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INTRODUCTION

1 he fact that actuarial science is fundamentally

a branch of biology rather than of mathematics is

overlooked far more generally than ought to be the

case. Most people, even those of education and wide
culture, are inclined to look upon an actuary as a

particularly crabbed, narrow, and intellectually dusty

kind of mathematician. In reality his subject is one

of the liveliest in the whole domain of biology, and

none surpasses it in its practical interest and import-

ance to mankind. Because, what the actuary is, or

at least should be, trying always to formulate more
and more definitely are the laws which determine

the duration of human life. Why the actuary in fact

is too often intellectually but little more than a sort

of glorified computer, is really only the result of a

defect in the teaching of biology in our colleges and

universities. It has only lately come to be recognized

anywhere that a biologist needed a substantial founda-

tion in mathematics in order successfully to practice

a biological profession. It is' not too rash a prediction

to say that presently the time is coming when no

important actuarial post will be held by a mathe-

matician who knows little or no biology. The vigor

and originality of his biological outlook will be valued

as highly as the rigidity of his mathematical sub-

structure now is.
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The thing which chiefly makes this book by my
friend Arne Fisher notable, lies, in a broad sense,

in the fact that it is a highly original and absolutely

novel essay in general biology. The language is to a

considerable extent mathematical, to be sure, but the

subject matter, the mode of logical approach, and the

significant conclusion — all these are pure biology.

Unfortunately many biologists will not be able to

appreciate its significance, or even to read it intel-

ligently. But this is their loss, and at the same time

an exposure of the dire poverty of their intellectual

equipment for dealing with the problems of their

science.

There are two broad features of Fisher's work
which want emphasis. The first is the successful

construction of a life table from a knowledge of deaths

alone. That the construction is successful his results

set forth in this book abundantly demonstrate. To
have done this is a mathematical and actuarial

achievement of the first rank. It may fairly be

regarded as fundamentally the most significant ad-

vance in actuarial theory since Halley. It opens out

wonderful possibilities of research on the laws of

mortality, in directions which have hitherto been

wholly impossible of attack. The criterion by which
the significance of a new technique in any branch of

science is evaluated, is just this of the degree to which
it opens up new fields of research. By this criterion

Fisher's work stands in a high and secure position.

But of vastly more significance considered purely

as an intellectual achievement is his discovery of

the fundamental biological law relating the several

causes of death to each other, which made the tech-

nical accomplishment possible. More than one accepted
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text book on vital- statistics has scornfully instructed

its readers that no good whatever could come from

any tabulation or study of death ratios; that they must
be avoided as the pestilence by any statistician who
would be orthodox. But orthodoxy and discovery are

as incompatible intellectually as oil and water are

physically, a cosmic law often overlooked by our
" safe and sane" scientific gentry. This book is an
outstanding demonstration that this law is still in

operation. Fisher has had the temerity to study the

ratios of deaths from- one cause or group of causes

to those from another group, or to all causes together,

and1 has discovered that there abides a real and
hitherto unsuspected lawfulness in these ratios. Here
again his pioneer work opens out alluring vistas to

the thoughtful biometrican.

Altogether we of America are to be warmly
congratulated that this brilliant Danish mathematical

biologist has chosen to come and live with us.

Baltimore, November 1921.

Raymond Pearl.



AUTHOR'S PREFACE

1 he classical method of measuring mortality rests

essentially upon the fundamental principles first

enunciated by the British astronomer, Halley, in his

construction of the famous Breslau Life Table. Since

the time of Halley this method has been so thoroughly

investigated and has been perfected to such an extent

that new developments along this line cannot be

expected. Any improvements on the original principles

of Halley are after all nothing but refinements in

graduating methods; and even in this line it appears

that the limit of further perfection has been reached.

Halley's method, which is purely empirical in

scope and principle, rests primarily upon the know-
ledge of the number of persons exposed to risk at

various ages and the correlated number of deaths

among such exposures. In all cases where such
information is at hand the old and tried method meets
all requirements to our full satisfaction; and it would
appear superfluous to try to supplant it with fun-

damentally different principles.

In presenting the new method outlined in this

little book I wish to state most emphatically that it

has never been my intention to try to supersede the

conventional methods of constructon of mortality
tables wherever such methods are applicable. My
proposed method is only a supplement to the former
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tools of statisticians and actuaries, and aims to

utilize numerous statistical materials to which the

older system of Halley is not applicable. The idea,

whether it is new or not, meets in reality a very

frequent need in mortality investigations. It is a well

known fact that in the determination of certain

statistical ratios, it is easier to determine the nume-
rator than the denominator, as for instance in life

or sickness assurance, where the losses can be

ascertained with a very close degree of accuracy,

while the collection of persons exposed to risk at

various ages is often difficult to obtain. Similar

remarks hold true in the case of numerous statistical

summaries of mortuary records as published in most
government reports on vital statistics. The desire to

utilize this enormous statistical material was what
led me to try the proposed method.

In principle the plan is fundamentally different

from that of the empirical method of Halley, inasmuch
as I have attempted to substitute the inductive

principle for that of pure empiricism.

In the first place, I consider the dx curve, or the

number of deaths by attained ages among the

survivors of an original cohort of say 1,000,000

entrants at age 10, as being generated as a compound
curve of a limited number (say 8 or less) of subsidiary

component curves of either the Laplacean-Charlier or

Poissori-Charlier type.

The method of induction now consists in deter-

mining the constants or parameters of these sub-

sidiary curves. These parameters fall into two

separate categories:

—

A. The statistical characteristics or semi-invari-

ants which determine the relative frequency distribu-
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tion by attained age at death, as expressed by the

mean, the dispersion, the skewness and the excess

of each subsidiary or component curve.

B. The areas of each subsidiary or component

curve.

The working hypothesis which I have put forward

is that the relative frequency distribution of deaths by at-

tained ages, classified according to a limited number of

groups (generally 8 or less) of causes of death among the

survivors of the original cohort of entrants, tend to cluster

around certain ages in such a way that it is possible from

biological considerations to estimate in practice with a

sufficiently close degree of approximation the statistical

characteristics or semi-invariants of the relative frequency

distributions of the component curves, corresponding to a

previously chosen classification of causes of death (into 8

or less subsidiary groups).

This implies briefly that I suppose it is possible

from biological considerations to select a priori the

statistical characteristics of the category as mentioned

above under A.

Once this hypothesis is accepted as a true supposi-

tion, the areas of each of the component curves can

be determined by purely deductive methods (as for

instance the method of least squares) from the

observed values of the proportionate death ratios

RB (x) (x = 10, 11, 12, 100; B =1, II, III,

) corresponding to the groups of causes

of death.

Thus the parameters as determined in this

manner exhaust the given statistical material, i.e.

the observed proportionate death ratios RB (x). A
mere addition of the subsidiary or component curves
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gives us then the compound dx curve from which it

is an easy task to find the functions, ix and qx.

The scheme as we have briefly outlined it above
is, therefore, not a cut-and-dried doctrine or a sort

of "mathematical alchemy" as some of my critics

have implied. Nor is it an authoritative or infallible

dogma. The keystone upon which its success depends
is merely a working hypothesis; i.e. a temporary or

preliminary supposition. I suppose something to be
true and try to ascertain whether, in the light of that

supposed truth, certain facts fit together better than
they do with any other supposition hitherto tried.

The validity of the working hypothesis must, in

my opinion, be proved or disproved either by-

independent methods and principles of construction

of mortality tables, such as for instance the empirical

principle of Halley, hitherto exclusively used by the

actuaries, or through additional biological studies. l

1 The biological basis of Mr. Fisher's working hypothesis, which is

of far greater importance than the purely ancillary mathematical deduc-

tion, has apparently been overlooked by many of his American critics,

such as Little, Thompson and Carver. Dr. Carver in the Proceedings

of the Casualty Actuarial Society of America (Vol. VI, page 357)

remarks that "if we can construct a table from death alone as in Proc.

Vol. IV, and by dividing these deaths by q x , determine the unenumer-

ated population — why not the converse?"

The answer to this remark is obvious. In the case of mortuary

records, Fisher considered two different and distinct attributes, namely

1) the purely quantitative attribute of attained age at death, and 2) the

purely biological attribute of cause of death, which in conjunction with

the working hypothesis to a certain extent aims to replace the unknown

exposures. If we were to follow Dr. Carver's facetious suggestion and, to

use his phrase, "go the proposed plan one better by using enumerated

populations only", we should, however, encounter a statistical series with

the single attribute of attained age only, but no second attribute corres-

ponding to that of the biological factor of the cause of death. Criticisms
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In the meantime I feel justified in presenting to

my readers the practical results obtained by this

method, which although perhaps not unimpeachable

in respect to mathematical rigour, neverthelees in my
opinion offers a means to attack a vast bulk of

collected statistical data against which our former

actuarial tools proved useless. The celebrated Russian

mathematician Tchebycheff, once made a remark to

the effect that in the antique past the Gods proposed

certain problems to be solved by man, later on the

problems were presented by halfgods and great men,
while now dire necessity fo.rces us to seek some
solution to numerous practical problems connected

with our daily conduct. The problem towards which
I have made an attempt to offer a sort of solution in

the present little essay is one of these numerous
problems of dire necessity mentioned by Tchebycheff,

and I hope that my work along this line, imperfect

as it is, may nevertheless prove a beginning towards

more improved methods in the same direction.

In conclusion I wish to extend my thanks to a

number of friends and colleagues both in America
and Europe and Japan who have kept on encouraging

me in my work along these lines in spite of much
adverse criticism from certain statistical and actuarial

circles. I wish in this connection to thank Mr. F. L.

Hoffman, Statistician of the Prudential Insurance

Company, for permitting me to apply the method to

various collections of mortuary records while working
as a computer in his department. My thanks are also

of the sort of Dr. Carver's brings to light the fundamentally different

principles applied by Mr. Fisher in sharp contradistinction to the purely

empirical methods of the orthodox actuary and statistician.

Translator.
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due to Mr. E. A. Vigfusson for. making the trans-

lation from my rough Danish notes. If the resulting

English is perhaps open to criticsm, I beg to remind

the reader that my original manuscript was written

in Danish and translated into English by an Icelander,

while the composition and proof reading was done

by a Copenhagen firm.

To Professor Glover of the University of Michigan

I also wish to extend my thanks for inviting me to

deliver a series of lectures on the construction of

mortality tables before his classes in actuarial

methods during the month of March 1919. This

invitation afforded me the first opportunity to bring

the proposed method before a professional body of

statistical readers.

Last but not least I desire to acknowledge my
obligations to Professor Pearl whose introductory

note I consider the strongest part of the book. In

these departments of knowledge the appreciation of

one's peers is after all the only real reward one can

possibly expect. The fact that this eminent biologist

has recognized that the nucleus of the whole problem

is of a purely biological nature, and that the

mathematical analysis is merely ancillary, is

particularly pleasing to me, because it represents my
own view in this particular matter.

p. t. Newark, U. S. A., November 1921.

Arne Fisher.



TRANSLATOR'S PREFACE

During the spring of 1919 the attention of the

present writer was called to a brief paper entitled

Note on the Construction of Mortality Tables by means of

Compound Frequency Curves by the Danish statisticican,

Mr. Arne Fisher. The novelty and originality of this

paper impressed me to such an extent that I became
desirous' of obtaining more detailed information about

the process than that which necessarily was contained

in the above summary note, originally printed in the

Proceedings of the Casualty and Acturial Society of

America.

I wrote therefore to Mr. Fisher and inquired

whether he intended to publish any further studies

on this1 subject. From his reply I learned that he had

delivered a series of lectures on this very topic before

Professor Glover's insurance classes at the University

of Michigan during the month of March 1919, but that

the proposed method had been met with such captious

opposition in certain actuarial circles that he had
decided to abandon the plan of publishing anything

further on the subject and had even destroyed the

English notes prepared for the Michigan lectures.

In the meantime the proposed scheme had
received considerable attention in actuarial circles in

Europe and Japan and several highly commendatory
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reviews had appeared in the English and Continental

insurance periodicals and various scientific journals,

notably the Journal of the Royal Statistical Society and

the Bulletin de V Association ales Actuaires Suisses. The
proposed method seemed indeed so novel and unique

that I could not help feeling that it deserved a

better fate than that of being forgotten. I sug-

gested therefore to Mr. Fisher that he prepare a

new manuscript. But unfortunately his time did not

allow this. He consented, however, to turn over to

rne his original Danish notes on the subject from
which he had prepared his Michigan lectures and
permitted me to make an English translation for the

Scandinavian Insurance Magazine. I gladly availed

myself of this opportunity to bring this fundamental

work before an international body of readers and
started on the translation in the summer of 1919.

At the same time Mr. Fisher decided to put the

proposed method and working hypothesis to a very

severe test, which would meet even the most stringent

requirements of some of his critics and their conten-

tion that the method would fail in the case of a

rapidly changing population group. For this purpose

he selected a- series of statistical data contained in the

annual reports and statements of a number of the

leading Japanese Life Assurance Offices, relating to

their mortuary records for the four year period from

1914—1917. More than 35,000 records of male lives,

arranged according to the Japanese list of causes of

death and grouped in quinquennial age intervals

formed the basis for the construction of the final

life table which was completed in November 1919.

This table, which like Mr. Fisher's other tables was

derived without anv information of the number of
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lives exposed to risk at various ages, is shown in the

addenda of this treatise.

Immediately after its construction Mr. Fisher isent

this table to the well known Japanese actuary, Mr.

T. Yano, and asked him for an opinion regarding the

trustworthiness of the final death rates of qx as

derived by his new method. The Japanese actuary's

answer arrived in April 1920. Mr. Yano had after

the receipt of Mr. Fisher's letter ascertained the

exposures and deaths among male lives at each

seperate age for about 40 Japanese life offices during

the period 1914—1917 and constructed by means of

the conventional methods a complete series of qx by
integral ages from age 10 to 90. These ungraduated
data are shown as a broken line polygon in the

appended diagram (Figure 1). In spite of the fact that

Mr. Fisher had no information whatever about the

exposed to risk the agreement of the continuous curve

of qx as determined by the frequency curve method
with Mr. Yano's ungraduated data is so close that

I think further comments superfluous. The slight

differences in younger ages might indeed rise from
the fact that Mr. Yano had access to all the experience

(containing more than 45,000 deaths) of all the Ja-

penese companies, whereas Fisher only used the

mortuary records as published by some of the leading

Japanese companies.

Like all scientific methods of induction Mr. Fi-

sher's proposed plan rests upon a working hypothesis,

namely that it is possible from biological considera-

tions to group the deaths among the survivors at

various ages in any mortality table according to

causes in such a maimer that their percentage or

relative frequency distribution according to attained
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age at death will conform to a previously selected

system or family of Laplacean-Charlier or Poisson-

A-L
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upon which hinges the success of the whole method.

One of the main objections of his critics is that it

seems impossible to prove the truth of this working

hypothesis. Naturally its truth cannot be proved by
mathematics or logic any more that we can prove

or disprove the existence of Euclidean space, which
in itself constitutes a working hypothesis for most
of our applied mathematics. Mr. Fisher's critics might

as well be asked to prove or disprove Newton's

hypothetical laws of motion and attraction as

extended by Maxwell and Hertz, or the newer
hypothesis recently put forwards by the relativists,

or the Lorentz hypothesis of contraction. It would
indeed be a terriffic blow to science and the extension

af knowledge if it was required that no working
hypothesis would be alloved in scientific work unless

such hypothesis could be proved to be true. What
position would biology occupy to-day if biologists had
insisted that Darwin's great hypothesis be proved

before it could be allowed1 as a foundation in the study

of evolution?

The most convincing answer to Mr. Fisher's

captious critics among the old school of actuaries

and statisticians is, however, the undisputed fact that

his working hypothesis as such really does work.

As pointed out by Dr. Pearl in the introductory note

of this book the results set forth in the present

treatise abundantly demonstrate this fact. The 6

widely different mortality tables as shown in the

addenda stand as mute and yet as the most eloquent

evidence to the fact that the method works. It might

indeed' not appear impertinent to suggest that Mr.

Fisher's actuarial critics would render a greater

service to their profession by proving that these six
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mortality tables cannot be considered as reasonable

approximator to tables derived by orthodox means
from the same population groups than by starting

to poohpooh and ridicule his proposed method.

Winnipeg, Canada, November 1921.

E. A. Vigfusson.



"Nothing is less warranted in science than an uninqui-

ring and unhoping spirit. In matters of this kind, those

who despair are almost invariably those who have never

tried to succeed."

W. Stanley Jevons.



CHAPTER I

(TRANSLATED BY MISS DICKSON)

AN INTEODUCTION TO THE THEOEY OF
FEEQUENCY CUEVES

1. introduction The following method of con-

structing mortality tables from

mortuary records by sex, age

and cause of death rests essentially upon the

theory of frequency curves originally introduced

by the great Laplace and of recent years further

developed and extended through the elegant and

far reaching researches of the Scandinavian school

of statisticians under the leadership of Gram,

Charlier and Thiele and their disciples. This

method is, however, comparatively little known
and unfortunately not always fully appreciated

by the majority of English statisticians and ac-

tuaries, who prefer to apply the well known
methods of the eminent English biometrician,

Karl Pearson. For this reason it may be advisable

to give a preliminary sketch of Charlier 's methods

so as to obtain a better understanding of the

1
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following chapters dealing with the more specific

problem of mortality tables. The treatment must

necessarily be brief and represents essentially an

outline of the more detailed theory which I hope

to present in my forthcoming second volume of

the Mathematical Theory of Probabilities.

By the method of Charlier any frequency

function is expressed as an infinite series rather

than as a closed and compact algebraic or tran-

scendental expression by the Pearsonian methods.

By power series the thoughts of the majority of

students are associated with the famous series

which bear the names of Taylor and Maclaurin.

In these series the function is derived as an in-

finite series of ascending powers of the inde-

pendent variable whose coefficients are expressed

by means of the correlated successive derivatives

of the function for specific values of f(x). Thus

for instance we know that the Maclaurin series

may be written as follows :

m = /<o) + g-f (0) + ^/-(O) + . . .~no) + ...

where /"(0) is the symbol for the value of the nth

derivative when x = and n = 1, 2, 3, 4 . . . . n.

There are, however, contrary to the belief of

many immature students, only comparatively few

functions which allow a rigorous expansion by this
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method, in which the derived functions and the

differential calculus play the leading roles.

But on the other hand there are other methods

of expansions in infinite series which are more

general and by which the coefficients of the in-

dependent variable are expressed by operations

other than those of differentiation. One of these

methods is to express the coefficients as definite

integrals either of the unknown function itself or

some auxiliary function.

The range of practical problems which lay

themselves open to a successful attack along those

lines is much wider than the corresponding range

of practical problems to which we may apply the

Taylor series.

Speaking generally as a layman (who continu-

ously has to face practical rather than abstract

problems) and specifically as a mathematical

novice (who considers mathematics as a means

rather than as an end) this fact appears to me
quite obvious from a purely philosophical point of

view. In nature and in all practical observations

we encounter finite and not infinitesimal quantit-

ies. In other words, what we actually observe are

finite sums or definite integrals, i. e. the limit of

a sum of infinitely small component parts.

The definite integral rather than the derivative

and the differential seems, therefore, to be the
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more elementary and primitive operation and the

one which suggests itself first hand. History of

Mathematics indeed proves this contention. Ar-

chimedes had (as shown by the researches of the

Danish scholar, Heiberg) laid the essential foun-

dation for an integral calculus about 500 B. C.

And nearly 25 centuries later, almost simultane-

ously with the historical discovery of Heiberg an-

other Scandinavian, the Swedish mathematician

and actuary, Fredholm, gave to the world his

epochmaking work on integral equations. Fred-

bolm's monumental memoir "Sur une nouvelle

methode pour la resolution du problems de Dirich-

let" was first published in the "Ofversigt af aka-

demiens forhandlinglar" (Stockholm 1900). Mea-

sured by time the subject of integral equations is

thus a mere infant in the history of mathematical

discoveries. Measured by its importance it has

already become a classic. Its application to a

steadily increasing number of essentially practical

problems in almost every branch of science has

placed it in a central position of modern mathe-

matical research and it bids fair to become the

most important branch of mathematics.

Fredholm in introducing his now famous in-

finite determinants, known as the Fredholmean

determinants, had a forerunner in the Danish

actuary, Gram, whose Doctor's dissertation "Om
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Rsekkeudviklinger ved de mindste Kvadraters Me-

tode" (Copenhagen 1879) gave prominence to a

certain class of functions which later on have

become known as orthogonal functions, and by

which Gram actually gave the first expansion of

a frequency distribution or frequency curve in

an infinite series. Scandinavians in general and

Scandinavian actuaries in particular may, there-

fore, feel proud of their share of imparting know-

ledge on this important subject, which makes a

strong bid to place mathematics on a higher plane

than ever before, not alone as an abstract but

equally well as an applied science. The genius

of the Italian renaissance Leonardo da Vinci, as

early as 1479 proclaimed "that no part of human
knowledge could lay claim to the title of science

before it had passed through the stage of mathe-

matical demonstration". Comparatively few bran-

ches of learning measure up to the standard of

Leonardo da Vinci, and our learned friends among
the economists and sociologists have a long road

to travel before they succeed in placing their

methods in the coveted niche of science. But the

new vistas of possibilities opened up to them by

means of M. Fredholm's discovery ought to

furnish them a powerful tool towards the attain-

ment of the high standard set by the great Italian.

The principal theorems of integral equations
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are bound to be especially fruitful in their ap-

plication to mathematical statistics and the pro-

blems of frequency curves and frequency surfaces

together with the associated problems of mathe-

matical correlation.

2. frequency If N successive observations
DISTRIBUTIONS

originating from the game eg_

functions
sential circumstances or the

same source of causes are made in respect to a

certain statistical variate, x, and if the individual

observations o. (i= l, 2, 3, . . . . N) are permuted

in an ascending order then this particular per-

mutation is said to form a frequency distribution

of x and is denoted by the symbol F(x).

