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Mathematical Contributions to the Theory of Evolution.

XV. A MATHEMATICAL THEOEY OF RANDOM MIGRATION. By
Karl Pearson, F.R.S., with the assistance of John Blakeman, M.Sc.

(1) Introductory. In dealing with any natural phenomenon,—especially one

of a vital nature, with all the complexity of living organisms in type and habit,

—

the mathematician has to simplify the conditions until they reach the attenuated

character which lies within the power of his analysis*. The problem of migration

is one which is largely statistical, but it involves at the same time a close study

of geographical and geological conditions, and of food and shelter supply peculiar

to each species. Some years ago the late Professor Weldon started an extensive

study as to the distribution of various species and local races of land snails, but

he was struck by the absence in several cases of any definite change of environ-

ment at the boundaries of the distribution of a definite race. It occurred to me
in thinking over the matter that such boundaries, where they exist, may possibly

not be permanent. To take a purely hypothetical illustration : A species is pushed

back to a certain limit by a change of environmental conditions— say, an ice age.

Does it follow that if the environment again becomes favourable, that it will

rapidly occupy possible country ? What is the rate of infiltration of a species

into a possible habitat 1 It depends, of course, on a whole series of most complex

conditions, the rate of locomotion, the channels of communication, the distribution

of food areas and breeding grounds in the new country, and the connecting links

between all these. Every detail must be studied by the field naturalist in relation •

to each species. All the mathematician can do is to make an idealised system,

which may be dangerous, if applied dogmatically to any particular case, but which can

hardly fail to be suggestive, if it be treated within the limits of reasonable application.

The idealised system which I proposed to myself was of the following kind :

(i) Breeding grounds and food supply are supposed to have an average uniform

distribution over the district under consideration. There is to be no special following

of river beds or forest tracks.

* This is of course a perfectly familiar process to every mathematical physicist, but its unfamiliarity

leads the biologist to suspect or even discard mathematical reasoning, instead of testing the result

as the physicist does by experiment and observation.

1—2



4 KARL PEARSON

(ii) The species scattering from a centre is supposed to distribute itself

uniformly in all directions. The average distance through which an individual of

the species moves from habitat to habitat will be spoken of as a "flight," and there

may be n such " flights " from locus of origin to breeding ground, or again from

breeding ground to breeding ground, if the species reproduces more than once.

A flight is to be distinguished from a "flitter," a mere two and fro motion associated

with the quest for food or mate in the neighbourhood of the habitat.

(iii) Now taking a centre, reduced in the idealised system to a point, what

would be the distribution after n random flights of N individuals departing from

this centre ? This is the first problem. I will call it the Fundamental Problem of

Random Migration.

(iv) Supposing the first problem solved, we have now to distribute such points

over an area bounded by any contour, and mark the distribution on both sides

of the contour after any number of breeding seasons. The shape of the contour and

the number of seasons dealt with provide a series of problems which may be spoken

of as Secondary Problems of Migration.

A little consideration of the Fundamental Problem showed me that it presented

considerable analytical difficulties, and I was by no means clear that the series of

hypotheses adopted would be sufficiently close to the natural conditions of any

species to repay the labour involved in the investigation. At this stage the matter

rested, until last year Major Ross put before me the same problem as being of

essential importance for the infiltration of mosquitoes into cleared areas, and asked

me if I could not provide the statistical solution of it. He considered that we
might treat a district as approximately "equi-swampous," and thus my conditions

(i), (ii) above could be applied to obtain at any rate a first approximation to

the solution.

Starting on the problem again I obtained the solution for the distribution after

two flights, an integral expressing the distribution after three flights, which I

carelessly failed to see could be at once reduced to an elliptic integral, and the

general functional relation between the distribution after successive flights. At this

point I failed to make further progress, and under the heading of "The Problem

of the Random Walk " asked for the aid of fellow-mathematicians in Nature*. The
reply to my appeal was threefold. Mr Geoffrey T. Bennett sent me in terms of

elliptic integrals the solution for three flights. Lord Rayleigh drew my attention

to the fact that the " problem of the random walk " where the number of flights

is very great becomes identical with a problem in the combination of sound ampli-

tudes in the case of notes of the same period, which he has dealt with in several

papersf. Lastly Professor J. C. Kluyver presented a paper to the Royal Academy

* July 27th, 1905.

+ Phil. Mag., August, 1880, p. 75; February, 1899, p. 246.
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of Sciences of Amsterdam, entitled "A local probability problem. "* Professor

Kluyver obtains the general solution in terms of the integral of a product of

Bessel's functions of the zero and first orders. He deduces Rayleigh's solution for

n large, he shows that the Bessel function integral represents a series of different

analytic functions in different intervals, and proves a number of special problems

of very considerable interest. Referring to his general solution, he writes, however :

" From this result we infer that the probability sought for is of a rather intricate

character. The n + 1 functions J are oscillating functions, and have their signs

altering in an irregular manner as the vai'iable u increases. Hence even an

approximation of the integral is not easily found, and as a solution of Pearson's

problem it is little apt to meet the requirements of the proposer."!

Kluyver's solution is of extreme suggestiveness for the analytical theory of

discontinuous functions. In the endeavour to express it in a form suited to my
special purposes I have come across a long series of Bessel function properties,

some at least of which seem to me novel, but have unfortunately no bearing

on the problem of migration. If we turn to Rayleigh's solution for n large, I

must confess at once to being unconvinced of the adequacy of the proofs used to

deduce it, especially that in the Theory of Sound\. Kluyver's proof of Rayleigh's

solution § appears to me to also require much strengthening, and in neither case do

we have any practical measure of what the number of flights must be before we

have in practice a reasonable accordance between the discontinuous Bessel's function

integral expression and the Rayleigh solution of Gaussian frequency type.

After a good many failures I have succeeded in obtaining a solution in series

of the Bessel function integral, but this not of a character to be of service for

frequent arithmetical calculations. It serves, however, to test the approximation

of the Rayleigh solution and the accuracy of the solutions for few flights obtained

by other processes. At this stage I realised that the functional equation between

the distributions for n and n + 1 flights could be solved graphically, and that starting

with the known distributions for n = 2 or n = 3, we could by very great labour,

but absolutely straightforward graphical work and the use of mechanical integrators,

build up in succession the solutions for n — 4, 5, 6, 7. etc. I proposed that this

process should be continued until the graphically found distribution coincided with

the plotted values obtained from the above solution in series. This was achieved

for n = 7. For n = 6 and n = 7 , the solution in series approaches to the Rayleigh

solution, with which for all practical purposes it may be asserted to coincide for

71 = 10. We have thus reached a continuous graphical illustration of the transition

of a series of discontinuous and, in many respects, remarkable analytical functions,

step by step with the increase of n into a normal curve of errors. The relation-

* Koninklijke Akademie van Vetenschappen te Amsterdam. Proceedings, Oct. 25, 1905, pp. 341—50.

t loc. cit. p. 343. { 2nd Edition, § 42 a. § Kluyver, loc. cit. p. 345.
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ship is a noteworthy one, and not without suggestion for other branches of

investigation.

The exact method of graphical solution will be described later ; the whole labour of

it, involving many weeks' work, was due to my assistant, Mr John Blakeman, M.Sc.

(2) General Analytical Solution of the Fundamental Problem. Let the origin

be taken at the centre of dispersion and r be the distance of any small elementary

area a from the centre of dispersion. Let
<f>n (r

2

) • a be the frequency of individuals on

a after the nth flight, and <£„ +1 (r
2)a their frequency on the same element after

the (n + l)th flight. Let I be the length of the flight. Then only those individuals

who were on a circle of radius I round the centre of a after the nth flight can reach a

with the (n+l)th flight, and only those individuals of these who take their flight

in one definite direction. Let be the centre of dispersion, C the centre of a,

P a point on the circle of radius I round C, L PCO — 6, then the frequency per

unit area at P is
<f>n (r

2 + l'
1 — 2rl cos 0), and the amount which goes in directions

between and + 80 is d0/2ir. Hence the frequency per unit area at C after the

{n+l)th flight is given by:

<j>n+l (r>) = ~f\(r°+ P-2rlcoS 0)d0 (i).

This is the equation, which I shall speak of as the general functional relation between

the densities at successive flights. Now assume : <£„ (r
2

) = Cn J (ur), where Cn is any

undetermined function of n, I and u, and u is at present an undetermined variable.

Then by Neumann's Theorem *

:

00

Jo (u Jr* + l
2 - 2rl cos 6) = Ja

(ur) J, (ul) + 2tJt
{ur) Jt (ul) cos td.

i

1
pr

Hence : —
J

Cn J (u Jr> + 1" - 2rl cos 0) d0 = Cn J, (ur) J, (ul)

= Cn+1Ja
(ur), by (i).

Therefore Cn+1 =J (ul) Cn .

It follows that Cn =D{J (ul)}'\ where D may be any function of I, but not of n.

Thus we have :
<f>n (r

2

) =DJ (ur) {J (uT)f,

where we may sum for any or all values of u.

Now when n=l, fa (r
2

) must be zero, for all values of r except r = l to 1 + t, and it

then equals N/(2ttIt), t being very small and N the total number issuing from

the centre of dispersion. We know, however, that t

:

1 du upf(p) Jn (up) Jn (ur) dp =f(r), if q < r <p ;

= 0, it r >p or < q.

* C. Neumann, Theorie der Besselschen Functionen, S. 65.

t Gray and Mathews, Treatise on Bessel's Functions, p. 80.



A MATHEMATICAL THEORY OF RANDOM MIGRATION

NNow take n = 0, q = l, p = l + r and f(p) = 2irh

f°° N
then we have : ul -^—j- J (ul) J (ur) rdu = <^ (r

2

),

J 2iTTlT

N (
m

or, (
f>1

(r
i)=—\ u JAul) JAur) du (ii).

AnJ o

This determines the form of D and the summation of u ; for, if we take

N f
°°

^(^) = 2^ uJ (ur){J (id)}
n du (iii),

we satisfy the general functional relation (i) and further the initial equation (ii).

Let Pn (r) be the probability that an individual after n flights will be a distance r

or less from the centre of dispersion. Then clearly

Pn (r) = 2ir^rdr<t>n+,(r>)

=N \ rdrl uJ (ur) {</"„ (ul)\
n du.

Jo Jo

t> .«. r / \ d{J.(ur)ur\
But* ur J„ (ur) = l \\ '— J

,v
' d (ur)

hence Pn (r) = N\ du d (ur) l
'/.—

{
—i l oV /Jw

Jo Jo d(w) w

= jRT
J

r J, (w) {J (ul)fdu,

f
°°

flv\
n

oriiv = ur: =N ^(v) J l —
j
dv (iv).

(iv) is Kluyver's fundamental solution, which he reaches by a very different

and more general analysis, (iii) is the form of it which best suits my present

investigation.

(3) On an expansion in series of the expression for <f>n (r
a
). By straight-

forward but somewhat laborious multiplication it can be shown that

:

{J (2jy) eT = 1 "W "W +^"^*

(50n-57)n (1892-2125w + 270n2

) n 6+ ~ 1800 f 103,680 y '
etC -

* Gray and Mathews, loc. cit. p. 13.
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Hence putting 2 Jy = z,

.8

}
(v)

\J
a
{z)\ -e jl

64
.

57(
,z+

192 25g

(50n-57)n z
10

_ (1892 -2l25n + 270n*)n z
12

__+
1800 1024 103,680

~ 4096
~~ e C'

1 2

= e~
taz

{l — a4z
4 — a6

z
6 — a

s
z
a — a

10
z
10 —

.

a

12
.z

12 — etc.},

let us write, for brevity. The a's are then known coefficients.

