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PEEFACE

THE subject proposed for the Adams Prize in 1908 was " The Radiation

from Electric Systems or Ions in Accelerated Motion and the Mechanical

Reactions on their Motion which arise from it." This also happened to be

the subject-matter of several investigations which I had carried out from

time to time as preliminaries to a number of papers published in the

Philosophical Magazine and other journals; advantage was taken of the

opportunity then afforded to collect these investigations together and to

extend them. The time available for this purpose however proved to be

too short for a full treatment of the whole subject; while Radiation was

discussed pretty fully, the Mechanical Reactions had to be dismissed very

briefly. During the interval which has elapsed since the award of the prize

in 1909, the treatment of the latter part of the subject has been extended so

as to complete the original program ; I venture to hope that there has been

sufficient improvement in the essay to justify the delay in publication which

has arisen.

In order to avoid any great change in the form of the essay most of the

additional matter has been introduced in seven Appendices, and the alterations

in the original text have been confined to extensions of two problems already

included in it, but somewhat scantily treated. The first problem deals with

the motion of a y8-particle in a uniform electric field, Ch. XI, §§151—154,

and the second with the electromagnetic field generated by this motion,

Ch. V, §§ 43—60. Room has been made for the additional matter by slightly

curtailiag the treatment of two problems dealing with the field generated by

a uniformly accelerated electric charge, Ch. V, §§25—42. These changes

have been deemed advisable because the second problem admits of a simple

solution in a finite form and thus affords an exceptionally good illustration of

the method of the point potentials. All these additions to the text, as well

as a few others of slight extent, have been enclosed in square brackets in

order to distinguish them from the older portions of the essay.

In order to avoid misunderstandings it will be well to say a few words as

to the scope and method of the present investigation. In consequence of

the discoveries of the last few years in the fields of radioactivity, vacuum-

tube phenomena, magnetism and radiation, a great need has arisen for a
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comprehensive Electron Theory of Matter, which shall systematize the results

already achieved, as well as serve as a guide in future researches. A
beginning has been made by J. J. Thomson in his well known paper on the

Structure of the Atom and in his books on Electricity and Matter and the

Corpuscular Theory of Matter, but these investigations have been carried out

under the restriction, no doubt introduced for the sake of simplicity, that the

negative electrons in the atomic model move with velocities so small compared

with the velocity of light, that they can be treated like the particles of

ordinary mechanics. Moving electric charges however do not behave like the

particles of ordinary mechanics : they do not obey the Law of Action and

Reaction, their mass varies with their speed, and they generate a magnetic

field which reacts on their motion in various ways. When the speeds of the

charges are small compared with that of light, all these effects are small, but

we have no right to regard them as negligible even in that case. For

example, Eitz's well known theory of the production of Spectrum Series rests

on the effect of a magnetic field in the atom on the motion of negative

electrons ; a theory of this type is not provided for by an Electron Theory of

Matter, which assimilates the electron to the particle of ordinary mechanics.

Moreover it is by no means certain that all the electrons inside the atom

are moving with speeds small compared with that of light; we know that

/S-particles are expelled from comparatively stable atoms, like that of Radium,

with speeds differing from that of light by only 2''/o. The kinetic energy of

such a /S-particle amounts to three millionths of an erg, which is five times

the mutual electrostatic energy of two negative electrons in contact. It is

not easy to imagine an arrangement of negative and positive charges in

equilibrium, or in slow stationary motion, which shall be sufficiently permanent

and stable to serve as a model of the Radium atom, and at the same time be

capable of setting free sufficient potential energy to supply the kinetic energy

of a ;8-particle and also overcome the attraction of the positive charges. If

on the other hand we suppose the /S-particle to be already moving inside the

Radium atom with a speed comparable with that of light, this difficulty does

not arise. A supposition of this kind no doubt has difficulties of its own, but

it would be unwise to ignore it altogether.

For these reasons it is desirable, before attempting to frame any com-

prehensive Electron Theory of Matter, to develope the theory of moving

electric charges with as few restrictions respecting their structure and motion

as possible. When expressions for the electromagnetic field due to them have

been obtained, the radiation from them and the mechanical reaction on them
can be calculated ; the former depends on the field at a great distance, the

latter on that inside them. The object of this essay is to carry out these

preliminary investigations, to provide, as it were, prolegomena to any future

Electron Theory of Matter.

Accordingly the essay is in method deductive and mathematical, rather
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than constructive and physical ; but since there is considerable danger, in a

purely mathematical investigation, of losing touch with reality, the methods

developed have been freely illustrated by concrete examples of their applica-

tion. The solutions of the problems dealt with in this way have not as a rule

been carried to the point of numerical calculation ; this could not have been

done without increasing the size of the book unduly, even if there had been

sufficient time available. Many of the computations would have meant a

great expenditure of labour, as a large number of the integrals and series have

been very little studied. In this connection it is worth noting that the series

principally involved in the expressions found for the radiation and the

mechanical reaction are of the type known as Kapteyn Series of Bessel

Functions ; a simple example is afforded by Bessel's well known solution of

Kepler's equation. The study of the convergence and methods of summation

of these series offers many problems to the pure mathematician and is very

necessary for progress in the Electron Theory of Matter.

Let us now consider the fundamental assumptions on which the present

investigation is based, and also their relation to the Theory of Relativity and

to the Unitary Theory of Radiation (Quantentheorie), which have arisen since

it was begun and have been very widely discussed in the interval. In

choosing the fundamental assumptions I have throughout aimed at securing

the greatest generality consistent with thoroughly well established experi-

mental results.' Additional assumptions have only been introduced when

further progress seemed impossible without them, or when a comparison of

results already obtained with experiment clearly indicated that further

restrictions were desirable. For these reasons I have refrained from making

any use, either of the Postulate of Relativity, or of the Aether Hypothesis,

which by some are regarded as inconsistent with each other. Some of the

results obtained in this essay are consistent with the Postulate of Relativity

;

others cannot be reconciled with it, at least when it is used in the strictest

possible sense, and find their natural explanation in terms of the aether.

All however are deduced quite independently of either hypothesis. It does

not appear to me that either of the new theories is so well established and so

generally accepted yet as to be properly made the basis of an investigation in

which the utmost generality is aimed at.

The following are the assumptions which have been made :

—

(1) The electromagnetic equations employed are those of Maxwell and

Hertz, in the form used by Larmor and Lorentz. These equations already

imply the existence of a system of axes to which they are referred ; it is

immaterial for our purpose whether these axes be regarded as fixed in space,

relative to a fixed aether, or as only fixed relative to the observer.

(2) The expressions for the potentials and the electric and magnetic

forces deduced from the electromagnetic equations are assumed to be con-

tinuous functions of the time and coordinates in general. They may indeed,

s. b
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at any given instant, be discontinuous at certain surfaces, or, at any given

point, they may undergo sudden changes at certain times; these discon-

tinuities however will be supposed to be exceptional.

(3) The electric charges, whether positive or negative, are assumed to be

distributed throughout finite, though small regions of space, separated from

each other by regions free from charge. It will be found that, for the purpose

of calculating the radiation by means of the expressions relating to the

distant field, a knowledge of the size and structure of the electric charges

is not needed; only the motion of each charge as a whole must be given.

Hence for this purpose they may be treated as point charges moving in a

prescribed way.

(4) The mechanical force on an element of electric charge, so far as it

depends on the electromagnetic field, is assumed to be given by the formula

of Maxwell for a current-element, as adapted by Larmor and Lorentz to the

case of a moving element of charge. This formula gives the mechanical force

in terms of the velocity of the element and of the electric and magnetic forces

at the place where it is for the moment, whether the field be due to other

elements of the same charge, or to external charges, or to both.

(5) For the sake of generality we shall admit the possible presence of a

mechanical force of non-electromagnetic origin, but we shall suppose that the

resultant of all these forces for the several elements of an electric charge

vanishes identically, or at any rate is proportional to the acceleration of the

charge as a whole. The last alternative amounts to postulating that each

element of charge has associated with it, is as it were loaded with a certain

amount of mass of non-electromagnetic origin; we shall accordingly make
this last assumption as well as the first.

(6) The motion of each separate element of charge is to be found from

the mechanical forces (4) and (5) by applying Newton's Second Law of Motion.

In virtue of (5) the motion of the charge as a whole only depends upon the

resultant of all the electromagnetic forces, internal as well as external, which

act on the several elements, and on the total non-electromagnetic mass, if

there be any.

Little need be said as to assumptions (1) and (4); they are generally

accepted as representing the results of experiments on matter in bulk. Their

extension to the case of an isolated charge is of course hypothetical, but is

justified by the agreement of the conclusions obtained with experiment;

for instance the path calculated for a single Lorentz electron moving in a

given electromagnetic field agrees with that found by experiment for a thin

pencil of y8-rays. These assumptions also form the basis of the Theory of

Relativity.

Assumption (2) appears to be a natural, if not a necessary consequence of

(1) ; nevertheless it may lead to difficulties if some forms of the Unitary

Theory of Radiation be adopted. It is well known that one form of this
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theory postulates an atomic structure of radiant energy in order to explain

the production of secondary ;8-rays from X-rays. In order to obtain the

necessary concentration of energy, it is assumed that the space occupied by a

unit of energy is exceedingly small, so that the distribution of energy in the

field is practically discontinuous. In the case of periodic disturbances we
can represent a discontinuous field of the required kind by means of series of

Fourier's type, built up of periodic solutions of the electromagnetic equations,

and thus are able to explain interference and polarisation. But on this view

a truly homogeneous radiation would be impossible, because the fundamental

vibration would always be accompanied by upper partials, whose intensities

would be comparable with its own. This difficulty does not occur in a later

form of the Unitary Theory, in which the emission of energy by the source

takes place discontinuously, but the radiant energy itself is not discontinuous,

not concentrated in isolated regions of the field. A theory of this later type

appears to be sufficient for the statistical theory of radiation and does not

conflict with our assumption (2).

Assumption (3) is fundamental in the treatment of the mechanical

reactions adopted in the present essay. The only alternative is to assume

that each charge is concentrated in a mathematical point, that is, that it is

a mere centre of force. The two assumptions are equivalent as regards the

determination of the field produced by the moving charge; for since the

point charge is a singular point of the field, we may exclude it by means of

a small closed surface surrounding it, and treat it as equivalent, at all outside

points, to a suitable distribution of charge on the surface. This amounts to

regarding it as an extended charge for all purposes which do not require us

to enquire into its internal structure.

But when we desire to determine the motion of the charge under the

action of a given external field, the difference between the two assumptions

becomes apparent. For a point charge we must, in the first place, assign a

formula expressing the connection between the mechanical force acting upon

it and the electric and magnetic forces of the field, for instance the formula

of Larmor and Lorentz given by assumption (4). Secondly, we must endow

the point charge with a proper amount of energy and mass, and assume

formulae expressing the variation of these quantities with the speed, for

example those given by the Postulate of Relativity. Lastly, we must

determine the reaction on the charge produced by its radiation, for instance

by the method used by Abraham in § 1 5 of his Elelctromagnetische Theorie

der Strahlung, where he deduces it from the expressions for the momentum
and energy radiated from the moving charge. Thus the intrinsic energy

and the mass are irreducible properties for a point charge, but there is nothing

in its nature to determine the laws according to which they depend upon its

speed ; these laws have to be determined by considerations having nothing to

do with the character of the charge itself

62
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For the extended charge on the other hand we must assume in the first

place a definite size and structure when it is at rest, and secondly a formula

expressing the mechanical force on each element of the charge, for instance

the formula of Larmor and Lorentz adopted in assumption (4). The motion

of each element having been assumed provisionally, we are able to determine

the energy, the momentum, the mass and the mechanical reaction of the

radiation, all by one and the same process. No assumption is needed which

does not follow naturally from the notion of an extended charge ; in this

respect this hypothesis is more satisfactory than the last.

In making the assumption of an extended charge we however encounter

a problem which compels our attention. When we assume that a charge has

parts which repel one another, we are bound to explain how it happens that

the charge can exist in spite of the mutual repulsions of its elements. This

problem is meaningless for a point charge, which is ipso facto indivisible.

Its solution for an extended charge requires us to postulate the existence of

forces of non-electromagnetic origin, in accordance with assumption (5).

These, together with the mechanical forces due to the electromagnetic field,

act upon each element of the charge and produce the actual state of rest,

or of motion, as the case may be, in accordance with some assigned law,

such as Newton's Second Law of Motion, adopted in assumption (6). We
see that in this way assumptions (5) and (6) are necessary corollaries of

assumption (3).

Thus there are two alternative methods of finding the mechanical

reactions on an electric charge : one based on the hypothesis of the extended,

and the other on that of the point charge. So far as can be judged a priori,

each, by the hejp of suitable subsidiary assumptions, can be made to give a

consistent account of the phenomena to be explained, and there seems to be

no decisive reason compelling us to choose one rather than the other. The

choice is largely a matter of personal preference ; I have selected the method

of the extended charge because it affords more scope for illustration by means

of mechanical models.

The scheme of the essay may be summarized as follows :

—

Ch. I gives a brief discussion of the fundamental equations of the electron

theory in the form established by Maxwell and Hertz, and further developed

by Larmor and Lorentz ; it involves nothing materially new.

Chs. II and III give the transformation of the Lorentz expressions for the

retarded potentials into integrals, which constitute an extension of Fourier's

type. They are shown to lead to Sommerfeld's integrals and to the point

potentials of Lidnard and Wiechert.

In Chs. IV—VI the point potentials are discussed fully and applied to

the determination of the electromagnetic field in special cases of the motion

of a point charge. The most important problem here considered concerns

the field generated by a Lorentz electron, which moves parallel to the lines
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of force of a uniform electrostatic field. When the very small reaction due to

the radiation is neglected, this problem admits of an elegant solution in

a finite form; it is, I believe, the only case of an accelerated motion for

which the field has been completely determined. Attention is also drawn to

the discrepancy between the result obtained in Problem 3 of Oh. V and that

found by Descoudres for the uniform motion of a point charge with a speed

greater than that of light. This discrepancy indicates that there is a

difference in kind between the field due to a uniform motion which has been

acquired from rest, and one which has existed for all past time.

The next four chapters deal with the field generated by motions of electric

charges with any speeds not exceeding that of light, the treatment through-

out being based upon the integral solutions obtained in Ch. II.

Chs. VII and VIII are devoted to the consideration of the electromagnetic

fields due to periodic motions of systems of electric charges. Ch. VII gives

the case of a monoperiodic motion, a motion involving only one period. The

results are applied to the uniform motion of a circular ring of charges and to

the calculation of the radiation from it.

Ch. VIII deals with the fields generated by polyperiodic motions, that is

motions involving several incommensurable periods. General expressions are

obtained for the electric and magnetic forces at a great distance from the

system of charges producing the field and are applied to the cases of a

uniform circular motion, a simple harmonic rectilinear motion, elliptic motion

about the centre, disturbed circular motion, motion in an epitrochoid and the

precessional motion of a vibrating system of charges. The last problem is of

some importance for the theory of the Zeeman effect developed by Ritz;

the results show that precession of suitable amount will account for resolu-

tions of a line into as many as nine components, symmetrical as to position

but not necessarily symmetrical as to intensity.

Ch. IX deals with motions which are not strictly periodic, or are

aperiodic, for instance damped vibrations. Motions of this kind involve

discontinuities occurring at one or more periods of their existence ; it is shown

that the effect of one of these discontinuities is confined to a greater or less

interval of time near the instant at which the discontinuity occurred, and

that at times other than this the potentials and forces of the field can be ex-

panded in Power Series of Lagrange's type.

Ch. X concerns the electromagnetic field at points on or close to the

orbit of a moving charge, but distant from the charge itself by several

diameters at least. The expressions obtained for the electric and magnetic

forces are applied to the case of a circular ring of electrons in uniform

motion.

Ch. XI gives a brief account of the equations of motion of a single

charge, with applications to uniform circular motion, the same motion when
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slightly disturbed, and the motion of a Lorentz electron in a uniform

electrostatic field. The last problem has been already referred to in Ch. V,

Problems 4 and 5.

Ch. XII deals with the motion of a group of electric charges, particularly

with the steady motion of a circular ring of electrons. Owing to the loss of

energy by radiation, a strictly uniform motion is impossible if the charges be

absolutely invariable, unless the loss be supplied from some external source,

which produces the tangential force needed to keep the speed uniform.

Moreover, a system of charges of this kind is essentially indeterminate in

structure, because there is but one equation of motion, the radial one, while

there are two independent variables, the speed and the radius of the orbit.

One of the two variables may have its value arbitrarily assigned, and then

the other is completely determined by the equation of motion; there is

however no condition which shall enable us to fix upon any particular value

of the first variable, and consequently the structure of the ring is only

determined within certain limits necessary to secure stability.

The determinateness of structure of the ring, as well as a high degree of

permanence in spite of radiation, can be secured, if the mass of each charge

be allowed to diminish at an exceedingly slow rate, which would occur in

consequence of a very slow expansion of the charge. Then the loss of energy

due to radiation takes place at the expense of the internal electric energy of

the charges ; the condition that this compensation may occur gives a second

equation of motion, the tangential one, and thus we have the two equations

necessary to fix the values of the speed and radius of the ring. They are not

absolutely constant, but are subject to small secular changes ; the ring is not

absolutely permanent, but it changes very much more slowly than it would

do if its radiation were not compensated. It has definite periods of vibration,

but they undergo small secular changes.

It is possible that the same result may be secured in another way,

namely by means of an asymmetric charge. It is shown in Appendix D
that a tangential force component is required, as well as the radial com-

ponent, in order to keep an asymmetric charge moving in a circle; it may
happen that the drag due to radiation just supplies the force that is

needed.

These twelve chapters constitute the essay practically as it was submitted

to the examiners; it has been stated already that the treatment of the

motion of electric charges given in Chs. XI and XII is altogether inadequate,

owing to the lack of time to complete the essay in accordance with the

original plan. The rest of the book, with the exception of Appendix A, is

devoted to remedying this defect.

Appendix A gives an application of the results of Chs. VIII and IX to

the theory of the Doppler effect.
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Appendix B is devoted to an investigation of the disturbed motion of a

circular ring of charges. In Problem 1 the methods of Ch. X are employed

to find the electric and magnetic forces produced by an electric charge, when
slightly disturbed from its uniform motion in a circle, at points close to the

circle but at a distance from the charge itself. In Problem 2 the field due to

a ring of charges is calculated, and the mechanical force on one of them due

to all the rest is found. In Problem 3 the methods of Ohs. XI and XII and

the results of the two preceding problems are applied to find the equations

of motion of a circular ring of charges when it is disturbed from its steady

motion.

Appendix C deals with the electromagnetic field close to a moving

point charge. The Lagrangian Series obtained for the potentials in Ch. IX
are transformed into expansions proceeding according to the accelerations of

increasing order. These expansions are required in the investigations of

Appendices D and E.

The object of Appendix D is to supply a proof from first principles of the

equations of motion of a single charge, which have been already given in

Ch. XI. The resultant of all the mechanical forces exerted on one element

of the charge by all the rest is calculated, and the mechanical force exerted

by the charge on itself is found by summation over all its elements. On
account of the failure of Newton's Third Law of Motion in the case of electric

charges, the total mechanical force on a charge generally differs from zero

;

an expression is found for it, which leads to definitions of the electromagnetic

momentum and mass of the charge, as well as of the reaction on it due to its

radiation; this we already know from the investigations of Abraham,

Sommerfeld and others. For the extended electron the electromagnetic

momentum and mass depend upon its size and structure ; the reaction due

to radiation however does not, but has the same value as for an equal point

charge. It is here shown that the electromagnetic momentum is not in the

direction of the mean motion of the charge unless the charge be symmetrical

with respect to a plane perpendicular to the direction of the mean motion,

or to two planes parallel to the direction of the mean motion and perpendicular

to each other.

Moreover the investigation of this Appendix gives definite information

concerning an objection raised by Abraham to the Theory of Relativity in

the second edition of his Elektromagnetische Theorie der Strahlung, § 49,

which came to my notice too late to be considered in the text. Abraham

points out that, according to the Theory of Relativity, the mass, mo, and the

electric energy, TFq, of a slowly moving electron satisfy the relation

mo = Wajd^, while the mass of the Lorentz electron is 4/3 of the amount

determined by this equation. The equations (350), § 229 of the text, show

that even for a symmetrical electron mo always exceeds Wojc^, whatever the
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configuration of the electron may be when it is at rest. Thus Abraham's

objection appears to be valid, namely that the electromagnetic dynamics of the

electron is inconsistent with the Postulate of Relativity ; at any rate this is

so if the hypothesis of the extended electron be accepted.

The results of this Appendix are applied to the particular cases of the

electrons of Abraham, Bucherer and Lorentz, and also to that of an

asymmetrical electron derived from the Lorentz electron by a small deforma-

tion symmetrical about an axis which is inclined to the direction of the mean

motion.

Appendix E deals with the mechanical explanation of the electron, a

problem which compels our attention since we have accepted the hypothesis

of the extended electron, as we have already pointed out. Poincar^'s

explanation of the Lorentz electron by means of a uniform surface pressure

is here found to have a much wider application. It is shown that the

hjrpothesis that the electron is subjected to a uniform surface pressure,

whatever its motion may be, is of itself sufficient to lead to the Lorentz

mass-formula, and to a configuration of the electron in which the surfaces of

equal density are Heaviside ellipsoids, so long as the speed remains constant.

When the speed changes, small redistributions of the charge inside the

electron occur, as well as slight deformations of its bounding surface. By
means of these changes an observer moving with the electron could in theory

detect the acceleration, so that the Postulate of Relativity cannot hold for

accelerated motion.

Moreover it is found that an extended electron, whatever the distribution

of its charge may be, cannot exist unless it is subjected to a suitable pressure

on its outer surface. Hence we must either postulate the existence of some
external medium which shall produce the required surface pressure, or admit

that the elements of charge of the electron exert on each other actions at a

distance, which are not electromagnetic and follow quite different laws. The
first hypothesis, that of an external medium, appears to be the more
reasonable of the two and amounts to admitting the existence of the electro-

magnetic aether.

Thus it appears that the acceptance of the Postulate of Relativity in its

strictest form almost necessitates the adoption of the hypothesis of the

point charge, while the hypothesis of the extended charge leads naturally to

the adoption of the aether hypothesis.

Appendix F gives a brief sketch of the mechanics of the Lorentz electron;

its object is to show that the adoption of the Lorentz mass-formula leads to

a workable system of equations of motion, not indeed as simple as those of

ordinary mechanics, yet simple enough to allow of our obtaining complete
solutions of many important problems. It is found possible to write down
the equations of Lagrange and Hamilton in the most general case of the
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motion of a Lorentz electron under the influence of a variable electromagnetic

field. When the external field is steady, an energy integral exists ; when it

IS symmetrical about an axis, an integral of angular momentum about that

axis can be found. These integrals can be used as in ordinary mechanics to

reduce the order of the system of differential equations of motion ; all the

necessary eliminations can be actually performed owing to the simple form

of the Lorentz mass-formula. It is possible to deduce Lagrangian and

Hamiltonian equations of motion for other mass-formulae also, at any rate in

theory, but in practice they are useless, because they are too unwieldy on

account of the complications introduced by the forms of the mass-formulae.

In this respect the Lorentz mass-formula possesses an overwhelming advan-

tage over all others.

Appendix G gives applications of the methods of Appendix F to particular

cases, namely the motion of a Lorentz electron in a steady and uniform

electromagnetic field, including the theory of the experiments of Kaufftnann

and Bucherer, and its motion in a steady field, in which the electric force is

central and a function of the radius alone, while the magnetic force is

uniform and of small intensity. The last problem is important for the

precessional theory of the Zeeman effect, which is due to Eitz and has already

been considered in Problem 6, Ch. VIII. It is here found that the angular

velocity of precession, fi in Problem 6, is equal to the usual value, eH/2cm,

assumed for the Zeeman effect, but the mass of the electron, m, is that

appropriate to its speed at the moment considered. The angular velocity of

the processing system about its own axis, n in Problem 6, depends on the

constitution of the system under consideration; in the particular example

studied in the present Appendix the angular velocity n is variable, and has

no connection with the angular velocity of precession, fi, so that Runge's rule

remains unexplained.

It is obvious that in a long-continued investigation like the present one,

there must be many points of contact with the work of other writers, and

accordingly many of the results here obtained have been anticipated. In

cases of this kind I have not made any change in the text, because the proofs

here given are as a rule different from those used by my predecessors in

publication and may very well serve as verifications of their methods. I hope

that I have taken note of most cases of anticipation of this kind, but no

doubt there are others which have escaped my notice altogether, or have

been seen too late to receive due mention. I cannot however close this

preface without expressing the very great debt I owe to Sir J. Larmor and

to Prof. H. A. Lorentz, whose writings have furnished the theoretical

foundations of this essay, and particularly to my former teacher. Sir J. J.

Thomson, to whose paper on Cathode Rays this investigation owes its

inception.



XVI PREFACE

I have to thank my friend and colleague, Mr J. S. G. Thomas, for his

kindness in reading the proofs of the essay and for his valuable criticisms and

suggestions.

My thanks are also due to the ofiScials of the University Press for the
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CHAPTER I

FUNDAMENTAL EQUATIONS OF THE ELECTRON THEORY

1. The most satisfactory foundation for the following investigation at the

present day is furnished by the electromagnetic equations for the free aether,

in the form developed by Maxwell and Hertz, together with the additional

equations representing the effect of electric charges (electrons, ions) due in

the main to Larmor and Lorentz. The former set of equations is sufificiently

firmly established as a result of the experiments of Hertz, as well as of all

subsequent experience. The latter set rests, not only on the fact of the

existence of discrete electric charges capable of motion relative to the aether,

or if we prefer, relative to a system of axes fixed with respect to the observer,

but also on certain assumptions, expressed or implied, as to the connection

between the aether and the electric charges.

In the first place it is assumed that the connection is a mechanical one,

in so far as the equations expressing its effect are developed by an application

of the principle of Least Action. Secondly it is assumed that electric charges

move freely through the aether, without disturbing it or altering its properties

to any appreciable extent.

That these two assumptions are mutually consistent is a distinct postu-

late, in favour of which not much evidence has yet been offered, and which is

made mainly for the sake of simplicity.

Any disturbing effect of the electric charge on the aether may be expected

to be limited to its immediate vicinity, and probably the details of structure

of the charge will have no appreciable effect on the nature of the disturbance

produced by it in the aether at a great distance away : this will practically

be that due to a point charge moving with the mean velocity of the actual

charge. Thus the electron theory in the form developed by Larmor and

Lorentz affords a sufficient basis for the calculation of the radiation due to

electric charges moving in prescribed ways.

But when we wish to determine the motion of an electric charge under

the influence of a prescribed system of electric and magnetic forces the bases

of the calculation are not so certain. The mechanical forces acting on the

s.
1



2 FUNDAMENTAL EQUATIONS OF THE ELECTRON THEORY [CH.

charge due to the impressed field, and the mechanical reaction on it due to

its own radiation, both depend on the nature of the connection assumed to

exist between the charge and the aether [or on the law assumed for the

action at a distance between it and other charges, if we prefer to discard the

idea of the aether]. Any uncertainty as to the mutual consistency of the

two fundamental hypotheses of the electron theory will affect the conclusions

arrived at concerning the motion of the electric charge and the reaction due

to its radiation.

Experiments on the variation of the mass of a moving charge with its

velocity however lead to results in substantial agreement with calculations

based on the electron theory. We conclude that the equations developed by

Larmor and Lorentz represent the effect of the connection between the charge

and the aether, whatever it be, sufficiently closely to serve as a basis for the

calculation of its motion, even though there may be some uncertainty as to

the assumptions from which those equations have been derived.

2. The equations of the field. For the sake of uniformity we shall

use the notation of H. A. Lorentz, employed by him in his [Theory of

Electrons, which is in better agreement with the practice of English writers

than that used in his] article in the Encyklopadie der Mathematischen

Wissenschaften, " Elektronentheorie," Vol. v. Sect. 14, except that for the sake

of brevity we shall use electrostatic units in place of rational (Heaviside)

units for electric quantities, and magnetic units for magnetic quantities.

Scalar quantities will be denoted by plain letters, vectors by Latin letters

of Clarendon type, their tensors by plain letters, and their components by
plain letters with suffixes attached. Scalar products will be enclosed in

round brackets (...) when necessary to avoid misunderstanding, vector

products in square ones [...].

The equations of the Maxwell-Hertz theory are

:

div. d = (free aether) (I),

div. d = 477/0 (electric charge) (la),

| + div.pv = (II),

c curl h = d + 47r/3V (Ill),

ccurld = -h (IV),

div. h = .(V).

These equations are either based on experience, or are equations of

definition.

The additional equation of Larmor and Lorentz is

:

f=d-|-[v.h]/c (VI).
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This expresses the mechanical force per unit charge due to the assumed
connection between charge and aether. It rests on the assumption that there

is no resultant mechanical force acting on a finite charge, due to its connection

with the aether, of any kind, elastic or hydrodynamic, whatsoever it be, other

than that directly due to the electric and magnetic force in the free aether.

[It does not require that there be no stresses between neighbouring elements

of charge, or between elements of aether to which they are attached, provided

that these stresses balance for an isolated charge, or electron. The question

of the existence of such stresses will be considered in Appendix E below.]

In these equations p denotes the volume density of the electric charge at

the point {so, y, z) and at time t, and v its velocity relative to the stagnant

aether, or, if we prefer, relative to a system of axes fixed with respect to the

observer, f is the mechanical force per unit charge, d and h are the electric

and magnetic forces in the free aether, and c is the velocity of light in the

free aether.

3. Potentials. Equations (IV) and (V) enable us to express the electric

and magnetic forces in terms of a scalar potential and vector potential a
;

this is generally the best course, as the potentials are more easily determined

than the forces themselves. In virtue of (V) we may put

h = curla (VII).

Substituting this expression in (IV) we get

curl (d + a/c) = 0,

whence d = -V^-a/c (VIII).

Obviously only two of the three equations for h^, hy, h^, derived from

(VII), are independent. Thus a is not completely determined, and a third

condition may be imposed upon it. Thus a singly infinite series of different

functions a are possible, but only two have been used.

(1) Suppose that we impose the condition div. a = 0.

Then (I a) gives ^^^ = — 47r/3.

And (III) gives V^a = - (d + 4<Trp-v)lc.

Hence we find in the usual way
cl>
= JpdaiR,

ca,=J(pv+A/4>7r)dn/R,

where R is the distance of the fieldpoint (Aufpunkt), that is of the point

(x, y, z) of the field, where the potentials and forces are required, from the

position (^, 7], f) of the volume element dD, at the time t. The volume

integration is to be extended over all space, the density p being zero at points

where there is no charge at the time t.

These expressions for the potentials have been used by Maxwell* and

Larmorf . They are convenient in so far as the quantities p and v are to be

* Electricity and Magnetism, Vol. ii. p. 237.

t Aether and Matter, pp. 92, 111.

1—2
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taken for the actual time t, and therefore are known explicitly. When there

is motion this convenience is more than counterbalanced by the fact that the

expression for a involves the total current, that is, the displacement current

d/47r as well as the convection current /av. Generally the quantities p and

V are prescribed functions of t and (f, i;, f), but d itself remains to be

determined. If however we content ourselves with a first approximation, in

which V is neglected in comparison with c, the term involving d may be

neglected. This is done by Larmor in calculating the field due to a vibrating

doublet {loc. cit. p. 223), but the resulting expression is incomplete. This

approximation is insufficient for our purpose.

(2) Suppose that we impose the condition

div.a + <^/c = (IX).

Then (I a) gives V^^ - ^/c^ = - ^Trp.

And (III) gives V'^a — a/c^ = — 4nrpv/c.

Lorentz * gives the following particular integrals of these equations

:

4>=j[p]dn/R (X),

a. = J[pvjc]dn/E (XI).

The brackets [...] here mean that the values of p and v are to be taken

for the time t — Rjc, and not for the actual time t ; that is, the values of p
and V correspond to the time of emission of a disturbance, which leaves the

element dO at (^, t), X) so as to reach the fieldpoint («, y, z) at time t. Thus
the quantities [p] and [flv] are prescribed functions of ^ — Rjc and (f, rj, f).

J
They involve (f, rj, ^) explicitly in the parameters of the functions, and also

implicitly through R ; they also involve {x, y, z) implicitly through R. The
seven variables t, ^, r), f, oo, y, z in these integrals are all independent.

The integrals (X) and (XI) satisfy the condition (IX) in virtue of (II).

4. Complementary flinctions. The Lorentz integrals (X) and (XI)
generally do not satisfy the prescribed boundary and initial conditions, and it

is necessary to add complementary functions, 0o and a„, in order to complete
the solution. We wish to determine the nature of these complementary
functions.

They obviously satisfy equations of the form V^i/r - ^/c^ = 0. By a
theorem due to Kirchhofff we have

^-.lY^i^-lt&^Ys.
where f(t)= -|^, dS is an element of the boundary at (f, j,, ^, n its

outward normal, and R its distance from the fieldpoint {x, y, z) as before.

* Enc. Mat. v. 14, p. 157. [Theory of Electrons, p. 19.]

t Optik, p. 27, equation (12).
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This expression for -f shows that the complementary functions merely

represent the effect of charges on and outside the boundary, so that the

Lorentz potentials represent the required effect of the inside charges

completely. Thus complementary functions are unnecessary for our purpose.

Since the integrals (X) and (XI) give the complete solution of our

problem, and moreover only involve the prescribed quantities p and v, we
shall make them the bases of our investigation.

5. Equation of energy. We get the equatioa of energy in the usual

way : multiply (III) scalarly by d/4nr, (IV) by - h/47r, add, use (VI) and the

identity (h curl d) - (d curl h) = div. [d . h]. Multiply the resulting equation

by the volume element dD, and integrate throughout the space enclosed by

any fiieed surface 8 ; then we get

The first term represents the rate at which the field does work in moving

the charges inside S ; the second is generally interpreted to mean the rate

at which the electromagnetic energy of the aether inside increases; hence

the third term represents the rate at which electromagnetic energy ilows out

across the surface. Since the surface is quite arbitrary, the Poynting vector

s = c[d.h]/47r (XIII)

must necessarily be identified with the rate of flow of electromagnetic energy

per unit area.

This interpretation however is not free from difficulty if we accept a

mechanical theory of the aether. In deriving the electromagnetic equation

(VI) by means of the Principle of Least Action it has been assumed

generally, whether necessarily or not we will not determine here, that the

potential energy of the free aether is to be taken as d^/STi- per unit volume,

but the kinetic energy as (a [d + 47r/ov})/87rc, and not as h^jSir, per unit

volume (Lorentz*, Larmorf, Macdonald|). Macdonald§ however points out

that the two expressions for the kinetic energy cannot really be identified

;

indeed we find by means of (VII) and (III)

h!" = (h curl a) = div. [a . h] + (a {d + 4<vpv])/c.

When this "value is substituted in the equation of energy we get an additional

surface integral on the left-hand side of (XIII), namely

||[a.h]„(i/Sf/87r,

which requires interpretation.

* Enc. Mat. v. 13, p. 165. [Theory of Electrons, p. 23.]

t Aether and Matter, p. 94.

J Electric Waves, p. 160. § Loc. cit. p. 32.
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We see at once that in all optical applications, where we wish to find the

mean rate of flow of energy across an element of surface, the value of the

vector [a . h] is stationary on the average for long periods of time. Hence

the additional surface integral contributes nothing to the average radiation

from the system of moving charges, so that we may identify the radiation

vector with the Poynting flux without fear of error.

But when we wish to determine the radiation from a system of moving

charges which are not in stationary motion, such as a stream of /S-particles

and the like, the difiiculty signalised above subsists.

[In order to get a clear understanding of these energy relations let us

consider the case of a single unit charge moving in any manner. We shall

take as our space II the space enclosed between two infinitely close fixed

spheres S and S', which coincide with the instantaneous positions at time t

of two consecutive spherical waves emitted by the charge at the times t and

T, when it was in the positions E and JE'.

The radii, R and R', of these spheres are given by the characteristic

equation (28), § 13, infra, so that R = c(t — T), and R' = c(t — T'). The field

due to the charge is given by equations such as (26) and (27), or (30)—(33),

1 13. By choosing R and R' very large, we gain three advantages : (1) we
can treat the charge as if it were concentrated in one point; (2) in the

expressions for the forces, (32) and (33), we can neglect all but the lowest

powers of 1/R ; and (3), in differentiating these and similar expressions with

respect to the time we can treat R as constant, because its variation only

gives rise to terms of higher order. We must bear in mind that-^ = l/^,

where, by (29), K=l- (vRO/c ; and that |^ = - (vR,)/c.

To this approximation (32) and (33), § 13, give

h-LRxdJ, d— -^^+ ^^^ .

Thus we have (R^h) = (R^d) = 0, d" = k", [dh] = H.d".

Let us begin by verifying equation (XIII) for the shell fi enclosed

between the two spheres S and S'.

The first integral vanishes identically, because the electric volume
density p vanishes everywhere inside the shell.

As for the second, dil is a fixed element of volume ; hence the integral is

f-dnd
equal to/gi(c^^+A^).

Now the thickness of the shell is easily seen to he c(r'—T)K; hence
o -in

dD, = c (t' - t) KdS. Also
^j.
=^^ > and d^ = h", and t has the same value
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for every point of the sphere 8, since it coincides with the wave emitted at

the time t. Thus the volume integral reduces to " ^'^, ~ '^^

jdS— d^, that is,

4nr J OT

Lastly, the surface integral has to be taken over the two spheres S and
S'. For the sphere S the outward normal n is along R, so that [dh]„ = ^^
for the sphere S' the outward normal n' is along - R', so that [d'h']„. = - c^'^.

Hence the surface integral gives, for both spheres together,

'cd'^dS'[cd^dS [c

dt

that is, it just cancels the second volume integral, so that (XIII) is verified.

Again, let us consider the modified energy equation. In the second

volume integral of (XIII) A= is to be replaced by (a {d + 4<vpv})/c, that is, by

(ad)/c in the present case, where p = 0. That is, we must add a volume

integral ^ A-fj^?:^- h'l dn to the left-hand side of (XIII).

We have already found that we must add an additional surface integral

5^ I

—^— Thus the modified equation will be verified if we prove that

the sum, I \-—- — h^y dO,+ 1 [ah]„ . dS, is zero, or independent of t.

In the first place, we have to our approximation in the shell il, h^ = d^

and [ah]„ = [a [RjdJJji, = (ad). Now (ad) = — (ad) - (ad); and from (27) we

find

A-^^..- ^ v(vRi) _ Ri(vRi)

Kdt cK'R^ c'K'R cK^R

Hence, since (Rid) = 0, we have (ad) = — cd"^. Therefore

(ad) ;^,_9(ad)^

c dt '

As before we have

|(ad)=^, da = c{T'-T)KdS.

Hence the volume integral reduces to (t' — t)1-^— dS, that is, to

f (a.'d') dS' —J (ad) dS. As before, this just cancels the surface integral

extended to the two spheres S and S'. Thus the modified energy equation

has also been verified.

In the same way we can verify either form of the energy equation for a

region bounded by two spherical waves at any distance apart, by integration
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from the case of the infinitely thin shell, provided only that the radius of the

inner wave is sufficiently great. We must now consider the values of the

several terms in the equation.

In the first place, the electromagnetic energy of the thin shell fl according

to the usual definition is equal to j (d^ + h') dil/Sir, that is, just as above, to

C{T'-T)Jd'KdS/i7r.

Take polar coordinates (R, 6, 0) with origin at E, polar axis along

EE' (v), and initial meridian plane through v. Writing /3 for vjc as usual,

and a for the angle between v and v, we have K = \ — ^cos6, and

{v'Ri)jc = 1—K, (vRi) =
I V I

(cos a cos ^ + sin a sin 6 cos
(f>).

Also dS = R'' sin ededcj)-,

hence using the approximate value of d found above, we get for the energy

t' - T
f"-
p- (<r\ . (vv) (vR,) (1 - ;80 (^Ri)')

4:Trc? Joio W^^~^' ^^—^smddedcl>.

Substitute for (vRi) its value and integrate with respect to <j), bearing in

mind that
'Sir

(vRj) d</) = 27r
I V I cos a cos 0,fJo

(.'-T)vvMi (^-^)^^'n,i^ede

and (vRi)' d^ = 27rv^ (cos^ a cos" 6 + ^ sin= a sin" 6).
Jo

Since (vv) =
|

v
|
w cos a, we get

2c' )o\e:'
' 2K'

(/-r)(vv)7-f2cosg (l-^0(3cos'g-l) )

Eemembering that Z" = 1 - ^8 cos 0, we get, most easily by changing the

variable from to K,

2g(T-T) f. (vv)

The coefficient of t' - t is precisely the expression found by Li^nard for the

rate of loss of energy from the moving charge owing to radiation. Thus his

definition of the radiation rests on the assumption that the electromagnetic

energy of the aether is equal to (d' + h')/8Tr per unit volume.

Again, we found that on the mechanical theory of the aether it is necessary

to replace the term h^/87r by (ad)/87rc, that is, we must add to the energy of

the shell D, the supplementary integral /[(ad)/c - A"} dn/87r, and this we
f)

found to be equal to (t - T)^J(a.d)dSj8'n:
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Now by (27), § 13, we have a = v/cKR. Using the approximate value
of d as above we find that the supplementary term is equal to

^'-^9 r ['"
f

(vv) (l-ir-/3')(vR0) • .....

In the same way as before we find that this expression reduces to

Hence, when we adopt a mechanical theory of the aether, and accordingly

reckon its kinetic energy as (a {d + 4i7rpv])l87rc per unit volume, we must
supplement Li^nard's expression for the radiation from a moving unit charge

by adding the term -— -~^—i-
, where r is the time of emission of the

or 3 (c^ — v^y

radiation, and v and v are the velocity and acceleration of the charge at

time T.

In Chapter XI and Appendix D we shall deduce the equations of motion

and energy of a small extended charge on the basis of the equations (I)—(VI)

of § 2, without making any assumptions other than those implied in these

equations. We shall find that the resulting energy equation, (211), § 145,

and (344), § 227, involves not merely the li^nard radiation, but also the

supplementary term just found.]

6. Resultant mechanical forcive. The resultant mechanical force

acting on all the charges inside a fixed surface 8 due to the field is on

account of (VI) given by

F=/{d + [v.h]/c}/3da.

Using (I a), (III) and (IV), and integrating by parts we get*

where F^ = / {M^d + 2A„h - {d" + ¥) nj dSjSir I

(XIY)

r,=-ysdn/c'
I

Here Uj denotes a unit vector in the direction of the outward normal to the

surface element dS, and s is the Poynting flux as before.

Fa is usually interpreted as the rate of decrease of electromagnetic

momentum ; hence P, may be interpreted as the resultant reaction due to

radiation, or as we may call it, the resultant radiation pressure. It is clearly

calculated as if the surface 8 were subject to the Maxwell stress.

In calculating Fi and Fg for a finite system of charges it is however

assumed that the integrals occurring in (XIV) approach determinate limiting

values as the surface 8 increases in size, and that these are independent of

* Lorentz, Enc. Mat. v. 14, p. 161. [Theory of Electrons, p. 26.]
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the shape of the surface. Otherwise we could not use the terms electro-

magnetic momentum and radiation pressure for the system at all. Now in

any case where charges are moving with acceleration, the parts of the forces

d and h, which depend on the acceleration, are ultimately of the order l/iJ,

and therefore the quantities under the signs of integration in (XIV) are

ultimately of the order IjE?. On the other hand the element of surface dS
is ultimately of the order R^dm, and that of volume dCl of the order R^dRda,
where da is an element of solid angle. Hence it may happen that the parts

of space at a great distance may contribute largely to the values of the two

integrals ; therefore it is not legitimate to ignore their influence without

examination.

Apart altogether from these considerations it seems a somewhat circuitous

method to evaluate the forcive acting on a finite system of charges from the

actions that take place in infinite space surrounding them, so far as that

forcive is due to the system itself It is surely more appropriate to express

it by means of integrals extending to the regions occupied by the charges

themselves. This can be done easily by making use of the potentials.

Substitute from (VII) and (VIII) in (VI); we get

f=_V,^-^^ + [v.curla]/c (XV),

where all differential coefScients are partial. Now

[v . curl a] = [v [Va]] = V„ (va) - (vV) a,

where V^ operates only on a, not on v.

When we are dealing with an extended distribution of charge we can

always regard it as continuous, by using the artifice of transition layers. Then
the velocity of elements such as de at {oc, y, z) varies continuously from point

to point ; that is, it is a continuous function of (x, y, si) as well as of t. It is

convenient to let the operation V refer to all the variable quantities which

follow it. If we do this we must write ;r- (va) — a^~ -ay-~ — a,~, and
dx ox "ox ax

so on, in place of the components of V<, (va). Let

dv^ dVy dvt dvo! /yvtn

0-1,, 0-22 and 0-33 are the velocities of elongation in the directions of the three

axes ; 0-23 + 0-32, 0-31 + o-js and o-,2 + 0-21 are the velocities of shear parallel to the

coordinate planes ; and ^ (0-32 — 0-23), ^ (o-js — cr^) and ^ (0-21 — 0-12) are the com-

ponents of molecular rotation about the three axes. The resulting displace-

ment of the pdnt (x, y, z) increases at the rate
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We shall write this vectorially as or, so that cr denotes the operator of the

rotational strain. We may also write

o-r = p(;r + [o)r] (XVII),

where x is the operator of pure strain, and m the molecular rotation. We
shall denote the conjugate strain by o=, so that

?r = xr-[(»r] (XVII').

With this notation we get

V„ (va) = V (va) - 5a = V (va) - %a + [wa],

whence [v curl a] = V (va) — aa,- (vV) a.

Again, the differential coefficient -^ in the expression for f denotes the

da.
local rate of increase of a. Let t- denote its substantial rate of increase,

at

that is, the rate of increase at a given element of charge de, as noted by an

observer moving with it. Then we have jt = "57 + i'^^) ^•

Substituting in the equation for f we get

= _ V U -^H -— -^ + E^
.(XVIII).

c j cdt c

This is the mechanical force on a unit charge at («, y, z) which moves

with velocity V,. and is undergoing strain at the rate or.

[It is worthy of note that the expressions (XV) and (XVIII).also hold with

but slight modification when the origin is moving with the velocity w, and

the axes are rotating with angular velocity Q about themselves. In this case

the symbols v, cr,
;;^;, «, ^ and -^ are all to be taken relative to the moving

axes, (^ is to be replaced by ^ — {vja,)lc — (6ra)/c, and both <p and a are to

be calculated from the absolute velocity, relative to the aether, or if we prefer,

relative to the observer.]

In order to find the total mechanical force P on a system^of charges we

must multiply either of the expressions (XV) or (XVIII) for f by the element

of charge de and integrate over the whole system. In order to get the total

couple N we must multiply vectorially by rde and integrate. That is, we

get
« F=Jfde, N=f[rf]de.

In virtue of the principal of conservation of electric charge, de does not

alter as it moves, so that ^de = 0. Thus the integration with respect to the
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charge is commutative with the substantial differentiation, -r- , not with the

Pi

local differentiation, ^^ . Thus, we have
ot

The symbol ^ jade has no meaning when there is relative motion of the

parts of the system, and the operations ^and Jde are not commutative. For

this reason it is convenient to use the expression (XVIII) for f, rather than

(XV). Hence we get

F = -^ / a fZe/c - J
{V {.^ - (va)/c } + 5= a/c} de .(XIX).

This expression can be transformed as follows. In the second term write

de = pdn,, where dil is an element of volume and p the corresponding volume

density of electric charge.

Integrating the first term by parts we get

/V {<^ - (va)/c} /5 dfl =/{</) - (va)/c} pdS-J{<j>- (va)/c} Vp dCl,

where dS denotes a vector element of surface with the positive normal out-

wards. Hence we get

F = - ^ /a c?e/c - / {(/) - (va)/c} pdS

+ /({'^-(va)/c}Vlog/)-aa/c)pdfl (XX).

The first term in the first line on the right represents rate of decrease of

momentum, not necessarily the whole ; for the second line may, and generally

does, contribute a term of the same form.

The second term in the first line includes not merely a part due to the

boundary of the system, but also parts due to surfaces of discontinuity, when-

ever such exist. But if we regard these surfaces as limits of thin layers of

transition in the usual way, their effect will be included in the terms in the

second line, and need not be considered any further. Then the term in

question represents the resultant of a distribution of pressure on the

boundary, amounting to {^ - (va)/c} p per unit area, and we may regard

the corresponding part of the mechanical force as due to a hydrostatic

pressure throughout the charged parts of the system.

[This resolution of the mechanical force is of importance in connection

with the possibility of a mechanical explanation of the electron to be con-

sidered in Appendix E below. The volume integral in the second liixe of

(XX) generally does not vanish, nor reduce to terms of the type of those in

the first line. For example, the condition that' it should vanish is that

V log p = ffa/(c0 - (va)} ; but in virtue of the equation of continuity for p,

(II), this leads to a condition limiting the character of the motion.
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Just as we derived the expression (XX) for the resultant mechanical

force F, so we may derive the following expression for the resultant couple

:

N = - Jj[ra]de/c-/(<^-(va)/c} p [rdS] +/[va] dejc

+/[r({<^-(va)/c}Vlog/3-?a/c)]p(m (XXI).

The first term in the first line represents rate of decrease of angular

momentum, and the second the moment of the surface pressure, but the

third has no analogue in (XX). The second line, like that in (XX), only

vanishes for particular types of motion. We shall make no use of (XXI)

;

it is only added here for the sake of completeness.]



CHAPTEE II

TRANSFORMATION OF THE POTENTIALS

7. In order to coordinate the facts of our experience we may make the

following assumptions

:

(1) Electric charges of two kinds exist, negative and positive. Their

properties and modes. of occurrence are so different that it is best to treat

them as separate entities.

(2) Electrification of either kind by itself is indestructible. Although

negative and positive charges occasionally perhaps occupy the same space

and neutralize each other's action to a greater or less extent, yet we are able

to separate them by the application of a sufficiently powerful external field.

Thus they do not annul one another.

(3) Neither kind of electrification is distributed continuously through-

out all space ; each is confined to limited regions, separated from each other.

These aggregations of charge are capable of an individual existence and can

move about in space ; they constitute the electrons and ions. Whether their

inertia is entirely electromagnetic, so that they may be regarded as free fi-om

matter, as in the case of the negative electrons, or not, as for positive ions, is

immaterial for our purpose. /
In our problem of determining the radiation due to electric charges in

motion, we are given the position and configuration of each electron or ion

as functions of the time. But the integrals (X) and (XI), § 3, involve the

values of the density p and velocity v of the electric charge which is at each

point (^, 77, f) of space at the time of emission t — B/c. It is desirable to

transform them so as to put in evidence the data actually given, that is to

say, the coordinates and velocities of every element of charge at the time t.

Every such element de can be identified by means of three parameters, which

may be its initial coordinates, or any three independent functions of them

;

and its coordinates (^, tj, f) at time t will be certain prescribed functions of

these parameters and of the time t. Our transformation corresponds in some
sort to the passage from Eulerian to Lagrangian coordinates in hydro-

dynamics.
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Regarded as functions of t, the density p and current pv for a given point

of space may in the limit be discontinuous, when the boundary of an electron

crosses that point ; or they may be infinite, when a charged surface passes.

But from the nature of the case the number of such discontinuities or

infinities occurring during a finite interval of time is necessarily finite and

for each infinity / [/a] dr is finite. Hence the quantities [p] and [pv], which

occur in the integrals (X) and (XI), can always be expressed as Fourier

Integrals. If we suppose the values of the density and current at the point

(?) »7, ''0 ^6 given for all values of the time, we may write

W =
2^J J ^e "^ (*--«/«-' pdrcZ/. (1),

[pv] = jj-p r e'l^V-R/o-r) p^drdfjL (2).
ZttJ -on J -oo

Here p and pv are prescribed functions of t involving ^, 17, f as parameters,

while

B=^/{(<^-^y+{y-vy+(^-0'} (3),

and is a function of x, y, z, |, tj, ^ but not of t. It must be particularly noted

that the positive sign is always to he taken for the root, since the time of

emission of the disturbance from (|, -q, f), namely t - Rjc, is always anterior

to the time t.

If however we prescribe the values of the density and current only for

times anterior to the actual time t, we must use the Cosine and Sine Integrals,

and write
ft

cos ytt (i — Rjc) cos /iT .pdrd/M

or [p] = - I sin yu. (i — Rjc) sin /at . p drdfi,
ITJo J -00

with similar expressions for pv.

In this case it is simpler to change the variable from t to a-=t-T, so

that a is the time reckoned back from t to all past time. Thus we may

write
2 TOO ri+oo iiJl

Tpl = - / cos *-— cos fia- . pt-a .da-djjb (4),"^
TTJo Jo c

rpvl = -l I
cos^-— COS ijLa-.(p-v)t-„.d(7dfi (5),"^

TTJo Jo c,

2 /•<» rt+'^ u,R
or \p]=-l I

sin^^ sin iMo-.pt-a-da-dfj, (6),^
TTJo JO c

[pv] = - / j sin ^—- sin aa- . (pv)e_^ . d(Tdfi (7).
"^ irJo Jo c

The upper limit for o- is written t + x to indicate that, although

independent of o- and /*, it is not an absolute constant, but a function of t.
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The importance of this fact was pointed out by Lindemann* in his criticism

of Sommerfeld's calculation of the mass of the electron.

8. Thus we have the choice of three methods of representation, either

by means of (1) and (2), or (4) and (5), or (6) and (7). The last two

equations, as we shall see later, lead to Sommerfeld's well known expressions

for the potentials of a spherical electron. They have the disadvantage of

failing at the limit a = 0, that is, T = t; but this is of importance only

when R = 0, that is, for points close to the element of charge de. This

however does not matter very much, since the elements of charge close to

the fieldpoint (x, y, z) contribute only a vanishing amount to the potentials,

as in the ordinary theory of the potential. Nor does it affect the values of

the forces due to volume distributions for the same reason ; but it may very

well lead to error in estimating the forces due to surface distributions, where

the elements of charge contribute largely to the forces in their immediate

neighbourhoods.

It is interesting to note that Sommerfeldf comes to the conclusion that

while the motion of a spherical volume charge with velocity exceeding that

of light is possible, the motion of a spherical surface charge with such a

velocity is impossible, because it involves an infinitely great mechanical

force. It would be interesting to enquire, although beyond the scope of the

present investigation, whether this difference may not after all be due to the

failure of the integrals (6) and (7) to represent the motion completely at the

time T = t.

Again, the deduction of the electric and magnetic forces from the

potentials involves differentiations with respect to t, x, y, z; we must

therefore enquire how far it is allowable to differentiate the Fourier integrals

which we have obtained.

As regards (1) and (2) differentiation is allowable provided p and pv
vanish at both limits, conditions which are generally satisfied in all physical

applications. These conditions however are not sufficient for the cosine and

sine integrals (4)—(7), which involve t in the upper limit, as well as in the

functions pt-o and {pv)t-a- The difficulties arising from these causes have

been completely discussed by Lindemann in the memoir already referred to,

but they may be completely evaded by the use of the integrals (1) and (2).

At first sight it might appear that these latter integrals require more

data to be given than the others, since they involve the values of p and v
for future as well as for past time. This difficulty however is only apparent

;

for we may choose the values of p and v quite arbitrarily so far as future

time is concerned. But when these values have been so chosen, the values

* Abhandlungen der K. Bayer. Akademie der Wiss. ii. Kl. xxiii. Bd. ii. Abt. p. 320, 1907.

t GOttinger Nachrichten, 1904, p. 387.
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of [p] and [pv] are quite determinate for all time, and this is the important

point—they have the proper values for all past time, whatever values of p
and V be selected for the future. If experience should show that at some
future time the values of [p] and [pv] ceased to be correctly represented by
the integrals (1) and (2), because the charges had not moved in the way that

was anticipated, that would only be in accordance with our limited power of

foretelling the course of future events. For these reasons the integrals (1)

and (2) constitute the best foundation for our investigation. They lead to

the expressions for the potentials given by Schott*.

9. Schott's solutions. Substitute the values of [p] and [pv] from

(1) and (2), § 7, in (X) and (XI), § 3; we get

<t>=^jdnf f
,'''(*-^/-)P^

(8),

a = 2^Jdfl£ f
,'M.-iB/.-.)pv^

^g^_

Here R = V{(« - ^Y + (y- vT + (« - D1 1 it is a function of the six in-

dependent variables x, y, z, f, 17, f, but not of r. p and pv are prescribed

functions of ^, rj, f and t. dD, = d^drjd^ and the integration is for all parts

of space for which p is different from zero. Thus the variables (^, ij, f, t)

are analogous to Eulerian coordinates in hydrodynamics.

It has already been pointed out that the data usually available are the

coordinates of each element of charge for every value of the time t. Any
element of charge de pursues an individual existence, and therefore can be

identified by means of its initial coordinates (^0, rjo, fo) for any selected

standard time To. Its coordinates (^, rj, ^) at the time t are given by

equations of the type

^=f{^o>Vo,?o,r), V = 9 (^0, Vo, ^0, t), ?= A(^o,'?o> ?o>t)---(10X

where the form of each of the functions/ g, h is known.

The set of variables (fo, Vo, ^0, t) constitute, as it were, Lagrangian

coordinates of the element.

Since the charge is indestructible we have

de = pd^dr) d^= po<^?o«^of^?o (H).

where p^ is the density at time t^ and therefore independent of t.

We may in our integrals choose the element of volume dD, arbitrarily for

each time t, since this only amounts to a rearrangement of the terms of a

triple sum which is for physical reasons known to be absolutely convergent.

Selecting any value of t, choose dD, to be the volume of the element of

charge de at the time t> Then pdD = de. But for this element de is the

* Ann. der Phys. 24, p. 637, 1907.
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same for all times t; hence we can, if we please, change the order of

integration and sum with respect to t first.

Thus we get from (8) and (9)

•^^^/^^r r
^'"-'-^""''^

(12).

alfdef r e"'^*-^/"-^)!^^ (13).
277-CJ j-ccj-cc B

Here i2 is a function of x, y, z and t, as well as of the parameters %^, rjo, fo

—

briefly of the charge de—in virtue of the equations (10). The expressions

(12) and (13) are essentially different in character from (8) and (9) ; for

whereas the latter, regarded as functions of t, are Fourier integrals, because

jR does not involve t, the former are so no longer, since in virtue of the

transformation (10) iJ has become a function of t.

The remaining integrals (4)—(7), § 7, lead to analogous expressions :

•^^^J^'Jo Jo
<^os-oos^cr-^ (14),

= —
I
de

I I
cos ^^^ cos itff —75-^ (15),

d

2 r , [- /•<+"
. ,iR . dadix

"^^^JH Jo ^^^v^^'^^"
V^ (1^)'

^=.^J^'Jo Jo ^^'^T^^^'^'^^r^ (1^)'

from (6) and (7).

Here a is time measured backwards from the variable instant t, and

^, 1?, ?, R, V are therefore functions of i-o-. The solutions (16) and (17)
will be found later to lead to Sommerfeld's solutions for a spherical electron.

10. Electric and magnetic forces. The equations (VII) and (VIII),

§ 3, at once lead to the expressions for these forces. Remembering that

Vi? = Ri,

where Rj denotes the unit vector in the direction of R, we get from (12) and
(13), § 9,

27rcaJ*^i_J_' 1

'0 Jo

2 ! ,

a
'o Jo

from (4) and (5) ; and
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The first integral in each case, being of order l/R, is effective at large

distances from the charge, the second at small ones. It is easily seen that

for a finite system of charges, and at a fieldpoint at a distance so large

compared with the dimensions of the system, that quantities of order l/i?"

may be neglected and Ri treated as a constant vector, we have h = [R^ . d]

and = (Ri . d). That is, at great distances h and d are at right angles to

each other and to the radius vector, just as in the case of a Hertz vibrator.

It is to be noted that in (18) and (19) the differentiation ^ is partial,

(x, y, z) being kept constant. This is of importance in calculating the

mechanical force exerted by the system on a moving charge.

In the same way other expressions may be deduced from (14)—(17), § 9,

but as they are more complicated and will not be required in our investiga-

tion, we refrain from writing them down.

2—2



CHAPTEE III

OTHER TYPES OP SOLUTION

11. We shall now compare our solutions with other expressions which

have been given by various authors. It will be found that these can all be

deduced from the integrals (12)—(17), § 9. The proofs may serve as a

verification of them.

Sommerfeld's solutions*. Sommerfeld has given expressions for the

potentials due to spherical electrons carrying uniform surface or volume

charges. These may be deduced as follows from the expressions (16) and

(17). Consider first the case of an electron of radius a charged with e units

of electricity uniformly distributed over its surface.

Take the centre as origin of polar coordinates; let the fieldpoint be

at {r, 6, ^) and the element de at (a, 6', <^'). We may write

„ „ „ „ , , e sin 6' d0'd<b'R = ^(r" + a'- 2ra cos 7), de = -^ ^
,

where cos 7 = cos ^ cos 6' + sin 6 sin 9' cos (</> — (p').

Write fM = cs; we get from (16)

<b = T^—

5

sva.6 da dd>
\

sin Us . sm cscr . -^f^—

.

^ 27rVo Jo ^ Jo Jo -K

Now sin Rs= iJ{^irEs) J^ (Rs), and by a theorem due to Gegenbauerf

Ji (Rs) =y(^^) 3% + ^)Jn+i (rs) Jn+i (as) Pn (COS 7). . .(20),

in the usual notation of Bessel Functions and Zonal Harmonics.

Substituting this in the expression for
<f)
and integrating over the surface

of the sphere, we find that, owing to the presence of the zonal harmonic,

every term vanishes except the term n = 0, and we get

2ec 1"°°

f«+°°
. . . dsda- .„^.

tp= sm as . sm cso- . sm r-s (21),
n-arJo Jo s ^ "

* Gott. Nach. 1904, pp. 107—HO.
+ Gray and Mathews, Bessel Functions, p. 239, Ex. 50.
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which is identical with Sommerfeld's expression (16), but for slight differences

of notation. The chief difference is that the upper limit for the t integration

is expressed as i + oo , and not simply as oo , in accordance with the contention

of Lindemann already referred to, that the upper limit must be treated as

variable in differentiating to derive the electric force. The reader who is

desirous of following up the controversy between these two authors will find

their papers in the Abhandlungen and in the Sitzungsherichte der K. Bayer.

Akademie for 1907 and 1908, and a paper by Schott in the Annalen der

Fhydk, 1908, 25, p. 63.

Sommerfeld's expression for a volume charge is got at once from (21) by

putting r' for a, 2>er''^d/r'ja^ for e, and integrating with respect to r' from to a.

We get

, 6ec /"
f'"*"" sin sa — sa cos sa . . dsda- ,„„,9= -,—rr sincso-.sms) (22),

TrarJo Jo {scCf s

agreeing with Sommerfeld's expression (18).

The expressions for the vector potential are got from (17) in precisely the

same way.

12. New solution for the sphere. Proceeding by the method just

used we can get a new solution from the integrals (14) and (15), § 9. We
have an expansion corresponding to (20),

cos Bs = s/{\irRs) . 7j (Rs)

= -^[fjn + ^)J,^^(rs)Y,^^ias)P,{cosy)...(23),

provided r<a. It r>a,r and a must be interchanged.

Using this in (14) we get at once for a surface charge

ds

.(24).

ec /°° , /"
f ,_, V , . ds . ^ .

(f)= I dr I coss c(i- t) — a smsr— , {r < a)
n-arj _^ Jo s

ec f^ , f" , ,^ . , . ds , ^ .= dr I coss c(i{ — t) — r smsa — , (r>a)
'TrarJ-^ Jo «

As before we get for a volume charge

Sec r°° /"' .„„ ,(sinrs,^ , ,„ ^) dsdr ,„^^

In these expressions r is the distance of the fixed point (x, y, z) from the

moving centre of the electron. Thus it is a function of x, y, z and t, but not of t.

In Sommerfeld's integrals, where r is replaced by a- = t — T, on the other

hand r is a function of x, y, z and t—a; that is, a function of t. This is the

essential difference between the two types of solution.
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13. The point laws of Li^nard"*" and Wiechertf. These writers

have given the following expressions for the potentials due to a unit electric

charge of small dimensions at a fieldpoint so distant that the charge may be

treated as if concentrated at a point

:

*-[KiI r-*^"''

-5^ <^')-

The square brackets mean that the enclosed function of the time is to be

taken for a time t given in terms of the actual time t by the equation

t=T+Rlc (28).

In other words the disturbance which reaches the fieldpoint at time t

was emitted by the unit charge at time t. [We shall call (28) the charac-

teristic equation of the motion.]

K is the so-called Doppler factor ; it is given by

K=P^ = 1 + Y^ = 1-(..:R.)/c (29).

There has been some controversy as to the proof and the proper expression

for the point law
J.

We shall now show that, provided the velocity of the

electron be less than that of light, the expressions (26) and (27) can be

deduced without ambiguity from the general expressions (12) and (13), § 9,

so that there can be little doubt as to their correctness, at any rate so long as

the velocity of the point charge is less than that of light. The proof however

can be extended so as to give the proper expressions when the velocity of the

charge exceeds that of light.

Change the variable in (12), § 9, from t to t', where

«' = T + f (28').

Weget 'f'^hhT-J'^h'-''^"
where K' and R' are the values of K and R when t' is substituted for t by

means of (28'). The limits remain to be determined.

In the first place suppose the velocity of the electron to remain constantly

less than that of light.

Since ^' = 1 — (v . Ri)/c, and the tensor of v < c, while th^t of Ri is unity,

it follows that K', that is, -r- , is always positive. Hence as t increases from

« L'^clairage glectrique, July, 1898.

t Archives nSerlandaises, 1900, p. 549.

J De la Rive, Archives de Geri&ve, 1907, p. 433.
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— X to + CO ,t' constantly increases between the same limits. Thus the new
limits for are also — oo and + oo .

But the double integral for
<f>,

namely

J —no J -00

is a Fourier integral, and has the value 2irl[KR]. For the equation (28')

reduces to (28), since the function IjK'E' is to be taken for If = t. Hence

deH[KB]
.(30).

In the same way (13), § 9, leads to

=/ [v]de
.(31).

c[KR]

These equations express the point laws in another form ; in fact when R
is large compared with the linear dimensions of the charge, so that the latter

may be regarded as concentrated at one point, and when the total charge is

unity, (30) and (31) reduce to (26) and (27) respectively. When however the

charge is extended we must use the former equations.

[Similarly we can get expressions for the electric and magnetic forces by

differentiating (30) and (31), or, for a point charge, (26) and (27). We may
also deduce them from (18) and (19), § 10, as we deduced (30) from (12), § 9.

The latter method gives for a unit point charge

-I c'KR
+

d =
dt

"Ri - v/c'

cKR

cKR^\ '

We must bear in mind that the quantities in the square brackets are

functions of t, where t = i — Rjc, by (28), as well as of {x, y, z) explicitly.

3t
By (29) we have ^ = l/iT ; hence we find

dKR
cdt

cdt'
and

Using these results we find

h =

1 - {(vR) + 0= - v^}/c''K,

{Ri (1 - ^) - v/c}IKR.

[vRi]
,

[vRj{(vR)+c^-^°F
c'K'R

"^

c''Km'

d =
c^K^R

+
(Ri - v/c) {(vR) + c^ - V']

c'K'R'

.(32),

.(33).
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These equations agree with those found by Li^nard (loc. cit. p. 4). They

show that the terms involving the acceleration v are of the order R~^, while

those involving the velocity only are of the order R~^. The former pre-

ponderate at great distances, the latter near the charge.

We see that h ^ [Rid], that is, the magnetic force is perpendicular to the

radius vector and the electric force everywhere. Also (Rid) = (c^— v')ld'K'R^ ;

thus the electric force is not transverse to the radius vector, except when the

velocity of the charge equals that of light, but the deviation from transversality

becomes smaller and smaller as the distance increases.]

14. Point law for velocities greater than that of light. The

preceding investigation obviously applies so long as K', that is dif/dr, does not

vanish. Now by (29) we have

ir' = l-^'cos^',

where ^ = v'/c and 0' is the angle between the directions of the velocity and

the radius vector drawn from the point charge to the fieldpoint, all for the

time t'.

It may very well happen that even when /S' > 1, yet /8' cos 6' < 1,

particularly in directions approximately transverse to the direction of motion,

for example, in the case where the path is a plane curve of small dimensions,

and the fieldpoint is in a direction nearly perpendicular to its plane and far

away. In this case (30)—(33) still hold.

This ceases to be the case when K' vanishes at any time ; this certainly

occurs when 13' >1 and the fieldpoint lies in the direction of motion, so that

6' = 0. Thus (30)—(33) fail for some points of the field, whenever the velocity

exceeds that of light.

Now we have t' = t + Rjc, while R is essentially positive ; hence f= oo

when T = 00 , whether R be finite or not, so that for large positive values of

T K' is certainly positive. Its behaviour for other values is best seen from a

diagram.

Plot a graph of t' against t*. The

line AB is given by t' = r, and the graph

lies above it everywhere.

Let P be the minimum correspond-

ing to the greatest value of t which

makes K' vanish, Q the next maximum
(if it exist), R the next minimum (if it

exist), and so on ; and let OK, OL, OM, . .

.

be the corresponding abscissae. In the

interval Rcc we have K' positive;

denote this interval by a sufiix 1, so that Ki'>0. In the interval LK, K'

* [We shall call the curve PQR the characteristic curve of the motion.]

Fig. 1.
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is negative ; denoting this interval by suffix 2 we have K^ < 0. Similarly in

ML we have K^ > 0, and so on. It is obvious that for the last interval

extending to t = — oo , K' is positive or negative according as ^' is — oo or

+ 00 . In the former case the number of intervals is odd, and the number of

maxima and minima together even, being one less; in the latter case the

reverse is true.

Denote OK, OL, OM, ... by ti2, r^, rat,..., and KP, LQ, MR, ... by fi2, if^s,

IfSi, ..., the pair of indices referring to the index numbers of the adjacent

intervals. Then we have obviously

Tl2 > T2S> Ts4 > ...,

whilst i'i2 may be greater or less than t'si according to circumstances.

Let the number of intervals be p, so that the last pair of critical values

are Tp-i, p and i'p-i, p. When p is even we have a minimum, and Kp'< ;

when it is odd, we have a maximum, and Kp > 0.

We may write (12), (§ 9), in the form

^^^W-V"(/mm:--/::" )—$
where the limits for the several integrals have been put in evidence

explicitly.

Transform from t to tf ; we must write dt = dt'/K' and arrange each

integral so that the new variable t' increases throughout its range. Thus

we must put

p _ p ctt' p=, __r*''=d^ p3 _ rf^>d{

and so on, and finally,

/%-i., , ft'p-i.pdt' r dt'

i-„ ^"=J-. K" '' "L,,^'
the first or second alternative being chosen in the last case, according as K'

is positive or negative, that is, according as p is odd or even.

Hence we get

27rJ J -00 Uif.j, Jt\i Jt'^ '" i-=o ' Jfp-i.p/ K'E'

Each of the integrals on the right-hand side is a Fourier integral of the

usual type, and its value is ^^ , or zero, according as t lies between, or
\_KK\

outside, the limits of the integral. The square brackets are used as usual to
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denote that in the function KR the variable t is to be eliminated and t

substituted by means of the characteristic equation (28), § 13.

Thus we get

The suflSxes have been added to indicate the various intervals for t. It

is to be understood that each term is present when t lies within the interval

belonging to it ; whether it lies within other intervals at the same time or

not is immaterial. When t lies outside any interval the corresponding term

is absent. Since K is positive in the first, third, . . ., in fact in all odd intervals,

and negative in the even ones, it is obvious that every term of (34) is

essentially positive, and that no two terms can ever annul one another.

A precisely similar expression is got for a, viz.

n\{K,R,-\ [KAYiKA] --[K^R^y ^'*°''-

15. For example, suppose that ^ = 2, so that we have but one stationary

value of t, which is necessarily a minimum, since t and t become + oo to-

gether. We get from (34),

= 0, when t < t'l^.

In other words, until t= t'l^ there is no disturbance at the given fieldpoint

at all, not even an electrostatic one. The character of the field changes once,

at the time t'l^ ; the change is discontinuous in this sense, that the form of

the potentials changes suddenly. The values of the potentials and of their

differential coefficients up to a certain order are continuous, but the

differential coefficients from some finite order onwards are discontinuous

when t = t\2', otherwise the potentials would always be zero, for t>t'ii, as

well as for i < t'l^.

Since the critical value t\2 is determined as the single real root less than

t of the equation K'=0, regarded as an equation in t', it follows that when
t = i'i2, each of the two terms in the expression for ^ becomes infinite. As
we have already pointed out, K^ is positive and K^ negative, whilst Ri
and JSj must both be taken positively. Hence both terms are essentially

positive, and cannot balance each other. Apparently ^ becomes infinite

for t=t'ii.

This however is not really the case ; the infinity affects only one element

of charge de at a time, and this element contributes only an infinitesimal
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amount to the value of (p in its neighbourhood or elsewhere. Hence the

value of (^, and similarly that of a, due to an extended distribution of charge,

remains finite and continuous everywhere, although that due to a finite charge

concentrated in a point, if that were physically possible, would become

infinitely great, not only at the charge itself, but at all points for which t

had the critical value t'l^-

The case just considered occurs for a charge moving with uniform velocity

in a straight line when its velocity exceeds that of light, as we shall see

later.



CHAPTEE IV

PHYSICAL INTERPRETATION OF THE SOLUTIONS OBTAINED

16. We have obtained two types of solution of the problem of finding

the potentials due to an electric charge moving in a prescribed way. The

first type, given by the equations (12)—(17), § 9, requires the evaluation of

double integrals, which may be regarded as generalisations of Fourier's

integrals. The second, given by the equations (30)—(35), §§ 13, 14, consti-

tutes a generalisation of the ordinary " point-law '' expression for the electro-

static potential. It requires the solution of the characteristic equation,

t=T + Rjc, where R is given as an explicit function of t. The value of t

found must be substituted in the function 1/KR occurring in the integrals.

The solution of the equation in finite terms is rarely possible ; moreover its

solution by means of infinite series, by the use of Lagrange's Theorem or

some equivalent expansion, has only been effected in the case when the

characteristic equation has only a single real root less than t, that is, when
the velocity of the charge has never at any time exceeded the velocity of

light.

It is true that fi:om a 'physical point of view this restriction, at any rate

at present, is of no moment, since no experiment has yet been made which

indicates the occurrence of such large velocities; whilst useful physical

theories such as the " Relatiftheorie '' of Lorentz and Einstein are incompatible

with their existence. Nevertheless from the standpoint of complete mathe-

matical generality this limitation is undesirable. In so far as the use of the

integrals (12)—(17) does not require it, these integral solutions are preferable.

Even when velocities exceeding that of light are excluded and the solution

of the characteristic equation can be effected by means of infinite series,

these series can often be obtained more directly from the integrals. But the

integrals can also be used directly for the calculation of the field due to the

system of charges and of the mechanical forcive acting on the system. In

fact they have been so applied by Sommerfeld* and by Lindemannf to the

* Loc. cit. Gott. Nach. 1904, pp. 99, 363 ; 1905, p. 201.

t Abh. der K. Bay. Akad. ii. Kl. 1907, p. 235 and p. 389. See also the discussion in the

Sitzungaberichte der K. Bay. Ahad. ii. Kl. 1907.
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problem of the uniform rectilinear motion of a spherical charge and also to

that of its quasi-stationary motion. Even in these simple cases the investiga-

tion is very exacting and liable to error, because the integrals are discontinuous.

For this reason the safest, though perhaps a circuitous, method is to develope

the integrals in series and determine the electric and magnetic forces from

them, and to calculate the mechanical reaction on the system by direct

integration over it. This is the method we shall follow later.

17. Although the point laws are unsuitable for the actual calculation of

the forces of the field, they give us the best picture of the physical processes

involved in the propagation of the disturbance from the moving charge to the

observer. For this reason we shall consider them a little in detail.

The characteristic equation, t = T + Rjc, may be interpreted as follows :

R is the distance from the fieldpoint («, y, z) to the point (^, 77, f), where

the element of charge was at t, the time of emission of the disturbance which

reaches {x, y, z) at time t. The equation simply expresses the fact that the

disturbance traverses this distance with the velocity c.

If {x, y, z) be regarded as a variable point, then the equation represents a

sphere, whose centre is at {^, rj, ^) and whose radius is c{t — t). The sphere

is the position at time t of that wave which was emitted by the moving

charge when it occupied the position (f, 7), ^), at the time t.

If t be regarded as a variable parameter, the equation determines a

family of concentric spheres, namely the successive positions of the particular

wave emitted at the time t.

If T be regarded as a variable parameter, it determines a family of

spheres, whose centres lie on the path of the charge, namely the positions at

any time t of all the waves emitted up to that time.

So long as the velocity of the charge is less than that of ligh^ the oldest

wave contains' all the subsequent ones, and every wave equally contains all

Fig. 2. Fig- 3.
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the later ones, and therefore also the whole of that portion of the path

described subsequent to its time of emission, as shown in Fig. 2. In this

case no two waves intersect.

When the velocity of the charge exceeds that of light, so that the charge

outruns the waves emitted by it, some of the waves cut each other as shown

in Fig. 3. Thus the family of spheres has an envelope PEQ, with a cusp

at E, the position of the charge at time t. The envelope may have several

sheets, but only one is shown.

If both t and t be regarded as variable parameters, the characteristic

equation represents a doubly infinite system of spheres, namely all the

positions of all the waves emitted by the charge. We get this system by

supposing either family of spheres just considered to take up all possible

positions ; for instance, the second family may be supposed to expand, each

sphere with the velocity c, while new spheres are being constantly generated

as the charge moves along, and the envelope is constantly being added to at

the cusp and is moving outwards elsewhere.

All these families of spheres can be constructed quite uniquely when the

path of the charge and its law of description are given ; and the construction

thus supplies a complete solution of the problem of determining the dis-

turbance at every point of the field. [See note at the end of this chapter.]

18. In practice however the problem is different ; we fix upon a definite

fieldpoint {x, y, z) and a definite time t, and wish to determine the values of

the potentials for these particular values without having to solve the whole

problem at the same time.

So long as the velocity is less than that of light there is no difficulty,

beyond the labour of computation. If the fieldpoint be outside the oldest

wave emitted by the moving charge, there is no disturbance there, for as we

have seen, this wave includes the whole region of disturbance.

If it be inside it is disturbed, but only by a single wave at a time ; for no

two waves, corresponding to the same value of t, but to different values of t,

ever intersect. Thus t being given, t is determined uniquely ; the charac-

teristic equation gives but one real value of t less than t. The corresponding

values ofK and i? can be calculated, if not directly, at all events by means of

Lagrange's Theorem, and the values of the potentials are then given by (30)

and (31), § 13.

