^). 39. 2/ = ^ a;^ log x - /^ x'' + CiX + Ci.

40. 2/ = ± - (a; ^'-'f
- a;2 + cf sin- ^ —

|
+ Co.

41. 2/ = Cix2 + C2. .g Ci(e^<^-C2)

42. y =
I

log (x - a) -^' + c.
"

^'•' + ^"2^ '_

^

43. (2/
+^1)2 = cix + ..,.

'' 47. 2/ = X + ci log|:p| + C2.

44. y + Cilog(2/ - ci) + X = f2-
4 c2e<^i(^ + ^2)

3.2 -y 48?/^ •

45.2/ = + cix* + c2. (l_e'-i(^ + <^2))2

4 3

49. 2/ = ± [ciX Vc 2x2 - 1 - log (ciX + Vc2x2 - 1)] + C2.

2ci
50. 2/ = cisin[/c(x - C2)]. 51- ?/ = Ci cosh[A:(x + Co)].
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Page 156

62. 2/ (X- 4)2 = 9. 56. ^/ = -l + e^-2•

63. tan^ = e^-i. ^'^- y = ex".

58. y = ax^ + c.

54. tati| = ce---/'2. ^^ r" = csinn^..

65. 4 2/3 = (tx + c)2. 60. x = n log ?/ + c.

62. y = - cosh [A; (x - c)]. (fc is the constant ratio.) 63. x^ + y"^ = ex.

k

64. y = a cosli

~
(a is the constant length.)

fc2 . ,8x -fc2 1,
66 y = + — sin- 1 ^ ± - VA;% - 4 x^ + c. (A; is the constant ratio.)

^ 8 A;2 2

66. y = k cosh (fc is the constant ratio.)

k

/Zx2 x3\ lO/V^X'^ IX^ X*\
67. z/.=-»(1-|). 68. £,„ = -^(_. __ + _).

„„ .^.^ W /IX" x^\
69. jBZy = ~ •

" 2\4 6/

70. (x — ci)'- + (y — C2)2 = c2. (c is the given constant.)

71. Ci2/2 ^ (x + C2)2 = 1. (fc is the constant ratio.)

Page 157

72. Harmonic motion.

73. ^ = c + -% /—
I Vax - x2 - ^ sin- 1

^ ~ "
^

) , where A; is the constant ratio,

\2A;\ 2 a /

and X = a when d = 0.

74. Same velocity as if the body fell freely. 75. Abont 7 miles per second.

CHAPTER X
Page 195

1. (1,-2,2). 2. (-J59, -Y, -V-)-

3. x2 + 2/2 + 22 - 2 X + 4 y - 2 2 - 43 = 0.

6. a + llogS. "^^ e-7-
- ° ^ e

8. 7rV2~+Tn^ + log(7rV2 +V2 7r2 + 1).

11. cos-i 13. 2x -3?/ + Gz ±21 = 0.

V2 + «2

Page 196

14. X + 2/ + 2 - 6 = 0. 16. a2/ + A;2 = 0.

17. 7rx-22/-2z + 27r = 0.

18. e'(x - e') - e-'(2/ - e-<) + V2(z - tV'l) = 0.

19. X + 2 2/ + 3 2 - 6 = 0. 26. X - 2 2/ + 2 + = 0.

20 __i ^ L_ 26. sin-i^-

VlSg' V139' Vl39 27. (1, 2, 1), (^, f, i).

28. x-2 + 2 = 0. 29. llx+ 132/ -37 = 0, 3x+ 132 + 10 = 0.
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37. (1, -1, 1).

39. X + 16y + 7 z + 8 = 0.

40. Sx-2y-z + 4:-0.

41. X + lly + oz = 0.

42. X - 6 (/ + z - 2 = 0,

Zx + y + Sz-l = 0.

43. x~z = 0.

44. 93 a; - 46 y + 13 2 - 1 79 = 0.

46. (1, -2, 4), (I, y, V)-
47. (0, 1, 2),

(3^J'-, -W, -W)-

CHAPTER XI
Page 218

10. A.4 = .396 sq. in., dA = .398 sq. in. 11. AL = .057 in., dL = .057 in.

12. Ar= 5.11 cu. ft., dV= 5.09 cu. ft.

Page
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Page 221

68. '-^ + 2 -^ F'{x) + — [F'{x)Y + — F"(x).
cxr dydx cy~ cy

70. TTlog
^^ '

• 71. log(a + l).

CHAPTER XII
Page 234

1. 4 1og2-lJ. 4. 3(log2-l). 7. i 7ra2.

2. 2. 5. ^7ra*.
8 --1

3. |7r2+ ^TT + l. 6. 6. '

e 2'

Page 235

9. J7r2a2. \l. ^\a\ 13. -^%-^a^-

10. logV2. 12. ^L- 14- i«^-

Page
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45.
[T '

8 / ll5 IStt 15W \ 3 97r/

48. On the axis of the cone, -^ distant from its vertex.
28

49. On the axis of tlie cone, | of distance from vertex to base.

Page 256

50. (2 c(^
2 a, 2 a)^ the center of the spliere being at the origin, and the octant

being in the first octant bounded by tlie coordinate planes.

51. On the axis of the cone, midway between the vertex and the base.

52. gL«3. 59. 31. 65. iiTra.

53. •n-a-5(fco-A;i). 60. Ott.

54. ^TTCtbc. 61. i-7rcM5a + 6).

55. 51. g2 3^.
56. i(7r + 2)a*. 32 6

57. ^Tra'-b. 63. 3% Tra^.

58. ('i|-log4)a3. 64. |a3(37r-4).

Page 257

71. ^^^-a^ 72. |7r2a3. 73. -^KTrpabc{b^ + c^). 74.

75. j-L k-rrh^ tan^a. {k is the constant ratio.)

76. ^ kira^. (k is the coefiicient of variation.)

77. ^%irp{ri -r^).

78. I ka^. {k is the coefficient of variation.)

63f(l-cosa) gQ
TTpg (2 b - a)

66.
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Page 278

19. x3 + 3xz/2 = c?/2.

20. tan-ix + xy — c

21. e"^ + logy = c.

22. logx +
3x3

23. xy + log- = c.
X

24. x^ — x^y + x2?/2 = c.