The relative frequencies of this specific per-

mutation, that is the ratio which each absolute

frequency or group of frequencies bear to the

total number of observations, is called a relative

frequency function or probability function and is

denoted by the symbol cp(aO.

If the statistical variate is continuous or a

graduated variate, such as heights of soldiers,

ages at death of assured lives, physical and astro-

nomical precision measurements, etc., then

dzcp(z)

is the probability that the variate x satisfies the

following relation
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z— -^-dz<x<z + -^dz

or that x falls between the above limits.

If the statistical variate assumes integral (dis-

crete) values only such as the number of alpha

particles radiated from certain metals and radio-

active gases as polonium and helium, number of

fin rays in fishes, or number of petal flowers in

plants, then cp(z) is the probability that x assumes

the value z. From the above definitions it follows

a fortiori that

(a) F(z) = Nq(z) (Integral variates)

(b) dz F(z) =N(p(z)dz (Integrated variates)

Interpreting the above results graphically we
find that (a) will be represented by a series of

disconnected or discrete points while (b) will be

represented by a continuous curve.

As to the function <p (z) we make for the

present no other assumptions than those follow-

ing immediately from the customary definition of

a mathematical probability. That is to say the

function 9 (z) must be real and positive.

Moreover it must, also satisfy the relation

+ »

\
cp (z) dz = 1

,

— 00

or in the case of discrete variates

:
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'!>(*) = i

which is but the mathematical way of expressing

the simple hypothetical disjunctive judgment that

the variate is sure to assume some one or several

values in the interval from — go to + oo. The
zero point is arbitrarily chosen and need not coin-

cide with the natural zero of the number scale.

Thus for instance if we in the case of height of

recruits choose the zero point of the frequency

curve at 170 centimeters an observation of 180

centimeters would be recorded as +10 and an

observation of 160 centimeters as — 10.

3. property of In regard to a frequency func-
CONSTANTS OR ,

• • •

parameters tion we may assume a prion

that it will depend only upon

the variate x and certain mathematical relations

into which this variate enters with a number of

constants \, A
2 , A

3 , A4 , symbolically ex-

pressed by the notation

F(x, \, A,, A
3 , A

4 . . . .)

where the A's are the constants and x the variate.

All these constants or parameters are naturally

independent of x and represent some peculiar pro-

perties or characteristic essentials of the frequency
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function as expressed in the original observations

o
i
(i=l, 2, 3, N). We may, therefore,

say that each constant or statistical parameter

entering into the final mathematical form for the

frequency function is a function of the observa-

tions ov This fact may be expressed in the follow-

ing symbolic form :

—

\ = S
1
(o1? o

2 , 0.,, ... 0^)

XN = Sn(°1> °2,0a , . . . N ).

But from purely a priori considerations we
are able to tell something else about the function

S . (i=l, 2, 3 .... N). It is only when per-

muting the various o's in an ascending magnitude

according to the natural number scale that we
obtain a frequency function. This arrangement

itself has, however, no influence upon any one

of the o's which were generated before this purely

arbitrary permutation took place. The ultimate

and previously measured effects of the causes as

reflected in each individual numerical observa-

tions, 0., depend only upon the origin of causes

which form the fundamental basis for the stati-

stical object under investigation and do not depend
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upon the order in which the individual o'e occur

in the series of observations.

Suppose for instance that the observations

occurred in the following order

o lt o
2 , o

3 ,
o
X'

By permuting these elements in their natural or-

der we obtain the frequency distribution F(x).

But the very same distribution could have been

obtained if the observations had occurred in any

other order as for instance

o
7 , o

9 , oN , . . . o3 . . . . o
x

.

so long as all of the individual o's were retained

in the original records. Or to take a concrete ex-

ample as the study of the number of policyholders

according to attained ages in a life assurance

office. We write the age of each individual policy-

holder on a small card. When all the ages have

been written on individual cards they may be per-

muted according to attained age and the resulting

series is a frequency function of the age x. We
may now mix these cards just as we mix ordinary

playing cards in a game of whist, and we get an-

other permutation—in general different from the

order in which we originally recorded the ages on

the cards. But this new permutation can equally
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well be used to produce the frequency function if

we are only sure to retain all the cards and do

not add any new cards.

4. parameters- The various functions S (o lt

symmetric o
2 , °3 °jy) are there-

fore, symmetric functions, that

is functions which are left unaltered by arbitrarily

permuting the N elements o, and no interchange

whatever of the values of the various o's in those

symmetric functions can have any influence upon

the final form of the frequency function or fre-

quency curve, F(x).

We now introduce under the name of power

sums a certain well known form of fundamental

symmetrical functions denned by the following

relations

5



12 Frequency Curves.

From this theorem it follows a fortiori that

we are able to express the constants A in the fre-

quency curve as functions of the power sums of

the observations. While such a procedure is pos-

sible, theoretically at least, we should, however,

in most cases find it a very tedious and laborious

task in actual practice. It, therefore, remains to

be seen whether it is possible to transform these

symmetrical functions of the power sums of the

observations into some other symmetric functions,

which are more flexible and workable in practical

computations and which can be expressed in terms

of the various values of s.

5. THiELE-s It is the great achievement of

invariants Thiele to have been the first

mathematician to realize this

possibility and make this transformation by intro-

ducing into the theory of frequency curves a pe-

culiar system of symmetrical functions which he

called semi invariants and denoted by the symbols

^i, \, \ •

Starting with power sums, s
;
. Thiele defines

these by the following identity

XjOT X2
oo2 X3ro

3

e
TL

+ Hr + ~pr

which is identical in respect to co

^ ^^ =*o+fH-f+
S

-F + - (1)
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Since s {=^oi the right hand side of the equa-

tion may also be written as e i
ra+ e°*

co + eP3
m+...=

ST 0,-co= Z«'
Differentiating (1) with respect to co we have

A, a> X,co2 X,co3

*n e
\1_ |2_

+... A
2
co XgCO 2

Xi+
TT

_ +
T

+

s
o + jY

co+jy co2

+iy
M3 +-

, AnCO Ao „

Multiplying out and equating the various

coefficients of equal powers of co we finally have

s
x
= \s

So = \s
x
+ \

2
s

ss = \s2 + 2 \
2 sx + X

s s

si = \
x
s3 + 3A

2
s2 + 3a

3
sx + X4 s

where the coefficients follow the law of the

binomial theorem.

Solving for A we have

\ = s
t

: s

X
2
= (s2 s — sl):sl

a
3
= (s3*o— 3s2 s1

s + 2sl):sl
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x
4 = Sisi-4ssSl si — 3*;*; + i2s2 *;*o — 6st)=^

The semi-invariants X in respect to an ar-

bitrary origin and unit are as we noted denned

by the relation

A,co \,co2 Xoco 11

_1 |_ _? L _? L
. . .

11 1

2

1

3

o,a> o,co o,ct>

s e>- — = e
1 +e 2 +e 3 +...

where o
1 , o 2 , o

3
. . . are the individual observa-

tions.

Let us now change to another coordinate

system with another unit and origin defined by

the following linear transformations :

—

o'i = aoi+ c (i = 1, 2,3,.. .).

The semi-invariants in this new system are

given by the relation

A' to X' oo2 X'„a>3
-A

|
?

1

§ 1- ...
1

1

1

2

1

3

• o', ro o'„co o'„a>

s e — — = e
1 +e J +e 3 + ... =

(aoj+ tOco (ao2+c) co= e +e + ...

Since the various values of X' do not depend upon

the quantity co we may without changing the

value of the semi-invariants replace co by co : a

in the above equations, which gives
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\\ m X'„co2 X'-co
8

s e =

(aoj+ c) — (oo2 + c) — (ao3 + c) —
a a a

e + e + e + . . .
=

a T o,co o„co o,co

ceo XjCO X
2
co2 X3co

"a" ~[l
+
l2~

¥ ~\*

= e 5 e

.]
=

Taking the logarithms on both sides of the equa-

tion we have

a^ o«[2_ o8 [3_

CCO XtCO X,C0 2 XotO3

~a +
|l
L

+
[2_|3_

+

Differentiating successively with respect to co we

have

X' X' to X'.to 3 c , , , , ,
X3C02

a\l_ a2 2a3 a d>

* + *= + *S?
+ ...-». + *. +f + ...

5 +^ + ...-x. +w..
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Letting co = we therefore have

A, or \\ = aXj + c
a
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following discussion as mathematical tools with

which to attack the collected statistical data or

the numerical observations.

One of these tools is found in the celebrated

integral theorem by Fourier, which was the first

integral equation to be successfully treated. We
shall in the following demonstration adhere to

the elegant and simple solution by M. Charlier.

Charlier in his proof supposes that a function,

F(co) , is defined through the following convergent

series.

F(v) = a[/(o) + /(a)e + /(2a)e +...

+ /(a)e +/(— 2a)e 4-...

or

in = <w

^(oo) = a ^/(cwi)e
amtoi

(2)

where / = \
— 1.

We then see by the well known theorem of

Cauchy that the integral

+ x

/(o9) = <

^f(x)e
x 'oi dx (3)

is finite and convergent. If we now let ma = x

and let a = as a limiting value, a, becomes

equal to dx and /(am) = fix). Consequently we
may write
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lim F(o) = jT(co).

a =

Multiplying (2) by e~ rami da and integrating

between the limits — n/a and + n/a we get on

the left an expression of the form

+ */<*

{F(a)e- ra<oi
dco

— ?t/a

and on the right a sum of definite integrals of

which, however, all but the term containing

f(ra) as a factor will vanish. This particular term

reduces to

a\f(ra)d(o or 2nf(ra).

— -x/a

Hence we have

+ 3t/a

%*)

-rami
f(ra) = ^F(a,)e "*""*».

(4a)

By letting a converge toward zero and by the

substitution ret = x this equation reduces to

8»J

— X03i

/(*) = izVW* ** (4b)
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Charlier has suggested the name conjugated

Fourier function of f{x) for the expression F (co).

We then have, if we introduce a new function

ib (to) defined by the simple relation

:

j/2jr\|>(co) = limF(co)
a =

ib (to) =
77
=C/(a:)c*Di

dx. (5 a)
\/2:

+ 00

J/2J

/(*) =
i

-^=\i|)(a))e- xa,i
doo. (5b)

The equations (5a) and (5b) are known as

integral equations of the first kind. The eXpreS-

sion e (or e ) is known as the nucleus of

the equation. If in (5b) we know the value of

i]' (co) we are able to determine fix). Inversely,

if we know f(x) we may find i|> (co) from (5a).

7

cv^e'asVhe ^e are now *n a P°siti°n *°

a^Yntegral make use OI *ne semi-invariants
equation f Thiele, which hitherto in

our discussion have appeared as a rather discon-

nected and alien member. On page 13 we saw

that the semi-invariants could be expressed by

the relation
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CO + ttt CO
2 + -

Q. | 2 I :

^3 <i
i

e— = 2^e

where 0; (i = 1, 2, 3 ) denotes the in-

dividual observations.

The definition of the semi-invariants does not

necessitate that all the o's must be different. If

some of the o's are exactly alike it is self-evident

that the term e i must be repeated as often as

o occurs among all of the observations. If there-

fore Ny(oi) denotes the absolute frequency of o,

where cp (o;) is the relative frequency function,

then the definition of the semi-invariants may be

written as :

—

V / n Ll Li LL v i \ "i

For continuous variates, x, the above sums

are transformed into definite integrals of the form

co2 + -ro3+.

e \ cp(x)aa = \ <p(a:)e rfx.

Let us now substitute the quantity co \— ] , or

ica, for co in the above identity. We then have :

—

X
l • ,

X
2 -2 2 -

A3 .3 3 .
+ <* +""°

|1_
'

[2_ |_3_

\ cp(*)rfx = \ (p(aj)e
1M

°da;
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under the supposition that this transformation

holds in the complex region in which the func-

tion is denned.

In this equation the definite integrals are of

special importance. The factor
\
y(x)dx is, of

course, equal to unity according to the simple

considerations set forth on page seven. The in-

tegral on the right hand side of the equation is,

however, apart from the constant factor j/2ji

nothing more than the i|) function in the conjugate

Fourier function if we let cp(#) = f(x), and

e
{± ^ ^ = l/2^(co).

According to (5b) we may, therefore write f(x)

or cp(a;) as

„ i

+

{ £«>+&**+&**+- -«,.
cp(*) = ^ Je e An

as the most general form of the frequency func-

tion cp (x) expressed by means of semi-invariants.

8. first approx- The exactness with which

solutwn 9 0*0 is reproduced depends,

of course, upon the number of

A's we decide to consider in the above formula.

As a first approximation we may omit all X's
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above the order 2 or all terms in the exponent

with indices higher than 2. Bearing in mind

that i
2 = —1 we therefore have as a first ap-

proximation

^ /, tro^! — *)-j2-co
2

«Po(*)=2^Jc - *»
— CO

The above definite integral was first evaluated

by Laplace by means of the following elegant

analysis. Using the well known Eulerean relation

for complex quantities the above integral may be

written as

+ °° \
2
a>2

\ e cos [(X1
— x'jcoj cko +

+ co \2

. C ~^ (

+ I sin [(X
1
— :r)co] dco.

The imaginary member vanishes because the

factor e is an even function and sin|(X
1
—a;)coj

an uneven function, the area from — oo to will

therefore equal the area from to + oo , but be

opposite in sign, which reduces the total area

from — oo to + oo or the integral in question to

zero.
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In regard to the first term, similar conditions

hold except that cos [(A
1
— a;) col is an even func-

tion and the integral may hence be written as

V-i An
f -IT CD 2

I = 2 \ e cos (rco) dm where r = X
x
— ?.

Regarding the parameter r as a variable and dif-

ferentiating 7 in respect to this variable we have

dI 2
f ( ^ ~
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In erder to determine A we let r =
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be well worth while to consider. Introducing a

slightly different system of notation by writing

\ = M and \/\2
= a, q> (x) reduces to the fol-

lowing form.

o|/2tt

which is the form introduced by Pearson.

The frequency curve, cp (a;), is here expressed

in reference to a Cartesian coordinate system with

origin at the zero point of the natural number

system and whose unit of measurement is also

equivalent to the natural number unit. It is,

however, not necessary to use this system in pre-

ference to any other system. In fact, we may
choose arbitrarily any other origin and any other

unit standard without altering the properties of

the curve. Suppose, therefore, that we take M
as the origin and c as the unit of the system. The

frequency function then reduces to

1 - x' : 2

Since the integral of cp (x) from — oo to + oo

equals unity the following equation must neces-

sarily hold.

+*
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9. development The Laplacean Probability
BY POLYNOMIALS ^^ ^^^ howeyev ,

some other remarkable proper-

ties which are of great use in expanding a func-

tion in a series. Starting with cp (x) we may by

repeated differentiation obtain its various der-

ivaties. Denoting such derivatives by cp
x
(x)

,

<p2
(x), cp

3
(x) . . . respectively we have the fol-

lowing relations.
1
)

— x': 2

cp (a;) = e

<Pi(z) = —xy (x)

(p2 (z) = (z3 — l)cp (a;)

Vsfa) = — («
3— 3x)cp (a;)

(p4 (a;) = (j?— Gx* + 3)yQ
(x)

and in general for the nth derivative

:

cpB (a;) = (-ir

n(n— l)(w— 2)(w— S)x

_ n(n~l) n~ 2

X>
1

y-^ X +

2-4

ra (n-1) (/i- 2) (ra-3) (re-4) (rc-5) aT~
6

2-4,-6
+ " cp (aj).

1 In the following computations we have omitted

temporarily the constant factor l;j/"2ir of <p (a:) and its

derivatives.



Hermite's Polynomials. 27

It can be readily seen that the derivatives of

<p (x) are represented throughout as products of

polynomials of x and the function cp (x) itself.

The various polynomials

H (x) = 1

H^x) = — x

Ha (x) = x2 — l

Ha
(x) = -(x*-3x)

H^r) = (.,<* — 6 a* + 3)

and so forth are generally known as Hermite's

polynomials from the name of the French mathe-

matician, Hermite, who first introduced these

polynomials in mathematical analysis.

The following relations can be shown to exist

between the three polynomials

Hn+i(x) — xHn (x) + nHn--i.{x) =
and

d2Hn (x) xdHn (x) _

A numerical 10 decimal place tabulation of the

first six Hermite polynomials for values of x up

to 4 and progressing by intervals of 0.01 is given

by J0rgensen in his Danish work "Frekvens-

flader og Korrelation"

.

There exist now some very important relations

between the Hermite polynomials and the deriva-

tives of <p (x) , or between H n (x) and yn (x).
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Consider for the moment the two following

series of functions

ToO"). M^Di %(*)> <?s(xh <?i(x), •
•

H (x), H
x
{x), H2

(x), H,{x\ Ht (x),. . .

where cp„(a;) = i/„ (a;) cp (a;) and where lim y„(x) =
for ./' = ± oo.

We shall now prove that the two series cp„ (x)

and H n (x) form a biorthogonal system in the

interval — oo to + oo , that is to say that they are

(1) real and continuous in the whole plane

(2) no one of them is identically zero in the

plane

(3) every pair of them cpn (x) and Hm {x)

,

satisfy the relation.

+.<* >
\ <pn (x)Hm (x)dx = (n < m).

We have the self evident relation (letting x = z)

-f-eo -j-OO

5
Hm (z)yn (z)dz = $ #m (z).ff„(z)(p (z)dz =

CC CO

+«
=

jj
#„(z)cpm (z)dz.

Since this relation holds for all values of m and n

it is only necessary to prove the proposition for

n>m. For if it holds for n>m it will according

to the above relation also hold for n<m.
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By partial integration we have :

—

jj
Hm (z)(pn (z)dz =

00

+ 00 + 00

= Hm {z)yn-i{z) ]
—

$
H'm (z)yn-i(z)dz

— Go — or.

when H'm {z) is the first derivative of Hm {z).

The first member on the right reduces to

since <p„_i(z) = for z = ± qo. We have therefore :

—

+ 00 ,
- tt

$ #m (z)cp„(z)dz = —
jj
H'm (z)yn-i(z)dz

— Co — 00

-j-co -pOo

jj
H'm (z)<?n_i(z)dz = —

jj
H&(z)yn-2(z)dz

— co — Co

-}-00 -f-ao

J
^m(z)(p„_2(z)rfz = — $ /7£(z)q>n_ 3 (z)dz.

— 00 OC

Continuing this process we obtain finally an ex-

pression of the form

+
(lfm (z)<?n (z)dz = (-ir

+1+^V+1,
9n_w_,(Z)&,

— Co
—

-oc

when #°"+1) (z) is the m + 1 derivative of # (z)

and n

—

to—1>0. Since Hm (z) is a polynomial in

the TO.th degree its w + 1 derivative is zero and

we have finally that
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+ »

jj
Hm (z)yn (z)dz =

for all values of m and n where ^^ /h .

For m = n we proceed in exactly the same

manner, but stop at the mth integration. We
have, therefore, by replacing m by n in the above

partial integrations

+
(HA*)Vn{z)dZ = (-l)"'f<

)

(Z)«p,_n(«)& =
— 00 — CO

The nth derivative of Hn (z) is, however, nothing

but a constant and equal to (—l)"|_ra_. Hence we

have finally

'fjyn (8)q.n (8)cfe = {-lf{-lf\±\ e-^dz =
00 CO

= |_ra |/2jt.

The above analysis thus proves that the func-

tions Hm (z) and <pB (s) are biorthogonal to each

other for all values of n different from m through-

out the whole plane.

We can now make use of these relations be-

tween the infinite set of biorthogonal functions

Hm (z) and <p„(z) in solving the problem of ex-
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panding an arbitrary function cp (z) in a series

of the form

9(0) = C <p (2) + Cl Cp, (z) + C,cp
2 (3) + . . .

the series to hold in the interval from — 00 to

+ 00.

If we know that 9(2) can be developed into

a series of this form, which after multiplication

by any continuous function can be integrated

term for term, then we are are able to give a

formal determination of the coefficients c.

This formal determination of any one of the

c's, say C{ consists in multiplying the above

series by Ht(z) and integrating each term from

— 00 to co. All the terms except the one con-

taining the product Hi (z) <pi vanish and we have

for Ci. + oo +00

CO — CO

°i
= +S

~
•

\yi(z)Hi(z)dz |J_|/2^
CO

If we define the Hermite functions as

H (z) =1

HAz) = z
2 — 1

if,(«) = z
s— 3z

HAz) - 24— 6«2 + 3
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the above formula takes on the form

+ 00 + CO

jj
cp (z) Hi (z) dz § <p (z) #i (z) rfz

00 00

|j
cpi (z) #* (z) <fe (— l)

r
[i_ \/ 2 JT

— CO

which we shall prefer to use in the following

discussion.

It will be noted that this purely formal cal-

culation of the coefficients c is very similar to the

determination of the constants in a Fourier Series,

where as a matter of fact the system of functions

cosz, cos 2«, cos 32,

sin;-;, sin 22, sin Zz,

is biorthogonal in the interval 0<z<l-
But the reader must not forget that the above

representation is only a formal one, and we do

not know if it is valid. To prove its validity

we must first show that the series is convergent

and secondly that it actually represents 9(2) for

all values of 2.

This is by no means a simple task and it can-

not be done by elementary methods. A Russian

mathematician, Vera Myller-Lebedeff, has, how-

ever, given an elegant solution by means of some

well known theorems from the Fredholm integral



Gram's Series. 33

equations. She has among other things proved

the following criterion :

—

"Every function cp (z) which together with its

first two derivatives is finite and continuous in the

interval from — co to + oo and which vanishes

together with its derivatives for z = ± oo can be

developed into an infinite series of the form :

—

cp(2)=^>- z' :2

#.(0)

where Hi(z) is the Hermite polynomial of

order i"

.