When the velocity exceeds that of light, difiiculties arise for points

inside the envelope corresponding to the time t. Every such point is the

intersection of at least two waves emitted at different times ; for instance, in

Fig. 3 the point G is the intersection of the spherical waves whose centres are

at the points A and B. For points on the envelope the two waves touch,

and their centres coalesce. For points outside it the waves are imaginary.
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In this case the characteristic equation, regarded as an equation giving t
when X, y, z and t are prescribed, has two or more real roots less than t, one
corresponding to each of the waves which reach the point (x, y, z) at the
time t. When (x, y, z) passes the envelope, two of these roots become equal

and then imaginary. Thus the envelope is the locus of points for which
two roots of the characteristic equation are equal and is given by the equation

or c or
.(29).

The roots of this equation are just the critical values T12, r^, Tsi, ... used in

§ 14 ; and the corresponding values of t, given by the characteristic equation,

are identical with the maximum and minimum values of t', denoted by i'^,

t'aat i'si, ••, both sets of quantities being taken for the prescribed values of

{x, y, z). They are perfectly determinate functions of (x, y, z) ; therefore

an equation, such as t'^ = t, represents a family of surfaces, namely the

successive positions of one of the sheets of the envelope, such as PEQ in

Fig. 3. When the characteristic equation leads to p— 1 double roots T12,

T23, ... Tj,_i_ p, the set of^ — 1 equations

*
12 — f) 5 23 ~ *) •- tp—iip^t ("")

determines p — 1 families of surfaces, each of which represents the successive

positions of one of the ^^ — 1 sheets of the envelope. These sheets separate

space into regions, differing as regards the number of waves which reach a

point simultaneously. As we pass from one region to the next, this number

changes by two, either because two waves coalesce and become imaginary, or

because two new waves appear.

The interpretation of expressions (34) and (35), § 14, is obvious ; fixing

our attention on the particular fieldpoint (x, y, z), let us draw the (t, t) curve

corresponding to it, as in Fig. 1, § 14. Two cases occur : in the one i is — 00

when T is — 00 , and the curve has an even number of maxima and minima

of ^ ; in the other t = + co when t = — 00 , and their number is odd.

Fig. 4.
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In the first case, to begin with there is one wave, until the time corre-

sponding to the least of all the minima is reached, say at A. Until this

moment each of the expressions (34) and (35) has but one term.

At the time A the first sheet of the envelope reaches (x, y, z), and there-

after this point is disturbed by three waves simultaneously, corresponding to

the three points in which the horizontal BCD cuts the characteristic curve.

Each of the expressions (34) and (35) now has three terms, one representing

the efiect of each wave.

This continues until another sheet of the envelope reaches the point

{x, y, z) ; if it correspond to a maximum, as at E, the oldest wave coalesces

with one of the later pair, and only one wave remains; accordingly the

expressions (34) and (35) are again reduced to single terms. But if the

sheet of the envelope correspond to a second minimum, as at F, two new

waves appear, so that {x, y, z) is disturbed by five waves at once, and the

expressions (34) and (35) each have five terms. It is easy to understand

what occurs in other possible cases : whenever the passing envelope sheet

corresponds to a minimum value of t, two new waves appear, but for a

maximum two waves already present coalesce and disappear. The number of

waves disturbing (x, y, z) simultaneously is always odd. (Fig. 4.)

In the second case there is no disturbance whatever to begin with. The

first envelope sheet to reach {x, y, z) corresponds to a minimum, as at A,

and brings with it two waves ; accordingly the expressions (34) and (35) have

two terms. The second envelope sheet again corresponds to a minimum, as

at B, bringing two new waves, so that now the point {x, y, z) is disturbed by
four waves at once, and the expressions (34) and (35) have four terms. If

the next envelope sheet correspond to a maximum, as at G, two out of the four

waves coalesce and disappear, otherwise we may get six. In every case we
have an even number of waves. (Fig. 5.)
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An example of the first case is, as we shall see presently, afforded by the

problem of the uniform rectilinear motion of a charge when its velocity is

less than that of light ; and one of the second by the same problem when the

velocity exceeds that of light.

When the moving charge starts from rest, or when its motion is suddenly

changed by some impressed force, these results are modified to this extent,

that the disturbance at the point (x, y, z) only begins when the first spherical

wave emitted by the charge reaches it, or that the character of the disturb-

ance changes suddenly on the arrival of the wave emitted by the charge when

its motion was suddenly changed.

19. Graphic representation of the potentials. The characteristic

curve for the fieldpoint {x, y, z) affords a graphic representation of the

potentials, which is sufficiently accurate to allow us to draw conclusions as

to the relative importance of the terms due to the several disturbing waves.

The diagram represents a characteristic curve with two minima and one

maximum. The horizontal ABGDK is shown cutting it in four points

Kg. 6.

A, B, C and D, corresponding to four disturbing waves. Let it cut the line

t=Tm the point K, and draw the ordinate EGKHF, cutting the tangents

to the curve at A, B, G and D respectively in E, F, Q and H (the inter-

section E is not shown in the diagram).

Consider the effect of one of the waves, say that of B. The term due to

it in the potential is by (34)
de

h[KAY
where it is to be remembered that the square bracket denotes that the value

of T for B is to be substituted in K and B. The term is numbered 3 because

B lies in the third interval of t, reckoning firom t = + oo . The value of K3

is positive, because B is on an ascending branch of the (t, t) curve, and

K = ^. Thus [Ks] = tan KBF.
OT

3
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Again, i?3 = c(<— t) by definition (characteristic equation); thus [Bs] =c
times the intercept MB. But MB = BK; hence

[K, B,'\ = c. BK tanKBF = c.KF.

In precisely the same way we have

[K,B,]=c.KH, [K,R,] = -c.KG, [KA]==-c.KE,
where KE, . . . denote distances without regard to sign.

Now for the present case (34) gives1111
Henceweget ^ = i

Jd. {^ +^^+^ +^| (37).

Similarly ^ = oV'^^ {S +S +
H +S} <^«)'

where v^, ... denote the velocities of the element of charge at the times of

emission t^, ... of the waves A, ....

These expressions show that generally the most important waves are

those which have been emitted most recently, e.g. the wave D. But two

waves rise into exceptional importance as they approach to coalescence,

since in that case the inclinations of the corresponding tangents of the curve

to the horizontal approach the limit zero, and their intercepts on the ordinate

tend to vanish.

20. [Note. Geometrical constructions. The relations between the

path of the charge, the waves emitted by it and their envelope are rendered

much clearer by the following geometrical constructions.

We saw on p. 29 that the spherical wave emitted at time t from the point

i^> V, ?) is represented in its position at time thy the characteristic equation

(a) t = T + R/c (28),

where R = */((« - ^f +(y- vf + (» - 0"]-

The equation of the wave-envelope is got by eliminating t between this

equation and its first differential

(b) R' = -c (89),

where R' is the total differential coefiScient with respect to t, (^, t), ^) being

treated as given functions of r. We shall denote the resulting eliminant by

(ab).

The geometrical interpretation of (39) is simple. Any two waves (a),

emitted in positions E^ and E^ of the charge, intersect in a circle. As t

changes, E^ and E^^ remaining the same, this circle describes a hyperboloid
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of revolution with E-^ and E^ as foci and real semiaxis equal to Jc (tj - tj). If

E^ and £'1 be allowed to coincide the hyperboloid reduces to the asymptotic

cone, and if its semivertical angle be 6, we obviously have cos 9 = cjv, where
V is the velocity of the charge at the time of emission t. The front half of

this cone belongs to times t greater than t. Now we have identically

^^_(-^i)i±(^^)l±(-:iLL-.cos^ (,o).

Thus (39) is the equation of the front half of the asymptotic cone.

The semicone (39) obviously cuts the spherical wave and the wave-
envelope perpendicularly. The circle of intersection is a line of curvature of

the envelope, the vertex is the corresponding centre of curvature, and the

path of the charge represents the corresponding sheet of the surface of

centres.

The condition that three successive waves {a) touch is

(c) R" = (41).

Eliminating t between (6) and (c) we get an equation (he), involving

neither t nor t, but only {x, y, z). It represents a fixed surface along which

three successive waves (a), and therefore also two sheets of the wave-envelope

(a&) touch. Thus the wave-envelope has a cuspidal ridge, which as it moves

generates the surface (6c).

But (c) also represents the condition that two successive semicones

(6) touch, and therefore the surface (6c) is also the envelope of the family

of semicones. Since each cone is normal to the corresponding wave, and to

the envelope, the surface (6c) is also the second sheet of the surface of centres

of the family of envelopes, which are parallel surfaces.

Again, differentiating (40) we get

EE" = r + ^^ + ^ - i(^^iifc(^^^>^±^^^^^

-(«^-^)|-(2/-'?)^-(^-D?.

Let / be the resultant acceleration of the charge at time t, and i/r the

angle it makes with the radius vector R. Then using (40) and (41) we get

/iJ cos -f = «" - c^ (42).

This equation, together with (39) and (40), enables us to construct the

cusplocus (6c), when we are given the path of the charge and its mode of

description.

Since the cusplocus forms one sheet of the surface of centres of the

envelope we can by means of it construct the envelope for any time t.

3—2
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In Fig. 7 ^ is the position of the charge at the time t, ET the direction

in which it is moving, and EF a length

equal to (v'-c')//, drawn in the direction

of the resultant acceleration. The plane of

the paper is the osculating plane at E.

PEP' is the trace of the semicone (b), so

that PET = P'ET=-d-= cos-^ {cjv).

PFP' is perpendicular to EF.

The dotted curve PP' is the conic in

which the cone (&) is cut by the plane (42),

which passes through PP' and is perpen-

dicular to the osculating plane TEF. The

cusplocus is generated by this conic, and is

indicated by its traces at P and P'. These

traces touch PE and P'E respectively.

Again, to construct the envelope, we

get from (39), (40), and (28)

RR' cR

Fig. 7.

jR cos ^ = — -

o'it-r)
.(43).

Make ET = d' (t - t)Iv, and draw K'TK perpendicular to ET. The plane

through KK' perpendicular to the osculating plane is given by (43), and cuts

the cone (39) in the circle KK'. The envelope corresponding to E in its

position at time t is generated by this circle, and is indicated by its traces at

K and K', which are perpendicular to EP and EP' respectively.

As the charge moves, K describes a line of curvature of the envelope and

P its evolute, both of which are generally tortuous curves. The line of

curvature is limited, either by its intersection with the path, or with its

evolute. In the former case all the lines of curvature of the same family cut

the path in the same point, which represents the limit of the circular lines

of curvature of the second family, is a conical point of the envelope, and

corresponds to the position of the charge at the time t. In the latter case

the intersection of line of curvature and evolute is the point of contact of

three successive spherical waves, and therefore forms the starting-point of a

line of curvature belonging to a new sheet of the envelope.]



CHAPTER y

ILLUSTRATIVE EXAMPLES

21. We shall now investigate some problems in illustration of the

methods developed in the last chapter. For this purpose it will be sufficient

to confine ourselves- to the case of a single point charge, for the field due to

several such charges is merely the geometric sum of those due to each taken
singly; in particular that due to an extended charge can be obtained by
integration. As we have seen, the potentials, and therefore also the electric

and magnetic forces, due to a point charge moving with a velocity greater

than that of light, become infinitely great at points on the envelope of the

spherical waves, as well as at the charge itself. It has already been pointed

out that this difficulty does not exist in the case of extended distributions,

whether on surfaces or in space, provided that the surface, or volume, density,

as the case may be, remains finite. A good example will be met with in our

first problem, that of a point charge moving with uniform velocity in a straight

line ; the difficulty has in this case been completely resolved by Sommerfeld.

The general case may be treated in a similar way.

22. Problem 1. Uniform rectilinear motion. This problem has

been treated by several writers, particularly by Sommerfeld*, but as the

solution is simple, it will afford a good illustration of the general method.

Take the line of motion as the a;-axis of a system of cylindrical coordinates

of (x, OT, <^) ; since there is symmetry about this axis, we need only consider a

fieldpoint in the plane = 0, say the point (x, is).

The position of the charge is given by

^ = VT, 7] = if= from T = — 00 to t = +oo.

Hence we get B = ^/{(vt — xf + ar^}

i = T + V{(w-a;)^+CT''}/c

K='^^=1 + v{vt-x)Icr'^ (*^)-

OT

KB =R + vivT-x)/c

* Amsterdam Proceedings, 1904, p. 357.
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We see from (443) that the characteristic curve is the upper branch of the

hyperbola

c^t-Ty-{vT-a;y='ST^.

The lines i = t and t = VT — x are conjugate diameters. The lines

c(t — T) = ± (vr — x)

are asymptotes, and obviously furnish the characteristic curve for a point on

the line of motion, for which ct = 0. The characteristic curves for the cases

of a velocity less than that of light, and one greater, are essentially distinct

and are shown in Fig. 8 and Fig. 9 respectively.

Fig. 8. For d = Jc, a; = Jc, 1^ = 0. Fig. 9. For u= 2c, x=2c, iz= 2c.

In the first case the curve ascends continually, and a line t = constant cuts

it once and only once. In the second case the curve has a minimum at P,

and a line t = constant cuts it either twice or not at all. The minimum value

of t is ii2, which is equal to KP, and is given by vti2 = a; + ot \/{v^/d' — 1) ; thus

<i2 = 2'73 in Fig. 9. The corresponding critical value of t is T12, which is

equal to OK and is given by vt^=x- ml^j^v^l^ — 1); thus t-^, = 0'42 in Fig. 9.

When t < <i2, the characteristic equation has no roots ; when t > t^^, it has two,

Ti and T2, of which ti > T12 and Tj < Tjj. One corresponds to the branch

(1), PE, the other to the branch (2), DP When t = <i2 we have Tj = ts = t^.

In the present problem the roots of the characteristic equation are easily

found analytically. Rationalizing (442) we get

(v^ - c") r' -2(vx- cH) r + x'^+tsr''- cH" = 0,

whence
vx

T =
V - c'

cH '^[c^{vt-xy-{v'-c')'.
.(45).

.(46).This gives t-T= -^-—-^ + -^—^^ '-—^^ —'-
. .

.

Upper signs belong together in the two expressions.

Roots, which make t>T, give available solutions, that is, roots of the

characteristic equation. There are two cases :
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23. (a) Velocity less than that of light : v< c, Fig. 8.

The square root in (45) and (46) never vanishes, and is always greater

than c (vt — x) in absolute value, therefore still greater than v (vt — x).

(46) shows that the upper sign must be taken in order to make t>r.

This corresponds to the point in which the horizontal line at level t cuts

the upper branch DE of the hyperbola in Fig. 8. The second non-available

root corresponds to its intersection with the lower branch. Thus there is

always one, and never more than one solution
; (444) gives, with (46), and

(30), § 13,

[KE\ = ^/{{vt - xf + (1 - v'jd') aT%

•(47),
_ V

"* ~
C ^J{{vt - xy + (1 - V'lc') v:\

which is the well-known solution for this case.

24. (6) Velocity greater than that of light : v >c, Fig. 9.

The square root in (45) and (46) is real or imaginary according as

(vt - xy 5 (v^/c^ -1)-stK The equation (vt - xf = (v^/c'' - 1) ot^ represents a

cone, whose vertex is at the charge and which moves through space with

the charge. Its semivertical angle is equal to sin~^ (c/v). Inside it the roots

of (45) are real, outside imaginary.

When the square root is real it is obviously less than c (vt — a;) in absolute

value, therefore still less than v (vt — x). It follows from (46) that both signs

make t ^ t according as vt — x^O. Thus the characteristic equation (442)

has two solutions, or none at all, according as vt—x^'ss- s/(v^/c' — 1). The

equation

vt-x = w'^(i^/(f-l) (48)

represents the back half of the cone just considered. At the surface of this

semicone the two roots, Ti and T2, are both equal to the critical value T12, which

is less than the corresponding minimum, ti^ , of the characteristic curve. Inside,

behind the semicone, they are both real and less than t ; outside it, between

it and the front half of the complete cone, they are imaginary ; and inside, in

front of the front half they are both real but greater than t, and therefore not

available. For a given fieldpoint (x, -ax), the semicone (48) corresponds to the

time t = tii, where as before vt^^= x + -sr i\/(v^/c^ — 1) ; that is, t^^ is the time at

which the moving semicone reaches the given fieldpoint. When t<ti2, that

is, before the semicone reaches the point, there are no solutions, and there is

no disturbance. When ^ > ^12, that is, after it has passed the point, there are

two solutions, and the disturbance is due to two waves at once. The semicone

corresponds to the minimum P of the characteristic curve DPE of Fig. 9.
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Fig. 10 gives a meridian section of the semicone for the case v = 2c.

RQEQ' is the trace of the semicone, and

E is the charge, bath in their positions

for time t. P is the fieldpoint (x, sr),

inside the semicone. Ei and E^ are the

centres of the two spherical waves which

disturb P at time t. The roots of (45), tj

and Ta, are the times at which the charge

passed through E^ and E^. As P moves

up to the semicone, E^ and E^ obviously approach and ultimately coincide,

and so also do Q and R. Thus the semicone is the envelope, in its position

at time t, of all the waves emitted by the charge at earlier times. Since

EiQ = c(t — Ti) and EiE=v(t — tj), we have

sin E^EQ = c/v.

The semicone at any time divides space into two regions : (I) in front of

it, where there is no disturbance ; and (II) behind it, where the disturbance

is due to two waves. These regions are indicated in Figs. 9 and 10.

The potentials are easily found. In region (I) they are of course zero.

In region (II) they are given by (34) and (35), § 14, together with (444), (45)

and (46). The value of r^ corresponds to the upper sign in (45) ; hence we

get

[K,R^] = + ^/[(vt - xf - (v'/c' - 1) ^% [KA] = - ^{(vt - xf - {v'/c' - 1) ^%
With these values we find, for (II),

2 2v

which is the well-known result for this case.

We notice that as the envelope passes the point, the potentials due to

each of the two waves become infinite, equal and of the same sign, so that the

resultant potentials themselves are infinite. It has already been pointed out

that this infinity is merely due to the supposed concentration of a finite charge

at a point, but does not exist in any actually realizable case, as Sommerfeld

has exhaustively proved in the investigation already referred to.

25. Problem 2. Uniformly accelerated rectilinear motion.

This problem leads to biquadratic equations and thus can be completely

solved in theory, though in practice the expressions obtained are too

unwieldly to work with.

Using cylindrical coordinates (x, xn) we write for the coordinates of the

moving charge

^ = -^fr'^, »7=f=0 from t = — 00 to t = +oo.

The charge moves in the negative direction with uniform retardation
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from an infinite distance up to the origin, reaches it at time zero, reverses its

motion there and moves away again with uniform acceleration. Thus the

motion for positive times is exactly the reverse of that for negative ones

;

nevertheless the field produced is not reversed, nor is it symmetrical with

respect to the time zero.

We get R = V{(i/T= - 0!)' + ^y'} ^

.(50).

K=^l = l+fr(yt'-x)lcR

KR =R+fT{\fT^-x)lc]
Rationalizing (SOj) we get

F{t) = /V'' - 4 {fx + c^) T^ + B,cHt + 4 (/•== - cH^) = ..... .(51).

Only those roots of (51) which are less than t give solutions of our

problem. Putting t = <, and t = — oo , in succession, we see that their

number is always even.

Using the same notation as before we denote the roots of (51) by

Ti>T2>T3>T4,

when all are real. Now (51) may obviously be written in the form

c^(t-TY-R^ = Q.

Thus it represents, not only the characteristic equation t = r + R/c, whose

roots, when real, are less than t, but also the derived equation t = T — R/c,

whose roots, when real, are greater than t.

Hence when the four real roots of (51) are distributed between the two

equations, we must take T3 and T4 as the roots of the characteristic, and tj

and T2 as the roots of the derived equation.

When the equation (51) has two real roots we must, on account of the

principle of continuity, choose them to be tj and T4, when they belong to the

characteristic, and tj and tj, when they belong to the derived equation.

In our study of the problem we shall begin by determining the conditions

under which the characteristic equation may have four, or two, or no real

roots. This amounts to determining the critical values of t, which are

double roots of (51) less than t and determine the minima and maxima of

the characteristic curve, as explained in Ch. Ill, § 14. We can then determine

the position of the various sheets of the envelope at the time t, and so obtain

a general idea of the nature of the field.

We shall then consider the characteristic curve, and explain how to

calculate the roots of the characteristic equation and obtain expressions for

the potentials in the various parts of the field. In this way we shall get

some idea of the way in which the field developes itself, both for velocities
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less and greater than that of light, in the case of the most general motion in

a straight line ; for the present problem obviously gives a second approxima-

tion to every motion of this kind.

26. Critical values. The critical values of t are found by eliminating

t between the characteristic equation and its first differential with respect

to T. We may use (51) in place of the characteristic equation, provided we

bear in mind that values of t less than t are alone relevant to our problem.

In this way we find

(/t^-2«)2(/=t2-c^)-4c^ot=' = (52).

Using (5O2) and (5O3) we get

e = T +/t (« - |/t2)/c^ (53).

The only available roots of (52) are those which are real and positive, and

at the same time make t> t. That is, we must choose the sigp of t, which

is at our disposal, so that t and x — ^fr^ may have the same sign. This

gives us three solutions. The remaining three roots of (52) correspond to

the derived equation. Thus we get the following expressions

:

(a) 2/a! — & <Q — one real root.

/T34 = -V{c^ + f(c^-2/x)sinh^^}|

sinh^3^ = 27cV='OTV(c'-2/a;)' J
^

^'

(b) 270^^2 > (2fgo - dj > - one real root.

frs4 = - \/{c' + 1 (2/a; - c^ cosh^ 6]
]
, (55),

cosh=U = 27cy^^V(2/« - c'y

.(56).

(c) (2/a; - d^y > ^Ll&p'm-' - three real roots.

/T34 = - \/{c^ + 1 (2fa; - cO sin^ (tt/S + 6)} ]

frn = + VIC" + f (2/00 - c') sin^ 6}

fT,2 = + VJc^ + f (2/a; - c') sin^ (tt/S - 61)}

sin^ 361 = 27c^/^OTV(2/a; - cj, < < tt/G

It is easy to see that the values of T34 given by these expressions are

continuous.

The notation has been chosen to fit our conventions as to the roots of (51).

27. Wave-envelope. The several sheets of the wave-envelope are

found by putting ^ = ^34, t = t,a and < = ^12, where ^34, ... are minimum and

maximum values of t given by (53) with T34, ... ia place of t.

Both t and t/T are real when, and only when, t is real. Hence the sheet

(4,) exists for all points, but the two sheets (itia) and (^23) exist only for

points for which Tis and T23 are real, that is, by (56), inside the semicubical

paraboloid

27cy=OT= = (2/a; - cO' (57).

[This is the cusplocus of p. 35.]
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From (53) we see that the ratio tjr has the sign of the quantity

c' +fa; — lyV^- Thus ti^/ri^ and <23/t23 are positive on account of (56), and,

as Ti2 and T23 are also positive, t^ and ^23 are both positive. Again, tsi/rsi is

positive (negative), and, as T34 is negative, tn is negative (positive) according

as the fieldpoint (x, ot) is inside (outside) the paraboloid

/'ur' = c'(2fx + c') (58).

<34 vanishes at all points of this paraboloid, which is therefore the envelope

sheet (^34) in its position at time zero.

In order to be able to construct the wave-envelope we require to know its

intersections with the a;-axis and with the cusplocus.

On the a;-axis we have ot = ; this gives ^ = in cases (a) and (c), but

cannot occur in case (6). We find, by (53)—(56),

(a) outside the cusplocus (57) ; a; < c^j2f,

f-Tu = -c, ft^ = - {Ifx + &)j2c, x = -ct^- cV2/ (59),

(c) inside the cusplocus : x > c^l^f,

/t34 = -V(2», ft^ = -^mx\ x = \ft\

/T23 = + c, ft^ = {2fx + c')/2c, x = ct^-c'j2f (60).

/t,2 = + \/(2», ft,, = + ^(2fx), x = \ft\.

Putting t = tsi, and remembering that the ^-coordinate of the charge is ^ff
at time t, we see that the vertex of the envelope sheet (^34) coincides with the

charge until t = — cff, that is, so long as the charge is moving towards the

origin with velocity greater than that of light. It leaves it just as the

velocity becomes equal to that of light, and ever afterwards moves ahead of

it with that velocity, so that at time t its distance from the charge is equal

to\f{t+cifr.

Putting ^ = ^23 we see that the envelope sheet (^23) arises at the time t = c/f,

and at that time its vertex coincides with the charge, which is moving with

the velocity of light in the positive direction. The vertex at once falls behind

the charge, continues to travel with the velocity of light in the positive

direction, so that at time t its distance from the charge is equal to

if(i-cify-

Putting t = ti2 we see that the envelope sheet (^12) arises at the time t = c/f,

and that its vertex coincides with the charge ever afterwards.

The intersection of the envelope with the cusplocus is got by making

6 = 7r/6 in (56) ; the value of T34 is of no interest, but for the other critical

values we get
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whence, using (53) and (57), we find for this intersection

x = yT'-c% ^ = (/V-c=)i/c/, <=/^tVc» (61).

If s be the arc of the semicubical parabola (57), measured from its vertex

to the intersection with the envelope, we easily find ~j~ = ^f^'^^h~'^~J~

whence s = c{t- cjf). This result verifies that the intersection travels

along the semicubical paraboloid with the velocity of light away from the

vertex.

Again, we find that \/{(« - i/T"')' + tir^} = c (^ - t) ; this verifies that t is

the time of emission of the three coincident spherical waves, which touch the

sheets (ti^) and (t^) along the circle (61).

P/

J' P'

Fig. 11. For t==F2c//.

[28. Construction of the wave-envelope and its cusplocus for the

case of uniformly accelerated motion. In the present problem there is

symmetry about Oa;, so that it is sufficient to construct the traces of the

various surfaces on a meridian plane of {x, sr). In Fig. 11 C is the point

(c^mf, 0), through which the charge passes at the times t= + cjf, when its

velocity is just equal to + c. E is the position of the charge at times

+ 2c// when its velocity is equal to + 2c, so that OE = 2c7/ The envelopes

for these two times are shown in the figure.

PEP' is the semicone (&) for both times + 2c// (cf. Fig. 7, § 20).

PNP' represents the plane PFP' for both times ; EF reduces to EN,
because/ is always directed along Ox, to the right. The intersection of the

semicone and plane of course reduces to a circle indicated by PP' (P' is

the intersection of HEP' with PNP' and is below the diagram).
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The locus of the circle PP' is the semicubical paraboloid (57), of which
the trace is PBGB'P'; it is the envelope of the semicone PEP', and the
cusplocus of the wave-envelope. BB' indicates the cuspidal ridge for the
time t = + 2clf.

EP touches the arc GBP at P ; if t' be the time at which the cuspidal
ridge of the wave-envelope passes through P, we find, by (61), EP = c{t'- t).

This merely expresses the fact that the disturbance emitted at time t from
E in the direction EP reaches P at the time t'. Further, arc GB = c{t- c/f),
and arc GP = c (t' - c/f), since the cuspidal ridge starts from G at time t = + c/f,

and travels along the cusplocus with the velocity of light. Hence EP = arc BP.

(Parenthetically we may notice a simple construction for P; we have
a= cV2/, OE = ^ft\ so that GE= \fi?

- c'/2f. Again, by (61),

ON=lft^-cyf,

so that CN = %ff - 3cV2/. Hence we have GN = WE.)
Again, we found, in (6O2), that OA = ct- c^jlf, so that

C4=c(«-c//) = arcC'5.

Lastly, we found in (59), that 0F = ct + &l2f, so that GF=c{t + c/f).

Thus FA = 2ct.

Since the trace of the wave-envelope is an involute of the trace of the

cusplocus (§ 20) we can construct the envelope as follows

:

From E, the position of the charge at times + 1, draw EP to touch the

semicubical parabola GBP at P (by making GN=WE, and drawing NP
vertically).

Unwrap PE from the infinite arc beyond P; the end E describes the

arc EG', which generates the envelope sheet (^34), that is, the complete envelope

for time — t.

Wrap PE on to the finite arc PB; the end E describes the arc EB
belonging to the envelope sheet (^12) for time +t.

Unwrap a length GB from the arc CB ; the end B describes the arc BA
belonging to the envelope sheet {t^ for time -I- 1.

Lastly, choose a length greater than PE by the length 2ct, and unwrap it

from the complete arc GBP ; the free end describes the arc FH' belonging to

the envelope sheet (^34) for time -I- 1.

It is evident from the construction that the envelope sheet GEG' for time

- t, and the sheet (^12) of the envelope for time -I- 1, are continuous with each

other at E, and have equal and opposite conical points there, provided t > cjf.

The semivertical angle at E is sin~^ {cjv) ; as E approaches the point G,

and its velocity v approaches to equality with the velocity of light G, the



46 ILLUSTRATIVE EXAMPLES [CH.

semivertical angle approaches to 90°, and the conical point disappears. The

envelope OEO' then assumes the shape HFH', and retains it for all times

later than — cjf. At the time zero it takes up the position JDJ', which

represents the trace of the paraboloid (58).]

29. Characteristic curve. The biquadratic (51), § 25, may be re-

presented by a quartic curve with two infinite branches. The upper branch,

shown as a thick full line in Figs. 12—15, is the characteristic curve, the

lower, shown as a broken line, represents the derived equation got by changing

the sign of R. Thus the line t = T always bisects the vertical distance between

the two branches.

In addition, in the present problem R is an even function of t, so that the

derived is got from the characteristic equation by changing the sign both of

t and of T. Hence the two branches of the quartic are sjmametrical with

respect to the origin.

There are four cases : (a) fieldpoint inside the paraboloid (58), but outside

the cusplocus (57), Fig. 12; (6) fieldpoint inside both surfaces. Fig. 13;

Fig. 12. For x= 2c2//, za = 2c^lf. Fig. 13. For x=7c''/2/, nr= 2c2//.

(c) fieldpoint outside both surfaces. Fig. 14 ;
(d) fieldpoint outside the para-

boloid (58), but inside the cusplocus (57), Fig. 15.

In cases (a) and (6) we have t^i < 0, and both branches cut the axis t = ;

in (c) and (d) we have ^34 > 0, and neither branch cuts the axis <= 0.
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In cases (a) and (c) the critical value r^i alone exists, and the characteristic

equation has at most two real roots ; in (c) and (d) r^^ and t^ are real as well

as Ts4, and the characteristic equation may have as many as four real roots.

Fig. 14. For x=-c^lf, w='ic^lf. Pig. 15. For x= Sc^lf, m= ic^lf.

All the curves show the minimum R, which corresponds to the envelope

sheet (^34) ; but only the curves in Figs. 13 and 15 have the second minimum
P and maximum Q, corresponding respectively to the envelope sheets (^u)

and (t^).

The dotted curve is the parabola i = t + ^fT^/2c, which is a curvilinear

asymptote.

When « > 0, the curve has a double tangent FG, which is parallel to the

line t = T at a vertical height bt/c above it, and touches the curve where

T = + \J{2xlf) and is below it elsewhere.

30. Progress of events in the field. A study of Figs. 11—15 leads

to the following results

:

At all times previous to + cjf the envelope has but one sheet (^34), which

has the conical shape GEG' when t< — cjf, and the paraboloidal shape HFH'
when — c//< t< + c/f{c{. Fig. 11). This sheet comes from the right, expand-

ing with the velocity of light, and reaches the fieldpoint when ^ = ^34. This
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time is positive (negative) according as the point is outside (inside) the

paraboloid (58) {JDJ' in Fig. 11). The two cases are illustrated by Figs. 14

and 15 (12 and 13) respectively. Times earlier than t^i correspond to levels

below the minimum R in these diagrams, where the horizontal line t does not

cut the characteristic curve GED, although it may or may not cut the

symmetrical curve. Equation (51), § 25, may, or may not, have real roots, but

if it has, they are greater than t, and do not belong to the characteristic

equation. Thus no waves, properly speaking no diverging waves, reach the

fieldpoint, and it is undisturbed. This region of no disturbance, outside the

envelope sheet {t^^, we call region (I).

For times immediately after the time t^t, when the sheet (t^^ has already

passed the fieldpoint, the horizontal line t cuts the characteristic curve GED
twice, and may also cut the symmetrical curve twice, but not more than

twice. The characteristic equation has two real roots, but (51) may have

four, in which case two of them are greater than t and belong to the derived

equation. The fieldpoint is now disturbed by two divergent waves simul-

taneously, which according to our notation correspond to roots r^ and t^ of

(51), of which T4 is negative, while t^^ is negative (positive) according as

t $ rjc. This region of two-wave disturbance (34) we call region (II). For

points outside the cusplocus it lasts for ever, as shown in Figs. 12 and 14.

For points inside the cusplocus however, where the second minimum (f^)

and the maximum {t^ exist, this type of disturbance lasts only until i = ^12,

that is, until the conical envelope sheet (^2), BEB' in Fig. 11, reaches the

point. Immediately afterwards the horizontal line t cuts the characteristic

curve GED four times, when it lies between P and Q in Figs. 13 and 15.

The characteristic equation has four real roots, Tj > Tj > Tg > T4, and the point

is disturbed by four divergent waves simultaneously. The region of four-

wave disturbance, lying between the envelope sheets (^2) and (^23), BEB'A in

Fig. 11, we call region (III).

The four-wave disturbance is only temporary, and disappears as soon as

t = t^, that is, when the envelope sheet {t^), BAB', passes the fieldpoint.

The two intermediate roots, Tj and T3, of (51) become imaginary, while the

extreme roots, Ti and T4, remain real. The point is again disturbed by two
waves simultaneously, but these are the waves (tj) and (T4). This type of

disturbance lasts for ever, but is not continuous with the type (34), existing

on the other side of the cusplocus. The region, where it exists, lying between
the envelope sheet (^23) and the cusplocus, we call region (IV).

It remains to consider the roots of the characteristic equation in detail,

and to find expressions for the potentials of the several types of disturbance.

31. The potentials. Their values are given by (34) and (35), § 14.

The values of {KE\ for the various waves can be got from (5O2), § 25, by
substituting the values of the roots Tj, Ta, T3 and T4, as the case may be.
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Since R = c{t-T) we easily find by help of (51), § 25, KR = F'(t)/8c.

Putting * = Ti, ... we get

[K,R,] =p (tx - T,) (t, - Ta) (ti - T,)/8c (62),

with similar expressions for the other roots.

Again, since the coordinates of the charge are given by f = ^/t% ?/ = ^= 0,

we find for the velocity at time Tj

M=/ti, KJ =M = (63),

with similar expressions for the other roots.

It is of course obvious that the y and z components of the vector potential

[a] vanish identically, so that we have only to deal with the components

Oiaj, ••-, besides the scalar potential (/>!,

It is difficult to express the potentials explicitly in terms of t, x and w,

but it is easy to find expressions in terms of the roots of the resolving cubic

of (51).

Putting in the usual way

Ti = « + « — W, Ti = U — V + W, T3 = — M + W + W, Ti = — U — V — 'W.. .(64),

we satisfy the necessary condition Tj + Tj + T3 + T4 = 0, and find that m", v', vi^

are the roots of the cubic

/V - 2 (/« + c")
A' + (O + 0")= -f^ (r' - cH")} z - cH^ = 0. . .(65),

provided only that uvw = cH/f^ (66).

Our object is to study the variations of the potentials at a given fieldpoint

as the time changes ; hence we must determine the roots of (51) and (65) as

functions of t when x and -ct are given.

When we plot if as a function of 2 by means of (65) we obtain a graph of

the type shown in Fig. 16, for the case where the fieldpoint lies inside both

the cusplocus (57) and the paraboloid (58).
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the origin. Since (65) involves only the square of t, the graph is symmetrical

with respect to the axis t = 0. It has maxima and minima for t at B, G, F
and B', C, F', corresponding respectively to Q, P, R on the characteristic,

and to their symmetrical points on the symmetrical dotted curve of Fig. 13.

The points B (t = t^), G {t = tu), and F (t = t^) are, the first two on the

positive, and the third on the negative side, because U, and ti^ are positive,

and, in the present case, tm is negative.

The graph for Fig. 12 differs in so far as the folds BG and B'G' are

absent, and those for Figs. 14 and 15 differ in so far as the oval EFOF' lies

below the axis z = Q instead of lying above it, as in the former figures.

The intersections of the ordinate t with the infinite branch give real

and positive roots of (65); those with the oval give real roots, which are

positive (negative) according as the oval lies above (below) the axis t = Q,

that is, according as t^ t 0. This is easily verified by a study of (65), but

follows directly from our previous results. We shall denote the roots of (65)

by a, yS and 7.

When the roots are all real we shall choose them so that a > j8 > 7.

When two are conjugate imaginaries, they will be denoted by a and ^, or by

yS and 7, as may be necessary for continuity.

When a, /8 and 7 are all real and positive, u, v and w are real, and so also

are the roots Tj, tj, T3 and T4 of (51). When /3 and 7 are real and negative,

V and w are pure imaginaries and unequal, so that Tj, Ts, Ts and t^ are all

imaginary. When /3 and 7 are conjugate imaginaries, v and w are so

also, and two of the roots Tj, t^, T3 and T4 are real, and the remaining two

imaginary.

The proper expressions for the roots Ti, Tj, Tj and T4 are best got by

a study of Fig. 16, and the corresponding graphs for the other cases; but

we cannot in this way determine which of them are less and which greater

than t, that is to say, which belong to the characteristic equation of our

problem and which do not. This is best determined by a study of

Figs. 12—15.

32. For example let us study the case corresponding to Figs. 13 and 16.

When t lies between + t^i, the ordinate t cuts the graph of Fig. 16 between

FJ and F'J', therefore in three points. Thus a, /3 and 7 are all reaF and

positive, and the roots Tj, tj, Tj and T4 are all real. The horizontal line

t cuts the characteristic curve of Fig. 13 twice, above R, and the symmetrical,

broken curve also twice. We take the first two intersections to correspond

to T4 and Tg, the others to Tj and Tj. This choice makes T4 and Tj less

than t, so that they belong to the characteristic equation, and Tj and ti
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greater than t, so that they belong to the derived equation. Further we
choose M = + Va, « = + V/S and w = + V7, so that (64) gives

Ti = Va + V/S - V7, T2 = Va - V/S + V7,

T3 = - Va + V^ + V7. T4 = - A/a- V/S - \/7 ...(67).

This choice makes Ti > t^ > Ts > T4 in virtue of the inequalities a > /3 > 7
provided that >^a and V/8 are taken to mean the absolute values of the roots.

In order to satisfy (66) we must choose the positive (negative) sign for V7,
according as < 5 0.

As t increases, the ordinate in Fig. 16 moves to the right ; when i = — ^3^

(which is positive in the present case) the ordinate reaches F'J', and /3 = 7,

becoming conjugate imaginaries immediately afterwards. By (67) Tj and t^

become imaginary, while Ts and T4 remain real. This agrees with Fig. 13,

where the horizontal line t just touches the broken curve at its highest point,

and thereafter ceases to cut it.

So long as i < t^^, the ordinate in Fig. 16 lies to the left of GH and cuts

the graph only once, so that the characteristic equation has only the two real

roots T3 and T4. Up to this time the disturbance is of the two-wave type (34)

and the fieldpoint lies in the region (II) of § 30.

When t = ij2 the roots /8 and 7 of (66) are again equal, and become real.

Between t^^ and t^, the ordinate in Fig. 16 cuts the graph three times, between
GH and BG, and the roots t^, t^, ts and T4 are again all real. But now they

are all less than t, for the horizontal line t in Fig. 13 cuts the characteristic

curve four times, between P and Q, and does not cut the symmetrical curve

at all. The disturbance is of the four-wave type, and the fieldpoint is in

region (III).

When t = <23, the ordinate in Fig. 16 coincides with BG, the roots a and /3

are equal and become conjugate imaginaries, while 7 remains real and

positive. From (67) we see that tj and T4 remain real, while Tj and T3

become imaginary. The horizontal line t in Fig. 13 touches the characteristic

curve at Q, and thereafter cuts it twice, on the arcs RG and PB. The

fieldpoint lies in region (IV).

Thus we see that with our conventions the root a is represented by the

arc B'AB of the graph in Fig. 16, the root /3 by the arcs FEF', BG and B'G',

and the root 7 by FOF', CD and G'D'. This is in agreement with the fact

that tja and VyS are always positive, while i\/y changes sign with t, and

. therefore vanishes when i = 0, at 0.

33. The remaining cases can be treated in precisely the same way,

and the expressions (67), with the conventions made, are quite general.

Substituting the values of tj, ... in (62) and (63) and using (34) and (35), § 14,

we easily get the following expressions for the potentials.

4—2
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(I) Ti, Tj, Ts and T4 all imaginary, or greater than t.

Here /8 and 7 are negative, as in Figs. 14 and 15 for t between + ts^;

otherwise the horizontal line t cuts the sjrmmetrical curve a:lone.

^ = aa, = (68).

(II) Ti and Ts are imaginary, or greater than t, while T3 and T4 are real

and less than t.

Here /3 and 7 are real and positive, or are conjugate imaginaries ; the

horizontal line t cuts the characteristic curve twice and only twice, and the

S3minietrical curve twice, or not at all.

<f>
= 2c (a + Vy87)

ar,=

/Ha-;8)(a-7)(V^ + V7)

2(;8 + 7-a-f v'/37)Va
.(69).

/(a-/3)(«-7)(V/3 + V7)

(III) Ti, T2, T3 and T4 are all real and less than t.

Here /8 and 7 are real and positive, and besides the horizontal line t cuts

the characteristic curve four times, and the S3anmetrical curve not at all.

</>
= 4cV/8

a~ =

/»(a-/3)(^-7)

4 V«7
.(70).

/(a-/3)(,8-7)-

(IV) Ti and Ti are real and less than t, while r^ and Tg are imaginary.

Here a and /3 are conjugate imaginaries, and the horizontal line t cuts the

characteristic curve twice, and the symmetrical curve not at all.

</>=,
2c (7 + Va/8)

.(71).
7H«-7)(;8-7)(V« + V^)

^ _ 2(a + /3^.7 + Va/3)V7 "

" /(«-7)(/8-7)(Va + V/3) I

A comparison of (71) with (69) shows that the disturbance (IV), of two-

wave type (14), differs from the disturbance (II), of two-wave type (34),

merely by the interchange of a and 7, that is by a change of notation. The

expressions for the potentials in fact involve the single real root, a or 7, as the

case may be, in precisely the same way.

The solution of our problem is now completed, so far as this is possible

when the position of the fieldpoint and the time are not actually specified, v

It represents the solution of the most general problem of accelerated motion

with unlimited velocities in all its essentials, for the development of the

envelope and of the various possible types of disturbance will take place in a

similar manner.
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34. Problem 3. A point charge, initially at rest, is subject to a

constant acceleration for a given interval of time, and thereafter

continues moving uniformly in a straight line with the acquired

velocity. Required the resulting electromagnetic field.

This problem illustrates the mode of combining the solutions of two known

problems, so as to give the solution of a new one. Moreover it has a special

interest in so far as it illustrates, crudely it may be, the process of the genera-

tion of X-rays, or of 7-rays, according to the commonly accepted views as to

their nature.

We have ^= 0, ?;a;
= from t = — 00 toT = \

^ = ^fT\v^=fT from T = to T = T I (72).

^=/T (t - ^T), v^ =fT from t = f to t = 00 J

Further y=z = 0, Vy = Vi=0, ay = ag=0 always.

There are two cases, according as the final velocity is less or greater than

that of light.

35. (a) Final velocity less than that of light: T<c/f.

The equations (54)—(56), § 26, show that the critical value T34 is negative

in every case. But in our present problem negative values of t, the time

of emission, correspond to times when the charge was at rest, and its field

everjrwhere electrostatic. Hence the critical value T34 does not enter into

consideration at all. This means that the field is everywhere electrostatic

until the first wave of disturbance reaches the fieldpoint. This is obviously

always true, so that we can leave the envelope sheet (^34) out of account,

whether the final velocity be less than that of light or greater.

The discussion is much simplified by a study of the forms and positions of

the several critical surfaces separating the various regions of space in which

the potentials are represented by expressions of different form.

The diagram. Fig. 17, shows the traces of these surfaces on the meridian

plane.

is the origin, where the charge

was at rest until t = 0, T the point

i^/T", 0), where the uniform motion

began, JE the position of the charge

at the time t. The circle DOD' is

the initial spherical wave, emitted

at the moment of starting at 0, and

HKH' is the spherical wave (T),
Fig. 17. For T=2cl3f, and (=c//.

emitted at time T, when the motion changed, both in their positions at the

actual time t. The dotted curve AB is the position of the (absent) envelope

sheet (^34); it is absent because it is completely outside the initial wave,
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corresponding as it does to negative times of emission. The several surfaces

move normally outward with the velocity of light, c, as indicated by the

arrows, while the charge moves onward along Ox. This diagram holds for all

time after the steady state has been reached.

36. The sequence of events at a given fieldpoint is best discussed with

the help of the characteristic- curve, whose equation is

t = T + R/c (28).

From (72) we see that, since in the present problem

-B = V{(.^-f)' + ^1,

R has three different expressions according to the interval for t which is

used, say Ri, R^ and iJj.

Then we have

i? = iii = ^{a;2 + OT2}=r, from T = -oo to T=0
]

R = R, = >/{(x- ^/tJ + zi% from t = to r= T L . (73).

R = R, = V{(« + ^/T' -fTrf + u!% from t = 2' to t = oo i

There are three corresponding characteristic curves, which together make

up the complete curve. Now f, R and the velocity v are all continuous

throughout the whole range; hence the three sections of the curve must form

a continuous line, without corners, though in general with sudden changes of

curvature. A break in the curve would imply a sudden jump of the charge

from one position to another, a comer a sudden change in its velocity, neither

of which is physically possible. The only difficulty that can conceivably occur

fit

is when ^ = ; but this, as we have seen in Ch. IV, requires the velocity

to be greater than that of light, a case which will be discussed presently.

Fig. 18. For x= 0, m=c^l2f.
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The first section of the curve, GD, is given by i = t + rjc.

It is a straight line parallel to the line i = t, AB, and at a height rjc

above it.

The section, BE, is an arc of the curve of the type shown in Fig. 14, § 29,

for the case of uniformly accelerated motion, but extending only from t = to

T = T. It touches the straight line GD at D.

The last section, EF, is an arc of the hyperbola, of the type shown in

Fig. 8, § 22, for the case of uniform motion with a velocity less than that of

light.

The remaining portions of these curves are indicated by dotted lines. It

is obvious that these portions must be ignored. In fact i is a uniquely

determined function of t and the coordinates of the fieldpoint {ac, zj) ; for the

charge emits but one wave at a time, and this has no double points. Each

wave corresponds to a determinate ordinate in the (t, t) diagram, which

ordinate can cut the characteristic curve only in a single point. Since the

points of the full line curve do give actual waves, they are the only ones that

do so.

It should be noted that on the present view the state of rest, corresponding

to the section GB, is to be regarded as the limiting case of an infinitely slow

motion, during which waves are being constantly emitted, but from positions

of the charge which are infinitely close together, so that the variations of B
become infinitely small.

37. The sequence of events at the selected fieldpoint is now seen to be

as follows :

(I) Until t = r/c, corresponding to t = 0, the state is that corresponding

to the line GB ; the graphic method of representing potentials given in § 19

shows that during this interval we have an electrostatic field given by

•^ = J1 (74).

(II) At the time t = r/c, corresponding to the point B, the initial spherical

wave arrives, that is, the wave BGB' of Fig. 17. The form of the solution

changes to that belonging to region II of the last problem; but the root r^,

being less than the critical value T34 of t, which gives the minimum of the

curve II in Fig. 18, and is negative, is itself negative, so that the correspond-

ing wave does not exist. Thus we have merely the one wave corresponding

to the root r^, given by the intersection of the horizontal line t = constant
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-with the arc DE of the characteristic curve. Thus we have, by (62), § 31,

1 8c ^^

P " [KA] -p (t, - Ts) (t, - T3) (Ta - tJ

[V3J St,
.(75),

"•^ ciKA] /(Ta-T0(T.-Ts)(T3-T,)

where Tj and T2 are the two imaginary roots, T3 is the real positive and T4 the

real negative root of (51), § 25.

(Ill) The last expressions hold until t reaches the value corresponding to

the point E on the characteristic curve, and the spherical wave (T), HKH
of Fig. 17, reaches the fieldpoint. The equation of this wave is

R, = c(t- T),

where in E2 t is to be put equal to T. Hence we have for E
t=T+ V{(iB - ^fTJ + ZT^}IC.

At this moment the forms of the potentials change to those corresponding

to rectilinear motion with the uniform velocity v =fT, which the electron had

at the time T, when the wave was emitted.

The potentials are henceforth given by (47), § 23 ; thus.

a~ =

V{(« + ^/T'-fTty + (1 - f'T'/c') ar"}

fl
.(76).

c V{(^ + i/r^ -fTty + (1 -f^T^/c^)^^}
^

It has been remarked already that the continuity of motion of the charge,

and the uniqueness of the disturbance due to it, require the potentials to be

continuous in value, though discontinuous in form, at each time of transition;

but this continuity does not in general extend to the electric and magnetic

forces. These are given by (VII) and (VIII), § 3, and involve differentiations

with respect to coordinates and time. Since t is an implicit function of both,

in virtue of (28), § 13, these differentiations involve differentiation with

respect to t, and therefore give rise to terms involving the acceleration,

which is discontinuous.

38. (b) Final velocity greater than that of light : T > c/f.

So long as the velocity of the charge is still less than that of light,

that is for t < c/f, the circumstances are much the same as in case (a). The
field outside the initial spherical wave is electrostatic and given by (74), § 37

;

the field inside is due to the accelerated motion and given by (75), § 37.

There is yet no inner boundary, since the state of uniform motion has not

been reached.

What occurs when the velocity of the charge exceeds that of light will be

best understood by reference to Fig. 19, which represents the state of affairs

at the time 3c//, for the case where T= 2c//, that is, where the final velocity

is twice that of light.
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B'GBP is the semicubical parabola (57), § 27, of which the equation is

(2/a; - &Y = 270"/^^='. Thus 00 = c^j^f. T is the point reached>y the charge

at time T, when the motion becomes uniform. Thus 0T= ifTK

As the charge passes through 0, where its velocity is equal to that of

light, the envelope sheets (^,2) and (^23) first appear {vide § 28 and Fig. 11).

At time T they occupy the positions bTb' and bab' respectively. The semi-

vertical angle at T is equal to a, where sin a = c/v, and v =fT is the velocity

in the uniform motion. The two sheets touch each other along the circle bb',

and cut the paraboloid (57) perpendicularly. The line TP touches the semi-

cubical parabola at P, which is the position of the cusp at some later time

t=U. This time is given by (61), § 27, so that

U=f'T'/c' (77).

The charge then is at 0, the last vestiges of the envelope sheet BKK'J'J
have disappeared, and the envelope is now represented by the semicone POP'
belonging to uniform motion. The spherical wave (T) has expanded into

the sphere PM, and extends far beyond the point 0, for its radius TP is

greater than TN^, which is itself equal to twice OT. Thus the region, where

the disturbance is due to acceleration, is now limited to the region (II) of the

last problem, which lies between the cone POP' and sphere PM and the

initial wave. The disturbance here is of the same one-wave tjrpe (75), and

has acquired as it were a uniform character. Hence the quantity U may be

taken as a measure of the duration of the variable state during which the

uniform motion is established.

The field during the variable state is of no great interest ; its character

will be sufficiently understood by reference to the last problem, when it is

stated that it is of type (III) in the ring-shaped region BKJ, between the

envelope sheets {ti^ and (^23) and the spherical wave (2^, of the type (IV) in

the ring-shaped region BJI, between the sheet (^23), the spherical wave (T)

and the cusplocus (57), and of the type (II) everjnvhere else between the

initial wave OBO', the spherical wave (T) and the semicone KEK'.

39. Since the charge acquires a velocity greater than that of light,

whilst the initial wave only expands with the velocity of light, the charge

will sooner or later catch it up and penetrate into the region outside. If

T < 2c/f, this happens when t = \fT^I{fT - c), after the state of uniform

motion has been reached; but if 2^> 2c//, it happens when t = 2c//, during

the state of accelerated motion. If 2'< (V3 +l)c/2/, it happens at a time

t> U, that is, after the variable state has ceased, otherwise before. Until

the charge pierces the initial wave the disturbance is entirely confined to the

space inside it ; afterwards the disturbed region is bounded only partially by

the initial wave, the rest of the boundary being formed by the portion of the

conical envelope sheet which projects beyond the initial wave.
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Fig. 20 gives the positions at time t = 49c/8/ of the two spherical waves
and the conical envelope sheet for the case where T= 7c/4/, after the variable

regime is over and when the charge E has already pierced the initial

wave OLD.

Pig. 20. For T=7c/4/, and t=49c/8/.

As before HKH' is the wave (T), and KLEL' is the semiconical envelope

sheet belonging to the steady motion.

The intersection of the wave {T) with the semicone is a circle through K,
which travels along the cone KTK'; the intersection of the initial wave OLD
with the semicone is a circle through L, which travels along a surface of

revolution generated by the parabolic arc ML.

40. It would lead us too far to examine in detail all the cases which may
occur ; in order to understand the changes that take place in the field it will

be sufficient if we study the progress of events in one particular case, for

instance, for a fieldpoint lying within, in front of, the surface of revolution

LML'. For this purpose we use the characteristic curve as a guide ; it is

represented in Fig. 21.

Fig. 21.



60 ILLUSTRATIVE EXAMPLES [CH.

Just as in the case of Fig. 18 the characteristic curve consists of three

sections.

The first section, CD, is the straight line f = t + rjc, which is due to the

initial electrostatic field.

The second section, DE, is an arc of the curve E'RDEE", of the type of

Fig. 14, § 29, due to the accelerated motion.

The third section, EPF, is an arc of the hyperbolic curve, F'EPF, of the

type of Fig. 9, § 22, due to the uniform motion. Its minimum, P, as before

corresponds to the time when the conical envelope sheet KEK' passes the

fieldpoint.

41. A consideration of Figs. 20 and 21 leads to the following con-

clusions :

(I) So long as the conical envelope sheet KEK' has not yet reached the

fieldpoint, the horizontal line t cuts the characteristic curve below P, on the

section CD. The field is electrostatic, and the potentials are given by (74),

§ 37. The point is in region (I).

(II) As soon as the envelope sheet has passed across the fieldpoint, it is

disturbed simultaneously by two waves emitted during the uniform motion.

The horizontal line t cuts the characteristic curve three times, namely the

straight line CD once, and the hyperbola EPF twice. The potentials consist

of three terms ; one due to the electrostatic field and given by (74), the others

due to the uniform motion and given by (49), § 24. Hence we get

1
' = - +

.(78).
r ^ V{(w« -00- \fT^f - {vyd' - 1) vy^}

2v
"'" ~

c^iivt -00- i/TJ - (v'/c^ - 1) ot"}

(III) When the initial wave, OLD, reaches the fieldpoint, the electro-

static field disappears and is replaced by the disturbance due to the accelerated

motion. The horizontal line t cuts the characteristic curve three times,

namely the arc DE, due to the accelerated motion, once, and the hyperbola,

EPF, due to the uniform motion, twice. The potentials again consist of

three terms, and the only difference from the last case is that the electro-

static term is replaced by a term due to the wave (xg), which belongs to the

ascending arc RDEE", and is got by means of (62), § 31. We find

.^ 8c 2
T i^i^ _^\(^ _^\(.^ _,..\'^f (Ti - Ts) (t, - T,) (t3 - T,) ^ ^[{vt -X- ifTy - (v'lc" -!)

«ir = 77 TT w X +
(79).

7(^1 - Ts) (t, - T,) (r3-rye ^J{{vt-X- \fTJ - (^'/c^ - 1) ^^} J

(IV) When the spherical wave {T), H'KHK', crosses the fieldpoint the

disturbance due to the accelerated motion as well as one of the waves due to
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the uniform motion disappear, and only a single wave, due to the uniform

motion, reaches the fieldpoint. The horizontal line t cuts the characteristic

curve only once, on the ascending hyperbolic arc PF. The potentials have

only one term each, due to a single wave, and these are obviously just one half

of the values given in (49), § 24. Hence we get

.(80).

</>=
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Outside the shadow of motion, in the region (I), we have the expressions

(74), § 37.

Thus the field is electrostatic, not zero as in problem 1.

At the surface separating regions (III) and (IV), which is the limiting

spherical wave emitted at the instant when the uniform motion begins, we

pass from (79) to (80); the potentials, though finite, are discontinuous.

At the surface separating regions (I) and (II), which is the conical sheet of

the wave-envelope, we pass from (74) to (78) ; here the potentials are infinite.

At the surface separating regions (II) and (III) the potentials are finite

and continuous.

The first discontinuity is absent from problem 1 ; the second is common to

both problems.

At first sight the discrepancy between the two sets of results would

appear to be due to errors of calculation, but a very little examination shows

that it is fundamental, and that the two problems are essentially different in

kind.

In problem 1 we have assumed that the motion has been going on in

precisely the same way for ever, and that there never has been any electro-

static field at all. It is therefore not surprising that outside the shadow of

the motion there should be no field.

When however we ask ourselves what is the effect of the initial con-

ditions, we implicitly assume that the motion has started from rest. (In

cases where the motion has started from some previously existing motion of

a different kind similar considerations obviously apply.) Hence we are

dealing with a new problem altogether, in fact problem 3. We cannot

without further enquiry apply the results obtained for problem 1 to this new

problem, but must begin the investigation ab initio.

The result of the investigation proves that the initial circumstances of

the motion do have a determining influence for all future time, in the sense

that there is a fundamental difference between aperiodic motions which have

been going on for ever and which necessarily take place in unclosed orbits

extending both ways to infinity, and motions which have started from rest.

The latter are necessarily discontinuous, in the sense that the form of the

analjrtical expressions for the coordinates of the moving charge as functions

of the time is not the same for all time. The former may be continuous.

[I have shown elsewhere* that the discontinuity of form has no effect on

the expressions for the transverse and longitudinal masses of an electron

calculated from the field due to its motion, and that its effect is confined to

the terms of higher order in the reaction due to the radiation.]

* Sohott, Ann. der Phys. 25, p. 63, 1908.
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43. Problem 4. An electron moves in a uniform electric field

in a direction parallel to the lines of force. Required the resulting

electromagnetic field.

This problem is of interest for two reasons : apart from the case of

uniform rectilinear motion, it is the only case which has been solved in

finite terms; moreover the motion is almost exactly realisable.

We make two assumptions:

(1) The mass of the electron varies according to the Lorentz mass

formula, that is, m^ = cm/\/(c^ — v^), where m is the mass for zero velocity,

and wi» that for velocity v. This means that the momentum is equal to

cm . vl'^(c^ — v% and changes in accordance with Newton's Second Law.

(2) In calculating the mechanical force acting on the electron we neglect

the reaction due to radiation, that is, we assume that the motion is quasi-

stationary. Our solution nevertheless holds so long as the velocity differs

appreciably from the velocity of light, in fact far beyond the range of velocity

actually realised with /3-particles.

We shall treat the electron as a point charge, and as before calculate the

potentials per unit charge.

44. We choose the line of motion as a;-axis of cylindrical coordinates as

before. With the assumptions made the motion of the charge is given by

the equations*

. = cVV(A^ + cV)r°^" = -°°*°^ = + =°
(81).

where k = d'm/eX }

X is the electric force, and e the charge, both measured in electrostatic

units.

When T = we have ^ = k, v = 0. The charge starts from positive

infinity with the velocity of light, moves against the field, is brought to

rest by it, and moves away again to positive infinity, ultimately acquiring

the velocity of light. Actually, on account of radiation, it would be brought

to rest somewhat sooner, and in the reversed motion would not regain its

initial velocity. Of course only a portion of the motion can be realised,

so that any real motion is necessarily discontinuous ; but the method of the

last problem enables us to extend our results to any case of this kind,

e.g. the case of problem 5 below.

» See the problem, Ch. XI, § 153 below.
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From (81) we deduce the following equations of our problem

:

R = VfCVC^' + cV) - xf + vx^} \

t = T + R/c

^ ^ 3« ^ , W(k^ + cV) - x] CT

dr
"^ R V(ifc= + cV)

[CH.

KR = ct-
CTX

VCA;" + cV)

.(82).

Rationalizing the second equation and using the first we get a quadratic

for T, which gives

CT = \ct (P + 7s:^ + x''- cH^) ± xs}/2 (x^ - cH")

i^(k? + cH"") = [x {k-^ + nr'i + «= - cH'') ± cts}/2 {a? - cH^)

E = - {c« (yfc^ + tir' - a^ + cH") ± xs}l2 {a? - cH')

where s = V{(*' + w'' + x'- cVf - 4A;» (x^ - c=f)}

= ^{{k' + a'' -x^ + cH^y + i-s!" (x' - cT)}

= V{(«' + w= - cH^ - k'f + 4A;V}

/• .(83).

/

We must choose the sign of s, the square root in which we take as

essentially positive, so that R and V(^'' + Ct") are both positive, the former

because we must have t less than t as before, the latter because the electron

moves on the positive half of the uj-axis.

From the last two equations we get at once

a;V - cH' (k' + vt" - x' + cVf = (ix? - cH') {(/e' + rar^ - «« + cH^ + 4otV},

a^ (k^ + sr^ + a? - cH^f - cH^'s^ = (x^ - cH^) {(&= + ot" + «:' - cHf + 'ik'cH"}.

Thus we see that xs is numerically greater (less) than ct (k' + is' — a!' + cH"),

and X (k? -{'os^ + x' — cH') is numerically greater (less) than cts, according as x

is numerically greater (less) than ct.

In the first case the lower sign alone makes R positive, and both signs

make \/(k' + cH') positive (negative), according as x is positive (negative).

In the second case the lower sign alone makes \/(^ + cV) positive,

and both signs make R positive (negative), according as t is positive

(negative).

Thus we must use the lower sign alone in every case.

Moreover the disturbance is confined to the space on the positive side

of the plane x + ct = 0.
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45. [Characteristic curve. These conclusions can be verified from

the characteristic curve, which is of the

type shown in Fig. 22. It has two

asymptotes, namely the lines t = — x/c,

and f = 2t — x/c, and is everywhere

ascending. The broken line as before

is the curve for R negative.]

46. Potentials. The potentials are

given by (26) and (27), § 13, where in

accordance with the above we must

substitute from (83) using the negative

sign.

We get by (82), § 44,

V _ CT ct (k^ + or^ + «" - cH^) - xs

Fig. 22. For a;= 2&, w= 2J;.

c V(*' + cH") X (k^ + OT'i + a;=i - cH") - cts
'"

KR = ct-- = (x' - cH') s

c X {k^ + ta^ + a^ - cH^) -

KR is always positive, as it should be. We get

_ X (k' + ct" + a;' - cH") ct \~
(x^ - cH') s a;^ - cH'

ct {¥ + ct2 + a;^ - cV) X
ax =

(«« - cH^) s a? — c^ \
.(84).

«« = «« =

The values of and a^ are apparently infinite when x^ = cH^, but this

is really only the case for x + ct = 0.

For instance, ^ may be written in the form

{{]<? + CT^ + «" - cHy + 4<kVt'}/s {a> (k^ + ct' + «;» - cH') + cts},

and this reduces to

{(k' + Tn^f + A^k^cH''}l(x + ct) (&» + CT^)'

when x^ = cH^ \ in the same way a^ reduces to

{ifk^cH'' - (k^ + 'STy}/(x + ct) (k^ + m^y.

Thus both
(f)
and a^ become infinite at the plane x + ct = 0, which, as we

have seen, bounds the field on the negative side, but they remain finite at

the plane x — ct = 0.

Since the characteristic curve CED, Fig. 22 (§ 45), has the line x + ct =
for an asymptote at t = — ao , it is evident that the boundary is a plane of

concentration of all the disturbances emitted at times infinitely long past,

and thus does not exist in any realisable problem. The infinity there is due

to the supposed concentration of a finite charge at a point, and the boundary



66 ILLUSTRATIVE EXAMPLES [CH.

really represents a sheet of relatively intense disturbance, the thickness of

which is of the order of the diameter of the electron, somewhat like the

conical envelope sheet due to motion with velocity greater than that of

light (§ 17).

At infinity the potentials become infinitely small of the order 1/x, for s

obviously becomes infinitely great of order r\

Near the charge, and also near its image in the plane a; = 0, they again

become infinitely great. In fact, write « = ± f + /a cos 6, tat = psinO, where

as before ^ = >J(k' + cH') is the coordinate of the charge, and p is the distance

of the fieldpoint from it. Neglecting higher powers of p we find by (83), § 44,

s = 2/3 V(P cos'' e + k^ sin^ 6) = 2p^ V(l - yS' sin^ 0),

where /3 = v/c, so that k = ^ n/(l — /S^) by (81). Hence

'^=±pV(l-^^sin^^)' ''^ = ^'^-

Thus near the charge (^, 0) the potentials are the same as those due to an

equal charge moving with uniform velocity equal to the instantaneous velocity

actually possessed by the charge, as was to be expected. In addition, near its

image (— ^, 0) in the plane x=0, they are the same as those due to an equal

charge of opposite sign moving with the same uniform velocity. The image,

however, is outside the field, beyond the boundary x + ct = 0.

The potentials become infinite of order 1/p, and the equipotential surfaces

are similar Heaviside ellipsoids.

47. Electric and magnetic forces. Substituting from (83) and (84)

in (VII) and (VIII) (§ 3), we find

^« =—^—^5 -• '^- = -^r-' h =—^ (85).

The remaining force components vanish.

At the boundary a; + ci = we get

_ 4^-'
J _ I, _ 8Pa;OT

Thus the forces, unlike the potentials, remain finite at the boundary, but are

discontinuous there.

At infinity the electric and magnetic forces become infinitely small, of the

orders l/r« and l/r° respectively, although the potentials only vanish to the order

Ijx. Hence the difficulty signalised in § 1.5 does not exist in this problem.

48. [Geometrical representation of the field. The forces can be

expressed very simply by means of ring coordinates.

,„ -i ? sinh -dr f sin YWrite x =—i-; i— , tar= r-^-

—

^
,

cosh y — cos
'x^

cosh i/r — cos %
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where as before f is the distance of the charge from the origin at time t, so

that by (81), § 44,

The circles x = constant form a pencil of circles through the charge and its

image in the equatorial plane « = 0, and the circles t/t = constant form the

family of orthogonal circles with the charge and its image for limiting points.

The part of the axis between these points is given by j^ = tt, the remainder by

X = ^! the equatorial plane is given by i^ = 0, and the charge and its image

by i/r = + 00 respectively.

Using (83) and (85) we easily deduce the following results

:

(1) The electric and magnetic forces are given by

, (1 -;8^) (cosh -Jr- cos v)^ L o • J /ooN

Near the charge, and near its image, these reduce to the well-known

Heaviside expressions for positive, and negative, unit charges respectively,

both moving with the instantaneous velocity v in the positive direction.

(2) The lines of electric force are the circles x = constant.

The lines of magnetic force are the parallels of latitude.

The electric force acts from the charge to the image.

The magnetic force acts right-handedly with respect to the simultaneous

velocity of the charge.

(3) Let the electric induction across the segment of the sphere yjr = con-

stant, from the positive a;-axis up to the parallel of latitude % = constant, be /

;

and let the magnetic induction across the part of the meridian plane, which

lies between the circles (%) and (yjr), and the axes
p^;
= 0, i|r = 0, be J. Then

we get

^- ^'^ f - V(l-/3=sin^x)i
'

2,r

The total electric induction is given by % = tt, and is equal to 47r, as it

ought to be for unit charge.

The total magnetic induction is infinite, owing to the supposed, but not

realisable, concentration of a finite charge at a point ;
practically the whole is

contributed by the region immediately surrounding the charge, where ilr = oo .

The image lies beyond the boundary, x + ct = 0, that is, it is virtual and

contributes nothing.

(4) The Poynting vector is given by

c^ (1 — jgQ' (cosh i/f - cos x)* sin %*~
47rf* (1-/3'' sin'' x)'

The lines of flow of energy are the circles yfr = constant, for they are

perpendicular both to the lines of electric and to those of magnetic force.

5—2
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The flow of energy vanishes at the axis of a; ; it is away from it between the

charge and its image, and towards it beyond them, when the applied electric

force aids the motion, but is reversed when it opposes the motion.

Fig. 23 is a meridian section for the case where the velocity is four-fifths

of that of light and positive, that is in the direction of the applied electric

force.

E is the position of the charge at time t, and F is its image in a; = 0.

Thus 0^=Oi?'=f
A is the turning-point, so that OA = h.

BD is the trace of the boundary, so that OB = ct.

EPCDF is the line of electric force through P, so that % = /^ EPF.

GPJ is the line of flow of energy through P.

K and H are the centres of these circles, so that

OZ = ^cot%, KE =^cosecx, 05" = ^ coth i|r, (?ff = f cosech i/r.

G
U, -U, -88, 2-2, 1-76,

Fig. 23. ct=ik, |=|fc, p=i.

It is easily proved that / = 27r (1 - OKjAK).

With the aid of this relation the lines of force have been constructed for

the values /= 47r times 1/10, 2/10, 3/10, ... and i/r = 0-44 times 1, 2, 3, 4, 5.

Thus the electric induction through each of the 10 zones generated by the

revolution of the lines enclosed between consecutive electric lines of force (%)

is the same, namely 4nrjlO. And the magnetic induction through each of

the curvilinear quadrilaterals is equal to /8 x 0-088, the two smallest semi-

circular areas surrounding E and F being excluded. The values of i|r are
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chosen so that one of the circles bounding these areas, and given hy \lr = — 2-20,

just touches the boundary BB.

We have generally f = log, (FP/PE), so that OQ = ^ tanh (i/r/2). Hence
as the circle (-v|r) approaches B, the magnetic induction through the enclosed

area becomes logarithmically infinite. This is due to the supposed, but

physically unrealisable, concentration of unit charge at the point E. Thus we
must exclude a very small space around E from consideration ; this excluded

space represents the volume occupied by the electron.

In order to secure agreement with our fundamental assumptions we must
suppose the surface of the electron to be an oblate spheroid of revolution about

Ox with its centre at E, its eccentricity equal to y8, and its equatorial radius

equal to a constant, say a. At this spheroid we have

cosh i/r = ^ v(l - /S' sin» x)/a V(l - /S"),

to the lowest order in the small quantity a/|. The a;-momentum per unit

volume is s^/c"; hence we find by means of (86) that the a;-momentum

contained in the part of the field, which lies between the spheroid and the

boundary x + ct = 0, is, to the lowest order, equal to 20/Sca V(l - ^'), which

is the value given by the Lorentz mass formula for unit surface charge, as it

ought to be.]

49. The electric and magnetic forces are discontinuous at the boundary

X + ct = 0, for they are finite inside and vanish outside. No difficulty

arises on this account, for in the first place the boundary is really a layer

of transition, of thickness comparable with the radius of the electron, in

which the forces vary rapidly, but continuously, from their zero values outside

to the values given by (86) inside. Secondly, this boundary is never realised;

it requires the motion of the electron to have continued for an infinitely long

time according to the same law, whilst the necessary uniform external electric

field can in reality only be of finite duration.

Thus it becomes necessary to consider cases of discontinuous motion ; for

instance, the case where the uniform field is confined to the space between

two planes perpendicular to the a;-axis, and the electron is projected along the

axis with a given initial velocity.

50. [Problem 5. An electron, moving with uniform velocity in

a straight line, is subjected to a parallel uniform electric force for

a certain interval. Required to find the electromagnetic field due

to the motion.

After what has been said above we shall content ourselves with a very

brief statement as to the generation of the pulse, and shall then give an

account of its ultimate nature ; for it is this alone which is of importance for

the theory of X- and 7-rays.
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In addition to the initial velocity and the strength of the applied electric

field, we must be given either the final velocity generated, or the time during

which the field is applied, or the space through which it extends, it is quite

immaterial which; the equations (81), § 43, in any case determine the

remaining quantities. To fix the ideas we shall suppose that the electron

moves with uniform velocity Vi, until it reaches the point (g, 0) at time ^.

The uniform electric field X then commences to act, and accelerates the

electron according to (81), until the point H (h, 0) is reached at time ts. Then
the field ceases to act, and the electron continues to move with the acquired

velocity v^. The origins of space and time are supposed to be taken as in

problem 4, and must be determined by means of (81).

The disturbance emitted during the initial and final uniform motions is

determined by (47), § 23, but we must bear in mind that the origin is the

position occupied by the charge at time t m the particular uniform motion

under consideration.

For the initial motion the origin is a point E^, of which the ^-coordinate

is given by ^i=g + Vi(t- ti). Hence in (47) we must replace ij by ?^i, and

vt— oc by Vit—x+g — viti.

This disturbance is confined to a region (I), which is unlimited externally,

but is bounded internally by a sphere (<i), the position at time t of the wave

emitted at time ^. Its centre is G, and its radius is given hj Ri = c(t — ti).

It cuts Ox in two points B and B', whose a;-coordinates are g ± R^.

For the final motion the origin is E2, for which ^2= ^ + "2 (* — 4). so that

in (47) we replace v by v^, and vt — schjVit — x+h — vj^.

This disturbance is confined to a region (II), which is bounded externally

by a sphere (ig), the position at time t of the wave emitted at time t^. Its

centre is H, and its radius is given by i?2 = c (i — ta). It cuts Ox in two points

G and G', whose a;-coordinates are h ± R^.

The disturbance emitted during the variable motion is determined by

(84)—(86) of problem 4. We use the same notation ; in particular we denote

the position at time t of the electron in the variable motion by E, its

^-coordinate by f, and its velocity by v, where

^-='J(k'' + cH% and v = cHj^/ik" + cH^).

This disturbance is confined to a region (III)—the pulse—bounded by
the spheres (ti) and (^2).

The electron coincides with Ei for t<ti, with E ior ti < t < t^, and with E^

for < ><2 ; we shall however find it necessary to use these points for values of

t outside these intervals, in which case they may be regarded as virtual

electrons.
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51. We shall for convenience collect together below all the data and

equations which we shall require later; they all follow readily from (81).

We write

Then I V(l -^') = 9 V(l - /8i^) = ^^ V(l - ^.') = k

t V(l - /8^)//3 = t, V(l - AO/^a = k V(l - A^)//3. = h/c

/3 = ct/^, /3i = ctjg, ^2 = cij/A

The time y, for which the field is applied, is given by

'' '^-cV(i-^.=) v(i-A^)
The distance between the points Q and H, the space over which the

applied field extends, is given by

Either T, or L, may be given in addition to v-^ in place of v^.

The thickness of the pulse varies ; at the positive pole it is BG (Fig. 24

below), which is given by

5c=,+E.-/.-ie. = (i-A)^-(i-A)A=(^^;-yj-^j..

At the negative pole it is B'G', which is given by

5'G' = A-i?.-5r + i?, = (l + A)A-(l+/30.7=(y^-y^;)/<;.

Which of these thicknesses is the greater depends on the signs of ySj

and ySj, but is of no great moment. It is important to note that both are

independent of t, and of order k, in all practical cases at all events. Now we

have, by (81), k = d'm/eX ; with e/cm = 1-77 . 10' we find k = 1700/Z. Thus

with fields such as can be reached in the open air, k may amount to several

cms. ; but in the case of X-rays, diffraction experiments seem to show that k

is at most of the order 10"* cm. Hence in experiments on X-rays the thick-

ness of the pulse is always exceedingly small compared with distances, such as

Ri and R^, at which observations are made. In these cases it is the ultimate

nature of the pulse that is important.

Fig. 24 illustrates the construction of the lines of force, the notation being

that used above.

PQRE^ is a line of electric force, consisting of three sections

:

(1) The part QP of the radius vector E^QP
; (2) the arc QR of the

circle (%), ERQF, through E and its image F in the equatorial plane a; = 0,

whose centre is at K (0, f cot %) ; and (3) the radius vector E^R.
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The flow of energy at Q is along QS^ in region (I), and along KQS, in

region (III) ; at -B it is along R8^ in region (II), and along KRSs in region

(III), where QSi and RS^ are respectively perpendicular to EiQ and E^.

Fig. 24. For e= k, ft= -5, ft=-886, ct=4ft.

It should be noticed that both the electric force and flow of energy are

discontinuous at the spheres (^) and (^2); and the same is true of the magnetic

force.

It is proved below that KG is perpendicular to E^Q, and KH to EJt;
these facts afford a simple construction for the electric line of force, when the

part of it in any one of the three regions is given.

52. We shall find it convenient to transform our coordinates by referring

everything to the spherical wave which passes through

the fieldpoint P at the time t. This wave was emitted at

some time t', when the electron was at a point E', and
moving with velocity v' along E'T. Write R for the

vector E'P, 6 for the angle it makes with WT or v'.

Let xfjc = /3', and as usual write iT= 1 - ^S' cos d.

The point laws are

9 =
Fig. 25.

KR' "-'cKR-
They give by means of (VII) and (VIII), § 3, as in § 13, (32) and (33),

_J;^ R,-v7c| (vll)

c'K'R^ K'R^ r ^ ^ c'
h = [R, . d].

For the uniform motions we must put yS' = /3i, or /Sj, as the case may be,

and t' = 0.
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For the variable motion we have v' = cH'/»^/(k' + cH'"), so that

v'/c'= k'/ik" + d't^f = (1 - ^'^fjk.

Of course in any case v' and v' are along Ox. Hence we find for the

Uniform motions

:

d. =
j^.(i^_~/l g).

'^'' -'""-&
(1 - ^' cos ey

Variable motion

:

d
l-^'

R'{l-^'cosey

.(88).

fl +m
I R ) kR{l-fi' cos ^)^

In the last equation we have made use of (87), which give for the

a;-coordinate of E' the value f ' = A;/V(l - /S'^). They also give R = ^^- /3'f

,

a relation which allows us to replace the factor 1 +^ in this equation by

/3?/ii!.

By help of (88) we get the following results

:

(1) At the wave (ti), where /3' = 0i, we have

dm dffi = /3f : ;8i^i = tan « : tan «!,

Ka hei = /8f : /Si^i = tan a : tan a^,

where the suffixes refer to the regions (I) and (III), and

tan o = /3^/ifc = j8/V(l - ^'), tan a^ = A/V(l - A')-

Thus the normal electric force is continuous, but the tangential electric force

and the magnetic force are discontinuous. The lines of electric induction are

refracted according to the tangent law, as they would be from a dielectric of

specific inductive capacity tan a to one of capacity tan a^.