25 . 2 X + sin 2 X 4- 4 y cos x = c.

26. log cos2 {X + y) + y'^= c.

«« ,
2 1

27. logx = c.

xy 2 x2?/2

28. 12?/(x + 1) -4x3 - 3x4 = c.

Page 302

14. -l<x<l.
15. -l<x<l.
16. -l<x<l.
17. -l<x<l.

CHAPTER XV

18. All values of x.

19. All values of x.

20. - 1< X <1.

21. -l<x<l

22. - a a

b

I

„„ , x2 5x* 61x6

2 x^
24. 1 + X + X2 + —- + •••

o

X2 X3 X* ,

25. X h h ••••

2 6 12

26. 1 + X +
2 8

27. l + x + ^ + :^ + ---.

2 o

x2 X* X^ 17 X^
28.

12 45 2520

29.

30.

7r2 , /cos X COS 2 X cos 3 x
4

1

1

3 \ 12 22 32

sinh air 2 a sinh air

air

2 sinh air

/ cosx

\12 + a^

/ sin X

\12 + a2

~

cos 2 X

2 22 + a2

2 sin 2 X 3 sin 3 x

22 + a2 32 +
3x_ \

a2 "/
,/sinx sln3x

31. 4/
\ 1

+
sm 5 X

„„ TT 2 /cosx cos3x cosSx
,

Stt 2 /cosx cos3x
,
cos5x

,

4 ttV 12 32 ^ 52

2 X 3 sin 3 x

'sin X sin 2 X sin 3 x

33.

34.

+
/3 sin X sin :;

V^l 2

sin 4 X

7r2 Pcosx cos 2 X

22

3

cos3x

32 ]

^i[(?-|>'— f'"^^^(f-^)='"^^-f'"^^^ }
Page 303

35. — sin a.

36. 1.

37. -2.

38. lo-.

39. 0.

40. -

41. -
42. 2.

43. 5.

44. 0.

45. 0.

46. 0.

47. 0.

48. 0.
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49.
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43. 2/(x + z) + c(?/ + 2) = 0.

44. ^ + ^ + ? = c.

y z X

45. log {x + y) + X + 7j + z = c.

48. x2 + a2 = kiiy"-

49. x^ — y- = Ci, ?/2

50. X = z + Ci, ?/2 =

1 '/

48. x2 + a2 = A:i(y2 + h"^), - tan-i ;-

46.^ + ^
2/ z

logz = c.

?/

- Z2 = C2.

2 xz + Co

,

47. logz = tan-i - + c.
X

- taii-i- = i-2.

c c

1 1 1

51. e < + e- y- = ci, e « — e ^ = C2.

52. y = (X + ci) Vx^ + 1, z = (c'l tan- ix + C2) Vx- + 1.

Page 338

53. X2 + Z2 = C 2 y + C2 = - log ^.
^

2 z + Ci

54. X2 — Xy = Ci, Z + X2 — CoX + Cl = 0.

55. X + y = cie% 2 ?/ = z^ + C2.

56. X — 2/ = Cje^ , ?/ = Cog 2.

57. X — y = ''iz, x^ - y- = c»y.

58. X + 2/ + z = Ci, x2 + 2/2 + z2 = c|.

59. X + 2/ + 2 z = ci, X - 2/ = C2Z2.

60. 2/ = CiZ, X2 + 2/2 + Z2 = C2Z.

61. 16 2/5 + 27 X* = 0.

62. 4x2/ = c2.

63. x2 - 4 2/2 = 0.

64. X- + 2/- = c^.

65. 2x2/ = ± c2.

66. 27p?/2 = 4(x -2i3)3.

67. 3x2- 4a;y ^0.

68. 2/2 = 4px + 4p2.

69. x^ + 2/^ = c5.

70. x3 + (x + 2 p) 2/2 = 0.

71. (x-2/)2-2A.-(x + 2/) + fc2 = 0.

72. x2- 4a(a - y) = 0.

73. x^ + j'^ = a^.

74. 2 (X - c) = A; log {k ± Vfc2 _ 4 2/2) T VA;2 - 4 yK

Page 339

75. r = k. 77. 2X2 + y2 = c2.

78. x2 + 2/2 = 2 a2 logx + c.

76. r = ce *^

81. A family of circles tangent to OX at 0.

82. x2 + 2/2 - ex + 1 = 0.

84. A family of lemni.scates having the line Q

85. r = c(l - cos^).

79. 2/ = ex*.

80. 2/2 = 4ax + 4a2.

for a common axis.

CHAPTER XVIII
Page 360

1. 2/ = ce 3 .

2. y = ce-3" 4- ^ x2 - I X + ^2_ + ^V (Ssinx - cosx).

3. 2/ = ce2'' + e-^'' + le*'(sinx — cosx).

4. 2/ = (c + 3x)e-^ + l(2x-l)e'-.

5. 2/ = ce-'*^ + I
—

Y^^
(2cos2x + sin2x).

6. 2/ = e^[c + 2x- log(e2-^ + 1)].

7 . 2/ = ce2 ^ — gJ^ (2 sin 5 X + 5 cos 5 x) + J^ (2 sin x + cos x)

.
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S. y = fie2
' + C2e-4*. 10. y = (ci + c^x) e-^^.

9. ?/ = cie^-t + C2. 11- 2/ = CisinSx + C2Cos3x.

12. ?/ = e3-^(ciCOs2x + C2sin2x).

13. y = c,e- + C2e-3x _ ^ x" - | x« - V x2 _ ^V x - 3//-

14. 2/ = Cie"- + coe- ^ - 2 + | cos 2 x.

15. y = Cie2-^ + Coe-S'^ + 2iT(9sin3x - 19co.s3x).

17. y = ci + C2e-3- + y\x^ + },x^ - ^x^ + ^x.

18. 2/ = (ci + i x3 - x2 - f x)e^^ + coe-- 3j;

Page 361

19. y = (ci + C2X + I x2) e^ + 4 e2'-.

20. ?/ = (ci + c.2x)e--^ + x3 - Cx2 + 18x - 25.

21.2/ = [ci + C2X - log (X - 3)] e3-'-.

g2.r

22. y = {ci + C2X)e-2-' + -^(7 .sin3x - 24 cos3x).