10. gram's series It is, however, not our inten-

tion to follow up this treatment

which is outside the scope of an

elementary treatise like this and shall in its place

give an approximate representation of the fre-

quency function, cp(z), by a method, which in

many respects is similar to that introduced by

the Danish actuary Gram in his epochmaking

work "Udviklingsrsekker" , which contains the

first known systematic development of a skew

frequency function. Gram's problem in a some-

what modified form may briefly be stated as

follows :

—

Being given an arbitrary relative fre-

quency function, cp (z), continuous and finite in

the interval — oo to + oo (and which vanishes

3
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for z = ± ooJ to determine the constant coeffi-

cients c , c
1 , c2 , c3 in such a way that

the series

c 9o(g) + Ci9i(g) +
c2 cp

2
(z)

+ +
cnyn($ =

|/<Po(z) l/<PoO) l/?o(3) |/9o(2)

gifles ifte besi approximation to the quantity

cp fa;,) : )/cp (zj in ifoe sense of the method of least

squares. That is to say we wish to determine the

constants c in such a manner that the sum of

the squares of the differences between the func-

tion and the approximate series becomes a mini-

mum. This means that the expression

^ C 9(2) X'^c^iiz)
y\

|/?o(2) ^—> 1/<PoO)-

dz

must be a minimum.

On the basis of this condition we have

j^f m<) Zci(?i{2) =^^^

=

U(s}

where the unknown coefficients c must be so de-

termined that
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/ =
nVvM

dz equals a minimum.

+»

Taking the partial derivatives in respect to Ci we

have

— CD —00

Now since
-i- CO

\
[U{z)] 2 dz =

05

{{cl [H,{z)}*+< [#:(*)]'+ • ..cl[Hn {z)Y}^{z)dz,

we get

4-co -f 00

¥-= -2
[
^=Hi(z)]/^)dz+2ci \

[ff,(s)]'<p («)t

where the latter integral equals

$ <pt (e)Hi(e)dz = (— l)*[i|/2«.

Equating to zero and solving for c* we finally

obtain the following value for d

—

.+00

d = ,^=U y{z)Hi{z)dz (1=1,2,3,...)-
|i J/2n J
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This solution is gotten by the introduction of

|/cp (z) which serves to make all terms of the

form Cicpi(0):|/<po (0) = |Ap (» C;#»(z) (i = 1, 2,

3 . . . n) orthogonal to each other in the interval

— oo to + oo.

In all the above expansions of a frequency

series we have used the expression % (z) = e~za/a

as the generating function (see footnote on page

26) , while as a matter of fact the true value of

<p (z) is given by the equation <p (z) = e~ z"/2
: |/2ji.

The definite integral on page 32

+ 00 -t~°°

(- 1)*
\ Ht (e) Vi {z)de = \i_ $

e-^dz = \£fte

will therefore have to be divided by |/2jt, and

the value of the gen

forth be reduced to

the value of the general coefficient c$ will hence-

$
^{z)Hi {z)dz

Ci==
""(_l)i

li

where Sj (z) is the Hermite polynomial of order

i defined by the relation

%K)
2 2-4

i (t— 1) (t— 2) (i— 3) (t — 4) (t— 5) z
f~6

2-4-6
+ '"'
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On this basis we obtain the following values

for the first four coefficients :

—

+»
c =

jj

y(s)dz = 1
— cc

+»
c
x
= (— l)

1
$ cp(z)zefe : |l_

— CO

+«>

c, = (— l) 2
jj

(z2 — 1) cp(z) & :
|_2_

— CO

+°°

c3
= (_ 1)3

J
2s_ 3z)cp(z)<fe:|3_

— Co

c4 = (— 1)*^ (z4— 6z2 + 3 e) 9 (2) cfe : |5_
— CO

While the above development of an arbitrary

frequency distribution has reference to 9 (z) , or

the relative frequency function, it is, however,

equally well adapted to the representation of ab-

solute frequencies as expressed by the function,

F(z). If N is the total number of individual

observations, or in other words the area of the

frequency curve, we evidently have

-{-Go "j~°o

F(z) = iVcp(z) or
$
F{z)dz = N

J
y(z)dz = N.

00 — CO

Since N is a constant quantity we may, there-

fore, write the expansion of F(z) as follows:
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F(z) = iV[c <p (z) + c
1
cp

1
(z) + c2 cp

2 (2)+ . . .]
=

= NZctHMe-**

where the coefficients ci have the value

+ CO

d = t~Z
J
F(z)Hi (z)dz for i = 1, 2, 3, . . .

• CO

and where

N =
\ F{z)dz.
CO

Since all the Hermite functions are polynom-

ials in z, it can be readily seen that the coeffi-

cients c may be expressed as functions of the

power sums or of the previously mentioned sym-

metrical functions s, where

sr = jj
zrF{z)dz.

— Co

These particular integrals originally introduced

by Thiele in the development of the semi-in-

variants have been called by Pearson the

"moments" of the frequency function, F(z), and

sr is called the r*
A moment of the variate z with

respect to an arbitrary origin.

It can be readily seen that the moment of

order zero, or s is
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-f-CD -|-Q0

s =
\ z°F(z)dz = N = N

\
y{z)dz.

— Co — co

Hence we have for the first coefficient c .

+ 00 -j-00

c =
$ F(z)dz: $ F(z)dz = 1.

CC -)~Q0

We are, however, in a position to further

simplify the expression for F(z).

As already mentioned we are at liberty to

choose arbitrarily both the origin and the unit

of the Cartesian coordinate system for the fre-

quency curve without changing the properties of

this curve. Now by making a proper choice of

the Cartesian system of reference we can make
the coefficients c

1
and c

2
vanish. In order to ob-

tain this object the origin of the system must be

so chosen that

^ \ zF(z)dz : \ F(z)dz = 0.c, =

This means that the semi invariant s
r

: s = A
x

must vanish. It can be readily seen that the above

expression for Xu is nothing more than the usual

form for the mean value of a series of variates.

Moreover, we know that the algebraic sum (or

in the case of continuous variates, the integral)

of the variates around the mean value is always
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equal to zero. Hence by writing for z the expres-

sion (z—M) when M equals the mean value or

\j we can always make c
x
vanish.

To attain our second object of making c2

vanish we must choose the unit of the coordinate

system in such a way that the expression

+ 00 -{-00

c2 = t~^
jj

F(z)R
2
(z)dz : ^

F{z)dz =

which implies that

-(-03 -}-O0 + «

\
F(z)z2 dz — $ F(e)de : $ F(z)dz =

or that s2 : s — 1 = 0, or when expressed in terms

of the semi-invariants that

X2 = (s2 s
— s\):sl = 1.

But by choosing the mean as the origin of the

system the term s
x

: s is equal to and we have

therefore X2 = 2 = s
2 : s = 1. Hence, by selec-

ting as the unit of our coordinate system j/X2 or

o, where o is technically known as the dispersion

or standard deviation of the series of variates, we
can make the second coefficient c2 vanish.

In respect to the coefficients c
3

and c4 we
have now



c* =
(-1)3
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+ 00 + C0

41

J
z*F(z)dz — 3 ^ 2i?(2)cfe :

J
i?(g)<fe

+ 00

which reduces to

(-1)4

A^- while

r+ao

C, =
|4 ^ 2

+ F(z)cfe— 6
J
22F(s)& +

+ 00 -I -|-00

+ 3 $ F{z)dz :

J
i^(2)rf2

which reduces to

A± D Siy Oft

5 $Q S
Q

14 = — 3

While the coefficients of higher order may be

determined with equal ease, it will in general be

found that the majority of moderately skew fre-

quency distributions can be expressed by means
of the first 4 parameters or coefficients.

n. coefficients We shall now show how the

semi-invariants same results for the values of

the coefficients may be ob-

tained from the definition of the semi-invariants.

Since we have proven that a frequency function,

F(z), may be expressed by the series
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F
(
z) =JEciyi(z)

we may from the definition of the semi-invariants

write down the following identity :

—

X,co X./o z

— \-— 1-

\U
+

[2_
+"

s e =
+»

= N $ e
0ra

(co cp
o (2) + c

1
cp

1
(z) + c2 cp

2
(s) + ...)d2

where N is the area of the frequency curve.

The general term on the right hand side of

the equation will be of the form

+»
cr $ e

zw
Q?r (z)ds

where the integral may be evaluated by partial

integration as follows :

—

-(-00 ^\~ x H-00

$ e
z<°y

r (z)dz = e'Vi(«) ]
— ra $ e?

a
yr-X {z)dz,

— oo — co — oo

and where the first term on the right vanishes

leaving

+ 00 -j-00

$ e
20>r (2)cfe = (-co) 1

$ e"°<pr-i(e)de.
— 00 CO

Continuing in the same manner we obtain by

successive integrations
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+» +00

(_„)!
J

e"°yr-.^z)dx = (-co) 2

J
e
2m

cpr_2 (z)dz
— oc —00

+ CO -[-GO

(-co) 2
5 e

2m
cpr _2 (2)(fe = (— co)8

J
e
zro

(pr_3 (0)d2

from which we finally obtain the relation

+ 0= +00

ij e
zw

<pr (z)dz = (-co)'
J

e
za>

<p (z)dz =
— 00 — 05

+» z*

1 "IT.'-'*.
^?s

This latter integral may be written as

1/2* 3

Consequently the relation between the semi-in-

variants and the frequency function may be writ-

ten as follows :

—



CO"
~2~
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X,co \,co z

— U_J 1-

LL
+

LL
+

s e =

= N [c — c
±
co + c, co

2— c
3
co

3 + .

or
J^CO CO 2

lr + [I
(x,-i) + ...

s e =

= iV [c — q CO + c2 CO — c
3
CO

3 + . . .] .

By successive differentiation with respect to co

and by equating the coefficients of equal powers

of co we get in a manner similar to that shown

on page 13 the following results :

—

. _ £o _ fo _ 1
C
° - N ~

s
-

c
x
= — \

= ri[(*2-l) +^
°
3
= ^fA3 + 3(X

2 -l)A1 + X^]

c* = rjk+4\3X1+ 3(A
2
-l) 2+ 6(X

2 -l)^+Xt]-

If we now again choose the origin at Ax , or

let Aj = 0, and choose j/A
2
= 1 as the unit of our

coordinate system we have :

—

co = 1, <h = °) C2 = 0. c3 = -ry- A
3 , c4 = .-^-A4 .
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12. linear trans- The theoretical development of

the above formulae explicitly

assumes that the variate, z, is

measured in terms of the dispersion or |A2 (z) and

with Xx (z) as the origin of the coordinate system.

In practice the observations or statistical data are,

however, invariably expressed with reference to

an arbitrarily chosen origin (in the majority of

cases the natural zero of the number scale) and

expressed in terms of standard units, such as

centimeters, grams, years, integral numbers, etc.

Let us denote the general variate in such ar-

bitrarily selected systems of reference by x. Our

problem then consists in transforming the various

semi-invariants, \(x), X
2
(x), \(x), \(%)

to the z system of reference with \ (z)

as its origin and |A2 (z) as its unit. Such a trans-

formation may always be brought about by means

of the linear substitution

z = ax+b 1

which in a purely geometrical sense implies both

a change of origin and unit. On page 16 we

proved the following general properties of the

semi-invariants

\
t
(s) = X

1
(ax+ b) = a\(x) + b

\r (
2) = Xr (ax+b) = arXr (x).
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Let us now write \ (x) = M and A
2
(x) = d 2

,

we then have the following relations :

—

X^z) = aM + b

XjjOO = a2 c2
.

Since the coordinate system of reference must

be chosen in such a manner that \ (z) = and

)A2
(z) =1 we have :

—

aM + b =
ad = 1

, • 1 , l — M
from which we obtain a = — and o = —-—

,

o <3

which brings z on the form : z= (x—M) : c while

cp (2) becomes
, •.

1 — (i— ilf2):2 !

J/ZTTd

Moreover, we have \r (z) = Xr (a;) : C for all

values of r > 2. We are now able to epitomize

the computations of the semi-invariants under the

following simple rules.

(1) Compute \ (x) in respect to an arbitrary

origin. The numerical value of this parameter

with opposite sign is the origin of the fre-

quency curve.

(2) Compute A, (as) for all values of r > 2. The

numerical values of those parameters divided

with (J/X2 (x)r
, or cr, for r = 2, 3, 4, . . .

.... are the semi-invariants of the frequency

curve.
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13. chablier's The general formulae for the
SCHEME OF • • ,

computation semi-invariants were given on

page 13. In practical work

it is, however, of importance to proceed along

systematic lines and to furnish an automatic check

for the correctness of the computations. Several

systems facilitating such work have been proposed

by various writers, but the most simple and

elegant is probably the one proposed by M. Char-

lier and which is shown in detail with the neces-

sary control checks on the following page. Char-

lier employs moments, while we in the following

demonstration shall prefer the use of the semi-

invariants.

If we define the power sums of the relative

frequencies 9(2;) by the relation

-j-00 "h °°

mr = \ xrF(x)dx :
jj
F(x)dx (r = 0, 1, 2, 3, . . .),

— 00 — CO

we find that the expressions for the semi-invariants

as given on page 13 may be written as fol-

lows :
—

Aj = m
1

A, = m
2
— m

l

A
3
= m

3
— 3m2w 1

+ 2m^

A4 = m4
— 4m

3
m

1
— 3ml + 12m2 m[ — 0>m

l
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The advantage of the Charlier scheme for the

computation of the semi-invariants lies in the fact

that it furnishes an automatic check of the

final results. If we expand the expression

(x + l)
4 F(x) we have:

—

xiF(x) + ix3 F{x) + 6x2F(x) + 4:xF(x) + F(x)

or

^(x+l)4F(x) = si + 4:S3 + Qs2 + 4:S
1 + s

,

which serves as an independent control check of

the computations. Moreover, another check is

furnished by the relation

mi
= A4 + 4m1

A
3 + §m\ \

2 + 3\
2

2
+m\.

In order to illustrate the scheme we choose the

following age distribution of 1130 pensioned func-

tionaries in a large American Public Utility cor-

poration.

Ages
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The above computations give the numerical

values of the frequency function which now may
may be written as follows

:

F(x) = 1130 [(cpoCz) + .0258
cp3 (z).0158 <p4 (re)]

where _ ^ /x + .oi95 \'

1 2 V 1.6240 )

"' betwUnob- The next steP is now to work
SE
Yhe

D
ob^¥ica1

ND out the numerical values of

values F(x) for various values of x

and compare such values with the ones originally

observed. This process is shown in detail in the

following scheme

.

Column (1) gives the values of the variate x

reckoned from the provisional origin, or the centre

of the age interval 65-69. (2) is x less the first

semi-invariant, whereby the origin is shifted to

the mean or X. Column (3) represents the final

linear transformation : z =(x— A-,): d.

Columns (4), (5) and (6) are copied directly

from the standard tables of J0rgensen or Charlier.

Column (7) is (5) multiplied by 0.0258 or the

product — [c3 <?3 (z)]:{3_, while (8) is [c4cp4 (z)]: [4.

Column (9) is the sum of (4), (7) and (8).

If we now distribute the area N = s or 1130 pro
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rata according to (9) , we finally reach the theore-

tical frequency distribution expressed in 5-year

age intervals and shown in column (10) alongside

which we have inserted the originally observed

values. Evidently the fit is satisfactory. It will

be noted that the final frequency series is expres-

sed in units of 5-year age intervals. This, how-

ever, is only a formal representation. By sub-

dividing the unit intervals of column (1) in 5

equal parts, and by computing all the other

columns accordingly, we get the theoretical fre-

quency series expressed in single year age inter-

vals.

is. the principle The following paragraph pur-
OF METHOD OF , , , • n •,

least squares ports to give a brief exposition

of the determination of the co-

efficients in the Gram or Laplacean—Charlier

series in the sense of the method of least squares

as a strict problem of maxima and minima, wholly

independent of the connection between the method

of least squares and the error laws of precision

measurements. l

The simple problem in maxima and minima

which forms the fundamental basis of the method

1 In the following demonstration I am adhering to

the brief and lucid exposition of the Argentinean actuary,

U. Broggi, in his exellent Traite d' Assurances sur la Vie.
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of least squares is the following : Let m unknown

quantities be determined by observations in such

a manner that they are not observed directly but

enter into certain known functional relations,

fi(x 1 , x2 , x
3 , . . . . xm ) , containing the unknown

independent variables, x lt x2 , x3 , . xm . Let

furthermore the number of observations on such

functional relations be n (where n is greater than

m). The problem is then to determine the most

plausible system of the values of the unknowns
from the observed system.

11 \%1 ) ^"11 ^3 l • • %m) = #1

fn V^i j ^2 ? *^3 1 ' • • ^m) — On

when flt f2 , . . . fn are the known functional

relations and o
x , o

2 , . . . o n their observed values.

Such equations are known as observation equa-

tions.

In order to further simplify our problem we
shall also assume that

1 All the equations of the system have the

same weight, and

2 All the equations are reduced to linear form.

By these assumptions the problem is reduced

to find m unknowns from n linear equations.
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a1 x 1
+ b

1
x2 + .
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X1 a1 + Xz az + . . . +Xn an =
\x bx + \3 b2 + . . . + XnK =

If we now again re-substitute the expressions

for A in terms of the linear relations

OiX1 + biX2 + . . . Oi = h, for i = 1, 2, 3, . . . n,

and collect the coefficients of x
x , x2 , . . . x„, these

equations may be expressed in the following sym-

bolical form

:

[aa]^! + [af)]a;2 + . . . . — [ao'] =
[ab^x

1
+ \bb']x2 + . . . . — \bo] =

[ak~]x
1 + [bk}x2 + . . + \Jik~]xm — [feo]=0

where [aa] = a
x

2 + a./ + . . . .

[ab~] = a
x
bj + a2 b 2 + . . . .

is the Gaussian notation for the homogeneous sum
products.

The above equations are known as normal

equations, and it is readily seen that there is one

normal equation corresponding to each unknown.

Our problem is therefore reduced to the solution

of a system of simultaneous linear equations of m
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unknowns. If m is a small number, or, what

amounts to the same thing, there are only two or

three unknowns the solution can be carried on

by simple algebraic methods or determinants. If

the number of unknowns is large these methods

become very laborious and impractical. It is one

of the achievements of the great German mathe-

matician, Gauss, to have given us a method of

solution which reduces this labor to a minimum
and which proceeds along well denned systematic

and practical lines. The method is known as the

Gaussian algorithmus of successive elimination.

is. gauss' solu- For the sake of simplicity we
TION OF NORMAL i nl ,- M. 1 i.equations snail limit ourselves to a sy-

stem of four normal equations

of the form

[aa]^! + [ab]x2 + [_ac]x
s + [arf]^— [ao~\ =

[ab]^! + \bb~]x
2 + [bc]x

i + [bd]xi
— [bo] =

[ac]^! + [bc]a:2 + [cc]:r
3 + [cd']x

i
— [eo] =

[ad]x
1 + [bd]x

2 + [cd~\x
3 + [dd]xi— [cfo] =

The generalization to an arbitrary number of

unknowns offers no difficulties, however.

On account of their symmetrical form the

above equations may also be written in the more

convenient form, viz. :
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[aa~\ x
1
+ [ab~\x2 + [ac~\x

3 + [_ad~]xi
— [ao] =

[bb~]x2 + [bc]x
3 + [bd]a;4 — [bo] =

[cc]a;3 + [cd]xi
— [co] =

[dd] Xi — [do] =

From the first equation we find

^ ~
[ao] [ao]

2
. [aa]

3
[aa]

4 '

Substituting this value in the following equa-

tions and by the introduction of the new symbol

[ik] — H[oft] = [ik.l]
[aa]

we now obtain a new system of equations of a

lower order and of the form

[bb.l]x2 + [bc.l]x3 + [bd.l]ir4 — [bo.l] =
[cc.1]»3 + [cd. l]a;4 — [co.l] =

[dd.l]x4
— [do.l] =

Solving for x2 we have

[bo.l] [bc.l] [bd.l]
X
*

==
[bb.l] [bb.l]

Xi
[bb.l]

Xi '

Substituting in the following equations and

writing
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we have

[cc.2]xs + [cd.2]x4 = fco.2]

[dd.2]xt = [do.2]

or

[co.2] [cd.2]

3 ~ [cc.2] [cc.2]
Xi '

Moreover, by writing

[ik.2] = [ci.2]&±=[ik.S],

we have finally

[dd.S]xA = [do.3]

This gives us the final reduced normal equa-

tion of the lowest order. By successive substitu-

tion we therefore have

:

[do.3]

4
_

[dd.S]

[co.2]

[cc.2]

'

_ [bo.l] _ [bc.l] [bd.l]
x
* ~ [bb.l] [bb.l] [bb.l]

_ [ao]_[ab] _\ac\ [ad]
Xl ~

[aa] [aa]
2

[aa]
X
* [aa]

Xi

as the ultimate solution of the unknowns.

[co.2] [cd.2]
Xz ~

[cc.2] [cc.2] '
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17. arithmetical The example in paragraph 13
APP

mbtho°d
°F

gave an illustration of the ap-

plication of the method of mo-

ments. As previously stated this method works

quite well in cases of moderate skewness, but is

less successful in extremely skew curves and where

the excess is large. We shall now give an illustra-

tion of the calculation of the parameters by the

method of least squares. The example we choose

is the well-known statistical series by the disting-

uished Dutch botanist, de Vries, on the number

of petal flowers in Ranunculus Bulbosus. This

is also one of the classical examples of Karl Pearson

in his celebrated original memoirs on skew varia-

tion. Although the observations of de Vries lend

themselves more readily to the method of logarith-

mic transformation, which we shall discuss in a

following chapter, we have deliberately chosen to

use it here for two specific reasons. Firstly it is

a most striking illustration in refutation of the

immature criticism of the Gram-Charlier series

by a certain young and very incautious American

actuary, Mr. M. Davis, who has gone on record

with the positive statement, "that the Charlier

series fails completely in case of appreciable skew-

ness". Secondly (and this is the more important

reason) it offers an excellent drill for the student

in the practical applications of the method of least
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squares because it gives in a very brief compass
all the essential arithmetical details. The observa-

tions of de Vries are as follows

:

i

No. of petals
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s = 222, s
1
= 140, s 2

= 292, s
3
= 806, s4 = 2,752,

s
5
= 10,790, s

6
= 46,072, s

7
= 207,226,

from which we find that

\ = 1, x
x
= 0.631, A2

= 0.917, X3
= 1.644,

A4 = 3.377, A5
= 5.972, X6 = —2.911,

X
7
= 122.638.