(2) Further, we have, for the normal Poynting vector,

Sin ' Sm = tan^ a : tan^ a^.

This inequality implies no infraction of the Principle of the Conservation of

Energy. For since the wave (<i) is expanding with velocity c, region (I) gains

energy at the rate Sm per unit area of surface of the wave on account of the

flow of energy, but loses it at the rate cE^ per unit area on account of the

expansion, where E^ is the energy per unit volume of region (I) close to the

wave (<i). Using (88) we find for the total rate of gain of energy of region

(I) per unit area of the wave (<i) the value Sj^ — cE^ = — cdn/STr. In the

same way we find the equal, but opposite, value cdr-^I^Tr for the rate of gain

of energy of region (III) per unit area of the wave (^,). Similar results hold

for the wave {t^, so that the principle is satisfied for each surface element of

each wave separately.
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(3) If Q be the point (x, ct) the equation of the circle (x) through it gives

2ot^ cot X = «^ + st^ - ^.
Also Fig. 24 gives

a;'' + nr'^ = OQ' = Bi' + g' + 2g{x- g);

and from (87) we get

^^=R, + ^,g, and ^ V(l -^') = g V(l - /3i0>

whence ^^ = R^ + g^ + 2g^^R^.

Hence we get

and ^cotx=g(^- f)/^, or OK=OG cot QE^x =0G cot OE^M.

Thus the triangles KOG and E^MG are similar, and ilf is a right angle.

Similarly, iV^ is a right angle.

Hence the construction given above for the line of force has been

verified.

(4) As time increases, ^, jRi and B,^ become very nearly equal and infi-

nitely large compared with k, g, h, fi and fj, while y8 approaches the limit unity.

Hence for all points of the pulse d^ ultimately is infinitely large compared

with dr, except just at the poles, and the electric force is ultimately tangen-

tial, though quite near to the poles it is radial, from the charge E, or its image

F. The limiting value of the electric force is the same as that of the magnetic

force and equal to (1 - ^""f sin djlcR (1 - /3' cos Oy. We shall study its

variations inside the pulse below.

53. The behaviour of the pulse in the several possible cases will be

evident from Figs. 26—29. They are drawn for two typical cases, the first

pair for the stoppage of a moderately fast cathode ray particle, the second for

the starting of a very fast /3-particle. The electric lines of force are drawn

by the construction of Fig. 25, so as to correspond to 10 equal increments of

induction, as in Fig. 23, § 48 ; the orthogonal lines of flow of energy are omitted,

as they are of no particular interest, and in any case can be easily supplied.

Retarded motion.

In Fig. 26 we have

fi = l-005A;, ^, = i, | = 412/fc, f = 0-60/fc, ^" = k.

E^ and E" coincide with A exactly, while E^ is practically indistinguish-

able from it. The waves (ij) and (t^ are very nearly concentric, and the pulse

is very nearly of uniform thickness.

Fig. 27 represents the same pulse after an infinite time, practically for any

time greater than say lOOk/c. On the scale used A, E^, E^, and E" are all
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indistinguishable from the origin, the pulse is infinitely thin, OE' =
and E practically coincides with B, and F with B'.

75

- Ofi/10,

Front

Fig. 26. For |3i=--10, §^=0, ct=ik.

Fig. 27. For /3i=--10, /32=0, i=oo

Accelerated motion.'

In Fig. 28 we have

f,
= A;, ^,= l-6'7k, ^ = 4>12k, ^' = k, ^" = 3-80k.

E and E' coincide with A.

Fig. 29 represents the same pulse after an infinite time.

On the scale used A,E^,E^ and E' are all indistinguishable from the origin,

the pulse is infinitely thin, OE" = 805/10, and E practically coincides with B,

and F with B'.
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Owing to the overlapping of the lines of force in the pulse, some care is

necessary in associating the corresponding lines in the regions (I) and (III).

For instance, the second line in Fig. 29, corresponding to /= Stt/IO, is

E"PQR, and the curved portion PQ of this line overlaps the lines 3, 4, 5 and

6 in region (III).

B'
^ A Ej E"EB C

Fig. 28. For /3i = 0, ;82=-80, ct=ik.

Fig. 29. For /3i=0, |82= -80, t=oo

More complicated cases, where neither the initial nor the final velocity

vanishes, can be illustrated by a combination of the two types of diagram.

For instance, if ,81 = — '10, /Sa = '80, we must superpose Fig. 26 on Fig. 28, and

Fig. 27 on Fig. 29, so that region (I) in the first figure represents region (I),

and region (III) in the second represents region (III) finally.
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Fig. 30.
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54. The ultimate nature of the pulse. Let E' be the position of the

electron at the time t', so that OE' = ^'.

Let BPB' be the wave emitted at

time t' in its position at the time t,

and P a point on it, so that

^PE'x=e,a.n6.

E'P = R = c{t-t') = ct-^'^',

by (87). From as centre describe

a sphere CQC of radius ct, draw OQ
parallel to E'P, and PR perpendicular to it. Then QR = ^' (cos 6 — ^')=n
say. Thus n is the distance of P from the sphere CQG' measured outwards

along the radius OQ. By (87) we get

*"
V(l-/8'^) *- ''

As time increases and the pulse expands, the distances QR and PR remain

constant, while OQ and E'P increase indefinitely. Hence ultimately the

points P, Q and R may be regarded as coincident, and the radii OP and OQ as

parallel and equal to R, or ct, indifferently, for all purposes for which we may

neglect the quantity k/R. We know from experiments on the diffraction of

X-rays that the thickness of the pulse is of the order 10~° cm., and this is

also the order of the length k, except ia very particular cases. Thus our

approximation is sufficient, even whenR is as small as ten or a hundred times

the radius of an atom.

From (88) and (89) we see that the radial electric force may be neglected,

and the electric and magnetic forces regarded as equal and given by one or

other of the following equivalent expressions

:

^^^^ .(l-^-Qtsin^ ^ ek^sine

kR {I- ^'cos ey R (n' + k^ sin' 0)^

where the charge of the generating electron is taken as e electrostatic units

instead of unity as before.

The first expression shows how the force varies in different parts of the

same wave, given by /8' = constant, the second how it varies along the same

radius of the pulse, given by ^ = constant.

The electric and magnetic forces are ultimately perpendicular to the radius

vector, as well as to each other. The electric force is along the meridian, from

the positive to the negative pole, that is, always in the reverse direction to the

acceleration of the generating electron at the instant of emission of the wave.

The magnetic force is along the parallel, always right-handed with reference

to the acceleration of the generating electron at the instant of emission. Their

directions are reversed only when the acceleration of the generating electron
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is reversed. Thus when a pulse is produced by a sudden change in the

motion of an electron, the electric and magnetic forces have the same direction

throughout the pulse.

The pulse is completely polarised at every point in a plane perpendicular

to the meridian, except at the poles, where however the forces vanish.

55. Small velocities. When the velocities /8' throughout the pulse

are so small that their squares may be neglected, .we find by (89) that the

thickness of the pulse is uniform and given hy d = k (0^ — y3i), where /3i and

/Sa correspond respectively to the outer and inner surfaces of the pulse. The

electric force which must be applied to the electron to produce this pulse is,

by (81), § 43, given by X = c'm/ek = d'm (0^ - 0,)led. Taking e/cm= 1-77 . 10',

we get X = 1700 (0^ — 0i)/d. The force at the surface of an electron is of the

order 10^* ; taking this as an upper limit to the electric force X, we see that

the least thickness is given hj d = 17 .
10~^' (/Sa — 0i). Since 0^ and /3i are

supposed to be small compared with unity, this is well below the maximum,
10~' cm.-, assigned by the diffraction of X-rays, even allowing for the proba-

bility that the force X is much less than the upper limit which we have

assigned. When /Sj and ySa are not small, the thickness of the pulse is

variable, but its mean value is given hy d = k \ ,,, „ ,,, „ , \ . Even
® ^ IV(i-/3/) V(i-A')j

when /3i and 0^ are of ,opposite signs and as great as '97—the value given by

Kaufmann for his fastest /3-particles

—

d is only eight times h, and about
10~" cm., still leaving a sufficiently wide margin between it and the maximum
assigned by diffraction experiments.

As regards the distribution of force inside the pulse in the particular case

of small velocities, we find, by (90), d = h = esm djkR.

This law is the same as that in the wave emitted by a Hertzian vibrator,

apart from the periodic factor present in that case. This was to be expected,

seeing that the Hertzian vibrator is equivalent to an electron vibrating with

very small velocity. The force is symmetrical, as regards magnitude, with

respect to the equatorial plane, has a maximum there and vanishes at the

poles. Its maximum, ejkR, is Rjk times as great as the electrostatic force at

the same distance R from an equal charge at rest. Owing to the smallness

of k, it is enormously greater for all but extremely small distances, showing

that the pulse is a region of exceptionally intense force.

56. General case. We see from (90) that as the velocity 0' of a wave

increases, the wave loses its symmetry with respect to the equatorial plane.

The maximum of the force is given by cos 6 = {\/(l + 24/3'=^) — l}/4/3' or, what

is the same thing, by /3' = cos 6j{\ + 1 sin" 6), and its value is easily found to

be e (5 + 4 sin'' 6)^j2lkR sin" 6. Thus 6 is less, or greater, than ^tt, according

as yS' is positive, or negative, and the maximum increases as 0' increases
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numerically. For example, when /3' = '5, the maximum is given by ^ = 36°,

and its value is ISe/kR; when /3'=-97, it is given by 0=6° 23', and its

value is 20eJkR. Hence as /3' approaches unity, the maximum approaches

very closely to either pole, and becomes very high and steep.

Since the extreme values of 0' are the values /3i and /Sa, the greatest of

all the maxima is found at one or other of the two surfaces of the pulse.

57. Variation of the force across the pulse. The second expression

(90) shows that as we pass across the pulse along a radius vector = constant,

the force increases to a maximum and then diminishes again. The value of the

maximum is e/kR sitf 6, and it occurs when m = 0, that is, at the point Q on

the circle GQC of Fig. 30, § 54. The law of variation of the force is the same

for every radius vector, when the normal distance n is expressed in terms of

the length k sin 6 as unit. But we must remember that the pulse is limited

by the values n = Wj and n = n^, given by putting /3' = /3i and /3' = ^^ respec-

tively in (89), so that only a part of the whole range of the second expression

(90) is available for the pulse. When cos = A. the maximum of the force

just falls on the outer surface, and when cos 0=0^ on the inner. When 6

lies between the two limits thus'assigned, the maximum falls inside the pulse,

otherwise outside. In the latter case the extreme values of the force are

found at the two surfaces.

58. The energy of the pulse. The energy per unit area of a layer of

thickness dn is equal to (d^ + A^) dnj^nr. By (89) we find

dn=-k{\-^' cos 6) d0'/{l - /S'O*

;

hence by (90) we get for the energy density per unit area of the pulse

)2_(

4i7rkR' jp, (l-/3'cosdy

= 3-raJ^S^l^"^-2«i'^2,^ + i«-4'^}?i (91)-

with tan 4) = —^^ —
^,
—

^ cos tf — y8
'

The indices denote that the values (^i and <j>2, given by /3' = /3i and ^' = ^„
are to be put for

<f>
in succession in the bracket, and the first result sub-

tracted from the second.

When /3' is small, tan = tan (9 (H- y8' sec 61), or
<f>
= e + ^' sin d. The

value of the bracket then is 8 (0^— /8i) sin= 6, so that

E = {0^- ^i) e= sin^ 0/4i-7rkR\

Thus for small velocities the energy is distributed in the same way as it is

for a Hertzian vibrator, as was to be expected, symmetrically with respect to

the equatorial plane, with a maximum there and with zeros at the poles.

„ e^sin^e fP=(l -^'-'fd^' .
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As /8' increases, the energy density behaves like the force. Its maximum

approaches nearer to either pole, and increases in height and steepness as ^'

approaches unity.

The total energy of the pulse is found by multiplying E by ^irE' sin 6d6,

and integrating with respect to 6 from to tt, most easily by performing the

^-integration first. In this way we find for the total energy,

This expression is easily got by direct integration of the well-known

expression for the radiation from an electron moving with acceleration which

is due to Li^nard and Abraham.

Since the mean thickness of the pulse is given hy d = k {/37\/(l — /S'")}?)

(92) may also be written

2g/f ff vy
U IV(l - /3'»)jJ

•

Taking e = 4.'7 . lO"", d = 10-» cm., /8i = - -97, and /S^ = -I- -97 as extreme

values, we find that V = "94.10"* erg, which may be regarded as an upper

limit for the thickness assumed.

The increase in the kinetic energy of the generating electron according

to the Lorentz formula is given by

r^ , f 1

lV(l-^%'
With m = 8-9 .

\0-^ gram., and y8i = 0, /S^ = -97, we get iT= 2-4 .
10-« erg.

In this case F= 2"4 .
10~' erg, and thus is one thousand times smaller.

When /3i = and /S^ is very small, the ratio VjK approaches the limit

ie^'jSc'md ; for d = 10-=' cm. its value is 1/2700.

Hence for a pulse as thick as 10~' cm., our original assumption, that the

reaction due to radiation could be neglected in comparison with the force

generating the motion of the electron, is amply justified even for the fastest

yS-particles known. But it is clear that if the pulse were much thinner the

reaction would have to be taken into account.

59. The strength of the pulse. Both the force and the energy of the

pulse involve the constant k, or if we prefer, the mean thickness d, as well

as the terminal velocities /3i and /Sj, and to this extent depend on the field

which generated the pulse. For many purposes, however, what is required is

not so much the force, nor the energy, but the integral of the force across the

pulse, and this we shall find to be independent of k, or d. Remembering

that by (89) dn = -k(l-l3' cos d) d0'/{l - /3'=)4, we get by (90)

J-
r , , esine r^' d0' e{ ;8' sin 6* 1^ ,„„,
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We may call I the strength of the pulse at the particular place.

As the pulse expands and passes across a fixed point the time-integral of

the force there is obviously equal to //c.

2-0
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When /8' is very small the maximum lies on the equator; as /S' increases

it approaches either pole, and at the same time increases in height and

steepness. It always lies at M, the parallel in which the particular wave

(/3') cuts the sphere GMG' of Fig. 30, § 54.

An important result follows from the fact that I does not involve the

constant k, that is, does not directly involve the strength of the generating

field X, but only the initial and final velocities of the electron.

Let D = /d . dw and H = /h . dn, so that D and H are the integrals across

the pulse of the electric and magnetic forces regarded as vectors.

The vector D is perpendicular to the vector Ri, a unit vector along the

radius, and to v', the velocity of the electron, and lies in the meridian plane

;

the vector H is perpendicular to the meridian plane ; and the magnitude of

each vector is /. Hence we get from (93)

e { [v'.Ri]

R\c — v' cos 6
.(94).

R\c — v' cos 6
J

Since these equations involve merely the terminal velocities and the angles

they make with the radius vector R, but do not involve the generating field

directly, they may be applied to any pulse whatever, provided only that the

distance through which the generating electron is moved in the process is

negligible in comparison with R.

For any pulse, however complex, may be supposed to be broken up into

a succession of elementary pulses, to each of which (94) may be applied in

succession; the form of the expressions shows that the final terms alone

appear in the result.

The expressions (94) could have been obtained by direct integration of the

general expressions for the forces given on p. 23, and derived from (VII)

and (VIII), but the present process is instructive, and will serve as a verifica-

tion of the work.

60. Effect of the pulse. Let us suppose the pulse to pass across a

second electron in static, or kinetic, equilibrium under the action of a given

system of forces. We shall suppose the time of passage of the pulse to be so

small that the effect on the given system of forces of the displacement and

change of velocity of the electron due to the pulse may be neglected. This

approximation suffices whenever the time of passage is small compared with

the free periods of the electron.

On this assumption the increase in the momentum of the electron due to

the pulse is given by

A (mv) = e [ {d + [v . h]/c} d« = - {D + [v . H]/c}.
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It follows, by (94), that the increase in velocity, Av, is of the order e^/cmB,

which with the usual value for e'^cm, and for i? = 1 cm., is "008 cm./sec.

The maximum velocity of an electron, necessary to account for the radia-

tion in a spectrum line, is of the order 10' cm./sec. ; this follows readily from

Wien's measurement of the energy radiated by a single canal ray ion in the

blue line of hydrogen, namely 10~' erg/sec, on the assumption that only one

electron takes part in its production. If all the electrons of the hydrogen

atom shared equally, which is a most improbable assumption, the velocity

would still be as great as 2. 10* cm./sec.

The comparative smallness of the velocity produced by the pulse indicates

that the ionisation produced by X- and y-rays in stable substances like

hydrogen is to be accounted for on the aether-pulse theory by the cumulative

effect of a large number of successive pulses, and that something in the

nature of resonance is involved in the process. The results of Barkla

respecting the selective absorption of secondary rays support this view,

but it would lead us too far to enquire into the matter here. Such an

enquiry presupposes an investigation into the motion of systems of

electrons, which can only be given later.

Note. Since the above was written, Sommerfeld (Phys. Zeitsch. 10,

p. 969, 1909) has given a theory of aether pulses, which agrees with what

has been given above.]

61. Problem 6. A point-charge moves in a circle with uniform

velocity ; to find the resulting field.

We shall content ourselves with investigating the general character of

the field, for the calculation of the potentials requires the solution of a

transcendental equation, which cannot be effected in finite terms.

Take the centre of the circle as origin and its axis as axis of a; of a system

of cylindrical coordinates of {x, ts, (j)).

Let the coordinates of the charge be given by

^ = p cos <BT, 7] = p sin (BT, ^=0, from t = — oo to t = + oo .

The radius of the orbit is p, the angular velocity co, the period of

revolution 27r/'ta, the linear velocity of the charge v = cop. As usual write

/S = eo/c. Wei get at once

B = ^/laf + w' + p^- 2-sTp cos (a)T - (jt)} \

^t=T + l\/\0l^ + 1iT' + p'- 2vTp cos (a)T - <^))/c

Z = 1^ = 14- /3^ sin (wT - <i)/E

KR = i2 + /Sot sin (q>t - (/>)

.(95).

6—2
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It is convenient to write

i|r = |(«Bi - ^ + tt), X = i ('"^ - ^ + t),

Thus / and g are respectively the greatest and least distances of the

fieldpoint {oc, is, <^) from the orbit.

We get from (95)

iJ = A, Z = 1 — 7^^ sin X cos x/A.

The multiple roots of (QSa) are given hy K = 0, that is by

7 = A/V(l - A=) (A^ - k'-').

This equation gives on solution

A = i V{(1 + hj - 1/y} ± 4 V{(1 - kj - 1/f} (96).

The roots are real when 7 > 1/(1 — k').

They are equal when 7 = 1/(1 — k').

They are imaginary when 7 < 1/(1 — k')^

Since 7 = (ofj2c, the limiting case is given by

f-g = 2c/<o = 2p/^ (97).

This equation represents a hyperboloid of revolution of one sheet. Its

focal line is the orbit, its real semi-axis is p/^, and its eccentricity is y8.

Thus the hyperboloid is real when, and only when, ;8 > 1, that is, when the

velocity of the charge is greater than that of light.

Inside the hyperboloid, that is, on the same side of it as the orbit, the

roots of (96) are real, outside it they are imaginary.

62. The characteristic curve. In the present notation the charac-

teristic equation (963) becomes

^ = x + y^-

This equation is more convenient to deal with than the original one,

because the coordinates of the fieldpoint enter into it only through / and g,

that is, through 7 and k.

The least value of A is k', and it occurs for x = i""- Its greatest value

is 1, and it occurs for % = 0.

These values repeat whenever x increases by ir, so that •^ is a periodic

function of % of period tt.

The chief types of the characteristic curve are the following

:
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(a) Velocity less than that of light : v<c.
The maxima of A, and of R, correspond to points such as D, and the

minima to poiats such as G. At both sets of

points the curve is parallel to AB.

Obviously, for every value of yjr, and also

of t, there is but one value of %, and therefore

also of T, that is, but one wave.

Since the curve only involves the two

parameters k' = g/f, and 7 = (»//2c, the same

curve holds for all points on the anchor ring

g/f= "707, provided that the appropriate

value of CO be selected.

The values of the potentials are

<^ = ;r-:x^^;rT777^ .
by (26), §13,

For k= k'

Fig. 32.

= •707, and 7= -785.

a =

A — yk'^ sin x cos x

'

V
by (27), § 13.

c (A — 7^" sin X cos x)

'

The magnitude of the vector v/c is /3 ; its direction is that of the motion

of the charge at the time of emission t, and makes with the initial line the

angle wt + ^tt, that is, 2^ + (!> — ^tt.

(b) Velocity greater than that of light : v>c.

(1) As the velocity increases, while the fieldpoint remains fixed,

7 increases while /, g, k and k' remain constant. In the present case 7 may
increase until it equals the quantity 1/(1 — k'), that is, /8 = 2p/(f— g). The

hyperboloid (97) is real, because /8 > 1, and it expands until it passes through

the given fieldpoint. So long however as the fieldpoint is still on its outside,

that is, on the opposite side to the orbit, the roots of (96) are imaginary,

which means that the characteristic curve is continually ascending, without

maxima or minima, and of the type shown in Fig. 32. The potentials are

given by (26) and (27) as before.

(2) When the velocity is so great that the fieldpoint lies inside the

hyperboloid (97), the roots of (96) are real, and

the characteristic curve has maxima (Q) and

minima (P), infinite in number. For all values

of ^ between KP and LQ there are three

values of %, and therefore three simultaneous

waves. For all other values within the range

from G to G, there is but one.

Thepotentials are given by(34)and(35),§14,

<^ = S
^

a = S

A — 7^;^ sin x cos x

'

V
c (A

—

yk^ sin x cos x)

'

Fig. 33.

Forft=i'=-707, and 7=3-93.
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where the sum is to be taken for three values of %, %i, %2 and %3, correspond-

ing respectively to the arcs EP, PQ and QF in Fig. 33.

(3) As the velocity increases still further, it may happen that the

maxima increase and the minima diminish so much that a maximum Q
is not only above the next minimum P, but above the next but one as well.

In this case horizontal lines can be drawn below Q, but above the second

minimum, and these cut the characteristic curve five times and correspond

to five simultaneous waves. The potentials then have five terms each, of the

same form as before. In the same way, for still greater velocities, and

suitable positions of the fieldpoint, we may have seven simultaneous waves,

and so on. We shall not trouble about these more complicated cases, but

merely note that the number of simultaneous waves is always odd.

63. [Note. Geometrical representation. The present problem

affords an interesting example of the construction of p. 36 for finding the

cusplocus and the envelope. In Fig. 34, E is the position of the electron

at time t, and ET its line of motion. PEP' is the trace of the semi-cone

cos 9 = cjv= 1/yS, and GF that of the planefR cos yjr = v'' — c^, that is,

i? cos -f
= (t)2 _ c2)//= p {^ - \)l^.

Thus EF=p sin'' 6, and OF=p cos^ 6.

Obviously GF and EP intersect at G, so that OG = p cos 0, and zG= 90°.

ThusEP touches the circle BGD, of centre

and radius p cos 0.

The cusplocus is generated by the

intersection of the plane GF and semi-

cone PEP', which is obviously a hyperbola,

and is indicated by a dotted line. Its

equation is easily found. For if the angle

made hj OE with a fixed radius be wt as

before, the equation of the plane GF is

p= ^^ts cos {at - ^), and that of the semi- Fig- 34. For jS=2, e=m°.

cone is Vf*^ +7s^ + p^- 2^p cos {wt - 0)} = jQ^- sin {at - (j)). Hence eliminating

t we find that the equation of the cusplocus is x^ + t!y' + p^ = ^tsr^ + p'^j^

;

this easily reduces to f-g = 2p/^, that is, to (97). Thus the cusplocus is

the hyperboloid (97), as was to be expected.

64. The wave-envelope. The wave-envelope has the cusplocus and
the orbit for the two sheets of its surface of centres. Its trace on the plane

of the diagram is readily found, for it must be generated by the wrapping of

an inextensible and flexible thread on the circle BGDG, which is the inter-

section of the cusplocus by the plane of the diagram. Thus it consists of

arcs of involutes of this circle, namely the arc GE, got by wrapping GE on to
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the arc GBG of the circle ; the arc EJ, got by unwrapping G'E ; and lastly,

the arc OH, parallel to the last. At G there is a cusp, at ^ a conical point.

The remaining parts of the arcs GE and JE, namely, the broken lines EJ' and

EQ\ obviously belong to the reversed motion.

From Fig. 34 it is easy to find the velocity for which we can get five, seven,. .

.

simultaneous waves. Obviously we cannot get five waves, for a point in the

plane of the diagram, until the traces GE' and GE of the wave-envelope

intersect again between the two circles, that is, until E' and E coincide, and

Z BOG = IT. It is easy to show that this occurs when tan V(/3^ — 1) = V(/S^ — 1 )>

that is, for the values ;S^ = 1, 1+ (1'43 . irf, 1 + (2-45 . 7^)^ .... These values

correspond to three, five, seven, ... waves respectively.]



CHAPTER VI

REMARKS ON THE SOLUTIONS OBTAINED, AND ON THE
METHODS OP CALCULATING THE POTENTIALS IN GENERAL

65. Problems concerning the field due to a moving charge may be

grouped in three classes according to the nature of the relation between the

time of emission of a wave of disturbance, t, and its time of action at a given

fieldpoint, t. This relation is illustrated by the characteristic curve for that

fieldpoint as previously explained.

(1) The curve for the first class is ascending both when t has an infinitely

great negative and an infinitely great positive value. Fig. 8, § 22, for uniform

motion with velocity less than that of light (problem 1 a). Figs. 18, § 36, and

21, § 40, for uniform motion with any velocity generated from rest with

uniform acceleration (problem 3), and Fig. 22, § 45 (problem 4), show curves

of this type.

Their characteristic is that a line t = constant cuts the curve an odd

number of times, so that any fieldpoint can be disturbed by an odd, but never

by an even number of waves simultaneously. Ultimately there is but one

such wave.

(2) The curve for the second class is descending for infinitely great

negative values of t, ascending for infinitely great positive values. Fig. 9, § 22,

for uniform motion with velocity greater than that of light (problem 1 b),

and Figs. 12, 13, 14 and 15, § 29, for uniformly retarded motion turning later

into a uniformly accelerated one (problem 2), show curves of this tj^e.

The line t = constant cuts them an even number of times, or not at all.

Any fieldpoint is disturbed by an even number of waves at once, or not at all.

Ultimately there are two such waves.

(3) The third class includes periodic motions, such as uniform circular

motion (problem 6). The curve is either continually ascending (velocity less

than that of light), or alternately ascending and descending, but of the same

character however great the value of t may be, whether positive or negative.

The liue t = constant cuts the curve an odd number of times ; any fieldpoint

is disturbed by an odd number of simultaneous waves.
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It will now be understood why the results obtained for uniform motion

with velocity greater than that of light in problem 3 show no agreement

with those obtained here, as well as by all previous writers, for problem 1 b.

The two problems are essentially different in kind, and rest on entirely

different assumptions. Before we can identify two given motions, which for

a given interval of time appear to be the same, we must enquire into their

previous history; if this has been different, the electromagnetic field will

generally be different. We cannot avoid the consideration of the initial

conditions in a given problem merely by supposing the commencement of the

motion to have been infinitely long past.

Our conclusions are in this respect in agreement with the criticism of

Lindemann* on the work of Sommerfeld, so far as motions with velocities

greater than that of light are concerned. But there seems to be no doubt

as to the correctness of Sommerfeld's results for quasi-stationary motions

with velocities less than that of light. This question has also been discussed

from a different point of view by Schottf with the same result.

66. We must next draw attention to the difference in character of the

field due to motions with velocities less and greater than that of light.

When the velocities are less than that of light the potentials are every-

where finite and continuous, and therefore the forces are everywhere finite,

except at a point-charge, just as for the ordinary electrostatic potential and

force.

In consequence the discrepancy just signalised for velocities greater than

that of light between problems of the type of problems 1 and 2, and those of

the type of problem 3, does not exist in this case.

Moreover, the existence of these discontinuities and infinities of the

potentials has a bearing on the physical question whether charges moving

with velocities greater than that of light really occur in nature.

It may be urged that this question is of no real importance, seeing that

all phenomena hitherto observed can be explained without assuming the

existence of such charges.

We must at once admit this, so far as our knowledge of the properties of

free electric charges goes. Indeed the recent experiments of BuchererJ are

decidedly in favour of Lorentz's formula for the mass of a yS-particle, which

makes the mass vary as l/Vc^ — v", and therefore leads to an imaginary

expression for velocities greater than that of light. If this formula were

universally true, velocities greater than that of light would be impossible.

The experiments however have only been made with /3-particles having

velocities considerably less than that of light; thus the extension of the

* K. Bay. Akad., ii. Kl., xxiii. Bd., ii. Abt., 1907, p. 235.

+ Ann. der Phys. 25, 1908, p. 63.

t Phys. Zeitsch. 1908, p. 75S.
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formula up to the velocity of light involves an extrapolation much beyond

the range of experiment, and can only be justified by theoretical reasons.

The Lorentz mass formula is required by the so-called Lorentz-Einstein

Relatiftheorie*, which has the great advantage of explaining phenomena of

aberration as well as the null effect of the earth's motion on optical and

electrical phenomena to every order of approximation.

Unfortunately however this theory takes no account of the loss of energy

from an electric charge moving with acceleration ; this loss is very small so

long as the velocity remains small, but becomes very important when it

approaches near to that of light.

In consequence the idea of mass itself becomes ill-defined for velocities

closely approaching that of light ; this has been proved conclusively by

Sommerfeldt, precisely on the basis of the Lorentz theory. It is obviously

difficult to reconcile this result with the results of the Relatiftheorie.

We must therefore be careful not to allow theoretical views such as these

unduly to influence our notions as to the possibility, or otherwise, of velocities

greater than that of light.

67. On the other hand there are a number of phenomena which we

have hitherto been utterly unable to account for on any of the current

mechanical theories, namely those afiforded by spectrum series.

When we review the experimental evidence, quite apart from theoretical

considerations of any kind, we can hardly avoid the conclusion that a series

actually contains an infinite number of lines. It may fairly be said that this

is the view of those best qualified to judge, namely the observers themselves.

But when we try to account for these series by means of finite systems

of discrete electric charges we are at once met by the difficulty that the

number of their degrees of freedom is finite.

This difficulty is however only apparent; it is not allowable to treat

electric charges as bodies which obey the ordinary laws of mechanics, for

they influence the surrounding aether and are indissolubly linked with it.

If we treat the aether as a continuum, the system of aether and charges has

an infinite number of degrees of freedom.

Accordingly it has been proved by HerglotzJ and Sommerfeld§

that a spherical electric charge can execute an infinite number of free

rotational, to and fro, oscillations about an axis, and therefore can emit a series

of an infinite number of lines.

* Einstein, Ann. der Phys. 17, p. 892, 1905. Planck, K. Preus. Ahad. xxix. p. 542.

t G6tt. Nach. 1905, p. 201. t GUtt- Nach. 1903, p. 375.

§ GSM. Nach. 1904, p. 431.
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These series it is true are not like the spectrum series to be accounted

for ; in particular their wave-lengths are much too small, being of the order

of the dimensions of the charge. But they show conclusively that when we
do not limit ourselves to small velocities, and thus alter the form of the

solution from the commencement, infinite series are possible. Whether
motions of charges can be found, which shall give series like those known
in nature, cannot be decided beforehand; a detailed investigation of the

problem is necessary, and it can only be carried out on the assumption that

velocities of all magnitudes are possible.

68. From this digression it appears that anything which may throw

light on the question of the existence of charges moving with velocities

greater than that of light is of importance. If such charges exist they must

be looked for inside the atom.

We may expect evidence of their presence in two ways : when the atom

is disturbed by outside influences it is no doubt set in vibration and its

charges certainly emit waves, for no accelerated motion is possible without

radiation to some extent. It is generally taken for granted that these waves

constitute light. But so far as I am aware no vibrating system of atomic

dimensions has yet been imagined, which can give a sufficient number of

waves as long as those of the spectrum. Every mechanical or electrical

system, made up of separate particles, such as the Saturnian systems of

Nagaoka and J. J. Thomson, so far constructed, has most of its wave-lengths

very little greater than the diameter of the atom. At present we cannot

gain much information as to the motion of the charges inside the atom from

spectrum observations.

But a second way suggests itself. When the disturbance becomes so

large that the charges inside the atom acquire very great accelerations,

aperiodic waves, or pulses, of electric and magnetic force are emitted. It

is usual to regard these as constituting X-rays and 7-rays. We have seen

in problems 3 and 5 that the duration of passage of the pulse across a field-

point is of the order of the time that the acceleration lasts, and its thickness

of the order of the distance moved through by the emitting charge while its

velocity is changing.

In the case of a disintegrating atom the latter distance may be expected

to be of atomic dimensions, let us say of order 10~^ cm. ; the thickness of the

pulse will be of the same order.

When a series of such pulses falls on a dispersing or diffracting apparatus,

this apparatus acts as a harmonic analyser, and breaks up the disturbance

into Fourier components. The fundamental, which usually predominates,

has a wave-length comparable with the thickness of the pulse, and is therefore
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of the order 10~'cm. All this is sufficiently well known; it is in agreement

with the few experiments made regardiag the diffraction of X-rays, for

instance those of Haga and Wind*.

When the charge causing the pulse is moving with a velocity greater

than that of light an additional effect may be expected, due to the dis-

continuity of the potential.

For an extended charge the surfaces of discontinuity, which occur only

for a single element at a time, become shells of transition, whose thickness

is of the same order as the linear dimension of the charge ; for a ^-particle

this is of the order 10~" cm.

The potentials in these shells vary rapidly and remain finite ; the same

is true of the electric and magnetic forces. Sommerfeldf finds that in

the shell, which replaces the conical envelope sheet in problem 1, the potential

is of the order a 2 , where a is the radius of the charge, supposed spherical.

The electric and magnetic forces will be of order oT . In the rest of the

pulse they are of much smaller order. Thus the shells of transition are

places of exceptionally intense forces, and constitute exceptionally thin and

intense aether pulses.

When they fall on the analysing apparatus we therefore expect to get

a fundamental wave of great intensity, but of exceptionally short wave-length,

only of the order 10~" cm.

Thus these pulses may be expected to have special properties, for instance,

to be extremely penetrating. Their existence would prove conclusively the

presence of charges in the atom possessing velocities greater than that of

light, and would require us to very materially alter our views as to its

constitution.

I am not acquainted with any experimental result, which cannot be

explained without them, and the theoretical investigation of their motions

would be extremely difficult.

69. We shall therefore during the remainder of this iuvestigation restrict

ourselves to the case of motions less than that of light, except when special

mention is made to the contrary.

Hitherto we have mentioned two methods of calculating the potentials.

(1) The method of Sommerfeld depending on the direct evaluation of

the integral expressions (21) and (22), § 11.

We have already seen that the use of these integrals offers difficulties on

account of the variability of their upper limits, so that it is doubtful how far

* Wied. Ann. 1899, 68, p. 884. Also Sommerfeld, Phys. Zeitsch. 1901, p. 55. [B. Walter

u. E. Pohl, Ann. der Phys. 1909, 29, p. 331.]

t Amst. Proc. 1904, p. 362.



VI] METHODS OF CALCtJLATING THE POTENTIALS IN GENERAL 93

differentiation is allowable. They have been the subject of the polemic

between Sommerfeld and Lindemann already referred to on p. 21 ; this

in itself is sufficient evidence that their evaluation is very difficult and

intricate.

The method has only been used for a spherical charge ; it is doubtful how
far it can be adapted to other cases, for instance, the case of a Heaviside

ellipsoid, that is, a spheroid of revolution with its short axis in the line of

motion, and of eccentricity v/c.

On the other hand it is not limited by considerations regarding the

magnitude of the velocity; it is equally applicable to velocities less and

greater than that of light, but of course is more complicated for the latter.

Since however for our purposes it is of importance to have a method,

which shall apply equally well whatever the arrangement of the charge may
be, whether it applies to velocities greater than that of light or not, Sommer-
feld's method is inconvenient.

(2) The method of the point potentials, due originally to Li^nard and to

Wiechert.

We have used this method hitherto in our illustrative problems. It is

very convenient and suggestive as long as we do not require explicit and

calculable expressions for the potentials, and only wish to get a general idea

of the nature of the field due to a given motion.

Its main disadvantage is that the point potentials are explicit functions

of the time of emission of the disturbing wave, t, and not of its time of action,

t. In order to express them explicitly as functions of t we must solve an

equation, such as 28, § 13. This solution can only be effected in finite terms

in exceptional cases; in the most interesting cases, like that of uniform

circular motion (problem 6), the equation is transcendental, and a finite

solution unobtainable.

Its solution can be effected in series by means of Lagrange's Theorem

whenever there is but one root, that is to say in all problems of motion with

a velocity less than that of light, and for some cases where the velocity is

greater than that of light, but then only for restricted portions of space.

Since for many purposes, such as the calculation of the radiation from the

moving charge, and of the mechanical reaction of the resulting field on it, we

require the potentials for all points of space, this method may be said to be

restricted to problems where the velocity is less than that of light.

In these cases it gives us a complete solution of the problem so long as

the series remain convergent.

When the equation has more than one root Lagrange's Theorem fails. In

this case there seems to be no known general method of obtaining a solution,
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but as it can only occur when the velocity is greater than that of light this

failure is not of much importance for our purpose.

This method of expansion though available is not convenient; for the

series can be obtained more easily directly from the integrals themselves,

especially from (12) and (13), § 9, and that too in the form most convenient

for the problem in hand.

Besides, these integrals for periodic motions lead at once to the appropriate

expansions of the potentials in Fourier series. For instance, in problem 6,

where the equation giving t in terms of t is practically Kepler's equation,

the integrals give the series corresponding to Bessel's solution of that

equation.

We shall first treat of the problem of determining the field due to given

motions of charges at distant points, with a view to calculating the radiation

from them.

We shall then consider the problem of determining the field in the

neighbourhood and inside the charge, and thence show how to calculate the

mechanical reaction of the field upon it.

Since our object in this investigation is to discover new results rather

than to establish them with absolute mathematical rigour, we shall make

use of the simplest methods available, for instance of symbolical methods,

leaving the expressions obtained to be justified a posteriori. Such a justifica-

tion will generally consist in a determination of the range of validity of the

expressions obtained, but this is usually sufiiciently obvious in a physical

problem without detailed examination.



CHAPTER VII

PERIODIC MOTIONS

70. It is convenient to classify the motions to be considered according

to the number of different, that is, incommensurable, periods or frequencies

involved. Thus we may speak of monoperiodic motions, for instance,

uniform circular motion or elliptic motion; of diperiodic motions, for

instance, motion in a nonreentrant epicycloid ; and of polyperiodic motions,

for instance, simple harmonic oscillations about uniform circular motion.

We shall begin with the simplest case, where there is only a single

period.

Monoperiodic motion. We start from the integral expressions (12)

and (13), § 9 :

*-2-j*/:j:.'-""*-"¥ (•^).

-l.hfJl'"'-"'-"'^ <"'a

where

B=^{{x-^y+{y-vy+(^-m-

In these expressions the vector p, whose components are (f, r), f), is a

given function of t with the single period T, and v, that is to say p, has the

same period.

Separate the integral with respect to t into the sum of an infinite

number of component integrals, that is write

dT= 2 dr,
J -X, j=-NJiT

where the integer N is to be taken infinitely large ultimately.
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In the type integral written down write jT + t for t, thus reducing the

limits from jT and {j + V)T to and T. R and v are unaltered by this

change on account of the periodicity. Thus we get, for example,

0=Limiti-fc^.r r^ ,-(-^--/«-')^

= Limit '-(derr 'f ^o^>^(t-Rlo-r-jT)drd,

JV=ao TT J Jo J a j=-N -K

- ( d r f^sin(iV>i)'/iTcos^(^-i?/c-T)dTd/t

TT J J J
= Limit

N=oo sin^M^^

JTljdej\os^ht-Itlc-r)^ (98),

where 2' as usual denotes the sum written but with one-half of the first

term. Similarly

.JT^jdej\os^(t-R/c-r)^^ (99).

The interchanges of summations and integrations are allowed because we

know that the integrals are convergent for physical reasons. It would in any

case be quite easy to introduce an appropriate factor to ensure convergence

of the integrals.

By expanding the circular functipns we may write (98) and (99) in the

forms

</.=i;2(*,cos?^^*/sin?^^)'

^,4K-«¥(!-)S aoo),

a=T2(A,.cos?f-^A,.'sin?p^)|

^=^Wo^*'°'^(f +^)^ [
(101)-

These equations give the expansions of the potentials in series of

harmonics ; the functions ^j ... may be regarded as normal functions for

the given motion. They are independent of the time t, but involve the

coordinates («, y, z) of the fieldpoint implicitly, since iJ is a function of {x, y, z).

The time of emission, t, occurs as a variable parameter.
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When the distance R is large compared with the linear dimensions of the

charge, though it may be comparable with those of the orbit, the integration

with respect to the element of charge, de, may be dispensed with, and the

whole charge, e, introduced as a factor.

71. The magnetic and electric forces are easily found by means of the

equations (VII) and (VIII), § 3,

h = curla (VII),

d = -grad.</,-^ (VIII).
Cut

The series (100) and (101) may be differentiated term by term for the

motion is continuous, being periodic.

In finding grad. </> and curl a we must remember that {x, y, z) occur only

in the quantity R, which enters into the functions ^j... under the sign of

integration.

Now for any scalar function /(i?), we have

grad./(i2) = R,./'(^),

where Rj is the unit vector in the direction R.

Similarly for a vector function g (R), we get

curlg(R)=[R,.g'(R)].

Applying (VII) and (VIII) to (100) and (101), we get

.(102).

d = X 2l@j cos -^ + 0/ sm -^j

0, = -grad.*,-^-J^-A/

0/ = -grad.*/ + -^A,-

where \ = cT; it is the wave-length of the fundamental wave of period T.

Performing the differentiations, we get

27^7, r ^-^JfR n(Ri-v/c)c?t\

1 [,.[^ 27rj /R
,

\R,dT

} (103).

R

+ fh'l^
. 2Trj (R \ Ri dr
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In the same way we get, from (VII) and (101),

II 2mf, f. 2W/iJ, \[K,v](Jt

"'—iFl'^Jr'TiT-^V-Tr-

} .(104).

-IK
R

-¥(?-)'^'
The expressions (102)—(104) give the values of the electric and magnetic

forces expanded in series of harmonic terms.

Thus we see that the monoperiodic motion of an electric charge always

gives rise to an infinite series of simple harmonic waves, whose frequencies

are integral multiples of the frequency of the motion itself.

The amplitudes of the several harmonics are given by the equations

(103) and (104) ; in general they diminish very rapidly as the order of the

harmonic increases.

It is to be noted that each amplitude involves terms which at large

distances are of different orders. The first line in each equation represents

a vibration, which is of order 1/Xr ultimately, r being as usual the distance

of the fieldpoint from the origin supposed to be taken near the orbit ; and

this component is transverse. The second line represents a vibration ulti-

mately of order Ijr^, and therefore negligible in comparison with the first

;

for the electric force this term is ultimately radial, for the magnetic force

transverse. The magnetic force in each order is ultimately perpendicular to

the electric force.

72. Hence at large distances from the orbit we may make the following

approximations

:

(1) We replace the integration Jde by the factor e.

(2) We retain only terms of order l/\r, that is, only the first lines of

(103) and (104).

(3) We replace the quantities R, Rj, where they occur outside the circular

functions-, hy r, r^.

(4) In the circular functions we cannot replace Rhy r simply, because

we should then neglect a difference of phase of finite amount. We must

proceed as follows

:
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We have

B = V{(a^ - ^y + (y- vT + (^ - m = r- '"^^yy^
,

where terms of order l/r, and higher, have been neglected.

Denoting the vector {x, y, z) by r as before, and its unit vector by Tj,

and the vector (^, 7;, %) by p, we thus have

R = r-{x,.p)

= r-p,

where p is the projection of the radius vector of the charge, p, on the vector

Fi at time t.

With this approximate value of R, we get

cos -^ {R/c + t) = cos -^ (r/c + r- p/c),

sin -^ {R/c + t) = sin -^' (r/c + t - p/c).

When these expressions are substitiited in terms such as the general

term of (100), § 70,

(pj cos -^ + <!>/ sm -^r .

we get an expression such as

,^\t-r/o)jdej\os^[r-ej^cos-

+ sm-

73. Field at a great distance. Making the approximations mentioned

above, in (1), (2) and (3), and changing the notation slightly, we get the

following expressions for a distant point

:

<^ =^'W (<&, COS ?^ (« - r/c) + */ sin^ (t - r/c)
i=o

^i=yj COS-^(T-jo/c)dT

<E>/ = ^j sin^^ (t- p/c) dr

I...(105),

a = ?? 'W (A; cos^ (t - r/c) + A/ sin ^{t- r/c)
T

^3 =
xi

<^os^(T-^/c)vdT

/ =
lj

sin ^ (t - p/c) V dr

...(106).

7—2
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By direct differentiation, or from (102)—(104), we get

-r/c))'

(107),

d = ^^T j (e, cos^ it - r/C) + 0/ sin ^
JZ (, _ r/c)

Bj = */ . Ti - A/

0/ = - *, . Ti + A,-

4776-'=? ./« 27rj .^
/ N , XT' •

27rj
h =

Xr j=o
r j (Hj cos -^ (« - r-/c) + H/ sin^ (« - r/c))

H, = -[r,.A/]

H/= [r,.A,]

Expressions of this type were first given by Schott*

(108).

74. By means of the expressions (107) and (108) we can. easily verify

that, to the approximation used, the electric and magnetic forces are per-

pendicular to the radius vector r, and to each other.

In the first place, form the scalar product of r^ and 0j, we get

(r, . Oj) = y J^
sin -^^ (r-p/c) . |l - (r, . ^U dr.

Now since we have by definition

p = (r, . p) and p = v,

3 /p\ (Fi.V)

{r^.v)_^

dt V c
so that 1 —

c

Thus the function under the sign of integration is a perfect differential,

and the integral vanishes when taken between the limits and T on account

of the periodicity. Hence

(r,.0j) = O,

and in the same way
(r,.0/) = O,

thus showing that each component of the electric force is perpendicular to

the radius vector r^f.

The form of Hj and H/ shows that the magnetic force is perpendicular

to Fj.

By forming the vector product of Tj and ©j we find at once [r^ . ©,] = Hj

;

and similarly [Fj . 0/] = Hj' . Hence each harmonic component of the magnetic

force is perpendicular and numerically equal to the corresponding component

of the electric force, and in the same phase.

* Ann. der Phys. 1907, 24, p. 635.

t This gives, by (107), ij=(T^.Aj), */ = (ri.A/).
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75. An examination of the equations (107) shows that each harinonic

component of the electric force is the resultant of two components

:

(1) A purely radial component proportional to, but one quarter of

its own period in advance of, the corresponding harmonic of the scalar

potential, ^.

(2) A component proportional to and in the direction of, but one

quarter of its own period later than, the corresponding harmonic of the

vector potential, a. The radial component of this term is just sufficient

to neutralize the first term.

Similarly equations (108) show that each harmonic component of the

magnetic force is proportional to, but one quarter of its own period later

than, the corresponding harmonic of the vector potential, a ; and its direction

perpendicular to both the radius vector and the harmonic of the vector

potential.

It follows that each harmonic vibration is elliptically polarized. In order

that we may understand the nature of this

polarization, let us consider Fig. 35. It is taken

in the wavefront at the fieldpoint P, looking

along the radius vector r, but inwards, just as an

observer would view the incident vibration.

Pd and P^ are in the directions in which

the polar distance 6, and the longitude ^ increase.

These directions form a right-handed system

with r.

Let PA represent the projection on the wavefront of the vector A;,

PA' that of the vector A/. These lines are conjugate radii of the ellipse

described by the radius vector PQ, the projection of the harmonic component
a,- of the vector potential on the wavefront.

It is obvious that PB' represents the vector e,, and that PA represents

0/; this follows at once from the geometrical interpretation of (107).

Hence PD, the radius conjugate to PQ and behind it, represents the

corresponding harmonic; and the harmonic component, d,-, of the electric

force is represented by 4nrej/rX times PB.

It follows that the harmonic component, hj, of the magnetic force is

represented by 4nrej/rX times PH, where PH is a right angle in front of

PD, or behind it, according as the rotation of all the vectors is right-handed,

as shown, or left-handed.

Thus we see that a knowledge of the vectors A,- and A^' is sufficient for

a complete description of the distant field.
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76. The Poynting vector. The Poynting vector is given by

equation (XIII), § 5,

47r

It is obvious that in finding the mean value of s for a long time, or for

a whole number of periods of the motion, the terms in s due to products of

different harmonics disappear identically on integration. Hence we may
without loss of generality confine our investigation to terms involving only

a single harmonic, such as

The only terms of this type which contribute to the mean radiation are

those which involve cos^-^ (t — r/c) and sin^^J (t — rjc); and the mean

value of each of these factors is ^.

Thus, omitting the time factors, we get for the mean radiation vector

due to the harmonic j

= ir (H?f ^^' ''''' ^'' ^'^ ^ ^''^ ^^^ ^'' ^^'^^ ""^ ^^^^^-

This equation together with (106), § 73, enables us to determine the total

loss of energy due to radiation from the moving charge.

77. Group of charges. The expressions obtained above can easily be

generalized for the case where we have a set of n similar charges moving in

regular succession round the same orbit in the same way.

I^et {^i, 7)i, ^i) be the coordinates of the ith charge ; and suppose that for

all values of i from to n — 1 we are given equations of the following forms

:

^, = /(. + f), .. = ,(. + f). ?. = ^(x+f) ...(110),

where /, g, h are three periodic functions of the same period T.

A set of charges satisfying these conditions may conveniently be called

a " group " of charges ; an example is afforded by n equidistant electrons

describing the same circle with the same uniform velocity. Thus corre-

sponding elements of all the charges describe the same curve in succession,

passing each point at intervals Tjn.

Hence the quantities Ri and Vj for the ith charge at time t have the

same values as the quantities R and v for the 0th charge at the time

T + iTjn.
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The contribution of the iih charge to
(f>

is, by (98), § 70,

cos -— {t — Bi/c — t) drjEi.
'0 -1

Change t into t — iTjn ; then, by what has just been said, Ri takes the

value of R for the time t. The limits become iTjn and T+iTjn, but may
be changed back to and T on account of the periodicity of the motion.

Thus the contribution of the iih. charge becomes

^i" ^Idel cos^ {t + ifIn - R/c - r) drjR

Summing for all the charges, that is for i from t = to i = n — 1, we get

= w 1/ 2i^^sn<ios—^ +^'^sm—^j (111).

Similarly

"^"o/'a 2-7rsnt
,

., . 2Trsnt\ /iio\a = n 2 2f Ag„cos-y- + A's„sin-^^j (112).

Thus all the harmonics disappear except those corresponding to multiples

of n.

Whereas for a single charge the mean radiation vector is given by

s = '5"s,- (113),
3=

in the present case of a group it is given by

s = n^*Fs^ (114),

for by (112) each harmonic component which is left is n times as great as

before, and therefore each component of s is n^ times as great.

We shall find that the component harmonics j = and s = contribute

nothing to the radiation, while successive harmonics diminish very rapidly

in magnitude. Thus the absence from (114) of the componentsj= 1, 2, ...

n — l,n+l,n + 2, ... 2w — 1, ... is much more than sufficient to make up for

one factor m in (114). It follows that the radiation per charge from a group

of charges is much less than that from a single charge.

The first example of interference of this kind was given by J. J. Thomson *-

78. Illustrative Problems. We shall now treat of some problems in

illustration of the methods just developed.

Problem 1 . n equidistant electrons move in a circle with uniform
velocity. To find the electro-magnetic field produced. This problem

* Phil. Mag. [6], Vol. vi. p. 681.
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has been treated by Schott* for the case of a fieldpoint at a great distance.

The approximate solution for infinitely small velocities was first given by

J. J. Thomson f.

Let the radius of the circle be p and the angular velocity w. If we confine

ourselves to the case of a fieldpoint not very close to any one of the electrons,

we may treat them as points with charge e.

Take the centre of the circle as origin, and its axis as axis of ^ in a system

of cylindrical coordinates {z, w, <j)}. Sometimes

we shall use also polar coordinates (r, 0,
(f>).

In Fig. 36, P is the projection of the fieldpoint

(z, -nr,
(f))

on the plane of the circle, A and B the

intersections of the meridian plane through it with

the circle. E is the position of the 0th charge at

the time t.

xOP is the angle <j), OP is equal to w, and the Fig. 36.

height of P above the plane of the diagram is z.

Let the angle xOE be equal to ar + B, and let
;y;
= tur + S — (^. By

choosing the zero of time at the instant when the electron E crosses OP, we

can make S = 4>; but it is convenient to retain <^ explicitly in the equations.

This we can do by replacing t wherever it occurs by < + (S — <p)j(o.

CO is equal to the angular velocity, so that the period T is equal to 27r/(B.

We have, from Fig. 36,

R = y/{z'+'!!T^ + p^- 2'!^p COS x] = ^2^/3 {G - COS x),

where C = (z' + tsT'' + p'')/2'mp.

On the circle, where z=Q and nr = /o, we have 0=1; elsewhere it is

greater than 1 ; at an infinite distance it is infinitely great, and we have

R = ^(2'BypG)-cosxA/^=r-psm0cosx

very approximately; that is, in equations (105) and (106), § 73, we must put

p = psinO cos X-

When we replace t in equations (100) and (101), § 70, by i + (S — <l))/io, and
therefore also t by t + (S — (j})/a>, and change the variable from t to y, we get

equations such as

^ 2TrJ Jo '^2'arp{G -cosx)

* I. c. Ann. der Phys. 1907, 24, p. 641 ; Phil. Mag. [6], Vol. xiii. p. 189.

t Phil. Mag. [6], Vol. vi. p. 681.
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Dividing the integral into two,
I + / , and replacing % in the second by

2ir-x, we get

<E>j= - (de r "°^ ^°' ^^^ ~ °°^ ^^ "°^ -^'^ ^^
•" i Jo V2ot/j (0 — COS

'x)

In this equation a stands for &> >/{2isrp)/C.

Each of the vectors A,- and A/ may be divided into a radial component

^TO-j and A'^j, and a component along the parallel of latitude, A^j and A'^j.

The components of v/c in these directions are given by

= - ^ sin X,

where /3 = a>p/c, so that /3 is the ratio of the velocity of the electron to that

of light.

79. In this way we get

^ = 2' 2 {^j coaj (o)t + S-(l))+ */ sinj (mt + S-
<f>)}

rj,
-'^

[
^J' cosj" V(^ - "OS x) cosJX dx

' ^J Jo V'2ot/)((7-cosx) |-...(115).

*/ = -
I deT

si'^i" ^(^- cos X) cosjx cZ^

V2'57/3(C — cos%)

j=oa

a^= S' 2 {^^j- cosj {a)t + Z~(^) + A '^j sinj (a)< + S - ^)}
j=o

A.- = ^ [de r °°^ -^^ ^^^~ "'^^ ^^ "^"^
-^^ °°^ ^ ^^

^i io V2i!7p((7-cosx) K..(116).

A' = ^ ( de
[" siaja V(<^ - cos

:y;)
cosjx cos % dx

' irj Jo v'2t!r/j((7-cos%)

a^ = 2' 2 {J.^j- cosj (a)< + S - ^) + J.'^- sin j (at + S- 4,)}
j=o

"^ ~ - i "''io v2^MP-cosx) r
^^^^^•

^'^. = -^ ( del"
cos jg V(g - cos x) sin jy sin % cZ^

\
1" J J \llTsp (G — cos %)

The values of the electric and magnetic forces can easily be written down
from (103) and (104), § 71, but we refrain from doing so, as they are of no

great interest. It suflSces to say that they have both radial and transverse

components, and may be resolved into series of harmonics, the frequency of

the fundamental being to, the angular velocity of the charge.
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The values of the potentials for the group of n electrons are at once giver,

by equations (111) and (112), that is to say, by equations (115)^117) with

terms of orders j = sn alone.

The functions occurring 'in these equations are all of the same type.

When a = 0, that is, to = 0, they reduce to toroidal functions ; thus we may

regard them in some sort as generalized toroidal functions.

We shall not stop to discuss their properties, but pass on to the con-

sideration of an important particular case, namely that of a distant fieldpoint,

for which C is very large.

80. Distant field. We have seen that for very large values of C we

may write very approximately,

71 • /I
f^^ '^'>' n • a -a

Ii = r — ps\n6 cos •)(,
— = /3 sin 6' cos x, p = psin0 cos x-
c c

Introducing these values into (116) and (117), where a >^(G — cos x) = «-B/c,

and V(2'ni"p) V(C^ — cos x) = -K, and proceeding as in § 73, we get without any

difficulty

y (118).

a^ =—^ S' {A^jCosj{a).t — rjc + S-ij))+A'^jsmj{a).t-r/c + S — (ji)}

1 f
^I'j = -j cos (j/3 sin e cos %) cos x cosj^ ^X

1 f"
A'^j = - - sin (j/3 sin cos x) cos x cosj% dx

2^j5 ^""^ -
\

Mw = --^ S' [A^j cosj {(o.t-r/c + B-(j>) + A'^j sinj (a • < - r/c + S - <j))}

1 f"A^j = - - I sin (j^ sin 6 cos x) sin x sinjx dx

1 T"
A'^j = --j cos

( j/3 sin ^ cos x) sin ;\; sinjx dx

.(119).

81. The normal functions A^j... are easily expressed as Bessel Functions.

We get at once from the well-known expansion

gta;cosx= 2' 2lJJj(tc) COSJX
3=0

the following integrals which occur in (118) and (119):

cos (x cos x) cosjV dx = cos Jjtt . J} (x), when j is even,
'0

= 0, when j is odd,

sin {x cos x) ^osjx dx = 0, when j is even,

= sin IJTT . Jj (x), when j is odd.

-r

-r
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Using these results, and also the relations

J,_.(.) + /,,.(.) =^,
Jj-i (x) - Jj+i (x) = 2J/ (so),

and putting a; = j/3 sin 0, we get the following results

:

A^ = 0, A'^j = cos ^JTT . Jj (j0 sin 6), j even \

A^j = sin ^JTT. J/ (j0 sin 0), A'^j = 0, j odd |

. , . J,- ( 1/3 sin ^) . , -
A^j = cos ijTT . ^'^^.^g ,

4 ^,- = 0, J even

^w,= 0, ^'^. = _ siniiTT.*^^!^, i odd

(120).

Substituting in (118) and (119), we get

=^ 'I" J/ {j0 sin 0) . sinj (« .t^c + B-<j) + ^ir) . . .(121),

2e J=""

«- = ^-^^ ^l
Jj (i/3 sin 0) . cosj (« . « - r/c + S - + ^tt) !(122).

82. Electric and magnetic forces. It is easy to deduce the expressions

for the forces from equations (107) and (108), § 73. Since we know that the

electric force is equal to the magnetic force, perpendicular to it and to the

radius vector, we have

"'o — hj,, d^ = — hg.

Thus it is sufficient to calculate h.

Equations (108) give at once

H^ = — A'ej = - cos 0A'„j, H'^ = cos 0A„j,

Hej = A ^j, H'gj = — Aj,j,

for the angle between the directions of and tn- is equal to 0. Hence we
get

H^j cosj (o) . t-r/c + S-^) + H'^j sinj (o) . t-rjc + B-<j))

a^

= cos ^ . {A.^j sinj (u>.t — r/c + S—<f>)— A'^j cosj (<b . ^ — r/c + S — ^)}

= cos ^ . {A.„j cos [j (w . ^ — r-/c + S - ^) - ^tt]

+ A'^j sin [j (o) . < - r/c + S - </>) - ^tt]},

Hej cos j (to . t — r/c + 8 —
(f>)
+ H'gj sinj {a>.t — rlc + B —

<f>)

= - {A^j cos [j(a).t-r/c + S-<p)- Jtt]

+ A'^j sin [j (w . « - r/c + S - (^) - iTr]},

showing, as was pointed out before, that every harmonic of d and h is in

quadrature with the corresponding harmonic of a. Thus we get dg = h^ from

a^ by multiplying by 2irj cos 0jX, that is, by j0 cos 0/p, and diminishing the
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phase of each harmonic by Jtt, and d^ = — hg from a^ by multiplying by

27ry/X, that is, by j^/p, and diminishing the phase by ^tt.

Writing yfr for co{t — r/c) + S — ^ + |7r, we get from (121) and (122;

de = h^= ^^^ °°* ^
'Tj Jj ij^ sin 0) sin jyjr (123),

pr j=i

J = 0O

d^ = -he=-^^'t jJj' ursine) COSj^ (124).
pr j=i

The forces due to the group of n electrons are found as before by replacing

the constant S by S + 2Tri/n for the ith electron and summing for i from i=0
to i = n—l. The result is that all harmonics disappear except those for which

j = sn, and these are multiplied by n. Hence for the group

dg = h^ = S s Jgn {sn^ sin 6) sin sm/r (125),

d^ = — h) = —— S s J'sn (sn/3 sin 0) cos sn-\Jr (126).
P'^ s= l

These agree with the values given by Schott* (loc. cit).

83. Character of the field. The forces consist of series of harmonic

terms, all vibrating transversely to the radius vector. The term of order zero

obviously vanishes identically on account of the presence of the factor j in

(123) and (124), and s in (125) and (126). The amplitudes of the successive

harmonics are of the order ^' Jj {j0 sin 0) ovjJ/ (j0 sin 0). When /8 is small,

that is the velocity very small compared with that of light, they diminish

with very great rapidity as the order of the harmonic, j, increases. In par-

ticular, even the harmonic, s = 2, in (125) and (126) may be quite inappreciable,

particularly near the poles, where the factor sin makes the argument of

the Bessel Function small. For by Duhamel's formula we have, when

j is very large f,

r / /-vN
(e-^^'^tan i©)j

Jj(jsm@)= \ ^J (127).
v2_y7rcos B

This formula shows that the series always converge absolutely when

;S < 1, that is the velocity less than that of light. When however /3 = 1, and

sin ^ = 1, so that sin @ = 1, the Bessel Function is ultimately of the orderj~^>

and the series are no longer convergent.

The polarization of each harmonic vibration is generally elliptic; the

ratio of the amplitudes of the two components in and perpendicular to the

meridian is equal to

j^=^tang f,^^g^^'^,^>=secg '^^-'^^:f^^^^;-'{^>-^^:^^^^^; .

^Bj Jj (j^ sm 0) Jj_i (j^ sm 0) + Jj+T, (j/8 sin 0)

* Phil. Mag. [6], Vol. xm. p. 194.

t Graf and Gubler, Besselsche Funktionen, Bern, Pt. 1, p. 102, 1898.
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At the equator, where = ^tt, the polarization is hnear, the electric force

being along the equator and the magnetic force perpendicular to it. Near

the axis, where 6 is very small, the polarization is approximately circular, but

the harmonic j=l alone has any appreciable value. The direction of rotation

is that of the electron in its orbit. As 6 increases in passing from the axis

to the equator, the polarization becomes elliptic, the axes of the vibration

ellipse being in and perpendicular to the meridian ; and the perpendicular

axis predominates more and more.

84. Problem 2. To calculate the radiation from the ring. Using

(123) and (124), § 82, we find for the mean value of the Poynting vector at

the point (r, 6, (j)) the expression

% = £^.M^ ^ • [Jj (JI3 sin e)Y + /3^ {J/ ij^ sin 6)}^] (128).

Now we have, by Neumann's Addition Theorem*,

1 f"
{Jj (x)Y = - Jo (2« sin ^) cos 2j<j) dcf>,

TT J n

whence also

[J/ (x)Y =-r Jo (2« sin (^) fcos 2<^ - ^~) cos 2j0 d^).

Putting X =j/3 sin 6, we get from (128)

«j = 1^2f J"iW sin <^ sin 0) (^ cos 2,^ - 1) cos 2j(^ #.

Since Sj is independent of the latitude, we must multiply this by

2-7rr^ sin 6 dO and integrate over the whole sphere of radius r, that is from

= to 6' = 77.

Now we havef

smr
f^

J, (r sin e) sin ede =
yy/
J J^ {r)

Put r=2j/8sin^; then we get for the rate of radiation of energy on

account of the jtli harmonic

E,-= r 'sj . 2'7rr^ sin e de
Jo

^ 2jf^ r-sin(ysin,^)
^^^

rrp' Jo 2j^sin<f> ^"^ y ; jy y

= ?^ -^r sin (2i/3 sin 6) cos 2j(f)
sin <j> d(f>

p" \_ """ Jo

_ a-^l p sin2j;3sin.^
^^^

"

* Gray and Mathews, Bessel Functions, p. 28.

t iUd. p. 240, Ex. 55.
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The first integral is easily seen to be — tt J\j (2j0).

The second may be written

I dx I cos {2jx sin <^) cos
2j<f>

dd>,
Jo Jo

and is therefore equal to tt I J^j (2jx) dx.
Jo

Hence we get

\j^^ J',j (2i/3) -f (1 - ^) f'j^j
(2» dx] .PL Jo _]

The total rate of radiation from the ring of n electrons is found by taking

j = sn, multiplying by n" and summing for s from s = I to s = n; we get

2ce^/3?JB =
P'

- "s" {sn^'J'.sn (2sn^) - sV (1 - /3^) f^ J^ (2snx) dx
«=i L Jo

...(129).

85. The series is easily shown to be convergent when /3 < 1. Its terms

are of necessity positive, since every term such as Rj is by (128) the sum of

two squares. Hence jB is less than n^ times the value for the case n = l.

But in this case the series can be summed.

In fact we have*

s=l *

Using the differential equation for the Bessel Function we get by

differentiation in succession

8=00 r/S

2 s^
I

Jas {2sx) dx =
s=l Jo

^3

'o ' ' 6(l-y87"

Putting n=l and substituting in (129), we get for a single electron

^ 3pMl-y8? ^ ^'

Thus the series (129) has a finite sum, certainly less than w» times this

amount; actually it is very much smaller.

The expression (130) agrees with the value of the radiation given by
Lienardf.

[In strictness the sum of the Kapteyn series used above has only been
found when x < 0-659..., but the agreement of the resulting expression (130)
with Li^nard's expression leaves hardly any doubt as to its correctness up to

the limit x=l.]

• Nielsen, Cylinderfunktionen, p. 303, 1904.

t Vtclairage electrique, July, 1898, eq. (21).



CHAPTER VIII

ON THE DISTANT FIELD DUE TO A MOVING CHARGE

86. The number of cases in which tractable expressions can be obtained

for the potentials is exceedingly limited, unless the generality of the problem

is circumscribed. If however we limit ourselves to the calculation of the

field at a distance from the orbit, which is large compared with its dimen-

sions, all the expressions become very much simplified. In this way we may,

for instance, calculate the field for polyperiodic and even for some aperiodic

motions. As it happens the only direct experimental means we have of

investigating the motion of charges in the atom is by means of the spectro-

scope, which enables us to resolve the distant field due to these charges into

its components and to a certain extent to determine their relative intensities.

From these experimental results it is required to infer the nature of the

motions which produce them. Thus the study of the distant field due to

prescribed motions of charges of the most general character is one of the most

important problems we have to attack.

We commence with the general expressions of § 9,

*-i/:. /:-»-"-"T* <'^).

"2^ /:/:•"-«-"^ <!«)

where we have replaced Jde by e, since the linear dimensions of the charge are

exceedingly small compared with the distance R.

We now introduce the approximation of § 72. We write

B = r—p,

where p = {rj. p), and is the projection on the radius vector, r, to the fieldpoint,

of the radius vector, p, to the charge. Thus, neglectingp in the denominator R,

but not in the exponential (since it modifies the phase to a finite extent, but

the amplitude inappreciably), we get

<^ = 2^r r 6"'(*-'-/<'+*/<'-^)dTd/i (131),

^^2^1 r e"'^*"'''''"^''''"'*vdT(i/i (132).
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87. Using equations (VII) and (VIII), § 3, we get the electric and

magnetic forces. We must remember that we need only differentiate the

exponential, with respect to t or r, because the differentiation of the factor

1/r leads only to terms of order l/r', which we have already neglected. Hence

we may write

, a 9
grad. = r,.g-^ = -r,.^,

curl =

Thus we get

d = -grad;</,-|^^

-97]=- ^'cdt

e

Iwcr dt

h = curl a

r r e^i^it-rlo+ple-r) L_j\dTdfI. (133),

r-F/T r e^''<-*-^"'^pi<'-'>[vr,]dTdiJL (134).
'VOtJ-aiJ —0027rC='r

It is to be noticed that these expressions for d and h are based merely on

our knowledge that the integrals involved in (131) and (132) are functions

of t and r only in the combination t — r/c. They do not assume that

differentiation under the sign of integration is allowable, for the integrals

are to be evaluated before the integration is performed.

It is well known that if the integrand is a discontinuous function of r,

differentiation under the sign of integration is not generally allowable*- In

our problem the integrand is a function of t explicitly and implicitly, the

latter through p and v. If the motion be continuous in form, that is to say,

if the differential coefficients of all orders of the radius vector p be finite and

continuous, as in the case of periodic motions, differentiation under the sign

of integration is allowable to every order. If however the acceleration, or

any differential coefficient of higher order, be discontinuous, as in the case of

a motion starting from rest, unlimited differentiation is generally not per-

missible, and the discontinuity produces an effect which must be allowed for.

In our case, where the radius vector p and the velocity v are both continuous

of necessity, the integrand itself is always continuous. Hence only one

differentiation under the sign of integration would appear to be allowable.

88. Polyperiodic motions. We shall begin with the case where the

motion, though not periodic in the ordinary sense, is the geometrical

resultant of a set of simply-periodic component motions. The periods

cannot all be commensurable, otherwise the motion would be mono-

periodic.

* Stokes, "Criticalvaluesof the sums of periodic series," See. II. Collected Papers, Vol. 1. p. 271.
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We may write ? = S a^ sin (©^t + «{) \

9? = S6isin(«£T + A)[ (135),

S'=SciSiii(o)iT + 7i)J

where (f, 17, ^) are the coordinates of the charge at the time t, and therefore

the components of the vector p.

Let (I, m, n) be the direction cosines of the unit radius vector r^ drawn in

the direction of the fieldpoint. Then

P'=(Ti.p) = l^ + m7} + n^ = 'Spi sin («iT + Si) ^

where

Pi cos 8i = lai cos Mj + m6j cos /3i + wci cos 7; ) (136).

Pi sin 8;= lai sin a^ + mhi sin ;8i + na sin 7^

Also we have for the components of v

i = 2 taiai cos (wjT + Of) "j

i7 = 2o)Acos(a)iT + ;8i)l (137).

^= S WjCi cos (wiT + 7f) J

These expressions are to, be substituted in equations (131)—(134), §§ 86,

87, and the resulting terms developed. As absolute mathematical rigour is

not of prime importance we shall employ symbolic methods of development,

leaving it to the future to supply a more rigorous treatment.

89. Potentials. We have to develop exp. t/i (Jb
— r/c + p/c — t).

By Taylor's Theorem we may write this in the form

eP^ exp. e/t (t — r/c — t),

where D is written for the operator -^ , and is to be treated as if it were an

algiebraic constant quantity.

Now we have the well-known expansion

«=oo

e'^»'"* = S J,(a;)e'»*.

Hence we find, using (136),

€P-» = H ePlD.aiaimr+Si) -^ 2 J.j (- ipiD) e^Kw+Si)

= S. i ... X'iJs^ (- cp,D) J., (- Lp,D)... J,,{- ipiD) €'("-+^i,
— CTj

where il = Si(»i + SjOj2+ ... +Si<»i, {^ = sA + SiK-^ •••+fiih (138).

Substituting this symbolic expression for e^^ in (131), we get

^
= 2J;

^''
?: • • •

^'* '^»' (- *^'^) -^'^ (- 'p-^^^

J — 00 J — CO
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The justification lies in the fact that we may develop the Bessel Function

operator in a series of powers of B, that is of —^ , and then interchange the

order of the integration and of the differentiations to any order ; for since the

integrand is a continuous function, differentiation to any order under the sign

of integration is permissible as we have already explained.

The integral which occurs in </> is a Fourier Integral of the usual type,

and its value is 27re'{" («-'-/«)+a}.

Hence the differentiation can be performed by the substitution of the

quantitj' tO/c in place of the symbol B; thus we get

^ = 1%. i...S.J,(^)/,(^^) ... /, (^)e'<«(-n.,..> (139).

The i summations with respect to the i indices s^, s^, ... Si are each to be

taken from — oo to + oo . The value of (/> can easily be written in a real

form; for if (si, s^, ... st) denote any set of values of the indices, the sum
also contains a term (— Si, —s^, ... —St), and we may group each such pair of

terms together. The values of O and S for the second term are equal but of

opposite sign to those for the first, that is they are — Xl and —8. Any
Bessel Function, such as Jg. {D,pijc), in the first term is replaced by JL,, (— Hpijc)

in the second ; since both the order and the argument are merely changed in

sign, the value of the Bessel Function is unaltered. Thus the factors of the

exponentials in the two terms are equal, and the sum of the two terms has

merely 2 cos {fl {t — r/c) + A} in place of the exponential. Hence we may also

write

^ = - SiS^ ... l'iF(n)coa {ft (t-r/c) + A}

^(n)=l,#)A(^)...^.(*)

where for convenience of notation the summations from — oo to + oo are still

retained.

The expression for the vector potential is easily found in the same way.

For instance the component a^ involves the factor | under the sign of integra-

tion ; but by (137) this may be written

I = S iffljaj {e' (w+'«) + 6 -' (w+a<)|_

Hence in the present case the symbolic operator

J,, (- ip^B) J,, (- ip^B) ...J^ (- ipiB)

operates on the function

.(140),
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Thus we get in place of (139)

a« = s^Sft)ias{Sii. ... ^iF(n + Wi) e^m+^dit-no+^+ai]
Mr _oo

+ t-i is . . . t'iF(a - a)i) e'CC^-"")
(«-r/c)+A-ai]}_

— 00

This expression may be simplified.

In the first sum replace Sj by Si — 1.

This does not alter the limits of the summation with respect to sj, which

still extends from — oo to + oo

.

The value of XI + wj = SiWi + s^^ + . . . + (si + 1) Wj

is changed into fl = SiWi + s^<o^ + . . . + SiWi.

The value of A is changed into A — S^.

In the function F(D, + co^ the factor Jj^ {(fl + mj) ^j/c} occurs; it is

changed into Jj^i (Hpi/c) ; every other factor, such as J,^ {(H + tOj) Pi/c), is

changed into Jg^ (ilpi/c), its index being unaltered.

Thus the first sum in the bracket becomes

Similarly, in the second sum we change Si into Si + 1, and thus get in the

same way

The sum of these two terms involves the factor

This by the properties of the Bessel Function reduces to

^y, (^^) cos (0, - S.) + 2^., (^•) sin («. - S.).

Substituting in the expression found for a^ we get

r- -00 ^ '
I %)i

^
a)fgfJ'«f (^Pi/c) sin (gj - g,)

'

cJ,t (D,pi/c)

By taking together the terms with the set of indices (sj, s.^, ... Sj) and

(— Si, — Sa, •••— Si)> 3.nd remembering that J-g.(—D.pi/c) = Jai(,0,pijc), while

J'_„ (- npi/c) = - J\i (npi/c), we get

a =-Siii! SiF (D.) P'"''^^
°°^ ^"^ ~ ^^^ "°^ {^ ^^ ~ ^1°^ + ^^

coiajJ'g, (iipilc) sin («i - gQ sin {il (t - r/c) + A}

cJeti^pi/c)
..(141).

8—2
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Similar expressions hold for ay and a^, with bt, /S, and a, 74 in place of

Clj, Of.

90. Electric and magnetic forces. The expressions for the electric

forces may be found in the same way from (133) and (134), or more simply

from (140) and (141), by the equations

Remembering that the components of r^ are (l, m, n), we get at once from

(138), (140) and (141) '

d = - <•. 1-2 t'F(D,) p» "fK cos (a; - gj) - Vpi] sin {Q (t - r/c) + A}

iltojj's, (npi/c) ai sin («i - hj) cos (H (<- r/c) + A} "|

/ cV..(Op,/c) J
•••^^*^>'

A», = -Sii*...S'*i'(n)

pi Wf {mcf cos (yf - gf) - w6i cos (/3i
- gj)} sin {fl {t - r/c) + A]

^
L ('Pi

D,wiJ'a, i^Pi/c) {inci sin (7^ - Sj) - nhj sin (;8f - gQ) cos {fl (^ - r/c) + A} "j

c'j,,(apiic) J

(143),

with similar expressions for the remaining components.

The process employed in deducing these absolutely general expressions

for the field due to any polyperiodic motion whatsoever cannot claim to be

rigorous; but it is extremely difficult to deduce them in any other way.

There is however no reason to doubt their substantial correctness, so long as

the series remain convergent. We shall verify below that they give the

expressions (123) and (124), § 82, for the forces found by a rigorous method

in problem 1 of Chap. VII.

91. Character of the distant field. We shall now discuss the

character of the field represented by the expressions (142) and (143). We
easily deduce the following conclusions

:

(1) Each force component consists of an infinity, of multiplicity i, of

simple harmonic vibrations.

The t3rpe of their argument is fl (f — r/c) + A, where

il = SiCOi + SaMa + . . . + SiOOi, A = Sigj + S^S^ + . . . + Sjgi.

Thus the frequency of each harmonic is a linear function with integral

coefficients of i fundamental fi:equencies Wj, m^, ... an. The fundamental
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frequencies are those of the harmonic constituents of the polyperiodic

motion which emits the vibrations ; the vibrations are as it were sum and

difference harmonics of the fundamentals.

(2) Each harmonic component vibration, e.g. that of frequency XI,

consists of i component vibrations, each of which can be resolved into two

SlU
components proportional to (fl {t— r/o) + A}.

COS

In dx the amplitude of the sine component is of the type

e JT/ri\ ^i'^i l^i ^^^ ("i ~ ^i) — ^P'l

r ^ ' cpi

and that of the cosine component is of the type

e „. iltOiJg (n.pi/c) Uj sin (oj - Sf)

Now we easily find from (136), § 88,

Pi = Itti cos (Oj - Si) + mbi cos (^i - Sj) + nci cos (7^ - Si),

= lui sin (oi - Si) + mbi sin (A - ^i) + nCi sin (7^ - Si).

Hence we see at once that each of the two components is perpendicular

to the radius vector (I, m, n).

In the same way each component of hx is perpendicular to the radius

vector (l, m, n), as well as to the component of the same phase in d^.

Thus each component harmonic vibration is transverse, with electric and

magnetic forces at right angles.

