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CONTINUITY AND IRRATIONAL
NUMBERS





CONTINUITY AND IRRATIONAL
NUMBERS.

TV /fY attention was first directed toward the consid-

erations which form the subject of this pam-

phlet in the autumn of 1858. As professor in the

Polytechnic School in Ziirich I found myself for the

first time obliged to lecture upon the elements of the

differential calculus and felt more keenly than ever

before the lack of a really scientific foundation for

arithmetic. In discussing the notion of the approach

of a variable magnitude to a fixed limiting value, and

especially in proving the theorem that every magnitude

which grows continually, but not beyond all limits,

must certainly approach a limiting value, I had re-

course to geometric evidences. Even now such resort

to geometric intuition in a first presentation of the

differential calculus, I regard as exceedingly useful,

from the didactic standpoint, and indeed indispens-

able, if one does not wish to lose too much time. But

that this form of introduction into the differential cal-

culus can make no claim to being scientific, no one

will deny. For myself this feeling of dissatisfaction

Was so overpowering that I made the fixed resolve to

keep meditating on the question till I should find a
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purely arithmetic and perfectly rigorous foundation

for the principles of infinitesimal analysis. The state-

ment is so frequently made that the differential cal-

culus deals with continuous magnitude, and yet an

V explanation of this continuity is nowhere given ; even

the most rigorous expositions of the differential cal-

culus do not base their proofs upon continuity but,

with more or less consciousness of the fact, they

either appeal to geometric notions or those suggested

by geometry, or depend upon theorems which are

never established in a purely arithmetic manner.

Among these, for example, belongs the above-men-

tioned theorem, and a more careful investigation con-

vinced me that this theorem, or any one equivalent to

it, can be regarded in some way as a sufficient basis

for infinitesimal analysis. It then only remained to

discover its true origin in the elements of arithmetic

and thus at the same time to secure a real definition

of the essence of continuity. I succeeded Nov. 24,

1858, and a few days afterward I communicated the

results of my meditations to my dear friend Durfege

with whom I had a long and lively discussion. Later

I explained these views of a scientific basis of arith-

metic to a few of my pupils, and here in Braun-

schweig read a paper upon the subject before the sci-

entific club of professors, but I could not make up

my mind to its publication, because., in the first place,

the presentation did not seem altogether simple, and

further, the theory itself had little promise. Never-
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theless I had already half determined to select this

theme as subject for this occasion, when a few days

ago, .March 14, by the kindness of the author, the

paper Die Elemente der Funktionenlehre by E. Heine

{Crelle's Journal, Vol. 74) came into my hands and

confirmed me in my decision. In the main I fully

agree with the substance of this memoir, and in-

deed I could hardly do otherwise, but I will frankly

acknowledge that my own presentation seems to me
to be simpler in form and to bring out the vital point

more clearly. While writing this preface (March 20,

1872), I am just in receipt of the interesting paper

Ueber die Ausdehnung eines Satzes aus der Theorie.der

trigonometrischen Reihen, by G. Cantor {Math. Annalen,

Vol. 5),' for which I owe the ingenious author my
hearty thanks. As I find on a hasty perusal, the ax-

iom given in Section II. of that paper, aside from the

form of presentation, agrees with what I designate

in Section III. as the essence of continuity. But what

advantage will be gained by even a purely abstract

definition of real numbers of a higher type, I am as

yet unable to see, conceiving as I do of the domain

of real numbers as complete in itself.

I.

PROPERTIES OF RATIONAL NUMBERS.

The development of the arithmetic of rational

numbers is here presupposed, but still I think it

worth while to call attention to certain important
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matters without discussion, so as to show at the out-

set the standpoint assumed in what follows. I regard

the whole of arithmetic as a necessary, or at least nat-

ural, consequence of the simplest arithmetic act, that

of counting, and counting itself as nothing else than

the successive creation of the infinite series of positive

integers in which each individual is defined by the

one immediately preceding; the simplest act is the

passing from an already-formed individual to the con-

secutive new one to be formed. The chain of these

numbers forms in itself an exceedingly useful instru-

ment for the human mind; it presents an inexhaustible

wealth of remarkable laws obtained by the introduc-

tion of the four fundamental operations of arithmetic.

Addition is the combination of any arbitrary repeti-

tions of the above-mentioned simplest act into a sin-

gle act ; from it in a similar way arises multiplication.

While the performance of these two operations is al-

ways possible, that of the inverse operations, subtrac-

tion and division, proves to be limited. Whatever the

immediate occasion may have been, whatever com-

parisons or analogies with experience, or intuition,

may have led thereto ; it is certainly true that just

this limitation in performing the indirect operations

has in each case been the real motive for a new crea-

tive act ; thus negative and fractional numbers have

been created by the human mind ; and in the system

of all rational numbers there has been gained an in-

strument of infinitely greater perfection. This system,
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which I shall denote by R, possesses first of all a com-

pleteness and self-containedness which I have desig-

nated in another place* as characteristic of a body of

numbers [Zahlkarper] and which consists in this that

the four fundamental operations are always perform-

able with any two individuals in R, i. e., the result is

always an individual of R, the single case of division

by the number zero being excepted.

For our immediate purpose, however, another

property of the system R is still more important ; it

may be expressed by saying that the system R forms

a well-arranged domain of one dimension extending

to infinity on two opposite sides. What is meant by

this is sufficiently indicated by my use of expressions

borrowed from geometric ideas ; but just for this rea-

son it will be necessary to bring out clearly the corre-

sponding purely arithmetic properties in order to

avoid even the appearance as if arithmetic were in

need of ideas foreign to it.

To express that the symbols a and b represent one

and the same rational number we put a= ^ as well as

b:=:a. The fact that two rational numbers a, bare

different appears in this that the difference a— b has

either a positive or negative value. In the former

case a is said to be greater than b, b less than a ; this

is also indicated by the symbols a'^ b, b <ia.'\ As in

the latter case b— a has a positive value it follows

*Vorlesli«een iiber Zahlenf/teorie, by P. G. Lejeune Dirichlet. 2d ed. S 159.

t Hence in what follows the so-called '* algebraic " greater and less are

understood unless the word " absolute '

' is added.
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that !>':> a, a<.l>. In regard to these two ways in

which two numbers may differ the following laws will

hold:

I. If a>b, and l)>c, then a> c. Whenever a,

c are two different (or unequal) numbers, and b is

greater than the one and less than the other, we shall,

without hesitation because of the suggestion of geo-

metric ideas, express this briefly by saying : b lies be-

tween the two numbers a, c.

II. If a, c are two different numbers, there are in-

finitely many different numbers lying between a, c.

III. If a is any definite number, then all numbers

of the system R fall into two classes, A\ and Ai, each

of which contains infinitely many individuals ; the first

class A\ comprises all numbers ax that are <Ca, the

second class A^, comprises all numbers ai that are

>a; the number a itself may be assigned at pleasure

to the first or second class, being respectively the

greatest number of the first class or the least of the

second. In every case the separation of the system

R into the two classes A-^, A^ is such that every num-

ber of the first class A-^ is less than every number of

the second class A%.

II.

COMPARISON OF THE RATIONAL NUMBERS WITH
THE POINTS OF A STRAIGHT LINE.

The above-mentioned properties of rational num-
bers recall the corresponding relations of position of
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the points of a straight line L. If the two opposite

directions existing upon it are distinguished by

"right" and "left," and/, q are two different points,

then either / lies to the right of q, and at the same

time q to the left of/, or conversely q lies to the right

of/ and at the same time/ to the left of q. A third

case is impossible, if p, q are actually different points.

In regard to this difference in position the following

laws hold

:

I. If / lies to the right of q, and q to the right of

r, then / lies to the right of r; and we say that q lies

between the points / and r.

II. If /, r are two different points, then there al-

ways exist infinitely many points that lie between p

and r.

III. If / is a definite point in L, then all points in

L fall into two classes, P\, P^, each of which contains

infinitely many individuals ; the first class Px contains

all the points /i, that lie to the left of/, and the sec-

ond class Pt contains all the points /2 that lie to the

right of/ ; the point / itself may be assigned at pleas-

ure to the first or second class. In every case the

separation of the straight line L into the two classes

or portions P\, Pi, is of such a character that every

point of the first class Pi lies to the left of every point

of the second class P^.

This analogy between rational numbers and the

points of a straight line, as is well known, becomes a

real correspondence when we select upon the straight
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line a definite origin or zero-point o and a definite unit

of length for the measurement of segments. With

the aid of the" latter to every rational number a a cor-

responding length can be constructed and if we lay

this off upon the straight line to the right or left of o

according as a is positive or negative, we obtain a

definite end-point /, which may be regarded as the

point corresponding to the number a ; to the rational

number zero corresponds the point o. In this way to

every rational number a, i. e., to every individual in

R, corresponds one and only one point /, i. e. , an in-

dividual in Z. To the two numbers a, b respectively

correspond the two points /, q, and if a'^b, then p
lies to the right of q. To the laws i, ii, iii of the pre-

vious Section correspond completely the laws i, ii, iii

of the present.

III.

CONTINUITY OF THE STRAIGHT LINE.

Of the greatest importance, however, is the fact

that in the straight line L there are infinitely many

points which correspond to no rational number. If

the point / corresponds to the rational number a,

then, as is well known, the length op is commensur-

able with the invariable unit of measure used in the

construction, i. e., there exists a third length, a so-

called common measure, of which these two lengths

are integral multiples. But the ancient Greeks already
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knew and had demonstrated that there are lengths in-

commensurable with a given unit of length, e. g., the

diagonal of the square whose side is the unit of length.

If we lay off such a length from the point o upon the

line we obtain an end-point which corresponds to no

rational number. Since further it can be easily shown

that there are infinitely many lengths which are in-

commensurable with the unit of length, we may affirm:

The straight line L is infinitely richer in point-indi-

viduals than the domain R of rational numbers in

number-individuals.

If now, as is our desire, we try to follow up arith-

metically all phenomena in the straight line, the do-

main of rational numbers is insufficient and it becomes

absolutely necessary that the instrumentR constructed

by the creation of the rational numbers be essentially

improved by the creation of new numbers such that

the domain of numbers shall gain the same complete-

ness, or as we may say at once, the same continuity,

as the straight line.

The previous considerations are so familiar and

well known to all that many will regard their repeti-

tion quite superfluous. Still I regarded this recapitu-

lation as necessary to prepare properly for the main

question. For, the way in which the irrational num-

bers are usually introduced is based directly upon the

conception of extensive magnitudes-^which itself is

nowhere carefully defined—and explains number as

the result of measuring such a magnitude by another
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of the same kind.* Instead of this I demand that

arithmetic shall be developed out of itself.

That such comparisons with non-arithmetic no-

tions have furnished the immediate occasion for the ex-

tension of the number-concept may, in a general way,

be granted (though this was certainly not the case in

the introduction of complex numbers); but this surely

is no sufficient ground for introducing these foreign

notions into arithmetic, the science of numbers. Just

as negative and fractional rational numbers are formed

by a new creation, and as the laws of operating with

these numbers must and can be reduced to the laws

of operating with positive integers, so we must en-

deavor completely to define irrational numbers by

means of the rational numbers alone. The question

only remains how to do this.

The above comparison of the domain R of rational

numbers with a straight line has led to the recognition

of the existence of gaps, of a certain incompleteness

or discontinuity of the former, while we ascribe to the

straight line completeness, absence of gaps, or con-

tinuity. In what then does this continuity consist?

Everything must depend on the answer to this ques-

tion, and only through it shall we obtain a scientific

basis for the investigation of all continuous domains.

By vague remarks upon the unbroken connection in

*The apparent advantage of the generality of this definition of number
disappears as soon as we. consider complex numbers. According to my view,
on the other hand, the notion of the ratio between two numbers of the same
kind can be clearly developed only after the introduction of irrational num-
bers.
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the smallest parts obviously nothing is gained ; the

problem is to indicate a precise characteristic of con-

tinuity that can serve as the basis for valid deductions.

For a long time I pondered over this in vain, but

finally I found what I was seeking. This discovery

will, perhaps, be differently estimated by different

people ; the majority may find its substance very com-

monplace. It consists of the following. In the pre-

ceding section attention was called to the fact that

every point p of the straight line produces a separa-

tion of the same into two portions such that every

point of one portion lies to the left of every point of

the other. I find the essence of continuity in the con-

verse, i. e., in the following principle :

" If all points of the straight line fall into two

classes such that every point of the first class lies to

the left of every point of the second class, then there

exists one and only one point which produces this di-

vision of all points into two classes, this severing of

the straight line into two portions."

As already said I think I shall not err in assuming

that every one will at once grant the truth of this

statement; the majority of my readers will be very

much disappointed in learning that by this common-

place remark the secret of continuity is to be revealed.

To this I may say that I am glad if every one finds

the above principle so obvious and so in harmony

with his own ideas of a line ; for I am utterly unable

to adduce any proof of its correctness, nor has any
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one the power. The assumption of this property of

the line is nothing else than an axiom by which we

attribute to the line its continuity, by which we find

continuity in the line. If space has at all a real ex-

istence it is not necessary for it to be continuous

;

many of its properties would remain the same even

were it discontinuous. And if we knew for certain

that space was discontinuous there would be nothing

to prevent us, in case we so desired, from filling up

its gaps, in thought, and thus making it continuous

;

this filling up would consist in a creation of new point-

individuals and would have to be effected in accord-

ance with the above principle.

IV.

CREATION OF IRRATIONAL NUMBERS.

From the last remarks it is sufficiently obvious

how the discontinuous domain R of rational numbers

may be rendered complete so as to form a continuous

domain. In Section I it was pointed out that every

rational number a effects a separation of the system R
into two classes such that every number a\ of the first

class A\ is less than every number a^ of the second '

' class Ai ; the number a is either the greatest number

of the class Ax or the least number of the class A^. If

now any separation of- the system R into two classes

A\, A3, is given which possesses only tkis characteris-

tic property that every number ai in Ai is less than

every number a^ in A^, then for brevity we shall call
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such a separation a cut [Schnitt] and designate it by

(^i, A<i). We can then say that every rational num-

ber a produces one cut or, strictly speaking, two cuts,

which, however, we shall not look upon as essentially

different ; this cut possesses, besides, the property that

either among the numbers of the first class there ex-

ists a greatest or among the numbers of the second

class a least number. And conversely, if a cut pos-

sesses this property, then it is produced by this great-

est or least rational number.

But it is easy to show that there exist infinitely

many cuts not produced by rational numbers. The

following example suggests itself most readily.

Let Z) be a positive integer but not the square of

an integer, then there exists a positive integer X such

that

X«<Z><(\+1)2.

If we assign to the second class A^, every positive

rational number «2 whose square is >> D, to the first

class Ax all other rational numbers a\, this separation

forms a cut {A\, Ai), i. e., every number a\ is less

than every number aj. For if ai= 0, or is negative,

then on that ground a\ is less than any number ai,

because, by definition, this last is positive ; if ax is

positive, then is its square <2?, and hence ax is less

than any positive number a^ whose square is >Z'.

But this cut is produced by no rational number.

To- demonstrate this it must be shown first of all that

there exists no rational number whose square r=D.
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Although this is known, from the first elements of the

theory of numbers, still the following indirect proof

may find place here. If there exist a rational number

whose square =Z>, then there exist two positive in-

tegers t, u, that satisfy the equation

and we may assume that u is the least positive integer

possessing the property that its square, by multipli-

cation by Z>, may be converted into the square of an

integer /. Since evidently

Xw</<CA.+ 1)«,

the number u'^=i— \u is a positive integer certainly

less than u. If further we put

f=Du—\t,

f is likewise a positive integer, and we have

/'2_Z)«'2= (X2— Z>) (/2— Z»«2)=0,

which is contrary to the assumption respecting u.

Hence the square of every rational number x is

either <Z> or >Z). From this it easily follows that

there is neither in the class A-^ a greatest, nor in the

class Ai a least number. For if we put

x(^^+ 3Z>)

^ 3^2 + 2? '

we have

and
V.2
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If in this we assume jc to be a positive number

from the class A-i, then x^ -^D, and hence y^x and

y^ <C.D. Therefore J/ likewise belongs to the class A\.

But if we assume :c to be a number from the class Ai,

then x'^'p-D, and hence y <.x, j'>0, and y^^D.
Therefore y likewise belongs to the class A^. This

cut is therefore produced by no rational number.

In this property that not all cuts are produced by

rational numbers consists the incompleteness or dis-

continuity of the domain R of all rational'numbers.

Whenever, then, we have to do with a cut {Ai, A2)

produced by no rational number, we create a new, an

irrational number o, which we regard as completely

defined by this cut {A\, A2); we shall say that the

number a corresponds to this cut, or that it produces

this cut. Frorn now on, therefore, to every definite

cut there corresponds a definite rational or irrational

number, and we regard two numbers as different or

unequal always and only when they correspond to es-

sentially different cuts.