All these semi-invariants with the exception

of the two first are, however, so greatly influenced

by random sampling in the small observation

series that it is hopeless to use them in the deter-

mination of the constants in the Gram-Charlier

series. In fact an actual calculation does not give

a very good result beyond that of a first rough

approximation. The generating function, on the

other hand, may be expressed by the aid of the

two first semi-invariants as follows :

]_
— 22 :2

9°w =m e
'

where z is given by the linear transformation

:

z = (3— 0.631) : 0.9576. (\/)T
2
= 0.9576).

We now propose to express the observed func-

tion F(x) or 9(2) by a Gram-Charlier series of

the form

:
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F(x) = cp(z) = A; cp (z) + A:3 cp3(z) + /c4 cp4 (z).

In this equation we know the values of the

generating function and its derivatives for various

values of the variate z as found in the tables of

J0rgensen and Charlier, while the quantities k are

unknowns. On the other hand we know 6 specific

values of F(x) as directly observed in de Vries's

observation series. We are thus dealing with a

system of typical linear observation equations of

the forms described in paragraphs 15 and 16

and which lend themselves so admirably to the

treatment by the method of least squares.

From the above linear relation between x and

z we can directly compute the following table for

the transformed variate z.

X
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large skewness in negative direction from the

mean coupled with a tendency of being "top

heavy", indicating positive excess. We can there-

fore assume as a first approximation that the

coefficients of the derivatives of uneven order are

negative and the coefficients of derivatives of even

order are positive.

From such purely common sense a priori con-

siderations we therefore guess the following first

approximations, viz. :

kl = 222, k\ = — 25, k\ = 30.

The probable values of the various fc's may be

written as

h, = rik\ for i = 0, 3, 4,

and our problem is therefore to find the correction

factor r with which the approximate value k\

must be multiplied so as to give kt.

Applying the various values of k\ to the

original observation equations on page 64 we obtain

the following schedule for the numerical factors

of
a
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where the additional control column s serves as a

check.

The subsequent formation of the various sum-

products and normal equations is shown in the

following schedules together with the s columns

as a check.
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We may now write the normal equations in

schedule form as follows

:

ORIGINAL NORMAL EQUATIONS
(a) +12,419 + + 1501 — 14483

(1) +0+0—0
(b) + 324 — 96 — 1182

(2) + 181 — 1750

(c) + 989 — 1265

(3) +.00000 +.12086 —1.16617

The sum-products from the observation equa-

tions are shown in the rows marked (a) , (b) , (c)

.

The row marked (3) and printed in italics is

formed by dividing each of the figures in row (a)

with 12,419. The row marked (1) contains the

products of the figures in row (a) multiplied with

the factor .00000. All these products happen in

this case to be equal to zero. Eow (2) is the

products of the factor 0.12086 and the figures in

row (a)

.

We next subtract row (1) from row (b) , row

(2) from row (c) , which results in the following

schedule, which is known as the first reduction

equation.

FIRST REDUCTION EQUATIONS

(0) +324 — 96 — 1182

(1) + 28 + 350

(b) + 808 + 485

]2)~~ —.29626~ —3764814
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The above equations are treated in a similar

manner as the original normal equations, and we
have therefore the 2nd reduction equation of the

form

:

SECOND REDUCTION EQUATION
+ 780 +135

The solution for the unknown r's may now
be shown as follows :

r4 = — 135 : 780 = —.17308

r3 = 3.64814— (—.29626) (—.17308) = 3.59637

r = 1.16617— (0.0) 3.59637) — (.12086)

(—.17308) = 1.18709.

From which we find :

—

k
B
= 263.5, K=— 89.9, fe4

= — 5.1

Applying these factors to the values of 9 («),

y3
(z) and <p4 (2) we obtain the following re-

sult :—T

*0?0
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is. transforma- While it is always possible to
TION OF THE n £ i

variate express all frequency curves by

an expansion in Hermite poly-

nomials, the numerical labor when carried on by

the method of least squares often involves a large

amount of arithmetical work if we wish to retain

more than four or five terms of the series. Other

methods lessening the arithmetical work and ma-

king the actual calculations comparatively simple

have been offered by several authors and notably

by Thiele, who in his works discusses several

such methods. Among those we may mention the

method of the so-called free functions and ortho-

gonal substitution, the method of correlates and

the adjustment by elements. The chapters on

these methods in Thiele 's work are among some

of the most important, but also some of the

most difficult in the whole theory of observations

and have not always been understood and appre-

ciated by the mathematicians, chiefly on account

of Thiele 's peculiar style of writing. A close study

of the Danish scholar's investigations is, how-

ever, well worth while, and Thiele 's work along

these lines may still in the future become as

epochmaking in the theory of probability as some

of the researches of the great Laplace. The

theory of infinite determinants as used by M.

Fredholm in the solution of integral equations is



70 Frequency Curves.

another powerful tool which offers great advant-

ages in the way of rapid calculation. All these

methods require, however, that the student must

be thoroughly familiar with the difficult theory

upon which such methods rest, and they have

for this reason been omitted in an elementary

work such as the present treatise.

We wish, however, to mention another method

which in the majority of cases will make it pos-

sible to employ the Gram or Laplacean—Charlier

curves in cases with extreme skewness or excess.

We have here reference to the method of logarith-

mic transformation of the variate, x.

is. the general One of the simplest trans-

tr^s¥ormation formations is the previously

mentioned linear transforma-

tion of the form z = fix) = ax + b, by which

we can make two constants, c
1
and c 2 vanish.

Other transformations suggest themselves, how-

ever, such as fix) = ax2 + bx + c, fix) = [/«,

fix) = logx and so forth. For this reason I pro-

pose to give a brief development of the general

method of transformations of the statistical

variates, mainly following the methods of Charlier

and J0rgensen.

Stated in its most general form our problem
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is : If a frequency curve of a certain variate is

given by F(x) what will be the frequency curve

of a certain function of x, say /(a?) ?

The equation of the frequency curve is y =
F(x) , which means that F(x)dx is the probability

that x falls in the interval between x-— \dx and

* + %dx. The probability that a new variate z

after the transformation z = f(x) , or x (*0 = #i

falls in the interval z— \dz and z + ^dz is there-

fore simply

F[x(z)]y}(z)dz = F(x)dx,

which gives in symbolic form the equation of the

transformed frequency curve.

The frequency for z = i{x) is of course the

same as for x. The ordinates of the frequency

curve, or rather the areas between corresponding

ordinates, are therefore not changed, but the ab-

cissa axis is replaced by f(x). Equidistant inter-

vals of x will therefore not as a rule—except in

the linear transformation—correspond to equid-

istant intervals of fix).

If, for instance, the frequency curve F(x) is

the Laplacean normal curve

1 — x?:2o*

F(x) = —==, e

<3\/2n
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and if we let z = f(x) = x2 or x = ]/z, we have

1 e
evidently

h __ 2;2(j2W =
oj/2n 2|/z

8« logarithmic Of the various transformations™ANSFOBMArJOiV
the logarithmic is of special

importance. It happens that

even if the variate x forms an extremely skew

frequency distribution its logarithms will be

nearly normally distributed.

This fact was already noted by the eminent

German psychologist, Fechner, and also men-

tioned by Bruhns in his Kollektivmasslehre. But

neither Fechner nor Bruhns have given a satis-

factory theoretical explanation of the transforma-

tion and have limited themselves to use it as a

practical rule of thumb.

Thiele discusses the method under his adjust-

ment by elements, but in a rather brief manner.

The first satisfactory theory of logarithmic trans-

formation seems to have been given first by J0r-

gensen and later on by Wicksell. 1
) Jgrgensen

1 The law of errors, leading to the geometric mean
as the most probable value of the variate as discovered

by Prof. Dr. Th. N. Thiele in 1867 may, however, be con-

sidered as a forerunner of Jgrgensen's work.
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first begins with the transformation of the normal

Laplacean frequency curve. Letting z = logx and

bearing in mind that the frequency of x equals

that of logx we have

z — f(x) = log x, or x = x(z) = ez and dx = e?dz.

The continuous power sums or moments of

the rth order around the lower limit take on

the form

=J
1 /log x— «i\ !

{n]/'2n)-
xN

jj

afe*
l

" ' dx =
u

+
f _w!=*y

= (n^2^)
_1

iV \ e«e
2

^
m Vdz.

on the assumption the logx is normally distrib-

uted.

The change in the lower limit in the second

integral from — 00 to zero arises simply from the

fact that the logarithm of zero equals minus in-

finity and the point — 00 is thus by the trans-

formation moved up to zero.

By a straightforward transformation we may
write the above integral as
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+»
iV mir+ D + ikriHr+iy p — lWdtMr = -=e

„ T mCr + lJ + '/sM^r+l)2

= Ne

Changing from moments to semi-variants by

means of the well-known relations

X = M
A1 = M±:M

X2
= (M2M -Ml):Ml

X3 = (M3Ml— 3M2M1M + 2M\):Ml

A 4 = (MKM\—mzMrM\— 3MIMI +
+ 12MaM\M — 6M\):M4

we have

tn+'hn'
A = Ne

Al — e

A2 = e
2m+3n

'(e
n*-l)

^ = e
«-+ e-'

(6
*.-_

4c
»»'_

3e^ +12<,.'_ 6)-
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These equations give the semi-invariants ex-

pressed in terms of m and n. On the other hand

if we know the semi-invariants from statistical

data or are able to determine these semi-invariants

by a priori reasoning we may find the parameters

ra and n.

21. the mathema- A point which we must bear

in mind is that the above semi-

invariants on account of the

transformation are calculated around a zero point

which corresponds to a fixed lower limit of the

observations.

Very often the observations themselves in-

dicate such a lower limit beyond which the fre-

quencies of the variate vanish. In the case of

persons engaged in factory work there is in most

countries a well-defined legal age limit below

which it is illegal to employ persons for work.

Another example is offered in the number of

alpha particles radiated from certain radioactive

metals. Since the number of particles radiated

in a certain interval of time must either be zero

or a whole positive number it is evident that—

1

must be the lower limit because we can have no

negative radiations. Analogous limits exist in the

age limit for divorces and in the amount of

moneys assessed in the way of income tax.
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The lower limit allows, however, of a more

exact mathematical determination by means of

the following simple considerations. It is evident

that this lower limit must fall below the mean
value of the frequency curve. X/et us suppose that

it is located at a point, a, located say r\ units in

negative direction from the mean, M = \ , and

let us to begin with select \ as the origin of the

coordinate system in which case the first semi-

invariant, X1; is equal to zero. Transferring the

origin to a the first semi-invariant equals n , while

the semi-invariants of higher order remain the

same as before the transformation and we have

:

-. MJ+1.5B8
Aj —- a = r\ = e

A2 = n
2 (e

K
'— 1) or e"

!

= l+.\ 2 :n
2

\l 3X|— H
n6 n 4

.

which reduces to X3 r\
3— SAjJn

2— Xij = 0.

The solution of this cubic equation which has

one real and two imaginary roots gives us the

value of n or \ — a and thus determines the

mathematical zero or lower limit. We have in

fact

:

m
log(l + X 2 :n

2
) and

log t)— l.bn2
, while

N = \n :e
m-^jzn2
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22. logarithmic- We have already shown that
ALLY TRANS-

.

J

formed fre- the generalized frequency curveQUENCY SERIES & 1 J

could be written as

+ ..
77/ \ / \ ^Wifa) <¥p2 (x) caya (x)F(x) = c cp (z) — J^-L + sn^J.— J^J

where the Laplacean probability function

—(»—My

<Po(«) = -77^= e

is the generating function with M and o as its

parameters.

The suggestion now immediately arises to use

an analogous series in the case of the logarithmic

transformation. In this case the frequency curve,

F(x), with a lower limit would be expressed as

follows :

F(x) = k % (x)
~jf-+ 2 ,

- --3'—+
•

•

while the generating function now is

where m and n are the parameters.

1 n\ = \n.
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Using the usual definition of semi-invariants

we then have

XjCO \ro2 X3a>3

p
Tr+ -2T+ -3r+---_

c ,
£i»

, ^ ,

S3C03

5 e — s -t-

i!
"^

2! 3! '"

.3!

The general term on the right hand side in-

tegral is of the form

(— l)
s
ks :s\l e

xco®s (x)dx
h

where the integral may be evaluted by partial

integration as follows

:

] e
x(a

<5>
a (x)dx = e^O^Or)] — co "$ e

x<°<$>
s-X (x)dx.00

Since both <& (x) and all its derivatives are

supposed to vanish for x = and x = 00 the first

term to the right becomes zero and

] e
m®.(x)dx= — co

J
e*

03^-! (as) dr.

By successive integrations we then obtain thp

following recursion formula
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(— co)1 1

e

xca
<Ps-1 (x)dx = (— to)2

jj
e
x(°®^(x)dx

O

(_ 03(2
J e

x(°<5>
s^2 (x) dx = (-co)3

] e
xa

<$>
s-S (x)dx

(— to)
8-1

1 e
xw^(x)dx = (— co)

s

\ e
xw%(x)dx.

Or finally

] e
XC0

<Ps (x)dx = (— to)
!

] e
xm%(x)dx.

Expanding e
x<a

in a power series we have

|e a;ro
<l>s (a;)da; =

n\/2n J

1 + iccoH H +
2! 3!

1 rlogs—ml*

~z L » J dx.

The general term in this expansion is of the

form
» 1 rloga;—ml*

"Zl n J(— co) s cor C

n\/Jn r! J

afe rfa;
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which according to the formulas given on page

74 reduces to

:

Hence we may write

r = as

]e*°»S>s (x)dx = (-co)
8 V^+WV+DV.,.,

Consequently the relation between the semi-

invariants and the frequency function

Fix) = k %(x)-^ ^(x)+^2(x)
-^3(x)+

.

.

.

can be expressed by the following recursion for-

mula

\jO> X2(0
2 ^3<D 8

Tr + "2T + ^3T + - ••_
,

SjM ^2 SgCQ3

1! 2! 3!
V =s +^1-+^n-+-^r-+-- :

= \"
Sv^=Y'y

l

co^ Ve
m('+1)+1/2B2(r+1V: H

v= » = r=

The constants k are here expressed in terms of

the unadjusted moments or power sums, s. It is

readily seen that the Sheppard corrections for

adjusted moments, M, also apply in this case.

We are, therefore, able to write down the values
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of the fe's from the above recursion formula in the

following manner

M = kQe
m+1'm'

M1
= Jhe

m+llm
°+k e*

m+2n'

M% = k2e
m+l'*n

'+2k1e*
m+2n

'+k e
3m+i -Sn

°

Ma
= k3e

m+lhn'+M2e
2m+2n%

+Skie
Zm+^n2

+ k e
im+Sn!

M, = kie
m+i,^+ik3e

2m+2n
'+Qk2e

Sm+^ + ^k1e
im+8n'

+fe,e
5m+12,5"!

It is easy to see that it is not possible to

determine the generating function's parameters m
and n from the observations. These parameters

like M and o* in the case of the Laplacean normal

probability curve must be chosen arbitrarily. If

m and n are selected so as to make k
x
and k2

vanish we have

M = k e
m+''^

Mx
= k e'

M%
= k e

2m+2ril

Zm+iAn?

the solution of which gives

e
M M2 2m _ M\

while
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l^v+'l" = Mi-4M3e
m+1 -6nl-M e

im+9n
\e

3n'-4).

This theory requires the computation of a set

of tables of the generating function

i nog x—my
*> / x

i ~ si
-

s
-

J

wj/2n

and its derivatives. For O (a;) itself we may of

course use the ordinary tables for the normal

curve <p (z) when we consider

log x— m
z = —2

.

n

I have calculated a set of tables of the deriv-

atives of <E> (a;) and hope to be able to publish the

manuscript thereof in the second volume of my
treatise on "The Mathematical Theory of Probab-

ilities".

23. parameters The above development is

Tea^t
M
squareI based upon the theory of func-

tions and the theory of definite

integrals. We shall now see how the same pro-

blem may be attacked by the method of least

squares after we have determined by the usual

method of moments the values of m and n in the

generating function q> («).
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Viewed from this point of vantage our problem

may be stated as follows :

Given an arbitrary frequency distribution, of

the variate z with z = (log x— m) : n and where

x is reckoned from a zero point or origin, which

is situated a units below the mean and defined by

the relation

ri
3 A3— 3r) 2

Aa = Ajj, where a = \
±
— r\;

to develop F(z) into a frequency series of the

form

F(z) = k y (z) + k3y3 (z) + /c4 q>4 (z) + . . . + kn<?n (z)

,

where the fe's must be determined in such a way
that the expression

(r = It,

faipiiz)

gives the best approximation to F(z) in the sense

of the method of least squares.

Stated in this form the frequency function is

reduced to the ordinary series of Gram or the A

type of the Charlier series, already treated in the

earlier chapters.

6*
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24. application As an illustration of the theory

of a mortality to a practical problem we pre-

sent the following frequency

distribution by 5-year age intervals of the number

of deaths (or Zds by quinquennial grouping) in

the recently published American-Canadian Mor-

tality of Healthy Males, based on a radix of

100,000 entrants at age 15.

Frequency Distribution of Deaths by Attained

Ages in American-Canadian Mortality Table.

Ages
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The curve represented by the dx column is

evidently a composite frequency function com-

pounded of several series. From a purely mathe-

matical point of view the compound curve may
be considered as being generated in an infinite

number of ways as the summation of separate

component frequency curves. From the point of

view of a practical graduation it is, however, easy

to break this compound death curve up into two

separate components. A mere glance at the dx
curve itself suggests a major skew frequency curve

with a maximum point somewhere in the age

interval from 70—75 and minor curve (practically

one-sided) for the younger ages.

Let us therefore break the ~Ldx column up into

the two so far perfectly arbitrary parts as shown

in the above table and then try to fit those two

distributions to logarithmically transformed A
curves.

Starting with the first component the straight-

forward computation of the semi-invariants is

given in the table below with the provisional mean

chosen at age 67.
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Frequency Distribution of Deaths in American

Mortality Table First Component.

Ages x ?(i) xF(x) x'F(x) z*F(z)

04—100
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X2 = 655421:91468— A,
2 = 7.1296

X3 = 771333:91468— 3 A^H- 2 A^ = 12.4981.

In order to determine the mathematical zero

or the origin we have to solve the following cubic :

M3— 3X 2
2
n

2 = V, or

12.498 n 3 — 152. 511 n 2 = 362.47

the positive root of which is equal to 12.39. The

zero point is therefore found to be situated 12.39

5-year units from the mean or at age 67.95 + 5

(12.39), i. e. very nearly at age 130, which we

henceforth shall select as the origin of the co-

ordinate system of the first component. We have

furthermore

12.39 =em +i-5n
\ and 7.1296 = e 2m+ 3n'(en'-- 1) =
= (12.39)

2 (e»
9 — 1),

the solution of which gives n2 = 0.04436, n =

0.2106, m = 2.4504, all on the basis of a 5-year

interval as unit. If we wish to change to a single

calendar year unit we must add the natural

logarithm of 5, or 1.6094, to the above value of m,

which gives us m = 4.0598, while n remains the

same. The above computations furnish us with

the necessary material for the logarithmic trans-

formation of the variate x which now may be

written as
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z = [log (130— a:) —4.0598] : 0.2106,

where x is the original variate or the age at death.

Having thus accomplished the logarithmic

transformation we may henceforth write the

generating function as

*o(*) =
1_ pog(130 — z) — 4.0598

-I'

2 L 0.2106 J

.2106|/2jt

= <Po(z) =
271

We express now F (x) by the following

equation.

F{x) = kQ
<5> (x) + ks

<£>
3 (x) + k^^x) + ....

or in terms of the transformed z

:

cp(z) = A: cp (z) + A:3 cp 3 (2) + A;4 cp 4 (z) + ,

and proceed to determine the numerical values

of k by the method of least squares.

The numerical calculation required by this

method follows precisely along the same lines as

described in paragraph 17. I shall for this reason

not reproduce these calculations but limit myself

to quote the final results for the various co-

efficients k, which are as follows :

—

1

1 Interested readers may consult the detailed com-

putations on pages 246—257 in my Mathematical
Theory of Probabilities (2nd Edition, New York,

1921.
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ft = 7361.8; /bs
= — 212.2; kA = — 9.6.

The final equation of the frequency curve of

the first component F (x) , is therefore :

—

Fi(x) = 7361.8q> (*)— 212.2<p,(z)— 9.6<p 4 (z),

where the generating function, y a (z), is of the

form :

—

1 Hog (130— x)— 4.0598 -I"

<Po(z) = <£„(*) = —7= e~
2

L

°-210^^ ~ J

0.2106)/ 2 jt

The second component, Fn (x) , can by means
of a similar process be expressed by the equa-

tion :—

Fn{x) = 947.4cp (z)— 63.4cp3(z)— 30.0cp 4 (z),

where
1 Hog (x+ 68.8) — 4.532 1'

1 „ 2 L 0.12 J

<PoO) = <J>o(*) =
0.12J/2jt

Addition of these two component curves gives

us the ultimate compound frequently curve,

representing the d x of the mortality table.

A comparison between the observed values of

dx and the values of dx as computed from the

above equation is shown in graphical form in the

attached diagram. Evidently the graduation leaves

but little to be desired in the way of closeness

of fit.
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ooo
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frequency curves as shown in the above example

of the AM (5) table.

Although all such investigations may be very

interesting and useful from the point of view of

the actuary, we must, however, not overlook the

fact that the breaking up of the compound dx
curve in the manner just described is merely an

empirical process pure and simple. While such

processes undoubtedly represent very neat methods

of graduation, a quite different and more im-

portant question is whether mathematical work

of this kind allows of a biological interpretation.

It is evident that from a mere mathematical point

of view we may break up the dx curve into various

component parts in an infinite number of ways.