23. y = ci .sin 2 x + C2 cos 2 x + |- (.sin 2 x - 2 cos 2 x).

24. y = ci sin x + C2 cos x - I cos 2 x + gL cos 8 x.

25. ?/ = CiC0s2x + (C2 + x)sin2x.

26. y = ci cos X Va + C2 sin X V3 + J X + 1 X cos 2 X - 2 sin 2 x.

27. 2/ = e2^[cisin3x + (C2 - ix)cos3x].

1 _^/ xV3 . xV3\
28. y = l + -e^ + e 2/ cjcos ^— + Co.sm ^^ I.

29. ?/ = e--^(ciCos2x + C2.sin2x) + (^ x^ - ^)e-''+ gV
^^''•

- / x^3 . X V3\ „ 1 A o. _L <?

30. y = e2(ci cos -^ 1- c^sm —^j + -^x^ + lOx + 3.

31. y = Ci + CoX + Cse^^.

32. y = Ci + C2 cos X + C3 sin x.

-^/ xV3 . xV3\
33. y = Cie-^ + e 2/ ca cos --— + C3 .sm -^1 •

34. y = (ci + C2X) cosx + (Cg + C4X) sinx.

35. y = x2 + CiX + C2 + C3 cos x + C4 sin x.

1
—

"=^ / X X \
36. 2/ = -(e^-e-^) + e^2/cicos— + C2sin--=j

4-e"Vi(c3COs^ + c,sin^).

^/ xVs . xV3\
37. 2/ = Cie-^ + e2(c2COS—— + C3sm-^—

)

+ I e-- (2 sin x - cos x) + ^i^ e- * (2 sin x + 3 cos x).
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38. y = e^^{ciC0!i2x + C2 sin 2 x) + e--"-^** (C3 cos 2x + C4sin2x)

I .! 7-3 _ 3 7. _ 1 p-3.r+ 49'^ 240T'*' 5yff*^

39. 7j = ci + C2X + (J x3 - 2 x2 + 7 X + C3) e^.

40. y = {ci + CoX) cos 2 X + (cs + C4X - ^L x-) sin 2x.

41. y = ci + X + (C2 + 033; + ^ x2)e2-^.

42. ?/ = cje-^ + C2 + C3X - 3x'^ + x^ - 1 x"* + ^V^;^-

43.

44.

45.

46.

47.

48.

49.

50.

X = ce^, ?/ = ce''.

X = ce^ + I e5« - 2 e2', ?/ = ce^ - f e^' - e^'.

X = cie3' + C2e-2« + ^ e' + jV (5 cos2 i + sin 2 <),

2/ = _ 3cie3« - icae-^' + ^ «' - s'o (^^^^^^^ + 19 sin 2^).

X = cie' + f2e4' + JJ_, y = cie' - 2 Coe^' + 1.

x = Cie3« + coe*' + 3, y = 2cie3' + Cje*' + 2.

X = ci + C2e2' + cse- ' + -LL t - | T^ + J ^^

2/ ^ 2ci + I
- 2c2e2« + Cse-' + §^ - l<2 + ^t^

X = ci + Coe2' + C3e- ' + ^ i -
i^

i- + i i^

2/ = •V + Scse-' - f e-2' + G« - 3«2 + ^3.

at

'vi/
-7=/ ai . at \

—rJ at .at
X = 6^2/ ci cos—^ + C2 sin—n ) + e ^2 ^g cos —= + Ct sm —

^

V V2 V2/ V A 2 V2

,V-2
at . at

,

Ci sin—-
1 + e

V2/

V2 C3 sin—:r - Ci cos —= .

V2 V2/

Page

51.

52.

53.
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60. V = ^ (4 - CC) + C2X-^ (l--x +
,

^'^
x2

X- \ 2 • 7

x3 + . . . + (_ !)'•

—

^ ^ ^ V .
a:' +

1^ . 6 7 • 8 ' ' [r 6 • 7 • 8 • • • (r + 5)

^•7

^3
--' ^

61. 2/ = ci Fl - i (>ix^) +~ (nx^y - llAll /nx^\s

1 • 4 • 7 • • • (3 r - 2) "I

|_3r

25
+ C2X \l - -^ (nx^) +^ {nx3)2 _ ^ "

'^^^^

"
(^3)3

1
3 r + 1 J

1, • o '"v- -/ , ?i (ji — 4) (n — 16) .
62. ?/ = Ci 1 + - x2 + —^ ^ X* + —

^

/-> -x^
[n „ n (n — 4) ,

1 +|-,-«- + ^:,

—

-^* +

|2r J

r, n-l „ (n-l)in-9) , (n - 1) (n - 9) (?i - 25) „+ CgX 1 + — X- + ^ ^ -x* + ^^ ———— '-x^

L 3 5 7[3

]
+ . . . + (n - l)(n - 9)(n - 25) ...[n-{2r- m ^.^,.

_^

1

2 I- + 1

63. s = Ci co.s /i( + C2 sin /if H co.s kt. (Jfi is the constant ratio.)
h- — A;-

s = Ci cos ^•i + Co sin kt + - sin kt, if /i = A;.

2 k

<V/2-4A2

rt (h:^ — k!^\ onu kt. 4- nM sin i-^

, if l>2h;

64. s =e 2\^cie 2 + c^e ^

a (^'^ — fc2) cos A;f + aA;Z sin kt

{m - A;2)2 + (iky-

u
„ , t V4 A-i - Z2 _ ^ V4 h^ - Z2

s = e -' I Ci cos 1- C2 sin

a Ut- — A;2) cos kt + aArZ sin kt . . ,

H ^
, \t I <2h;

/ J^ ;, a (/i2 — A;-) COS fr^ + 2 aM sin fc^ ...
s = (ci + cA) e- '" + —^

, it I = 2h.
'

(/i^ - K^y- + (2 hkf
{h~ and I are tlie constant ratios.)

65. h = k, I very small.

CHAPTER XIX
Page 370

1.2 = My)e"'' + My)e-'"^- 3. z = <t>i{y)e"--' + H{y)-

2. z = -^ <j>i(y) + 02(2/). 4. z = 0i(y)e3^ + 02(2/)e2^
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Page 371

5. z = e-2!/[0i(x)cos?/ + 02(3^) siny].