Now by (iii)

1 [*
$n (r

2

) = o- M ^> (w) Ro (mZ)}" <^-
Z7TJ o

But we know that* :

I" ue-*
nuH2J (ur)du = - î

e-
r2/nP

(vi).

Write : ^nP = 0-* (vii).

Thus: \^ ue^ 1^J {ur)du =\e-^l,r2
(viii).

Jo c

Differentiate (viii) s times with regard to cr
2

:

Hence, if /3— — 2o-
2
/r

2

, we have:

L _ j 2«+ l -iw2
<r
2

7- / \ 7

2s
—

\
u e 2 J (ur) du

Jo
2
25+1 ds /l

f)2S+ l

= — ^+2 las '
say-

gl#

r2 '

We have therefore

:

N_
o -\r^ M N *=^ l

2s 2*s+1 a2s i

2

ds
1 1

where it remains to evaluate iw = -^ ( 5 e ltf

We find

1 /r\ 6
-r2/2(r 2 / r2

1 r4

^-§W 8
' l

2 - 2 ? + 4,-

*~
16W \ <r

2
+

4o-4 8^/'

1 /r\ 10 _ r2/2n-2 / r2
r4 r6

1 rs

i
e
= -— (-) e

r/2<r (24-48-
2
+18 --2^- +— ^-

8

32 \cr/ \ cr
2

cr
4

o-
6

16o-!

* Gray and Mathews, loc. cit. Eqn. (162), p, 78
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1 /r\ 12
_ r2/2o-2 / r2 r4 r6 25 r8

] r10
\

?"Y
4

-j-2/2o-2 / r2 r4 r6 225 r8 9 /r\ 10
1 /r\ 12

'

- e '<*" 720-2160-
2
+1350-

1
-300-

6 +^3-^ - +
128 W \'

v " (^"""V """o-6 ^ 8 o-
8 8W "64 W.

Remembering that by (vii) P = 2ar
2
/n, we have from (ix)

6n-ll / r2
?*

4 r6
1 r8

+w(24 - 48
;?
+18 ;?- 2

<?+T6;/

50n — 57/ , r2 r4 r6
2*i r8

I r10 ''

1892 -2125» + 270»V720 _ 21(
. ^ +1350 ^_ 300 r; +

?pr;_9 r; 1 f
103,680n5

\ cr
2

o-
4

o-
6

' 8 cr
8

8 <r
10 64cr

- etc. [ (x).

This is the general expansion for the distribution of the individuals emerging

from a centre of dispersion after n random flights. Clearly if we want to go as

far as — we must retain terms up to (r^/o-
2

)

2
*, and the convergence is small for n

small. Thus for the first two or three flights, (x) as far as I have calculated the

terms gives poor results, even if they are notwithstanding better than the Rayleigh

solution. The arithmetical work required to calculate the ordinates is also severe.

"If we put ri = oo, we have

<Mr
) = 2^i (xl)'

Lord Rayleigh's expression. Now cr* = ^nl 2

, hence unless I becomes indefinitely small

as n becomes indefinitely large the population becomes widely scattered. If the

• • single flight I be very small, but the total flight nl be finite, then \nl 2 tends to

become vanishingly small, or the population remains close to the centre of dispersion.

This is really the "flitter" as distinct from the flight.

Examining the solution found it is clear that it may be looked upon as the

sum of products of two factors, one series of factors not involving r/a- but only n

and the other not involving n but only r/a: Thus we may write

<j>n (r
2
) = Ar

(v w + v2 o>2 + v
i o)i+ v6ws + . .

.
),

where

2iro*'

27r<T*
e

V
1

2o>
'

*
'
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etc (xii).

The w-functions form a series of such special interest that a few of their

remarkable properties will be stated in the next section.

(4) Properties of the a-functions.

Let us consider the j>th moment round the origin of the 2.sth w-function taken

over all plane space. We will denote it by mPiSg . Then

f
2ir

f
°°

mp,u= dd rdroiMr
p

— 2tt\ h>.
2s
rp+1dr (xiii).

Jo

Now -—d*i-er'$$"') <")

and by fi= — 2cr
2
/r

2 we have clfi =— dr.

Hence writing p = 2q we find

«^.=(-ir'-H*oyf^p-'-^^rfdp (xv).

Integrate by parts and we have

»,1,„=(-ir.-.(2^[{^-.| l̂
(ie.»)};- (s - 9 -i,|;>-.-.|^(

i

i^^
.

The part in curled brackets vanishes at the limits and thus

=^?>M - 2 (s-g-i).

Repeating this process we find

m
2gi2s = (.s-l- 2)(s-2-g)(s-3- 9)...(- 2 )

x(-l)«- 1 x(2o-2

)

3 x f "p-^e^dp
(
Xvi).

The integral is finite and known ; hence if q be less than s we find for integer
values

'«**,.* = 0, g<* (xvii).

Now consider coM as made up of two parts,

^W* "
X *» (xviii).
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Then it is clear that Xn> if 9. he less than s, consists of powers of r2
less than

s, and therefore

/:
a)2s xmrdr = 0.

Accordingly a remarkable property holds for the ^-function part of the co-function,

namely, if Xzq and
X25' De two such functions, then it follows that

/;
e X^Xm'rc^r ~^> ^ 1 and 9.' De different, (xix).

Returning to (xvi), let us put q = s, then

m
2Si2s

= -(2a>y\s I
™p- s - 2

e™dl3
J -0

J^^- i-iyfx^e'^dx,

or, m^ = (-iycf«2*(\sy (xx).

Let us now consider the integral over the plane

1= 2tt I v^XisTdr.

Except for the last term in x™> it will consist of a number of terms having for

factors mM2g with q<s and these all vanish. The last term in ^w is

and accordingly

I=2tt\ ^x,srdr=
2lT

\s
> -g co2sr

2s+1 dr,
Jo * & j

or by (xx) 7=(|s)2 (xxi).

Hence we have the following properties

:

(a) The integral all over the plane of distribution of one product of a

^-function into an co-function of a different order is zero.

(b) The integral all over the plane of distribution of the product of a

^-function into an co-function of the same order is, if 2s be the order, equal

to (\sy.

These properties enable us—as in the case of Bessel's functions or Legendre's

functions—to expand any function symmetrical round a centre and a function

only of the square of the distance from that centre in co-functions.

Thus let F(r*) =
S

ls (b2s o>,s),

s=0

2—2
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multiply by ^M and integrate all over the plane,

fee C 00

2-rr F (r
2

) x„rdr = b„2ir
\

at^^rdr = b,s {^}
2

.

Jo Jo

Hence bu = -j^r
%
\F(r*)x.rdr (xxii).

115 J o

Now ^M consists of an algebraic series in ( - ) . Thus the discovery of the

value of the integral I F (r
2

)
x^rdr depends solely on the determination of the

Jo

odd moments of F (r
2

) between and oo . We conclude therefore that an

expansion in w-functions involves merely the determination of moments, such as

every statistician has been accustomed for years to calculate. This is not the

proper occasion to deal fully with the properties of the co-functions, nor to

generalise them for odd powers of r, and to consider the convergency of

expansions in terms of co-functions. They will be discussed on another occasion,

but the present writer believes that they will be found of not inconsiderable

service, not only in statistical problems, but in certain physical problems where

intensity round an axis diminishes with the distance.

(5) Two further problems are of service for the theory of dispersion.

Suppose

F^)=S^{K^),
s=0

Integrate over the plane and remember that Xo
= l>

f co s = oo /"oo

2tt I F(r'2)rdr = S 2-rr &M <oMY re£r
Jo s = o Jo

= b (xxiii).

Thus the first coefficient is merely the total volume of the surface z = F(rtl

) }

taken over the plane.

Next consider the second moment

f<*> s = oo
I"

oo

2tt r*F(ir*) rdr — S 2tt
\

b^ . Uj, . r'\ rdr.
Jo

'

s =o Jo

Every term of the summation vanishes except for s = and s=l, and the left-

hand side is the second moment of the function about the axis perpendicular

to the plane through the centre = volume x (swing-radius)2 — b x K\ say. Thus :

M^ = i r 6ie-*^dr + l f\e-^(l-^) r»Jr
o" Jo o-Jo \ 2 ar

2

/

= 26 cr
2 + b

2 (2 - 4) o-
2 = 2 (6 - b2) a

3
,

or b
t
= b

t
{l—jiEi

/o'}
(xx iv ).
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Thus far no choice has been made of cr
2
. If we take cr

2 = \K*, we have 6
2
= 0,

or if cr
2 be taken half the square of the swing-radius about the axis of the

solid of revolution z = F(ri

), that is if cr be the swing-radius of the solid about

any plane through its axis, then the second term in the expansion of F (r
2

)

in cu-functions disappears.

We are now able, I think, to grasp the relation of the Rayleigh solution

to the complete solution of the random scatter round a centre of dispersion.

If
(f>n (r

2

) be the function giving the distribution after n nights, then c/>a (r
3

)

can be expanded in a series of co-functions, i.e.

4>n (
r*) = b <»<> + h<»2 + b

i
O)

i + • + K<»M + •

By choosing the cr
2 of the co-functions = \K\ this becomes, since b the

volume = N,

^^ =2^ e_i?
'

2/<r2

f
1 +b^ + - + 6-X*+ -}

Lord Rayleigh's solution provides the first term of this series, or is the

correct solution to two terms in the expansion by co-functions. It possesses

the properties (a) that its volume is the same as that of the complete solution,

and (b) the mean square deviation from the centre of dispersion is the same,

i.e. 2o-
2

, as for the complete solution.

The latter depends upon the fundamental property of the co-functions that

o)Mr
3
rfr = 0, if s be > 1.

o

The expansion in co-functions shows us at once that, whatever be the magnitude

of n, the mean square deviation from the centre of dispersion is Jnl, and this

gives us readily a rough measure of the range of habitat of any species for

which n and I are approximately known.

Another point may be noted here as to the Rayleigh solution. That solution

is the best fitting Gaussian error surface to the distribution, i.e. its volume and

its standard deviation are the same as those of the actual distribution, whatever

n may be. If we take the section, however, of the distribution through its

axis the standard deviation of this according to the Rayleigh solution is <r = J\nl,

but this is not the standard deviation of the section of the actual distribution,

i.e. the Rayleigh solution does not give the best fitting normal curve 'to the

section. It gives only the standard deviation corresponding to co . It is of

some value to note what .are the standard deviations of other component

<o,s terms.

To obtain this we must determine the area and even moments corresponding

to any w.^ term. Let

/.
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whence integrating by parts

:

3^vM-^H)^
sb(s-£>MA ;

-j

i l(s _I)( s _')( s _
5

V2iro-2\ 2/\ 2/\ 2

2/\ •:
4f "/8-V"dj8

2J -o

2Jo

• (xxv),

or > 1.

If s = 0,

I now take

,1= 1 *

° v/2tto- 2

.(xxvi).

^2p, 2«
" (o,ypdr

-wj. •*<-»" j$(H*-
and find, reducing in the same manner,

P.2S
" :7S¥(s -p 4)(

s - ? -2)-(-J,+ i)
><1 - 3 ' 5 - <2f,

" 1) '" (xxvii) '

Clearly :

by (xiii), hence :

Or,

m!j)-l,!S- 27r cv^dr

m
2p _ 1^ = -j27rcr'p

" 1

[s-p-^J (* ~P ~
jj

-p + -

.(xxviii).x 1.3.5 (2p — 1)

Thus the odd moments of the w,s functions are known*.