In order to obtain a basis for the orderly arrange-

ment of all real, i. e., of all rational and irrational

numbers we must investigate the relation between

any two cuts {Ai, A2) and (^1, -£2) produced by any

two numbers a and ^. Obviously a cut {Ai, A2) is

given completely when one of the two classes, e. g.,

the first Ai is known, because the second A2 consists

of all rational numbers not contained in Ai, and the

characteristic property of such a first class lies in this
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that if the number a\ is contained in it, it also con-

tains all numbers less than a\. If now we compare

two such first classes A\, B\ with each other, it may

happen

1. That they are perfectly identical, i. e., that every

number contained in A\ is also contained in B\, and

that every number contained in B\ is also contained

in A\. In this case A^ is necessarily identical with

B^, and the two cuts are perfectly identical, which we

denote in symbols by a=j8 or ^= 0,.

But if the two classes Ai, Bi are not identical,

then there exists in the one, e. g. , in Ai, a number

a'i= d'i not contained in the other Bi and conse-

quently found in B2 ; hence all numbers di contained

in Bi are certainly less than this number a'i=3'2 and

therefore all numbers 61 are contained in Ai.

2. If now this number a'l is the only one in Ai that

is not contained in Bi, then is every other number ai

contained in Ai also contained in Bi and is conse-

quently <a'i, i. e. , a'l is the greatest among all the

numbers ai, hence the cut (Ai, A^) is produced by

the rational number a^a'i^d'i. Concerning the

other cut (Bi, B2) we know already that all numbers

61 in Bi are also contained in Ai and are less than

the number a\^b\ which is contained in ^2 ; every

other number bi contained in Bi must, however, be

greater than b't, for otherwise it would be less than

a'l, therefore contained in A\ and hence in B\ ; hence

b\ is the least among all numbers contained in B^,
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and consequently the cut (^1, Bi) is produced by the

same rational number ^^:^b'i= a\^a.. The two cuts

are then only unessentially different.

3. If, however, there exist in Ax at least two differ-

ent numbers a'l^b'i and a'\^b"<i, which are not con-

tained in Bi, then there exist infinitely many of them,

because all the infinitely many numbers lying between

a'l and a"\ are obviously contained in A^ (Section I,

11) but not in B\. In this case we say that the num-

bers o and /3 corresponding to these two essentiall)'

different cuts {Ai, A^) and {Bi, Bi) are different, and

further that a is greater than ^, that ^ is less than d,

which we express in symbols by a> j8 as well as j8<a.

It is to be noticed that this definition coincides com-

pletely with the one given earlier, when a, /3 are ra-

tional.

The remaining possible cases are these :

4. If there exists in Bi one and only one number

b'l^a'i, that is not contained in A\ then the two cuts

{Ai, A2) and (Bi, Bi) are only unessentially different

and they are produced by one and the same rational

number a= a'2 := b'\^ j8.

5. But if there are in Bx at least two numbers

which are not contained in Ax, then /8>a, a<;/8.

As this exhausts the possible cases, it follows that

of two different numbers one is necessarily the greater,

the other the less, which gives two possibilities. A

third case is impossible. This was indeed involved

in the use of the comparative (greater, less) to desig-
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nate the relation between a, j8 ; but this use has only

now been justified. In just such investigations one

needs to exercise the greatest care so that even with

the best intention to be honest he shall not, through

a hasty choice of expressions borrowed from other no-

tions already developed, allow himself to be led into

the use of inadmissible transfers from one domain to

the other.

If now we consider again somewhat carefully the

case a>/8 it is obvious that the less number j8, if

rational, certainly belongs to the class Ax ; for since

there is in Ai a number a'\=^b'i which belongs to the

class Bi, it follows that the number /8, whether the

greatest number in B\ or the least in B^, is certainly

<«'i and hence contained in Ax. Likewise it is ob-

vious from o> /3 that the greater number a, if rational,

certainly belongs to the class B^,, because a> a'l. Com-

bining these two considerations we get the following

result : If a cut is produced by the number a then any

rational number belongs to the class A\ or to the class

At according as it is less or greater than' a; if the

number a is itself rational it may belong to either

class.

From this we obtain finally the following : If o> /3,

i. e., if there are infinitely many numbers in Ax not

contained in Bx then there are infinitely many such

numbers that at the same time are different from o and

from j3 ; every such rational number c is < a, because
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it is contained in A\ and at the same time it is >/3
because contained in B^.

V.

CONTINUITY OF THE DOMAIN OF REAL NUMBERS.

In consequence of the distinctions just estabhshed

the system "S. of all real numbers forms a well-arranged

domain of one dimension ; this is to mean merely that

the following laws prevail

:

^ I. If a>j8, and /3>y, then is also a>y. We
shall SEy that the number ^ lies between u, and y.

1 II. If a, y are any two different numbers, then

there exist infinitely many different numbers /3 lying

between a, y.

III. If a is any definite number then all numbers

of the system H fall into two classes 2ti and "iXi each

of which contains infinitely many individuals; the

first class Hi comprises all the numbers ai that are

less than a, the second JJa comprises all the numbers

as that are greater than a ; the number a itself may be

assigned at pleasure to the first class or to the second,

and it is respectively the greatest of the first or the

least of the second class. In each case the separation

of the system H into the two classes Zli, "iXi is such

that every number of the first class 2ti is smaller than

every number of the second class 2t2 and we say that

this separation is produced by the number a.

For brevity and in order not to weary the reader I

suppress the proofs of these theorems which follow
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immediately from the definitions of the previous sec-

tion.

Beside these properties, however, the domain 21

possesses also continuity; i. e., the following theorem

is true

:

IV. If the system "S. of all real numbers breaks up

into two classes 2ti, Jfa such that every number a\ of

the class 2ii is less than every number 02 of the class

"iXi then there exists one and only one number a by

which this separation is produced.

Proof. By the separation or the cut of JJ into 2ti

and 2I2 we obtain at the same time a cut {A\, Ai)

of the system R of all rational numbers which is de-

fined by this that Ax contains all rational numbers of

the class 2Ii and Ai all other rational numbers, i. e.,

all rational numbers of the class "iXi- Let a be the

perfectly definite number which produces this cut

(y4i, A'i). If j8 is any number different from a, there

are always infinitely many rational numbers c lying

between a and ^. If ;8<a, then f<a; hence ^ be-

longs to the class A\ and consequently also to the

class 2I1, and since at the same time )8 < c then ^ also

belongs to the same class 2ti, because every number

in 2t2 is greater than every number c in 2Ii. But if

/3>a, then is f>a; hence c belongs to the class A^

and consequently also to the class 2t2, and since at

the same time y3>f, then ^ also belongs to the same

class "iXi, because every number in "iXx is less than

every number c in 212- Hence every number /3 differ-
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ent from a belongs to the class iti or to the class 21.

according as ;8<a or ;8>a; consequently o itself is

either the greatest number in 2ti or the least number
in 2l2, i. e., a is one and obviously the only number
by which the separation of R into the classes 2ii, IXi

is produced. Which was to be proved.

VI.

OPERATIONS WITH REAL NUMBERS.

To reduce any operation with two real numbers

a, ^ to operations with rational numbers, it is only

necessary from the cuts {Ax, Ai), {Bx, B^ produced

by the numbers a and /3 in the system R to define the

cut (Ci, d) which is to correspond to the result of

the operation, y. I confine myself here to the discus-

sion of the simplest case, that of addition.

If c is any rational number, we put it into the class

C\, provided there are two numbers one a\ in A\ and

one b\ in Bx such that their sum ax-\-bx~>c; all other

rational numbers shall be put into the class^Ca. This

separation of all rational numbers into the two classes

C\, Ci evidently forms a cut, since every number ^i in

Cx is less than every number fj in Cg. If both a and

/8 are rational, then every number cx contained in Cx is

<a-f ^, because ai^a, bx<^, and therefore ai+ ^i

.<a-|-/8; further, if there were contained in Cs a num-

ber (^2 < o+ )8, hence o + ;8^ ^2 +/, where / is a pos-

itive rational number, then we should havfe
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which contradicts the definition of the number c^, be-

cause a

—

'^p is a number in A\, and /3

—

\p a number

in B\ ; consequently every number ^2 contained in C2

is >a-\- p. Therefore in this case the cut (Ci, Cj) is

produced by the sum 0+ j8. Thus we shall not violate

the definition which holds in the arithmetic of rational

numbers if in all cases we understand by the sum

a-|-/3 of any two real numbers a, /3 that number y by

which the cut (Ci, d) is produced. Further, if only

one of the two numbers «,, /8 is rational, e. g., o, it is

easy to see that it makes no difference with the sum

•y^a + /3 whether the number o is put into the class

Ai or into the class Ai-

Just as addition is defined, so can the other ope-

rations of the so-called elementary arithmetic be de-

fined, viz., the formation of differences, products,

quotients, powers, roots, logarithms, and in this way

we arrive at real proofs of theorems (as, e. g., l/2 -l/S

= 1/6), which to the best of my knowledge have never

been established before. The excessive length that is

to be feared in the definitions of the more complicated

operations is partly inherent in the nature of the subject

but can for the most part be avoided. Very useful in

this connection is the notion of an interval, i. e., a

system A of rational numbers possessing the follow-

ing characteristic property: if a and a' are numbers

of the system A, then are all rational numbers lying

between a and a' contained in A. The system R of

all rational numbers, and also the two classes of any
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cut are intervals. If there exist a rational number a\

which is less and a rational number ^2 which is greater

than every number of the interval A, then A is called

a finite interval ; there then exist infinitely many num-

bers in the same condition as ci and infinitely many in

the same condition as ai ; the whole domain R breaks

up into three.parts A\, A, At and there enter two per-

fectl}- definite rational or irrational numbers ai, 02

which may be called respectively the lower and upper

(or the less and greater) limits of the interval; the

lower limit ai is determined by the cut for which the

system A\ forms the first class and the upper 02 by the

cut for which the system ^2 forms the second class.

Of every rational or irrational number a lying between

ai and a2 it may be said that it lies within the interval

A. If all numbers of an interval A are also numbers

of an interval B, then A is called a portion of B.^,

Still lengthier considerations seem to loom up

when we attempt to adapt the numerous theorems of

the arithmetic of rational numbers (as, e. g., the theo-

rem {a -\- b^c^ ac -{ bc^ to, any real numbers. This,

however, is not the case. It is easy to see that it

all reduces to showing that the arithmetic operations

possess a certain continuity. What I mean by this

statement may be expressed in the form of a general

theorem :

" If the number A. is the result of an operation per-

formed on the numbers a, )8, y, . . . and A. lies within

the interval Z, then intervals A, B, C, . . . can be
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taken within which lie the numbers a, P, y, . . . such

that the resujt of the same operation in which the

numbers o, /?, y, . . . are replaced by arbitrary num-

bers of the intervals A, B, C, . . . is always a number

lying within the interval Z." The forbidding clumsi-

ness, however, which marks the statement of such a

theorem convinces us that something must be brought

in as an aid to expression ; this is, in fact, attained in

the most satisfactory way by introducing the ideas of

variable magnitudes, functions, limiting values, and it

would be best to base the definitions of even the sim-

plest arithmetic operations upon these ideas, a matter

which, however, cannot be carried further here.

VII.

INFINITESIMAL ANALYSIS.

Here at the close we ought to explain the connec-

tion between the preceding investigations and certain

fundamental theorems of infinitesimal analysis.

We say that a variable magnitude x which passes

through successive definite numerical values ap-

proaches a fixed limiting value a when in the course

of the process x lies finally between two numbers be-

tween which a itself lies, or, what amounts to the

same, when the difference x^o. taken absolutely be-

comes finally less than any given value different from

zero.

One of the most important theorems may be stated

in the following manner : " If a magnitude ;*: grows
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continually but not beyond all limits it approaches a

limiting value."

I prove it in the following way. By hypothesis

there exists one and hence there exist infinitely many

numbers 02 such that x remains continually <a2; I

designate by 2t2 the system of all these numbers ai,

by iti the system 6f all other numbers o.\ ; each of the

latter possesses the property that in the course of the

process x becomes finally ^ai, hence every number ai

is less than every number 02 and consequently there

exists a number a which is either the greatest in 2ti

or the least in 2(2 (V, iv). The former cannot be the

.

case since x never ceases to grow, hence a is the least

number in 2t2 Whatever number 01 be taken we shall

have finally ai< a; <o, i. &., x approaches the limiting

value o.

This theorem is equivalent to the principle of con-

tinuity, i. e. , it loses its validity as soon as we assume

a single real number not to be contained in the do-

main 2J ; or otherwise expressed : if this theorem is

correct, then is also theorem iv. in V. correct.

Another theorem of infinitesimal analysis, likewise

equivalent to this, which is still oftener employed,

maybe stated as follows : "If in the variation of a

magnitude a: we can for every given positive magni-

tude S assign a corresponding position from and after

which X changes by less than 8 then x approaches a

limiting value."

This converse of the easily demonstrated theorem
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that every variable magnitude which approaches a

limiting value finally changes by less than any given

positive magnitude can be derived as well from the

preceding theorem as directly from the principle of

continuity. I take the latter course. Let h be any

positive magnitude (i. e., 8>0), then by hypothesis

a time will come after which x will change by less

than 8, i. e., if at this time x has the value a, then

afterwards we shall continually have x^a— 8 and

x<ia-\-S. I now for a moment lay aside the original

hypothesis and make use only of the theorem just

demonstrated that all later values of the variable x lie

between two assignable finite values. Upon this I base

a double separation of all real numbers. To the sys-

tem 2t2 I assign a number aj (e. g., a+ S) when in the

course of the process x becomes finally <a2 ; to the

system 2ti I assign every number not contained in 2t2;

if ai is such a number, then, however far the process

may have advanced, it will still happen infinitely many

times that x> as- Since every number ai is less than

every number 02 there exists a perfectly definite num-

ber a which produces this cut (2ti, 2X2) of the system

K and which I will call the upper limit of the variable

X which always remains finite. Likewise as a result

of the behavior of the variable x a second cut (Bi,

B2) of the system X is produced ; a number ySa (e.g.,

a— 8) is assigned to B2 when in the course of the pro-

cess « becomes finally >|8; every other number /Sj,

to be assigned to B2, has the property that x is never
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finally > ^82 ; therefore infinitely many times x becomes

</32 ; the number /8 by which this cut is produced I

call the lower limiting value of the variable x. The

two numbers a, /8 are obviously characterised by the

following property: if c is an arbitrarily small positive

magnitude then we have always finally «<a-(- e and

*>>)8— £, but never finally^ <o— e and never finally

^!>j8-|-£. Now two cases are possible. If u and /8

are different from each other, then necessarily a>/3,

since continually 02>/32; the variable x oscillates,

and, however far the process advances, always under-

goes changes whose amount surpasses the value

(a— )8)— 2t where t is an arbitrarily small positive

magnitude. The original hypothesis to which I now

return contradicts this consequence ; there remains

only the second case o= ;8 and since it has already

been shown that, however small be the positive magni-

tude e, we always have finally j£;<o+ £ and jc>;8— e,

JT approaches the limiting -value a, which was to be

proved.

These examples may suffice to bring out the con-

nection between the principle of continuity and in-

finitesimal analysis.
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PREFACE TO THE FIRST EDITION.

TN science nothing capable of proof ought to be ac-

^ cepted without proof. Though this demand seems

so reasonable yet I cannot regard it as having been

met even in the most recent methods of laying the

foundations of the simplest science; viz., that part of

logic which deals with the theory of numbers.* In

speaking of arithmetic (algebra, analysis) as a part

of logic I mean to imply that I consider the number-

concept entirely independent of the notions or intui-

tions of space and time, that I consider it an imme-

diate result from the laws of thought. My answer to

the problems propounded in the title of this paper is,

then, briefly this : numbers are free creations of the

human mind; they serve. as a means of apprehending

more easily and more sharply the difference of things.

It is only through the purely logical process of build-

ing up the science of numbers and by thus acquiring

*Of the works which have come under my observatioi^ I mention the val-

uable Lehrbuch der Arithntetik und Algebra of E. Schroder (Leipzig, 1873),

which contains a bibliography of the subject, and in addition the niemoirs of

Kronecker and von Helmholtz upon the Number-Concept and upon Counting

and Measuring (in the collection of philosophical essays published in honor

of E. Zeller, Leipzig, 1887). The appearance of these memoirs has induced

me to publish my own views, in many respects similar but in foundation

essentially different, which I formulated many years ago in absolute inde-

pendence of the works of others.
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the. continuous number-domain that we are prepared

accurately to investigate our notions of space and

time by bringing them into relation with this number-

domain created in our mind.* If we scrutinise closely

what is done in counting 'an aggregate or number

of things, we are led to consider the ability of the

mind to relate things to things, to let a thing corre-

spond to a thing, or to represent a thing by a thing,

an ability without which no thinking is i possible.