6. z= 1 a;22/2 + <t>i{y) + M^)-

7.2=
,\
(x3y + xy3) + 0i(2/) + 02(X).

8. <p{z-y, y -z) = 0.

9. ^ (x'-^ + ?/, 2) = 0.

11. (a; + y + z, .^2 + ?/- - Z-) = 0.

13. 0[e-3^(2x-2/), e-9^(4x + 2/)] = 0.

14. 0/^, ") = 0.

15. (pixy, xyz

zA =0.

12. x2 + ?/-, z + tan-
1

'

16. <^/|, xy

17. </)(x- - 2/2, ?/ - z

V
18. X — 2. XZ -

= 0.

= 0.

21. u = ^(r sin ^ + - r^ sin 3 ^ + - r^ sin 5 ^ + •
• )

.

TT \ 3 5 /

22. u =u = - (e-«-'slnx + - e-^^-'sinSx + - e- -^ "'-' sin 5 x + •••).
7r\ 3 6 /
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Abscissa, I, 3G

Absolute convergence, II, 283

Absolute value of complex number,

II, 305

Absolute value of real number, II, 283

Acceleration, I, 202

Adiabatic line, II, 207

Algebraic equations (see Equations)

Algebraic functions, classification, 1, 43

graphs, I, 121

differentiation, I, 178

implicit, I, 188

integration, II, 2G, 113, 119

Amplitude of complex number, II, 305

Analytic function, II, 311

Angle between normal and focal radii

of ellipse, I, 191

between plane curves, I, 211

between planes, II, 186

between space curves, II, 184

between straight lines in plane, I,

57

between straight lines in space, II,

183

between tangent and radius vector,

I, 345

eccentric, of ellipse, I, 304

vectorial, I, 329

Arc, derivatives in plane polar coordi-

nates, I, 347

derivatives in plane rectangular

coordinates, I, 196

differential in plane polar coordi-

nates, II, 79

differential in plane rectangular

coordinates, II, 78

Arc, differential in space rectangular

coordinates, II, 180

length defined, I, 195

length in plane polar coordinates,

II, 77

length in plane rectangular coordi-

nates, II, 75

length in space rectangular coordi-

nates, II, 170

limit of ratio to chord, I, 195

Archimedes, spiral of, I, 332

Area, center of gravity by single in-

tegration, II, 94, 96

center of gravity by double inte-

gration, II, 246

derivative in polar coordinates, I,

348

derivative in rectangular coordi-

nates, I, 204 ; II, 47

determination by double integra-

tion, 11, 239, 240

determination by line integral, II,

260

determination in oblique coordi-

nates, II, 66

determination in polar coordi-

nates, II, 67

determination in rectangular co-

ordinates, II, 64

moment of inertia, II, 236

of any surface, II, 241

of ellipse, I, 304 ; II, 65, 66,

261

of lemniscate, I, 348

of parabolic segment, I, 216 ; II,

95

399
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Area of rose of three leaves, II, 69

of sphere, II, 242

of surface of revolution, II, 79

projection of, II, 177

representing definite integral, II,

41

Argument of complex nu.mber, II, 305

Asymptote, defined and illustrated, I,

128

of hyperbola, I, 145

of hyperbolic spiral, I, 333

Attraction, by multiple integration, II,

252

by single integration, II, 86

of cylinder, II, 252

of wire, II, 87

Auxiliary circle of ellipse, I, 304

Axes of coordinates (see Coordinates)

of ellipse, I, 141

of hyperbola, I, 145

Axis of parabola, I, 147

of revolution, II, 69

of symmetry, I, 121

radical, I, 175

Beams, bending moment of, II, 149

Bernouilli's eciuation, II, 148

Bessel's equation, II, 359

Bessel's functions, II, 360

Binomial theorem, II, 59

Bisection of straight line, I, 39

Boyle-Mariotte's law, I, 43

Cardioid, I, 337

radius of curvature, I, 362

Cassini, ovals of, I, 338

Catenary, equation and graph, I, 281

equation derived, II, 143

property of, II, 152

Center of circle, I, 134

of conic, I, 238

of curvature, I, 356

Center of gravity, defined in plane, II,

DO

defined in space, II, 245

of elliptic segment, II, 96, 247

Center of gravity, of parabolic seg-

ment, II, 95

of i^lane area by single integra-

tion II, 94

of plane area by double integra-

tion, II, 246

of plane curve, II, 92

of quarter circumference, 11, 93

of solid, II, 248

of solid or surface of revolution,

II, 96

of spherical segment, II, 97

Center of pressure, II, 98

of pressure of circle, II, 98

Change of coordinates (see Coordinates)

of limits in definite integral, II, 49

Chord of contact, I, 248

supplemental, I, 264

Circle, auxiliary of ellipse, I, 304

center of gravity of quarter cir-

cumference, II, 93

definition and general equation, I,

134

involute of, I, 311

of curvature, I, 354

parametric equations, I, 303

polar equation, I, 342

pressure on, II, 89, 98

special case of conic, I, 149

special case of ellipse, 1, 142

tangent to known line, I, 136

through known point, I, 136

through three known points, 1, 138

with center on known line, I, 137

Cissoid, I, 151

polar equation, I, 341

Clairaut's equation, II, 321

Coefficient, differential, II, 7

of element of a determinant, I, 8

undetermined, in differential equa-

tions, II, 350

undetermined, in partial fractions,

II, 104

CoUinear points in a plane, I, 38

in space, II, 188

Comparison test for convergence, n,280
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Complex numbers, argument, II, 305