For the particular case when p = 1 :

^ =
72^?H)H)---(- 2

:

)

if &2S be the swing-radius round the axis of the function co.2s . Hence by (xxv)

U=-hf=-2Tri ^XXU1)-

.(xxxii),

* If x = r/cr the following finite difference and differential equations are fundamental in the

theory of the co-functions

:

<»2<s+2)
- (2* + 3 - iz2

) o)2(s+1) + (s + 1
)

2 w2s = (xxix),

do:
1)
2(S+i) = (* + l)^s + i a; -^ (xxx),

dx?
(1 \ dm.,,
X+

x)^x +2is+l)w's
=

(xxxi)-

But the fuller treatment of the to-functions must be' deferred.
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This is also true for s = 0, as well as any integer value. It follows accordingly

that while the total area of any w-function from to oo is positive, its k is

negative for values of s>l. In other words the negative parts of co are on the

whole furthest from the axis. Again the absolute value of kM decreases as

-
j- when s increases, or the higher the cu-function the less it contributes relative

to its area to the total mean square deviation of the curve.

Applying these results to the curve of scatter given by (x), i.e.

m i %\ \r( l l ,6ft- 11
,
50n-57

1892 -2125ft+ 270ft
w

13
— etc.

j
(xxxiv),

103,680ft*

we have if A be the whole area and k the radius,

- N 1 f 3 1 5 1 35 6ft- 11 21 50ft- 57

V27ro-2l 16 ft 24 ft
2 1024 ft

3 1280 ft
4

77 1892-2125ft + 270n :

etc. V ,...(xxxv),

n/2tto- 2 I 16 ft 24 ft
2

1

49152 ft
5

5 6ft- 11 7 50ft -57

024 ft
3 3840 ft

1892- 2125ft + 270ft
2

49152 ft
6

+ etc. V (xxxvi).

Hence if we even neglect terms of order —
, we see that the Rayleigh solution

lb

gives too large an area for the curve of section and too small a swing-radius

;

these values are

1 iV"
Rayleigh area, - -t=- , Rayleigh swing-radius, o-,

2v27rcr

.
1 1 N I 3 1\ m . ,. 1 / 1

Irue area to - , —j=— (
1

;
Irue swing-radius to -

, <r 1 -I

ft 2V27ro-\ 16 ft/ ft \ 8ft

Accordingly for n small the graph of the Rayleigh solution tends to exaggerate

the concentration, i.e. using it as an approximation we shall somewhat reduce the

extreme parts of the curve at the expense of exaggerating those near the centre

of dispersion.

While there is no difficulty about determining the curve of distribution when

ft is large from (xxxiv), beyond the great labour of dealing with hitherto untabled

functions, the investigation becomes very troublesome when n is small. The

functions <a are suited in this case to represent the discontinuous functions which

actually form the values of
<f>n (r"), but the extreme discontinuity of <£„(r

2

) for n
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small, compels us to use a very great number of co-functions, and the convergency

of (xxxiv) is then small.

Another method of determining the distribution of the dispersed population has

then to be applied to the case of n small.

(6) Graphical Solution of the Fundamental Problem for n small.

Let us consider the general functional relation (i)

1 f2ir

<£„+1 (r
2

)
= 2^ j Q

& (r
* + ? " 2H C°S 6) 4°'

Suppose the graph of <£„ from to nl known. This may be any discontinuous function.

From nl to » , it will be zero. Let ABD be the graph of
<f>n and OA the axis.

OP = r. Round P describe a circle of radius /, take the radius PQ, so that the

angle OPQ = 0; then clearly, OQ2 = r2 + f - 2rZ cos 9; rotate OQ round down into

line OD, as ON ; draw the ordinate of the graph Nq, then we have

JSrq = <l>n (r
2+ l

2 -2rlco8d)

1

and 4>n+,(OP
2

)
=

2tt

2ir

Nqdd.

Hence if we divide the circle up into a number of equal parts, and determine the

ordinates Nq, corresponding to each of them, we can plot a curve to the base 2v,

of which the mean ordinate will be c/>„ +1 (OP
2

), or the ordinate at r of the new

curve of dispersion for n + 1 flights. This can be done for a series of values of

r from to n+1 I and thus
<f>n+1 (r

2

) will be determined as a new graph. The area
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of the plotted curve which gives any new ordinate can be found mechanically.

It will be seen that the process is theoretically straightforward, but very laborious.

Thus for the dispersion curve after the fourth flight some 43 points had to be

found, and this involved the construction of 43 subsidiary curves and their integration.

There were, of course, graphical difficulties in the construction of the subsidiary

curves in the neighbourhood of the asymptotes and variolas devices had to be used, but

at almost every point there were tests of the accuracy of the work. Some of these

I shall now notice.

Case (i). The solution for two flights is :

. (xxxvii).

= r>2l

The reader will find no difficulty in deducing this directly from the case of n=l,

which corresponds to a narrow zone of radius r = l, the rest of the plane being

unoccupied. Thus

:

N \

<£, = t—rfrom r = l — le to r = l + ie . .. , . .r 2irk 4 4
I (xxxvii Us),

= from r = to I — \e and r= I + ^e to qo
J

e being taken indefinitely small.

By distributing each element of 4>i on the zone round a circle of radius I we

obtain (xxxvii).

The result may be obtained also from (iii) by putting n = 2, i.e.

& (f) =o~\ uJo (
ur

)K (ul)Y du,
Z77-J0

= V[
:
(2l + r)r(2l-r)r]-*^ ^ Q ^

2tt Vir2- 1 n(--|)

= from r = 2l to 00
,

from a theorem of de Sonin by putting a = r, b = c = l. Compare Gray and

Mathews, p. 239, Ex. 52.

Case (ii). The solution for three flights may be obtained from that for two,

by distributing analytically the density given by <£2 round circles of radius I about

each point. The resulting double integral is then expressible in elliptic integrals*.

We find

:

where k2 = 1 6l
sr/{(r + If (Si - r)},

r > and < I ; i

nlj^ f (z \ y
(xxxviii).

WlJVl \2'7'

where k2= (r+ Z)
3 (3Z - r)/( 1 6?r),

r > I and < Si

;

= r>Sltor=co

* This solution, or its equivalent, was first sent me by Mr Geoffrey T. Bennett.
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We have here at r = l a typical instance of the discontinuity.

In Table I. columns (i) and (ii) the calculated ordinates of
<f>3

and
(f>s

are given,

the latter having been determined by the use of Legendre's Tables of the Elliptic

Integral F. In these cases, as in the later values of the ordinates of the dispersion

curves, 2V is taken as unity. The dispersion curves are plotted in Diagrams I.

and II. The Rayleigh solution is given in broken line ; it will be noticed how

very far it is from representing the facts at this early stage of the number of

flights. One of the most interesting features of the investigation is to mark the

gradual approximation of the discontinuous series of functions to the Gaussian normal

curve of errors as the value of n increases.

The first test of the graphical method of dealing with the problem was to

start from the curve for n = 2 and construct the graph of cj>
3

. The result was

found to be extremely close to the elliptic integral solution obtained by analysis

and calculated from Legendre, and this gave us every confidence in the correctness

within reasonable limits of the graphical solution, where no such direct verification

was possible. After the ordinates of any graph had been found their differences

were plotted, and these difference curves submitted to most careful inspection.

Larger irregularities led to a reinvestigation of the points, smaller irregularities were

smoothed with the spline, and from the final smoothed difference curve the ordinates

were corrected.

Another test was now possible. In every case 2ir
<f>n (r

2

) r dr ought to be unity.

Each ordinate was now multiplied by its r and a quadrature formula used to find the

integral. The integral would usually differ very slightly from unity. Its reciprocal

was then used as a factor to each ordinate and the ordinates so modified were

the final corrected ordinates of the corresponding graph. The graphs were made
on a large scale, and the accompanying Table I., columns (iii)—(vi), gives the

ordinates of the dispersion curves from four to seven flights.

Additional tests were as follows :

Since <£n+1 (r
2

)
= -^

f\ (r
2 + 1

2- 2lr cos 6) dd,
ATIJ 2ir

1
it follows that

<f>n+1 (0) = — fa (l>) dd =
<f>n (1%

2tt

2tt

or : The axial ordinate of the n+ 1th dispersion curve is the ordinate at a distance I,

or a flight, from the centre of the nth dispersion curve. Table IV. illustrates

the degree of accuracy reached here.

The ordinate at r = I of the seventh curve given by the expansion in <u-functions is

'0375, and this is precisely the value of the central ordinate of the eighth curve given

by the same expansion. Thus the graphical method runs with surprising accuracy

into the analytical. The Rayleigh solution gives "0398 for the central ordinate of

the eighth curve as against the "0375 of the w-expansion, or the '0378 of the
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Table II. Values of the co-functions.

r\<r
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Table III. Table of the v constants.

21

m=l
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Hence- f (0= —, ^Mlh (xxxix bis).Jn{* ]
(>/2^)"

+1P^2— r(±(»-l))
K '

This can be proved by induction.

For most of the cases more approximate formulae still were deduced. Thus :

*M- itfiwHf + hr) (xl)
'

f^'^wM +lhWrS) w

«^ab(!r(1+ sT+-) (^
after which the first term only as given by (xxxix) is sufficient. It will be observed

that after <£6 (r
2

), the curve touches at r = nl or f= 0, and the contact becomes higher

and higher as n increases. Thus, although short of n = oo , there is no real asymptot-

ing to the axis, still
<f>n (r

2

) for n > 5 not only vanishes for r = nl, but has increasingly

higher contact as n increases. This explains how the Gaussian curve can fairly well

represent the state of affairs towards the end of the dispersal range, if n is > 5.

Mr Blakeman found that the ends of the range for the various cases ran closely

into the curves (xl) to (xliii), and they were tested and, if needful, corrected by

these formulae.

Thus the whole graphical work was kept in check, and, I think, we may be

confident that the true forms of the dispersal curves for n = 4 to 7 are really

given by our diagrams and tables.

(7) We may note a few features of these curves.

Dispersal Curve for Two Flights (Diagram I.).

There is no discontinuity in the solution from r = to 2l, the range within

which all individuals fall. The curve asymptotes to the vertical at the axis and

at r — 2l. Of course, while the density becomes infinite, the number on any small

area near r = or r = 2l, is finite. Thus the number between the circles of radii

?\ and r2 is

2N ( . _,r
t

. _ 1
r

1

lT[ Sm
2l"

Sin
21

If rx
= and r

a
= ev where e

x
is small, the number v

t
within the small circle of radius ^

at the centre of dispersion = Nejfal). If r2
= i\ + e

2 , the number lying on the zone of

Ne I r 2

\

- ^ N [7
breadth e, is —f f 1 - jr2

J
, and this if 1\ = 21 - e2 , is v2

= — / -j . At the position of
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minimum density r1
= j2l, and the number on the zone r

x to r^ + e,, is vi
= Ne3/(irl'Jl/2).

Hence it follows that the numbers on narrow zones eu e2 , e 3
in breadth, of equal areas

ire* = 7r4Ze
2
= v2 v 2Ze3, are given by

NeJ{irV), Nj^HjrJl), and N<=
3
J2/(ttI),

or in the ratio

Thus the total population on a small area at the centre of dispersion is twice that on

an equal area at the periphery of the distribution, and at both indefinitely greater

than on an equal belt at the distance of minimum density. The same point can

be indicated in another way. From r = to r = %l is ^ of the total area occupied

after dispersion, it contains "16.ZV or about -g- of the total population; from r = §l to

r = 2l is -£g of the total area, it contains "54 N. In other words the half of the

area nearest and farthest from the centre of dispersion contains -j^ of the dispersed

population ; the " middle " half of the area contains only ^ of the population.