But while such breaking up processes may be

extremely interesting as actuarial graduations and

exercises in pure mathematics, they have evidently

little connection with the underlying biological

facts of a mortality table. This aspect of the

question has been brought out in a very forcible

manner by the eminent American biometrician,

Eaymond Pearl, in his 1920 Lowell Institute

Lectures. The whole subject would appear in a

quite different light if it were possible to give a

biological interpretation of the mathematical

analysis and to show that the component fre-

quency curves as derived from pure mathematics
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have a counterpart in actual life. This, I think,

would be very difficult, if not impossible to

establish, because it is not mathematics which

determines the conduct or behavior of living

organisms. One might, however, view the whole

problem from the standpoint of the biologist

rather than from the standpoint of the mathema-

tican. The problem then is to ascertain whether

the observed biological facts as shown in the

collected statistical data allow of a mathematical

interpretation, rather than to find a biological

interpretation and counterpart of previously

established empirical formulae.

It is to this important question that I have

devoted the entire discussion of the second chapter

of this book. I have proceeded from certain

observed biological facts (in this particular

instance the statistics on the number of deaths

by sex and attained ages from more than 150

causes of death) which represent the natural

phenomena under investigation. In order to offer

a rational explanation of these facts and to inter-

prete their quantitative relationships, I have

adopted as a working hypothesis the supposition

that the number of deaths according to attained age

and sex among the survivors of a homogeneous

cohort of say 1,000,000 entrants at age 10 tend

to cluster around specific ages in such a manner
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that their frequency distribution by attained ages

can be represented by a limited number of sets

of Gram-Charlier or Poisson-Charlier frequency

curves.

On the basis of this hypothesis we can now
by simple mathematical deductions construct a

mortality table from deaths by sex, age and cause

of death and without any information about the

lives exposed to risk at various ages.

Finally we can verify the ultimate results

contained in this final mortality table by working

back from the table to the data originally

observed.

This procedure is in strict conformity with

the model of modern science, which according

to Jevons consists of the four processes of obser-

vation, hypothesis , deduction and verification.

The important factor in this investigation,

and one which most actuaries and statisticians

fail to grasp, is that I have looked at the whole

problem as a biometrician rather than as a

mathematician. Mathematics has been employed

only as a working tool in the whole process, and

the reason that the method has met with success

must be sought for in concrete biological facts

and not in the realm of mathematics.
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26. poisson-s IQ certain statistical series it

P
ft?nction

Y
frequently happens that the

semi-invariants of higher order

than zero all are equal, or that

\x
= X2

= X3 = . . . . = Xr = X.

We shall for the present limit our discussion

to homograde statistical series where the variates

always are positive and integral, and where there-

fore the definition of the semi-invariants is of the

form :

—

Xco Xco2 Xco s

e
Tr + -2T + ^r H

"z<p(a;) = ^y(x)exm =

= cp(0)e0co + <p(l)e
lm + cp(2)e

2co + cp(3)e3ro + ....,

or

Xco Xco2 Xco 8 _\ \,co „ , . xca

e

for x = 0, 1, 2, 3, . . .,

which also can be written as

Xem
.
X 2

e2co

e- x
(l+—

4

1! ' 2!

= 9(0)1 + 9(l)ero + cp(2)e2m +
The coefficient of e

TCD
gives the relative fre-

quency or the probabitity for the occurence of

x = r, and we find therefore that
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e- x
A
r

<f(x) = i|>(r) = -yy

This is the famous Poisson Exponential, so

called after the French mathematician, Poisson,

who first derived this expression in his Recherches

sur la Probabilites des jugesments, but in an

entirely different manner than the one we have

indicated above.

The Poisson Exponential opens a new way
for the treatment of statistical series which poss-

ess the attribute that all their semi-invariants of

higher order than zero are all equal, or nearly

equal. It is readily seen that whereas the Lap-

lacea probability function y (x) contains two

parameters Xx
and o the probability function of

Poisson contains only one parameter, A.

27. poisson— We have already seen in the
f, fJAJ}T TDD .

frequency previous chapters that the

Gram-Charlier frequency curve

could be written as

F{x) = ~Ld(pi(x) = T.aHi(x)(p (x)

for i=0, 1,2,3,

where cp (^) is the generating Laplacean proba-

bility function.

The idea now immediately suggests itself to
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use a similar method of expansion in the case of

the Poisson probability function and to employ

this exponential as a generating fuction in the

same manner as the Laplacean function. We are,

however, in the present case of the Poisson

exponential dealing with a generating function

which so far has been defined for positive integral

values only and, therefore, represents a discrete

function. Por this reason it will be impossible to

express the series as the sum-products of the suc-

cessive derivatives of the generating function and

their correlated parameters c. We can, however,

in the case of integral variates express the series

by means of finite differences and write F(x) as

follows :

F{x) = c i\>(x) + c^O) + c2A^(» .... (/)

where ty(x) = ermmx :x! for x = 0, 1, 2, 3, .... ,

and

Ai{>0) = t\>(x)— ii>(x— 1),

A 2
i|)(a;) = AiKa:)— A^(a;— l)=i|)(a)— 2\\>(x—1)

+ $(x— 2).

The series (I) is known as the Poisson-Char-

lier frequency series or Charlier's B type of

frequency curves.

The semi-invariants of these frequency series

are given by the following relation

:
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XjOD+ Xa CO 2+ X 3 CO 8+ . . .

~2\ 3T
e =

x =

Expanding and equating the co-efficients

of equal powers of co we have :

A = 1 = c S\|) (x) or c = 1

\t = Zz (i|> (re) + cA$(x) + ct^(x) + ..-) (II)

\
l
z+ \.

2 = Zx*{ty(x)+ cAi\>(x)+ cA 2Mx)+ ---)

We now have

2i))(j) = 1, and

Za;i|) (a;) = Im«_mmx~x
: (x—1) ! = mZ\|) (x—1) = m.

We also find from well-known formulas of the

calculus of finite differences that 1

Za)2
i|)(a;)

ZxAip(x) =

1 These formulas can also be derived from the de-

finition of the semi-invariants and the well-known rela-

tions between moments and semi-invariants as given on

page 74 when we remember that according to our de-

finition all semi-invariants in the Poisson exponential are

equal to m.

7
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ZxA 2^(x) =

~Lx2A^(x) = — (2m + 1)

2,x2A 2
i\> (x) = 2

Substituting these values in (77) we obtain

X
1
= m— c

x

X x

2 + A3
= to

2 + m— (2m + 1) c
Y
+ 2c2

By letting m = A
x
we can make the coefficient

Cj vanish, which results in

\±
= m

c2 = %[>.;, — -to]

where the two semi-invariants X
x
and A

2
are cal-

culated around the natural zero of the number

scale as origin.

For the above discussion we have limited

ourselves to the determination of the three con-

stants m, c and c
2

. It is easy, however, to find

the higher parameters c
3 , c4 , c

5 , : . . from the

relations between the moments of the Poisson

function and the semi-invariants of order 3, 4,

5, . . . ect. Charlier usually calls the parameter m
the modulus and c

2
the eccentricity of the B

curve.
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28. numerical Xs an illustration of the appli-
examples

cation of the p isson_charlier

series we select the following

series of observations on alpha particles radiated

from a bar of Polonium as determined by Ruther-

ford and Geiger.

The appended table states the number of

times, F(x), the number of particles given off in

a long series of intervals, each lasting one-eighth

of a minute had a given value x :
—

x F(x) x F(x) x F(x)
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F(x) = N[T|),. gg (a;) + (—0.125) 2^ 3
. ss (x)~].

The table below gives the values as fitted to

the curve, F(x) :

Alpha
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computing the semi-invariants in the usual

manner we obtain the following equation for the

frequency curve.

F(x) = 222 ^>(x) + 31.5A 2 iMaO, m = 0.631.

A comparison between calculated and observed

values follows :

—

x F (x) Obs.

5 134.9 133

6 51.6 55

7 22.5 23

8 9.5 7

9 2.9 2

10 0.6 2

29. trans- For integral variates we have
F
thevariat£ shown that the Poisson fre-

quency curve possesses the im-

portant property that all its semi-invariants are

equal. Now while a frequency distribution of a

certain integral variate, x, may perhaps not

possess this property, it may, however, very well

happen after a suitable linear transformation has

been made, that the variate thus transformed will

be subject to the laws of Poisson 's function.

Let z = ax — b represent the linear trans-

formation which is subject to the above laws with

a series of semi-invariants all equal to m.
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These semi-invariants according to the pro-

perties set forth in paragraph 5 are therefore

m = X x (z) = a\ 1 (x)— b

m = X 2 (z) = a2 \.
2 (x)

m = X3 (z) = a?\ 3 (x)

and our problem is to find the unknown para-

meters a, b and m.

Simple algebraic methods, which it will not

be necessary to dwell upon, give the following

results :

a = X2 :X 3

m = X2
3 :X3

2

b = aX 2
— m

As a numerical illustration of this trans-

formation we choose from J0rgensen a series of

observations by Davenport on the frequency

distribution of glands in the right foreleg of 2000

female swine.

No. of Glands.. 01 2 3 4 5 6789 10

Frequency 15 209 365 482 414 277 134 72 22 8 2

The values of the three first semi-invariants are
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\ = 3.501, X
2
= 2.825, \

3
= 2.417,

o = 2.825:2.417 = 1.168,

m = 2.825 3
: 2.4172 = 3.859,

b = (1.168) (3.501) —3.859 = 0.230.

The new variable then becomes z — az — b

and the transformed Poisson probablity function

takes on the form

:

i|)(z) =
A

In general, however, we will find that z is not

a whole number and the expression z ! therefore

has no meaning from the point of view of

factorials at least. This difficulty may, however,

be overcome through the introduction of the well-

known Gamma Function, T(z + 1), which holds

true for any positive or negative real value of z

and which in the case of integral values of z

reduces to Y(z + 1) = z !

Hence we can write the transformed Poisson

probability function as

,
. e-mmz^ = f(^+T)-

Tables to 7 decimal places of the Gamma
Function, or rather for the expression— r (z + 1)

,

have been computed by Jorgensen in his Frekvens-
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flader and. Korrelation from z = — 5 to z = 15,

progressing by intervals of 0.01.

By means of this table and the tables of

ordinary logarithms it is now easy to find the

values of i|> (z) in the case of the example relating

to the number of glands in female swine. The
detailed computation is shown below. 1

(1) (2) (3)

x z
r(z+i)

—.230 .9209

1 +.938 .0108

2 2.106 .6555

3 3.274 .0679

4 4.442 .3216

5 5.610 .4547

6 6.778 .4904

7 7.946 .4446

8 9.114 .3285

9 10.282 .1506

10 11.450 .9177

«



CHAPTER II

(TRANSLATED BY MR. VIGFUSSON)

THE HUMAN DEATH CURVE

In the following paragraphs I
1. INTRODUCTORY & r & Jr-

remarks intend to discuss a method of

constructing mortality tables

from mortuary records by sex, age and cause of

death, but without reference to or knowledge of

the exposed to risk at various ages. This proposed

method is indeed one which has been severely

criticized in certain quarters, and. several critics

flatly deny that it is possible to construct morta-

lity tables from such data without detailed infor-

mation of the exposed to risk. It is, however, a

very dangerous practice to say that a certain thing

is impossible. The true scientist, least of all,

should attempt to set limits for the extension of

human knowledge. It is still remembered how the

great August Comte once denied that it ever

would be possible to determine the chemical con-

stituents of the celestial bodies. Only a few years

after this emphatic denial by the brilliant French-
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man the spectroscope was discovered, by means of

which we have been able to detect a number of

chemical elements of other worlds than that of

our own little earth. It is but fair to say that the

method which we here shall describe has met with

rather determined opposition in certain actuarial

quarters. Under such circumstances it is natural

that the process will be viewed in a light of scep-

ticism and criticism. I welcome such an attitude

because it has been my purpose to present the

following studies for further investigation and not

to force them upon my readers as authoritative

or as a kind of infallible dogma.

In presenting the outlines of the proposed

method I wish to state that it has never been the

intention to supplant the orthodox methods of

constructing mortality tables where we have ex-

act information of the so-called "exposed to risk"

or number living at various ages. Numerous and

very important examples, however, offer them-

selves in actuarial and statistical practice where

such information is not available. Most of the

greater American Life Insurance Companies,

especially those writing the so-called industrial

insurance, have on hand an enormous amount of

information of deaths by sex, attained age and by

cause of death among their policyholders. Even
the mortuary records of certain occupations, as

for instance metal and coal miners, among the
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death claims in the industial class are so numer-

ous, that it would be possible to construct a mor-

tality table for such professions if we know the

exact number exposed to risk at various ages.

Such information is, however, in the majority of

cases wanting, or could only be obtained by means
of a great expenditure of time and labor. Again,

as Mr. P. S. Crum has pointed out in an article

in the "Insurance and Commercial Magazine", a

number of cities and states in United States give

from year to year very detailed information in

regard to mortuary records by sex, age at death

and cause of death. On account of the intense

migration taking place in certain sections of the

United States, especially in those of an industrial

character, it is, however, impossible to know the

exact population at various ages, except in the

particular years in which the federal or state

census has been taken. The fact that for all but

a few states of this country the intercensal period

is no less than ten years, the determination of the

population composition by age and sex for a given

locality and intercensal year, with any degree of

accuracy, becomes a practical impossibility without

a special count. Such a count or census of a

specific locality or a single city is, however, a

costly undertaking at its best, for which the nec-

essary funds are rarely available. In all such

instances the mortuary records are practically
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worthless in so far as the construction and com-

putation of death rates are concerned, if we are

to rely solely upon the usual method of construct-

ing mortality tables. It will therefore readily be

seen that, apart from purely academic interests,

the possibility of establishing a method of con-

structing mortality tables without knowing the

population exposed to risk at various ages would

be of great practical value, and I deem no apology

necessary to present the following method, which

intends to overcome this very obstacle of having

no information of the exposures.

2. empirical and In order to bring the method
INDUCTIVE ME- , ,1 .• -.

thods of solu- mto the proper perspective it

will be of value to contrast it

with the ordinary methods followed in the con-

struction of mortality tables. Let us therefore

briefly review'those methods and principles com-

monly employed by actuaries and statisticians. A
certain number, say L persons at age x, are kept

under observation for a full calendar year and the

number, D T , who die among the original entrants

during the same year are recorded. The ratio

D x : Lx is then considered as the crude probabi-

lity of dying at age x. Similar crude rates are ob-

tained for all other ages and are then subjected to

a more or less empirical process of graduation to
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smooth out the irregularities arising from what is

considered as random sampling. One then chooses

an arbitrary radix, say for instance 100,000 per-

sons at age 10, which represents a hypothetical

cohort of 10-year old children entering under our

observation. This radix is then multiplied by the

previously constructed value of q and the product

represents the number dying at age 10. This

number, d 10 , is subtracted from l 10 or 100,000 and

the difference is the number living at age 11 or

Z„. This latter number is then multiplied by q xl

and the result is d117 or the number dying at age

11 out of the original cohort of 100,000. In this

way one continues for all ages up to 105, or so.

It is to be noted that the column of qx in this

process represents the fundamental column while

the columns of l
x

and d
r

are purely auxiliary

columns.

Allow us here to ask a simple question. Do
these empirically derived numbers of deaths at

various ages out of an original cohort of 100,000

entrants at age 10 give us any insight or clue as

to the exact nature of the biological phenomenon

known as death, and are we by this method enab-

led to lift the veil and trace the numerous causes

which must have been at work and served to pro-

duce the total effect, the d
r

curve, of which we

by means of the usual methods have a purely
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empirical representation? I fear that this question

will have to be answered in the negative. The

usual actuarial methods do not give us a single

glance into the relation between cause and effect,

which after all is the ultimate object of investiga-

tion for all real science. Probably some critics

would answer that they are not interested in in-

vestigating causal relations. Such an attitude of

indifference is, however, very dangerous for a sta-

tistician or an actuary whose very work rests upon

the validity of the law of causality. We may,

however, overlook this apparent inconsistency of

the empiricists and turn our attention to the pro-

posed methods of constructing mortality tables-

along inductive lines, or by the process which

Jevons has termed a complete induction.

Such a process we should find diametrically

opposite to the methods of the empiricists, both in

respect to points of attack and deduction. In the

case of the empiricists the q r.
is the initial and

fundamental function from which the dx column

is computed as a mere by-product. The rationalistic

method starts with the d column and terminates

with the qx as the by-product.

Being primarily interested in the absolute

number of deaths and not in the relative frequen-

cies of deaths at various ages, our first question

is therefore, "What is the form of the frequency
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curve representing the deaths at various ages

among the survivors of the original group of

100,000 entrants at age 10?" Right here we can,

strange to say, apply some purely a priori know-

ledge. We know a priori that the curve must be

finite in extent, because of the very fact that there

is a definite limit to human life, and we also know
that it assumes only positive values. There can be

no negative numbers of deaths unless we were to

regard the reported theological miracles of resur-

rections from the Jewish-Christian religion as

such. This information about the death curve, or

the curve of d , is, however, not sufficient for use

as a basis for our deductions. We must therefore

look about for additional information, whether of

an a priori or an a posteriori nature and of such

a general character that it can be adopted as a

hypothesis.

It was Poincare who once said
3. GENERAL PRO- , . , . .

perties of the that every generalization is a
"DEATH CURVE" / to

hypothesis. Hence we shall

look for some general characteristics which all

mortality tables have in common in the age

interval under consideration (age 10 and up-

wards) . Let us take any mortality table, I do

not care from what part of the world, and

examine the general trend of the curve traced
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by the values of d for various ages. The curve

rises gradually from the age of ten. The increase

in the number of deaths among the survivors at

various ages will increase, although not uniformly,

until the ages around 70 or 75 are reached. At this

age interval we generally encounter a maximum.
From the ages between 70 and 75 and for higher

ages the number of deaths among the survivors

will decrease at a more rapid rate than at the

earlier stages of life. After the age of 85 only a

small number of the veteran cohort are still alive.

After the age of 90 only a few centenarians

struggle along, keeping up a hopeless fight with

the grim reaper, Death, until eventually all are

carried off between the ages of 110 and 115. We
can much better illustrate this process of the

struggle between the surviving members at va-

rious ages of the cohort and the opposing forces as

marshalled by the ultimate victor, Death, through

a graphical representation. The chart on page 114

shows a mortality graph of the male population

in Denmark (1906-1910) from ages 10 and up-

wards as constructed by the Royal Danish Stati-

stical Bureau. The ordinates of the curve show

the number of deaths at various ages among the

survivors of the original cohort of 100,000 entrants

at agelO. We notice a gradual increase from the

younger ages until the age of 77, where a max-



Property of "Death Curves". ng

imum or high crest is encountered. From that age

a rapid decline takes place until the curve ap-

proaches the abscissa with a strongly marked

asymptotic tendency after the age of 90. At the

age of 110 all the members of the cohort have lost

out and death stands as the undisputed victor, a

victor among a mass of graves. The curve we thus

have traced may properly be called "The Curve of

Death". On the same chart I have also shown

a graphical representation of a comparison between

the Danish death curve and the corresponding

death curves of males for England and Wales in

the period 1909—1911, Norway 1900—1910,

France 1908—1913 and United States period

1909—1911, all based upon an original radix of

1,000,000 entrants at age 10.

We will notice quite important variations in

these curves. The curves for the Scandinavian

countries show a relatively heavy clustering around

the maximum point which in the case of Den-

mark is reached at age 75, in England at age 73,

and in France at age 72. The Danish curve is also

more symmetrical and shows a more uniform clu-

stering tendency around the maximum value than

the other curves. The asymmetry or skewness is

most pronounced in the American curve, due to

the comparatively greater number of deaths at
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younger ages than in the other tables. Tn the

curve for Norwegian males I rnight mention
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another peculiarity which is absent in most other

death curves. I have reference here to a secondary

minor maximum or miniature crest at the age of

21. This maximum point, which is not very pro-

nounced arises from the heavy mortality among

youths in Norway, whose male population always

has consisted of rovers of the sea. A much larger

proportion of young men braves the terrors of the

sea in Norway than in any country in the world.

These sturdy decendents of the Vikings can be

found in all parts of the globe. You are sure to

find a weatherbeaten Norwegian tramp steamer

even in the most deserted and far away harbours

of our continents. But the sea takes its toll. The

result is shown in the little peak in the curve of

death among these sturdy Norwegian youths. 1

Despite all these smaller irregularities all the

curves have, however, certain well defined charac-

teristics ,
namely

:

1) An initial increase with age.

2) A well defined maximum point around the

age period 70—80.

2) A more rapid decline from that point until

the ultimate end of the mortality table.

1 Another factor is the high number of deaths from

tuberculosis typical of youth. See in this connexion dis-

cussion in paragraph 12 a under the Japanese Table.
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The most interesting of these
4. RELATION OF . . . .

frequency c o m m o n characteristics is
CURVES

the encountering or a maxi-

mum point in the neighborhood of 70, and the

subsequent decline toward the higher ages. This

fact has a very important biometric significance,

which we shall discuss in a somewhat detailed

manner. Most of my readers are familiar with the

so-called probability curve, expressed by the

equation

:

This Laplacean or normal curve is represented in

graphical form by the beautiful bellshaped curve

so well known to mathematical readers. Various

approximations to this curve are continually en-

countered in numerous instances of observations

relating to certain biological phenomena where

certain measurable attributes of various sample

populations tend to cluster around a certain norm,

such as the measurements of heights of recruits,

fin rays in fish, etc. We also know that where this

tendency to cluster around the mean is asymmetri-

cal or skew, it is in many cases possible to give

a very close representation by the Laplacean-

Charlier frequency curves.

Now let us return to our curves of death. It
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will be noted that all these curves for ages above

the crest period 70 to 75 to a very marked degree

approach the form of the normal probability curve

and exhibit a marked clustering tendency around

this particular period. The ages around 70, the

Bible's "three score and ten", can therefore be

looked upon as a norm of life around which the

deaths of the original cohort group themselves

in more or less correspondence with the binomial

probability law. This pronounced grouping ten-

dency is a very significant biological phenomenon,

which it might be of interest to dwell upon.