conjugate, I, 32

defined, I, 31 ; II, 304

fvinctions of, II, 307

graphical representation, II, 304

modulus of, II, 305

operations with, I, 32 ; II, 305

Complementary function, II, 349

Components of force, I, 34

of velocity, I, 200

Concavity of plane curve, 1, 112

Conchoid, I, 334

Cone, II, 165

Conies, classification, I, 237

definition, I, 148

diameter, I, 252

general equation, I, 229

in oblique coordinates, I, 244

limiting cases, I, 234

polar, I, 247

polar equation, I, 343

tangent, I, 246

through five points, I, 241

treatment of numerical equations,

I, 240

See also Ellipse, Hyperbola, Pa-

rabola

Conjugate axis of hyperbola, I, 145

Conjugate complex numbers, I, 32

Conjugate diameters of conic, I, 258

Coujugate functions, II, 313

Conjugate hyperbolas, I, 262

Conoid, II, 173

Constant, defined, I, 40

of integration, I, 206 ; II, 12

Contact, chord of, I, 248

point of, I, 105

Continuity of function of one variable,

I, 101

of function of two variables, II,

200

Convergence, absolute, II, 283

comparison test, II, 280

definition, II, 279

ratio test, II, 281

region of, II, 285

Coordinates, Cartesian, I, 224

change from plane rectangular to

oblique, I, 224

change from plane rectangular to

polar, I, 341

change from space rectangiUar to

cylindrical, II, 231

change from space rectangular to

polar, II, 231

change in multiple integrals, II,

234

change in partial derivatives, II,

208

change of direction of plane axes,

I, 221

change of direction of space axes,

II, 193

change of plane origin, I, 217

change of space origin, II, 193

cylindrical, II, 231

oblique in plane, I, 223

oblique in space, II, 159

polar in plane, I, 329

polar in space, II, 231

rectangular in plane, I, 35

rectangular in space, II, 158

Curvature, center of, I, 356

circle of, I, 354

definition, I, 353

radius of, in parametric form, I,

360

radius of, in polar coordinates, I,

361

radius of, in rectangular coordi-

nates, I, 354

Curve, Cartesian equation of plane

curve, I, 44

center of gravity, II, 92

degree, I, 166

direction of space curve, II, 182

equations of space curve, II, 170

parametric equations of plane

curve, I, 302

polar equation of plane curve, I,

330

second-degree curves, I, 229
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Curve, slope of plane curve, I, 99

tangent to plane curve, I, 104

tangent to space curve, II, 189

with given slope, I, 207

See also Arc, Area, Curvature

Curves, family of, II, 316

intersection of , I, 161

with common points of intersec-

tion, I, 171

Cycloid, I, 305

radius of curvature, I, 361

tangent to, I, 315

Cylinders, II, 169

Cylindroid, II, 173

Definite integrals, applications to

geometry, II, 64, 236

applications to mechanics, II, 86,

236

change of coordinates, II, 234

change of limits, II, 49

defined, II, 39

differentiation, II, 216

double, II, 222

element, II, 64

evaluation, II, 47

graphical representation, II, 41

limits of, II, 40

properties, II, 45

triple, II, 230

with infinite integrand, II, 53

with infinite limits, II, 52

Degree of plane curve, I, 166

Derivative, applications, I, 202, 203

application to velocity, I, 198

defined, I, 102

higher, I, 111, 187

higher partial, II, 212, 214

illustrations of, I, 203

illustration of partial, II, 199

of /(x, y) when x and y are func-

tions of s and t, II, 206, 214

of /(x, y) when x and y are func-

tions of t, II, 202, 214

of polar coordinates with respect

to plane arc, I, 347

Derivative of rectangular coordinates

with respect to plane arc, I, 196

of rectangular coordinates with

respect to space arc, II, 182

partial, II, 198

second, I, 110

sign of first, I, 106

sign of second, I, 111

theorems on, I, 179

See also Differentiation

Descartes' folium, I, 132

Descartes' rule of signs, I, 87

Determinants, defined, I, 4

elements, I, 4

expansion, I, 8

minors, I, 4

properties, I, 6

solution of equations, I, 1, 12-23

Diameters, conjugate, I, 258-262

of conic, 1, 252

of ellipse, I, 256

of hyperbola, I, 257

of parabola, I, 254

Differential, defined for one independ-

ent variable, II, 6

defined for several independent

variables, II, 201

exact, II, 269

formulas, II, 10

graphical representation for one

independent variable, II, 8

graphical representation for two

independent variables, II, 206

higher order, II, 10

of plane arc, II, 78

of space ai'c, II, 180

partial, II, 202

total, II, 200

when equal to zero, II, 209

Differential equations, (aix -I- hy + Ci)

dx 4- {a-ix + boy + Co) dy - 0, II,

146

Bernoulli's, II, 148

Bessel's, II, 359

Clairaut's, II, 321

defined, II, 141
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Differential equations, lirst order, ex-

istence of solution, II, 316

first order not of first degree, II,

318

Laplace's, in plane, II, 366

Laplace's, in three dimensions, II,

368

Legendre's, II, 357

linear, II, 340

linear, constant coefficients, any

order, II, 348

linear, constant coefficients, first

order, II, 341

linear, constant coefficients, second

order, II, 343

linear, constant coefficients, solu-

tion by partial fractions, II, 347

linear, constant coefficients, solu-

tion by undetermined coeffi-

cients, II, 350

linear, variable coefficients, II, 354

Mdx + Ndy = 0, exact, II, 270

Mdx+ Ndy = 0, homogeneous, II,

145

Mdx + Ndy = 0, linear, II, 146

Mdx + Ndy = 0, r^sum^, II, 317

Mdx + Ndy = 0, variables sepa-

rable, II, 144

order of, II, 143

partial, II, 363

partial, linear of first order, II, 364

Pdx + Qdy + Rdz = 0, integrable

case, II, 328

Pdx + Qdy + Rdz = 0, noninte-

grable case, II, 335

problems in geometry, 11, 141,

151, 327

problems in mechanics, II, 142,

149, 153, 346, 367, 370

second order, special cases, II, 149

singular solutions, II, 325

simultaneous of first order, II,

332

simultaneous, linear, constant

coefficients, II, 353

solution by series, II, 318, 356

Differentiation, collected formulas, II,

10

defined, I, 102

general formulas, I, 184

of algebraic functions, I, 178

of definite integrals, II, 216

of exponential functions, I, 284

of hyperbolic functions, I, 290

of implicit functions, I, 188 ; II,

210

of inverse hypei'bolic functions, I,

292

of inverse trigonometric func-

tions, I, 276

of logarithmic functions, I, 284

of polynomials, I, 103

of trigonometric functions, I, 272

of u", I, 185

partial, II, 198

partial, independent of order, II,

213

successive, I, 187

use of logarithm, I, 288

See also Derivative, Differential

Direction, cosines defined, II, 180

cosines found from two equations

of line, II, 186

of normal to plane, II, 184

of plane curve in polar coordi-

nates, I, 345

of plane curve in rectangular co-

ordinates, I, 197

of space curve, II, 182

of straight line in space, II, 180

Directrix of circle, I, 149

of conic, I, 148

of ellipse, I, 149

of hyperbola, I, 149

of parabola, I, 146

Discontinuity defined, I, 101

examples of, I, 41, 128, 268, 282,

283 ; II, 292, 294

finite defined, II, 291

Discriminant defined, I, 117

of cubic equation, I, 114, 117

of quadratic equation, I, 73, 117
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Discriminant of quadratic equation in