The nature of the distribution is thus extremely different from that given by the

rotation of the Gaussian curve about its axis for this small number of flights.

For in the Gaussian case if the central area rre
1

2 = 2irr
1
e2 , the area of the zone at

distance r
x , the population on the centre patch is ^Ne'/a9 and on the zone is

which is always less and diminishes continuously with -increase of r
x

. Thus the

Rayleigh solution fails in this, as in the next three cases, not only to give the

form of the curve at dispersion, but to indicate that the dispersed populations on

zones of equal area round the centre do not decrease uniformly in number.

Dispersal Curve for Three Flights (Diagram II.).

The solution is discontinuous at r = l. The density is here infinite, but has

become finite at the origin. There is no discontinuity at r = 2l, but at the end

of the range the density drops suddenly from a finite value to zero. Thus the in-

tegral of the Bessel function product (see Eqn. (iii) ) is discontinuous at two points.

The Rayleigh solution is still widely divergent from the true curve of dispersal.

Dispersal Curve for Four Flights (Diagram III.).

By the rule already referred to (p. 18) the infinite density has returned to

the origin. There are only two points of discontinuity, i.e., at r = l and r = kl

the end of the range, at both of which there is an abrupt change in the slope of

the curve. The density at the end of the range is now zero and will remain so,

but the dispersal curve rises at right angles to the axis. The true dispersal curve is

bending round somewhat to the Rayleigh curve, but the latter is not even yet a

rough approximation to the facts.
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Dispersal Curve for Five Flights (Diagram IV.).

All infinite densities have now finally disappeared. The density vanishes at

the end of the range, but the dispersal curve makes a finite angle with the horizontal

axis. There is a marked discontinuity of slope at r = I ; a still more noteworthy

feature is that from r = to r = l the graphical construction, however carefully

reinvestigated, did not permit of our considering the curve to be anything but

a straight line. If this could be verified from the analytical expression

N f°°

fa (r
2

) =2^1 uJ
o
(ur) {J" (ul)}' du

by showing that the integral is independent of r from to I it would be of much

interest. Even if it be not absolutely true, it exemplifies the extraordinary power

of such integrals of J products to give extremely close approximations to such simple

forms as horizontal lines.

The approach of the Rayleigh curve to the result is now more noticeable.

Dispersal Curve for Six Flights (Diagram V.).

There is contact now of the first order at the end of the range. From r =
to r = l the curve of dispersal appears to be a sloping straight line tangential to

the continuous curve from r = I to r = 61. No other discontinuity of a low order

is now visible. The curve, except for the finite slope at r = 0, is becoming much

more of the Gaussian form. It runs fairly closely to the solution in oi-functions up

to cojss, in fact is not separable at the extreme part of the range, where the Rayleigh

curve still gives finite ordinates beyond the possible range.

Dispersal Curve for Seven Flights (Diagram VI.).

All sign of discontinuity has gone, the curve is horizontal at the centre of

dispersion and might be easily mistaken for a normal curve of errors. The expansion

in co-functions represents the result within the limits almost of constructional error.

It was not thought necessary to continue the graphical work beyond this stage.

We may conclude that :

The deviation of the Rayleigh solution for seven and more flights from the

true dispersal curve is practically the same as its deviation from the solution in

co-functions when five terms of that series are retained.

This I think completes the full solution of the fundamental problem. The dispersal

curves for the cases of 2 to 7 flights are given in the Table I. of ordinates and the

Diagrams I. to VI. For higher values the co-function series gives the solution. This

solution could be applied to calculate the ordinates of the dispersal curve for fewer

flights than 6 or 7, but several more w-functions would have to be used and the

arithmetical work—especially while these functions are as yet untabled*—then

becomes somewhat severe.

* Table II. provides a preliminary series of values of the u-functions.
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(8) Secondary Migration Problems.

25

Problem I. On one side of a straight line there is supposed to be a uniform

distribution of habitats ; on the other at starting no habitats. To investigate the

distribution in the unoccupied area after one migration. Each individual is supposed

to take n-fights to the new habitat.

Let YYhe the straight line and a point at distance c from it on the unoccupied

side of it. Let N be the average density per unit of area on the occupied side. Then

after an n-flight migration, the contribution from P (co-ordinates r, ^) at will

be Nrhyhr
<f>n (r

2

), and integrating this all round a circle of radius r from A to C
within the occupied area, we have for the quantity Fn (c) at

f 00 /"cos
-1

c/r

Fn (c) = 2NJ
e j o

<j>n {r*)rdxdr

= 2JV I cos
-1

c/r
<f>n (r

2

) r dr.

@ = -2NJyn

jp^- = -2NJyn (c* + tf)dy (xliv).Hence
dF„

dc

The evaluation of this integral needs a further consideration of the w-functions.

By (xiv)

-- - ^-er i

${j**} where e= ~ 2^-

.

4
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Transfer the differentiations from /3 to o-
2 and we have

:

= (- 1^)^ ^
or, all the w-functions can be found by differentiating the first w-function with regard

to the standard-deviation squared. Then by (xii) we have

(xlvi).

Thus, if we put cr
2 — t :

But: \\M+f)*y=^\y^*y^-^l^*

V27TO- /

Now I e t l<T dc = (T \ e *
x
dx, and this integral vanishes when c = oo . Hence

J 00 J 00

^ (c)=^( i+^^--i w + - + (- i)-""'-^ +)/y
i^

(xlvii).

Since .Fn (c) clearly vanishes for c infinite, it is not needful to introduce a

constant.

It remains accordingly to determine the successive differentials of the integral

with regard to t. Call the integral i; then, if yj^c/cr — c/Jt,

di -W d-n \ G - C2/2t c . .

dt=- e dt=2$ e =»-*. =«W^

By (xlv) we know that di
'(i) /dts = (

— l)
s
ciiMlt

s
. Hence differentiating s — 1 times

we have

:

ds
i TTG/ds - 1a,_ . d'-'cup 1 (s - l) (s - 2) d'~'o)

B
1.3 1 \

- 1 (
s V d?- 2t

+
2! rfrOf" J

(-l)'-'gc/ ,, ^ (s-l)(s- 2) 1.3

^ ^«.(.-w + (« ~ !) w2(S- 2)i + j-^ <"
2(g_ s)
—

(
s -l)(s-2)(s-S) 1.3.5 \

1.2.3 2(s_4)
2 3 j

'

cft
g

V« V d£s
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Th™t-j«-(-i).-^^

+
{S ~ l)i

l~*
]
{S " 8)

1 . 3 5 A,-, + etc.) (xlvlii).

Substituting in (xlvii) we have, if $ (>?) =-= \° e'^dx (xlix),

Fn (c) = i\T
[* (Q -J^

C
- {a*a> (|v4 + f „.+ V-v8 +W^ +W"»)

+ cr
2^ (v4+ v

6 + 1 v, + -V-^10 +*#^B)

(1).+ crV, (v
10 + fvu) + cr'a)^+ . .

.}

as far as coefficients of the order v12 and functions of order &>
J0 .

This is the solution in w-functions. Table III., p. 21, gives the values of the v's for

certain values of n, and Table II. , p. 20, is a preliminary table of the <u-functions.

These will enable us to readily find the values of Fn (c). I have done this for the case

of n=% and n = 7, which will suffice to illustrate the character of these curves.

\jj (c/(r) can be found at once from Tables of the probability integral. It is drawn

with a broken line in Diagram VII. and is the Rayleigh solution for this case. I term

Fn (c) an "infiltration curve" of the first order.

Substituting the values of the v's from Table III., we have for n = 6 :

F6
(c)/N=$ (-) +- {-026,712,414 (oX) + '053,325,539 (o-

2
o>2)

+ -002,114,303 (cr
2

^) - -001,029, 898 (o-
2w6)

- -000,134,978 (o-
2
a)

8)
- -000,001,770 (o-

2w10) + ...},

and for n = 7 :

Fr
(c)/N = 1t (-) + -{-022,850,925 (o'a

t) + "045,644,347 (cr
2
a>2)

+ -001,578,008 (o-X) - -000,758,570 (o-
2
o>6)

- -000,084,525 (o»co 6) + -000,000,178 (a'an) + ...}.

The first term \p I -
J

is the ogive curve already drawn corresponding to the

Rayleigh solution. We see at once that the term o*(tiw will not affect the

fourth place of decimals.

4—2



28 KAEL PEAESON

Table Y. Ordinates of Infiltration Curve over straight Boundary.

+ cj<y
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the range. The Rayleigh solution continues to give, sensible densities beyond

the range, although they may be sufficiently small to be neglected in practice.

For rough purposes a first approximation to the infiltration curves may be found

from the Rayleigh solution, they will err on the side of safety if we are con-

sidering the effect of a clearance at a considerable distance from the boundary.

But with the aid of the tables of the w-functions and the ^-coefficients, it is

not difficult to obtain the actual form of the infiltration curves as I have done

in the present case. Diagram VII. compares the Rayleigh approximation and the

infiltration curve for n = 7.

It will be seen that an infiltration curve of the first order gives not only the

density of the population after a first migration into cleared or unoccupied area

across a straight boundary, but also the diminution of density on the populated

side of the area, when we put c negative, i.e. it gives both the 'depopulation'

and ' repopulation .' The reduced density at the boundary is %N, and if we take

the point where the infiltration curve cuts the vertical through the boundary as

origin, we see that it is centrally symmetrical; or the loss of population at a

given distance from the boundary is exactly equal to the gain at the same

distance on the opposite side of the boundary.

If we require an infiltration curve of the second order, we must now multiply

the ordinates of the curve of the' first order by (i) the average fertility of the

species, say ju,, and (ii) the survival rate A. If the environment be the same on

either side of the boundary, and neither ft nor A affected by the density of the

population, then /uA may be treated as a constant and the infiltration curves of

higher orders can be found with moderate ease for simple cases. We thus have

the distributions after two, three or more migrations accompanied by reproduction

and death. On the other hand both ju, and A may be functions of the density

of the population, and in this case the ordinates of the infiltration curves of the

second and higher orders can only be determined when the nature of /u, and A

is known. On the whole it is probable that the average fertility depending

on the mating frequency will be highest where the density is greatest, as mating

opportunities will then be most frequent, but in such cases the survival rate

A may be lower, as more enemies are likely to be present and the food supply

is also likely to be less, where the population is densest. Thus /aA as a whole

may not be very different on the depopulated and repopulated sides of the

boundary. We shall only consider in this memoir cases in which this product

is (i) supposed constant throughout, or (ii) constant for each migration season ; but

supposing uniform environment on both sides of the boundary, it is conceivable

that pA. will be correlated with the population density and this will modify the

basis of the distribution from which the second and later migrations start.
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(9) Problem II. To investigate the distribution after m migrations from uni-

formly densely occupied space across a straight boundary into unoccupied space.

Let the axis of x be taken perpendicular to the boundary and the axis of

y be the boundary. Let us consider the density at x = c, on the originally

unoccupied side of the boundary. Then the density at a distance x from the

boundary is given by (xlvii), or if we write the operator as Qt , we have

Fn {x) =NQ
t^r \

e ^dx = Ul , say, (li).