Upon this unique and therefore absolutely indispen-

sable foundation, as I have already affirmed in an an-

nouncement of this paper, f must, in my judgment,

the whole science of numbers be established. The

design of such a presentation I had formed before the

publication of my paper on Continuity, but only after

its appearance and with many interruptions occa-

sioned by increased official duties and other necessary

labors, was I able in the years 1872 to 1878 to commit

to paper a first rough draft which several mathemati-

cians examined and partially discussed with me. It

bears the same title and contains, though not arranged

in the best order, all the essential fundamental ideas

of my present paper, in which they are more carefully

elaborated. As such main points I mention here the

sharp distinction between finite and infinite (64), the

notion of the , number \Anzahl~\ of things (161), the

* See Section III. of my memoir, Continuity and Irrational Numbers
(Braunschweig, 1872), translated at pages 8 et seq. of the present volume.

tDirichlet's Vorlesungen jiber Zahlentheorie , third edition, 1879, § 163, note
on page 470.
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proof that the form of argument known as conjplete

induction (or the inference from « to « + l) is really

conclusive (59), (60), (80), and that therefore the

definition by induction (or recursion) is determinate

and consistent (126).

This memoir can be understood by any one pos-

sessing what is usually called good common sense
;

no technical philosophic, or mathematical, knowledge

is in the least degree required. But I feel conscious

that many a reader will' scarcely recognise in the

shadowy forms which I bring before him his numbers

which all his life long have accompanied him as faith-

ful and familiar friends ; he will be frightened by the

long series of simple inferences corresponding to our

step-by-step understanding, by the matter-of-fact dis-

section of the chains of reasoning on which the laws

of numbers depend, and will become impatient at

being compelled to follow out proofs for truths which

to his supposed inner consciousness seem at once evi-

dent and certain. On the contrary in just this possi-

bility of reducing such truths to others more simple,

no matter how long and apparently artificial the series

of inferences, I recognise a convincing proof that their

possession or belief in them is never given by inner

consciousness but is always gained only by a more or

less complete repetition of the individual inferences.

I like to compare this action of thought, so difficult

to trace on account of the rapidity of its performance,

with the action which an accomplished reader per-
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forms in reading ; this reading always remains a more

or less complete repetition of the individual steps

which the beginner has to take in his wearisome

spelling-out ; a very small part of the same, and there-

fore a very small effort or exertion of the mind, is suffi-

cient for the practised reader to recognise the correct,

true word, only with very great probability, to be

surej for, as is well known, it occasionally happens

that even the- most practised proof-reader allows a

typographical error to escape him, i. e., reads falsely,

a thing which would be impossible if the chain of

thoughts associated with spelling were fully repeated.

So from the time of birth, continually and in increas-

ing measure we are led to relate things to things and

thus to use that faculty of the mind on which the

creation of numbers depends ; by this practice con-

tinually occurring, though without definite purpose,

in our earliest years and by the attending formation

of judgments and chains of reasoning we acquire a

store of real arithmetic truths to which our first teach-

ers later refer as to something simple, self-evident,

given in the inner consciousness ; and so it happens

that many very complicated notions (as for example

that of the number \Anzahl'\ of things) are errone-

ously regarded as simple. In this sense which I wish

to express by the word formed after a well-known

saying dei o avOpayrros a.pL6fii,rjn^a, I hope that the follow-

ing pages, as an attempt to establish the science of

numbers upon a uniform foundation will find a gener-
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ous welcome and that other mathematicians will be

led to reduce the long series of inferences to more

moderate and attractive proportions.

In accordance with the purpose of this memoir I

restrict myself to the consideration of the series of

so-called natural numbers. In what way the gradual

extension of the number-concept, the creation of

zero, negative, fractional, irrational and complex

numbers are to . be accomplished by reduction to the

earlier notions and that without any introduction of

foreign conceptions (such as that of measurable mag-

nitudes, which according to my view can attain per-

fect clearness ooly through the science of numbers),

this I have shown at least for irrational numbers

in my former memoir on Continuity (1872); in a way

wholly similar, as I have already shown in Section III.

of that memoir,* may the other extensions be treated,

and I propose sometime to present this whole subject

in systematic form. From just this point of view it

appears as something self-evident and not new that

every theorem of algebra and higher analysis, no mat-

ter how remote, can be expressed as a theorem about

natural numbers,—a declaration I have heard repeat-

edly from the lips of Dirichlet. But I see nothing

meritorious—and this was just as far from Dirichlet's

thought—in actually performing this wearisome cir-

cumlocution and insisting on the use and recognition

of no other than rational numbers. On the contrary,

* Pages 8 et seq. of the present volume.
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the greatest and most fruitful advances in mathematics

and other sciences have invariably been made by the

creation and introduction of new concepts, rendered

necessary by the frequent recurrence of complex phe-

nomena which could be controlled by the old notions

only with difficulty. On this subject I gave a lecture

before the philosophic faculty in the summer of 1854

on the occasion of my admission as privat-docent in

Gottingen. The scope of this lecture met with the

approval of Gauss ; but this is not the place to go

into further detail.

Instead of this I will use the opportunity to make

some remarks relating to my earlier work, mentioned

above, on Continuity and Irrational Numbers. The

theory of irrational numbers there presented, wrought

out in the fall of 1853, is based on the phenomenon

(Section IV.)* occurring in the domain of rational

numbers which I designate by the term cut \Schnitt'\

and which I was the first to investigate carefully; it

culminates in the proof of the continuity of the new

domain of real numbers (Section V., iv. ).f It appears

to me to be somewhat simpler, I might say easier,

than the two theories, different from it and from each

other, which have been proposed by Weierstrass and

G. Cantor, and which likewise are perfectly rigorous.

It has since been adopted without essential modifica-

tion by U. Dini in his Fondamenti per la teorica delle

* Pages 12 et seq. of the present volume,

t Page 20 of the present volume.
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funzioni divariabili reali (Pisa, 1878); but the fact that

in the course of this exposition my name happens to

be mentioned, not in the description of the purely

arithmetic phenomenon of the cut but when the au-

thor discusses the existence of a measurable quantity

corresponding to the cut, might easily lead to the sup-

position that my theory rests upon the cpnsideration

of such quantities. Nothing could be further from

the truth; rather have I in Section III.* of my paper

advanced several reasons why I wholly reject the in-

troduction of measurable quantities ; indeed, at the

end of the paper I have pointed out with respect to

their existence that for a great part of the science of

space the continuity of its configurations is not even

a necessary condition, quite aside from the fact that

in works on geometry arithmetic is only casually men-

tioned by name but is never clearly defined and there-

fore cannot be employed in demonstrations. To ex-

plain this matter more clearly I note the following

example : If we select three non-collinear points A,

B, C at pleasure, with the single limitation that the

ratios of the distances AB, AC, BC are algebraic

numbers, t and regard as existing in space only those

points M, for which' the ratios of AM, BM, CM to AB
are likewise algebraic numbers, then is the space made

up of the points M, as is easy to see, everywhere dis-

* Pages 8 et seq. of the present volume.

tDirichlet's Vorksungen iiher Zahknthearie, § 159 of the second edition,

§ 160 of the third.
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continuous; but in spite of this discontinuity, and de-

spite the existence of gaps in this space, all construc-

tions that occur in Euclid's Elements, can, so far as I

can see, be just as accurately effected as in perfectly

continuous space ; the discontinuity of this space

would not be noticed in Euclid's science, would not

be felt at all. If any one should say that we cannot

conceive of space as anything else than continuous, I

should venture to doubt it and to call attention to the

fact that a far advanced, refined scientific training is

demanded in order to perceive clearly the essence of

continuity and to comprehend that besides rational

quantitative relations, also irrational, and besides al-

gebraic, also transcendental quantitative relations are

conceivable. All the more beautiful it appears to me

that without any notion of measurable quantities and

simply by a finite system of simple thought-steps man

can advance to the creation of the pure continuous

number-domain ; and only by this means in my view

is it possible for him to render the notion of continu-

ous space clear and definite.

The same theory of irrational numbers founded

upon the phenomenon of the cut is set forth in the

Introduction cL la thdorie des fonctions d'une variable by

J.
Tannery (Paris, 1886). If I rightly understand a

passage in the preface to this work, the author has

thought out his theory independently, that is, at a

time when not only my paper, but Dini's Fondamenti

mentioned in the same preface, was unknown to him.
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This agreement seems to me a gratifying proof that

my conception conforms to the nature of the case, a

fact recognised by other mathematicians, e. g., by

Pasch in his Einleitung in die Differential- und Integral-

rechnung Q^ei^zig, 18833. But I cannot quite agree

with Tannery when he calls this theory the develop-

ment of an idea due to J. Bertrand and contained in

his Traits d'ariihmdtique, consisting in this that an ir-

rational number is defined by the specification of all

rational numbers that are less and all those that are

greater than the number to be defined. As regards

this statement which is repeated by Stolz—apparently

without careful investigation—in the preface to the

second part of his Vorlesungen iiber allgemeine Arith-

metik (Leipzig, 1886), I venture to remark the follow-

ing : That an irrational number is to be considered

as fully defined by the specification just described,

this conviction certainly long before the time of Ber-

trand was the common property of all mathematicians

who concerned themselves with the notion of the

irrational. Just this manner of determining it is in

the mind of every computer who calculates the ir-

rational root of an equation by approximation, and if,

as Bertrand does exclusively in his book, (the eighth

edition, of the year 1885, lies before me,) one regards

the irrational number as the ratio of two measur-

able quantities, then is this manner of determining it

already set forth in the clearest possible way in the

celebrated definition which Euclid gives of the equal-
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ity of two ratios (^Elements, V. , 5) . This same most

ancient conviction has been the source of my theory

as well as that of Bertrand and many other more or

less complete attempts to lay the foundations for the

introduction of irrational numbers into arithmetic.

But though one is so far in perfect agreement with

Tannery, yet in an actual examination he cannot fail

to observe that Bertrand's presentation, in which the

phenomenon of the cut in its logical purity is not

even mentioned, has no similarity whatever to mine,

inasmuch as it resorts at once to the existence of a

measurable quantity, a notion which for reasons men-

tioned above I wholly reject. Aside from this fact

this method of presentation seems also in the succeed-

ing definitions and proofs, which are based on the

postulate of this existence, to present gaps so essential

that I still regard the statement made in my paper

(Section VI. ),* that the theorem l/2 • v 3=V^ has no-

where yet been strictly demonstrated, as justified with

respect to this work also, so excellent in many other

regards and with which I was unacquainted at that

time.

R. Dedekind.

Harzburg, October 5, 1887.

* Pages 21 et seq. of this voluma.
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npHE present memoir soon after its appearance met
-*- with both favorable and unfavorable criticisms

;

indeed serious faults were charged against it. I have

been unable to convince myself of the justice of these

charges, and I now issue a new edition of the memoir,

which for some time has been out of print, without

change, adding only the following notes to the first

preface.

The property which I have employed as the defi

nition of the infinite system had been pointed out be-

fore the appearance of my paper by G. Cantor (^Ein

Beitrag zur Mannigfaltigkeitslehre, Crelle'sJournal, Vol.

84, 1878), as also by Bolzano {Paradoxien des Unend-

lichen, § 20, 1851). But neither of these authors made

the attempt to use this property for the definition of

the infinite and upon this foundation to establish with

rigorous logic the science of numbers, and just in this

consists the, content of my wearisome labor which in

all its essentials I had completed several years before

the appearance of Cantor's memoir and at a time

when the work of Bolzano was unknown to me even

by name. For the benefit of those who are interested

in and understand the difficulties of such an investi-
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gation, I add the following remark. We can lay down

an entirely different definition of the finite and infinite,

which appears still_ simpler since the notion of sim-

ilarity of transformation is not even assumed, viz.

:

"A system S is said to be finite when it may be so

transformed in itself (36) that no proper part (6) of S

is transformed in itself ; in the contrary case S is

called an infinite system."

Now let us attempt to erect our edifice upon this

new foundation! We shall soon meet with serious

difficulties, and I believe myself warranted in saying

that the proof of the perfect agreement of this defini-

tion with the former can be obtained only (and then

easily) when we are permitted to assume the series of

natural numbers as already developed and to make

use of the final considerations in (131); and yet noth-

ing is said of all these things in either the one defini-

tion or the other! From this we can see how very

great is the number of steps in thought needed for

such a remodeling of a definition.

About a year after the publication of my memoir

I became acquainted with G. Frege's Grundlagen der

Arithmetik, which had already appeared in the year

1884. However different the view of the essence of

number adopted in that work is from my own, yet it

contains, particularly from § 79 on, ppints of very

close contact with my paper, especially with my defi-

nition (44). The agreement, to be sure, is not easy

to discover on account of the different form of expres-
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sion; but the positiveness with which the author

speaks of the logical inference from n\.on-\-\ (page

93, below) shows plainly that here he stands upon the

same ground with me. In the meantime E. Schroder's

Vorlesungen iiber die Algebra der Logik has been almost

completed (1890-1891). Upon the importance of this

extremely suggestive work, to which I pay my highest

tribute, it is impossible here to enter further; I will

simply confess that in spite of the remark made on

p. 253 of Part I., I have retained my somewhat clumsy

symbols (8) and (17); they make no claim to be

adopted generally but are intended simply to serve

the purpose of this arithmetic paper to which in my

view they are better adapted than sum and product

symbols.

R. Dedekind.

HARZBtTRG, August 24, 1893.



THE NATURE AND MEANING OF
NUMBERS.

I.

SYSTEMS OF ELEMENTS.

1. In what follows I understand by thing every

object of our thought. In order to be able easily to

speak of things, we designate them by symbols, e. g.,

by letters, and we venture to speak briefly of the

thing a or of a simply, when we mean the thing de-

noted by a and not at all the letter a itself. A thing

iscompletely determined by all that can be affirmed

or thought concerning it. A thing a is the same as b

(identical with F), and b the same as a, when all that

can be thought concerning a can also be thought con-

cerning b, and when all that is true of b can also be

thought of a. That a and-^ are only symbols or names

for one and the same thing is indicated by the nota-

tion a= /5, and also hyb= a. If further b= c, that

is, if c as well as a is a symbol for the thing denoted

by b, then is also a= c. If the above coincidence of

the thing denoted by a with the thing denoted by b

does not exist, then are the things a, b said to be dif-

ferent, a is another thing than b, b another thing than
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a ; there is some property belonging to the one that

does not belong to the other.

2. It very frequently happens that different things,

a, b, c, . . . for some reason can be considered from

a common point of view, can be associated in the

mind, and we say that they form a system S\ we call

the things a, b, c, . . . elements of the system S, they

are contained in S; conversely, .S consists of these

elements. Such a system S (an aggregate, a mani-

fold, a totality) as an object of our thought is like-

wise a thing (1); it is completely determined when

with respect to every thing it is determined whether

it is an element of .S or not.* The system ^ is hence

the same as the system T, in symbols S^=T, when

every element of S is also element of T, and every

element of T is also element of S. For uniformity of

expression it is advantageous to include also the spe-

cial case where a system S consists of a single (one

and only one) element a, i. e., the thing a is element

of S, but every thing different from a is not an ele-

ment of S. On the other hand, we intend here for

certain reasons wholly to exclude the empty system

which contains no element at all, although for other

In what manner this determination is brought about, and whether we

know a way of deciding upon it, is a matter of indifference for all that follows;

the general laws to be developed in no way depend upon it; they hold under

all circumstances. I mention this expressly because Kroneoker not long ago

ICrelle's Journal^ Vol. gg, pp. 334-336I has endeavored to impose certain limi-

tations upon the free formation of concepts in mathematics which I do not

believe to be justified; but there seems to be no call to enter upon this mat-

ter with more detail until the distinguished mathematician shall have pub-

lished his reasons for the necessity or merely the expediency of these limi-
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investigations it may be appropriate to imagine such

a system.

3. Definition. A system A is said to be part of a

system S when every element of A is also element of

5. Since this relation between a system A and a sys-

tem S will occur continually in what follows, we shall

express it briefly by the symbol A^S. The inverse

symbol Si A, by which the same fact might be ex-

pressed, for simplicity and clearness I shall wholly

avoid, but for lack of a better word I shall sometimes

say that S is whole of A, by which I mean to express

that among the elements of S are found all the ele-

ments of A. Since further every element J of a system

^S* by (2) can be itself regarded as a system, we can

hereafter employ the notation s^S.

4. Theorem. A^A, by reason of (3).

5. Theorem. If ^3^ and .53^, then ^=:^.

The proof follows from (3), (2).

6. Definition. A system A is said to be a proper

\echter'\ part of S, when A is part of S, but different

from >S. According to (5) then 5' is not a part of A,

i. e., there is in ^ an element which is not an element

of ^.

7. Theorem. If A^B and B^C, which may be

denoted briefly by AiBiC, then is AiC, and A is

certainly a proper part of C, if ^ is a proper part of

.5 or if ^ is a proper part of C.

The proof follows from (3), (6).

8. Definition. By the system compounded out of
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any systems A, B, C, . . . to be denoted by 2T£ [A, B,

C, . . .) we mean that system whose elements are de-

termined by the following prescription: a thing is

considered as element of ZTT (^, ^, C, . . .) when and

only when it is element of some one of the systems

A, B, C, . . ., '\. &., when it is element of A, or B, or

C, . . . We include also the case where only a single

system A exists; then obviously 2Ti {A')= A. We
observe further that the system HI i.-^, B, C, . . .)

compounded out of ^, ^, C, . . . is carefully to be dis-

tinguished from the system whose elements are the

systems A, B, C, . . . themselves.

9. Theorem. The systems A, B, C, . . . are parts

of m {A, B, C,. . .)•

The proof follows from (8), (3).