If all the members of our original cohort were

identical as to physical constitution and characte-

ristics, if they all were exposed to. identically the

same outward influences acting upon their mode

of life, it becomes evident from the law of causa-

lity, which is the basis and justification of every

collection of statistical data, that all members

would die at the same moment. We see, however,

immediately that such hypothetical conditions are

not present in human society. The paramount

feature of our material world is variation. No two

persons are alike in regard to physical constitu-

tion. Certain inherited characteristics, which are

present in the individual in more or less pronoun-

ced form, make themselves felt. No two persons

or group of persons can be said to be exposed to
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the same outward influences. The clergyman and

college professor living a sort of tranquil and

sheltered life are not exposed to the same dangers

as the working man or the man in business life.

All these and other factors, almost infinite in

number, tend to produce a decided variation in

the actual duration of life. Of these influencing

factors those relating to purely inherited or na-

tural characteristics are without doubt the most

powerful. If it were possible to eliminate certain

forms of deaths due to infectious diseases, tuber-

culosis and accidents, causes more or less due to

outward influences, we should have left a number

of causes due to a gradual wearing out of the

human system, similar in many respects to the

deterioration of the mechanism in ordinary ma-

chinery. The death curve from such causes of death

would be more related to the normal curve than

the death curve which includes causes of death

from non-inherent or anterior causes as menti-

oned above. This statement is borne out in the

shape of the Danish death curve. In Denmark
where a very determined and largely successful

fight has been carried on against tuberculosis, and

where the accident rate is very low we also find

that the curve is more symmetrical than for in-

stance in this country or in England.

This tendency to an approach towards the bi-
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normal probability curve was already noted by

Lexis, who from such considerations tried to de-

termine what he called a "Normalalter" or normal

age for various countries and sample populations.

Speaking of this attempt the eminent Danish sta-

tistician, Harald Westergaard, says in his „Sta-

tistikens Teori i Grundrids" (Copenhagen 1916)

"An unsually interesting attempt has been made
by Lexis to determine the normal age of man.

A mortality table will, as a rule, have two

strongly dominant maximum points for the num-

ber of deaths. During the first year of life there

dies a comparatively large number. From the age

of 1 the number of deaths decreases and reaches

its lowest point in early youth. It then again

begins to increase, at times in wavelike motions,

until the maximum point is reached at the old

age period".

"The clustering around the latter point has

now a great likeness with the normal or Gaussian

curve, and we might for this reason call this

specific age the normal life age. For the cal-

culation of such a normal age the argument may
be put forth that experience shows that the great

variations in mortality tend to disappear in old

age. Let the rate of mortality in a certain gene-

ration at age .r be \xx and the number of the cor-

responding survivors be lx . The quantity \xx lx will



120 Human Death Curves.

then increase from a certain point, while l x de-

creases, in the beginning slowly, but later on at a

more rapid pace. "During a long period of life the

quantity \i xlx—the number of deaths at a certain

age—-will increase with age. Later on a reversed

motion takes place. But when this reversion will

occur depends on many conditions, the successful

fight against certain diseases, progress in econo-

mic conditions, or change in the mode of living.

All this exercises an important influence, and the

maximum point occurs therefore sometimes sooner

and sometimes later. It is also important to in-

vestigate the natural selection in old age, which

so to say divides the population in different strata,

each with its own state of health. The healthiest

of such groups will with the increase in age play

a greater role. Here as everywhere it is the more

important problem to study the clustering around

the mean inside the special groups rather than to

attempt to find a derived expression for the morta-

lity. On the other hand, the correspondence be-

tween the normal curve as established by Lexis

is another testimony to the fact that this curve

or formula very often can be applied, even in

complicated expressions".
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s. the "death Lexis was satisfied to deter-
CVRVE" AS A ,, , a

compound mine the normal age. A more

ambitious attempt to investi-

gate the mortality by means of frequency curves

throughout the whole period of life was made by

the eminent English biometrician, Pearson, in a

brilliant essay in his "Chances of Death". Pear-

son took the number of deaths in the English

Life Table No. 4 (males) and succeeded in break-

ing up the compound curve into five component

curves typical of old age, middle age, youth, child-

hood and infancy. I want to advise my readers to

study this brilliant and illuminating essay, especi-

ally on account of its beautiful form of exposition

which makes the whole subject appear in a most

interesting light.

Speaking of this attempt by Pearson, the

American actuary, Henderson, is of the opinion

that „the method has not, however, been applied

to other tables and it is difficult to lay a firm

foundation for it, because no analysis of the deaths

into natural divisions by causes or otherwise has

yet been made such that the totals in the various

groups would conform to these (the Pearson)

frequency curves". We shall later on come back

to this statement by Henderson, which we feel

is a partial truth only. On the other hand, it must

be admitted that the system of Pearson's types of
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skew frequency curves (by this time twelve in

number) are by no means easy to handle in

practical work and often require a large amount

of arithmetical calculation. Moreover, there seems

to be no rigorous philosophical foundation for the

Pearsonian types of curves, and they can at their

best only be said to be exceedingly powerful and

neat instruments of graduation or interpolation.

On the other hand, I am of the opinion that

the goal can be reached more easily if we, instead

of the Pearsonian curve types, make use of the

Laplacean-Charlier andPoisson-Charlier frequency

curves, which are expressed in infinite series of

the form :

F(x) = q,(ar)+ p 8

q,in(
a:

)+ p 4
q,iv(

a
.)+ ..: (2

)

or2f(s)=iKaj)+ Y I
A»iMs)+ Y,A»iMa!)+ ....(3)

These two curve types have been treated

elsewhere by Gram, Charlier, Thiele, Bdgeworth

J0rgensen, Guldberg and other investigators, and

it is therefore not necessary to dwell further upon

their analytical properties, which were discussed

in Chapter I.

Eeturning now to the general form of our d x

curve of the mortality table which we discussed

above, it is readily seen that this curve has all the

properties of a compound frequency curve, that
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is, a curve which is composed of several minor or

subsidiary frequency curves, generally skew in

appearance. As proven both by Charlier and by

J0rgensen, any single valued and positive comp-

ound frequency curve vanishing at both -\- oo and
— cc can be represented as the sum of Laplacean-

Charlier and Poisson-Charlier frequency curves.

We know thus a priori that the d x curve is comp-

ounded of the two types of frequency curves. But
how are we to determine the separate component

curves? It is readily admitted that no a priori

reason will guide us here. The purely empirical

observer might therefore abandon the project

right here, because to all appearances it would

seem hopeless to attempt a solution by purely

empirical means. The positive rationalist does

not despair so easily. "Very well", he says, "if

we can not make further progress by purely

empirical means, we are at least permitted to try

deductive reasoning and attempt to bridge the gap

by means of an hypothesis". The hypothesis I

shall adopt is the following

:

The frequency distribution of deaths ac-

cording to age from certain groups of causes

of death among the survivors in a mortality

table tend to cluster around certain ages in

such a manner that the frequency distribution

can be represented by either a Laplacean-
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Charlier or a Poisson-Charlier frequency
curve.

A study of mortuary records by age and cause

of death immediately supports this hypothesis.

We notice, for instance, that diseases such as

scarlet fever, .measles, whooping cough and diphr

theria often cause death among children, but

rarely seem to affect older people. We know, for

instance, that there is a much greater probability

that a 5-year old boy will die from scarlet fever

than a man at the age of 40 wiill die from the

same disease. On the other hand, there is quite

a large probability that an old man at age 85

will die from diseases of the prostate gland, while

such an occurrance is almost unheard of among

boys. Similarly deaths from cancer and Bright's

disease are very rare in youth, but quite frequent

in early old age. Tuberculosis, on the other hand,

causes its greatest ravages in middle life, and has

but little effect upon older ages.

6. mathematical Leaving, however, the ques-
PROPERTIES OF ° ^

nIntfreq
P
uen-

tl0n 0f the 8T0UPing of causes

cy curves of death into a limited num-
ber of typical groups to a later discussion, we shall

in the meantime see how the hypothesis can carry

us over the difficulties. Let us for the moment
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assume that we are able to group the causes of

death into say 7 or 8 groups. We shall also as-

sume that we know the percentage frequency

distribution of deaths according to age in each

of the groups. This means in other words that

we know the equation of the frequency curves

giving the percentage distribution. Let the ana-

lytical expression for these frequency curves be

denoted by the symbols

:

Fj(x), Fa {x), Fm {x), ..., .Fviii(z). (4)

Again, let the total number of deaths among the

survivors in the mortality table from causes of

death according to the above grouping be denoted

by

Nu Nu, Niu, Nix, . . ., Nviu respectively. (5)

The number of deaths in a certain age interval,

say between 50-54 can then be expressed as

follows

:

x = bi

^dx =^N Fi (x)+^NUFn {z)-\-..

X = 50 60

54

+ y, v̂mFy\ii{x).

(6)

In this relation the only known quantities are

the equations for the frequency curves Fi{x),
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Fa(x), . . ., Fvm(x, of the percentage frequency

distribution according to age in each of the eight

groups. Neither d
x
nor any of the various N's are

known. The only relation we know a priori among

the quantities N is the following

:

JV, +Nu+Nm+ • JVvm = 1 ,000,000. (7)

The latter equation is simply a mathematical

expression for the simple fact that the sum total

of the sub-totals of the various groups of causes

of death, in other words the deaths from all

causes among the survivors in the mortality table,

must equal the radix of the entrants of our orig-

inal cohort of 1,000,000 lives at age 10. Viewed

strictly from the standpoint of frequency curves,

we might express the same fact by saying that

the sum of the areas of the various component

curves must equal 1,000,000.

It is readily seen that on the assumption that

the expressions of the different F(x) conform to

the above hypothesis it is possible to find d for

any age or age interval if we can determine the

values of the different N's. It is in this possibility

that the importance of the proposed method lies,

and we shall now show how it is possible to deter-

mine the N's without knowing the exposed to

risk.
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r. observation Consider for the moment the
EQUATIONS

following expression

:

50 III

JTiVm Fm (a)

£Ni Ft (x) +£Fn (x) Kn +
50 51)

54 54

-^Vin Fm (x) + . . . +^^111 jPViii (a)

(8)

What does this equation represent? Simply the

proportionate ratio of deaths in group III to the

total number of deaths in all type groups (in

other Words the deaths from all causes) in the age

interval 50-54. Such ratios are usually known as

proportional death ratios. It is readily seen that

these proportionate death ratios are dependent on

the deaths alone and absolutely independent of

the number exposed to risk, provided tne total

number of deaths from all causes in a certain age

group is large enough to eliminate variations due

to random sampling. 1 In other words, we can find

1 Strictly speaking this statement is only true for an

age interval of one year or less and may in the case of

large perturbing influences in the population exposed to-

risk be subject to appreciable errors when we use large

age intervals of 10 or more in our grouping for the com-

puting of R{x). When the age interval for the grouping

of causes of deaths by attained ages is 5 years or less

the error committed in assuming R(x) as being indepen-
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a numerical value for the term JB rir (x) on the left

side of the equation from our death records alone

without reference to the exposed to risk in this

interval. Similar proportionate death ratios can

of course without difficulty be determined for the

other groups of causes of death and for arbitrary

ages or age intervals. In this manner we can

determine a system of observation equations with

known numerical values of .R. (#)(& = I, II, III, . .
.)

The fact that the number of observation equations

in this system is much larger than the number of

the unknown N's makes it possible to determine

these unknowns by the method of least squares.

Probably the simplest manner is first to deter-

mine by simple approximation methods, or by

mere inspection, approximate values for the

various N's and then make final adjustments by

the method of least squares.

Let, for instance,

'JVi, 'Nn , 'N}nil

dent of the number exposed to risk is in most cases

negligible. One of the difficulties encountered in the

construction of a mortality table for Massachusetts Males

was that the age interval used for the grouping was 10

years instead of 5 years or less. See in this connection

the remarks at the beginning of paragraph 11 and at

the conclusion of paragraph 16 of the present chapter.
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be the first approximations of the areas of the

various groups of frequency curves so that

#, = <#!, Nn =a,'Nn ,

-tfvm = a
8 'JVvm.

-} (9)

Let us furthermore introduce the following

symbols

:

1 (10)
'JVi Fj (x) = <&! (x) , 'NnFa (x) = <D

2 (fc)
,

'NYinFvm {x) = <£>
a (x).

The different values of

®i(«). ®
2 (*). *s(*). ••-, ^8 (*)

may then be regarded as a system of component

frequency curves to which we now must apply the

different correction factors c^, a2 , a3 , . .
.

, a8 in order

to fit the curves to the observed proportional death

ratios, R(x), for the various groups of typical

causes of death. Let us for example assume that

the observed death ratio of a certain age (or age

group), x, under a certain group of causes of

death, say group No. Ill, is Rm(x). We have

then the following observation equation

:

Bm (x) = a
s
®

3
(x): [a^W+a^W-U

+ a
t
<J>

4 (z)+. • .+a
a
®

8
(x)+ a

2
<P2 (x)} }

(U)
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Since the sum of the areas of the different comp-

onent curves necessarily must equal 1,000,000 it

is easy to see that we may write the factor a
2

in the last term of the denominator in the follow-

ing form

:

a, Y O
2 0) = 1,000,000

or

1,000,000- [a^X^+ag^
7

<D
3
(z)-

... + a
8^ '<D

8 (x)]) : JT<D, (x) =

= h — [h «
x + /j

a

;i + . . . + />
8
a

8 J

where
1 ,000,000 _ Z p! (x)

~
! I$

2 (l)
'

J ~~ I$
s
(l)'

1 " s$,(i)'
'•' 8 KD2 (i)'

(12)

The expression for i?m (a;) can then be put in the

following form :

Bm {x) = a
3
O

s
(a;) : [c^^ (x) + a

;}
<J>

3
(x) + '

+ a
i
*

i (x) + ....+a
8

<l>
s (x)+ /(IS)

+ (*t>
— *! ax

—
. . . — /.•„ a

8 ) <D
2

(a;)] .

.
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Similar observation equations for the other

groups are derived without difficulty.

Once having formed the observation equations

it is simply a matter of routine work to compute

the normal equations from which the values- of

the unknown N's can be found. We shall, how-

ever, not go into detail with the derivation of the

necessary formulas, since this is a process which

belongs wholly to the domain of the theory of

least squares and which has received adequate

treatment elsewhere. (See for instance Brunt's

Combination of Observations.)

s. classifica- We think it more advantage-
TI
°oF°DEATi

ES
ous to illustrate the method by

a concrete example. As an

illustration we may take the case of Michi-

gan Males in the period 1909—1915. The

mortuary records of Males in Michigan are

for that period given in the reports issued

annually by the Secretary of State on "Begistrat-

ion of Births and Deaths, Marriages and Divorces

in Michigan". The deaths by sex, age and cause

of death are given in quinquennial age groups. A
very serious drawback is the grouping of all ages

above 80 into a single age group instead of in at

least 4 or 5 quinquennial age groups. This makes

it impossible to obtain good observation equations

9*
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for ages above 80. When we consider that about

one fifth of the original entrants at age 10 in the

mortality table die after the age of 80, it is readily

seen that this defect in the Michigan data is of a

very serious character, which makes it out of the

question to determine correctly the areas of the

curves for middle old age and extreme old age.

For ages below 70 these curves do not play so

important a role, and the method ought therefore

in these ages yield satisfactory results. We now
make the assertion that the deaths among the

survivors in the final life table can be grouped in

the following typical groups.

Causes of Death typical of :

—

Group I Extreme Old Age.

II Middle Old Age.

— Ill Early Old Age.

— IV Middle Life.

V Early Middle Life.

— VI Pulmonary Tuberculosis, Etc.

— Vila Early Life Occupational Hazard.
— Vllb Middle Life Occupational Hazard.
— Villa Childhood.

The classification of causes of death according

to this scheme is given in the following table, mar-
ked Table A.
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Table A. Michigan Males 1909—1915

Classification of causes of death according to the

chosen system of curves.

No. in Inter-

national Class
fication.

81.
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No. in Inter-

national Classi-

fication.

105. Diarrhea and enteritis, (over 2 years)

14. Dysentery.

GROUP III

39. Cancer of the mouth.

40. Cancer of the stomach and liver.

41. Cancer of the intestines.

44. Cancer of the skin.

45. Cancer af other organs.

46. Tumors.

50. Diabetes.

53—54. Leukemia and anemia.

63. Other diseases of the spinal cord.

68. Other forms of mental diseases.

80. Angina pectoris.

109—110. Hernia, intestinal obstruction, and

other diseases of the intestines.

120. Bright's disease.

121. Other diseases of the kidneys

123. Calculi of urinary passages.

GROUP IV

56. Alcoholism.

18. Erysipelas.

62. Locomotor ataxia.

73—76. Other diseases of the nervous system,

77. Pericarditis.
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No. in Inter-

national Class
fication.
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No. in Inter-

national Classi-

fication.
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No. in Inter-

national Classi-

fication.

175— (2). Traumatism by electric railway.

175— (3). Traumatism by automobiles.

175— (4). Traumatism by other vehicles.

176. Traumatism by animals.

178. Cold and freezing.

179. Effects of heat.

185. Fractures and dislocations (cause not

specified.

GROUP VI

28. Tuberculosis of the lungs.

29. Miliary tuberculosis.

37—38. Venereal diseases.

186. Other accidental traumatism.

57—59. Chronic poisoning.

67. General paralysis of the insane.

31. Abdominal tuberculosis.

GROUP VII

1. Typhoid fever.

69. Epilepsy.

108. Appendicitis.

182. Homicide.

169. Accidental drowning.

170. Traumatism by firearms.

171. Traumatism by cutting instruments.



138 Human Death Curves.

No. iD Inter-

national Classi-

fication.

173. Traumatism by mines and quarries.

174. Traumatism by machinery.

175— (1). Traumatism by railroads.

180. Ligthning.

61. Meningitis.

GROUP VIII

5. Smallpox.

6. Measles.

7. Scarlet fever.

8. Whooping cough.

9. Diphtheria and croup.

30. Tubercular meningitis.

150. Congenital malformations.

9. outline of com- ^e numDer of deaths in the
puting scheme various groups according to the

above classification and ar-

ranged according to age during the period 1909

—

1915 is given in the table B on page 140.

From that table it is a simple matter to com-

pute the proportionate death ratios of the separate

groups of causes of death. Such a computation is

shown in table C on page 141.

It is readily seen that these death ratios are

independent of the number exposed to risk. More-
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over, the number of observations seem to be suffi-

ciently large to eliminate serious variations due

to random sampling. This might perhaps not hold

true for the age intervals 10 to 14 and 15 to 19

where not alone random sampling is present, but

a somewhat modified classification seems neces-

sary. I have, however, not used the observed pro-

portionate death ratios for the two younger age

intervals in my computations which only took into

account the ratios above 20. For this reason I do

not deem it necessary to go into a closer investiga-

tion of a re-classification of causes of death for

these younger age groups. A more serious defect

which cannot be overcome is presented in the

ages above 80 where, as mentioned before, a clas-

sification according to age is absent in the original

records for the state of Michigan. The fact that

the highest number of deaths (12,473) occurred

in ages above 80 makes this defect more serious

than the omission of a re-classification of causes

of death below 20.

So far we have only been concerned with the

first step in the complete induction according to

the model of Jevons, namely that of simple observ-

ation. The next step in the induction is the hypoth-

esis. We present now the following working

hypothesis.

The frequency distribution of deaths according
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to age of the above groups of causes of death

among the survivors of an original cohort of

1,000,000 entrants at age 10 can be represented by

a system of frequency curves determined by the

following characteristic parameters:
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a long practice in curve fitting) choose the follow-

ing approximations. 1

Group Approximate Value of 'N.

I
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their respective 'ATs we can get a first approxima-

tion of the final death curve. I give on page 144 an

approximate table arranged in 5 year intervals.

We might now first compute the various factors

kn , k„ /c„ which will be common for all

observation equations. We have, referring to the

above formulas (llandl2) for the various k's (15).

_ 1000000 _ 123089
. = 183045 )

°~
365995 '

1_
365995'

3__
365995'

_ 104888 75030 69996
.

365995
5

365995 " 365995

61003 17002
(15)

365995
8

365995

Or

& = 2,732, ^= 0,336, &3= 0,500,&
4
=0,287,

k
b
= 0,205, ft,= 0,191, k

7
= 0,167, k

8
= 0,046.

To illustrate the further process of the compu-

tation of the observation equations, let us take a

certain age interval, say the interval between

50-54. The value of <1>
2
taken from the above table

is 163.39. The value of Rm (x) for this interval is

0.234 (see table page 141) . Hence we have the

following observation equation (16).

10
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0.234 = 104.53a
3

: [15.76(^ + 104.530,+

84.16a
4 + 64.52a

g
+ 73.55a

6
+ 35.01 a

? +

0.00a
8 + (2.732 — 0.336a

1
— 0.500a

3
—

(16)

0.287 a
4
— 0.205a

6
— 0.191a

6
— 0,167 a

g
-

— 0.046 a
g)

163.39]-

After a few simple reductions this may be

brought to the following form :

9.16cl + 99.19a, — 8.72a, — 7.26a. —

)

13 4 5
(17)

9.91 a
6
— 1-81 a, + 1.76 a

g
— 104.45 = 0. j

In the routine work I usually use a system of

computing the various equations which is out-

lined in detail in the accompanying tabular scheme

referring to all the groups in the age interval

50-54 and shown on pages 148-154.

Similar observation equations are arrived at in

exactly the same manner for other groups and

other age intervals. For the whole interval from

age 20 and upwards we get, in this way 96 obser-

vation equations from which to determine the cor-

rection factors. The coefficients of theae obser-

vational equations are then written down, and
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their various products formed in turn. We deem

it not necessary to give all these observational

equations and their coefficients for all the 96

observations, but shall limit ourselves to give all

the necessary computations for the interval from

50-54 as previously considered. With the usual

system of notation employed in the method of

least squares we get the scheme on pages 148-154.