V ZlT J x\a

Here Qt
involves only n and cr and not x.

Now the distance r from the point x, y to the point c, at which we
want the density after the next migration is given by :

r* = y
2+ (x — cf,

and jliA being the fertility-survival factor, we have for the density at c,

u
2
— I (jbAu^n (r

2

) dxdy.
J — 00 J —oo

Now
<t>n (r°) = Qt

<o = Qt^ e-^°\

To mark that this Qt
operates only on this part of the expression, write it

Qt and suppose it to operate on cr' written for cr. After the operations are com-

plete we can put cr' again =cr. Let

-^dx.
J2tt J xh

Then if juA be constant (see p. 29)

:

u
> ^

Completing the integration with regard to y we have

:

Differentiate with regard to c :

Integrate by parts, and notice that the part between limits vanishes at both

of them and we have :

P = i^£ QtQ > rp i, e-t<-->V dx .

dc J2tt J -oo dx cr'

But ^ = 1 Ie-*CA*;
dx J2ir o"

hence: ~31 = -^^QtQt —,\ e ^ " 2
' dx.

ac Air crcr J _<„
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This is integrable and gives

:

dc r vm j^j-^—z

Integrate with regard to c, and remember that m2
= if c=oo ; thus:

=pWQtQt

'

1Lr e-i**dx' (lii).

V27rJ c/V<r2 +(r'2

Comparing this with (li) we see that u
2
differs from v^ by (a) the introduction of

the factors Q{ and /aA and (&) the replacement of cr in the lower limit by v/V+ o-'
2
.

The process can therefore be repeated as often as we please, and we have for

um the value :

u^bi&^NQtQ/Qt"... to m terms ^L f" e
-^2

^',
<j2irj~c[2

where 22= o-+ o-
/2+ cr"

2+ ... to m terms.

After the operations indicated by the Q's are completed, we are to put

Now it is clear that a differentiation with regard to any cr
2

is precisely the

same as one with regard to 22
. We can therefore write for all the Q's the

simple expression

understanding that d/d(2?) operates only on % and that after the operation is

completed we can put % = Jma: Thus the complete solution is :

~f e-^dx (liii).

This is true for c positive or negative, i.e. whether the density be considered

at a point on the originally occupied or originally unoccupied side of the boundary.

Up to terms of order 1/n3 we have for the operator the value

1 +m (Viq
2 - vrf+ vs

q* - v10
q*+ vuq*)

+
m(^~ l}

(W ~2W21 + 2viVi<t)

+
m(m-l)(m-2)

v^ ^^ ^ standg for ^^^
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Now exactly as on p. 26 we may show that

:

^L* dX=
k) ^^t & ^-1)(C/2)

where : i//^,
(Vm) = x,^ (Vm) +^^ . X2(e_2) (Vm) +^"^y l ' 3 ' X2(!-3)^

(s-l)(s-2)(s-S) , v

Vm = c/('Jmcr), and ^M is defined on p. 10, Equation (xviii).

Thus

um =NQ^r' 1

{* (Vm) -\^me-^
2

g,v^

(

Vm) + ^3
v^

(Vm)

,

{ffly,+|m(m-l) y;} , > mi/
10+m (m- 1) vtvs

. >+
m* ^6 W"' + ^ ^8 W»>

wv]2 +m (w — 1) ty8 +|m (m - 1) (m — 2) v*

m6 f»W)} (liv).

We see that this expression converges much more rapidly than that for <£„ (r
2

),

if m be at all large.

The result (liv) might have been reached in a different manner. We might

have supposed the (ju,A)
m_1iVa individuals to have started from any element a

on the populated side of the boundary and taken mn flights without multiplying

to their final resting-place. The effect of this would be that as = ^mnl2
, and that

in the values of the v's we must write mn for n. But doing this gives us

precisely the coefficients of the i//'s in (liv). Thus (liv) is deduced directly

from (xlix). The proof becomes then much shorter, but it is more artificial

;

the fact that we may suppose all the unborn individuals to scatter from the

original centre is not so easily realised, and further it does not in the process

picture what takes place until the final arrangement after the with breeding cycle

is attained. In the method I have adopted we see the exact process of each

breeding multiplication, its increase of the operating factor by an additional Qt ,

and its increase of the square of the standard deviation by an additional a3 .

Lastly the final form (liv) enables us, without recalculating the v's for each

breeding cycle, to see very easily the effect in the case of any n-flight species, of

taking any number of breeding cycles.

So long as we keep pA. constant of course our result for m breeding cycles

with n flights will be the same as for a simple scattering for mn flights of a

larger number of individuals. If /aA varies, however, we must adopt the method
indicated in the above proof, and work out each migration successively. The
same method must be adopted if a patch be rendered permanently sterile, because
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in such a case /jl is not constant for all parts of the integrated area, and we

cannot suppose the whole final population to scatter from the original centres.

If we neglect the i/i
2 , i/<

4
... terms in (liv) we have the value which would

follow from the Rayleigh solution of the fundamental problem, and this can be

very readily expressed in geometrical terms. For we mark at once that u
x
and um

are in type identical curves. Take u
x
and stretch it vertically in the uniform ratio

of /uA
m_1

to 1, and horizontally in the ratio of Jm to 1, and it becomes um .

In other words the broken line on Diagram VII. represents the approximate solution

in this case after m migrations provided we read 2V(/xA)m-1 for N on the vertical

scale and 1 = Jmcr for cr on the horizontal scale. The Table on p. 33 gives the

chief results.

The unit of this table is the length I of " flight." It will be desirable to illustrate

its application. Any such application can be of course only a suggestion, and on

this account the above Table has been calculated to only a few places of decimals.

But such suggestions may not be without value. They will become more than

suggestions when our knowledge is greater of the migratory habits of different

species. At present only rough approximations can be made as to the values

of n and I, and these admittedly are of small weight.

Illustration I. In captivity I have noted that H. aspersa will live for five

years. For two years it does not usually lay eggs, and then it will generally,

but not invariably, reproduce twice in the year. This is of course subject to

claustral conditions, and while these seem in some cases unfavourable, in others

they may be advantageous both in matter of longevity and—owing to the constant

food supply—in number of broods. This snail, as far as my observation goes,

appears to return to the same shelter after seeking its food. Leaving such

"flitters" on one side, I think we might look upon thirty to forty yards as a

maximum "flight" for such a snail and regard seven or eight such flights between

its egg layings as on the average an exaggeration.

We might therefore take 1 = 40 yards, n = 8, and an average during life of one

brood a year as being quite possible approximations in the case of some snails.

This indicates that the progress across a boundary into unoccupied country

would be such that 1 per cent, of the density at the boundary and, therefore,

possibly ^ per cent, of the density in the fully-occupied country, would only be

reached at 2061 yards from the boundary after 100 migrations. In other words,

such a species would only progress a mile or two at most in a century. Such

progress would hardly be noted in any studies hitherto made of distribution ; the

limits of a species a hundred years ago were certainly not closely defined to a mile

or two, even if they have been recently. Of course there are many other ways in

which a slow moving species can be transported than by its own "flights," and

further no special stress is laid on the above case, but a study of Table VI. shows
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that the advance of a slow scattering species* may be comparatively small. The

inference can accordingly be made that the existing boundaries of the geographical

distribution of certain forms of animal and plant life which are not marked by

natural barriers, and which do not correspond to obviously changing environ-

mental conditions, need not after all be associated with subtle physical differences

which have escaped the observation of the naturalist. The species may be pro-

gressing into an unoccupied area, but at a rate hardly observable in the time during

which accurate distribution observations are available. If this view be correct

we should expect such boundaries with no apparent environmental change in

the case of species for which we might reasonably predict a small n and I.

Illustration II. I have endeavoured to apply the above theory to the im-

migration of mosquitoes into a cleared area. We will suppose in the present

treatment that the area bounded by a straight line (some attempt to allow

for curvature of the boundary will be considered later) has been cleared but is

not kept sterile to the species. I shall speak of a district as rendered sterile

to a species when it is made impossible for it to breed there, and kept sterile

when the breeding possibilities are persistently destroyed. The distinction is an

important one, especially in the mosquito case. For in the latter case all mos-

quitoes are immigrants, and in the former case we have not only immigrants,

but their produce.

Major Ronald Ross, who has most kindly provided me with information as

to mosquito habits, makes the following remarks :

(a) That the number of mosquitoes produced varies roughly (ceteris paribus)

as the extent of surface breeding area.

(b) That the breeding area can be taken as consisting of numerous isolated

small pools or vessels of water scattered fairly uniformly over the country.

(c) That the feeding places (houses, stables, birds, etc.) may be taken as

scattered pretty uniformly between the breeding pools.

(d) That abundance or scarcity of food can scarcely influence the question

much. A single man or bird will yield enough food for many mosquitoes, and

if they starve it is not because the food is, not there, but because they cannot

reach it. They are therefore not likely to be drawn in general by special abun-

dance of food in any special direction. Wind tends to make mosquitoes " sit

tight," rather than allow themselves to be scattered.

It would thus appear that on the average an " equi-swampous " condition of

the environment and random "flights" of the mosquito will not be very wide

of the truth. The difficulty is to form some estimate of n and I. On these

points again Major Ross came to my help, but naturally the statements he made

were with great reservation.

* Of course any more quickly moving species that depends on this for food would have the same

boundary, but in its case the boundary would be environmentally denned.

5—2
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(a) From egg to egg (i.e. from laying of eggs, hatching, larval and pupal

stages, to laying of eggs again) takes roughly about a fortnight in hot countries

with most mosquitoes. In England, gnats may have only one generation or two

in a summer, but in the tropics they may go on breeding throughout the year.

In cool countries the egg to egg cycle may be prolonged to a month or two.

In certain very hot and dry countries, breeding may be checked entirely except

during the rainy season. I have accordingly taken 20, 10 and 5 breedings to

the year to represent roughly these conditions.

(/3) Major Ross -distinguishes between "minor vicissitudes," which an insect

makes when it hovers round its victim or mate, and " major vicissitudes " which

it makes when it passes from feeding place to pool for egg laying. These cor-

respond to my "flitters" and "flights." He considers that they go back to

water every four or five days, so that a " major vicissitude '' occurs every two

days or so. We might therefore take, excluding flitters, the average number

of flights to be six or seven. Of course this is the roughest approximation, but still

not an unreasonable estimate of what probably takes place in the mosquito's life.

(y) As to the magnitude of I we have less definite data. Mosquitoes of a

rare kind have been said to have been found two or three miles from their breeding

place. Major Ross thinks that Anopheles will exceptionally, when no houses

are near, probably travel -^ mile for their food, or perhaps further, but he supposes

the average distance scarcely to exceed ^ mile, and it may, as houses and suitable

pools often abound not more than 50 yards apart, be not greater, perhaps, than

100 yards.

I have accordingly taken 100 yards and 500 yards as likely values for I, and

considering 1 per cent, of the boundary value of the mosquitoes' density as a

limit to their existence and 5 per cent, as objectionable, we have the following

table

:

Table VII. Distances from the Boundary of a cleared but not sterile area at

which 1 per cent, and 5 per cent, of the boundary density of Mosquitoes will

be found in the course of a Year.
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The distances are all given in yards.

Thus we see that the least of these distances for 1 per cent, is greater than

half a mile, or, if an area be cleared but not rendered sterile, we might expect

within a year the mosquitoes to reappear within half a mile of the boundary,

and to reach an objectionable frequency even at this distance for most of the

cases considered.