10. Theorem. If A, B, C, . . . are parts of a sys-

tem S, then is 2TT {A, B, C, . . .) i S.

The proof follows from (8), (3).

11. Theorem. If F is part of one of the systems

A, B, C, . . . then is P^KR {A, B, C, . . .).

The proof follows from (9), (7)

.

12. Theorem. If each of the systems Z', Q, . .

is part of one of the systems A, B, C, . . . then is

m {P, Q,---) ^m {A, B, C . .).

The proof follows from (11), (10).

13. Theorem. If A is compounded out of any of

the systems P, Q, . . . then is A^iVd {P, Q, •)•

Proof. For every element of A is by (8) element

of one of the systems P, Q, . . ., consequently by (8)
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also element oi'SCi {P, Q, '), whence the theorem

follows by (3).

14. Theorem. If each of the systems A, B, C, . . .

is compounded out of any of the systems P, Q, . . .

then is

m(^A, B, c, . .)im{B, Q, )

The proof follows from (13), (10).

15. Theorem. If each of the systems B, Q, . .

is part of one of the systems A, B, C, . . ., and if

each of the latter is compounded out of any of the

former, then is

va (.B, Q, . . .) =m {A, B, c, .

.

.).

The proof follows from (12), (14), (5).

16. Theorem. If

A=m {B, Q) and B= m. {Q, B)

then is m {A, B) = -m{B, B).

Proof. For by the preceding theorem (15)

m {A, B) as well as m {B, B)=m (^B, Q, B).

17. Definition. A thing g is said to be common

element of the systems A, B, C, . ., \i it is contained

in each of these systems (that is in A and in B and

in C . . . .). Likewise a system 7^ is said to be a com-

mon part oi A, B, C, . . . when 7" is part of each of

these systems; and hy the community \Gemeinheit'\ of

the systems A, B, C, . . . we understand the perfectly

determinate system ® {A, B, C, . . .') which consists

of all the common elements ^ of ^, ^, C, . . . and



MEANING OF NUMBERS. 49

hence is likewise a common part of those systems.

We again include the case where only a single system

A occurs; then @ (^) (is to be put) =iA. But the

case may also occur that the systems A, B, C, . . .

possess no common element at all, therefore no com-

mon part, no community ; they are then called sys-

tems without common part, and the symbol ® {A, B,

C, . . .) is meaningless (compare the end of (2))

We shall however almost always in theorems con-

cerning communities leave it to the reader to add in

thought the condition of their existence and to dis-

cover the proper interpretation of these theorems for

the case of non-existence.

18. Theorem. Every common part of A, B, C, . .

.

is part of © {A, B, C, . . .).

The proof follows from (17).

19. Theorem. Every part of ® (^, B, C, . . .) is

common part of A, B, C, . . .

The proof follows from (17), (7).

20. Theorem. If each of the systems A, B, C, . . .

is whole (3) of one of the systems P, Q, . . . then is

® {F, Q, . . .) i & {A, B, C, . . .)

Proof. For every element of © {F, Q, . . .) is

common element oi F, Q, . . ., therefore also common

element of ^, ^, C, . . ., which was to be proved.
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II.

TRANSFORMATION OF A SYSTEM.

21. Definition.* By a transformation \Abbildung'\

<^ of a system S we understand a law according to

which to every determinate element .< of S there be-

longs a determinate thing which is called the trans-

form of s and denoted by ^{s); we say also that <^(j)

corresponds to the element s, that ^{/) results or is

produced from s by the transformation <^, that j is

transformed into <^ (j) by the transformation ^. If now

7" is any part of S, then in the transformation <^ of ^

is likewise contained a determinate transformation of

T, which for the sake of simplicity may be denoted by

the same symbol ^ and consists in this that to every

element t of the system T there corresponds the same

transform <^(^), which t possesses as element of S; at

the same time the system consisting of all transforms

^ (/) shall be called the transform of T and be denoted

by </>(^), by which also the significance of '^{S') is

defined. As an example of a transformation of a sys-

tem we may regard the mere assignment of deter-

minate symbols or names to its elements. The sim-

plest transformation of a system is that by which each

of its elements is transformed into itself ; it will be

called the identical transformation of the system. For

convenience, in the following theorems (22), (23),

(24), which deal with an arbitrary transformation ^ of

*See Dirichlet's Vorlesungen ubcr Zaklentheorie, 3d edition, 1879, § 163.
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an arbitrary system S, we shall denote the transforms

of elements j and parts T respectively by / and T'

;

in addition we agree that small and capital italics

without accent shall always signify elements and parts

of this system S.

22. Theorem.* If ^3^, then ^' ^ .5'.

Proof. For every element of A' is the transform

of an element contained in A, and therefore also in B.

and is therefore element of B' , which was to be proved.

23. Theorem. The transform of IXi {A, B, C, . . .)

is W. (A', B', C, . . .).

Proof. If we denote the system ZVi {A, B, C, . . .)

which by (10) is likewise part of ^S by M, then is every

element of its transform Af' the transform m' of an

element m of Af; since therefore by (8) m is also ele-

ment of one of the systems A, B, C, . . . and conse-

quently m' element of one of the systems A', B', C

,

. . ., and hence by (8) also element of 2TI {A', B', C,

. . .), we have by (8)

M'^m(^A',B', C, . . .).

On the other hand, since A, B, C, . . . are by (9) parts

of M, and hence A', B', C, . . . by (22) parts of M',

we have by (10)

m{.A', B', C, . . .)^M'.

By combination with the above we have by (5) the

theorem to be proved

M'^m{.A', B', C, . . .)•

* See theorem 27.
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24. Theorem.* The transform of every common

part of A, B, C, . ., and therefore that of the com-

munity © (^, B, C, . .) is part of ® (^', B' , C , . . .).

Proof. For by (22) it is common part of A', B',

C, . . ., whence the theorem follows by (18).

25. Definition and theorem. If
<f>

is a transforma-

tion of a system S, and ^ a transformation of the

transform ^'= <^ (5), there always results a transfor-

mation 6 of S, compounded\ out of <^ and i/r, which con-

sists of this that to every element s oi S there corres-

ponds the transform

e(4='A(0=='A(<^W).

where again we have put <f>(s)=s'. This transforma-

tion can be denoted briefly by the symbol \f/.^ or

{j/(f>,
the transform ^(j-) by i/f(^(j') where the order of

ihe symbols 4>, i/r is to be considered, since in general

the symbol
<j>\l/

has no interpretation and actually has

meaning only when tl/{s')is. If now x signifies a

transformation of the system il/(s')= ij/<f>\s) and rj the

transformation x'P '^^ the system S' compounded out

of f and X. then is x^(^)= X>/'(-f')= '?C0 ='?</' W;
therefore the compound transformations x^ and i;<^

coincide for every element J of 5, i. e., x^= -7<^. In

accordance with the meaning of and ^ this theorem

can finally be expressed in the form

* See theorem 29.

tA confusion o( this compounding of transformations with that of sys-
tems of elements is hardly to be feared.
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and this transformation compounded out of ^, f, )^

can be denoted briefly by x^'l'-

III.

SIMILARITY OF A TRANSFORMATION, SIMILAR
SYSTEMS.

26. Definition. A transformation (^ of a system .S*

is said to be similar [ahnlich'] or distinct, when to dif-

ferent elements a, b of the system 5 there always cor-

respond different transforms a'= <j>{a'), b'^^{b).

Since in this case conversely from /= t' we always

have s= t, then is every element of the system »S"=
^ (5') the transform s' of a single, perfectly determi-

nate element s of the system S, and we can therefore

set over against the transformation ^ of ,5 an inverse

transformation of the system S', to be denoted by ^,

which consists in this that to every element / of S'

there corresponds the transform ^{s')=s, and obvi-

ously this transformation is also similar. It is clear that

^(5")= .5', that further ^ is the inverse transformation

belonging to ^ and that the transformation ^<^ com-

pounded out of
<l>
and $ by (25) is the identical trans-

formation of ^ (21). At once we have the following

additions to II., retaining the notation there given.

27. Theorem.* If ^' 3,5', then ^ 3.5.

Proof. For if a is an element of A then is a' an

element of A', therefore also of £', hence =^', where

b is an element of B; but since from a'= b' we always

* See theorem 22.
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have a=^b, then is every element oiA also element of

B, which was to be proved.

28. Theorem. If ^'=^', then ^ =^.

The proof follows from (27), (4), (5).

29. Theorem.* If G= &{A, B, C, . . .), then

G'= &{A',B', C, . . .).

Proof. Every element of &{A', B', C, . . .) is

certainly contained in S', and is therefore the trans-

form ^' of an element ^ contained in ^; but since ^'

is common element of A', B', C, . . . then by (27) must

g be common element of A, B, C, . . . therefore also

element of G; hence every element of (S(^', B',

C", . . .) is transform of an element g of G, therefore

element of G', i. e., ®{A', B', C, . . .)iG', and ac-

cordingly our theorem follows from (24), (5).

30. Theorem. The identical transformation of a

system is always a similar transformation.

31. Theorem. If <^ is a similar transformation of

S and i/f a similar transformation of </> (6'), then is the

transformation i//^ of S, compounded of <j> and ip, a sim-

ilar transformation, and the associated inverse trans-

formation ij/<j}= ^ij/.

Proof. For to different elements a, b oi S corre-

spond different transforms a'= <^{a), b'= ^{b'), and

to these again different transforms ij/{a')^=ij/<l)(a),

ij/{b')=tl/<l>{b) and therefore ip<f> is a. similar transfor-

mation. Besides every element i/r<^(j-)z=i^(/) of the

system i/f<^ (5) is transformed by ^ into /= <^(j-) and

* See theorem 24.
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this by ^ into s, therefore ^^(j') is transformed by

</)^ into s, which was to be proved.

32. Definition. The systems R, S are said to be

similar when there exists such a similar transforma-

tion ^ of 5 that ^(5)=i?, and therefore $(i?)= ^.

Obviously by (30) every system is similar to itself.

33. Theorem. If R, S are similar systems, then

every system Q similar to R is also similar to S.

Proof. For if ^, i/f ar^ similar transformations of

S, R such that ^(6')=i?, tf,{R)=Q, then by (31) i/r^

is a similar transformation of 3' such that xj/<l>(S)=^ Q,

which was to be proved.

34. Definition. We can therefore separate all sys-

tems into classes by putting into a determinate class

all systems Q, R, S, . . ., and only those, that are

similar to a determinate system R, the representative

of the class; according to (33) the class is not changed

by taking as representative any other system belong-

ing to it.

35. Theorem. If R, S are similar systems, then

is every part of S also similar to a part of ^, every

proper part of S also similar to a proper part of R.

Proof. For if ^ is a similar transformation of S,

<I>(S)— R, and TiS, then by (22) is the system sim-

ilar to T<l>{T)iR; if further T is proper part of S,

and s an element of S not contained in T, then by (27)

the element ^(i') contained in R cannot be contained

in <j>{T); hence <I){T) is proper part of R, which was

to be proved.
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IV.

TRANSFORMATION OF A SYSTEM IN ITSELF.

36. Definition. If <^ is a similar or dissimilar trans-

formation of a system S, and <^ {S") part of a system

Z, then <^ is said to be a transformation of ^S in Z, and

we say S is transformed by </> in Z. Hence we call

<^ a transformation of the system S in itself, when

<^(6')36', and we propose in this paragraph to investi-

gate the general laws of such a transforrnation <^. In

doing this we shall use the same notations as in II.

and again put <^(j-)= j', <I>(T)=T'. These trans-

forms s', T' are by (22), (7) themselves again ele-

ments or parts of S, like all things designated by italic

letters.

37. Definition. ^ is called a chain \Keite\, when

K'^K. We remark expressly that this name does

not in itself belong to the part K of the system S, but

is given only with respect to the particular transfor-

mation <^ ; with reference to another transformation

of the system S in itself K can very well not be^

chain.

38. Theorem. 6' is a chain.

39. Theorem. The transform K' of a chain Z'is

a chain.

Proof. For from K'^K it follows by (22) that

i^K'^'^K', which was to be proved.

40. Theorem. If A is part of a chain K, then is

also ^'3^.
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Proof. For from Ai K it follows by (22) that

A'^K', and since by (37) K'lK, therefore by (7)

A'^K, which was to be proved.

41. Theorem. If the transform A' is part of a

chain L, then is there a chain K, which satisfies the

conditions A^K, K'iL ; and 2.TT(^, Z) is just such a

chain K.

Proof. If we actually put K='iX\. {A, L), then by

(9) the one condition AiK is fulfilled. Since further

by (23) K'^VTiiA', L') and by hypothesis A'iL,

L'-iL, then by (10) is the other condition K'^L also

fulfilled and hence it follows because by (9) LiK,

that also K'iK, i. e. , ^ is a chain, which was to be

proved.

42. Theorem. A system J^ compounded simply

out of chains A, B, C, . . . \s 2. chain.

Proof. Since by (23) M'= m{A', B', C',. ..) and

by hypothesis ^'3^, B'iB, C'iC, . . . therefore by

(12) M'iM, which was to be proved.

43. Theorem. The community G of chains A

B, C, ... is a. chain.

Proof. Since by (17) G is common part of A, B,

C, . . ., therefore by (22) G' common part of A', B',

C, . . ., and by hypothesis A'iA, B'iB, C'iC, . . .,

then by (7) G' is also common part of A, B, C, . . .

and hence by (18) also part of G, which was to be

proved.

44. Definition. If A is any part of S, we will de-

note by A^ the community of all those chains (e.g., S)
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of which A is part ; this community A„ exists (17) be-

cause A is itself common part of all these chains.

Since further by (43) A^ is a chain, we will call A„

the chain of the system A, or briefly the chain of A.

This definition too is strictly related to the fundamen-

tal determinate transformation ^ of the system S in

itself, and if later, for the sake of clearness, it is

necessary we shall at pleasure use the symbol 4'o{^)

instead of A„ and likewise designate the chain of A
corresponding to another transformation m by (o„{A).

For this very important notion the following theorems

hold true.

45. Theorem. AiA^.

Proof. For A is common part of all those chains

whose community is A^, whence the theorem follows

by (18).

46. Theorem. {A„yiA^.

Proof. For by (44) A„ is a chain (37).

47. Theorem. If A is part of a chain X, then is

ailsoAJK.

Proof. For A„ is the community and hence also

a common part of all the chains JC, of which A is

part.

48. Remark. One can easily convince himself that

the notion of the chain A^ defined in (44) is com-

pletely characterised by the preceding theorems, (45),

(46), (47).

49. Theorem. A'i(AJ.

The proof follows from (45), (22).
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50. Theorem. A'^A^.

The proof follows from (49), (46), (7).

51. Theorem. If ^ is a chain, then A^^A.
Proof. Since A is part of the chain A, then by

(47) A„iA, whence the theorem follows by (45), (5).

52. Theorem. If ^3^, then ^3 ^„.

The proof follows from (45), (7).

53. Theorem. If BiA„ then £JA„ and con-

versely.

Proof. Because A^ is a chain, then by (47) from

£iA„, we also get BJA„; conversely, if ^„3^„, then

by (7) we also get BiA^, because by (45) £iB„.

54. Theorem. If BiA, then is B^iA^.

The proof follows from (52), (53).

55. Theorem. If BiA„ then is also B'iA^.

Proof. For by (53) B„iA„, and since by (50) B'iB,,

the theorem to be proved follows by (7). The same

result, as is easily seen, can be obtained from (22),

(46), (7), or also from (40).

56. Theorem. If BiA^, then is {B^)'i{A„)'.

The proof follows from (53), (22).

57. Theorem and definition. {A^)'= {A\, i. e.,

the transform of the chain of A is at the same time

the chain of the transform of A. Hence we can desig-

nate this system in short by A'^ and at pleasure call it

the chain-transform or transform-chain of A. With the

clearer notation given in (44) the theorem might be

expressed by <^(<^„(^))= <^„(^(^)).

Proof. If for brevity we put {A')^= L, Z is a
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chain (44) and by (45) A'^L; hence by (41) there ex-

ists a chain ^satisfying the conditions A^K, K'iL;

hence from (47) we have AJK, therefore {A^j'iX',

and hence by (7) also {A^yiL, i. e.,

(^„)'3(^')„.

Since further by (49) A'i{A,y, and by (44), (39)

{A^' is a chain, then by (47) also

(^')=3(^o)',

whence the theorem follows by combining with the

preceding result (5).

58. Theorem. ^„= 2n(^, A\), i. e., the chain of

A is compounded out of A and the transform-chain

of ^.

Proof. If for brevity we again put

L=A',= {A„y^{A'\ and K=m{A, L),

then by (45) A'iL, and since Z is a chain, by (41)

the same thing is true of X; since further yi 3X (9),

therefore by (47)

AJX.

On the other hand, since bj' (45) AiA„ and by (46)

also LIA„ then by (10) also

£:iA„

whence the theorem to be proved A„^:^K follows by

combining with the preceding result (5).

59. Theorem of complete induction. In order to

show that the chain A^ is part of any system S— be

this latter part of »S or not— it is sufficient to show,

p. that ^35, and
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0-. that the transform of every common element of

Ag and S is likewise element of S.