Normal Equations, Michigan Males 1909—1915.

723763 400750 218930 150776 135184 115318 30325 1801152

877847 253187 176242 149858 129697 34600 2053941

237159 90440 72317 62110 16246 964843

105346 47022 39939 10576 628608

76774 28909 8668 525295

53378 7012 437390

2391 111625

The addition of the various columns of the sum

products of the coefficients gives us finally the

above set of normal equations of which we only

submit the coefficients in the usual scheme em-

ployed in the method of least squares.

Solving the above system of normal equations

by means of the well-known method devised by

Gauss, we obtain finally the values on page 154 for

the various a's by which the approximate values

'N must be multiplied in order to yield the prob-

able values- of N.

10*
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Applying the above correction factors to the

respective values of 'IV, we get finally as the total

areas of the respective component curves :

Group I
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that the condition which the final component fre-

quency curves shall fulfill is the one that observed

proportionate death ratios shall agree as closely

as possible with the expected or theoretical pro-

portionate death ratios as computed from the final

table. In this connection it must be borne in

mind that the observed proportionate death ratios

are given in quinquennial age groups. Thus the

observed proportionate death ratios in a certain

age interval, as for example between 50—54 are

really the average or "central' ' proportionate death

ratios at age 52. From the complete table it is,

however, possible to compute the proportionate

death ratios for each specific age. Graphically the

expected proportionate death ratios will therefore

represent a continuous curve, while the observed

ratios will be represented by a rectangular shaped

column diagram. Such a graphical representation

is shown in Pig. 3 which simply represents the

figures in Table C and Table E in graphical form.

The "goodness of fit" of the "expected" or theore-

tical values to the ''actual" or observed values is

seen to be very close, especially in the largest and

most important groups. It is only in the combined

groups Vila and Vllb that the "fit" might prob-

ably be open to criticism for higher ages, but even

here the deviation is small between the actual and

theoretical values. A very small increase in the
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area of the Vllb curve would easily adjust this

difference. It is, however, doubtful if such a cor-

rection or adjustment would have any noteworthy

effect upon the ultimate mortality rates qx , and I

do not consider it worth while to go to the addi-

tional trouble of recomputing the areas, especially

in view of the fact that the observation data above

the age of 80 are not exact and detailed enough to

be used in this method of curve fitting. For ages

up to 70 or 75 I consider, however, the table as

thus constructed as sufficiently accurate for all

practical purposes.

u Massachusetts ^s an°ther example of the me-

1914^917 "hod I take the construction

of a mortality table for the

State of Massachusetts from the mortuary records

for the three years 1914, 1915 and 1916. The

records as given by the Registration reports are

better than the records for Michigan, in as much
as they have avoided the deplorable practice of

grouping all deaths above the age of 80 into a

single age group. On the other hand, the classifi-

cations of cause of death in Massachusetts by at-

tained age are given in ten year age groups only.

Hence it is readily seen that we will only be able

to secure half as many observation equations as

in the case of the five year interval in Michigan.
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the benefit of the readers briefly outline the results

I have obtained from an analysis of the Massachu-

setts data.

While for the Michigan data I employed a sy-

stem of frequency curves previously used with

success for certain Scandinavian data, I found it

was easier to fit the Massachusetts data to a sy-

stem of frequency curves used in the construction

of a mortality table for England and Wales for

the years 1911 and 1912 from the mortuary records

of deaths by age and cause among male lives. The

classification by age of the causes of death in 8

groups is also different from that of Michigan,

especially for middle life and younger ages. The

parameters of the system of component frequency

curves to which I fitted the Massachusetts data are

shown in the following table F

:

Table F.

Parameters of the System of Frequency Curves

for Massachusetts Males 1914—1916.

Group
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The observed number of deaths according to the

8 groups of causes of death, and their correspond-

ing proportionate death ratios are given in the fol-

lowing tables G and H.

By finding first approximate values and then by

a further correction of these approximation areas

by means of the factors a. determined by the

method of least squares in exactly the same man-

ner as demonstrated in the case of Michigan, we
finally arrive at the following areas of the various

groups.

Areas of the component fre
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to test the "goodness of fit" of the curves it is

necessary to compute the expected or theoretical

proportional death ratios from this latter table and

compare such ratios with the observed or actual

proportionate death ratios as shown in Table H.

The theoretical values are shown in Table I, and

a graphical representation illustrating the "good-

ness of fit" between the observed and theoretical

ratios is given in Fig. 5. I think it will be generally

admitted that the fit is satisfactory for all practical

purposes.

The State of Massachusetts has always been the

foremost state in the union for reliable and trust-

worthy statistical records, and in all probability it

would be possible to secure the deaths by causes in

5-year age groups instead of ten-year groups. By
taking the above table as a first approximation one

should then obtain a very accurate table. On the

other hand, it is possible to verify the final results

in the above Life Table for Massachusetts by an

entirely different process. It happens that the

State of Massachusetts took a census in April 1915.

This census for living males by attained ages could

then be used as an approximation for the exposed

to risk, while the deaths for the three years could

be used as a basis for the number of deaths in a

single year. A Life Table could then be con-

structed by means of the orthodox methods usually
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employed by actuaries and statisticians in the con-

struction of mortality tables from census returns.

12
' coMmfvB en. As a third illustration, I shall

TABLiFitnt—ir construct a table for American
other tables Locomotive Engineers for the

period 1913—1917. The statistical data forming

the basic table are the mortuary records by at-

tained age and cause of death among the members

of The Locomotive Engineers' Life and Accident

Insurance Association, a large fraternal order of

the American Locomotive Engineers. The total

number of deaths in the five year period amounted

to more than 4,000. Distributed into separate

groups of causes of death, it was found that it

was possible to use a system of frequency curves

similar to that employed in the State of Massachu-

setts, except for Group No. IV, for which it was

found exceedingly difficult to find a single curve

which would fit the data, and much points towards

the actual presence of a compound curve of that

group of causes of death among the Locomotive

Engineers. The grouping of causes of death is, also

slightly, different from that of Michigan and Mas-

sachusetts. I shall not go into further details as

to the actual construction of this table, except to

mention the areas of the various component fre-
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quency curves of which I present the following

table.

Areas

Group I 44,857

— II 342,645

— Ill 226,022

— IV 147,420

V 47,650

— VI 31,260

— Vila 79,005

— Vllb 77,713

— VIII 3,428

1,000,000

It must also be remembered that the radix of

this table is taken at age 20, instead of at age 10

as is the case in the preceding tables. The final

graph is shown on the preceding page. A num-

ber of diagrams illustrating the "goodness of

fit" are also attached and need no further com-

ment. It might, however, be of interest to men-

tion the fact that the American actuary, Moir,

has recently constructed a mortality table for

American Locomotive Engineers along the ortho-

dox lines from the data contained in the Medico-

Actuarial Mortality investigation. Moir's table --

or at least the great bulk of the material from
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which it was derived — falls in the interval be-

tween 1900 and 1913. Owing to the energetic

'safety first" movement which since 1912 has been
actively pursued by most of the leading American

joia

.016

.014

.012

.010

.008

.006

MH

.002

.000

B
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„x,„T~T„„r, T A similar table showing mor-
12 a. ADDITIONAL °

mortality tality conditions among a de-TABLES
cidedly industrial or occupational

group has been constructed for coal miners in the

United States. The original data of the deaths by

ages and specific causes were obtained from the

records of several fraternal orders and a large indus-

trial life assurance company and comprised nearly

1600 deaths. The number of deaths above the age of

sixty were, however, too few in number to determine

with any degree of exactitude the area of component

curves for the older age groups. For ages below

sixty-five the table should on the other hand give a

true representation of the mortality among coal

miners in American collieries during the period under

consideration 1
). A particular feature of this table is

the comparatively low mortality in group VI, which

contains primarily deaths from tuberculosis. Coal

miners present in this respect different conditions

than those usually prevailing in dusty trades where

the death rate from tuberculosis is unusually high.

The same feature is also borne out in previous in-

vestigations on the death rate of coal miners in Eng-

1
It was not possible to seperate anthracite and bituminous coal miners.

The data indicate, that anthracite mine workers have a higher accident

rate than workers in bituminous mines.



Coal Miners. 173



174 Human Death Curves.

land, and by the recent investigations by Mr. F. L.

Hoffman on dusty trades in America.

In order to have a measure of the mortality pre-

vailing among industrial workers in America, we
submit a table derived from a very detailed collection

of mortuary records by age, sex and cause of death

as published by the Metropolitan Life Insurance Com-

pany of New York. A deplorable defect in this splen-

did collection of data is the grouping together of all

ages above seventy in a single age group, which

makes it almost impossible to determine the com-

ponent curves for higher ages with any degree of

trustworthiness.

The defect in the original Metropolitan data for

older age groups made it neccessary to modify the

earlier sets or families of curves which were used

on the Michigan and Massachusetts data and to

combine several of the subsidiary component curves,

especially those for the older age groups. Such

modifications were, however, easily performed by

means of simple logarithmic transformations.

I give below my grouping scheme for the Metro-

politan data designated by the code numbers of the

international list of causes of death. The actual

cause of death corresponding to each code number

is found under paragraph 8 of the present chapter.
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GROUP I

10, 39 to 46, 48, 50, 54, 63 b, 64 to 66, 68, 79, 81,

82, 89 to 91, 94, 96, 97, 103, 105, 109 a, 120, 123, 124,

126, 127, 142, 154.

GROUP II

4, 13, 14, 18, 26, 27,, 32 to 35, 47 (over age 20), 49,

51 to 53, 55, 60, 62, 70 to 72, 77, 78, 80, 83 to 88, 92,

95, 98 to 102, 106, 107, 109 b, 110 to 119, 122, 125, 143

to 145, 148, 149, 155 to 163.

GROUP III

28, 29, 31, 37, 38, 56 to 59, 67.

GROUP IV a AND IV b

1, 5 to 9, 17, 19, 20 to 25, 30, 61, 63 a, 73 to 76, 108,

146, 147, 150, 164 to 186, 47 (under age 20).

It will be noted that under this scheme Group I

includes practically Groups I to III of the Michigan

classification, Group II corresponds partly to IV and

V for Michigan, Group III is practically Michigan's

Group VI, while Group IV a and IV b takes in partly

V, VII, and VIII in the Michigan experience. As a

further correction I found it also advisable to transfer

some of the deaths in the age intervals 10—14, 15—19,

20—24, and 25—29 in Groups I and II to Group IV a

so as to avoid the long left tail ends in these older

age curves.
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After grouping the deaths (more than 200,000) of

the Metropolitan experience according to the above

scheme, it is a simple matter to compute the various

PER
CENT
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to this chapter. A comparison between the observed

values of R(x) by quinquennial ages and the con-

tinuous values of R(x) (indicated by dotted curves)

as computed from the final mortality table is shown

in Fig. 9. The "fit" between calculated and observed

values is evidently satisfactory.

A most instructive and unique experience is of-

fered in the table of Japanese Assured Males for the

four year period 1914-1917 and based upon the death

records of more than a dozen of the leading Japanese

Life Assurance Companies. About 35,000 deaths by

cause and arranged in quinquennial age groups were

available for this construction. The component curves

for the older age groups were determined by a simple

logarithmic transformation of the variates and offered

no particular obstacles in the a priori determination

of the parameters. The curves for middle and younger

life were more difficult to handle, especially the

curves typical of tuberculosis, spinal meningitis and

the peculiar Oriental disease known as Kakke, aris-

ing from an excessive rice diet. A first attempt to

use the same curve types as employed in some of the

European and American data did result in a very

poor fit between the observed and calculated values

of R(x) for the younger age intervals clearly indica-

ting that the clustering tendencies were different in

the case of the Japanese data than in the other experi-

ences I had previously dealt with.

12
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The peculiar form of the observed values of R(x)

for the tuberculosis group indicated beyond doubt

that the frequency curve for this group itself was a

compound curve. I therefore decided to include both

spinal meningitis and kakke with the tuberculosis

group, and treat this new group as a compound fre-

quency curve with two components. By successive

trials I finally succeeded in establishing a complete

curve system which satisfied the ultimate require-

ment of the fit between the observed and calculated

values of R{x) for the various groups. 1

Grouping of Causes of Death in Japanese Assured

Males 1914—1917.

GROUP I

Diseases of Arteries, Senility, Influenza, Cerebral

Hemorrhage, Acute and Chronic Bronchitis, Broncho-

pneumonia.

GROUP II

Asthma and Pulmonary Emphysema, Cancer (all

forms), Tumor, Diabetes, Other Diseases of Body,

Paralytic Dementia, Tabes Dorsalis, Diseases of other

organs for circulation of Blood, Chronic Nephritis,

Other Diseases of Urinary Organs.

GROUP III

Mental Diseases, Other diseases of Spine and

Medulla Oblongata, Other Diseases of Nervous

1 See Addenda for the final table.
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System, Diseases of Cardiac Valves, Pneumonia,

Pleurisy, Other Respiratory Diseases, Gastric Catarrh,

Ulcer of Stomach, Hernia, Other Diseases of Stomach,

Diseases of Liver, Acute Nephritis, Diseases of Skin

and Diseases of Motor Organs.

GROUP IV a AND IV b

Typhoid Fever, Malaria, Cholera, Acute Infectious

Diseases, Peritonitis, Suicide, Dysentery, Tuberculosis

(all forms), Syphilis, Kakke, Menengitis, Inflamma-

tion of the Caesum, Death by external causes (acci-

dents, etc.).

Arranging the collected Japanese statistics on

causes of death among assured males by attained

age at death in accordance with the above scheme

of grouping, using a 5 year interval as the unit, we
obtain the following double entry table for the 35207

deaths as used in my computation for the various

values ofR(x).

Ages Group I Group II Group III Group IV Total

10—14
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Ages
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at various ages has been able to test independently

the validity of the proposed method to complete

satisfaction. (See remarks in preface).

13. criticisms and With these remarks I shall

summary close the mere technical dis-

cussion of the proposed method

and turn my attention to the arguments advanced

by certain American critics against the possibility

of constructing mortality tables from records of

death alone. I deem no apology necessary to meet

those critics and give a brief historical sketch of

the origin of the proposed method, because re-

marks along this line will tend to accentuate the

difficulties the mathematically trained biometrician

has to contend with in obtaining a hearing among
the present day school of actuaries and stati-

sticians.

A good many critics, among whom I may men-

tion Mr. John S. Thompson and Mr. J. P. Little,

apparently have received an erroneous impression

of the fundamental processes of the proposed me-

thod and its evident departure from the conven-

tional methods. Mr. Thompson states "If we un-

derstand the process, the result is simply a gradua-

tion of "d " the "actual" deaths, and it is not

apparent why a mortality table should not be

formed from the unadjusted deaths and some other
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function of graduation with equally good re-

sults" 1
. From this it would appear that Mr.

Thompson is of the opinion that I have graduated

the deaths as actually observed. As any one who
will take the trouble to read the above article can

see this is not the case. The actually observed

numbers of deaths have only been used to con-

struct the observed proportionate death ratios
2

.

The whole process may be summarized -as fol-

lows :

1) The choice (a priori) of a system of fre-

quency curves based upon the hypothesis that the

distribution of deaths according to age from typi-

cal causes of death can be made to conform to

those postulated frequency curves whose para-

meters are known or chosen beforehand.

2) The grouping of causes of death so as to

conform with the above mentioned system of fre-

quency curves.

3) The computation for each age or age group

of the proportionate death ratios of such groups

1 Proceedings of the Casualty Actuarial Statistical

Society of America, Vol. IV, Pages 399—400.
2 These objections by Thompson and Little are shown

in their full obscurity in the case of the tables for Lo-

comotive Engineers, Coal Miners and Japanese Assured

Males where the greatest number of observed deaths fell

between ages 35—49.
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from the oollected statistical data of deaths by age

and by cause of death.

4) The choice of approximate values of the

areas of the various component frequency curves.

Such approximate values can be determined by

inspection or by simple linear correlation methods.

5) The determination by means of the theory

of least squares of the various correction factors a

with which the approximate values of the areas

must be multiplied in order that we may obtain

the probable values of the areas of the component

curves. The observation equations necessary for

this computation are obtained from the observed

proportionate death ratios, which are indepen-

dent of the exposed to risk.

6) The subsequent calculation of the products

NF(x) for all groups and for all integral ages.

This gives us again the total number dying from

all causes at integral ages among the original

cohort of 1,000,000 entrants at age 10. In other

words the d x column from which the final morta-

lity table can be constructed.

7) The computation of the "expected" or

theoretical proportionate death ratios from the

final table and their subsequent comparison with

the "actual" or observed proportionate death ra-

tios to illustrate the "goodness of fit".

It is this last step which constitutes the verifica-
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tion of the results derived by means of a purely

deductive or mathematical process, and is a test

of very stringent requirements. It is namely re-

quired that there must be a simultaneous "fit",

not alone for all groups of causes of death, but

for all age intervals as well.

The sole justification of the proposed method

hinges indeed upon the validity of the hypothesis.

Is it indeed possible to choose a priori a system

of frequency curves to which to fit our observed

data? Theoretically speaking each population or

sample population, as for instance certain occupa-

tional groups such as locomotive engineers, far-

mers, textile workers, miners, etc. will in all pro-

bability have its own particular system of fre-

quency curves. From a purely practical point of

view — and this is the one in which we are chiefly

interested — we may, however, easily get along

with a limited system af frequency curves for the

various groups of causes of death and limit our-

selves to a comparatively few sets of frequency

curves to which to fit our statistical data. The

case is analogous to that confronting a manufac-

turer of shoes. Undoubtedly the foot of one indi-

vidual is different in form from that of any other

individual, and in order to get an absolutely fault-

lessly fitting boot we would all have to go to a

custom boot maker. Practical experience shows,
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however, that it is possible to manufacture a few

sizes of boots, say 6's, 7's, 8's and intermediate

sizes in quarters and halfs, so as to fit to com-

plete satisfaction the footwear of millions of

people. Exactly in the same manner I have found

from a long and varied experience in practical

curve fitting that it is possible to fit the mortuary

records of male deaths by attained age and cause

of death to a comparatively limited number of sets

of component curves, say not more than 5 or 6

sets. Moreover, if in a certain sample population

a certain curve should not exhibit a satisfactory

fit it is indeed a simple matter to change its para-

meters so as to improve the fit.

14 additional ^-n regard *° *ne classification

PIUNCIPLES OF 0f the CaUSeS 0f death int0 a

method limited number of groups it

seems that some of the critics of the method are

of the opinion that this classification is ironclad

and fixed. This, however, is not the case. While

in a specific sample population a certain cause of

death might fall in group II, it is quite likely

that the same cause of death would come under

another group in another sample population. For

instance, the deaths from asthma are in Michigan

grouped under Group II. In the case of Coal

Miners such deaths would, however, go into group
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IV or group V. If the classification of causes of

death were fixed, the frequency curves for separate

population would show great variations, and it

would be out of the question to limit ourselves to

a small set of systems of component curves. Mak-
ing the classification flexible, we are, on the other

hand, in a better position to proceed with a fewer

number of curves. For instance, in order to use

the postulated frequency curve for Group VI for

Michigan it was necessary to place the cause of

death listed as No. 186 (other accidental trau-

matism) of the International Classification of

Causes of Death in that group instead of in group

V or VII, where most deaths of this type are or-

dinarily classed.

It would be interesting to see to what extent

the proposed classification and the chosen system

of frequency curves in Michigan deviates from

the theoretically exact system of frequency curves.

In the case of Michigan it would be impossible to

test this. An approximate test might be obtained

from the Michigan mortality data for the three

year period 1909—1911. Professor Glover has con-

structed a mortality table for males in the State

of Michigan in this three-year period by means

of the usual methods employed by actuaries by

resorting to the exposed to risk. Starting with a

radix af 1,000,000 at age 10 it is possible to break



188 Human Death Curves.

up the deaths or the dx column of the Glover

table into a set of subsidiary columns of death

from groups of causes of death in the same order

as given in Table A on page 133 by means of a

simple application of the observed proportionate

mortality ratios as derived from the 1909—1911

period. On the basis of a radix of 1,000,000 sur-

vivors at age 10 we find that according to the

Glover Table, 5016 will die in the interval from

50—54. Let us also suppose that the proportionate

mortality ratios in group III for ages 50—54

amounted to 0.23, then the number of deaths from

group III in that particular interval in the Glover

table would be 5016 x 0.23 = 1154. Similar num-

bers could be found for the other groups and for

arbitrary age intervals, and we would in this man-

ner have an empirical representation of the fre-

quency curves. This aspect of the matter is treated

in brief form on another page.

Keturning now to our original discussion, it will

readily be admitted that the method of construc-

ting mortality tables by means of compound fre-

quency curves cannot be considered as absolutely

rigorous from the standpoint of pure mathematics.

But neither can the usual methods of constructing

mortality tables by graduation processes either by

analytical formulas, mechanical interpolation for-

mulas or a simple graphical process be considered
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as mathematically exact. All statistical methods
are, in fact, approximation processes. In the

greater part of the realm of applied mathematics

we have to resort to such approximation processes.

It is thus absolutely impossible to solve correctly

by ordinary algebraic processes simple equations

of higher degree than the fourth. We encounter,

however, in every day practice innumerable in-

stances in which an approximation process, as for

instance Newton's or Horner's methods or the

method of finite differences, is sufficiently close to

determine the roots of any equation so as to satisfy

all practical requirements.

From this point of view I claim that the pro-

posed method in the hands of adequately trained

statisticians will yield satisfactory results, and I

am inclined to think that the results are probably

as true as the ones obtained by means of the usual

methods, which especially in the case of gradua-

tion by interpolation formulas often are affected

with serious systematic errors. Moreover, there

are sound philosophical and biological principles

underlying the proposed method, which is perhaps

more than can be said about the usual methods,

purely empirical in scope and principle. On the

other hand, I will readily admit that the proposed

method is by no means a simple rule of the thumb

and it can under no circumstances be entrusted to
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the hands of amateurs. The whole process can in

my opinion only be employed when placed in the

hands of the adequately trained statistician who is

thoroughly familiar with his mathematical tools,

as provided in the formulas from the probability

calculus. Such adequate training is not acquired

over night, but only through a long and patient

study. Meticulous and patient work is often re-

quired before one is finally brought upon the right

track, especially in the classification of the causes

of death. Failure upon failure is oftentimes en-

countered by the beginner in this work, and it is

probably only through such failures that the in-

vestigator is enabled to avoid the pitfalls of the

often treacherous facts as disclosed by statistical

data and steer a clear course. Mathematical skill

is only acquired through a long and careful study.