(3) Choose (I', m', n') and {I", m", n"), any two directions at right angles

to each other and to the radius vector {I, m, n) and forming with it a right-

handed system. Let the ith components of the electric and magnetic forces

of the harmonic 12 be di, hi and di', hi' in these two directions. We easily

find from (142) and (143)

d/ = hr = -F(n) ^^ [0/ sin {fi (t - r/c) + A}
r cpi

di" = -hi'=- -FiO,) ^-^ Id" sin {n {t - r/c) + A}

where

Ci = S I'at cos (a; - Si), 8/ = 8 1'ai sin (Oj — Si)
'

0/'= 8 l"ai cos («i - Si), 8i" = 8 l"ai sin (oj - Si)

^
^ npiJ\(Dpi/c)
' csiJs^(D,pi/c)

+ ki8i' cos {a (t - r/c) + A}]. . .(144),

t-r/c)+A}

+ ki8i" cos {n(t- r/c) + A}]. . .(145),

....(146).
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As before we have

F(«) = J,(^')/,(^j...J,(^^) (140),

Pi = 8 hi cos (oj — Si), = Slai sin (oj - Si), by (136),

Xi = SjWi + SaWa + . . . + SiWi, A = SiSi + S2S2 + . . . + S^Sf (138).

S denotes a sum of three terms, one for each coordinate.

The factor 2 is introduced in order to take account of the fact that to each

term of (142), or (143), with the set of indices (sj, 52, ... s,:) there corresponds

an equal term with each index equal, but of opposite sign to (sj, S2. ••• Si).

There are i terms of the type (144), or (145), one for each of the i

component simple harmonic motions which constitute the motion of the

charge. These together give the harmonic vibration of frequency fl under

consideration.

They have a common factor 2eF{D,)/r, involving the product of i Bessel

Functions given in (140).

Now the wave-length X of the harmonic is equal to 27rc/il, so that the

arguments of the Bessel Functions are, in order, 2irpij\, ^irp^jX, ... 2Trpi/\.

Since ^,,j02. •Pi are of the order of the linear dimensions of the orbit, we

see that if \ correspond to any observable line of the spectrum, each of the

arguments is exceedingly small. Thus the harmonic is very weak unless the

indices Si, Sj, ... Sj are small.

We cannot expect a visible line to be produced unless this be the case.

(4) Eq. (144) shows that each component of the harmonic is an elliptic

vibration. By the ordinary formulae we see that the axes of the ellipse are

equal to

2eJ'(0) Sim -JjCi' + ki'Si") \

"'^^
(147)

^^^
2eF(a)SiC0i^(Ci"' + h'Si"')

I

^ '^'

and that the first axis is reached from (I', m', n') by rotation towards {I", m", n")

through the angle di, where

tan 29- - ^^PiGj' + USiSn .. ,_

.

The rotation in the ellipse is right or left-handed according as

O/'>S/-a/5f/'>or<0.

(5) It is worthy of note that the vibration cannot be linear unless either

0/ = >Sf/ = 0, or Oi" = Si" = 0, or ki = 0.
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The first case gives

r -.m' -.n' = biCi sin (/3i - yt) : CiUi sin (7^ - Oj) : a^ sin (o^ - /3i),

which is consistent with the condition II' + mm' + nn' = only if

^sin(^,-70^^sin(7,-«,)_^^sin(«,-^0^Q
^^^^^

di Oi Ci

The second case is the same as this, merely with (I", m", n") in place of

(I', m , n'), and thus is not essentially distinct.

(149) is the equation of a plane through the origin ; for every direction

{I, m, n) lying in this plane the elliptic vibration becomes linear.

This plane of linear polarization is generally different for each component

of the harmonic.

The third case occurs whenever flpi/c, that is, 2'jrpi/X, is one of the roots

of the equation

AW = (150)-

Now by (136) we have

l^af + m%^ + f?c^ + 2mnbiCi cos (/S; - 7,) + 2nlciai cos (7^ - a,-)

llmathi cos (oi - ft) = pi =\w') -(ISl)-

This is the equation of a quadric cone on which the radius vector {I, m, n)

must lie in order that the root x of (150) may correspond to linear polariza-

tion.

Since the least root of J'g^ (w) = is of the order J (2si + 1) tt, the con-

dition in this case cannot be satisfied for light waves, for which 2Trp{/\ is

always very small. Hence this case is of no practical importance.

We shall not consider the general case any further, but proceed to the

study of some illustrative problems.

92. Problem 1. Uniform circular motion. With the notation of

the last chapter we get by (135) and (136), § 88,

I = /o cos (q)t + 8), V = P sin (mr -1-8), if = 0,

giving 0)1 = 0), ai = bi = p, Cj = 0, «! = S -)- Jtt, §1 = S.

Also l = smd cos tj), m — sin sin <}>, n = cos 0.

Hence pi = p sin ^, 81 = 8 — (^ -}- ^tt.

Thus there is only a single component vibration.

In the equations (138)—(140), § 89, we have

n = SO), A = s (S — ^ + ^tt),

F (12) = J, (s/3 sin 0), kF (£1) = /3 sin 6J/ (s/3 sin 0).
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We shall choose {V, m', n') in the direction of increasing 6 and (I", m", n")

in the direction of increasing <^ ; hence

I' = cos d cos
(f),

w! = cos 6 sin <^, n' = — sin 6,

I" = — sin (^, m"= cos ^, m" = 0.

With these values we get from (146)

G' = pcose, 8' = 0, 0" = 0, S" = -p.

Substituting in (144) and (145), writing \fr = a)(t- rjc) + S - ^ + Itt, and

summing for s, we get

, , 2e/3cot0«^" r / o • m • ,

de = hA,= —^ 2 sJg (s^ sm d) sm s-Jr,
* pr ,=1 ^

dj,= — hg= ^ 2 sJg (s/3 sin 0) cos sifr,

pr «=i

which are identical with (123) and (124), § 82. This will serve as a verifica-

tion of the general formulae.

93. Problem 2. Simple harmonic rectilinear motion.

Suppose Oz to be the line of motion, and let

5'=asin(«BT + a).

With the usual notation we get by (136), § 88,

Pi = acos^, Si = a = 7i.

By (138) and (140), § 89, we have

n=sa), A = sa, F{D,)= Jg(s^cos6),

where /S = am/c, so that /8 is the ratio of the maximum velocity to that of

light.

Take (I', m', n') and {I", m", n") in the directions of increasing 6 and <^ as

before; then
I' = cos 6 cos ^, m' = cos 6 sin ^, n' = — sin 6,

I" = — sin ^, m" = cos </>, n" = 0.

By (146)
G' = -asia0, S' = 0, C" = 0, 8" = 0.

Hence we get from (144) and (145)

dg = h^ = - ^

^^ t sJ, (s/3 cos 6) sin s [w (< - rjc) + a] 1
.^

d^ =— hg =
J

Thus the electric force is in the meridian, the magnetic force along the

parallel. The vibration is linearly polarized at right angles to the meridian.

The amplitude vanishes on the axis for every harmonic.

For all harmonics, except the first, it also vanishes at the equator ; but

when 5=1 its value there is e^jra, and is a maximum.
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Since /8 < 1, Js{s^ cos 0) can never vanish, and is constantly positive or

negative according as 6 lies between and ^tt, or between ^ir and tt,

when s is odd, while it is always positive when s is even. Thus the product

taix 6Jg(s^ cos 0) is always positive when s is odd, but is positive or negative

according as 6 lies between and ^tt, or between ^tt and tt, when s is even.

Hence for even values of s the electric and magnetic forces are of opposite

sign on opposite sides of the equator, the electric force in particular being

towards or away from both poles at the same time. For odd values of s they

are of the same sign, so that the electric force is from pole to pole, in the same

direction on both sides of the equator, but reversing every half-period. The

only node occurs at the equator.

94. Radiation. The average value of the Poynting vector due to the

harmonic s is given by

^' " Mr^ " ^*^' ^^^ °°^ ^^^ • ^'

The radiation due to it is equal to

R, =^^^ f "{/, (s^ cos 6)}^ tan= 6 sin Odd
ft Jo

^cf0^n {Js(s^/j.)}''{l-iM')diJi.

~ a' J-i II?

It does not appear to be possible to find this integral in finite terms, but

it is possible to find the total radiation R. We get

^^c^n .^^^^j^^^^^^^Ml^j^ ^^33^
^ J -1 \«=i / M'

We require the series of Bessel Functions.

Nielsen gives the following series*

By differentiation we get

«=1 S s=\

Now by the difierential equation for the Bessel Function we have

(1-^)J,(.9^)^ J,^
x^ ^ ' sx

Hence, multiplying by Jg {soo) and summing, we get

i^T
f/,(..)P= T/.(..) j/'(..)+^r

^'^^^^-^^'^^^^

X' = ] s= l s=l

= 2 J,{sx)Ji'{sx)^\,
s= l

* Cylinderfunktionen, p. 307, eq. (8) (with v= 0, p=l).
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by the second equation above. Again, multiplying by ^sx"^ Ji (soo) and

summing, we get

Multiplying the previous equation by a;", differentiating and adding to

the last, we get

2{l-a^)^ *
S°

{Js (sa;)Y - 2ai'2 {J, {sx)Y = x,
ax g-i g=i

by the third equation above.

Integrating the last equation and remembering that the sum vanishes

identically for x=0, we get

I^^'(-)}^ = 2-V(^)-i-
The same process gives

Substituting in (153), we get

P^ce^ p (4-f ;8V)(l-;n'')d/t

16a'' j-i (l-/3vr

12a^l-^Ji^ ^ ''•

Remembering that ^ = aa/c = 27ra/X, we find that this reduces to

lQTr*cef'd'/3X* when /3 is very small. This is the value given by Larmor
for this case*

The value (154) may easily be obtained direct from the general formula

of Li^nard, which for rectilinear motion gives for the rate of radiation

p_ __2c^y=__

Substituting v/c - cos (tot + a), v/c" = — /S'' sin (cot + a.)/a, and integrating

with respect to t, we get (154). This will serve as another verification of the

general formulae (144) and (145).

95. Problem 3. Elliptic motion about the centre. We may
write

f =acos(<»T + a), t; = 6 sin (qjt + a), f= 0.

Hence there is but one period, so that

Wi = 6), tti = a, bi = b, Ci = 0, tti = a + ^tt, /Si = a.

* Aether and Matter, p. 226.
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By (136), § 88, we get, using polar coordinates (r, 6, <j)),

Pi cos Sj = sin 6 (—a cos sin a + 6 sin ^ cos a),

Pi sin 8i = sin d( a cos (p cos a + 6 sin ^ sin a).

Write a cos
<l>
= p cos i|r, b sin ^ = p sin yjr,

so that p = Aj(a' cos" (j> + ¥ sin^^ (^), tan f = ^"^
.

Then we get jOj = p sin ^, Sj = a - i/r + ^tt.

By (138), § 89, we have

12 = SO), A = sSi = s (a — i/r + ^tt).

Choose (I', m', n') and (Z", m", n") in the directions of increasing 6 and ^

;

then we find by (146)

C/ = pcos^, Si' = 0, o/'=_(^^^!)iiEi^2ii. Si" = -'^^-,

p p

, _ ei)/3 sin d J/ (stop sin d/c)
'

cJs (scop sin 0/c)

With these values we get from (144) and (145)

de = h^= 2 sJg (s(op sin 6/c) sin s[co(t — r/c) + a — i^ + Jtt]. . .(155),
cr j=i

dj, = — hB = -

2eco^ab^
2 «/«' (sft)p sin O/c) cos s [w (< — /"/c) + a — if- + ^tt]

2e(»(a2-6")sin<4cos<f)«=" -. , • /,, v • r /. /x
^^ r-A—^^- ^ 2 s./s (stop sin c) sm «[«»(<- r/c) + a - i/r + *7r]

cp'r sm ."-r // L\ // r^j
«=i

.(156).

It is easily seen that, when a=b = p, these expressions reduce to those

for the circle, (123) and (124), § 82; when 6 = they reduce to (152), § 93,

provided we make allowance for the difference in the coordinates used.

In the diagram ABA'B' is the ellipse and ACA'C its eccentric circle.

P is the projection of the fieldpoint (r, 6,
<f>)

on the plane of the ellipse, and Q is the

point for which the eccentric angle is <j).

Then p is the radius OQ, and yjr is the

angle ocOQ, which OQ makes with Ox.

In (155) and (156) we may if we wish

express everything in terms of i^ ; we easily

find

_ ab

^ ~ V(a'' sin" y}f+b^ cos^ i^)

'

sin
<f>

cos ^_ sin ^Jr cos yfr

p^ ab
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We notice that along the axis, where = or tt, we have

<^e^h =^ sin [« {t -r/c) + a-y{f+ ^tt],

d^=- he = — cos [w {t - r/c) + a - i/r + ^tt]
C pi

eta" (a^ - 6") sin (^ cos (i . r , . , . , , , i i
^^ ^ sm [ft) (t - re) + a--Jr + *7rj.

c'pr

Apparently the forces depend on <^, which would be absurd; but we

easily find that

dx = dg cos ^ - d^ sin ^ =—^ sin [a {t - r/c) + a + ^tt],

eco^b
= dg sm <f + rt^ cos ^ = -

that is to say

dy = de sin
(f)
+ d^cos<j} = —- cos [to {t — r/c) + a + iir],

, _ ea>^^{t-r/c) , _ ew^T? (t - r/c)

c'r

where ^(t-r/c) and r}(t-r/c) denote the coordinates of the charge at the

time of emission, t — r/c.

Thus on the axis the electric force is always in the meridian plane drawn

through the charge in its position at the time of emission. The change of

the electric force is exactly proportional to the change in the radius vector to

the charge.

This explains the apparent difficulty.

On the equator, where = ^tt, we get

de = K = 0, d^ = -he = -
^""^

"S sJs'i^—] coss[a)(t -r/c) + a-f + ^-7r]

c'pr s=i \ c J

2eo) (a*" — 6") sin <4 cos d> »=" ^ /sa>p\ . , ,. , .
, • , i i

^^ ^^

—

1. sJs[—^)sms[a)(t-r/c) + a-'f + i-rr].

cp r s=i \ c /

The vibration is linear and polarized in the meridian.

For every other direction the vibration is elliptic.

96. Group of charges. A number, n, of charges describing the ellipse

in succession form a group, that is, partially absorb each other's radiation,

provided the epoch a differs by the angle 2ir/n from one charge to the next.

For in this case, on summing for all the charges, all the circular functions in

(155) and (156) disappear, except those for which s is a multiple of n.
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Thus the forces due to the group of n charges are given by (155) and (156),

provided s be replaced by sn, and the expressions be multiplied by n, just as

in § 82.

Now the angle wr + a is the eccentric angle of the charge at the time t
;

hence n charges moving in an ellipse form a group provided their eccentric

angles are always in arithmetical progression.

97. Radiation. We see from (155) and (156) that the average value

of the Poynting vector due to the harmonic of order s is given by

cW + d/)
s,=

4^7

rr (g" - ¥y sin^ ^ cos'^ ^ ] ( , fseop
sin d

\]
^

l^jcot^ + sin2^(a2cos=,/, + 6^sin^</.)4 f' [ ~c )\

J.,
/scop sin ^\

ti'p'

R.=
27rc

f" r^ r ( ^D (<*' - '^^f sin' cos^
]

i' fsmp sin 0\\^

Joio Li ^ + sin^^(a=cos^,^ + 6^sin^,^)^| r\~T-)\
0) a^b^ - , [scop sin 0\

sin dd0d^...(157).
'*'c''(a'cos''^ + 6=sin''</))

There seems little hope of evaluating this integral ; but we can sum the

series for s from 1 to oo and thus get an integral for the total radiation R.

In § 94, p. 122, we found

Similarly we find

Z^8 {Js{SX)\
-ig(i_^»)7,.-

l^{Js'(sx)Y
4, + 3x'

l\6/2

s=i i6(i-a;r

Put a; = ojp sin 0/c and substitute in (157) ; we get

S=aD

i? = 2 -Bg

,4 /•» f2ir

p'cos^0 +
(a' - &ysin'^cos^</)'

4 +
wV' sin^

a^b'
4 + 3

oo'p

where p^ = a? cos'' (^ + 6" sin^ i^.

/ ©Vsin^y/^

sin 0d0d<}>,

sui'd

\5/2



126 ON THE DISTANT FIELD DUE TO A MOVING CHARGE [CH.

By means of the substitution cop cos 6 = tan x VCc" — <»V')'
'^^ S®* after

some transformation

ri
Wttc

/'
O "~

7. I ' I O "*" I „

(-W
d(f).

This gives on integration

e'm'
, CO' (a' + ¥) . oo^a^b' „ co' (a' + bj\

<? G^ (f ]

When -we put a = b = p, <oa/c = wb/c = /8, this reduces to the value for the

circle, (130), § 85.

When we put 6 = 0, it reduces to the value given above for the rectilinear

vibration.

Thus there can be no doubt as to the correctness of the result, which

may indeed be deduced directly from Lidnard's general expression for the

rate of radiation*

E= |ce^
p' (1 - if/d'Y ^ (1

where p is the radius of curvature of the orbit.

Thus we have another verification of the formulae (144) and (145), § 91.

98. Problem 4. An electron is disturbed £rom its state of

uniform circular motion. To find the field produced.

We shall use the notation of problem 1, § 78.

We shall use the method of representation of Maxwell, invented for the

problem of Saturn's Ringsf.

Write f = p (1 - /i) cos (wt + S + X.),

71 = p(l — fi) sin (cot + S + \),

^=pv.

Thus (\, fi, v) measure the component displacements of the electron from

its position in steady motion, in the direction of the tangent, inward radius

and axis respectively.

* L'iclairage gleetrique, July, 1898. See also Searle, Phyt. Zeitsch. 9, p. 887, 1908.

t Collected Pampers, vol. i. pp. 321—323.
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We shall suppose them to be small and shall neglect their squares and

products in the usual way. Then we get

f = jO {(1 — /i) cos (wT + S) — X sin (mr + S)},

7) = p{{l — fi) sin (cDT + 8) + \ cos (mr + S)},

We shall suppose (\, //., v) to be sums of periodic functions of t, in

accordance with our general assumptions for the present chapter. Thus we

write

X = 2^ sin (qr + a),

yti = SB sin (qr + /3),

V = SC sin (q'r + y).

The frequency is relative to the ring, not absolute.

With these values we get

^= psiii{a)T+S+^Tr)+I,^p>^{A^+JB'+2ABsm(a~0)}shx{(q+o))r+S+z7+^ir}

+ -S<ip^/{A^ + B'-2ABsin{a-^)]sm{{q-(o)T-B + v-i7r},

7? = /3 sin (tuT + 8) + 2i/3 V{^' +B'' + 2AB sin (a - /3)} sin {(g + m) t + S + tsr]

+ 'Zlp's/{A' + B'-2ABsm{a-^)}sm{{q-(o)T-8+v},

f= 2pO sin (q'r + y),

, ^ A sin. a -^-B cos /3 , ^ sin a —B cos iS
where tanw=-i ^fr—.—^r, tanu = -; „ .

'"
.4 cos a - jS sm i8 .4 cos a + £ sm^S

These expressions are of the form (135), § 88, where we must write

(»i = «B, ai = 6i = p, Ci = 0, ai = 8 + ^7r, )8i = 8 \

a>i = q + a), a2 = b2 = ^p <J{A^ + B' + 2ABsm{a- 13)], 0^ = 0,

as = 8 + OT + ^7r, /32=S+«r

0)3 = ^-0), as = fea = ^/)V{4' + -8^-24-8 sin (a -/3)}, Cs = 0,

<»i = q', ai = bi= 0, Ci-pC, 74= 7

Thus we have to deal with a preponderant uniform circular motion

(index 1), compounded with a number of triplets of small harmonic motions,

in general of incommensurable periods.

Two of the constituent motions of each triplet are in the plane of the

undisturbed motion, and are sum and difference motions of the uniform

circular motion and the given relative disturbance. Their amplitudes and

phases are different, the amplitude B of the radial disturbance appearing

with opposite sign in the two.

The third constituent of the triplet constitutes an independent motion of

the same frequency as the original relative disturbance parallel to the axis.

In general the quantities q and od are incommensurable, so that the same

is true of the periods of the constituent motions.

..(159)
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By means of (136), § 88, and (159), we find

Pi = p sin 0, Si = ai — <f)\

p^ = a2sin0, Sz=a^—<j)
(160).

Pa = ttj sin 0, Bi — aa + iji

Pi = Ci cos ^, 84 = 7

By (138), § 89, (159) and (160), we get

A = - (Si + S2 - S3) ^ + Sifli + SaOs + S3«3 + S47 + • • • J

99. Electric and magnetic forces. We must now consider the

values of the electric and magnetic forces given by (144) and (145), § 91.

In the first place we must examine the function

F(D,) = J,, {apjc) Js, (ilp^lc) Jss {^PbIc) Jsi i^pjc) ....

The value of Jg, (Hpi/c), that is, Jj, {Clp sin 0/c), is for the present to be

regarded as finite, not very small, since we wish to limit ourselves in no wise

as to the possible values of the velocity of the charge.

The values of /g, (np^/c), ... on the other hand are small quantities of the

orders ^2''. ..., since jja .•• • are all of the order of the amplitude of the disturbance.

Hence we must reject all values of Sj, ... greater than unity, and replace

functions like Jo(Xlp2/c) by unity, and functions like Ji(npi/c) by np^/2c,

neglecting higher terms in each case.

We shall for convenience omit the index 1, writing s instead of Sj in future.

Thus we must consider terms of two types in (144) and (145)

:

(1) Terms for which s^, Sj, ... are all zero, while Sj takes any value fi-om

1 to 00.

In this case F (D,) = Jg (s/8 sin 0), where fi = tup/c as before. These zero

order terms represent the field due to the undisturbed uniform circular

motion, and have been fully considered in problem 1.

(2) Terms for which one of the indices s^, Sj, St, ... is either plus or minus

unity, all the rest being zero, while Si takes every value from — 00 to 00

.

These terms represent the first order effect of the disturbance, and are the

only ones to be taken into account.

The terms corresponding to 53= + !, 83 = 54 = ... =0, and to Ss = ±l,

*2 = S4 = • • • = 0, represent the effect due to orbital oscillations, that is,

oscillations in the plane of the orbit. Those corresponding to S3 = 83 = 0,

S4 = + 1. represent the effect due to oscillations parallel to the axis, i.e. axial

oscillations. These are quite independent of the orbital oscillations, so far as

the field due to them is concerned. We shall consider the two types of

disturbance separately.
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100. Orbital oscillations. In equations (142) and (143), § 90, terms

occur for which 83= + 1 and Si= + integer, and for which S3 = +l,

Si= ± integer. These group themselves in two sets, as may be seen from

the following table, which gives the frequencies D, and epochs A for the

tj^ical terms of each set.

h
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These arise from the sets of indices Si = s— 1, 8^ = 1, and Si= — (s— 1),

Sa = — 1. There is an exactly similar set of terms arising from the sets of

indices Sj = s + 1, Ss = 1, and Sj = — (s + 1), Sj = — 1, which are got by merely

interchanging the indices 2 and 3, and changing s—1 into s+1.

By (140)
F (O) = J,_i (np,/c) J^ {np,/c) Jo (np,/c). . ..

To our degree of approximation we may write

/, (Xip,/c) = np,/2c, J„ {np,/c) = 1, . . .,

terms involving squares and higher powers of p^, pi, ..., but not of pi, being

neglected. Hence

Again by (146)

"' c{s-i)j,^,(np,ic)' "' cMnp,/c) '

Equations (159) and (160) give with (138)

A = s (S - </) + ^tt) - ai + 02.

Hence writing ;^
= fl (< — r/c) + s(S — ^ + ^7r),

we get n(t — rjc) + A = ;^
- a, + Oa.

Further, we get by (146),

G,' = pcos0, -Si' = 0, (7/ = 02 cos 0, 8,' = 0,

C" = 0, Si" = — p, G^' = 0, Si" = — 0,2,

Pi = p sin 6, Pa = «2 sin 6,

Q)i = w, (Oi = q + CO.

Using these results we get

, , efi^cos^ r /^Pi\ ,

die = ^2* = —^— "Af-i {—) 02 sm (x - «! + Oj),

^.* = -^. = -g(^'^'.-.(^)+(3 + «)^-(^)|«»eos(x-«, + aa).

In precisely the same way we get •

, , efl^cos^
J.

/OpiN . ,
, ,

.

d,e = ^3* =—-r,
— "^s+i "5" r*» ^^° (X + «i + «s)'

The negative sign of the second term in the bracket of dj* arises from the

fact that Ss" = + Os, while S^" = - a^.
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The terms we require are the sums of these two sets of terms, and the

complete expressions for the forces are obtained by summing with respect to

s from — 00 to 00 ; for as we see from the table above we also get a similar

set of terms for which D, =^ q — s<o.

Now we get by (159)

a,=y ^{A' + B' + 2AB sm (a - /3)}, tan (a, - a,) = ^ ^os « - i^ sin ^9
"

Hence

Oj sin (x- Oi + Ma) = J p {A sin (x + a) + £ cos (x + )8)},

Oj cos (x - «! + «2)= i/3 (4 cos (x + a) -5 sin (x + /8)}.

Similarly by changing the sign of B we get

as sin (x + ai + Os) = ip {^ sin
(;)j; + a) - B cos (x + yS)},

(Zs cos (^ + «! + Hs) = \p {A cos
(;)(; + a) + £ sin (% + ^)}.

When we substitute these expressions in the values got for d^ and djj, we
find for the factor in d^+ d^ of

Similarly we find for the factor in d^^ + dg* of

+ (5 + »>J-„(^)-(5-«)J-„,(?^)" ,

+ (5 + .)J-._,('|!) + (5-»)J-.„(!^)].

We use the well known equations

and write iS = top/c, n, = q + sa> = la>,

so that —^ = —^- = t/3 sm 5.

9—2
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Then we easily get, on summation from s = — oo tos = +oo.

ecot d *~"
dg=h^ = A S sl^Jg (l^sinO). sin (p^ + a)

P^ 8=-0O

+ ^-5^B *i" P^'j; (Z/3 sin 6) . cos (x + /8) . . .(162),

d^ = _ Ag = - — ^ "S" fl3'j; {ip sin ^) . cos (x + a)

+ ^£"f (-^ - Z/3^sin 0) ?M(«/8sin^).siQ(x+y8) ...(163),

where % = H (^ - r/c) + s (S - ^ + ^tt) = g' (* — r/c) + s^,

and 1^ = to (i — r/c) + S - <^ + ^tt.

101. Axial oscillations. The field due to these oscillations is easily

obtained by using (159) and (160) in (144) and (145).

As before we neglect higher powers of C, that is, of p^, than the first, but

not higher powers of jpi.

Hence in (144) and (145) we have to consider terms of the two types

:

Si = S, S2 = S3 = 0, S4= + l.

The upper sign gives by (138)

n = SO) + <»4 = g + stB, A = sSi + S4 = s (8 — ^ + \ir) + 7.

The lower sign gives

il = sw — Wi= — {q — sco), A = sSi — S4 = s (8 — ^ + ^ir) — y.

Both may be included by summing for negative, as well as positive, values

of s; thus we need only consider the upper sign.

As before we get from (144) and (145)

d,s=jFia)

+ (~'S"+''^ -Sf;'
)
cos {XI it - r/o)+ A}] .

The values of mi, pi, k^, (7/, 8^, G^', 8" are the same as before. The

other quantities are given by the following equations, got just as before

:

m).t'H'^).
h = i,

n{t-r/c)+A = x+y'
G: = -c,sm0, 8: = 0, g:' = o, 8:' = 0,

Pi = C4 cos 6, 0)4 = q, C4 = pG.
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We easily find

dig = A4A = — G 2i
pr s=_ooVsin^I

-W sin d\ l^Js (l^ sin d) sin (% + 7) . . .(164).

fiR on'i ft *="
(^4* = - ^46 = - C S I'^'Js' iW sin ^) COS (x + 7) (165).

102. Group of n electrons. To get the forces due to a group of n

electrons describing the same circle we need only write for the ith electron

f= p cos (mT + B-\ j

,

7) = psiaicoT+8-\ 1
, f = 0,

\= 2 J. sinlgT+ a — Jc j , |ii = 2Bsin(g'T + )8 — k j ,

i/=2(7sin (qr + y — k ]

.

The first three equations represent the steady motion of the group as in

problem 1. They show that the electrons are equidistant.

The last three equations represent sets of waves of disturbance travelling

round the circle with a velocity q/k relative to the rotating electrons. For if

i be increased by unity, r must be increased by ^irkjqn in order that X, p,, v

may be unaltered. In other words the disturbance requires the time 2Trk/qn

to travel from one electron to the next, through the intervening angle 27r/n.

The substitutions only affect the values of the three arguments % + a,

%+/3,X + 7m(162)—(165).

Remembering that % = fl (< - r/c) + s (S — </> 4- Jtt), the substitutions of

S + 2-7n/n for S, a—k^Trijn for a, ^ — k2iri/n for /8, and y — k2Tn/n for 7,

change x + a,
;;^ + /3, % + 7 respectively into

X + a + (s — k) 27ri/n, % + /8 + (s - i) 27rt7«, X + 7 + (* ~ ^) 2171/11.

When the equations are now written down for all the n electrons and

summed from i = to i=n — l, all the circular functions disappear except

those for which s is of the form k + sn, s being an integer, and these are

multiplied by n.

Write m== k + sn, y^ = m{t - r/c) + S — ^ + ^tt.

Then D, = q + k(o + snco, l = k + sn + q/m, % = ? (* — r/c) + myfr.

Then w6 get finally, from (162)—(165),

dg = h^ = A S ml^Jm (W sin ^) sin {rrfyjr + q(t- r/c) + a}
pr »=-oo

+ '^i^^B 'T P^J„' («/8 sin 9) cos {m^ + q(t- r/c) + /3}
pf a=-oo

+ —G'£ (^ - 1/3 sin e) 1/3 J„, (W sin 6) sin {mf + q(t- r/c) + 7}
pr s=-w \suit) I

(166).
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Tie
*=»

d^ = -he = A 2 l'^ Jr,: (l^ sin 0) cos {mylr + q(t-rlc) + a]pT g=-a>

pr g=_oo \8iii P /

sin {mi|r + g- (* — rjc) + ;8}

_ we;3 cos 6 ^ »|-
^,^^^, ^^^ ^^ ^^ ^^^ ^^^ ^ ^ ^^ _ ^^^^ _^ ^j

pJ* S=-ai

(167).

These equations were first given by Schott* in a slightly difierent form

(there is a misprint in the coefficient of 5 in d^ in the first article referred to

—the first B in -r-^ — IB^ sin 6 is to be deleted, as above). The above
sva.d

alternative proof has been selected in order to test the formulae (144) and

(145) for the case of a polyperiodic motion.

103. Character of the field. The argument in (166) and (167) is of

the form my]r + q{t — rjc) + a, ....

Now i/f = to (t — rjc) + S — <^ + ^TT.

It is the argument of the fundamental wave due to the steady circular

motion, just as in problem 1.

On the other hand the remaining part of the argument, q{t — rjc) + a, ...

,

is the argument of the corresponding component X, ... of the oscillation

relative to the rotating ring which generates the harmonic under discussion.

Every harmonic of the field is therefore a sum or difference vibration of

the fundamental due to the steady motion, and of one of the fundamentals

due to the disturbance, as was to be expected.

It is to be noted that the important harmonics as usual are those for

which the order, m, of the Bessel Function involved is least, that is to say,

one of the two harmonics of order k, or of order n—k, whichever is least.

We can include all the possible disturbances of the ring in our scheme by

giving to k all integral values from to n — 1, or if we prefer, from — ^m to

+ \n. The latter is generally the most convenient arrangement for our

purpose; it makes the orders of the most important harmonics positive or

negative, according as k is positive or negative, that is, according as the wave

of disturbance travels round the ring in a forward, or backward, direction

relative to the direction of rotation of the ring.

The polarization of the harmonic m is as follows

:

On the axis, for = and 6 = tr, the forces vanish (except for the case of

a single electron).

* Phil. Mag. [6], Vol. xni. p. 197. Ann. der Phys. 24, p. 653, 1907.
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At the equator, for 6= ^tt, we get

ne
de= h^ = (7 2 (l-m)l^J„,(l^)sia{m^}r+q(t-r/c) + y],

TIP
*~

d^=-he = --A 2 l''l3'Jm' (l^) cos {m^p- + q(t-r/c) + a}

/no fi=CO

Pf s=-o»

In other words, at the equator the waves due to the axial disturbance are

completely polarized in the plane of the equator, those due to the orbital

disturbance are completely polarized in the perpendicular plane. Thus the

plane of the equator is a plane of complete polarization for each type of

disturbance separately.

In every other direction each tj^e of disturbance emits waves with elliptic

polarization.

104. Radiation. The calculation of the radiation has been given by

Schott in his paper in the Annalen (I. c. p. 653). [But he only gives it for the

case where none of the waves due to the disturbance interfere with waves

due to the steady motion. On reference to (125) and (126), § 82, and (166)

and (167), § 102, we notice that the arguments of the periodic functions in

the field due to steady motion are of the form snijr, and those in the field due

to the disturbance of the form myp- + q{t- r/c) + constant, where m=k + sn,

and ^fr = a)(t — r/c) + S — <^ + ^v. The radiation is given by the integral

n /"IT f2ir .

R = -r- (de^ + d^^) r' sin eded<\>,

where dg" and d^' denote mean values of d/ and d^,^ for a long interval of

time, or, what comes to the same thing, for a whole period.

The integration with respect to <fi, and the averaging with respect to time,

cause all products of diflferent harmonics to disappear, except those for which

both factors have the same coefficients in their arguments both for (j) and for i.

Clearly this cannot happen for harmonics, both of which are due to

steady motion, or both of which are due to disturbance, but it can happen

when one harmonic is due to steady motion and the other to disturbance, but

only when the disturbance is such that q=0 and k=0. Thus we have to

deal with terms of three types

:

(1) Terms due to steady motion alone ; these have been calculated in

§84.

(2) Terms due to disturbance alone ; these will be calculated below.

(3) Terms resulting from interaction between waves due to steady

motion and those due to a disturbance, if any, for which q = and i = ;

these will also be calculated below.
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105. Radiation due to disturbance alone. From what has been

stated above it follows that this part of the radiation is given by a series of

the form R = l,Rg, where Rg is the part of the radiation due to the harmonics

of order s in (166) and (167), and is the same as if these harmonics existed by

themselves.

On averaging with respect to t and integrating with respect to ^, we

easily see that the remaining integral with respect to is of such a form

that terms involving the first power of cos ^ as a factor vanish identically

;

such are the terms which involve the products AC and BC. The remaining

ones give

Rs = ^-f^pj^ [A'l, + B'l, + 2AB sin (a - /3) /, + 0^/J,

where I^, ... are integrals defined as follows:

IT

/i = f ' [rn" cot^ e . [Jm iW sin 6)}' + P^' {Jm Q^ sin (9)}=^] sin Odd,
Jo

n

I^=r Pl3' cos' e. {JJ (l^8m0)Y+(-^-l^'sm0'J{Jr„ (10 sm0)Y\hx6dd,

IT

7, = Z/S f ' rm 5?^ + -^- 1^ sin ^'l J"™ (Z/3 sin 6) JJ (?/3 sin 0) sin 0d0,
Jo \_ sin0 am-0 J

IT

I, = B't^ \(-^ - I sin 0)\ {Jm{l0 sin 0)Y+P^c<iS-'0 {JJ(l0s\n.0)Y\ sm0dd.
J L\sin a /

We proceed just as in problem 2, § 84 ; for this purpose we require the

following results, which follow without much difficulty from the Addition

Theorem and the known integral expressions for the Bessel Function:

(a) TT {Jm {10 sin 0)Y =1 J(, (210 sin sin ^) cos 2md}dd),
Jo

(b) IT {Jm' (10 sin 0)Y = r /„ (210 sin sin
<f>)

Jo

I m" . \

(c) trJm (10 sin 0) JJ. (10 sin 0) = I /„' (210 sin sin </>) sin <f)
cos 2m^dd),

Jo
IT

(d) [' J, (210 sin sin </>) sin 0d0 =
^^^ff^^J'''

= \\^ cos (2lx sin <^) dx,

/ \ r^ T /oia a j.\ , a aja sin (2Zy8 sin <i) cos(2Zi8sin<f>)
(e) J„ (210 sm sm 0) cos^ sm 0d0 =

) J^. ^
-^ - ,„)-^ ,,7

Jo (2l0sm<pf (2l0sm.^y

1 f''= goi I
cos (2lai sin ^) (yS" - x^) dx,
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TT

/ /., {^ Ti/aio a ,\ la COS (2Z/3 sin 0) 1
(/ ) /o' {21^ sm 6 sm ^) dO = 07/3 ^ " o/o • ^

Jo 2{psin^ 2f/3sm9

= — 7, I sin (2Zfl; sin ^) ci«,

pio

p Jo

(h) —I I cos(2?a!sin(f))cos 2md)da;(?(^ = I J^{2lx)doo,
irj Jo Jo

(t) — I cos (2te sin <^) cos 2md>a!^da;d(^ = Z'' I J.^{2lx)a?dx
TTJo Jo Jo

= -^Ip'J^iW) + \^J^ i^W) + {m? - i) f
J^ C^loo) dx,

JO

(k) —I sin (2fe sin rf)) sin <^ cos 2m<^d«d<^ = — -1/2^(2^/3),
TTJo Jo

(i) —
I I

sin(2Za;sin (^)sin</)Cos2m^a;cZa;d^

Jo

We get, by means of (a), (6), {d) and {h),

I^ = - r r J, (2Z/3 sin 6 sin dt) {^-m?- 2P^ sin^ 4>) cos 2m^ sin ^d6ld</)

ii'Jo Jo
™2 _ 72/Q2 r/3

= mJ^ (21^) - —-^^-
j^

J^{2lx) dx.

Again, by means of (a), (6), (d), (e), (h) and (i),

/, = 1 r
f''V„ (2W sin sin

<t>)
{(m - Z/S)^ + P^ cos^ 61 (1 - /3= - 2 sin'' ^)}

TJo Jo

X cos 2m4> sin 0ded<l) = HI - ;8'') Z/S/^^' (2Z/3) + i (3 + /S^ /^r^ (2Z/3)

+
^ |i (1 + ySO (m^ + ZW - 2mZ;8^ - ^^l |^^ J^{2lx) dx.

Again, by means of (c), (/), (^f), (A;) and (0,

I, = -^r r V„'(2Z/8 sin e sin ^) {m - Z/3^ + (m+ Z/S^) cos^^} sin ^ cos 2m<jided(l)
TT Jo Jo

= i (»i - «/80 J^ (2Z/3) + ^^^'
J^^

J^. (2Z*) dx.

Lastly, by means of (a), (b), (d), (e), (h) and (i),

I, = ^' r r'^ J, (210 sin 6 sin 0) {(m - If + I' cos^^ 61 (/3^ - 1 - 2^8= sin^ </>)}

T Jo Jo

X cos 2m<^ sin ^«i0cZ<^ = - i (1 - /S^W^' i^^B) + i (1 + •'^/S') '^^m (W)
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Collecting all the terms together] we find for the radiation due to dis-

turbance alone

E = ^'
I
A'Y^W W^J^' {m) - {m' - P^) I j^^ J^ (21a:) dx]

+ B' Y W fi (1 - /3^) l'^ J^ (2«/8) + H3 + ^)W^ im)

{J (1 + ^0 im' + m") - 2mll3' - i (3 + ^)} I T J^ {2lx) dx\+

+ 2ABsm{a-^) 2 l^

+ ^(m + l^')lj J^{2la;)die\

8=00

+ C' s w
S= -co

- i (1 - yff') I'^J^' (210) + HI + 3/80 113J^ (2^/8)

+ {i (1 + ^)K + ^W - ^ml^ - i (1 + 3/80} '/^ -^^m (2««) dxji.. .(168).

106. [Radiation due to interaction between steady motion and
disturbance. Putting q = and A: = in (166) and (167) we see that the

parts giving rise to terms of the present type in the radiation reduce to

, 2e0n^ cot 6" . . "^^
, , . ^ ^, ,dg = ^ sin a z ^Jgn (snp sm 0) cos sny

P^ s=l

2e6^n^Gos6 *~"
5 sin /8 S ^Jgr! (sn0 sin 6) sin sn-\^

+

pr s=\

2e/3V cos^g

prsin
^— (7 sin 7 2 s^Jsm (sn0 sin 0) cos swi/r,"

8= 1

(i« = .4 sin a 2 si'Js^ (sn0 sin 6) sin sn-\^

^ 2e0n' (1 - ^ sitf 6) „ . -»^-
. r / o • z,x ,H —^^—:—jj BsmB 2 Sf'Jm (snB sm ^) cos sni/^

prsm^ s=i

^2e^Wcos(9^ . %" .r 'f o a\ • ,

H V sin 7 Z s^Jm {snB sin 6/) sin snifr.
pr ' ,^1 ^ '^ '

Comparing these expressions with the corresponding ones in (125) and

(126), § 82, we see that products of the two sets of terms involving A and G
also involve the product sin sni^ cos swi/r as a factor, which disappears in

averaging for the time, but products involving B also involve either cos" sni|r

or sin^sni|r as a factor, of which the average value is \. Hence the required

terms in the radiation, after integration with respect to <^, reduce to

R= ^5sin;8 2 ^\ J,n(sn0sme)Jsn'(sn0sm0)(l+cos'0-0''sin^0)dd.
P 8= 1 JO

The integral is at once seen to be simply the integral Ig, defined in § 105,
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R = —-— Bsmp 2 s"

divided by sV/8, where for I and m are put the value sn, to which they

reduce when q and k are zero. Using the value of I3 given, we find

JO

When we put p(l—B sin /3) in place of p, and y8 (1 — -B sin /3) in place of /S

in expression (129), § 84, for the radiation from a ring in steady motion, we

find, on developing in powers of £, that the linear term obtained is precisely

the value just found for R. This must be so ; for a disturbance, for which

q and k both vanish, represents either a rotation of the ring as a whole about

its centre proportional to A sin a, or a contraction of the ring as a whole

proportional to B sin /3, or a displacement of the ring as a whole perpendicular

to its plane proportional to C'sin7. Of these the second alone alters the

steady motion radiation, and since q = 0,it takes place without altering the

angular velocity w of this rotation, so that /3 must diminish in proportion

as p diminishes. This being the character of the exceptional disturbance

just considered, it is obviously unnecessary to trouble any further about

it, and we shall therefore confine our discussion to the expression (168)].

107. We have /3 = cop/c and l = m+ q/a> ; hence l^ = (q + mm) p/c. Now

q + mm is the frequency of the particular type of wave under consideration

relative to a stationary observer ; thus l^ = 27rp/\, where X is the corre-

sponding wave-length. For spectrum lines it is always small ; in fact it is

only 1/160 for the extreme ultraviolet lines of Schumann. For such waves

we may put J^(2l^) = (l^yi^/2fi\, where fi is the absolute value of m.

Using this approximation I have calculated an upper limit to the radiation

from a ring for several classes of disturbance, that is for several values of k,

namely for k=±3, ±2, ±1, and 0. [See the paper in the Phil. Mag.

referred to in § 102, note.] For the classes k = ±2, the radiation per ring

is about 3 .
10~" erg/sec, and for the classes k= ± 1 and & = of the order

10"' erg/sec, all for violet light.

Wien* finds that for the canal ray ion in a Geissler tube and for the

line H0 the radiation per ion is of the order 10~' erg/sec. This result shows

that if spectrum lines can be ascribed to disturbances of rings of electrons

Irom their steady motion at all, they can only be accounted for by means

of disturbances of the classes k= ±1 and k = 0. These disturbances have

one pair of nodes and no nodes respectively ; the former include to and fro

oscillations in the plane of the ring (orbital), and oscillations about a diameter

(axial), and the latter, periodic expansions and contractions of the ring (orbital),

and to and fro oscillations perpendicular to its plane (axial).

It should be noted that nothing has as yet been proved as to aperiodic

motions involving periodic components, such as damped oscillations ; for the

* Ann. der Phys. [4], 23, p. 415, 1907.
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method used fails for such motions. It will however be proved in Ch. IX
that our results hold for these cases also, provided that the damping be not

too great.

108. Problem 5. An electron moves in an epitrochoidal orbit.

To find the field produced. We shall treat this case briefly as an

example of a diperiodic motion. We may write

^ = a cos (OT- b cos m'r,

rj = a sin COT — b sin w't,

Hence, comparing with (135), § 88, we have

Q)j= CO,

Oi = 6j = a, Ci = 0, «! = i •TT, ^1 = 0,

a^ = bn = b, C2 = 0, a2 = |7r, 02 = 7r.

Hence by (136), § 88, with Z = sin ^ cos ^, m = sin ^ sin <f),n = cos 0,

Pi = asiiid, Si = |7r — 0,

^2 = &sin^, §2 = 177— (^.

Choose (I', m', n) and (I", m", n") in the direction of increasing 6 and <j)

respectively, so that

r = cos 6 cos (^, m' = cos sin (^, n' = — sin 6,

I" = — sin <^, m" = cos <p, n" = 0.

By (146), § 91, we have

C,' = acose, S,' = 0, C/' = 0, S,"= -a,

, _ ila sin Jg' (fia sin Ojc)
'

csi Jg, (fia sin djc) '

G,' = bcos0, S^' = 0, G," = 0, S^" = -b,

, _ fib sin e J,; (nb sin g/c)
^

csa Jj^ (Ii6 sin 6/c)

By (140), §89, we have

Lastly, by (138), § 89, we have

fl = Sift) + Satu') ^ = i (Si + 3*2) TT — (Si + S2) 0-

Hence we get by (144) and (145), § 91,

, , encot^„°°„ - /flasin^N ^ /Hftsin^N . ,_,,^ ,, ^,\d, = h^=^—-^ S S, J,_
(^ ^ j

J^^
^
^ ^jsm{n(^ -7Vc)+

A}]

dj,= -hg= r-SiS2 «« Jsi
[ j '^s,

[

—
J

} (169),

. T , T fflaam6\ _ , /fib sm0\'
cos{n(«-r-/c) + A},
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where we take all values, positive and negative, both of s^ and s^, and

therefore omit the factor 2 in (144) and (145). We must however bear in

mind that there are two terms giving the same frequency, namely those

whose indices are (si, Sa) and (-Sj, —s^) respectively.

109. The character of the field is easily understood from (169). On the

axis the forces vanish. This is obvious for all harmonics of order 2 or higher.

The harmonic Sj = Sg = 0, of order zero, is absent on account of the vanishing

factor O ; hence the only difficulty is for Si = + 1, 8^ = and 5i = 0, Sa = + 1.

The corresponding terms do not vanish. We easily find that for these two

sets together

dx = de cos 9 — a,t sin <p = —^ cos a){t — rjc) ^— cos m {t — r/c),

J J J , J J ^^^"^
/± I \ ^^^"^

/ /J / \dy = ctg Sin 9 + o!$ cos = —^— sin &> (* - rlc) y- sin w (< — rlc),
C V C T

which of course are independent of (^. They evidently represent two

circularly polarized vibrations. .

At the equator, where = ^tt, we have

*=-*•=-S !? [»"•'•' (t) '- (t)

'"'A(^)^..'(?)' . cos {II {t - rjc) + A},

which represents a vibration completely polarized in a plane at right angles to

the equator.

In every other direction the vibration is elliptieally polarized.

The most intense vibrations are those for which

(1) Si= + 1, S2 = 0: the frequency is w, that of the first fundamental

motion.

(2) Si = 0, Sa = ± 1 : the frequency is w', that of the second fundamental

motion.

The amplitudes of these vibrations are of the orders

(eco/cr) Ji (ma sin djc) Jo (o>6 sin djc),

and (ewjcr) J„ (w'a sin Ojc) Ji (co'b sin O/c),

respectively. If coa/c and co'b/c be both small, the orders are ea^a/c^r, and

ea)'^6/cV, respectively.
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(3) Si = ± 1, S2 = + 1 : frequency m ± to', that of the first sum or difference

vibration.

s, = + 2, S2 = : frequency 2w.

s, = 0, S3 = + 2 : frequency 2eB'.

The amplitudes are of the order em^ab/c'r, that is of order higher by unity

than the last.

110. Group of electrons. It is of interest to enquire whether it is

possible to arrange n electrons, moving in the same epitrochoid, so as to

interfere. This we found was always possible in the case of a mono-periodic

motion.

In order that interference may occur it is necessary that the argument of

the circular functions in (169) be of the form D,(t — rjc) + A + k2Tri/n for the

I'th electron.

This can only be accomplished by adding multiples of 2'7n/n to the phases

<BT, and w't, of the two constituent motions ; that is we must replace

ft) (< — ric) by co(t — rjc) + m.2iri/n,

and 0)' (t — rjc) by m' (t — rjc) + m'^mjn,

where m and m' are integers.

Thus the argument in question becomes

D,{t — rjc) + A + (mSi + m's^ 2'n~ijn.

The circular functions then disappear for all values of Sj and Sj, when the

expressions (169) are summed from i = Otoi = n — l, except only those which

satisfy an equation of the form

msi + 7n's2=jn,

where _;" is any integer including zero.

When m=m'=l, the value ^' = gives rise to terms Sj = + 1, Sj = + 1,

which are the second order ; these are obviously the terms of lowest order,

the terms of the first order having been destroyed by interference.

When m = 2, m' = 1, the value j = gives terms Sj = + 1, Sa = + 2, of the

third order, those of the second, as well as of the first order, having been

destroyed by interference.

It is obvious that we may confine ourselves to values of m and m' which

are less than n ; the only restriction is that they must be so chosen that no

two electrons can occupy the same position on the curve. In general large

values give greater interference than small ones ; it is an interesting problem

to find which is the best arrangement for a given number of electrons, that is

to say, which makes the smallest value of
|

Sj
|
+ |

s^
j

as large as possible.
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111. Radiation. It is easy to write down the expression for the

Poynting vector corresponding to (169), but it is of little use, since it will

involve products of four Bessel Functions. Series of this type have not been

summed, nor does it seem likely that integrals involving such products can

be evaluated. For this reason we refrain from writing down the expression

for the radiation.

112. Problem 6. Precessional motion of a system of vibrating

charges. In conclusion we shall discuss the effect on the waves emitted by

a vibrating system of the type considered in this chapter, when it is given a

precessional motion. There is some reason for supposing that an atom may

be likened to a symmetrical magnetic top, of the type studied by Du Bois;

such an analogy has been employed by Langevin* in his electron theory

of magnetism, and by Ritz f in his paper on Spectrum Series and Atomic

Fields. The problem is of some importance, since it has an obvious bearing

on the theory of the Zeeman effect.

Let us suppose that a charge is executing oscillations relative to axes

{OA, OB, 00), which are in precessional motion relative to the fixed axes

(Ox, Oy, Oz).

With the usual notation of rigid dynamics, let @ be the angle between Oz

and 00, i/r that between the planes zOx and zOG, and </> that between zOG
and AOG; and suppose that

© = constant, ^ = fir, <^ = nr, at the time r.

Further suppose that the components parallel to the moving axes of the

radius vector to the charge are

"ZA sin (qr + a), tB sin {qr + /3), IC sin (qr + y).

The well known equations for the direction cosines in this case are

(XA) = cos @ cos fir cos nr — sin /mt sin nr,

{XB) = — cos @ cos fiT sin nr — sin /mt cos nr,

(XG) = sin @ cos /mt,

(YA) = cos @ sin fir cos nr + cos /tr sin nr,

(YB) = — cos @ sin /jur sin nr + cos fir cos nr,

{YG)= sin© sin /iT,

{ZA) = — sin © cos nr,

(ZB) = sin © sin nr,

(ZG) = cos ©,

* 'Journal de Physique, [4], 4, p. 678, 1905.

t Ann. der Phys. 25, p. 660, 1908.
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By their means we easily find, for the components of the radius vector

parallel to the fixed axes, the expressions

^ = 2 [i (1 + cos @) {D sin {{q + n + fi)T + is]+Esax[{q-n- iJi)T + v])

+ i (1 - cos @) (D sin {(g + /I - /i) T + or - tt} + -E" sin {(g- - M + /t) T + V + ir])

+ i sin @ (sin {(g + /li) T + 7} + sin {(g' - (Lt) T + 7})] (170),

77 = S [1(1 + cos @)(Dsin [{q+n+ /x) t + ot - Jtt} + JS^ sin {{q - n-/i)T + v + ^tt})

+ ^ (1 — cos ©) (i) sin ((g + w — /a) T + or — ^ir} + Eam{{q-n + fjL)T+ v + ^ir])

+ ^sm€) G(sm{(q + fi)T + y-^-7r} +sin{(q- fi)T + y+ ^-n-})] ...(l7l),

^ = 2 [^ sin @ (D sin \{q + n)T + w + Tr] + Eaia{(q + n)T + v + tt})

+ cos@(7sin(g'T + 7)] (172),

where

n = .J{A' +B'+2AB sin (a - ^)}, E = ^/[A^' + 5» - 2AB sin (a - y8)},

J. sin a -f i? cos /3 , Asma. — B cos yS
tan o7 = —. p—^—= , tan v = —.

, p .
—

y=,

.

A cos a — BBUip A cos a + if sm ^8

We notice that each oscillation, of frequency q, gives rise to eight sum
and difference oscillations, of frequencies

q + n + /J., q-n-fi, q-n + n, q + n-/j,, q + /m, q-/j,, q + n, q-n,

in addition to the original vibration of frequency q.

113. Using the notation of (135), § 88, we may classify them as follows

:

Circular vibrations.

(1) Right-handed about Oz.

(Ui = g' + n 4- /i, tti = 6, = J (1 + cos @) D,

co2 = q- n + fi, tts = 62 = i (1 — cos @) E,

^s = q + H; as = 63 = ^ sin @ (7,

(2) Left-handed about Oz.

o}i = q-\-n — fji, ai = bi = \{l—Q,os®)D,

m^=q-n-ijb, ai,= bi = \{l-\-(ioa@)E,

<Os = q-fi, «e = &6 = i sin (i) C,

(3) Linear vibrations parallel to Oz.

o)T = q + n, 07 = 67 = 0, C7 = I sin @ D, 77 = or + tt,

001 = q-n, ftg = 65 = 0, Cs = ^ain@E, 73 = 1;+ tt,

0)9 = g, Ob = 69 = 0, C9 = cos @G, 79 = 7.

114. Electric and magnetic forces. The waves of electric and

magnetic force emitted by the vibrating charge are determined by (144) and

(145), § 91, as before.

If we suppose that the amplitudes A, B, C are all small, so that their

squares and products may be neglected, we need only consider the funda-

mental waves for which one of the numbers, Si, is unity, all the others being

c, = 0.
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zero. In any case these are the most important, and we shall for simplicity

consider them alone.

We have, by (136), § 88,

Pi cos Sj = sin 8 {ai cos cos Oj + 6; sin ^ cos /3i) + Cj cos d cos ^j,

Pi sin 8j = sin 6 (a; cos ^ sin Oj + 6; sin ^ sin /3i) + Ci cos 6 sin 7j,

where we have used polar coordinates (r, 0, <j>) as before.

Again we have, by (146), § 91,

Gi = cos 6 {cii cos </) cos (oj - Sj) + &» sin </> cos (y8i
— S,)} — C; sin ^ cos (7; — Sj),

/S/ = cos 6 {ai cos <t>
sin (o; — Sj) + h sin (^ sin (^j — 8,)} — Cj sin 6 sin (-y^ - Sj),

Ci" = — aj sin <^ cos (a^ - Si) + bi cos (^ cos (/3i
- Si),

/Si" = - cii sin <p sin (oj - Si) + 6, cos <^ sin (/3i - Si),

where the directions (I', m', n') and (I", m", n") have been taken in the direc-

tions of increasing and <j) respectively.

Lastly, by (138) and (140), § 89, we get

fl = (»i, A = Sj,

^(O) = /, (^) /„ (^^) /„ (^^) ... = /, (?^^) n,

say.

Thus we find by means of (144) and (145)

die = hi, = '-^ Hi [^^ J. {^) G( sin {a,i {t - rjc) + Si}

+ 2/x' (^') -Sfi' cos {coi {t - rjc) + Si}j . . .(173),

di, = -;,,, = - ^^ Hi [^^ /. (^^) Ci" sin {coiit- r/c) + Si}

+ 2// (^*) -Si" cos {«i {t - r/c) + Si}] . . .(174).

115. These equations simplify considerably in our problem, where we are

dealing with circular and linear vibrations alone.

(1) Circular vibrations—right-handed.

In this case a^ = bi, Ci = 0, «{ = ^i+ Jtt.

Hence, by (136), pi = at sin 0, hi = ai — <f>.

By (146) Ci' = ai cos 0, 8i' = 0, Ci' = 0, 8i' = -ai.

(2) Circular vibrations—left-handed.

Here ai = bi, Ci = 0, ai = ^i-^7r.

Pi = ffii sin 0, Si = ai-i-<f>.

Ci' = aicos0, Si' = 0. Ci" = 0, S{' = + ai.

(3) Aooial vibrations.

ai = bi = 0, Pi = Ci cos 0, Bi = yt.

Ci' = - a sin 0, 8i' = 0, Ci" = 0, Si" = 0.

R. 10
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The circular vibrations produce elliptically polarized waves, reducing to

circularly polarized waves on the axis, and to linearly polarized ones on the

equator. The direction of rotation about the axis is the same as that of the

generating vibration.

The linear vibrations give waves completely polarized at right angles to

the meridian, the vibration in the wave being as nearly parallel to the

generating vibration as transversality will permit.

Thus the general character of the waves emitted is the same as that of the

generating vibration.

The arrangement of the lines on a scale of frequency is easily seen from

the table in § 113.

The right-handed circular lines form a symmetrically placed triplet ; so

also do the left-handed ones, and the linearly polarized ones. The last are

S3anmetrically placed on either side of the original line, q ; the former are

symmetrically placed about the lines q ± fj.,
which are themselves symmetric-

ally placed about q ; thus the whole group of nine lines is symmetrically placed

with respect to the centre line, q.

116. As regards intensity there is in general no symmetry, except that

the two lines, q± fi, are always equally intense. There is symmetry of

intensity with respect to the centre provided D = E; but the triplets of

circular lines can never possess symmetry of intensity with regard to then-

own centres, q±fi. The condition for symmetry of intensity requires, either

that A= B, ox that a = /8 ; in either case the generating vibration must take

place in a plane through the axis of symmetry OG of the system of charges.

This condition is both necessary and sufficient.

An examination of the known cases of Zeeman effect shows that the

symmetry of intensity is always present*. Hence if the Zeeman effect be due

to precessional motion of a symmetrical atom or ion under the influence of the

magnetic field, then all vibrations causing lines possessing a Zeemam effect of

this type must take place in a meridian plane of the atom or ion.

117. As regards the spacing of the lines, it is to be noticed that the

distance between the components of each of the three triplets, (1), (2) and (3),

is the same, namely n. This arrangement is the usual one in all cases of

Zeeman effect showing triplets.

A considerable variety of arrangements of the nine lines may be got by
choosing suitable values for the ratio (ijn ; the cases where iijn = 3, 2, or |,

are all known.

* Since this was written cases of asymmetry have been discovered.
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Range's rule*, that the distances of the several lines from the centre

of the group are small multiples of a small sub-multiple of a standard

distance, obviously requires that /i/w should be a ratio' of small integers. This

important result is due to Ritz.

118. We shall now consider the relative intensities of the several lines on

the assumption that there is symmetry, that is, that D = E. The table in

§ 113 gives in this case, for the amplitude of lines,

ft)i,tu5: i(l-|-cos0)Di

a>3, (0^: J sin 6 . G
6)2, 6)4: i(l-cos0)D I (175),

6)7, Wg

:

^ sin 6 .D

6)9

:

cos 6.0 I

the lines being supposed to be observed along the equator, that is, in a direc-

tion at right angles to the axis Oz, or at right angles to the direction of the

magnetic force causing the precession.

In this case we see by (173) and (174), 1 114, that the factor, by which the

amplitude of the generating vibration must be multiplied to give that of the

wave emitted, is practically the same for each line. Thus (175) give the

amplitudes of the lines emitted, as well as of the generating vibrations.

For this direction we have seen that all the lines are plane polarized

;

<»7, 6)9, (Og vibrate parallel to the axis, i.e. parallel to the lines of force (p); the

others perpendicular to them (s).

In general, the lines (p) are the strongest, and 0)9 > 07, showing that

cos'' e.G'>ism?e.D,hy (175).

In general also Wi < 0)3 < toj, showing that > ^tt, and G'<1 tatf „ . D\

The two conditions together require that 6 > |7r.

The case where to, > coj, and at the same time <ai > Wg > co^, also occurs ; it

requires G''>^ tan^ . D\ and C" < i cot^ ^ • -^'' together with < ^v. They

require that < ^tt.

In certain cases some of the lines are absent.

B = gives »3, 0)9, 0)6 alone, a normal triplet. This can only be due to axial,

without orbital, vibrations.

(7 = gives the sextet coj, toa, Mi, wj, tua, 0)4; it is equally spaced when

fi = 2n. It is due to orbital vibrations, i.e. vibrations perpendicular to the

axis of symmetry.

^ = gives the triplet coi, oog, W5, with abnormally wide spacing. It is due

to spinning about the line of force, without precession.

* Phys. Zeitsch. 8, p. 232, 1907.

10—2



148 ON THE DISTANT FIELD DUE TO A MOVING CHAKGE [CH. VIII

= 77 gives the triplet to^, Wg, <U4, with abnormally narrow spacing. It is

due to spinning about the negative direction of the line of force, without

precession.

9 = \'7r gives the octet, with the central line m, missing. It is due to

precession with the axis of symmetry perpendicular to the line of force.

We may also get exceptional cases by a suitable choice of the

ratio /x : n.

For instance, w = gives a triplet
; fi = n gives a quintet, a^ and oa^ coin-

ciding with «9, and Ws, w^ respectively with Wy, wg. If at the same time

0=0, and ^ = 0, only ajj , Wg are left, and we get a doublet.

Thus the hypothesis that the Zeeman effect is due to precessional motion,

explains a good many of the observed cases; but there are some cases of

resolution into 10 and 15 components which it does not explain very readily*.

This hypothesis appears to be due to Ritz {loc. cit. § 112).

* It is unlikely that these lines could be accounted for by means of sum and difference vibra-

tions of higher order. It is true that, for example, a line of frequency q+ij,+ 2n could be got by

making Si = Sj= l, Sg= -1, giving Wj + uj-wj, which has the right value; but the intensity of

such a line would be excessively small.



CHAPTER IX

PSEUDO-PERIODIC AND APERIODIC MOTIONS

119. The treatment of polyperiodic motions given in the last chapter was

restricted to strictly periodic motions, that is, to motions involving no aperiodic

components. Such a limitation is however undesirable for the purposes of

Physics, because many of the most important physical problems deal with

motions which are not strictly periodic, such as damped free vibrations,

' pseudo-periodic motions," or with motions which involve no periodic com-

ponents at all, such as motions in orbits with infinite branches, " aperiodic

motions." Many of these motions are discontinuous, that is to say, they do

not follow the same law for all time ; for instance, damped free vibrations

imply a time at which they were started by the application of some

disturbing force. The beginning marks a time at which the functions repre-

senting the coordinates are discontinuous in form.

In deducing equations (140) and (141), § 89, we made the assumption that

the Fourier Integrals of the type

27rj -00 J _oc

^Te"^'*-^"'-''/(T)dTdytt

could be replaced by

or what is the same thing, by/<"' (t — r/c).

Here /(t) is a function of the coordinates and velocity of the moving

charge at time t. The transformation is meaningless unless /'"' (t) be finite,

except for singular values of t ; but this condition is always satisfied for every

value of w in a physical problem.

The transformation is obviously justifiable when f(t) is continuous in

form, so that all its differential coefiicients are continuous, and not merely

finite, for all values of t. This occurs for all periodic motions, and indeed for

all motions which follow the same law for ever, so that the coordinates of the

moving charge are always given by the same expressions. But many cases
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occur where this is not the case. For instance, when the charge starts moving

from rest under the action of a given finite force, the function f{t) is constant,

and all its differential coefficients are zero for times before the commencement

of the motion. But immediately afterwards those of its differential coefficients

which involve the acceleration of the moving charge, assume certain definite

values different from zero, but finite. In cases such as these, where the

motion is discontinuous, in the sense that the coordinates of the moving

charge are given as functions of t by expressions of different /orm before and

after the instant of time at which the discontinuity occurs, we cannot apply

the transformation without further examination.

The coordinates and velocity components are continuous in value, but

one at least of the higher derivatives is discontinuous in value, and we must

enquire what effect this discontinuity produces.

120. We shall use the method developed by Stokes* in Section II of his

memoir on the critical values of the sums of periodic series.

The integral

is convergent, because /(t) is finite, except for singular values of t, but some

of the integrals to be derived from it are not. For this reason we use the

equivalent integral

1 r" r"
f{t) = - cos /* (i - r/c - T)f{T) drdfj.,

which is the limit to which the integral

-
I /

e-'^'' cos fi(t- r/c - t) /{t) drdji

tends as h is indefinitely diminished. The last integral is absolutely con-

vergent provided that h be positive. This we assume to be the case.

Again the integral under examination, I, may be regarded in the same

way as the limit when A = of the absolutely convergent integral

-J ]_J~^''\^t}
cos fi{t-r/c-T)f{T)dTdfi.

The inner integral may be written in the form

i y^'^K'Sr)
cos /i (*- r/c - t) (^T.

Integrating by parts and replacing^ by —^ , we get

/:
cos fjL(t- r/c - t)/'"' (t) dT

* Collected papers, Vol. i. p. 271.
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i=7i-l /^\n—I—

1

+ 1 S Lim. (^]

i=n-l /^\n—i—i
^

i=0 T=oo \dt.

f I*' (t) cos iJ'it — rjc — t)

/''• (t) cos /a (i — r/c — t)

*i-e

Here ij denotes one of the instants at which a discontinuity occurs, and

the summation S is for all these times of discontinuity. The square bracket

denotes that the difference of the quantity inside is to be taken for times

<i + e, where e is to be made equal to zero in the limit. It should be noted

that the infinite limits together are to be treated like the times of discon-

tinuity. The result obtained is the equivalent of the equations (55) and (63)

of Stokes (loc. cit).

Substituting the value just obtained for the inner integral in the

expression for I, and noticing that all the single integrals are absolutely con-

vergent on account of the factor e"**^, we get

7" =. - 6-*'' COS fj.(t- rjc - t)/ <"' (t) drdij,
"TTJ J -00

+ S S Lim.
( ^J - 6-'^'^ [cos ^{t-rlc-r)/ W (t)1 du

i=0 T=*, \0t/ TTJo

- 2 Lim. ^J - e-^" [cos /i(« - rlc ~ t)/® (t)] dp. ...(176).
j=0 T=«= \OtJ TTJo

The double integral in the first line remains convergent when A = 0, and

then reduces to the Fourier Integral for/'"' {t — rjc), that is to say, to

\^) -] j
Jiosfi{t-rjc-T)f(T)dTdfi.

If the transformation previously used is allowable, the remaining, or com-

plementary, terms in the expression (176) for / must vanish. We have to

determine under what conditions this takes place.

121. It is obvious that it cannot take place at all unless the comple-

mentary terms approach a definite limit as h is diminished to zero, and this

limit must be zero quite independently of the discontinuities of the functions

r^' (r).

If we can prove that the limit is definite, though not zero, then the

complementary terms give the correction which is necessary on account of the

discontinuity.

Let us consider one of the single integrals in (176) due to the discontinuity

ti. We may put r = ^ + e, and make e equal to zero in the limit. Thus we

have to consider the limiting value of a term of the type

^J j e-'"^cos^(i-r/c-f,-6)/W(«i+e)S/*.
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It may be written in the form

/ •''
(i^i + e) (g^)"

' '

j
e-^"- cos /i (i - rjc - 1^) dfi

+/ '*'
(<i + e)

f
3^ )

I
6-'"' {cos ft,(t -rjc -ti-e)- cos nit- rjc - ti)} dfi.

The integral in the last line is equal to

r°° I • , / . 1 > sin i/te ,

6 £-'''' sm /i (< - r/c - ii - ie) ,

'^

/ta^ii,

Jo zM-^

9 r°° 1 , /.IN sin ifie ,

that IS, to —65-. e~''''coSjti(^ — r/c — ^i-|e)-^-"^^— a/i.

atJ ^Ms

It is clear that the factor sin ^fie/^fie improves the convergence of the

last integral for large values of
fj,,

however small e and h may be. Since e

occurs as a factor outside the integral, the term is ultimately negligible.

Hence the term in question reduces ultimately to

/(«(«! +
0)[^J J

e-'^'' COS ft (t-r/c- to d^i,

and the two complementary terms due to the discontinuity reduce to

{©"""'
II

'"""
''°' '"^*~ "/' ~ *'^ '^'"] '^•^" ^*'^^'

where the square bracket now denotes/**' (ti + 0) —/'*' (t^ — 0).

This complementary term vanishes when either factor vanishes.

The second factor vanishes when /'•' (fj -|-0)=/<*' (ij — 0), that is, when

there is no discontinuity at t^. This of course must be so, and justifies the

presence of the factor [/<*' (^)].

It also vanishes when/'*' (t) is zero ; this frequently occurs for t= + x

.

In all other cases it is necessary to consider the first factor

/gNn-i-lj /-co

\di) ~l
«~^''cosyit(«-r/c-0<^M-

When h is greater than zero we have

I
6-*" cos /u,{t- rjc - ti) dfjL = A/f/i^ + {t- rjc - <i)1.

Jo

and therefore

9\n-i-l (-co

-
j

I e-Afi COS /It (^ — rjc — <i) d/it

_/_,s„_i_w ._,x, sin {{n - 1) tan-^ {hjit - r/c - <.))}
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As h approaches zero, t—r/c—ti remaining constant, the last expression oscil-

lates between finite limits until h becomes less than (t — rjc — t^ tan 7r/2 {n — i),

and thereafter diminishes monotonously to zero. Hence the limit for h =
is definite, and ultimately zero, whenever t — r/c — t^ differs from zero by a

finite amount. This is all the more the case when <i = ± oo , on account of

the infinite denominator.

Thus the complementary terms in (176) due to the two infinite limits of

the T-integral vanish, because/*'' (t) is finite.

The terms due to a discontinuity at t^ vanish practically whenever t differs

firom ti + rjc by an appreciable amount.

But when t becomes very nearly equal to U + rjc the complementary

terms execute large oscillations because the denominator

{A^ + (/!-r/c-«i)''l*'"-*'

becomes very small in the limit. The series in (176) become divergent and

useless for purposes of calculation. In this case we must either calculate the

complementary term by a different method, or if that prove to be impossible,

give up this method of calculating the integral / altogether.

122. In conclusion we may sum up our discussion as follows :

When t differs fi-om any of the values t^ + rjc, ... corresponding to the

discontinuities of the motion by a finite amount, we may write

9"1 p /"

ttJo J -
--cos/.(«-r/c-T)/(T)dTd/.=/'"' {t-ric) ...(177).

J -00 Of

8"
This is equivalent to taking the operator g- outside the signs of

integration.

But when t is nearly equal toti + rjc, where ti is any one of the times of

discontinuity of the motion, (177) ceases to give a sufficient approximation;

we must add the complementary term

i=n—l
2 Lim. Lim.
i=0 h=0 T=ti

/(«)(T)f^j -j 6-*''cos/*(<-r/c-T)d/i|,

Unless this complementary term can be proved to converge to the limit

zero as h converges to zero, the expression (176) is no longer true.

123. As examples we shall deduce two important expansions for the

potentials due to a point charge.

In the first place, let us expand the exponential in (131), § 86, in powers

oip by means of Taylor's Theorem ; we get, on changing the limits of fi,

d, = -*F ^-^
f
"

f
" (|y cos f,(t- rjc - T).fdTdti.

^ irr g^o SI Jo J -^ \ot/
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Each term of this expansion is an integral of the type / just considered.

Hence we get from (177)

•^=riMc¥{^(*-^/^>j' (^^«>-

This expansion is valid, provided that it converges, and that t is not

nearly equal to t^ + r/c, where ti is one of the times of discontinuity. The

first condition may be assumed to be satisfied for physical reasons in all

problems to which the expansion would be applied.

When however t is nearly equal to ^i + r/c, we must evaluate the comple-

mentary term, which becomes

as=Qo i=s-l
]^

S 2 — Lim. Lim
c|-J{^<^>}'

>—1 Too

^j. I I
«"'"' <^0S u(t— r/c — t) da.

cotJ Jo

In precisely the same way we get from (132)

which holds under the same conditions as (178), and in the case of failure

must be corrected by the addition of an analogous complementary term,

124. Again, applying (12), § 9, to a point charge, by omitting the

integration with respect to de, and introducing a factor e instead, we get in

the same way as before, for a unit charge (e = 1),

Ytil)!('4Vi2»-' ^^gQ^^ s=o s\ \cdtj ^ "

where jR is the distance of the fieldpoint from the position of the point

charge at the actual time t.

When t differs appreciably from tx, one of the times of discontinuity of the

motion, the expansion (180) is valid whenever it is convergent, that is, when-

ever R is small enough compared with the radii of curvature and torsion and

similar lengths characteristic of the path of the moving charge.

But when t is nearly equal to ty we must evaluate a complementary term

which is found to be

2 2 ^^

—

r- Lim. Lim.
CTrr- 8=1 j=o s ! ft=o t=«, .(or>'iy j/-'^^cosM*-x)d^,

where jB is taken for time t.

In the same way and under the same conditions we get from (13), § 9,

^^ = I^-=#(^J{^'-^-^ <1«1>'

where R and v both correspond to the time t.
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125. The fact that all series for the potentials of the types (177)—(181)

fail when t is nearly equal to ti is susceptible of a simple physical

interpretation.

We know that the moving charge is continually emitting waves of

disturbance, by means of which the field is propagated to all parts of the

surrounding medium with the velocity of light. In particular, at a time ^i,

at which its motion changes its form discontinuously, a wave is emitted

which separates space into two regions in which the potentials are determined

by different mathematical expressions. Such a wave may be called a wave of

discontinuity, for the potentials change their form discontinuously there,

although their numerical values do not necessarily suffer any change. At

points which are not close to a wave of discontinuity the expressions (177)

—

(181) are valid, and have a physical meaning. But at points on a wave of

discontinuity they lose all meaning, unless the complementary terms belonging

to the wave can be evaluated. In general this cannot be done, and it is

better to resort to the integral expressions from which the series have been

derived. This failure is quite analogous to the failure of the point laws

under similar circumstances, of which we have met several examples in Ch. V.

Since all distributions of charge met with in nature appear to be extended

distributions and not point charges, the failure of our series can only affect an

infinitely small element of charge at one and the same time, namely the

charge of that part of the system which is enclosed between two infinitely

close spheres, whose radii are infinitely nearly equal to r, and whose centres

are at the fieldpoint. Any difficulty arising from the discontinuity will dis-

appear when the integration for the charge is extended to the whole system,

for the discontinuity is then, as it were, spread over a layer of transition of

small but finite thickness.

It should be noted that the series (180) and (181) are the developments

by Lagrange's Theorem of the point potentials (26) and (27), § 13. They

imply, in the first place, that the characteristic equation t = T + R/c has but

one root less than t, i.e. that the velocity of the charge is less than that of

light; and secondly, that all the differential coefficients of the coordinates

with respect to the time are finite.

126. The series (180) and (181) have been discussed by Schott* for

the particular case of rectilinear motion. From his discussion the following

results follow

:

In the equations (178)—(181) the series in the first lines represent the

potentials due to the given motion regarded as continuous. For instance, if

we are required to find the potentials due to a charge which starts from rest

* Ann. der Phys. 25, p. 63, 1908. See also A. W. Conway, Proc. Roy. Irish Acad. Vol. xxviii.

A. p. 5, 1910.
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at time zero according to a prescribed law, e.g. with uniform acceleration,

they give the potentials due, not only to the given motion for all positive

time, but in addition that due to a motion taking place for all negative

time according to the same law, e.g. with uniform retardation in the reverse

direction.

The complementary terms in the second lines of the equations give the

correction to be applied in order to neutralize the effect of the motion for

negative time, which is continuous with the given motion, but in the case of

a discontinuous motion actually does not take place. These terms are due

to waves which would be emitted at negative times if the actual motion were

really continuous.

In the language of Ch. Ill, § 14, the first line represents the effect of the

whole continuous characteristic curve ; the second line represents the correc-

tion to be applied in order to replace the negative branch of the continuous

characteristic curve, which is not required, by the negative branch of the

discontinuous curve, which is actually present.

Thus we see that for discontinuous motions the only general method is to

use the integral expressions (12) and (13), § 9, or their equivalents, the point

laws, (26)—(27), § 13. At great distances from the charge the former may
be replaced by (131) and (132), § 86.

For all continuous motions with a velocity less than that of light we may
use the series (178) and (179) at a great distance from the charge, and (180)

and (181) close to it, provided that in either case they be convergent. This

point requires special investigation.

It is possible that these series may also be used in cases of discontinuous

motion, if the complementary terms can be determined. In this case how-

ever the value of these terms must be found before we make h equal to zero,

in order to make sure of the convergence of the integral.

We shall now pass on to the consideration of some problems in illustration

of the methods of this chapter.

127. Problem 1. To find the distant field due to a mono-
periodic motion of variable amplitude. We assume that the motion

involves a single period, but that its amplitude varies, so that it is not

strictly periodic. For instance, we may have a charge executing a damped
vibration in a straight line, or moving in a logarithmic spiral, or some similar

curve. The potentials cannot be worked out by means of equations (140) and

(141), § 89, because such a motion must have had a beginning, before which

the charge was either held at rest, or was moving according to some different
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law. We must therefore use (131) and (132), § 86, which we may write in

the form

</)= — I I COS iJL(t — r/c — T + p/c)dTdiJ,,
'^'^ Jo J —00

rao Too

a =— COS fi(t — rjc — t +p/c) v drd/i.
CVTT J Q J - 00

If we suppose the given pseudo-periodic motion to start at time zero, the

part of the integral from r = to t = oo represents the effect of the required

motion, the remaining part the effect of the preceding state of rest, or of the

preceding motion, which is discontinuous with the required one in form.

The values of the displacement and velocity of the charge are necessarily

continuous, but those of the acceleration and higher differential coefficients

will generally be discontinuous (one at least must be so). The effect of the

discontinuity must be found by Stokes' method. If this be done, we may
take the time integral from to oo , and the result will give the potentials for

any time t greater than r/c.