two variables, I, 236

Distance between two points in plane,

I, 36

between two points in space, II, 178

of point from plane, II, 191

of point from straight line, I, 63

Divergence, II, 279

e, the number, I, 280

Eccentric angle of ellipse, I, 304

Eccentricity of conic, I, 148

Elasticity, I, 204

Element of definite integral, II, 64

of determinant, I, 4

Eliminant, I, 23

Elimination, I, 1

Ellipse, angle be'tween normal and

focal radii, I, 191

area, I, 304 ; II, 65, 6G, 261

center of curvature, I, 357

center of gravity of segment, II,

96, 247

definition and simplest equation,

I, 139

evolute, I, 358

expressed by general eqiuition of

second degree, I, 231, 235

length, II, 77

parametric equations, I, 303

special case of conic, I, 148

radius of curvature, I, 355

referred to conjugate diameters,

I, 259

Ellipsoid, equation, II, 165

volume, II, 73, 249

Energy, kinetic, I, 203

Entropy, II, 272

Envelopes, II, 322

Epicycloid, I, 307

Epitrochoid, I, 309

Equations, complex roots, I, 82

depression of, I, 79

differential (see Differential equa-

tions)

discriminant, I, 117

Equations, fractional roots, I, 90

first degree in two variables, I, 52

first degree in three variables, II,

161

irrational roots, I, 92

multiple roots, I, 116

Newton's method of solution, 1, 1 14

number of roots, I, 80

rational roots, I, 89

second degree in two variables, I,

229

simultaneous, I, 161

simultaneous linear, I, 12

simultaneous linear homogeneous,

1,21

solution by factoring, I, 77

sum and product of roots, I, 82

transcendental, I, 293

with given roots, I, 79

Evolute, I, 357

of ellipse, I, 358

Exact differential in three variables,

II, 276

in two variables, II, 269

Expansion, coefiicient, I, 204

Exponential equations, I, 295

Exponential function, differentiation,

I, 284

expansion, II, 68, 308

integrals, II, 25

of complex number, II, 307

of real number, I, 279

Factoring of quadratic polynomial, 1,79

solution of equations by, I, 77

Factors, integrating, II, 271, 328

list of integrating, II, 273

of polynomial, I, 81, 83

Families of curves, II, 316

orthogonal, II, 314, 327

Flow of liquid, II, 259, 266

Focus of conic, I, 148

of ellipse, I, 139

of hyperbola, I, 142

of parabola, I, 146 .

FoHum of Descartes, I, 132
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Force, I, 202

function, II, 206

Forms, indeterminate, II, 295

Fourier's series, II, 290

Fractions, differentiation, I, 182

integration, II, 113

partial, II, 104

Functions, analytic, II, 311

Bessel's, II, 3G0

classes, I, 43

complementary, II, 349

conjugate, II, 313

continuous, one variable, I, 101

continuous, several variables, II,

200

decreasing, I, 106

defined, one variable, I, 40

defined, several variables, II, 158

defined by equation of second de-

gree, I, 127

graphical representation, one vari-

able, I, 44

graphical representation, two vari-

ables, II, 159

implicit, I, 188 ; II, 210

increasing, I, 106

increment, one variable, I, 100

increment, several variables, II, 200

involving fractions, I, 128

mean value, II, 54

notation, I, 44

periodic, II, 290

total differential, II, 200

See also Algebraic, Exponential,

Hyperbolic, Logarithmic,Trans-

cendental, Trigonometric func-

tions

Gas, graph of Boyle-Mariotte's law,

I, 43

illustrating differential, II, 8

illustrating function, II, 158

illustrating partial derivative, II,

199

temperature-pressure-volume sur-

face. II, 108

General solution, linear differential

equation, II, 350

Generators, rectilinear, II, 172

Graph, I, 40

Gravity (see Center of gravity)

Harmonic division of line, I, 250

Harmonic motion, I, 275

Harmonic property of polars, I, 24!)

Heat, as line integral, II, 260

dependent on path, II, 207

derivatives, II, 269

entropy, II, 272

Helix, direction, II, 182

equation, II, 172

length, II, 180

Homogeneous differential equation, II,

145

Homogeneous equations, I, 21

Homogeneous functions, II, 145

Horner's method referred to, I, 92

Hyperbola, conjugate, I, 202

definition and simplest equation,

I, 142

equilateral, I, 140

expressed by general equation of

second degree, I, 231, 235

referred to asymptotes, I, 224

referred to conjugate diameters,

I, 259

special case of conic, I, 149

Hyperbolic functions, defined, I, 288

differentiation, I, 290

differentiation of inverse, I, 292

expansion, II, 03

integrals leading to inverse, II, 24

inverse, I, 291

Hyperbolic spiral, I, 332

Hyperboloid of one sheet, II, 103

of two sheets, II, 105

Hypocycloid, I, 309

four-cusped, I, 132

Imaginary numbers {see Complex mim-

Imaginary surfaces, II, 100 [bars)

Imaginary unit, I, 31
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Implicit functions, general discussion,