As far then as these rough numbers can be taken to indicate the state of

affairs, it is needful not only to clear an area but to maintain it sterile. The

clearance radius may be only -^ mile and is hardly likely to exceed a mile, and

the above results only mark the progress of immigration in the course of one

year after the clearance. Further the results, would be accentuated if the

boundary were curved or an approximately circular clearance made.

It does not appear to me that any substantial difference would be made in the

main result by reducing n to 3 or 4, although some difference would occur if I

were reduced to 20 or 30 yards.

(10) Problem III. To determine the distribution after m n-flight migrations

starting with a centre of population No..

The previous two problems indicate the nature of the general solutions to which

I now proceed. I shall adopt the longer process of proof in this first case as being

the more suggestive.

By (xii) and (xlvi), calling the operator as before Qt , we have for the distribution

at X, Y due to a centre at the origin :

4AX, *)-£ ft
(!.-»<*+w) (lT) .

Hence the distribution at (h, k) after a second migration of n flights is

^(h,h) =
^J J 4n {X,Y)^

e- ^ dXdY.

Call the Qt
in this Qh and write the o-

2 on which it operates cr/ ; call the Qt
in

!<£„ {X, Y), Qti
and the cr

2 on which it operates a-', we have :

1 aX-Kf+(Y-kf X*+Y*
\

2<MM)=^ <k<fej_. J_.^V
e dXdY.

The integrations can be performed and give us

,Mh, t)_e^! Q,.Q,.~e-W-+^",+^ (W).

This only differs from ^>n (X, Y) by the introduction of of + o-2
2
for a-

2 and of the

factor pAQ
tl

.
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We can accordingly repeat the process as often as we like and we have

:

Mh,k)Jj^^ Q„Q„... Q^e-i""^' (Ivii),

where t2 = of+ of+ of + . . . + <rj,

and after the operations have been performed we are to put all the cr's equal

to cr or %* =mo3
. But no operator Qt

affects any cr
2
in any other operator, and

d d ds ds

d^
=
d%2 '

TllUS (*'*)'
d(<r 2

)
s
may be put =^ d ($

2Y '

and this makes a11 the

operators identical in form and we may write

+ ... + (-l)V„(„')-j|^,+ .

+ ...+(-l)'JV„( <r=)
,

j^y,+ ....

In this form of the operator we can now write .at once cr
2 =— %2 and call

1 nmm
the expression Qt

m
.

Thus Q- = l+N
, {SJ^-N.(Sy^+N,(%-y^

+ ...+(-l)-Ar„(Stj|i
F
+ (Mi),

1 TIT m *T m
where Nt

= -
2
v„ N

6
=— v„

^ _ my, +^m (to — 1) v* „ _ myM+ m(m — 1) v
4
y
s

These values of the iV's rapidly converge and their values are given in Table III.

on p. 21 of this paper with those of the v's for a few values of n and m. As

we have seen on p. 32, they are the v's obtained by using values of nm for n.

We now have the general solution of distribution from a centre :

= (fiA^-WoL (A, + iV
4
Xl

4 + iV,n, + . . . + iVM flM + .

.

.
) . .

.
(lx)

.

This is absolutely identical with (xii), except that the constants v are replaced
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by other constants N of known value, and in every w-function we are to replace

ct* by mcr2 or T, that is to say a uniform stretch in the ratio of Jm to I is

given to any surface z = coM parallel to the axes of x and y. This is denoted by

writing flM for <oM .

If we confine our attention to the Rayleigh part of the solution—which will be

more and more nearly exact as m increases, for the N'& rapidly decrease in value

—

then we have

J>n {h, k) = (nA)
m-WaCl (lxi),

and we see that every density gradient curve for the successive migrations is to

be obtained by a stretch from the first migration density curve.

In general, however, this result is not absolutely true because the different

components of the true solution are mixed in different proportions, the iV's being

functions of m. We see, however, that the stretching rule becomes more and

more accurate, as we increase either the number of flights or the number of

migrations.

(11) Problem IV. To find the form of the general solution for the distribution

into surrounding space after rn migrations of any population initially spread

uniformly over any given patch with density N.

The density at h, k, after m migrations due to a centre Ndxdy, is by (lvii)

above

= (^a)™- 1
Ndxdy q » L g-H^-^+^-m/^

To give the patch let x be integrated from v
1
to vt , where v

1
and u2

will

usually be functions of y, and then let y be integrated from u
Y to ut .

We find:

This is the general form of the solution when the population spreads from a

uniform patch into non-sterile surrounding country.

If on the other hand we want the distribution after m migrations starting

with a cleared patch, which is not kept sterile, we have

mFn {h, k) = (^)
m-*N- mFn (K, k) (lxiii),

for the whole district would have had a uniform density of (/iA)
m_1iV had there

been no clearance. Hence

now A {
h,q.w (x -i££ i «-* «*- i>'+6'-«**.*)

.
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Hence the rule : If the solution can be found for a single migration, replace cr
2

by mcr2
, and each v by the proper N, multiply by the factor (/x,A)

m_1
, and the solution

for m migrations is deduced.

It will thus be clear that, if the solution can in any case be found for one

migration fully, we can at once extend it to the case of any number of migrations,

with constant fertility-survival factor.

(12) Problem V. To determine the distribution after a first migration into a

cleared rectangular area.

Let the area be the rectangle 2a x 2b, and the origin be taken at its centre

and axes of x and y parallel respectively to the sides 2a and 2b. Then the density

at any point h, k, after a single migration Fn (h, k) is given by the principle of

the last problem by
Fn (h, k) =N-Fn (h, k) (lxv),

where Fn (h, k) is the distribution from a uniformly occupied rectangular area

into surrounding unoccupied space.

r+a r+b

But Fn (h, k) = 2V
<l>n {(x-hy + (y-ky}dxdy

1 *™ 1 f
+a

f
+b 2 \ <r

2 "'" n-2
J= k~NQ,

2TT ™ o-
2

1 [+a f+* 2 \ „* * <r* J—
\ e dxdy

cr J _ a J -b

2tt <r J

-

a J -b

Let P (e) stand for the probability integral

V 2tt J o

Then: * fY*<- h^ dx= ' f^'V*"^
\I2tT<T J -a s/2tt J -{a+h)l<r

'

J2tt

{a-h)l<7 r{a+h)l<r\ _^
+ ) e * dx

o

-r>J—)+P.'a+h

Thus
or

F, (h, k) =NQ, P. {(5=*) + P. («±*)
}
{p. (^) + P, (»-±*)} .

.

.(Ixvi).

Now consider the differentiation of P (-] with regard to cr
2

.

dcr
2

[ \o7J 2crC^O- N/27T JO 2 O- V27T cr
2
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Writing <^= t as before, we find

aH)}--
1*^ ^

Hence

dt° \
p

° Wj
= -

2
^Ud^ \Jt)

In/W-IVm/
, ,. 1 (s-l)(s-2) 1.3

2 £
s * \ 2 1.2 2.2

the expression being the same as that on p. 32.

Now let us write the following for brevity where r) = u/a- :

11 _1 2

A (v) = ~ j^

V

e *' M, (v) + v^ (v) + ---+ v2s*l>2 (s-D (v) + )>

A (v) =
2 j^ ye~W fa*+ 3v.& (v)+-+ sv^hs-2) (v) + - •)-

A(^)=j|;^e-^(4va +10^2 (>7)^

and so on. All these functions are directly expressible in w-functions as

on p. 27.

Further let Ps (v) = ( - 1)^ Jlp.fo)-!J^-^-uM (1*4

Then we have, if

7^ = (a — h)/a; rj2
= (a + h)/a; Cj = (a — &)/cr, e2

= (a+ A)/o%

Fn {h,h) =N [{P fa,) +P fa2)} {P (0 +P (e2)}+{A (r,,) +A fa,)} {P (Cl) +P (e2)}

+ {P (*) +P (a {A (0 +A (e2)} + {A (0 + P, (e2)} {A (*) +A (v*)}

+ ... + {Ps (e1)+Ps (e
2)}{A+i(^) +A+iW}+-] (Ixxi).

The .//-functions involve the rapidly converging v-coefficients, and the first few

terms will suffice to get an idea of the distribution. If we retain only the Rayleigh

terms we find :

fn (h,k)=N[l- {P (Vl ) +P fa)} {P (0 + Po (*)}] (Ixxii),

which can be ascertained for given values of a, b, h, k and o- from the ordinary

tables of the probability integral.
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If we make b infinite, then P,(e
1) and Ps (e

2) = for s>0, and A(ci) and

A(e2) = 0, P (e
1 ) = Po(e2)=i, and__

fn (h, k) = N{l-P
(Vl)-Pt{v,)-Ll

(r
ll
)-L,(Vl)} (lxxiii).

This could be deduced directly from (xlix) and it represents the first migration

distribution into an indefinitely long cleared strip or belt. This is a result of

some interest as it might approximately apply to the migration into a zone cleared

by a flood or a fire of certain types of animal or vegetable life.

(13) Problem VI. To determine the distribution after m migrations into a

cleared but not sterile rectangular area.

By the general proposition on p. 39 we have only to write "% = m<j for cr,

and the iV's for the v's in the L's. Let us put

r)1
' = (a-h)/'Z = r)

1/Jm, V =W«M e/ = ei/7TO >
ej = ejjin.

Let

A'M =
1 4= v^~W\N^ (Vl') +N& (%') + . . . +N^-v (V) + ».}.
2 V27T

and so forth, then we have for the full solution :

mFn (h, k) = (/tA)""W[{P (V) + Po (V)} {Po (O + Po (*')}

+{A (>?/) + A' (V)} {P (€,') +P (e/)} + {P (V) +P (V)} {A' (O + A' (*')}

+ {P, (e/) + P, («/)} {AM + A' (V)}

+ . . . + {P. (e/) +Ps (e/)} {Z7.+1 (V) + L's+1 (r,;)} + . . .] (lxxiv).

The terms here will very rapidly converge for any fairly large value of m,

so that for many purposes we may write the solution

:

mFn (h, k) = (/xA)-W {P (V) + P„ (V)} {A> (O + Po («.')} (
lxxv)>

which can be found at once from the usual tables of the probability integral.

Illustration I. A rectangular patch 2 miles long and 1 mile broad is cleared of

mosquitoes, but not retained sterile. What would be the central density at the

end of the year? Suppose 10 breeding cycles with their scatter migrations, , each

of 6 flights, to take place in the year. Then if we take 200 yards as a possible

round value for the flight we have :

m = 10, n = 6, Z = 200yds., cr =^Z 2 = 120,000 or cr = 346-41 yds.

a = 880 yds., 6= 1760 yds., rj, = i)
t
= 2-540, ex =e2

=5-081,

2 = Vf0o-= 1095-44 yds., V =V= '803 > e/ = e/= 1-607.

Hence 10
P

6 (0, 0) = GaA)
94P (-803) P (1-607) N,

or, using Sheppard's Tables

:

10
P

6 (0, 0) = (/aA)
9 4 x '2890 x "4460iV,

= (jaA)
9 x-5156iV.
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Thus u f, (0, 0) = (^A)9
(1 - -5156)N

= (/xA)
9
-48iV.