Proof. For if p is true, then by (45) the com-

munity G^^{A„ 2) certainly exists, and by (18)

A^G ; since besides by (17)

G^A,,

then is G also part of our system S, which by <^ is

transformed in itself and at once by (55) we have also

G'iA„. If then o- is likewise true, i. e., if G'^% then

must G' as common part of the systems A„ 2 by (18)

be part of their community G, i. e., G^ is a chain (37),

and since, as above noted, A i G, then by (47) is also

A^IG,

and therefore by combination with the preceding re-

sult G^A„, hence by (17) also A„i% which was to

be proved.

60. The preceding theorem, as will be shown later,

forms the scientific basis for the form of demonstra-

tion known by the name of complete induction (the

inference from n to n-\-V) ; it can also be stated in

the following manner : In order to show that all ele-

ments of the chain A„ possess a certain property (£

(or that a theorem S dealing with an undetermined

thing n actually holds good for all elements n of the

chain A^ it is sufficient to show

p. that all elements a of the system A possess the

property (£ (or that 5 holds for all a's) and

a-, that to the transform n' of every such element

n of A„ possessing the property (g, belongs the same
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property (g (or that the theorem S, as soon as 'it holds

for an element n of A„ certainly must also hold for

its transform «').

Indeed, if we denote by S the system of all things

possessing the property (£ (or for which the theorem

S holds) the complete agreement of the present man-

ner of stating the theorem with that employed in (59)

is immediately obvious.

61. Theorem. The chain of KXii^A, B, C, . . .) is

ZTK^o, B„ C, ).

Proof. If we designate by M the former, by K
the latter system, then by (42) X is a chain. Since

then by (45) each of the systems A, B, C, . . . is part

of one of the systems A„ B^, C„ . . ., and therefore

by (12) MiK, then by (47) we also have

On the other hand, since by (9) each of the systems

A, B, C, . . , is part of M, and hence by (45), (7)

also part of the chain M„ then by (47) must also each

of the systems A„ B„ C„ . . . be part of M„ therefore

by (10)

whence by combination. with the preceding result fol-

lows the theorem to be proved M„^X (5).

62. Theorem. The chain of &{A, B, C, . . .) is

partof ®(^„, B„ C„ . . .).

Proof. If we designate by G the former, by Xthe
latter system, then by (43) X is a chain. Since then

each of the systems A^, B„ C„, . . . by (45) is whole
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of one of the systems A, B, C, . . ., and hence by (20)

GiX, therefore by (47) we obtain the theorem to be

proved G„iX.

63. Theorem. If X'iLiX, and therefore X is a

chain, Z is also a chain. If the same is proper part

of X, and U the system of all those elements of 75'

which are not contained in Z, and if further the chain

U'o'is proper part of JC, and Fthe system of all those

elements of X which are not contained in [/„, then is

X^mi^o, y)&ndZ= -m<il7'o, V), n finally Z=i5r'

then ra v.

The proof of this theorem of which (as of the two

preceding) we shall make no use may be left for the

reader.

THE FINITE AND INFINITE.

64. Definition. * A system ^S is said to be infinite

when it is similar to a proper part of itself (32); in

the contrary case S is said to be a finite system.

65. Theorem. Every system consisting of a single

element is finite.

Proof. For such a system possesses no proper

part (2), (6).

* If one does not care to employ the notion of similar systems (32) he must
say : 5 is said to be infinite, when there is a proper part of S (6) in which S
can be distinctly (similarly) transformed (26), (36). In this form I submitted

the definition of the infinite which forms the core of my whole investigation

in September, 1882, to G. Cantor and several years earlier to Schwarz and
Weber. All other attempts that have come to my knowledge to distinguish

the infinite from the finite seem to me to have met with so little success that

I think I may be permitted to forego any criticism of them.
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66. Theorem. There exist infinite systems.

Proof.* My own realm of thoughts, i. e., the to-

tality ^S of all thin gs,, which can be objects of my

thought, is infinite. For if s signifies an element of

S, then is the thought /, that s can be object of my

thought, itself an element of .S'. If we regard this as

transform <^ {s) of the element j then has the transfor-

mation <^ of S, thus determined, the property that the

transform S' is part of S\ and S' is certainly proper

part of S, because there are elements in .S" (e. g., my

own ego) which are different from such thought / and

therefore are not contained in S' . Finally it is clear

that if a, b are different elements of S, their trans-

forms a', b' are also different, that therefore the trans-

formation (^ is a distinct (similar) transformation (26),

Hence ,5' is infinite, which was to be proved.

67. Theorem. If R. S are similar systems, then is

R finite or infinite according as S is finite or infinite.

Proof. If S is infinite, therefore similar to a proper

part S' of itself, then if R and S are similar, S' by

(33) must be similar to R and by (35) likewise similar

to a proper part of R, which therefore by (33) is itself

similar to R; therefore R is infinite, which was to be

proved.

68. Theorem. Every system S, which possesses

an infinite part is likewise infinite ; or, in other words,

every part of a finite system is finite.

*A similar consideration is found in § 13 of \.\\e Paradoxien des Unend-
lichen by Bolzano (Leipzig, 1851).
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Proof. If yis infinite and there is hence such a

similar transformation i/f of T, that i/'(7') is a proper

part of T, then, if T is part of S, we can extend this

transformation i/f to a transformation <^ of ^ in which,

if J denotes any element oi S, we put <^{/)^<^{s') or

^(j)= J according as j is element of 7" or not. This

transformation <^ is a similar one ; for, if a, b denote

different elements of S, then if both are contained in

T, the transform <j} (a) ^ ij/ (a) is different from the

transform <l>{b')^\p{b), because i/f is a similar transfor-

mation ; if further a is contained in T, but b not, then

is ^ (a!) = i/> (a) different from (j>[b)^b, because i/'(«)

is contained in T; if finally neither a nor b is con-

tained in 7^ then also is 4)(a)= a different from (^{b^^b,

which was to be shown. Since further \p{T') is part

of T, because by (7) also part of S, it is clear that also

(j)(S)iS. Since finally i/'(7') is proper part of 7' there

exists in 7' and therefore also in S, an element /, not

contained in i/'( 7") =<^(7') ; since then the transform

4>(/) of every element s not contained in 7" is equal to

s, and hence is different from /, / cannot be contained

in <^(^) ; hence <^('S') is proper part of .Sand conse-

quently S is infinite, which was to be proved.

69. Theorem. Every system which is similar to

a part of a finite system, is itself finite.

The proof follows from (67), (68).

70. Theorem. If a is an element of S, and if the

aggregate T of all the elements of S different from a is

finite, then is also S finite.
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Proof. We have by (64) to show that if <^ denotes

any similar transformation of S in itself, the trans-

form <^(^) or 5' is never a proper part of ^ but al-

ways ^S. Obviously S^TXlifl, T) and hence by

(23), ff the transforms are again denoted by accents,

5'= ItT («', T'^, and, on account of the similarity of

the transformation <j>, a' is not contained in T' (26).

Since further by hypothesis S' -i S, then must a' and like-

wise every element of T' either =a, or be element of

71 If then—a case which we will treat first

—

a is not

contained in T', then must 7"3rand hence T'=T,
because ^ is a similar transformation and because T\s

a finite system; and since a', as remarked, is not con-

tained in T', i.e., not in T, then must a' ^^a, and hence

in this case we actually have 5"= 5 as was stated. In

the opposite case when a is contained in T' and hence

i& the transform b' of an element b contained in T, we

will denote by U the aggregate of all those elements u

of T, which are different from b ; then T='X!Ci{b,U)

and by (] 5) ^=2n («, b, U), hence S' --=7X1 («', a, U').

We now determine a new transformation tf/ o{ T \n

which we put tp{b)^a', and generally ^{ii)= u',

whence by (23) yp{T)^m{a', U'). Obviously xjr is

a similar transformation, because <j> was such, and be-

cause a is not contained in C/"and therefore also a' not

in U'. Since further a and every element u is differ-

ent from b then (on account of the similarity of ^)

must also a' and every element u' be different from a

and consequently contained in T; hence i/f(7')Br
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and since T is finite, therefore must \j/(^T) ^T, and

rrXCa', U")=T. From this by (15) we obtain

m(a', a, C^')= iTt(«, r)

i. e., according to the preceding S' =S. Therefore

in this case also the proof demanded has been se-

cured.

VI.

SIMPLY INFINITE SYSTEMS. SERIES OF NATURAL
NUMBERS.

71. Definition. A system N is said to be simply

infinite when there exists a similar transformation <^ of

N in itself such that iV appears as chain (44) of an

element not contained in ^ (^)^ We call this ele-

ment, which we shall denote in what follows by the

symbol 1, the base-element of N and say the simply

infinite system N is set in order \_geordnet'\ by this

transformation <^. If we retain the earlier convenient

symbols for transforms and chains (IV) then the es-

sence of a simply infinite system N consists in the

existence of a transformation <^ oi N and an element 1

which satisfy the following conditions a, ji, y, h:

a. JV'iN.

p. N=K
y. The element 1 is "not contained in N'.

S. The transformation <^ is similar.

. Obviously it follows from a, y, 8 that every simply in-

finite system Nis actually an infinite system (64) be-

cause it is similar to a proper part N' of itself.



68 THE NATURE AND

72. Theorem. In every infinite system S a simply

infinite system N is contained as a part.

Proof. By (64) there exists a similar transforma-

tion ^ oi S such that <^(5) or S' is a proper part of

S\ hence there exists an element 1 in ^ which is not

contained in S' . The chain iV=l„, which corresponds

to this transformation <^ of the system S in itself (44),

is a simply infinite system set in order by <^ ; for the

characteristic conditions u,, /3, y, S in (71) are obvi-

ously all fulfilled.

73. Definition. If in the consideration of a simply

infinite system iV" set in order by a transformation (^

we entirely neglect the special character of the ele-

ments; simply retaining their distinguishability and.

taking into account only the relations to one another

in which they are placed by the order- setting trans-

formation <^, then are these elements called natural

numbers or ordinal numbers or simply numbers, and the

base-element 1 is cs\\&A\h% base-number oi'^e. number-

series N. With reference to this freeing the elements

from every other content (abstraction) we are justified

in calling numbers a free creation of the human mind.

The relations or laws which are derived entirely from

the conditions a, j8, y, 8 in (71) and therefore are al-

ways the same in all ordered simply infinite systems,

whatever names may happen to be given to the indi-

vidual elements (compare 134), form the first object of

the science of numbers or arithi^ietic. From the general

notions and theorems of IV. about the transformation
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of a system in itself we obtain immediately the follow-

ing fundamental laws where a, b, . . in, n, . . always

denote elements of N, therefore numbers, A, B, C, . .

.

parts of N, a', b' , . . . m' , n' , . . . A', B', C . . . the

corresponding transforms, which are produced by the

order-setting transformation ^ and are always ele-

ments or parts of N; the transform «' of a number n

is also called the vmxah&T following n.

74. Theorem. Every number n by (45) is con-

tained in its chain n^ and by (53) the condition rAm„

is equivalent to n„im„.

75. Theorem. By (57) ;/,= («„)'= («')»•

76. Theorem. By (46) «',3«,.

77. Theorem. By (58) n,= m{n, «'„).

78. Theorem. iV"= ITT (1 , jV') , hence every num-

ber different from the base-number 1 is element of N',

i. e., transform of a number.

The proof follows from (77) and (71).

79. Theorem. iVis the only number-chain con-

taining the base-number 1.

Proof. For if 1 is element of a number-chain K,

then by (47) the associated chain N^K, hence N=zK,

because it is self-evident that K^N.

80. Theorem of complete induction (inference

from n to «'). In order to show that a theorem holds

for all numbers ;? of a chain ni„ it is sufficient to show,

p. that it holds for n^=m, and

0-. that from the validity of the theor&m for a num-
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ber « of the chain m„ its validity for the following

number ri always follows.

This results immediately from the more general

theorem (59) or (60). The most frequently occurring

case is where m= 1 and therefore m„ is the complete

number-series iV.

VII.

GREATER AND LESS NUMBERS.

81. Theorem. Every number n is different from

the following number «'.

Proof by complete induction (80) :

p. The theorem is true for tlie number «= 1, be-

cause it is not contained in JV' (71), while the follow-

ing number 1' as transform of the number 1 contained

in iVis element of JV.

a-. If the theorem is true for a number n and we

put the following number «'=/, then is n different

from /, whence by (26) on account of the similarity

(71) of the order-setting transformation <^ it follows

that n', and therefore /, is different from /'. Hence

the theorem holds also for the number/ following n,

which was to be proved.

82. Theorem. In the transform-chain n\ of a num-

ber n by (74), (75) is contained its transform n', but

not the number n itself.

Proof by complete induction (80) :

p. The theorem is true for «= 1, because 1\=JV,
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and because by (71) the base-number 1 is not con-

tained in N'

.

<T. If the theorem is true for a number n, and we
again put n' =p, then is n not contained in /„, there-

fore is it different from every number q contained in

/„, whence by reason of the similarity of ^ it follows

that «', and therefore/, is different from every num-

ber / contained in p\, and is hence not contained in

p\. Therefore the theorem holds also for the number

/ following n, which was to be proved.

83. Theorem. The transform-chain n\ is proper

part of the chain «„.

The proof follows from (76), (74), (82).

84. Theorem. From m^= n^ it follows that m= Tt.

Proof. Since by (74) m is contained in m^, and

m„= n^= Vr\.{n, «'„)

by (77), then if the theorem were false and hence pt

different from n, m would be contained in the chain

n\, hence by (74) also m„ln\, i. e., n^in\; but this

contradicts theorem (83). Hence our theorem is es-

tablished.

85. Theorem. If the number n is not contained

in the number-chain K, then is Kin\.

Proof by complete induction (80)

:

p. By (78) the theorem is true for «= 1.

0-. If the theorem is true for a number n, then is

it also true for the following number /= «'; for if /
is not contained in the number-chain K, then by (40)

n also cannot be contained in K and hence by our



72 THE NA TURE AND

hypothesis Kin\; now since by (77) «'^^/„=
Zlt (/, /'„), hence K^TXii^p, p'^ and / is not contained

in K, then must K^p\, which was to be proved.

86. Theorem. If the number n is not contained

in the number-chain K, but its transform li is, then

Proof. Since n is not contained in K, then by

(85) Kin\, and since n'iK, then by (47) is also

n'^K, and hence K:=n\, which was to be proved.

87. Theorem. In every number-chain ^ there ex-

ists one, and by (84) only one, number k, whose chain

Proof. If the base-number 1 is contained in K,

then by (79) K=^N^\„. In the opposite case let Z
be the system of all numbers not contained in X;

since the base-number 1 is contained in Z, but Z is

only a proper part of the number-series tV, then by

(79) Z cannot be a chain, i. e. , Z' cannot be part of

Z; hence there exists in Z a number n, whose trans-

form n' is not contained in Z, and is therefore certainly

contained in K; since further n is contained in Z, and

therefore not in K, then by (86) K^n\, and hence

^ ::=«', which was to be proved.

88. Theorem. If m, n are different numbers then

by (83), (84) one and only one of the chains m„, n„ is

proper part of the other and either n„lm\ or m^n\.

Proof. If n is contained in ;«„, and hence by (74)

also n„im^, then m can not be contained in the chain i\

(because otherwise by (74) we should have »2„3«„,
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therefore Tn„= n„, and hence by (84) also m^=n) and

thence it follows by (85) that n„lm\. In the contrary

case, when n is not contained in the chain m„, we must
have by (85) m„in'„, which was to be proved.

89. Definition. The number m is said to be less

than the number n and at the same time n greater than

m, in symbols

when the condition

is fulfilled, which by (74) may also be expressed

90. Theorem. If m, n are any numbers, then al-

ways one and only one of the following cases A, p., v

occurs

:

\. m= n, n^m, i. e., m„^n„

fj..
m<i_v, n'^m, i. e., n„im\

Proof. For if X occurs (84) then can neither
fj.

nor V occur because by (83) we never have n„in'„. But

if X does not occur then by (88) one and only one of

the cases /*, v occurs, which was to be proved.

91. Theorem. n<.n'.

Proof. For the condition for the case v in (90) is

fulfilled by m= «'.

92. Definition. To express that m is either =«
or <«, hence not >« (90) we use the symbols

m<in or also n'>m
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and we say m is at most equal to n, and n is at least

equal to m.

93. Theorem. Each of the conditions

m^n, nK^n', n^im,

is equivalent to each of the others.

Proof. For if ?nKn, then from X, fx. in (90) we

always have n^^ni„ because by (76) m\-^m. Con-

versely, if n^-im„ and therefore by (74) also nim„ it fol-

lows from »z„=:ITT(»^ »z'„) that either n= m, or nim\,

i. e., n'^jn. Hence the condition ?/iKn is equivalent

to n^im^. Besides it follows from (22), (27), (75)

that this condition n„^m„ is again equivalent to n\im\,

i. e., by ;u. in (90) to m<in', which was to be proved.

94. Theorem. Each of the conditions

m'^n, m'<i.n', m<Cn
is equivalent to each of the others.