Suppose that - =/(t) sin (<wt -I- a) (182),
c

where /(t) is for the present arbitrary. We get at once for the potentials at

the times mentioned

d>= — cos ^ {i— r/c— T-f-/(T) sin (a)T + a)} drd/i,
^TTJO JO

g /"CO ("00

a =— \ I cos n [t — rjc — T+f{T) sin {mT + a)]-vdTdfi.

Now we have the well known equations*

S=oo

cos {x sin (^) = S' 2/28 (*) cos 2s0,
«=o

S=oo

sin {x sin 1^) = 2 ^Jis+i («) sin (2s -t- 1) <^.

s=0

Hence

Og s=oo Too Too

<^ =— S' I J^{iMf {t)] COS fi{t — rjc— t) COS 2s{a)T+ a) drdfi
fir s=o Jo JO

2g S=ao roo Too

2 I J^+i {of(t)} sin fi (t - r/c — t) sin (2s + I) (cot + a) drdfi,
TV «=o Jo JO

— 00 roo /'oo

S' I \ J2S {/"/('')} ^os fi(t- r/c — t) cos 2s (cot + a)vdT d/j,

s=OJO JO

00 Too Too

I
Jss+i {fif(t)] sin fi(t — r/c — T)sin(2s+1) (a)T + a)vdTdfi.

J JO

2e
a =—

crir

__2e*|"
crir.

* Gray and Mathews, Bessel Fwnctions, p. 18.
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128. These integrals can be transformed further. For we have*

f" T /f\ fi-\jy cos {2s sin-' a;} „ . .,

I J^s (g) cos (ga;) d^ = ' _ '

for < a; < 1,

= for a; > 1,

J (" T /f\ /f \ jf sin f(2s + l)sin-'a;| „ „ ^and
j /ss+i (f) sin (g/r) dg =

jn-a^)
-^otOkoxI,

= for a; > 1.

It is obvious that the integrals for negative values of x are got by simply

changing its sign. They are continuous at a; = 0.

Put ^ = nf(r), x = {t-rlc-T)lf{T).

The critical values oi x, +1, obviously correspond to r = r^ and t = Xg,

where

n-^f{Ti) = t-rlc\

'r.-f{r,) = t-rlo\
^^^^)-

By (182) we can always arrange matters so that /"(t) is essentially

positive, by allowing p to be negative as well as positive^ according to the

sign of sin {wt + a).

Then we have by (183)

Ti<t-r/c< T.^.

Two cases arise ; in the first case Tj is negative, and the lower limit of the

T integral becomes zero. In the second Tj is positive and itself gives the

lower limit of the integral.

We now find on substitution, for case

I. Ti < 0.

2e »^f /'''COS 2s(ioT + a) cos 2s sin"' [(t — r/c - t)//(t)] dr

2e«=" r^^ sin (2s + 1) (cot + a) sin (2s + 1) sin-' [(t - r/c - t)//(t)] dr

~^ioJo V{[/(T)?-(«-r-/c-T)»}
(184),

2e ^=T ['^cos 2s (cot + a) cos 2s sin~' [(t - r/c - T)/f(T)]-vdT

=0 Jcr7r,=oJo V{[/(T)?-(«-r/c-T)'}

__2£^»|,'» f ^' sin (2s + 1 ) (ft)T + g) sin (2s + 1 ) sin-' [(t - r/c - t)//{t)] vdr

3^ *=o J V{[/(t)]= -{t- r/c - ry]

(185),

with Ti-f{T^ = t-r/c.

II. T, > 0.

The same expressions with the lower limit equal to tj, where

Ti->rf(T^)=t-r/c.

* Nielsen, Cylinderfunktionen, p. 195.
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The conditions as to the limits are best seen from the diagram. AB is

the line r = t — r/c, CD is the curve (1)

Ti +/(t,) = t - r/c, and JFH the curve (2)

r2-f{r2) = t-r/c.

JI and 10 are each equal to/(0).

When t — rlc<f{0), we have case (I),

and the limits are from E to F.

When t — rlc>f(0), we have case (11),

and the limits are from Q to H.

The second case represents, as it were,

the permanent regime and is obviously the j-jg^ 33

most important; the first case represents a

transition period during which the permanent regime is being established.

It is clear that this transition period lasts only a very short time, for/(0) is

merely the initial value oi p/c (by (182)), and thus is of the order of the time

required by light to travel a distance of the same order as the initial ampli-

tude of the vibration. For this reason we shall henceforth only consider the

permanent regime (II), for which the limits of the integral are Tj and t^.

129. We can now transform the integrals (184) and (185) into a form

more suitable for calculation. Write

We get

t—r/c—T

fir)

dr

= cos X-

dr

.(186).

dx
dxf{r)smxAU{r)Y-{t-rlc-Tf\

The limits for x ^-''^

:

for T = Ti

,

t- r/c - Ti =f{ri), % = 0,

for T = Ta, t- r/c - T2 = -/(T2), X = TT.

Thus the limits become independent of t in the permanent regime.

Moreover we get

cos 2s sin-^ [(t - r/c - r)/fiT)] = (- 1)« cos 2sx,

sin (2s + 1) sin-> [(t - r/c - t)//(t)] = (- 1)« cos (2s + 1) x-

Lastly we require to express the functions

cos 2s (wT + a) dx _ d ^ cos 2s(&)T+«)dT

W) ^^^io /(-)

sin(2s+l)(Q)T + a) rfT ^ d_ r sin (2s + 1) (mt + a) dr

^X
~

<^xJo f{r)fir)
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as functions of x- This is best effected by means of Lagrange's Theorem.

We have by (186)

F(T) = Fit-r/c)-^f(t-r/c)F'(t-rlc) + ...

+ (- ly-^ ^d{f(t-r/c)}-F'(t-r/c)] ....

Thus we get

['cos2s(a>T+a)dr f '->/<' cos 2s ((or + a.) dr c, < ,^ /x ,

io W) ^io W) cosxcos25{a,(«-r/c)+«)

+ ... + (- 1)»^ 1^^ [{/(« - rjc)]-^ cos 2s {« {t- r/c) + a}]

+ ...

with a similar series for the second function. Hence

cos2s{Q)T+a)dT "=", ,,„ cos"y siny 9"rf y./, /m ^ , , ,s

/(.) Tx^^o
^- '^

nl
'' si^l{f(t-rfcr^os2sla,it-r/c)+a]]

with a corresponding series for the second function.

Substituting in (184) we get first a series of terms of the type

^[{/(^-'•/c)}"cos2s{a)(<-r-/c) + a}]j cos»xcos2sx(ix-
r-TT re ! a*"

The integral vanishes when n is odd.

2^ j + slj-sl
When w is even, = 2j, it is equal to ^^ '^\,^\_

i

when s ^j, otherwise

zero.

Secondly, we get a series of terms of the t3rpe

^-^^al^[{^^*-''/''>'"'^°(2.9+l){«(«-r-/c) + a}]

I cos" ;^ COS (2s + 1 ) ;;^dx-

The integral vanishes when n is even.

When n is odd, = 2j + 1, it is equal to -„,..,
7

'
-^

.,
,

'

.

:
, provided that

s ^j, otherwise it is zero.

We put re = 2s + 2k, or 2s + 2A; + 1 as the case may be, and sum from

A; = to & = 00 . We get a first series

2e *^=°° 1 /9\^+*

r
(- !)'•i 2^^'K2s + klk l [dt)

" ^^ ^^* " -/«)l^""-«o« 2s {« (« - r/c) + «}]

and a second

»- ^ j:=o 2^+=*+^2s+A; + l! A;!W
[{/(« - r-/c)}^+^+' . sin (2s + 1) {« (t - r/o) + a}].
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which may be included in a single series by introducing a — ^ir for a. Hence
we get

X [{/(* - r/c)Y+'"' . cos s{(o(t- r/c) + a - ^tt)]. . .(187).

In the same way we get

^~cr, =0 4=0 2'+^.s + kl k\\di)

X [{/(* - rlc)Y+^ . cos s[o)(t- r/c) + a - ^tt} . v (i - r/c)].. .(188).

These equations could have been deduced from the series (178) and (179),

§ 123, by neglecting the complementary terms. But the present process is

more rigorous, provided that the velocity be less than that of light, and has

the further advantage of showing that the effect of the discontinuity,

represented by the complementary terms, disappears when the permanent

regime is reached.

130. So long as the series (187) and (188) converge, we may differentiate

them with respect to t, and derive the electric and magnetic forces by means

of the equations

We get at once

(189),

, 2e'5?*S» /9V+2*+i ({f(t-r/c)Y+'^ , ,^ ,, , , . -,]

(190).

The series for k gives the harmonic of order s, and frequency sw. It is

of order s in the amplitude, and therefore generally small. We shall now

consider an example.

131. Example. Damped rectilinear vibration. We write

f= ae"" sin (ojt + a), for t ^ 0.

Using polar coordinates (r, 6, <ji) we get

p = a cos 6 .
€"'" sin {cor + a),

8. 11
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whence by comparison with (182), § 127,

J., V a COS Q
/(t) =—--6-".

Substituting in (187) and replacing the cosine by an exponential, of which

the real part only is to be taken in the usual way, we get

/acos^Y+2*

<f) =— 2' X- -?-T -I e-(»+2ft)«((-Wc)+is{«.(r!-r/<;)+a-i»-}

r 3=0 k=o s + klkl \dtj

=— S' S ^^—=^ — 1 6.»{<-(*-Wc)+a-W...(191).
r s=o *=o s + k\k\ ^ ^

The modulus of the general term of this series is

fa cos ^ „ .,., „ „ „ , „,,„ „,)»+=*

2e 2c
g-K(f-rio) ^{^2^2 + (-g + 2ky k"} [

T s-\-k\k\

Ultimately it behaves like

W27r(s + 2A;)2'+^s + &!A;!| c \/\^(s+2kyK

It is therefore convergent for all values of ff provided that

t-r/o>^^&^ (192).

If I be the logarithmic decrement and \ the wave-length of the vibration,

, eKa iela
we have — = ——-

.

c X

Unless the damping be enormous this is very small

Condition (192) may be written

c{t- r/c) log (€Ka/c)

ea exa/c

The greatest value of the right-hand member occurs for xa/c = 1, or

2la/X = 1, and its magnitude is 1/e. Hence we must have c{t — r/c) > a,

which is precisely the condition we obtained on p. 159, for the existence of

the permanent regime.

As a matter of fact, in all practical cases the convergence of the series is

very rapid indeed, because Kea/c = 2ela/\ is an exceedingly small quantity.

For this reason the only terms which contribute appreciably to the A-sum

are those for which k is small. For these terms we may neglect 2kK in the
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quantity csm-(s+2k)K. The k-snm in (191) can then be effected and
gives

and we get

2e *=? fm cos 6(a) + iK) , )

<P= — 2%/s j
'^ ^ e-xft-rwl e'^Mi-rio)+^} ...(193)^

the real part alone being taken.

132. The Bessel Function is easily developed. Write

k/co = tan 6, ma/o = /3.

The Bessel Function may be written

Js {sff sec 6 cos ^ . e-««-''/<') . 6'=} = J, {s^ sec e cos ^ . e""'*-''/'')} e'"

s«a cos 61c „ , . ^ ,

(s/ta cos 6/cy „ ,^ , , ^- ^ 2!^^ e-a^^-Wc)
. /^^^ {^^ gee e cos ^. e-««-»-/«)} e'(»+2)'

+ ....

On substitution in (193) we get, taking the real part,

26*"*"
f

= — 2' jJs {s/3 sec e cos ^ . e -"<*-'•/'')}
. cos s{(o(t- r/c) + a + e}

,
s«a cos 0/c ,j , N r r ^ /, « 1 o+ T-j

—^ e-''^*-'-l''K Jg+i {s^ sec e cos 6.6-"^*-'-.^]

. cos [s {« (t — r/c) + a + e} + e — ^tt]

+ ('""'"^^^/''y ,-2.(.t-rio)
. j^^^ {^^ sec 6 COS . e-« (*-'•/«)}

. COS [s (to (< — r/c) + a +6} + 2e — tt]

+ ...I (194).

The mode of formation of successive terms is now obvious.

If the damping be so small that the terms involving k as a factor may be

neglected, and the principal term only retained, we see that we can take

account of damping by giving to the amplitude the value it had at the time

t—r/c, namely ae~''^*~^l''\ that is, we may use the instantaneous value of the

amplitude.

In fact if K be zero, equation (194), or (193), leads to precisely the values

we found previously for the forces in the absence of damping in problem 2,

p. 120.

11—2
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If on the other hand the motion be aperiodic, so that &> = and a = 0, we

get from (193)

<f>
= real part of— X Jgii g-xW-Wc)

L

f »=o I
c

J

= ^''W (- 1)«/. f^«^^°«^-.(^-./4 (195),
'' «=o { c

j

where 7g («) = t"* Jg (ix) in the usual way.

We shall refrain from calculating the vector potential and electric and

magnetic forces, for our chief object in this problem is not so much to de-

termine the field in all its details, as to investigate the character of the

deviation produced by a small variation from strict periodicity, as for instance,

a small amount of damping. This question is sufficiently illustrated by the

expression just calculated for the scalar potential (/>. The chief result is that

in the permanent regime simple harmonic components exist, but with slowly

varying amplitudes.



CHAPTER X

ON THE FIELD NEAR THE ORBIT OF A MOVING CHARGE OR GROUP

133. [Foe the purpose of studying the motion of a charge, and more

particularly of a group of charges, we shall require to know the field at points

on or near the orbit, not necessarily close to any one of the charges. In

Problem 2, Appendix A, an investigation is given of the field close to a

charge moving in any prescribed manner, but the results obtained there are

insufficient for our purpose. Our present object is to calculate the field at a

point, which is on or near the orbit of the electron producing it, but at a

distance from the latter of at least several of its diameters, so that it may be

treated as a point charge.]

The most rigorous and complete method would be to use the equations

(18) and (19), § 10. This however would be a complicated process, and is

not necessary for our purpose. Nor can we introduce our simplification that

the electron is a point charge, directly into these equations, because the

integrals with respect to t would then diverge.

For this reason we shall use a different method.

134. Potentials. We have just stated that in order to find the equa-

tions of motion of a group of electrons, not merely in its permanent state,

but also when it is slightly disturbed, we require expressions for the field due

to the permanent motion and the small disturbances from it at points close

to the orbit as well as actually on it. It is convenient to treat the whole

problem at once ; for this purpose we must develope the potentials as far as

small quantities of the second order. We start from equations (12) and (13),

§ 9 ; for a unit point charge they may be written

In future we shall suppose ^, tj, §", R and v to refer to the undisturbed

motion and (x, y, z) to be a point on the undisturbed path of the charge.

We shall denote by S prefixed to any symbol the variation by which we pass
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from the permanent to the disturbed motion, and from the point (x, y, z)

actually on the undisturbed path to a point close to but not on it. For

example, 8R represents the vector whose components are {hx — 8f, 8y — S77,

hz — 8Q, and 8R1 the unit vector in the direction of 8R. For shortness write

•p = (Ri . SR), so that p is the projection of sR on the vector R drawn from

(?. "n^ K) to (a'. 2/. ^); and write q = ^J\(^Uy-f\, so that g is the length of

the perpendicular let fall on R from the end of the vector 8R. Then we

have

R + BR = B+p + qy2R,

1 1 p ^2p'-q'

R + BR R R' 2R' '

Hence

,.,(t-Mic-r)
_ J

p 2p^-q^ fp_ 2f-£\ d_ £_ (dV) (,_^/,_,)
* R "IR'^'^W \R 2R^ J cdt^ 2R\cdtJ r

All these expansions are correct as far as terms of the second order. Putting

for 2p^ - g^ its value Sp' - {BRf, and substituting in (12), we get

We treat the integrals just in the same way as the integrals (12) and (13),

§ 9, from which the point laws were deduced. Changing the variable from t

to t', where t' = t+ Rjc, we find that

<i>^h4>-
1 p_ 3jj° - {BRf

] _ d_ r_p_ _ 3p' - (BRyi

:R KR'^ 2KR' J cdt\_KR 2KR' JKR

+

7)f

As before K is the Doppler factor ^ , and the functions of t within the

square brackets are to be transformed from functions of the time of emission,

T, to functions of the time of reception, t, by means of the characteristic

equation t — r-\- Rjc. It is assumed that this equation has but one root t less

than t, which implies that the velocity of the charge is less than that of light.

Otherwise we should have to introduce one additional set of terms for each

additional root of the characteristic equation, just as in § 14.
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It is assumed that the fieldpoint («, y, z) is at a sufficient distance from

the charge to permit of our treating the latter as a point charge ; otherwise

we must divide the charge into sufficiently small elementary charges and
integrate for the whole.

In precisely the same way we get from (13)

KR KB? "^ 2KR^
d_ Vpv_ _ 3jj^ - {hRf
cdt KR 2KR' ' ' KR

c (a + 8a) = 8v _ ^8v"|

'^KR~KR'\

^\ +P^ + Q" [.-£]••<-'>•

135. Electric and magnetic forces. The introduction of the dis-

placement (Sx, Sy, Sz) of the fieldpoint enables us to deduce the forces very

simply, so far as they involve differentiations with respect to the coordinates

(x, y, z). For now we may treat these coordinates as invariable, and instead

differentiate with respect to (Sx, By, Bz). The terms of first order in the

potentials then give the parts of the forces which depend on the permanent

motion, and these for points on the path; the second order terms give the

parts of the forces due to the disturbance from the permanent motion, and to

displacements of the fieldpoint away from the permanent path.

In differentiating with respect to the time we get the corresponding parts

of the forces due to the permanent motion from zero order terms, and the

parts due to disturbance and displacement from the first order terms, while

we may neglect the second order terms altogether. It is however convenient

to delay the differentiations with respect to the time as long as possible.

In the equations giving the forces, that is (VII) and (VIII), § 3,

9 (a + 8a)
h + 8h = curl (a + 8a), d + 8d = - grad. (<ji + S^) - •

cdt

the operations grad. and curl now refer to (Bx, By, Bz) which occur in p and

BR, while x, y, z and R must be treated as constants. We easily find that

grad. p = Ri, grad. {BRJ = 28R, curl (^ . v) = [Rj . v],

curl {{BEf . v} = 2 [8R . v], curl {p . 8v) = [R, . 8v],

while such quantities as grad. (KR), curl -^^ , and so on, are to be considered

as vanishing. The terms in the forces which would arise from them are in

fact already included in those derived from the first order terms.

In this way we get, from (196) and (197),

-v/c"
d + 8d =

KR'j^cdtl J

8R - Sp^{] 9 p

J
"''

cdt L

KB
9 fsR - 3pRi

KR'

[cdtj [

KR' +
pv
cKR^

v/cr

sv

^KR

KR .(198),
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r[v.(sR-3pR0] [sv.R.]
]

[ cKR' cKR" J

d r[v.(sR-3j)R0] [8v.R.] l /;

cad c^i?^ cZE J Vc

'j>[v-RJ
.(199).cKR

The first line in each equation gives the force due to the permanent

motion at a fieldpoint on the permanent path, and the remaining ones give

the forces due to disturbance and for a fieldpoint close to but not on the

permanent path.

A notable simplification of the work arises from the fact that certain

combinations of symbols, such as [v.Ri], SR— SjoRi, and [v
.
(8R — 3^Ri)],

occur with varying factors, and affected by a Varying number of differentia-

tions with respect to the time t. Thus in the expression for d + 8d the

combiaation 8R — 3^Ri occurs undifferentiated with the factor 1/KR', and

differentiated once with the factor 1/KR'', and so on.

As an illustration of the method we shall consider the problem of a point

charge moving uniformly in a circle.

136. Problem. A point charge moves in a circle with uniform

velocity. Required to find the electromagnetic field at a point on
the circle. With the notation previously employed we write

^ = p cos ((BT + S), 71 = P sin (w" + 8), §'=0, /S = cop/c.

Further, the coordinates of the fieldpoint are

a; = p cos
<f), y = psind), z — 0.

With these values we get

R = {(x- ^y + (y - 1?)=}* = 2p sin ^ (toT + S - <^) = 2/j sin x,

where % is a new variable defined by the equation

X = H®'^ + S - </>)•

In the same way write

Then the characteristic equation t = t + ii/c gives

^ = X + )8sinx (200),

and the Doppler factor is given by

The transformation from the time of emission t to the time of reception t

by means of the characteristic equation, indicated by the use of the outer

square brackets in (196)—(199), now reduces to a change of variable from x
to i/r by means of (200), which is nothing more than Bessel's well known

equation.
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Fig. 39.

For the purposes of the present problem we only require the zero order

terms in (196)—(199), which involve the vectors

Ri, V and [v.Ri]. We require their compo-

nents along the inward* radius vector PO at

the fieldpoint, perpendicular to it along the

tangent FT, drawn in the direction of motion,

and perpendicular to the plane of the orbit.

In Fig. 39 the orbit is the circle PE'E.

P is the fieldpoint {x, y), so that xOP = (j).

E' is the position of the point charge at time t,

so that POE' = 2;j^ ; and E is its position at

time t, so that P0E=1'y^. The vector Ri is

along E'P, V is along TE', and [v.R,] perpendicular to the paper and

upwards, along Oz. We get for the components of these vectors in the

directions p, (PO), </>, (PT) and z

i?ip = - sin X, i?i0 = - cos X, Riz = 0,

Vf = c^ sin 2x> ^« = '^^ cos 2x, t's = 0,

[v.RJ, = 0, [v.RJ« = 0, [v.RJ, = c^sinx.

Substitute in (196)—(199), replace sin 2% by 2 sin ;^ cos % and cos 2% by
1— 2sin^T^, and notice that the expression cos%/sin^T^(l +/8cos;)^), which

occurs in d*, may be written in the form — x-r (- ) • After a little
''

dyjr vsm xJ
reduction we get

1 ^sinx
4>
=
2/9sinx(H-/3cosx)'

1 1

P p(l+/3cosx)'

1

^* = ;2psinx(l + ^cosx) p(H-^cosx)'

* "" a^ LVsinx(l+/Scosx) ^ 2/3=' (1 + y8 cos x).

1-/8='

+ ;

/3

h = .
^ r

4/)" sin X (1 + /8 cos x) 9^^ [_^p' (1 + ;8 cos x)

/Q'siny

]•

" 4/}" sin X (1 + yS cos x)
'

S-\(r l4<p^ (1 + ;S cos x).
:]

/8
+ ,

0'

]
.(201).

137. It is to be noticed that these expressions only involve three distinct

fiinetions. Two of these, :; ^r and :; ^:r-^— , are at once expansible
1 +^ cos X 1 + /S cos X

in Fourier Series with \lr as variable ; the third, -: 7= 7: r , being^
' sinx(l + /8cosx) ^

* The inward direction makes the axis Oz right-handed relative to the motion, when <p, p and
z are a right-handed system.
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infinite at the limits and tt is not so expansible. But its excess above the

function 1/sin yfr vanishes at both limits, and may be expanded. Write

1 1 '-'°
—.

7:; ;:; r = -; -+ 2 2.4. sin j'llr,

sm % (1 + /3 cos x) sin yjr ^=1 ' •'
^

1 i=»°

r-—^ =1+2 2Bj cos ji|f,
1 + ^cosx J=i

-^^^=T2a,sin,>.
1 + ^ cos X j=i

We get, by the usual method, using (200),

^ TT Jo |sin;;^(l + /3 cos %) sini|rj '^ ^'

In the first integral change the variable from yjr to x> remembering (200),

and in the second change the notation by writing x in place of yjr. We get

A,^msinj (x + ^ sin x) sinjx

smx sinx
dx

-\dx\ cos; (x + « sin x) dx = (- 1)^j J, (j«) <^«-

Similarly 5,. = (- 1)^' J.-O'/S), C,- = - (- l)i // (j/3).

,1

138. Substitute in the expressions for the potentials and forces, perform

the necessary differentiations with respect to i^ (which are obviously

permissible), and supply the charge e as a factor. We get

«/>
=

Jo2/0 sin -fff p j=i

2p sin i/r p j=i

a, =-- t {-ly cosjyjrJjij^)
P J=i

da;

^/0'/3) + 4i j
^(;a!)cfe V...(202),

(203).

-^(l-^)j^j'^Jj(jx)dx'^

The remaining force components vanish identically.

These series are available so long as the distance of the fieldpoint from

the charge, 2/3 sin -yjr, is at least equal to several multiples of the diameter of

the charge. This restriction is not serious in problems dealing with the

circular motions of electrons, even when the diameter of the circle is much

smaller than the atomic diameter, for the latter is many thousand times as

great as the diameter of the electron.
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139. Group of n charges. When we have n charges moving uniformly

round the circle at equal angular distances apart, we may take yjr, which is

equal to ^ (at + 8 — </>), to be one-half of the angular distance from the field-

point to any one of the charges, which we may number zero. For the ith

charge we must replace S by S 4- 2in/n, and \lr'byy}r+ iri/n, and in order to

get the field due to the whole group at a point on the circle we must sum

(203) from i = Otoi = n-l. We have
i=n-l

2 6«'(i('+iri/«) = jje'2«»'/'^ for 7' = 2sw,
i=0

= 0, for other even values of /,

gi(2s + l)(J«-ir/2»)

sin(2s-|-l)7r/2re
•'

In this way we get

d
e (1 - /SQ '=^-^ cos (1^ + i-jr/n)

* V .^f, sin" {^ + i7rIn)

2ne»=S

P' s=

cos 2sni/r% Im^J'^n (2sn/3) - sV (1-^) fJ^^n i^snx) dc

=1

L

.'0

- ~T \{2s + 1)^/Vi {(2s -H) /3} - H2s + ly (1 - /80
P «=o L

X
I

J^+1 {(2s -[- 1) «} cia;

(2s -fl) TT

2n

do= —
=»-i

2
4(0=' i=o sin (yjr + i7r/n)

sin 2s»i'»/r; 2 sn^J^n (2sn^) + sn I Jasji (2sna;) d«

-I- ^,T [(25 + 1) /3 J"^+, {(2s -I- 1) /S} + (2s -I- 1)jV^+i {(2s + 1) «?} doA ... .(204).

cos(2s + l)(v^-^)

sm
(2S + 1) TT

2re

4/3" i=o sin (i/r -j- tV/w)

P'

-I-

S sn^J^n (2sn0) — sn I J^gn (2snx) dx sin 2sm-<^

f-,
T r(2s -f- 1) /8/^+, {(2s -I- 1) ^} - (2s -H 1) JV^+, {(2S-H l)a;} do?]

cos(2s-|-l)(V'--^

sm
(2s-^l)'7^

2»i
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In these equations the variable i/r may be taken to lie between the limits

and 7r/« without any loss of generality, but a very small range at either

limit must be excluded, because of its nearness to one of the electrons. If it

were not for the necessary exclusion of these portions of the range, we might

be tempted' to find the limit of the forces for infinitely large values of n.

We cannot however use our results for values of n beyond a certain limit,

which depends on the ratio of the diameter of the electron to that of

the orbit.

For small velocities the harmonic terms vanish, and the remaining ones

reduce to the values of the forces for static charges, such as those employed in

the theories of Nagaoka and J. J. Thomson.

In general all the odd harmonics are present, as well as even harmonics of

order 2sn. For anything like large values of n the latter have exceedingly small

amplitudes, but the amplitudes of the former for small values of s are not

small except when /3 is small.

These equations will be of use later in finding the mechanical force acting

on one charge of a group. We shall not consider them further here.



CHAPTER XI

THE MECHANICAL FORCES ACTING ON ELECTRIC CHARGES IN MOTION

140. Hitherto, in calculating the electromagnetic field due to electric

charges moving in an assigned manner, we have only made use of the

equations (I)—(V) of Ch. I, § 2, and of the equations which follow directly

from them. We have already pointed out that the determination of the

mechanical forces acting on a charge involves an additional hypothesis, and

have adopted that due to Lorentz. This assumes that the mechanical

connection between the charge and the aether is such that the resultant

mechanical force on the charge is completely determined by the electric and
magnetic forces on the one hand, and the velocity of the charge on the other,

according to the equation

f=d + [vh]/c (VI).

The assumption expressed by this equation implies that, whatever the

mechanical connection between the charge and aether may be, that part of

the reaction due to it, which is not included in (VI), reduces to a system of

stresses which can consume and do work, but contributes nothing to the motive

force because it is self-equilibrating.

That such stresses must generally exist is obvious when we consider the

case of the deformable electron, for example that of Lorentz. It is well

known that, when this electron is accelerated, its gain of kinetic energy is

not all accounted for by the work done by the motive force, but is in part

derived from work done by the aether in compressing the electron, according

to the hypothesis of Poincar^*, a difficulty first pointed out by Abraham.

141. The total force on a charge is given by (XIX), Ch. I, § 6, which

may be written in the form

P = - -|/ade -/{V {4> - (va)/c) + ^a/c - [a,a]/c} de ...(XIX').

Here m is the angular velocity of rotation at the element de, and %a is

the vector whose components are

(ea-c + cay + ha^, ca^ + fay + aa^, ba^ + aay + ga^),

* Comptes Rendus, cxi. 1905, p. 1504.
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where (e, /, g, a, b, c) are the six components of velocity of pure strain at the

element.

For a perfectly rigid electron, such as the sphere of Abraham, the strain

is zero. Its angular velocity is found to contribute to the resultant force

only terms of higher order in the dimensions of the electron than the

remainder, so long as the velocity of the charge is less than that of light.

For a deformable electron the corresponding terms are important. For

instance, in the case of the Lorentz electron, which is well known to be an

oblate spheroid, with equatorial axis a, and minor axis a V(l — v^/c^), lying

in the direction of motion, there is a homogeneous compression parallel to

the direction of motion at the rate — vvj(c' — if), together with a rotation

about the binormal at the rate v/p. Hence the pure strain is given by

e = - /3/8/(l — /3^), with the remaining five components all zero, and the rotation

is given by Wj = v/p, with the remaining two components zero. Thus the

vector x^h ~ [waj/c has the components

(-;
/S/3 /3 /8 «

««+-«„, --da,0(1-^)""^' p'" p

where /S = v/c as usual.

It follows from (XIX') that on the hypothesis which we have made, the

mechanical force is completely determined when the motion of the charge

and the potentials <^ and a of the field are given. In practice it is often

more convenient to work with the forces d and h, and use (VI) directly.

142. Whichever method of working be adopted, it is convenient to

separate the mechanical force acting on one of a system of discrete charges

into three parts

:

(1) The first part is the resultant of all the internal forces, due to

interactions between the elementary charge under consideration and the

remaining elements of the electron ; it is got by a double integration over

the whole electron, and will be denoted by the symbol Ff.

(2) The second part is the resultant of the actions of the external field

on all the elements of the charge, so far as that external field is due to

charges outside the particular charge considered but belonging to the same

system. We shall denote it by the symbol Fj

.

(3) The third part is the resultant of the actions of the external field

on all the elements of the charge, so far as it is due to charges outside the

system. We shall denote it by the symbol Fj.

The distinction between the second and third parts of the force is

somewhat arbitrary, but it is convenient when the system of charges forms

a group. When we do not wish to draw any such distinction, we shall use

the symbol F^ to denote the whole external force, whatever its origin, so

that Fe = Fi + F2.
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The resultant internal mechanical force F; leads to a determination of

the electromagnetic momentum and mass of the charge, and of the mechanical

reaction due to its radiation. For this reason we shall consider it first. The

external force will be studied later.

143. The internal mechanical force. The force exerted by a

moving charge on itself has been the subject of a good deal of investigation,

first by Abraham*, then by Sommerfeldf, and lastly by Lindemannj, in each

case for the rigid spherical electron, always on the basis of the Lorentz

theory with (VI) as a foundation §.

In the case of quasi-stationary motion—where the terms involving the

accelerations of higher orders of the electron, such as the torsion of the path,

are small compared with those involving the acceleration proper and the

curvature—we need only retain the terms of the two lowest orders. We have

(1) a principal term of the form

-r-'^ ••«.

where G- is the electromagnetic momentum and m the " transverse mass."

For the rigid spherical electron of Abraham of radius a

For the deformable spheroidal electron of constant volume of Bucherer,

with longitudinal semiaxis a (I — /3^)^, and transverse semiaxes a(l — /3^)~3,

'^ = 5c^a^(l-;8^)
(207).

For the deformable spheroidal electron of Lorentz, with longitudinal

semiaxis a (1 — yff')^, and transverse semiaxes a,

" = 5o-.V(l-^-)
^'''^'

where /S = v/c as usual.

All these values are for uniform volume distributions ; for the corresponding

surface distributions the values are five-sixths of these. In addition we have

* Ann. der Phys. 10, p. 105, 1903. Theorie der Strahlung, p. 136, 1905.

+ Gott. Nach. pp. 99 and 363, 1904 ; p. 201, 1905.

t K. Bay. Akad. ii. Kl. xxiii. Bd. ii. Abt. pp. 235 and 339, 1907.

§ [It is calculated by a different method in Appendix D below, without any restrictions as to the

form and structure of the electron, but with the velocity restricted to be less than that of light.

The result agrees with that of Abraham and Sommerfeld for the rigid spherical electron, and with

that got by Einstein on the basis of the Relative Theory for the Lorentz electron.

Recently Walker (Phil. Trans. A, 210, p. 145, 1910) and Nicholson {Phil. Mag. [6], 20, p. 610,

1910) obtain a different result for the cases of a conducting and of a dielectric sphere. They

however start from fundamentally different assumptions, in so far as the distribution of the charge

on their sphere is not rigid, but depends on the motion. See also Livens, Phil. Mag. [6], 20,

p. 640, 1911, and 21, p. 169, 1911.]

logff^-1) (206).
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(2) a small term due to radiation, given by

2e'' f VK=: (vv)v 3(vv)v 3 (vv)= V
(209).

3c' (1-/3^ 0^(1 _ ^2)2 ^ c» (1 _ ^)2
"^

c^(i _ /3=')8j

Abraham, in his Theorie der Strahlung, deduces this expression from the

conditions that the force be equal to the rate of gain of electromagnetic

momentum due to radiation, and its activity to the rate of gain of energy

due to radiation, both rates of gain being of course negative. [It is deduced

by a direct method in Appendix D.]

144. Resolving the two forces (1) and (2) along the tangent (s), the

principal normal towards the centre of curvature (p), and the binormal (n),

we get the following expressions for the components in these directions of

the internal mechanical force Fj

:

.+
3^/3^ /8'

\

3 (c^ (I - ^j c^i - ^y p" (1 - ^y

'" 3/DT (1-/30

where p and t are the radii of curvature and torsion*.

145. Energy relations. The activity of the force Fj is equal to (vFj),

that is, to vFis. We get from (210i)

/vF-^-_,^^(!?^)+2ce2|_^^L , __3^!^ ^'
(VF,)- vv ^^ + ^ce

j^, ^ J _ ^^^ + ^,^^_ ^y -p^i_ ^y
d (c^'mff^)

dl3

2ce^ ^
- +
&

.(211).
3{1-I3'y\c''{l-^^)^ p\

The behaviour of the terms in the first and second lines of this equation

is quite dififerent. Since m is a function of /3 alone, the first term, like the

second, is a complete differential coefficient with respect to the time of

* [Let the direction cosines of the moving axes («, p, n) with respect to the fixed axes (x, y, 2)

be given by the annexed scheme.

Then we have i= l'vli>, V^Vvlr-lvlp, with similar equations for m
and ii.

Moreover, we get

x=lv, x = Iv + IVjp, x = l {v - v^Ip^) + 1' (Zvvjp - v^pIp^) + i'V/pr, p

with similar equations for y and s.

From these equations we get

«'«= *. ii>=i>^lp, i'8=*'-«3/p2, Vi,= 3vvIp-v^pIp'', e^=v^lpr.

With the help of these results we easily get (210) from (205) and (209).]

X
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a function of the motion; but the third term cannot be expressed in this

form.

When we form the time integral of the activity, and so obtain the work

done by the internal force during any interval, (vF^) dt, the terms in the

second line of (211) give a quantity which can be expressed as the difference

between the initial and final values of a certain function of the motion,

namely,

r r^ (rl,(r?m.R^\ 1 9.<>2flfl 12
.(212).

[/:ford^
—

^^"^^r^- 3cni-/3y

But the terms in the third line give rise to a time integral which

cannot be reduced until the motion is completely known, namely

J,,3(i-/3oncni-y8o'^?r*
^^^^^'

The quantity (212) is reversible; by this is meant that it would change

sign if the motion were completely reversed, and would vanish if the initial

and final motion were identical. It represents work done by the external

forces and consumed by the internal force, which is recoverable on reversing

the motion, and may be regarded as stored in the charge in virtue of its

motion. Therefore the function of the motion inside the bracket in (212)

may be regarded as the kinetic energy of the charge.

The function under the sign of integration in (213) is essentially positive,

and accordingly the integral never vanishes. It represents work done by the

external forces and consumed by the internal force, which is not recoverable.

It is not stored in the charge, but radiated away from it. In fact, the

function under the sign of integration in (213) is equivalent to Li^nard's

expression for the rate of loss of energy from a moving charge owing to

radiation [in accordance with the result already obtained in § 5, p. 8].

Returning to the kinetic energy we see from (212) that it involves two

terms: (1) a principal term, derived from the mass m and depending only

on the velocity
; (2) a small term, - 2e''^$j3c' (1 - /30^ depending on the

acceleration as well as on the velocity.

146. If we adopt the usual convention that the kinetic energy depends

on the velocity only, and not on the acceleration, we must exclude the second

small term from the kinetic energy, and regard it as reversible radiant

energy. The distinction is not of much importance; but as a matter of

convenience we shall define the kinetic energy, T, by the equation

T=c^m^- r c'm^d^= ( c'm'^d^ (214).
Jo Jo

12
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From (206)—(208), § 143, we get:

For the Abraham electron

For the Bucherer electron

For the Lorentz electron

^=£(7(1^)-') (^"'-

The last agrees with the expression given by Einstein on the basis of the

Relative Theory.

[The small acceleration term omitted from the kinetic energy is precisely

the supplementary term, which must be added to Li^nard's expression for the

radiation, when we adopt a mechanical theory of the aether, as we found in

Ch. I, § 5, p. 9.]

147. In calculating the energy we have completely ignored the rate of

working of the internal stresses. The work done by the external force is

necessarily the same as before, for it is the work consumed by the internal

force Fj, and by the fundamental assumption of § 140, Ff does not depend on

the internal stresses of the electron, which are self-equilibrating.

Nevertheless, if the electron be deformed, work is done and its potential

energy is altered without any expenditure of work by the external forces.

This difficulty occurs with the Lorentz electron, as was first noticed by

Abraham. It can only be resolved by assuming with Poincar^ that the

electron is held together by a pressure exerted by the aether, which supplies

the work done in compressing the electron. This is indicated by the form of

equation (XX), § 6.

148. Equations of Motion. The equations of motion are easily

written down on the basis of our fundamental assumption, that the resultant

mechanical force is completely expressed by the terms Fj + F^ derived

from (VI), § 140.

By Newton's Laws of Motion the resultant force must be equal to the

rate of increase of the ordinary (non-electromagnetic) momentum of the

charge, Mv. We shall suppose M zero, in accordance with the most recent

measurements of the specific charge of the electron, which makes the intro-

duction of any non-electromagnetic mass unnecessary.

Hence we have F^ = - F^, and get by means of (205) and (209), § 14.3,

d(mv) 2eU v (vv)v 3(vv)v 3(vv)'v ) _
dt S(^\l-^''^cHl-^')' c'{l-^'r c'{l-l3y]

'e---K^i-o).
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Or by using (210), § 144, we get

d(cm/3) 2e^^» 2f^ 2e'^^
dt 3/3« (1-^87 3c=(l-y87 c» (1 - ^S'')'

= F,

c^m^^ 2e'^V 2e^^B „ , ,„_..

26^0"
= F„.

•V(l-^^)
where the suffix e has been omitted from F as no longer necessary.

We shall now consider some examples in illustration.

149. Example 1 . Uniform circular motion. Here we have /3 = 0,

0=0, p = 0,T=x . For the sake of generality we shall admit the possibility

of a slow secular expansion of the electron, expressed by a change in the

parameter a at the rate a, and leading to a slow change in m at the rate m,
even when does not alter.

With cylindrical coordinates (z, ct, 0), the directions (s, p, n) in (219)
coincide with the directions ((j>,

— ot, z) respectively. Hence we get

2e'8^

^^__v, } (220).

= F, I

150. Example 2. Disturbed uniform circular motion. We may
represent the rectangular coordinates of the disturbed electron by expressions

of the form

a;= /3(l-/i)cos(0 + A,), y = p{l-/j,)sm.(<f>+\), z = pv]
,^^

where p is the radius of the circular orbit and w the uniform angular velocity

of the undisturbed electron, and (A,, p., v) are functions of t, so small that their

squares and products may be neglected. Obviously p (\, /a, v) are the com-

ponents along the tangent, inward radius and axis of the displacement of

the electron from its undisturbed position at the same time t, when its

azimuth would have been ^.

We shall denote by the prefix 8 the change produced by the disturbance

in any quantity, whether scalar or vector*, and shall apply the operation S to

both sides of (218).

* [For instance, if P be tlie external force in the undisturbed motion at time J, with

components (Fj,, F , F,) along the tangent, inward radius and axis for the undisturbed position

of the electron, and if r' be its value in the disturbed motion at the same time t, with

components (ii';^', F ', FJ), perpendicular to and along the inward radius vector, and parallel to the

12—2
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We get in the first instance

sv = ^7A^_2^ 4+2^-;., i^'

p Xar to or to or

8v = ^Y4-34-3^ + M, 4 +3^3^= 4)
o" Vm' ftj' « ti)' ft)'' ft) ft)'/

[CH.

(222)*

p' \w

The first triplet of equations gives

8^=^g-.). 8™ = /^g-^) (223).

Denoting by m the secular rate of change in m, with /S constant, due to

a possible change in the parameter a which determines the size of the

electron, we find

Substituting from (222)—(224) in (218), § 148, and resolving in the

directions (\, /u, v), we get the following equations for the disturbed motion

:

2e'jQ' \ ^di^m^'x { djcm/S) 2e''fi' (3 + ^)[X \

3/3^ (1 -/30' ft)'

"*"

p ciyS ft)2
"^ r c^/S •3/3=' (1 - /SO' I ft)

'"p''(l--^7w=' p d/3 ft)
'^

2e''/3' X ^ d{c^^) %

rf (cm;g)
,

2e';8' (1 + 3^5^] ^ _ g^,^
d/3

+
3/)='(l-/S0»

/£ c'myg' ji. \ .„ 2e^/3°(3 + ;8'')) A ^ djd'm^)

2p' (1 - ;80 ft)'
"^

p ft)''

'*'

r"*^
*"

Sp' (1 - ySO^ J
ffl p d^ ^

= SF^

2e^^

Sp'{l-^')co'
+ ^-+\cm^ +

CO'

1e^^

3pHl-/3')'J «
-=%F,

.(225).

axis for the disturbed position of the electron, then the disturbing force is 5P, and its components

are {iF^ , dF^ , SF^) in the directions (X, ^ v) , where 8f^=F/ - F^ , dF^= J'/ - 2*'^ , dF^= FJ - F,.1

* [These equations are easily proved as follows :

The direction cosines of the moving axes of (X, /t, ») are given by the annexed scheme.

Let v* denote, for the moment, the velocity in

the disturbed motion, and so on. Then we have

where (x, y, 2) are to be got from (221).

We have y - ix= ip(n-'i) e'('''+^); differentiating

and bearing in mind that /3= upjc, we get

.(4,+A)
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These equations rest on the assumption that all the quantities

X, \/co, X/(B^ X/o)', . . . are small. When the disturbance is periodic, with the

period T and wave-length A, this assumption requires that \ (27r/3/A)', ...

be all small compared with ^'. When these conditions are satisfied, the

disturbed path nowhere has large curvature or torsion, and the change in the

acceleration of the electron always remains small.

The equations cannot be applied to orbits with short and steep corruga-

tions, such as the looped and cusped paths described by the vertex of a top,

when it is disturbed from steady precessional motion.

It is important to notice that the equations are linear, but of the third

order, not of the second, as in ordinary dynamics. Hence generally the

frequency equations of a ring of electrons are at least of the third degree.

The equations (225) were first given by Schott* with a slightly different

notation.

As a further illustration of the use of the vector equation of motion we

shall now work out the motion of a jS-particle in a uniform electrostatic

field.

151. Problem. A /3-particle is projected in any manner in a

uniform electrostatic field. Required to find the motion.

We shall make the following assumptions :

(1) The mass is entirely electromagnetic, and is connected with the

velocity, v = c/3, by the mass formula of Lorentz

m, = m/V(l-/30 (226),

where m is now written for the mass corresponding to zero velocity.

This formula has been verified experimentally to a very high degree

of accuracy by Bucherer and his pupil Wolzf. The latest result gives

e/cm = 1'77 . 10' electromagnetic units.

(2) The motion is quasi-stationary, so that the small radiation terms can be

neglected. Since the value of 2e^/3cm is about 0-0035, this condition admits

of a value for which is very close to unity, unless the acceleration and

curvature of the orbit become abnormally great. The degree of the approxi-

mation will be examined a posteriori.

* Phil. Mag. [6], Vol. xvi. p. 180, 1908.

[In the equations (12) of this paper the longitudinal mass, ^=-^. is used by mistake

instead of the transverse mass m in the coefficients of vlw and f/w in the last two equations.]

t Ann. der Phys. [4], 28, p. 513, and 30, p. 273, 1909.
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152. Let the electric force be -X electrostatic units in the direction of

Ox.

At time t let the particle be moving with the velocity C/S in the plane

xOy, and in a direction making an angle

with Oy.

Neglecting the small radiation terms for

the present, we may write the equations of

motion in the form

dim^x) d{m^y) d{m^z)

~dr='^' ItT^^' ~dt
=^

(227).

The last two equations give

m^y = m^v cos = eXa, m^i = 0. . .(228),

where a is a constant. Thus the motion

continues to take place in the xy plane. The first equation (226) now gives,

since tc = v sin 0,

dtan

Fig. 40.

dt
= 1, whence t = a tan 0. .(229),

where the constant of integration is chosen so that = when t = 0.

Writing
b = cmleX (230),

we find from (226), (228) and (230)

^=- "

Hence we get
V(a' + fc' cos'' 0)

.(231).

x = Jvsm0dt=c^/{a^ + ¥ + £') \

r /)^. 1 1
V(a' + b' + ^0 +4 (232),

y => cos 0dt = ica log
^(^, ^ ^, ^ ^.) _ ^

J

where the constants of integration have been chosen so as to make x equal to

c VCa" + ^0 and y equal to zero when ^ = 0. These equations give

x = c ^Jia" + 6») cosh (y/ca), t = ^J{a? + H") sinh {yjca) (233).

Let us choose the axis of y so that y and t have the same sign, and there-

fore y is positive. Then we see from (228) and (233) that a, \/{a? + ¥) and x

all have the sign of e, that is, of h.

Initially we have x = c \/(a' + h% y = x=0,y= caj'Jia? + 6"). If /8o be the

initial value of ^ we find that a= 6/S„/V(l - /3o'), and '^{a? + 6=) = 6/V(l - ^f)-

Hence we get, by (230) and (233),

Cm yeZV(l-/3o')

t =
cm

eX^{l-l3o')
sin^yjlM^iM

c'm^o

.(234).
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Xas

153. The first equation represents the curve known as the " menoclinoid*,"

of which the two parameters are c^mjeX V(l - /SoO and c'm^a/eX ^/(l - /So^,

so that their ratio is 1 : /8o. The curve is got from a common catenary of

parameter c^m/eX ^(1 — /3oO by compressing it at right angles to its axis Ox
in the ratio 1 : /S,,. If the velocity at the vertex were equal to the velocity of

light, and at the same time X so large that X (1 - ^o') remained finite, the

path would be the common catenary ; if the velocity at the vertex were zero,

it would be the part of the a;-axis beyond the point x = c^mjeX traversed

to and fro. The last case gives x = V(^^ + C'f), where k = c^mleX, which is

precisely the first equation (81) of Problem 4, Oh. V.

[Fig. 41 represents on a scale of 1 : 80 the path of a negative

electron, in a field of intensity 50 E.s.u., or 15000 volt/cm., and

for the value /3o = 0*508. Thus the minimum velocity, which

occurs at the vertex A, is nearly one half of that of light.

The value of e/cm is taken to be —1-77 . 10' e.m.u. This

makes the two parameters — 39'4 cm. and - 20 cm. respectively.

Thus the distance of the vertex from the origin, OA, is 39'4 cm.,

and the curve lies wholly on the negative side of the a;-axis.J

154. The error made in neglecting radiation. In

order to estimate the error to which the results just obtained

[and also the results obtained in Appendix G below] are liable

on account of the neglect of the small radiation terms, we return

to equations (219), § 148. The terms neglected in the first

equation may be written in the form
Fig. 41.

2e^

3c^ V(l - /S')

d" /3c^ f__P_y _ d^
( 0_

p' W(l - ^V df W(l -

Those neglected in the second equation are

2eV(l-/3'') d (c/

3c^)8 dt [p W(l

V(l-/S'
.(235).

.(236).

Those in the third equation are identically zero, because the path is a plane

curve.

From (229) and (231), § 152, we find

^V.4 l^ + t^'
V(l-i8^) =

/3 '^(a^ + f)

c

P

c dd _ a c

^{a^ + b' + t')' V(l-i80

n
* Loria, Ebene Kurven, p. 580, 1902.
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Hence the terms (235) become

3c»6*/8~3c^m2(l-/3„0,8'

and the terms (236) become

3c=6^ V(a' + *') VCa' + 6' + ^')

'

The first quantity is greatest -when /8 has its least value /So, and then is

equal to 2e*X'^o/3c^m^ (1 - l3o^), that is, its greatest value is numerically

equal to 2e'X/3o/3c^m^(l — /3o^) times the external mechanical force on the

electron, eX.

The second quantity has its greatest value when

and then it is equal to - 2e'X'^o/3c*m^(l + /S„), that is, its greatest value is

equal numerically to 2e^Z/3o/3c*m^ (1 + /So) times the external mechanical force.

It is clear that both values are of the same order of magnitude, but the

first is the greater on account of the factor 1 — /8o in the denominator. Hence

we need only consider it in estimating the error.

For a /S-particle we have e/cm = 1 "77 . 10' e.m.tj. numerically, and

e/c = l-55.10-=»E.M.u. Hence 2e5/3c*m== 1-08. 10-". If furtherX be equal

to F volt/cm., we find that the reaction due to radiation is at most equal to

3'6
.
10-^' i^/3o/(l — /So") times the external mechanical force. Even if the field

were as strong as one million volts per centimetre, and the minimum velocity

were as great as 999/lOOOths of that of light, the error would be less than two

ten thousand millionths.

Hence the effect of the reaction due to radiation is quite inappreciable in

this, and probably in all practical cases.



CHAPTEE XII

THE MOTION OF GROUPS OF ELECTRIC CHARGES

155. In the last chapter we left over for future study the external

mechanical force, Pj, which acts on one of a system of charges, whether it

be due to other charges of the same system, or to charges outside it. We
shall take up the consideration of this part of the force in the present

chapter, and shall then show how to deduce the equations of motion of a
group of charges.

In calculating this force from the external field by means of (VI), § 140,

we shall assume that the linear dimensions of each charge are small com-
pared with its distance from its nearest neighbours. Then we get

F, = e{d + [vh]/c} (237),

where d and h are the electric and magnetic forces at some conveniently

chosen point of the charge, and v is the velocity of that point relative to

the observer*.

Resolving along the tangent, principal normal drawn towards the centre

* [We may obtain an idea of the degree of approximation attained in (337) as follows: let

de be any element of the charge, and f^ the mechanical force per unit charge for the element, so

far as it depends on charges other than the charge considered, whether belonging to the same

group or not. Then -we have Tg=jfede.

Take any origin in or near the charge and moving with it, and let v be its velocity relative

to the observer. Also let r be the radius vector drawn from it to the element de, and let u be

the velocity of de relative to it. Then r and u are small quantities of the order of the linear

dimensions of the charge, and f^ is a function of r and u, as well as of the position and velocity

of the origin. Hence
f,=f+(rV)/+(uD)/+...,

where f is the value at the origin, where r= u=0, and V and D denote vector differentiation with

respect to the coordinates and velocity components respectively.

Let us choose the origin so that
J
rde= ; since de is independent of the time we have Ju de=

also. The point thus found may be called the "electric centre" of the charge, from analogy with

the mass centre. It does not generally coincide with any particular element of charge, but is never

far from any element. When we treat the charge as a point charge, we may suppose it concentrated

at the electric centre. Then (237) holds when d, li and v refer to the electric centre, and we

neglect the squares of the linear dimensions of the charge.]
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of curvature, and the binormal drawn so as to make a right-handed system

of moving axes (s, p, n), we get

F, = e(d,-^K) (238),

where the suffix e has been omitted as no longer necessary to distinguish the

external force F.

We now proceed to the consideration of an illustrative problem.

156. Problem. A group of n electrons moves uniformly in a

circle. Required to find the mechanical force on one of them due

to the rest, and the equations of motion. We shall use the notation

of the problem, § 136, and shall take the 0th electron of the group as the one

whose motion is required.

We must write down the electric and magnetic forces due to the ith

electron at the electric centre of the 0th, as given by (203), § 138, and

sum from i=\ to i=n—\ [not from i = to i = n—l as in § 139].

The azimuth of the 0th electron is a>t-\-h; this is to be taken as the

value of ij).

The azimuth of the ith electron is o)^ + S + liriln, because it forms one

of the same group. Hence we get

'^ = \ {lot + S — (^ + 27n/n) = 7ri/n.

Substituting this value in (203) we get for the electric and magnetic

forces due to charges of the same group

e(l-/3') *="-! cos iri/n
^* ""

ip^ i=i sin^ vi/n

-
J.
"i' ''5r (- 1)^- fj^'J/m - i (1 - ;S0/ f Jj (jx) dx

P i=l 3=1 L •'0
_

ITn,
cos-^— ,

dia = - -r-. S
4/3^ i=i sin "Trijn

-^ 2 S (-1)^- j^Jj (?-/3) +j Jj ijx) dx sin -^-^

,

^P j=i i=i L •'0 J "

e/3
•=»-'

4/3" i=i sin iri/n

pQ i=n-ij=a r cP ~|

~v i?i
,?/-i)'[i'3j;o-^)_/j^ j,(j-^)da,J

As regards the sums with respect to i we have

sin*'—

.

n

S . „ ., - = 0, 2 -. rj-=4Z (239),
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with the notation of Maxwell *. Moreover

187

i=n— l

2 COS n—1, for j — 2sn,

= — 1, for other even values of _^',

= 0, for odd values of
_;,

2 sin -^— = 0, for even values of
J,

^ ^
, for_^= 2s + 1.

i=n—l

2

= cot
2n

The change of order of the summations is allowable because the series are

convergent ; hence we get

di^ = -J ^2 s^J'^ (2s^) - s^ (1 - ^2) I J,, (2sx) dx \

2ne*~°° r t^ ~\

-t m^^J'^n (2sMy8) - sW (1 - ^) J^ {2snx) dx
P »=i L Jo

+ j Jss+i {(2s + 1) «} d«

, eK e'=^ . ^ ,. ,(2s + l)7r

V...(240).

K = —:^ +— ^2 (s + i) cot '—2^^ \^J,s+i l(2s + 1) ^1
P's=

- J^+^{{2s + l)x}dx
J

157. By comparison with (129), § 84, we see that the first series in di^,

when multiplied by 2ce''/3//^^ gives the loss of energy due to radiation from a

single electron describing the given circle with the given velocity, and the

second series, when multiplied by 2ce''^n'/p', gives the total radiation from the

group of n electrons.

The radiation from a single electron has been calculated already and is

given by (130), § 85 ; hence the sum of the first series is /S'/S (1 — ^f.

The second series has not been summed, nor have the remaining series in

(240). For the sake of brevity we shall write

sn/:

' = '2 (s + i)cot'

(241),U=2'X Isn^J'^n (2sw/3) - sW (1 - ^') ( J^ {2snx) dx
<=i L •'0

+ 0-+^)\[ J^+i l(2s + 1) a?} da;]... (242),

* Collected Papers, Vol. i. p. 314.
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Remembering that the directions (s, p, n) here coincide with (<^, — nr, z),

we get from (238) and (240)

2e^^ ehiU\

"^~Sp'(l-^y p'

Pi-ar=-
.(243).

The last equation follows from the fact that dz and h^ are both zero.

158. The physical interpretation of the first equation is interesting.

Comparing it with (210i), § 144, we see that its first term on the right is precisely

the negative of Fig in the present case, where /3 = /3 = 0, that is, it is just

sufficient to balance the radiation pressure on the electron caused by its own

radiation. In fact, it gives the radiation from the electron when it is

multiplied by the velocity c^. Moreover, the negative of the second term

on the right of (243i), when multiplied by the velocity c/3, is equal to 1/mth

part of R, the radiation from the ring of n electrons, as is seen at once by

referring to (129), § 84.

Hence the work done on any one electron by the tangential pull exerted

by the remaining electrons of the ring is just equal to the loss of energy due

to radiation from the electron less the 1/nth. part of the loss from the whole

ring. This result may be expressed in a dififerent way by saying that of all

the energy lost by radiation from any one electron, the major part is re-

absorbed by the remaining electrons of the ring, and only a small portion is

lost to the system by radiation into space. The mechanism of this process

acts through the tangential pull exerted on one electron by the rest.

159. Equations of motion of the ring. We apply (220), § 149,

where the external force F is the sum of Fj, due to the rest of the ring and

given by (243), and Fj, due to charges outside the ring. We get at once

.(244),

p - p^ + p» '1

= F, }

where the suffix 2 has been omitted from F as no longer necessary to distinguish

the impressed force external to the ring as a whole.

These equations were first given by Schott*.

* Phil. Mag. [6], Vol. xn. p. 21, 1906.
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A little consideration shows that in the first equation F^ must vanish.

For its magnitude remains the same for all positions of the moving electron,

although its direction changes. Thus it is periodic relative to fixed space,

and its period is 27r/«.

In Ch. VII we saw that a force of this type only arises fi-om one of the

harmonic waves emitted by an electron, or group of electrons, describing a

circle coaxal with the given one, with uniform angular velocity co/k, where k

is an integer.

Any such electron, or group of electrons, emits waves capable of interfering

with those from the given group, and therefore should be reckoned as forming

part of that group.

For this reason we shall omit the term F^ from (244]).

160. Let us now consider this equation more closely, and for the sake of

generality let us admit the existence of a small acceleration, or retardation, 0,

such that /3//S is of the same order as the ratio of the small radiation terms to

the principal terms in (219), § 148. Then the radiation terms in (219i) involving

and will be of the second order, and may be neglected in comparison with

the two first terms on the left. The same thing applies to the radiation terms

in (2192), which only involve the small quantities p and 0. Hence to this

approximation (244i) becomes

•d(m0)
, . r, e^nJJ /n^cNc^ -^^ + cm^ = - -^ ^^*^^'

while (2442) and (2443) are unaltered.

We saw in § 157 that U, when multiplied by ce^/3W/p^ is equal to the

radiation from the ring, and therefore is an essentially positive quantity*.

Hence the right-liand member of (245) is always negative. An approximate

value of it is easily got by taking only the first term in Z7, for 5 = 1, and only

2 (n + 1) (nfi)^""*"'

the lowest power of /3 in it : we get U= „ ,
,

.

Remembering that d (m0)/d0 is what is usually called the longitudinal

mass, m', of the electron, we get the following approximate equation from

(245)
m'0 m_ 2^ v?(n + l)(n0)^

m0 m cmp^ 2n + \\ ^ ''

* [A direct proof of this statement may be given. From (241) we get by means of the

differential equation of the function J

J2m, (2s7i/3) and J'2m (2sn;8) are both positive so long as j3 is less than unity, and V vanishes with

/3. Hence as j3 increases from zero to unity, XJj(\-^), and with it U, increases from zero and

remains positive.]
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. On the left-hand side of this equation the factor of /3//8, namely m'lm, is unity

for very small velocities and increases to infinity as /3 increases to unity.

The term mlm can be replaced by — aja, where a is the radius of the

electron supposed spherical, or its equatorial radius, if ellipsoidal, or generally,

a length determining the size of the electron. We see that this is so from

(206)—(208), § 143, and it can be proved generally from a consideration of

dimensions.

On the right-hand side the function n^ (»i + 1) {n^y^l^n + 1 ! diminishes as

/9 diminishes, all the more rapidly the greater n is. The first few values are,

for

n = 2 : (2;8)V10 ; n = 3 : (3/3)V140 ; n = 4 : (4/3)74536.

For large values of n we get by Stirling's formula (| e/8)^ . n'l^e/4! ^Jir.

For small values of n this formula gives a value about twice too large, but

still of the right order.

The numerical factor, ^e^jcmp^, is greatest for small velocities, and

diminishes to zero as B increases to unity, on account of the increase in m.

Choosing for ejcm its greatest value, 1"77 . 10' e.m.u., for e the value 4-8 .
10~"

E.S.U., and for p the value 10~^ cm., we get le^jcmp^ = 0-86 . 10"-

161. Let us begin by assuming that the electron does not change in

linear dimensions, that is, that a is constant, and therefore m = 0.

Then (246) shows that /8 is necessarily negative. Thus a steady motion

without a supply of energy from without is impossible.

But that is not all ; under these conditions the size of the ring and its

speed of rotation are indeterminate. In fact, the tangential equation of motion,

(244i) or (246), serves only to determine the retardation in speed of the ring

;

the radial equation, (2442), supplies but one relation between the speed and

the radius. One of the two is quite arbitrary
;
given the number of electrons

in the ring, its properties are indeterminate. In particular, it has no definite

periods of oscillation, and an assemblage of such rings would produce a banded,

and not a line spectrum, in the absence of any mechanism sufficient to confine

its structure within narrow limits.

In order that the ring should be fairly permanent, the acceleration /3 must

be small. The form of (246) requires that /8 be small, all the smaller the

smaller the value of n. For instance, in order that /S/j8 may be less than

1/100, we must have /3 less than 9 .
10-= for w = 2, 17 .

10-' for n, = 3, 7-3 .
10-'

for 11 = 4, and so on.

162. As an alternative let us admit a change in size of the electron, and

consequently also a change in mass. We can then satisfy (246) by supposing

/3 to be zero, and /8 to be constant.
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Since the right-hand member is always negative, we must suppose m
negative. Hence the mass of the electron diminishes, and its size increases,

quite independently of temporary changes due to temporary changes of speed.

The change of mass need only take place very slowly provided that the

velocity of the ring be small enough. In order that it should not contradict

our experience as to the constancy of the properties of electrons and atoms,

it is sufficient that mim be less than, let us say 10~^', or one thirty millionth

part per annum, but of course it might be very much smaller. What is

contemplated is a slow secular diminution in the mass of the electron,

superposed on all the changes it undergoes when its speed changes.

Replacing m by its value — ma/a in (245) we get

nU_ cmp'a

T~~^ ^ ''

Given the value of dja as a constant, or as a slowly varying function of the

time, this equation constitutes a second relation between /3 and p, which

together with (2442) determines both completely as functions of n, the number

of electrons in the ring, and of the parameters fixing the external field of

force in which the ring moves. In addition /3 and p will involve the constant,

or slowly varying, parameter aja.

The form of 17 as a function of /S and n is such that even for small values

of n quite considerable variations in the value of nU/^ have little influence

in changing the value of /8. This is particularly true when n is large ; for

instance, when « = 5, doubling the value of nUj^ only increases that of /3

by 7 per cent.

Hence we may alter the values of d/a, of m, or of p considerably in (247)

without changing /3 very much. Two consequences follow from this fact:

in the first place, the value of y8 depends mainly on that of n, so that we

can calculate it even when we have only an approximate value of p at our

disposal ; the radial equation, (2442), then enables us to calculate p exactly,

and if necessary we can correct /3.

Secondly, any slight changes in the values of d/a, or of m, produce

practically no effect on the value of /3; thus it is immaterial whether d/a

and m be constant, or be undergoing slow secular changes. Any such changes

in the values of d/a, or of m, will produce very much slower changes in the

values of /8 and p, that is to say in the properties of the ring of electrons,

so that its motion is steady to a very high degree of approximation.

[163. It is interesting to examine the mechanism by means of which

the expansion of the electron regulates the structure of the ring of electrons.

In (246) the first term, m'/3/m/3, represents the reaction which the electron

opposes to any change of its speed, in consequence of the electromagnetic
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actions between its parts, the second, m/m, the reaction which it opposes in

virtue of a diminution in size and consequent increase in mass, and the third

the part of the radiation pressure on the electron, which is not balanced by

the pull of the rest of the ring. Owing to the mutual repulsion of its parts,

the electron tends to expand, and will do so, unless it is prevented by some

external 'system, for instance by the aether on Poincare's hypothesis. If

the mutual repulsions overbalance the pressure of the aether, the electron

expands, and its mass diminishes, and then we get a negative second term

in (246), which is equivalent to a forward pull on the electron. If this pull

exceeds the drag due to radiation, the speed of the ring increases and the

drag increases with it, until it is just sufficient to balance the pull due to

expansion. If the pull is less than the drag, the reverse process takes place.

If through any cause the speed of the ring be increased beyond the

value necessary for steady motion, the drag due to radiation increases

beyond the amount which balances the pull due to expansion, and produces

a retardation of the ring, and vice versa. Thus the drag due to radiation

supplies the mechanism for regulating the speed of the ring ; its great

effectiveness for the purpose is due to the fact that it increases very greatly

for small increases of velocity, particularly when the number of electrons in

the ring is large.

When the motion of the ring is steady, the drain of energy due to

radiation is supplied through the pull due to expansion. This occurs at

the expense of the electromagnetic energy of the electron, which has also

to supply the work done in pushing back the aether opposing the expansion.

Another alternative altogether is to assume that the electron is deformed

so as to become unsymmetrical. We shall see in Appendix D, § 230, that in

this case an additional term arises on the left-hand side of (244), namely
— m^v'^lp, where m, is of the nature of a transverse mass. If m, be positive,

and the velocity suitably chosen, this term may balance the radiation term

on the right-hand side.]



APPENDIX A

ON THE DOPPLER EFFECT

164. A radiating system of charges moves with small uniform

velocity and without change of constitution. To find the frequencies

and intensities of its radiations relative to a stationary distant

observer (Doppler effect).

This problem, with the limitations mentioned, is obviously the problem

of finding the Doppler effect due to the motion. That the limitations are

necessary will be seen during the course of the investigation.

For a distant observer the potentials are given by the equations (131)

and (132), § 86, and the electric and magnetic forces by (138) and (134), § 87.

The latter are

•^^^irjl ^"'<'-'''"+^'"-^'-(ri-v/c)<iTd/. (133),

a
h =

2'7rc'rdt
r r 6'^(«-'-/<'+P/''-'-).[v.r,]dTd/i (134).
J - (X> J — 30

Here p is the projection of the displacement of the charge at time t on

the radius vector r drawn to the observer from some fixed point, whose

distance from the charge always remains small compared with r. Thus,

while the distance travelled by light in a certain time is comparable with r,

the distance travelled by the charge in the same time is of order p, small

compared with r. Hence the average velocity of the charge must be assumed

to be small compared with that of light when we apply (133) and (134) to

the case of a progressive motion of the charge.

In reality this progressive motion cannot have continued for all negative

time, but we saw in Ch. IX that the influence of the initial conditions may
be disregarded as soon as the permanent regime has been reached. As

regards values of t later than the time of emission t — rjc, we have already

seen that the corresponding motions have no influence on the field at the

time t, because the waves due to them have not yet arrived. Hence we may
apply (133) and (134) without fear of error to the case of a motion which is

s, 13
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partly progressive, although the condition that p be small compared with r

will certainly be violated sooner or later, because the values of t, for which

it is violated, have no efifect on the field which we wish to find.

165. We shall suppose the motion of the charge to be compounded of

two motions: (1) a uniform progressive motion with velocity u at an angle 6

with the radius vector r; (2) a motion relative to this with velocity v.

Choose the origin so that the progressive displacement of the charge vanishes

at the time t = ; then its value at the time t is c^t, where /3 = ujc. In

order to satisfy the condition as to the sraallness of the projection p we must

have ;8 small, for the part of this projection due to the progressive motion

is C/8 cos 6 . T. Let us now change our notation and henceforth denote by p
the part of the projection of the whole displacement which is due to the

relative motion alone, so that the whole projection is now denoted by

p + cp cos 6 . T. Then in (133) and (134) we must replace v by v + u and p
by ^ + C/8 cos 6 . r.

Thus we get

d =

h =

27rcr dt

e 9_r r 6"'<^-'-/«+?'/c-a-poos»)T}[-ri(v+u)]rfT(^/i.
Ot J -on J -ix>27rc^r'

These expressions can be reduced to the forms (133) and (134) by means

of the substitution

f^ = -. #
a' t = (l-/3cose)t']'^ 1-/3 cos 6* ^1

(248).

r = (1 - ,8 cos 6') r-', p = (1 - ^ cos e)p']

We get V = v', because we must still have p' = -^ ("^i^')'

Now we find

e
d =

h =
2.0V H-, cos er h /l/l ^-'^'-'-"--''-^^Cr. (V + u)] drd,

j
(249);

Denote by <^', d', h' what (^, d, h become respectively, when we replace

t and r by t' and r'.

Notice that the integral which multiplies u/c is simply </>'.

166. Then we get at once

d = ^ ^: (250)
(l-/8cos£))» c= (1 - ;8 cos 0)' ^ ''

h^ h' [r.u] 0-

(l-;tfcos6^)« c^{l-Bcosef ^ ''
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These equations contain the whole theory of the Doppler effect; they

enable us to express the field due to a moving system when we have found

that due to a modified resting system, obtained from the given one by the

transformation (248).

The direction of the vector r' is the same as that of r, although its

magnitude is changed in the ratio I — ^ cos ^ : 1. Hence d' and h' are to

be calculated by (133) and (134), § 164, for the modified system. It follows

that we have

(r,d') = 0, (rih') = 0, h' = [r,d'].

Thus we get from (250) and (251), since (rjU) = c/3 cos 0,

(^-^> = -
c(f-7cot^)- ' (^^^) = ^' ^ = t^''*J (^^2>

Hence the magnetic force due to the moving system at a great distance

is still transverse and perpendicular to the electric force, but the latter is

not transverse except at the equator.

167. The Poynting vector is given by

_cjdh]^c^^ Cjl^d)

47r 47r 47r "^ ^ "^

Hence

, _ c{d'-(r,dy} ^ cH'^ - 2 (d'u) f + /3' sitf 6 .
(j)''

^''"'^ ~
47r i-rrc (1-/3 cos 61)8

fsrl-'^''^'^>h-
^cos^j,' /3cosg4,'^

j

'J ~ ~^^ " ~ 47r (1 - y8 cos df ^^TTC" (1-/3 cos ey ^' ^

(253).

These equations show that the flow of energy is not entirely radial, but

that there is a component flow in the direction of the magnetic force h, that

is a circulation of energy along the parallels of latitude. This obviously

contributes nothing to the radiation and therefore need concern us no

further. The rest of the flow is entirely radial, but is of a different form

from that due to a system at rest.

On the line of motion we have ^ = 0, or = tt, according as the motion

is towards, or away from the observer. Here u is along the radius vector,

and therefore (d'u) = ; hence, on the line of motion,

<"'>-4wb)--
(''*'•

+ according as the motion is towards (away from) the observer,

13—2
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On the equator we have 6 = ^ir, and d' is parallel to u, so that (d'. u)/c

is equal to + ^d', according as the directions of d' and u are the same, or

opposite.

Hence, on the equator,

(srO =<-^^ (255).

We must now consider in what way the force d' differs from its value

when the system is at rest. There are two kinds of changes to be investigated

:

(1) the change of frequency of any constituent vibration ; and (2) its change

of intensity.

168. Change of frequency. We must remember that d' is given by

(133), § 164, except that in accordance with (248) and (249), § 16-3, t, r and

p are replaced by If, r' and p'.

When the system is polyperiodic, with frequencies wi, oi^, ..., the radiation

from it when at rest consists of an infinite number of simple harmonic sum

and difference vibrations, given by equations such as (144)—(146), § 91, the

argument being of the form Ii(^ — r/c) + A, where D, = Sia)i-\- 8^(0^+ ..., and

Si, Sj, ... are integers.

If we suppose the constitution of the system to be unchanged when set in

uniform rectilinear motion, we must suppose Wj, eoj, ... to be unaltered, and

therefore also fl. But as we have seen, t and r are to be replaced by «' and r,

so that the argument of the vibration for a distant stationary observer becomes

of the form fl (t' - r jc) + A, and this by (248) may be written

let us say O' {t — rjc) + A. Thus the frequency is changed from O to Q!,

where
Ii' = n/(1 -/8cos(9) (256).

This equation expresses the well known Doppler effect, as observed in

canal rays. The fact that it agrees with experiment shows that the constitu-

tion of the canal ray ion is unaltered by its motion, at any rate to the first

order. According to the Theory of Relativity we may expect it to be altered

to the second order, but such a change, though theoretically determinable by

observation of the canal rays in a direction transverse to their motion, would

be difficult to establish by experiment *-

169. Intensity of the radiation. We shall for simplicity consider only

the most important case, where the radiation is observed in the line of motion,

in front of, or behind, the moving system, that is where = or tt. In this

* Einstein, Ann, der Phys. 23, p. 197, 1907. Scbott, Fhys. Zeitfch. Vol. 8, p. 292, 1907.



a] on the doppler effect 197

case, as we have seen in § 167, (254), the radiation (bFi) = cd''/4i7r (1 + ^)'. In

order to have a perfectly definite problem before us, let us suppose that the

moving system is a uniformly rotating ring of n equidistant electrons.

The field due to such a ring is given by (125) and (126), § 82. To avoid

confusion we shall however replace the polar distance 6 of the radius vector Fi

by X, and the velocity of the rotational motion by cy. The general term of

order s is given by

, , 2e7'coty.w^ _ , , . . . , ,,, ,, ^ r, , , ,

d^ =—-—7-7^^^ s Jgn (sn 7 sin x) sin sn{a>{t - r jc) + o - ^ + ^tt},

r

d^' = —T-r s J'in {sn y sin x) cos sn {a («' - r'/c) + B-<f) + Jtt},

r

where we have replaced t, r, p and 7 by their vallues If, /, p' and 7' in the

progressive motion of the ring. It must be remembered in the first place

that p sin x in the arguments of the Bessel Functions represents p, and there-

fore, when the ring has a progressive motion, must be changed in accordance

with (248), § 165, and secondly that 7 = topjc, so that 7 must also be changed

to 7', where 7 = (1 — /3 cos 6) y , because a> is not altered by the progressive

motion. Thus y'jp' = yjp and y'jr = yjr. Hence the changes in amplitude

of d-jl and d^ depend essentially on the changes of /„ {sn y sin %)/r', and of

J'm {sn y sin x). If we are content with a first approximation, we may assume

Jsn {sn y sin %) to be proportional to 7'*". Hence to this approximation the

amplitudes both of d^ and d^ are got from those of d^ and d^, corresponding

to a ring at rest, by dividing by (1 — /3cos dy^"^.

It now follows from (254), § 167, that for our ring, the radiation in the

direction of motion is increased in the ratio

1 : (1 — ^)2»+* for the lowest harmonic (s = 1),

1 : (1 - /3)*"+* for the second (s = 2),

and so on. And in the opposite direction it is diminished in the ratio

l:(H-/3)^"+* for the lowest harmonic, l:(l+/3)*"+* for the second, and

so on.

In other words, the radiation in the direction of the motion is to that in

the opposite direction in the ratio L _ „
j

for the lowest harmonic,

/I + /3V"+^

a-^.
for the second, and so on.

Thus the effect of the motion is to destroy the centro-symmetry of the

radiation of the stationary ring, by causing it to radiate more strongly in the

direction of motion than in the opposite direction. The asymmetry produced
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is more pronounced the higher the order and frequency of the harmonic, and

the greater the number (n) of electrons in the ring. A more complete in-

vestigation shows that the total radiation is increased, but only to the second

order*.

170. As a second example, consider the oscillations of our ring, the field

of which is given by (166) and (167), § 102. The general term is of a type

such as

^ ^, mlr^'Jm {W sin y) sin [{q + mw) {t' - r'jc) + m (S - ^ + 7r/2) + a},
r p

where A is the amplitude of the oscillation selected as a type. Since it

represents a displacement it is subject to the same transformation,

A={l-^cose)A',

to which t, r and <y are subject. Hence we have A'/r' =A/r, and y'/p' = y/p,

so that the change of amplitude due to the progressive motion depends on

the change in J^, {ly sin )(). To the same approximation as before this changes

in the ratio 1 : (1 — /3 cos 6)"^. Now we have m = k + sn, where k is the class

of the oscillation selected, that is the number of nodes in the wave which

disturbs the ring ; and the only vibrations which produce appreciable spectrum

lines are those for which s = 0, and A; is a small number. For these m is small,

and the change of amplitude due to progressive motion is small in con-

sequence.

171. These two examples are sufficient to show that the vibrations due

to systems of electrons fall into two classes as regards the distribution of

intensity in the radiation produced when they are in slow progressive

motion

:

(1) Vibrations due to cyclic motions taking place with a velocity com-

parable with that of light; for example, the rotation of a circular ring of

equidistant electrons, or the motion of an elliptic group, and other motions of

the same kind. These vibrations may exhibit considerable asymmetry of

intensity of radiation, even for a slow progressive motion, particularly when

there are many electrons in the group.

(2) Small oscillations of groups of electrons about their state of permanent

motion. The only waves emitted, which are strong enough to be observed,

are of an order too low to show any appreciable asymmetry of radiation

intensity due to progressive motion. The harmonics of higher order, which

possess the asymmetry, are too weak to be observed.

* Phil. Mag. [6], Vol. xiii. p. 657, 1907.
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Recently, Stark* has examined the canal rays of hydrogen and of mercury.

He finds that there is little, if any, asymmetry in the case of the hydrogen

line H^, while there is considerable asymmetry, in the direction required by

theory, for the mercury lines X 4359, \ 4047, X 3650, but none for the mercury

line X 4078. These experiments are by no means decisive, and it would be

premature to draw any very definite conclusions from them, but so far as they

go they seem to indicate that the hydrogen line H^ and the mercury line

X 4078 may be due, either to small oscillations of some kind or other, or to

motions of large amplitude, but of small groups of electrons, whilst the re-

maining three mercury lines may be due to motions of large amplitude and

of groups of many electrons.

* Phys. Z-eitsch. Vol. 11, p. 179, 1910.