II, 210

special case, I, 188

Increment of function of one variable,

I, 100

of functions of several variables,

II, 200

Indefinite integral, defined, II, 41

containing Vg + bz, II, 29, 119

containing Va + bx + x"^ , II, 121

containing Va + bx — x^, II, 122

containing Va^ — x^ , II, 29

containing Vx^ + a? , II, 29

containing Vx^ — a^, II, 29

fundamental formulas, II, 26

of
^'^

, II, 29

of

{Ax + 5)Vax2 + bx + c

dx dx

a + b cosx a + bsinx

^^
, II, 129

a cosx + bsinx

of e"^ sin bx dx, e«'' cos bx dx, II,

31

of rational fractions, II, 113

of secxdx, csC'xcZx, II, 127

of sin«xcZx, coswxdx, II, 123

of sin'«xcos"xdx, II, 124, 135

of tan»xdx, ctn«xdx, II, 126

of tan"'xsec"xdx, ctn'»x csc"xdx,

II, 128

of Va^-x^ dx, II, 28

of Va2 + x2 dx, II, 32

of M«, II, 14

of x'"(a 4- bx»)pdx, II, 120, 130

reduction formulas, II, 130, 135

See also Integration

Indeterminate forms, II, 295-301

Indicator diagram, II, 43, 54

Inertia (see Moment of inertia)

Infinitesimal, defined, II, 1

Infinitesimals, fundamental theorems

on, II, 4

order of, II, 1

Infinity, I, 29

Inflection, point of , II, 112. 194

Integral, particular, II, 349

See also Definite, Indefinite, and

Line integrals

Integrand, defined, II, 12

infinite, II, 53

Integrating factors, II, 273

Integration, by parts, II, 30, 51

by substitution (see Substitution)

constant of, II, 12

definition, II, 12

elementary formulas, II, 26

fundamental formulas, II, 13

of rational fractions, II, 113

of simple differential equations,

II, 141

possibility of, II, 32

preliminary discussion, I, 205

special methods of, II, 119

See also Definite and Indefinite

integrals

Intercepts, I, 53

Intersection, curves with common
points, I, 171

number of points, I, 169

of plane curves, I, 161

Involute, I, 357

of circle, I, 311

Isolatedpoints,examples, 1, 126; 11,292

Kinetic energy, I, 203

Laplace's equation, in plane, II, 366

in three dimensions, II, 368

Latus rectum, I, 211

Legendre's coefficients, II, 359

Legendre's equation, II, 357

Lemniscate, I, 340

area, I, 348

Cartesian equation, I, 341

Length {see Arc and Distance)

Limagon, I, 336

Limit, approached by variable, defined,

I, 97

of ratio of arc to chord, I, 195

^ . . . sin h , 1 — cos h ^ _„^
Limits of and , 1, ^<U

h h

of (1 + h)~^ and ^^^, I, 283
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Limits, theorems relating to, I, 178

Limits of definite integral, change of,

II, 49

defined, II, 40

infinite, II, 52

Line, adiabatic, II, 267

Line integral, defined, II, 258

dependent on path, II, 207

independent of path, II, 263

related to double integral, II, 261

Line, straight, determined by two

points in plane, I, 60

determined by two points in space,

II, 187

determined by point and direction

in plane, I, 58

determined by point and direction

in space, II, 100

direction cosines, II, 186

direction in plane, I, 55

direction in space, II, 180

equation in plane, I, 50

equations in space, II, 170

intersection in plane, I, 61

normal equation in plane, I, 64

parallel lines in plane, I, 56

parallel lines in space, II, 183

parametric equations in plane, I, 302

Xjerpendicular lines in plane, I, 57

perpendicular lines in space, II,

183

polar equation in plane, I, 342

satisfying two conditions in plane,

I, 58

tangent to plane curve, I, 104

tangent to space curve, II, 189

Linear algebraic equations, I, 1

Linear differential equations,II , 146,340

Linear partial differential equations,

II, 364

See also Equations and Differential

equations

Liquid, flow of, II, 259, 266

Locus, I, 45

problems, I, 316

Logarithm, Naperian, I, 280

Logarithmic function, differentiation

of, I, 284

expansion, II, 59

of complex number, II, 310

of real number, I, 279

Maclaurin's series, II, 55, 287

Maxima and minima defined, I, 108

discussed by Taylor's theorem, II,

60

for functions of two variables, II,

205

problems, I, 192, 275

test by first derivative, I, 108

test by second derivative, I, 112

Mean value of function, II, 54

Mechanics and physics problems, ac-

celeration, I, 202

adiabatic lines, II, 267

attraction of wire, II, 87

attraction of cylinder, II, 252

beams, bending moment, II, 149

Boyle-Mariotte's law, I, 43

catenaiy, II, 142

center of gravity, II, 90, 245

center of pressure, II, 98

coefficient of expansion, I, 204

components of force, I, 34, 35

components of velocity, I, 200

damped vibrations, II, 346

deflection of girder, I, 110

elasticity, I, 204

flow of liquid, II, 259, 266

force, I, 202

gas (.see Gas)

harmonic motion, I, 275

heat (see Heat)

height of atmosphere, I, 287

indicator diagram, II, 43

kinetic energy, I, 203

lever, I, 192

mean velocity, II, 54

moment of inertia, II, 236, 251

momentum, I, 203

motion of particle (see Motion)

pendulum, II, 153
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Mechanics and physics problems, po-

tential, II, 20:^

potential due to ring, II, 370

pressure, II, 88

pressure-temperature-volume sur-

face, II, 1G8

projectile, I, 314

refraction of light, I, 192

saturated steam, I, 42

temperature in long plate, II, 307

uniform motion, I, 199

velocity, I, 198

work (see Work)

Minima (see Maxima)