The proof follows immediately from (93), if we

replace in it m by m', and from ji, in (90).

95. Theorem. If l<i_m and mKn or if IKm, and

nKin, then is /<«. But if /<ot and m<^n, then is

Proof. For from the corresponding conditions

(89), (93) m^il\ and n„lm„ we have by (7) n„^l\ and

the same thing comes also from the conditions wz„3/„

and nfim\, because in consequence of the former we

have also m\^l\. Finally from mj!>l„ and n^\m^ we

have also «„3 /„, which was to be proved.

96. Theorem. In every part T oi N there exists

one and only one least number k, i. e., a number k
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which is less than every other number contained in

T. If 7" consists of a single number, then is it also

the least number in T.

Proof. Since T„ is a chain (44), then by (87) there

exists one number k whose chain k„^ T„. Since from

this it follows by (45), (77) that TiTXlik, k\), then

first must k itself be contained in T (because other-

wise T^k'„ hence by (47) also T„ik\, i. e., k^k\,

which by (83) is impossible), and besides every num-

ber of the system T, different from k, must be con-

tained in k\, i. e., be >^ (89), whence at once from

(90) it follows that there exists in T one and only one

least number, which was to be proved.

97. Theorem. The least number of the chain n„ is

n, and the base-number 1 is the least of all numbers.

Proof. For by (74), (93) the condition m^n^ is

equivalent to m>^n. Or our theorem also follows im-

mediately from the proof of the preceding theorem,

because if in that we assume T=^n^, evidently /J= «

(51).

98. Definition. If n is any number, then will we

denote by Z„ the system of all numbers that are not

greater than n, and hence not contained in «'„. The

condition
m^Z„

by (92), (93) is obviously equivalent to each of the

following conditions

:

m<n, m<.n', n„im„.

99. Theorem. 13Z„ and niZ„.
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The proof follows from (98) or from (71) and (82).

100. Theorem. Each of the conditions equivalent

by (98)

m^Z„, m<n, /«<«', n„im„

is also equivalent to the condition

z„^z„.

Proof. For if miZ„, and hence mKn, and if l'iZ„,

and hence l<im, then by (95) also /<«, i. e., l^Z„; if

therefore mZZ„, then is every element /of the system

Z„, also element of Z„, i. e. , Z^ 3 Z„. Conversely, if

Z„ 3 Z„, then by (7) must also m 3 Z„, because by (99)

m^Z„, which was to be proved.

101. Theorem. The conditions for the cases X, /i,

V in (90) may also be put in the following form

:

X. m^n, n— m, Z„= Z„

/J,, m <Cn, n'^m, Z^,iZ„

V. my>n, fKim, Z„3Z^.

The proof follows immediately from (90) if we ob-

serve that by (100) the conditions «„3 m„ and Z^iZ„ are

equivalent.

102. Theorem. Zi= l.

Proof. For by (99) the base-number 1 is con-

tained in Zi, while by (78) every number different

from 1 is contained in 1\, hence by (98) not in Zi,

which was to be proved.

103. Theorem. By (98) JV=m(,Z„, n\).

104. Theorem. «= ®(Z„, n,), i. e., n is the only

common element of the system Z„ and «„.

Proof. From (99) and (74) it follows that n is
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contained in Z„ and n„ ; but every element of the chain

n„ different from n by (77) is contained in «'„, and hence

by (98) not in Z„, which was to be proved.

105. Theorem. By (91), (98) the number n' is not

contained in Z„.

106. Theorem. If m<Cn, then is Z„ proper part

of Z„ and conversely.

Proof. If m<.n, then by (100) Z„, 3Z„, and since

the number n, by (99) contained in Z„, can by (98)

not be contained in Z„ because n^m, therefore Z„ is

proper part of Z„. Conversely if Z^ is proper part of

Z„ then by (100) m<n, and since w? cannot be =n,

because otherwise Z„= Z„, we must have m<Cn, which

was to be proved.

107. Theorem. Z„ is proper part of Z„..

The proof follows from (106), because by (91)

108. Theorem. Z„,= 2TT(-?„, «')•

Proof. For every number contained in Z„. by (98)

is ^«', hence either =«' or <«', and therefore by (98)

element of Z„. Therefore certainly Z„3 2Tt(Z„, «').

Since conversely by (107) Z„3Z„, and by (99) «'3Z„,,

then by (10) we hav£

m{Z„, n')^Z„.,

whence our theorem follows by (5).

109. Theorem. The transform Z'^ of the system

Z„ is proper part of the system Z„,.

Proof. For every number contained in Z'„ is the

transform m' of a number m contained in Z„, and since
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m<n, and hence by (94) m' <n , we have by (98)

Z'„3Z„.. Since further the number 1 by (99) is con-

tained in Z„,, but by (71) is not contained in the trans-

form Z'„, then is Z'„ proper part of Z„., which was to

be proved.

110. Theorem. Z„,= m(l, Z'„).

Proof. Every number of the system Z„, different

from 1 by (78) is the transform ni of a number m and

this must be <n, and hence by (98) contained in Z„

(because otherwise m'^n, hence by (94) also ml'^ri

and consequently by (98) m' would not be contained

in Z„.); but from miZ,, we have m'lZ' ,„ and hence

certainly

z„,32n(i, z'„)-

Since conversely by (99) 13Z„, and by (109) Z'„3Z„,,

then by (10) we have 2Tt(l, Z'„)3Z„, and hence our

theorem follows by (5).

111. Definition. If in a system E of numbers

there exists an element g, which is greater than every

other number contained in E, then g is said to be the

greatest number of the system E, and by (90) there can

evidently be only one such greatest number in E. If

a system consists of a single number, then is this num-

ber itself the greatest number of the system.

112. Theorem. By (98) n is the greatest number

of the system Z„.

113. Theorem. If there exists in ^ a greatest

number g, then is .£ 3 Z^

Proof. For every number contained in E is <^,
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and hence by (98) contained in Z^, which was to be

proved. •

114. Theorem. If E is part of a system Z„, or

what amounts to the same thing, there exists a num-

ber n such that all numbers contained in E are <«,

then E possesses a greatest number g.

Proof. The system of all numbers / satisfying

the condition E 3 Z^—and by our hypothesis such

numbers exist—is a chain (37), because by (107),

(7) it follows also that E i Z^,, and hence by (87) =^„,

where g signifies the least of these numbers (96), (97).

Hence also E iZ^, therefore by (98) every number con-

tained in E is <g, and we have only to show that the

number g is itself contained in E'. This is immediately

obvious if ^=1, for then by (102) Z^, and consequently

also i? consists of the single number 1. But if ^ is

different from 1 and consequently by (78) the trans-

form/' of a number/, then by (108) is EiV(i{Z^ g);

if therefore g were not contained in E, then would

EiZy^, and there would consequently be among the

numbers/ a number/by (91) <.g, which is contrary

to what precedes ; hence g is contained in E, which

was to be proved.

115. Definition. If /<»« and »«<« we say the

number m lies between I and n (also between n and /).

116. Theorem. There exists no number lying be-

tween n and n'

.

Proof. For as soon as m<,n', and hence by (93)



8o THE NATURE AND

mKn, then by (90) we cannot have n<i,m, which was

to be proved.

117. Theorem. If / is a number in T, but not the

least (96), then there exists in T one and only one

next less number j, i. e., a numbers such that j</,

and that there exists in T no number lying between s

and t. Similarly, if t is not the greatest number in T

(111) there always exists in T one and only one next

greater number u, i. e. , a number u such that i <^u,

and that there exists in T no number lying between /

and u. At the same time in J* / is next greater than j

and next less than u.

Proof. If t is not the least number in T, then let

E be the system of all those numbers of T that are

</; then by (98) EiZ„ and hence by (114) there

exists in ^ a greatest number s obviously possessing

the properties stated in the theorem, and also it is the

only such number. If further / is not the greatest

number in T, then by (96) there certainly exists among

all the numbers of T, that are > /, a least number u,

which and which alone possesses the properties stated

in the theorem. In like manner the correctness of the

last part of the theorem is obvious.

118. Theorem. In i\Athe number n' is next greater

than n, and n next less than n'

.

The proof follows from (116), (117).
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VIII.

FINITE AND INFINITE PARTS OF THE NUMBER-
SERIES.

119. Theorem. Every system Z„ in (98) is finite.

Proof by complete induction (80).

p. By (65), (102) the theorem is true for «= 1.

0-. If Z„ is finite, then from (108) and (70) it fol-

lows that Z„. is also finite, which was to be proved.

120. Theorem. If m, n are different numbers, then

are Z„, Z„ dissimilar systems.

Proof. By reason of the symmetry we may by

(90) assume that m<in; then by (106) Z„, is proper

part of Z„, and since by (119) Z„ is finite, then by (64)

Z„, and Z„ cannot be similar, which was to be proved.

121. Theorem. Every part E of the number-

series N, which possesses a greatest number (111), is

finite.

The proof follows from (113), (119), (68).

122. Theorem. Every part U oi the number-series

N, which possesses no greatest number, is simply in-

finite (71).

Proof. If u is any number in U, there exists in U
by (117) one and only one next greater number than

u, which we will denote by i/'(«) and regard as trans-

form of u. The thus perfectly determined transforma-

tion ifi of the system C/'has obviously the property

i.e., U"is transformed in itself by ^. If further w, v
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are different numbers in U, then by symmetry we may

by (90) assume that u<.v; thus by (117) it follows

from the definition of i/r that \i/{u)^v and v<.tl/(v),

and hence by (95) i/f («) < i/r (z/) ; therefore by (90) the

transforms i^(«^), </'(z') are different, i. e.,

S. the transformation xj; is similar.

Further,' if «i denotes the least number (96) of the

system U, then every number u contained in U is

>«i, and since generally u<^ij/{u), then by (95) «i <
<{i{u), and therefore by (90) ui is different from ijf(u),

i. e.,

y. the element ai of (7 is not contained in xj/^C/).

Therefore ij/ {17) is proper part of 17 and hence by (64)

C/'is an infinite system. If then in agreement with

(44) we denote by xj/^{V"), when F is any part of 17,

the chain of F corresponding to the transformation f,

we wish to show finally that

^. C/=i/.„(«i)-

In fact, since every such chain i/r„ ( V) by reason of its

definition (44) is a part of the system [7 transformed

in itself by ij/, then evidently is \j/„ (ui ) 3 C/"; conversely

it is first of all obvious from (45) that the element ui

contained in C^is certainly contained in i/r„(«i); but

if we assume that there exist elements of U, that

are not contained in \^„{u{), then must there be among

them by (96) a least number w, and since by what

precedes this is different from the least number «i of

the system 17, then by (117) must there exist in U
also a number v which is next less than w, whence it
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follows at once that zc/=:c^(w); since therefore v<^w,

then must v by reason of the definition of w certainly

be contained in ^,{ui); but from this by (55) it fol-

lows that also ^{v'), and hence w must be contained

in ^„{u\), and since this is contrary to the definition of

w, our foregoing hypothesis is inadmissible ; therefore

C/iij/„{ui) and hence also f=i/'„(«i), as stated. From

a, /3, y, 8 it then follows by (71) that C^is a simply in-

finite system set in order by i[/, which was to be proved.

123. Theorem. In consequence of (121), (122)

any part 7' of the number-series iV^is finite or simply

infinite, according as a greatest number exists or does

not exist in T.

IX.

DEFINITION OF A TRANSFORMATION OF THE
NUMBER-SERIES BY INDUCTION.

124. In what follows we denote numbers by small

Italics and retain throughout all symbols of the pre-

vious sections VI. to VIII., while O designates an

arbitrary system whose elements are not necessarily

contained in JV.

125. Theorem. If there is given an arbitrary (sim-

ilar or dissimilar) transformation oi a system O in

itself, and besides a determinate element u in £i, then

to every number n corresponds one transformation

ilf„ and one only of the associated number-system Z„

explained in (98), Vhich satisfies the conditions:*

*For clearness here and in the following theorom (126) I have especially

mentioned condition I., although properly it is a consequence oi II. and III
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I. ^„(Z„)3n

II. l/.„(l)= 0)

III. !/'„('')= ^'/',X0> if t<n, where the symbol

B\\i„ has the meaning given in (25).

Proof by complete induction (80).

p. The theorem is true for «= 1. In this case in-

deed by (102) the system Z„ consists of the single

number 1, and the transformation \\i, is therefore com-

pletely defined by II alone so that I is fulfilled while

III drops out entirely.

0-. If the theorem is true for a number n then we

show that it is also true for the following number

p == «', and we begin by proving that there can be only

a single corresponding transformation i/^^, of the sys-

tem Zp. In fact, if a transformation i/?^ satisfies the

conditions

r. v^(z^)^"

IF. ^,(l)= o>

Iir. ij/j,(m') =^011/^(7/1), when m<i,p, then there is

also contained in it by (21), because Z„^Z^ (lO'i'^) a

transfor,mation of Z„ which obviously satisfies the

same conditions I, II, III as i/^„, and therefore coin-

cides throughout with i/f„ ; for all numbers contained

in Z„, and hence (98) for all numbers m which are

</, i. e., <«, must therefore

whence there follows, as a special case,

>fc> («)=</'«(«); («)

since further by (105), (108) / is the only number of
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the system Z^ not contained in Z„, and since by III'

and in) we must also have

there follows the correctness of our foregoing state-

ment that there can be only one transformation if/^ of

the system Z^ satisfying the conditions I', IF, III',

because by the conditions (m) and (/) just derived

il/jt
is completely reduced to i/f„. We have next to show

conversely that this transformation ij/j, of the system

Z^ completely determined by (w) and (/) actually

satisfies the conditions I', 11', III'. Obviously I' fol-

lows from (/«) and (/) with reference to I, and because

tf(0)3Q. Similarly IT follows from ,(»0 and II, since

by (99) the number 1 is contained in Z„. The correct-

ness of III' follows first for those numbers m which

are <; n from (w) and III, and for the single number

mz=n yet remaining it results from (/) and (n). Thus

it is completely established that from the validity of

our theorem for the number n always follows its valid-

ity for the following number/, which was to be proved.

126. Theorem of the definition by induction. If

there is given an arbitrary (similar or dissimilar) trans-

formation ^ of a system O in itself, and besides a de-

terminate element <o in Q, then there exists one and

only one transformation i^ of the number-series JV,

which satisfies the conditions

I. f(JV)iQ

II. i/,(l)= a)
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III. ij/(n')= 6il/{n'), where n represents every num-

ber.

Proof. Since, if there actually exists such a trans-

formation ip, there is contained in it by (21) a trans-

formation \j/„ of the system Z„, which satisfies the con-

ditions I, II, III stated in (125), then because there

exists one and only one such transformation ij/„ must

necessarily

>l!{n)=xl>„{n). («)

Since thus \p is completely determined it follows also

that there can exist only one such transformation \\i

(see the closing remark in (130)). That conversely

the transformation
\f/
determined by («) also satisfies

our conditions I, II, III, follows easily from («) with

reference to the properties I, II and (/) shown in (125)j

which was to be proved.

127. Theorem. Under the hypotheses made in the

foregoing theorem,

where T denotes any part of the number-series N.

Proof. For if / denotes every number of the sys-

tem T, then ip{T') consists of all elements i/f(^'), and

6\p{T) of all elements Oij/{^); hence our theorem fol-

lows because by III in (126) \jf{t')— 6\ir(_t).

128. Theorem. If we~maintain the same hypoth-

eses and denote by 0„ the chains (44) which corre-

spond to the transformation 6 of the system O in itself,

then is
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Proof. We show first by complete induction (80)

that

./r(i\^)3e„(co),

i. e., that every transform i//(«) is also element of

e„(<«)- In fact,

p. this theorem is true for n= \, because by (126,

II) i^(l)= (<), and because by (45) (o3^„(<o).

0-. If the theorem is true for a number n, and hence

V'(«)3tf„('"); then by (55) also (9(i/f(«))3^„(co), i. e., by

(126, III) i/f(«')3^„(a)), hence the theorem is true for

the following number n' , which was to be proved.

In order further to show that every element v of

the chain 6„{u>) is contained in \j/(JV), therefore that

we likewise apply complete induction, i. e., theorem

(59) transferred to CI and the transformation 6. In

fact,

p. the element <o= i/f(l), and hence is contained in

0-. If V is a common element of the chain ^X"^).

and the system ij/(_JV), then v= i/f(«), where n denotes

a number, and by (126, III) we get e{y)= 6xp{n)==

!/'(«'), and therefore ^(v) is contained in i/'(iV), which

was to be proved.

From the theorems just established, i/f(iV)3tfX<«)

and 6X<^')^^{.-^), we get by (5) i/f (iV^) == ^„ ("). which

was to be proved.

129. Theorem. Under the same hypotheses we

have generally

:
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Proof by complete induction (80). For

p. By (128) the theorem holds for n— 1, since

l„= iVand./r(l)= a).

(T. If the theorem is true for a number n, then

since by (127), (75)

and by (57), (126, III)

we get "/'(«'„)= ^» ('/'(«'))'

i.e., the theorem is true for the number n' following

n, which was to be proved.