We see accordingly that if the fertility and the death-rate were the same in

the clearance and in the populated district outside, the density at the centre

of the cleared patch would at the end of the year be almost 50 per cent, of

that in uncleared country. It is thus obvious that clearance can be of small

use, unless it is followed by permanent preservation of sterility. Even if one

annual clearance were made it is very unlikely—if the actual values of the

constants are at all near those assumed—that the mosquitoes would not by the

9th or 10th breeding cycle within the year before the annual clearance was

repeated have reached a very substantial density even at the centre of the

patch. We have thus an additional argument in favour of rendering a district

not only sterile, but keeping it so. In such a case since vi
and v„ i/f

2 , t/>4 are

negative we shall have a density somewhat less than

:

^.(O, 0) = iV{l-4P (2-540) P (5'081)} = iV(l- "9889) about.

Thus: i^6 (0, 0) = ,01iV approximately.

It follows that in the centre of such a rectangular patch, there would roughly

be only about 1 mosquito for every 100 in uncleared country.

But while this shows that such a sterile patch would be a great improvement

for a denizen at the centre it is well to enquire what happens in such patches

some way from the centre. I accordingly add the following illustration.

Illustration II. A square area of one mile side is cleared and kept permanently

sterile. What will be the density at the centre and a quarter of a mile from

the centre on the same assumption as before ?

Here a- b = 880 yds.

At the centre i?1
= 772 = e

1
= e2 = 2 ,54 and:

x /, (0, 0) = N[l - 4 {P (2-54)}
2

] = N{1 - (-9889)
2

} = -022iV

;

or, we find one mosquito for every fifty in uncleared country. Taking our

quarter of a mile directly towards one of the boundaries, we have h = 440,

k = 0, and :

^ = 1-27, t?2 = 3-81, ei = e2
= 2-54.

Thus: 1/,(440,0) = JV[l-{P (l-27)+P (3-81)}{2P (2-54)}J

= N{1 -(-3980 + -4999) (-9889)}= -U2N.

Thus at ^ mile from the centre (or from the edge) of the clearance, the

density is 11 per cent, of that in uncleared country. It may be doubted whether

this is a sufficient reduction, and, supposing the above assumptions to be any-

thing like roughly correct, it may be needful to render more than a square

mile permanently sterile to protect a patch of one square half-mile.

6—2
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On the other hand a cleared but not permanently sterile square mile would

after a year have a density at the same point

—

\ mile from the centre—of:

]0/6 (440, 0) = (MA)W[1 -{P (-402) +P (1-205)} {2P (-803)}] = (/.A)
8
-69iV,

or of 69 per cent, of that in uncleared country.

Another point seems of some interest. What is the density at the boundary-

after the first migration ?

At the middle point of the edge it is

^,(880, 0) = iV[l-{P (0) +P (5-08)}{2P„ (2-54)}]

=N(\- -5000 x -9889)

= -5062V.

This is almost the ^N of an indefinitely long straight boundary.

At the corner it is

^(880, 880)=iV^[l-{P (0) +P (5-08)}
2]=-75i^ nearly,

or, as we should expect, has risen much beyond the \N value.

There is no difficulty in tracing the contour lines of the population density

in this case.

If we consider a cycle of 10 breedings in a non-sterile patch we have

:

10/8 (880 ) 0) = (/
,A)9iv-[l-{P (0) +P (l-607)}{2P (-808)}]

= -7422V (/aA)
9

,

and M/.(880, 880) = (/*A)W[l -{P (0) +P (l-607)}2

]

= -8012V (^A)9
.

Thus if the patch were not sterile, the effect of the clearance would at the

boundary after the lapse of a year be marked by a 20 to 25 per cent, reduction.

The illustrations I have given are of course dependent on the values of the

constants selected. Such constants have at present been little studied, and

accordingly small weight can be laid on the actual numerical results. But the

theory appears to indicate useful lines of inquiry, even if its results will of

course need to be controlled everywhere by local facts. In a general way there

can be little doubt that a theory like the present will not only lead to a more

systematic classification of local facts and to fuller observation of the habits of

local species, but that this knowledge itself will in its turn test the applicability

of the theory, or suggest the directions in which it may need modification.

(14) Problem VII. To determine the distribution after a first migration into

a cleared circular area.

Let the radius of the cleared area be a. Then at distance c from the centre,

inside or outside the circle of radius a, the distribution Fn (c) is given by :
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, Too [2ir

Fn {c) =N I I
<f>n (<? + '>*~2rc cos d)rdOdr (lxxvi)

Now cosmddd = 0, if m be odd, and = 4 cos^ddO
Jo , J

_ 1
(26-l)(2.9-3)...l 7T_

2;r
2s!

2s(2s-2)...2 2 (2*s!)
2 '

if m be even and = 2s.

Hence

:

,.w-*^/\h~4{®-(^}* w
^-"efe

=Mu+1 (a/a) (lxxviii).

-^»+i Wo") is thus the 2s + 1th moment of the ' tail ' of a normal or Gaussian

curve of errors (multiplied by \/2ir) about its axis. Its values have been tabled

for s=l, 2, 3 and 4.

Thus we have :

r.M-w-Wsffi*^ (faix).

But it is easy to see that

:

Accordingly

:

fn (c)=NQte ^y |i +__ +_y +...+_ y|_... (
ixxx) .

The successive differentiations of this expression with regard to t = a-
2
. involved

in the operator Qt , which are needful if we wish to give the corrections to

the Rayleigh solution, are straightforward but extremely laborious. We can

throw the solution into other forms.

Write: e1 = ^c?/o*, e2 = ^a2
/<j

s>

,

then we have

:

s!

=NQ
te->S-£s fafe-dx •. (lxxxi).
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Here I x*e~ xdx is the incomplete r-function for an integer value of s. This

can be found fairly easily from the above series, or may be determined from tables

of the incomplete r-function which it is hoped may be shortly published.

Again: J,(2iJz) = S-^-2>

hence we have

:

fn (c) =NQ
te-'

1 J (2iJe^x) e~
xdx (lxxxii),

J e2

a very concise form, which does not, however, simplify the calculations. Integrate

by parts and we have

:

Fn (c) =NQte-<»-">S~R (2^)}
aC

2

But *J(2i'2)-S Z" - J'W*)

or

:

o { (We^f J

=NQ
t
e~ «"+•*)S

(J
1
^) Js (2*7^) (lxxxiii).

This is the solution in Bessel's functions, and inside the cleared area, where

e
2

is greater than e1( would give fairly good results if tables of the higher

Bessel's functions for imaginary values of the argument were available.

We can also express the solution in terms of co-functions as follows :

im-\; (^.)v^,

Then Fn (c) =NQ
t
S -. Is (a) Es (c).

o s\

Now E. (r) = i e"*
H^
Q £J

= 2*Abw o>w ,

the 6's being undetermined constants, for dividing by the exponential factor we

have an integer algebraic expression in 7*jo* on both sides. Multiply both sides

by x^rdr and integrate between and oo
, p being = or < s. Then

:

J
e'^^x* (- y rdr = 2n<T

2
b
2p

I x*P«>zprdr>

2tto-
2

f» r" +1dr
27

. ,

~7T jo
"•

(2a-
2

)

5 = 27nr Mff !)> by (
X1X

)
and

(
XX1)-
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Therefore by (xvi)

:

K=jr^f(P- 1 - s)(p- 2 - s)---(- s)(- 1
)

s~ 1 j'y' s~2eWd^

=
{
_ 1)p

s(s-y..£-p+i)
jye

-xdx> i£x= _m

47

Thus Es (r) = 2vo> |a> - sco, + v

(2!)
/ o,4

i ^ >- co
s
+.. .(lxxxiv)

= 27rcr
2
C/s (r)* J

say.

Now consider

:

/;
^^(-l)^)*- 1SA . ("wlr

d (cr
2
)' /;

-if'la*

.(lxxxv).= a»2s -S0)M_ 2

We can now express Ia (r) in terms of tu-functions.

We have

:

Is (r)=j"s\Es (r)
r

^
,„ , T

00

f «(«-!) s(s-l)(s-2) 1 rdr
= s!27rcr

2
l

J6>
-so>2 + ',„ ' at,--*—T^i

/ o»,+ ...|-^r

, / ,, f sot, s(s — 1) s(s— l)(s — 2) ,
I

=<l2^(' +1)|^-rrii + -2!3i ^~ Bui ^ + -j

= s!27ro-
a (s+l)F,(r).

Thus /„(C) = iy-&4^V£((S+l)^(c)Fs (a)) (lxxxvi),

where

:

T7- / \
s s(s— 1) s(s — l)(s — 2)

t/*(^) = »o-/J]y"i+ /2 !)
2 *"« (WW

w6+"-'

Tr / \
s s(s— 1) S(s— l)(s — 2)FAr

)
= w

»-IT2"!
&'

a+ ~2T3T^ 314!
£*6+ -'

a result which allows of fairly rapid determination from tables of o^co^.

There is, perhaps, less difficulty in this form in allowing for the first term

or two of the operator Qt , for Us (r) and V
s
(r) can be at once differentiated with

regard to o-
2

, but even then the final result has considerable complexity.

* This result involves the expression of any power of r2 in x-function3 -
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The Rayleigh solution value is easily found by putting Qt
= 1 in any of the

forms of (lxxix), (lxxx), (lxxxi), (lxxxiii) or (lxxxvi).

A case of peculiar interest arises when c = 0, or we take the density at the

centre of the clearance. In this instance we have :

Now

and e~ i(*/a* = 2*0*0,,

therefore („•)•^e^) _w { *^ + . *£} (<,)•

=e-w°2

(-iy{X2S -s X2is_ 1) }.

Thus

/„ (0) = iVe -*
a2/<r2

{1 - 2v4X2 + (v
t
- 3v6 ) X4 + („, - 4r.) X6 + (v

8
- 5vM) x, + . .

.}

= 27ro-
2iV(w — 2v,w2 + (v

4
— 3i/„) w4 + (i>

6
- 4v

8 ) w6 + (v
8
— 5^) ws +...).. . (lxxxvii).

We are also able to consider the secondary problem

:

What is the distribution into unoccupied space surrounding a uniformly

occupied circular area due to a first migration ?

Let the radius of the area be a and let the density at any distance c be

Fn (c) after the first migration. Then clearly, if all space were uniformly filled,

we should have uniformity after the first migration, or

:

Fn (c) + Fn {c) = N,

hence : Fn (c)=N-Fn (c) (lxxxviii).

The solution is thus thrown back on the solution obtained for the previous

problem. In particular at the centre of the populated area we have :

Fn (0) =N-fn (0) (lxxxix).

We are thus able to calculate the reduced central density due to a migration

from the area to the surrounding unoccupied district, i.e. the effect on population

of the spread outwards of a colony.

(15) Problem VIII. Indirect solution of the General Problem of the

Random Walk.

It may not be without interest to put on record the distribution density

after n flights in the case of a cleared circular area, if it be expressed in

Kluyver's manner by the integral of a Bessel's function product.
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We Lave

:

49

and

fa /"2ir

Fn (c) =N V
<f>n (c

2 + r2 - Ire cos 6) rdOdr,

Fn (c) =N-Fn (c)

=Ny~Y \
]' \

uJo i
u^c'+ i*-%er cos 0) J (ulfdurdddrX

,

by (iii),

=N 1 —
J

u

J

(ur) J (uc) {J (ul)Y durdr ,

by Neumann's Theorem (see p. 6)

= i^Tl- f°° £^M£ j (
a

j
(
ur) urd (ur)\ JQ (uc) du~\

=N \l - ^ HiMl! f
a

d {J, (ur) ur}J (uc) du\

,

by the theorem cited on p. 7,

=N

=N

I _ f" W^)Y LrJi (
ur)\

a

j (uc) du\

1 —
J

{J (ul)}
n aJ^ (ua) J (uc) du .