Minors of determinant, I, 4

Modulus of complex number, II, 305

Moment, bending, II, 149

Moment of inertia, defined, II, 236

any plane area, II, 236

rectangle, II, 224

solid, II, 251

sphere, II, 251

Momentum, I, 203

Motion of particle, falling in resisting

medium, I, 292

harmonic, I, 275

in circle, I, 314

in ellipse, I, 314

path of, I, 313

projected upwards, I, 203

uniform, I, 199

vibrating in resisting medium, II,

346

with given velocity and accelera-

tion, I, 207

Newton's solution of equations, I, 114

Normal equation, of plane, II, 185

of straight line, I, 64

Normal, to plane, II, 184

to plane curve, I, 191

to straight line, I, 59

to surface, II, 204, 211

Numbers, classification, I, 28

complex, I, 31 ; II, 304

irrational, I, 28

Numbers, rational, I, 28

real, I, 29

See also Complex numbers

Operator, differential, II, 340

1
formulas for

D
, II, 342

Order of differential equation, II, 143

of infinitesimal, II, 1

Ordinate, I, 36

Orthogonal trajectories, II, 327

Ovals of Cassini, I, 338

Parabola, area of segment,!, 216; II, 95

center of gravity of segment, II, 95

cubical, I, 74

definition and simplestequation, I,

146

expressed by general equation of

second degree, I, 231, 235

length, II, 77

path of projectile, I, 314

referred to diameter and tangent,

I, 255

referred to tangents at end of

latus rectum, I, 132

semicubical, I, 131

special case of conic, I, 148

Paraboloid, elliptic, II, 162

hyperbolic, II, 166

tangent plane, II, 205

Parametric equations, I, 302

differentiation, I, 315

Partial derivative, II, 108

Partial differential, II, 202

Partial differential equations, II, 3C3

Partial fractions, II, 104

Particular integral, II, 349

Parts, integration by, II, 30, 51

Pedal curves, I, 310

Pendulum, II, 153

Periodic function, II, 290

Physics (see Mechanics)

Plane determined by normal and point,

II, 184

determined by three points, II, 190
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Plane, direction of normal, II, 184

distance of point from, II, 191

equation, II, 161

normal equation, II, 185

parallel planes, II, 183

perpendicular planes, II, 183

tangent, II, 204, 211

through given straight line, II, 192

Polars, I, 247

reciprocal, I, 251

Pole of straight line, I, 247

of system of coordinates, I, 329

Polynomial, defined, I, 43

derivative of, I, 97

factors, I, 81, 83

first degree, I, 50

nth degree, I, 74

second degree, I, 70

square root of, I, 121

Potential due to ring, II, 370

rate of change, II, 203

Pressure, II, 88

center of, II, 98

on circle, II, 89, 98

Prismoid, II, 75

Prismoidal formula, II, 74, 173

Products, graphs of, I, 83

Projectile, path of, I, 314

Projection in plane, I, 34

in space, II, 176

Radius of curvature in parametric

form, I, 360

of curvature in polar coordinates,

I, 361

of curvature in rectangular co-

ordinates, I, 354

vector, I, 329

Rate of change, I, 203

Ratio test for convergence, II, 281

Rationalization of integrals, II, 119

Reduction formulas, algebraic, II, 130

trigonometric, II, 134

Region of convergence, II, 285

Resultant, I, 23

Revolution, area of surface, II, 79

Revolution, center of gravity of sur-

face or solid, II, 96

equation of surface, II, 168

volume of solid, II, 69

Ring-surface, area, II, 80

volume, II, 71

Roots, complex, I, 82

fractional, I, 90

irrational, I, 92, 114

location, I, 86

multiple, I, 116

number of, I, 80

of unity, II, 307

rational, I, 89

relation to factors, I, 78

sum and product, I, 82

Rose of three leaves, I, 331

area, II, 69

Ruled surfaces, II, 172

Segments of line, addition of, I, 32

Series, convergent, II, 279

divergent, II, 279

Fourier's, II, 290

geometric, II, 279

harmonic, II, 280

Maclaurin's, II, 55, 287

operations with, II, 59, 286

power, II, 284

solution of differential equations

by, II, 318, 356

Taylor's, II, 55, 287

Sine, graphical construction, I, 267

Singular points of curve, II, 324

Singular solution of differential equa-

tion, II, 325

Slope of plane curve, I, 99

of straight line, I, 54

Solid (see Center of gravity. Moment
of inertia, and Volume)

Space coordinates (see Coordinates)

Sphere, area, II, 242

center of gravity of segment, II, 97

equation, II, 178

moment of inertia, II, 251

Spiral of Archimedes, I, 332



410 INDEX

Spiral, hyperbolic, I, 332

logarithmic, I, 333

Statistics, graphs, I, 41

Stokes's theorem, II, 274

Straight line (see Line)

Strophoid, I, 152

Subnormal, I, 210

polar, I, 351

Substitution, integration by, II, 27

general discussion, II, 119

in definite integrals, II, 49

suggestions for, II, 29

Subtangent, I, 210

polar, I, 351

Successive differentiation, I, 187

Supplemental chords, I, 264

Surface, normal line, II, 204, 211

of second order, II, 162-108

of revolution, II, 168

ruled, 11, 172

tangent plane to, II, 204, 211

See also Area, Center of gravity.

Moment of inertia. Volume

Sylvester's method of elimination, 1, 24

Symmetry, axis of, I, 121

Tangent to circle, I, 190

to conies, simplest equations, 1, 190

to conies, general equation, I, 246

to plane curve, I, 104 ; II, 210

to space cui-ves, II, 189, 212

to surface, II, 204, 211

with given slope, I, 163

Taylor's series for one variable, II,

55, 287

for several variables, II, 288

Temperature of long jjlate, II, 367

Time as parameter, I, 313

Total differential, II, 200

Tractrix, II, 142

Trajectories, orthogonal, II, 327

Transcendental equations, I, 293

Transcendental functions of complex

number, II, 307-311

Transcendental functions of real num-

ber, I, 266

Transformation of coordinates (see Co-

ordinates)

Trigonometric equations, I, 293

Trigonometric functions, differentia-

tion, I, 272

differentiation of inverse, I, 276

expansion, II, 58, 62, 308

integrals leading to inverse, II, 19

integration, II, 123

inverse, I, 269

inverse, expansion, II, 59, 62

of complex number, II, 307

of real number, I, 266

Trochoid, I, 306

Undetermined coefficients (see Co-

efficients)

Value (see Absolute and Mean value)

Variable, defined, I, 40

Variation of sign in polynomial, I, 87

Vector, II, 304

radius, I, 329

Vectorial angle, I, 329

Velocity, I, 198

components, I, 200

Vertex of ellipse, I, 141

of hyperbola, I, 144

of parabola, I, 147

Volume, any solid, II, 249

common to two cylinders, II, 74

cylindrical coordinates, II, 232

ellipsoid, II, 73, 249

polar coordinates, II, 233

prismoidal formula, II, 74

solid of revolution, II, 69

solid with parallel bases, II, 72

Witch, I, 149

points of inflection, I, 194

Work, defined, II, 40

dependent on path, II, 267

expressed by indicator diagram,

II, 43

expressed as line integral, II, 259

independent of path, II, 266

Zero, I, 29
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