APPENDIX B

ON THE DISTURBED MOTION OF A RING OF ELECTRONS

172. The calculation of the motion of a ring of electrons, when it is

slightly disturbed from its state of steady motion, affords a good illustration

of the methods of Chapters X—XII. The investigation naturally falls under

three heads : (1) the calculation of the field due to a single point charge

disturbed from its uniform motion in a circle
; (2) the deduction of the field

due to a ring of electrons, and of the mechanical force on one of them due to

the rest of the ring, when a wave of disturbance travels round the ring;

(3) the deduction of the equations for the free and forced small oscillations of

the ring. We shall consider these three problems in order.

173. Problem 1. A point charge is slightly disturbed fi'om

uniform circular motion. Required to find the field close to the
orbit. We shall use the same notation as in Ch. XI, § 150. In Fig. 42

P is the point {x, y, z) on the circle, and Q is the projection on its plane of

the point (x + Sa;, y + Sy, z + hz\ at which the field is required.

Fig. 42.
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E is the position (f t), ^) of the point charge in the uniform motion at the
time of emission t, and F is the projection of its position at the same time
T in the disturbed motion, that is the projection of the point (f + Sf, 7; + St;,

§+ Sf). The vector R in the undisturbed motion is drawn from E to P, and
the vector R + 8R in the disturbed motion from {x + &, y + ^,z + hz) to

(^ +^,r) + h, f + H)- Thus FQ is the projection of R + 8R.

We shall write as before

a;+Sa,' = /j(l-^)cos((^+X), y +^y=p{l- ^)sm{<^ + X), z + Sz = pv^

I + S^ = /, (1 - /) cos (wT + S + V),

V + Br) = p (1 - fj,') sin {COT + S + \'), ^+ S^= pv'

f = i (ft)« + S - ^), X = i (&)T + S - 0), 1^ = ^ + /3 sin X
(267),

where (X, /x, j/) and (X,', /a', v') are small quantities whose squares and products
are to be neglected. Hence we get

Sa;=-p(/icos(^ + X,sin<^), Sy = p (- yu, sin (^ -|- X cos (^), hz = pv\

^=-py^os,{2x + (t>) + X'sm{1x + <i>)},
I

...(258).

S97 = (0 {-/*' sin (2x + <^) + V cos (2x + </>)}, ^ = pv' J

In Fig. 42 KQ is pX PN is pp., DF is p\', ED is |0/i', and pv and /a/ are

the heights of the fieldpoint and disturbed point charge above their respective

projections, Q and F.

As before we have 7i = 2p sin %, iT = 1 + /3 cos ;^, and —- = ^ _-; hence,

substituting these values in (198) and (199), § 135, and taking only the

small terms, we get

8R - SpRi
+

d_ ( j8 (SR - 3j3Ri)

^
8/)' sin» xi^+^ '^^^ X)

'^
S"^ 1^/°' sin'' xO- + ^ cos %)

dyjf [Sep' sin^ % (1 + /3 cos x)) ^V l^cp' sin % (1 + ;S cos x)3)

-A J.
/38V 1-^i oR,

3'\|f |4c/3^ sin T^ (1 + /3 cos ;^)| Si/r" (^8/3^ sin % (1 + j8 cos ;;^)

^^^
[Y.(8R-3pR0]

^

3
f

;g[v.(sR-3j>R.)]

Sep' sin''
;;^ ( 1 + /S cos %) 9'<|r JBcjo' sin''

;:^ (1 + /3 cos %)

i
y...(259).

[8V . R,]
(.

/5[sv.Ri]

Acp' sin''' T^ (1 + /3 cos %) d-^ (4c/3^ sin % (1 + y8 cos %)

3^ ( /3''io[v.RJ

af= [8c/ sin X (1 + /8 cos x)
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174. Our object will be to express these forces in series, proceeding

according to sines and cosines of multiples of yjr, by means of the characteristic

equation yjr = ')(^ + ^ sin
'x^.

For this purpose it is best to reduce all the terms

to one or other of three fundamental types

fix) fix) and iM!EX..
sin

;^ (1 + /3 cos
pj;)

' 1 + /S cos x' 1 + /^ cos %
'

and their first or second differential coefficients with respect to i|r. Each of

these three types can be expanded in the required form when fix) is an

exponential function ; this is the case in our problem, where fix) represents

one of the disturbances \', ... or one of their differential coefficients. The first

step in the reduction is the expression of the numerators, such as

(8R — SpRi), in powers of cos x and sin x-

We shall resolve each vector into rectangular components, respectively in

the directions PIT, PO and normal to the plane of the circle ; these we shall

denote by suffixes
<f>, p and z as before.

As before we have

jRi* = — cos X' ^19 = — sin %. -^12 = 0,

y* = c^ cos 2%, t)p = c^ sin 2%, v^ = 0.

Further we get

S?;^ = — 8^ sin (^ + 8^ cos (^ = p {(X' — m/i') cos 2% — (/!' + aX) sin 2;^},

hvi, = — Sj cos <^ - 8^ sin ^ = p {(X' — o)/i') sin 1x + ip' + '"^') cos
2;j^},

St)^ = pv.

In order to find the components of SR we notice that FQ, in Fig. 42 is

the projection of R + sR on the plane of the circle, while EP is R ; hence

the projection of 8R on the plane of the circle is the geometric sum of the

vectors PQ and YE, that is, of the vectors ¥T>, WE, PN and NQ. And its

normal component is Sz — 8^. Thus we find

SR^ = p (X — \' cos 2x + fi sin 2;y;), ZR^ = pi/j,-\' sin 2% — /j,' cos 2%),

SRi = p(v — v).

Lastly, j), is the sum of the projections of the vectors FB, BE, FN and

NQ on the vector EP. Thus

P = - P {(^ - ^') cos X + (/i + fi') sin x}-

With these values we get the following expressions for the components in
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the directions <^, p and z of the several vectors which occur in the numerators

of (259), § 173 ; all are arranged according to ascending powers of sin x '•

(8 R* - SpR,^)/p = -2(X-X')- (3/j, + /J.') cos
;)(;

sin ^ + (3X - X') sin^ x-

(8-R^ — 3pi?ip)/p = fi- fj,'
— (3X, — X') cos ;y sin p^

— (Sfj, + fi!) sin'' )(,

{hR,-ZpR,,)lp = v~v',

pv^jcp = — 18 (X — V) cos
;!^
— yS (/A + /a') sin % + 2/3 (X — X') cos x sin^ %

+ 2^(^ + /)sin»x,

pvjcp = - 2/3 (X - X') sin x - 2y3 (/. + /a') cos ^ sin^ ^ + 2/8 (X- X') sin« x-

Wcp = 9'

8v^//j = X' - oj/i' — 2 (/i' + toX') cos X sin X — 2 (X' — mfjf) sin^ X'

Si)p//3 = /i' + mX' + 2 (X' — «/a') cos ;^ sin X — 2 (/i' + (uX') sin^ x>

hvzip = !>',

pRi^lp = X - X' + (yw. + m') cos % sin % - (X - X') sin^ ^ >

pfi,p/p = (X - X') cos X sin X + (/A + /x') sin^ x>

pRizIp = 0,

[v . (8R- 3pR,)yc/3 = 2/3 (i/ - v') cos % sin
;^,

[v . (8R - BpB.,)ycp = -l3(v-v') + 2/3{v- v') sin" X'

[v . (8R - BpB.,)ycp =^(fi-fi')+^{\- 3X') cos x sin x + /3 (/* + 3/^') sin" x.

[8V.Riyp = 7>'sinx, [Sv.Riy/3 = -j>'cosx,

[8v . Rijz//) = (/i' + &>X') cos X + e^' - "'A*') sin x>
p[v.R,]* = 0, p[v.Ri]p = 0,

p [v . Ri]j/c/) = - /3 (X - X') cos X sin X - /3 (/ti + /a') sin" x-

175. An examination of (259), § 173, shows that when these values are

substituted in the numerators of those equations, all the terms reduce td one

or other of the three standard types

fix) fix) fix) sip X
sin x(l +y8.cosx)' l+y8cosx' l + /8cosx'

where /(x) is a linear combination of the small displacements X,
fj,,

v, X', p,', v,

and the first differential coefficients of the last three, or they reduce to a term

of the type ^fix) cos x/(l + /3 cos x)i or lastly they reduce to one or other of

the following four combinations

:

f +A

I

M I
(,)

sin5x(l+/8cosx) 9'«|^lsin"x(l+/3cosx)l ^

/cosx ^ ± { //3 cos X
I

.j^

sin" X (1 + /3 cos x) S'*!^ lsinx(l +y8 cosx).i

d
f
//3sinx

]
I

a^
f
//g"sin"x

] ^^^^
Si/r (1 + ;8 COS xJ 9"^" (1 + /8 cos x)

_9_ (
//3cosx 1 _a^

[

//3" sin x cos x \ .,.

a-f (l + ;8cosxJ 9'>/''l l+;8cosx '

^^'
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The middle type at once reduces to the second standard type, for it may
be written in the form /-//(I + ^ co^x) ' ^^^ last four are reduced by means
of the lemmas A, B, C and D, which may be verified by differentiating out

the brackets, remembering that ^r-;- = :; -—
. Thev are

O'Y 1 + p cos % 9%

Lemma A.

f
I

8
[

//3

sin^ % (1 + /3 cos %) 3i/r (sin"
;y (1 + /8 cos p^)

/+r 9
j

r '' m
2 sin % (1 + jS cos %) 9i|r [sin

;y; (1 + jS cos ;y) 2(1+/3cos%)

9A|r2 12 sin
;y; (1 + /3 cos x) 2 (1 + y8 cos x)

Lemma B.

/cos X ^_9_ f //3 cos X
sin" % (1 + /S cos x) Syjr (sin

;y;
(1 + ;S cos x)

f 9 j /
sin;^(l + ;8cos%) dyj/ (sin

;;^ ( 1 + /3 cos
;)(;)

Lemma G.

J_ ( f^sinx
I

, Jl j

/•/g^sin'x

9->|r |l +/:;cosx) dyjr^ \l + ^ cos X
f"

^

d ( 2f^smx
,

2/' ] 8" f /d-^O
l+/3cosT^ 9\/r (1 + /3 cos % l+/3cosp(;l 8->|r" (1 + /3 cos

;\;

Lemma D.

_9_ [
//gcosy

] _9^ f//3° sin ^ cos x ]

ai/r (1 + ^ cos x) 3^M 1 + /S cos X j

2/^
I

i_
[

/'/3smx _ 2/ ] _ J^ [
//3siny

]

l+y8cos% 9\^ll+/3cosx l+/3cosT^;J 9-v/f" (1 + ;8cos%i'

It is important to notice that all the differentiations with respect to \^

occurring in these lemmas, as well as in the equations (259), § 173, represent

the partial differentiations with respect to t, which occur in the equations

(198) and (199), § 135. During these differentiations the fieldpoint is kept

unchanged, so that ai, y, z, p, <\>, 8a;, hy, hz, and therefore also \, fi and v, are

to be treated as invariable, whilst \', y! and v , which are functions of t, and

therefore of %, are to be varied. Further, since % = ^ («t + S — ^), such

functions as /', /", where/ stands for V, or /i', or v, are equal to 2//a), 4/ya)",

the dots as usual denoting differentiations with respect to the time t.

176. Substituting the expressions for the numerators in (259), § 173,

reducing where necessary to the standard types of terms in the manner
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indicated, and collecting corresponding terms together, we find the following
expressions for the components of the electric and magnetic forces

:

js 7 _ 2a,' — oj/i' + a>'\

4<(o''p^ sin % (1 + yS cos x)

^^{r\ 8wp»sin;(;(l+;Scosx) 4«/>2(l+/8cosx)"'' V(l+/3cosx)j

8M (1-^^)(X-V) B(l-^)(f, + f,') 8'smx(X-\')
]

dyfr' (8/3^ sin x (1 + /3 cos x) Sp' (1 + ^ cos x) V' (1 + /? cos x)}

Sd„ = — 4>fi'-4>m\' + (o^(B/i' + 5fi)

U.

16eoy sin % (1 + ;8 cos x)

^

d
\2{l-^)il'-m\'+iS-2^')mX -4/3V4-3j8«(/^-/) /g'sinyX

df\ 8eBp=sinx(l + /8cos;;t) 16aj/5»(l +y8cosx)
'^
2p^(l+/3cosx)

^^lr' [Wp'sinxil +13 cos x) 8p'{l+/3coax) 16p'(l+l3cosx)

0^ {y — v) — 4v'

IGm'^jo" sin % ( 1 + /3 cos p^)

d-fjr [4(»/o^ sin j^ (1 + /3 cos %) 16/3" (1 + y8 cos x)

+
dyjr" (I6p' sin % (1 + /3 cos x) 16fj' (1 + /3 cos x)

4tB|0* sin ;y(1+/3 cos %) 3^/^ |4/j'' sin t^ (1 + /3 cos %) 4ft)|0^(l +/3cos;^))

g, ^ ;8(3toV-3a)V-4i/') _8^ f
3/3'(t/-i'')

)

" ~ Uwy sin % (1 + /S cos x) 9^ [16/3' {1+/3 cos x)J

9^ f 13 (1 - ^) (v - v) 0'siiix(v-v')

df {16p' sinxil + cos x)
"*"

16/j' (1 + yS cos x)

g^
;8(4/Z' + 3q)> +&)>') 8

f
0(X-X') 0'(3fi + fi')

''""
16ojysinx(l+/8cosx) S^^ jSp^sinp^Cl +/3cos;)^) 16p='(l+/8cos%)

d' \ 0(l-0')(f^-^') ^{X-X') B>amx(SfL + ^')

dyjr' {I6p' sin % (1 + y8 cos x) V (1 + /3 cos %) ISp" (1 +^ cos x)

(260).

The parts of these expressions which involve the quantities X, /j,, v can be

developed in Fourier Series by the methods used in § 137, for X, fi, v are to

be treated as independent of x ^nd -^ ; but the development of the remaining

terms, which involve X', y! and v , necessarily requires a knowledge of these

quantities as functions of the time t, or what comes to the same thing, as

functions of x- The case which is of importance for a study of the stability

of rings of revolving electrons is that in which X', /u.' and v are expressible as

sums of damped simple harmonic vibrations, each set representing a wave of
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disturbance, forced or free, travelling round a ring of electrons. What is

wanted is the mechanical force on any one electron of the ring due to the

rest. Since we are considering only terms of the first order in the disturbance,

this force is the sum of the forces due to each wave separately, and there is

no loss of generality in supposing the disturbance due to a single wave.

Hence we are led to consider the following problem.

177. Problem 2. A group of n electrons in uniform circular

motion is disturbed by a wave travelling round the circle. To find

the disturbing force on any one electron due to the rest. As in § 98

and I 136 we take the electron under consideration to be the 0th, its azimuth

in steady motion to be given hy ({> = wt + 8, and its disturbance from steady

motion to be given by (X, fi, v) = {£4, M, 'W) exp. i,pt, real parts as usual being

taken. The quantity p is complex of the form q + lk, so that q is the frequency

relative to the revolving ring, and k is the damping.

We take another electron to be the ith, and assume its azimuth to be

toT + S + ^iri/n, and its disturbance to be given by

(A,',/, i/') = (c5^, j; ^)6'(^^-*2"/»' (261),

where k is an integer, which we may without loss of generality suppose to

lie between ± ^n. The expression gives (X', fi', v') =(X, /j., v) when i = 0, as

it should do ; it shows that (A,', /u,', v) at time t + k2Tri/nq assume the values

which (X., fi, v) had, or will have, at the time t, according as k is positive or

negative, except for the presence of a damping factor. Hence (261) represents

a damped wave of disturbance, of which the phase travels round the rotating

ring from the 0th to the t'th electron in the time k^irijnq. Thus the angular

velocity of the wave relative to the rotating ring is qjk ; relative to a stationary

observer however it is (q + ka))/k, the velocity in each case being reckoned

as positive in the direction of rotation of the ring. Further, (X', /x', v) vanish

for k azimuths B,6 -^ 2irjk, 6 + ^irfk, ... + (k-l} ^irjk, where 6 is some angle

between and 2Trjk, and have maxima for the halfway azimuths ; thus the

wave has k nodes and k loops travelling round the ring and affecting the

electrons in turn. An observer rotating with the ring notices qjk times k,

that is q nodes passing per second, a stationary observer {q + k(o)lk times k,

that is q + km nodes ; so that the frequency relative to the ring is q, but

that relative to a stationary observer is q + kco. This distinction between

relative and absolute frequencies is fundamental in the theory of the forced

and free vibrations of a rotating ring and of the waves radiated from it.

178. The angles i|f and % have been defined by the equations
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and the characteristic equation consequently reduces to

t=x + /3sin;(; (262).

Writing for the sake of brevity

a- = 2pjco (263),
we get fi'om (261)

(\',
fj,',

v') = {s4, M,'W) e'(4'^(«-«)+'''/'-''Ps''>x-*2^« (264).

This may also be written in the form

(X.', /i', v) = {X, fi, v) e -'M8inx+M«» (265).

The second form shows that we may pass from (X', /u,', v) to (X, fi, v) by

putting o- = and k=0\ but when we wish to differentiate a function of

(V, (jL, v) partially with respect to t, the coordinates of the fieldpoint re-

maining constant, we must employ form (264), in which <\> is to be treated as

constant while t^ and % are variable. Now in equations (260), § 176, the

differentiations with respect to i^ represent partial differentiations with

respect to t, where X', ft!, v and ^^ must all be varied, while <^ and X, /t, v,

where expressed explicitly, must be treated as constant, because ^ and X, jx, v,

wherever they occur explicitly, represent the fixed coordinates of the fieldpoint,

which happens to coincide with the position of the 0th electron at time t.

After these differentiations have been performed we may replace (X', /j/, v) by

their expressions (265).

179. Now (264) shows that (X', fi, v) are of the form 6""''/(x) ; hence by

the usual theory of symbolic operators we may write

and using the second form (265), we get, for any function ¥{)(),

.(266),

^i [Fix) (^'. /> ^')] = (^. M. V) (^ + '<-)' {e-'l-^-'< + *^''"»' Fix)]

which is a very useful formula of transformation.

It may be remarked that X is a supernumerary coordinate introduced

merely for convenience. We have in fact written ^ + X for the azimuth of

the 0th electron in its disturbed position, where the single letter ^ would

have sufficed. By doing this we secure the advantage that the angle <^,

which is one half the difference in azimuth of the 0th and ith electrons at

time t in the undisturbed motion, may be put equal to wiln without any

further correction in the disturbed motion, for the change in -«|r is completely

represented by \ (X' - X).
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180. The mechanical force. The substitution of the values of

(\', jx, v) in (260), § 176, and the subsequent development involve some

complicated analysis. Since the mechanical force on the 0th electron is all

that is of interest, half the labour will be saved by using the expressions for

its three components in place of the six equations (260).

The mechanical force is given generally by

f=d + [v.h]/c (VI),

whence for a small disturbance,

8f= 8d + [v . 8h]/c + [8v . h]/c.

In our problem the directions ((^, p, z) form a right-handed system to

which this formula is directly applicable. The velocity components are

vj.c = ^, Vf,/c = 0, v^/c = 0,

Ev^lc = /S (X - a)/i)/(B, Svjc = /S (/i + w\)/(i], SVg/c = ^vja.

The components of h are (0, 0, h^), the last being given by (201), § 136, or

(203), § 138 ; those of 8d and 8h are given by (260), § 176. Hence we get

hf^ = Bd^ + 0(fi+ &)\) hija>,

S/p = Mp - ^Bhi - yS (X - (Ofi) h^jw,

181. A further simplification is possible ; instead of resolving the force in

the directions (<j), p, z), which correspond to the undisturbed position of the

0th electron, we may resolve along the tangents to the circle and the perpen-

dicular radius through the electron in its disturbed position. The components

f^ and /p of the mechanical force in the steady motion now contribute first

order terms in the new tangential and radial directions, namely X_/p to the

new tangential, and — X/^ to the new radial force. Indicating the components

in the new system by suffixes X, /u. and v, v being parallel to z, we get

SA=M^+\ (/p + ^K) + ^AV'".

8/^ = M^ — /3SAz - X/i -t- /SAjyu. - ^Xhi/co,

182. We notice that fp + ^hi=dp, and f^ = d^; these, as well as h^, are

given by (201), § 136, while M^, Sdp, M^, Shp and Sh, are given by (260),

§176.

Further, we have X= ipX = ^tcoaX, ... and X'= — p^X' = — ;j6)^o-''X', ....

With these results we use (266), § 179, and write for shortness

(^ = a^sinx + h^Triln (267).
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Then we get the following expressions :

^^ p^Ll9i|r '""j l4(l + ;8cosx) 8sinx(l+;Scosx)

209

/Q^sinx l-^'-e-
dy}r^ (4 (1+ /3 cos x) 8 sin

;)^ (1 + /9 cos x)

p,^^ t-r i^j-p y^^ y (8(l+/Scosx)

9-v|r \9i|f 8(l+/3cosx)} St48(l+/3cosx))

+

_9^

\d-\lr

+ (^+..
/3^612c-'®

+ Af
. -10

8 sin
;)^ (1 + y8 cos %)J a-.|r (8 sin % (1 + /3 cos x).

3i|r (8 sin X (1 + /3 cos %)

/3%
-10

)

- ^^'^^P'^' - {^. + -)'
t8(l+/3cos,) f

/36- I© /8(l-/80
"^

Si/r [dylr '^"'J\8(l + ^ COS x)| ai|r^ JS (1 + y8 COS x)
,-i0

V9t|^
'

/ [8 sin X ( 1 + ;S cos x)) 9i|r (8 sin % (1 + ^ cos x)

+ '

+

+

H-/3^

9i|r [8 sin X (1 + /3 cos %)

a'' [;8^(l-/y)sinx

2 sin X (1 + /3 cos x) 9->/f'' 1 4(l+/3cosx)

[
/3^(l-/3^)sinye-^® /3^(1 -I- /SOe"'®

(i^+'^y

-(l + ^<r

16(l-|-/Scos%) 16 sin%(l +/3cos;)(;)

/S(3 + ;S06"'®1 3/9 \ f
yS'e-'

v -I 1
1- icr

'

Kdylr""" J\W{1+ ^cosx)]'^ dylr\d^'^''"J\4> smx{l+^ COS x)

9^ ((l-^Q")^- (1 + ^)6-"^ _ /8^(l-;8'')sinx

"^9i|r^| 16sin%(l + ;Scos;;^;) 16 (1 +/3cos ;;^)

^

9 ( ^(3 + ;g0 ) (3+;30(l-e-'®) -

9'»/r [16 (1 +/Scos%)J 16sin;;^(l +/3cos%)

'f-y.
d_ Y (/3'il-/3')smxe-"^ ^{l+^)e

,dyjr } \ 16 (1 -|-/3cosp^) 16sinx(l +/3 cos

^^9
f
j8(l+3;806-'®

] ,9/9 \

9i/r |l6 (I + /3 cos x)) 9i/r V9i/r
"^

'°",)

9'
[(l -/3')'-(l+;806-^'^ ^ (1 - jg'') sin x

9i|r''( 16 sinT^(l +yScos%) ld(l +/3cos
j^;)

9
f

^8(1 + 3/30
i

(1 + 3/3^) (1-6-®)

-10

4 sin % (1 + yS cos j^)

+
ai|r [16 (1 -I- ^ cos x)\ 16 sin % (1 + yS cos x\

.(268).

14
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When (7 = and k = we have © = also, and when o- = and @ =
these expressions become very greatly simplified, showing that most of the

terms which do not involve the exponential e"'® can be derived from those

which involve it by means of this substitution, a fact which will be of use

later.

183. Expansion in series. The first stage in the process of reduction

is to expand the functions of % on the right-hand sides of (268) in Fourier

series proceeding according to exponentials of integral multiples of iijr. For

this purpose we notice that the terms involving h^ and /^ are already known
firom equations (203), § 138, because f^ = d^; or we may use (243), § 157.

Further we find by means of the results used in the problem of § 136

:

(/3Hl-/3^)sinxl
+ :

2sin%(l +;Scos%) Si/r^ ( 4 (1 4- /S cos %)

\^{l- ^) j^J/ ijl3) -j |[
J,- (jx) dx'^

(269).

1 •'5,°°

2 sm 1^ j-=i
^ ^

•'^

This equation gives the expansion of the first line in the coefficient of /j,

in the equation for 8/^.

All the remaining terms are of the kind just mentioned, which can be

determined when the terms involving are known, so that the latter alone

remain to be considered. Since we have © = o-yS sin % + k27ri/n, by (267), § 182,

they depend on the following three functions of x '

g-co-psinx g-co-psinx sinY6-"'^s'ix
^ ^

sin % (1 + ;S cos
;)j;)

' 1 -l- yS cos % 1 + /3 cos ;^

Of these (b) can be derived from (a) by differentiating mth respect to the

combination a^, leaving a- and /3 unaltered wherever they occur separately,

and multiplying the result by i ; in the same way we can derive (c) from

(6), so that we need only expand (a).

Now (a) is infinite at both limits, when % = and i^ = 0, as well as when
g-i<r/3sinx 1

Y = TT and i/r = TT : but —. tt: zz ;
—

-.—j- vanishes at both limits and^ ' sin % (1 + /3 cos %) sm yfr

can be expanded in a series of exponentials, differentiable both with respect

to a^ and to i|r. Write

g-io-psinx 1 i==o

smx(l--l-/3cosx) sm-f j^_^ '

We get in the usual way, since ^Ir = ^ + yg sin x,

1 fjr C
g-.<rpsinx 1 )

^ TTJo lsin%(l -h/Scos;;^) sini|rj ^ \ / 7 i\ j/r-i
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'^3 [{"' +i) /3} as usual denotes the Bessel Function of the first kind, and
the index — 1 means that it is to be integrated once between the limits and

(°" +i) ^- The functions (6) and (c) can be derived by differentiating the

Bessel Function with respect to its argument and multiplying by l, once or

twice as the case may be. Multiplying by e-'''^"'" we get the following

expansions

:

(a) 71---5 r = -^—r- - t 2 (- ly e' W-«=2«/«) J.-i {(a +j) msm X (1 + /8 cos
pj;)

sm'v/r i=-oo ^ ^
^J'i~'i

^^) i+^cosx ^,-3-. ^" ^^ ^"'*-'"'""' Ji K<^ +i) ^}

-t© j=<Xi

^'^ 1+^losx ^ ',-3-00
^~ ^^' e' (^-^-^^W // {(<r +j) 13]

.(270).

When we put o- = and @ = we get the expansions already used in

the problem of § 136.

184. Summation of the series. The second stage is to substitute for

yfr its value in steady motion, m/n, which is allowable since we have intro-

duced the auxiliary quantity \ to represent the displacement from steady

motion, and to sum for i from 1 to n — 1. It is of course necessary first to

develope all the differential coefficients with respect to yjr, which obviously

offers no difficulty in the case of the exponential series, for we need only

replace the operator ^ by j in the usual way. But the terms derived from

the term (a), (270), § 183, which involves 1/sin i|r, require separate treatment.

An inspection of (268), § 182, shows that there are four functions of @ to

be considered, which we shall denote by @i, @2, ©s and ©4 in order. These

are:

In the coefficient of X in Bf\,

H) = /J_ 4. y f
/g^sinxe-^'^ /3'e-^^

' [dyjr'^''"') [4<(l+^cosx) 8sinx(l+/3cosx)

'^d^ls^^^i^co^x))
^^^^^'

In the coefficient of fi in S/x and that of X in Bf^,

'^"lat'^"'; |8(l+;8cosx)j 9^|rW^"'M8(l+/3cosx)j

^
fe ^ ""] i8sinx(l + /3cosx)J

"^
df js sin x (1 + /8 cos x)}

^^^^^•

14-2



212 ON THE DISTURBED MOTION OF A RtNG OF ELECTRONS [app.

In the coefficient of /a in S/"^,

@, =
(:3i|r

+ 1(7
/3''(l-iQ^)sinx6-'® /Sni+ZSQe-10

-(: + 0(7

16(l + /Scos%) 16sin;^(l +/3cos;;^)j

16(1 +/3 cos
;!^)J dyjrxdyjr / 1 4 sin

;;^ (1 + /8 COS
;;^)

(1 + /306-'®
I

(S+ySOe-""
9i|r2 [16 sin

;y;
(1 + /3 cos ;:^)

In the coefficient of z/ in 8/j,,

@, + ,^y [

/3Hl-/3ynxe-'« ^

16 sin
;)(;

(1 + /3 cos %)

/3^ (1 + ^) 6-'®

(273).

16 (1 + /3 cos x)

-f± + ,^\ f/3 (1 + 3/30 6- '^

3'

16(l + ;Scosx).

(1 + ;S0 e-'®

16 sin
;;^ (1 + /S cos %)j

/3^6-'®

4 sin % (1 + /3 cos %)J

1-
(1 + SygQe-"^

.(274).
d^jr^ |16 sin

;)^ (1+ /3 cos %)j 16 sin
;j(;

(1 + /3 cos %)

We shall denote by @io, ... the functions got by putting a = and @ =
in @i, ..., which are clearly derived from the parts of the electric and magnetic

forces involving (\, fi, v). Then the coefficient of

A, in hf), involves @i — @io,

/u. in S/a involves ©a + ©ao,

X in 8/J. involves — ©a + ©so,

/A in 8/^ involves ©3 — ©30,

V in S/i, involves ©4 — ©40.

We shall consider the Bessel Function parts of these functions first, and

then the parts derived from 1/sin i|r.

185. Bessel Function series. Using (271)—(274), we easily find for

the Bessel Function parts of the functions ©

:

©,= t
* 2° (- 1)^ e'^^''''-'^^"/") . a \j, (o- + j) ^}

] = CO

.(275),

©2= 2 (-l)^e'"'^-*2"M).6{j, (ff+j);S}

©3 = - /if (- 1)^" 6'W-*2"M)
. c {j, (o- + j) /3}

©4 = - t
^
S" (- l):*

6'0>-i2^/n)
_ (;^ |j_

(g. + j) y3|

where a, b, c, d are four generalized Bessel Functions defined by the equations

a [m, l^] = \P^J^ {l^) -lim?- Z^/3=) J^'' (?/3) \

h [m, W} = i (m - W') l^Jm iW) +iim^ W') J^'' (10)

c {m, Z/3} = iV (1 - 0) P0JJ (Z/9) + J^ (3 + ^') i/3/^ (1/3)

+ ^{('^+ /30 (m' + PI3') - iml0-3-0} /^"' (l^)

d {m, Z/3j = -^ (1 - 0) P0J^' (10) + ^V (1 + 3;80 WJr.m
+ iV {(1 + /3') (wi' + 1'0) - ^ml0 - 1 - 3^^} J„r' (W)}

\ ...(276).
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In these equations l = <7 + m, where a = 2p/a}. When cr = we therefore
have l= m, and the three functions a, c and d become odd functions of m,
while b becomes an even function. We shall denote them by a zero suffix,

e.g. a^, b„, c^, d^.

We must now put '^ = viju in (275) and sum from i = 1 to z = w - 1 ; we
have

i=n—l
22 e' U~m ^iln = , eot^^—^ , for j = 2k + 2s+l,

= - 1, for j = 2/c + 2s, s not a multiple of n,

= n-l, forj= 2k+ 2sn.

Hence we get, for the Bessel Function parts,

2 Bi = -^ - i^ + / 2° a {2s, (o- + 2s) /SI
»= 1 S=-oo

2 @, = -t^+i?- 2 6 {2s, (o- + 2s) /3}
1= 1 *= — CO

where

2 @3 = -

i=?i-l

2 04 = -,
i=l

*= — CO

tO + t 2 c {2s, (o- + 2s) ^]
S= — CO

tJ5 + t "F i {2s, (<r + 2s) /3}

.(277),

(2s + 1) TTS4= 2 cot'^^^^^a{2fc + 2s+l, (<7 + 2yfc + 2s + l)/3}^
g=-co ^?l

4 = m 2 a {2A; + 2sft, (o- + 2i + 2sn) ;8}

with similar expressions for M, 'W, B, B, C and D.

...(278),

Denoting the values of ^, ... for o- = by ^o, ••• we see that M'o=0
and Ao = Co = I)o = 0, since ao, c,, and do are odd functions and 6,, is an even

function of m.

186. The third sum in each of equations (277) requires no special

symbol, since it can be evaluated as follows. By Taylor's Theorem we have

J,s~" {(<r + 2s) /3} = J,-' (2s/3) + a-l3J,s (2s/3) + i a^^SV,, (2s^) + . . .,

with similar expressions for Jjs {(o- + 2s) /3} and J'^s {(c + 2s) /3} . In this

manner the functions a^s {2s, (a + 2s) /3} may be expanded in a series of terms

of the types s9JajC' (2s/3), where g' = 0, 1 or 2, and r = - 1, 0, 1, ... . The last

terms of @i, ... thus reduce to sums of the type 2 s^J-J^^ (2s/3).

Now all sums of this type vanish identically, unless g — r is even and
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at the same time q>r, and further 2 Jig(2s0)/(2sy=l^*, as we saw
«=i

before. Differentiating this equation repeatedly with respect to /8, and using

the differential equation of the Bessel Function where necessary to eliminate

differential coefficients of the higher orders, we get

s=l

whence 'x J^ (2s/3) = 1/(1 - ^).
S~ — QO

By the same process we get

S= —00

and by integration with respect to /3 from to /S we get

'S" sJ^-^ (2s/3) = 2/3V3 (1 - /SO'.2
S= — 00

From these all the necessary sums may be derived by differentiation with

respect to /3, and we get without difficulty

2 J-^-M(a + 2s);S) = --^
= — CO J-S= — CO

S=co

12 '

t_^ sJ^-^ {(. + 2.) /31 =3^^ + 2^j^,

,

,= -.0 " K<^ + ^«)^)-
(i_^.)4 + 12(1-^2)3

•

From these the remaining sums required are got by differentiating with

respect to a.

Substituting in (277) and using (276) we get

,2 @,--cm+B-
3(i_^.^3-2(i_^.).'^

A ®'-~^~'( ~3(l-^0="-12(l-^0'^|
i=n-l

f /Q6 /OS

...(279).

* Nielsen, Cylinderfunktionen, p. 303.
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187. Sums derived from 1/sin i/r. The terms in the functions 61, ...

,

which are derived from 1/sin yjr, by (270), § 183, are seen to be derived from

terms of type (a), which involve sin x in the denominator. From (271)—(274),

§ 184,; we see that these terms, apart from the common factor e"'*^"'", are

given by the equations

Q o-'^' d f t<7/3^
] ^

9'
( 1-/3M

' 8sim|r 9'\^ (4 sin tItJ 8T|r^ (8 sim^j
'

®,=
8 sin -v/r

' 9i^ |8 sin i|r j

'
^± fl+/3^

' 16 sim|r dyjr\ 8 sin i/r j 9i|r^ ( 16 sin i/rj 16 sin yfr

'

„ ^ a-'^' (1 + /3^) 9
\
ia^' ( 1 - ^^)] 9^

f
( 1 - /S^y

]
1 + 3^'

' 16sin^ 9i|r| 8sin i|r
J g-f^ (16 sini^J 16sini|r'

Since

9 r 1 [_ COST|r 9^ r 1 ) _ l + C0S^-v/r

d-yjr |sin >|rj sin^ ^fr

"

gi/r^ (sin ^] sin' -v|r '

we get the following expressions, which occur in (268), § 182, by supplying

the factor g" '**"/", subtracting, or adding the functions @io, ... as may be

necessary, putting yjr = Tri/n, and summing from i = l to i = n—l:

'"2 '
(@, - ©i„) = -(l-^')N+ 2/3W<r + i/S^ (K - 2H) <r^

i=l

i= TO—

1

S (@.o + e,) = ± t {(1 + /SO M + i/3^ (K-2H) a}

i—n—l
t (@3 - ©ao) = i (1 - m'N+ H3 + ^')H-^' (1 - ;80 il^<^

4= 1

+ i/3ni + /80(ir-2ir)<7^

2 (04-@4o) = i(l-y8?i^+Hl + 3ySO^-/3^(l-/3O^'^

+ i/3ni+/30(-S^-2^)«^'^
(280),

where with Maxwell's notation* we have

2=71-1

JV = S i sin^ kTri/n . (1 + cos^ iriln) cosec' Tri'/m

i=l

i=n-l
M = 2 ^ sin iktriln . cot Tri'/n . cosec tti'/to

j=i

i=ft—

1

as before .ST = 2 \ cosec tti'/w

j=i

and in addition H = ^ \ sin^ kiriju . cosec tti'/w

* Collected Papers, Vol. i. p. 314.

.(281).
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The following series are useful for purposes of calculation and may
conveniently be noted here:

27rK= n log, n + n {log, (S/tt) + -5772} -

iV"= 2k'K -' I" ' i {2k -2s- ly cot

n.2\ n\2A\
(2s + 1) TT

M=kK- 2~^i(2A;-2s-l)cot
s=0

^ *=*-! ,(2s + l)7r

2n

{2s + 1) TT

2w

.(282).

188. The remaining terms. Summing (269), § 183, from i/r = irjn to

\|f = (n — 1) tt/ji, we get

i=n-l

s
i=l 2 sin X (1 + /3 cos

;!^)

where, as in § 157,

3^ p(l-/30sinx]'

Si|r2|4(l+/3cosx)
j. i^=7n/«

,3'?^= -2^ + 2^-^g (283),

'?^= 2 (s + i)cot
(2s + l)'7r

*=o 2n

+

/3(l-/3^)J^+,{(2s + l)/3}

(1 + /80 [^ J2,+, {(2s + 1) x] dx\ ...(242).

Further we get from (203i), § 138, on summation, for unit charge

where, as in § 157,

CT= 2
*
2° sn^J'^ {2sn/3)

-

sW (1 - /S^ f^ J^^n {^smc) dxl .. .(241).
«=i L •'0 J

Lastly, we get on summing (2083), § 138,

p% = ^{K+W},
where

<W= 2 (s + J^)cot
«=0

(2s+l)7r

2n
0J^+, {(2s + 1) ^} - [^^ J^^, {{2s + 1) «} dx'\

(284).

Substituting from (279) and (280), and the equations just found, in (268),

§ 182, and supplying the factor e^ we get for the disturbing force due to the

rest of the ring
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BF,= -^

+'r~ 3(1-^0' '^~:

+^ + ^» ''^ 3(1-^^)3 -2 (1-^0^ "J

/3' .J+ 5-5.
2 (1 - /30^

HI - /3'? iV^+ i (3 + /30S - yS^l - /30 ^o-

+ i^' (I + ^') (K -2H) a^ -2K +2<V - ^^-'
dp

^3

12(1-;S'')

^^' =— 4 (1 - /3T i^+ i (1 + 3/80 ir- /3H1 - yS^ ^o-

+ i^ni + /30 (-« - 25") (7= - ® + ®„

,
o" —

3(1-/80' 12(1-/30

It is to be remembered that by § 178,

_2p _ 2(q+ ik)

.(285).

.(263),

where q is the frequency and « the damping relative to the rotating ring.

But for slight differences of notation these equations agree with those

given by Schott* except that in the coefficient of ^ in the second of equations

(14) the signs of the last three terms are wrongly given.

189. Problem 3. A ring of n equidistant electrons is slightly

disturbed from its state of steady motion in a circle. Required to

find the equations of motion. We found the equations of disturbed

motion for a single electron in Ch. XI, (225), § 150. The quantities

(SFk, SF^, 8F„) are the components in the directions (X, /x, v) of the disturbing

force, which includes a part due to the remaining electrons of the ring, given

by (285), § 188, and a part due to electrons outside the ring and constituting

the external force proper. Before proceeding to the study of the equations

of motion we must consider the external force briefly.

Phil. Mag. [6], Vol. x. p. 181, (14).
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190. The external field. We must take into account two parts of

the external field: (1) the steady part, already used in Ch.. XII, § 159, in

considering the steady motion of the ring, and (2) the external disturbing

force proper, due to electromagnetic waves generated outside the ring. Both

parts produce small mechanical forces disturbing the steady motion of the

ring.

We have already seen in § 159 that the steady part of the tangential

mechanical force, F^, may be assumed to vanish in every case that is at all

likely to occur. Moreover, the steady part of the radial force, F^, is constant,

the same in every position of any one electron, and the same for all the

electrons. Lastly, the axial component, F^, vanishes.

These conditions require that the external field, so long as it is undisturbed,

be steady and symmetrical about the axis of the circle in which the electrons

move.

Hence the electric force is derivable from a scalar potential a^, and the

magnetic force from a vector potential a^, whose direction is along the

parallel of latitude; and both i|r and a^ are independent of t and (^ and

functions of z and ct alone.

Thus the steady part of the forces of the field are given by

0, h^ = -^, K
dz

'

tsdtiT

Now we have /3 = isw/c for steady motion in a circle of radius or = p with

angular velocity to. Moreover the differentiations with respect to z and w
are performed on the supposition that

(f>
is kept constant. Let us regard to,

or what amounts to the same thing, /S/'sr, as constant during these differentia-

tions, and let us write

<l> = e(Vr-««ra«/c), ^ = P, ^=Q (286).
OCT OZ

Then we get

^^ = 0, F^ = -P, F, = Q (287).

With this notation the equations of steady motion, (244), § 159, may be

written in the form

cm^ +—— =
P

d'm^ e2{(l + /3=')^-W „
h -„ = r

P P

= Ql

.(288).
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In these equations {z, ct) are supposed to have been put equal to and p

respectively. The last two may be regarded as the equations of the steady

orbit.

191. In calculating the disturbing forces we must bear in mind that the

displacements of the electrons are supposed to be so small that their squares

and products may be neglected. Indeed, it is impossible to obtain manageable

equations on any other assumption, and thus we are compelled to make it

by the necessities of the analysis. It implies that the disturbing forces

themselves are small. Accordingly we shall treat both the disturbing forces

and the displacements and changes of velocity of the electrons of the ring as

small quantities of the first order, and neglect their squares and products.

This procedure leads to the following simplifications:

In the first place, in calculating the parts of the disturbing forces due

to the displacement and change of velocity of the electron under consideration

itself, we may treat the external field as if it were in the condition corre-

sponding to the steady motion. This process gives the first parts of the

disturbing forces.

Secondly, in calculating the effect of the disturbances in the external

field itself, we may treat the electron as if it were executing its steady

motion. In this way we get the second parts of the disturbing forces.

192. (1) As before let the component displacements of the electron

considered, the 0th, from its position in steady motion be p (X., /*, v),

perpendicular to and along the inward radius vector, and parallel to the axis.

The electric and magnetic forces at the disturbed position are slightly changed,

and they are in the (new) meridian plane, which is the plane of /a and v.

The tangential displacement, pX, has no efiect on the magnitudes, but only

changes the direction of the forces, because the steady external field is

symmetrical about the axis. The changes in the components of the

mechanical force on this account are given by

.(289),

^F.=.-p^[^--^—^^pve(^-^^-^-^)

where tr is to be put equal to p, and z to zero.

In addition we have terms depending on the change in velocity, of which

the components are Cy8 ( fx, -,. -) in accordance with (222), § 150. By



220 ON THE DISTURBED MOTION OF A RING OF ELECTRONS [aPP.

means of (VI), § 140, we find for the corresponding changes in the components

of the mechanical force

SF, = e^(^h + -h^), BF^^-e^(--^L)h„ 8F^ = - e^ (-

-

/j) h^
\a) CO I \a) / \v> /

(290).

The terms (289) and (290) together give the first parts of the disturbing

forces.

Consider the terms in both sets of equations which involve the displace-

ments (X, jji, v) themselves.

In the component hF^ we find terms /oyue/S 5-^ + e^iih^ ; remembering that

OT = /3, /8 = copjc, and that a is to be treated as constant, we may write these

terms in the form p/tte ^— {avshjc), that is, pfie \ . Similarly, in the
OCT OCT

component BF^ we find terms jOyiie/3 -^ + e/3fih^, which together may be

written in the form — p/j,e , . Similar considerations apply to the

terms involving v. Let us use the function <S> defined by (286), § 190, and

write

92* as* aa*

with the same understanding as before, that w is to be treated as constant

in the differentiations, and that z and ct are to be replaced by their steady

motion values, and p.

Then the first parts of the disturbing forces, depending on the displace-

ment and change of velocity of the electron, are given by

SF, = e^(^h,+ -hJ\
\(0 CO J

BF^ = - P/J.R + pvS -e^-K

BF, = pu,S-pvT-e^-h^
CO

r (292).

193. (2) Let us denote by {Sd^, Bd^, Bd^^) and (SA^,, Bh^, Bh^) the

deviations of the electric and magnetic forces of the external field from the

values corresponding to steady motion for the point (z, ct, ^). In calculating

the corresponding mechanical forces on the 0th electron, which is at the point

(0, p, cot + B) in the steady motion at time t, we are to neglect its displace-

ment and change of velocity, since these would only give rise to terms of the

second order. Hence in the general expressions for the deviations of the
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forces we must put z = 0, ^ = p, (f)
= a)t+S, and take the velocity of the

electron to be c^ in the direction ^. Hence we get by (VI), § 140,

SF>, = eM^, SF^ = -e (M^ + /3SA,), BF, = e {Bd, - ^Sh^). . .(293).

These give the second parts of the disturbing forces, that is, the external

disturbing forces proper. They are given functions of t.

194. The equations of the disturbed motion. We must now

substitute for the forces (SF^, 8i^^, SF^) on the right-hand sides of (225),

§ 150, the sums of three sets of terms

:

(1) the disturbing forces on the 0th electron, due to the disturbances of

the remaining electrons of the ring and given by (285), § 188

;

(2) the changes in the forces of the steady field, due to the displacement

and change of velocity of the 0th electron from its steady motion and given

by (292), §192;

(3) the external disturbing forces, due to changes in the external field

and given by (293), § 193.

The forces under the first head have been calculated for a damped simple

harmonic oscillation of the type {A, B, G) exp. t (pt — k2'rri/n), where {A, B, C)

are arbitrary constants, generally complex, i is the number fixing the electron

in the ring, p = q + ik, q is the frequency and k the damping, both relative

to the rotating ring, and k is an integer, the "class," lying between the

limits ± Jm and determining the mode of the vibration.

The forces under the second head are obviously expressible by means of

sums of terms of the same type.

Hence we must express the forces under the third head, the external

disturbing forces, in the same way.

They are due to electromagnetic waves of the most general type, and can

always be expressed by means of sums of terms of the form/ (2;, ct, ^) exp. t Nt,

where N is generally complex with positive imaginary part. Its real and

imaginary parts give respectively the frequency and damping of the external

disturbing forces relative to an observer outside the rotating ring and fixed

with respect to its centre.

The amplitude, f{z, zr, 0), is a periodic function of <j>, with the period

27r, and can be expanded in a Fourier series of terms of the type

F{z, ot) exp. (— ik(f)), where k is an integer.

For the ith. electron of the ring we have

z= 0, m = p, and (^ = ast + h + 2m/n.
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Hence we can express the external disturbing forces on it as sums of terms

of the type F exp. t {ft — k^irijn), where f — N — kco. We can, if we wish,

suppose k to lie between the limits ±^n without any loss of generality,

by slightly changing the meanings of the symbols N and p. Thus the

external disturbing forces can always be expressed in the required form.

The frequency of any term relative to the rotating ring, which we denoted

by q, must be carefully distinguished from that relative to an outside observer,

which is q+ km.

195. Since <T = 2p/(o = 2(q + ik)Jq), by (263), § 178, we must replace

such quantities as X/to, \/<o^, X/m', by ^to-X, — 1<tV^, — ^to-'\, respectively on the

left-hand sides of (225), § 150. When we compare the resulting expressions

with the right-hand members of (285), § 188, which determine the parts of

the disturbing forces due to the rest of the ring, we see that all those terms,

which do not involve the mass m in the former expressions, just cancel equal

terms in the latter.

For example, we find on the left-hand side of the third equation (225),

the terms

Sp'il-^J ' 12p'{l-^)

These terms also occur on the right-hand side of the third equation (285),

and therefore cancel out. The same thing occurs in the first two equations

of motion.

The terms in question have a simple physical meaning: they represent

the reactions on the electron due to its own radiation, so far as it is due to

the disturbance from steady motion. When the electron forms one of a

group, the radiation per electron is much reduced, and accordingly the

corresponding reaction is partially balanced by the forces exerted by the

remaining electrons of the ring. The small unbalanced part left over

corresponds to the reduced radiation from the ring and is represented by

the terms involving the Bessel Function Series .4, ... in (285). The complete

cancelling out of the large terms in the reactions due to radiation serves as

a verification of the correctness of both (285) and (225).

The terms in (225) which involve m can be expressed more con-

veniently by means of the longitudinal mass m' = ,^ - ; for instance, we

dimB)
have —fo— = rn'm/m. We might eliminate m and rh by means of the

equations of steady motion (244), § 159, but the ratio m'/m would still

remain, so that there is little advantage in doing so.
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196. On substituting the values of the three sets of disturbing forces

from (292), (293) and (285) in (225), we find that the equations of disturbance

may be written in the following form :

/2A +/22A' +f'23V=-e {M„ + /SSAj)

/3A +/sbM +/33I' = e (S4 - ^hh„)

The nine coefficients are given by

/„ =^ {(1 - ^) N- 2/3^ Ma - \^ (K -2H)<T^ + £€- 6€,\-^^ a'
P '*p

.(294).

+ i{ — A +*cmo— (7
\p^ m

U-
-P

p' m
/i3 = ite/3ApO-

/^ = ^[^2Kl + /30i»^+^^(g--g + W)<^-^}+i{e/5fe^ +
°'^"''"^'^^^^

.T

+ -AB-B,)

a/3 °' ^ |0 4/3

+ 1,(^-0+ ^cm^a\

fw = — pS

fsi = — pS

/33 = - -1 U (1 -^T^+i (1 +3j8=) H-^'{1-^)Ma+\^ (1 +/30 (Z-2if) (7^^

r

- ® + ^„} + pr -^ <r^+ 6 (-, D + icm/3) <7

.(295).

The values of the several functions involved in these equations are given

by (276) and (278), § 185, (281), or (282), § 187, (241), (242), and (284),

§ 188. For convenience of reference we collect all these equations here. They

are



224 ON THE DISTURBED MOTION OF A RING OF ELECTRONS

a {m, i/3} = IP^'^JJm - i (m^ - 1'^') Jm~"

m

h [m, l^} = i (m - Z/30 l^Jrr, (W) +Um + l^) J„r'm
c {m, 1/3} = tV (1 - ^) I'^Jr^m + tV (3 + /SO WJr.m

+ iV {(1 + /3') ('>»'' + 1'^) - ^mW' -s-^"} Jm~'m
d {m, Z^} = - ^ (1 - ^0 l^^J^' (113) + ^5 (1 + 3/30 WJmm

+ T^ {(1 + /SO (™' +W - ^rnl^ - 1 - S^'} Jm~'m I

[app.

}

.(276),

64="% cot ^^^"t^^^ a{2fc + 2a + l, (o- + 2A; + 2s+ l)/3}

J. = w X a {2A; + 2sn, (a- + 2k + 2sw)/3}

where

and

o" = 2j)/o) = 2 (gf + t«)/w.

JrrT'^ = SJm {v) dy,

.(278),

.(263),

with similar expressions for M, ^, &, B, G and D. The values of these

functions for o- = are denoted by a suffix 0.

Again, we have

U=2t \sn^J'^n{'^sn^)-sV{\-^)^^ J^{2snx)dx\ (241),

q) = '2°
is + \) cot^^^^^ T/S (1 - ^0 J^+^ {(2s + 1) /3}

+ (1 +;80J'V^+i {(2s+ 1) «} dJ ...(242),

'?^=T (s + i)cot ^?^^^ |^^/^+i{(2s+ l),8}-|V^+,{(2s + l)a;} tfe

.(284).

Lastly, we have

K= "2, \ cosec TTt'/n

H = X \ sin" ^Tn'/m . cosec Trijn
i=l

i=»—

1

ilf= 2 ^ sin 2k7riln . cot wi'/w . cosec 7ri/n
i—l

i=n—l
iV = 2 ^ sin" km/n . (1 + cos" iriln) cosec' 7rt'/n

The equations (294) and (295) together are equivalent to the equations

given by Schott*. They are however somewhat more general, in so far

y (281).

* Phil. Mag. [6], Vol. xv. pp. 180—182, 1908, eqs. 12—15.
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as in the present case the steady field in which the ring moves is not

merely electrostatic, as was assumed in the paper just cited, but includes a

magnetostatic field as well. Consequently the values of the potential <I> and

its differential coefficients are somewhat altered by the addition of terras

involving the vector potential a^ of the magnetostatic field, as shown in (286),

§ 190. Moreover, the equations of the disturbed motion (294) and (295)

involve the components h^ and h^ of the steady magnetic field explicitly.

The additional terms introduced in this way are g3n:ostatic terms as usual,

that is to say, no work is done on their account*

197. The following points should be noticed

:

(1) The explicitly imaginary parts of the coefficients /^ and/ai are equal,

but of opposite sign; so also those of /13 and /31, while those of f^ and fs^ are

zero. The corresponding terms in (294) represent gyrostatic motional forces,

which do not consume or do work. " Explicitly " imaginary merely refers to

the occurrence of t as a factor ; as a matter of fact when o- is complex these

terms have real parts.

(2) The explicitly real parts o{fi,,fa,fn,fsi, and the explicitly imaginary

parts otfii,fw andyaa, all involve functions of the type A, together with terms

which have m for a factor. The first equation of steady motion (244), § 159,

enables us to replace m by the series U, which is of the same type as A. An
examination of the expressions found for the radiation from the ring, namely

(129), § 84, and (168), § 105, shows that the radiation due to steady motion is

of the order of U, and that due to disturbance is of order A, ... Thus we may

conclude that the corresponding terms in (294) represent damping forces due

to radiation. When the radiation, and consequently the damping, is small,

these terms are small.

(3) The effect of the external field is represented by two sets of terms

:

(a) the gyrostatic motional terms involving the magnetic forces h„ and hz ;

(6) the conservative terms derived from the potential O, namely pR in f^,

pT in /s3, and the terms f^ =/32 = — p8. When the external field is purely

electrostatic, the first set of terms disappears. When the electrostatic field

is due to a continuous homogeneous distribution of electric charge, as in the

case of J. J. Thomson's well known model of the atom, S vanishes identically.

The same thing occurs when the field is due to a central point charge, as in

Nagaoka's model. In these cases the third equation (294) is independent of

the first two, but this is not generally so.

(4) The functions c^, ... A, ... are infinite series of Bessel Functions

involving a in their arguments, that is, they are functions of the frequency of

infinite degree.

* Slight errors in the equations (12)—(15) just cited have been corrected ; namely in the last

two of (12) the term liomlm has been replaced by its proper value win, and in the second of (14)

the sign of -B + B„ has been changed.

s. 16
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Hence, when the external disturbing forces on the right of (294) are

absent, so that the ring is executing its free vibrations, the frequency equation

got by eliminating (\, fi, v) is of infinite degree for each class of vibration.

Thus the ring has n sets, each of an infinite number of free periods, and from

this point of view must be regarded as possessing an infinite number of degrees

of freedom. We need feel no surprise at this result, when we reflect that

each electron of the ring is linked with the electromagnetic aether, and so

cannot be compared with the particle of ordinary dynamics.

In this connection it is interesting to notice that Herglotz and Sommer-

feld* some years ago found that a single spherical rigid electron can execute

an infinite number of free rotational vibrations, and therefore may be regarded

as possessing an infinite number of degrees of freedom. But these vibrations

differ from those of our ring of electrons in so far as their wave-lengths are

only of the order of the diameter of the electron, while ours are of the order of

the diameter of the ring or larger. Moreover for a surface charge, Sommerfeld's

vibrations are undamped and therefore do not radiate, while for a volume

charge they are damped and radiate.

The calculation of the free periods of a ring of electrons revolving in a

given steady field presupposes a knowledge of the properties of the Kapteyn

series of Bessel Functions, which appear in equations (276) and (278), § 196.

Series of this type have hardly been studied yet ;' consequently any detailed

discussion of the equations of disturbance would be far beyond the scope of

this essay. For this reason we shall content ourselves with the deduction of

the equations of steady motion and disturbance; they will form the basis of

any theory of atomic structure which is founded on the hypothesis that the

atom contains circular rings of electrons in revolution.

* G6tt. Nach. 1904, p. 434.



APPENDIX C

ON THE FIELD CLOSE TO A POINT CHAEGE IN MOTION

198. In order to calculate the mechanical force exerted by a moving

electron upon itself, with a view to deducing expressions for its electromagnetic

energy, momentum and mass, we must develope a method of finding the field

close to a moving point charge. The mechanical force exerted by one element

of the electron upon another can then be found, and hence the mechanical

force exerted by the whole electron on one of its elements, and also on itself,

can be obtained by integration over the whole charge.

This method has already been used by Schwarzschild*, Sommerfeld (loc.

cit. § 143), Lindemann (loc. cit. § 143), Walker (loo. cit. § 143) and other

writers, but with certain restrictions as to the form and structure of the

electron, imposed so as to render the necessary integrations possible.

For the purpose of our investigation in the following Appendix D it is

undesirable to introduce definite assumptions respecting the form and structure

of the electron at an earlier stage than absolutely necessary; but on the other

hand we shall find it necessary to restrict ourselves to speeds less than

that of light, and to times when the motion is permanent in character. For

instance, if the motion of the electron changes discontinuously, our results

will not apply to the interval embracing the discontinuity, during which the

electron is still disturbed by the waves due to it.

What occurs during the establishment of the permanent regime has been

the subject of investigations by Lindemann, Schott and Walker. Walker in

particular has shown that the effect of the discontinuity mainly consists in

small displacements and changes of velocity of the electron, due to strongly

damped waves generated by the discontinuity. Owing to the smallness of the

electron these effects are practically negligible.

199. For the sake of simplicity we shall take the whole charge of the

electron as unity. When it is equal to e electrostatic units we need only

supply e as a factor in the potentials and forces of the field due to the electron,

* GStt. Nach. 1903, pp. 126, 132 and 245.

15—2
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and e' as a factor in the electromagnetic energy, momentum and mass, and

generally in the resultant mechanical force of the electron on itself.

We shall base our investigation on the series (180) and (181), § 124, but

shall neglect the complementary terms. The use of the series limits us to

velocities less than that of light, and to points near the charge, and the

omission of the complementary terms implies that the permanent regime has

been established.

The result will be expressed in the form of series, which can be integrated

over the electron and converge for points not too far away from it. The

conditions of convergence imply certain restrictions on the values of the

accelerations of all orders of the electron.

200. It will be convenient to develope the expression for a, (181), § 124,

so as to put the successive differential coefficients of the velocity v in evidence

explicitly. Write
»= eo /_ -1 \«28 Ps+ ft—

1

^*'=£lT^-^ ^'''^-

Then we get in place of (180) and (181)

(f>= f7<»' (297),

-%!o l^^^ (^««)-

Here v'*' denotes the ith differential coefficient of v with respect to t, or

as we may call it, the acceleration of the A;th order of the charge at the

time t.

We shall whenevec necessary denote the coordinates of the moving charge

by (f, 7], f), and those of the fieldpoint by {x, y, z), both referred to rectangular

axes fixed with respect to the observer ; also we shall denote the radii drawn

from the fixed origin to the moving charge and to the fieldpoint by p and

r respectively. Thus we have v = p, and generally v'*'=jo(*+'\ These

quantities may be supposed to be given quite arbitrarily.

201. Expansions for U*'. The expansion (296) is inconvenient be-

cause it involves partial difierentiations with respect to t. We desire to

replace it by an expansion involving partial differentiations with respect to

(o!, y, z), so as to make the velocity and accelerations of various orders appear

explicitly in the coefficients. We have

where (f , 17, f) may for the present be regarded as given functions of t, but

independent of (x, y, z), the latter being themselves independent of the

operator
g^.
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Let A prefixed to any function of t denote the increase of the function

when t is changed into t+r. Then we may write

-^^=^LT- dt'
•

But by the symbolic form of Taylor's Theorem we have

(i2+ Ai2)«+*-i = [{x - f- A^)» + (y -r,- A^)» + (^- f- A 0'}* («+*-«

_ g-A(pV) jR«+ *-i^

where V denotes vector differentiation with respect to {x, y, z), and (pV)

denotes the scalar product of p and V in the usual way. Since p is inde-

pendent of {x, y, z), V does not operate on it, and the order of the factors can

be interchanged. The same result holds for all products of the types (v'*' V),

[v** V], scalar as well as vector. Hence we get

a»p»+*-i ( ^t )

-V- = te-a^^"^n
'''"'"' ^'''^-

In this equation t only occurs in the exponent A (pV), so that the

sjonbolic operator can be found by developing the exponential in powers of

T, differentiating and proceeding to the limit. Thus we need only find the

coefficient of t*/s ! in the exponential.

Now we have

e-A(pv) = "|"(::l}!(A(pV)}» (300).
«=o n !

Further we have

where v, v, v, . . . all refer to the time t.

Substituting in (300), and collecting the several terms, we find that the

coefficient of t' in e"^^*"^) is equal to

t^ |(vV)» - ^i^> (vV).- (VV) +
^(^-')(^-^^

(vV)'- (vV) - . .

.

^
.(.-l)(^-2)(.-3) ^^^^._.^.^^._

I

as

Substituting this value for s ! g- e'^^"^) in (299), and using the result in

(296), we get,

f7,« = r 1 j(vV)« -%^ (VV)'- (VV) + ^^^-^„y-'>
(VVr »

(VV)

_
. .

I

s{s-l)(s-2){s-^) ^^^y_,^^^y_
I

jfs+k-i (301).
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This result may be written in the form

n-ft = y{h) _ (Z_} y-{ic+i)+ \1-J T7'(*+8) I (ZZr p-(*+4) I (S02)
20" 6c' 8c* ^ ^

where F« = S ^iZlJt (303).

The expansion expressed by these equations is particularly convenient

because the series F'*' can be summed and expressed in a finite form and the

series f7'*' reduced to single series. It is easy to see that the symbolic

operators in (302) are the terms involving c'", c~', c~S ... and so on, in the

scalar part of the expansion of exp. ( ~ H^i + e;^ ~ 9l~i
"* ••• ) ^' ^^^^® ^ ^^

treated as a vector.

202. Expression for V'*'. F'*' is a function of the coordinates {x, y, z)

and (f, tj, f) and of the velocity v, but is independent of the accelerations

of all orders. Hence (302) gives as it were an osculating expansion for IT"'*',

and the motion which osculates the given motion at the time tisa. uniform

rectilinear motion, in which the charge is in its actual position and is moving

with its actual velocity. The value of ?7'*' for this osculating motion is

precisely the function F*. In particular, the value of ZJ'"' for the osculating

motion is F"".

But t/"'"' is the scalar potential of the osculating motion, by (297), § 200,

and we know that this potential is given by (47), § 23, since the velocity is less

than that of light in our present problem, otherwise the series (180) and (181),

§ 124, would not hold.

Sence, when the axis of x is chosen to lie in the direction of the instan-

taneous motion, and the axes of y and z are any two mutually perpendicular

lines normal to the path of the charge, for instance, the principal normal and

binormal, we have

Fw = l/S (304),

where 8=[{x- ^f + (1 - v^/c^) ({y - vY + (^ - ?)')}*

This value may also be deduced from (303) ; for with the present choice

of axes, the symbolic operator (vV) reduces to v-^- and therefore

s=n s\ daf
'

Now we have identically

9"a'"-' _ l^ 3' .... (2s - 1)^ {(y - r,y + {z- Py d^+^_
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Hence substituting we get

F(o) =Y ^^••(^^-i) «^{(y-^)' + (^-?)t ^ 1
,f(, 2. 4.. ..(2s) c''R'"+' S'

The value of F'*' may be deduced as follows.

In the first place, we proceed to find F<''. We have

a»+i^i_
/o.+ivl'^-^' ^ (^-^0°

,

^(s-i) (^-^o°

Substituting these values in the series (303), we get

(l-vyc')S ^^"^-'•

We next proceed to establish an equation of differences for F*' ; we have
identically

Substituting in the series (303), § 201, for F* we get

pr,., ^ 2{v/c)(oo-^) R^

1 - wVC 1 - v^/c^

Solving this equation in the usual way we find

FW = 4a* + 56*,

where A and B are arbitrary constants, and a and b are the roots of the

quadratic

" "^ l-i;Vc^ '^ 1-^Vc''"

Thus ,J^/o)(^-p + ^ ,,d ,^W(--f)-f

Making i = and 1 in succession, we find that A = 1/8 while 5 = 0;

hence

v^.> = {Wc)(.-g)+S}^

•^

(l-?;^/c^)*,S
^''"^^•

Without reference to any special system of axes we may write this

equation vectorially in the form

„ KvR)/c + ^fp

(l-t)Vc»)*S ^ ''

. where S= {(vR)Vc'' + (1 - v^/c') R"}^,

and R is the vector drawn from the point (^, rj, ^) to the fieldpoint (x, y, z).
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If 6 be the angle made by R with the direction of motion, and ;S = vjc,

we have

(vR)/c = Rj3 cos 9, S= R'J(l- /3^ sitf 0).

Hence F* = l^'^o^^ + ^i^- 0'^^^'^)]'
r.-. . (308).

This expression shows that F*' is of the order A; — 1 in the distance R.

203. First form of the expansions for the potentials. Substituting

the expression (302), § 201, for U"**' in (297) and (298), § 200, we get

a = Y{F.or_(g)..,(g)F..^^V.^....

.j{^._(g)^.^...}^J^{F.-...}- (310,

We notice that F*"' is of the order - 1 in iJ, by (307), F<'> is of order 0, F»)

of order 1, F'^' of order 2, F'*' of order 3, and so on.

Further, the operator V reduces the order of its operand by one unit, so

that the function (vV) V^^i is of order 0, and the functions (vV) F'", (vV) F»t

and (vV)' F'*' are all of the order 1 in R, the quantities v, v, ... not counting

in establishing the order, since they are quite arbitrary. Hence the expan-

sions (309) and (310) are series proceeding according to terms of ascending

order in R. The principal terms, depending on F"", are of order —1, and

involve the coordinates and velocity only; the terms next in importance,

depending on Fw and VF'^', are of order 0, and involve the acceleration

in addition to the coordinates and velocity; the next, depending on V^^, VF'"

and V= F'*, are of order 1, and involve the acceleration of the second order in

addition, and so on.

204 Second form of the expansions. The expansions just found

are convenient when the expressions for the functions F<*' are comparatively

simple, particularly when we are dealing with a point charge. But in other

cases, particularly when we are dealing with an extended charge and have to

integrate throughout a given volume, the presence of the higher functions F'*'

gives rise to troublesome integrations. For instance, this difficulty arises

when we wish to find the mechanical force exerted by an electron on itself

due to the interaction of its several elements. It is possible to replace the

higher functions F'*' by functions of lower order in the following way.

In this second method of development we regard f7<*' as a function of the

independent variables (w, y, z), (^, tj, ^), (Vx, Vy, v^). (vx, Vy, Vi), ..., all the
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components of the velocity and of the accelerations of various orders being
treated as independent since the motion is arbitrary.

Let D denote the partial differential operator whose components are

dv '
diT' d~) ' ^^ *^^* ^ bears the same relation to v that V does to the

vector r whose components are (a?, y, z). From what has been said we must
suppose that B operates only on functions of v, and not at all on (x, y, z),

(?> V, D. {^x, Vy, Vz), or any component of a higher order acceleration. In

particular it does not operate on E, while D (vV) = V.

Operate with £> on the series (303), § 201 ; we obtain

,ti s - 1 ! c« •

Replacing s by s + 1 in the series and using (303), we get

VFi*+i) = c2)F<*) (311).

This relation is fundamental ; by means of it we can express the function

U*> in terms of functions of lower order. We find from (302), § 201,

jjih) ^ ym _ (^-^)
p-(*+j) ^ i'^^) |A(*+2) ^ ('^^y

yik+i) • (312')
2c 6c^ Sti' ^ ^'

205. Substituting from this equation in (297) and (298), § 200, we get

the following expansions for the potentials

:

^ = F'o. - (^ V<^> +<^ F'=. +^^ F<^. + (313).

c [ 2c 6c' Ho"

-j{^"'-^-|^^-+-}+|.{l----}- (314).

As before we have

^ {(vR)/c + ^^^
'^

(l-v'^lc^fS
^'*"^'''

where S = {(vR)Vc'' + (1 - ^Vc") -B'}*.

When we regard R as of the first order we must treat F"" as of order — 1,

F'" as of order 0, F'^' as of order 1, and so on. Moreover, the operator D leaves

the order of its operand unaltered.

Thus the approximations in (313) and (314) are carried to the order 1.

The principal terms are of the order — 1 and involve the velocity, but not the

accelerations.
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The terms next in importance are of order and involve the acceleration as

well as the velocity, but not the accelerations of the second and higher orders.

The smallest terms written down are of order 1, and involve the accelerations

of the two lowest orders as well as the velocity, but not those of the third and

higher orders, and so on.

The principal terms give the potentials due to the osculating uniform

rectilinear motion, in which we have a point charge occupying the same

position, and moving with the same speed and in the same direction as the

actual charge at the time considered, but without acceleration. The terms

of the two lowest orders together give the potentials due to an osculating

motion in the circle of curvature with the actual speed and acceleration, and

so on.

The series (309) and (310), § 203, or (313) and (314), are equivalent to the

series obtained by Schwarzschild*. They converge provided that -R be less

than a definite multiple of the distance cT, where T is an upper limit to the

interval of time for which the developments of the coordinates of the point

charge in powers of t are absolutely convergent. This condition excludes

times for which an acceleration, of whatsoever order, becomes infinite ; that

is to say, it excludes times at which the motion of the charge becomes

discontinuous, as was to be expected. Moreover, it assumes that all the

Junctions F*' remain finite ; this requires that the denominators, and there-

fore also the quantity 1 — v^\&, be different firom zero. In fact convergence

requires that the speed of the charge be always less than that of light.

" loc. cit. pp. 249 and 250, IV a and IV 6.



APPENDIX D

THE MECHANICAL FORCE EXERTED BY AN ELECTRON ON ITSELF

206. Our object in this appendix is to calculate the internal mechanical

force, Fi, on a moving electron, the expressions for which have been given

in § 143, Ch. XI, for several types of electron. This will be done with as

few restrictions as possible on the form and structure of the electron, as a

preparation for an investigation—to be carried out in Appendix E—of the

conditions under which a mechanical explanation of the electron is feasible.

We shall start from the expansions (313) and (314), § 205, for the

potentials due to a moving point charge, calculate the mechanical force due

to one element of the electron on another by means of the general formula of

Lorentz (VI), § 140, and sum for the whole electron, thus obtaining the

resultant mechanical force exerted by it on one of its elements. This will be

required for the investigation of Appendix E.

For the purpose of verifying the expressions given in § 143, we shall

integrate the expression just mentioned over the whole electron and in this

way obtain an expression for the internal mechanical force Fj. It need

hardly be pointed out that the force P^ only vanishes for an electron which

moves uniformly without any relative motion of its parts, because Newton's

Third Law does not hold for two electric charges in relative motion.

207. The convergence of the series (313) and (314) requires that the

greatest distance between any two elements of the electron be small compared

with such lengths as the radius of curvature of the path of either element,

and that their speeds be less than that of light. When there is relative

motion, due to rotation or deformation of the electron, these two conditions

require that the relative velocity of the two elements be small compared

with that of light ; consequently the velocities of rotation and of strain must

all be finite. For the present we shall make no further assumptions

respecting the form or structure of the electron.

208. Notation. In order to express the relative motion explicitly we

shall use a moving origin, namely the electric centre already introduced in
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the footnote to § 155. We shall denote its radius vector and velocity relative

to axes fixed with respect to the observer by r and v respectively.

Let dei denote an elementary charge of the electron, and r^, Vj, u, its

radius vector and velocity relative to fixed axes, and relative to the centre

respectively. Then we have from the definition of the electric centre

er = Jr^dei\

ev = Jv,de. i (315).

= JUideJ

If we expand Uj in powers of the coordinates of de^ relative to the electric

centre and substitute in the last equation (315), the linear terms disappear

on integration on account of the first equation (315). Hence the constant

term of the expansion must just neutralize the terms of the second and

higher degrees. This means that the electric centre moves about in the

electron, because its velocity differs by second order quantities firom that of

the element of charge with which it coincides for the moment.

209. Denote by R the vector drawn ^rom dei to de^, so that R = Fa— Tj.

Also denote by Fj'*', or Fa*', as the case may be, what the function F'*',

defined by (307), § 202, becomes when v is replaced by Vj, or Vg, and {w, y, z)

and (^, 7), f) by {x^, y^, z^) and {x^, y^, z^), or (x^, y^, Zj) and (x^, y^, z^

respectively. Then we get from (307)

.(316).

Thus Fi*' and F,'*' difier in two ways: (1) because the sign of R is

changed
; (2) because Vi and Vj are interchanged, that is to say, on account

of the relative motion.

210. Let ^12 and Ou, or <^2i and a-j,, as the case may be, denote the

potentials at the position of de^ due to unit charge at de^, or at dei due to

unit charge at de^. Also let Dj, or Dj, denote vector differentiation with

respect to the components of Vi, or Vj, respectively. Then ^12 and ajs are got

from (313) and (314), § 205, in the form

</..= F/»)-(^V>i"+^-^V,<^)+^-^>-F,<^) + (317),

a.2 =^ JF,.o.
-(i^) F- +^^ ^>''^' +^^^ ^.<"'-+ -

i?|F»)-<^'^') 1^.'^'} + £3{f^'='--}-(318).
2c

<^ji and aji are given by the same expressions with a suffix 2 in place of the

suffix 1.
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211. Let fij, or fai, denote the mechanical force on a unit charge at de^

due to a unit charge at de^, or on a unit charge at de^ due to a unit charge at

de^, as the case may be. They are found most easily from (XV), § 6,

c cdt

where V„ operates only on a, not on v.

Let Vi, or Vj, denote vector differentiations with respect to the com-
ponents of Ti, or Tj, as the case may be.

Putting <^ = ^ij, a = ai2, v = v^ and V = Vj, we get by means of (317) and
(318)

f„ = - {l - .(^)} {v.F..». -^^ V,F.™ + (Ml) v,f.<».

_>|F.".-(i|^>Fa. + ...|-j|F")-...| + . ..]...(319).dt

fji is got by interchanging the suffixes 1 and 2.

Since the operator Vj lowers the order of its operand by one unit, the

principal term in fj^ is that involving V^Fi'"', and it is of order - 2. The
terms next in importance are those which involve F,"" and VjFi"', and they

are of order — 1. All the remaining terms are of order 0, and those not

written down are of order 1, or higher.

212. The mechanical force exerted on the element de^ by the rest of the

electron may be written in the form Fi^de^, where

Pi2=/fiA (320).

This is the force required for the investigation of Appendix E. As a rule

the suffix 2 may be omitted as unnecessary.

The resultant internal force exerted by the electron on itself is given by

Ti = jFi,de,=jFi,de^ = ^f(r,,+ f^)deide, (321).

The last, symmetrical, form is the most convenient for use. In it both

integrations are extended over the whole electron.

This is the force for which expressions have been given in Ch. XI, § 143.

It does not generally vanish, because the relation required by Newton's Third

Law, namely, fi2 + Ta = 0, is only satisfied for two charges which move with

the same uniform speed in parallel directions.
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The method just outlined for finding the mechanical force, based as it is

on the series (319), involves troublesome expansions, but the work is very

much simplified owing to the fact that a large number of terms cancel out

from (321) by sjnnmetry, and those left in happen to be easily amenable to

calculation.

We might have deduced the force by an application of the Principle of

Least Action, based on the electrokinetic potential of Schwarzschild, but the

calculation of the Action involves more troublesome integrations than the

direct method, which for that reason has been preferred here.

Sis. Before integrating the expression (319) we shall find it convenient

to expand it in terms of the relative velocity u, but as a preliminary to this

process we shall transform (319) slightly. Since the function Fj"' only

involves v, and the differences of the coordinates {x^ — «i, yi—yi, Zi — ^i) we

have

^= (V.A) F,w + ({V, - V,) V,) F,»>.

Also from (311), § 204, we get V^F^w = cA^i'"'- Hence

A precisely similar relation holds for V^Fj'".

Substituting these results in (319), and using (311), § 204, wherever

possible, we find after some simple transformations

^n = - |l - ^^} {V,F,<»> + ^ ({V, - v^ A) V.F.<«> +^^ AF,0)

8c
"af,»>

(v^v,)-(v^ (v.v.) (,A) n y „,
(V^vg) n ^ ,.,

d

'^'dt
i|l - ^-^^1 AF.'«)-5{F,<«) + H{v.- V,} A) T^.""} +5 F,"

2c' dt J
(322).

This form for f^ has the advantage that, by means of (311), all the higher

functions Fj*' have been replaced by the two lowest, Fi'"' and Fj*', so far as

the terms of the three lowest orders are concerned; the functions Fi'^', ...

only occur in terms of order higher than zero, which have been neglected in

(319) and (322).
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214. Expansion in powers of the relative velocity. We must now
expand (322) in powers of the relative velocity. In doing this we must bear

in mind that, in accordance with § 207, the relative velocities u, and Uj are to

be reckoned as small quantities of the first order. To be quite exact, the

ratios ujc and u^/c are to be treated as of the same order as the ratio of the

distance R to the radius of curvature of the path, or any similar length. We
shall begin with the expansion of the function Fj*'. Keplacing v by v, and

V by Vj in the series (303), § 201, we get

Now Vj does not operate on v or Uj ; hence, expanding the symbolic

operators, arranging according to powers of Uj, and using (303) and (311), we

find

Fii*' = {l + (u,D) + Hui-D)'+---}'^^* (323),

where D may operate on Ui, provided that we interpret (UiZ))" to mean

(Ui (Ui Z))Z>), and so on, always taking care to keep the velocity Ui in front of

all the operators D whenever it depends on v.

215. We see from (316), § 209, that the function F<*) is defined by (307),

§ 202. If we separate the rational and irrational parts of this equation we

can write

(vR)*^ c-*' + (k), S' (vR)*-' c- »-°' + . .

*'^*"
(l-wVc^)*/S

{k\ (vR)*'-' c-*-" + {k% S' (vR)*^-" c-'*-^" + .

W.=h— n —m'ilrm'(1 - wVc')*

.(324).

Vje is an irrational homogeneous function of the differences of the co-

ordinates {Xi -Xi, yi-yi, Zi- Zi) of the degree k-1, and TFi_, is an integral

rational homogeneous function of the same degree.

The first two pairs of functions are

F„ = i, lf„ =
.(325).