The illustrious saying of the Greek geometer,

Euclid, who once told the Ptolemaian emperor

that "there is no royal road in mathematics" holds

true to-day as it did in the days of antiquity.

The fact that the method is no simple mechani-

cal rule, but one which can be entrusted into skill-

ful hands only, is, moreover, in my opinion, one

of its strong points, because it eliminates all at-

tempts of dilletantes to make use of it. A large

manufacturing plant would not, for instance, put

an ordinary blacksmith or horseshoer to work on
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making the fine tools for certain parts of automa-

tic machinery employed in the manufacture of

staple articles. Only the most skilled and highly

trained tool makers are able to produce machine

parts, which often require precision measurements

running into one thousandth part of an inch. Nor
would a large contracting firm dream of putting

a backwoods carpenter in charge of the construc-

tion of a skyscraper. Yet, this case is absolutely

analogous to that of letting the mere collector of

crude statistical data make an analysis and draw

conclusions from certain collected facts as ex-

pressed in statistical series of various sorts.

While some American critics to all appearances

have misunderstood the principles underlying the

method, several European reviewers of the short

summary of the method as originally published in

the "Proceedings of the Casualty Actuarial and

Statistical Society of America" evidently have un-

derstood its fundamental principles completely.

The European critics seem, however, to be of the

opinion that there is a rather prohibitive amount

of arithmetical work involved in the actual con-

struction of the mortality table. Thus a review in

the Journal of the Royal Statistical Society for

May 1918 has this to say :

"Mr. Fisher's object is to construct a life

table, being given only the deaths at ages and
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not the population at risk. The hypothesis

employed is that the total frequency of deaths
can be resolved into specific groups of deaths,

the frequencies of which cluster around cer-

tain ages. The parameters of these sub-fre-

quencies having been determined, the areas

are deduced from a system of frequency cur-

ves of the form

:

R (x) = N*F*&
BK

'
~ NBFB {x) + NcFc {x) + NDFD (x).

. .

where Rb(x) , the proportional mortality at

age x of deaths due to causes in group B and
FB (x), is obtained from the equation of the

sub-frequency curve for cause B , while Nb +
Nc + ND + . + NE = 1,000,000. The
values of R(x) provide a system of observa-

tional equations from which (by least squares)

the values of N B , &c., can be obtained.

"Since particularly in industrial statistics,

or in general statistical inquiries under war
conditions it is easier to obtain accurate data
of deaths at ages than of exposed to risk, the

success of the method is encouraging. It is,

however, to be noted that the amount of arith-

metical work envolved is considerable. Quite
apart from the determination of the para-

meters of the frequency curves, the formation
and solution of the normal equations needed
to compute the areas is a heavy piece of work.
It would be of interest to see whether the re-

solution into but three components effected by
Professor Karl Pearson in his well-known
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essay published in the "Chances of Death"
could be made to describe with sufficient ac-

curacy an ordinary tabulation of deaths from
age 10 onwards to lead to approximately cor-

rect results for life table purposes. The test

should, of course, be made with mortality
data derived from a population very far from
being stationary and the deductions compared
with the results of standard methods. The
subject is one of peculiar interest at the pre-

sent time."

From the above quotation it is evident that this

English reviewer has a clear conception of the

fundamental principles upon which the method is

based. His criticism is mainly directed against

the heavy piece of arithmetical work involved.

This work can, however, not be compared with

the much more difficult task of obtaining the ex-

posed to risk at various ages, which under all cir-

cumstances would take much greater time and be

infinitely more costly, in fact be absolutely pro-

hibitive from a financial point of view. I wish in

this connection to state that the whole arithmeti-

cal work involved in the construction of the Michi-

gan table was done by two computers in less than

70 hours, while the corresponding table for Mas-

sachusetts took about 75 hours. I do not know if

this can be called exactly prohibitive.

In regard to the remarks of my British critic

13
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concerning the Pearsonian method I might add

that in my first attempt of an analysis of mortality

conditions along the lines as described above I

tried to subdivide the causes of death into four

groups. It was, however, found that this was not

always sufficient to describe the frequency dis-

tribution of the number of deaths around certain

ages. 1 doubt whether it is at all possible to des-

cribe the frequency distribution in the various sub-

groups by a system of normal curves, which, of

course, would somewhat lessen the work. I have

made attempts to do this, but so far I have not

been successful except in a few cases.
1

It might

be possible that we should succeed in this if we
first set up a hypothetically determined curve of

the numbers exposed to risk. Such a curve might,

for instance, be a normal curve. Personally, I be-

lieve that little would be gained by such a proce-

dure. More fruitful appears an analysis by means

of correlation surfaces. The mortality table con-

structed by the process as I have described it con-

stitutes in its final form a correlation surface,

wherein the age at death and the group of causes

of death are the independent variables, and the

number of deaths at a certain age and from a

1 See Addenda for the Metropolitan Table and the

Japanese Table.
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certain group af causes of death is the numerical

value of the correlation function of the two va-

riates. Provided one could obtain an exact equa-

tion of such a correlation surface, it would be a

simple matter to construct a mortality table, and
I hope that some statistician may in the future be

induced to attempt a solution of the problem in

this lieht.

15. another ap- Before closing the discussion of
PLICATION OF &
thefreqven- this subject we shall, however,
CY CURVE ME- J

.

thod give a brief description of an-

other application of compound frequency curves in

the construction of mortality tables. We have here

reference to the use of skew frequency curves in

the graduation of crude mortality rates as com-

puted in the usual empirical manner as the ratio

of deaths to the number of lives exposed to risk

at various ages. On page 165 it was mentioned

that the State of Massachusetts took a census in

April 1915. This census together with the deaths

for the triennial period from 1914—1916 makes

it an easy matter to construct a mortality table in

the conventional manner. Moreover, such a table

can be compared with the previously constructed

table from mortuary records by sex , age and cause

of death only and shown in the appendix.

In this connection it might be worth mention-

13*
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ing that my first table for Massachusetts as con-

structed by compound frequency curves was pre-

pared during the summer of 1918 and first pre-

sented in a series of lectures delivered at the

University of Michigan during the month of

March 1919, while the final official report of the

1915 Massachusetts census did not come in the

hands of the present writer before May 1919.
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The official census of the population of Mas-
sachuetts by sex and single ages is given on page

478 in Vol. Ill of the Massachusetts report from

which Fig. 11 has been constructed. It is seen

from a mere glance of this graph that there is an

unduly high tendency among the figures to cluster

around ages being multiples of 5. This tendency

is especially marked in the age interval 30—60

and presents a defect which is of no small im-

portance in the construction of a mortality table

by means of the conventional methods. It is in-

deed doubtful if a table constructed from data

so greatly influenced by observation errors and

misstatements of ages can be considered as ab-

solutely trustworthy. On the other hand the data

ought to be sufficiently exact to test the results

arrived at by the proposed method of compound

frequency curves.

We give below the male population in 5 year

age groups for the middle census year of 1915

and the corresponding deaths from all causes

durirg the triennial period 1914—1916.

MASSACHUSETTS

1915 Male Population and Number of Deaths

among Males from 1914—1916.

Ages Population, Lx . Deaths 1914—10. Dx .

5— 9 169010 1715

10—14 152419 1004
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Ages J

15—19
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of the method of compound frequency curves, un-

less all the causes reported as unknown should

happen to belong to the same group, which hardly

can be assumed to be the case. At any rate the

proportionate death ratios which are the keystone

in this method of construction are for practical

purposes left unaltered whether we include or ex-

clude these few numbers of unknown causes. In

the usual way of constructing tables from ex-

posures and number of deaths it is on the other

hand absolutely essential to include all deaths as

otherwise the death rate will be underestimated.

Bearing these facts in mind we therefore refer

to the above figures of Lx and Dx for Massachu-

setts Males from which we without further diffi-

culty can construct an empirical mortality table,

either by graphic methods or by simple summa-

tion or interpolation formulas. There is indeed no

dearth of such formulas, of which a large number

have been devised by Milne, Wittstein, Woolhouse,

Higham, Sprague, Hardy, King, Spencer, Hen-

derson, Westergaard, Gram, Karup and several

other investigators. In the following computation

I have used a formula originally devised by the

Italian statistician, Novalis, and later on some-

what modified by the English actuary, King.

The following schedule shows the actual process

in detail.
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MASSACHUSETTS MALES.

A. Population.

Graduated Quinquennial Pivotal Values.

Graduated
Ages Population Lx A Lx A 2LX Age

Population

12 29332

17 30836

34537

34369

22

5— 9 169010— 16591

10—14 152419 + 2354 + 18945

15—19 154773 + 17188 + 14834

20—24 171961— 944— 18132

25—29 171017— 21723— 20779 27

30—34 149294— 6677 + 15047 32 29739

35—39 142617— 17155— 10478 37 28607

40—44 125462— 17553— 398 42 25095

45—49 107909— 18419— 866 47

50—54 89490— 24357— 5938

55—59 65133— 16054+ 8293

60—64 49079— 14289+ 1765

65—69 34790— 11152+3137
70—74 23638— 9914+ 1238

75—79 13724— 8130 + 1884

80—84 6494— 4015 + 4115

85—89 2479— 1949 + 2066 87

90—94 530— 406 + 1543 92

95—99 124— 112 +
100—104 12

52

57

62

67

72

77

82

294 97

102

21587

17946

12961

9802

6933

4717

2731

1265

480

104

23

1

Graduated Population = u x+7 = 0.2L x+5
—

0.008A 2 L,+5
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B. Deaths 1914—1916.

Graduated Quinquennial Pivotal Values.

Ages

5— 9

10—14
15—19
20—24
25—29
30—34
35—39
40—44
45—49
50—54
55—59
60—64
65—69
70—74
75—79
80—84
85—89
90—94
95—99
100—104

In this manner we obtain the graduated quin-

quennial pivotal values of the population and of

the deaths for ages 12, 17, 22, 27, ... . etc. Then

No. of

Deaths Dx
A * '



202 Human Death Curves.

by dividing one third of the graduated deaths by

the population we have the graduated pivotal

values of the so-called "central death rates", or

mx for quinquennial ages from age 12 and up.

From these values of m, we easily find the corre-

sponding values of qx by means of the formula

:

1*-
2 + mx

We give below the results of this computation

Massachusetts Males 1914—1916.

Age 1000 qx from Novalis' Formula

12 2.21

17 3.33

22 4.64

27 5.29

32 6.68

37 8.25

42 10.65

47 13.53

52 18.67

57 26.38

62 38.29

67 58.12

72 81.90

77 109.91

82 165.02

87 240.18

92 325.64
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The intervening values of qx are without diffi-

culty derived by interpolation formulas or by a

graphical process. Once having all the values of

qx for separate ages from age 10 and up it is a

simple matter to form tables of lx and dx commen-
cing with a radix of 1,000,000 at age 10. Without

going into tedious details we present the following

values of l x for decimal ages.

Massachusetts Males 1914—1916.

kge
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This compound curve can now by simple and

straightforward processes be broken up into its

various component parts as to causes of deaths by

means of the various observed proportionate mor-

tality ratios, R x shown in Table H on page 163.

Let us for the sake of illustration take the age

interval 40—49. According to our empirically con-

structed table as derived from the Massachusetts

1915 census we find that the number of deaths

among the survivors in this age interval amounts

to 98,650.

Applying to this number the observed propor-

tionate death ratios, B , in table H we are able to

break this number up into its various component

parts according to the groups of causes of death

from which the numerical values of R
x
were de-

rived. These component parts are as follows

:

Group Nc
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In the same manner we can break up the com-

pound curve (the d x curve) in its eight component

parts for all other age intervals, which finally gives

us the following table of component groups,

printed on the preceeding page, and graphically this

table will represent a series of frequency diagrams

of the various groups of causes of deaths. It is an

easy matter to fit such diagrams to a system of

Laplacean-Charlier or Poisson-Charlier frequency

curves, which symbolically may be represented as

follows :

N^x), NuFu(x). .N^F^x)

where F(x) is the frequency function of the per-

centage distribution according to age of the va-

rious component groups or curves, while N stands

for the areas of such curves.

These curve areas are simply the sub-totals of

the respective groups in the above table. The pa-

rameters giving the equations of the curves F
t
(x),

Fn (x), FUI (x), .... are easily computed by the

methods of moments and are shown in the follow-

ing table on page 207.

Once having determined the parameters of the

various frequency curves it is a simple matter to

construct the final mortality table which is shown

in the addenda.
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Values of Parameters of Component Curves,

Massachusetts, 1914—1916 Males. 1

Group Mean Dispersion Skewness Excess

I 75.0 9.78 +0.080 —0.005
II 67.5 13.65 +0.117 +0.017

III 64.0 14.12 +0.124 +0.030

IV 60.5 16.51 +0.089 —0.006
V 50.0 18.61 +0.026 —0.034
VI 43.5 15.57 —0.036 —0.023

Vllb 57.5 16.33 —0.027 —0.028

It now remains for us to compare the final values

of qx which we obtain from the three tables

:

A) The values of qx as computed in the usual

1 In this grouping I have combined Vila and VIII

into a single group and roughly fitted this group to a

truncated Poisson-Charlier curve. This, of course, is not

exact and introduces evidently errors in the younger

age interval from 10—19. For ages above 20 this curve

plays no importance and the other curves should for

the ages above 20 give a satisfactory fit. If absolutely

exactitude was required for younger ages it would

indeed offer no difficulties to compute curves Vila and

VIII separately and thus obtain a much closer fit in

the youngest age interval. In view of the fact that

the present calculation is a test case only, it has not

been thought necessary to go to these refinements.

This defect will af course also effect to a slight extent

group VII b.
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way from the number of lives exposed to risk and

the corresponding deaths at various ages.

B ) The values of qx as obtained by a re-gradua-

tion of the mortality table under A by means of

compound frequency curves.

G) The values of q x constructed from mortuary

records by sex, age and cause of death, but with-

out knowing the numbers of lives exposed to risk.

Massachusetts Males. 1914—1916.

Values of 3000 q by various methods.

Age
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tween the three series. It is indeed difficult to

say which one of the three is the most probable.

We know that on account of the great perturba-

tions due to misstatements of ages the values

under A are effected with considerable errors. The
usual interpolation or summation formulas do not

suffice to remove these errors and tend often to

increase them. A re-graduation by means of fre-

quency curves as shown in series B will in all

probability give better results, although on ac-

count of the large age interval (10 years) in which

the causes of deaths are grouped in the Massa-

chusetts reports this method does not come to its

full right 1
. The values of q x under A and B are

naturally closely related to each other, and those

in series B cannot be derived unless the values

in series A are known beforehand. Series C on

the other hand is independent of either A or B,

having been derived by means of entirely different

methods of construction.

17. comparison A comparison between the pa-

B§£WJi?£'£lF~ rameters in the seperate com-

thods ponent curves in B and C

gives us, however, a way of testing the validity

of the hypothesis upon which the method of

See footnote on page 127.

14
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series G rests. In the case of the series G we star-

ted with the hypothesis of the existence of a set

of frequency curves of the percentage distribution

of the number of deaths according to age among

the various groups. On the basis of this hypothesis

and from the observed values of the proportionate

death ratios, R , we determined by the method

of least squares the areas of this postulated set of

frequency curves. In the case of the B series we
broke up the empirically constructed compound

death curve (the d curve) into its various com-

ponent parts according to a similar classification

of causes of deaths as under C. We have therefore

in this case an empirical determination of the

areas of the component curves and all that we
need to do is to graduate the rough frequency

diagrams as represented by such areas to a system

of frequency curves.

Let us now briefly examine how far the various

skew frequency curves in series B and C differ

from each other. In regard to the various statis-

tical parameters of the separate groups we have

the following results

:
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Group
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lish Males for the period 1911—1912 1
). This is a

fact of no small importance. It will in general be

found that the percentage distribution according

to age in the various component curves differs

little in different sample populations. Even in the

case of American Locomotive Engineers it was

found possible to use the same set of curves as in

the case of Massachusetts and England and Wales.

In the same way I have found that the set of

curves used in the construction of the table of

Michigan Males also can be used in the case of

males in the urban population of Denmark. With

a very few exceptions I have found it possible

to get along with a limited number of sets of

curves, say four or five sets. Should it never-

theless prove impossible to fit the original data to

any one of these particular curve systems, it will

in most cases be found possible by means of suc-

cessive approximations to reach a system of cur-

ves which may be made the a priori basis for the

construction of the final table as was the case in

the table for Japanese assured males.

Finally we come to the comparison of the vari-

ous areas of the component curves. We have

here

:

1 See " Proceedings of the Casualty Actuarial Society

of America", Vol. IV, page 409.
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Another point well worth remembering is the

one that no conditions are imposed upon the areas

in series B. In series G where we work with mor-

tuary records only we have on the other hand the

very important condition or restriction requiring

that the areas of the component curves must be

so determined that their ratios to the compound
curve for various age intervals will conform as

closely as possible with the observed proportionate

death ratios, R
x , for those same age intervals.

In order to test the influence of this additional

requirement in respect to conformity to observed

proportionate death ratios we might use the values

of the component curves under series B as a first

approximation and then afterwards determine the

correction factors a for the areas in exactly the

same way as in the case of series G. No doubt

such a calculation would tend to improve the

table.

A difficulty occurs, however, in the case of

the Massachusetts data owing to the large interval

of 10 years into which the causes of death by

attained ages are grouped. As pointed out in the

footnote on page 127 the quantity R B (x), (x =

30, 11, 12, 100 ; B =1, II, III, )

,

can only be considered as being independent of

the "exposed to risk" if the age interval into which

the deaths fall is sufficiently small. If this is not
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the case, the "central" values of Rb (%) are

subject to certain corrections. In the case of the

groups of causes of death typical of younger ages

the observed "central" values of Ryii (%) and

Iivm (x) for the age intervals 10—19, 20—29,

30—39 are evidently too high, while on the other

hand the values of Rj (x) and JJn (z) in the case

of the age intervals 60—69, 70—79, 80—89,

90—100 are too low as compared with the true

values of R(x) at these "central" ages. I have,

however, tacitly ignored this fact in my computa-

tions. The subsequent result is that the final

values of qx for the younger ages in column C as

shown on page 208 are in all probability a little

too high, and the values of q x above 65 too low.

In the case of the other tables as shown in the

present book the age interval into which the causes

of death were arranged was 5 years or less, and

the error was thus reduced to such an extent that

further corrections may be disregarded for all

practical purposes.



ADDENDA I

Showing Detailed Mortality Tables and Death

Curves for

1) Japanese Assured Males (1914—1917)

2) Metropolitan Life. White Males (1911—1916)

3) American Coal Miners (1913—1917)

4) American Locomotive Engineers (1913—1917)

5) Massachusetts Males (Series C) (1914—1916)

6) Michigan Males (1909—1915)

7) Massachusetts Males (Series B) (1914—1916).
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Mortality Table—Japanese Assured Males
1914—1917 (Aggregate Table)

Age
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ADDENDA II

In order to show a rapid application of frequency

curve methods to the graduation of mortality tables

when the number of lives exposed to risk at various

ages is known, the following data, relating to appli-

cants who had been rejected for life assurance on

account of impaired health, by Scandinavian assur-

ance companies is instructive. The original stati-

stics as collected by a committee of the insurance

companies were first published in the quinquennial

report (1910—1915) of the Danish Government life

Assurance Institution (The Statsanstalt) for 1917.

The material related to Scandinavian and Finnish

applicants who previously to 1893 (and in the case

of two Danish companies before 1899) had been re-

jected for life assurance. By a special investigation,

the committee followed up these rejections and sought

to establish whether the applicants were alive at July

1, 1899, or were previously deceased. Detailed re-

ports for the full period during which the risks were
under observation were available for 8,208 individual

applicants. For 2,023 applicants complete data were
not available.

The final statistical results of the Statsanstalt's in-

vestigation are shown in the following summary
table:
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TABLE I.

Mortuary Experience of Rejected Risks of
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and the above-mentioned normal probability curve is

shown in Column 6, which may be considered as an

ungraduated compound frequency curve. *

Arranged in quinquennial age intervals this latter

frequency distribution is shown in the following sum-
man,- table:

Ages
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Mean Age 57.75 years

Dispersion 13.32 years

Skewness —0.0031

Excess —0.0037

Applying these parameters to standard probability

tables we obtain the usual Laplacean—Charlier fre-

quency curve. Distributing the 41,059 individual

deaths according to this frequency curve we obtain

column (7) which is the graduated death curve cor-

responding to the hypothetical exposure as- given by

column (5). The final mortality rates per 1,000 of

exposed to risk are then found by dividing (7) with

(5) and are shown in column (8).

In order to show how close the graduation by

means of frequency curves agrees with the actual

observations, I have made a calculation of the

" actual" to the " expected" deaths by quinquennial

age intervals as shown in the following table:

TABLE III.

Comparison between "Actual" and "Expected"

Deaths on the Basis of the Graduated Mortality

Rates of the Scandinavian Mortality Table for

Rejected Lives

No. Exposed
ASes to Kisk

15-19 434

20-24 3,831

25-29 11,4-05

30-34 17,644

35-39 19,442

40-44 17,600

Actual
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point of the principle of least squares it is also found
that the sum of the squares of the deviations is smal-

ler under the frequency curve method than under the

method of Makeham, which seems to be pretty good

evidence of the soundness of the method in spite of

the fact that I throughout have worked with un-

weighted observations. If properly chosen weights

were applied to the observations even closer results

could be obtained.

TABLE II.

Mortality Experience of Rejected Scandinavian Risks

(Male).
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