130. Remark. Before we pass to the most im-

portant applications of the theorem of definition by in-

duction proved in (126), (sections X-XIV), it is worth

while to call attention to a circumstance by which it

is essentially distinguished from the theorem of dem-

onstration by induction proved in (80) or rather in

(59), (60), however close may seem the relation be-

tween the former and the latter. For while the theorem

(59) is true quite generally for every chain A„ where

A is any part of a system ^S transformed in itself by

any transformation <^ (IV), the case is quite different

with the theorem (126), which declares only the exist-

ence of a consistent (or one-to-one) transformation \j/

of the simply infinite system 1„. If in the latter the-

orem (still maintaining the hypotheses regarding fl

and 6) we replace the number-series 1„ by an arbitrary
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chain A„ out of such a system S, and define a trans-

formation i/r of A„ in n in a manner analogous to that

in (126, II, III) by assuming that

p. to every element a oi A there is to correspond a

determinate element ^\i{a) selected from 12, and

0-. for every element n contained in A, and its

transform n' ^•^{ji), the condition \\i{n'^-^6\\i{TC) is to

hold, then would the case very frequently occur that

such a transformation \\i does not exist, since these con-

ditions p, a- may prove incompatible, even though the

freedom of choice contained in p be restricted at the

outset to conform to the condition a-. An example will

be sufficient to convince one of this. If the system S

consisting of the different elements a and i is so trans-

formed in itself by <^ that a'^ Zi, i'= a, then obviously

a„= d^:=S; suppose further the system Q consisting of

the different elements a, ^ and y be so transformed in

itself by e that e(a-)= fi, ^(/8)= y, Oiy)= a; if we

now demand a transformation ij/ of a„ in Ci such that

^(a)^a, and that besides for every element n con-

tained in a„ always i^{n')z=0\li(n), we meet a contra-

diction; since for n=^a, we get i/r (,5) = ^ (a)= /3, and

hence for «= i5, we must have 1// (a)= 5 (/3)= 7, while

we had assumed tj/{a)=^a.

But if there exists a transformation ij/ of A„ in O,

which satisfies the foregoing conditions p, a- without

contradiction, then from (60) it follows easily that it

is completely determined ; for if the transformation x

satisfies the same conditions, then we have, generally,
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^(n)^\l/(n), since by p this theorem is true for all ele-

ments n= a contained in A, and since if it is true

for an element n of A„ it must by a- be true also^for its

transform «'.

131 . In order to bring out clearly the import of

our theorem (126), we will here insert a consideration

which is useful for other investigations also, e. g., for

the so-called group-theory.

We consider a system Q, whose elements allow a

certain combination such that from an element v by

the effect of an element w, there always results again a

determinate element of the same system t>, which may

be denoted hy <o.,f or mv, and in general is to be dis-

tinguished from v<D. We can also consider this in

such a way that to every determinate element w, there

corresponds a determinate transformation of the sys-

tem Q in itself (to be denoted by w), in so far as every

element v furnishes the determinate transform <l(v)^=

(ov. If to this system CI and its element lo we apply

theorem (126), designating by m the transformation

there denoted by 6, then there corresponds to every

number n a determinate element ij/{n) contained in Ci,

which may now be denoted by the symbol a" and some-

times called the «th power of wj this notion is com-

pletely defined by the conditions imposed upon it

II. «)l= oi

III. 0}"'=0><o",

and its existence is established by the proof of the-

orem (126).
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If the foregoing combination of the elements is

further so qualified that for arbitrary elements /x, v,

0), we always have tu(i/ /a) =0)1/(^11), then are true also

the theorems
0)"' ^= id" ft), u)"' ft)"^ ft)" ft)*",

whose proofs can easily be effected by complete in-

duction and may be left to the reader.

The foregoing general consideration may be im-

mediately applied to the following example. If S is

a system of arbitrary elements, and Q the associated

system whose elements are all the transformations v of

5 in itself (36), then by (25) can these elements be con-

tinually compounded, since v{S)iS, and the transfor-

mation ft)v compounded out of such transformations v

and (0 is itself again an element of O. Then are also

all elements m'' transformations of .S in itself, and we

say they arise by repetition of the transformation a.

We will now call attention to a simple connection ex-

isting between this notion and the notion of the chain

(i>XA) defined in (i4i), where A again denotes any part

of S. If for brevity we denote by A„ the transform

m"(A) produced by the transformation a", then from

III and (25) it follows that io(A„)= A„,. Hence it is

easily shown by complete induction (80) that all these

systems A„ are parts of the chain o)„(^) ; for

p. by (50) this statement is true for «= 1, and

a-, if it is true for a number n, then from (55) and

from A„,z=w(A„) it follows that it is also true for the

following number «', which was to be proved. Since
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further by (45) ^3(o„(^), then from (10) it results that

the system K compounded out of A and all transforms

A„ is part of a),(^)- Conversely, since by (23) a)(i5r)

is compounded out of o)(^)= ^i and all systems

<o(^„)=:^„,, therefore by (78) out of all systems^,,,

which by (9) are parts of K, then by (10) is <«(^)3vr,

i. e., Xis a chain (37), and since by (9) A^K, then

by (47) it follows also that that io„i^A')iK. Therefore

ioJ^A')=^K, i. e., the following theorem holds : If a> is a

transformation of a system 6' in itself, and A any part

of S, then is the chain of A corresponding to the trans-

formation (1) compounded out of A and all the trans-

forms <i)"(^) resulting from repetitions of o. We ad-

vise the reader with this conception of a chain to re-

turn to the earlier theorems (57), (58).

X.

THE CLASS OF SIMPLY INFINITE SYSTEMS.

132. Theorem. All simply infinite systems are

similar to the number-series N and consequently by

(33) also to one another.

Proof. Let the simply infinite system n be set in

order (71) by the transformation B, and let w be the

base-element of li thus resulting ; if we again denote

by d„ the chains corresponding to the transformation

6 (44), then by (71) is the following true:

a. e(n)3n.

/3. n= e„(a,).
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y. (o is not contained in ^(O).

8. The transformation Q is similar.

If then i/r denotes the transformation of the number-

series N defined in (126), then from /3 and (128) we

get first

^(iv^)=n,

and hence we have only yet to show that i/' is a sim-

ilar transformation, i. e., (26) that to different num-

bers m, n correspond different transforms ^(ni), ^(fi).

On account of the symmetry we may by (90) assume

that tn^n, hence nf!>n\, and the theorem to prove

comes to this that \^{n) is not contained in </'(«'„), and

hence by (127) is not contained in Qy^{n^. This we

establish for every number n by complete induction

(80). In fact,

p. this theorem is true by y for «= 1 , since i/r (1)= w

and i/^(l„)=i/r(i\A)= n.

<T. If the theorem is true for a number n, then is it

also true for the following number n'; for if </'(«'),

i. e., 6^{n), were contained in B\\i{ri^, then by 8 and

(27), ^{n) would also be contained in </'(«'„) while

our hypothesis states just the opposite ; which was to

be proved.

133. Theorem. Every system which is similar to

a simply infinite system and therefore by (132), (33)

to the number-series iVis simply infinite.

Proof. If ti is a system similar to the number-

series N, then by (32) there exists a similar transfor-

mation i/f of N such that
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I. i^(iV^)=fl;

then we put

II. t/-(l)= «j.

If we denote, as in (26), by f the inverse, likewise

similar transformation of O, then to every element v

of O there corresponds a determinate number ^(v)=«,

viz., that number whose transform i/r(«)= v. Since

to this number n there corresponds a determinate fol-

lowing number <l>(^n)=n', and to this again a deter-

minate element tj/in") in il there belongs to every ele-

ment V of the system li a determinate element </'(«') of

that system which as transform of v we shall designate

by ^(v). Thus a transformation ^ of ii in itself is com-

pletely determined,* and in order to prove our the-

orem we will show that by ^ O is set in order (71) as a

simply infinite system, i. e., that the conditions a, )8,

y, 8 stated in the proof of (132) are all fulfilled. First

a is immediately obvious from the definition of $.

Since further to every number n corresponds an ele-

ment v= <f>ifi), for which ^ (r) = i// («'), we have gen-

erally,

III. il/{n')-^e<j/(n),

and thence in connection with I, II, a it results that

the transformations ff, ij/ fulfill all the conditions of

theorem (126) ; therefore j8 follows from (128) and I.

Further by (127) and I

and thence in combination with II and the similarity

* Evidently 9 is the transformation i(i if) if compounded by (25) out o£ i|(, (f, 1//.
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of the transformation i/f follows y, because otherwise

i/r(l) must be contained in \\i{N'), hence by (27) the

number 1 in N' , which by (71, y) is not the case. If

finally /*, v denote elements of O and m, n the corre-

sponding numbers whose transforms are i/((w)= /x,

il/(n)= v, then from the hypothesis 6(11) — 6(v') it fol-

lows by the foregoing that ij/{m')— il/{n'), thence on

account of the similarity of ij/, <p that m'= n', m= n,

therefore also /i= v; hence also 8 is true, which was

to be proved.

134. Remark. By the two preceding theorems

(132), (133) all simply infinite systems form a class in

the sense of (34). At the same time, with reference to

(71), (73) it is clear that every theorem regarding

numbers, i. e., regarding the elements n of the simply

infinite system iV set in order by the transformation ^'

and indeed every theorem in which we leave entirely

out of consideration the special character of the ele-

ments n and discuss only such notions as arise from

the arrangement <^, possesses perfectly general validity

for every other simply infinite system O set in order by

a transformation Q and its elements v; and that the

passage from TVto n (e. g., also the translation of an

arithmetic theorem from one language into another)

is effected by the transformation i/> considered in

(132), (133), which changes every element n of jY into

an element v of O, i. e., into ^{n). This element v

can be called the «th element of O and accordingly

the number n is itself the «th number of the number-



96 THE NA TURE AND

series N. The same significance which the transfor-

mation <^ possesses for the laws in the domain N, in

so far as every element n is followed by a determinate

element <^(«)^«', is found, after the change effected

by 1^, to belong to the transformation 6 for the same

laws in the domain O, in so far as the element v= i/f(«)

arising from the change of n is followed by the ele-

ment d{y)^^\l/{n') arising from the change of n'; we

are therefore justified in saying that hy ij/
<l>

is changed

into 0, which is symbolically expressed by d=^^t^^>

<l}^ij}0{j/. By these remarks, as I believe, the defini-

tion of the notion of numbers given in (73) is fully

justified. We now proceed to further applications of

theorem (126).

XI.

ADDITION OF NUMBERS.

135. Definition. It is natural to apply the defini-

tion set forth in theorem (126) of a transformation i^

of the number-series JV, or of the function ^{n) deter-

mined by it to the case, where the system there de-

noted byfi in which the transform ^{^N') is to be con-

tained, is the number-series iV itself, because for this

system O a transformation ^ of O in itself already ex-

ists, viz., that transformation <^ by which iVis set in

order as a simply infinite system (71), (73). Then is

alson= 7V; 6'(«)= ^ («)= «', hence

I. ^(77)3iV,

and it remains in order to determine ^ completely
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only to select the element <o from O, i. e:, from N, at

pleasure. If we take o)=l, then evidently \\i becomes

the identical transformation (21) of N, because the

conditions

./.(i)= i, ^(?^')= (^(«)y

are generally satisfied by \j/{n)=zn. If then we are to

produce another transformation 1^ of JV, then for m we

must select a number m' different from 1, by (78) con-

tained in iV, where m itself denotes any number ; since

the transformation 1^ is obviously dependent upon the

choice of this number m, we denote the correspond-

ing transform i^(«) of an arbitrary number « by the

symbol m-\- n, and call this number the sum which

arises from the number m by the addition of the num-

ber n, or in short the sum of the numbers m, n.

Therefore by (126) this sum is completely determined

by the conditions*

II. m-\-l^m',

III. m-\-n'= {m-\-n)'.

136. Theorem. m' -{- n= m -\- n'

.

Proof by complete induction (80). For

p. the theorem is true for «= !, since by (135, II)

m'-irl = ifn'y= {m-\-l)',

and by (135, III) {m-\-iy= m+ V.

*The above definition of addition based immediately upon theorem (126

1

seems to me to be the simplest. By the aid of the notion developed in (131)

we can, however, define the sum m+n by i^nim) or also by <f)'"(n}, where <^ has

again the foregoing meaning. In order to show the complete agreement of

these definitions with the foregoing, we need by (126) only to show that if

<()«(;«) or (f»«(«) is denoted by iK«), the conditions i/((i)=«k', i)«(m')=<jhK») are

fulfilled which is easily done with the aid of complete induction (80) by the

help of (131).
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0-. If the theorem is true for a number n, and we

put the following number n' ^p, then is m'-\-n=
m -\-p, hence also (/«' + n)'= {m +/)', whence by (135,

III) m' -\-p^m-{-p'; therefore the theorem is true

also for the following number /, which was to be

proved.

137. Theorem, m' -\-n—{m-\-ny.

The proof follows from (136) and (135, III).

138. Theorem. 1 + «= «'.

Proof by complete induction (80). For

p. by (135, II) the theorem is true for «= 1.

0-. If the theorem is true for a number n and we

put n' ^p, then 1 -f n^p, therefore also (1 -j- n)'^p',

whence by (135, III) \-\- p^p', i. e., the theorem is

true also for the following number /, which was to be

proved.

139. Theorem. \ -\- n= n-\-l.

The proof follows from (138) and (135, II).

140. Theorem. m-\- n=in-\-m.

Proof by complete induction (80). For

p. by (139) the theorem is true for «= 1.

<r. If the theorem is true for a number n, then there

follows also {m-\-ny= {n-^my, i. e., by (135, III)

m -\- «'= n -\- m', hence by (136) m -\- n'= n' -\-m; there-

fore the theorem is also true for the following number

n', which was to be proved.

141. Theorem. {l-\-m)-\-n^l-\-{m-\-n').

Proof by complete induction (80). For
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p. the theorem is true for ra==l, because by (135,

II, III, II) (/+w)-l-] =(/+;«)'=/-(- »/'=/+(;«+!).

0-. If the theorem is true for a number n, then there

follows also ((/+w) +«)'= (/+(,« -I- «))', i.e., by

(135, III)

(/+ ;«) + «'= /+ (w -(-«)'= /^ (»2 -t- «')

,

therefore the theorem is also true for the following

number «', which was to be proved.

142. Theorem. /«-(-«> m.

Proof by complete induction (80). For

p. by (135, II) and (91) the theorem is true for

«= 1.

0-. If the theorem is true for a number n, then by

(95) it is also true for the following number n' , be-

cause by (135, III) and (91)

m -\- ri ^={m -\- n)' ~^ m -\- n,

which was to be proved.

143. Theorem. The conditions w> a and »« + «>
a-\-n are equivalent.

Proof by complete induction (80). For

p. by (135, II) and (94) the theorem is true for

n= \.

u. If the theorem is true for a number «, then is it

also true for the following number n, since by (94)

the condition /« + «> a+ ;z is equivalent to {m+ «)'>

(a+«)', hence by (135, III) also equivalent to

»? + «'> a -|- «',

which was to be proved.
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144. Theorem. \im.'>a and n^b, then is also

m -\- n';:> a -\- b

.

Proof. For from our hypotheses we have by (143)

m^n^a^n and «+ a> <5+ « or, what by (140) is

the same, a + «> a+ <5, whence the theorem follows

by (95).

145. Theorem. If /«+ «= «+ «, then »?= a.

Proof. For if m does not =a, hence by (90) either

»2>a or m<ia, then by (143) respectively iw-f «>
a+« or m-\-n<ia-\-n, therefore by (90) we surely

cannot have m-\-n^a-\-n, which was to be proved.

146. Theorem. If />«, then there exists one and

by (157) only one number m which satisfies the con-

dition m-\- n-z^l.

Proof by complete induction (80). For

p. the theorem is true for n^X. In fact, if />1,

i. e., (89) if / is contained in N' , and hence is the

transform m' of a number nt, then by (135, II) it fol-

lows that l=m-\- 1, which was to be proved.

0-. If the theorem is true for a number n, then we

show that it is also true for the following number «'.

In fact, if /> «', then by (91), (95) also /> n, and hence

there exists a number k which satisfies the condition

l=^k-\- n ; since by (138) this is different from 1 (other-

wise / would be = «' ) then by (78) is it the transform

m' of a number m, consequently l^m' -\-n, therefore

also by (136) l= m-\-n', which was to be proved.
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XII.

MULTIPLICATION OF NUMBERS.

147. Definition. After having found in XI an in-

finite system of new transformations of the number-

series iVin itself, we can by (126) use each of these

in order to produce new transformations ^ of N.