'c{l-v'/c')S.' ' l-v'lc'l

We see from (316) that the corresponding expansions for the functions

Fa*' are got from (323)—(325) by interchanging the suffixes 1 and 2, that is,

by replacing Uj in (323) by u^, and changing the signs of all the odd functions

Ft, namely F,, F3, ..., and those of all the even functions Wk, namely Tf„,

W,,....
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216. Operate on both sides of (323) with V^, bearing in mind that V^

does not operate on Uj, nor on v, and is commutative with D. Then we get

V,F,i*) = {l + (u.D) + i(u>Z))'+...}V,F<*> (326).

Remembering (311), § 204, we see that we may replace V^Fi*' by A^i'*'

and VjF*' by DF'*'. Multiplying scalarly by v, — Vj, which is the same

thing as Ug— Uj, we get as far as terms of the second degree,

({v, - V,} A) F,*> = |({u, - u,} D) + ({u, - u,} (vi.D) i))| F<*) . . .(327).

Adding one half of this to (323) we get

F,*> + i ({v, - V,} A) F,<^ = |l + i ({u, + u,} 2)) + i (u, (u,D) D)\ F»)

(328).

Operating on (327) with Va, remembering that Vj operates on Vjand Uj,

but not on Ui, or v or Vj, and using (323), we easily see that we may replace

Fi'*) in (328) by VjFi«, provided that we replace F'*' by VjFW.

217. Transformation of the force. We shall now apply the results

just obtained in §§ 214—216 to the expansion of the expression (322), § 213, in

powers of the relative velocities, beginning with the large terms of orders — 2

and — 1, which are conveniently taken together. These terms are the first

and second in the first line and the first and second in the last. We get by

means of (323), (326) and (328)

1 -^1 jl + i (K + u»} D) + i (u, {u,D) i))| V,F„

^jl_(^|{l+(u.2))}DF-5}l+i({u, + u,}i))|F,

(329).

Consider the first line of (329). Since Vj = v + u,, Vj = v + Ua, we have

. (ViVa) ^. V' ({Ui + u^v) (UiUQ

c' c" d' & '

Hence retaining only squares and products of Uj and Uj, we get for the

first line of (329)

d
'^

dt

l-j:)v.F-i(l-f;)({u, + u.}Z>)V.F„ + ll'^-t^)v.F„

i ( 1 -g (u. (u./)) D) V3F + ^^^^^^ (K + u.} D) V,F„ +^^ V,Fo.

which reduces to

- jl + i (K + u,} D) + ^ (u, (U.Z)) i))}
( 1 - 1) V.Fo

+ ^-^^^^*--\(u,-u,)i))V,Fo (330),
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because D (1 — v^jd') = — 2v/c^ and consequently

({ui + XL,] r)/c'' = - J ({u, + u,} B) (1 - vyc%

and (UiU^Vc^ = - i ("2 (Uil>) !>) (1 - t'VcO-

In the same way we get for the second line of (329)

dt

+ ^^n-i(i-^J(l"^-".}^)^^.]...(331).

218. The remaining terms in (322), § 213, are all small of the order 0,

and we may use first approximations.

In the first term of the second line we may replace DiFj"" by its first

approximation DV^, and in the factor neglect the products (UjUj) and (UjUa).

Thus we get

((u.-u,}v)-(K-u,]v)
^^^ ^332).

In the remaining terms, which involve Fi"', we may replace v, , Vj, Vj , Dj by

the symbols v, v, v and D, and Fi"' by its first approximation Fj + W^, where

Fi and W^ have the values (325), § 215. In this way we find

[ \ cV 1 6c 8c
J

*"
2c» "^ 2c» ^^.-a[^.-£.f;

+ :

2t 2(VT)V 2(VY)V 2(vv)^v
+ o_ /_,—rsTs + Try,

—
~^,. + ttt, rr:^ • w^o;,

3c (c^ - ?;^) 3c (c"" - iff c{c'- vj c {c' - v'f

where the terms in the last line are derived from TTi, and are got by differenti-

ating the functions in the first two lines, but with F, replaced by TT,, or

(1 - v^jc'YK

219. Collecting together all the terms found in (330)—(333), we get

fi. = - |l + i ({Ui + u.} K) + i (u, (u, D) i>)} (1 - ^5
^»^»

Ic^

^.dt
i|i+i({u,+u,}i})}i)(i-^;)F„

+ ^'n-i(l-g({u.-u,}i))i)Fo

({U, -U.|v)-({U.-Ux}v) j.y

+ / , «^ [CyD ) ^ (vD)^1 ^ (vv)(vi))
,

(vV)"

~V Wt'er'*' 8c I
"^

2c' '^2c»_
i)F

2t 2(vv)v 2(vv)v 2(vv)'v
"^

8c (c'' - O "^
3c (c" - 1)^'' cid"- v^f c{c^- V'f

2c' dt

(334).

16
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This is the desired expansion in powers of the relative velocities up to

and including zero order quantities. The corresponding expression for fji is

got by interchanging the two elements of charge dei and de^. For this

purpose we must interchange u, and Uj, and change the sign of the vector R,

which amounts to leaving Vo unchanged, but changing the signs of VaFj and

Fj. The terms in (334) fall under two heads: (1) terms which are un-

changed, namely, those in the third and eighth lines ; and (2) terms which

merely change sign, including all the remaining lines. The latter terms

constitute the reversible, Newtonian, part of the force, to be denoted by f„

in future, the former the irreversible part, ff.

Again, as regards the order of magnitude of the terms, we see from (325),

§ 215, that Vo is of the order — 1, and V^ of the order in the linear

dimensions of the electron. Moreover, the operator Vj lowers the order of its

operand by one unit, so that V^Fo is of the order — 2. Lastly, Uj and Ua are

of the first order.

Hence it follows that the principal term of f„ is of the order — 2, that of

fj only of the order — 1.

We shall only require the complete expression for fi^ for the investigation

of Appendix E, and that only as far as the two lowest orders ; hence we can

neglect zero order terms in f„, which amounts to keeping only the first two

terms in the first line of (334).

On the other hand we shall require the value of f^ in order to find the

resultant mechanical force of the electron on itself, and with it to form the

equations of motion. These involve external forces, which are of the order

zero ; hence we must retain zero order terms in fj.

220. Workings ea:pressions for the forces.

necessary terms from (334) we get

Collecting together the

i-:.)v.F

i({u. + u,}.D)}i)(l-J)F

2(vt)v 2(vv)v 2(vv)^v \

3c (c^ - v^) ^ 3c (c^ - v^f
^ c{g'- v^y c((f- v'Y (

f:

d
' dt

1 +

2v
.(335).

^12 — *m + *i > f»i = - fn + fi

1

^
>S VKl - vyc')R' + (vR)Vc^J

The suffix has been omitted from V^ as no longer necessary. The last

equation follows from (325), § 215, and (308), § 202 ; /3 = v/c as usual, and 6 is

the angle between R and v.

For the purpose of calculating fjs or fji, for use in Appendix E, we need

only retain the first term in fi, neglecting all the remaining zero order terms.
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221. The relative velocities. Before proceeding further with our

investigation we shall find it useful to consider what expressions are possible

for the relative velocities.

Obviously the forces cannot be calculated from the working expressions

(335) until the expressions for the relative velocities Ui and Uj as functions of

the relative coordinates of the two elements of charge and of the time have

been assigned. On account of the smallness of the electron we can expand

the relative velocity u of any element in a series of powers of its relative

coordinates (x, y, z), as we have already pointed out in § 208. It has been

shown there that the constant term in this expansion is small of the second

order, because we have taken the electric centre as origin. In our working

expressions (335) the relative velocities Uj and Uj only occur in the small

terms ; hence it is sufficient to calculate them to a first approximation and

retain only linear terms. Thus we may write

(m,;, Mj,, Mj) = (o-uiB + 0-122/ + o-,3«, o-iiX + a-^y + (T^Z, <7n«> + os^y + Tsa^)}

or in vector notation u = <rr
'

(336).

The quantities <t are independent of {x, y, z), but generally depend on

t; usually they are functions of the velocity v of the electron and of its

derivatives.

Hence to our approximation we may regard the electron as homogeneously

strained. The strain operator a involves nine coefficients, because the strain

is generally rotational. The configuration of the electron is completely

determined when we are given its configuration in some standard state, and

the strain as a function of the time. It is convenient to take the state of

rest as the standard.

222. The bounding surface. The bounding surface of the electron at

any time is completely determined under these conditions. In fact if its

equation be F {as, y, z, «) = 0, F must satisfy the equation

3^
,

^F^ dF- dF . ,„„„.

Thus, if ^ (x, y, z, t) = constant, y}r (a;, y, z, t) = constant, and x («. y> ^. = con-

stant be three independent integrals of the system

dx _ dy dz _^^'

.(338),

the equation of the bounding surface is

where F is an arbitrary function, and is to be determined so as to satisfy the

initial conditions.

16—3
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Vice versa, if the boundiag surface of the electron be given at all times,

the strain is no longer arbitrary, but must satisfy (337) at every point of the

surface.

So far we have supposed the origin to be moving, but the axes to remain

parallel to their original directions. If however the axes be rotating in any

assigned way, the equations (336) and (337) still hold, provided only that

u and a now denote the velocity and strain relative to the moving axes.

223. For example, to make this quite clear, consider the Lorentz

electron. Take Oa> in the direction of motion of the electric centre, which

is taken as origin as before. Then, if («„, y^, z^ be the relative coordinates

of any element when the electron is at rest, and {x, y, z) its coordinates when

the velocity is v, we have

a; = a;o \/(c' - w')/c, y = y<i, z = Zo-

Hence Ux = — vv ae/(c' — v'), Uy =% = 0, o-n = — vvj(d' — v^),

and all the other relative strain coefficients are zero.

The equation (337) becomes

dF vv 9^^o

The equations (338) are

dx dy dz ,,
: = -^ = -fr = dt.

VV
X

d'-v^

Three independent integrals are

ex
= constant, y = constant, z = constant.

^J{C^ - V^)

Hence the equation of the bounding surface is

^(v(^'^'^)=''
F{x, y, z) = being its equation in the state of rest.

For instance, if in the state of rest the bounding surface is the sphere

Of' + y^ + z' — a" = 0, then when the electron is moving with velocity v, the

bounding surface is the spheroid — + y^ + z^ — a^ = 0, with axis along the

line of motion.

Vice versa, if the bounding surface be assigned as the spheroid given
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above, the relative strain a- must satisfy the condition (337) at every point of

the surface ; that is, we must have

2otcV ,
,

. 2(fx ,

(ifZ^ •" ^'^"'^ + '^"^ + ""''^^ 3^372 + (o-aa; + a^y + a^z) 2y

+ (cTsia; + 0-322/ + <^ss.2) 2^ = 0,

for all values of x, y, z which satisfy the equation

cV
c* — «' .7

From these equations we get

"jS + T32 = 0, 0-31 + 0-18 = 0, 0-21 + 0-]2 = 0,
C —V C — V

vv
""u + Ti—Ts

= 0, a'22 = 0, 0-33 = 0.— V

Thus any possible strain is compounded of the Lorentz contraction, of

a shear— \/(<rjn* + a^i') of arbitrary amount in any plane through the axis, of

a determinate rotation
( 1 — --j) V(o"2i- + a-^) in the plane of the shear, and of

an arbitrary rotation round the axis.

224. The resultant internal force on the electron. The resultant

internal force on the electron, that is, the resultant of all the mutual actions

and reactions between the several elements of the electron, is found from

(335), § 220, in the form

Fi = 4 //(f.2 + no de, de,=JJfide,de, (339).

The factor 1/2 is introduced for the sake of symmetry, so as to allow us

to extend each of the two integrations over the whole electron; fj is the

irreversible component of the electromagnetic force and is given by the

second of equations (335), § 220.

By the principle of the conservation of electric charge we have

|<ie, = |^d.2 = 0;

hence the double integration of the first line of fj can be effected behind the

operator j-

.

Again, the terms in the second line of f; are completely independent of

the coordinates, so that the double integration of this line is simply effected

by supplying the factor e^, where e is the total charge of the electron as

before, every element being supposed to have the same sign.
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Hence we get

d

^'-dt
^JJde^de, jl + i ({u, + u,} D)} D ( 1

- "^^ f]

2e'r 2e'(vv)v 2e''(vv)v 2e^(vv)'v , ,

3c (c"

-

v^)
"*"

3c (c" - vy '^
cid'- vy cid'- v^f

'"^
^'

225. For the purpose of comparing this equation with the equations

given in Ch. XI, § 143, we shall write it in the form

_ dCr „

where G = - J //de.dc, |l + ^ ({u, + u,} i))| i)
(
1 - ^) F I . . .(341).

__2e^v__ 26' (vt) V 2e''(Tv)v 2e'(v^)°v
~

3c (c^ - v^)
"*"

3c (c'' - vy '^
c{c^- vy c{c''- vy J

Comparing these equations with (205) and (209), § 143, we see that

G represents the electromagnetic momentum of the electron, while K is the

radiation pressure, the expression for which was first published by Abraham*.

This agreement between his result, obtained by an indirect method, and the

present one, found directly, may serve as a verification of our analysis.

The radiation pressure may be dismissed very briefly. It is a small

quantity of the order zero, and depends only on the magnitude of the charge

and its mean motion, not at all on its configuration nor on the relative

motion of its parts. It is not diflScult to prove that the expression for

K which is in question, can be obtained by means of the Lorentz-Einstein

transformation from the well known expression for the radiation pressure on

an electric charge e, which is vibrating with high frequency but small

amplitude, so that its velocity is always very small while its acceleration is

finite. The radiation pressure on such a charge is equal to

2e^dV
3c» df'

'

where r' denotes its radius vector and t' the time. If we regard this system

as moving relative to a fixed system with velocity v, considered as constant

for the time being, and transform by the method of Lorentz and Einstein,

we obtain the expression (3418) for K, for a charge e moving with the velocity

V, now regarded as variable.

226. The electromagnetic momentum. The expression (34I2) for

the electromagnetic momentum G shows that there is a principal term of

order — 1, namely

-i//(ie.dc,Z) (1-^)7 (342),

* Theorie der Strahlung, p. 123, eq. 85, 1905.
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together with a small term of order 0, namely

-iPMe.({u, + u4D)Z)('l-^V (343).
c'.

The latter is easily disposed of. For we have by (335|i), § 220,

F= {(1 - v-'le) R' + (vR)Vc^}-"^

while D denotes vector differentiation with respect to the velocity v. Thus

Fand all its derivatives DV, D^V, ... are even functions of R, and therefore

do not change sign when the sign ofR is changed.

Moreover Uj and Uj are linear vector functions of the radii vectores r^ and

Fa respectively, and change sign when the signs of these radii vectores are

changed. This follows from (336), § 221.

Hence if the configuration of the electron at any time be centro-

symmetrical, so that to any element de with radius vector r there corresponds

an equal element with radius vector — r, the electron will always remain

centro-symmetrical, at any rate to our approximation where we neglect

squares of the radius vector. It follows further that the small relative

motion term, (343) vanishes on account of the centro-symmetry. In other

words, the electromagnetic momentum of every centro-symmetrical electron

depends only on its mean motion and not at all on the relative motion of

its parts.

All the types of electron hitherto suggested, such as the rigid spherical

electron of Abraham and the deformable spheroidal electrons of Bucherer

and of Lorentz, are centro-symmetrical. There does not appear to be any

fact known which requires us to consider types of electron not possessing

this kind of symmetry ; for this reason, and to avoid needless complications,

we shall in what follows neglect the small relative motion term (343).

227. The electromagnetic momentum of the centro-symmetrical

electron. Bearing in mind the value of V and the meaning of the operator

D, explained at the commencement of § 226, we find

_ / if\ „ {2 (vR)" + (c^ - V') R'] V + (c" - V') (vR)R
* V cv 2c* {( 1 - vyc') R' + (vny/c^Y''

Substituting this value in the expression (342) we find

^ -jj 2c^{(l-vyc^)R' + {VRylcT ' '
'"^

^'

This equation shows that the electromagnetic momentum is the resultant

of two components : (1) a component in the direction of the velocity v
; (2) a

component which is itself the resultant of a large number of radial forces,

and does not necessarily lie in the direction of the velocity.
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Forming the scalar product of Cr by the unit vector v, we find for the

component in the direction of the motion

^^-^) ^ 2? 11 1(1 - Jvc-) E^ + (vRr/cT '^'' '^'' ^^ ^-

Again, forming the vector product of G by Vi we find for the component

perpendicular to the direction of motion

_ ic^-v^)v f f (v,R)[V:R1 ^, ^, .346)
L^'^-l -

2c' ]} {(1 - «VcO R' + {vRYIaT " " ^ ''

228. In order to understand clearly the physical meaning of the

equations (345) and (346), let us take Ox parallel to the direction of motion

for the time being, and apply the transformation

x=^^{l-v'lc% y = v, ^=r (347).

It is obvious that these equations merely express the fact that the actual

electron can be derived from the transformed electron, that is the electron in

the (^, 7), f) system, by applying the Lorentz-Fitzgerald contraction. Of

course we are not bound to identify the transformed electron with the actual

electron when at rest ; such an identification involves the acceptation of the

Lorentz-Fitzgerald contraction hypothesis, to accept which may or may not

be desirable on other grounds.

Applying the transformation (347) to (345) and (346) we get

r
»

fffi I

(gji-fiy
f 2c^{c'-v')}}\ ^(?.-?,)^+(%-r?o^+(r.-a

" 2c^ ji {{e, - ?,)^ + (% - v^y

+

(r. - m"'

^ 2c^ j] {(^, - ^,r + {V. - v.y + (r= - m"
(348).

The last two of these equations show that the transverse component of

the electromagnetic momentum vanishes when one or other of the following

two conditions is satisfied, namely

(1) when the electron is symmetrical fore and aft, or

(2) when it possesses two longitudinal planes of symmetry.

In the first case, to any element de at (f, r), f) corresponds an equal

element at (— f, i], f).

In the second case, to any element de at (^, rj, f) correspond equal

elements at (f -,;, f), (f, ,;,
-

f) and {I - 77, - ^.
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Both conditions are satisfied by the electrons of Abraham, Bucherer and

Lorentz ; accordingly their electromagnetic momenta have no transverse

components.

Both conditions are violated by a spheroidal electron whose axis is

inclined to the direction of motion ; accordingly its electromagnetic momentum
has a transverse component, a result which will be verified in example 4,

infra.

229. The electromagnetic mass. There is no difficulty in defining

the electromagnetic mass in the usual way, as the ratio of the electromagnetic

momentum to the velocity, so long as the electron is centro-symmetrical. In

the general case this definition is inconvenient, because the ratio is one

of two differently directed vectors, and therefore neither a vector nor a scalar,

but a quaternion. A more useful way is to define the electromagnetic mass

as the ratio which the electromagnetic momentum bears to the speed, that is

the tensor of the velocity, by the equation

Cr = vxa. (349).

This definition makes the electromagnetic mass a vector quantity, whose

components are given by

(350).

In the same way we can define the longitudinal mass m' by the equation

m'= ^5- = m + u^— (351).

This definition makes the longitudinal mass also a vector.

When the electron is unsymmetrical, in the sense that it violates both

conditions of § 228, both masses have transverse components. But for the

electrons of Abraham, Bucherer and Lorentz, both masses lie in the direction

of motion, and their absolute values reduce to the transverse and longitudinal

masses as usually defined.

230. We can now write down expressions for the components of the

external force acting on the electron, so far as they depend on the electro-

magnetic momentum. This force is of course equal to -j- , where the



concerned, that is for -r-

,
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231. The energy relations of the electron. For the sake of com-

parison with (211), § 145, we shall begin by finding the activity, (vFi), of the

resultant internal force Fj. We find from (341), § 225,

<-^^) = -(-f)+(''^)-

By means of a few simple algebraic transformations we deduce the

following form of this equation

d
('^^) = -c^.

\ _, 2ce=(vv)] ..^, „\

where R = ^^y- W^+^ '

.(354).

3 (c'' - iff \ c^ - V

R is Li^nard's* value for the rate of loss of energy due to radiation from

the electron. When the electron is symmetrical, either fore and aft, or with

respect to any two longitudinal planes at right angles, so that G is in the

direction of v, the first equation reduces to (211).

When there is relative motion of the parts of the electron, the quantity

(vFj) does not represent the whole activity of the internal electromagnetic

forces. We shall call the latter the internal activity and denote it by the

symbol Ai.

232. In order to calculate it, we notice that the activity of the electro-

magnetic forces exerted between the elements de^ and de.^ is equal to

{(Vafia) + (vifj,)} de^de^,

on the basis of the usual definition of work. Putting Vj = v-(-Ui, and

V2 = v-i-U2, using (335), | 220, neglecting squares and products of Uj and Uj,

and integrating, we find by (339), § 224,

Ai = i//{2 (vfO + ({Ui + u^} fi) + (K - "i} f»)} ^e,de^

= {vTi)+Ar

where

4, = i jjde, de, |({u, - u,} {1 -F i ({u, 4- u,} D)\(\- ^J)
V, V

(355).

The factor 1/2 is supplied because in integrating over the whole electron

with respect to both de^ and de-i we count the pair of elements de^ and de^

twice over.

* V^cUdrage glectrique, 16, p. 5, 1898.
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Thus the internal activity Ai exceeds the activity of the resultant internal

force F,- by the amount A^, which depends on the relative motion and

vanishes with it. We shall call A^ the relative activity.

233. The expression (35.5s) for Ar can be simplified.

Since F is a function of the differences of the coordinates of the elements

de^ and de^, as well as of the velocity v, and Va — Vi = Ua — Uj, we find

d

dt
(i-^;)F}=(vi))(i-^;)F+(K-v,}v.)(i-^;)F.

so that ({u, - u,} V,)
(
1 - ^;) F= {{-iD) ^

dt

Similarly

(,„.+^,^{„(,_gr)).(,«..„,H«)i,)(i-gr^

-(lu, + a,|({ii,-n,)V,)D)(l-J)7-.

Hence the integrand of (SSSg) is equal to

(v{in({u,+u4i))li)(l-^;)F)-|^{(l-gF}

+ J ({u, - u,} ({u. + u,} D) V, - {u, + u,} ({u, - u,} V,) D^{\-
"^^

V.

When the second line is expanded, care being taken to keep the relative

velocities Uj and Uj in front of the operators, it is at once seen to vanish

identically because D and Vj are commutative with each other. By com-

paring the first term of the first line with the expression (3412), § 225, we see

that it is equal to the scalar product of v by the integrand of G ; the second

tenn however is new.

,

Multiplying by ^de^de^, integrating and bearing in mind that dei and de^

are invariable, we find

^.= -(vG)-.^^

.(356).

where * = i (l -^^|U Fd^e.

When G is in the direction of motion, it is easily proved by means of

(356) and (344), § 227, that

»=-v.|^ (357),

where v, denotes the unit vector v/i), but this is not generally true.
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234. In order to see precisely what the function <I> represents, let us use

the transformation (347), § 228.

Using the expression for V given in (3355), § 220, we find

Thus <I> is equal to V(l - v^/c^) times the electrostatic energy of the

transformed electron, of course for the same total charge. This energy

generally depends on v, because the limits do so ; it is independent of v in

the particular case of the Lorentz electron.

235. In the preceding articles we have found three different activity

equations, namely

(^^^) ^-Jt {^^**> -31$^} + (^**) - ^ •
•^^^*>' §

231.

Ai = (vFi) + A, (355), §232,

Ar = -{-7G)-^ (356),§233.

From these we deduce a fourth, namely

These equations are true for any electron, whether it be centro-symmetrical

or not. The first of them takes the place of the energy equation (211), 1 145,

which is only true when the electromagnetic momentum is in the direction

of motion, and is merely a particular case of (354).

The external mechanical force impressed on the electron, which balances

the resultant internal force Fj whenever the mass is wholly electromagnetic,

does work at the rate — (vFj), equal to Ar - Ai, by (355). Of the work thus

available, the internal electromagnetic forces consume a portion at the rate

— Ai, part of which is irretrievably lost at the rate R owing to radiation,

while the rest is stored in the electron and can be recovered if the motion be

completely reversed, in accordance with (359). We may regard the part

which is independent of the acceleration v as the electromagnetic energy of

the electron ; it is given by

Tf = (vG) + a> (360).

The remaining small acceleration term, - 2ce^ (vv)/3 (c'' - t)^)S is the

supplementary reversible radiation term, just as in § 146.

236. The remainder of the available external work, namely the part A^,

cannot be accounted for by means of the electromagnetic energy or the

radiation. The work thus unaccounted for is equal to the work done by the
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internal electromagnetic forces during the relative motion of the parts of the

electron, and must be consumed by forces of other than electromagnetic

origin.

Substituting the value of G from (349), § 229, in (356), we find

Ay^-mivv—m^ -j2 — ~ji {f'mivdv + $} - m, — . . .(361).

Thus a part of the work in question is stored as non-electromagnetic energy

to the amount
E=-Jmivdv-^ (362),

the rest is lost at the rate — m^i^jp.

For the rigid spherical electron of Abraham the non-electromagnetic

energy E is zero, because there is no relative motion ; for the spheroidal

electron of Bucherer E is zero because there is no change of volume ; but for

the spheroidal electron of Lorentz, E has a finite value diflferent from zero.

It is well known that this fact has been urged as an objection to the Lorentz

electron by Abraham*, and that an explanation has been given by Poincar^f.

We shall see in Appendix E that Abraham's difficulty is already involved in

the more fundamental difficulty of accounting for extended electrons at all in

view of the mutual repulsions between their parts.

237. When we substitute the value (349) for G in (354), § 235, we find

/ ™x <^ f a r J 2ce2(vv)] 1? _
- ('^^>

=

dt r^'
- ^"^^"^^ -3(5^1 -^^-p+^-

This equation shows that part of the external work done is lost to the

electron at the rate R — m^v^/p, owing to the combined effect of the drag due to

radiation and the pull due to asymmetry. Another small part, depending on

the acceleration and derived from the radiation pressure, is stored to' the

amount — 2ce' (tv)/3 {c^— v^f. The remainder depending on the speed is

stored as kinetic energy to the amount

T=m^v'-Jmivdv (363).

From (360), (362) and (363) we see that

T= W + E (364),

so that the kinetic energy T is partly electromagnetic, to the amount W, and

partly non-electromagnetic, to the amount E. When the electron is sym-

metrical, so that jjif reduces to the ordinary transverse mass m, T reduces to

the kinetic energy defined by (214), § 146.

We shall now consider some examples in illustration of the results just

obtained.
• Fhys. Zeitich. 5, p. S76, 1904.

t Comptes Rendiis, cxi. p. 1504, 1905.
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238. Example 1. The Abraham electron. We assume that the

elgctron is a rigid sphere, of radius a and charge e, and of uniform volume

density. For uniform surface distribution we must multiply the mass by the

factor 5/6.

The transformed electron is bounded by the prolate spheroid

where /3 = vjc as usual. It is of uniform volume density and its total charge

is e. Its electrostatic energy gives, by (356), § 233,

*=^^^>°^H| «•
$ only depends on the speed v and has no reference, explicit or implicit,

to the direction of motion of the electron. Hence, by (357), § 233,

G =

G is in the direction of motion, so that m^ = m, m/ = mf, and the other

components of the vectors m and m' are zero. Hence

3e^ (1 + ^, 1 + /3 , \ toM-,

^^^I^A-W^'^T^-') ^^^^^'

"^=^;8-=
5c'a^Hl-/30 l^"^;g~ ^1^^ ^ ^-

The electromagnetic energy is given by (360), § 235, whence

TF = mi;^ + * = |f(^log^-l) (369).

In the present case there is no relative motion, so that the relative activity

Ar vanishes. Accordingly the non-electromagnetic energy E reduces to a

constant, and we get by (363), § 237,

^=/>«-£(p'°?^-0 (^""'

which only differs from TT by a constant.

The values of m and T agree with those given in Ch. XI, (206), § 143,

and (215), § 146.

239. Example 2. The Bucherer electron. The electron is a

Heaviside ellipsoid with semiaxes a(l-/3''y", a(l-;8V^ ail-^)-^", of

uniform volume density and total charge e. If the charge were an equi-

librium surface distribution the mass would have to be multiplied by the

factor 5/6.
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The transformed electron is a sphere of radius a (1 — ;8'')~^'^ of uniform

volume density and with total charge e.

The usual expression for the electrostatic energy gives by (356), § 233,

^^s^HWT'
5a

<I> involves only the speed v explicitly, but it also involves the direction

of motion implicitly, on account of the want of spherical symmetry of the

original electron. Hence we must use (348), § 228. We find that the second

term in G^ is one-third of the first, while G-^ and G^ vanish identically. Hence

we find

^^bo^a^lI-H^)
^^^2)-

The vectors m and m' are in the direction of motion, so that m^^m,
TTz/ = m', TO, = m^ = TO,' = TOf' = 0. We obtain

- =5W^) ^^^^)'

_ c^(m/3) _ ^eH\-m _„. .374.'^~
dU ~ 5c»a (1 - /i^r'' ^ ''

The electromagnetic energy is given by (360), § 235, whence

""--^'^^^^w^)
(^^^)-

The kinetic energy is given by (363), § 237, whence

'=lr''''-fa{w:^)-'} (^^«>

T differs from IF by a constant, so that the non-electromagnetic energy

E is constant, agreeing with the fact that the relative activity vanishes.

This is easily verified by means of (356), § 233. (371) and (372) give

4e^/3/3 d^
^^^^ oa>^(l-(i')~ dt

so that A~ = 0.

Thus the relative activity vanishes although there is relative motion of

the parts of the electron on account of its rotation and deformation. Since

the strain takes place without change of volume, it would seem that the

relative activity depends on changes of volume.

The values of to and T found above agree with those given in Ch. XI,

(207), § 143, and (216), § 146.
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240. Example 3. The Lorentz electron. The electron is a

Heaviside ellipsoid with semiaxes a(V(l — /8'), 1, 1), of uniform volume

density and charge e. For an equilibrium surface distribution the mass

would have to be multiplied by the factor 5/6.

The transformed electron is a sphere of radius a, of uniform volume

density and with total charge e. The usual expression for its electrostatic

energy gives by (356), § 238,

^'"^^^ <.m.

As in the last example we must use (348), § 228, to find G ; we get

^ = 5c^aV(l-;80
^^^^^-

As before m and m' reduce to their tangential components, so that mi = m,

mj' = m', mr,=m^ = m,' = m/ = 0. We find

4g2
"^-

5c'aV(l-/30
(^^^^

'^-~dr~^<^cL{\-^r' ^ ^'

The electromagnetic energy is given by (360), § 235, whence

The kinetic energy is given by (363), § 237, whence

r=/V.^. = g|^-^^-l} (382).

W and T differ by a quantity which depends on /8. Accordingly we

find that the relative activity Ay is different fi-om zero. In fact we have

from (377) and (378)

,.«, 46^/3/3 4>d<^
(vG-) = — = —
^ ' 5av'(l-/8') 3 dt

'

Hence Ar=n -jr > ^^^ ^ non-electromagnetic energy E exists. By (362),

§ 236, we find

= - rmvdv-^ = ^ y(l - ^') - 4.} (38.3).

Jo ^O'
E

'o

The relation T=W-\-E \s easily verified. Of course arbitrary constants

may be added to W and E, but since T represents kinetic energy, the

constant in T has been chosen so as to make it vanish when the speed

vanishes.

The values of m and T just found agree with those given in Ch. XI, (208),

§ 143, and (217), § 146.

s. 17
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241. Example 4. Deformed Lorentz electron. As an example

of an asymmetric electron we shall take the case of an electron, which is

got from the Lorentz electron by a slight deformation symmetrical about an

axis inclined to the direction of motion.

Take axes of (x, y, f), such that Ox makes the angle i/r with 0|,

measured towards Orj, so that

^ = x cos i|r — y sin 1^, t; = a; sin i/f + y cos i/r (384).

Let us suppose that the transformed electron is given by

r = a + ePi{^), i>0 (385),

where fi = cos 9, and (6, <f)
are the colatitude and longitude referred to Ox as

polar axis and any convenient initial meridian. We shall assume that e is

so small that its square may be neglected. The electron deformed in this

way is no longer centro-symmetrical in the case of i an odd integer, and

therefore the small relative motion term in the electromagnetic momentum,

(343), § 226, does not vanish. As however it is small of zero order in any case,

it becomes absolutely negligible when e is small. The volume of the trans-

formed electron is the same as that of a sphere of radius a, and the volume

density of the uniform electrification is 3e/47ra' as before. Any double integral

of a function of the coordinates can be reduced by means of the equation

||/. de,de,= (||/. de^de^^ + |^ (^\jf. P, {^) dS.dV^^ . . .(386).

The integrals on the right are taken over the sphere r = a; the second

integral gives the effect of the thin shell between the sphere and the surface

(385). For an element of this shell we must put dei = 3eePi(fii) dSi/4nra^,

where dSi is a surface element of the sphere, and de2 = 3edF2/47ra', where

dV^ is a volume element. In this way we find one half of the second

integral ; the other half is got by interchanging de, and de^, and obvioiisly

has the same value as the first half.

242. We shall first calculate the scalar integral <I> from (356), § 233 ; for

this purpose we put/=(l — j8^)'/Y2i2, where R is the distance between the

elements dei and de^ of the transformed electron. The value of the first

integral has been found already in § 240, and is given by (377) ; hence its

value is 3eV(l — ;8^)/5a. The second integral becomes

9^€^/(l-^)f[Pi(,l,)dS,dV,t167rW Jj R
taken for a sphere of radius a. This integral vanishes, for it is the mutual

electrostatic energy of the sphere and of a shell whose thickness is ePi{fi).

In fact the potential due to the sphere at every point of the shell is the

same, and the total volume of the shell is zero. Hence we find

^JSeW(^_-^
5a
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243. We must now calculate the scalar integral Cr, or, what amounts to

the same thing, the vector m by means of (350), § 229. For this purpose

we require to find the integiuls

}} R' ' JJ R' ' J] R'

The last vanishes identically because the axis of symmetry has been

taken to lie in the plane ^tj. In the absence of any deformation the first

ffde de
integral is one third of the integral

1
1 —L-- ^ taken over the spherical trans-

formed electron, that is, it is equal to 2e'j5a, and the second integral vanishes

by symmetry. Hence we find by (386), § 241,

J J R' 5a
"^

STT'a' J] R'
\

JJ R' SttW j]
'

m-^d(v^-V^)de,de,_ 9e'e f[ {^,-^r)(v,-v,)Pi(fiddS,dV,
{--^^^^^-

R'

Both the integrals in (388) can be expressed in terms of a single integral

by means of the transformation (384), § 241. For this integral we shall choose

the following

J ^jjiyiZlllpkz^ p.(^)dS,dV, (389).

By symmetry we have

[f(cc,-x,yPi(fH)dS,dV, __
Jj R' ~

'

ffiy, - y,y Pi (/.Q dS,dV, _ jfj^, - gQ" P, (/^Q dS.dV, ^^^

IJ
ioo2-«!i){y2-yi)Pi(l^i)dS,dV,_ ^

Hence we find by (384)

jY(g.-rO(^.-y(MO^^:'^T^^ ^_3j3in^eosV. "

(390).

244. Calculation of the integ;ral /. We shall omit the suffix 2 as

no longer necessary. We have identically

(y-y0'-Kg-O' _ 9 oo-x,_l .11^
^ -9^^ R^^"" '^hxR-

The first term, IjR, gives the integral jjPiitH) dS.dVjR, which vanishes

identically, as we saw in § 242.

17—2
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Since the element dSi is on the surface of the sphere, and the element

dF is inside, we have r<a; hence

1 ^Y ^"^~(^»S7)
, ^ = ^^^ + ^(1 _ ^.) v(l _ ^,^) cos (<!> -U

Put d8i = a^dfjLid<f}T,, dV=r'drd/j,d^ in (389), § 243, and notice that

«;-«,, = r-;x-a/.,, and ^ = ^-+___.

Thus the integrand of (389) only involves ^ and ^i in the factors P„ (cos 7)

;

hence the integrations with respect to
<f)

and <^i can be performed at once

by using the addition theorem for spherical harmonics. We get

»i=oo 4,^3 ra n n
/ d 1—u? d'

We have
d 1-M° 9

dr r
|).»P»(M) = nr»-^P^i(/.),

and (271 + 1) /tP„ (/a) = (n + 1) P„+i (/i) + mP„_, (/i.).

Substituting and integrating with respect to r, we find

n=oo

/= 2
i-TT^ahi

„=n(rH-3)(2n-l)

„r„(. + 2)(2^H:^)i.J.,K- + l)^»-^•W + '^P.-x(/xO}

P„_i(/x)Pi(/^)d/id/i,.

The only values which yield a result different from zero are given by

n=i = 2 for the first integral, and n=l, i=2 for the second. Hence we

find I = — 647rW/225 for i = 2, zero for all other values of i.

Substituting these values in (388) and (390), § 243, we find

ri^,-^iyde,de,_2e''
,

4>e'e ,„

//
'" gr-'-S + SCc^-t-l). for i-2

(^2 - li) (V2 - Vi) de^de^ _ 1 2e''e .

i?» 25a'

For other values of i the terms in e are absent.

sin -^ cos a/t, for i = 2

.(391).

245. The electromagnetic masses. Substituting from (387), § 242,

and (391) in (350), § 229, we get, for i = 2,

46*

6e^
m.=

25cW
sin l/r cos 1^, OTf =

.(392).
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From (351), § 229, we find

mj' = j^,, m' = m„ m/ = (393).

For all values of i other than 2 the terms involving e are absent. Thus

the only axially symmetrical deformation of the transformed Lorentz electron,

which has any effect on the masses, is that of order 2, for which

r = a + ^e(3cos=^-l).

This changes the sphere of radius a into a spheroid of revolution, with

semiaxes (a + e, a — \e, a — ^e), and with its axis of symmetry at an angle ^
to the direction of the motion. The proportional change in mj, and also in

m/, is independent of the speed, and equal to one fifth of the proportional

change of the radius vector drawn in the direction of motion. It is a

maximum when the axis of the deformation coincides with the direction

of motion, a minimum when it is at right angles, and zero when it makes an

angle cos"' 1/V3 with it.

The values of m, and m,' are independent of the speed, vanish when

the axis of deformation is along or perpendicular to the direction of motion,

and are greatest when it makes an angle 45° with it.

246. The energy. We see from (363), § 237, (392) and (393) that the

kinetic energy is proportional to that of the Lorentz electron, and given by

4e^

5a v(TV)-4^+ira(=^^°^^^-i)} <^^^>

For the electromagnetic energy we find from (360), § 235,

For the non-electromagnetic energy we get from (362), § 236,

We see from (394) and (395) that for a positive value of e, that is, for

a small elongation along the axis, both the kinetic and the electromagnetic

energies are greatest when the axis of deformation is along the direction of

motion, and least when it is at right angles.

For a negative value of e, that is, for a small compression along the axis,

the reverse is the case.

The non-electromagnetic energy behaves just in the reverse way.

The electromagnetic forces tend to produce contraction in the direction

of motion beyond the amount, appropriate to the speed, given by the Lorentz

ratio 1 : V(l — yS"), while the non-electromagnetic forces resist it.



APPENDIX E

THE MECHANICAL EXPLANATION OF THE ELECTRON

247. Our investigations of App. C and D respecting the mechanical

forces on the electron have been avowedly based on the assumption that

the electric charge occupies a finite region of space, whether it be a small

volume, a small closed surface, or even a small closed curve. This assump-

tion—that the electron has parts—compels us to face the problem of

accounting for its continued existence in spite of the mutual electromagnetic

repulsions between those parts. We must seek some system of forces of

non-electromagnetic origin*, which shall equilibrate the resultant of all the

electromagnetic forces on each element, whether they be due to the remaining

elements of the electron, or to an impressed external field. Moreover, since

the electron is capable of motion in any arbitrary curve with any arbitrary

acceleration under the action of the appropriate external field, the system of

non-electromagnetic forces must be adaptable to every possible motion of the

electron as a whole and consistent with the results of observations on the

electromagnetic momentum and electromagnetic mass.

Two alternatives respecting the nature of the non-electromagnetic forces

suggest themselves : they may be actions at a distance, or actions between

neighbouring elements, equivalent to stresses in an elastic medium. The

first alternative may be dismissed in a few words ; if actions at a distance

are to be admitted at all, we may as well regard the electron itself as a centre

of force, and the electromagnetic force due to it as an action at a distance.

On this view the electron is an indivisible whole and has no parts; no

explanation of its existence can be given, nor should it be expected. This

hypothesis is no doubt feasible, but it has difficulties of its own ; it does not

appear to afford much scope for explaining the differences between positive

and negative charges, or for constructing systems of charges sufficiently

stable and permanent to serve as models of the atom.

* During the passage of this book through the press, H. T. Wolff, Ann. d. Phys. 36, p. 166, 1911,

has suggested a way of attaining the same end by modifying the law of electric force. His

additional force, as regards mathematical form, is included in the more general expression found

below.
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248. We shall adopt the second alternative as more in keeping with the

general trend of this essay, Jind accordingly shall assume that the non-

electromagnetic forces are due to stresses in an elastic medium. At the

present stage we need not enter into the question whether this elastic

medium is the electric charge itself, or is different from it, but mechanically

connected with it so that the stresses are transmitted to it practically

unchanged. All that we do in fact assume is the formal equivalence between

the mathematical expressions for the non-electromagnetic forces of the

electron and those of the forces due to stresses in an elastic medium.

In this form the problem is too wide to require any special investigation

;

for it is possible to find a system of stresses in an elastic medium which
shall equilibrate any system of forces whatever, whether applied throughout

a certain volume, or to a certain surface. In particular a type of stress can

always be found which shall equilibrate the electromagnetic forces of the

electron, whatever its motion may be, but its investigation would not be

of much interest.

We shall content ourselves with determining the conditions under which

the stress system reduces to a distribution of hydrostatic pressure, without

concerning ourselves with the physical causes producing it. An investigation

of this kind will be useful as a basis for some future physical theory of the

electron, and of its connection with the electromagnetic aether, if the aether-

hypothesis should be adopted. In the latter case the rotational displacements

of the aether would be needed for the explanation of the electromagnetic

forces, and only the irrotational displacements, involving hydrostatic pressure,

would be available in accounting for the non-electromagnetic forces. Even
if the aether-hypothesis were rejected, a distribution of hydrostatic pressure

would naturally be chosen as being the simplest stress system available.

249. The equation for the pressure. In order to express our

hypothesis of the hydrostatic pressure mathematically, let us denote an

element of charge of the electron by de, its coordinates referred to the

electric centre by (x, y, z), and its electric volume density by e, so that

de = edxdydz. We shall treat a surface distribution as a limiting case of

a volume distribution.

For the sake of generality we shall assume that the electric charge has

associated with it a certain mass of non-electromagnetic origin, which may

be intrinsic to it, or may arise from its mechanical connection with the

elastic medium producing the hydrostatic pressure. It is only to be ex-

pected that one effect of this connection may be equivalent to a loading

of the charge, to an increase of its effective inertia as it were, and may as

well be provided for. Moreover measurements of the specific charge of the

electron do not entirely exclude the presence of non-electromagnetic mass.
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provided that it be but a small fraction of the electromagnetic mass. We
see horn § 229 that the latter mass is of "the order — 1 in the linear

dimensions of the electron, so that the former is of the same order, but

much smaller. We shall denote its value for the whole electron by M, and

the non-electromagnetic mass density by fi.

250. The electromagnetic forces acting on the element de are twofold

:

(1) We have the resultant of all the electromagnetic forces due to the

remaining elements of the electron. In this Appendix we shall denote it by

Fj per unit charge ; although in Appendix D and in Ch. XI this symbol was

used for the resultant internal force on the whole electron, no inconvenience

will result. In (335), § 220, we are given the value of fi2, the electromagnetic

force exerted by unit charge of the element dei on unit charge of the element

de^; if we omit the suffix 2, multiply by de^, and integrate over the whole

electron, we shall obtain the value of Fj-. The principal term of fjg is of the

order — 2 in the linear dimensions of the electron, and it still occurs in F,-;

although it disappears on averaging F^ for the whole electron. We shall go

one step further and retain terms of the order - 1, neglecting all terms of the

order 0, such as the terms involving the relative velocities Uj and Us, and the

radiation terms in the expression of f;, (3352). Since the operators -^ and D

do not affect the charge dei on account of its invariability, we may integrate

behind these operators. Thus we find

F, = -|d..|l+Hfu + u,}i))|(l-^;)vF+J^ji)Jde,(l-J)F...(397).

251. (2) We have the electromagnetic forces due to the external field,

whose resultant will be denoted by F^ per unit charge. The integral

J{Ti + Fe)de

taken over the whole electron represents the resultant electromagnetic force

acting on it due to all causes, and produces non-electromagnetic momentum

at the rate Mv, because the non-electromagnetic forces are self-equilibrating

by the fundamental assumption of Ch. XI, § 140. Hence we have by

Newton's Second Law
jFede = - jFide + Mv.

The integral jFide is the resultant internal force on the electron, which

in 1 224 was denoted by F^ simply, and is of the order — 1. Moreover Mv is

at most of this order, so that Fj is of the same order.

Hence the variations of F^ from point to point of the electron are only

of the order 0, and can be neglected, so that the integral jFgde may be

replaced by eF^. By means of (340), § 224, we find, neglecting the small

zero order quantities,

^^=-ll/^^'^<i-3^+^^ (39«)-
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252. The non-electromagnetic force due to the hydrostatic pressure, p, is

equal to — Vjp per unit volume. This, together with the resultant of the

internal and external electromagnetic forces, amounting to e (Fi + F^) per

unit volume, produces non-electromagnetic momentum at the rate /mv per

unit volume. Hence we find by Newton's Second Law

Substituting the values of F^ and F« from (397), §250, and (398), §251,

respectively, we find

V^ = - ejde, |l + i ({u + u,} D)} (l - ^') VF

V

(399),

where V= 1/S = 1/V{(1 - V/c^) R' + {vlty/c% by (335^), § 220.

This is the desired relation for the hydrostatic pressure ; it will be seen

that we have eliminated the external electromagnetic force, F^, by means of

(398), § 251, so that the pressure gradient is expressed solely in terms of the

configuration and motion of the electron at the instant considered. The

motion of the electric centre, which is determined by the values of the

velocity v and acceleration v, can be anything we please, so that v and v are

quite arbitrary. On the other hand the configuration of the electron, the

distribution of its electric charge and non-electromagnetic mass, and the

relative motions of its parts are at our disposal, subject to the restrictions

that the resulting expressions for the electromagnetic momentum and mass

shall agree with the results of experiments on the specific charge of the

electron, and that the non-electromagnetic mass shall admit of a mechanical

interpretation.

Our problem may now be stated as follows

:

It is required to find all configurations of the electron which shall make

an equation of the form (399) possible for all values of v and v, subject only

to the restrictions just indicated.

253. Uniform rectilinear translation. In order to gain a clear

notion of the nature of the problem, we shall first consider the particular

case where the electron is moving as a whole with uniform speed in a fixed

direction. The acceleration, v, and the relative velocities, u and Ui, all

vanish, so that all the small terms in (399), § 252, disappear, and only the

principal term is left. Hence we have

'7p = -6^jdejl-^ V (400).
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The operator V has been taken outside the sign of integration because it

does not affect either of the quantities v or de^.

Let us apply the transformation of Lorentz, expressed by (347), § 228

;

these equations may be written in the form

x = kI y = 7i, z=^, K = ^/{l-'^l&) (401),

with similar equations for {x^, y^, z^), provided that the line of motion of the

electric centre be taken as the axis of x.

We shall assume with Lorentz that the elements de at (x, y, z) and de^ at

{xi, 3/1, z^ in the actual electron correspond to equal elements de at (f, i}, f)

and de^ at (fi, 17,, f,) in the transformed electron.

The corresponding elements of volume are in the ratio « : 1, so that the

corresponding volume densities are in the inverse ratio 1 : k ; hence the

volume densities at (^, r), f) and (^,, 771, ^"1) in the transformed electron are

equal to we and /tej respectively.

By means of (399), § 252, and (401) we find

F=1/«P, P = V{(?-f)^ + (7;-,;,)= + (r-r01 (402).

P is the distance between the elements de and de^ of the transformed electron.

We now find

where

.(403).

^ is the electrostatic potential of the transformed electron at the point

(?> 'y. 0> which corresponds to {x, y, z) in the actual electron. We shall

denote its mean value for the whole electron by ''I', so that

{dedei

-'W p
.(404).

and ijJdede.(l-^;)F=«v?[

A reference to (356), § 233, shows that k^ is equal to 2<i>/e, where <I> is

the function on which the electromagnetic momentum of the electron and

the relative activity of its internal forces depend.

254. Returning to (400), § 253, and applying (403), we find

Vp = _«eV^ (405).

This equation requires that

[V«6.V^] = (406).

Hence we find ^ = A-JKed"^ (407),

where A can only depend on the time t.
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We see from (406) and (407) that a hydrostatic pressure, p, can only

exist when the volume density, Ke, of the transformed electron involves the

coordinates only in so far as they enter into the expression of the electro-

static potential, ^, and then p has the same property. Both Ke and p will

generally also depend on the time, usually through the medium of the

speed V*.

Hence the equipotential surfaces of the electron are also surfaces of

constant volume density and constant hydrostatic pressure.

In particular, if the bounding surface of the electron should happen to be

an equipotential surface, it will also be a surface of constant pressure. In

this case the electron, whether at rest or in uniform motion in a straight line,

can exist provided that a uniform external pressure be applied to its surface.

In general this pressure depends on the speed of the electron; if the

speed change so slowly that the effect of the acceleration is small, our

present solution may be considered as a first approximation. The external

pressure needed to ensure the continued existence of the electron will be

variable.

If however the configuration of the transformed electron be invariable, its

volume density, Ke, and electrostatic potential, ^, do not depend on the time,

and in (407) the constant of integration. A, may also be taken to be indepen-

dent of the time, so that the hydrostatic pressure, p, is invariable.

Hence in this particular case the external pressure on the electron is not

only uniform over its surface, but does not alter as the speed changes.

255. We see from (350), § 229, that the invariability of the transformed

electron ensures that the tangential component, mj, of the electromagnetic

mass vector there defined shall follow the Lorentz mass formula. In order

that in( shall reduce to the ordinary electromagnetic mass, in consequence

of the vanishing of the transverse components, m, and «if , it is necessary in

addition that the electron either be symmetrical fore and aft, that is with

respect to the yz plane perpendicular to the direction of motion, or be

symmetrical with respect to two longitudinal planes intersecting in the line

of motion of the electric centre.

* It is worth noticing that, when /ce is the same everywhere inside the electron, y is a linear

function of 4^ and therefore satisfies the equation

('-!-:)

referred to axes moving with the electron, or the equivalent equation

1 82p
V^P- ,,

referred to axes fixed relative to the observer. When Ke varies inside the electron the equation

for p is much more complicated.
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The conditions as to invariability and symmetry are all satisfied in the

case of the Lorentz electron, because the surfaces of constant density, as well

as the bounding surfaces, whether external or internal, of the corresponding

transformed electron are concentric spheres of invariable radius.

Hence the most general electron of the Lorentz type not only leads to

the Lorentz mass formula, but also can exist provided that a uniform and

invariable pressure be applied to its external surface, if it be solid, or to each

of its surfaces, internal as well as external, if it be hollow.

256. We cannot however assert that the Lorentz electron is the only

type satisfying these conditions. From the mathematical point of view the

problem of finding an electron, capable of existing under the action of an

external pressure uniform over its surface, is the same as the problem of

finding an equilibrium form of gravitating uniformly rotating liquid in the

limiting case when its angular velocity vanishes. Gravitational attractions,

it is true, are replaced by electrostatic repulsions, but since the angular

velocity vanishes, this only results in a change of sign of the pressure

gradient.

Thus when we have found a series of equilibrium forms of gravitating

liquid, including a limiting form for zero angular velocity, this limiting form

corresponds to a possible type of electron. For instance the sphere, which is

one limiting form of the series of MacLaurin's ellipsoids, corresponds to the

Lorentz electron. The other limiting form of the same series, the infinitely

long and infinitely thin circular cylinder, obviously does not correspond to

a possible type of electron.

Whether, amongst the series of equilibrium forms of gravitating rotating

liquid, it is possible to find one, which shall lead to a possible type of electron

other than that of Lorentz, or not, it is not easy to say. But it is possible to

assert that any type which may be found to satisfy all the necessary con-

ditions as to stability and finiteness, will also lead to the Lorentz mass

formula, provided that the surface pressure be invariable. For this ensures

the invariability of the transformed electron; and according to Poincar^*

every possible equilibrium form of gravitating rotating liquid possesses the

necessary symmetry. Hence we deduce the following proposition

:

Every type of electron, which can exist under the action of a uniform and
invariable pressure applied to its bounding surface, whether it be at rest, or in

uniform rectilinear motion, will also lead to the Lorentz mass formula.

The converse proposition is also true.

* Vide Tisserand, M4canique CMeste, Vol. 2, p. 168.
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257. In order to gain some idea of the magnitudes of the pressures
involved, we shall consider briefly the case of the ordinary solid Lorentz
electron.

The corresponding transformed electron by § 240 is a sphere of invariable

radius a and uniform volume density Ke = 3e/47ra^ Its electromagnetic mass
for zero speed is given by m = ie^/Sc'a.

From (403), § 253, and (407), § 254, we find

^=^.(3„.-.), ,...-:j
^^^^^

a?
where §2 ^ f2 + „2

-I-
^2 = _ 4. ^a ^ ^2

and 5 is a function of t alone, or constant.

The difference of pressure between the centre and the external surface

(s = a) is equal to

3e^ ^ 18750" /cmy
STT-a"

~
20487re^ \e /'

With the values e/c = 1-6 .
10-=" E. M.ix. and e/cm= 1-77 . 10' E. M.u. we

find that the difference is about 10^' dynes per sq. cm., or 10^ atmospheres.

For Lorentz electrons of variable volume density, and for the Lorentz

electron with surface charge, the difference of pressure has a different value,

but is of the same order of magnitude.

258. Motion of the most general type. We shall now consider the

case of an electron whose electric centre is moving in any prescribed curve in

any prescribed manner, and shall determine the effect of the acceleration and

motion. Partly in order to obtain definite results, partly for the sake of

simplicity, we shall however limit our investigation to an electron of the

type considered in § 256, for which the Lorentz mass formula holds. We
are all the more justified in doing so, in so far as the Lorentz mass formula

agrees with the more recent measurements of the ratio e/m for cathode ray

and /8 particles, and is besides the only formula which allows us to treat the

motion of electrons mathematically with a reasonable hope of obtaining

simple results, as we shall see below in App. F and G.

We have already seen that the acceleration and relative motion terms in

(399), § 252, are small of the order — 1. Therefore they will produce small

changes in the hydrostatic pressure, which will react on the electron producing

small changes in its configuration, generally small changes in its volume

density as well as slight deformations of its bounding surface.

We shall denote the small increase of hydrostatic pressure by hp, that of

the volume density by Se, and that of the electrostatic potential by S^. The

last is the electrostatic potential of the volume distribution Se, and of a
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surface distribution representing the deformation of the bounding surface;

the volume and surface distributions must be such as to leave the total

charge of the electron unaltered.

We shall try to determine the conditions which must be satisfied in order

that a hydrostatic pressure Bp may be possible.

259. We notice at once that the small changes in the configuration of

the electron will only alter the small acceleration and relative motion terms

by small amounts of order 0, which are negligible. Thus in calculating

these small terms we may treat the electron as exactly of the type considered

in § 256 ; that is, we may assume the corresponding transformed electron

to be invariable, so that the coordinates (f, 17, ^) and the potential ^ are

independent of the time and do not involve the velocity v. In order to use

these coordinates we must however refer the motion to rotating axes as

in Ch. XI, §§ 141 and 144, so that the axes of (x, y, z) are the tangent to

the path, the principal normal drawn towards the centre of curvature, and

the binormal. Then the angular velocity, «, of the axes about themselves

has the components («/t, 0, v\p), where p and t are the radii of curvature and

torsion respectively. In (399), § 252, on the other hand the velocities u and

u, and the total differentiation -7- are relative to axes fixed in direction.
at

In this Appendix we shall denote a unit vector drawn in the direction of

the velocity v by Vj ; hence we have

v=i)Vi + [a)v] (409),

a relation by means of which we can eliminate w.

By the usual formula of rigid dynamics we have

u = f + [a,r] (410),

where r denotes the radius vector whose components are {x, y, z), or («f, r}, f)

by (401), § 253. Since (f, 77, f) do not change owing to the assumed invari-

ability of the transformed electron, while k = V(l — v^jc'^), we find

w(vr) v(vr) r -, ,,-,,•.
r =—^^v„ u = --^^v, + [a,r] (411).

with similar equations for Tj and Uj. By means of (409) we find from (41 12)

("v) = ^"^^'(v,r)-(vr) (412).

260. The relative motion term in the first line of (399), § 252, becomes

by (402), § 253,

- i^ejde, ({u + u,} -D) «V p =
2^;^

jde, ({u + uj v) V i

,
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because P is independent of v and therefore not affected by the operator B.

Using (412), § 259, we may write this in the form

(c^ - 21;") ii

2c*«2
'

{& - 2tf) V

2c**'

|(v.{r+r,})vf-A./(v{r + r,})V^'

{(v,r) V^ + V (v,A)} -—- {(vr) V^ + V (v.A)}
2c'k

where we have used (403), § 253, and put
.(413),

.(414).

A is of the nature of a vector potential due to current r^dei in the trans-

formed electron.

Since we have identically

V(v,r) = v„ V(vr) = v, V^ = 0,

we can write (413) in the more convenient form

^
2,.^J K^.r) (^I' -^)+ (V, A)} - 2-i^ {(vr) (^ - vp) + (vA)eV

.,]

— e — Vi - ^ „ V
2c* /c' 2c'

K

.(415).

Again, the fi^st term in the second line of (399), § 252, may be treated in

the same way ; by means of (403) and (404), § 253, we find that it becomes

^ 1 T-\ /.T. --fix tt M: "" X

= — e
vH (^ - *) •>? - ^ .

Vi+^:^^^ V ...(416),
2cV '"

' 2c^K

because "^ and ^ are to be treated as independent of the time t.

The small changes Sp, Se and S'^ will have to be taken into account in

calculating the large terms in (399), § 252. The increase of the left-hand

member is simply Vgp, and that of the first principal term on the right side

is — kSsV"^ — KcVS'^. Hence taking account of the small terms (415) and

(416) we find

VSp = - /cSeV^ - /ceVS^

1

t; ("* - ^)— e
2oV

v, + l
— e-fiv

{(vr)(^-^) + (vA)}]

(417).

261. Effect of a linear distribution of volume density. Before

discussing the equation (417) just obtained for the pressure Bp, we shall

prove a lemma relating to linear distributions of volume density, which

enables us to transform the equation to a more convenient form.
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Lemma. If a volume distribution be given by

Se = e(br) (418),

where b is any vector independent of the coordinates, but possibly depending

on the time, then

SeV-*- + eVS^ = 6 [(br) V^ + V (bA)]

= 6V[(br)(^-'^) + (bA)]-6(^-^)b ...(419).

The volume density of the transformed electron, corresponding to Se for

the actual electron, is kSc by § 253 ; hence we find by means of (403), § 253,

and (414), § 260,

g^ ^ JKSe^d^^d^Tid^ ^rSe^de^^ /"(bri) de^ ^

Operating with V, multiplying by e, and adding the term

8eV'^se(br)V-«^',

we obtain (419).

262. The equation for the increase of pressure. In order to

simplify (417), § 260, we may use the lemma of § 261 to eliminate either all

the quantities in the second line of (417), or the first term in the third line.

We prefer the first method as it leads to simpler results. Let us write

Be = Sie + S^e, S""? = S{^ + S^^

where Sj^ is the electrostatic potential due to the volume distribution S,e.

We saw in § 258 that the total additional charge due to acceleration and

relative motion vanishes; that due to Sje also vanishes, because S^e/e is a

homogeneous linear function of the coordinates relative to the electric centre.

Hence the total charge due to S^e, together with that due to the surface

distribution, if any, also vanishes.

Substituting from (421) in (417), § 260, and using the lemma of § 261, we
find

VSp = - /tS^eV^ - /teVS^^

v'veC^-'^) { 6(^-^) M ) . ,,„,,—kv—''+|—W-+7^-'^r-^*22).

W"*^ * = ^^'^ + 2i»^ <*23),

so that d is independent of the coordinates. Adding

V«€ {8,^ + (^ - ^) (dr)}

to both sides of (422), and noticing that

V(dr) = d, V6 = ^V^,

.(421),
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on account of (406), § 254, we obtain finally

V [Sp + «6 {S,^ + (^ - ^) (dr)}] = [- «8,e + k^S,^ + k ?ii^^^(dr) V^

+ (-e-/i,)v...(424).

We shall determine the conditions under which an equation of this form

is possible, and shall then find an expression for Sp and determine the further

conditions which are necessary to ensure that it vanishes at the surface of

the electron.

263. Let us eliminate Sp by taking the curl of (424), § 262, and multiply

the resulting equation scalarly by VSP. The first and second terms on the

right both disappear, and we obtain

(vVyn.V^) = (425).

This equation must be true for all values of v, which is quite arbitrary.

We see from (40.3), | 253, that ^ does not depend on v at all, nor can
fj,

do

so, for a non-electromagnetic mass depending on the acceleration cannot be

explained mechanically. Hence (425) requires that

[V^.V'*-] = (426).

Thus fjL, like e, must be a function of *? and t alone.

264. Let us subtract a term

V(^e-^)(vr)

from each side of (424), § 262, bearing in mind that

because e and /jl involve the coordinates only in so far as they enter into the

expression for '^. Then we find

V hp + Ke {h,^ + {"1?-^) (dr)} -{^e-i^ (vr)J

= |^_«S,e + «9^8.^ + «-^9^(dr)-(-g^-g^j(vr)JV^

(427).

This equation is only possible when each of the functions enclosed in

square brackets reduces to a fanction of ^ and t alone. Hence we have

Sp = - iceh^'V - «6 (^ - ^) (dr) ^{^e-fi}j (vr) +/ (428),

-A6 + «g^S,^ = -«-^9^(dr) + (-g^-g^)(vr) + g^...(429),

where / is an arbitrary function of ^ and t alone, and therefore does not

s. 18
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involve any terms such as (dr) or (vr). This fact shows that / cannot

represent an effect due to acceleration and relative motion, but results from

other causes, which are not under consideration. Moreover it is always

possible to make it vanish at the sui'face of the electron owing to the fact

that ^ is constant there. For these reasons we may leave it out of account

in what follows.

The volume density Sge and potential S^"^ are not independent; since

kS,6 is the volume density of the transformed electron which, together with

some possible surface distribution, produces the electrostatic potential S^^,

these two quantities are connected by Poisson's equation

W^W^W*^'"-"" <*'">

From (429) and (430) we find, omitting/.

a^S^ a^ 9=8^ 3e

9p +
dv' ar^ +^'^«a^^^'^

= -4.«^^(^-^) i^rH..{^li-'^yr)...mi8^

which holds everywhere, both inside the electron, where e and /t have given

finite values, and outside it, where they vanish.

When the value of B^P obtained from (431) is substituted in (428) we
obtain Sp. It generally differs from zero, even at the surface, so that the

uniformity and invariability, which were found in §§ 253—257 to be

characteristic of the surface pressure of our present type of electron when
the motion is a uniform rectilinear translation, no longer exist when the

motion is general.

Hence we conclude that for the type of electron in question, which gives

the Lorentz mass formula, a hydrostatic pressure exists even when there is

acceleration and relative motion, but it is no longer uniform and invariable

at the surface in general, that is to say, without further restriction of the

type of the electron.

265. Additional conditions for a uniform and invariable surface

pressure. Let us examine the potential equation (431), § 264, more closely.

The right-hand member involves two scalar products of the radius vector

r by constant vectors, namely (dr) and (vr); they occur in the first degree,

and their coefiicients are functions of ^ alone, because e and fi have this

property by (406), § 254, and (426), § 263.

We see from (423), § 262, that

v'i) 1

2cV^''''2cV^*
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Thus d has a component in the direction of the velocity except in the

particular case when the speed v is constant. Since both the velocity and

acceleration of the electron are perfectly arbitrary, d and v are two perfectly

arbitrary and independent vectors. Hence in (428) and (431), § 264, the

terms involving (dr) and (vr) must be treated separately. Moreover, (431)

cannot be satisfied for every value of d and v, unless its left-hand member

reduces to the sum of two terms involving (dr) and (vr) as factors respectively.

Therefore Sa'SP' must be of the form

B,-9 = A(Ar) + B{'vr) + G (432),

where A, B and G are functions of the time and coordinates, but do not

involve either d or v. Then A (dr) must satisfy (431) when (vr) is put

equal to zero, B (vr) when (dr) is zero, and G when both are zero.

Beginning with the term A (dr), we find

/d^A d'A d'A . de .\,, .
, ^f J dA ,dA , dA\

= -4,r«?i^^:^>(dr) ...(483).

This equation must be satisfied for every value of d, so that the second

term in the first line must reduce to the form -F(dr), where F is some

function of the coordinates and time, but does not involve d. This occurs

when, and only when

dA dA dA dA ^ ^ .^„..

^=9^ = ^ =^ = ^ =
"^^=' ^^^*^'

where s = \/(f
^ +r)^+ ^') a,s before. Then we have

T dA T dA ,9.4 IdA,^ . /.„-x
'''^fay+^'8^+'^^9? = J^('^'^)

(*^^>'

and (433) gives after reduction

d'A idA . de . . de(^-^) ,,„„^ + ?97+^""8^^ = -^"^ 9^
(^^^)-

266. The equation (436), § 265, only involves the quantities s, t and ^

;

hence '^ must be a function of s and t alone, and e and /x have the same

property.

Thus we arrive at a necessary condition to be satisfied by every type of

electron for which the surface pressure is uniform and invariable when there

is acceleration and relative motion, namely, the volume density, non-electro-

magnetic mass density and electrostatic potential of the corresponding

transformed electron must be functions of the radius s only (they cannot

involve the time t because the transformed electron is invariable). The

surfaces of constant density of the transformed electron are concentric spheres,

and therefore those of the actual electron are concentric Heaviside ellipsoids

to a first approximation.

18—2
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All this may be expressed simply by saying that the transformed electron

possesses spherical symmetry, or that the actual electron is a generalized

Lorentz electron (of that shape, but not necessarily of uniform density).

This agrees with Poincare's well known solution of the energy difficulty of

Abraham.

267. Treating the term in (432), § 265, which involves (vr), in the same

way as the first, we find

3^ 435
9s'' s ds +*"^^ = *'(?3^-^) («')•

This equation has the same first member as (436), § 265, but a different

second member; hence the particular integrals occurring in A and £ are

different, but the complementary function is the same. Of course the

values of the two arbitrary constants involved in it will be different in the

two cases. It follows from the theory of differential equations that the

solution of either equation entails that of the other as a consequence.

The third term, C, of (432), § 265, is a function of s and t alone, and when

substituted in (428) and (429), § 264, merely gives rise to functions of the

form of/, which has been already ignored for reasons mentioned in § 264.

268. Substituting the value of S^^ given by (432), § 265, with G
omitted, in (430), § 264, and using (435) and (436), § 265, and also (437),

§ 267, we find

- 1 f/3U ,
4>dA\., ,^/3^-B

,

4 35\,. ,)

=i^3^+-V-}(''^>+r3^-«(73^-3-$j}(")-(^^«)'
which might also have been obtained from (429), § 264.

As we have already pointed out, h^e does not represent the whole effect

on the charge, because the potential h^ is generally due in part to h^e, but

also in part to distributions on the surfaces of the electron, both internal and

external. In order to find these, we must calculate the part of Sj^ due

to S26.

The quantities (dr) and (vr) are solid spherical harmonics for the trans-

formed electron, and of the first degree. The theory of these functions gives

for the potential due to the part of Sje involving (dr), by (438),

= (AT)\A-Aa-iaAJ+^A^Y
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where b and a are the internal and external radii of the transformed electron,

dA
Aa and A;, the corresponding values of A, and Aa and Ai those of -^ . In

obtaining this expression it must be borne in mind that the density for the

transformed electron is kB^s, because S^e belongs to the actual electron. A
similar expression is obtained for (vr) ; adding the two expressions together

and subtracting the result from the expression (432), § 265, we find that the

part of the potential B^"^ due to surface distributions is equal to

Aa + i aAa' -¥Al
3s»

(dr) + |£„ + ia£„'-^|(vr) ...(439).

The form of this expression shows that the terms independent of s are

due to a distribution, on the outer surface of the transformed electron, of

surface density

^ {{A, + i aA^) (dr) + (5, + i aB^) (vr)} (440).

The terms involving s~^ are due to a distribution, on the inner surface, of

surface density

-^{^,'(dr) + £6'(vr)} (441).

These surface distributions are equivalent to normal displacements of the

two surfaces, obtained by dividing each surface density by the volume density

of the undeformed electron at the corresponding surface.

In addition to the volume density Sje we have the volume density \e

given by (421), § 262. These two volume densities together are equivalent

to a displacement of charge inside the electron.

269. Substituting the value (432), § 265, of S,^ in (428), § 264, we find

Sp = - a:6 (4 + ^ - ^) (dr) + (-KeB + ^e-iji\ (vr) ...(442).

Since the differential equations for A and B are of the second order, so

that A and B each involve two arbitrary constants, we can choose these four

constants so as to make each of the coefficients in (442) vanish for any two

values of s, for instance, for s = a and s = 6. In that case 8p vanishes at each

surface of the electron.

The necessary and sufficient conditions for this to occur are

kBo, = —-£—, kBi, = -
.(443),

where the suffixes a and b denote values taken at the two surfaces respec-

tively, just as before.
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Hence it is always possible to equilibrate the electromagnetic forces

inside the electron by means of uniform and invariable pressures applied to

its internal and external surfaces, whatever its path, velocity and acceleration

may be, provided only that it be of the generalized Lorentz type defined in

§266.

270. The surface pressures and electromagnetic mass. We have

found that for the generalized Lorentz electron the surface pressures are

unaltered by the motion. From (407), § 254, we see that the pressure

involves an arbitrary constant, so that one of the two surface pressures is

indeterminate ; their difference however is determinate and invariable.

Consequently it is characteristic of the particular electron selected, like

the charge, e, and electromagnetic mass for zero speed, m. We shall denote

the excess of the external above the internal pressure by P.

In studying the dependence of m and P on the structure of the electron

we shall find it convenient to use the function E defined by the equation

= I 4i7rK£S^ds (444).E

Thus E is the total charge inside the sphere of radius s in the trans-

formed electron, or the corresponding Heaviside spheroid in the actual

electron. It satisfies the boundary conditions

^6 = 0, Ea = e (445).

Consequently it is given at both limits.

271. In order to calculate the electromagnetic mass we must know the

function $ defined by (358), § 234, which, as we saw in | 253, is also given by

Jo

For the generalized Lorentz electron we see fi:om (350), § 229, and (358),

§ 234, that, on account of the spherical symmetry of the transformed electron,

we have

_ 4* _ 2^
/•«

^ is determined by the conditions

d^_ _E _e
ds s'' " a-

Hence we find by partial integration

2e'
,

2 ['^E'ds .....
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Similarly we find from (407), § 254,

P =^^ +-ir^ (447)

Putting 6 = a in (446) and (447) we obtain the usual expressions for the

Lorentz electron with surface charge. Putting 6 = and E = es'/a' we obtain

those for the solid Lorentz electron of uniform density.

It is not difficult to show that P is stationary for 6 = a, subject to the

conditions that e and m be given. It seems probable from the form of (447)

that this value of P is an absolute minimum ; at any rate it is less than that

belonging to the uniform solid electron. Whether this be so, or not, we see

from (447) that P is essentially positive ; that is, the external pressure is

always greater than the internal.

Hence we may suppose that the internal pressure is zero ; but the external

pressure can never be less than a certain positive minimum value, which is

probably that belonging to the surface charge. From (446) and (447) we see

that this value is equal to

1287re«"

With the values e/c = l-6 .10-^" e.m.u. and e/cm = 1-77 . 10' e.m.u., we
find that the pressure in question is 7"2 . 10^° dynes per sq. cm.

272. Example. The solid Lorentz electron. As an example of the

determination of the effects of acceleration under the influence of a uniform

and invariable surface pressure, we shall take the solid Lorentz electron of

uniform density, without any non-electromagnetic mass. With the notation

of § 257 we find

^-^ = 2i(l<^^-«0 (448).

The equation (436), § 265, becomes

d'A 4<dA _ ^^ _^ _ 3e

95" 5 9s a'

"

Itgives ^ = ^-^3 (449).

A term of the form D/s' cannot be present because it becomes infinite at

the centre.

The second function B is not required because M and ft, are zero.

Determining G from (443), § 269, for s = a, we find

e

^-2a' ^ = 2ii('^^-«^^)
(^^^)-
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Substituting from (448) and (450) in (442), § 269, we find for the change

of pressure

Si5 = -5^,(«^^-«=)(dr) (451).

This vanishes at the surface and at the centre, and is greatest for

s = o/VS.

In order to find the change of density we must use (421), § 262, and

(438), § 268. Since 5^ vanishes, we find

S,6 = 6 (dr).

Adding this to Sje and using (423), § 262, we obtain

^^=2^=(^^"> = 2^» = 2^ ^*^^>-

The surface densities are given by (440) and (441), § 268.

Since by (450) Aa + ^aAa and A^' both vanish, there is no surface

distribution and no deformation of the surface.

Thus we see that the only effects produced by the acceleration in the

uniform solid Lorentz electron are the change of pressure given by (451) and

the redistribution of charge given by (452). The latter is equivalent to a

displacement of part of the charge, on the whole in the direction of motion,

or the opposite direction, according as the speed is increasing, or diminishing.

273. Conclusion. Premising that the terms electric density, non-

electromagnetic mass and potential in what follows refer to the transformed

electron, we may summarize the chief stages and conclusions of our argument

thus :

(1) In the case of uniform rectilinear motion the electromagnetic forces

can be balanced by a distribution of hydrostatic pressure when, and only

when, the electric density is a function of the potential and time (or speed)

alone (§ 254).

(2) In the last case the pressure is uniform and invariable at the surface

of the electron when, and only when, the potential is constant at the surface,

and the transformed electron is invariable (invariable here means independent

of the speed). These conditions are equivalent to the condition that the

electromagnetic mass of the electron shall obey the Lorentz mass formula

(§§ 255 and 256).

(3) When the electron is moving as a whole in any path according to

any law, a balancing distribution of hydrostatic pressure exists when, and

only when, the non-electromagnetic mass, if any, associated with each element

of charge depends only on the potential at the element and the time (§§ 263

and 264).
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(4) In the last case the pressure at the surface is uniform and invari-

able, and has the same value as for uniform rectilinear motion when, and
only when, the transformed electron is spherically symmetrical (§§ 265 and
266).

(5) The only effects of the acceleration are to produce (a) a small

redistribution of the charge inside the electron, and (6) small deformations
of its surfaces (§§ 268 and 269).

(6) In the type of electron to which we have been led under (4), the
external always exceeds the internal pressure, so that the internal pressure

may be zero, but the external pressure must have a finite positive value

(§ 271).

274. In this Appendix we have neglected the small terms due to squares

and products of the relative velocities and to radiation. The corresponding

terms in the expression for the electromagnetic force (334), § 219, are very

complicated, and the investigation of their effect would be troublesome, even

though the problem is very much simplified by the result that the trans-

"

formed electron must be spherically symmetrical. But this result having

been once established, probably a simpler method of treating the whole

problem ab initio can be found, and it is hardly worth while to carry our

approximation to a higher stage.

275. So long as we neglect the effects of acceleration and relative

motion, our results are in complete agreement with the Postulate of

Relativity. The formula for the mass is the Lorentz mass formula, when
the pressure at the surface is uniform and invariable, a result which is to be

expected on the Relative Theory, for which the pressure is an invariant, that

is independent of the speed.

But when the effects of acceleration and relative motion are taken into

account, this agreement is absent. In § 272 we found that even in the case

of the ordinary solid Lorentz electron, moving under the influence of a

uniform and invariable surface pressure, such as the Postulate of Relativity

requires, there is a slight redistribution of the charge, which could hardly

fail to be detected by an observer moving with the electron and using the

coordinates and time appropriate to its speed at the moment. Thus the

electron would not appear to be invariable to this observer ; he could detect

its acceleration in spite of the Postulate of Relativity.

Thus it appears that the Postulate of Relativity, when applied with

absolute strictness, excludes a mechanical explanation of the electron. But

we must bear in mind that the Postulate was only advanced in the first

instance in connection with uniform relative motions. Its extension to

motions involving acceleration goes far beyond what is required by experi-

mental facts.



APPENDIX F

THE MECHANICS OF THE LOEENTZ ELECTRON

276. We have just seen, in Appendix E, that the Lorentz mass formula

is superior to any other in two respects, both of which are very important from

the theoretical point of view. In the first place, it is in agreement with the

Principle of Relativity, which we know affords the simplest explanation of

.r^the absence of any effect of the earth's motion on optical and other electro-

magnetic phenomena.

Secondly, it is consistent with any possible mechanical explanation of the

electron which accords with the symmetry observed experimentally.

Moreover, it is in better agreement with recent measurements of the

mass of /8-particles than any other formula ; but even if the experimental

evidence were not so much in its favour as it actually is, the theoretical

advantages would be decisive.

In the present Appendix we shall deduce the equations of motion of the

electron on the basis of the Lorentz mass formula, leaving out of account

the terms of higher orders; in other words, we shall confine ourselves to

quasi-stationary motions, to use Abraham's expression. This limitation is

necessary in order to secure manageable equations yielding definite results.

It is of little practical importance except in cases of discontinuous motion.

These are cases where the acceleration, or some differential coefficient of the

velocity of higher order, becomes infinite, so that the expressions for the

coordinates and velocity-components become discontinuous in form, but not

in value, at one or more instants of time. An example is that of an electron

starting its motion from rest.

The effect of such discontinuities of motion has been examined by

Schott* on the basis of the electron theory, and by Walkerf on the several

assumptions that an electron behaves like a conducting and an insulating

sphere respectively. The general result of these investigations is that the

* Ann. d. Phyi. [4], 25, p. 63, 1908.

t Phil. Trans. A, 210, p. 145, 1910.
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approximation used in this Appendix fails during an interval of time, which
IS comparable with the time required by an electromagnetic wave to pass

across the electron and includes the instant at which the discontinuity

occurs. Further, the subsequent motion is affected to a certain extent, but

the relative error committed when we neglect this effect is only of the order

of the ratios which the radius of the electron bears to the radius of curvature

of its path, and to the distance within which its velocity would have been

acquired if its acceleration had been uniform.