Or, writing v = au, we have :

M°)=iv -/V.«j-.(.|)
{'.H)}'*] (»)•

This expression is concise. The integral expresses the probability that if an

individual start from the origin and take (n + 1) flights, the first of magnitude

c and the remaining n of magnitude I, at random, he will find himself within

a distance a of his starting point. But there does not seem any convenient

method of evaluating the integral. Comparing with (lxxxiii) we have the curious

identity

:

[>w * (»
-:) {* (• SF* - * - ft*-"^! (•• -:p. (« „t.)-<-)-

Write c = l, a = r and w — 1 for n, then

where Qn^ is the operator,

dri
l+vi (n-ir^-vs (n-ir î

+... +(-^^{n-iy^-s+ ...,
dn3

dri*
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or, by (iv), Pn (r), the chance that an individual taking n flights from a centre

should be found within a distance r from that centre, is :

Since *.M = 2^^^.«}.
we have here the complete analytical solution in known functions

—

i.e. the

Bessel's functions with imaginary arguments—of my original problem of the

random walk. But this formal solution provides no better method for shortly

determining the dispersal curves than that already indicated in these pages.

(16) Problem IX. To find the distribution after m migrations each of n

flights, there being originally a circular clearance ivhich is not kept sterile.

The solution is found by writing mcr2
for a\ putting the iV's for the v's

in Qt which becomes Q™, and multiplying by the factor (/u,A)
m_1 assumed to

be constant. This ,can be done to any of the forms (lxxix)—(lxxxiii), or (lxxxvi).

If we write :

e
x
= ejm and e2

= e2/m

we find

:

mFn (c) = N<jiAr->Qre--->S^j"tfe-*dx
}

)
(xciii),

or: m fn (c)^N(^)
m - 1Qt

m
e-'- I J (2iJIJc)e- xdx (xciv).

Or again

:

mFn (c)=N(^)
m - l Qre-^+^S^J^jjs (2iJi1

e
i)

(xcv),

mfn (c) =N(^r-iQt

m^m>cr's(us

(J^j
F.(^L)(«+1)) (xcvi).

Of these, I have found the first quite as convenient as any other to obtain

numerical results from. I shall now illustrate the circular patch formulae.

Illustration I. A circular patch ^ mile radius is cleared of mosquitoes but

not kept sterile. To find the density at the centre, at ^ mile from the centre,

and at the margin after ten breeding cycles.

We shall suppose as before £ = 200 yards, n = 6, and therefore

1 a2

0^=120,000 square yards. e2 = -
2
= -3227.

The second term in Q™ will be of the order ^ of the first and I shall

neglect it. Accordingly the solution may be taken
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A(c) = e-<^> 0*A)-W(l + e, (l + O+l!
(
X + i2 +

2l)

The successive bracketted terms in e2
are

1-3227, 1-3748, 1*3804, 1-3809 and 1-3809,

which is equal to e+H to our number of decimal places. Hence we may put

«/e (c) = (fiAYNe-^^ jl + e, (e
;
° - "0582) + ^ (e* - '0061)

3'. ' 4 s\

= ([xAyNe-^+'J (1 - e'* + e^+^ - -0582^ - -0030^ - -OOOle/)

= (/xA^ll - e""'1 4- e"
(i

'
+i2)

(1 - •0582e
1
- -0030^ - -000 le

x

3

)}.

At ppntyf1

10fe (0) = (pAYN{e-™ (l)} =
(ftA)W724.

We can test the accuracy of this result by using Equation (lxxvii) which,

if we put v4 —N4 , gives:

„/, (0) = (pAYNe--<* (1 - 2NiX2 +...)

and X2= 1 - i, = 0*A)»iVe—' (l +^ + . .

.

= (/AA)
9i^-730.

The agreement is accordingly good enough for practical purposes, and we
may say that within a year the mosquitoes would at the centre of the patch

have a density 73 per cent, of what they would have in uncleared country.

I now consider the density at a quarter of a mile from the centre, e 1
="0807,

and using the above formula we find

:

W F, (440) = (fjLAyN(l-e-'m7 + e-'
mi x -9953)

=
(f
iA)sN-75,

or, we see that at a quarter mile, midway between centre and boundary of

the patch, the density is only 2 per cent, more than at the centre.

Finally, at the boundary itself, e
1
='3227 = e

2 ,

„/, (880) = (fiA)
sN(l _e"w + «-•« x -9809)

= (lxA)
9N-79.

Thus the cleared patch would within the year have filled up with a population

of mosquitoes varying in density from 73 per cent, at the centre to about 80 per

cent, at the boundary, or the clearance without permanent sterility would have

been quite ineffectual with the assumed values of the constants.

7—2
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Illustration II. Let us assume precisely the same conditions as in the previous

illustration, except that the area shall be supposed sterile, and we will consider

what happens at the end of the first migration.

At the centre we have by Equation (lxxxvii)

:

x
F

e (0) =Ne- {1 - 2viX2+ (Vt
- 3*,) x, + („, - 4v

8) X. + • • •}

But -2Vi = -083,333, xA*>)
= l ~ e*= -2-227,000,

v
t -Sv6

= --032,407, x*(0 = 2 -4e2 + e2

2 = --494,471,

v
6 -4i>8 = --005,498, x,(«1) = 6-18e1 + 9e1

,, -e,i, = 8-031,303,

v
8
- 5v10

= -000,082, X8 (e2) = 24 - 96e
2 + 72e

2

2 - 1 6e/ + e
2

4

,

e2 = 3-227, =34-752,347.

Hence: J6 (0) = Ne~rw (l - -185,583 + -016,024- -044,156 + -002,850)

= -03l2V.

This three per cent, of the density in uncleared area might possibly prove

a trouble and on our assumptions it may be doubted whether the half-mile

radius is sufficient. If we take the first term only, we find -040iV, or four

per cent., not an important practical difference.

The introduction of even the first modifying term when c is not zero appears

to lead to such complexity that I content myself with calculating the approximate

value given by the Rayleigh solution for distances of £ and ^ mile from the

centre of the clearance. In this ca,se e2 = 3*227, e, = '807 and 3
-227 respectively

half-way to and at the boundary. I proceed just as before and deduce the

following approximate value for
1
f

e
(c), i.e.

/, (c) = (fiAfN {1 - e-> + e-fe+€«> (1 - 20-9769e
t
- 7-8851^ - -23556/

- -0228e
x

4 - -0016c/ - -OOOle,
6

)}.

Hence

^(440) = -179 (/xA)W, corresponding to e^'807

and

1 f,(880) = "709 ()u.A)
9
iV, corresponding to Cl =3-227.

Thus the density at ^ of a mile from the centre of the cleared patch would

be some 18 per cent, of the density in uncleared country. In other words on

our assumptions a clearance of one mile diameter, if kept sterile, would hardly

suffice to keep an area of ^ mile diameter free of mosquitoes.

Compared with a straight boundary, where the density falls to about one

half that of uncleared country at the boundary, we see that the bending of

the boundary has a most marked effect in its neighbourhood, the curvature

raising the boundary density from about 50 to 71 per cent, of the uncleared

density. In fact the density is almost equal to the 75 per cent, in the boundary

angle of a square clearance.
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The viifferences between a square and a circular patch inscribed in it are

noteworthy, indicating the marked influence of the area at the angles. Thus

at the centre we have only 2 per cent, as against 3 per cent., and at £ mile

from the centre 11 per cent, as against 18 per cent.

As far as the above numerical investigations are to be looked upon as anything

but illustrations of the nature of the calculations requisite to apply the theory

of random migration to the mosquito clearance problem, they must be taken :

(i) As merely an incentive to further study of the manner in which mosquitoes

scatter from the breeding ponds. It would seem possible, if difficult, to experimentally

test this by in some way marking a large number of insects, and determining the

nature and extent of the flight.

(ii) As indicating that permanent sterility of the protection belt is almost

certainly needful. The ^ to 3 per cent, of mosquitoes at the centre of the clearance

amounting to 6 to 18 per cent, at £ mile distance may or may not be serious,

but they certainly would very soon be if they were able to breed.

(iii) As showing that on the rough numbers taken, that a clearance belt

of probably \ mile round a settlement would be the minimum desirable sterile zone.

But it is quite possible that, when the requisite constants are better known, it

will be found that smaller belts will suffice. It is possibly rather an exaggerated

view to suppose a mosquito to make six random flights of 200 yards between

breeding spot and breeding spot. But certainly many insects I have noted will

fly with great rapidity in one flight 50, 100 or 200 yards, and these flights are

quite distinct from " flitters."

(17) Conclusions. The present memoir suffers of course from all the defects which

must accompany a first attempt to develop a mathematical theory of phenomena

which have hitherto not been studied with this development in view. The theory

itself suggests hypotheses and constants which have never yet been considered.

How far with a broad average of environment in relation to food supply, breeding

places, shelter, foes, etc. is the spread of a species random ? Are any of the

geographical limits to plant or insect or animal life non-environmental and in

course of change ? If so, statistical studies of the density gradients of such species

for a few miles either side of the supposed boundary would form most interesting

work for biometricians. But, apart from this observational work, a good deal of

experimental inquiry might be usefully attempted with regard to the constants

of random scatter or flight in the cases of both seeds and insects.

On the theoretical side there are many problems left untouched. The present

memoir has only opened up the outskirts of a very big field. It would be of

value to investigate the number of terms in the expansion in ^-functions requisite

to practically reproduce the graphically constructed density distributions for

migrations of 3, 4 or 5 flights. Our expansion to 6 terms is hardly close enough
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for practical work until n = 6 or 7. Many other shapes of populated or of cleared

areas would provide problems of some interest, especially when the spread of the

colony was limited in one or more directions by environmental barriers, such as sea,

river or mountain range. The problem of sterile areas has been by no means

exhausted, for in such cases I have only dealt with a result of the first

migration, but actually there will be a second and later migrations in which

not only new immigrants will appear but a portion of the first immigrants will

be emigrants and again able to breed when they reach uncleared country. Our

solution thus gives only a minimum limit to the percentages if the immigrants

do not die at the end of the first breeding cycle. Much interest attaches

also to cases in which the fertility and the death-rate are correlated with the

density, i.e. jxA is not to be considered a constant. But in these as in other

problems which suggest themselves, a further preliminary knowledge of some of

the ecological constants suggested by the present enquiry would be an extremely

valuable guide to the direction that research should take.

On the purely mathematical side the problem of the "random walk" may
now be considered as fairly completely solved. The distribution curves have been

determined until they pass into an analytical solution expressed by a new type

of function. The expansion in these functions shows the limits to the accuracy

of Lord Rayleigh's solution of a certain allied problem in the theory of sound.

But the tu-functions which have arisen in the enquiry have most interesting

properties, and have led me to a whole series of allied functions of one and

two variables which I propose to discuss on another occasion. The expansion

in w-functions will I venture to think be found ultimately to have considerable

importance for mathematical physics, especially in the evaluation of certain

definite integrals which arise there. The possibility of practically carrying out such

expansions depends on the determination of the successive moments (and products)

of the original function, a process with which every statistician is now fairly

familiar. But applied to definite mathematical functions it loses the disadvantage

with which it is burdened in statistical practice—the high relative probable

error of very high moments—and becomes closely allied to the process of deter-

mining the integral of the product of any function and a Legendre's coefficient

(or solid harmonic). Should the generalised co-functions prove, as I anticipate,

of some mathematical interest, it will be another illustration of how the need

of the applied mathematician has thrust him, almost unawares, into the path

of a novel functional development.
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