When we take fl^TV, and d{ny=m-\-n=n-\-m,

where m.\s a determinate number, we certainly again

have
I. xf;{N)iN;

and it remains, to determine i^ completely only to se-

lect the element w from iV at pleasure. The simplest

case occurs when we bring this choice into a certain

agreement with the choice of 6, by putting w^m.
Since the thus perfectly determinate i/^ depends upon

this number m, we designate the corresponding trans-

form ip{n) of any number « by the symbol my^n ox

m.n or mn, and call this number the //-^^i/ac/ arising

from the number m by multiplication by the number n,

or in short the product of the numbers m, n. This

therefore by (126) is completely determined by the

conditions
II. m.l=m

III. mn'= mn-\- m,

148. Theorem, m' n^mnA^n.

Proof by complete induction (80). For

p. by (147, II) and (135, II) the theorem is, true

for «= 1.
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a. If the theorem is true for a number n, we have

m' n -\- tn' ^{mn -\- tC) -\- m'

and consequently by (147, III), (141), (140), (136),

(141), (147, III)

m' n'= m n -\- (^n -\-fn')= mn-{- (m'-\- n)=^mn-\- (jn-\-n')

= (mn-\- ni)-\- n' ^mn' -\- n';

therefore the theorem is true for the following num-

ber «', which was to be proved.

149. Theorem, l.n^n.

Proof by complete induction (80). For

p. by (147, II) the theorem is true for n=^l.

a-. If the theorem is true for a number n, then we

have l.n-\-l--=n + l, i. e., by (147, III), (135, II)

1 .n'= n', therefore the theorem also holds for the fol-

lowing number «', which was to be proved.

150. Theorem. mn= nm.

Proof by complete induction (80). For

p by (147, II), (149) the theorem is true for n= l.

(T. If the theorem is true for a number n, then we

have
mn-\-m^nm-\-m,

i. e., by (147, III), (148) mn'= n'm, therefore the the-

orem is also true for the following number «', which

was to be proved.

151. Theorem. l(m-\'n)= lm-\- In.

Proof by complete induction (80). For

p. by (135, II), (147, III), (147, II) the theorem

is true for «= 1.
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0-. If the theorem is true for a number n, we have

l{m -^ n)^ l={lm-\- ln)-\- 1;

but by (147, III), (135, III) we have

l{m -\-n)-\-l= l{m + n)'= l{m + n'),

and by (141), (147, III)

{Im+ In) -{-l=lm-\- {In + l)= Im + In',

consequently l{m-\- n') = lm-\- In', i. e., the theorem

is true also for the following number n', which was to

be proved.

152. Theorem. {m-\-n)l=zml-\-nl.

The proof follows from (151), (150).

153. Theorem. (lni)n=^l(mn).

Proof by complete induction (80). For

p. by (147, II) the theorem is true for «z=l.

(T. If the theorem is true for a number n, then we

have
(/w) n-\- lm= l{m n) -\- Im,

i. e., by (147, III), (151), (147, III)

{Jni)ri ^=l{mn-\- ni) :^ I(m n')

,

hence the theorem is also true for the following num-

ber n', which was to be proved.

154. Remark. If in (147) we had assumed no re-

lation between w and 6, but had put a= k, d(n)=
m -\- n, then by (126) we should have had a less simple

transformation i/r of the number-series N; for the num-

ber 1 would \j/(l)= k and for every other number

(therefore contained in the form «') would ^(«')=
mn-\-k; since thus would be fulfilled, as one could
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easily convince himself by the aid of the foregoing

theorems, the condition y^in'^^Bx^^ri), i. e., \^(n")=.

m-{-^{n) for all numbers n.

XIII,

INVOLUTION OF NUMBERS.

155. Definition. If in theorem (126) we again put

Cl= N, and further <o= a, 6{n)^an= na, we get a

transformation i/r of iV which still satisfies the condi-

tion

I. ./r(iV)3iV;

the corresponding transform i/'(«) of any number n

we denote by the symbol a", and call this number a

power of the base a, while n is called the exponent of

this power of a. Hence this notion is completely de-

termined by the conditions

II. a^= a

III. a"'= a.a"=^a''.a.

156. Theorem. a'"+''= a'" .a".

Proof by complete induction (80). For

p. by (135, II), (155, III), (155, II) the theorem

is true for «= 1.

<r. If the theorem is true for a number n, we have

a"^" .a= {a'" .a'')a;

but by (155, III), (135, III) a.'"+" .a= a^'"+"^'= a"'+"\

and by (153), (155,111) {cT .a")a= ar'{a" .a)= a'".a'''\

hence a'"+"'= «"*
.
a"',

i. e., the theorem is also true for

the following number n', which was to be proved.

157. Theorem, {ary^a""'.
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Proof by complete induction (80). For

p. by (155, II), (147, II) the theorem is true for

«= 1.

0-. If the theorem is true for a number n, we have

{cry .a"'^ a"'" .or

but by (155, III) {cry .or= {cry' , and by (156), (147,

III) a"-". a'"= «"'»+'«= a"""'; hence {cry'= or"-' , i. e.,

the theorem is also true for the following number n',

which was to be proved.

158. Theorem. {aby^a".b".

Proof by complete induction (80). For

jo. by (155, II) the theorem is true for «= 1.

tr. If the theorem is true for a number n, then by

(150), (153), (155, III) we have also {aby.a^

a{a".b")= {a.a")b'':=a"' .b", and thus {{aby.a)b=
{a"'.b")b; but by (153), (155, III) {{^by.a)b^

(a by . (^a b) ={a by', and likewise

(a"' .b")b:^ a"', {b". b) = a"', b"';

therefore {a by'= a"' . b"' , i. e., the theorem is also true

for the following number n', which was to be proved.

XIV.

NUMBER OF THE ELEMENTS OF A FINITE SYSTEM.

159. Theorem. If S is an infinite system, then is

every one of the number-systems Z„ defined in (98)

similarly transformable in % (i. e., similar to a part of

2), and conversely.

Proof. If % is infinite, then by (72) there certainly

exists a part T of 2, which is simply infinite, there-
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fore by (132) similar to the number-series N, and con-

sequently by (35) every system Z„ as part of iVis sim-^

ilar to a part of T, therefore also to a part of S, which

was to be proved.

The proof of the converse—however obvious it

may appear—is more complicated. If every system Z„

is similarly transformable in S, then to every number

n corresponds such a similar transformation a„ of Z„

that a„ (Z„) 3 S- From the existence of such a series

of transformations a„, regarded as given, but respect-

ing which nothing further is assumed, we derive first

by the aid of theorem (126) the existence of a new

series of such transformations i/f,, possessing the spe-

cial property that whenever ;«<«, hence by (100)

Z„,3Z„, the transformation i/f„ of the part Z„ is con-

tained in the transformation ^„ of Z„ (21), i. e., the

transformations \^„ and i/r„ completely coincide with

each other for all numbers contained in Z„, hence al-

ways

In order to apply the theorem stated to gain this end

we understand by 12 that system whose elements are

all possible similar transformations of all systems Z„

in 2, and by aid of the given elements a„, likewise

contained in O, we define in the following manner

a transformation 6 of O in itself. If ^ is any element

of n, thus, e. g., a similar transformation of the de-

terminate system Z„ in %, then the system a„.(Z„,)

cannot be part of ^(Z„)j for otherwise Z„, would be
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similar by (35) to a part of Z,„ hence by (107) to a

proper part of itself, and consequently infinite, which

would contradict theorem (119); therefore there cer-

tainly exists in Z„, one number or several numbers p
such that a„.(/) is not contained in /8(Z„) ; from these

numbers / we select—simply to lay down something

determinate—always the least k (96) and, since Z^, by

(108) is compounded out of Z„ and n', define a trans-

formation y of Z„, such that for all numbers m con-

tained in Z„ the transform y{ni)^^^{m) and besides

y(«')= a„.(/J); this obviously similar transformation y

of Z„, in 5 we consider then as a transform 6(/3) of the

transformation y8, and thus a transformation 6 of the

system fj in itself is completely defined. After the

things named Q, and in (126) are determined we se-

lect finally for the element of O denoted by to the given

transformational; thus by (126) there is determined

a transformation i/^ of the number-series iVin 12, which,

if we denote the transform belonging to an arbitrary

number n, not by </'(«) but by i/f„, satisfies the condi-

tions

II. l/ri=ai

III. ^„.^K^„).

By complete induction (80) it results first that !/<„ is a

similar transformation of Z„ in 2; for

p. by II this is true for «= 1.

0-. if this statement is true for a number n, it fol-

lows from III and from the character of the above de-

scribed transition B from ^ to y, that the statement is
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also true for the following number n' , which was to be

proved. Afterward we show likewise by complete in-'

duction (80) that if m is any number the above stated

property

actually belongs to all numbers n, which are >»«, and

therefore by (93), (74) belong to the chain m,; in

fact,

p. this is immediately evident for n= m, and

(T. if this property belongs to a number n it follows

again from III a,nd the nature of 6, that it also belongs

to the number n', which was to be proved. After this

special property of our new series of transformations

}p„ has been established, we can easily prove our the-

orem. We define a transformation x of the number-

series JV, in which to every number n we let the trans-

form x (^)^ <A« C'^)
correspond; obviously by (21) all

transformations i^„ are contained in this one trans-

formation X-
Since i^„ was a transformation of Z„ in

% it follows first that the number-series iVis likewise

transformed by x in S, hence x(-^) ^S- If further m,

n are different numbers we may by reason of sym-

metry according to (90) suppose nKi^n; then by the

foregoing x (»0= '/'»('«)= "A" (^)' and x («)= "A^ («)

;

but since i//,, was a similar transformation of Z„ in %,

and m, n are different elements' 01 Z„, then is xl/„{m)

different from \li„{n), hence also xi'") different from

x(«), i. e., X is a similar transformation of JSF. Since

further iV is an infinite system (71), the same thing
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is true by (67) of the system x(-^) similar to it and

by (68), because x(^) is part of S, also of 2, which

was to be proved.

160. Theorem. A system S is finite or infinite,

according as there does or does not exist a system

Z„ similar to it.

Proof. If S is finite, then by (159) there exist

systems Z„ which are not similarly transformable in

S; since by (102) the system Z\ consists of the single

number 1, and hence is similarly transformable in

every system, then must the least number k (96) to

which a system Z^. not similarly transformable in 2 cor-

responds be different from 1 and hence by (78) =n'

,

and since n<C.n' (91) there exists a similar transforma-

tion i/f of Z„ in S ; if then xf/ (Z„) were only a proper part

of 2, i. e., if there existed an element a in 2 not con-

tained in .A(Z„), then since Z„,= m{Z„, «') (108)

we could extend this transformation i/r to a similar

transformation }p of Z„, in S by putting i/r(«') =a, while

by our hypothesis Z„, is not similarly transformable

in S. Hence \\i{Z„)=% i. e., Z„ and S are similar

systems. Conversely, if a system S is similar to a

system Z„, then by (119), (67) 2 is finite, which was

to be proved.

161. Definition. If 2 is a finite system, then by

(160) there exists one and by (120), (33) only one

single number n to which a system Z„ similar to the

system S corresponds ; this number n is called the

number \Anzahl'\ of the elements contained in S (or



no THE NATURE AND

also the degree of the system S) and we say S consists

of or is a system of n elements, or the number n shows

how many elements are contained in S.* If numbers

are used to express accurately this determinate prop-

erty of finite systems they are called cardinal numbers.

As soon as a determinate similar transformation i/r of

the system Z„ is chosen by reason of which i/f(Z„)= Z,

then to every number m contained in Z„ (i. e., every

number m which is <«) there corresponds a determi-

nate element \^{ni) of the system S, and conversely

by (26) to every element of S by the inverse trans-

formation ^ there corresponds a determinate number

m in Z„. Very often we denote all elements of S by a

single letter, e. g., a, to which we append the distin-

guishing numbers m as indices so that i/'(w) is denoted

by a^. We say also that these elements are counted

and set in order by i/' in determinate manner, and call

a„ the /«th element of 2 ; if m<^n then a^, is called

the element following a„, and u,„ is called the last ele-

ment. In this counting of the elements therefore the

numbers m appear again as ordinal numbers (73).

162. Theorem. All systems similar to a finite sys-

tem possess the same number of elements.

The proof follows immediately from (33), (161).

163. Theorem. The number of numbers contained

in Z„, i. e. , of those numbers which are <«, is «.

*For clearness and simplicity in what follows we restrict the notion of
the number throughout to finite systems ; if then we speak of a number of cer-
tain things, it is always understood that the system whose elements these
things are is a finite system.
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Proof. For by (32) Z„ is similar to itself.

164. Theorem. If a system consists of a single

element, then is the number of its elements =1, and

conversely.

The proof follows immediately from (2), (26), (32),

(102), (161).

165. Theorem. If T is proper part of a finite sys-

tem 2, then is the number of the elements of J' less

than that of the elements of S.

Proof. By (68) T' is a finite system, therefore

similar to a system Z^, where m denotes the number

of the elements of T; if further n is the number of

elements of 2, therefore S similar to Z„, then by (35)

T is similar to a proper part E of Z„ and by (33) also

Z„ and E are similar to each other ; if then we were

to have n^m, hence Z„^Z„, by (7) E would also be

proper part of Z„, and consequently Z„^ an infinite

system, which contradicts theorem (119); hence by

(90), m<Cn, which was to be proved.

166. Theorem. If r= 2lT(-5, y), where B denotes

a system of n elements, and y an element of V not

contained in B, then F consists of «' elements.

Proof. For if B= ij/{Z„'), where i/f denotes a sim-

ilar transformation of Z„, then by (105), (108) it may

be extended to a similar transformation i/' of Z„,, by

putting \l/(n')= y, and we get il/{Z„i)^T, which was to

be pro.ved.

167. Theorem. If y is an element of a system T
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consisting of n' elements, then is n the number of all

other elements of P.

Proof. For if B denotes the aggregate of all ele-

ments in r different from y, then is r= 2Tt(-5, y); if

then b is the number of elements of the finite system

,B, by the foregoing theorem b' is the number of ele-

ments of r, therefore =n', whence by (26) we get

b^=n, which was to be proved.

168. Theorem. If A consists of m elements, and

B oi n elements, and A and B have iio common ele-

ment, then TXK^A, B) consists oi M-\-n elements.

Proof by complete induction (80). For

p. by (166), (164), (135, II) the theorem is true

for n=^l.

a-. If the theorem is true for a number n, then is it

also true for the following number n'. In fact, if T is

a system of n' elements, then by (167) we can put

T^7Xl{B, y) where y denotes an element and B the

system of the n other elements of T. If then A is a.

system of m elements each of which is not contained

in r, therefore also not contained in B, and we put

Vri(A, B):=X by our hypothesis m-\-n is the number

of elements of S, and since y is not contained in 2,

then by (166) the number of elements . contained in

m(X y)^{m+ n'), therefore by (135, lll)=m+n';

but since by (15) obviously in(S, y)= 2n(^, B, y)=
7Xi(A, T), then is m-\-n' the number of the elements

of in (A, T), which was to be proved.

169. Theorem. If A, B are finite systems of m, n
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elements respectively, then is TXi^A, B) a finite sys-

tem and the number of its elements is <m-\-n.

Proof. If B'iA, then m{A, B)=A, and the

number m of the elements of this system is by (142)

<.m-^n, as was stated. But if ^ is not part of ^,
and T is the system of all those elements of B that

are not contained in A, then by (165) is their number
pKn, and since obviously

m{A, B) = m{A, T),

then by (143) is the number m +/ of the elements of

this system Km-\-n, which was to be proved.

170. Theorem. Every system compounded out of

a number n of finite systems is finite.

Proof by complete induction (80). For

p. by (8) the theorem is self-evident for «= 1.

0-. If the theorem is true for a number n, and if S

is compounded out of n' finite systems, then let A be

one of these systems and B the system compounded

out of all the rest; since their number by (167) =n,

then by our hypothesis ^ is a finite system. Since

obviously 5= 2H(^, B), it follows from this and from

(169) that S is also a finite system, which was to be

proved.

171. Theorem. If i/r is a dissimilar transformation

of a finite system 2 of « elements, then is the number

of elements of the transform i/'(S) less than n.

Proof. If we select from all those elements of 2

that possess one and the same transform, always one

and only one at pleasure, then is the system T of all
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these selected elements obviously a proper part of

2, because i/^ is a dissimilar transformation of % (26).

At the same time it is clear that the transformation

by (21) contained in ^ of this part 2" is a similar trans-

formation, and that i/r(r) =i/'(S); hence the system

i/((2) is similar to the proper part 7" of 2, and conse-

quently our theorem follows by (162), (165).

172. Final remark. Although it has just been

shown that the number m of the elements of i/'(S) is

less than the number n of the elements of S, yet in

many cases we like to say that the number of ele-

ments of i/f(2)^«. The word number is then, of

course, used in a different sense from that used

hitherto (161); for if a. is an element of S and a the

number of all those elements of S, that possess one

and the same transform \^ (a) then is the latter as ele-

ment of.i/'(S) frequently regarded still as representa-

tive of a elements, which at least from their deriva-

tion may be considered as different from one another,

and accordingly counted as a-fold element of i/'(S)-

In this way we reach the notion, very useful in many

cases, of systems in which every element is endowed

with a certain frequency-number which indicates how

often it is to be reckoned as element of the system.

In the foregoing case, e. g., we would say that n is

the number of the elements of i/i (2) counted in this

sense, while the number m of the actually different

elements of this system coincides with the number of

the elements of T. Similar deviations from the orig-
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inal meaning of a technical term which are simply ex-

tensions of the original notion, occur very frequently

in mathematics ; but it does not lie in the line of this

memoir to go further into their discussion.
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