277. On the basis of this approximation the equations of motion can be

expressed in Lagrange's form whatever mass formula is adopted. When the

external electromagnetic field is steady, an energy integral can be deduced

in the usual way. When it is symmetrical about an axis, we can deduce an

integral which expresses the Principle of Conservation of Areas for the axis

of symmetry, whether the field be steady or not. When the field is steady

as well as symmetrical about an axis, both integrals exist. To this extent

all the various mass formulae are on a par.

When the Lorentz mass formula is used, further progress is possible.

When the energy integral exists, it can be used to reduce the equations of

motion to a form in which they are little more complicated than those of

ordinary particle dynamics. For instance, they may be written in Hamilton's

form, so that the whole of Jacobi's theory and its subsequent developments

become applicable.

When there is symmetry about an axis, the angular coordinate belonging

to that axis may be ignored, and the problem reduced to that of motion in

two dimensions.

When the mass formulae of Abraham, or of Thomson, or of Walker, or

any of the more complicated ones are used, these reductions are practically

impossible, because the necessary eliminations cannot be effected.

The simplifications which can be effected in this way with the Lorentz

mass formula are so great as to make numerical results possible in many
problems of practical importance. The Lorentz mass formula is immeasur-

ably superior to all other formulae in this respect ; this fact alone is sufficient

to justify its use as a basis for the mechanics of the electron.

278. The equations of motion of the electron in the Newtonian
form. We shall use the symbols m and m^ to denote the mass of the

electron for zero velocity and for velocity v respectively, just as before.

Neglecting the radiation terms in (218), § 148, we get for the vector equation

of motion

^^^ = e(d + [vh]/c).
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The Lorentz mass formula gives

"^^^W^) ^^^•

Hence wefind ^ {v(c^- ^ol
" ^ '^^ "*" ^"^^^^^^ ^*^*^'

This is the first Newtonian form of the vector equation of motion.

A second form can be obtained by expressing the external electric and

magnetic forces in terms of the scalar potential
<f>

and vector potential a

by means of (VII) and (VIII), § 3. We get

d + [vh]/c = -V^-^^ + [v[Va]]/c.

Now [v [Va]] = V (va) - (vV ) a,

where V does not operate on v, that is to say, the coordinates and velocity

cotnponents are treated as independent variables, just as in ordinary

mechanics. Moreover, since fixed axes are presupposed in (VII) and (VIII),

9a c^a df

we have ^r + (vV) a = ^- , where -r- denotes total differentiation. Substi-
dt at at

tuting in (454), we find

d { cmv eal _
( , e(va)"| ..._.

This is the second Newtonian form of the equation of motion.

279. Lagrangian equations. Let (x, y, z) be the coordinates of the

electron referred to fixed rectangular axes. Then the components of v are

(^, y, ^)-

The potentials <j) and a are functions of x, y, z and t, but not of x,y,z;

they are not independent, but satisfy the equation

-^ + div. a = 0.
cdt

This equation of condition is however of no particular moment for what

follows. Write

Z = -cmv'(c''-'yO+^-^-e<^ (456).
c

Thenwefind _ =___ +_ (457),

with two similar equations ; that is, the three quantities ^r- , tt- and -^ are^ ex ay oz

the components of the vector quantity —r-^ ^ H which occurs on the

left-hand side of (455), § 278. Remembering that V does not operate on
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X, y and i, we see that the equations of motion, written in vector form in

(455), § 278, may also be written in the form

d dL _dL
//Lca^

dtd±~d^ ^^^^^'

with two similar equations.

We may regard the three equations of type (458) as Lagrange's equations

for the Lorentz electron, and L as the Lagrangian function. On this view

the components of momentum of the electron are given by (457), and the

two similar equations. The vector cmv/V(c'' — v^) is the momentum of the

electron of the ordinary type, depending on its motion; the term ea/c

represents additional momentum due to the presence of the external

field.

280. That a Lagrangian function should exist for the system consisting

of the electron and the external field need not surprise us when we

remember that Schwarzschild* has already proved it to exist for any system

of moving charges. From its existence we may conclude, just as Maxwell

did for electric currents, that a mechanical explanation of the system of

electron and external field is possible, even though no such explanation has

yet been found. This agrees with the results of our last Appendix ; but it is

to be borne in mind that those results go much further, in so far as they

indicate that the Loreatz electron is consistent with that particular type of

mechanical explanation, which ascribes the forces acting on the electron to

stresses in an elastic medium.

A Lagrangian function exists for other types of electron also, for example

for the Abraham electron ; and similar conclusions as to the possibility of

mechanical explanations follow from the fact of its existence. But for these

types of electron any possible mechanical explanation is necessarily more

complicated than it is for the Lorentz electron.

/,

The usual consequences follow from the existence of a Lagrangian

function. The equations of motion can be deduced by varying the integral

Ldt, and therefore the Principle of Least Action holds. We can introduce

generalized coordinates (qi, q^, qs) in place of rectangular coordinates, and in

this way transform our equations as we please. When a coordinate does not

occur explicitly in the transformed Lagrangian function, that is to say, when

it is a speed coordinate, the corresponding momentum is constant, and the

coordinate may be ignored by using a modified Lagrangian function.

• Enc. Math. v. 14, p. X60.
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281. Field symmetrical about an axis. We shall consider this case

a little more fiilly as an illustration of the ignoration of coordinates.

Take the axis of symmetry as a;-axis in a system of cylindrical coordinates

{x, CT, )(). Let v be the component velocity in the meridian plane, and let

a^ denote the component of the vector potential a perpendicular to the

meridian plane. Then we have

«2 = •«'= + OT^;i^2, {va.) = {Va.) + x^a^ (459).

The potentials
(f>

and a are independent of %; hence the Lagrangian

function L does not involve % explicitly, and % is a speed coordinate and may

be ignored.

The modified Lagrangian function L' is defined by the equation

Now from (456), § 279, and (459) we get

8^~v(c^-t'0^ c
-"

: ^*^"^'

where k is the cyclic momentum and is constant. Hence

r, cm(c^ — v''^) e(v'a)^=-
V(c»-«^)

^^~"^-

Equations (459) give in succession

c^ — v^

~

c'm' (c' - v""") = c^-w? + (
—

V'SJ- c /

Write ^' = y|^.+ (_^_^.y| (461).

Thenwefind L' = - cm! ^J(& -v''')-^^-^^- e^ (462).
c

Comparing (462) with (456), § 279, we see that L' is of the same form

as L. It differs in so far as the constant mass factor m in i is replaced by

the variable mass factor m' in L'

.

The similarity in form of the original and modified Lagrangian functions

is due entirely to the fact that the Lorentz mass is proportional to (c'' — v^')
~

^,

and the corresponding first term in the Lagrangian function therefore

proportional to (c' — v'')'^. Consequently the elimination of the velocity x is

simple, and leads to the result mentioned. In the case of other mass
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formulae the elimination is very complicated, and usually impracticable;

for example, for the Bucherer mass formula, which makes the mass pro-

portional to (c** — 1)0"
.
'^^ have to solve a cubic equation, and in consequence

the result of the elimination becomes so complicated as to be useless in

practice. Again, for the mass formulae of Abraham, of Thomson and of

Walker the equation to be solved is transcendental, and in consequence the

elimination cannot be effected in finite terms at all. The superiority of the

Lorentz formula in this respect is decisive for all problems in which actual

results are aimed at. We shall find below that this is also true for the more

general Hamiltonian transformation.

282. Hamiltonian equations. Let us use generalized coordinates

(Q'i. ffa, 2s), and let pi be the generalized momentum corresponding to qi as

usual. Then

^-1 (^^^)-

The Lagrangian equations may be written in the form

dpi _ dL
dt dqi

'

As usual write H ^p^qi+piq^+paqi- L (464),

where (^i, q^, q^) are to be eliminated by means of (463).

We find in the usual manner

.(465).
dqi _ dH dpi _ _ dH^

dt dpi' dt dq-i

In order to understand what form the function H takes in our problem,

let us consider the matter more closely. The coordinates {x, y, z) are given

as functions of q^, q^, ^s and t by the equations of transformation.

Differentiating these equations totally with respect to the time t we find

dx . dx . dx , . dx

with two similar equations. Hence we get

v^ = x^ + f + z^ = bo + ^hq,+ ... + bi^qi' + 2b,2qiq^+ ...\

where ^« = ^(|)' ^' = ^4^,' ...(466).

^-Gl)
dxy , _ „dx dx
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The sign S denotes a sum of three terms similar to the one written down.

Again,

das . „ dx
(va) = xa^ + yay + za^ = Sa^^ + q^Sa^^ + .

dt 'dq.
.(467).

The values of v^ and (va) must be substituted in the expression (456),

§ 279, for L. Differentiating it partially with respect to q^ we obtain

cm (6i + 6n ^1 + &12 ^a + &13 ^3) ,
e „ dx

Pi + - Sax o .(468).
V(c'' - V')

Similar expressions hold for p^ and p^. Hence

cm (v' — bo — brdr — biQi — baQs) e(va) e „ dx

.(469).

Substituting in (464) and using (456), § 279, we find

„ cmi&'-bo-b^.qi-biq^-bsqs)
^

, e „ dx
^ =

:j{^^:^) + "l'-c^''''di

It remains to eliminate ji, q, and ^3 between (468) and (469). This is

most easily carried out in two stages. Firstly, eliminating the three

quantities qj/\/{c^ — v^), ... between (468) and (469) we find

60 — c' H — e<^ e „ dx ,

- ^ +— S —
V(c'' - v") cm c^m " dq^

'

^/(c'-v') cm c'm ''dq,'

b„
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Secondly, we must find the value of \J{d'-v^) in terms ofpi, jj^, and ^3
and substitute it in the last equation. For this purpose we use (470) to

reduce the first equation (466) to a linear equation; with the previous

notation we obtain

Eliminating qil\f{d' — v% . . . between this equation and the three equations

(468), we find

h-
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283. The equation of Hamilton and Jacobi. Just as in ordinary

dynamics, so here it is possible to make the solution of the problem of

motion depend on the determination of the complete integral of a partial

differential equation of the first order in the four variables qi, q^, 53 and (.

For this purpose we need only make the usual substitution in (474), § 282

:

dW dW dW dW
^---dt' p^=w ^'^W ^'^^-

When the equation is rationalized, we get an equation of the second

degree, but it must be borne in mind that this also includes the case where

the negative sign is taken in (474), § 282, and will therefore give rise to

solutions which do not belong to our problem.

284. Equations of transformation free from the time. In this

particular case ^ =^ = ?| = ; hence by (466), § 282, 6„ = &, = 6, = 63 = 0.

Using these values in (470) and (473), § 282, we find

// = e,/, + ^\c*m^ +^ [cp, - e8a, ^j'

+ 2

%

{cp.-e8a.'^)[op.-e8aJ^) + ...} ...(475).

The interpretation of this equation is easy when we compare it with

(469), §282; with 60, ^1, •• all zero the latter equation becomes

^ = ^'^ + V(l^) (^^«>

Bearing in mind that e<^ is that part of the energy of the electron which

is due to the external electric field, and that by §§ 240 and 278, with our

present notation, <fml\/{c^ — v^) is the variable part of the energy of the

electron, due to its own field and to its motion, we see that H is the variable

part of the total energy of the electron, due both to itself and to the external

field.

The expression (475) shows that, when H is expressed in terms of the

momenta, it will involve t explicitly unless the potentials (j> and a are both

independent of t, that is to say, unless the external field is steady. In other
O IT

words -^ is not zero in general even when the equations of transformation

do not involve the time explicitly ; in this case it only vanishes for a steady

field.

It is an interesting problem whether, in the case where the external field

is variable, it is possible to choose the equations of transformation so that

3/7
-^ = 0, but we cannot enter into a discussion of this question here.
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285. Steady external field—the energy integral. When the ex-

ternal field is steady we can always choose our equations of transformation

so that -gT = 0. Then the Hamiltonian equations (465), | 282, give as usual

H = constant. By (476), § 284, this integral gives

+ e<j, = h (477),

where h is the arbitrary constant value of the energy.

In this case the Hamilton-Jacobi equation becomes

Bnf dW „ dx\\ ^B,,f dW „ da;\f dW „ .^

.

= (A-e(^)^-c%^..(478).

In particular for rectangular coordinates referred to fixed axes of {ao, y, z)

we have

?! = «, ?2 = y, 33 = ^, B = B^^ = B^=B^=\, £i2 = ^23 = -Bis = 0.

Hence the equation becomes

dW V / 91^ V / 9^
c^5 ea-c + (c -g- - eayj + (c— - ea,j = {h - e^f - c'm? . . .(479).
%x ""'V

^
V dy

A complete integral of the Hamilton-Jacobi equation leads to a solution

of our problem just as in ordinary dynamics, but in many cases it is easier to

work with the equations of motion themselves. Thus the interest in the

Hamilton-Jacobi equation is largely theoretical.

When an energy integral of the Hamiltonian equations of motion exists,

it can be used as in ordinary dynamics to change the independent variable

from t to one of the coordinates, say qi, and so reduce the order of the

Hamiltonian system by one unit, that is from three to two, so that the system

after reduction consists of only four equations in place of six.

This reduction however requires us to solve the energy equation (475),

§ 284, for the momentum p^ ; if we get pi = - K{p^,pi, q^, q^, qa, h) then the

reduced system is

dq^^dK dq,^dK dp, ^ _dK Sp, ^ _dK
9gi dp,' dq, dps' dq, dq,' dq-, dq^'

On account of the somewhat complicated form of the function K, and

the particular form of the energy equation (477), it is more convenient to

proceed as follows.

19—2
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286. Reduction of the equations of motion when an energy

integral exists. It is simplest to return to the second Newtonian form

of the vector equation of motion (455), § 278, and change the independent

variable from t to t, where

dr V(c^-wO c'm' ^ ^'

by the energy integral.

When the problem has been solved, the coordinates of the electron are

known functions of t ; hence (480) enables us to find the relation between t

and T by a quadrature, and therefore we may also regard the coordinates as

functions of r, to be found by the solution of the transformed equations of

motion. When this has been accomplished we get t from the equation

cdr f^(h — e^)dTf cdr _ f^ih-e^ydr

where the constant of integration has been chosen so that t and t vanish

together.

Let us denote total differential coefficients with respect to t by dashes,

e.g. x', .... Then we have

V(c^ - v^)
x = — - X- (482),

with two similar equations.

Also let w denote the resultant of x', y', z' ; then

v = V(o!_^)^
(433)

We get clsJic^ — v^) = \/(c^ + w')/c, and therefore

t=.f/J^dr (484).

Multiplying (455), §278, by c/V(c^ -«'), using (480) and remembering

that V does not operate on x, y, z, but only on the coordinates as contained

in <^ and a, we easily find

d{ ea] „({h-ed)y e(wa)) ,,„^,

where V now does not operate on x', y', z', the components of w.

This is the vector equation of motion for a charge e of constant mass m,

moving in a field of which the scalar potential is equal to — (A — e^yjld'me

and the vector potential retains the value a. In other words, the motion of

the Lorentz electron in the given steady electromagnetic field is the same as

that of an electron of equal charge, but of constant mass equal to that of the

Lorentz electron for zero velocity, when the electric field is modified in the

way indicated. The change in the electric field only depends on the field

itself and not on the motion of the electron.
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A similar transformation is theoretically possible for any of the other

mass formulae, but the necessary eliminations are impracticable.

Since our problem has been reduced to that of finding the motion of a

particle of constant mass in a certain field of force, all the results of ordinary

mechanics apply without modification. In particular, the Lagrangian func-

tion is given by
^2

.(486).
r 1 „ ,

e (wa)
,

(h - eAy

c 2c^m

When there is symmetry about Ox, the cyclic coordinate % is a speed

coordinate as in § 281, and the cyclic momentum is constant. We have

g^ =m^V +-—' = « (487),

where k is an arbitrary constant.

The modified Lagrangian function is given by

dx 2d'm ^ ^

= i mw'2 + ^
„ ,^ - ^^5- r^ . . .(488),

where w' is the velocity (referred to t) of the electron in the meridian plane.

The Hamiltonian function in the general case is given by

^ = *--^-^-W-^ (^«9)-

Since H does not involve r explicitly, the Hamiltonian equations admit

the energy integral in the form H = constant, but in virtue of the definition

of T the constant is not arbitrary. By comparing (489) with (477), § 285,

and using (483), we find that the energy integral may be written in the form

^mw'- ^'^~f'^^' = -^c'm (490).^ 2d'm ^ ^ '

When there is symmetry about Ox we get

Zi^=|mw'^-^—^-^ + 5^-g^ ^ (491).

Comparing (491) with (488), we see that the motion in the meridian

plane is that of a particle of constant mass unity in a field of force of which

the force function is given by

2c^m^ 2c''mV ^
^'

For instance, with cylindrical coordinates (x, -m, %), we have

// ^U „ dU /Anns
a!" = ^-, •5r" =— (493).

dx Bth-
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Again, with polar coordinates (r, 0, x), where the axis of symmetry is the

initial line from which is measured, we have

r"-re'' = ^-^, 2r'e' + re" = ^^ (494).
or rdd

Changing to 6 as variable in the usual way, and writing u for \jr, and

h for r'^ff (in the present case there need be no confusion with the first

meaning of h), we get

pw' = r^e' = h
1

These equations admit the energy integral; by comparing (490) and

(492) we see that it can be written in the form

hA(^\u^ = W~d' (*^^)'

-/i

When u and li have been found as functions of 0, we get t from the

equation

B («')

and then t is found from (480), § 286.

It is worth noting that when there is no magnetic field, and the electric

force is a function of the radius only, U is, a function of u only, and the

problem reduces to that of central forces. For in this case the spherical

symmetry of the electric field allows us to choose the axis of x so that the

initial motion takes place in the meridian plane, and consequently the cyclic

momentum is zero. This reduces the expression (492) for U to its first term.

This case includes the important problems of an electron moving in the field

due to a fixed point charge, and in that due to a spherically symmetrical

distribution of charge, for instance the positive sphere of uniform density in

J. J. Thomson's model atom.



APPENDIX G

PROBLEMS ILLUSTRATIVE OF THE MOTION OF THE
LORENTZ ELECTRON

287. We shall now consider some problems of motion of the Lorentz

electron, selected partly on account of their intrinsic physical interest,

partly because of their suitability as illustrations of the methods developed

in Appendix F. At the same time they will serve to show that the

mechanics of the Lorentz electron is hardly more complicated than that of

the bodies of invariable mass postulated in ordinary mechanics, and at any

rate is sufficiently simple to allow of our obtaining definite numerical results.

As we have already pointed out, this fact distinguishes the Lorentz mass

formula from all others which have been proposed hitherto, and makes it the

only one of any use for practical purposes.

We have already considered the case of a Lorentz electron which is

projected in a uniform electrostatic field (Ch. XI, §§ 151—154). Its motion

in a uniform magnetostatic field takes place with uniform velocity, and

therefore differs in no wise from that of a charged body with constant mass.

The path is a helix of constant pitch, with its axis parallel to the lines of

force, in accordance with the results of ordinary mechanics. We need not

consider this problem here, and shall confine our discussion to more general

cases of motion.

Our first three problems concern the motion of a Lorentz electron in a

steady and uniform electromagnetic field. In the first problem the electric

and magnetic forces are parallel ; it involves the theory of Kaufmann's

experiments on the specific charge of /S-particles as a special case. The

general case suggests a new form of the experiment, which offers great

advantages, provided only that fairly intense electrostatic and magnetostatic

fields can be secured throughout a space of moderate extent.

In the second problem the electric and magnetic forces are perpendicular

to each other; the particular case in which the electric force, measured in

electrostatic units, is numerically less than the magnetic force, measured in

magnetic units, involves the theory of Bucherer's experiments on the specific

charge of /S-particles.
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The third problem is the most general, in so far as the electric and

magnetic forces are inclined at any angle.

The fourth problem treats of the motion of a Lorentz electron in a steady

electromagnetic field possessing an axis of symmetry. It is important

because it involves the theory of the Zeeman effect for a single electron for

any velocity less than that of light. The particular case, where the electric

force is central and proportional to the radius, is worked out in detail.

288. Problem 1. An electron moves in a steady and uniform

electromagnetic field, with electric and magnetic forces parallel to

each other. Required to find the motion. The simplest way of

attacking this problem is to notice that the field is symmetrical about every

line of force. Hence any convenient line of force can be taken as the axis of

symmetry in a system of cylindrical coordinates of («, •ar, j(). Since the field

is steady, an energy integral exists, and since it is sjmunetrical about Ox, the

total angular momentum about Ox is constant ; hence we can use the

simplification represented in equations (492) and (493), § 286.

For the electric potential we may write

<f)
= -d.x (498),

where d is the electric force, supposed to act in the positive direction of the

aj-axis and to be measured in electrostatic units.

By a proper choice of the yz plane we can reduce the energy constant h

to zero, and as before write the energy integral in the form

c _ed.x
^{c^-v'')~~^m ^*^^^-

In the present problem the vector potential a reduces to the component
a^ perpendicular to the meridian, and it is easily seen that in this, and
similar cases where the lines of magnetic force lie in the meridian planes,

a^ is equal to •<|r/OT, where '\}r is the stream function. Hence we have

a^^^h'ST (500),

where h is the intensity of the magnetic field. It is reckoned positive, or

negative, according as the magnetic force is in the same direction as the

electric force, or the opposite, and is measured magnetically.

We now choose our axis of a; so as to pass through the point of projection

of the electron. Thus ot vanishes initially, and therefore the cyclic constant

K is identically zero. Hence equations (492) and (493), § 286, give

„ dU „ dU „ e^dV e*'ar=
X = ;r— , OT =r— . U=-

dx
'

dur' l&m"^ Hd'm?

'

c'm-'^' '^ ~ 4cW
Therefore -" = ~^, -"=-Z^.- (501).
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Also (487), § 286, gives, by (500),

^' = -2^ (^«2)-

Lastly, (481), § 286, gives

t=r'A^

289. Equations (501)—(503) determine the motion when the initial

conditions are given. In order to simplify the results as much as possible

we shall suppose the origins of space and time chosen so that the direction

of projection is perpendicular to Ow, and is along the initial line from which

^ is measured. Hence when t = we have % = 0, ot = 0, x' = 0. Therefore

we get from (501) and (502), § 288,

,ed.T , . ehr ehr /Kr\A\
a; = a cosh , s!-=2osm-7— , v= — ^— (504).

cm 2cm -^ 2cvi ^ '

The arbitrary constants a and h remain to be determined. Let Vf, be the

initial speed, which is essentially positive. From (499), § 288, we find

&'m /-A-\^=
erfV(o--t'oO

^'^'^'

Also CTo = 'Wo ; hence we obtain from (480), § 286,

(dt

Lastly, (503), § 288, gives

therefore by (504) ^ = ^^^^3^)
^'''^-

ct = a sinh—'— (507).
cm

Eliminating t between (504) and (507) we get

a; = acosh (-j-j{;j, w = - 26 sin
;)(;

)

(508).

c«=-asinh^-y;)i;j
J

The first and third give

a; = ± V(a' + c^') (509),

where the upper, or lower, sign must be taken according as a, that is

according as e, is positive, or negative.

The energy equation (499), § 288, gives

a.2

c2_^2 = :i(c^-^„^) (510).
X'

The equations (508)—(510) determine the path and the mode of its

description completely.



298 PROBLEMS ILLUSTRATIVE OF THE [APP.

290. We notice first that a is positive, or negative, according as e is

positive, or negative ; thus a positive electron moves entirely on the positive

side of the a;-axis, a negative one entirely on the negative side. The relation

between x and t, namely (509), is precisely the same as in the problem at the

end of Ch. XI.

Secondly, b is positive, or negative, and x has the opposite sign to t and

t, or the same sign, according as eh is positive, or negative.

The second equation (508) represents a circle, of radius + b, touching

the initial line Oy at the origin. Fig. 43 represents it

viewed from the positive side of the axis of x, for the

case where eh is negative, e.g. for a negative electron

when the electric and magnetic forces are in the same

direction. In this case %, starting from zero, increases

as t increases, and the circle is described in the positive

direction, right-handedly with respect to the magnetic

force. If the electron were positive, but the magnetic ^^^- ^^•

force in the opposite direction to the electric force, eh would still be negative,

and the direction of description of the circle the same, but it would be left-

handedly with respect to the magnetic force.

It is important to notice that the sign of the product ed alone determines

on which side of the yz plane the electron moves, while the sign of the

product eh alone determines the direction of description of the path around

the lines of force.

Let s denote the arc OP of the circle in Fig. 43 ; then s = 2b-^. Hence

2dx/h^ sd/bh = cs/y„a by (505) and (506), § 289.

Thus the first equation (508), § 289, may be written in the form

cs \x= a cosh
v„a

&m , ed V(c' - V)
.(511).

ed \/{c^ — Va^) c^mvo

Comparing this with (234), § 152, we see that the path of the electron

lies on the right circular cylinder which stands on the circle ra- = — 26 sin
;)^

as base, and further that if it be supposed unwrapped from the cylinder it

developes precisely into the menoclinoid of the last problem of Ch. XI. In

other words, given an electric field, the electron describes a menoclinoid

determined by the value of the velocity at the vertex. If the electric field

and the velocity at the vertex be kept the same, while a parallel magnetic

field is superposed, the menoclinoid is bent round a right circular cylinder,

which has the axis of the menoclinoid for a generator, and whose radius is

numerically equal to v^djch times the first parameter a of the menoclinoid.
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^^

Each half of the menoclinoid gives rise to a spiral curve. The two

spirals are continuous at the vertex, and are images of each other in the

diametral plane through the vertex. They cut each other in a series of

nodes, given by % = W7r/2, where n is an integer. The nodes for which n is

even lie on Oos ; those for which it is odd lie on the opposite generator of the

right circular cylinder. The positions of these nodes are given by

Xn = a cosh (nird/h) (512).

The distances «„ ultimately form a geometrical progression whose ratio

is ird/h. Hence the pitch of the spirals becomes infinitely great ultimately.

In fact we see from (508), § 289, that the rate of revolution of the

electron around the cylinder is equal to ch/2dx, that is ultimately

zero, while the velocity parallel to Ox is ultimately equal to the

velocity of light.

As a numerical example let us consider the numerical

example of the problem of Ch. XI, with a magnetic field of

100 gauss superposed. As before we have e/cm = — 177 .10',

d = 50 E.S.U. = 15,000 volt/cm.,

and Vo/c = -508, giving a = - 39-4 cm. Equation (506), § 289,

gives 6 = 10 cm., hbjd = 20 cm. Fig. 44 gives the projection of

the path on the xy plane, on a scale of 1 : 80, the same as that

of Fig. 41, § 153.

The point A is the vertex, B, C are the first two nodes.

The thick line refers to those portions of the path, which are

in front of the right circular cylinder, of which the traces are

shown by fine lines, the broken line refers to the parts of the

path on the back of the cylinder. The arrows show the direction

of motion.

The figure is drawn for the case where h is positive, so that

a and b are negative, while x is positive.

291. The circumstances of our present problem are precisely

those of Kaufmann's well known experiments on the specific

charge of /3-rays ; in fact the part of the path described by the

jS-particles in passing through his condenser is a small arc PAP'
of the curve of Fig. 44, § 290. Consequently his electric de-

flection especially was very small, and measurable with difiiculty.

If however we could realise a considerable portion of the curve,

such as the arc AP'B between the vertex A and the first node

B, we should have a considerable deflection. Let the coordinates ^'S- **.

of B, referred to the vertex A as origin, be (f, rj, f); they are given by

putting X equal to + 7r/2 in (508), § 289, and noticing that

^ = x-a, 7] =y=0, ^= + ot;
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hence we get ^ = 2a sinh^ {'ird/2h), i? = 0, ^=2b (513).

Moreover, if denote the inclination of the path at B to the ^f plane, we

get, by (511), §290,

tang = jg= /; ,,,. (514).
ax c smh {jra/h)

Eliminating Vo between (513) and (505) and (506), § 289, we find

4c*m'' sinh* (7rd/2A) ic'm" ^ ''

Thus the locus of the first node 5 is a hjrperbola in the ff plane, with

its real axis along the line of force at the vertex A. Its real semiaxis is

equal to 2c^m sinh''' {7rd/2h)/ed, its transverse semiaxis to 2c^m/eh, and its

eccentricity to . / ( 1 + y^ cosech* -^j .

It is important to notice that the transverse semiaxis can only be

reduced to a reasonably small value by using a powerful magnetic field. The

magnetomotive force, or fall of magnetic potential, between A and B is

constant and equal to 2c^m/e.

For a negative electron 2d'mje is numerically equal to 3430 gauss cm.

;

a magnetic force equal to 100 gauss would give a transverse semiaxis 34'3 cm.

On the other hand the real semiaxis can be reduced as much as we please

by making d small enough. The electromotive force, or fall of electric

potential, between A and B is equal to 2c^m sinh^ (•7rd/2h)/e. For a negative

electron this is 3430 sinh= (7rei/2;i) E.s.u., or 1-03 . 10« sinh^ (7rd/2A) volts.

With d = ^h we should require 777,000 volts. In this case (514) gives

tan = '4i3vo/c, so that a particle for which Vq = ^c, would make an angle of

about 11° with the ^f plane. By increasing h to the utmost and making d/h

smaller, say about one fifth, we could diminish the transverse axis, and the

difference of electric potential, while the real semiaxis could be reduced to

a reasonable value, and the angle increased so that the rays should not

strike the ^^ plane too obliquely. In this way it should be feasible to realize

a considerable arc of the hyperbola (515) on a photographic plate placed in

the ff plane, without getting a trace too wide to measure accurately,

provided a sufficiently fine cylindrical pencil of /S-rays were used.

By measuring the trace on the plate and testing how far it agreed with

the hyperbola (515) of eccentricity / ( 1 + p cosech* -^ j
, we could test the

accuracy of the Lorentz mass formula; this test would only require us to

know the ratio djh.

Further, by calculating the real semiaxis of the hyperbola and measuring

d and h, or by calculating the conjugate semiaxis and measuring h, we could

determine the specific charge e/cm.
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If the Lorentz mass formula be assumed to be true, so that the curve is

assumed to be a hyperbola, the last method only requires an accurate

determination of h, not of d.

292. Problem 2. An electron moves in a steady and uniform

electromagnetic field with electric and magnetic forces at right

angles to one another. Required to find the motion. We shall take

Ox in the direction of the electric force d, Oy in that of the magnetic force h,

and Oz in that of the Poynting vector [dh]. By a proper choice of the

constant involved in the electric potential we may take

<j) = -d.x (516).

The energy integral becomes

_ ed(x + k) , „,

V(c2-«^) d'm ^ ''

where k is an arbitrary constant to be determined later. Then (481), § 286,

gives for the time

t=red(x + k)dT

Jo (ym

Again, we may take for the vector potential a

ax = hz, ay = az=0 (519).

for these values give hy = h,hx = hz = and satisfy all other necessary

conditions.

Using the energy integral for the reduction of the equations of motion

to T as independent variable, we find for the Lagrangian function, by (486),

§286,

Then the equations of motion become

„ eh , e^d^ , ,
, .

i

cm, &m?

y" =0 \ (520).

2.

The last equation gives

eh ,

z" =— X
cm

eh
z' = z^ +— (a;-«o) (521),

CTYt

where the zero suflSx denotes initial values. We can express < in terms of

the initial velocity z, by means of (482), § 286, which gives

'•'7i^) <*''>

with similar equations for «„' and y^.
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Substituting from (521) in the first of (520) we get

* + - o . ^ = ^-,,+^-7 ^0 (523).
c^m? cHn? &m^ cm

The constants k and «„ are not independent, but are connected by the

energy equation (517), which gives

ed (k + Xo) _ C
cm s/ic^ — v^)

'

Subject them to the further condition

gZjjj2 p2jjj2 Q^ jjj ^^g2 _ yl'^ '

which makes the right-hand member of (523) vanish. Thus we get

, c^mh (zpd - ch) _ &m (cd - z„h)
(K9,A,\

'^~ed{d'-h?)>J{c'-v,')'
'''~ e(d'-h')^/{(f-v,') "'^ '

Then (521) and (523) give

x" +^^^^x = (525),

efe cd{z,d-ch) .

" cm"'^{d^-h?)^/{&-v,') ^ '

By means of (482), § 286, we get from the second of (520)

^ = ^»'^ =v^^ ^^''>'

where we have taken ya = 0, which implies no limitation of generality.

Lastly, by means of (520) we get from (518)

cm , h &mxa h ,.„ ,

''=^"'+r- ed^(c^-v,^) -r^ (^2^)-

Before proceeding any further we must distinguish two cases according

a,s d $ h.

293. Case I. d<h.

This case is of importance for the theory of the experiments of Bucherer

and Wolz on the measurement of the specific charge of jS-rays.

Let us write <f) = t
cm

cm
a =

.(529).

e V(^' - d') V(c' - Vo') J

^ is an angle, and a is a time ; a is positive, or negative, according as the

charge e of the electron is positive, or negative.

Moreover, let us choose the initial values Zq and t^ to be zero, which

implies no limitation of generality.
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We get from (524) and (527), § 292,

a (z^h — cd)
Xn"0 - jif^i _ ^i^ . 2/o = 0, Za = 0, <o = 0,

^T^r"'"' (#)„='^^" (|)„='^^»' ©r"
Hence we get from (525)—(528), § 292, and (529)

{Zgh — cd
, . . ,)^=^{

v(A'^-ri.)
'^°«'^+^oSm.^|

y = ayi><t>

_ ah { ^oh-cd . d {ch - z^d)
,

" - V(F=:di) {v(F^d^ ^^^ ^ + '^^ (1 - ^°^
'^) +AV(F3^ "^^

. ad
f s^o^-cd • , , . /-, .s Ii(ck-z„d) ,]

.(530).

y .(531).

These equations show that the origins of space and time can always be

chosen so that «„ = 0, except in the special case when z^h — cd = 0. In this

special case the choice of aio = would limit the generality of the problem

;

hence it is best to consider it separately.

294. Special case, z^ = cd/h. This is the case of the " compensated

rays " in Bucherer's experiment. We get

X = axo sin ^ \

y = ayo4>

{ hxo ,, ,. d ,)

'*=''{v(^^)^^-'°"^^ + '4 )

When the electron is projected at right angles to the electric force, so that

Xa = 0, its path is the straight line

y = zy,hlcd (.532),

which is described with uniform velocity v^. Since Zo = cdlh, while Vg must

be less than c, y^ must be less than c \/(h' — d^)/h in numerical value. Hence

all the compensated rays lie within the sector which is limited by the lines

y = ±z kJQv' - d^)/d.

The motion is such that z is positive, that is in the positive direction of the

Poynting vector.

When Xo is not zero, the path is a tortuous curve, but for large values

of ^ it approximates to the straight line (532), and z is positive. Hence the

motion is in the positive direction of the Poynting vector on the whole.
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The projection of the path on the plane of xy, the plane of the electric

and magnetic forces, is a sine curve, whose base is along Oy, parallel to the

magnetic force, amplitude equal to a&D, and wave-length to 2'7ray„.

The projection on the plane of yz, perpendicular to the electric force, is a

sheared cosine curve. Its base is the line z = axahl\/(h?— d^), parallel to Oy,

the magnetic force, its amplitude is equal to axahjuKh?— d?), and wave-length

to liray^. It is sheared parallel to Oz through the angle tan"^ (cdjhyo).

The projection on the plane of xz, perpendicular to the magnetic force, is

a curve of the nature of a trochoid. It is derived from a trochoid, whose

base is parallel to Oz, that is to the Poynting vector, by reducing all the

ordinates in the ratio h : \/(h' — d"). The radius of the rolling circle of the

trochoid is acd/h, and the distance of the tracing point from its centre

axjil\/{h:' — d^). The trochoid is curtate, or prolate, according as a;„ is

greater, or less, than cd \/(h^ — d')/K', and the projection has loops, or no

loops, accordingly. The path itself however has no loops, because there are

none in its other two projections.

As a numerical example, let us suppose that h = 2d, so that Zg = ^c.

Further let Xo = ^c, yo = ^c. Then

a!=^acsin0, y=^ac^, ^= ^ac !(/» + -ys(l —cos <^)|-

.

The resultant initial velocity is Do = -h- c. The third projection has loops.

Fig. 45.

The three projections are shown in Fig. 45. The scale of the diagrams is

determined by the value of the length ^ac; by (529), § 293, we have

^ac=-
cm

2e »J{li? - d') VCc" - «o') ed V3

"

For a negative electron e/cm = — 1*77 . 10' E.s.u. If d be 98 E.S.U.,

i.e. 29,400 volt/cm., we find that ^ac is equal to — 10 cm.

As a second example, suppose that Xg = ^c, all the other quantities

retaining their former values. We get

a; = iacsin^, y=^ac(f), ^ = |ac -I </>
+ -^(1 — cos ^)[

.
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The resulting initial velocity is v, = lc. The third projection has no
loops. The three projections are shown in Fig. 46.

In all the figures the path is indicated by a thick line, and the direction
of motion by arrows. They are all drawn for a positive electron; for a
negative one we need only suppose the directions of the vectors d and h to
be reversed.

Fig. 46.

295. General case. i„ 5 d/h. By shifting the origins of space and
time we can without any loss of generality ensure that x^ = 0. Thus we find

from (530), § 293,

x = a-
zJi — cd

COS<f)
^/{h''-d')

y = ay,4>

_ d (ch — Zod)
^~"'

h^-d^ ]^ ' dich- z4)

h (ch — Zad)

h {zji - cd) . ,

ct = a
{ch-Zad){ d{zah-cd) . ,)

h^-d^ r+h(ch-z4)'''"f'\i

.(533).

By changing </> into ^ - ir/2 and shifting the origins we can write these

equations in the same form as (531), § 294, so that the three projections

are the same as in the special case, but the constants are different. The
constant «„ is now replaced by (zoh — cd)l\/Qi? — d^), and the constant c, which

multiplies ^ in the bracket in ct, and d<^lh in the bracket in z, is replaced by
A (ch - Zod)/(h' - d^).

Hence the path is of the types shown in Figs. 45 and 46 : of the first type

with loop, or of the second without loop, according as h (z^h — cd) is greater,

or less, than d (ch — z^d) numerically. Now we have

h' (zji - cdy - d' (ch - z4y = {h' - d') i„ [zo - c -^^^

Thus the first type occurs when z^ is negative, and when it is positive and

greater than 2cdh/(d^ + h").

s. 20
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296. Case II. d>h.

[app.

This case has not yet occurred in experimental work and may be

dismissed briefly. Write

^ e slid? - h?)
<p — T

cm
.(534).

a =
C'TTi

In the present case we have the same expressions for «„ . . . as before,

except that sjiji? — d?) is replaced by sl(6? — hF). Hence

«o = 0,

dx\

dct>Jt

— dlOuQj

dy_

d<f>J

•\ /dz\ . (dt\

Since
j

i„
|
< c and d> h, x^ cannot vanish. Hence we can always shift

the origins of space and time so as to make Xa vanish. Then we get

cd — Zifi
x = a

^J{d'' - h?)
cosh (^

.(535).h(cd — Zoh) ( . , , d(z.d — ch) ,)

ci = a^M:i#> isinh </, + |M:=4) 4
d^ - A" [ ^ d{cd- Zoh) ^J

These equations can be found from (533), § 295, by changing
<f>

into i<j), a

into — la, and i^(h^ - d^) into i >J(d' — h^).

When (j) is very large, whether positive, or negative, we get z = cth/d, so

that the motion is in the positive direction of the Poynting vector on the

whole, as in case I.

The projection of the path on the plane of xy, of the electric and

magnetic forces, is a menoclinoid, whose axis is Ox, parallel to the electric

force, and whose parameters are a(cd — Zoh)/\/(d'' — h'') and ay^, the former

being the greater of the two. This curve has already occurred in connection

with problem 1, § 290.

The projection on the yz plane, perpendicular to the electric force, is got

from a trepsiclinoid *, of axis Oz and parameters ah {cd — z„h)l{d'' — hF) and

ay^, by shearing it parallel to Oz through an angle

tan-^^^^|ZL|g.
y,{d'-h')

* Loria, loc. cit. p. 580.
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The projection on the xz plane, perpendicular to the magnetic force, is

similar to the hyperbolic cycloid of Laisant*. It can be generated by a

point which moves along one or other branch of the hyperbola

d' - li?

z' = w
(cd - z„hy

with uniform areal velocity about the centre, while the hyperbola moves

parallel to Oz with uniform velocity. When d(zod — ch) is negative and

numerically greater than h {cd — Zoh), z changes sign when

,
,,d(ch-Zod)

/ {cd - Zgh)

'

and the projection has a loop. This occurs when z^ is negative.

A

Fig. 47.

Fig. 48.

As numerical examples we shall take the cases where d = 2h, y^ = ^c,

and i„ = |c and - ^ c respectively. The projections of the path are shown in

Figs. 47 and 48 ; they are given by

a; = 1^ cosh (/), y = \ac<^, «=^(sinh <^ + t<^),

and
2V3

cosh
bac

<l>,
y = \ac^, ^ = -g- (sinh <^ - §^)

* Loria, loe. cit. p. 476.

20—2
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As before, the path is shown by a thick line, and the direction of motion

by arrows. The charge is negative. .

In these figures A is the vertex, and OA is equal to a, which is negative,

because the charge is negative.

In Fig. 48 N is the node in the xz projection. It does not occur in the

path, and is shown undoubled at NN' in the xy projection.

297. Problem 3. An electron moves in a steady and uniform

electromagnetic field. Required to find the motion. This is the

general problem, of which those considered so far are particular cases. As

before let d and h be the electric and magnetic forces, measured in

electrostatic and magnetic units respectively, and let 6 be the angle between

them.

We shall take the plane of d and h as plane of xy, and the positive

direction of the Poynting vector [dh] as Oz at some arbitrary origin 0. Let

Ox make an angle a with d, measured in the positive direction, that is

towards h.

Then we may write

^ = — d (a; cos a - 2/ sin a) (536).

The equation of energy becomes

= —— (x cos a — y sin a + A;) (537),
^(0" - M") c=m

where k is an arbitrary constant.

Again, we may write for the vector potential a

ax = hsva.{6 — o.)z, ay = — h cos (0 — a) z, az = (538).

Hence the Lagrangian function becomes

L = ^m {x'' + y'^ + z'^) + ^ [x' sin {6 -a)- y' cos {6 - «)} z
c

e'd" (x cos a — y sin a + kf
"*"

2c^m

The equations of motion are

„ eh sin (0 - a) , _ e^d? cos a {x cos a — y sin a + k) ^
SO "T" z — — \

cm c^rn?

„ eh cos (Q - g) , _ etf sin a (a; cos a - y sin a + A;)
[ /Koq\

cm
~

c^m? r ••y
'•

ph
/' = £Ksin(^-a)-y'cos(^-a)}
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The last equation gives

/= ^ {xsin{d -a)-ycos(d - a)} +~A^
cm'- ^ ' ^ ^ '^ cm.

""^^'^ ^ ^ = ^«' -^ J'^" '^'^ (^ - «) - 2/0 cos {e - a)}

.(540),
eh , , eh

CTti cm

so that A is arbitrary. Substituting in the first two equations we get two
linear differential equations of the second order, both of which contain terms
in X and y, as well as constant terms.

The coefficient of y in the first equation and that of x in the first are the
same and equal to

e^ [d? sin 2« - h^ sin 2 (g - a)|

2c^m'

They can be made to vanish by choosing a so that

sin 2a = A^ sin 20/V(ci* + 2d* cos 26 + h") i

cos 2a = {6? + A^ cos 26)1^{d' + 2^%^ cos 2(9 + A^ j

^^^^^'

With this value of o the coefficient of x in the first equation reduces to

- ^pl&m^, and that of y in the second to ey/c^m^ where

2f = ^{d^ + 2^%" cos 2e + A^ + cZ^i - A^

25f^ = V(* + 2d* cos 26 +h')-d^ + h\'

f and ^f are both real and may be taken to be positive, or negative, as may
be most convenient. "We shall take/to be positive, and choose the sign of ^
so that

fg^dh cos 6 (543),

which obviously agrees with (542). We see at once that

f^+g^= ^(d* + 2(Z* cos 26 +h% f-g^^d-'-h^ (544).

Then we easily find fi-om (541)

.(542).

cos

cos a = '^./ -7-—^, sma=^,./-2;;—=^,

dVf^ + g^' dVf' + g^ I

,„ . g /d' + g^ . ,„ , / /d^-p\ '"^

Again, the constant terms in the equations for x and y vanish when

Ah^ sin (^ - a) - M^ cos a = 0, Ah'' cos {6-ol)- W= sin a = 0.

The determinant of these two equations in Ah? and hd? reduces to cos 6,

and only vanishes when 6 — 7r/2, a case already treated in problem 2. Hence

we may suppose cos 6 different from zero, and must put A and k equal to

zero. Remembering that z^ = cZo/'J(c^ — v^) we get from (540)

Xa sin {6 — a) — y^ cos (^ - a) =
eh v'(c' - V)
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Putting k = 0, a;=«o> 2/ = 2/o and v = Vo in the energy equation (537)

we find

Solving for x„ and y^ and using (542)—(545) we get

_ c'm {c V(d^ + g') - gp V(t^^ -/')} ]

_ c'm {c s/{d? -/') - i„ V(d°+ gr^)}

\

.(546).

eg^{f' + 9')'J{d^-v^) I

The first two equations (539) become

p2 ftt pif.i

.(547).

Using (545) we find from (540)

Lastly, remembering that -^ = i =c/V(c^ — w^. and using (545), we get

from (537)

cmy f + g'' cmV/'+^^ .(549).

Remembering that «„' = cx„l\/{c'^ — V) and y„' = cyo/i^(c^ — v^), we find

from (547)

0) = Xq cosh --—

h

c'mx„
sinh

efr]

.(550).

cm ef \J(c^ — Wo"^) cm

ear c^my^ . ear
y = Vo cos -^ H ji-f^—TT sin ^-
^ "^ cm eg >J{c^ - V) cm

Substituting these values in (548) and (549), integrating and shifting the

origins of space and time, we obtain

c'mx^

g^X'' cm ef »J{c^ — v„^) cm
cosh -^ '^

c'myo ^^^egr

ct

- a' \ . ear

g^ [" cm eg V(c — Wo ) cm

-—^^
iaJo smh^ + .^. ,. „ „. cosh ^^/

d' + g' (

V f' + f r """' cm ' e/V(c' - 1*0')
"""" cm

_ Id'-P \
.egr &my, effr]

V /^ + ^' r cm e^ V(c^ - I'o^) cm]

...(551).

The equations (550) and (551) completely determine the path and its

mode of description in terms of the parameter t.
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298. From (546), § 297, we find

^, cWi;„^ _ c'm'[{c^/(d'+g')-z,>^(d'-f)Y-Xo^f + g^)]

_ (fm?
[
[c ^{<P -f) - JQ ^/id' + g^)Y + (c^ - x,' - ipQ {f + g')]

> 0, because c^ > «o^ + z^K

Thus we may write

yo' +

where a and b are both real.

Moreover, write

^ + tanh-'

g2y2 (•(,2 _ ^^2)

e^g'{c^-v^y

= a'

c'majo

cm e/V(c'-V)«o S'

={^

_tan- c-myo ^^_^
cm e^f V(c' - J^o") 2/o

so that tan~
c'myo

+ f tanh-'
c'mxo

eg V(c^ - Vo') 2/0
' / """"

ef^(c' - v^') *,

Then we find, in place of (550) and (551), § 297,

= 6

\a; = a cosh - d>

9

y = h cos
{<f>

— e)

^ =V 7^2 « «inh^^ ^ -^j^^ b sm (<^ - a)

.(552),

.(553).

.(554).

.(555).These give ay' + y^ + z^ - cH^= a'' + b''

Equations (554) give the simplest form of the solution.

299. By means of (546), § 297, and (552), § 298, we find

/W - /&' = c*mVe' (556),

showing that a and 6 are not independent.

The first equation (554), § 298, shows that x always has the same sign,

that of a and «„ ; from (546), § 297, we see that x, has the sign of e. Hence

X and a are positive, or negative, according as the charge e is positive, or

negative.

Again, the form of the second equation (554), § 298, shows that b may be

taken to be positive without any loss of generality.
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For large values of (fi we get z = ct \/{d? —/0/V(^^ + 5^0 ; hence z increases,

and on the whole the motion is in the positive direction of the Poynting

vector, just as it is in the particular cases already examined.

Equations (554), 1 298, show that the actual displacement is the resultant

of two components

:

(1) x = a cosh-^ i>, z= . -^„
— '- a sinh*^ d), whence

-J±|;.^
= a= (557).

(2) y^h cos (<;, - 6), ^ = -
Jj^—Z-, & sin (<^ - e), whence
f^9'

y'+w^^''=^'
<^^8)-

Equation (557) represents a hyperbola, whose real semiaxis is a, along

f' + 9''

/(P — p . . lip + q'

Ox, conjugate semiaxis a \/Yi— 2 > ^'long Oz, and eccentricity ^Z /s a

Equation (558) represents an ellipse, whose major semiaxis is h . / 7^—^,

along Oz, minor semiaxis h, along Oy, and eccentricity . / , "^^ . We find
V ' iy

at once

Using (545), § 297, we get {yz - yz) cos (^ - a) = - ^^^^ h^^ , and

from (554), § 298, we see that <^ has the sign of fajg. Hence, since / and h

are essentially positive, we see that {yz — yz) cos {6 — a) has the opposite sign

to a, or e. Thus the direction of revolution of the electron round the positive

direction of the magnetic force is positive, right-handed, when the charge is

negative, and negative, left-handed, when it is positive.

For a numerical example, take a negative electron, for which

e/cm = - 1-77.10' e.m.u.,

moving in a field where d = 214-5 e.s.u., A = 214-5 e.m.u. and ^ = 60°.

We find

/=^= 151-7, a = 30°, e//c^m = e^/c^m=- 0-0894.

Assume initially ii;„ = 0, yo = — "5440, i„=-577c, Vo = '793c. We get

a = — 15 cm., 6 = 10 cm.
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By means of (546), § 297, we find that y^ = 0, so that e = 7r/2. Hence we
find from (554), § 298,

'

« = — 15 cosh <^, 2/ =10 sin ^,

15 ... 10 V3 , , 15V3 . , _, 10
s = - -^ smh

<f> + -—jK- cos </), c« = -~- sinh ^ + —^ cos ^.

The path is drawn in Fig. 49 as seen from an infinite distance, looking

roughly in a plane through the Poynting vector at 30° to the magnetic force

and 120° to the Poynting vector.

[dh]

Fig. 49. Path of a negative electron.

Path shown by the thick line, full in front, broken behind. Arrowheads show the direction

of motion. Generating ellipse in various positions (0=7retc.) indicated by fine lines, fuU in

front, dotted behind. Arrowheads show the direction of revolution. Guiding hyperbola shown

by dotted line. Boundaries of the tubular surface generated by the ellipse shown by fine full lines.

Successive positions of the electron shown by small circles and radii.

300. Problem 4. An electron moves under the combined in-

fluence of a central force, which is a function of the distance alone,

and of a steady and uniform magnetic field of small intensity.

Required to find the motion. This problem has been chosen as an

example of the case where an energy integral exists, and the electromagnetic

field is symmetrical about an axis. It is particularly interesting in so far as
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it supplies an extension of the Lorentz theory of the normal Zeeman effect to

cases where the motion is not circular, and the velocity need not be small

compared with that of light. The Zeeman effect is known to be a linear

function of the intensity of the external magnetic field ; for this reason we

may neglect terms involving the square of the intensity. This produces a

very great simplification of the work; indeed, the inclusion of these terms

would render the equations well nigh intractable.

With the notation of Appendix F we shall denote by C/q the force function

when the external magnetic field is absent. By hypothesis Ug is a function

of r alone, and therefore it is possible to make the constant of angular

momentum, k, vanish by choosing the axis of oo to lie in the plane of

projection of the electron through the radius vector.

Hence equation (492), § 286, for the force function, in the absence of the

external magnetic field, reduces to

_ ih-e<t,y eW,
.(559).

° 2c^m2 2c''m?

The energy constant, h, is arbitrary, depending only on the circumstances

of projection. In order that Uo may be a function of r alone for all values

of h, (j> and a^ must each be functions of r alone. Since we admit the

possibility of a continuous distribution of electric charge in the system to

which the electric potential <j> is due, (/> can be any function of r alone. But

this is not true for the vector potential a^ ; for since the field is steady, there

are no electric currents in the system, and therefore a^ must satisfy the

equation

This equation is incompatible with the requirement that a^ be a function

of r alone other than zero ; hence a^ must vanish in the absence of the

external magnetic field.

When the external field is applied, the electromagnetic field as a whole

is symmetrical about the line of magnetic force through the centre of force.

We take this line as axis of x of our cylindric coordinates («, ot, )(). If the

intensity of the field be H, the vector potential is given by

ffl^ = a^ = 0, a^ = \H'ST (560).

The integral of angular momentum about Ox, (487), § 286, gives

^ 2cm miij-'' mr" sin" ^ ^

Ignoring the coordinate x we get for the force function U the expression

^ ~
° 2c'^m"OT^ " 2mV sin= d ^ 2cm^ ^ '''

since ot = r sin 0, and H' is neglected.
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The equations of motion (494), § 286, give

dr mV sin^ 6' dr^ ' dd m\^ sin" d

'

We also have the equation of energy, by (496), § 286,

r'^ + r^e'^ = 2U,- .^f. +gg|-c^ (563),
m¥^ sin'' cm'

as before ; further, the second equation of motion gives

r'e''=^h' j^^ (564),
m^ sin^

where h is an arbitrary constant. This equation shows that k' must be less

than m^A^, otherwise the motion could not be real ; hence write

K = mh sin S (565).

We get ^,g,^^ V(sitf^^-^sin-S)
(g^e).

This equation suggests the substitution

cos = cosScos0 (567),

whence ry = A (568).

Eliminating r^ between (561) and (566) we find

, eH^ g'sin8 ff

^ "^ 2cm " sin 6 V(sin^ - sin^ 8)
~

sin^ V(cot2 B - cot^ 0)

'

Integrating this equation, we get

"°'(^+S-'y)=*^"^''°*^ ^^^^^'

where 7 is an arbitrary constant.

Eliminating & between (563) and (564) we find

r'' = 2U,—-+—--c\
r^ cm'

t u/P

whence t=+ —77 jr

—

-fr-, : (570).

VK-^S-)
Again, combining this equation with (568), we get

<^ = ± ( -^^-^§-1^7-T (571)-
/• tiar

Lastly, in order to determine t we must remember that t- = c/\/(c^ — 'w"),

by (480), § 286. Now with the notation of § 286 we have

w^ = r'i" + r^^'^ + TO ^x'2
= 2 C/o - c^

by (561) and (563).
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But from (483), § 286, we find that w = cv/>^(c'' - v^) ; hence

V(3t^)
= ^(2^") (572),

which is another form of the energy integral. Hence we find from (570)

V r" cm' I

Equations (567), (569), (570) and (571) determine the orbit, and (573)

determines the mode of its description. The two first equations admit of a

geometrical interpretation.

301. Let a sphere of unit radius be described with the origin as centre.

In Fig. 50 let rectangular axes of (a;, y, z) cut it in

X, Y, Z, and let the radius vector to the electron cut

it in P.

Then XP = e, YXF = x-

With X as centre describe a small circle of radius S,

and draw the great circle PA to touch it at .4. Then

XA = B, and 4 is a right angle.
^'^- ^''•

Hence cos^=cosScosJP, cos.4XP = tan S cot ^.

Comparing these equations with (567) and (569), § 300, we see that

AP = ^, ^XP = x-fg-7.

and therefore YXA =y — k— •

2cm

Thus (571), § 300, may be regarded as the equation of the orbit, (j) as the

longitude measured from OA as initial line, and the plane OAP as the

plane of the orbit. When there is no external magnetic field YXA = 7, a

constant, and the plane of the orbit is fixed in space. But when there is an

eH dr
external magnetic field YXA increases with time at the rate — ^— -n

,

dr ij((? — "')
while AX retains the constant value S. Now -r-

=
, and the

dt c

instantaneous mass of the electron is given by the Lorentz mass formula as

equal to m^ = cm/\/(c^ — u"). Hence the angular velocity of the plane of the

orbit is equal to — eH/2cm^. In other words the electron describes its orbit

relative to the plane OAP, while this plane precesses about Ox with angular

velocity — eH/2cm^. This result is analogous to that obtained in the

elementary Lorentz theory of the Zeeman effect, where the angular velocity
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of precession is equal to — eHj^cm, and therefore uniform. Here it is

variable, because the zero mass m is replaced by the actual mass m^, which

varies as the velocity of the electron varies. This result is important,

because it indicates that the normal separation in the Zeeman triplet is to

be expected only in those cases, where the electrons generating the spectrum

lines are moving with velocities which are small compared with that of light.

Otherwise the separation will be less.

302. The two equations of angular momentum, (561) and (568), § 300,

remain true even when the electromagnetic field is not steady, that is,

during the variable period while the external magnetic field is being

established, provided only that the force due to the permanent field

remains central. On account of the great importance of this result we

shall give a proof from first principles.

With cylindrical coordinates {x, w,
'x)

we can by (454), § 278, write the

equations of motion in the following forms, bearing in mind that centrifugal

forces must be added on account of the rotation of the w-axis with angular

velocity x '•

d { ex \ r, a

-dilv(3^^)rv(^=-^°'"^-*-^"^'
d

\
ctsx 1 '^'^X _ ^^ _ ^M.

di IV(c'
- V))

"*"

V(c' - "') 2mi'^ cm'^'

Here the additional terms in the left-hand members of the second and

third equations represent the centrifugal forces, Po is due to the central

attraction of the original field, the terms in H represent the motive force

due to the electrodynamic action of the external field, and the term in H
represents the inductive action due to its establishment.

Multiplying the third equation by ot and integrating we find

<^ + = — , a constant.
^(c^-v"") 2cm m'

Remembering that £ = c/^(c' - v^), and that x' =^ • ^^ get (561), § 300,

proved without any use being made of the equation of energy. Multiplying

the first two equations of motion by ^, and using the integral just

obtained, we find

d^x _ _ cPq cos 6

d?~ ^/{c'-v'y

dV cPosin6' k" e^-g^OT

dr" V(c' - «') in^'^'
s rm'
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where the last term is to be neglected. Transforming to polar coordinates

we get

The second of these gives (564), § 300, as before. Hence we see that the

two quantities k and h are constant throughout the motion, whether the

external field be variable or steady, and therefore the inclination S of

the plane of the orbit to the lines of magnetic force, as well as the angle 7
in (569), § 300, are constant. Thus, while the field varies, the inclination of

the plane of the orbit to the lines of magnetic force remains the same, but

it precesses round Ox with the angular velocity —eH/2cm^, appropriate to

the intensity of the external magnetic field and the velocity of the electron

at the moment considered.

303. The energy equation cannot be obtained in the form (563), § 300,

for although Pq is a function of r only, when the internal field is steady, yet

the factor c/'\/{c^ — tP) depends not only on r, but on the time t, because

work is done on the electron by the external electric force of induction,

which exists as long as the external magnetic field varies. Therefore the

arbitrary constant, which is involved in the energy equation (563), § 300,

and included in the force function Uq, generally has a different value when

the external magnetic field has become steady, firom that which it had before

the field was applied.

We shall now use the equations (567)—(573), § 300, to determine the

orbit of the electron relative to the precessing plane OAP. For this

purpose we must make definite assumptions respecting the form of the

force function C/i,. We shall only consider the case of an electron moving

inside a fixed sphere of uniform density and opposite sign to that of the

charge of the electron.

304. Example : The electron moves inside a fixed sphere of

uniform density^ of charge - e' and radius b.

The charge is taken to be — e', so that ee' may have the positive sign.

There is no magnetic field other than that of intensity H. The electric

potential is given by

•^=25-3 (^'^*)-

The energy integral (477), § 285, may be written in the form

'
--'(-=--^)

(575).
h?

where a is the arbitrary constant, and is real because ee' is positive
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The force function Uo is therefore given by

" ~ Sd'mPb"

From (570), § 300, we find

dr

e^e'" (a^ - r*)" fi?

4<d'm' 6" r^ V c^m?J\

.(576).

.(577).

The choice of the positive sign for the square root clearly involves no

loss of generality ; it is merely a question of a convenient choice of the zero

from which t is measured.

The function under the square root is positive for r^ = oo , negative for

r^ = a? (unless ellKJc^m? be too large), and negative for r^ = 0. Hence it

vanishes for some value of r greater than a. The energy equation (575)

however limits r to values less than a. Therefore r" must have an upper

limit less than a^, and a lower limit greater, or in the limit, equal to zero,

and both of these values must make the function under the square root

vanish. Hence this function has three real positive roots ; we shall denote

them by a^gj, a^e^, a^e^ respectively, where

ei >1 >e2>es>0 (578).

Writing for brevity r' = a?'^ (579)

ee'aT f^ d^
we find

where gj > ? ^
i2cm6= J ,3 V4 (ei - I) (e^ - ?) (f - e,)

'

.(580),

Identifying (577) with (580) we find

e^e'' {a? -r^ _h^_ J-, _ eHjc\ _ e'e'" (a% - r") (a% - r^) (r' - a%)

whence 61 + 62 + 63 = 2 ^

eHK\

ee

Wf eHK\

a* \ c^w?) .(581).

We can reduce the elliptic integral to the normal form by wribing

I = £, + (&- 63) sm^M, h\ h= .h-^^^ (582).
V 61 — 63

Then we get from (575), (579) and (580)

r^ = (x^f = a? {63 + (62 - 63) sn^u\

2cmb^u,
T =

6e'a i^{6i — 63)

6e'a;

V(c^ - «') 2c^w6^
{1 - 63 - (62 - 63) sn'^u]

.(583).
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In order to find an expression for the time t we use (480), § 286 ; hence

JoV(c''-'WV 0^(61-63)^0

Using Jacobi's notation we get

«^
as/(ei-e3)(/E

{(1-1^)" +^w} <*«='•

The longitude ^ is determined by (568), § 300 ; with the help of (583)

we find

_ rMr_+ / 616268 f" ^^* <'586")
"^ ~Jo r^

~ ~V 61-63 Jo 63 + (e2-e3)sM2w ^

where a is an arbitrary constant, and the upper, or lower, sign must be taken

according as h is positive, or negative. Write

'61 63
sn (ir), k) = i — ^ , that is, sn (i), k') = / -

Reducing in the usual way and using Jacobi's notation we find

. , © (m - 497, A;)
+ it log,^r^ -^-j4-

.(587).

.(588).

The equations (585)—(688) completely determine the orbit of the electron

and its mode of description relative to the precessing plane OAP.

305. Since the Zeta and Theta functions are periodic functions of u of

period 2K, each of the quantities t and ^ consists of a progressive term,

increasing proportionately to u, together with a periodic term. For the

sake of brevity we shall write

© = 2cmb'K

ee'a V(ei — 63)

^_ a\(e,-e,)E-(e,-l)K}

C V(6i - 63)

Then we find from (583), (585) and (588), § 304,

a V(6i - 63) K

.(589).

u--j,t =
cT

Z{u)

,_^, -a\/(6i-63)^«.. V
, 1 1

S(u-i,7],k)

...(590).
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Z(u) is an odd function of u,®(u) is even, and therefore log pr? ^ri is
' ^

'' ' ^ &(u + ir],k)

odd; all are periodic functions of period 2K. Therefore the right-hand

members of (590) are odd periodic functions of u of period 2K. The first

equation shows that they may also be regarded as odd periodic functions of t

of period 2T, and accordingly can be expanded in series of sines of integral

multiples of the argument Trt/T.

Again, we know that k^sn^u — {K — E)jK can be expanded in a series of

cosines of integral multiples of ttu/K. Hence we see from (583), § 304, that

r^ — a^ {eiK — (gj — e^) E]/K can be expressed in the same form ; therefore it

is an even periodic function of t of period 2T, and can be expanded in a series

of cosines of integral multiples of the argument irtlT. The mean value of r'

is clearly equal to a'' [e^K - (e^ — 63) E}/K.

Thus the motion relative to the plane OAP is compounded of a uniform

rotation in the plane with the angular velocity ± ^/T, and an oscillation of

the period 2T. The orbit has an infinite number of apses, the apsidal

distances are a^/e^ and aijeg, and the apsidal angle is <I>.

The processional motion of the plane OAP is determined by (567) and

(569), § 300. We saw from Fig. 50, § 301, that the angle YXA between the

fixed meridian plane XT and the meridian plane XA through the initial

line OA, which we shall call yjr, is given by 1^ = ly — eHTJ2cm, From the

second equation (590) we find

eH% ^ eHa V(ej - gj) @ „ . . ,„_, .

The right-hand member of this equation is an odd periodic function of t

of period 2T, and can be expanded in a series of sines of integral multiples of

the argument irtfT.

Thus the motion, of the plane OAP consists of a uniform precession about

Ox with angular velocity — eH®l2cmT, compounded with an oscillation of

period 2T.

306. In order to get the most convenient representation of the motion,

we choose a system of moving axes of («', y', /).

Let the Eulerian angular coordinates, which define

the position of the moving axes relative to the axes

of {x, y, z), be {ff, <})', -f').
«^liere

(£>

^'=^-lS* (^^^>-

Then the axes of («', y', /) rotate about Ox'

with uniform angular velocity ± */T, and precess about Ox with uniform

21
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angular velocity — eH®/2cmT. The plane OY'Z' cuts the plane of the orbit

OAP in the radius OA', such that XA' = XA=S. The arc AA' and the

angle FA'Y' are periodic functions of t of period 2T, and vanish whenever t

is an integral multiple of T. The coordinates («', y', z') of the electron at P
relative to the moving axes are periodic functions of t of period 2^, and

therefore can be expanded in series of sines and cosines of integral multiples

of the argument tt^/T. Thus the motion is a particular case of that studied ^

in problem 6, Ch. VIII, p. 143, such that

where s is an integer, which may be supposed positive without loss of

generality.

307. Accordingly all the results obtained respecting the distant radia-

tion from the electron apply in the present case. In particular, we see from

§ 113 that each value of s gives rise to a nonet of vibrations

:

(1) A triplet of right-handed circular vibrations about Ox, that is, about

the positive direction of the magnetic force, with frequencies

(STT ± <1> - eH®l2cm)IT

and {sir - eH@/2cm)IT.

(2) A triplet of left-handed circular vibrations about Oso, with frequencies

(sTT ±^ + eH@j2cm)/T and (sir + eH^/2cm)IT.

(3) A triplet of linear vibrations parallel to Ow, with frequencies

(sTT + *)/r and sir/T.

When the external field is absent {H = 0) the three triplets coalesce, so

as to form three elliptic vibrations with frequencies (sir ± ^^jTf, and s-irjT^,

where T„ and <l>o correspond to the value H =0.

Thus the effect of the magnetic field is two-fold : (1) it splits up each

component of the triplet into three, one linear and two circular vibrations,

the separation being eH@/2cmT; (2) the central vibration of each triplet is

displaced whenever T and <I> differ from To and $„•

When the charge e is negative, the right-handed circular vibrations have
the greatest frequencies, when e is positive, the least.

In general, there is symmetry of position in each triplet produced by the

field, but there is not symmetry of intensity.

These results are in qualitative agreement with the results of experiments

on the Zeeman effect, if the charge e be supposed to be negative in the

normal effect. In order that the agreement may be quantitative, corre-

sponding to separation strictly proportional to H, and no shift of the central

vibration, it is necessary that T, O and be independent of H.
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Now equations (589), § 305, determine T, 4> and @ as functions of the

energy constant a, and of the three quantities e,,, e^ and e^, which are given

by equations (581), 1 304, as functions of a, h, k. and H.

We have seen in § 302 that the constants of angular momentum, h, and «,

are the same whether the external magnetic field is on or off, but that the

energy constant a is generally different, on account of the work done on the

electron owing to induction during the variable state.

Hence it becomes necessary to examine under what conditions, if any, the

change in the value of a, and the presence of B. in the second equation

(581), § 304, are without appreciable effect on the quantities T, $ and @.

308. We shall begin by examining the effect of the presence of H in the

second equation (581), § 304, where it occurs in the factor 1 - eEKf&m^ on

the right-hand side. Now by (565), § 300, we have k = m/i sin S ; hence from

the third equation (581), § 304, we find

eHK _ eS sin 8 eeaf V(fii^26s)

Let ro be the least apsidal distance, a ije^, and let ?>o and v^ be the

velocities at the apses ; from the first equation (581), § 304, and the last

equation (583), §304,

sHk _ eH sin S j c "
I /^^

cW ~ '^°
c^m \s/{d' - V)

"^
\/(c' -Wi')) V el

"

Here r^ must be less than the atomic radius, let us say less than 10~* cm.

;

for H= 30,000 gauss, and e/cm= — 1'77.10' e.m.u., eif sin B/d'm is numerically

less than 17'7 ; and the last factor is less than unity. Hence eHKJ&Tn? is

eompairable with 10~°, unless the velocity of the electron at the nearer apse,

where it is greatest, is nearly equal to the velocity of light.

Hence the direct effect of the external field on the periods will be less

than one millionth, unless the velocity of the electron at some stage of its

motion becomes nearly equal to that of light.

As this effect is already near the limit of accuracy of wave-length

measurements, we shall neglect the term elf/c/c^m^ in the second equation

(581), §304. Then it gives

eea'

2^mP
= (1-6263-6361-6162) * (593).

309. Again, in considering the effect of changes in the value of a, we

must bear in mind that even when there is no external magnetic field, the

energy constant a, as-well as the constant of angular momentum h, can have
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various values. If the motion under consideration is to account for fine

spectrum lines, in spite of the fact that waves fall on the optical receiving

instrument, which have been emitted by large numbers of electrons, projected

in similar fields but under widely different circumstances, one of two

conditions must hold : either (1) the periods of the waves emitted by an

electron do not depend on the values of the constants a and h to any

appreciable extent; or (2) some cause is at work which confines the values

of these constants within very narrow limits for all electrons, which are

contributing to the particular line under observation.

In the present problem the first condition holds, provided that the

velocity of the electron always remains small compared with that of light.

In fact, we know that under these circumstances the electron can describe

ellipses of various shapes and sizes, but always with the same period.

The third equation (583), § 304, gives for the two apses

c _ ee'a^ (1 - e^ c ee'a' (1 - g^)
...(594).

Hence Vo and Vi differ appreciably, and one of them at least is comparable

with c, unless both e^ and 63 are small.

Neglecting squares and products of e^ and 63, we find from (581) and

(586), § 304, (589), § 305, and (593), § 308,

= 1 + 62 + 63
2c»m6'

y = iTy^{l+|(6. + 63)}

* = i-TT {1 + i 'Jie.e,)}

.(595).

Since the apsidal distances are given by r-o = a ^/e,, and i-i = a Ve2, we find

from (595) approximately

«. = 83^.. «3=8^, (596),

and from (594) Vo= c 'J2e2, v-^ = c^/2e3 (597).

In order that the fundamental period 2T should be comparable with

that of the D lines of sodium, the third equation (595) requires that

6 = 4'6. 10~^ cm. for e' = e, and that it be larger than this for e'>e. In

order that Vo and r^ may be less than b, it is necessary that e^ and e, be less

than 3 . IQ-' (596), and Vo/c and v,/c less than 2-5
. lO"' (-597).
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With these values of e^ and e^, we see from (595) that @, T and <E> differ

by less than one part in five hundred thousand from their mean values,

a variation just about small enough to allow of the observed fineness of

spectrum lines. To the same approximation the separation in the Zeeman

effect then reduces to the normal value eHj2cm.

When the velocity of the electron exceeds the limiting value just found,

namely one four hundredth of the velocity of light, it is necessary to invoke

the second hypothesis in order to account for the observed fineness of

spectrum lines.

Moreover, the second hypothesis is required in every case where the

potential <^ is not a quadratic function of the radius vector, for instance,

when the field is due to a fixed point charge. A hypothesis tantamount to

this was suggested by J. J. Thomson in his book on the Corpuscular Theory

of Matter, pp. 157 et seq.

21—3
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Harmonic waves, of a single electric charge

98, 101, 116, 120, 123, 141 ; — of a group

103 ; — of a circular ring disturbed 134,

and in uniform motion 108; — of a

precessing system 146

Heaviside ellipsoid xiv, 275
Herglotz 90
Hertz vii, 1, 2

Indeterminateness of structure of a ring of

electrons and its removal xii, 190

Integral of angular momentum of the
Lorentz electron 286, 293, 297, 315, 317

;

— of energy 291, 296, 301, 308
Integrals for forces and potentials 17, 18,

20, 21, 111, 112
Intensity, of radiation in the Doppler effect

196 ; — of components in the Zeeman
effect 146

Jacobi 290

Kapteyn series of Bessel functions 110, 138,

187, 212, 224; convergence of — 110;
need for their study vii

Kaufmann xv, 299
Kirchhoff 4

Lagrangian equations for the Lorentz elec-

tron 284 ; — function for the same 285,

301 ; — series for the potentials xi, 154
Laisant, hyperbolic cycloid of — 307
Langevin 143
Larmor, Sir J. vii, viii, ix, x, 2, 3, 5, 122
Liapounoff xxii

Li^nard 8, 22, 24, 110, 175, 251
Lindemann 16, 21, 28, 89, 175, 227
Liquid, equilibrium forms of gravitating —

xxii, 268
Livens 175
Lorentz, H. A. vii, viii, ix, x, 2, 4, 5, 28,

173
Lorentz electron 257; its electromagnetic
mass 175 ; energy difficulty of the — 173,

178 ; kinetic energy of the — 178 ; the
mechanical explanation of the electron

leads to the — 268, 276, 278 ; its pressure
and structure 279 ; mechanics of the —
xiv, 282

;
problems on the motion of the

— 295 ; its motion in a central electro-

static and uniform magnetic" field 313,

special case of the electric force propor-
tional to the radius 318, and its applica-

tion to spectrum lines 323, and the
Zeeman effect 322 ; motion of the — in a
imiform and steady electromagnetic field,

with forces at any angle 308, parallel 296,

at right angles 301
Loria 183, 298, 306, 307

Macdonald 5

MacLaren xxii

Magnetic force, cf. forces

Mass, electromagnetic —, cf. electromag-

netic ; non-electromagnetic — 263, 273
Maxwell vii, viii, 2, 3, 9, 126, 187, 215
Mechanical explanation of the electron, cf.

explanation ; — force, cf. force

Menoclinoid curve 183
Momentum, cf. electromagnetic

Monoperiodic motion 95 ; its distant field

101 ; — of variable amplitude 156
Motions, various — and their fields, cf. the

particular motion
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Nagaoka 91, 172
Neumann's addition theorem 109
Newton's Second Law assumed viii, x, 178,

265 ; — Third Law fails for electrons xiii,

235, 237
Newtonian equations of motion for the

Lorentz electron 283
Nielsen 110, 158, 214
Notation, for forces and potentials 2 ;

— for

relative velocities of the parts of the

electron 235

Pohl 92
Poincar^ xiv, 173, 178, 192, 268
Point charge hypothesis ix, 262
Point-laws for the forces 23; — for the

potentials 22, 24 ; their geometrical inter-

pretation 31, and graphic representation

33 ; examples of — 37 ; cf. also forces

and potentials

Polarization of waves emitted by electric

charges 101, 108, 118, 120, 124, 134, 146
Polyperiodic motion 112; its distant field

116
Postulate of Relativity vii, ix, xiv, 281
Potentials due to a moving electric charge,

inside 266, 275, 279 ; — outside, anywhere
3, 4, 18, 96, 105, 111, at a distance 99,

103, 107, 114, 115, 154, 158, 162, 163, 164,

near the path 154, 166, 170, 171, 228, 232,

233 ;
point-law— 39, 40, 52, 55, 60, 65, 85

;— due to a spherical charge inside it 20, 21

Poynting vector, examples of the — 102,

103, 109, 121, 125, 195 ; its identification

with the radiation flux 5 ; its verification 6
Precessional motion of a vibrating system

143 ; application to the Zeeman effect 146

Pressure, component of the resultant

mechanical force 12 ; — inside the electron

263, 266, 277, 278 ; equation of — 265,

266, 273
Pseudoperiodic motion 149

Pulse generated by a j3-particle 69 ; appli-

cation to X-rays 83 ; its ultimate nature

77, effect 82, energy 79, strength 80 ; thin
— due to a motion with speed greater

than that of light 92

Quasistationary motion 175

Radiation, from a single electron, formula
of Li^nard for the — 8, 110, 122, 177,

251 ; — pressure ix, 176, 246, error due
to its neglect 183; — from a ring 109,

136; supplementary term in the — 9,

177, 253; unitary theory of — vii, viii

Rays, X and y — 91 ; diffraction of — 92

;

pulse theory of — 83
Rectilinear motion of an electric charge,

distant field, due to aperiodic — 164,

simple harmonic — 120, damped vibra-

tory — 161 ;
general field, due to uniform

— 37, uniform — generated by a uniform
acceleration 53, uniform — generated by
a uniform electrostatic field of finite

extent 69, uniformly accelerated — 40
"Relatiftheorie" vii, 28, 90, 281 ; Abraham's

objection to the — xiii

Relative motion of the parts of the electron

10, 243
Relativity, Postulate of — vii, xiv, 281
Ring of electrons, disturbed motion of a —

,

equations of — 223, radiation due to —
136 ; uniform motion of —, equations of
— 188, distant field due to — 103, radia-

tion due to — 109
Ritz vi, xi, XV, 143, 148
Runge XV, 147

Schott 17, 21, 62, 89, 100, 104, 108, 134,

155, 181, 188, 196, 198, 217, 224, 282
Schwarzschild 227, 234, 285
Searle 126
Series, Kapteyn — vii, 110, 138, 187, 212;

Lagrangian — xi, 154
Sommerfeld xiii, 16, 20, 28, 37, 61, 83, 90,

92, 175, 227
Specific charge of the electron, theory of

the experiments of Bucherer 303, of

Kaufmann 299, new method 299
Stark 199
Stokes 112, 150
Stress inside the electron 262; Maxwell's
— in the field 9

Thomson, Sir J. J. vi, 91, 103, 104, 172, 325

Uniform motions, cf. circular, rectilinear

Uniformly accelerated motion, cf. rectilinear

Unitary theory of radiation vii, viii

Walker 175, 227, 282
Walter 92
Wassmuth xxii

Wave-envelope 29 ; examples of — 40, 44,

57, 59, 81 ;
geometrical construction for

the — 34 ;
potential near the — 37, 92

Waves emitted by a vibrating system, cf.

harmonic; number of simultaneous —
from one source 34

Wiechert 22
Wien 139
Wind 92
Wolff 262
Wolz 181, 302

X and y rays, diffraction of — 92 ; pulse

theory of — 83

Zeeman effect, extension of the Lorentz
theory 314; precessional theory of Ritz

xi, XV, 146, 322
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